(ip)
 HEWLETT PACKARD

Optoelectronics Designer's Catalog

To help you choose and design with HewlettPackard optoelectronic components, this catalog includes detailed specifications for HP component products. The products are divided into nine sections:

High Reliability
Ink-Jet Components
Bar Code Components
Motion Sensing and Encoder Products
LED Light Bars and Bar Graph Arrays
LED Lamps
LED Displays
Fiber Optics
Optocouplers

How to Find the Right Information

The Table of Contents (pp. iii) indicates each of the nine sections listed above by a thumb-tab. An alphanumeric index (pp. iv) follows the Table of Contents, and it lists every component represented in this catalog.

At the beginning of each of the nine product sections, there is a selection guide with basic product specifications which allows you to quickly select products most suitable for your application.
Following the product sections is a complete listing of application bulletins and notes which are frequently useful as design aids. The final section is an appendix containing HP sales, service, and authorized distributor locations.

How to Order

To order any component in this catalog or
 additional applications information, call the HP office nearest you and ask for the Components representative. A complete listing of the U.S. sales offices is on pp. 11-13; offices located outside of the U.S. are listed on pp. 11-6.
A world-wide listing of HP authorized distributors is on pp . 11-2. These distributors can offer off-the-shelf delivery for most HP components.

,

Hewlett-Packard Components: A Brief Sketch

History

In 1964, Hewlett-Packard established a new division having the charter of developing and producing state-of-the-art electronic components for internal use. By 1975, both microwave and optoelectronic devices contributed to the growing business of Hewlett-Packard and the Components Group was formed. Today there are three divisions: the Optoelectronics division, Optical Communications division and Microwave Semiconductor division. In addition to these three divisions there is a specialized team of people to develop, manufacture and market bar code components.

The products of the Components Group are vertically integrated, from the growing of LED crystals to the development of the various onboard integrated circuits to package design. Vertical integration insures that HP quality is maintained throughout product development and manufacturing.
Over 5000 employees are dedicated to HP Components, including manufacturing facilities in Malaysia and Singapore, factory and marketing support in San Jose, California and a world-wide sales force. Marketing operations for Europe are located in Boeblingen, Germany.
Each field sales office is staffed with engineers trained to provide technical assistance. An extensive communications network links field with factory to assure that each customer can quickly attain the information and help needed.

Quality and Reliability

Quality and reliability are two very important concepts to Hewlett-Packard in maintaining the commitment to product performance.
At Hewlett-Packard, quality is integral to product development, manufacturing and final introduction. "Parts per million" (PPM) as a measure of quality is used in HP's definition of product assurance. And HP's commitment to quality means that there is a continuous process of improvement and tightening of quality standards. Manufacturing quality circles and quality testing programs are important ingredients in HP products.
Reliability testing is also required for the introduction of new HP components. Lifespan calculations in "mean-time-between-failure" (MTBF) terms are published and available as reliability data sheets. HP's stringent reliability testing assures long component lifetimes and consistent product performance.

Table of Contents

Alphanumeric Index iv
High Reliability 1-1
Visible Product Screening Programs 1-3
Hermetic Lamps Selection Guide 1-7
Hermetic Displays Selection Guide 1-9
Hermetic Optocoupler Screening Programs 1-13
Hermetic Optocoupler Selection Guide 1-18
Ink-Jet Components 2-1
Ink-Jet Components Selection Guide 2-3
Bar Code Components 3-1
Bar Code Components Selection Guide 3-3
Motion Sensing and Control 4-1
Motion Sensing and Control Selection Guide 4-4
Light Bars and Bar Graph Arrays 5-1
Light Bars and Bar Graph Arrays Selection Guide 5-3
Solid State Lamps 6-1
Solid State Lamps Selection Guide 6-3
Hermetic Lamps 6-145
Solid State Displays 7-1
Solid State Displays Selection Guide 7-4
Hermetic Displays 7-181
Fiber Optics 8-1
Fiber Optics Selection Guide 8-6
Optocouplers 9-1
Optocouplers Selection Guide 9-4
Hermetic Optocouplers 9-101
Applications Information 10-1
Authorized Distributor and Representative Directory 11-2
International Sales and Service Offices 11-6
U.S. Sales and Service Offices 11-13

Alphanumeric Index

HBCR-1800 3-31
HBCR-2000 3-37
HBCR-2010 3-43
HBCR-8100 3-6
HBCR-8300 3-6
HBCR-8500 3-6
HBCR-8999 3-12
HBCS-1100 3-50
HBCS-2200 3-19
HBCS-2300 3-19
HBCS-2400 3-19
HBCS-2500 3-19
HBCS-2999 3-18
HBCS-4999 3-18
HBCS-5000 3-13
HBCS-5100 3-13
HBCS-5200 3-13
HBCS-5300 3-13
HBCS-5400 3-13
HBCS-5500 3-13
HBCS-6100 3-13
HBCS-6300 3-13
HBCS-6500 3-13
HBCS-7000 3-44
HBCS-7050 3-44
HBCS-7100 3-44
HBCS-7150 3-44
HCPL-1930 9-153
HCPL-1931 9-153
HCPL-2200 9-11
HCPL-2200, OPT. 010 9-9
HCPL-2200, OPT 100 9-10
HCPL-2201 9-15
HCPL-2201, OPT 010 9-9
HCPL-2201, OPT 100 9-10
HCPL-2202 9-15
HCPL-2202, OPT 010 9-9
HCPL-2202, OPT 100 9-10
HCPL-2211 9-15
HCPL-2211, OPT 010 9-9
HCPL-2211, OPT. 100 9-10
HCPL-2212 9-15
HCPL-2212, OPT 010 9-9
HCPL-2212, OPT 100 9-10
HCPL-2231 9-19
HCPL-2231, OPT 010 9-9
HCPL-2231, OPT 100 9-10
HCPL-2232 9-19
HCPL-2232, OPT 010 9-9
HCPL-2232, OPT 100 9-10
HCPL-2300 9-23
HCPL-2300, OPT 010 9-9
HCPL-2300; OPT 100 9-10
HCPL-2400 9-29
HCPL-2400, OPT 010 9-9
HCPL-2400, OPT 100 9-10
HCPL-2411 9-29
HCPL-2502 9-57
HCPL-2502, OPT 010 9-9
HCPL-2502, OPT 100 9-10
HCPL-2530 9-63
HCPL-2530, OPT 010 9-9
HCPL-2530, OPT 100 9-10
HCPL-2531 9-63
HCPL-2531, OPT 010 9-9
HCPL-2531, OPT 100 9-10
HCPL-2601 9-39
HCPL-2601, OPT 010 9-9
HCPL-2601, OPT 100 9-10
HCPL-2602 9-43
HCPL-2602, OPT 010 9-9
HCPL-2602, OPT 100 9-10
HCPL-2611 9-39
HCPL-2612 9-43
HCPL-2630 9-49
HCPL-2630, OPT 010 9-9
HCPL-2630, OPT 100 9-10
HCPL-2631 9-53
HCPL-2631, OPT 010 9-9
HCPL-2631, OPT 100 9-10
HCPL-2730 9-71
HCPL-2730, OPT 010 9-9
HCPL-2730, OPT 100 9-10
HCPL-2731 9-71
HCPL-2731, OPT 010 9-9
HCPL-2731, OPT 100 9-10
HCPL-3700 9-79
HCPL-3700, OPT 010 9-9
HCPL-3700, OPT 100 9-10
HCPL-4100 9-85
HCPL-4100, OPT 010 9-9
HCPL-4100, OPT 100 9-10
HCPL-4200 9-93
HCPL-4200, OPT 010 9-9
HCPL-4200, OPT 100 9-10
HCPL-4502 9-57
HCPL-4502, OPT 010 9-9
HCPL-4502, OPT 100 9-10
HCPL-4661 9-53
HCPL-5200 9-102
HCPL-5201 9-102
HCPL-5230 9-108
HCPL-5231 9-108
HCPL-5400 9-114
HCPL-5401 9-114
HCPL-5430 9-120
HCPL-5431 9-120
HCPL-5700 9-126
HCPL-5701 9-126
HCPL-5730 9-130
HCPL-5731 9-130
HCPL-5760 9-134
HCPL-5761 9-134
HCTL-1000 4-43
HCTL-2000 4-67
HDSP-0760 7-163
HDSP-0761 7-163
HDSP-0762 7-163
HDSP-0763 7-163
HDSP-0770 7-163
HDSP-0771 7-163
HDSP-0772 7-163
HDSP-0781 7-190
HDSP-0781TXV 7-190
HDSP-0781TXVB 7-190
HDSP-0782 7-190
HDSP-0782TXV 7-190
HDSP-0782TXVB 7-190
HDSP-0783 7-190
HDSP-0783TXV 7-190
HDSP-0783TXVB 7-190
HDSP-0784 7-190
HDSP-0784TXV 7-190
HDSP-0784TXVB 7-190
HDSP-0791 7-190
HDSP-0791TXV 7-190
HDSP-0791TXVB 7-190
HDSP-0792 7-190
HDSP-0792TXV 7-190
HDSP-0792TXVB 7-190
HDSP-0794 7-190
HDSP-0794TXV 7-190
HDSP-0794TXVB 7-190
HDSP-0860 7-163
HDSP-0861 7-163
HDSP-0862 7-163
HDSP-0863 7-163
HDSP-0881 7-190
HDSP-0881TXV 7-190
HDSP-0881TXVB 7-190
HDSP-0882 7-190
HDSP-0882TXV 7-190
HDSP-0882TXVB 7-190
HDSP-0883 7-190
HDSP-0883TXV 7-190
HDSP-0883TXVB 7-190
HDSP-0884 7-190
HDSP-0884TXV 7-190
HDSP-0884TXVB 7-190
HDSP-0960 7-163
HDSP-0961 7-163
HDSP-0962 7-163
HDSP-0963 7-163
HDSP-0981 7-190
HDSP-0981TXV 7-190
HDSP-0981TXVB 7-190
HDSP-0982 7-190
HDSP-0982TXV 7-190
HDSP-0982TXVB 7-190
HDSP-0983 7-190
HDSP-0983TXV 7-190
HDSP-0983TXVB 7-190
HDSP-0984 7-190
HDSP-0984TXV 7-190
HDSP-0984TXVB 7-190
HDSP-2000 7-46
HDSP-2001 7-46
HDSP-2002 7-46
HDSP-2003 7-46
HDSP-2010 7-198
HDSP-2010TXV 7-198
HDSP-2010TXVB 7-198
HDSP-2111 7-19
HDSP-2112 7-19
HDSP-2300 7-50
HDSP-2301 7-50
HDSP-2302 7-50
HDSP-2303 7-50
HDSP-2310 7-228
HDSP-2310TXV 7-228
HDSP-2310TXVB 7-228
HDSP-2311 7-228
HDSP-2311TXV 7-228
HDSP-2311TXVB 7-228
HDSP-2312 7-228
HDSP-2312TXV 7-228
HDSP-2312TXVB 7-228
HDSP-2313 7-228
HDSP-2313TXV 7-228
HDSP-2313TXVB 7-228
HDSP-2351 7-214
HDSP-2351TXV 7-214
HDSP-2351TXVB 7-214
HDSP-2352 7-214
HDSP-2352TXV 7-214
HDSP-2352TXVB 7-214
HDSP-2353 7-214
HDSP-2353TXV 7-214
HDSP-2353TXVB 7-214
HDSP-2416 7-68
HDSP-2424 7-68
HDSP-2432 7-68
HDSP-2440 7-68
HDSP-2450 7-235
HDSP-2450TXV 7-235
HDSP-2450TXVB 7-235
HDSP-2451 7-235
HDSP-2451TXV 7-235
HDSP-2451TXVB 7-235
HDSP-2452 7-235
HDSP-2452TXV 7-235
HDSP-2452TXVB 7-235
HDSP-2453 7-235
HDSP-2453TXV 7-235
HDSP-2453TXVB 7-235
HDSP-2470 7-68
HDSP-2471 7-68
HDSP-2472 7-68
HDSP-2490 7-56
HDSP-2491 7-56
HDSP-2492 7-56
HDSP-2493 7-56
HDSP-3350 7-109
HDSP-3351 7-109
HDSP-3353 7-109
HDSP-3356 7-109
HDSP-3400 7-138
HDSP-3400, OPT S02 7-153
HDSP-3401 7-138
HDSP-3403 7-138
HDSP-3403, OPT S02 7-153
HDSP-3405 7-138
HDSP-3406 7-138
HDSP-3406, OPT S02 7-153
HDSP-3530 7-145
HDSP-3530, OPT S02 7-153
HDSP-3531 7-145
HDSP-3531, OPT S02 7-153
HDSP-3533 7-145
HDSP-3533, OPT S02 7-153
HDSP-3536 7-145
HDSP-3536, OPT S02 7-153
HDSP-3600 7-121
HDSP-3600, OPT S02 7-153
HDSP-3601 7-121
HDSP-3603 7-121
HDSP-3603, OPT S02 7-153
HDSP-3606 7-121
HDSP-3606, OPT S02 7-153
HDSP-3730 7-145
HDSP-3730, OPT S02 7-153
HDSP-3731 7-145
HDSP-3731, OPT S02 7-153
HDSP-3733 7-145
HDSP-3733, OPT S02 7-153
HDSP-3736 7-145
HDSP-3736, OPT S02 7-153
HDSP-3900 7-138/7-145
HDSP-3900, OPT S02 7-153
HDSP-3901 7-138/7-145
HDSP-3901, OPT S02 7-153
HDSP-3903 7-138/7-145
HDSP-3903, OPT S02 7-153
HDSP-3905 7-138/7-145
HDSP-3906 7-138/7-145
HDSP-3906, OPT S02 7-153
HDSP-4030 7-145
HDSP-4031 7-145
HDSP-4033 7-145
HDSP-4036 7-145
HDSP-4130 7-145
HDSP-4131 7-145
HDSP-4133 7-145
HDSP-4133, OPT S20 7-153
HDSP-4136 7-145
HDSP-4136, OPT S20 7-153
HDSP-4200 7-138/7-145
HDSP-4201 7-138/7-145
HDSP-4203 7-138/7-145
HDSP-4205 7-138/7-145
HDSP-4206 7-138/7-145
HDSP-4401 7-95
HDSP-4403 7-95
HDSP-4501 7-95
HDSP-4503 7-95
HDSP-4600 7-121
HDSP-4601 7-121
HDSP-4603 7-121
HDSP-4606 7-121
HDSP-4701 7-95
HDSP-4703 7-95
HDSP-4820 5-27
HDSP-4830 5-27
HDSP-4832 5-27
HDSP-4836 5-27
HDSP-4840 5-27
HDSP-4850 5-27
HDSP-5301 7-130
HDSP-5301, OPT S01, S02 7-153
HDSP-5303 7-130
HDSP-5303, OPT S01, S02 7-153
HDSP-5307 7-130
HDSP-5307, OPT S01, S02 7-153
HDSP-5308 7-130
HDSP-5308, OPT S01, S02 7-153
HDSP-5321 7-130
HDSP-5321, OPT S02 7-153
HDSP-5323 7-130
HDSP-5323, OPT S02 7-153
HDSP-5501 7-130
HDSP-5501, OPT S01, S02 7-153
HDSP-5503 7-130
HDSP-5503, OPT S01, S02 7-153
HDSP-5507 7-130
HDSP-5507, OPT S01, S02 7-153
HDSP-5508 7-130
HDSP-5508, OPT S01, S02 7-153
HDSP-5521 7-130
HDSP-5521, OPT S01, S02 7-153
HDSP-5523 7-130
HDSP-5523, OPT S01, S02 7-153
HDSP-5531 7-145
HDSP-5531, OPT S02 7-153
HDSP-5533 7-145
HDSP-5533, OPT S02 7-153
HDSP-5537 7-145
HDSP-5537, OPT S02 7-153
HDSP-5538 7-145
HDSP-5538, OPT S02 7-153
HDSP-5551 7-109
HDSP-5553 7-109
HDSP-5557 7-109
HDSP-5558 7-109
HDSP-5601 7-130
HDSP-5601, OPT S02 7-153
HDSP-5603 7-130
HDSP-5607 7-130
HDSP-5607, OPT S02 7-153
HDSP-5608 7-130
HDSP-5621 7-130
HDSP-5623 7-130
HDSP-5701 7-130
HDSP-5703 7-130
HDSP-5707 7-130
HDSP-5708 7-130
HDSP-5721 7-130
HDSP-5723 7-130
HDSP-5731 7-145
HDSP-5733 7-145
HDSP-5737 7-145
HDSP-5738 7-145
HDSP-6300 7-90
HDSP-6504 7-84
HDSP-6508 7-84
HDSP-6621 7-60
HDSP-6624 7-60
HDSP-7301 7-115
HDSP-7301, OPT S01, S02 7-153
HDSP-7302 7-115
HDSP-7303 7-115
HDSP-7303, OPT S01, S02 7-153
HDSP-7304 7-115
HDSP-7307 7-115
HDSP-7307, OPT S01, S02 7-153
HDSP-7308 7-115
HDSP-7308, OPT S01, S02 7-153
HDSP-7311 7-115
HDSP-7313 7-115
HDSP-7317 7-115
HDSP-7318 7-115
HDSP-7401 7-115
HDSP-7402 7-115
HDSP-7403 7-115
HDSP-7404 7-115
HDSP-7407 7-115
HDSP-7408 7-115
HDSP-7501 7-115
HDSP-7501, OPT S01, S02 7-153
HDSP-7502 7-115
HDSP-7503 7-115
HDSP-7503, OPT S01, S02 7-153
HDSP-7504 7-115
HDSP-7507 7-115
HDSP-7507, OPT S01, S02 7-153
HDSP-7508 7-115
HDSP-7508, OPT S01, S02 7-153
HDSP-7511 7-109
HDSP-7513 7-109
HDSP-7517 7-109
HDSP-7518 7-109
HDSP-7801 7-115
HDSP-7801, OPT S02 7-153
HDSP-7802 7-115
HDSP-7803 7-115
HDSP-7803, OPT S02 7-153
HDSP-7804 7-115
HDSP-7807 7-115
HDSP-7807, OPT S02 7-153
HDSP-7808 7-115
HDSP-7808, OPT S02 7-153
HDSP-8600 7-138
HDSP-8601 7-138
HDSP-8603 7-138
HDSP-8605 7-138
HDSP-8606 7-138
HDSP-8820 5-33
HDSP-8825 5-33
HDSP-8835 5-33
HDSP-A101 7-103
HDSP-A103 7-103
HDSP-A107 7-103
HDSP-A108 7-103
HDSP-E100 7-103
HDSP-E101 7-103
HDSP-E103 7-103
HDSP-E106 7-103
HDSP-H101 7-103
HDSP-H103 7-103
HDSP-H107 7-103
HDSP-H108 7-103
HDSP-N100 7-103
HDSP-N101 7-103
HDSP-N103 7-103
HDSP-N105 7-103
HDSP-N106 7-103
HEDS-0200 7-103
HEDS-3000 3-25
HEDS-3001 3-30
HEDS-3050 3-25
HEDS-5000 4-25
HEDS-5010 4-25
HEDS-5100 4-25
HEDS-5110 4-25
HEDS-5200 4-25
HEDS-5210 4-25
HEDS-5300 4-25
HEDS-5310 4-25
HEDS-5500 4-19
HEDS-6000 4-33
HEDS-6010 4-33
HEDS-6100 4-33
HEDS-6110 4-33
HEDS-6200 4-33
HEDS-6210 4-33
HEDS-6300 4-33
HEDS-6310 4-33
HEDS-7500 4-41
HEDS-7501 4-41
HEDS-8923 4-25
HEDS-8924 4-25
HEDS-8925 4-25
HEDS-8926 4-25
HEDS-8927 4-25
HEDS-8928 4-25
HEDS-8929 4-25
HEDS-8931 4-25
HEDS-9000 4-7
HEDS-9100 4-11
HEDS-9200 4-15
HEMT-1001 6-116
HEMT-3301 6-116
HEMT-6000 6-120
HFBR-0400 8-37
HFBR-0410 8-37
HFBR-0501 8-13
HFBR-1202 8-78
HFBR-1204 8-86
HFBR-1402 8-37
HFBR-1404 8-37
HFBR-1412 8-37
HFBR-1414 8-37
HFBR-1502 8-60
HFBR-1510 8-60
HFBR-1512 8-60
HFBR-1521 8-13
HFBR-1522 8-13
HFBR-1523 8-13
HFBR-1524 8-13
HFBR-1531 8-13
HFBR-1532 8-13
HFBR-1533 8-13
HFBR-1534 8-13
HFBR-2202 8-78
HFBR-2204 8-90
HFBR-2208 8-98
HFBR-2402 8-78
HFBR-2404 8-37
HFBR-2406 8-37
HFBR-2412 8-37
HFBR-2414 8-37
HFBR-2416 8-37
HFBR-2501 8-60
HFBR-2502 8-60
HFBR-2503 8-60
HFBR-2521 8-13
HFBR-2522 8-13
HFBR-2523 8-13
HFBR-2524 8-13
HFBR-2531 8-13
HFBR-2532 8-13
HFBR-2533 8-13
HFBR-2534 8-13
HFBR-4202 8-78
HFBR-4501 8-13
HFBR-4503 8-13
HFBR-4505 8-13
HFBR-4506 8-13
HFBR-4511 8-13
HFBR-4513 8-13
HFBR-4515 8-13
HFBR-4593 8-13
HFBR-4595 8-60
HFBR-AUD100 8-57
HFBR-AUD1KM 8-57
HFBR-AUS100 8-57
HFBR-AUS1KM 8-57
HFBR-AWD005 8-57
HFBR-AWD010 8-57
HFBR-AWD025 8-57
HFBR-AWD050 8-57
HFBR-AWD100 8-57
HFBR-AWS001 8-57
HFBR-AWS005 8-57
HFBR-AWS010 8-57
HFBR-AWS025 8-57
HFBR-AWS050 8-57
HFBR-AWS100 8-57
HFBR-AXS001 8-57
HFBR-AXS010 8-57
HFBR-BXS001 8-57
HFBR-BXS010 8-57
HFBR-CXS001 8-57
HFBR-CXS010 8-57
HFBR-PLS001 8-13
HFBR-PLS005 8-13
HFBR-PLS010 8-13
HFBR-PLS020 8-13
HFBR-PLS030 8-13
HFBR-PLS045 8-13
HFBR-PLS060 8-13
HFBR-PLS1DM 8-13
HFBR-PLS5DM 8-13
HFBR-PMD001 8-13
HFBR-PMD005 8-13
HFBR-PMD010 8-13
HFBR-PMD020 8-13
HFBR-PMD030 8-13
HFBR-PMD045 8-13
HFBR-PMD060 8-13
HFBR-PMD5DM 8-13
HFBR-PND001 8-13
HFBR-PND005 8-13
HFBR-PND010 8-13
HFBR-PND020 8-13
HFBR-PND030 8-13
HFBR-PND045 8-13
HFBR-PND060 8-13
HFBR-PND5DM 8-13
HFBR-PNS001 8-13
HFBR-PNS005 8-13
HFBR-PNS010 8-13
HFBR-PNS020 8-13
HFBR-PNS030 8-13
HFBR-PNSO45 8-13
HFBR-PNS060 8-13
HFBR-PNS1DM 8-13
HFBR-PNS5DM 8-13
HFBR-PUD500 8-13
HFBR-PUS500 8-13
HFBR-QLS001 8-13
HFBR-QLS005 8-13
HFBR-QLS010 8-13
HFBR-QLS020 8-13
HFBR-QLS030 8-13
HFBR-QLS045 8-13
HFBR-QLS060 8-13
HFBR-QNS001 8-13
HFBR-QNS005 8-13
HFBR-QNS010 8-13
HFBR-QNS020 8-13
HFBR-QNS030 8-13
HFBR-QNSO45 8-13
HFBR-QNS060 8-13
HFBR-QUS500 8-13
HLCP-A100 5-15
HLCP-A100, OPT L00, L01, L03, L04 5-51
HLCP-A100, OPT S02 5-53
HLCP-B100 5-15
HLCP-B100, OPT S02 5-53
HLCP-C100 5-15
HLCP-C100, OPT L01, L02, L03, L04, L06 5-51
HLCP-C100, OPT S02 5-53
HLCP-D100 5-15
HLCP-D100, OPT S02 5-53
HLCP-E100 5-15
HCLP-E100, OPT S02 5-53
HLCP-F100 5-15
HLCP-F100, OPT S02 5-53
HLCP-G100 5-15
HLCP-G100, OPT S02 5-53
HLCP-H100 5-15
HLCP-H100, OPT L01, L02, L03, L04, L05, L06 5-51
HLCP-H100, OPT S02 5-53
HLCP-J100 5-41
HLMP-0103 6-144
HLMP-0300 6-95
HLMP-0301 6-95
HLMP-0354 6-146
HLMP-0363 6-152
HLMP-0364 6-152
HLMP-0365 6-152
HLMP-0366 6-152
HLMP-0380 6-146
HLMP-0381 6-146
HLMP-0391 6-152
HLMP-0392 6-152
HLMP-0400 6-95
HLMP-0401 6-95
HLMP-0454 6-146
HLMP-0463 6-152
HLMP-0464 6-152
HLMP-0465 6-152
HLMP-0466 6-152
HLMP-0480 6-146
HLMP-0481 6-146
HLMP-0491 6-152
HLMP-0492 6-152
HLMP-0503 6-95
HLMP-0504 6-95
HLMP-0554 6-146
HLMP-0563 6-152
HLMP-0564 6-152
HLMP-0565 6-152
HLMP-0566 6-152
HLMP-0580 6-146
HLMP-0581 6-146
HLMP-0591 6-152
HLMP-0592 6-152
HLMP-0904 6-146
HLMP-0930 6-146
HLMP-0931 6-146
HLMP-1000 6-58
HLMP-1002 6-58
HLMP-1002, OPT 001, 002 6-132
HLMP-1002, OPT 010, 101 6-137
HLMP-1071 6-58
HLMP-1080 6-58
HLMP-1100 6-106
HLMP-1100, OPT 010 6-137
HLMP-1120 6-106
HLMP-1200 6-58
HLMP-1201 6-58
HLMP-1300 6-60
HLMP-1301 6-60
New Products in BOLD Type.
HLMP-1301, OPT 001, 002 6-132
HLMP-1301, OPT 010, 101 6-137
HLMP-1301, OPT 104 6-138
HLMP-1302 6-60
HLMP-1320 6-65
HLMP-1321 6-65
HLMP-1340 6-98
HLMP-1350 6-64
HLMP-1385 6-60
HLMP-1400 6-60
HLMP-1401 6-60
HLMP-1401, OPT 001, 002 6-132
HLMP-1401, OPT 010, 101 6-137
HLMP-1401, OPT 104 6-138
HLMP-1402 6-60
HLMP-1420 6-65
HLMP-1421 6-65
HLMP-1440 6-98
HLMP-1450 6-64
HLMP-1485 6-60
HLMP-1503 6-60
HLMP-1503, OPT 001, 002 6-132
HLMP-1503, OPT 010, 101 6-137
HLMP-1503, OPT 104 6-138
HLMP-1520 6-65
HLMP-1521 6-65
HLMP-1523 6-60
HLMP-1540 6-98
HLMP-1550 6-64
HLMP-1585 6-60
HLMP-1600 6-106
HLMP-1600, OPT 001. 002 6-132
HLMP-1600, OPT 010, 101 6-137
HLMP-1601 6-106
HLMP-1620 6-106
HLMP-1620, OPT 001. 002 6-132
HLMP-1620, OPT 010, 101 6-137
HLMP-1621 6-106
HLMP-1640 6-106
HLMP-1640, OPT 001, 002 6-132
HLMP-1640, OPT 010, 101 6-137
HLMP-1641 6-106
HLMP-1660 6-110
HLMP-1661 6-110
HLMP-1674 6-110
HLMP-1675 6-110
HLMP-1687 6-110
HLMP-1688 6-110
HLMP-1700 6-102
HLMP-1719 6-102
HLMP-1740 6-44
HLMP-1760 6-44
HLMP-1790 6-102
HLMP-1800 6-44
HLMP-1801 6-44
HLMP-1819 6-44
HLMP-1820 6-44
HLMP-1840 6-44
HLMP-1841 6-44
HLMP-2300 5-8
HLMP-2300, OPT L00, L01, L03, L04 5-51
HLMP-2300, OPT S02 5-53
HLMP-2350 5-8
HLMP-2350, OPT S02 5-53
HLMP-2400 5-8
HLMP-2400, OPT L00, L01, L03, L04 5-51
HLMP-2400, OPT S02 5-53
HLMP-2450 5-8
HLMP-2450, OPT S02 5-53
HLMP-2500 5-8
HLMP-2500, OPT L00, L01, L03, L04 5-51
HLMP-2500, OPT S02 5-53
HLMP-2550 5-8
HLMP-2550, OPT S02 5-53
HLMP-2598 5-49
HLMP-2599 5-49
HLMP-2600 5-8
HLMP-2600, OPT S02 5-53
HLMP-2620 5-8
HLMP-2620, OPT S02 5-53
HLMP-2635 5-8
HLMP-2635, OPT S02 5-53
HLMP-2655 5-8
HLMP-2655, OPT L01, LO2, L03, L04, L06 5-8
HLMP-2655, OPT S02 5-53
HLMP-2670 5-8
HLMP-2670, OPT S02 5-53
HLMP-2685 5-8
HLMP-2685, OPT L01, L02, L03, L04, L05, L06 5-51
HLMP-2685, OPT S02 5-53
HLMP-2700 5-8
HLMP-2700, OPT S02 5-53
HLMP-2720 5-8
HLMP-2720, OPT S02 5-53
HLMP-2735 5-8
HLMP-2735, OPT S02 5-53
HLMP-2755 5-8
HLMP-2755, OPT L00, L01, L03, L04, L06 5-51
HLMP-2755, OPT S02 5-53
HLMP-2770 5-8
HLMP-2770, OPT S02 5-53
HLMP-2785 5-8
HLMP-2785, OPT L00, L01, L02, L03, L04, L05, L06 5-51
HLMP-2785, OPT S02 5-53
HLMP-2800 5-8
HLMP-2800, OPT S02 5-53
HLMP-2820 5-8
HLMP-2820, OPT S02 5-53
HLMP-2835 5-8
HLMP-2835, OPT S02 5-53
HLMP-2855 5-8
HLMP-2855, OPT L00, L01, L03, L04, L06 5-51
HLMP-2855, OPT S02 5-53
HLMP-2870 5-8
HLMP-2870, OPT S02 5-53
HLMP-2885 5-8
HLMP-2885, OPT L00, L01, L02, L03, L04, L05, L06 5-51
HLMP-2885, OPT S02 5-53
HLMP-2898 5-49
HLMP-2899 5-49
HLMP-2950 5-20
HLMP-2965 5-20
HLMP-3000 6-69
HLMP-3000, OPT 001, 002 6-132
HLMP-3000, OPT 010, 100 6-139
HLMP-3001 6-69
HLMP-3001, OPT 001, 002 6-132
HLMP-3001, OPT 010, 100 6-139
HLMP-3002 6-69
HLMP-3002, OPT 001, 002 6-132
HLMP-3002, OPT 010, 100 6-139
HLMP-3003 6-69
HLMP-3003, OPT 001, 002 6-132
HLMP-3003, OPT 010, 100 6-139
HLMP-3050 6-69
HLMP-3105 6-106
HLMP-3105, OPT 001, 002 6-132
HLMP-3105, OPT 010, 100 6-139
HLMP-3112 6-106
HLMP-3112, OPT 001, 002 6-132
HLMP-3112, OPT 010, 100 6-139
HLMP-3200 6-75
HLMP-3201 6-75
HLMP-3300 6-71
HLMP-3300, OPT 001, 002 6-132
HLMP-3300, OPT 010, 100 6-139
HLMP-3301 6-71
HLMP-3301, OPT 001, 002 6-132
HLMP-3301, OPT 010, 100 6-139
HLMP-3315 6-81
HLMP-3316 6-81
HLMP-3350 6-75
HLMP-3351 6-75
HLMP-3365 6-75
HLMP-3366 6-75
HLMP-3390 6-98
HLMP-3400 6-71
HLMP-3400, OPT 001, 002 6-132
HLMP-3400, OPT 010, 100 6-139
HLMP-3401 6-71
HLMP-3401, OPT 001, 002 6-132
HLMP-3401, OPT 010, 100 6-139
HLMP-3415 6-81
HLMP-3416 6-81
HLMP-3450 6-75
HLMP-3451 6-75
HLMP-3465 6-75
HLMP-3466 6-75
HLMP-3490 6-98
HLMP-3502 6-71
HLMP-3502, OPT 001, 002 6-132
HLMP-3502, OPT 010, 100 6-139
HLMP-3507 6-71
HLMP-3507, OPT 001, 002 6-132
HLMP-3507, OPT 010, 100 6-139
HLMP-3517 6-81
HLMP-3517, OPT 001, 002 6-132
HLMP-3517, OPT 010, 100 6-139
HLMP-3519 6-81
HLMP-3519, OPT 001, 002 6-132
HLMP-3519, OPT 010, 100 6-139
HLMP-3553 6-71
HLMP-3554 6-71
HLMP-3567 6-75
HLMP-3568 6-75
HLMP-3590 6-98
HLMP-3600 6-106
HLMP-3600, OPT 001, 002 6-132
HLMP-3600, OPT 010, 100 6-139
HLMP-3601 6-106
HLMP-3601, OPT 001, 002 6-132
HLMP-3601, OPT 010, 100 6-139
HLMP-3650 6-106
HLMP-3650, OPT 001, 002 6-132
HLMP-3650, OPT 010, 100 6-139
HLMP-3651 6-106
HLMP-3651, OPT 001, 002 6-132
HLMP-3651, OPT 010, 100 6-139
HLMP-3680 6-106
HLMP-3680, OPT 001. 002 6-132
HLMP-3680, OPT 010, 100 6-139
HLMP-3681 6-106
HLMP-3681, OPT 001, 002 6-132
HLMP-3681, OPT 010, 100 6-139
HLMP-3750 6-98
HLMP-3750, OPT 001, 002 6-132
HLMP-3750, OPT 010, 100 6-139
HLMP-3762 6-71
HLMP-3850 6-98
HLMP-3850, OPT 001, 002 6-132
HLMP-3850, OPT 010, 100 6-139
HLMP-3862 6-71
HLMP-3950 6-98
HLMP-3950, OPT 001, 002 6-132
HLMP-3950, OPT 010, 100 6-139
HLMP-3962 6-71
HLMP-3962, OPT 001, 002 6-132
HLMP-3962, OPT 010, 100 6-139
HLMP-4000 6-113
HLMP-4100 6-28
HLMP-4101 6-28
HLMP-4700 6-102
HLMP-4700, OPT 001, 002 6-132
HLMP-4700, OPT 010, 100 6-139
HLMP-4719 6-102
HLMP-4719, OPT 001, 002 6-132
HLMP-4719, OPT 010, 100 6-139
HLMP-4740 6-102
HLMP-5029 6-141
HLMP-6000 6-38
HLMP-6000, OPT 010 6-139
HLMP-6000, OPT 011, 012 6-122
HLMP-6000, OPT 021, 022 6-126
HLMP-6000, OPT P01, P02 6-130
HLMP-6001 6-38
HLMP-6001, OPT 011, 012 6-136
HLMP-6001, OPT 021, 022 6-126
HLMP-6001, OPT P01, P02 6-130
HLMP-6203 6-43
HLMP-6203, OPT 013 6-38
HLMP-6204 6-43
HLMP-6204, OPT 013 6-122
HLMP-6205 6-43
HLMP-6205, OPT 013 6-122
HLMP-6206 6-43
HLMP-6206, OPT 013 6-122
HLMP-6208 6-43
HLMP-6208, OPT 013 6-122
HLMP-6300 6-38
HLMP-6300, OPT 010 6-136
HLMP-6300, OPT 011, 012 6-122
HLMP-6300, OPT 021,. 022 6-126
HLMP-6300, OPT P01, P02 6-130
HLMP-6305 6-32
HLMP-6400 6-38
HLMP-6400, OPT 010 6-136
HLMP-6400, OPT 011 6-122
HLMP-6400, OPT 021, 022 6-126
HLMP-6405 6-32
HLMP-6500 6-38
HLMP-6500, OPT 010 6-136
HLMP-6500, OPT 011, 012 6-122
HLMP-6500, OPT 021, 022 6-126
HLMP-6500, OPT P01, P02 6-130
HLMP-6505 6-32
HLMP-6600 6-110
HLMP-6600, OPT 010, 011 6-122
HLMP-6600, OPT 021, 022 6-126
HLMP-6600, OPT P01, P02 6-130
HLMP-6620 6-110
HLMP-6620, OPT 010 6-122
HLMP-6620, OPT 011, 012 6-122
HLMP-6620, OPT 021, 022 6-126
HLMP-6620, OPT P01, P02 6-130
HLMP-6650, OPT 013 6-122
HLMP-6653 6-43
HLMP-6653, OPT 013 6-122
HLMP-6654 6-43
HLMP-6655 6-43
HLMP-6655, OPT 013 6-122
HLMP-6656 6-43
HLMP-6656, OPT 013 6-122
HLMP-6658 6-43
HLMP-6658, OPT 013 6-122
HLMP-6700 6-110
HLMP-6700, OPT 010 6-136
HLMP-6720 6-110
HLMP-6720, OPT 010 6-136
HLMP-6753 6-43
HLMP-6753, OPT 013 6-122
HLMP-6754 6-43
HLMP-6754, OPT 013 6-122
HLMP-6756 6-43
HLMP-6756, OPT 013 6-122
HLMP-6758 6-43
HLMP-6758, OPT 013 6-122
HLMP-6800 6-110
HLMP-6800, OPT 010 6-136
HLMP-6800, OPT 011, 012 6-122
HLMP-6800, OPT 021, 022 6-126
HLMP-6800, OPT P01, P02 6-130
HLMP-6820 6-110
HLMP-6820, OPT 010 6-122
HLMP-6820, OPT 011, 012 6-122
HLMP-6820, OPT 021, 022 6-126
HLMP-6820, OPT P01, P02 6-130
HLMP-6853 6-43
HLMP-6853, OPT 013 6-122
HLMP-6854 6-43
HLMP-6854, OPT 013 6-122
HLMP-6855 6-43
HLMP-6855, OPT 013 6-122
HLMP-6856 6-43
HLMP-6856, OPT 013 6-122
HLMP-6858 6-43
HLMP-6858, OPT 013 6-122
HLMP-7000 6-102
HLMP-7000, OPT 011, 012 6-122
HLMP-7000, OPT 021, 022 6-126
HLMP-7000, OPT P01, P02 6-130
HLMP-7019 6-102
HLMP-7019, OPT 011, 012 6-122
HLMP-7019, OPT 021, 022 6-126
HLMP-7019, OPT P01, P02 6-130
HLMP-7040 6-102
HLMP-7040, OPT 011, 012 6-122
HLMP-7040, OPT 021, 022 6-126
HLMP-7040, OPT P01, P02 6-130
HLMP-A200 6-85
HLMP-A300 6-85
HLMP-A500 6-85
HLMP-D101 6-20
HLMP-D101, OPT 010, 100 6-139
HLMP-D101, OPT 001, 002 6-132
HLMP-D105 6-20
HLMP-D105, OPT 010, 100 6-139
HLMP-D105, OPT 001, 002 6-132
HLMP-D150 6-24
HLMP-D150, OPT 010, 100 6-139
HLMP-D150, OPT 001, 002 6-132
HLMP-D155 6-24
HLMP-D155, OPT 010, 100 6-139
HLMP-D155, OPT 001, 002 6-132
HLMP-D400 6-71
HLMP-D400, OPT 010, 100 6-139
HLMP-D400, OPT 001, 002 6-132
HLMP-D401 6-71
HLMP-D401, OPT 010, 100 6-139
HLMP-D401, OPT 001, 002 6-132
HLMP-K101 6-20
HLMP-K101, OPT 010, 101 6-137
HLMP-K101, OPT 001, 002 6-132
HLMP-K105 6-20
HLMP-K105, OPT 010, 101 6-137
HLMP-K105, OPT 001, 002 6-132
HLMP-K150 6-24
HLMP-K150, OPT 010, 101 6-137
HLMP-K150, OPT 001, 002 6-132
HLMP-K155 6-24
HLMP-K155, OPT 010, 101 6-137
HLMP-K155, OPT 001, 002 6-132
HLMP-K400 6-60
HLMP-K401 6-60
HLMP-K402 6-60
HLMP-L250 6-50
HLMP-L251 6-50
HLMP-L350 6-50
HLMP-L351 6-50
HLMP-L550 6-50
HLMP-L551 6-50
HLMP-M200 6-54
HLMP-M201 6-54
HLMP-M250 6-54
HLMP-M251 6-54
HLMP-M300 6-54
HLMP-M301 6-54
HLMP-M350 6-54
HLMP-M351 6-54
HLMP-M500 6-54
HLMP-M501 6-54
HLMP-M550 6-54
HLMP-M551 6-54
HLMP-Q101 6-20
HLMP-Q150 6-24
HLMP-Q150, OPT 011, 012 6-122
HLMP-Q150, OPT 021, 022 6-126
HLMP-Q150, OPT P01, P02 6-130
HLMP-Q400 6-38
HLMP-S200 6-91
HLMP-S201 6-91
HLMP-S300 6-91
HLMP-S301 6-91
HLMP-S400 6-91
HLMP-S401 6-91
HLMP-S500 6-91
HLMP-S501 6-91
HLMP-T200 5-45
HLMP-T300 5-45
HLMP-T400 5-45
HLMP-T500 5-45
HMDL-2416 7-204
HMDL-2416TXV 7-204
HMDL-2416TXVB 7-204
HPDL-1414 7-30
HPDL-2416 7-38
JAN1N5765 6-146
JAN1N6092 6-146
JAN1N6093 6-146
JAN1N6094 6-146
JANTX1N5765 6-146
JANTX1N6092 6-146
JANTX1N6093 6-146
JANTX1N6094 6-146
M001-01ACX 7-182
M001-02ACX 7-182
M001-03ACX 7-182
M001-04ACX 7-182
SL5505 9-61
16800A 3-56
16800A, OPT 001 3-62
16800A, OPT 002 3-64
16801A 3-56
16801A, OPT 001 3-62
16801A, OPT 002 3-64
16830A 3-56
16832A 3-56
16840A 3-56
16842A 3-56
1N5765 6-146
1N6092 6-146
1N6093 6-146
1N6094 6-146
4N45 9-75
4N46 9-75
4N51 7-182
4N51TXV 7-182
4N52 7-182
4N52TXV 7-182
4N53 7-182
4N53TXV 7-182
4N54 7-182
4N54TXV 7-182
4N55 9-140
4N55/883B 9-140
4N55TXV 9-140
4N55TXVB 9-140
5082-7100 7-80
5082-7101 7-80
5082-7102 7-80
5082-7295 7-174
5082-7300 7-154
5082-7302 7-154
5082-7304 7-154
5082-7340 7-154
5082-7356 7-158
5082-7357 7-158
5082-7358 7-158
5082-7359 7-158
5082-7404 7-169
5082-7405 7-169
5082-7414 7-169
5082-7415 7-169
5082-7432 7-169
5082-7433 7-169
5082-7441 7-174
5082-7446 7-174
5082-7610 7-121
5082-7610, OPT S01, S02 7-153
5082-7611 7-121
5082-7611, OPT S01, S02 7-153
5082-7613 7-121
5082-7613, OPT S01, S02 7-153
5082-7616 7-121
5082-7616, OPT S01, S02 7-153
5082-7620 7-121
5082-7621 7-121
5082-7623 7-121
5082-7626 7-121
5082-7650 7-121
5082-7650, OPT S01, S02 7-153
5082-7651 7-121
5082-7651, OPT S01, S02 7-153
5082-7653 7-121
5082-7653, OPT S01, S02 7-153
5082-7656 7-121
5082-7656, OPT S01, S02 7-153
5082-7660 7-121
5082-7661 7-121
5082-7663 7-121
5082-7663, OPT S01, S02 7-153
5082-7666 7-121
5082-7666, OPT S01, S02 7-153
5082-7730 7-121
5082-7730, OPT S01, S02 7-153
5082-7731 7-121
5082-7731, OPT S01, S02 7-153
5082-7736 7-121
5082-7736, OPT S01, S02 7-153
5082-7740 7-121
5082-7740, OPT S01, S02 7-153
5082-7750 7-121
5082-7750, OPT S01, S02 7-153
5082-7751 7-121
5082-7751, OPT S01, S02 7-153
5082-7756 7-121
5082-7756, OPT S01, S02 7-153
5082-7760 7-121
5082-7760, OPT S01, S02 7-153
51605B 2-4
51605G 2-4
51605R 2-4
51610A 2-8
6N134 9-145
6N134TXV 9-145
6N134TXVB 9-145
6N135 9-57
6N135, OPT 010 9-10
6N135, OPT 100 9-10
6N136 9-57
6N136, OPT 010 9-9
6N136, OPT 100 9-10
6N137 9-35
6N137, OPT 010 9-9
6N137, OPT 100 9-10
6N138 9-67
6N139 9-67
6N139, OPT 010 9-9
6N139, OPT 100 9-10
6N140A 9-159
6N140A/883B 9-159
6N140TXV 9-159
6N140TXVB 9-159
8102801EC 9-149
8302401EC 9-163
92261A 2-4

High Reliability

- Screening Programs
- Hermetic Lamps Selection Guide
- Hermetic Displays Selection Guide
- Hermetic Optocouplers Selection Guide

High Reliability

Hewlett-Packard has supplied specially tested high reliability optoelectronic products since 1968 for use in state-of-the-art commercial, military, and aerospace applications. To meet the requirements of high reliability, products must be designed with rugged capabilities to withstand severe levels of environmental stress and exposure without failure. We have accomplished this objective by designing a unique family of hermetic products including lamps, displays, and optocouplers which have proven their merits in numerous advanced space and defense programs in the international marketplace.

These products receive reliability screening and qualification tests in accordance with the following appropriate reliability programs: MIL-S-19500, MIL-D-87157 and MIL-STD-883. HP supplies JAN and JANTX LED indicators and optocouplers in compliance with DESC selected item drawings and parts with HP standard military equipment screening programs for optocouplers and displays. In addition, Hewlett-Packard optocouplers are considered hybrid devices and are therefore line certified in accordance with MIL-STD-1772, as well as in conformance to Appendices A and G of MIL-M-38510.
Reliability programs are also performed to individual customer control drawings and specifications when needed. Some of these special testing programs are very complex and may include Class S requirements for microcircuits.

HP's epoxy encapsulated optoelectronic products are designed for long life applications where non-man rated or ground support requirements allow their use. As with hermetic products, the capabilities of epoxy parts
can be enhanced by 100% screening and conditioning tests. Lot capabilities can be confirmed by acceptance qualfication test programs. MIL-D-87157 is used to define the military requirements for plastic LED indicators and displays.
All testing is done by experienced Hewlett-Packard employees using facilities which are approved by DESC for JAN products and by customer inspection for special programs. Environmental equipment capabilities and operating methods of the test laboratory meet MIL-STD-750 or MIL-STD-883 procedures.

Hewlett-Packard Quality Systems are in compliance with MIL-Q-9858 or MIL-I-45208. The requirements of MIL-STD-45662 are followed by Hewlett-Packard Calibration Systems.

High Reliability Optoelectronic Products

Hewlett-Packard offers the broadest line of high reliability, solid state display products. They are specially designed to withstand severe environmental stresses and exposure without failure. This unique product group includes lamps, integrated numeric and hexadecimal displays, 5×7 dot matrix displays, and fully intelligent monolithic 16 segment displays.

The hermetic solid state lamps are listed on the MIL-S-19500 Qualified Parts List (QPL). These devices meet JAN and JANTX quality levels and are furnished in the basic lamp configuration or an integral panel mountable assembly. Four colors are available: high efficiency red, standard red, yellow and green. The hermetic Ultra-bright lamps are provided with JAN and JANTX equivalent testing. These devices are sunlight viewable and are available in three colors: high efficiency red, yellow and green.
The hermetically sealed $4 \mathrm{~N} 51-4 \mathrm{~N} 54$ hexadecimal and numeric displays are listed on the MIL-D-87157 Qualified Parts List and are supplied to Quality Level A. Four types of devices are available: numeric indicators with right-hand or left-hand decimals, hexadecimal indicator and overrange display with righthand decimal.

In addition to the QPL products, Hewlett-Packard also offers two in-house high reliability testing programs, TXV and TXVB. The TXVB program conforms to MIL-D-87157 Quality Level A test tables with 100% screening and Quality Conformance Inspection testing (QCI). The TXV program is a modification to Level A testing and consists of 100% screening and Group A testing. Products that are tested to TXV and TXVB programs and comply with MIL-D-87157 hermeticity requirements include the numeric and hexadecimal displays, 5×7 dot matrix displays, and monolithic 16 segment displays. Detailed testing programs for these devices are given in the individual data sheets.

The integrated numeric and hexadecimal displays with on board decoder/driver and memory are hermetically sealed and have a character height of 7.4 mm (0.29 inch). These devices are available in standard red; low power, high efficiency red; high brightness, high efficiency red; yellow; and a green epoxy sealed unit that conforms to MIL-D-87157 hermeticity requirements. These devices are designed and tested for use in military and aerospace applications.

The 5×7 dot matrix alphanumeric displays with extended temperature range capabilities are available in three character heights: 3.8 mm (0.15 inch), 5 mm (0.2 inch) and 6.9 mm (0.27 inch). These displays are available in several colors: standard red, high efficiency red and yellow. Green devices conforming to MIL-D87157 hermeticity requirements are available in the 3.8 mm (0.15 inch) and 5 mm (0.2 inch) character heights. The 5 mm (0.2 inch) and 6.9 mm (0.27 inch) versions have the added features of having a solderglass seal and an even wider operating temperature range than the 3.8 mm (0.15 inch) package. This wide variety of character heights and colors makes these products ideal for a variety of applications in avionics, industrial controls, and instrumentations.

Optoelectronic Product Qualification

DESC Qualified Products

Two military general specifications are presently in use to qualify visible products. MIL-S-19500 establishes the qualification requirements for JAN and JANTX hermetic lamps. Four hermetic lamps and three panel mountable hermetic lamps are listed on the MIL-S-19500 Qualified Parts List (QPL). Descriptions of the individual devices and test program are given in the slash (detail) specifications MIL-S-19500/467, /519, /520 and/521.
MIL-D-87157 establishes the qualification requirements for the $4 \mathrm{~N} 51-4 \mathrm{~N} 54$ light emitting displays. These four hermetic displays are listed on the MIL-D87157 Qualified Parts List. Descriptions of the individual devices and test program are given in the slash specification MIL-D-87157/1 (ER).

Hewlett-Packard Hi-Rel Testing Programs

 By conforming to the requirements of MIL-D-87157 for all other display and lamp products, not discussed above, Hewlett-Packard is able to offer products of significant value to reliability oriented customers. MIL-D-87157 has provisions for four different quality levels as follows:Level A Hermetic displays with 100% screening and Group A, B and C testing.
Level B Hermetically sealed displays with Group A, B, and C testing and without 100% screening.
Level C Non-hermetic displays with 100% screening and Group A, B and C testing.
Level D Non-hermetic displays with Group A, B, and C testing and without 100% screening.
Hewlett-Packard devices meeting the hermeticity requirements of MIL-D-87157 include the hermetic hexadecimal, numeric and alphanumeric displays described in this section of the catalog. If the suffix TXVB is added to the part number, the display is tested to Level A with 100% screening and qualification tests. When the suffix TXV is added. the devices are submitted to 100% screening and Group A testing.

Detailed testing programs which follow the MIL-D87157 Quality Level A test tables are given in the individual data sheets. The general MIL-D-87157 Quality Level C program for non-hermetic displays is given on the following pages.

TABLE I. 100\% SCREEN FORMAT FOR QUALITY LEVEL C

Test Screen	MIL-STD-750 Method	Level C	
1. Precap Visual\|1		2072	When specified
2. High Temperature Storage ${ }^{11]}$	1032	100\%	
3. Temperature Cycling ${ }^{11]}$	1051	100\%	
4. Constant Acceleration ${ }^{1,2 \mid}$	2006	When specified	
5. Fine Leak ${ }^{11}$]	1071	N/A	
6. Gross Leak ${ }^{11}$	1071	N/A	
7. Interim Electrical/Optical Tests ${ }^{11}$	-	When specified	
8. Burn-In ${ }^{1,31}$	1015	100\%	
9. Final Electrical/Optical Tests	-	100\%	
10. Delta Determinations ${ }^{11}$	-	When specified	
11. External Visual\|3		2009	100\%

Notes:

1. These tests are design dependent. The conditions and limits shall be specified in the detail specification when these tests are applicable.
2. Applicable to cavity type displays only.
3. MIL-STD-883 test method applies.

TABLE II. GROUP A ELECTRICAL TESTS ${ }^{[1]}$

Subgroups	LTPD
Subgroup 1 DC Electrical Tests at 25 ${ }^{\circ} \mathrm{C}$	5
Subgroup 2 Selected DC Electrical Tests at High Temperatures	7
Subgroup 3 Selected DC Electrical Tests at Low Temperatures	7
Subgroup 4 Dynamic Electrical Tests at TA $=25^{\circ} \mathrm{C}$	5
Subgroup 5 Dynamic Electrical Tests at High Temperatures	7
Subgroup 6 Dynamic Electrical Tests at Low Temperatures	7
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	5
Subgroup 8 External Visual	7

Notes:
Noles:

1. The specific parameters to be included for tests in each subgroup shall be as specified in the applicable detail specification.

TABLE IIIa. GROUP B, CLASS A AND B OF MIL-D-87157
 (CLASS C AND D DISPLAYS ONLY)

Test	MIL-STD-750 Method	Sampling Plan	
Subgroup 1 Resistance to Solvents ${ }^{[1]}$	1022	4 Devices/ 0 Failures	
Internal Visual and Design Verificationt ${ }^{\text {2, 5, 6] }}$	2075[7]	1 Device/ 0 Failures	
Subgroup 2[3,4] Solderability ${ }^{\|1\|}$ Electrical/Optical Endpoints\|1		2 2026	LTPD $=15$
Subgroup 3 Thermal Shock ${ }^{[1]}$ (Temperature Cycling)	1051	LTPD $=15$	
Moisture Resistance ${ }^{11}$ Electrical/Optical Endpoints\|1		102.1	
Subgroup 4 Operating Life Test (340 Hours) [1] Electrical/Optical Endpoints ${ }^{[1]}$	1027	LTPD $=10$	
Subgroup 5 Non-Operating (Storage) Life Test (340 Hours) ${ }^{11}$ Electrical/Optical Endpoints\|1		1032	LTPD $=10$

Notes:

1. Test method or conditions in accordance with detail specification
2. Not required for solid encapsulated displays.
3. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
4. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
5. MIL-STD-883 test method applies
6. Visual inspection is performed through the window display
7. Equivalent to MIL-STD-883, Method 2014.

TABLE IVa. GROUP C, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Sampling Plan			
Subgroup 1[1] Physical Dimensions	2066	2 Devices/ 0 Failures			
Subgroup 2[1] Lead Integrity ${ }^{\|6\|}$	2004	LTPD $=15$			
Subgroup 3 Shock\|2	 Vibration, Variable Frequency\|2	Constant Acceleration ${ }^{[2]}$ External Visual\| ${ }^{[3]}$ Electrical/Optical Endpoints\|4		$\frac{2016}{\frac{2056}{2006}} \frac{1010 \text { or } 1011}{}$	LTPD $=15$
Subgroup 4 Operating Life Test ${ }^{\|4,5\|}$ Electrical/Optical Endpoints\|4		1026	$\lambda=10$		
Subgroup 5 Temperature Cycling (25 cycles min.) ${ }^{14 \mid}$ Electrical/Optical Endpoints\|4		1051	LTPD $=20$		

Notes

1. Whenever electrical/optical tests are not required as endpoints, electrica rejects may be used.
2. Not required for solid encapsulated displays.
3. Visual requirements shall be as specified in MIL-STD-883, method 1010 or 1011.
4. Test method or conditions in accordance with detail specification.
5. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made as a basis for Group B lot acceptance or the 1000 hours endpoint measurements shall be used as the basis for both Group B and C acceptance.
6. MIL-STD-883 test method applies.

Hermetically Sealed and High Reliability LED Lamps

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Dominant Wavelength.
3. PC Board Mountable.
4. Military Approved and qualified for High Reliability Applications.

Hermetically Sealed and High Reliability LED Lamps (cont.)

NOTES:

1. $(-1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Dominant Wavelength.
3. PC Board Mountable.

Hermetic Hexadecimal and Numeric Dot Matrix Displays

[^0]Hermetic Hexadecimal and Numeric Dot Matrix Displays (continued)

Device		Description	Color	Application	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
(See previous page)	$\begin{gathered} \text { HDSP-0783 } \\ \text { (D) } \\ \text { HDSP-0783 } \\ \text { TXV } \\ \text { HSSP-0783 } \\ \text { TXVB } \\ \hline \end{gathered}$	Overrange ± 1 TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157	High Efficiency Red. High Brightness	- Ground. Airborne. Shipboard Equipment - Fire Control Systems - Space Flight Systems - Other High Reliability Uses	7-190
	$\begin{gathered} \text { HDSP-0794 } \\ \text { (C) } \\ \text { HDSP-0794 } \\ \text { TXV } \\ \text { HDSP-0794 } \\ \text { TXVB } \end{gathered}$	Hexadecimal. Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157			
	$\begin{aligned} & \text { HDSP-0881 } \\ & \text { (A) } \\ & \text { HDSP-0881 } \\ & \text { TXV } \\ & \text { HDSP-0881 } \\ & \text { TXVB } \end{aligned}$	Numeric RHDP. Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157	Yellow		
	$\begin{gathered} \text { HDSP-0882 } \\ \text { (B) } \\ \text { HDSP-0882 } \\ \text { TXV } \\ \text { HDSP-0882 } \\ \text { TXVB } \end{gathered}$	Numeric LHDP. Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157			
	$\begin{aligned} & \text { HDSP-0883 } \\ & \text { (D) } \\ & \text { HDSP-0883 } \\ & \text { TXV } \\ & \text { HDSP-0883 } \\ & \text { TXVB } \end{aligned}$	Overrange ± 1 TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157			
	$\begin{aligned} & \text { HDSP-0884 } \\ & \text { (C) } \\ & \text { HDSP-0884 } \\ & \text { TXV } \\ & \text { HDSP-0884 } \\ & \text { TXVB } \end{aligned}$	Hexadecimal. Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157			
(See previous page)	$\begin{gathered} \text { HDSP-0981 } \\ \text { (A) } \\ \text { HDSP-0981 } \\ \text { TXV } \\ \text { HDSP-0981 } \\ \text { TXVB } \end{gathered}$	Numeric RHDP, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157	High Performance Green		
	$\begin{gathered} \text { HDSP-0982 } \\ \text { (B) } \\ \text { HDSP-0982 } \\ \text { TXV } \\ \text { HDSP-0982 } \\ \text { TXVB } \end{gathered}$	Numeric LHDP, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157			
	$\begin{aligned} & \text { HDSP-0983 } \\ & \text { (C) } \\ & \text { HDSP-0983 } \\ & \text { TXV } \\ & \text { HDSP-0983 } \\ & \text { TXVB } \end{aligned}$	Overrange ± 1 TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157			

Hermetic Hexadecimal and Numeric Dot Matrix Displays (continued)

Device		Description	Color	Application	$\begin{aligned} & \text { Page } \\ & \mathrm{No} \text {. } \end{aligned}$
(See previous page)	$\begin{gathered} \text { HDSP-0984 } \\ \text { (D) } \\ \text { HDSP-0984 } \\ \text { TXV } \\ \text { HDSP-0984 } \\ \text { TXVB } \\ \hline \end{gathered}$	Hexadecimal, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157	High Performance Green	- Ground. Airborne. Shipboard Equipment - Fire Control Systems - Space Flight Systems - Other High Reliability Uses	7-190

Hermetic Alphanumeric Displays

Device		Description	Color	Application	Page No.
	HMDL-2416 HMDL-2416 TXV HMDL-2416 TXVB	$4.1 \mathrm{~mm}\left(0.16^{\prime \prime}\right)$ Four Character Monolithic Smart Alphanumeric Display Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	Red	- Military Equipment - High Reliability Applications - Military Telecommunications	7-204
	HDSP-2351 HDSP-2351 TXV HDSP-2351 TXVB HDSP-2352 HDSP-2352 TXV HDSP-2352 TXVB HDSP-2353 HDSP-2353 TXV HDSP-2353 TXVB	$4.87 \mathrm{~mm}\left(0.19^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric Sunlight Viewable Display Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	Yellow High Efficiency Red High Performance Green	- Military Avionics - Military Cockpit - Military Ground Support Systems	7-214
	HDSP-2010 HDSP-2010 TXV HDSP-2010 TXVB	3.7 mm (.15") 5×7 Four Character Alphanumeric Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157	Red, Red Glass Contrast Filter	- Extended temperature applications requiring high reliability. - I/O Terminals - Avionics For further information see Application Note 1046.	7-198

Hermetic Alphanumeric Displays (continued)

Device		Description	Color	Application	Page No.
	HDSP-2310	$5.0 \mathrm{~mm}\left(.20^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 12 Pin Ceramic 6.35 mm (.25") DIP with untinted glass lens Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ True Hermetic Seal TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157	Standard Red	- Military Equipment - Avionics - High Rel Industrial Equipment	7-228
	HDSP-2310				
	TXV				
	$\begin{gathered} \text { HDSP-2310 } \\ \text { TXVB } \end{gathered}$				
	$\begin{aligned} & \text { HDSP-2311 } \\ & \text { HDSP-2311 } \\ & \text { TXV } \\ & \text { HDSP-2311 } \\ & \text { TXVB } \end{aligned}$		Yellow		
	$\begin{gathered} \text { HDSP-2312 } \\ \text { HDSP-2312 } \\ \text { TXV } \\ \text { HDSP-2312 } \\ \text { TXVB } \end{gathered}$		High Eff. Red		
	$\begin{gathered} \text { HDSP-2313 } \\ \text { HDSP-2313 } \\ \text { TXV } \\ \text { HDSP-2313 } \\ \text { TXVB } \end{gathered}$		High Performance Green		
	HDSP-2450	Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 28 Pin Ceramic 15.24 mm (.6") DIP True Hermetic Seal TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157	Red	- Military Equipment - High Reliability Applications - Avionics - Ground Support, Cockpit, Shipboard Systems	7-235
	HDSP-2450				
	$\begin{gathered} \text { HDSP-2450 } \\ \text { TXVB } \end{gathered}$				
	HDSP-2451		Yellow		
	$\begin{gathered} \text { HDSP-2451 } \\ \text { TXV } \end{gathered}$				
	$\begin{gathered} \text { HDSP-2451 } \\ \text { TXVB } \end{gathered}$				
	HDSP-2452		High Efficiency Red		
	$\begin{gathered} \text { HDSP-2452 } \\ \text { TXV } \end{gathered}$				
	$\begin{gathered} \text { HDSP-2452 } \\ \text { TXVB } \end{gathered}$				
	HDSP-2453		High Performance		
	$\begin{gathered} \text { HDSP-2453 } \\ \text { TXV } \end{gathered}$		Green		
	$\begin{gathered} \text { HDSP-2453 } \\ \text { TXVB } \end{gathered}$				

Hermetic Optocouplers

Hewlett-Packard has selected several very popular optocoupler types for assembly in our militarized hermetic 8 pin and 16 pin dual in-line packages. These devices offer a wide variety of LED input current levels, speed and current transfer ratio. High performance optocouplers are used in many U.S. and international military, aerospace and high reliability applications.
HP's hermetic optocouplers are classified by the U.S. Department of Defense as hybrid microcircuits and therefore comply with line certification requirements of Mil-Std-1772. DESC* granted HP QML (Qualified Manufacturing Line) status in April of 1987, which allows us to continue the supply of both 883B marked parts and DESC drawing parts. Virtually all of our hermetic optocouplers may be purchased with screening and quality conformance testing in compliance with class level B of Mil-Std-883 as standard catalog parts. Class S tested parts are also available under special testing programs. Parts having DESC* military drawings are 8102801EC and 8302401 EC and are also available from stock.
The 8102801 EC is a 6 N 134 consisting of dual channel high speed logic gates compatible with TTL inputs and outputs. The common mode for this part was recently improved to a minimum of $1000 \mathrm{~V} / \mu \mathrm{s}$. A second family of dual channel high speed logic gates, the HCPL1930/1, also features high common mode and has the added feature of input current regulation. The 8302401 EC is a quad channel low input current photodarlington, ideal for MOS, CMOS, or RS232-C data transmission systems. Finishing out our 16 pin devices is the 4 N 55 product family. The 4 N 55 is a dual channel coupler having low gain transistor output useful for isolating circuits in power supply applications, logic interfacing, and wide bandwidth analog applications.

Several years ago, HP commenced the introduction of a new series of 8 pin single and dual channel devices with extraordinary capabilities. The HCPL-5700/1 and HCPL-5730/l are, respectively, single and dual channel high gain Darlington units. The HCPL-5200/1 and HCPL-5230/1 are high speed logic gate devices with a wide supply voltage from 4.5 to 20 volts and high CMR. The HCPL-5400/1 and HCPL-5430/1 are, respectively, single and dual channel high speed couplers featuring typical data rates of 40 Mbaud . The most recent of our 8 pin hermetic products is the HCPL-5760/1, a single channel, three chip, AC/DC to logic interface optocoupler. ${ }^{\star \star}$
Our Mil-Std-1772 line certification allows HP to consider assembly and test of more technically advanced hybrid devices where our expertise in materials and processing may contribute to a new product's success in OEM applications. Construction of custom hybrid circuits requires the special working relationship that HP has always enjoyed with its customers toward the advancement of state-of-the-art products.
*Defense Electronic Supply Center (DESC) is an agency of the United States Department of Defense (DOD).
**Contact your HP field sales engineer for higher withstand voltage up to 1500 V dc.

Plastic Optocouplers

Hewlett-Packard supplies plastic optocouplers with high reliability testing for commercial/industrial applications requiring prolonged operational life. Two of the most frequently requested 100% preconditioning and screening programs are given. The first program has burn-in and electrical test only, the second program adds temperature storage and temperature cycling. Either program is available for HP's plastic optocouplers. Electrical testing is to catalog conditions and limits and will include 100\% DC parameters, sample testing of input-output insulation
 leakage current and appropriate AC parameters. Contact your local field representative for pricing and availability of these programs.

PLASTIC OPTOCOUPLERS

PRECONDITIONING AND SCREENING 100\%

COMMERCIAL BURN-IN*

Examinations or Tests	MIL-STD-883 Methods	Conditions
1. Commercial Burn-in	1015	$\mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, 160$ hours per designated circuit.
2. Electrical Test	Per specified conditions and min./max. limits at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	

SCREENING PROGRAM*

Examinations or Tests	MIL-STD-883 Methods	Conditions
1. High Temperature Storage	1008	24 hours at $125^{\circ} \mathrm{C}$
2. Temperature Cycling	1010	10 cycles, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
3. Burn-in	1015	$\mathrm{~T}_{A}=70^{\circ} \mathrm{C}, 160$ hours per designated circuit
4. Electrical Test	Per specified conditions and min./max. limits at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	
5. External Visual		

*Contact your field salesman for details.

GROUP B TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)[1]

Test	Method	Conditions	LTPD
Subgroup 1 Physical Dimensions (Not required if Group D is to be performed)	2016		2 Devices/ O Failures
Subgroup 2 Resistance to Solvents	2015		4 Devices/ 0 Failures
Subgroup 3 Solderability (LTPD applies to number of leads inspected - no fewer than 3 devices shall be used.)	2003	Soldering Temperature of 245 $\pm 5^{\circ}$ C for 10 seconds	15
Subgroup 4 Internal Visual and Mechanical	2014	Devices)	
Subgroup 5 Bond Strength (1) Thermocompression (performed at precap, prior to seal. LTPD applies to number of bond pulls).	2011	(1) Test Condition D	1 Device/
Subgroup 6 Internal water vapor content (Not applicable - per footnote of MIL-STD)	-	Failures	
Subgroup 7 Fine Leak Gross Leak	1014	Test Condition A	
Subgroup 8 Electrical Test Electrostatic Discharge Sensitivity Electrical Test	Test Condition C	15	

*(To be performed at initial qualification only)
Group C testing is performed on a periodic basis from current manufacturing every 3 months.
GROUP C TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)[1]

Test	Method	Conditions	LTPD
Subgroup 1 Steady State Life Test	1005	Condition B, Time +1000 Hours Total $T_{A}=+125^{\circ} \mathrm{C}$ Burn-in conditions are product dependent and are given in the individual device data sheets.	5
Endpoint Electricals at 168 hours and 504 hours		Group A, Subgroup 1, except $I_{\text {I-O }}$	
Endpoint Electricals at 1000 hours		Group A, Subgroup 1 Subgroups 2 and 3 where applicable	
Subgroup 2 Temperature Cycling	1010	Condition $\mathrm{C},-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 10$ cycles	15
Constant Acceleration	2001	Condition A, 5K Gs, Y_{1} and Y_{2} axis only, 8 pin and 16 pin metal lid DIP Condition E, 30K Gs, Y_{1} and Y_{2} axis only, 8 pin ceramic lid DIP	
Fine Leak	1014	Condition A	
Gross Leak	1014	Condition C	
Visual Examination	1010	Per visual criteria of Method 1010	
Endpoint Electricals		Group A, Subgroup 1	

Group D testing is performed on a periodic basis from current manufacturing every 6 months.
GROUP D TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES) ${ }^{[1]}$

Test	Method	Conditions	LTPD
Subgroup 1 Physical Dimensions	2016		15
Subgroup 2 Lead Integrity	2004	Test Condition B2 (lead fatigue)	15
Subgroup 3 Thermal Shock	1011	Condition B, $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ 15 cycles min.	15
Temperature Cycling	1010	Condition $\mathrm{C},\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ 100 cycles min.	
Moisture Resistance	1004		
Fine Leak	1014	Condition A	
Gross Leak	1014	Condition C	
Visual Examination		Per visual criteria of Method 1004 and 1010	
Endpoint Electricals		Group A, Subgroups 1, 2 and 3 where applicable	
Subgroup 4 Mechanical Shock	2002	Condition B, 1500G, $t=0.5 \mathrm{~ms}$, 5 blows in each orientation	15
Vibration Variable Frequency	2007	Condition A min.	
Constant Acceleration	2001	Condition A, 5K Gs, Y_{1} and Y_{2} axis only, 8 pin and 16 pin metal lid DIP Condition E, 30K Gs, Y_{1} and Y_{2} axis only, 8 pin ceramic lid DIP.	
Fine Leak	1014	Condition A	
Gross Leak	1014	Condition C	
Visual Examination	1010	Per visual criteria of Method 1010	
Endpoint Electricals		Group A, Subgroups 1, 2 and 3 where applicable	
Subgroup 5 Salt Atmosphere	1009	Condition A min.	15
Fine Leak	1014	Condition A	
Gross Leak	1014	Condition C	
Visual Examination …	1009	Per visual criteria of Method 1009	
Subgroup 6 Internal Water Vapor Content	1018	5,000 ppm maximum water content at $100^{\circ} \mathrm{C}$	3 Devices (0 failures) 5 Devices (1 failure)
Subgroup 7 Adhesion of lead finish	2025		15
Subgroup 8 Lid Torque (Applicable to 8 pin ceramic lid DIP only)	2024		5 Devices (0 failures)

Notes:

1. Hewlett-Packard exercises a testing option as allowed by MIL-STD-883, Method 5008, Par. 3.1a. Paragraph 3.1 of Method 5008 states that "hybrid and multichip microcircuits, which are contained in packages having an inner seal perimeter of less than 2.0 inches", may be tested in accordance with the requirements of MIL-STD-883, Methods 5004 and 5005 , with a change to the internal visual from Method 2010 to Method 2017.

Hermetic Optocoupler Product Screening and Quality Conformance Test Program (MIL-STD-883 Class B)

The following 100% Screening and Quality Conformance Inspection programs show in detail the capabilities of our hermetic optocouplers. This program will help customers understand the tests included in Methods 5004 and 5005 of MIL-STD-883 and to help in the design of special product drawings where this testing is required. The 4N55/883B, 6N140A/883B, 5231/883B, 1931/883B, 5401/883B,

5201/883B, 5431/883B, 5761/883B, 5701/883B, 5731/883B, 8102801EC and 8302401EC (DESC Selected Item Drawings for the 6N134 and 6N140A respectively) have standardized test programs suitable for product use in military, high reliability applications and are the preferred devices by military contractors. (See note 1.)

100\% Screening

MIL-STD-883, METHOD 5004 (CLASS B DEVICES)[1]

Test Screen	Method	Conditions
1. Precap Internal Visual	2017	Condition B, DESC Parts[1]
2. High Temperature Storage	1008	Condition $\mathrm{C}, \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$, Time $=24$ Hours minimum
3. Temperature Cycling	1010	Condition $\mathrm{C},-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 10$ cycles
4. Constant Acceleration	2001	Condition $\mathrm{A}, 5 \mathrm{~K} \mathrm{Gs}, \mathrm{Y}_{1}$, and Y_{2}, axis only, 8 pin and 16 pin metal lid DIP Condition $\mathrm{E}, 30 \mathrm{~K} \mathrm{Gs}, \mathrm{Y}_{1}$, and Y_{2}, axis only, 8 pin ceramic lid DIP
5. Fine Leak	1014	Condition A
6. Gross Leak	1014	Condition C
7. Interim Electrical Test	-	Group A, Subgroup 1, except I/o (optional)
8. Burn-In	1015	Condition B, Time $=160$ Hours minimum, $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ Burn-in conditions are product dependent and are given in the individual data sheets.
9. Final Electrical Test Electrical Test Electrical Test Electrical Test	-	Group A, Subgroup 1, 5\% PDA applies Group A, Subgroup 2 Group A, Subgroup 3 Group A, Subgroup 9
10. External Visual		

Quality Conformance Inspection

Group A electrical tests are product dependent and are given in the individual device data sheets. Group A and B testing is performed on each inspection lot.

GROUP A TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)[1]

8 Pin Dual-In-Line Package

High-Speed Logic Gate Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Common Mode	Specilied Input Current	Withstand Test Voltage*	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-5200	Single Channel, Hermetically Sealed Wide Supply Voltage Optocoupler	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface	$5 \mathrm{M} \mathrm{bit/s}$	$1000 \mathrm{~V} / \mu \mathrm{S}$	6.0 mA	500 Vdc	9-102
	HCPL-5201	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B } \end{aligned}$	Military/High Reliability					
	HCPL-5230	Dual Channel, Hermetically Sealed Wide Supply Voltage Optocoupler	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface					9-108
	HCPL-5231	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B Part } \end{aligned}$	Military/High Reliability					
	HCPL-5400	Single Channel Hermetically Sealed High Speed Optocoupler	High Speed Logic Isolation, A/D and Parallel/Serial Conversion	$40 \mathrm{Mbit} / \mathrm{s}$	$500 \mathrm{~V} / \mu \mathrm{S}$	9.0 mA	500 Vdc	9-114
	HCPL-5401	MIL-STD-883 Class B Part	Military/High Reliability					
	HCPL-5430	Dual Channel Hermetically Sealed High Speed Optocoupler	High Speed Logic Isolation, Communications, Networks, Computers					9-120
	HCPL-5431	MIL-STD-883 Class B Part	Military/High Reliability					

High Gain Optocouplers

Device		Description	Application	Typical Data Rate (NRZ)	Current Transier Ratio	Specified Input Current	Withstand Test Voltage*	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-5700	Single Channel Hermetically Sealed High Gain Optocoupler	Line Receiver, Low Current Ground Isolation. TTL/TTL. LSTTL/TTL. CMOS/TTL	60k bit/s	200\% Min.	0.5 mA	500 V dc	9-126
	HCPL-5701	$\begin{array}{\|l} \hline \text { MIL-STD-883 } \\ \text { Class B Part } \\ \hline \end{array}$	Military/High Reliability					
	HCPL-5730	Dual Channel Hermetically Sealed High Gain Optocoupler	Line Receiver. Polarity Sensing, Low Current Ground Isolation					9-130
$4\left[{ }^{\text {a }}\right.$	HCPL-5731	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B Part } \end{aligned}$	Military/High Reliability					

AC/DC to Logic Interface Optocoupler

Device		Description	Application	Typical Data Rate	Input Threshold Current	Output Current	Withstand Test Voltage*	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-5760	Single Channel Hermetically Sealed Threshold Sensing Optocoupler	Limit Switch Sensing, Low Voltage Detector Relay Contact Montitor	10 kHz	$\begin{aligned} & 2.5 \mathrm{~mA} \mathrm{TH} \\ & 1.3 \mathrm{~mA} \mathrm{TH} \end{aligned}$	2.6 mA	500 V dc	9-134
	HCPL-5761	$\begin{aligned} & \hline \text { MIL-STD-883 } \\ & \text { Class B Part } \end{aligned}$	Military/High Reliability					

*Contact your HP field sales engineer for higher withstand voltage up to 1500 V dc.

16 Pin Dual In-Line Package

High Speed Transistor Optocouplers

Device		Description	Application	Typical Data Rate (NRZ)	Current Transier Ratio	Specified Input Current	Withstand Test Voltage	Page No.
	4N55	Dual Channel Hermetically Sealed Analog Optical Coupler	Line Receiver, Analog Signal Ground Isolation. Switching Power Supply Feedback Element	700k bit/s	9\% Min.	16 mA	1500 V dc	9-140
	4N55/883B	MIL-STD-883 Class B Part	Military/High Reliability					

High Speed Logic Gate Optocouplers

Device		Description	Application	Typical Data Rate (NRZ]	Common Mode	Specified Input Curren	Withstand Test Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	6N134	Dual Channel Hermetically Sealed Optically Coupled Logic Gate	Line Receiver. Ground Isolation for High Reliability Systems	10M bit/s	$1000 \mathrm{~V} / \mu \mathrm{S}$	10 mA	1500 V dc	9-145
	8102801EC	DESC Approved 6N134	Military/High Reliability					9-149
	HCPL-1930	Dual Channel Hermetically sealed High CMR Line Receiver Optocoupler	Line receiver, High Speed Logic Ground Isolation in High Ground or Induced Noise Environments	10M bit/s	$1000 \mathrm{~V} / \mu \mathrm{S}$	10 mA	1500 Vdc	9-153
亩——苗	HCPL-1931	MIL-STD-883 Class B Part	Military/High Reliability					

High Gain Optocouplers

Device		Description	Application	Typical Data Rate (NRZ)	Current Transfer Ratio	Specified Input Current	Withstand Test Voltage	Page No.
	6N140A (6N140)	Hermetically Sealed Package Containing 4 Low Input Current. High Gain Optocouplers	Line Receiver. Low Power Ground Isolation for High Reliability Systems	100k bit/s	300\% Min.	0.5 mA	1500 V dc	9-159
	8302401EC	DESC Approved 6N140A	Military/High Reliability					9-163
	$\begin{aligned} & \hline \text { 6N140A/883B } \\ & \text { (6N140/883B) } \end{aligned}$	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B Part } \end{aligned}$	Use 8302401EC in New Designs					9-159

Ink-Jet Components

- Thermal Ink-Jet Print Cartridge
- Carriage Assembly

Ink-Jet Products
 Thermal Ink-Jet Cartridges

Millions of Hewlett-Packard thermal ink-jet print cartridges have demonstrated their performance and reliability in HP ThinkJet and QuietTel printers. Now this revolutionary, proprietary technology is available for OEM printing devices. Its long list of advantages make it attractive for a wide range of industrial and commercial applications.
The thumb-sized print cartridges completely integrate all the printing elements and ink supply into a single, disposable unit. Reliability is "designed-in", because there are no moving parts, messy ribbons, or complex ink pumps, typical of other printing technologies.

Downtime for ink replenishment or printhead failures is virtually eliminated, because the easy pop-out/dropin replacement requires no tools or technicians.

Non-contact printing permits marking on uneven surfaces, a near impossible task for most printing technologies; the silent operation makes the print cartridge especially suitable for office, classroom, and laboratory environments; and the small size and very low power consumption of the print cartridge make it ideal for battery/portable applications.
Among the many applications of this breakthrough technology are: ticketing and receipting machines, point-of-sale devices, printing calculators, medical and scientific recorders, document marking machines, and bar code printers.
To put the printing technology of tomorrow in your products today, look to Hewlett-Packard's thermal ink-jet!

Ink Jet Products

Device		Color Ink	Description	$\begin{aligned} & \text { Page } \\ & \hline \end{aligned}$
Package Outline Drawing	Part No.			
	92261A 51605B 51605R 51605G	Black Blue Red Green	Print cartridges	2-4
	51610A		Carriage Assembly for the Thermal Ink-Jet Print Cartridge	2-8

Features

- HEWLETT-PACKARD'S PROVEN THERMAL INK-JET TECHNOLOGY
- LOW COST DISPOSABLE PRINTHEAD
- HIGH SPEED (1250 DOTS/SEC.)
- HIGH RESOLUTION (96 DOTS/INCH)
- 1/8 INCH PRINT ZONE (12 DOT VERTICALLY IN-LINE)
- 10 MILLION DOT CAPACITY (500K CHARACTERS)
- NON-CONTACT PRINTING
- SMALL SIZE
- VERY LOW POWER CONSUMPTION
- QUIET OPERATION
- EASY REPLACEMENT

Applications

- TICKETING AND RECEIPTING
- PORTABLE PRINTING
- SELECTIVE BAR CODE PRINTING
- INDUSTRIAL AND COMMERCIAL MARKING
- POINT OF SALE PRINTING
- ADDRESSING AND PERSONALIZATION
- SCIENTIFIC AND MEDICAL INSTRUMENTATION
- PERSONAL COMPUTER PRINTING

Description

The HP Thermal Ink-jet print cartridge is a low cost disposable inkjet printhead which is suitable for a broad range of industrial and commercial applications. The totally self-contained print cartridge uses HP's Thermal Ink-jet technology which overcomes the reliability problems of conventional piezoelectric inkjet technologies.
Non-contact printing operation allows printing on irregular surfaces at variable distances. It also eliminates printer failures due to friction wear or foreign body interference. The absence of any moving parts further enhances reliable operation. The self-contained design and pressure interconnect allows fast, simple replacement, and it eliminates the need for any other printer parts such as ribbons, pumps, etc. It can be fired in any physical orientation.

The small size of the print cartridge makes it very suitable for compact or portable printing devices. Its small size also makes it possible to combine several cartridges to provide larger print zones or higher throughput speeds. Virtually silent operation matches the ergonomic needs of the office, classroom and laboratory.

The power consumption of the print cartridge is radically lower than other printing technologies. This dramatically reduces the cost of the printer power supply and driver electronics. It also makes battery operation possible, and lowers radiated EMI levels. Driver circuitry can be made with standard off-the-shelf components.

A dot firing frequency of 1250 Hz provides a printing speed of 13 inches $/ \mathrm{sec}$ at 96 dots $/ \mathrm{inch}$ resolution. This is equivalent to over 155 characters per second at a density of 12 characters per inch. A 2000 Hz dot frequency is possible under certain low dot density printing conditions, such as low resolution text. The typical ink capacity of 10 million dots will provide approximately 500 K characters using a common 96 dots/inch square font. Higher char-
acter capacities can be achieved by reducing the font resolution (fewer dots per character).

Unlike multi-use ribbons used in dot matrix printers, the print quality is consistent over the life of the print cartridge. The print cartridge will print on a wide variety of papers and porous surfaces. Optimum print quality is obtained on HP designated papers.

PHYSICAL DIMENSIONS

ALL DIMENSIONS IN MILLIMETRES AND (INCHES)

SUBSTRATE/CONNECTOR DETAIL

Maximum Ratings

Parameter	Max. Rating	Units	Conditions
Number of dots per print cartridge[${ }^{4]}$	10	M Dots	
Nozzle life	2	M Dots	Any single nozzle
Shelf life	18	Mos.	At $25^{\circ} \mathrm{C}$ in container
Shelf life	6	Mos.	At $25^{\circ} \mathrm{C}$ outside container
Non-operating temperature	60	${ }^{\circ} \mathrm{C}$	48 hours

Note:

1. Actual number of dots is application dependent. Value shown is typical.

Recommended Operating Conditions

Parameter	Symbal	Min.	Max.	Units	Conditions
Nozzle to Media Spacing[1, 2]		0.65 $1.025)$	1.15 (0.045)	mm (inches)	
Operating Temperature ${ }^{[3]}$	Top	10	40	${ }^{\circ} \mathrm{C}$	
Operating Humidity $[3]$	Hop	5	80	$\%$ R.H.	$25^{\circ} \mathrm{C}$
Operating Altitude	-	0	4500	Meters	$25^{\circ} \mathrm{C}$

Notes:

1. Clogging may result if media comes in contact with print cartridge.
2. Larger spacing may be used but with degradation in print quality.
3. Prefiring may be required in low humidity and some low temperature conditions.

Electrical Specifications

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Resistance (pad to common)	Rpp	55		70	Ohms	
Dot frequency		0		1250	Hz	All nozzles firing
Dots fired simutaneously				2	Dots	
Operating Energy (pad to common)	Eop		36.5		$\mu \mathrm{J}$	$\begin{gathered} \mathrm{T}_{\mathrm{PW}}=4.5 \mu \mathrm{~s} \\ \mathrm{R}_{\mathrm{PC}}=650 \mathrm{hms} \end{gathered}$
			40.5	,	$\mu \mathrm{d}$	$\begin{aligned} & \mathrm{T}_{P W}=6.0 \mu \mathrm{~s} \\ & \mathrm{RPC}=650 \mathrm{hms} \end{aligned}$
Operating Voltage (pad to common)	$V_{\text {OP }}$	22.0	23.0	24.0	Volts	TPW $=4.5 \mu \mathrm{~s}$
		20.0	21.0	22.0	Volts	$\mathrm{T}_{\mathrm{PW}}=6.0 \mu \mathrm{~s}$
Pulse Width ${ }^{\text {[1] }}$	TPW	4.5	4.5	6.0	$\mu \mathrm{sec}$	
Dead Time	TDT	0	0.5		$\mu \mathrm{sec}$	
Transition Time	TT			500	nsec	10-90\%

Note:

1. Any pulse width tolerance must be compensated by tightening the voltage variation to maintain an equivalent pulse energy as if there were no pulse width variation.

RESISTOR FIRING TIMING DIAGRAM

NOTES:
OTHER SEQUENCES ARE POSSIBLE.
NO MORE THAN TWO DOTS FIRED SIMULTANEOUSLY.

Safety Information

The ink used in the print cartridge includes Diethylene Glycol, which may be harmful if swallowed, but is nontoxic. Test results regarding toxicity and other health considerations are available on request.

This product complies with the Consumer Safety Protection Code of the Federal Regulations as well as the EPA New Chemical Product Regulations.
No special procedures are necessary in disposing of the print cartridge.

SCHEMATIC DIAGRAM

Supporting Information

For further information, refer to:
"Thermal Ink-jet Print Cartridge Designer's Guide", Publication \#5954-8400
"Hewlett-Packard Journal", May 1985,
Publication \#5953-8535.
These documents are available through your local HP component sales office.

Ordering Information

PART NUMBER	DESCRIPTION
92261 A	Black Ink Print Cartridge
51605 B	Blue Ink Print Cartridge
$51605 R$	Red Ink Print Cartridge
51605 G	Green Ink Print Cartridge
51610 A	Carriage Assembly with Flex Circuit from the Hewlett-Packard ThinkJet

CARRIAGE ASSEMBLY FOR THE THERMAL INK-JET PRINT CARTRIDGE

Features

- PROVIDES MECHANICAL AND ELECTRICAL INTERCONNECT FOR THE THERMAL INK-JET PRINT CARTRIDGE
- EASY PRINT CARTRIDGE REPLACEMENT
- PRECISION MECHANICAL INTERCONNECT
- SIMPLE, RELIABLE, PRESSURE ELECTRICAL CONTACTS
- 8 INCH PRINT ZONE SCANNING WIDTHS
- BUILT-IN POSITION DETECTOR ARM

Description

The 51610A carriage assembly is a totally self-contained unit for connecting the HP Thermal Ink-jet print cartridge to a host printing device. It includes all the parts necessary to provide both electrical and mechanical interconnect and comes totally pre-assembled. The 51610A is the same carriage assembly used in the HP ThinkJet printer.

Note: Print cartridge not included with 51610A
Insertion or removal of the print cartridge from the carriage assembly requires no tools and takes only a few seconds to complete. Insertion is done by simply dropping the cartridge into the carriage assembly and then rotating a cammed head latch upward as shown in Figure 2.

Figure 1. Exploded View

Figure 2. Outline Drawing With Printer Interface.

A flexible printed circuit provides electrical connection to both the print cartridge and the host printer without the need for additional connectors. This flex circuit also allows the print cartridge to be scanned across print zone widths of up to 8 inches.
A specially designed pressure interconnect system provides reliable electrical contact to the print cartridge over a wide range of environmental conditions while minimizing any damage to the print cartridge contact pads. Electrical contact is enhanced by using a special dimpling technique on the flex circuit. This provides a greater degree of insensitivity to paper dust and ink contamination. It also makes the contact area easy to clean if contaminants become excessive (see Maintenance).

Design Considerations

The carriage assembly is intended to be mounted on a carriage rod and moved with a drive cable as shown in Figure 2. The direction of drop firing is controlled by the angular position of the carriage assembly on the carriage rod. A wear shoe (see Figure 2) provides the means for maintaining this angular reference by riding on a low friction printer rail in the host printer. If ink firing is done in a horizontal orientation, gravitational forces on the carriage assembly can be utilized to maintain this mating.
The 51610A carriage assembly is intended to be used in applications where the paper path is curved, such as with a round printer platen as shown in Figure 2. This allows the paper to be brought closer to the print cartridge nozzles than with a flat paper path. Optimum print quality is obtained by maintaining the recommended nozzle to paper spacing of 0.65 to 1.15 mm . Larger spacings are possible, but with some degradation in print quality (see Thermal Ink-jet Print Cartridge Designer's Guide). To maintain the recommended spacing, it is important that the printer designer maintains good dimensional control from the printer/carriage mating surfaces to the paper surface, and understands which tolerances are important in a given application.

Electrical connection to the host printer may be made with a standard printed circuit board connector, Amp \#1-520315-3.
A home position detector arm on the carriage assembly may be used to detect when the carriage assembly passes one or more detector locations on the printer. This may be done by passing the detector arm through an interruptable type optical sensor. Suggested parts: Optek \#K-8150, Kodenshi \#SG-HP01.
For continuous sensing and control of carriage motion, HP offers an extensive line of rotary and linear motion sensing and control components. Contact your local Hewlett-Packard Component Sales Representative for more information.

Maintenance

No routine cleaning or lubrication is required for the carriage assembly. If excessive contamination of the electrical contacts causes loss of print, gently wipe the contacts with a swab dampened with Iso Propyl Alcohol as shown in the Print Cartridge Designer's Guide. Avoid harsh scrubbing.

Supporting Information

Title	HP Pub \#
Thermal Ink-jet Print Cartridge Data Sheet	$5954-8399$
Thermal Ink-jet Print Cartridge Designer's Guide	$5954-8535$
Hewlett-Packard Journal, May 1985	$5953-8535$

5os

1

Bar Code Components

- SmartWand
- Digital Wands
- Decoder ICs
- Optical Sensor
- Readers

Bar Code Products

The HP SmartWand family (HBCR-8XXX) is the latest addition to the wide range of bar code products offered by Hewlett-Packard. The HP SmartWand is an intelligent peripheral designed to easily add bar code scanning capability to any host system which can support a 5 V serial asynchronous interface. This device is designed specifically for the OEM who would rather not expend valuable resources developing software and integrating system hardware to support bar codes. A powerful microcomputer, bar code decoding software, optical and escape sequence programmability, nonvolatile configuration memory, and a high performance contact scanner, are all combined into a standard size industrial wand package.
The HP digital wand selection now includes four product families to meet the performance and price requirements of every customer application. The state-of-the-art Low Current Digital Bar Code Wands are available in both a metal case for indoor/outdoor rugged industrial applications (HBCS-6XXX) and a polycarbonate case for commercial/office applications (HBCS-5XXX). Through an advanced optical sensor and signal processing circuitry, these wands are able to provide superior performance while drawing 3.5 mA at 5 V . In addition to the very low power requirements, the advanced design allows performance improvements which include high ambient light rejection, including direct sunlight; a wider range of resolution choices; and a sensor which reads thermally printed bar codes. For customers who do not require the state of the art performance of the Low Current Digital Bar Code Wands the Sapphire Tip Digital Bar Code Wands (HBCS-2XXX) offer an attractive alternative,

particularly for the commercial/office environment where control over label quality is high. For those customers beginning to use barcode scanners or addressing consumer applications, Digital Bar Code Wands (HEDS-3XXX) provide a very cost effective solution.

The decoder IC family now includes three product lines. The most recent, HBCR-2010, is a CMOS version of the Multi-Purpose HBCR-2000. This product is especially well suited for low power/portable applications and like the HBCR-2000, can decode the output from virtually any hand-held scanning device, including hand-held lasers and other solid state noncontact scanners. The general purpose digital wand decode IC, HBCR-1800, offers both full duplex serial or parallel output and provides a powerful, cost competitive decode solution. All the decode ICs are in 40 pin DIP packages.
Hewlett-Packard's Industrial Digital Slot Reader, HBCS-7XXX, is a rugged scanner designed specifically for reading bar codes printed on I.D. cards, badges, heavy paper stock, or traveling forms. It features a large slot width for handling even multiple laminated cards, a wide scan speed range, and digital output that is compatible with wand decoding software.
Completing the product mix is the High Resolution Optical Reflective Sensor, HBCS-1100. The HBCS1100 is a unique 0.19 mm resolution sensor packaged in a standard TO-5 header. This product is a cost effective, dependable solution.

Package Outline Drawing	Part No.	Description	Features	Page No.
	HBCR-8100	HP SmartWand Programmable Contact Bar Code Reader Low Resolution (0.33 mm)	- Automatic Recognition and Decode of Standard Codes - 5 V Serial Asynchronous Output - All Code Reading Parameters Optical/Escape Sequence and Configurable - Configuration Stored in Non-Volitile Memory - Standard Size Epoxy Coated Metal Case - 655 Nanometer Sensor on Low and Medium Resolution - Direct Sunlight Operation	3-6
	HBCR-8300	HP SmartWand Programmable Contact Bar Code Reader Medium Resolution (0.19 mm)		
	HBCR-8500	HP SmartWand Programmable Contact Bar Code Reader High Resolution (0.13 mm)		
	HBCS-5000	Low Current Digital Bar Code Wand (with Switch) Resolution 0.33 mm	- Low Continuous Current Draw (Less Than 5 mA) - High Ambient Light Rejection - 0 to 45° Scan Angle - Push to Read Switch for Ultra Low Power Consumption - Rugged Polycarbonate Case - Sealed Sapphire Tip - Full Line of Options Available	3-13
	HBCS-5100	Low Current Digital Bar Code Wand (without Switch) Resolution 0.33 mm		
	HBCS-5200	Low Current Digital Bar Code Wand (with Switch) Resolution 0.19 mm		
	HBCS-5300	Low Current Digital Bar Code Wand (without Switch) Resolution 0.19 mm		
	HBCS-5400	Low Current Digital Bar Code Wand (with Switch) Resolution 0.13 mm		
	HBCS-5500	Low Current Digital Bar Code Wand (without Switch) Resolution 0.13 mm		
	HBCS-6100	Low Current Digital Bar Code Wand Resolution 0.33 mm	- Low Continuous Current Draw (Less Than 5 mA) - High Ambient Light Rejection - 0 to 45° Scan Angle - Sealed Sapphire Tip - Metal Case - Full Line of Options Available	
	HBCS-6300	Low Current Digital Bar Code Wand Resolution 0.19 mm		
	HBCS-6500	Low Current Digital Bar Code Wand Resolution 0.13 mm		

Bar Code Wands (Cont.)

Package Outline Drawing	Part No.	Description	Features	$\begin{array}{\|l} \hline \text { Page } \\ \text { No. } \end{array}$
	HBCS-2200	Sapphire Tip Digital Bar Code Wand (with Switch) Resolution 0.19 mm	- Digital Output - 0-45 ${ }^{\circ}$ Scan Angle - Replaceable Sapphire Tip - Internal Shielding - Push-to-Read Switch Available for Low Power Applications - Rugged Polycarbonate Case - Full Line of Options Available	3-19
	HBCS-2300	Sapphire Tip Digital Bar Code Wand (without Switch). Resolution 0.19 mm		
	HBCS-2400	Sapphire Tip Digital Bar Code Wand (with Switch) Resolution 0.19 mm		
	HBCS-2500	Sapphire Tip Digital Bar Code Wand (without Switch) Resolution 0.13 mm		
	HEDS-3000	Digital Bar Code Wand (with Switch) Resolution 0.3 mm	- Digital Output - 0-30 ${ }^{\circ}$ Scan Angle - Replaceable Tip	3-25
	HEDS-3050	Digital Bar Code Wand (Shielded) Resolution 0.3 mm	- Internal Shielding Available for Improved Electrical Noise Rejection - Push-to-Read Switch Available for Low Power Applications - Full Line of Options	

Component Level Bar Code Readers

Package Outline Drawing	Part No.	Description	Features	$\begin{array}{\|c\|} \hline \text { Page } \\ \text { No. } \end{array}$
	HBCR-1800	Bar Code Decoder IC	- Industry Standard Bar Codes - Automatic Code Recognition - Full Duplex Serial or Parallel ASCII Output - Single 5 Volt Supply	3-31
	HBCR-2000	Multi-Purpose Decoder IC	- Accepts Inputs from All Hand-Held Scanners, Including Lasers - Largest Selection of Codes Available - Automatic Code Recognition - Serial ASCII Output - Standard 40 Pin Package	3-37
	HBCR-2010	CMOS Multi-Purpose Decoder IC	- CMOS Low Power Design - Accepts Inputs from All Hand-Held Scanners, Including Lasers - Largest Selection of Codes Available - Automatic Code Recognition - Serial ASCII Output - Standard 40 Pin Package	3-43

Package outline drawings not drawn to scale.

Component Level Bar Code Readers (Cont.)

Package Outline Drawing	Part No.	Descripition	Features	$\begin{array}{\|l\|} \hline \text { Page } \\ \text { No. } \end{array}$
\square^{9}	HBCS-7000	Industrial Digital Slot Reader, Visible Red, Resolution 0.19 mm	- 125 Mil Slot Width - Epoxy Finshed Metal Housing - Wide Scan Speed Range - Tamper Proof Design - Digital Output	3-44
0 0 0 0 0 0	HBCS-7001	Optics/Electronics Module, Visible Red, Resolution 0.19 mm		
\square	HBCS-7100	Industrial Digital Slot Reader, Infra-Red Resolution 0.19 mm		
0 0 0 0 0	HBCS-7101	Optics/Electronics Module, Infra-Red, Resolution 0.19 mm		

Optical Reflective Sensors

Package Outline Drawing	Part No.	Description	Features	$\begin{array}{\|l\|} \hline \text { Page } \\ \text { No. } \end{array}$
$\bar{\equiv}$	HBCS-1100	High Resolution Optical Reflective Sensor	- 0.19 mm spot size - Fully Specified and Guaranteed for Assured Perfomance - Visible Light Source can Detect Most Colors - Photo IC Detector Optimizes Speed and Response - Standard To-5 Header	3-50

Bar Coder Readers

Package Outline Drawing	Part No.	Description	Features	Page No.
	16800A	Programmable Bar Code Reader	- Flexible Configuration - All Standard Industrial and Commercial Bar Codes Supported - Computer Control and Simple Operator Feedback (16800A only) - Internal Power Supply - Meet UL, CSA, FCC Class B, VDE Level B - Low Current Digital Bar Code Wand Included	3-56
	16801A	Non-Programmable Bar Code Reader		

Description

The HP SmartWand is an intelligent peripheral designed to easily add bar code scanning capability to any host system which can support a 5 V serial asynchronous interface. A powerful microcomputer, bar code decoding software, optical and escape sequence programmability, non-volatile configuration memory, and a high performance contact scanner, are all combined into a standard size industrial wand package. This integrated system transmits decoded bar code data in a serial ASCII format, effectively freeing the host system processor from the decoding task. The optics and low power electronics allow operation in a wide range of environments including direct sunlight, intense aritificial light, and in electromagnetic fields caused by motors or radio frequency transmitters.
The epoxy coated, textured metal case has O-ring seals at each end, a labyrinth strain relief for the cord, and a replaceable sealed sapphire tip. These design features
prevent dust, dirt, and liquid contaminants from degrading or destroying components inside the wand.
The HP SmartWand automatically recognizes and decodes standard bar code symbologies. Code type identification, label length checking, and check character verification options when enabled ensure a high level of data integrity. A power-on memory self test option ensures the decoder is operating properly. Various code selections, interface protocols, and other control options, can be selected and automatically stored in non-volatile memory by either manually scanning a special bar code menu or transmitting escape sequences from the host system.
In addition, the HP SmartWand has the ability to convert any of the standard bar code symbologies to Code 39 and emulate the undecoded output of a digital wand. This allows an existing decode system, which can decode Code 39 , to include symbologies not previously available.

Block Diagram

Contact Scanner Performance

SUMMARY

The HP SmartWand is a high performance contact bar code reader designed to scan and decode bar code labels located on uniform surfaces. The optics in the wand are designed to operate with the tip touching the bar code labels while scanning. The scanner is capable of reading through plastic laminates up to $0.25 \mathrm{~mm}\left(0.010^{\prime \prime}\right)$ thick. The
synthetic sapphire ball which contacts the labels is self cleaning and nearly impervious to wear. The low weight and compact shape allows ease of use and helps to reduce worker fatigue. The rugged industrial design allows use in both indoor and outdoor environments.

TYPICAL WAND CHARACTERISTICS

Parameter	HBCR-8300 General Purpose	HBCR-8500 High Resolution	HBCR-8100 Low Resolution
Nominal Narrow Element Width	$0.19 \mathrm{~mm}(0.0075 \mathrm{in})$	$0.13 \mathrm{~mm}(0.005 \mathrm{in}$)	$0.33 \mathrm{~mm}(0.013 \mathrm{in})$.
Wavelength	655 nm (visible red)	820 nm (infrared)	655 nm (visible red)
Scan Speed	$3-50 \mathrm{in} . / \mathrm{sec}$.	$3-50 \mathrm{in} . / \mathrm{sec}$.	$3-50 \mathrm{in} . / \mathrm{sec}$.
Tilt Angle	$0^{\circ}-40^{\circ}$	$0^{\circ}-40^{\circ}$	$0^{\circ}-40^{\circ}$
Minimum Bar/Space Contrast at Specified Wavelength	45%	45%	45%

ENVIRONMENTAL PERFORMANCE

Parameter	Conditions
Operating Temperature	-20° to $+70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Storage Temperature	-40° to $+70^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Humidity	5% to 95% (non-condensing)
Operating Altitude	Sea Level to 4,600 metres (15,000 feet)
Storage Altitude	Sea Level to 15,300 metres (50,000 feet)
Vibration	Random: $5-500 \mathrm{~Hz}, 3.41 \mathrm{~g} \mathrm{rms}$,10 minutes per axis Swept Sine: $55-500 \mathrm{~Hz}, @ 3 \mathrm{~g}, 1$ minute/octave, 10 minutes each resonance
Shock	500 g 's at 1 millisecond, 18 shocks (3 each, 6 surfaces)
Ambient Light	0 to 100kLux (Direct sunlight)
Rain	MIL-STD-810, Method 506, Procedure II, Drip
Dust	MIL-STD-810, Method 510, Blowing Dust

Mechanical Specifications

NOTE: ALL DIMENSIONS IN MILLIMETRES AND (INCHESY.

Programmable Configuration

The HP SmartWand can be configured by scanning a series of special menu labels or by transmitting escape sequences from the host system to the wand. This allows decoding options and interface protocols to be tailored to a specific application. The configuration is stored in nonvolatile memory and cannot be changed by removing power from the wand or by scanning standard bar code labels. The configuration information can be transmitted to the host system by scanning a bar code label in the
configuration menu or by sending the appropriate escape sequence from the host system. The wand can be reconfigured at any time to accommodate changing application requirements. Configuration labels and the escape sequences with detailed instructions on how to use each of them are printed in the HP SmartWand Users Manual (Part \# HBCR-8997). Configuration labels (Part \# HBCR-8998) can also be purchased separately as an accessory.
An example configuration display screen with the default settings is shown.

CONFIGURATION DISPLAY SCREEN

Note: This is a partial listing of configurable parameters. Please refer to the HP SmartWand Users Manual (Part \# HBCR-8997) for a complete listing.

Bar Code Decoding Performance

bAR CODE SYMBOLOGIES SUPPORTED

The HP SmartWand automatically recognizes and decodes Code 39 (3 of 9 Code), Interleaved 2 of 5, Universal Product Code (UPC), European Article Numbering Code (EAN), Japanese Article Numbering Code (JAN), Codabar (NW7 Code), Code 128, MSI Code, and Code 11. Minimum and maximum length values can be configured for each code (except UPC/EAN/JAN) and all codes can be scanned bi-directionally. All code types and their decoding format options can be enabled or disabled using either the optical configuration menu or escape sequences.
Code 39, an alphanumeric bar code, can have message lengths up to a maximum of 32 characters. An optional check character can be used with these codes and the HP SmartWand can be configured to verify this character. Transmission of the check character is optional. Extended Code 39 can be enabled as the full ASCII conversion option for Code 39.

Interleaved 2 of 5, a compact numeric only bar code, can be read with variable message lengths from 4 to 32 characters in even number increments. It can also be read with fixed message length exactly 2 characters long, with fixed message lengths that are exactly 6 or exactly 14 characters long, or with a fixed message length from 4 to 32 characters in even number increments. Check character verification and transmission are optional.
Standard UPC, EAN and JAN bar codes including UPC-A,

UPC-E, EAN-8, EAN-13, JAN-8 and JAN-13 are fixed length numeric only bar codes that have automatic check character verification and transmission. Decoding can be restricted to UPC-A and UPC-E. UPC-E labels can be expanded into the UPC-A format upon transmission. Supplemental encodations can be enabled in 2 digit, 5 digit, or both 2 and 5 digit lengths. Labels with supplemental encodations, or "add-on's" must be scanned from left to right in one stroke so that the supplementals are scanned after the main label. When automatic recognition of supplemental encodations is enabled, labels with or without add-on's are decoded.

Codabar, a numeric bar code with special characters, can have a message lengths up to a maximum of 32 characters. The HP SmartWand can be configured to transmit or suppress the data contained in the start and stop characters.
Code 128, a compact full ASCII bar code, can have message lengths up to a maximum of 31 characters in codes A and B, and 62 characters in code C. Check character verification is automatic and check character transmission is always suppressed.
Code 11, a numeric high density code, can have message lengths up to 32 characters. Verification of one or two check characters must be enabled, and the check character(s) are always transmitted.
MSI Code, a continuous numeric only code, can have message lengths up to 32 characters. The check digit, a modulo 10 checksum, is always verified and transmitted.

DECODING PARAMETERS

Parentheses indicate the parameter is optically configurable. Brackets indicate the parameter is escape sequence configurable. Default settings are shown.

Other default decoding parameters:
Extended Code 39 (full ASCII conversion) is disabled. Interleaved 2 of 5 message length is variable.
UPC/EAN/JAN supplemental digits are disabled.
Codabar stop/start characters are transmitted.

Code	Code Status	Check Character		Message Length		Code I.D. Character Transmit [(disabled)]
		Verification	Transmit	Minimum	Maximum	
Code 39	[(enabled)]	[(disabled)]	[(yes)]	(1)	(32)	[(a)]
Interleaved 2 of 5	[(enabled)]	[(disabled)]	[(yes)]	[(4)]	[(32)]	[(b)]
UPC/EAN/JAN	[(enabled)]	yes	yes	fixed		[(c)]
Codabar	[(enabled)]	no	no	(1)	(32)	[(d)]
Code 128	[(enabled)]	yes	no	(1)	(32)	[(e)]
Code 11	[(enabled)]	[(1)]	yes	(1)	(32)	[(f)]
MSI Code	[(enabled)]	yes	yes	(1)	(32)	[(g)]

MESSAGE COMPONENTS

There are three optical or escape sequence configurable message components that can be defined by the user and added to the decoded data transmitted by the HP SmartWand. The message components are: header, trailer, and code identification character. A no-read message option is also available.

The header, which precedes the decoded data, and the trailer, which follows the decoded data, can contain up to

10 ASCII characters. The code identification character is a single ASCII character which immediately precedes the decoded data and is used to identify the bar code symbology that was decoded. The no-read message can be up to 10 ASCII characters and can be transmitted in place of decoded data if a bar code label is scanned and a decode does not occur.
The default settings for the message components are shown.

Pin Description

PIN 2

TxD - This is the transmitted serial data line from the HP SmartWand. It obeys RS232 data formats, but uses zero to five volt logic level swings. It can be described as TTL level RS232. This will drive TTL, LSTTL, and CMOS inputs. The output circuit is shown:

TXD Output Specifications $\left(V_{C C}=5\right.$ Volts DC @ $\left.T_{A}=25^{\circ} \mathrm{C}\right)$		
V OH	2.00 VDC@ $940 \mu \mathrm{~A}$ 3.00 VDC @ $410 \mu \mathrm{~A}$ 4.00 VDC @ $95 \mu \mathrm{~A}$	$\begin{gathered} \mathrm{VOH}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}} 0.7- \\ \left(3100 * \mathrm{l}_{\mathrm{OH}} \mathrm{l}\right] \end{gathered}$
Vot	0.30VDC@ 20 mA	
lol	20 mA maximum	
$\mathrm{V}_{\text {MAX }}$	30 VDC	(maximum voltage for external pull up resistor)

PIN 3

RxD - This is the received serial data line to the HP SmartWand. It expects RS232 serial data formats, and will accept either RS232 signal levels (-3 to -15 volts low and +3 to +15 volts high), or TTL levels (0.8 volts low and 2.0 volts high). The two resistors provide current and voltage protection to the CMOS gate. This allows the use of RS232 level voltages. -15.0 to +0.8 volts are valid logic low levels. +2.0 to +15.0 are valid logic high levels. The input circuit is shown:

R×D Input Specifications $\left(V_{C C}=5\right.$ Volts DC @ $\left.T_{A}=25^{\circ} \mathrm{C}\right)$	
$V_{1 H}$	2.00VDC@ $000 \mu \mathrm{~A}$
$\mathrm{V}_{\text {LL }}$	0.80VDC@1 $\mu \mathrm{A}$

PIN 9

$V_{C C}$ - This is power to the wand. The allowable voltage range is 4.50 to 6.00 volts DC with a maximum of 100 millivolts of peak to peak ripple ($20 \mathrm{~Hz}-50 \mathrm{kHz}$). The current draw of the HP SmartWand is variable. When the wand is not scanning bar code labels, the microprocessor in the wand goes into an idle mode, and draws a minimum amount of current. Scanning a bar code label activates the wand, and the current draw will rise to a higher level, until the decoding is completed and all of the data has been transmitted. On power up and during configuration (scanning configuration bar code labels or storing configuration with escape sequences), a non-volatile EEPROM is accessed for several milliseconds (100 mS typical), and the wand requires a higher current level.

V $_{\mathrm{CC}}$ Values		
	Min	Max
Operating voltage, VCC	4.5 VDC	6.0 VDC
Absolute rating, VCC	-0.3 VDC	6.0 VDC

Typical I CC Values			
$V_{C C}$	4.5 volts	5.0 volts	6.0 volts
ICC Idle	9 mA	10 mA	12 mA
ICC Scanning	14 mA	16 mA	20 mA
ICC Contiguring	23 mA	25 mA	29 mA

PIN 7
Ground - The HP Smart Wand needs to be well grounded for proper protection.

SHELL

Shield - Shield is connected to the metal housing, the wire braid, and the metal HP SmartWand Case. Shield is also connected to ground inside the HP SmartWand.

DATA COMMUNICATIONS

Data Communications Parameters	Configurable Options	Default Setting
Data Rate:	$150,300,600,1200,2400$,	9600 Baud
	$4800,9600,19.2 \mathrm{~K}$ Baud	
Parity:	0 's, 1's, odd, even	0 's Parity
Stop Bits:	1 or 2	1 stop bit
Intercharacter Delay:	1 to 250 milliseconds	20 milliseconds enabled or disabled

RS232 COMPATIBILITY

Input to the HP SmartWand is fully RS232 compatible. Output from the HP SmartWand is not at RS232 levels, and does not meet RS232 specifications for voltage swings. A majority of RS232 interfaces on computers and other equipment will allow use of TTL level serial data. The use of a receiver IC such as the TI75189 or Motorola MC1489,
is possible if the response control lines are not connected (the pins left floating). Please refer to the HP SmartWand Users Manual (Part \#HBCR-8997) for a more detailed discussion on interfacing the HP SmartWand to other systems.

Regulatory Information

The digital circuitry used to obtain the high performance features of the HP SmartWand includes oscillators which generate radio frequency energy. If not installed and used properly, the wands may cause interference to radio and television reception. The wands have been type tested with the standard connectors and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the wand with respect to the receiver
- Move the wand away from the receiver

If necessary, the user should consult the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet prepared by the Federal Communications Commission helpful: "How to Identify and Resolve Radio-TV Interference Problems". This booklet is available from the U.S. Government Printing Office, Washington, D.C. 20422, Stock No. 004-00345-4.
If the HP SmartWand is sold without a connector it is defined as a subassembly and the FCC Identification numbers no longer apply. In those situations, the user has the responsibility to assure FCC compliance of his entire
system, both HP SmartWand and host system. HewlettPackard assumes no responsibility or liability for users of HP SmartWands without connectors that fail to comply with FCC regulations.

Model	FCC Identification
HBCR-8500	FCC ID: CUP6Z939965D HEWLETT-PACKARD
HBCR-8300	FCC ID: CUP6Z939963D HEWLETT-PACKARD
HBCR-8100	FCC ID: CUP6Z939961D HEWLETT-PACKARD

Warranty and Service

HP SmartWand is warranted for a period of one year after purchase covering defects in material and workmanship. Hewlett-Packard will repair or, at its option, replace products that prove to be defective in material or workmanship under proper use during the warranty period.

NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD IS NOT LIABLE FOR CONSEQUENTIAL DAMAGES.

For additional warranty or service information please contact your local Hewlett-Packard sales representative or authorized distributor.

HP SmartWand Selection Guide

Product

HBCR-8300 General Purpose

HBCR-8100 Low Resolution

Bar Code Label Description

- Nominal narrow element width of 0.19 mm (0.0075 in .) or greater
- Reads uniform dot matrix and standard thermal printing as well as high quality pre-printed labels
- DOES NOT read infrared (black on black) security labels
- Nominal narrow element width of 0.33 mm (0.013 in.) or greater
- Reads poorer quality dot matrix and standard thermal labels with non-uniform bar edges, minor spots and voids, faded print
- DOES NOT read infrared security labels

HBCR-8500 High Resolution

- Nominal narrow element width of 0.13 mm (0.005 in.) or greater
- Reads very high density high quality labels printed with carbon based ink
- Reads infrared security labels
- DOES NOT read standard white thermal printed paper; if thermal printed labels are to be used, they MUST BE PRINTED on a special infrared type BUFF paper.
- DOES NOT work well with poor quality labels.

Typical Label to be Scanned by this model

High Density 7.5 mil Code 39 Label

Low Density 13 mil Code 39 Dot Matrix Label

Very High Density 5 mil Code 39 Label
|| || |||||||||| ||

Ordering Information

Product Number

HBCR-8300
HBCR-8300 Opt. B01
HBCR-8100
HBCR-8100 Opt. B01
HBCR-8500
HBCR-8500 Opt. B01
Literature Number
HBCR-8997
Accessory Number
HBCS-4999
HBCR-8998

Description
General Purpose HP SmartWand (without manual)
General Purpose HP SmartWand (with manual)
Low Resolution HP SmartWand (without manual)
Low Resolution HP SmartWand (with manual)
High Resolution HP SmartWand (without manual)
High Resolution HP SmartWand (with manual)

Description

HP SmartWand Users Manual for HBCR-8XXX Series

Description

Replacement tip for HBCR-8XXX Series
HP SmartWand Configuration Menus for HBCR-8xxx series (set of three)

METAL, LOW RESOLUTION HBCS-6100
METAL, GENERAL PURPOSE RESOLUTION HBCS-6300
METAL, HIGH RESOLUTION HBCS-6500
HBCS-5000/5100
HBCS $5200 / 5300$
HBCS $5400 / 5500$

Features

- ULTRA LOW CONTINUOUS CURRENT DRAIN - Less Than 5 mA
- HIGH AMBIENT LIGHT REJECTION
- Operates in Direct Sunlight
- AVAILABLE IN THREE RESOLUTIONS TO MEET A VARIETY OF SCANNING NEEDS
- VISIBLE RED (655 nm) AND INFRARED (820 nm) VERSIONS FOR READING A WIDE RANGE OF PRINTING TYPES AND COLORS
- SCAN ANGLE 0 to 45 DEGREES
- AVAILABLE IN EITHER HIGH IMPACT POLYCARBONATE OR INDUSTRIAL METAL HOUSINGS
- OPERATING TEMPERATURE $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
- SEALED REPLACEABLE SAPPHIRE TIP
- Provides Protection from Contamination Due to Dirt and Debris
- DIGITAL OUTPUT
- Open Collector Output Compatible with TTL and CMOS Logic
- SINGLE 5 VOLT SUPPLY

Description

Hewlett-Packard's Low Current Digital Bar Code Wands are hand-held scanners optimized to provide excellent reading of all common bar code formats. The wands contain an optical sensor with a 655 nm visible red or an 820 nm infrared LED; a photodetector IC; and precision aspheric optics. The internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces.

Available in a choice of three resolutions, these wands have been designed to cover a wide range of bar code printing. The general purpose resolution wands, with their 0.19 mm (0.0075 in .) spot size, are excellent choices for reading a wide range of bar code symbols. For reading very high density symbols, the high resolution wands with a 0.13 mm (0.005 in .) spot size, are the appropriate choice. For lower resolution or poorly printed dot matrix symbols, the low resolution wands have a spot size of 0.38 mm (0.013 in .) to help reject extraneous spots and voids.

All of the wands have a special circuit design that provides for extremely low current drain (less than 5 mA) with continuous operation. This makes them ideal for use on battery powered systems where low power drain will extend battery life. These wands also have excellent ambient light rejection, allowing full operation in direct sunlight.
All of HP's Low Current Digital Bar Code Wands are FCC and VDE approved. They feature a shield for maximizing immunity to electrostatic discharge (ESD), electromagnetic interference (EMI) and ground loops. The shield is also designed to eliminate noise from capacitively coupled inputs.
The standard wand configuration includes a strain relieved coiled cord; which has a comfortable extended length of 190 cm (75 in .). Maximum length is 250 cm (100 in.). The standard connector on the polycarbonate wands is a 5 pin, 240 degree DIN connector. On the metal wands the standard connector is a 5 pin, 240 degree DIN connector with metal locking ring.

Applications

The digital bar code wand is a highly effective alternative to keyboard data entry. Bar code scanning is faster and more accurate than key entry and provides far greater throughput. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than optical character recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement, and immunity to electromagnetic fields.
Hewlett-Packard's Low Current Digital Bar Code Wands are especially designed for battery powered applications where low power drain is a primary concern. With continuous current draws of less than 5 mA , these wands can be used on battery powered systems without sacrificing battery life or requiring special "strobing" circuits. They are also ideal for AC powered systems where conventional wand current drains may require an increased power supply design.

In addition to their low current drain, these wands are also designed to work in high ambient light, such as outdoors or near large windows. This feature is extremely useful in applications such as inventory control on receiving docks, automobile tracking outdoors and check-out stands outdoors or near large store front windows.
Because the low resolution and the general purpose resolution wands use an emitter wavelength of 655 nm , they are extremely versatile in the range of printing type and colors that they will read, including thermal printing and dot matrix printing.
Available in either a light weight polycarbonate case or a rugged metal case, these wands are excellent choices for both light industrial and commercial applications, or heavy industrial and LOGMARS applications.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Nominal Narrow Element Width HBCS-5000/5100/6100		0.33 (0.013)		$\mathrm{mm}(\mathrm{in})$	
HBCS-5200/5300/6300		0.19 (0.0075)		mm (in.)	
HBCS-5400/5500/6500		0.13 (0.005)		$\mathrm{mm}(\mathrm{in}$))	
Scan Velocity	VSCAN	7.6 (3)	127 (50)	cm/sec (in/sec)	
Contrast	$\mathrm{R}_{W}-\mathrm{R}_{B}$	45		\%	1
Supply Voltage	V_{S}	4.5	5.5	Volts	2
Temperature	$\mathrm{T}_{\text {A }}$	-20	+65	${ }^{\circ} \mathrm{C}$	
Ambient Light	Ev		100,000	lux	3
Titit Angle	(See Figure 2)				
Orientation	(See Figure 3)				

NOTES:

1. Contrast is defined as $R_{W}-R_{B}$ where R_{W} is the reflectance of the white spaces and R_{B} is the reflectance of the black bars, measured at the emitter wavelength (655 nm or 820 nm). Contrast is related to print contrast signal (PCS) by PCS $=\left(R_{W}-R_{B}\right) / R_{W}$ or $R_{W}-R_{B}=$ PCS*Rw.
2. Power supply ripple and noise should be less than 100 mV peak to peak.
3. Ambient light sources can be diffuse tungsten, sodium, mercury, fluorescent, sunlight, or a combination thereof.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-20	+65	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{S}	-0.5	+6.00	V	
Output Transistor Power	P_{T}		150	mW	
Output Collector Voltage	V_{O}	-0.5	+20	V	

Electrical Operation

The HBCS-5XXX/6XXX family of digital bar code wands consists of a precision optical sensor and an electronic circuit that creates a digital output of the bar code pattern. The open collector transistor requires only a pull-up resistor to provide a TTL compatible output from a single 4.5 V to 5.5 V DC power supply.

A non-reflecting black bar results in a logic high (1) level output, while a reflecting white space will cause a logic low (0) level output (see Figure 1). The initial state will be indeterminate. However, if no bar code is scanned, after a short period (typically less than 1 second), the wand will assume a logic low state. This feature insures that the first bar will not be missed in a normal scan.

The wands provide a case, cable and connector shield which must be terminated to logic ground or, preferably, to both logic ground and earth ground. The shield is connected to the metal housing of the 5 pin DIN connector.
All standard HP Low Current Digital Bar Code wands are certified to meet FCC Class B and VDE Level B standards. The shield must be properly terminated in order to maintain these approvals and to keep the cable from acting as an antenna, injecting electrical noise into the wand circuitry. Grounding the shield will also provide a substantial improvement in EMI/ESD immunity.
The recommended logic interface for the wands is shown in Figure 5. This interconnection provides the maximum ESD protection for both the wand and the user's electronics.

Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Notes
Supply Current	Is		3.5	5.0	mA	$V_{S}=5.0 \mathrm{~V}$	4,5
High Level Output Current	IOH			1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	
Low Level Output Voltage	VOL			0.4	V	$I_{O L}=16 \mathrm{~mA}$	
Output Rise Time	tr_{r}		3.4	20	$\mu \mathrm{S}$	$10 \%-90 \%$	6
Output Fall Time	tf_{f}		1.2	20	$\mu \mathrm{s}$	$R_{L}=1 K$	6
Switch Bounce HBCS-5000/5200/5400	$t_{s b}$		0.5	5.0	ms		7
Electrostatic Discharge Immunity	ESD		25		kV		8
Wake-Up Time	t_{w}		50	200	ms		9

NOTES:

4. Push-to-read switch (if applicable) is depressed.
5. Not including pull-up resistor current.
6. See Figure 1.
7. Switch bounce causes a series of sub-millisecond pulses to appear at the output (V_{O}).
8. Shield must be properly terminated (see Figure 9). The human body is modeled by discharging a 300 pF capacitor through a 500Ω resistor. No damage to the wand will occur at the specified discharge level.
9. After this time, the wand is operational.

Figure 1. Typical Output Waveform

Depth of Field

Hewlett-Packard Digital Bar Code Wands are designed for contact scanning. However, it is possible to read through some overlay or covering material depending on the thickness of the material and the angle at which the wand is held. Figure 2 shows the relationship between tilt angle and depth of field.

Figure 2. Wand Height vs. Tilt Angle

Testing

All Hewlett-Packard Digital Bar Code Wands are 100\% tested for performance and digitizing accuracy after manufacture. This insures you of the consistent quality product you expect from HP. More information about our test procedures, test set-up, and test limits are available upon request.

Figure 3. Preferred Orientation

Selection and Application Guide

	$\begin{gathered} \text { HBCS } \\ 5000 \end{gathered}$	$\begin{gathered} \text { HBCS } \\ 5100 \end{gathered}$	$\begin{gathered} \text { HBCS } \\ 5200 \end{gathered}$	$\begin{gathered} \text { HBCS } \\ 5300 \end{gathered}$	$\begin{gathered} \text { HBCS } \\ 5400 \end{gathered}$	$\begin{aligned} & \text { HBCS } \\ & 5500 \end{aligned}$	$\begin{gathered} \text { HBCS } \\ 6100 \end{gathered}$	$\begin{aligned} & \text { HBCS } \\ & 6300 \end{aligned}$	$\begin{aligned} & \text { HBCS } \\ & 6500 \end{aligned}$
Wavelength (nm)	655	655	655	655	820	820	655	655	820
Nominal Narrow Element Width (mm) (inch)	$\begin{gathered} 0.33 \\ 0.013 \end{gathered}$	$\begin{gathered} 0.33 \\ 0.013 \end{gathered}$	$\begin{gathered} 0.19 \\ 0.0075 \end{gathered}$	$\begin{gathered} 0.19 \\ 0.0075 \end{gathered}$	$\begin{gathered} 0.13 \\ 0.005 \end{gathered}$	$\begin{gathered} 0.13 \\ 0.005 \end{gathered}$	$\begin{gathered} 0.33 \\ 0.013 \end{gathered}$	$\begin{gathered} 0.19 \\ 0.0075 \end{gathered}$	$\begin{gathered} 0.13 \\ 0.005 \end{gathered}$
Case Material Polycarbonate Metal	x	X	X	X	x	X	X	X	x
Switch	Yes	No	Yes	No	Yes	No	No	No	No
Will Read Bar Codes Printed Using: Regular Thermal Paper Dye-Based Inks Carbon Based Inks (Note 10) Colors (Note 11)	Yes Yes Yes Yes	No No Yes No	No No Yes No	Yes Yes Yes Yes	Yes Yes Yes Yes	No No Yes No			
Best Choice For: Widest Range of Bar Code Printing Highest Resolution Printing Low Resolution or Poor Quality Printing	x	X	x	X	X	X	x	x	X

NOTES:

10. For "black-on-black" bar codes, use the infrared (820 nm) wands only.
11. For color bar codes the background (spaces) should reflect red light, and the bars should absorb red light.

Certification

FCC Certification (USA Only)

Model	FCC Identification
HBCS-6100 through -61XX	FCC ID: CUP6Z9HBCS-6100 HEWLETT-PACKARD
HBCS-6300 through -63XX	FCC ID: CUP6Z9HBCS-6300 HEWLETT-PACKARD
HBCS-6500 through -65XX	FCC ID: CUP6Z9HBCS-6500 HEWLETT-PACKARD
HBCS-5000 through -5XXX	FCC ID: CUP6Z9HBCS-5000 HEWLETT-PACKARD
HBCS-5100 through -51XX	FCC ID: CUP6Z9HBCS-5100 HEWLETT-PACKARD
HBCS-5200 through -52XX	FCC ID: CUP6Z9HBCS-5200 HEWLETT-PACKARD
HBCS-5300 through -53XX	FCC ID: CUP6Z9HBCS-5300 HEWLETT-PACKARD
HBCS-5400 through -54XX	FCC ID: CUP6Z9HBCS-5400 HEWLETT-PACKARD
HBCS-5500 through -55XX	FCC ID: CUP6Z9HBCS-5500 HEWLETT-PACKARD

Interface

NOTES:

1. DIMENSIONS IN MILLIMETRES AND (INCHES).

PIN	WIRE COLOR	FUNCTION
1	RED	V_{S} SUPPLY VOLTAGE
2	WHITE	V_{0} OUTPUT
3	BLACK	GROUND
4	N/A	N/C
5	N/A	N/C
CASE	-	SHIELD (MUST BE CONNECTED)

Figure 4. Connector Specifications.

This equipment generates radio frequency energy and if not installed and used properly, may cause interference to radio and television reception. It has been type tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference, However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the wand with respect to the receiver
- Move the wand away from the receiver

If necessary, the user should consult the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet prepared by the Federal Communications Commission helpful: "How to Identify and Resolve Radio-TV Interference Problems". This booklet is available from the U.S. Government Printing Office, Washington, D.C. 20422, Stock No. 004-00345-4.

${ }^{\circledR}$ TRANSZORB IS A REGISTERED TRADEMARK OF GENERAL SEMICONDUCTOR INDUSTRIES. TEMPE AZ.

Figure 5. Recommended Logic Interface (When earth ground is not available, connect shield to logic ground, as shown by dotted line).

The wands include a standard $5 \mathrm{pin}, 240^{\circ}$ DIN connector. The detailed specifications and pin-outs are shown in Figure 4. Mating connectors are available from RYE Industries and SWITCHCRAFT in both 5 pin and 6 pin configurations. These connectors are listed below.

Connector	Configuration
RYE MAB-5*	5 Pin
SWITCHCRAFT 61GA5F**	5 Pin
SWITCHCRAFT 61HA5F	5 Pin
RYE MAB-6	6 Pin
SWITCHCRAFT 61HA6F	6 Pin

[^1]
Maintenance Considerations

There are no user serviceable parts inside the wand. The tip is designed to be easily replaceable, and if damaged it should be replaced. Before unscrewing the tip, disconnect the wand from the system power source. The part number for the wand tip is HBCS-2999 for the HBCS-5XXX family and HBCS-4999 for the HBCS-6XXX family. The tips can be ordered from any Hewlett-Packard authorized distributor.

Optional Features

For options such as special cords, connectors or labels, contact your nearest Hewlett-Packard sales office or authorized representative.

Wand Dimensions

HBCS-50/52/5400

Figure 6A. HBCS-2999 Sapphire Tip

Figure 6B. HBCS-4999 Sapphire Tip

HBCS-51/53/5500

HBCS-6XXX

Figure 7.

Features

- SCAN ANGLE 0 TO 45 DEGREES
- OPERATING TEMPERATURE $-20^{\circ} \mathrm{C} \mathrm{TO}+65^{\circ} \mathrm{C}$
- AVAILABLE IN EITHER 0.19 mm (0.0075 IN.) OR 0.13 0.13 mm (0.005 IN.) RESOLUTION
- SEALED REPLACEABLE SAPPHIRE TIP

Provides Protection from Contamination Due to Dirt and Debris

- DIGITAL OUTPUT

Open Collector Output Compatible with TTL and CMOS

- DECODABILITY SPECIFIED FOR GUARANTEED PERFORMANCE
- SINGLE 5 VOLT SUPPLY
- PUSH-TO-READ SWITCH (HBCS-2200/2400) Minimizes Power Consumption in Battery Operated Systems
- SOLID STATE RELIABILITY
- POLYCARBONATE CASE Durable, yet Lightweight

Description

Hewlett-Packard's Sapphire Tip Digital Bar Code Wands are hand-held scanners optimized to provide excellent reading of all common bar code formats. These wands contain an optical sensor with a 700 nm visible red LED (HBCS-2200/2300) or an 820 nm infrared LED (HBCS-2400/2500); a photo IC detector; and precision aspheric optics. The internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces.

Wand Dimensions

NOTE: DIMENSIONS IN MILLIMETRES AND (INCHES).

The HBCS-2200/2300 wands, with their nominal 0.19 mm spot size, are excellent choices for reading a general range of bar codes. The HBCS-2400/2500 wands have a nominal spot size of 0.13 mm and are ideal for reading very high density bar code.

All of the wands feature an internal shield for maximizing immunity to electromagnetic interference (EMI), electrostatic discharge (ESD), and ground loops. The shield is also designed to eliminate noise from capacitively coupled inputs.

The HBCS-2200 and HBCS-2400, with their push-to-read switch, are recommended for use in battery powered applications requiring low power consumption. The HBCS-2300 and HBCS-2500 (without switch) are the usual choices for AC powered systems.

The standard wand configuration includes a strain relieved coiled cord, which has a comfortable extended length of 190 cm (75 in .). Maximum length is 250 cm (100 in .). The standard connector is a 5 pin, 240 degree DIN connector.

Applications

The digital bar code wand is a highly effective alternative to keyboard data entry. Bar code scanning is faster and more accurate than key entry and provides far greater throughput. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than optical character recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement and immunity to electromagnetic fields.
Hewlett-Packard's sapphire tip wands are designed for use in applications where dirt and debris are a common occurrence
and could cause clogging in a conventional open-tip wand. In addition, the sapphire ball provides superior wear resistance and improves scanning ease. The rugged yet lightweight polycarbonate case makes these wands ideal for use in commercial or light industrial applications.
Applications include remote data collection, work-in-process tracking, point-of-sale data entry, inventory control, library circulation control, medical records tracking, and repair/ service work.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Nominal Narrow Element Width HBCS-2200/2300		$0.19(0.0075)$		$\mathrm{mm}(\mathrm{in})$.	
HBCS-2400/2500		$0.13(0.005)$		$\mathrm{mm}(\mathrm{in})$.	
Scan Velocity	VSCAN	$7.6(3)$	$127(50)$	$\mathrm{cm} / \mathrm{sec}(\mathrm{in} / \mathrm{sec})$	
Contrast	Rw-RB	45		$\%$	1
Supply Voltage	V_{S}	4.5	5.5	$V_{01 t s}$	2
Temperature	T_{A}	-20	+65	${ }^{\circ} \mathrm{C}$	
Tilt Angle	(See Figure 8)				
Orientation	(See Figure 1)	3			

Notes:

1. Contrast is defined as $R_{w}-R_{B}$, where R_{w} is the reflectance of the white spaces and R_{B} is the reflectance of the black bars, measured at the emitter wavelength (700 nm or 820 nm). Contrast is related to print contrast signal (PCS) by PCS $=\left(R_{w}-R_{B}\right) / R w$ or $R w-R_{B}=P C S * R w$.
2. Power supply ripple and noise should be less than 100 mV peak to peak.
3. Performance in sunlight will vary depending on shading at wand tip.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	TS_{S}	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature	TA_{A}	-20	+65	${ }^{\circ} \mathrm{C}$	
Supply Voltage HBCS-2200/2300	V_{S}	-0.5	+6.00	V	
HBCS-2400/2500	V_{S}	-0.5	+5.75	V	
Output Transistor Power	PT		200	mW	
Output Collector Voltage	VO_{O}	-0.5	+20	V	

Electrical Operation

The HBCS-2XXX family of digital bar code wands consists of a precision optical sensor, an analog amplifier, a digitizing circuit, and an output transistor. These elements provide a TTL compatible output from a single 4.5 V to 5.5 V power supply. The open collector transistor requires an external pull-up resistor for proper operation.
A non-reflecting black bar results in a logic high (1) level output, while a reflecting white space will cause a logic low (0) level output. The initial or "wake-up" state will be indeterminate. However, after a short period (typically less than 1 second), the wand will assume a logic low state if no bar code is scanned. This feature insures that the first bar will not be missed in a normal scan.
The wands provide a case, cable, and connector shield which must be terminated to logic ground or, preferably, to both logic ground and earth ground. The shield is connected to the metal housing of the 5 pin DIN connector.

Grounding the shield will provide a substantial improvement in EMI/ESD immunity in AC powered systems. However, it is essential that the shield be properly terminated even when EMI and ESD are not a concern, otherwise the shield will act as an antenna, injecting electrical noise into the wand circuitry.

The HBCS-2200/2400 wands incorporate a push-to-read switch which is used to energize the LED emitter and electronic circuitry. When the switch is initially depressed, contact bounce may cause a series of random pulses to appear at the output (Vo). This pulse train will typically settle to a final value within 5 ms .

The recommended logic interface for the wands is shown in Figure 9. This interconnection provides the maximum ESD protection for both the wand and the user's electronics.

Electrical Characteristics

($\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$, unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Notes
Supply Current	IS		42	50	mA	$\mathrm{~V}_{\mathrm{S}}=5.0 \mathrm{~V}$	4
High Level Output Current	IOH			400	$\mu \mathrm{~A}$	$\mathrm{VOH}=2.4 \mathrm{~V}$	
Low Level Output Voltage	VOL			0.4	V	$\mathrm{loL}=16 \mathrm{~mA}$	
Output Rise Time	t_{r}		3.4	20	$\mu \mathrm{~s}$	$10 \%-90 \%$ Transition $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$	
Output Fall Time	t_{f}		1.2	20	$\mu \mathrm{~s}$		
Switch Bounce HBCS-2200/2400	t_{Sb}		0.5	5.0	ms		5
Electrostatic Discharge Immunity	ESD		25		kV		6

Notes:

4. Push-to-read switch (if applicable) is depressed.

5: Switch bounce causes a series of sub-millisecond pulses to appear at the output (Vo).
6. Shield must be properly terminated (see Figure 9). The human body is modeled by discharging a 300 pF capacitor through a 500Ω resistor. No damage to the wand will occur at the specified discharge level.

Block Diagram

HBCS-2300/2500 (without Switch)

HBCS-2200/2400
(with Switch)

Scanning Performance

$\left(V_{S}=5.0 \mathrm{~V}, R_{L}=1.0\right.$ to $10 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C}$, Scan Velocity $=50 \mathrm{~cm} / \mathrm{sec}$)

Parameter	Symbol	HBCS-	Typ.	Max.	Units	Condition	Fig.	Note
Decodability Index	DI	2200/2300	9	22	\%	Tilt Angle 0° to 40° Preferred Orientation Standard Test Tag	$\begin{aligned} & 1,2,3 \\ & 4,7,9 \end{aligned}$	7,8
		2400/2500	12	22	\%			
Average Width Error (Narrow Bars)	OSbn	2200/2300	$\begin{array}{c\|} \hline 0.005 \\ (0.0002) \end{array}$		mm (in.)		1,2,9	7
		2400/2500	$\begin{gathered} 0.024 \\ (0.0009) \end{gathered}$		$\begin{aligned} & \mathrm{mm} \\ & \mathrm{in} .) \end{aligned}$			
Average Width Error (Wide Bars)	OS Sbw	2200/2300	$\begin{gathered} 0.003 \\ (0.0001) \end{gathered}$		mm (in.)			
		2400/2500	$\begin{gathered} 0.023 \\ (0.009) \end{gathered}$		mm (in.)			
Average Width Error (Narrow Spaces)	$\mathrm{OS}_{\mathrm{sn}}$	2200/2300	$\begin{gathered} -0.011 \\ (-0.0004) \end{gathered}$		mm (in.)			
		2400/2500	$\begin{array}{\|c\|} \hline-0.027 \\ (-0.0106) \end{array}$		$\begin{aligned} & \mathrm{mm} \\ & \text { (in.) } \end{aligned}$			
Average Width Error (Wide Spaces)	$\mathrm{OS}_{\text {SW }}$	2200/2300	$\begin{gathered} -0.002 \\ (-0.0001) \end{gathered}$		mm (in.)			
		2400/2500	$\begin{array}{\|c\|} \hline-0.026 \\ (-0.0010) \end{array}$		$\begin{aligned} & \mathrm{mm} \\ & \text { (in.) } \end{aligned}$			
Deviation from Average (internal)	d_{e}	2200/2300	$\begin{array}{\|c\|} \hline 0.018 \\ (0.0007) \\ \hline \end{array}$	$\begin{gathered} 0.048 \\ (0.0019) \end{gathered}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{(in.)} \end{aligned}$		$\begin{aligned} & 1,2,5 \\ & 6,9 \end{aligned}$	7
		2400/2500	$\begin{gathered} 0.019 \\ (0.0007) \end{gathered}$	$\begin{gathered} 0.052 \\ (0.0020) \end{gathered}$	mm (in.)			
Deviation from Average (First Bar)	db1	2200/2300	$\begin{gathered} 0.090 \\ (0.0035) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.152 \\ (0.0060) \end{array}$	mm (in.)			
		2400/2500	$\begin{gathered} 0.060 \\ (0.0024) \end{gathered}$	$\begin{gathered} 0.100 \\ (0.0039) \end{gathered}$	$\begin{aligned} & \mathrm{mm} \\ & (\mathrm{in} .) \end{aligned}$			

Notes:

7. The test tag for the HBCS-2200/2300 Wands (Figure 2a) consists of black bars and white spaces with a narrow element width of 0.19 mm (0.0075 in .) and a wide element width of $0.42 \mathrm{~mm}(0.0165 \mathrm{in}$.). This equates to a wide-to-narrow ratio of 2.2:1. A margin, or white reflecting area, of at least 5 mm in width precedes the first bar.
The test tag for the HBCS-2400/2500 wands (Figure 2b) consists of black bars with a narrow element width of $0.13 \mathrm{~mm}(0.005 \mathrm{in}$.$) and$ wide element width of $0.43 \mathrm{~mm}(0.017 \mathrm{in}$.) giving a ratio of $3.4: 1$. The white spaces have a narrow element width of $0.28 \mathrm{~mm}(0.011 \mathrm{in}$.) and wide element width of $0.64 \mathrm{~mm}(0.025 \mathrm{in}$.) yielding a ratio of $2.3: 1$. Both tags are photographically reproduced on diffuse reflecting paper with a PCS greater than 90%.
8. Decodability index is a measure of the errors produced by the wand when scanning a standard test symbol at a constant velocity. It is expressed as a percentage of the narrow element width.
For a more detailed discussion of the terms used here, see Hewlett-Packard Application Note 1013 "Elements of a Bar Code System" (publication number 5953-9387).

HBCS-22/2400

HBCS-23/2500

a. HBCS-22/2300 Test Tag

Typical Performance Curves

($V_{S}=5 \mathrm{~V}, R_{L}=1 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C}$, $\mathrm{Tilt}^{2}=15^{\circ}, \mathrm{VSCAN}=50 \mathrm{~cm} / \mathrm{sec}$ unless otherwise specified)

Figure 3. Decodability Index vs. Supply Voltage.

Figure 5. Deviation from Average Width Error vs. Supply Voltage.

Figure 7. Decodability Index vs. Temperature.

Figure 4. Decodability Index vs. Scan Velocity.

Figure 6. Deviation from Average Width Error vs. Scan Velocity.

Figure 8. Wand Height vs. Tilt Angle.

Selection Guide

NOTES:
IF IT IS NECESSARY TO READ BAR CODE PRINTED IN COLORS OTHER THAN BLACK AND WHITE IT IS RECOMMENDED THAT EITHER THE HBCS-2200 OR HBCS-2300 WANDS BE SELECTED.
IF IT IS NECESSARY TO READ SECURITY "BLACK-ON-BLACK" BAR CODE (CARBON-BASED BLACK AND WHITE BAR CODE WITH A BLACK OVERLAY), IT IS RECOMMENDED THAT EITHER THE HBCS-2400 OR THE HBCS-2500 WANDS BE SELECTED.

Figure 9. Recommended Logic Interface (When earth ground is not available, connect shield to logic ground, as shown by dotted line).

Notes:

1. DIMENSIONS IN MILLIMETRES AND (INCHES).

$\frac{\text { PIN }}{1}$	WIRE COLOR	
2	RED	
2	FHITE	VSCTION
3	BLACK	VOPPLY VOLTAGE
4	N/A	GROUND
5	N/A	N/C
CASE	-	N/C

Figure 10. Connector Specifications.

Mechanical Considerations

The wands include a standard 5 pin, 240° DIN connector. The detailed specifications and pin-outs are shown in Figure 10. Mating connectors are available from RYE Industries and SWITCHCRAFT in both 5 pin and 6 pin configurations. These connecors are listed below.

Connector	Configuration
RYE MAB-5	5 Pin
SWITCHCRAFT 61GA5F	5 Pin
SWITCHCRAFT 61HA5F	5 Pin
RYE MAB-6	6 Pin
SWITCHCRAFT 61GA6F	6 Pin

Maintenance Considerations

There are no user serviceable parts inside the wand. The tip is designed to be easily replaceable, and if damaged it should be replaced. Before unscrewing the tip, disconnect the wand from the system power source. The part number for the wand tip is HBCS-2999. The tip can be ordered from any HewlettPackard franchised distributor.

Figure 11. Sapphire Tip.

Optional Features

For options such as special cords, connectors or labels, contact your nearest Hewlett-Packard sales office or franchised Hewlett-Packard distributor.

Features

- 0.3 mm RESOLUTION

Enhances the Readability of dot matrix printed bar codes

- DIGITAL OUTPUT Open Collector Output Compatible with TTL and CMOS
- PUSH-TO-READ SWITCH (HEDS-3000)

Minimizes Power in Battery Operated Systems

- SINGLE 5V SUPPLY OPERATION
- ATTRACTIVE, HUMAN ENGINEERED CASE
- DURABLE LOW FRICTION TIP
- SOLID STATE RELIABILITY

Uses LED and IC Technology

- SHIELDED CASE AND CABLE (HEDS-3050)

Maximizes EMI/ESD Immunity in AC
Powered Systems

Description

The HEDS-3000 and HEDS-3050 Digital Bar Code Wands are hand held scanners designed to read all common bar code formats that have the narrowest bars printed with a nominal width of 0.3 mm (0.012 in .). The wands contain an optical sensor with a 700 nm visible light source, photo IC detector, and precision aspheric optics. Internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces.
The HEDS-3000 comes equipped with a push-to-read switch which is used to activate the electronics in battery powered applications requiring lowest power consumption. The HEDS-3050 does not have a switch, and features internal metal shielding that maximizes immunity to

Wand Dimensions

Electrical Operation

The HEDS-3000 and HEDS-3050 consist of a precision optical sensor, an analog amplifier, a digitizing circuit, and an output transistor. These elements provide a TTL compatible output from a single voltage supply range of 3.6 V to 5.75 V . A non-reflecting black bar results in a logic high (1) level, while a reflecting white space will cause a logic low (0) at the Vo connection (pin 2). The output of the wands is an open collector transistor.

The HEDS-3050 provides a case and cable shield (pin 5) which must be connected to logic ground and preferably also to earth ground. This will provide a substantial improvement in EMI/ESD immunity for the wand in AC powered systems.
The recommended logic interface for the wands is shown in Figure 3. This interconnection provides maximum ESD protection for both the wand and the user's electronics.
The HEDS-3000 incorporates a push-to-read switch which is used to energize the 700 nm LED emitter and
electronic circuitry. When the switch is initially depressed, its contact bounce may cause a series of random pulses to appear at the output, Vo. This pulse train will typically settle to a final value within 0.5 ms . This initial pulse train is eliminated when a switchless HEDS-3050 is used.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Bar Width	s, b	0.3		mm
Scan Velocity	$V_{\text {scan }}$	7.6	76	$\mathrm{~cm} / \mathrm{s}$
Contrast	PCS	70		$\%$
Supply Voltage	V_{S}	3.6	5.75	V
Temperature	T_{A}	0	55	${ }^{\circ} \mathrm{C}$
Orientation	See Figure 1			

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	TS_{S}	-20	55	${ }^{\circ} \mathrm{C}$	1
Operating Temperature	TA_{A}	0	55	${ }^{\circ} \mathrm{C}$	
Supply Voltage	VS_{S}	-0.5	6.0	V	2
Output Transistor Power	PT		200	mW	
Output Collector Voltage	Vo		20	V	

Electrical CharacteristicS ($\mathrm{V}_{\mathrm{S}}=3.6 \mathrm{~V}$ to 5.75 V at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$, unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Notes
Switch Bounce(HEDS-3000	t_{sb}		0.5	5	ms			3
High Level Output Current	IOH			400	$\mu \mathrm{~A}$	VOH $=2.4 \mathrm{~V}$, Bar Condition (Black)	3	
Low Level Output Voltage	VOL			0.4	V	$10 \mathrm{l}=16 \mathrm{~mA}$, Space Condition (White)	3	
Output Rise Time	tr_{r}		2		$\mu \mathrm{~s}$	$10 \%-90 \%$ Transition	3	
Output Fall Time	t_{f}		100		ns	$90 \%-10 \%$ Transition	3	
Supply Current	Is		42	50	mA	$\mathrm{Vs}=5 \mathrm{~V}$, Bar Condition (Black)		2,4

Block Diagram

HEDS-3000
(WITH SWITCH)

HEDS-3050
(SHIELDED)

GUARANTEED WIDTH ERROR PERFORMANCE

($\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$, unless otherwise noted)

TYPICAL WIDTH ERROR PERFORMANCE $\left(V_{S}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega\right.$, unless otherwise noted)

Parameter			Symbol	$\begin{gathered} \text { Typical WE } \\ \text { Tilt }=0^{\circ} \\ \text { Height }=0.25 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \text { Typical WE } \\ & \text { Tilt }=30^{\circ} \\ & \text { Height }=0.0 \mathrm{~mm} \end{aligned}$	Units	Conditions	Fig.	Notes
Bar Width Error	From	To	$\Delta \mathrm{b}_{1}$	0.08 (3.2)	0.11 (4.2)	$\mathrm{mm}_{\left(\text {in. } \times 10^{-3}\right)}$	$\begin{aligned} & \text { Margin } \geq 5 \mathrm{~mm} \\ & 1 \mathrm{~b}=1 \mathrm{~s}=0.3 \mathrm{~mm} \\ & 2 \mathrm{~b}=2 \mathrm{~s}=0.6 \mathrm{~mm} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{scan}}=50 \mathrm{~cm} / \mathrm{s} \end{aligned}$Preferred OrientationStandard Test Tag	1,2	5,7,8
	Margin	1st							
	1s	1b	$\Delta \mathrm{b} 1$-1	0.03 (1.2)	0.04 (1.6)	$\begin{array}{\|c\|} \hline \mathrm{mm} \\ \left(\text { in. } \times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8
	2s	1b	$\Delta \mathrm{b}_{2-1}$	0.06 (2.5)	0.07 (2.9)	$\begin{array}{\|c\|} \hline \mathrm{mm} \\ \left(\mathrm{in} \times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8
	1 s	2b	$\Delta \mathrm{b}_{1-2}$	0.02 (0.9)	0.02 (0.7)	$\begin{array}{\|c\|} \mathrm{mm} \\ \left(\mathrm{in} . \times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8
	2s	2b	$\Delta \mathrm{b}_{2-2}$	0.05 (1.9)	0.05 (2.1)	$\begin{array}{\|c\|} \hline \mathrm{mm} \\ \left(\text { in. } \times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8
	1b	1s	ΔS_{1-1}	-0.04 (-1.4)	-0.04 (-1.4)	$\begin{gathered} \mathrm{mm} \\ \left(\mathrm{in} . \times 10^{-3}\right) \end{gathered}$		1,2	6,7,8
Space	2b	1s	$\Delta \mathrm{S}_{2-1}$	-0.03 (-1.0)	-0.03 (-1.1)	$\mathrm{mm}_{\left(\mathrm{in} \times 10^{-3}\right)}$		1,2	6,7,8
$\begin{aligned} & \text { Width } \\ & \text { Error } \end{aligned}$	1 b	2s	$\Delta S_{1 \rightarrow 2}$	-0.07 (-2.7)	-0.08 (-3.3)	$\begin{array}{\|c\|} \hline \mathrm{mm} \\ \left(\mathrm{in} . \times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8
	2b	2s	ΔS_{2-2}	-0.06 (-2.4)	-0.06 (-2.4)	$\begin{array}{\|c\|} \hline \mathrm{mm} \\ \left(\text { in. } \times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8

Notes:

1. Storage Temperature is dictated by Wand case.
2. Power supply ripple and noise should be less than 100 mV .
3. Switch bounce causes a series of sub-millisecond pulses to appear at the output, Vo. (HEDS-3000 only)
4. Push-to-Read switch is depressed, and the Wand is placed on a non-reflecting (black) surface. (HEDS-3000 only)
5. The margin refers to the reflecting (white) space that preceeds the first bar of the bar code.
6. The interior bars and spaces are those which follow the first bar of bar code tag.
7. The standard test tag consists of black bars, white spaces (0.3 $\mathrm{mm}, 0.012 \mathrm{in}$. min.) photographed on Kodagraph Transtar TC5 ${ }^{\circledR}$ paper with a print contrast signal greater than 0.9 .
8. The print contrast signal (PCS) is defined as: $\mathrm{PCS}=\left(\mathrm{R}_{\mathrm{w}}-\mathrm{R}_{\mathrm{b}}\right)$ $/ \mathrm{R}_{\mathrm{w}}$, where R_{w} is the reflectance at 700 nm from the white spaces, and R_{b} is the reflectance at 700 nm for the bars.
9. $1.0 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{~mm}=0.0394 \mathrm{in}$.
10. The Wand is in the preferred orientation when the surface of the label is parallel to the height dimension of the bar code.

OPERATION CONSIDERATIONS

The Wand resolution is specified in terms of a bar and space Width Error, WE. The width error is defined as the difference between the calculated bar (space) width, B, (S), and the optically measured bar (space) widths, b (s). When a constant scan velocity is used, the width error can be calculated from the following.
$B=t_{b} \cdot v_{s c a n}$
$\mathrm{S}=\mathrm{t}_{\mathrm{s}} \cdot \mathrm{v}_{\mathrm{sc}} \mathrm{Can}$
$\Delta b=B-b$
$\Delta \mathrm{s}=\mathrm{S}-\mathrm{s}$

Where

$\Delta b, \Delta s=$ bar, space Width Error (mm)
b, s o optical bar, space width (mm)
$B, S=$ calculated bar, space width (mm)
$v_{\text {scan }}=$ scan velocity (mm / s)
$\mathrm{t}_{\mathrm{b}}, \mathrm{t}_{\mathrm{s}}=$ wand pulse width output(s)
The magnitude of the width error is dependent upon the width of the bar (space) preceeding the space (bar) being measured. The Guaranteed Width Errors are specified as a maximum for the margin to first bar transition, as well as, maximums and minimums for the bar and space width errors resulting from transitions internal to the body of the bar code character. The Typical Width Error Performance specifies all possible transitions in a two level code (e.g. 2 of 5). For example, the $\Delta \mathrm{b}_{2-1}$ Width Error specifies the width error of a single bar module (0.3 mm) when preceeded by a double space module (0.6 mm).
The Bar Width Error $\Delta \mathrm{b}$, typically has a positive polarity which causes the calculated bar, B, to appear wider than its printed counterpart. The typical negative polarity of the Space Width Error $\Delta \mathrm{s}$, causes the measured spaces to appear narrower. The consistency of the polarity of the bar and space Width Errors suggest decoding schemes which average the measured bars and measured spaces within a character. These techniques will produce a higher percentage of good reads.
The Wand will respond to a bar code with a nominal module width of 0.3 mm when it is scanned at tilt angles between 0° and 30°. The optimum performance will be obtained when the Wand is held in the preferred

HEDS-3000

HEDS-3050

Figure 1. Preferred Wand Orientation.
orientation (Figure 1), tilted at an angle of 10° to 20°, and the Wand tip is in contact with the tag. The Wand height, when held normal to the tag, is measured from the tip's aperture, and when it is tilted it is measured from the tip's surface closest to the tag. The Width Error is specified for the preferred orientation, and using a Standard Test Tag consisting of black bars and white spaces. Figure 2 illustrates the random two level bar code tag. The Standard Test Tag is photographed on Kodagraph Transtar TC5® paper with a nominal module width of 0.3 mm (0.012 in .) and a Print Contrast Signal (PCS) of greater than 90%.

BAR WIDTH 0.3 mm (0.012 in.) BLACK \& WHITE
RWHITE $^{2} \mathbf{7 5 \%}$, PCS $\geqslant 0.9$ KODAGRAPH TRANSTAR TC5 ${ }^{*}$ PAPER

Figure <. Standard Test Tag Format.

Figure 3a. Recommended Logic Interface for HtDS-3000

Figure 3b. Recommended Logic Interface for HEDS-3050. (When earth ground is not available, connect shield to logic ground, as shown by dotted line)

Typical Performance CurveS ($\left.\mathbf{R}_{\mathrm{L}}=\mathbf{2 . 2 k} \boldsymbol{\Omega}\right)$

Figure 4. Width Error vs. Tilt (Preferred Orientation).

Figure 6. Width Error vs. Height (Preferred Orientation).

Figure 8. Width Error vs. Bar Width.

Figure 5. Width Error vs. Tilt (Any Orientation).

Figure 7. Width Error vs. Height (Any Orientation).

Figure 9. Width Error vs. Scan Velocity.

Figure 10. Width Error vs. Supply Voltage.

MECHANICAL CONSIDERATIONS

The HEDS-3000/-3050 include a standard nine pin D-style connector with integral squeeze-to-release retention mechanism. Two types of receptacles with the retention mechanism are available from AMP Corp. (Printed circuit header: 745001-2 Panel mount: 745018, body; 66570-3, pins). Panel mount connectors that are compatible with the Wand connector, but do not include the retention mechanism, are the Molex A7224, and AMP 2074-56-2.

MAINTENANCE CONSIDERATIONS

While there are no user serviceable parts inside the Wand, the tip should be checked periodically for wear and dirt, or obstructions in the aperture. The tip aperture is designed to reject particles and dirt but a gradual degradation in performance will occur as the tip wears down, or becomes obstructed by foreign materials.

Before unscrewing the tip, disconnect the Wand from the system power source. The aperture can be cleaned with a cotton swab or similar device and a liquid cleaner.
The glass window on the sensor should be inspected and cleaned if dust, dirt, or fingerprints are visible. To clean the sensor window dampen a lint free cloth with a liquid cleaner, then clean the window with the cloth taking care not to disturb the orientation of the sensor. DO NOT SPRAY CLEANER DIRECTLY ON THE SENSOR OR WAND.

Figure 11. Width Error vs. Temperature.

Figure 12. Wand Tip.
After cleaning the tip aperture and sensor window, the tip should be gently and securely screwed back into the Wand assembly. The tip should be replaced if there are visible indications of wear such as a disfigured, or distorted aperture. The part number for the Wand tip is HEDS-3001. It can be ordered from any franchised HewlettPackard distributor.

OPTIONAL FEATURES

The wand may also be ordered with the following special features:

- Special colors
- Customer specified label
- No label
- Heavy duty retractable coiled cord
- No connector
- With/without switch button

For mơre information, call your local Hewlett-Packard sales office or franchised distributor.

Figure 13. Connector Specifications.

Features

- INDUSTRY STANDARD BAR CODES 3 of 9 Code
Extended 3 of 9 Code
Interleaved 2 of 5 Code
UPC/EAN/JAN Codes
- AUTOMATIC CODE RECOGNITION
- FULL DUPLEX SERIAL OR PARALLEL ASCII OUTPUT
- EXTENSIVE CONFIGURATION CONTROL THROUGH SOFTWARE COMMANDS
- DECODER IC IN A STANDARD 40 PIN DIP PACKAGE
- AUDIO AND VISUAL FEEDBACK CONTROL
- SINGLE 5 VOLT SUPPLY

Description

Hewlett-Packard's HBCR-1800 Bar Code Decoder IC is a high performance product designed to simplify the implementation of bar code reading capability in any OEM system. The standard 40 pin decoder IC has been specially designed to work with any of Hewlett-Packard's digital wands. When combined with an external RAM chip, the result is a component-level reader that allows a manufacturer to easily add bar code reading to his equipment.
The standard decoding chip supports four of the most popular codes: 3 of 9 Code, Extended 3 of 9 Code, Interleaved 2 of 5 Code, and UPC/EAN/JAN Codes. If more than one standard code is enabled, the reader will automatically recognize and decode the code being scanned. Bi-directional scanning is allowed for all codes except UPC/EAN/JAN with supplemental digits. For 3 of 9 Codes and Interleaved 2 of 5 Code, a maximum of 32 characters (not including start and stop characters) are allowed.
The decoder IC may be set to communicate in either serial or parallel ASCII. Operator feedback is supported through pins that allow for external LED drive and a beeper drive circuits. In addition, there are thirteen programmable functions covering items from terminator character selection to the tone of the beeper.

Applications

Bar codes are rapidly becoming a preferred alternative to other forms of data entry. Bar coding has proven faster and more accurate than keyboard entry. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than Optical Character Recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement and immunity to electromagnetic fields.
Manufacturers of data collection terminals, point-of-sale terminals, keyboards, weighing scales, and other data collection and material handling equipment are finding a growing demand for bar code reading capability in their products. The HBCR-1800 Bar Code Decoder IC makes it easy to add this capability without the need to invest in the development of bar code decoding software.
HBCR-1800 Bar Code Decoder IC makes it easy to add this capability without the need to invest in the development of bar code decoding software.
The 40 pin decoder IC may be easily configured with most common microprocessors using either a parallel ASCII or serial ASCII interface. The IC may be added to an existing board, designed into an add-on board, or designed into an entirely new system. Using the decoder IC as an integral part of the host system will eliminate the need for the external bar code readers which are often used to perform the same function.

Decoder IC Specifications

General Information

The HBCR-1800 Bar Code Decoder IC consists of an NMOS decoding IC in a 40 pin Dual In-Line package. The readers require an external 1K x 8 bit multiplexed RAM chip (Intel 8185 or similar) or a $1 \mathrm{~K} \times 8$ bit RAM and an address latch chip (Mostek MK4801 or similar and a 74LS373). To complete the reader, a 12 MHz crystal must also be added.
The decoding IC is designed to interface with most standard microprocessors, and can communicate in either serial or parallel ASCII. It provides complete compatibility with the output from Hewlett-Packard digital bar code wands.

Performance Features

Bar Codes Supported

The HBCR-1800 Bar Code Decoder IC is capable of reading four popular bar code symbologies: 3 of 9 Code, Extended 3 of 9 Code, Interleaved 2 of 5 Code and UPC/EAN/JAN Codes.

The 3 of 9 Code, an alphanumeric code, and the Extended 3 of 9 Code, a full 128 character ASCII version of the 3 of 9 Code, may be read bi-directionally for message lengths up to a maximum of 32 characters. An optional checksum character may be used with these codes, and the decoder IC may be configured to verify this character prior to data transmission. Enabling the Extended 3 of 9 Code will disable the standard 3 of 9 Code as the two are mutually exclusive.
The Interleaved 2 of 5 Code, a compact numeric only bar code, may also be read bi-directionally for message lengths up to a maximum of 32 characters. To enhance data accuracy, an optional checksum character verification and/or label length checking may be enabled.
All popular versions of the UPC, EAN, and JAN bar codes may be read bi-directionally, including UPC-A, UPC-E, EAN8, EAN-13, JAN-8, and JAN-13. All codes may be enabled simultaneously or only the UPC codes may be enabled.
UPC, EAN and JAN codes with complementary two digit or five digit supplemental encodations, or "add-ons", may also be read in one of two ways. If UPC, EAN and JAN codes are enabled but neither two digit nor five digit supplemental encodations are enabled, then only the main part of the symbols printed with supplemental encodations will be read. If the two digit or the five digit supplemental encodations are enabled, then only symbols with these supplementals will be read. In this case, the symbols may only be read in the direction which results in the supplement being scanned last.
Automatic code recognition is provided for the Interleaved 2 of 5 Code, UPC/EAN/JAN Codes, and either the 3 of 9 Code or the Extended 3 of 9 Code. The decoder IC's default setting is for simultaneous reading of the 3 of 9 Code, Interleaved 2 of 5 Code and UPC/EAN/JAN Codes.

Wand Input

The decoder IC has been specially designed to operate with any of several Hewlett-Packard digital bar code wands.

Wand input can be disabled by the host system through a software command. This allows the application program to control the operator's ability to enter bar code data, thereby preventing inadvertant data entry and allowing the host to verify each scan before enabling subsequent scans.

The wand is connected to pin 12 of the decoder IC (see Figures 1 and 2).

Data Communications

The decoder IC can communicate with the host system through either a serial ASCII or parallel ASCII port. The parallel port allows for faster data communication between the two devices. Both parallel and serial ports are bi-directional.

The serial port may also be connected directly to RS-232-C level shifters to produce an RS-232-C compatible output. A wide range of baud rate, parity, stop bits and terminator characters may be selected, as described in Table 1. In addition, XON/XOFF pacing for the decoder IC's data transmission is available.

The parallel port utilizes both a send and receive handshake for data transfer between the decoder IC and the host system. Timing diagrams for these handshakes are shown on page 5.

The decoder IC has a 255 character output buffer which will store data if transmission to the host is prevented. A buffer overflow will actuate a signal on the beeper line for the beeper to sound three times in rapid succession.

Feedback Features

The decoder IC has several provisions for signalling operator feedback. Pin 14 provides a signal for an LED driver and pin 15 provides a signal for a beeper driver. An LED or beeper driver connected to the decoder IC may be controlled directly by the IC, with a signal generated after a good read; or may be controlled by the host system. In addition, the tone of the beeper can be varied by a software command to be one of 16 different tones.

Power Requirements

Both the decoder IC and the wands operate from a single +5 V DC power supply. The maximum current draw for the decoder IC is 175 mA . The maximum ripple voltage should be less than 100 mV peak-to-peak.

Configuration Control

Configuration of the decoder IC may be determined through hardwire connections and/or through software commands. Hardwire selection is limited to key operating parameters. A much greater range of configuration control is available through software commands. A summary of the decoder IC features and configuration control these features is presented in the following table.

Table 1. Summary of Features and Configuration Control

Feature	Function of Value	Hardwire/ Software Control ${ }^{[1]}$	Default Setting ${ }^{[2]}$	Mode ${ }^{3}$]	Notes
Mode of Operation	Parallel or Serial Mode	Hardwire	Parallel	N/A	
Baud Rate	300, 1200, 2400, 9600	Hardwire	300 Baud	Serial	
Parity	0 's, 1's, Odd, Even	Hardwire	O's	Serial	4
Stop Bits	1 or 2	Hardwire	2	Serial	
Terminator Character	CR, CR/LF, HT, None	Hardwire	CR	Serial	
	User Defined (10 Characters Max.)	Software	CR	Both	5
Header Character	User Defined (10 Characters Max.)	Software	No Header Character	Both	
Data Output Pacing	Xon/Xoff	Software	No Pacing	Both	
Industrial Code Select	3 of 9 Code Interleaved 2 of 5 Code	Software	3 of 9 Code Interleaved	Both	
	Extended 3 of 9 Code	Both	2 of 5 Code		
UPC/EAN/JAN Code Select	UPC/EAN/JAN together; or UPC Only	Software	UPC/EAN/JAN Codes		
	Enable 2 or 5 Digit Supplements	Software	Supplements Not Enabled		
	Suppress Zeros UPC-E	Software	Zeros Included		
Checksum Verification Enable	3 of 9 Code Checksum	Both	No Checksum Verification	Both	
	Interleaved 2 of 5 Checksum	Software			
Interleaved 2 of 5 Label Length Check	User Defined up to 32 Characters or Variable Length	Software	Variable Length	Both	
Scanner Disable	Disables Wand Input	Software	Wand Input Enabled	Both	-
Good Read Beep Select	Enables Good Read Beep in one of 16 Tones	Software	Beep Signal Enabled; Tone $=15$	Both	
Sound Tone	External Command to Sound Tones Defines 1 of 16 Tones	Software	N/A	Both	
LED Control	Controls LED Driver Circuit	Software	LED to Flash Upon Good Read	Both	
Status Request	Gives Status of Decoder IC Configuration	Software	N/A	Both	
Hard Reset	Resets Decoder IC to Hardwire Configuration and Default Software Settings	Software	N/A	Both	

Notes:

1. Software commands are sent by means of escape sequence.
2. Default settings are those settings which result when the relevant pins have been tied to +5 V and no software commands have been sent to the decoder IC.
3. Some functions apply only when the decoder IC is operating in the serial mode. Others apply in both the parallel and serial modes.
4. In the parallel mode, the parity is always odd.
5. In the parallel mode the terminator character is "CR" unless changed through software commands.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Voltage	$V_{C C}$	4.5		5.5	V	7
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$	
Crystal Frequency	XTAL		12		MHz	8

Note:
7. Maximum power supply ripple of 100 mV peak-to-peak.
8. 12 MHz crystal is recommended.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	Ts	-65	+150	${ }^{\circ} \mathrm{C}$	
Pin Voltage	VIN	-0.5	+7.0	V	9
Power Dissipation	PD		2.0	Watts	

Note:
9. Voltage on any pin with respect to ground.

PARALLEL PINOUT

NC - Pins should be left floating
Figure 1.

DECODER IC TO MEMORY

Figure 2.

1K x 8 RAM WITH ADDRESS LATCH CHIP

Figure 3.
Figure 4.

'arallel Mode Handshake Timing

fOST COMMANDS RECEIVED BY DECODER IC

*tcR = Falling edge of COMMAND READY to falling edge of COMMAND READ. Max. $=22 \mu \mathrm{~s}$ (MICRO SECONDS).
tcs $=$ Command setup to rising edge of COMMAND $\overline{\text { READY. Min. }}=0 \mu \mathrm{~s}$.
*tcA $=$ Rising edge of COMMAND READY to rising edge of COMMAND READ. Typical $=6 \mu \mathrm{~s}$.
tcc $=$ Rising edge of COMMAND READ to falling edge of COMMAND READY. Min. $=0 \mu \mathrm{~s}$.
*Note: These timing specifications given are based on the assumptions that the wand is not active at the time. Since the wand input to the microprocessor is interrupt driven, the timing might be stretched if the wand is active during that time. All the timings assume the microprocessor runs at 12 MHz .

DECODER IC DATA SENT TO HOST

*tDo $=$ Falling edge of DATA READY to data output to bus. Max. $=140 \mu$ s.
This number reflects that there is no decoding in progress, no status, terminal ID, header or terminator change command is being executed at the time.
*tDF $=$ Data output to bus to falling edge of DATA WRITE. Max. $=2 \mu \mathrm{~s}$
*tDW $=$ Rising edge of $\overline{\text { DATA READY }}$ to rising edge of DATA WRITE. Max. $=5 \mu \mathrm{~s}$.
${ }^{*} t_{D H}=$ Data hold after rising edge of DATA WRITE. Max. $=2 \mu \mathrm{~s}$.
tDD $=$ Rising edge of $\overline{\text { DATA WRITE }}$ to falling edge of DATA READY. Min. $=0 \mu \mathrm{~s}$.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V} C \mathrm{CC}=4.5 \mathrm{~V}$ to 5.5 V , $\mathrm{V} \mathrm{SS}=0 \mathrm{~V}$)

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VIL.	Input Low Voltage	-0.5	0.8	V	
V_{1}	Input High Voltage (except Pins 9 and 18)	2.0	$\mathrm{VCC}+0.5$	V	
V_{1+1}	Input High Voltage (Pins 9 and 18)	2.5	$\mathrm{Vcc}+0.5$	V	Pin 19 to Vss
VOL	Output Low Voltage (Pins 1-8, 10-17, 21-28)		0.45	V	10.10 .6 mA
Vol1	Output Low Voltage (Pins 30 and 32-39)		0.45	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$
VOH	Output High Voltage (Pins 1-8, 10-17 and 21-28)	2.4		V	$\mathrm{IOH}=-80 \mu \mathrm{~A}$
VOH1	Output High Voltage (Pins 30 and 32-39)	2.4		V	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
ILL	Input Low Current (Pins 1-8, 10-17 and 21-28)		-800	$\mu \mathrm{A}$	$V_{\text {IN }}=0.45 \mathrm{~V}$
lihe 2	Input Low Current (Pin 18)		-2.5	mA	Pin 19 to VSS; VIN $=0.45 \mathrm{~V}$
lul	Input Leakage Current (Pins 32-39)		± 10	$\mu \mathrm{A}$	$0.45<V_{\text {IN }}<V_{\text {CC }}$
liHi	Input High Current to Pin 9 for Reset		500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{VCC}_{\text {c }}-1.5$
Icc	Power Supply Current		175	mA	All Outputs Disconnected

Wand I/O Interfaces

Note:
The shield must be connected to ground for proper wand operation.

Figure 5. Wand Interfaces

Features

- IDEAL FOR HAND SCANNING APPLICATIONS AND MANY AUTOMATED SCANNING APPLICATIONS
- COMPATIble with the scanners needed FOR VIRTUALLY ALL HAND-HELD SCANNING APPLICATIONS
- Laser Scanners
- Wands
- Slot Readers
- WIDE SELECTION OF INDUSTRY STANDARD BAR CODES SUPPORTED
- Code 39 (3 of 9 Code)
- Extended Code 39
- Interleaved 2 of 5 Code
- UPC/EAN/JAN Codes
- Codabar (NW7 Code)
- Code 128
- AUTOMATIC CODE RECOGNITION
- FULL DUPLEX SERIAL ASCII INTERFACE
- EXTENSIVE CONFIGURATION CONTROL THROUGH SOFTWARE COMMANDS
- STANDARD 40 PIN DIP PACKAGE
- AUDIO AND VISUAL FEEDBACK CONTROL
- SINGLE 5 VOLT SUPPLY

Description

Hewlett-Packard's HBCR-2000 Multipurpose Bar Code Decoder IC offers a flexible bar code decoding capability designed to give OEMs the ability to address a large number of industry segments and applications. The decoder IC's flexibility is made possible through sophisticated software which allows the IC to accept data input from a wide variety of digital scanners and to decode the most popular bar code symbologies with full automatic code recognition. Implementation of the decoder IC is easy since it requires only a few supporting chips and provides a standard interface to the host.
The HBCR-2000 is compatible with the scanners needed for virtually all hand scanning applications. Specifically, it is compatible with moving-beam laser scanners such as the Symbol Technologies' LS7000, Symbol Technologies' LS7000 II, and Spectra Physics' SP2001; fixed-beam noncontact scanners; Hewlett-Packard digital wands; and Hewlett-Packard digital slot readers.

The decoder IC is also an excellent decoding solution for a number of the stationary scanning applications found in automated systems. In this case, the scan rates for movingbeam applications must be similar to the scan rates for most hand-held laser scanners ($35-45$ scans/second) and the scan speeds for fixed-beam applications must be similar to the scan speeds for wands and slot readers. For moving beam applications, it is also important for the scanner to utilize the three laser control lines on the IC.

The standard decoder IC supports the bar code symbologies now being used for most applications in the industrial, retail, commercial, government, and medical markets. The bar codes supported are: Code 39 (3 of 9 Code), Extended Code 39, Interleaved 2 of 5 Code, UPC/EAN/JAN Codes, Codabar (NW7 Code) and Code 128. If more than one code is enabled, the decoder IC will automatically recognize and decode the code being scanned. Bi-directional scanning is allowed for all codes except UPC/EAN/JAN codes with supplemental digits.
The HBCR-2000 communicates with the host through a flexible, full duplex serial ASCII interface. OEMs may choose either to convert this interface to a standard data communications protocol such as RS-232-C/N. 24 or to connect the decoder IC directly to another microprocessor for data processing or data re-formatting. Operator feedback is supported through pins that allow for external LED drive and beeper drive circuits. In addition, there are 21 programmable functions covering items from laser redundancy check to the tone of the beeper.

Applications

Bar codes are rapidly becoming a preferred alternative to other forms of data entry. Bar coding has proven faster and more accurate than keyboard data entry. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than optical character recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement and immunity to electromagnetic fields.
Manufacturers of data collection terminals, point-of-sale terminals, keyboards, weighing scales, automated test equipment and other data collection or material handling equipment are finding a growing demand for bar code reading capability in their products. The HBCR-2000 Multipurpose Bar Code Decoder IC makes it easy to add bar code reading capability for a wide variety of applications without the need to invest in the development of bar code decoding software.

Decoder IC Specifications

GENERAL INFORMATION

The HBCR-2000 is an NMOS decoding IC in a 40 pin Dual In-Line package. When configured in a system, the HBCR2000 requires a crystal and an external 1K byte RAM. The external RAM may be implemented using either a multiplexed RAM chip (Intel 8185 or equivalent) or a nonmultiplexed RAM chip and a latch chip (Mostek MK4801 or equivalent and 74LS373). The recommended crystal frequency is 11.059 MHz (CTS Knights R1032-6BA.11.059 or equivalent).
The decoder IC is designed to interface with most standard microprocessors or other host systems through a full duplex serial asynchronous ASCII port. It offers complete compatibility with Hewlett-Packard digital wands and digital slot readers as well as hand-held laser scanners from both Spectra Physics, Inc. and Symbol Technologies, Inc. Other scanners, such as hand-held fixed-beam non-contact scanners and the scanners used in some stationary scanning applications, may also be used with the IC.

Performance Features

bAR CODES SUPPORTED

The HBCR-2000 decoder IC is capable of reading six popular bar code symbologies: Code 39 (3 of 9 Code), Extended Code 39, Interleaved 2 of 5 Code, UPC/EAN/JAN Codes, Codabar (NW7 Code), and Code 128.
Code 39, an alphanumeric code, and Extended Code 39, a full 128 character ASCII version of Code 39, may be read bi-directionally for message lengths up to a maximum of 32 characters. An optional check character may be used with these codes, and the decoder IC may be configured to verify this character prior to data transmission. Enabling Extended Code 39 will disable standard Code 39 as the two are mutually exclusive.
The Interleaved 2 of 5 Code, a compact numeric only bar code, may also be read bi-directionally for message lengths from 4 to 32 characters. To enhance data accuracy, optional check character verification and/or label length checking may be enabled.

All popular versions of the UPC, EAN, and JAN bar codes may be read bi-directionally, including UPC-A, UPC-E, EAN-8, EAN-13, JAN-8, and JAN-13. All codes may be enabled simultaneously or only the UPC codes may be enabled. UPC, EAN, and JAN symbols with complementary two digit or five digit supplemental encodations, or "addons", may also be read.
Codabar, a numeric only bar code with special characters, may be read bi-directionally for message lengths up to a maximum of 32 characters. The start and stop characters in the symbol are normally transmitted, but transmission of these characters may be disabled through a software command.
Code 128, a compact full ASCII bar code, may also be scanned bi-directionally for message lengths up to a maximum of 32 characters.

Automatic code recognition is provided for the Interleaved 2 of 5 Code, UPC/EAN/JAN Codes, Codabar, Code 128, and either Code 39 or Extended Code 39. Any subset of these codes may be selected for decoding. The decoder IC's default setting is for simultaneous reading of Code 39, Interleaved 2 of 5 Code with variable lengths, UPC/EAN/JAN Codes without supplements, Codabar, and Code 128.

SCANNER INPUT

The HBCR-2000 is designed to accept a digital input signal either from a fixed-beam scanner, such as a wand, slot reader, or fixed-beam non-contact scanner, or from a moving-beam scanner such as a hand-held laser scanner. The state of pin 7 must be set prior to power-up to reflect the type of scanner connected to the decoder IC.
The decoding software has been specially designed to operate with any of Hewlett-Packard's digital bar code wands. Sapphire-tip digital wands feature a scan angle of 0 to 45 degrees, a variety of resolutions, and a TTL compatible digital output. A complete wand selection guide is presented in Table 2.
The decoder IC is also designed specifically for operation with Hewlett-Packard's digital slot readers. These slot readers feature a sealed case with a slot width of 3.2 mm (0.125 in .) and either an infrared (880 mm) or visible red (660 mm) LED light source. A separate module which contains the slot reader optics and electronics is available for stationary scanning applications or for configuration in applications requiring a different slot width.

The decoding software for moving-beam scanners has been designed to work with hand-held laser scanners manufactured by Spectra Physics, Inc. and Symbol Technologies, Inc. The delay time for automatic laser shutoff is adjustable through a software command to the IC. A redundancy check feature is available for applications which require extreme accuracy. Applications which require and ability to sense motor failure in a laser scanner or to calculate the ratio of laser on-time to laser off-time must support these requirements through external hardware.
The digital input signal from the scanner is connected to pin 12. When the decoder IC is used with a hand-held laser scanner, the laser enable, laser trigger, and scanner synchronization signal lines are connected to pins 6, 8, and 13, respectively. Scanner input can be disabled by the host system though a software command. This allows the application program to enable bar code data entry only when
expecting the operator to enter data which has been encoded in bar code. The decoder IC also offers a single read mode which can be enabled through a software command. The single read mode allows the application program to prevent bar code data entry until a "Next Read" command is sent, thereby allowing the host to process transmissions and verify each scan before enabling subsequent decodes.

DATA COMMUNICATIONS

The decoder IC communicates with the host system through a full-duplex, asynchronous, serial ASCII port. A wide range of baud rate, parity, stop bits, and terminator characters may be selected, as described in Table 1. In addition, both request-to-send/clear-to-send hardware handshake and $\mathrm{X}_{\mathrm{ON}} / \mathrm{X}_{\mathrm{OFF}}$ (DC1/DC3) character pacing are available for control of the decoder IC's data transmission.

OPERATOR FEEDBACK

The decoder IC has several provisions for signalling operator feedback. Pin 14 provides a signal for an LED driver and pin 15 provides a signal for a beeper driver. An LED or beeper driver connected to the decoder IC may either be controlled directly by the IC, with a signal generated after a good read, or may be controlled by the host system. In addition, the tone of the beeper can be varied by a soft-
ware command to be one of 16 tones or the beeper may be silenced.

POWER REQUIREMENTS

The decoder IC operates from a single 5 V DC power supply. The maximum current draw is 175 mA . The maximum ripple voltage for the power supply should be less than 100 mV peak-to-peak.

CONFIGURATION CONTROL

Configuration of the decoder IC may be determined through hardwire connections and/or through software commands. Hardwire selection is limited to key operating parameters. A much greater range of configuration control is available through software commands. A summary of the decoder IC features and the configuration control available for these features is presented in Table 1. A users manual which provides detailed configuration information and example schematics is supplied with the HBCR-2000.

Handling Precautions

The decoder IC is extremely sensitive to electrostatic discharge (ESD). It is important that good anti-static procedures be observed when handling the IC. The package should not be opened except in a static free environment.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Voltage	$V_{C C}$	4.5		5.5	V	1
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$	
Crystal Frequency	XTAL		11.059		MHz	2
Element Time Interval (Moving-Beam)	ETIM	22		555	$\mu \mathrm{sec}$	$2,3,4,5$
Element Time Interval (Fixed-Beam)	ETIF	150		70,000	$\mu \mathrm{sec}$	$2,3,5,6,7$

NOTES:

1. Maximum power supply ripple of 100 mV peak-to-peak.
2. Crystal frequencies from 3.5 MHz to 12 MHz may be used. For frequencies other than 11.059 MHz , multiply the specified baud rates and beeper frequencies by $\frac{\mathrm{XTAL}}{11.059 \mathrm{MHz}}$ and multiply the element time interval ranges by $\frac{11.059 \mathrm{MHz}}{\text { XTAL }}$. The ETI ranges specified a crystal frequency of 11.059 MHz .
3. An element time interval (ETI) is the time period in the digital signal from the scanner that corresponds to the physical width of a printed element (bar or space) in the bar code symbol $E T I_{M}$ applies when pin 7 is tied low and $E T I_{F}$ applies when pin 7 is tied high.
4. Corresponds to a scan rate of 35 to 45 scans per second, a scan rate which is common for hand-held laser scanners.
5. Element time intervals which are smaller than the minimum ETI's specified will still be processed, but with additional width errors that may cause the input signal to be undecodable.
6. The maximum scan speed may be calculated by dividing the smallest narrow element width by $150 \mu \mathrm{sec}$. For example, for 0.19 mm (0.0075 in .) narrow elements, the maximum scan speed is $127 \mathrm{~cm} / \mathrm{sec}$ ($50 \mathrm{in} . / \mathrm{sec}$).
7. The minimum scan speed may be calculated by dividing the largest wide element width by $70,000 \mu \mathrm{sec}$. For example, for 1.52 mm (0.060 in .) wide elements, the minimum scan speed is $2.2 \mathrm{~cm} / \mathrm{sec}(0.9 \mathrm{in} . / \mathrm{sec}$).

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-65	+150	${ }^{\circ} \mathrm{C}$	
Pin Voltage	$\mathrm{V}_{1 \mathrm{~N}}$	-0.5	+7.0	V	8
Power Dissipation	P_{D}		1.5	Watts	

Note:

8. Voltage on any pin with respect to ground.

TABLE 1. SUMMARY OF FEATURES AND CONFIGURATION CONTROL

Feature		Function or Value	Hardwire/ Software Control[9]	Default Setting ${ }^{[10]}$
1одиоว/иопрајаs дәuиеаs	Scanner Type	Wand/Slot Reader or Moving Beam Laser Scanner	Hardwire	Moving Beam Laser Scanner
	Laser Shutoff Delay	Defines Laser On-Time prior to Automatic Shutoff from 0 to 10 seconds in 100 ms steps	Software	3 seconds
	Laser Redundancy Check	Enables Requirement for Two Consecutive, Identical Decodes for a Good Read	Software	Not Enabled
	Scanner Input Enable	Enables Data Acquisition from Scanner	Software	Enabled
	Single Read Mode	Enables Requirement for a 'Next Read' Command before Processing the next Scanner Input Signal	Software	Not Enabled
		Extended Code 39	Both	Code 39
	Code Select	Code 39 Interleaved 2 of 5 Code UPC/EAN/JAN Codes Codabar Code 128	Software	Interleaved 2 of 5 Code UPC/EAN/JAN Codes Codabar Code 128
	UPC/EAN/JAN Decoding Options	UPC/EAN/JAN together; or UPC Only	Software	UPC/EAN/JAN together
		Enable 2 or 5 Digit Supplements	Software	Supplements Not Enabled
	Check Character Verification Enable	Code 39 Check Character	Both	No Check
		Interleaved 2 of 5 Code Check Character	Software	Verification
	Codabar Data Transmission Option	Transmit or Suppress Start/Stop Characters	Software	Transmit
	Interleaved 2 of 5 Label Length Check	User Defined from 4 to 32 Characters or Variable Length	Software	Variable Length
	Baud Rate	1200, 2400, 4800,9600	Hardwire	1200
	Parity	O's, T's, Odd, Even	Hardwire	O's
	Stop Bits	1 or 2	Hardwire	1
	Terminator Character	CR, CR/LF, ETX, None	Hardwire	CR
		User Defined (10 Characters Max.)	Software	
	Header Character	User Defined (10 Characters Max.)	Sottware	No Header Character
	Data Output Pacing	RTS/CTS	Hardwire	No Pacing
		$\mathrm{X}_{\text {ON }} / \mathrm{X}_{\text {OFF }}$	Software.	
	Good Read Beep Select	Enables Good Read Beep and sets 1 of 16 tones	Software	Beep Enabled; Tone 12
	Sound Tone	External Command to Initiate Beep Signal in 1 of 16 tones	Software	N/A
	LED Control	Defines LED Control to be Internal, External, or both	Software	LED to Flash Automatically Upon Good Read
	Status Request	Gives Status of Decoder IC Configuration	Sottware	N/A
	Hard Reset	Resets Decoder IC to Hardwire Configuration and Default Software Settings	Software	N / A

NOTES:

9. Hardwire control is accomplished by tying the appropriate input pins high or low. Software commands are sent by means of escape sequences.
10. Default settings are those settings which result when the relevant input pins have been tied to Ground and no software commands have been sent to the decoder IC.

Figure 1.

Block Diagrams

DECODER IC TO MEMORY

IK $\times 8$ RAM WITH ADDRESS LATCH CHIP

Figure 2.
Figure 3.

Scanner Compatibility

The HBCR-2000 is compatible with the complete line of Hewlett-Packard digital wands, Hewlett-Packard digital slot readers, and hand-held laser scanners manufactured by both Symbol Technologies, Inc. and Spectra Physics, Inc.

The selection of Hewlett-Packard digital wands available for use with the HBCR-2000 is presented in Table 2. For the two families of sapphire-tip digital wands, the most widely used wands are those which specify a recommended nominal narrow element width of 0.19 mm (0.0075 in .). These wands are capable of reading bar codes printed with a variety of different printers and over a wide range of printed resolutions (as specified by narrow element widths) and are, therefore, considered to be general-purpose wands. The higher resolution wands, with a recommended nominal narrow element of 0.13 mm (0.005 in.), are recommended for applications in which only high resolution bar codes are being read. For applications which require a scanner to read medium or low resolution bar codes, particularly those with edge roughness,
ink smearing, spots and voids, or other minor print flaws, the wands which specify a recommended nominal narrow element width of 0.3 mm (0.012 in .) or 0.33 mm (0.013 in .) are recommended.
The Hewlett-Packard slot readers and slot reader modules which are available for use with the HBCR-2000 are presented in Table 3. The standard slot readers have a slot width of 3.2 mm (0.125 in .) and are, therefore, capable of reading bar codes on anything from paper to doublelaminated badges. For applications which require a different slot width or which require a fixed-beam scanner in an automated system, a module which contains the slot reader optics and electronics assembly is also available.
The hand-held laser scanners compatible with the HBCR2000 include the Symbol Technologies' LS7000, Symbol Technologies' LS7000 II, and Spectra Physics' SP2001. For detailed information on these scanners, please contact these companies directly.

TABLE 2. HEWLETT-PACKARD DIGITAL BAR CODE WANDS

	Part Number	Recommended[11, 12] Nominal Narrow Element Width	Emitter[13] Wavelength	Tilt Angle	Typical Current	Case Material	Switch	Tip
$\left\|\begin{array}{l} 3 \\ 0 \\ 90 \\ 0 \end{array}\right\|$	HEDS-3000	$\begin{gathered} 0.3 \mathrm{~mm} \\ (0.012 \mathrm{in} .) \end{gathered}$	700 nm	$0-30^{\circ}$	42 ma	ABS Plastic	Yes	Open
	HEDS-3050		1	1	1	1	No	1
	HBCS-2200	$\begin{gathered} 0.19 \mathrm{~mm} \\ (0.0075 \mathrm{in} .) \end{gathered}$	700 nm	$0-45^{\circ}$	42 ma	Polycarbonate	Yes	Sapphire Ball
	HBCS-2300	1	1	1	1	1	No	
	HBCS-2400	$\begin{gathered} 0.13 \mathrm{~mm} \\ (0.005 \mathrm{in} .) \end{gathered}$	820 mm	1	1	Polycarbonate	Yes	1
	HBCS-2500	1	1	1	1	1	No	
	HBCS-5000	$\begin{gathered} 0.33 \mathrm{~mm} \\ (0.013 \mathrm{in} .) \end{gathered}$	655 nm	$0-45^{\circ}$	3.5 ma	Polycarbonate	Yes	Sapphire Ball
	HBCS-5100	1	1	1	1	1	No	
	HBCS-6100	1	1	1	1	Metal	1	1
	HBCS-5200	$\begin{gathered} 0.19 \mathrm{~mm} \\ (0.0075 \mathrm{in} .) \end{gathered}$	1	1	1	Polycarbonate	Yes	1
	HBCS-5300	1	1	1	1	1	No	1
	HBCS-6300	1	I	1	+	Metal	1	
	HBCS-5400	$\begin{gathered} 0.13 \mathrm{~mm} \\ (0.005 \mathrm{in} .) \end{gathered}$	820 mm	1	1	Polycarbonate	Yes	1
	HBCS-5500	1	1	1	1		No	1
	HBCS-6500	1	1	1	1	Metal	1	1

NOTES:

11. The nominal narrow element width of a symbol may also be referred to as the resolution of the symbol or as the ' x ' dimension of the symbol.
12. Nominal narrow element (bar/space) width, a term which applies to the symbol and not to the scanner itself, is specified to facilitate selecting the best scanner for the symbol being read. The scanners are designed to accomodate printing tolerances around the nominal dimension specified. Bar codes having larger nominal narrow element widths (ie. lower resolu-
tion) than specified may also be read as long as print quality is good.
13. Wands with an emitter wavelength of 655 mm are recommended for reading bar codes printed on regular (white) thermal paper or printed with Hewlett-Packard's Thinkjet printer. Either 655 mm or 700 mm wands are recommended for bar codes printed with dye-based ink or in color.
14. Low current sapphire-tip wands are designed to operate in all ambient light environments including in direct sunlight and under high intensity lamps.

TABLE 3. HEWLETT-PACKARD DIGITAL SLOT READERS

Part Number	Configuration	Recommended[15] Nominal Narrow Element Width	Emitter[16] Wavelength	Temperature Range	Case Material
HBCS-7000	Complete Slot Reader	$0.19 \mathrm{~mm}(0.0075 \mathrm{in})$.	660 nm	-20 to $+55^{\circ} \mathrm{C}$	Metal
HBCS-7001	Slot Reader Module	1	660 nm	1	-
HBCS-7100	Complete Slot Reader	$0.19 \mathrm{~mm}(0.0075 \mathrm{in})$.	880 nm	-40 to $+70^{\circ} \mathrm{C}$	1
HBCS-7101	Slot Reader	1	880 nm	1	1

NOTES:
15. The aperture design of the slot reader optical system allows reading both high resolution bar code symbols and poorly printed medium or low resolution bar code symbols with the same scanner.
16. The 880 nm slot reader is recommended for bar code symbols printed with carbon-based inks or for "black-on-black" bar code symbols. The 660 nm slot reader is recommended for bar code symbols printed with dye-based inks or printed on regular thermal paper.

CMOS MULTI-PURPOSE BAR CODE DECODER IC

Description

The HBCR-2010 is a CMOS (low power) version of the HBCR-2000. With the exception of the power consumption, the performance of the HBCR-2010 is identical to the HBCR-2000. Please refer to the HBCR-2000 data sheet
and manual (part \# 5954-2165) for a complete discussion of the capabilities of the product. The following information summarizes the differences between the HBCR-2000 and the HBCR-2010.

Power Consumption (at $\mathrm{v}_{\text {cc of }} 5.0$ volts)

Decoder IC	Typical	Maximum	Idle Mode Typical
HBCR-2000	-	175 mA	$\mathrm{~N} / \mathrm{A}$
HBCR-2010	15 mA	19 mA	4 mA

Note:
Idle mode only occurs when the HBCR-2010 decoder is in the Wand Mode. Idle mode does not occur when the HBCR-2010 decoder is in the Laser Mode.

External Clock Drivers

If an external clock is to be used, the function of XTAL1 (pin 19) and XTAL2 (pin 18) is different for the HBCR-2010.

Clock TTL Level	18	XTAL2	No Connect	18	XTAL2
	19	XTAL1	Clock	19	XTAL1
	20	Ground		20	Ground
Ground			Ground		

Features

- MULTI-RESOLUTION
- Compatible with Virtually All Bar Code Resolutions
- LARGE SLOT WIDTH
- Allows Reading Multiple Laminated Cards
- SEALED METAL CASE (IP 66/67)
- Can Be Installed Outdoors or in Wet Environments
- TAMPER PROOF DESIGN
- Ideal for Security Applications
- MINIMAL FIRST BAR DISTORTION
- Compatible with Most Decoding Software
- AVAILABLE IN EITHER VISIBLE 660 nm OR INFRARED 880 nm VERSIONS
- WIDE OPERATING TEMPERATURE RANGE
- -40 to $70^{\circ} \mathrm{C}$ (HBCS-7100)
- -20 to $55^{\circ} \mathrm{C}$ (HBCS-7000)
- WIDE SCAN SPEED RANGE
- BLACK TEXTURED EPOXY FINISH
- DIGITAL OUTPUT
- Open Collector Output Compatible with TTL and CMOS Logic
- SINGLE 5 VOLT SUPPLY

Description

Hewlett-Packard's Industrial Digital Slot Readers are designed to provide excellent scanning performance on a wide variety of bar coded cards and badges. They contain a unique optical/electrical system that integrates over a large area of the bar/space pattern, providing a greatly improved first read rate even on poorly printed bar codes.

The HBCS-7000 has a visible red (660 nm) optical system with a resolution of 0.19 mm (0.0075 in .). The HBCS-7100 model has an infrared (880 nm) optical system with a resolution of 0.19 mm (0.0075 in .).
The extra large depth of field allows these slot readers to have a slot width of 3.2 mm (0.125 in .), thus making it possible to read even multiple laminated cards and badges. When used as a stand alone optics module, the maximum depth of field is dependent on resolution.
The optics and electronics are housed in a rugged metal case. The cases are fully gasketed and sealed, making them suitable for use in outdoor or wet environments. The black epoxy coating adds a durable, finished look to these Digital Slot Readers. When installed using the rear screw

holes, the units become tamper-proof, making them excellent choices for security access control.
The optical system is centered in the slot track, allowing the user to easily scan from either direction. The wide slot width makes it easy to insert and slide the cards. The optical system is covered with a recessed window to prevent contamination and reduce the wear on the cards.
The standard slot reader comes with the optical/electrical asembly mounted on a base plate with an opposite rail. A 122 cm (48 in .) straight cord and a $5 \mathrm{pin}, 240$ degree, locking DIN connector are also standard.
The optical/electrical system is also available as a separate unit which can be integrated into other equipment or used as a stand alone sensor assembly.

Applications

The digital bar code slot reader is a highly effective alternative to keyboard data entry. Bar code scanning is faster and more accurate than key entry and provides far greater throughput. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than optical character recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement and immunity to electromagnetic fields.
Hewlett-Packard's Industrial Digital Slot Readers are designed for applications where high first read rate and durability are important factors. The epoxy coated metal case, with its tamper-proof mounting system, makes these slot readers ideal choices for security access control, time and attendance recording and other bar coded badge and card reading applications.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Nominal Narrow Element Width HBCS-7000/7050		0.19 (0.0075)		mm (in.)
HBCS-7100/7150		0.19 (0.0075)		mm (in.)
Scan Velocity [1]	$V_{\text {SCAN }}$	20 (8)	317 (125)	$\mathrm{cm} / \mathrm{sec}(\mathrm{in} \mathrm{sec} /$)
Contrast ${ }^{[2]}$.	$R_{W} \mathrm{R}_{\mathrm{B}}$	45		\%
Supply Voltage ${ }^{[3]}$	V_{S}	4.5	5.5	Volts
$\begin{aligned} & \text { Temperature[4] } \\ & \text { HBCS-7000/7050 } \end{aligned}$	T_{A}	-20	+55	${ }^{\circ} \mathrm{C}$
HBCS-7100/7150	$\mathrm{T}_{\text {A }}$.	-40	+70	${ }^{\circ} \mathrm{C}$
Ambient Light 5]	Ev		100,000	lux

Notes:

1. Measured scanning a symbol with 0.19 mm (0.0075 in .) narrow elements. For larger narrow element widths, the maximum scan velocity will increase proportionately.
2. Contrast is defined as $R_{W}-R_{B}$ where R_{W} is the reflectance of the white spaces and R_{B} is the reflectance of the black bars, measured at the emitter wavelength (660 nm or 880 nm). Contrast is related to print contrast signal (PCS) by PCS $=\left(R_{W}-R_{B}\right) / R_{W}$ or $R_{W}-R_{B}=$ PCS $\times R_{W}$.
3. Power supply ripple and noise should be less than 100 mV peak to peak.
4. Non-condensing. If there is frost or dew covering over the optics window, it should be removed for optimal scanning performance.
5. Direct sunlight at any illumination angle.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Storage Temperature	T_{S}	-40	+80	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{S}	-0.3	+7.0	Volts
Output Transistor Power	P_{T}		200	mW
Output Collector Voltage	V_{O}	-0.3	+20	Volts

WARNING:

OBSERVING THE INFRARED LIGHT SOURCE IN THE HBCS-7150 AT CLOSE DISTANCES FOR PROLONGED PERIODS OF TIME MAY CAUSE INJURY TO THE EYE. When mounted with the rail in place, the infrared output flux is radiologically safe. With the rail removed, precautions should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

Electrical Operation

The HBCS-7XXX family of digital slot readers consists of a precision optical system, an analog amplifier, a digitizing circuit, and an output transistor. These elements provide a TTL compatible output from a single 4.5 V to 5.5 V DC power supply. The open collector transistor requires a pull-up resistor for proper operation.
A non-reflecting black bar results in a logic high (1) level output, while a reflecting white space will cause a logic low (0) level output. After power-up, the slot reader will be fully operational after a period of approximately 6 seconds. During operation, the slot reader will assume a logic low state after a short period (typically 1 second) if no bar code is scanned. This feature allows multiple scanners (both slot readers and Hewlett-Packard sapphire tip wands) to be connected together with a simple OR gate.

The slot reader connector provides a shield which should be terminated to logic ground or, preferably, to both logic ground and earth ground. The shield is connected to the metal housing of the 5 pin DIN connector, the metal housing of the slot reader, and logic ground inside the slot reader.
The recommended logic interface for the slot reader is shown in Figure 1. This interface provides ESD protection for both the slot reader and the user's electronics.

The maximum recommended cable length for the slot reader's output is 25 feet.

Electrical Characteristics
($\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Supply Current HBCS-7000/7050	I_{5}		50	100	mA	$V_{S}=5.0 \mathrm{~V}$
HBCS-7100/7150	Is		65	100	mA	$\mathrm{V}_{\mathrm{S}}=5.0 \mathrm{~V}$
High Level Output Current	IOH			1.0	$\mu \mathrm{A}$	$\mathrm{VOH}_{\mathrm{OH}}=2.4 \mathrm{~V}$
Low Level Output Voltage	V_{OL}			0.4	V	$10 \mathrm{l}=16 \mathrm{~mA}$
Output Rise Time	t_{r}		0.9	5.0	$\mu \mathrm{S}$	$10 \%-90 \%$ Transition
Output Fall Time	tif		0.07	5.0	$\mu \mathrm{S}$	$R_{L}=1 \mathrm{~K} \Omega$
Electrostatic Discharge Immunity ${ }^{[6]}$	ESD		25		kV	

Notes:

6. Shield must be properly terminated (see Figure 1). The human body is modeled by discharging a 300 pF capacitor through a 500Ω resistor. No damage to the slot reader will occur at the specified discharge level.

Interface Specifications

The slot readers include a standard 5 pin, 240°, metal, locking DIN connector. The recommended logic interface is shown in Figure 1. The mechanical specifications and wiring are shown in Figure 2. Mating connectors are available from SWITCHCRAFT in both 5 pin and 6 pin configurations. These connectors are listed on the right.

Connector	Contiguration
SWITCHCRAFT 61HA5F	5 Pin
SWITCHCRAFT 13EL5F	5 Pin
SWITCHCRAFT 61HA6F	6 Pin

Figure 1. Recommended Logic Interface (When earth ground is not available, connect shield to logic ground, as shown by dotted line).

NOTES:

1. DIMENSIONS IN MILLIMETRES AND (INCHES).

Figure 2. Connector Specifications.

Mounting Considerations

Slot Reader

The slot reader (HBCS-7000/7100) is designed to be virtually tamper-proof when mounted using the two rear mounting holes. In this case, the cable must be routed from the rear of the slot reader through the mounting surface (wall, door, etc.). For applications where a tamperproof installation is less of a concern, an optional mounting bracket (HBCS-7999) allows for more convenient surface mounting.
When mounting the slot reader, the cable may either be routed through the mounting surface (see above), or it may be routed along grooves in the base and exit the side of the slot reader at any one of four points. This allows flexibility in the mounting orientation.

Optics/Electronics Module

The optics/electronics module (HBCS-7050/7150) is designed for applications which require a different slot width, integration into a larger housing, or a fixed-beam stationary scanner. When using the optics/electronics module, the operating distance from the front surface of the module to the symbol will vary depending on the symbol resolution. Figure 3 shows the relationship between operating range and minimum symbol resolution for a typical optics/ electronics module. This relationship was applied in the design of the slot reader, where a slot width of 3.2 mm (0.125 in .) insures excellent performance reading bar code symbols which have a nominal resolution of 0.19 mm (0.0075 in .) and include printing errors.
When mounting the optics/electronics module it is important that the screws be tightened with a minimum static torque of 2.5 Nm (22 in.-Ibs.). This will insure that the sealing gasket is compressed sufficiently to provide proper sealing.

Rail

The rail (HBCS-7998) is designed for use with the optics/ electronics module in applications which require a different slot width. It may also be used in applications where it is preferable to mount the optics/electronics module and rail flush to the mounting surface instead of using the base provided with the slot reader.

Mounting Bracket

The mounting bracket (HBCS-7999) is designed to provide a convenient way of mounting the slot reader, optics/ electronics module, and/or rail to a flat surface.

Symbol Placement

The center of the slot reader's optical system is located 12.7 mm (0.50 in .) from the bottom of the slot. Consequently, bar code symbols to be read by the slot reader must be positioned on the card(s) or document(s) at a height which insures that all bars and spaces will cross a line located $12.7 \mathrm{~mm}(0.50 \mathrm{in}$.) from the bottom edge of the card(s) or document(s). For optimal performance, all bars

Figure 3. Typical Operating Distance vs. Minimum Symbol Resolution.
and spaces should cross the area between 1.14 mm (0.45 in.) and 1.40 mm (0.55 in .) from the bottom edge of the card(s) or document(s).
The bars should be perpendicular to the bottom edge of the card(s) or document(s), however, a skew of ± 4 degrees from the perpendicular is acceptable.

Maintenance Considerations

The slot reader and optics/electronics module include a window which is slightly recessed in order to prevent direct contact with the bar code symbol. This reduces wear on both the window and the symbol. The window may, however, become dirty over a period of time. If this occurs, clean the window with a commercial glass cleaner.

Testing

All Hewlett-Packard Digital Bar Code Slot Readers are 100% tested for performance and digitizing accuracy after manufacture. This insures a consistent quality product. More information about Hewlett-Packard's test procedures, test set-up, and test limits are available upon request.

Optional Features

For options such as special cables or connectors, contact your nearest Hewlett-Packard sales office or authorized representative.

Dimensions

SLOT READER (HBCS-7000/7100)

OPTICS/ELECTRONICS MODULE
(HBCS-7050/7150)

RAIL
(HBCS-7998)

MOUNTING BRACKET
(HBCS-7999)

[^2]
Selection Guide

Part Number	Description
HBCS-7000	Slot Reader with 660 nm visible red light source and $0.19 \mathrm{~mm}(0.0075$ in.) nominal resolution.
HBCS-7100	Slot Reader with 880 nm infrared light source and $0.19 \mathrm{~mm}(0.0075$ in.) nominal resolution.
HBCS-7050	Optics/Electronics Module with 660 nm visible red light source and $0.19 \mathrm{~mm}(0.0075 \mathrm{in})$. nominal resolution.
HBCS-7150	Optics/Electronics Module with 880 nm infrared light source and $0.19 \mathrm{~mm}(0.0075$ in.) nominal resolution.
HBCS-7998	Rail for use with the HBCS-7050/7150 (optional)
HBCS-7999	Mounting Bracket (optional)

HIGH RESOLUTION OPTICAL REFLECTIVE

Features

- FOCUSED EMITTER AND DETECTOR IN A SINGLE PACKAGE
- HIGH RESOLUTION - . 190 mm SPOT SIZE
- 700nm VISIBLE EMITTER
- LENS FILTERED TO REJECT AMBIENT LIGHT
- TO-5 MINIATURE SEALED PACKAGE
- PHOTODIODE AND TRANSISTOR OUTPUT
- SOLID STATE RELIABILITY

Description

The HBCS-1100 is a fully integrated module designed for optical reflective sensing. The module contains a .178 mm (. 007 in .) diameter 700 nm visible LED emitter and a matched I.C. photodetector. A bifurcated aspheric lens is used to image the active areas of the emitter and the detector to a single spot 4.27 mm (0.168 in .) in front of the package. The reflected signal can be sensed directly from the photodiode or through an internal transistor that can be configured as a high gain amplifier.

Applications

Applications include pattern recognition and verification, object sizing, optical limit switching, tachometry, textile thread counting and defect detection, dimensional monitoring, line locating, mark, and bar code scanning, and paper edge detection.

Mechanical Considerations

The HBCS-1100 is packaged in a high profile 8 pin TO-5 metal can with a glass window. The emitter and photodetector chips are mounted on the header at the base of the package. Positioned above these active elements is a bifurcated aspheric acrylic lens that focuses them to the same point.

The sensor can be rigidly secured by commercially available two piece TO-5 style heat sinks, such as Thermalloy 2205, or Aavid Engineering 3215. These fixtures provide a stable reference platform and their tapped mounting holes allow for ease of affixing this assembly to the circuit board.

Package Dimensions

Electrical Operation

The detector section of the sensor can be connected as a single photodiode, or as a photodiode transistor amplifier. When photodiode operation is desired, it is recommended that the substrate diodes be defeated by connecting the collector of the transistor to the positive potential of the power supply and shorting the base-emitter junction of the transistor. Figure 15 shows photocurrent being supplied from the anode of the photodiode to an inverting input of the operational amplifier. The circuit is recommended to improve the reflected photocurrent to stray photocurrent ratio by keeping the substrate diodes from acting as photodiodes.

The cathode of the 700 nm emitter is physically and electrically connected to the case-substrate of the device. Applications that require modulation or switching of the LED should be designed to have the cathode connected to the electrical ground of the system. This insures minimum capacitive coupling of the switching transients through the substrate diodes to the detector amplifier section.
The HBCS-1100 detector also includes an NPN transistor which can be used to increase the output current of the sensor. A current feedback amplifier as shown in Figure 6 provides moderate current gain and bias point stability.

SCHEMATIC DIAGRAM

CONNECTION DIAGRAM

TOP VIEW

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Units	Fig.	Notes
Storage Temperature	Ts	-40	+75	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-20	+70	${ }^{\circ} \mathrm{C}$		
Lead Soldering Temperature 1.6 mm from Seating Plane			$\begin{aligned} & 260 \\ & \text { for } 10 \mathrm{sec} . \end{aligned}$	${ }^{\circ} \mathrm{C}$		11
Average LED Forward Current	IF		50	mA		2
Peak LED Forward Current	Ifpk		75	mA	1	1
Reverse LED Input Voltage	$V_{\text {R }}$		5	\checkmark		
Package Power Dissipation	Pp		120	mW		3
Collector Output Current	lo		8	mA		
Supply and Output Voltage	V_{D}, V_{C}, V_{E}	-0.5	20	V		10
Transistor Base Current	I_{B}		5	mA		
Transistor Emitter Base Voltage	$V_{E b}$. 5	V		

CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be introduced by ESD.

System Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions		Fig.	Note
Total Photocurrent (lprilps)	Ip			575	nA	$\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{C}=5 \mathrm{~V}$	$\begin{gathered} 2,3 \\ 15 \end{gathered}$	4
		150	250	375		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
		80				$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			
Reflected Photocurrent (IPR) to Internal Stray Photocurrent (IPs)	$\frac{I P A}{I_{P S}}$	4	8.5			$\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}, \mathrm{~V}_{C}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$		3	
Transistor DC Static Current Transfer Ratio	$h_{\text {FE }}$	50				$\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{IC}=10 \mu \mathrm{~A}$	4.5	
		100	200			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
Slew Rate			. 08		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & R_{L}=100 \mathrm{~K} \\ & R_{F}=10 \mathrm{M} \end{aligned}$	$\begin{aligned} & \text { IPK }=50 \mathrm{~mA} \\ & \text { to }=100 \mu \mathrm{~s}, \text { Rate }=1 \mathrm{kHz} \end{aligned}$	6	
Image Diameter	d		. 17		mm	$\mathrm{IF}=35 \mathrm{~mA}, \mathrm{l}=4.27 \mathrm{~mm}(0.168 \mathrm{in}$.		8,10	8,9
Maximum Signal Point	ℓ	4.01	4.27	4.52	mm	Measured from Reference Plane		9	
50\% Modulation Transfer Function	MTF		2.5		Inpr/mm	$I_{F}=35 \mathrm{~mA}, \ell=4.27 \mathrm{~mm}$		10,11	5,7
Depth of Focus	$\Delta \ell$ FWHM		1.2		mm	50% of IP at $\ell=4.27 \mathrm{~mm}$		9	5
Effective Numerical Aperature	N.A.		. 3						
Image Location	D		. 51		mm	Diameter Reference to Centerline $\ell=4.27 \mathrm{~mm}$			6
Thermal Resistance	Θ_{Jc}		85		${ }^{\circ} \mathrm{C} / \mathrm{W}$				

Detector Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions		Fig.	Note
Dark Current	Ipo		5	200	pA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=0, V_{D}=5 V_{i} \\ & \text { Reflection }=0 \% \end{aligned}$		
				10	nA	$T_{A}=70^{\circ} \mathrm{C}$			
Capacitance	CD		45		pF	$V_{D}=0 \mathrm{~V}, 1 \mathrm{P}=0, f=1 \mathrm{MHz}$			
Flux Responsivity	R ϕ		. 22		$\frac{A}{W}$	$\lambda=700 \mathrm{~nm}, V_{D}=5 \mathrm{~V}$		12	
Detector Area	A_{D}		. 160		mm²	Square, w	Length $=.4 \mathrm{~mm} /$ Side		

Emitter Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Flg. | Note |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| Forward Voltage | V_{F} | | 1.6 | 1.8 | V | $\mathrm{I}_{\mathrm{F}=3}=35 \mathrm{~mA}$ | 13 | |
| Reverse Breakdown Voltage | $\mathrm{B} \mathrm{V}_{\mathrm{R}}$ | 5 | | | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ | | |
| Radiant Flux | ϕ_{E} | 5 | 9.0 | | $\mu \mathrm{~W}$ | $\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}, \lambda=700 \mathrm{~nm}$ | 14 | |
| Peak Wavelength | λ_{P} | 680 | 700 | 720 | nm | $\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$ | 14 | |
| Thermal Resistance | Θ_{JC} | | 150 | | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | | | |
| Temperature Coefficient of V_{F} | $\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$ | | -1.2 | | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$ | | |

Transistor Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Collector-Emitter Leakage	Iceo		1		nA	$V_{C E}=5 \mathrm{~V}$		
Base-Emitter Voltage	VBE		. 6		V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=70 \mathrm{nA}$		
Collector-Emitter Saturation Voltage	$V_{C E}(S A T)$. 4		V	$\mathrm{I}_{\mathrm{B}}=1 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$		
Collector-Base Capacitance	CCB		. 3		pF	$f=1 \mathrm{MHz}, V_{C B}=5 \mathrm{~V}$		
Base-Emitter Capacitance	Cbe		. 4		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V}$		
Thermal Resistance	$\Theta^{\text {J }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W}$			

NOTES:

1. $300 \mu \mathrm{~s}$ pulse width, 1 kHz pulse rate.
2. Derate Maximum Average Current linearly from $65^{\circ} \mathrm{C}$ by $6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Without heat sinking from $T_{A}=65^{\circ} \mathrm{C}$, derate Maximum Average Power linearly by $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Measured from a reflector coated with a 99% reflective white paint (Kodak 6080) positioned 4.27 mm (0.168 in.) from the reference plane.
5. Peak-to-Peak response to black and white bar patterns.
6. Center of maximum signal point image lies within a circle of diameter D relative to the center line of the package. A second emitter image (through the detector lens) is also visible. This image does not affect normal operation.
7. This measurement is made with the lens cusp parallel to the black-white transition.
8. Image size is defined as the distance for the $10 \%-90 \%$ response as the sensor moves over an abrupt black-white edge.
9. $(+)$ indicates an increase in the distance from the reflector to the reference plane.
10. All voltages referenced to Pin 4.
11. CAUTION: The thermal constraints of the acrylic lens will not permit the use of conventional wave soldering procedures. The typical preheat and post cleaning temperatures and dwell times can subject the lens to thermal stresses beyond the absolute maximum ratings and can cause it to defocus.

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 2. Relative Total Photocurrent vs. LED DC Forward Current

Figure 3. Ip Test Circuit

Figure 4. Normalized Transistor DC Forward Current Gain vs. Base Current at Temperature

Figure 6. Slew Rate Measurement Circuit

Figure 8. Image Size vs. Maximum Signal Point

Figure 5. Common Emitter Collector Characteristics

Figure 7. Image Location

Figure 9. Reflector Distance vs. \% Reflected Photocurrent

Figure 10. Step Edge Response

Figure 12. Detector Spectral Response

Figure 14. Relative Radiant Flux vs. Wavelength

Figure 11. Modulation Transfer Function

Figure 13. LED Forward Current vs. Forward Voltage Characteristics

Figure 15. Photodiode Interconnection

Features

- THREE INDUSTRIAL BAR CODES

STANDARD:

- 3 of 9 Code
- Interleaved 2 of 5 Code
- Industrial 2 of 5 Code
- AUTOMATIC CODE RECOGNITION
- OPTIONAL BAR CODES AVAILABLE
- UPC/EAN/JAN
- Codabar
- Others
- FLEXIBLE DUAL RS-232-C (V.24) DATA COMMUNICATIONS
- Facilitates a Wide Variety of Configurations
- PROGRAMMABLE OPERATION (16800A only):
- Two LED Status Indicators
- Beeper Control
- Code Selection
- Data Communication Configuration
- Reader Operational Status
- HIGH PERFORMANCE DIGITAL WANDS:
- 45 Degree Scan Angle
- Sealed Sapphire Tip
- Polycarbonate or Metal Case
- INTEGRAL POWER SUPPLY
- TABLETOP OR WALL MOUNTABLE
- BUILT-IN SELF TEST
- WORLDWIDE HP SERVICE

Description

The 16800A and 16801A are high performance bar code readers. The 16800A includes a wide range of programmable features which allow the reader to be fully integrated into sophisticated data entry systems. The 16801A is nonprogrammable, providing a more cost-effective solution for applications which do not require programmability.

The standard reader supports three popular industrial bar codes: 3 of 9 code, Interleaved 2 of 5 code, and Industrial 2 of 5 code. If more than one standard code is enabled, the reader will automatically recognize which code is being read. Options are available for reading UPC/EAN/JAN codes, Codabar code, and other bar codes. Bidirectional scanning is provided for all bar codes supported.

The 16800A and 16801A may be configured with a wide range of computer systems; including minicomputers, desktop computers, and personal computers. Dual RS-232-C (V.24) ports facilitate operation in both stand-alone and eavesdrop configurations. In an eavesdrop configuration, the reader will generally be operated in conjunction with an RS-232-C terminal.
Interactive systems design is supported in the 16800A through programmable operator feedback and reader control features. A multi-tone beeper and two LED indicators are provided to allow simple, yet flexible audio and visual programmable feedback. Local operator feedback is provided in the 16801A through a beeper which sounds to signify a good read.
Reader performance can be optimized by selecting the wand appropriate for the environment and the type of symbol being read. The wands offer a 45 degree scan angle, a rugged case, and a sealed sapphire tip. The sapphire tip may be replaced by the user if it is damaged.

Applications

Bar codes offer a method of entering data into computers which is fast, accurate, reliable, and which requires little operator training. Implementation of a bar code system can lead to increased productivity, reduced inventory costs, improved accountability, increased asset visibility, and reduced paperwork. Customer satisfaction will also improve as a result of improved quality control, reduced shipping errors, and reduced order and ship times. On-line, real-time interactive systems will allow the user to take full advantage of the contributions offered by bar code systems. The 16800A and 16801A provide a high performance solution for applications which require on-line bar code data entry.
The most common type of data stored in bar code is item identification information used in a wide range of applications such as:

- Inventory Control
- Work-in-Process Tracking
- Distribution Tracking
- Order Processing
- Records Management
- Point-of-Sale
- Government Packaging and Shipping

Bar codes can also be used in applications where information about an item or a transaction must be accurately entered into the host computer. Item location, employee identification, work steps, equipment settings, equipment status, and inspection results are some of the types of information which can be entered using bar codes.

Typical Configuration

The dual RS-232-C (V.24) output provided by the 16800A and 16801A allows a single reader to be configured in a wide range of on-line applications. Three typical system configurations are outlined below:

- Stand-Alone Reader - The 16800A/16801A is in direct communication with the host minicomputer, desktop computer, or personal computer.

- Multiplexed - A cluster of $16800 \mathrm{~A} / 16801$ As communicates with the host computer through a multiplexer. Where the advantages of fiber optic data communications are desired, the Hewlett-Packard 39301A Fiber Optic Multiplexer can be used.

- Eavesdrop - The 16800A/16801A is in an eavesdrop configuration between an RS-232-C terminal and the host computer. The reader can be configured to transmit to the computer, to the terminal, or to both simultaneously.

Wand Selection

The 16800A and 16801A bar code readers include HBCS5300 digital bar code wand which is capable of reading bar code symbols which have nominal narrow bar/space widths of 0.19 mm (0.0075 in .) or greater. This includes a wide range of high, medium, and low resolution bar codes including standard 3 of 9 code [0.19 mm (0.0075 in .)].
An optional HBCS-5500 digital bar code wand is available for very high resolution codes with nominal narrow bar/ space widths of 0.13 mm (0.005 in .) to 0.20 mm (0.008 in .). The 820 nm near-infrared emitter in the HBCS-5500 wand also enables it to read the black-on-black bar codes used in some security systems. This wand is not recommended for dot matrix printed bar codes or colored bar codes.

The HBCS- 5000 series wands feature a rugged polycarbonate case designed for light industrial and commercial
applications. Applications which require an industrial wand are supported by the optional HBCS-6300 and HBCS-6500 digital bar code wands. These wands feature a solid metal case and internal construction designed for abusive environments. The HBCS-6300 and HBCS-6500 have the same bar code reading characteristics as the HBCS-5300 and HBCS-5500, respectively.
All wands are also available under accessory product numbers.

code Selection

The 16800A and 16801A offer user flexibility in the implementation of the three standard bar codes:

- Single Code Selection or Automatic Code Recognition (any combination of the three standard codes)
- Checksum Verification Selectable
- Variable Message Length up to 32 characters
- Selectable Message Length Check (Interleaved 2 of 5 code and Industrial 2 of 5 code)
- Any specified code resolution

Optional bar codes will also provide a high degree of user flexibility. The code reading configuration is switch selectable. Additional information on bar code symbologies is available in the Operating and Installation Manual and in Application Note 1013 - "Elements of a Bar Code System".

16800A Additional Capabilities

The 16800A offers the advantage of programmable control over all aspects of the code reading configuration. This capability enables the applications software to determine what code can be read depending on the type of data to be entered. For example, the 3 of 9 code could be enabled for entering item identification information and then the 3 of 9 code disabled and Interleaved 2 of 5 code enabled for entering a different type of data such as employee identification or job status. This allows different bar codes to be used in the system while at the same time preventing the operator from entering the wrong type of data into the data base.

Data Communications

The 16800A and 16801A provide a flexible dual RS-232-C (V.24) serial ASCII data communications capability which can support a wide range of system configurations. The reader offers the user the choice of full or half duplex transmission when in character mode and, if in an eavesdrop configuration with a terminal, the reader can also be operated in block mode. The user can tailor the reader's data communication configuration to the application by selecting the appropriate transmission mode (full/half duplex), operating mode (character/block mode), data rate, parity, terminator, stop bits, and inter-character delay on the readily accessible DIP switches. Request to Send/Clear to Send and DC1/DC3 (XON/XOFF) traffic control is available.

16800A Additional Capabilities

The 16800A offers expanded data communications capabilities with the added benefit of programmable control. In addition to programmable control of the transmission mode (full/half duplex) and the operating mode (character/block mode), the 16800A provides the following programmable features:

- User-definable header (up to 10 characters)
- User-definable terminator (up to 10 characters)
- DC1/DC3 (XON/XOFF) traffic control enable/disable

Operator Feedback

The 16800A and 16801A provide good read feedback to the operator by sounding an integral beeper. Beeper volume can be adjusted as appropriate for the application.

16800A Additional Capabilities

Interactive operator feedback is provided in the 16800A through two programmable LED indicators and programmable beeper control. The user has programmable control over operator feedback as follows:

- Local good read beep enable/disable
- Local good read beep tone (16 tones available)
- Computer commanded beep (16 tones available)
- Red LED Indicator on/off
- Green LED Indicator on/off

Programmable operator feedback can be used to prompt the operator, to signify that data has been validated by the computer, to differentiate between different workstations in close proximity, to provide additional LED feedback in extremely noisy environments, or for a variety of other reasons.

Reader Control and Status (16800A only)

The 16800A provides the user with added programmable control over the reader's operation and also enables the user to obtain on-line status information regarding the reader's configuration and functionality. The programmable control and status features are described below:
Scanner Enable/Disable - When disabled, further bar code scans are ignored.
Single Read Enable/Disable - When enabled, a single bar code scan can be entered between "Next Read" commands. Hard Reset - Commands the reader to return to the operating configuration prescribed by the DIP switch settings. An automatic self-test is also executed.
Status Request - Commands the reader to send the status of its operating configuration to the computer.

Specifications

General

Typical Wand Reading Characteristics:

Parameter	Units	HBCS-5300 OR HBCS-6300	HBCS-5500 HBCS-6500
Minimum Recommended Nominal Narrow Element Width	mm in.	0.190 0.0075	0.127
Tilt Angle	degrees	0.005	
Scan Speed	$\mathrm{cm} / \mathrm{sec}$		
	$\mathrm{in} / \mathrm{sec}$	$7.6-127$	$3-50$

Bar Codes Supported:
Standard: 3 of 9 Code (ANSI MH10.8M-1983; MIL-STD-1189) Interleaved 2 of 5 Code (ANSI MH10.8M-1983) Industrial 2 of 5 Code

Optional: UPC/EAN/JAN (Option 001) Codabar (Option 002) Others (contact factory)

Data Communications

Data Rate:

Parity:

Terminator

Programmable Header/
Terminator (16800A
only):
Stop Bits:
Inter-Character Delay:

Standard Asynchronous
Communications Interface:
Transmission Modes:

Operating Modes:

Traffic Control:

Output Buffer:

110, 300, 600, 1200, 2400, 4800, 9600 baud. Switch Selectable.

0's, 1's, Odd, Even. Switch Selectable.

CR, CR/LF, Horizontal Tab (HT), None. Switch Selectable.

User defined. Maximum of 10 characters each.

1 or 2. Switch Selectable.
30 ms or None. Switch Selectable.

EIA Standard RS-232-C (CCITT V.24)

Full or half duplex, asynchronous. Switch selectable. Programmable in 16800A.
Character or Block Mode. Switch selectable. Programmable in 16800A.

Request to Send/Clear to Send. DC1/DC3 (XON/XOFF). Switch Selectable. Programmable in 16800A. 255 Characters

Environmental Conditions

Temperature, Free Space Ambient:

$$
\begin{array}{rr}
\text { Non-Operating: } & -40 \text { to } 75^{\circ} \mathrm{C}\left(-40 \text { to }+167^{\circ} \mathrm{F}\right) \\
\text { Operating: } & 0 \text { to }+55^{\circ} \mathrm{C}\left(+32 \text { to } 131^{\circ} \mathrm{F}\right)
\end{array}
$$

Humidity:
5 to 95\% (non-condensing)
Altitude:

Non-Operating
Sea level to 15300 metres
(50,000 feet)
Operating: Sea level to 4600 metres
(15,000 feet)
Vibration:
0.38 mm (0.015 in .) p-p, 5 to 55 to $5 \mathrm{~Hz}, 3$ axis
Shock:
$30 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$ sine

Physical Specifications

Weight, including wand:
Weight, polycarbonate wand only:
(including coiled cord)
Weight, industrial
wand only:
(including coiled cord)
Reader Dimensions:
$260 \mathrm{mmW} \times 189 \mathrm{mmD} \times 71 \mathrm{mmH}$ (10.25 in.W $\times 7.4$ in.D $\times 2.8$ in.H)
Polycarbonate Wand $\quad 134 \mathrm{mmW} \times 23 \mathrm{mmD} \times 20 \mathrm{mmH}$
Dimensions:
($5.3 \mathrm{in} . \mathrm{W} \times 0.9 \mathrm{in} . \mathrm{D} \times 0.8 \mathrm{in} . \mathrm{H}$)
Industrial Wand Dimensions:

Wand Cord Length:
$158 \mathrm{mmW} \times 24 \mathrm{mmD} \times 18 \mathrm{mmH}$
(6.2 in .W $\times 0.9 \mathrm{in}$. $\times 0.7 \mathrm{in} . \mathrm{H}$)
94 cm (37 in.) - retracted 206 cm (81 in.) - extended

Power Requirements

Regulatory Agency Approvals

RFI/EMI:

- VDE 0871 level B
- FCC Class B

Safety Approvals:

- UL478, UL114 for EDP and office equipment
- CSA C22.2-154 for EDP equipment
- VDE 0730 part 2P for EDP and office equipment
- Complies with IEC standard \#380 and \#435 for EDP and office equipment

Installation

All product preparation and installation can be performed by the owner/user. Refer to the Operating and Installation Manual supplied with the unit for detailed instructions.

Supporting Literature

For further information refer to:
16800A/16801A Option 001 Data Sheet, Publication Number 5954-2156 (Available through local sales office)

16800A/16801A Option 002 Data Sheet, Publication Number 5954-2157 (Available through local sales office)

16800A/16801A Operating and Installation Manual, P/N: 16800-90001

16800A/16801A Option 001 Operating and Installation Manual Addendum, P/N: 16800-90004
16800A/16801A Option 002 Operating and Installation Manual Addendum, P/N: 16800-90006
Application Note 1013, "Elements of a Bar Code System", Publication Number: 5953-7732 (Available through local sales office)
Application Bulletin 59, "HP 16800A/16801A Bar Code Reader Configuration Guide for a DEC VT-100 or Lear

Siegler ADM-31 to a DEC PDP-11 Computer", Publication Number: 5953-9365 (Available through local sales office)

Application Bulletin 61, "HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 3276/3278 Terminal", Publication Number: 5953-9361 (Available through local sales office)
Application Bulletin 62, "HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 4955F Series 1 Process Control CPU/Protocol Converter and an IBM 3101 Terminal", Publication Number: 5953-9362 (Available through local sales office)

Application Bulletin 63, "HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 5101 Personal Computer', Publication Number: 5953-9363 (Available through local sales office)

Application Bulletin 68, "HP 16800A/16801A Bar Code Reader Configuration Guide for a MICOM Micro 280 Message Concentrator", Publication Number: 5953-9382 (Available through local sales office)

Ordering Information

PRODUCT NO.	DESCRIPTION
16800A	PROGRAMMABLE BAR CODE READER - Includes HBCS-5300 digital wand, internal power supply for 120 V line voltage, power cord, and Operating and Installation Manual. Reader supports 3 of 9 Code, Interleaved 2 of 5 Code, and Industrial 2 of 5 Code.
16801A	BAR CODE READER - Includes HBCS- 5300 digital wand, internal power supply for 120 V line voltage, power cord, and Operating and Installation Manual. Reader supports 3 of 9 Code, Interleaved 2 of 5 Code, and Industrial 2 of 5 Code.
-001	Add UPC/EAN/JAN code reading capability; Delete Industrial 2 of 5 code
-002	Add Codabar code reading capability; Delete Industrial 2 of 5 code
-210	100V power supply
-222	220 V power supply
-224	240 V power supply
-320	Delete HBCS-5300 digital wand; Add HBCS-5500 ditigal wand
-400	Delete HBCS-5300 digital wand; Add HBCS-6300 industrial digital wand
-420	Delete HBCS-5300 digital wand; Add HBCS-6500 industrial digital wand
-610	Add Wall Mounting Kit
-910	Additional Operating and Installation Manual
ACCESSORIES	
16830A	General Purpose Digital Bar Code Wand
16832A	High Resolution Digital Bar Code Wand
16840A	Industrial (Metal) General Purpose Bar Code Wand
16842A	Industrial (Metal) High Resolution Bar Code Wand
HBCS-2999	HBCS-5300/5500 Replacement Sapphire Tip
HBCS-4999	HBCS-6300/6500 Replacement Sapphire Tip
16800-61000	Wall Mount Kit
HEDS-0200	20 foot Wand Extension Cord
03075-40006	External Wand Holder
17355A	2.7 metres (9 feet) Male-Male RS-232-C cable. Shielded.
LITERATURE	
16800-90001	Operating and Installation Manual
16800-90004	Option 001 Operating and Installation Manual Addendum
16800-90006	Option 002 Operating and Installation Manual Addendum

Features

- CODABAR CODE READING CAPABILITY
- TWO STANDARD INDUSTRIAL BAR CODES
- 3 of 9 Code
- Interleaved 2 of 5 Code
- AUTOMATIC CODE RECOGNITION
- HIGH PERFORMANCE DIGITAL WANDS
- 45 Degree Scan Angle
- Replaceable, Sealed, Sapphire Tip
- Polycarbonate or Metal Case

Description

Option 002 adds bar code reading capability for Codabar to the HP16800A Programmable Bar Code Reader and HP16801A Non-Programmable Bar Code Reader. Transmission of the start and stop characters which are part of each Codabar symbol is user-selectable.
Two standard industrial codes, the 3 of 9 code and Interleaved 2 of 5 code, may also be read with Option 002. These two codes may be enabled individually, simultaneously, and/or in conjunction with the Codabar code.

Industrial 2 of 5 code reading capability, available with the standard HP16800A and HP16801A, is not provided with Option 002.

Applications

Codabar code is commonly used for material tracking, customer identification, and traceability in four specific application areas:

- Libraries
- Hospitals
- Film Processing
- Package Tracking

The 3 of 9 code is also popular in these applications, especially where an alphanumeric code is preferred. In some circumstances, both the 3 of 9 code and Codabar code may need to be read interchangeably. This capability is provided by the automatic code recognition feature of the HP16800A and HP16801A.

The 3 of 9 code and Interleaved 2 of 5 code are generally preferred in industrial applications and in applications which involve interfacility or intercompany movement of goods. These applications include:

- Inventory control
- Work-in-process tracking
- Distribution tracking
- Records management
- Government packaging and shipping
- Labor reporting
- Asset management

Wand Selection

The HP 16800A and HP 16801A Bar Code Readers include an HBCS-5300 digital bar code wand which is capable of reading bar code symbols which have nominal narrow bar/space widths of $0.19 \mathrm{~mm}(0.0075 \mathrm{in}$.) or greater. This wand is recommended for reading all low resolution bar codes, such as those produced with dot matrix printers, and for reading high resolution 3 of 9 and Interleaved 2 of 5 bar codes. It may also be used to read most high resolution Codabar symbols.
An optional HBCS-5500 digital bar code wand is available for very high resolution codes have nominal narrow bar/space widths of $0.13 \mathrm{~mm}(0.005 \mathrm{in}$.) to $0.20 \mathrm{~mm}(0.008$ in.). This wand may provide superior performance when reading high resolution Codabar symbols since this code has a nominal narrow bar width of 0.17 mm (0.0065 in .). An 820 nm near-infrared emitter enables the HBCS-5500 to read black-and-white bar codes and the black-on-black bar codes used in some security systems.
Applications which require an industrial wand are supported by the optional HBCS-6300 and HBCS-6500 digital bar code wands. These wands feature a solid metal case and internal construction designed for abusive environments. The HBCS-6300 and HBCS-6500 have the same bar code reading characteristics as the HBCS-5300 and HBCS-5500, respectively.

Supporting Literature

For further information refer to:
16800A/16801A Option 002 Operating and Installation Manual Addendum, P/N: 16800-90006
16800A/16801A Operating and Installation Manual, P/N: 16800-90001
16800A/16801A Data Sheet, Publication No: 5954-2155

Ordering Information

\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Product } \\
\text { Number }\end{array} & \begin{array}{l}\text { Description }\end{array} \\
\hline 16800 \mathrm{~A} \\
-002 & \begin{array}{l}\text { Programmable Bar Code Reader } \\
\text { Includes HBCS-5300 digital wand, } \\
\text { internal power supply for 120 V line } \\
\text { voltage, power cord, and Operating } \\
\text { and Installation Manuals. Reader } \\
\text { supports Codabar, 3 of 9, and } \\
\text { Interleaved 2 of 5 codes. }\end{array} \\
16801 \mathrm{~A} \\
-002 & \begin{array}{l}\text { Non-Programmable Bar Code Reader } \\
\text { Includes HBCS-5300 digital wand, } \\
\text { internal power supply for 120 V line } \\
\text { voltage, power cord, and Operating } \\
\text { and Installation Manuals. Reader } \\
\text { supports Codabar, 3 of 9, and } \\
\text { Interleaved 2 of 5 codes. } \\
\text { 100V Power Supply } \\
\text { 220V Power Supply } \\
240 V \text { Power Supply }\end{array} \\
-210 \\
-222 \\
-224 \\
-320\end{array}
$$ \quad $$
\begin{array}{l}\text { Delete HBCS-5300 digital wand; } \\
\text { add HBCS-5500 ditigal wand } \\
\text { Delete HBCS-5300 digital wand; } \\
\text { add HBCS-6300 industrial digital wand } \\
-400\end{array}
$$ \quad \begin{array}{l}Delete HBCS-5300 digital wand;

add HBCS-6500 industrial digital wand

Add Wall Mounting Kit\end{array}\right\}\)| Additional Operating and Installation |
| :--- |
| Manuals |

Features

- FLEXIBLE COMMERCIAL CODE READING CAPABILITY
- UPC-A, UPC-E
- EAN-8, EAN-13
- JAN-8, JAN-13
- 2-Digit Supplemental Encodation
- 5-Digit Supplemental Encodation
- TWO STANDARD INDUSTRIAL BAR CODES
- 3 of 9 Code
- Interleaved 2 of 5 Code
- AUTOMATIC CODE RECOGNITION
- COMPATIBLE WITH UPC SHIPPING CONTAINER SYMBOL SPECIFICATION
- HIGH PERFORMANCE DIGITAL WANDS
- 45 Degree Scan Angle
- Replaceable, Sealed, Sapphire Tip
- Polycarbonate or Metal Case

Description

Option 001 adds bar code reading capability for the Universal Product Code (UPC), European Article Numbering Code (EAN), and Japanese Article Numbering Code (JAN) to the HP 16800A Programmable Bar Code Reader and HP 16801A Non-Programmable Bar Code Reader.
All popular versions of the UPC, EAN and JAN bar codes may be enabled, including UPC-A, UPC-E, EAN-8, EAN-13, JAN-8 and JAN-13. All codes may be read simultaneously, or only UPC-A and UPC-E may be enabled.
UPC, EAN, and JAN codes with complementary 2-digit or 5-digit supplemental encodations, or "add-ons", may be read in one of two ways. If UPC, EAN, and JAN codes are enabled but neither 2-digit nor 5 -digit supplemental encodations are enabled, then symbols printed with, or without, supplements can be read and only the main symbol will be output. If 2 -digit (or 5 -digit) supplemental encodations are enabled, then only symbols with 2 -digit (or 5 -digit) supplements can be read and both the main symbol and the supplement are output. 2-digit and 5 -digit supplemental encodations may be enabled simultaneously.

Two standard industrial codes, the 3 of 9 code and Interleaved 2 of 5 code, may also be read with Option 001. These two codes may be enabled individually, simultaneously, and/or in conjunction with the UPC, EAN, and JAN codes. The implementation of the Interleaved 2 of 5 code is compatible with the UPC Shipping Container Symbol Specification.

Industrial 2 of 5 code reading capability, available with the standard HP 16800A and HP 16801A, is not provided with Option 001.

Applications

Option 001 to the HP 16800A and HP 16801A Bar Code Readers provides an excellent solution for both commercial and industrial applications by supporting the popular UPC, EAN, and JAN codes as well as the industry standard 3 of 9 and Interleaved 2 of 5 codes.

Typical applications for UPC, EAN, and JAN codes include:

- Point-of-sale
- Inventory control in retail stores
- Order entry for retail products
- Tracking periodical and/or book returns
- Tracking coupon receipts
- Production line tracking in consumer products manufacturing plants
The 3 of 9 code and Interleaved 2 of 5 code are commonly used for work-in-process tracking and inventory control applications. Some applications may require that the 3 of 9 code or Interleaved 2 of 5 code be read interchangeably with the UPC, EAN, and/or JAN codes. For example, products which are marked with a UPC code may be shipped in a container marked with the Interleaved 2 of 5 code. The automatic code recognition capability of the HP 16800A and HP 16801A allows these codes to be read interchangeably.

Typical applications for 3 of 9 code and Interleaved 2 of 5 code include:

- Inventory control
- Work-in-process tracking
- Distribution tracking
- Records management
- Government packaging and shipping
- Labor reporting
- Asset management

Wand Selection

The HP 16800A and HP 16801A Bar Code Readers include an HBCS-5300 digital bar code wand which is capable of reading bar code symbols which have nominal narrow bar/space widths of 0.19 mm (0.0075 in .) or greater. A 655 nm visible red emitter enables the HBCS-5300 to read a wide variety of colored bar codes. This wand is recommended for reading the UPC, EAN, and JAN bar codes
An optional HBCS-5500 digital bar code wand is available for very high resolution codes having nominal narrow $\mathrm{bar} / \mathrm{space}$ widths of 0.13 mm (0.005 in .) to 0.20 mm (0.008 in .) An 820 nm near-infrared emitter enables the HBCS-5500 to read black-and-white bar codes and the black-on-black bar codes used in some security systems. It cannot read
colored bar codes and, therefore, is not recommended for reading the UPC, EAN, and JAN bar codes.
Applications which require an industrial wand are supported by the optional HBCS-6300 and HBCS-6500 digital bar code wands. These wands feature a solid metal case and internal construction designed for abusive environments. The HBCS-6300 and HBCS-6500 have the same bar code reading characteristics as the HBCS-5300 and HBCS-5500, respectively.

Supporting Literature

For further information, refer to:
16800A/16801A Option 001 Operating and Installation Manual Addendum, P/N: 16800-90004
16800A/16801A Operating and Installation Manual, P/N: 16800-90001
16800A/16801A Data Sheet, Publication No.: 5954-2155

Ordering Information

Product Number	Description
16800A	PROGRAMMABLE BAR CODE
-001	READER Includes HBCS-5300 digital wand, internal power supply for 120 V line voltage, power cord, and Operating and Installation Manuals. Reader supports UPC, EAN, JAN, 3 of 9 , and Interleaved 2 of 5 codes.
16801A	NON-PROGRAMMABLE BAR CODE
-001	READER Includes HBCS-5300 digital wand, internal power supply for 120 V line voltage, power cord, and Operating and Installation Manuals. Reader supports UPC, EAN, JAN, 3 of 9, and Interleaved 2 of 5 codes.
-210	100 V power supply
-222	220 V power supply
-224	240 V power supply
-320	Delete HBCS-5300 digital wand; add HBCS-5500 ditigal wand
-400	Delete HBCS-5300 digital wand; add HBCS-6300 industrial digital wand
-420	Delete HBCS-5300 digital wand; add HBCS-6500 industrial digital wand
-610	Add Wall Mounting Kit
-910	Additional Operating and Installation Manuals

Motion Sensing and Control

- Optical Encoders
- Digital Potentiometers
- Motion Control ICs

Motion Sensing and Control
 Motion Sensing
 New Products

As an extension of our emitter/detector systems capability, Hewlett-Packard has developed a family of motion sensing products. These product include optical shaft encoders, optical encoder modules for closed loop servo applications and digital potentiometers for manual input applications. HP's Optical products provide a digital link converting mechanical shaft rotation into TTL logic level signals.
Our HEDS-5000 and HEDS-6000 series encoders may be used in a wide variety of closed loop servo applications varying from computer peripherals and professional audio-video systems to automated production equipment. Encoders also find widespread use in industrial and instrument applications in which digital information is needed to monitor rotary motion.

The HP encoder system takes advantage of a specialized optical design and a custom integrated circuit to deliver superior performance in a compact package. The design also minimizes the mechanical tolerances required of the shaft and mounting surface. The HEDS-5000 and HEDS-6000 encoders are available with a range of options including resolution and shaft sizes.

The HEDS-7500 series digital potentiometer is a 28 mm diameter encoder completely assembled with a shaft and bushing, making it suitable for panel mounting. The device converts manual rotary inputs into digital outputs using the same high performance emitter/detector technology used in our encoders. A digital potentiometer can be used as an input mechanism in a variety of applications including: test and measurement equipment, CAD-CAM systems, and positioning tables.

Hewlett-Packard's new HEDS-9000 and HEDS-9100 series optical encoder modules provide sophisticated rotary motion detection at a low price making it ideal for high volume applications. The modular design approach incorporates a unique photodetector array allowing easy assembly and encoder design flexibility. Standard resolutions for these modules range from 96 to 1000 counts per revolution.
Hewlett-Packard has also introduced the HEDS-9200 series encoder modules which sense linear movement. These encoder modules are based on the same innovative emitter/detector technology as the HEDS9000 series, however they are optimized to sense linear position. These linear encoder modules are extremely tolerant to misalignment and well suited for printers, copiers, $x-y$ tables and a variety of other industrial and office automation products.

The HEDS-5500 is a quick assembly, low cost, complete optical encoder. This product does not require adhesive, special tools, or any last minute adjustments to complete the assembly process. The encoder features high performance based on the HEDS-9100 series encoder module and comes in a wide variety of resolutions and shaft sizes.

Motion Control

To complement the motion sensing products, HP has released two motion control ICs. The HCTL-1000 general purpose motion control IC greatly simplifies the task of designing digital motion control systems. The HCTL-1000 compares the command position or velocity from a host processor to the actual position or velocity from an incremental encoder, and outputs an appropriate motor command using one of four programmable position and velocity control modes. Some of its other features include a programmable digital filter, an electronic commutator, and a quadrature decoder/counter.

The HCTL-2000 Quadrature Decoder Counter IC provides a one chip, easy to implement solution to interfacing the quadrature output of an encoder or digital potentiometer to a microprocessor. It includes a quadrature decoder, a 12 bit up/down state counter, and an 8 bit bus interface. The use of Schmitt triggered inputs and a digital noise filter allows reliable operation in noisy environments.
For more information on these new product developments, contact your local Hewlett-Packard Components Field Engineer, or write Hewlett-Packard Optoelectronics Division, 640 Page Mill Road, Palo Alto, California 94304.

Motion Sensing and Control

Optical Encoder Modules

Package Outline Drawing	Part No．	Channels	Resolution	Page No ．
	$\begin{aligned} & \text { HEDS-9000 } \\ & \text { OPT } \square 00 \end{aligned}$	A，B	A 500 CPR B 1000 CPR	$4-7$
	HEDS－9100 OPT $\square 00$	A，B	K 96 CPR C 100 CPR D 192 CPR E 200 CPR F 256 CPR G 360 CPR H 400 CPR A 500 CPR I 512 CPR	4－11
	$\begin{aligned} & \text { HEDS-9200 } \\ & \text { OPT } 00 \\ & \text { O } \end{aligned}$	A，B	$\begin{array}{ll} \mathrm{L} & 120 \mathrm{LPI} \\ \mathrm{M} & 127 \mathrm{LPI} \\ \mathrm{P} & 150 \mathrm{LPI} \end{array}$	4－15

Quick Assembly Encoder－HEDS－5500 Series

Package Outline Drawing	Part No．	Channels	Option Code		Page No．
			Resolution	Shaft Size	
	HEDS－5500 OPT ロロロ	A，B	\square K 96 CPR C 100 CPR D 192 CPR E 200 CPR F 256 CPR G 360 CPR H 400 CPR A 500 CPR I 512 CPR H	D1 01 2 mm 02 3 mm 03 $1 / 8 \mathrm{in}$. 04 $5 / 32 \mathrm{in}$. 05 $3 / 66 \mathrm{in}$. 06 $1 / 4 \mathrm{in}$. 11 4 mm 12 6 mm 14 5 mm 4	4－19

28 mm Diameter Encoders－HEDS－5000 Series

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Package Outline Drawing} \& \multirow[b]{2}{*}{Part No．} \& \multirow[b]{2}{*}{Channels} \& \multicolumn{2}{|c|}{Option Code} \& \multirow[b]{2}{*}{Page No ．} \\
\hline \& \& \& Resolution \& Shaft Size \& \\
\hline \& \begin{tabular}{l}
HEDS－5000 OPT ロ ■ \\
HEDS－5010 OPT
\end{tabular} \& A，B

A，B，I \& \begin{tabular}{l}
C 100 CPR

D 192 CPR

E 200 CPR

F 256 CPR

G 360 CPR

H 400 CPR

A 500 CPR

I 512 CPR

 \&

\square

012 mm

023 mm

03 1／8 in．

$045 / 32 \mathrm{in}$ ．

05 3／16 in．

$06 \quad 1 / 4 \mathrm{in}$ ．

114 mm

145 mm
\end{tabular} \& 4－25

\hline
\end{tabular}

56 mm Diameter Encoders - HEDS-6000 Series

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Package Outline Drawing} \& \multirow[b]{2}{*}{Part No.} \& \multirow[b]{2}{*}{Channels} \& \multicolumn{2}{|c|}{Option Code} \& \multirow[b]{2}{*}{Page No.} \\
\hline \& \& \& Resolution \& Shaft Size \& \\
\hline \& \begin{tabular}{l}
HEDS-6000 OPT \(\square\) \\
HEDS-6010 OPTD ■
\end{tabular} \& A, B

A, B, I \& \begin{tabular}{l}
E 200 CPR

H 400 CPR

A 500 CPR

I 512 CPR

B 1000 CPR

J 1024 CPR

 \&

\square

$05 \quad 3 / 16 \mathrm{in}$.

$06 \quad 1 / 4 \mathrm{in}$.

07 5/16 in.

$083 / 8 \mathrm{in}$.

$09 \quad 1 / 2 \mathrm{in}$.

10 5/8 in.

114 mm

126 mm

138 mm
\end{tabular} \& 4-33

\hline
\end{tabular}

Digital Potentiometer - HEDS-7500 Series

Package Outline Drawing	Part No.	Resolution	Termination	Page No.
	HEDS-7500	256 CPR	Color Coded Wire	$4-41$
	HEDS-7501	256 CPR	Ribbon Cable	

Motion Control ICs - HCTL-XXXX Series

 HEWLETT
PACKARD

TWO CHANNEL OPTICAL INCREMENTAL ENCODER MODULE

Features

- HIGH PERFORMANCE
- HIGH RESOLUTION
- LOW COST
- EASY TO MOUNT
- NO SIGNAL ADJUSTMENT REQUIRED
- INSENSITIVE TO RADIAL AND AXIAL PLAY
- SMALL SIZE
- $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ OPERATING TEMPERATURE
- TWO CHANNEL QUADRATURE OUTPUT
- TTL COMPATIBLE
- SINGLE 5 V SUPPLY

Description

The HEDS-9000 series is a high performance, low cost, optical incremental encoder module. When operated in conjunction with a codewheel, this module detects rotary position. The module consists of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.
The two channel digital outputs and the single 5 V supply input are accessed through four 0.025 inch square pins located on 0.1 inch centers.

The standard resolutions presently available are 500 CPR and 1000 CPR for use with a HEDS-6100 series codewheel or the equivalent. Consult local Hewlett-Packard sales representatives for custom resolutions.

Applications

The HEDS-9000 provides sophisticated motion detection at a low cost, making it ideal for high volume applications. Typical applications include printers, plotters, tape drives, and factory automation equipment.

$$
\begin{aligned}
& \text { ESD WARNING: NORMAL HANDLING PRECAUTIONS } \\
& \text { SHOULD BE TAKEN TO AVOID STATIC DISCHARGE. }
\end{aligned}
$$

Package Dimensions

Block Diagram

Theory of Operation

The HEDS-9000 is a C-shaped emitter/detector module. Coupled with a codewheel it translates the rotary motion of a shaft into a two-channel digital output.
As seen in the block diagram, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.
The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in $\mathrm{A}, \overline{\mathrm{A}}$, B and \bar{B}. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

Definitions

Count (N) = The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

Output Waveforms

$$
\begin{aligned}
1 \text { Shaft Rotation } & =360 \text { mechanical degrees } \\
& =\mathrm{N} \text { cycles } \\
1 \text { cycle }(\mathrm{c}) & =360 \text { electrical degrees }\left({ }^{\circ} \mathrm{e}\right) \\
& =1 \mathrm{bar} \text { and window pair }
\end{aligned}
$$

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.
Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.
State Width (S) : The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally $90^{\circ} \mathrm{e}$.
State Width Error ($\Delta \mathrm{S}$): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.
Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.
Direction of Rotation: When the codewheel rotates in the direction of the arrow on top of the module, channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.
Optical Radius ($R_{o p}$): The distance from the codewheel's center of rotation to the optical center (O.C.) of the encoder module.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Storage Temperature	T_{S}	-40		100	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{a}	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	-0.5		7	V_{0}	
Output Voltage	V_{0}	-0.5		$V_{C C}$	$V_{\text {olts }}$	
Output Current per Channel	I_{O}	-1.0		5	mA	

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Temperature	T	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	4.5		5.5	Volts	Ripple $<100 \mathrm{mVp-p}$
Load Capacitance	C_{L}			100	pF	$3.2 \mathrm{~K} \Omega$ pull-up resistor
Count Frequency	f			100	kHZ	$\frac{\text { Velocity(rpm) } \times \mathrm{N}}{60}$

Note: The module performance is guaranteed to 100 kHZ but can operate at higher frequencies.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances. These characteristics do not include codewheel contributions.

Parameter	Symbol	Typ.	Case 1 Max.	Case 2 Max.	Units	Notes
Pulse Width Error	Δp	7	30	40	elec. deg	
Logic State Width Error	Δs	5	30	40	elec. deg.	
Phase Error	$\Delta \phi$	2	10	15	elec deg.	

Case 1: Module mounted on tolerances of $\pm .13 \mathrm{~mm}\left(.005^{\prime \prime}\right)$.
Case 2: Module mounted on tolerances of $\pm .50 \mathrm{~mm}\left(.020^{\prime \prime}\right)$

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, typical at $25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	I_{CC}		17	40	mA	
High Level Output Voltage	V_{OH}	2.4			Volts	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A} \mathrm{Max}$
Low Level Output Voltage	V_{OL}			0.4	Volts	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
Rise Time	I_{r}		200		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
Fall Time	t_{f}			50		ns
$\mathrm{R}_{\mathrm{L}}=11 \mathrm{~K} \Omega$ pull-up						

Note:

1. For improved performance in noisy environments or high speed applications, a $3.3 \mathrm{k} \Omega$ pull-up resistor is recommended.

Recommended Codewheel Characteristics

The HEDS-9000 is designed to operate with the HEDS-6100 series codewheel. See ordering information and specifications at the end of this data sheet.

Codewheel Options

CPR (N)	OPTICAL RADIUS Rop mm (inch)
500	$23.36(.920)$
1000	$23.36(.920)$

Figure 1. Codewheel Design

Parameter	Symbol	Min.	Max.	Units	Notes
Window/Bar Ratio	$\phi_{W^{\prime}} / \phi_{\mathrm{b}}$	0.7	1.4		
Window Length	L_{w}	$1.8(.07)$	$2.3(.09)$	mm(inch)	
Absolute Maximum Codewheel Radius	R_{C}		$R_{o p}+1.9(0.075)$	mm (inch)	Includes eccentricity errors

Mounting Considerations

NOTE1: THESE DIMENSIONS INCLUDE SHAFT
END PLAY, AND CODEWHEEL WARP.
Figure 2. Mounting Plane Side A.

Connectors

Manufacturer	Part Number	Mounting Surface
AMP	$103686-4$	Both
	$640442-5$	Side B
Berg	$65039-032$ with 4825×-000 terminals	Both
Molex	2695 series with 2759 series terminals	Side B

Figure 4. Connector Specifications

Ordering Information

Figure 3. Mounting Plane Side B.

UNITS mm(INCHES)

Figure 5. HEDS-6100 Codewheel

Features

- HIGH PERFORMANCE
- HIGH RESOLUTION
- LOW COST
- EASY TO MOUNT
- NO SIGNAL ADJUSTMENT REQUIRED
- INSENSITIVE TO RADIAL AND AXIAL PLAY
- SMALL SIZE
- $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ OPERATING TEMPERATURE
- TWO CHANNEL QUADRATURE OUTPUT
- TTL COMPATIBLE
- SINGLE 5 V SUPPLY

Description

The HEDS-9100 series is a high performance, low cost, optical incremental encoder module. When operated in conjunction with a codewheel, this module detects rotary position. The module consists of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.
The two channel digital outputs and the single 5 V supply input are accessed through four 0.025 inch square pins located on 0.1 inch centers.

The standard resolutions presently available range from 96 cpr to 512 cpr for use with a HEDS-5100 series codewheel or the equivalent. Consult local Hewlett-Packard sales representatives for custom resolutions.

Applications

The HEDS-9100 provides sophisticated motion detection at a low cost, making it ideal for high volume applications. Typical applications include printers, plotters, tape drives, and factory automation equipment.

[^3]
Block Diagram

Theory of Operation

The HEDS-9100 is a C-shaped emitter/detector module, Coupled with a codewheel it translates the rotary motion of a shaft into a two-channel digital output.
As seen in the block diagram, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.
The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in $\mathrm{A}, \overline{\mathrm{A}}$, B and \bar{B}. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

Definitions

Count $(N)=$ The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

Output Waveforms

1 Shaft Rotation $=360$ mechanical degrees

$$
=N \text { cycles }
$$

1 cycle (c) $=360$ electrical degrees (${ }^{\circ} \mathrm{e}$)
$=1$ bar and window pair
Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.
Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.
State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally $90^{\circ} \mathrm{e}$.

State Width Error ($\Delta \mathrm{S}$): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.
Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates in the direction of the arrow on top of the module, channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.
Optical Radius ($R_{o p}$): The distance from the codewheel's center of rotation to the optical center (O.C.) of the encoder module.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Storage Temperature	T_{s}	-40		100	${ }^{\circ} \mathrm{C}$	
Operating Temperature	Ta_{a}	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	-0.5		7	V^{\prime}	
Output Voltage	V_{0}	-0.5		V_{CC}	Volts	
Output Current per Channel	I_{O}	-1.0		5	mA	

Recommended Operating Conditions

Parameter	Symbol	MIn.	Typ.	Max.	Units	Notes
Temperature	T	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	$V_{C C}$	4.5		5.5	Volts	Ripple $<100 \mathrm{mVp-p}$
Load Capacitance	C_{L}			100	pF	$3.2 \mathrm{~K} \Omega$ pull-up resistor
Count Frequency	f			100	kHZ	$\frac{\text { Velocity (rpm) } \times \mathrm{N}}{60}$

Note: The module performance is guaranteed to 100 kHZ but can operate at higher frequencies.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances. These characteristics do not include codewheel contributions.

Parameter	Symbol	Typ.	Case 1 Max.	Case 2 Max.	Units	Notes
Pulse Width Error	Δp	7	30	40	elec. deg	
Logic State Width Error	Δs	5	30	40	elec. deg.	
Phase Error	$\Delta \phi$	2	10	15	elec deg.	

Case 1: Module mounted on tolerances of $\pm 0.13 \mathrm{~mm}\left(0.005^{\prime \prime}\right)$.
Case 2: Module mounted on tolerances of $\pm 0.38 \mathrm{~mm}\left(0.015^{\prime \prime}\right)$.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, typical at $25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	I_{CC}		17	40	mA	
High Level Output Voltage	V_{OH}	2.4			Volts	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ Max.
Low Level Output Voltage	V_{OL}			0.4	Volts	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
Rise Time	t_{r}			200		ns
$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$						
Fall Time	t_{f}		50		ns	$R_{\mathrm{L}}=11 \mathrm{~K} \mathrm{\Omega}$ pull-up

Note:

1. For improved perforalance in noisy environments or high speed applications, a $3.3 \mathrm{k} \Omega$ pull-up resistor is recommended.

Recommended Codewheel Characteristics

The HEDS-9100 is designed to operate with the HEDS-5100 series codewheel. See ordering information and specifications at the end of this data sheet.

Codewheel Options

CPR (N)	OPTICAL RADIUS R RP mm (inch)
96	$11.00(0.433)$
100	$11.00(0.433)$
192	$11.00(0.433)$
200	$11.00(0.433)$
256	$11.00(0.433)$
360	$11.00(0.433)$
400	$11.00(0.433)$
500	$11.00(0.433)$
512	$11.00(0.433)$

Figure 1. Codewheel Design

Parameter	Symbol	Min.	Max.	Units	Notes
Window/Bar Ratio	$\phi_{\mathrm{w}} / \phi_{\mathrm{b}}$	0.7	1.4		
Window Length	L_{w}	$1.8(.07)$	$2.3(.09)$	mm (inch)	
Absolute Maximum Codewheel Radius	R_{C}		$R_{\mathrm{op}}+1.9(0.075)$	mm (inch)	Includes eccentricity errors

Mounting Considerations

NOTE1: THESE DIMENSIONS INCLUDE SHAFT
END PLAY, AND CODEWHEEL WARP.
Figure 2. Mounting Plane Side A.

Connectors

Manufacturer	Part Number	Mounting Surface
AMP	$103686-4$	Both
	$640442-5$	Side B
Berg	$65039-032$ with $4825 X-000$ terminals	Both
Molex	2695 series with 2759 series terminals	Side B

Figure 4. Connector Specifications

Ordering Information

HEDS-9100 Option			
HEDS-5100 Option			
Resolution(Cycles per Revolution)		Shaft Diameter	
K-96 cpr G- 360 cpr C-100 cpr $\mathrm{H}-400 \mathrm{cpr}$ $\mathrm{D}-192 \mathrm{cpr}$ $\mathrm{A}-500 \mathrm{cpr}$ $\mathrm{E}-200 \mathrm{cpr}$ $\mathrm{I}-512 \mathrm{cpr}$ $\mathrm{F}-256 \mathrm{cpr}$		$02-3 \mathrm{~mm}$	$14-5 \mathrm{~mm}$
		03-1/8 in.	$12-6 \mathrm{~mm}$
		04-5/32 in.	
		05-3/16 in.	
		06-1/4 in.	

Figure 3. Mounting Plane Side B.

UNITS mm(INCHES)

Figure 5. HEDS-5100 Codewheel

LINEAR OPTICAL INCREMENTAL ENCODER MODULE

Features

- HIGH PERFORMANCE
- HIGH RESOLUTION
- LOW COST
- EASY TO MOUNT
- NO SIGNAL ADJUSTMENT REQUIRED
- INSENSITIVE TO MECHANICAL DISTURBANCES
- SMALL SIZE
- $-40^{\circ} \mathrm{C}$ TO $100^{\circ} \mathrm{C}$ OPERATING TEMPERATURE
- TWO CHANNEL QUADRATURE OUTPUT
- TTL COMPATIBLE
- SINGLE 5 V SUPPLY

Description

The HEDS-9200 series is a high performance, low cost, optical incremental encoder module. When operated in conjunction with a codestrip, this module detects linear position. The module consists of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.
The two channel digital outputs and the single 5 V supply input are accessed through four 0.025 inch square pins located on 0.1 inch centers.

Note: Codestrip not included with HEDS-9200.
The standard resolutions available are 4.72 counts per mm (120 cpi), 5.00 counts per mm (127 cpi) and 5.91 counts per mm (150 cpi). Consult local Hewlett-Packard sales representatives for other resolutions ranging from 1.5 to 7.8 counts per mm (40 to 200 counts per inch).

Applications

The HEDS-9200 provides sophisticated motion detection at a low cost, making it ideal for high volume applications. Typical applications include printers, plotters, tape drives, and factory automation equipment.

$$
\begin{aligned}
& \text { ESD WARNING: NORMAL HANDLING PRECAUTIONS } \\
& \text { SHOULD BE TAKEN TO AVOID STATIC DISCHARGE. }
\end{aligned}
$$

Theory of Operation

The HEDS-9200 is a C-shaped emitter/detector module. Coupled with a codestrip it translates linear motion into a two-channel digital output.
As seen in the block diagram, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit: This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codestrip. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the count density of the codestrip. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}$ and $\overline{\mathrm{B}}$. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

Definitions

Count density (D): The number of bar and window pairs per unit length of the codestrip.

Output Waveforms

Pitch: 1/D, The unit length per count.
Electrical degree (${ }^{\circ}$ e): Pitch/360, The dimension of one bar and window pair divided by 360 .

1 cycle (C): 360 electrical degrees, 1 bar and window pair.
Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.
Pulse Width Error ($\Delta \mathbf{P}$): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.
State Width(S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally $90^{\circ} \mathrm{e}$.

State Width Error ($\Delta \mathbf{S}$): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B . This value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.

Phase Error ($\Delta \phi$): The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Movement: When the codestrip moves, relative to the module, in the direction of the arrow on top of the module, channel A will lead channel B. If the codestrip moves in the opposite direction, channel B will lead channel A.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Storage Temperature	T_{S}	-40		100	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{S}	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	-0.5		7	Volts	
Output Voltage	V_{0}	-0.6		V_{CC}	$V_{\text {Volts }}$	
Output Current per Channel	10	-1.0		5	mA	

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Temperature	T	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	4.5		5.5	Volts	Ripple $<100 \mathrm{~m}$ Vp-p
Load Capacitance	C_{L}			100	pF	$3.2 \mathrm{~K} \Omega$ pull-up resistor
Count Frequency	f			100	kHz	Velocity $\times \mathrm{D}$

Note:
The module performance is guaranteed to 100 kHz but can operate at higher frequencies.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances. These characteristics do not include codestrip defects.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Pulse Width Error	ΔP		7	35	elec. deg.	
Logic State Width Error	ΔS		5	35	elec. deg.	
Phase Error	$\Delta \phi$		2	13	elec. deg.	

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, typical at $25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	I_{CC}		17	40	mA	
High Level Output Voltage	V_{OH}	2.4			Volts	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ Max.
Low Level Output Voltage	V_{OL}			0.4	Volts	$\mathrm{I}_{\mathrm{L}}=3.2 \mathrm{~mA}$
Rise Time	t_{r}		200		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
Fall Time	t_{f}		50		ns	$\mathrm{R}_{\mathrm{L}}=11 \mathrm{~K} \Omega$ pull-up

Note:

1. For improved performance in noisy environments or high speed applications, a $3.3 \mathrm{k} \Omega$ pull-up resistor is recommended.

Recommended Codestrip Characteristics

Codestrip design must take into consideration mounting as referenced to either side A or side B (See figure 1).
mounting as referinnced to side a
MOUNTING AS REFERENCED TO SIDE B

Figure 1. Codestrip Design

Parameter	Symbol	Mounting Ref. Side A	Mounting Ref. Side B	Units
Window/Bar Ratio	W_{w} / W_{b}	0.7 Min. 1.4 Max.	0.7 Min. 1.4 Max.	
Mounting Distance	L	$\mathrm{L}_{\mathrm{a}} \leq 0.51(0.020)$	$\mathrm{L}_{\mathrm{b}} \geq 3.23(0.127)$	mm (inch)
Codestrip edge to inside window edge	W_{1}	$W_{1} \leq 0.53(0.021)+\mathrm{L}_{\mathrm{a}}$	$W_{1} \leq 4.27(0.168)-\mathrm{L}_{\mathrm{b}}$	mm (inch)
Codestrip edge to outside window edge	W_{2}	$W_{2} \geq 1.50(0.059)+\mathrm{L}_{\mathrm{a}}$	$\mathrm{W}_{2} \geq 5.23(0.206)-\mathrm{L}_{\mathrm{b}}$	mm (inch)

Note:

All parameters and equations must be satisfied over the full length of codestrip travel including maximum codestrip runout.

Mounting Considerations

MOUNTING PLANE SIDE A
Notes:

1. These dimensions inlcude codestrip warp.
2. Reference definitions of L_{a} and L_{b} on page 3 .

Connectors

Manufacturer	Part Number	Mounting Surface
AMP	$103686-4$	Both
	$640442-5$	Side B
Berg	$65039-032$ with 4825×-000 terminals	Both
Molex	2695 series with 2759 series terminals	Side B

Figure 4. Connector Specifications

MOUNTING PLANE SIDE B

Ordering Information

RESOLUTION Counts per mm (inch)	PITCH mm (inch) per count
$\mathrm{L}-4.72(120)$	$0.212(0.0083)$
$\mathrm{M}-5.00(127)$	$0.200(0.0079)$
$\mathrm{P}-5.91(150)$	$0.169(0.0067)$

Consult local Hewlett-Packard sales representatives for other resolutions.

Features

- QUICK AND EASY ASSEMBLY
- NO SIGNAL ADJUSTMENT REQUIRED
- LOW COST
- SMALL SIZE
- HIGH PERFORMANCE
- high resolution
- INSENSITIVE TO RADIAL AND AXIAL PLAY
- $-40^{\circ} \mathrm{C}$ TO $100^{\circ} \mathrm{C}$ OPERATING TEMPERATURE
- TWO CHANNEL QUADRATURE OUTPUT
- TTL COMPATIBLE OUTPUTS
- SINGLE 5 V SUPPLY

Description

The HEDS-5500 is a high performance, low cost, optical incremental encoder which emphasizes high reliability, high resolution and easy assembly.
The encoder contains a lensed LED light source, an integrated circuit with detectors and output circuitry, and a code wheel which rotates between the emitter and detector IC. The outputs of the encoder are two square waves in quadrature. The collimated light and special photodetector configuration allow for high resolution and excellent encoding performance as well as increased long life reliability.

The encoder may be quickly and easily mounted onto a motor. No mechanical or electrical adjustments are required.
The two channel digital outputs and the single 5 V supply input are accessed through 0.025 inch square pins located on 0.1 inch centers.

Applications

The HEDS-5500 provides motion detection at a low cost, making it ideal for high volume applications. Typical applications include printers, plotters, tape drives, positioning tables and automatic handlers.

ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE.

Outline Drawing

Block Diagram

Output Waveforms

1 Shaft Rotation: 360 mechanical degrees, N cycles.
Position Error $(\Delta \Theta)$: The normalized angular difference between the actual shaft position and its position as indicated by the encoder cycle count.
Cycle Error ($\Delta \mathrm{C}$): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.

Pulse Width (\mathbf{P}): The number of electrical degrees that an output is high during 1 cycle. This value is nominally 180° e or $1 / 2$ cycle.
Pulse Width Error ($\Delta \mathbf{P}$): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.
State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally $90^{\circ} \mathrm{e}$.
State Width Error ($\Delta \mathbf{S}$): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.
Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally $90^{\circ} e$ for quadrature output.
Phase Error ($\Delta \phi$): The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the code wheel rotates in the counterclockwise direction (as viewed from the encoder end of the motor), channel A will lead channel B. When the code wheel rotates in the clockwise direction, channel B will lead channel A.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Storage Temperature	T_{S}	-40		100	Celsius	
Operating Temperature	T_{A}	-40		100	Celsius	
Supply Voltage	11. $V_{C C}$	-0.5		7	Volts	
Output Voltage	$4 \mathrm{~V}_{0}$	-0.5		V_{CC}	Volts	-
Output Current per Channel	10	-1.0		5	mA	1
Vibration				20	g	5 to 1000 Hz
Shaft Axial Play				$\begin{gathered} \pm 0.25 \\ \pm(0.010) \\ \hline \end{gathered}$	mm (inch)	\pm
Shaft Eccentricity Plus Radial Play				$\begin{gathered} 0.1 \\ (0.004) \end{gathered}$	mm (inch) TIR	\cdots
Velocity				30 K	R.P.M.	
Acceleration				250 K	Rad/Sec ${ }^{2}$	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Temperature	T_{A}	-40	100	Celsius	
Supply Voltage	V_{CC}	4.5	5.5	Volts	Ripple $<100 \mathrm{mV} \mathrm{V}_{\text {P-P }}$
Load Capacitance	C_{L}		100	pF	$3.2 \mathrm{k} \mathrm{pull-up} \mathrm{resistor}$
Count Frequency[1]	f		100	kHZ	$\frac{\text { Velocity (rpm) } \times \mathrm{N}}{60}$
Shaft Perpendicularity Plus Axial Play			± 0.25 $\pm(0.010)$	mm (inch)	6.9 mm (0.27 inch) from mounting surface
Shaft Eccentricity Plus Radial Play			0.04 (0.0015)	mm (inch) TIR	6.9 mm (0.27 inch) from mounting surface

Note:

1. The encoder performance is guaranteed to 100 kHz but can operate at higher frequencies.

Encoding Characteristics

Encoding characteristics over Recommended Operating range and recommended mounting tolerances. Values are for the worst error over the full rotation.

Parameter	Symbol	Typ.[2]	Max.	Units	Notes
Pulse Width Error	ΔP	7	45	elec. deg.	
Logic State Width Error	ΔS	5	45	elec. deg.	
Phase Error	$\Delta \phi$	2	20	elec. deg.	
Position Error	$\Delta \Theta$	10	40	minutes of arc	
Cycle Error	ΔC	3	5.5	elec. deg.	

Note:

2. Typical errors are computed as the absolute value of the mean error.

Mechanical Characteristics

Parameter	Symbol	Dimension	Tolerance	Units
Standard Shaft Diameters		$2 \quad 3 \quad 4$	$\begin{aligned} & +0.000 \\ & -0.015 \end{aligned}$	mm
		5/32 1/8 $3 / 16 \quad 1 / 4$	$\begin{aligned} & +0.0000 \\ & -0.0007 \end{aligned}$	inches
Moment of Inertia	J	$0.6\left(8.0 \times 10^{-6}\right)$		$\mathrm{gcm}{ }^{2}\left(\mathrm{oz}-\mathrm{in}-\mathrm{s}^{2}\right)$
Required Shaft Length ${ }^{[3]}$		$\begin{gathered} 14.0 \\ (0.55) \end{gathered}$	$\begin{gathered} \pm 0.5 \\ (\pm 0.02) \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ \text { (inches) } \end{gathered}$
Bolt Circle	2 screw mounting	$\begin{gathered} 19.05 \\ (0.750) \end{gathered}$	$\begin{gathered} \pm 0.13 \\ (\pm 0.005) \end{gathered}$	mm (inches)
	3 screw mounting	$\begin{gathered} 20.90 \\ (0.823) \end{gathered}$	$\begin{gathered} \pm 0.13 \\ (\pm 0.005) \end{gathered}$	$\begin{aligned} & \mathrm{mm} \\ & \text { (inches) } \end{aligned}$
Mounting Screw Size	2 screw mounting	M 2.5 or (2-56)		mm (inches)
	3 screw mounting	M 1.6 or (0-80)		mm (inches)
Encoder Base Plate Thickness		0.33 (0.130)		mm (inches)
Hub Set Screw		(2-56)		(inches)

Note:

3. An $8.9 \mathrm{~mm}\left(0.35^{\prime \prime}\right)$ diameter hole through the housing of the HEDS-5500 is available for extended motor shafts. Please consult your Hewlett-Packard sales representative for further information.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, typical at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	I_{CC}		17	40	mA	
High Level Output Voltage	V_{OH}	2.4			Volts	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ Max.
Low Level Output Voltage	V_{OL}			0.4	Volts	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
Rise Time	I_{r}		200		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
Fall Time	t_{f}		50		ns	$\mathrm{R}_{\mathrm{L}}=11 \mathrm{~K}$ Pull-up

Note:

1. For improved performance in noisy environments or high speed applications, a $3.3 \mathrm{k} \Omega$ pull-up resistor is recommended.

Suggested Connectors

Manufacturer	Part Number
AMP	$103686-4$
	$640442-5$
Berg	$65039-032$ with
	$4825 X-000$ terminals
	$65801-034$
Molex	2695 series with
	2759 series terminals

Ordering Information

Note:
4. Other code wheel resolutions are available. Please consult your Hewlett-Packard sales representative for further information.

Mounting Considerations

The HEDS - 5500 can be mounted to a motor using either the two screw or three screw mounting option as shown in figure 1. If the encoder is attached to the motor with the screw sizes and mounting tolerances specified in the encoding characteristics section without any additional mounting bosses, the encoder output errors will be within the maximums specified in the encoding characteristics section.
The optional alignment pins shown in figure 2 can be used with either the two or three screw mounting option to improve the alignment of the encoder to the motor. This improved alignment will result in better encoder performance.

The best encoder performance will be obtained by mounting the encoder onto the motor using the optional motor boss with either the two or three screw mounting option as shown in figure 2.

Figure 2. Optional Mounting Aids

Figure 1. Mounting Holes

Encoder Mounting and Assembly

1. Mount encoder base plate onto motor. Tighten screws. (Reference page 5 for mounting considerations).

3a. Push the hex wrench into the body of the encoder to ensure that it is properly seated into the code wheel hub set screw. Then apply a downward force on the end of the hex wrench. This sets the code wheel gap by levering the code wheel hub to its upper position.
3b. While continuing to apply a downward force, rotate the hex wrench in the clockwise direction until the hub set screw is tight against the motor shaft. The hub set screw attaches the code wheel to the motor's shaft.

3c. Remove the hex wrench by pulling it straight out of the encoder body.

2. Snap encoder body onto base plate locking all 4 snaps.

4. Use the center screwdriver slot, or either of the two side slots, to rotate the encoder cap dot clockwise from the one dot position to the two dot position. Do not rotate the encoder cap counterclockwise beyond the one dot position.

The encoder is ready for use!

28 mm DIAMETER TWO AND THREE CHANNEL INCREMENTAL OPTICAL ENCODER KIT

Features

- SMALL SIZE - 28 mm DIAMETER
- 100-512 CYCLES/REVOLUTION AVAILABLE
- MANY RESOLUTIONS STANDARD
- LOW INERTIA
- QUICK ASSEMBLY
- 0.25 mm (. 010 INCHES) END PLAY ALLOWANCE
- TTL COMPATIBLE DIGITAL OUTPUT
- SINGLE 5V SUPPLY
- WIDE TEMPERATURE RANGE
- INDEX PULSE AVAILABLE

Description

The HEDS-5000 series is a high resolution incremental optical encoder kit emphasizing reliability and ease of assembly. The 28 mm diameter package consists of 3 parts: the encoder body, a metal code wheel, and an emitter end plate. An LED source and lens transmit collimated light from the emitter module through a precision metal code wheel and phase plate into a bifurcated detector lens.
The light is focused onto pairs of closely spaced integrated detectors which output two square wave signals in quadrature and an optional index pulse. Collimated light and a custom photodetector configuration increase long life reliability by reducing sensitivity to shaft end play, shaft eccentricity and LED degradation. The outputs and the 5V supply input of the HEDS-5000 are accessed through a 10 pin connector mounted on a .6 metre ribbon cable.

A standard selection of shaft sizes and resolutions between 100 and 512 cycles per revolution are available. Consult the factory for custom resolutions. The part number for the standard 2 channel kit is HEDS-5000, while that for the 3 channel device, with index pulse, is HEDS-5010. See Ordering Information for more details. For additional design information, see Application Note 1011.

Applications

Printers, Plotters, Tape Drives, Positioning Tables, Automatic Handlers, Robots, and any other servo loop where a small high performance encoder is required.

Block Diagram and Output Waveforms

Theory of Operation

The incremental shaft encoder operates by translating the rotation of a shaft into interruptions of a light beam which are then output as electrical pulses.

In the HEDS-5XXX the light source is a Light Emitting Diode collimated by a molded lens into a parallel beam of light. The Emitter End Plate contains two or three similar light sources, one for each channel.
The standard Code Wheel is a metal disc which has N equally spaced apertures around its circumference. A matching pattern of apertures is positioned on the stationary phase plate. The light beam is transmitted only when the apertures in the code wheel and the apertures in the phase plate line up; therefore, during a complete shaft revolution, there will be N alternating light and dark periods. A molded lens beneath the phase plate aperture collects the modulated light into a silicon detector.
The Encoder Body contains the phase plate and the detection elements for two or three channels. Each channel consists of an integrated circuit with two photodiodes and amplifiers, a comparator, and output circuitry.
The apertures for the two photodiodes are positioned so that a light period on one detector corresponds to a dark period on the other ("push-pull"). The photodiode signals are amplified and fed to the comparator whose output changes state when the difference of the two photocurrents changes sign. The second channel has a similar configuration but the location of its aperture pair provides an output which is in quadrature to the first channel (phase difference of 90°). Direction of rotation is determined by observing which of the channels is the leading waveform. The outputs are TTL logic level signals.
The optional index channel is similar in optical and electrical configuration to the A and B channels previously described. An index pulse of typically 1 cycle width is generated for each rotation of the code wheel. Using the recommended logic interface, a unique logic state (P_{0}) can be identified if such accuracy is required.
The three part kit is assembled by attaching the Encoder Body to the mounting surface using three screws. The Code Wheel is set to the correct gap and secured to the shaft. Snapping the cover (Emitter End Plate) on the body completes the assembly. The only adjustment necessary is the encoder centering relative to the shaft. This optimizes quadrature and the optional index pulse outputs.

Index Pulse Considerations

The motion sensing application and encoder interface circuitry will determine the necessary phase relationship of the index pulse to the main data tracks. A unique shaft position can be identified by using the index pulse output only or by logically relating the index pulse to the A and B data channels. The HEDS-5010 allows some adjustment of the index pulse position with respect to the main data channels. The position is easily adjusted during the assembly process as illustrated in the assembly procedures.

Definitions

Electrical degrees:
1 shaft rotation $=360$ angular degrees

$$
\begin{aligned}
& =N \text { electrical cycles } \\
1 \text { cycle } & =360 \text { electrical degrees }
\end{aligned}
$$

Position Error:
The angular difference between the actual shaft position and its position as calculated by counting the encoder's cycles.

Cycle Error:

An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.
Phase:
The angle between the center of Pulse A and the center of Pulse B.
Index Phase:
For counter clockwise rotation as illustrated above, the Index Phase is defined as:

$$
\Phi_{1}=\frac{\left(\phi_{1}-\phi_{2}\right)}{2}
$$

ϕ_{1} is the angle, in electrical degrees between the falling edge of I and falling edge of B. ϕ_{2} is the angle, in electrical degrees, between the rising edge of A and the rising edge of I.

Index Phase Error:

The Index Phase Error $\left(\Delta \Phi_{I}\right)$ describes the change in the Index Pulse position after assembly with respect to the A and B channels over the recommended operating conditions.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	$\mathrm{T}_{\text {S }}$	-55	100	${ }^{\circ}$ Celsius	
Operating Temperature	T_{A}	-55	100	${ }^{\circ}$ Celsius	See Note 1
Vibration			20	g	See Note 1
Shaft Axial Play	4	-	. 50 (20)	mm (1 inch/1000) TIR	
Shaft Eccentricity Plus Radial Play			. 1 (4)	mm(1 inch/1000) TIR	Movement should be limited even under shock conditions.
Supply Voltage	$V_{C C}$	-0.5	7	Volts	
Output Voltage	Vo	-0.5	$V_{C C}$	Volts	-
Output Current per Channel	10	-1	5	mA	\%
Velocity			30,000	R.P.M.	
Acceleration	α		250,000	Rad. Sec ${ }^{-2}$	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Temperature	T	-20	85	${ }^{\circ} \mathrm{Celsius}$	Non-condensing atmos.
Supply Voltage	Vcc	4.5	5.5	Volt	Ripple $<100 \mathrm{mV}$ p-p
Code Wheel Gap			1.1 (45)	mm (inch/1000)	Nominal gap $=$
Shaft Perpendicularity Plus Axial Play			0.25 (10)	$\begin{gathered} \mathrm{mm}\left(\begin{array}{l} \text { inch } / 1000) \\ \text { TIR } \end{array}\right. \\ \hline \end{gathered}$	$0.63 \mathrm{~mm}(.025 \mathrm{in}$.) when shaft is at minimum gap position.
Shaft Eccentricity Plus Radial Play			0.04 (1.5)	mm (inch/1000) TIR	10 mm (0.4 inch) from mounting surface.
Load Capacitance	CL		100	pF	

Encoding Characteristics

The specifications below apply within the recommended operating conditions and reflect performance at 500 cycles per revolution ($N=500$). Some encoding characteristics improve with decreasing cycles (N). Consult Application Note 1011 or factory for additional details.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes (See Definitions)
Position Error Worst Error Full Rotation	$\Delta \Theta$		10	40	Minutes of Arc	1 Cycle $=43.2$ Minutes See Figure 5.
Cycle Error - Worst Error Full Rotation	$\Delta \mathrm{C}$	\cdots	3	5.5	Electrical deg.	
Max. Count Frequency	$f_{\text {max }}$	130,000	200,000		Hertz	$f=$ Velocity (RPM) $\times \mathrm{N} / 60$
Pulse Width Error Worst Error Full Rotation	ΔP		16		Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 2
Phase Sensitivity to Eccentricity			$\begin{aligned} & 520 \\ & (13) \end{aligned}$		Elec. deg. $/ \mathrm{mm}$ (Elec. deg./mil)	$\mathrm{mil}=$ inch/ 1000
Phase Sensitivity to Axial Play			$\begin{aligned} & 20 \\ & (.5) \end{aligned}$		Elec. deg. $/ \mathrm{mm}$ Elec. deg./mil)	$\mathrm{mil}=$ inch/1000
Logic State Width Error- Worst Error Full Rotation	ΔS		25		Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 2
Index Pulse Width	P_{1}		360		Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 3
Index Phase Error	$\Delta \Phi_{1}$		0	17	Electrical deg.	See Notes 4, 5
Index Pulse Phase Adjustment Range		± 70	± 130		Electrical deg.	See Note 5

Mechanical Characteristics

Parameter	Symbol	Dimension	Tolerance	Units	Notes
Outline Dimensions		See Mech. Dwg.			
Code Wheel Available to Fit the Following Standard Shaft Diameters		$\begin{array}{ll} 2 & 4 \\ 3 & 5 \end{array}$	$\begin{aligned} & +.000 \\ & -.015 \end{aligned}$	mm	
		5/32	$\begin{aligned} & +.0002 \\ & -.0005 \end{aligned}$	Inches	
		$3 / 16^{1 / 8} 1 / 4$	$\begin{aligned} & +.0000 \\ & -.0007 \end{aligned}$	inches	
Moment of Inertia	J	$0.4\left(6 \times 10^{-6}\right)$		$\mathrm{gcm}^{2}\left(\mathrm{oz-in}-\mathrm{s}^{2}\right)$	
Required Shaft Length		12.8 (.50)	$\pm 0.5(\pm 0.02)$	mm (inches)	See Figure 10. Shaft in minimum length position.
Bolt Circle		20.9 (.823)	$\pm 0.13(\pm 005)$	mm (inches)	See Figure 10.
Mounting Screw Size		$\begin{gathered} \hline 1.6 \times 0.35 \times 5 \mathrm{~mm} \\ \text { DIN } 84 \\ \text { or } \\ 0.80 \times 3 / 16 \\ \text { Binding Head } \\ \hline \end{gathered}$		mm inches	

Electrical Characteristics When operating within the recommended operating range.
Electrical Characteristics over Recommended Operating Range (Typical at $25^{\circ} \mathrm{C}$).

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	Icc		21	40	mA	HEDS-5000 (2 Channel)
			36	60		HEDS-5010 (3 Channel)
High Level Output Voltage	VOH	2.4			V	$\mathrm{IOH}=-40 \mu \mathrm{~A}$ Max.
Low Level Output Voltage	VOL			0.4	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$
Rise Time	tr		0.5		μs	$\mathrm{CLL}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=11 \mathrm{~K}$ Pull-up
Fall Time	tf		0.2			See Note 6
Cable Capacitance	Cco		12		$\mathrm{pF} /$ metres	Output Lead to Ground

NOTES:

1. The structural parts of the HEDS-5000 have been tested to 20 g and up to 500 Hz . For use outside this range, operation may be limited at low frequencies (high displacement) by cable fatigue and at high frequencies by code wheel resonatices. Resonant frequency depends on code wheel material and number of counts per revolution. For temperatures below $-20^{\circ} \mathrm{C}$ the ribbon cable becomes brittle and sensitive to displacements. Maximum operating and storage temperature includes the surface area of the encoder mounting. Consult factory for further information. See Application Note 1011.
2. In a properly assembled lot 99% of the units, when run at $25^{\circ} \mathrm{C}$ and 8 KHz , should exhibit a pulse width error less than 35 electrical degrees, and a state width error less than 45 electrical degrees. To calculate errors at other speeds and temperatures add the values specified in Figures 1 or 2 to the typical values specified under encoding characteristics or to the maximum 99% values specified in this note.
3. In a properly assembled lot, 99% of the units when run at $25^{\circ} \mathrm{C}$ and 8 KHz should exhibit an index pulse width greater than 260 electrical degrees and less than 460 electrical degrees. To calculate index pulse widths at other speeds and temperatures add the values specified in Figures 3 or 4 to the typical 360° pulse width or to the maximum 99% values specified in this note.
4. After adjusting index phase at assembly, the index phase error specification ($\Delta \Phi_{1}$) indicates the expected shift in index pulse position with respect to channels A and B over the range of recommended operating conditions and up to 50 KHz .
5. When the index pulse is centered on the low-low states of channels A and B as shown on page 2, a unique Po can be defined once per revolution within the recommended operating conditions and up to 25 KHz . Figure 6 shows how Po can be derived from A, B, and I outputs. The adjustment range indicates how far from the center of the low-low state that the center of the index pulse may be adjusted.
6. The rise time is primarily a function of the $R C$ time constant of R_{L} and C_{L}. A faster rise time can be achieved with either a lower value of R_{L} or C_{L}. Care must be observed not to exceed the recommended value of loL under the worst case conditions.

Figure 1. Typical Change in Pulse Width Error or in State Width Error due to Speed and Temperature

Figure 3. Typical Change in Index Pulse Width Due to Speed and Temperature

Figure 5. Position Error vs. Shaft Eccentricity

DASHED LINES REPRESENT AN OPTIONAL INDEX SUMMING CIRCUIT. STANDARD 74 SERIES COULD ALSO BE USED TO IMPLEMENT THIS CIRCUIT.

Figure 6. Recommended Interface Circuit

Figure 2. Maximum Change in Pulse Width Error or in State Width Error Due to Speed and Temperature

Figure 4. Maximum Change in Index Pulse Width Due to Speed and Temperature

вотtom View

	PINOUT
PIN \#	
1	FUNCTION
2	CHANNEL A
3	GROUND
4	N.C. OR GROUND
5	N.C. OR GROUND
6	GROUND
7	VCC
8	CHANNEL B
9	VCC
10	CHANNEL I

NOTE: REVERSE INSERTION OF THE CONNECTOR WILL PERMANENTLY DAMAGE THE DETECTOR IC. MATING CONNECTOR BERG 65-692-001 OR EQUIVALENT

Figure 7. Connector Specifications

Figure 8. HEDS-5000 Series Encoder Kit

Figure 9. Code Wheel

MILLIMETRE .X $\pm .5 \quad . X X \pm .10$
(INCHES) (.XX $\pm .02 \quad . X X X \pm .005)$

Figure 10. Mounting Requirements

Ordering Information

Shaft Encoder Kit Assembly see Application Note 1011 tor turther discussion.

The following assembly procedure represents a simple and reliable method for prototype encoder assembly. High volume assembly may suggest modifications to this procedure using custom designed tooling. In certain high volume applications encoder assembly can be accomplished in less than 30 seconds. Consult factory for further details. Note: The code wheel to phase plate gap should be set between 0.015 in . and 0.045 in .

WARNING: THE ADHESIVES USED MAY BE HARMFUL. CONSULT THE MANUFACTURER'S RECOMMENDATIONS.
READ THE INSTRUCTIONS TO THE END BEFORE STARTING ASSEMBLY.

1.0 SUGGESTED MATERIALS

1.1 Encoder Parts

Encoder Body
Emitter End Plate
Code Wheel
1.2 Assembly Materials

RTV - General Electric 162

- Dow Corning 3145

Epoxy-Hysol 1C
Acetone
Mounting Screws (3)
RTV and Epoxy Applicators
1.3 Suggested Assembly Tools
a) Holding Screwdriver.
b) Torque Limiting Screwdriver, $0.36 \mathrm{~cm} \mathrm{~kg}(5.0 \mathrm{in}$. oz.).
c) Depth Micrometer or HEDS-8922 Gap Setter.
d) Oscilloscope or Phase Meter (Described in AN 1011). Either may be used for two channel phase adjustment. An oscilloscope is required for index pulse phase adjustment.
1.4 Suggested Circuits
a) Suggested circuit for index adjustment (HEDS-5010).
 OUTPUT TO OSCILLOSCOPE
BUFFER AO $1 / 474$ LS32
For optimal index phase, ad ncoder position to equalize T_{1} and T_{2} pulse widths.
b) P.hase Meter Circuit

Recommended for volume assembly. Please see Application Note 1011 for details.

2.0 SURFACE PREPARATION

THE ELAPSED TIME BETWEEN THIS STEP AND THE COMPLETION OF STEP 8 SHOULD NOT EXCEED $1 / 2$ HOUR.
2.1 Clean and degrease with acetone the mounting surface and shaft making sure to keep the acetone away from the motor bearings.
2.2 Load the syringe with RTV.
2.3 Apply RTV into screw threads on mounting surface. Apply more RTV on the surface by forming a daisy ring pattern connecting the screw holes as shown above.

CAUTION: KEEP RTV AWAY FROM THE SHAFT BEARING.
3.0 ENCODER BODY ATTACHMENT

3.1 Place the encoder body on the mounting surface and slowly rotate the body to spread the adhesive. Align the mounting screw holes with the holes in the body base.
3.2 Place the screws in the holding screwdriver and thread them into the mounting holes. Tighten to approximately 0.36 cm kg ($5.0 \mathrm{in} .0 z$.) using a torque limiting screwdriver if available (See notes a and b below). Remove centering cone if used.
Notes:
a) At this torque value, the encoder body should slide on the mounting surface only with considerable thumb pressure.
b) The torque limiting screwdriver should be periodically calibrated for proper torque.

4.0 EPOXY APPLICATION

CAUTION: HANDLE THE CODE WHEEL WITH CARE.
4.1 Collect a small dab of epoxy on an applicator.
4.2 Spread the epoxy inside the lower part of the hub bore.
4.3 Holding the code wheel by its hub, slide it down the shaft just enough to sit it squarely. About 3 mm (1/8").

5.0 CODE WHEEL POSITIONING

5.1 Take up any loose play by lightly pulling down on the shaft's load end.
5.2 Using the gap setter or a depth micrometer, push the code wheel hub down to a depth of 1.65 mm (. 065 in .) below the rim of the encoder body. The registration holes in the gap setter will align with the snaps protruding from the encoder body near the cable.
5.3 Check that the gap setter or micrometer is seated squarely on the body rim and maintains contact with the code wheel hub.
5.4 No epoxy should extrude through the shaft hole.

DO NOT TOUCH THE CODE WHEEL AFTER ASSEMBLY.

6.0 EMITTER END PLATE

6.1 Visually check that the wire pins in the encoder body are straight and straighten if necessary.
6.2 Hold the end plate parallel to the encoder body rim. Align the guiding pin on the end plate with the hole in the encoder body and press the end plate straight down until it is locked into place.
6.3 Visually check to see if the end plate is properly seated.

7.0 PHASE ADJUSTMENT

7.1 The following procedure should be followed when phase adjusting channels A and B.
7.2 Connect the encoder cable.
7.3 Run the motor. Phase corresponds to motor direction. See output waveforms and definitions. Using either an oscilloscope or a phase meter, adjust the encoder for minimum phase error by sliding the encoder forward or backward on the mounting surface as shown above. See Application Note 1011 for the phase meter circuit.
7.4 No stress should be applied to the encoder package until the RTV cures. Cure time is 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hrs. at room temperature.

Note: After mounting, the encoder should be free from mechanical forces that could cause a shift in the encoder's position relative to its mounting surface.

CODE WHEEL REMOVAL

In the event that the code wheel has to be removed after the epoxy has set, use the code wheel extractor as follows:
1 Remove the emitter end plate by prying a screwdriver in the slots provided around the encoder body rim. Avoid bending the wire leads.
2 Turn the screw on the extractor counter-clockwise until the screw tip is no longer visible.
3 Slide the extractor's horseshoe shaped lip all the way into the groove on the code wheel's hub.
4 While holding the extractor body stationary, turn the thumb screw clockwise until the screw tip pushes against the shaft.
5 Applying more turning pressure will pull the hub upwards breaking the epoxy bond.
6 Clean the shaft before reassembly.

8.0 INDEX PULSE ADJUSTMENT (HEDS-5010)

8.1 Some applications require that the index pulse be aligned with the main data channels. The index pulse position and the phase must be adjusted simultaneously. This procedure sets index phase to zero.
8.2 Connect the encoder cable.
8.3 Run the motor. Adjust for minimum phase error using an oscilloscope or phase meter (see 7.3).
8.4 Using an oscilloscope and the circuit shown in 1.4, set the trigger for the falling edge of the l output. Adjust the index pulse so that T_{1} and T_{2} are equal in width. The physical adjustment is a side to side motion as shown by the arrow.
8.5 Recheck the phase adjustment.
8.6 Repeat steps 8.3-8.5 until both phase and index pulse position are as desired.
8.7 No stress should be applied to the encoder package until the RTV has cured. Cure time: 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hrs . at room temperature.

SPECIALITY TOOLS - Available from Hewlett-Packard

a) HEDS-8920 Hub Puller

This tool may be used to remove code wheels from shafts after the epoxy has cured.

b) HEDS-8922 Gap Setter

This tool may be used in place of a depth micrometer as an aid in large volume assembly.

c) HEDS-892X Centering Cones

For easier volume assembly this tool in its appropriate shaft size may be used in step 3.0 to initially center the encoder body with respect to the shaft and aid in locating the mounting screw holes. Depending on the resolution and accuracy required this centering may eliminate the need for phase adjustment steps 7 and 8.

$\begin{array}{ll}\text { HEDS-8928 } & 1 / 4 \mathrm{in} . \\ \text { HEDS-8929 } & 4 \mathrm{~mm}\end{array}$
HEDS-8931 5 mm

Part Number		Shaft Size
HEDS-8923		2 mm
HEDS-8924		3 mm
HEDS-8925		$1 / 8 \mathrm{in}$.
HEDS-8926	$5 / 32 \mathrm{in}$.	
HEDS-8927	$3 / 16 \mathrm{in}$.	
HEDS-8928	$1 / 4 \mathrm{in}$.	
HEDS-8929	4 mm	
HEDS-8931	5 mm	

d) HEDS-8930 HEDS-5000 Tool Kit

1 Holding Screwdriver
1 Torque Limiting Screwdriver, 0.36 cm kg (5.0 in . oz.) HEDS-8920 Hub Puller HEDS-8922 Gap Setter
1 Carrying Case

HEWLETT PACKARD

56 mm DIAMETER TWO AND THREE CHANNEL INCREMENTAL OPTICAL ENCODER KIT

Features

- 192-1024 CYCLES/REVOLUTION AVAILABLE
- MANY RESOLUTIONS STANDARD
- QUICK ASSEMBLY
- 0.25 mm (. 010 INCHES) END PLAY ALLOWANCE
- TTL COMPATIBLE DIGITAL OUTPUT
- SINGLE 5V SUPPLY
- WIDE TEMPERATURE RANGE
- SOLID STATE RELIABILITY
- INDEX PULSE AVAILABLE

Description

The HEDS-6000 series is a high resolution incremental optical encoder kit emphasizing ease of assembly and reliability. The 56 mm diameter package consists of 3 parts: the encoder body, a metal code wheel, and emitter end plate. An LED source and lens transmit collimated light from the emitter module through a precision metal code wheel and phase plate into a bifurcated detector lens.

The light is focused onto pairs of closely spaced integrated detectors which output two square wave signals in quadrature and an optional index pulse. Collimated light and a custom photodetector configuration increase long life reliability by reducing sensitivity to shaft end play, shaft eccentricity and LED degradation. The outputs and the 5 V supply input of the HEDS-6000 are accessed through a 10 pin connector mounted on a .6 metre ribbon cable.

A standard selection of shaft sizes and resolutions between 192 and 1024 cycles per revolution are available. Consult the factory for custom resolutions. The part number for the standard 2 channel bit is HEDS-6000, while that for the 3 channel device, with index pulse, is HEDS-6010. See Ordering Information for more details. For additional design information, see Application Note 1011.

Applications

Printers, Plotters, Tape Drives, Positioning Tables, Automatic Handlers, Robots, and any other servo loop where a small high performance encoder is required.

Outline Drawing

Block Diagram and Output Waveforms

Theory of Operation

The incremental shaft encoder operates by translating the rotation of a shaft into interruptions of a light beam which are then output as electrical pulses.
In the HEDS-6XXX the light source is a Light Emitting Diode collimated by a molded lens into a parallel beam of light. The Emitter End Plate contains two or three similar light sources, one for each channel.

The standard Code Wheel is a metal disc which has N equally spaced slits around its circumference. An aperture with a matching pattern is positioned on the stationary phase plate. The light beam is transmitted only when the slits in the code wheel and the aperture line up; therefore, during a complete shaft revolution, there will be N alternating light and dark periods. A molded lens beneath the phase plate aperture collects the modulated light into a silicon detector.
The Encoder Body contains the phase plate and the detection elements for two or three channels. Each channel consists of an integrated circuit with two photodiodes and amplifiers, a comparator, and output circuitry.
The apertures for the two photodiodes are positioned so that a light period on one detector corresponds to a dark period on the other. The photodiode signals are amplified and fed to the comparator whose output changes state when the difference of the two photo currents changes sign ("PushPull"). The second channel has a similar configuration but the location of its aperture pair provides an output which is in quadrature to the first channel (phase difference of 90°). Direction of rotation is determined by observing which of the channels is the leading waveform. The outputs are TTL logic level signals.
The optional index channel is similar in optical and electrical configuration to the A,B channels previously described. An index pulse of typically 1 cycle width is generated for each rotation of the code wheel. Using the recommended logic interface, a unique logic state (P 0) can be identified if such accuracy is required.
The three part kit is assembled by attaching the Encoder Body to the mounting surface using two screws. The Code Wheel is set to the correct gap and secured to the shaft. Snapping the cover (Emitter End Plate) on the body completes the assembly. The only adjustment necessary is the encoder centering relative to the shaft, to optimize quadrature and optional index pulse output.

Index Pulse Considerations

The motion sensing application and encoder interface circuitry will determine the need for relating the index pulse to the main data tracks. A unique shaft position is identified by using the index pulse output only or by logically relating the index pulse to the A and B data channels. The HEDS-6010 index pulse can be uniquely related with the A and B data tracks in a variety of ways providing maximum flexibility. Statewidth, pulse width or edge transitions can be used. The index pulse position, with respect to the main data channels, is easily adjusted during the assembly process and is illustrated in the assembly procedures.

Definitions

Electrical degrees:

$$
\begin{aligned}
1 \text { shaft rotation } & =360 \text { angular degrees } \\
& =N \text { electrical cycles } \\
1 \text { cycle } & =360 \text { electrical degrees }
\end{aligned}
$$

Position Error:
The angular difference between the actual shaft position and its position as calculated by counting the encoder's cycles.
Cycle Error:
An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.
Phase:
The angle between the center of Pulse A and the center of Pulse B.

Index Phase:

For counter clockwise rotation as illustrated above, the Index Phase is defined as:

$$
\Phi_{1}=\frac{\left(\phi_{1}-\phi_{2}\right)}{2}
$$

ϕ_{1} is the angle, in electrical degrees, between the falling edge of I and falling edge of B. $\phi 2$ is the angle, in electrical degrees, between the rising edge of A and the rising edge of I.
Index Phase Error:
The Index Phase Error ($\Delta \Phi_{I}$) describes the change in the Index Pulse position after assembly with respect to the A and B channels over the recommended operating conditions.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{5}	-55	100	${ }^{\circ}$ Celsius	
Operating Temperature	$\mathrm{T}_{\text {A }}$	-55	100	${ }^{\circ} \mathrm{Celsius}$	See Note 1
Vibration			20	g	See Note 1
Shaft Axial Play		-ax	$58(23)$	$\begin{aligned} & \mathrm{mm} \text { (inch } / 1000 \text {) } \\ & \text { TIR } \end{aligned}$	4
Shaft Eccentricity Plus Radial Play			. 25 (10)	$\begin{aligned} & \mathrm{mm}(\text { inch } / 1000) \\ & \text { TIR } \end{aligned}$	Movement should be limited even under shock conditions.
Supply Voltage.	$V_{C C}$	-0.5	7	Volts	
Output Voltage	V_{0}	-0.5	$V_{C C}$	Volts	W-
Output Current	10	-1	5	mA	-
Velocity			12,000	R.P.M.	=
Acceleration	α		250,000	Rad. Sec ${ }^{-2}$	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Temperature	T	-20	85	${ }^{\circ}$ Celsius	Non-condensing atmos.
Supply Voltage	V_{CC}	4.5	5.5	Volt	Ripple $<100 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
Code Wheel Gap			$1.1(45)$	mm (inch/1000)	Nominal gap $=$ 0.76 mm (.030 in.) when shaft S
Shaft Perpendicularity Plus Axial Play			$0.25(10)$	mm (inch/1000) TIR	minimum gap position.
Shaft Eccentricity Plus Radial Play			$0.04(1.5)$	mm (inch/1000) TIR	10 mm (0.4 inch) from mounting surface.
Load Capacitance	CL		100	pF	

Encoding Characteristics

The specifications below apply within the recommended operating conditions and reflect performance at 1000 cycles per revolution ($N=1000$). Some encoding characteristics improve with decreasing cycles (N). Consult Application Note 1011 or factory for additional details.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes (See Definitions)
Position Error	$\Delta \Theta$		7	18	Minutes of Arc	1 Cycle $=21.6$ Minutes See Figure 5.
Cycle Error	$\Delta \mathrm{C}$		3	5.5	Electrical deg.	
Max. Count Frequency	fmax	130,000	200,000		Hertz	$\mathrm{f}=$ Velocity $(\mathrm{RPM}) \times \mathrm{N} / 60$
Pulse Width Error	ΔP		12		Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 2
Phase Sensitivity to Eccentricity			$\begin{aligned} & 227 \\ & (5.8) \end{aligned}$		Elec. deg. $/ \mathrm{mm}$ (Elec. deg./mil)	$\mathrm{mil}=$ inch/1000
Phase Sensitivity to Axial Play			$\begin{aligned} & 20 \\ & 1.51 \end{aligned}$		Elec. deg./mm (Elec. deg./mil)	$\mathrm{mil}=$ inch/1000
Logic State Width Error	ΔS		25	,	Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 2
Index Pulse Width	Pl		360		Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 3
Index Phase Error	$\Delta \Phi_{1}$		0	17	Electrical deg.	See Notes 4, 5
Index Pulse Adjustment Range			± 165		Electrical deg.	

Mechanical Characteristics

Parameter	Symbol	Dimension	Tolerance	Units	Notes
Outline Dimensions		See Mech. Dwg.			
Code Wheel Available to Fit the Following Standard Shaft Diameters		$\begin{aligned} & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & +.000 \\ & -.015 \end{aligned}$	mm	
		$3 / 16$ $3 / 8$ $1 / 4$ $1 / 2$ $5 / 16$ $5 / 8$	$\begin{aligned} & +.0000 \\ & -.0007 \end{aligned}$	inches	
Moment of Inertia	J	$7.7\left(110 \times 10^{-6}\right)$		$\mathrm{gcm}^{2}\left(\mathrm{oz-in}-\mathrm{s}^{2}\right)$	
Required Shaft Length		15.9 (0.625)	± 0.6 ($\pm .024$)	mm (inches)	See Figure 10 , Shaft at minimum length position.
Bolt Circle		46.0 (1.811)	$\pm 0.13 \pm .005$	mm (inches)	See Figure 10.
Mounting Screw Size		$\begin{gathered} 2.5 \times 0.45 \times 5 \\ O R \\ \# 2-56 \times 3 / 16 \\ \text { Pan Head } \end{gathered}$		mm inches	

Electrical CharacteristicS when operating within the recommended operating range.
Electrical Characteristics over Recommended Operating Range (Typical at $25^{\circ} \mathrm{C}$).

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	Icc		21	40	mA	HEDS-6000 (2 Channel)
			36	60		HEDS-6010 (3 Channel)
High Level Output Voltage	VOH	2.4			V	$\mathrm{IOH}=-40 \mu \mathrm{~A}$ Max.
Low Level Output Voltage	Vol			0.4	V	$1 \mathrm{LL}=3.2 \mathrm{~mA}$
Rise Time	tr_{r}		0.5		$\mu \mathrm{S}$	$\mathrm{CL}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=11 \mathrm{~K}$ Pull-up
Fall Time	tf_{f}		0.2			See Note 6
Cable Capacitance	Cco		12		pF/meter	Output Lead to Ground

NOTES:

1. The structural parts of the HEDS-6000 have been successfully tested to 20 g . In a high vibration environment use is limited at low frequencies (high displacement) by cable fatigue and at high frequencies by code wheel resonances. Resonant frequency depends on code wheel material and number of counts per revolution. For temperatures below $-20^{\circ} \mathrm{C}$ the ribbon cable becomes brittle and sensitive to displacements. Maximum operating and storage temperature includes the surface area of the encoder mounting. Consult factory for further information. See Application Note 1011.
2. In a properly assembled lot 99% of the units, when run at $25^{\circ} \mathrm{C}$ and 8 KHz , should exhibit a pulse width error less than 32 electrical degrees, and a state width error less than 40 electrical degrees. To calculate errors at other speeds and temperatures add the values specified in Figures 1 or 2 to the typical values specified under encoding characteristics or to the maximum 99% values specified in this note.
3. In a properly assembled lot, 99% of the units when run at $25^{\circ} \mathrm{C}$ and 8 KHz should exhibit an index pulse width greater than 260 electrical degrees and less than 460 electrical degrees. To calculate index pulse widths at other speeds and temperatures add the values specified in Figures 3 or 4 to the typical 360° pulse width or to the maximum 99% values specified in this note.
4. Index phase is adjusted at assembly. Index phase error is the maximum change in index phase expected over the full temperature range and up to 50 KHz , after assembly adjustment of the index pulse position has been made.
5. When the index pulse is centered on the low-low states of channels A and B as shown on page 2, a unique Po can be defined once per revolution within the recommended operating conditions and up to 25 KHz . Figure 6 shows how Po can be derived from A, B, and I outputs. The adjustment range indicates how far from the center of the low-low state that the center of the index pulse may be adjusted.
6. The rise time is primarily a function of the $R C$ time constant of R_{L} and C_{L}. A faster rise time can be achieved with either a lower value of RL or C_{L}. Care must be observed not to exceed the recommended value of loL under worst case conditions.

Figure 1. Typical Change in Pulse Width Error or in State Width Error due to Speed and Temperature

Figure 3. Typical Change in Index Pulse Width Due to Speed and Temperature

Figure 5. Position Error vs. Shaft Eccentricity

ELECTRICAL DEGREES

Figure 2. Maximum Change in Pulse Width Error or in State Width Error Due to Speed and Temperature

Figure 4. Maximum Change in Index Pulse Width Due to Speed and Temperature

dashed lines represent an optional index summing circuit. STANDARD 74 SERIES COULD ALSO BE USED TO IMPLEMENT THIS CIRCUIT.

Figure 6. Recommended Interface Circuit

MATING CONNECTOR
BERG 65-692-001 OR EQUIVALENT
Figure 7. Connector Specifications

Figure 9. Code Wheel

Ordering Information

*NO OPTION IS SPECIFIED WHEN ORDERING EMITTER END PLATES ONLY.

Shaft Encoder Kit Assembly see Application Note 1011 tor turther discussion.

The following assembly procedure represents a simple and reliable method for prototype encoder assembly. High volume assembly may suggest modifications to this procedure using custom designed tooling. In certain high volume applications encoder assembly can be accomplished in less than 30 seconds. Consult factory for further details. Note - the code wheel to phase plate gap should be set between 0.015 in . and 0.045 in .

WARNING: THE ADHESIVES USED MAY BE HARMFUL. CONSULT THE MANUFACTURER'S RECOMMENDATIONS.

READ THE INSTRUCTIONS TO THE END BEFORE STARTING ASSEMBLY.

1.0 SUGGESTED MATERIALS

1.1 Encoder Parts

Encoder Body
Emitter End Plate
Code Wheel
1.2 Assembly Materials

RTV-General Electric 162
-Dow Corning 3145
Acetone
Mounting Screws (2)
1.3 Assembly Tools
a) Torque limiting screwdriver, 0.5 cm kg . 7.0 in . oz.).
b) Straight edge. Straight within 0.1 mm (0.004 in .)
c) Oscilloscope. (Phase meter may be optionally used for two channel calibration).
d) Hub puller. Grip-O-Matic-OTC \#1000 2-jaw or equivalent. Optional tool for removing code wheels.
e) Syringe applicator for RTV.
f) Torque limiting Allen wrench. 0.5 cm kg (7.0 in . oz.) 0.035 in . hex.
1.4 Suggested Circuits
a) Suggested circuit for index adjustment (HEDS-6010).

For optimal index phase adjust encoder position to equalize T_{1} and T_{2} pulse widths.
b) Phase Meter Circuit

Recommended for volume assembly. Please see Application Note 1011 for details.

2.0 SURFACE PREPARATION

THE ELAPSED TIME BETWEEN THIS STEP AND THE COMPLETION OFSTEP 8 SHOULD NOT EXCEED $1 / 2$ HOUR.
2.1 Clean and degrease with acetone the mounting surface and shaft making sure to keep the acetone away from the motor bearings.
2.2 Load the syringe with RTV.
2.3 Apply RTV into screw threads on mounting surface. Apply more RTV on the surface by forming a daisy ring pattern connecting the screw holes as shown above.

CAUTION: KEEP RTV AWAY FROM THE SHAFT BEARING.
3.0 ENCODER BODY ATTACHMENT

3.1 Place the encoder body on the mounting surface and slowly rotate the body to spread the adhesive. Align the mounting screw holes with the holes in the body base.
3.2 Place the two mounting screws into the holding bosses in the body base, as shown.
3.3 Thread the screws into the mounting holes and tighten both to $0.5 \mathrm{~cm} \mathrm{~kg}(7.0 \mathrm{in} .0 z$.$) using the torque limiting screwdriver.$ (See notes A and B).
3.4 It is not necessary to center the encoder body at this time.

Notes:

a) At this torque value, the encoder body should slide on the mounting surface only with considerable thumb pressure.
b) The torque limiting screwdriver should be periodically calibrated for proper torque.

4.0 APPLICATION OF RTV TO THE HUB

4.1 Make sure that the hex screw on the hub does not enter into the hub bore.
4.2 Apply a small amount of RTV onto the inner surface of the hub bore.
4.3 Spread the RTV evenly inside the entire hub bore.
4.4 Holding the code wheel by its hub, slide it down onto the shaft until the shaft extends at least halfway into the bore.

5.0 CODE WHEEL POSITIONING

5.1 Position the Allen torque wrench into the hex set screw in the hub, as shown.
5.2 Pull the shaft end down to bottom out axial shaft play. Using the straight edge, push the top of the hub even with the top of the encoder body. The Allen wrench should be used during this movement to apply a slight upward force to the hub, insuring continuous contact between the straight edge and the hub.
5.3 Tighten the hex set screw to approximately $0.5 \mathrm{~cm} . \mathrm{kg} .(7.0 \mathrm{in}$. oz.) and remove the straight edge.
5.4 The code wheel gap may now be visually inspected to check against gross errors. A nominal gap of $0.8 \mathrm{~mm}(0.030 \mathrm{in} .1$ should be maintained.

6.0 EMITTER END PLATE

6.1 Visually check that the wire pins in the encoder body are straight and straighten if necessary.
6.2 Align the emitter end plate so that the two flanges straddle the track of the encoder body where the wire pins are located. Press the end plate until it snaps into place.
6.3 Visually check to see if the end plate is properly seated.

7.0 PHASE ADJUSTMENT

7.1 The following procedure should be followed when phase adjusting channels A and B .
7.2 Connect the encoder cable.
7.3 Run the motor. Phase corresponds to motor direction. See output waveforms and definitions. Using either an oscilloscope or a phase meter, adjust the encoder for minimum phase error by sliding the encoder forward or backward on the mounting surface as shown above. See Application Note 1011 for the phase meter circuit.
7.4 No stress should be applied to the encoder package until the RTV cures. Curve time is 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hours at room temperature.

Note: After mounting, the encoder should be free from mechanical forces that could cause a shift in the encoder's position relative to its mounting surface.

8.0 INDEX PULSE ADJUSTMENT (HEDS-6010)

8.1 Some applications require that the index pulse be aligned with the main data channels. The index pulse position and the phase must be adjusted simultaneously. This procedure sets index phase to zero.
8.2 Connect the encoder cable.
8.3 Run the motor. Adjust for minimum phase error using an oscilloscope or phase meter. (See 7.3).
8.4 Using an oscilloscope and the circuit shown in 1.4 , set the trigger for the falling edge of the P_{1} output. Adjust the index pulse so that T_{1} and T_{2} are equal in width. The physical adjustment is a side to side motion as shown by the arrow.
8.5 Recheck the phase adjustment.
8.6 Repeat steps 8.3-8.5 until both phase and index pulse position are as desired.
8.7 No stress should be applied to the encoder package until the RTV has cured. Cure time: 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hours at room temperature.

Features

- DESIGNED FOR MANUAL OPERATION

- SMALL SIZE
- RELIABLE OPTICAL TECHNOLOGY
- 256 PULSES PER REVOLUTION STANDARD Other Resolutions Available
- TTL COMPATIBLE DIGITAL OUTPUT
- SINGLE 5 V SUPPLY
- -20° TO $+85^{\circ} \mathrm{C}$ OPERATING RANGE
- 0.1 OZ.-IN. NOMINAL SHAFT TORQUE

Description

The HEDS-7500 series is a family of digital potentiometers designed for applications where a hand operated panel mounted encoder is required. The unit outputs two digital waveforms which are 90 degrees out of phase to provide resolution and direction information. 256 pulses per revolution is available as a standard resolution. The digital outputs and the 5 V supply input of the HEDS-7500 are accessed through color coded wire or through a 10 pin connector mounted on a 6 inch ribbon cable. Each digital output is capable of driving two standard TTL loads.

The HEDS-7500 emphasizes reliability by using solid state LEDs and photodiode detectors. A non-contacting slotted
code wheel rotates between the LED and detector to provide digital pulses without wipers or noise. The HEDS-7500 is configured to provide standard potentiometer type panel mounting. Additional design information is available in Application Note 1025.

Applications

The HEDS-7500 series digital potentiometer may be used in applications where a manually operated knob is required to convert angular position into digital information.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	TA_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Vibration			20	9	$20 \mathrm{~Hz}-2 \mathrm{kHz}$
Shock			30	g	11 msec
Supply Voltage	$\mathrm{VCC}_{\mathrm{CC}}$	-0.5	7	V	
Output Voltage	VO_{0}	-0.5	$\mathrm{VCC}_{\mathrm{CC}}$	V	
Output Current per Channel	10	-1	5	mA	
Shaft Load - Radial					
Axial			1	lbs	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Temperature	T	-20	85	${ }^{\circ} \mathrm{C}$	Non-condensing atmosphere
Supply Voltage	VCC	4.5	5.5	V	Ripple $<100 \mathrm{mV} \mathrm{V}_{\text {p-p }}$
Rotation Speed			300	RPM	

Electrical Characteristics when operating within the recommended operating range.
Electrical Characteristics Over Recommended Operating Range Typical at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	ICC		21	40	mA	
High Level Output Voltage	VOH	2.4			V	$\mathrm{IOH}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ Max.
Low Level Output Voltage	VOL			0.4	V	$\mathrm{IOL}=3.2 \mathrm{~mA}$

CAUTION: Device not intended for applications where coupling to a motor is required.

TERMINATION

Ribbon Cable Termination
Color Coded Wire Termination

NOTE: REVERSE INSERTION OF THE
CONNECTOR WILL PERMANENTLY
DAMAGE THE DETECTOR IC.
MATING CONNECTOR
BERG 65-692-001 OR EQUIVALENT

Ordering Information

Part Number	Description	
	PPR	Termination
HEDS-7500	256	Wire
HEDS-7501	256	Cable

Features

- DC, DC BRUSHLESS AND STEPPER MOTOR CONTROL
- POSITION CONTROL
- VELOCITY CONTROL
- PROGRAMMABLE VELOCITY PROFILING
- PROGRAMMABLE DIGITAL FILTER
- PROGRAMMABLE COMMUTATOR
- PROGRAMMABLE PHASE OVERLAP
- PROGRAMMABLE PHASE ADVANCE
- GENERAL 8 BIT PARALLEL I/O PORT
- 8 BIT PARALLEL MOTOR COMMAND PORT
- PWM MOTOR COMMAND PORT
- QUADRATURE DECODER FOR ENCODER SIGNALS
- 24 BIT POSITION COUNTER
- SINGLE 5 V POWER SUPPLY
- TTL COMPATIBLE
- 1 OR 2 MHz CLOCK OPERATION

Package Dimensions

40-PIN PLASTIC DUAL INLINE PACKAGE
General Description
The HCTL-1000 is a high performance, general purpose motion control IC fabricated in Hewlett-Packard NMOS technology. It performs all the time-intensive tasks of digital motion control, thereby freeing the host processor for other tasks. The simple programmability, of all control parameters provides the user with maximum flexibility and

Figure 1. System Block Dlagram
quick design of control systems with a minimum number of components. All that is needed for a complete servo system is a host processor to specify commands, an amplifier and motor with an incremental encoder. No analog compensation or velocity feedback is necessary (see Figure 1).
Table of Contents Page
General Description 1
Theory of Operation 2
Absolute Maximum Ratings 3
DC Characteristics 3
AC Characteristics 4
Timing Diagrams 5
Functional Pin Description 9
Operation of the HCTL-1000 10

- User Accessible Registers 10
- Operating Modes 13
- Commutator 17
Interfacing the HCTL-1000 20
- I/O Interface 20
- Encoder Interface 20
- Amplifier Interface 21

ESD WARNING: Since this is an NMOS device, normal

 precautions should be taken to avoid static damage.

Figure 2. Internal Block Diagram

Introduction

The purpose of this section is to describe the organization of this data sheet. The front page includes the key features of the HCTL-1000, a general description of the part, the mechanical drawing and pin-out, and a Table of Contents. Following this section is the Theory of Operation, which gives the user a brief overview of how the HCTL-1000 operates by describing the internal block diagram shown in Figure 2. The following five sections give the specifications of the HCTL-1000, including Absolute Maximum Ratings, DC Characteristics, AC Characteristics, Timing Diagrams, and Functional Pin Descriptions. The final two sections include the detailed information on how to operate and interface to the HCTL-1000. The How to Operate section discusses the function and address of each software register, and describes how to use the four position and velocity control modes and the electronic commutator. The How to Interface section describes how to interface the HCTL-1000 to a microprocessor, an encoder, and an amplifier.

Theory of Operation

The HCTL-1000 is a general purpose motor controller which provides position and velocity control for dc, dc brushless and stepper motors. The internal block diagram of the HCTL-1000 is shown in Figure 2. The HCTL-1000 receives it input commands from a host processor and position feedback from an incremental encoder with quadrature output. An 8-bit directional multiplexed address/data bus interfaces the HCTL-1000 to the host processor. The encoder feedback is decoded into quadrature counts and a 24-bit counter keeps track of position. The HCTL-1000 executes any one of four control algorithms selected by the user. The four control modes are:

- Position Control
- Proportional Velocity Control
- Trapezoidal Profile Control for point to point moves
- Integral Velocity Control with continuous velocity profiling using linear acceleration

The resident Position Profile Generator calculates the necessary profiles for Trapezoidal Profile Control and Integral Velocity Control. The HCTL-1000 compares the desired position (or velocity) to the actual position (or velocity) to compute compensated motor commands using a programmable digital filter $D(z)$. The motor command is externally available at the Motor Command port as an 8bit byte and at the PWM port as a Pulse Width Modulated (PWM) signal.
The HCTL-1000 has the capability of providing electronic commutation for dc brushless and stepper motors. Using the encoder position information, the motor phases are enabled in the correct sequence. The commutator is fully programmable to encompass most motor encoder combinations. In addition, phase overlap and phase advance can be programmed to improve torque ripple and high speed performance. The HCTL-1000 contains a number of flags including two externally available flags, Profile and Initialization, which allow the user to see or check the status of the controller. It also has two emergency flags, Limit and Stop, which allow operation of the HCTL-1000 to be interrupted under emergency conditions.
The HCTL-1000 controller is a digitally sampled data system. While information from the host processor is accepted asynchronously with respect to the control functions, the motor command is computed on a discrete sample time basis. The sample timer is programmable.

Absolute Maximum Ratings

Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	C to $+125^{\circ} \mathrm{C}$
Supply Voltage	-0.3 V to 7 V
Input Voltage	-0.3 V to 7 V
Maximum Power Dissipation	0.95 W
Maximum Clock Frequency	2 MHz

D.C. Characteristics $T_{A}=0^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{Vs}}=0 \mathrm{~V}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Condifions
Power Supply	V_{CC}	4.75	5.00	5.25	V	
Supply Current	1 CC		80	180	mA	
Input Leakage Current	11			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.25 \mathrm{~V}$
Tristate Output Leakage Current	1 Ion			± 10	$\mu \mathrm{A}$	$V_{\text {OUT }}=-0.3$ to 5.25 V
Input Low Voltage	$V_{\text {IL }}$	-0.3		0.8	V	
Input High Voltage	V_{H}	2.0		$V_{C C}$	V	
Output Low Voltage	V_{OL}	-0.3		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA}$
Output High Voltage	V OH	2.4		$V_{C C}$	\checkmark	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
Power Dissipation	P_{D}		400	950	mW	
Input Capacitance	$\mathrm{C}_{\text {IN }}$			20	pF	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ unmeasured pins returned to ground
Output Capacitance Load	COUT		100		pF	Same as above

A.C. Electrical Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$; Units $=$ nsec

ID\#	Signal	Symbol	Clock Frequency			
			2 MHz		1 MHz	
			Min.	Max.	Min.	Max.
1	Clock Period	$t_{\text {CPER }}$	500		1000	
2	Pulse Width, Clock High	$\mathrm{t}_{\text {CPWH }}$	230		300	
3	Pulse Width, Clock Low	$t_{\text {CPWL }}$	200		200	
4	Clock Rise and Fall Time	${ }_{\text {t }}^{\text {CR }}$		50		50
5	Input Pulse Width $\overline{\text { Reset }}$	$\mathrm{t}_{\text {IRST }}$	2500		5000	
6	Input Pulse Width Stop, Limit	$t_{i P}$	600		1100	
7	Input Pulse Width Index, Index	$t_{1 x}$	1600		3100	
8	Input Pulse Width CHA, CHB	$t_{\text {IAB }}$	1600		3100	
9	Delay CHA to CHB Transition	$t_{A B}$	600		1100	
10	Input Rise/Fall Time CHA, CHB, Index	${ }_{\text {IIABR }}$		450		900
11	Input Rise/Fall Time $\overline{\text { Reset }}, \overline{A L E}, \overline{C S}, \overline{O E}, \overline{\text { Stop, Limit }}$	$t_{\text {l }}$		50		50
12	Input Puise Width $\overline{A L E}, \overline{C S}$	tipw	80		80	
13	Delay Time, $\overline{A L E}$ Fall to $\overline{C S}$ Fall	$t_{A C}$	50		50	
14	Delay Time, $\overline{A L E}$ Rise to $\overline{C S}$ Rise	tca	50		50	
15	Address Set Up Time Betore ALE Rise	$t_{\text {ASR } 1}$	20		20	
16	Address Set Up Time Before $\overline{C S}$ Fall	$t_{\text {ASR }}$	20		20	
17	Write Data Set Up Time Before $\overline{C S}$ Rise	tDSR	20		20	
18	Address/Data Hold Time	t_{H}	20		20	
19	Set Up Time, R/W Before $\overline{C S}$ Rise	twes	20		20	
20	Hold Time, R//W After $\overline{C S}$ Rise	$t_{\text {WH }}$	20		20	
21	Delay Time, Write Cycle, $\overline{C S}$ Rise to $\overline{\text { ALE }}$ Fall	${ }_{\text {ctesal }}$	1700		3400	
22	Delay Time, Read/Write, $\overline{C S}$ Rise to $\overline{C S}$ Fall	tescs	1500		3000	
23	Write Cycle, $\overline{A L E}$ Fall to $\overline{\text { ALE }}$ Fall For Next Write	$t_{\text {wc }}$	1830		3530	
24	Delay time, $\overline{C S}$ Rise to $\overline{O E}$ Fall	tesoe	1700		3200	
25	Delay Time, $\overline{O E}$ Fall to Data Bus Valid	toedr	100		100	
26	Delay Time, $\overline{C S}$ Rise to Data Bus Valid	$\mathrm{t}_{\text {CSOB }}$	1800		3300	
27	Input Pulse Width $\overline{O E}$	tipwoe	100		100	
28	Hold Time, Data Held After $\overline{O E}$ Rise	$\mathrm{t}_{\text {DOEH }}$	20		20	
29	Delay Time, Read Cycle, $\overline{C S}$ Rise to $\overline{A L E}$ Fall	${ }^{\text {t CSALR }}$	1820		3320	
30	Read Cycle, $\overline{A L E}$ Fall to $\overline{\text { ALE Fall For Next Read }}$	$\mathrm{t}_{\text {RC }}$	1950		3450	
31	Output Pulse Width, PROF, INIT, Pulse, Sign, PHA-PHD, MC Port	tof	500		1000	
32	Output Rise/Fall Time, PROF, INIT, Pulse, Sign PHA-PHD, MC Port	tor	20	150	20	150
33	Delay Time, Clock Rise to Output Rise	$t_{\text {EP }}$	20	300	20	300
34	Delay Time, $\overline{C S}$ Rising to MC Port Valid	tcsme		1600		3200
35	Hold Time, $\overline{\text { ALE }}$ High After $\overline{C S}$ Rise	$t_{\text {ALH }}$	100		100	
36	Pulse Width, $\overline{\text { ALE }}$ High	${ }^{\text {taLPWH }}$	100		100	

HCTL-1000 I/O Timing Diagrams

Input logic level values are the TTL Logic levels $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{I H}=2.0 \mathrm{~V}$.
Output logic levels are $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$.

HCTL-1000 I/O Timing Diagrams

There are three different timing configurations which can be used to give the user flexibility to interface the HCTL-1000 to most microprocessors. See the I/O interface section for more details.

$\overline{\text { ALE/CS }}$ NON OVERLAPPED

Write Cycle

Read Cycle

HCTL-1000 I/O Timing Diagrams

$\overline{\text { ALE/CS }}$ OVERLAPPED

Write Cycle

Read Cycle

HCTL-1000 I/O Timing Diagrams

$\overline{\text { ale }}$ withing $\overline{\text { Cs }}$
Write Cycle

Read Cycle

Functional Pin Description

INPUT/OUTPUT SIGNALS

Symbol	Pin Number	Description
AD0/DB0- AD5/DB5	$2-7$	Address/Data bus - Lower 6 bits of 8-bit 1/O port which are multiplexed between address and data.
D6, D7	8,9	Data bus - Upper 2 bits of 8-bit 1/O port used for data only.

INPUT SIGNALS

Symbol	Pin Number	Description
$\mathrm{CHA} / \mathrm{CHB}$	31, 30	Channel A, B - input pins for position feedback from an incremental shaft encoder. Two channels, A and $B, 90$ degrees out of phase are required.
Index	33	Index Pulse - input from the reference or index pulse of an incremental encoder. Used only in conjunction with the Commutator. Either a low or high true signal can be used with the Index pin. See Timing Diagrams and Encoder Interface section for more detail.
R/ \bar{W}	37	Read/Write - determines direction of data exchange for the 1/O port.
$\overline{\text { ALE }}$	38	Address Latch Enable - enables lower 6 bits of external data bus into internal address latch.
$\overline{\mathrm{CS}}$	39	Chip Select - performs I/O operation dependent on status of R/W line. For a Write, the external bus data is written into the internal addressed location. For Read, data is read from an internal location into an internal output latch.
OE	40	Output Enable - enables the data in the internal output latch onto the external data bus to complete a Read operation.
$\overline{\text { Limit }}$	14	Limit Switch - an internal flag which when externally set, triggers an unconditional branch to the Initialization/ldle mode before the next control sample is executed. Motor Command is set to zero. Status of the Limit flag is monitored in the Status register.
$\overline{\text { Stop }}$	15	Stop Flag - an internal flag that is externally set. When flag is set during Integral Velocity Control mode, the Motor Command is decelerated to a stop.
Reset	36	Reset - a hard reset of internal circuitry and a branch to Reset mode.
ExtClk	34	External Clock
$V_{\text {cc }}$	11,35	Voltage Supply - Both Vcc pins must be connected to a 5.0 volt supply.
$V_{S S}$	10, 32	Circuit Ground
NC	1	Not Connected - this pin should be left floating.

OUTPUT SIGNALS

Symbol	Pin Number	Description
MC0-MC7	$18-25$	Motor Command Port - 8-bit output port which contains the digital motor command adjusted for easy bipolar DAC interfacing. MC7 is the most significant bit (MSB).
Pulse	16	Pulse - pulse width modulated signal whose duty cycle is proportional to the Motor Command magnitude. The frequency of the signal is External Clock/100 and pulse width is resolved into 100 external clocks.
Sign	17	Sign - gives the sign/direction of the pulse signal.
PHA-PHD	$26-29$	Phase A, B, C, D - Phase Enable outputs of the Commutator.
Prof	12	Profile Flag - Status flag which indicates that the controller is executing a profiled position move in the Trapezoidal Profile Control mode.
Init	13	Initialization/Idle Flag - Status flag which indicates that the controller is in the Initialization/ldle mode.

Operation of the HCTL-1000

 USER ACCESSIBLE REGISTERSThe HCTL-1000 operation is controlled by a bank of 648 -bit registers, 32 of which are user accessible. These registers contain command and configuration information necessary to properly run the controller chip. The 32 user-accessible registers are listed in Table I. The register number is also the address. A functional block diagram of the HCTL-1000 which shows the role of the user-accessible registers is also included in Figure 3. The other 32 registers are used by the internal CPU as scratch registers and should not be accessed by the user.
There are several registers which the user must configure to his application. These configuration registers are discussed in more detail below.

Program Counter (R05H)

The Program Counter, which is a write-only register, executes the preprogrammed functions of the controller. The program counter is used along with the control flags F0, F3, and F5 in the Flag register (ROOH) to change control modes. The user can write any of the following four commands to the Program Counter.
0 OH - Software Reset
01H - Initialization/Idle mode
02 H - Align mode
03H - Control modes; flags F0, F3, and F5 in the Flag register (ROOH) specify which control mode will be executed.
The commands written to the Program Counter are discussed in more detail in the section called Operating Modes and are shown in flowchart form in Figure 4.

Flag Register (R00H)

The Flag register contains flags FO thru F5. This register is also a write-only register. Each flag is set and cleared by writing an 8-bit data word to R 00 H . The upper four bits are ignored by the HCTL-1000. The bottom three bits specify the flag address and the fourth bit specifies whether to set (bit $=1$) or clear (bit $=0$) the addressed flag.

Bit number	$7-4$	3	2	1	0
Function	Don't care	set/clear	AD2	AD1	AD0

FO - Trapezoidal Profile Flag - set by the user to execute Trapezoidal Profile Control. The flag is reset by the controller when the move is completed. The status of FO can be monitored at the Profile pin (12) and in Status register R07H bit 4.
F1 - Initialization/Idle Flag - set/cleared by the HCTL1000 to indicate execution of the Initialization/Idle mode. The status of F1 can be monitored at the Initialization/Idle pin (13) and in bit 5 of the Status register (R 07 H). The user should not attempt to set or clear F1.

F2 - Unipolar Flag - set/cleared by the user to specify Bipolar (clear) or Unipolar (set) mode for the Motor Command port.
F3 - Proportional Velocity Control Flag - set by the user to specify Proportional Velocity control.

F4 - Hold Commutator Flag - set/cleared by the user or automatically by the Align mode. When set, this flag inhibits the internal commutator counters to allow open loop stepping of a motor by using the commutator. (See "Offset register" description in the "Commutator section.")

F5 - Integral Velocity Control - set by the user to specify Integral Velocity Control. Also set and cleared by the HCTL-1000 during execution of the Trapezoidal Profile mode. This is transparent to the user except when the Limit flag is set (see "Emergency Flags" section).

Status Register (R07H)

The Status register indicates the status of the HCTL-1000. Each bit decodes into one signal. All 8 bits are user readable and are decoded as shown below. Only the lower 4 bits can be written to by the user to configure the HCTL1000. To set or clear any of the lower 4 bits, the user writes an 8 -bit word to R07H. The upper 4 bits are ignored. Each of the lower 4 bits directly sets/clears the corresponding bit of the Status register as shown below. For example, writing XXXX0101 to R07H sets the PWM Sign Reversal Inhibit, sets the Commutator Phase Configuration to " 3 Phase", and sets the Commutator Count Configuration to "full".

Status Bit	Function	Note
0	PWM Sign Reversal Inhibit $0=\text { off } \quad 1=\text { on }$	Discussed in Amplifier Interface section under PWM Port.
1	Commutator Phase Configuration $0=3$ phase $1=4$ phase	Discussed in Commutator section
2	Commutator Count Configuration $0=$ quadrature 1 = full	Discussed in Commutator section
3	Should always be set to 0	
4	Trapezoidal Profile Flag F0 $1=$ in Profile Control	Discussed in Operating Mode section under Trapezoidal Profite Control
5	Initialization/Idle Flag F1 1 = in Initialization/Idle Mode	Discussed in Operating Mode section under Initialization/Idle Mode
6	Stop Flag $0=$ set (Stop triggered) 1 = cleared (no Stop)	Discussed in Emergency Flags section
7	Limit Flag $0=$ set (Limit triggered) $1=$ cleared (no Limit)	Discussed in Emergency Flags section

TABLE I: REGISTER REFERENCE TABLE

$\begin{gathered} \text { Regi } \\ (\mathrm{Hex}) \end{gathered}$	ister (Dec)	Function	Mode Used	Data Type ${ }^{[1]}$	User Access	Reference Page Number
ROOH	R00D	Flag Register	All	-	w	10
R05H	R05D	Program Counter	All	scalar	w	10
R07H	R07D	Status Register	All	-	$\mathrm{r} / \mathrm{w}^{[2]}$	10, 18
R08H	R08D	8 bit Motor Command Port	All	2's complement +80 H	riw	21
R09H	R09D	PWM Motor Command Port	All	2's complement	r/w	22
ROCH	R12D	Command Position (MSB)	All except	2's complement	r/w ${ }^{(3)}$	15
RODH	R13D	Command Position	Proportional Velocity All except	2's complement	$\mathrm{r} / \mathrm{w}^{[3]}$	15
ROEH	R14D	Command Position (LSB)	Proportional Velocity All except Proportional Velocity	2's complement	r/w ${ }^{(3)}$	15
ROFH	R15D	Sample Timer	All	scalar	w	13
R 12 H	R18D	Actual Position (MSB)	All	2's complement	$\mathrm{r}^{[4]}$	15
R13H	R19D	Actual Position	All	2's complement	$\mathrm{r}^{[4]} / \mathrm{w}^{[5]}$	15
R 14 H	R20D	Actual Position (LSB)	All	2's complement	$\mathrm{r}^{[4]}$	15
R 18 H	R24D	Commutator Ring	All	scalar $\left.{ }^{6} 67\right]$	r/w	18
R19H	R25D	Commutator Velocity Timer	All	scalar	w	19
R1AH	R26D	X	All	scalar ${ }^{(6)}$	r/w	18
R1BH	R27D	Y Phase Overlap	All	scalar ${ }^{(6]}$	r/w	18
$\mathrm{R1CH}$	R28D	Offset	All	2's complement[${ }^{[7]}$	r/w	18
R1FH	R31D	Maximum Phase Advance	All	scalar[6,7]	r/w	19
R 20 H	R32D	Filter Zero, A	All except Proportional Velocity	scalar	r/w	12
R21H	R33D	Filter Pole, B	All except Proportional Velocity	scalar	r/w	12
R22H	R34D	Gain, K		scalar	r/w	12
R23H	R35D	Command Velocity (LSB)	Proportional Velocity	2's complement	r/w	15
R24H	R36D	Command Velocity (MSB)	Proportional Velocity	2's complement	r/w	15
R26H	R38D	Acceleration (LSB)	Integral Velocity and Trapezoidal Profile	scalar	r/w	15, 16
R27H	R390	Acceleration (MSB)	Integral Velocity and Trapezoidal Profile	scalar ${ }^{[6]}$	r/w	15, 16
R28H	R40D	Maximum Velocity	Trapezoidal Profile	scalar ${ }^{[6]}$	r/w	16
R29H	R41D	Final Position (LSB)	Trapezoidal Profile	2's complement	r/w	16
R2AH	R42D	Final Position	Trapezoidal Profile	2's complement	r/w	16
R2BH	R43D	Final Position (MSB)	Trapezoidal Profile	2's complement	r/w	16
R34H	R52D	Actual Velocity (LSB)	Proportional Velocity	2's complement	r	15
R35H	R53D	Actual Velocity (MSB)	Proportional Velocity	2's complement	r	15
R 3 CH	R60D	Command Velocity	Integral Velocity	2's complement	r/w	15

Notes:

1. Consult appropriate section for data format and use.
2. Upper 4 bits are read only.
3. Writing to ROEH (LSB) latches all 24 bits.
4. Reading R14H (LSB) latches data into R12H and R13H.
5. Writing to R13H clears Actual Position Counter to zero.
6. The scalar data is limited to positive numbers $(00 \mathrm{H}$ to 7 FH$)$.
7. The commutator registers ($\mathrm{R} 18 \mathrm{H}, \mathrm{R1CH}, \mathrm{R} 1 \mathrm{FH}$) have further limits which are discussed in the Commutator section of this data sheet.

Figure 3. Register Block Diagram

Emergency Flags - Stop and Limit

Stop and Limit flags are hardware set flags that signify the occurrence of an emergency condition and cause the controller to immediately take special action.

The Stop flag affects the HCTL-1000 only in the Integral Velocity mode. When the Stop flag is set, the system will come to a decelerated stop and stay in this mode with a command velocity of zero until the Stop flag is cleared and a new command velocity is specified.
The Limit flag, when set in any control mode, causes the HCTL-1000 to go into the Initialization/Idle mode, clearing the Motor Command and causing an immediate motor shutdown. When the Limit flag is set, none of the three control mode flags (FO, F3, or F5) are cleared as the HCTL-1000 enters the Initialization/Idle mode. The user should be aware that these flags are still set before commanding the HCTL-1000 to re-enter one of the four control modes from Initialization/Idle mode. In addition, the user should note that if the Limit flag is set while the HCTL-1000 is in Trapezoidal Profile Control mode, then BOTH flags FO AND F5 should be cleared before the HCTL-1000 is commanded to re-enter any of the four control modes from Initialization/Idle mode.

Stop and Limit flags are set by a low level input at their respective pins $(15,14)$. The flags can only be cleared when the input to the corresponding pin goes high, signifying that the emergency condition has been corrected, AND a write to the Status register (R 07 H) is executed. That is, after the emergency pin has been set and cleared, the flag also must be cleared by writing to R07H. Any word that is written to R07H after the emergency pin is set and cleared will clear the emergency flag, but the lower 4 bits of that word will also reconfigure the Status register.

Digital Filter (R22H, R20H, R21H)

All control modes use some part of the programmable digital filter $D(z)$ to compensate for closed loop system stability. The compensation $D(z)$ has the form:
$D(z)=\frac{K\left(z-\frac{A}{256}\right)}{4\left(z+\frac{B}{256}\right)}$
[1] $K=$ digital filter gain (R22H)
$A=$ digital filter zero (R2OH)
$B=$ digital filter pole (R21H)

The compensation is a first-order lead filter which in combination with the Sample Timer T(ROFH) affects the dynamic step response and stability of the control system. The Sample Timer, T , determines the rate at which the control algorithm gets executed. All parameters, A, B, K, and T, are 8 -bit scalars that can be changed by the user any time.
The digital filter uses previously sampled data to calculate $D(z)$. This old internally sampled data is cleared when the Initialization/Idle mode is executed.
In Position Control, Integral Velocity Control, and Trapezoidal Profile Control the digital filter is implemented in the time domain as shown below:
$M C_{n}=(K / 4)\left(X_{n}\right)-\left[(A / 256)(K / 4)\left(X_{n-1}\right)+(B / 256)\left(M C_{n-1}\right)\right]$ [2] where:
$\mathrm{n}=$ current sample time
$\mathrm{n}-1$ = previous sample time
$\mathrm{MC}_{\mathrm{n}}=$ Motor Command Output at n
$\mathrm{MC}_{\mathrm{n}-1}=$ Motor Command Output at $\mathrm{n}-1$
$X_{n}=($ Command Position - Actual Position) at n
$X_{n-1}=(C o m m a n d$ Position - Actual Position) at $n-1$
In Proportional Velocity control the digital compensation filter is implemented in the time domain as:
$M C_{n}=(K / 4)\left(Y_{n}\right)$
where:
$Y_{n}=($ Command Velocity - Actual Velocity) at n

Sample Timer Register (ROFH)

The contents of this register set the sampling period of the HCTL-1000. The sampling period is:
$t=16(T+1)(1 /$ frequency of the external clock)
where: $\mathrm{T}=$ register ROFH
The Sample Timer has a limit on the minimum allowable sample time depending on the control mode being executed. The limits are given below:

Position Control
Proportional Velocity Control
Trapezoidal Profile Control
Integral Velocity Control

> | R0FH Contents |
| :--- |
| Minimum Limit |
| 07H (07D) |
| 07H (07D) |
| OFH (15D) |
| OFH (15D) |

The maximum value of T (ROFH) is FFH (255D). With a 2 MHz clock, the sample time can vary from $64 \mu \mathrm{sec}$ to 2048 $\mu \mathrm{sec}$. With a 1 MHz clock, the sample time can vary from $128 \mu \mathrm{sec}$ to $4096 \mu \mathrm{sec}$.
Digital closed-loop systems with slow sampling times have lower stability and a lower bandwidth than similar systems with faster sampling times. To keep the system stability and bandwidth as high as possible the HCTL-1000 should typically be programmed with the fastest sampling time possible.
The exception to this rule occurs when the user would like to use the HCTL-1000 to control a motor with an encoder at very slow velocities.

Velocities are specified to the HCTL-1000 in terms of quadrature encoder counts per sample time. In the Trapezoidal Profile and Integral Velocity Control modes, the minimum velocity which may be specified is one encoder count per sample time. The Proportional Velocity Control mode, allows a minimum velocity of 1 encoder count per 16 sample times to be specified. To achieve the slowest velocities possible, the sample times for the HCTL-1000 must be made as slow as possible.
For more information on system sampling times, bandwidth, and stability, please consult Hewlett-Packard Application Note 1032, "Design of the HCTL-1000's Digital Filter Parameters by the Combination Method."

OPERATING MODES

The HCTL-1000 executes any one of 3 set up routines or 4 control modes selected by the user. The 3 set up routines include:

- Reset
- Initialization/Idle
- Align.

The four control modes available to the user include:

- Position Control
- Proportional Velocity Control
- Trapezoidal Profile Control
- Integral Velocity Control

The HCTL-1000 switches from one mode to another as a result of one of the following three mechanisms:

1. The user writes to the Program Counter.
2. The user sets/clears flags F0, F3, or F5 by writing to the Flag register (ROOH).
3. The controller switches automatically when certain initial conditions are provided by the user.
This section describes the function of each set up routine and control mode and the initial conditions which must be provided by the user to switch from one mode to another. Figure 4 shows a flowchart of the set up routines and control modes, and shows the commands required to switch from one mode to another.

Set Up Routines

1. RESET

The Reset mode is entered under all conditions by either executing a hard reset (Reset pin goes low) or a soft reset (write 00 H to the Program Counter, R05H).
When a hard reset is executed, the following conditions occur:

- All output signal pins are held low except Sign (17). Databus (2-9), and Motor Command (18-25).
- All flags (F0 to F5) are cleared.
- The Pulse pin of the PWM port is set low while the Reset pin is held low. After the Reset pin is released (goes high) the Pulse pin goes high for one cycle of the external clock driving the HCTL-1000. The Pulse pin then returns to a low output.
- The Motor Command port (R08H) is preset to 80 H . (128D)
- The Commutator logic is cleared.
- The I/O control logic is cleared.
- A soft reset is automatically executed.

When a soft reset is executed, the following conditions occur:

- The digital filter parameters are preset to

$$
\begin{aligned}
& A(R 2 O H)=E 5 H(229 D) \\
& B(R 21 H)=K(R 22 H)=40 H(64 D)
\end{aligned}
$$

- The Sample Timer (ROFH) is preset to 40H. (64D)
- The Status register (ROHH) is cleared.
- The Actual Position Counters (R12H, R13H, R14H) are cleared to 0 .
From Reset mode, the HCTL-1000 goes automatically to Initialization/Idle mode.

*Only one flag can be set at a time.

Figure 4. Operating Mode Flowchart

2. INITIALIZATION/IDLE

The Initialization/Idle mode is entered either automatically from Reset, by writing 01H to the Program Counter (R05H) under any conditions, or pulling the Limit pin low.
In the Initialization/Idle mode, the following occur:

- The Initialization/Idle flag (F1) is set.
- The PWM port R09H is set to 00 H (zero command).
- The Motor Command port (R08H) is set to 80 H (128D) (zero command).
- Previously sampled data stored in the digital filter is cleared.
It is at this point that the user should pre-program all the necessary registers needed to execute the desired control mode. The HCTL-1000 stays in this mode (idling) until a new mode command is given.

3. ALIGN

The Align mode is executed only when using the commutator feature of the HCTL-1000. This mode automatically aligns multiphase motors to the HCTL-1000's internal Commutator.

The Align mode can be entered only from the Initialization/ Idle mode by writing 02H to the Program Counter register $(\mathrm{R} 05 \mathrm{H})$. Before attempting to enter the Align mode, the user should clear all control mode flags and set both the Command Position registers ($\mathrm{ROCH}, \mathrm{RODH}$, and ROEH) and the Actual Position registers ($\mathrm{R} 12 \mathrm{H}, \mathrm{R} 13 \mathrm{H}$, and R 14 H) to zero. After the Align mode has been executed, the HCTL-1000 will automatically enter the Position Control mode and go to position zero. By following this procedure, the largest movement in the Align mode will be 1 torque cycle of the motor.
The Align mode assumes: the encoder index pulse has been physically aligned to the last motor phase during encoder/motor assembly, the Commutator parameters have been correctly preprogrammed (see the section called The Commutator for details), and a hard reset has been executed while the motor is stationary.
The Align mode first disables the Commutator and with open loop control enables the first phase (PHA) and then the last phase (PHC or PHD) to orient the motor on the last phase torque detent. Each phase is energized for 2048 system sampling periods (t). For proper operation, the motor must come to a complete stop during the last phase enable. At this point the Commutator is enabled and commutation is closed loop.
The HCTL-1000 then switches automatically from the Align mode to Position Control mode.

Control Modes

Control flags FO, F3, and F5 in the Flag register (ROOH) determine which control mode is executed. Only one control flag can be set at a time. After one of these control flags is set, the control modes are entered either automatically from Align or from the Initialization/Idle mode by writing 03H to the Program Counter (R05H).

1. POSITION CONTROL

F0, F3, F5 cleared.

Position Control performs point-to-point position moves with no velocity profiling. The user specifies a 24 -bit position command, which the controller compares to the 24-bit actual position. The position error is calcuated, the full digital lead compensation is applied and the motor command is output.

The controller will remain position-locked at a destination until a new position command is given.
The actual and command position data is 24-bit two'scomplement data stored in six 8 -bit registers. Position is measured in encoder quadrature counts.

The command position resides in ROCH (MSB), RODH, ROEH (LSB). Writing to ROEH latches all 24 bits at once for the control algorithm. Therefore, the command position is written in the sequence $\mathrm{ROCH}, \mathrm{RODH}$ and ROEH. The command registers can be read in any desired order.
The actual position resides in R12H (MSB), R13H, and R14H (LSB). Reading R14H latches the upper two bytes into an internal buffer. Therefore, Actual Position registers are read in the order of $\mathrm{R} 14 \mathrm{H}, \mathrm{R} 13 \mathrm{H}$, and R 12 H for correct instantaneous position data. The Actual Position registers cannot be written to, but they can all be cleared to 0 simultaneously by a write to register R 13 H .
The largest position move possible in Position Control mode is 7FFFFFH ($8,388,607 \mathrm{D}$) quadrature encoder counts.

2. PROPORTIONAL VELOCITY CONTROL

F3 set

Proportional Velocity Control performs control of motor speed using only the gain factor, K , for compensation. The dynamic pole and zero lead compensation are not used. (See the "Digital Filter" section of this data sheet.)
The command and actual velocity are 16-bit two's-complement words.
The command velocity resides in registers R24H (MSB) and R23H (LSB). These registers are unlatched which means that the command velocity will change to a new velocity as soon as the value in either R23H or R24H is changed. The registers can be read or written to in any order.

R24H	R23H
IIII IIII	IIII .FFFF
COMMAND VELOCITY FORMAT	

The units of velocity are quadrature counts/sample time. To convert from rpm to quadrature counts/sample time, use the formula shown below:
$\mathrm{Vq}=(\mathrm{Vr})(\mathrm{N})(\mathrm{t})(0.01667 / \mathrm{rpm}-\mathrm{sec})$
Where:
$\mathrm{Vq}=$ velocity in quadrature counts/sample time
$\mathrm{Vr}=$ velocity in rpm
$N=4$ times the number of slots in the codewheel (i.e., quadrature counts).
$t=$ The HCTL-1000 sample time in seconds. (See the section on the HCTL-1000's Sample Timer register).

Because the Command Velocity registers (R 24 H and R 23 H) are internally interpreted by the HCTL-1000 as 12 bits of integer and 4 bits of fraction, the host processor must multiply the desired command velocity (in quadrature counts/sample time) by 16 before programming it into the HCTL-1000's Command Velocity registers.
The actual velocity is computed only in this algorithm and stored in scratch registers R35H (MSB) and R34H (LSB). There is no fractional component in the actual velocity registers and they can be read in any order.
The controller tracks the command velocity continuously until new mode command is given. The system behavior after a new velocity command is governed only by the system dynamics until a steady state velocity is reached.

3. INTEGRAL VELOCITY CONTROL

F5 set

Integral Velocity Control performs continuous velocity profiling which is specified by a command velocity and command acceleration. Figure 5 shows the capability of this control algorithm.
The user can change velocity and acceleration any time to continuously profile velocity in time. Once the specified velocity is reached, the HCTL-1000 will maintain that velocity until a new command is specified. Changes between actual velocities occur at the presently specified linear acceleration.
The command velocity is an 8-bit two's-complement word stored in R 3 CH . The units of velocity are quadrature counts/sample time.
The conversion from rpm to quadrature counts/sample time is shown in equation 5. The Command Velocity register (R 3 CH) contains only integer data and has no fractional component.
While the overall range of the velocity command is 8 bits, two's-complement, the difference between any two sequential commands cannot be greater than 7 bits in magnitude (i.e., 127 decimal). For example, when the HCTL-1000 is executing a command velocity of 40 H (+64D), the next velocity command must fall in the range of 7FH (+127D), the maximum command range, to $\mathrm{C} 1 \mathrm{H}(-63 \mathrm{D})$, the largest allowed difference.
The command acceleration is a 16-bit scalar word stored in R27H and R26H. The upper byte (R27H) is the integer part and the lower byte (R 26 H) is the fractional part

> (1) user changes acceleration command
> (2) USER CHANGES VELOCITY COMmAND

Figure 5. Integral Velocity Mode
provided for resolution. The integer part has a range of 00 H to 7 FH . The contents of R26H are internally divided by 256 to produce the fractional resolution.

> R27H $\quad \mathrm{R} 26 \mathrm{H}$ OIIIIIII FFFFFFFF/256 COMMAND ACCELERATION FORMAT

The units of acceleration are quadrature counts/sample time squared.
To convert from rpm/sec to quadrature counts/[sample time $]^{2}$, use the formula shown below:
$\mathrm{Aq}=(\mathrm{Ar})(\mathrm{N})\left(\mathrm{t}^{2}\right)(0.01667 / \mathrm{rpm}-\mathrm{sec}) \quad[6]$
Where:
$\mathrm{Aq}=$ Acceleration in quadrature counts/[sample time] ${ }^{2}$
$\mathrm{Ar}=$ Acceleration in $\mathrm{rpm} / \mathrm{sec}$
$\mathrm{N}=4$ times the number of slots in the codewheel (i.e., quadrature counts)
$t=$ The HCTL-1000 sample time in seconds. (See the section on the HCTL-1000's Sample Timer register).
Because the Command Acceleration registers (R27H and R 26 H) are internally interpreted by the HCTL-1000 as 8 bits of integer and 8 bits of fraction, the host processor must multiply the desired command acceleration (in quadrature counts/[sample time] ${ }^{2}$) by 256 before programming it into the HCTL-1000's Command Acceleration registers.
Internally, the controller performs velocity profiling through position control.
Each sample time, the internal profile generator uses the information which the user has programmed into the Command Velocity register (R 3 CH) and the Command Acceleration registers (R 27 H and R 26 H) to determine the value which will be automatically loaded into the Command Position registers (ROCH, RODH, and ROEH). After the new command position has been generated, the difference between the value in the Actual Position registers (R12H, R 13 H , and R 14 H) and the new value in the Command Position registers is calculated as the new position error. This new position error is used by the full digital compensation filter to compute a new motor command output for this sample time. The register block diagram in Figure 3 further shows how the internal profile generator works in Integral Velocity mode. In control theory terms, integral compensation has been added and therefore, this system has zero steady-state error.
Although Integral Velocity Control mode has the advantage over Proportional Velocity mode of zero steady state velocity error, its disadvantage is that the closed loop stability is more difficult to achieve. In Integral Velocity Control mode, the system is actually a position control system and therefore the complete dynamic compensation $D(z)$ is used.
If the external Stop flag F 6 is set during this mode signaling an emergency situation, the controller automatiically decelerates to zero velocity at the presently specified acceleration factor and stays in this condition until the flag is cleared. The user then can specify new velocity profiling data.

Figure 6. Trapezoidal Profile Mode

4. TRAPEZOIDAL PROFILE CONTROL

FO-Set

Trapezoidal Profile Control performs point-to-point position moves and profiles the velocity trajectory to a trapezoid or triangle. The user specifies only the desired final position, acceleration and maximum velocity. The controller computes the necessary profile to conform to the command data. If maximum velocity is reached before the distance halfway point, the profile will be trapezoidal, otherwise the profile will be triangular. Figure 6 shows the possible trajectories with Trapezoidal Profile control.
The command data for Trapezoidal Profile Control mode consists of a final position, a command acceleration, and a maximum velocity. The 24 -bit, two's-complement final position is written to registers R2BH, (MSB), R2AH, and R29H (LSB). The 16-bit command acceleration resides in registers R27H (MSB) and R26H (LSB). The command acceleration has the same integer and fraction format as discussed in the Integral Velocity Control mode section. The 7-bit maximum velocity is a scalar value with the range of 00 H to 7 FH (0 D to 127D). The maximum velocity has the units of quadrature counts per sample time, and resides in register R 28 H . The command data registers may be read or written to in any order.
The internal profile generator produces a position profile using the present Command Position (ROCH-ROEH) as the starting point and the Final Position (R2BH-R29H) as the end point.
Once the desired data is entered, the user sets flag FO in the Flag register (ROOH) to commence motion (if the HCTL-1000 is already in Position Control mode).
When the profile generator sends the last position command to the Command Position registers to complete the trapezoidal move, the controller clears flag FO. The HCTL-1000 then automatically goes to Position Control mode with the final position of the trapezoidal move as the command position.
When the HCTL-1000 clears flag F0 it does NOT indicate that the motor and encoder are at the final position NOR that the motor and encoder have stopped. The motor and encoder's true position can only be determined by reading the Actual Position registers. The only way to determine if the motor and encoder have stopped is to read the Actual Position registers at successive intervals.

The status of the Profile flag can be monitored both in the Status register (R07) and at the external Profile pin (pin 12) at any time. While the Profile flag is high NO new command data should be sent to the controller.
Each sample time, the internal profile generator uses the information which the user has programmed into the Maximum Velocity register (R 28 H), the Command Acceleration registers (R 27 H and R 26 H), and the Final Position registers (R2BH, R2AH, and R29H) to determine the value which will be automatically loaded into the Command Position registers (ROEH, RODH, and ROCH). After the new command position has been generated, the difference between the value in the Actual Position registers (R12H, R13H, and R 14 H) and the new value in the Command Position registers is calculated as the new position error. This new position error is used by the full digital compensation filter to compute a new motor command ouput for the sample time. (The register block diagram in Figure 3 further shows how the internal profile generator works in Trapezoidal Profile mode.)

COMMUTATOR

The commutator is a digital state machine that is configured by the user to properly select the phase sequence for electronic commutation of multiphase motors. The Commutator is designed to work with 2, 3, and 4-phase motors of various winding configurations and with various encoder counts. Along with providing the correct phase enable sequence, the Commutator provides programmable phase overlap, phase advance, and phase offset.
Phase overlap is used for better torque ripple control. It can also be used to generate unique state sequences which can be further decoded externally to drive more complex amplifiers and motors.
Phase advance allows the user to compensate for the frequency characteristics of the motor/amplifier combination. By advancing the phase enable command (in position), the delay in reaction of the motor/amplifier combination can be offset and higher performance can be achieved.
Phase offset is used to adjust the alignment of the commutator output with the motor torque curves. By correctly aligning the HCTL-1000's commutator output with the motor's torque curves, maximum motor output torque can be achieved.
The inputs to the Commutator are the three encoder signals, Channel A, Channel B, and Index, and the configuration data stored in registers.

The Commutator uses both channels and the index pulse of an incremental encoder. The index pulse of the encoder must be physically aligned to a known torque curve location because it is used as the reference point of the rotor position with respect to the Commutator phase enables.

The index pulse should be permanently aligned during motor encoder assembly to the last motor phase. This is done by energizing the last phase of the motor during assembly and permanently attaching the encoder codewheel to the motor shaft such that the index pulse is active as shown in Figures 7 and 8. Fine tuning of alignment for commutation purposes is done electronically by the Offset register (R 1 CH) once the complete control system is set up.

Figure 7. Index Pulse Alignment to Motor Torque Curves

Figure 8. Codewheel Index Pulse Alignment

Figure 9. PWM Interface to Brushless DC Motors

Each time an index pulse occurs, the internal commutator ring counter is reset to 0 . The ring counter keeps track of the current position of the rotor based on the encoder feedback. When the ring counter is reset to 0 , the Commutator is reset to its origin (last phase going low, phase A going high) as shown in Figure 10.
The output of the Commutator is available as PHA, PHB, PHC, and PHD on pins 26-29. The HCTL-1000's commutator acts as the electrical equivalent of the mechanical brushes in a motor. Therefore, the outputs of the commutator provide only proper phase sequencing for bidirectional operation. The magnitude information is provided to the motor via the Motor Command and PWM ports. The outputs of the commutator must be combined with the outputs of one of the motor ports to provide proper DC brushless and stepper motor control. Figure 9 shows an example of circuitry which uses the outputs of the commutator with the Pulse output of the PWM port to control a DC brushless or stepper motor. A similar procedure could be used to combine the commutator outputs PHA-PHD with a linear amplifier interface output (Figure 15) to create a linear amplifier system.

Commutation Configuration Registers

The Commutator is programmed by the data in the following registers. Figure 10 shows an example of the relationship between all the parameters.

1. STATUS REGISTER (R07H)

Bit \#1-0 = 3-phase configuration, PHA, PHB, and PHC are active outputs.
$1=4$-phase configuration, PHA - PHD are active outputs.
Bit \#2-0 = Rotor position measured in quadrature counts ($4 x$ decoding).
1 = Rotor position measured in full counts (1 count = 1 codewheel bar and space.)
Bit \#2 only affects the commutator's counting method. This includes the Ring register (R 18 H), the X and Y registers (R1AH \& R1BH), the Offset register (R1CH), the Velocity Timer register (R19H), and the Maximum Advance register (R1FH).
Quadrature counts ($4 x$ decoding) are always used by the HCTL-1000 as a basis for position, velocity, and acceleration control.

2. RING REGISTER (R18H)

The Ring register is defined as 1 electrical cycle of the commutator which corresponds to 1 torque cycle of the motor. The Ring register is scalar and determines the length of the commutation cycle measured in full or quadrature counts as set by bit \#2 in the Status register (R07H). The value of the ring must be limited to the range of 0 to 7 FH .

3. X REGISTER (R1AH)

This register contains scalar data which sets the interval during which only one phase is active.

NOTE 1: THE RING $=1$ COMMUTATION CYCLE OF THE COMMUTATOR

Figure 10. Commutator Configuration

4. Y REGISTER (R1BH)

This register contains scalar data which set the interval during which two sequential phases are both active. Y is phase overlap. X and Y must such that:

$$
\begin{equation*}
X+Y=\text { Ring /(\# of phases) } \tag{8}
\end{equation*}
$$

These three parameters define the basic electrical commutation cycle.

5. OFFSET REGISTER (R1CH)

The Offset register contains two's-complement data which determines the relative start of the commutation cycle with respect to the index pulse. Since the index pulse must be physically referenced to the rotor, offset performs fine alignment between the electrical and mechanical torque cycles.

The Hold Commutator flag (F4) in the Status register (R07H) is used to decouple the internal commutator counters from the encoder input. Flag (F4) can be used in conjunction with the Offset register to allow the user to advance the commutator phases open loop. This technique may be used to create a custom commutator alignment procedure. For example, in Figure 10, case 1, for a threephase motor where the ring $=9, X=3$, and $Y=0$, the phases can be made to advance open loop by setting the Hold Commutator flag (F4) in the Flag register (R07H). When the values 0,1 , or 2 are written to the Offset register, phase A will be enabled. When the values 3, 4 or 5 are written to the Offset register, phase B will be enabled. And, when the values 6,7 , or 8 are written to the Offset register, phase C will be enabled. No values larger than the value programmed into the Ring register should be programmed into the Offset register.

6. PHASE ADVANCE REGISTERS (R19H, R1FH)

The Yelocity Timer register and Maximum Advance register linearly increment the phase advance according to the measured speed of rotation up to a set maximum.
The Velocity Timer register (R 19 H) contains scalar data which determines the amount of phase advance at a given velocity. The phase is interpreted in the units set for the Ring counter by bit \#2 in R07H. The velocity is measured in revolutions per second.

$$
\begin{align*}
& \text { Advance }=N_{f} v \Delta t \tag{9}\\
& \text { where } \Delta t=\frac{16(R 19 H+1)}{f \text { external clk }} \tag{10}
\end{align*}
$$

$N_{f}=$ full encoder counts/revolution.
$\mathrm{v}=$ velocity (revolutions/second)
The Maximum Advance register (R1FH) contains scalar data which sets the upper limit for phase advance regardless of rotor speed.
Figure 11 shows the relationship between the Phase Advance registers. Note: If the phase advance feature is not used, set both R19H and R1FH to 0 .

Figure 11. Phase Advance vs. Motor Velocity

Commutator Constraints and Use

When choosing a three-channel encoder to use with a DC brushless or stepper motor, the user should keep in mind that the number of quadrature encoder counts ($4 x$ the
number of slots in the encoder's codewheel) must be an integer multiple ($1 x, 2 x, 3 x, 4 x, 5 x$, etc.) of the number of pole pairs in the DC brushless motor or steps in a stepper motor. To take full advantage of the commutator's overlap feature, the number of quadrature counts should be at least 3 times the number of pole pairs in the $D C$ brushless motor or steps in the stepper motor. For example, a 1.8°, (200 step/revolution) stepper motor should employ at least a 150 slot codewheel $=600$ quadrature counts/revolution $=$ 3×200 steps/revolution).

There are several numerical constraints the user should be aware of to use the Commutator.

The parameters of Ring, X, Y, and Max Advance must be positive numbers (00 H to 7 FH). Additionally, the following equation must be satisfied:
(-128D) $80 \mathrm{H} \leq \frac{3}{2}$ Ring + Offset \pm Max Advance ≤ 7 FH (127D)

In order to utilize the greatest flexibility of the Commutator, it must be realized that the Commutator works on a circular ring counter principle, whose range is defined by the Ring register (R 18 H). This means that for a ring of 96 counts and a needed offset of 10 counts, numerically the Offset register can be programmed as OAH (10D) or AAH (-86D), the latter satisfying Equation 11.
If bit \#2 in the Status register is set to allow the commutator to count in full counts, a higher resolution codewheel may be chosen for precise motor control without violating the commutator constraints equation (Equation 11).

Example: Suppose you want to commutate a 3-phase 15 deg/step Variable Reluctance Motor attached to a 192 count encoder.

1. Select 3 -phase and quadrature mode for commutator by writing 0 to R07H.
2. With a 3-phase 15 degree/step Variable Reluctance Motor the torque cycle repeats every 45 degrees or 8 times/ revolution.
3. Ring register $=\frac{(4)(192) \text { counts } / \text { revolution }}{8 / \text { revolution }}$
$=96$ quadrature counts
$=1$ commutation cycle
4. By measuring the motor torque curve in both directions, it is determined that an offset of 3 mechanical degrees, and a phase overlap of 2 mechanical degrees is needed.

$$
\text { Offset }=3^{\circ} \frac{(4)(192)}{360^{\circ}} \simeq 6 \text { quadrature counts }
$$

To create the 3 mechanical degree offset, the Offset register (R1CH) could be programmed with either A6H (-90D) or $06 \mathrm{H}(+06 \mathrm{D})$. However, because 06 H (+06D) would violate the commutator constraints Equation 11, A6H (-90D) is used.

$$
\begin{aligned}
& \begin{aligned}
Y=\text { overlap } & =\frac{\left(2^{\circ}\right)(4)(192)}{360^{\circ}} \simeq 4 \\
X+Y & =96 / 3
\end{aligned} \\
& \text { Therefore, } X=28 \\
& Y
\end{aligned}
$$

For the purposes of this example, the Velocity Timer and Maximum Advance are set to 0 .

Interfacing the HCTL-1000 I/O interface

The HCTL-1000 looks to the host microprocessor like a bank of 8-bit registers to which the hcst processor can read and write. (i.e., The host processor treats the HCTL1000 like RAM.) The data in these registers controls the operation of the HCTL-1000. The host processor communicates to the HCTL-1000 over a bidirectional multiplexed 8 -bit data bus. The four I/O control lines, $\overline{\text { ALE, }} \overline{\mathrm{CS}}$, $\overline{\mathrm{OE}}$, and $\mathrm{R} / \overline{\mathrm{W}}$ execute the data transfers (see Figure 12.)
There are three different timing configurations which can be used to give the user greater flexibility to interface the HCTL-1000 to most microprocessors (see Timing diagrams). They are differentiated from one another by the arrangement of the $\overline{A L E}$ signal with respect to the $\overline{C S}$ signal. The three timing configurations are listed below.

1. $\overline{A L E}, \overline{C S}$ non-overlapped
2. $\overline{\text { ALE }}, \overline{C S}$ overlapped
3. $\overline{A L E}$ within $\overline{C S}$

Any I/O operation starts by asserting the $\overline{\text { ALE signal which }}$ starts sampling the external bus into an internal address latch. Rising $\overline{\mathrm{ALE}}$ or falling $\overline{\mathrm{CS}}$ during $\overline{\mathrm{ALE}}$ stops the sampling into the address latch.
$\overline{\mathrm{CS}}$ low after rising $\overline{\mathrm{ALE}}$ samples the external bus into the data latch. Rising $\overline{\mathrm{CS}}$ stops the sampling into the data latch, and starts the internal synchronous process.

In the case of a write, the data in the data latch is written into the addressed location. In the case of a read, the addressed location is written into an internal output latch. $\overline{O E}$ low enables the internal output latch onto the external bus. The $\overline{O E}$ signal and the internal output latch allow the I/O port to be flexible and avoid bus conflicts during read operations.
It is important that the host microprocessor does not attempt to perform too many I/O operations in a single sample time of the HCTL-1000. Each I/O operation interrupts the execution of the HCTL-1000's internal code for 1 clock cycle. Although extra clock cycles have been allotted in each sample time for I/O operations, the number of extra cycles is reduced as the value programmed into the Sample Timer register (ROFH) is reduced.

Table II shows the maximum number of I/O operations allowed under the given conditions.

TABLE II: MAXIMUM NUMBER OF I/O ALLOWED

Sample Timer Register Value	Operating Mode	Maximum Number of I/O Operations Allowed/Sample
07 H (07D)	Positon Control or Prop. Vel. Control	5
$0 F H$ (15D)	Positon Control or Prop. Vel. Control Trapezoidal Prof. or Integral Vel. Control	133

The number of external clock cycles available for I/O operations in any of the four control modes can be increased by increasing the value in the Sample Timer register (ROFH).

For every unit increase in the Sample Timer register (ROFH) above the minimums shown in Table II, the user may perform 16 additional I/O operations per sample time.

ENCODER INTERFACE

The HCTL-1000 accepts TTL compatible outputs from 2channel incremental encoders such as the HEDS-5000, 5500,6000 , and 9000 series encoders and 3-channel encoders such as the HEDS-5010 and 6010 series encoders. Channels A and B are internally decoded into quadrature counts which increment or decrement the 24-bit position counter. For example, a 500 -count encoder is decoded into 2000 quadrature counts per revolution. The position counter will be incremented when Channel B leads Channel A. The Index channel is used only for the Commutator and its function is to serve as a reference point for the internal Ring Counter.
The HCTL-1000 employs an internal 3-bit state delay filter to remove any noise spikes from the encoder inputs to the HCTL-1000. This 3-bit state delay filter requires the encoder inputs to remain stable for three consecutive clock rising edges for an encoder pulse to be considered valid by the HCTL-1000's actual position counter. (i.e., An encoder pulse must remain at a logic level high or low for three consecutive clock rising edges for the HCTL-1000's actual position counter to be incremented or decremented.) The designer should therefore generally avoid creating encoder pulses of less than 3 clock cycles.

In a real system that has been designed so that the maximum velocity of the encoder will not create encoder pulses less than 3 clock cycles in duration, it is possible to create an encoder pulse of less than 3 clock cycles if the direction of the motor's rotation is reversed coincidentally with an encoder pulse state transition. If this encoder pulse is between 2 and 3 clock cycles in length and its trailing edge transition occurs within 2 nanoseconds of the falling edge of the clock, a single erroneous count will register in the HCTL-1000's Actual Position counter. (See Figure 13).
Notice that the probability of all three conditions occurring which could cause an erroneous encoder count (a direction reversal on an encoder edge, a created encoder pulse of 2 to 3 clock cycles in duration, and the trailing edge transition of the encoder pulse occurring within 2 nanoseconds of the falling edge of the clock) is low in a real system.
The recommended encoder interface circuitry shown in Figure 14 prevents any possibility of an erroneous encoder count occurring due to the conditions explained above. This circuitry ensures that all encoder pulse transitions occur at the HCTL-1000 encoder inputs coincident with the rising edge of the D flip-flop's clock. Therefore, even if a pulse of 2 to 3 clock cycles is created by the encoder, it is prevented from having an edge that occurs within 2 nanoseconds of the falling edge of the clock and thus an erroneous encoder pulse will not be counted by the HCTL1000.

Figure 12. I/O Port Block Diagram

The D flip-flops used in the recommended interface circuitry gate all transitions of the encoder signals at the D inputs with the rising edge of the clock input. The clock used to drive the D flip-flops is the same 1 to 2 MHz clock used to drive the HCTL-1000. The Q outputs of the D flip-flops cause the A and B inputs of the HCTL-1000 to change state according to the state of each D input on the rising edge of the clock signal.

If the recommended encoder interface circuitry is not used, the position drift caused by any erroneous encoder counts can be controlled by occasionally returning the motion control system to some known "home" position where the actual position registers can be reset to zero.
The possibility of any erroneous encoder counts occurring can be completely eliminated by employing the recommended encoder interface circuitry shown in Figure 14.

The index signal of an encoder is used in conjunction with the Commutator. It resets the internal ring counter which keeps track of the rotor position so that no cumulative errors are generated.
The Index pin of the HCTL-1000 also has a 3-bit filter on its input. The Index pin is active low and level transition sensitive. It detects a valid high-to-low transition and qualifies the low input level through the 3-bit filter. At this point, the Index signal is internally detected by the com-
mutator logic. This type of configuration allows an Index or Index signal to be used to generate the reference mark for commutator operation as long as the AC specifications for the Index signal are met.

AMPLIFIER INTERFACE

The HCTL-1000 outputs a motor command in two forms: an 8 -bit Motor Command which can be connected to a DAC to drive a linear amplifier and Pulse and Sign output to drive a PWM amplifier.
All control algorithms internally compute an error between the desired command and actual feedback which is processed through the digital filter. The result is an internal 8 -bit 2's-complement motor command. Before the internal motor command is made externally available, it is additionally adjusted for different output formats and ease of interfacing to external hardware. The sections below discuss the externally available amplifier interfaces and their formats. Tables II and III summarize the amplifier interface outputs.

8-Bit Parallel Motor Command Port

The 8-bit Motor Command port consists of register R08H whose data goes directly to external pins MC0-MC7. MC7 is the most significant bit. R08H can be read and written to, however, it should be written to only during Initialization/

Figure 13. Encoder Input Conditions Which Will Cause an Erroneous Count in the HCTL-1000's Actual Position Counter

Figure 14. Recommended D Flip-Flop Encoder Interface Circuit for the HCTL-1000

Idle mode. During any of the four Control modes, the controller writes the motor command into R08H.
The Motor Command port is the ideal interface to an 8-bit DAC, configured for bipolar output. The data written to the 8 -bit Motor Command port by the control algorithms is the internally computed 2 's-complement motor command with an 80 H offset added. This allows direct interfacing to a DAC. Figure 15 shows a typical DAC interface to the HCTL-1000. An inexpensive DAC, such as MC1408 or equivalent, has its digital inputs directly connected to the Motor Command port. The DAC produces an output current which is converted to a voltage by an operational amplifier. R_{O} and R_{G} control the analog offset and gain. The circuit is easily adjusted for +5 V to -5 V operation by first writing 80 H to R 08 H and adjusting R_{O} for 0 V output. Then FFH is written to R 08 H and R_{G} is adjusted until the output is 5 V . Note that 00 H in R 08 H corresponds to -5 V out.
The above interface is suitable to drive linear amplifiers and DC motors because of the bipolar output. When using commutated motors, the direction of rotation of the motor is governed by the order of firing the motor phases which is under commutator control. In this case, it is desirable to have the Motor Command be unipolar to specify magnitude only, not direction. The HCTL-1000 has the feature of digitally configuring the 8-bit Motor Command port into unipolar mode. Flag F2 in the Flag register ROOH controls this function.
F2 clear - Bipolar mode
F2 set - Unipolar mode
This mode functions such that, with the same circuit in Figure 15 (or any DAC configured for similar bipolar operation) setting F2 will cause the DAC to output from 0 V to 5 V only and the digital data on pins MCO to MC7 to be restricted in the control modes from 80 H to FFH . Internally the commutator keeps track of the sign of the motor command for proper commutation of the motor.
Internally, the HCTL-1000 operates on data of 24, 16 and 8 -bit lengths to produce the 8 -bit motor command, available externally. Many times the computed motor command will be greater than 8 bits. At this point, the motor command is saturated by the controller. The saturated value output by the controller is not the full scale value 00 H (00D), or FFH (255D). The saturated value is adjusted to OFH (15D) (negative saturation) and FOH (240D) (positive saturation). Saturation levels for the Motor Command port are also included in Figure 16.

PWM Port

The PWM port outputs the motor command as a pulse width modulated signal with the correct sign of polarity. The PWM port consists of the Pulse and Sign pins (pins 16 and 17) and R09H.
The PWM signal at the Pulse pin has a frequency of External Clock/100 and the duty cycle is resolved into the 100 clocks.
The Sign pin gives the polarity of the command. Low output on Sign pin is positive polarity.
The 2's-complement contents of R09H determine the duty cycle and polarity of the PWM command. For example, D8H (-40 D) gives a 40% duty cycle signal at the Pulse pin and forces the Sign pin high. Data outside the 64H (+100D) to 9CH (-100D) linear range gives 100% duty cycle. R09H can be read and written to. However, the user should only write to R09H when the controller is in the Initialization/Idle mode. Figure 17 shows the PWM output versus the internal motor command.
When any Control mode is being executed, the unadjusted internal 2's-complement motor command is written to R09H. Because of the hardware limit on the linear range (64 H to $9 \mathrm{CH}, \pm 100 \mathrm{D}$), the PWM port saturates sooner than the 8 -bit Motor Command port (OOH to $\mathrm{FFH},+127 \mathrm{D}$ to -128D). When the internal motor command saturates above 8 bits, the PWM port is saturated to the full $\pm 100 \%$ duty cycle level. Figure 17 shows the actual values inside the PWM port. Note that the Unipolar flag, F2, does not affect the PWM port.
For commutation of brushless motors with the PWM port, only use the Pulse pin (pin 16) from the PWM port as the commutator already contains sign information. (See Figure 9).

The PWM port has an option that can be used with H bridge type amplifiers. The option is Sign Reversal Inhibit, which inhibits the Pulse output for one PWM period after a sign polarity reversal. This allows one pair of transistors to turn off before others are turned on and thereby avoids a short across the power supply. Bit 0 in the Status register (R07H) controls the Sign Reversal Inhibit option. Figure 18 shows the output of the PWM port when Bit 0 is set.

Figure 15. Linear Amplifier Interface

Figure 16. Motor Command Port Output

Figure 17. PWM Port Output

Figure 18. Sign Reversal Inhibit

Figure 19 shows an example of how to interface the HCTL-1000 to an H-bridge amplifer. An H-bridge amplifier allows bipolar motor operation with a unipolar power supply. The Sign Reversal Inhibit feature prevents all transistors from being on at the same time when the direction of motion is reversed.

Figure 19. H-Bridge Amplifier Interface

COUNTER INTERFACE IC

Features

- FULL FUNCTION IN A SPACE SAVING PACKAGE
- SUBSTANTIALLY REDUCED SYSTEM SOFTWARE
- FULL 4X DECODE
- HIGH NOISE IMMUNITY: SCHMITT TRIGGER INPUTS DIGITAL NOISE FILTER
- 8 BIT TRISTATE INTERFACE
- 12 BIT BINARY UP/DOWN COUNTER TO BUFFER THE CONTROL PROCESSOR
- 12 BIT LATCH AND INHIBIT LOGIC PROVIDE A STABLE, 2 BYTE READ OPERATION
- 8 AND 12 BIT OPERATING MODES

Description

The HCTL-2000 is an HCMOS IC that performs the quadrature decoder, counter, and bus interface function. The HCTL-2000 is designed to improve system performance in digital closed loop motion control systems and digital data input systems. It does this by shifting time intensive quadrature decoder functions to a cost effective hardware solution. The HCTL-2000 consists of a $4 \times$ quadrature decoder, 12 bit binary up/down state counter, and 8 bit bus interface. The use of Schmitt triggered CMOS inputs and a 3 bit state delay filter allows reliable operation in noisy environments. The HCTL-2000 provides LSTTL compatible tri-state output buffers. Operation is specified for a temperature range from -40 to $+85^{\circ} \mathrm{C}$ at clock frequencies up to 3.9 mHz .

Package Dimensions

LEAD FINISH: SOLDER DIPPED

DIGITAL MOTION CONTROL

Applications

- INTERFACE QUADRATURE INCREMENTAL ENCODERS TO MICROPROCESSORS
- INTERFACE DIGITAL POTENTIOMETERS TO DIGITAL DATA INPUT BUSSES

Table of Contents

- OPERATING CHARACTERISTICS 2
- FUNCTIONAL PIN DESCRIPTIONS 3
- SWITCHING CHARACTERISTICS 4
- OPERATION 6
- FILTER OPTIMIZATION 9
- INTERFACING .. 11
- GENERAL .. 11
- TO MOTOROLA 6801 12
- TO INTEL 8748 13

ESD WARNING: HCTL-2000 is implemented in a standard HCMOS process with diode protection of all I/O pads. Standard precautions for handling HCMOS devices should be observed.

Operating Characteristics

Table 1. Absolute Maximum Ratings (all voltages below are referenced to V_{SS})

Parameter	Symbol	Limits	Units
DC Supply Voltage	$V_{\text {dd }}$	-0.3 to +7	V
Input Voltage	$V_{\text {in }}$	-0.3 to $V_{\text {dd }}+0.3$	V
Storage Temperature	T_{s}	-40 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\mathrm{a}}{ }^{[1]}$	-40 to +85	${ }^{\circ} \mathrm{C}$

Table 2. Recommended Operating Conditions

Parameter	Symbol	Limits	Units
DC Supply Voltage	$V_{\text {dd }}$	+3 to +6	V
Ambient Temperature	$\mathrm{T}_{\mathrm{a}}{ }^{[1]}$	-40 to +85	${ }^{\circ} \mathrm{C}$

Table 3. DC Characteristics $\mathrm{V}_{\mathrm{dd}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {If }}{ }^{[2]}$	Low-Level Input Voltage				1.5	V
$V_{i h^{[2]}}$	High-Level Input Voltage		3.5			V
$V_{t+}{ }^{[2]}$	Schmitt-Trigger Positive-Going Threshold			3.0	4.0	V
$V_{4}{ }^{\mid 2]}$	Schmitt-Trigger Negative-Going Threshold		1.0	1.5		V
V_{n}	Schmitt-Trigger Hysteresis		1.0	1.5	\checkmark	V
in	Input Current	$\begin{aligned} & V_{\text {in }}=V_{\text {dd }} \\ & V_{\text {in }}=V_{S S} \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & +10 \\ & +10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {oh }}{ }^{\text {2] }}$	High-Level Output Voltage	$\mathrm{l}_{\mathrm{oh}}=-1.6 \mathrm{~mA}$	2.4	4.5		V
$\mathrm{Vol}^{[2]}$	Low-Level Output Voltage	$\mathrm{l}_{\text {Ol }}=+1.6 \mathrm{~mA}$		0.2	0.4	V
$\mathrm{l}_{0 z}$	High-Z Output Leakage Current	$V_{0}=V_{S S}$ or $V_{\text {dd }}$	-10	1	+10	$\mu \mathrm{A}$
$l_{\text {dd }}$	Quiescent Supply Current	$\begin{aligned} & V_{\text {in }}=V_{s s} \text { or } V_{\mathrm{dd}} \\ & V_{d}=H i Z \end{aligned}$		60		$\mu \mathrm{A}$
$\mathrm{C}_{\text {in }}$	Input Capacitance	Any Input ${ }^{(3]}$		5		pF
Cout	Output Capacitance	Any Output ${ }^{(31}$		7		pF

NOTES:

1. Free Air.
2. In general, for any $V_{d d}$ between the allowable limits $(+3 V$ to $+6 V), V_{i l}=0.3 V_{d d}$ and $V_{i h}=0.7 V_{d d} ; V_{t}+$ and $V_{t}-$ vary as Fig $1 ; V_{\text {oh }}=V_{d d}-$ 0.5 V and $\mathrm{V}_{\mathrm{ol}}=\mathrm{V}_{\mathrm{ss}}+0.2 \mathrm{~V} @(\pm) 1.6$ ma respectively.
3. Excluding package capacitance.

Figure 1. Typical Schmitt Trigger Input Threshholds

Functional Pin Descriptions

Table 4. Functional Pin Descriptions

Symbol	Pin	Description
$V_{\text {dd }}$	16	Power Supply
$V_{\text {SS }}$	8	Ground
CLK	2	The rising edge of this Schmitt trigger input controls the sampling of the CHA and CHB inputs, and the clocking of the input of the noise filters, decoder, counter and internal data latch. The falling edge of the CLK input controls the sampling of the OE and SEL inputs to control the inhibit logic.
CHA	6	CHA and CHB are Schmitt trigger inputs which accept the output from a quadrature encoded source, such as an incremental optical shaft encoder. The $4 x$ decoding into states produces count and direction information where the number of states is 4 times the number of pulses on CHA or CHB (See Figure 8). Non-ideal state width affects the relationship between the clock frequency and the maximum encoder line frequency: See "Digital Filter" and "Quadrature Decoder" section.
CHB	7	
$\overline{\text { RST }}$	5	This active low Schmitt trigger input clears the internal 12 bit up/down position counter and the position latch. It also resets the inhibit logic. RST is asynchronous with respect to any other input signals. $\overline{\text { RST }}$ does not clear the input filter state machine nor the decoder state machine.
$\overline{O E}$	4	This HCMOS active low input directly controls the tri-state output buffers. In addition, the $\overline{O E}$ and SEL inputs are sampled by the internal inhibit logic on the falling edge of the clock to control the loading of the internal position data latch. The above operation constrains the timing of $\overline{O E}$ and SEL to be synchronous with the falling clock edge during two byte read operations. See "Inhibit Logic".
SEL	3	This HCMOS input directly controls which data byte from the position latch is enabled into the 8 bit tri-state output buffer. As in $\overline{\mathrm{OE}}$ above, SEL also controls the internal inhibit logic.
		SEL \quad BYTE SELECTED
		0 high
		1 low
D0	1	These LSTTL compatible tri-state outputs form an 8 bit output port through which the contents of the 12 bit position latch may be read in 2 sequential bytes. Inhibit logic disables the position data latch inputs at the start of the read operation to hold the data stable throughout the 2 byte read operation. Once commenced, this sequence must be completed, or $\overline{\text { RST }}$ must be used to reset the inhibit logic, with resulting data loss. The high byte, containing bits 8-11, is read first. The most significant 4 bits of this byte are set to 0 internally. The lower byte, bits $0-7$, is read second.
D1	15	
D2	14	
D3	13	
D4	12	
D5	11	
D6	10	
D7	9	

Switching Characteristics

Table 5. Switching Characteristics Min/Max specifications at $\mathrm{V}_{\mathrm{dd}}=5.0 \pm 5 \%, \mathrm{~T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$; Typicals are representative of $\mathrm{V}_{\text {dd }}=5.0 \mathrm{~V}, \mathrm{~T}_{\text {case }}=25^{\circ} \mathrm{C}$

Symbol Description			Min. ${ }^{11]}$	Typ. ${ }^{[2]}$	Max. ${ }^{11]}$	Units
1	$T_{\text {clk }}$	Rising edge to rising edge of clock period	255	136	-	ns
2	Tchn	Minimum clock high hold time	125	70	-	ns
3	$T_{c d}{ }^{\|3\|}$	Delay from rising edge of clock to valid, updated count information on DO-7	-	126	230	ns
4	Tode ${ }^{[5]}$	OE to valid data on DO-7	-	47	86	ns
5	Todz	OE delay to $\mathrm{Hi}-\mathrm{Z}$ state on D0-7	-	30	55	ns
6	$\mathrm{T}_{\text {sdy }}{ }^{141}$	SEL valid to stable, selected data byte, delay to High Bytemdelay to Low Byte	-	71	129	ns
7	Tcln	Minimum clock low hold time	35	20	-	ns
8	$\mathrm{T}_{5 S}{ }^{[6]}$	SEL setup time prior to falling clock edge	36	20	-	ns
9	$\mathrm{Tos}^{[6]}$	OE setup time prior to falling clock edge	31	17	-	ns
10	$\mathrm{T}_{\text {sh }}{ }^{[6]}$	Hold time of SEL after falling clock edge	0	-	-	ns
11	Ton ${ }^{[6]}$	Hold time of OE after falling clock edge	0	-	-	ns
12	Trst	RST active low hold time	50	27	-	ns
13	Tdcd	Output Delay Time: Last Position Count Stable on D0-7 after Rising Clock Edge.	5	36	-	ns
14	$T_{\text {dsd }}$	Output Delay Time; Last Data Byte Stable after next SEL state change.	4	31	-	ns
15	Tdod	Output Delay Time; Data Byte Stable atter $\overline{\mathrm{OE}}$ Rising Edge	3	25	-	ns

NOTES:

1. All times specified from valid logic level to valid logic level of relevant I/O pins. Conformance to these limits is necesary to insure proper operation over $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$.
2. Typical times are for reference only.
3. $T_{c d}$ specification and waveform assume valid stable SEL and $\overline{\mathrm{OE}}$ from $\mathrm{T}=-\infty$
4. $T_{\text {sdv }}$ specification and waveform assume data stable and valid on internal multiplexer inputs prior to the SEL transition.
5. Tode specification and waveform assume data stable on buffer inputs.
6. $T_{\text {ss }}, T_{\text {os }}, T_{\text {sh }}, T_{\text {oh }}$ only pertain to proper operation of the inhibit logic. In other cases, such as 8 bit read operations, these setup and hold times do not need to be observed.

Figure 2. Reset Waveform

Figure 3. Waveforms for Positive Clock Edge Related Delays

Figure 4. Tri-State Output Timing

Figure 5. Bus Control Timing

Operation

A detailed block diagram of the HCTL-2000 is shown in Figure 6. The operation of each major function is described in the following sections.

Figure 6. Simplified Logic Diagram

DIGITAL FILTER

The digital filter section is responsible for rejecting noise on incoming quadrature signals. Schmitt-trigger conditioning addresses the problems of slow rise and fall times and low level noise. The major task of the filter is to deal with short-duration noise pulses that cause the input logic level to momentarily change. Due to the nature of quadrature decoding, noise pulses on one channel will not cause a count error, but the coincidence of two overlapping noise pulses, one on each input, can cause illegal state transitions. False counts of undetermined direction will result from the decoding of these illegal transitions (see Fig. 8).
A pair of filters rejects these noise pulses by sampling the CHA and CHB logic levels and storing a time history in a pair of shift registers. For each channel, if the input level has had the same value on three consecutive rising clock edges, that value becomes the new output of the filter; otherwise the output is unchanged. This means that the CHA filter output cannot change from high to low until the CHA input has been low for three consecutive rising clock edges. CHB is treated the same as CHA.
The operation of this digital filter section places one of two timing constraints on the minimum clock frequency in relationship to the encoder count frequency. The first con-
straint derives from the operation of the input filters. It relates the maximum clock period to the minimum encoder pulse width. The second constraint derives from the decoder operation and is covered in the "Quadrature Decoder" section. It relates the maximum clock period to the minimum encoder state width (T_{es}).

The explanation of constraint one above is as follows: It takes a minimum of four positive clock transitions for a new logic level on either CHA or CHB to propagate through their respective filters, but the signal only needs to be stable for three consecutive rising clock edges (See Figure 7). This means that the minimum encoder pulse width (T_{e}) on each channel must be $\geq 3 T_{\text {CLK }}$, where $T_{\text {CLK }}$ is the period of the clock.
In the presence of noise, the filter will require that $3 \mathrm{~T}_{\text {CLK }}$ be less than T_{e}, since noise pulses will interrupt the required three consecutive constant level samples necessary for the filter to accept a new input level. In general, the types of noise that this filter will deal with will derive from the rotating system, i.e., motor noise, capacitively coupled level changes from other encoder channels, etc. As such, these noise sources will be periodic in nature and proportional to the encoder frequency. Design for noise of this type is discussed later in the "Filter Optimization" section.

Figure 7. Minimum Encoder Pulse Width with Respect to TCLK

In addition to problems with noise, other common signal problems enter into the determination of the maximum TCLK for each application. The following quadrature signal aberrations can all be accounted for by designing with short enough TCLK to accommodate the reduction of the effective encoder pulse width:

1) non-ideal encoder rise and fall times,
2) asymmetric pulses,
3) short (< 180 electrical degrees) pulses.

Designing for these non-ideal signals is discussed later in the "Filter Optimization" section.

QUADRATURE DECODER

The Quadrature Decoder section samples the outputs from the CHA and CHB filters. Sampling occurs on the rising clock edge. The Decoder Section observes changes in these outputs, and, on the rising clock edge, it outputs two signals to the position counter. These signals specify when to count and in which direction (up or down).

Encoder state changes are detected by comparing the previous sampled state to the current sampled state. If the two are different, the counter section is signaled to count on the next rising clock edge. Count direction (up or down) is also determined by observing the previous and current states, as shown in the quadrature state transition diagram (figure 8). An illegal state transition, caused by a faulty encoder or noises severe enough to pass the filter, will produce a count but in an undefined direction.

The second constraint on the relationship between TCLK and the input quadrature signal, as previously mentioned in the "Digital Filter" section, is the requirement by the $4 x$ decoder for at least one positive clock transition to occur during each quadrature state to detect the state. This constraint is satisfied if: $T_{e s}>$ TCLK, where $T_{e s}$ is the time interval corresponding to the shortest state width at the maximum system velocity.

The combination of the following two errors must be examined in light of the minimum state width constraint to ensure proper operation of the decoder section:

1) Phase shift deviations from 90 electrical degrees between the CHA and CHB signals;
2) Pulse width errors resulting in T_{e} shorter than 180 electrical degrees in either or both CHA and CHB.
Design for these conditions is discussed in the "Filter Optimization" section.

CHA	CHB	STATE
1	0	1
1	1	2
0	1	3
0	0	4

Figure 8. Elements of $4 \times$ Quadrature Decoding

POSITION COUNTER

This section consists of a 12-bit binary up/down counter which counts on rising clock edges as specified by the Quadrature Decode Section. All twelve bits of data are passed to the position data latch. The system can use this count data in three ways:
A. System total range is ≤ 12 bits, so the count represents "absolute" position.
B. The system is cyclic with ≤ 12 bits of count per cycle, $\overline{\text { RST }}$ is used to reset the counter every cycle, and the system uses the data to interpolate within the cycle.
C. System count is >12 bits, so the count data is used as a relative or incremental position input for a system computation of absolute position.
In case C above, counter rollover occurs. In order to prevent loss of position information, the processor must read the outputs of the HCTL-2000 at intervals shorter than 512 times the minimum encoder line period. This minimum line period ($\mathrm{T}_{\text {elp }}$) corresponds to the maximum encoder velocity of the design. Two's complement arithmetic is normally used to compute position from these periodic position updates.

POSITION DATA LATCH

This section is a 12-bit latch which captures the position counter output data on each rising clock edge, except when its inputs are disabled by the inhibit logic section during two-byte read operations. The output data is passed to the bus interface section. The latch is cleared asynchronously by the $\overline{\mathrm{RST}}$ signal. When active, a signal from the inhibit logic section prevents new data from being captured by the latch, keeping the data stable while successive byte-reads are made through the bus interface section.
of the position data latch output. Since the latch is only twelve bits wide, the upper four bits of the high byte are internally set to zero. The SEL and $\overline{O E}$ signals determine which byte is output and whether or not the output bus is in the high-Z state, respectively.

INHIBIT LOGIC

The Inhibit Logic Section samples the $\overline{O E}$ and SEL signals on the falling edge of the clock and, in response to certain conditions (see Figure 9 below), inhibits the position data latch. The RST signal asynchronously clears the inhibit logic, enabling the latch.

STEP	SEL	OE	CLK	INHIBIT SIGNAL	ACTION
1	L	L		1	SETINHIBIT; READ HIGH BYTE
2	H	L	L	1	READ LOW BYTE; STARTS BESET
3	X	H	L	0	COMPLETES INHIBIT LOGIC RESET

Figure 9. Two Byte Read Sequence

While the HCTL-2000 can be used with any microprocessor, the Bus Interface and Inhibit Logic sections have been optimized for use with microprocessors similar to the Motorola 6801. The 6801 has a double-byte fetch instruction (LDD) which produces two consecutive fetch cycles on the bus. In the correct interface configuration, the first cycle inhibits the position data latch and reads the high data byte, and the second cycle reads the low byte and resets the inhibit logic. A version of this configuration is illustrated in Figure 14.

BUS INTERFACE

The bus interface section consists of a 16 to 8 line multiplexer and an 8 bit, three-state output buffer. The multiplexer allows independent access to the low and high bytes

Filter Optimization

System design with the HCTL-2000 will require the user to optimize its clock period for encoding errors and line noise on the CHA and CHB inputs. In the absence of noise this optimization is simplified. The critical encoding errors, minimum pulse width and minimum state width, occur at the maximum designed system operating velocity. Input noise can be caused by motor electromagnetic interference, channel cross coupling, etc. The HCTL-2000 input filter interacts with encoding errors and noise to form the major system design constraints. This section will illustrate system design techniques and will present guidelines useful in implementing the HCTL-2000.

The discussion that follows will make use of the definitions listed below:

$$
\left.\begin{array}{rl}
\mathrm{T}_{\mathrm{nf}}= & \begin{array}{l}
\text { The fundamental period character- } \\
\text { istic of a periodic noise source }
\end{array} \\
\mathrm{T}_{\mathrm{CLK}}= & \text { Period of HCTL-2000 clock input } \\
& \text { signal }
\end{array}\right)
$$

ENCODING ERRORS

Design for quadrature signal errors proceeds as follows for an ideal quadrature signal, i.e. all errors $=0$:

$$
\left.\begin{array}{rl}
\mathrm{T}_{\mathrm{elp}}= & 360^{\circ} \mathrm{e}=\text { defined as one electrical } \\
& \text { cycle in electrical degrees } \\
\mathrm{T}_{\mathrm{e}}= & 1 / 2 \mathrm{~T}_{\mathrm{elp}}=180^{\circ} \mathrm{e} \text { ideal pulse } \\
& \text { width }
\end{array}\right\} \begin{aligned}
\mathrm{T}_{\mathrm{es}}= & 1 / 4 \mathrm{~T}_{\mathrm{elp}}=1 / 2 \mathrm{~T}_{\mathrm{e}}=90^{\circ} \mathrm{e}, \text { ideal } \\
& \text { state width } \tag{3}
\end{aligned}
$$

In a real system there are quadrature signal errors, where these errors are:

$$
\left.\begin{array}{rl}
\Delta \mathrm{P}= & \text { Maximum encoder pulse width } \\
& \text { error in }{ }^{\circ} \mathrm{e}, \text { as a deviation from the } \\
\text { ideal pulse width of } 180^{\circ} \mathrm{e}
\end{array}\right\}
$$

The worst cases for pulse width and state width errors in terms of time intervals will occur at the maximum designed system operating velocity. These errors are typically available from encoder manufacturer's data sheets.

$$
\begin{align*}
& T_{\text {elpmin }}=\frac{\mathrm{K} 1}{(\mathrm{RPM})(\mathrm{N})} \tag{4}\\
& \mathrm{T}_{\text {emin }}=\left(\frac{180-|\Delta \mathrm{P}|}{360}\right) \mathrm{T}_{\text {elpmin }} \tag{5}\\
& \mathrm{T}_{\text {esmin }}=\left(\frac{90-|\Delta \mathrm{S}|}{360}\right) \mathrm{T}_{\text {elpmin }} \tag{6}
\end{align*}
$$

NOISE

In the absence of noise, the system design reduces to case A in Table 6. In the presence of noise, cases B through E describe the types of noise for which the above filters are effective. Normal techniques for reducing noise on CHA and CHB inputs may be required to reduce this noise to a level that can be handled by the input filters.
Noise that can be filtered by the HCTL-2000 input filters is noise where $T_{n f}>T_{e s m i n}$ and $T_{m n}<2 T_{C L K}$. This noise can be subdivided into four categories, each having different design constraints. These categories are differentiated by the pulse width of noise on the individual encoder channels.

Dependant channel noise, as below in case B and C in Table 6, is noise where the superposition of noise from both encoder channels does not display a period shorter than the minimum state width:

$$
T_{n f}>T_{\text {esmin }}
$$

The graphic analysis of the effect of this type of noise upon the filter operation is illustrated in Figure 11.

*Signal after Internal Input Filter

Figure 11. Noise is Encoder Channel Dependent

Independant channel noise, as in case D and E in Table 6 , is such that the noise on each channel is independant of the noise on the other channel. The period of the noise on each channel must satisfy the condition:

$$
T_{n f}>T_{\text {esmin }}
$$

independantly. The graphic analysis of the effect of this type of noise on the filter operation is illustrated in Figure 12.

*Signal after Internal Input Filter
Figure 12. Noise is Encoder Channel Independent
The set of design rules that are presented in Table 6 can be derived by examination of Figures 11 and 12, and the following constraints:
a) The encoder output signals must stay at a logic level for a minimum of three consecutive clock pulses before the HCTL-2000 recognizes the logic level change: $\mathrm{T}_{\text {emin }}>3 \mathrm{~T}_{\text {CLK }}$.
b) After acceptance by the HCTL-2000 input filtering section, a state must exist for a minimum of TCLK to be recognized by the internal logic.
c) The minimum encoded pulse width must be greater than twice the minimum state width: $T_{\text {emin }}>2 T_{\text {esmin }}$.
d) The minimum clock period must be greater than 255 ns, which is the minimum clock period for which the HCTL-2000 is guaranteed to operate over the entire specified operating temperature range.

FILTER DESIGN EXAMPLES

Given the above rules, we can calculate the design parameters for a typical high performance motor loop as follows:

$$
\begin{aligned}
\text { Where RPM }= & 3600 \mathrm{rev} / \mathrm{min} . \\
\mathrm{N}= & 1000 \mathrm{counts} / \mathrm{rev} . \\
\Delta \mathrm{P}= & \pm 48^{\circ} \mathrm{e} \\
\Delta \mathrm{~S}= & \pm 60^{\circ} \mathrm{e} \\
& \text { at } 60^{\circ} \mathrm{C}, 1 / \mathrm{T}_{\text {elpmin }}=60 \mathrm{kHz}
\end{aligned}
$$

Then the following calculation accounts for signal errors:

$$
\begin{aligned}
\mathrm{T}_{\text {elpmin }} & =\left(\frac{\mathrm{K} 1}{(\mathrm{RPM})(\mathrm{N})}\right)=\frac{60}{(3600)(1000)} \text { from eq. } 4 \\
& =16667 \mathrm{~ns} \\
\mathrm{~T}_{\text {emin }} & =\left(\frac{180-|\Delta \mathrm{P}|}{360}\right) \mathrm{T}_{\text {elpmin }} \\
& =\left(\frac{180-48}{360}\right)(16667 \mathrm{~ns}) \quad \text { from eq. } 5 \\
& =6111 \mathrm{~ns} \\
T_{\text {esmin }} & =\left(\frac{90-|\Delta \mathrm{S}|}{360}\right) \mathrm{T}_{\text {elpmin }} \\
& =\left(\frac{90-60}{360}\right)(16667 \mathrm{~ns}) \quad \text { from eq. } 6 \\
& =1389 \mathrm{~ns}
\end{aligned}
$$

If the noise is as in case B of Table 6, we can use the above to evaluate the system.

For the condition of noise such that $\mathrm{T}_{\mathrm{mn}}<260 \mathrm{~ns}$:

$$
\begin{aligned}
& T_{\text {CLK }}>260 \mathrm{~ns} \\
& 255 \mathrm{~ns} \leq T_{\text {CLK }}<\frac{T_{\text {esmin }}}{4} \\
& \frac{T_{\text {esmin }}}{4}=\frac{1389}{4}=347 \mathrm{~ns} \\
& \text { Thus, }_{255 \mathrm{~ns}} \leq T_{\text {CLK }}<347 \mathrm{~ns}
\end{aligned}
$$

Similar calculations can be performed to design the filter for the specifics of each system.

Table 6. Summary of Filter Design Rules for the HCTL-2000

Case	Noise Relationship	General Conditions	Pulse Width Constraint	Clock Perlod Design Criteria
A	No noise on CHA or CHB	$\mathrm{T}_{\text {emin }}>2 \mathrm{~T}_{\text {esmin }}$	$\mathrm{T}_{\text {clk }}<\mathrm{T}_{\text {esmin }}$	$255 n s \leq T_{\text {clk }}<(1 / 3) \mathrm{T}_{\text {emin }}$
B	Superposition of noise on CHA or CHB	$\begin{gathered} T_{\text {esmin }}>T_{n f} \\ T_{\text {emin }}>2 T_{\text {esmin }} \\ \hline \end{gathered}$	$\mathrm{T}_{\mathrm{clk}}>\mathrm{T}_{\mathrm{mn}}>0$	$255 \mathrm{~ns} \leq \mathrm{T}_{\text {clk }}<(1 / 4) \mathrm{T}_{\text {esmin }}$
C	Superposition of noise on CHA or CHB	$\begin{gathered} \mathrm{T}_{\text {esmin }}>\mathrm{T}_{n f} \\ \mathrm{~T}_{\text {emin }}>2 \mathrm{~T}_{\text {esmin }} \end{gathered}$	$2 T_{\text {clk }}>T_{\text {mn }} \geq T_{\text {clk }}$	$255 \mathrm{~ns} \leq \mathrm{T}_{\text {clk }}<(1 / 5) \mathrm{T}_{\text {esmin }}$
D	Noise on CHA or on CHB Independent of each other	$\begin{gathered} T_{\text {esmin }}>T_{n f} \\ T_{\text {emin }}>2 T_{\text {esmin }} \end{gathered}$	$\mathrm{T}_{\text {cfk }}>\mathrm{T}_{\mathrm{mn}}>0$	$255 n s \leq T_{\text {ck }}<(1 / 5) \mathrm{T}_{\text {esmin }}$
E	Noise on CHA or on CHB Independent of each other	$\begin{gathered} T_{\text {esmin }}>T_{n f} \\ T_{\text {emin }}>2 T_{\text {esmin }} \end{gathered}$	$2 \mathrm{~T}_{\text {clk }}>\mathrm{T}_{\text {mn }} \geq \mathrm{T}_{\text {clk }}$	$255 \mathrm{~ns} \leq \mathrm{T}_{\text {clk }}<(1 / 7) \mathrm{T}_{\text {esmin }}$

Interfacing the HCTL-2000: General

The 12 bit latch and inhibit logic on the HCTL-2000 allows access to 12 bits of count with an 8 bit bus. When only 8 bits of count are required, a simple 8 bit (1 byte) mode is available by holding SEL high continously. This disables the inhibit logic. $\overline{O E}$ provides control of the tri-state bus, and read timing is per Figures 3 and 4.
For proper operation of the inhibit logic during a two-byte read, $\overline{O E}$ and SEL must be synchronous with CLK due to the falling edge sampling of $\overline{O E}$ and SEL.

The internal inhibit logic on HCTL-2000 inhibits the transfer of data from the counter to the position data latch during the time that the latch outputs are being read. The inhibit logic allows the microprocessor to first read the high order 4 bits from the latch and then read the low order 8 bits from the latch. Meanwhile, the counter can continue to keep track of the quadrature states from the CHA and CHB input signals.

Figure 10 shows a logic diagram of the inhibit logic circuit. The operation of the circuitry is illustrated in the read timing shown in Figure 13.

Figure 13. Internal Inhibit Logic Timing

ACTIONS

1. On the rising edge of the clock, counter data is transfurred to the position data latch, provided the inhibit signal is low.
2. When $\overline{O E}$ goes low, the outputs of the multiplexer are enabled onto the data lines. If SEL is low, then the high order data bytes are enabled onto the data lines. If SEL is high, then the low order data bytes are enabled onto the data lines.
3. When the HCTL-2000 detects a low on $\overline{O E}$ and SEL during a falling clock edge, the internal inhibit signal is activated. This blocks new data from being transferred from the counter to the position data latch.
4. When SEL goes high, the data outputs change from high byte to low byte.
5. The first reset condition for the inhibit logic is met when the HCTL-2000 detects a logic high on SEL and a logic low on $\overline{O E}$ during a falling clock edge.
6. When $\overline{O E}$ goes high, the data lines change to a high impedance state.
7. To complete the reset of the inhibit logic, after the first reset condition has been met, the HCTL-2000 needs to detect a logic high on $\overline{\mathrm{OE}}$ during a falling clock edge.

Interfacing the HCTL-2000 to a Motorola 6801

This interface method provides the minimum part count when the 6801 is operated in "MODE 5". A typical 6801 circuit is shown in Figure 14. In Figure 14, the 74LS138

Figure 14. A Circuit to Interface to the 6801
address decoder can be eliminated if the HCTL-2000 is the only occupant of Port 4.
The processor clock output (E) is used to clock the HCTL2000 as well as the address decoder. One of the address decoder outputs drives the $\overline{\mathrm{OE}}$ input. This results in HCTL2000 counter data being enabled onto the bus whenever an external memory access is made to the HCTL-2000. This example assumes the address assigned to the HCTL-2000 high byte is an even address. The least significant address bit is connected to the SEL input. It determines which data byte is output. When AO on the decoder equals 0 the chip selects the high byte, and when AO equals 1 , the chip selects the low byte. This configuration allows the 6801 to read both data bytes with a single double-byte fetch instruction (LDD E, 01XX). The LDD instruction is a five cycle instruction which reads external memory location 01XX and stores the high order byte in accumulator A and reads external memory location 01XX +1 and stores the low order byte in accumulator B during the last two cycles. Figure 15 illustrates the sequence of events during all five cycles.

Figure 15. Interface Timing for the 6801 LDD E

ACTIONS

1. E is the microprocessor clock output. On the rising edge of E, if the internal inhibit is not active, then new data is transferred from the internal counter to the position data latch.
2. An even address output from the 6801 has caused SEL to go low. E goes high which causes the address decoder output for the HCTL-2000 $\overline{\mathrm{OE}}$ input to go low. This causes the HCTL-2000 to output the high byte of the position data latch.
3. The 6801 reads the data bus on the falling edge of E, storing the high order data byte in accumulator A. The chip detects that $\overline{O E}$ and SEL are low on the falling edge of E and activates the internal inhibit signal. The position data latch is inhibited and data cannot be transferred from the internal counter to the latch.
4. E is now low, so the address decoder output is disabled and $\overline{O E}$ goes high. The 6801 increments the address, so SEL goes high. The position data latch is still inhibited.
5. The address decoder is enabled after \mathbf{E} goes high, so $\overline{\mathrm{OE}}$ goes low and the low data byte is enabled onto the bus.
6. The 6801 reads the data bus on the falling edge of E , storing the low order data byte in accumulator B . The chip detects that $\overline{O E}$ is low and SEL is high on the falling edge of E, so the first inhibit-reset condition is met.
7. E is now low, so the address decoder is disabled, causing $\overline{O E}$ to go high and the data lines to go to the high impedence state. The 6801 continues its instruction execution, and the state of SEL is indeterminate.
8. The HCTL-2000 detects $\overline{\mathrm{OE}}$ is high on the next falling edge of E. This satisfies the second inhibit reset condition so the inhibit signal is reset.

Interfacing the HCTL-2000 to an Intel 8748

The circuit in Figure 15 shows the connections between an HCTL-2000 and an 8748. Data lines D0-D7 are connected to the 8748 bus port. Bits 0 and 1 of port 1 are used to control the SEL and $\overline{O E}$ inputs of the HCTL-2000 respectively. T0 is used to provide a clock signal to the HCTL-2000. The frequency of TO is the crystal frequency divided by 3. TO must be enabled by executing the ENTO CLK instruction after each system reset, but prior to the first encoder position change. An 8748 program which interfaces to the circuit in Figure 16 is given in Figure 17. The resulting interface timing is shown in Figure 18.

Figure 16. An HCTL-2000 to Intel 8748 Interface

LOC	OBJECT CODE	SOURCE STATEMENTS	
000	9900	ANL P1, OOH	ENABLE OUTPUT AND OUTPUT HIGHER ORDER BITS
002	08	INS A, BUS	LOAD HIGHER ORDER BITS INTO ACC
003	A8	MOVE RO A	MOVE DATA TO REGISTER O
004	8903	ORL P1, O1H	CHANGE DATA FROM HIGH ORDER TO LOW ORDER BITS
006	08	INS A, BUS	LOAD ORDER BITS INTO AC
008	A9	MOV R1, A	MOVE DATA TO REGISTER 1
009	8903	ORL P1, O3H	DISABLE OUTPUTS
$00 B$	93	RETR	RETURN

Figure 17. A Typical Program for Reading HCTL-2000 with an 8748

Figure 18. 8748 READ Cycle from Figure 14.

ACTIONS

1. ANL P1, 00 H has just been executed. The output of bits 0 and 1 of Port 1 cause SEL and $\overline{O E}$ to be logic low. The data lines output the higher order byte.
2. The HCTL-2000 detects that $\overline{O E}$ and SEL are low on the next falling edge of the CLK and asserts the internal inhibit signal. Data can be read without regard for the phase of the CLK.
3. INS A, BUS has just been executed. Data is read into the 8748.
4. ORL PORT $1,01 \mathrm{H}$ has just been executed. The program sets SEL high and leaves $\overline{O E}$ low by writing the correct values to port 1. The HCTL-2000 responds by outputting the lower byte. The HCTL-2000 detects $\overline{O E}$ is low and SEL is high on the next falling edge of the CLK, and thus, the first inhibit-reset condition is met.
5. INS A, BUS has just been executed. Lower order data bits are read into the 8748.
6. ORL P1, 03 H has just been executed. The HCTL-2000 detects $\overline{\mathrm{OE}}$ high on the next falling edge of CLK. The program sets $\overline{O E}$ and SEL high by writing the correct values to port 1. This causes the data lines to be tristated. This satisfies the second inhibit-reset condition. On the next rising CLK edge new data is transferred from the counter to the position data latch.

Light Bars and Bar Graph Arrays

- Light Bars
- Bar Graph Arrays
- Legends

5-1

Light Bars and Bar Graph Arrays

LED Light Bars are Hewlett-Packard's innovative solution to fixed message annunciation. The large, uniformly illuminated light emitting surface may be used for backlighting legends or simple indicators. Four distinct colors are offered, AlGaAs red, high efficiency red, yellow, and high performance green with two bicolor combinations (see page 5-15). The AlGaAs Red Light Bars provide exceptional brightness at very low drive currents for those applications where portability and battery backup are important considerations. Each of the eight X-Y stackable package styles offers one, two, or four light emitting surfaces. Along with this family of stackable light bars, HP also provides a single chip light bar for high brightness indication of small areas. Panel Mounts and Legends are also available for all devices.

In addition to light bars, HP offers effective analog message annunciation with the 10 -element and 101element LED Bar Graph Arrays. These bar graph arrays eliminate the matching and alignment problems commonly associated with arrays of discrete LED indicators. Each device offers easy to handle packages that are compatible with standard SIP and DIP sockets. The 10 -element Bar Graph Array is available in standard red, AlGaAs red, high efficiency red, yellow, and high performance green. The new multicolor 10element arrays have high efficiency red, yellow and green LEDs in one package. The package is X-Y stackable, with a unique interlock allowing easy end-toend alignment. The 101-element Bar Graph Array is offered in standard red, high efficiency red and high performanc green with 1% resolution.

LED Light Bars

LED Light Bars (Continued)

Device		Description			Typical Luminous Intensity @ 20 mA	Typical Forward Voltage @ 20 mA	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens			
	HLMP-2670	\qquad	16 Pin DIP; 0.100" Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Dual Square Arrangement	Diffused	45 mcd	2.0 V	5-8
	HLMP-2770	Yellow		Diffused	35 mcd	2.1 V	
	HLMP-2870	Green		Green Diffused	50 mcd	2.2 V	
	HLMP-2685	High Efficiency Red	16 Pin DIP; $0.100^{\prime \prime}$ Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Single Bar Arrangement	Diffused	80 mcd	2.0 V	
	HLMP-2785	Yellow		Diffused	70 mcd	2.1 V	
	HLMP-2885	Green		Green Diffused	100 mcd	2.2 V	

DH AIGaAs Low Current LED Light Bars

Device		Description			Typical Luminous Intensity @ 3 mA	Typical Forward Voltage @ 3 mA	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens			
	HLCP-A100	AIGaAs Red	4 Pin In-Line; 0.100" Centers; $0.400^{\prime \prime} \mathrm{L} x$ $0.195^{\prime \prime} \mathrm{W} \times 0.240^{\prime \prime} \mathrm{H}$	Diffused	7.5 mcd	$1.6 \mathrm{~V}$	5-15
	HLCP-B100	AIGaAs Red	8 Pin In-Line; $0.100^{\prime \prime}$ Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.195^{\prime \prime} \mathrm{W} \times 0.240^{\prime \prime} \mathrm{H}$	Diffused	15.0 mcd		
	HLCP-D100	AIGaAs Red	$\begin{array}{\|l\|} 8 \text { Pin DIP; } 0.100^{\prime \prime} \\ \text { Centers; } 0.400^{\prime \prime} \mathrm{L} \mathrm{X} \\ 0.400^{\prime \prime W} \times 0.240^{\prime \prime} \mathrm{H} \\ \text { Dual Arrangement } \end{array}$	Diffused	7.5 mcd		
	HLCP-E100	AIGaAs Red	$\begin{aligned} & 16 \text { Pin DIP; } 0.100^{\prime \prime} \\ & \text { Centers; } 0.800^{\prime \mathrm{L}} \mathrm{x} \\ & 0.400^{\prime W} \text { x } 0.240^{\prime \mathrm{H}} \\ & \text { Quad Arrangement } \end{aligned}$	Diffused	7.5 mcd		

DH AIGaAs Low Current LED Light Bars (Continued)

Device		Description			Typical Luminous Intensity @ 3 mA	Typical Forward Voltage @ 3 mA	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Package Outline Drawing	Part No.	Color	Package	Lens			
\square \square \square	HLCP-F100	AIGaAs Red	16 Pin DIP; $0.100^{\prime \prime}$ Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.240^{\prime \prime} \mathrm{H}$ Dual Bar Arrangement	Diffused	15.0 mcd	1.6 V	5-15
	HLCP-C100	AlGaAs Red	8 Pin DIP; $0.100^{\prime \prime}$ Centers; $0.400^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.240^{\prime \prime} \mathrm{H}$ Square Arrangement	Diffused	15.0 mcd		
	HLCP-G100	AlGaAs Red	16 Pin DIP; 0.100" Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.240^{\prime \prime} \mathrm{H}$ Dual Square Arrangement	Diffused	15.0 mcd		
	HLCP-H100	AlGaAs Red	16 Pin DIP; 0.100" Centers; $0.800^{\prime \prime} \mathrm{Lx}$ $0.400^{\prime \prime} \mathrm{W} \times 0.240^{\prime \prime} \mathrm{H}$ Single Bar Arrangement	Diffused	30.0 mcd		

LED Bicolor Light Bars

Device		Description			Typical Luminous Intensity @ 20 mA	Typical Forward Voltage @ 20 mA	$\begin{gathered} \text { Page } \\ \text { No. } \\ \hline \end{gathered}$
Package Outiline Drawing	Part No.	Color	Package	Lens			
	HLMP-2950	High Efficiency Red/ Yellow	8 Pin DIP; . $100^{\prime \prime}$ Centers; . $400^{\prime \prime} L \times$ $.400^{\prime \prime} \mathrm{W}$ x $.245^{\prime \prime} \mathrm{H}$ Square Arrangment	Diffused	HER: 20 mcd Yellow: 12 mcd	HER: 2.0 V Yellow: 2.1 V	5-20
	HLMP-2965	High Efficiency Red/ Green	..	Diffused	HER: 20 mcd Green: 20 mcd	HER: 2.0 V Green: 2.2 V	

LED Bar Graph Arrays

Device		Description			Typical Luminous Intensity	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Package Outline Drawing	Part No.	Color	Package	Lens			
	HDSP-4820	Standard Red	$\begin{aligned} & 20 \text { Pin DIP; } \\ & .100^{\prime \prime} \text { Centers; } \\ & 1.0^{\prime \prime} \mathrm{L} \times .400^{\prime \prime} \mathrm{W} \\ & \times .200^{\prime \prime} \end{aligned}$	Diffused	$\begin{aligned} & 1250 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \mathrm{DC} \end{aligned}$	$\begin{aligned} & 1.6 \mathrm{~V} @ \\ & 20 \mathrm{~mA} \mathrm{DC} \end{aligned}$	5-27
	HDSP-4830	High Efficiency Red		Diffused	$\begin{aligned} & 3500 \mu \mathrm{~cd} @ \\ & @ 10 \mathrm{~mA} \mathrm{DC} \end{aligned}$	$\begin{aligned} & 2.1 \mathrm{~V} @ \\ & 20 \mathrm{mADC} \end{aligned}$	
	HDSP-4840	Yellow		Diffused	$\begin{aligned} & 1900 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \mathrm{DC} \end{aligned}$	$\begin{aligned} & 2.2 \text { V @ } \\ & 20 \mathrm{~mA} \text { DC } \end{aligned}$	
	HDSP-4850	High Performance Green		Green Diffused	$\begin{aligned} & 1900 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \mathrm{DC} \end{aligned}$	$\begin{aligned} & 2.1 \mathrm{~V} @ \\ & 10 \mathrm{~mA} D \end{aligned}$	
	HDSP-4832	Multicolor		Diffused	$\begin{aligned} & 1900 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \mathrm{DC} \end{aligned}$		
	HDSP-4836	Multicolor		Diffused	$\begin{aligned} & 1900 \mu \mathrm{~cd} \\ & @ 10 \mathrm{mADC} \end{aligned}$		
\square	HDSP-8820	Standard Red	22 Pin DIP; .100" Centers; $4.16^{\prime \prime} \mathrm{L} \times .390^{\prime \prime} \mathrm{W}$ x $.236^{\prime \prime} \mathrm{H}$	Red, Non-Diffused	$20 \mu \mathrm{~cd}$ @ 100 mA Pk: 1 of 110 D.F.	$\begin{aligned} & 1.7 \mathrm{~V} @ \\ & 100 \mathrm{~mA} \mathrm{Pk}: \\ & 1 \text { of } 110 \\ & \text { D.F. } \end{aligned}$	5-33
	HDSP-8825	High Efficiency Red		Clear	$\begin{aligned} & 175 \mu \mathrm{~cd} \\ & @ 100 \mathrm{~mA} \mathrm{Pk}: \end{aligned}$ $1 \text { of } 110 \text { D.F. }$	2.3 V @ 100 mA Pk : 1 of 110 D.F.	
	HDSP-8835	High Performance Green		Clear	$\begin{aligned} & 175 \mu \mathrm{~cd} \\ & @ 100 \mathrm{~mA} \text { Pk: } \\ & 1 \text { of } 110 \text { D.F. } \end{aligned}$	2.3 V @ 100 mA Pk : 1 of 110 D.F.	

DH AIGaAs Low Current 10-Element Bar Graph Arrays

$\left.$| Device | | Description
 Package Outline Drawing | | | Part No. | Color | Package |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| Typical |
| :---: |
| Luminous |
| Intensity |\quad| Typical |
| :---: |
| Forward |
| Voltage |\quad| Page |
| :---: |
| No. | \right\rvert\,

Single Chip LED Light Bar

Device		Description			Typical Luminous Intensity	$201 / 2$	Typlcal Forward Voltage	$\begin{aligned} & \text { Page } \\ & \mathrm{No.} \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-T200	High Efficiency Red (626 nm)	One Chip LED Light Bar	Tinted Diffused	4.8 mcd @ 20 mA	100°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	5-45
	HLMP-T300	Yellow (585 nm)			6.0 mcd @ 20 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-T400	Orange (608 nm)			4.8 mcd @ 20 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ \text { @ } 20 \mathrm{~mA} \end{gathered}$	
	HLMP-T500	Green (569 nm)			6.0 mcd @ 20 mA		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	

Panel and Legend Mounts for LED Light Bars

Device		Corresponding Light Bar Module Part Number	Page No.
Package Outline Drawing	Part No.		
	HLMP-2598	$\begin{aligned} & \text { HLMP-2350, -2450, -2550, } \\ & \text { HLCP-B100 } \end{aligned}$	5-49
	HLMP-2599	$\begin{aligned} & \text { HLMP-2300, -2400, -2500, } \\ & \text { HLCP-A100 } \end{aligned}$	
	HLMP-2898	$\begin{aligned} & \text { HLMP-2600, -2700, -2800 } \\ & -2655,-2755,-2855 \\ & -2950,-2965, \text { HLCP-C100, -D100 } \end{aligned}$	
	HLMP-2899	$\begin{gathered} \text { HLMP-2620, }-2720,-2820, \\ -2635,-2735,-2835 \\ -2670,-2770,-2870 \\ -2685,-2785,-2885 \\ \text { HLCP-E100, -F100, -G100, -H100 } \end{gathered}$	

Special Options

Description	Option Code	Applicable Part Number HLMP.	Pagı No.
Legends	$\begin{aligned} & \text { L00, L01, L03, L04 } \\ & \text { L00, L01, L03, L06, L04 } \\ & \text { L00, L01, L02, L03, L04, L05, L06 } \end{aligned}$	2300, 2400, 2500, HLCP-A100 2655, 2755, 2855, HLCP-C100 2685, 2785, 2885, HLCP-H100	5-51
Intensity Selected	S02	2300, 2400, 2500, 2635, 2735, 2835 2350, 2450, 2550, 2655, 2755, 2855 2600, 2700, 2800, 2670, 2770, 2870 2620, 2720, 2820, 2685, 2785, 2885	5-53

Features

- LARGE, BRIGHT, UNIFORM LIGHT EMITTING AREAS
Approximately Lambertian Radiation Pattern
- CHOICE OF THREE COLORS
- CATEGORIZED FOR LIGHT OUTPUT
- Yellow and green categorized for DOMINANT WAVELENGTH
- EXCELLENT ON-OFF CONTRAST
- EASILY MOUNTED ON P.C. BOARDS OR INDUSTRY STANDARD SIP/DIP SOCKETS
- MECHANICALLY RUGGED
- X-Y Stackable
- FLUSH MOUNTABLE
- CAN be USED WITH PANEL AND LEGEND MOUNTS
- LIGHT EMITTING SURFACE SUITABLE FOR LEGEND ATTACHMENT PER APPLICATION NOTE 1012
- SUITABLE FOR MULTIPLEX OPERATION
- I.C. COMPATIBLE

Description

The HLMP-2300/-2400/-2500/-2600/-2700/-2800 series light bars are rectangular light sources designed for a variety of applications where a large, bright source of light is required. These light bars are configured in single-in-line and dual-in-line packages that contain either single or

Applications

- BUSINESS MACHINE MESSAGE ANNUNCIATORS
- TELECOMMUNICATIONS INDICATORS
- FRONT PANEL PROCESS STATUS INDICATORS
- PC BOARD IDENTIFIERS
- BAR GRAPHS
segmented light emitting areas. The -2300/-2400/-2600/ -2700 series devices utilize LED chips which are made from GaAsP on a transparent GaP substrate. The -2500/ -2800 series devices utilize chips made from GaP on a transparent GaP substrate.

Selection Guide

Light Bar Part Number			Size of Light Emitting Areas	Number of Light Emitting Areas	Package Outline		Corresponding Panel and Legend Mount Part No. HLMP-
HLMP-							
High Efficiency Red	Yellow	Green					
2300	2400	2500	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(0.350 \mathrm{in} \times 0.150 \mathrm{in}$.)	1	A	\square	2599
2350	2450	2550	$19.05 \mathrm{~mm} \times 3.81 \mathrm{~mm}(0.750 \mathrm{in} . \times 0.150 \mathrm{in}$)	1	B	\square	2598
2600	2700	2800	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(0.350 \mathrm{in} \times 0.150 \mathrm{in}$.)	2	D	T	2698
2620	2720	2820	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}$ ($0.350 \mathrm{in} \times 0.150 \mathrm{in}$.)	4	E	[II]	2899
2635	2735	2835	$3.81 \mathrm{~mm} \times 19.05 \mathrm{~mm}(0.150 \mathrm{in} . \times 0.750 \mathrm{in}$.)	2	F	\square	2899
2655	2755	2855	$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}(0.350 \mathrm{in} . \times 0.350 \mathrm{in}$.	1	C	\square	2898
2670	2770	2870	$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}(0.350 \mathrm{in} . \times 0.350 \mathrm{in}$.	2	G	\square	2899
2685	2785	2885	$8.89 \mathrm{~mm} 19.05 \mathrm{~mm}(0.350 \mathrm{in} \times 0.750 \mathrm{in}$.	1	H	\square	2899

Absolute Maximum Ratings

Parameter	HLMP-2300/ -2600 Series	HLMP-2400/ -2700 Series	HLMP-2500/ -2800 Series
Average Power Dissipation per LED Chip ${ }^{11]}$	135 mW	85 mW	135 mW
Peak Forward Current per LED Chip, $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ (Maximum Pulse Width $=2 \mathrm{~ms}^{121}$	90 mA	60 mA	90 mA
Time Average Forward Current per LED Chip, Pulsed Conditions ${ }^{[2]}$	$\begin{gathered} 25 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 20 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=50^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 25 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$
DC Forward Current per LED Chip, $T_{A}=50^{\circ} \mathrm{C}^{[3]}$	30 mA	25 mA	30 mA
Reverse Voltage per LED Chip	6 V		
Operating Temperature Range	$-40^{\circ} \mathrm{C}$	*	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Lead Soldering Temperature 1.6 mm ($1 / 16$ inch) Below Seating Plane	$260^{\circ} \mathrm{C}$ for 3 seconds		

NOTES: 1. For HLMP-2300/-2500/-2600/-2800 series, derate above $T_{A}=25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2400/-2700 series, derate above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 2.
2. See Figure 1 to establish pulsed operating conditions.
3. For HLMP-2300/-2500/-2600/-2800 series, derate above $T_{A}=50^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2400/-2700 series, derate above $\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 3.
Package Dimensions

Internal Circuit Diagrams

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

High Efficiency Red HLMP-2300/-2600 Series

Parameter	HLMP.	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{[4]}$ Per Light Emitting Area	2300	Iv	6	23		med	20 mADC
				26		mcd	$60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF
	2350	Iv	13	45		mcd	20 mADC
				52		mod	60 mAPk 1 of 3 DF
	2600	IV	6	22		med	20 mADC
				25		mod	60 mAPk : 1 of 3 DF
	2620	IV	6	25		mod	20 mA DC
				29		mcd	$60 \mathrm{mAPk}: 1$ of 3 DF
	2635	IV	13	45		mod	20 mADC
				52		med	$60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF
	2655	Iv	13	43		mod	20 mA DC
				49		mod	60 mAPk : 1 of 3 DF
	2670	Iv	13	45		mod	20 mA DC
				52		med	$60 \mathrm{mAPk}: 1$ of 3 DF
	2685	Iv	22	80		mod	20 mA DC
				92		mod	60 mAPk 11 of 3 DF
Peak Wavelength		λ peak		635		nm	
Dominant Wavelength ${ }^{51}$		λ_{d}		626		nm	
Forward Voltage Per LED		V_{F}		2.0	2.6	V	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage Per LED		Vbr	6	15		\checkmark	$\mathrm{If}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		$R \theta_{\text {J_PIN }}$		150		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ LED Chip	

Yellow HLMP-2400/-2700 Series

Parameter	HLMP-	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{[4]}$ Per Light Emitting Area	2400	IV	6	20		mcd	20 mA DC
				24		med	60 mAPk 1 of 3 DF
	2450	Iv	13	38		mod	20 mADC
				46		mcd	$60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 DF
	2700	Iv	6	18		mcd	20 mADC
				22		mod	60 mAPk : 1 of 3 DF
	2720	Iv	6	18		mod	20 mA DC
				22		med	$60 \mathrm{mAPk}: 1$ of 3 DF
	2735	Iv	13	35		mod	20 mADC
				43		mcd	60 mAPk : 1 of 3 DF
	2755	IV	13	35		mcd	20 mADG
				43		med	60 mA Pk : 1 of 3 DF
	2770	Iv	13	35		mad	20 mADC
				43		mcd	60 mAPk : 1 of 3 DF
	2785	Iv	26	70		mcd	20 mA DC
				85		med	$60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 DF
Peak Wavelength		$\lambda_{\text {peak }}$		583		nm	
Dominant Wavelength[5]		$\lambda_{\text {d }}$		585		nm	
Forward Voltage Per LED		V_{F}		2.1	2.6	V	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage Per LED		VBR	6	15		V	$\mathrm{IA}_{\mathrm{A}}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		R $\mathrm{O}_{\mathrm{J} \text { - PIN }}$		150		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \\ & \text { Chip } \end{aligned}$	

High Performance Green HLMP-2500/-2800 Series

Parameter	HLMP.	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity 4] Per Light Emitting Area	2500	Iv	5	25		mcd	20 mADC
				28		mcd	$60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF
	2550	IV	11	50		mod	20 mADC
				56		med	$60 \mathrm{mAPk}: 1$ of 3 DF
	2800	Iv	5	25		mcd	20 mADC
				28		mod	$60 \mathrm{~mA} \mathrm{PK}: 1$ of 3 DF
	2820	Iv	5	25		mod	20 mADC
				28		mad	$60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3DF
	2835	IV	11	50		mod	20 mADC
				56		mod	$60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF
	2855	IV	11	50		mod	20 mADC
				56		mod	$60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF
	2870	IV	11	50		mod	20 mADC
				56		mod	60 mAPk 11 of 3 DF
	2885	IV	22	100		mod	20 mADC
				111		mod	$60 \mathrm{mAPK}: 1$ of 3 DF
Peak Wavelength		$\lambda_{\text {peak }}$		565		nm	
Dominant Wavelength[5]		λ_{d}		572		nm	
Forward Voltage Per LED		V_{F}		2.2	2.6	V	$1 F=20 \mathrm{~mA}$
Reverse Breakdown Voltage Per LED		VBR	6	15		V	$\mathrm{I}_{R}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		RojJ-PIN		150		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \\ & \text { Chip } \end{aligned}$	

Notes:

4. These devices are categorized for luminous intensity with the intensity category designated by a letter code on the side of the package.
5. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device. Yellow and green devices are categorized for dominant wavelength with the color bin designated by a number code on the side of the package.

Electrical

The HLMP-2300/-2400/-2500/-2600/-2700/-2800/ series of light bar devices are composed of two, four or eight light emitting diodes, with the light from each LED optically scattered to form an evenly illuminated light emitting surface. The LED's have a P-N junction diffused into the epitaxial layer on a GaP transparent substate.

The anode and cathode of each LED is brought out by separate pins. This universal pinout arrangement allows for the wiring of the LED's within a device in any of three possible configurations: parallel, series, or series/parallel.
The typical forward voltage values, scaled from Figure 5, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design and maximum power dissipation may be calculated using the following V_{F} models:

$$
\begin{aligned}
& V_{F}=1.8 \mathrm{~V}+\operatorname{IPEAK}(40 \Omega) \\
& \text { For IPEAK } \geq 20 \mathrm{~mA} \\
& V_{F}=1.6 \mathrm{~V}+\operatorname{IDC}(50 \Omega) \\
& \text { For } 5 \mathrm{~mA} \leq \operatorname{IDC} \leq 20 \mathrm{~mA}
\end{aligned}
$$

The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum forward voltage and the maximum forward current. For pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any given ambient temperature and thermal resistance (R $\theta \mathrm{J}-\mathrm{A}$) can be determined by using Figure 2. The solid line in Figure 2 (R $\theta_{\mathrm{J}-\mathrm{A}}$ of $538^{\circ} \mathrm{C} / \mathrm{W}$) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistances that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:

Size of Light Emitting Area	Surface Area	
	Sq. Metres	Sq. Feet
$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}$	67.74×10^{-6}	729.16×10^{-6}
$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}$	33.87×10^{-6}	364.58×10^{-6}
$8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm}$	135.48×10^{-6}	1458.32×10^{-6}
$3.81 \mathrm{~mm} \times 19.05 \mathrm{~mm}$	72.58×10^{-6}	781.25×10^{-6}

Refresh rates of 1 kHz or faster provide the most efficient operation resulting in the maximum possible time average luminous intensity.

The time average luminous intensity may be calculated using the relative efficiency characteristic of Figure 4, $\eta_{\text {IPEAK }}$, and adjusted for operating ambient temperature. The time average luminous intensity at $T_{A}=25^{\circ} \mathrm{C}$ is calculated as follows:
I_{V} TIME AVG $=\left[\frac{I_{\text {AVG }}}{20 \mathrm{~mA}}\right]\left(\eta_{\text {IPEAK }}\right)\left(I_{V}\right.$ Data Sheet $)$
Example: For HLMP-2735 series

$$
\begin{gathered}
\eta_{\text {IPEAK }}=1.18 \text { at IPEAK }=48 \mathrm{~mA} \\
\text { IV TIME AVG }=\left[\frac{12 \mathrm{~mA}}{20 \mathrm{~mA}}\right] \quad(1.18)(35 \mathrm{mcd})=25 \mathrm{mcd}
\end{gathered}
$$

The time average luminous intensity may be adjusted for operating ambient temperature by the following exponential equation:

$$
\operatorname{IV}\left(T_{A}\right)=\operatorname{IV}\left(25^{\circ} \mathrm{C}\right) e^{\left|K\left(T_{A}-25^{\circ} \mathrm{C}\right)\right|}
$$

Device	\mathbf{K}
$-2300 /-2600$ Series	$-0.0131 /{ }^{\circ} \mathrm{C}$
$-2400 /-2700$ Series	$-0.0112 / /^{\circ} \mathrm{C}$
$-2500 /-2800$ Series	$-0.0104 /{ }^{\circ} \mathrm{C}$

Example: $I_{v}\left(80^{\circ} \mathrm{C}\right)=(25 \mathrm{mcd}) \mathrm{e}^{|-0.0112(80-25)|}=14 \mathrm{mcd}$

$$
\begin{aligned}
& L_{v}\left(c d / m^{2}\right)=\frac{I_{v}(c d)}{A\left(m^{2}\right)} \\
& L_{v}(\text { footlamberts })=\frac{\pi l_{v}(c d)}{A\left(f t^{2}\right)}
\end{aligned}
$$

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration.

Mechanical

These light bar devices may be operated in ambient temperatures above $+60^{\circ} \mathrm{C}$ without derating when installed in a PC board configuration that provides a thermal resistance to ambient value less than $250^{\circ} \mathrm{C} / \mathrm{W} /$ LED. See Figure 3 to determine the maximum allowed thermal resistance for the PC board, R θ PC-A, which will permit nonderated operation in a given ambient temperature.
To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only

Figure 2. Maximum Allowable Power Dissipation per LED vs. Ambient Temperature Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction to Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.
mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

Figure 3. Maximum Allowable DC Current per LED vs. Ambient Temperature, Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 5. Forward Current vs. Forward Voltage Characteristics.

Figure 6. Relative Luminous Intensity vs. DC Forward Current.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

DOUBLE HETEROJUNCTION AIGaAs RED LOW CURRENT LIGHT BARS

2 CHIP SIP HLCP-A100 4 CHIP DIP HLCP-C100/D100 4 CHIP SIP HLCP-B100 8 CHIP DIP HLCP-E100/F100 /G100/H100

Features

- LOW POWER CONSUMPTION 3 mA Drive Current Low Forward Voltage Excellent for Battery Operated Applications
- X-Y STACKABLE
- DEEP RED COLOR

Description

The HLCP-X100 Series light bars utilize Hewlett-Packard's newly developed Double Heterojunction (DH) AIGaAs/GaAs material to emit deep red light at 645 nm . This material has outstanding efficiency at low drive currents and can be either DC or pulse driven. Typical applications include message annunciation for business machines, telecommunications, and instrumentation front panel, especially those requiring portability or battery backup.

Absolute Maximum Ratings

Average Power Dissipation per LED Chip[1] 37 mW
Peak Forward Current per LED Chip[1] 45 mA
Time Average Forward Current per LED Chip,
Pulsed Conditions ${ }^{[2]} \ldots \ldots15 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
DC Forward Current per LED Chip[3] 15 mA
Reverse Voltage per LED Chip 5 V
Operating Temperature Range $\ldots \ldots$. . $20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Lead Soldering Temperature 1.6 mm ($1 / 16$ inch)

$$
\text { Below Seating Plane } 260^{\circ} \mathrm{C} \text { for } 3 \mathrm{sec} .
$$

Notes:

1. For pulsed operation, derate above $\mathrm{T}_{\mathrm{A}}=87^{\circ} \mathrm{C}$ at $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED.
2. See Figure 1 to establish pulsed operating conditions.
3. For DC operation, derate above $\mathrm{T}_{\mathrm{A}}=91^{\circ} \mathrm{C}$ at $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED.

Selection Guide

Light Bar Part Number HLCP- AlGaAs Red	Size of Light Emitting Areas	Number of Light Emitting Areas	Package Outline	Corresponding Panel and Legend Mount Part No. HLMP-	
A100	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(0.350 \mathrm{in} \times 0.150 \mathrm{in})$.	1	A	\square	2599
B100	$19.05 \mathrm{~mm} \times 3.81 \mathrm{~mm}(0.750 \mathrm{in} \times 0.150 \mathrm{in})$.	1	B	\square	2598
D100	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(0.350 \mathrm{in} . \times 0.150 \mathrm{in})$.	2	D	\square	2698
E100	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(0.350 \mathrm{in} . \times 0.150 \mathrm{in})$.	4	E	\square	2899
F100	$8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm}(0.150 \mathrm{in} . \times 0.750 \mathrm{in})$.	2	F	\square	2899
C100	$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}(0.350 \mathrm{in} \times 0.350 \mathrm{in})$.	1	C	\square	2898
G100	$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}(0.350 \mathrm{in} . \times 0.350 \mathrm{in})$.	2	G	\square	2899
H100	$8.89 \mathrm{~mm} 19.05 \mathrm{~mm}(0.350 \mathrm{in} . \times 0.750 \mathrm{in})$.		1	H	\square

Package Dimensions

NOTE: DIMENSIONS IN MILLIMETRES (INCHES). TOLERANCES $\pm 0.25 \mathrm{~mm}(\pm 0.010 \mathrm{in})$ UNLESS OTHERWISE INDICATED.

Internal Circuit Diagrams

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	HLCP	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{[4]}$ Per Light Emitting Area	A100	I_{V}	3.0	7.5		mod	3 mA DC
				12.0		mod	$20 \mathrm{~mA} \mathrm{Pk}: 1$ of 4 DF
	B100	Iv	6.0	15		mcd	3 mADC
				24.0		mcd	$20 \mathrm{~mA} \mathrm{Pk}: 1$ of 4 DF
	C100	Iv	6.0	15		mod	3 mADC
				24.0		mod	$20 \mathrm{~mA} \mathrm{Pk}: 1$ of 4 DF
	D100	IV	3.0	7.5		mod	3 mA DC
				12.0		mod	$20 \mathrm{~mA} \mathrm{Pk}: 1$ of 4 DF
	E100	IV	3.0	7.5		mod	3 mA DC
				12.0		mod	20 mAPk : 1 of 4 DF
	F100	IV	6.0	15		mod	3 mADC
				24.0		mod	20 mA Pk: 1 of 4 DF
	G100	IV	6.0	15		mod	3 mADC
				24.0		mod	20 mA Pk : 1 of 4 DF
	H100	IV	12.0	30		mad	3 mADC
				48.0		mod	20 mA Pk : 1 of 4 DF
Peak Wavelength		$\lambda_{\text {peak }}$		645		nm	
Dominant Wavelength ${ }^{\text {[5] }}$		λ_{d}		637		nm	
Forward Voltage Per Led		V_{F}		1.6		V	$I_{F}=3 \mathrm{~mA}$
				1.8	2.2		$\begin{aligned} & I_{\mathrm{F}}=20 \mathrm{mAPK}: \\ & 1 \text { of } 4 \mathrm{DF} \end{aligned}$
Reverse Breakdown Voltage Per LED		$V_{B R}$	5			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		$R_{\theta J-P i N}$		250		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \\ & \text { Chip } \end{aligned}$	

Notes:

4. These devices are categorized for luminous intensity with the intensity category designated by a letter code on the side of the package.
5. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.

Electrical

The HLCP-X100 series of light bar devices are compsed of two, four or eight light emitting diodes, with the light from each LED optically scattered to form an evenly illuminated light emitting surface. These diodes have their $\mathrm{P}-\mathrm{N}$ junctions formed in AIGaAs epitaxial layers on a GaAs substrate.

The anode and cathode of each LED is brought out by separate pins. This universal pinout arrangement allows for the wiring of the LED's within a device in any of three possible configurations: parallel, series, or series/parallel.
The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design and maximum power dissipation may be calculated using the following V_{F} models:
$\dot{V}_{F_{M A X}}=2.0 \mathrm{~V}+I_{F}(10 \Omega), I_{F} \geq 20 \mathrm{~mA}$
$V_{F_{M A X}}=1.8 \mathrm{~V}+I_{F}(20 \Omega), I_{F} \leq 20 \mathrm{~mA}$

The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum forward voltage and the maximum forward current. For pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable current for any given ambient temperature and thermal resistance ($R \theta_{J-A}$) can be determined by using Figure 2. The solid line in Figure 2 ($\mathrm{R}_{\mathrm{JJ}} \mathrm{A}$ of $538^{\circ} \mathrm{C} / \mathrm{W}$) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistances that can be obtained through improved thermal design.

Figure 1. Maximum Allowable Peak Current vs. Pulse Duration

Figure 2. Maximum Allowed DC Current per LED vs. Ambient Temperature, Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED Basis, $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 4. Forward Current vs. Forward Voltage Characteristics

Figure 5. Relative Luminous Intensity vs. DC Forward Current

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Notes 1005 and 1027.

LED BICOLOR LIGHT BARS
 DIP - Single Light Emitting Area

HIGH EFFICIENCY RED/YELLOW HLMP-2950 HIGH EFFICIENCY RED/HIGH PERFORMANCE GREEN HLMP-2965

Features

- LARGE, BRIGHT, UNIFORM LIGHT EMITTING AREA
$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}$ (0.35×0.35 inch)
Approximately Lambertian Radiation Pattern
- CHOICE OF TWO BICOLOR COMBINATIONS
- CATEGORIZED FOR LIGHT OUTPUT
- YELLOW AND GREEN CATEGORIZED FOR DOMINANT WAVELENGTH
- EXCELLENT ON-OFF CONTRAST
- EASILY MOUNTED ON P.C. BOARDS OR INDUSTRY STANDARD DIP SOCKETS
- MECHANICALLY RUGGED
- X-Y STACKABLE
- FLUSH MOUNTABLE
- CAN BE USED WITH HLMP-2898 PANEL AND LEGEND MOUNT
- LIGHT EMITTING SURFACE SUITABLE FOR LEGEND ATTACHMENT PER APPLICATION NOTE 1012
- I.C. COMPATIBLE

Description

The HLMP-2950/-2965 light bars are bicolor light sources designed for a variety of applications where dual state or tristate illumination is required for the same annunciator function. In addition, both devices are capable of emitting a range of colors by pulse width modulation. These light bars

Applications

- TRISTATE LEGEND ILLUMINATION
- SPACE-CONSCIOUS FRONT PANEL STATUS INDICATORS
- BUSINESS MACHINE MESSAGE ANNUNCIATORS
- TELECOMMUNICATIONS INDICATORS
- TWO FUNCTION LIGHTED SWITCHES
are configured in dual-in-line packages which contain a single light emitting area. The high efficiency red (HER) and yellow LED chips utilize GaAsP on a transparent GaP substrate. The green LED chips utilize GaP on a transparent substrate.

Package Dimensions

SIDE VIEW

TOP VIEW

end view

NOTES: OIMENSIONS IN MIL LIMETRES (INCHES). TOLERANCES $=0.25 \mathrm{~mm}(\pm 0.010 \mathrm{in})$ UNLESS OTHERWISE INDICATED.

Absolute Maximum Ratings

Parameter	HLMP-2965	HLMP-2950
Average Power Dissipation per LED Chip ${ }^{\text {[1] }}$	135 mW	85 mW
Peak Forward Current per LED Chip, $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ (Maximum Pulse Width $=2 \mathrm{~ms})^{[1,2]}$	90 mA	60 mA
Time Average Forward Current per LED Chip, Pulsed Conditions ${ }^{[2]}$	$\begin{gathered} 25 \mathrm{~mA}_{;} \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{array}{r} 20 \mathrm{~mA}_{\mathrm{i}} \\ \mathrm{~T}_{\mathrm{A}}=50^{\circ} \mathrm{C} \end{array}$
DC Forward Current per LED Chip, $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}{ }^{[3]}$	30 mA	25 mA
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Soldering Temperature, 1.6 mm (1/16 inch) Below Seating Plane	$260^{\circ} \mathrm{C}$ for 3 seconds	

Notes:

1. For HLMP-2965, derate above $T_{A}=25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2950, derate above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 2.
2. See Figure 1 to establish pulsed operating conditions
3. For HLMP-2965, derate above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2950, derate above $\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 3.
Internal Circuit Diagram

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ HIGH EFFICIENCY RED/YELLOW HLMP-2950

Parameter		Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity *	HER	Iv	13	43		mod	20 mA DC
				49		mcd	$60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 Duty Factor
	Yellow	Iv	13	35		mcd	20 mADC
				43		mod	$60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 Duty Factor
Peak Wavelength	HER	АРЕАК		635		$n \mathrm{n}$	
	Yellow			583			
Dominant Wavelength ${ }^{5}$	HER	λ_{d}		626		$n \mathrm{n}$	
	Yellow			585			
Forward Voltage	HER	V_{F}		2.0	2.6	V	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$
	Yellow			2.1	2.6		
Thermal Resistance LED Junction-to-Pin		$\theta \mathrm{sc}$		150		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$	

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 HIGH EFFICIENCY RED/GREEN HLMP-2965

Parameter		Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{4}$	HER	Iv	19	43		med	20 mADC
				49		mcd	60 mA Pk: 1 of 3 Duty Factor
	Green	Iv	25	50		mcd	20 mADC
				56		mod	60 mA Pk: 1 of 3 Duty Factor
Peak Wavelength	HER	入PEAK		635		nm	
	Green			565			
Dominant Wavelength ${ }^{\text {/5] }}$	HER	λ_{d}		626		$n \mathrm{~m}$	
	Green			572			
Forward Voltage	HER	V_{F}		2.0	2.6	V	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$
	Green			2.2	2.6		
Thermal Resistance LED Junction-to-Pin		$R \theta_{j-P I N}$		150		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$	

Notes:
4. These devices are categorized for luminous intensity with the intensity categorization designated by a two letter combination code located on the side of the package ($Z=$ HER, $W=$ Yellow or Green)
5. The dominant wavelength, λ_{d}, is derived from the C.I.E. chromaticity diagram and is that single wavelength which defines the color of the device.

Electrical

The HLMP-2950/-2965 bicolor light bar devices are composed of eight light emitting diodes: four High Efficiency Red and four that are either Yellow or Green. The light from each LED is optically scattered to form an evenly illuminated light emitting surface. The LED's are die attached and wire bonded in bicolor pairs, with the anode/ cathode of each LED pair brought out by separate pins.
The typical forward voltage values, scaled from Figure 5, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design and maximum power dissipation may be approximated using the following V_{F} models:

$$
\begin{aligned}
& V_{F}=1.8 \mathrm{~V}+\operatorname{IPEAK}(40 \Omega) \\
& \text { For IPEAK } \geq 20 \mathrm{~mA} \\
& V_{F}=1.6 \mathrm{~V}+\operatorname{IDC}(50 \Omega) \\
& \text { For } 5 \mathrm{~mA} \leq \operatorname{IDC} \leq 20 \mathrm{~mA}
\end{aligned}
$$

The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum forward voltage and the maximum forward current. For
pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any given ambient temperature and thermal resistance (R θ_{J-A}) can be determined by using Figure 2. The solid line in Figure 2 ($\mathrm{R} \theta_{\mathrm{J}-\mathrm{A}}$ of $538^{\circ} \mathrm{C} / \mathrm{W}$) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistance that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:
$\mathrm{L}_{v}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\frac{\mathrm{I}_{v}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{m}^{2}\right)} \quad \mathrm{L}_{v}($ footlamberts $)=\frac{\pi I_{v}(\mathrm{~cd})}{\mathrm{A}(\mathrm{ft} 2)}$
where the area (A) of the light emitting surface is $67.74 \times$ $10^{-6} \mathrm{~m}^{2}\left(729.16 \times 10^{-6} \mathrm{ft} .2\right.$).

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, see Application Note 1005.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration.

Figure 2. Maximum Allowable Power Dissipation per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance Values, LED Junction to Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.

Figure 3. Maximum Allowable DC Current per LED vs. Ambient Temperature, Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 6. Relative Luminous Intensity vs. DC Forward Current.

Reversing Polarity LED Drivers

Bicolor LED light bar modules require a polarity reversing scheme to turn on the desired LED. Reversing line drivers, timers and memory drivers can be used to drive bicolor LED light bars.
The reversing line driver, which was originally designed to drive a data transmission line, can also be used as a polarity reversing driver for bicolor LED modules. The reversing line driver has a totem pole output structure that differs from most TTL circuits in that the output is designed to source as much current as it is capable of sinking.
Line drivers designed to operate from a single 5 V supply are typically specified to source or sink 40 mA . Figure 7 shows the typical output characteristics of three different line drivers connected so that one output sources current across a load and the current is sunk by another output. This circuit is shown in Figure 8. At 40 mA output current, the output voltage typically varies from $2.4 \mathrm{~V}(74128)$ to 2.9 V (DM 8830, 9614) for $\mathrm{V}_{c c}=5.0 \mathrm{~V}$. A basic bicolor LED circuit is shown in Figure 9. Since a line driver can supply 40 mA , it is capable of driving two LED pairs.
Some line drivers like the 9614 are constructed such that the sourcing output is brought out separately from the sinking output. With this type of line driver, the LED currents for each pair can be controlled separately. This technique is shown in Figure 10. Other line drivers provide a tri-state

Figure 7. Typical Output Characteristics of Reversing Line Drivers.
output control or provide other means for turning both LED's off. An example of this circuit technique is shown in Figure 11.
The NE556 dual timer, or two NE555 timers can also be used to drive bicolor light bars, as shown in Figure 12. The outputs at the NE555 timer are able to source or sink up to 200 mA . Connected as shown, each timer acts as an inverting buffer. This circuit has the advantage over the previous line driver circuits of being able to operate at a wide variety of power supply voltages ranging from 4.5 to 16 volts.
Memory drivers can also be used to drive bicolor light bars. Figure 13 shows a 75325 core memory driver being used to drive several pairs of bicolor LEDs. The 75325 is guaranteed to supply up to 600 mA of current with an output voltage considerably higher than 5 V line drivers. The 75325 requires an additional 7.5 V power supply at about 40 mA to properly bias the sourcing drivers. The 75325 allows tristate (red, green, yellow, or emerald, off) operation.

By employing pulse width modulation techniques to any of these circuits a range of colors can be obtained. This technique is illustrated in Figure 14.

Hewlett-Packard cannot assume responsibility for use of any circuitry described other than the circuitry entirely embodied in an HP product.

Figure 8. Line Driver Equivalent Circuit.

Figure 9. Typical Line Driver Circuit; Approximately 20mA/LED Pair.

Figure 10. Techniques for Varying the Current of Each LED.

Figure 11. Tristate (Red, Green/Yellow, Off) Bicolor LED Driver.

Figure 12. Use of Dual Timer to Drive Bicolor Light Bars

Figure 13. 75325 High Current Bicolor Driver

Figure 14. Pulse Width Modulation Technique

Features

- CUSTOM MULTICOLOR ARRAY CAPABILITY
- MATCHED LEDs FOR UNIFORM APPEARANCE
- END STACKABLE
- PACKAGE INTERLOCK ENSURES CORRECT ALIGNMENT
- LOW PROFILE PACKAGE
- RUGGED CONSTRUCTIONRELIABILITY DATA SHEETS AVAILABLE
- LARGE, EASILY RECOGNIZABLE SEGMENTS
- HIGH ON-OFF CONTRAST, SEGMENT TO SEGMENT
- WIDE VIEWING ANGLE
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-4832/-4836/-4840/-4850 CATEGORIZED FOR DOMINANT WAVELENGTH

Applications

- INDUSTRIAL CONTROLS
- INSTRUMENTATION
- OFFICE EQUIPMENT
- COMPUTER PERIPHERALS
- CONSUMER PRODUCTS

Description

These 10 -element LED arrays are designed to display information in easily recognizable bar graph form. The packages are end stackable and therefore capable of displaying long strings of information. Use of these bar graph arrays eliminates the alignment, intensity, and color matching problems associated with discrete LEDs. The HDSP-4820/-4830/ $-4840 /-4850$ each contain LEDs of just one color. The HDSP-4832/-4836 are multicolor arrays with High-Efficiency Red, Yellow, and Green LEDs in a single package. CUSTOM MULTICOLOR ARRAYS ARE AVAILABLE WITH MINIMUM DELIVERY REQUIREMENTS. CONTACT YOUR LOCAL DISTRIBUTOR OR HP SALES OFFICE FOR DETAILS.

Package Dimensions

Absolute Maximum Ratings ${ }^{[9]}$

Parameter	HDSP-4820	HDSP-4830	HDSP-4840	HDSP-4850
Average Power Dissipation per LED $\left(T=25^{\circ} \mathrm{C}\right)^{[1]}$	125 mW	125 mW	125 mW	125 mW
Peak Forward Current per LED	$150 \mathrm{~mW}{ }^{[2]}$	$90 \mathrm{mAl3]}$	$60 \mathrm{mAl}{ }^{(3)}$	$90 \mathrm{~mA}{ }^{[3]}$
DC Forward Current per LED	$30 \mathrm{mAl}{ }^{41}$	$30 \mathrm{~mA}{ }^{[5]}$	$30 \mathrm{~mA}{ }^{[6]}$	$30 \mathrm{mAl}]$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Reverse Voltage per LED	3.0 V			
Lead Soldering Temperature (1.59 mm ($1 / 16$ inch) below seating plane	$260^{\circ} \mathrm{C}$ for 3 seconds			

NOTES:

1. Derate maximum average power above $T_{A}=25^{\circ} \mathrm{C}$ at $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating assumes worst case $R \Theta \mathrm{~J}-\mathrm{A}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$.
2. See Figure 1 to establish pulsed operating conditions.
3. See Figure 6 to establish pulsed operating conditions.
4. Derate maximum DC current above $T_{A}=63^{\circ} \mathrm{C}$ at $0.81 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $R \Theta J-A=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 2.
5. Derate maximum DC current above $T_{A}=50^{\circ} \mathrm{C}$ at $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $\mathrm{R} \Theta \mathrm{J}-\mathrm{A}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 7.
6. Derate maximum DC current above $T_{A}=70^{\circ} \mathrm{C}$ at $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $R \Theta J-A=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 8.
7. Derate maximum $D C$ current above $T_{A}=37^{\circ} \mathrm{C}$ at $0.48 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $\mathrm{R} \Theta \mathrm{J}-\mathrm{A}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 9.
8. Clean only in water, Isopropanol, Ethanol, Freon TF or TE (or equivalent) and Genesolve DI-15 (or equivalent).
9. Absolute maximum ratings for the HER, Yellow, and Green elements of the multicolor arrays are identical to the HDSP-4830/-4840/ -4850 maximum ratings.

Internal Circuit Diagram
Multicolor Array
Segment Colors

PIN	FUNCTION	PIN	FUNCTION
1	ANODE-a	11	CATHODE-i
2	ANODE-b	12	CATHODE-i
3	ANODE-c	13	CATHODE-h
4	ANODE-d	14	CATHODE-g
5	ANODE-a	15	CATHODE-
6	ANODE-f	16	CATHODE--
7	ANODE-g	17	CATHODE-d
8	ANODE-h	18	CATHODE-c
9	ANODE-i	19	CATHODE-b
10	ANODE-i	20	CATHODE-a

Segment	HDSP-4832 Segment Color	HDSP-4836 Segment Color
a	HER	HER
b	HER	HER
c	HER	Yellow
d	Yellow	Yellow
e	Yellow	Green
f	Yellow	Green
g	Yellow	Yellow
h	Green	Yellow
i	Green	HER
j	Green	HER

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{[1]}$

RED HDSP-4820

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) ${ }^{11}$	If	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	610	1250		$\mu \mathrm{cd}$
Peak Wavelength	λ 入EAK			655		nm
Dominant Wavelength ${ }^{[2]}$	λ_{d}			645		nm
Forward Voltage per LED	V_{F}	$\mathrm{IF}=20 \mathrm{~mA}$		1.6	2.0	V
Reverse Voltage per LED	V_{R}	$I_{R}=100 \mu \mathrm{~A}$	3	12^{151}		V
Temperature Coefficient VF per LED	$\Delta V_{F / 1}{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$\mathrm{R}_{\text {OJ-PIN }}$			300		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \end{aligned}$

HIGH-EFFICIENCY RED HDSP-4830

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) ${ }^{11}$	IV	$\mathrm{IF}=10 \mathrm{~mA}$	900	3500		$\mu \mathrm{cd}$
Peak Wavelength	λ РЕАК			635		nm
Dominant Wavelength ${ }^{(21}$	λd			626		nm
Forward Voltage per LED	V_{F}	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage per LED	$=V_{R}$	$\mathrm{I}_{\mathrm{A}}=100 \mu \mathrm{~A}$	3	$3015]$		V
Temperature Coefficient VF per LED	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R_{\Theta J \text { J-PIN }}$			300		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ LED

YELLOW HDSP-4840

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) ${ }^{11}$	Iv	$\mathrm{IF}=10 \mathrm{~mA}$	600	1900		$\mu \mathrm{cd}$
Peak Wavelength	λ PEAK			583		nm
Dominant Wavelength ${ }^{[2,3 \mid}$	λ_{d}		581	585	592	nm
Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		2.2	2.5	V
Reverse Voltage per LED	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3	$40 \mid 5]$		V
Temperature Coefficient VF per LED	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$\mathrm{R}_{\text {©JmPIN }}$			300		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{LED} \end{gathered}$

GREEN HDSP-4850

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) ${ }^{11}$	IV	$I_{F}=10 \mathrm{~mA}$	600	1900		$\mu \mathrm{cd}$
Peak Wavelength	λ PEAK			566		nm
Dominant Wavelength ${ }^{\text {22,3\}}}$	λ_{d}			571	577	nm
Forward Voltage per LED	VF	$\mathrm{IF}=10 \mathrm{~mA}$		2.1	2.5	\checkmark
Reverse Voltage per LED	$V_{\text {R }}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3	$50{ }^{(5)}$		V
Temperature Coefficient V_{F} per LED	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$\mathrm{R}_{\Theta_{J} \mathrm{PIN}}$			300		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \text { LED } \end{gathered}$

NOTES:

1. The bar graph arrays are categorized for luminous intensity. The category is designated by a letter located on the side of the package.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
3. The HDSP-4832/-4836/-4840/-4850 bar graph arrays are categorized by dominant wavelength with the category designated by a number adjacent to the intensity category letter. Only the yellow elements of the HDSP-4832/-4836 are categorized for color.
4. Electrical/optical characteristics of the High-Efficiency Red elements of the HDSP-4832/-4836 are identical to the HDSP-4830 characteristics. Characteristics of Yellow elements of the HDSP-4832/-4836 are identical to the HDSP-4840. Characteristics of Green elements of the HDSP-4832/-4836 are identical to the HDSP-4850.
5. Reverse voltage per LED should be limited to 3.0 V Max.

HDSP-4820

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 2. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance, LED Junction-to-Ambient on a per LED basis. JJMAX $=100^{\circ} \mathrm{C}$

Figure 4. Forward Current vs. Forward Voltage

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 5. Relative Luminous Intensity vs. D.C. Forward Current

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Figure 6. HDSP-4830/-4840/-4850 Maximum Tolerable Peak Current vs. Pulse Duration

Figure 7. HDSP-4830 Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED basis. $\mathrm{T}_{\mathrm{J} \text { MAX }}=10 \mathbf{0}^{\circ} \mathrm{C}$.

Figure 9. HDSP-4850 Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED basis. $\mathrm{T}_{\mathrm{J} \text {-MAX }}=100^{\circ} \mathrm{C} \mathrm{C}$.

Figure 8. HDSP-4840 Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED basis. $\mathrm{T}_{\mathrm{J} \text { MAX }}=100^{\circ} \mathrm{C}$.

Figure 10. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Figure 11. Forward Current vs. Forward Voltage

Electrical

These versatile bar graph arrays are composed of ten light emitting diodes. The light from each LED is optically stretched to form individual elements. The diodes in the HDSP-4820 bar graph utilize a Gallium Arsenide Phosphide (GaAsP) epitaxial layer on a Gallium Arsenide (GaAs) Substrate. The HDSP-4830/-4840 bar graphs utilize a GaAsP epitaxial layer on a GaP substrate to produce the brighter high-efficiency red and yellow displays. The HDSP-4850 bar graph arrays utilize a GaP epitaxial layer on a GaP substrate. The HDSP-4832/-4836 multicolor arrays have high efficiency red, yellow, and green LEDs in one package.
These display devices are designed to allow strobed operation. The typical forward voltage values, scaled from Figure 4 or 11, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following VF MAX models.

```
HDSP-4820 (Red)
VF MAX = 1.75 V + IPEAK (12.5\Omega)
    For: IPEAK \geq5 mA
```


HDSP-4830/-4840 (High Efficiency Red/Yellow)

$\mathrm{V}_{\text {F MAX }}=1.75 \mathrm{~V}+\operatorname{IPEAK}(38 \Omega)$
For IPEAK $\geq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}^{2}=1.6 \mathrm{~V}+\operatorname{loC}(45 \Omega)$
For: $5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}$

HDSP-4850 (Green)

$V_{F M A X}=2.0 \mathrm{~V}+$ IPEAK $^{(50 \Omega)}$
For: Ipeak > 5 mA

Figure 12. HDSP-4830/-4840/-4850 Relative Luminous Intensity vs. D.C. Forward Current

Refresh rates of 1 KHz or faster provide the most efficient operation resulting in the maximum possible time averaged luminous intensity.

The time averaged luminous intensity may be calculated using the relative efficiency characteristic shown in Figures 3 and 10. The time averaged luminous intensity at $T_{A}=$ $25^{\circ} \mathrm{C}$ is calculated as follows:

IV TIME AVG $=\left[\frac{I_{\text {F AVG }}}{\text { IF SPEC AVG }}\right](\eta$ IPEAK $)($ IV SPEC $)$

Example: For HDSP-4830 operating at IPEAK $=50 \mathrm{~mA}, 1$ of 4 Duty Factor

$$
\eta_{\text {PEAK }}=1.35(\text { at IPEAK }=50 \mathrm{~mA})
$$

IV time AVG $=\left[\frac{12.5 \mathrm{~mA}}{10 \mathrm{~mA}}\right](1.35) 2280 \mu \mathrm{~cd}=3847 \mu \mathrm{~cd}$

For Further Information Concerning Bar Graph Arrays and Suggested Drive Circuits, Consult HP Application Note 1007 Entitled "Bar Graph Array Applications".

Features

- HIGH RESOLUTION (1\%)
- EXCELLENT ELEMENT APPEARANCE

Wide, Recognizable Elements
Matched LEDs for Uniformity
Excellent Element Alignment

- SINGLE-IN-LINE PACKAGE DESIGN

Sturdy Leads on Industry Standard 2.54 mm
(0.100") Centers

Environmentally Rugged Package
Common Cathode Configuration

- LOW POWER REQUIREMENTS

1.0 mA Average per Element at 1\% Duty Cycle

- SUPPORT ELECTRONICS

Easy Interface with Microprocessors

Description

The HDSP-88XX series is a family of 101-element LED linear arrays designed to display information in easily recognizable bar graph or position indicator form. The HDSP-8820, utilizing red GaAsP LED chips assembled on a PC board and enclosed in a red polycarbonate cover with an epoxy backfill seal, has $1.52 \mathrm{~mm}(0.060$ inch $)$ wide segments. The HDSP-8825 and HDSP-8835 are high efficiency red and high performance green respectively, each with a $1.02 \mathrm{~mm}(0.040 \mathrm{inch})$ segment width. The HDSP8825 and HDSP-8835 have a clear polycarbonate lens. Mechanical considerations and pin-out are identical

among all 3 devices. The common cathode chips are addressed via 22 single-in-line pins extending from the back side of the package.

Applications

- INDUSTRIAL PROCESS CONTROL SYSTEMS
- EDGEWISE PANEL METERS
- INSTRUMENTATION
- POSITION INDICATORS
- FLUID LEVEL INDICATORS

Package Dimensions ${ }^{1,2)}$

Internal Circuit Diagram

PIN	
LOCATION	FUNCTION
1	CO
2	A4
3	C' $^{\prime}(6)$
4	No Pin
5	C10
6	A1
7	A8
8	No Pin
9	C20
10	No Pin
11	A'(6)
12	No Pin
13	C30
14	No Pin
15	A7
16	No Pin
17	C40
18	No Pin
19	A2
20	No Pin
21	C50
22	No Pin
23	A3
24	No Pin
25	C60
26	No Pin
27	A10
28	No Pin
29	C70
30	No Pin
31	A9
32	No Pin
33	C80
34	A5
35	A6
36	No Pin
37	C90

NOTES:

5. ELEMENT LOCATION NUMBER = COMMON CATHODE NUMBER + ANODE NUMBER.

FOR EXAMPLE, ELEMENT 83 IS OBTAINES BY ADDRESSING C80 AND A3.
6. A^{\prime} AND C' ARE ANODE AND CATHODE OF ELEMENT ZERO.

Absolute Maximum Ratings

Parameter	HDSP-8820	HDSP-8825	HDSP-8835
Average Power per Element $\left(T_{A}=25^{\circ} \mathrm{C}\right)$	15 mW	20 mW	20 mW
Peak Forward Current per Element $\left(T_{A}=25^{\circ} \mathrm{O}\right)(7)($ Pulse Width $\leq 300 \mu \mathrm{~s})$	200 mA	150 mA	150 mA
Average Forward Current per Element $\left(T_{A}=25^{\circ} \mathrm{C} \mid 8\right]$	7 mA	5 mA	5 mA
Operating Temperature Range	-40° to $+85^{\circ} \mathrm{C}$	-40° to $+85^{\circ} \mathrm{C}$	-40° to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	-40° to $+85^{\circ} \mathrm{C}$	-40° to $+85^{\circ} \mathrm{C}$	-40° to $+85^{\circ} \mathrm{C}$
Reverse Voltage per Element or DP	5.0 V	5.0 V	5.0 V
Lead Solder Temperature $1.59 \mathrm{~mm}[1.16$ inch $]$ below seating planel9]	$260^{\circ} \mathrm{C}$ for 3 sec.	$260^{\circ} \mathrm{C}$ for 3 sec.	$260^{\circ} \mathrm{C}$ for 3 sec.

Notes:
7. See Figures 1 and 2 to establish pulsed operating conditions.
8. Derate maximum average forward current above $T_{A}=70^{\circ} \mathrm{C}$ at $0.16 \mathrm{~mA} /{ }^{\circ} \mathrm{C} /$ Element for the HDSP-8820 and 0.11 $\mathrm{mA} /{ }^{\circ} \mathrm{C} /$ Element for the HDSP-8825 and HDSP-8835. See Figures 3 and 4.
9. Clean only in water, Isopropanol, Ethanol, Freon TF, or TE (or equivalent) and Genesolv DI-15 or DE-15 (or equivalent). See mechanical section of this data sheet for information on wave soldering conditions.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RED HDSP-8820

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Time averaged Luminous Intensity per Element (Unit average) ${ }^{1010}$	IV	100 mA Pk.: 1 of 110 Duty Factor	8	20		$\mu \mathrm{cd}$
Peak Wavelength	APEAK			655		nm
Dominant Wavelength [17]	λd			640		nm
Forward Voltage per Element	V_{F}	$\mathrm{IF}=100 \mathrm{~mA}$		1.7	2.1	V
Reverse Voltage per Element	$V_{\text {R }}$	$I_{R}=100 \mu \mathrm{~A}$	3.0			V
Temperature Coefficient VF per Element	$\triangle V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R \Theta_{J \text { - PIN }}$			700		$\begin{gathered} { }^{\circ} \mathrm{C} / W / \\ \mathrm{LED} \\ \hline \end{gathered}$

HIGH EFFICIENCY RED HDSP-8825

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Time averaged Luminous Intensity per Element (Unit average)	IV	100 mA Pk.: 1 of 110 Duty Factor	60	175		$\mu \mathrm{cd}$
Peak Wavelength	λ PEAK			635		nm
Dominant Wavelength [11]	λd			626		nm
Forward Voltage per Element	V_{F}	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		2.3	3.1	V
Reverse Voltage per Element	$V_{\text {R }}$	$\mathrm{IF}_{\mathrm{F}}=100 \mu \mathrm{~A}$	3.0			V
Temperature Coefficient V_{F} per Element	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV}^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R()_{\text {JPIN }}$			1000		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{LED} \\ & \hline \end{aligned}$

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (continued)

HIGH PERFORMANCE GREEN HDSP-8835

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Time Averaged Luminous Intensity per Element (Unit average) ${ }^{\text {[10] }}$	IV	100 mA Pk.: 1 of 110 Duty Factor	70	175		$\mu \mathrm{cd}$
Peak Wavelength	λ PEAK			568		nm
Dominant Wavelength ${ }^{[11]}$	λ_{d}			574		nm
Forward Voltage per Element	V_{F}	$\mathrm{fF}=100 \mathrm{~mA}$		2.3	3.1	V
Reverse Voltage per Element	V_{R}	IF $=100 \mu \mathrm{~A}$	3.0			\checkmark
Temperature Coefficient VF per Element	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R \Theta J$ PIN			1000		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{LED} \end{aligned}$

Notes:
10. Operation at peak currents of less than 100 mA may cause intensity mismatch. Consult factory for low current operation.
11. The dominant wavelength, λd, is derived from the CIE chromaticity diagram and is the single wavelength which defines the color of the device.

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration HDSP-8820

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration HDSP-8825 and HDSP-8835

Figure 3. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance, LED Junction-toAmbient on a per LED basis. $\mathrm{T}_{\mathrm{JMAX}}=115^{\circ} \mathrm{C}$ HDSP-8820

Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 4. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance, LED Junction-toAmbient on a per LED basis. $\mathrm{T}_{\mathrm{JMAX}}=115^{\circ} \mathrm{C}$ HDSP-8825/HDSP-8835

Figure 6. Forward Current vs. Forward Voltage

For A Detailed Explanation on the Use of Data Sheet Information, See Application Note 1005.

Operational Considerations

ELECTRICAL

The HDSP-88XX is a 101 element bar graph array. The linear array is arranged as ten groups of ten LED elements plus one additional element. The ten elements of each group have common cathodes. Like elements in the ten groups have common anodes. The device is addressed via 22 single-in-line pins extending from the back side of the display.

This display is designed specifically for strobed (multiplexed) operation. Minimum peak forward current at which all elements will be illuminated is 15 mA . Display aesthetics are specified at $100 \mathrm{~mA}, 1 / 110 \mathrm{DF}$, peak forward current. The typical forward voltage values, scaled from Figure 6 should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} model:

HDSP-8820

$V_{\text {FMAX }}=2.02 \mathrm{~V}+\operatorname{IPEAK}(0.8 \Omega)$
For IPEAK > 40 mA

HDSP-8825

$V_{\text {FMAX }}=1.7 \mathrm{~V}+$ IPEAK (14Ω)
For IPEAK $>40 \mathrm{~mA}$
HDSP-8835
VFMAX $=1.7 \mathrm{~V}+\operatorname{IPEAK}(14 \Omega)$
For IPEAK > 40 mA

The time averaged luminous intensity at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ may be calculated using:

$$
\text { Iv Time Avg. }=\left[\frac{\mathrm{IF}_{\mathrm{F}}-\mathrm{AVG}}{\mathrm{IF}-\mathrm{SPEC}-A V G}\right] \cdot \eta \mathrm{IPEAK} \cdot \operatorname{IV-SPEC}
$$

where η, relative efficiency, may be determined from Figure 5.

The circuit in Figure 7 displays an analog input voltage in bar graph form with 101 bit resolution. The 74390 dual decade counter has been configured to count from 0 to 99. The 1Q outputs correspond to "ones" and the 2Q outputs correspond to "tens". The "one" outputs from the counter drives the display element anodes through a 7442 1 of 10 BCD decoder. Sprague UDN 2585 drivers source the anodes with 80 mA peak/segment. The "ten" outputs from the counter drive the group cathodes through a 74145 BCD decoder. The circuit multiplexes segments 100 to 91 first, then segments 90 to 81 , and so on with segments 10 to 1 last. During the time that the output from the T.I. TL507C A/D converter is low the corresponding display elements will be illuminated.
The TL507C is an economical A/D converter with 7 bit resolution. The single output is pulse-width-modulated to correspond to the analog input voltage magnitude. With $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ the analog input voltage range is 1.3 V to 3.9 V . The TL507C output is reset each time the 74390 resets. Duration of the high output pulse is shorter for larger analog input voltages. A high output from the TL507C disables the display by forcing the 7442 inputs to an invalid state. Hence, as the analog input voltage increases more elements of the bar graph display are illuminated. Display element zero is DC driven.

The circuit in Figure 8 uses the HDSP-88XX as a 100 bit position indicator. Two BCD input words define the position of the illuminated element. Display duty factor, 1/100, is controlled by the ENABLE signal.

MECHANICAL

Suitable conditions for wave soldering depend on the specific kind of equipment and procedure used. A cool down period after flow solder and before flux rinse is recommended. For more information, consult the local Hewlett-Packard Sales Office or Hewlett-Packard Optoelectronics, Palo Alto, California.

Figure 7. 101 Element Bar Graph

Figure 8. 100 Element Position Indicator

Features

- LOW POWER CONSUMPTION

Typical Intensity of 1.0 mcd @ 1 mA Drive Current

- DEEP RED COLOR
- END-STACKABLE
- EXCELLENT ON-OFF CONTRAST
- WIDE VIEWING ANGLE
- MATCHED LEDs FOR UNIFORM APPEARANCE

Description

The solid state 10 -element LED bar graph array utilizes HP's newly developed double heterojunction (DH) AIGaAs/ GaAs material technology. The material is characterized by outstanding light output efficiency over a wide range of drive currents. Use of these bar graph arrays eliminates the alignment, intensity and color matching problems associated with discrete LEDs. Typical applications are found in office equipment, instrumentation, industrial controls, and computer peripherals where portability or battery backup are important considerations.

Package Dimensions

Absolute Maximum Ratings

Notes:

1. For pulsed operation, derate above $T_{A}=87^{\circ} \mathrm{C}$ at $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED.
2. See Figure 1 to establish pulsed operating conditions.
3. For DC operation, derate above $\mathrm{T}_{\mathrm{A}}=91^{\circ} \mathrm{C}$ at $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED.

Internal Circuit Diagram

PIN	FUNCTION	PIN	FUNCTION
1	ANODE-a	11	CATHODE-
2	ANODE-b	12	CATHODE-
3	ANODE-c	13	CATHODE-h
4	ANODE-d	14	CATHODE-g
5	ANODE-e	15	CATHODE-
6	ANODE-	16	CATHODE-
7	ANODE-g	17	CATHODE-d
8	ANODE-h	18	CATHODE-
9	ANODE-	19	CATHODE-b
10	ANODE-j	20	CATHODE-a

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) ${ }^{[1]}$	IV	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{mADC}$	600	1000		$\mu \mathrm{cd}$
		$\begin{aligned} & I_{F}=20 \mathrm{~mA} \mathrm{PK} \\ & 1 \text { of } 4 \text { Duty Factor } \end{aligned}$		5200		
Peak Wavelength	$\lambda_{\text {PEAK }}$			645		nm
Dominant Wavelength ${ }^{[2]}$	λ_{d}			637		nm
Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{mADC}$		1.6		V
		$\begin{aligned} & I_{F}=20 \mathrm{mAPk} \\ & 1 \text { of } 4 \text { Duty Factor } \end{aligned}$		1.8	2.2	
Reverse Voltage per LED	V_{R}	$I_{R}=100 \mu \mathrm{~A}$	5			V
Temperature Coefficient V_{F} per LED	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} 7^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R \Theta_{J \text {-PIN }}$			300		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$

Notes:

4. These devices are categorized for luminous intensity with the intensity category designated by a letter code on the side of the package.
5. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration

Figure 2. Maximum Allowed DC Current per LED vs. Ambient Temperature, Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED Basis, $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$

Figure 4. Forward Current vs. Forward Voltage

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 5. Relative Luminous Intensity vs. DC Forward Current

[^4]
Electrical

These versatile bar graph arrays are composed of ten light emitting diodes. The light from each LED is optically stretched to form individual elements. These diodes have their P-N junctions formed in AIGaAs epitaxial layers grown on a GaAs substrate.
These display devices are designated to allow strobed operation. The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following $\mathrm{V}_{\mathrm{F} \text { MAX }}$ models.

$$
\begin{aligned}
& V_{F_{M A X}}=1.8 \mathrm{~V}+I_{F}(20 \Omega), I_{F} \leq 20 \mathrm{~mA} \\
& V_{F_{M A X}}=2.0 \mathrm{~V}+I_{F}(10 \Omega), I_{F} \geq 20 \mathrm{~mA}
\end{aligned}
$$

Refresh rates of 1 KHz or faster provide the most efficient operation resulting in the maximum possible time averaged luminous intensity.

The time averaged luminous intensity may be calculated using the relative efficiency characteristic shown in Figure 3. The time averaged luminous intensity at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ is calculated as follows:

$$
I_{V} \text { TIME AVG }=\left[\frac{I_{\text {F AVG }}}{I_{\text {F SPEC AVG }}}\right]\left(\eta I_{\text {PEAK }}\right)\left(I_{V} \text { SPEC }\right)
$$

Example: For HLCP-J100 operating at I PEAK $=45 \mathrm{~mA}, 1$ of 3 Duty Factor

$$
\begin{aligned}
& \eta I_{\text {PEAK }}=0.94\left(\text { at } I_{\text {PEAK }}=45 \mathrm{~mA}\right) \\
& I_{\text {TIME AVG }}=\left[\frac{15 \mathrm{~mA}}{1 \mathrm{~mA}}\right] \quad \text { (94) } 1000 \mu \mathrm{~cd}=1410 \mu \mathrm{~cd}
\end{aligned}
$$

For Further Information Concerning Bar Graph Arrays and Suggested Drive Circuits, consult HP Application Note 1007 Entitled "Bar Graph Array Applications".

SINGLE CHIP LED LIGHT BAR

HIGH EFFICIENCY RED HLMP-T200 SERIES YELLOW HLMP-T300 SERIES
ORANGE HLMP-T400 SERIES HIGH PERFORMANCE GREEN HLMP-T500 SERIES

Features

- FLAT RECTANGULAR LIGHT EMITTING SURFACE
- CHOICE OF 4 BRIGHT COLORS
- EXCELLENT ON/OFF CONTRAST
- IDEAL AS FLUSH MOUNTED PANEL INDICATORS
- LONG LIFE: SOLID STATE RELIABILITY
- SOLDER COATED LEADS

Description

The HLMP-T200/-T300/-T400/-T500 light bars are rectangular light sources designed for a variety of applications where this shape and a high sterance are desired. These light bars consist of a rectangular plastic case around an epoxy encapsulated LED lamp. The encapsulant is tinted to match the color of the emitted light. The flat top surface is exceptionally uniform in light emission and the plastic case eliminates light leakage from the sides of the device.

Applications

- BAR GRAPHS
- FRONT PANEL STATUS INDICATORS
- TELECOMMUNICATIONS INDICATORS
- PUSH BUTTON ILLUMINATION
- PC BOARD IDENTIFIERS
- BUSINESS MACHINE MESSAGE ANNUNCIATORS

Package Dimensions

NOTES:

1. DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. TOLERANCES ARE $\pm 0.25 \mathrm{~mm}(20.010 \mathrm{NNCH})$ UNLESS OTHERWISE NOTED.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP.	Min.	Typ.	Max.	Units	Test Conditions
IV	Luminous Intensity	High Efficiency Red T200	3.0	4.8		mcd	$I_{F}=20 \mathrm{~mA}$
		$\begin{aligned} & \text { Orange } \\ & T 400 \end{aligned}$	3.0	4.8			
		Yellow T300	3.0	6.0			
		$\begin{aligned} & \text { Green } \\ & \text { T500 } \end{aligned}$	3.0	6.0			
201/2	Included Angle Between Half Luminous Intensity Points	All		100	,	Deg.	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & \text { See Note } 1 \end{aligned}$
$\lambda_{\text {Peak }}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 635 \\ & 612 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak
λ_{d}	Dominant Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 626 \\ & 608 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2
τ_{S}	Speed of Response	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 350 \\ & 350 \\ & 390 \\ & 870 \end{aligned}$		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green		4 4 8 11		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\mathrm{R}_{\mathrm{ojc}}$	Thermal Resistance	All		120		${ }^{\circ} \mathrm{CNW}$	Junction to Cathode Lead at Seating Plane
V_{F}	Forward Voltage	HER/Orange Yellow Green	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.6 \\ & 2.6 \\ & \hline \end{aligned}$	V	$t_{F}=20 \mathrm{~mA}$
V_{R}	Reverse Breakdown Volt.	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
\#V	Luminous Efficacy	High Efficiency Red Orange Yellow Green		145 262 500 595		$\frac{\text { fumens }}{\text { Watt }}$	See Note 3

Notes:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red, Orange, Yellow, and Green Light Bars

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficlency (Luminous Intensity per Unit Current) vs. LED Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings).

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	High Efficiency Red/ Orange	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current[1]	25	20	25	mA
DC Current ${ }^{2]}$	30	20	30	mA
Power Dissipation[3]	135	85	135	mW
Operating Temperature Range	-40 to +85	-40 to +85	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100	-55 to +100	-55 to +100	
Reverse Voltage ($\left.1_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5			V
Transient Forward Current ${ }^{[4]}$ ($10 \mu \mathrm{sec}$ Pulse)	500			mA
Lead Soldering Temperature [1.6 mm (0.063 in .) below seating plane]	$260^{\circ} \mathrm{C}$ for 3 seconds			

Notes:

1. See Figure 5 to establish pulsed operating conditions.
2. For Red, Orange, and Green derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow derate linearly from $50^{\circ} \mathrm{C}$ at $0.34 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red, Orange, and Green derate power linearly from $25^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical

The typical forward voltage values, scaled from Figure 2, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design and maximum power dissipation may be calculated using the following V_{F} models:

$$
\begin{aligned}
& V_{F}=1.8 \mathrm{~V}+I_{\text {PEAK }}(40 \Omega) \\
& \text { For } I_{\text {PEAK }} \geq 20 \mathrm{~mA} \\
& V_{F}=1.6 \mathrm{~V}+I_{\text {DC }}(50 \Omega) \\
& \text { For } 5 \mathrm{~mA} \leq I_{\text {DC }} \leq 20 \mathrm{~mA}
\end{aligned}
$$

Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:

$$
\begin{array}{r}
\mathrm{L}_{\mathrm{V}}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\frac{\mathrm{l}_{\mathrm{V}}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{~m}^{2}\right)} \\
\mathrm{L}_{\mathrm{V}}(\text { footlamberts })=\frac{\pi \mathrm{l}_{\mathrm{V}}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{ft}^{2}\right)}
\end{array}
$$

Size of light emitting area $(A)=3.18 \mathrm{~mm} \times 5.72 \mathrm{~mm}$

$$
\begin{aligned}
& =18.19 \times 10^{-6} \mathrm{~m}^{2} \\
& =195.8 \times 10^{-6} \mathrm{ft}^{2}
\end{aligned}
$$

Mechanical

These light bar devices may be operated in ambient temperatures above $+50^{\circ} \mathrm{C}$ without derating when installed in a PC board configuration that provides a thermal resistance (junction to ambient) value less than $625^{\circ} \mathrm{C} / \mathrm{W}$.
To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

Features

- FIRMLY MOUNTS LIGHT BARS IN PANELS
- HOLDS LEGENDS FOR FRONT PANEL OR PC BOARD APPLICATIONS ${ }^{[1]}$
- ONE PIECE, SNAP-IN ASSEMBLY
- MATTE BLACK BEZEL DESIGN ENHANCES PANEL APPEARANCE
- FOUR SIZES AVAILABLE
- MAY be installed in a wide range of PANEL THICKNESSES
- PANEL HOLE EASILY PUNCHED OR MILLED

Description

This series of black plastic bezel mounts is designed to install Hewlett-Packard Light Bars in instrument panels ranging in thickness from 1.52 mm (0.060 inch) to 3.18 mm

(0.125 inch). A space has been provided for holding a 0.13 mm (0.005 inch) film legend over the light emitting surface of the light bar module.

Selection Guide

Panel and Legend Mount Part No. HLMP-	Corresponding Light Bar Module Part No. HLCP ${ }^{-1}$ HLMP-		Panel Hole Installation Dimensions ${ }^{[2]}$	Package Outline	
2598	B100	2350, 2450, 2550	7.62 mm 10.300 inch $\times 22.86 \mathrm{~mm} / 0.900$ inch.	\cdots	B
2599	A100	2300, 2400, 2500	7.62 mm 10.300 inch $\times 12.70 \mathrm{~mm}(0.500$ inch)	\pm	A
2898	$\begin{aligned} & \hline \text { D100 } \\ & \text { C100 } \end{aligned}$	$\begin{aligned} & 2600,2700,2800 \\ & 2655,2755,2855 \\ & 2950,2965,2980 \end{aligned}$	12.70 mm (0.500 inch: $\times 12.70 \mathrm{~mm} \times 0.500$ inch	\square	C
2899	$\begin{aligned} & \text { E100 } \\ & \text { F100 } \\ & \text { G100 } \\ & \text { H100 } \end{aligned}$	$\begin{aligned} & 2620,2720,2820 \\ & 2635,2735,2835 \\ & 2670,2770,2870 \\ & 2685,2785,2885 \end{aligned}$	12.70 mm 10.500 inch $\times 22.86 \mathrm{~mm}$ (0.900 inch:		D

Notes:

1. Application Note 1012 addresses legend fabrication options.
2. Allowed hole tolerance: $+0.00 \mathrm{~mm},-0.13 \mathrm{~mm}$ (+0.000 inch, -0.005 inch). Permitted radius: $1.60 \mathrm{~mm}(0.063 \mathrm{inch})$.

Package Dimensions

NOTES: 1. DIMENSIONS IN GALLIMETRES (INCHES)
2. UNTOLERANGED DIMENSIONS ARE FOR REFERENCE ONLY

Mounting Instructions

1. Mill ${ }^{[3]}$ or punch a hole in the panel. Deburr, but do not chamfer, the edges of the hole.
2. Place the front of the mount against a solid, flat surface. A film legend with outside dimensions equal to the outside dimensions of the light bar may be placed in the mount or on the light bar light emitting surface. Press the light bar into the mount until the tabs snap over the back of the light bar[4]. When inserting the HLMP-2898, align the notched sides of the light bar with the mount sides which do not have the tabs). (See Figure 1)
3. Applying even pressure to the top of the mount, press the entire assembly into the hole from the front of the panel ${ }^{[5]}$. (See Figure 2)
NOTE: For thinner panels, the mount may be pressed into the panel first, then the light bar may be pressed into the mount from the back side of the panel.
Notes:
4. A 3.18 mm (0.125 inch) diameter mill may be used.
5. Repetitve insertion of the light bar into mount may cause damage to the mount
6. Repetitive insertion of the mount into the panel will degrade the retention force of the mount.

Suggested Punch Sources

Hole punches may be ordered from one of the following sources:

Danly Machine Corporation
Punchrite Division
15400 Brookpark Road
Cleveland, OH 44135
(216) 267-1444

Ring Division
The Producto Machine Company
Jamestown, NY 14701
(800) 828-2216

Porter Precision Products Company
12522 Lakeland Road
Santa Fe Springs, CA 90670
(213) 946-1531

Di-Acro Division
Houdaille Industries 800 Jefferson Street
Lake City, MN 55041
(612) 345-4571

Features

- FACTORY INSTALLATION SAVES TIME IN MANUFACTURING, PURCHASING AND STOCKING
- LIGHT OR DARK FIELD FORMAT (DARK FIELD STANDARD)
- HIGH STRENGTH ADHESIVE BACKING
- CUSTOM LEGENDS AVAILABLE

Description

Light bar legends are available with factory installation on all light bars, using either standard or custom legends. Options L00 through L06 address our standard legend formats and can be specified for various size light bars in accordance with the Device/Option Selection Matrix.

Ordering Information

To order light bar legends, include the appropriate option code along with the device catalog number. Example: to order the HLMP-2655 with the "OFF" legend, order as follows: HLMP-2655 Option L01. Minimum order quantities vary by part number.

For custom legends, please contact your local HewlettPackard sales office or franchised Hewlett-Packard distributor.

Option Guide

Option	Legend Title
L00	ON
L01	OFF
L02	READY
L03	HIGH
L04	LOW
L05	RESET
L06	STOP

Ratings and Characteristics

The absolute maximum ratings, mechanical dimensions and electrical characteristics for light bars with legends are the same as for the standard catalog devices. Refer to the basic data sheet for the specified values. For use in applications involving high humidity conditions, please contact your Hewlett-Packard representative.

As with the standard light bar devices, the radiation pattern is approximately Lambertion. The luminous sterance for a given device is the same as for the standard light bar products. To calculate this value, refer to the "Optical" section of the LED Light Bars data sheet in this catalog.

Dimensional Specifications for Legends

NOTE: ALL DIMENSIONS IN MLLLIMETAES GINCHES),
HLMP-2685 Series

Device/Option Selection Matrix

		Applicable Light Bar Series			
Option	Legend	HLMP-2300/-2400/2500 HLCP-A100	HLMP-2655/-2755/-2855 HLCP-C100	HLMP-2685/-2785/-2885 HLCP-H100	
LO0	ON	X	X	X	
L01	OFF	X	X	X	
L02	READY		X	X	
L03	HIGH	LOW	X	X	

Features

- INTENSITY SELECTION IMPROVES UNIFORMITY OF LIGHT OUTPUT FROM UNIT TO UNIT. AVAILABLE IN HIGH EFFICIENCY RED, YELLOW, AND HIGH PERFORMANCE GREEN.
- TWO CATEGORY SELECTION SIMPLIFIES INVENTORY CONTROL AND ASSEMBLY.

Description

Light bars are now available from Hewlett-Packard which are selected from two adjacent intensity categories. These select light bars are basic catalog devices which are presorted for luminous intensity then selected from two predetermined adjacent categories and assigned to one convenient part number.
Example: Two luminous intensity categories are selected from the basic catalog HLMP-2300 production distribution and assigned to the part number HLMP-2300 option S02.
Selected light bars are ideal for applications which require two or more light bars per panel.

Luminous intensity selection is available for high efficiency red, yellow, and high performance green.
To ensure our customers a steady supply of product, HP must offer selected units from the center of our production distribution. If our production distribution shifts, we will need to change the intensity range of the selected units our customers receive. Typically, an intensity may have to be changed once every 1 to 3 years.
Current intensity selection information is available through a category reference chart which is available through your local field sales engineer or local franchised distributor.

Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings, mechanical dimensions, and electrical/optical characteristics are identical to the basic catalog device.

Device Selection Guide

The following table summarizes which basic catalog devices are available with category selection.

Package	AlGaAs Red	High Elliciency Red	Yellow	Green
4 Pin In-Line	HLCP-A100 OPT S02	HLMP-2300 OPT S02	HLMP-2400 OPT S02	HLMP-2500 OPT S02
8 Pin In-Line	HLCP-B100 OPT S02	HLMP-2350 OPT S02	HLMP-2450 OPT S02	HLMP-2550 OPT S02
8 Pin DIP Dual Arrangement	HLCP-C100 OPT S02	HLMP-2600 OPT S02	HLMP-2700 OPT S02	HLMP-2800 OPT S02
16 Pin DIP Quad Arrangement	HLCP-G100 OPT S02	HLMP-2620 OPT S02	HLMP-2720 OPT S02	HLMP-2820 OPT S02
16 P Pin DIP Dual Bar Arrangement	HLCP-F100 OPT S02	HLMP-2635 OPT S02	HLMP-2735 OPT S02	HLMP-2835 OPT S02
8Pin DIP Square Arrangement	HLCP-D100 OPT S02	HLMP-2655 OPT S02	HLMP-2755 OPT S02	HLMP-2855 OPT S02
16 Pin DIP Dual Square Arangement	HLCP-G100 OPT S02	HLMP-2670 OPT S02	HLMP-2770 OPT S02	HLMP-2870 OPT S02
16 Pin DIP Single Bar Arangement	HLCP-H100 OPT S02	HLMP-2685 OPT S02	HLMP-2785 OPT S02	HLMP-2885 OPT S02

Note: Option S02 designates a two intensity category selection. Option S02s of different part numbers may not have the same apparent brightness. Contact your HP Field Sales Office for design assistance.

Solid State Lamps

- Optional Leadform/Packaging
- AlGaAs Lamps
- Special Application Lamps
- General Purpose Lamps
- Emitters
- Hermetic Lamps

Solid State Lamps

From General to Special Purpose Lamps, HewlettPackard continues to grow its LED lamp product offering. This year, the broad line of lamp products is expanding in aspects of performance, packaging, and options.
Double Heterojunction Aluminum Gallium Arsenide (AlGaAs) Technology is born and bred to produce high brightness, low current lamps in subminiature, $\mathrm{T}-1$, and T-1 3/4 families. In addition, a special T-1 3/4 version offers 1 Candela (1000 mcd) performance.
New packages are always an area of growth and importance to designers and Hewlett-Packard. That's why HP has introduced a family of $2 \mathrm{~mm} \times 5 \mathrm{~mm}$ lamps, 940 nm emitter lamps, and now offers a T-1 3/4 bi-color lamp. In addition, HP offers a new T-2 lamp designed as an alternative to incandescent backlighting.
HP has responded to requests for options and variations of existing subminiature, T-1, and T-1 3/4 lamps in the past and this year is no exception. Subminiature lamp offerings grow with the addition of high brightness lamps, standard bends, and tape and reel options.

Hermetic Lamps

In addition to Hewlett-Packard commercial solid state lamps, Hewlett-Packard offers a complete line of hermetically sealed solid state lamps which are listed on MIL-S-19500 Qualified Parts List. All four colors are supplied in the basic lamp configuration, as well as the following two panel mount assembly options: Option \#001 represents an anodized aluminum sleeve and. Option \#002 represents a conductive composite sleeve for improved EMI/RFI shielding capabilities.
Hermetic ultra bright lamps are provided with JAN and JANTX equivalent testing, two panel mount options, and in three colors. These devices were specially designed to meet the sunlight viewability requirements of the military market.

Diffused (Direct View) Lamps

Device		Description			Typical Luminous Intensity	2e1/2[1]	Typical Forward Voltage	PageNo.	
Package Outline Drawing	Part No.	Color[2]	Package	Lens					
	HLMP-3000	Red (640 nm)	T-1 3/4	Tinted Diffused	2.0 mcd $@ 20 \mathrm{~mA}$ @ 20 mA	75°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	6-69	
	HLMP-3001				$\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$				
	HLMP-3002		Thin Leadframe		2.0 mcd $@ 20 \mathrm{~mA}$				
	HLMP-3003				$\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$				
	HLMP-3300	High Efficiency Red (626 nm)	T-13/4		$\begin{aligned} & 3.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	65°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-71	
	HLMP-3301				$7.0 \mathrm{mcd}$ $\text { @ } 10 \mathrm{~mA}$				
	HLMP-3762				15.0 mcd @ 10 mA				
\square	HLMP-D400	$\begin{aligned} & \text { Orange } \\ & (608 \mathrm{~nm}) \end{aligned}$			3.5 mcd $@ 10 \mathrm{~mA}$ @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$		
	HLMP-D401				$7.0 \mathrm{mcd}$ $\text { @ } 10 \text { mA }$				
	HLMP-3400	$\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			$\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	75°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$		
	HLMP-3401				8.0 mcd $@ 10 \mathrm{~mA}$ @ 10 mA				
U	HLMP-3862				12.0 mcd @ 10 mA				
$\left(\begin{array}{ll}1 \\ 0 & 0 \\ -1\end{array}\right)$	HLMP-3502	$\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$			2.4 mcd @ 10 mA	75°	$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$		
	HLMP-3507				$\begin{gathered} 5.2 \mathrm{mcd} \\ @ 10 \mathrm{~mA} \\ \hline \end{gathered}$				
	HLMP-3962				11.0 mcd @ 10 mA				
	HLMP-3200	$\begin{aligned} & \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$	T-13/4 Low Profile	Tinted Diffused	$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	60°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	6-75	
1	HLMP-3201.				$\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$				
$\\|$	HLMP-3350	High Efficiency Red (626 nm)			$\begin{aligned} & 3.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$	50°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$		
	HLMP-3351				$\begin{gathered} 9.0 \mathrm{mcd} \\ @ 10 \mathrm{~mA} \end{gathered}$				
	HLMP-3450	Yellow (585 nm)			4.0 mcd $@ 10 \mathrm{~mA}$ @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ \text { @ } 10 \mathrm{~mA} \end{gathered}$		
	HLMP-3451				10.0 mcd @ 10 mA				
	HLMP-3553	Green(569 nm)			$\begin{aligned} & 3.2 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$		
	HLMP-3554				10.0 mcd @ 10 mA				

Diffused (Direct View) Lamps (cont.)

Diffused (Direct View) Lamps (cont.)

Device		Description			Typical Luminous Intensity	201/2[1]	Typlcal Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Package Outllne Drawing	Part No.	Color [2]	Package	Lens				
\square	HLMP-6000	Red (640 nm)	Subminiature	Tinted Diffused	1.2 mcd @ 10 mA	$90^{\circ} \mathrm{C}$	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-38
	HLMP-6001				3.2 mcd @ 10 mA			
	HLMP-6300	High Efficiency Red (626 nm)			3.0 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-6305	High Efficiency Red		Untinted Non-Diffused	12 mcd @ 10 mA	70°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-32
	HLMP-Q400	$\begin{aligned} & \text { Orange } \\ & (608 \mathrm{~nm}) \end{aligned}$		Tinted Diffused	3.0 mcd @ 10 mA	90°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-38
	HLMP-6400	$\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}$					$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-6405			Untinted Non-Diffused	12 mcd @ 10 mA	70°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-32
	HLMP-6500	$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$		$\begin{aligned} & \hline \begin{array}{l} \text { Tinted } \\ \text { Diffused } \end{array} \end{aligned}$	3.0 mcd @ 10 mA	90°	$\begin{aligned} & 2.2 \mathrm{~V} \\ & @ 10 \mathrm{~A} \end{aligned}$	6-38
	HLMP-6505			Untinted Non-Diffused	12 mcd $@ 10 \mathrm{~mA}$	70°	$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-32
	HLMP-6203 HLMP-6204 HLMP-6205 HLMP-6206 HLMP-6208	$\begin{array}{\|l\|} \hline \text { Red } \\ (640 \mathrm{~nm}) \end{array}$		TintedDiffused	1.2 mcd @ 10 mA	90°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-43
0	HLMP-6653 HLMP-6654 HLMP-6655 HLMP-6656 HLMP-6658	High Efficiency Red (626 nm)			3.0 mcd @ 10 mA		$\begin{aligned} & 2.2 \mathrm{~V} \\ & @ 10 \mathrm{~mA} \end{aligned}$	
$\square \rightarrow \infty$	HLMP-6753 HLMP-6754 HLMP-6755 HLMP-6756 HLMP-6758	Yellow (585 nm)					$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-6853 HLMP-6854 HLMP-6855 HLMP-6856 HLMP-6858	Green $(569 \mathrm{~nm})$					$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	

*Array Length

2mm Flat Top Lamps

Device		Description			Typical Luminous Intensity	291/2[1]	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Package Outiline Drawing	Part No.	Color [2]	Package	Lens				
	HLMP-1800	High Efficiency Red (626 nm)	2mm Flat Top, Round Emitting Surface	Tinted Diffused	1.8 mcd @ 10 mA	140°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-44
	HLMP-1801				$\begin{aligned} & 2.9 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$			
	HLMP-1819	$\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			1.5 mcd $@ 10 \mathrm{~mA}$ @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-1820				$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-1840	$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$			$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-1841				$\begin{aligned} & 3.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-L250	High Efficiency Red (626 nm)	2 mm Flat Top, Square Emitting Surface	Tinted Diffused	1.8 mcd @ 10 mA	140°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-50
	HLMP-L251				$\begin{aligned} & 2.9 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-L350	$\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) . \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-L351				$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-L550	$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$			$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-L551				$3.0 \mathrm{mcd}$ $\text { @ } 10 \text { mA }$			

4mm Flat Top Lamps

High Intensity Lamps

Device		Description			Typical Luminous Intensity	2ө1/2[1]	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Dutline Drawing	Part No.	Color [2]	Package	Lens				
	HLMP-3050	$\begin{array}{\|l\|} \hline \text { Red } \\ (640 \mathrm{~nm}) \\ \hline \end{array}$	T-13/4	Tinted Non-Diffused	$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$	24°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \\ \hline \end{gathered}$	6-69
	HLMP-3315	High Efficiency Red (626 nm)			$\begin{aligned} & 18.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	35°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-81
	HLMP-3316				$\begin{aligned} & 30.0 \mathrm{mcd} \\ & @ .10 \mathrm{~mA} \end{aligned}$			
	HLMP-3415	Yellow(585 nm)			18.0 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3416				30.0 mcd $@ 10 \mathrm{~mA}$			
$\left(\begin{array}{ll} 1 \\ 0 & 0 \\ 0 & - \end{array}\right)$	HLMP-3517	Green(569 nm)			$\begin{aligned} & 10.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	24°	$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3519				25.0 mcd @ 10 mA			
	HLMP-3365	High Efficiency Red (626 nm)	T-13/4 Low Profile	Tinted Non-Diffused	$\begin{aligned} & 10.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	45°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-75
	HLMP-3366				18.0 mcd @ 10 mA			
$\square\rfloor$	HLMP-3465	$\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \\ \hline \end{array}$			12.0 mcd @ 10 mA @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3466				$\begin{aligned} & 18.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-3567	Green$(569 \mathrm{~nm})$			7.0 mcd @ 10 mA	40°	$\begin{gathered} 2.3 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$	
$\left(\begin{array}{ll} 0 & 0 \end{array}\right)$	HLMP-3568				15.0 mcd @ 10 mA			
	HLMP-1071	Red $(640 \mathrm{~nm})$	T-1	Untinted Non-Diffused	$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	45°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ \\ 20 \mathrm{~mA} \\ \hline \end{gathered}$	6-58
	HLMP-1320	HighEfficiencyRed$(626 \mathrm{~nm})$			12.0 mcd @ 10 mA	45°	2.2 V$@ 10 \mathrm{~mA}$	6-65
	HLMP-1321			Tinted Non-Diffused				
	HLMP-1420	Yellow (585 nm)		Untinted Non-Diffused	12.0 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-1421			Tinted Non-Diffused				
	HLMP-1520	$\begin{aligned} & \hline \begin{array}{l} \text { Green } \\ (569 \mathrm{~nm}) \end{array} \end{aligned}$		Untinted Non-Diffused	12.0 mcd @ 10 mA		$\begin{aligned} & 2.3 \mathrm{~V} \\ & @ 10 \mathrm{~mA} \end{aligned}$	
第	HLMP-1521			Tinted Diffused				

Rectangular Lamps

Device		Description			Typical Luminous Intensity	2ө1/2[1]	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Package Outline Drawing	Part No.	Color ${ }^{[2]}$	Package	Lens				
\square	HLMP-0300	High Efficiency Red (626 nm)	Rectangular	Tinted Diffused	$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	100°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	6-95
	HLMP-0301				$\begin{aligned} & 5.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$			
	HLMP-0400	$\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			2.5 mcd @ 20 mA		2.2 V	
	HLMP-0401				5.0 mcd @ 20 mA			
	HLMP-0503	Green(569 nm)			$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-0504				$\begin{aligned} & 5.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$			

$2 \mathrm{~mm} \times 5 \mathrm{~mm}$ Rectangular Lamps

AlGaAs Lamps

Low Current AIGaAs Lamps

Very High Intensity AIGaAs Lamps

Device		Description			Typical Luminous Intensity	201/2	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-4100	AIGaAs Red (637 nm)	T-1 3/4	Untinted Non-Diffused	750 mcd @ 20 mA	8°	$\begin{gathered} 1.8 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	6-28
	HLMP-4101				1000 mcd @ 20 mA			
(20)								

Low Current Lamps

Ultrabright Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2[1]$	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Package Outline Drawing	Part No.	Color [2]	Package	Lens				
	HLMP-3750	High Efficiency Red (626 nm)	T-13/4	Untinted Non-Diffused	125 mcd @ 20 mA	24°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	6-98
	HLMP-3850	$\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			140 mcd @ 20 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-3950	$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$			120 mcd @ 20 mA		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-3390	High Efficiency Red $(626 \mathrm{~nm})$	T-13/4 Low Profile	Untinted Non-Diffused	$\begin{aligned} & 55 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	32°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-3490	$\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$					$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-3590	$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$					$\begin{aligned} & 2.3 \mathrm{~V} \\ & @ 20 \mathrm{~mA} \end{aligned}$	
	HLMP-1340	High Efficiency Red (626 nm)	T-1 Low Profile	Untinted Non-Diffused	$\begin{aligned} & 35 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	45°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-1440	Yellow (585 nm)					$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-1540	$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$					$\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	

Integrated Resistor Lamps

Device		Description			Typical Luminous Intensity	$2 \Theta 1 / 2[1]$	Typical Forward Current	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color ${ }^{[2]}$	Package	Lens				
	HLMP-3105	$\begin{aligned} & \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$	T-13/4	Tinted Diffused	$\begin{aligned} & 2 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$	75°	$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	6-106
	HLMP-3112				$\begin{aligned} & 2 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-3600 HLMP-3601	High Efficiency Red (626 nm)			$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \\ & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$	65°	$\begin{array}{r} 13 \mathrm{~mA} \\ @ 12 \mathrm{~V} \\ \hline \end{array}$	
	HLMP-3650	$\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$	75°	$\begin{aligned} & \hline 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$	
	HLMP-3651				$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-3680	$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$			$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-3681				$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \\ & \hline \end{aligned}$	
	HLMP-1100	$\begin{aligned} & \hline \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$	T-1	Tinted Diffused	$\begin{aligned} & \hline 1.5 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$	60°	13 mA @ 5 V	
TH	HLMP-1120			Untinted Diffused		50°		
	HLMP-1600	High Efficiency Red (626 nm)		$\begin{aligned} & \hline \text { Tinted } \\ & \text { Diffused } \end{aligned}$	$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$	60°	$\begin{aligned} & \hline 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$	
	HLMP-1601				$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \\ & \hline \end{aligned}$	
	HLMP-1620	$\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1621				$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
为	HLMP-1640	$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$			$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1641				$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-6600	High Efficiency	Subminiature	Tinted Diffused	$\begin{aligned} & 5.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$	90°	$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	6-110
 \square	HLMP-6620	$\begin{aligned} & \text { Red } \\ & (626 \mathrm{~nm}) \\ & \hline \end{aligned}$			$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 3.5 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$	
	HLMP-6700	Yellow (585 nm)			$\begin{gathered} 5.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$	
	HLMP-6720				$\begin{gathered} 2.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-6800	$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$			$\begin{gathered} 5.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \end{aligned}$	
	HLMP-6820				$\begin{gathered} 2.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \hline 3.5 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1660	High Efficiency Red (626 nm)	2 mm Flat Top, Round Emitting Surface	$\begin{aligned} & \hline \text { Tinted } \\ & \text { Diffused } \end{aligned}$	$\begin{gathered} 1.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$	140°	$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	6-44
	HLMP-1661				$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$	
	HLMP-1674	Yellow (585 nm)			$\begin{gathered} 1.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ \\ & \hline \end{aligned}$	
	HLMP-1675				$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-1687	Green (569 nm)			$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$	
(\oplus)	HLMP-1688				$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 13 \mathrm{~mA} \\ \text { @ } 12 \mathrm{~V} \\ \hline \end{array}$	

Surface Mount Lamps (Gull Wing Lead)

Device		Description			Typical Luminous Intansity	201/21]	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color ${ }^{\text {[2] }}$	Package	Lens				
	$\begin{array}{\|c\|} \hline \text { HLMP-6000 } \\ \text { Option } 011 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Red } \\ (640 \mathrm{~nm}) \\ \hline \end{array}$	Subminiature Gull Wing Lead Configuration	Tinted Diffused	$\begin{aligned} & 1.2 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	90°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-122
	HLMP-6300 Option 011	High Efficiency Red (626 nm)			3.0 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	$\begin{array}{\|l} \hline \text { HLMP-6400 } \\ \text { Option } 011 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \\ \hline \end{array}$					$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	$\begin{array}{\|c} \hline \text { HLMP-6500 } \\ \text { Option } 011 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Green } \\ (569 \mathrm{~nm}) \end{array}$					$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	$\begin{array}{\|l\|} \hline \text { HLMP-7000 } \\ \text { Option } 011 \end{array}$	Low Current High Efficiency Red (626 nm)			$\begin{aligned} & 0.8 \mathrm{mcd} \\ & @ 2 \mathrm{~mA} \end{aligned}$	70°	$\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	
	HLMP-7019 Option 011	Low Current Yellow (585 nm)			0.6 mcd @ 2 mA		$\begin{gathered} 1.9 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	
	HLMP-7040 Option 011	Low Current Green (569 nm)						
	$\begin{array}{\|l\|} \hline \text { HLMP-6600 } \\ \text { Option } 011 \\ \hline \end{array}$	Integrated Resistor High Efficiency Red (626 nm)			$\begin{gathered} 2.4 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$	80°	$\begin{aligned} & 9.6 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-6620 Option 011				0.6 mcd @ 5 V		$\begin{aligned} & 3.5 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	

Surface Mount Lamps (Yoke Lead)

Device		Description			Typical Luminous Intensity	2ө1/2[1]	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \mathrm{No} . \end{gathered}$
Package Outline Drawing	Part No.	Color[2]	Package	Lens				
U	$\begin{array}{\|c} \hline \text { HLMP-6000 } \\ \text { Option } 021 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Red } \\ & (640 \mathrm{~nm}) \\ & \hline \end{aligned}$	Subminiature Yoke Lead Configuration	Tinted Diffused	1.2 mcd @ 10 mA	90°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-126
	$\begin{array}{\|l\|} \hline \text { HLMP-6300 } \\ \text { Option } 021 \end{array}$	High Efficiency Red (626 nm)			3.0 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	$\begin{array}{\|c\|} \hline \text { HLMP-6400 } \\ \text { Option } 021 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \\ \hline \end{array}$					$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \\ \hline \end{gathered}$	
	$\begin{aligned} & \hline \text { HLMP-6500 } \\ & \text { Option } 021 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \\ & \hline \end{aligned}$					$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \\ \hline \end{gathered}$	
	$\begin{array}{\|l\|} \hline \text { HLMP-7000 } \\ \text { Option } 021 \end{array}$	Low Current High Efficiency Red (626 nm)			$\begin{aligned} & \hline 0.8 \mathrm{mcd} \\ & @ 2 \mathrm{~mA} \end{aligned}$	70°	$\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	
	$\begin{array}{\|l\|} \hline \text { HLMP-7019 } \\ \text { Option } 021 \end{array}$	Low Current Yellow (585 nm)			0.6 mcd @ 2 mA		$\begin{gathered} 1.9 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	
	$\begin{aligned} & \hline \text { HLMP-7040 } \\ & \text { Option } 021 \end{aligned}$	Low Current Green (569 nm)						
	$\begin{array}{\|c} \hline \text { HLMP-6600 } \\ \text { Option } 021 \\ \hline \end{array}$	Integrated Resistor High Efficiency Red (626 nm)			$\begin{aligned} & 2.4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$	80°	$\begin{aligned} & 9.6 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$	
	$\begin{array}{\|l\|} \hline \text { HLMP-6620 } \\ \text { Option } 021 \end{array}$				$\begin{aligned} & 0.6 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3.5 \mathrm{~mA} \\ & @ 5 . \mathrm{V} \end{aligned}$	

Tape and Reel: Solid State Lamps

Device		Description			Typical Luminous Intensity	2e1/2[1]	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color[2]	Package	Lens				
\Longrightarrow	$\begin{array}{\|l\|} \hline \text { HLMP-3300 } \\ \text { Option } 001 \end{array}$	High Efficiency Red (626 nm)	T-13/4	Tinted Diffused	3.5 mcd @ 10 mA	65°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-132
	$\begin{array}{\|l\|} \hline \text { HLMP-3300 } \\ \text { Option } 002 \\ \hline \end{array}$							
	$\begin{array}{\|l\|} \hline \text { HLMP-1301 } \\ \text { Option. } 001 \end{array}$		T-1		2.5 mcd $@ 10 \mathrm{~mA}$ @ 10 mA	60°		
	$\begin{array}{\|l\|} \hline \text { HLMP-1301 } \\ \text { Option } 002 \end{array}$							

Right Angle Indicators without current limiting resistor

Device		Description			Typical Luminous Intensity	281/21]	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Package Outline Drawing	Part No.	Color 2]	Package	Lens				
	$\begin{aligned} & \text { HLMP-3001 } \\ & \text { Option } 010 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Red } \\ (640 \mathrm{~nm}) \\ \hline \end{array}$	T-13/4 Right Angle Indicator	Red Diffused	$\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	75°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	6-139
	$\begin{aligned} & \text { HLMP-3300 } \\ & \text { Option } 010 \end{aligned}$	High Efficiency Red (626 nm)			6.0 mcd @ 10 mA	65°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	$\begin{gathered} \hline \text { HLMP-3400 } \\ \text { Option } 010 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}$		Yellow Diffused	6.0 mcd @ 10 mA	75°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \\ \hline \end{gathered}$	
	$\begin{gathered} \hline \text { HLMP-3502 } \\ \text { Option } 010 \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Green } \\ (569 \mathrm{~nm}) \end{array} \\ \hline \end{array}$		Green Diffused	2.4 mcd @ 10 mA	75°	$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	$\begin{array}{\|c} \hline \text { HLMP-1002 } \\ \text { Option } 010 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Red } \\ (640 \mathrm{~nm}) \\ \hline \end{array}$	T-1 Right Angle Indicator	Red Diffused	$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$	125°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \\ \hline \end{gathered}$	6-137
	$\begin{aligned} & \hline \text { HLMP-1301 } \\ & \text { Option } 010 \end{aligned}$	High Efficiency Red (626 nm)			2.5 mcd @ 10 mA	60°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	$\begin{array}{\|l\|} \hline \text { HLMP-1401 } \\ \text { Option } 010 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}$		Yellow Diffused	3.0 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \\ \hline \end{gathered}$	
	$\begin{array}{\|c} \hline \text { HLMP-1503 } \\ \text { Option } 010 \\ \hline \end{array}$	Green (569 nm)		Green Diffused	2.0 mcd @ 10 mA		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	$\begin{array}{\|c} \hline \text { HLMP-6000 } \\ \text { Option } 010 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Red } \\ (640 \mathrm{~nm}) \\ \hline \end{array}$	Subminiature Right Angle Indicator	Red Diffused	1.2 mcd @ 10 mA	90°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \\ \hline \end{gathered}$	6-136
	$\begin{gathered} \text { HLMP-6300 } \\ \text { Option } 010 \end{gathered}$	High Efficiency Red (626 nm)			$\begin{aligned} & 3.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	$\begin{array}{\|c} \hline \text { HLMP-6400 } \\ \text { Option } 010 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}$		Yellow Diffused			$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \\ \hline \end{gathered}$	
	$\begin{gathered} \text { HLMP-6500 } \\ \text { Option } 010 \end{gathered}$	$\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \\ & \hline \end{aligned}$		Green Diffused			$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	

Right Angle Indicators without current limiting resistor (cont.)

Device		Description			Typical Luminous Intensity	2e1/2[1]	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \\ & \hline \end{aligned}$
Package Outline Drawing	Part No.	Color 2]	Package	Lens				
	HLMP-1301 Option 104	High Efficiency Red $(626 \mathrm{~nm})$	T-1 Right Angle Indicator 4-Element	Tinted Diffused	$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	60°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-138
	$\begin{array}{\|c\|} \hline \text { HLMP-1401 } \\ \text { Option } 104 \\ \hline \end{array}$	Yellow $(585 \mathrm{~nm})$	Array		3.0 mcd $@ 10 \mathrm{~mA}$		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-1503 Option 104	$\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$			2.0 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ \cdot 10 \mathrm{~mA} \end{gathered}$	
	HLMP-5029	Right Angle Housing for T-1 3/4 Lamps						6-141

Right Angle Indicators with current limiting resistor

Device		Description			Typical Luminous Intensity	2ө1/2[1]	Typical Forward Current	$\begin{aligned} & \text { Page } \\ & \mathrm{No.} \end{aligned}$
Package Outline Drawing	Part No.	Color [2]	Package	Lens				
	$\begin{gathered} \hline \text { HLMP-3112 } \\ \text { Option } 010 \\ \hline \end{gathered}$	Red (640 nm)	T-13/4 Right Angle Indicator	Red Diffused	2 mcd @ 12 V	75°	$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	6-139
	$\begin{aligned} & \hline \text { HLMP-3105 } \\ & \text { Option } 010 \\ & \hline \end{aligned}$				$\begin{aligned} & 2 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & \text { HLMP-3600 } \\ & \text { Option } 010 \end{aligned}$	High Efficiency Red (626 nm)			$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$	65°	10 mA @ 5 V	
	$\begin{gathered} \hline \text { HLMP-3650 } \\ \text { Option } 010 \end{gathered}$	$\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$		Yellow Diffused		75°	$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & \text { HLMP-3680 } \\ & \text { Option } 010 \end{aligned}$	$\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$		Green Diffused			$\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & \hline \text { HLMP-1100 } \\ & \text { Option } 010 \end{aligned}$	$\begin{aligned} & \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$	T-1 Right Angle Indicator	Red Diffused	$\begin{aligned} & 1.5 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$	60°	$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	6-137
	$\begin{aligned} & \text { HLMP-1600 } \\ & \text { Option } 010 \end{aligned}$	High Efficiency Red (626 nm)			$\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} \hline \text { HLMP-1620 } \\ \text { Option } 010 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$		Yellow Diffused			$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & \text { HLMP-1640 } \\ & \text { Option } 010 \end{aligned}$	$\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$		Green Diffused			$\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	

Emitter Components

Device		Description	Features	Page No.
Package Outline Drawing	Part No.			
	HEMT-6000	700 nm High Intensity Subminiature Emitter	- Visible (Near IR) emmision facilitates alignment. - Compatible with most silicon phototransistors and photodiodes.	6-122
	HEMT-3301	$940 \mathrm{~nm} \mathrm{T-13/4}$ High Radiant Emitter	- Efficiency at Low Currents - Radiated spectrum matches response of silicon photodetectors - Non-saturated, high radiant flux output	6-116
	HEMT-1001	940 nm T-1 High Radiant Emitter	\cdots	

Notes: 1) $2 \theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2) Dominant wavelength

Mounting Hardware

Device			Page No.	
Package Outline Drawing	Part No.	Description	$6-144$	
		HLMP-0103	Mounting Clip and Ring for T-1 3/4 Lamps	

T-1 3/4 Bicolor Solid State Lamp

Device		Description			Typical Luminous Intensity	201/2	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color	Packaga	Lens				
	HLMP-4000	High Efficiency Red (626 nm)	T-13/4	Untinted Diffused	5.0 mcd @ 10 mA	65°	$\begin{gathered} 2.1 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	6-113
		$\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$			8.0 mcd @ 10 mA		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	

T-2 Incandescent Alternative Lamps

Device		Description			Typical Luminous Intensity	2e1/2	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-A200	High Efficiency Red (626 nm)	T-2	Tinted Non-Diffused	40 mcd @ 50 mA	$114{ }^{\circ}$	$\begin{gathered} 4.2 \mathrm{~V} \\ @ 50 \mathrm{~mA} \end{gathered}$	6-85
	HLMP-A300	Yellow $(585 \mathrm{~nm})$			$\begin{aligned} & 40 \mathrm{mcd} \\ & @ 50 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 4.3 \mathrm{~V} \\ @ 50 \mathrm{~mA} \end{gathered}$	
	HLMP-A500	Green $(569 \mathrm{~nm})$			$\begin{gathered} 40 \mathrm{mcd} \\ @ 50 \mathrm{~mA} \end{gathered}$	124°	$\begin{gathered} 4.6 \mathrm{~V} \\ @ 50 \mathrm{~mA} \end{gathered}$	

Hermetically Sealed and High Reliability LED Lamps

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Dominant Wavelength.
3. PC Board Mountable.
4. Military Approved and qualified for High Reliability Applications.

Hermetically Sealed and High Reliability LED Lamps（cont．）

Device		Description			Typical Luminous Intensity	$201 / 2[1]$	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \\ \hline \end{gathered}$
Package Qutline Drawing	Part No．	Color 2 ［ $]$	Package	Lens				
	HLMP－0363 HLMP－0391 HLMP－0392	High Efficiency Red （ 626 nm ）	Hermetic T0－18［3］	Clear Class	50 mcd ＠20 mA	18	$\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	6－152
	HLMP－0463 HLMP－0491 HLMP－0492	Yellow （ 585 nm ）			50 mcd ＠ 20 mA		$\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP－0563 HLMP－0591 HLMP－0592	$\begin{aligned} & \text { Green } \\ & \text { (572 nm) } \end{aligned}$			$\begin{aligned} & 50 \mathrm{mcd} \\ & @ 25 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 2.1 \mathrm{~V} \\ @ 25 \mathrm{~mA} \end{gathered}$	
	HLMP－0364 HLMP－0365 HLMP－0366	High Efficiency Red （ 626 nm ）	Panel Mount Version	Clear Glass	50 mcd ＠ 20 mA		$\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP－0464 HLMP－0465 HLMP－0466	Yellow （ 585 nm ）			50 mcd ＠ 25 mA		$\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP－0564 HLMP－0565 HLMP－0566	$\begin{array}{\|l} \text { Green } \\ (572 \mathrm{~nm}) \end{array}$			50 mcd ＠ 25 mA		$\begin{gathered} 2.1 \mathrm{~V} \\ @ 25 \mathrm{~mA} \end{gathered}$	

NOTES：
1．$\Theta 1 / 2$ is the off－axis angle at which the luminous intensity is half the axial luminous intensity．
2．Dominant Wavelength．
3．PC Board Mountable．
4．Military Approved and qualified for High Reliability Applications．

DOUBLE HETEROJUNCTION AIGaAs HIGH INTENSITY RED LED LAMPS

T-1 3/4 (5mm) HLMP-D101/D105 T-1 (3mm) HLMP-K101/K105 SUBMINIATURE HLMP-Q101

Features

- EXCEPTIONAL BRIGHTNESS
- WIDE VIEWING ANGLE
- OUTSTANDING MATERIAL EFFICIENCY
- LOW FORWARD VOLTAGE
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- DEEP RED COLOR

Applications

- bright ambient lighting conditions
- MOVING MESSAGE PANELS
- PORTABLE EQUIPMENT
- GENERAL USE

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MINISCUS MAY EXTEND ABOUT
$1 \mathrm{~mm}\left(0.040^{\circ}\right)$ DOWN THE LEADS.

B

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AlGaAs/GaAs material technology. This LED material has outstanding light output efficiency over a wide range of drive currents. The color is deep red at the dominant wavelength of 637 nanometres. These lamps may be DC or pulse driven to achieve desired light output.

(Continued on next page.)

Package Dimensions

D

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

Part Number HLMP-	Package Description	IV (med) @ 20 mA Min. Typ.	2 θ 1/2 Note 1. Degrees	Package Outline	
D101	T-1 3/4 Red Tinted Diffused	35	70	65	A
D105	T-1 3/4 Red Untinted, Non-diffused	100	240	24	B
K101	T-1 Red Tinted Diffused	22	45	60	C
K105	T-1 Red Untinted Non-diffused	35	65	45	C
Q101	Subminiature Red Tinted Diffused	20	45	70	D

Note:

1. $\theta^{1 / 2}$ is the off axis angle from lamp centerline where the luminous intensity is $1 / 2$ the on-axis value.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Peak Forward Current[1, 2] 300 mA
Average Forward Current ${ }^{[2]}$........................... . 20 mA
DC Current ${ }^{[3]}$.. . . 30 mA
Power Dissipation 87 mW
Reverse Voltage $\left(I_{R}=100 \mu \mathrm{~A}\right) \ldots \ldots$.
Transient Forward Current ($10 \mu \mathrm{~s}$ Pulse) ${ }^{[4]} \ldots . . .500 \mathrm{~mA}$
Operating Temperature Range -20 to $+100^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature
[1.6 mm (0.063 in .) from body] ... $260^{\circ} \mathrm{C}$ for 5 seconds

Notes:

1. Maximum IPEAK at $f=1 \mathrm{kHz}, D F=6.7 \%$.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 5.
4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Unit	Test Condition
V_{F}	Forward Voltage		1.8	2.2	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{R}}$	Reverse Breakdown Voltage	5.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
λ_{p}	Peak Wavelength		645		nm	Measurement at peak
λ_{d}	Dominant Wavelength		637		nm	Note 1
$\Delta \lambda_{\mathrm{V} / 2}$	Spectral Line Halfwidth		20		nm	
Υ_{S}	Speed of Response		30		ns	Exponential Time Constant, $\mathrm{e}^{-1 / / T_{S}}$
C	Capacitance		30		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
θ_{JC}	Thermal Resistance		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
η_{V}	Luminous Efficacy		80		em / W	Note 2

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $I_{e}=I_{V} / \eta V$, where I_{V} is the luminous intensity is in candelas and $\eta \mathrm{V}$ is luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 5. Maximum Forward DC Current vs. Ambient Temperature.
Derating Based on $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$.

Figure 2. Forward Current vs. Forward Voltage.

Figure 4. Relative Efficiency vs.
Peak Forward Current.

Figure 6. Maximum Tolerable Peak Current vs. Peak Duration (IPEAK MAX Determined from Temperature Derated IDC MAX).

Figure 7. Relative Luminous Intensity vs. Angular Displacement. HLMP-D101.

Figure 9. Relative Luminous Intensity vs. Angular Displacement. HLMP-D105.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-K101.

Figure 10. Relative Luminous Intensity vs.
Angular Displacement. HLMP-K105.

Figure 11. Relative Luminous Intensity vs. Angular Displacement for Subminiature Lamp

Features

- MINIMUM LUMINOUS INTENSITY SPECIFIED AT 1 mA
- HIGH LIGHT OUTPUT AT LOW CURRENTS
- WIDE VIEWING ANGLE
- OUTSTANDING MATERIAL EFFICIENCY
- LOW POWER/LOW FORWARD VOLTAGE
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- DEEP RED COLOR

Applications

- LOW POWER CIRCUITS
- BATTERY POWERED EQUIPMENT
- TELECOMMUNICATION INDICATORS

Package Dimensions

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AIGaAs/GaAs material technology. This LED material has outstanding light output efficiency at very low drive currents. The color is deep red at the dominant wavelength of 637 nanometres. These lamps are ideally suited for use in applications where high light output is required with minimum power input.

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES),
2. AN EPOXY MINISCUS MAY EXTEND ABOUT $1 \mathrm{~mm}\left(0,040^{\prime \prime}\right)$ DOWN THE LEADS.

(Continued on next page.)

Package Dimensions

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

D

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

Part Number HLMP-	Package Description	IV (mad) @1 mA DC Min. Typ.	2 $1 / 2$ Note 1. Degrees	Package Outline
D150	T-1 $\frac{3 / 4}{}$ Red Tinted Diffused	1.2	3	65
D155	T-1 $3 / 4$ Red Untinted, Non-diffused	5	10	24
K150	T-1 Red Tinted Diffused	1.2	2	60
K155	T-1 Red Untinted Non-diffused	2	3	45
Q150	Subminiature Red Tinted Diffused	1	1.8	70

Note:

1. $\theta^{1 / 2}$ is the off axis angle from lamp centerline where the luminous intensity $1 / 2$ the on-axis value.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Peak Forward Current[1] 300 mA
Average Forward Current 20 mA
DC Current ${ }^{[2]}$ 30 mA
Power Dissipation 87 mW
Reverse Voltage $\left(I_{R}=100 \mu \mathrm{~A}\right) \ldots$.
Transient Forward Current (10μ s Pulse) ${ }^{[3]} \ldots . . .500 \mathrm{~mA}$
Operating Temperature Range -20 to $+100^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature
[1.6 mm (0.063 in.) from body] ... $260^{\circ} \mathrm{C}$ for 5 seconds

Notes:

1. Maximum IPEAK at $f=1 \mathrm{kHz}, \mathrm{DF}=6.7 \%$.
2. Derate linearly as shown in Figure 4.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Unit	Test Condition
V_{F}	Forward Voltage		1.6	1.8	V	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
$V_{\text {R }}$	Reverse Breakdown Voltage	5.0	15.0		V	$I_{R}=100 \mu \mathrm{~A}$
λ_{p}	Peak Wavelength		645		nm	Measurement at peak
λ_{d}	Dominant Wavelength		637		nm	Note 1
$\Delta \lambda^{1 / 2}$	Spectral Line Halfwidth		20		nm	
r_{S}	Speed of Response		30		ns	Exponential Time Constant, $\mathrm{e}^{-t / T_{S}}$
C	Capacitance		30		pF	$V_{F}=0, \mathrm{f}=1 \mathrm{MHz}$
θ_{Jc}	Thermal Resistance		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
$\eta \mathrm{V}$	Luminous Efficacy		80		$\ell \mathrm{m} / \mathrm{W}$	Note 2

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $I_{e}=I_{V} / \eta V$, where I_{V} is the luminous intensity is in candelas and $\eta \mathrm{V}$ is luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 2. Forward Current vs. Forward Voltage.

Figure 4. Maximum Forward DC Current vs.
Ambient Temperature.
Derating Based on T_{J} Max. $=110^{\circ} \mathrm{C}$.

Figure 5. Relative Luminous Intensity vs. Angular Displacement. HLMP-D150.

Figure 7. Relative Luminous Intensity vs. Angular Displacement. HLMP-D155.

Figure 6. Relative Luminous Intensity vs. Angular Displacement. HLMP-K150.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-K155.

Figure 9. Relative Luminous Intensity vs. Angular Displacement for Subminiature Lamp

Features

- 1000 mcd AT 20 mA
- VERY HIGH INTENSITY AT LOW DRIVE CURRENTS
- NARROW VIEWING ANGLE
- OUTSTANDING MATERIAL EFFICIENCY
- LOW FORWARD VOLTAGE
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- DEEP RED COLOR

Applications

- BRIGHT AMBIENT LIGHTING CONDITIONS
- EMITTER/DETECTOR AND SIGNALING APPLICATIONS
- GENERAL USE

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AIGaAs/GaAs material technology. This LED material has outstanding light output efficiency over a wide range of drive currents. The lamp package has a tapered lens, designed to concentrate the luminous flux into a narrow radiation pattern to achieve a very high intensity. The LED color is deep red at the dominant wavelength of 637 nanometres. These lamps may be DC or pulse driven to achieve desired light output.

Package Dimensions

Luminous Intensity @ $25^{\circ} \mathrm{C}$

P/N HLMP.	Package Description	$\begin{gathered} I_{V}(\mathrm{mcd}) \\ @ 20 \mathrm{mADC} \\ \hline \end{gathered}$		201/2 Note 1. Degrees
		Min.	Typ.	
4100	T-1 3/4 Red Untinted, Non-diffused	500	750	8
4101		700	1000	

Note:

1. $\theta 1 / 2$ is the angle from optical centerline where the luminous intensity is $1 / 2$ the optical centerline value.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Maximum Rating	Units
Peak Forward Current ${ }^{[1,2]}$	300	mA
Average Forward Current ${ }^{[2]}$	20	mA
DC Current $[3]$	30	mA
Power Dissipation	87	mW
Reverse Voltage $\left(l_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	V
Transient Forward Current $(10 \mu \mathrm{~s} \text { Pulse })^{[4]}$	500	mA
Operating Temperature Range	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature $[1.6 \mathrm{~mm}(0.063 \mathrm{in}$.) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds	

Notes:

1. Maximum I PEAK at $f=1 \mathrm{kHz}, \mathrm{DF}=6.7 \%$.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linerally as shown in Figure 5.
4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Unit	Test Condition
V_{F}	Forward Voltage		1.8	2.2	V	20 mA
V_{R}	Reverse Breakdown Voltage	5.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\lambda_{\text {PEAK }}$	Peak Wavelength		650		nm	Measurement at peak
λ_{d}	Dominant Wavelength		642		nm	Note 1
$\Delta \lambda 1 / 2$	Spectral Line Halfwidth		20		nm	
τ_{S}	Speed of Response		30		ns	Exponential Time Constant, $\mathrm{e}^{+/ / \mathrm{s}}$
C	Capacitance		30		pF	$V_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
$\theta_{\text {jC }}$	Thermal Resistance		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
η_{V}	Luminous Efficacy		80		$1 \mathrm{~m} / \mathrm{W}$	Note 2

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $I_{e}=I_{V} / \eta v$, where I_{V} is the luminous intensity in candelas and $\eta \mathrm{V}$ is luminous efficacy in lumens/watt.
3. The approximate total luminous flux output within a cone angle of 2θ about the optical axis, $\phi \mathrm{V}(2 \theta)$, may be obtained from the following formula:
$\phi_{\mathrm{V}}(2 \theta)=\left[\phi_{\mathrm{V}}(\theta) / l_{\mathrm{V}}(0)\right] l_{\mathrm{V}}$;
Where: $\phi_{\mathrm{V}}(\theta) / \mathrm{l}_{\mathrm{V}}(0)$ is obtained from Figure 7.

Figure 1. Relative Intensity vs. Wavelength

Figure 3. Relative Luminous Intensity vs. DC Forward Current

Figure 5. Maximum Forward DC Current vs. Ambient Temperature Derating Based on $\mathrm{T}_{\mathbf{J}}$ MAX. $=110^{\circ} \mathrm{C}$

Figure 2. Forward Current vs. Forward Voltage

Figure 4. Relative Efficiency vs. Peak Forward Current

Figure 6. Maximum Tolerable Peak Current vs. Peak Duration (IPEAK MAX Determined from Temperature Derated IDC MAX).

Figure 7. Relative Luminous Intensity vs. Angular Displacement

Features

- SUBMINIATURE PACKAGE STYLE
- END STACKABLE
- LOW PACKAGE PROFILE
- AXIAL LEADS
- NARROW VIEWING ANGLE
- LONG LIFE - SOLID STATE RELIABILITY
- AVAILABLE IN BULK, ARRAYS, TAPE AND REEL, SURFACE MOUNT, AND BENT LEAD CONFIGURATIONS

Description

Lamps in this series of solid state indicators are encapsulated in an axial lead subminiature package of molded epoxy. They utilize an untinted non-diffused lens providing superior product performance. Small size makes these lamps suitable for PC Board mounting in space sensitive applications.
Special lead bending, packaging and assembly methods can be used with these devices. Refer to the special data sheet for lead bend configurations. Two special surface mount lead configurations are also available. See the data sheets for "gull wing" and "yoke lead" options for more detailed information. Tape and reel packaging for the standard product is also available (refer to Tape and Reel Data Sheet).

Part Number HLMP-	Minimum Intensity (mcd) at $\mathbf{1 0} \mathbf{~ m A ~}$	Color (Material)
6305	3.4	High Efficiency Red (GaP on GaAsP)
6405	3.6	Yellow (GaP on GaAsP)
6505	4.2	Green (GaP)

Package Dimensions

ALL DIMENSIONS ARE 犃 MILLIMETRES (INCHES).

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
Iv	Luminous Intensity	High Efficiency Red 6305	3.4	12		med	$I_{F}=10 \mathrm{~mA}$ (Figures 3, 8, 13)
		Yellow 6405	3.6	12			
		$\begin{aligned} & \text { Green } \\ & 6505 \end{aligned}$	4.2	12			
$2 \Theta_{1 / 2}$	Including Angle Between Half Luminous Intensity Points	All		28		Deg.	See Note 1 (Figures 6, 11, 16)
$\lambda_{\text {PEAK }}$	Peak Wavelength	High Efficiency Red Yellow Green		$\begin{aligned} & 635 \\ & 583 \\ & 565 \\ & \hline \end{aligned}$		nm	Measurement at Peak
λd	Dominant Wavelength	High Efficiency Red Yellow Green		$\begin{aligned} & 626 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	High Efficiency Red Yellow Green		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
${ }^{\text {T }}$ S	Speed of Response	High Efficiency Red Yellow Green		$\begin{gathered} 90 \\ 90 \\ 500 \\ \hline \end{gathered}$		ns	
C	Capacitance	High Efficiency Red Yellow Green		$\begin{aligned} & 11 \\ & 15 \\ & 18 \end{aligned}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta_{\text {JC }}$	Thermal Resistance	All		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	High Efficiency Red Yellow Green	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	V	$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & \text { (Figures 2, 7, 12) } \end{aligned}$
$V_{\text {R }}$	Reverse Breakdown Voltage	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	High Efficiency Red Yellow Green		$\begin{aligned} & 145 \\ & 500 \\ & 595 \\ & \hline \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

Notes:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation I_{e}, $=I_{V} / \eta_{V}$. Where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	High Eff. Red HLMP-6305	$\begin{aligned} & \text { Yellow } \\ & \text { HLMP-6405 } \end{aligned}$	$\begin{aligned} & \text { Green } \\ & \text { HLMP-6505 } \end{aligned}$	Units
Power Dissipation	135	85	135	mW
DC Forward Current	30[2]	$20[4]$	$3012]$	mA
Peak Forward Current	90 See Fig. 5	60 See Fig. 10	90 See Fig. 15	mA
Reverse Voltage ($\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	5	V
Transient Forward Current ${ }^{[3]}$ ($10 \mu \mathrm{sec}$ Pulse)	500	500	500	mA
Operating Temperature Range Storage Temperature Range	-55 to +100	-55 to +100	-20 to +100 -55 to +100	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	$260^{\circ} \mathrm{C}$ for 3 seconds			

Notes:

1. Derate from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak current beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

High Efficiency Red HLMP-6305

V_{F} - FORWARD VOLTAGE - V

Figure 2. Forward Current vs. Forward Voltage Characteristics

Figure 4. Relative Efficlency
(Luminous Intensity per Unit Current) vs: Peak Current

Figure 3. Relative Luminous Intensity vs. Forward Current

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration (IDCMAX as per MAX Ratings)

Figure 6. Relative Luminous Intensity vs. Angular Displacement

Yellow HLMP-6405

Figure 7. Forward Current vs. Forward Voltage Characteristics

Figure 9. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current

Figure 8. Relative Luminous Intensity vs. Forward Current

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)

Figure 11. Relative Luminous Intensity vs. Angular Displacement

Green HLMP-6505

Figure 12. Forward Current vs. Forward Voltage Characteristics

Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current

Figure 13. Relative Luminous Intensity vs. Forward Current

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)

SUBMINIATURE SOLID STATE LAMPS
 RED - HLMP-6000/6001
 HIGH EFFICIENCY RED HLMP-6300
 ORANGE HLMP-Q400
 YELLOW - HLMP-6400
 HIGH PERFORMANCE GREEN HLMP-6500

Features

- SUBMINIATURE PACKAGE STYLE

- END STACKABLE
- LOW PACKAGE PROFILE
- AXIAL LEADS
- WIDE VIEWING ANGLE
- LONG LIFE - SOLID STATE RELIABILITY
- AVAILABLE IN BULK, ARRAYS, TAPE AND REEL, SURFACE MOUNT, AND BENT LEAD CONFIGURATIONS

Description

Lamps in this series of solid state indicators are encapsulated in an axial lead subminiature package of molded epoxy. They utilize a tinted, diffused lens providing high on-off contrast and wide angle viewing. Small size makes these lamps suitable for PC board mounting in space sensitive applications.

Special lead bending, packaging and assembly methods can be used with these devices. For example, lead bending on $2.54 \mathrm{~mm}(0.100 \mathrm{in})$ and $5.08 \mathrm{~mm}(0.200 \mathrm{in})$ centers is available. Two special surface mount lead configurations are also available. See the data sheets for "gull wing," "yoke lead" and bend options for more detailed information.

Tape and reel packaging for the standard product and for the surface mountable "gull wing" and "yoke lead" versions is described in their respective surface mount data sheets.

Part Number HLMP-	Minimum Intensity (mcd) at 10 mA	Color (Material)
6000	0.5	Standard Red (GaAsP)
6001	1.3	Standard Red (GaAsP)
6300	1.0	High Efficiency Red (GaP on GaAsP)
Q400	1.0	Orange (GaP on GaAsP)
6400	1.0	Yellow (GaP on GaAsP)
6500	1.0	Green (GaP)

Package Dimensions

ALL DIMENSIONS ARE IN MILLIMETRES (INCHESS.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Device HLMP.	Min.	Typ.	Max.	Units	Test Conditions
Iv	Luminous Intensity	Standard Red 6000 6001	$\begin{aligned} & 0.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.2 \end{aligned}$		med	$I_{F}=10 \mathrm{~mA}$ (Figures 3, 8, 13, 18)
		High Efficiency Red 6300	1.0	3.0			
		Orange Q400	1.0	3.0			
		$\begin{aligned} & \text { Yellow } \\ & 6400 \end{aligned}$	1.0	3.0			
		$\begin{aligned} & \text { Green } \\ & 6500 \end{aligned}$	1.0	3.0			
$2 \Theta_{1 / 2}$	Including Angle Between Half Luminous Intensity Points	All		90		Deg.	See Note 1 (Figures 6, 11, 16, 21)
$\lambda_{\text {PEAK }}$	Peak Wavelength	Standard Red High Efficiency Red Orange Yellow Green		$\begin{aligned} & 655 \\ & 635 \\ & 612 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak
λ_{d}	Dominant Wavelength	Standard Red High Efficiency Red Orange Yellow Green		$\begin{aligned} & 640 \\ & 626 \\ & 603 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	Standard Red High Eff, Red/Orange Yellow Green		$\begin{aligned} & 24 \\ & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
τ_{S}	Speed of Response	Standard Red High Efficiency Red Orange Yellow Green		$\begin{gathered} 15 \\ 90 \\ 260 \\ 90 \\ 500 \end{gathered}$		ns	
c	Capacitance	Standard Red High Efficiency Red Orange Yellow Green		$\begin{gathered} 100 \\ 11 \\ 4 \\ 15 \\ 18 \end{gathered}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta_{\text {Jc }}$	Thermal Resistance	All		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	Standard Red High Efficiency Red Orange Yellow Green	$\begin{aligned} & 1.4 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.2 \\ & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	V	$I_{F}=10 \mathrm{~mA}$ (Figures 2, 7, 12, 17)
$V_{\text {R }}$	Reverse Breakdown Voltage	All	5.0			V	$I_{R}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	Standard Red High Efficiency Red Orange Yellow Green		$\begin{gathered} 65 \\ 145 \\ 262 \\ 500 \\ 595 \end{gathered}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

[^5]
Notes:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity. I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$. Where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	$\begin{gathered} \text { Red } \\ \text { HLMP-6000/1 } \end{gathered}$	High Eff. Red HLMP-6300	Orange HLMP-Q400	$\begin{aligned} & \text { Yellow } \\ & \text { HLMP-6400 } \end{aligned}$	$\begin{aligned} & \text { Green } \\ & \text { HLMP-6500 } \end{aligned}$	Units
Power Dissipation	100	135	135	85	135	mW
DC Forward Current	$50[1]$	$30[2]$	$30^{[2]}$	$2011]$	$3012]$	mA
Peak Forward Current	$\begin{gathered} 1000 \\ \text { See Fig. } 5 \end{gathered}$	$\begin{gathered} 90 \\ \text { See Fig. } 10 \end{gathered}$		$\begin{gathered} 60 \\ \text { See Fig. } 15 \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ \text { See Fig. } 20 \\ \hline \end{gathered}$	mA
Reverse Voltage ($\left.I_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	5	5	5	\checkmark
Transient Forward Current ${ }^{[2]}$ ($10 \mu \mathrm{sec}$ Pulse)	2000	500	500	500	500	mA
Operating Temperature Range			-	55	-20 to +100	
Storage Temperature Range				-55 to 100	-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	$260^{\circ} \mathrm{C}$ for 3 seconds					

Notes:

1. Derate from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak current beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

Standard Red HLMP-6000/6001

Figure 2. Forward Current vs. Forward Voltage.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

High Efficiency Red HLMP-6300, Orange HLMP-Q400

V_{F} - FORWARD VOLTAGE - V
Figure 7. Forward Current vs. Forward Voltage Characteristics

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

IDC - DC CURRENT PER LED - mA
Figure 8. Relative Luminous Intensity vs. Forward Current.

PEAK - PEAK CURRENT - mA
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. AngularDisplacement.

Yellow HLMP-6400

Figure 12. Forward Current vs. Forward Voltage Characteristics

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 16. Relative Luminous Intensity vs.AngularDisplacement.

Green HLMP-6500

V_{F}-FORWARD VOLTAGE- v
Figure 17. Forward Current vs. Forward Voltage.

Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

IPEAK - PEAK CURRENT PER LED - mA
Figure 18. Relative Luminous Intensity vs. DC Forward Current

Ipeak - PEAK Current per led -ma
Figure 19. Relatiave Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 21. Relative Luminous Intensity vs. Angular Displacement.

RED	HLMP-6200 SERIES
HIGH EFFICIENCY RED	HLMP-6650 SERIES
YELLOW	HLMP-6750 SERIES
GREEN	HLMP-6850 SERIES

Features

- IMPROVED BRIGHTNESS
- AVAILABLE IN 4 BRIGHT COLORS Red
High Efficiency Red Yellow
High Performance Green
- EXCELLENT UNIFORMITY BETWEEN ELEMENTS
- END STACKABLE FOR LONGER ARRAYS
- SELECTION OF VARIOUS LENGTHS
- COMPACT SUBMINIATURE PACKAGE STYLE
- NO CROSSTALK BETWEEN ELEMENTS

Description

The HLMP-6XXX Series Arrays are comprised of several subminiature lamps molded as a single bar. Arrays are tested to assure 2.1 to 1 matching between elements and intensity binned for matching between arrays.
The HLMP-620X Series Arrays are Gallium Arsenide Phosphide red light emitting diodes. The HLMP-665X, HLMP-675X series arrays are Gallium Arsenide Phosphide on Gallium Phosphide red and yellow light emitting diodes. The HLMP-685X series arrays are Gallium Phosphide green light emitting diodes.
Each element has separately accessible leads and a diffused lens which provides a wide viewing angle and a high on/off contrast ratio. The center-to-center spacing is 2.54 mm (. 100 in .) between elements. Special lead bending is available on 2.54 mm (. 100 in .) and 5.08 mm (. 200 in.) centers.

Applications

- INDUSTRIAL CONTROLS
- POSITION INDICATORS
- OFFICE EQUIPMENT
- INSTRUMENTATION LOGIC INDICATORS
- CONSUMER PRODUCTS

Array Length	Red	High Efficiency Red	Yellow	High Performance Green
3-Element HLMP-	6203	6653	6753	6853
4-Element HLMP-	6204	6654	6754	6854
5-Element HLMP-	6205	6655	6755	6855
6-Element HLMP-	6206	6656	6756	6856
8-Element HLMP-	6208	6658	6758	6858

Package Dimensions

2mm FLAT TOP LED LAMPS

Features

- WIDE VIEWING ANGLE
- UNIFORM LIGHT OUTPUT
- MOUNTS FLUSH WITH PANEL
- ChOICE OF THREE bRIGHT COLORS
- High Efficiency Red
- Yellow
- High Performance Green
- LOW CURRENT VERSION AVAILABLE - High Efficiency Red and Yellow
- INTEGRATED RESISTOR VERSION AVAILABLE - Requires no External Current Limiter with $5 \mathrm{~V}-12 \mathrm{~V}$ Supply

Description

These rugged solid state lamps are designed for applications requiring a bright, compact source of light. Uniform light output, wide viewing angle and flat top make the lamp ideal for flush mounting on a front panel.

The red and yellow devices use Gallium Arsenide Phosphide on Gallium Phosphide light emitting diodes, the green devices use a Gallium Phosphide light emitting diode.

Axial Luminous Intensity and Viewing Angle

Color	Part Number HLMP.	Description	$I_{V}(\mathrm{mcd})$		Test Condition	201/2[1]
			Min.	Typ.		
High Efficiency Red	-1800	Tinted, Diffused	0.8	1.8	10 mA	140
	-1801	Tinted, Diffused, High Brightness	2.1	2.9	10 mA	
	- -1740	Tinted, Diffused, Low Current	0.2	0.5	2 mA	
	- -1660	Tinted, Diffused, 5 V Integrated Resistor	0.5		5 V	
	-1661	Tinted, Diffused, 12 V Integrated Resistor	0.8		12 V	
Yellow	-1819	Tinted, Diffused	0.9	1.5	10 mA	140
	-1820	Tinted, Diffused, High Brightness	1.4	2.5	10 mA	
	-1760	Tinted, Diffused, Low Current	0.2	0.4	2 mA	
	-1674	Tinted, Diffused, 5 V Integrated Resistor	0.5		5 V	
	-1675	Tinted, Diffused, 12 V Integrated Resistor	0.9		12 V	
Green	-1840	Tinted, Diffused	1.0	2.0	10 mA	140
	-1841	Tinted, Diffused, High Brightness	1.6	3.0	10 mA	
	-1687	Tinted, Diffused, 5 V Integrated Resistor	0.5		5 V	
	-1688	Tinted, Diffused, 12 V Integrated Resistor	1.0		12 V	

NOTE:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial intensity.

Package Dimensions

Absolute Maximum Ratings at $_{\mathrm{A}}=25^{\circ} \mathrm{C}$
HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

Parameter	High Efficiency Red HLMP-1800/-1801	$\begin{gathered} \text { Yellow } \\ \text { HLMP-1819/-1820 } \end{gathered}$	$\begin{gathered} \text { Green } \\ \text { HLMP-1840/-1841 } \\ \hline \end{gathered}$	Units
Peak Forward Current	90	60	90	mA
Average Forward Current 11	25	- 20	25	mA
DC Current ${ }^{21}$	30	- 20	30	mA
Power Dissipation ${ }^{3 /}$	135	85	135	mW
Reverse Voltage ($\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	- 5	5	V
Transient Forward Current ${ }^{41}$ ($10 \mu \mathrm{sec}$ Pulse)	500	500	500	mA
Operating Temperature Range	-55 to +100		-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature $(1.6 \mathrm{~mm} \mathrm{l} 0.063 \mathrm{in}$.\| from body)	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 3 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.2 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green Series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

LOW CURRENT LAMPS

Parameter	High Efficiency Red HLMP- 1740	$\begin{gathered} \text { Yellow } \\ \text { HLMP- } 1760 \end{gathered}$	Units
DC and Peak Forward Current[1]	7	7	mA
Transient Forward Current (10 msec Pulse)	500	500	mA
Power Dissipation	27	24	mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=50 \mu \mathrm{~A}$)	5.0		V
Operating and Storage Temperature Range	-55 to +100		${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature ($1.6 \mathrm{~mm} \mid 0.063 \mathrm{in}$. $]$ from body)	$260^{\circ} \mathrm{C}$ for 5 seconds		

NOTES:

1. Derate linearly from $92^{\circ} \mathrm{C}$ at $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

INTEGRATED RESISTOR LAMPS

Parameter	5 V Lamps HER/Yellow HLMP-1660 HLMP-1674	12 V Lamps HER/Yellow HLMP-1661 HL.MP-1675	5 V Lamps Green HLMP-1687	$\begin{aligned} & 12 \text { V Lamps } \\ & \text { Green } \\ & \text { HLMP-1688 } \end{aligned}$
Reverse Voltage ($\left(\begin{array}{l}\text { A }\end{array}=100 \mu \mathrm{~A}\right)$	5 V	5 V	5 V	5 V
DC Forward Voltage ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$7.5 \mathrm{~V} \mid 1]$	$15 \mathrm{~V}{ }^{[2]}$	$7.5 \mathrm{~V} \mid 1]$	15 V [2]
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$			
Lead Soldering Temperature	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.071 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 3 .
2. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.086 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 4 .

Electrical/Optical Characteristics at $^{\text {A }}=25^{\circ} \mathrm{C}$

Symbol	Parameter	High Efficiency Red			Yellow			Green			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\lambda_{\text {PEAK }}$	Peak Wavelength		635			583			565		nm	
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		40			36			28		nm	
λ_{d}	Dominant Wavelength		626			585			569		nm	Note 1
η_{V}	Luminous Efficacy		145			500			595		$\frac{\text { lumen }}{\text { /watt }}$	Note 2
V_{R}	Reverse Breakdown Voltage	5.0			5.0			5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$

NOTES:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$. Where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

Symbol	Parameter	$\begin{gathered} \text { High } \\ \text { Efficiency Red } \\ \text { HLMP-1800/-1801 } \end{gathered}$			$\begin{array}{\|c\|} \text { Yellow } \\ \text { HLMP-1819/-1820 } \\ \hline \end{array}$			GreenHLMP-1840/-1841			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
V_{F}	Forward Voltage	1.5	2.2	3.0	1.5	2.2	3.0	1.5	2.3	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\tau_{\text {s }}$	Speed of Response		90			90			500		ns	
C	Capacitance		20			15			18		pF	$V_{F}=0, f=1 \mathrm{MHz}$
$\theta \mathrm{Jc}$	Thermal Resistance		120			120			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead

LOW CURRENT LAMPS

Symbol	Parameter	High Efficiency Red HLMP-1740			Yellow HLMP-1760			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.		
V_{F}	Forward Voltage		1.8	2.2		1.9	2.7	V	2 mA
TS	Speed of Response		90			90		ns	
C	Capacitance		11			15		pF	$V_{F}=0, f=1 \mathrm{MHz}$
$\theta \mathrm{sc}$	Thermal Resistance		120			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead

INTEGRATED RESISTOR LAMPS

Symbol	Parameter	$\begin{gathered} \hline 5 \mathrm{~V} \\ \text { HLMP-1660/ } \\ -1674 /-1687 \end{gathered}$			12 VHLMP-1661/1675/-1688			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.		
IF	Forward Current		10	15		13	20	mA	At rated voltage
$\theta \mathrm{Jc}$	Thermal Resistance		90			90		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead

Figure 1. Relative Luminous Intensity vs. Angular Displacement

Figure 2. Relative Intensity vs. Wavelength

HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS
HER HLMP-1800,-1801
Yellow HLMP-1819,-1820
Green HLMP-1840,-1841

Figure 3. Maximum Tolerable Peak Current vs. Pulse Duration.
(IDC MAX as per MAX Ratings.)

V_{F} - FORWARD VOLTAGE - V

Figure 4. Forward Current vs. Forward Voltage

Figure 5. Relative Luminous Intensity vs. Forward Current

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

LOW CURRENT LAMPS

HER HLMP-1740

Yellow HLMP-1760

Figure 7. Forward Current vs. Forward Voltage

Figure 8. Relative Luminous Intensity vs. Forward Current

INTEGRATED RESISTOR LAMPS

5 Volt HLMP-1660, -1674, 1687

12 Volt HLMP-1661, -1675, -1688

Figure 9. Forward Current vs. Applied Forward Voltage. 5 Volt Devices

Figure 10. Forward Current vs. Applied Forward Voltage. 12 Volt Devices

Figure 11. Relative Luminous Intensity vs. Applied Forward Voltage. 5 Volt Devices

Figure 12. Relative Luminous Intensity vs. Applied Forward Voltage. 12 Volt Devices

2mm SQUARE FLAT TOP LED LAMPS

High Efficiency Red
Yellow Green

Features

- WIDE VIEWING ANGLE
- UNIFORM LIGHT OUTPUT
- SQUARE LIGHT EMITTING AREA
- MOUNTS FLUSH WITH PANEL
- ChOICE OF THREE bRIGHT COLORS
- High Efficiency Red
- Yellow
- High Performance Green

Description

These rugged solid state lamps are designed for applications requiring a bright, compact source of light. Uniform light output, wide viewing angle and flat top make the lamp ideal for flush mounting on a front panel.

The red and yellow devices use Gallium Arsenide Phosphide on Gallium Phosphide light emitting diodes, the green devices use a Gallium Phosphide light emitting diode.

Axial Luminous Intensity and Viewing Angle

Color	Part Number HLMP-	Description	$\mathrm{IV}_{\mathrm{V}}(\mathrm{mcd})$		Test Condition	2 $91 / 2[1]$
			Min.	Typ.		
High	-L250	Tinted, Diffused	0.8	1.8	10 mA	140
Efficiency Red	- 2251	Tinted, Diffused, High Brightness	2.1	2.9	10 mA	
Yellow	-L350	Tinted, Diffused	0.9	1.5	10 mA	140
	-L351	Tinted, Diffused, High Brightness	1.4	2.5	10 mA	
Green	-L550	Tinted, Diffused	1.0	2.0	10 mA	140
	-L551	Tinted, Diffused, High Brightness	1.6	3.0	10 mA	

NOTE:

1. $(-1 / 2$ is the off-axis angle at which the luminous intensity is half the axial intensity.

Package Dimensions

Electrical/Optical Characteristics at $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ COMMON CHARACTERISTICS

Symbol	Parameter	HighEfficiency RedL250//L251			$\begin{gathered} \text { Yellow } \\ \text { L350/351 } \end{gathered}$			$\begin{gathered} \text { Green } \\ \text { L550/551 } \end{gathered}$			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\lambda_{\text {PEAK }}$	Peak Wavelength		635			583			565		nm	
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		40			36			28		nm	
λ_{d}	Dominant Wavelength		626			585			569		nm	Note 1
η_{V}	Luminous Efficacy		145			500			595		$\frac{\text { lumen }}{\text { /watt }}$	Note 2
V_{R}	Reverse Breakdown Voltage	5.0			5.0			5.0			V	$I_{R}=100 \mu \mathrm{~A}$
V_{F}	Forward Voltage	1.5	2.2	3.0	1.5	2.2	3.0	1.5	2.3	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
${ }^{\text {T }}$ S	Speed of Response		90			90			500		ns	
C	Capacitance		11			15			18		pF	$V_{F}=0, f=1 \mathrm{MHz}$
$\theta_{\text {JC }}$	Thermal Resistance		120			120			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead

NOTES:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavlength which defines the color of the device.
2. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$. Where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings ${\text { at } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}}$

HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

Parameter	High Efficiency Red HLMP-L250/-L251	$\begin{gathered} \text { Yellow } \\ \text { HLMP-L350/-L351 } \end{gathered}$	$\begin{gathered} \text { Green } \\ \text { HLMP-L550/-L551 } \end{gathered}$	Unilis
Peak Forward Current	90	60	90	mA
Average Forward Current[1]	25	20	25	$m A$
DC Current ${ }^{(2]}$	30	20	30	mA
Power Dissipation ${ }^{3}$ \|	135	85	135	mW
Reverse Voltage (la $=100 \mu \mathrm{~A})$	5	5	5	V
Transient Forward Current ${ }^{41}$ (10 μ sec Pulse)	500	500	500	mA
Operating Temperature Range	-55 to +100		-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature $(1.6 \mathrm{~mm} 10.063$ in. \| from body)	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 3 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.2 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green Series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Luminous Intensity vs. Angular Displacement

Figure 2. Relative Intensity vs. Wavelength

HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS
HER HLMP-L250, -L251
Yellow HLMP-L350, -L351
Green HLMP-L550, -L551

Figure 3. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

Figure 5. Relative Luminous Intensity vs. Forward Current

V_{F} - FORWARD VOLTAGE - V

Figure 4. Forward Current vs. Forward Voltage

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

4mm FLAT TOP LED LAMPS

High Efficiency Red, Yellow, Green Lamps
HIGH EFFICIENCY RED HLMP-M200, -M201, -M250, -M251
YELLOW HLMP-M300, -M301, -M350, -M351
GREEN HLMP-M500, -M501, -M550, -M551

Features

- wide viewing angle
- FLAT TOP
- DIFFUSED AND NONDIFFUSED PACKAGES
- CHOICE OF BRIGHT COLORS
- High Efficiency Red
- Yellow
- High Performance Green

Description

This line of solid state lamps is designed for applications
 requiring lamps with a pleasing, flat, light emitting surface in combination with a 4 mm cylindrical shape.
The red and yellow devices use Gallium Arsenide Phosphide on Gallium Phosphide light emitting diodes, the green devices use a Gallium Phosphide light emitting diode.
Select diffused or nondiffused lamps based on the radiation pattern or appearance desired. See Figure 1 for detailed radiation pattern differences.

Axial Luminous Intensity and Viewing Angle

Color (Material)	Part Number HLMP-	Description	$\mathrm{IV}_{\mathrm{V}}(\mathrm{mcd})$		Test Condition (mA)	$201 / 2{ }^{[1]}$
			Min.	Typ.		
High Efficiency Red (GaAsP on GaP)	M200	Tinted, Diffused	3.4	5.0	20	135
	M201	Tinted, Diffused, High Brightness	5.4	7.0	20	
	M250	Tinted, Nondiffused	3.4	5.0	10	80
	M251	Tinted, Nondiffused, High Brightness	5.4	7.0	10	
Yellow (GaAsP on GaP)	M300	Tinted, Diffused	3.6	5.0	20	135
	M301	Tinted, Diffused, High Brightness	5.7	7.0	20	
	M350	Tinted, Nondiffused	3.6	5.0	10	80
	M351	Tinted, Nondiffused, High Brightness	5.7	7.0	10	
Green (GaP)	M500	Tinted, Diffused	4.2	7.0	20	135
	M501	Tinted, Diffused, High Brightness	6.7	10.0	20	
	M550	Tinted, Nondiffused	4.2	10.0	10	80
	M551	Tinted, Nondiffused, High Brightness	6.7	16.0	10	

NOTE: 1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial intensity.

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT
$1 \mathrm{~mm}\left(0.040^{\prime \prime}\right)$ DOWN THE LEADS.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ COMMON CHARACTERISTICS

Symbol	Parameter	High Efficiency Red HLMP-M2XX			$\begin{gathered} \text { Yellow } \\ \text { HLMP-M3XX } \end{gathered}$			$\begin{gathered} \text { Green } \\ \text { HLMP-M5XX } \end{gathered}$			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\lambda_{\text {PEAK }}$	Peak Wavelength		635			583			565		nm	
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		40			36			28		nm	
λ_{d}	Dominant Wavelength		626			585			569		nm	Note 1
η_{V}	Luminous Efficacy		142			500			595		lumen /watt	Note 2
$V_{\text {f }}$	Reverse Breakdown Voltage	5.0			5.0			5.0			V	$I_{R}=100 \mu \mathrm{~A}$
V_{F}	Forward Voltage	1.5	2.2	3.0	1.5	2.2	3.0	1.5	2.3	3.0	V	Clear $I_{\mathrm{F}}=10 \mathrm{~mA},$ Diffused $I_{F}=20 \mathrm{~mA}$
$r_{\text {S }}$	Speed of Response		90			90			500		ns	
C	Capacitance		11			15			18		pF	$V_{F}=0, f=1 \mathrm{MHz}$
θ_{Jc}	Thermal Resistance		120			120			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead

NOTES:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{\mathrm{V}}$. Where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

Parameter	$\begin{aligned} & \text { High Efficiency } \\ & \text { Red } \\ & \text { HLMP-M2XX } \end{aligned}$	$\begin{aligned} & \text { Yellow } \\ & \text { HLMP-M3XX } \end{aligned}$	$\begin{gathered} \text { Green } \\ \text { HLMP-M5XX } \end{gathered}$	Units
Peak Forward Current	90	60	90	mA
Average Forward Currentl1]	25	20	25	mA
DC Current12]	30	20	30	mA
Power Dissípation 3]	135	85	135	mW
Reverse Voltage ($\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	5	V
Transient Forward Current ${ }^{4} 11(10 \mu \mathrm{sec}$ Pulse)	500	500	500	mA
Operating Temperature Range	-55 to +100		-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature $(1.6 \mathrm{~mm} \quad 10.063 \mathrm{in}$. from body)	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 3 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA}{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.2 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green Series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Luminous Intensity vs. Angular Displacement

Figure 2. Relative Intensity vs. Wavelength

HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

HER HLMP-M2XX Series
Yellow HLMP-M3XX Series

Green HLMP-M5XX Series

Figure 3. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

Figure 5. Relative Luminous Intensity vs. Forward Current. Nondiffused Devices.

IDC - DC CURRENT PER LED - mA
Figure 7. Relative Luminous Intensity vs. Forward Current. Diffused Devices.

$V_{F}-$ FORWARD VOLTAGE - V

Figure 4. Forward Current vs. Forward Voltage

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current. Nondiffused Devices.

Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current. Diffused Devices.

HLMP-1000 Series
HLMP-1200 Series

Features

- WIDE VIEWING ANGLE
- SMALL SIZE T-1 DIAMETER 3.18 mm (0.125")
- IC COMPATIBLE
- RELIABLE AND RUGGED

Description

The HLMP-1000 is a series of Gallium Arsenide Phosphide Light Emitting Diodes designed for applications where space is at a premium, such as in high density arrays. The HLMP-1000 series is available in three lens configurations.

HLMP-1000 - Red Diffused lens provides excellent on-off contrast ratio, high axial luminous intensity, and wide viewing angle.

HLMP-1080 - Same as HLMP-1000, but untinted diffused to mask red color in the "off" condition.

HLMP-1071/-1201 - Untinted non-diffused plastic lens provides a point source. Useful when illuminating external lens, annunciators, or photo-detectors.

Part Number HLMP.	Package \& Lens Type	Iv (mcd) @ 20 mA		Typ. Viewing Angle $2 \oplus 1 / 2$
		Min.	Typ.	
-1000	A-Tinted Diffused	. 5	1.0	60°
-1002	A-Tinted Diffused	1.5	2.5	60°
-1080	A-Untinted Diffused	. 5	1.5	60°
-1071	A-Untinted Non-Diffused	1.0	2.0	45°
-1200	B-Untinted Non-Diffused	. 5	1.0	120°
-1201	B-Untinted Non-Diffused	1.5	2.5	120°

Figure A .

Figure \mathbf{B}.

[^6]
Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	1000 Series	Units
Power Dissipation	100	mW
DC Forward Current [1]	50	mA
Average Forward Current	50	mA
Peak Operating Forward Current	1000	mA
Reverse Voltage (IR $=100 \mu \mathrm{~A})$	5	V
Transient Forward Current $11(10 \mu \mathrm{sec}$ Pulse)	2000	mA
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Lead Solder Temperature $(1.6 \mathrm{~mm}[0.063$ inch \mid below package base $)$	$260^{\circ} \mathrm{C}$ for 5 seconds	

Note:

1. Derate linerarly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameters	Min.	Typ.	Max.	Units	Test Conditions
$\lambda_{\text {PEAK }}$	Peak Wavelength		655		nm	Measurement at Peak
λ_{d}	Dominant Wavelength		648		nm	
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		24		nm	
Ts	Speed of Response		10		ns	
C	Capacitance		100		pF	$V_{F}=0, f=1 \mathrm{MHz}$
$\theta \mathrm{Jc}$	Thermal Resistance		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	1.4	1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
V_{R}	Reverse Breakdown Voltage	5			V	$\mathrm{I}_{\mathrm{A}}=100 \mu \mathrm{~A}$

HLMP-1200/-1201

FORWARD CURRENT - VOLTAGE CHARACTERISTICS
Figure 1. Forward Current vs. Voltage Characteristic.

I_{F} - FORWARD CURRENT - mA
Figure 2. Luminous Intensity vs. Forward Current (IF).

HLMP-1000/-1002/-1080

Figure 4. Relative Luminous Intensity vs. Angular Displacement.

Figure 3. Typical Relative Luminous Intensity vs. Angular Displacement.

HLMP-1071

Figure 5. Relative Luminous Intensity vs. Angular Displacement.

HEWLETT PACKARD

$\mathrm{T}-1$ (3mm) DIFFUSED SOLID STATE LAMPS
HIGH EFFICIENCY RED - HLMP-1300 SERIES
ORANGE - HLMP-K400 SERIES
YELLOW - HLMP-1400 SERIES
HICH PERFORMANCE GREEN - HLMP-1500 SERIES

Features

- HIGH INTENSITY
- CHOICE OF 4 BRIGHT COLORS

High Efficiency Red
Orange
Yellow
High Performance Green

- POPULAR T-1 DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- WIDE VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL

Package Dimensions

NOTES:

1. ALI. DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT Imm to 0.040' 7 DOWN THE LEADS.

Description

This family of T-1 lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

Part Number HLMP.	Application	Minimum Intensity (mcd) at 10 mA	Color (Material)
1300	General Purpose	1.0	High Efficiency Red (GaAsP on GaP)
1301	General Purpose	2.0	
1302	High Ambient	3.0	
1385	Premium Lamp	6.0	
K400	General Purpose	1.0	Orange (GaAsP on GaP)
K401	High Ambient	2.0	
K402	Premium Lamp	3.0	
1400	General Purpose	1.0	Yellow (GaAsP on GaP)
1401	General Purpose	2.0	
1402	High Ambient	3.0	
1485	Premium Lamp	6.0	
1503	General Purpose	1.0	Green (GaP)
1523	High Ambient	2.6	
1585	Premium Lamp	4.0	

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device	Min.	Typ.	Max.	Units	Test Conditions
Iv	Luminous Intensity	High Efficiency Red 1300 1301 1302 1385	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ 2.5 \\ 4.0 \\ 10.0 \end{gathered}$	-	mod	$I_{F}=10 \mathrm{~mA}$
		$\begin{aligned} & \text { Orange } \\ & \text { K400 } \\ & \text { K401 } \\ & \text { K402 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$			
		$\begin{aligned} & \hline \text { Yellow } \\ & 1400 \\ & 1401 \\ & 1402 \\ & 1485 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ 3.0 \\ 4.0 \\ 10.0 \end{gathered}$			
		$\begin{aligned} & \text { Green } \\ & 1503 \\ & 1523 \\ & 1585 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.6 \\ & 4.0 \end{aligned}$	$\begin{array}{r} 2.0 \\ 4.0 \\ 6.0 \\ \hline \end{array}$			
201/2	Including Angle Between Half Luminous Intensity Points	All		60		Deg.	$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & \text { See Note } 1 \end{aligned}$
$\lambda_{\text {PEAK }}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 635 \\ & 603 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak
λd	Dominant Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 626 \\ & 608 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2
$\pm \lambda_{1 / 2}$	Spectral Line Halfwidth	High Efficiency Red Yellow Green		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
$\tau_{\text {s }}$	Speed of Response	High Efficiency Red Orange Yellow Green		$\begin{gathered} 90 \\ 280 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green		$\begin{gathered} \hline 11 \\ 4 \\ 15 \\ 18 \\ \hline \end{gathered}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
θ_{Jc}	Thermal Resistance	All		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	HER/Orange Yellow Green	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
V_{R}	Reverse Breakdown Volt,	All	5.0			V	$I_{R}=100 \mu \mathrm{~A}$
ηv	Luminous Efficacy	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 145 \\ & 262 \\ & 500 \\ & 595 \\ & \hline \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	HER/Orange	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{11}$	25	20	25	mA
DC Current ${ }^{21}$	30	20	30	mA
Power Dissipation ${ }^{(3]}$	135	85	135	mW
Reverse Voltage ($\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	5	\checkmark
Transient Forward Current ${ }^{(4)}$ (10μ sec Pulse)	500	500	500	mA
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 (Red/Orange), 10 (Yellow) or 15 (Green) to establish pulsed operating conditions.
2. For Red, Orange, and Green series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red, Orange, and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at 1.8 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak curren that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

T-1 High Efficiency Red, Orange Diffused Lamps

Figure 2. Forward Current vs. Forward Voltage Characteristics.

tp - pulse duration - $\mu \mathrm{s}$
Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings).

Ioc - dC current per Led - ma
Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

T-1 Yellow Diffused Lamps

Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

I_{f} - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity vs. Forward Current.

tpeak - PEAK CURRENT - ma
Figure 9. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-1 Green Diffused Lamps

Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure.16. Relative Luminous Intensity vs. Angular Displacement.

High Efficiency Red HLMP-1350
 Yellow HLMP-1450
 High Performance Green HLMP-1550

Features

- LOW PROFILE HEIGHT
- SMALL T-1 SIZE DIAMETER
3.18 mm (. 125 inch)
- HIGH INTENSITY
- IC COMPATIBLE
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red
Yellow
High Performance Green

Description

This family of solid state lamps is especially suited for applications where small package size is required without sacrificing luminous intensity. The HLMP-1350 is a red tinted, diffused lamp providing a wide viewing angle. The HLMP-1450 and HLMP-1550 are similar products in yellow and green respectively.

Package Dimensions

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

Part Number HLMP-	Description	IV (mod)		Test Condition mA	$\begin{gathered} 2 \Theta 1 / 2 \\ (\text { Typ. }) \\ {[1]} \end{gathered}$	$\begin{gathered} \lambda d \\ \text { (nm-Typ.) } \\ {[2]} \end{gathered}$	Color
		Min.	Typ.				
1350	Tinted, Wide Angle	1.0	2.0	10	55°	626	High Efficiency Red
1450	Tinted, Wide Angle	1.0	2.0	10	55°	585	Yellow
1550	Tinted, Wide Angle	1.0	2.0	10	55°	569	Green

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

For Maximum Ratings and Electrical/Optical Characteristics (including figures) see HLMP-1300/-1400/-1500 data sheet, publication number 5953-7735, except for Figure A shown here.

Figure A. Relative Luminous Intensity vs. Angular Displacement.

Features

- HIGH INTENSITY
- CHOICE OF 3 BRIGHT COLORS High Efficiency Red Yellow
High Performance Green
- POPULAR T-1 DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- NARROW VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- available on tape and reel

Package Dimensions

1. ALI DIMENSIONS ARE IN MILLIMETRES (INCHES),
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (.040") DOWN THE LEADS.

Description

This family of T-1 lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

	Description	Minimum Intensity (mcd) at 10 mA	Color (Material)
1320	Untinted Non-Diffused	8.6	High Efficiency Red (GaAsP on GaP)
1321	Tinted Non-Diffused	8.6	
1420	Untinted Non-Diffused	9.2	Yellow (GaAsP on GaP)
1421	Tinted Non-Diffused	6.0	
1520	Untinted Non-Diffused	4.2	Green (GaP)
1521	Tinted Non-Diffused	4.2	

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
I_{V}	Luminous Intensity	$\begin{aligned} & 1320 \\ & 1321 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		mad	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
		$\begin{aligned} & 1420 \\ & 1421 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 8)
		$\begin{aligned} & 1520 \\ & 1521 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		med	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
$2 \Theta_{1 / 2}$	Including Angle Between Half Luminous Intensity Points	All		45		Deg.	$I_{F}=10 \mathrm{~mA}$ See Note 1 (Figures 6, 11, 16, 21)
$\lambda^{\text {PeEAK }}$	Peak Wavelength	$\begin{aligned} & 132 x \\ & 142 x \\ & 152 x \end{aligned}$		$\begin{aligned} & 635 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak (Figure 1)
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	$\begin{aligned} & 132 x \\ & 142 x \\ & 152 x \end{aligned}$		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
λ_{d}	Dominant Wavelength	$\begin{aligned} & 132 x \\ & 142 x \\ & 152 x \end{aligned}$		$\begin{aligned} & 626 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2 (Figure 1)
${ }_{\text {s }}$	Speed of Response	$\begin{aligned} & 132 x \\ & 142 x \\ & 152 x \end{aligned}$		$\begin{gathered} 90 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	$\begin{aligned} & 132 x \\ & 142 x \\ & 152 X \end{aligned}$		$\begin{aligned} & 11 \\ & 15 \\ & 18 \end{aligned}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta_{\text {Jc }}$	Thermal Resistance	All		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	$\begin{aligned} & 132 X \\ & 142 X \\ & 152 X \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
V_{R}	Reverse Breakdown Voltage	All -	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\eta \mathrm{V}$	Luminous Efficacy	$\begin{aligned} & 132 x \\ & 142 x \\ & 152 x \end{aligned}$		$\begin{aligned} & 145 \\ & 500 \\ & 595 \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

Notes:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{\mathrm{e}}=I_{\mathrm{V}} / \eta_{\mathrm{V}}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Red	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{1 /}$	25	20	25	mA
DC Current ${ }^{2}$	30	20	30	mA
Power Dissipation ${ }^{31}$	135	85	135	mW
Reverse Voltage ($\mathrm{R}=100 \mu \mathrm{~A}$)	5	5	5	V
Transient Forward Current\|4] 110 $\mu \mathrm{sec}$ Pulse)	500	500	500	mA
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [$1.6 \mathrm{~mm}(0.063 \mathrm{in}$.) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

T-1 High Efficiency Red Non-Diffused

V_{F} - FORWARD VOLTAGE - V
Figure 2. Forward Current vs. Forward Voltage Characteristics

IDC - DC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current

IPEAK - PEAK CURRENT PER LED - mA
Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current

tp - PULSE DURATION - μ
Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDCMAX as per MAX Ratings)

Figure 6. Relative Luminous Intensity vs. Angular Displacement

T-1 Yellow Non-Diffused

Figure 7. Forward Current vs. Forward Voltage Characteristics

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IdcMAX as per MAX Ratings)

Figure 8. Relative Luminous Intensity vs. Forward Current

Figure 9. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current

Figure 11. Relative Luminous Intensity vs. Angular Displacement

T-1 Green Non-Diffused

Figure 12. Forward Current vs. Forward Voltage Characteristics

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDCMAX as per MAX Ratings)

I_{F} - FORWARD CURRENT - MA
Figure 13. Relative Luminous Intensity vs. Forward Current

Ipeak - peak current per led - ma
Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 16. Relative Luminous Intensity vs. Angular Displacement

Features

- LOW COST, BROAD APPLICATIONS
- LONG LIFE, SOLID STATE RELIABILITY
- LOW POWER REQUIREMENTS: 20 mA @ 1.6V
- HIGH LIGHT OUTPUT: 2.0 mcd Typical for HLMP-3000
4.0 mcd Typical for HLMP-3001
- WIDE AND NARROW VIEWING ANGLE TYPES
- RED DIFFUSED AND NON-DIFFUSED VERSIONS

Description

The HLMP-3000 series lamps are Gallium Arsenide Phosphide light emitting diodes intended for High Volume/ Low Cost applications such as indicators for appliances, smoke detectors, automobile instrument panels and many other commercial uses.
The HLMP-3000/-3001/-3002/-3003 have red diffused lenses where as the HLMP-3050 has a red non-diffused lens. These lamps can be panel mounted using mounting clip HLMP-0103. The HLMP-3000/-3001 lamps have .025" leads and the HLMP-3002/-3003/-3050 have .018" leads.

NOTES:

1. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Absolute Maximum Ratings
 at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	3000 Series	Units
Power Dissipation	100	mW
DC Forward Current (Derate linearly from $50^{\circ} \mathrm{C}$ at $\left.0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\right)$	50	mA
Average Forward Current	50	mA
Peak Operating Forward Current	1000	mA
Reverse Voltage (IA $=100 \mu \mathrm{~A})$	5	V
Transient Forward Current 1 l $(10 \mu$ sec Pulse)	2000	mA
Operating and Storage Temp- erature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Lead Solder Temperature $(1.6 \mathrm{~mm}$ 10.063 inch $)$	$260^{\circ} \mathrm{C}$ for 5 seconds	

HLMP-3000/-3001

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbal	Description	Device HLMP*	Min.	Typ.	Max.	Units	Test Conditions
Iv	Luminous Intensity	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mcd} \\ & \mathrm{mod} \\ & \mathrm{mod} \end{aligned}$	$\begin{aligned} & F=20 \mathrm{~mA} \\ & F=20 \mathrm{~mA} \\ & F=20 \mathrm{~mA} \end{aligned}$
$2 \theta_{1 / 2}$	Included Angle Between Haft Luminous Intensity Points	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$		$\begin{aligned} & 60 \\ & 60 \\ & 24 \\ & \hline \end{aligned}$		Deg.	IF $=20 \mathrm{~mA}$
λp	Peak Wavelength	$3000 / 3002$ $3001 / 3003$ 3050		$\begin{aligned} & 655 \\ & 655 \\ & 655 \\ & \hline \end{aligned}$		nm	Measurement at Peak
λ_{d}	Dominant Wavelength	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$		648		nm	
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	$3000 / 3002$ $3001 / 3003$ 3050		24		nm	
Ts	Speed of Response	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$		10		ns	
C	Capacitance	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$		100		pF	$V_{F}=0, f=1 \mathrm{MHz}$
Osc	Thermal Resistance	$\begin{gathered} 300023001 \\ 3002 / 3003 \\ 3050 \\ \hline \end{gathered}$		$\begin{array}{r} 95 \\ 120 \\ 120 \\ \hline \end{array}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \end{gathered}$	1.4	1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ (Fig. 2)
$V_{\text {f }}$	Reverse Breakdown Voltage	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$	5.0			V	$I_{R}=100 \mu \mathrm{~A}$

Figure 1. Forward Current Versus Forward Voltage

Figure 3. Relative Luminous Intensity Versus Angular Displacement.

Figure 2. Relative Luminous Intensity Versus Forward Current

Figure 4. Relative Luminous Intensity Versus Wavelength. DIFFUSED SOLID STATE LAMPS

HIGH EFFICIENCY RED - HLMP-3300 SERIES ORANGE - HLMP-D400 SERIES
YELLOW - HLMP-3400 SERIES
HIGH PERFORMANCE GREEN - HLMP-3500 SERIES

Features

- HIGH INTENSITY
- CHOICE OF 4 BRIGHT COLORS High Efficiency Red Orange
Yellow
High Performance Green
- POPULAR T- $13 / 4$ DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- WIDE VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL

Description

This family of $\mathrm{T}-13 / 4$ lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

Package Dimensions

Part Number HLMP.	Application	Minimum Intensity (mcd) at 10 mA	Color (Material)
3300	General Purpose	2.1	High Efficiency Red (GaAsP on GaP)
3301	High Ambient	4.0	
3762	Premium Lamp	8.0	
D400	General Purpose	2.1	Orange (GaAsP on GaP)
D401	High Ambient	4.0	
3400	General Purpose	2.2	Yellow (GaAsP on GaP)
3401	High Ambient	4.0	
3862	Premium Lamp	8.0	
3502	General Purpose	1.6	Green (GaP) 565 nm
3507	High Ambient	4.2	
3962	Premium Lamp	8.0	

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Device HLMP.	Min.	Typ.	Max.	Units	Test Conditions
IV	Luminous Intensity	High Efficiency Red 3300 3301 3762	$\begin{aligned} & 2.1 \\ & 4.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 15.0 \end{gathered}$		mod	$I_{F}=10 \mathrm{~mA}$
		Orange D400 D401	$\begin{aligned} & 2.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \end{aligned}$			
		$\begin{array}{\|l} \hline \text { Yellow } \\ 3400 \\ 3401 \\ 3862 \end{array}$	$\begin{aligned} & 2.2 \\ & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \\ & 12.0 \end{aligned}$			
		$\begin{aligned} & \text { Green } \\ & 3502 \\ & 3507 \\ & 3962 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 4.2 \\ & 8.0 \end{aligned}$	$\begin{gathered} 2.4 \\ 5.2 \\ 11.0 \end{gathered}$			
$2 \Theta_{1 / 2}$	Including Angle Between Half Luminous Intensity Points	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$		Deg.	$I_{F}=10 \mathrm{~mA}$ $\text { See Note } 1$
$\lambda_{\text {PEAK }}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 635 \\ & 612 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	HER/Orange Yellow Green		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
λ_{d}	Dominant Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 626 \\ & 608 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2
${ }^{\text {T }}$ S	Speed of Response	High Efficiency Red Orange Yellow Green		$\begin{gathered} 90 \\ 280 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green		$\begin{gathered} 11 \\ 4 \\ 15 \\ 18 \end{gathered}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta_{\text {Jc }}$	Thermal Resistance	All		140		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	HER/Orange Yellow Green	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	V	$I_{F}=10 \mathrm{~mA}$
V_{R}	Reverse Breakdown Voltage	All	5.0			V	$I_{R}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 145 \\ & 262 \\ & 500 \\ & 595 \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

NOTES:

1. $(\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	HER/Orange	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{[1]}$	25	20	25	mA
DC Current ${ }^{21}$	30	20	30	mA
Power Dissipation ${ }^{[3]}$	\% 135	85 -	W. 135 .	mW
Reverse Voltage $\left(I_{R}=100 \mu \mathrm{~A}\right)$	5	5 ,	5	V
Transient Forward Current ${ }^{41}$ (10 μ sec Pulse)	500	500	500	mA
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm 0.063 in .) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 (Red/Orange), 10 (Yellow) or 15 (Green) to establish pulsed operating conditions.
2. For Red, Orange, and Green series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
For Red, Orange, and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at
3. $18 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at 1.6 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

T-11/4 High Efficiency Red, Orange Diffused Lamps

V_{F} - FORWARD VOLTAGE - V
Figure 2. Forward Current vs. Forward Voltage Characteristics.

t_{p} - PULSE DURATION - $\mu \mathrm{s}$
Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings

IdC - DC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current.

ipeak - peak current per led - ma
Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

T-13/4 Yellow Diffused Lamps

Figure 7. Forward Current vs. Forward Voltage Characteristics.

I_{F} - FORWARD CURRENT - MA
Figure 8. Relative Luminous Intensity vs. Forward Current.

$I_{\text {PEAK }}$ - PEAK CURRENT - mA
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-13/4 Green Diffused Lamps

VF - FORWARD VOLTAGE - V
Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 15. Maximum Tolerable Peak Current vs. Puise Duration. (IDC MAX as per MAX Ratings)

Ipeak - Peak current per led -ma
Figure 13. Relative Luminous Intensity vs. DC Forward Current.

I peak - peak current per led -ma
Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

T-1 3/4 (5mm) LOW PROFILE SOLID STATE LAMPS

Features

- HIGH INTENSITY
- LOW PROFILE: 5.8mm (0.23 in) NOMINAL
- T-13/4 DIAMETER PACKAGE
- DIFFUSED AND NON-DIFFUSED TYPES
- GENERAL PURPOSE LEADS
- IC COMPATIBLE/LOW CURRENT REQUIREMENTS
- RELIABLE AND RUGGED

Description

The HLMP-3200 Series are Gallium Arsenide Phosphide Red Light Emitting Diodes with a red diffused lens.
The HLMP-3350 Series are Gallium Arsenide Phosphide on Gallium Phosphide High Efficiency Red Light Emitting Diodes.

The HLMP-3450 Series are Gallium Arsenide Phosphide on Gallium Phosphide Yellow Light Emitting Diodes.

The HLMP-3550 Series are Gallium Phosphide Green Light Emitting Diodes.
The Low Profile T-13/4 package provides space savings and is excellent for backlighting applications.

Package Dimensions

Number HLMP-	Application	Minimum Intensity $@ 10 \mathrm{~mA}$ (mcd)	Lens
3200	Indicator General Purpose	1.0	Tinted Diffused Wide Angle Red
3201	Indicator High Brightness	2.0	
3350	Indicator General Purpose	2.0	Tinted Diffused Wide Angle HER
3351	Indicator High Brightness	5.0	
3365	General Purpose Point Source	7.0	Tinted Non-diffused Narrow Angle HER
3366	Indicator High Brightness	12.0	
3450	Indicator General Purpose	2.5	Tinted Diffused Wide Angle Yellow
3451	Indicator High Brightness	6.0	
3465	General Purpose Point Source	6.0	Tinted Non-diffused Narrow Angle Yellow
3201	Indicator High Brightness	12.0	
3553	Indicator General Purpose	1.6	Tinted Diffused Wide Angle Green
3554	Indicator High Brightness	6.7	
3567	General Purpose Point Source	4.2	Tinted Non-diffused Narrow Angle Green
3568	Indicator High Brightness	10.6	

RED HLMP-3200 SERIES

Electrical Specifications at $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
Iv	Axial Luminous Intensity	3200	1.0	2.0		mod	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ (Figure 3)
		3201	2.0	4.0			
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points			60		deg.	Note 1 (Figure 6)
$\lambda_{\text {PEAK }}$	Peak Wavelength			655		nm	Measurement at Peak (Fig. 1)
λ_{d}	Dominant Wavelength			648		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth			24		nm	
Ts	Speed of Response			10		ns	
C	Capacitance			100		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta \mathrm{Jc}$	Thermal Resistance			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage		1.4	1.6	2.0	V	$\mathrm{IF}=20 \mathrm{~mA}$ (Fig. 2)
V_{R}	Reverse Breakdown Voltage		5.0			V	$I_{R}=100 \mu \mathrm{~A}$
η	Luminous Efficacy			65		$1 \mathrm{~m} / \mathrm{W}$	Note 3

Notes: 1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. . 3 . Radiant Intensity I_{e}, in watts/steradian may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Figure 2. Forward Current versus Forward Voltage.

I_{F} - FORWARD CURRENT - mA
Figure 3. Relative Luminous Intensity versus Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

Figure 5. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 6. Relative Luminous Intensity versus Angular Displacement.

GREEN HLMP-3550 SERIES
Electrical Specifications at $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP.	Min.	Typ.	Max.	Units	Test Conditions
Iv	Axial Luminous Intensity	$\begin{aligned} & 3553 \\ & 3554 \\ & 3567 \\ & 3568 \end{aligned}$	$\begin{gathered} \hline 1.6 \\ 6.7 \\ 4.2 \\ 10.6 \end{gathered}$	3.2 10.0 7.0 15.0	极	mod	$\left.I_{F}=10 \mathrm{~mA} \text { (Fig. } 18\right)$
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points	$\begin{array}{\|l\|} \hline 3553 \\ 3554 \\ 3567 \\ 3568 \end{array}$		$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 40 \end{aligned}$		Deg.	Note 1 (Figure 21)
$\lambda_{\text {PEAK }}$	Peak Wavelength			565		nm	Measurement at Peak (Fig. 1)
λ_{d}	Dominant Wavelength			569		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth			28		nm	
${ }_{\text {s }}$	Speed of Response			500		ns	
C	Capacitance			18		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta \mathrm{Jc}$	Thermal Resistance			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage		1.5	2.3	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 17)
V_{R}	Reverse Breakdown Voltage		5.0			V	$\mathrm{I}_{\mathrm{A}}=100 \mu \mathrm{~A}$
ηv	Luminous Efficacy			595		Im/W	Note 3

Notes: $1 . \theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3 . Radiant Intensity I_{e}, in watts/steradian may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

V_{F} - FORWARD VOLTAGE - V
Figure 17. Forward Current versus Forward Voltage.

t_{p} - PULSE DURATION - $\mu \mathrm{s}$
Figure 20. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX ratings).

Ipeak - peak current per led - ma
Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

Figure 21. Relative Luminous Intensity versus Angular Displacement.

HIGH EFFICIENCY RED HLMP-3350 SERIES

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
Iv	Axial Luminous Intensity	$\begin{aligned} & 3350 \\ & 3351 \\ & 3365 \\ & 3366 \end{aligned}$	$\begin{gathered} 2.0 \\ 5.0 \\ 7.0 \\ 12.0 \end{gathered}$	$\begin{gathered} 3.5 \\ 7.0 \\ 10.0 \\ 18.0 \end{gathered}$		mod	$\mathrm{IF}=10 \mathrm{~mA}$ (Fig. 8)
201/2	Included Angle Between Halt Luminous Intensity Points	$\begin{aligned} & 3350 \\ & 3351 \\ & 3365 \\ & 3366 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & 45 \\ & 45 \end{aligned}$		Deg.	Note 1 (Fig. 11)
λp	Peak Wavelength			635		nm	Measurement at Peak (Fig. 1)
λ_{d}	Dominant Wavelength			626		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth			40		nm	
Ts	Speed of Response			90		ns	
C	Capacitance			16		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
θ Jc	Thermal Resistance			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage		1.5	2.2	3.0	V	$\mathrm{IF}=10 \mathrm{~mA}$ (Fig. 7)
V_{R}	Reverse Breakdown Voltage		5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
7 v	Luminous Efficacy			145		Im/W	Note 3

Notes: 1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the $C I E$ chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity Ie, in watts/steradian may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

V_{F} - FORWARD VOLTAGE - V
Figure 7. Forward Current versus Forward Voltage.

IF - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity versus Forward Current.

Ipeak - PEAK CURRENT PER LED - mA
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

t_{p} - PULSE DURATION $-\mu_{s}$
Figure 10. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 11. Relative Luminous Intensity versus Angular Displacement.

YELLOW HLMP-3450 SERIES Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP.	Min.	Typ.	Max.	Units	Test Conditions
IV	Axial Luminous Intensity	$\begin{aligned} & 3450 \\ & 3451 \\ & 3465 \\ & 3466 \end{aligned}$	$\begin{gathered} \hline 2.5 \\ 6.0 \\ 6.0 \\ 12.0 \end{gathered}$	$\begin{gathered} 4.0 \\ 10.0 \\ 12.0 \\ 18.0 \end{gathered}$		mod	$I_{F}=10 \mathrm{~mA} \text { (Fig. } 13 \text {) }$
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points	$\begin{aligned} & 3450 \\ & 3451 \\ & 3465 \\ & 3466 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & 45 \\ & 45 \end{aligned}$		Deg.	Note 1 (Fig. 16)
λp	Peak Wavelength			583		nm	Measurement at Peak (Fig. 1)
λd	Dominant Wavelength			585		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth			36		nm	
τ_{s}	Speed of Response			90		ns	
C	Capacitance			18		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta \mathrm{Jc}$	Thermal Resistance			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage		1.5	2.2	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 12)
V_{R}	Reverse Breakdown Voltage		5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\eta \mathrm{V}$	Luminous Efficacy			500		$\operatorname{lm} / \mathrm{W}$	Note 3

Notes: 1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the $C I E$ chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity I_{e}, in watts/steradian may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Figure 12. Forward Current versus Forward Voltage.

I_{F} - FORWARD CURRENT - mA
Figure 13. Relative Luminous Intensity versus Forward Current.

t_{p} - PULSE DURATION $-\mu \mathrm{s}$
Figure 15. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings).

$I_{\text {PEAK }}$ - PEAK CURRENT - mA
Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

Figure 16. Relative Luminous Intensity versus Angular Displacement

GREEN HLMP-3550 SERIES Electrical Specifications at $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
IV	Axial Luminous Intensity	$\begin{aligned} & 3553 \\ & 3554 \\ & 3567 \\ & 3568 \end{aligned}$	$\begin{gathered} 1.6 \\ 6.7 \\ 4.2 \\ 10.6 \end{gathered}$	$\begin{gathered} 3.2 \\ 10.0 \\ 7.0 \\ 15.0 \end{gathered}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 18)
201/2	Included Angle Between Half Luminous Intensity Points	$\begin{aligned} & 3553 \\ & 3554 \\ & 3567 \\ & 3568 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 40 \end{aligned}$		Deg.	Note 1 (Figure 21)
λ_{p}	Peak Wavelength			565		nm	Measurement at Peak (Fig. 1)
λ_{d}	Dominant Wavelength			569		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth			28		nm	
ts	Speed of Response			500		ns	
C	Capacitance			18		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta \mathrm{Jc}$	Thermal Resistance			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage		1.6	2.3	3.0	\checkmark	$I_{F}=10 \mathrm{~mA}$ (Fig. 17)
V_{R}	Reverse Breakdown Voltage		5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η^{2}	Luminous Efficacy			595		Im / W	Note 3

Notes: $1 . \theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the $C I E$ chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity I_{e}, in watts/steradian may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Figure 17. Forward Current versus Forward Voltage.

I_{F} - FORWARD CURRENT - MA
Figure 18. Relative Luminous Intensity versus Forward Current.

Ipeak - PEAK CURRENT PER LED - mA
Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

t_{p} - PULSE DURATION - $\mu \mathrm{s}$
Figure 20. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX ratings).

Figure 21. Relative Luminous Intensity versus Angular Displacement.

T-1 3/4 (5 mm) HIGH INTENSITY SOLID STATE LAMPS
 HIGH EFFICIENCY RED • HLMP-331X SERIES
 YELLOW • HLMP-341X SERIES HIGH PERFORMANCE GREEN • HLMP-351X SERIES

Features

- HIGH INTENSITY
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red
Yellow
High Performance Green

- POPULAR T-1 3/4 DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- NARROW VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL

Package Dimensions

[^7]
Description

This family of T-1 3/4 lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

Part Number HLMP-	Description	Minimum Intensity (mcd) at 10 mA	Color (Material)
3315	Illuminator/Point Source	12	High Efficiency Red (GaAsP on GaP)
3316	Illuminator/High Brightness	20	Yellow (GaAsP on GaP)
3415	Illuminator/Point Source	10	Green (GaP)
3416	Illuminator/High Brightness	20	(Illuminator/Point Source
3517	6.7	(lluminator/High Brightness	10.6

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP.	Min.	Typ.	Max.	Units	Test Conditions
V	Luminous intensity	$\begin{aligned} & 3315 \\ & 3316 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 30.0 \end{aligned}$		mod	$\mathrm{IF}=10 \mathrm{~mA}$ (Figure 3)
		$\begin{aligned} & 3415 \\ & 3416 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 30.0 \end{aligned}$		med	$1 \mathrm{~F}=10 \mathrm{~mA}$ (Figure 8
		$\begin{aligned} & 3517 \\ & 3519 \end{aligned}$	$\begin{gathered} 6.7 \\ 10.6 \end{gathered}$	$\begin{aligned} & 10.0 \\ & 25.0 \end{aligned}$		med	$\mathrm{IF}=10 \mathrm{~mA} \mathrm{(Figure} 31$
$2(1 / 2$	Including Angle Between Half Luminous Intensity Points	$\begin{aligned} & 3315 \\ & 3316 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		Deg.	$\begin{aligned} & I F=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { Figure } 6 \end{aligned}$
		$\begin{aligned} & 3415 \\ & 3416 \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		Deg.	$\begin{aligned} & I F=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 11) } \end{aligned}$
		$\begin{aligned} & 3517 \\ & 3519 \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$		Deg.	$\begin{aligned} & I f=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure } 16) \end{aligned}$
入PEAK	Peak Wavelength	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \\ & \hline \end{aligned}$		$\begin{array}{\|l} 635 \\ 583 \\ 565 \\ \hline \end{array}$		nm	Measurement at Peak (Figure 1)
+ $1 / 2$	Spectral Line Halfwidth	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
λ_{d}	Dominant Wavelength	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline 626 \\ 585 \\ 569 \\ \hline \end{array}$		nm	See Note 2 (Figure 1)
's	Speed of Response	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$		$\begin{gathered} 90 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \\ & \hline \end{aligned}$		$\begin{aligned} & 11 \\ & 15 \\ & 18 \\ & \hline \end{aligned}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
${ }^{0}{ }^{\text {d }}$	Thermal Resistance	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	V	$\begin{aligned} & i F=10 \mathrm{~mA}(\text { Figure } 2) \\ & I F=10 \mathrm{~mA}(\text { Figure } 7) \\ & I F=10 \mathrm{~mA}(\text { Figure 12) } \\ & \hline \end{aligned}$
VR	Reverse Breakdown Voll.	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
ηV	Luminous Efficacy	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$		$\begin{aligned} & 145 \\ & 500 \\ & 595 \end{aligned}$		lumens Watt	See Note 3

NOTES: 1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.
Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	331X Series	341X Series	351X Series	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{1 /}$	25	20	25	mA
DC Current ${ }^{2}$	30	20	30	mA
Power Dissipation ${ }^{3 /}$	135	85	135	mW
Reverse Voltage ($\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	5	V
Transient Forward Current ${ }^{4}$: 110 $\mu \mathrm{sec}$ Pulse)	500	500	500	mA .
Operating Temperature Range Storage Temperature Range	-55 to +100	-55 to +100	$\frac{-20 \text { to }+100}{-55 \text { to }+100}$	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature \| $1.6 \mathrm{~mm}(0.063 \mathrm{in}$) from body\|	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA}^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

High Efficiency Red HLMP-331X Series

Figure 2. Forward Current vs. Forward Voltage Characteristics

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)

Figure 3. Relative Luminous Intensity vs. DC Forward Current

Figure 4. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak LED Current

Yellow HLMP-341X Series

Figure 7. Forward Current vs. Forward Voltage Characteristics

t_{p} - PULSE DURATION - $-\mu_{s}$
Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)

I_{F} - FORWARD CURRENT - MA
Figure 8. Relative Luminous Intensity vs. Forward Current

IPEAK - PEAK CURRENT - mA
Figure 9. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current

Figure 11. Relative Luminous Intensity vs. Angular Displacement

Green HLMP-351X Series

V_{F} - FORWARO VOLTAGE - V
Figure 12. Forward Current vs. Forward Voltage Characteristics

t_{p} - PULSE DURATION $-\mu s$
Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)

If - DC FORWARD CURRENT-mA
Figure 13. Relative Luminous Intensity vs. DC Forward Current

PPEAK - PEAK CURRENT PER LED - mA
Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 16. Relative Lumiṇous Intensity vs. Angular Displacement. T-1 3/4 Lamp

HEWLETT PACKARD

T-2 (6 mm) Incandescent Alternative LED Lamps

High Efficiency Red HLMP-A200 Yellow HLMP-A300 High Performance Green HLMP-A500

Features

- FOUR LED CHIPS PER LAMP
- WIDE RADIATION PATTERN $2 \theta_{1 / 2}=120^{\circ}$ typ.
- HIGH LIGHT OUTPUT
- NON-DIFFUSED
- 3 COLORS
- POWER SAVING DESIGN

Advantages Over Incandescent Lamps

- MTBF IN EXCESS OF 5,000,000 HOURS
- SOCKETS NOT NEEDED
- MECHANICALLY RUGGED PACKAGE
- LOW POWER CONSUMPTION

Description

The HLMP-A200/-A300/-A500 series of solid state lamps incorporates four LED chips in a single package to give bright uniform backlighting illumination to larger areas than is possible using conventional LED lamps. They provide a low power, long-life alternative to filtered incandescent lamps of similar size.

The devices have three leads: an anode, a cathode, and a center heat sink which allows operation at elevated temperatures. These non-diffused lamps are designed for backlighting applications where uniform illumination of a translucent surface is required. Typical applications are illuminated switch keycaps and backlighted front panel annunciator functions.

Axial Luminous Intensity and Viewing Angle

Color	Part Number HLMP-	Description	$\mathrm{IV}_{\mathrm{v}}(\mathrm{mcd})$		$\begin{gathered} \phi_{V}(\mathrm{~m} / \mathrm{m}) \\ \text { Typ.[1] } \end{gathered}$	$\begin{gathered} 2 \theta_{1 / 2} \\ \text { Typ.[2] } \end{gathered}$	Test Conditions
			Min.	Typ.			
High Efficiency Red	A200	Backlighting Lamp General Purpose	22	40	180	114°	$\begin{aligned} & 50 \mathrm{~mA} \\ & 25^{\circ} \mathrm{C} \end{aligned}$
Yellow	A300	Backlighting Lamp General Purpose	23	40	160	114°	$\begin{aligned} & 50 \mathrm{~mA} \\ & 25^{\circ} \mathrm{C} \end{aligned}$
High Performance Green	A500	Backlighting Lamp General Purpose	27	40	225	124°	$\begin{aligned} & 50 \mathrm{~mA} \\ & 25^{\circ} \mathrm{C} \end{aligned}$

Notes:

1. ϕ_{V} is the total luminous flux produced by the device, measured in millilumens.
2. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the peak intensity.

Package Dimensions

1. ALL. DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0.040 ${ }^{\prime \prime}$) DOWN THE LEADS.

Internal Circuit Diagram

THE CENTER HEAT SINK LEAD IS REQUIRED FOR EFFECTIVE HEAT DISSIPATION. NO EXTERNAL GROUND OR OTHER ELECTRICAL CONNECTION SHOULD BE MADE TO THE HEAT SINK LEAD.

Electrical/Optical Characteristics ${ }_{\text {at } T_{A}=25^{\circ} \mathrm{C}}$

COMMON CHARACTERISTICS

Symbol	Parameter	HighEfficiency Red			Yellow			Green			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\lambda_{\text {PEAK }}$	Peak Wavelength		635			583			565		nm	
λ_{d}	Dominant Wavelength ${ }^{1]}$		626			585			569		nm	
η_{V}	Luminous Efficacy ${ }^{2}$ 2]		145			500			595		Iumen /watt	
$V_{\text {R }}$	Reverse Breakdown Voltage	8.0			8.0			8.0			V	$I_{R}=100 \mu \mathrm{~A}$
V_{F}	Forward Voltage ${ }^{(3)}$	3.7	4.2	4.8	3.7	4.3	4.8	4.1	4.6	5.2	V	$\mathrm{I}_{F}=50 \mathrm{~mA}$
Ts	Speed of Response		90			90			500		ns	
C	Capacitance		11			15			18		pF	$\begin{aligned} & V_{F}=0, \\ & f=1 \mathrm{MHZ} \end{aligned}$
$\theta_{J C}$	Thermal Resistance ${ }^{[4]}$		60			60			60		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Pins (Total Package)

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$. Where I_{V} is the luminous intensity in candelas and n_{V} is the luminous efficacy in lumens/watt.
3. Designers should be aware that selection of current limiting resistors becomes critical in 5 volt applications.
4. The value $R_{\theta J-P I N}=60^{\circ} \mathrm{C} / \mathrm{W}$ is the combined thermal resistance, LED junction-to-pin, when both the heat sink and cathode leads are used for heat dissipation. For effective heat dissipation, it is recommended that both the heat sink and cathode leads have equivalent thermal resistance paths to ambient.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

high efficiency red, yellow and green lamps

Parameter	$\begin{aligned} & \text { High Efficiency } \\ & \text { Red } \\ & \text { HLMP-A200 } \end{aligned}$	Yellow HLMP-A300	$\begin{aligned} & \text { Green } \\ & \text { HLMP-A500 } \end{aligned}$	Units
Peak Forward Current	180	150	180	mA
Average Forward Current ${ }^{[1]}$	50	- $\quad 50$	- 50	mA
DC Current ${ }^{[2]}$	60 =	- 50	60	mA
Power Dissipation ${ }^{2]}$	370	300	410	mW
Reverse Voltage ($\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	- ${ }^{2}$	8	- 8	\checkmark
Transient Forward Current ${ }^{[3]}$ ($10 \mu \mathrm{sec}$ Pulse)	750	- 750	750	mA
Operating Temperature Range ${ }^{[2]}$	- 20 to +95	-20 to +95	-20 to +95	${ }^{\text {C }}$
Storage Temperature Range	-55 to +100	-55 to +100	- -55 to +100	
Lead Soldering Temperature (1.6 mm [0.063 in] from body)	$260^{\circ} \mathrm{C}$ for 5 seconds			

Notes:

1. See Figure 2 to establish pulsed operating conditions.
2. Operation at high ambient temperatures will require current (power) derating per Figure 3.
3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

Figure 3. Maximum Allowable DC Current per Lamp vs. Ambient Temperature. Deratings are shown for Three Thermal Resistance Values, LED Junction to Ambient ($\mathrm{R}_{\theta \mathrm{JA}}$).

Figure 4. Typical Forward Current vs. Forward Voltage

Figure 5. Relative Luminous Intensity vs. Forward Current

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 7. Far-Field Relative Luminous Intensity vs. Angular Displacement.

Operational Considerations for the HLMP-A200/-A300/-A500 Series of LED Lamps

The HLMP-A200/-A300/-A500 series of LED lamps was designed to combine the light-output of filtered incandescent lamps with the reliability and power savings of LEDs. These LEDs present a number of advantages over incandescent lamps in a wide variety of backlighting applications:

Long Life - When operated within data sheet conditions, LED lamps exhibit MTBFs over 5,000,000 hours. Miniature incandescent lamps typically have MTBFs varying from 500 to 25,000 hours. Due to the superior reliability of LEDs, they may be permanently mounted on circuit boards, eliminating sockets and their associated costs.
Rugged Package - Since all the internal components of an LED lamp are permanently encapsulated in a plastic package, they are extremely resistant to shock, vibration, and breakage.
Low Power - In many applications, these LED lamps provide the same light output as a filtered incandescent lamp, yet consume 50% to 75% less power. They therefore generate less heat, and require smaller power supplies.

ELECTRICAL CONSIDERATIONS

INTERNAL CIRCUIT - The HLMP-A200, -A300, and -A500 devices contain four LED chips wired in a "series-parallel" electrical configuration. There are two pairs of parallelwired chips, with the two pairs wired in series. See Figure 8.

This electrical arrangement provides compatibility with low voltage systems, yet still allows operation at relatively low currents. The outer two leads of the lamp serve as the anode and cathode. The cathode lead also serves as a heat sink for two of the LED chips with the center lead providing a heat sink for the other two LED chips.
CAUTION: DO NOT connect the heat sink lead to any external electrical circuitry or ground. This could either turn off the LED chips or expose them to excessive drive current.

Figure 8. Internal Circuit Dlagram

The typical forward voltage values, either scaled from Figure 4 or calculated from the model listed below, can be used to calculate the current limiting resistor value and typical power dissipation. Expected minimum and maximum forward voltages may be calculated from the following worst case models. These models can be used to calculate the maximum power dissipation as well as minimum and maximum forward currents for a given electrical design.

$$
\begin{aligned}
& V_{F} M I N=V_{O} M I N+I_{F}\left(R_{S} M I N\right) \\
& V_{F} T Y P=V_{O} T Y P+I_{F}\left(R_{S} T Y P\right) \\
& V_{F} M A X=V_{O} M A X+I_{F}\left(R_{S} M A X\right) \\
& \text { For: } I_{F} \geq 20 \mathrm{~mA}
\end{aligned}
$$

Figure 9. Electrical Model
The expected values for V_{O} and R_{S} are listed below in Table 1.

EXAMPLE - What is the expected minimum and maximum forward voltage for the HLMP-A200 operated at 60 mA ?

$$
\begin{aligned}
\mathrm{V}_{\mathrm{F}} \mathrm{MIN} & =3.4+(.060)(6) \\
& =3.76 \\
\mathrm{~V}_{\mathrm{F}} \mathrm{MAX} & =3.8+(.060)(20) \\
& =5.00
\end{aligned}
$$

DRIVING THE LAMP - Like other LED devices, this lamp is current driven, and drive circuits must be designed to prevent excessive current from flowing through the device.
The lamp has been designed for DC operation. Pulsed operation at average currents in the range of $40-60 \mathrm{~mA}$ is allowable but will not increase the light output significantly as compared to the same DC current.

CONSTANT-CURRENT DRIVERS - The use of transistors or certain driver ICs which have constant-current outputs to power the lamp is recommended. Drive configurations such as these provide high immunity to power-supply voltage variation and easy interface to logic circuits. Examples of such drive circuits can be found in HewlettPackard's Fiber Optics Applications Manual (HPBK-2000), Section 2.4.
RESISTIVE CURRENT-LIMITING - The simplest method of driving the lamp is to operate it with a series resistor from a fixed voltage supply. Since this drive circuit is most susceptible to variations in both the power supply voltage and the LED's forward voltage, a worst-case design example is shown.
EXAMPLE - What is the resistor value needed to run the HLMP-A200 at the maximum DC current at $45^{\circ} \mathrm{C}$ using a $6.3 \pm 5 \%$ DC supply?

Figure 10. Circuit to Operate the Lamp at 6.3 V DC

Referring to Figure 3, in a typical mounting scheme with $\theta_{\mathrm{JA}}=163^{\circ} \mathrm{C} / \mathrm{W}$, the maximum DC current is 60 mA at $45^{\circ} \mathrm{C}$.

$$
R=\frac{V_{S}-V_{O}}{I_{F}}-R_{S}
$$

Where $\mathrm{V}_{\mathrm{S}}=$ power supply voltage
$V_{O}=$ device voltage intercept from model
$I_{F}=$ desired forward current
$R_{S}=$ device internal resistance from model

$$
\begin{aligned}
R & =\frac{(6.3)(1.05)-3.4}{(.060)}-6 \\
& =48 \text { ohms } \\
& =51 \text { ohms (next higher standard } 5 \% \text { value) }
\end{aligned}
$$

Resistor power dissipation:

$$
\begin{aligned}
P & =I^{2} R \\
& =(.060)^{2}(51) \\
& =.184 \text { Watt } \\
& =1 / 4 \text { Watt resistor (next higher standard value) }
\end{aligned}
$$

Using this $51 \pm 5 \%$ ohm resistor and a $6.3 \mathrm{~V} \pm 5 \%$ power supply, what is the expected minimum, typical, and maximum forward current?

$$
I_{F}=\frac{\left(V_{S}-V_{O}\right)}{\left(R+R_{S}\right)}
$$

Where $\mathrm{V}_{\mathrm{S}}=$ power supply voltage
$\mathrm{V}_{\mathrm{O}}=$ device voltage intercept from model
$\mathrm{R}=$ external current limiting resistor
$R_{S}=$ device internal resistance from model

$$
\begin{aligned}
\mathrm{I}_{\mathrm{F}} \mathrm{MIN} & =\frac{(6.3)(.95)-3.8}{(51)(1.05)+20} \\
& =21 \mathrm{~mA}
\end{aligned}
$$

$$
I_{F} T Y P=\frac{6.3-3.6}{51+12}
$$

$$
=43 \mathrm{~mA}
$$

$$
\mathrm{I}_{\mathrm{F}} \text { MAX }=\frac{(6.3)(1.05)-3.4}{(51)(.95)+6}
$$

$$
=59 \mathrm{~mA}
$$

Table 1. Expected typical and worst case values of V_{O} and $\mathrm{R}_{\mathbf{S}}$

Color	P/N HLMP	$\mathbf{V}_{\text {OMIN }}$	R $_{\text {S MIN }}$	$\mathbf{V}_{\text {OTYP }}$	$\mathbf{R}_{\mathbf{S}}$ TYP	V $_{\text {M MAX }}$	$\mathbf{R}_{\text {S MAX }}$
HER	A200	3.4 V	6 ohms	3.6 V	12 ohms	3.8 V	20 ohms
Yellow	A300	3.4 V	6 ohms	3.8 V	10 ohms	3.9 V	18 ohms
Green	A500	3.7 V	8 ohms	3.8 V	16 ohms	4.1 V	22 ohms

MECHANICAL \& HANDLING CONSIDERATIONS

LEAD CONSTRUCTION - Heavy copper leads were designed into this series of LED lamps to effectively dissipate the heat generated/by the four LED chips. Because the leads are so rigid, care must be taken that the leads are NOT bent in such a way that cracking of the encapsulating epoxy occurs.
LEAD PLATING - Lamp leads in this series are silver plated. In order to prevent lead tarnishing, finger cots should be worn whenever handling the devices.
SOLDERING - These LED lamps can withstand wave soldering conditions as outlined in Application Note 1027, "Soldering LED Components." Solder temperatures of $260^{\circ} \mathrm{C}$ for up to 5 seconds will not damage these devices.

THERMAL

Although LED lamps are extremely reliable within the normal operating temperature range, problems may be encountered at very high temperatures. Specifically, catastrophic failures can occur when the LED junction temperature exceeds $110^{\circ} \mathrm{C}$. Several guidelines have been incorporated into this data sheet to prevent such operation.
MOUNTING THE LAMP - The Cathode and Heat Sink (center) leads provide the thermal paths for heat generated at the LED junctions to leave the package. Approximately $1 / 2$ the total package power is dissipated by each of these two leads. For best results, all three leads should be soldered to a printed-circuit board. It is recommended that both the heat sink and cathode leads be soldered to small $\left(3 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}\right)$ metalized areas on the board in the vicinity of the lamp, particularly if a number of lamps are placed close together.
In most cases, forced air circulation around the lamp is not necessary. It is important that the natural convection of air around the device is not obstructed. Efficient heat sinking of this sort will allow operation of the lamp at higher ambient temperatures without exceeding the $110^{\circ} \mathrm{C}$ maximum LED junction temperature.
DETERMINING THE LED JUNCTION TEMPERATURE The LED junction temperature is difficult to measure direct-

Figure 11. Use of Metalized Printed Circuit Board to Heat Sink the Lamp
ly, but it can be computed if the lamp's lead temperature and its thermal resistance (junction to pin) are known.
EXAMPLE - Is it safe to operate a HLMP-A200 device at 50 mA forward current if both the cathode and heat sink lead temperatures are $65^{\circ} \mathrm{C}$?

Maximum power dissipated by the lamp:

$$
\begin{aligned}
P & =\left(I_{F}\right)\left(V_{F}\right) \\
& =(0.050 \mathrm{~A})(4.8 \mathrm{~V}) \\
& =0.240 \mathrm{~W}
\end{aligned}
$$

Temperature difference between the LED junction and the leads:

$$
\begin{aligned}
\Delta T & =\left(\theta_{\mathrm{J}-\mathrm{PIN}}\right)(\mathrm{P}) \\
& =\left(60^{\circ} \mathrm{C} / \mathrm{W}\right)(0.240 \mathrm{~W}) \\
& =14^{\circ} \mathrm{C}
\end{aligned}
$$

Maximum LED junction temperature:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{g}} & =\mathrm{T}_{\text {PIN }}+\Delta \mathrm{T} \\
& =65^{\circ} \mathrm{C}+14^{\circ} \mathrm{C} \\
& =79^{\circ} \mathrm{C} \\
& <110^{\circ} \mathrm{C}, \text { therefore safe }
\end{aligned}
$$

In situations where the worst-case lead temperature is unavailable, θ_{JA} (the thermal resistance, junction to ambient) may be used to determine the LED junction temperature directly from the ambient temperature. This thermal resistance will be highly dependent on the physical configuration of the equipment in which the lamp is mounted.
Figure 3 shows the maximum allowable drive current vs. ambient temperature for several different values of θ_{JA}. The worst case value of $250^{\circ} \mathrm{C} /$ Watt roughly corresponds to mounting the LED in a very small, enclosed housing without efficient heat sinking (such as in a pushbutton switch). The typical value of $163^{\circ} \mathrm{C} / \mathrm{W}$ might be encountered if the LED is mounted with other components on a PC board in a naturally-convected piece of equipment. The best-case value of $100^{\circ} \mathrm{C} / \mathrm{W}$ may be achieved if the lamp is soldered to a PC board with large metal "lands" connected to the leads and moderate airflow around the device. As shown in this figure, the full-power operating temperature range is extended as the thermal resistance is lowered.

OPTICAL

The radiation pattern for this series of lamps (shown in Figure 7) has been specifically tailored for even illumination of flat translucent surfaces. In order to prevent objectionable "hot-spots" on the surface to be illuminated, the luminous intensity is designed to be greater off-axis than on-axis. At more than 50° off-axis, the light output rapidly drops off so as to minimize light loss out the sides and back of the lamp.
The relative positioning of the lamp and the surface to be illuminated will need to be optimized for the designer's particular application. Placing the lamp in close proximity to the legend results in bright illumination of a small area; pulling the lamp farther back illuminates larger areas with lower brightness.
It may be desirable to mount reflective white baffles around the lamp to redirect some of the light emerging at wide angles onto the legend. Such baffles are also effective at eliminating "cross-talk", a situation in which light from one lamp partially illuminates an adjacent legend. Care should be taken to insure that such baffles do not completely obstruct air flow around the device.

$2 \mathrm{~mm} \times 5 \mathrm{~mm}$ RECTANGULAR LAMPS

Features

- RECTANGULAR LIGHT EMITTING SURFACE
- EXCELLENT FOR FLUSH MOUNTING ON PANELS
- CHOICE OF 4 BRIGHT COLORS
- LONG LIFE: SOLID STATE RELIABILITY
- EXCELLENT UNIFORMITY OF LIGHT OUTPUT

Description

The HLMP-S200, -S300, -S400, -S500 are epoxy encapsulated lamps in rectangular packages which are easily stacked in arrays or used for discreet front panel indicators. Contrast and light uniformity are enhanced by a special epoxy diffusion and tinting process.
In addition to the standard high efficiency red, yellow, and high performance green colors, this product comes in Orange for greater flexibility in human factors design.

Package Dimensions

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
IV	Luminous Intensity	High Efficiency Red S200 S201 Orange S400 \$401 Yellow S300 S301 Green S500 S501	2.1 3.4 2.1 3.4 1.4 2.2 2.6 4.1	3.5 3.5 4.8 2.1 3.5 4.0 5.8		mod	$I_{F}=20 \mathrm{~mA}$
2@1/2	Included Angle Between Half Luminous Intensity Points	All		110		Deg.	$I_{F}=20 \mathrm{~mA}$ See Note 1
$\lambda_{\text {PEAK }}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 635 \\ & 612 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak
λ_{d}	Dominant Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 626 \\ & 603 \\ & 585 \\ & 569 \end{aligned}$		$n m$	See Note 2
τ_{S}	Speed of Response	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 350 \\ & 350 \\ & 390 \\ & 870 \end{aligned}$		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green		$\begin{gathered} 11 \\ 4 \\ 15 \\ 18 \end{gathered}$		pF	$V_{F}=0 ; \mathfrak{f}=1 \mathrm{MHz}$
$\theta_{J C}$	Thermal Resistance	All		120		${ }^{\circ} \mathrm{C}$ W	Junction to Cathode Lead at Seating Plane
V_{F}	Forward Voltage	HER/Orange Yellow Green	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	V	$I_{F}=20 \mathrm{~mA}$
$V_{\text {R }}$	Reverse Breakdown Volt.	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
HV	Luminous Efficacy	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 145 \\ & 262 \\ & 500 \\ & 595 \\ & \hline \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=I_{\mathrm{V}} / \eta_{\mathrm{V}}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	$\begin{gathered} \text { High Efficiency Red/ } \\ \text { Orange } \end{gathered}$	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current[1] \%	25	20	25	mA
DC Current[${ }^{\text {[] }}$	30	20	30	-mA
Power Dissipation ${ }^{[3]}$	135	85	135	mW
Transient Forward Current ${ }^{[4]}$ ($10 \mu \mathrm{sec}$ Pulse)	500			mA
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in .) below seating plane]	$260^{\circ} \mathrm{C}$ for 5 seconds			

Notes:

1. See Figure 5 to establish pulsed operating conditions.
2. For Red, Orange, and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.34 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red, Orange, and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wire bond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red, Orange, Yellow, and Green Rectangular Lamps

V_{F} - FORWARD VOLTAGE - V

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Icc - DC CURRENT PER LED - mA

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

IPEAK - PEAK CURRENT PER LED - mA

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

RECTANGULAR SOLID STATE LAMPS

HIGH EFFICIENCY RED HLMP-0300/0301
 YELLOW
 HLMP-0400/0401
 HIGH PERFORMANCE GREEN HLMP-0503/0504

Features

- RECTANGULAR LIGHT EMITTING SURFACE
- FLAT HIGH STERANCE EMITTING SURFACE
- STACKABLE ON 2.54 MM (0.100 INCH) CENTERS
- IDEAL AS FLUSH MOUNTED PANEL INDICATORS
- IDEAL FOR BACKLIGHTING LEGENDS
- LONG LIFE: SOLID STATE.RELIABILITY
- CHOICE OF 3 BRIGHT COLORS

HIGH EFFICIENCY RED
YELLOW
HIGH PERFORMANCE GREEN

- IC COMPATIBLE/LOW CURRENT REQUIREMENTS

Description

The HLMP-030X, -040X, -050X are solid state lamps encapsulated in a radial lead rectangular epoxy package. They utilize a tinted, diffused epoxy to provide high on-off contrast and a flat high intensity emitting surface. Borderless package design allows creation of uninterrupted light emitting areas.

The HLMP-0300 and -0301 have a high efficiency red GaAsP on GaP LED chip in a light red epoxy package. This

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIAAETRES (INCHES).
2. AN EPOXY MENISCUS AAY EXTEND ABOUT $1 \mathrm{~mm}\left(0.040^{\prime \prime}\right)$ DOWN THE LEADS
3. THERE IS A MAXIMUM 1° TAPER FROM BASE TO TOP OF LAMP.

lamp's efficiency is comparable to that of the GaP red, but extends to higher current levels.
The HLMP-0400 and -0401 provide a yellow GaAsP on GaP LED chip in a yellow epoxy package.
The HLMP-0503 and -0504 provide a green GaP LED chip in a green epoxy package.

Axial Luminous Intensity

Color	Part Number	$\begin{aligned} & I_{V} \text { (mcd)@ } \\ & 20 \mathrm{mADC} \end{aligned}$	
		Min.	Typ.
High Efficiency Red	HLMP-0300	1.0	2.5
	HLMP-0301	2.5	5.0
Yellow	HLMP-0400	1.5	2.5
	HLMP-0401	3.0	5.0
High Performance Green	HLMP-0503	1.5	2.5
	HLMP-0504	3.0	5.0

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	HLMP-0300/-0301	HLMP-0400/0401	HLMP-0503/-0504	Units
Peak Forward Current	90	60	90	mA
Average Forward Current 11	25	20	25	mA
DC Currenti21	30	20	30	mA
Power Dissipation[3]	135	85	135	mW
Reverse Voltage ($\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	5	V
Transient Forward Currenti4) (10 $\mu \mathrm{s}$ Puise)	500	500	500	mA
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommedned that the device be operated at peak current beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	HLMP-0300/-0301			HLMP-0400/-0401			HLMP-0503/-0504			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$2 \Theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points		100			100			100		Deg.	Note 1, Figure 6.
λp	Peak Wavelength		635			583			565		nm	Measurement at Peak
λ_{d}	Dominant Wavelength		626			585			569		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		40			36			28		nm	
\%s	Speed of Response		90			90			500		ns	
c	Capacitance		16			18			18		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
0.96	Thermal Resistance		120			120			120		${ }^{\circ} \mathrm{CIW}$	Junction to Cathode Lead
V_{F}	Forward Voltage	1.6	2.2	3.0	1.6	2.2	3.0	1.6	2.3	3.0	V	$I_{F}=20 \mathrm{~mA}$ Figure 2.
V_{R}	Reverse Breakdown Voltage	5.0			5.0			5.0			v	$\mathrm{f}=100 \mu \mathrm{~A}$
nv	Luminous Efficacy		145			500			595		1m/W	Note 3

NOTES:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $l_{e}=I_{v} / \eta v$, where I_{V} is the luminous intensity in candelas and ηv is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.
High Efficiency Red, Yellow and Green Rectangular Lamps

Figure 2. Forward Current vs. Forward Voltage.

IDC - DC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

ULTRA-BRIGHT LED LAMP SERIES

T-1 3/4 HLMP-3750,-3850,-3950
T-1 3/4 LOW PROFILE HLMP-3390,-3490,-3590
T-1 HLMP-1340,-1440,-1540

Features

- IMPROVED BRIGHTNESS
- IMPROVED COLOR PERFORMANCE
- AVAILABLE IN POPULAR T-1 and T-1 3/4 PACKAGES
- NEW STURDY LEADS
- IC COMPATIBLE/LOW CURRENT CAPABILITY
- RELIABLE AND RUGGED
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red
High Brightness Yellow
High Performance Green

Description

These clear, non-diffused lamps out perform conventional LED lamps. By utilizing new higher intensity material, we achieve superior product performance.
The HLMP-3750/-3390/-1340 Series Lamps are Gallium Arsenide Phosphide on Gallium Phosphide red light emitting diodes. The HLMP-3850/-3490/-1440 Series are Gallium Arsenide Phosphide on Gallium Phosphide yellow light emitting diodes. The HLMP-3950/-3590/-1540 Series lamps are Gallium Phosphide green light emitting diodes.

Applications

- LIGHTED SWITCHES
- BACKLIGHTING FRONT PANELS
- LIGHT PIPE SOURCES
- KEYBOARD INDICATORS

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

Part Number HLMP-	Package Description	Color	$\begin{gathered} \text { IV (mcd) } \\ @ 20 \mathrm{mADC} \end{gathered}$		$2 \Leftrightarrow 1 / 2$ Note 1.	Package Outline
			Min.	Typ.		
3750	T-1 3/4	HER	80	125	24°	A
3850		Yellow	80	140	24°	A
3950		Green	80	120	24°	A
3390	T-1 3/4 Low Profile	HER	35	55	32°	B
3490		Yellow	35	55	32°	B
3590		Green	35	55	32°	B
1340	T-1	HER	24	35	45°	C
1440		Yellow	24	35	45°	C
1540		Green	24	35	45°	C

NOTE:

1. $\Theta 1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

Package Dimensions

NOTES:

1. All dimensions are in millimeters (inches)
2. An epoxy meniscus may extend about $1 \mathrm{~mm}\left(0.40^{\prime \prime}\right)$ down the leads.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Red	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current11	25	20	25	mA
DC Currenti2]	30	20	30	mA
Power Dissipation ${ }^{3 /}$	135	85	135	mW
Transient Forward Current ${ }^{\|4\|}$ ($10 \mu \mathrm{sec}$ pulse)	500	500	500	mA
Reverse Voltage ($\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	5	V
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [$1.6 \mathrm{~mm}(0.063 \mathrm{in}$.) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 2 to establisin pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbal	Description	T-13/4	$\begin{gathered} \text { T-1 } 3 / 4 \\ \text { Low } \\ \text { Dome } \end{gathered}$	T-1	Min.	Typ.	Max.	Units	Test Conditions
$\lambda_{\text {PEAK }}$	Peak Wavelength	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 635 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at peak
λd	Dominant Wavelength	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 626 \\ & 585 \\ & 569 \end{aligned}$		nm	Note 1
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
Ts	Speed of Response	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \\ & \hline \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{gathered} 90 \\ 90 \\ 500 \\ \hline \end{gathered}$		ns	
0	Capacitance	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \\ & \hline \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \\ & \hline \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \\ & \hline \end{aligned}$		$\begin{aligned} & 11 \\ & 15 \\ & 18 \\ & \hline \end{aligned}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
Auc	Thermal Resistance	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{gathered} 95 \\ 95 \\ 95 \\ 120 \\ 120 \\ 120 \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \\ & \hline \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	2.2 2.2 2.3	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	V	$I_{F}=20 \mathrm{~mA}$ (Figure 3)
$V_{\text {R }}$	Reverse Breakdown Voltage	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$	5.0			V	$\mathrm{IF}=100 \mu \mathrm{~A}$
η	Luminous Efficacy	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 145 \\ & 500 \\ & 595 \end{aligned}$		$\frac{\text { lumens }}{\text { watt }}$	Note 2

NOTES:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, l_{e}, in watts/steradian, may be found from the equation $l_{e}=l_{v} / \eta_{v}$, where l_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Red, Yellow and Green

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

IdC - DC CURRENT PER LED - mA
Figure 4. Relative Luminous Intensity vs. Forward Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Lamp.

Figure 3. Forward Current vs. Forward Voltage.

Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 7. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Low Profile Lamp.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. T-1 Lamp.

LOW CURRENT LED LAMP SERIES

$$
\begin{aligned}
\text { T-1 } 3 / 4(5 \mathrm{~mm}) & \text { HLMP-4700, }-4719,-4740 \\
\text { T-1 (3mm) } & \text { HLMP-1700, }-1719,-1790 \\
\text { SUBMINIATURE } & \text { HLMP-7000, }-7019,-7040
\end{aligned}
$$

Features

- LOW POWER
- HIGH EFFICIENCY
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- WIDE VIEWING ANGLE
- CHOICE OF PACKAGE STYLES
- CHOICE OF COLORS

Applications

- LOW POWER DC CIRCUITS

- TELECOMMUNICATIONS INDICATORS
- PORTABLE EQUIPMENT
- KEYBOARD INDICATORS

Description

These tinted diffused LED lamps were designed and optimized specifically for low DC current operation. Luminous intensity and forward voltage are tested at 2 mA to assure consistent brightness at TTL output current levels.

LOW CURRENT LAMP SELECTION GUIDE

Size	Color		
	Red HLMP	Yellow HLMP $_{m}$	Green HLMP
T-13/4	4700	4719	4740
T-1	1700	1719	1790
Subminiature	7000	7019	7040

Package Dimensions

HLMP-7000, *7019, -7040

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES INCHESI.
2. AN EPOXY MINISCUS MAV EXTEND ABOUT
$1 \mathrm{~mm}\left(0.040^{\prime \prime}\right)$ DOWN THE LEADS.

AXIAL LUMINOUS INTENSITY AND VIEWING ANGLE @ $25^{\circ} \mathrm{C}$

Part Number HLMP.	Package Description	Color	$\begin{gathered} \mathrm{I}_{\mathrm{V}}(\mathrm{mcd}) \\ @ 2 \mathrm{mADC} \end{gathered}$		$2 \rightarrow 1 / 2^{[1]}$	Package Outline
			Min.	Typ.		
-4700	T-13/4	Red	1.2	2.0	50°	A
-4719	Tinted Diffused	Yellow	1.2	1.8		
-4740	-	Green	1.2	1.8		
-1700	T-1	Red	1.0	1.8	- 50°	B
-1719	Tinted	Yellow	1.0	1.6		
-1790	Diffused	Green	1.0	1.6		
-7000	Subminiature	Red	0.4	0.8	90°	C
-7019	Tinted Diffused	Yellow	0.4	0.6		
-7040		Green	0.4	0.6		

Notes:

1. $\Theta 1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	T-1 3/4	T-1	Subminiature	Min.	Typ.	Max.	Units	Test Condition
V_{F}	Forward Voltage	4700	1700	7000		1.8	2.2	V	2 mA
		4719	1719	7019		1.9	2.7		
		4740	1790	7040		1.8	2.2		
V_{R}	Reverse Breakdown Voltage	4700	1700	7000	5.0			V	$\mathrm{IR}=50 \mu \mathrm{~A}$
		4719	1719	7019	5.0				
		4740	1790	7040	5.0				
$\lambda 0$	Dominant Wavelength	4700	1700	7000		626		nm	Note 1
		4719	1719	7019		585			
		4740	1790	7040		569			
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	4700	1700	7000		40		nm	
		4719	1719	7019		36			
		4740	1790	7040		28			
TS	Speed of Response	4700	1700	7000		90		ns	
		4719	1719	7019		90			
		4740	1790	7040		500			
c	Capacitance	4700	1700	7000		11		pF	$\begin{aligned} & V_{F}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$
		4719	1719	7019		15			
		4740	1790	7040		18			
Guc	Thermal Resistance	4700	1700	7000		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode lead
		4719	1719	7019		120			
		4740	1790	7040		120			
$\lambda_{\text {PEAK }}$	Peak Wavelength	4700	1700	7000		635		$n \mathrm{~m}$	Measurement at peak
		4719	1719	7019		583			
		4740	1790	7040		565			
η	Luminous Efficacy	4700	1700	7000		145		Lumens	Note 2
		4719	1719	7019		500		Watt	
		4740	1790	7040		595			

Notes:
1.. The dominant wavelength, λ_{D}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $l_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings

Parameter	Maximum Rating		Units
Power Dissipation (Derate linearly from $92^{\circ} \mathrm{C}$ at $1.0 \mathrm{~mA} /^{\circ} \mathrm{C}$)	Red Yellow Green	$\begin{aligned} & 24 \\ & 36 \\ & 24 \end{aligned}$	mW
DC and Peak Forward Current	7		mA
Transient Forward Current ($10 \mu \mathrm{sec}$ pulse) 111	500		mA
Reverse Voltage ($\left.\mathrm{f}_{\mathrm{R}}=50 \mu \mathrm{~A}\right)$	5.0		V
Operating Temperature Range	Red/Yellow Green	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \\ & -20^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \end{aligned}$	
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$		
Lead Soldering Temperature $1.6 \mathrm{~mm}\|0.063 \mathrm{in}\|$ from body)	$260^{\circ} \mathrm{C}$ for 5 Seconds (T-1, T-1 3/4) $260^{\circ} \mathrm{C}$ for 3 Seconds (Subminiature)		

Notes:

1. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

Figure 2. Forward Current vs. Forward Voltage

Figure 3. Relative Luminous Intensity vs. Forward Current

Figure 4. Relative Luminous Intensity vs. Angular Displacement for T-1 3/4 Lamp

Figure 5. Relative Luminous Intensity vs. Angular Displacement for T-1 Lamp

Figure 6. Relative Luminous Intensity vs. Angular Displacement for Subminiature Lamp

Features

- INTEGRAL CURRENT LIMITING RESISTOR
- TTL COMPATIBLE Requires no External Current Limiter with 5 Volt/12 Volt Supply
- COST EFFECTIVE

Saves Space and Resistor Cost

- WIDE VIEWING ANGLE
- AVAILABLE IN ALL COLORS Red, High Efficiency Red, Yellow and High Performance Green in T-1 and T-1 3/4 Packages

Description

The 5 volt and 12 volt series lamps contain an integral current limiting resistor in series with the LED. This allows the lamp to be driven from a 5 volt/ 12 volt source without an external current limiter. The red LEDs are made from GaAsP on a GaAs substrate. The High Efficiency Red and Yellow devices use GaAsP on a GaP substrate.

The green devices use GaP on a GaP substrate. The diffused lamps provide a wide off-axis viewing angle.
The T-1 3/4 lamps are provided with sturdy leads suitable for wire wrap applications. The T-1 3/4 lamps may be front panel mounted by using the HLMP-0103 clip and ring.

	$\begin{gathered} \text { P/N } \\ \text { HLMP- } \end{gathered}$	Package	Operating Voltage	Iv med		$2 \Theta 1 / 2[1]$	Package Outline
Color				Min.	Typ.		
Red	1100	T-1 Tinted Diffused	5	0.8	1.5	60°	A
	1120	T-1 Untinted Diffused	5	0.8	1.5	60°	A
	3105	T-1 3/4 Tinted Diffused	5	1.0	2.0	60°	B
	3112		12	1.0	2.0	60°	B
High Efficiency Red	1600	T-1 Tinted Diffused	5	1.5	4.0		
	1601		12			60°	A
	3600	T-1 3/4 Tinted Diffused	5				
	3601		12			60°	B
Yellow	1620	T-1 Tinted Diffused	5	1.5	4.0	60°	A
	1621		12			60	A
	3650	T-1 3/4 Tinted Diffused	5				
	3651		12			60°	B
High Performance Green	1640	T-1 Tinted Diffused	5	1.5	4.0		
	1641		12			60°	A
	3680	T-1 3/4 Tinted Diffused	5			60°	B
	3681		12			60°	B

Notes:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\underline{\square}$	Red/HER/Vellow 5 Volt Lamps	Red/HER/Yellow 12 Volt Lamps	Green 5 Volt Lamps	Green 12 Volt Lamps
DC Forward Voltage ($T_{\text {A }}=25^{\circ} \mathrm{C}$)	7.5 Volts ${ }^{121}$	15 Volts ${ }^{3 \mid}$	7.5 Volts ${ }^{\text {2 }}$ \|	15 Volts ${ }^{3 \mid}{ }^{\text {a }}$
Reverse Voltage ($\left.\mathrm{R}^{\prime}=100 \mu \mathrm{~A}\right)$	5 Volts	5 Volts	5 Volts	5 Volts
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$=-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Soldering Temperature	$260^{\circ} \mathrm{C}$ for 5 seconds			

Notes:
2. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.071 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 3 .
3. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.086 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 4.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Red			High Efficiency Red			Yellow			Green			Units	Test Conditions
		Min.	Typ.	Max.											
$\lambda_{\text {PEAK }}$	Peak Wavelength		655			635	\%		583			565		nm	
λ_{d}	Dominant Wavelength		648			626			585			569		nm	Note 4
$\lambda^{\prime} / 1 / 2$	Spectral Line Halfwidth		24			40			36			28		nm	
Ojc	Thermal Resistance		120			120			120			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead (Note 6)
(0) 6	Thermal Resistance		95			95			95			95		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead (Note 7)
${ }_{\text {if }}$	Forward Current 12 V Devices		13	20		13	20	\%	13	20		13	20	mA	$V_{F}=12 \mathrm{~V}$
${ }_{\text {if }}$	Forward Current 5 V Devices		13	20		10	15		10	15		12	15	mA	$V_{F}=5 \mathrm{~V}$
7 V	Luminous Efficacy		65			145			500			595		lumen /watt	Note 5
$V_{\text {A }}$	Reverse Breakdown Voltage	5.0			5.0			5.0			5.0			V	$I_{R}=100 \mu \mathrm{~A}$

Notes:
4. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
5. Radiant intensity, l_{e}, in watts/steradian, may be found from the
equation $\mathrm{I}_{\mathrm{e}}=\mathrm{Iv} / \eta \mathrm{v}$. Where Iv is the luminous intensity in candelas and $\eta \mathrm{v}$ is the luminous efficacy in lumens/watt.
6. For Figure A package type.
7. For Figure B package type.

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES IINCHESI. 2. AN EPOXY MENISCUS MAY EXTEND ABOUT Imm (.040*) DOWN THE LEADS'

Figure A. T-1 Package

Figure 1. Forward Current vs. Applied Forward Voltage. 5 Volt Devices

Figure 3. Maximum Allowed Applied Forward Voltage vs. Ambient Temperature $\mathrm{R} \theta_{\mathrm{JA}}=175^{\circ} \mathrm{C} / \mathrm{W} .5$ Volt Devices

Figure 5. Relative Luminous Intensity vs. Angular Displacement for T-1 Package

Figure 2. Forward Current vs. Applied Forward Voltage. 12 Volt Devices

Figure 4. Maximum Allowed Applied Forward Voltage vs. Ambient Temperature R $\theta_{\mathrm{JA}}=175^{\circ} \mathrm{C} / \mathrm{W} .12$ Volt Devices

Figure 6. Relative Luminous Intensity vs. Angular Displacement for T-1 3/4 Package

Figure 7. Relative Luminous Intensity vs. Applied Forward Voltage. 5 Volt Devices

Figure 8. Relative Luminous Intensity vs. Applied Forward Voltage. 12 Volt Devices

SUBMINIATURE RESISTOR LAMPS 5 VOLT 4 MA AND 5 VOLT 10 mA SERIES

Features

- INTEGRAL CURRENT LIMITING RESISTOR
- TTL AND LSTTL COMPATIBLE
- REQUIRES NO EXTERNAL RESISTOR WITH 5 VOLT SUPPLY
- SPACE SAVING SUBMINIATURE PACKAGE
- WIDE VIEWING ANGLE
- CHOICE OF CURRENT LEVEL, 4 mA or 10 mA
- AVAILABLE IN HIGH EFFICIENCY RED, YELLOW, AND GREEN
- IDEALLY SUITED FOR PORTABLE OR SPACE CONSTRAINED APPLICATIONS

Description

The subminiature resistor lamps contain an integral current limiting resistor in series with the LED. This allows the lamp to be driven from a 5 volt source without an external current limiter. The high efficiency red and yellow devices use GaAsP on a GaP substrate. The green devices use GaP on a GaP substrate. The tinted, diffused epoxy lens provides high on-off contrast and a wide viewing angle. The follow-
ing special configurations are available on request:

1. Surface Mount Gull Wing Bend - Refer to the Surface Mount Gull Wing Data Sheet.
2. Tape and Reel Packaging
3. Special Lead Bending on $2.54 \mathrm{~mm}(0.100 \mathrm{in}$.$) and 5.08$ $\mathrm{mm}(0.200)$ in Centers

Device Selection Guide

	High Efficiency Red	Yellow	Green
5 Volt, 10 mA	HLMP-6600	HLMP-6700	HLMP-6800
5 Volt, 4 mA	HLMP-6620	HLMP-6720	HLMP-6820

Package Dimensions

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	HLMP-6600/6620 $6700 / 6720$ High Efficiency Red/Yellow	HLMP-6800/6820 Green
DC Forward Voltage	6 Volts	6 Volts
Reverse Voltage (IA $=100 \mu \mathrm{~A})$	5 Volts	5 Volts
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C} \mathrm{to} 100^{\circ} \mathrm{C}$	
Lead Soldering Temperature 1.6 mm to.063 in.) From Body	$260^{\circ} \mathrm{C}$ for 3 Seconds	

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbal	Parameter	High Elficiency Red						Yellow						Grisen						Units	Test Conditions
		HLMP. 6600			HLMP-6620			HLMP. 6700			HLMP-6720			HLMP.6800			HLMP. 6820				
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	тур.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
IV	Axial Luminous Intensity	1.3	5.0		08	2.0		1.4	5.0		0.9	2.0		1.6	5.0		0.8	2.0		med	$V_{F}=5 \text { volts }$ See Figure 2
$2 \mathrm{CH} / 2$	Included Angle Between Hall Luminous Intensity Points		90			90			90			90			90			90		Deg	Note 1 (See Figure 3
גPEAK	Peak Wavelength		635			635			583			583			565			565		nm	
${ }^{\text {A }}$ D	Dominant Wavelength		626			626			585			585			569			569		nm	Note 2
$\lambda^{\prime} \lambda_{1 / 2}$	Spectral Line Halfwidth		40			40			36			36			28			28		nm	
${ }^{4} \mathrm{H} \mathrm{J}$	Thermal Resistance		120			120			120			120			120			120		${ }^{\circ} \mathrm{CIW}$	Junction to Cathode Lead
I_{F}	Forward Current		9.6	13		3.5	5		9.6	13		3.5	5		9.6	13		3.5	5	mA	$V_{F}=5 \text { volts }$ (See Figure :)
$V_{\text {R }}$	Reverse Breakdown Vollage	50			5.0			5.0			5.0			5.0			5.0			V	$\mathrm{IR}=100 \mu \mathrm{~A}$
nv	Luminous Efficacy		145			145			500			500			595			595		1m/w	Note 3

Notes:

1. $2 \Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity in watts/steradion, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{Iv}_{\mathrm{v}} / \eta \mathrm{v}$, where Iv is the luminous intensity in candelas and $\eta \mathrm{v}$ is the luminous efficacy in lumens/watt.

Figure 1. Forward Current vs. Forward Voltage.

Figure 2. Relative Luminous Intensity vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs.
Angular Displacement.

HIGH EFFICIENCY RED/T-1 3/4 (5 mm) HIGH PERFORMANCE GREEN BICOLOR SOLID STATE LAMP

Features:

- TWO COLOR (RED, GREEN) OPERATION
- POPULAR T-1 3/4 PACKAGE
- 3 LEADS WITH ONE COMMON CATHODE
- DIFFUSED, WIDE VISIBILITY LENS
- TTL COMPATIBLE

Description

The T-1 3/4 HLMP-4000 lamp is a three leaded bicolor light source designed for a variety of applications where dual state illumination is required in the same package. There are two LED chips, high efficiency red (HER) and high performance green (Green), mounted on a central common cathode lead for maximum on-axis viewability. Colors between HER and Green can be generated by independently pulse width modulating the LED chips.

Absolute Maximum Ratings
 at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	High Efficlency Red/Green	Units
Peak Forward Current	90	mA
Average Forward Current ${ }^{[1]}$ (Total)	25	mA
DC Current ${ }^{4]}$ (Total)	30	mA
Power Dissipation ${ }^{[3,5]}$ (Total)	135	mW
Operating Temperature Range	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100	
Reverse Voltage ($I_{R}=100 \mu \mathrm{~A}$)	5	V
Transient Forward Current ${ }^{[6]}$ ($10 \mu \mathrm{sec}$ Pulse)	500	mA
Lead Soldering Temperature [1.6 mm (0.063 in.) below seating plane]	$260^{\circ} \mathrm{C}$ for 5 seconds	

Notes:

1. See Figure 5 to establish pulsed operating conditions.
2. The combined simultaneous current must not exceed the maximum.
3. The combined simultaneous power must not exceed the maximum.
4. For HER and Green derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
5. For HER and Green derate linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
6. The transient peak current is the maximum non-recurring current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES),
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm $\left(0.040^{\prime \prime}\right)$ DOWN THE LEADS.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameters	Red			Green			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.		
IV	Luminous Intensity	2.1	5		4.2	8		mcd	$I_{F}=10 \mathrm{~mA}$
$\lambda_{\text {PEAK }}$	Peak Wavelength		635			565		nm	
λ_{d}	Dominant Wavelength		626			569			See Note 1
TS	Speed of Response		90			500		ns	
C	Capacitance		11			18		pF	$V_{F}=0, \mathrm{f}=1 \mathrm{MHz}$
V_{F}	Forward Voltage		2.1	2.5		2.3	2.7	V	$I_{F}=10 \mathrm{~mA}$
V_{B}	Reverse Breakdown Voltage	5			5			V	$\mathrm{I}_{\mathrm{A}}=100 \mu \mathrm{~A}$
$\theta_{\text {JC }}$	Thermal Resistance		120		120			${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
$2 \theta 1 / 2$	Included Angle Between Half Luminous Intensity Points, Both Axes		65		65			Deg.	$\begin{aligned} & I_{\mathrm{F}}=10 \mathrm{~mA} \\ & \text { See Note } 2 \end{aligned}$
$\eta \mathrm{V}$	Luminous Efficacy		145			595		Lumen/ Watt	See Note 3

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. Radiant intensity, I_{e}, in watts steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength

V_{F} - FORWARD VOLTAGE - V
Figure 2. Forward Current vs. Forward Voltage Characteristics.

Ipeak - PEAK CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

940 nm HIGH RADIANT EMITTERS

Features

- NONSATURATING, HIGH RADIANT FLUX OUTPUT

- EfFICIENT AT LOW CURRENTS, COMBINED WITH HIGH CURRENT CAPABIEITY
- THREE PACKAGE STYLES
- operating temperature range $-55^{\circ} \mathrm{C}$ TO $+100^{\circ} \mathrm{C}$
- MEDIUM-WIDE RADIATION PATTERNS
- RADIATED SPECTRUM MATCHES RESPONSE OF SILICON PHOTODETECTORS

Description

The HEMT-3301 and HEMT-1001 are infrared emitters, using a mesa structure GaAs on GaAs infrared diode, IRED, optimized for maximum quantum efficiency at a peak wavelength of 940 nm . The HEMT-3301 and HEMT-1001 emitters are untinted, undiffused plastic packages with medium-wide radiation patterns. These medium-wide and wide radiation patterns eliminate the beam focusing problems that are encountered with emitters that have narrow radiation patterns. Applications include optical transducers, optical part counters, smoke detectors, covert identification, paper tape and card readers and optical encoders.

Package Dimensions

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Power Dissipation 150 mW DC Forward Current 100 mA
(Derate as specified in Figure 6)
Peak Forward Surrent
1000 mA
(Time average current as determined from Figure 7)
IRED Junction Temperature $110^{\circ} \mathrm{C}$ Operating and Storage Temperature $\ldots-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Lead Soldering Temperature $260^{\circ} \mathrm{C}$ for 5 seconds (1.6 mm (0.063 in .) from emitter body)

NOTES:

1. ALL DIAENSIONS ARE IN MILLIMETRES (INCHES)
2. AN EPOXY MENISCUS MAY EXTEND ABOUT
$1 \mathrm{~mm}\left(0.040^{\prime}\right)$ DOWN THE L.EADS.

HEMT-1001

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Units	Test Conditions	Fig.
I_{e}	Radiant Intensity HEMT-3301 HEMT-1001	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$		$\mathrm{mW} / \mathrm{sr}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	4,5
$\Delta l_{e} / \Delta T$	Temperature Coetficient for Radiant Intensity[1]		-0.58		$\% /{ }^{\circ} \mathrm{C}$	Measured at $\lambda_{\text {PEAK }}$	1
$\Delta \lambda / \Delta T$	Temperature Coefficient for Peak Wavelength ${ }^{[2]}$		0.3		$n \mathrm{~m} /{ }^{\circ} \mathrm{C}$	Measured at $\lambda_{\text {PEAK }}$	1
$\lambda_{\text {PEAK }}$	Peak Wavelength		940		nm	Measured at $\lambda_{\text {PEAK }}$	1
$2 \theta^{1 / 2}$	Half Intensity ${ }^{[3]}$ Total Angle HEMT-3301 HEMT-1001		$\begin{aligned} & 50 \\ & 60 \end{aligned}$		deg.	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$
t	Output Rise Time (10% to 90%)		1700		ns	$I_{\text {PEAK }}=20 \mathrm{~mA}$	
$\mathrm{tf}^{\text {f }}$	Output Fall Time (90\% to 10\%)		700		ns	$I_{\text {PEAK }}=20 \mathrm{~mA}$	
C	Capacitance		30		pf	$V_{F}=0 ; f=1 \mathrm{MHz}$	
V_{R}	Reverse Breakdown Voltage	5.0			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	
V_{F}	Forward Voltage		$\begin{aligned} & 1.30 \\ & 1.15 \\ & \hline \end{aligned}$	1.50	V	$\begin{aligned} & I_{F}=100 \mathrm{~mA} \\ & I_{F}=20 \mathrm{~mA} \end{aligned}$	2
$\theta_{\text {Jc }}$	Thermal Resistance		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	IRED Junction to Cathode Lead	

Notes:

1. Radiant intensity at ambient temperature: $I_{e}\left(T_{A}\right)=I_{e}\left(25^{\circ} C\right)+\left(\Delta I_{e} / \Delta T\right)\left(T_{A}-25^{\circ} C\right) / 100$.
2. Peak wavelength at ambient temperature: $\lambda \operatorname{PEAK}\left(T_{A}\right)=\lambda \operatorname{PEAK}\left(25^{\circ} \mathrm{C}\right)+(\Delta \lambda / \Delta T)\left(T_{A}-25^{\circ} \mathrm{C}\right)$.
3. $\theta 1 / 2$ is the off-axis angle from emitter centerline where the radiant intensity is half the on-axis value.
4. Approximate radiant flux output within a cone angle of $2 \theta: \phi_{\mathrm{e}}(2 \theta)=\left[\phi_{\mathrm{e}}(\theta) / I_{\mathrm{e}}(0)\right] \mathrm{I}_{\mathrm{e}}\left(\mathrm{T}_{\mathrm{A}}\right) ; \phi_{\mathrm{e}}(\theta) / \mathrm{I}_{\mathrm{e}}(0)$ obtained from figure 8 or 9

Figure 1. Radiated Spectrum

Figure 2. Forward Current vs. Forward Voltage

Figure 3. Forward Voltage Temperature Coefficient vs. Forward Current

Figure 5. Relative Efficiency vs. Peak Forward Current

Figure 4. Relative Radiant Intensity vs. DC Forward Current

Figure 6. Maximum DC Forward Current vs. Ambient Temperature Derating Based on $\mathrm{T}_{\mathrm{JMAX}}=11 \mathbf{0}^{\circ} \mathrm{C}$

Figure 7. Maximum Tolerable Peak Current vs. Peak Duration (IPEAK max Determined from Temperature Derated IDC MAX)

Figure 8. Far Field Radiation Pattern, HEMT-3301

Figure 9. Far Field Radiation Pattern, HEMT-1001

700nm HIGH INTENSITY SUBMINIATURE EMITTER

Features

- HIGH RADIANT INTENSITY
- NARROW BEAM ANGLE
- NONSATURATING OUTPUT
- BANDWIDTH: DC TO 5 MHz
- IC COMPATIBLE/LOW CURRENT REQUIREMENT
- VISIBLE FLUX AIDS ALIGNMENT

Description

The HEMT-6000 uses a GaAsP chip designed for optimum tradeoff between speed and quantum efficiency. This optimization allows a flat modulation bandwidth of 5 MHz without peaking, yet provides a radiant flux level comparable to that of 900 nm IREDs. The subminiature package allows operation of multiple closely-spaced channels, while the narrow beam angle minimizes crosstalk. The nominal 700 nm wavelength can offer spectral performance advantages over 900 nm IREDs, and is sufficiently visible to aid optical alignment. Applications include paper-tape readers, punch-card readers, bar code scanners, optical encoders or transducers, interrupt modules, safety interlocks, tape loop stabilizers and fiber optic drivers.

Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Power Dissipation 50 mW (derate linearly from $70^{\circ} \mathrm{C} @ 1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Average Forward Current 20 mA (derate linearly from $70^{\circ} \mathrm{C} @ 0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$)
Peak Forward Current
See Figure 5
Operating and Storage
Temperature Range -55° to $+100^{\circ} \mathrm{C}$
Lead Soldering
Temperature $260^{\circ} \mathrm{C}$ for 3 sec.
[1.6 mm (0.063 in .) from body]

NOTES:

1. ALL DIMENSIONS ARE IN MIHLMMETREE (INCHES).
2. SILVEA.PLATED LEADS, SEE APPLICATION BULLETIN 3.
3. EPOXY ENOAPSULANT HASA REFAACTIVE INOEX OF 1.53.
4. CHIP CENTERING WITHIN THEPACKAGE IS CONSISEEAY

WHITH ROOTNOTES

Figure 1. Relative Intensity versus Wavelength.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Units	Test Conditions	Fig.
l_{0}	Radiant Intensity along Mechanical Axis	100	250		$\mu \mathrm{W} / \mathrm{sr}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	3,4
K_{0}	Temperature Coefficient of Intensity		-0.005		${ }^{0} \mathrm{C}^{-1}$	Note 1	
η_{v}	Luminous Efficacy		2.5		lm / W	Note 2	
$2 \Theta_{1 / 2}$	Optical Axis Half Intensity Total Angle		16		deg.	Note 3, $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	6
$\lambda_{\text {PEAK }}$	Peak Wavelength (Range)		690-715		nm	Measured @ Peak	1
$\Delta \lambda_{p \in A K} / \Delta T$	Spectral Shift Temperature Coefficient		. 193		$\mathrm{nm} /{ }^{\circ} \mathrm{C}$	Measured @ Peak, Note 4	
t_{r}	Output Rise Time ($10 \%-90 \%$)		70		ns	lPEAK $=10 \mathrm{~mA}$	
tf_{f}	Output Fall Time (90\%-10\%)		40		ns	$I_{\text {PEAK }}=10 \mathrm{~mA}$	
C_{0}	Capacitance		65		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$	
$B V_{R}$	Reverse Breakdown Voltage	5	12		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	
V_{F}	Forward Voltage		1.5	1.8	\checkmark	$I_{F}=10 \mathrm{~mA}$	2
$\Delta V_{F} / \Delta T$	Temperature Coefficient of V_{F}		-2.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=100 \mu \mathrm{~A}$	
Θ_{JC}	Thermal Resistance		140		${ }^{\circ} \mathrm{C} / \mathrm{N}$	Junction to cathode lead	

NOTES: 1. $I_{e}(T)=I_{e}\left(25^{\circ} C\right) \exp \left[K_{e}\left(T-25^{\circ} \mathrm{C}\right)\right]$.
2. $I_{v}=\eta_{V} I_{e}$ where I_{V} is in candela, I_{e} in watts/steradian, and η_{V} in lumen/watt.
3. $\Theta_{1 / 2}$ is the off-axis angle at which the radiant intensity is half the intensity along the optical axis. The deviation between the mechanical and the optical axis is typically within a conical half-angle of three degrees.
4. $\lambda_{\text {PEAK }}^{(T)}=\lambda_{P E A K}\left(25^{\circ} \mathrm{C}\right)+\left(\Delta \lambda_{\text {PEAK }}(\Delta T)\left(T-25^{\circ} \mathrm{C}\right)\right.$

V_{F} - FORWARD VOLTAGE - V
Figure 2. Forward Current versus Forward Voltage.

I_{F} - FORWARD CURRENT - mA
Figure 3. Relative Radiant Intensity versus Forward Current.

IPEAK - PEAK CURRENT - mA
Figure 4. Relative Efficiency (Radiant Intensity per Unit Current) versus Peak Current.

t_{p} - PULSE DURATION - $\mu \mathrm{s}$
Figure 5. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 6. Far-Field Radiation Pattern.

SURFACE MOUNT OPTION FOR SUBMINIATURE LAMPS GULL WING LEAD CONFIGURATION

INDIVIDUAL SUBMINIATURE LAMP SUPPLIED IN 12 mm TAPE - OPTION 011 SUBMINIATURE ARRAY SUPPLIED IN A SHIPPING TUBE - OPTION 013

Features

- GULL WING LEAD CONFIGURATION, INDIVIDUAL SUBMINIATURE LAMPS AND ARRAYS
- COMPATIBLE WITH AUTOMATIC PLACEMENT EQUIPMENT
- COMPATIBLE WITH VAPOR PHASE REFLOW SOLDER PROCESSES
- LOW PACKAGE PROFILE
- WIDE VIEWING ANGLE
- LONG LIFE - SOLID STATE RELIABILITY
- INDIVIDUAL SUBMINIATURE LAMPS ARE SUPPLIED IN 12mm TAPE
- SUBMINIATURE ARRAYS ARE SUPPLIED IN TUBES

Description

These subminiature solid state lamps are encapsulated in an axial lead package of molded epoxy. They utilize a tinted, diffused lens providing high on-off contrast and wide angle viewing.

The leads of this device are bent in a gull wing configuration for surface mounting. The device can be mounted using automatic placement equipment.
The individual gull wing subminiature lamp is supplied in 12 mm tape on seven inch reels per ANSI/EIA standard RS481 specifications. Gull wing subminiature arrays are supplied in shipping tubes. The lamp can be mounted with either batch or in line vapor phase reflow solder processes.

Subminiature lamps for surface mount applications are available in standard red, high efficiency red, yellow, green, integrated resistor, and low current versions.

Ordering Information

To obtain gull wing surface mount subminiature lamps, order the basic catalog device with the appropriate option code. Note: Option 011 is available for individual subminiature lamps only. Option 013 is available for subminiature arrays only.

Device Selection Guide

Option	Description
Option 011	Individual subminiature lamps in gull wing configuration. Supplied in 12mm tape on seven inch reels;' 1500 pieces per reel. Minimum order quantity and order increment are 1500 pieces.
Option 012	Bulk
Option 013 (Arrays only)	Subminiature array in gull wing configuration. Supplied in shipping tubes.

Examples:
HLMP-6300
Option 011
High Efficiency Red
Supplied on Tape

HLMP-6658
Option 013
High Efficiency Red, 8 Element Array Supplied in Tubes

Vapor Phase Reflow Solder Rating

Absolute Maximum Rating
Vapor Phase Soldering Temperature $215^{\circ} \mathrm{C}$ for 3 minutes Material FC-5311

Note: Lead soldering maximum rating is $260^{\circ} \mathrm{C}$ for 3 seconds.

Package Dimensions

INDIVIDUAL SUBMINIATURE

SUBMINIATURE ARRAY

Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings and electrical/optical specifications are identical to the basic catalog device, except for the vapor phase soldering rating as specified at left.

12 mm TAPE AND REEL

REEL

ARRAY SHIPPING TUBE

SURFACE MOUNT OPTION FOR SUBMINIATURE LAMPS "YOKE" LEAD CONFIGURATION

INDIVIDUAL SUBMINIATURE LAMP SUPPLIED IN 12 mm TAPE -OPTION 021 INDIVIDUAL SUBMINIATURE LAMP SUPPLIED IN BULK -OPTION 022

Features

- "YOKE" LEAD CONFIGURATION FOR THROUGH HOLE MOUNTING ON PC BOARD
- COMPATIBLE WITH AUTOMATIC PLACEMENT EQUIPMENT
- COMPATIBLE WITH VAPOR PHASE REFLOW SOLDER PROCESSES
- LOW PACKAGE PROFILE
- WIDE VIEWING ANGLE
- LONG LIFE-SOLID STATE RELIABILITY
- SUPPLIED IN 12 mm TAPE OR BULK

Description

These subminiature solid state lamps are encapsulated in an axial lead package of molded epoxy. The lens is diffused for even light dispersion.
The lamps are designed to be inserted through holes in the PC board to backlight switches, membrane panels, or appliques. Other backlighting applications are equally suitable. As shown in Figure 1, the leads are specially formed to give two features: mechanical strain relief and adequate solder pads.

Automatic placement equipment may be used to mount the LEDs on the PC board if the designer selects the 021 option. These lamps are supplied in 12 mm tape on seven inch reels per ANSI/EIA standard RS-481 specifications. Bulk lamps are available under the 022 option code. The lamps can be mounted using either batch or in line vapor phase reflow solder processes.
Subminiature lamps for surface mount applications are available in standard red, high efficiency red, yellow, green, integrated resistor, and low current versions.

Figure 1.

Ordering Information

To obtain surface mount subminiature lamps with the "yoke" lead configuration, order the basic catalog device with the appropriate option code.

Device Selection Guide

Option	Description
Option 021	Individual subminiature lamps in "yoke" lead configuration. Supplied in 12 mm tape on seven inch reels; 1500 pieces per reel. Minimum order quantity and order increment is 1500 pieces.
Option 022	Individual subminiature lamps in "yoke" lead configuration. Supplied in bulk.

Examples:

HLMP-6300	HLMP-6400
Option 021	Option 022
High Efficiency Red	Yellow
Supplied on Tape	Supplied in Bulk

Vapor Phase Reflow Solder Rating

Absolute Maximum Rating

Vapor Phase
$215^{\circ} \mathrm{C}$ for 3 minutes Material FC-5311

NOTE: Lead soldering maximum rating is $260^{\circ} \mathrm{C}$ for 3 seconds.

Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings and electrical/optical specifications are identical to the basic catalog device, except for the vapor phase soldering rating as specified at left.

Package Dimensions

INDIVIDUAL SUBMINIATURE LAMP

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. CATHODE LEAD IS IDENTIFIED BY A COLOR STRIPE,

12 mm TAPE AND REEL

TAPE AND REEL SUBMINIATURE LAMPS

Tape and Reel Spacing: $\quad 2.54 \mathrm{~mm}(0.100 \mathrm{inch})$ - OPTION P01.

5.00 mm (0.200 inch) - OPTION P02

Features

- COMPATIBLE WITH AXIAL LEAD AUTOMATIC INSERTION EQUIPMENT

- REEL PACKAGING SIMPLIFIES HANDLING AND TESTING

Description

Subminiature lamps are available on tape and reel. The Option lamp devices have axial leads with 2.54 mm (0.100 inch) spacing for automatic insertion into PC Boards by radial lead insertion equipment. The Option P02 lamp devices have axial leads with 5.00 mm (0.200 inch) spacing packaged on tape and reel for ease of handling.

Ordering Information

To order Subminiature lamps packaged on tape and reel, include the appropriate option code along with the device catalog part number. Example; to order the HLMP-6300 on tape and reel, order as follows: HLMP-6300 - P01. Minimum order quantities vary by part number. Orders must be placed in reel increments. Please contact your local Hewlett-Packard sales office or franchised HewlettPackard distributor for a complete list of lamps available on tape and reel.

Device Selection Guide

Option	Description
P01	Tape and reel, $2.54 \mathrm{~mm} \mathrm{(0.100}$ inch) spaced axial leads.
P02	Tape and reel, $5.00 \mathrm{~mm}(0.200$ inch $)$ spaced axial leads.

Option	Quantity/Reel	Order Increments
PO1	5,000 or 1,000	1,000
PO2	2,500 or 1,000	1,000

Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings, mechanical dimension tolerances and electrical optical characteristics for lamps packaged on tape and reel are identical to the basic catalog device. Refer to the basic data sheet for the specified values.

Notes:

1. Minimum leader length at either end of tape is 2 blank part spaces.
2. Silver saver paper is used as the interlayer for silver plated lead devices.
3. The maximum number of consecutive missing lamps is 2 . Drawings and option codes apply to devices with cathode tab intact only.

OUTLINE A (TAPE AND REEL) - OPTION P01

2.54 mm (0.100 inch) spacing

NOTE: LED'S MUST FALL WITHIN 0.020" OF A COMMON CENTER.

OUTLINE B (TAPE AND REEL) - OPTION P02

5.08 mm (0.200 inch) spacing

NOTE: LED'S MUST FALL WITHIN 0.020" OF A COMMON CENTER.

TAPE AND REEL SOLID STATE LAMPS

Features

- COMPATIBLE WITH RADIAL LEAD AUTOMATIC INSERTION EQUIPMENT
- MEETS DIMENSIONAL SPECIFICATIONS OF IEC PUBLICATION 286 AND ANSI/EIA STANDARD RS-468 FOR TAPE AND REEL
- REEL PACKAGING SIMPLIFIES HANDLING AND TESTING
- T-1 AND T-1 3/4 LED LAMPS AVAILABLE PACKAGED ON TAPE AND REEL
- 5 mm (0.197 INCH) FORMED LEAD AND 2.54 mm (0.100 INCH) STRAIGHT LEAD SPACING AVAILABLE

Description

T-1 and T-1 3/4 LED lamps are available on tape and reel as specified by the IEC Publication 286 and ANSI/EIA Standard RS-468. The Option 001 lamp devices have formed leads with $5 \mathrm{~mm}(0.197 \mathrm{inch})$ spacing for automatic insertion into PC boards by radial lead insertion equipment. The Option 002 lamp devices have straight leads with $2.54 \mathrm{~mm}(0.100 \mathrm{inch})$ spacing, packaged on tape and reel for ease of handling. $\mathrm{T}-1$ lamps are packaged 1800/reel. T-1 3/4 lamps are packaged 1300/reel.

Ordering Information

To order LED lamps packaged on tape and reel, include the appropriate option code along with the device catalog part number. Example: to order the HLMP-3300 on tape and reel with formed leads (5 mm lead spacing) order as follows: HLMP-3300 Option 001. Minimum order quantities vary by part number. Orders must be placed in reel increments. Please contact your local Hewlett-Packard sales office or franchised Hewlett-Packard distributor for a complete list of lamps available on tape and reel.
LED lamps with 0.46 mm (0.018 inch) square leads with 5 mm (0.197 inch) lead spacing are recommended for use with automatic insertion equipment. It is suggested that insertion machine compatibility be confirmed.

Device Selection Guide

Option	Description
001	Tape and reel, $5 \mathrm{~mm}(0.197$ inch $)$ formed leads.
0.02	Tape and reel, $2.54 \mathrm{~mm}(0.100 \mathrm{inch})$ straight leads.

Package	Quantity/Reel	Order Increments
T-1	1800	1800
T-1 3/4	1300	1300

Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings, mechanical dimension tolerances and electrical/optical characteristics for lamps packaged on tape and reel are identical to the basic catalog device. Refer to the basic data sheet for the specified values.

Notes:

1. Minimum leader length at either end of tape is 3 blank part spaces.
2. Silver saver paper is used as the interlayer for silver plated lead devices.
3. The maximum number of consecutive missing lamps is 3 .
4. In accordance with EIA and IEC specs, the anode lead leaves the reel first.
5. Drawings apply to devices with $0.46 \mathrm{~mm}(0.018 \mathrm{inch})$ square leads only. Contact Hewlett-Packard Sales Office for dimensions of $0.635 \mathrm{~mm}(0.025 \mathrm{inch})$ square lead devices.

Tape and Reel LED Configurations

Figure 1. T-1 High Profile Lamps, Option 001

Figure 3. T-1 Low Profile Lamps, Option 001

Figure 5. T-1 3/4 High Profile Lamps, Option 001

Figure 7. T-1 3/4 Low Profile Lamps, Option 001

Figure 2. T-1 High Profile Lamps, Option 002

Figure 4. T-1 Low Profile Lamps, Option 002

Figure 6. T-1 3/4 High Profile Lamps, Option 002

Figure 8. T-1 3/4 Low Profile Lamps, Option 002

Dimensional Specifications for Tape and Reel

Note:

1. Dimensions in millimetres (inches), maximum/minimum.

Figure 9. Front to Rear Alignment and Tape Thickness, Typical All Device Types

Figure 10. Device Retention Tests and Specifications

Figure 11. Reel Configuration and Labeling

Features

- IDEAL FOR PC BOARD STATUS INDICATION
- SIDE STACKABLE ON 2.54 mm (0.100 in) CENTERS
- AVAILABLE IN FOUR COLORS
- HOUSING MEETS UL 94V-O FLAMMABILITY SPECIFICATIONS
- ADDITIONAL CATALOG LAMPS AVAILABLE AS OPTIONS

Description

The Hewlett-Packard series of Subminiature Right Angle Indicators are industry standard status indicators that incorporate tinted diffused LED lamps in black plastic housings. The 2.54 mm (0.100 in) wide packages may be side stacked for maximum board space savings. The silver plated leads are in line on 2.54 mm (0.100 in) centers, a standard spacing that makes the PC board layout straightforward. These products are designed to be used as back panel diagnostic indicators and logic status indicators on PC boards.

Ordering Information

To order Subminiature Right Angle indicators, order the base part number and add the option code 010. For price

and delivery on Resistor Subminiature Right Angle Indicators and other subminiature LEDs not indicated above, please contact your nearest H.P. Components representative.

Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the Subminiature lamps. For information about these characteristics, see the data sheets of the equivalent Subminiature lamp.

Package Dimensions

NOTE: ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

Features

- IDEAL FOR CARD EDGE STATUS INDICATION
- PACKAGE DESIGN ALLOWS FLUSH SEATING ON A PC BOARD
- MAY BE SIDE STACKED ON 4.57 mm (0.18 in) CENTERS
- UP TO 8 UNITS MAY BE COUPLED FOR A HORIZONTAL ARRAY CONFIGURATION WITH A COMMON COUPLING BAR (SEE T-1 RIGHT ANGLE ARRAY DATA SHEET)
- LEDs AVAILABLE IN ALL LED COLORS, WITH OR WITHOUT INTEGRATED CURRENT LIMITING RESISTOR IN T-1 PACKAGES
- EASY FLUX REMOVAL DESIGN
- HOUSING MATERIAL MEETS UL 94V-0 RATING
- ADDITIONAL CATALOG LAMPS AVAILABLE AS OPTIONS

Description

Hewlett-Packard T-1 Right Angle Indicators are industry standard status indicators that incorporate a tinted diffused T-1 LED lamp in a black plastic housing. The indicators are available in Standard Red, High Efficiency Red, Orange, Yellow, and High Performance Green, with or without an integrated current limiting resistor. These products are designed to be used as back panel diagnostic indicators and card edge logic status indicators.

Ordering Information

To order other T-1 High Dome Lamps in Right Angle Housings in addition to the parts indicated above, select the base part number and add the option code 010 or 101, depending on the lead length desired (see drawing below).

Package Dimensions

For example, by ordering HLMP-1302-010, you would receive the long lead option. By ordering HLMP-1302-101, you would receive the short lead option.
Arrays made by connecting two to eight single Right Angle Indicators with a Common Coupling Bar are available. Ordering information for arrays may be found on the T-1 Right Angle Array data sheet.
The above data sheet information is for the most commonly ordered part numbers. Refer to other T-1 base part number specifications in this catalog for other lamp types that may be ordered with the right angle option.

Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the T-1 LED lamps. For information about these characteristics, see the data sheets of the equivalent T-1 LED lamp.

Features

- IDEAL FOR PC BOARD STATUS INDICATION
- STANDARD 4 ELEMENT CONFIGURATION
- EASY HANDLING
- EASY FLUX REMOVAL
- HOUSING MEETS UL 94V-O FLAMMABILITY SPECIFICATIONS
- OTHER CATALOG LAMPS AVAILABLE

Description

These T-1 right angle arrays incorporate standard T-1 lamps for a good balance of viewing angle and intensity. Single units are held together by a plastic tie bar. The leads of each member of the array are spaced on $2.54 \mathrm{~mm}(0.100 \mathrm{in})$ centers. Lead spacing between adjacent lamps in the array is on 2.03 mm (0.080 in) centers. These products are designed to be used as back panel diagnostic indicators and logic status indicators on PC boards.

Ordering Information

Use the option code 102 through 108 in addition to the base part number to order these arrays. Arrays from 2 to 8 elements in length and special lamp color combinations within an array are available. Please contact your nearest Hewlett-Packard Components representative for ordering information on these special items.

Package Dimensions

LED RIGHT ANGLE INDICATORS T-1 3/4 (5mm)

Features

- IDEAL FOR CARD EDGE STATUS INDICATION
- PACKAGE DESIGN ALLOWS FLUSH SEATING ON A PC BOARD
- MAY BE SIDE STACKED ON 6.35 mm (0.25 ") CENTERS
- LEDs AVAILABLE IN FOUR COLORS, WITH OR WITHOUT INTEGRATED CURRENT LIMITING RESISTOR IN T-1 3/4 TINTED DIFFUSED PACKAGES
- ADDITIONAL CATALOG LAMPS AVAILABLE AS OPTIONS

Description

The T-1 3/4 Option 010 and 100 series of Right Angle Indicators are industry standard status indicators that incorporate a tinted diffused T-1 3/4 LED lamp in a black plastic housing. The indicators are available in standard Red, High Efficiency Red, Yellow, or High Performance

Green with or without an integrated current limiting resistor. These products are designed to be used as back panel diagnostic indicators and card edge logic status indicators.

Package Dimensions

Ordering Information

To order T-1 3/4 high dome lamps in addition to the parts indicated above, select the base part number and add the option code 010 or 100. For example: HLMP-3750-010.

All Hewlett-Packard T-1 3/4 high-dome lamps are available in right angle housing. Contact your local Hewlett-Packard Sales Office or authorized components distributor for additional ordering information.

Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings and device characteristics are identical to those of the T-1 3/4 LED lamps. For information about these characteristics, see the data sheets of the equivalent T-1 3/4 LED lamp.

Features

- FITS ANY HP HIGH DOME T-1 3/4 LED LAMP
- SNAP-IN FIT MAKES MOUNTING SIMPLE
- HIGH CONTRAST BLACK PLASTIC

Description

The HLMP-5029 is a black plastic right angle housing which mates with any Hewlett-Packard High Dome T-1 3/4 lamp. The lamp snaps into place. The material is fully compatible with environmental specifications of all Hewlett-Packard T-1 3/4 lamps.

Physical Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. ALL TOLERANCES $\pm 0.254(\pm 0.010)$ UNL.ESS OTHERWISE SPECIFIED.

Features

- 100 OR 200 MIL BENDS
- CATHODE TAB OR CATHODE STRIPE
- SHORT OR LONG LEAD LENGTH

Description

The Hewlett-Packard Subminiature Lamps are available in a variety of lead forms. In addition, these lead forms are available with or without cathode tabs.

Ordering Information

To obtain subminiature lamps with these lead forms, contact your local Hewlett-Packard sales office or franchised Hewlett-Packard Distributor for specific ordering instructions. Be sure to specify either $.100^{\prime \prime}$ or $.200^{\prime \prime}$ spacing, short or long lead length, and cathode tab or cathode stripe.

Figure 1. $0.100^{\prime \prime}$ Lead Spacing, Short Lead Length

NOTE: ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

Figure 2. $0.100^{\prime \prime}$ Lead Spacing, Long Lead Length

Figure 3. $\mathbf{0 . 2 0 0}$ " Lead Spacing, Short Lead Length

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. REFER TO THE SPECIFIG DATA SHEET FOR

SUBMINIATURE LAMPS FOR THE DETAILED
DIMENSIONS OF THE LAMP.

Figure 4. $0.200^{\prime \prime}$ Lead Spacing, Long Lead Length

Description

The Option 009 (HLMP-0103) is a black plastic mounting clip and retaining ring. It is designed to panel mount Hewlett-Packard Solid State high profile T-1 3/4 size lamps. This clip and ring combination is intended for installation in instrument panels from $1.52 \mathrm{~mm}\left(.060^{\prime \prime}\right)$ to 3.18 mm (.125") thick. For panels greater than 3.18 mm (.125") counterboring is required to the 3.18 mm (.125") thickness.

Mounting Instructions

1. Drill an ASA C size 6.15 mm (. $242^{\prime \prime}$) dia. hole in the panel. Deburr but do not chamfer the edges of the hole.
2. Press the panel clip into the hole from the front of the panel.
3. Press the LED into the clip from the back. Use blunt long nose pliers to push on the LED. Do not use force on the LED leads. A tool such as a nut driver may be used to press on the clip.

Note: Clip and retaining ring are also available for T-1 package, from a non-HP source. Please contact Interconsal Association, 991 Commercial St., Palo Alto, CA 94303 for additional information.
4. Slip a plastic retaining ring onto the back of the clip and press tight using tools such as two nut drivers.

Ordering Information

T-1 3/4 High Dome LED Lamps can be purchased to include clip and ring by adding Option Code 009 to the device catalog part number.

Example:

To order the HLMP-3300 including clip and ring, order as follows: HLMP-3300 Option 009.

Hermetic Lamps

Features

- MILITARY QUALIFIED LISTED ON MIL-S-19500QPL
- CHOICE OF 4 COLORS

Red
High Efficiency Red
Yellow
Green

- DESIGNED FOR HIGH-RELIABILITY APPLICATIONS
- HERMETICALLY SEALED
- WIDE VIEWING ANGLE
- LOW POWER OPERATION
- IC COMPATIBLE
- LONG LIFE
- TWO PANEL MOUNT OPTIONS[4]

Option 001
Aluminum Black Anodized Sleeve Option 002
Black Conductive Composite Sleeve
Both Options Have Wire Wrappable
Leads Electrically Isolated From The Sleeve

HERMETIC TO-46 LAMP

Description

The 1N5765, 1N6092, 1N6093 and 1N6094 solid state LED's are hermetically sealed in a TO-46 package with a tinted, diffused plastic lens over a glass window. The panel mountable versions consist of an LED unit permanently mounted in a conductive composite or anodized aluminum sleeve. The electrically conductive composite sleeve provides electrical contact to the front and back panels and has RFI shielding equivalent to the aluminum sleeve. Additionally, the composite sleeve has excellent tensil strength and superior scratch and wear resistance. All these devices are designed for high reliability applications and provide excellent on-off contrast, high axial luminous intensity and a wide viewing angle.
The 1N5765 utilizes a GaAsP LED chip with a red diffused lens over a glass window.

The 1N6092 has a high efficiency red GaAsP on GaP LED chip with a red diffused lens over a glass window. This device is comparable to the 1N5765 but it's efficiency extends to higher currents and it provides greater luminous intensity.
The 1 N6093 provides a yellow GaAsP on GaP LED chip with a yellow, diffused lens over a glass window.
The 1 N6094 utilizes a green GaP LED chip with a green, diffused lens over a glass window.

The plastic lens over glass window system is extremely durable and has exceptional temperature cycling capabilities.

[^8]| COLOR - PART NUMBER - LAMP AND PANEL MOUNT MATRIX | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | | Standard Product | With JAN Qualification ${ }^{[1]}$ | JAN Plus TX Testing ${ }^{[2]}$ | $\begin{gathered} \text { Controlling MIL-S-19500 } \\ \text { Document }{ }^{[5]} \\ \hline \end{gathered}$ |
| TABLE I HERMETIC TO-46 PART NUMBER SYSTEM | | | | | |
| Standard Red | | 1N5765 | JAN1N5765 | JANTX1N5765 | /467 |
| High Efficiency Red | | 1N6092 | JAN1N6092 | JANTX1N6092 | 1519 |
| Yellow | | 1N6093 | - JAN1N6093 | JANTX1N6093 | 7520 |
| Green | | 1N6094 | JAN1N6094 | JANT X IN6094 | /521. |
| 3 | | TABLE II PANEL. MOUNTABLE PART NUMBER SYSTEM ${ }^{\text {[3.4] }}$ | | | \% |
| Standard Red | , | HLMP-0904 | HLMP-0930 - | HLMP-0S31 - | - NONE |
| High Efficiency Red | | HLMP-0354 | HLMP-0380 (JANM19500/519011 | HLMP-0381 ITTXM19500/51902) | 1519 . |
| Yellow | | HLMP-0454 | HLMP-0480 (JANM19500/52001) | HLMP-0481. JT XM19500/52002 | 1520 |
| Green | | HLMP-0554 | HL.MP-0580 (JANM19500/52101) | HLMP-0581 (JTXM19500/52102) | 1521 |

Notes

1. Parts are marked $J 1 N X X X X$ or as indicated.
2. Parts are marked JTX1NXXXX or as indicated.
3. Panel mountable packaging incorporates additional assembly of the equivalent Table I TO-46 part into the panel mount enclosure. The resulting part is then marked per Table II.
4. When ordering panelmount devices, specify either Option \#001 (anodized aluminum sleeve) or Option \#002 (conductive composite sleeve).
5. JAN and JANTX parts only.

JAN PART: Samples of each lot are subjected to Group A and B tests listed below. Every six months, samples from a single lot of each part type are subjected to Group C testing. All tests are to the conditions and limits specified by the appropriate MIL-S-19500 slash sheet.

Examination or Test	MIL-STD-750 Method
GROUP A INSPECTION	
Subgroup 1	
Visual and mechanical examination	2071
Subgroup 2	
Luminous intensity ($\theta=0^{\circ}$)	-
Luminous intensity $\left(\theta=30^{\circ}\right.$,	-
Reverse current	4016
Forward voltage	4011
Subgroup 3	
Capacitance	4001
GROUP B INSPECTION	
Subgroup 1	
Physical dimensions	2066
Subgroup 2	
Solderability	2026
Thermal shock (temperature cycling)	1051
Thermal shock 'glass strain)	1056
Hermetic seal	1071
Moisture resistance	1021
End points: Luminous intensity ($\theta=0^{\circ}$)	-
Subgroup 3	
Shock	2016
Vibration, variable frequency	2056
Constant acceleration	2006
End points: (same as subgroup 2)	
Subgroup 4	
Terminal strength	2036
End points: Hermetic seal	1071
Subgroup 5	
Salt atmosphere (corrosion)	1041
Subgroup 6	
High-temperature life (nonoperating)	1032
End points: Luminous intensity ($\theta=0^{\circ}$)	-
Subgroup 7	
Steady-state operation life	1027
End points: 'same as subgroup 6)	

JANTX PART: These devices undergo 100% screening tests as listed below to the conditions and limits specified by the MIL-S-19500 slash sheet. The JANTX lot has also been subjected to Group A, B and C tests as for the JAN PART above.

Examination or Test	MIL-STD-750 Method
GROUP C INSPECTION .	
Subgroup 1	
Thermal shock (temperature cycling) End points: (same as subgroup 2 of group B)	1051
Subgroup 2	
Subgroup 3	
High-temperature life (nonoperating)	1031
End points: Luminous intensity ($\theta=0^{\circ}$)	-
Subgroup 4	
Steady-state operation life	1026
End points: (same as subgroup 3)	
Subgroup 5	
Peak forward pulse current (transient)	-
End points: / same as subgroup 6 of group B)	
Subgroup 6	
Peak forward pulse current (operating)	- -
End points: (same as subgroup 6 of group B)	
PROCESS AND POWER CONDITION ("TX" types only)	
High temperature storage (nonoperating)	-
Thermal shock (temperature cycling)	1051
Constant acceleration	2006
Hermetic seal	1071
Luminous intensity ($\theta=0^{\circ}$)	-
Forward voltage	4011
Reverse current	4016
Burn-in (Forward bias)	-
End points (within 72 hours of burn-in):	
Δ Luminous intensity ($\theta=0^{\circ}$)	-
Δ Forward voltage	4011

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	$\begin{gathered} \text { Red } \\ \text { HLMP-0904 } \end{gathered}$	High Eff. Red HL.MP-0354	Yellow HLMP-0454	$\begin{aligned} & \text { Green } \\ & \text { HLMP-0554 } \end{aligned}$	Unlts
Power Dissipation (derate linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	100	120	120	120	mW
DC Forward Current	$50[1]$	$35^{[2]}$	$35^{[2]}$	$35^{[2]}$	mA
Peak Forward Current	$\begin{gathered} 1000 \\ \text { See Fig. } 5 \end{gathered}$	$\begin{gathered} 60 \\ \text { See Fig. } 10 \end{gathered}$	$\begin{gathered} 60 \\ \text { See Fig. } 15 \end{gathered}$	$\begin{gathered} 60 \\ \text { See Fig. } 20 \end{gathered}$	mA
Operating and Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$				
Lead Soldering Temperature [1.6 mm (0.063 in .) from body]	$260^{\circ} \mathrm{C}$ for 7 seconds.				

Notes: 1. Derate from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
2. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	HLMP-0904			HLMP-0354			HLMP-0454			HLMP-0554			Units	Test Conditions
		Min.	Typ.	Max.											
IV1	Axial Luminous Intensity	0.5	1.0		3.0	8.0		3.0	8.0		3.0	$\begin{gathered} 8.0 \\ I_{F}= \end{gathered}$		mod	$I_{F}=20 \mathrm{~mA}$ Figs. 3,8,13,18 $\theta=0^{\circ}$
1v2	Luminous Intensity at $\theta=30^{\circ}\|5\|$	1.5			1.5			1.5			1.5			med	$\begin{aligned} & \mathrm{IF}=20 \mathrm{~mA} \\ & \theta=30^{\circ} \end{aligned}$
$2 \theta_{1}=$	included Angle Between Half Luminous Intensity Points		60			70			70			70		deg.	11) Figures $6,11,16,21$
APEAK	Peak Wavelength 151	630	655	700	590	635	695	550	583	660	525	565	600	nm	Measurement at Peak
λ_{d}	Dominant Wavelength		640			626			585			570		nm	\|21
TS	Speed of Response		10			200			200			200		ns	
C	Capacitancel5]		200	300		35	100		35	100		35	100	pF	$V_{1}=0 ; f=1 \mathrm{MHz}$
θ_{3}	Thermal Resistance**		425			425			425			425		${ }^{\circ} \mathrm{C} / \mathrm{W}$	[3]
$\theta_{\text {侎 }}$	Thermal Resistance**		550			550			550			550		${ }^{\circ} \mathrm{C} / \mathrm{W}$	[3]
V_{F}	Forward Voltage		1.6	2.0		2.0	3.0		2.0	3.0		$\begin{array}{r} 2.1 \\ f_{F}= \end{array}$	$\begin{array}{r} 3.0 \\ 5 \mathrm{~mA} \end{array}$	V	$\begin{aligned} & I_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Figures } 2,7 . \\ & 12,17 \end{aligned}$
la	Reverse Current ${ }^{51}$			1.0			1.0			1.0			1.0	$\mu \mathrm{A}$	$\mathrm{V}=3 \mathrm{~V}$
8VR	Reverse Breakdown Voltage	4	5		5.0			5.0			5.0			V	$\mathrm{m}_{\mathrm{k}}=100_{\mu} \mathrm{A}$
η	Luminous Efficacy		56			140			455			600		$1 \mathrm{~m} / \mathrm{W}$	[4]

NOTES:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Junction to Cathode Lead with 3.18 mm (0.125 inch) of leads exposed between base of flange and heat sink.
4. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.
5. Limits do not apply to non JAN or JANTX parts.
*Panel mount.
**T0-46

Figure 1. Relative Intensity vs. Wavelength.

Package Dimensions

HLMP-0904, 0354, 0454, 0554

NOTES

1. THE PANELMOUNT SLEEVE IS EITHER A BLAACK CONDUCTIVE COMPOSITE OR BLACK ANODIZED ALUMINUM.
2. GOLD PLATED LEADS.
3. MOUNTING HARDWARE WHICH INCLUDES ONE LOCK WASHER AND ONE HEX-NUT IS INCLUDED WITH EACH PANEL. MOUNTABLE HERMETIC SOLID STATE LAMP,
4. USE OF METRIC DRILL SIZE B. 20 MLLLIMETRES OR ENGLISH DRILL SIZE P $\{0.323$ (NCH) IS RECOMMENDED FOR PRODUCING HOLE IN THE PANEL FOR PANEL. MOUNTING.
5. ALL DIMENSIONS IN MILLIMETRES (INCHES),
6. PACKAGE WEIGHT INCLUDING LAMP AND PANEL. MOUNT IS $1.2-1.8$ GRAMS. NUT AND WASHER IS AN EXTRA $0,6-1,0$ GRAM .

1N5765, 1N6092, 1N6093, 1N6094

NOTES:
t. ALL DIMENSIONS ARE IN MILLIMETRES I INCHES \ddagger,
2. GOLD.PLATED LEADS.
3. PACKAGE WEIGHT OF LAMP ALONE

IS 25-35 GRAMS

Family of Red 1N5765/HLMP-0904

Figure 2. Forward Current vs. Forward Voltage.

$I_{\text {F }}$ - FORWARD CURRENT - MA
Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Family of High Efficiency Red 1N6092/HLMP-0354

Figure 7. Forward Current vs. Forward Voltage.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Family of Yellow 1N6093/HLMP-0454

Figure 12. Forward Current vs. Forward Voltage.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

I_{F} - FORWARD CURRENT - mA
Figure 13. Relative Luminous Intensity vs. Forward Current.

$I_{\text {PEAK }}$ - PEAK CURRENT - mA
Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Family of Green 1N6094/HLMP-0554

Figure 17. Forward Current vs. Forward Voltage.

Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 18. Relative Luminous Intensity vs. Forward Current.

Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 21. Relative Luminous Intensity vs. Angular Displacement.

HLMP-0363	HLMP-0463	HLMP-0563
HLMP-0391	HLMP-0491	HLMP-0591
HLMP-0392	HLMP-0492	HLMP-0592

Features

- SUNLIGHT VIEWABLE WITH PROPER CONTRAST ENHANCEMENT FILTER

- HERMETICALLY SEALED
- CHOICE OF 3 COLORS

High Efficiency Red Yellow
High Performance Green

- LOW POWER OPERATION
- IC COMPATIBLE
- LONG LIFE/RELIABLE/RUGGED
- TWO PANEL MOUNT OPTIONS[2]

Option 001
Aluminum Black Anodized Sleeve

Option 002

Black Conductive Composite Sleeve Both Options Have Wire Wrappable Leads Electically Isolated From The Sleeve

Description

The HLMP-0363, HLMP-0463, and HLMP-0563 are hermetically sealed solid state lamps in a TO-18 package with a clear glass lens. These hermetic lamps provide improved brightness over conventional hermetic LED lamps, excellent on-off contrast, and high axial luminous intensity. These LED indicators are designed for use in applications requiring readability in bright sunlight. With a proper contrast enhancement filter, these LED indicators are readable in sunlight ambients. All of these devices are available in a choice of two panel mountable fixtures, a conductive composite or anodized aluminum.

The HLMP-0363 utilizes a high efficiency red GaAsP on GaP LED chip. The HLMP-0463 uses a yellow GaAsP on a GaP LED chip. The HLMP-0563 uses a green GaP LED chip.
These devices are offered with JAN equivalent quality conformance inspection (QCI) and JANTX equivalent screenings similar to MIL-S-19500/519/520/521.
*Panel Mount version of all of the above are available per the selection matrix on this page.

COLOR - PART NUMBER - LAMP AND PANEL MOUNT MATRIX			
Description	Standard Product	JAN QCI	JANTX Equivalent
TABLE I HERMETIC TO-18 PART NUMBER SYSTEM			
High Efficiency Red Yellow Green	HLMP-0363 HLMP-0463 HLMP-0563	$\begin{aligned} & \text { HLMP-0391 } \\ & \text { HLMP-0491 } \\ & \text { HLMP-0591 } \end{aligned}$	HLMP-0392 HLMP-0492 HLMP-0592
TABLE II PANEL MOUNTABLE PART NUMBER SYSTEM[1,2]			
High Efficiency Red Yellow Green	HLMP-0364 HLMP-0464 HLMP-0564	HLMP-0365 HLMP-0465 HLMP-0565	HLMP-0366 HLMP-0466 HLMP-0566

NOTE:

1. Panel mountable packaging incorporates additional assembly of the equivalent Table I TO-18 part into the panel mount enclosure. The resulting part is then marked per Table II.
2. When ordering panelmount devices, specify either Option \#001 (anodized aluminum sleeve) or Option \#002 (conductive composite sleeve).

JAN Equivalent: Samples of each lot are subjected to Group A and B, listed below. Every six months samples from a single lot of each part type are subjected to Group C testing. All tests are to the conditions and limits specified by the equivalent MIL-S-19500 slash sheet for the device under test.

Examination or Test	MIL-STD-750 Method
GROUP A INSPECTION	
Subgroup 1	
Visual and mechanical examination	2071
Subgroup 2	
Luminous intensity ($\theta=0^{\circ}$)	-
Reverse current	4016
Forward voltage	4011
Subgroup 3	
Capacitance	4001
GROUP B INSPECTION	
Subgroup 1	
Physical dimensions	2066
Subgroup 2	
Solderability	2026
Thermal shock (temperature cycling)	1051
Thermal shock (glass strain)	1056
Hermetic seal	1071
Moisture resistance	1021
End points: Luminous intensity ($\theta=0^{\circ}$)	-
Subgroup 3	
Shock	2016
Vibration, variable frequency	2056
Constant acceleration	2006
End points: (same as subgroup 2)	
Subgroup 4	
Terminal strength	2036
End points: Hermetic seal	1071
Subgroup 5	
Salt atmosphere (corrosion)	1041
Subgroup 6	
High-temperature life (nonoperating)	1032
End points: Luminous intensity ($\theta=0^{\circ}$)	-
Subgroup 7	
Steady-state operation life	1027
End points: (same as subgroup 6)	

JANTX Equivalent: These devices undergo 100\% screening tests as listed below to the conditions and limits specified by MIL-S-19500 slash sheet. The JANTX lot has also been subjected to Group A, B and C tests as for the JAN Equivalent PART above.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	High Eff. Red HLMP-0363	Yellow HL.MP-0463	Green HLMP-0563	Units
Power Dissipation (derate linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	120	120	120	mW
DC Forward Current	3511	3511	35^{171}	mA
Peak Forward Current	$\begin{gathered} 60 \\ \text { See Fig. } 5 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ \text { See Fig, } 10 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ \text { See Fig. } 15 \\ \hline \end{gathered}$	mA
Operating and Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$			
Lead Soldering Temperature $[1.6 \mathrm{~mm}(0.063 \mathrm{in}$.) from body	$260^{\circ} \mathrm{C}$ for 7 seconds.			

NOTES: 1 . Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	HLMP-0363			HLMP-0463			HLMP-0563			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\mathrm{I}_{1} 1$	Axial Luminous Intensily	20	50		20	50		$A t I_{F}=25 \mathrm{~mA}$			mcd	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ \text { Figs. } 3,8,13 \\ \theta=0^{\circ} \\ \hline \end{gathered}$
$2 \Theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points		18			18			18		deg.	$\begin{gathered} {[1] \text { Figures }} \\ 6,11,16 \end{gathered}$
$\lambda_{\text {PEAK }}$	Peak Wavelength	590	635	695	550	583	660	525	565	600	nm	Measurement at Peak
λ_{d}	Dominant Wavelength		626			585			570		nm	[2]
r_{5}	Speed of Response		200			200			200		ns	
C	Capacitancel ${ }^{\text {[}}$		35	100		35	100		35	100	pF	$\mathrm{V}_{1}=0 ; f=1 \mathrm{MHz}$
$\theta^{\prime} \mathrm{C}$	Thermal Resistance*		425			425			425		${ }^{\circ} \mathrm{C} / \mathrm{W}$	[3]
Qjc	Thermal Resistance**		550			550			550		${ }^{\circ} \mathrm{C} / \mathrm{W}$	[3]
V_{F}	Forward Voltage		2.0	3.0		2.0	3.0		$\begin{gathered} 2.1 \\ F=25 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & \hline \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ Figures 2,7,12
$I_{\text {R }}$	Reverse Current			1.0			1.0			1.0	$\mu \mathrm{A}$	$V_{R}=3 \mathrm{~V}$
$B V_{\text {R }}$	Reverse Breakdown Voltage	5.0			5.0			5.0			\checkmark	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{v}	Luminous Efficacy		140			455			600		Im/W	[4]

NOTES:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Junction to Cathode Lead with 3.18 mm (0.125 inch) of leads exposed between base of flange and heat sink.
4. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.
5. Limits do not apply to non screened parts.
*Panel mount. **TO-18.

Figure 1. Relative Intensity vs. Wavelength.

Package Dimensions
HLMP-0364, 0464, 0564

NOTES:

1. THE PANELMOUNT SLEEVE is

EITHER A BLACK CONDUCTIVE
COMPOSTE OR BLACK
ANODIZED ALUMINUM.
2. MOUNTING HARDWARE WHICH INCLUDES ONE LOCK WASHER AND ONE HEX.NUT IS TNCLUDED WITH EACH PANEL MOUNTABLE HERMETIC SOLID STATE LAMP.
3. USE OF METRIC DRILL SIZE B. 20 MILLIMETRES OR ENGLISH DRIL.L SIZE P (0.323 INCH) IS RECOMMENDED FOR PRODUCING HOLE IN THE PANEL FOR PANEL MOUNTING.
4. ALL DIMENSIONS ARE IN MILLIMETRES INCHESI.
5. PACKAGE WEIGHT INCLUDING LAMP AND

PANEL MOUNT IS $1.2+1.8$ GRAMS. NUT AND WASHER IS AN EXTRA .6-1.0 GRAM.

OUTLINE TO-18

NOTES

1. ALL. DIMENSIONS ARE IN MILLIMETRES (INCHESI.

GOLDPLATED LEADS
3. PACKAGE WEIGHT OF LAMP ALONE

IS 25 - AO GAAMS.

Family of High Efficiency Red HLMP-0363/HLMP-0364

Figure 2. Forward Current vs. Forward Voltage.

Figure 5. Maximum Tolerable Peak Curent vs. Pulse Duration. (IDC MAX as per MAX Ratings)

I_{F} - FORWARD CURRENT - MA
Figure 3. Relative Luminous Intensity vs. Forward Current.

$l_{\text {peak }}$ - PEAK CURRENT - mA
Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Family of Yellow HLMP-0463/HLMP-0464

Figure 7. Forward Current vs. Forward Voltage.

t_{p} - PULSE DURATION - $\mu \mathrm{s}$
Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (ldc MAX as per MAX Ratings)

I_{F} - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity vs. Forward Current.

$I_{\text {PEAK }}$ - PEAK CURRENT - mA
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Family of Green HLMP-0563/HLMP-0564

Figure 12. Forward Current vs. Forward Voltage.

t_{p} - PULSE DURATION $-\mu s$
Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (ldc MAX as per MAX Ratings)

$$
I_{F}-\text { FORWARD CURRENT -mA }
$$

Figure 13. Relative Luminous Intensity vs. Forward Current.

IPEAK - PEAK CURRENT - mA
Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Contrast Enhancement

The objective of contrast enhancement is to optimize display readability. Adequate contrast enhancement can be achieved in indoor applications through luminous contrast techniques. Luminous contrast is the observed brightness of the illuminated indicator compared to the brightness of
the surround. Appropriate wavelength filters maximize luminous contrast by reducing the amount of light reflected from the area around the indicator while transmitting most of the light emitted by the indicator. These filters are described further in Application Note 1015.

Solid State Displays

- Smart Alphanumeric Displays
- Alphanumeric Displays
- AlGaAs Seven Segment Displays
- Seven Segment Displays
- Hexadecimal and Dot Matrix Displays
- Hermetic Displays

Solid State Displays

Hewlett-Packard's line of Solid State Displays answers all the needs of the designer. From smart alphanumeric displays to low cost numeric displays in sizes from 3 $\mathrm{mm}(0.15 \mathrm{in}$.) to 20 mm (0.8 in.) and colors of red, high efficiency red, yellow, and high performance green, the selection is complete.
Hewlett-Packard's 5×7 dot matrix alphanumeric display line comes in 3 character sizes: 3.8 mm (0.15 in.), 5 mm (0.2 in .), and $6.9 \mathrm{~mm}(0.27 \mathrm{in}$.). In addition, there are now 4 colors available for each size: standard red, yellow, high efficiency red, and green. This wide selection of package sizes and colors makes these products ideal for a variety of applications in avionics, industrial control, and instrumentation.

The newest addition to HP's alphanumeric display line, the intelligent eight character, 5.0 mm (0.2 in .) alphanumeric display in the very flexible 5×7 dot matrix font. Product features include, a low power onboard CMOS IC, ASCII decoder, the complete 128 ASCII character set, and the LED drivers. In addition, an on-board RAM offers the designer the ability to store up to 16 user-definable characters, such as foreign characters, special symbols and logos. These features make it ideal for avionics, medical, telecommunications, analytical equipment, computer products, office and industrial equipment applications.

Another addition to HP's alphanumeric display line is the large (0.68 inch and 1.04 inch) 5×7 dot matrix alphanumeric display family. This family is offered in standard red (both sizes), high efficiency red (1.04 inch only) and high performance green (both sizes). These displays have excellent viewability; the 1.04 inch character font can be read at up to 18 meters (12 meters for the 0.68 inch display). Applicationis for these large 5 x 7 displays include industrial machinery and process controllers, weighing scales, computer tape drive systems and transportation.

Hewlett-Packard's line of numeric seven segment displays is one of the broadest. From low cost, standard red displays to high light ambient displays producing $7.5 \mathrm{mcd} /$ segment, HP's $0.3 \mathrm{in} ., 0.43 \mathrm{in} ., 0.56 \mathrm{in}$., and 0.8 in. characters can provide a solution to every display need. HP's product offering include 0.56 in . dual digit displays and a line fo small package, bright 0.3 in. displays - the 0.3 in . Microbright. HP's borad line of numeric seven segment displays are ideal for electronic instrumentation, industrial, weighing scales, point-ofsale terminals and appliance applications. The newest addition to HP's line of numeric seven segment displays is the Double Heterojunction AlGaAs red low current display family. This family is offered in the 0.3 min . Mini, 0.43 in ., 0.56 in ., and 0.8 in . package sizes. These AlGaAs numeric displays are very bright at low drive currents - typical intensity of $650 \mathrm{mcd} /$ segment at 1 mA /segment drive. These displays are ideal for battery operated and other low power applications.

High Reliability Displays

In addition to Hewlett-Packard commercial solid state displays, Hewlett-Packard offers a complete line of hermetic packages for high reliability military and aerospace applications. These package consists of numeric and hexadecimal displays, 5×7 dot matrix alphanumeric displays with extended temperature ranges, and fully intelligent monolithic 16 segment displays with extended temperature ranges and on board CMOS IC's. Similar to the commercial display product selection, the high reliability display products are available in a variety of character sizes and all four colors: standard red, high efficiency red, yellow, and high performance green.
Hewlett-Packard offers three different testing programs for the high reliability conscious display customer. These programs include DESC Qualification on the MIL-D-87157 for the hermetically sealed 4N51-4N54 hexadecimal and numeric displays; and two levels of inhouse high reliability testing programs that conform or a modification to MIL-D-87157 Quality Level A Test Tables for all other high reliability display products. Please refer to the individual data sheets for a complete description of each display's testing program.

Integrated numeric and hexadecimal displays (with onboard IC's) solve the designer's decoding/driving problems. They are available in plastic packages for general purpose usage, ceramic/glass packages for industrial applications, and hermetic packages for high reliability applications. This family of displays has been designed for ease of use in a wide range of environments.

Alphanumeric LED Displays

Device	P/N	Description	Color	Application	Page No. No
	$\begin{aligned} & \text { HDSP-2111 } \\ & \text { HDSP-2112 } \end{aligned}$	$5.0 \mathrm{~mm}(0.2 \mathrm{in}$.) 5×7 Eight Character Intelligent Display Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Yellow High Efficiency Red	- Avionics - Medical - Telecommunications - Analytical Equipment - Computer Products - Office Equipment - Industrial Equipment	7-19
	HPDL-1414	2.85 mm (.112") Four Character Monolithic Smart Alphanumeric Display Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red	- Portable Data Entry Devices - Industrial Instrumentation - Computer Peripherals - Telecommunication Equipment	7-30
	HPDL-2416	4.1 mm (.16") Four Character Monolithic Smart Alphanumeric Display Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red	- Portable Data Entry Devices - Medical Equipment - Industrial Instrumentation - Computer Peripherals - Telecommunication Equipment	7-38
	HDSP-2000 HDSP-2001 HDSP-2002 HDSP-2003	3.8 mm (. $15^{\prime \prime}$) 5×7 Four Character Alphanumeric 12 Pin Ceramic 7.62 mm (.3") DIP with untinted glass lens. Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red Yellow High Efficiency Red High Performance Green	- Computer Terminals - Business Machines - Portable, Hand-held or mobile data entry, readout or communications For further information see Application Note 1016.	7-46
	HDSP-2300 HDSP-2301 HDSP-2302 HDSP-2303	$5.0 \mathrm{~mm}\left(.20^{\prime \prime}\right) 5 \times 7$ Character Alphanumeric 12 Pin Ceramic 6.35 mm (.25") DIP with untinted glass lens Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red Yellow High Efficiency Red High Performance Green	- Avionics - Grounds Support, Cockpit, Shipboard Systems - Medical Equipment - Industrial and Process control - Computer Peripherals and Terminals For further information see Application Note 1016.	7-50
	$\begin{aligned} & \text { HDSP-2490 } \\ & \text { HDSP-2491 } \\ & \text { HDSP-2492 } \\ & \text { HDSP-2493 } \end{aligned}$	$6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 28 Pin Ceramic 15.24 mm (.6") DIP with untinted glass lens Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red Yellow High Efficiency Red High Performance Green	- High Brightness Ambient Systems - Industrial and Process Control - Computer Peripherals - Ground Support Systems For further information see Application Note 1016.	7-56
	5082-7100 5082-7101 5082-7102	$6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Three Character Alphanumeric 22 Pin Ceramic 15.2 mm (. $6^{\prime \prime}$) DIP $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 28 Pin Ceramic 15.2 mm (. $6^{\prime \prime}$) DIP $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Five Character Alphnumeric 36 Pin Ceramic $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right)$ DIP	Red Untinted Glass Lens	General Purpose Market - Business Machines - Calculators - Solid State CRT - Industrial Equipment	7-80

Alphanumeric LED Displays (cont.)

Device		Description	Color	Application	Page No.
	HDSP-6504	3.8 mm (.15") Sixteen Segment Four Character Alphanumeric 22 Pin $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right)$ DIP	Red	- Computer Terminals - Hand Held Instruments - In-Plant Control Equipment - Diagnostic Equipment	7.84
	HDSP-6508	3.8 mm (.15") Sixteen Segment Eight Character Alphanumeric 26 Pin $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right) \mathrm{DIP}$			
	HDSP-6300	3.56 mm (.14") Sixteen Segment Eight Character Alphanumeric 26 Pin 15.2 mm (.6") DIP		- Computer Peripherals and Terminals - Computer Base Emergency Mobile Units - Automotive Instrument Panels - Desk Top Calculators - Hand-Held Instruments For further information ask for Application Note 931.	7-90

Alphanumeric Display Systems

Device	P/N	Description	Color	Application	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HDSP-6621	Single Line 16 Character Display Board Utilizing the HPDL-1414	$\begin{aligned} & 114.30 \mathrm{~mm}\left(4.50^{\prime \prime}\right) \mathrm{L} x \\ & 30.48 \mathrm{~mm}\left(1.20^{\prime \prime}\right) \mathrm{Hx} \\ & 8.12 \mathrm{~mm}\left(0.32^{\prime \prime}\right) \mathrm{D} \end{aligned}$	- Computer Peripherals - Telecommunications - Industrial Equipment - Instruments	7-60
	HDSP-6624	Single Line 32 Character Display Board Utilizing the HPDL-2416	$\begin{aligned} & 223.52 \mathrm{~mm}\left(8.80^{\prime \prime}\right) L x \\ & 58.42 \mathrm{~mm}\left(2.30^{\prime \prime}\right) \mathrm{Hx} \\ & 15.92 \mathrm{~mm}\left(0.62^{\prime \prime}\right) \mathrm{D} \end{aligned}$		
	HDSP-2416	Single-Line 16 Character Display Panel Utilizing the HDSP-2000	$162.56 \mathrm{~mm}\left(6.4^{\prime \prime}\right) \mathrm{Lx}$ $58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{H} x$ $7.11 \mathrm{~mm}\left(0.28^{\prime \prime}\right) \mathrm{D}$	- Data Entry Terminals - Instrumentation	7-68
	HDSP-2424	Single-Line 24 Character Display Panel Utilizing the HDSP-2000			
	HDSP-2432	Single-Line 32 Character Display Panel Utilizing the HDSP-2000			
	HDSP-2440	Single-Line 40 Character Display Panel Utilizing the HDSP-2000 Display	$\begin{array}{\|l} \hline 177.80 \mathrm{~mm}\left(7.0^{\prime \prime}\right) L x \\ 58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{Hx} \\ 7.11 \mathrm{~mm}\left(.28^{\prime \prime}\right) \mathrm{D} \\ \hline \end{array}$		
ARATK	HDSP-2470	HDSP-2000 Display Interface Incorporating a 64 Character ASCII Decoder	$\begin{aligned} & 171.22 \mathrm{~mm}\left(6.74^{\prime \prime}\right) \mathrm{Lx} \\ & 58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{Hx} \\ & 16.51 \mathrm{~mm}\left(.65^{\prime \prime}\right) \mathrm{D} \end{aligned}$		
	HDSP-2471	HDSP-2000 Display Interface Incorporating a 128 Character ASCII Decoder			
	HDSP-2472	HDSP-2000 Display Interface without ASCII Decoder. Instead, a 24 Pin Socket is Provided to Accept a Custom 128 Character Set from a User Programmed 1K x 8 PROM			

Large Alphanumeric Displays

Device	P/N	Description	Package	Typical ly @ 50 mA Peak, 1/5 Duty Factor	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
$\begin{aligned} & 00000 \\ & 00000 \\ & 00000 \\ & 00000 \\ & 00000 \\ & 00000 \\ & 00000 \\ & \hline \end{aligned}$	HDSP-4701 HDSP-4703	Red, Common Row Anode Red, Common Row Cathode	17.3 mm ($0.68^{\prime \prime}$) Dual-in-Line $0.70^{\prime \prime} \mathrm{H} \times 0.50^{\prime \prime} \mathrm{W}$ x $0.26^{\prime \prime}$ D	$770 \mu \mathrm{~cd} /$ dot (100 mA Peak, $1 / 5$ Duty Factor)	7-95
	HDSP-4401 HDSP-4403	Red, Common Row Anode Red, Common Row Cathode	$\begin{aligned} & 26.5 \mathrm{~mm}\left(1.04^{\prime \prime}\right) \\ & \text { Dual-in-Line } \\ & 1.10^{\prime \prime} \mathrm{H} \times 0.79^{\prime \prime} \mathrm{W} \\ & \times 0.25^{\prime \prime} \mathrm{D} \end{aligned}$	$860 \mu \mathrm{~cd} / \mathrm{dot}$ (100 mA Peak, $1 / 5$ Duty Factor)	
	HDSP-4501 HDSP-4503	High Efficiency Red, Common Row Anode High Efficiency Red, Common Row Cathode		$3500 \mu \mathrm{~cd} / \mathrm{dot}$	

Double Heterojunction AIGaAs Red Low Current Seven Segment LED Displays

High Efficiency Red Low Current Seven Segment LED Displays

Package	Device	Description	Typical lv @ 2 mA DC	$\begin{aligned} & \text { Page } \\ & \mathrm{No} \text {. } \end{aligned}$
	HDSP-7511 HDSP-7513 HDSP-7517 HDSP-7518	High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Overflow ± 1 Common Anode High Efficiency Red, Overflow ± 1 Common Cathode	$270 \mu \mathrm{~cd} / \mathrm{seg}$.	7-109
$7.62 \mathrm{~mm}\left(0.3^{\prime \prime}\right)$ Microbright Dual-in-Line $0.5^{\prime \prime} \mathrm{H} \times 0.3^{\prime \prime} \mathrm{W} \times 0.24^{\prime \prime} \mathrm{D}$				
	HDSP-3350 HDSP-3351 HDSP-3353 HDSP-3356	High Efficiency Red, Common Anode, LHDP High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Universal Polarity and Overflow Indicator, RHDP	$300 \mu \mathrm{~cd} / \mathrm{seg}$.	
$\begin{aligned} & 10.92 \mathrm{~mm}\left(0.43^{\prime \prime}\right) \\ & \text { Dual-in-line } \\ & 0.75^{\prime \prime} \mathrm{H} \times 0.5^{\prime \prime} \mathrm{W} \times 0.25^{\prime \prime} \mathrm{D} \end{aligned}$				
$\left[\begin{array}{cc} ++^{+++} \\ 凸 & 0 \\ \hdashline & 0 \\ \cdots++ & 0 \end{array}\right]$	HDSP-5551 HDSP-5553 HDSP-5557 HDSP-5558	High Efficiency Red, Commoh Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Overflow ± 1 Common Anode High Efficiency Red, Overflow ± 1 Common Cathode	$370 \mu \mathrm{~cd} / \mathrm{seg}$.	
$14.2 \mathrm{~mm}\left(0.56^{\prime \prime}\right)$ Dual-in-Line (Single Digit) $0.67^{\prime \prime} \mathrm{H} \times 0.49^{\prime \prime} \mathrm{W} \times 0.31^{\prime \prime} \mathrm{D}$				

Red, High Efficiency Red, Yellow, and High Performance Green Seven Segment LED Displays

Package	Device	Description	Typical Iv @ 20 mA DC	Page No.
$\left[\begin{array}{ll} + & { }^{+} \\ +{ }^{+} & 0^{+} \\ +a_{0}^{+} & 0_{0}^{+} \\ + & + \\ + & \end{array}\right.$	HDSP-7301	Red, Common Anode, RHDP	$1100 \mu \mathrm{~cd} / \mathrm{seg}$	7-115
	HDSP-7302	Red, Common Anode, RHDP, Colon		
	HDSP-7303	Red, Common Cathode, RHDP		
	HDSP-7304	Red, Common Cathode, RHDP, Colon		
	HDSP-7307	Red, Overflow, ± 1, Common Anode, RHDP		
	HDSP-7308	Red, Overflow, ± 1, Common Cathode, RHDP		
	HDSP-7311	Bright Red, Common Anode, RHDP	$1355 \mu \mathrm{~cd} / \mathrm{seg}$	
	HDSP-7313	Bright Red, Common Cathode, RHDP		
	HDSP-7317	Bright Red, Overflow, ± 1, Common Anode		
	HDSP-7318	Bright Red, Overflow, ± 1, Common Cathode		
	HDSP-7401	$\begin{aligned} & \text { Yellow, Common Anode, RHDP } \\ & \text { Yellow, Common Anode, RHDP, Colon } \\ & \text { Yellow, Common Cathode, RHDP } \\ & \text { Yellow, Common Cathode, RHDP, Colon } \\ & \text { Yellow, Overflow, } \pm 1, \text { Common Anode } \\ & \text { Yellow, Overflow, } \pm 1 \text {, Common Cathode } \\ & \hline \end{aligned}$	$2750 \mu \mathrm{~cd} / \mathrm{seg}$	
$\left.7.62 \mathrm{~mm} \text { (. } 3^{\prime \prime}\right)$ Microbright Dual-in-Line $.5^{\prime \prime} \text { H x } .3^{\prime \prime} \text { W x } .24^{\prime \prime} \text { D }$	HDSP-7402			
	HDSP-7403			
	HDSP-7404			
	HDSP-7407			
	HDSP-7408			
	HDSP-7501	High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Anode, RHDP, Colon High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Common Cathode, RHDP, Colon High Efficiency Red, Overflow, ± 1, Common Anode High Efficiency Red, Overflow, ± 1, Common Cathode	$5400 \mu \mathrm{~cd} / \mathrm{seg}$	
	HDSP-7502			
	HDSP-7503			
	HDSP-7504			
	HDSP-7507			
	HDSP-7508			
	HDSP-7801	High Performance Green, Common Anode, RHDP	$3700 \mu \mathrm{~cd} / \mathrm{seg}$	
	HDSP-7802	High Performance Green, Common Anode, RHDP, Colon		
	HDSP-7803	High Performance Green, Common Cathode, RHDP		
	HDSP-7804	High Performance Green, Common Cathode, RHDP, Colon		
	HDSP-7807	High Performance Green, Overflow, ± 1, Common Anode		
	HDSP-7808	High Performance Green, Overflow, ± 1, Common Cathode		
7.62 mm (.3") Dual-in-line .75" H x 4 " W x . $18^{\prime \prime}$ D	5082-7730	Red, Common Anode, LHDP	$770 \mu \mathrm{~cd} / \mathrm{seg}$	7-121
	5082-7731	Red, Common Anode, RHDP		
	5082-7736	Red, Universal Polarity and Overflow Indicator, RHDP		
	5082-7740	Red, Common Cathode, RHDP		
	5082-7610	High Efficiency Red, Common Anode, LHDP	$4400 \mu \mathrm{~cd} / \mathrm{seg}$	
	5082-7611	High Efficiency Red, Common Anode, RHDP		
	5082-7613	High Efficiency Red, Common Cathode, RHDP		
	5082-7616	High Efficiency Red, Universal Polarity Overflow Indicator, RHDP		
	5082-7620	Yellow, Common Anode, LHDP	$3400 \mu \mathrm{~cd} / \mathrm{seg}$	
	5082-7621	Yellow, Common Anode, RHDP		
	5082-7623	Yellow, Common Cathode, RHDP		
	5082-7626	Yellow, Universal Polarity and Overflow Indicator, RHDP		
	HDSP-3600	High Performance Green, Common Anode, LHDP	$3950 \mu \mathrm{~cd} / \mathrm{seg}$	
	HDSP-3601	High Performance Green, Common Anode, RHDP		
	HDSP-3603	High Performance Green, Common Cathode, RHDP		
	HDSP-3606	High Performance Green, Universal Overflow Indicator, RHDP		

Red, High Efficiency Red, Yellow, and High Performance Green Seven Segment LED Displays (continued)

								Descriptlon	Typical IV @ 20 mA DC

Red, High Efficiency Red, Yellow, and High Performance Green Seven Segment LED Displays (continued)

Package	Device	Description	Typical Iv @ 20 mA DC	Page $\mathrm{No} \text {. }$
	HDSP-3400	Red, Common Anode, LHDP	$1200 \mu \mathrm{~cd} / \mathrm{seg}$	7-138
	HDSP-3401	Red, Common Anode, RHDP		
	HDSP-3403	Red, Common Cathode, RHDP		
	HDSP-3405	Red, Common Cathode, LHDP		
	HDSP-3406	Red, Universal Polarity Overflow Indicator, RHDP		
	HDSP-3900	High Efficiency Red, Common Anode, LHDP	$4800 \mu \mathrm{~cd} / \mathrm{seg}$	
	HDSP-3901	High Efficiency Red, Common Anode, RHDP		
	HDSP-3903	High Efficiency Red, Common Cathode, RHDP		
	HDSP-3905	High Efficiency Red, Common Cathode, LHDP		
	HDSP-3906	High Efficiency Red, Universal Polarity Overflow Indicator, RHDP		
	HDSP-4200	Yellow, Common Anode, LHDP	$3400 \mu \mathrm{~cd} / \mathrm{seg}$	
	HDSP-4201	Yellow, Common Anode, RHDP		
	HDSP-4203	Yellow, Common Cathode, RHDP		
	HDSP-4205	Yellow, Common Cathode, LHDP		
	HDSP-4206	Yellow, Universal Polarity Overflow Indicator, RHDP		
	HDSP-8600	High Performance Green, Common Anode, LHDP	$3600 \mu \mathrm{~cd} / \mathrm{seg}$	
20 mm (8 " ${ }^{\text {) }}$	HDSP-8601	High Performance Green, Common Anode, RHDP		
Dual-in-Line	HDSP-8603	High Performance Green, Common Cathode, RHDP		
1.09" H x . 78 " W x 33 " D	HDSP-8605	High Performance Green, Common Cathode, LHDP		
	HDSP-8606	High Performance Green, Universal Overflow Indicator, RHDP		

High Ambient Light, High Efficiency Red, Yellow, and High Performance Green Seven Segment Displays

Package	Device	Description	Typical IV @ 100 mA Peak 1/5 Duty Factor	Page No.
	HDSP-3530 HDSP-3531 HDSP-3533 HDSP-3536	High Efficiency Red, Common Anode, LHDP High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Universal Polarity Overflow Indicator, RHDP	$7100 \mu \mathrm{~cd} / \mathrm{seg}$	7-145
7.62 mm (.3") Dual-in-Line .75" H x . 4 " W x . $18^{\prime \prime}$ D	HDSP-4030 HDSP-4031 HDSP-4033 HDSP-4036	Yellow, Common Anode, LHDP Yellow, Common Anode, RHDP Yellow, Common Cathode, RHDP Yellow, Universal Polarity Overflow Indicator, RHDP	$4500 \mu \mathrm{~cd} / \mathrm{seg}$	
	HDSP-3600 HDSP-3601 HDSP-3603 HDSP-3606	High Performance Green, Common Anode, LHDP High Performance Green, Common Anode, RHDP High Performance Green, Common Cathode, RHDP High Performance Green, Universal Overflow Indicator, RHDP	$7000 \mu \mathrm{~cd} /$ seg (90 mA Peak 1/3 Duty Factor)	7-121

High Ambient Light, High Efficiency Red, Yellow, and High Performance Green Seven Segment Displays (continued)

Package	Device	Description	Typical IV @ 100 mA Peak 1/5 Duty Factor	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HDSP-3730 HDSP-3731 HDSP-3733 HDSP-3736	High Efficiency Red, Common Anode, LHDP High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Universal Polarity Overflow Indicator, RHDP	$10900 \mu \mathrm{~cd} / \mathrm{seg}$	7-145
$10.92 \mathrm{~mm} \text { (.43") }$ Dual-in-Line $.75^{\prime \prime} \text { H x } .5^{\prime \prime} \text { W x } .25^{\prime \prime} \text { D }$	HDSP-4130 HDSP-4131 HDSP-4133 HDSP-4136	Yellow, Common Anode, LHDP Yellow, Common Anode, RHDP Yellow, Common Cathode, RHDP Yellow, Universal Polarity Overflow Indicator, RHDP	$5000 \mu \mathrm{~cd} / \mathrm{seg}$	
	HDSP-4600 HDSP-4601 HDSP-4603 HDSP-4606	High Performance Green, Common Anode, LHDP High Performance Green, Common Anode, RHDP High Performance Green, Common Cathode, RHDP High Performance Green, Universal Overflow Indicator, RHDP	$6800 \mu \mathrm{~cd} / \mathrm{seg}$ (90 mA Peak 1/3 Duty Factor)	7-121
14.2 mm (. 56 ") Dual-in-Line $.67^{\prime \prime} \mathrm{H} \times .49^{\prime \prime} \mathrm{W} \times .31^{\prime \prime} \mathrm{D}$	HDSP-5531 HDSP-5533 HDSP-5537 HDSP-5538	High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red ± 1, Common Anode High Efficiency Red ± 1, Common Cathode	$6000 \mu \mathrm{~cd} / \mathrm{seg}$	7-145
	HDSP-5731 HDSP-5733 HDSP-5737 HDSP-5738	Yellow, Common Anode, RHDP Yellow, Common Cathode, RHDP Yellow, ± 1, Common Anode Yellow, ± 1, Common Cathode	$5500 \mu \mathrm{~cd} / \mathrm{seg}$	
	$\begin{aligned} & \text { HDSP-5601 } \\ & \text { HDSP-5603 } \\ & \text { HDSP-5607 } \\ & \text { HDSP-5608 } \\ & \hline \end{aligned}$	High Performance Green, Common Anode, RHDP High Performance Green, Common Cathode, RHDP High Performance Green, Common Anode Overflow Indicator High Performance Green, Common Cathode Overflow Indicator	$9400 \mu \mathrm{~cd} / \mathrm{seg}$ (90 mA Peak 1/3 Duty Factor)	7-130
	HDSP-3900 HDSP-3901 HDSP-3903 HDSP-3905 HDSP-3906	High Efficiency Red, Common Anode, LHDP High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Common Cathode, LHDP High Efficiency Red, Universal Overflow Indicator, RHDP	$7000 \mu \mathrm{~cd} / \mathrm{seg}$	7-145
	$\begin{aligned} & \text { HDSP-4200 } \\ & \text { HDSP-4201 } \\ & \text { HDSP-4203 } \\ & \text { HDSP-4205 } \\ & \text { HDSP-4206 } \end{aligned}$	Yellow, Common Anode, LHDP Yellow, Common Anode, RHDP Yellow, Common Cathode, RHDP Yellow, Common Cathode, LHDP Yellow, Universal Polarity Overflow Indicator, RHDP	$7000 \mu \mathrm{~cd} / \mathrm{seg}$	
20 mm (.8") Dual-in-Line 1.09" H x . $78^{\prime \prime}$ W X $.33^{+}$D	HDSP-8600 HDSP-8601 HDSP-8603 HDSP-8605 HDSP-8606	High Performance Green, Common Anode, LHDP High Performance Green, Common Anode, RHDP High Performance Green, Common Cathode, RHDP High Performance Green, Common Cathode, LHDP High Performance Green, Universal Overflow Indicator, RHDP	$5800 \mu \mathrm{~cd} / \mathrm{seg}$ (90 mA Peak 1/3 Duty Factor)	

Solid State Display Intensity and Color Selections

Option	Description	Page No.	
Option S01 Option S02 Option S20		Intensity and Color Selected Displays	$7-153$

Hexadecimal and Dot Matrix Displays

Device		Description	Package	Application	Page No.
	$5082-7300$ (A)	Numeric RHDP Built-in Decoder/Driver/Memory	$\begin{aligned} & 8 \text { Pin Epoxy } \\ & 15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right) \text { DIP } \end{aligned}$	General Purpose Market - Test Equipment - Business Machines - Computer Peripherals - Avionics	7-154
	$5082-7302$ (B)	Numeric LHDP Built-in Decoder/Driver/Memory			
	$5082-7340$ (C)	Hexadecimal Built-in Decoder/Driver/Memory			
	$5082-7304$ (D)	Over Range ± 1			
	$5082-7356$ (A)	Numeric RHDP Built-in Decoder/Driver/Memory	8 Pin Glass Ceramic 15.2 mm (.6") DIP	- Medical Equipment - Industrial and Process Control Equipment - Computers - Where Ceramic Package IC's are required - High Reliability Applications	7-158
	$5082-7357$ (B)	Numeric LHDP Built-in Decoder/Driver/Memory			
	5082-7359 (C)	Hexadecimal Built-in Decoder/Driver/Memory			
	5082-7358 (D)	Over Range ± 1			
(A) (C) (B) (D) 7.4 mm (.29") 4×7 Single Digit Package: 8 Pin Glass Ceramic 15.2 mm (. 6 ") DIP	HDSP-0760 (A)	Numeric RHDP Built in Decoder/Driver/Memory ${ }^{\text {• }}$	High Efficiency Red Low Power	- Military Equipment - Ground Support Equipment - Avionics - High Reliability Applications	7-163
	HDSP-0761 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0762 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0763 (D)	Over Range ± 1			
	HDSP-0770 (A)	Numeric RHDP Built in Decoder/Driver/Memory	High Efficiency Red High Brightness	- High Brightness Ambient Systems - Cockpit, Shipboard Equipment - High Reliability Applications	
	HDSP-0771 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0772 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0763 (D)	Over Range ± 1			
	HDSP-0860 (A)	Numeric RHDP Built in Decoder/Driver/Memory	Yellow	- Business Machines - Fire Control Systems - Military Equipment - High Reliability Applications	
	HDSP-0861 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0862 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0863 (D)	Over Range ± 1			

Hexadecimal and Dot Matrix Displays (continued)

Device and Package		Description	Color	Application	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
(See previous page)	HDSP-0960 (A)	Numeric RHDP Built in Decoder/Driver/Memory	High Performance Green	- Business Machines - Fire Control Systems - Military Equipment - High Reliability Applications	7-163
	HDSP-0961 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0962 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0963 (D)	Over Range ± 1			

Monolithic Numeric Displays

Device		Description	Package	Application	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	5082-7404	2.79 mm (.11") Red, 4 Digits Centered D.P.	12 Pin Epoxy, 7.62 mm (.3") DIP	Small Display Market - Portable/Battery Power Instruments - Portable Calculators - Digital Counters - Digital Thermometers - Digital Micrometers - Stopwatches - Cameras - Copiers - Digital Telephone Peripherals - Data Entry Terminals - Taxi Meters For further information ask for Application Note 937.	7-169
	5082-7405	2.79 mm (.11") Red, 5 Digits, Centered D.P.	14 Pin Epoxy, 7.62 mm (.3") DIP		
$\square \square \square \square \square \square \pi$	5082-7414	2.79 mm (.11") Red, 4 Digits, RHDP	12 Pin Epoxy, 7.62 mm (.3") DIP		
	5082-7415	2.79 mm (.11") Red, 5 Digits, RHDP	14 Pin Epoxy, 7.62 mm (.3") DIP		
, \square^{\square}	5082-7432	2.79 mm (.11") Red, 2 Digits, Right, RHDP	12 Pin Epoxy, $7.62 \mathrm{~mm}\left(.3^{\prime \prime}\right)$ DIP		
सित्या	5082-7433	$\begin{aligned} & 2.79 \mathrm{~mm}\left(.11^{\prime \prime}\right) \text { Red, } 3 \text { Digits, } \\ & \text { RHDP } \end{aligned}$			
(80000000000 018	5082-7441	2.67 mm (.105") Red, 9 Digits, Mounted on P.C. Board	$50.8 \mathrm{~mm}\left(2^{\prime \prime}\right) \mathrm{PC}$ Bd., 17 Term. Edge Con.		7-174
	5082-7446	2.92 mm (.115") Red, 16 Digits, Mounted on P.C. Board	$69.85 \mathrm{~mm}\left(2.750^{\prime \prime}\right)$ PC Bd., 24 Term. Edge Con.		
(1)	5082-7295	4.45 mm (. $175^{\prime \prime}$) Red, 15 Digits, Mounted on P.C. Board. RHDP	91.2 mm (3.59") PC Bd., 23 Term. Edge Con.		

Hermetic Hexadecimal and Numeric Dot Matrix Displays

[^9]Hermetic Hexadecimal and Numeric Dot Matrix Displays (continued)

Hermetic Hexadecimal and Numeric Dot Matrix Displays (continued)

Device		Description	Color	Application	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
(See previous page)	$\begin{aligned} & \text { HDSP-0984 } \\ & \text { (D) } \\ & \text { HDSP-0984 } \\ & \text { TXV } \\ & \text { HDSP-0984 } \\ & \text { TXVB } \\ & \hline \end{aligned}$	Hexadecimal, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157	High Performance Green	- Ground, Airborne, Shipboard Equipment - Fire Control Systems - Space Flight Systems - Other High Reliability Uses	7-190

Hermetic Alphanumeric Displays

Device		Description	Color	Application	$\begin{aligned} & \text { Page } \\ & \mathrm{No.} \end{aligned}$
	HMDL-2416 HMDL-2416 TXV HMDL-2416 TXVB	4.1 mm ($0.16^{\prime \prime}$) Four Character Monolithic Smart Alphanumeric Display Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	Red	- Military Equipment - High Reliability Applications - Military Telecommunications	7-204
	$\left.\left.\begin{array}{c}\text { HDSP-2351 } \\ \text { HDSP-2351 } \\ \text { TXV }\end{array}\right\} \begin{array}{c}\text { HDSP-2351 } \\ \text { TXVB }\end{array}\right]$HDSP-2352 HDSP-2352 TXV HDSP-2352 TXVB HDSP-2353 HDSP-2353 TXV HDSP-2353 TXVB HDSP-2010	$4.87 \mathrm{~mm}\left(0.19^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric Sunlight Viewable Display Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	Yellow High Efficiency Red High Performance Green	- Military Avionics - Military Cockpit - Military Ground Support Systems	7-214
	$\begin{aligned} & \text { HDSP-2010 } \\ & \\ & \text { HDSP-2010 } \\ & \text { TXV } \\ & \text { HDSP-2010 } \\ & \text { TXVB } \end{aligned}$	3.7 mm (.15") 5×7 Four Character Alphanumeric Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ TXV Hi Rel Screenéd TXVB Hi Rel Screened to Level A MIL-D-87157	Red, Red Glass Contrast Filter	- Extended temperature applications requiring high reliability. - I/0 Terminals - Avionics For further information see Application Note 1076.	7-198

Hermetic Alphanumeric Displays (continued)

Features

- SMART ALPHANUMERIC DISPLAY On-Board CMOS IC Built-in RAM ASCII Decoder LED Drive Circuitry
- 128 ASCII CHARACTER SET
- 16 USER DEFINABLE CHARACTERS
- PROGRAMMABLE FEATURES Individual Flashing Character
Full Display Blinking
Multi-Level Dimming and Blanking
Self Test
Clear Function
- READ/WRITE CAPABILITY
- FULL TTL COMPATIBILITY
- SINGLE 5 VOLT SUPPLY
- EXCELLENT ESD PROTECTION
- WAVE SOLDERABLE
- END STACKABLE

Description

The HDSP-2111 (yellow) and HDSP-2112 (high efficiency red) are eight-digit, 5×7 dot matrix, alphanumeric displays. The 5.0 mm (0.2 inch) high characters are packaged in a standard 15.24 mm (0.6 inch) 28 pin DIP. The on-board CMOS IC has the ability to decode 128 ASCII characters, which are permanently stored in ROM. In addition, 16 programmable symbols may be stored in on-board RAM. Seven brightness levels provide versatility in adjusting the display intensity and power consumption. The HDSP-211X is designed for standard microprocessor interface techniques. The display and special features are accessed through a bidirectional eight-bit data bus. These features make the HDSP-211X ideally suited for applications where a low cost, low power alphanumeric display is required.

Typical Applications

- AVIONICS
- COMPUTER PERIPHERALS
- INDUSTRIAL INSTRUMENTATION
- MEDICAL EQUIPMENT
- PORTABLE DATA ENTRY DEVICES
- TELECOMMUNICATIONS
- TEST EQUIPMENT

Absolute Maximum Ratings

Supply Voltage, V_{Cc} to $\mathrm{Ground}[1]$. -0.3 to 7.0 V
Operating Voltage, V_{CC} to $\mathrm{Ground}^{[2]}$. 5.5 V
Input Voltage, Any Pin to Ground $\ldots . .-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Free Air Operating Temperature

$$
\text { Range, } T_{A} \ldots \ldots \ldots0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Relative Humidity (non-condensing) 85\%
Storage Temperature, $\mathrm{T}_{\mathrm{S}} \ldots$.
Maximum Solder Temperature 1.59 mm (0.063 in .) below Seating Plane, t < 5 sec $260^{\circ} \mathrm{C}$

Notes:

1. Maximum Voltage is with no LEDs illuminated.
2. 20 dots on in all locations at full brightness.
[^10]
Package Dimensions

NOTES:

1. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS 0.254 mm (0.010 IN).
. DIMENSIONS IN mm (INCHES)
2. FOR YELLOW ONLY.

Character Set

Recommended Operating Conditions

Parameter	Symbol	Min.	Nom.	Max.	Units
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	V

Electrical Characteristics Over Operating Temperature Range
$4.5<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}$ (unless otherwise specified)

Parameter	Symbol	Min.	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Typ.[1] } \end{aligned}$	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Max.[1] } \end{gathered}$	Max.	Units	Test Conditions
Input Leakage (Input without pullup)	Ii				± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {in }}=0 \text { to } V_{C C} \text { pins CLK } \\ & D_{0}-D_{7}, A_{0}-A_{4} \end{aligned}$
Input Current (input with pullup)	lip		11	18	30	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {in }}=\frac{0 \text { to }}{} V_{C C} \text { pins } \overline{R S T}, \\ & C L S, \overline{W R}, \overline{R D}, \overline{C E}, \overline{F L} \end{aligned}$
Icc Blank	$\mathrm{ICC}^{\text {(BLK }}$)		0.5	1.0	1.5	mA	$V_{\text {in }}=5.0 \mathrm{~V}$
lcc 8 digits 12 dots/character(2]	$\mathrm{I}_{\mathrm{cc}}(\mathrm{V})$		200	255	330	mA	" V " on in all 8 locations
${ }_{C C} 8$ digits 20 dots/character[2]	$\operatorname{lcc}(\#)$		300	370	430	mA	"\#" on in all 8 locations
Input Voltage High	Vih	2.0			$\begin{gathered} V_{C C} \\ +0.3 \mathrm{~V} \end{gathered}$	V	$V_{C C}=5.5 \mathrm{~V}$
Input Voltage Low	v_{il}	$\begin{aligned} & \text { GND } \\ & -0.3 V \end{aligned}$			0.8	V	$V_{C C}=4.5 \mathrm{~V}$
Output Voltage High	$V_{\text {oh }}$	2.4				V	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\text {Oh }}=-40 \mu \mathrm{~A}$
Output Voltage Low $D_{0}-D_{7}$	Vol				0.4	V	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V}, \mathrm{IOI}_{\mathrm{O}}= \\ & 1.6 \mathrm{~mA} \end{aligned}$
Output Voltage Low CLK					0.4	V	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\text {Ol }}=40 \mu \mathrm{~A}$
Thermal Resistance IC Junction-to-Case	$\theta_{\mathrm{j}-\mathrm{c}}$		15			${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes:

1. $V_{\mathrm{CC}}=5.0 \mathrm{~V}$
2. Average $I_{c c}$ measured at full brightness. See Table 2 in Control Word section for $I_{C C}$ at lower brightness levels. Peak $I_{c C}=28 / 15 \times$ Average $I_{\text {cc }}$ (\#).

Optical Characteristics at $25^{\circ} \mathrm{C}^{[3]}$

$V_{C C}=5.0 \mathrm{~V}$, at Full Brightness
High Efficiency Red HDSP-2112

Description	Symbol	Min.	Typical	Max.	Units
Luminous Intensity Character average (\#)	I_{V}	2.5			
Peak Wavelength	$\lambda_{\text {(peak) }}$		7.5		mcd
Dominant Wavelength	$\lambda_{\text {(d) }}$		635		nm

Yellow HDSP-2111

Description	Symbol	Min.	Typical	Max.	Units
Luminous Intensity Character average (\#)	IV_{V}	2.5	7.5		mcd
Peak Wavelength	$\lambda($ peak $)$		583		nm
Dominant Wavelength	$\lambda(\mathrm{d})$		585		nm

Note:

3. Refers to the initial case temperature of the device immediately prior to the light measurement.

AC Timing Characteristics Over Temperature Range

$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Reference number	Symbol	Description	Min.	Units
1	tace	Display Access Time Write Read	$\begin{aligned} & 210 \\ & 230 \end{aligned}$	ns
2	tacs	Address Setup Time to Chip Enable	10	ns
3	tce	Chip Enable Active Time Write Read	$\begin{aligned} & 140 \\ & 160 \end{aligned}$	ns
4	tach	Address Hold Time to Chip Enable	20	ns
5	$\mathrm{t}_{\text {cer }}$	Chip Enable Recovery Time	60	ns
6	tces	Chip Enable Active Prior to Rising Edge of Write Read	$\begin{aligned} & 140 \\ & 160 \end{aligned}$	ns
7	${ }_{\text {t }}$ ceh	Chip Enable Hold Time to Rising Edge of Read/Write Signal	0	ns
8	t_{w}	Write Active Time	100	ns
9	twa	Data Valid Prior to Rising Edge of Write Signal	50	ns
10	$t_{\text {d }}$	Data Write Hold Time	20	ns
11	t_{r}	Chip Enable Active Prior to Valid Data	160	ns
12	tra	Read Active Prior to Valid Data	75	ns
13	$t_{\text {df }}$	Read Data Float Delay	10	ns
	$\mathrm{trc}_{\text {r }}$	Reset Active Time	300	ns

$V_{c c}=4.5$ to 5.5 V

Symbol	Description	$\mathbf{2 5} \mathbf{C}$ Typical	$\mathbf{7 0}^{\circ} \mathbf{C}$ Min.	Units
Fosc $^{\circ}$	Oscillator Frequency	57	28	kHz
Frf $^{[4]}$	Display Refresh Rate	256	128	Hz
$\mathrm{Fif}^{[2]}$	Character Flash Rate	2	1	Hz
$\mathrm{t}_{\text {st }}{ }^{[3]}$	Self Test Cycle Time	4.6	9.2	Sec

Notes:

1. $\mathrm{F}_{\mathrm{rf}}=\mathrm{F}_{\mathrm{osc}} / 224 \quad$ 2. $\mathrm{F}_{\mathrm{fl}}=\mathrm{F}_{\mathrm{osc}} / 28,672 \quad$ 3. $\mathrm{t}_{\mathrm{st}}=262,144 / \mathrm{F}_{\text {osc }}$

Write Cycle Timing Diagram

Read Cycle Timing Diagram

Enlarged Character Font

Relative Luminous Intensity

 vs. Temperature

Electrical Description

PIN FUNCTION

RESET
(RST, pin 1)
FLASH
(FL, pin 2)
ADDRESS INPUTS
$\left(\mathrm{A}_{0}-\mathrm{A}_{4}\right.$, pins $3-6,10$)

CLOCK SELECT

(CLS, pin 11)
CLOCK INPUT/OUTPUT
(CLK, pin 12)
WRITE
(WR, pin 13)
CHIP ENABLE
(CE, pin 17)
READ
($\overline{\mathrm{RD}}, \mathrm{pin} 18$)
DATA Bus
($\mathrm{D}_{0}-\mathrm{D}_{7}$, pins 19, 20, 23-28)
GND ${ }_{\text {(SUPPLY) }}$
(pin 15)
$\mathrm{GND}_{\text {(LOGIC) }}$
(pin 16)
VCC(POWER)
(pin 14)
$V_{\text {cC(Substrate) }}$
(pins 7-9)

Reset initializes the display.

FL low indicates an access to the Flash RAM and is unaffected by the state of address lines $A_{3}-A_{4}$.

Each location in memory has a distinct address. Address inputs ($A_{0}-A_{2}$) select a specific location in the Character RAM, the Flash RAM or a particular row in the UDC (User-Defined Character) RAM. $A_{3}-A_{4}$ are used to select which section of memory is accessed. Table 1 shows the logic levels needs to access each section of memory.

table 1. LOGIC levels to access memory

$\overline{F_{L}}$	A_{4}	A_{3}	Section of Memory	$A_{2} \quad A_{1} \quad A_{0}$
0	X	X	Flash RAM	Char. Address
1	0	0	UDC Address Register	Don't Care
1	0	1	UDC RAM	Row Address
1	1	0	Control Word Register	Don't Care
1	1	1	Character RAM	Char. Address

This input is used to select either an internal or external clock source.

Outputs the master clock (CLS $=1$) or inputs a clock $(C L S=0)$ for slave displays.
Data is written into the display when the $\overline{W R}$ input is low and the $\overline{\mathrm{CE}}$ input is low.
This input must be at a logic low to read or write data to the display and must go high between each read and write cycle.
Data is read from the display when the $\overline{\mathrm{RD}}$ input is low and the $\overline{\mathrm{CE}}$ input is low.

The Data bus is used to read from or write to the display.

This is the analog ground for the LED drivers.

This is the digital ground for internal logic.

This is the positive power supply input.

These pins are used to bias the IC substrate and must be connected to $V_{c c}$. These pins cannot be used to supply power to the display.

DISPLAY INTERNAL BLOCK DIAGRAM

Figure 1 shows the internal block diagram of the HDSP211X display. The CMOS IC consists of an 8 byte Character RAM, an 8 bit Flash RAM, a 128 character ASCII decoder, a 16 character ASCII decoder, a 16 character UDC RAM, a

UDC Address Register, a Control Word Register and the refresh circuitry necessary to synchronize the decoding and driving of eight 5×7 dot matrix characters. The major user accessible portions of the display are listed below:

Character RAM

Flash RAM

User-Defined Character RAM (UDC RAM)
User-defined Character Address
Register (UDC Address Register)
Control Word Register

This RAM stores either ASCII character data or a UDC RAM address.
This is a 1×8 RAM which stores Flash data.
This RAM stores the dot pattern for custom characters.
This register is used to provide the address to the UDC RAM when the user is writing or reading a custom character.
This register allows the user to adjust the display brightness, flash individual characters, blink, self test or clear the display.

CONTROL SIGNALS

CHARACTER RAM ADDRESS

CHARACTER RAM DATA FORMAT

DISPLAY
$0=$ LOGIC $0 ; 1=$ LOGIC $1 ; X=$ DO NOT CARE

Figure 2. Logic Levels to Access the Character RAM

CHARACTER RAM

Figure 2 shows the logic levels needed to access the HDSP-211X Character RAM. Address lines $A_{0}-A_{2}$ are used to select the location in the Character RAM. Two types of data can be stored in each Character RAM location: an ASCII code or a UDC RAM address. Data bit D_{7} is used to differentiate between an ASCII character and a UDC RAM address. $D_{7}=0$ enables the ASCII decoder and $D_{7}=1$ enables the UDC RAM. $D_{0}-D_{6}$ are used to input ASCII data and $D_{0}-D_{3}$ are used to input a UDC address.

UDC RAM AND UDC ADDRESS REGISTER

Figure 3 shows the logic levels needed to access the UDC RAM and the UDC Address Register. The UDC Address Register is eight bits wide. The lower four bits $\left(D_{0}-D_{3}\right)$ are used to select one of the 16 UDC locations. The upper four bits ($\mathrm{D}_{4}-\mathrm{D}_{7}$) are not used. Once the UDC address has been stored in the UDC Address Register, the UDC RAM can be accessed.

To completely specify a 5×7 character requires eight write cycles. One cycle is used to store the UDC RAM address in the UDC Address Register. Seven cycles are used to store dot data in the UDC RAM. Data is entered by rows. One cycle is needed to access each row. Figure 4 shows the organization of a UDC character assuming the symbol to be stored is an " F ". $A_{0}-A_{2}$ are used to select the row to be accessed and $D_{0}-D_{4}$ are used to transmit the row dot data The upper three bits $\left(D_{5}-D_{7}\right)$ are ignored. D_{0} (least significant bit) corresponds to the right most column of the 5×7 matrix and D_{4} (most significant bit) corresponds to the left most column of the 5×7 matrix.

UDC ADDRESS REGISTER ADDRESS

UDC ADDRESS REGISTER DATA FORMAT

UDC RAM	C
DATA FORMAT	L
$0=$ LOGIC $0 ; 1=$ LOGIC $1 ; \mathrm{X}=$ DO NOT CARE	

Figure 3. Logic Levels to Access a UDC Character

C	C	C	C	C				
0	0	0	0	0				
L	L	L	L	L				UDC
1	2	3	4	5			CHARACTER	COD
D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			ROW 1	$*$
1	1	1	1	1		$*$	1F	
1	0	0	0	0	ROW 2	$*$		10
1	0	0	0	0	ROW 3	$*$		10
1	1	1	1	0	ROW 4	$*$	$*$	10
1	0	0	0	0	ROW 5	$*$		10
1	0	0	0	0	ROW 6	$*$		10
1	0	0	0	0	ROW 7	$*$		10
IGNORED								

$0=$ LOGIC 0; 1 = LOGIC $1 ;$ * $=$ ILLUMINATED LED.

Figure 4. Data to Load "F" Into the UDC RAM

FLASH RAM ADDRESS

Figure 5. Logic Levels to Access the Flash RAM

FLASH RAM

Figure 5 shows the logic levels needed to access the Flash RAM. The Flash RAM has one bit associated with each location of the Character RAM. The Flash input is used to select the Flash RAM. Address lines $A_{3}-A_{4}$ are ignored. Address lines $A_{0}-A_{2}$ are used to select the location in the Flash RAM to store the attribute. D_{0} is used to store or remove the flash attribute. $D_{0}=" 1$ " stores the attribute and $D_{0}=$ " 0 " removes the attribute.
When the attribute is enabled through bit 3 of the Control Word and a " 1 " is stored in the Flash RAM, the corresponding character will flash at approximately 2 Hz . The actual rate is dependent on the clock frequency. For an external clock the flash rate can be calculated by dividing the clock frequency by 28,672.

Control Word Register

Figure 6 shows how to access the Control Word Register. This is an eight bit register which performs five functions. They are Brightness control, Flash RAM control, Blinking, Self Test and Clear. Each function is independent of the others. However, all bits are updated during each Control Word write cycle.

BRIGHTNESS (BITS 0-2)

Bits 0-2 of the Control Word adjust the brightness of the display. Bits $0-2$ are interpreted as a three bit binary code with code (000) corresponding to maximum brightness and code (111) corresponding to a blanked display. In addition to varying the display brightness, bits $0-2$ also vary the average value of $I_{C c} . I_{C C}$ can be calculated at any brightness level by multiplying the percent brightness level by the value of $\mathrm{I}_{\text {cc }}$ at the 100% brightness level. These values of I_{cc} are shown in Table 2.

FLASH FUNCTION (BIT 3)

Bit 3 determines whether the flashing character attribute is on or off. When bit 3 is a " 1 ", the output of the Flash RAM is

Figure 6. Logic Levels to Access the Control Word Register

TABLE 2. CURRENT REQUIREMENTS AT DIFFERENT BRIGHTNESS LEVELS

Symbol	$\mathbf{D}_{\mathbf{2}} \mathbf{D}_{\mathbf{1}} \mathbf{D}_{\mathbf{0}}$	$\%$ Brightness	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ Typ.	Units		
$\mathrm{I}_{\mathrm{CC}}(\mathrm{V})$	0	0	0	100	200	mA
	0	0	1	80	160	mA
	0	1	0	53	106	mA
	0	1	1	40	80	mA
	1	0	0	27	54	mA
	1	0	1	20	40	mA
	1	1	0	13	26	mA

checked. If the content of a location in the Flash RAM is a " 1 ", the associated digit will flash at approximately 2 Hz . For an external clock, the blink rate can be calculated by diving the clock frequency by 28,672 . If the flash enable bit of the Control Word is a " 0 ", the content of the Flash RAM is ignored. To use this function with multiple display systems see the Reset section.

BLINK FUNCTION (BIT 4)

Bit 4 of the Control Word is used to synchronize blinking of all eight digits of the display. When this bit is a " 1 " all eight digits of the display will blink at approximately 2 Hz . The actual rate is dependent on the clock frequency. For an external clock, the blink rate can be calculated by dividing
the clock frequency by 28,672 . This function will overrride the Flash function when it is active. To use this function with multiple display systems see the Reset section.

SELF TEST FUNCTION (BITS 5,6)

Bit 6 of the Control Word Register is used to initiate the self test function. Results of the internal self test are stored in bit 5 of the Control Word. Bit 5 is a read only bit where bit 5 $=$ " 1 " indicates a passed self test and bit $5=$ " 0 " indicates a failed self test.

Setting bit 6 to a logic 1 will start the self test function. The built-in self test function of the IC consists of two internal routines which exercises major portions of the IC and illuminates all of the LEDs. The first routine cycles the ASCII decoder ROM through all states and performs a checksum on the output. If the checksum agrees with the correct value, bit 5 is set to " 1 ". The second routine provides a visual test of the LEDs using the drive cicuitry. This is accomplished by writing checkered and inverse checkered patterns to the display. Each pattern is displayed for approximately 2 seconds.
During the self test function the display must not be accessed. The time needed to execute the self test function is calculated by multiplying the clock period by 262,144 . For example: assume a clock frequency of 58 KHz , then the time to execute the self test function frequency is equal to $(262,144 / 58,000)=4.5$ second duration.

At the end of the self test function, the Character RAM is loaded with blanks, the Control Word Register is set to zeros except for bit 5, and the Flash RAM is cleared and the UDC Address Register is set to all ones.

CLEAR FUNCTION (BIT 7)

Bit 7 of the Control Word will clear the Character RAM and Flash RAM. The ASCII character code for a space will be loaded into the Character RAM to blank the display. The UDC RAM, UDC Address Register and the remainder of the Control Word are unaffected.

Display Reset

Figure 7 shows the logic levels needed to Reset the display. The display should be Reset on power-up. The external Reset clears the Character RAM, Flash RAM, Control Word Register and resets the internal counters. All displays which operate with the same clock source must be simultaneously reset to synchronize the Flashing and Blinking functions.

$0=$ LOGIC 0; 1 = LOGIC $1 ; x=$ DO NOT CARE NOTE:
IF RST, CE AND WR ARE LOW, UNKNOWN
DATA MAY BE WRITTEN INTO THE DISPLAY.

Mechanical and Electrical Considerations

The HDSP-211X is a 28 pin dual-in-line package with 26 external pins, which can be stacked horizontally and vertically to create arrays of any size. The HDSP-211X is designed to operate continuously from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ with a maximum of 20 dots on per character. Illuminating all thirty-five dots at full brightness is not recommended.
The HDSP-211X is assembled by die attaching and wire bonding 280 LED chips and a CMOS IC to a thermally conductive printed circuit board. A polycarbonate lens is placed over the PC board creating an air gap over the LED wire bonds. A protective cap creates an air gap over the CMOS IC. Backfill epoxy environmentally seals the display package. This package construction makes the display highly tolerant to temperature cycling and allows wave soldering.
The inputs to the IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HDSP-211X should be stored in antistatic tubes or in conductive material. During assembly, a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static build-up. Input current latchup is caused when the CMOS inputs are subjected to either a voltage below ground ($\mathrm{V}_{\mathrm{in}}<$ ground) or to a voltage higher than V_{CC} ($\mathrm{V}_{\mathrm{in}}>$ V_{cc}), and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{Cc}. Voltages should not be applied to the inputs until $V_{C C}$ has been applied to the display.

Thermal Considerations

The HDSP-211X has been designed to provide a low thermal resistance path for the CMOS IC to the 26 package pins. This heat is then typically conducted through the traces of the printed circuit board to free air. For most applications no additional heatsinking is required.

Measurements were made on a 32 character display string to determine the thermal resistance of the display assembly. Several display boards were constructed using 62 mil printed circuit material, and 1 ounce copper 20 mil traces. Some of the device pins were connected to a heatsink formed by etching a copper area on the printed circuit board surrounding the display. A maximum metalized printed circuit board was also evaluated. The junction temperature was measured for displays soldered directly to these PC boards, displays installed in sockets, and finally displays installed in sockets with a filter over the display to restrict airflow. The results of these thermal resistance measurements, Θ_{ja}, are shown in Table 3 and include the affects of $\Theta_{j c}$.

Figure 7. Logic Levels to Reset the Display
table 3. Thermal resistance, Θ_{j}, USing various AMOUNTS OF HEATSINKING MATERIAL.

Heatsinking Metal per device sq. in.	W/Sockets W/O Filter (avg.)	W/O Sockets W/O Filter (avg.)	W/Sockets W/Filter (avg.)	units
0	31	30	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
1	31	28	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
3	30	26	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Max. Metal	29	25	32	${ }^{\circ} \mathrm{C} / \mathrm{W}$
4 board	30	27	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
avg.				

Ground Connections

Two ground pins are provided to keep the internal IC logic ground clean. The designer can, when necessary, route the analog ground for the LED drivers separately from the logic ground until an appropriate ground plane is available. On long interconnects between the display and the host system, the designer can keep voltage drops on the analog ground from affecting the display logic levels by isolating the two grounds.

The logic ground should be connected to the same ground potential as the logic interface circuitry. The analog ground and the logic ground should be connected at a common ground which can withstand the current introduced by the switching LED drivers. When separate ground connections are used, the analog ground can vary from -0.3 V to +0.3 V with respect to the logic ground. Voltage below -0.3 V can cause all dots to be on. Voltage above +0.3 V can cause dimming and dot mismatch.

Soldering and Post Solder Cleaning Instructions for the HDSP-211X

The HDSP-211X may be hand soldered or wave soldered with SN63 solder. When hand soldering it is recommended that an electronically temperature controlled and securely grounded soldering iron be used. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be set at $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F}\right.$ $\pm 9^{\circ} \mathrm{F}$), and the dwell in the wave should be set between $1 / 1 / 2$
to 3 seconds for optimum soldering. The preheat temperature should not exceed $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.
Post solder cleaning may be performed with a solvent or aqueous process. For solvent cleaning, Allied Chemical's Genesolv DES, Baron Blakeslee's Blaco-Tron TES or DuPont's Freon TE may be used. These solvents are azeotropes of trichlorotrifluoroethane FC-113 with low concentrations of ethanol (5\%). The maximum exposure time in the solvent vapors at boiling temperature should not exceed 2 minutes. Solvents containing high concentrations of alcohols such as methanol, ketones such as acetone, or chlorinated solvents should not be used as they will chemically attack the polycarbonate lens. Solvents containing trichloroethylene FC-111 or FC-112 and trichloroethylene (TCE) are also not recommended.
An aqueous cleaning process may be used. A saponifier, such as Kesterbio-kleen Formula 5799 or its equivalent, may be added to the wash cycle of an aqueous process to remove rosin flux residues. Organic acid flux residues must be thoroughly removed by an aqueous cleaning process to prevent corrosion of the leads and solder connections. The optimum water temperature is $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$. The maximum cumulative exposure of the HDSP-211X to wash and rinse cycles should not exceed 15 minutes. For additional information on soldering and post solder cleaning, see Application Note 1027.

Contrast Enhancement

The objective of contrast enhancement is to provide good readability in the end user's ambient lighting conditions. The concept is to employ both luminance and chrominance contrast techniques. These enhance readability by having the OFF-dots blend into the display background and the ON-dots vividly stand out against the same background. Contrast enhancement may be achieved by using one of the following suggested filters:
HDSP-2112
Panelgraphic SCARLET RED 65 or GRAY 10
SGL Homalite H100-1670 RED or -1265 GRAY
3M Louvered Filter R6310 RED or N0210 GRAY
HDSP-2111
Panelgraphic AMBER 23 or GRAY 10
SGL Homalite H100-1720 AMBER or -1265 GRAY 3M Louvered Filter N0210 GRAY

For additional information on contrast enhancement see Application Note 1015.

Features

- SMART ALPHANUMERIC DISPLAY Built-in RAM, ASCII Decoder and LED Drive Circuitry
- WIDE OPERATING TEMPERATURE RANGE $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- FAST ACCESS TIME 160 ns
- EXCELLENT ESD PROTECTION Built-in Input Protection Diodes
- CMOS IC FOR LOW POWER CONSUMPTION
- FULL TTL COMPATIBILITY OVER OPERATING TEMPERATURE RANGE
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- WAVE SOLDERABLE
- RUGGED PACKAGE CONSTRUCTION
- END-STACKABLE
- WIDE VIEWING ANGLE

Description

The HPDL-1414 is a smart $2.85 \mathrm{~mm}\left(0.112^{\prime \prime}\right)$ four character, sixteen-segment, red GaAsP display. The on-board CMOS IC contains memory, ASCII decoder, multiplexing circuitry and drivers. The monolithic LED characters are magnified by an immersion lens which increases both character size and luminous intensity. The encapsulated dual-in-line package provides a rugged, environmentally sealed unit.

The HPDL-1414 incorporates many improvements over competitive products. It has a wide operating temperature range, very fast IC access time and improved ESD protection. The display is also fully TTL compatible, wave solderable and highly reliable. This display is ideally suited for industrial and commercial applications where a goodlooking, easy-to-use alphanumeric display is required.

Typical Applications

- PORTABLE DATA ENTRY DEVICES
- MEDICAL EQUIPMENT
- PROCESS CONTROL EQUIPMENT
- TEST EQUIPMENT
- INDUSTRIAL INSTRUMENTATION
- COMPUTER PERIPHERALS
- TELECOMMUNICATION INSTRUMENTATION

Absolute Maximum Ratings

Package Dimensions

Recommended Operating Conditions

Parameter	Symbol	Min.	Nom.	Max.	Units
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	V
Input Voltage High	$V_{1 H}$	2.0			V
Input Voltage Low	$V_{1 L}$			0.8	V

DC Electrical Characteristics Over Operating Temperature Range

 typical values| Parameter | Symbol | Units | $-40^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | Test Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Icc 4 digits on (10 seg/digit) $11.2 \mid$ | Icc | mA | 90 | 85 | 70 | 60 | $V_{C C}=5.0 \mathrm{~V}$ |
| Icc Blank | Icc ($\overline{B L}$) | mA | 1.8 | 1.5 | 1.2 | 1.1 | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{BL}=0.8 \mathrm{~V} \end{aligned}$ |
| Input Current, Max. | H. | $\mu \mathrm{A}$ | 23 | 20 | 17 | 12 | $\begin{aligned} & V C C=5.0 \mathrm{~V} \\ & V_{I N}=0.8 \mathrm{~V} \end{aligned}$ |

GUARANTEED MAXIMUM VALUES

Parameter	Symbol	Units	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{gathered}$	Maximum Over Operating Temperature Range $V_{c c}=5.5 \mathrm{~V}$
Icc 4 digits on (10 seg/digit) 1,21	lcc	mA	90	130
IcC Blank	$\operatorname{ICC}(\overline{\mathrm{BL}})$	mA	2.3	4.0
Input Current, Max.	IL.	$\mu \mathrm{A}$	30	50
Power Dissipation ${ }^{3]}$	PD	mW	450	715

Notes:

1. "\%" illuminated in all four characters.
2. Measured at five seconds.
3. Power dissipation $=$ Vcc $\cdot \operatorname{Icc}(10$ seg. $)$.

AC Timing Characteristics Over Operating Temperature Range at $\mathrm{VCC}=4.5 \mathrm{~V}$

Parameter	Symbol	$\begin{gathered} -20^{\circ} \mathrm{C} \\ \mathrm{t}_{\text {MIN }} \\ \hline \end{gathered}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {MiN }} \end{aligned}$	$\begin{gathered} 70^{\circ} \mathrm{C} \\ t_{\text {MIN }} \end{gathered}$	Units
Address Setup Time	tas	90	115	150	ns
Write Delay Time	two	10	15	20	ns
Write Time	tw	80	100	130	ns
Data Setup Time	tos	40	60	80	ns
Data Hold Time	tDH	40	45	50	ns
Address Hold Time	taH	40	45	50	ns
Access Time		130	160	200	ns
Refresh Rate		420-790	310-630	270-550	Hz

Optical Characteristics

Parameter	Symbol	Test Condition	Min.	Typ.	Units
Peak Luminous Intensity per digit, 8 segments on (character average)	IV Peak	Vcc $=5.0 \mathrm{~V}$ "k" illuminated in all 4 digits.	0.4	1.0	mcd
Peak Wavelength	λ peak			655	nm
Dominant Wavelength	λ_{d}			640	nm
Off Axis Viewing Angle				± 40	degrees
Digit Size				2.85	mm

Timing Diagram

Magnified Character Font Description

Electrical Description

Figure 1 shows the internal block diagram of the HPDL-1414. It consists of two parts: the display LEDs and the CMOS IC. The CMOS IC consists of a four-word ASCII memory, a 64word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal operation, the divide-by-four counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. Seven-bit ASCII data is stored in RAM. Since the display uses a 64-character decoder, half of the possible 128 input combinations are invalid. For each display location where D5=D6 in the ASCII RAM, the display character is blanked.

Data is loaded into the display through the DATA inputs (D_{6} - D_{0}), ADDRESS inputs ($\mathrm{A}_{1}-\mathrm{A}_{0}$), and WRITE (WR). After a character has been written to memory, the IC decodes the ASCII data, drives the display and refreshes it without any external hardware or software.

Relative Luminous Intensity vs. Temperature

Figure 1. HPDL-1414 Internal Block Diagram

Figure 2. Write Truth Table

Using the HPDL-1414 with Microprocessors

Figures 3 and 4 show how to connect the HPDL-1414 to a Motorola 6800 or an Intel 8085. The major differences between the two circuits are:

1. The 6800 requires two latches to store the ADDRESS and ASCII DATA information to increase the address and data input hold times.
2. The 6800 requires a flip-flop to delay the display WRITE signal to increase the address input setup time.

ADDRESS inputs (A_{1} and A_{0}) are connected to microprocessor addresses A_{1} and A_{0}. A 74LS138 may be used to generate individual display WRITE signals. Higher order microprocessor address lines are connected to the 74LS138. The microprocessor write line must be wired to one of the active low enable inputs of the 74LS138. Both figures are formatted with address 0 being the far right display character.

Figure 3: Memory Mapped Interface for the 6800

Figure 4. Memory Mapped Interface for the 8085

BITS	$\begin{aligned} & \mathrm{D}_{3} \\ & \mathrm{D}_{2} \\ & \mathrm{D}_{1} \\ & \mathrm{D}_{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1 0 0 1	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	1 1 1 0	1 1 1 1
$D_{6} D_{5} D_{4}$	HEX	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
010	2	（space）	$!$	11	\pm	Ф	4	8	1	＜	＞	*	$+$	／	－	－	／
0 1．1	3 ．．	\square	1	$コ$	\exists	4	\square	\square	7	θ	\square	－	$\bar{\prime}$	L	二	\searrow	了
100	4	\square	\square	三	L	\square	E	F	\square	H	I	T	K	L	M	N	\square
101	5	\square	\square	F	\square	T	\square	V	W	X	Y	Z	［	\}	$]$	\wedge	－

Figure 5．HPDL－1414 ASCII Character Set

Mechanical and Electrical Considerations

The HPDL－1414 is a 12 pin dual－in－line package which can be stacked horizontally and vertically to create arrays of any size．The HPDL－1414 is designed to operate continuously from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for all possible input conditions．
The HPDL－1414 is assembled by die attaching and wire bonding the four GaAsP／GaAs monolithic LED chips and the CMOS IC to a high temperature printed circuit board．An immersion lens is formed by placing the PC board assembly into a nylon lens filled with epoxy．A plastic cap creates an air gap to protect the CMOS IC．Backfill epoxy environmen－ tally seals the display package．This package construction gives the display a high tolerance to temperature cycling．
The inputs to the CMOS IC are protected against static dis－ charge and input current latchup．However，for best results， standard CMOS handling precautions should be used．Prior to use，the HPDL－1414 should be stored in anti－static tubes or conductive material．A grounded conductive assembly area should be used，and assembly personnel should wear conductive wrist straps．Lab coats made of synthetic materi－ als should be avoided since they may collect a static charge． Input current latchup is caused when the CMOS inputs are subjected either to a voltage below ground（VIN＜ground）or to a voltage higher than $\mathrm{V}_{\mathrm{CC}}\left(\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{C C}\right)$ ，and when a high current is forced into the input．

Soldering and Post Solder Cleaning Instructions for the HPDL－1414

The HPDL－1414 may be hand soldered or wave soldered with SN63 solder．Hand soldering may be safely performed only with an electronically temperature－controlled and securely grounded soldering iron．For best results，the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$ ．For wave soldering，a rosin－based RMA flux or a water soluble organic acid（OA）flux can be used．The solder wave temperature should be $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right.$ ），and the dwell in the wave should be set at $11 / 2$ to 3 seconds for optimum solder－ ing．Preheat temperature should not exceed $93^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board．
Post solder cleaning may be performed with a solvent or aqueous process．For solvent cleaning，Allied Chemical Genesolv DES，Baron Blakeslee Blaco－Tron TES or DuPont Freon TE can only be used．These solvents are azeotropes of trichlorotrifluoroethane FC－113 with low concentrations of ethanol（5\％）．The maximum exposure time in the solvent vapors at boiling temperature should not exceed 2 minutes． Solvents containing high concentrations of alcohols，pure alcohols，isopropanol or acetone should not be used as they will chemically attack the nylon lens．Solvents containing trichloroethane FC－111 or FC－112 and trichloroethylene （TCE）are not recommended．

An aqueous cleaning process is highly recommended．A saponifier，such as Kester Bio－kleen Formula 5799 or equi－ valent，may be added to the wash cycle of an aqueous process to remove rosin flux residues．Organic acid flux residues must be thoroughly removed by an aqueous clean－ ing process to prevent corrosion of the leads and solder connections．The optimum water temperature is $60^{\circ} \mathrm{C}$ $\left(140^{\circ} \mathrm{F}\right.$ ）．The maximum cumulative exposure of the HPDL－ 1414 to wash and rinse cycles should not exceed 15 minutes．

Optical Considerations/ Contrast Enhancement

The HPDL-1414 display uses a precision aspheric immersion lens to provide excellent readability and low off-axis distortion. The aspheric lens produces a magnified character height of 2.85 mm (0.112 in .) and a viewing angle of ± 40 degrees. These features provide excellent readability at distances of up to 1.5 meters (4 feet).

Each HPDL-1414 display is tested for luminous intensity and marked with an intensity category on the side of the display package. To ensure intensity matching for multiple package
applications, mixing intensity categories for a given panel is not recommended.

The HPDL-1414 display is designed to provide maximum contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60, Panelgraphic Dark Red 63, SGL Homalite H100-1650, Rohm and Haas 2423, Chequers Engraving 118, and 3 M R6510. For further information on contrast enhancement, see Hewlett-Packard Application Note 1015.

Features

- SMART ALPHANUMERIC DISPLAY Built-in RAM, ASCII Decoder, and LED Drive Circuitry
- WIDE OPERATING TEMPERATURE RANGE $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- VERY FAST ACCESS TIME 160 ns
- EXCELLENT ESD PROTECTION Built-in Input Protection Diodes
- CMOS IC FOR LOW POWER CONSUMPTION
- FULL TTL COMPATIBILITY OVER OPERATING TEMPERATURE RANGE
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- WAVE SOLDERABLE
- RUGGED PACKAGE CONSTRUCTION
- END-STACKABLE
- WIDE VIEWING ANGLE

Description

The HPDL-2416 has been designed to incorporate several improvements over competitive products. It has a wide operating temperature range, fast IC access time and improved ESD protection. The HPDL-2416 is fully TTL compatible, wave solderable, and highly reliable. This display is ideally suited for industrial and commercial applications where a good looking, easy-to-use alphanumeric display is required.

The HPDL-2416 is a smart $4.1 \mathrm{~mm}(0.16 \mathrm{in})$ four character, sixteen-segment red GaAsP display. The on-board CMOS IC contains memory, ASCII decoder, multiplexing circuitry, and drivers. The monolithic LED characters are magnified by an immersion lens which increases both character size and luminous intensity. The encapsulated dual-in-line package construction provides a rugged, environmentally sealed unit.

Typical Applications

- PORTABLE DATA ENTRY DEVICES
- MEDICAL EQUIPMENT
- PROCESS CONTROL EQUIPMENT
- TEST EQUIPMENT
- INDUSTRIAL INSTRUMENTATION
- COMPUTER PERIPHERALS
- TELECOMMUNICATION EQUIPMENT

Absolute Maximum Ratings

Supply Voltage, V_{CC} to Ground \ldots.
Input Voltage, Any Pin to Ground $\ldots-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ Free Air Operating, No Cursors On ${ }^{[1]}$

Temperature Range, T_{A}
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity (non-condensing) at $65^{\circ} \mathrm{C}$........ 90%
Storage Temperature, Ts $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Solder Temperature, 1.59 mm (0.063 in .)
below Seating Plane, $\mathrm{t}<5 \mathrm{sec} . \ldots$.

Note:

1. Free air operating temperature range:
$\begin{array}{llll}\mathrm{T}_{A}>75^{\circ} \mathrm{C} & \text { No Cursors On } & \mathrm{T}_{\mathrm{A}} \leq 60^{\circ} \mathrm{C} & 3 \text { Cursors On } \\ \mathrm{T}_{A} \leq 75^{\circ} \mathrm{C} & 1 \text { Cursor On } & \mathrm{T}_{A} \leq 55^{\circ} \mathrm{C} & 4 \text { Cursors On } \\ \mathrm{T}_{A} \leq 68^{\circ} \mathrm{C} & 2 \text { Cursors On } & \end{array}$

Package Dimensions

(0.020 ± 0.005) TY

Recommended Operating Conditions

Parameter	Symbol	Min.	Nom.	Max.	Units
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	V
Input Voltage High	$V_{1 H}$	2.0			V
Input Voltage Low	$V_{1 L}$			0.8	V

DC Electrical Characteristics Over Operating Temperature Range

 tYpical Values| Parameter | Symbol | Units | $-40^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | Test Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICC 4 digits on $10 \mathrm{seg} /$ digit ${ }^{1,2 \mid}$ | ICC | mA | 100 | 95 | 85 | 75 | 72 | $\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}$ |
| Icc Cusor ${ }^{2,3}$ | ${ }^{\text {ICCi }}$ CU | mA | 147 | 140 | 125 | 110 | 105 | $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ |
| Icc Blank | ICC (BL) | mA | 1.85 | | 1.5 | | 1.15 | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{BL}=0.8 \mathrm{~V} \end{gathered}$ |
| Input Current. Max. | IL | ${ }_{\mu} \mathrm{A}$ | 20 | | 17 | | 14 | $\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ V_{\text {IN }}=0.8 \mathrm{~V} \end{gathered}$ |

GUARANTEED VALUES

Parameter	Symbol	Units	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{gathered}$	Maximum Over Operating Temperature Range $V_{\mathrm{CC}}=5.5 \mathrm{~V}$
Icc 4 digits on (10 seg/digit) 1,2	lce	mA	115	170
Icc Cursor ${ }^{2.3}$	Icc (Cu)	mA	165	232
Icc Blank	$1 \mathrm{CC}(\overline{B L})$	mA	3.5	8.0
Input Current, Max.	HL	$\mu \mathrm{A}$	30	40
Power Dissipation. ${ }^{4}$	PD	mW	575	910

Notes:

1. "\%" illuminated in all four characters.
2. Power dissipation $=V_{C C} \cdot \operatorname{ICC}(10 \mathrm{seg}$.$) .$
3. Measured at five seconds
4. Cursor character is sixteen segments and DP on.

AC Timing Characteristics Over Operating Temperature
 Range at $\mathrm{VCC}=4.5 \mathrm{~V}$

Parameter	Symbol	$\begin{gathered} -20^{\circ} \mathrm{C} \\ \mathbf{t}_{\mathrm{MiN}} \end{gathered}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \mathrm{t}_{\text {MIN }} \\ & \hline \end{aligned}$	$\begin{aligned} & 70^{\circ} \mathrm{C} \\ & \mathbf{t}_{\text {MiN }} \end{aligned}$	Units
Address Setup Time	tas	90	115	150	ns
Write Delay Time	two	10	15	20	ns
Write Time	tw	80	100	130	ns
Data Setup Time	tos	40	60	80	ns
Data Hold Time	toh	40	45	50	ns
Address Hold Time	tah	40	45	50	ns
Chip Enable Hold Time	tcen	40	45	50	ns
Chip Enable Setup Time	tces	90	115	150	ns
Clear Time	tels	2.4	3.5	4.0	ms
Access Time		130	160	200	ns
Refresh Rate		420-790	310-630	270-550	Hz

Optical Characteristics

Parameter	Symbol	Test Condition	Min.	Typ.	Units
Peak Luminous Intensity per digit, 8 segments on (character average)	IV Peak	Vcc $=5.0 \mathrm{~V}$ "*"illuminated in all 4 digits.	0.5	1.25	mcd
Peak Wavelength	Apeak				
Dominant Wavelength	Ad			655	nm
Off Axis Viewing Angle				± 50	degrees
Digit Size				4.1	mm

Timing Diagram

Magnified Character Font Description

Relative Luminous Intensity vs. Temperature

TA - AMBIENT TEMPERATURE - (C°)

Electrical Description

Display Internal Block Diagram

Figure 1 shows the internal block diagram for the HPDL-2416 display. The CMOS IC consists of a four-word ASCII memory, a four-word cursor memory, a 64 -word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal operation, the divide-by-four counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. For each display location, the cursor enable (CUE) selects whether the data from the ASCII RAM (CUE $=0$) or the stored cursor (CUE $=1$) is to be displayed. The cursor character is denoted by all sixteen segments and the DP ON. Seven-bit ASCII data is stored in RAM. Since the display utilizes a 64-character decoder, half of the possible 128 input combinations are invalid. For each display location where $D_{5}=D_{6}$ in the ASCII RAM, the display character is blanked. The entire display is blanked when $\overline{\mathrm{BL}}=0$.
Data is loaded into the display through the data inputs (D_{6} $\left.D_{0}\right)$, address inputs ($\mathrm{A}_{1}, \mathrm{~A}_{0}$), chip enables ($\left.\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}\right)$, cursor select ($\overline{\mathrm{CU}}$), and write ($\overline{\mathrm{WR}}$). The cursor select ($\overline{\mathrm{CU}}$) determines whether data is stored in the ASCII RAM ($\overline{C U}=$ 1) or cursor memory ($\overline{\mathrm{CU}}=0$). When $\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=\overline{\mathrm{WR}}=0$ and $\overline{C U}=1$, the information on the data inputs is stored in the ASCII RAM at the location specified by the address inputs ($\mathrm{A}_{1}, \mathrm{~A}_{0}$). When $\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=\overline{\mathrm{WR}}=0$ and $\overline{\mathrm{CU}}=0$, information on the data input, D_{0}, is stored in the cursor at the location specified by the address inputs (A_{1}, A_{0}). If D_{0} $=1$, a cursor character is stored in the cursor memory. If $D_{0}=0$, a previously stored cursor character will be removed from the cursor memory.
If the clear input ($\overline{\mathrm{CLR}}$) equals zero for one internal display cycle (4 ms minimum), the data in the ASCII RAM will be rewritten with zeroes and the display will be blanked. Note that the blanking input ($\overline{\mathrm{BL}}$) must be equal to logical one during this time.

Data Entry

Figure 2 shows a truth table for the HPDL-2416 display. Setting the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) to their low state and the cursor select $(\overline{\mathrm{CU}})$ to its high state will enable data loading. The desired data inputs $\left(D_{6}-D_{0}\right)$ and address inputs (A_{1}, $\left.\mathrm{A}_{0}\right)$ as well as the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and cursor select ($\overline{\mathrm{CU}}$) must be held stable during the write cycle to ensure that the correct data is stored into the display. Valid ASCII data codes are shown in Figure 3. The display accepts standard seven-bit ASCII data. Note that $D_{6}=D_{5}$ for the codes shown in Figure 2. If $\mathrm{D}_{6}=\mathrm{D}_{5}$ during the write cycle, then a blank will be stored in the display. Data can be loaded into the display in any order. Note that when A_{1} $=A_{0}=0$, data is stored in the furthest right-hand display location.

Cursor Entry

As shown in Figure 2, setting the chip enables ($\overline{\mathrm{CE}}, \overline{\mathrm{CE}}_{2}$) to their low state and the cursor select ($\overline{\mathrm{CU}}$) to its low state will enable cursor loading. The cursor character is indicated by the display symbol having all 16 segments and the DP ON. The least significant data input (D_{0}), the address inputs ($\mathrm{A}_{1}, \mathrm{~A}_{0}$), the chip enables ($\left.\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}\right)$, and the cursor select ($\overline{\mathrm{CU}})$ must be held stable during the write cycle to ensure that the correct data is stored in the display. If D_{0} is in a low state during the write cycle, then a cursor character will be removed at the indicated location. If D_{0} is in a high state euring the write cycle, then a cursor character will be stored at the indicated location. The presence or absence of a cursor character does not affect the ASCII data stored at that location. Again, when $A_{1}=A_{0}=0$, the cursor character is stored in the furthest right-hand display location.
All stored cursor characters are displayed if the cursor enable (CUE) is high. Similarly, the stored ASCII data words are displayed, regardless of the cursor characters, if the cursor enable (CUE) is low. The cursor enable (CUE) has no effect on the storage or removal of the cursor characters within the display. A flashing cursor is displayed by pulsing the cursor enable (CUE). For applications not requiring a cursor, the cursor enable (CUE) can be connected to ground and the cursor select ($\overline{\mathrm{CU}}$) can be connected to Vcc. This inhibits the cursor function and allows only ASCII data to be loaded into the display.

Figure 1. HPDL-2416 Internal Block Diagram

Display Clear

As shown in Figure 2，the ASCII data stored in the display will be cleared if the clear（ $\overline{\mathrm{CLR}}$ ）is held low and the blank－ ing input（ $\overline{\mathrm{BL}}$ ）is held high for 4 ms minimum．The cursor memory is not affected by the clear（ $\overline{\mathrm{CLR}}$ ）input．Cursor characters can be stored or removed even while the clear $(\overline{\mathrm{CLR}})$ is low．Note that the display will be cleared regardless of the state of the chip enables（ $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ ）．However，to ensure that all four display characters are cleared，$\overline{\mathrm{CLR}}$ should be held low for 4 ms following the last write cycle．

Display Blank

As shown in Figure 2，the display will be blanked if the blanking input（ $\overline{\mathrm{BL}}$ ）is held low．Note that the display will be blanked regardless of the state of the chip enables $\left(\overline{\mathrm{CE}}_{1}\right.$ ，
$\overline{\mathrm{CE}}_{2}$ ）or write（ $\overline{\mathrm{WR}}$ ）inputs．The ASCII data stored in the dis－ play and the cursor memory are not affected by the blanking input．ASCII data and cursor data can be stored even while the blanking input（ $\overline{\mathrm{BL}}$ ）is low．Note that while the blanking input（ $\overline{\mathrm{BL}}$ ）is low，the clear（ $\overline{\mathrm{CLR}}$ ）function is inhi－ bited．A flashing display can be obtained by applying a low frequency square wave to the blanking input（ $\overline{\mathrm{BL}}$ ）．Because the blanking input（ $\overline{\mathrm{BL}}$ ）also resets the internal display mul－ tiplex counter，the frequency applied to the blanking input $(\overline{\mathrm{BL}})$ should be much slower than the display multiplex rate． Finally，dimming of the display through the blanking input $(\overline{B L})$ is not recommended．
For further application information please consult Application Note 1026.

L＝LOGIC LOW INPUT
＂a＂＝ASCII CODE CORRESPONDING TO SYMBOL＂ A ＂
H＝LOGIC HIGH INPUT
X＝DON＇T CARE

NC＝NO CHANGE
＝CURSOR CHARACTER（ALL SEGMENTS ON）

Figure 2a．Cursor／Data Memory Write Truth Table

Function	$\overline{\text { BL }}$	$\overline{\text { CLR }}$	CUE	$\overline{\text { Cu }}$	$\overline{C E}_{1}$	$\overline{\mathrm{CE}}_{2}$	$\overline{W R}$	DIG_{3}	DIG_{2}	DIG $_{1}$	DIG_{0}	
CUE	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \hline \text { H } \\ & \text { 柬 } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { 菏 } \end{aligned}$	$\begin{gathered} {[} \\ \text { 柬 } \end{gathered}$	$\begin{aligned} & 1 \\ & \text { W } \end{aligned}$	Display previously written data Display previously written cursor
Clear		L OTE：C owing data is	R shour the last cleared	X uld be WRIT	X held Ecycl	X w for to en	X^{*} ms ure	$[]$	［．］	［．］	$[$	Clear data memory，cursor memory unchanged
Blanking	L	X	x	x	x	X	X	［］	$[]$	$\left[{ }_{\text {［ }}\right]$	［］	Blank display，data and cursor memories unchanged．

Figure 2b．Displayed Data Truth Table

Figure 3. HPDL-2416 ASCII Character Set

Mechanical and Electrical Considerations

The HPDL-2416 is an 18 pin dual-in-line package that can be stacked horizontally and vertically to create arrays of any size. This display is designed to operate continuously between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with a maximum of 10 segments on per digit.
During continuous operation of all four Cursors the operating temperature should be limited to $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. At temperatures above $+55^{\circ} \mathrm{C}$, the maximum number of Cursors illuminated continuously should be reduced as follows: No Cursors illuminated at operating temperatures above $75^{\circ} \mathrm{C}$. One Cursor can be illuminated continuously at operating temperatures below $75^{\circ} \mathrm{C}$. Two Cursors can be illuminated continuously at operating temperatures below $68^{\circ} \mathrm{C}$. Three Cursors can be illuminated continuously at operating temperatures below $60^{\circ} \mathrm{C}$.
The HPDL-2416 is assembled by die attaching and wire bonding the four GaAsP/GaAs monolithic LED chips and the CMOS IC to a high temperature printed circuit board. An immersion lens is formed by placing the PC board assembly into a nylon lens filled with epoxy. A plastic cap creates an air gap to protect the CMOS IC. Backfill epoxy environmentally seals the display package. This package construction provides the display with a high tolerance to temperature cycling.
The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HPDL-2416 should be stored in antistatic tubes or conductive material. During assembly a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static charge build-up. Input current latchup is caused when the CMOS inputs are subjected
either to a voltage below ground ($\mathrm{V}_{\mathrm{IN}}<$ ground) or to a voltage higher than $\mathrm{V}_{\mathrm{CC}}\left(\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}\right)$ and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{CC}. Voltages should not be applied to the inputs until V_{CC} has been applied to the display. Transient input voltages should be eliminated.

Soldering and Post Solder Cleaning Instructions for the HPDL-2416

The HPDL-2416 may be hand soldered or wave soldered with SN63 solder. Hand soldering may be safely performed only with an electronically temperature-controlled and securely grounded soldering iron. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right.$), and the dwell in the wave should be set at $11 / 2$ to 3 seconds for optimum soldering. Preheat temperature should not exceed $93^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.
Post solder cleaning may be performed with a solvent or aqueous process. For solvent cleaning, Allied Chemical Genesolv DES, Baron Blakeslee Blaco-Tron TES or DuPont Freon TE can only be used. These solvents are azeotropes of trichlorotrifluoroethane FC-113 with low concentrations of ethanol (5\%). The maximum exposure time in the solvent vapors at boiling temperature should not exceed 2 minutes. Solvents containing high concentrations of alcohols, pure alcohols, isopropanol or acetone should not be used as they will chemically attack the nylons lens. Solvents containing trichloroethane FC-111 or FC-112 and trichloroethylene (TCE) are not recommended.

An aqueous cleaning process is highly recommended. A saponifier, such as Kester-Bio-kleen Formula 5799 or equivalent, may be added to the wash cycle of an aqueous process to remove rosin flux residues. Organic acid flux residues must be thoroughly removed by an aqueous cleaning process to prevent corrosion of the leads and solder connections. The optimum water temperature is $60^{\circ} \mathrm{C}$ ($140^{\circ} \mathrm{F}$). The maximum cumulative exposure of the HPDL2416 to wash and rinse cycles should not exceed 15 minutes.

Optical Considerations/ Contrast Enhancement

The HPDL-2416 display uses a precision aspheric immersion lens to provide excellent readability and low off-axis distortion. The aspheric lens produces a magnified character height of $4.1 \mathrm{~mm}\left(0.160 \mathrm{in}\right.$.) and a viewing angle of $\pm 50^{\circ}$.

These features provide excellent readability at distances up to 2 metres (6 feet).
Each HPDL-2416 display is tested for luminous intensity and marked with an intensity category on the side of the display package. To ensure intensity matching for multiple package applications, mixing intensity categories for a given panel is not recommended.

The HPDL-2416 display is designed to provide maximum contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60, Panelgraphic Dark Red 63, SGL Homalite H100-1650, Rohm and Haas 2423, Chequers Engraving 118, and $3 M$ R6510. For further information on contrast enhancement, see Hewlett-Packard Application Note 1015.

Features

- FOUR COLORS

Standard Red

Yellow
High Efficiency Red
High Performance Green

- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END STACKABLE FOUR CHARACTER PACKAGE
- TTL COMPATIBLE
- 5×7 LED MATRIX DISPLAYS FULL ASCII SET
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2001/2003 CATEGORIZED FOR COLOR

Description

The HDSP-2000/-2001/-2002/-2003 series of displays are 3.8 mm (0.15 inch) 5×7 LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red, and high performance green.

Package Dimensions

$25 \cdot 05$ TYP

NOTES

1. DIMENSIONS IN mm intehes)
2. UNLESS OTHERWISE SPECIFIED THE TOLERAANCE ON ALE. DIMENSIONS is $.38 \mathrm{~mm}\left(\cdot .015^{\prime \prime}\right)$
3. LEAD MATERIAL IS COPPER ALLOY.
4. CHARACTERS ARE CENTERED WITH RESPECT TO LEADS WIFHIN , $\left..13 \mathrm{~mm}(\cdot .005)^{\prime \prime}\right)$

Absolute Maximum Ratings (HDSP-2000/-2001/-2002/-2003)

Supply Voitage Vcc to Ground
-0.5 V to 6.0 V
Inputs, Data Out and $\mathrm{V}_{\mathrm{B}} \ldots \ldots$.
Column Input Voltage, $\mathrm{V}_{\mathrm{COL}} \ldots$.
Free Air Operating
Temperature Range, $\mathrm{T}_{\mathrm{A}}{ }^{[1,2]} \ldots \ldots . . .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, Ts $\ldots . .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Maximum Allowable Power Dissipation
at $T_{A}=25^{\circ} \mathrm{C}[1,2,3]$
1.24 Watts

Maximum Solder Temperature 1.59 mm (0.063 in)
Below Seating Plane $\mathrm{t}<5 \mathrm{sec}$
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions (HDSP-2000/-2001/-2002/-2003)

Parameter	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	Vcc	4.75	5.0	5.25	V	
Data Out Current, Low State	1 la			1.6	mA	
Data Out Current, High State	IOH			-0.5	mA	
Column Input Voltage, Column On HDSP-2000	VCOL	2.4		3.5	V	4
Column Input Voltage, Column On, HDSP-2001/-2002/-2003	VCOL	2.75		3.5	V	4
Setup Time	$t_{\text {setup }}$	70	45		ns	1
Hold Time	thold	30	0		ns	1
Width of Clock	twiClock)	75			ns	1
Clock Frequency	f flock	0		3	MHz	1
Clock Transition Time	TTHL			200	ns	1
Free Air Operating Temperature Range ${ }^{[1,2]}$	TA	-20		85	${ }^{\circ} \mathrm{C}$	2

Electrical Characteristics Over Operating Temperature Range
 (Unless otherwise specified)

Description		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		Icc	$\mathrm{VCC}=5.25 \mathrm{~V}$ $V_{\text {Clock }}=V_{\text {data }}=2.4 \mathrm{~V}$ All SR Stages = Logical 1	$V_{B}=0.4 \mathrm{~V}$		45	60	mA		
		$V_{B}=2.4 \mathrm{~V}$			73	95	mA			
Column Current at any Column Input			ICOL	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } 1 \\ & \hline \end{aligned}$	$V_{B}=0.4 V$			500	$\mu \mathrm{A}$	4
Column Current at any Column Input		1 COL	$V_{B}=2.4 \mathrm{~V}$			335	410	mA		
Ve, Clock or Data Input Threshold High		V_{IH}	$\mathrm{VCC}=\mathrm{VCOL}=4.75 \mathrm{~V}$		2.0			V		
V_{B}, Clock or Data Input Threshold Low		$V_{\text {IL }}$					0.8	V		
Input Current Logical 1	V , Clock	IH_{H}	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$		
	Data In	$\mathrm{l} \mathrm{IH}^{\text {H }}$				10	40	$\mu \mathrm{A}$		
Input Current Logical 0	$\mathrm{V}_{\mathrm{B}, \text { Clock }}$	ILL	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$		
	Data In	ILL				-250	-400	$\mu \mathrm{A}$		
Data Out Voltage		VOH	$\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}, \mathrm{ICOL}=0 \mathrm{~mA}$		2.4	3.4		V		
		Vol.	$V C C=4.75 \mathrm{~V}, 10 \mathrm{~L}=1.6 \mathrm{~mA}$	$\mathrm{OL}=0 \mathrm{~mA}$		0.2	0.4	V		
Power Dissipation Per Package**		PD	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDs on per character, $V_{B}=2.4 \mathrm{~V}$			0.72		W	2	
Thermal Resistance IC Junction-to-Case		ROJ-C.				25		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device	2	

*All typical values specified at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction should not exceed $125^{\circ} \mathrm{C} \mathrm{T}_{J}$ and the case temperature (as measured at pin 1 or the back of the display) should not exceed $100^{\circ} \mathrm{C}$ Tc.
2. The device should be derated linearly above $50^{\circ} \mathrm{C}$ at 16.7 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $35^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, $V_{B}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 20 \mathrm{LEDs}$ on per character, $20 \% \mathrm{DF}$.

Optical Characteristics

STANDARD RED HDSP-2000

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{4,81}$ (Character Average)	trPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}[6], V \mathrm{~V}=2.4 \mathrm{~V} \end{aligned}$	105	200		$\mu \mathrm{cd}$	3
Peak Wavelength				655		nm	
Dominant Wavelength ${ }^{[7]}$	λd			639		nm	

YELLOW HDSP-2001

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8]}$ (Character Average)	lyPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{1}=25^{\circ} \mathrm{C}[6], V_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$	400	750		$\mu \mathrm{cd}$	3
Peak Wavelength	λ ¢PEAK			583		nm	
Dominant Wavelength[5,7]	λ_{d}			585		nm	

HIGH EFFICIENCY RED HDSP-2002

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{14.8 \mid}$ (Character Average)	IVPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}[6], \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	400	1430		$\mu \mathrm{cd}$	3
Peak Wavelength	АРЕAK			635		nm	
Dominant Wavelength[7]	λd			626		nm	

HIGH PERFORMANCE GREEN HDSP-2003

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8 \mid}$ (Character Average)	IyPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{1}=25^{\circ} \mathrm{C}(6), \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	850	1550		$\mu \mathrm{cd}$	3
Peak Wavelength	入PEAK			568		nm	
Dominant Wavelength $[5,7]$	λd			574		nm	

*All typical values specified at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2001/-2003 are categorized for color with the color category designated by a number code on the bottom of the package.
6. T_{i} refers to the initial case temperature of the device immediately prior to the light measurement.

Electrical Description

The HDSP-200X series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features DATA IN and DATA OUT terminals arrayed for easy PC board interconnection. DATA OUT represents the output of the 7th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5×7 diode array.
The TTL compatible V_{B} input may either be tied to $V_{C C}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.

In the normal mode of operation, input data for digit 4 column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column 1 data for digits 3,2 and 1 is similarly shifted into the display shift register locations. The
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$\mathrm{L}_{\mathrm{v}}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{\mathrm{v}}\left(\right.$ Candela) $/ \mathrm{A}(\text { Metre })^{2}$
$L_{v}($ Footlamberts $)=\pi / v($ Candela) $/ \mathrm{A}($ Foot $) 2$
$A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$ (Foot ${ }^{2}$
column 1 input is now enabled for an appropriate period of time, T. A similar process is repeated for columns 2, 3, 4 and 5 . If the time necessary to decode and load data into the shift register is t, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20%.

For further applications information, refer to HP Application Note 1016.

Figure 1. Switching Characteristics HDSP-2000/-2001/-2002/-2003 ($\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Mechanical and Thermal Considerations

The HDSP-2000/-2001/-2002/-2003 are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. Full power operation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$) with worst case thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} /$ wat$t / d e v i c e ~ i s ~ p o s s i b l e ~ u p ~ t o ~ a m b i e n t ~ t e m p e r a t u r e ~ o f ~ 50 ~ \% ~ F o r ~$ operation above $50^{\circ} \mathrm{C}$, the maximum device dissipation should be derated linearly at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible.
Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, $\mathrm{V}_{\mathrm{COL}}$, can be decreased to the recommended minimum values of 2.4 V for the HDSP-2000 and 2.75V for the HDSP-2001/-2002/2003. Also, the average drive current can be decreased through pulse width modulation of V_{B}. Please refer to HP Application Note 1016 for further information.
The HDSP-2000/-2001/-2002/-2003 displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested filter materials are provided in Figure 6. Additional information on filtering and constrast enhancement can be found in HP Application Note 1015.

Figure 5. Block Diagram of HDSP-2000/-2001/-2002/-2003

Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

Display Colar	Ambient Lighting		
	Dim	Moderate	Bright
HDSP-2000 Std. Red	Panelgraphte Dafk Red 63 Ruby Red 60 Chequers Red 118 Plexiglass 2423	Polaroud HNCP37 3M Light Controf Film Panelgraphic Gray 10 Chequers Grey 105	
HDSP-2001 (Yellow)	Panelgraphic Yellow 27 Chequers Amber 107		Polarsid HNCP10-Glass Marks Polarized MPC-0301-8-10 Note 1
HDSP-2002 (HER)	Panelgraphic Ruby Red 60 Chequers Red 112		Polaroid HNCP10-Gtass Marks Polarized MPC-0201-2-22
HDSP-2003 (HP Green)	Panelgraphic Green 48 Chequers Green 107		Polaroid HNCP10-Glass Marks Polarized MPC-0101-5-12

Note: 1. Optically coated circular polarized filters, such as Polaroid HNCP10.

Figure 6. Contrast Enhancement Filters

Figure 2. Maximum Allowable Power Dissipation vs. Temperature

Figure 3. Relative Luminous Intensity vs. Temperature

Figure 4. Peak Column Current vs. Column Voltage

Features

- FOUR COLORS Standard Red Yellow
High Efficiency Red High Performance Green
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END STACKABLE FOUR CHARACTER PACKAGE
- TTL COMPATIBLE
- 5×7 LED MATRIX DISPLAYS FULL ASCII SET
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2301/2303 CATEGORIZED FOR COLOR

Description

The HDSP-2300/-2301/-2302/-2303 series of displays are 5.0 mm (0.20 inch) 5×7 LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red, and high performance green.

Package Dimensions

-

PIN	FUNCTION	PIN	FUNCTION
1	COLUMN 1	7	DATA OUT
2	COLUMN 2	8	V_{B}
3	COLUMN 3	9	$V_{\text {CC }}$
4	COLUMN 4	10	CLOCK
5	COLUMN 5	11	GROUND
6	INT. CONNECT*	12	DATA IN

*DO NOT CONNECT OR USE
NOTES:

1. DIMENSIONS IN mm finches).
2. UNLESS OTHEAWISE SPECIFIED THE TOLERANCE ON ALL DIMENSIONS (S $\pm .38 \mathrm{~mm}\left(\pm .015^{\circ}\right)$
3. CHARACTERS ARE CENTERED WITH AESPECT TO LEADS WITHIN *. $13 \mathrm{~mm}\left(2.005^{\prime \prime}\right)$.

Absolute Maximum Ratings (HDSP-2300/-2301/-2302/-2303)

Supply Voltage VCC to Ground
-0.5 V to 6.0 V

Column Input Voltage, VcOL -0.5 V to +6.0 V
Free Air Operating
Temperature Range, $T_{A}{ }^{[1,2]} \ldots \ldots . .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range, Ts $\ldots . .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Maximum Allowable Power Dissipation
at $T_{A}=25^{\circ} \mathrm{C}[1,2,3]$
HDSP-2300
1.24 Watts

HDSP-2301/-2302/-2303 1.46 Watts
Maximum Solder Temperature is 1.59 mm (0.063 in)
Below Seating Plane $\mathrm{t}<5 \mathrm{sec}$
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions (HDSP-2300/-2301/-2302/-2303)

Parameler	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	VCC	4.75	5.0	5.25	V	
Data Out Current, Low State	10 L			1.6	mA	
Data Out Current, High State	IOH			-0.5	$m A$	
Column Input Voltage, Column On HDSP-2300	$\checkmark \mathrm{COL}$	2.4		3.5	V	4
Column Input Voltage, Column On HDSP-2301/-2302f-2303	VCOL	2.75		3.5	V	7
Setup Time	$t_{\text {setup }}$	70	45		ns	1
Hold Time	thold	30	0		ns	1
Width of Clock	twiClock	75			ns	1
Clock Frequency	felock	0		3	MHz	1
Clock Transition Time	trit			200	ns	1
Free Air Operating Temperature Range[1,2]	TA	-20		85	${ }^{\circ} \mathrm{C}$	3,5

Electrical Characteristics Over Operating Temperature Range
 (Unless otherwise specified)

STANDARD RED HDSP-2300

Description		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		loc	$\mathrm{VCC}=5.25 \mathrm{~V}$ $V_{C L O C K}=V_{\text {DATA }}=2.4 V$ All SR Stages $=$ Logical 1	$V_{B}=0.4 \mathrm{~V}$		45	60	mA		
		$V_{B}=2.4 \mathrm{~V}$			73	95	mA			
Column Current at any Column Input			1 COL	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCOL }=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } 1 \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$			500	$\mu \mathrm{A}$	4
Column Current at any Column Input		ICOL	$V_{B}=2.4 \mathrm{~V}$			335	410	mA		
V_{B}, Clock or Data Input Threshold High		V_{1}	$V_{C C}=V_{C O L}=4.75 \mathrm{~V}$		2.0			V		
VB, Clock or Data Input Threshold Low		VIL					0.8	V		
Input Current Logical 1	V8. Clock	liH	$V_{C C}=5.25 \mathrm{~V}, V_{1 H}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$		
	Data In	lifi				10	40	$\mu \mathrm{A}$		
Input Current Logical 0	VB, Clock	ILL	$V_{C C}=5.25 \mathrm{~V}, V_{\text {It }}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$		
	Data in	If				-250	-400	$\mu \mathrm{A}$		
Data Out Voltage		VOH	$V_{C C}=4.75 \mathrm{~V}, 1 \mathrm{IOH}=-0.5 \mathrm{~mA}, 1 \mathrm{COL}=0 \mathrm{~mA}$		2.4	3.4		V		
		Vol	$V C C=4.75 \mathrm{~V}, 10 \mathrm{~L}=1.6 \mathrm{~mA}$,	$\mathrm{OL}=0 \mathrm{~mA}$		0.2	0.4	V		
Power Dissipation Per Package**		PD	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}$, 15 LEDS on per character,	$\begin{aligned} & 5 \% \mathrm{DF} \\ & \mathrm{~B}=2.4 \mathrm{~V} \end{aligned}$		0.72		W	2	
Thermal Resistance IC Junction-to-Case		R O_{J} - C				25		${ }^{\circ} \mathrm{CW} / \mathrm{F}$ Device	2	

*All typical values specified at $\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction temperature should not exceed $125^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{J}}$ and the case temperature (as measureed at pin 1 or the back of the display) should not exceed $100^{\circ} \mathrm{C}$ Tc.
**Power dissipation per package with four characters illuminated.
2. The HDSP-2300 should be derated linearly above $50^{\circ} \mathrm{C}$ at 16.7 . $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. The HDSP-2301/-2302/-2303 should be derated linearly above $37^{\circ} \mathrm{C}$ at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $35^{\circ * *} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 20$ LEDs on per character, $20 \% \mathrm{DF}$.

YELLOW HDSP-2301/HIGH EFFICIENCY RED HDSP-2302/HIGH PERFORMANCE GREEN HDSP-2303

Descriplion		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig	
Supply Current		lc	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & V_{C L O C K}=V_{\text {DATA }}=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \end{aligned}$	$\mathrm{V}_{\mathrm{s}}=0.4 \mathrm{~V}$		45	60	mA		
		$V_{B}=2.4 \mathrm{~V}$			73	95	mA			
Column Current al any Column Input			ICOL	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \mathrm{VCOL}_{\mathrm{CO}}=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } 1 \end{aligned}$	$V_{B}=0.4 V$			500	$\mu \mathrm{A}$	7
Column Current at any Column input		$1 \mathrm{COO}^{2}$	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$			380	520	mA		
VB, Clock or Data Input Threshold High		V_{IH}	$V_{C C}=V_{C O L}=4.75 \mathrm{~V}$		2.0			V		
V_{B}. Clock or Data Input Threshold Low		$V_{\text {IL }}$					0.8	V		
Input Current Logicall	VB, Clock	If	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$		
	Data In	If				10	40	$\mu \mathrm{A}$		
Input Current Logical 0	VB. Clock	IIL	$\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{VIL}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$		
	Data In	IIL				-250	-400	$\mu \mathrm{A}$		
Data Out Voltage		VOH	$\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{IOH}=-0.5 \mathrm{~mA}, 1 \mathrm{lCOL}=0 \mathrm{~mA}$		2.4	3.4		V		
		VOL	$V_{C C}=4.75 \mathrm{~V}, 10 \mathrm{~L}=1.6 \mathrm{~mA}, 1 \mathrm{lCOL}=0 \mathrm{~mA}$			0.2	0.4	V		
Power Dissipation Per Package**		PD	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDS on per character, $V_{B}=2.4 \mathrm{~V}$			0.78		W	5	
Thermal Resistance IC Junction-to-Case		$\mathrm{R} 0 \mathrm{~J}, \mathrm{C}$				25		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device	5	

Optical Characteristics

STANDARD RED HDSP-2300

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{\|4,8\|}$ (Character Average)	IvPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}[6], \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	130	300		$\mu \mathrm{cd}$	3
Peak Wavelength	λ PEAK			655		nm	
Dominant Wavelength ${ }^{[7]}$	λ_{d}			639		nm	

YELLOW HDSP-2301

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units	Fig.
Peak Luminous Intensity per LED (4.8] Character Average)	lyPeak	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}$ $\left.\mathrm{~T}_{i}=25^{\circ} \mathrm{C} 6\right], \mathrm{VB}=2.4 \mathrm{~V}$	650	1140		$\mu \mathrm{~cd}$	6
Peak Wavelength	$\lambda_{\text {PEAK }}$			583		nm	
Dominant Wavelength[5.7]	λ_{d}			585		nm	

HIGH EFFICIENCY RED HDSP-2302

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{(4,8)}$ (Character Average)	IvPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \left.\mathrm{~T}_{i}=25^{\circ} \mathrm{C} 6\right], V_{B}=2.4 \mathrm{~V} \end{aligned}$	650	1430		$\mu \mathrm{cd}$	6
Peak Wavelength	λ РEAK			635		nm	
Dominant Wavelength[7]	$\lambda_{\text {d }}$			626		nm	

HIGH PERFORMANCE GREEN HDSP-2303

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units	Fig.
Peak Luminous Intensity per LED[4,8] (Character Average)	LVPeak$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}$ $\mathrm{~T}_{1}=25^{\circ} \mathrm{C}[6], \mathrm{VB}=2.4 \mathrm{~V}$	1280	2410		$\mu \mathrm{~cd}$	6	
Peak Wavelength	$\lambda_{\text {PEAK }}$			568		nm	
Dominant Wavelength $[5,7]$	λ_{d}			574		nm	

*All typical values specified at $V C C=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2301/-2303 are categorized for color with the color category designated by a number code on the bottom of the package.
6. T_{i} refers to the initial case temperature of the device immediately prior to the light measurement.
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$\mathrm{L}_{\mathrm{v}}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{\mathrm{v}}\left(\right.$ Candela)$/ \mathrm{A}(\text { Metre })^{2}$ $\mathrm{L}_{v}($ Footlamberts $)=\pi / \mathrm{lv}($ Candela $) / \mathrm{A}(\text { Foot })^{2}$ $A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}(\text { Foot })^{2}$

Parameter	Condition	Min.	Typ.	Max.	Units
flock CLOCK Rate				3	MHz
tpL.					
Propagation dolay CLOCK do DATA OUT	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=2.4 \mathrm{~K} \Omega$				

Figure 1. Switching Characteristics HDSP-2300/-2301/-2302/-2303 ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0 ^ { \circ }} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Figure 2. Maximum Allowable Power Dissipation vs. Temperature

Figure 3. Relative Luminous Intensity vs. Temperature

Figure 6. Relative Luminous Intensity vs. Temperature

Figure 4. Peak Column Current vs. Column Voltage

Figure 7. Peak Column Current vs. Column Voltage

Electrical Description

The HDSP-230X series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electonics design. Each four character display module features DATA IN and DATA OUT terminals arrayed for easy PC board interconnection. DATA OUT represents the output of the 7th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the Clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5×7 diode array.
The TTL compatible V_{B} input may either be tied to $V_{c c}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
In the normal mode of operation, input data for digit 4 column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column data for digits 3,2 , and 1 is similiarly shifted into the display shift register locations. The column 1 input is now enabled for an appropriate period of time, T. A similar process is repeated for columns $2,3,4$ and 5 . If the time necessary to decode the load data into the shift register is t, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.

With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20\%.
For further applications information, refer to HP Application Note 1016.

Figure 8. Block Diagram of HDSP-2300/-2301/-2302/-2303

Display Color	Amblent Lighting		
	Dim	Moderale	Bright
HDSP-2000 Std. Red	Panetgraphic Dark Red 63 Ruby Red 60 Chequers Red 118 Plexiglass 2423	Pobarod HNCP37 3M Light Contro F: fm Panelgraphic Gray 10 Ghequers Grey 105	
HOSP 2001 (Yellow)	Panelgrapmc Yellow 27 Chequers Amber 107		Polarord HNCP10-Glass Marks Pplarized MPC-0301-8-70 Note 1
HD\$P-2002 (HER)	Panelgraphis Ruby Red 60 Chequers Red: 12		Polaroíd HNCP10-Glass Marks Polarized $M P C-0207-2-22$
HDSP-2003 (HP Green)	Panelgraphac Green 48 Chequers Green 107		Polaroid HNCP 10 -Gfass Marks Polatized MPC-0101-5-12

Note: 1. Optically coated circular polarized filters, such as Polaroid HNCP10.

Figure 9. Contrast Enhancement Filters

Mechanical and Thermal Considerations

The HDSP-2300/-2301/-2302/-2303 are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. The HDSP-2301/-2302/-2303 utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation (Vcc $=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$) with worst case thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} /$ watt/device is possible up to ambient temperature of $37^{\circ} \mathrm{C}$. For operation above $37^{\circ} \mathrm{C}$, the maximum device dissipation should be derated
linearly at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 5). With an improved thermal design, operation at higher ambient temperatures without derating is possible. Please refer to HP Application Note 1016 for further information.
The HDSP-2300 uses a lower power IC, yet achieves excellent readabilty in indoor ambient lighting. Full power operation up to $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\left(\mathrm{V} C \mathrm{C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=\right.$ 3.5 V) is possible by providing a total thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} /$ watt/device maximum. For operation above $50^{\circ} \mathrm{C}$, the maximum device dissipation should be derated at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} /$ device (see Figure 2).

Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, VCOL, can be decreased to the recommended minimum values of 2.6 V for the HDSP-2300 and 2.75V for the HDSP-2301/-2302/-2303. Also, the average drive current can be decreased through pulse width modulation of V_{B}.

The HDSP-2300/-2301/-2302/-2303 displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested
filter materials are provided in Figure 9. Additional information on filtering and constrast enhancement can be found in HP Application Note 1015.

Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

NOTE:

The HDSP-2301/-2302/-2303 are available in high intensity categories suitable for some applications where direct sunlight viewing is required. For information on displays and filters for sunlight viewable applications, contact your field salesman.

(hp)
 HEWLETT PACKARD

Features

- FOUR COLORS

Standard Red
Yellow
High Efficiency Red
High Performance Green

- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END STACKABLE FOUR CHARACTER PACKAGE
- TTL COMPATIBLE
- 5×7 LED MATRIX DISPLAYS FULL ASCII SET
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2491/2493 ALSO CATEGORIZED FOR COLOR

Description

The HDSP-2490/-2491/-2492/-2493 series of displays are 6.9 mm (0.27 inch) 5×7 LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red, and high performance green.

Package Dimensions

Typical Applications

- INSTRUMENTS
- BUSINESS MACHINES
- INDUSTRIAL PROCESS CONTROL EQUIPMENT
- MEDICAL INSTRUMENTS
- COMPUTER PERIPHERALS
- MILITARY GROUND SUPPORT EQUIPMENT

Each four character cluster is contained in a 28 pin dual-inline package. An on-board SIPO (Serial-In-Parallel-Out) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing.

Absolute Maximum Ratings (HDSP-2490/-2491/-2492/-2493)

Supply Voltage Vcc to Ground -0.5 V to 6.0 V
Inputs, Data Out and $V_{B} \ldots \ldots \ldots \ldots . .$.
Column Input Voltage, VCOL -0.5 V to +6.0 V
Free Air Operating
Temperature Range, $\mathrm{TA}^{[1,2]} \ldots \ldots . .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, Ts.....$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Maximum Allowable Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}{ }^{1,2,3}$ 1.46 Watts

Maximum Solder Temperature 1.59 mm (0.063 in .)
Below Seating Plane $\mathrm{t}<5 \mathrm{sec}$
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions
 (HDSP-2490/-2491/-2492/-2493)

Parameter	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	VCC	4.75	5.0	5.25	$\cdots \mathrm{V}$,	
Data Out Current, Low State	loL			1.6	mA	
Data Out Current. High State	IOH			-0.5	mA	
Column Input Voltage, Column On HDSP-2490	VCOL	2.4		3.5	V	4
Column Input Voltage, Column On HDSP-2491/-2492/-2493	VCOL	2.75		3.5	V	4
Setup Time	$t_{\text {setup }}$	70	45		ns	1
Hold Time	thold	30	0		ns	1
Width of Clock	tw(Clock)	75			ns	1
Clock Frequency	f flock	0		3	MHz	1
Clock Transition Time	TTHL			200	ns	1
Free Air Operating Temperature Range ${ }^{11,2 \mid}$	TA	-20		85	${ }^{\circ} \mathrm{C}$	2

Electrical Characteristics Over Operating Temperature Range
 (Unless otherwise specified)

Description		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		Icc	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VCLOCK}=\mathrm{V}_{\mathrm{DATA}}=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$		45	60	mA		
		$V_{B}=2.4 \mathrm{~V}$			73	95	mA			
Column Current at any Column Input			ICOL	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } 1 \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$			500	$\mu \mathrm{A}$	4
Column Current at any Column Input		ICOL	$V_{B}=2.4 \mathrm{~V}$			380	520	mA		
VB, Clock or Data tnput Threshold High		V_{H}	$V_{C C}=V_{C O L}=4.75 \mathrm{~V}$		2.0			V		
V_{B}, Clock or Data Input Threshold Low		$V_{\text {IL }}$					0.8	V		
Input Current Logical 1	VB, Clock	liH	$\mathrm{VCC}^{\text {c }}=5.25 \mathrm{~V}, \mathrm{~V}_{1 H}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$		
	Data In	IIH				10	40	$\mu \mathrm{A}$		
Input Current Logical 0	$V_{\text {B }}$ Clock	IIL	$\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=0.4 \mathrm{~V}$			-500	-800	${ }_{\mu} \mathrm{A}$		
	Data In	ILL				-250	-400	$\mu \mathrm{A}$		
Data Out Voltage		VOH	$\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{lOH}=-0.5 \mathrm{~mA}, 1 \mathrm{lCOL}=0 \mathrm{~mA}$		2.4	3.4		V		
		VOL	$\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{OL}=1.6 \mathrm{~mA}$	$\mathrm{COL}=0 \mathrm{~mA}$		0.2	0.4	V		
Power Dissipation Per Package**		PD	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}$ $15 \text { LEDs on per character, }$	$\begin{aligned} & 5 \% D F \\ & =2.4 \mathrm{~V} \end{aligned}$		0.78		W	2	
Thermal Resistance IC Junction-to-Case						20		${ }^{\circ} \mathrm{CH}$ WI Device	2	

*All typical values specified at $V C C=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted
**Power dissipation per package with four characters illuminated.

Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction should not exceed $125^{\circ} \mathrm{C}$ TJ and the case temperature (as measured at pin 1 or the back of the display) should not exceed $100^{\circ} \mathrm{C}$ Tc.
2. The device should be derated linearly above $60^{\circ} \mathrm{C}$ at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $25^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}$ $=2.4 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} 20$ LEDs on per character, $20 \% \mathrm{DF}$.

Optical Characteristics

STANDARD RED HDSP-2490

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8]}$ (Character Average)	TwPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C} 61, V_{B}=2.4 \mathrm{~V} \end{aligned}$	220	370		$\mu \mathrm{cd}$	3
Peak Wavelength	APEAK			655		nm	
Dominant Wavelength ${ }^{[7]}$	λd			639		nm	

YELLOW HDSP-2491

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8 \mid}$ (Character Average)	lyPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{1}=25^{\circ} \mathrm{C}[6], \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	850	1400		$\mu \mathrm{cd}$	3
Peak Wavelength	λ PEAK			583		nm	
Dominant Wavelength[5.7]	λ_{d}			585		nm	

HIGH EFFICIENCY RED HDSP-2492

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{(4,8]}$ (Character Average)	lvPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, V \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{1}=25^{\circ} \mathrm{C}[6], V_{B}=2.4 \mathrm{~V} \end{aligned}$	850	1530		$\mu \mathrm{cd}$	3
Peak Wavelength	АРЕАК			635		nm	
Dominant Wavelength ${ }^{\text {(7] }}$	λ_{d}			626		nm	

HIGH PERFORMANCE GREEN HDSP-2493

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{4,81}$ (Character Average)	lvPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{1}=25^{\circ} \mathrm{C} 6, \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	1280	2410		$\mu \mathrm{cd}$	3
Peak Wavelength	入PEAK			568		nm	
Dominant Wavelength ${ }^{[5,7]}$	λ_{d}			574		nm	

*All typical values specified at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2491/-2493 are categorized for color with the color category designated by a number code on the bottom of the package.
6. T_{i} refers to the initial case temperature of the device immediately prior to the light measurement.

Electrical Description

The HDSP-249X series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features DATA IN and DATA OUT terminals arrayed for easy PC board interconnection. DATA OUT represents the output of the 7 th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5×7 diode array.
The TTL compatible V_{B} input may either be tied to $V_{C C}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
In the normal mode of operation, input data for digit 4 column 1 is loaded into the 7 on-board shift register locations 1 through 7. Column 1 data for digits 3,2 and 1 is similarly shifted into the display shift register locations. The
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$\mathrm{L}_{v}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\operatorname{Iv}($ Candela $) / \mathrm{A}(\text { Metre })^{2}$ $\mathrm{L}_{v}($ Footlamberts $)=\pi \mathrm{lv}($ Candela $) / \mathrm{A}($ Foot $) 2$ $\mathrm{A}=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}(\text { Foot })^{2}$
column 1 input is now enabled for an appropriate period of time, T. A similar process is repeated for columns 2, 3, 4 and 5 . If the time necessary to decode and load data into the shift register is t, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.

With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20%.
For further applications information, refer to HP Application Note 1016.

Figure 1. Switching Characteristics HDSP-2490/-2491/-2492/-2493 ($\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Mechanical and Thermal Considerations

The HDSP-2490/-2491/-2492/-2493 are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. The HDSP-2490/-2491/-2492/-2493 utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation ($\mathrm{V}_{\mathrm{Cc}}=$ $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$) with worst case thermal resistance from IC junction to ambient of $45^{\circ} \mathrm{C} /$ watt/device is possible up to ambient temperature of $60^{\circ} \mathrm{C}$. For operation above $60^{\circ} \mathrm{C}$, the maximum device dissipation should be derated linearly at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible. Please refer to Application Note 1016 for further information.
Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, Vcol, can be decreased to the recommended minimum values of 2.4 V for the HDSP-2490 and 2.75V for the HDSP-2491/-2492/-2493. Also, the average drive current can be decreased through pulse width modulation of V_{B}.
The HDSP-2490/-2491/-2492/-2493 displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested

Figure 5. Block Diagram of HDSP-2490/-2491/-2492/-2493
filter materials are provided in Figure 6. Additional information on filtering and contrast enhancement can be found in HP Application Note 1015.
Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

Display Color	Ambient Lighting		
	Dim	Moderate	Bright
$\text { HDSP }+2000$ Std. Red	Panelgraphic Dark Red 63 Ruby Red 60 Chequers fed 118 Plexiglass 2423	Polarord HNCP37 3 M Light Controt Film Panelgraphic Gray 10 Chequers Grey 105	
HOSP-2001 (Yellow)	Panelgrapric Yellow 27 Chequers Amber 107		Polarold HNCP10-Glass Marks Polarized MPC-0301+8+10 Note 1
HDSP 2002 (HER)	Panelgraphic Auby Red 60 Chequers Red 112		Polarold HNCP10-Gtass Marks Polarized MPC-0201-2-22
HDSP. 2003 (HP Graen)	Panelgraphic Green 48 Chequers Green 107		Polaroid HNCP10-Glass Marks Polarized MPC+0101-5-12

Note: 1. Optically coated circular polarized filters, such as Polaroid HNCP10.

Figure 6. Contrast Enhancement Filters

Figure 2. Maximum Allowable Power Dissipation vs. Temperature

Figure 3. Relative Luminous Intensity vs. Temperature

Figure 4. Peak Column Current vs. Column Voltage

HDSP-6624

Features

- FULLY ASSEMBLED
- FUNCTIONALLY TESTED
- INCLUDE ON-BOARD CHARACTER GENERATOR, MEMORY, DRIVER, DECODER, MULTIPLEX, AND BUFFER CIRCUITRY
- 64 ASCII CHARACTER SET
- ALL DIGITS ALIGNED AND MATCHED FOR INTENSITY
- 2.85 mm (0.112) or 4.1 mm (0.16) CHARACTER HEIGHT
- VIEWING ANGLE GREATER THAN $\pm 40^{\circ}$
- SINGLE 5 V POWER SUPPLY
- FULL TTL COMPATIBILITY

Description

The HDSP-6621 and HDSP-6624 smart display systems are board assemblies based on the HPDL-1414 and HPDL-2416 displays. The HDSP-6621 consists of four HPDL-1414 displays (16 characters) plus a decoder and interface buffer on a single printed circuit board. The HDSP-6624 consists of eight HPDL-2416 displays (32 characters) plus a decoder and interface buffers on a single printed circuit board. Each display provides its own character memory, 64 character ASCII decoder ROM, and refresh circuitry necessary to synchronize the decoding and driving of four 17 segment red LEDs. The HDSP-6624 has the additional features of a cursor (all dots on) or a blanking (flashing) function. The characters in each system are aligned and matched for intensity.

The HDSP-662X family can be configured in custom string lengths, and the HDSP-6621 is available without a connector. Contact your local Hewlett-Packard field sales representative with your requirements.

Typical Applications

- COMPUTER PERIPHERALS
- telecommunications
- INDUSTRIAL EQUIPMENT
- INSTRUMENTS

Absolute Maximum Ratings

Supply Voltage, V_{CC} to Ground -0.3 to 7.0 V Input Voltage, Any Pin to Ground -0.3 to $V_{C C}$ Free Air Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Package Dimensions hdsp-6621

Package Dimensions hdsp-6624

Recommended Operating Conditions

Parameter	Symbol	Min.	Nom.	Max.	Units
Supply Voltage	$V_{\text {CC }}$	4.75	5.0	5.25	V
Input Voltage High	$V_{\text {IH }}$	2.0		$V_{C C}+0.3$	V
Input Voltage Low	V_{IL}	GND -0.3		0.8	V

Electrical Characteristics over Operating Temperature Range

Parameter	HDSP-6621		HDSP-6624		Units	Test Conditions
	Typ.	Max.	Typ.	Max.		
I_{Cc} All digits on ($70 \mathrm{seg} / \mathrm{digit}$) ${ }^{[1]}$	315		720		mA	$V_{C C}=5.0 \mathrm{~V}$
		480		1200	mA	$V_{C C}=5.25 \mathrm{~V}$
$I_{\text {CC }}$ Cursor ${ }^{[2,3]}$ (HDSP-6624 only)			1040		mA	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
				1600	mA	$V_{C C}=5.25 \mathrm{~V}$
ICC Blank	40		30		mA	$V_{\text {cc }}=5.0 \mathrm{~V}$
		75		80	mA	$V_{C C}=5.25 \mathrm{~V}$
I_{1+4} with pullup		NA		-2.85	mA	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1 H}=2.4 \mathrm{~V}$
I_{LL} with pullup		NA		-4.85	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$
$\mathrm{I}_{1 H}$ with pulldown		NA		2.4	mA	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
ILL with pulldown		NA		0.4	mA	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$
$\mathrm{I}_{1 H}$ without resistor		40		40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HH}}=2.4 \mathrm{~V}$
IIL without resistor		-1.6		-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$

Notes:

1. "\%" illuminated in all locations.
2. Cursor character is sixteen segments and DP on.
3. Cursor operates continuously over operating temperature range.

Optical Characteristics

Parameter		Symbol	Min.	Typ.	Units	Test Condition
Peak Luminous Intensity per digit, 8 segments on (character average)	HDSP-6624	IVPeak	0.5	1.25	mod	$V_{C C}=5.0 \mathrm{~V}$ "*" illuminated in all digits
	HDSP-6621		0.4	1.0		
Peak Wavelength		λ Peak		655	nm	
Dominant Wavelength		λd		640	nm	
Off Axis Viewing Angle	HDSP-6624			± 50	deg.	
	HDSP-6621			± 40		
Digit Size	HDSP-6624			2.85	mm	
	HDSP-6621			4.1		

AC Timing CharacteristicS over Operating Temperature Range

Reference Number	Parameter	Symbol	HDSP-6621		HDSP-6624		Units
			$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 70^{\circ} \mathrm{C} \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 70^{\circ} \mathrm{C} \\ & \text { Min. } \end{aligned}$	
1	Access Time	$t_{A C C}$	180	220	350	480	ns
2	Address Setup Time	$t_{\text {AS }}$	115	150	285	410	ns
3	Address Hold Time	$t_{\text {AH }}$	65	70	65	70	ns
4	Write Delay Time	$t_{\text {wo }}$	15	20	115	180	ns
5	Write Time	$t_{\text {w }}$	100	130	170	230	ns
6	Data Setup Time	$t_{\text {DS }}$	80	100	160	220	กs
7	Data Hold Time	t_{DH}	65	70	65	70	ns
8	Display Enable Hold Time	toes	N/A	N/A	65	70	ns
9	Display Enable Setup Time	t ${ }_{\text {DEH }}$	N/A	N/A	285	410	ns
	Clear Time	$\mathrm{t}_{\text {CLR }}$	3.5	4.0	3.5	4.0	ms
	Refresh Rate		310	270	310	270	Hz

TIMING DIAGRAM FOR THE HDSP-6621 DISPLAY SYSTEM

TIMING DIAGRAM FOR THE HDSP-6624 DISPLAY SYSTEM

Figure 1. Circuit Diagram for the HDSP-6621

Display Interface

HDSP-6621

Figure 1 shows the circuit diagram for the HDSP-6621. Information is transferred to the display on a 4 pin connector. The following lines are available to the user to pass

For a detailed explanation of the function of the pins see the HPDL-1414 data sheet. The HDSP-6621 has 2 Address lines which are not on the HPDL-1414. data to the display.

Data lines $\left(D_{0}-D_{6}\right)$ (pins 3-6, 11-13)	ASCll data is entered into the display on the Data lines.
Address lines $\left(A_{0}-A_{3}\right)$ (pins $1-3,8)$	Each location in memory has a distinct address. Address inputs enable the designer to select a specific location in memory to store data. Address 0000 accesses the far right location and address 1111 accesses the far left location.
Write line $(\overline{W R})$ (pin 9)	Data is written into the display when the display write line is low and the display has been selected.

Display Interface

HDSP-6624

Figure 2 shows the circuit diagram for the HDSP-6624. Information is transferred to the display on a 26 pin connector. The following lines are available to the user to pass data to the display.

For a detailed explanation of the function of the pins see the HPDL-2416 Data Sheet. The HDSP-6624 has four display enable inputs and 3 address lines which are not on the HPDL-2416.

Data lines $\left(D_{0}-D_{6}\right)$ (J2 pins 11, 13, 15, 17, 19, 25)	ASCII data or cursor data is entered into the display on the data lines.
Address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{4}\right)$ (J2 pins 1, 3, 5, 21, 23)	Each location in memory has a distinct address. Address inputs enable the designer to select a specific location in memory to store data. Address 00000 accesses the far right location. Address 11111 accesses the far left location.
Display Enables ($\overline{\mathrm{DE}}_{1}-\overline{\mathrm{DE}}_{4}$) (J2 pins 2, 4, 6, 8)	The user can connect any one of the four Display Enable inputs to all of the $\overline{\mathrm{CE}}_{2}$ inputs of the HPDL-2416 displays. All that is required is to short the appropriate pins on the display board with the shorting plug. This allows the user to display the same character data on two or more systems or to display different data on up to four display boards. $\overline{D E}_{1}=$ shorting A and B $\overline{D E}_{2}=$ shorting B and C $\overline{D E}_{3}=$ shorting D and E $\overline{D E}_{4}=$ shorting E and F or F and G Shorting G and H will bypass $\overline{D E}_{1}-\overline{D E}_{4}$ and enable the device.
Write line ($\overline{\mathrm{WR}}$) (J2 pin 24)	Data is written into the display when the Write line is low and the display has been selected.
Cursor Select line ($\overline{\mathrm{CU}})$ (J2 pin 20)	This input is used to determine whether data is stored in ASCII memory or Cursor memory. ($1=$ ASCII, $0=$ Cursor)
Cursor Enable line (CUE) (J2 pin 18)	This input is used to determine whether Cursor data is displayed. (1 = Cursor, $0=$ ASCII)
Blanking input ($\overline{\mathrm{BL}}$) (J2 pin 26)	The Blanking input can be used to create a flashing display or to blank the display without clearing the ASCII memory. This input inhibits the IC segment drivers and the display Clear function.
Clear input ($\overline{\mathrm{CLR}}$) (J2 pin 22)	ASCII data will be removed from the ASCII Memory after the Clear input has been held at a logic low for 4 ms . The Cursor data is unaffected by the Clear input.

Using the Display Interface

Hewlett-Packard's Smart Display Systems can be treated as a block of RAM locations, whose purpose is to store and display 64 character ASCII data using a sixteen-segment character font as shown in Figure 3. To load data into the display system, the host system has to supply the ASCII
data, the address and the proper control signals and the character will be stored in the location selected. See the timing diagram for the necessary timing and signal sequence.

Figure 3. HDSP-6621/6624 ASCII Character Set

Design Considerations

These display systems use CMOS components that may be damaged by electrostatic discharge. These display systems can be safely handled by the PC board edges. To avoid static damage use standard CMOS handling procedures.
Cleaning may be performed with a solvent or aqueous process. The following solvents may be used without causing damage to the system:

Allied Chemical Genesolv DES
Baron Blakeslee Blaco-tron TES
DuPont Freon TE

Solvents containing alcohols, ketones and halogenated hydrocarbons will attack the nylon lens of the displays and should be avoided.
For additional information on handling and cleaning please refer to the HPDL-1414 and HPDL-2416 data sheets and Application Note 1026.

Features

- COMPLETE ALPHANUMERIC DISPLAY SYSTEM UTILIZING THE HDSP-2000 DISPLAY
- CHOICE OF 64, 128, OR USER DEFINED ASCII CHARACTER SET
- CHOICE OF 16, 24, 32, or 40 ELEMENT DISPLAY PANEL
- MULTIPLE DATA ENTRY FORMATS Left, Right, RAM, or Block Entry
- EDITING FEATURES THAT INCLUDE CURSOR, BACKSPACE, FORWARDSPACE, INSERT, DELETE, AND CLEAR
- DATA OUTPUT CAPABILITY
- SINGLE 5.0 VOLT POWER SUPPLY
- TTL COMPATIBLE
- EASILY INTERFACED TO A KEYBOARD OR A MICROPROCESSOR

Description

The HDSP-24XX series of alphanumeric display systems provides the user with a completely supported 5×7 dot matrix display panel. These products free the user's system from display maintenance and minimize the interaction normally required for alphanumeric displays. Each alphanumeric display system is composed of two component parts:

1. An alphanumeric display controller which consists of a preprogrammed microprocessor plus associated logic, which provides decode, memory, and drive signals necessary to properly interface a user's system to an HDSP-2000 display. In addition to these basic display support operations, the controller accepts data in any of four data entry formats and incorporates several powerful editing routines.
2. A display panel which consists of HDSP-2000 displays matched for luminous intensity and mounted on a P.C. board designed to have low thermal resistance.
These alphanumeric display systems are also available in high efficiency red, yellow, and green. In addition, they are available using the HDSP- 2300 or HDSP- 2490 series displays to form display systems with larger characters 5.0 mm and 6.9 mm , respectively). Contact your local HP sales office for more information.

Typical Applications

- DATA ENTRY TERMINALS
- INSTRUMENTATION
- BUSINESS EQUIPMENT
- COMPUTER PERIPHERALS

PART NUMBER
DESCRIPTION

Display Boards	
HDSP-2416	Single-line 16 character display panel utilizing the HDSP-2000 display
HDSP-2424	Single-line 24 character display panel utilizing the HDSP-2000 display
HDSP-2432	Single-line 32 character display panel utilizing the HDSP-2000 display
HDSP-2440	Single-line 40 character display panel utilizing the HDSP-2000 display
Controller Boards	
HDSP-2470	HDSP-2000 display interface incorporating a 64 character ASCII decoder
HDSP-2471	HDSP-2000 display interface incorporating a 128 character ASCII decoder
	HDSP-2000 display interface without ASCIf decoder. Instead, a 24 pin socket is provided to accept a custom 128 char- acter set from a user programmed 1K $\times 8$ PROM.

[^11]
HDSP-2470/-2471/-2472

Absolute Maximum Ratings

Vcc -0.5 V to 6.0 V
Operating Temperature Range,
Ambient (T_{A})
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range (Ts) $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Voltage Applied to any Input or Output .. -0.5V to 6.0V
Isource Continuous for any Column
Driver 5.0 Amps (60 sec . max. duration)

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V_{CC}	4.75	5.25	V
Data Out	IOL		0.4	mA
	IOH		-20	$\mu \mathrm{~A}$
Ready, Data Valid, Column On, Display Data	IOL		1.6	mA
Clock	IOH		-40	$\mu \mathrm{~A}$
	IOL		10.0	mA
	IOH		-1.0	mA

Electrical Characteristics Over Operating Temperature Range

(Unless otherwise specified)

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	
Supply Current ${ }^{[1]}$	Icc			400	mA	$V_{C C}=5.25 \mathrm{~V} \mathrm{C}$ Outputs Open	On and All
Input Threshold High (except Reset) Input Threshold High — Reset ${ }^{[2]}$ Input Threshold Low - All Inputs	$\mathrm{V}_{\text {IH }}$	2.0			V	$V_{C C}=5.0 \mathrm{~V} \pm$.	
	$V_{\text {IH }}$	3.0			V	$V_{C C}=5.0 \mathrm{~V} \pm$.	
	$V_{\text {IL }}$			0.8	V	$V_{C C}=5.0 \mathrm{~V} \pm$.	
Data Out Voltage	VOHData	2.4			V	$\mathrm{IOH}=-20 \mu \mathrm{~A}$	$V_{C C}=4.75 \mathrm{~V}$
	Vol Data			0.5	V	$\mathrm{IOL}=0.4 \mathrm{~mA}$	$V_{C C}=4.75 \mathrm{~V}$
Clock Output Voltage	VohClk	2.4			V	$1 \mathrm{OH}=-1000 \mu \mathrm{~A}$	$V_{C C}=4.75 \mathrm{~V}$
	VolClk			0.5	V	$10 \mathrm{~L}=10.0 \mathrm{~mA}$	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$
Ready, Display Data, Data Valid, Column on Output Voltage	VOH	2.4			V	$1 \mathrm{OH}=-40 \mu \mathrm{~A}$	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$
	VOL			0.5	\checkmark	$\mathrm{IOL}=1.6 \mathrm{~mA}$	$V_{C C}=4.75 \mathrm{~V}$
Input Current, ${ }^{[3]}$ All Inputs Except Reset, Chip Select, D7	IH			-0.3	mA	$\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$	$V_{c c}=5.25 \mathrm{~V}$
	IIL			-0.6	mA	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$
$\overline{\text { Reset Input Current }}$	IH_{H}			-0.3	mA	$V_{I H}=3.0 \mathrm{~V}$	$V_{c c}=5.25 \mathrm{~V}$
	IIL			-0.6	mA	$\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}$
Chip Select, D_{7} Input Current	11	-10		+10	$\mu \mathrm{A}$	$0<V_{1}<V_{C C}$	
Column Output Voltage	Volcol	2.6	3.2		V	lout $=-5.0 \mathrm{~A}$	$\mathrm{Vcc}=5.00 \mathrm{~V}$

NOTES:

1. See Figure 11 for total system supply current.
2. External reset may be initiated by grounding Reset with either a switch or open collector TTL gate for a minimum time of 50 ms . For Power On Reset to function properly, Vcc power supply should turn on at a rate $>100 \mathrm{~V} / \mathrm{s}$.
3. Momentary peak surge currents may exist on these lines. However, these momentary currents will not interfere with proper operation of the HDSP-2470/1/2.

HDSP-2416/-2424/-2432/-2440

Absolute Maximum Ratings

Supply Voltage Vcc to Ground -0.5 V to 6.0 V
Inputs, Data Out and $V_{B} \ldots \ldots$. . -0.5 V to $V_{c c}$
Column Input Voltage, Vcol \qquad -0.5 V to +6.0 V
Free Air Operating Temperature
Range, $T_{A}{ }^{[1]}$ \qquad $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage Temperature Range, Ts $\ldots . .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Recommended Operating Conditions

Parameter	Symbol	Min.	Norm.	Max.	Units
Supply Voltage	VCC	4.75	5.0	5.25	V
Column Input Voltage, Column On	VCOL	2.6			V
Setup Time	tsETUP	70	45		ns
Hold Time	tHOLD	30	0		ns
Width of Clock	tw(CLOCK)	75			ns
Clock Frequency	fCLOCK	0		3	MHz
Clock Transition Time	tTHL			200	ns
Free Air Operating Temperature Range	TA $^{[1]}$	0		55	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Operating Temperature Range

(Unless otherwise specified)

Parameter		Symbol	Min.	Typ.*	Max.	Units	Conditions		
Supply Current		Icc		45n	60n[2]	mA	$\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & V_{C L}=2 C K=V_{\text {DATA }}=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \\ & \hline \end{aligned}$	$\begin{aligned} & V B=0.4 V \\ & V B=2.4 V \end{aligned}$	
			$73 n$	$95 n$	mA				
Column Current at any Column Input			ICOL			$1.5 n$	mA	$V_{C C}=V_{C O L}=5.25 \mathrm{~V}$ All SR Stages = Logical 1	$V_{B}=0.4 \mathrm{~V}$
		ICOL		335n	410n	mA	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$		
Peak Luminous Intensity per LED (Character Average)		IV PEAK	105	200		$\mu \mathrm{cd}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & T_{j}=25^{\circ} \mathrm{C}(3), V_{B}=2.4 \mathrm{~V} \end{aligned}$		
VB, Clock or Data Input Threshold High		$\mathrm{V}_{\text {IH }}$	2.0			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {COL }}=4.75 \mathrm{~V}$		
V B , Clock or Data input Threshold Low		$V_{\text {IL }}$			0.8	V			
Input Current Logical 1	$V_{\text {B, }}$, Clock	IIH			80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$		
	Data In	liH			40	$\mu \mathrm{A}$			
Input Current Logical 0	V_{B}, Clock	ILL		-500	-800	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$		
	Data In	IIL		-250	-400	$\mu \mathrm{A}$			
Power Dissipation Per Board ${ }^{[4]}$		PD		0.66n		W	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{VCOL}=2.6 \mathrm{~V}$ 15 LED's on per Character, $V_{B}=2.4 \mathrm{~V}$		

*All typical values specified at $\mathrm{VCC}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
NOTES:

1. Operation above $55^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{C} \mathrm{MAX}\right.$) may be achieved by the use of forced air (150 fpm normal to component side of HDSP-247X controller board at sea level). Operation down to $-20^{\circ} \mathrm{C}$ is possible in applications that do not require the use of HDSP-2470/-2471/-2472 controller boards.
2. $n=$ number of HDSP-2000 packages

$$
\begin{array}{ll}
\text { HDSP-2416 } & n=4 \\
\text { HDSP-2424 } & n=6 \\
\text { HDSP-2432 } & n=8 \\
\text { HDSP-2440 } & n=10
\end{array}
$$

3. Tj refers to initial case temperature immediately prior to the light measurement.
4. Power dissipation with all characters illuminated.

System Overview

The HDSP-2470/-2471/-2472 Alphanumeric Display Controllers provide the interface between any ASCII based Alphanumeric System and the HDSP-2000 Alphanumeric Display. ASCII data is loaded into the system by means of any one of four data entry modes Left, Right, RAM or Block Entry. This ASCII data is stored in the internal RAM memory of the system. The'system refreshes HDSP-2000 displays from 4 to 48 characters with the decoded data.

The user interfaces to any of the systems through eight DATA IN inputs, five ADDRESS inputs (RAM mode), a CHIP SELECT input, RESET input, seven DATA OUT
outputs, a READY output, DATA VALID output, and a COLUMN ON output. A low level on the RESET input clears the display and initializes the system. A low level on the CHIP SELECT input causes the system to load data from the DATA IN and ADDRESS inputs into the system. The controller outputs a status word, cursor address and 32 ASCII data characters through the DATA OUT outputs and DATA VALID output during the time the system is waiting to refresh the next column of the display. The COLUMN ON output can be used to synchronize the DATA OUT function. A block diagram for the HDSP-2470/-2471/-2472 systems is shown in Figure 1.

Figure 1. Block Dlagram for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

The system interfaces to the HDSP-2000 display through five COLUMN outputs, a CLOCK output, DISPLAY DATA output, and the COLUMN ON output. The user should connect DISPLAY DATA to DATA IN of the leftmost HDSP-2000 cluster and cascade DATA OUT to DATA IN of all HDSP-2000 clusters. COLUMN outputs from the system are connected to the COLUMN inputs of all HDSP2000 clusters. The HDSP-24XX Series display boards are designed to interconnect directly with the HDSP-247X Series display controllers. The COLUMN outputs can source enough current to drive up to 48 characters of the HDSP-2000 display. Pulse width modulation of display luminous intensity can be provided by connecting COLUMN ON to the input of a monostable multivibrator and the output of the monostable multivibrator to the V_{B} inputs of the HDSP-2000 displays. The system is designed to refresh the display at a fixed refresh rate of 100 Hz . COLUMN ON time is optimized for each display length in order to maximize light output as shown in Figure 2.

Figure 2. Column on Time vs. Display Length for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

Control Mode/Data Entry

User interface to the HDSP-247X Series controller is via an 8 bit word which provides to the controller either a control word or standard ASCII data input. In addition to this user provided 8 bit word, two additional control lines, CHIP SELECT and READY, allow easily generated "handshake" signals for interface purposes.

A logic low applied to the CHIP SELECT input (minimum six microseconds) causes the controller to read the 8 DATA IN lines and determine whether a control word or ASCII data word is present, as determined by the logic state of the most significant bit (D7). If the controller detects a logic high at D_{7}, the state of D_{6} - D_{0} will define the data entry mode and the number of alphanumeric characters to be displayed.

The 8 bit control data word format is outlined in Figure 3. For the control word (D_{7} high), bits D_{6} and D_{5} define the selected data entry mode (Left entry, Right entry, etc.) and bits D_{3} to D_{0} define display length. Bit D_{4} is ignored.

Control word inputs are first checked to verify that the control word is valid. The system ignores display lengths greater than 1011 for left block or right, or 0111 for RAM. If the word is valid, the present state-next state table shown in Figure 4 is utilized to determine whether or not to clear the display. For display lengths of up to 32 characters, RAM entry can be used as a powerful editing tool, or can be used to preload the cursor. With other transitions, the internal data memory is cleared.

CONTROL
WORD: $\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$

Y Y Y Y	DISPLAY LENGTH:
0000	4 DIGITS
0001	8
0010	12 "
0011	16 "
0100	20 "
0101	24 "
0110	28
0111	32* "
1000	36 "
1001	40
1010	44
1011	48

*maximum for RAM data entry mode

$X X$	DATA ENTRY MODES	
0	0	RAM DATA ENTRY
0	1	LEFT DATA ENTRY
1	0	RIGHT DATA ENTRY
1	1	BLOCK DATA ENTRY

Figure 3. Control Word Format for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

Figure 4. Present State-Next State Dlagram for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

If D_{7} is a logic low when the DATA IN lines are read, the controller will interpret D_{6} - D_{0} as standard ASCII data to be stored, decoded and displayed. The system accepts seven bit ASCII for all three versions. However, the HDSP-2470 system displays only the 64 character subset [2016
(space) to $\left.5 \mathrm{~F}_{16}(-)\right]$ and ignores all ASCII characters outside this subset with the exception of those characters defined as display commands. These display commands are shown in Figure 5. Displayed character sets for the HDSP-2470/-2471 systems are shown in Figure 6.

DATA WORD:	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			
ASCII ASSIGNMENT	0	A	A	A	A	A	A	A	DISPLAY COMMAND		
LF		0	0	0	1	0	1	0	CLEAR	Valid in Right Entry Mode	Valid in Left Entry Mode
BS		0	0	0	1	0	0	0	BACKSPACE CURSOR Mode FORWARDSPACE CURSOR		
HT		0	0	0	1	0	0	1			
US		0	0	1	1	1	1	1	INSERT CHARACTER		
DEL.		1	1	1	1	1	1	1	DELETE CHARACTER		

Figure 5. Display Commands for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

*DISPLAY COMMANDS WHEN USED IN LEFT ENTRY +DISPLAY COMMANDS WHEN USED IN RIGHT ENTRY

Figure 6. Display Font for the HDSP-2470 (64 Character ASCII Subset), and HDSP-2471 (128 Character ASCII Set) Alphanumeric Display Controller.

Regardless of whether a control word or ASCII data word is presented by the user, a READY signal is generated by the controller after the input word is processed. This READY signal goes low for $25 \mu \mathrm{~s}$ and upon a positive transition, a new CHIP SELECT may be accepted by the controller. Data Entry Timing is shown in Figure 7.

MAXIMUM DATA ENTRY TIMES OVER OPERATING TEMPERATURE RANGE

DATA ENTRY MODE		FUNCTION					
HDSP.	DATA HOLD TIME*	DATA ENTRY	BACK SPACE	CLEAR	FORWARD SPACE	DELETE	INSERT
LEFT (2471/2)	$135 \mu \mathrm{~s}$	$235 \mu \mathrm{~s}$	$195 \mu \mathrm{~s}$	$505 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$	$725 \mu \mathrm{~s}$	$725 \mu \mathrm{~s}$
LEFT (2470)	150 $\mu \mathrm{s}$	$245 \mu \mathrm{~s}$	$215 \mu \mathrm{~s}$	$530 \mu \mathrm{~s}$	$225 \mu \mathrm{~s}$	745μ s	$735 \mu \mathrm{~s}$
RIGHT (2471/2)	$85 \mu \mathrm{~s}$	$480 \mu \mathrm{~s}$	$470 \mu \mathrm{~s}$	$465 \mu \mathrm{~s}$			
RIGHT (2470)	$105 \mu \mathrm{~s}$	$490 \mu \mathrm{~s}$	$490 \mu \mathrm{~s}$	$485 \mu \mathrm{~s}$			
RAM (2471/2)	$55 \mu \mathrm{~s} \quad 120 \mu \mathrm{~s}^{* *}$	$190 \mu \mathrm{~s}$					
RAM (2470)	$55 \mu \mathrm{~s}$. $130 \mu \mathrm{~s}^{* *}$	$200 \mu \mathrm{~s}$					
BLOCK (2471/2)	$55 \mu \mathrm{~s}$	$120 \mu \mathrm{~s}$	($155 \mu \mathrm{~s}$ F	OR RIGH	MOST CHAR	CTER)	
BLOCK (2470)	$55 \mu \mathrm{~s}$	$130 \mu \mathrm{~s}$	($165 \mu \mathrm{~s}$ F	OR RIGH	MOST CHAR	CTER)	
LOAD CONTROL (2471/2)	$50 \mu \mathrm{~s}$	$505 \mu \mathrm{~s}$					
LOAD CONTROL (2470)	$50 \mu \mathrm{~s}$	$505 \mu \mathrm{~s}$					

Figure 7. Data Entry Timing and Data Entry Times for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

Left Entry Mode

With Left entry, characters are entered in typewriter fashion, i.e., to the right of all previous characters. Left entry uses a blinking cursor to indicate the location where the next character is to be entered. CLEAR loads the display with spaces and resets the cursor to the leftmost display location. BACKSPACE and FORWARDSPACE move the cursor without changing the character string. Thus, the user can backspace to the character to be edited, enter a character and then forward space the cursor. The DELETE function deletes the displayed character at the cursor location and then shifts the character string following the cursor one location to the left to fill the void of the deleted character. The INSERT CHARACTER sets a flag inside the system that causes subsequent ASCII characters to be inserted to the left of the character at the cursor location. As new characters are entered, the cursor, the character at the cursor, and all characters to the right of the cursor are shifted one location to the right. The INSERT function is terminated by a second INSERT CHARACTER, or by BACKSPACE, FORWARDSPACE, CLEAR or DELETE. In Left entry mode, after the display is filled, the system ignores all characters except BACKSPACE and CLEAR. The system allows the cursor to be positioned only in the region between the leftmost display character and immediately to the right (offscreen) of the rightmost display character.

Right Entry Mode

In Right entry mode, characters are entered at the right hand side of the display and shifted to the left as new characters are entered. In this mode, the system stores 48 ASCII characters, although only the last characters entered are displayed. CLEAR loads the display with spaces. BACKSPACE shifts the display one location to the right, deleting the last character entered and displaying the next character in the 48 character buffer. Right entry mode is a simple means to implement the walking or "Times-Square" display. FORWARDSPACE, INSERT, and DELETE have character assignments in this mode since they are not treated as editing characters. In this mode, the cursor is located immediately to the right (offscreen) of the rightmost displayed character.

Block Entry Mode

Block entry allows the fastest data entry rate of all four modes. In this mode, characters are loaded from left to right as with Left entry. However, with Block entry, after the display is completely loaded, the next ASCII character is loaded in the leftmost display location, replacing the previous displayed character. While Block entry has a nonvisible cursor, the cursor is always loaded with the address of the next character to be entered. In this entry mode, the system can display the complete 128 character ASCII set. The display can be cleared and the cursor reset to the leftmost display location by loading in a new BLOCK control word.

RAM Entry Mode,

In RAM entry, ASCII characters are loaded at the address specified by the five bit RAM address. Due to the limitation of only five address lines, RAM data entry is allowed only
for displays less than or equal to 32 characters. Regardless of display length, address 00 is the leftmost display character. Out of range RAM addresses are ignored. While RAM entry has a non-visible cursor, the cursor is always preloaded with the address to the right of the last character entered. This allows the cursor to be preloaded with an address prior to going into any other entry mode. In RAM entry, the system can display the complete 128 character ASCII set because it does not interpret any of the characters as control functions. The display can be cleared by loading in a new RAM control word.

Data Out

For display lengths of 32 characters or less, the data stored in the internal RAM is available to the user during the time between display refresh cycles. The system outputs a STATUS WORD, CURSOR ADDRESS, and 32 ASCII data characters. The STATUS WORD specifies the data entry mode and the display length of the system. The STATUS WORD output differs slightly from the CONTROL WORD input. This difference is depicted in Figure 8. Regardless of display length, the CURSOR ADDRESS of the rightmost character location is address $47\left(2 F_{16}\right)$ and the offscreen address of the cursor is address $48\left(30_{16}\right)$. The CURSOR ADDRESS of the leftmost location is defined as address 48 minus the display length. A general formula for CURSOR ADDRESS is:

CURSOR ADDRESS =

(47-Display Length) + Number of Characters from Left.
For example, suppose the alphanumeric display is 16 characters long and the cursor was blinking at the third digit from the left. Then the CURSOR ADDRESS would be 47-16 + 3 or 34 (2216) and the 18th ASCII data word would correspond to the ASCII character at the location of the display cursor. In Left and Block entry, the CURSOR ADDRESS specifies the location where the next ASCII data character is to be entered. In RAM entry, the CURSOR ADDRESS specifies the location to the right of the last character entered. In Right entry, the CURSOR ADDRESS is always 48 (3016). The negative edge of the DATA VALID output can be used to load the 34 DATA OUT words into the user's system. The DATA OUT timing for the HDSP-247X systems are summarized in Figure 8. For displays longer than 32 characters, the system only outputs the STATUS WORD between refresh cycles.

Master/Power On Reset

When power is first applied to the system, the system clears the display and tests the state of the DATA INPUT, D_{7}. If $D_{7}>2.0 \mathrm{~V}$, the systems loads the control word on the DATA INPUTS into the system. If $\mathrm{D}_{7} \leq .8 \mathrm{~V}$ or the system sees an invalid control word, the system initializes as Left entry for a 32 character display with a flashing cursor in the leftmost location. For POWER ON RESET to function properly, the power supply must turn on at a rate $>100 \mathrm{~V} / \mathrm{s}$. In addition, the system can be reset by pulling the RESET input low for a minimum of 50 milliseconds. POWER ON/MASTER RESET timing is shown in Figure 9.

X, COLUMN OFF TIME
(HDSP-2470) $\quad=30.5 \mu \mathrm{~s}+20 \mu \mathrm{~s} \times$ Display Length (HDSP-2471/-2472) $=17.5 \mu \mathrm{~s}+17.5 \mu \mathrm{~s} \times$ Display Length
Y, DATA VALID TO COLUMN OFF TIME
(Display Length $\leqslant \mathbf{3 2}$ Characters)
(HDSP-2470) $=813.5 \mu \mathrm{~s}-20 \mu \mathrm{~s} \times$ Display Length (HDSP-2471/-2472) $=826.2 \mu \mathrm{~s}-17.5 \mu \mathrm{~s}$ X Display Length STATUS WORD FORMAT (WORD A)
$\begin{array}{lllllll}D_{6} & D_{5} & D_{4} & D_{3} & D_{2} & D_{1} & D_{0}\end{array}$

0	0	0			
0	0	1			
0	1	0			
1	0	0			

RAM ENTRY BLOCK ENTRY LEFT ENTRY RIGHT ENTRY
CURSOR ADDRESS FORMAT (WORD B)
CURSOR ADDRESS $=(47-$ Display Length $)+$ No. of Characters from Left DATA WORD FORMAT (WORDS 0-31)
STANDARD ASCII DATA Where Word (31) is Rightmost Displayed ASCII Character

Figure 8. Data Out Timing and Format for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

Figure 9. Power-On/Master Reset Timing for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

Custom Character Sets

The HDSP-2472 system has been specifically designed to permit the user to insert a custom 128 ASCII character set. This system features a 24 pin socket that is designed to accept a custom programmed 1K X 8 PROM, EPROM, or ROM. The read only memory should have an access time \leq $500_{\text {ns, }} \mathrm{I}_{\mathrm{IL}} \leq|-.4 \mathrm{~mA}|$ and $\mathrm{I}_{\mathrm{IH}} \leq 40 \mu \mathrm{~A}$. A list of pin compatible read only memories is shown in Figure 10. Jumper locations are provided on the HDSP-2472 P.C. board which allow the use of ROM's requiring chip enables tied either to 0 or 5 V . For further information on ROM programming, please contact the factory.

Power Supply Requirements

The HDSP-247X Alphanumeric Display System is designed to operate from a single 5 volt supply. Total Icc requirements for the HDSP-247X Alphanumeric Display Controller and HDSP-24XX Display Panel are shown in Figure 11. Peak Icc is the instantaneous current required for the system. Maximum Peak Icc occurs for Vcc $=5.25 \mathrm{~V}$ with 7 dots ON in the same Column in all display characters. This current must be supplied by a combination of the power supply and supply filter capacitor. Maximum Average Icc occurs for Vcc $=5.25 \mathrm{~V}$ with 21 dots ON per character in all display characters. The inclusion of a 375 X microfarad capacitor (where X is the number of characters in the display) adjacent to the HDSP-247X Alphanumeric Display System will permit the use of a power supply capable of supplying the maximum average Icc.

Figure 11. Maximum Peak and Average Icc for the HDSP2470/71/72 Alphanumeric Display Controller and HDSP-2000 Dlsplay.

CONNECTORS

FUNCTION	TYPE OF CONNECTOR	SUGGESTED MANUFACTURER
CONTROL/DATA ENTRY	$\begin{gathered} 26 \text { Pin } \\ \text { Ribbon Cable } \end{gathered}$	3M P/N 3399. $\times 000$ Series
POWER ${ }^{(1)}$	$\begin{aligned} & 3 \text { Pin } \\ & \text { With Locking } \\ & \text { Ramp } \end{aligned}$	Molex P/N 09-50.3031 with 08-50-0106 Terminals
DISPLAY DRIVE ${ }^{(2,3)}$	17 Pin Board to Board Pin/Socket	Pin: BERQ p/n 75409-041 Socket: BERG p/n $65780-017$

NOTES:
(1) Power leads should be 18-20 gauge stranded wire.
(2) The maximum lead length from the controller board to the display should not exceed 1 metre.

Figure 10. Pin Compatible 1K $\times 8$ Read Only Memories for the HDSP-2472 Alphanumeric Display Controller.

Display Boards/Hardware

The mechanical layout of the HDSP-247X Series allows direct mating of the controller P.C. board to a compatible series of display boards available from Hewlett-Packard. These display boards consist of matched and tested HDSP-2000 clusters soldered to a P.C. board.

Included with the controller board are four locking circuit board support nylon standoffs (Richco LCBS-4). This hardware allows the controller board to interconnect with any of the standard display boards. Figure 12 depicts correct assembly technique.

Assembly Steps

1. Insert the standoffs into .151 diameter holes (noted as " S " on Figure 12. The long end of the standoffs should protrude through the controller board side.
2. Position the controller board and display board with the components and displays facing out. The HP logo should be in the upper left corner when viewed facing the boards. Insert the standoffs through the mating holes on the display board and press the boards together so that the standoffs lock in place.
3. Insert the pins from the display board into the socket on the controller board.

Figure 12. Assembly Drawing.

Figure 13. HDSP-2470/-2471/-2472

Figure 14. HDSP-2416/-2424/-2432

Figure 15. HDSP-2440

Features

- 5×7 LED MATRIX CHARACTER
- LARGE 6.9 mm (. 27 INCH) CHARACTER HEIGHT
- EXTREMELY WIDE TEMP. RANGE
- COMPACT 15.2 mm (. 600 INCH) GLASS/CERAMIC DIP
- WIDE VIEWING ANGLE
- RUGGED, SHOCK RESISTANT

Typical Applications

- COMPUTER PERIPHERALS
- MILITARY EQUIPMENT
- INDUSTRIAL EQUIPMENT
- AVIONICS

Description

The Hewlett-Packard 5082-7100 Series is an X-Y addressable, 5×7 LED Matrix capable of displaying the full alphanumeric character set. This alphanumeric indicator series is available in 3, 4, or 5 character endstackable clusters. The clusters permit compact presentation of information, ease of character alignment, minimum number of interconnections, and compatibility with multiplexing driving schemes.

The 5082-7100 is a three character cluster.
The 5082-7101 is a four character cluster.
The $5082-7102$ is a five character cluster.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Peak Forward Current Per LED (Duration $<1 \mathrm{~ms}$)	IPEAK		100	mA
Average Current Per LED	IAVG		10	mA
Power Dissipation Per Character (All diodes lit)				
Operating Temperature, Case	PD_{D}		700	mW
Storage Temperature	T_{C}	-55	95	${ }^{\circ} \mathrm{C}$
Reverse Voltage Per LED	T_{S}	-55	100	${ }^{\circ} \mathrm{C}$

Note 1: At $25^{\circ} \mathrm{C}$ Case Temperature; derate $8.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical / Optical Characteristics at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units
Peak Luminous Intensity Per LED (Character Average) @ Pulse Current of 100mA/LED	I_{ν} (PEAK)	1.0	2.2		mcd
Reverse Current Per LED @ $V_{R}=4 V$	I_{R}		10		$\mu \mathrm{~A}$
Peak Forward Voltage @ Pulse Current of 50mA/LED	V_{F}	1.7	2.0	V	
Peak Wavelength	$\lambda_{\text {PEAK }}$		655		nm
Spectral Line Halfwidth	$\Delta \lambda_{1 / 2}$		30		nm
Rise and Fall Times ${ }^{[1]}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	10		ns	

Note 1. Time for a 10\%-90\% change of light intensity for step change in current.

Figure 1. Forward Current-Voltage Characteristic.

Figure 3. Typical Time Average Luminous Intensity per LED vs. Average Current per LED.

Figure 2. Relative Luminous Intensity vs. Case Temperature at Fixed Current Level.

Figure 4. Typical Relative Luminous Efficiency vs. Peak Current per LED.

Package Dimensions and Pin Configurations

Device Pin Description

5082.7100				5082.7101				5082.7102			
Pin	Function										
1	Anode G	12	Anode B	1	N/C	15	Anode C	1	N/C	19	5 e
2	1 c	13	3d	2	1 c	16	4 c	2	1 c	20	5 c
3	1 d	14	3 b	3	1 e	17	4 a	3	1 e	21	5 a
4	Anode F	15	Anode A	4	Anode G	18	Anode B	4	Anode F	22	Anode D
5	Anode E	16	2 e	5	2 b	19	3 e	5	2 b	23	
6	2b	17	2 c	6	2 d	20	36	6	2d	24	45
7	2 d	18	2 a	7	Anode D	21	3 a	7	2 e	25	N/C
8	Anode C	19	Anode D	8	Anode E	22	2 e	8	Anode E	26	Anode C
9	3 a	20	1 e	9	3 c	23	2 c	9	3 c	27	3d
10	3 c	21	ib	10	3 d	24	2 a	10	3 e	28	3b
11	38	22	1 a	11	Anode F	25	Anode A	11	Anode G	29	3 a
				12	4 b	26	1 d	12	4a	30	Anode B
				13	4d	27	16	13	4 b	31	2c
				14	4 e	28	1a	14	4 d	32	
								15	N/C	33	Anode A
								16	5 b	34	
								17 18	5d N/C	35 36	16 $1 a$

5082-7100/7101/7102 Schematic Wiring Diagram

Operating Considerations

ELECTRICAL

The 5×7 matrix of LED's, which make up each character, are X-Y addressable. This allows for a simple addressing, decoding and driving scheme between the display module and customer furnished logic.
There are three main advantages to the use of this type of $X-Y$ addressable array:

1. It is an elementary addressing scheme and provides the least number of interconnection pins for the number of diodes addressed. Thus, it offers maximum flexibility toward integrating the display into particular applications.
2. This method of addressing offers the advantage of sharing the Read-Only-Memory character generator among several display elements. One character generating ROM can be shared over 25 or more 5×7 dot matrix characters with substantial cost savings.
3. In many cases equipment will already have a portion of the required decoder/driver (timing and clock circuitry plus buffer storage) logic circuitry available for the display.
To form alphanumeric characters a method called "scanning" or "strobing" is used. Information is addressed to the display by selecting one row of diodes at a time, energizing the appropriate diodes in that row and then proceeding to the next row. After all rows have been excited one at a time, the process is repeated. By scanning through all rows at least 100 times a second, a flicker free character can be produced. When information moves sequentially from row to row of the display (top to bottom) this is row scanning, as illustrated in Figure 5. Information can also be moved from column to column (left to right across the display) in a column scanning mode. For most applications (5 or more characters to share the same ROM) it is more economical to use row scanning.

MECHANICAL/THERMAL MOUNTING

The solid state display typically operates with 200 mW power dissipation per character. However, if the operating conditions are such that the power dissipation exceeds the derated maximum allowable value, the device should be heat sunk. The usual mounting technique combines mechanical support and thermal heat sinking in a common structure. A metal strap or bar can be mounted behind the display using silicone grease to insure good thermal control. A well-designed heat sink can limit the case temperature to within $10^{\circ} \mathrm{C}$ of ambient.

Figure 5. Row Scanning Block Diagram.

SOLID STATE ALPHANUMERIC DISPLAY

Features

- ALPHANUMERIC

Displays 64 Character ASCII Set and Special Characters

- 16 SEGMENT FONT PLUS CENTERED D.P. AND COLON
- 3.81 mm ($0.150^{\prime \prime}$) CHARACTER HEIGHT
- APPLICATION FLEXIBILITY WITH PACKAGE DESIGN
4 and 8 Character Dual-In-Line Packages
End Stackable-On Both Ends for 8 Character and
On One End for 4 Character
Sturdy Gold-Plated Leads on 2.54 mm (0.100 ") Centers
Environmentally Rugged Package
Common Cathode Configuration
- LOW POWER

As Low as $\mathbf{1 . 0 - 1 . 5 m A}$ Average
Per Segment Depending on Peak
Current Levels

- EXCELLENT CHARACTER APPEARANCE

Continuous Segment Font
High On/Off Contrast
$6.35 \mathrm{~mm}\left(0.250^{\prime \prime}\right)$ Character Spacing
Excellent Character Alignment
Excellent Readability at 2 Metres

- SECONDARY BARREL MAGNIFIER AVAILABLE Increases Character Height to 4.45 mm ($\mathbf{0 . 1 7 5 ")}$
- SUPPORT ELECTRONICS

Can Be Driven With ROM Decoders and Drivers
Easy Interfacing With Microprocessors and LSI Circuitry

- CATEGORIZED FOR LUMINOUS INTENSITY

Description

The HDSP-6504 and HDSP-6508 are 3.81 mm ($0.150^{\prime \prime}$) sixteen segment GaAsP red alphanumeric displays mounted in 4 character and 8 character dual-in-line package configurations that permit mounting on PC boards or in standard IC sockets. The monolithic light emitting diode character is magnified by the integral lens which increases both character size and luminous intensity, thereby making low power consumption possible. The rugged package construction, enhanced by the backfill design, offers extended environmental capabilities compared to the standard PC board/lens type of display package. Its good temperature cycling capability is the result of the air gap which exists between the semiconductor chip/wire bond assembly and the lens. In addition to the sixteen segments, a centered D.P. and colon are included. Character spacing yields 4 characters per inch.

Applications

These alphanumeric displays are attractive for applications such as computer peripherals and terminals, computer base emergency mobile units, automotive instrument panels, desk top calculators, in-plant control equipment, hand-held instruments and other products requiring low power, display compactness and alphanumeric display capability.

Device Selection Guide

Characters Per Display	Configuration										Part No． HDSP．
	Device									Package	
4										（Figure 6）	－6504
8	｜801	［｜V｜	18181		－ 4	｜$\times 1$	－ 1×1	区念		（Figure 7）	6508

Absolute Maximum Ratings

Symbol	Parameter	Min．	Max．	Units
Ipeak	Peak Forward Current Per Segment or DP（Duration $\leq 312 \mu$ s）		200	mA
lavg	Average Current Per Segment or DP［1］		7	mA
PD	Average Power Dissipation Per Character［1，2］		138	mW
TA	Operating Temperature，Ambient	－40	85	${ }^{\circ} \mathrm{C}$
Ts	Storage Temperature	－40	100	${ }^{\circ} \mathrm{C}$
V_{R}	Reverse Voltage		5	V
	Solder Temperature at 1.59 mm （ $1 / 16$ inch）below seating plane， $\mathrm{t} \leq 3$ Seconds		260	${ }^{\circ} \mathrm{C}$

NOTES：

1．Maximum allowed drive conditions for strobed operation are derived from Figures 1 and 2 ．See electrical section of operational considerations．
2．Derate linearly above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $2.17 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ． PD Max．$\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)=62 \mathrm{~mW}$ ．

Electrical／Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Condition	Min．	Typ．	Max．	Units
IV	Luminous Intensity，Time Average，Character Total with 16 Segments Illuminated［3，4］	IPEAK $=30 \mathrm{~mA}$ 1／16 Duty Factor	0.40	1.65		med
V_{F}	Forward Voltage Per Segment or DP	$\begin{gathered} 1 F=30 \mathrm{~mA} \\ \text { (One Segment On) } \end{gathered}$	\％	1.6	1.9	V
入PEAK	Peak Wavelength			655		nm
λ_{d}	Dominant Wavelength［5］			640		nm
In	Reverse Current Per Segment or DP	$V_{R}=5 \mathrm{~V}$		10		$\mu \mathrm{A}$
$\Delta V_{F} / \Delta^{\circ} \mathrm{C}$	Temperature Coefficient of Forward Voltage			－2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$R \theta_{J-P I N}$	Thermal Resistance LED Junction－to－Pin			232		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$

NOTES：

3．The luminous intensity ratio between segments within a digit is designed so that each segment will have the same luminous sterance．Thus each segment will appear with equal brightness to the eye．
4．Each character of the display is matched for luminous intensity at the test conditions shown．Operation of the display at lower peak currents may cause intensity mismatch within the display．Operation at peak currents less than 7 mA will cause objectionable display segment matching．
5．The dominant wavelength，λd ，is derived from the C．I．E．chromaticity diagram and represents that single wavelength which defines the color of the device，standard red．

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration. Derate derived operating conditions above $\mathrm{T}_{\mathrm{A}}=5 \mathbf{0}^{\circ} \mathrm{C}$ using Figure 2.

Figure 2. Temperature Derating Factor For Peak Current per Segment vs. Ambient Temperature. $\mathrm{T}_{\mathrm{J} M A X}=110^{\circ} \mathrm{C}$

Figure 3. Relative Luminous Efficiency (Luminous Intensity Per Unit Current) vs. Peak Segment Current.

Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Figure 5. Typical 64 Character ASCII Set.

Magnified Character Font Description

DEVICES
HDSP-6504
HDSP-6508

Figure 8.

Device Pin Description

Function				
$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	HDSP-6504		HDSP-6508	
1	Anode	Segment 91	Anode	Segme
2	Anode	Segment DP	Anode	Segment DP
3	Cathode	Digit 1	Cathode	Digit 1
4	Anode	Segment d2	Anode	Segment d_{2}
5	Anode	Segment 1	Anode	Segment I
6	Cathode	Digit 3	Cathode	Digit 3
7	Anode	Segmente	Anode	Segmente
8	Anode	Segment m	Anode	Segment m
9	Anode	Segment k	Anode	Segment k
10	Cathode	Digit 4	Cathode	Digit 4
11	Anode	Segment di	Anode	Segment dit
12	Anode	Segment ${ }^{\text {d }}$	Cathode	Digit 6
13	Anode	Segment C_{0}	Cathode	Digit 8
14	Anode	Segment g2	Cathode	Digit 7
15	Anode	Segment a2	Cathode	Digit 5
16	Anode	Segment i	Anode	Segment j
17	Cathode	Digit 2	Anode	Segment Co_{0}
18	Anode	Segment b	Anode	Segment g2
19	Anode	Segment at	Anode	Segment a2
20	Anode	Segment c	Anode	Segment 1
21	Anode	Segment h	Cathode	Digit 2
22	Anode	Segment \ddagger	Anode	Segment b
23			Anode	Segment at
24			Anode	Segment c
25			Anode	Segment h
26			Anode	Segment f

Operational Considerations

ELECTRICAL

The HDSP-6504 and -6508 devices utilize large monolithic 16 segment GaAsP LED chips with centered decimal point and colon. Like segments of each digit are electrically interconnected to form an 18 by N array, where N is the quantity of characters in the display. In the driving scheme the decimal point or colon is treated as a separate character with its own time frame.

These displays are designed specifically for strobed (multiplexed) operation. Under normal operating situations the maximum number of illuminated segments needed to represent a given character is 10 . Therefore, except where noted, the information presented in this data sheet is for a maximum of 10 segments illuminated per character.*

The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design may be calculated using the following V_{F} model:

$$
\begin{aligned}
& V_{F}=1.85 \mathrm{~V}+\text { IPEAK }(1.8 \Omega) \\
& \text { For: } 30 \mathrm{~mA} \leq \text { IPEAK } \leq 200 \mathrm{~mA} \\
& V_{F}=1.58 \mathrm{~V}+I_{\text {PEAK }}(10.7 \Omega) \\
& \text { For: } 10 \mathrm{~mA} \leq \text { IPEAK } \leq 30 \mathrm{~mA}
\end{aligned}
$$

OPTICAL AND CONTRAST ENHANCEMENT

Each large monolithic chip is positioned under a separate element of a plastic aspheric magnifying lens, producing a magnified character height of 3.81 mm (. 150 inch). The aspheric lens provides wide included viewing angles of typically 75 degrees horizontal and 75 degrees vertical with low off-axis distortion. These two features, coupled with the very high segment luminous sterance, provide to the
*More than 10 segments may be illuminated in a given character, provided the maximum allowed character power dissipation, temperature derated, is not exceeded.
user a display with excellent readability in bright ambient light for viewing distances in the range of 2 meters. Effective contrast enhancement can be obtained by employing any of the following optical filter products: Panelgraphic: Ruby Red 60, Dark Red 63 or Purple 90; SGL Homalite: H100-1605 Red or H100-1804 Purple, Plexiglas 2423. For very bright ambients, such as indirect sunlight, the 3M Light Control Film is recommended: Red 655, Violet, Purple or Neutral Density.

For those applications requiring only 4 or 8 characters, a secondary barrel magnifier, HP part number HDSP-6505 (four character) and -6509 (eight character), may be inserted into support grooves on the primary magnifier. This secondary magnifier increases the character height to 4.45 mm (. 175 inch) without loss of horizontal viewing angle.

MECHANICAL

These devices are constructed by LED die attaching and wire bonding to a high temperature PC board substrate. A precision molded plastic lens is attached to the PC board and the resulting assembly is backfilled with a sealing epoxy to form an environmentally sealed unit.
The four character and eight character devices can be end stacked to form a character string which is a multiple of a basic four character grouping. As an example, one -6504 and two -6508 devices will form a 20 character string. These devices may be soldered onto a printed circuit board or inserted into 24 and 28 pin DIP LSI sockets. The socket spacing must allow for device end stacking.

Suitable conditions for wave soldering depend upon the specific kind of equipment and procedure used. For more information, consult the local HP Sales Office or HewlettPackage Components, Palo Alto, California.

OPTIONAL 4 DIGIT MAGNIFIER HDSP-6505

OPTIONAL 8 DIGIT MAGNIFIER

HDSP-6509

END VIEW

Figure 9. Design Data for Optional Barrel Magnifier in Single Display Applications.

> 16 SEGMENT SOLID STATE ALPHANUMERIC DISPLAY

Features

- ALPHANUMERIC

Displays 64 Character ASCII Set and Special Characters

- 16 SEGMENT FONT PLUS CENTERED D.P. AND COLON
- 3.56 mm (0.140 ") CHARACTER HEIGHT
- APPLICATION FLEXIBILITY WITH PACKAGE DESIGN
8 Character Dual-In-Line Package End Stackable
Sturdy Leads on $\mathbf{2 . 5 4 m m}$ ($\mathbf{0 . 1 0 0}{ }^{\prime \prime}$) Centers
Common Cathode Configuration
- LOW POWER

As Low as $\mathbf{1 . 0 - 1 . 5 m A}$ Average Per Segment Depending on Peak Current Levels

- EXCELLENT CHARACTER APPEARANCE Continuous Segment Font High On/Off Contrast 5.08 mm ($0.200^{\prime \prime}$) Character Spacing Excellent Character Alignment
Excellent Readability at 1.5 Metres
- SUPPORT ELECTRONICS

Can Be Driven With ROM Decoders and Drivers
Easy Interfacing With Microprocessors and LSI Circuitry

- CATEGORIZED FOR LUMINOUS INTENSITY

Description

The HDSP-6300 is a sixteen segment GaAsP red alphanumeric display mounted in an 8 character dual-inline package configuration that permits mounting on PC boards or in standard IC sockets. The monolithic light emitting diode character is magnified by the integral lens which increases both character size and luminous intensity, thereby making low power consumption possible. The sixteen elements consist of sixteen segments for alphanumeric and special characters plus centered decimal point and colon for good visual aesthetics. Character spacing yields 5 characters per inch.

Applications

These alphanumeric displays are attractive for applications such as computer peripherals and mobile terminals, desk top calculators, in-plant control equipment, handheld instruments and other products requiring low power, display compactness and alphanumeric display capability.

Absolute Maximum Ratings

Symbol	Parameter	Min.	Max.	Units
IPEAK	Peak Forward Current Per Segment or DP (Duration $\leq 417 \mu \mathrm{~s}$)		150	mA
lavg	Average Current Per Segment or DP[1]		6.25	mA
PD	Average Power Dissipation Per Character [1,2]	-	133	mW
TA	Operating Temperature, Ambient	-40	85	${ }^{\circ} \mathrm{C}$
Ts	Storage Temperature	-40	100	${ }^{\circ} \mathrm{C}$
$V_{\text {R }}$	Reverse Voltage		5	V
	Solder Temperature at 1.59 mm ($1 / 16$ inch) below seating plane, $t \leq 5$ Seconds		260	${ }^{\circ} \mathrm{C}$

NOTES:

1. Maximum allowed drive conditions for strobed operation are derived from Figures 1 and 2 . See electrical section of operational considerations.
2. Derate linearly above $T_{A}=50^{\circ} \mathrm{C}$ at $2.47 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. PD Max. $\left(T_{A}=85^{\circ} \mathrm{C}\right)=47 \mathrm{~mW}$.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Units
IV	Luminous Intensity, Time Average, Character Total with 16 Segments Illuminated [3,4]	$I_{\text {PEAK }}=24 \mathrm{~mA}$ 1/16 Duty Factor	400	1200		$\mu \mathrm{cd}$
V_{F}	Forward Voltage Per Segment or DP	$\mathrm{If}=24 \mathrm{~mA}$ (One Segment On)		1.6	1.9	V
λ PEAK	Peak Wavelength			655		nm
λ_{d}	Dominant Wavelength[5]			640		nm
IR	Reverse Current Per Segment or DP	$V_{\text {A }}=5 \mathrm{~V}$		10		$\mu \mathrm{A}$
$R \theta_{J-P I N}$	Thermal Resistance LED Junction-to-Pin per Character			250		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Char.

NOTES:
3. The luminous intensity ratio between segments within a digit is designed so that each segment will have the same luminous sterance. Thus each segment will appear with equal brightness to the eye.
4. Each character of the display is matched for luminous intensity at the test conditions shown. Operation of the display at lower peak currents may cause intensity mismatch within the display. Operation at peak currents less than 7 mA will cause objectionable display segment matching.
5. The dominant wavelength, λd, is derived from the C.I.E. chromaticity diagram and represents that single wavelength which defines the color of the device, standard red.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration. Derate derived operating conditions above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ using Figure 2.

Figure 2, Temperature Derating Factor For Peak Current per Segment vs. Ambient Temperature. TJMAX $=110^{\circ} \mathrm{C}$

Magnified Character Font Description

Figure 7.

Device Pin Description

Pin No.	Function	
1	Anode	Segment K
2	Anode	Segment D_{1}
3	Anode	Segment C
4	Cathode	Digit 1
5	Cathode	Digit 2
6	Cathode	Digit 3
7	Cathode	Digit 4
8	Anode	Segment L
9	Anode	Segment G2
10	Anode	Segment E
11	Anode	Segment M
12	Anode	Segment D_{2}
13	Anode	Segment DP
14	Anode	Segment A_{2}
15	Anode	Segment I
16	Anode	Segment J
17	Cathode	Digit 8
18	Cathode	Digit 7
19	Cathode	Digit 6
20	Cathode	Digit 5
21	Anode	Segment C_{0}
22	Anode	Segment G_{1}
23	Anode	Segment B
24	Anode	Segment F
25	Anode	Segment H
26	Anode	Segment A_{1}

Operational Considerations

ELECTRICAL

The HDSP-6300 device utilizes large monolithic 16 segment plus centered decimal point and colon GaAsP LED chips. Like segments of each digit are electrically interconnected to form an 18 by N array, where N is the quantity of characters in the display. In the driving scheme the decimal point or colon is treated as a separate character with its own time frame.

This display is designed specifically for strobed (multiplexed) operation. Under normal operating situations the maximum number of illuminated segments needed to represent a given character is 10 . Therefore, except where noted, the information presented in this data sheet is for a maximum of 10 segments illuminated per character.*

The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design may be calculated using the following V_{F} model:

$$
\begin{aligned}
& V_{F}=1.85 \mathrm{~V}+I_{\text {PEAK }}(1.8 \Omega) \\
& \text { For } 30 \mathrm{~mA} \leq I_{\text {PEAK }} \leq 150 \mathrm{~mA} \\
& V_{F}=1.58 \mathrm{~V}+I_{\text {PEAK }}(10.7 \Omega) \\
& \text { For } 10 \mathrm{~mA} \leq I_{\text {PEAK }} \leq 30 \mathrm{~mA}
\end{aligned}
$$

[^12]
OPTICAL AND CONTRAST ENHANCEMENT

Each large monolithic chip is positioned under a separate element of a plastic aspheric magnifying lens producing a magnified character height of 3.56 mm (0.140 inch). The aspheric lens provides wide included viewing angles of 60 degrees horizontal and 55 degrees vertical with low off axis distortion. These two features, coupled with the very high segment luminous sterance, provide to the user a display with excellent readability in bright ambient light for viewing distances in the range of 1.5 metres. Effective contrast enhancement can be obtained by employing an optical filter product such as Panelgraphic Ruby Red 60, Dark Red 63 or Purple 90; SGL Homalite H100-1605 Red or H100-1804 Purple; or Plexiglas 2423. For very bright ambients, such as indirect sunlight, the 3M Red 655 or Neutral Density Light Control Film is recommended.

MECHANICAL

This device is constructed by LED die attaching and wire bonding to a high temperature PC board substrate. A precision molded plastic lens is attached to the PC board.

The HDSP-6300 can be end stacked to form a character string which is a multiple of a basic eight character grouping. These devices may be soldered onto a printed circuit board or inserted into 28 pin DIP LSI sockets. The socket spacing must allow for device end stacking.

Suitable conditions for wave soldering depend upon the specific kind of equipment and procedure used. It is recommended that a non-activated rosin core wire solder or a low temperature deactivating flux and solid wire solder be used in soldering operations. For more information, consult the local HP Sales Office or Hewlett-Packard Components, Palo Alto, California.

LARGE 5×7 DOT MATRIX ALPHANUMERIC DISPLAYS

Features

- LARGE CHARACTER HEIGHTS
- 5×7 DOT MATRIX FONT
- VIEWABLE UP TO 18 METERS (1.04 in. DISPLAY)
- X-Y STACKABLE
- IDEAL FOR GRAPHICS PANELS
- AVAILABLE IN COMMON ROW ANODE AND COMMON ROW CATHODE CONFIGURATIONS
- CATEGORIZED FOR INTENSITY
- MECHANICALLY RUGGED
- AVAILABLE IN CUSTOM DISPLAY BOARDS

Description

The large 5×7 dot matrix alphanumeric display family is comprised of 26.5 mm (1.04 inch) character height packages (HDSP-440X Standard Red, and HDSP-450X High Efficiency Red) and 17.3 mm (0.68 inch) packages (HDSP470X Standard Red). These devices have excellent viewability; the 1.04 inch character font can be read at up to 18 metres (12 metres for the 0.68 inch device).

These devices utilize a 10.2 mm (0.4 inch) dual-in-line (DIP) configuration for the 1.04 inch font, while the 0.68 inch font

17.3 mm (0.68 in .) STANDARD RED HDSP-4701/4703
26.5 mm (1.04 in.) STANDARD RED HDSP-4401/4403 26.5 mm (1.04 in .) HIGH EFFICIENCY RED HDSP-4501/4503

Package Dimensions (HDSP-470X Series)

END VIEW

Package Dimensions (HDSP-440X/-450X/Series)

END VIEW

Internal Circuit Diagrams

HDSP-4401/4501/	HDSP-4403/4503/
COMMON	COMMON
ANODE ROW	CATHODE ROW

HDSP-4701/

HDSP-4703/
COMMON CATHODE ROW

Absolute Maximum Ratings at $25^{\circ} \mathrm{C}$

	HDSP-450X Series	HDSP-440X Series HDSP-470X Series
Average Power per Dot $\left(T_{A}=25^{\circ} \mathrm{C}\right)^{[1]}$	75 mW	75 mW
Peak Forward Current per Dot $\left(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\right)^{[2]}$	90 mA	125 mA
Average Forward Current per Dot $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{[3]}$	15 mA	25 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Reverse Voltage per Dot	3.0 V	
Lead Solder Temperature $(1.59$ mm [1/16 inch] below seating plane)	$260^{\circ} \mathrm{C}$ for 3 sec.	

Notes:

1. Average power is based on 20 dots 'on' per character. Total package power dissipation should not exceed 1.5 W .
2. Do not exceed maximum average current per dot.
3. For the HDSP-440X series and HDSP-470X series displays, derate maximum average current above $50^{\circ} \mathrm{C} \mathrm{at} 0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For the HDSP-450X series displays, derate maximum average current above $35^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from junction to ambient of $1000^{\circ} \mathrm{C} / \mathrm{W}$ per dot.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
STANDARD RED HDSP-470X SERIES

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Dot[4] (Digit Average)	Iv	$100 \mathrm{~mA} \mathrm{Pk}: 1$ of 5 Duty Factor (20 mA Avg.)	360	770		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			655		nm
Dominant Wavelength ${ }^{\text {[5] }}$	λ_{D}			640		nm
Forward Voltage/Dot	V_{F}	$I_{F}=100 \mathrm{~mA}$		1.8	2.2	V
Reverse Voltage/Dot or DP[6]	$V_{\text {R }}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	12		V
Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} / \mathrm{Dot}$	$\Delta V_{F^{\prime}}{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin per Dot	$R \phi_{J J P I N}$			420		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Dot} \end{gathered}$

STANDARD RED HDSP-440X SERIES

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Dot[4] (Digit Average)	Iv	100 mA Pk: 1 of 5 Duty Factor (20 mA Avg.)	400	860		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			655		nm
Dominant Wavelength ${ }^{(51}$	λ_{D}			640		nm
Forward Voltage/Dot	V_{F}	$\mathrm{I}_{F}=100 \mathrm{~mA}$		1.8	2.2	V
Reverse Voltage/Dot or DP[6]	V_{R}	$I_{R}=100 \mu \mathrm{~A}$	3.0	12		V
Temperature Coefficient of $V_{F} /$ Dot	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin per Dot	R $\phi_{\text {J-PIN }}$			380		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Dot} \end{gathered}$

HIGH EFFICIENCY RED HDSP-450X SERIES

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Dot[4] (Digit Average)	Iv	50 mA Pk: 1 of 5 Duty Factor (10 mA Avg.)	1400	3500		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			635		nm
Dominant Wavelength ${ }^{[5]}$	λ_{D}			626		nm
Forward Voltage/Dot	V_{F}	$I_{F}=50 \mathrm{~mA}$		2.6	3.5	V
Reverse Voltage/Dot or DP[6]	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	25.0		V
Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Dot	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin per Dot	$R \chi_{\text {J-PIN }}$			380		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{Dot} \end{aligned}$

Notes:

4. The displays are categorized for luminous intensity with the intensity category designated by a letter on the left hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities.
5. The dominant wavelength is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device.
6. Typical specification for reference only. Do not exceed absolute maximum ratings.
7. The displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.

Figure 1. Maximum Allowable Average Current Per Dot as a Function of Ambient Temperature

Figure 2. Forward Current vs. Forward Voltage HDSP-440X/470X, HDSP-450X

Figure 3. Relative Efficiency (Luminous Intensity Per Unit Dot) vs. Peak Current per Dot

Operational Considerations
 electrical

Circuit Design

These display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual dots.

These display devices are well suited for strobed operation. The typical forward voltage values, scaled from Figure 2, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:

HDSP-440X/-470X Series: $\quad V_{F}=1.55 \mathrm{~V}+\mathrm{I}_{\text {PEAK }}(6.5 \Omega)$ For $5 \mathrm{~mA} \leq \mathrm{I}_{\text {PEAK }} \leq 125 \mathrm{~mA}$
HDSP-450X Series: $\quad V_{F} M A X=1.75 \mathrm{~V}+\mathrm{I}_{\text {PEAK }}(35 \Omega)$ For $I_{\text {PEAK }} \geq 5 \mathrm{~mA}$
The Coded Data Controller circuit, shown in Figure 4, is designed to display eight characters of ASCII text. ASCII coded data is stored in a local 128×8 RAM. After the
microprocessor has loaded the RAM, local scanning circuitry controls the decoding of the ASCII, the display data loading and the display row select function. With minor modifications the circuit can be utilized for up to 128 display characters. The RAM used in this circuit is an MCM6810P with the address and data inputs isolated with tristate buffers. This allows the RAM to be accessed either by the microprocessor or by the local scanning electronics. The protocol is arranged such that the microprocessor always takes precedence over the local scanning electronics.
The Motorola 6810 RAM stores 8 bytes of ASCII data which is continuously read, decoded and displayed. The ASCII data from the RAM is decoded by the Motorola 6674128 character ASCII decoder. The 6674 decoder has five column outputs which are gated to the Sprague UCN5832A 32 bit shift register data input via a 74LS151 multiplexer. Strobing of the display is accomplished via the 74LS90, 74LS393 and 74LS197 counter string.
The 74LS197 is used as a divide by 7 counter. Output Q_{D} resets the counter and loads output Q_{A} to logic 1 and outputs Q_{B}, Q_{C} and Q_{D} to logic 0 . Outputs Q_{A}, Q_{B}, and Q_{C} of the 74LS197 are used to synchronize the row drivers and the row data entry into the shift register. Row drivers are sequentially turned on and off so that only one row driver is on at a given time.
The 74LS393 counter is used as a divide by 64 counter. This counter has two functions. The first is to provide the address of the character to be decoded. Outputs $1 Q_{A}, 1 Q_{B}$, and $1 Q_{C}$ supply the address to the RAM. The other function is to generate a signal which will simultaneously clock the 74LS197, disable the row drivers and shift register outputs, and provide one of the logic signals needed to enable the system clock to clock data into the shift register. Outputs $1 Q_{D}, 2 Q_{A}$, and $2 Q_{B}$ are gated to create this signal. The duty factor for this system is 1 of 8 or 12.5%.
The 74LS90 is connected as a divide by 5 cascaded into a divide by 2 for an effective divide by 10 counter. Outputs Q_{B}, Q_{C}, and Q_{D} are used to convert the parallel output from the character generator to serial input for entry into the shift register. Output Q_{A} in combination with the system clock and the gated outputs of the 74LS393 counter are used to clock data into the shift register. When character data is loaded into the shift register, output Q_{A} alternates between allowing data to be loaded and providing setup time for a valid address at the RAM to generate valid decoded character data at the output of the 74LS151 multiplexer.

This circuit can be used with the HDSP-4701 with minor modifications due to different pin locations. HDSP-4X03 devices require a change of both the shift register and drive transistors. The shift register can be changed to a Sprague UCN-5818. This part has different pin assignments than the UCN-5832. For further details consult the Sprague data sheet. The MJE700 Darlington transistors need to be replaced with suitable npn Darlington transistors.

THERMAL CONSIDERATIONS

The thermal resistance of the device may be used to calculate the junction temperature of the central LED. Equation 1 is used to calculate the junction temperature of the central (hottest) LED.

$$
\begin{align*}
& T_{j}=P_{D} \times \Theta_{j-a}+T_{A} \tag{1}\\
& P_{D}=V_{F(\max)} \times I_{F(\text { avg })} \tag{2}\\
& \Theta_{j-a}=\Theta_{j-\text { pin }}+\Theta_{\text {pin-a }} \tag{3}
\end{align*}
$$

T_{j} is the junction temperature of the central LED.
T_{A} is the ambient temperature.
$\Theta_{\mathrm{j}-\mathrm{a}}$ is the thermal resistance from the central LED to the ambient.
$\Theta_{\text {pin-a }}$ is the thermal resistance from the case (any pin) to the ambient.
$\Theta_{\mathrm{j} \text {-pin }}$ is the thermal resistance of the device.
$V_{F(\max)}$ is calculated using the appropriate V_{F} model.
P_{D} is the power dissipated by one LED.
The junction temperature of the central LED was measured with all of the dots on at a fixed drive current. The thermal resistance was calculated by using equation 4.

$$
\begin{equation*}
\Theta_{j-p i n}=\left(T_{j}-T_{p i n}\right) / P_{D} \tag{4}
\end{equation*}
$$

Where $T_{\text {pin }}$ is the temperature of the hottest pin.

CONTRAST ENHANCEMENT

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance the readability by having the OFFdots blend into the display background and the ON-dots stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the dots.

Contrast enhancement may be achieved by using one of the following suggested filters:
HDSP-440X/-470X:
Panelgraphic RUBY RED 60
SGL Homalite H100-1605 RED
3M Louvered Filter R6610 RED or N0210 GRAY
HDSP-450X:
Panelgraphic SCARLET RED 65 or GRAY 10
SGL Homalite H100-1670 RED or H100 GRAY
3M Louvered Filter R6310 RED or N0210 GRAY
For further information on contrast enhancement please see Application Note 1015.

MECHANICAL HANDLING

To optimize device optical performance, specially developed plastics are used which restrict the solvents which may be used for cleaning. It is recommended that only azeotropes of Freon (F113) and isopropanol and/or ethanol be used for vapor cleaning processes, with an immersion time in the vapors of less than 2 minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DES, DI15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and thorough air dry. Total exposure to hot water should not exceed 15 minutes. Room temperature cleaning
may be accomplished with Freon T-E35 or T-P35, ethanol, isopropanol or water with a mild detergent.
Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the plastics and encapsulating epoxies used to form the packages of these LED devices.
For further information on soldering and cleaning please see Hewlett-Packard Application Note 1027.

Features

- LOW POWER CONSUMPTION Typical Power Consumption is $\mathbf{1 . 6} \mathbf{~ m W / S e g}$ at 1 mA Drive
Ideal for Battery Operated Applications
Special Selection is Available for Operation at $1 / 2 \mathrm{~mA}$
- TYPICAL INTENSITY OF $650 \mu \mathrm{~cd} /$ Seg AT 1 mA DRIVE
- EXCELLENT FOR MULTIPLEXING LONG DIGIT STRINGS
- COMPATIBLE WITH MONOLITHIC LED DISPLAY DRIVERS
- FOUR CHARACTER SIZES
7.6 mm (0.3 in), 10.9 mm ($\mathbf{0 . 4 3 \mathrm { in } \text {), } 1 4 . 2 \mathrm { mm } \mathrm { m }}$ (0.56 in), 20.0 mm (0.8 in)
- COMMON ANODE OR COMMON CATHODE Overflow ± 1 Character
- EXCELLENT CHARACTER APPEARANCE Wide Viewing Angle
Grey Body for Optimum Contrast
- CATEGORIZED FOR LUMINOUS INTENSITY Use of Like Categories Yields a Uniform Display

Description

This line of solid state LED displays uses newly developed Double Heterojunction (DH) AIGaAs/GaAs material to emit deep red light at 650 nm . This material has outstanding efficiency at low drive currents and can be either DC or pulse driven. Viewability at up to 10 metres (HDSP-N100 Series) is available for applications such as instruments, weighing scales, meters and point-of-sale terminals.

Devices

Part No. HDSP.	Character Size	Description	Package Drawing
$\begin{aligned} & \text { A101 } \\ & \text { A103 } \\ & \text { A107 } \\ & \text { A108 } \end{aligned}$	$\begin{aligned} & 0.3^{\prime \prime} \mathrm{Mini} \\ & (7.6 \mathrm{~mm}) \end{aligned}$	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Overflow ± 1 Common Anode Overflow ± 1 Common Cathode	$\begin{aligned} & \text { A } \\ & B \\ & C \\ & D \end{aligned}$
$\begin{aligned} & \text { E100 } \\ & \text { E101 } \\ & \text { E103 } \\ & \text { E106 } \end{aligned}$	$\begin{gathered} 0.43^{\prime \prime} \\ (10.9 \mathrm{~mm}) \end{gathered}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal Overflow ± 1	$\begin{aligned} & E \\ & F \\ & G \\ & H \end{aligned}$
$\begin{aligned} & \mathrm{H} 101 \\ & \mathrm{H} 103 \\ & \mathrm{H} 107 \\ & \mathrm{H} 108 \end{aligned}$	$\begin{gathered} 0.56^{\prime \prime} \\ (14.2 \mathrm{~mm}) \end{gathered}$	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Overflow ± 1 Common Anode Overflow ± 1 Common Cathode	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~J} \\ & \mathrm{~K} \\ & \mathrm{~L} \end{aligned}$
N100 N101 N103 N105 N106	$\begin{gathered} 0.8^{\prime \prime} \\ (20 \mathrm{~mm}) \end{gathered}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overflow ± 1	$\begin{aligned} & M \\ & N \\ & O \\ & P \\ & Q \end{aligned}$

Package Dimensions (HDSP-A101 Series)

A, B

Notes:

1. All dimensions in millimetres (inches).
2. Maximum.
3. All untoleranced dimensions are for reference only.

Pin	function			
	A	B	c	D
1	ANODEI4:	CATHODE ${ }^{\text {[5] }}$	ANODE ${ }^{\text {[a] }}$	CATHODE [5]
2	CATHODE \ddagger	ANODE 1	GATHODE PLUS	ANODE PLUS
3	CATHODE g	ANODE 9	CATHODE MINUS	ANODE Minus
4	Cathode e	ANODE ${ }^{\text {e }}$	NC	NC
5	CATHODE ${ }^{\text {d }}$	ANODE d	NC	NC
6	ANODE:41	CATHODE (5)	ANODE [4]	Cathodets
7	CATHODE DP	ANODE DP	Cathode dp	ANODE DP
8	cathode g	ANODE	CATHODE	ANODE
9	CATHODE b	ANODE \quad	CATHODE b	ANODE 6
10	CATHODE a	ANODE a	NC.	NC

Package Dimensions (HDSP-E100 Series)

E

F, G

4. Redundant anodes.
5. Redundant cathodes:

Package Dimensions (HDSP-H101 Series)

FRONT VIEW I, J
TOP END VIEW I, J, K, L

Notes:

1. All dimensions in millimetres (inches)
2. Maximum.
3. All untoleranced dimensions are for reference only.
4. Redundant anodes.
5. Redundant cathodes.

Package Dimensions (HDSP-N100 Series)

END VIEW M, N, O, P, Q NOTES:

1. Dimensions in millimeters and (inches).
2. Unused dp position.
3. All untoleranced dimensions are for reference only.
4. Redundant anodes.
5. See Internal Circuit Diagram.
6. Redundant Cathodes.

Internal Circuit Diagram

Absolute Maximum Ratings (All Products)

Average Power per Segment
or $D P\left(T_{A}=25^{\circ} \mathrm{C}\right)$ 37 mW

Peak Forward Current per Segment or $D P\left(T_{A}=25^{\circ} \mathrm{C}\right)[1]$ 45 mA

Average or DC Forward Current per Segment[2]
or $D P\left(T_{A}=25^{\circ} \mathrm{C}\right)$
Operating Temperature Range
............ $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Reverse Voltage per Segment or DP 3.0 V

Lead Solder Temperature (1.59 mm [1/16 inch]
below seating plane)
$260^{\circ} \mathrm{C}$ for 3 sec.

Notes:

1. Do not exceed maximum average current per segment.
2. For the HDSP-A101, HDSP-E100 and HDSP-H101 series, derate maximum average current above $T_{A}=75^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per segment, see Figure 1. For the HDSP-N100 series, the maximum average current does not need to be derated at $85^{\circ} \mathrm{C}$ operation.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Description	Symbol	Device HDSP.	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	IV	A101 Series	1 mA DC	315	600		$\mu \mathrm{cd}$
			5 mADC		3600		
			$20 \mathrm{mAPk}: 1$ of 4 Duty Factor		3300		
		E100 Series	1 mADC	390	650		$\mu \mathrm{cd}$
			5 mADC		3900		
			20 mA Pk: 1 of 4 Duty Factor		3600		
		H 101 Series	1 mA DC	400	700		$\mu \mathrm{cd}$
			5 mADC		4200		
			20 mA Pk: 1 of 4 Duty Factor		3900		
		N100 Series	1 mADC	270	590		$\mu \mathrm{cd}$
			5 mADC		3500		
			$20 \mathrm{mAPk}: 1$ of 4 Duty Factor		3300		
Peak Wavelength	$\lambda_{\text {PEAK }}$	All Devices			650		nm
Dominant Wavelength ${ }^{[3]}$	λ_{d}	All Devices			642		nm
Forward Voltage/Segment or DP	V_{F}	All Devices	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$		1.6		V
			$I_{F}=5 \mathrm{~mA}$		1.7		
			$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{PK}$		1.8	2.2	
Reverse Voltage/Segment or DP	V_{R}	All Devices	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	15		V
Temperature Coefficient of $V_{F} /$ Segment or DP	$\Delta V_{F}{ }^{\prime 2} \mathrm{C}$				-2 mv		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	R $\theta_{\text {J_-PIN }}$	A101			255		${ }^{\circ} \mathrm{C} /$ W/Seg
		E100			340		
		H101			400		
		N100			430		

Notes:

1. Case temperature of the device immediately prior to the intensity measurement is $25^{\circ} \mathrm{C}$.
2. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
3. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.

Figure 1. Maximum Allowable Average or DC Current per Segment vs. Ambient Temperature

Figure 2. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 3. Forward Current vs. Forward Voltage

Electrical

The HDSP-A101/E100/H101/N100 series of display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. These displays have their p-n junctions formed in AIGaAs epitaxial layers grown on a GaAs substrate.

These display devices are well suited for strobed operation. The typical forward voltage values, scaled from Figure 3 , should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX model:

$$
\begin{aligned}
& V_{F} M A X=2.0 \mathrm{~V}+I_{\text {PEAK }}(10 \Omega) \\
& \text { For: } I_{\text {PEAK }} \geq 20 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+I_{\mathrm{DC}}(20 \Omega) \\
& \text { For: } \mathrm{I}_{\mathrm{DC}} \leq 20 \mathrm{~mA}
\end{aligned}
$$

These displays are compatible with monolithic LED display drivers. See Application Note 1006 for more information.

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readability by having the OFF-segments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the segments.

Figure 4. Relative Luminous Intensity vs. DC Forward Current

Contrast enhancement may be achieved by using one of the following suggested filters:

Panelgraphic RUBY RED 60
SGL Homalite H100-1605 RED
3M Louvered Filter R6610 RED or N0210
GRAY

Mechanical

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or $\mathrm{DE}-15$, Arklone A or $\mathrm{K} . \mathrm{A} 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.
Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

Features

- LOW POWER CONSUMPTION Typical Power Consumption is $\mathbf{3} \mathbf{~ m W / S e g ~}$ at 2 mA Drive
- TYPICAL INTENSITY OF $300 \mu \mathrm{~cd} /$ Seg AT 2 mA DRIVE
- CAPABLE OF HIGH CURRENT DRIVE Excellent for Long Digit String Multiplexing
- COMPATIBLE WITH MONOLITHIC LED DISPLAY DRIVERS
- THREE CHARACTER SIZES
7.6 mm (0.3 in), 10.9 mm (0.43 in), 14.2 mm (0.56 in)
- COMMON ANODE OR COMMON CATHODE Overflow ± 1 Character
- EXCELLENT CHARACTER APPEARANCE Wide Viewing Angle
- CATEGORIZED FOR LUMINOUS INTENSITY Use of Like Categories Yields a Uniform Display

Description

The HDSP-7511, HDSP-3350, HDSP-5551 series are 7.6 mm (0.3 in), 10.9 mm (0.43 in) and 14.2 mm (0.56 in) high efficiency red displays featuring low power consumption. The HDSP-7511 series are designed for viewing distances up to 2 meters, the HDSP- 3350 series for viewing distances up to 5 meters, and the HDSP-5551 series for viewing distances up to 7 meters. Typical applications include instruments, scales, point-of-sale terminals and meters.

Devices

Part Number	Color	Description	Package Drawing
HDSP-7511	High	7.6 mm Common Anode Right Hand Decimal	A
HDSP-7513	Efficiency	7.6 mm Common Cathode Right Hand Decimal	B
HDSP-7517	Red	7.6 mm Overflow ± 1 Common Anode	C
HDSP-7518		7.6 mm Overflow ± 1 Common Cathode	D
HDSP-3350	High	10.9 mm Common Anode Left Hand Decimal	E
HDSP- 3351	Efficiency	10.9 mm Common Anode Right Hand Decimal	F
HDSP-3353	Red	10.9 mm Common Cathode Right Hand Decimal	G
HDSP-3356		10.9 mm Universal Overflow ± 1 Right Hand Decimal	H
HDSP-5551	High	14.2 mm Common Anode Right Hand Decimal	I
HDSP-5553	Efficiency	14.2 mm Common Cathode Right Hand Decimal	J
HDSP-5557	Red	14.2 mm Overflow ± 1 Common Anode	K
HDSP-5558		14.2 mm Overflow ± 1 Common Cathode	L

Package Dimensions (HDSP-7511 Series)

A, B
Notes:

1. All dimensions in millimetres (inches).
2. Redundant anodes.
. Maximum. 5. Redundant cathodes.
3. All untoleranced dimensions are for reference only.

PIN	FUNCTION				
	A	B	C	D	
1	ANODE\|4		CATHODE 51	ANODE 141	CATHODE [S]
2	CATHODE	ANODE	CATHODE PLUS	ANODE PtUS	
3	CATHODE g	ANODE 9	CATHODE MINUS	ANODE MINUS	
4	CATHODE E	ANODE E	NC	NSC	
5	CATHODE A	ANODE d	NC	NC	
6	ANODE141	CAIHODEIS:	ANODEI4	CATHODETS!	
7	CATHODE OP	ANODE DP	CATHODE DP	ANODE DP	
8	CATHODE E	ANODE C	CATHODE C	ANODE 4	
9	CATHODE b	ANODE b	CATHODE	ANOOE F	
10	CATHODE a	ANODE a	NC	NC	

Package Dimensions (HDSP-3350 Series)

E

F,H

FRONT VIEW

PIN	FUNCTION			
	E	F	G	H
1	CATHODE-3	CATHODE.a	ANDDEA	Cathoded
2	CATHODE: f	CATHODE- -	ANODE-4	ANODE-S
3	ANODE[3]	ANODE ${ }^{\text {a }}$!	CATHODE 161	NO PIN
4	NO PIN	NO PIN	NO PIN	CATHODE
5	NO PIN	NO PIN	NOPIN	CATHODE E
6	CATHODE dp	NO CONN. ${ }^{57}$	NO CONN, ${ }^{\text {a }}$)	ANODE
7	CATHODE	Cathodee	ANODE	ANODE.C
8	Cathoded	CATHODE-d	ANODE.d	ANODE dp
9	NO CONN. 51	CATHODE dp	ANODE-dp	CATHODE do
10	CATHODE:	CATHODE.C	ANODE. 6	CATHODE.b
11	CATHODE.g	CATHODE:g	ANODE.g	CATHODE-a
12	NO PIN	NO PIN	NO PIN	NO PIN
13	CATHODE b	cathodet	ANODE. ${ }^{\text {d }}$	ANODE.
14	ANODE 3 [ANODEI3]	CATHODE [6]	AnSODE. ${ }^{\text {d }}$

NOTES:

1. Dimensions in millimeters and (inches)
2. All untoleranced dimensions are
for reference only
3. Redundant anodes.

[^13]7. See part number table for L.H.D.P. and R.H.D.P. designation.

END VIEW

ANODE[3]

Package Dimensions (HDSP-5551 Series)

FRONT VIEW I, J TOP END VIEW I, J, K, L

Notes:

1. All dimensions in millimetres (inches).
2. Maximum.
3. All untoleranced dimensions are for reference only.
4. Redundant anodes.
5. Redundant cathodes.

Internal Circuit Diagram

G

H

Absolute Maximum Ratings (All Products)

Average Power per Segment
or $D P\left(T_{A}=25^{\circ} \mathrm{C}\right)$ 52 mW
Peak Forward Current per Segment
or DP $\left(T_{A}=25^{\circ} \mathrm{C}\right)^{[1]}$ 45 mA
Average or DC Forward Current per Segment ${ }^{[2]}$
or $D P\left(T_{A}=25^{\circ} \mathrm{C}\right)$
Operating Temperature Range.........$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Reverse Voltage per Segment or DP 3.0 V
Lead Solder Temperature
(1.59 mm [1/16 inch] below
seating plane)

Notes:

1. Do not exceed maximum average current per segment.
2. Derate maximum average current above $\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$ at $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per segment, see Figure 1. Derate maximum DC current above $T_{A}=78^{\circ} \mathrm{C}$ at $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per segment.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ HIGH EFFICIENCY RED HDSP-7511 SERIES

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units	
Luminous Intensity/Segment\|3	(Digit Average)	IV	2 mADC	160	270		$\mu \mathrm{cd}$
		5 mADC		1050			
		$40 \mathrm{mAPk}: 1$ of 4 Duty Factor		3500			
Peak Wavelength	АРЕAK			635		nm	
Dominant Wavelength ${ }^{141}$	λ_{d}			626		$n \mathrm{~m}$	
Forward Voltage/Segment or DP	VF	$\mathrm{IF}=2 \mathrm{~mA}$		1.6		V	
		$\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}$		1.7			
		IF $=20 \mathrm{mAPK}$		2.1	2.5		
Reverse Voltage/Segment or DP[5]	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	30.0		V	
Temperature Coefficient of $V_{F} /$ Segment or DP	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Thermal Resistance LED Junction-to-Pin	$R \theta_{\downarrow \text { d-PIN }}$			200		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$	

HIGH EFFICIENCY RED HDSP-3350 SERIES

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units	
Luminous Intensity/Segment\|3	(Digit Average)	IV	2 mA DC	200	300		$\mu \mathrm{cd}$
		5 mADC		1200			
		$40 \mathrm{mAPk}: 1$ of 4 Duty Factor		3900			
Peak Wavelength	λ АРEAK			635		nm	
Dominant Wavelength ${ }^{141}$	λ_{d}			626		nm	
Forward Voltage/Segment or DP	V_{F}	$\mathrm{IF}_{\mathrm{F}}=2 \mathrm{~mA}$		1.6		V	
		$\mathrm{If}_{\mathrm{F}}=5 \mathrm{~mA}$		1.7			
		$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{mAPK}$		2.1	2.5		
Reverse Voltage/Segment or DP\|5]	V_{R}	$\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	30.0		V	
Temperature Coefficient of VF/Segment or DP	$\pm V_{\mathrm{F} /} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Thermal Resistance LED Junction-to-Pin	R $\theta_{\text {J-PIN }}$			282		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{Seg} \end{aligned}$	

HIGH EFFICIENCY RED HDSP-5551 SERIES

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{\|3\|}$ (Digit Average)	Iv	2 mADC	270	370		$\mu \mathrm{cd}$
		10 mA DC		3400		
		$40 \mathrm{mAPk}: 1$ of 4 Duty Factor		4800		
Peak Wavelength	XPEAK			635		nm
Dominant Wavelength 41	λ_{d}			626		nm
Forward Voltage/Segment or DP	V_{F}	$\mathrm{iF}=2 \mathrm{~mA}$		1.6		V
		$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		1.7		
		$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{mAPk}$		2.1	2.5	
Reverse Voltage/Segment or $\mathrm{DP}^{[5]}$	V_{R}	$I_{R}=100 \mu \mathrm{~A}$	3.0	30.0		\checkmark
Temperature Coefficient of $V_{F} /$ Segment or DP	$\pm V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R \theta_{J-P I N}$			345		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$

3. The digits are categorized for luminous intensity with the intensity category designated by a letter on the right hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included. Operation at less than 2 mA DC or peak current per segment may cause objectionable display segment matching and is not recommended.
4. The dominant wavelength is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device.
5. Typical specification for reference only. Do not exceed absolute maximum ratings.

HDSP-7511/-3350/-5551 SERIES

Figure 1. Maximum Allowable Average Current per Segment as a Function of Ambient Temperature

Figure 3. Forward Current vs. Forward Voltage

Figure 2. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current per Segment

Figure 4. Relative Luminous Intensity vs. DC Forward Current

Electrical

The HDSP-7511/-3350/-5551 series of display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. These displays have their p-n junctions diffused into GaAsP epitaxial layer on a GaP substrate.

These display devices are well suited for strobed operation. The typical forward voltage values, scaled from Figure 3, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX model:

$$
\begin{aligned}
& V_{F} M A X=1.75 \mathrm{~V}+\operatorname{IPEAK}(38 \Omega) \\
& \text { For: IPEAK } \geq 20 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{F}} \mathrm{MAX}=1.6 \mathrm{~V}+\operatorname{IDC}(45 \Omega) \\
& \text { For: } 2 \mathrm{~mA} \leq \operatorname{IDC} \leq 20 \mathrm{~mA}
\end{aligned}
$$

These displays are compatible with monolithic LED display drivers. See Application Note 1006 for more information.

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readability by having the OFF-segments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the segments.
Contrast enhancement may be achieved by using one of the following suggested filters:

[^14]
Mechanical

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.
Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

7.6 mm (. 3 inch) MICRO BRIGHT 7 SEGMENT DISPLAYS

Features

- HIGH BRIGHTNESS

Package Optimized for High Ambient Conditions

- COMPACT PACKAGE
0.300×0.500 inches
- CHOICE OF FOUR COLORS:

Red, High Efficiency Red, Yellow,
High Performance Green

- EXCELLENT CHARACTER APPEARANCE:

Evenly Lighted Segments
Mitered Segments
Wide Viewing Angle
Grey Package Provides Optimum On-Off Contrast

- EASY MOUNTING ON PC BOARDS OR SOCKETS 5.08 mm (0.2 inch) DIP Leads on 2.54 mm (0.1 inch) Centers
- AVAILABLE WITH COLON FOR CLOCK DISPLAY
- COMMON ANODE OR COMMON CATHODE Right Hand Decimal Point
Overflow ± 1 Character
- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW AND GREEN ALSO CATEGORIZED FOR COLOR
Use of Like Category Yields a Uniform Display

Description

The HDSP-7301/-7501/-7401/7801 Series are 7.6 mm (0.3 inch) character LED seven segment displays in a compact package. Designed for viewing distances up to 3 metres (10 feet), these displays are ideal for high ambient applications where space is at a premium. Typical applications include instruments, aircraft and marine equipment, point-of-sale terminals, clocks, and appliances.

Devices

Part Number	Color	Description	Package Drawing
HDSP-7301	Red	Common Anode Right Hand Decimal	A
HDSP-7311	Bright Red	Common Anode Right Hand Decimal	A
HDSP-7302	Red	Common Anode Right Hand Decimal, Colon	B
HDSP-7303	Red	Common Cathode Right Hand Decimal	C
HDSP-7313	Bright Red	Common Cathode Right Hand Decimal	c
HDSP-7304	Red	Common Cathode Right Hand Decimal, Colon	D
HDSP-7307	Red	Overflow ± 1 Common Anode	E
HDSP-7317	Bright Red	Overflow ± 1 Common Anode	E
HDSP-7308	Red	Overflow ± 1 Common Cathode	F
HDSP-7318	Bright Red	Overflow ± 1 Common Cathode	F
HDSP-7501	HER	Common Anode Right Hand Decimal	A
HDSP-7502		Common Anode Right Hand Decimal, Colon	B
HDSP-7503		Common Cathode Right Hand Decimal	C
HDSP-7504		Common Cathode Right Hand Decimal, Colon	D
HDSP-7507		Overflow ± 1 Common Anode	E
HDSP-7508		Overflow ± 1 Common Cathode	F
HDSP-7401	Yellow	Common Anode Right Hand Decima	A
HDSP-7402		Common Anode Right Hand Decimal, Colon	B
HDSP-7403		Common Cathode Right Hand Decimal	C
HDSP-7404		Common Cathode Right Hand Decimal, Colon	D
HDSP-7407		Overflow ± 1 Common Anode	E
HDSP-7408		Overflow ± 1 Common Cathode	F
HDSP-7801	Green	Common Anode Right Hand Decimal	A
HDSP-7802		Common Anode Right Hand Decimal, Colon	B
HDSP-7803		Common Cathode Right Hand Decimal	C
HDSP-7804		Common Cathode Right Hand Decimal, Colon	D
HDSP-7807 HDSP-7808		Overflow ± 1 Common Anode Overflow ± 1 Common Cathode	E

Package Dimensions

A, C

B, D

MITERED CORNER FOR

Notes:

1. All dimensions in millimetres (inches).
2. Maximum.
3. All untoleranced dimensions are for reference only.
4. Redundant anodes.
5. Redundant cathodes.
6. For HDSP-7401/-7801 series product only.

PIN	FUNCTION					
	A	B	c	D	E	F
1	ANODE141	CATHODE COLON	CATHODE[5]	ANODE COLON	ANODE[4]	CATHODE 61
2	CATHODE f	CATHODE I	ANODE 4	ANODE f	CATHODE PLUS	ANODE PLUS
3	CATHODE g	CATHODE g	ANODE g	ANODE 9	CATHODE MINUS	ANODE MINUS
4	CATHODE E	CATHODE E	ANODE E	ANODE O	NC	NC
5	CATHODE d	CATHODE d	ANODE d	ANODE d	NC	NC.
6	ANODEt4]	ANODE	CATHODE[5]	CATHODE	ANODE 141	CATHODE[5]
7	CATHODE DP	CATHODE DP	ANODE DP	ANODE DP	CATHODE DP	ANODE DP
8	CATHODE C	CATHODE C	ANODE C	ANODE C	CATHODE c	ANODE C
9	CATHODE b	CATHODE b	ANODE b	ANODE b	CATHODE l	ANODE b
10	CATHODE A	CATHODE a	ANODE a	ANODE a	NC	NC

Internal Circuit Diagram

C

D

E

F

Absolute Maximum Ratings

	HDSP-7301/ - 7311 Series	$\begin{gathered} \text { HDSP-7501 } \\ \text { Series } \end{gathered}$	$\begin{gathered} \text { HDSP-7401 } \\ \text { Series } \end{gathered}$	$\begin{aligned} & \text { HDSP-7801 } \\ & \text { Series } \end{aligned}$
Average Power Dissipation per Segment or D.P.	73 mW	105 mW	81 mW	105 mW
Operating Temperature Range		$-40^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	
Storage Temperature Range		$-55^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	
Peak Forward Current per Segment or D.P. [7]	150 mA	90 mA	60 mA	90 mA
DC Forward Current per Segment or D.P. ${ }^{[8]}$	25 mA	30 mA	20 mA	30 mA
Reverse Voltage per Segment or D.P.	3 V	3 V	3 V	3 V
Lead Soldering Temperature 1.59 mm (1/16 inch) below seating plane	$260^{\circ} \mathrm{C}$ for 3 sec.			

7. See Figures 1, 6, 7, and 8 to establish pulsed operating conditions. (Figure 1, HDSP-7301 Series; Figure 6, HDSP-7501 Series; Figure 7, HDSP-7401 Series; Figure 8, HDSP-7801 Series).
8. See Figures 2, 9, 10, and 11 to derate maximum DC current. (Figure 2, HDSP-7301 Series; Figure 9, HDSP-7501 Series; Figure 10, HDSP-7401 Series; Figure 11, HDSP-7801 Series).

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

STANDARD RED HDSP-7301 SERIES

Description	Device HDSP.	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{(9]}$ (Digit Average)	7301	IV	10 mA DC		500		$\mu \mathrm{Cd}$
			20 mADC	600	1100	*	
	7311		10 mADC		- 610	*	
			20 mADC	770	1355		
Peak Wavelength		λ PEAK			655		nm
Dominant Wavelength ${ }^{101}$		λ_{d}			640		nm
Forward Voltage, any Segment or D.P.		V_{F}	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$		1.6 :	2.0	V
Reverse Voltage, any Segment or D.P. [12]		$V_{\text {R }}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	12.0		\checkmark
Temperature Coefficient of Forward Voltage		$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin		R 0 J-PIN			200		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$

HIGH EFFICIENCY RED HDSP-7501 SERIES

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{19 \mid}$ (Digit Average)	Iv	$5 \mathrm{~mA} \mathrm{D.C}$.	360	980		$\mu \mathrm{cd}$
		20 mA D.C.		5390		
		$60 \mathrm{mAPk}: 1$ of 6 Duty Factor		3430		
Peak Wavelength	АPEAK			635		nm
Dominant Wavelength ${ }^{10]}$	λ_{d}			626		nm
Forward Voltage/Segment or D.P.	V_{F}	$\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}$		1.7		V
		$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$		2.0	2.5	
		$\mathrm{IF}=60 \mathrm{~mA}$		2.8		
Reverse Voltage/Segment or D.P. ${ }^{[12]}$	$V_{\text {R }}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	30.0		V
Temperature Coefficient of $\mathrm{V}_{\mathrm{F} / \text { /Segment }}$ or D.P.	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R \theta_{J-P I N}$			200		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \\ \hline \end{gathered}$

YELLOW HDSP-7401 SERIES

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{19]}$ (Digit Average)	Iv	5 mA D.C.	225	480		$\mu \mathrm{cd}$
		$20 \mathrm{~mA} \mathrm{D.C}$.		2740		
		$60 \mathrm{~mA} \mathrm{Pk}: 1$ of 6 Duty Factor		1700		
Peak Wavelength	АPEAK			583		nm
Dominant Wavelength 10,11$]$	λd		581.5	586	592.5	$n \mathrm{~m}$
Forward Voltage/Segment or D.P.	V_{F}	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		1.8		V
		IF $=20 \mathrm{~mA}$		2.2	2.5	
		$\mathrm{IF}=60 \mathrm{~mA}$		3.1		
Reverse Voltage/Segment or D.P. ${ }^{[12]}$	$V_{\text {A }}$	$\mathrm{IR}=100 \mu \mathrm{~A}$	3.0	50.0		V
Temperature Coefficient of VF/Segment or D.P.	$\Delta V_{F}{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R \theta_{J-P I N}$			200		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \\ \hline \end{gathered}$

9. The digits are categorized for luminous intensity with the intensity category designated by a letter on the right hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included.
10. The dominant wavelength is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device.
11. The HDSP-7401/-7801 series are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
12. Typical specification for reference only. Do not exceed absolute maximum ratings.

HIGH PERFORMANCE GREEN HDSP-7801 SERIES

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{19]}$ (Digit Average)	Iv	$5 \mathrm{mAD.C}$.		545		$\mu \mathrm{cd}$
		10 mA D.C.	570	1480		
		60 mA Pk: 1 of 6 Duty Factor		1935		
Peak Wavelength	λ РЕАК			566		nm
Dominant Wavelength ${ }^{[10,11]}$ (Digit Average)	λd			571	577	nm
Forward Voltage/Segment or D.P.	V_{F}	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage/Segment or D.P. ${ }^{112]}$	$V_{\text {R }}$	$\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	50.0		V
Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J-PIN }}$			200		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \\ \hline \end{gathered}$

HDSP-7301 SERIES

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 2. Maximum Allowable DC Current Dissipation per Segment as a Function of Ambient Temperature

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current per Segment

Figure 4. Forward Current vs. Forward Voltage

Figure 5. Relative Luminous Intensity vs. DC Forward Current

Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration - HDSP-7501 Series

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration - HDSP-7401 Series

Figure 8. Allowed Peak Current vs. Pulse Duration -HDSP-7801 Series

Figure 9. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature -HDSP-7501 Series

Figure 10. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature -HDSP-7401 Series

Figure 11. Maximum Allowable DC Current per Segment vs. Ambient Temperature -HDSP-7801 Series

Figure 12. Relative Luminous Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 13. Forward Current vs. Forward Voltage Characteristics

Figure 14. Relative Luminous Intensity vs. DC Forward Current

Electrical

The HDSP-7301/-7401/7501/-7801 series of display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The -7301 series uses a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The -7401 and -7501 series have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The -7801 series use a GaP epitaxial layer on GaP.
These display devices are well suited for strobed operation. The typical forward voltage values, scaled from Figure 4 or 13, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:
HDSP-7301 Series:
$V_{F} M A X=1.85 \mathrm{~V}+\operatorname{IPEAK}(7 \Omega)$
For: IPEAK $\geq 5 \mathrm{~mA}$
HDSP-7401/-7501 Series:
$V_{F} M A X=1.75 \mathrm{~V}+\operatorname{IPEAK}(38 \Omega)$
For: IPEAK $\geq 20 \mathrm{~mA}$
$V_{F} M A X=1.6 \mathrm{~V}+\operatorname{IDC}(45 \Omega)$
For: $5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}$
HDSP-7801 Series:
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\operatorname{IPEAK}(50 \Omega)$
For: IPEAK $\geq 5 \mathrm{~mA}$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readability by having the OFF-segments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the segments.
Contrast enhancement may be achieved by using one of the following suggested filters:

HDSP-7301: Panelgraphic RUBY RED 60 SGL Homalite H100-1605 RED 3M Louvered Filter R6610 RED or N0210 GRAY

HDSP-7401: Panelgraphic YELLOW 27 or GRAY 10 SGL Homalite H100-1720 AMBER or -1266 GRAY 3M Louvered Filter A5910 AMBER or N0210 GRAY
HDSP-7501: Panelgraphic SCARLET RED 65 or GRAY 10 SGL Homalite H100-1670 RED or -1266 GRAY 3M Louvered Filter R6310 RED or N0210 GRAY

HDSP-7801: Panelgraphic GREEN 48
SGL Homalite H100-1440 GREEN 3M Louvered Filter G5610 GREEN or N0210 GRAY

Mechanical

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes. with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.
Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

HEWLETT PACKARD

Features

- COMPACT SIZE
- CHOICE OF 4 BRIGHT COLORS Red
High Efficiency Red Yellow
High Performance Green
- LOW CURRENT OPERATION

As Low as 3mA per Segment Designed for Multiplex Operation

- EXCELLENT CHARACTER APPEARANCE

Evenly Lighted Segments
Wide Viewing Angle
Body Color Improves "Off" Segment Contrast

- EASY MOUNTING ON PC BOARD OR SOCKETS

Industry Standard 7.62mm (0.3 in .) DIP Leads on 2.54 mm (0.1 in .) Centers

- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW AND GREEN CATEGORIZED FOR COLOR

Use of Like Categories Yields a Uniform Display

- MECHANICALLY RUGGED

Description

The -7730/-7610/-7620/-3600 and -7750/-7650/-7660/-4600 series are $7.62 / 10.92 \mathrm{~mm}$ ($0.3 / .43 \mathrm{in}$.) red, high efficiency red, yellow, and green displays. The -7730/-7610/-7620/-3600 series displays are designed for viewing distances of up to three metres and the $-7750 /-7650 /-7660 /-4600$ series displays are designed for viewing distances of up to six metres. These displays are designed for use in instruments, point of sale terminals, clocks and appliances.

Devices

Part Number	Color	Description	Package Drawing
$\begin{aligned} & 5082-7730 \\ & 5082-7731 \\ & 5082-7740 \\ & 5082-7736 \end{aligned}$	Red	7.6 mm Common Anode Left Hand Decimal 7.6 mm Common Anode Right Hand Decimal 7.6 mm Common Cathode Right Hand Decimal 7.6 mm Universal Overflow ± 1 Right Hand Decimal	$\begin{aligned} & \text { A } \\ & B \\ & C \\ & C \end{aligned}$
$\begin{aligned} & 5082-7610 \\ & 5082-7611 \\ & 5082-7613 \\ & 5082-7616 \\ & \hline \end{aligned}$	High Efficiency Red	7.6 mm Common Anode Left Hand Decimal 7.6 mm Common Anode Right Hand Decimal 7.6 mm Common Cathode Right Hand Decimal 7.6 mm Universal Overflow ± 1 Right Hand Decimal	A B C D
$\begin{aligned} & \hline 5082-7620 \\ & 5082-7621 \\ & 5082-7623 \\ & 5082-7626 \\ & \hline \end{aligned}$	Yellow	7.6 mm Common Anode Left Hand Decimal 7.6 mm Common Anode Right Hand Decimal 7.6 mm Common Cathode Right Hand Decimal 7.6 mm Universal Overflow ± 1 Right Hand Decimal	A B C D
HDSP-3600 HDSP-3601 HDSP-3603 HDSP-3606	High Performance Green	7.6 mm Common Anode Left Hand Decimal 7.6 mm Common Anode Right Hand Decimal 7.6 mm Common Cathode Right Hand Decimal 7.6 mm Universal Overflow ± 1 Right Hand Decimal	A B C D

NOTE: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram D.

Devices

Part Number	Color	Description	Package Drawing
$\begin{aligned} & 5082-7750 \\ & 5082-7751 \\ & 5082-7760 \\ & 5082-7756 \\ & \hline \end{aligned}$	Red	10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overtlow ± 1 Right Hand Decimal	E F G H
$\begin{aligned} & 5082-7650 \\ & 5082-7651 \\ & 5082-7653 \\ & 5082-7656 \\ & \hline \end{aligned}$	High Efficiency Red	10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow ± 1 Right Hand Decimal	E F G H
$\begin{aligned} & \hline 5082-7660 \\ & 5082-7661 \\ & 5082-7663 \\ & 5082-7666 \end{aligned}$	Yellow	10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow ± 1 Right Hand Decimal	$\begin{aligned} & \bar{E} \\ & F \\ & G \\ & H \end{aligned}$
$\begin{aligned} & \text { HDSP-4600 } \\ & \text { HDSP-4601 } \\ & \text { HDSP-4603 } \\ & \text { HDSP-4606 } \end{aligned}$	High Performance Green	10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow ± 1 Right Hand Decimal	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \\ & \mathrm{G} \\ & \mathrm{H} \\ & \hline \end{aligned}$

NOTE: Universal pinout brings the anode and the cathode of each segment's LED out to separate pins, see internal diagram H .

Internal Circuit Diagram

Absolute Maximum Ratings

	$\begin{gathered} -7730 /-7750 \\ \text { Series } \end{gathered}$	$\begin{gathered} -7610 /-7650 \\ \text { Series } \end{gathered}$	$\begin{gathered} -7620 /-7660 \\ \text { Series } \end{gathered}$	$\begin{gathered} -3600 /-4600 \\ \text { Series } \end{gathered}$
Average Power Dissipation per Segment or DP	$65 \mathrm{~mW}[1]$	$105 \mathrm{~mW}[2]$	$81 \mathrm{~mW}{ }^{13}$	$105 \mathrm{~mW}[4]$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$			
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$			
Peak Forward Current per Segment or DP	$150 \mathrm{~mA}{ }^{[5]}$	$90 \mathrm{mAl}{ }^{61}$	$\left.60 \mathrm{mAl}{ }^{7}\right]$	$90 \mathrm{mAl}{ }^{81}$
DC Forward Current per Segment or DP	$25 \mathrm{mAl} 1]$	30 mA [2]	$20 \mathrm{~mA}{ }^{[3]}$	$30 \mathrm{mAl} 4]$
Reverse Voltage per Segment or DP	3.0 V	3.0 V	3.0 V	3.0 V
Lead Soldering Temperature 1.59 mm ($1 / 16 \mathrm{in}$) below seating plane	$260^{\circ} \mathrm{C}$ for 3 sec .	$260^{\circ} \mathrm{C}$ for 3 sec.	$260^{\circ} \mathrm{C}$ for 3 sec.	$260^{\circ} \mathrm{C}$ for 3 sec.

Notes: 1. See power derating curve (Figure 5).
5. See Figure 1 to establish pulsed operating conditions.
2. See power derating curve (Figure 6).
6. See Figure 2 to establish pulsed operating conditions.
3. See power derating curve (Figure 7).
7. See Figure 3 to establish pulsed operating conditions.
4. See power derating curve (Figure 8).
8. See Figure 4 to establish pulsed operating conditions.

A,B,C

D

	FUNCTION			
PIN	A	B	c	D
1	CATHODE -a	CATHODE - a	NOPIN	ANODE-d
2	CATHODE-f	CATHODE - f	CATHODE[15]	NO PIN
3	ANODE [12]	ANODE [12]	ANODE - f	Cathode-d
4	NO PIN	NO PIN	ANODE-9	CATHODE-c
5	NO PIN	NO PIN	ANODE-E	CATHODE-e
8	CATHODE - dp	NO CONN.14]	ANODE - ${ }^{\text {d }}$	ANODE - ${ }^{\text {e }}$
7	CATHODE-日	CATHODE -	NOPIN	ANODE - C
8	Cathode-d	CATHODE - d	NOPIN	ANODE - dp
9	NO CONN. [14]	CATHODE - dp	CATHODE (15)	NO PIN
10	CATHODE-C	CATHODE - C	ANODE - dp	CATHODE - dp
11	CATHODE - $\%$	CATHODE -g	ANODE-c	CATHODE - b
12	NO PIN	NO PIN	ANODE - ${ }^{\text {a }}$	CATHODE - a
13	CATHODE - b	CATHODE -b	ANODE - a	ANODE -a
14	ANODE[12]	ANODE[12]	NO PIN	ANODE - b

(5082-7750/-7650/-7660/-4600)

END VIEW

F,G

SIDE

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RED 5082-7730/-7750 SERIES

Parameter	Device HDSP.	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/ Segment ${ }^{118 \mid}$ (Digit Average)	$\begin{aligned} & -7730 \\ & \text { Series } \end{aligned}$	IV	20 mADC	360	770		
			100 mAPk 1:10 Duty Factor		400		
	-7750 Series		20 mADC	360	1100		
			$100 \mathrm{~mA} \mathrm{Pk} 1 ; 10$ Duty Factor		570		
Peak Wavelength		$\lambda_{\text {PEAK }}$			655		nm
Dominant Wavelength ${ }^{1919}$		λ_{d}			640		nm
Forward Voltage/Segment or D.P. ${ }^{[21]}$		V_{F}	$I_{F}=20 \mathrm{~mA}$		1.6	2.0	V
Reverse Voltage/Segment or D.P. ${ }^{\text {21,22] }}$		V_{R}	$l_{R}=100 \mu \mathrm{~A}$	3.0	30.0		V
Temperature Coefficient of V//Segment or D.P.		$\triangle V_{F^{\prime}} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin		R $\theta_{\text {J-PIN }}$			282		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Seg

HIGH EFFICIENCY RED 5082-7610/-7650 SERIES

YELLOW 5082-7620/-7660 SERIES (continued)

Parameter	Device HDSP-	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensityf Segment ${ }^{\|18\|}$ (Digit Average)	-7620 Series	Iv	5 mADC	205	620		
			60 mA Pk 1:6 Duty Factor		2414		
	-7660 Series		5 mADC	290	835		
			60 mA Pk 1:6 Duty Factor		3250		
Peak Wavelength		$\lambda_{\text {PEAK }}$			583		nm
Dominant Wavelength ${ }^{19,20 \mid}$		$\lambda_{\text {d }}$		581.5	586	592.5	nm
Forward Voltage/Segment or D.P. ${ }^{\text {21] }}$		V_{F}	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		1.8		
			$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		2.2	2.5	V
			$I_{F}=60 \mathrm{~mA}$		3.1		
Reverse Voltage/Segment or D.P. ${ }^{[21,22]}$		V_{R}	$I_{R}=100 \mu \mathrm{~A}$	3.0	50.0		\checkmark
Temperature Coefficient of $V_{F} /$ Segment or D.P.		$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin		$R \theta_{J}$-PIN			282		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \\ \hline \end{gathered}$

HIGH PERFORMANCE GREEN HDSP-3600/-4600 SERIES

Parameter	Device HDSP.	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/ Segment ${ }^{181}$ (Digit Average)	$\begin{gathered} -3600 \\ \text { Series } \end{gathered}$	lv	10 mA DC	570	1800		
			$60 \mathrm{mAPk} 1: 6$ Duty Factor		2350		$\mu \mathrm{cd}$
	-7750 Series		10 mADC	460	1750		
			60 mA Pk 1:6 Duty Factor		2280		
Peak Wavelength		$\lambda_{\text {PEAK }}$			566		nm
Dominant Wavelength ${ }^{19,20]}$ (Digit Average)		λ_{d}			571	577	nm
Forward Voltage/Segment or D.P. ${ }^{[21]}$		V_{F}	$I_{F}=10 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage/Segment or D.P. ${ }^{21,22]}$		V_{R}	$I_{R}=100 \mu \mathrm{~A}$	3.0	50.0		\checkmark
Thermal Resistance LED Junction-to-Pin		$\mathrm{R} \theta_{\mathrm{J}} \mathrm{PIN}$			282		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{Seg} \end{aligned}$

NOTES:

18. The digits are categorized for luminous intensity with the intensity category designated by a letter located on the right hand side of the package.
19. The dominant wavelength, λ_{d}, is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
20. The displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
21. Quality level for electrical characteristics is 1000 parts per million.
22. Typical specification is for reference only. Do not exceed absolute maximum ratings.

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration) 5082-7730/-7750 Series

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration - 5082-7610/-7650 Series

Figure 3. Maximum Tolerable Peak Current vs. Pulse Duration - 5082-7620/-7660 Series

Figure 4. Allowed Peak Current vs. Pulse Duration - HDSP-3600/-4600 Series

Figure 5. Maximum Allowable DC Current Dissipation per Segment as a Function of Ambient Temperature-5082-7730/-7750 Series

Figure 7. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature - 5082-7620/-7660 Series

Figure 6. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature - 5082-7610/-7650 Series

Figure 8. Maximum Allowable DC Current per Segment vs. Ambient Temperature - HDSP-3600/-4600 Series

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current per Segment- 5082-7730/-7750 Series

Figure 11. Forward Current vs. Forward Voltage-5082-7730/-7750 Series.

Figure 13. Relative Luminous Intensity vs. DC Forward Current- 5082-7730/-7750 Series

Figure 10. Relative Luminous Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 12. Forward Current vs. Forward Voltage Characteristics

Figure 14. Relative Luminous Intensity vs. DC Forward Current

Electrical

These display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points.

These display devices are well suited for strobed operation. The typical forward voltage values, scaled from Figure 8, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:

```
5082-7730/-7750 Series:
    VF=1.55V + I IEAK (7\Omega)
    For 5 mA \leq I IPEAK 
5082-7610/-7620/-7650/-7660 Series:
    VF MAX = 1.75 V + IPEAK (38\Omega)
    For: IPEAK \geq20 mA
    VFMAX = 1.6 V + IDC (45\Omega)
    For: 5 mA \leqlDC \leq 20 mA
HDSP-3600/-4600 Series:
    VF MAX = 2.0 V + IPEAK (50\Omega)
    For: IPEAK \geq 5 mA
```


Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readability by having the OFF-segments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a package color which matches the encapsulating epoxy in the segments.

Contrast enhancement may be achieved by using one of the following suggested filters:

5082-7730/ Panelgraphic RUBY RED 60 or GRAY 10
-7750 SGL Homalite H100-1605 RED or -1266 GRAY
3M Louvered Filter R6510 RED or N0210 GRAY

5082-7610/ Panelgraphic SCARLET RED 65 or GRAY 10
-7650 SGL Homalite H100-1670 RED or -1266
GRAY
3M Louvered Filter R6310 RED or N0210 GRAY

5082-7620/ Panelgraphic YELLOW 27 or GRAY 10
-7660 SGL Homalite H100-1720 AMBER or -1266 GRAY
3M Louvered Filter A5910 AMBER or N0210 GRAY

HDSP-3600/ Panelgraphic GREEN 48
-4600 SGL Homalite H100-1440 GREEN 3M Louvered Filter G5610 GREEN or N0210 GRAY

Mechanical

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes. with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or $\mathrm{DE}-15$, Arklone A or K . A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3\% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

Features

- INDUSTRY STANDARD SIZE
- INDUSTRY STANDARD PINOUT
15.24 mm (. 6 inch) DIP Leads on
2.54 mm (. 1 inch) Centers
- CHOICE OF FOUR COLORS

Red Yellow
High-Efficiency Red High Performance Green

- EXCELLENT CHARACTER APPEARANCE Evenly Lighted Segments
Mitered Corners on Segments
Gray Package Gives Optimum Contrast
- COMMON ANODE OR COMMON CATHODE Right Hand Decimal Point
Overflow ± 1 Character
- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW AND GREEN CATEGORIZED FOR COLOR
Use of Like Categories Yields a Uniform Display

Devices

Description

The HDSP-5301/-5501/-5601/-5701 Series are large 14.22 mm (. 56 inch) LED seven segment displays. Designed for viewing distances up to 7 metres (23 feet), these displays provide excellent readability in bright ambients.
These devices utilize an industry standard size package and pin function configuration. Both the numeric and ± 1 overflow devices feature a right hand decimal point and are available as either common anode or common cathode.

Part No. HDSP-	Color	Description	Package Drawing
5301		Common Anode Right Hand Decimal	A
5303		Common Cathode Right Hand Decimal	B
5307	Red	Overflow ± 1 Common Anode	C
5308		Overflow ± 1 Common Cathode	D
5321		Two Digit Common Anode Right Hand Decimal	E
5323		Two Digit Common Cathode Right Hand Decimal	F
5501		Common Anode Right Hand Decimal	A
5503		Common Cathode Right Hand Decimal	B
5507	High Efficiency	Overflow ± 1 Common Anode	C
5508	Red	Overflow ± 1 Common Cathode	D
5521		Two Digit Common Anode Right Hand Decimal	E
5523		Two Digit Common Cathode Right Hand Decimal	F
5601		Common Anode Right Hand Decimal	A
5603		Common Cathode Right Hand Decimal	B
5607	High Performance	Overflow ± 1 Common Anode	C
5608	Green	Overflow ± 1 Common Cathode	D
5621		Two Digit Common Anode Right Hand Decimal	E
5623		Two Digit Common Cathode Right Hand Decimal	F
5701		Common Anode Right Hand Decimal	A
5703		Common Cathode Right Hand Decimal	B
5707	Yellow	Overflow ± 1 Common Anode	C
5708		Overflow ± 1 Common Cathode	D
5721		Two Digit Common Anode Right Hand Decimal	E
5723		Two Digit Common Cathode Right Hand Decimal	F

Package Dimensions

TOP END VIEW E, F

PIN	FUNCTION					
	A	B	C	D	E	F
1	CATHODE	ANODE	CATHODE	ANODE C	E CATHODE NO. 1	E ANODE NO. 1
2	CATHODEd	ANODEd	ANODEc, d	CATHODE c, d	D CATHODE NO. 1	D ANODE NO, 1
3	ANODE ${ }^{[3]}$	CATHODE ${ }^{[4]}$	CATHODEb	ANODEb	C CATHODE NO. 1	C ANODE NO. 1
4	CATHODE	ANODE C	ANODE a, b, DP	CATHODE a, b, DP	DP CATHODE NO. 1	DP ANODE NO. 1
5	CATHODE DP	ANODEDP	CATHODE DP	ANODEDP	E CATHODE NO. 2	E ANODE NO. 2
6	CATHODEb	ANODE b	CATHODE a	ANODE a	D CATHODE NO. 2	D ANODENO. 2
7	CATHODEa	ANODE a	ANODE a, b, DP	CATHODE $\mathrm{a}, \mathrm{b}, \mathrm{DP}$	G CATHODE NO. 2	G ANODE NO. 2
8	ANODE ${ }^{(3)}$	CATHODE ${ }^{[4]}$	ANODE c, d	CATHODE c, d	C CATHODE NO. 2	C ANODE NO. 2
9	CATHODE f	ANODE \ddagger	CATHODE d	ANODEd	DP CATHODE NO. 2	DP ANODENO. 2
10	CATHODEg	ANODEg	NO PIN	NO PIN	B CATHODENO. 2	B ANODE NO. 2
11					A CATHODE NO. 2	A ANODE NO. 2
12					F CATHODE NO. 2	F ANODE NO. 2
13					DIGIT NO. 2 ANODE	DIGIT NO. 2 CATHODE
14					DIGIT NO. 1 ANODE	DIGIT NO. 1 CATHODE
15					B CATHODE NO. 1	B ANODE NO. 1
16					A CATHODE NO. 1	A ANODE NO. 1
17					G CATHODE NO. 1	G ANODE NO. 1
18					F CATHODE NO. 1	FANODE NO. 1

Notes:

1. All dimensions in millimetres (inches).
2. All untoleranced dimensions are for reference only.
3. Redundant anodes
4. Redundant cathodes.
5. For HDSP-5601/-5701 series product only.

Internal Circuit Diagram

Absolute Maximum Ratings

	-5301 Series	-5501 Series	-5601 Series	-5701 Series
Average Power per Segment or DP	60 mW	105 mW	105 mW	80 mW
Peak Forward Current per Segment or DP	$150 \mathrm{~mA}{ }^{\|6\|}$	$90 \mathrm{~mA}{ }^{\text {\|7 }}$	$90 \mathrm{mAl}{ }^{\text {l }}$	$60 \mathrm{~mA}^{\|8\|}$
	(Pulse Width $\leq .2 \mathrm{~ms}$)	(Pulse Width $\leq 1 \mathrm{~ms}$)	(Pulse Width $\leq 1 \mathrm{~ms}$)	(Pulse Width $\leq 1 \mathrm{~ms}$)
DC Forward Current per Segment ${ }^{9 \mid} 9$ or DP	25 mA	30 mA	30 mA	20 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$			
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$			
Reverse Voltage per Segment or DP	3.0 V	3.0 V	3.0 V	3.0 V
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for 3 sec.	$260^{\circ} \mathrm{C}$ for 3 sec . $(1.59 \mathrm{~mm} \mid 1 / 16 \mathrm{in}$.	260° for 3 sec. low seating plane)	260° for 3 sec.

Notes:

6. See Figure 1 to establish pulsed operating conditions.
7. See Figure 6 to establish pulsed operating conditions. HDSP-5501.

See Figure 7 to establish pulsed operating conditions. HDSP-5601.
8. See Figure 8 to establish pulsed operating conditions.
9. Derate Maximum DC current:

See Figure 2 for -5301 Series. See Figure 9 for -5501 Series. See Figure 10 for -5601 Series. See Figure 11 for -5701 Series.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RED HDSP-5301 Series

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{[10]}$ (Digit Average)	ly	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$	600	1300		$\mu \mathrm{cd}$
		100 mA Peak: 1 of 5 Duty Factor		1400		
Peak Wavelength	λ גEAK			655		nm
Dominant Wavelength ${ }^{[11]}$	λ_{d}			640		nm
Forward Voltage/Segment or DP[12]	V_{F}	$\mathrm{IF}=20 \mathrm{~mA}$		1.6	2.0	V
Reverse Voltage/Segment or DP[12, 17]	V_{R}	$I_{\text {R }}=100 \mu \mathrm{~A}$	3	12		V
Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta \mathrm{J}-\mathrm{PIN}$			345		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Seg.

Notes:

10. The digits are categorized for luminous intensity with category designated by a letter located on the right hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included.
11. The dominant wavelength, λ_{d}, is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
12. Quality level for Electrical Characteristics is 1000 parts per million.

HDSP-5301 SERIES

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration.

Figure 2. Maximum Allowable Average Forward Current Per Segment vs. Ambient Temperature. HDSP-5301 Series.

Figure 4. Forward Current vs. Forward Voltage.

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current.

Figure 5. Relative Luminous Intensity vs. D.C. Forward Current.

For a Detailed Explanation of the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

HIGH EFFICIENCY RED HDSP-5501 SERIES

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment[${ }^{13]}$ (Digit Average)	Iv	10 mADC	900	2800		$\mu \mathrm{cd}$
		60 mA Peak: 1 of 6 Duty Factor		3700		
Peak Wavelength	λ APEAK			635		nm
Dominant Wavelength[14]	λ_{d}			626		nm
Forward Voltage/Segment or DP[16]	V_{F}	$\mathrm{If}=20 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage/Segment or DP[17]	$V_{\text {A }}$	$I_{A}=100 \mu \mathrm{~A}$	3	30		V
Thermal Resistance LED Junction-to-Pin	R $\mathrm{JJJ}_{\text {- Pin }}$			345		$\begin{array}{\|l\|} \hline{ }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} . \\ \hline \end{array}$

HIGH PERFORMANCE GREEN HDSP-5601 SERIES

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{[13]}$ (Digit Average)	Iv	10 mADC	900	2500		$\mu \mathrm{cd}$
		60 mA Peak: 1 of 6 Duty Factor		3100		
Peak Wavelength	λ APEAK			566		nm
Dominant Wavelength[14, 15]	λd			571	577	nm
Forward Voltage/Segment or DP[16]	V_{F}	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage/Segment or DP[16, 17]	VR	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3	50		V
Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\mathrm{J}}^{\mathrm{J}-\mathrm{PIN}}$			345		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} . \end{gathered}$

YELLOW HDSP-5701 SERIES

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{[13]}$ (Digit Average)	IV_{V}	10 mADC	600	1800		$\mu \mathrm{cd}$
		60 mA Peak: 1 of 6 Duty Factor		2700		
Peak Wavelength	λ АЕеAK			583		nm
Dominant Wavelength ${ }^{[14,15]}$	$\lambda_{\text {d }}$		581.5	586	592.5	nm
Forward Voltage/Segment or DP[16]	V_{F}	$\mathrm{F}=20 \mathrm{~mA}$		2.2	2.5	V
Reverse Voltage/Segment or DP [16,17]	$V_{\text {R }}$	$I_{R}=100 \mu \mathrm{~A}$	3	40		V
Thermal Resistance LED Junction-to-Pin	$R \chi^{\prime}-\mathrm{PIN}$			345		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} . \end{gathered}$

Notes:

13. The digits are categorized for luminous intensity with category designated by a letter located on top of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included
14. The dominant wavelength, λ_{d}, is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
15. The HDSP-5601 and HDSP-5701 series displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
16. Quality level for Electrical Characteristics is 1000 parts per million.
17. Typical specification for reference only. Do not exceed absolute maximum ratings.

Figure 6. Maximum Tolerable peak Current vs. Pulse Duration - HDSP-5501 Series.

Figure 7. Maximum Tolerable peak Current vs. Pulse Duration - HDSP-5601 Series.

Figure 8. Maximum Tolerable peak Current vs. Pulse Duration - HDSP-5701 Series.

Figure 9. Maximum Allowable Average Current per Segment vs. Ambient Temperature.

- HDSP-5501 Series.

Figure 11. Maximum Allowable Average Current per Segment vs. Ambient Temperature. - HDSP-5701 Series.

Figure 13. Forward Current vs. Forward Voltage Characteristics.

Figure 10. Maximum Allowable Average Current per Segment vs. Ambient Temperature. - HDSP-5601 Series.

Figure 12. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current.

Figure 14. Relative Luminous Intensity vs. DC Forward Current. - HDSP-5501/-5601/-5701

Electrical

The HDSP-5301/-5501/-5601/-5701 series of display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The -5301 series uses a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The -5501 and -5701 series have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The -5601 series use a GaP epitaxial layer on GaP.
These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4 or 13 , should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:

```
HDSP-5301 Series:
    VF MAX = 1.55V + IPEAK (7\Omega)
    For: IPEAK \geq5 mA
HDSP-5501/-5701 Series:
    VF MAX = 1.75V + IPEAK (38\Omega)
    For: IPEAK \geq20 mA
    VF MAX = 1.5V + IDC (45\Omega)
    For: 5 mA \leqlDC \leq 20 mA
HDSP-5601 Series:
    VF MAX = 2.0V + IPEAK (50\Omega)
    For: IPEAK \geq5 mA
```


Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readibility by having the OFFsegments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the segments.
Contrast enhancement may be achieved by using one of the following suggested filters:
HDSP-5301: Panelgraphic RUBY RED 60
SGL Homalite H100-1605 RED
3M Louvered Filter R6610 RED or N0210
GRAY

HDSP-5501: Panelgrahpic SCARLET RED 65 or GRAY 10
SGL Homalite H100-1670 RED or -1266 GRAY 3M Louvered Filter R6310 RED or N0210 GRAY
HDSP-5601: Panelgraphic GREEN 48
SGL Homalite H100-1440 GREEN
3M Louvered Filter G5610 GREEN or N0210 GRAY

HDSP-5701: Panelgraphic YELLOW 27 or GRAY 10
SGL Homalite H100-1720 AMBER or -1266 GRAY
3M Louvered Filter A5910 AMBER or N0210 GRAY

Mechanical

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or DE-15. Arklone A or K . $\mathrm{A} 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.
Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

LARGE 20 mm (0.8") SEVEN SEGMENT DISPLAYS

RED	HDSP- 3400 Series
HIGH EFFICIENCY RED	HDSP- 3900 Series
YELLOW	HDSP-4200 Series
HIGH PERFORMANCE GREEN	HDSP- 8600 Series

Features

- 20 mm (0.8") DIGIT HEIGHT Viewable Up to 10 Metres (33 Feet)
- CHOICE OF FOUR COLORS

Red	Yellow
High Efficiency Red	Green

- EXCELLENT CHARACTER APPEARANCE Evenly Lighted Segments Wide Viewing Angle
Mitered Corners on Segments
Grey Package Provides Optimum Contrast
- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW AND GREEN CATEGORIZED FOR COLOR
Use of Like Categories Yields a Uniform Display

- IC COMPATIBLE
- MECHANICALLY RUGGED

Description

The HDSP-3400/-3900/-4200/-8600 Series are very large 20 mm (0.8 in .) LED seven segment displays. Designed for viewing distances up to 10 metres (33 feet), these single digit displays provide excellent readability.
These devices utilize a standard 15.24 mm (0.6 in .) dual in line package configuration that permits mounting on PC
boards or in standard IC sockets. Requiring a low forward voltage, these displays are inherently IC compatible, allowing for easy integration into electronic instrumentation, point-of-sale terminals, TVs, weighing scales, and digital clocks.

Devices

Part Number	Color	Description	Package Drawing
HDSP-3400 HDSP-3401 HDSP-3403 HDSF-3405 HDSP-3406	Red	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overflow ± 1 Right Hand Decimal	$\begin{aligned} & A \\ & B \\ & C \\ & D \\ & E \end{aligned}$
HDSP-3900 HDSP-3901 HDSP-3903 HDSP-3905 HDSP-3906	High Efficlency Red	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overflow ± 1 Right Hand Decimal	$\begin{aligned} & A \\ & B \\ & C \\ & D \\ & E \end{aligned}$
HDSP-4200 HDSP-4201 HDSP-4203 HDSP-4205 HDSP-4206	Yellow	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overfiow ± 1 Right Hand Decimal	$\begin{aligned} & A \\ & B \\ & C \\ & D \\ & E \end{aligned}$
HDSP-8600 HDSP-8601 HDSP-8603 HDSP-8605 HDSP-8606	High Performance Green	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overflow ± 1	$\begin{aligned} & A \\ & B \\ & C \\ & D \\ & E \end{aligned}$

Package Dimensions (3900/4200 Series)

1. Dimensions in millimeters and (inches).

FRONT VIEW B, C

FRONT VIEW E

Pin	Function				
	$\begin{aligned} & \text { A } 3400 / 39001 \\ & \mathbf{4 2 0 0 / 8 6 0 0} \end{aligned}$	$\begin{aligned} & \text { B } 3401 / 3901 / \\ & 4201 / 8801 \end{aligned}$	$\begin{gathered} \text { C. } 3403 / 3903 / \\ 4203 / 8603 \end{gathered}$	D 3405/3905/ 4205/8605	$\begin{aligned} & \text { E } 3408 / 3906 / \\ & 4208 / 8806 \end{aligned}$
1	NO PIN	NO P1N	NO PIN	NO PIN	NO PIN
2	CATHODE A	CATHODE	ANODE a	ANODE a	CATHODE a
3	CATHODE 1	OATHODE :	ANODE	ANODE:	ANODE A
4	ANODEI3	ANODE ${ }^{31}$	CATHODE ${ }^{[4]}$	CATHODE ${ }^{\text {IC1. }}$	GATHODE d
5	CATHODE -	CATHODE E	ANODE E	ANODE E.	CATHODE C
6	ANODE ${ }^{(3)}$	ANODE ${ }^{(3)}$	CATHODE ${ }^{(0)}$	CAFHODE ${ }^{[6]}$	CATHODE
7	CATHODE dp	NO. CONNEC.	NO. CONNEC.	ANODE do	ANODE ${ }^{\text {a }}$
8	NO PIN	NOPIN	NO PIN	NOPIN	CATHODE dP
9	NO PIN	NO PIN	NOPIN	NO PIN	NO PIN
10	NO PIN	CATHODE dp	ANODE dp	NO PIN	ANODE dp
11	CATHODE	CATHODE ${ }^{\text {a }}$	ANODE O	ANODE ${ }^{\text {a }}$	CATHODE dp
12	ANODE ${ }^{[3]}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{[6]}$	CATHIODE ${ }^{(61}$	CATHODE O
13	CATHODE O	CATHODE	ANOOE C	ANOOE C	ANODE b
14	OATHODE 9	CATHODE	ANODE 9	ANODE 0	ANODE C
15	CATHODE B	CATHODE B	ANODE b	ANODE B	ANODE:
16	NO PIN				
17	ANODE ${ }^{11}$	ANODE ${ }^{[3]}$	CAFHODE ${ }^{\text {[6] }}$	CATHODE ${ }^{[9]}$	CATHODE A
18	NO PIN				

Internal Circuit Diagram

A

B

C

D

E

osolute Maximum Ratings	-3400 Series	$\begin{gathered} -3900 /-4200 \\ \text { Series } \\ \hline \end{gathered}$	-8600 Series
Average Power per Segment or $\mathrm{DP}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\|9\|\right.$	120 mW	105 mW	105 mW
Operating Temperature Range ${ }^{10]}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Peak Forward Current per Segment or $\mathrm{DP} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Pulse Width $\left.=1.2 \mathrm{~ms})^{[11}\right]$	200 mA	135 mA	90 mA
DC Forward Current per Segment or $\mathrm{DP}\left(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\right)^{191}$	50 mA	40 mA	30 mA
Reverse Voltage per Segment or DP	3.0 V	3.0 V	3.0 V
Lead Soldering Temperature ($1.6 \mathrm{~mm} \mid 1 / 6 \mathrm{in}$. \mid Below Seating Plane)	$260^{\circ} \mathrm{C}$ for 3 sec.	$260^{\circ} \mathrm{C}$ for 3 sec.	$260^{\circ} \mathrm{C}$ for 3 sec.

Notes:

9. See Power Derating Curves (see Figure 2 for -3400 Series, Figure 7 for $-3900 /-4200$ Series, and Figure 12 for -8600 Series).
10. For operation of -8600 series to $-40^{\circ} \mathrm{C}$ consult Optoelectronics division.
11. See appropriate curves to establish pulsed operating conditions (see Figure 1 for -3400 Series, Figure 6 for $-3900 /-4200$ Series, Figure 11 for -8600 Series).

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RED HDSP-3400 SERIES

Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment (Digit Average) [12,13]	Iv	$\mathrm{l}=20 \mathrm{~mA}$	500	1200		$\mu \mathrm{Cd}$
Peak Wavelength	APEAK			655		nm
Dominant Wavelength ${ }^{14]}$	λ_{d}			640		nm
Forward Voltage, any Segment or DP ${ }^{161}$	V_{F}	$\mathrm{IF}=20 \mathrm{~mA}$		1.6	2.0	V
Reverse Voltage, any Segment or DP[15.16]	V_{R}	$\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	20.0		V
Temperature Coefficient of Forward Voltage	$\Delta V_{F} /^{\circ} \mathrm{C}$	$\mathrm{lF}=20 \mathrm{~mA}$		-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin				375		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{Seg} \end{aligned}$

HIGH EFFICIENCY RED HDSP-3900 SERIES

Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment (Digit Average) f12.13]	Iv	$100 \mathrm{~mA} \mathrm{Pk} ; 1$ of 5 Duty Factor	3350	7000		$\mu \mathrm{cd}$
		20 mADC		4800		
Peak Wavelength	APEAK			635		nm
Dominant Wavelength ${ }^{[14]}$ (Digit Average)	$\lambda_{\text {d }}$			626		nm
Forward Voltage, any Segment or DP[16]	V_{F}	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		2.6	3.5	V
Reverse Voltage, any Segment or DP ${ }^{16,17]}$	V_{R}	$\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	25.0		V
Temperature Coefficient of Forward Voltage	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}=100 \mathrm{~mA}$		-1.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\mathrm{J}} \mathrm{mPIN}$			375		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$

YELLOW HDSP-4200 SERIES

Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment (Digit Average) [12,13]	Iv	100 mA Pk ; 1 of 5 Duty Factor	2200	7000		$\mu \mathrm{cd}$
		20 mADC		3400		
Peak Wavelength	λ ¢ ${ }^{\text {PaK }}$			583		nm
Dominant Wavelength [14,15] (Digit Average)	Ad		581.5	586	592.5	nm
Forward Voltage, any Segment or DP[16]	V_{F}	IF $=100 \mathrm{~mA}$		2.6	3.5	V
Reverse Voltage, any Segment or DP 16,171	$V_{\text {R }}$	$\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	25.0		V
Temperature Coefficient of Forward Voltage	$\triangle V_{F} /{ }^{\circ} \mathrm{C}$	$I_{F}=100 \mathrm{~mA}$		-1.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	R O_{J}-PIN			375		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$

HIGH PERFORMANCE GREEN HDSP-8600 SERIES

- Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment (Digit Average) [12,13]	Iv	$60 \mathrm{~mA} \mathrm{Pk} ; 1$ of 5 Duty Factor		1960		$\mu \mathrm{cd}$
		10 mA DC	700	1500		
Peak Wavelength	λ PEAK			- 566		$\mathrm{nm}{ }^{\text {a }}$
Dominant Wavelength[14.15] (Digit Average)	$\lambda_{\text {d }}$	-	.	571	577	nm
Forward Voltage, any Segment or DP[16]	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage, any Segment or DP ${ }^{[16,17]}$	$V_{\text {f }}$	$I_{R}=100 \mu \mathrm{~A}$	3.0	50.0		\checkmark
Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J-PIN }}$			375		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{Seg} \end{aligned}$

Notes:
12. Case temperature of the device immediately prior to the intensity measurement is $25^{\circ} \mathrm{C}$.
13. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
14. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
15. The yellow and green displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
16. Quality level for electrical characteristics is 1000 parts per million.
17. Typical specification for reference only. Do not exceed absolute maximum ratings.

HDSP-3400 SERIES

Figure 1. Maximum Allowable Peak Current vs. Pulse Duration

Figure 2. Maximum Allowable DC Current per Segment vs. Ambient Temperature

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage

Figure 5. Relative Luminous Intensity vs. DC Forward Current

HDSP-3900/-4200 SERIES

Figure 6. Maximum Allowed Peak Current vs. Pulse Duration

Figure 7. Maximum Allowable DC Current per Segment vs. Ambient Temperature

Figure 9. Peak Forward Segment Current vs. Peak Forward Voltage

Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 10. Relative Luminous Intensity vs. DC Forward Current

Figure 11. Maximum Allowed Peak Current vs. Pulse Duration

Figure 12. Maximum Allowable DC Current per Segment vs. Ambient Temperature

Figure 14. Peak Forward Segment Current vs. Peak Forward Voltage

Figure 13. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

IDC - DC CURRENT PER LED - mA

Figure 15. Relative Luminous Intensity vs. DC Forward Current

Electrical

These display devices are composed of eight light emitting diodes, with light from each LED optically stretched to form individual segments and a decimal point.
These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4, 9, or 14 should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:

HDSP-3400 Series	$V_{F} M A X=1.55 \mathrm{~V}+\operatorname{IPEAK}(7 \Omega)$
	For: IPEAK $\geq 5 \mathrm{~mA}$
HDSP-3900/-4200 Series	$V_{F} M A X=2.15 \mathrm{~V}+\operatorname{IPEAK}(13.5 \Omega)$
	For: $I_{F} \geq 30 \mathrm{~mA}$
	$V_{F} M A X=1.9 \mathrm{~V}+\operatorname{IDC}(21.8 \Omega)$
	For: $10 \mathrm{~mA} \leq \operatorname{IF} \leq 30 \mathrm{~mA}$
HDSP-8600 Series	$V_{F} M A X=2.0 \mathrm{~V}+\operatorname{IPEAK}(50 \Omega)$
	For: IPEAK $\geq 5 \mathrm{~mA}$

Temperature derated strobed operating conditions are obtained from Figures 1, 6, or 11 and 2, 7, or 12. Figures 1, 6 , and 11 relate pulse duration (t_{p}), refresh rate (f), and the ratio of maximum peak current to maximum dc current (IPEAK MAX/IDC MAX). Figures 2, 7, and 12 present the maximum allowed dc current vs. ambient temperature. Figures 1, 6, and 11 are based on the principle that the peak junction temperature for pulsed operation at a specified peak current, pulse duration and refresh rate should be the same as the junction temperature at maximum DC operation. Refresh rates of 1 kHz or faster minimize the pulsed junction heating effect of the device resulting in the maximum possible time average luminous intensity.
The time average luminous intensity can be calculated knowing the average forward current and relative efficiency characteristic, η IPEAK, of Figures 3,8 , or 13 . Time average luminous intensity for a device case temperature of $25^{\circ} \mathrm{C}$, IV $\left(25^{\circ} \mathrm{C}\right)$, is calculated as follows:

$$
\operatorname{IV}\left(25^{\circ} \mathrm{C}\right)=\left[\begin{array}{l}
\frac{\text { I AVG }}{} \\
\begin{array}{l}
\text { IAVG Test } \\
\text { Condition }
\end{array}
\end{array}\right]\left[\eta_{\text {IPEAK }}\right][\text { IV DATA SHEET }]
$$

Example: For HDSP-4200 series

$$
\begin{aligned}
& \eta_{\text {IPEAK }}=1.00 \mathrm{at} \text { IPEAK }=100 \mathrm{~mA} \text {. For } \mathrm{DF}=1 / 5: \\
& \text { IV }\left(25^{\circ} \mathrm{C}\right)=\left[\frac{20 \mathrm{~mA}}{20 \mathrm{~mA}}\right][1.00][7.0 \mathrm{mcd}]=\begin{array}{r}
7.0 \mathrm{mcd} / \\
\text { segment }
\end{array}
\end{aligned}
$$

The time average luminous intensity may be adjusted for operating junction temperature by the following exponential equation:
$\operatorname{lv}\left(T_{J}\right)=\operatorname{lv}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\mathrm{k}}\left(\mathrm{T}_{J}+25^{\circ} \mathrm{C}\right) \mid$
where $T_{J}=T_{A}+P_{D} \cdot R \theta_{J-A}$

Device	\mathbf{K}
-3400	$-0.0188 /{ }^{\circ} \mathrm{C}$
-3900	$-0.0131 /{ }^{\circ} \mathrm{C}$
-4200	$-0.0112 /{ }^{\circ} \mathrm{C}$
-8600	$-0.0044 /{ }^{\circ} \mathrm{C}$

Mechanical

These devices are constructed utilizing a lead frame in a standard DIP package. The LED dice are attached directly to the lead frame. Therefore, the cathode leads are the direct thermal and mechanical stress paths to the LED dice. The absolute maximum allowed junction temperature, Tj MAX , is $105^{\circ} \mathrm{C}$. The maximum power ratings have been established so that the worst case V_{F} device does not exceed this limit.

Worst case thermal resistance pin-to-ambient is $400^{\circ} \mathrm{C} /$ W/Seg when these devices are soldered into minimum trace width PC boards. When installed in a PC board that provides R θ PIN-A less than $400^{\circ} \mathrm{C} /$ W/Seg these displays may be operated at higher average currents as shown in Figure 2.

Optical

The radiation pattern for these devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas.

$$
L_{v}\left(c d / m^{2}\right)=\frac{I_{v}(c d)}{A\left(m^{2}\right)}
$$

$$
\text { Lvifootlamberts })=\frac{\left.\pi l_{\mathrm{v} /} \mathrm{Cd}\right)}{\mathrm{A}_{\left(\mathrm{ft}^{2}\right)}}
$$

Area/Seg. $\mathbf{m m} \mathbf{m}^{2}$	Area/Seg. in. 2
14.9	0.0231

Contrast Enhancement

The objective of contrast enhancement is to optimize display readability. Adequate contrast enhancement can be achieved in indoor applications through luminous contrast techniques. Luminous contrast is the observed brightness of the illuminated segment compared to the brightness of the surround. Appropriate wavelength filters maximize luminous contrast by reducing the amount of light reflected from the area around the display while transmitting most of the light emitted by the segment. These filters are described further in Application Note 1015.
Chrominance contrast can further improve display readability. Chrominance contrast refers to the color difference between the illuminated segment and the surrounding area. These displays are assembled with a gray package and untinted encapsulating epoxy in the segments to improve chrominance contrast of the ON segments. Additional contrast enhancement in bright ambients may be achieved by using a neutral density gray filter such as Panelgraphic Chromafilter Gray 10, or 3M Light Control Film (louvered film.

HEWLETT PACKARD

Features

- HIGH LIGHT OUTPUT Typical Intensities of up to $7.0 \mathrm{mcd} / \mathrm{seg}$ at 100 mA pk 1 of 5 duty factor.
- CAPABLE OF HIGH CURRENT DRIVE Excellent for Long Digit String Multiplexing
- FOUR CHARACTER SIZES
$7.6 \mathrm{~mm}, 10.9 \mathrm{~mm}, 14.2 \mathrm{~mm}$, and 20.3 mm
- CHOICE OF TWO COLORS

High Efficiency Red
Yellow

- EXCELLENT CHARACTER APPEARANCE

Evenly Lighted Segments
Wide Viewing Angle
Grey Body for Optimum Contrast

- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW CATEGORIZED FOR COLOR Use of Like Categories Yields a Uniform Display
- IC COMPATIBLE
- MECHANICALLY RUGGED

Description

The HDSP-3530/-3730/-5531/-3900 and HDSP-4030/-4130/ $-5731 /-4200$ are $7.6 \mathrm{~mm}, 10.9 \mathrm{~mm} / 14.2 \mathrm{~mm} / 20.3 \mathrm{~mm}$ high efficiency red and yellow displays designed for use in high light ambient condition. The four sizes of displays allow for viewing distances at $3,6,7$, and 10 meters. These seven segment displays utilize large junction high efficiency LED chips made from GaAsP on a transparent GaP substrate. Due to the large junction area, these displays can be driven at high peak current levels needed for high ambient conditions or many character multiplexed operation.

These displays have industry standard packages, and pin configurations and ± 1 overflow display are available in all four sizes. These numeric displays are ideal for applications such as Automotive and Avionic Instrumentation, Point of Sale Terminals, and Gas Pump.

Devices

Part No. HDSP-	Color	Description Prawage	
3530		7.6 mm Common Anode Left Hand Decimal	A
3531	High Efficiency Red	7.6 mm Common Anode Right Hand Decimal	B
3533		7.6 mm Common Cathode Right Hand Decimal	C
3536		7.6 mm Universal Overflow ± 1 Right Hand Decimal	D
4030		7.6 mm Common Anode Left Hand Decimal	A
4031		7.6 mm Common Anode Right Hand Decimal	B
4033		7.6 mm Common Cathode Right Hand Decimal	C
4036	Yellow	7.6 mm Universal Overflow ± 1 Right Hand Decimal	D

[^15]
Devices

Part No. HDSP	Color	Description	Package Drawing
3730 3731 3733 3736	High Efficiency Red	10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow ± 1 Right Hand Dec.	$\begin{aligned} & E \\ & F \\ & G \\ & H \end{aligned}$
$\begin{aligned} & 4130 \\ & 4131 \\ & 4133 \\ & 4136 \end{aligned}$	Yellow	10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow ± 1 Right Hand Dec.	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \\ & \mathrm{G} \\ & \mathrm{H} \end{aligned}$
$\begin{aligned} & 5531 \\ & 5533 \\ & 5537 \\ & 5538 \end{aligned}$	High Efficiency Red	14.2 mm Common Anode Right Hand Decimal 14.2 mm Common Cathode Right Hand Decimal 14.2 mm Overflow ± 1 Common Anode 14.2 mm Overflow ± 1 Common Cathode	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~J} \\ & \mathrm{~K} \\ & \mathrm{~L} \end{aligned}$
$\begin{aligned} & 5731 \\ & 5733 \\ & 5737 \\ & 5738 \end{aligned}$	Yellow	14.2 mm Common Anode Right Hand Decimal 14.2 mm Common Cathode Right Hand Decimal 14.2 mm Overflow ± 1 Common Anode 14.2 mm Overflow ± 1 Common Cathode	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~J} \\ & \mathrm{~K} \\ & \mathrm{~L} \end{aligned}$
$\begin{aligned} & 3900 \\ & 3901 \\ & 3903 \\ & 3905 \\ & 3906 \end{aligned}$	High Efficiency Red	20.3 mm Common Anode Left Hand Decimal 20.3 mm Common Anode Right Hand Decimal 20.3 mm Common Cathode Right Hand Decimal 20.3 mm Common Cathode Left Hand Decimal 20.3 mm Universal Overflow ± 1 Right Hand Decimal	$\begin{aligned} & M \\ & N \\ & O \\ & P \\ & Q \end{aligned}$
$\begin{aligned} & 4200 \\ & 4201 \\ & 4203 \\ & 4205 \\ & 4206 \end{aligned}$	Yellow	.20 .3 mm Common Anode Left Hand Decimal 20.3 mm Common Anode Right Hand Decimal 20.3 mm Common Cathode Right Hand Decimal 20.3 mm Common Cathode Left Hand Decimal 20.3 mm Universal Overflow ± 1 Right Hand Decimal	$\begin{aligned} & M \\ & N \\ & \mathrm{~N} \\ & \mathrm{P} \\ & \mathrm{Q} \end{aligned}$

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram Q.

Absolute Maximum Ratings (All Products)

Average Power per Segment
or DP ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Peak Forward Current per Segment or DP $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{11}$
DC Forward Current per Segment|2|
or $\mathrm{DP}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)
Operating Temperature Range
Storage Temperature Range
Reverse Voltage per Segment or DP
Lead Solder Temperature
($1.59 \mathrm{~mm} \mathrm{\mid} 1 / 16$ inch \mid below seating plane)

105 mW

135 mA
(Pulse Width $=0.16 \mathrm{~ms}$)

40 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
3.0 V
$260^{\circ} \mathrm{C}$ for 3 sec .

Notes:

1. See Figure 1 to establish pulsed operating conditions. 2. Derate maximum DC current above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at $.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per segment, see Figure 2.

Package Dimensions (HDSP-3530/4030 Series)

A,B,C

D

	FUNCTION			
PIN	$\begin{gathered} A \\ \cdot 3530 / 4030 \end{gathered}$	$\stackrel{\mathrm{B}}{\mathrm{~B}} .3531 / 4031$	$\underset{.3533 / 4033}{\mathrm{C}}$	$\begin{gathered} D \\ -3536 / 4036 \end{gathered}$
1	CATHODE:a	CATHODE:a	NOPIN	ANODE-d
2	Cathodef	CATHODE.f	CATHODE ${ }^{\text {f6] }}$	NO PIN
3	ANODE[3]	ANODE ${ }^{\text {a }}$	ANODE-f	CATHODE-d
4	NO PIN	NO PIN	ANODE-g	CATHODE. C
5	NO PIN	NO PIN	ANODE-	CATHODE:
6	CATHODE-dp	NO CONN. [5]	ANODE-d	ANODE-E
7	CATHODE.	CATHODE.e	NO PIN	ANODE-c
8	CATHODE-d	CATHODE -d	NO PIN	ANODE-dp
9	NO CONN. 151	CATHODE.dp	CATHODE [6]	NOPIN
10	CATHODE.G	CATHODE-C	ANODE-dp	CATHODE-dp
11	CATHODE-g	CATHODE-g	ANODE-6	CATHODE-b
12	NO PIN	NO PIN	ANODE-b	CATHODE.a
13	CATHODE-b	CATHODE. ${ }^{\text {b }}$	ANODE-a	ANODE-a
14	ANODE 3]	ANODE ${ }^{[3]}$	NOPIN	ANODE-b

Package Dimensions (HDSP-3730/4130 Series)

E

F,G

H

FRONT VIEW

END VIEW

Package Dimensions (5531/5731 Series)

PIN	FUNCTION			
	15531	」 5533	K 5537	L5538
1	CATHODE	ANODE e	CATHODE	ANODE ${ }^{\text {c }}$
2	CATHODEd	ANODE d	ANODE c, d	CATHODE c. d
3	ANODE ${ }^{(3)}$	CATHODE ${ }^{(6)}$	CATHODE b	ANODE ${ }^{\text {b }}$
4	CATHODE C	ANODE c	$\begin{aligned} & \text { ANODE } \mathrm{a}, \mathrm{~b} \\ & \text { DP } \end{aligned}$	CATHODE $a, b, D P$
5	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP
6	CATHODE B	ANODEb	CATHODE a	ANODE a
7	CATHODE a	ANODE a	ANODE a, b. DP	CATHODE $\mathrm{a}, \mathrm{b}, \mathrm{DP}$
8	ANODE ${ }^{(3)}$	CATHODE ${ }^{(6)}$	ANODE c, d	CATHODE c, d
9	CATHODE f	ANODE	CATHODE	ANODE d
10	CATHODE 9	ANODE 9	NO PIN ${ }^{151}$	NOPIN ${ }^{(5)}$

Package Dimensions (3900/4200 Series)

FRONT VIEW M, P

FRONT VIEW N, 0

FRONT VIEW Q

1. Dimensions in millimeters and (inches)
2. All untoleranced dimensions are for reference only.
3. Redundant anodes.

Pin	Funclion				
	$\begin{gathered} M \\ 3900 / 4200 \end{gathered}$	$\begin{gathered} N \\ 3901 / 4201 \end{gathered}$	$\frac{0}{3903 / 4203}$	$\begin{gathered} \mathrm{p} \\ 3905 / 4205 \end{gathered}$	$\frac{Q}{3906 / 4206}$
1	NO PIN				
2	CATHODE a	cathode a	ANODE a	ANODE a	CATHODE a
3	CATHODE \dagger	CATHODE:	ANODE :	ANODE :	ANOOE d
4	ANODE ${ }^{\text {3] }}$	ANODE ${ }^{135}$	CATHODE ${ }^{(6)}$	CATHODE ${ }^{(6)}$	cathode a
5	CATHODE	CATHODE	ANODE e	ANODE	CATHODE C
6	ANODE ${ }^{31}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{[6]}$	CATHODE ${ }^{(6)}$	CATHODE
7	CATHODE dp	NO. CONNEC	NO. CONNEC	anode dp	ANODE
8	NO PIN	NO PIN	NO PIN	NO PIN	CATHODE dp
9	NOPIN	NO PIN	NO PIN	NO PIN	NO PIN
10	NO PAN	CATHODE dp	ANODE dp	NO PIN	ANODE dp
11	CATHODE ©	CATHODE A	ANODE d	ANODE d	CATHODE dp
12	ANODE ${ }^{[3]}$	ANODE ${ }^{\text {P3 }}$	Cathooee ${ }^{[8]}$	CATHODE ${ }^{[6]}$	CATHODE
13	CATHODE C	cathode c	ANODE	ANODE c	ANODE:
14	CATHODE 9	CATHODE 9	ANODE 9	ANODE 9	ANODE:
15	CATHODE b	gathode b	ANODE b	ANODE ${ }^{\text {b }}$	ANODE a
16	NO PIN				
17	ANODE ${ }^{[3]}$	ANOOE ${ }^{\text {[3] }}$	CATHODE ${ }^{(6)}$	CATHODE ${ }^{[6]}$	CATHODE \#
18	NO PIN				

4. Unused dp position.
5. See Internal Circuit Diagram.
6. Redundant Cathodes.
7. For HDSP-4030/-4130/-5731/-4200 Series product only. 8. See part number table for LHDP and RHDP designation.

Internal Circuit Diagram (HDSP-3530/4030 Series)

A

B

C

D

Internal Circuit Diagram (HDSP-3730/4130 Series)

E

F

G

H

Internal Circuit Diagram (HDSP-5531/5731 Series)

I

J

K

L

Internal Circuit Diagram (HDSP-3900/4200 Series)

M

N

0

P

Q

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Device HDSP.	Test Condition	Min	Typ	Max	Units
Luminous Intensityt Segment ${ }^{19.10 \mid}$ (Digit Average)	Iv	$\begin{aligned} & 3530 \\ & 3730 \\ & 5531 \\ & 3900 \end{aligned}$	$100 \mathrm{~mA} \mathrm{Pk} ; 1$ of 5 Duty Factor	$\begin{aligned} & 2200 \\ & 3350 \\ & 2200 \\ & 2200 \end{aligned}$	$\begin{gathered} 7100 \\ 10860 \\ 6000 \\ 7000 \end{gathered}$		$\mu \mathrm{cd}$
		$\begin{aligned} & 3530 \\ & 3730 \\ & 5531 \\ & 3900 \end{aligned}$	20 mA DC		$\begin{aligned} & 4970 \\ & 7600 \\ & 5000 \\ & 4800 \end{aligned}$		$\mu \mathrm{cd}$
		$\begin{aligned} & 4030 \\ & 4130 \\ & 5731 \\ & 4200 \end{aligned}$	$100 \mathrm{~mA} \mathrm{Pk} ; 1$ of 5 Duty Factor	$\begin{aligned} & 1500 \\ & 1500 \\ & 2200 \\ & 2200 \end{aligned}$	$\begin{aligned} & 4500 \\ & 5000 \\ & 5500 \\ & 7000 \end{aligned}$		$\mu \mathrm{cd}$
		$\begin{aligned} & 4030 \\ & 4130 \\ & 5731 \\ & 4200 \end{aligned}$	20 mA DC		$\begin{aligned} & 2200 \\ & 2500 \\ & 2800 \\ & 3400 \end{aligned}$		$\mu \mathrm{cd}$
Peak Wavelength	λ APAK	$\begin{aligned} & 3530 / 3730 / \\ & 5531 / 3900 \end{aligned}$			635		nm
		$\begin{aligned} & 4030 / 4130 / \\ & 5731 / 4200 \end{aligned}$			583		nm
Dominant Wavelength ${ }^{111,12 \mid}$ (Digit Average)	λ_{d}	$\begin{aligned} & 3530 / 3730 t \\ & 5531 / 3900 \end{aligned}$			626		
		$\begin{aligned} & 4030 / 4130 / \\ & 5731 / 4200 \end{aligned}$		581.5	586	592.5	nm
Forward Voltage/Segment or D.P.[13]	V_{F}	All Devices	$\mathrm{IF}=100 \mathrm{~mA}$		2.6	3.5	V
Reverse Voltage/Segment or D.P. P^{141}	V_{R}	All Devices	$I_{R}=100 \mu \mathrm{~A}$	3.0	25.0		V
Temp. Coeff. of VF/Seg or D.P.	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$	All Devices	$\mathrm{IF}_{\mathrm{F}}=100 \mathrm{~mA}$		-1.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-pin	R $\mathrm{JJJ-PIN}^{\text {d }}$	$\begin{aligned} & 3530 / 4030 \\ & 3730 / 4130 \end{aligned}$			282		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$
		5531/5731			345		${ }^{\circ} \mathrm{C} /$ W/Seg
		3900/4200			375		${ }^{\circ} \mathrm{C} /$ W/Seg

Notes:

9. Case temperature of the device immediately prior to the intensity measurement is $25^{\circ} \mathrm{C}$.
10. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
11. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
12. The yellow displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
13. Quality level for electrical characteristics is 1000 parts per million.
14. Typical specification for reference only. Do not exceed absolute maximum ratings.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration

Figure 2. Maximum Allowable DC Current per Segment vs. Ambient Temperature

Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 5. Relative Luminous Intensity vs. DC Forward Current

Electrical

These display devices are composed of eight light emitting diodes, with light from each LED optically stretched to form individual segments and a decimal point.
The devices utilize LED chips which are made from GaAsP on a transparent GaP substrate.
These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4 should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:

$$
\begin{aligned}
& V_{F} M A X=2.15 \mathrm{~V}+\operatorname{IPEAK}(13.5 \Omega) \\
& \text { For: } I_{F} \geq 30 \mathrm{~mA}
\end{aligned}
$$

$$
V_{F} M A X=1.9 V+\operatorname{IDC}(21.8 \Omega)
$$

$$
\text { For: } 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}} \leq 30 \mathrm{~mA}
$$

Temperature derated strobed operating conditions are obtained from Figures 1 and 2. Figure 1 relates pulse duration (t_{p}), refresh rate (f), and the ratio of maximum peak current to maximum dc current (IPEAK MAX/IDC MAX). Figure 2 presents the maximum allowed dc current vs. ambient temperature. Figure 1 is based on the principle that the peak junction temperature for pulsed operation at a specified peak current, pulse duration and refresh rate should be the same as the junction temperature at maximum DC operation. Refresh rates of 1 kHz or faster minimize the pulsed junction heating effect of the device resulting in the maximum possible time average luminous intensity.
The time average luminous intensity can be calculated knowing the average forward current and relative efficiency characteristic, ŋlPEAK, of Figure 3. Time average luminous intensity for a device case temperature of $25^{\circ} \mathrm{C}$, Iv $\left(25^{\circ} \mathrm{C}\right)$, is calculated as follows:

$$
\text { IV }\left(25^{\circ} \mathrm{C}\right)=\left[\frac{\text { l }_{\text {AVG }}}{20 \mathrm{~mA}}\right]\left[\eta_{\text {IPEAK }}\right][\text { IV DATA SHEET }]
$$

Example: For HDSP-4030 series

$$
\begin{aligned}
& \eta_{\text {IPEAK }}=1.00 \text { at IPEAK }=100 \mathrm{~mA} . \text { For } D F=1 / 5: \\
& \text { IV }\left(25^{\circ} \mathrm{C}\right)=\left[\frac{20 \mathrm{~mA}}{20 \mathrm{~mA}}\right][1.00][4.5 \mathrm{mcd}]=\begin{array}{r}
4.5 \mathrm{mcd} / \\
\text { segment }
\end{array}
\end{aligned}
$$

The time average luminous intensity may be adjusted for operating junction temperature by the following exponential equation:

$$
\operatorname{lv}\left(T_{J}\right)=\operatorname{lv}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\left[k\left(T_{J}+25^{\circ} \mathrm{C}\right)\right]}
$$

where $T_{J}=T_{A}+P_{D} \cdot R \theta_{J-A}$

DEVICE	K
$-3530 /-3730 /-5531 /-3900$	$-0.0131 /{ }^{\circ} \mathrm{C}$
$-4030 /-4130 /-5731 /-4200$	$-0.0112 /{ }^{\circ} \mathrm{C}$

Mechanical

These devices are constructed utilizing a lead frame in a standard DIP package. The LED dice are attached directly to the lead frame. Therefore, the cathode leads are the direct thermal and mechanical stress paths to the LED dice. The absolute maximum allowed junction temperature, TJ MAX, is $105^{\circ} \mathrm{C}$. The maximum power ratings have been established so that the worst case V_{F} device does not exceed this limit.

Worst case thermal resistance pin-to-ambient is $400^{\circ} \mathrm{C} /$ W/Seg when these devices are soldered into minimum trace width PC boards. When installed in a PC board that provides R θ PIN-A less than $400^{\circ} \mathrm{C} / \mathrm{W} /$ Seg these displays may be operated at higher average currents as shown in Figure 2.

Optical

The radiation pattern for these devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas.

$$
\begin{aligned}
\operatorname{Lv}\left(c d / m^{2}\right)= & \frac{I_{v}(c d)}{A\left(m^{2}\right)} \\
L v(\text { footlamberts }) & =\frac{\pi I_{v}(c d)}{A\left(\mathrm{ft}^{2}\right)}
\end{aligned}
$$

DEVICE	AREA/SEG. $\mathbf{m m}^{2}$	AREA/SEG. IN.2
$-3530 /-4030$	2.5	.0039
$-3730 /-4130$	4.4	.0068
$-5531 /-5731$	8.8	.0137
$-3900 /-4200$	14.9	.0231

Contrast Enhancement

The objective of contrast enhancement is to optimize display readability. Adequate contrast enhancement can be achieved in indoor applications through luminous contrast techniques. Luminous contrast is the observed brightness of the illuminated segment compared to the brightness of the surround. Appropriate wavelength filters maximize luminous contrast by reducing the amount of light reflected from the area around the display while transmitting most of the light emitted by the segment. These filters are described further in Application Note 1015.
Chrominance contrast can further improve display readability. Chrominance contrast refers to the color difference between the illuminated segment and the surrounding area. These displays are assembled with a gray package and untinted encapsulating epoxy in the segments to improve chrominance contrast of the ON segments. Additional contrast enhancement in bright ambients may be achieved by using a neutral density gray filter such as Panelgraphic Chromafilter Gray 10, or 3M Light Control Film (louvered film).

INTENSITY AND COLOR SELECTED DISPLAYS

Features

- INTENSITY SELECTION IMPROVES UNIFORMITY OF LIGHT OUTPUT FROM UNIT TO UNIT. AVAILABLE IN RED, HIGH EFFICIENCY RED, AND HIGH PERFORMANCE GREEN.
- COLOR SELECTION IMPROVES UNIFORMITY OF COLOR FROM UNIT TO UNIT. AVAILABLE IN YELLOW.
- ONE AND TWO CATEGORY SELECTION SIMPLIFIES INVENTORY CONTROL AND ASSEMBLY.

Description

Seven segment displays are now available from HewlettPackard which are selected from one category or from two categories. These select displays are basic catalog devices which are pre-sorted for luminous intensity and color, then selected from one predetermined category (S01 Option) or two predetermined adjacent categories (S02 Option). Each option will be assigned to a part number.
Example: One luminous intensity category is selected from the basic catalog 5082-7750 production distribution and assigned to the part number 5082-7750 Option S01. Two
luminous intensity categories are assigned the part number 5082-7750 Option S02.
Luminous intensity selection is available for red and high efficiency red for S01 Option and for red, high efficiency red, and high performance green for SO2 Option. Color selection is available for yellow on selected products.

To ensure our customers a steady supply of product, HP must offer selected units from the center of our distribution. If our production distribution shifts, we will need to change the intensity or color range of the selected units our customers receive. Typically, an intensity may have to be changed once every 1 to 3 years.

Current intensity and color selection information is available through a category reference chart which is available through your local field sales engineer or local franchised distributor.

Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings, mechanical dimensions, and electrical/optical characteristics are identical to the basic catalog device.

Device Selection Guide

The following table summarizes which basic catalog devices are available with category selection.

COLOR						
Character Height	Red	High Efficiency Red	High Ambient High Efficiency Red	Yellow	High Ambient High Efficiency Yellow	High Performance Green
$\begin{aligned} & 7.62 \mathrm{~mm} \\ & \left(0.3^{\prime \prime}\right) \\ & \text { Microbright } \end{aligned}$	HDSP-7301 S01 \& S02 Option HDSP-7303 S01 \& S02 Option HDSP-7307 S01 \& S02 Option HDSP-7308 S01 \& S02 Option	HDSP-7501 S01 \& S02 Option HDSP-7503 S01 \& S02 Option HDSP-7507 S01 \& S02 Option HDSP-7508 S01 \& S02 Option	Basic Family Not Applicable	Selected Version Not Available	Basic Family Not Applicable	HDSP-7801 Option S02 HDSP-7803 Option S02 HDSP-7807 Option S02 HDSP-7808 Option S02
$\begin{aligned} & \hline 7.62 \mathrm{~mm} \\ & \left(0.3^{\prime \prime}\right) \end{aligned}$	5082-7730 S01 \& S02 Option 5082-7731 S01 \& S02 Option 5082-7736 S01 \& S02 Option 5082-7740 S01 \& S02 Option	5082-7610 S01 \& S02 Option 5082-7611 S01 \& S02 Option 5082-7613 S01 \& S02 Option 5082-7616 S01 \& S02 Option	HDSP-3530 Option S02 HDSP-3531 Option S02 HDSP-3533 Option S02 HDSP-3536 Option S02	Selected Version Not Available	Selected Version Not Available	HDSP-3600 Option S02 HDSP-3603 Option S02 HDSP-3606 Option S02
$\begin{aligned} & 10.92 \mathrm{~mm} \\ & \left(0.43^{\prime \prime}\right) \end{aligned}$	5082-7750 S01 \& S02 Option 5082-7751 S01 \& S02 Option 5082-7756 S01 \& S02 Option 5082-7760 S01 \& S02 Option	5082-7650 S01 \& S02 Option 5082 -7651 S01 \& S02 Option 5082-7653 S01 \& S02 Option 5082-7656 S01 \& S02 Option	HDSP-3730 Option S02 HDSP-3731 Option S02 HDSP-3733 Option S02 HDSP-3736 Option S02	$\begin{gathered} \text { 5082-7663 } \\ \text { Option S20 } \\ 5082-7666 \\ \text { Option S20 } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { HDSP-4133 } \\ & \text { Option S20 } \\ & \text { HDSP-4136 } \\ & \text { Option S20 } \end{aligned}$	Selected Version Not Available
$\begin{aligned} & \hline 14.2 \mathrm{~mm} \\ & \left(0.56^{\prime \prime}\right) \\ & \text { Single Digit } \end{aligned}$	HDSP-5301 S01 \& S02 Option HDSP-5303 S01 \& S02 Option HDSP-5307 S01 \& S02 Option HDSP-5308 S01 \& S02 Option	HDSP-5501 S01 \& S02 Option HDSP-5503 S01 \& S02 Option HDSP-5507 S01 \& S02 Option HDSP-5508 S01 \& S02 Option	HDSP-5531 Option S02 HDSP-5533 Option S02 HDSP-5537 Option S02 HDSP-5538 Option S02	Selected Version Not Available	Selected Version Not Available	HDSP-5601 Option S02 HDSP-5607 Option S02
$\begin{aligned} & \hline 14.2 \mathrm{~mm} \\ & \left(0.56^{\prime \prime}\right) \\ & \text { Dual Digit } \\ & \hline \end{aligned}$	HDSP-5321 S02 Option HDSP-5323 S02 Option	HDSP-5521 S01 \& S02 Option HDSP-5523 S01 \& S02 Option	Basic Family Not Applicable	Selected Version Not Available	Basic Family Not Applicable	Selected Version Not Available
$\begin{aligned} & 20 \mathrm{~mm} \\ & \left(0.8^{\prime \prime}\right) \end{aligned}$	HDSP-3400 S02 Option HDSP-3403 S02 Option HDSP-3406 S02 Option	Basic Family Not Applicable	HDSP-3900 Option S02 HDSP-3901 Option S02 HDSP-3903 Option S02 HDSP-3906 Option S02	Basic Family Not Applicable	Selected Version Not Available	Selected Version Not Available

Notes:

1. Option S01 designates a one intensity category selection.
2. Option $\mathrm{SO2}$ designates two intensity category selection.
3. Option S20 designates a two color category selection.
4. Option S01 and S02 of different part numbers may not have the same apparent brightness. Contact your HP Field Sales Office for design assistance.

Features

- NUMERIC

5082-7300/-7302
$0-9$, Test State, Minus
Sign, Blank States,
Decimal Point
7300 Right Hand D. P. 7302 Left Hand D.P.

- HEXADECIMAL 5082-7340
0-9, A-F, Base 16 Operation, Blanking Control, Conserves Power, No Decimal Point
- TTL COMPATIBLE
- INCLUDES DECODER/DRIVER WITH MEMORY 8421 Positive Logic Input
- 4×7 DOT MATRIX ARRAY

Shaped Character, Excellent Readability

- STANDARD DUAL-IN-LINE PACKAGE INCLUDING CONTRAST FILTER
$15.2 \mathrm{~mm} \times 10.2 \mathrm{~mm}$ (0.6 inch $\times 0.4$ inch)
- CATEGORIZED FOR LUMINOUS INTENSITY

Description

The HP 5082-7300 series solid state numeric and hexadecimal displays with on-board decoder/driver and memory provide 7.4 mm (0.29 inch) displays for reliable, low-cost methods of displaying digital information.
The 5082-7300 numeric display decodes positive 8421 BCD logic inputs into characters 0-9, a "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.

Package Dimensions

Pin	Function	
	5082-7300 and 7302 Numeric	5082-7340 Hexadecimal
	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal	Blanking Control
5	Point	Latch Enable
6	Latch Enable	
7	Ground	Ground
8	Input 1	VCC

Notes:

1. Dimensions in millimeters and (inches)
2. Unless otherwise specified, the tolerance on all dimensions is $\pm 0.38 \mathrm{~mm} \pm 0.015$ inch).
3. Digit center line is $\pm 0.25 \mathrm{~mm}$ $(\pm 0.01$ inch) from package center line.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	Ts	-40	+100	${ }^{\circ} \mathrm{C}$
Operating temperature, casel ${ }^{[1,2]}$	T_{C}	-20	$+85$	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	V_{Cc}	-0.5	+7.0	V
Voltage applied to input logic, $d p$ and enable pins	$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	+7.0	V
Voltage applied to blanking input ${ }^{(7)}$	V_{B}	-0.5	$\mathrm{V}_{\text {cc }}$	V
Maximum solder temperature at 1.59 mm (. 062 inch) below seating plane; $t \leqslant 5$ seconds			230	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	V_{Cc}	4.5	5.0	5.5	V
Operating temperature, case	T_{C}	-20		+85	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	120			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {selc }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\text {HoLD }}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\text {tLh }}$			200	nsec

Electrical/Optical Characteristics ($\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified)

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{(4)}$	Max.	Unit
Supply Current	loc	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (characters " 5 ." or " B " displayed)		112	170	mA
Power dissipation	P_{T}			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{(5,6)}$	1.	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	32	70		$\mu \mathrm{cd}$
Logic low-level input voltage	$\mathrm{V}_{\text {IL }}$	$V_{C C}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	$V_{\text {IH }}$		2.0			V
Enable low-voltage; data being entered	$V_{\text {EL }}$				0.8	V
Enable high-voltage; data not being entered	$V_{\text {EH }}$		2.0			V
Blanking low-voltage; display not blanked ${ }^{\text {(7) }}$	$V_{\text {BL }}$.				0.8	V
Blanking high-voltage; display blanked ${ }^{\text {t }}$	$V_{B H}$		3.5			V
Blanking fow-level input current ${ }^{\text {(7) }}$	I_{BL}	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			20	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{(7)}$	$\mathrm{I}_{\text {BH }}$	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BH}}=4.5 \mathrm{~V}$			2.0	mA
Logic low-level input current	1 IL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{fL}}=0.4 \mathrm{~V}$			-1.6	mA
Logic high-level input current	I_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			+250	$\mu \mathrm{A}$
Enable low-level input current	$\mathrm{IEL}_{\text {E }}$	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	IEH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=2.4 \mathrm{~V}$			+250	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {Peak }}$	$T_{C}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{(8)}$	λ_{d}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640		nm
Weight				0.8		gm

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W} ; \Theta_{\mathrm{JC}}=$ $15^{\circ} \mathrm{C} / \mathrm{W} ; 2 . \Theta_{\mathrm{CA}}$ of a mounted display should not exceed $35^{\circ} \mathrm{C} / \mathrm{W}$ for operation up to $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$. 3. Voltage values are with respect to device ground, pin 6.4. All typical values at $V_{C C}=5.0$ Volts, $T_{A}=25^{\circ} \mathrm{C}$. 5 . These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific case temperature, $I_{V}\left(T_{C}\right)$ may be calculated from this relationship: $I_{V}\left(T_{C}\right)=I_{V}\left(25^{\circ} \mathrm{C}\right)$ e $\left[-0.0188 /{ }^{\circ} \mathrm{C}\left(T_{\mathrm{C}}-25^{\circ} \mathrm{C}\right)\right]$ 7. Applies only to 7340. 8. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Figure 1．Timing Diagram of 5082－7300 Series Logic．

Figure 4．Typical Blanking Control Input Current vs．Temperature， 5082－7340．

Figure 2．Block Diagram of 5082－7300 Series Logic．

Figure 5．Typical Latch Enable Input Current vs．Voltage for the 5082－ 7300 Series Devices．

Figure 3．Typical Blanking Control Current vs．Voltage for 5082－7340．

Figure 6．Typical Logic and Decimal Point Input Current vs．Voltage for the 5082－7300 Series Devices． Decimal Point Applies to 5082－7300 and－7302 Only．

TRUTH TABLE					
BCD DATA ${ }^{\text {（1］}}$				5082－7300／7302	5082－7340
X_{8}	${ }^{4}$	${ }^{2}$	x_{3}		
L	1.	L．	L	＋	i＂
L	L	L	H	$\stackrel{1}{1}$	！
暒	1	H	L	＋	\％
L	L	H	H	\because	为
L	H	4	1	！	＋10
L．	H	L．	H	\cdots	＋
L．	H	H	L	－	\cdots
1.	H	H	H	＋＂＋	＋
H	t．	L	L	\cdots	边
H	L	L．	H	\％	\％
H	\pm	H	L	\％	\％
H	L	H	H	（BLANKI	\％
H	H	L	1	（BLANK）	\cdots
H	H	L	H	$\cdots \times$	\％
H	H	H	4	（BLANK）	＋1．4．
H	H	H	H	（BLANK）	＋＇
DECIMAL， $\mathrm{PH}^{(2)}$			ON		$V_{D P}=1$
			OFF		$V_{D P}=H$
ENABLE ${ }^{[1]}$			LOAD DATA		$V_{E}=\mathrm{L}$
			L．ATCH DATA		$V_{E}=\mathrm{H}$
BLANKING ${ }^{(3)}$			DISPLAY－ON		$V_{B}=t$
			DISPLAY－OFF		$\mathrm{V}_{\mathrm{B}}=\mathrm{H}$

Notes：
1．$H=$ Logic High；$L=$ Logic Low．With the enable input at logic high changes in BCD input logic levels or D．P．input have no effect upon display memory，displayed character，or D．P．
2．The decimal point input，DP，pertains only to the 5082－7300 and 5082－7302 displays．

3．The blanking control input，B，pertains only to the 5082－7340 hexadecimal display．Blanking input has no effect upon display memory．

Solid State Over Range Display

For display applications requiring a \pm, 1 , or decimal point designation, the 5082-7304 over range display is available. This display module comes in the same package as the 5082-7300 series numeric display and is completely compatible with it.

Package Dimensions

TRUTH TABLE FOR 5082-7304

CHARACTER	PIN			
	1	2,3	4	8
+	H	X	X	H
-	L	X	X	H
1	X	H	X	\times
Decimal Point	X	X	H	X
Blank	L	L	L	L

NOTES: L: Line switching transistor in Figure 7 cutoff.
H: Line switching transistor in Figure 7 saturated.
X: 'Don't care'

Recommended Operating Conditions

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply voltage	$V_{C C}$	4.5	5.0	5.5	V
Forward current, each LED	I_{F}		5.0	10	mA

NOTE:
LED current must be externally limited. Refer to Figure 7 for recommended resistor values.

Figure 7. Typical Driving Circuit for 5082-7304

Absolute Maximum Ratings

DESCRIPTION	SYMBOL	MIN.	MAX.	UNIT
Storage temperature, ambient	T_{S}	-40	+100	${ }^{\circ} \mathrm{C}$
Operating temperature case	T_{C}	-20	+85	${ }^{\circ} \mathrm{C}$
Forward current, each LED	I_{F}		10	mA
Reverse voltage, each LED	V_{R}		4	${ }^{\mathrm{V}}$

Electrical/Optical Characteristics

5082-7358 ($\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified)

description	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.6	2.0	v
Power dissipation	${ }^{\text {P }}$ T	$T_{F}=10 \mathrm{~mA}$ all diodes lit		250	320	mW
Luminous Intensity per LED (digit average)	I_{ν}	$\begin{aligned} & I_{F}=6 \mathrm{~mA} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	32	70		$\mu \mathrm{cd}$
Peak wavelength	$\lambda_{\text {peak }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength	λd	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640		nm
Weight				0.8		gm

> HEXADECIMAL AND NUMERIC DISPLAYS FOR INDUSTRIAL APPLICATIONS

5082-7356

Features

- CERAMIC/GLASS PACKAGE
- ADDED RELIABILITY
- NUMERIC 5082-7356/-7357
$0-9$, Test State, Minus Sign, Blank States, Decimal Point

7356 Right Hand D.P., 7357 Left Hand D.P.

- HEXADECIMAL 5082-7359

0-9, A-F, Base 16 Operation, Blanking Control, Conserves Power, No Decimal Point

- TTL COMPATIBLE
- INCLUDES DECODER/DRIVER WITH MEMORY 8421 Positive Logic Input
- 4×7 DOT MATRIX ARRAY Shaped Character, Excellent Readability
- STANDARD DUAL-IN-LINE PACKAGE $15.2 \mathrm{~mm} \times 10.2 \mathrm{~mm}$ (0.6 inch $\times 0.4$ inch)
- CATEGORIZED FOR LUMINOUS INTENSITY Description
The HP 5082-735X series solid state numeric and hexadecimal displays with on-board decoder/driver and memory provide 7.4 mm (0.29 inch) displays for use in adverse industrial environments.
The 5082-7356 numeric display decodes positive 8421 $B C D$ logic inputs into characters $0-9$ "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.

Package Dimensions

END VIEW

PIN	FUNCTION	
	$\begin{aligned} & 5082.7356 \\ & \text { AND } 7357 \\ & \text { NUMERIC } \end{aligned}$	$\begin{aligned} & 50827359 \\ & \text { HEXA. } \\ & \text { DECIMAL } \end{aligned}$
1	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal point	Blanking control
5	Latch enable	Latch enable
6	Ground	Ground
7	$V_{\text {cc }}$	V_{CC}
8	Input 1	Input 1

NOTES:

1. Dimensions in millimeters and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is $\pm 0.38 \mathrm{~mm}(\pm 0.015 \mathrm{in}$.
3. Digit center line is $\pm 0.25 \mathrm{~mm}(\pm 0.01 \mathrm{in}$.) Digit center line is ± 0.25 package center line.

Absolute Maximum Ratings

Description	Symbal	Min.	Max.	Unlt
Storage temperature, ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient ${ }^{(1,2)}$	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	V_{CC}	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	+7.0	V
Voltage applied to blanking input ${ }^{(7)}$	V_{B}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Maximum solder temperature at $1.59 \mathrm{~mm}(.062$ inch) below seating plane; $\mathrm{t} \leqslant 5$ seconds		260	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Operating temperature, ambient	T_{A}	-55		+85	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {SETup }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\mathrm{HOLD}}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\mathrm{TLL}}$			200	nsec

Electrical/Optical Characteristics
($T_{A}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified)

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{(4)}$	Max.	Unit
Supply Current	Icc	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (characters " 5 ." or " B " displayed)		112	170	mA
Power dissipation	Pr			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{(5,6)}$	1.	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	85		$\mu \mathrm{cd}$
Logic low-level input voltage	$V_{\text {IL }}$	$\mathrm{Vcc}_{\text {c }}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	$\mathrm{V}_{\text {IH }}$		2.0			V
Enable low-voltage; data being entered	V_{EL}				0.8	V
Enable high-voltage; data not being entered	$V_{\text {EH }}$		2.0			V
Blanking low-voltage; display not blanked ${ }^{(1)}$	$V_{\text {BL }}$				0.8	V
Blanking high-voltage; display blanked ${ }^{\text {(}}$	$V_{\text {BH }}$		3.5			V
Blanking low-level input current ${ }^{(77}$	1 BL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			50	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{(7)}$	$I_{\text {BH }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BH}}=4.5 \mathrm{~V}$			1.0	mA
Logic low-level input current	11.	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-1.6	mA
Logic high-level input current	$\mathrm{I}_{\text {If }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$			+100	$\mu \mathrm{A}$
Enable low-level input current	$\mathrm{IEI}^{\text {. }}$	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {EL }}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	$\mathrm{I}_{\text {EH }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=2.4 \mathrm{~V}$			+130	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {PEAK }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{(8)}$	$\lambda_{\text {d }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		640		nm
Weight				1.0		gm

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}$; $\Theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W}$; 2. Θ_{CA} of a mounted display should not exceed $35^{\circ} \mathrm{C} / \mathrm{W}$ for operation up to $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$. 3 . Voltage values are with respect to device ground, pin 6. 4. All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Volts}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} .5$. These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific ambient temperature, $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)$, may be calculated from this relationship: $\left.I_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)=I_{\mathrm{V}\left(25^{\circ}\right.}{ }^{\circ} \mathrm{C}\right)(.985)\left[\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right]$ 7. Applies only to 7359. 8. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Figure 1. Timing Diagram of 5082-735X Series Logic.

Figure 2. Block Diagram of 5082-735X Series Logic.

Figure 3. Typical Blanking Control
Current vs. Voltage for 50827359.

Figure 4. Typical Blanking Control Input Current vs. Ambient Temperature for 5082-7359.

Figure 5. Typical Latch Enable Input Current vs. Voltage.

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage.

Figure 7. Typical Logic and Enable Low Input Current vs. Ambient Temperature.

Figure 8. Typical Logic and Enable High Input Current vs. Ambient Temperature.

Operational Considerations

ELECTRICAL

The 5082-735X series devices use a modified 4×7 dot matrix of light emitting diodes (LED's) to display decimal/hexadecimal numeric information. The LED's are driven by constant current drivers. BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. To avoid the latching of erroneous information, the enable pulse rise time should not exceed 200 nanoseconds. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.
The blanking control input on the 5082-7395 display blanks (turns off) the displayed hexadecimal information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 3.5 volts. This may be easily achieved by using an open collector TTL gate and a pull-up resistor. For example, (1/6) 7416 hexinverter buffer/driver and a 120 ohm pull-up resistor will provide sufficient drive to blank eight displays. The size of the blanking pull-up resistor may be calculated from the following formula, where N is the number of digits:

$$
R_{\text {blank }}=\left(\mathrm{V}_{\mathrm{cc}}-3.5 \mathrm{~V}\right) /[\mathrm{N}(1.0 \mathrm{~mA})]
$$

The decimal point input is active low true and this data is latched into the display memory in the same fashion as is the BCD data. The decimal point LED is driven by the onboard IC.

The ESD susceptibility of these IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

MECHANICAL

These displays are designed for use in adverse industrial environments.

These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a case-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C} /$ watt as measured on top of display pin 3.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

CONTRAST ENHANCEMENT

The 5082-735X displays have been designed to provide the maximum posible ON/OFF contrast when placed behind an appropriate contrast enhancement filter. Some suggested filteris are Panelgraphic Ruby Red 60 and Dark Red 63, SGL Homalite H100-1605, 3M Light Control Film and Polaroid HRCP Red Circular Polarizing Filter. For further information see Hewlett-Packard Application Note 964.

Solid State Over Range Display

For display applications requiring $a \pm$, 1 , or decimal point designation, the 5082-7358 over range display is available. This display module comes in the same package as the 5082-735X series numeric display and is completely compatible with it.

Package Dimensions

FRONT

NOTES:

1. DIMENSIONS IN MILLIMETERS AND (INCHES). 2. UNLESS OTHEAWISE SPECIFIED, THE TOLERANCE DN ALI DIMENSIONS IS $\because 0.38$ MM $\{ \pm 0.015$ INCHES)

PIN	FUNCTION
1	Plus
2	Numeral One
3	Numeral One
4	DP
5	Open
6	Open
7	$V_{\text {cc }}$
8	Minus/Plus

Figure 9. Typical Driving Circuit.

TRUTH TABLE

CHARACTER	PIN			
	1	2,3	A	B
+	H	X	X	H
-	L	X	X	H
1	X	H	X	X
Decimal Point	X	X	H	X
Blank	L	L	L	L

NOTES: L: Line switching transistor in Figure 9 cutoff. H : Line switching transistor in Figure 9 saturated. X: 'Don't care'

Electrical/Optical Characteristics

5082-7358 ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified)

DESCRIPTION	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Forward Voltage per LED	V_{F}	$I_{F}=10 \mathrm{~mA}$		1.6	2.0	V
Power dissipation	$\mathrm{P}_{\text {T }}$	${ }^{\prime} F=10 \mathrm{~mA}$ all diodes lit		280	320	mW
Luminous Intensity per LED (digit average)	I_{ν}	$\begin{aligned} & T_{F}=6 \mathrm{~mA} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	40	85		$\mu \mathrm{cd}$
Peak wavelength	$\lambda_{\text {peak }}$	$T_{C}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength	λd	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640		nm
Weight				1.0		gm

Recommended Operating Conditions

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply voltage	$V_{\text {CC }}$	4.5	5.0	5.5	V
Forward curfent, each LED	IF $_{\text {F }}$		5.0	10	mA

NOTE:
LED current must be externally limited. Refer to Figure 9 for recommended resistor values.

Absolute Maximum Ratings

DESCRIPTION	SYMBOL	MIN.	MAX.	UNIT
Storage temperature, ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Forward current, each LED	IF_{C}		10	mA
Reverse voltage, each LED	VR		4	V

Features

- THREE COLORS

High-Efficiency Red
Yellow
High Performance Green

- THREE CHARACTER OPTIONS

Numeric
Hexadecimal
Over Range

- TWO HIGH-EFFICIENCY RED OPTIONS Low Power High Brightness
- PERFORMANCE GUARANTEED OVER TEMPERATURE
- MEMORY LATCH/DECODER/DRIVER

TTL Compatible

- 4x7 DOT MATRIX CHARACTER
- CATEGORIZED FOR LUMINOUS INTENSITY
- YELLOW AND GREEN CATEGORIZED FOR COLOR

Typical Applications

- INDUSTRIAL EQUIPMENT
- COMPUTER PERIPHERALS
- INSTRUMENTATION
- TELECOMMUNICATION EQUIPMENT

Devices

These solid state display devices are designed and tested for use in adverse industrial environments. The character height is 7.4 mm (0.29 inch). The numeric and hexadecimal devices incorporate an on-board IC that contains the data memory, decoder and display driver functions.
The numeric devices decode positive BCD logic into characters "0-9", a "-" sign, decimal point, and a test pattern. The hexadecimal devices decode positive BCD logic into 16 characters, " $0-9, A-F$ ". An input is provided on the hexadecimal devices to blank the display (all LED's off) without losing the contents of the memory.
The over range device displays " ± 1 " and right hand decimal point and is typically driven via external switching transistors.

Part Number HDSP-	Color	Description	Front View
$\begin{aligned} & 0760 \\ & 0761 \\ & 0762 \\ & 0763 \end{aligned}$	High-Efficiency Red Low Power	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$
$\begin{aligned} & 0770 \\ & 0771 \\ & 0772 \\ & 0763 \end{aligned}$	High-Efficiency Red High Brightness	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & A \\ & B \\ & C \\ & C \\ & \hline \end{aligned}$
$\begin{aligned} & 0860 \\ & 0861 \\ & 0862 \\ & 0863 \end{aligned}$	Yellow	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$
$\begin{aligned} & 0960 \\ & 0961 \\ & 0962 \\ & 0963 \end{aligned}$	Green	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$

Package Dimensions

SIDE VIEW

END VIEW

Figure 1．Timing Diagram

THUTH TABLE					
BCD DATA ${ }^{171}$				NUMERIC	HEXA． DECFMAL
${ }^{8}$	X_{4}	x_{2}	X_{1}		
1	L	L．	1.	\％	$\stackrel{+}{4}$
1	L．	L	H	\％	！
L	1	H	L．		\％
L	1.	H	H	\％	
L．	H	L	L	3．	4
1	H	L	H		\％
L	H	H	1.	\％	\％
1	H	H	H	＂	＂
H	L	1	1.	为	－
H	4.	L	H	4	为
H	4	H	L		\％
H	L	H	H	（BLANK）	（in
H	H	L	t.	（ELANK）	\％
H	H	L	H	＊＊＊	\％＇1＋
H	倖	H	L	（BLANK）	
H	H	H	H	（BLANK）	$\stackrel{+}{+}$
DFGIMAE PT．${ }^{[2]}$			ON		$V_{\text {DP }}=1$
			OFF		$V_{D P}=4$
ENABE $E^{[7]}$			LOAD DATA		$V_{E}=1$
			LATCH DATA		$V_{E}=H$
BLANKING ${ }^{(3)}$			DISPLAY.ON		$V_{B}=1$
			OISPLAY－OFF		$V_{8}={ }^{\prime}=1$

Notes：
1．$H=$ Logic High；$L=$ Logic Low．With the enable input at logic high changes in BCD input logic levels have no effect upon display memory，displayed character，or DP
2．The decimal point input，DP，pertains only to the numeric displays．
3．The blanking control input，B ，pertains only to the hexadecimal displays．Blanking input has no effect upon display memory．

Figure 2．Logic Block Diagram

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	T_{S}	-65	+100	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient ${ }^{[1]}$	T_{A}	-55	+85	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{[2]}$	V_{CC}	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{Dp}} \mathrm{V}_{\mathrm{E}}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Voltage applied to blanking input ${ }^{[2]}$	V_{B}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Maximum solder temperature at $1.59 m m(.062$ inch below seating plane; $\mathrm{t} \leqslant 5$ seconds	260	${ }^{\circ} \mathrm{C}$		

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage ${ }^{[2]}$	$V_{c c}$	4.5	5.0	5.5	V
Operating temperature, ambient ${ }^{[1]}$	$\mathrm{T}_{\text {A }}$	-55		+85	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {setep }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\text {Hol. }}$	50			nsec
Enable pulse rise time	$t_{\text {rLH }}$			1.0	msec

Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Device	Description	Symbol	Min.	Typ.	Max.	Unit
HDSP-0760 Series	Luminous Intensity per LED (Digit Average) 3,4$]$	IV	65	140		$\mu \mathrm{cd}$
	Peak Wavelength	入PEAK		635		nm
	Dominant Wavelength(5)	λ_{d}		626		nm
HDSP-0770Series	Luminous Intensity per LED (Digit Average) ${ }^{[3.4]}$	IV	260	620		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		635		nm
	Dominant Wavelength ${ }^{[5]}$	λ_{d}		626		nm
HDSP-0860 Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	IV	215	490		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		583		nm
	Dominant Wavelength ${ }^{[5,6]}$	λd		585		nm
HDSP-0960 Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	Iv	298	1100		$\mu \mathrm{cd}$
	Peak Wavelength	λ ¢PEAK		568		nm
	Dominant Wavelength ${ }^{(5,6]}$	λ_{d}		574		nm

Notes:

1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is $R \theta J A=50^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{device}$. The device package thermal resistance is $\operatorname{R} \theta \mathrm{J}-\mathrm{PIN}=15^{\circ} \mathrm{C} / \mathrm{W} /$ device. The thermal resistance device pin-to-ambient through the PC board should not exceed $35^{\circ} \mathrm{C} / \mathrm{W} /$ device for operation at $\mathrm{T}_{A}=+85^{\circ} \mathrm{C}$.
2. Voltage values are with respect to device ground, pin 6.
3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to $25^{\circ} \mathrm{C}$.

Electrical Characteristics; $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{171}$	Max. ${ }^{-}$	Unit
Supply HDSP-0760 Series	ICC	$V_{C C}=5.5 \mathrm{~V}$ (characters " 5 ." or "B" displayed)		78	105	mA
Current HDSP-0770 Series HDSP-0860 Series 				120	175	
Power HDSP-0760 Series	Pt			390	573	
Dissipation HDSP-0770 Series HDSP-0860 Series HDSP-0960 Series				690	963	mW
Logic, Enable and Blanking Low-Level Input Voltage	VIL	$V C C=4.5 \mathrm{~V}$			0.8	V
Logic, Enable and Blanking High-Level Input Voltage	$V_{I H}$		2.0			V
Logic and Enable Low-Level Input Current	IIL	$\mathrm{VCC}_{\text {c }}=5.5 \mathrm{~V}$			-1.6	mA
Blanking Low-Level Input Current	IBL	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Logic, Enable and Blanking High-Level Input Current	HH	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{I H}=2.4 \mathrm{~V} \end{aligned}$			+40	$\mu \mathrm{A}$
Weight				1.0		gm
Leak Rate					5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$

Notes:
4. The luminous intensity at a specific operating ambient temperature, Iv (T_{A}) may be approximated from the following expotential equation: $\operatorname{lv}\left(T_{A}=\operatorname{lv}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\mathrm{k}\left(\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right) \mid}\right.$.

Device	K
HDSP-0760 Series	$-0.0131 /^{\circ} \mathrm{C}$
HDSP-0770 Series	$-0.012 /^{\circ} \mathrm{C}$
HDSP-0860 Series	$-0.0104 /{ }^{\circ} \mathrm{C}$
HDSP-0960 Series	-0.0104

5. The dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
6. The HDSP-0860 and HDSP-0960 series devices are categorized as to dominant wavelength with the category designated by a number on the back side of the display package.
7. All typical values at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

Operational Considerations

ELECTRICAL

These devices use a modified 4×7 dot matrix of light emitting diode to display decimal/hexadecimal numeric information. The high efficiency red and yellow LED's are GaAsP epitaxial layer on a GaP transparent substrate. The green LED's are GaP epitaxial layer on a GaP transparent substrate. The LED's are driven by constant current drivers, BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the onboard IC.

The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is
blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

MECHANICAL

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+85^{\circ} \mathrm{C}$, it is important to maintain a cast-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C}$ watt/device as measured on top of display pin 3.

Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixutres formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

CONTRAST ENHANCEMENT

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an
appropriate contrast enhancement filter. The following filters are suggested:

Over Range Display

The over range devices display " ± 1 " and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

Package Dimensions

FRONT VIEW
Note:

1. Dimensions in millimetres and (inches).

Qharacter	Pin			
	$\mathbf{1}$	$\mathbf{2 , 3}$	$\mathbf{4}$	$\mathbf{8}$
+	1	X	X	1
-	0	X	X	1
1	X	1	X	X
Decimal Point	X	X	1	X
Blank	0	0	0	0

Notes:

0 : Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
X: ‘don't care’

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unil
Storage Temperature, Ambient	T_{s}	-65	+100	${ }^{\circ} \mathrm{C}$
Operating Temperature Ambient	T_{A}	-55	+85	${ }^{\circ} \mathrm{C}$
Forward Current, Each LED	IF_{F}		10	mA
Reverse Voltage, Each LED	V_{R}		5	V

Figure 3. Typical Driving Circuit

Recommended
Operating Conditions vcc = 5.0v

Device		Forward Current Per LED, mA	Resistor Value			
		R_{1}	R_{2}	R_{3}		
	Low Power		2.8	1300	200	300
HDSP-0763	High Brightness	8	360	47	68	
HDSP-0863		8	360	36	56	
HDSP-0963		8	360	30	43	

Luminous Intensity Per LED

(Digit Average) ${ }^{|3,4|}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Device	Tesi Conditions	Min.	Typ.	Units
HDSP-0763	$I_{F}=2.8 \mathrm{~mA}$	65	140	$\mu \mathrm{Cd}$
	$I_{F}=8 \mathrm{~mA}$		620	$\mu \mathrm{Cd}$
HDSP-0863	$I_{F}=8 \mathrm{~mA}$	215	490	$\mu \mathrm{Cd}$
HDSP-0963	$I_{F}=8 \mathrm{~mA}$	298	1100	$\mu \mathrm{Cd}$

Electrical Characteristics; $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Device	Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
HDSP-0763	Power Dissipation (all LED's Illuminated)	PT	$\mathrm{IF}_{\mathrm{F}}=2.8 \mathrm{~mA}$		72		mW
			$\mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}$		224	282	
	Forward Voltage per LED	V_{F}	$\mathrm{If}_{\mathrm{F}}=2.8 \mathrm{~mA}$		1.6		V
			$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		1.75	2.2	
HDSP-0863	Power Dissipation (all LED's Illuminated)	$\mathrm{P}_{\text {T }}$	$\mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}$		237	282	mW
	Forward Voltage per LED	V_{F}			1.90	2.2	V
HDSP-0963	Power Dissipation (all LED's Ilfuminated)	$\mathrm{P}_{\text {T }}$	$I_{F}=8 \mathrm{~mA}$		243	282	mW
	Forward Voltage per LED	V_{F}			1.85	2.2	V

LEADFRAME MOUNTED SEVEN SEGMENT MONOLITHIC NUMERIC INDICATORS

Features

- COMPACT PACKAGE SIZES

.25" Package Width

.150" and .200" Digit Spacing

- STROBED OPERATION Minimizes Lead Connections
- FULLY ENCAPSULATED STANDARD DIP PACKAGES
End Stackable
Integral Red Filter
Extremely Rugged Construction
- I.C. COMPATIBLE
- CATEGORIZED FOR LUMINOUS INTENSITY Assures uniformity of light output from unit to unit within single category.

Description

The HP 5082-7400/-7430 series are 2.79 mm (.11"), seven segment GaAsP numeric indicators packaged in 2, 3, 4 and 5 digit clusters. An integral magnification technique increases the luminous intensity, thereby making low power consumption possible. Options include either the standard lower right hand decimal point or a centered decimal point.

Applications include mobile, telephones, hand held calculators, portable instruments and many other products requiring compact, rugged, long lifetime active indicators.

Device Selection Guide

Absolute Maximum Ratings

Parameter	Symbol ${ }^{\prime}$	Min.	Max.	Units
Peak Forward Current per Segment or $\mathrm{dp}($ Duration $<500 \mu \mathrm{~s})$ $5082-7432 / 7433$	IPEAK		50	mA
Peak Forward Current per Segment or dp (Duration <1 msec) $5082-7404 / 7405 / 7414 / 7415$	IPEAK		110	mA
Average Current per Segment or dp	IAVG		5	mA
Power Dissipation per Digit ${ }^{[1]}$	PD		80	mW
Operating Temperature, Ambient	TA	-40	75	${ }^{\circ} \mathrm{C}$
Storage Temperature	Ts	-40	100	${ }^{\circ} \mathrm{C}$
Reverse Voltage	V_{R}		5	V
Solder Temperature $1 / 166^{\prime \prime}$ below seating plane $(\mathrm{t} \leq 3 \mathrm{sec})^{[2]}$			230	${ }^{\circ} \mathrm{C}$

Notes: 1. Derate linearly @ $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ambient.
2. See Mechanical section for recommended flux removal solvents.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment or $\mathrm{dp}^{13,4 \mid}$ 5082-7432/7433	Iv	$\begin{aligned} & l_{\text {AVG }}=500 \mu A \\ & (\mathrm{IPK}=5 \mathrm{~mA} \\ & \text { duty cycle }=10 \% \text {) } \end{aligned}$	10	40		$\mu \mathrm{cd}$
Luminous Intensity/Segment or $\mathrm{dp}^{[3,4 \mid}$ (Time Averaged) 5082-7404/7405/7414/7415	IV	IAVG $=1 \mathrm{~mA}$ $\mathrm{IPK}_{\mathrm{PK}}=10 \mathrm{~mA}$ dutý cycle $=10 \%$)	5	20		$\mu \mathrm{cd}$
Peak Wavelength	λ PEAK			655		nm
Forward Voltage/Segment or dp 5082-7432/-7433	V_{F}	$\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}$		1.55	2.0	V
Forward Voltage/Segment or dp 5082-7404/7405/7414/7415	V_{F}	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$		1.55	2.0	V
Reverse Voltage/Segment or dp	V_{R}	$\mathrm{I}_{\mathrm{R}}=200 \mu \mathrm{~A}$	5			V
Rise and Fall Time ${ }^{(5)}$	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$			10		ns

NOTES:
3. The digits are categorized for luminous intensity. Intensity categories are designated by a letter located on the back side of the package.
4. Each character of the display is matched for luminous intensity at the test conditions shown. Operation of the display at lower peak currents may cause intensity mismatch within the display. Operation at peak currents less than 5.0 mA may cause objectionable display segment matching.
5. Time for a $10 \%-90 \%$ change of light intensity for step change in current.

5082-7404/7405/7414/7415

Figure 3. Typical Time Averaged Luminous Intensity per Segment (Digit Average) vs. Average Current per Segment.

Figure 4. Relative Luminous Efficiency vs. Peak Current per Segment.

5082-7400/7430 SERIES

Figure 5. Forward Current vs. Forward Voltage.

Figure 6. Relative Luminous Intensity vs. Case Temperature at Fixed Current Level.

Electrical/Optical

The 5082-7400/7430 series devices utilize a monolithic GaAsP chip of 8 common cathode segments for each display digit. The segment anodes of each digit are interconnected, forming an 8 by N line array, where N is the number of characters in the display. Each chip is positioned under an integrally molded lens giving a magnified character height of 2.79 mm (0.11) inches. Satisfactory viewing will be realized within an angle of $\pm 30^{\circ}$ for the 7404/7405/7414/7415 and $\pm 20^{\circ}$ for the $7432 / 7433$, measured from the center line of the digit.
The decimal point in the $7432,7433,7414$, and 7415 displays is-located at the lower right of the digit for conventional driving schemes.
The 5082-7404 and 7405 displays contain a centrally located decimal point which is activated in place of a digit. In long registers, this technique of setting off the decimal point significantly improves the display's readability. With respect to timing, the decimal point is treated as a separate character with its own unique time frame.

To improve display contrast, the plastic incorporates a red dye that absorbs strongly at all visible wavelengths except the 655 nm emitted by the LED. An additional filter, such as Plexiglass 2423, Panelgraphic 60 or 63 , and SGL Homalite 100-1605, will further lower the ambient reflectance and improve display contrast.

Mechanical

The 5082-7400/7430 series package is a standard 12 or 14 Pin DIP consisting of a plastic encapsulated lead frame with integral molded lenses. It is designed for plugging into DIP sockets or soldering into PC boards. The lead frame construction allows use of standard DIP insertion tools and techniques. Alignment problems are simplified due to the clustering of digits in a single package. The shoulders of the lead frame pins are intentionally raised above the bottom of the package to allow tilt mounting of up to 20° from the PC board.
To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or $D E-15$, Arklone A or $K . A 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{C}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

Package Description 5082-7404, -7405, -7414, -7415

Notes: 6. Dimensions in millimeters and (inches).
7. Tolerances on all dimension are $\pm .38 \mathrm{~mm}$ ($\pm .015 \mathrm{in}$.) unless otherwise noted.

Figure 7. 5082-7404/7414

Figure 8. 5082-7405/7415.

Figure 9. 5082-7404/7405/ 7414/7415

Magnified Character Font Description

Figure 10. Center Decimal Point Configuration

Device Pin Description

PIN NO.	5082 7404/7414 FUNCTION	$\mathbf{5 0 8 2}$-7405/7415 FUNCTION
1	CATHODE 1	CATHODE 1
2	ANODE e	ANODE e
3	ANODE c	ANODE c
4	CATHODE 3	CATHODE 3
5	ANODE dp	ANODE dp
6	CATHODE 4	ANODE d
7	ANODE 9	CATHODE 5
8	ANODE d	ANODE g
9	ANODE f	CATHODE 4
10	CATHODE 2	ANODE f
11	ANODE b	SEE NOTE 8
12	ANODE a	ANODE b
13	-	CATHODE 2
14		ANODE a

Note 8: Leave Pin Unconnected.

Package Description 5082-7432, -7433

Figure 11.
Magnified Character Font Description

Figure 12.
Device Pin Description

PIN NUMBER	5082-7432 FUNCTION	$5082-7433$ FUNCTION
1	SEE NOTE 11.	CATHODE 1
2	ANODE e	ANODE e
3	ANODE d	ANODE d
4	CATHODE 2	CATHODE 2
5	ANODE c	ANODE c
6	ANODE dp	ANODE dp
7	CATHODE 3	CATHODE 3
8	ANODE b	ANODE b
9	ANODE 9	ANODE g
10	ANODE a	ANODE a
11	ANODE f	ANODE f
12	SEE NOTE 11.	SEE NOTE 11.

NOTE 11. Leave Pin unconnected.

PRINTED CIRCUIT BOARD MOUNTED SEVEN SEGMENT NUMERIC INDICATORS

Features

- MOS COMPATIBLE
- AVAILABLE IN 9 TO 16 DIGIT CONFIGURATIONS
- CHARACTER HEIGHTS OF .105", .115" AND .175"
- LOW POWER
- CATEGORIZED FOR LUMINOUS INTENSITY

Description

The HP-5082-7200/7440 series of displays are seven segment GaAsP Numeric Indicators mounted on printed circuit boards. A plastic lens magnifies the digits and includes an integral protective bezel. Character heights of . 105 " (2.67 mm), . $115^{\prime \prime}$ (2.92 mm) and . $175^{\prime \prime}$ (4.45 mm) are available. For large quantity applications, digit string lengths of 8,12 and 14 digits are available by special order.
Applications are hand held calculators and portable equipment requiring compact, low power, long lite time, active displays.

Device Selection Guide

Part Number	Digits Per PC Board	Decimal Point	Package	Character Height $(\mathbf{m m})$ in.	Inter-Digit Spacing $(\mathbf{m m})$ in.
$5082-7441$	9	Right Hand	Fig. 9	$(2.67) .105^{\prime \prime}$	$(5.08) .200^{\prime \prime}$
$5082-7446$	16	Right Hand	Fig.11	$(2.92) .115^{\prime \prime}$	$(3.81) .150^{\prime \prime}$
$5082-7285$	5	Right Hand	Fig.14	$(4.45) .175^{\prime \prime}$	$(5.84) .230^{\prime \prime}$
$5082-7295$	15	Right Hand	Fig. 13	$(4.45) .175^{\prime \prime}$	$(5.84) .230^{\prime \prime}$

Maximum Ratings 5082-7441/7446

Parameter	Symbol	Min.	Max.	Units
Peak Forward Current per Segment or dp (Duration $<500 \mu \mathrm{~s}$)	IPEAK		50	mA
Average Current per Segment or dp ${ }^{[1]}$	IAVG $^{\prime}$		3	mA
Power Dissipation per Digit ${ }^{[2]}$	P_{D}		50	mW
Operating Temperature, Ambient	T_{A}	-20	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{S}	-20	+85	${ }^{\circ} \mathrm{C}$
Reverse Voltage	V_{R}		3	V
Solder Temperature at connector edge ($\mathrm{t} \leqslant 3$ sec.) ${ }^{[3]}$			230	${ }^{\circ} \mathrm{C}$

NOTES: 1. Derate linearly at $0.1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $60^{\circ} \mathrm{C}$ ambient.
2. Derate linearly at $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $60^{\circ} \mathrm{C}$ ambient.
3. See Mechanical section for recommended soldering techniques and flux removal solvents.

Maximum Ratings 5082-7285/7295

Parameter	Symbol	Min.	Max.	Units
Peak Forward Current per Segment or DP (Duration $<35 \mu \mathrm{~s}$)	$I_{\text {PEAK }}$		200	mA
Average Current per Segment or DP ${ }^{(4)}$	$\mathrm{I}_{\text {AVG }}$		7	mA
Power Dissipation per Digit (5)	P_{D}		125	mW
Operating Temperature, Ambient	T_{A}	-20	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TS	-20	+80	${ }^{\circ} \mathrm{C}$
Reverse Voltage	V_{R}		3	V
Solder Temperature at connector edge $\left(\mathrm{t} \leqslant 3 \mathrm{sec}\right.$.) ${ }^{(6)}$			230	${ }^{\circ} \mathrm{C}$

NOTES: 4. Derate linearly at $0.12 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ambient.
5. Derate linearly at $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ambient.
6. See Mechanical section for recommended soldering techniques and flux removal solvents.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} 5082-7441 / 7446$

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment or dp [7] 5082-7441	I_{V}	$\begin{aligned} & I_{\mathrm{AVG}}=500 \mu \mathrm{~A} \\ & \left(I_{\text {PK }}=5 \mathrm{~mA}\right. \\ & \text { duty cycle }=10 \%) \end{aligned}$	9	40		$\mu \mathrm{cd}$
5082-7446		5mA Peak 1/16 Duty Cycle	7	35		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {peak }}$			655		nm
Forward Voltage/Segment or dp	V_{F}	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		1.55		V

NOTES:

7. Each character of the display is matched for luminous intensity at the test conditions shown. Operation of the display at lower peak currents may cause intensity mismatch within the display. Operation at peak currents less than 3.5 mA may cause objectionable display segment matching.

Figure 1. Peak Forward Current vs. Peak Forward Voltage.

Figure 3. Relative Luminous Intensity vs. Ambient Temperature at Fixed Current Level.

Figure 2. Typical Time Averaged Luminous Intensity per Segment vs. Average Current per Segment.

Figure 4. Relative Luminous Efficiency vs. Peak Current per Segment.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad 5082-7285 / 7295$

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment or dp (Time Averaged) 15 digit display 5082-7295 ${ }^{\|8.10\|}$	I_{v}	$\begin{aligned} & l_{\text {avg. }}=2 \mathrm{~mA} \\ & (30 \mathrm{~mA} \text { Peak } \\ & 1 / 15 \text { duty cycle) } \end{aligned}$	30	90		$\mu \mathrm{cd}$
Luminous Intensity/Segment or dp (Time Averaged) 5 digit display 5082-7285 ${ }^{\|8,10\|}$	I_{V}	$\begin{aligned} & \mathrm{I}_{\text {avg. }}=2 \mathrm{~mA} \\ & \text { (10 mA Peak } \\ & 1 / 5 \text { duty cycle) } \end{aligned}$	30	70		$\mu \mathrm{cd}$
Forward Voltage per Segment or dp 5082-7295 15 digit display	V_{F}	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$		1.60	2.3	V
Forward Voltage per Segment or dp 5082-7285 5 digit display	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.55	2.0	V
Peak Wavelength	$\lambda_{\text {PEAK }}$			655		nm
Dominant Wavelength ${ }^{[9]}$	λ_{d}			640		nm
Reverse Current per Segment or dp	I_{R}	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$		10		$\mu \mathrm{A}$
Temperature Coefficient of Forward Voltage	$\triangle V_{\mathrm{F}}{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

NOTES:

8. The luminous intensity at a specific ambient temperature, Iv $\left(T_{A}\right)$, may be calculated from this relationship: $\operatorname{lv}\left(T_{A}\right)=I_{V\left(25^{\circ} C\right)}(.985)\left(T_{A}-25^{\circ} \mathrm{C}\right)$.
9. The dominant wavelength, λ_{d}, is derived from the C.I.E. Chromaticity Diagram and represents the single wavelength which defines the color of the device.
10. Each character of the display is matched for luminous intensity at the test conditions shown. Operation of the display at lower peak currents may cause intensity mismatch within the display. Operation at peak currents less than 6.0 mA may cause objectionable display segment matching.

Figure 5. Peak Forward Current vs. Peak Forward Voltage.

Figure 7. Relative Luminous Intensity vs. Ambient Temperature at Fixed Current Level.

Mechanical

These devices are constructed on a standard printed circuit board substrate. A separately molded plastic lens is attached to the PC board over the digits. The lens is an acrylic styrene material that gives good optical lens performance, but is subject to scratching so care should be exercised in handling.
The device may be mounted either by use of pins which may be hand soldered into the plated through holes at the connector edge of the PC board or by insertion into a standard PC board connector. The devices may be hand soldered for up to 3 seconds per tab at a maximum soldering temperature of $230^{\circ} \mathrm{C}$. Heat should be applied only to the edge connector tab areas of the PC board. Heating other areas of the board to temperatures in excess of $85^{\circ} \mathrm{C}$ can result in permanent damage to the display. It is recommended that a non-activated rosin core wire solder or a low temperature deactivating flux and solid wire solder be used in soldering operations.
The PC board is silver plated. To prevent the formation of a tarnish $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$ which could impair solderability the

Figure 6. Typical Time Averaged Luminous Intensity per Segment vs. Average Current per Segment.

Figure 8. Relative Luminous Efficiency vs. Peak Current per Segment.
displays should be stored in the unopened shipping packages until they are used. Further information on the storage, handling, and cleaning of silver plated components is contained in Hewlett-Packard Application Bulletin No. 3.

Electrical/Optical

The HP 5082-7441, -7446, -7285 and 7295 devices utilize a monolithic GaAsP chip containing 7 segments and a decimal point for each display digit. The segments of each digit are interconnected, forming an 8 by N line array, where N is the number of digits in the display. Each chip is positioned under a separate element of a plastic magnifying lens, producing a magnified character. Satisfactory viewing will be realized within an angle of approximately $\pm 20^{\circ}$ from the centerline of the digit. A filter, such as plexiglass 2423, Panelgraphic 60 or 63 , and Homalite 100-1600, will lower the ambient reflectance and improve display contrast. Digit encoding of these devices is performed by standard 7 segment decoder driver circuits.

Package Dimensions

Figure 9. 5082-7441

Magnified Character Font Description

Note: All dimensions in millimeters and (inches).

Figure 10.
Device Pin Description

Pin No.	5082.7441 Function	Pin No.	5082.7441 Function
1	Dig. 1 Cathode	10	Seg. d Anode
2	Seg. c Anode	11	Dig. 6 Cathode
3	Dig. 2 Cathode	12	Seg. 9 Anode
4	d.p. Anode	13	Dig. 7 Cathode
5	Dig. 3 Cathode	14	Seg. b Anode
6	Seg. a Anode	15	Dig. 8 Cathode
7	Dig. 4 Cathode	16	Seg. f Anode
8	Seg. e Anode	17	Dig. 9 Cathode
9	Dig. 5 Cathode		

Package Dimensions

Figure 11. 5082-7446

Magnified Character Font Description

DEVICE	X	Y
5082.7446	2.92	1.40
	$f .115)$	$1.055)$

NOTES: 1. ALL DIMENSIONS IN MILLIMETRES AND (INCHES).
2. TOLERANCES ON ALL DIMENSIONS ARE ± 0.38 (.015) UNLESS OTHERWISE SPECIFIED.

Figure 12.

Device Pin Description

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	5082-7446 Function
1	Cathode-Digit 1
2	Cathode-Digit 2
3	Cathode-Digit 3
4	Cathode-Digit 4
5	Cathode-Digit 5
6	Anode-Segment e
7	Cathode-Digit 6
8	Anode-Segment d
9	Cathode-Digit 7
10	Anode-Segment a
11	Cathode-Digit 8
12	Anode-Segment DP
13	Cathode-Digit 9
14	Anode-Segment c
15	Cathode-Digit 10
16	Anode-Segment g
17	Cathode-Digit 11
18	Anode-Segment b
19	Cathode-Digit 12
20	Anode-Segment f
21	Cathode-Digit 13
22	Cathode-Digit 14
23	Cathode-Digit 15
24	Cathode-Digit 16

Package Dimensions

Magnified Character Font Description

Figure 13. 5082-7295

ALL DIMENSIONS IN MILLIMETERS AND (INCHES).

Figure 14.

Device Pin Description

| Pin
 No. 5082-7295
 Function
 1 Cathode Digit 1
 2 Cathode Digit 2
 3 Cathode Digit 3
 4 Cathode Digit 4
 5 Anode Segment dp
 6 Cathode Digit 5
 7 Anode Segment c
 8 Cathode Digit 6
 9 Anode Segment e
 10 Cathode Digit 7
 11 Anode Segment a
 12 Cathode Digit 8
 13 Anode Segment 9
 14 Cathode Digit 9
 15 Anode Segment d
 16 Cathode Digit 10
 17 Anode Segment \ddagger
 18 Cathode Digit 11
 19 Anode Segment b
 20 Cathode Digit 12
 21 Cathode Digit 13
 22 Cathode Digit 14
 23 Cathode Digit 15 |
| :---: | :--- |

Hermetic Displays

Features

- MILITARY QUALIFIED LISTED ON MIL-D-87157 QPL
- TRUE HERMETIC PACKAGE
- TXV VERSION AVAILABLE
- THREE CHARACTER OPTIONS Numeric, Hexadecimal, Over Range
- 4×7 DOT MATRIX CHARACTER
- PERFORMANCE GUARANTEED OVER TEMPERATURE
- HIGH TEMPERATURE STABILIZED
- GOLD PLATED LEADS
- MEMORY LATCH/DECODER/DRIVER TTL Compatible
- CATEGORIZED FOR LUMINOUS INTENSITY

Description

These standard red solid state displays have a 7.4 mm (0.29 inch) dot matrix character and an on-board IC with data memory latch/decoder and LED drivers in a glass/ ceramic package. These devices utilize a solder glass frit seal and conform to the hermeticity requirements of MIL-D-87157, the general specification for LED displays. These 4N5X series displays are designed for use in military and aerospace applications.
These military qualified displays are designated as M87157/ 00101ACX through -/00104ACX in the MIL-D-87157 Qualified Parts List (QPL). The letter designations at the end of the

part numbers are defined as follows: " A " signifies MIL-D87157 Quality Level A, "C" signifies gold plated leads, " X " signifies the luminous intensity category.
The 4N51 numeric display decodes positive 8421 BCD logic inputs into characters $0-9$, a "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.
The 4 N 52 is the same as the 4 N 51 except that the decimal point is located on the left-hand side of the digit.
The 4N54 hexadecimal display decodes positive 8421 logic inputs into 16 states, $0-9$ and A-F. In place of the decimal point an input is provided for blanking the display (all LED's off), without losing the contents of the memory. The 4N53 is a " ± 1." overrange display, including a righthand decimal point.

Package Dimensions*

END VIEW

PIN	FUNCTION	
	$\begin{gathered} \text { 4N51 } \\ \text { 4N52 } \\ \text { NUMERIC } \end{gathered}$	$\begin{aligned} & \text { 4N54 } \\ & \text { HEXA. } \\ & \text { DECIMAL } \end{aligned}$
1	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal point	Blanking contral
5	Latch enable	Latch enable
6	Ground	Ground
7	$V_{\text {cc }}$	VGC
8	Input 1	Input 1

NOTES:

1. Dimensions in millimetres and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is $\pm .38 \mathrm{~mm}\left(\pm .015^{\prime \prime}\right)$
3. Digit center line is $\pm .25 \mathrm{~mm}$ ($\pm .01^{\prime \prime}$) from package center line.
4. Lead material is gold plated
5. See over range package drawing for HP standard marking

Absolute Maximum Ratings*

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient ${ }^{(1,2)}$	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	V_{CC}	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Voltage applied to blanking input ${ }^{(7)}$	V_{B}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Maximum solder temperature at $1.59 \mathrm{~mm}(.062$ inch $)$ below seating plane; $\mathrm{t} \leqslant 5$ seconds		260	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions*

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	V
Operating temperature, ambient ${ }^{(1,2)}$	T_{A}	-55		+100	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {setup }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\text {HoLD }}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\mathrm{TLH}}$			200	nsec

Electrical/Optical Characteristics ${ }^{*} \mathrm{~T}_{\lambda}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise specified)

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{(4)}$	Max.	Unit
Supply Current	Icc	$V_{C C}=5.5 \mathrm{~V}$ (Characters " 5 ." or "B")		112	170	mA
Power dissipation	P_{T}			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{(5,6)}$	Iv	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	85		$\mu \mathrm{cd}$
Logic low-level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{VCC}_{\text {c }}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	$\mathrm{V}_{\text {IH }}$		2.0			V
Enable low-voltage; data being entered	$V_{\text {EL }}$				0.8	V
Enable high-voltage; data not being entered	$V_{\text {eh }}$		2.0			V
Blanking low-voltage; display not blanked ${ }^{\text {(7) }}$	$V_{\text {BL }}$				0.8	V
Blanking high-voltage; display blanked (7)	$V_{\text {BH }}$		3.5			V
Blanking low-level input current ${ }^{(7)}$	$\mathrm{I}_{\text {BL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			50	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{(7]}$	$\mathrm{I}_{\text {BH }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BH}}=4.5 \mathrm{~V}$			1.0	mA
Logic low-level input current	ItL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-1.6	mA
Logic high-level input current	I_{H}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			$+100$	$\mu \mathrm{A}$
Enable low-level input current	IEL	$V_{C C}=5.5 \mathrm{~V}, V_{\text {EL }}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	Ieh	$V_{C C}=5.5 \mathrm{~V}, V_{\text {EH }}=2.4 \mathrm{~V}$			+130	$\mu \mathrm{A}$
Peak wavelength	$\chi_{\text {Peak }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{\text {(8) }}$	λ_{d}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		640		nm
Weight**				1.0		gm
Leak Rate					5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}$; $\Theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W}$. 2. Θ_{CA} of a mounted display should not exceed $35^{\circ} \mathrm{C} / \mathrm{W}$ for operation up to $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$. 3. Voltage values are with respect to device ground, pin 6. 4. All typical values at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{Volts}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} .5$. These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific ambient temperature, $\mathrm{Iv}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{A}}\right)$, may be calculated from this relationship: $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)=\mathrm{I}_{\mathrm{V}\left(25^{\circ} \mathrm{C}\right)}(.985)\left[\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right]$ 7. Applies only to 4 N 54.8 . The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
*JEDEC Registered Data. **Non Registered Data.

Figure 1. Timing Diagram of 4N51-4N54 Series Logic.

Figure 2. Block Diagram of 4N51-4N54 Series Logic.

TRUTH TABLE					
BCD DATA ${ }^{\text {III }}$				4N51 AND 4N52	4N54
x_{8}	X_{4}	x_{2}	x_{1}		
4	L	1	L.	1	\%
L	1.	L	H	i	1
L	L	H	L	\because	
4.	L	H	H	\because	\%
t	H	L	1	\%	\%
L	H	L.	H	\%	+:
4.	H	H	\downarrow	\%	\%
L.	H	H	H	-	1
H	L	L	L	\%	\%
H	L	1	H	\%	
H	L	H	L	\%	1
H	L.	H	H	(BLANK)	\%
H	H	L	L	(BLANK)	\cdots
H	H	L	H	\%
H	H	H	L	(BLANK)	\%
H	H	H	H	(BLANK)	\%'*
DEEIMAL, PT, ${ }^{[2]}$			ON		$V_{p p}{ }^{\text {\# }} \mathrm{L}$
			OFF		$V_{D P}{ }^{* H}$
ENABLE ${ }^{[1]}$			LOAD DATA		$V_{E}=L$
			CATCH DATA		$V_{E}=H$
BLANKING ${ }^{\text {Ij] }}$			DISPLAMYM ON		$V_{8}=L$
			DISPLAY.OFF		$\mathrm{V}_{\mathrm{B}}=\mathrm{H}$

Notes:

1. $H=$ Logic High; $L=$ Logic Low. With the enable input at logic high changes in BCD input logic levels or D.P. input have no effect upon display memory, displayed character, or D.P.
2. The decimal point input, DP, pertains only to the 4 N 51 and 4 N 52 displays.
3. The blanking control input, B, pertains only to the 4 N 54 hexadecimal display. Blanking input has no effect upon display memory.

Figure 3. Typical Blanking Control Current vs. Voltage for 4 N 54.

Figure 4. Typical Blanking Control Input Current vs. Amblent Temperature for 4 N 54.

Figure 5. Typical Latch Enable Input Current vs. Voltage.

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage.

Figure 7. Typical Logic and Enable Low Input Current vs. Ambient Temperature.

Figure 8. Typical Logic and Enable High Input Current vs. Ambient Temperature.

Operational Considerations

ELECTRICAL

The $4 N 51-4 N 54$ series devices use a modified 4×7 dot matrix of light emitting diodes (LED's) to display decimal/hexadecimal numeric information. The LED's are driven by constant current drivers. BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. To avoid the latching of erroneous information, the enable pulse rise time should not exceed 200 nanoseconds. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.
The blanking control input on the 4N54 display blanks (turns off) the displayed hexadecimal information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 3.5 volts. This may be easily achieved by using an open collectorTTL gate and a pull-up resistor. For example, (1/6) 7416 hexinverter buffer/driver and a 120 ohm pull-up resistor will provide sufficient drive to blank eight displays. The size of the blanking pull-up resistor may be calculated from the following formula, where N is the number of digits:

$$
\mathrm{R}_{\mathrm{blank}}=\left(\mathrm{V}_{\mathrm{cc}}-3.5 \mathrm{~V}\right) /[\mathrm{N}(1.0 \mathrm{~mA})]
$$

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the onboard IC.

The ESD susceptibility of the IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

MECHANICAL

4N51-4N54 series displays are hermetically tested for use in environments which require a high reliability device. These displays are designed and tested to meet a helium
leak rate of $5 \times 10^{-8} \mathrm{CC} / \mathrm{SEC}$ and a fluorocarbon gross leak bubble test.

These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.
The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a case-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C} /$ watt as measured on top of display pin 3.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

PRECONDITIONING

4N51-4N54 series displays are 100\% preconditioned by 24 hour storage at $125^{\circ} \mathrm{C}$.

CONTRAST ENHANCEMENT

The 4N51-4N54 displays have been designed to provide the maximum posible ON/OFF contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60 and Dark Red 63, SGL Homalite H100-1605, 3M Light Control Film and Polaroid HRCP Red Circular Polarizing Filter. For further information see Hewlett-Packard Application Note 1015.

Solid State Over Range Display

For display applications requiring a \pm, 1 , or decimal point designation, the $4 N 53$ over range display is available. This display module comes in the same package as the 4N51-4N54 series numeric display and is completely compatible with it.

Package Dimensions*

FRONT

REAR HP STANDARD MARKING

NOTES:

1. DIMENSIONS IN MILL.IMETRES AND (INCHES). 2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS $\pm .38$ MM $\ddagger \pm .015$ INCHES.

END

PIN	FUNCTION
1	Plus
2	Numeral One
3	Numeral One
4	DP
5	Open
6	Open
7	$V_{\text {cc }}$
8	Minus/Plus

Figure 9. Typical Driving Circuit.

TRUTH TABLE

| CHARACTER | PIN | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2,3 | 4 | 8 |
| + | H | X | X | H |
| - | L | X | X | H |
| 1 | X | H | X | X |
| Decimai Point | X | X | H | X |
| Blank | L | L | L | L |

NOTES: L: Line switching transistor in Figure 9 cutoff.
H: Line switching transistor in Figure 9 saturated.
X: 'Don't care'

Electrical/Optical Characteristics*

$4 \mathrm{~N} 53\left(\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+100^{\circ} \mathrm{C}$, Unless Otherwise Specified)

DESCRIPTION	SVMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Forward Voltage per LED	V_{F}	${ }^{1} \mathrm{~F}=10 \mathrm{~mA}$		1.6	2.0	\checkmark
Power dissipation	P_{T}	$T_{F}=10 \mathrm{~mA}$ all diodes lit		280	320	mW
Luminous Intensity per LED (digit average)	i_{v}	$\begin{aligned} & T_{F}=6 \mathrm{~mA} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	40	85	.	$\mu \mathrm{cd}$
Peak wavelength	$\lambda_{\text {peak }}$	$T_{C}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavalength	$\lambda \mathrm{c}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640		nm
Weight **				1.0		gm

Recommended Operating

Conditions*

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply voltage	$V_{C C}$	4.5	5.0	5.5	V
Forward current, each LED	I_{F}		5.0	10	mA

NOTE:

LED current must be externally limited. Refer to Figure 9 for recommended resistor values.
*JEDEC Registered Data. **Non Registered Data.

Absolute Maximum Ratings*

DESCRIPTION	SYMBOL	MIN.	MAX.	UNIT
Storage temperature, ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Forward current, each LED	I_{F}		10	mA
Reverse voltage, each LED	V_{R}		4	V

High Reliability Testing

Two standard reliability testing programs are available. The military program provides QPL parts that comply to MIL-D-87157 Quality Level A, per Tables I, II, IIIa, and IVa. A second program is an HP modification to the full conformance program and offers the 100% screening portion of Level A, Table I, and Group A, Table II. In addition, a MIL-D-87157 Level B equivalent testing program is available upon request.

PART MARKING SYSTEM

Standard Product	With Table I and II	With Tables I, II, IIIa and IVa	
PREFERRED PART NUMBER SYSTEM			
4N51	4N51TXV	M87157/00101ACX	
4N52	4N52TXV	M87157/00102ACX	
4N54	4N54TXV	M87157/00103ACX	
4N53	4N53TXV	M87157/00104ACX	

100\% Screening
TABLE I.
QUALITY LEVEL A OF MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7572-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours
3. Temperature Cycling	1051	Condition B, 10 Cycles, 15 Min. Dwell
4. Constant Acceleration	2006	10,000 G's at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C
7. Interim Electrical/Optical Tests/2]	-	IV, IGC, IBL, $I_{B H}, I_{E L}, I_{E H}$, ILL, and IIH $T_{A}=25^{\circ} \mathrm{C}$
8. Burn-In\|1.3]	1015	Condition B at $V C C=5 V$ and cycle through logic at 1 character per second. $T_{A}=100^{\circ} \mathrm{C}, \mathrm{t}=160$ hours
9. Final Electrical Test[2]	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta l_{V}=-20 \%, \Delta I C C= \pm 10 \mathrm{~mA}, \Delta I_{\mathrm{IH}}= \pm 10 \mu \mathrm{~A} \\ & \text { and } \Delta \mathrm{IEH}_{\mathrm{EH}}= \pm 13 \mu \mathrm{~A} \end{aligned}$
11. External Visuali]	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics.
3. Burn-in for the over range display shall use Condition B at a nominal $I_{F}=8 \mathrm{~mA}$ per LED, with all LEDs illuminated for $t=160$ hours minimum.

TABLE II
GROUP A ELECTRICAL TESTS - MIL-D-87157

Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}^{11}$	IV, ICc, Ibl, IBH, IEL, IEH, ILL, and IIH and visual function, $T_{A}=25^{\circ} \mathrm{C}$	5
Subgroup 2 DC Electrical Tests at High Temperaturel11	Same as Subgroup 1, except delete Iv and visual function. $\mathrm{TA}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature 11	Same as Subgroup 1, except delete Iv and visual function. $T_{A}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not applicable		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883, Method 2009	7

1. Limits and conditions are per the electrical/optical characteristics.

TABLE IIIa
GROUP B, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual and Design Verification[1]	$2075{ }^{[7]}$		1 Device/ 0 Failures
Subgroup 2[2,3] Solderability	2026	$T_{A}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition B1, 15 Min . Dwell	LTPD $=15$
Moisture Resistance ${ }^{[4]}$	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Electrical/Optical Endpoints(5)	-	IV, ICC, IBL, IBH, IEL, IEH, IIL, IIH and visual function. $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs . $)^{[6]}$	1027	$T_{A}=+100^{\circ} \mathrm{C}$ at $V_{C C}=5.0 \mathrm{~V}$ and cycling through logic at 1 character per second.	LTPD $=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3.	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs .)	1032	$T_{A}=+125^{\circ} \mathrm{C}$	LTPD $=10$
Electrical/Optical Endpoints\|5]	-	Same as Subgroup 3	

Notes:

1. Visual inspection performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend, one cycle.
5. Limits and conditions are per the electrical/optical characteristics.
6. Burn-in for the over range display shall use Condition B at a nominal $I_{F}=8 \mathrm{~mA}$ per LED, with all LEDs illuminated for $t=160$ hours minimum.
7. Equivalent to MIL-STD-883, Method 2014.

TABLE IVa
GROUP C, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
\qquad Physical Dimensions	2066		2 Devices/ 0 Failures
Subgroup 2[2,7,9] Lead Integrity	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Subgroup 3 Shock	2016	1500 G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Z_{1}	LTPD $=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	10,000G at Y_{1} orientation	
External Visual\|4]	1010 or 1011		
Electrical/Optical Endpoints[8]	-	IV, ICC, IBL, IBH, IEL, IEH, ILL, IIH and visual Function, $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4[1,3] Salt Atmosphere	1041		LTPD $=15$
External Visuall ${ }^{\text {a }}$	1010 or 1011		
Subgroup 5 Bond Strength ${ }^{[5]}$	2037	Condition A	$\begin{gathered} \text { LTPD }=20 \\ \quad(C=0) \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{[6]}$	1026	$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	$\lambda=10$
Electrical/Optical Endpoints[8]	-	Same as Subgroup 3	

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group Cinspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C Life Test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.
9. Initial conditioning is a 15° inward bend, three cycles.

HERMETIC, NUMERIC AND HEXADECIMAL DISPLAYS FOR MILITARY APPLICATIONS

HIGH EFFICIENCY RED

High Brightness YELLOW
High Performance GREEN

Low Power HDSP-078X/078XTXV/078XTXVB
HDSP-078X/078XTXV/078XTXVB HDSP-079X/079XTXV/079XTXVB HDSP-088X/088XTXV/088XTXVB HDSP-098X/098XTXV/098XTXVB

Features

- CONFORM TO MIL-D-87157, QUALITY LEVEL A TEST TABLES
- TRUE HERMETIC PACKAGE FOR HIGH EFFICIENCY RED AND YELLOW[1]
- TXV AND TXVB VERSIONS AVAILABLE
- THREE CHARACTER OPTIONS

Numeric, Hexadecimal, Over Range

- THREE COLORS

High Efficiency Red, Yellow, High Performance Green

- 4×7 DOT MATRIX CHARACTER
- HIGH EFFICIENCY RED, YELLOW, AND HIGH PERFORMANCE GREEN
- TWO HIGH EFFICIENCY RED OPTIONS Low Power, High Brightness
- PERFORMANCE GUARANTEED OVER TEMPERATURE
- HIGH TEMPERATURE STABILIZED
- GOLD PLATED LEADS
- MEMORY LATCH/DECODER/DRIVER TTL Compatible
- CATEGORIZED FOR LUMINOUS INTENSITY

These solid state displays have a 7.4 mm (0.29 inch) dot matrix character and an onboard IC with data memory latch/decoder and LED drivers in a glass/ceramic package.

The hermetic HDSP-078X,-079X/-088X displays utilize a solder glass frit seal. The HDSP-098X displays utilize an epoxy glass-to-ceramic seal. All packages conform to the hermeticity requirements of MIL-D-87157, the general specification for LED displays. These displays are designed for use in military and aerospace applications.

The numeric devices decode positive BCD logic into characters "0-9", a "一" sign, decimal point, and a test pattern. The hexadecimal devices decode positive BCD logic into 16 characters, "0-9, A-F". An input is provided on the hexadecimal devices to blank the display (all LEDs off) without losing the contents of the memory.

The over range device displays " ± 1 " and right hand decimal point and is typically driven via external switching transistors.
Note:

1. The HDSP-098X high performance green displays are epoxy sealed and conform to MIL-D-87157 hermeticity requirements.
Devices

Part Number HDSP-	Color	Description	Front View
0781/0781TXV/0781TXVB 0782/0782TXV/0782TXVB 0783/0783TXV/0783TXVB 0784/0784TXV/0784TXVB	High-Efficiency Red Low Power	Numeric, Right Hand DP Numeric, Left Hand DP Over Range ± 1 Hexadecimal	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$
0791/0791TXV/0791TXVB 0792/0792TXV/0792TXVB 0783/0783TXV/0783TXVB 0794/0794TXV/0794TXVB	High-Efficiency Red High Brightness	Numeric, Right Hand DP Numeric, Left Hand DP Over Range ± 1 Hexadecimal	$\begin{aligned} & \text { A } \\ & B \\ & C \\ & D \end{aligned}$
0881/0881TXV/0881TXVB 0882/0882TXV/0882TXVB 0883/0883TXV/0883TXVB 0884/0884TXV/0884TXVB	Yellow	Numeric, Right Hand DP Numeric, Left Hand DP Over Range ± 1 Hexadecimal	$\begin{aligned} & \hline A \\ & B \\ & C \\ & D \end{aligned}$
0981/0981TXV/0981TXVB 0982/0982TXV/0982TXVB 0983/0983TXV/0983TXVB 0984/0984TXV/0984TXVB	High Performance Green	Numeric, Right Hand DP Numeric, Left Hand DP Over Range ± 1 Hexadecimal	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$

Package Dimensions

Figure 1. Timing Diagram

TRUTH TABLE					
BCDDATA ${ }^{11}$				Numbric	HEXA. DECEMAL
X_{8}	X_{4}	x_{2}	x,		
1	1	1	1	\%	\%
L	L	L	H	\%	;
L	L	H	1	\because	?
1	L	H	${ }^{\mathrm{H}}$	\cdots	\%
L	H	L	L	\%	!
L	H	\pm	H	\cdots	\ldots
t	H	H	L	\%	$\%$
L	H	H	H	\%	!
H	L	1	L	\%	\%
H	L.	L	H	\because	\%
H	L	H	L	\%	\%
H	4	H	H	(GLANK)	\cdots
H	H	1.	L	(BLANKI	\%
H	H	1	H	. \cdot	!
H	H	H	L	(BLANK)	\%
H	H	${ }^{\mathrm{H}}$	H	(BLANK)	-'
DECIMAL. PT ${ }^{\text {[2] }}$			$O \mathrm{~N} \quad \mathrm{~V}_{\text {OP }}=1$		
			OFF		$V_{D P}=H$
enable ${ }^{\text {[1] }}$			LOAD DATA		$V_{E}=1$
			LATCH DATA		$\mathrm{V}_{\mathrm{E}}=\mathrm{H}$
BLANKING ${ }^{[3]}$			OISPLAY.ON		$\frac{V_{B}=L}{V_{B}=H}$
			DISPLAY-OFF		

Notes:

1. $H=$ Logic High; $L=$ Logic Low. With the enable input at logic high changes in BCD input logic levels have no effect upon display memory, displayed chajacter, or DP.
2. The decimal point input, DP, pertains only to the numeric displays.
3. The blanking control input, B, pertains only to the hexadecimal displays. Blanking input has no effect upon display memory.

Figure 2. Logic Block Diagram

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	Ts	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient ${ }^{1}$	$T_{\text {A }}$	-55	$+100$	${ }^{\circ} \mathrm{C}$
Supply voltage?	V_{Cl}	-0.5	$+7.0$	V
Voltage applied to input logic, $d p$ and enable pins	$\mathrm{V}_{1}, \mathrm{~V}_{\text {DP }} \mathrm{V}_{\text {f }}$	-0.5	$\mathrm{VCO}^{\text {c }}$	V
Voltage applied to blanking input ${ }^{[2]}$	$V_{\text {H }}$	-0.5	$\mathrm{V}_{\text {cc }}$	V
Maximum solder temperature at 1.59 mm (. 062 inch) below seating plane: $t \leqslant 5$ seconds			260	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage 2 ?	Ver	4.5	5.0	5.5	V
Operating temperature, ambient ' 7 .	TA	-55		$+100$	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	tu	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{tsmax}^{\text {stap }}$	50			nsec
Time data must be held after positive transition of enable line	$t_{\text {Heя. }}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\text {\# }}$			1.0	msec

Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Device	Description	Symbol	Min.	Typ.	Max.	Unit
HDSP-078X Series	Luminous Intensity per LED [Digit Average $[3,4]$	Iv	65	140		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		635		nm
	Dominant Wavelength[5]	λ_{0}		626		nm
HDSP-079X Series	Luminous Intensity per LED 1Digit Average: $[3,4]$	Iv	260	620		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		635		nm
	Dominant Wavelength ${ }^{\text {[5] }}$	λd		626		nm
HDSP-088X Series	Luminous Intensity per LED (Digit Average) 3 3,4\}	Iv	215	490		$\mu \mathrm{cd}$
	Peak Wavelength	APEAK		583		nm
	Dominant Wavelength ${ }^{[5.6]}$	λ_{d}		585		nm
HDSP-098X Series	Luminous Intensity per LED (Digit Average) ${ }^{33,4]}$	IV	298	1100		$\mu \mathrm{cd}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		568		nm
	Dominant Wavelength	λ_{d}		574		nm

Notes:

1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is R $\theta \mathrm{JA}=50^{\circ} \mathrm{C} / \mathrm{W} /$ device. The device package thermal resistance is $R \theta_{J}-$ PIN $=15^{\circ} \mathrm{C} / \mathrm{W} /$ device. The thermal resistance device pin-to-ambient through the PC board should not exceed $35^{\circ} \mathrm{C} / \mathrm{W} /$ device for operation at $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$.
2. Voltage values are with respect to device ground, pin 6 .
3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to $25^{\circ} \mathrm{C}$.

Electrical Characteristics; $\left(\mathrm{T}_{\mathrm{A}}=.55^{\circ} \mathrm{C}\right.$ (0 $\left.+100^{\circ} \mathrm{C}\right)$

Notes:
4. The luminous intensity at a specific operating ambient temperature, $I_{V}\left(T_{A}\right)$ may be approximated from the following expotential equation: $\operatorname{lV}\left(T_{A}=\operatorname{l} V\left(25^{\circ} C\right) e^{\left[k\left(T_{A}-25^{\circ} C\right)\right] .}\right.$

Device	\mathbf{K}
HDSP-078X Series HDSP-079X Series	$-0.0131 /{ }^{\circ} \mathrm{C}$
HDSP-088X Series	$-0.0112 /{ }^{\circ} \mathrm{C}$
HDSP-098X Series	$-0.0104 /{ }^{\circ} \mathrm{C}$

Operational Considerations

ELECTRICAL

These devices use a modified 4×7 dot matrix of light emitting diodes to display decimal/hexadecimal numeric information. The high efficiency red and yellow displays use GaAsP/GaP LEDs and the high performance green displays use $\mathrm{GaP} / \mathrm{GaP}$ LEDs. The LEDs are driven by constant current drivers, BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at 6.7 MHz rate.
The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the onboard IC.
The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
The ESD susceptibility of the IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK263.
5. The dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
6. The HDSP-088X and HDSP-098X series devices are categorized as to dominant wavelength with the category disignated by a number on the back side of the display package.
7. All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

MECHANICAL

These displays are hermetically sealed for use in environments that require a high reliability device. These displays are designed and tested to meet a helium leak rate of 5 x $10^{-8} \mathrm{cc} / \mathrm{sec}$.
These displays may be mounted by soldering directly to a printed circuit board or insertion into a socket. The lead-tolead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.
The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a base-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C}$ watt/device as measured on top of display pin 3.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

PRECONDITIONING

These displays are 100% preconditioned by 24 hour storage at $125^{\circ} \mathrm{C}$.

CONTRAST ENHANCEMENT

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an appropriate contrast enhancement filter. The following filters are suggested:

Display Color	Ambient Lighting		
HDSP-088X Yellow	Dim	Moderate	Bright

Over Range Display

The over range devices display " ± 1 " and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature. Ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating Temperature Ambient	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Forward Current, Each LED	IF_{F}		10	mA
Reverse Voltage, Each LED	V_{F}		5	V

Character	Pin			
	$\mathbf{1}$	$\mathbf{2 , 3}$	$\mathbf{4}$	$\mathbf{8}$
+	1	X	X	1
-	0	X	X	1
1	X	1	X	X
Decimal Point	X	X	1	X
Blank	0	0	0	0

Notes
0 : Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
X: 'don't care'

Package Dimensions

Note:

1. Dimensions in millimetres and (inches).

Figure 3. Typical Driving Circuit

Luminous Intensity Per LED

(Digit Average) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Device	Test Condilions	Min.	Typ.	Units
HDSP-0783	$I_{F}=28 \mathrm{~mA}$	65	140	$\mu \mathrm{~cd}$
	$I_{F}=8 \mathrm{~mA}$		620	$\mu \mathrm{~cd}$
HDSP-0883	$I_{\mathrm{F}}=8 \mathrm{~mA}$	215	490	$\mu \mathrm{~cd}$
HDSP-0983	$I_{\mathrm{F}}=8 \mathrm{~mA}$	298	1100	$\mu \mathrm{~cd}$

Recommended
Operating Conditions $\mathrm{v}_{\mathrm{cc}}=5 . \mathrm{ov}$

Device	Forward Current Per LED, mA	Resistor Value		
	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	\mathbf{R}_{3}	
HDSP-0783Low Power High Brightness	2.8	1300	200	300
HDSP-0883	8	360	47	68
HDSP-0983	8	360	36	56

Electrical Characteristics $\left(T_{A}=-55^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

Device	Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
HDSP-0783	Power Dissipation (all LEDs illuminated)	PT	$\mathrm{IF}_{\mathrm{F}}=2.8 \mathrm{~mA}$		72		mW
			$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		224	282	
	Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$		1.6		V
			$\mathrm{IF}=8 \mathrm{~mA}$		1.75	2.2	
HDSP-0883	Power Dissipation (all LEDS Illuminated)	PT	$\mathrm{If}_{\mathrm{F}}=8 \mathrm{~mA}$		237	282	mW
	Forward Voltage per LED	V_{F}			1.90	2.2	\checkmark
HDSP-0983	Power Dissipation (all LEDs illuminated)	$\mathrm{P}_{\text {T }}$	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		243	282	mW
	Forward Voltage per LED	V_{F}			1.85	2.2	V

High Reliability Testing

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A Test Tables of MIL-D-87157 for hermetically sealed displays with 100% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. A second program is an HP modification to the full conformance program and offers the 100% screening portion of Level A, Table I, and Group A, Table II.

PART MARKING SYSTEM

Standard Product	With Table I and II	With Tables I, II, Hla and IVa
HDSP-078X	HDSP-078XTXV	HDSP-078XTXVB
HDSP-079X	HDSP-079XTXV	HDSP-079XTXVB
HDSP-088X	HDSP-088XTXV	HDSP-088XTXVB
HDSP-098X	HDSP-098XTXV	HDSP-098XTXVB

100\% Screening
TABLE I. QUALITY LEVEL A OF MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7572-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours
3. Temperature Cycling	1051	Condition B, 10 Cycles, 15 Min . Dwell
4. Constant Acceleration	2006	$10,000 \mathrm{G}$ at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C
7. Interim Electrical/Optical Testsi2]	-	IV, ICC, IBL, IBH, IEL, IEH, IL, and IIH $T_{A}=25^{\circ} \mathrm{C}$
8. Burn-in 1,31	1015	Condition B at $V_{C C}=5 V$ and cycle through logic at 1 character per second. $T_{A}=100^{\circ} \mathrm{C}, \mathrm{t}=160$ hours
9. Final Electrical Test ${ }^{2 \mid}$	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta \mathrm{IV}=-20 \%, \Delta \mathrm{ICC}= \pm 10 \mathrm{~mA}, \Delta \mathrm{IH}= \pm 10 \mu \mathrm{~A} \\ & \text { and } \triangle \mathrm{IEH}= \pm 13 \mu \mathrm{~A} \end{aligned}$
11. External Visuall 1	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics.
3. Burn-in for the over range display shall use Condition B at a nominal $I_{F}=8 \mathrm{~mA}$ per LED, with all LEDs illuminated for $T=160$ hours minimum.

TABLE II
GROUP A ELECTRICAL TESTS - MIL-D-87157

Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}^{1}$	visual function, $\mathrm{TA}_{A}=25^{\circ} \mathrm{C}$	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{1}$.	Same as Subgroup 1, except delete Iv and visual function. $T_{A}=+100^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{1}$.	Same as Subgroup 1, except delete Iv and visual function. $T_{A}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not applicable		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883. Method 2009	7

Notes:

1. Limits and conditions are per the electrical/optical characteristics.

TABLE IIIa
GROUP B, CLASS A AND B OF MIL-D-87157

Test	$\begin{aligned} & \text { MIL-STD- } 750 \\ & \text { Method } \end{aligned}$	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual and Design Verification[1]	$2075{ }^{[7]}$		1 Device/ 0 Failures
Subgroup $2^{[2,3]}$ Solderability	2026	$\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition B1, 15 min . Dwell	LTPD $=15$
Moisture Resistance [4]	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Electrical/Optical Endpoints 55	-	visual function. $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs .) ${ }^{[6]}$	1027	$T_{A}=+100^{\circ} \mathrm{C}$ at $V_{C C}=5.0 \mathrm{~V}$ and cycling through logic at 1 character per second.	$L T P D=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3.	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs .)	1032	$T_{A}=+125^{\circ} \mathrm{C}$	LTPD $=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	

Notes:

1. Visual inspection performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend, one cycle.
5. Limits and conditions are per the electrical/optical characteristics.
6. Burn-in for the over range display shall use Condition B at a nominal $I_{F} \pm 8 \mathrm{~mA}$ with ' + ' illuminated for $t=160$ hours.
7. Equivalent to MIL-STD-883, Method 2014.

TABLE IVa
GROUP C, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Physical Dimensions	- 2066	Ein	2 Devices/ 0 Failures
Subgroup 2[2,7,9] Lead Integrity	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Subgroup 3 Shock	2016	1500G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Z_{1}	LTPD $=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	10,000 G at Y_{1} orientation	
External Visuali4]	1010 or 1011		
Electrical/Optical Endpoints ${ }^{[8]}$	-	Iv, ICC, Ibl, Ibh, IEL, IEH, ILL, IIH and visual Function, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4[1,3] Salt Atmosphere	1041		LTPD $=15$
External Visual 4]	1010 or 1011		
Subgroup 5 Bond Strengthis]	2037	Condition A	$\begin{gathered} L T P D=20 \\ (C=0) \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{\|6\|}$	1026	$T_{A}=+100^{\circ} \mathrm{C}$	$\lambda=10$
Electrical/Optical Endpoints ${ }^{\text {8] }}$	-	Same as Subgroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C Life Test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour end point measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.
9. Initial conditioning is a 15° inward bend, 3 cycles.

Features

- OPERATION GUARANTEED TO $T_{A}=-40^{\circ} \mathrm{C}$
- LEAK RATE GUARANTEED
- TXVB VERSION CONFORMS TO MIL-D-87157 QUALITY LEVEL A TEST TABLES
- GOLD PLATED LEADS
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- CERAMIC 7.62mm (. 3 in .) DIP Integral Red Glass Contrast Filter
- WIDE VIEWING ANGLE
- END STACKABLE 4 CHARACTER PACKAGE
- PIN ECONOMY

12 Pins for 4 Characters

- TTL COMPATIBLE
- 5×7 LED MATRIX DISPLAYS FULL ASCII CODE
- RUGGED, LONG OPERATING LIFE
- CATEGORIZED FOR LUMINOUS INTENSITY Assures Ease of Package to
Package Brightness Matching

Package Dimensions

Description

The HDSP-2010 display is designed for use in applications requiring high reliability. The character font is a 3.8 mm (0.15 inch) 5×7 red LED array for displaying alphanumeric information. The device is available in 4 character clusters and is packaged in a 12-pin dual-in-line type package. An on-board SIPO (serial-in-parallel-out) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing. The constant current LED drivers are externally programmable and typically capable of sinking 13.5 mA peak per diode. Applications include interactive I/O terminals, avionics, portable telecommunications gear, and hand held equipment requiring alphanumeric displays.

PIN	FUNCTION	PIN	FUNCTION
1	COLUMN 1	7	DATA OUT
2	COLUMN 2	8	$V_{\text {B }}$
3	COLUMN 3	-9	$V_{\text {CC }}$
4	COLUMN 4	10	CLOCK
5	COLUMN 5	11	GROUND
6	INT. CONNECT*	12	DATA IN

*DO NOT CONNECT OR USE

NOTES:

- DIMENSIONS IN mm (inches)

2. UNLESS OTHERWISE SPECIFIED THE TOLEAANCE ON ALL DFMENSIONS $152.38 \mathrm{~mm}\left(\pm .015^{+}\right)$
3. LEAD MATERIAL IS GOLD PLATED COPPER ALLOY.
4. CHARACTERS ARE CENTEREO WITH RESPECT TO LEADS WITHIN :. 13 mm (t 0005°).

Absolute Maximum Ratings

Supply Voltage V_{cc} to Ground -0.5 V to 6.0V	
Inputs, Data Out and V_{B}	-0.5 V to V cc
Column Input Voltage, $\mathrm{V}_{\text {col }}$	-0.5 V to +6.0V
Free Air Operating Temperature	
Range, $\mathrm{T}^{(2)}$.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, $\mathrm{T}_{\mathrm{s}} \ldots . .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Maximum Allowable Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(1,2,6)}$
1.29 Watts

Maximum Solder Temperature 1.59mm (.063")
Below Seating Plane $t<5$ secs $260^{\circ} \mathrm{C}$

Electrical Characteristics Over Operating Temperature Range

(Unless otherwise specified.)

Description	Symbol	Test Conditions		Min.	Typ.*	Max.	Units	
Supply Current	ICc	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLOCK }=\text { VDATA }=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical 1 } \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$		45	60	mA	
			$V_{B}=2.4 \mathrm{~V}$		73	95	mA	
Column Current at any Column Input	ICOL	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \text { All SR Stages = Logical } 1 \end{aligned}$	$V_{B}=0.4 V$			500	$\mu \mathrm{A}$	
Column Current at any Column Input	1 COL		$V_{B}=2.4 \mathrm{~V}$		350	435	mA	
Peak Luminous Intensity per LED ${ }^{\|3,7\|}$ (Character Average)	IVPEAK	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C}^{(4)} V_{B}=2.4 \mathrm{~V} \end{aligned}$		105	200		$\mu \mathrm{cd}$	
V_{B}, Clock or Data Input Threshold High	$V_{\text {IH }}$	$V_{C C}=V_{C O L}=4.75 \mathrm{~V}$		2.0			V	
V_{B}, Data Input Threshold Low	VIL					0.8	V	
Clock Threshold Low	VIL					0.6	V	
Input Current Logical 1	$\mathrm{IIH}^{\text {I }}$	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$	
	IIH				10	40	$\mu \mathrm{A}$	
Input Current Logical 0	IIL	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$	
	IIL				-250	-400	$\mu \mathrm{A}$	
Data Out Voltage	VOH	$\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{OH}=-0.5 \mathrm{~mA}$	$\mathrm{COL}=0 \mathrm{~V}$	2.4	3.4		V	
	VOL	$\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{OL}=1.6 \mathrm{~mA}$,	$\mathrm{OL}=0 \mathrm{~V}$		0.2	0.4	V	
Power Dissipation Per Package**	PD	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 17 .$ 15 LEDs on per character,	$\begin{aligned} & D F \\ = & 2.4 \mathrm{~V} \end{aligned}$. 74		W	
Peak Wavelength	λ PEAK				655		nm	
Dominant Wavelength\|5		λd				640		nm
Thermal Resistance IC Junction-to-Case	R θ_{J-C}				25		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device	
Leak Rate						5×10^{-7}	cc / s	

*All typical values specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with 4 characters illuminated.

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction temperature should not exceed $125^{\circ} \mathrm{C}$ TJ and the case temperature as measured at pin 1 or the back of the display should not exceed $100^{\circ} \mathrm{C} \mathrm{TC}$.
2. The device should be derated linearly above $50^{\circ} \mathrm{C}$ at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $35^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistances.
3. The characters are categorized for Luminous Intensity with the category designated by a letter code on the bottom of the package.
4. T_{i} refers to the initial case temperature of the device immediately prior to the light measurement.
5. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
6. Maximum allowable dissipation is derived from $V_{C C}=V_{B}=5.25$ Volts, $V_{C O L}=3.5 \mathrm{~V}, 20 \mathrm{LEDs}$ on per character, $20 \% \mathrm{DF}$.
7. The luminous stearance of the LED may be calculated using the following relationships:
$\mathrm{L}_{\mathrm{v}}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{v}\left(\right.$ Candela/A (Metre) ${ }^{2}$
$L_{v}($ Footlamberts $)=\pi I_{v}($ Candela $) / \mathrm{A}(\text { Foot })^{2}$
$\mathrm{A}=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$ (Foot) ${ }^{2}$

$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Parameter } & \text { Condition } & \text { Min. } & \text { Typ. } & \text { Max. } & \text { Units } \\ \hline \begin{array}{l}\text { fllok }\end{array} \\ \text { CLOCK Rate }\end{array}\right]$

Figure 1. Switching Characteristics. ($\mathrm{V}_{\mathbf{C C}}=\mathbf{5 V}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Mechanical and Thermal Considerations

The HDSP-2010 is available in a standard 12 lead ceramicglass dual in-line package. It is designed for plugging into DIP sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size.
The HDSP-2010 can be operated over a wide range of temperature and supply voltages. Power reduction can be achieved by either decreasing VCOL or decreasing the average drive current through pulse width modulation of V_{B}.

The HDSP-2010 display has a glass lens. A front panel contrast filter is desirable in most actual display applications. Some suggested filters are Panel graphic Ruby Red 60, SGL Homalite H100-1605 Red and

3M Light Control Film (louvered filters). OCLI Sungard optically coated glass filters offer superior contrast enhancement.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

Electrical Description

The HDSP-2010 display provides on-board storage of decoded column data and constant current sinking row drivers for each of 28 rows in the 4 character display. The device consists of four LED matrices and two integrated circuits that form a 28 -bit serial input-parallel output (SIPO) shift register, see Figure 5. Each character is a 5×7 diode array arranged with the cathodes of each row connected to one constant current sinking output of the SIPO shift register. The anodes of each column are connected together, with the same column of each of the 4 characters connected together (i.e. column 1 of all four characters are connected to pin 1). Any LED within any character may be addressed by shifting data to the appropriate shift register location and applying a voltage to the appropriate column.
Associated with each shift register location is a constant current sinking LED driver, capable of sinking a nominal 13.5 mA . A logical 1 loaded into a shift register location enables the current source at that location. A voltage applied to the appropriate column input turns on the desired LED.
The display is column strobed on a 1 of 5 basis by loading 7 bits of row data per character for a selected column. The data is shifted through the SIPO shift register, one bit location for each high-to-low transition of the clock. When the HDSP-2010 display is operated with pin 1 in the lower left hand corner, the first bit that is loaded into the SIPO shift register will be the information for row 7 of the right most character. The 28th bit loaded into the SIPO shift register will be the information for row 1 of the left most character. When the 28 bits of row data for column 1 have been loaded into the SIPO shift register, the first column is energized for a time period, T , illuminating column 1 in all four characters. Column 1 is turned off and the process is repeated for columns 2 through 5 .

Figure 2. Maximum Allowable Power Dissipation vs. Temperature.

Figure 3. Relative Luminous Intensity vs. Temperature.

Figure 4. Peak Column Current vs. Column Voltage.

Figure 5. Block Dlagram of the HDSP-2010 Display
The time frame allotted per column is ($t+T$) and the minimum recommended refresh rate for a flicker free display is 100 Hz , so that $(t+T) \leq 2 \mathrm{~ms}$. If the display is operated at the 3 MHz maximum clock rate, it is possible to maintain $\mathrm{t} \ll \mathrm{T}$. For display strings of 24 characters or less, the LED on time DF will be approximately 19.4%. For longer display strings, operation of the display with DF
approximately 10% will provide adequate light output for indoor applications.
The 28th stage of the SIPO shift register is connected to the Data Output, which is designed to interface directly to the Data Input of the next HDSP-2010 in the display string.
The V_{B} input may be used to control the apparent brightness of the display. A logic high applied to the V_{B} input enables the display to be turned ON, and a logic low blanks the display by disabling the constant current LED drivers. Therefore, the time average luminous intensity of the display can be varied by pulse width modulation of V_{B}. For application and drive circuit information refer to HP Application Note 1016.
The ESD susceptibility of these IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

High Reliability Testing

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed displays with 100\% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. A second program is an HP modification to the full conformance program and offers the 100% screening portion of Level A, Table I, and Group A, Table II.

PART MARKING SYSTEM

Standard Product	With Table I and II	With Tables I, II, IIIa, and IVa
HDSP-2010	HDSP-2010TXV	HDSP-2010TXVB

TABLE I. QUALITY LEVEL A OF MIL-D-87157

Test Screen	$\begin{aligned} & \text { MIL-STD-750 } \\ & \text { Method } \end{aligned}$	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7512-52
2. High Temperature Storage	1032	$T_{A}=100^{\circ} \mathrm{C}$, Time $=24$ hours
3. Temperature Cycling	1051	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}, 10$ cycles, 15 min.dwell
4. Constant Acceleration	2006	10,000 G's at Y_{1} orientation
5. Fine Leak	1071	Condition H , Leak Rate $\leq 5 \times 10^{-7} \mathrm{cc} / \mathrm{s}$
6. Gross Leak	1071	Condition C , except fluid temperature shall be $+100^{\circ} \mathrm{C}$
7. Interim Electrical/Optical Tests ${ }^{\text {[2] }}$	-	ICC (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V), ICOL (at $\mathrm{V}_{\mathrm{B}}=$ 0.4 V and 2.4 V) IIH (VB, Clock and Data In), IIL (VB, Clock and Data \ln), IOH, IOL and IV Peak. $V_{I H}$ and $V_{I L}$ inputs are guaranteed by the electronic shift register test. $T_{A}=25^{\circ} \mathrm{C}$
8. Burn-In[1]	1015	$\begin{aligned} & \text { Condition } B \text { at } V C C=V_{B}=5.25 \mathrm{~V}, \mathrm{VCOL}= \\ & 3.5 \mathrm{~V}, T_{A}=+85^{\circ} \mathrm{C} \\ & \text { LED ON-Time Duty Factor }=5 \% \text {, } \\ & t=160 \text { hours } \end{aligned}$
9. Final Electrical Test ${ }^{2 /}$	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta \mathrm{lCC}= \pm 6 \mathrm{~mA}, \Delta \mathrm{liH}(\text { clock })= \pm 10 \mu \mathrm{~A} \\ & \left.\Delta \mathrm{IHH}^{(D a t a} \ln \right)= \pm 10 \mu \mathrm{~A} \\ & \Delta \mathrm{lOH}= \pm 10 \% \text { of initial value and } \Delta \mathrm{lV}=-20 \% \end{aligned}$
11. External Visual ${ }^{[1]}$	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics. The IOH and loL tests are the inverse of VOH and VOL specified in the electrical characteristics.

TABLE II. GROUP A ELECTRICAL TESTS MIL-D-87157

Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}{ }^{1}$.	$\mathrm{Icc}($ at $\mathrm{VB}=0.4 \mathrm{~V}$ and 2.4 V$)$, Icol. (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V) $I_{I H}\left(V_{B}\right.$, Clock and Data In), ILL (VB, Clock and Data In), $\mathrm{IOH}_{\text {, }} \mathrm{IO}$ Visual Function and Iv peak. VIH and Vil inputs are guaranteed by the electronic shift register test.	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{11}$	Same as Subgroup 1, except delete Iv and visual function. $\mathrm{TA}_{A}=485^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{11}$	Same as Subgroup 1, except delete ly and visual function. $T_{A}=-40^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not tested		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883, Method 2009	7

Note:

1. Limits and conditions are per the electrical/optical characteristics. The loH and lol tests are the inverse of VoH and Vol specified in the electrical characteristics.

TABLE IIIa. GROUP B, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual and Design Verification ${ }^{11]}$	$2075[6]$		1 Device/ 0 Failures
Subgroup 2[2,3] Solderability	2026	$T_{A}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	$T_{A}=-55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C}$ 15 min. dwell	LTPD $=15$
Moisture Resistance [4]	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C, except fluid temperature shall be $+100^{\circ} \mathrm{C}$	
Electrical/Optical Endpoints[5]	-	$\operatorname{lcc}\left(\right.$ at $V_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V$)$, $\mathrm{ICOL}\left(\mathrm{at} \mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\right.$ and 2.4 V), IfH (VB, Clock and Data In), IL (VB, Clock and Data In), loh, loL Visual Function and IV peak. VIH and VIL inputs are guaranteed by the electronic shift register test. $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs.)	1027	$\begin{aligned} & T_{A}=+85^{\circ} \mathrm{C} \text { at } \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \\ & \mathrm{VCOL}=3.5 \mathrm{~V}, \text { LED ON-Time Duty Fac- } \\ & \text { tor }=5 \% \end{aligned}$	LTPD $=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs .)	1032	$T_{A}=+100^{\circ} \mathrm{C}$	LTPD $=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	

Notes:

1. Visual inspection is performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend for one cycle.
5. Limits and conditions are per the electrical/optical characteristics. The I_{OH} and I_{OL} tests are the inverse of V_{OH} and V_{OL} specified in the electrical characteristics.
6. Equivalent to MIL-STD-883, Method 2014

TABLE IVa.
GROUP C, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup $1^{[1]}$ Physical Dimensions	2066		2 Devices/ 0 Failures
Subgroup 2[2] Lead Integrity $[7,9]$	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C , except fluid temperature shall be $+100^{\circ} \mathrm{C}$	
Subgroup 3 Shock	2016	1500G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Z_{1}	LTPD $=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	10,000G at Y_{1} orientation	
External Visual [4]	1010 or 1011		
Electrical/Optical Endpoints ${ }^{[8]}$	-	ICC (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V) 100 L (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V) liH (VB, Clock and Data In) IL. (Ve, Clock and Data In) $\mathrm{IOH}, \mathrm{IO}$, Visual Function and lv peak. $V_{I H}$ and $V_{\text {IL }}$ inputs are guaranteed by the electronic shift register test. $T_{A}=25^{\circ} \mathrm{C}$.	
Subgroup 4[1,3] Salt Atmosphere	1041		LTPD $=15$
External Visuall 4	1010 or 1011		
Subgroup 5 Bond Strength ${ }^{[5]}$	2037	Condition A	$\begin{gathered} \angle T P D=20 \\ (C=0) \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{6 \mid}$	1026	$\begin{aligned} & T_{A}=+85^{\circ} \mathrm{C} \text { at } V_{C C}=V_{B}=5.25 \mathrm{~V}, \\ & V_{C O L}=3.5 \mathrm{~V} \end{aligned}$	$\lambda=10$
Electrical/Optical Endpoints[8]	-	Same as Subgroup 3	

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The IOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.
9. Initial conditioning is a 15° inward bend for three cycles.

Features

- WIDE OPERATING TEMPERATURE RANGE $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- TRUE HERMETIC PACKAGE
- TXVB VERSION CONFORMS TO MIL-D-87157 QUALITY LEVEL A TEST TABLES
- CMOS IC FOR LOW POWER CONSUMPTION
- SMART ALPHANUMERIC DISPLAY Built-in RAM, ASCII Decoder, and LED Drive Circuitry
- VERY FAST ACCESS TIME, 160 ns
- EXCELLENT ESD PROTECTION Built-in Protective Diodes
- FULL TTL COMPATIBILITY OVER OPERATING TEMPERATURE RANGE
- END-STACKABLE
- WIDE VIEWING ANGLE
- WAVE SOLDERABLE

Description

The HMDL-2416 is a smart $3.8 \mathrm{~mm}\left(0.15^{\prime \prime}\right)$ four character, sixteen segment red GaAsP display. It is contained in a hermetic 18 pin dual-in-line, glass sealed ceramic package. The on-board CMOS IC contains memory, ASCII decoder, multiplexing circuitry, and drivers. It has a wide operating temperature range, and is fully TTL compatible, wave solderable, and highly reliable. This display is ideally suited for military and high reliability industrial applications where a rugged, reliable, easy-to-use alphanumeric display is required.

Typical Applications

- MILITARY EQUIPMENT
- AVIONICS
- HIGH RELIABILITY INDUSTRIAL EQUIPMENT

Absolute Maximum Ratings

Supply Voltage, V_{CC} to Ground \ldots.
Input Voltage,
Any Pin to Ground -0.5 V to $\mathrm{V}_{\mathrm{CC}}+.5 \mathrm{~V}$
Free Air Operating
Temperature Range, T_{A}................ -55° to $+100^{\circ} \mathrm{C}$
Storage Temperature, TS -65° to $+125^{\circ} \mathrm{C}$
Maximum Solder Temperature, 1.59 mm (0.063 in.)
below Seating Plane, t < 5 sec $260^{\circ} \mathrm{C}$

ESD WARNING: The HMDL-2416 is implemented in a standard CMOS process with diode protection of all inputs. The ESD susceptibility of this IC device is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK263. Standard precautions for handling CMOS devices should be observed.

Package Dimensions

Recommended Operating Conditions

Parameter	Symbol	Min.	Nom.	Max.	Units
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	V
Input Voltage High	$V_{I H}$	2.0			V
Input Voltage Low	V_{AL}			0.8	V

DC Electrical Characteristics Over Operating Temperature Range TYPICAL VALUES

Parameter	Symbol	Units	$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$+100^{\circ} \mathrm{C}$	Test Condition
ICC^{4} digits on (10 seg/digit) ${ }^{[1,2]}$	ICC	mA	120	85	70	$V_{C C}=5.0 \mathrm{~V}$
Icc Cursor [2,3.4]	$\operatorname{lcC}(\overline{\mathrm{CU}})$	mA	170	125	105	$V_{C C}=5.0 \mathrm{~V}$
${ }^{\text {I CC }}$ Blank	$1 \mathrm{cc}(\overline{\mathrm{BL}})$	mA	1.8	1.5	1.3	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & \mathrm{BL}=0.8 \mathrm{~V} \end{aligned}$
Input Current, Max.	I_{LL}	$\mu \mathrm{A}$	22	17	12	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & V_{\mathrm{IN}}=0.8 \mathrm{~V} \\ & \hline \end{aligned}$
Thermal Resistance Junction to Case	$R \Theta_{j-c}$	${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device		20		

GUARANTEED VALUES

Parameter	Symbol	Units	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{gathered}$	Maximum Over Operating Temperature Range $v_{C C}=5.5 \mathrm{~V}$
$I_{\text {cc }} 4$ digits on (10 seg/digit) ${ }^{11,2]}$	ICC	mA	115	167
ICC Cursor [2,3,4]	$\operatorname{lcc}(\overline{\mathrm{CU}})$	mA	165	225
I CC Blank	$\operatorname{lcc}(\overline{\mathrm{BL}})$	mA	3.5	8.0
Input Current, Max.	I_{1}	$\mu \mathrm{A}$	30	40
Power Dissipation ${ }^{515}$	P_{D}	mW	575	918
Leak Rate	LR	cc/sec		5×10^{-8}

Notes:

1. "\%" illuminated in all four characters.
2. Cursor operates continuously over operating temperature range.
3. Measured at five seconds.
4. Power dissipation $=V_{C C} \cdot I_{C C}(10$ seg. $)$.
5. Cursor character is sixteen segments and DP on.

AC Timing Characteristics Over Temperature at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}^{(1)}$

Symbol	Description	$\begin{gathered} -20^{\circ} \mathrm{C} \\ t_{\text {MIIN }} \end{gathered}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \mathbf{t}_{\text {MIN }} \end{aligned}$	$\begin{aligned} & 70^{\circ} \mathrm{C} \\ & t_{\text {min }} \end{aligned}$	Units
$1 t_{\text {AS }}$	Address Setup Time	90	115	150	ns
$2 t_{\text {WD }}$	Write Delay Time	10	15	20	ns
3 tw	Write Time	80	100	130	ns
4 tos	Data Setup Time	40	60	80	ns
$5 \mathrm{t}_{\mathrm{DH}}$	Data Hold Time	40	45	50	ns
$6 \mathrm{t}_{\text {AH }}$	Address Hold Time	40	45	50	ns
$7 \mathrm{t}_{\text {CEH }}$	Chip Enable Hold Time	40	45	50	ns
8 tces	Chip Enable Setup Time	90	115	150	ns
9 tcla	Clear Time	2.4	3.5	4.0	ms
$10 t_{\text {ACC }}$	Access Time	130	160	200	ns
	Refresh Rate	420-790	310-630	270-550	Hz

Note: 1. These parameters are guaranteed by design but are not tested.

Optical Characteristics

Parameter	Symbol	Test Condition	Min.	Typ.	Units
Peak Luminous Intensity per digit 8 segments on (character average)	IV Peak	$V C \mathrm{~F}=5.0 \mathrm{~V}$ "夫" illuminated in all 4 digits $\left(25^{\circ} \mathrm{C}\right)$	0.2	0.6	mcd
Peak Wavelength	גpeak			655	nm
Dominant Wavelength	λ_{d}			640	nm
Off Axis Viewing Angle				± 65	degrees
Digit Size				3.81	mm

Timing Diagram

Character Font Description

Relative Luminous Intensity vs. Temperature

Electrical Description

Display Internal Block Diagram

Figure 1 shows the internal block diagram for the HMDL-2416 display. The CMOS IC consists of a four-word ASCII memory, a four-word cursor memory, a 64 -word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal operation, the divide-by-four counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. For each display location, the cursor enable (CUE) selects whether the data from the ASCII RAM (CUE $=0$) or the stored cursor (CUE $=1$) is to be displayed. The cursor character is denoted by all sixteen segments and the DP ON. Seven-bit ASCII data is stored in RAM. Since the display utilizes a 64-character decoder, half of the possible 128 input combinations are invalid. For each display location where $D_{5}=D_{6}$ in the ASCII RAM, the display character is blanked. The entire display is blanked when $\overline{B L}=0$.
Data is loaded into the display through the data inputs ($D_{6}-D_{0}$), digit selects (A_{1}, A_{0}), chip enables ($\overline{C E}_{1}, \overline{C E}_{2}$, cursor select ($\overline{\mathrm{CU}}$), and write ($\overline{\mathrm{WR}}$). The cursor select ($\overline{\mathrm{CU}}$) determines whether data is stored in the ASCII RAM $(\overline{\mathrm{CU}}=$ 1) or cursor memory $(\overline{\mathrm{CU}}=0)$. When $\overline{C E}_{1}=\overline{\mathrm{CE}}_{2}=\overline{\mathrm{WR}}=0$ and $\overline{C U}=1$, the information on the data inputs is stored in the ASCII RAM at the location specified by the digit selects $\left(A_{1}, A_{0}\right)$. When $\overline{C E}_{1}=\overline{C E}_{2}=\overline{W R}=0$ and $\overline{C U}=0$, the information on the data input, D_{0}, is stored in the cursor at the location specified by the digit selects (A_{1}, A_{0}). If $D_{0}=1$, a cursor character is stored in the cursor memory. If $D_{0}=$ 0 , a previously stored cursor character will be removed from the cursor memory.
If the clear input ($\overline{\mathrm{CLR}}$) equals zero for one internal display cycle (4 ms minimum), the data in the ASCII RAM will be rewritten with zeroes and the display will be blanked. Note that the blanking input ($\overline{\mathrm{BL}}$) must be equal to logical one during this time.

Data Entry

Figure 2 shows a truth table for the HMDL-2416 display. Setting the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) to their low state and the cursor select ($\overline{\mathrm{CU}})$ to its high state will enable data loading. The desired data inputs ($D_{6}-D_{0}$) and address inputs (A_{1}, $\left.\mathrm{A}_{0}\right)$ as well as the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and cursor select ($\overline{\mathrm{CU}}$) must be held stable during the write cycle to ensure that the correct data is stored into the display. Valid ASCII data codes are shown in Figure 3. The display accepts standard seven-bit ASCII data. Note that $D_{6}=\overline{D_{5}}$ for the codes shown in Figure 2. If $D_{6}=D_{5}$ during the write cycle, then a blank will be stored in the display. Data can be loaded into the display in any order. Note that when A_{1} $=A_{0}=0$, data is stored in the furthest right-hand display location.

Cursor Entry

As shown in Figure 2, setting the chip enables ($\overline{\mathrm{CE}}, \overline{C E}_{2}$) to their low state and the cursor select ($\overline{\mathrm{CU}}$) to its low state will enable cursor loading. The cursor character is indicated by the display symbol having all 16 segments and the DP ON. The least significant data input (D_{0}), the digit selects (A_{1}, A_{0}), the chip enables ($\overline{C E}_{1}, \overline{C E}_{2}$), and the cursor select ($\overline{C U})$ must be held stable during the write cycle to ensure that the correct data is stored in the display. If D_{0} is in a low state during the write cycle, then a cursor character will be removed at the indicated location. If D_{0} is in a high state during the write cycle, then a cursor character will be stored at the indicated location. The presence or absence of a cursor character does not affect the ASCII data stored at that location. Again, when $A_{1}=A_{0}=0$, the cursor character is stored in the furthest right-hand display location.
All stored cursor characters are displayed if the cursor enable (CUE) is high. Similarly, the stored ASCII data words are displayed, regardless of the cursor characters, if the cursor enable (CUE) is low. The cursor enable (CUE) has no effect on the storage or removal of the cursor characters within the display. A flashing cursor is displayed by pulsing the cursor enable (CUE). For applications not requiring a cursor, the cursor enable (CUE) can be connected to ground and the cursor select ($\overline{\mathrm{CU}}$) can be connected to Vcc. This inhibits the cursor function and allows only ASCII data to be loaded into the display.

Figure 1. HMDL-2416 Internal Block Diagram

L = LOGIC LOW INPUT "a" = ASCII CODE CORRESPONDING TO SYMBOL "A"
$H=$ LOGIC HIGH INPUT $\quad N C=$ NO CHANGE
X = DON'T CARE
= CURSOR CHARACTER (ALL SEGMENTS ON)
Figure 2a. Cursor/Data Memory Write Truth Table

Function	$\overline{\mathrm{BL}}$	$\overline{\text { CLR }}$	CUE	$\overline{C u}$	$\overline{C E}_{1}$	$\overline{\mathrm{CE}}_{2}$	$\overline{\text { WR }}$	DIG_{3}	DIG_{2}	DIG ${ }_{1}$	DIG_{0}	
CUE	H	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \hline A \\ & \text { 相 } \end{aligned}$	$\stackrel{\text { B }}{\text { 界 }}$	$\stackrel{[}{5}$	$\begin{gathered} 7 \\ \square \end{gathered}$	Display previously written data Display previously written cursor
Clear		L TE: C wing data is	X LR sho the last cleared	X uld be WRIT	held E cycl	X w for to e	(${ }^{*}$	$[]$	$[-]$	$[\mathrm{C}]$	$\left[\begin{array}{l} {[} \\ {[-]} \end{array}\right.$	Clear data memory, cursor memory unchanged
Blanking	L	x	X	x	X	x	X	[7	"7	,	-]	Blank display, data and cursor memories unchanged.

Figure 2b. Displayed Data Truth Table

Figure 3. HPDL-2416 ASCII Character Set

Mechanical and Electrical Considerations

The HMDL-2416 is an 18 pin dual-in-line package, that can be stacked horizontally and vertically to create arrays of any size. The HMDL-2416 is designed to operate continuously from -55° to $+100^{\circ} \mathrm{C}$ for all possible input conditions including the illuminated cursor in all four character locations. The HMDL-2416 is assembled by die attaching and wire bonding the four GaAsP/GaAs monolithic LED chips and the CMOS IC to a 18 lead ceramic-glass dual-inline package. It is designed either to plug into DIP sockets or to solder into PC boards.
The inputs of the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HMDL-2416 should be stored in anti-static tubes or conductive material. During assembly, a grounded conductive work area should be used. The assembly personnel should use conductive wrist straps. Lab coats made of synthetic materials should be avoided since they are prone to static charge build-up. Input current latchup is caused when the CMOS inputs are subjected to a voltage either below ground ($\mathrm{V}_{\text {IN }}<$ ground) or to a higher voltage than $V_{C C}\left(V_{I N}>V_{C C}\right)$ and a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{CC}, voltages should not be applied to the inputs until $V_{C C}$ has been applied to the display, and transient input voltages should be eliminated.

Soldering and Post Solder Cleaning Instructions for the HMDL-2416

The HMDL-2416 may be hand soldered or wave soldered with SN63 solder. Hand soldering may be safely performed only with an electronically temperature-controlled and securely grounded soldering iron. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux or a water soluble organic acid (OA) flux can be used. The solder wave temperature should be $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$, and the dwell in the wave should be set at $11 / 2$ to 3 seconds for optimum soldering.
Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, Genesolv DES, and water.
For further information on soldering, refer to Application Note 1027, "Soldering LED Components".

Optical Considerations/ Contrast Enhancement

Each HMDL-2416 display is tested for luminous intensity and marked with an intensity category on the back of the display package. To ensure intensity matching for multiple package applications, all displays for a given panel should have the same category.
The HMDL-2416 display is designed to provide maximum contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Dark Red 63, SGL Homalite H100-1650, Rohm and Haas 2423, Chequers Engraving 118, and 3M R6510. For further information on contrast enhancement, see Hewlett-Packard Application Note 1015.

High Reliability Testing

Two standard high reliability testing programs are available. The TXVB program is in conformance with MIL-D-87157 level A Test Tables. The TXVB product is tested to Tables I, II, IIIa, and IVa. The TXV program is an HP modification to the full conformance program and offers the 100% screening of Quality Level A, Table I, and Group A, Table II.

100\% Screening

Table I. Quality Level A of MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7235-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours
3. Temperature Cycling	1051	Condition B, 10 cycles, 15 min . dwell
4. Constant Acceleration	2006	$5,000 \mathrm{G}$'s at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C
7. Interim Electrical/Optical Tests[2]	-	$\begin{aligned} & I_{C C} I_{\mathrm{V}} @ V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
8. Burn $-\ln [1]$	1015	$\begin{aligned} & \text { Condition } \mathrm{B} \text { at } \mathrm{V}_{C C}=5.5 \mathrm{~V} \\ & T_{A}=100^{\circ} \mathrm{C} \\ & t=160 \text { hours } \end{aligned}$
9. Final Electrical Test ${ }^{[2]}$	-	$\begin{aligned} & I_{C C} \%, I_{C C}(\overline{C U}), I_{C C}(\overline{B L}) \\ & I_{I}, I_{V} @ V C C=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} C \end{aligned}$
10. Delta Determinations	-	$\begin{aligned} & \Delta l_{C C}= \pm 10 \% \\ & \Delta I_{V}=-20 \% \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
11. External Visual ${ }^{[1]}$	2009	

Notes:

1. MIL-STD-883 Test Method Applies
2. Limits and conditions are per the electrical optical characteristics.

Table II. Group A Electrical Tests — MIL-D-87157

Subgroup/Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C} \cdot 1$	$I_{C C} \%, I_{\mathrm{CC}}(\overline{\mathrm{CU}}), I_{\mathrm{CC}}(\overline{\mathrm{BL}}), I_{\mathrm{IL},} I_{V}$ and visual function @ $V_{C C}=5.0 \mathrm{~V}$	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{14}$:	Same as Subgroup 1, except delete I_{V} and visual function, $T_{A}=+100^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{11}$	Same as Subgroup 1, except delete Iv and visual function, $T_{A}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not applicable		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883, Method 2009	7

Note:

1. Limits and conditions are per the electrical/optical characteristics.

Table IIIa. Group B, Class A and B of MIL-D-87157

Subgroup/Test	$\begin{aligned} & \text { MIL-STD-750 } \\ & \text { Method } \end{aligned}$	Canditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual and Design Verification[${ }^{\text {] }]}$	2075[6]		1 Device/ 0 Failures
Subgroup $2^{[2,3]}$ Solderability	2026	$\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock Temp. Cycle	1051	Condition B1, 15 minute dwell	LTPD $=15$
Moisture Resistance ${ }^{[4]}$	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Electrical/Optical Endpoints ${ }^{[5]}$	-	$\mathrm{I}_{\mathrm{CC}} \%, \mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{CU}}), \mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{BL}}), I_{\mathrm{IL}}, \mathrm{I}_{\mathrm{V}}$ @ $V_{C C}=5.0 \mathrm{~V}$ and visual function. $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs .)	1027	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C} @ \mathrm{~V}_{\text {CC }}=5.5 \mathrm{~V}$	$L T P D=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	
Subgroup 5 Non-operating : Storage: Life Test 1340 hrs .	1032	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	LTPD $=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	

Notes:

1. Visual inspection is performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend for one cycle.
5. Limits and conditions are per the electrical/optical characteristics.
6. Equivalent to MIL-STD-883, Method 2014.

Table IVa. Group C, Class A and B of MIL-D-87157

Subgroup/Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Physical Dimensions	2066		2 Devices/ 0 Failures
Subgroup 2[2] Lead Integrity 17 , 9]	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Subgroup 3 Shock	2016	1500G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Z_{1}	LTPD $=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	5,000 G's at Y_{1} orientation	
External Visual 41	1010 or 1011		
Electrical/Optical Endpoints[8]	-	$\mathrm{ICC}_{\mathrm{C}} \% \mathrm{I}_{\mathrm{CO}}(\mathrm{CU}), I_{\mathrm{CC}}(\mathrm{BL}), I_{\mathrm{IL}}, I_{V}$ @ $V_{C C}=5.0 \mathrm{~V}$ and visual function. $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4[1,3] Salt Atmosphere	1041		LTPD $=15$
External Visual[4]	1010 or 1011		
Subgroup 5 Bond Strength ${ }^{5]}$ \qquad	2037	Condition A	$\begin{gathered} \angle T P D=20 \\ 1 C=0 \\ \hline \end{gathered}$
Subgroup 6 Operating Life Test[6]	1026	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C} @ \mathrm{~V}_{C C}=5.5 \mathrm{~V}$	$\lambda=10$
Electrical/Optical Endpoints[8]	-	Same as Subgroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements. the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.
9. Initial conditioning is a 15° inward bend for three cycles.

Features

- TXVB VERSION CONFORMS TO MIL-D-87157 QUALITY LEVEL A TEST TABLES
- SUNLIGHT VIEWABLE UP TO $\mathbf{1 0 , 0 0 0}$ FOOTCANDLES
- WIDE OPERATING TEMPERATURE RANGE $-55^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- THREE COLORS Yellow
High Efficiency Red
High Performance Green
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END AND ROW STACKABLE
- 5×7 LED MATRIX DISPLAYS FULL ASCII SET
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT LED DRIVERS
- tTL COMPATIbLE
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2351/-2353 CATEGORIZED FOR COLOR

Description

The HDSP-2351/-2352/-2353 displays are designed for use in military applications requiring readability in bright sunlight. With a proper contrast enhancement filter and heat sinking, these displays are readable in sunlight ambients up to 10,000 footcandles. The character font is a 5.0 mm (0.20 inch) 5×7 LED array for displaying alphanumeric information. These devices are available in yellow, high efficiency red, and high performance green. Each four character cluster is packaged in a 12-pin dual-in-line package. An on-board serial-in-parallel-out 7 -bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing.

Package Dimensions

Typical Applications

- MILITARY AVIONICS - Cockpit displays, aircraft system monitors, fuel management and airborne navigational radio systems
- MILITARY TEST AND GROUND SUPPORT FIELD EQUIPMENT
- MILITARY VEHICLES AND EQUIPMENT
- OTHER APPLICATIONS REQUIRING READABILITY IN DIRECT SUNLIGHT

Absolute Maximum Ratings (HDSP-2351/-2352/-2353)

Supply Voltage Vcc to Ground $\ldots . . .$. Inputs, Data Out and $V_{B} \ldots \ldots$. Column Input Voltage, Vcol -0.5 V to +6.0 V
Free Air Operating Temperature Range, $T_{A}[1,2]$ $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range, Ts $\ldots . . .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Maximum Allowable Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}[1,2,3]$
HDSP-2381/-2382/-2383
1.74 Watts

Maximum Solder Temperature 1.59 mm (0.063 in) Below Seating Plane $t<5 \mathrm{sec}$
$260^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	VCC	4.75	5.0	5.25	\checkmark	
Data Out Current, Low State	10 L			1.6	mA	
Data Out Current. High State	IOH			-0.5	$m \mathrm{~A}$	
Column Input Voltage, Column On HDSP-2381/-2382/-2383	VCOL	2.75		3.5	V	4
Setup Time	tsetup	70	45		ns	1
Hold Time	thold	30	0		ns	1
Width of Clock	twICLOCK)	75			ns	1
Clock Frequency	fclock	0		3	$\mathrm{MH}+2$	1
Clock Transition Time	ITHL			200	ns	1
Free Air Operating Temperature Range[1,2]	TA	-20		85	${ }^{\circ} \mathrm{C}$	3

Electrical Characteristics Over Operating Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)
 YELLOW HDSP-2351/HIGH EFFICIENCY RED HDSP-2352/HIGH PERFORMANCE GREEN HDSP-2353

Description	Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.
Supply Current	lec	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLOCK }=V_{\text {DATA }}=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical 1 } \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$		50	60	mA	
			$V_{B}=2.4 \mathrm{~V}$		90	100	mA	
Column Input Current tany Column Pint	1 COL	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \text { All SR Stages = Logical } 1 \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$			500	$\mu \mathrm{A}$	4
Column Input Current (any Column Pin)	ICOL		$V_{B}=2.4 \mathrm{~V}$		550	653	mA	
VB, Clock or Data Input Threshold High	V V	$V_{C C}=V_{C O L}=4.75 \mathrm{~V}$		2.0			V	
V_{B}, Data input Threshold Low	V_{lL}					0.8	V	
Clock Input Threshold Low	$V_{\text {IL }}$	$V_{C C}=4.75 \mathrm{~V}$				0.6	\checkmark	
Input Current Logical 1	lit	$V_{C O}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$	
	liH				10	40	$\mu \mathrm{A}$	
Input Current Logical 0	IIL	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$	
	IIL.				-250	-400	$\mu \mathrm{A}$	
Data Out Voltage	VOH	$V_{C C}=4.75 \mathrm{~V}, \mathrm{l}^{\mathrm{OH}}=-0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{COL}}=0 \mathrm{~mA}$		2.4	3.4		V	
	Vol	$\mathrm{VCC}=4.75 \mathrm{~V}, 10 \mathrm{~L}=1.6 \mathrm{~mA}, 1 \mathrm{lCOL}=0 \mathrm{~mA}$			0.2	0.4	V	
Power Dissipation Per Package**	PO	$V_{C C}=5.0 \mathrm{~V}, V_{G O L}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LED s on per character, $V_{B}=2.4 \mathrm{~V}$			1.05		W	2
Thermal Resistance IC Junction-to-Pin	R $\theta_{J-P \mathrm{PN}}$				10		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device	2
Leak Rate						5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$	

All typical values specified at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

1. The HDSP-2351/-2352/-2353 should be derated linearly above $50^{\circ} \mathrm{C}$ at $24.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, based on a device mounted such that the thermal resistance from IC junction to ambient is $45^{\circ} \mathrm{C} / \mathrm{W}$ $\left(10^{\circ} \mathrm{C} / \mathrm{W}\right.$ R $\theta \mathrm{J}$-PIN and $\left.35^{\circ} \mathrm{C} / \mathrm{W}_{\text {PIN-A }}\right)$. See Figure 2 for power deratings based on lower thermal resistance mounting.
**Power dissipation per package with four characters illuminated.
2. Operation above $50^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction temperature should not exceed $125^{\circ} \mathrm{C}\left(T_{J}\right)$ and the temperature at the pins should not exceed $100^{\circ} \mathrm{C}$ (TC).
3. Maximum allowable dissipation is derived from $\mathrm{VCC}=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 20 \mathrm{LEDs}$ on per character, $20 \% \mathrm{DF}$.

*All typical values specified at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

4. These LED displays are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2351/-2353 are categorized for color with the color category designated by a number code on the bottom of the package.
6. TI refers to the initial case temperature of the device immediately prior to the light measurement.
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$L_{v}\left(c d / m^{2}\right)=I_{v}\left(\right.$ Candela) $/ A(\text { Metre })^{2}$
$L_{v}($ Footlamberts $)=\pi I_{v}\left(\right.$ Candela) $/ \mathrm{A}(\text { Foot })^{2}$
$A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$ (Foot) ${ }^{2}$

Figure 2. Maximum Allowable Power Dissipation vs. Ambient Temperature as a Function of Thermal Resistance IC Junction to Ambient Air. R $\boldsymbol{J J A}_{\text {JA }}$.

Figure 3. Relative Luminous Intensity vs. Device Substrate (PIN) Temperature.

Figure 4. Peak Column Current vs. Column Voltage.

Electrical Description

The electrical configuration of the HDSP-235X series alphanumeric displays allows for an effective interface to a microprocessor data source. Each display device contains four 5×7 LED dot matrix characters and two integrated circuits, as diagrammed in Figure 5. The two integrated circuits, with TTL compatible inputs, form a 28 bit serial-in-parallelout column data shift register. The data input is connected to shift register bit position 1 and the data output is connected to bit position 28 . The shift register parallel outputs are connected to constant current sinking LED row drivers that sink a nominal 19.6 mA . A logic 1 stored in the shift register enables the corresponding LED row driver and a logic 0 stored in the shift register disables the corresponding LED row driver.
Column data is loaded into an on-board shift register with high to low transitions of the Clock input. To load character information into the display, column data for the character 4 is loaded first and the column data for character 1 is loaded last in the following manner: The 7 data bits for column 1, character 4 are loaded into the on-board shift register. Next, the 7 data bits for column 1, character 3 are loaded into the on-board shift register, shifting the character 4 data over one character position. This process is repeated until all 28 bits of column data are loaded into the on-board shift register. Then, the column 1 input is energized to illuminate column 1 's in all four characters. The procedure is repeated for columns 2,3,4 and 5.

The light output of the display may be dimmed by pulse width modulating (PWM) the blanking input V_{B}, with the brightness being in direct proportion to the LED on-time. When the blanking input is at logic high the display is illuminated and when the blanking input is at logic low the display is blanked. These displays may be dimmed by PWM on the order of a 2000:1 change in brightness while maintaining light output and color uniformity between characters.
The LED on-time duty factor, DF, may be determined when the time to load the on-board shift register, t, the column on-time without blanking, T , and the time display is blanked, TB, are known:

$$
D F=\frac{T}{5(t+T+T B)}
$$

Where: $5(\mathrm{t}+\mathrm{T}+\mathrm{TB})$ is $1 /$ column refresh rate
The column driver inputs should be strobed at a refresh rate of 100 Hz or faster to achieve a flicker free display. The value of DF approaches 20% when TB $=0$ and t is very small compared to T.

The ESD susceptibility of these IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

For information on interfacing these displays to microprocessor data sources and techniques for intensity control, see Application Note 1016.

Figure 5. Block Diagram of an HDSP-235X Series LED Alphanumeric Display

Power Dissipation and Low Thermal Resistance Design Considerations

The light output of the HDSP-235X devices is a function of temperature, decreasing 1.5% for each $1^{\circ} \mathrm{C}$ increase in junction temperature. Therefore, it is desirable to maintain as low device junction temperature as possible to insure sufficient light output for sunlight readability. This is preferably achieved by designing for a low junction to ambient thermal resistance, or alternatively by controlling total display power dissipation by derating, see data sheet Figure 2.

Power Dissipation Calculation:

Power dissipation may be calculated using the equations of Figure 6a. For typical applications, the average pixel count per character is 15 . The maximum power dissipation is calculated with a pixel count of 20 per character. As demonstrated in Figure 6c, the maximum power dissipation is 1.741 W with $D F=20 \%, \mathrm{VCC}=5.25 \mathrm{~V}$ and $\mathrm{VCOL}=3.5 \mathrm{~V}$. The average power dissipation is 1.161 W per device with $\mathrm{DF}=20 \%, \mathrm{VCC}=5.0 \mathrm{~V}$ and $\mathrm{VCOL}=3.5 \mathrm{~V}$.

As shown in Figure 4 on the data sheet, the column current, ICOL, is constant when the column input voltage, $\mathrm{V}_{\mathrm{COL}}$, is at 2.75 V or greater. Setting Vcol substantially greater than 2.75 V does not increase light output, but does add to device total power dissipation. For optimum performance, it is recommended that V col be set between 2.75 V and 3.5 V .

Junction Temperature and Device Thermal Resistance:
It is necessary to control the IC junction temperature, $T_{J}(I C)$, to insure proper operation of the display:

$$
T_{J}(I C) M A X=125^{\circ} \mathrm{C}
$$

The equations to calculate $\mathrm{TJ}_{\mathrm{J}}(\mathrm{IC})$ are given in Figure 6 b . $\mathrm{T}(\mathrm{IC})$ will be higher than the device substrate temperature where as the individual LED pixel junction temperatures, TJ(LED), will be nearly the same as the substrate temperature. A sample calculation is presented in Figure 6c.
An easy design rule is to obtain a IC junction to ambient thermal resistance, $\mathrm{R}_{\theta J-A}$, that establishes the device pin temperature less than $100^{\circ} \mathrm{C}$. The value of $\mathrm{R}_{\theta \mathrm{J}-\mathrm{A}}=23^{\circ} \mathrm{C} / \mathrm{W}$ will permit device operation in an ambient temperature of $85^{\circ} \mathrm{C}$, without derating. Figure 7 gives the maximum values for $\mathrm{R} \theta_{\mathrm{J}-\mathrm{A}}$ for reliable device operation in ambient temperatures from $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

To achieve a low value of $\mathrm{R}_{\theta \text { PIN-A }}$, the following designs may be incorporated into the display system:

1. Mount the displays on a double sided maximum metalized PC board, as illustrated in Figure 8.
For single line display assemblies, a double sided maximum metalized PC board is a cost effective way to achieve a low thermal resistance to ambient. "Lands" are used instead of "traces" as the current carrying elements. Each "land" is made as wide as possible, consistent with circuit layout restrictions, to achieve metalized surface area to radiate thermal energy. Isolation strips, $0,64 \mathrm{~mm}(0.025 \mathrm{inch})$ wide, are etched from the board to electrically isolate the lands. PC board thermal resistance values in the range of $35^{\circ} \mathrm{C} / \mathrm{W}$ per device are achievable for single line display assemblies. Air flow across the display PC board assembly dissipates the heat.
2. Install a metal plate, or bar, between the display packages and the PC board, with the bar mechanically fastened to the chassis, as illustrated in Figure 9a.
For multiple display lines, a metal plate may be placed between the display packages and the PC board to conduct the heat to the chassis housing assembly. The metal plate may be electrically insulated from the PC board by a thermally conductive insulator. Heat sink bars are formed in the metal plate by milling out lead clearance slots. The ceramic package of a display rests on one of the heat sink bars with the device leads passing through the slots to make electrical contact with the PC board. The heat is transferred from the display ceramic package into the metal plate. The chassis housing acts as the thermal radiator to dissipate the heat into the surrounding environment. The metal plate must be mechanically fastened to the housing assembly, otherwise it will act only as a thermal capacitor and will not dissipate the, heat.
3. Install a heat pipe between the display packages and the PC board, with the heat pipe mechanically fastened to the chassis housing, as shown in Figure 9b.
The heat pipe is a low mass alternative to the metal plate described above. A heat pipe is a small tube, filled with a chemical, that transfers heat from the source to a heat sink with minimal thermal impedance. It is not a heat sink. The heat pipe transfers the heat directly from the display ceramic package to the chassis housing which dissipates the heat into the surrounding air.
4. Utilize a heat pipe to transfer the heat from a maximum metalized PC board to a finned heat sink mounted on the back of the assembly housing, as shown in Figure 10.
The heat pipe is placed against the back side of a maximum metalized PC board, electrically isolated by a thermally conductive insulator. When the heat pipe is connected to a finned heat sink on the back of the chassis housing, PC board to external ambient thermal resistance values in the range of 10 to $15^{\circ} \mathrm{C} / \mathrm{W}$ per device can be achieved. The heat generated by the displays is directly dissipated into the external ambient surrounding the chassis housing by the finned heat sink.

Contact the following manufacturers for information on: Heat Pipe Technology:

Noren Products
3545 Haven Avenue
Menlo Park, CA 94025
(415) 365-0632

Thermally Conductive Insulators; "Sil-Pad":
Bergquist Company 5300 Edina Indl Blvd. Minneapolis, MN 55435 (612) 835-2322
$P D=P\left(I_{C C}\right)+P\left(I_{\text {REF }}\right)+P\left(I_{\text {col }}\right)$; Total power dissipation per device.

$$
\begin{aligned}
\text { Where: } P\left(I_{c c}\right)= & I_{\mathrm{cc}}\left(V_{\mathrm{B}}=0.4 \mathrm{~V}\right) \cdot V_{\mathrm{Cc}} ; \text { Power } \\
& \text { dissipated by the two ICs when the } \\
& \text { display is blanked. }
\end{aligned}
$$

$P\left(I_{R E F}\right)=5 \cdot\left[I_{C C}\left(V_{B}=2.4 \mathrm{~V}\right)-I_{C C}\left(V_{B}=\right.\right.$ $0.4 \mathrm{~V})] \cdot \mathrm{V}_{\mathrm{CC}} \cdot(\mathrm{n} / 35) \cdot \mathrm{DF}$; Additional power dissipated by the two ICs with characters illuminated.
P($\left.I_{\text {COL }}\right)=5 \cdot I_{\text {COL }} \cdot V_{\text {COL }}(n / 35) \cdot D F$ Power dissipated by the LED pixels when the characters are illuminated.
$\mathrm{n}=15$ pixels per character for average power.
$\mathrm{n}=\mathbf{2 0}$ pixels per character for maximum power.

Figure 6a. Equations for Calculating Device Power Dissipation.

Delta $\mathrm{T}_{\mathrm{J}}(\mathrm{IC})=$ R $\boldsymbol{\theta}_{\mathrm{J}-\mathrm{PIN}} \cdot P \mathrm{P} ;$ IC junction temperature rise above device pin temperature.
Where: $\mathrm{R} \boldsymbol{\theta}_{\mathrm{J}-\mathrm{PIN}}=1 \mathbf{0}^{\boldsymbol{\circ}} \mathbf{C} / \mathbf{W}$; The thermal resistance IC junction to device pin 1.
Delta $\mathbf{T}_{\text {PIN }}=\mathbf{R} \theta_{\text {PIN-A }} \cdot P D$; Device pin temperature rise above the ambient temperature, T_{A}.
Where: $\mathbf{R} \theta_{\text {PIN-A }}=$ The thermal resistance, device pin to ambient through the PC board, on a per device basis.
$T_{J}(I C)=T_{A}+\left[\right.$ Delta T_{J} (IC) + Delta $\left.T_{\text {PIN }}\right]$; IC junction temperature, the sum of the ambient temperature and the temperature rise above ambient.

Figure 6b. Equations for Calculating IC Junction

Device Maximum Power Dissipation:

IC Maximum Power Dissipation:
$P\left(I_{c c}\right)=(0.060 A)(5.25 \mathrm{~V})=0.315 \mathrm{~W}$
$P\left(I_{\text {REF }}\right)=5(0.100 A-0.060 A)$
$(5.25 \mathrm{~V})(20 / 35)(1 / 5)=0.120 \mathrm{~W}$
Icol Power Dissipation:
$P\left(I_{\text {COL }}\right)=5(0.653 \mathrm{~A})(3.5 \mathrm{~V})(20 / 35)(1 / 5)=$ 1.306 W

Device Maximum Power Dissipation:
$P D($ MAX $)=0.315 \mathrm{~W}+0.120 \mathrm{~W}+1.306 \mathrm{~W}=$ 1.741 W

IC Junction Temperature, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$:
IC Junction Temperature Rise Above Substrate Pin:

Delta $\mathrm{T}_{\mathrm{J}}(\mathrm{IC})=\left(10^{\circ} \mathrm{C} / \mathrm{W}\right)(1.741 \mathrm{~W})=17.4^{\circ} \mathrm{C}$ Rise
Device Pin Temperature Rise Above Ambient:
Delta $\mathbf{T}($ PIN $)=\left(13^{\circ} \mathbf{C} / \mathrm{W}\right)(1.741 \mathrm{~W})=\mathbf{2 2 . 6}{ }^{\circ} \mathrm{C}$ Rise
IC Junction Temperature:

$$
\mathrm{T}_{J}(\mathrm{IC})=85^{\circ} \mathrm{C}+\left(17.4^{\circ} \mathrm{C}+22.6^{\circ} \mathrm{C}\right)=125.0^{\circ} \mathrm{C}
$$

Note:

ICC and ICOL values taken from the data sheet Electrical Characteristics. R $\theta J-\mathrm{PIN}=10^{\circ} \mathrm{C} / \mathrm{W}$ and $\mathrm{R} \theta_{\mathrm{PIN}-\mathrm{A}}=13^{\circ} \mathrm{C} / \mathrm{W}$.

Figure $\mathbf{6 c}$. Sample Calculation of Device Maximum Power Dissipation and IC Junction Temperature for an HDSP-235X Series Device Operating in an Ambient of $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$.

Figure 7. Maximum Thermal Resistance IC Junction to Ambient, R $\theta_{\mathbf{J}-A}$, vs. Ambient Temperature.
Based on: P_{D} MAX. $=1.741 \mathrm{~W}, \mathrm{~T}_{\mathrm{J}}(I C)$ MAX. $=125^{\circ} \mathrm{C}$.

Figure 8. Maximum Metalized PC Board, Double Sided, for Mounting HDSP-235X Series Displays.

Figure 9a. Metal Plate Mounted Between Display Devices and PC Board, Mechanically Fastened to Chassis Housing.

Figure 9b. Heat Pipes Mounted Between Display Devices and PC Board, Mechanically Fastened to Chassis Housing.

Figure 10. Using a Heat Pipe to Transfer Display Generated Heat to an Externally Mounted Finned Heat Sink.

Contrast Enhancement

The high light output of the HDSP-235X series displays in combination with improved contrast enhancement techniques, such as a new filter for the green HDSP-2353 display, make it possible to achieve readability in sunlight. Readability of the HDSP-235X series displays in sunlight is achieved by placing an antireflection coated, AR, circular polarized, CP, optically tinted glass filter in front of the display. The AR/CP optically tinted glass filter provides luminous contrast between the on-LED pixels and the display background, establishes a recognizable color difference between the onLED pixels and the display background and reduces the level of ambient light reflected off the front surface of the filter. This technology and the concept of Discrimination Index, as a measure of readability, are discussed in Application Note 1015.

An AR/CP optically tinted glass filter should have a single pass relative transmission between 11% and 17% at the peak wavelength of the LED radiated spectrum, provided by the optical tinting. The double pass relative transmission should be less than 1%, provided by the circular polarizer. The filter can be either neutral density or bandpass, depending upon the properties of the optical tinting. The appropriate bandpass filter, with a peak relative transmission positioned at the peak wavelength of the LED radiated spectrum, will typically have a higher luminous contrast ratio than a neutral density filter, as it absorbs ambient light in the blue and blue-green regions. The AR coating reduces reflections off the front surface of the glass filter to a nominal 0.25%.
Luminous contrast values greater than 4.0 can be achieved in $107,0001 \mathrm{~m} / \mathrm{m}^{2}(10,000 \mathrm{fc})$ sunlight, excluding the condition of a reflected image of the sun off the front surface of the filter. The luminous contrast, which includes both diffuse and specular reflectance components off the front surface of the glass filter, is the predominant factor in the determination of the Discrimination Index. The luminous contrast combined with the color difference between illuminated LED pixels and the display background, as viewed through the AR/CP filter, produce Discrimination Index values in the neighborhood of 5.0. Values of Discrimination Index greater than 4.0 have been demonstrated to correlate with acceptable readability in sunlight.
A theoretical relative transmission characteristic for an optimal bandpass filter for the HDSP-2353 is presented in Figure 11. Diffuse and specular reflectance values are given in Figure 12. One AR/CP glass filter that approaches the theoretical characteristic is the 12% GREEN passband, manufactured by Marks Polarized Corporation. Figures 13a, b and c present the Luminous Index, Chrominance Index and Discrimination Index calculations for the HDSP$2353 /$ Marks 12% GREEN filter combination. The luminous contrast ratio of 5.22 gives a Luminance Index of 4.79, combined with a Chrominance Index of 1.07 produces a Discrimination Index of 4.91.

The HDSP-2353 combined with a 14\% neutral density AR/CP glass filter can achieve a luminous contrast of 4.66 , providing a Discrimination Index of 4.60 which is an 16% improvement over the value of 3.97 calculated for the standard green HDSP-2303 display in Application Note 1015.

Table 1 lists calculated values for luminous contrast, Luminous Index, Chrominance Index and Discrimination Index for the three HDSP-238X series devices in combination with a 14% transmission neutral density AR/CP glass filter in sunlight.
Three filter manufacturers provide AR/CP optically tinted glass filters for use with the HDSP-235X series displays in sunlight:

Manufacturer		
HOYA Optics, Inc. 3400 Edison Way		
Fremont, California 94538-6138490-1880 (415)		
AR/CP Glass		
Filter	Transmis	HP Display
HLF-608-1G Yellow-Green	14\%	HDSP-2353
Bandpass		Green
HLF-608-3Y Yellowish-Orange	14\%	HDSP-2351
Bandpass		Yellow
HLF-608-5R Reddish-Orange	14\%	HDSP-2352
Bandpass		HER

Hoya offers an optical coating on the backside surface as an option.

Manufacturer		
Marks Polarized Corporation		
25B Jefryn Blvd. West		
Deer Park, New York 11729-5715 (516) 242-1300		
AR/CP Glass		
Filter	Transmiss	HP Display
MCP-0101-5-12 Yellow-Green Bandpass	12\%	HDSP-2353 Green
MCP-0201-2-22 Reddish-Orange Bandpass	22\%	HDSP-2352 HER
MCP-0301-8-10 Neutral Density Gray	10\%	HDSP-2351/ 2352/2353 Yellow/HER/ Green
Manufacturer		
Polaroid Corporation Polarizer 1 Upland Road	Division	
Norwood, Massachusetts 02062 (617) 577-2000	-2000	
AR/CP Glass		
Filter	Transmission HP Display	
HNCP10 Neutral Density	10\%	HDSP-2351/
Gray		2352/2353
		Yellow/HER/ Green

Refer to Application Note 1029 for more information on luminous contrast and sunlight readability.

Table I. Discrimination Index Values for the HDSP-235X Series Displays with Neutral Density Gray Filter

Display Device	Time Average Luminous Intensity	Luminous Contrast	Luminance Index	Chrominance Index	Discrimination Index
HDSP-2351	$680 \mu \mathrm{~cd}$	4.66	4.46	1.94	4.86
HDSP-2352	$570 \mu \mathrm{~cd}$	4.09	4.08	6.86	7.98
HDSP-2353	$680 \mu \mathrm{~cd}$	4.66	4.46	1.14	4.60

Ambient: $107,000 \mathrm{~lm} / \mathrm{m}^{2}(10,000 \mathrm{fc})$ Sunlight Filter Type: 14\% Transmission, AR/CP, Neutral Density

Filter Surface Reflectance: 0.25% Specular and 0.02\% Diffuse Luminous Intensity: Data Sheet Typical $\times 20 \%$ Duty Factor

Figure 11. Relative Transmission Characteristics for a Yellow-Green Bandpass Antireflection Coated, Circular Polarized Glass Filter for use with the HDSP-2353 Green LED Alphanumeric Display.

Figure 12. Reflectances off Surfaces of an HDSP-235X Series Display and an AR/CP Glass Filter.

$$
\begin{array}{ll}
I D=\sqrt{I L^{2}+I D C^{2}} & I D L=4.79 \\
I D=\sqrt{(4.79)^{2}+(1.07)^{2}} & I D C=1.07 \\
I D=4.91 &
\end{array}
$$

Figure 13a. Discrimination Index for the HDSP-2353 Green LED Alphanumeric Display Combined with a 12\% Transmission Yellow-Green Bandpass AR/CP Glass Filter in Indirect $107000 \mathrm{Im} / \mathrm{m}^{2}$ ($10,000 \mathrm{fc}$) sunlight.

Figure 13b. Contrast Ratio and Luminance Index.

Figure 13c. Color Difference and Chrominance Index

$$
\text { IDC }=\frac{\sqrt{\Delta \mu^{2}+\Delta \mu^{2}}}{0.027}=\frac{0.029}{0.027}=1.07
$$

High Reliability Testing

Two standard reliability testing programs are available. The TXVB program is in conformance with MIL-D-87157 Quality Level A Test Tables for hermetically sealed LED displays with 100% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. The TXV program is an HP modification to the full conformance program and offers the 100% screening of Quality Level A, Table I, and Group A, Table II.

100\% Screening

Table I. Quality Level A of MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7512-52
2. High Temperature Storage	1032	$\mathrm{T}_{A}=125^{\circ} \mathrm{C}$, Time $=24$ hours ${ }^{[3]}$
3. Temperature Cycling	1051	Condition B, 10 cycles, 15 min . dwell
4. Constant Acceleration	2006	$10,000 \mathrm{G}$'s at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C
7. Interim Electrical/Optical Tests[1]	-	icc (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V), ICOL at $\mathrm{V}_{\mathrm{B}}=$ 0.4 V and 2.4 V ; lin iVb, Clock and Data In), Illi (Vb, Clock and Data In!, IOH, IOL, Visual Function and IV Peak. $V_{I H}$ and $V_{I L}$ inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
8. Burn-In[1]	1015	Condition B at $V_{C C}=V_{B}=5.25 \mathrm{~V}, V_{C O L}=$ $3.5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$, LED ON-Time Duty Factor $=5 \%, 35$ Dots On; $t=160$ hours
9. Final Electrical Test[2]	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta I_{C C}= \pm 6 \mathrm{~mA}, \Delta I_{\mathrm{IH}}(\mathrm{clock})= \pm 10 \mu \mathrm{~A}, \\ & د \mathrm{IIH}_{\mathrm{H}}(\text { Data } \operatorname{In})= \pm 10 \mu \mathrm{~A} \\ & J_{\mathrm{OH}}= \pm 10 \% \text { of initial value, and } \\ & J_{\mathrm{V}}=-20 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
11. External Visual 1 1]	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics. The I_{OH} and I_{OL} tests are the inverse of V_{OH} and V_{OL} specified in the electrical characteristics.
3. $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ for HDSP-2353.

Table II. Group A Electrical Tests - MIL-D-87157

Subgroup/Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}{ }^{1}$	lcc at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V . Icol at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V . Ifi: V_{B}. Clock and Data In , ILL V_{B}, Clock and Data In. $1 \mathrm{IOH}, \mathrm{IOL}$ Visual Function and IV peak. $V_{\mathbb{I H}}$ and $V_{I L}$ inputs are guaranteed by the electronic shift register test.	5
Subgroup 2 DC Electrical Tests at High Temperature 1	Same as Subgroup 1, except delete Iv and visual function, $\mathrm{TA}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	7
Subgroup 3 DC Efectrical Tests at Low Temperature ${ }^{11}$	Same as Subgroup 1, except delete Iv and visual function, $T_{A}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not tested		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883 Method 2009	7

Note:

1. Limits and conditions are per the electrical/optical characteristics. The IOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.

Table IIIa. Group B, Class A and B of MIL-D-87157

Subgroup/Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices 0 Fallures
Internal Visual and Design Verification[1]	$2075{ }^{(6]}$		1 Device/ 0 Failures
Subgroup $2^{[2,3]}$ Solderability	2026	$\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}$ for 5 seconds	$L T P D=15$
Subgroup 3 Thermal Shock Temp. Cycle	1051	Condition B1, 15 min . Dwell	LTPD $=15$
Moisture Resistance ${ }^{[4]}$	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Electrical/Optical Endpoints ${ }^{5]}$	-	lec lat $V_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V , 1 COL (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V), Iff (VB, Clock and Data In), Ifl. IVB, Clock and Data In! IOH, Iol Visual Function and IV peak. ViH and VIL. inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs.)	1027	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \text { at } \mathrm{VCC}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \\ & \mathrm{VCOL}=3.5 \mathrm{~V}, \mathrm{LED} \mathrm{ON} \text {-Time Duty Fac- } \\ & \text { tor }=5 \%, 35 \text { Dots On } \end{aligned}$	LTPD $=10$
Electrical/Optical Endpoints ${ }^{[5]}$	-	Same as Subgroup 3	
Subgroup 5 Non-operating Storage) Life Test (340 hrs.)	1032	$T_{A}=+125^{\circ} \mathrm{C}$ [6$]$	LTPD $=10$
Electrical/Optical Endpoints ${ }^{(5]}$	-	Same as Subgroup 3	

Notes:

1. Visual inspection is performed throught the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend for one cycle.
5. Limits and conditions are per the electrical/optical characteristics. The $I_{O H}$ and $I_{O L}$ tests are the inverse of $V_{O H}$ and $V_{O L}$ specified in the electrical characteristics.
6. Equivalent to MIL-STD-883, Method 2014.

Table IVa. Group C, Class A and B of MIL-D-87157

Subgroup/Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Physical Dimensions	2066		2 Devices 0 Failures
Subgroup $2^{[2]}$ Lead Integrity $[7,9]$	2004	Condition B 2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Subgroup 3 Shock	2016	1500G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Z_{1}	LTPD $=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	10,000G at Y_{1} orientation	
External Visual\| 41	1010 or 1011		
Electrical/Optical Endpoints ${ }^{\text {(8] }}$	-	ICC at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V , ICOL (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V , lif VB, Clock and Data In IL I VB, Clock and Data In: IOH, loL. Visual Function and Iv peak. $V_{I H}$ and $V_{I L}$ inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.	
Subgroup 4[1,3] Salt Atmosphere	1041		$L T P D=15$
External Visual\| 4	1010 or 1011		
Subgroup 5 Bond Strength ${ }^{\text {F }}$	2037	Condition A	$\begin{gathered} \angle T P D=20 \\ 1 C=0, \end{gathered}$
Subgroup 6 Operating Life Testi6\|	1026	$\begin{aligned} & T_{A}=+85^{\circ} \mathrm{C} \text { at } \mathrm{VCC}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \\ & V_{C O L}=3.5 \mathrm{~V}, 35 \text { Dots } O n \end{aligned}$	$\lambda=10$
Electrical/Optical Endpointsi81	-	Same as Subgroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The IOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.
9. Initial conditioning is a 15 degree inward bend, 3 cycles.

HERMETIC, EXTENDED TEMPERATURE RANGE 5.0mm (.20') 5X7 ALPHANUMERIC DISPLAYS
 STANDARD RED HDSP-2310/2310TXV/2310TXVB HDSP-2311/2311TXV/2311TXVB HDSP-2312/2312TXV/2312TXVB
 HIGH EFFICIENCY RED
 HIGH PERFORMANCE GREEN

Features

- WIDE OPERATING TEMPERATURE RANGE $-55^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- TRUE HERMETIC PACKAGE FOR RED, YELLOW AND HIGH EFFICIENCY RED DISPLAYS ${ }^{[1]}$
- TXVB VERSION CONFORMS TO MIL-D-87157 QUALITY LEVEL A TEST TABLES
- FOUR COLORS Standard Red High Efficiency Red High Performance Green
- CATEGORIZED FOR LUMINOUS INTENSITY
- YELLOW AND GREEN DISPLAYS CATEGORIZED FOR COLOR
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT LED DRIVERS
- 5x7 LED MATRIX DISPLAYS FULL ASCII CHARACTER SET
- WIDE VIEWING ANGLE
- END STACKABLE
- TTL COMPATIBLE

Note:

1. The HDSP-2313 high performance green displays are epoxy sealed and conform to MIL-D-87157 hermeticity requirements.

Description

The HDSP-2310 series displays are 5.0 mm (0.20 in .) 5×7 LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red and high performance green. All displays use a 14 pin dual-in-line glass ceramic package. The hermetic HDSP-2310/-2311/-2312 displays utilize a solder-glass seal. The HDSP-2313 displays utilize an epoxy glass-to-ceramic seal. All display packages conform to the hermeticity requirements of MIL-D-87157. An on-board SIPO (Serial-In-ParallelOut) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing.

Package Dimensions

PIN FUNCTION PIN FUNCTION 1 COLUMN 1 7 DATA OUT 2 COLUMN 2 8 V_{B} 3 COLUMN 3 9 V CC 2 4 COLUMN 4 10 CLOCK 5 CLOUMN 5 11 GROUND 6 INT. CONNECT: 12 DATA IN

NOTES:

1. DIMENSLOAS IN mm tinchest.
2. UNLESS OTHERWISE SPECIFIED THE TOLERANCE ON AL L DIMENSIONS $18+0.38 \mathrm{~mm}\left(40.15^{\circ}\right)$.
3. CHARACTERS ARE CENTERED WITH RESPECT TO

LEADS WITHIN $=0.13 \mathrm{~mm}$ \# $0.005^{\prime \prime} 1$.
4. LEAD MATERIAL IS GOLD PLATED COPPER ALLOY.

Typical Applications

- MILITARY EQUIPMENT
- AVIONICS
- HIGH RELIABILITY INDUSTRIAL EQUIPMENT

Absolute Maximum Ratings (HDSP-2310/-2311/-2312/-2313)

Supply Voltage Vcc to Ground
-0.5 V to 6.0 V
Inputs, Data Out and $V_{B} \ldots$.
Column Input Voltage, VCOL. . -0.5 V to +6.0 V
Free Air Operating
Temperature Range, $\mathrm{T}_{\mathrm{A}}{ }^{1.2} \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, T_{S}
HDSP-2310/-2311/-2312 $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HDSP-2313 $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Maximum Allowable Power Dissipation at $T_{A}=25^{\circ} \mathrm{C}[1,2,3]$
1.46 Watts

Maximum Solder Temperature 1.59 mm (.063") Below Seating Plane $t<5$ secs . $260^{\circ} \mathrm{C}$

Recommended Operating

Conditions (HDSP-2310/-2311/-2312/-2313)

Parameter	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	Vcc	4.75	5.0	5.25	V	
Data Out Current, Low State	10 L			1.6	$m A$	
Dala Out Current, High State	IOH			-0.5	$m A$	
Column Input Voltage, Column On HDSP-2310	VCOL	2.4		3.5	V	4
Column Input Voltage, Column On HDSP-2311/-2312/-2313	VCOL	2.75		3.5	V	4
Setup Time	$t_{\text {setup }}$	70	45		ns	1
Hold Time	thold	30	0		ns	1
Width of Clock	twiclock:	75			ns	1
Clock Frequency	fclock	0		3	MHz	1
Clock Transition Time	TTHL			200	ns	1
Free Air Operating Temperature Range ${ }^{1,2}$	TA	-55		85	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics Over Operating Temperature Range
 (Unless otherwise specified)

Description		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		Ice	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLOCK }=\text { VOATA }=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$		45	60	mA		
		$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$			73	95	mA			
Column Current at any Column input			1 COL	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } 1 \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$			500	$\mu \mathrm{A}$	4
Column Current at any Column Input		1 COL	$V_{B}=2.4 \mathrm{~V}$			380	520	mA		
VB, Clock or Data Input Threshold High		V V H	$\mathrm{Vcc}=4.75 \mathrm{~V}$		2.0			V		
VB, Data Input Threshold Low		$V_{1 L}$					0.8	V		
Clock Input Threshold Low		$V_{\text {IL }}$					0.6	V		
Input Current Logical 1	VB. Clock	1 H	$\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$		
	Dataln	$\mathrm{liH}^{\text {H }}$				10	40	$\mu \mathrm{A}$		
Input Current Logical 0	VB, Clock	IL	$V_{C C}=5.25 \mathrm{~V} . \mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$		
	Data In	ILL				-250	-400	$\mu \mathrm{A}$		
Data Out Voltage		VOH	$V_{C C}=4.75 \mathrm{~V}, 10 \mathrm{H}=-0.5 \mathrm{~mA}, 100 \mathrm{~L}=0 \mathrm{~mA}$		2.4	3.4		V		
		VOL	$\mathrm{VCC}=4.75 \mathrm{~V}, \quad=1.6 \mathrm{~mA}$	$\mathrm{COL}=0 \mathrm{~mA}$		0.2	0.4	V		
Power Dissipation Per Package**		PD	$V_{C C}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDS on per character, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$			0.78		W	2	
Thermal Resistance IC Junction-to-Case		$\mathrm{R}_{\text {OJJ }} \mathrm{C}$				25		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device	2	
Leak Rate							5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$		

*All typical values specified at $V C C=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.
$35^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{VCC}=5.25 \mathrm{~V}$, $V_{B}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 20$ LEDs on per character, $20 \% \mathrm{DF}$.

STANDARD RED HDSP-2310

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED 4.8 Character Average:	IvPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, V C O L=3.5 \mathrm{~V} \\ & T_{j}=25^{\circ} \mathrm{C}(6), V_{B}=2.4 \mathrm{~V} \end{aligned}$	220	370		$\mu \mathrm{cd}$	3
Peak Wavelength	λ PEAK			655		nm	
Dominant Wavelength ${ }^{[7]}$	λA			639		nm	

YELLOW HDSP-2311

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{4.8}$ © Character Average	lyPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & T_{j}=25^{\circ} \mathrm{C}\|6\|, V_{B}=2.4 \mathrm{~V} \end{aligned}$	650	1140		$\mu \mathrm{cd}$	3
Peak Wavelength	入PEAK			583		nm	
Dominant Wavelength[5,7]	λ_{d}			585		nm	

HIGH EFFICIENCY RED HDSP-2312

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{4.8}$ Character Average:	IvPeak	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & T_{j}=25^{\circ} \mathrm{Cl} 6, \mathrm{~V}=2.4 \mathrm{~V} \end{aligned}$	650	1430		$\mu \mathrm{cd}$	3
Peak Wavelength	λ PEAK			635		nm	
Dominant Wavelength ${ }^{[7]}$	λ_{d}			626		nm	

HIGH PERFORMANCE GREEN HDSP-2313

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{4.8}$ (Character Average)	IvPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{1}=25^{\circ} \mathrm{C}\|6\|, V \mathrm{~V}=2.4 \mathrm{~V} \end{aligned}$	1280	2410		$\mu \mathrm{cd}$	6
Peak Wavelength	АРЕAK			568		nm	
Dominant Wavelength[5,7]	λd			574		nm	

- All typıcal values specified at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2311 and HDSP-2313 are categorized for color with the color category designated by a number code on the bottom of the package.
6. The luminous intensity is measured at $T_{A}=T_{j}=25^{\circ} \mathrm{C}$. No time is allowed for the device to warm-up prior to measurement.

Electrical Description

The HDSP-2310 series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character module is arranged as a 28 bit serial in parallel out shift register as is shown in Figure 5. The display module features Data In and Data Out terminals arrayed for easy PC board interconnection. Data Out represents the output of the 7th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the Clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5×7 diode array.

The TTL compatible V_{B} input may either be tied to $V_{c c}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
In the normal mode of operation, input data for digit 4, column 1 is loaded into the 7 on-board shift register locations 1 through 7. Column 1 data for digits 3,2 , and 1 is similarly shifted into the display shift register locations. The
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram. and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:

Lv (cd/m²) = IV (Candela)/A (Metre)2
$\operatorname{Lv}($ Footlamberts $)=\pi \mathrm{lv}=($ Candela $) / \mathrm{A}(\text { Foot })^{2}$
$A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}($ Foot $) 2$
column 1 input is now enabled for an appropriate period of time, T . A similar process is repeated for columns $2,3,4$ and 5. If the time necessary to decode and load data into the shift register is t, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second:
With five columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20%.
The ESD susceptibility of these devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.
For further applications iniormation, refer to HP Application Note 1016.

Figure 1. Switching Characteristics HDSP-2310/-2311/-2312/-2313 ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Mechanical and Thermal Considerations

The HDSP-2310 series displays are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. HDSP-2310 series displays utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$) with worst case thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} / \mathrm{watt} /$ device is possible up to ambient temperature of $37^{\circ} \mathrm{C}$. For operation above $37^{\circ} \mathrm{C}$, the maximum device dissipation should be derated linearly at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible.
Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, Vcol, can be decreased to the recommended minimum values of 2.4V for the HDSP-2310 and 2.75V for the HDSP-2311/-2312/ -2313 . Also, the average drive current can be decreased through pulse width modulation of V_{B}.
The HDSP-2310 series displays have integral glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested filter materials are provided in Figure 6. Additional

Figure 5. Block Diagram of HDSP-2310/-2311/-2312/-2313
information on filtering and contrast enhancement can be found in HP Application Note 1015.

Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

High Reliability Testing

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed LED displays with 100% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. The TXV program is an HP modification to the full conformance program and offers the 100% screening of Quality Level A, Table I, and Group A, Table II.

Part Marking System

Standard Product	With Table I and II	With Tables I, II, IIIa, IVa
HDSP-2310	HDSP-2310TXV	HDSP-2310TXVB
HDSP-2311	HDSP-2311TXV	HDSP-2311TXVB
HDSP-2312	HDSP-2312TXV	HDSP-2312TXVB
HDSP-2313	HDSP-2313TXV	HDSP-2313TXVB

Figure 2. Maximum Allowable Power Dissipation vs. Temperature

Figure 3. Relative Luminous Intensity vs. Temperature

VCOL - COLUMN VOLTAGE - VOLTS
Figure 4. Peak Column Current vs. Column Voltage

Display Color	Ambient Lighting		
	Dim	Moderate	Bright
HDSP-2310 Standard Red	Panelgraphic Dark Red 63 Ruby Red 60 Chequers Red 118 Plexiglass 2423	Polaroid HNCP 37 3M Light Control Film Panelgraphic Gray 10 Chequers Grey 105	
HDSP-2311 Yellow	Panelgraphic Yellow 27 Chequers Amber 107		Polaroid Gray HNCP10 HOYA Yellowish-Orange HLF-608-3Y Marks Gray MCP-0301-8-10
$\begin{aligned} & \text { HDSP-2312 } \\ & \text { HER } \end{aligned}$	Panelgraphic Ruby Red 60 Chequers Red 112		Polaroid Gray HNCP10 HOYA Reddish-Orange HLLF-608-5R Marks Gray MCP-0301-8-10 Marks Reddish-Orange MCP-0201-2-22
$\begin{aligned} & \text { HDSP-2313 } \\ & \text { HP Green } \end{aligned}$	Panelgraphic Green 48 Chequers Green 107		Polaroid Gray HNCP10 HOYA Yellow-Green HLF-608-1G Marks Yellow-Green MCP-0101-5-12

Figure 6. Contrast Enhancement Filters

100\% Screening
Table I. Quality Level A of MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7512-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours ${ }^{(3)}$
3. Temperature Cycling	1051	Condition B, 10 cycles, 15 min . dwell
4. Constant Acceleration	2006	10,000 G's at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C
7. Interim Electrical/Optical Tests ${ }^{[1]}$	-	Icc (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V), ICOL (at $\mathrm{V}_{\mathrm{B}}=$ 0.4 V and 2.4 V) $\mathrm{IIH}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), ILL (VB, Clock and Data In), $\mathrm{IOH}, \mathrm{IOL}$ and IV Peak. V_{IH} and V_{IL} inputs are guaranteed by the electronic shift register test. $T_{A}=25^{\circ} \mathrm{C}$
8. Burn-In[1]	1015	Condition B at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \mathrm{VCOL}=$ $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$, LED ON-Time Duty Factor $=5 \%, 35$ Dots On; $\mathrm{t}=160$ hours
9. Final Electrical Test ${ }^{[2]}$	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta l_{C C}= \pm 6 \mathrm{~mA}, \Delta l_{\mathrm{H}}(\text { clock })= \pm 10 \mu \mathrm{~A}, \\ & \Delta \mathrm{I}_{\mathrm{H}}(\text { Data } \mathrm{In})= \pm 10 \mu \mathrm{~A} \\ & \Delta l_{O H}= \pm 10 \% \text { of initial value, and } \\ & \Delta l_{\mathrm{V}}=-20 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
11. External Visualt ${ }^{\text {] }}$	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics. The I_{OH} and I_{OL} tests are the inverse of V_{OH} and V_{OL} specified in the electrical characteristics.
3. $T_{A}=100^{\circ} \mathrm{C}$ for HDSP-2313.

Table II. Group A Electrical Tests - MIL-D-87157

Subgroup/Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}[1]$	ICC (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V). ICOL (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V) $\mathrm{IIH}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), IL (VB, Clock and Data In), IOH, Iol Visual Function and Iv peak. $V_{I H}$ and $V_{I L}$. inputs are guaranteed by the electronic shift register test.	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{11}$	Same as Subgroup 1, except delete Iv and visual function, $T_{A}=+85^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{11]}$	Same as Subgroup 1, except delete Iv and visual function, $T_{A}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not tested		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883 Method 2009	7

Note:

1. Limits and conditions are per the electrical/optical characteristics. The lOH and lol tests are the inverse of VOH and VOL specified in the electrical characteristics.

Table IIIa. Group B, Class A and B of MIL-D-87157

Subgroup/Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual Design Verification[1]	$2075[7]$		1 Device f o Failures
Subgroup 2[2,3] Solderability	2026	$\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition B1, 15 min . Dwell	LTPD $=15$
Moisture Resistance ${ }^{[4]}$	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Electrical/Optical Endpoints(5]	-	ICC (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V), 1 COL (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V), $\mathrm{I}_{\mathrm{H}}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), IIL (VB, Clock and Data InI, lOH, lol Visual Function and lv peak. VIH and $V_{I L}$. inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs .)	1027	$T_{A}=+85^{\circ} \mathrm{C} \text { at } V_{C C}=V_{B}=5.25 \mathrm{~V},$ $V_{C O L}=3.5 \mathrm{~V}$, LED ON-Time Duty Factor $=5 \%, 35$ Dots On	LTPD $=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs .)	1032	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}{ }^{[6]}$	LTPD $=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	

Notes:

1. Visual inspection is performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend for one cycle.
5. Limits and conditions are per the electrical/optical characteristics. The I_{OH} and I_{OL} tests are the inverse of V_{OH} and V_{OL} specified in the electrical characteristics.
6. $T_{A}=100^{\circ} \mathrm{C}$ for HDSP-2313.
7. Equivalent to MIL-STD-883, Method 2014.

Table IVa. Group C, Class A and B of MIL-D-87157

Subgroup/Test	MH-STD-750 Method	Conditions	Sample Size
Subgroup 1 Physical Dimensions	2066		2 Devices 0 Failures
Subgroup 2[2] Lead Integrity $[7,9]$	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Subgroup 3 Shock	2016	1500G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Z_{1}	LTPD $=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	10,000 G at Y_{1} orientation	
External Visuali4]	1010 or 1011		
Electrical/Optical Endpoints ${ }^{8]}$	-	Icc (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V) 1 col (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V) lit (Ve, Clock and Data In) IIL. (VB, Clock and Data In) $\mathrm{IOH}, \mathrm{IOL}$, Visual Function and Iv peak. $V_{I H}$ and $V_{I L}$ inputs are guaranteed by the electronic shift register test. $T_{A}=25^{\circ} \mathrm{C}$.	
Subgroup 4[1,3] Salt Atmosphere	1041		LTPD $=15$
External Visual ${ }^{41}$	1010 or 1011		
Subgroup 5 Bond Strength ${ }^{5 \mid}$	2037	Condition A	$\begin{gathered} \angle T P D=20 \\ (C=0) \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{6 \mid}$	1026	$\begin{aligned} & T_{A}=+85^{\circ} \mathrm{C} \text { at } V_{C C}=V_{B}=5.25 \mathrm{~V}, \\ & V_{C O L}=3.5 \mathrm{~V}, 35 \text { Dots } O n \end{aligned}$	$\lambda=10$
Electrical/Optical Endpoints\|8]	-	Same as Subgroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The IOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.
9. Initial conditioning is a 15 degree inward bend, 3 cycles.

HERMETIC, EXTENDED TEMPERATURE RANGE 6.9mm (.27") 5X7 ALPHANUMERIC DISPLAYS
STANDARD RED HDSP-2450/2450TXV/2450TXVB
YELLOW HDSP-2451/2451TXV/2451TXVB
HIGH EFFICIENCY RED HDSP-2452/2452TXV/2452TXVB HIGH PERFORMANCE GREEN HDSP-2453/2453TXV/2453TXVB

Features

- WIDE OPERATING TEMPERATURE RANGE $-55^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- TRUE HERMETIC PACKAGE FOR RED, YELLOW AND HIGH EFFICIENCY RED DISPLAYS[1]
- TXVB VERSIONS CONFORM TO MIL-D-87157 QUALITY LEVEL A TEST TABLES
- FOUR COLORS

Standard Red Yellow
High Efficiency Red High Performance Green

- CATEGORIZED FOR LUMINOUS INTENSITY
- YELLOW AND GREEN DISPLAYS CATEGORIZED FOR COLOR
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- 5x7 LED MATRIX DISPLAYS FULL ASCII CHARACTER SET
- WIDE VIEWING ANGLE
- END STACKABLE
- TTL COMPATIBLE

Note:

1. The HDSP-2453 is epoxy sealed and complies with MIL-D87157 hermeticity requirements.

Description

The HDSP-2450 series displays are 6.9 mm (0.27 in .) 5×7 LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red and high performance green. All displays use a 28 pin dual-in-line glass ceramic package. The hermetic HDSP-2450/-2451/-2452 displays utilize a solder-glass seal. The HDSP-2453 displays utilize an epoxy glass-to-ceramic seal. All display packages conform to the hermeticity requirements of MIL-D-87157. An on-board SIPO (Serial-In-ParallelOut) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing.

Package Dimensions

Typical Applications

- military equipment
- AVIONICS
- HIGH RELIABILITY INDUSTRIAL EQUIPMENT

Absolute Maximum Ratings (HDSP-2450/-2451/-2452/-2453)

Supply Voltage Vcc to Grou	-0.5 V to 6.0 V
Inputs, Data Out and V_{B}	. V to Vcc
Column Input Voltage, Vcol	-0.5 V to +6.0V
Free Air Operating	
Temperature Range, T_{A}	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, T_{S} HDSP-2450/-2451/-2452 $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HDSP-2453 $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Maximum Allowable Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}[1,2,3]$ \qquad 1.46 Watts Maximum Solder Temperature 1.59 mm (.063") Below Seating Plane $t<5$ secs
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions (HDSP-2450/-2451/-2452/-2453)

Parameter	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	Vcc	4.75	5.0	5.25	V	
Data Out Current, Low State	10 L			1.6	mA	
Data Out Current, High State	IOH			-0.5	mA	
Column Input Voltage, Column On HDSP-2450	$\mathrm{VCOL}^{\text {col }}$	2.4		3.5	V	4
Column Input Voltage, Column On HDSP-2451/2452/2453	VCOL	2.75		3.5	V	4
Setup Time	tsetup	70	45		ns	1
Hold Time	thold	30	0		ns	1
Width of Clock	tw(Clock)	75			ns	1
Clock Frequency	folock	0		3	MHz	1
Clock Transition Time	tret			200	ns	1
Free Air Operating Temperature Range [1.2]	TA	-55		85	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics Over Operating Temperature Range
 (Unless otherwise specified)

Description		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		Icc	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLCK }=\text { VATA }=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$		45	60	mA		
		$V_{B}=2.4 \mathrm{~V}$			73	95	mA			
Column Current at any Column Input			1 COL	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCOL }=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } 1 \\ & \hline \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$			500	$\mu \mathrm{A}$	4
Column Current at any Column Input		100 L	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$			380	520	mA		
VB. Clock or Data Input Threshold High		VIH	$\mathrm{VCCO}=4.75 \mathrm{~V}$		2.0			V		
VB, Data Input Threshold Low		V_{HL}					0.8	V		
Clock Input Threshold Low		V_{IL}					0.6	V		
Input Current Logical 1	V ${ }_{\text {B }}$ Clock	liH	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$		
	Data In	lH				10	40	$\mu \mathrm{A}$		
Input Current Logical 0	VB, Clock	ILL	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$		
	Data In	1 L				-250	-400	$\mu \mathrm{A}$		
Data Out Voltage		V OH	$\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}, 1 \mathrm{ICOL}=0 \mathrm{~mA}$		2.4	3.4		V		
		Vol	$\mathrm{VCC}=4.75 \mathrm{~V} \mathrm{loL}=1.6 \mathrm{~mA}$	$\mathrm{COL}=0 \mathrm{~mA}$		0.2	0.4	V		
Power Dissipation Per Package**		Po	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDS on per character, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$			0.78		W	2	
Thermal Resistance IC Junction-to-Case		$R \theta_{J-C}$				20		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device	2	
Leak Rate							5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$		

*All typical values specified at $\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the IC junction temperature, T_{J}, does not exceed $125^{\circ} \mathrm{C}$.
2. The device should be derated linearly above $60^{\circ} \mathrm{C}$ at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at
$25^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}$ $=2.4 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} 20 \mathrm{LEDs}$ on per character, $20 \% \mathrm{DF}$.

Optical Characteristics (continued)
STANDARD RED HDSP-2450

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{4.8}$ (Character Average)	IvPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & T_{1}=25^{\circ} \mathrm{C}(6), V_{B}=2.4 \mathrm{~V} \end{aligned}$	220	370		$\mu \mathrm{cd}$	3
Peak Wavelength	λ PEAK	1		655		nm	
Dominant Wavelength ${ }^{[7]}$	λ_{d}			639	-	nm	

YELLOW HDSP-2451

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{14.8 \text {, }}$ (Character Average)	IvPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & T_{1}=25^{\circ} \mathrm{C}\|6\|, V_{B}=2.4 \mathrm{~V} \end{aligned}$	850	1400		$\mu \mathrm{cd}$	3
Peak Wavelength	λ PEAK	+		583		nm	
Dominant Wavelength $[5,7]$	λd			585		nm	

HIGH EFFICIENCY RED HDSP-2452

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{14,8 \mid}$ (Character Average)	IvPeak	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & T_{j}=25^{\circ} \mathrm{C}(6), V_{B}=2.4 \mathrm{~V} \end{aligned}$	850	1530		$\mu \mathrm{cd}$	3
Peak Wavelength	$\lambda^{\text {PPEAK }}$	\%		635		nm	
Dominant Wavelength[7]	λd			626		nm	

HIGH PERFORMANCE GREEN HDSP-2453

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{14.8}$ Character Average)	IvPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{1}=25^{\circ} \mathrm{Cl} \mid, \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	1280	2410		$\mu \mathrm{cd}$	3
Peak Wavelength	入PEAK			568		nm	
Dominant Wavelength[7]	λd			574		nm	

-All typical values specified at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2451 and HDSP-2453 are categorized for color with the color category designated by a number code on the bottom of the package.
6. The luminous intensity is measured at $T_{A}=T_{j}=25^{\circ} \mathrm{C}$. No time is allowed for the device to warm-up prior to measurement.

Electrical Description

The HDSP-2450 series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features Data In and Data Out terminals arrayed for easy PC board interconnection. Data Out represents the output of the 7th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the Clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5×7 diode array.
The TTL compatible V_{B} input may either be tied to $V_{C C}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
The normal mode of operation input data for digit 4, column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column 1 data for digits 3,2 , and 1 is similarly shifted into the display shift register locations. The column 1 input is now enabled for an appropriate period of time, T. A
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
 $L_{v}($ Footlamberts $)=\pi I_{V}($ Candela $) /$ A $($ Foot $) 2$ $A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$ Foot 2
similar process is repeated for columns 2, 3, 4 and 5 . If the time necessary to decode and load data into the shift register is t, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20%.
The ESD susceptibility of these devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.
For further applications information, refer to HP Application Note 1016.

Figure 1. Switching Characteristics HDSP-2450/-2451/-2452/-2453 ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Mechanical and Thermal Considerations

The HDSP-245X series displays are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. HDSP-245X series displays utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation ($\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}$) with worst case thermal resistance from IC junction to ambient of $45^{\circ} \mathrm{C} / \mathrm{watt} /$ device is possible up to ambient temperature of $60^{\circ} \mathrm{C}$. For operation above $60^{\circ} \mathrm{C}$, the maximum device dissipation should be derated linearly at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible.
Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, Vcol, can be decreased to the recommended minimum values of 2.4V for the HDSP-2450 and 2.75V for the HDSP-2451/ $-2452 /-2453$. Also, the average drive current can be decreased through pulse width modulation of V_{B}.
The HDSP-245X series displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested filter materials are provided in Figure 6. Additional information

Figure 5. Block Diagram of HDSP-2450/-2451/-2452/-2453
on filtering and contrast enhancement can be found in HP Application Note 1015.
Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

High Reliability Testing

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed LED displays with 100% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. The TXV program is an HP modification to the full conformance program and offers the 100% screening of Quality Level A, Table I, and Group A, Table II.

Part Marking System

Standard Product	With Table I and II	With Tables I, II, Illa, IVa
HDSP-2450	HDSP-2450TXV	HDSP-2450TXVB
HDSP-2451	HDSP-245TTXV	HDSP-2451TXVB
HDSP-2452	HDSP-2452TXV	HDSP-2452TXVB
HDSP-2453	HDSP-2453TXV	HDSP-2453TXVB

Figure 2. Maximum Allowable Power Dissipation vs. Temperature

Figure 3. Relative Luminous Intensity vs. Temperature

Figure 4. Peak Column Current vs. Column Voltage

Display Color	Ambient Lighting		
	Dim	Moderate	Bright
HDSP-2450 Standard Red	Panelgraphic Dark Red 63 Ruby Red 60 Chequers Red 118 Plexiglass 2423	Polaroid HNCP 37 3M Light Control Film Panelgraphic Gray 10 Chequers Grey 105	
HDSP-2451 Yellow	Panelgraphic Yellow 27 Chequers Amber 107		Polaroid Gray HNCP10 HOYA Yellowish-Orange HLF-608-3Y Marks Gray MCP-0301-8-10
HDSP-2452 HER	Panelgraphic Ruby Red 60 Chequers Red 112		Polaroid Gray HNCP10 HOYA Reddish-Orange HLF-608-5R Marks Gray MCP-0301-8-10 Marks Reddish-Orange MCP-0201-2-22
HDSP-2453 HP Green	Panelgraphic Green 48 Chequers Green 107		Polaroid Gray HNCP10 HOYA Yellow-Green HLF-608-1G Marks Yellow-Green MCP-0101-5-12

Figure 6. Contrast Enhancement Filters

100\% Screening
Table I. Quality Level A of MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7512-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours ${ }^{(3]}$
3. Temperature Cycling	1051	Condition B, 10 cycles, 15 min. dwell
4. Constant Acceleration	2006	10,000 G's at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C
7. Interim Electrical/Optical Tests[1]	-	Ifcc (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V), fcoL (at $V_{\mathrm{B}}=$ 0.4 V and 2.4 V) $\mathrm{I}_{\mathrm{H}}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), It. (VB, Clock and Data In), $\mathrm{IOH}, \mathrm{IO}$ and IV Peak. $V_{I H}$ and $V_{I L}$ inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
8. Burn-ln[1]	1015	Condition B at $V_{C C}=V_{B}=5.25 \mathrm{~V}, V_{C O L}=$ $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=485^{\circ} \mathrm{C}$. LED ON-Time Duty Factor $=5 \%, 35$ Dots On; $t=160$ hours
9. Final Electrical Test[2]	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta \mathrm{lCC}= \pm 6 \mathrm{~mA}, \Delta \mathrm{lHH} \text { (clock) }= \pm 8 \mu \mathrm{~A}, \\ & \Delta \mathrm{lHH}(\text { Data } \mathrm{In})= \pm 5 \mu \mathrm{~A} \\ & \Delta \mathrm{lOH}= \pm 50 \mu \mathrm{~A}, \text { and } \Delta \mathrm{lV}=-20 \%, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
11. External Visual ${ }^{\text {l }}$]	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics. The I_{OH} and I_{O} tests are the inverse of V_{OH} and V_{OL} specified in the electrical characteristics.
3. $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ for HDSP-2453.

Table II. Group A Electrical Tests — MIL-D-87157

Subgroup/Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C} 111$	Icc (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V), ICOL (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V) IIH (VB, Clock and Data In), ILL (VB, Clock and Data In), loh, lol Visual Function and IV peak. VIH and VIL inputs are guaranteed by the electronic shift register test.	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{11}$	Same as Subgroup 1, except delete lv and visual function, $T_{A}=+85^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{\text {11] }}$	Same as Subgroup 1, except delete Iv and visual function, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not applicable		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883 Method 2009	7

Note:

1. Limits and conditions are per the electrical/optical characteristics. The IOH and lol tests are the inverse of VOH and VOL specified in the electrical characteristics.

Table IIIa. Group B, Class A and B of MIL-D-87157

Subgroup/Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual and Design Verification[1]	$2075[7]$		1 Device/ 0 Failures
Subgroup $2[2,3]$ Solderability	2026	$T_{A}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition B1, 15 Min. Dwell	LTPD $=15$
Moisture Resistance [4]	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Electrical/Optical Endpoints ${ }^{[5]}$	-	Icc (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V), 1 COL (at $\mathrm{VB}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V), $\mathrm{IIH}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), IL (V_{B}, Clock and Data In), IOH: IOL Visual Function and IV peak. V_{IH} and $\mathrm{VIL}_{\mathrm{IL}}$ inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs.)	1027	$T_{A}=+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}$, $\mathrm{VCOL}=3.5 \mathrm{~V}$, LED ON-Time Duty Factor $=5 \%, 35$ Dots On	LTPD $=10$
Electrical/Optical Endpoints ${ }^{[5]}$	-	Same as Subgroup 3	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs .)	1032	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ [61	LTPD $=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	

Notes:

1. Visual inspection is performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend for one cycle.
5. Limits and conditions are per the electrical/optical characteristics. The I_{OH} and I_{OL} tests are the inverse of V_{OH} and V_{OL} specified in the electrical characteristics. 6. $T_{A}=100^{\circ} \mathrm{C}$ for HDSP-2453.
6. Equivalent to MIL-STD-883, Method 2014.

Table IVa. Group C, Class A and B of MIL-D-87157

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both
Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The loH and loL tests are the inverse of VOH and VOL specified in the electrical characteristics.
9. Initial conditioning is a 15 degree inward bend, 3 cycles.

Fiber Optics

- Fiber Optic Transmitter/Receiver Components
- Evaluation Cables, Connectors, and Accessories

4

Fiber Optics

HP's Commitment

Hewlett-Packard has been committed to Fiber Optics since the introduction of our first link in 1978. Years of technological experience with LED emitters, detectors, integrated circuits, precision optical packaging and optical fiber qualify HP to provide practical solutions for your application needs.

HP's unique combination of technologies and high volume manufacturing processes provide you with high quality transmitter and receiver components to meet a wide variety of computer, local area network, telecommunication and industrial communication needs.

Three major families of fiber optic components offer a wide range of application solutions. Each family is designed to match HP's technology to your application requirements resulting in minimum cost and maximum reliability. The design and specification of each of these families allow easy design-in and provide guaranteed performance.

Hewlett-Packard's method of specification assures guaranteed link performance and easy design-in. The transmitter optical power and receiver sensitivity are specified at the end of a length of test cable. These specifications take into account variations over temperature and connector tolerances. All families of components incorporate the fiber optic connector receptacle in the transmitter and receiver packages. Factory alignment of the emitter/detector inside the package minimizes the variation of coupled optical power, resulting in smaller dynamic range requirements for the receiver. The guaranteed distance and data rates for various transmitter/receiver pairs are shown in the following selection guide.
Hewlett-Packard offers a choice of fiber optic cable, either glass fiber or plastic, simplex or duplex, factory connectored or bulk. Connector attachment has been designed for your production line economy.

Versatile Link Components

Low cost and ease of use make this family of link components well suited for applications connecting computers to terminals, printers, plotters, test equipment, medical equipment and industrial control equipment. These links utilize 665 nm technology and 1 mm diameter plastic fiber cable. Assembling the plastic snap-in connectors onto the cable is extremely easy. The HFBR-0501 evaluation kit contains a complete working link including transmitter, receiver, 5 metres of connectored cable, extra connectors, polishing kit and technical literature.

Low Cost Miniature Link Components

This family offers a wide range of price/performance choice for computers, central office switch, PBX, local area network and industrial-control applications. These components utilize 820 nm technology and glass or plastic clad silica fiber cable. The unique design of the lensed optical coupling system makes this family of components extremely reliable. The Dual-In-Line Package requires no mounting hardware. The package is designed for auto insertion and wave soldering. These components are available for use with industry standard ST or SMA connectors. Specifications are provided for four fiber sizes: $62.5 / 125 \mu \mathrm{~m}, 50 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$ Plastic Clad Silica (PCS) cable. Evaluation kits are available for both ST and SMA connectors. A transmitter, receiver, connectored cable and technical literature are contained in the evaluation kits.

FUTURE 1300 nm PRODUCT PLANS

HP Experience with 1300 nm Materials Technology

HP began the development of 1300 nm materials and device technology in the early 1980's based on the perceived needs for greater performance and reliability in the markets for local fiber optic data links that we are committed to serve.
These markets have requirements for links with data rates in the 50 MBd to 1000 MBd range at distances anywhere from a few hundred metres to tens of kilometres. The fundamental transmission properties of fiber optic waveguides dictate that the 1300 nm wavelength region of operation will give lower attenuation and chromatic dispersion with consequently higher effective bandwidth for either multimode or single mode fibers than can be obtained at the 820850 nm first wavelength window.
These markets are also demanding a level of reliability in the 100-300 FIT range for fiber optic transceivers used in commercial applications. The fundamental physics of 1300 nm emitter devices show these materials to be less susceptible to the primary failure mechanisms found in 820 nm materials without any significant new failure modes to offset the advantage. This results in fundamentally superior reliability for 1300 nm devices, and systems which use these devices, when they are produced on controlled high volume manufacturing lines.

1300 nm PRODUCTS UNDER DEVELOPMENT

Emitter and Detector Chip Development

The first two 1300 nm device chips developed at HP were transferred onto our high volume manufacturing lines in the middle of 1987. The chips are a doubleheterostructure surface-emitting, InGaAsP LED and a top-illuminated planar InGaAs PIN detector. These chips have demonstrated extremely consistent optoelectronic performance over many production runs. They have also demonstrated outstanding reliability performance based on accelerated life tests performed at stress levels up to 200 degrees C and times up to 5 K hours. These tests have lead to estimations of failure rates which exceed by many orders of magnitude the most stringent requirements of commercial fiber optic applications.
Additional 1300 nm devices are under investigation at HP. These devices include: 1 . Advanced surfaceemitting LED structures for enhanced coupled power into multimode and single mode fibers 2. Edge emitting LED and Laser structures for use primarily with single mode optical fibers.

Integrated Product Development

Parallel development is underway to develop package designs and integrated circuits which will lead to fully integrated transmitter and receiver products. The integrated products will offer high performance to system designers in user-friendly, logic-compatible building blocks. This will allow the system designer to obtain the benefit of high performance fiber optic links without having to design the complex optics and analog circuits that are contained within these products.
HP's fiber optic package designs are concentrating on optimum optical coupling, thermal management and high volume assembly techniques. The optical designs are aimed at optimal solutions to interface our 1300 nm emitter and detector chips to multimode and single mode fibers via connectorized optical ports or fiber pigtails. The thermal design efforts are aimed at minimizing the thermal resistance from the III/V chips and the support ICs to achieve the best possible device reliability. High volume assembly techniques are essential to provide consistant performance, high
reliability and cost effective products. HP is capitalizing on its long history of packaging optoelectronic devices to develop state of the art manufacturing techniques for 1300 nm products.

Hewlett-Packard has a large variety of IC processes available for use in its integrated fiber optic transmitter and receiver products. High speed processes such as our 5 GHz silicon bipolar process are being used to provide the sophisticated digital to analog transmitter LED driver functions and very sensitive receiver amplification and digitization functions. These custom ICs are being developed with the assistance of HP created computer models of the fiber uptic links and the IC performance.

Initial Product Plans

Some of the specific integrated products that will be introduced in the near future $(1988 / 9)$ are the following:

1. High Speed $40-200 \mathrm{MBd}$ Transmitter and Receiver Pair
These products will be available initially in the package illustrated below with ST* fiber optic connector ports.
2. FDDI Compatible 125 MBd Transmitter and Receiver Pair

These products will be fully characterized and guaranteed to meet the optoelectronic requirements of the FDDI Local Area Network Standard now under development as an American National Standard by ASC X3T9.5. One version of this product will be compatible with the mechanical requirements of the duplex fiber optic connector receptacle under development in the committee.

3. Discrete Emitter and Detector Products

A series of discrete products are being investigated in a variety of package styles including TO style packages without integral optics, complete optical subassembly packages with integral optics and connector ports, and pigtailed packages for optimum coupling to single mode fibers.

For Further Information

For further information on these 1300 nm products, contact your local HP Components Sales Representive at the offices listed in the Appendix of this Catalog. You may also contact the Optical Communication Division's Product Marketing Department directly at 408-4357400 or by mail at 350 West Trimble Road, Mail Stop 90-2H2, San Jose, CA 95131-1096.
$\star \mathrm{ST}(\mathrm{R})$ is a registered trademark of AT\&T for Lightguide Cable Connectors.

HP Fiber Optic Performance Characteristics

The charts on this page illustrate the performance ranges of Hewlett-Packard's fiber optic components. Both charts are coded by family. To determine which family is appropriate for your deisgn, use the
distance/data rate chart (Figure 1). The performance of each family incorporates the entire area below each boundary. Specific component choices and their associated optical-power budget are indicated in Figure 2.

Figure 1

Fiber Optic Selection Guide

The newer transmitter/receiver product families located at the front of the selection guide provide the designer with significantly improved price/performance benefits over older products. These newer product families have been specifically designed for easy use in high volume manufacturing operations. Each can be auto-inserted and wave soldered. No mounting hardware is required.

The optical-power budget is determined by subtracting the receiver sensitivity (dBm) from the transmitter optical output power (dBm). The distance specification can be calculated simply by dividing the optical-power budget (dBm) by the cable attenuation $(\mathrm{dB} / \mathrm{km})$.

Versatile Link Family

	Features: specified	Dual-in-line packag for 1 mm dia. plas	horizontal and vertical PCB mounting, plastic snap-in connectors, fiber, TL/CMOS compatible output, auto insertable, wave solderable.	
Products/Part Numbers			Description	Page No. No
$\begin{array}{\|c} \hline \text { Evaluation Kit } \\ \text { HFBR-0501 } \end{array}$			HFBR-1524 Transmitter, HFBR-2524 Receiver, 5 metre connectored cable, connectors, bulkhead feedthrough adapter, polishing kit, literature.	8-13
Transmitter/Receiver Pairs 5 MBd High Performance Link 1 MBd High Performance Link 1 MBd Standard Performance Link 40 KBd Extended Distance Link Low Current Link Photo Interrupter Link	Horizontal HFBR-1521/2521 HFBR-1522/2522 HFBR-1524/2524 HFBR-1523/2523 HFBR-1523/1523 HFBR-1523/1523 HFBR-1522/2522	Vertical HFBR-1531/2531 HFBR-1532/2532 HFBR-1534/2534 HFBR-1533/2533 HFBR-1533/2523 HFBR-1533/1523 HFBR-1532/2532	Distance * Data Rate 65 m 5 MBd 1 MBd 35 m 1 MBd 125 m 40 KBd 40 m 40 KBd N.A. 20 KHz N.A. 500 KHz	
Plastic Fiber Cable Standard Attenuation Improved Attenuation	Simplex Various P/N Various P/N	Duplex Various P/N N.A.	Connectored cable available in standard lengths. Unconnectored cable available in 500 m reels.	
Connectors Simplex Simplex	Standard Latching Duplex	HFBR-4501 HFBR-4511 HFBR-4503 HFBR-4513 HFBR-4506	Gray connector/crimp ring Blue connector/crimp ring Gray connector/crimp ring Blue connector/crimp ring Parchment connector/crimp ring	
HFBR-4593			Plastic polishing fixture (used for all connectors), abrasive paper, lapping film	
$\begin{aligned} & \text { HFBR-4505 } \\ & \text { HFBR-4515 } \end{aligned}$			Gray bulkhead feedthrough adapter Blue bulkhead feedthrough adapter	

*Link performance at $25^{\circ} \mathrm{C}$, improved attenuation cable.

Low Cost Miniature Link Family

		Features: Dual-in-line package, interfaces directly with ST or SMA connectors, specified for use with $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$ Plastic Coated Silica (PCS) fiber. Auto insertable, wave solderable, no mounting hardware required.		
Products/Part Numbers			Description	Page No.
Evaluation Kits HFBR-0410 (ST)			HFBR-1412 transmitter, HFBR-2412 receiver, 3 metre connectored cable, literature HFBR-1402 transmitter, HFBR-2402 receiver, 2 metre connectored cable, literature	8-37
Transmitter/Receiver Pairs ST Series	SMA Series		Optical Power Budget*	
HFBR-1412/2412	HFBR	-1402/2402	20.5 dB ($200 \mu \mathrm{~m}$ fiber) 15 dB ($100 / 140 \mu \mathrm{~m}$ fiber)	
HFBR-1414/2412	HFBR	-1404/2402	$15 \mathrm{~dB}(62.5 / 125 \mu \mathrm{~m}$ fiber) $10.5 \mathrm{~dB}(50 / 125 \mu \mathrm{~m}$ fiber)	
HFBR-1412/2414	HFBR	-1402/2404	18 dB ($100 / 140 \mu \mathrm{~m}$ fiber) 13.5 dB ($100 / 140 \mu \mathrm{~m}$ fiber)	
HFBR-1414/2414	HFBR	-1404/2404	$18 \mathrm{~dB}(62.5 / 125 \mu \mathrm{~m}$ fiber) 13.5 dB ($62.5 / 125 \mu \mathrm{~m}$ fiber)	
HFBR-1412/2416	HFBR	-1402/2406	21 dB ($100 / 140 \mu \mathrm{~m}$ fiber) $19 \mathrm{~dB}(100 / 140 \mu \mathrm{~m}$ fiber)	
HFBR-1414/2416	HFBR	-1404/2406	$21 \mathrm{~dB}(62.5 / 125 \mu \mathrm{~m}$ fiber $)$ 19 dB ($62.5 / 125 \mu \mathrm{~m}$ fiber)	
HFBR-1412 Standard transmitter - ST HFBR-1402 Standard Transmitter - SMA			Optimized for large size fiber such as $100 / 140 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$ PCS	
HFBR-1414 High Power Transmitter - ST HFBR-1404 High Power Transmitter - SMA			Optimized for small size fibers such as $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$	
HFBR-2412 5 MBd Receiver - ST HFBR-2402 5 MBd Receiver - SMA			TTL/CMOS compatible receiver with -25.4 dBm sensitivity	
HFBR-2414 25 MHz Receiver - ST HFBR-2404 25 MHz Receiver - SMA			PIN - preamp receiver for data rates up to 35 MBd	
HFBR-2416 125 MHz Receiver - ST HFBR-2406 125 MHz Receiver - SMA			PIN - preamp receiver for data rates up to 150 MBd	

[^16]
Connectored Cable for Versatile Link

Features: Fully specified fiber cable, simplex or duplex (zip cord style), factory installed connectors or unconnectored, standard or improved attenuation cable, standard simplex, simplex latching or duplex connectors.

Product/ Part Number		Description																		$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
		Fiber Type		Connector Style				Cable Type		Cable Length										
		Standard Plastic	Improved Plastic	Latching Simplex	Standard Simplex	Duplex	Unconnectored	Single Channel	Dual Channel	0.1 M	0.5 M	1 M	5 M	10 M	20 M	30 M	45 M	60 M	500 M	
New P/N	Old HP P/N	P	0	L	N	M	U	S	0	1 DM	5 DM	001	005	010	020	030	045	060	500	
HFBR-PNS1DM	-3511	X			X			X		X										8-13
-PNS5DM	-3512	X			X			X			X									
-PNS001	-3513	X			X			X				X								
-PNS005	-3514	X			X			X					X							
-PNS010	-3515	X			X			X						X						
-PNSO20	-3516	X			X			X							X					
-PNS030	-3517	X			X			X								X				
-PNS045	-3518	X			X			X									X			
-PNS060	-3519	X			X			X										X		
HFBR-QNS001	-3530		X		X			X				X								
-QNS005	-3530		X		X			X					X							
-QNS010	-3530		X		X			X						X						
-QNS020	-3530		X		X			X							X					
-QNS030	-3530		X		X			X								X				
-QNS045	-3530		X		X			X									X			
-QNS060	-3530		X		X			X										X		
HFBR-PLSTDM	-3521	x		X				X		x										
-PLS5DM	-3522	X		X				X			X									
-PLS001	-3523	X		X				X				X								
-PLS005	-3524	X		X				X					X							
-PLS010	-3525	X		X				X						X						
-PLSO20	-3526	X		X				X							X					
-PLS030	-3527	X		X				X								X				
-PLS045	-3528	X		X				X									X			
-PLS060	-3529	X		X				X										X		
HFBR-QLS001	-3540		X	X				X				X								
-QLS005	-3540		X	X				X					X							
-QLS010	-3540		X	X				X						X						
-QLS020	-3540		X	X				X							X					
-QLS030	. 3540		X	X				X								X				
-QLS045	-3540		X	X				X									X			
-QLS060	-3540		X	X				X										X		
HFBR-PMD5DM	-3632	X				x			x		X									
-PMD001	-3633	X				X			X			X								
-PMD005	-3634	X				X			X				X							
-PMD010	-3635	X				X			X					X						
-PMD020	-3636	X				X			X						X					
-PMD030	-3637	X				X			X							X				
-PMD045	-3638	X				X			X								X			
-PMD060	-3639	X				X			X									X		
HFBR-PND5DM	-3612	X			X				X		X									
-PND001	-3613	X			X				X			X								
-PND005	-3614	X			X				X				X							
-PND010	-3615	X			X				X					X						
-PND020	-3616	X			X				X						X					
-PND030	-3617	X			X				X							X				
-PND045	-3618	X			X				X								X			
-PND060	-3619	X			X				X									X		
HFBR-PUS500	-3581	X					X	X											X	
-QUS500	-3582		X				X	X											X	
-PUD500	-3681	X					X		X										X	

ST Connectored Evaluation Cables

SMA Connectored Cable

			$\begin{aligned} & \text { iures: } \mathrm{Fl} \\ & \text { unconn } \end{aligned}$	y specified tored.	fiber cabl	simplex	or dup	$x\langle z i p$	cord st	le), fa	tory in	stalled	MA conn	ctors
Product/ Part Number	Old HP P/N	Description												$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
		Fiber Size	Connector Style		Cable Type		Cable Length							
		100/140	SMA	Unconnectored	Single Channel	Dual Channel	1 M	5 M	10 M	25 M	50 M	100 M	1000 M	
		A	W	U	S	D	001	005	010	025	050	100	1 KM	
HFBR-AWS001	-3000	X	X		X		X							8-57
-AWS005	-3000	X	X		X			X						
-AWS010	-3021	X	X		X				X					
-AWS025	-3000	X	X		X					X				
-AWS050	-3000	X	x		X						X			
-AWS100	-3000	X	x		X							X		
HFBR-AWD005	-3100	X	X			X		X						
-AWD010	-3100	X	X			X			X					
-AWD025	-3100	X	X			X				X				
-AWD050	-3100	X	X			X					X			
-AWD100	-3100	X	X			X						X		
HFBR-AUS100	-3200	X		X	X							X		
-AUS1KM	-3200	X		X	X			.					X	
HFBR-AUD100	-3300	X		X		X						X		
-AUD1KM	-3300	X		X		X							X	

Snap-In Link Family

*Link performance at $25^{\circ} \mathrm{C}$, improved attenuation cable.

Miniature Link Family

	Features: Interfaces directly with SMA style connectors, specified for use with $100 / 140 \mu \mathrm{~m}$ fiber. Precision metal connector interface. FOR NEW DESIGNS: Refer to the Low Cost Miniature Link Family on page 8-37 to achieve the best price/performance value.		
Products/Part Numbers			Page No.
Transmitter/Receiver Pairs HFBR-1202/-2202 HFBR-1202/-2204 HFBR-1204/-2202 HFBR-1204/-2204 HFBR-1204/-2208	Distance* 800 metre 1200 metre 1800 metre 2100 metre 500 metre (typical)	Data Rate* 5 MBd 40 MBd 5 MBd 40 MBd 125 MBd (typical)	8-78
Mounting Hardware HFBR-4202	PCB mounting bracket, EMI for HFBR-1202/-1204/-2202	hardware	

*Link performance at $25^{\circ} \mathrm{C}$.

The following products are available but not recommended for new designs. For literature on these products please contact your local HP sales office.

Products/Part Nos.	Description/Features
Transmitter/Receiver Pairs HFBR-1001/-2001 HFBR-1002/-2001	Specified for $100 / 140 \mu \mathrm{~m}$ fiber, HP style connector, TTL compatible, Link monitor. $\frac{\text { Distance }}{}{ }^{*}$ Data Rate Comector Style 180 metre * $\frac{\text { Conned }}{\text { HFBR-4000 }}$ 1500 metre 10 MBd HFBR-4000
RS-232-C/V. 24 to Fiber Optic Multiplexer 39301A Multiplexer	1250 metres length, $19.2 \mathrm{kbps} /$ channel data rate, 16 channels RS-232-C Input/Output
PIN Photodiodes 5082-4200 Series	High Speed PIN Photodiodes for use in Fiber Optic Applications Variety of packages, high speed, low capacitance, low noise.
HP Style Connectors HFBR-4000 HFBR-3099	Metal body, metal ferrule Connector-connector junction, bulkhead feedthrough for HFBR-4000 connector.
HP Style Connector Assembly Tools HFBR-0100 HFBR-0101 HFBR-0102	Field installation kit for HFBR-4000 connectors (includes case, tools, consumables) Replacement consumables for HFBR-0100 Kit Custom tool set only

HP Style Connectored Cable		Fully specified $100 / 140 \mu \mathrm{~m}$ fiber cable, simplex or duplex (zip cord style), factory installed HP style connectors										
Product/ Part Number	Old HP P/N	Description										
		Fiber Size	Connector Style		Cable Type		Cable Length					
		100/140	$\begin{aligned} & \text { HFBR- } \\ & 4000 \end{aligned}$	Unconnectored	Single Channel	Dual Channel	1 M	5 M	10 M	25 M	50 M	100 M
		A	H	U	S	D	001	005	010	025	050	100
HFBR-AHS001	-3000	X	X	:	X		X					
-AHS005	-3000	X	X		X			X				
-AHS010	-3001	X	X		X				X			
-AHS025	-3000	X	X		X					X		
-AHSO50	-3000	X	X		X						X	
-AHS 100	-3000	X	X		X							X
HFBR-AHD005	-3100	X	X			X		X				
-AHD010	-3100	X	X			X			X			
-AHD025	-3100	X	x			X				X		
-AHD050	-3100	X	X			X					X	
-AHD100	-3100	X	X			X						X

Features

- LOW COST FIBER OPTIC COMPONENTS
- GUARANTEED LINK PERFORMANCE OVER TEMPERATURE
High Speed Links: dc to 5 MBd Extended Distance Links: up to 82 m Low Current Link: 6 mA Peak Supply Current Low Cost Standard Link: dc to 1 MBd Photo Interrupter Link
- COMPACT, LOW PROFILE PACKAGES

Horizontal and Vertical Mounting
"N-plex" Stackable
Flame Retardant

- EASY TO USE RECEIVERS

TTL, CMOS Compatible Output Level
High Noise Immunity

- EASY CONNECTORING

Simplex, Duplex and Latching Connectors
Flame Retardant Material

- LOW LOSS PLASTIC CABLE

Selected Super Low Loss Simplex
Simplex and Zip Cord Style Duplex Flame Retardant

- NO OPTICAL DESIGN REQUIRED
- aUto-Insertable and wave solderable
- DEMONSTRATED RELIABILITY @ $40^{\circ} \mathrm{C}$ EXCEEDS 3 MILLION HOURS MTBF

Description

The Versatile Link series is a complete family of fiber optic link components for applications requiring a low cost solution. The HFBR-0501 series includes transmitters, receivers, connectors and cable specified for easy design. This series of components is ideal for solving problems with voltage isolation/insulation, EMI/RFI immunity or data security. The Link design is simplified by the logic compatible receivers and complete specifications for each component. No optical design is necessary. The key optical and electrical parameters of links configured with the HFBR-0501 family are fully guaranteed from 0° to $70^{\circ} \mathrm{C}$. A wide variety of package configurations and connectors provide the designer with numerous mechanical solutions to meet application requirements. The transmitter and receiver components have been designed for use in high volume/low cost assembly processes such as autoinsertion and wave soldering.

Versatile Link Applications

- Reduction of lightning/voltage transient susceptability
- Motor controller triggering
- Data communications and Local Area Networks
- Electromagnetic Compatibility (EMC) for regulated systems: FCC, VDE, CSA, etc.
- Tempest-secure data processing equipment
- Isolation in test and measurement instruments
- Error free signalling for industrial and manufacturing equipment
- Automotive communications and control networks
- Power supply control
- Communication and isolation in medical instruments
- Noise immune communication in audio and video equipment
- Remote photo interrupter for office and industrial equipment
- Robotics communication

Link Selection Guide

Specific Product Numbers and Component Selection Guide on page 23.

Versatile Link		Guaranteed Minimum Link Length Metres				Typical Link LengthMetres		Page
		$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		
		Standard Cable	Improved Cable	Standard Cable	Improved Cable	Standard Cable	Improved Cable	
High Performance	5 MBd	12	17	17	24	35	40	8-16
High Performance	1 MBd	24	34	30	41	50	65	8-16
Low Current Link	40 kBd	8	11	-	-	30	35	8-16
Extended Distance Link	40 kBd	60	82	65	90	100	125	8-16
Standard	1 MBd	5	7	11	15	30	40	8-16
Photo Interrupter	500 kHz	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	8-22
Evaluation Kit	1 MBd (Standard)	Contents: Horizontal transmitter, horizontal receiver packages; 5 metres of simplex cable with simplex and simplex latching connectors installed; individual connectors: simplex, duplex, simplex latching, bulkhead adapter; polishing tool, abrasive paper, literature.						8-35

Versatile Link Product Family
 $5 \mathrm{MBd}, 1 \mathrm{MBd}$ and 40 kBd FIBER OPTIC LINKS

Simplex Link - Horizontal Packages

Duplex Link - Combination of Horizontal \& Vertical Packages

Simplex Link - Vertical Packages

N-Plex Link - Combinations

Table of Contents

Versatile Link Configurations2
Versatile Link Product Description 3
Designing with Versatile Link 3
Manufacturing with Versatile Link 4
Versatile Link Performance
High Performance 5 MBd Link 4
High Performance 1 MBd Link 4
Low Current Extended Distance 40 kBd Link 4
Standard 1 MBd Link 4
Versatile Link Design Considerations 7
Photo-Interrupter Link 10
Transmitter Specifications 11
Receiver Specifications 13
Cable Specifications 15
Connector Descriptions 16
Connector Specifications 18
Connectoring 18
Versatile Link Mechanical Dimensions 20
Component Selection Guide 23

Versatile Link Product Description

Mechanical: The compact Versatile Link package is made of a flame retardant material (UL V-0) in a standard, eight pin dual-in-line package (DIP) with 7.6 millimetre (0.3 inch) pin spacing. Vertical and horizontal mountable parts are available. These low profile Versatile Link packages are stackable and are enclosed to provide a dust resistant seal. Snap action simplex, simplex latching, and duplex connectors are offered with simplex or duplex cables.
Electrical: Transmitters incorporate a 660 nanometre light emitting diode (LED). Receivers include a monolithic DC coupled, digital IC receiver with open collector Schottky output transistor. An internal pullup resistor is available for use in the HFBR-25X1/2/4 receivers. Transmitter and receiver are compatible with standard TTL circuitry. A shield has been integrated into the receiver IC to provide additional, localized noise immunity.

Optical: Internal optics have been optimized for use with 1 mm diameter plastic optical fiber. Versatile Link specifications incorporate all component interface losses. Therefore, the need of optical calculations for common link applications is eliminated.

Optical power budget is graphically displayed to facilitate electrical design for customized links.

Designing with Versatile Link

When designing with Versatile Link, the following topics should be considered:

Distance and Data Rate

Distances and data rates guaranteed with Versatile Link depend upon the Versatile Link transmitter/receiver pair chosen. See the Versatile Link guide (Page 4).

Typically, a data rate requirement is first specified. This determines the choice of the $5 \mathrm{MBd}, 1 \mathrm{MBd}$ or 40 kBd Versatile Link components. Distances guaranteed with Versatile Link then depend upon choice of cable, specific drive condition and circuit configuration. Extended distance operation is possible with pulsed operation of the LED (see Figure 2a, 2b, 2c, 2d, 2 e and 2 f dotted lines.)

Drive circuits are described on page 7. Cable is discussed on page 15. Pulsed operation of the LED at larger current will result in increased pulse width distortion of the receiver output signal.
Versatile Link can also be used as a photo interrupter at frequencies up to 500 KHz . This is described on page 10.

Package Orientation

As shown in the photograph, Versatile Link is available in vertical and horizontal packages. Performance and pinouts for the two packages are identical. To provide additional attachment support for the Vertical Versatile Link housing, the designer has the option of using a self-tapping screw (2-56) through a printed circuit board into a mounting hole at the bottom of the package. For most applications this is not necessary.

Connector Style

As shown, Versatile Link can be used with three snap-in connectors: simplex, simplex latching, and duplex.
The simplex connector is intended for applications requiring simple, stable connection capability with a moderate retention force. The simplex latching connector provides similar convenience with a larger retention force. Connector/cable retention force can be improved by using a RTV adhesive within the connector. A suggested adhesive is 3M Company product: RTV-739.
Versatile Link components and simplex connectors are color coded to eliminate confusion when making connections. Versatile Link transmitters are gray and Versatile Link receivers are blue.

The duplex connector connects a cable containing two fibers to two similar Versatile Link components. A lockout feature ensures the connection can be made in only one orientation. The duplex connector is intended for Versatile Link components " n-plexed" together, as discussed in the next section.

N-plexing

Versatile Link components can be stacked or interlocked (n-plexed) together to minimize use of printed circuit board space and to provide efficient, dual connections via the duplex connector. Up to eight identical package styles can be n-plexed and inserted by hand into a printed circuit board without difficulty. However, auto-insertability of stacked units becomes limited when more than two packages are n-plexed together.

Cable

Two cable versions are available: Simplex (single channel) and color coded duplex (dual channel). Each version of the cable is flame retardant (UL VW-1) and of low optical loss.
Two grades of the simplex cable are available: standard cable and improved cable. Improved cable is recommended for applications requiring longer distance needs, as reflected in the Link Selection Guide on page 2. Flexible cable construction allows simple cable installation techniques. Cables are discussed in detail on page 15.

Accessories

A variety of accessories are available. The bulkhead feedthrough adapter discussed on page 16 can be used to mate two simplex snap-in connectors. It can be used either as a splice or a panel feedthrough for a panel thickness $<4.1 \mathrm{~mm}$ (0.16 inch).

Several accessories are offered to help with proper fiber/ connector polishing. These are shown on page 16.

Manufacturing with Versatile Link

Non-stacked Versatile Link parts require no special handling during assembly of units onto printed circuit boards. Versatile Link components are auto-insertable. When wave soldering is performed with Versatile Link components, an optical port plug is recommended to be used to prevent contamination of the port. Commercially available port plugs are obtainable from companies such as Sinclair \& Rush Co., Saint Louis, MO. Water soluable fluxes, not rosin based fluxes, are recommended for use with Versatile Link components. Proper cleaners are Freon TMS (DuPont) and halide-free solvents.
Refer to the Connectoring Section on page 18 for details of connectors and cable connectoring.

Versatile Link Performance

5 MEGABITS PER SECOND (NRZ)
 1 MEGABIT PER SECOND (NRZ)
 40 KILOBITS PER SECOND (NRZ)

The 5 Megabaud (MBd) Versatile Link is guaranteed to perform from DC to $5 \mathrm{Mb} / \mathrm{s}$ (megabits per second, NRZ). Distances up to 17 metres are guaranteed when the transmitter is driven with a current of 60 milliamperes. This represents worst case performance throughout the temperature range of 0 to 70 degrees centigrade. With the required drive circuit of Figure 1b and at 60 milliamp drive current, the 1 Megabaud Versatile Link has guaranteed performance over 0 to 70 degrees centigrade from DC to $1 \mathrm{Mb} / \mathrm{s}$ (NRZ) up to 34 metres.
The low current link requires only 6 mA peak supply current for the transmitter and receiver combined to achieve an 11 metre link. Extended distances up to 82 metres can
be achieved at a maximum transmitter drive current of 60 mA peak. The 40 kBd Versatile Link is guaranteed to perform from DC to $40 \mathrm{~kb} / \mathrm{s}$ (NRZ) over 0° to $70^{\circ} \mathrm{C}$ up to the distances just described.
Receivers are compatible with LSTTL, TTL, CMOS logic levels and offer a choice of an internal pull-up resistor or an open collector output. Horizontal or vertical packages provide identical performance and are compatible with simplex, simplex latching, and duplex connectors. Refer to the connector section (page 16) and the cable section (page 15) for further information about these products. A list of specific part numbers is found below and in the Selection Guide on page 23.

VERSATILE LINK GUIDE

Versatile Link		Unit	Horizontal Package	Vertical Package	Cable Link Length		
		Standard Cable			Improved Cable		
High Performance	5 MBd		T_{x}	HFBR-1521	HFBR-1531	12 metres	17 metres
		R_{X}	HFBR-2521	HFBR-2531			
High Performance	1 MBd	T_{x}	HFBR-1522	HFBR-1532	24 metres	34 metres	
		R_{X}	HFBR-2522	HFBR-2532			
Low Current Extended Distance	40 kBd	$\begin{aligned} & T_{x} \\ & R_{x} \end{aligned}$	HFBR-1523 HFBR-2523	HFBR-1533 HFBR-2533	8 metres/ 60 metres	11 metres 82 metres	
Standard	1 MBd	T_{X}	HFBR-1524	HFBR-1534	5 metres	7 metres	
		R_{X}	HFBR-2524	HFBR-2534			

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min.	Max.	Units	Ref.
Ambient Temperature		TA	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current		IF PK	10	750	mA	Note 1,8
Avg. Forward Current		If AV	-	60	mA	-
Receiver Supply Voltage	HFBR-25×3	Vcc	4.50	5.50	V	\square
	HFBR-25×1/25 $\times 2 / 25 \times 4$		4.75	5.25		Note 2
Output Voltage	HFBR-25×3	Vo		VCC	V	
	HFBR-25×1/25 $2 / 25 \times 4$		-	18		
Fanout (TTL)	HFBR-25X3	N		1	-	
	HFBR-25×1/25 $2 / 25 \times 4$			5		

SYSTEM PERFORMANCE Under recommended operating conditions unless otherwise specified.

	Parameter	Symbol	Min.	Typ. ${ }^{55]}$	Max.	Units	Conditions	Ref.
High Performance 5 MBd	Data Rate		do		5	MBd	$\mathrm{BER} \leq 10^{-9}$, PRBS: 2^{7-1}	
	Link Distance with Standard Cable	ℓ	12			m	$\mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}$	Fig. 2a Note 7
			17	35		m	$\mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	Link Distance with Improved Cable	ℓ	17			m	$\mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}$	Fig. 2b Note 7
			24	40		m	$I_{\text {FPK }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	Propagation Delay	$t_{\text {PLH }}$		80	140	ns	$\begin{aligned} & R_{L}=560 \Omega, C_{L}=30 \mathrm{pF} \\ & \ell=0.5 \text { metre } \\ & -21.6 \leq P_{R} \leq-9.5 \mathrm{dBm} \end{aligned}$	Fig. 3, 5 Notes 3, 6
		$t_{\text {PHL }}$		50	140	ns		
	Pulse Width Distortion	t_{D}		30		ns	$\begin{aligned} & P_{R}=-15 \mathrm{dBm} \\ & R_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 3, 4 Note 4
High Performance 1 MBd	Data Rate		dc		1	MBd	BER $\leq 10^{-9}$, PRBS: 2^{7-1}	
	Link Distance with Standard Cable	ℓ	24			m	$\mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}$	Fig. 2a Notes 1, 7, 8
			30	50		m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
			30			m	$\mathrm{I}_{\mathrm{FPK}}=120 \mathrm{~mA}$	
			36	60		m	$\mathrm{I}_{\mathrm{FPK}}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C} \mid$ Factor	
	Link Distance with Improved Cable	ℓ	34			m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}$	Fig. 2b Notes 1, 7, 8
			41	65		m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
			44			m	$\mathrm{I}_{\mathrm{FPK}}=120 \mathrm{~mA}$	
			51	75		m	$I_{\text {FPK }}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Factor	
	Propagation Delay	$\mathrm{tPLH}^{\text {P }}$		180	250	ns	$\begin{aligned} & R_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \ell=0.5 \text { metre } \\ & \mathrm{P}_{\mathrm{R}}=-24 \mathrm{dBm} \end{aligned}$	Fig. 3, 5 Notes 3, 8
		$\mathrm{tPHL}^{\text {ch }}$		100	140	ns		
	Pulse Width Distortion	t_{0}		80		ns	$\begin{aligned} & P_{R}=-24 \mathrm{dBm} \\ & R_{L}=560 \Omega, C_{L}=30 \mathrm{pF} \end{aligned}$	Fig. 3, 4 Notes 4, 8

SYSTEM PERFORMANCE Under recommended operating conditions unless otherwise specified.

Link	Parameter	Symbol	Min.	Typ. ${ }^{[5]}$	Max.	Units	Conditions	Ret.
Low Current/ Extended Distance 40 kBd	Data Rate		do		40	kBd	BER $\leq 10^{-9}$, PRBS: 2^{7-1}	
	Link DistancewithStandard Cable	ℓ	8	30		m	$\mathrm{IFPK}=2 \mathrm{~mA}$	Fig. $2 c$ Note 7
			60	100		m	$\mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}$	
	Link DistancewithImproved Cable	Q	11	35		m	$\mathrm{I}_{\text {FPK }}=2 \mathrm{~mA}$	Fig. 2d Note 7
			82	125		m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}$	
	Propagation Delay	$t_{\text {PLH }}$		4		$\mu \mathrm{s}$	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =3.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & =1 \text { metre } \\ \mathrm{P}_{\mathrm{R}} & =-25 \mathrm{dBm} \end{aligned}$	Fig. 3, 7 Note 3
		$\mathrm{t}_{\mathrm{PHL}}$		2.5		$\mu \mathrm{S}$		
	Pulse Width Distortion	t_{0}			7.0	$\mu \mathrm{S}$	$\begin{aligned} & -39 \leq P_{R} \leq-14 \mathrm{dBm} \\ & R_{L}=3.3 \mathrm{k} \mathrm{\Omega}, C_{L}=30 \mathrm{pF} \end{aligned}$	Fig. 3, 6 Note 4
Standard 1 MBd	Data Rate		dc		1	MBd	$B E R \leq 10^{-9}$, PRBS: $2^{7}-1$	
	Link Distance with Standard Cable	Q	5			m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}$	Fig. $2 e$ Notes 1, 7, 8
			11	30		m	$I_{\text {FPK }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
			12			m	$\mathrm{I}_{\text {FPK }}=120 \mathrm{~mA} \quad 50 \%$	
			18	40		m	$\mathrm{I}_{\text {FPK }}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Factor	
	Link Distance with Improved Cable	ℓ	7			m	$\mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}$	Fig. 21 Notes 1,7,8
			15	40		m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
			17			m	¢PK$=120 \mathrm{~mA} \quad 50 \%$	
			25	50		m	$\mathrm{IFPK}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Factor	
	Propagation Delay	tple		180	250	ns	$\begin{aligned} & R_{L}=560 \Omega, C_{L}=30 \mathrm{pF} \\ & \mathrm{C}=0.5 \text { metre } \\ & P_{\mathrm{R}}=-20 \mathrm{dBm} \end{aligned}$	Fig. 3, 5 Notes 3, 8
		${ }_{\text {tPHL }}$		100	140	ns		
	Pulse Width Distortion	t_{D}		80		ns	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 3, 4 Notes 4, 8

Notes:

1. For $I_{F P K}>80 \mathrm{~mA}$, the duty factor must be such as to keep $I_{\text {FDC }} \leq 80 \mathrm{~mA}$. In addition, for $\mathrm{I}_{\text {FPK }}>80 \mathrm{~mA}$, the following rules for pulse width apply:
$\mathrm{I}_{\text {FPK }} \leq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mathrm{~ms}$
$I_{F P K} \geq 160 \mathrm{~mA}:$ Pulse width $\leq 1 \mu \mathrm{~s}$, period $\geq 20 \mu \mathrm{~S}$.
2. It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 2 to pin 3 of the HFBR$25 \times 1 / 25 \times 2 / 25 \times 4$ receivers and from pin 2 to pin 4 of the HFBR-25X3 receiver. Total lead length between both ends of the capacitor and the supply pins should not exceed 20 mm .
3. The propagation delay for one metre of cable is typically 5 ns .
4. $t_{D}=t_{P L H}-t_{P H L}$.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. Typical propagation delay is measured at $P_{R}=-15 \mathrm{dBm}$.
7. Estimated typical link life expectancy at $40^{\circ} \mathrm{C}$ exceeds 10 years at 60 mA .
8. Pulsed LED operation at $\mathrm{I}_{\mathrm{F}}>80 \mathrm{~mA}$ will cause increased link $t_{\text {PLH }}$ propagation delay time. This extended $t_{\text {PLH }}$ time contributes to increased pulse width distortion of the receiver output signal.
9. Pins 5 and 8 of both the transmitter and receiver are for mounting and retaining purposes only. Do not electrically connect pin 5 and/or pin 8.

Versatile Link Design Considerations

Simple interface circuits for $5 \mathrm{MBd}, 1 \mathrm{MBd}$ and 40 kBd applications are shown in Figure 1. The value of the transmitter drive current depends upon the desired link distance. This is shown in Figures 2a through 2f. After selecting a value of transmitter drive current, I_{F}, the value of R1 can be determined with the aid of Figures 1a, 1b and 1d. Note that the 5 MBd and 40 kBd Versatile Links can have an overdrive and underdrive limit for the chosen value of I_{F} while the 1 MBd Versatile Link has only an underdrive limit. Dotted lines in Figures 2a through $2 f$
represent pulsed operation for extended link distance requirements. For the 1 MBd interface circuit, the R1C1 time constant must be $>75 \mathrm{~ns}$. Conditions described in Note 1 must be met for pulsed operation. Refer to Note 8 for performance comments when pulsed operation is used.
All specifications are guardbanded for worst case conditions between 0 to 70 degrees centigrade. All tolerances and variations (including end-of-life transmitter power, receiver sensitivity, coupling variances, connector and cable variations) are taken into account.

Figure 1a. Typical 5 MBd Interface Circuit;

1e. Electrical Pin Assignments for 40 kBd Transmitters and Receivers

Figure 2a. Guaranteed System Performance for the HFBR-15X1/25X1 and HFBR-15X2/25X2 Links with Standard Cable

Figure 2c. Guaranteed System Performance for the HFBR-15X3/25X3 Link with Standard Cable

Figure 2e. Guaranteed System Performance for the HFBR-15X4/25X4 Link with Standard Cable

Figure 2b. Guaranteed System Performance for the HFBR-15X1/25X1 and HFBR-15X2/25X2 Links with Improved Cable

Figure 2d. Guaranteed System Performance for the HFBR-15X3/25X3 Link with Improved Cable

Figure 2f. Guaranteed System Performance for the HFBR-15X4/25X4 Link with Improved Cable

Figure 3. Propagation Delay Test Circuits and Waveforms: a) $\mathbf{4 0} \mathrm{kBd}$, b) $5 \mathrm{MBd}, \mathrm{c}) 1 \mathrm{MBd}$, d) Test Waveforms

Figure 4. Typical HFBR-15X1/25X1, HFBR-15X2/25X2 and HFBR-15X4/25X4 Link Pulse Width Distortion vs. Optical Power

Figure 5. Typical HFBR-15X1/25X1, HFBR-15X2/25X2 and HFBR-15X4/25X4 Link Propagation Delay vs. Optical Power

Figure 6. Typical HFBR-15X3/25X3 Link Pulse Width Distortion vs. Optical Power

Figure 7. Typical HFBR-15X3/25X3 Link Propagation Delay vs. Optical Power

Versatile Link Photo Interrupter

$20 \mathrm{KHz}(40 \mathrm{kBd})$ LINK, 500 kHz (1 MBd) LINK

Versatile Link may be used as a photo-interrupter in optical switches, shaft position sensors, velocity sensors, position sensors, and other similar applications. This link is particularly useful where high voltage, electrical noise, or explosive environments prohibit the use of electromechanical or optoelectronic sensors. The $20 \mathrm{kHz}(40 \mathrm{kBd})$ transmitter/receiver pair has an optical power budget of 25 dB . The 500 kHz (1 MBd) transmitter/receiver pair has an optical power budget of 10 dB . Total system losses (cable attenuation, air gap loss, etc.) must not exceed the link optical power budget.

RECOMMENDED OPERATING CONDITIONS

Recommended operating conditions are identical to those of the Low Current/Extended Distance and High Performance 1 MBd links. Refer to page 5.

SYSTEM PERFORMANCE

These specification apply when using Standard and Improved cable and, unless otherwise specified, under recommended operating conditions. Refer to the appropriate link data on pages 7 and 8 for additional design information.

Parameter	Min.	Typ. [1]	Max.	Units	Conditions	Ret.
HFBR-15×3/25X3						
Max, Count Frequency	dc		20	kHz		
Optical Power Budget	25.4			dB	$\mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Note 2
	27.8	34		dB	$\mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
HFBR-15X2/25X2						
Max. Count Frequency	dc		500	kHz		
Optical Power Budget	10.4			dB	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$.	Note 2
	12.8	15.6		dB	$1_{\text {FPK }}=60 \mathrm{~mA}_{1} 25^{\circ} \mathrm{C}$	

Notes:

1. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
2. Optical Power Budget $=P_{T}$ min. $-P_{R}(L)$ min. Refer to pages 11-14 for additional design information.

Photo Interrupter Link Design Considerations

The fiber optic Transmitter/Receiver pair is intended for applications where the photo interrupter must be physically separated from the optoelectronic emitter and detector. This separation would be useful where high voltage, electrical noise or explosive environments prohibit the use of electronic devices. To ensure reliable long term operation, link design for this application should operate with an ample optical power margin $\alpha_{M} \geq 3 \mathrm{~dB}$, since the exposed fiber ends are subject to environmental contamination that will increase the optical attenuation of the slot with time. A graph of air gap separation versus attentuation for clean fiber ends with minimum radial error $\leq 0.127 \mathrm{~mm}$ (0.005 inches) and angular error ($\leq 3.0^{\circ}$) is provided in Figure 1.
The following equations can be used to determine the
transmitter output power, P_{T}, for both the overdrive and underdrive cases. Overdrive is defined as a condition where excessive optical power is delivered to the receiver. The first equation calculates, for a predetermined link length and slot attenuation, the maximum P_{T} in order not to overdrive the receiver. The second equation defines the minimum P_{T} allowed for link operation to prevent underdrive condition from occurring.
$\begin{array}{ll}\mathrm{P}_{\mathrm{T}}(\mathrm{MAX})-\mathrm{P}_{\mathrm{R}}(\mathrm{MAX}) \leq \alpha_{O \text { MIN }} \ell+\alpha_{\text {SLOT }} & \text { Eq. } 1 \\ \mathrm{P}_{\mathrm{T}}(\mathrm{MIN})-\mathrm{P}_{\mathrm{RL}}(\mathrm{MIN}) \geq \alpha_{O \text { MAX } \ell}+\alpha_{\text {SLOT }}+\alpha_{\text {M }} & \text { Eq. } 2\end{array}$ Once P_{T} (MIN) has been determined in the second equation for a specific link length (ℓ), slot attenuation ($\alpha_{\text {SLOT }}$) and margin $\left(\alpha_{M}\right)$. Figure 2 can then be used to find I_{F}.

Figure 1. Typical Loss vs. Axial Separation

Figure 2. Typical HFBR-15X3/15X2 Optical Power vs. Transmitter $I_{F}\left(0-70^{\circ} \mathrm{C}\right)$

Versatile Link Transmitters

HFBR-1521/1531 (5 MBd - High Performance) HFBR-1522/1532 (1 MBd - High Performance) HFBR-1523/1533 (40 kBd - Low Current/Extended Distance)
HFBR-1524/1534 (1 MBd - Standard)
Versatile Link transmitters incorporate a 660 nanometre LED in a gray horizontal or vertical housing for the HFBR15X1/2/4 transmitters or a black horizontal or vertical housing for the HFBR-15X3 receiver. The transmitters can be easily interfaced to standard TTL logic. The optical output

HFBR-152X/153X SERIES TRANSMITTERS

power of the HFBR-152X/153X series is specified at the end of 0.5 m of cable. The mechanical and electrical pin spacing and connections are identical for both the horizontal and vertical packages.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Ref.
Storage Temperature		$\mathrm{T}_{\text {S }}$	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{T}_{\text {A }}$	0	+70	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec.	
Peak Forward Input Current		IFPK		1000	mA	Note 2
DC Forward Input Current		IfDC		80	mA	
Reverse Input Voltage		$V_{\text {R }}$		5	V	

Electrical/Optical Characteristics
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{[5]}$	Max.	Units	Conditions	Ref.
Transmitter Output Optical Power	HFBR-15X1	PT	-16.5		-7.6	dBm	$\mathrm{I}_{F}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Fig. 2
			-14.3		-8.0	dBm	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	$\begin{aligned} & \text { HFBR-15×2 } \\ & \text { and } \\ & \text { HFBR- } 15 \times 3 \end{aligned}$	P_{T}	-13.6		-4.5	dBm	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Notes$3,4$
			-11.2		-5.1	dBm	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	HFBR-15×3	P_{T}	-35.5			dBm	$I_{F}=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
	HFBR-15X4	P_{T}	-17.8		-4.5	dBm	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
			-15.5		-5.1	dBm	$I_{F}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Output Optical Power Temperature Coefficient		$\frac{\Delta P_{T}}{\Delta T}$		-0.85		$\% /{ }^{\circ} \mathrm{C}$		
Peak Emission Wavelength		$\lambda_{\text {PK }}$		660		nm		
Forward Voltage		V_{F}	1.45	1.67	2.02	V	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	
Forward Voltage Temperature Coefficient		$\frac{\Delta V_{F}}{\Delta T}$		-1.37		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		Fig. 1
Effective Diameter		$\mathrm{D}_{\text {T }}$		1		mm		
Numerical Aperture		N.A.		0.5				
Reverse input Breakdown Voltage		$V_{B R}$	5.0	11.0		V	$\mathrm{I}_{F}=-10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Diode Capacitance		Co_{0}		86		pF	$V_{F}=0, f=1 \mathrm{MHz}$	
Rise Time		t_{r}		80		ns	10% to $90 \%, l_{F}=60 \mathrm{~mA}$	Note 6
Fall Time		t_{f}		40		ns		

Notes:

1. 1.6 mm below seating plane.
2. $1 \mu \mathrm{~s}$ pulse, $20 \mu \mathrm{~s}$ period.
3. Measured at the end of 0.5 m Standard Fiber Optic Cable with large area detector.
4. Optical power, $\mathrm{P}(\mathrm{dBm})=10 \log [\mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}]$.
5. Typical data is at $25^{\circ} \mathrm{C}$.
6. Rise and fall times are measured with a voltage pulse driving the transmitter and a series connected 50 Ohm load. A wide bandwidth optical to electrical waveform analyzer (trans-

Figure 1. Typical Forward Voltage vs. Drive Current for HFBR-152X/153X Series Transmitters
ducer), terminated to a 50 Ohm input of a wide bandwidth oscilloscope, is used for this response time measurement.
7. Pins 5 and 8 of the transmitter are for mounting and retaining purposes only. Do not electrically connect pin 5 and/or pin 8.
WARNING: When viewed under some conditions, the optical port of the Transmitter may expose the eye beyond the Maximum Permissible Exposure recommended in ANSI Z-136-1, 1981. Under most viewing conditions there is no eye hazard.

Figure 2. Normalized HFBR-152X/153X Series Transmitter Typical Output Optical Power vs. Drive Current

Versatile Link Receivers

HFBR-2521/2531 (5 MBd - High Performance) HFBR-2522/2532 (1 MBd - High Performance) HFBR-2524/2534 (1 MBd - Standard)

The blue plastic Versatile Link receivers feature a shielded, integrated photodetector and a wide bandwidth DC amplifier for high EMI immunity. A Schottky clamped opencollector output transistor allows interfacing to common logic families and enables "wired-OR" circuit designs. The open collector output is specified up to 18 V . An integrated 1000 ohm resistor internally connected to $V_{C C}$ may be externally connected to provide a pull-up for ease of use

HFBR-25X1/25X2/25X4 RECEIVER

with +5 V logic. Under pulsed LED current operation ($I_{F}>$ 80 mA), the combination of a high optical power level and the optical falling edge of the LED transmitter will result in increased pulse width distortion of the receiver output signal.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Ref.
Storage Temperature		T_{S}	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature		T_{A}	0	+70	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec.	
Supply Voltage		$V_{c c}$	-0.5	7	V	Note 6
Output Collector Current		10		25	mA	
Output Collector Power Dissipation		Poo		40	mW	
Output Voltage		V_{0}	-0.5	18	V	
Pullup Voltage		$V_{\text {RL }}$	-0.5	$V_{C C}$	V	

Electrical/Optical Characteristics

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{5]}$	Max.	Units	Conditions	Ret.
Receiver Input Optical Power Level for Logic "0"	HFBR-2521 and HFBR-2531	$\mathrm{P}_{\text {R(L) }}$	-21.6		-9.5	dBm	$\begin{aligned} & 0-70^{\circ} \mathrm{C}, V_{O L}=0.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \hline \end{aligned}$	Notes 2.3.8
			-21.6		-8.7	dBm	$\begin{array}{r} 25^{\circ} \mathrm{C}, V_{\mathrm{OL}}=0.5 \mathrm{~V} \\ I_{\mathrm{OL}}=8 \mathrm{~mA} \end{array}$	
	HFBR-2522 and HFBR-2532	$\mathrm{P}_{\mathrm{R}(\mathrm{L})}$	-24			dBm	$\begin{aligned} 0-70^{\circ} \mathrm{C}, V_{O L} & =0.5 \mathrm{~V} \\ 1_{O L} & =8 \mathrm{~mA} \end{aligned}$	Notes 2,$3,8,9$
			-24			dBm	$\begin{aligned} 25^{\circ} \mathrm{C} \cdot \mathrm{~V}_{\mathrm{OL}} & =0.5 \mathrm{~V} \\ I_{O L} & =8 \mathrm{~mA} \end{aligned}$	
	HFBR-2524 and HFBR-2534	$\mathrm{P}_{\mathrm{R}(\mathrm{L})}$	-20			dBm	$\begin{aligned} 0-70^{\circ} \mathrm{C}, V_{O L} & =0.5 \mathrm{~V} \\ 10 L & =8 \mathrm{~mA} \end{aligned}$	Notes 2,$3,8,9$
			-20			dBm	$\begin{aligned} 25^{\circ} \mathrm{C}, V_{\mathrm{OL}} & =0.5 \mathrm{~V} \\ 1_{\mathrm{OL}} & =8 \mathrm{~mA} \end{aligned}$	
Input Optical Power Level for Logic " 1 "		$\mathrm{P}_{\mathrm{f}(\mathrm{H})}$			-43	dBm	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=5.25 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OH}} \leq 250 \mu \mathrm{~A} \end{aligned}$	Note 2
High Level Output Current		$\mathrm{IOH}^{\text {O}}$		5	250	$\mu \mathrm{A}$	$V_{0}=18 \mathrm{~V}, \mathrm{P}_{\mathrm{R}}=0$	Note 4
Low Level Output Voltage		VOL		0.4	0.5	V	$\begin{aligned} & I_{O L}=8 \mathrm{~mA}, \\ & P_{\mathrm{R}}=P_{\text {R(L)MIN }} \end{aligned}$	Note 4
High Level Supply Current		ICCH		3.5	6.3	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \\ & P_{\mathrm{A}}=0 \mu \mathrm{~W} \end{aligned}$	Note 4
Low Level Supply Current		ICCl		6.2	10	mA	$\begin{aligned} & V_{C O}=5.25 \mathrm{~V} . \\ & P_{\mathrm{R}}=-12.5 \mathrm{dBm} \end{aligned}$	Note 4
Effective Diameter		D_{R}		1		mm		
Numerical Aperture		N.A.R		0.5				
Internal Pull-Up Resistor		R_{L}	680	1000	1700	Ohms		

Notes:

1. 1.6 mm below seating plan.
2. Optical flux, $P(\mathrm{dBm})=10 \log [\mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}]$.
3. Measured at the end of Fiber Optic Cable with large area detector. detector.
4. R_{L} is open
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. It is essential that a bypass capacitor $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ be connected from pin 2 to pin 3 of the receiver. Total lead length between both ends
of the capacitor and the pins should not exceed 20 mm .
7. Pins 5 and 8 of both the transmitter and receiver are for mounting and retaining purposes only. Do not electrically connect pin 5 and/or pin 8.
8. Pulsed LED operation at $I_{F}>80 \mathrm{~mA}$ will cause increased link tpLH propagation delay time. This extended tplH time contributes to increased pulse width distortion of the receiver output signal.
9. The LED driver circuit of Figure 1b on page 7 (Link Design Considerations) is required for 1 MBd operation of the HFBR-2522/2532/2524/2534.

High Sensitivity Receiver

HFBR-25X3

The blue plastic HFBR-25X3 Receiver module has a sensitivity of -39 dBm . It features an integrated photodector and DC amplifier for high EMI immunity. The output is an open collector with a $150 \mu \mathrm{~A}$ internal current source pullup and is compatible with TTL/LSTTL and most CMOS logic families. For minimum rise time add an external pullup resistor of at least 3.3 K ohms. VCC must be greater than or equal to the supply voltage for the pull-up resistor.

HFBR-25X3 RECEIVER

DO NOT CONNECT*

*SEE NOTE 8

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Ref.
Storage Temperature		Ts	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	0	+70	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Supply Voltage		Vco	-0.5	7	V	Note 7
Output Collector Current (Average)		10	-1	5	mA	
Output Collector Power Dissipation		POD		25	mW	
Output Voltage		Vo	-0.5	Vcc	V	

Electrical/Optical CharacteristicS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 4.5 \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5$ Unless Otherwise Specified

Parameter	Symbol	Min.	Typ. (5)	Max.	Units	Conditions	Rer. Note $2,3,4$
Receiver Input Optical Power Level for Logic " 0 "	PR (L)	-39		-13.7	dBm	$\begin{aligned} 0-70^{\circ} \mathrm{C}, V_{O} & =V_{O L} \\ 1 O L & =3.2 \mathrm{~mA} \end{aligned}$	
		-39		-13.3	dBm	$\begin{aligned} 25^{\circ} \mathrm{C}, V_{O} & =V O L \\ 1 O L & =3.2 \mathrm{~mA} \end{aligned}$	
Input Optical Power Level for Logic "1"	$\mathrm{PR}(\mathrm{H})$			-53	dBm	$\begin{aligned} & \mathrm{VOH}=5.5 \mathrm{~V}, \\ & \mathrm{lOH} \leq 40 \mu \mathrm{~A} \end{aligned}$	Note 2
High Level Output Voltage	VOH	2.4			V	$\begin{aligned} & 1 \mathrm{OH}=-40 \mu \mathrm{~A}, \\ & \mathrm{PR}_{\mathrm{R}}=0 \mu \mathrm{~W} \end{aligned}$	
Low Level Output Voltage	Vol			0.4	V	$\begin{aligned} & \mathrm{IOL}=3.2 \mathrm{~mA}_{t} \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{RL} . \mathrm{MIN}} \end{aligned}$	Note 6
High Level Supply Current	ICCH		1.2	1.9	mA	$V_{C C}=5.5 \mathrm{~V}, \mathrm{P}_{\mathrm{A}}=0 \mu \mathrm{~W}$	
Low Level Supply Current	ICCL		2.9	3.7	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & P_{R} \geq P_{R L}(\mathrm{MIN}) \end{aligned}$	Note 6
Effective Diameter	DR		1		mm		
Numerical Aperture	N.A.R		0.5				

Notes:

1. 1.6 mm below seating plan.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
3. Measured at the end of Fiber Optic Cable with large area detector
4. Because of the very high sensitivity of the HFBR-25X3, the digital output may switch in response to ambient light levels when a cable is not occupying the receiver optical port. The designer should take care to filter out signals from this source if they pose a hazard to the system.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. Including current in 3.3 K pull-up resistor.
7. It is recommended that a bypass capacitor $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic be connected from pin 2 to pin 4 of the receiver.
8. Pins 5 and 8 are for mounting and retaining purposes only. Do not electrically connect pin 5 and/or pin 8 .

Plastic Fiber Optic Cable

Simplex Fiber Optic Cable is constructed of a single step index plastic fiber sheathed in a PVC jacket. Duplex Fiber Optic Cable has two plastic fibers, each in a cable of construction similar to the Simplex Cable, joined with a web. The individual channels are identified by a marking on one channel of the cable. The Improved Fiber Optic Cable is identical to the Standard Cable except that the attenuation is lower.
-These cables are UL recognized components and pass UL VW-1 flame retardancy specification. Safe cable properties in flammable environments, along with non-conductive electrical characteristics of the cable may make the use of conduit unnecessary. Plastic cable is available unconnectored or connectored. Refer to pages 23 and 24 for part numbers.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Ref.
Storage Temperature		T_{S}	-40	+75	${ }^{\circ} \mathrm{C}$	
Installation Temperature		T_{1}	-20	+70	${ }^{\circ} \mathrm{C}$	
Short Term Tensile Force	Single Channel	F_{T}		50	N	Note 1
	Dual Channel	F_{T}		100	N	
Short Term Bend Radius		r	10		mm	Note 2
Long Term Bend Radius		r	35		mm	
Long Term Tensile Load		F_{T}		1	N	
Flexing				1000	Cycles	Note 3
Impact		m		0.5	Kg	Note 4
		h		150	mm	

Electrical/Optical Characteristrics $0^{\circ} \mathrm{c}$ to $+70^{\circ} \mathrm{C}$ Unless otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{[5]}$	Max.	Units	Conditions	Ref.
Cable Attenuation	Standard Cable	α_{0}	0.19	0.31	0.43	dB / m	Source is HFBR-152X/153X $(660 \mathrm{~nm}), \ell=20 \mathrm{~m}$	Note 7
	Improved Cable		0.19	0.25	0.31			
Numerical Aperture		N.A.		0.5			$\ell>2 \mathrm{~m}$	
Diameter, Core		D_{C}		1.0		mm		
Diameter, Jacket		D_{J}		2.2		mm	Simplex Cable	
Travel Time Constant		l/v		5.0		nsec/m		Note 6
Mass per Unit Length/Channel		m / ℓ		4.6		g / m	Without Connectors	
Cable Leakage Current		I_{L}		12		nA	$50 \mathrm{kV}, \ell=0.3 \mathrm{~m}$	

Notes:

1. Less than 30 minutes.
2. Less than 1 hour, non-operating.
3. 90° bend on 10 mm radius mandrel.
4. Tested at 1 impact according to MIL-STD-1678, Method 2030,1 Procedure 1.
5. Typical data is at $25^{\circ} \mathrm{C}$.
6. Travel time constant is the reciprocal of the group velocity for propagation of optical power. Group velocity is $v=c / n$, where c is the
velocity of light in space ($3 \times 10^{8} \mathrm{~m} / \mathrm{s}$) and n equals effective core index of refraction. Unit length of cable is ℓ.
7. In addition to standard Hewlett-Packard 100% product testing, HP provides additional margin to ensure link performance. Under certain conditions, cable installation and improper connectoring may reduce performance. Contact Hewlett-Packard for recommendations.
8. Improved cable is available in 500 metre spools and in factoryconnectored lengths less than 100 metres.

Versatile Link
 Fiber Optic Connectors

CONNECTORS
 FEEDTHROUGH/SPLICE

POLISHING TOOLS

Versatile Link transmitters and receivers are compatible with three connector styles; simplex, simplex latching, and duplex. All connectors provide a snap-action when mated to Versatile Link components. Simplex connectors are color coded to match with transmitter and receiver color coding. Duplex connectors are keyed so that proper orientation is ensured. When removing a connector from a module, pull at the connector body. Do not pull on the cable alone. The same, quick and simple connectoring technique is used with all connectors and cable. This technique is described on page 18.

Simplex Connector Styles

HFBR-4501/4511 - Simplex
The simplex connector provides a quick and stable connection for applications that require a component to provide retention force of 8 Newtons (1.8 lbs). These connectors are available in colors of gray (HFBR-4501) or blue (HFBR-4511).
HFBR-4503/4513 - Simplex Latching
The simplex latching connector is designed for rugged applications requiring greater retention force, 80 N (18 lbs), than that provided by a simplex connector. When inserting the simplex latching connector into a module, the connector latch mechanism should be aligned with the top surface of the horizontal module, or with the tall vertical side of the vertical module. Misorientation of an inserted latching connector into either module housing will not result in a positive latch. The connector is released by depressing the rear section of the connector lever, and then pulling the connector assembly away from the module housing.
If the cable/connector will be used at elevated operating temperatures or experience frequent and wide temperature cycling effects, the cable/connector attachment can be strengthened by applying a RTV adhesive within the connector. A recommended adhesive is 3 M Company product RTV-739. In most applications, use of RTV is unnecessary. The simplex latching connector is available in gray (HFBR4503) or blue (HFBR-4513).

Duplex Connector HFBR-4506 - Duplex

Duplex connectors provide convenient duplex cable termination and are keyed to prevent incorrect connection. The duplex connector is compatible with dual combinations of identical Versatile Link components (e.g., two horizontal transmitters, two vertical receivers, a horizontal transmitter and a horizontal receiver, etc.). A duplex connector cannot connect to two different packages simultaneously. The duplex connector is an off-white color.
Feedthrough/Splice HFBR-4505/4515 - Adapter
The HFBR-4505/4515 adapter mates two simplex connectors for panel/bulkhead feedthrough of plastic fiber cable. Maximum panel thickness is 4.1 mm (0.16 inch). This adapter can serve as a cable in-line splice using two simplex connectors. The colors of the adapters are gray (HFBR4505) and blue (HFBR-4515). The adapter is not compatible with the duplex or simplex latching connectors.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	$\mathrm{T}_{\text {S }}$	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$	
Nut Torque HFBR-4505/4515	T_{N}		0.7	$\mathrm{~N}-\mathrm{m}$	1
		100	OzF F in	1	

Notes:

1. Recommended nut torque is $0.57 \mathrm{~N}-\mathrm{m}(80 \mathrm{OzF}-\mathrm{in})$.

HFBR-4501 (GRAY)/4511 (BLUE) SIMPLEX CONNECTOR

HFBR-4503 (GRAY)/4513 (BLUE)
SIMPLEX LATCHING CONNECTOR

HFBR-4506 (PARCHMENT) DUPLEX CONNECTOR

HFBR-4505 (GRAY)/4515 (BLUE) ADAPTER

(USE WITH SIMPLEX CONNECTORS ONLY)

HFBR-4593 POLISHING KIT

Connector Applications

ATTACHMENT TO HEWLETT-PACKARD HFBR-152X/153X/252X/253X VERSATILE LINK FIBER OPTIC COMPONENTS

DIMENSIONS IN MILLIMETRES (INCHES)

IN-LINE SPLICE FOR HFBR-35XX/36XX FIBER OPTIC CABLE WITH HFBR-4501/4511 SIMPLEX CONNECTORS

Connector Mechanical/Optical Characteristics

 $25^{\circ} \mathrm{C}$ Unless Otherwise Specified.| Parameter | Part Number | | Symbol | Min. | Typ. | Max. | Units | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Retention Force Connector to HFBR-152X/153X/252X/253X Modules | Simplex | HFBR-4501/4511 | $\mathrm{F}_{\mathrm{R}-\mathrm{C}}$ | 7 | 8 | | N | Note 4 |
| | Simplex
 Latching | HFBR-4503/4513 | | 47 | 80 | | | |
| | Duplex | HFBR-4506 | | 7 | 12 | | | |
| Tensile Force Connector to Cable | Simplex | HFBR-4501/4511 | F_{T} | 8.5 | 22 | | N | Notes 3, 4 |
| | Simplex
 Latching | HFBR-4503/4513 | | 8.5 | 22 | | | |
| | Duplex | HFBR-4506 | | 14 | 35 | | | |
| Adapter
 Connector to Connector Loss | HFBR-4505/4515 with HFBR-4501/4511 | | $\alpha \mathrm{Cc}$ | 0.7 | 1.5 | 2.8 | dB | Notes 1, 5 |
| Retention Force Connector to Adapter | HFBR-4505/4515 with HFBR-4501/4511 | | $\mathrm{F}_{\mathrm{R}-\mathrm{B}}$ | 7 | 8 | | N | Note 4 |
| Insertion Force Connector to HFBR-152X/153X/252X/253X Modules | Simplex | HFBR-4501/4511 | F_{1} | | 8 | 12 | N | Notes 2, 4 |
| | Simplex Latching | HFBR-4503/4513 | | | 16 | 35 | | |
| | Duplex | HFBR-4506 | | | 13 | 46 | | |

Notes:

1. Factory polish or field polish per recommended procedure.
2. No perceivable reduction in insertion force was observed after 2000 insertions. Destructive insertion force was typically at 178 N (40 lbs).
3. For applications where frequent temperature cycling over temperature extremes is expected please contact Hewlett-Packard for alternate connectoring techniques.
4. All mechanical forces were measured after units were stored at $70^{\circ} \mathrm{C}$ for 168 hours and returned to $25^{\circ} \mathrm{C}$ for one hour.
5. Minimum and maximum limits of $\alpha \mathrm{CC}$ are for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range. Typical value of α_{CC} is at $25^{\circ} \mathrm{C}$.

Connectoring

The following easy procedure describes how to make cable terminations. It is ideal for both field and factory installation. If a high volume connectoring technique is required please contact your Hewlett-Packard sales engineer for the recommended procedure and equipment.
Connectoring the cable is accomplished with the HewlettPackard HFBR-4593 Polishing Kit consisting of a Polishing Fixture, 600 grit abrasive paper and 3 micron pink lapping film (3M Company, OC3-14). No adhesive material is needed to secure the cable in the connector, and the connector can be used immediately after polishing. Improved connector to cable attachment can be achieved with the use of a RTV adhesive for frequent, extreme temperature cycling environments or for elevated temperature operation.

Connectors may be easily installed on the cable ends with readily available tools. Materials needed for the terminating procedure are:

1) Hewlett-Packard Plastic Fiber Optic Cable
2) HFBR-4593 Polishing Kit
3) HFBR-4501/4503 Gray Simplex/Simplex Latching Connector and Silver Color Crimp Ring
4) HFBR-4511/4513 Blue Simplex/Simplex Latching Connector and Silver Color Crimp Ring
5) HFBR-4506 Parchment Duplex Connector and Gold Color Crimp Ring
6) Industrial Razor Blade or Wire Cutters
7) 16 Gauge Latching Wire Strippers
8) Crimp Tool, AMP 90364-2

Step 1

The zip cord structure of the duplex cable permits easy separation of the channels. The channels should be separated approximately 50 mm (2.0 in .) back from the ends to permit connectoring and polishing.
After cutting the cable to the desired length, strip off approximately 7 mm (0.3 in .) of the outer jacket with the 16 gauge wire strippers. Excess webbing on duplex cable may have to be trimmed to allow the simplex or simplex latching connector to slide over the cable.
When using the duplex connector and duplex cable, the separated duplex cable must be stripped to equal lengths on each cable. This allows easy and proper seating of the cable into the duplex connector.

Step 2

Place the crimp ring and connector over the end of the cable; the fiber should protrude about 3 mm (0.12 in .) through the end of the connector. Carefully position the ring so that it is entirely on the connector and then crimp the ring in place with the crimping tool. One crimp tool is used for all connector crimping requirements.

Note: Place the gray connector on the cable end to be connected to the transmitter and the blue connector on the cable end to be connected to the receiver to maintain the color coding (both connectors are the same mechanically). For duplex connector and duplex cable application, align the color coded side of the cable with the appropriate ferrule of the duplex connector in order to match connections to the respective optical ports. The simplex connector crimp ring (silver color) cannot be used with the duplex connector. The duplex connector crimp ring (gold color) cannot be used with the simplex or simplex latching connectors.

SIMPLEX

SIMPLEX LATCHING

DUPLEX

Step 3

Any excess fiber protuding from the connector end may be cut off; however, the trimmed fiber should extend at least 1.5 mm (0.06 in .) from the connector end.

Insert the connector fully into the polishing fixture with the trimmed fiber protruding from the bottom of the fixture.

This plastic polishing fixture can be used to polish two simplex connectors or two simplex latching connectors simultaneously, or one duplex connector.

Note: The four dots on the bottom of the polishing fixture are wear indicators. Replace the polishing fixture when any dot is no longer visible.
Place the 600 grit abrasive paper on a flat smooth surface. Pressing down on the connector, polish the fiber and the connector using a figure eight pattern of strokes until the connector is flush with the bottom of the polishing fixture. Wipe the connector and fixture with a clean cloth or tissue.

Step 4

Place the flush connector and polishing fixture on the dull side of the 3 micron pink lapping film and continue to polish the fiber and connector for approximately 25 strokes. The fiber end should be flat, smooth and clean.

The cable is now ready for use.
Note: Use of the pink lapping film fine polishing step results in approximately $2 d B$ improvement in coupling performance of either a transmitter-receiver link or a bulkhead/splice over 600 grit polish alone. This fine polish is comparable to Hewlett-Packard factory polish. The fine polishing step may be omitted where an extra $2 d B$ of optical power is not essential, as with short link lengths. Proper polishing of the tip of the fiber/connector face results in a tip diameter between 2.8 mm (0.110 in .) minimum and 3.2 mm (0.125 in .) maximum.

For simultaneous multiple connector polishing techniques please contact Hewlett-Packard.

Versatile Link Mechanical Dimensions
All dimensions in mm (inches).
All dimensions $\pm 0.25 \mathrm{~mm}$ unless otherwise specified.

HORIZONTAL MODULES
HFBR-1521/1522/1523/1524 (GRAY)
HFBR-2521/2522/2523/2524 (BLUE)

VERTICAL MODULES
HFBR-1531/1532/1533/1534 (GRAY)
HFBR-2531/2532/2533/2534 (BLUE)

HFBR-4501 (GRAY)/4511 (BLUE) SIMPLEX CONNECTOR

CONNECTORS DIFFER ONLY IN COLOR

HFBR-4503 (GRAY)/4513 (BLUE) SIMPLEX LATCHING CONNECTOR

HFBR-4506 (PARCHMENT) DUPLEX CONNECTOR

BULKHEAD FEEDTHROUGH WITH TWO HFBR-4501/4511 CONNECTORS

PANEL MOUNTING - BULKHEAD FEEDTHROUGH

THREE TYPES OF PANEL/BULKHEAD HOLES CAN BE USED.

DOUBLE 'D' 7.9 (0.312) DIA. MIN.

'D' HOLE 7.9 (0.312) DIA. MIN.

7.9 (0.312) HOLE MIN.

ADAPTERS DIFFER ONLY IN COLOR

FIBER OPTIC CABLE DIMENSIONS

Versatile Link Printed Circuit Board Layout Dimensions

ELECTRICAL PIN FUNCTIONS

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	TRANSMITTEAS HFBR-15 XX	RECEIVERS EXCLUDING HFBR-25X3	RECEIVER HFBR-25×3
1	ANODE	v_{0}	Vo
2	CATHODE	GROUND	GROUND
3	OPEN	$V_{\text {cc }}$	OPEN
4	OPEN	H_{L}	Vcc
5	DO NOT CONNECT	DO NOT CONNECT	DO NOT CONNECT
6	DO NOT CONNECT	DO NOT CONNECT	DO NOT CONNECT

Interlocked (Stacked) Assemblies

STACKING HORIZONTAL MODULES

STACKING VERTICAL MODULES

Recommended stacking of vertical packages is to hold two vertical units, one in each hand, with the pins facing away from the assembler and the optical ports located in the bottom front of each unit. Engage completely, the L bracket unit from above into the lower L slot unit. Package to package alignment is easily insured by laying the full, flat, bottom side of the assembled units onto a flat surface pushing with a finger the two packages into complete, parallel alignment. The thin rectangular edged tool, used for horizontal package alignment, is not needed with the vertical packages. Stacked vertical packages can be disengaged should there be a need to do so. Repeated stacking and unstacking causes no damage to individual units.

Figure 1. Interlocked (Stacked) Horizontal or Vertical Packages.

Versatile Link Polishing Kit

Contents: a) One polishing tool.
b) One piece, 600 grit abrasive paper: 3M Company.
c) One piece, $3 \mu \mathrm{~m}$ lapping film: 3M company, OC3-14.

Component Selection Guide

TRANSMITTERS (T_{x})/RECEIVERS (R_{x})

Versatile Link	Unit	Horizontal Modules	Vertical Modules
5 MBd High Performance	T_{X}	HFBR-1521	HFBR-1531
1 MBa High Performance	T_{x}	HFBR-1522	HFBR-1532
40 kBd Low Current/ Extended Distance	Tx	HFBR-1523	HFBR-1533
1 MBd Standard	T_{X}	HFBR-1524	HFBR-1534
5MBd High Performance	R_{X}	HFBR-2521	HFBR-2531
1 MBd High Performance	R_{X}	HFBR-2522	HFBR-2532
40 kBd Low Current/			
Extended Distance	R_{X}	HFBR-2523	HFBR-2533
1 MBd Standard	R_{X}	HFBR-2524	HFBR-2534

CABLES
Page 15

Connectored Standard Plastic Fiber Optic Cable Simplex Standard Cable		
Standard Simplex Connectors	Latching Simplex Connectors	Length (metres)
HFBR-PNS1DM	HFBR-PLSIDM	0.1
HFBR-PNS5DM	HFBR-PLS5DM	0.5
HFBR-PNS001	HFBR-PLS001	1
HFBR-PNS005	HFBR-PLS005	5
HFBR-PNS010	HFBR-PLS010	10
HFBR-PNS020	HFBR-PLS020	20
HFBR-PNS030	HFBR-PLS030	30
HFBR-PNS045	HFBR-PLS045	45
HFBR-PNS060	HFBR-PLS060	60
Simplex Improved Cable		
Standard Simplex Connectors	Latching Simplex Connectors	Length (metres)
HFBR-QNS001	HFBR-QLSS001	1
HFBR-QNS005	HFBR-QLS005	5
HFBR-QNS010	HFBR-QLS010	10
HFBR-QNS020	HFBR-QLS020	20
HFBR-QNS030	HFBR-QLS030	30
HFBR-QNS045	HFBR-QLS045	45
HFBR-QNS060	HFBR-QLS 060	60

Connectored Standard Plastic Fiber Optic Cable Duplex Standard Cable			
Standard Simplex Connectors	Latching Simplex Connectors	Duplex Connectors	Length (metres)
HFBR-PND5DM	HFBR-PLD5DM	HFBR-PMD5DM	M 0.5
HFBR-PND001	HFBR-PLD001	HFBR-PMD001	1.0
HFBR-PND005	HFBR-PLD005	HFBR-PMDO05	5.0
HFBR-PND010	HFBR-PLD010	HFBR-PMD010	10.0
HFBR-PND020	HFBR-PLD020	HFBR-PMD020	20.0
HFBR-PND030	HFBR-PLD030	HFBR-PMD030	30.0
HFBR-PND045	HFBR-PLD045	HFBR-PMD045	45.0
HFBR-PND060	HFBR-PLD060	HFBR-PMD060	60.0
Unconnectored Cable			Length (metres)
Standard Attenuation			
Simplex Cable HFBR-PUS500			500
Standard Attenuation			
Duplex Cable		-PUD500	500
Improved Attenuation			
Simplex Cable		-QUS500	500

CONNECTORS
Page 16

HFBR-4501	Gray Simplex Connector/Crimp Ring
HFBR-4511	Blue Simplex Connector/Crimp Ring
HFBR-4503	Gray Simplex Latching Connector
	with Crimp Ring
HFBR-4513	Blue Simplex Latching Connector
	with Crimp Ring
HFBR-4506	Parchment Duplex Connector with Crimp Ring
HFBR-4593	Polishing Kit (Polishing Fixture,
	Abrasive Paper, Lapping Film)
HFBR-4505	Gray Adapter
HFBR-4515	Blue Adapter

EVALUATION KIT, HFBR-0501 CONTENTS:

HFBR-1524	Transmitter
HFBR-2524	Receiver
HFBR-4506	Duplex Connector with Crimp Ring
-	5 metres of Connectored Simplex Cable
	with Blue Simplex and Gray Simplex
Latching Connectors	
HFBR-4501	Gray Simplex Connector with Crimp Ring
HFBR-4513	Blue Simplex Latching Connector with
	Crimp Ring
HFBR-4505	Gray Adapter
HFBR-0501	Polishing Tool and 600 grit paper Sheet and Brochure

A Note About Ordering Cable

There are four steps required to determine the proper part number for a desired cable.
Step 1 Select Standard or Improved Cable.
As explained on page 15, two levels of attenuation are available: Standard and Improved.
Step 2 Select the connector style.
Connector styles are described on page 16.
Step 3 Select Simplex or Duplex.
Step 4 Determine the cable length.
The following standard lengths are available.

Length	Lasi Three Digits of Part Number
0.1 m	$1 \mathrm{DM}^{*}$
0.5 m	$5 \mathrm{DM}^{* *}$
1 m	001
5 m	005
10 m	010
20 m	020
30 m	030
45 m	045
60 m	060
500 m	500 (Unconnectored only)

(Custom-length cables are also available. Contact HewlettPackard for details.)
*Standard simplex cable only.
**Standard simplex and duplex cable only.

To determine the appropriate part number, select the letter corresponding to your selection and fill in the following:
HFBR-

Length in Metres
Simplex Cable $=S$
Duplex Cable = D
Unconnectored $=\mathrm{U}$ Standard Simplex Connectors $=\mathrm{N}$ Latching Simplex $=\mathrm{L}$ Duplex Connectors $=M$

Standard Attentuation $=P$ Improved Attenuation = Q

For example:
HFBR-PUD500 is a Standard Attenuation, Unconnectored, Duplex, 500 metre cable.

A complete list of plastic cable part numbers is shown on page 23.

Please note that several cable combinations are not available. These include duplex Improved Cable, 0.1 metre and 0.5 metre simplex Improved Cable, and 0.1 metre duplex standard cables.

LOW COST, MINIATURE FIBER OPTIC COMPONENTS WITH ST* AND SMA PORTS
 HFBR-0400
 ST* and SMA SERIES

Features

- LOW COST TRANSMITTERS AND RECEIVERS
- CHOICE OF ST OR SMA PORTS
- 820 NANOMETRE WAVELENGTH TECHNOLOGY
- DATA RATES UP TO 150 MEGABAUD
- LINK DISTANCES UP TO 4 KILOMETRES
- GUARANTEED WITH $62.5 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, 50/125 $\mu \mathrm{m}$, AND $200 \mu \mathrm{~m}$ PCS FIBER SIZES
- QUICK TWIST DELIVERS LOCKING AND SPRING LOADED ST CONNECTION
- REPEATABLE ST CONNECTIONS WITHIN 0.2 dB TYPICALLY
- UNIQUE OPTICAL PORT DESIGN FOR EFFICIENT COUPLING
- AUTO-INSERTABLE AND WAVE SOLDERABLE
- NO MOUNTING HARDWARE REQUIRED
- WIDE OPERATING TEMPERATURE RANGE $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- AIGaAs EMITTERS 100\% BURN-IN ENSURES HIGH RELIABILITY
- DEMONSTRATED RELIABILITY @ $40^{\circ} \mathrm{C}$ EXCEEDS 5 MILLION HOURS MTBF

Applications

- COMPUTER TO PERIPHERAL LINKS
- LOCAL AREA NETWORKS
- CENTRAL OFFICE SWITCH LINKS
- PBX LINKS
- COMPUTER MONITOR LINKS
- VIDEO LINKS
- MODEMS AND MULTIPLEXERS
- SUITABLE FOR TEMPEST SYSTEMS

[^17]
HFBR-0400 Series Selection Guide

Description	Part Number (ST Series)	Part Number (SMA Series)
Standard Transmitter	HFBR-1412	HFBR-1402
High Power Transmitter	HFBR-1414	HFBR-1404
5 MBd TTL Receiver	HFBR-2412	HFBR-2402
25 MHz Analog Receiver	HFBR-2414	HFBR-2404
125 MHz Analog Receiver	HFBR-2416	HFBR-2406
Evaluation Kit (5 MBd)	HFBR-0410	HFBR-0400
Connectored Cables	Various	Various

Literature Guide

Title	Description
HFBR-0400 Series Reliability Data	Transmitter \& Receiver Reliability Data
Application Bulletin 73	Low-Cost Fiber Optic Transmitter \& Receiver Interface Circuits
Application Bulletin 74	Digital Interface Circuits for the 125 MHz Receiver
Technical Brief 105	ST Connector/Cable Guide
Technical Brief 101	Fiber Optic SMA Connector Technology
HFBR-0400 ST and SMA Series	Transmitter \& Receiver Specifications

Contact your local HP components sales office to obtain these publications.

Package Information

All HFBR-0400 Series transmitters and receivers are housed in a low-cost, dual-in-line package that is made of high strength, heat resistant, chemically resistant, and UL V-O flame retardant plastic. The transmitters are easily identified by the light grey color connector port. The receivers are easily identified by the dark grey color connector port: The package is designed for auto-insertion and wave soldering so it is ideal for high volume production applications.

Handling and Design Information

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon on a cotton swab also works well.

Figure 1. HFBR-0400 ST Series Cross-Sectional View

Link Design Considerations

The HFBR-14XX transmitter and the HFBR-24XX receiver can be used to design fiber optic data links that operate with $62.5 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}, 50 / 125 \mu \mathrm{~m}$, and $200 \mu \mathrm{~m}$ PCS fiber cables.

The HFBR-14X2 standard transmitter and the HFBR-24X2 receiver are suitable for systems requiring up to 5 MBd and 2 Km . For higher data rate or longer distance, the HFBR-14X4 high power transmitter and/or the HFBR-24X4 receiver should be considered.

5 MBd LOGIC LINK DESIGN

The HFBR-14X4/24X2 Logic Link is guaranteed to work with $62.5 / 125 \mu \mathrm{~m}$ fiber optic cable over the entire range of 0 to 1200 metres at a data rate of dc to 5 MBd , with arbitrary data format and typically less than 25% pulse width distortion, when the transmitter is driven with $\mathrm{I}_{\mathrm{F}}=$ $30 \mathrm{~mA}, \mathrm{RL}=89 \mathrm{Ohm}$ as shown in Figure 2. If it is desired to economize on power or achieve lower pulse distortion, then a lower drive current $\left(I_{F}\right)$ may be used. The following example will illustrate the technique for optimizing I_{F}.
EXAMPLE: Maximum distance required $=400$ metres. From Figure 3 the drive current should be 20 mA . From the transmitter data $\mathrm{V}_{\mathrm{F}}=1.6 \mathrm{~V}$ (max) as shown in Figure 9.

$$
R 1=\frac{V_{C C}-V_{F}}{I_{F}}=\frac{5 V-1.6 \mathrm{~V}}{20 \mathrm{~mA}}=170 \mathrm{ohm}
$$

The curves in Figures 3, 4, and 5 are constructed assuming no in-line splice or any additional system loss. Should the link consist of any in-line splices, these curves can still be used to calculate link limits provided they are shifted by the additional system loss in dB. For example, with 20 mA of transmitter drive current, 1.6 km link distance is achievable. With 2 dB of additional system loss, 1.2 km link distance is achievable.

LOGIC LINK DESIGN UP TO 35 MBd

For data rates up to 35 MBd , or longer distance, the HFBR14X4 high power transmitter and/or the HFBR-24X4 receiver can be used. The table on the following page summarizes the typical performance of a 30 MBd link. For more details, please refer to HP Application Bulletin 73 (5954-8415). If circuit design assistance is needed, please contact your local Hewlett-Packard Components Field Sales Engineer.

LOGIC LINK DESIGN UP TO 150 MBd

For data rates of up to 150 MBd, the HFBR-14XX transmitters and the HFBR-24X6 receiver can be used. The table on the following page summarizes the typical performance of a 100 MBd link. For more details, please refer to HP Application Bulletin 74. If circuit design assistance is needed, please contact your local Hewlett-Packard Components Field Sales Engineer.

CABLE SELECTION

The HFBR-0400 Series can be used with fiber sizes such as $62.5 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}, 50 / 125 \mu \mathrm{~m}, 200 \mu \mathrm{~m}$ PCS and $1000 \mu \mathrm{~m}$ Plastic. Before selecting a fiber type, several parameters need to be carefully evaluated.
The bandwidth and attenuation ($\mathrm{dB} / \mathrm{km}$) of the selected fiber, in conjunction with the amount of optical power coupled into it will determine the achievable link length. The parameters that will significantly affect the optical power coupled into the fiber are as follows:
a. Fiber Core Diameter. As the core diameter is increased, the optical power coupled increases, leveling off at about $250 \mu \mathrm{~m}$ diameter.
b. Numerical Aperture (NA). As the NA is increased, the optical power coupled increases, leveling off at an NA of about 0.34 .
In addition to the optical parameters, the environmental performance of the selected fiber/cable must be evaluated. Finally, the ease of installing connectors on the selected fiber/cable must be considered.

ST connectored fiber optic cable is available from a variety of manufacturers and distributors, including those listed in HP Technical Brief 105; ST Connector/Cable Guide. For ST Evaluation Cables from Hewlett-Packard, please refer to page 13.

ST CONNECTORS

ST connections are locking, vibration resistant, low loss and very repeatable. The HFBR-0400 ST Series Transmitters and Receivers are compatible with AT\&T's ST Connector and bayonet connectors from a variety of manufacturers and distributors. For more information about ST Connectors, please refer to Technical Brief 105; ST Connector/Cable Guide.

SMA CONNECTORS

The HFBR-0400 SMA Series Transmitters and Receivers are compatible with SMA type connectors. Depending upon the type of SMA connector that is chosen, price, performance, and reliability will vary. For more information about SMA connectors, please refer to Technical Brief 101; Fiber Optic SMA Connnector Technology.

5 MBd Link Performance $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless other wise spectified

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Units	Conditions	Reference
Optical Power Budget w/62.5/125 $\mu \mathrm{m}$ Fiber	$\mathrm{OPB}_{62.5}$	8.0	15.0		dB	$\begin{aligned} & \text { HFBR-14X4/24X2 } \\ & \mathrm{W} / 62.5 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.27 \end{aligned}$	
Optical Power Budget w/100/140 $\mu \mathrm{m}$ Fiber	OPB_{100}	8.5	15.0		dB	HFBR-14X2/24X2 $\mathrm{w} / 100 / 140 \mu \mathrm{~m}, \mathrm{NA}=0.30$	
Optical Power Buiget w/50/125 $\mu \mathrm{m}$ Fiber	OPB_{50}	3.5	10.5		$d B$	HFBR-14X2/24X2 $\mathrm{W} / 50 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.18$	
Optical Power Budget w/200 $\mu \mathrm{m}$ HCS Fiber	OPB_{200}	13	20.5		dB	HFER-14X2/24X2 $\mathrm{w} / 200 \mu \mathrm{~m} H C S, N A=0.40$	Note 2
Data Rate Synchronous		dc		5	MBaud		Note
Asynchronous		dc		2.5	MBaud		Note 2, Fig. 7
Propagation Delay LOW to HIGH	tple		72		nsec	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & P_{R}=-21 \mathrm{dBm} \text { Peak } \end{aligned}$	Fig. 6, 7, 8
Propagation Delay HIGH to LOW	$\mathrm{tpH}_{\mathrm{p}}$		46		nsec		
System Pulse Width Distortion	$\mathrm{tPLH}^{\text {P }}$		25		nsec	$\ell=1.0$ metre	
Bit Error Rate	BER			10^{-9}		Data Rate ≤ 5 MBaud $P_{R}>-24 \mathrm{dBm}$ Peak	

Notes:

1. Typical data at $T=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ dc, $\mathrm{P}_{\mathrm{R}}=-27.0 \mathrm{dBm}$.
2. Synchronous data rate limit is based on these assumptions: a) 50% duty factor modulation, e.g., Manchester I or BiPhase Manchester II; b) continuous data; c) PLL Phase Lock Loop demodulation; d) TTL threshold.

Asynchronous data rate limit is based on these assumptions: a) NRZ data; b) arbitrary timing - no duty factor restriction; c) TTL threshold.

The EYE pattern describes the timing range within which there is no uncertainty of the logic state, relative to a specific threshold, due to either noise or intersymbol prop. delay effects.

30 MBd Link Performance (see Application Builetin 73 tor detailis)

Parameter	Symbol	Min.	Typ. [1]	Max.	Units	Conditions
Optical Power Budget w/ $62.5 / 125 \mu \mathrm{~m}$ Fiber	$\mathrm{OPB}_{62,5}$.	13.5		dB	HFBR-14X4/24X4 $\mathrm{w} / 62.5 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.27$
Optical Power Budget - w/100/140 $\mu \mathrm{m}$ Fiber	OPB_{100}		13.5		dB	HFBR-14X2/24X4 $\mathrm{w} / 100 / 140 \mu \mathrm{~m}, \mathrm{NA}=0.30$
Optical Power Budget w/50/125 $\mu \mathrm{m}$ Fiber	OPB_{50}		9		dB	HFBR-14×2/24X4 $\mathrm{w} / 50 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.18$
Optical Power Budget w/200 $\mu \mathrm{m}$ PCS Fiber	OPB_{200}		19		dB	HFBR-14X4/24X4 $\mathrm{w} / 200 \mu \mathrm{~m}$ PCS, $\mathrm{NA}=0.40$
Data Format NRZ		dc	30		MBaud	Reference AB 73 for circuits details, Note 2, 3
Propagation Delay LOW to HIGH	$\mathrm{tPLH}^{\text {P }}$		12		nsec	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & P_{R}=-13 \mathrm{dBm} \text { Peak } \end{aligned}$
Propagation Delay HIGH to LOW	$t_{\text {PHLL }}$		8		nsec	
System Pulse Width Distortion	$\mathrm{t}_{\text {PLH }}{ }^{\text {teht. }}$		4		nsec	$\ell=1.0$ metre
Bit Error Rate	BER			10^{-9}		Data Rate $\leq 30 \mathrm{MBaud}$ $P_{R}>-25.5 \mathrm{dBm}$ Peak

Notes:

1. Typical data at $T=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ dc.
2. This circuit utilizes the LT1016 comparator from Linear Technology Corporation. If operated at 5 MBd , an additional 4.5 dB of optical power budget can be obtained.
3. If HFBR-24X4 is replaced with the HFBR-24X6, an additional 5.5 dB of optical power budget can be obtained at 30 MHd NRZ.

100 MBd Link Performance (see Application Bulletin 74 for details)

Parameter	Symbol	Min.	Typ.[1]	Max.	Units	Conditions
Optical Power Budget w/62.5/125 $\mu \mathrm{m}$ Fiber	$\mathrm{OPB}_{62.5}$		19		dB	$\begin{aligned} & \text { HFBR-14X4/24X6 } \\ & w / 62.5 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.27 \end{aligned}$
Optical Power Budget w/100/140 $\mu \mathrm{m}$ Fiber	OPB_{100}		19		dB	$\begin{aligned} & \text { HFBR- } 14 \times 2 / 24 \times 6 \\ & w / 100 / 140 \mu \mathrm{~m}, \mathrm{NA}=0.30 \end{aligned}$
Optical Power Budget w/50/125 $\mu \mathrm{m}$ Fiber	OPB_{50}		14		dB	HFBR-14X4/24X6 $\mathrm{w} / 50 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.18$
Optical Power Budget w/200 $\mu \mathrm{m}$ PCS Fiber	OPB_{200}		24		dB	HFBR-14X2/24X6 $\mathrm{w} / 200 \mu \mathrm{~m}$ PCS, $\mathrm{NA}=0.40$
Data Format 20\% to 80\% Duty Factor			100		MBaud	Reference AB 74 for circuit details, Note 2
Propagation Delay LOW to HIGH	$t_{\text {PLLH }}$		5		nsec	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & P_{\mathrm{R}}=-7 \mathrm{dBm} \text { Peak } \end{aligned}$
Propagation Delay HIGH to LOW	$\mathrm{t}_{\text {PHL }}$		4		nsec	
System Pulse Width Distortion	$t_{\text {PLHH }}{ }^{\text {Preh }}$		1		nsec	$\ell=1.0$ metre
Bit Error Rate	BER			10^{-9}		Data Rate ≤ 100 MBaud $P_{R}>-31 \mathrm{dBm}$ Peak

Notes:

1. Typical data at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=0$ (ECL).
2. The optical power budgets at 100 MBd were measured with an unrestricted receiver, without a Nyquist filter. A 10116 ECL line receiver was used in the receiver digitizing circuit. If unnecessary bandwidth is eliminated by low-pass filtering, an additional 2 dB of link budget is attainable at 30 MBd .

5 MBd Link Performance

NOTE:
IT IS ESSENTIAL THAT A BYPASS CAPACITOR ($0.01 \mu \mathrm{~F}$ TO $0.1 \mu \mathrm{~F}$
CERAMIC) BE CONNECTED FROM PIN 2 TO PIN 7 OF THE RECEIVER
TOTAL LEAD LENGTH BETWEEN BOTH ENDS OF THE CAPACITOR AND THE PINS SHOULD NOT EXCEED 20 mm .

Figure 2. Typical Circuit Configuration

Figure 3. HFBR-1414/HFBR-2412 Link Design Limits with 62.5/125 $\mu \mathrm{m}$.Cable

Figure 4. HFBR-14X2/HFBR-24X2 Link Design Limits with 100/140 $\mu \mathrm{m}$ Cable

Figure 5. HFBR-14X4/HFBR-24X2 Link Design Limits with 50/125 $\mu \mathrm{m}$ Cable

Figure 6. Propagation Delay through System with One Metre of Cable

Figure 7. Typical Distortion of NRZ EYE-pattern with Pseudo Random Data at 5 Mb/s (see note 2)

Figure 8. System Propagation Delay Test Circuit and Waveform Timing Definitions

HIGH SPEED LOW COST
 HFBR-1412 (ST) HFBR-1414 (ST) FIBER OPTIC
 HFBR-1402 (SMA) HFBR-1404 (SMA) TRANSMITTER

Description

The HFBR-14XX fiber optic transmitter contains an 820 nm GaAIAs emitter capable of efficiently launching optical power into four different optical fiber sizes: $62.5 / 125 \mu \mathrm{~m}$, $100 / 140 \mu \mathrm{~m}, 50 / 125 \mu \mathrm{~m}$, and $200 \mu \mathrm{~m}$ PCS. This allows the designer flexibility in choosing the fiber size. The HFBR14XX is designed to operate with the Hewlett-Packard HFBR-24XX fiber optic receivers.
The HFBR-14XX transmitter's high coupling efficiency allows the emitter to be driven at low current levels resulting in low power consumption and increased reliability of the transmitter. The HFBR-14X4 high power transmitter is optimized for small size fiber and typically can launch -16.5 dBm optical power into $50 / 125 \mu \mathrm{~m}$ fiber and -12 dBm into $62.5 / 125 \mu \mathrm{~m}$ fiber. The HFBR-14X2 standard transmitter typically can couple -11.5 dBm of optical power into $100 / 140 \mu \mathrm{~m}$ fiber cable. It is ideal for large size fiber such as $100 / 140 \mu \mathrm{~m}$. The high power level is useful for systems where star couplers, taps, or inline connectors create large fixed losses.
Consistent coupling efficiency is assured by the doublelens optical system (Figure 1). Power coupled into any of the three fiber types varies less than 5 dB from part to part at a given drive current and temperature. The benefit of this is reduced dynamic range requirements on the receiver.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Unit	Notes
Storage Temperature		Ts	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.		$\underline{1}$	+260	${ }^{\circ} \mathrm{C}$	
	Time			10	sec	
Forward Input Current	Peak	IfpK		120	mA	Note 1
	DC	IFDC		60	mA	
Reverse Input Voltage		VBR		1.8	v	

вотtom view

Electrical/Optical Characteristics

Parameter	Symbol	Min.	Typ.[2]	Max.	Units	Conditions	Notes
Forward Voltage	V_{F}	1.58	1.80	2.19	V	$I_{F}=60 \mathrm{~mA}$	Fig. 9
Forward Voltage Temperature Coefficient	$\mathrm{V}_{\mathrm{F} / \mathrm{T}}$		-0.86		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	Fig. 9
Reverse Input Voltage	V_{BR}	1.8	3.8		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	
Peak Emission Wavelength	λ_{P}		820		nm		Fig. 12
Diode Capacitance	C_{T}		145		pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	
Optical Power Temperature Coefficient	$\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$		-0.016		$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	
Thermal Resistance	Θ_{JA}		240		${ }^{\circ} \mathrm{C} / \mathrm{W}$		
Numerical Aperture (HFBR-14X2)	$\mathrm{NA}_{14 \times 2}$		0.49				Note 3,8
Numerical Aperture (HFBR-14X4)	$\mathrm{NA}_{14 \times 4}$		0.31				
Optical Port Diameter (HFBR-14X2)	$\mathrm{D}_{\mathrm{T}_{14 \times 2}}$		290		$\mu \mathrm{~m}$		
Optical Port Diameter (HFBR-14X4)	$\mathrm{D}_{\mathrm{T}_{14 \times 4}}$		150		$\mu \mathrm{~m}$		Note 4

Electrical/Optical Characteristics

 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specifiedHFBR-1412 and HFBR-1402 Peak Output Optical Power Measured Out of 1m of Cable

Parameter	Symbol	Min.	Typ. ${ }^{[2]}$	Max.	Units	Conditions		Notes
62.5/125 $\mu \mathrm{m}$ Fiber Cable $\mathrm{NA}=0.27$	$\mathrm{P}_{\mathrm{T}_{62}}$	-19,0	-16.0	-14.0	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$I_{F}=60 \mathrm{~mA}$	Notes 5,6,9,10
		-20.0		-13.0	dBm	$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
$100 / 140 \mu \mathrm{~m}$ Fiber Cable$N A=0.30$	P^{100}	-15.0	-12.0	-10.0	dBm	$T_{A}=25^{\circ} \mathrm{C}$		
		-16.0		-9.0	dBm	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
$50 / 125 \mu \mathrm{~m}$ Fiber Cable$N A=0.18$	$\mathrm{P}_{\mathrm{T}_{50}}$	-22.5	-19.5	-17.5	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		-23.5		-16.5	dBm	$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
$200 \mu \mathrm{~m}$ PCS Fiber Cable $\mathrm{NA}=0.40$	$\mathrm{P}_{\text {T200 }}$	-10.0	-6.5	-4.0	dBm	$T_{A}=25^{\circ} \mathrm{C}$		
		-11.0		-3.0	dBm	$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		

HFBR-1414 and HFBR-1404 Peak Output Optical Power Measured Out of 1m of Cable

62.5/125 $\mu \mathrm{m}$ Fiber Cable $\mathrm{NA}=0.27$	$\mathrm{P}_{\mathrm{T}_{62}}$	-15.0	-12.0	-10.0	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$I_{F}=60 \mathrm{~mA}$	Notes 5,6,9,10
		-16.0		-9.0	dBm	$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
100/140 $\mu \mathrm{m}$ Fiber Cable$N A=0.30$	$\mathrm{P}_{\mathrm{T}_{100}}$	-9.5	-6.5	-4.5	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		-10.5		-3.5	dBm	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
50/125 $\mu \mathrm{m}$ Fiber Cable$N A=0.18$	$\mathrm{P}_{\mathrm{T}_{50}}$	-19.5	-16.5	-14.5	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		-20.5		-13.5	dBm	$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
$\begin{aligned} & 200 \mu \mathrm{~m} \text { PCS } \\ & \text { Fiber Cable } \\ & \mathrm{NA}=0.40 \end{aligned}$	PT_{200}	-4.5	-3.0	-1.5	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		-5.5		-2.5	dBm	$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the infrared output is radiologically safe. However, when
viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

Dynamic Characteristics

Parameter	Symbol	Min.	Typ.[2]	Max.	Units	Conditions	Notes
Rise Time, Fall Time (10 to 90%,	$t_{f}, \mathrm{t}_{\mathrm{f}}$		4.0	6.5	nsec	If $=60 \mathrm{~mA}$ No pre-bias	Note 7,11 Fig. 6
Propagation Delay LOW to HIGH	tpLH		10		$n s e c$	IFPK $=60 \mathrm{~mA}$	
Propagation Delay HIGH to LOW	tPHL		8		$n s e c$	IFPK $=60 \mathrm{~mA}$	

Notes:

1. For $\mathrm{I}_{\mathrm{FPK}}=120 \mathrm{~mA}$, the time duration should not exceed 2 ns .
2. Typical data at $T_{A}=25^{\circ} \mathrm{C}$.
3. Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit board.
4. D_{\top} is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.
5. P_{T} is measured with a large area detector at the end of 1 metre of mode stripped cable, with an AT\&T ST precision ceramic ferrule for HFBR-1412/1414, and with a OFTI NOFC precision ceramic ferrule for HFBR-1402/1404. This approximates a standard test connector.
6. When changing $\mu \mathrm{W}$ to dBm , the optical power is referenced to $1 \mathrm{~mW}(1000 \mu \mathrm{~W})$. Optical Power $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
7. Pre-bias is recommended if $\mathrm{I}_{\mathrm{F}}<30 \mathrm{~mA}$, see recommended drive circuit in Figure 11.
8. Pins 2, 6 and 7 are welded to the anode header connection to minimize the thermal resistance from junction to ambient. To further reduce the thermal resistance, the anode trace should be made as large as is consistent with good RF circuit design.
9. Fiber NA is measured at the end of 2 metres of mode stripped fiber, using the far-field pattern. NA is defined as the sine of the half angle, determined at 5% of the peak intensity point.
10. $\mathrm{P}_{\mathrm{T} 100}$ specifications are for HP's $100 / 140 \mu \mathrm{~m}$ fiber cable (NA $=0.30 @ 10 \%$ at peak intensity). When using other manufacturer's fiber cable, results will vary due to differing NA values and specification methods.
11. For data rates of 100 megabaud or higher, maximum rise and fall times of less than 4 nanoseconds are desirable. Please see your local Hewlett-Packard Field Sales Engineer for higher speed versions of HFBR-14XX.

Recommended Drive Circuits

For data rates of 35 MBd or less, the transmitter drive circuit in Figure 2 will be adequate. For greater than 35 MBd operation, shorter rise and fall times are desirable. Rise and fall times can be improved by using a pre-bias current and "speed-up" capacitor. A pre-bias current will significantly reduce the junction capacitance and will not change the extinction ratio appreciably. The recommended TTL comptible drive circuit in Figure 11 using a speed-up capacitor will provide a typical rise and fall times of 4 ns . The following set of equations will give the component values for the circuit for different transmitter drive current:

$$
\begin{aligned}
R_{y} & =\frac{\left(V_{C C}-V_{F}\right)+3.2\left(V_{C C}-V_{F}-1.4 V\right)}{I_{F O N}} \\
R_{x} & =\left(\frac{R_{y}}{3.2}-10 \Omega\right) \\
R_{x_{1}} & =\frac{R_{X}+10 \Omega}{2} \\
R_{X_{2}} & =R_{x_{1}}-10 \Omega \\
C & =\frac{2.0 \text { nsec }}{R_{X_{1}}}
\end{aligned}
$$

Example: For $\mathrm{I}_{\mathrm{FON}}=27 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}}$ can be obtained from Fig. 9 ($=1.7 \mathrm{~V}$)

$$
\begin{aligned}
\mathrm{R}_{\mathrm{y}} & =\frac{(5 \mathrm{~V}-1.7 \mathrm{~V})+3.2(5 \mathrm{~V}-1.7 \mathrm{~V}-1.4 \mathrm{~V})}{27 \mathrm{~mA}} \\
& =\frac{3.3 \mathrm{~V}+6.1 \mathrm{~V}}{27 \mathrm{~mA}}=348 \Omega \\
\mathrm{R}_{\mathrm{x}} & =\left(\frac{348 \Omega}{3.2}\right)-10 \Omega=98.8 \Omega \\
\mathrm{R}_{\mathrm{x}_{1}} & =\frac{98.8 \Omega+10 \Omega}{2}=54.4 \Omega \\
\mathrm{R}_{\mathrm{x}_{2}} & =54.4-10=44.4 \Omega \\
\mathrm{C} & =\frac{2 \mathrm{nsec}}{\mathrm{R}_{\mathrm{x}_{1}}}=36.8 \mathrm{pF}
\end{aligned}
$$

Selected the following standard value components:

$$
\mathrm{R}_{\mathrm{y}}=330 \Omega \quad \mathrm{R}_{\mathrm{x}_{1}}=56 \Omega \quad \mathrm{R}_{\mathrm{x}_{2}}=47 \Omega \quad \mathrm{C}=39 \mathrm{pF}
$$

Figure 9. Forward Voltage and Current Characteristics

Figure 10. Normalized Transmitter Output vs. Forward Current

Figure 11. Recommended Drive Circuit

Figure 13. Test Circuit for Measuring $\mathbf{t}_{\mathbf{r}}, \mathrm{t}_{\mathrm{f}}$

5 MBd LOW COST FIBER OPTIC RECEIVER

Description

The HFBR-24X2 fiber optic receiver is designed to operate with the Hewlett-Packard HFBR-14XX fiber optic transmitter and $62.5 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, and $50 / 125 \mu \mathrm{~m}$ fiber optic cable. Consistent coupling into the receiver is assured by the lensed optical system (Figure 1). Response does not vary with fiber size.

The HFBR-24X2 receiver incorporates an integrated photo IC containing a photodetector and dc amplifier driving an open-collector Schottky output transistor. The HFBR-24X2 is designed for direct interfacing to popular logic families. The absence of an internal pull-up resistor allows the open-collector output to be used with logic families such as CMOS requiring voltage excursions much higher than V_{Cc}.
Both the open-collector "Data" output Pin 6 and $V_{C C}$ Pin 2 are referenced to "Com" Pin 3, 7. The "Data" output allows busing, strobing and wired "OR" circuit configurations. The transmitter is designed to operate from a single +5 V supply. It is essential that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from Pin $2\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to $\operatorname{Pin} 3$ (circuit common) of the receiver.

CAUTION: The small junction sizes inherent to the design of this component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference	
Storage Temperature	T_{S}	-55	+85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note1 1
	Time			10	sec	
Supply Voltage	$V_{C C}$	-0.5	7.0	V		
Output Current	10		25	mA		
Output Voltage	V_{0}	-0.5	18.0	V		
Output Collector Power Dissipation	PO AV		40	mW		
Fan Out (TTL)	N		5		Note2	

*PINS 3 AND 7 ARE ELECTRICALLY CONNECTED TO HEADER

Electrical/Optical Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified
Fiber sizes with core diameter $\leq 100 \mu \mathrm{~m}$ and $\mathrm{NA} \leq 0.4,4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

Parameter	Symbol	Min.	Typ. ${ }^{[3]}$	Max.	Units	Conditions	Reference
High Level Output Current	IOH		5	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{0}=18 \mathrm{~V} \\ & P_{R}<-40 \mathrm{dBm} \end{aligned}$	
Low Level Output Voltage	Vol		0.4	0.5	V	$\begin{aligned} & 10=8 \mathrm{~mA} \\ & P_{R}>-24 \mathrm{dBm} \end{aligned}$	
High Level Supply Current	ICCH		3.5	6.3	mA	$\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & P_{R}<-40 \mathrm{dBm} \end{aligned}$	
Low Level Supply Curren:	lect		6.2	10	mA	$\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & P_{\mathrm{A}}=-24 \mathrm{dBm} \end{aligned}$	
Equivalent N.A.	NA		. 50				
Optical Port Diameter	D_{R}		400		$\mu \mathrm{m}$		Note 4

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified; $4.75 \leq \mathrm{V}_{\mathrm{cc}} \leq 5.25 \mathrm{~V}$

Parameter	Symbol	Min.	Typ.[3]	Max.	Units	Conditions	Notes
Peak Input Power Level Logic HIGH	Pft			$\begin{aligned} & -40 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{dBm} \\ & \mu \mathrm{~W} \end{aligned}$	$\lambda p=820 \mathrm{~nm}$	Note 5
Peak Input Power Level Logic LOW	PRL	-25.4		-9.2	dBm	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{lOL}=8 \mathrm{~mA} \end{aligned}$	Note 5
		2.9		120	${ }_{\mu} \mathrm{W}$		
		-24.0		-10.0	dBm	$\begin{aligned} & -40<T_{A}<85^{\circ} C_{1} \\ & 1 O L=8 \mathrm{~mA} \end{aligned}$	
		4.0		100	$\mu \mathrm{W}$		
Propagation Delay LOW to HIGH	tpLHR		65		nsec	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{R}}=-21 \mathrm{dBm}$ Data Rate $=5 \mathrm{MBd}$ $B E R=10^{-9}$	Note 6
Propagation Delay HIGH to LOW	tphlin		49		nsec		

Notes:

1. 2.0 mm from where leads enter case.
2. 8 mA load ($5 \times 1.6 \mathrm{~mA}$), $\mathrm{R}_{\mathrm{L}}=560 \Omega$.
3. Typical data at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ dc.
4. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
5. Measured at the end of $100 / 140 \mu \mathrm{~m}$ fiber optic cable with large area detector.
6. Propagation delay through the system is the result of several sequentially-occurring phenomena. Consequently it is a combination of data-rate-limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time differentials between delays imposed on falling and rising edges.
As the cable length is increased, the propagation delays increase at 5 ns per metre of length. Data rate, as limited by pulse width distortion, is not affected by increasing cable length if the optical power level at the receiver is maintained.

25 MHz LOW COST FIBER OPTIC RECEIVER
 HFBR-2414 (ST)
 HFBR-2404 (SMA)

Description

The HFBR-24X4 fiber optic receiver is designed to operate with the Hewlett-Packard HFBR-14XX fiber optic transmitters and $62.4 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, and $50 / 125 \mu \mathrm{~m}$, fiber optic cable. Consistent coupling into the receiver is assured by the lensed optical system (Figure 1). Response does not vary with fiber size.
The receiver output is an analog signal that can be optimized for a variety of distance/data rate requirements. Low-cost external components can be used to convert the analog output to logic compatible signal levels for various data formats and data rates up to 35 MBaud . This distance/data rate tradeoff results in increased optical power budget at lower data rates which can be used for additional distance or splices.

The HFBR-24X4 receiver contains a PIN photodiode and low noise transimpedance pre-amplifier integrated circuit with an inverting output (see note 3). The HFBR-24X4 receives an optical signal and converts it to an analog voltage. The output is a buffered emitter-follower. Because the signal amplitude from the HFBR-24X4 receiver is much larger than from a simple PIN photodiode, it is less susceptible to EMI, especially at high signal rates. The receiver has a minimum dynamic range of 15 dB over temperature (assuming a $10^{-9} \mathrm{BER}$).

The frequency response is typically dc to 25 MHz . Although the HFBR-24X4 is an analog receiver, it is easily made compatible with digital systems. Please refer to Application Bulletin 73 for simple and inexpensive circuits that operate up to 35 MBd .

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Reference
Storage Temperature	T_{5}	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 1
Signal Pin Voltage			10	sec	
Supply Voltage	VSIGNAL	-0.5	1	V	

BOTTOM VIEW

PIN	FUNCTION
1	N.C.
2	SIGNAL
$3 \cdot$	COMMON
4	N.C.
5	N.C.
6	VCC $(5 \mathrm{~V})$
$7 *$	COMMON
8	N..

PINS 3 AND 7 ARE ELECTRICALLY CONNECTED TO HEADER

CAUTION: The small junction sizes inherent to the design of this component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Electrical/Optical Characteristics
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \quad 4.75 \leq \mathrm{V}_{C C} \leq 5.25 ; R_{\text {LOAD }}=511 \Omega$
Fiber sizes with core dia. ≤ 100 microns, and N.A. ≤ 0.4 unless otherwise specified.

Dynamic Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \leq \mathrm{VCC} \leq 5.25 ; \quad$ RLOAD $=511 \Omega, \mathrm{C}_{\text {LOAD }}=13 \mathrm{pF}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[5]}$	Max.	Units	Conditions	Reference
Rise/Fall Time, 10% to 90%	$\mathrm{t}_{\mathrm{f}}, \mathrm{tf}_{\mathrm{f}}$		14	19.5	ns	$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{P}_{\mathrm{R}}=10 \mu \mathrm{~W}$ Peak	Note 6
				26	ns		
Pulse Width Distortion	$\mathrm{t}_{\mathrm{ph}}-\mathrm{t}_{\mathrm{p} \text { ih }}$			2	ns	$\mathrm{P}_{\mathrm{R}}=40 \mu \mathrm{~W}$ Peak	
Overshoot			4		$\%$	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Note 7
Bandwidth (Electrical)	BW_{e}		25		MHz		
Power Supply Rejection Ratio Referred to Output	PSAR		50		dB	at 2 MHz	Note 8

Notes:

1. 2.0 mm from where leads enter case.
2. If $\mathrm{P}_{\mathrm{R}}>40 \mu \mathrm{~W}$, then pulse width distortion may increase. At $\mathrm{Pin}=80 \mu \mathrm{~W}$ and $T_{A}=85^{\circ} \mathrm{C}$, some units have exhibited as much as 100 ns pulse width distortion.
3. $V_{O U T}=V_{O D C}-\left(R_{P} \times P_{R}\right)$.
4. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
5. Typical specifications are for operation at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5.0 \mathrm{~V}$.
6. Input optical signal is assumed to have $10 \%-90 \%$ rise and fall times of less than 6 ns .
7. Percent overshoot is defined as: $\frac{V_{P K}-V_{100} \%}{V_{100}} \times 100 \%$
8. Output referred P.S.R.R. is defined as $20 \log \left(\frac{\text { VPOWER SUPPL.Y RIPPLE }}{\text { VOUT RIPPLE }}\right)$

125 MHz LOW COST FIBER OPTIC RECEIVER

Description

The HFBR-24X6 fiber optic receiver is designed to operate with the Hewlett-Packard HFBR-14XX fiber optic transmitters and $62.5 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, and $50 / 125 \mu \mathrm{~m}$ fiber optic cable. Consistent coupling into the receiver is assured by the lensed optical system (Figure 1). Response does not vary with fiber size for core diameters of $100 \mu \mathrm{~m}$ or less.
The receiver output is an analog signal which allows follow-on circuitry to be optimized for a variety of distance/ data rate requirements. Low-cost external components can be used to convert the analog output to logic compatible signal levels for various data formats and data rates up to 150 MBaud. This distance/data rate tradeoff results in increased optical power budget at lower data rates which can be used for additional distance or splices.

The HFBR-24X6 receiver contains a PIN photodiode and low noise transimpedance pre-amplifier integrated circuit. The HFBR-24X6 receives an optical signal and converts it to an analog voltage. The output is a buffered emitterfollower. Because the signal amplitude from the HFBR-24X6 receiver is much larger than from a simple PIN photodiode, it is less susceptible to EMI, especially at high signal rates. The receiver has a minimum dynamic range of 23 dB over temperature (assuming $10^{-9} \mathrm{BER}$). Because the maximum receiver input power is 6 dB larger and the noise is 2 dB lower over temperature than HP's HFBR-24X4 25 MHz receiver, the HFBR-24X6 is well suited for more demanding link designs that require wide receiver dynamic range.

The frequency response is typically dc to 125 MHz . For bandwidth selection contact your HP Components sales engineer. Although the HFBR-24X6 is an analog receiver, it is easily made compatible with digital systems. Please refer to Application Bulletin 74 for simple and inexpensive circuits that operate up to 150 MBaud .

The recommended AC coupled receiver circuit is shown in Figure 14. It is essential that a 10 ohm resistor be connected between V_{EE} and the power supply, and a $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor be connected between the power supply and ground.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Unit	Reference
Storage Temperature		Ts	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{F}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 1
	Time		-	10	sec	
Signal Pin Voltage		VSIGNAL	-0.5	VCG	\checkmark	
Supply Vollage		$V_{C C}-V_{E E}$	-0.5	6.0	\checkmark	
Output Current		10		25	mA	

вотtom view

PIN	FUNCTION
1	N.C.
2	SIGNAL.
3^{*}	$V_{\text {EE }}$
4	N.C
5	N.C.
6	$V_{C C}$
7^{*}	$V_{\text {EE }}$
8	N.C.

-PINS 3 AND 7 ARE ELECTRICALLY CONNECTED TO HEADER

CAUTION: The small junction sizes inherent to the design of this component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Electrical/Optical Characteristics
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ;-5.45 \leq$ Supply Voltage $\leq,-4.75$,
$R_{\text {LOAD }}=511 \Omega$, Fiber sizes with core dia. ≤ 100 microns, and N.A. ≤ 0.35 unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{\text {[2] }}$	Max.	Unit	Conditions	Reference
Responsivity	R_{P}	5	7	9	$\mathrm{mV} / \mu \mathrm{W}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \text { at } 820 \mathrm{~nm}, 50 \mathrm{MHz} \end{aligned}$	Note 3, 4
		4.5		11.5	$\mathrm{mV} / \mu \mathrm{W}$	@ $820 \mathrm{~nm}, 50 \mathrm{MHz}$	
RMS Output Noise Voltage	$\mathrm{V}_{\text {NO }}$		0.38	0.53	mV	Bandwidth Filtered @ 75 MHz $P_{R}=0 \mu W$	Note 5
				0.70	mV	Unfiltered Bandwidth $P_{\mathrm{B}}=0 \mu \mathrm{~W}$	Figure 15
Equivalent Optical Noise Input Power (RMS)	P_{N}		-43.0	-41.9	dBm	Bandwidth Filtered @ 75 MHz	
			0,050	0.065	$\mu \mathrm{W}$		
Peak Input Power	$P_{\text {R }}$			-7.6	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Figure 16 Note 6
				175	$\mu \mathrm{W}$		
				-8.2	dBm		
				150	$\mu \mathrm{W}$		
Output Impedance	Z_{0}		30		Ω	Test Frequency $=$ 50 MHz	
DC Output Voltage	Vode	-4.2	-3.1	-2.4	V	$P_{R}=0 \mu W$	
Power Supply Current	IEE		9	15	mA	$\mathrm{R}_{\text {LOAD }}=\infty$	
Equivalent N.A.	NA		0.35				
Equivalent Diameter	D_{R}		324		$\mu \mathrm{m}$		Note 7

Dynamic Characteristics
 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ;-5.45 \leq$ Supply Voltage $\leq,-4.75$, R $_{\text {LOAD }}=511 \Omega$,

$C_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[2]}$	Max.	Unit	Conditions	Reference
Rise/Fall Time 10% to 90%	$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}^{\text {f }}$		3.3	6.3	ns	$\mathrm{P}_{\mathrm{R}}=100 \mu \mathrm{~W}$	Figure 17
Pulse Width Distortion	PWD		0.4	2.5	ns	$\mathrm{P}_{\mathrm{R}}=150 \mu \mathrm{~W}$ Peak	Note 8, Figure 17
Overshoot			2		\%	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=5 \mu \mathrm{~W} \text { Peak, } \\ & \mathrm{t}_{\text {ropt }}=1.5 \mathrm{~ns} \end{aligned}$	Note 9
Bandwidth (Electrical)	BW_{e}		125		MHz	-3 dB electrical	Note 10
Power Supply Rejection Ratio	PSRR		20		dB	at 10 MHz	Note 11
Bandwidth • Rise Time Produc:			0.41		$\mathrm{Hz} \cdot \mathrm{s}$		Note 12

Notes:

1. 2.0 mm from where leads enter case.
2. Typical specifications are for operation at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}$.
3. For $200 \mu \mathrm{~m}$ PCS fibers, typical responsivity will be $6 \mathrm{mV} / \mu \mathrm{W}$. Other parameters will change as well.
4. Pin \#2 should be ac coupled to a 511 ohm load. Load capacitance must be less than 5 pf .
5. Measured with a 3 pole Bessel filter with a $75 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth. Recommended receiver filters for various bandwidths are provided in Application Bulletin 74.
6. Overdrive is defined at $P W D=2.5 \mathrm{~ns}$.
7. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
8. Measured with a 10 ns pulse width, 50% duty cycle, at the 50% amplitude point of the waveform.
9. Percent overshoot is defined as: $V_{P K}-V_{100 \%}$
10. For bandwidth selection contact your HP Componenets sales engineer.
11. Output referred P.S.R.R. is defined as $20 \log \left(\frac{V_{\text {POWER SUPPLY RIPPLE }}}{V_{\text {OUT RIPPLE }}}\right)$
12. The conversion factor for the rise time to bandwidth is 0.41 since the HFBR-24X6 has a second order bandwidth limiting characteristic.

Figure 14. Recommended AC Coupled Receiver Circuit

Figure 16. Typical Pulse Width Distortion vs. Peak Input Power

Figure 15. Typical Spectral Noise Density vs. Frequency

Figure 17. Typical Rise and Fall Times vs. Temperature

ST Evaluation Kit

The HFBR-0410 kit is a simple and inexpensive way to demonstrate the performance of Hewlett-Packard's HFBR0400 ST Series transmitters and receivers.

The HFBR-0410 ST Evaluation Kit contains the following items:

- One HFBR-1412 transmitter
- One HFBR-2412 five megabaud TTL receiver
- Three metres of ST Connectored 62.5/125 $\mu \mathrm{m}$ fiber optic cable with low cost plastic ferrules
- HFBR-0400 Series data sheets
- HP Application Bulletin 73
- ST connector and cable data sheets

To order an ST Evaluation Kit, please specify HFBR-0410, Quantity 1.

SMA Evaluation Kit

The HFBR-0400 kit is a simple and inexpensive way to demonstrate the performance of Hewlett-Packard's HFBR0400 SMA Series transmitters and receivers.

The HFBR-0400 SMA Evaluation Kit contains the following items:

- One HFBR-1402 transmitter
- One HFBR-2402 five megabaud TTL receiver
- Two metres of SMA connectored $1000 \mu \mathrm{~m}$ plastic core fiber optic cable
- HFBR-0400 Series data sheets
- HP Application Bulletin 73

To order an SMA Evaluation Kit, please specify HFBR0400, Quantity 1.

ST Evaluation Cables

Hewlett-Packard offers six different ST connectored cables, available for prototyping purposes. These simplex cables use an ST Connector with a precision ceramic ferrule. One and ten metre simplex cables are available with $62.5 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, and $50 / 125 \mu \mathrm{~m}$ fiber sizes. To order any of these cables, please select the desired part number found below:
For example, to order two connectored simplex cables with $62.5 / 125 \mu \mathrm{~m}$ fiber, and ST connectors with ceramic ferrules, each ten metres long, specify:
HFBR-BXS010 Quantity: 2

St CABLE SELECTION MATRIX

Part Number	Fiber Size ($\mu \mathrm{m}$)		Connector	Cable	Length		
	$100 / 140$	$62.5 / 125$	$50 / 125$	ST-Ceramic	Simplex	1 metre	10 metres
HFBR-AXS001	X			X	X	X	
HFBR-AXS010	X			X	X		X
HFBR-BXS001		X		X	X	X	
HFBR-BXS010		X		X	X		X
HFBR-CXS001			X	X	X	X	
HFBR-CXS010			X	X	X		X

Because our ST evaluation cables are short in length, optical attenuation will be insignificant. The optical loss throughout the cable will typically be 0.5 dB , attributable to the ST Connectors on each end of the cable. It should be noted that Hewlett-Packard's HFBR-0400 ST Series transmitter and receiver specifications already account for losses through the ST Connectors.

For longer distance cable lengths, mechanical and optical parameters can be guaranteed by a variety of cable suppliers. For technical information about ST Connectors, and a listing of ST connectored cable suppliers, please refer to Technical Brief 105, or call your local HP Components Field Sales Engineer.

Mechanical Dimensions

HFBR-0400 ST SERIES

SECTION A-A

HFBR-0400 SMA SERIES

NOTE: ALL DIMENSIONS IN MILLIMETRES AND (INCHES).

ST CONNECTOR (See note 3)

SMA CONNECTOR

(Used on HP's $100 / 140 \mu \mathrm{~m}$ fiber optic cable assemblies)

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES AND (INCHES),
2. FOR APPLICATIONS WITH SPACE CONSTRAINTS, THE HFBR-0400 ST AND SMA SERIES PACKAGE CAN BE SUPPLIED WITHOUT THE ST AND SMA SOWER HOUSING (SEE FIGURE 1) FOR MECHANICAL UPPER AND LOWER HOUSING (SEE FIGUREON. FOR MECHANICAL DIMENSIONS, PLEASE SEE YOUR HP COMPONENTS FIELD SALES 3. FOR THE ST CONNECTOR SHOWN ABOVE, THE CORRESPONDING FOR THE ST CONNECTOR SHOWN ABOVE, THE CORRESPONDING
AT\&T PART NUMBERS ARE P2020A-C-125, P2030A-C-125, P2020A-A-125 AT\&T PART NUMBERS ARE P2020A-C-125, P2030A-C-125, P2020A-A-125 AND P2030A-C-140.
3. COLOR CODING; PART MARKING IS IN RED FOR HFBR-14XX TRANSMITTERS AND BLACK FOR HFBR-24XX RECEIVERS. THE PORTS ARE SHADED AS SHOWN BELOW.

TRANSMITTERS

receivers

GLASS FIBER OPTIC CABLE/CONNECTOR ASSEMBLIES

Features

- SMA CONNECTORS OR UNCONNECTORED
- CONNECTORS FACTORY INSTALLED AND TESTED
- SIMPLEX OR DUPLEX CABLE WITH $100 / 140 \mu \mathrm{~m}$ GLASS FIBER
- UL RECOGNIZED COMPONENT PASSES UL VW-1 FLAME RETARDANCY SPECIFICATION*
- RUGGED TIGHT JACKET CONSTRUCTION
- PARAMETERS OPTIMIZED FOR LOCAL DATA COMMUNICATIONS
- BANDWIDTH: 40 MHz AT 1 km

Description

SMA connectored cable assemblies are intended for use with the HFBR-0400 SMA Series transmitters and receivers. These cables are available in standard lengths, as shown in the cable assembly ordering guide. Unconnectored 100/140 $\mu \mathrm{m}$ fiber optic cable is also available.
The simplex cable is constructed of a single graded index glass fiber surrounded by a silicone buffer, secondary jacket, and aramid strength members. The combination is covered with a scuff resistant polyurethane outer jacket.
The duplex cable has two glass fibers each in a cable of construction similar to the simplex cable, joined with a web. The individual channels are identified by a marking on one channel of the cable.

Fiber Optic Cable Construction

The cable's resistance to mechanical abuse, safety in flammable environments, and absence of electromagnetic interference effects may make the use of conduit unnecesinterference effects may make the use of conduit unneces-
sary. However, the light weight and high strength of the cables allows them to be drawn through most electrical conduits. The connectors must be protected during installation by a pulling grip such as Kellems 033-29-003.

*UL File Number E84364

Mechanical Dimensions

SMA STYLE CONNECTOR

CABLE LENGTH TOLERANCE

Cable Length (Metres)	Tolerance
$1-10$	$+10 /-0 \%$
$11-100$	$+1 /-0$ Metre
>100	$+1 /-0 \%$

NOTES:

1. DIMENSIONS ARE IN mm (INCHES).
2. FIBER END IS LOCKED FLUSH WITH FERRULE FACE.
CAUTION:
3. COUPLING NUT SHOULD NOT BE OVERTIGHTENED: TOROUE 0.05 TO O. 1 UNITS N. TI OVER tightening may cause excessive fiber MISALIGNMENT OR PERMANENT DAMAGE,
4. GOOD SYSTEM PERFORMANCE REQUIRES CLEAN FERRULE FACES TO AVOID OBSTRUCTING THE OPTICAL PATH. CLEAN COMPRESSED AIR OFTEN IS SUFFICIENT TO REMOVEPARTICLES. A COTTON SWAB SOAKED IN METHANOL OR FREON* MAY ALSO BE USED.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Relative Humidity at $T_{A}=70^{\circ} \mathrm{C}$			95	$\%$	13
Storage Temp.	T_{S}	-40	+85	${ }^{\circ} \mathrm{C}$	
Operating Temp.	T_{A}	-20	+85		
Bend Radius, No Load	r	25		mm	10
Flexing		50 K		Cycles	1

Parameter	Symbol	Min.	Max.	Units	Note
Crush Load	FC		200	N	2.8
Impact	m		1.5	kg	3
	h		0.15	m	
Tensile Force	On Cable Connec- Ior/Cable	FT		300	N
			100	N	

Mechanical/Optical Characteristics $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Unless otherwise Spectified.

Parameter		Symbol	Min.	Typ. ${ }^{[6]}$	Max.	Units	Conditions	Fig.	Note
Numerical Aperture		N.A.		0.3		-	$\lambda=820 \mathrm{~nm}, \mathrm{l} \geq 300 \mathrm{~m}$		4
Attenuation		α_{0}	3.5	4.5	8	$\mathrm{dB} / \mathrm{Km}$	$\lambda=820 \mathrm{~nm}$		7,12
Bandwidth @ 1 km		BW	20	40		MHz	$\lambda=820 \mathrm{~nm}$ (LED)		5,14
Travel Time Constant		I/V		5		ns / m	$\lambda=820 \mathrm{~nm}$		11
Optical Fiber Core Diameter		DC		100		$\mu \mathrm{m}$			
Cladding Outside Diameter		DCL		140					
Index Grading Coefficient		g		2		-			
Cable Structural Strength		Fc		1800		N			8
Mass per Unit Length	Single Channel	/		6		kg/km			
	Dual Channel			12					
Cable Leakage Current		IL		30		nA	$50 \mathrm{KV}, \quad \ell=0.3 \mathrm{~m}$		

Notes:
1.180° bending at minimum bend radius, with 10 N tensile load.
2. Force applied on 2.5 mm diameter mandrel laid across the cable on a flat surface, for 100 hours, followed by flexure test.
3. Tested at 1 impact according to DOD-STD-1678, Method 2030, Procedure 1.
4. Fiber N.A. is measured at the end of 2 metres of mode stripped fiber, using the far field pattern. N.A. is defined as the sine of the half angle, determined at 5% of the peak intensity point.
5. Bandwidth is measured with a pulsed LED source ($\lambda=820$ $\mathrm{nm})$, and varies as $\ell-0.85$, where ℓ is the length of the fiber (km). Pulse dispersion and bandwidth are approximately inversely related.
6. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
7. Fixed losses (length independent) are included in Transmitter/Receiver optical specifications.
8. One Newton equals approximately 0.225 pounds force.
9. Short term, $\leq 1 \mathrm{hr}$.
10. The probability of a fiber weak point occurring at a point of maximum bend is small, consequently the risk of fiber breakage from exceeding the maximum curvature is extremely low.
11. Travel time constant is the reciprocal of the group velocity for propagation of optical power. Group velocity, $V=\lambda / n$ where $\lambda=$ velocity of light in space $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $\mathrm{n}=$ effective core index of refraction.
12. For lower attenuation cable consult local HP sales office.
13. This applies to cable only.
14. For wider bandwidth cable consult local HP sales office.

Cable Assembly Ordering Guide

The desired fiber optic cable assembly can be identified by examining the part number description in Figure 1. To minimize delivery turnaround time, fixed lengths of cable have been adopted. The standard offerings of connectored and unconnectored glass fiber optic cables are listed below.

Figure 1. Part Number Description for SMA Connectored Cables and Unconnectored Cables

SMA AND UNCONNECTORED CABLES[1, 2]

Part Number		Fiber Size	Connector Style		Cable Type		Cable Length						
		$\begin{gathered} 100 / 140 \\ \mu \mathrm{~m} \end{gathered}$	SMA	Unconnectored	Single Channel	Dual Channel	1M	5M	10M	25M	50M	100M	1000M
	HP Code	A	W	U	S	D	001	005	010	025	050	100	1KM
HFBR-AWS001		x	x		x		x						
HFBR-AWS005		x	x		x			x					
HFBR-AWS010		x	x		x				\mathbf{x}				
HFBR-AWS025		x	x		x					K			
HFBR-AWS050		x	x		x						x		
HFBR-AWS100		x	x		x							\times	
HFBR-AWD005		x	x			x		\times					
HFBR-AWD010		x	x			x			\times				
HFBR-AWD025		x	x			x				x			
HFBR-AWD050		x	x			x					x		
HFBR-AWD100		x	x			x					x		
HFBR-AUS100		x		\times	x							x	
HFBR-AUS1KM		x		x	x								x
HFBR-AUD100		x		x		x						X	
HFBR-AUD1KM		X		x		\mathbf{x}							X

Notes:

1. Please contact your local HP sales office for delivery and pricing of non-standard lengths of SMA connectored cables, and unconnectored cables with $100 / 140 \mu \mathrm{~m}$ fiber.
2. For cables with HFBR-4000 (HP Style) connectors, the standard offerings are identical to the SMA connectored cable offerings. To order, replace the W (SMA) in the part number with H (HFBR-4000). For example, for one piece of 100/140 $\mu \mathrm{m}$ duplex fiber cable, 5 metres long, with HFBR-4000 connectors, specify HFBR-AHD005, Quantity 1.

Examples:

A. To order three duplex $100 / 140 \mu \mathrm{~m}$ cable assemblies, 100 metres long each, with SMA connectors, specify: HFBR-AWD100, Quantity 3.
B. To order one simplex 100/140 $\mu \mathrm{m}$ cable assembly, 10 metres long, with SMA connectors, specify: HFBR-AWS010, Quantity 1.
C. To order two duplex $100 / 140 \mu \mathrm{~m}$ cable assemblies, 1000 metres long each, unconnectored, specify: HFBR-AUD1KM, Quantity 2.

SNAP-IN FIBER OPTIC LINKS TRANSMITTERS, RECEIVERS, CABLE AND CONNECTORS

HFBR-0500 SERIES

Features

- GUARANTEED LINK PERFORMANCE OVER TEMPERATURE
High Speed Links: dc to 5 MBd
Extended Distance Links up to 82 m
Low Current Links: 6 mA Peak Supply Current for an 8 m Link
Photo Interrupters
- LOW COST PLASTIC DUAL-IN-LINE PACKAGE
- EASY FIELD CONNECTORING
- EASY TO USE RECEIVERS:

Logic Compatible Output Level
Single +5 V Receiver Power Supply
High Noise Immunity

- LOW LOSS PLASTIC CABLE:

Selected Super Low Loss Simplex Cable
Simplex and Zip Cord Style Duplex Cable

Applications

- HIGH VOLTAGE ISOLATION
- SECURE dATA COMMUNICATIONS
- REMOTE PHOTO INTERRUPTER
- LOW CURRENT LINKS
- INTER/INTRA-SYSTEM LINKS
- STATIC PROTECTION
- EMC REGULATED SYSTEMS (FCC, VDE)

Description

The HFBR-0500 series is a complete family of fiber optic link components for configuring low-cost control, data transmission, and photo interrupter links. These components are designed to mate with plastic snap-in connectors and low-cost plastic cable.* Link design is simplified by the logic compatible receivers and the ease of connectoring the plastic fiber cable. The key parameters of links configured with the HFBR-0500 family are fully guaranteed.

* Cable is available in standard low loss and selected super low loss varieties.

Link Selection Guide

GUARANTEED LINKS

	Data Rate	Guaranteed Link Length $0-70^{\circ} \mathrm{C}$		Typical Link Lengths$25^{\circ} \mathrm{C}$		Transmitter	Receiver	Page
		Standard Cable	Improved Cable	Standard Cable	Improved Cable			
5 MBd Link	5 MBd	12	17	35 m	40 m	HFBR-1510	HFBR-2501	8-62
1 MBd Link	1 MBd	24	34	50 m	65 m	HFBR-1502	HFBR-2502	8-64
Low Current Link	40 kBd	8	11	30 m	35 m	HFBR-1512	HFBR-2503	8-66
Extended Distance Link	40 kBd	60	82	100 m	125 m	HFBR-1512	HFBR-2503	8-66
Photo Interrupter	20 kHz	N/A	N/A	N/A	N/A	HFBR-1512	HFBR-2503	8-68
Link	500 kHz	N/A	N/A	N/A	N/A	HFBR-1502	HFBR-2502	8-68

Component Selection Guide

TRANSMITTERS

	Minimum Output Optical Power 0 to $70^{\circ} \mathrm{C}$	Peak Emission Wavelength
HFBR-1510	$-16.5 \mathrm{dBm}$	665 nm
HFBR-1502	$-13.6 \mathrm{dBm}$	665 nm
HFBR-1512	$-13.6 \mathrm{dBm}$	665 nm

RECEIVERS

	Sensitivity 0 to $70^{\circ} \mathrm{C}$			
	$\frac{\text { Data Rate }}{}$			Page
HFBR-2501	-21.6 dBm		5 MBd	
HFBR-2502	-24 dBm		1 MBd	12
HFBR-2503	-39 dBm		40 kBd	14

CABLES

Please refer to page 15 (of the Versatile Link Fiber Optics Data Sheet) for cable specifications.

CONNECTORS
Page 17
HFBR-4501 Gray Connector/Crimp Ring HFBR-4511 Blue Connector/Crimp Ring HFBR-4595 Polishing Kit
Polishing Fixture - Abrasive Paper
HFBR-4596 Polishing Fixture
Bulkhead Feedthrough/In-Line Splice
HFBR-4505 Gray
HFBR-4515 Blue

Mechanical Dimensions
Page 19

5 MBd Link

HFBR-1510 AND HFBR-2501

The dc to 5 MBd link is guaranteed over temperature to operate up to 17 m with a transmitter drive current of 60 mA . This link uses the 665 nm HFBR-1510 Transmitter, the

HFBR-2501 Receiver, and Plastic Cable. The receiver compatible with LSTTL/TTL/CMOS logic levels offers a choice of internal pull-up or open collector output.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Units	Ref.
Ambient Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current	$\mathrm{I}_{\text {FFK }}$	10	750	mA	Note 1
Avg. Forward Current	$\mathrm{I}_{\text {FAV }}$		60	mA	
Receiver Supply Voltage	$\mathrm{V}_{\text {CC }}$	4.75	5.25	V	Note 2
Fan-Out (TTL)	N		5		

SYSTEM PERFORMANCE Using Standard Cable under recommended operating conditions unless otherwise specified.

Parameter	Sy. ${ }^{\text {a }}$ ol	Min.	Typ. ${ }^{5]}$	Max.	Units	Conditions	Ref.
Data Rate		dc		5	MBd	$\mathrm{BER} \leq 10^{-9}$	
Transmission Distance Standard Cable	ℓ	$\begin{aligned} & 12 \\ & 17 \end{aligned}$	35		$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{IFPK}=60 \mathrm{~mA}, 0^{\mathrm{O}} 70^{\circ} \mathrm{C} \\ & \mathrm{IFPK}=60 \mathrm{~mA}_{2} 25^{\circ} \mathrm{C} \end{aligned}$	
Transmission Distance Improved Cable		$\begin{array}{r} 17 \\ 24 \\ \hline \end{array}$	40		$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{I} F \mathrm{FK}^{=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}} \\ & \mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$	
Propagation Delay	$\begin{aligned} & \text { tPL.H } \\ & \text { tPHL } \end{aligned}$		$\begin{aligned} & 80 \\ & 50 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{P}_{\mathrm{R}}=-21.6 \leq \mathrm{P}_{\mathrm{R}} \leq-9.5 \mathrm{dBm} \end{aligned}$	Fig. 4, 5 Note 3
Pulse Width Distortion	to		30		ns	$\begin{aligned} & P_{R}=-15 \mathrm{dBm} \\ & R_{L}=560 \Omega, C_{L}=30 \mathrm{pF} \end{aligned}$	Fig. 4, 6 Note 4
EMI Immunity			8000		V / m	$B E R \leq 10^{-9}$	

Notes: 1. For $I_{F P K}>80 \mathrm{~mA}$, the duty factor must be such as to keep $I_{F A V} \leq 80 \mathrm{~mA}$. In addition, for $I_{F P K}>80 \mathrm{~mA}$, the following rules for pulse width apply: $I_{F P K} \leq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mathrm{~ms} \quad \mathrm{I}_{\mathrm{FPK}}>160 \mathrm{~mA}$: Pulse width $\leq 1 \mu \mathrm{~s}$
2. It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. The propagation delay of 1 m of cable (5 ns) is included.
4. $T_{D}=t_{P L H}-t_{P H L}$.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Link Design Considerations

The HFBR-1510/2501 Transmitter/Receiver pair is guaranteed for operation at data rates up to 5 MBd over link distances from 0 to 12 metres with standard cable and from 0 to 17 metres with improved cable. The value of transmitter drive current, I_{F}, depends on the link distance as shown in Figures 2 and 3. Note that there is an upper as well as a lower limit on the value of I_{F} for any given
distance. The dotted lines in Figures 2 and 3 represent pulsed operation. When operating in the pulsed mode, the conditions in Note 1 must be met. After selecting a value of the transmitter drive current I_{F}, the value of R_{1} in Figure 1 can be calculated as follows:

$$
R_{1}=\frac{V_{C C}-V_{F}}{I_{F}}
$$

Figure 1. Typical Circuit Operation ($\mathbf{5 M B d} \leq 12 \mathrm{~m}$)

Figure 2. Guaranteed System Performance with HFBR-1510 and HFBR-2501, Standard Cable

Figure 3. Guaranteed System Performance with HFBR-1510 and HFBR-2501, Improved Cable

Figure 5. HFBR-1510/2501 Link Pulse Width Distortion vs. Optical Power

Figure 6. HFBR-1510/2501 Link Propagation Delay vs. Optical Power

1 MBd Link hfbr-1502 and hfbr-2502

The dc to 1 MBd link is guaranteed over temperature to operate from 0 to 34 m with a transmitter drive current of 60 mA . This link uses the 665 nm HFBR-1502 Transmitter,
the HFBR-2502 Receiver, and Improved Cable. The receiver is compatible with LSTTL/TTL/CMOS logic levels and offers a choice of an internal pull-up or open collector output.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Units	Ref.
Ambient Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current	$I_{F P K}$	10	750	mA	Note 1
Avg. Forward Current	$I_{\text {FAV }}$		60	mA	
Receiver Supply Voltage	$V_{C C}$	4.75	5.25	V	Note 2
Fan-Out (TTL)	N		5		

SYSTEM PERFORMANCE Using Standard Cable under recommended operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{\text {[5] }}$	Max.	Units	Conditions	Ref.
Data Rate		dc		1	MBd	$B E R \leq 10^{-9}$	
Transmission Distance Standard Cable	ℓ	24			m	IFPK $=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		30	50		m	IFPK $=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Transmission Distance Improved Cable	ℓ	34			m	IFPK $=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		41	65		m	$I_{\text {FPK }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Transmission Distance Standard Cable	ℓ	30				IFPK $=120 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		36	60			IFPK $=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Transmission Distance Improved Cable	Q	41				$I_{\text {FPK }}=120 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		50	75			$\mathrm{I}_{\mathrm{FPK}}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Propagation Delay	tPLH		180	250	ns	$\mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{L}=30 \mathrm{pF}$	Fig. 4, 5 Note 3
	tPHL		100	140	ns	$\mathrm{P}_{\mathrm{R}}=-24 \mathrm{dBm}$	
Pulse Width Distortion	to		80		ns	$\begin{aligned} & \mathrm{PR}_{\mathrm{R}}=-24 \mathrm{dBm} \\ & R_{\mathrm{L}}=560 \mathrm{\Omega}, \mathrm{GL}=30 \mathrm{pF} \end{aligned}$	Fig. 4, 6 Note 4
EMI Immunity			8000		V / m	$\mathrm{BER} \leq 10^{-9}$	

Notes: 1. For $I_{F P K}>80 \mathrm{~mA}$, the duty factor must be such as to keep $\mathrm{I}_{\mathrm{FAV}} \leq 80 \mathrm{~mA}$. In addition, for $\mathrm{I}_{\mathrm{FPK}}>80 \mathrm{~mA}$, the following rules for pulse width apply: $I_{\text {FPK }} \leq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mathrm{~ms} \quad I_{\text {FPK }}>160 \mathrm{~mA}$: Pulse width $\leq 1 \mu \mathrm{~s}$
2. It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. The propagation delay of 1 m of cable (5 ns) is included.
4. $T_{D}=t_{P L H}-t_{P H L}$.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Link Design Considerations

The HFBR-1502/2502 Transmitter/Receiver pair is guaranteed for operation at data rates up to 1 MBd over link distances from 0 to 24 metres with standard cable and from 0 to 34 metres with improved cable. The value of transmitter drive current, I_{F}, depends on the link distance as shown in Figures 2 and 3. Note that there is a lower limit on the value of I_{F} for any given distance. The dotted lines in Figures 2 and 3 represent pulsed operation. When
operating in the pulsed mode, the conditions in Note 1 must be met. After selecting a value of the transmitter drive current I_{F}, the value of R_{1} in Figure 1 can be calculated as follows:

$$
R_{1}=\frac{V_{C C}-V_{F}-V_{O L}(75451)}{I_{F}}
$$

For the HFBR-1502/2502 pair, the value of the capacitor, C_{1} (Figure 1) must be chosen such that $R_{1} C_{1} \geq 75 \mathrm{~ns}$.

Figure 1. Typical Circuit Operation ($\mathbf{~ M B d} \leq \mathbf{2 4} \mathbf{m}$)

Figure 2. Guaranteed System Performance with HFBR-1502 and HFBR-2502, Standard Cable

Figure 3. Guaranteed System Performance with HFBR-1502 and HFBR-2502, Improved Cable

Figure 4. A.C. Test Circuit

Figure 5. HFBR-1502/2502 Link Pulse Width Distortion vs. Optical Power

Figure 6. HFBR-1502/2502 Link Propagation Delay vs. Optical Power

Low Current/Extended Distance Link

HFBR-1512 AND HFBR-2503

The low current link requires only 6 mA peak supply current for the transmitter and receiver combined to achieve an 11 m link. Extended distances up to 82 m can be achieved at a maximum transmitter drive current of 60 mA peak. This link can be driven with TTL/LSTTL and most CMOS logic gates.

The black plastic housing of the HFBR-1512 Transmitter is designed to prevent the penetration of ambient light into the cable through the transmitter. This prevents the sensitive receiver from being triggered by ambient light pulses.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Units	Ref.
Ambient Temperature	TA	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current	IF PK	2	120	mA	Note 1
Avg. Forward Current	IFAV		60	mA	
Receiver Supply Voltage	VCC	4.5	5.5	V	
Output Voltage	VO		$V_{C C}$	V	Note 2
Fan-Out (TTL)	N		1		

SYSTEM PERFORMANCE Using Standard Cable under recommended operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Typ, [5]	Max.	Units	Conditions	Ret.
Data Rate		dc		40	kBd	to $\leq 7.0 \mu \mathrm{~s}$	
Transmission Distance Standard Cable	ℓ	8	30		m	IFPK $=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		60	100		m	IFPK $=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
Transmission Distance Improved Cable	ℓ	11	35		m	$\mathrm{I}_{\text {FPK }}=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		82	125		m	IFPK $=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
Propagation Delay	tpLH		4		$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	Fig. 4, 5 Note 3
	tphl		2.5		$\mu \mathrm{s}$	$\mathrm{P}_{\text {f }}=-25 \mathrm{dBm}$	
Pulse Width Distortion	to			7.0	$\mu \mathrm{S}$	$\begin{aligned} & -39 \leq P_{R} \leq-14 \mathrm{dBm} \\ & R_{L}=3.3 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 4, 6 Note 4
Bit Error Rate	BER		10^{-9}			$P_{\text {R }}=-30 \mathrm{dBm}$	
EMI Immunity			5000		V / m	$\mathrm{P}_{\mathrm{R}}=0 \mathrm{~mW}$	

Notes:

1. For IFPK $>80 \mathrm{~mA}$, the duty factor must be such as to keep IFAV $\leq 80 \mathrm{~mA}$. In addition, if IFAV $>80 \mathrm{~mA}$, then the pulse width must be equal to or less than 1 ms .
2. It is recommended that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver.
3. The propagation delay of 1 m of cable (5 ns) is included.
4. $\mathrm{t} D=\mathrm{tPLH}-\mathrm{tPHL} . \quad 5$. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}$.

Link Design Considerations

The HFBR-1512/2503 Transmitter/Receiver pair is guaranteed for operation at data rates up to 40 kBd for transmitter drives as low as 2 mA . The value of transmitter drive current, IF , depends on the link distance as shown in Figures 2 and 3 . Note that there is an upper as well as a lower limit on

Figure 1. Typical Circuit Operation (40 kBd)
the value of I_{F} for any given distance. After selecting a value of the transmitter drive current I_{F}, the value of R_{1} in Figure 1 can be calculated as follows:

Figure 2. Guaranteed System Performance with HFBR-1512 and HFBR-2503, Standard Cable

Figure 3. Guaranteed System Performance with HFBR-1512 and HFBR-2503, Improved Cable

Figure 4. A.C. Test Circuit

Figure 5. HFBR-1512/2503 Link Pulse Width Distortion vs. Optical Power

Figure 6. HFBR-1512/2503 Link Propagation Delay vs. Optical Power

Photo Interrupter Links

HFBR-1502/2502
HFBR-1512/2503

These links may be used in optical switches, shaft position sensors, and velocity sensors. They are particularly useful where high voltage, electrical noise, or explosive environments prohibit the use of electromechanical or optoelectronic sensors.

The HFBR-1512/2503 link (20 kHz) has an optical power budget of 24 dB , and the HFBR-1502/2502 link (500 kHz) budget is 10 dB . Total system losses (cable attenuation, airgap loss, etc) must not exceed the link optical power budget.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min.	Max.	Units	Ref.
Amblent Temperature		TA	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current		IFPK	10	750	mA	Note 1
Avg. Forward Current		IF AV		60	mA	
Receiver Supply Voltage	HFBR-2503	Vcc	4.50	5.50		
	HFBR-2502		4.75	5.25		Note 2
Output Voltage	HFBR-2503	Vo		VCC	V	
	HFBR-2502			18	v	
Fanout (TTL)	HFBR-2503			1		
	HFBR-2502			5		

SYSTEM PERFORMANCE

See HFBR-1502/2502 link data sheet (page 5) and HFBR-1512/2503 link data sheet (page 7) for more design information. These specifications apply when using Standard Cable and, unless otherwise specified, under recommended operating conditions.

Parameter	Symbol	Min.	Typ ${ }^{\text {[5] }}$	Max.	Units	Conditions	Ref.
HFBR-1512/HFBR-2503							
Max. Count Frequency		dc		20	kHz		
Optical Power Budget		25,4			dB	IFPK $=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Note 3, 4
		27.8	34		dB	IFPK $=60 \mathrm{~mA}^{2} 25^{\circ} \mathrm{C}$	
HFER-1502, HFBR-2502							
Max. Count Frequency		dc		500	kHz		
Optical Power Budget		10.4			dB	IFPK $=60 \mathrm{~mA}_{1} 0-70^{\circ} \mathrm{C}$	Note 3
		12.8	15.6		dB	$1 \mathrm{FPK}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	

Notes:

1. For IFPK $>80 \mathrm{~mA}$, the duty factor must be such as to keep IFAV $\leq 80 \mathrm{~mA}$. In addition, for IFPK $>80 \mathrm{~mA}$, the following rules for pulse width apply:
IFPK $\leq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mathrm{~ms}$
IFPK $>160 \mathrm{~mA}$: Pulse width $\leq 1 \mu \mathrm{~s}$
2. A bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) connected from pin 3 to pin 4 of the receiver is recommended for the HFBR-2503 and essential for the HFBR-2502. For the HFBR-2502, the total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. Optical Power Budget $=P_{T}$ Min. $-P_{R(L)}$ Min. Refer to HFBR-1502/1512 data sheet, page 11;HFBR-2502 data sheet, page 12; and HFBR-2503 data sheet, page 14 for additional design information.
4. In addition to a minimum power budget, care should be taken to avoid overdriving the HFBR-2503 receiver with too much optical power. For this reason power levels into the receiver should be kept less than -13.7 dBm to eliminate any overdrive with the recommended operating conditions.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$.

Link Design Considerations

The HFBR-1512/2503 and HFBR-1502/2502 Transmitter/ Receiver pairs are intended for applications where the photo interrupter must be physically separate from the optoelectronic emitter and detector. This separation would be useful where high voltage, electrical noise or explosive environments prohibit the use of electronic devices. To ensure reliable long term operation, links designed for this application should operate with an ample optical power margin $\propto_{M} \geq 3 \mathrm{~dB}$, since the exposed fiber ends are subject to environmental contamination that will increase the optical attenuation of the slot with time. A graph of air gap separation versus attenuation for clean fiber ends with minimum radial error ≤ 0.005 inches (0.127 mm) and angular error $\left(\leq 3.0^{\circ}\right)$ is provided in Figure 2. The following equations can
now be used to determine the transmitter output power, P_{T}, for both the overdrive and minimum drive cases. Overdrive is defined as a condition where excessive optical power is delivered to the receiver. The first equation enables the maximum P_{t} that will not result in receiver overdrive to be calculated for a predetermined link length and slot attenuation. The second equation defines the minimum PT allowed for link operation.
$\mathrm{P}_{\mathrm{T}}(\mathrm{MAX})-\mathrm{P}_{\mathrm{R}}(\mathrm{MAX}) \leq \alpha O$ MIN $\ell+\alpha$ SLOT
Eq. 1
$\left.\mathrm{PT}_{\mathrm{T}}(\mathrm{MIN})-\mathrm{PRL}^{\text {(MIN }}\right) \geq \alpha \mathrm{O}$ MAX $\ell+\alpha$ SLOT $+\alpha \mathrm{M}$
Eq. 2
Once $\mathrm{PT}_{\mathrm{T}}(\mathrm{MIN})$ has been determined in the second equation for a specific link length (ℓ), slot attenuation (α SLOT) and margin $(\alpha \mathrm{M})$, Figure 3 can then be used to find IF_{F}.

Figure 1. Typical Slot Interrupter Configuration. Refer to 1 MBd or Low Current Links for Schematic Diagrams

Figure 2. Typical Loss vs. Axial Separation

Figure 3. Typical HFBR-1502/1512 Optical Output Power vs. Transmitter $\mathrm{I}_{\mathrm{F}}\left(\mathbf{0}-70^{\circ} \mathrm{C}\right)$

665 nm Transmitters

HFBR-1502/HFBR-1510 and HFBR-1512

HFBR-1510/1512/1502 Transmitter
The HFBR-1510/1502/1512 Transmitter modules incorporate a 665 nm LED emitting at a low attenuation wavelength for the HFBR-3510/3610 plastic fiber optic cable. The transmitters can be easily interfaced to standard TTL logic. The optical power output of the HFBR-1510/1512/1502 is specified at the end of 0.5 m of cable. The HFBR-1512 output optical power is tested and guaranteed at low drive currents.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Ref.
Storage Temperature		Ts	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	0	$+70$	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Ternp.			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec .	
Peak Forward Input Current		IFPK		1000	mA	Note 2
Average Forward Input Current		If AV		80	mA	
Reverse Input Voltage		$V_{\text {R }}$		5	V	

Electrical/Optical CharacteristicS $0^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}$ Uniess Otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{[5]}$	Max.	Units	Conditions	Ref.
Transmitter Output Optical Power	HFBR-1510	PT	-16.5		-7.6	dBm	$\mathrm{IF}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Fig. 2 Note 4 Note 3
			-14.1		-8.4	dBm	IF $=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	$\begin{gathered} \text { HFBR-1502 } \\ \text { and } \\ \text { HFBR-1512 } \end{gathered}$	PT	-13.6		-4.5	dBm	$\mathrm{IF}_{5}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
			-11.2		-5.4	dBm	IF $=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	HFBR-1512	PT	-35.5			dBm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
Output Optical Power Temperature Coefficient		$\frac{\Delta \mathrm{PT}}{\Delta \mathrm{~T}}$		-0.026		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	-	
Peak Emission Wavelength		$\lambda P K$		665		nm		
Forward Voltage		V_{F}	1.45	1.67	2.02	V	$\mathrm{IF}=60 \mathrm{~mA}$	
Forward Voltage Temperature Coefficient		$\frac{\Delta V_{F}}{\Delta T}$		-1.37		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		Fig. 1
Effective Diameter		DT		1		mm		
Numerical Aperture		N.A.		0.5				
Reverse Input Breakdown Voltage		VBR	5.0	12.4		V	$\mathrm{IF}^{\prime}=-10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Diode Capacitance		Co		86		pF	$V_{F}=0, f=1 \mathrm{MHz}$	
Rise and Fall Time		tr_{8}, $\mathrm{F}_{\text {F }}$		50		ns	10\% to 90\%	

Notes:

1. 1.6 mm below seating plane.
2. $1 \mu \mathrm{~s}$ pulse, $20 \mu \mathrm{~s}$ period.
3. Measured at the end of 0.5 m standard Fiber Optic Cable with large area detector.
4. Optical power, $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
5. Typical data is at $25^{\circ} \mathrm{C}$.

WARNING. When viewed under some conditions, the optical port of the Transmitter may expose the eye beyond the Maximum Permissible Exposure recommended in ANSI Z-136-1, 1981. Under most viewing conditions there is no eye hazard.

Figure 1. Typical Forward Voltage vs. Drive Current for HFBR-1510/1502/1512

Figure 2. Normalized HFBR-1510/1502/1512 Typical Output Optical Power vs. Drive Current

Receivers

HFBR-2501 (5 MBd) and HFBR-2502 (1 MBd)

The HFBR-2501/2502 Receiver modules feature a shielded integrated photodetector and wide bandwidth DC amplifier for high EMI immunity. A Schottky clamped open-collector output transistor allows interfacing to common logic families and enables "wired-OR" circuit designs. The open collector output is specified up to 18 V . An integrated 1000 ohm resistor internally connected to VCC may be externally jumpered to provide a pull-up for ease-of-use with +5 V logic. The combination of high optical power levels and fast transitions falling edge could result in distortion of the output signal (HFBR-2502 only), that could lead to multiple triggering of following circuitry.

HFBR-2501/2502 Receiver

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Ref.
Storage Temperature		Ts	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{T}_{\text {A }}$	0	+70	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Supply Voltage		VCC	-0.5	7	V	Note 6
Output Collector Current		10		25	mA	
Output Collector Power Dissipation		POD		40	mW	
Output Voltage		Vo	-0.5	18	V	
Pullup Voltage		VRL.	-0.5	VCC	V	

Electrical/Optical CharacteristicS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 4.75 \leq \mathrm{v}_{\mathrm{cc}} \leq 5.25$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{15}$	Max.	Units	Conditions	$\frac{\text { Ref. }}{\text { Note 2, }}$
Receiver Input Optical Power Level for Logic "0"	HFBR-2501	$\mathrm{PR}_{\mathrm{R}}^{(\mathrm{L})}$	-21.6		-9.5	dBm	$\begin{aligned} 0.70^{\circ} \mathrm{C}, \mathrm{VOL} & =0.5 \mathrm{~V} \\ \mathrm{OL} & =8 \mathrm{~mA} \end{aligned}$	
			-21.6		-8.7	dBm	$\begin{array}{r} 25^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ 10 \mathrm{~L}=8 \mathrm{~mA} \end{array}$	
	HFBR-2502	PR (L)	-24			dBm	$\begin{array}{r} 0-70^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ \mathrm{lOL}=8 \mathrm{~mA} \end{array}$	
			-24			dBm	$\begin{array}{r} 25^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ 10 \mathrm{~L}=8 \mathrm{~mA} \end{array}$	
Input Optical Power Level for Logic "1"		$\mathrm{PR}(\mathrm{H})$			-43	dBm	$\begin{aligned} & \mathrm{VOH}=5.25 \mathrm{~V}, \\ & \mathrm{IOH} \leq 250 \mu \mathrm{~A} \end{aligned}$	Note 2
High Level Output Current		1 OH		5	250	$\mu \mathrm{A}$	$V_{O}=18 \mathrm{~V}, \mathrm{P}_{\mathrm{R}}=0$	Note 4
Low Level Output Voltage		VOL		0.4	0.5	V	$\begin{aligned} & \mathrm{IOL}=8 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{RL}} \mathrm{MIN} \end{aligned}$	Note 4
High Level Supply Current		ICCH		3.5	6.3	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \\ & P_{R}=0 \mu \mathrm{~W} \end{aligned}$	Note 4
Low Level Supply Current		ICCL		6.2	10	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & P_{\mathrm{R}}=-12.5 \mathrm{dBm} \end{aligned}$	Note 4
Effective Diameter		DR		1		mm		
Numerical Aperture		N.A.R		0.5				
Internal Pull-Up Resistor		RL	680	1000	1700	Ohms		

Notes:

1. 1.6 mm below seating plane.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$
3. Measured at the end of standard Fiber Optic Cable with large area detector
4. R_{L} is open.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$.
6. It is essential that a bypass capacitor $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .

High Sensitivity Receiver

HFBR-2503

The blue plastic HFBR-2503 Receiver module has a sensitivity of -39 dBm . It features an integrated photodetector and DC amplifier for high EMI immunity. The output is an open collector with a $150 \mu \mathrm{~A}$ internal current source pullup and is compatible with TTL/LSTTL and most CMOS logic families. For minimum rise time add an external pullup resistor of at least 3.3 K ohms. Vcc must be greater than or equal to the supply voltage for the pull-up resistor.

HFBR-2503 Receiver

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Ref.	
Storage Temperature	TS_{5}	-40	+75	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Supply Voltage	VCC	-0.5	7	V	Note 7	
Output Collector Current (Average)	10	-1	5	mA		
Output Collector Power Dissipation	PoD		25	mW		
Output Voltage	Vo	-0.5	VCC	V		

Electrical/Optical CharacteristicS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 4.5 \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5$ Unless Otherwise Specified

Parameter	Symbol	Min.	Typ. (5)	Max.	Units	Conditions	Ref.
Receiver Input Optical Power Level for Logic " 0 "	PR (L)	-39		-13.7	dBm	$\begin{aligned} 0-70^{\circ} \mathrm{C}, V_{O} & =V_{O L} \\ 1 O L & =3.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { Note } \\ & 2,3,4 \end{aligned}$
		-39		-13.3	dBm	$\begin{aligned} 25^{\circ} \mathrm{C}, V_{O} & =V_{O L} \\ 1 O L & =3.2 \mathrm{~mA} \end{aligned}$	
Input Optical Power Level for Logic "1"	$\mathrm{Pr}(\mathrm{H})$			-53	dBm	$\begin{aligned} & \mathrm{VOH}=5.5 \mathrm{~V}, \\ & \mathrm{IOH} \leq 40 \mu \mathrm{~A} \end{aligned}$	Note 2
High Level Output Voltage	VOH	2.4			V	$\begin{aligned} & \mathrm{IOH}=-40 \mu \mathrm{~A}, \\ & \mathrm{PR}=0 \mu \mathrm{~W} \end{aligned}$	
Low Level Output Voltage	VOL			0.4	V	$\begin{aligned} & \mathrm{IOL}=3.2 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{PRL}_{\mathrm{RL}} \mathrm{MIN} \end{aligned}$	Note 6
High Level Supply Current	ICCH		1.2	1.9	mA	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~Pa}_{\mathrm{R}}=0 \mu \mathrm{~W}$	
Low Level Supply Current	ICCL		2.9	3.7	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & P_{R} \geq P_{R L}(\mathrm{MIN}) \end{aligned}$	Note 6
Effective Diameter	D_{R}		1		mm		
Numerical Aperture	N.A.R		0.5				

Notes:

1. 1.6 mm below seating plane.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
3. Measured at the end of the standard Fiber Optic Cable with large area detector.
4. Because of the very high sensitivity of the HFBR-2503, the digital output may switch in response to ambient light levels when a cable is not occupying the receiver optical port. The designer should take care to filter out signals from this source if they pose a hazard to the system.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$.
6. Including current in 3.3 K pull-up resistor.
7. It is recommended that a bypass capacitor $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic be connected from pin 3 to pin 4 of the receiver.

Snap-in Fiber Optic Connector, Bulkhead Feedthrough/Splice and Polishing Tools

HFBR-45C1/4511 CONNECTORS HFBR-4505/4515 BULKHEAD FEEDTHROUGHS
The HFBR-4501 and HFBR-4511 snap-in connectors terminate low cost plastic fiber cable and mate with the Hewlett-Packard HFBR-0500 family of fiber optic transmitters and receivers. They are quick and easy to install. The metal crimp ring provides strong and stable cable retention and the polishing technique ensures a smooth optical finish which results in consistently high optical coupling efficiency.
The HFBR-4505 and HFBR-4515 bulkhead feedthroughs mate two snap-in connectors and can be used either as an in-line splice or as a panel feedthrough for plastic fiber cable. The connector to connector loss is low and repeatable.

HFBR-4501 (GRAY)/4511 (BLUE) CONNECTOR

HFBR-4505 (GRAY)/4515 (BLUE) BULKHEAD FEEDTHROUGH

HFBR-4595 POLISHING KIT

Applications

- CONNECTOR

TERMINATION FOR HEWLETT-PACKARD PLASTIC FIBER OPTIC CABLE

INTERFACE TO HEWLETT-PACKARD HFBR-15XX/25XX SNAP-IN FIBER OPTIC LINK COMPONENTS

- BULKHEAD FEEDTHROUGH

BULKHEAD FEEDTHROUGH OR PANEL MOUNTING OF HFBR-45XX CONNECTORS

IN-LINE SPLICE FOR PLASTIC FIBER OPTIC CABLE
Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$	
Nut Torque HFBR-4505/4515	T_{N}		$\frac{0.7}{100}$	$\frac{\mathrm{~N}-\mathrm{m}}{\mathrm{OzF}^{\mathrm{F}} \mathrm{IN}}$	1

Notes:

1. Recommended nut torque is $\frac{0.57}{80} \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{OzF}-\mathrm{IN}}$

Mechanical/Optical CharacteristicS 0° to $70^{\circ} \mathrm{C}$ Unless otherwise Specified.

Typical Data at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Note
Retention Force Connector/Module HFBR-4501/4511 to HFBR-15XX/25XX	FRC				N	
Tensile Force Connector/Cable	FT		6.8	22		N
HFBR-4505/4515 Conn. to Conn. Loss	$\alpha C C$	0.7	1.5	2.8	dB	2,3
Retention Force Connector/ Bulkhead HFBR-4501/4511 to HFBR-4505/4515	FRB		7.8		N	

Notes:

2. Factory polish or field polish per recommended procedure.
3. Module to connector insertion loss is factored into the transmitter output optical power and the receiver input optical power level specifications

Note:

For applications where frequent temperature cycling over extremes is expected please contact Hewlett-Packard for alternate connectoring techniques.

Cable Terminations

The following easy procedure describes how to make cable terminations. It is ideal for both field and factory installaiton. If a high volume connectoring technique is required please contact your Hewlett-Packard sales engineer for the recommended procedure and equipment.

Connectoring the cable is accomplished with the HewlettPackard HFBR-4595 Polishing Kit consisting of a Polishing Fixture and 600 grit abrasive paper and 3 micron pink lapping film (3M Company, OC3-14). No adhesive material is needed to secure the cable in the connector, and the connector can be used immediately after polishing.
Connectors may be easily installed on the cable ends with readily available tools. Materials needed for the terminating procedure are:

1) Plastic Fiber Optic Cable
2) HFBR-4595 Polishing Kit
3) HFBR-4501 Gray Connector and Crimp Ring
4) HFBR-4511 Blue Connector and Crimp Ring
5) Industrial razor blade or wire cutters
6) 16 gauge latching wire strippers
7) Crimp Tool, AMP 90364-2

Step 1

The zip cord structure of the duplex cable permits easy separation of the channels. The channels should be separated approximately 50 mm (2.0 in .) back from the ends to permit connecting and polishing.
After cutting the cable to the desired length, strip off approximately 7 mm (0.3 in) of the outer jacket with the 16 gauge wire strippers. Excess webbing on duplex cable may have to be trimmed to allow the connector to slide over the cable.

Step 2

Place the crimp ring and connector over the end of the cable; the fiber should protrude about 3 mm (0.12 in .) through the end of the connector. Carefully position the ring so that it is entirely on the connector and then crimp the ring in place with the crimping tool.
Note: Place the gray connector on the cable end to be connected to the transmitter and the blue connector on the cable end to be connected to the receiver to maintain the color coding (both connectors are the same mechanically).

Step 3

Any excess fiber protruding from the connector end may be cut off; however, the trimmed fiber should extend at least 1.5 mm (0.06 in .) from the connector end.
Insert the connector fully into the polishing fixture with the connector end protruding from the bottom of the fixture.
For high volume connectoring use the hardened steel HFBR-4596 polishing fixture.
Note: The four dots on the bottom of the polishing fixture are wear indicators. Replace the polishing fixture when any dot is no longer visible.
Place the 600 grit abrasive paper on a flat smooth surface. Pressing down on the connector, polish the fiber and the connector until the connector is flush with the end of the polishing fixture. Wipe the connector and fixture with a clean cloth or tissue.

Step 4

Place the flush connector and polishing fixture on the dull side of the 3 micron pink lapping film and continue to polish the fiber and connector for approximately 25 strokes. The fiber end should be flat, smooth and clean.
The cable can now be used.
Note: Use of the pink lapping film fine polishing step results in approximately a 2 dB improvement in coupling performance of either a transmitter-receiver link or a bulkhead/splice over 600 grit polish alone. This polish is comparable to Hewlett-Packard's factory polish. The fine polishing step may be omitted where an extra 2 dB of optical power is not essential as with short link lengths.

Mechanical Dimensions All dimensions in m m (inches.
All dimensions $\pm 0.25 \mathrm{~mm}$ unless otherwise specified.
HFBR-15XX (GRAY OR BLACK)/250X (BLUE) MODULE

BULKHEAD FEEDTHROUGH WITH TWO HFBR-4501/4511 CONNECTORS

HFBR-4505 (GRAY)/4515 (BLUE) BULKHEAD FEEDTHROUGH

7.9 (0.312) DIA. MIN. $\quad 7.9$ (0.312) DIA. MIN.

7.9 (0.312) HOLE MIN.

MINIATURE FIBER OPTIC LOGIC LINK

Features

- DC TO 5 MBAUD DATA RATE
- MAXIMUM LINK LENGTH 625 Metres (Guaranteed) 1600 Metres (Typical)
- TTL/CMOS COMPATIBLE OUTPUT
- MINIATURE, RUGGED METAL PACKAGE
- SINGLE +5V RECEIVER POWER SUPPLY
- INTERNALLY SHIELDED RECEIVER FOR EMI/RFI IMMUNITY
- PCB AND PANEL MOUNTABLE
- LOW POWER CONSUMPTION

Applications

- EMC REGULATED SYSTEMS (FCC, VDE)
- EXPLOSION PROOF SYSTEMS IN OIL INDUSTRY/CHEMICAL PROCESS CONTROL INDUSTRY
- SECURE DATA COMMUNICATIONS
- WEIGHT SENSITIVE SYSTEMS (e.g. Avionics, Mobile Stations)
- HIGH VOLTAGE ISOLATION IN POWER GENERATION

Description

The HFBR-1202 Transmitter and HFBR-2202 Receiver are SMA style connector compatible fiber optic link components. Distances to 1600 metres at data rates up to 5 MBaud are achievable with these components.

The HFBR-1202 Transmitter contains a high efficiency GaAIAs emitter operating at 820 nm . Consistent coupling

efficiency is assured by factory alignment of the LED with the optical axis of the package. Power coupled into the fiber varies less that 4 dB from part to part at a given temperature and drive current. The benefit of this is reduced dynamic range requirements on the receiver.
The HFBR-2202 Receiver incorporates a photo IC containing a photodetector and dc amplifier. An open collector Schottky transistor on the IC provides logic compatibility. The combination of an internal EMI shield, the metal package and an isolated case ground provides excellent immunity to EMI/RFI. For unusually severe EMI/ESD environments, a snap-on metal shield is available. The receiver is easily identified by the black epoxy backfill.
The HFBR-1202 Transmitter and HFBR-2202 Receiver are compatible with SMA style connectors, types A and B (see Figure 11.

Mechanical Dimensions

HFBR-1202 TRANSMITTER

PIN	FUNCTION
1	ANODE
2	CATHODE
3	CASE

HFBR-2202 RECEIVER

PIN	FUNCTION
1	CASE
2	VCC
3	DATA
4	COMMON

DIMENSIONS IN MILLIMETRES (INCHES)
UNLESS OTHERWISE SPECIFIED, THE TOLERANCES ARE;
$X \pm .51 \mathrm{~mm}(. \mathrm{XX}=.02 \mathrm{mN})$
$X X \pm .13 \mathrm{~mm}(. X X X \pm .006 \mathrm{IN})$

System Design Considerations

The Miniature Fiber Optic Logic Link is guaranteed to work over the entire range of 0 to 625 metres at a data rate of dc -5 MBd , with arbitrary data format and typically less than 25% pulse width distortion, if the Transmitter is driven with IF $=40 \mathrm{~mA}, \mathrm{R}_{1}=82 \Omega$. If it is desired to economize on power or achieve lower pulse distortion, then a lower drive current (IF) may be used. The following example will illustrate the technique for optimizing I_{F}.
EXAMPLE: Maximum distance required $=250$ metres. From Figure 2 the worst case drive current $=20 \mathrm{~mA}$. From the Transmitter data $-V_{F}=1.8 \mathrm{~V}$ (max.).

$$
R_{1}=\frac{V_{C C}-V_{F}}{I_{F}}=\frac{5-1.8 V}{20 \mathrm{~mA}}=160 \Omega
$$

The optical power margin between the typical and worst case curves (Figure 2) at 250 metres is 4 dB . To calculate the worst case pulse width distortion at 250 metres, see Figure 8. The power into the Receiver is PRL $+4 \mathrm{~dB}=-20 \mathrm{dBm}$. Therefore, the typical distortion is 40 ns or 20% at 5 MBd.

CABLE SELECTION

The link performance specifications on the following page are based on using cables that contain glass-clad silica fibers with a $100 \mu \mathrm{~m}$ core diameter and $140 \mu \mathrm{~m}$ cladding diameter. This fiber type is now a user accepted standard for local data communications links (RS-458, Class I, Type B). The HFBR-1202 Transmitter and HFBR-2202 Receiver are optimized for use with the $100 / 140 \mu \mathrm{~m}$ fiber. There is, however, no fundamental restriction against using other fiber types. Before selecting an alternate fiber type, several parameter need to be carefully evaluated.
will significantly affect the optical power coupled into the fiber are as follows:
a. Fiber Core Diameter. As the core diameter is increased, the optical power coupled increases, leveling off at about $250 \mu \mathrm{~m}$ diameter.
b. Numerical Aperture (NA). As the NA is increased, the optical power coupled increases, leveling off at an NA of about 0.34.
c. Index Profile (α). The Index profile parameter of fibers varies from 2 (fully graded index) to infinite (step index). Some gains in coupled optical power can be achieved at the expense of bandwidth, when α is increased.

In addition to the optical parameters, the environmental performance of the selected fiber/cable must be evaluated. Finally, the ease of installing connectors on the selected fiber/cable must be considered. Given the large number of parameters that must be evaluated when using a nonstandard fiber, it is recommended that the $100 / 140 \mu \mathrm{~m}$ fiber be used unless unusual circumstances warrant the use of an alternate fiber/cable type.

SMA STYLE CONNECTORS

The HFBR-1202/2202 is compatible with either the Type A or Type B SMA style fiber optic connector (see Figure 11). The basic difference between the two connectors is the plastic half-sleeve on the stepped ferrule tip of the Type B connector. This step provides the capability to use a full length plastic sleeve to ensure good alignment of two connectors for an inline splice. Hewlett-Packard offers connectored cable that utilizes the Type A connector system because of the inherent environmental advantages of metal-to-metal interfaces.

Typical Circuit Configuration

```
NOTE:
IT IS ESSENTIAL THAT A BYPASS CAPACITOR \(0.01 \mu \mathrm{~F}\) to \(0.1 \mu \mathrm{~F}\) CEAAMIC BE CONNECTED FROM PIN 2 TO PIN 4 OF THE RECEIVEA. TOTAL LEAD LENGTH BETWEEN BOTH ENDS OF THE CAPACITOR AND THE PINS SHOULD NOT EXCEED 20 mm .
```


Figure 1.

Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Reference |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| TRANSMITTER | TA | -40 | +85 | ${ }^{\circ} \mathrm{C}$ | |
| Ambient Temperature | IF. PK | | 40 | mA | Note 7 |
| Peak Forward Input Current | IFAV | | 40 | mA | Note 7 |
| Average Forward Input Current | TA | -40 | +85 | ${ }^{\circ}{ }^{\circ} \mathrm{C}$ | |
| RECEIVER | VCC | 4.75 | 5.25 | V | |
| Amblent Temperature | N | | 5 | | Note 3, Fig. 1 |
| Supply Voltage | | | | | |
| Fan Out (TTL। | | | | | |
| CABLE (see SMA connectored cable data sheet) | | | | | |

System Performance $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min. ${ }^{[1]}$	Typ.	Max.	Units	Condilions	Reference
Transmission Distance	ℓ	625	1600		Metres		Fig. 2, Note 9
Data Rate Synchronous		dc		5	MBaud		Note 10
Asynchronous		dc		2.5	MBaud		Note 10, Fig. 8
Propagation Delay LOW to HIGH	tPLH		82		nsec	$\begin{aligned} & \mathrm{TA}_{A}=25^{\circ} \mathrm{C}, \\ & P_{A}=-21 \mathrm{dBm} \\ & \mathrm{IF}, \mathrm{PK}=15 \mathrm{~mA} \\ & \ell=1 \text { metre } \end{aligned}$	Fig. 7, 8, 9
Propagation Delay HIGH to LOW	tPhi		55		nsec		
System Pulse Width Distortion	to		27		nsec		
Bit Error Rate	BER			10^{-9}		Data Rate ≤ 5 MBaud $\mathrm{P}_{\mathrm{R}}>-24 \mathrm{dBm}(4 \mu \mathrm{~W})$	

Figure 2. System Performance: HFBR-1202/HFBR-2202 with HP's $100 / 140 \mu \mathrm{~m}$ fiber cable

Absolute Maximum Ratings

Parameler		Symbol	Min.	Max.	Unit	Reference
Storage Temperature		Ts	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	-40	+85	${ }^{\circ} \mathrm{C}$	Note 13
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 2
	Time			10	sec	
Forward Input Current	Peak	IF. PK		40	mA	Note 7
	Average	IF, AV		40	mA	
Reverse Input Voltage		V_{R}		2.5	V	

Electrical/Optical CharacteristicS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Unlts	Conditions	Reference
Forward Voltage	V_{F}		1.5	1.8	V	$\mathrm{IF}_{\mathrm{F}}=40 \mathrm{~mA}$	Figure 5
Forward Voltage Temperature Coefficient	$\Delta V_{F} / \Delta T$		-0.91		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$	Flgure 5
Reverse Breakdown Voltage	VBA	2.5	4.0		V	$\mathrm{IR}=100 \mu \mathrm{~A}$	
Numerical Aperture	NA		. 34				
Optical Port Diameter	DT		250		$\mu \mathrm{m}$		Note 11
Peak Emission Wavelength	λP		820		nm		Figure 6
Peak Output Optical Power Coupled into HFBR-3000 Fiber Cable/Connector Assembly, $100 / 140 \mu \mathrm{~m}$	Pr	-17	-16	-13	dBm	$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=40 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 3 Notes 4,15
		20	25	50	$\mu \mathrm{W}$		
		-18		-12.3	dBm	$\begin{aligned} & \text { IF }=40 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C} \end{aligned}$	
		15.8		59	$\mu \mathrm{W}$		
Output Optical Power Coupled into $50 / 125 \mu \mathrm{~m}$ Fiber	PT		-24		dBm	$\begin{aligned} & \mathrm{IF}=40 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 3
			4		$\mu \mathrm{W}$		Notes 14,15
Output Optical Power Coupled into Siecor 100/140 $\mu \mathrm{m}$ Fiber Cable or Equivalent	PT		-18		dBm	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA} \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 3 Notes 15, 16
Optical Power Temperature Coefficient	$\Delta P_{T / \Delta T}$		-. 017		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$		Figure 4

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ.[1]	Max.	Units	Conditions	Reference
Propagation Delay LOW to HIGH	tPLH		17		nsec	IF PK $=10 \mathrm{~mA}$	Note 8 Figure 7
Propagation Delay HIGH to LOW	tPHL		6		nsec		

Notes:

1. Typical data at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$ dc.
2. 2.0 mm from where leads enter case.
3. 8 mA load ($5 \times 1.6 \mathrm{~mA}$). $R_{\mathrm{L}}=560 \Omega$
4. Measured at the end of 1.0 metre HP's $100 / 140 \mu \mathrm{~m}$ Fiber Optic Cable with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.28 , measured at the end of greater than 300 metres length of fiber, the NA being defined as the sine of the half angle determined by the 10% intensity points.

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the infrared output is radiologically safe; however, when
5. Measured at the end of HP's $100 / 140 \mu \mathrm{~m}$ Fiber Optic Cable with large area detector.
6. When changing microwatts to dBm , the optical flux is referenced to one milliwatt ($1000 \mu \mathrm{~W}$). Optical Flux, P $(\mathrm{dBm})=10 \log \frac{\mathrm{P}(\mu \mathrm{W})}{1000 \mu \mathrm{~W}}$
7. IFPK should not be less than 10 mA in the "ON" state. This is to avoid the long turn-on time that occurs at low input current. Ifav may be arbitrarily low, as there is no duty factor restriction
viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in
ANSI Z136.1-1981.

HFBR/2202 RECEIVER

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference	
Storage Temperature	TS_{S}	-55	+85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 2
Supply Voltage	Time			10	sec	
Output Current	VCC	-0.5	+7.0	V		
Output Voltage	IO		25	mA		
Output Collector Power Dissipation	VO	-0.5	+18.0	V		

HFBR/2202 RECEIVER

Electrical/Optical Characteristics
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $4.75 \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{11}$	Max.	Units	Conditions	Reference
High Level Output Current	OH		5	250	${ }_{\mu} \mathrm{A}$	$\begin{aligned} & V_{0}=18 \mathrm{~V} \\ & P_{\mathrm{R}}<-40 \mathrm{dBm} \end{aligned}$	
Low Level Output Voltage	Vol.		0.4	0.5	V	$\begin{aligned} & 10=8 \mathrm{~mA} \\ & P_{\mathrm{R}}>-24 \mathrm{dBm} \end{aligned}$	
High Level Supply Current	ICCH		3.5	6.3	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & P_{\mathrm{A}}<-40 \mathrm{dBm} \end{aligned}$	
Low Level Supply Current	lccl.		6.2	10	mA	$\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & P_{\mathrm{R}}>-24 \mathrm{dBm} \end{aligned}$	
Optical Port Diameter	DR		700		$\mu \mathrm{m}$		Note 12
Numerical Aperture	NA		. 32				

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{11}$	Max.	Units	Conditions	Reference
Input Power Level Logic HIGH	PRH			$\begin{gathered} -40 \\ 0.1 \end{gathered}$	$\begin{gathered} \mathrm{dBm} \\ \mu \mathrm{~W} \end{gathered}$	$\lambda P=820 \mathrm{~nm}$	Note 5
Input Power Level Logic LOW	PRL.	-25.4		-11.2	dBm	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Fig. 4, Note 5
		2.9		76	$\mu \mathrm{W}$		
		-24		-12.0	dBm	$-40<T_{A}<85^{\circ} \mathrm{C}$	
		4.0		63	$\mu \mathrm{W}$		
Propagation Delay LOW to HIGH	tPLHF		65		nsec	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{R}}=-21 \mathrm{dBm}$	Note 8 , Fig. 7
Propagation Delay HIGH to LOW	tPHLR		49		nsec		

Notes:

8. Propagation delay through the system is the result of several sequentially-occurring phennmena. Consequently it is a combination of data-rate-limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time differentials between delays imposed on falling and rising edges.
As the cable length is increased, the propagation delays increase at 5 ns per metre of length increase. Data rate, as limited by pulse width distortion, is not affected by increasing cable length if the optical power level at the Receiver is maintained.
9. Worst case system performance is based on worst case performance of individual components: transmitter at $+85^{\circ} \mathrm{C}$, receiver at $-40^{\circ} \mathrm{C}$ and cable at- $20^{\circ} \mathrm{C}$.
10. Synchronous data rate limit is based on these assumptions: (a) 50% duty factor modulation, e.g. Manchester I or BiPhase (Manchester II); (b) continuous data; (c) PLL (Phase Lock Loop) demodulation; (d) TTL threshold.
Asynchronous data rate limit is based on these assumptions: (a) NRZ data; (b) arbitrary timing - no duty factor restriction; (c) TTL threshold. The EYE pattern describes the timing range within which there is no uncertainty of the logic state, relative to a specific threshold, due to either noise or intersymbol (prop. delay) effects.
11. Dt is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of its maximum.
12. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
13. HP's $100 / 140 \mu \mathrm{~m}$ Fiber Cable is specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
14. Measured at the end of 1.0 metre $50 / 125 \mu \mathrm{~m}$ fiber with large area detector and cladding modes stripped, approximating a Standard Test Fiber. The fiber NA is 0.21 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the 5% of peak intensity points.
15. Output Optical Power into connectored fiber cable other than HP's Fiber Optic Cable/Connector Assemblies may be different than specified because of mechanical tolerances of the connector, quality of the fiber surface, and other variables.
16. Measured at the end of 1.0 metre Siecor $100 / 140 \mu \mathrm{~m}$ fiber cable or equivalent, with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.275 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the 5% of peak intensity points.

Figure 3. Normalized Transmitter Output vs. Forward Current

Figure 6. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$

Figure 4. Normalized Thermal Effects in Transmitter Output, Receiver Threshold, and Link Performance (Relative Threshold)

Figure 7. Propagation Delay through System with One Metre of Cable

Figure 5. Forward Voltage and Current Characteristics for the Transmitter LED.

Figure 8. Worst-Case Distortion of NRZ EYE-pattern with Pseudo Random Data at $5 \mathrm{Mb} / \mathrm{s}$. (see note 10)

Figure 9. System Propagation Delay Test Circuit and Waveform Timing Definitions

Typical Circuit Configuration

HFBR-1201 TRANSMITTER

Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well.

HFBR-2201 RECEIVER

It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 2 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .

Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
When bending the leads, avoid sharp bei, ds right where the lead enters the backfill. Use needle nose pliers to support
the leads at the base of the package and bend the leads as desired.
When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

MOUNTING HARDWARE: HFBR-4201
1 EMI/ESD SHIELD
1 1/4-32 NUT
$11 / 4 \times .005$ INCH WASHER
2 2-56 SELF TAPPING SCREWS
2 2-56 SELF TAPPING SC

(STANDARD 1/4 INCH "D" HOLE - RU PUNCH)
 (METRIC EQUIV. M2.2 $\times 0.45$)

TRANSMITTER PCB LAYOUT DIMENSIONS

PCB EDGE

RECEIVER PCB LAYOUT DIMENSIONS

Figure 13. Mounting Dimensions dimensions in millimetres (inches).

Ordering Guide

Transmitter: HFBR-1202 (SMA Connector Compatible)

Receiver: HFBR-2202 (SMA Connector Compatible)

Mounting
Hardware: HFBR-4202 (SMA Connector Compatible)

HIGH EFFICIENCY
 FIBER OPTIC TRANSMITTER

HFBR-1204

Features

- OPTICAL POWER COUPLED INTO 100/140 $\mu \mathrm{m}$ FIBER CABLE
-9.8 dBm Guaranteed at $25^{\circ} \mathrm{C}$
-7.4 dBm Typical
- FACTORY ALIGNED OPTICS
- RUGGED MINIATURE PACKAGE
- COMPATIBLE WITH SMA CONNECTORS

Description

The HFBR-1204 Fiber Optic Transmitter contains an etchedwell 820 nm GaAIAs emitter capable of coupling greater than -10 dBm of optical power into HP's $100 / 140 \mu \mathrm{~m}$ SMA connectored cable assemblies. This high power level is useful for fiber lengths greater than 1 km , or systems where star couplers, taps, or in-line connectors create large fixed losses.

Consistent coupling efficiency is assured by factory alignment of the LED with the mechanical axis of the package connector port. Power coupled into the fiber varies less than 5 dB from part to part at a given drive current and temperature. The benefit of this is reduced dynamic range requirements on the receiver.
High coupling efficiency allows the emitters to be driven at low current levels resulting in low power consumption and increased reliability of the transmitter. Another advantage of the high coupling efficiency is that a significant amount of power can still be launched into smaller fiber such as $50 / 125 \mu \mathrm{~m}$ (-19.1 dBm typ.).
The HFBR-1204 transmitter is housed in a rugged miniature package. The lens is suspended to avoid mechanical contact with the active devices. This assures improved reliability by eliminating mechanical stress on the die due to the lens. For increased ESD protection and design flexibility, both the anode and cathode are insulated from the case.

HFBR-1204 is compatible with SMA style connectors. The low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking. A complete mounting hardware package (HFBR-4202) is available for horizontal mounting on PCBs, including a snap-on metal shield for harsh EMI/ESD environments.

Figure 1. Cross Sectional View

Mechanical Dimensions

DIMENSIONS IN MILLIMETRES IINCHES)

HFBR-1204 TRANSMITTER

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Unit	Reference
Storage Temperature		Ts	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	Note 4
Lead Soldering Cycle	Temp.	1		+260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Forward Input Current	Peak	IF, PK		100	mA	
	Average	$I f . ~_{\text {a }} \mathrm{AV}$		100	mA	
Reverse Input Voltage		$V_{\text {R }}$		1.0	V	
Voltage, Case-to-Junction		Vc		25	V	

Electrical/Optical Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[2]}$	Max.	Units	Conditions	Reference
Forward Voltage	V_{F}	1.44	1.72	1.94	V	$1 \mathrm{~F}=100 \mathrm{~mA}$	Figure 2
Forward Voltage Temperature Coefficient	$\Delta V_{F} / \Delta T$		-0.54		$\mathrm{mV} f^{\circ} \mathrm{C}$	$\mathrm{IF}_{\mathrm{F}}=100 \mathrm{~mA}$	Figure 2
Reverse Breakdown Voltage	VBR	1.0	3.1		V	$\mathrm{IR}=100 \mu \mathrm{~A}$	
Numerical Aperture	NA		0.38				
Optical Port Diameter	DT		250		$\mu \mathrm{m}$		Note 3
Peak Emission Wavelength	λP		820		nm		Figure 5
Peak Output Optical Power Coupled into HP's $100 / 140 \mu \mathrm{~m}$ SMA Connectored Cable	PT	-9.8	-7.4	-5.0	dBm	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 3, 4 Notes 4, 5 , $6,8$
		105	182	316	$\mu \mathrm{W}$		
		-11.2		-4.2	dBm	$\begin{aligned} & I_{F}=100 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C} \end{aligned}$	
		76		380	$\mu \mathrm{W}$		
Output Optical Power Coupled into $50 / 125 \mu \mathrm{~m}$ Fiber	Pt		-19.1		dBm	$\begin{aligned} & I_{F}=100 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 3, 4 Notes 5, 7
			12		$\mu \mathrm{W}$		
Output Optical Power Coupled into Siecor 100/140 $\mu \mathrm{m}$ Fiber Cable or Equivalent	Pt		-9.4		dBm	$\begin{aligned} & \mathrm{IF}=100 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 3, 4 Notes 5, 11
Optical Power Temperature Coefficient Case Isolation Resistance (Case to Pins 1 or 2)	$\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$ Rcase	1	-. 014		$\begin{gathered} \mathrm{dB} /^{\circ} \mathrm{C} \\ \mathrm{M} \Omega \end{gathered}$	$I_{F}=100 \mathrm{~mA}$ $V_{C A S E}=25 \mathrm{~V}$	Figure 3
Thermal Resistance	()Jc		90		${ }^{\circ} \mathrm{C} / \mathrm{W}$		Note 9
Rise Time, Fall Time (10 to 90\%)	$t_{\text {r }}, \mathrm{t}_{\text {f }}$		11		nsec		Figure 6 Note 10

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the

Notes:

1. 2.0 mm from where leads enter case.
2. Typical data at $T_{A}=25^{\circ} \mathrm{C}$.
3. D_{T} is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.
4. HP's $100 / 140 \mu \mathrm{~m}$ fiber cable specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
5. Output Optical Power into connectored fiber cable other than HP's Cable/Connector Assemblies may be different than specified
infrared output is radiologically safe; however, when viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.
because of mechanical tolerances of the connector, quality of the fiber surface and other variables.
6. Measured at the end of 1.0 metre of HP's $100 / 140 \mu \mathrm{~m}$ Fiber Optic Cable with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.28 , measured at the end of greater than 300 metres length of fiber, the NA being defined as the sine of the half angle determined by the 5% intensity points.
7. Measured at the end of 1.0 metre $50 / 125 \mu \mathrm{~m}$ fiber with large area detector and cladding modes stripped, approximating a Standard Test Fiber. The fiber NA is 0.21, measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the 5% of peak intensity points.
8. When changing microwatts to dBm , the optical power is referenced to 1 milliwatt ($1000 \mu \mathrm{~W}$).

Optical Power, $P(d B m)=10 \log P(\mu W) / 1000 \mu W$
9. Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit board with the HFBR-4202 mounting hardware.
10. Measured with a 1 mA pre-bias current and terminated into a 50 ohm load.
11. Measured at the end of 1.0 metre Siecor $100 / 140 \mu \mathrm{~m}$ fiber cable or equivalent, with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.275 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the 5% of peak intensity points.

Figure 3. Normalized Thermal Effects in Transmitter Output

Figure 5. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$

Ordering Guide

Transmitter: HFBR-1204 (SMA Connector Compatible)

Receiver: HFBR-2202 (5 MBaud, SMA Connector) HFBR-2204 (40 Mbaud, SMA Connector

Compatible)

Mounting
Hardware: HFBR-4202 (SMA Connector Compatible)

Fiber Optic Cable - see data sheets

High Speed Operation

Rise and fall times can be improved by using a pre-bias current and "speed-up" capacitor. A 1 mA pre-bias current will significantly reduce the junction capacitance and will couple less than -34 dBm of optical power into the fiber cable. The TTL compatible circuit in Figure 7 using a speed-up capacitor will provide typical rise and fall times of 10 ns .

$$
\begin{aligned}
& I_{\text {PEAK }}=100 \mathrm{~mA}=\frac{V_{C C}-V_{F}}{34.9 \Omega} \\
& I_{\text {AVG }}=78 \mathrm{~mA}=\frac{V_{C C}-V_{F}}{34.9+10 \Omega}
\end{aligned}
$$

Figure 6. Test Clrcuit for Measuring $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Figure 7. High Speed TTL Circult

Link Design

With transmitter performance specified as power in dBm into a fiber of particular properties (core size, NA, and index profile), and receiver performance given in terms of the power in dBm radiated from the same kind of fiber, then the link design equation is simply:
(1) $\mathrm{P}_{\mathrm{T}}-\ell \cdot \alpha_{0}=\mathrm{P}_{\mathrm{R}}$
where
$\mathrm{PT}_{\mathrm{T}}=$ transmitter power into fiber (dBm)
$\ell=$ fiber (cable) length (km)
$\alpha_{0}=$ fiber attenuation (dB/km)
$\mathrm{P}_{\mathrm{R}}=$ receiver power, from fiber, (dBm)
For transmitter input current in the range from 10 to 100 mA , the power varies approximately linearly:
(2) $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{O}}+10 \log (1 / 10)$
where
$\mathrm{P}_{\mathrm{o}}=$ transmitter power specification (dBm) at I_{0}
$\mathrm{I}_{\mathrm{o}}=$ specified transmitter current (100 mA)
$\mathrm{I}=$ selected transmitter current (mA)
To allow for the dynamic range limits of proper receiver performance, it is necessary that a link with maximum transmitter power and minimum attenuation does not OVERDRIVE the receiver and that minimum transmitter power with maximum attenuation does not UNDERDRIVE it. These limits can be expressed in a combination of the two equations above:
(3) $\mathrm{PO}_{\mathrm{MAX}}+10 \log \left(\mathrm{I}_{\text {MAX }} / I_{0}\right)-\ell * \alpha_{0}$ MIN $<\mathrm{PR}_{\mathrm{R}}$ MAX
(4) POMIN $+10 \log \left(I_{\text {MIN }} / I_{0}\right)-\ell * \alpha_{0}$ MAX $>\operatorname{PR}_{\text {MIN }}$ where

$$
\begin{aligned}
\text { PO MAX }, ~^{P_{O} \text { MIN }=}= & \text { max., min. specified power from } \\
& \text { transmitter }(\mathrm{dBm}) \text { at } \mathrm{I}=\mathrm{I}_{0}
\end{aligned}
$$

A more useful form of these equations comes from solving them for the current ratio, expressed in dB:
(5) $10 \log \left(I_{\text {MAX }} / I_{0}\right)<P_{R}$ MAX $-P_{O}$ MAX $+\ell \cdot \alpha_{O}$ MIN
(6) $10 \log \left(I_{\text {MIN }} / I_{0}\right)>P_{R}$ MIN $-P_{O}$ MIN $+\ell \cdot \alpha$ MAX

These are plotted in Figure 8 as the OVERDRIVE LINE, and UNDERDRIVE LINE, respectively for the following components:
HFBR-1204 Transmitter -11.2 $<\mathrm{P}_{\mathrm{T}}<-4 \mathrm{dBm}$
HFBR-2204 Receiver (25 MHz) $-28.5<\mathrm{P}_{\mathrm{R}}<12.6 \mathrm{dBm}$
HFBR-2204 Receiver (2.5 MHz) $-35.5<\mathrm{P}_{\mathrm{R}}<-12.6 \mathrm{dBm}$
HP's $100 / 140 \mu \mathrm{~m}$ Fiber Cable $4<\propto_{\mathrm{O}}<8 \mathrm{~dB} / \mathrm{km}$

Figure 8. Link Design Limits.

These design equations take account only of the power loss due to attenuation. The specifications for the receiver and transmitter include loss effects in end connectors. If the system has other fixed losses, such as from directional couplers or additional in-line connectors, the effect is to shift both OVERDRIVE and UNDERDRIVE lines upward by the amount of the additional loss ratio.

40 MBd MINIATURE FIBER OPTIC RECEIVER

HFBR-2204

Features

- DATA RATES UP TO 40 MBd
- HIGH OPTICAL COUPLING EFFICIENCY
- RUGGED, MINIATURE METAL PACKAGE
- COMPATIBLE WITH SMA STYLE CONNECTORS
- VERSATILE ANALOG RECEIVER OUTPUT
- 25 MHz ANALOG BANDWIDTH

Applications

- DATA ACQUISITION AND PROCESS CONTROL
- SECURE DATA COMMUNICATION
- EMC REGULATED SYSTEMS (FCC/VDE)
- EXPLOSION PROOF SYSTEMS
- WEIGHT SENSITIVE SYSTEMS (e.g., AVIONICS, MOBILE STATIONS)
- VIDEO TRANSMISSION

Description

The HFBR-2204 Receiver is capable of data rates up to 40 MBd at distances greater than 1 km when used with cable and HFBR-1202/4 Transmitters. The HFBR-2204 Receivers contains a discrete PIN photodiode and preamplifier IC.

The signal from this simple analog receiver can be optimized for a variety of transmission requirements. For example, the circuits in Application Bulletin 73 add low-cost external components to achieve logic compatible signal levels optimized for various data formats and data rates.
Each of these fiber optic components uses the same rugged, lensed, miniature package. This package assures a consistent, efficient optical coupling between the active devices and the optical fiber.

The HFBR-2204 Receiver is compatible with SMA style connectors, types A and B (see Figure 11 and HP's $100 / 140 \mu \mathrm{~m}$ SMA connectored cable assemblies. HP's $100 / 140 \mu \mathrm{~m}$ fiber optic cable can be ordered with or without connectors.

Mechanical Dimensions

DIMENSIONS IN MLLLIMETRES (IHCHES)
UNLESS OTHERWISE SPECIFIED, THE TOLERANCES ARE:
$X \pm .51 \mathrm{~mm}\{\mathrm{XX} \pm .02 \mathrm{IN})$
$X X \pm, 13 \mathrm{~mm}(. X X X \pm .005 \mathrm{fN})$

Electrical Description

The HFBR-2204 Fiber Optic Receiver contains a PIN photodiode and low noise transimpedance pre-amplifier hybrid circuit with an inverting output (see note 10). The HFBR2204 receives an optical signal and converts it ot an analog voltage. The output is a buffered emitter-follower. Because the signal amplitude from the HFBR-2204 Receiver is much larger than from a simple PIN photodiode, it is less susceptible to EMI, especially at high signal rates.
The frequency response is typically dc to 25 MHz . Although the HFBR-2204 is an analog receiver, it is easily made compatible with digital systems (see Application Bulletin 73). Separate case and signal ground leads are provided for maximum design flexibility.
It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from Pin 4 (Vcc) to Pin 3 (circuit common) of the receiver. Total lead length between both ends of the capacitor and the pins should be less than 20 mm .

Mechanical Description

The HFBR-2204 Fiber Optic Receiver is housed in a miniature package intended for use with HP's $100 / 140 \mu \mathrm{~m}$ SMA connectored cable assemblies. This package has important performance advantages:

1. Precision mechanical design and assembly procedures assure the user of consistent high efficiency optical coupling.
2. The lens is suspended to avoid contact with the active devices, thereby assuring improved reliability.
3. The versatile miniature package is easy to mount. This low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking.
A complete mounting hardware package is available for horizontal PCB applications, including a snap-on metal shield for harsh EMI/ESD environments.
Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; Methanol or Freon on a cotton swab also works well. Note:
When installing connectored cable on the optical port, do not use excessive force to tighten the nut. Finger tightening is sufficient to ensure connectoring integrity, while use of a wrench may cause damage to the connector or the optics.

System Design Considerations

For additional information, see Application Bulletin 73.

OPTICAL POWER BUDGETING

The HFBR-2204 Fiber Optic Receivers when used with the HFBR-1202 Fiber Optic Transmitter can be operated at a signalling rate of more than 40 MBd over a distance greater than 1000 metres (assuming $8 \mathrm{~dB} / \mathrm{km}$ cable attenuation). For shorter transmission distances, power consumption can be reduced by decreasing Transmitter drive current. At a lower data rate, the transmission distance may be increased by applying bandwidth-filtering at the output of the HFBR-

Figure 1. Cross Sectional View

2204 Receiver; since noise is reduced as the square root of the bandwidth, the sensitivity of the circuit is proportionately improved provided these two conditions are met:
a. input-referred noise of the follow on circuit is well below the filtered noise of the Receiver
b. logic comparator threshold is reduced in the same proportion as the noise reduction
As an example, consider a link with a maximum data rate of 10 MBd (e.g., $5 \mathrm{Mb} / \mathrm{s}$ Manchester); this requires a 3 dB bandwidth of only 5 MHz . For this example, the input-referred rms noise voltage of the follow-on circuit is 0.03 mV . The equivalent optical noise power of the complete receiver ($\mathrm{PNO}_{\mathrm{NO}}$) is given by:

$$
P_{N O}=\left[\left(\mathrm{V}_{\mathrm{NO}}\right)^{2}(\mathrm{~B} / \mathrm{BO})+\left(\mathrm{V}_{\mathrm{N}}\right)^{2}\right]^{0.5} / \mathrm{RP}_{\mathrm{P}}
$$

$\mathrm{V}_{\mathrm{NO}}=$ rms output noise voltage of the HFBR-2203/04 with no bandwidth filtering
$\mathrm{V}_{\mathrm{NI}}=$ input-referred rms noise voltage of the follow-on circuit
$B=$ filtered 3 dB bandwidth
Bo $=$ Unfiltered 3dB bandwidth of the HFBR-2203/04 (25 MHz)
$R_{P}=$ optical-to-electrical responsivity $(\mathrm{mV} / \mu \mathrm{W})$ of the HFBR-2240

Note that noise adds in an rms fashion, and that the square of the rms noise voltage of the HFBR-2204 is reduced by the bandwidth ratio, B / Bo.
From the receiver data (Electrical/Optical Characteristics) taking worst-case values, and applying NO bandwidth filtering ($B / \mathrm{Bo}=1$):
$P_{N O}=\frac{\left[(0.43)^{2}+(0.03)^{2}\right]^{0.5} \mathrm{mV}}{4.6 \mathrm{mV} / \mu \mathrm{W}}=0.094 \mu \mathrm{~W}$ or -40.3 dBm
To ensure a bit error rate less than 10-9 requires the signal power to be 12 times larger (+11 dB) than the rms noise as referred to the Receiver input. The minimum Receiver input power is then:

$$
P_{\text {RMIN }}=P_{\text {NO }}+11 \mathrm{~dB}=-29.3 \mathrm{dBm}
$$

With the application of a 5 MHz low-pass filter, the bandwidth ratio becomes:

$$
\mathrm{B} / \mathrm{Bo}=5 \mathrm{MHz} / 25 \mathrm{MHz}=0.2
$$

Note that 25 MHz should be used for the total noise bandwidth of the HFBR-2204. Inserting this value of the bandwidth ratio in the expressions for P_{NO} and $\mathrm{P}_{\text {RMIN }}$ above yields the results:

$$
\mathrm{P}_{\mathrm{NO}}=0.042 \mu \mathrm{~W} \text { or }-43.8 \mathrm{dBm} \text { and } \mathrm{PRMIN}=-32.8 \mathrm{dBm}
$$

Given the HFBR-1202 Transmitter optical power $\mathrm{P}_{\mathrm{T}}=$ -18 dBm at $\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$, and allowing a 3 dB margin, a
minimum optical power budget of 11.8 dB is obtained:

$$
[-18 \mathrm{dBm}-3 \mathrm{~dB}-(-32.8 \mathrm{dBm})]=11.8 \mathrm{~dB}
$$

Using $8 \mathrm{~dB} / \mathrm{km}$ optical fiber, this translates into a minimum link length of 1475 metres (typical link power budget for this configuration is approximately 17.2 dB or 3130 metres with $5.5 \mathrm{~dB} / \mathrm{km}$ fiber).

BANDWIDTH

The bandwidth of the HFBR-2204 is typically 25 MHz . Over the entire temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, the rise and fall times vary in an approximately linear fashion with temperature. Under worst case conditions, t_{r} and t_{f} may reach a maximum of 26 ns , which translates to a 3 dB bandwidth of:

$$
\mathrm{f}_{3 \mathrm{~dB}} \simeq \frac{350}{\mathrm{tr}_{\mathrm{r}}}=\frac{350}{26 \mathrm{~ns}}=13.5 \mathrm{MHz}
$$

The receiver response is essentially that of a single-pole system, rolling off at $6 \mathrm{~dB} / o c t a v e$. In order for the receiver to operate up to 40 MBd even though its worst case 3 dB bandwidth is 13.5 MHz , the received optical power must be increased by 3 dB to compensate for the restricted receiver transmission bandwidth.

PRINTED CIRCUIT BOARD LAYOUT

When operating at data rates above 10 MBd , standard PC board precautions should be taken. Lead lengths greater than 20 mm should be avoided whenever possible and a ground plane should be used. Although transmission line techniques are not required, wire wrap and plug boards are not recommended.

OPERATION WITH HEWLETT-PACKARD TRANSMITTERS

Hewlett-Packard offers two transmitters compatible with the HFBR-2204 Link performance with each transmitter is shown below for $25^{\circ} \mathrm{C}$ operation with HP's $100 / 140 \mu \mathrm{~m}$ glass fiber cable. See product data sheets for further information.

	HFBR-1202 -17 dBm Coupled Optical Power	HFBR-1204 Coupled Optical Power
9.8 dBm -27 dBm Sensitivity	1200 m 40 MBd	2100 m 40 MBd
HFBR-2204 -32 dBm Sensitivity	1800 M 10 MBd	2800 M 10 MBd

HFBR-2204 RECEIVER

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Reference
Storage Temperature	T_{S}	-55	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	Note 9
Lead Soldering Cycle Temp.			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	

HFBR-2204 RECEIVER

Electrical/Optical Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \leq \mathrm{VCC} \leq 5.25 ;$ RLOAD $=511 \Omega$ unless otherwise specified

Parameter	Symbol	Min.	Typ ${ }^{\text {[4] }}$	Max.	Unit	Conditions	Reference
Responsivitity	Rp	5.1	7	10.9	$\mathrm{mV} / \mu \mathrm{W}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { at } 820 \mathrm{~nm} \end{aligned}$	Note 10 Figure 3
		4.6		12.3	$\mathrm{mV} / \mu \mathrm{W}$	$-40 \leq T_{A} \leq+85^{\circ} \mathrm{C}$	
RMS Output Noise Voltage	$\mathrm{V}_{\text {NO }}$. 30	. 36	mV	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{PIN}^{2}=0 \mu \mathrm{~W} \end{aligned}$	Figures 4,7
				. 43	mV	$\begin{aligned} & -40 \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & \mathrm{P}_{1}=0 \mathrm{~W}=0 \end{aligned}$	
Peak Input Power	$P_{\text {R }}$			-12.6	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Note 2
				55	$\mu \mathrm{W}$		
				-14	dBm	$-40 \leq T_{A} \leq 85^{\circ} \mathrm{C}$	
				40	$\mu \mathrm{W}$		
Output Impedance	Zo		20		Ω	```Test Frequency = 20 MHz```	
DC Output Voltage	Vode		. 7		V	PIN $=0 \mu \mathrm{~W}$	
Power Supply Current	IcC		3.4	6.0	mA	RLOAD $=\infty$	
Equivalent N.A.	NA		. 35				
Equivalent Diameter	D_{R}		250		$\mu \mathrm{m}$		Note 3
Equivalent Optical Noise			-43.7	-40.3	dBm		
Input Power	PN		. 042	. 094	$\mu \mathrm{W}$		

Dynamic Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \leq \mathrm{V} C \mathrm{C} \leq 5.25 ; \quad$ RLOAD $=511 \Omega$, CLOAD $=13 \mathrm{pF}$ unless otherwise specified

Parameter	Symbol	Min.	Typ ${ }^{[7]}$	Max.	Units	Conditions	Reference
Rise/Fall Time, 10% to 90%	$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}^{\text {f }}$		14	19.5	ns	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{P}_{\mathrm{N}}=10 \mu \mathrm{~W} \text { Peak } \end{aligned}$	Note 5
				26	ns	$-40 \leq T A \leq 85^{\circ} \mathrm{C}$	Figures 8,9
Pulse Width Distortion	$\mathrm{tphl}^{-} \mathrm{tplh}$			2	ns	$\mathrm{P}_{\text {IN }}=40 \mu \mathrm{~W}$ Peak	Figure 9
Overshoot			4		\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Note 6 Figures 8,9
Bandwidth			25		MHz		
Power Supply Rejection Ratio (Referred to Output)	PSRR		50		dB	at 2 MHz	Note 7 Figures 5, 6

Notes:

1. 2.0 mm from where leads enter case.
2. If $\operatorname{Pin}<40 \mu \mathrm{~W}$, then pulse width distortion may increase. At $\operatorname{Pin}=80 \mu \mathrm{~W}$ and $\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$, some units have exhibited as much as 100 ns pulse width distortion.

Notes (cont.):
3. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
4. Typical specifications are for operation at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
5. Input optical signal is assumed to have $10 \%-90 \%$ rise and fall times of less than 6 ns
6. Percent overshoot is defined as:

$$
\frac{V_{P K}-V_{100} \%}{V_{100} \%} \times 100 \% \quad \text { See Figure } 16
$$

8. It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin $4\left(V_{C c}\right)$ to pin 3 (circuit common) of the receiver Total lead length between both ends of the capacitor and the pins should be less than 20 mm .
9. HP's $100 / 140 \mu \mathrm{~m}$ fiber cable is specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
10. $V_{\text {OUT }}=V_{\text {ODC }}-\left(R_{P} \times P_{\text {IN }}\right)$.
11. Output referred P.S.R.R. is defined as

$$
20 \log \left(\frac{\text { VPOWER SUPPLY RIPPLE }}{\text { VOUT RIPPLE }}\right)
$$

Figure 3. Receiver Spectral Response Normalized to $\mathbf{8 2 0} \mathbf{~ n m}$

Figure 4. Receiver Nolse Spectral Density

Figure 5. Receiver Power Supply Rej. vs. Freq.

Figure 6. Power Supply Rejection Test Circuit

Figure 7. RMS Output Noise Voltage Test Circuit

Figure 8. Rise and Fall Time Test Circuit

Figure 9. Waveform Timing Definitions

HFBR-2204 RECEIVER

RECEIVER PCB LAYOUT DIMENSIONS

Figure 10. Mounting Dimensions

SMA STYLE CONNECTORS

TYPE A
(Used in HP's SMA Connectored Cable Assemblies).

Figure 11. Fiber Optic Connector Styles

Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support
the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

MOUNTING HARDWARE: HFBR-4202 (HFBR-2204)
1 EMI/ESD SHIELD
1 1/4-36 NUT
$11 / 4 \times .005$ INCH WASHER
2 2-56 SELF TAPPING SCREWS
1 MOUNTING BRACKET

Ordering Guide

Transmitter: HFBR-1202 (SMA Connector Compatible) HFBR-1204 (SMA Connector Compatible)
Receiver: HFBR-2204 (SMA Connector Compatible)
Mounting
Hardware: HFBR-4202 (SMA Connector Compatible)

Features

- GUARANTEED PERFORMANCE: 60 MHz Bandwidth at 5 V Reverse Bias Low Capacitance: Less than 1.6 pF 0.29 A/W Minimum Responsivity Low Dark Current: Less than 500 pA
- MATES DIRECTLY WITH SMA STYLE CONNECTORS
- RUGGED, ISOLATED MINIATURE METAL PACKAGE WITH FACTORY ALIGNED OPTICS

Applications

- HIGH SPEED FIBER OPTIC LINKS
- WIDE BANDWIDTH ANALOG FIBER OPTIC LINKS
- HIGH SENSITIVITY, LOW BANDWIDTH LINKS
- OPTICAL POWER SENSOR

Description

The HFBR-2208 Fiber Optic Receiver is a silicon PIN photodiode mounted in a rugged metal package. Well suited for high speed applications, the HFBR-2208 Fiber Optic Receiver has low capacitance and low noise. The high coupling efficiency of the miniature package provides a minimum of 0.29 A/W responsivity. Receiver responsivity includes the optical power lost in coupling light from the fiber onto the PIN photodiode as well as the responsivity of the PIN photodiode itself.
HFBR-2208 mates with SMA style connectors.
The HFBR-2208 is a member of the family of transmitters and receivers which use the miniature package. HP also offers connectored and unconnectored $100 / 140 \mu \mathrm{~m}$ fiber cable in simplex and duplex configurations.

Cross Sectional View

Mechanical Dimensions

HFBR-2208 SMA STYLE COMPATIBLE

HFBR-2208 PIN PHOTODIODE

HFBR-2208 PIN PHOTODIODE

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Reference
Storage Temperature		Ts	-55	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	-55	85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.	\cdots		260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Reverse Bias Voltage		$V_{\text {R }}$	-0.5	50	V	
Voltage, Case-to-Junction		V_{C}		100	V	Note 2

Electrical/Optical Characteristics

$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm}$ at 820 nm unless otherwise specified. Typical data at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions		Reference
Effective Optical Port DC Responsivity	Rp	0.29	0.38	0.40	AW	HP's $100 / 140 \mu \mathrm{~m}$ Fiber N.A. $=0.3, g=2$		Fig. 1, 2, 3, 8
Dark Current	10		50	500	pA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} \end{aligned}$	Fig. 4, 9
Noise Equivalent Power	NEP			$\begin{aligned} & 3.4 x \\ & 10^{-14} \end{aligned}$	$\frac{w}{\sqrt{H z}}$			Note 5
Total Capacitance	CT		1.3	1.6	pF			Fig. 5
Series Resistance	Rs		5	15	Ω			
Equivalent N.A.	NA		0.4					
Equivalent Diameter	DR		250		$\mu \mathrm{m}$			Note 3
Case Isolation Resistance	Rcase	1			Mn	$V_{C}=100 \mathrm{~V}$		Note 2, Fig. 9

Dynamic Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{LOAD}}=50 \Omega, \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm}$ at 820 nm unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Reference
3 dB Bandwidth	BW	60	100		MHz	$V_{\text {R }}=5 \mathrm{~V}$	Fig. 6, 7 Fig. 10
		150	250			$V_{\mathrm{A}}=20 \mathrm{~V}$	
Rise/Fall Time (10-90\%)	t_{r}, t_{f}		3.5		ns	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	Note 4
Relative Incremental Response	$\Delta \mathrm{Rp} / \mathrm{Rp}$		0.5		\%	$\begin{aligned} & \mathrm{PR}_{\mathrm{R}} \leq-20 \mathrm{dBm} \\ & \mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V} \end{aligned}$	Fig. 8 Note 6

Notes:

1. 2.0 mm from where leads enter case.
2. $\mathrm{V}_{\mathrm{C}}(100 \mathrm{~V})$ is applied simultaneously to $\operatorname{Pin} 2$ and $\operatorname{Pin} 3$ with respect to Pin 1.
3. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
4. Rise/Fall time is calculated from the equation:

$$
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\frac{350}{3 \mathrm{~dB} \mathrm{BW}(\mathrm{MHz})} \mathrm{ns}
$$

5. For $(\lambda, f, \Delta f)=(820 \mathrm{~nm}, 100 \mathrm{~Hz}, 6 \mathrm{~Hz})$ where f is the frequency for a spot noise measurement and Δf is the noise bandwidth, NEP is the optical flux required for unity signal/noise ratio normalized for bandwidth.

Thus:

$$
N E P=\frac{\operatorname{lN} / \sqrt{\Delta f}}{R_{P}}
$$

where $I_{N} / \sqrt{\Delta f}$ is the bandwidth - normalized noise current computed from the shot noise formula:
$I_{N} / \sqrt{\Delta f}=\sqrt{2 q I_{D}}=17.9 \times 10^{-15} \sqrt{I_{D}}(A / \sqrt{H z})$ where I_{D} is $n A$.
6. Relative incremental response is defined as:

$$
\frac{\Delta R_{P}}{R_{P}} \times 100 \%=\frac{R_{A C}\left(P_{R}\right)-R_{A C}(-25 d B m)}{R_{A C}(-25 d B m)} \times 100 \%
$$

where:

$R_{A C}=$ Small signal $A C(20 \mathrm{MHz},-30 \mathrm{dBm})$ response $P_{R}=D C$ optical power incident on port.
$V_{R}=5 \mathrm{~V} ; P_{R}=-20 \mathrm{dBm}$ at $820 \mathrm{~nm} ; T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Figure 1. Normalized Responsivity vs. Wavelength

Figure 4. Dark Current vs. Ambient Temperature

Figure 2. Normalized Responsivity vs. Ambient Temperature

Figure 5. Capacitance vs. Reverse Voltage

Figure 3. Responsivity vs. Reverse Voltage

Figure 6. 3 dB Bandwidth vs. Reverse Voltage

Figure 7. Normalized Bandwidth vs. Ambient Temperature

Figure 8. Linearity Characteristic vs. Optical Power

Figure 9. Test Set-up

Figure 10. Bandwidth Measurement Set-up

Mechanical Description

The HFBR-2208 fiber optic receivers are housed in rugged metal packages intended for use with the SMA style connectored fiber cables. The low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking. A flat on the mounting threads of the device is provided to prevent rotation in all mounting configurations and to provide an orientation reference for the pin-out. Hardware is available for horizontal mounting applications on printed circuit boards. The hardware consists of a stainless steel mounting bracket fastened directly to the printed circuit board with two stainless steel self-tapping screws and a nut and washer for fastening the device in the bracket. A metal
shield which snaps directly on the mounting bracket is also available for unusually severe EMI/ESD environments. When mounted in the horizontal configuration, the overall height of the component conforms with guidelines allowing printed circuit board spacing on 12.7 mm (0.500) centers. A thorough environmental characterization has been performed on these products. The test data as well as information regarding operation beyond the specified limits is available from any Hewlett-Packard sales office.

Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well.

Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

Application Information

NOISE FREE PROPERTIES

The noise current of the HFBR-2208 is negligible. This is a direct result of the exceptionally low leakage current, in accordance with the shot noise formula $\mathrm{IN}_{\mathrm{N}}=\left(2 \mathrm{q} \mathrm{l}_{\mathrm{D}} \Delta \mathrm{f}\right)^{1 / 2}$. Since the leakage current does not exceed 500 picoamps at a reverse bias of 20 volts, shot noise current is less than $9.8 \times 10^{-15} \mathrm{amp} \mathrm{Hz}-1 / 2$ at this voltage.
Excess noise is also very low, appearing only at frequencies below 10 Hz , and varying approximately as $1 / \mathrm{f}$. When the output of the diode is observed in a load, thermal noise of the load resistance $\left(R_{L}\right)$ is $1.28 \times 10^{-10}\left(R_{L}\right)^{-1 / 2} \times(\Delta f)^{1 / 2}$ at $25^{\circ} \mathrm{C}$, and far exceeds the diode shot noise for load resistance less than 100 megohms. Thus in high frequency operation where low values of load resistance are required for high cut-off frequency, the HFBR-2208 contributes virtually no noise to the system.

HIGH SPEED PROPERTIES

High speed operation is possible since the HFBR-2208 has low capacitance and wide bandwidth at a low reverse bias.

Figure 11. Photodiode Equivalent Circuit

$$
\begin{aligned}
& \text { IS }=\text { Signal current } \approx 0.38 \mu \mathrm{~A} / \mu \mathrm{W} \times \mathrm{PR}_{\mathrm{R}} \\
& \mathrm{IN}=\text { Shot noise current } \\
& <9.8 \times 10^{-15} \mathrm{amps} / \mathrm{Hz} \mathrm{H}^{1 / 2} \\
& \mathrm{ID}=\text { Dark current } \\
& <500 \times 10^{-12} \mathrm{amps} \text { at } 20 \mathrm{~V} \text { dc bias } \\
& \operatorname{RP}=10^{11} \Omega \\
& \mathrm{RS}=<50 \Omega
\end{aligned}
$$

LINEAR OPERATION

Operation of the photodiode is most linear when operated with a current amplifier as shown in Figure 12.

Figure 12. Linear Operation
Lowest noise is obtained with $\mathrm{EC}_{\mathrm{C}}=0$, but higher speed and wider dynamic range are obtained if $5<\mathrm{Ec}<20$ volts. The amplifier should have as high an input resistance as possible to permit high loop gain. If the photodiode is reversed, bias should also be reversed.

HFBR-2208 RECEIVER
1.95 (.078) DIA. HOLES ACCEPT A

2-56 SELF TAPPING SCREW

SMA STYLE CONNECTORS

TYPE A
(Used on HP's 100/140 $\mu \mathrm{m}$ fiber optic cable)

RECEIVER PCB LAYOUT DIMENSIONS

Top View

SMA STYLE CONNECTORS TYPE B
(Type B is not available from HP)

Ordering Guide

Receivers: HFBR-2208 (SMA Connector Compatible)

Transmitters: HFBR-1202
HFBR-1204

Mounting
HFBR-4202 (SMA Connector Compatible)

Fiber Optic Cable

Hewlett-Packard offers connectored or unconnectored 100/140 $\mu \mathrm{m}$ fiber cables in simplex or duplex configurations. See data sheets for details.

Optocouplers

- High Speed Optocouplers
- Low Current Optocouplers
- High Gain Optocouplers
- Application Specific Optocouplers
- Hermetic Optocouplers

Optocouplers

Hewlett-Packard's original approach toward integrated output detectors provides performance not found in conventional phototransistor output devices. A family of optocouplers has been established to provide reliable, economical, high performance solutions to problems caused by ground loops and induced common mode noise for both analog and digital applications in commercial, industrial, and military products.

This family spans a wide range of capabilities. Device selections include: programmable AC/DC power sensing input with logic output; speeds up to 40 Mbit/s; CTR gains as high as 2000% and input currents as low as 0.5 mA . We also have available highly linear optocouplers that are useful in analog applications, a unique integrated-input optically coupled line receiver that can be connected directly to twisted pair wires without additional circuitry, and optocouplers that provide complete isolated transmit and receive functions for a 20 mA current loop. Many of these devices are available in dual channel versions as well as in hermetic 8 and 16 pin DIP packages. For military users, Hewlett-Packard's established, and DESC recognized hi-rel capability facilitates economical, hi-rel purchases.

Hermetic Optocouplers

Choose from Hewlett-Packard's broad line of high performance 8 and 16 pin hermetic optocouplers to meet your military, aerospace and high reliability applications. There are three basic families of optocouplers to select from in each package configuration. The 8 pin dual in-line package (DIP) features: high speed logic gates, high gain, and AC/DC to logic interface devices. The 16 pin DIP contains: high speed transistor, high speed logic gate, and high gain devices. Most 8 pin devices allow a choice of either single or dual channels. The 16 pin units consist of three dual channel and one four channel devices.

New this year for all devices manufactured from this line is our recently acquired hybrid line certification and qualification to MIL-STD-1772. In addition to the added value obtained from purchasing hi-rel tested parts to MIL-STD-883 Class B or S, line certification assures our customers of continuing assembly compliance to approved manufacturing processes and procedures under the watchful eye of periodic DESC audits.

Also new this year are eight logic gate, and two AC/DC to logic interface units in the 8 pin DIP. And, to give you added protection for common mode, we now include a shield on the detector die of all 16 pin DIP devices.

High-Speed Logic Gate Optocouplers

Device		Description	Application[1]	Typical Data Rate [NRZ]	Guaranteed CMR	Specified Input Current	Withstand Test Voltage		$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$	
		Standard*					Option 010**			
	HCPL-2200		3 State Output Low Input Current Optically Coupled Logic Gate $V_{C C}=20 \mathrm{~V}$ Max.	High Speed Logic Ground Isolation LSTTL, TTL, CMOS Logic Interference	5 M bit/s	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V} \end{gathered}$	1.6 mA	$\begin{array}{\|c\|} \hline 3000 \mathrm{~V} \mathrm{dc} \\ \text { RI } \end{array}$	$\begin{gathered} 2500 \mathrm{~V} \text { ac } \\ 71 \end{gathered}$	9-11
	$\begin{array}{\|l\|} \hline \text { HCPL-2201 } \\ \text { HCPL-2202 } \end{array}$	Low Input Current Optically Coupled Logic Gate $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$ Max.	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{s} \\ \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V} \end{gathered}$			9-15				
	$\begin{array}{\|l\|} \hline \text { HCPL-2211 } \\ \text { HCPL-2212 } \end{array}$		Motor Controls Switch-mode Power Supplies Electrically Noisy Environments	$\begin{gathered} 5000 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=300 \mathrm{~V} \end{gathered}$						
	HCPL-2231	Dual Channel Low Input Current Optically Coupled Logic Gate $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$ Max	High Speed Logic Ground Isolation LSTTL, TTL, CMR Logic Interface	$5 \mathrm{M} \mathrm{bit/s}$	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V} \end{gathered}$	1.8 mA	$\begin{gathered} 3000 \mathrm{~V} \mathrm{dc} \\ \mathbf{N I} \end{gathered}$	$\begin{gathered} 2500 \mathrm{~V} \text { ac } \\ \mathbf{~} \mathbf{1} \end{gathered}$	9-19	
	HCPL-2232		Motor Controls Switch-mode Power Supplies Electrically Noise Environments		$\begin{gathered} 5000 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=300 \mathrm{~V} \end{gathered}$					
	HCPL-2300	Very Low Input Current, High Speed Optocoupler	High Speed, Long Distance Line Receiver, Computer Peripheral Interfaces CMOS Logic Interface	$8 \mathrm{M} \mathrm{bit/s}$	$\begin{gathered} 100 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V} \end{gathered}$	0.5 mA	$\begin{gathered} 3000 \mathrm{~V} \mathrm{dc} \\ \mathbf{X I} \end{gathered}$	$\begin{gathered} 2500 \mathrm{~V} \text { ac } \\ \mathbf{\gamma} \end{gathered}$	9-23	
	HCPL-2400	20 MBaud, High Common Mode Rejection, Optically Coupled Logic Gate 3 State Output	Very High Speed Logic Isolation A/O and Parallel to Serial Conversion	$4.0 \mathrm{M} \mathrm{bit/s}$	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V} \end{gathered}$	4.0 mA	$3000 \mathrm{~V} \mathrm{dc}$	$\begin{gathered} 2500 \mathrm{~V} \mathrm{dc} \\ \boldsymbol{\lambda} \end{gathered}$	9-29	
	HCPL-2411		Motor Controls Switch-mode Power Supplies Electrically Noise Environments		$\begin{gathered} 5000 \mathrm{~V} / \mu \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=300 \mathrm{~V} \end{gathered}$					
	6N137	Optically Coupled Logic Gate	Line Receiver, High Speed Ground Isolation	$10 \mathrm{mbit} / \mathrm{s}$	$\begin{aligned} & >100 \mathrm{~V} / \mu \mathrm{S} \\ & \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V} \\ & \text { (Typical) } \end{aligned}$	5.0 mA	$\left\|\begin{array}{c} 3000 \mathrm{~V} \mathrm{dc} \\ \boldsymbol{X} \end{array}\right\|$	$\begin{gathered} 2500 \mathrm{~V} \text { ac } \\ \mathbf{X I} \end{gathered}$	9-35	
anooe	HCPL-2601	High Common Mode Rejection, Optically Coupled Logic Gate	High Speed Logic Ground Isolation	$10 \mathrm{M} \mathrm{bit} / \mathrm{s}$	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}^{=} 50 \mathrm{~V} \end{gathered}$	5.0 mA	$3000 \mathrm{~V} \mathrm{dc}$	$\begin{gathered} 2500 \mathrm{~V} \text { ac } \\ \mathbf{7} \end{gathered}$	9-39	
4 \square 5 ano	HCPL-2611		Motor Controls Switch-mode Power Supplies Electrically Noisy Environments		$\begin{gathered} 5000 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=300 \mathrm{~V} \end{gathered}$					
	HCPL-2602 HCPL-2612	Optically Coupled Line Receiver	Replace Conventional Line Receivers Electrically Noisy Environments	$10 \mathrm{M} \mathrm{bit} / \mathrm{s}$	$1000 \mathrm{~V} / \mu \mathrm{S}$ $@$ $\mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}$ $5000 \mathrm{~V} / \mu \mathrm{S}$ Q $\mathrm{V}_{\mathrm{CM}}=300 \mathrm{~V}$	5.0 mA	$\left\lvert\, \begin{gathered} 3000 \mathrm{~V} \mathrm{dc} \\ \boldsymbol{\gamma} \end{gathered}\right.$	$\begin{gathered} 2500 \mathrm{~V} \mathrm{ac} \\ \boldsymbol{\gamma S} \end{gathered}$	9-43	

*Standard Parts meet the UL1440 V ac test for 1 minute.
**Option 010 parts meet the UL 2500 V ac test for 1 minute.

High-Speed Logic Gate Optocouplers

Device		Description	Application[1]	Typical Data Rate [NRZ]	Guaran- teed Ratio	Specified Input Current	Withstand Test Voltage		$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$	
		Standard*					Option 010**			
	HCPL-2630		Dual Channel Optically Coupled Gate	Line Receiver, High Speed Logic Ground Isolation	$10 \mathrm{M} \mathrm{bit/s}$	$\begin{gathered} >100 \mathrm{~V} / \mu \mathrm{s} \\ @ \\ \begin{array}{c} \mathrm{CM}=10 \mathrm{~V} \\ \text { (Typical) } \end{array} \end{gathered}$	5.0 mA	$\left\lvert\, \begin{gathered} 3000 \mathrm{~V} \mathrm{dc} \\ \boldsymbol{\sim} \end{gathered}\right.$	$\begin{gathered} 2500 \mathrm{~V} \text { ac } \\ \mathbf{X} \end{gathered}$	9-49
	HCPL-2631	Dual Channel, High Common Mode Rejection, Optically Coupled Logic Gate	High Speed Logic Ground Isolation	$10 \mathrm{M} \mathrm{bit/s}$	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V} \end{gathered}$	5.0 mA	$\begin{gathered} 3000 \mathrm{~V} \mathrm{dc} \\ \mathbf{~} \mathbf{I} \end{gathered}$	$\begin{gathered} 2500 \mathrm{~V} \mathrm{ac} \\ \mathrm{al} \end{gathered}$	9-53	
	HCPL-4661		Motor Controls Switch-mode Power Supplies Electrically Noisy Environments		$\begin{gathered} 5000 \mathrm{~V} / \mu \mathrm{S} \\ @ \\ \mathrm{~V}_{\mathrm{CM}}=300 \mathrm{~V} \end{gathered}$					

*Standard Parts meet the UL 1440 V ac test for 1 minute.
**Option 010 parts meet the UL 2500 V ac test for 1 minute.

High-speed Transistor Output Optocouplers

High Gain Optocouplers

Device		Description	Application[1]	Typical Data Rate (NRZ)	Current Transfer Ratio	Specified Input Current	Withstand Test Voltage		Page No.	
		Standard*					Option 010**			
	6N138		Low Saturation Voltage, High Gain Output, $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$ Max.	Line Receiver, Low Current Ground Isolation, TTL/TTL, LSTTL/TTL. CMOS/TTL	100k bit/s	300\% Min.	$1: 6 \mathrm{~mA}$	$\begin{aligned} & 3000 \mathrm{Vdc} \\ & \boldsymbol{\gamma} \mathbf{~} \end{aligned}$	$\begin{gathered} 2500 \mathrm{~V} \mathrm{ac} \\ \text { I } \end{gathered}$	9-67
	6N139	Low Saturation Voltage, High Gain Output. $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$ Max.	Line Receiver, Ultra Low Current Ground Isolation, CMOS/ LSTTL, CMOS/TTL. CMOS/CMOS	400\% Min.		0.5 mA				
	HCPL-2730	Dual Channel. High Gain, $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$ Max.	Line Receiver, Polarity Sensing, Low Current Ground Isolation	100k bit/s	300\% Min.	1.6 mA	$\begin{gathered} 3000 \mathrm{~V} \mathrm{dc} \\ \mathbf{7} \end{gathered}$	$\begin{gathered} 2500 \mathrm{~V} \text { ac } \\ \boldsymbol{\gamma} \end{gathered}$	9-71	
	HCPL-2731	Dual Channel, High Gain, $V_{C C}=18 \mathrm{~V}$ Max.			400\% Min.	0.5 mA				
	4N45	Darlington Output $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$ Max.	AC Isolation, RelayLogic Isolation	$3 \mathrm{kbit/s}$	250\% Min.	1.0 mA	$\begin{gathered} 3000 \mathrm{~V} \mathrm{dc} \\ \mathbf{~} \mathbf{1} \end{gathered}$	$\begin{gathered} 2500 \mathrm{~V} \text { ac } \\ \text { PI } \end{gathered}$	9-75	
3 \square GNO	4N46	Darlington Output $V_{C C}=20 \mathrm{~V}$ Max.			350\% Min.	0.5 mA				

AC/DC to Logic Interface Optocoupler

20 mA Current Loop Optocouplers

Device		Description	Application[I]	Typical Data Rates	Input Characteristics	Output Char. acteristics	Withstand Test Voltage		Page No.	
		Standard*					Option 010**			
	HCPL-4100		Optically Coupled 20 mA Current Loop Transmitter	Isolated 20 mA Current Loop in: - Computer Peripherals - Industrial Control Equipment - Data Communication Equipment	20 kBd (at 400 metres)	TTL/CMOS	27 V Max. Compliance Voltage	$3000 \mathrm{~V} \mathrm{dc}$	$2500 \mathrm{~V} \text { ac }$	9-85
	HCPL-4200	Optically Coupled 20 mA Current Loop Receiver			$\begin{gathered} 6.5 \mathrm{~mA} \\ \text { Typ. } \\ \text { Threshold } \\ \text { Current } \end{gathered}$	3 State Output		-	9-93	

Optocoupler Options

| Option | Description | |
| :---: | :--- | :---: | :---: |
| 010 | Special construction and testing to ensure the capability to withstand 2500 V ac input to output for one minute. Testing is
 recognized by Underwriters Laboratories, Inc. (File No. E55361). This specification is required by U.L. in some applications
 where working voltages can exceed 220 V ac. | $9-9$ |
| 100 | Surface mountable optocoupler in a standard sized dual-in-line package with leads trimmed (butt joint). Provides an
 optocoupler which is compatible with surface mounting processes. | $9-10$ |

[^18]8 Pin Dual-In-Line Package
High-Speed Logic Gate Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Common Mode	Specified Input Current	Withstand Test Voltage*	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-5200	Single Channel, Hermetically Sealed Wide Supply Voltage Optocoupler	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface	$5 \mathrm{M} \mathrm{bit/s}$	$1000 \mathrm{~V} / \mu \mathrm{S}$	6.0 mA	500 Vdc	9-102
	HCPL-5201	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B } \end{aligned}$	Military/High Reliability					
	HCPL-5230	Dual Channel, Hermetically Sealed Wide Supply Voltage Optocoupler	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface					9-108
	HCPL-5231	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B Part } \end{aligned}$	Military/High Reliability					
	HCPL-5400	Single Channel Hermetically Sealed High Speed Optocoupler	High Speed Logic Isolation, A/D and Parallel/Serial Conversion	$40 \mathrm{M} \mathrm{bit} / \mathrm{s}$	$500 \mathrm{~V} / \mu \mathrm{S}$	9.0 mA	500 Vdc	9-114
	HCPL-5401	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B Part } \end{aligned}$	Military/High Reliability					
	HCPL-5430	Dual Channel Hermetically Sealed High Speed Optocoupler	High Speed Logic Isolation, Communications, Networks, Computers					$9-120$
	HCPL-5431	MIL-STD-883 Class B Part	Military/High Reliability					

High Gain Optocouplers

Device		Description	Application	Typical Data Rate (NRZ)	Current Transfer Ratio	Specified Input Curren	Withstand Test Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-5700	Single Channel Hermetically Sealed High Gain Optocoupler	Line Receiver, Low Current Ground Isolation, TTL/TTL. LSTTL/TTL, CMOS/TTL	60k bit/s	200\% Min.	0.5 mA	500 V dc	9-126
	HCPL-5701	$\begin{array}{\|l\|} \hline \text { MIL-STD-883 } \\ \text { Class B Part } \\ \hline \end{array}$	Military/High Reliability					
	HCPL-5730	Dual Channel Hermetically Sealed High Gain Optocoupler	Line Receiver, Polarity Sensing, Low Current Ground Isolation					9-130
$4\left[\square^{5} 5 \mathrm{GND}\right.$	HCPL-5731	MIL-STD-883 Class B Part	Military/High Reliability					

AC/DC to Logic Interface Optocoupler

Device		Description	Application	Typical Data Rate	Input Threshold Current	Output Current	Withstand Test Voltage	Page No.
	HCPL-5760	Single Channel Hermetically Sealed Threshold Sensing Optocoupler	Limit Switch Sensing, Low Voltage Detector Relay Contact Montitor	10 kHz	$\begin{aligned} & 2.5 \mathrm{~mA} \mathrm{TH} \\ & 1.3 \mathrm{~mA} \mathrm{TH}^{-} \end{aligned}$	2.6 mA	500 V dc	9-134
	HCPL-5761	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B Part } \end{aligned}$	Military/High Reliability					

16 Pin Dual In-Line Package

High Speed Transistor Optocouplers

Device		Description	Application	Typical Data Rate (NRZ)	Current Transier Ratio	Specified Input Curren	Withstand Test Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	4N55	Dual Channel Hermetically Sealed Analog Optical Coupler	Line Receiver. Analog Signal Ground Isolation. Switching Power Supply Feedback Element	700k bit/s	90\% Min.	16 mA	1500 V dc	9-140
	4N55/883B	MIL-STD-883 Class B Part	Military/High Reliability					

High Speed Logic Gate Optocouplers

Device		Description	Application	Typical Data Rate (NRZ)	Common Mode	Specified Input Current	Withstand Test Voltage	Page No.
	6N134	Dual Channel Hermetically Sealed Optically Coupled Logic Gate	Line Receiver. Ground Isolation for High Reliability Systems	10M bit/s	$1000 \mathrm{~V} / \mu \mathrm{S}$	10 mA	1500 V dc	9-145
	8102801EC	DESC Approved $6 \mathrm{~N} 134$	Military/High Reliability					9-149
	HCPL-1930	Dual Channel Hermetically sealed High CMR Line Receiver Optocoupler	Line receiver, High Speed Logic Ground Isolation in High Ground or Induced Noise Environments	10M bit/s	$1000 \mathrm{~V} / \mu \mathrm{S}$	10 mA	1500 Vdc	9-153
国	HCPL-1931	MIL-STD-883 Class B Part	Military/High Reliability					

High Gain Optocouplers

Device		Description	Application	Typical Data Rate (NRZ)	Current Transier Ratio	Specified Input Current	Withstand Test Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	6N140A (6N140)	Hermetically Sealed Package Containing 4 Low Input Current. High Gain Optocouplers	Line Receiver. Low Power Ground Isolation for High Reliability Systems	100k bit/s	300\% Min.	0.5 mA	1500 V dc	9-159
	8302401 EC	DESC Approved 6N140A	Military/High Reliability					9-163
	6N140A/883B (6N140/883B)	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B Part } \\ & \hline \end{aligned}$	Use 8302401EC in New Designs					9-159

Features

- SPECIAL CONSTRUCTION AND TESTING
- UL RECOGNITION FOR 2500 V ac/1 MINUTE REQUIREMENT (FILE NO. E55361)
- AVAILABLE FOR ALL PLASTIC OPTOCOUPLERS
- 480 V ac LINE VOLTAGE RATING

Description

Option 010 consists of special construction on a wide range of Hewlett-Packard plastic optocouplers. After assembly, each unit is subjected to an equivalent electrical performance test to insure its capability to withstand 2500 Vac input to output for 1 minute. This test is recognized by Underwriters Laboratory as proof that these components may be used in many high voltage applications.

Applications

The $2500 \mathrm{Vac} / 1$ Minute dielectric withstand voltage is required by Underwriters Laboratory when components are used in certain types of electronic equipment. This requirement also depends on the specific application within the equipment. Some applicable UL documents are listed below.

UL Spec.

Number Specification Title
1577 Standard for Optical Isolators Applications
114 Appliance and Business Equipment
$347 \quad$ High Voltage Industrial Control Equipment
478 Information Processing and Business Equipment
508 Industrial Control Equipment
544 Medical and Dental Equipment
698 Industrial Control Equipment for Use in Hazardous Locations
Plug-in, Locking Type Photocontrols
773 Plug-in, Letrinsically Safe Apparatus and
Associated Apparatus
916 Standard for Energy Management Equipment
1012 Power Supplies
1244 Electrical and Electronic Measuring and Testing Equipment 1410 Television and Video Products
device marking

Specifications

All specifications for optocouplers remain unchanged when this option is ordered. The $2500 \mathrm{Vac} / 1$ Minute capability is validated by a factory $3200 \mathrm{Vac} / 1$ Second dielectric voltage withstand test.

Ordering Information

To obtain this high voltage capability on plastic optocouplers order the standard part number and Option 010.

Examples:

6N135	HCPL-3700
Option 010	Option 010

This option is currently available on all standard catalog plastic optocouplers except SL5505.

Features

- SURFACE MOUNTABLE Leads Trimmed for a Butt Joint Connection
- COMPATIbLE WITH VAPOR PHASE REfLOW AND WAVE SOLDERING PROCESSES
- MEETS ALL ELECTRICAL SPECIFICATIONS OF CORRESPONDING STANDARD PART numbers
- LEAD COPLANARITY WITHIN 0.004 INCHES
- AVAILABLE FOR ALL OPTOCOUPLERS IN PLASTIC PACKAGES
- AVAILABLE IN STANDARD SHIPPING TUBES

Description

Option 100 is an optocoupler in a standard sized dual-in-line package, with trimmed leads (butt joint). The distance from the printed circuit board (PCB), to the bottom of the optocoupler package, will be typically 0.035 inches. The height of the optocoupler package is typically 0.150 inches, leaving a distance of 0.185 inches from PCB to the top of the optocoupler package.

Applications

Option 100 enables electronic component assemblers to include HP optocouplers on a PCB that utilizes surfacemount assembly processes. Option 100 does not require "through holes" in a PCB. This reduces board costs, while potentially increasing assembly rates and increasing component density per board.

Specifications

All electrical specifications for optocouplers remain unchanged when this option is ordered. In addition, the device will withstand typical vapor phase reflow soldering conditions of $215^{\circ} \mathrm{C}$ for 30 seconds, and wave solder immersion for 5 seconds, @ $260^{\circ} \mathrm{C}$.

Ordering Information

Option 100 is available for all optocouplers in plastic packages.

To obtain surface-mountable optocouplers, order the standard part number and Option 100.
Examples:

6N136	HCPL-2200
Option 100	Option 100

OPTION 100 DRAWING

DIMENSIONS IN MILLIMETAES IINCHESI
Note: For complete dimensions, refer to outtine drawing of corresponding catalog part number.

LOW INPUT CURRENT LOGIC GATE OPTOCOUPLER

HCPL-2200

Features

- COMPATIBLE WITH LSTTL, TTL, AND CMOS LOGIC
- WIDE VCC RANGE (4.5 TO 20 VOLTS)
- 2.5 MBAUD GUARANTEED OVER

TEMPERATURE

- LOW INPUT CURRENT (1.6 mA)
- THREE STATE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- GUARANTEED PERFORMANCE FROM $0^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- HCPL-5200/1 COMPATIBILITY

Applications

- Isolation of High Speed Logic Systems
- Computer-Peripheral Interfaces
- Microprocessor System Interfaces
- Ground Loop Elimination
- Pulse Transformer Replacement
- Isolated Buss Driver
- High Speed Line Receiver

Description

The HCPL-2200 is an optically coupled logic gate that combines a GaAsP LED and an integrated high gain photon detector. The detector has a three state output stage and has a detector threshold with hysteresis. The three state output

eliminates the need for a pullup resistor and allows for direct drive of data busses. The hysteresis provides differential mode noise immunity and eliminates the potential for output signal chatter. The detector IC has an internal shield that provides a guaranteed common mode transient immunity of 1,000 volts $/ \mu \mathrm{sec}$. Higher CMR specifications are available upon request. Improved power supply rejection eliminates the need for special power supply bypassing precautions.
The Electrical and Switching Characteristics of the HCPL2200 are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The HCPL-2200 is guaranteed to operate over a Vcc range of 4.5 volts to 20 volts. Low If and wide Vcc range allow compatibility with TTL, LSTTL, and CMOS logic. Low If and low Icc result in lower power consumption compared to other high speed optocouplers. Logic signals are transmitted with a typical propagation delay of 160 nsec.

The HCPL-2200 is useful for isolating high speed logic interfaces, buffering of input and output lines, and implementing isolated line receivers in high noise environments.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	Vcc	4.5	20	Volts
Enable Voltage High	VEH	2.0	20	Volts
Enable Voltage Low	Vel	0	0.8	Volts
Forward Input Current	If(on)	1.6	5	mA
Forward Input Current	1 If(off)	-	0.1	mA
Operating Temperature	TA	0	85111	${ }^{\circ} \mathrm{C}$
Fan Out	N		4	TTL. Loads

Recommended Circuit Design

Figure 1. Recommended LSTTL to LSTTL Circuit

Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$)
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ [1]
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Average Forward Input Current $-I_{F}$ 10 mA
Peak Transient Input Current - IF .. 1A ($\leq 1 \mu$ s Pulse Width, 300 pps)
Reverse Input Voltage \qquad
Supply Voltage - Vcc 0.0 V min., 20 V max.

Three State Enable Voltage
$-V_{E}$ -0.5 V min., 20 V max.
Output Voltage - Vo
Total Package Power
Dissipation - P \qquad
Average Output Current - Io
$210 \mathrm{~mW}{ }^{[1]}$

Electrical Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}{ }^{[1]} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EH}} \leq 20 \mathrm{~V}, 0.0 \mathrm{~V} \leq \mathrm{V}_{E L} \leq 0.8 \mathrm{~V}$,
$0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{OFF})} \leq 0.1 \mathrm{~mA}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

Switching Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}{ }^{[1]} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}$,
$0.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{OFF})} \leq 0.1 \mathrm{~mA}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{F(O N)}=3 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbal	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output Level	tPHL		210		ns	Without Peaking Capacitor	6,7	4,5
			160	300		With Peaking Capacitor		
Propagation Delay Time to Logic High Output Level	tPLH		170		ns	Without Peaking Capacitor	6,7	4,5
			115	300		With Peaking Capacitor		
Output Enable Time to Logic High	tpzH		25		ns		8,10	
Output Enable Time to Logic Low	tpzi.		28		ns		8,9	
Output Disable Time from Logic High	tPhz		105		ns		8,10	
Output Disable Time from Logic Low	tPLZ		60		ns		8,9	
Output Rise Time ($10-90 \%$)	tr_{r}		55		ns		6,11	
Output Fall Time (90-10\%)	tf		15		ns		6,11	
Logic High Common Mode Transient Immunity	$\|\mathrm{CMH}\|$	1000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{IF}=1.6 \mathrm{~mA} \\ & V C M=50 \mathrm{~V} \end{aligned}$	12,13	6
Logic Low Common Mode Transient Immunity	$\|\mathrm{CML}\|$	1000	10,000		$\mathrm{V} / \mu \mathrm{S}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{IF}=0 \\ & V C M=50 \mathrm{~V} \end{aligned}$	12,13	6

Figure 2. Typical Logic Low Output Voltage vs. Temperature

Figure 5. Typical Input Diode Forward Characteristic

Figure 3. Typical Logic High Output Current vs. Temperature

Figure 6. Test Circuit for $t_{\text {PLH }}, t_{\text {PHL }}, t_{\text {r }}$, and t_{f}

Figure 4. Output Voltage vs. Forward Input Current

Figure 7. Typical Propagation Delays vs. Temperature

Figure 8. Test Circuit for $\mathbf{t}_{\text {PHZ }}, \mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PLZ}}$, and tpzL

Figure 11. Typical Rise, Fall Time vs. Temperature

Figure 14. LSTTL to CMOS Interface Circult

Figure 9. Typical Logic Low Enable Propagation Delay vs. Temperature

Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

Figure 10. Typical Logic High Enable Propagation Delay vs. Temperature

Figure 13. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude

Figure 15. Recommended LED Drive Circult

Figure 16. Series LED Drive with
Open Collector Gate ($6.04 \mathrm{~K} \Omega$ Resistor Shunts IOH from the LED)

The 120 pF capacitor may be omitted in applications where 500 ns propagation delay is sufficient.

Notes:

1. Derate total package power dissipation, P, linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Duration of output short circuit time should not exceed 10 ms .
3. Device considered a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The tplh propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The tPHL propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the
trailing edge of the output pulse.
5. When the peaking capacitor is omitted, propagation delay times may increase by 100 ns .
6. $\mathrm{CML}_{\mathrm{L}}$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{Vo}<0.8 \mathrm{~V}$). $\mathrm{CM} \mathrm{H}_{\mathrm{H}}$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ($\mathrm{VO}>2.0 \mathrm{~V}$).
7. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
8. See Option 010 data sheet for more information.

VERY HIGH CMR, WIDE Vcc LOGIC GATE OPTOCOUPLER

Features

- VERY HIGH COMMON MODE REJECTION, $5 \mathrm{KV} / \mu \mathrm{sec}$ AT 300 V GUARANTEED (HCPL-2211/12)
- WIDE VCC RANGE (4.5 TO 20 VOLTS)
- 300 ns PROPAGATION DELAY GUARANTEED OVER THE FULL TEMPERATURE RANGE
- 5 MBAUD TYPICAL DATA RATE
- LOW INPUT CURRENT (1.6 mA)
- TOTEM POLE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- GUARANTEED PERFORMANCE FROM $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010)

Applications

- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- MICROPROCESSOR SYSTEM INTERFACES
- GROUND LOOP ELIMINATION
- PULSE TRANSFORMER REPLACEMENT
- HIGH SPEED LINE RECEIVER

Description

The HCPL-2201/02/11/12 are single-channel, opticallycoupled logic gates. The detectors have totem pole output stages and optical receiver input stages with built-in Schmitt triggers to provide logic-compatible waveforms, eliminating the need for additional waveshaping.

A superior internal shield on the HCPL-2211/12 guarantees common mode transient immunity of $5,000 \mathrm{~V} / \mu \mathrm{sec}$ at a common mode voltage of 300 volts.
The electrical and switching characteristics of the HCPL$2201 / 02 / 11 / 12$ are guaranteed from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and a $V_{C C}$ from 4.5 volts to 20 volts. Low I_{F} and wide $V_{C C}$ range allow compatibility with TTL, LSTTL, and CMOS logic and result in lower power consumption compared to other high speed couplers. Logic signals are transmitted with a typical propagation delay of 150 nsec .

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$V_{C C}$	4.5	20	Volts
Forward Input Current	$I_{\text {F(ON) }}$	2.2^{\star}	5	mA
Forward Input Voltage	$\mathrm{V}_{\mathrm{F} \text { (OFF) }}$	-	0.8	Volts
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Fan Out	N		4	TTL Loads

[^19]
Recommended Circuit Design

Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$)	
Storage Temperature	
Operating Temperature	
Lead Solder Temperature $\ldots \ldots \ldots \ldots \ldots . .260^{\circ} \mathrm{C}$ for 10 s$(1.6 \mathrm{~mm}$ below seating plane)	
 ($\leq 1 \mu$ s Pulse Width, 300 pps)	
Reverse Input Voltage	
Supply Voltage - $\mathrm{V}_{\text {CC }} \ldots \ldots0 .0 \mathrm{~V}$ min., 20 V max.	
Output Voltage - $\mathrm{V}_{0} \ldots \ldots \ldots \ldots \ldots .$.	
Total Package Power Dissipation - P 210 mW [1]	
Average Output Current - l_{0}	25 mA

Figure 1. Recommended LSTTL to LSTTL Circuit

Electrical Characteristics

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$, unless otherwise specified. All Typicals at $T_{A}=25^{\circ} \mathrm{C}$.

Switching CharacteristicS $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\left(\mathrm{F}_{(0)}\right)} \leq 5 \mathrm{~mA}$,

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output Level	$t_{\text {PHL }}$		150		ns	Without Peaking Capacitor	6,7	4
			150	300		With Peaking Capacitor		
Propagation Delay Time to Logic High Output Level	$t_{\text {PLH }}$		110		ns	Without Peaking Capacitor	6,7	4
			90	300		With Peaking Capacitor		
Output Rise Time ($10-90 \%$)	t_{r}		30		ns		6,9	
Output Fall Time ($90-10 \%$)	t_{f}		7		ns	2	6,9	

Parameter	Symbol	Device	Min.	Units	Test Condition		Figure	Note
Logic High Common Mode Transient Immunity	$\left\|C M_{H}\right\|$	$\begin{aligned} & \text { HCPL-2201 } \\ & \text { HCPL-2202 } \end{aligned}$	1,000	V/ $/ \mathrm{s}$	$\|\mathrm{Vcm}\|=50 \mathrm{~V}$	$\begin{aligned} & I_{F}=16 \mathrm{~mA} \\ & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	5
		$\begin{aligned} & \text { HCPL-2211 } \\ & \text { HCPL-2212 } \end{aligned}$	5,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=300 \mathrm{~V}$			
Logic Low Common Mode Transient Immunity	$\left\|C M_{L}\right\|$	$\begin{aligned} & \text { HCPL-2201 } \\ & \text { HCPL-2202 } \end{aligned}$	1,000	$V / \mu \mathrm{S}$	$\|\mathrm{Vcm}\|=50 \mathrm{~V}$	$\begin{aligned} & V_{F}=0 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	5
		$\begin{aligned} & \text { HCPL-2211 } \\ & \text { HCPL-2212 } \end{aligned}$	5,000	$V / \mu \mathrm{S}$	$\|\mathrm{Vcm}\|=300 \mathrm{~V}$			

Figure 2. Typical Logic Low Output Voltage vs. Temperature

Figure 5. Typical Input Diode Forward Characteristic

Figure 3. Typical Logic High Output Current vs. Temperature

ALL DIODES ARE 1N916 OR 1N3064

*0.1 μ F BYPASS
SEE NOTE 8
Figure 6. Circult for $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathbf{f}}$

Figure 4. Output Voltage vs. Forward Input Current

TA - TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 7. Typical Propagation Delays vs. Temperature

Figure 8. Typical Logic High Output Voltage vs. Supply Voltage

Figure 9. Typical Rise, Fall Time vs. Temperature

Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

Figure 11. Typical Input Threshold Current vs. Temperature

Figure 13. Alternative LED Drive Circuit

Figure 12. LSTTL to CMOS Interface Circuit

Figure 14. Series LED Drive with Open Collector Gate (6.04 K Ω Resistor Shunts I_{OH} from the LED)

Notes:

1. Derate total package power dissipation, P, linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Duration of output short circuit time should not exceed 10 ms .
3. Device considered a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6,7 and 8 shorted together.
4. The $t_{\text {PLH }}$ propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The $t_{\text {PHL }}$ propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
5. $C M_{\mathrm{L}}$ is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state. $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V} . \mathrm{CM}_{\mathrm{H}}$ is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$.
6. This is a proof test to validate the UL 220 Vac rating. This rating is equally validated by a 2500 Vac 1 sec test.
7. See Option 010 data sheet for more information.
8. For HCPL-2202/12, V_{O} is on $\operatorname{pin} 6$

VERY HIGH CMR, WIDE VCC DUAL LOGIC GATE OPTOCOUPLER

HCPL-2231
HCPL-2232

Features

- VERY HIGH COMMON MODE REJECTION $5 \mathrm{KV} / \mu \mathrm{sec}$ AT 300 V GUARANTEED (HCPL-2232)
- WIDE VCC RANGE (4.5 TO 20 VOLTS)
- 300 ns PROPAGATION DELAY GUARANTEED OVER THE FULL TEMPERATURE RANGE
- 5 MBAUD TYPICAL DATA RATE
- LOW INPUT CURRENT (1.8 mA)
- TOTEM POLE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- GUARANTEED PERFORMANCE FROM $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010)
- HCPL-5230/1 COMPATIBILITY

Applications

- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- MICROPROCESSOR SYSTEM INTERFACES
- GROUND LOOP ELIMINATION
- PULSE TRANSFORMER REPLACEMENT
- HIGH SPEED LINE RECEIVER

Recommended Circuit Design

Absolute Maximum Ratings

Figure 1. Recommended LSTTL to LSTTL Circuit

Electrical Characteristics

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.8 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$, unless otherwise specified. All Typicals at $T_{A}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions		Figure	Note
Logic Low Output Voltage	$\mathrm{V}_{\text {OL }}$			0.5	Volts	$\mathrm{I}_{\text {OL }}=6.4 \mathrm{~mA}(4$ TTL Loads $)$		2, 4	1
Logic High Output Voltage	VOH	$\begin{aligned} & 2.4 \\ & 2.7 \end{aligned}$			Volts	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \end{aligned}$	$V_{C C}=4.5 \mathrm{~V}$	3,4,9	1
Output Leakage Current (Vout $>$ VCC)	$\mathrm{IOHH}^{\text {O }}$			100	$\mu \mathrm{A}$	$V_{0}=5.5 \mathrm{~V}$	$\begin{aligned} & I_{F}=5 \mathrm{~mA} \\ & V_{C C}=4.5 \mathrm{~V} \end{aligned}$		1
				500	$\mu \mathrm{A}$	$V_{0}=20 \mathrm{~V}$			
Logic Low Supply Current	ICCL		7.4	12.0	mA	$V_{C C}=5.5 \mathrm{~V}$	$V_{F}=0 \mathrm{~V}$		
			8.6	14.0	mA	$V_{C C}=20 \mathrm{~V}$			
Logic High Supply Current	${ }^{\mathrm{I} C \mathrm{CH}}$		4.8	8.0	mA	$V_{C C}=5.5 \mathrm{~V}$	$I_{F}=5 \mathrm{~mA}$		
			5.4	10.0	mA	$V_{C C}=20 \mathrm{~V}$			
Logic Low Short Circuit Output Current	lost.	15			mA	$V_{0}=V_{C C}=5.5 \mathrm{~V}$	$V_{F}=0 \mathrm{~V}$		1, 2
		20			mA	$V_{O}=V_{C C}=20 \mathrm{~V}$			
Logic High Short Circuit Output Current	l OSH	-10			mA	$V_{C C}=5.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{GND} \end{aligned}$		1,2
		-20			mA	$V_{C C}=20 \mathrm{~V}$			
Input Forward Voltage	V_{F}		1.5	1.7	Volts	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	1
Input Reverse Breakdown Voltage	V_{R}	5			Volts	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\text {a }} \mathrm{C}$			1
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$			
Input-Output Insulation	1100			1	$\mu \mathrm{A}$	$\begin{aligned} & V_{1-\mathrm{O}}=3000 \mathrm{VDC} \\ & T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s} \\ & \text { Relative Humidity }=45 \% \end{aligned}$			3,6
OPTION 010	$V_{\text {ISO }}$	2500			$V_{\text {RMS }}$	$R H \leq 50 \%, t=1 \mathrm{~min}$.			7
Input-Output Resistance	$\mathrm{P}_{1.0}$		10^{12}		ohms	$V_{1-0}=500 \mathrm{VDC}$			3
Input-Output Capacitance	$\mathrm{C}_{4} \mathrm{O}$		0.6		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{1-0}=0 \mathrm{VDC}$			3
Input Capacitance	$\mathrm{Cl}_{\text {IN }}$		60		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$			1
Input-Input Insulation Leakage Current	i-1		0.005		$\mu \mathrm{A}$	$\begin{aligned} & \text { Relative Humidity }=45 \% \\ & t=5 \mathrm{~s}, V_{t-1}=500 \mathrm{~V} \end{aligned}$			8
Resistance (Input-Input)	$\mathrm{R}_{\mathrm{l}-1}$		10^{11}		Ω	$V_{1-1}=500 \mathrm{~V}$			8
Capacitance (Input-Input)	$\mathrm{C}_{\mathrm{f}-1}$		0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$			8

SWitching CharaCteristicS $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.8 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}$,

$0 \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output Level	$t_{\text {PHL }}$		150		ns	Without Peaking Capacitor	6.7	1,4
			150	300		With Peaking Capacitor		
Propagation Delay Time to Logic High Output Level	$\mathrm{t}_{\text {PLH }}$		110		ns	Without Peaking Capacitor	6,7	1,4
			90	300		With Peaking Capacitor		
Output Rise Time (10-90\%)	t_{r}		30		ns		6, 10	1
Output Fall Time ($90-10 \%$)	$\mathrm{t}_{\text {t }}$		7		ns		6,10	1

Parameter	Symbol	Device	Min.	Units	Test Condition		Figure	Note
Logic High Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	HCPL-2231	1,000	$\mathrm{V} / \mu \mathrm{s}$	$\mid \mathrm{Vcml}=50 \mathrm{~V}$	$\begin{aligned} & I_{F}=1.8 \mathrm{~mA} \\ & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	11	1.5
		HCPL-2232	5,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=300 \mathrm{~V}$			
Logic Low Common Mode Transient Immunity	$\left\|C M_{L}\right\|$	HCPL-2231	1,000	$\mathrm{V} / \mu \mathrm{S}$	$\|\mathrm{Vcm}\|=50 \mathrm{~V}$	$\begin{aligned} & V_{F}=0 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	11	1,5
		HCPL-2232	5,000	$V / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=300 \mathrm{~V}$			

Figure 2. Typical Logic Low Output Voltage vs. Temperature

Figure 5. Typical Input Diode Forward Characteristic

Figure 3. Typical Logic High Output Current vs. Temperature

Note: Channel one shown.
Figure 6. Circuit for $t_{\text {PLH }}, t_{\text {PHL }}, t_{r}, t_{f}$

Figure 4. Output Voltage vs. Forward Input Current

Figure 7. Typical Propagation Delays vs. Temperature

Figure 8. Maximum Output Power per Channel vs. Supply Voltage

Figure 9. Typical Logic High Output Voltage vs. Supply Voltage

Figure 10. Typical Rise, Fall Time vs. Temperature

Figure 11. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

Figure 12. Typical Input Threshold Current vs. Temperature

Figure 13. LSTTL to CMOS Interface Circuit

Figure 14. Alternate LED Drive Circuit

Figure 15. Series LED Drive with Open Collector Gate ($6.04 \mathrm{~K} \Omega$ Resistor Shunts $\mathrm{IOH}_{\mathrm{H}}$ from the LED)

Notes:

1. Each channel.
2. Duration of output short circuit time should not exceed 10 ms .
3. Device considered a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6,7 and 8 shorted together.
4. The $t_{\text {PLH }}$ propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The $t_{\text {PHL }}$ propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
5. $C M_{L}$ is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state. $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V} . \mathrm{CM}_{\mathrm{H}}$ is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$.
6. This is a proof test to validate the UL 220 Vac rating. This rating is equally validated by a 2500 Vac 1 sec test.
7. See Option 010 data sheet for more information.
8. Measured between pins 1 and 2, shorted together, and pins 3 and 4 , shorted together.

Figure 1. Schematic

oUTLINE DRAWING

DIMENSIONS IN MILLIMETRES AND (INCHES)

Features

- GUARANTEED LOW THRESHOLDS: $I_{F}=0.5 \mathrm{~mA}$, $V_{F} \leq 1.5 \mathrm{~V}$
- HIGH SPEED: GUARANTEED 5 MBd OVER TEMPERATURE
- VERSATILE: COMPATIBLE WITH TTL, LSTTL AND CMOS
- MORE EFFICIENT 820 nm AIGaAs IRED
- INTERNAL SHIELD FOR GUARANTEED COMMON MODE REJECTION
- SCHOTTKY CLAMPED, OPEN COLLECTOR OUTPUT WITH OPTIONAL INTEGRATED PULL-UP RESISTOR
- STATIC AND DYNAMIC PERFORMANCE GUARANTEED FROM $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- SPECIAL SELECTION FOR LOW FORWARD CURRENT APPLICATIONS ($\mathrm{I}_{\mathrm{F}} \geq 150 \mu \mathrm{~A}$)
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).

Applications

- GROUND LOOP ELIMINATION
- COMPUTER-PERIPHERAL INTERFACES
- LEVEL SHIFTING
- MICROPROCESSOR SYSTEM INTERFACES
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- RS-232-C INTERFACE
- HIGH SPEED, LONG DISTANCE ISOLATED LINE RECEIVER

Description

The HCPL-2300 optocoupler combines an 820 nm AIGaAs photon emitting diode with an integrated high gain photon detector. This combination of Hewlett-Packard designed and manufactured semiconductor devices brings high performance capabilities to designers of isloted logic and data communication circuits.

The low current, high speed AIGaAs emitter manufactured with a unique diffused junction, has the virtue of fast rise and fall ties at low drive currents. The HCPL-2300 has a typical propagation delay of 120 ns at 0.5 mA forward current. With special selection, the device can achieve 80 ns propagation delay at $150 \mu \mathrm{~A}$. Figure 6 illustrates the propagation delay vs. input current characteristic. These unique characteristics enable this device to be used in an RS-232-C interface with ground loop isolation and improved common mode rejection. As a line receiver, the HCPL-2300 will operate over longer line lengths for a given data rate because of lower I_{F} and V_{F} specifications.
The output of the shielded integrated detector circuit is an open collector Schottky clamped transistor. The shield, which shunts capacitively coupled common mode noise to ground, provides a guaranteed transient immunity specification of $100 \mathrm{~V} / \mu \mathrm{s}$. The output circuit includes an optional integrated 1000 Ohm pull-up resistor for the open collector. This gives designers the flexibility to use the internal resistor for pull-up to five volt logic or to use an external resistor for 18 volt CMOS logic.
The Electrical and Switching Characteristics of the HCPL2300 are guaranteed over a temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. This data sheet will allow users of the HCPL-2300 to confidently implement all necessary static and dynamic performance requirements which may be subjected to a broad range of operating environments.

Recommended Operating conditions

		Sym.	Min.	Max.	Units
Input Voltage, Low Level		$V_{\text {FL }}$	-2.5	0.8	V
Input Current High Level	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	IFH	0.5	1.0	mA
	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		0.5	0.75	
Supply Voltage, Output		VCc	4.75	5.25	V
Fan Out (TTL Load)		N		5	
Operating Temperature		T_{A}	-40	85	${ }^{\circ} \mathrm{C}$

V_{F} - FORWARD VOLTAGE - VOLTS

Figure 2. Typical Input Diode Forward Characteristic.

Absolute Maximum Ratings

(No derating required)

Parameter	Symbol	Min.	Max.	Units	Reference
Storage Temperature	Ts	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	TA	-40	85	${ }^{\circ} \mathrm{C}$	
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for $10 \mathrm{~s} .(1.6 \mathrm{~mm}$ below seating plane)				
Average Forward Input Current	$1 F$		5	mA	See Note 2
Reverse Input Voltage	$V_{\text {f }}$		4.5	V	
Supply Voltage	Vcc	0.0	7.0	V	
Pull-up Resistor Voltage	VRL	-0.5	Vcc	\checkmark	
Output Collector Current	10	-25	25	mA	
Input Power Dissipation	Pl		10	mW	
Output Collector Power Dissipation	Po		40	mW	
Output Collector Voltage	Vo	-0.5	18	V	

Electrical Characteristics

For $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{FL}} \leq 0.8 \mathrm{~V}$, unless otherwise specified.
All typicals at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	IOH		0.05	250	$\mu \mathrm{A}$	$V_{F}=0.8 \mathrm{~V}, V_{0}=18 \mathrm{~V}$	4	
Low Level Output Voltage	Vot		0.4	0.5	V	$\begin{aligned} & \mathrm{IF}=0.5 \mathrm{~mA} \\ & \mathrm{IOL}(\text { Sinking })=8 \mathrm{~mA} \end{aligned}$	3	
High Level Supply Current	ICCH		4.0	6.3	mA	$I_{F}=0 \mathrm{~mA}, \mathrm{VCC}=5.25 \mathrm{~V}$		
Low Level Supply Current	10 CL		6.2	10.0	mA	$I_{F}=1.0 \mathrm{~mA}^{2} \mathrm{VCC}=5.25 \mathrm{~V}$		
Input Forward Voltage	V_{F}	1.0	1.3	1.5	V	$\mathrm{IF}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2	
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}=1.0 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	BVR	4.5			V	$I_{R}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		
Input Capacitance	CIN		18		pF	$V_{F}=0 V, f=1 \mathrm{MHz}$		
Input-Output Insulation	11-0			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}_{\mathrm{S}} T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3,9
OPT 010	V150	2500			VRMS	$\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{inIN}$		10
Resistance (Input-Output)	$\mathrm{R}_{1-\mathrm{O}}$		1012		Ω	$\mathrm{V}_{1}-\mathrm{O}=500 \mathrm{~V}$		3
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$		0.6		pF	$f=1 \mathrm{MHz}$		3
Internal Pull-up Resistor	RL	680	1000	1700	Ohms	$T_{A}=25^{\circ} \mathrm{C}$	8	

Switching Characteristics

For $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{FH}} \leq 0.75 \mathrm{~mA}$;
For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{FH}} \leq 1.0 \mathrm{~mA}$; With $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{FL}} \leq 0.8 \mathrm{~V}$, unless otherwise specified. All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{FH}}=0.625 \mathrm{~mA}$, unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic High Output Level	tple		95		ns	$\mathrm{CrP}=0 \mathrm{pF}$	5,6,8	4,8
			85	160		$\mathrm{CP}_{\mathrm{P}}=20 \mathrm{pF}$	5,8	
Propagation Delay Time to Logic Low Output Level	tpHL		110		ns	$C_{P}=0 \mathrm{pF}$	5,6,8	5,8
			35	200		$\mathrm{CP}_{\mathrm{P}}=20 \mathrm{pF}$	5, 8	
Output Rise Time (10-90\%)	tr		40		ns	$C p=20 \mathrm{pF}$	7.8	8
Output Fall Time (90-10\%)	tf		20		ns			
Common Mode Transient Immunity at High Output Level	CMH\|	100	400		$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=50 \mathrm{~V}$ (peak), $V_{0}(\min)=.2 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}$	9,10	6
Common Mode Transient Immunity at Low Output Level	CML	100	400		$\mathrm{V} / \mu \mathrm{S}$	$V_{C M}=50 \mathrm{~V}$ (peak), $V_{0}(\max)=0.8 \mathrm{~V}$, $R \mathrm{~L}=560 \Omega, \mathrm{IF}=0.5 \mathrm{~mA}$	9, 10	7

(See page 5-35 for Notes)

Figure 3. Typical Output Voltage vs. Forward Input Current vs. Temperature.

Figure 6. Typical Propagation Delay vs. Forward Current.

Figure 4. Typical Logic High Output Current vs. Temperature.

Figure 7. Typical Rise, Fall Time vs. Temperature.

$$
t_{\text {PHL }}-\left\{\begin{array}{l}
A\left[\begin{array}{l}
-0.5 \mathrm{~mA} \text { ТО } 1.0 \mathrm{~mA}, C_{p}=20 \mathrm{pF} \\
-0.5 \mathrm{~mA} \text { ТО } 0.75 \mathrm{~mA}, C_{P}=20 \mathrm{pF}
\end{array}\right. \\
\mathrm{B}-0.5 \mathrm{~mA}, C_{P}=0 \mathrm{pF} \\
\mathrm{C}-1.0 \mathrm{~mA}, C_{p}=0 \mathrm{pF}
\end{array}\right.
$$

$$
\text { tpLH- }^{\mathrm{D}-\left\{\begin{array}{l}
-0.5 \mathrm{~mA} \text { TO } 1.0 \mathrm{~mA}, C_{p}=20 \mathrm{pF} \\
\mathrm{E}-0.5 \mathrm{~mA} \text { TO } 0.75 \mathrm{~mA}, C_{p}=20 \mathrm{pF} \\
\mathrm{~F}-0.5 \mathrm{~mA}, C_{p}=0 \mathrm{pF} \\
-1.0 \mathrm{~mA}, C_{p}=0 \mathrm{pF}
\end{array}\right.}
$$

Figure 5. Typical Propagation Delay vs. Temperature and Forward Current With and Without Application of a Peaking Capacitor.

Figure 8. Test Circuit for $t_{\text {PHL }}, t_{\text {PLH }}, t_{r}$ and t_{f}.

Figure 9. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude.

Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

Applications

The HCPL-2300 optocoupler has the unique combination of low 0.5 mA LED operating drive current at a 5 MBd speed performance. Low power supply current requirement of 10 mA maximum and the ability to provide isolation between logic systems fulfills numerous applications ranging from logic level translations, line receiver and party line receiver applications, microprocessor I/O port isolation, etc. The open collector output allows for wired-OR arrangement. Specific interface circuits are illustrated in Figures 11 through 18 with corresponding component values, performance data and recommended layout.
For $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range, a mid range LED forward current (IF_{F}) of 0.625 mA is recommended in order to prevent overdriving the integrated circuit detector due to increased LED efficiency at temperatures between $0^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$. For narrower temperature range of $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, a suggested operating LED current of 0.75 mA is recommended for the mid range operating point and for minimal propagation delay skew. A peaking capacitance of 20 pF in parallel with the current limiting resistor for the LED shortens tpHL by approximately 33% and tPLH by 13%. Maintaining LED forward voltage (V_{F}) below 0.8 V will guarantee that the HCPL-2300 output is off.
The recommended shunt drive technique for TTL/LSTTL/ CMOS of Figure 11 provides for optimal speed performance, no leakage current path through the LED, and reduced common mode influences associated with series switching of a "floating" LED. Alternate series drive tec-
niques with either an active CMOS inverter or an open collector TTL/LSTTL inverter are illustrated in Figures 12 and 13 respectively. Open collector leakage current of 250 $\mu \mathrm{A}$ has been compensated by the 3.16 K Ohms resistor (Figure 13) at the expense of twice the operating forward current.
An application of the HCPL-2300 as an unbalanced line receiver for use in long line twisted wire pair communication links is shown in Figure 14. Low LED IF and V_{F} allow longer line length, higher speed and multiple stations on the line in comparison to higher $\mathrm{I}_{\mathrm{F}}, \mathrm{V}_{\mathrm{F}}$ optocouplers. Greater speed performance along with nearly infinite common mode immunity are achieved via the balanced split phase circuit of Figure 15. Basic balanced (differential) line receiver can be accomplished with one HCPL-2300 in Figure 15, but with a typical $400 \mathrm{~V} / \mu \mathrm{s}$ common mode immunity. Data rate versus distance for both the above unbalanced and balanced line receiver applications are compared in Figure 16. The RS-232-C interface circuit of Figure 17 provides guaranteed minimum common mode immunity of $100 \mathrm{~V} / \mu \mathrm{s}$ while maintaining the 2:1 dynamic range of IF.
A recommended layout for use with an internal 1000 Ohms resistor or an external pull-up resistor and required $V_{C c}$ bypass capacitor is given in Figure 18. $V_{c c 1}$ is used with an external pull-up resistor for output voltage levels (VO) greater than or equal to 5 V . As illustrated in Figure 18, an optional VCC and GND trace can be located between the input and the output leads of the HCPL-2300 to provide additional noise immunity at the compromise of insulation capability (VI-O).

*SCHOTTKY DIODE (HP 5082-2800, OR EQUIVALENT) AND 20 pF CAPACITOR ARE NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.

Figure 11. Recommended Shunt Drive Circuit for Interfacing Between TTL/LSTTL/CMOS Logic Systems.

Figure 12. Active CMOS Series Drive Circuit.

Figure 13. Series Drive from Open Collector TTL/LSTTL Units.

Figure 14. Application of HCPL-2300 as Isolated, Unbalanced Line Receiver(s).

Figure 16. Application of Two HCPL-2300 Units Operating as an Isolated, High Speed, Balanced, Split Phase Line Receiver with Significantly Enhanced Common Mode Immunity.

Figure 17. Typical Point to Point Data Rate vs. Length of Line for Unbalanced (Figure 15) and Balanced (Figure 16) Line Receivers using HCPL-2300 Optocouplers.

*SEE NOTE 1
Figure 19. Recommended Printed Circuit Board Layout.

Figure 18. RS-232-C Interface Circuit with HCPL-2300. $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$.

NOTES:

1. Bypassing of the power supply line is required with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 19. The power supply bus for the optocoupler(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to $0.1 \mu \mathrm{~F}$) may be needed to suppress regenerative feedback via the power supply.
2. Peaking circuits may produce transient input currents up to 100 mA , 500 ns maximum pulse width, provided average current does not exceed 5 mA .
3. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The tplh propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The tphl propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. $C M_{H}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., VOUT > 2.0 V).
7. $C M L$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VOUT < 0.8 V).
8. C_{p} is the peaking capacitance. Refer to test circuit in Figure 9.
9. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
10. See Option 010 data sheet for more information

20 M BAUD HIGH CMR IOGIC GATE OPTOCOUPLER

Features

- HIGH SPEED: 40 MBd TYPICAL DATA RATE
- HIGH COMMON MODE REJECTION
- HCPL-2400 = $50 \mathrm{~V}_{\mathrm{CM}}$
- HCPL-2411 = 300 V $_{C M}$
- AC PERFORMANCE GUARANTEED OVER TEMPERATURE
- COMPATIBLE WITH TTL, STTL, LSTTL, AND HCMOS LOGIC FAMILIES
- NEW, HIGH SPEED AIGaAs EMITTER
- THREE STATE OUTPUT (NO PULL-UP RESISTOR REQUIRED)
- HIGH POWER SUPPLY NOISE IMMUNITY
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR
DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- HCPL-5400/1 COMPATIBILITY

Applications

- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- ISOLATED BUS DRIVER (NETWORKING APPLICATIONS)
- SWITCHING POWER SUPPLIES
- GROUND LOOP ELIMINATION
- HIGH SPEED DISK DRIVE I/O
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- PULSE TRANSFORMER REPLACEMENT

Absolute Maximum Ratings
 (No derating required up to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	Ts	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	TA	0	85	${ }^{\circ} \mathrm{C}$	
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for 10 s .11 .6 mm below seating plane)				
Average Forward Input Current	IF		10.0	mA	
Peak Forward Input Current	IFPK		20.0	mA	9
Reverse Input Voltage	V_{R}		3.0	V	
Supply Voltage	Vce	0	7.0	V	
Three State Enable Voltage	VE	-0.5	10.0	V	
Average Output Collector Current	lo	-25.0	25.0	mA	
Output Collector Voltage	Vo	-0.5	10.0	V	
Output Coliector Power Dissipation	Po		40.0	mW	

Electrical Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 8 \mathrm{~mA}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EH}} \leq 5.25,0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EL}} \leq 0.8 \mathrm{~V}$, $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$ except where noted. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=5.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=0 \mathrm{~V}$ except where noted.

Parameter	Symbol	Min.	Typ.	Max.	Unifs	Test Conditions		Figure	Note
Logic Low Output Voltage	VOL			0.5	Volts	$10 \mathrm{~L}=8.0 \mathrm{~mA}(5 \mathrm{TTL}$ Loads)		1	
Logic High Output Voltage	VOH	2.4			Volts	$1 \mathrm{OH}=-4.0 \mathrm{~mA}$		2	
Output Leakage Current	lohi			100	$\mu \mathrm{A}$	Vo $=5.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}$		
Logic High Enable Voltage	Veh	2.0			Volts				
Logic Low Enable Voltage	VEL			0.8	Volts				
Logic High Enable Current	Ieh			20	$\mu \mathrm{A}$	$V_{E}=2.4 \mathrm{~V}$			
				100	$\mu \mathrm{A}$	$V_{E}=5.25 \mathrm{~V}$			
Logic Low Enable Current	lel		-0,28	-0.4	mA	$\mathrm{V}_{\mathrm{E}}=0.4 \mathrm{~V}$			
Logic Low Supply Current	ICCL		19	26	mA	$\begin{aligned} & V C C=5.25 V \\ & V_{E}=O V \end{aligned}$			
Logic High Supply Current	ICH		17	26	mA				
High Impedance State Supply Current	Iccz		22	28	mA	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VE}=5.25 \mathrm{~V} \end{aligned}$			
High Impedance State Output Current	lozl			20	$\mu \mathrm{A}$	$V_{0}=0.4 \mathrm{~V}$	$V_{E}=2 \mathrm{~V}$		
	1024			20	$\mu \mathrm{A}$	$V_{0}=2.4 \mathrm{~V}$	$V_{E}=2 \mathrm{~V}$		
	lozH			100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.25 \mathrm{~V}$			
Logic Low Short Circuit Output Current	losi.		52		mA	$V_{0}=V_{C C}=5.25 \mathrm{~V}$	$\mathrm{F}=8 \mathrm{~mA}$		1
Logic High Short Circuit Output Current	10SH		-45		mA	$\mathrm{VCC}=5.25 \mathrm{~V}$	$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=\mathrm{O} \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{GND} \end{aligned}$		1
Input Current Hysteresis	HHYS		0.25		mA	$\mathrm{VCO}=5 \mathrm{~V}$		3	
Input Forward Voltage	V_{F}	1.1	1.3	1.5	Volts	$\mathrm{IF}^{\prime}=5 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		4	
Input Reverse Breakdown Voltage	V_{R}	3.0	5.0	-	Volts	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.44		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{F}=5 \mathrm{~mA}$		4	
Input-Output Insulation	I-O			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & V_{\text {I-O }}=3 \mathrm{kVdc}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			2,8
Option 010	VISO	2500			$V_{\text {RMS }}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$.			10
Input-Output Resistance	R1-O		1012		ohms	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}$			2
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$		0.6		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}$			2
Input Capacitance	CIN		20		pF	$f=1 \mathrm{MHz}, V_{F}=0 \mathrm{~V}$, Pins 2 and 3			

Switching Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 0.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EN}} \leq 0.8 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{IF}_{\mathrm{F}} \leq 8.0 \mathrm{~mA}$. All Typicals $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{IF}_{\mathrm{F}}=5.0 \mathrm{~mA}$ except where noted.

Parameter	Symbol		Min.	Typ.	Max.	Units	Test Conditio		Figure	Note
Propagation Delay Time to Logic Low Output Level	$t_{\text {PHL }}$				55	ns	$\mathrm{l}_{\mathrm{F}(\mathrm{ON})}=7.0 \mathrm{~m}$		5,6,7	4
			15	33	60	ns			5,6,7	3
Propagation Delay Time to Logic High Output Level	${ }_{\text {t }}^{\text {PLH }}$				55	ns	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7.0 \mathrm{~m}$	-	5,6,7	4
			15	30	60	ns	-		5,6,7	3
Pulse Width Distortion	$\left\|t_{\text {PHL }}{ }^{-1} \mathrm{PLH} \mathrm{H}\right\|$			2	15	ns	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7.0 \mathrm{~m}$		5, 8	4
				3	25	ns			5, 8	
Channel Distortion	Δ tphl 2 $\Delta \mathrm{tpLH}$		\%	8	25	ns	\%		5	5
				8	25	ns	\%		5	5
Output Rise Time	t_{r}			20		ns			5	
Output Fall Time	t_{f}			10		ns			5	
Output Enable Time to Logic High	$\mathrm{fpZH}^{\text {f }}$			15		ns			9, 10	
Output Enable Time to Logic Low	tPZ			30		ns			9, 10	
Output Disable Time from Logic High	${ }_{\text {t }}$			20		ns			9.10	
Output Disable Time from Logic Low	$t_{\text {t }}$			15		ns		\%	9, 10	
Logic High Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	2400	1000	10,000		$V / \mu s$	$V_{C M}=50 \mathrm{~V}$			
		2411	1000			$V / \mu \mathrm{S}$	$V_{C M}=300 \mathrm{~V}$	$25^{\circ} \mathrm{C}, 1_{F}$	77, 12	6
Logic Low Common Mode Transient Immunity	$\left\|C M_{L}\right\|$	2400	1000	10,000		$V / \mu \mathrm{s}$	$V_{C M}=50 \mathrm{~V}$	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, 1_{F}=4 \mathrm{~mA}$	11, 12	6
		2411	1000			$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=300 \mathrm{~V}$			
Power Supply Noise Immunity	PSNI			0.5		V_{p-p}	$V_{C C}=5.0 \mathrm{~V}$	$3 \mathrm{~Hz} \leq \mathrm{F}_{\mathrm{AC}} \leq 50 \mathrm{MHz}$		7

Notes:

1. Duration of output short circuit time not to exceed 10 ms .
2. Device considered a two terminal device: pins 1-4 shorted together, and pins 5-8 shorted together.
3. tPHL propagation delay is measured from the 50% level on the rising edge of the input current pulse to the 1.5 V level on the falling edge of the output pulse. The tplH propagation delay is measured from the 50% level on the falling edge of the input current pulse to the 1.5 V level on the rising edge of the output pulse.
4. This specification simulates the worst case operating conditions of the HCPL-2400/11 over the recommended operating temperature and VCC range with the suggested applications circuit of Figure 13.
5. Channel distortion describes the worst case variation of propagation delay from one part to another at identical operating conditions.
6. $\mathrm{CMH}_{\mathrm{H}}$ is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic high state $\left(\mathrm{VO}_{\mathrm{O}}(\mathrm{MIN})>2.0 \mathrm{~V}\right)$. CML is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{VO}(\mathrm{MAX})<0.8 \mathrm{~V}$).
7. Power Supply Noise Immunity is the peak to peak amplitude of the ac ripple voltage on the Vcc line that the device will withstand and still remain in the desired logic state. For desired logic high state, $\mathrm{VOH}(\mathrm{MIN})>2.0 \mathrm{~V}$, and for desired logic low state, VOL(MAX) <0.8 volts.
8. This is a proof test. This rating is equally validated by a 2500 V ac, 1 second test per UL E55 361.
9. Peak Forward Input Current pulse width $<50 \mu \mathrm{~s}$ at 1 KHz maximum repetition rate.
10. See Option 010 data sheet for more information.

Figure 1. Typical Logic Low Output Voltage vs. Logic Low Output Current

Figure 2. Typical Logic High Output Voltage vs. Logic High Output Current

Figure 3. Typical Output Voltage vs. Input Forward Current

Figure 4. Typical Diode Input Forward Current Characteristic

Figure 5. Test Circuit for $t_{\text {PLH }}, t_{\text {PHL }}, t_{r}$, and t_{f}

Figure 6. Typical Propagation Delay vs. Ambient Temperature

Figure 7. Typical Propagation Delay vs. Input Forward Current

Figure 8. Typical Pulse Width Distortion vs. Ambient Temperature

ALL DIODES ARE EC6 519 OR EQUIVALENT
$\mathrm{C} 1=30 \mathrm{pF}$ INCLUDING PROBE AND JIG CAPACITANCE

Figure 10. Typical Enable Propagation Delay vs. Ambient Temperature

Figure 9. Test Circuit for $t_{\text {PHZ }}, t_{\text {PZH }}, t_{\text {PLZ }}$ and $t_{\text {PZL }}$.

*MUST BE LOCATED < 1 cm FROM DEVICE UNDER TEST.
*SEE NOTE 6.
C_{L} IS APPROXIMATELY 15 pF , WHICH INCLUDES PROBE AND

Figure 11. Test Diagram for Common Mode Transient Immunity and Typical Waveforms

Applications

Figure 13. Recommended 20 MBd HCPL-2400/11 Interface Circuit

Figure 14. Alternative HCPL-2400/11 Interface Circuit

Figure 16. Modulation Code Selections

Data Rate, Pulse-Width Distortion, and Channel Distortion Definitions

In the world of data communications, a bit is defined as the smallest unit of information a computer operates with. A bit is either a Logic 1 or Logic 0 , and is interpreted by a number of coding schemes. For example, a bit can be represented by one symbol through the use of NRZ code, or can contain two symbols in codes such as Biphase or Manchester (see Figure 16). The bit rate capability of a system is expressed in terms of bits/second (b/s) and the symbol rate is expressed in terms of Baud (symbols/second). For NRZ code, the bit rate capability equals the Baud capability because the code contains one symbol per bit of information. For Biphase and Manchester codes, the bit rate capability is equal to one half of the Baud capability, because there are two symbols per bit.
Propagation delay is a figure of merit which describes the finite amount of time required for a system to translate information from input to output when shifting logic levels. Propagation delay from low to high (tple) specifies the amount of time required for a system's output to change from a Logic 0 to a Logic 1, when given a stimulus at the input. Propagation delay from high to low (tPHL) specifies the amount of time required for a system's output to change from a Logic 1 to a Logic 0 , when given a stimulus at the input (see Figure 5).

When tple and tphl differ in value, pulse width distortion results. Pulse width distortion is defined as \mid tPHL-tPLH| and determines the maximum data rate capability of a distortion-limited system. Maximum pulse width distortion on the order of $20-30 \%$ is typically used when specifying the maximum data rate capabilities of systems. The exact figure depends on the particular application (RS-232, PCM, T-1, etc.).
Channel distortion, ($\Delta \mathrm{tPHL}, \Delta \mathrm{tPLH}$), describes the worst case variation of propagation delay from device to device at identical operating conditions. Propagation delays tend to shift as operating conditions change, and channel distortion specifies the uniformity of that shift. Specifying a maximum value for channel distortion is helpful in parallel data transmission applications where the synchronization of signals on the parallel lines is important.

The HCPL-2400/11 optocouplers offer the advantages of specified propagation delay (tpLh, tphL), pulse-width distortion (|tPLH-tPHL|), and channel distortion (Δ tPLH, Δ tPHL) over temperature, input forward current, and power supply voltage ranges.

Applications Circuits

A recommended application circuit for high speed operation is shown in Figure 13. Due to the fast current switching capabilities of Schottky family TTL logic (74STTL), data rates of 20 MBd are achievable from 0 to $70^{\circ} \mathrm{C}$. the $74 \mathrm{SO4}$ totem-pole driver sources current to series-drive the input of the HCPL-2400/11 optocoupler. The 348Ω resistor limits the LED forward current. The 30 pF speed-up capacitor assists in the turn-on and turn-off of the LED, increasing the data rate capability of the circuit. On the output side, the following logic can be directly driven by the output of the HCPL-2400/11 since a pull-up resistor is not required. If desired, a non-inverting buffer may be substituted on either the input or the output side to change the circuit function from $Y=A$ to $Y=A$. This circuit satisfies all recommended operating conditions.
An alternative circuit is shown in Figure 14, which utilizes a 74 S05 open-collector inverter to shunt-drive the HCPL2400/11 optocoupler. This circuit also satisfies all recommended operating conditions.
The HCPL-2400/11 optocouplers are compatible with other logic familes, such as TTL, LSTTL, and HCMOS. However, the output drive capabilities of Schottky family devices greatly exceed those associated with TTL, LSTTL, and HCMOS logic families, and are recommended in high data rate (20 MBd) applications where fast drive current transitions are required to operate the HCPL-2400/11 with minimum pulse-width distortion.

Figure 17. Typical HCPL-2400/11 Output Schematic

LSTTL/TTL COMPATIBLE OPTOCOUPLER

Features

Figure 1.

- LSTTL/TTL COMPATIBLE: 5 V SUPPLY
- HIGH SPEED: 10 MBd TYPICAL
- LOW INPUT CURRENT REQUIRED: 5 mA
- HIGH COMMON MODE REJECTION: >1000 V/ $\mu \mathrm{s}$ TYPICAL
- GUARANTEED PERFORMANCE OVER TEMPERATURE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).

Description / Applications

The 6N137 consists of a GaAsP photon emitting diode and a unique integrated detector. The photons are collected in the detector by a photodiode and then amplified by a high gain linear amplifier that drives a Schottky clamped open collector output transistor. The circuit is temperature, current and voltage compensated.
This unique isolator design provides maximum DC and AC circuit isolation between input and output while achieving LSTTL/TTL circuit compatibility. The isolator operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, such that a minimum input current of 5 mA will sink an eight gate fan-out $(13 \mathrm{~mA})$ at the output with 5 volt V_{CC} applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 ns . The enable input provides gating of the detector with input sinking and sourcing requirements compatible with LSTTL/TTL interfacing.
The 6N137 can be used in high speed digital interfacing applications where common mode signals must be rejected, such as for a line receiver and digital programming of floating power supplies, motors, and other machine control systems. It is also useful in digital/analog conversion applications, like compact disk players, for noise elimination. The open collector output provides capability for bussing, OR'ing and strobing.
CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

OUTLINE DRAWING*

Recommended Operating

 Conditions| CiOFS | Sym. | Min. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: |
| Input Current, Low Level Each Channel | If. | 0 | 250 | $\mu \mathrm{A}$ |
| Input Current, High Level Each Channel | IFH | 6.3** | 15 | mA |
| High Level Enable Voltage | $V_{\text {EH }}$ | 2.0 | Vcc | V |
| Low Level Enable Voltage (Output High) | $\mathrm{VFI}_{\text {E }}$ | 0 | 0.8 | \checkmark |
| Supply Voltage, Output | VCC | 4.5 | 5.5 | V |
| Fan Out (TTL Load) | N | | 8 | |
| Operating Temperature | TA | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |

Absolute Maximum Ratings*

(No derating required up to $70^{\circ} \mathrm{C}$)
Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature
(1.6 mm below seating plane)

Peak Forward Input

 Current \qquad 40 mA ($\mathrm{t} \leq 1 \mathrm{msec}$ Duration) Average Forward Input Current 20 mAReverse Input Voltage 5 V
Enable Input Voltage 5.5V
(Not to exceed $V_{C C}$ by more than 500 mV)
Supply Voltage - VCC 7V (1 Minute Maximum)
Output Current - lo 50 mA
Output Collector Power Dissipation 85 mW
Output Voltage - V_{O}7V

[^20]
Electrical Characteristics

OVER RECOMMENDED TEMPERATURE ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$) UNLESS OTHERWISE NOTED

Parameter	Symbol	Min.	Typ.**	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	lOH^{*}		2	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V}, \\ & I_{F}=250 \mu \mathrm{~A}, V_{E}=2.0 \mathrm{~V} \end{aligned}$	6	
Low Level Output Voltage	$V_{\mathrm{OL}}{ }^{*}$		0.4	0.6	V	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & V_{E H}=2.0 \mathrm{~V} \\ & \mathrm{IOL}^{(\text {Sinking })}=13 \mathrm{~mA} \end{aligned}$	3,5	
High Level Enable Current	l_{EH}		-1.0		mA	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$		
Low Level Enable Current	IEL^{*}		-1.4	-2.0	mA	$V_{C C}=5.5 \mathrm{~V}, V_{E}=0.5 \mathrm{~V}$		
High Level Supply Current	ICCH^{*}		7	15	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \\ & V_{E}=0.5 \mathrm{~V} \end{aligned}$		
Low Level Supply	ICCL*		14	18	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & V_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		
Input-Output Insulation	1.0			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% R \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & V_{1-\mathrm{O}}=3 \mathrm{kVdc}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		5,9
OPT 010	V_{150}	2500			VRMS	$\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$		10
Resistance (Input-Output)	R_{1-0}		1012		Ω	$V_{1-0}=500 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		5
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		5
Input Forward Voltage	$V_{F}{ }^{*}$		1.5	1.75	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	4	8
Input Reverse Breakdown Voltage	$B V_{R}{ }^{*}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		60		pF	$V_{F}=0, f=1 \mathrm{MHz}$		
Current Transfer Ratio	CTR		700		\%	$I_{F}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	2	7

${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to High Output Level	tPLH *		55	75	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$	7,9	1
Propagation Delay Time to Low Output Level	tPHL*		55	75	ns	$\begin{aligned} & R_{L}=350 \Omega, C_{L}=15 \mathrm{pF}, \\ & I_{F}=7.5 \mathrm{~mA} \end{aligned}$	7,9	2
Pulse Width Distortion	$\mid{ }^{\text {PPHL- }}$ Pleh \mid		10		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$		
Output Rise-Fall Time (10.90\%)	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}$ f		50,20		ns	$\begin{aligned} & R_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$		
Propagation Delay Time of Enable from $V_{E H}$ to $V_{E L}$	telh		65		ns	$\begin{aligned} & R_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, V_{E H}=3.0 \mathrm{~V}, \\ & V_{E L}=0.5 \mathrm{~V} \end{aligned}$	8	3
Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$	tehL		20		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & I_{F}=7.5 \mathrm{~mA} V_{E H}=3.0 \mathrm{~V} \\ & V_{E L}=0.5 \mathrm{~V} \end{aligned}$	8	4
Common Mode Transient Immunity at Logic High Output Level	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$		100		$\mathrm{v} / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=10 \mathrm{~V} R_{L}=350 \Omega, \\ & V_{O}(\min .)=2 \mathrm{~V}, I_{F}=0 \mathrm{~mA} \end{aligned}$	11	6
Common Mode Transient Immunity at Logic Low Output Level	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$		-300		$v / \mu s$	$\begin{aligned} & V_{C M}=10 \vee R_{L}=350 \Omega, \\ & V_{O}(\max .)=0.8 \mathrm{~V}, \\ & I_{F}=5 \mathrm{~mA} \end{aligned}$	11	6

Operating Procedures and Definitions

Logic Convention. The 6N137 is defined in terms of positive logic.
Bypassing. A ceramic capacitor (.01 to $0.1 \mu \mathrm{~F}$) should be connected from pin 8 to pin 5 (Figure 12). Its purpose is to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching properties. The total lead length between capacitor and coupler should not exceed 20 mm .
Polarities. All voltages are referenced to network ground (pin 5). Current flowing toward a terminal is considered positive. Enable Input. No external pull-up required for a logic (1), i.e., can be open circuit.

Note: Dashed characteristics - denote pulsed operation only.

Figure 2. Optocoupler Collector Characteristics.

Figure 3. Input-Output Characteristics.

NOTES:

1. The $t_{\text {pLH }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
2. The $\mathrm{t}_{\text {PHL }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to 1.5 V point on the leading edge of the output pulse.
3. The telh enable propagation delay is measured from the 1.5 V point of the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
4. The tehl enable propagation delay is measured from the 1.5 V point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
5. Device considered a two terminal device: pins 2 and 3 shorted together, and pins $5,6,7$, and 8 shorted together.
6. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$).
7. DC Current Transfer Ratio is defined as the ratio of the output collector current to the forward bias input current times 100%.
8. At $10 \mathrm{~mA} \mathrm{~V}_{\mathrm{F}}$ decreases with increasing temperature at the rate of $1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
9. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
10. See Option 010 data sheet for more information.

Figure 4. Input Diode Forward Characteristic.

Figure 5. Output Voltage, V_{OL} vs. Temperature and Fan-Out.

Figure 6. Output Current, I_{OH} vs. Temperature $\left(\mathrm{I}_{\mathrm{F}}=\mathbf{2 5 0 \mu} \mu \mathrm{A}\right)$.

Figure 7. Test Circuit for tPHL and tPLH.**
**JEDEC Registered Data.

Ifh - PULSE INPUT CURRENT - mA
Figure 9. Propagation Delay, tPHL and tPLH vs. Pulse Input Current, IFH.

Figure 8. Test Circuit for telh and tehl.

Figure 10. Response Delay Between TTL Gates.

Figure 12. Recommended Printed Circuit Board Layout.

Features

- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION (CMR)
HCPL-2601 = $1000 \mathrm{~V} / \mu \mathrm{s}$
HCPL-2611 $=3500 \mathrm{~V} / \mu \mathrm{s}$
- HIGH SPEED: 10 MBd TYPICAL
- LSTTL/TTL COMPATIBLE
- LOW INPUT CURRENT REQUIRED: 5 mA
- GUARANTEED PERFORMANCE OVER TEMPERATURE: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- STROBABLE OUTPUT
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).

Description

The HCPL-2601/11 optically coupled gates combine a GaAsP light emitting diode and an integrated high gain photon detector. An enable input allows the detector to be strobed. The output of the detector I.C. is an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$ for the 2601 , and $3500 \mathrm{~V} / \mu \mathrm{s}$ with the 2611.
This unique design provides maximum D.C. and A.C. circuit isolation while achieving TTL compatibility. The isolator D.C. operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ allowing troublefree system performance. This isolation is achieved with a typical propagation delay of 40 nsec.
The HCPL-2601/11 are suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

Applications

- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Switching Power Supply
- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement

Recommended Operating Conditions

	Sym.	Min.	Max.	Units
Input Current, Low Level	I_{FL}	0	250	$\mu \mathrm{~A}$
Input Current, High Level	I_{FH}	6.3^{*}	15	mA
Supply Voltage, Output	V_{CC}	4.5	5.5	V
High Level Enable Voltage	V_{EH}	2.0	$V_{C C}$	V
Low Level Enable Voltage	V_{EL}	0	0.8	V
Fan Out (TTL Load)	N		8	
Operating Temperature	TA_{A}	0	70	${ }^{\circ} \mathrm{C}$

CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

* 6.3 mA condition permits at least 20% CTR degradation guard band. Initial switching threshold is 5 mA or less.

Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$)
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6mm below seating plane)
Forward Input Current - I_{F} (see Note 2)
20 mA
Reverse Input Voltage

Supply Voltage - VCC $\ldots . . \ldots$. . 7 V (1 Minute Maximum)
Enable Input Voltage - VE............................ 5.5 V
(Not to exceed $V_{C C}$ by more than 500 mV)
Output Collector Current - Io 25 mA
Output Collector Power Dissipation 40 mW

Electrical Characteristics

(Over Recommended Temperature, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	1 OH		20	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{0}=5.5 \mathrm{~V}, \\ & I_{F}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \\ & \hline \end{aligned}$	2	
Low Level Output Voltage	Voi.		0.4	0.6	v	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \left.\mathrm{IOL}_{1} \text { (Sinking }\right)=13 \mathrm{~mA} \end{aligned}$	3,5	
High Level Supply Current	ICCH		10	15	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		
Low Level Supply Current	lcar .		15	19	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=10 \mathrm{~mA}, \\ & V_{E}=0.5 \mathrm{~V} \end{aligned}$		
Low Level Enable Current	lei.		-1.4	-2.0	mA	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$		
High Level Enable Current	IEH		-1.0		mA	$V_{C C}=5.5 \mathrm{~V}_{2} V_{E}=2.0 \mathrm{~V}$		
High Level Enable Voltage	$\mathrm{V}_{\text {EH }}$	2.0			V			11
Low Level Enable Voltage	Ver.			0.8	V			
Input Forward Voltage	V_{F}		1.5	1.75	V	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	4	
Input Reverse Breakdown Voltage	$B V_{R}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Input Capacitance	$\mathrm{C}_{1 \mathrm{~N}}$		60		pF	$V_{F}=0, f=1 \mathrm{MHz}$		
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Input-Output Insulation	Ho			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kVdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3,12
1 OPT010	VIso	2500			$V_{\text {RMS }}$	$\mathrm{RH} \leq 50 \% t=1 \mathrm{MIN}$		13
Resistance (Input-Output)	R_{1-0}		10^{12}		Ω	$\mathrm{V}_{\text {- }}=5000 \mathrm{~V}$		3
Capacitance (Input-Output)	$\mathrm{C}_{\text {i-0 }}$		0.6		pF	$f=1 \mathrm{MHz}$		3

*All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\Lambda}=25^{\circ} \mathrm{C}$.

Switching Characteristics $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$

Parameter	Symbal		Min.	Typ.	Max.	Units	Test Conditions		Flgure	Note
Propagation Delay Time to High Output Level	tpin			40	75	ns	$\begin{aligned} & R_{L}=350 \mathrm{n} \\ & C_{L}=15 \mathrm{pF} \\ & I_{F}=7.5 \mathrm{~mA} \end{aligned}$		6	4
Propagation Delay Time to Low Output Level	$t_{\text {PHiL }}$			40	75	ns			6	5
Pulse Width Distortion	\mid tpilitplit			10		ns				
Ouiput Rise Time (10-90\%)	tr_{t}			20		ns				
Output Fall Time (90-10\%)	t_{i}			30		ns				
Propagation Delay Time of Enable from $V_{E H}$ to $V_{E L}$	teLh			25		ns	$\begin{aligned} & R_{L}=350 \Omega, C_{L}=15 \mathrm{pF}, \\ & \mathrm{l}_{\mathrm{F}}=7.5 \mathrm{~mA}, \mathrm{~V}_{E H}=3 \mathrm{~V}, \\ & V_{E L}=0 \mathrm{~V} \end{aligned}$		9	6
Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$	${ }_{\text {teent }}$			25		ns	$\begin{aligned} & R_{\mathrm{L}}=350 \Omega_{1} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {EL }}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{L}=15 \mathrm{pF}, \\ & E H=3 \mathrm{~V} . \end{aligned}$	9	7
Common Mode Transient Immunity at High Output Level	\| CM_{H} \|	2601	1000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=50 \mathrm{~V}$	$\begin{aligned} & V_{O M N X}=2 \mathrm{~V} \\ & R_{L}=350 \Omega \\ & I_{F}=0 \mathrm{~mA} \end{aligned}$	12	8,10
		2611	3500			$V / \mu \mathrm{s}$	$V_{C M}=400 \mathrm{~V}$			
Common Mode Transient Immunity at Low Output Level	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	2601	1000	10,000		$V / \mu \mathrm{s}$	$V_{C M}=50 \mathrm{~V}$	$\begin{aligned} & V_{O M A X}=0.8 \mathrm{~V} \\ & R_{L}=350 \Omega \\ & I_{F}=7.5 \mathrm{~mA} \end{aligned}$	12	9, 10
		2611	3500			$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=400 \mathrm{~V}$			

NOTES:

1. Bypassing of the power supply line is required, with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator as illustrated in Figure 15. The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to 0.1 $\mu \mathrm{F}$) may be needed to suppress regenerative feedback via the power supply.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50$ ns maximum pulse width, provided average current does not exceed 20 mA .
3. Device considered a two terminal device: pins $1,2,3$ and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The tpI.H propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The $t_{\text {PHL }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. The tel. H enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
7. The $t_{\text {EHI }}$. enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
8. $C M_{H}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., Vot"r $>2.0 \mathrm{~V}$).
9. $C M_{\mathrm{I}}$. is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{OL}}{ }^{[\mathrm{T}}<0.8$ V).
10. For sinusoidal voltages, $\left(\frac{\left|d v_{C M}\right|}{d t}\right)_{\text {max }}=\pi f_{C M} V_{C M}(p-p)$
11. No external pull up is required for a high logic state on the enable input.
12. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
13. See Option 010 data sheet for more information.

Figure 2. High Level Output Current vs. Temperature.

Figure 5. Output Voltage vs. Forward Input Current.

Figure 3. Low Level Output Voltage vs. Temperature.

Figure 6. Test Circuit for $\mathrm{t}_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$.

Figure 4. Input Dlode Forward Characteristic.

$T_{A}=$ TEMPERATURE $-{ }^{\circ} \mathrm{C}$

Figure 7. Propagation Delay vs. Temperature.

Figure 8. Propagation Delay vs. Pulse Input Current.

TA - TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 11. Rise, Fall Time vs. Temperature.

Figure 14. Relative Common Mode Transient Immunity vs. Temperature.

Figure 10. Enable Propagation Delay vs. Temperature.

Figure 13. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.

Figure 15. Recommended Printed Circuit Board Layout.

TRUTH TABLE
(Positive Logic)
A 0.01 TO 0.1μ F BYPASS CAPACITOR MUST BE CONNECTED BETWEEN PINS 8 AND 5 (See Note 1).

Figure 1. Schematic.

Input	Enable	Output
H	H	L
L	H	H
H	L	H
L	L	H

Features

- HIGH COMMON MODE REJECTION
$2602=1000 \mathrm{~V} / \mu \mathrm{s}$
$2612=3500 \mathrm{~V} / \mu \mathrm{s}$
- LINE TERMINATION INCLUDED - NO EXTRA CIRCUITRY REQUIRED
- ACCEPTS A BROAD RANGE OF DRIVE CONDITIONS
- GUARDBANDED FOR LED DEGRADATION
- LED PROTECTION MINIMIZES LED EFFICIENCY DEGRADATION
- HIGH SPEED - 10MBd (LIMITED BY TRANSMISSION LINE IN MANY APPLICATIONS)
- INTERNAL SHIELD PROVIDES EXCELLENT COMMON MODE REJECTION
- EXTERNAL BASE LEAD ALLOWS "LED PEAKING" AND LED CURRENT ADJUSTMENT
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- HCPL-1930/1 COMPATIBILITY

Description

The HCPL-2602/12 optically coupled line receivers combine a GaAsP light emitting diode, an input current regulator and an integrated high gain photon detector. The input regulator serves as a line termination for line receiver applications. It clamps the line voltage and regulates the LED current so line reflections do not interfere with circuit performance.
The regulator allows a typical LED current of 8.5 mA before it starts to shunt excess current. The output of the detector IC is an open collector Schottky clamped transistor. An enable input gates the detector. The internal detector shield provides a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu$ s for the 2602 , and $3500 \mathrm{~V} / \mu$ s for the 2612.

Applications

- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion

- Current Sensing

- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement

DC specifications are defined similar to TTL logic and are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ allowing trouble free interfacing with digital logic circuits. An input current of 5 mA will sink an eight gate fan-out ($\mathrm{T} \cdot \mathrm{C}$) at the output with a typical propagation delay from inpl' to output of only 45 nsec.

The HCPL-2602/12 are useful as line is... ars in high noise environments that conventional line recs: rs cannot tolerate. The higher LED threshold volta a provides improved immunity to differential noise and th. internally shielded detector provides orders of magnitude improvement in common mode rejection with little or no sacrifice in speed.

CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damange from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Recommended Operating

 Conditions| | Sym. | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Input Current, Low Level | I_{IL} | 0 | 250 | $\mu \mathrm{~A}$ |
| Input Current, High Level | $\mathrm{IIH}_{\mathrm{H}}$ | 6.3^{\star} | 60 | mA |
| Supply Voltage, Output | V_{Cc} | 4.5 | 5.5 | V |
| High Level Enable Voltage | V_{EH} | 2.0 | Voc | V |
| Low Level Enable Voltage | V_{Et} | 0 | 0.8 | V |
| Fan Out (TTL Load) | N | | 8 | |
| Operating Temperature | TA_{A} | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |

* 6.3 mA condition permits at least 20% degradation guardband. Initial switching threshold is 5 mA or less.

NOTES:

1. Bypassing of the power supply line is required, with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator as illustrated in Figure 15. The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to 0.1 μ F) may be needed to suppress regenerative feedback via the power supply.
2. Device considered a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
3. The tpi.H propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse
4. The tphi propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
5. The $t_{\text {PIIH }}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.

Absolute Maximum Ratings

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$ for 10 s (1.6mm below seating plane)

Forward Input Current $-I_{I} \ldots \ldots$.
Reverse Input Current 60 mA
Supply Voltage $-\mathrm{V}_{\mathrm{CC}} \ldots \ldots . . .7 \mathrm{~V}$ (1 Minute Maximum)
Enable Input Voltage - V_{E}............................ 5.5 V
(Not to exceed $V_{\text {cc }}$ by more than 500 mV)
Output Collector Current- I_{O}..................... 25 mA
Output Collector Power Dissipation 40 mW
Output Collector Voltage - V_{O}. 7 V
Input Current, Pin 4 $\pm 10 \mathrm{~mA}$
6. The $\mathrm{t}_{\text {lilli }}$. enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
7. CM_{11} is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{() \mid}$ $>2.0 \mathrm{~V}$).
8. $C M_{1}$. is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\text {() }}{ }^{\prime \prime}<0.8$
9. For sinusoidal voltages, $\left(\frac{\left|\mathrm{dv}_{\mathrm{cm}}\right|}{d t}\right)_{\text {max }}=\pi f_{\mathrm{CM}} \mathrm{V}_{\mathrm{CM}}(\mathrm{p}-\mathrm{p})$
10. No external pull up is required for a high logic state on the enable input.
11. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
12. See Option 010 data sheet for more information.

If - FORWARD INPUT CURRENT - mA
Figure 2. Output Voltage vs. Forward Input Current.
 T_{A} - TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 5. Low Level Output Voltage vs. Temperature.

Figure 3. Input Characteristics.

Figure 6. Test Circuit for $\mathbf{t}_{\text {PHL }}$ and t $_{\text {PLH }}$

T_{A} - TEMPERATURE - C
Figure 4. High Level Output Current vs. Temperature.

Figure 7. Propagation Delay vs. Temperature.

Electrical Characteristics

(Over Recommended Temperature, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)

Parameter	Symbol	Min.	Typ.**	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	IOH		20	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V} \\ & l_{1}=250 \mu \mathrm{~A}, V_{E}=2.0 \mathrm{~V} \end{aligned}$	4	
Low Level Output Voltage	VOL	4	0.4	0.6	V	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{I}=5 \mathrm{~mA} \\ & V_{E}=2.0 \mathrm{~V}, \\ & \left.I_{O L} \text { (Sinking }\right)=13 \mathrm{~mA} \end{aligned}$	2,5	
Input Voltage	V_{1}		2.0	2.4	V	$1_{1}=5 \mathrm{~mA}$	3	
			2.3	2.7		$\mathrm{I}_{1}=60 \mathrm{~mA}$	3	
Input Reverse Voltage	V_{R}		0.75	0.95	V	$\mathrm{I}_{\mathrm{R}}=5 \mathrm{~mA}$		
Low Level Enable Current	$\mathrm{IEL}_{\text {L }}$		-1.4	-2.0	mA	$V_{C C}=5.5 \mathrm{~V}, V_{E}=0.5 \mathrm{~V}$		
High Level Enable Current	IEH		-1.0		mA	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$		
High Level Enable Voltage	$V_{E H}$	2.0			V			10
Low Level Enable Voltage	V_{EL}			0.8	V			
High Level Supply Current	ICCH		10	15	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{1}=0, \\ & V_{E}=0.5 \mathrm{~V} \end{aligned}$		
Low Level Supply Current	ICCL		16	19	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{1}=60 \mathrm{~mA} \\ & V_{E}=0.5 \mathrm{~V} \end{aligned}$		
Input Capacitance	$C_{1 N}$		90		pF	$\begin{aligned} & V_{1}=0, f=1 \mathrm{MHz}, \\ & (\mathrm{PIN} 2-3) \end{aligned}$		
Input-Output Insulation	1 O			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & V_{1-O}=3 \mathrm{kV} \mathrm{dc}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		2,11
OPT 010	VISO	2500			VRMS	$\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$		12
Resistance (Input-Output)	R_{1-0}		1012		Ω	$V_{1-0}=500 \mathrm{~V}$		2
Capacitance (Input-Output)	Cl_{1-0}		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		2

${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics

$\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right.$)

Parameter	Symbol		Min.	Typ.	Max.	Units	Test Conditions		Figure	Note
Propagation Delay Time to High Output Level	$\mathrm{t}_{\text {PLH }}$			45	75	ns	$\begin{aligned} & R_{L}=350 \Omega \\ & C_{L}=15 \mathrm{pF} \\ & I_{1}=7.5 \mathrm{~mA} \end{aligned}$		6	3
Propagation Delay Time to Low Output Level	$\mathrm{t}_{\text {PHL }}$			45	75	ns			6	4
Output Rise Time ($10-90 \%$)	t_{r}			25		ns				
Output Fall Time (90-10\%)	t_{t}			25		ns				
Propagation Delay Time of Enable from V_{EH} to V_{EL}	${ }_{\text {teLh }}$			15		ns	$\begin{aligned} & R_{\mathrm{L}}=350 \Omega, C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{1}=7.5 \mathrm{~mA}, V_{E H}=3 \mathrm{~V}, \\ & V_{E L}=0 \mathrm{~V} \end{aligned}$		10	5
Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$	$\mathrm{t}_{\text {EHL }}$			15					10	6
Common Mode Transient Immunity at High Output Level	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	2602	1000	10,000		$V / \mu s$	$V_{C M}=50 \mathrm{~V}$	$\begin{aligned} & V_{O(M I N)}=2 \mathrm{~V} \\ & R_{\mathrm{L}}=350 \Omega \\ & \mathrm{I}_{1}=0 \mathrm{~mA} \end{aligned}$	12	7.9
		2612	3500			$\mathrm{V} / \mu \mathrm{S}$	$V_{C M}=300 \mathrm{~V}$			
Common Mode Transient Immunity at Low Output Level	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	2602	1000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=50 \mathrm{~V}$	$\begin{aligned} & V_{O(\operatorname{MAX})}=0.8 \mathrm{~V} \\ & R_{\mathrm{L}}=350 \Omega \\ & l_{I}=7.5 \mathrm{~mA} \end{aligned}$	12	8,9
		2612	3500			$\mathrm{V} / \mu \mathrm{S}$	$V_{C M}=300 \mathrm{~V}$			

Figure 8. Propagation Delay vs. Pulse Input Current.

TA TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 11. Enable Propagation Delay vs. Temperature.

Figure 14. Relative Common Mode Transient Immunity vs. Temperature.

Figure 9. Rise, Fall Time vs. Temperature.

Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

Figure 10. Test Circuit for $\mathrm{t}_{\mathrm{EHL}}$ and $\mathrm{t}_{\mathrm{ELH}}$ -

Figure 13. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.

Figure 15. Recommended Printed Circuit Board Layout.

Using the HCPL-2602/12 Line Receiver Optocouplers

The primary objectives to fulfill when connecting an optocoupler to a transmission line are to provide a minimum, but not excessive, LED current and to properly terminate the line. The internal regulator in the HCPL-2602/12 simplifies this task. Excess current from variable drive conditons such as line length variations, line driver differences and power supply fluctuations are shunted by the regulator. In fact, with the LED current regulated, the line current can be increased to improve the immunity of the system to differential-mode-noise and to enhance the data rate capability. The designer must keep in mind the 60 mA input current maximum rating of the HCPL-2602/12 in such cases, and may need to use series limiting or shunting to prevent overstress.
Design of the termination circuit is also simplified; in most cases the transmission line can simply be connected directly to the input terminals of the HCPL-2602/12 without the need for additional series or shunt resistors. If reversing line drive is used it may be desirable to use two HCPL-2602/12 or an external Schottky diode to optimize data rate.

Polarity Non-Reversing Drive

High data rates can be obtained with the HCPL-2602/12 with polarity non-reversing drive. Figure (a) illustrates how a 74S140 line driver can be used with the HCPL-2602/12 and shielded, twisted pair or coax cable without any additional components. There are some reflections due to the "active termination" but they do not interfere with circuit performance because the regulator clamps the line voltage. At longer line lengths $t_{p L H}$ increases faster than $\mathrm{t}_{\mathrm{PHL}}$ since the switching threshold is not exactly halfway between asymptotic line conditions. If optimum data rate is desired, a series resistor and peaking capacitor can be used to equalize $t_{P L H}$ and $t_{P H L}$. In general, the peaking capacitance should be as large as possible; however, if it is too large it may keep the regulator from achieving turn-off during the negative (or zero) excursions of the input signal. A safe rule:

```
make C}\leqslant16
where C = peaking capacitance in picofarads
        t = data bit interval in nanoseconds
```


Polarity Reversing Drive

A single HCPL-2602/12 can also be used with polarity reversing drive (Figure b). Current reversal is obtained by way of the substrate isolation diode (substrate to collector). Some reduction of data rate occurs, however, because the substrate diode stores charge, which must be removed when the current changes to the forward direction. The effect of this is a longer t_{PHL}. This effect can
be eliminated and data rate improved considerably by use of a Schottky diode on the input of the HCPL-2602/12.

For optimum noise rejection as well as balanced delays a split-phase termination should be used along with a flipflop at the output (Figure c). The result of current reversal in split-phase operation is seen in Figure (c) with switches A and B both OPEN. The coupler inputs are then connected in ANTI-SERIES; however, because of the higher steady-state termination voltage, in comparison to the single HCPL-2602/12 termination, the forward current in the substrate diode is lower. and consequently there is less junction charge to deal with when switching.
Closing switch B with A open is done mainly to enhance common mode rejection, but also reduces propagation delay slightly because line-to-line capacitance offers a slight peaking effect. With switches A and B both CLOSED, the shield acts as a current return path which prevents either input substrate diode from becoming reversed biased. Thus the data rate is optimized as shown in Figure (c).

Improved Noise Rejection

Use of additional logic at the output of two HCPL-2602/12's operated in the split phase termination, will greatly improve system noise rejection in addition to balancing propagation delays as discussed earlier.
A NAND flip-flop offers infinite common mode rejection (CMR) for NEGATIVELY sloped common mode transients but requires $\mathrm{t}_{\mathrm{PHL}}>\mathrm{t}_{\mathrm{PLH}}$ for proper operation. A NOR flipflop has infinite CMR for POSITIVELY sloped transients but requires $t_{\text {PHL }}<t_{\text {PLH }}$ for proper operation. An exclusive-OR flip-flop has infinite CMR for common mode transients of EITHER polarity and operates with either $t_{\text {PHL }}>t_{\text {PLH }}$ or $\mathrm{t}_{\text {PHL }}<\mathrm{t}_{\text {PLH }}$.
With the line driver and transmission line shown in Figure (c), $\mathrm{t}_{\mathrm{PHL}}>\mathrm{t}_{\mathrm{PLH}}$, so NAND gates are preferred in the R-S flip-flop. A higher drive amplitude or different circuit configuration could make $\mathrm{t}_{\mathrm{PHL}}<\mathrm{t}_{\text {PLH }}$, in which case NOR gates would be preferred. If it is not known whether $\mathrm{t}_{\mathrm{PHL}}>$ ${ }^{t_{P L H}}$ or $t_{\text {PHL }}<t_{\text {PLH }}$, or if the drive conditions may vary over the boundary for these conditions, the exclusive-OR flipflop of Figure (d) should be used.

RS-422 and RS-423

Line drivers designed for RS-422 and RS-423 generally provide adequate voltage and current for operating the HCPL-2602/12. Most drivers also have characteristics allowing the HCPL-2602/12 to be connected directly to the driver terminals. Worst case drive conditions, however, would require current shunting to prevent overstress of the HCPL-2602/12.

Figure a. Polarity Non-Reversing.

Figure b. Polarity Reversing, Single Ended.

Figure c. Polarity Reversing, Split Phase.

Figure d. Flip Flop Configurations.

DUALTTL COMPATIBLE OPTOCOUPLER

Features

- LSTTL/TTL COMPATIBLE: 5V SUPPLY
- HIGH SPEED: 10 MBd TYPICAL
- LOW INPUT CURRENT REQUIRED: 5 mA
- GUARANTEED PERFORMANCE OVER TEMPERATURE
- HIGH DENSITY PACKAGING
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).

Description/ Applications

The HCPL-2630 consists of a pair of inverting optically coupled gates each with a GaAsP photon emitting diode and a unique integrated detector. The photons are collected in the detector by a photodiode and then amplified by a high gain linear amplifier that drives a Schottky clamped open collector output transistor. Each circuit is temperature, current and voltage compensated.
This unique dual coupler design provides maximum DC and AC circuit isolation between each input and output while achieving LSTTL/TTL circuit compatibility. The coupler operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, such that a minimum input current of 5 mA in each channel will sink an eight gate fan-out (13 mA) at the output with 5 volt V_{CC} applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec .
The HCPL-2630 can be used in high speed digital interface applications where common mode signals must be rejected such as for a line receiver and digital programming of floating power supplies, motors, and other machine control systems. It is also usefull in digital/analog conversion applications, like compact disk players, for noise elimination.

The open collector output provides capability for bussing, strobing and "WIRED-OR" connection. In all applications, the dual channel configuration allows for high density packaging, increased convenience and more usable board space.

dimensions in millimetres and (inches).

Recommended Operating Conditions

	Sym.	Min.	Max.	Units
Input Current, Low Level Each Channel	IFL	0	250	$\mu \mathrm{~A}$
Input Current, High Level Each Channel	IFH	6.3^{*}	15	mA
Supply Voltage, Output	VCC	4.5	5.5	V
Fan Out (TTL Load)				
Each Channel	N		8	
Operating Temperature	TA	0	70	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings

(No derating required up to $70^{\circ} \mathrm{C}$)
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6mm below seating plane)

Peak Forward Input
Current (each channel) 30 mA ($\leqslant 1$ msec Duration) Average Forward Input Current (each channel) 15 mA
Reverse Input Voltage (each channel) 5V
Supply Voltage - VCC 7V (1 Minute Maximum)
Output Current - I_{0} (each channel) 16 mA
Output Voltage - V_{O} (each channel) 7 .
Output Collector Power Dissipation 60 mW

* 6.3 mA condition permits at least 20% CTR degradation guardband. Initial switching threshold is 5 mA or less.

Electrical Characteristics

OVER RECOMMENDED TEMPERATURE ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$) UNLESS OTHERWISE NOTED

Parameter	Symbol	Min.	Typ.**	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	1 OH		2	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V} \\ & I_{F}=250 \mu \mathrm{~A} \end{aligned}$		3
Low Level Output Voltage	VOL		0.5	0.6	V	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=5 \mathrm{~mA} \\ & I_{\mathrm{CL}}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$	3	3
High Level Supply Current	${ }^{1} \mathrm{CCH}$		14	30	mA	$V_{C C}=5.5 V, I_{F}=0$ (Both Channels)		
Low Level Supply	$\mathrm{I}_{\mathrm{CCL}}$		28	36	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=10 \mathrm{~mA} \\ & \text { (Both Channels) } \end{aligned}$		
Input-Output Insulation	1-0			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & V_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		4,9
OPT 010	VISO	2500			$V_{\text {RMS }}$	$\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$		10
Resistance (Input-Output)	R_{1-0}		10^{12}		Ω	$V_{1-0}=500 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4
Capacitance (Input-Output)	$\mathrm{Cl}_{1.0}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}$		4
Input Forward Voltage	V_{F}		1.5	1.75	V	$\mathrm{I}_{F}=10 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$	4	7,3
Input Reverse Breakdown Voltage	$B V_{R}$	5			V	$\mathrm{I}_{R}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		
Input Capacitance	$\mathrm{Clin}^{\text {I }}$		60		pF	$V_{F}=0, f=1 \mathrm{MHz}$		3
Input-Input Insulation Leakage Current	$I_{1 / 1}$		0.005		$\mu \mathrm{A}$	Relative Humidity $=45 \%$, $t=5 s, V_{1-1}=500 \mathrm{~V}$		8
Resistance (Input-Input)	$\mathrm{R}_{1 / 1}$		10^{11}		Ω	$V_{1-1}=500 \mathrm{~V}$		8
Capacitance (Input-Input)	C_{1-1}		0.25		pF	$f=1 \mathrm{MHz}$		8
Current Transfer Ratio	CTR		700		\%	$\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	2	6

**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

EACH CHANNEL

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to High Output Level	${ }^{\text {tPLH }}$		55	75	ns	$\begin{aligned} & R_{L}=350 \Omega, C_{L}=15 \mathrm{pF}, \\ & I_{F}=7.5 \mathrm{~mA} \end{aligned}$	6.7	1
Propagation Delay Time to Low Output Level	${ }_{\text {t PHL }}$		55	75	ns	$\begin{aligned} & R_{L}=350 \Omega_{t} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$	6,7	2
Pulse Width Distortion	$t_{\text {PHL }}=t_{\text {PLH }}$		10		ns	$\begin{aligned} & R_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & I_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$		
Output Rise Time (10-90\%)	t_{r}		50		ns	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,		
Output Fall Time (90-10\%)	I_{f}		20		ns	$\mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$		
Common Mode Transient Immunity at High Output Level	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$		100		$V / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=10 V_{p-p} \\ & R_{\mathrm{L}}=350 \Omega \\ & V_{\mathrm{O}}(\min)=2 V, I_{F}=0 \mathrm{~mA} \end{aligned}$	9	5
Common Mode Transient Immunity at Low Output Level	$\left\|\mathrm{CM}_{L}\right\|$		300		$V / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=10 V_{p+p} \\ & R_{L}=350 \Omega \\ & V_{O}(\max .)=0.8 \mathrm{~V} \\ & I_{F}=7.5 \mathrm{~mA} \end{aligned}$	9	5

NOTE: It is essential that a bypass capacitor (. $01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$, ceramic) be connected from pin 8 to pin 5 . Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm . Failure to provide the bypass may impair the switching properties (Figure 5).

NOTES:

1. The tPLH propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
2. The tpHL propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
3. Each channel.
4. Measured between pins $1,2,3$, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.
5. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV} \mathrm{CM}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
6. DC Current Transfer Ratio is defined as the ratio of the output collector current to the forward bias input current times 100%.
7. At 10 mA VF decreases with increasing temperature at the rate of $1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
8. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
9. This is a proof test. This rating is equally validated by a 2500 Vac , 1 sec . test.
10. See Option 010 data sheet for more information.

NOTE: Dashed characteristics indicate pulsed operation.

Figure 2. Optocoupler Transfer Characteristics.

Figure 3. Input-Output Characteristics.

Figure 4. Input Diode, Forward Characteristic

Figure 5. Recommended Printed Circuit Board Layout.

Figure 6. Test Circuit for tPHL and tPLH•

Figure 7. Propagation Delay, tPHL and tPLH vs. Pulse Input Current, I FH.

Figure 8. Response Delay Between TTL Gates.

Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

DUAL CHANNEL HIGH CMR HIGH SPEED OPTOCOUPLER

Figure 1. Schematic

Features

- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION (CMR)
$2631=1000 \mathrm{~V} / \mu \mathrm{S}$
$4661=3500 \mathrm{~V} / \mu \mathrm{s}$
- HIGH DENSITY PACKAGING
- HIGH SPEED: 10 MBd TYPICAL
- LSTTL AND TTL COMPATIBLE
- GUARANTEED PERFORMANCE OVER TEMPERATURE $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- 6N134 COMPATIBILITY

Description

The HCPL-2631/4661 are dual channel optically coupled logic gates that combine GaAsP light emitting diodes and integrated high gain photodetectors. Internal shields provide a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$ with the HCPL-2631, and $3500 \mathrm{~V} / \mu \mathrm{s}$ with the HCPL-4661. The unique design provides maximum DC and AC circuit isolation while achieving LSTTL and TTL logic compatibility. The logic isolation is achieved with a typical propagation delay of 40 nsec . The dual channel design saves space and results in increased convenience.
The HCPL-2631/4661 are recommended for high speed logic interfacing, input/output buffering and for use as line

receivers in environments that conventional line receivers cannot tolerate. The HCPL-2631/4661 can be used for the digital programming of machine control systems, motors, and floating power supplies. The internal shield makes the HCPL-2631/4661 ideal for use in extremely high ground or induced noise environments.

Applications

- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- MICROPROCESSOR SYSTEM INTERFACES
- ISOLATED LINE RECEIVER
- COMPUTER-PERIPHERAL INTERFACES
- GROUND LOOP ELIMINATION
- DIGITAL ISOLATION FOR A/D,D/A CONVERSION

Recommended Operating Conditions

	Sym.	Min.	Max.	Units
Input Current, Low Level Each Channel	IFL	0	250	$\mu \mathrm{~A}$
Input Current, High Level Each Channel	IFH	6.3^{*}	15	mA
Supply Voltage, Output	VCC	4.5	5.5	V
Fan Out (TTL Load) Each Channel	N		8	
Operating Temperature	TA $_{\mathrm{A}}$	0	70	${ }^{\circ} \mathrm{C}$

* 6.3 mA condition permits at least 20\% CTR degradation guardband. Initial switching threshold is 5 mA or less.

Absolute Maximum Ratings

(No derating required up to $70^{\circ} \mathrm{C}$)
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Average Forward
Input Current (each channel) \qquad 15 mA (See Note 2)

Reverse Input Voltage (each channel) 5 V
Supply Voltage - VCc 7 V (1 Minute Maximum)
Output Current - Io (each channel) 16 mA
Output Voltage - Vo (each channel) 7 V
Output Collector Power Dissipation
(each channel)
40 mW

Electrical Characteristics

(Over Recommended Temperature, $\mathrm{TA}^{\prime}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)

Parameter	Symbol	Min.	Typ.**	Max.	Units	Test Conditions	Figure	Note
Low Level Output Voltage	Vol		0.4	0.6	V	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{IF}=5 \mathrm{~mA} \\ & \mathrm{loL}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$	2,3	3
High Level Output Current	IOH		20	250	$\mu \mathrm{A}$	$\begin{aligned} & V C C=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V}, \\ & I_{F}=250 \mu \mathrm{~A} \end{aligned}$	4	3
High Level Supply Current	ICCH		20	30	mA	$V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$ (Both Channels)		
Low Level Supply Current	Iccl.		30	38	mA	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA},$ (Both Channels)		
Input Forward Voltage	V_{F}		1.5	1.75	V	$\mathrm{IF}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5	3
Input Reverse Breakdown Voltage	$B V_{R}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3
Input Capacitance	CIN		60		pF	$V_{F}=0, f=1 \mathrm{MHz}$		3
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}=10 \mathrm{~mA}$		
Input-Output Insulation	1.0			1	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}_{1} \\ \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline \end{array}$		4,5
OPT 010	VISO	2500			VRMS	$\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$		13
Input-Input Leakage Current	11-1		0.005		$\mu \mathrm{A}$	$\begin{aligned} & \text { Relative Humidity }=45 \% \\ & t=5 \mathrm{~s}, V_{1 m}=500 \mathrm{~V} \end{aligned}$		6
Resistance (Input-Input)	R1-1		1011		Ω	$\mathrm{V}_{1-1}=500 \mathrm{~V}$		6
Capacitance (Input-Input)	Cl_{1-1}		0.25		pF	$f=1 \mathrm{MHz}$		
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{t}-\mathrm{O}}$		1012		Ω	$\mathrm{V}_{1-0}=500 \mathrm{~V}$		4
Capacitance (Input-Output)	$\mathrm{Cl}_{1} \mathrm{O}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		

** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Switching Characteristics $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{c \mathrm{c}}=5 \mathrm{~V}\right)$

Parameter	Symbol		Min.	Typ.	Max.	Units	Test Conditions		Figure	Note
Propagation Delay Time to High Output Level	$t_{\text {PLH }}$			40	75	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$		6	3.7
Propagation Delay Time to Low Output Level	$\mathrm{t}_{\text {PHL }}$			40	75	ns			6	3.8
Pulse Width Distortion	$\left\|\mathrm{tPHL}^{-1} \mathrm{t}_{\text {PLH }}\right\|$			10		ns				
Output Rise Time (10-90\%)	tr_{r}			20		ns				3
Output Fall Time (90-10\%)	t_{f}			30		ns				3
Common Mode Transient Immunity at High Output Level	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	2631	1000	10,000		$V / \mu \mathrm{s}$	$V_{C M}=50 \mathrm{~V}$	$V_{\text {O(MIN })}=2 \mathrm{~V}$	10	3,9
		4661	3500			$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=400 \mathrm{~V}$	$\begin{aligned} & R_{L}=350 \Omega \\ & I_{F}=0 \mathrm{~mA} \end{aligned}$		11
Common Mode Transient Immunity at Low Output Level	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	2631	1000	10,000		$V / \mu \mathrm{s}$	$V_{C M}=50 \mathrm{~V}$	$V_{\text {O(MAX }}=0.8 \mathrm{~V}$	10	$3,10$
		4661	3500			$\mathrm{V} / \mu \mathrm{S}$	$\mathrm{V}_{\mathrm{CM}}=400 \mathrm{~V}$	$\begin{aligned} & R_{L}=350 \Omega \\ & I_{F}=7.5 \mathrm{~mA} \end{aligned}$		11

NOTES:

1. Bypassing of the power supply line is required, with a 0.01 $\mu \mathrm{F}$ ceramic disc capacitor adjacent to each isolator as illustrated in Figure 14. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm . The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to $0.1 \mu \mathrm{~F}$) may be needed to suppress regenerative feedback via the power supply. Failure to provide the bypass may impair the switching properties.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50$ ns maximum pulse width, provided average current does not exceed 15 mA .
3. Each channel.
4. Measured between pins 1, 2, 3, and 4 shorted together, and pins $5,6,7$, and 8 shorted together.
5. This is a proof test. This rating is equally validated by a 2500 Vac, 1 sec. test.
6. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
7. The tpli propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
8. The tPHL propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
9. $\mathrm{CMH}_{\mathrm{H}}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., Vout > 2.0 V).
10. $C M_{L}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VOUT $>0.8 \mathrm{~V}$).
11. For sinusoidal voltages, $\left(\frac{|d v C M|}{d t}\right)_{\max }=\pi f с M \vee C M(p-p)$
12. As illustrated in Figure 14, the $V_{C C}$ and GND traces can be located between the input and the output leads of the HCPL-2631/4661 to provide additional noise immunity at the compromise of insulation capability.
13. See Option 010 data sheet for more information.

Figure 2. Low Level Output Voltage vs. Temperature

Figure 5. Input Diode Forward Characteristic

I_{F} - FORWARD INPUT CURRENT - mA

Figure 3. Output Voltage vs. Forward Input Current

Figure 6. Test Circuit for $t_{\text {PHL }}$ and $t_{\text {pLH }}$. Note 3

T_{A} - TEMPERATURE $-{ }^{\circ} \mathrm{C}$

Figure 4. High Level Output Current vs. Temperature

Figure 8. Propagation Delay vs. Pulse Input Current

Figure 11. Common Mode Transient Immunity vs. Common Mode Transient Amplitude

Figure 13. Relative Common Mode Transient Immunity vs. Temperature

Figure 9. Rise, Fall Time vs. Temperature

Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms. Note 3

*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.

Figure 12. Recommended TTL/LSTTL to TTL/LSTTL Interface Circuit

Figure 14. Recommended Printed Circuit Board Layout

Features

- HIGH SPEED: 1 Mbit/s
- TTL COMPATIBLE
- HIGH COMMON MODE TRANSIENT IMMUNITY: $>1000 \mathrm{~V} / \mu \mathrm{s}$ TYPICAL
- 9 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUT
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).

Description

These diode-transistor optocouplers use an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connection for the photodiode bias and output transistor collector increases the speed up to a hundred times that of a conventional photo-transistor coupler by reducing the base-collector capacitance.
The 6N135 is for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the 6 N 135 is 7% minimum at $\mathrm{IF}_{\mathrm{F}}=16 \mathrm{~mA}$.
The 6N136 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pullup resistor. CTR of the 6 N 136 is 19% minimum at $\mathrm{IF}_{\mathrm{F}}=16 \mathrm{~mA}$.
The HCPL-2502 is suitable for use in applications where matched or known CTR is desired. CTR is 15 to 22% at $I_{F}=16 \mathrm{~mA}$. The HCPL-4502 provides the electrical and switching performance of the 6N136 and increased ESD protection.

[^21]
** Note: For HCPL-4502, pin 7 is not connected.

Applications

- Video Signal Isolation
- Line Receivers - High common mode transient immunity ($>1000 \mathrm{~V} / \mu \mathrm{s}$) and low input-output capacitance (0.6 pF).
- High Speed Logic Ground Isolation - TTL/TTL, TTL/LTTL, TTL/CMOS, TTL/LSTTL.
- Replace Slow Phototransistor Isolators - Pins 2-7 of the 6N135/6 series conform to pins 1-6 of 6 pin phototransistor couplers. Pin 8 can be tied to any available bias voltage of 1.5 V to 30 V for high speed operation.
- Replace Pulse Transformers - Save board space and weight.
- Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.

Absolute Maximum Ratings

[^22] bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/ordegradation which may be induced by ESD.

Electrical Specifications over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR*	6N135	7	18		\%	$\begin{aligned} & I_{F}=16 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1,2,4	5.12
		$\begin{gathered} \text { 6N136 } \\ \text { HCPL-4502 } \\ \hline \end{gathered}$	19	24		\%			
		HCPL-2502	15	18	22	\%			
	CTR	6N135	5	19		\%	$\mathrm{IFF}^{2}=16 \mathrm{~mA}, \mathrm{VO}_{O}=0.5 \mathrm{~V}, \mathrm{VCC}^{\text {c }}=4.5 \mathrm{~V}$		5
		$\begin{gathered} \text { 6N136 } \\ H C P L-4502 \end{gathered}$	15	25		\%			
Logic Low Output Voltage	Vol	6N135		0.1	0.4	V	$\begin{aligned} & I_{F}=16 \mathrm{~mA}, 10=1.1 \mathrm{~mA}, V C C=4.5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		
		6N136 HCPL-2502 HCPL-4502		0.1	0.4	V	$\begin{aligned} & 1 \mathrm{~F}=16 \mathrm{~mA}, 10=2.4 \mathrm{~mA}, V C C=4.5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		
Logic High Output Current	$1 \mathrm{lOH}^{*}$			3	500	nA	$\begin{aligned} & I_{F}=0 \mathrm{~mA}, V O=V C C=5.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	6	
				0.01	1	$\mu \mathrm{A}$	$\begin{aligned} & I F=0 \mathrm{~mA}_{1} \mathrm{VO}=\mathrm{VCC}=15 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		
	IOH				50	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, \mathrm{~V}_{0}=\mathrm{V}_{C C}=15 \mathrm{~V}$		
Logic Low Supply Current	Iccl.			50		$\mu \mathrm{A}$	$I_{F}=16 \mathrm{~mA}, V_{0}=$ Open, $V_{c c}=15 \mathrm{~V}$		
Logic High Supply Current	ICCH^{*}			0.02	1	$\mu \mathrm{A}$	$\begin{aligned} & I_{F}=0 \mathrm{~mA}, V_{O}=O \text { Pen, } V C C=15 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		
	1 CCH				2	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{O}=$ Open, $V_{C C}=15 \mathrm{~V}$		
Input Forward Voltage	VF^{*}			1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.6		$\mathrm{mV} 7^{\circ} \mathrm{C}$	$\mathrm{IF}_{\mathrm{F}}=16 \mathrm{~mA}$		
input Reverse Breakdown Voltage	$B V_{R^{*}}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		
Input Capacitance	CIN			60		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		
Input-Output Insulation	H-0*				1	$\mu \mathrm{A}$	$\begin{aligned} & \begin{array}{l} 45 \% \mathrm{RH}, \mathrm{t} \end{array}=5 \mathrm{~s}, \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		6, 11
Insulation OPT. 010	VISO		2500			$V_{\text {RMS }}$	$\mathrm{RH} \leq 50 \%, t=1 \mathrm{~min}$.		13
Resistance (Input-Output)	RI-O			10^{12}		0	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$		6
Capacitance (Input-Output)	$\mathrm{Cl}-\mathrm{O}$			0.6		pF	$f=1 \mathrm{MHz}$		6
Transistor DC Current Gain	hfe			150		-	$V_{0}=5 \mathrm{~V}, 10=3 \mathrm{~mA}$		

*For JEDEC registered parts.
**All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Switching Specifications at $T_{A}=25^{\circ} \mathrm{C} V_{c c}=5 v, 1 \mathrm{~F}=16 \mathrm{~mA}$, unless otherwise specified

Parameter	Sym.	Device	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low at Output	tpHL*	6 N 135		0.2	1.5	$\mu \mathrm{S}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	5,9	8,9
		$6 N 136$ HCPL-2502 HCPL-4502		0.2	0.8	${ }_{\mu} \mathrm{S}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
Propagation Delay Time to Logic High at Output	tPLH*	6N135		1.3	1.5	$\mu \mathrm{S}$	$R_{L}=4.7 \mathrm{~kg}$	5,9	8,9
		6N136 HCPL-2502 HCPL-4502		0.6	0.8	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
Common Mode Transient Immunity at Logic High Level Output	$\|\mathrm{CMH}\|$	6 N 135		1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{VCM}=10 \mathrm{~V} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	10	7,8,9
		$6 N 136$ HCPL-2502 HCPL-4502		1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{IF}=0 \mathrm{~m}, V_{C M}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
Common Mode Transient Immunity at Logic Low Level Output	\|CML	6 N 135		1000		$V / \mu s$	$V C M=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}-,} \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	10	7,8,9
		$\begin{gathered} 6 \mathrm{~N} 136 \\ \mathrm{HCPL}-2502 \\ \mathrm{HCPL}-4502 \end{gathered}$		1000		$\mathrm{V} / \mu \mathrm{s}$	$V C M=10 \mathrm{~V}-\mathrm{p}, \mathrm{RL}=1.9 \mathrm{k} \Omega$		
Bandwidth	BW			9		MHz	See Test Circuit	8	10

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, ${ }^{1} \mathrm{O}$, to the forward LED input current, I_{F}, times 100%.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6,7 , and 8 shorted together.
7. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dv}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient
immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
8. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
9. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below its maximum value.
11. The is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
12. The JEDEC registration for the 6 N 136 specifies a minimum CTR of 15%. HP guarantees a minimum CTR of 19%.
13. See Option 010 data sheet for more information.

V_{O} - OUTPUT VOLTAGE - V
Figure 1. DC and Pulsed Transfer Characteristics.

Figure 3. Input Current vs. Forward Voltage.

Figure 5. Propagation Delay vs. Temperature.

Figure 2. Current Transfer Ratio vs. Input Current.

Figure 4. Current Transfer Ratio vs. Temperature.

Figure 6. Logic High Output Current vs. Temperature.

Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.

TYPICAL LINEARITY $=+/-3 \%$ AT VIN $=1 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$
TYPICAL SNR $=50 \mathrm{~dB}$
TYPICAL $R_{T}=375 \Omega$
TYPICAL $V_{0} d c=38$
TYPICAL V_{o} dc $=3.8 \mathrm{~V}$
TYPICAL $I_{F}=9 \mathrm{~mA}$
Figure 8. Frequency Response.

Figure 9. Switching Test Circuit. *

*JEDEC Registered Data
Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

Absolute Maximum Ratings

Reverse Input Voltage - VR (Pin 3-2) 3V
Input Power Dissipation $45 \mathrm{~mW}^{(3)}$
Average Output Current - 10 (Pin 6) 8 mA
Peak Output Current 16 mA
Emitter-Base Reverse Voltage (Pin 5-7) 5V
Supply and Output Voltage - VCc (Pin 8-5),Vo (Pin 6-5)0.5 V to 15 V
Base Current - Ів (Pin 7) 5 mA
Output Power Dissipation $100 \mathrm{~mW}^{[4]}$

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$V_{c c}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$, unless otherwise specified

Parameter	Symbol	Min.	Nax.	Units	Test Conditions	Note
Propagation Delay Time to Logic Low at Output (Fig. 1)	$\mathrm{t}_{\text {PHL }}$		0.8	$\mu \mathrm{~s}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$	7
Propagation Delay Time to Logic High at Output (Fig. 1)	$\mathrm{t}_{\text {PLH }}$		0.8	$\mu \mathrm{~s}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$	7

Electrical Specifications $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ unless otherwise specified.

Parameter	Symbol	Min.	Max.	Units	Test Conditions	Note
Current Transfer Ratio	CTR	15	40	\%	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$	5
	CTR	8		\%	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V}$	
Logic Low Output Voltage	VOL		0.4	V	$\mathrm{IF}_{\mathrm{F}}=16 \mathrm{~mA}, 10=2.4 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$	
Logic High Output Current	IOH		50	nA	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{0}=\mathrm{VCC}=10 \mathrm{~V}$	
	IOH		25	$\mu \mathrm{A}$	$\mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{O}=\mathrm{V}_{C C}=10 \mathrm{~V}, \mathrm{~T}_{A}=70^{\circ} \mathrm{C}$	
Input Forward Voltage	V_{F}		1.8	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	
Input Reverse Current	IR		50	$\mu \mathrm{A}$	$V_{R}=3 V$	
Input-Output Insulation Leakage Current	11.0		1.0	$\mu \mathrm{A}$	45% Relative Humidity, $\mathrm{t}=5 \mathrm{~s}$ $V_{1-0}=1500 \mathrm{Vdc}$	6
Resistance (Input-Output)	R1-O	10^{9}		Ω	$\mathrm{V}_{1-0}=100 \mathrm{Vdc}$	6
Transistor DC Current Gain	hfe	100	400	-	$V_{0}=5 \mathrm{~V}, 10=3 \mathrm{~mA}$	
Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$		1.3	pF	$\mathrm{f}=1 \mathrm{MHz}$	6
Breakdown Voltage Collector/Emitter	$V_{(B R)}$ CEO	22		V	$I_{C}=10 \mathrm{~mA}$	8
Breakdown Voltage Collector/Base	$V_{\text {(BR) }} \mathrm{CBO}$	40		V	$I_{C}=10 \mu \mathrm{~A}$	
Breakdown Voltage Emitter/Base	$V_{(B R)} \mathrm{EBO}$	3		V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$	
Collector/Base Current	$\mathrm{I}_{\mathrm{CBO}}$		50	nA	$V_{C B}=22 \mathrm{~V}$	

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, lo, to the forward LED input current, IF, times 100%.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. The $1.9 \mathrm{~K} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{~K} \Omega$ pull-up resistor.
8. Duration of this test should not exceed $300 \mu \mathrm{~s}$.

Figure 1. Switching Test Circuit.

CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Features

- HIGH SPEED: 1 Mbit/s
- TTLL COMPATIBLE
- HIGH COMMON MODE TRANSIENT IMMUNITY: $>1000 \mathrm{~V} / \mu$ s TYPICAL
- HIGH DENSITY PACKAGING
- 3 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUTS
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- 4N55 COMPATIBILITY

Description

The HCPL-2530/31 dual couplers contain a pair of light emitting diodes and integrated photon detectors with electical insulation between input and output. Separate connection for the photodiode bias and output transistor collectors increase the speed up to a hundred times that of a conventional phototransistor coupler by reducing the base-collector capacitance.
The HCPL-2530 is for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the -2530 is 7% minimum at $I_{F}=16 \mathrm{~mA}$.
The HCPL-2531 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output curent for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR of the -2531 is 19% minimum at $I_{F}=16 \mathrm{~mA}$.

Applications

- Line Receivers - High common mode transient immunity ($>1000 \mathrm{~V} / \mu \mathrm{s}$) and low input-output capacitance (0.6 pF).
- High Speed Logic Ground Isolation - TTL/TTL, TTL/ LTTL, TTL/CMOS, TTL/LSTTL.
- Replace Pulse Transformers - Save board space and weight.
- Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.
- Polarity Sensing.
- Isolated Analog Amplifier - Dual channel packaging enhances thermal tracking.

Absolute Maximum Ratings

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Average Input Current - I_{F} (each channel) 25 mA [1]
Peak Input Current - I_{F} (each channel) 50mA [2]
(50% duty cycle, 1 ms pulse width)
Peak Transient Input Current - I_{F} (each channel) 1.0 A
($\leqslant 1 \mu \mathrm{~s}$ pulse width, 300 pps)
Reverse Input Voltage - V_{R} (each channel) 5V
Input Power Dissipation (each channel) 45mW[3]
Average Output Current - I_{0} (each channel) 8mA
Peak Output Current - Io (each channel) 16mA
Supply Voltage - Vcc (Pin 8-5) - 0.5 V to 30V
Output Voltage - V_{O} (Pin 7,6-5) - 0.5 V to 20 V
Output Power Dissipation (each channel) 35 mW [4]

Electrical Specifications

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Sym.	Device HCPL	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	2530	7	18		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, V_{O}=0.5 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1,2	5,6
		2531	19	24		\%			
		2530	5			\%	$I_{F}=16 \mathrm{~mA}, V_{O}=0.5 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V}$		
		2531	15			\%			
Logic Low Output Voltage	VOL	2530		0.1	0.5	V	$\begin{aligned} & I_{F}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		5
		2531		0.1	0.5	V	$\begin{aligned} & T_{F}=16 \mathrm{~mA}, I_{O}=2.4 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		
Logic High Output Current	${ }^{1} \mathrm{OH}$			3	500	nA	$\begin{aligned} & T_{A}=25^{\circ} C_{1} I_{F 1}=I_{F 2}=0, \\ & V_{O 1}=V_{O 2}=V_{C C}=5.5 V \end{aligned}$	6	5
					50	$\mu \mathrm{A}$	$\begin{aligned} & I_{F 1}=I_{F 2}=0, \\ & V_{O 1}=V_{O 2}=V_{C C}=15 V \end{aligned}$		6
Logic Low Supply Current	ICCL			100		$\mu \mathrm{A}$	$\begin{aligned} & I_{F 1}=I_{F 2}=16 \mathrm{~mA} \\ & V_{O 1}=V_{O 2}=O \text { Open }, V_{C C}=15 \mathrm{~V} \end{aligned}$		
Logic High Supply Current	${ }^{1} \mathrm{CCH}$			0.05	4	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=I_{F 2}=0 \mathrm{~mA} \\ & V_{O 1}=V_{O 2}=O \text { pen, } V_{C C}=15 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}			1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	3	5
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$I^{\prime}=16 \mathrm{~mA}$		5
Input Reverse Breakdown Voltage	V_{R}		5			V	$\mathrm{I}_{\mathrm{F}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5
Input Capacitance	$\mathrm{CIN}^{\text {IN }}$			60		pF	$f=1 \mathrm{MHz}_{2} \mathrm{~V}_{\mathrm{F}}=0$		5
Input-Output	In-O				1	$\mu \mathrm{A}$	$45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7,13
OPT. 010	$V_{\text {ISO }}$		2500			$V_{\text {RMS }}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$.		14
Resistance (Input-Output)	$\mathrm{R}_{1 \text {-O }}$			10^{12}		Ω	$V_{1-0}=500 \mathrm{Vdc}$		7
Capacitance (Input-Output)	c_{1-0}			0.6		pF	$f=1 \mathrm{MHz}$		7
Input-Input Insulation Leakage Current	\dagger_{1}			0.005		$\mu \mathrm{A}$	45% Relative Humidity, $\mathrm{t}=5 \mathrm{~s}$ $V_{1-1}=500 \mathrm{Vdc}$		8
Resistance (Input-Input)	R_{1-1}			10^{11}		Ω	$V_{1-1}=500 \mathrm{Vdc}$		8
Capacitance (Input-Input)	C_{1-1}			0.25		pF	$f=1 \mathrm{MHz}$		8

**All typicals at $25^{\circ} \mathrm{C}$.

Switching Specifications at $T_{A}=25^{\circ} \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$, unless otherwise specified

Parameter	Sym.	Devica HCPL.	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time To Logic Low at Output	${ }_{\text {tP }}$	2530		0.2	1.5	$\mu \mathrm{s}$	$R_{L}=4.1 \mathrm{k} \Omega$	5.9	10,11
		2531		0.2	0.8	$\mu \mathrm{s}$	$R_{L}=1.9 \mathrm{k} \Omega$		
Propagation Delay Time to Logic High at Output	tPLH	2530		1.3	1.5	μs	$R_{L}=4.1 \mathrm{k} \Omega$	5.9	10.11
		2531		0.6	0.8	μs	$R_{L}=1.9 \mathrm{k} \Omega$		
Common Mode Transient Immunity at Logic High Level Output	$\left\|\mathrm{CM}_{4}\right\|$	2530		1000		$V / \mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	10	0,10,11
		2531		1000		$V / \mu \mathrm{s}$	$1 F=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		
Common Mode Transient Immunity at Logic Low Level Output	CM_{L}	2530		1000		$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, R_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	10	9,10,11
		2531		1000		$V / \mu \mathrm{s}$	$V_{C M}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, R_{L}=1.9 \mathrm{k} \Omega$		
Bandwidth	BW			3		MHz	$\mathrm{R}_{\mathrm{L}}=100 \Omega 2$	8	12

NOTES:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Each channel.
6. CURRENT TRANSFER RATIO is defined as the ratio of output collecto current, I_{0}, to the forward LED input current, I F, times 100%. Device considered a two-terminal device: Pins 1,2,3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
8. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $d V_{C M} / d t$ on the leading edge of the common mode pulse V_{CM}, to assure that the output will remain in a Logic High state i.e., $V_{O}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
9. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$
10. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor
11. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
12. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
13. See Option 010 data sheet for more information.

Figure 1. DC and Pulsed Transfer Characteristics.

Figure 3. Input Current vs. Forward Voltage.

Figure 5. Propagation Delay vs. Temperature.

Figure 2. Current Transfer Ratio vs. Input Current.

Figure 4. Current Transfer Ratio vs. Temperature.

Figure 6. Logic High Output Current vs. Temperature.

Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.

Figure 8. Frequency Response.

Figure 9. -Switching Test Circuit.

Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

Features

- HIGH CURRENT TRANSFER RATIO-2000\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- TTL COMPATIBLE OUTPUT - 0.1 V V OL TYPICAL
- HIGH COMMON MODE REJECTION - $500 \mathrm{~V} / \mu \mathrm{S}$
- PERFORMANCE GUARANTEED OVER TEMPERATURE $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- BASE ACCESS ALLOWS GAIN BANDWIDTH ADJUSTMENT
- HIGH OUTPUT CURRENT - 60 mA
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- HCPL-5700/1 COMPATIBILITY

Description

These high gain series couplers use a Light Emitting Diode and an integrated high gain photon detector to provide extremely high current transfer ratio between input and output. Separate pins for the photodiode and output stage result in TTL compatible saturation voltages and high speed operation. Where desired the Vcc and Vo terminals may be tied together to achieve conventional photodarlington operation. A base access terminal allows a gain bandwidth adjustment to be made.
The 6N139 is for use in CMOS, LSTTL or other low power applications. A 400% minimum current transfer ratio is guaranteed over a $0-70^{\circ} \mathrm{C}$ operating range for only 0.5 mA of LED current.

The 6N138 is designed for use mainly in TTL applications. Current Transfer Ratio is 300% minimum over $0-70^{\circ} \mathrm{C}$ for an LED current of 1.6 mA [1 TTL Unit load (U.L.)]. A 300\% minimum CTR enables operation with 1 U.L. out with a 2.2 $\mathrm{k} \mu$ pull-up resistor.

Applications

- Ground Isolate Most Logic Families - TTL/TTL, CMOS/ TTL, CMOS/CMOS, LSTTL/TTL, CMOS/LSTTL
- Low Input Current Line Receiver - Long Line or Party line
- EIA RS-232C Line Receiver
- Telephone Ring Detector
- 117 V ac Line Voltage Status Indicator - Low Input Power Dissipation
- Low Power Systems - Ground Isolation

Absolute Maximum Ratings*

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Operating Temperature** $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for 10 s
	(1.6mm below seating plane)
Average Input Current - I_{F}	20 mA [1]
Peak Input Current - I_{F}	40 mA

(50\% duty cycle, 1 ms pulse width)
Peak Transient Input Current - I_{F} 1.0A
($\leqslant 1 \mu$ s pulse width, 300 pps)
Reverse Input Voltage - V_{R} 5 V
Input Power Dissipation 35 mW [2]
Output Current - I_{O} (Pin 6) 60mA [3]
Emitter-Base Reverse Voltage (Pin 5-7) 0.5V
Supply and Output Voltage - V_{CC} (Pin 8-5), $\mathrm{V}_{\mathrm{O}}($ Pin 6-5)
6N138
-0.5 to 7V
6N139 . -0.5 to 18V
Output Power Dissipation 100mW [4]
See notes, following page.

[^23]Electrical Specifications
OVER RECOMMENDED TEMPERATURE ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$), UNLESS OTHERWISE SPECIFIED

*JEDEC registered data.
**All typicals at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted.

Switching Specifications

AT $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Sym.	Device	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time To Logic Low at Output	tPHL**	6N139		$\begin{gathered} 5 \\ 0.2 \end{gathered}$	$\begin{gathered} 25 \\ 1 \end{gathered}$	\# ${ }^{\text {s }}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$	7	6,8
		6N138		1.6	10	$\mu \mathrm{s}$	$T_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega$		
Propagation Delay Time To Logic High at Output	${ }^{\text {tPLH* }}$	6N139		$\begin{gathered} 18 \\ 2 \end{gathered}$	$\begin{gathered} 60 \\ 7 \end{gathered}$	μs	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, R_{\mathrm{L}}=4.7 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{\mathrm{L}}=270 \Omega \end{aligned}$	7	6,8
		6N138		10	35	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$		
Common Mode Transient Immunity at Logic High Level Output	$\mathrm{CM}_{\mathrm{H}} \mid$			500		$V / \mu s$	$\begin{aligned} & I_{F}=0 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega, R_{\mathrm{CC}}=0 \\ & \left\|V_{\mathrm{cm}}\right\|=10 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}} \end{aligned}$	8	9,10
Common Mode Transient Immunity at Logic Low Level Output	$\mathrm{CM}_{1} \mid$			500		$V / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega, R_{C C}=0 \\ & \left\|V_{\mathrm{cm}}\right\|=10 V_{\mathrm{p}-\mathrm{p}} \end{aligned}$	8	9,10

NOTES:

1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100%.
6. Pin 7 Open.
7. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
8. Use of a resistor between pin 5 and 7 will decrease gain and delay time. See Application Note 951-1 for more details.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, V_{cm}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{cm}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
10. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge) a series resistor, R_{C}, should be included to protect the detector $I C$ from destructively high surge currents. The recommended value is $R_{C C} \approx \frac{1 \mathrm{~V}}{0.15 \mathrm{I}_{\mathrm{F}}(\mathrm{mA})} \mathrm{k} \Omega$.
11. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1$ sec. test.
12. See Option 010 data sheet for more information.

Figure 1. 6N138/6N139 DC Transfer Characteristics

Figure 3. 6N138/6N139 Output Current vs Input Diode Forward Current

Figure 5. Propagation Delay vs. Temperature.

Figure 2. Current Transfer Ratio vs Forward Current 6N138/6N139

Figure 4. Input Diode Forward Current vs. Forward Voltage.

Figure 6. Non Saturated Rise and Fall Times vs. Load Resistance.

Figure 7. Switching Test Circult.*

Figure 8. Test Circuit for Transient Immunity and Typical Waveforms.

Features

- HIGH CURRENT TRANSFER RATIO - 1800\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- LOW OUTPUT SATURATION VOLTAGE - 0.1V TYPICAL
- HIGH DENSITY PACKAGING
- PERFORMANCE GUARANTEED OVER $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ TEMPERATURE RANGE
- HIGH COMMON MODE REJECTION - $500 \mathrm{~V} / \mu \mathrm{S}$
- LSTTL COMPATIBLE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- HCPL-5730/1 COMPATIBILITY

Description

The HCPL-2730/31 dual channel couplers contain a separated pair of GaAsP light emitting diodes optically coupled to a pair of integrated high gain photon detectors. They provide extremely high current transfer ratio, 3000 V dc withstand test voltage and excellent input-output common mode transient immunity. A separate pin for the photodiodes and first gain stages (V_{CC}) permits lower output saturation voltage and higher speed operation than possible with conventional photodarlington type isolators. In addition V_{CC} may be as low as 1.6 V without adversely affecting the parametric performance.
Guaranted operation at low input currents and the high current transfer ratio (CTR) reduce the magnitude and effects of CTR degradation.
The outstanding high temperature performance of this split Darlington type output amplifier results from the inclusion of an integrated emitter-base bypass resistor which shunts photodiode and first stage leakage currents to ground.

Applications

- Digital Logic Ground Isolation
- Telephone Ring Detector
- EIA RS-232C Line Receiver
- Low Input Current Line Receiver - Long Line or Party Line
- Microprocessor Bus Isolation
- Current Loop Receiver
- Polarity Sensing
- Level Shifting
- Line Voltage Status Indicator - Low input Power Dissipation

Electrical Specifications

(Over Recommended Temperature $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Unless Otherwise Specified)

Parameter	Sym,	Device HCPL.	Min.	Typ.*	Max.	Units	Test Conditions		Fig,	Note
Current Transfer Ratio	CTA	2731	$\begin{array}{r} 400 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 1800 \\ & 1600 \\ & \hline \end{aligned}$		\%	$\begin{aligned} & T_{F}=0.5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=1.6 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$		2	6,7
		2730	300	1600		\%	$I_{F}=1.6 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C{ }^{-1} 4.5 \mathrm{~V}}$		2	
Logic Low Output Voltage	VOL	2731		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, I_{O}=8 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=5 \mathrm{~mA}, I_{O}=15 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=12 \mathrm{~mA}, I_{O}=24 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$		1	6
		2730		0.1	0.4	V	$I_{F}=1.6 \mathrm{~mA}, 1_{0}=4.8$	$A, V_{C C}=4.5 V$		
Logic High	Ion	2731		0.005	100	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}^{\prime} V_{\mathrm{O}}=$	18 V		6
Output Current	OH	2730		0.01	250	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{O}=V_{C C}$			
Logic Law	toct	2731		1.2		mA	$I_{F 1}=I_{F 2}=1.6 \mathrm{~mA}$	$V_{C C}=18 \mathrm{~V}$		
Supply Current	CCL	2730		0.9			$V_{01}=V_{02}=$ Open	$V_{C C}=7 \mathrm{~V}$		
Logic High		2731		5		nA	$\mathrm{I}_{\mathrm{F}_{1}}=\mathrm{I}_{\mathrm{F}_{2}}=0 \mathrm{~mA}$	$V_{C C}=18 \mathrm{~V}$		
Supply Current	H	2730		4			$V_{01}=V_{02}=$ Open	$V_{C C}=7 \mathrm{~V}$		
Input Forward Voltage	V_{F}			1.4	1.7	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, T_{A}=25$		4	6
Input Reverse Breakdown Voltage	$B V_{\text {A }}$		5			V	$I_{R}=10 \mu A_{r} T_{A}=25^{\circ}$			6
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$f_{F}=1.6 \mathrm{~mA}$			6
Input Capacitance	$\mathrm{C}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{NHz} z_{+} \mathrm{V}_{\mathrm{F}}=0$			6
Input-Output Insulation	110				1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}_{1} \\ & V_{\mathrm{f}-\mathrm{O}}=3 \mathrm{kVdc}, \mathrm{~T}_{\mathrm{A}} \end{aligned}$	$25^{\circ} \mathrm{C}$		8,12
OPT. 010	V_{150}		2500			$V_{\text {RMS }}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~m}$			13
Resistance (Input-Output)	$\mathrm{R}_{\text {F-O }}$			10^{12}		Ω	$V_{1-0}=500 \mathrm{Vdc}$			8
Capactance (Input-Output)	C_{10}			0.6		pF	$f=1 \mathrm{MHz}$			8
Input-Input Insulation Leakage Current	f_{1-1}			0.005		$\mu \mathrm{A}$	45\% Relative Humid $V_{1-f}=500 \mathrm{Vdc}$	$t=5 \mathrm{~s},$		9
Resistance (Input-Input)	$\mathrm{H}_{1 / 4}$			10^{11}		Ω	$V_{1.1}=500 \mathrm{Vdc}$			9
Capacitance (Input-mput)	$\mathrm{C}_{\text {E-1 }}$			0.25		pF	$f=9 \mathrm{MHz}$			9

Switching Specifications at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Sym.	Device HCPL.	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time To Logic Low at Output	EPHE	2731		25	100	μ	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$	9	6
		2730/1		$\begin{gathered} 5 \\ 0.5 \end{gathered}$	$\begin{gathered} 20 \\ 2 \end{gathered}$	$\mu \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$		
Propagation Delay Time To Logic High at Output	tPLH	2731		10	60	${ }^{1 / 4}$	$I_{F}=0.5 \mathrm{~mA}_{r} R_{L}=4.7 \mathrm{k} \Omega$	9	6
		$2730 / 1$		$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & 35 \\ & 10 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{kS} \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \\ & R_{2} \end{aligned}$		
Common Mode Transient Immunity at Logic High Level Output	$\left\|\mathrm{CMH}_{\mathrm{H}}\right\|$,	500		V/4s	$\begin{aligned} & t_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~A}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \left\|V_{\mathrm{CM}}\right\|=10 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}} \end{aligned}$	10	6, 10, 11
Common Mode Transient Immunity at Logic Low Level Output	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$			500		Vius	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega 2 \\ & \left\|V_{C M}\right\|=10 V_{\mathrm{p} \cdot \mathrm{P}} \end{aligned}$	10	$6,10,11$

NOTES: 1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $35^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
4. Pin 5 should be the most negative voltage at the detector side.
5. Derate linearly above $35^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output power is collector output power plus supply power.
6. Each channel.
7. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{0}, to the forward LED input current, I_{F}, times 100%.
8. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
9. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together
10. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse V_{CM}, to assure that the output will remain in Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{C M} d t$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
11. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a ser ies resistor, R_{CC}, should be included to protect the detector IC from destructively high surge currents. The recommended value is $R_{C C} \approx \frac{1 . V}{0.3 I_{F}(m A)} \mathrm{k} \Omega$.
12. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
13. See Option 010 data sheet for more information.

Absolute Maximum Ratings

Input Power Dissipation (each channel)
$35 \mathrm{~mW}{ }^{[2]}$
Output Current - I_{0} (each channel) $60 \mathrm{~mA}^{\text {[3] }}$
Supply and Output Voltage $-\mathrm{V}_{\mathrm{CC}}(\operatorname{Pin} 8-5), \mathrm{V}_{\mathrm{O}}(\mathrm{Pin}$ 7,6-5) ${ }^{[4]}$
HCPL-2730 -0.5 to 7V
HCPL-2731 0.5 to 18V
Output Power Dissipation
(each channel)
$100 \mathrm{~mW}^{[5]}$

Vo - OUTPUT VOLTAGE - V

Figure 1. DC Transfer Characteristics (HCPL-2730/HCPL-2731)

Figure 4. Input Diode Forward Current vs. Forward Voltage.

IF - FORWARD CURRENT - mA

Figure 2. Current Transfer Ratio vs Forward Current

Figure 5. Supply Current Per Channel vs. Input Dlode Forward Current.

IF - INPUT DIODE FORWARD CURRENT - mA

Figure 3. Output Current vs Input Diode Forward Current

Figure 6. Propagation Delay To Logic Low vs. Pulse Period.

Figure 7. Propagation Delay vs. Temperature.

Figure 8. Propagation Delay vs. Input Diode Forward Current.

Figure 9. Switching Test Circuit.

Figure 10. Test Circult for Transient Immunity and Typical Waveforms.

LOW INPUT CURRENT, HIGH GAIN OPTOCOUPLER

Applications

- Telephone Ring Detector
- Digital Logic Ground Isolation
- Low Input Current Line Receiver
- Line Voltage Status Indicator - Low Input Power Dissipation
- Logic to Reed Relay Interface
- Level Shifting
- Interface Between Logic Families

Absolute Maximum Ratings*

Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s .
(1.6 mm below seating plane)
Average Input Current - $I_{F} \ldots \ldots$.
Peak Input Current - I_{F}............................ 40 mA
(50% duty cycle, 1 ms pulse width)
Peak Transient Input Current —IF 1.0A
($\leqslant 1 \mu$ s pulse width, 300pps)
Reverse Input Voltage $-\mathrm{V}_{\mathrm{R}} \ldots$.
Input Power Dissipation $35 \mathrm{~mW}{ }^{[2]}$
Output Current - I_{O} (Pin 5) \ldots.
Emitter-Base Reverse Voltage (Pins 4-6) 0.5V
Output Voltage $-V_{O}($ Pin 5-4)
4N45 ... -0.5 to 7 V
4N46 ... -0.5 to 20V
Output Power Dissipation 100mW[4] See notes, following page

[^24]Electrical Specifications
OVER RECOMMENDED TEMPERATURE ($T_{A}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$), UNLESS OTHERWISE SPECIFIED

Parameter	Sym.	Device	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR*	4N46	$\begin{aligned} & 350 \\ & 500 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \\ & 600 \\ & \hline \end{aligned}$		\%	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=1.0 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=10 \mathrm{~mA}, V_{O}=1.2 \mathrm{~V} \end{aligned}$	4	5,6
		4N45	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{gathered} 1200 \\ 500 \end{gathered}$		\%	$\begin{aligned} & I_{F}=1.0 \mathrm{~mA}, V_{Q}=1.0 \mathrm{~V} \\ & I_{F}=10 \mathrm{~mA}, V_{Q}=1.2 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	VOL	4N46		$\begin{aligned} & .90 \\ & .92 \\ & .95 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.2 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{IOL}=1.75 \mathrm{~mA} \\ & \mathrm{IF}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{IOL}_{\mathrm{O}}=5.0 \mathrm{~mA} \\ & \mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{IOL}^{2}=20 \mathrm{~mA} \end{aligned}$	2	6
		4N45		$\begin{aligned} & .90 \\ & .95 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	V	$\begin{aligned} & I_{F}=1.0 \mathrm{~mA}, \mathrm{IOL}^{2}=2.5 \mathrm{~mA} \\ & \mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$		
Logie High Output Current	$1 \mathrm{OH}^{*}$	4N46		. 001	100	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{0}=18 \mathrm{~V}$		6
		4N45		. 001	250	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}$		
Input Forward Voltage	$V_{F}{ }^{*}$			1.4	1.7	V	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}_{\text {, }} \mathrm{T}_{A}=25^{\circ} \mathrm{C}$	1	
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.8		mv / C	${ }^{1} \mathrm{~F}=1.0 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$B V_{R}{ }^{*}$		5			V	$I_{R}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Input Capacitance	$\mathrm{cin}^{\mathrm{N}}$			60		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		
Input-Output Insulation	${ }^{1.0}{ }^{*}$				1.0	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}_{1} \\ & \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		7,10
OPT, 010	$\mathrm{V}_{\text {iso }}$		2500			$V_{\text {RMS }}$	$\mathrm{FH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$.		11
Resistance (Input-Output)	R1-O			10^{12}		Ω	$\mathrm{V}_{1-0}=500 \mathrm{VDC}$		7
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		7

Switching Specifications

AT $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Parameter	Symbol	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time To Logic Low at Output	tphis		80		$\mu \mathrm{s}$	$I_{F}=1.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	8	6,8
	tPHL*		5	50	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=220 \Omega$		
Propagation Delay Time To Logic High at Output	tple		1500		$\mu \mathrm{s}$	$I_{F}=1,0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	8	6.8
	tPLH *		150	500	μs	$I_{F}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=220 \Omega$		
Common Mode Transient Immunity at Logic High Level Output	$\mathrm{ICMH}^{\text {H }}$		500		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=0 \mathrm{~mA}, R_{L}=10 \mathrm{k} \Omega \\ & V_{c m} \mid=10 V_{p-p} \end{aligned}$	9	9
Common Mode Transient Immunity at Logic Low Level Output	${ }^{\prime} \mathrm{CM}_{\mathrm{L}} \mid$		500		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F=1.0 m A,} R_{L}=10 \mathrm{k} \Omega \\ & V_{\mathrm{cm}} \mid=10 V_{\mathrm{p}-\mathrm{p}} \end{aligned}$	9	9

*JEDEC Registered Data.
**All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
NOTES:

1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100\%.
6. Pin 6 Open.
7. Device considered a two-terminal device: Pins 1, 2, 3 shorted together and Pins 4, 5, and 6 shorted together.
8. Use of a resistor between pin 4 and 6 will decrease gain and delay time. (See Figures 10 and 12).
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, V_{cm}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.5 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{c m} / d t$ on the trailing edge of the common mode pulse signal, $V_{c m}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<2.5 \mathrm{~V}$).
10. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
11. See Option 010 data sheet for more information.

Figure 1. Input Diode Forward Current vs. Forward Voltage.

If - FORWARD CURRENT - mA
Figure 4. Current Transfer Ratio vs. Input Current.

Figure 2. Typical DC Transfer Characteristics.

If - FORWARD CURRENT - mA
Figure 5. Propagation Delay vs. Forward Current.

Figure 3. Output Current vs. Input Current.

Figure 6. Propagation Delay vs. Temperature.

Figure 7. Propagation Delay vs Load Resistor.

Figure 8. Switching Test Circuit

Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

Figure 10. External Base Resistor, $\mathbf{R}_{\mathbf{X}}$

If - FORWARD CURRENT - MA
Figure 11. Effect of $\mathbf{R}_{\mathbf{X}}$ On
Current Transfer Ratio

RX - EXTERNAL RESISTOR - $\mathrm{k}!2$
Figure 12. Effect of R_{X} On
Propagation Delay

Applications

Line Voltage Monitor

Analog Signal Isolation

NOTE: AN INTEGRATOR MAY BE REQUIRED AT THE OUTPUT TO ELIMINATE DIALING PULSES AND LINE TRANSIENTS.

Telephone Ring Detector

CMOS Interface

CHARACTERISTICS

$R_{\text {IN }}=30 \mathrm{MS} 2, R_{\text {OUT }}=50 \Omega 2$
$\mathrm{V}_{\text {IN (MAX.) }}=\mathrm{V}_{\mathrm{CC}_{1}}-1 \mathrm{~V}_{\text {, }}$ LINEARITY BETTER THAN 5%
DESIGN COMMENTS
$R_{1}-$ NOT CRITICAL $\left(\ll \frac{V_{I N}\left(\text { MAX. }_{1}\right)-\left(-V_{C C}\right)-V_{B E}}{I_{F}(\text { MAX })}\right)_{\text {hFE } a_{3}}$
R_{2} - NOT CRITICAL (OMIT IF 0.2 TO O.3V OFFSET IS TOLERABLE)
$R_{4}>\frac{V_{I N}(M A X .)+V_{B E}}{1 \mathrm{~mA}}$
$R_{5}>\frac{V_{\text {IN (MAX.) }}}{2.5 \mathrm{~mA}}$

NOTE: ADJUST R_{3} SO $V_{\text {OUT }}=V_{I N}$ AT $V_{I N}=\frac{V_{I N} \text { (MAX.) }}{2}$

HEWLETT PACKARD

AC/DC TO LOGIC INTERFACE

Features

- AC OR DC INPUT
- PROGRAMMABLE SENSE VOLTAGE
- HYSTERESIS
- LOGIC COMPATIBLE OUTPUT
- SMALL SIZE: STANDARD 8 PIN DIP
- THRESHOLDS GUARANTEED OVER TEMPERATURE
- THRESHOLDS INDEPENDENT OF LED CHARACTERISTICS
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 'Vac, 1 MINUTE (OPTION 010).
- HCPL-5760 COMPATIBILITY

Applications

- LIMIT SWITCH SENSING
- LOW VOltage detector
- AC/DC VOLTAGE SENSING
- RELAY CONTACT MONITOR
- RELAY COIL VOLTAGE MONITOR
- CURRENT SENSING
- MICROPROCESSOR INTERFACING
- TELEPHONE RING DETECTION

Description

The HCPL-3700 is a voltage/current threshold detection optocoupler. This optocoupler uses an internal Light Emitting Diode (LED), a threshold sensing input buffer IC, and a high gain photon detector to provide an optocoupler which permits adjustable external threshold levels. The input buffer circuit has a nominal turn on threshold of $2.5 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{TH}}+\right.$) and 3.8 volts ($\mathrm{V}_{\mathrm{TH}}+$). The addition of one or more external attenuation resistors permits the use of this device over a wide range of input voltages and currents. Threshold sensing prior to the LED and detector elements minimizes effects of different optical gain and LED variations over operating life (CTR degradation). Hysteresis is also provided in the buffer for extra noise immunity and switching stability.
The buffer circuit is designed with internal clamping diodes to protect the circuitry and LED from a wide range of over-voltage and over-current transients while the diode bridge enables easy use with ac voltage input.

The high gain output stage features an open collector output providing both TTL compatible saturation voltages and CMOS compatible breakdown voltages.

The HCPL-3700, by combining several unique functions in a sirgle package, provides the user with an ideal component for industrial control computer input boards and other applications where a predetermined input threshold optocoupler level is desirable.

CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Absolute Maximum Ratings
 (No derating required up to $70^{\circ} \mathrm{C}$)

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		Ts	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	-40	85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temperature			260	${ }^{\circ} \mathrm{C}$	1
	Time			10	sec	
Input Current	Average	IIN		50	mA	2
	Surge			140		2,3
	Transient			500		
Input Voltage (Pins 2-3)		Vin	-0.5		V	
Input Power Dissipation		PIN		230	mW	4
Total Package Power Dissipation		P		305	mW	5
Output Power Dissipation		Po		210	mW	6
Output Current	Average	10		30	mA	7
Supply Voltage (Pins 8-5)		VCC	-0.5	20	V	
Output Voltage (Pins 6-5)		Vo	-0.5	20	V	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	VCC	2	18	V	
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Operating Frequency	f	0	4	KHz	8

Switching Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{cc}}=5.0 \mathrm{v}$

Parameter	Symbol	Min.	Typ. ${ }^{9}$	Max.	Units	Conditions	Fig.	Note
Propagation Delay Time to Logic Low Output Level	tphis		4.0	15	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	6.9	10
Propagation Delay Time to Logic High Output Level	tPLe		10.0	40	$\mu \mathrm{S}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11
Common Mode Transient Immunity at Logic Low Output Level	CML		600		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{\mathrm{N}}=3.11 \mathrm{~mA}, R_{\mathrm{L}}=4.7 \mathrm{k} \mathrm{\Omega} \\ & V_{O} \max =0.8 \mathrm{~V}, V_{C M_{\mathrm{L}}}=140 \mathrm{~V} \end{aligned}$	8,10	12,13
Common Mode Transient Immunity at Logic High Output Level	$\|\mathrm{CMH}\|$		4000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{liN}_{\mathrm{N}}=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \mathrm{\Omega} \\ & \mathrm{~V}_{\mathrm{m}} \mathrm{~min}=2.0 \mathrm{~V}, \mathrm{VCM}_{\mathrm{H}}=1400 \mathrm{~V} \end{aligned}$		
Output Rise Time (10-90\%)	tr		20		$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	7	
Output Fall Time ($90-10 \%$)	tf		0.3		$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		

Electrical Characteristics

Over Recommended Temperature $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{9}$	Max.	Units	Conditions	Fig.	Note
Input Threshold Current		ITH+	1.96	2.5	3.11	mA	$\begin{aligned} & V_{I N}=V_{T H} ; V_{C C}=4.5 \mathrm{~V} ; \\ & V_{0}=0.4 \mathrm{~V} ; 10 \geq 4.2 \mathrm{~mA} \end{aligned}$	3,	14
		Ith-	1.00	1.3	1.62	mA	$\begin{aligned} & V_{\mathbb{N}}=V_{T H-} ; V_{C C}=4.5 \mathrm{~V} \\ & V_{O}=2.4 \mathrm{~V} ; I_{O H} \leq 100 \mu \mathrm{~A} \end{aligned}$		
Input Threshold Voltage	DC (Pins 2, 3)	$\mathrm{V}_{\text {TH }}+$	3.35	3.8	4.05	V	$\begin{aligned} & V_{I N}=V_{2}-V_{3} ; \text { Pins } 1 \& 4 \text { Open } \\ & V_{C C}=4.5 \mathrm{~V} ; V_{O}=0.4 \mathrm{~V} ; \\ & 10 \geq 4.2 \mathrm{~mA} \end{aligned}$		
		$V_{\text {TH- }}$	2.01	2.6	2.86	V	$\begin{aligned} & V_{I N}=V_{2}-V_{3} ; \text { Pins } 1 \& 4 \text { Open } \\ & V_{C C}=4.5 \mathrm{~V} ; V_{O}=2.4 \mathrm{~V} ; \\ & I_{O} \leq 100 \mu \mathrm{~A} \end{aligned}$		
	$A C$ (Pins 1, 4)	VTH+	4.23	5.1	5.50	V	$\begin{aligned} & V_{1 \mathrm{~N}}=\left\|V_{1}-V_{4}\right\| \text {; Pins } 2 \& 3 \text { Open } \\ & V_{C C}=4.5 \mathrm{~V} ; V_{\mathrm{O}}=0.4 \mathrm{~V} ; \\ & 10 \geq 4.2 \mathrm{~mA} \\ & \hline \end{aligned}$		14,15
		$\mathrm{V}_{\text {TH- }}$	2,87	3.8	4.24	V	$\begin{aligned} & V_{I N}=\left\|V_{1}-V_{4}\right\| \text { Pins } 2 \& 3 \text { Open } \\ & V_{C C}=4.5 \mathrm{~V} ; V_{O}=2.4 \mathrm{~V} ; \\ & 10 \leq 100 \mu \mathrm{~A} \\ & \hline \end{aligned}$		
Hysteresis		InYs		1.2		mA	$\mathrm{I}_{\mathrm{HYS}}=\mathrm{ITH}^{+}-1 \mathrm{TH}^{-}$	2	
		$\mathrm{V}_{\mathrm{HYS}}$		1.2		V	$V_{\text {HYS }}=V_{\text {TH }}+-V_{\text {TH }}{ }^{-}$		
Input Clamp Voltage		$\mathrm{V}_{\text {IHC1 }}$	5.4	5.9	6.6	V	$\begin{aligned} & V_{I H C 1}=V_{2}-V_{3 i} V_{3}=G N D ; \\ & l_{1}=10 \mathrm{~mA} ; \operatorname{Pin} 1 \& 4 \\ & \text { Connected to Pin } 3 \end{aligned}$	1	
		$\mathrm{V}_{1 \mathrm{HC} 2}$	6.1	6.6	7.3	V	$\begin{aligned} & V_{1 \mathrm{HC2}}=\left\|V_{1}-V_{4}\right\| ;\|\|\mathrm{IN}\|= \\ & 10 \mathrm{~mA} \text {; Pins } 2 \& 3 \text { Open } \end{aligned}$		
		ViHC3		12.0	13.4	V	$\begin{aligned} & V_{1 H C 3}=V_{2}-V_{3} ; V_{3}=G N D ; \\ & \text { lN }=15 \mathrm{~mA} ; \text { Pins1 } \& 4 \text { Open } \end{aligned}$		
		VILC		-0.76		V	$\begin{aligned} & V_{\text {ILC }}=V_{2}-V_{3} ; V_{3}=G N D ; \\ & I_{\text {IN }}=-10 \mathrm{~mA} \end{aligned}$		
Input Current		IIN	3.0	3.7	4.4	mA	$V_{I N}=V_{2}-V_{3}=5.0 V$ Pins 1 \& 4 Open	5	
Bridge Diode Forward Voltage		$V_{\text {D } 1,2}$		0.59			$\mathrm{ln}=3 \mathrm{~mA}$ (see schematic)		
		VD3,4		0.74					
Logic Low Output Voltage		VOL		0.1	0.4	V	$V_{C C}=4.5 \mathrm{~V} ; 10 \mathrm{l}=4.2 \mathrm{~mA}$	5	14
Logic High Output Current		IOH			100	$\mu \mathrm{A}$	$\mathrm{VOH}=\mathrm{VCC}=18 \mathrm{~V}$		
Logic Low Supply Current		ICCL		1.2	4	mA	$\begin{aligned} & V_{2}-V_{3}=5.0 \mathrm{~V} ; V_{O}=\text { Open } \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$		
Logic High Supply Current		ICOH		0.002	4	$\mu \mathrm{A}$	$V_{C C}=18 V_{;} V_{0}=$ Open	4	14
Input-Output Insulation		19.0			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		16, 17
	OPT 010	VISO	2500			VRMS	$\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$		18
Input-Output Resistance		$\mathrm{R}_{\mathrm{t}-0}$		1012		Ω	$\mathrm{V}_{1} \mathrm{O}=500 \mathrm{Vdc}$		16
Input-Output Capacitance		Clo		0.6		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{1-0}=0 \mathrm{Vdc}$		
Input Capacitance		CIN		50		pF	$f=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}, \text { Pins } 2 \& 3,$ Pins 1 \& 4 Open		

Notes:

1. Measured at a point 1.6 mm below seating plane.
2. Current into/out of any single lead.
3. Surge input current duration is 3 ms at 120 Hz pulse repetition rate. Transient input current duration is $10 \mu \mathrm{~s}$ at 120 Hz pulse repetition rate. Note that maximum input power, Pin, must be observed.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Maximum input power dissipation of 230 mW allows an input IC junction temperature of $125^{\circ} \mathrm{C}$ at an ambient temperature of $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta_{\mathrm{JA}}^{\mathrm{i}} \mathrm{=}$ $240^{\circ} \mathrm{C} / \mathrm{W}$. Excessive Pin and TJ may result in IC chip degradation.
5. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
6. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $3.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Maximum output power dissipation of 210 mW allows an output IC junction temperature of $125^{\circ} \mathrm{C}$ at an ambient temperature of $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta \mathrm{JA} \mathrm{O}_{\mathrm{O}}=$ $265^{\circ} \mathrm{C} / \mathrm{W}$.
7. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
8. Maximum operating frequency is defined when output waveform (Pin 6) attains only 90% of $V_{C C}$ with $R_{L}=4.7 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$ using a 5 V square wave input signal.
9. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}$ unless otherwise stated.
10. The tPHL propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse ($1 \mu \mathrm{~s}$ rise time) to the 1.5 V level on the leading edge of the output pulse (see Figure 9).
11. The tpli propagation delay is measured from the 2.5 V level of the trailing edge of a 5.0 V input.pulse ($1 \mu \mathrm{~s}$ fall time) to the 1.5 V level on the trailing edge of the output pulse (see Figure 9).
12. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM} / \mathrm{dt}}$ on the leading edge of the common mode pulse, $V_{C M}$, to ensure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM} / \mathrm{dt}}$ on the trailing edge of the common mode pulse signal, V_{CM}, to ensure that the output will remain in a Logic Low state (i.e., $V_{O}<0.8 \mathrm{~V}$). See Figure 10.

Figure 1. Typical Input Characteristics, $I_{I N}$ vs. $V_{I N}$. (AC voltage is instantaneous value.)

Figure 3. Typical DC Threshold Levels vs. Temperature.
13. In applications where $\mathrm{dV} \mathrm{CM} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge), a series resistor, Rcc, should be included to protect the detector IC from destructively high surge currents. The recommended value for R_{Cc} is 240Ω per volt of allowable drop in V_{cc} (between Pin 8 and $V_{c c}$) with a minimum value of 240Ω.
14. Logic low output level at Pin 6 occurs under the conditions of $V_{\mathbb{N}} \geq$ $V_{T H}+$ as well as the range of $V_{I N}>V_{T H}$ - once $V_{I N}$ has exceeded $V_{T H+}$. Logic high output level at Pin 6 occurs under the conditions of $V_{I N} \leq$ $V_{T H}$ - as well as the range of $V_{I N}<V_{T H}+$ once $V_{I N}$ has decreased below $V_{T H}$.
15. AC voltage is instantaneous voltage.
16. Device considered a two terminal device: pins $1,2,3,4$ connected together, and Pins 5, 6, 7, 8 connected together.
17. This is a proof test. This rating is equally validated by a 2500 Vac , 1 sec . test.
18. See Option 010 data sheet for more information.

Figure 2. Typical Transfer Characteristics. (AC voltage is instantaneous value.)

Figure 4. Typical High Level Supply Current, $\mathbf{I}_{\mathrm{CCH}}$ vs. Temperature.

Figure 5. Typical Input Current, $I_{I N}$, and Low Level Output Voltage, V_{OL}, vs. Temperature.

Figure 7. Typical Rise, Fall Times vs. Temperature.

Figure 9. Switching Test Circuit.

Figure 6. Typical Propagation Delay vs. Temperature.

V_{CM} - COMMON MODE TRANSIENT AMPLITUDE - V
Figure 8. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.

Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

Electrical Considerations

The HCPL-3700 optocoupler has internal temperature compensated, predictable voltage and current threshold points which allow selection of an external resistor, R_{x}, to determine larger external threshold voltage levels. For a desired external threshold voltage, $\mathrm{V}_{ \pm}$, a corresponding typical value of R_{x} can be obtained from Figure 11. Specific calculation of R_{x} can be obtained from Equation (1) of Figure 12. Specification of both V+ and V- voltage threshold levels simultaneously can be obtained by the use of R_{x} and R_{p} as shown in Figure 12 and determined by Equations (2) and (3).
R_{x} can provide over-current transient protection by limiting input current during a transient condition. For monitoring contacts of a relay or switch, the HCPL-3700 in combination with R_{x} and R_{p} can be used to allow a specific current to be conducted through the contacts for cleaning purposes (wetting current).
The choice of which input voltage clamp level to choose depends upon the application of this device (see Figure 1). It is recommended that the low clamp condition be used when possible to lower the input power dissipation as well as the LED current, which minimizes LED degradation over time.
In applications where $\mathrm{dV} \mathrm{V}_{\mathrm{CM} / \mathrm{dt}}$ may be extremely large (such as static discharge), a series resistor, Rcc, should be connected in series with Vcc and Pin 8 to protect the detector IC from destructively high surge currents. See note 13 for determination of Rcc. In addition, it is recommended that a ceramic disc bypass capacitor of $0.01 \mu \mathrm{f}$ be placed between Pins 8 and 5 to reduce the effect of power supply noise.
For interfacing AC signals to TTL systems, output low pass filtering can be performed with a pullup resistor of $1.5 \mathrm{k} \Omega$ and $20 \mu \mathrm{f}$ capacitor. This application requires a Schmitt trigger gate to avoid slow rise time chatter problems. For AC input applications, a filter capacitor can be placed across the DC input terminals for either signal or transient filtering.

Figure 11. Typical External Threshold Characteristic, $\mathbf{V}_{ \pm}$vs. $\mathbf{R}_{\mathbf{X}}$.

Figure 12. External Threshold Voltage Level Selection.

Either AC (Pins 1, 4) or DC (Pins 2, 3) input can be used to determine external threshold levels.
For one specifically selected external threshold voltage level V_{+}or V_{-}, R_{x} can be determined without use of R_{p} via

$$
\begin{equation*}
\mathrm{R}_{\mathrm{x}}=\frac{\mathrm{V}_{+-}-\mathrm{V}_{T H_{+}^{+}}}{I_{T(-)}^{+}} \tag{1}
\end{equation*}
$$

For two specifically selected external threshold voltage levels, V_{+}and V_{-}, the use of R_{x} and R_{p} will permit this selection via equations (2), (3) provided the following conditions are met.

$$
\begin{gather*}
\frac{V_{+}}{V_{-}} \geq \frac{V_{T H_{+}}}{V_{T H_{-}}} \text {and } \frac{V_{+}-V_{T H_{+}}}{V_{-}-V_{T_{-}}}<\frac{I_{T H_{+}}}{I_{T H_{-}}} \\
R_{x}=\frac{V_{T H_{-}}\left(V_{+}\right)-V_{T H_{+}}\left(V_{-}\right)}{I_{T H_{+}}\left(V_{T H_{-}}\right)-I_{T H_{-}}\left(V_{\left.T H_{+}\right)}\right.} \tag{2}\\
R_{p}=\frac{V_{T H_{-}}\left(V_{+}\right)-V_{T H_{+}}\left(V_{-}\right)}{I_{T H_{+}}\left(V_{-}-V_{T H_{-}}\right)+I_{T H_{-}}\left(V_{T H_{+}}-V_{+}\right)} \tag{3}
\end{gather*}
$$

See Application Note 1004 for more information.

OPTICALLY COUPLED 20 mA CURRENT LOOP TRANSMITTER

TRUTH TABLE

(POSITIVE LOGIC)* | V $_{\mathbf{I}}$ | V $_{\text {CC }}$ | I $_{0}$ |
| :--- | :--- | :--- |
| H | ON | H |
| L | ON | L |
| H | OFF | H |
| L | OFF | H |

*CURRENT LOOP CONVENTION - H = MARK: $\mathrm{I}_{\mathrm{O}} \geqslant 12 \mathrm{~mA}, \mathrm{~L}=\mathrm{SPACE}: \mathrm{I}_{\mathrm{O}} \leqslant 2 \mathrm{~mA}$.

Features

- GUARANTEED 20 mA LOOP PARAMETERS
- DATA INPUT COMPATIBLE WITH LSTTL, TTL AND CMOS LOGIC
- GUARANTEED PERFORMANCE OVER TEMPERATURE ($0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION
- 20 KBaud DATA RATE AT 400 METRES LINE LENGTH
- GUARANTEED ON AND OFF OUTPUT CURRENT LEVELS
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- OPTICALLY COUPLED 20 mA CURRENT LOOP RECEIVER, HCPL-4200, ALSO AVAILABLE

Applications

[^25]OUTLINE DRAWING*

Description

The HCPL-4100 optocoupler is designed to operate as a transmitter in equipment using the 20 mA current loop. 20 mA current loop systems conventionally signal a logic high state by transmitting 20 mA of loop current (MARK), and signal a logic low state by allowing no more than a few milliamperes of loop current (SPACE). Optical coupling of the signal from the logic input to the 20 mA current loop breaks ground loops and provides very high immunity to common mode interference.

The HCPL-4100 data input is compatible with LSTTL, TTL, and CMOS logic gates. The input integrated circuit drives a GaAsP LED. The light emitted by the LED is sensed by a second integrated circuit that allows 20 mA to pass with a voltage drop of less than 2.7 volts when no light is emitted and allows less than 2 mA to pass when light is emitted. The transmitter output is capable of withstanding 27 volts. The input integrated circuit provides a controlled amount of LED drive current and takes into account LED light output degradation. The internal shield allows a guaranteed $1000 \mathrm{~V} / \mu \mathrm{s}$ common mode transient immunity.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$V_{C C}$	4.5	20	Volts
Input Voltage Low	V_{IL}	0	0.8	Volts
Input Voltage High	$\mathrm{VIH}_{\mathrm{IH}}$	2.0	20	Volts
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$
Output Voltage	VO_{O}	0	27	Volts
Output Current	lo	0	24	mA

Absolute Maximum Ratings

(No Derating Required up to $55^{\circ} \mathrm{C}$)

Storage Temperature	-55 ${ }^{\circ}$ to 125°
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for 10 sec. low seating plane)
Supply Voltage - VCC	0 to 20 V
Average Output Current - Io	-30 mA to 30 mA
Peak Output Current - 10	internally limited
Output Voltage - Vo	-0.4 V to 27 V
Input Voltage - V_{1}	-0.5 V to 20 V
Input Power Dissipation - Pı	265 mW[1]
Output Power Dissipation - Po	$125 \mathrm{~mW}{ }^{[2]}$
Total Power Dissipation - P	$360 \mathrm{~mW}^{(3)}$

Electrical Characteristics

for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V} C \mathrm{C} \leq 20 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted

Notes:

1. Derate linearly above $55^{\circ} \mathrm{C}$ free air temperature at a rate of $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Proper application of the derating factors will prevent IC junction temperatures from exceeding $125^{\circ} \mathrm{C}$ for ambient temperatures up to $85^{\circ} \mathrm{C}$.
2. Derate linearly above a free-air temperature of $70^{\circ} \mathrm{C}$ at a rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. A significant amount of power may be dissipated in the HCPL-4100 output circuit during the transition from the SPACE state to the MARK state when driving a data line or capacitive load (Cout). The average power dissipation during the transition can be estimated from the following equation which assumes a linear discharge of a capacitive load: $P=\operatorname{Isc}\left(V_{S O}+V_{M O}\right) / 2$, where $V_{s O}$ is the output voltage in the SPACE state. The duration of this transition can be estimated as $\mathrm{t}=\mathrm{CouT}\left(\mathrm{V}_{\text {SO }}-\mathrm{V}_{\mathrm{MO}}\right) / / \mathrm{Isc}$. For typical applications driving twisted pair data lines with NRZ data as shown in Figure 11, the transition time will be less than 10% of one bit time.
3. Derate linearly above $55^{\circ} \mathrm{C}$ free-air temperature at a rate of $5.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The maximum current that will flow into the output in the mark state (Isc) is internally limited to protect the device. The duration of the output short circuit shall not exceed 10 ms .
5. The device is considered a two terminal device, pins $1,2,3$, and 4 are connected together, and pins $5,6,7$, and 8 are connected together.
6. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.

Switching Characteristics

for $0 \leq T_{A} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 20 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted

Parameter	Symbol	Min.	Typ.	Max.	Units	Testing Conditions	Fig.	Note
Propagation Delay Time to Logic High Output Level	tPLH		0.3	1.6	$\mu \mathrm{S}$	$\mathrm{CO}_{\mathrm{O}}=1000 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{lO}_{\mathrm{O}}=20 \mathrm{~mA}$	4,5,6	7
Propagation Delay Time to Logic Low Output Level	tPHL.		0.2	1.0	$\mu \mathrm{S}$	$\mathrm{CO}=1000 \mathrm{pF}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, 10=20 \mathrm{~mA}$	4,5,6	8
Propagation Delay Time Skew	tplhetphl		0.1		$\mu \mathrm{S}$	$10=20 \mathrm{~mA}$		
Output Rise Time (10-90\%)	tr		16		ns	$10=20 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=1000 \mathrm{pF}, \mathrm{CL}^{\prime}=15 \mathrm{pF}$.	5,7	9
Output Fall Time (90-10\%)	t_{t}		23		ns	$10=20 \mathrm{~mA}^{\prime} \mathrm{CO}_{0}=1000 \mathrm{pF}, \mathrm{CL}^{\prime}=15 \mathrm{pF}$	5,7	10
Common Mode Transient Immunity at Logic High Output Level	$\left\|C M_{H}\right\|$	1,000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & V_{1}=2 V_{1} T_{A}=25^{\circ} \mathrm{C} \\ & V_{C M}=50 \mathrm{~V}(\text { peak }), V C C=5 \mathrm{~V} \\ & 10(\text { min. })=12 \mathrm{~mA} \end{aligned}$	8,9,10	11
Common Mode Transient Immunity at Logic Low Output Level	$\mid \mathrm{CM}$ L	1,000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & V_{1}=0.8 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{C M}=50 \mathrm{~V}(\text { peak }), V_{C C}=5 \mathrm{~V} \\ & \text { lo }(\text { max. })=3 \mathrm{~mA} \end{aligned}$	8,9,10	12

Notes:
7. The tply propagation delay is measured from the 1.3 volt level on the leading edge of the input pulse to the 10 mA level on the leading edge of the output pulse.
8. The tPHL propagation delay is measured from the 1.3 volt level on the trailing edge of the input pulse to the 10 mA level on the trailing edge of the output pulse.
9. The rise time, tr_{r}, is measured from the 10% to the 90% level on the rising edge of the output current pulse.
10. The fall time, t_{f}, is measured from the 90% to the 10% level on the falling edge of the output current pulse.
11. The common mode transient immunity in the logic high level is the maximum (positive) dV $\mathrm{cm} / \mathrm{dt}$ on the leading edge of the common mode pulse, $V_{C M}$, that can be sustained with the output in a Mark ("H") state (i.e., lo $>12 \mathrm{~mA}$).
12. The common mode transient immunity in the logic low level is the maximum (negative) $\mathrm{dVcm} / \mathrm{dt}$ on the leading edge of the common mode pulse, $V_{C M}$, that can be sustained with the output in a Space (" L ") state (i.e., Io $>3 \mathrm{~mA}$).
13. See Option 010 data sheet for more information.

Figure 1. Typical Mark State Output Voltage vs. Temperature

Figure 2. Typical Output Voltage vs. Output Current in Mark State

Figure 3. Typical Space State Output Current vs. Temperature
v_{1}

Figure 5. Waveforms for $t_{P L H}, t_{P H L}, t_{r}$, and t_{f}

Figure 4. Test Circuit for $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PH}}, \mathrm{t}_{\mathrm{r}}$, and t_{f}

Figure 6. Typical Propagation Delay vs. Temperature

Figure 7. Typical Rise, Fall Times vs. Temperature

Figure 8. Test Circuit for Common Mode Transient Immunity

Figure 9. Typical Waveforms for Common Mode Transient Immunity

$V_{C M}$ - COMMON MODE TRANSIENT AMPLITUDE - V

Figure 10. Common Mode Transient Immunity vs. Common Mode Transient Amplitude

Applications

Data transfer between equipment which employs current loop circuits can be accomplished via one of three configurations: simplex, half duplex or full duplex communication. With these configurations, point to point and multidrop arrangements are possible. The appropriate configuration to use depends upon data rate, number of stations, number and length of lines, direction of data flow, protocol, current source location and voltage compliance value, etc.

SIMPLEX

The simplex configuration, whether point to point or multidrop, gives unidirectional data flow from transmitter(s) to receiver. This is the simplest configuration for use in long line length (two wire), moderate data rate, and low current source compliance level applications. A block diagram of simplex point to point arrangement is given in Figure 11 for the HCPL-4100 transmitter optocoupler.

Figure 1i. Simplex Point to Point Current Loop System Configuration

Major factors which limit maximum data rate performance for a simplex loop are the location and compliance voltage of the loop current source as well as the total line capacitance. Application of the HCPL-4100 transmitter in a simplex loop necessitates that a non-isolated active receiver (containing current source) be used at the opposite end of the current loop. With long line length, large line capacitance will need to be charged to the compliance voltage level of the current source before the receiver loop current decreases to zero. This effect limits upper data rate performance. Slower data rates will occur with larger compliance voltage levels. The maximum compliance level is determined by the transmitter breakdown characteristic. In addition, adequate compliance of the current source must be available for voltage drops across station(s) during the MARK state in multidrop applications for long line lengths.
In a simplex multidrop application with multiple HCPL4100 transmitters and one non-isolated active receiver, priority of transmitters must be established.
A recommended non-isolated active receiver circuit which can be used with the HCPL-4100 in point to point or in multidrop 20 mA current loop applications is given in Figure 12. This non-isolated active receiver current threshold must be chosen properly in order to provide adequate noise immunity as well as not to detect SPACE state current (bias current) of the HCPL-4100 transmitter. The receiver input threshold current is $\mathrm{Vth} / \mathrm{Rth} \approx 10 \mathrm{~mA}$. A simple transistor current source provides a nominal 20 mA loop current over a V_{cc} compliance range of 6 V dc to 27 V dc. A resistor can be used in place of the constant current source for simple applications where the wire loop
distance and number of stations on the loop are fixed. A minimum transmitter output load capacitance of 1000 pF is required between pins 3 and 4 to ensure absolute stability.

Length of the current loop (one direction) versus minimum required DC supply voltage, Vcc, of the circuit in Figure 12 is graphically illustrated in Figure 13. Multidrop configurations will require larger VCc than Figure 13 predicts in order to account for additional station terminal voltage drops.

Figure 13. Minimum Required Supply Voltage, $\mathbf{V}_{\mathbf{C C}}$, vs. Loop Length for Current Loop Circuit of Figure 12

Figure 12. Recommended Non-Isolated Active Receiver with HCPL-4100 Isolated Transmitter for Simplex Point to Point 20 mA Current Loop

Figure 14. Typical Data Rate vs. Distance and Supply Voltage

Typical data rate performance versus distance is illustrated in Figure 14 for the combination of a non-isolated active receiver and HCPL-4100 optically coupled current loop transmitter shown in Figure 12. Curves are shown for 25% distortion data rate at different Vcc values. 25\% distortion data rate is defined as that rate at which 25% distortion occurs to output bit interval with respect to the input bit interval. Maximum data rate (dotted line) is restricted by device characteristics. An input Non-Return-to-Zero (NRZ) test waveform of 16 bits (0000001011111101) was used for data rate distortion measurements. Enhanced speed performance of the loop system can be obtained with lower Vcc supply levels, as illustrated in Figure 14. In addition, when loop current is supplied through a resistor instead of by a current source, an additional series termination resistance equal to the characteristic line impedance can be used at the HCPL4100 transmitter end to enhance speed of response by approximately 20%.
The cable used contained five pairs of unshielded, twisted, 22 AWG wire (Dearborn \#862205). Loop current is 20 mA nominal. Input and output logic supply voltages are 5 V dc.

Figure 15. Full Duplex Point to Point Current Loop System Configuration

FULL DUPLEX

Full duplex point to point communication of Figure 15 uses a four wire system to provide simultaneous, bidirectional data communication between local and remote equipment. Basic application uses two simplex point to point loops which have two separate, active, non-isolated units at one common end of the loops. The other end of each loop is isolated.

As Figure 15 illustrates, the combination of HewlettPackard current loop optocouplers, HCPL-4100 transmitter and HCPL-4200 receiver, can be used at the isolated end of current loops. Cross talk and common mode coupling are greatly reduced when optical isolation is implemented at the same end of both loops, as shown. Full duplex data rate is limited by the non-isolated active receiver current loop. Comments mentioned under simplex configuration apply to the full duplex case. Consult the HCPL-4200 receiver optocoupler data sheet for specified device performance.

HALF DUPLEX

The half duplex configuration, whether point to point or multidrop, gives non-simultaneous bidirectional data flow from transmitters to receivers shown in Figures 16a and 16b. This configuration allows the use of two wires to carry data back and forth between local and remote units. However, protocol must be used to determine which specific transmitter can operate at any given time. Maximum data rate for a half duplex system is limited by the loop current charging time. These considerations were explained in the Simplex configuration section.
Figures 16a and 16b illustrate half duplex application for the combination of HCPL-4100/-4200 optocouplers. The unique and complementary designs of the HCPL-4100 transmitter and HCPL-4200 receiver optocouplers provide many designed-in benefits. For example, total optical isolation at one end of the current loop is easily accomplished, which results in substantial removal of common mode influences, elimination of ground potential differences and reduction of power supply requirements. With this combination of HCPL-4100/-4200 optocouplers, specific current loop noise immunity is provided, i.e., minimum SPACE state current noise immunity is 1 mA , MARK state noise immunity is 8 mA .
Voltage compliance of the current source must be of an adequate level for operating all units in the loop while not exceeding 27 V dc, the maximum breakdown voltage for the HCPL-4100. Note that the HCPL-4100 transmitter will allow output loop current to conduct when input VCC power is off. Consult the HCPL-4200 receiver optocoupler data sheet for specified device performance.
For more informaton about the HCPL-4100/-4200 optocouplers, consult Application Note 1018.

(a) POINT TO POINT

(b) MULTIDROP

Figure 16. Half Duplex Current Loop System Configurations for (a) Point to Point, (b) Multidrop

OPTICALLY COUPLED 20 mA CURRENT LOOP RECEIVER

Features

- DATA OUTPUT COMPATIBLE WITH LSTTL, TTL, AND CMOS
- 20K BAUD DATA RATE AT 1400 METRES LINE LENGTH
- GUARANTEED PERFORMANCE OVER TEMPERATURE ($0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$)
- GUARANTEED ON AND OFF THRESHOLDS
- LED IS PROTECTED FROM EXCESS CURRENT
- INPUT THRESHOLD HYSTERESIS
- THREE-STATE OUTPUT COMPATIBLE WITH DATA BUSES
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- OPTICALLY COUPLED 20 mA CURRENT LOOP TRANSMITTER, HCPL-4100, ALSO AVAILABLE

Applications

- IMPLEMENT AN ISOLATED 20 mA CURRENT LOOP RECEIVER IN: Computer Peripherals Industrial Control Equipment Data Communications Equipment

Description

The HCPL-4200 optocoupler is designed to operate as a receiver in equipment using the 20 mA Current Loop. 20 mA current loop systems conventionally signal a logic high state by transmitting 20 mA of loop current (MARK), and signal a logic low state by allowing no more than a few milliamperes of loop current (SPACE). Optical coupling of the signal from the 20 mA current loop to the logic output breaks ground loops and provides for a very high common mode rejection. The HCPL-4200 aids in the design process by providing guaranteed thresholds for logic high state and logic low state for the current loop, providing an LSTTL, TTL, or CMOS compatible logic interface, and providing guaranteed common mode rejection. The buffer circuit on the current loop side of the HCPL-4200 provides typically 0.8 mA of hysteresis which increases the immunity to common mode and differential mode noise. The buffer also provides a controlled amount of LED drive current which takes into account LED light output degradation. The internal shield allows a guaranteed $1000 \mathrm{~V} / \mu \mathrm{s}$ common mode transient immunity.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	VCC	4.5	20	Volts
Forward Input Current (SPACE)	$\mathrm{ISI}_{\mathrm{SI}}$	0	2.0	mA
Forward Input Current (MARK)	I_{Mi}	14	24	mA
Operating Temperature	TA_{A}	0	70	${ }^{\circ} \mathrm{C}$
Fan Out	N	0	4	TTL Loads
Logic Low Enable Voltage	V_{EL}	0	0.8	Volts
Logic High Enable Voltage	VEH	2.0	20	Volts

Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$)

Storage Temperature $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
Operating Temperature - $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	
Lead Solder Temperature $(1.6 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$ for 10 sec. the seating plane)
Supply Voltage - Vcc	0 V to 20 V
Average Input Current - II	30 mA to 30 mA
Peak Transient Input Current	$0.5 \mathrm{~A}^{[1]}$
Enable Input Voltage - V_{E}	0.5 V to 20 V
Output Voltage - Vo	-0.5 V to 20 V
Average Output Current - Io	25 mA
Input Power Dissipation - Pı	$90 \mathrm{~mW}{ }^{[2]}$
Output Power Dissipation - Po	$210 \mathrm{~mW}[3]$
Total Power Dissipation - P	$255 \mathrm{~mW}{ }^{[4]}$

Electrical Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.8 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Mark State Input Current	IM1	12			mA		1,2,3	
Mark State Input Voltage	V_{Ml}		2.52	2.75	Volts	$H_{1}=20 \mathrm{~mA} \quad V_{E}=$ Don't Care	3,4	
Space State Input Current	Isi			3	mA		1,2,3	
Space State Input Voltage	V ${ }_{\text {SI }}$		1.6	2.2	Volts	$I_{1}=0.5$ to $2.0 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{E}}=$ Don't Care	1,3	
Input Hysteresis Current	Ihys	0.3	0.8		mA		1	
Logic Low Output Voltage	VOL			0.5	Volts	$\mathrm{I}^{\text {OL }}=6.4 \mathrm{~mA}\left(4\right.$ TTL Loads) $\mathrm{I}_{\mathrm{i}}=3 \mathrm{~mA}$	5	
Logic High Output Voltage	VOH	2.4			Volts	$\mathrm{IOH}^{2}=-2.6 \mathrm{~mA}, \quad I_{1}=12 \mathrm{~mA}$	6	
Output Leakage Current (Vout > VCC)	IOHH			100	$\mu \mathrm{A}$	$\begin{aligned} & 1=20 \mathrm{~mA} \\ & V_{C C}=4.5 \mathrm{~V} \end{aligned}$		
				500	$\mu \mathrm{A}$			
Logic High Enable Voltage	VEH	2,0			Volts			
Logic Low Enable Voltage	$V_{E L}$			0.8	Volts			
Logic High Enable Current	IEH			20	$\mu \mathrm{A}$	$V_{E}=2.7 \mathrm{~V}$		
				100	${ }_{\mu} \mathrm{A}$	$\mathrm{V}_{\mathrm{E}}=5.5 \mathrm{~V}$		
			. 004	250	$\mu \mathrm{A}$	$V_{E}=20 \mathrm{~V}$		
Logic Low Enable Current	IEL			-0.32	mA	$V_{E}=0.4 \mathrm{~V}$		
Logic Low Supply Current	IcCL.		4.5	6.0	mA	$\begin{aligned} & 1=0 \mathrm{~mA} \\ & V_{E}=\text { Don't Care } \end{aligned}$		
			5.25	7.5	mA			
Logic High Supply Current	ICCH		2.7	4.5	mA	$\begin{aligned} & 1=20 \mathrm{~mA} \\ & V_{E}=\text { Don't Care } \end{aligned}$		
			3.1	6.0	mA			
High Impedance State Output Current	lozL			-20	$\mu \mathrm{A}$	$V_{0}=0.4 \mathrm{~V} \quad V_{E}=2.0 \mathrm{~V}, 11=20 \mathrm{~mA}$		
	IOZH			20	$\mu \mathrm{A}$	$\begin{aligned} & V_{E}=2 V, \\ & I=0 \mathrm{~mA} \end{aligned}$		
				100	$\mu \mathrm{A}$			
				500	$\mu \mathrm{A}$			
Logic Low Short Circuit Output Current	losk	25			mA	$\left.\frac{V_{0}=V_{C C}=5.5 \mathrm{~V}}{V_{0}=V_{C C}=20 \mathrm{~V}} \right\rvert\, 1=0 \mathrm{~m}$		5
		40			mA			
Logic High Short Circuit Output Current	loSH	-10			mA	$\begin{aligned} & I_{1}=20 \mathrm{~mA} \\ & V_{0}=\mathrm{GND} \end{aligned}$		5
		-25			mA			
Input-Output Insulation	1.0			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kVdc}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		6,7
OPT. 010	$\mathrm{V}_{\text {ISO }}$	2500			$V_{\text {RMS }}$	$\mathrm{RH} \leq 50 \%$, $\mathrm{t}=1 \mathrm{~min}$.		14
Input-Output Resistance	Ri-O		10^{12}		ohms	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V} \mathrm{dc}$		6
Input-Output Capacitance	CH O		1.0		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}$		6
Input Capacitance	CIN		120		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{1}=0 \mathrm{Vdc}$, Pins 1 and 2		

Switching Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V} C \mathrm{C} \leq 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.8 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=5 \mathrm{~V}$ unless otherwise noted

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note	
Propagation Delay Time to Logic High Output Level	tplh		0.23	1.6	$\mu \mathrm{S}$	$V_{E}=0 \mathrm{~V}, \mathrm{Cl}_{\mathrm{L}}=15 \mathrm{pF}$	7, 8,9	8	
Propagation Delay Time to Logic Low Output Level	tpHL		0.17	1.0	$\mu \mathrm{S}$	$V_{E}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	7, 8, 9	9	
Propagation Delay Time Skew	tPLH- ${ }^{\text {tphL }}$		60		ns	$1 \mathrm{l}=20 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	7,8,9		
Output Enable Time to Logic Low Level	tpzL		25		ns	$\Lambda_{1}=0 \mathrm{~mA}, \mathrm{CLL}=15 \mathrm{pF}$	$\begin{gathered} 11,12 \\ 14 \end{gathered}$		
Output Enable Time to Logic High Level	tPZH		28		ns	$\\|=20 \mathrm{~mA}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$	$\begin{gathered} 11,12 \\ 13 \end{gathered}$		
Output Disable Time from Logic Low Level	tplz		60		ns	$\mathrm{I}=0 \mathrm{~mA}, \mathrm{CL}=15 \mathrm{pF}$	$\begin{gathered} 11,12 \\ 14 \end{gathered}$		
Output Disable Time from Logic High Level	tPHz		105		ns	$\mathrm{I}=20 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\begin{gathered} 11.12, \\ 13 \end{gathered}$		
Output Rise Time (10-90\%)	tr		55		ns	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	7, 8, 10	10	
Output Fall Time ($90-10 \%$)	tif		15		ns	$V C C=5 \mathrm{~V}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$	7,8,10	11	
Common Mode Transient Immunity at Logic High Output Level	ICMHI	1,000	10,000		$\mathrm{V} / \mu \mathrm{S}$	$\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak) } \\ & I=12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	15, 16	12	
Common Mode Transient Immunity at Logic Low Output Level	$\|C M$.	1,000	10,000		$V / \mu \mathrm{s}$	$\begin{aligned} & V C M=50 \mathrm{~V} \text { (peak) } \\ & I_{\mathrm{I}}=3 \mathrm{~mA}_{\mathrm{A}} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	15, 16	13	

NOTES:

1. $\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps .
2. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Proper application of the derating factors will prevent iC junction temperatures from exceeding $125^{\circ} \mathrm{C}$ for ambient temperatures up to $85^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $4.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Duration of output short circuit time shall not exceed 10 ms .
6. The device is considered a two terminal device, pins $1,2,3$, and 4 are connected together and pins $5,6,7$, and 8 are connected together.
7. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1$ sec. test.
8. The tpli propagation delay is measured from the 10 mA level on the leading edge of the input pulse to the 1.3 V level on the leading edge of the output pulse.
9. The tPHL propagation delay is measured from the 10 mA level on the trailing edge of the input pulse to the 1.3 V level on the trailing edge of the output pulse.
10. The rise time, t_{r}, is measured from the 10% to the 90% level on the rising edge of the output logic pulse.
11. The fall time, tf , is measured from the 90% to the 10% level on the falling edge of the output logic pulse.
12. Common mode transient immunity in the logic high level is the maximum (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse, V_{CM}, which can be sustained with the output voltage in the logic high state (i.e., $\mathrm{V}_{0} \geq 2 \mathrm{~V}$).
13. Common mode transient immunity in the logic low level is the maximum (positive) $\mathrm{dV} \mathrm{Vm}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, V_{CM}, which can be sustained with the output voltage in the logic low state (i.e., $\mathrm{V}_{\mathrm{O}} \leq 0.8 \mathrm{~V}$).
14. See Option 010 data sheet for more information.

Figure 1. Typical Output Voltage vs. Loop Current

Figure 4. Typical Input Voltage vs. Temperature

Figure 2. Typical Current Switching Threshold vs. Temperature

Figure 5. Typical Logic Low Output Voltage vs. Temperature

Figure 3. Typical Input Loop Voltage vs. Input Current

Figure 6. Typical Logic High Output Current vs. Temperature

Figure 7. Test Circuit for tpHL , tpLH, t_{r}, and t_{f}

Figure 8. Waveforms for $\mathbf{t}_{\text {PHL }}, \mathbf{t}_{\text {PLH }}, \mathbf{t}_{\mathbf{r}}$, and $\mathbf{t}_{\mathbf{f}}$

Figure 9. Typical Propagation Delay vs. Temperature

Figure 11. Test Circuit for $\mathbf{t}_{\text {PZH }}, \mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PH}}$, and $\mathrm{t}_{\mathrm{PLZ}}$

Figure 13. Typical Logic High Enable Propagation Delay vs. Temperature

Figure 15. Test Circuit for Common Mode Transient Immunity

Figure 10. Typical Rise, Fall Time vs. Temperature

Figure 12. Waveforms for $t_{P Z H}, t_{P Z L}, t_{P H Z}$, and $t_{P L Z}$

Figure 14. Typical Logic Low Enable Propagation Delay vs. Temperature

Figure 16. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude

Applications

Data transfer between equipment which employs current loop circuits can be accomplished via one of three configurations: simplex, half duplex or full duplex communication. With these configurations, point-to-point and multidrop arrangements are possible. The appropriate configuration to use depends upon data rate, number of stations, number and length of lines, direction of data flow, protocol, current source location and voltage compliance value, etc.

SIMPLEX

The simplex configuration, whether point to point or multidrop, gives unidirectional data flow from transmitter to receiver(s). This is the simplest configuration for use in long line length (two wire), for high data rate, and low current source compliance level applications. Block diagrams of simplex point-to-point and multidrop arrangements are given in Figures 17a and 17b respectively for the HCPL4200 receiver optocoupler.

For the highest data rate performance in a current loop, the configuration of a non-isolated active transmitter (containing current source) transmitting data to a remote isolated receiver(s) should be used. When the current
source is located at the transmitter end, the loop is charged approximately to $\mathrm{V}_{\mathrm{MI}}(2.5 \mathrm{~V})$. Alternatively, when the current source is located at the receiver end, the loop is charged to the full compliance voltage level. The lower the charged voltage level the faster the data rate will be. In the configurations of Figures 17a and 17b, data rate is independent of the current source voltage compliance level. An adequate compliance level of current source must be available for voltage drops across station(s) during the MARK state in multidrop applications or for long line length. The maximum compliance level is determined by the transmitter breakdown characteristic.

A recommended non-isolated active transmitter circuit which can be used with the HCPL-4200 in point-to-point or in multidrop 20 mA current loop applications is given in Figure 18. The current source is controlled via a standard TTL 7407 buffer to provide high output impedance of current source in both the ON and OFF states. This non-isolated active transmitter provides a nominal 20 mA loop current for the listed values of $V_{c c}$, R2 and R3 in Figure 18.

Figure 17. Simplex Current Loop System Configurations for (a) Point-to-Point, (b) Multidrop

Figure 18. Recommended Non-Isolated Active Transmitter with HCPL-4200 Isolated Receiver for Simplex Point-to-Point 20 mA Current Loop

Length of current loop (one direction) versus minimum required DC supply voltage, Vcc, of the circuit in Figure 18 is graphically illustrated in Figure 19. Multidrop configurations will require larger $V_{C C}$ than Figure 19 predicts in order to account for additional station terminal voltage drops.
Typical data rate performance versus distance is illustrated in Figure 20 for the combination of a non-isolated active transmitter and HCPL-4200 optically coupled current loop receiver shown in Figure 18. Curves are shown for 10% and 25% distortion data rate. 10% (25%) distortion data rate is defined as that rate at which $10 \%(25 \%)$ distortion occurs to output bit interval with respect to input bit interval. An input Non-Return-to-Zero (NRZ) test waveform of 16 bits (0000001011111101) was used for data rate distortion measurements. Data rate is independent of current source supply voltage, Vcc.
The cable used contained five pairs of unshielded, twisted, 22 AWG wire (Dearborn \#862205). Loop current is 20 mA nominal. Input and output logic supply voltages are 5 V dc.

FULL DUPLEX

The full duplex point-to-point communication of Figure 21 uses a four wire system to provide simultaneous, bidirectional data communication between local and remote

Figure 19. Minimum Required Supply Voltage, V_{Cc}, vs. Loop Length for Current Loop Circuit of Figure 18
equipment. The basic application uses two simplex point-to-point loops which have two separate, active, nonisolated units at one common end of the loops. The other end of each loop is isolated.
As Figure 21 illustrates, the combination of HewlettPackard current loop optocouplers, HCPL-4100 transmitter and HCPL-4200 receiver, can be used at the isolated end of current loops. Cross talk and common mode coupling are greatly reduced when optical isolation is implemented at the same end of both loops, as shown. The full duplex data rate is limited by the non-isolated active receiver current loop. Comments mentioned under simplex configuration apply to the full duplex case. Consult the HCPL-4100 transmitter optocoupler data sheet for specified device performance.

HALF DUPLEX

The half duplex configuration, whether point-to-point or multidrop, gives non-simultaneous bidirectional data flow from transmitters to receivers shown in Figures 22a and 22 b . This configuration allows the use of two wires to carry data back and forth between local and remote units. However, protocol must be used to determine which specific transmitter can operate at any given time. Maximum data rate for a half duplex system is limited by the loop current charging time. These considerations were explained in the Simplex configuration section.

Figure 20. Typical Data Rate vs. Distance

Figure 21. Full Duplex Point-to-Point Current Loop System Configuration

Figures 22a and 22b illustrate half duplex application for the combination of HCPL-4100/-4200 optocouplers. The unique and complementary designs of the HCPL-4100 transmitter and HCPL-4200 receiver optocouplers provide many designed-in benefits. For example, total optical iso-
lation at one end of the current loop is easily accomplished, which results in substantial removal of common mode influences, elimination of ground potential differences and reduction of power supply requirements. With this combination of HCPL-4100/-4200 optocouplers, specific current loop noise immunity is provided, i.e., minimum SPACE state current noise immunity is 1 mA, MARK state noise immunity is 8 mA .
Voltage compliance of the current source must be of an adequate level for operating all units in the loop while not exceeding 27 V dc, the maximum breakdown voltage for the HCPL-4100. Note that the HCPL-4100 transmitter will allow loop current to conduct when input Vcc power is off. Consult the HCPL-4100 transmitter optocoupler data sheet for specified device performance.
For more information about the HCPL-4100/-4200 optocouplers, consult Application Note 1018.

Figure 22. Half Duplex Current Loop System Configurations for (a) Point-to-Point, (b) Multidrop

Hermetic Optocouplers

WIDE SUPPLY VOLTAGE, HIGH CMR, HERMETICALLY SEALED OPTOCOUPLER

Features

- NEW—MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- HERMETICALLY SEALED 8 PIN DUAL IN-LINE PACKAGE
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ}$ C AMBIENT TEMPERATURE RANGE
- WIDE VCC RANGE (4.5 TO 20 VOLTS)
- MIL-STD-883 CLASS B TESTING
- 500 Vdc WITHSTAND TEST VOLTAGE
- COMPATIBLE WITH LSTTL, TTL, AND CMOS LOGIC
- 300 ns PROPAGATION DELAY GUARANTEED OVER TEMPERATURE
- HCPL-2200 FUNCTION COMPATIBILITY
- THREE STATE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION - 1000 V/ $\mu \mathrm{s}$ GUARANTEED

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- MICROPROCESSOR SYSTEM INTERFACES
- GROUND LOOP ELIMINATION
- PULSE TRANSFORMER REPLACEMENT
- ISOLATED BUS DRIVER
- HIGH SPEED LINE RECEIVER

Description

The HCPL-5200 and 5201 units are hermetically sealed, logic gate optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-5200) or with full MIL-STD-883 Class Level B testing (HCPL-5201). Both products are in eight pin hermetic dual in-line packages.

Each unit contains an AIGaAs light emitting diode which is optically coupled to an integrated high gain photon detector. The detector has a three state output stage and has a detector threshold with hysteresis. The three state output eliminates the need for a pullup resistor and allows for direct drive of data busses. The hysteresis provides differential mode noise immunity and eliminates the potential for output signal chatter. The detector IC has an internal shield that provides a guaranteed common mode transient immunity of 1,000 Volts $/ \mu \mathrm{sec}$. Improved power supply rejection eliminates the need for special power supply bypassing precautions.
The HCPL-5200 and HCPL-5201 are guaranteed to operate over a V_{CC} range of 4.5 Volts to 20 Volts. Low I_{F} and wide $V_{C C}$ range allow compatibility with TTL, LSTTL, and CMOS Logic. Low I_{F} and low $I_{C C}$ result in lower power consumption compared to other high speed optocouplers. Logic signals are transmitted with a typical propagation delay of 100 nsec when used in the circuit of Figure 12.
These devices are useful for isolating high speed logic interfaces, buffering of input and output lines, and implementing isolated line receivers in high noise environments.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$V_{C C}$	4.5	20	Volts
Enable Voltage High	$V_{E H}$	2.0	20	Volts
Enable Voltage Low	$V_{E L}$	0	0.8	Volts
Input Current (High)	$I_{\text {F (ON) }}$	4	8	mA
Input Voltage (Low)	$V_{F(O F F)}$	0	0.8	Volts
Fan Out	N		4	TTL Loads

Absolute Maximum Ratings

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s (1.6 mm below seating plane)
Average Forward Input Current $-I_{F} \ldots \ldots$.
Peak Transient Input Current - I IFPK 20 mA [1]
Reverse Input Voltage - V_{R}. 5 V
Supply Voltage $-V_{C C} \ldots . .$. Three State Enable

Output Voltage $-V_{O} \ldots . .$.
Total Package Power Dissipation - $P_{d} \ldots \ldots$. . . . 200 mW
Average Output Current - I_{O}..................... 15 mA

Electrical CharacteristicS $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.
For $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 8 \mathrm{~mA}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EH}} \leq 20 \mathrm{~V}, 0 . \mathrm{V} \leq \mathrm{V}_{\mathrm{EL}} \leq 0.8 \mathrm{~V}$

*All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=5 \mathrm{~mA}$ unless otherwise specified.

Typical Characteristics

All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=5 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Typ.	Units	Test Conditions	Figure	Note
Input Current Hysteresis	$\mathrm{I}_{\text {HYS }}$	0.07	mA	$V_{C C}=5 \mathrm{~V}$	3	
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$	-1.25	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		
Input-Output Resistance	R_{1-0}	10^{12}	ohms	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$		4,7
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$	2.0	pF	$\mathrm{f}=1 \mathrm{MHz}$		7
Input Capacitance	C_{IN}	15	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		8
Output Enable Time to Logic High	$\mathrm{tPZH}^{\text {P }}$	30	ns		7	
Output Enable Time to Logic Low	$t_{\text {Pzi }}$	30	ns		7	
Output Disable Time from Logic High	$\mathrm{tpHz}^{\text {Pr }}$	45	ns		7	
Output Disable Time from Logic Low	$t_{\text {PLZ }}$	55	ns		7	
Output Rise Time (10-90\%)	tr_{r}	45	ns		5,8	
Output Fall Time (90-10\%)	if	10	ns		5, 8	

Notes:

1. Peak Forward Input Current pulse width $<50 \mu \mathrm{~s}$ at 1 KHz maximum repetition rate.
2. Duration of output short circuit time not to exceed 10 ms .
3. Device considered a two terminal device: pins $1,2,3$ and 4 shorted together, and pins $5,6,7$ and 8 shorted together.
4. This is a momentary withstand test, not an operating condition.
5. The $t_{\text {PLH }}$ propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The $t_{\text {PHL }}$ propagation delay is measured from the 50% point on the trailing edge of the input current pulse to the 1.3 V point on the trailing edge of the output pulse.
6. CM_{L} is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state $\left(\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}\right) . \mathrm{CM}_{\mathrm{H}}$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state $\left(\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}\right)$.
7. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together.
8. Zero bias capacitance measured between the LED anode and cathode.

Figure 1. Typical Logic Low Output Voltage vs. Temperature

Figure 3. Output Voltage vs. Forward Input Current

Figure 2. Typical Logic High Output Current vs. Temperature

Figure 4. Typical Input Diode Forward Characteristic

Figure 5. Test Circuit for $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{r}}$, and t_{f}

Figure 7. Test Circuit for $\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PLZ}}$, and $\mathrm{t}_{\mathrm{PZL}}$

Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

*PULSE WIDTH DISTORTION (ns) AT 100 KHz, 10\% DUTY CYCLE.
Figure 6. Typical Propagation Delay vs. Temperature

Figure 8. Typical Rise, Fall Time vs. Temperature

Figure 10. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude

Figure 11. LSTTL to CMOS Interface Circuit

Figure 13. Series LED Drive with Open Collector Gate (4.02 K Ω Resistor Shunts IOH from the LED)

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett-Packard's HCPL-5201 optocoupler is in compliance with MIL-STD-883, Revision C. Testing consists of 100% screening to Method 5004 and quality conformance inspection to Method 5005. Details of these test programs may be found in Hewlett-Packard's Optoelectronics Designer's Catalog.

See table for specific electrical tests, pg. 6.

Figure 12. Recommended LED Drive Circuit

Figure 14. Recommended LSTTL to LSTTL Circuit

PART NUMBERING SYSTEM

Commercial Product	Class B Product
HCPL-5200	HCPL-5201

Figure 15. Operating Circuit for Burn-In and Steady State Life Tests

GROUP A - ELECTRICAL TESTS
QUANTITY/ACCEPT NO. $=116 / 0$

$$
\begin{aligned}
& \text { Subgroup } 1
\end{aligned}
$$

> Subgroup 3
> *Static tests at $T_{A}=-55^{\circ} \mathrm{C}-V_{F}, V_{R} I_{O H H}, V_{O H}, V_{O L}, I_{C C H}, I_{C C L}, I_{O Z L}$, $I_{E H}, I_{E L}, V_{E L}, V_{E H}, I_{O S L}, I_{O S H}$
> Subgroup 4, 5, 6, 7, 8A and 8B
> These subgroups are not applicable to this device type.
> $\begin{aligned} & \text { Subgroup } 9 \\ & \text { *Switching tests at } T_{A}=25^{\circ} \mathrm{C}-t_{\text {PHL }}, t_{P L H},\left|C M_{H}\right|,\left|\mathrm{CM}_{\mathrm{L}}\right|\end{aligned}$
> Subgroup 10
> *Switching tests at $T_{A}=+125^{\circ} \mathrm{C}-t_{\text {PHL }}$ tpLH
> Subgroup 11
> *Switch tests at $T_{A}=-55^{\circ} \mathrm{C}-t_{\mathrm{PHL}}, t_{\mathrm{PL}} \mathrm{H}$
*Limits and conditions per Electrical Characteristics.

DUAL CHANNEL WIDE SUPPLY VOLTAGE, HIGH CMR, HERMETICALLY SEALED OPTOCOUPLER

Features

- NEW-MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- HERMETICALLY SEALED 8 PIN DUAL IN-LINE PACKAGE
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ}$ C AMBIENT TEMPERATURE RANGE
- WIDE Vcc RANGE (4.5 TO 20 VOLTS)
- MIL-STD-883 CLASS B TESTING
- 500 Vdc WITHSTAND TEST VOLTAGE
- COMPATIBLE WITH LSTTL, TTL, AND CMOS LOGIC
- 300 ns PROPAGATION DELAY GUARANTEED OVER TEMPERATURE
- HCPL-2231 FUNCTION COMPATIBILITY
- TOTEM POLE OUTPUT (NO PULL-UP RESISTOR REQUIRED)
- NO OPTICAL CROSSTALK
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION - 1000 V/ μ s GUARANTEED

Description

The HCPL-5230 and 5231 units are dual channel, hermetically sealed, logic gate optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-5230) or with full MIL-STD-883 Class Level B testing (HCPL-5231). Both products are in eight pin hermetic dual in-line packages.

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- MICROPROCESSOR SYSTEM INTERFACES
- PULSE TRANSFORMER REPLACEMENT
- ISOLATED BUS DRIVER
- HIGH SPEED LINE RECEIVER

Each unit contains two independent channels, consisting

 of an AIGaAs light emitting diode optically coupled to an integrated high gain photon detector. The detector has a totem pole output and a threshold with hysteresis. The hysteresis provides differential mode noise immunity and eliminates the potential for output signal chatter. The detector IC has an internal shield that provides a guaranteed common mode transient immunity of 1,000 volts/ $\mu \mathrm{sec}$. Improved power supply rejection eliminates the need for special power supply bypassing precautions.The HCPL-5230 and HCPL-5231 are guaranteed to operate over a V_{CC} range of 4.5 Volts to 20 Volts. Low I_{F} and wide $V_{C C}$ range allow compatibility with TTL, LSTTL, and CMOS logic. Low I_{F} and low $I_{C C}$ result in lower power consumption compared to other high speed optocouplers. Logic signals are transmitted with a typical propagation delay of 100 nsec when used in the circuit of Figure 11.
These devices are useful for isolating high speed logic interfaces, buffering of input and output lines, and implementing isolated line receivers in high noise environments.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$V_{C C}$	4.5	20	Volts
Input Current (High)	$\mathrm{I}_{\text {F (ON) }}$	4	8	mA
Input Voltage (Low)	$V_{\mathrm{F}(\mathrm{OFF})}$	0	0.8	Volts
Fan Out	N		4	TTL Loads

Absolute Maximum Ratings

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Average Forward Input Current - $I_{F} \ldots \ldots$. Peak Transient Input Current - I FPK $20 \mathrm{~mA}{ }^{[1]}$ Reverse Input Voltage 5 V Supply Voltage - $\mathrm{V}_{\mathrm{CC}} \ldots .$. Output Voltage $-V_{0} \ldots .$. Total Package Power Dissipation - P_{d}. 400 mW Average Output Current - Io(per channel) 15 mA

Electrical CharacteristicS $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.
For $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 8 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$

*All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=5 \mathrm{~mA}$ unless otherwise specified.
Notes:

1. Peak Forward Input Current pulse width $<50 \mu \mathrm{~s}$ at 1 KHz maximum repetition rate.
2. Each channel.
3. Duration of output short circuit time not to exceed 10 ms .
4. Device considered a two-terminal device: Pins 1 through 4 are shorted together, and pins 5 through 8 are shorted together.
5. This is a momentary withstand test, not an operating condition.
6. $t_{\text {PHL }}$ propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The $t_{\text {PLH }}$ propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
7. $C M_{\mathrm{L}}$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$). CM_{H} is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ($\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).
8. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together.
9. Measured between adjacent input pairs shorted together, i.e. between pins 1 and 2 shorted together and pins 3 and 4 shorted together.
10. Zero-bias capacitance measured between the LED anode and cathode.

Typical Characteristics

All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=5 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Typ.	Units	Test Conditions	Fig.	Note
Input Current Hysteresis	$\mathrm{I}_{\text {HYS }}$	0.07	mA	$V_{C C}=5 \mathrm{~V}$	3	2
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$	-1.25	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		2
Input-Output Resistance	R_{1-0}	10^{12}	ohms	$V_{1-0}=500 \mathrm{Vdc}$		2,8
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$	2.0	pF	$\mathrm{f}=1 \mathrm{MHz}$		2,8
Input-Input Insulation Leakage Current	I_{1-1}	0.5	nA	45\% Relative Humidity, $V_{l-1}=500 \mathrm{Vdc}_{1} T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}$		9
Resistance (input-Input)	R_{1-1}	10^{12}	Ω	$V_{1-1}=500 \mathrm{Vdc}$		9
Capacitance (Input-Input)	C_{1-1}	1.3	pF	$\mathrm{f}=1 \mathrm{MHz}$		9
Input Capacitance	$\mathrm{C}_{\text {IN }}$	15	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		2,10
Output Rise Time (10-90\%)	tr_{r}	45	ns		5,7	2
Output Fall Time (90-10\%)	t_{f}	10	ns		5,7	2

Figure 1. Typical Logic Low Output Voltage vs. Temperature

Figure 3. Output Voltage vs. Forward Input Current

Figure 2. Typical Logic High Output Current vs. Temperature

Figure 4. Typical Diode Input Forward Characteristic

Figure 5. Test Circuit for $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathbf{r}}$, and $\mathrm{t}_{\mathbf{f}}$

Figure 7. Typical Rise, Fall Time vs. Temperature

$V_{C M}$ - COMMON MODE TRANSIENT VOLTAGE - V
Figure 9. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude

*PULSE WIDTH DISTORTION (ns) AT 100 KHz, 10\% DUTY CYCLE.

Figure 6. Typical Propagation Delay vs. Temperature

Figure 8. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

Figure 10. LSTTL to CMOS Interface Circuit

Figure 11. Recommended LED Drive Circuit

Figure 12. Series LED Drive with Open Collector Gate (4.02 K Ω Resistor Shunts $\mathrm{IOH}_{\mathrm{H}}$ from the LED)

Figure 13. Recommended LSTTL to LSTTL Circult

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett-Packard's HCPL-5231 optocoupler is in compliance with MIL-STD-883, Revision C. Testing consists of 100% screening to Method 5004 and quality conformance inspection to Method 5005. Details of these test programs may be found in Hewlett-Packard's Optoelectronics Designer's Catalog.

See table on next page for specific electrical tests.

PART NUMBERING SYSTEM

Commercial Product	Class B Product
HCPL-5230	HCPL-5231

Figure 14. Operating Circuit for Burn-In and Steady State Llfe Tests

GROUP A - ELECTRICAL TESTS
QUANTITY/ACCEPT NO. $=116 / 0$
Subgroup 1
${ }^{*}$ Static tests at $T_{A}=25^{\circ} \mathrm{C}-V_{F}, V_{R}, I_{1-O}, I_{O H H}, V_{O H}, V_{O L}, I_{C C H}, I_{C C L}, I_{O S L}, I_{O S H}$

Subgroup 2 ${ }^{*}$ Static tests at $T_{A}=+125^{\circ} \mathrm{C}-V_{\mathrm{F}}, V_{\mathrm{R}}, I_{\mathrm{OHH}}, V_{\mathrm{OH}}, V_{\mathrm{OL}}, I_{\mathrm{CCH}}, I_{\mathrm{CLL}}, I_{\mathrm{OSL}}, I_{\mathrm{OSH}}$
Subgroup 3 *Static tests at $T_{A}=-55^{\circ} \mathrm{C}-V_{F}, V_{R}, I_{O H H}, V_{O H}, V_{O L}$, $I_{C C H}, I_{C C L}, I_{O S L}, I_{O S H}$
Subgroup 4, 5, 6, 7, 8A and 8B These subgroups are not applicable to this device type.
Subgroup 9 *Switching tests at $T_{A}=25^{\circ} \mathrm{C}-t_{\text {PHL }}, t_{P L H},\left\|C M_{H}\right\|,\left\|C M_{L}\right\|$
Subgroup 10 *Switching tests at $T_{A}=+125^{\circ} \mathrm{C}-t_{\text {PHL }}, t_{\text {PLH }}$
Subgroup 11 *Switch tests at $T_{A}=-55^{\circ} \mathrm{C}-t_{\text {PHL }}, t_{\text {PLH }}$

*Limits and conditions per Electrical Characteristics.

HEWLETT PACKARD

Features

- NEW—MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- HERMETICALLY SEALED 8 PIN DUAL IN-LINE PACKAGE
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- HIGH SPEED GUARANTEED OVER TEMPERATURE
- 75 ns MAXIMUM PROPAGATION DELAY
- 35 ns MAXIMUM PULSE WIDTH DISTORTION
- HIGH COMMON MODE REJECTION — $500 \mathrm{~V} / \mu \mathrm{s}$ GUARANTEED
- HCPL-2400 FUNCTION COMPATIBILITY
- COMPATIBLE WITH TTL, STTL, LSTTL, AND HCMOS LOGIC FAMILIES
- THREE STATE OUTPUT (NO PULL-UP RESISTOR REQUIRED)
- HIGH POWER SUPPLY NOISE IMMUNITY
- 500 Vdc WITHSTAND TEST VOLTAGE

Description

The HCPL-5400 and HCPL-5401 units are hermetically sealed, high speed optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-5400) or with full MIL-STD-883 Class Level B testing (HCPL-5401). Both products are in eight pin hermetic dual in-line packages.
Each unit contains an AIGaAs light emitting diode which is optically coupled to an integrated high speed photon detector. This combination results in very high data rate capability. The detector has a threshold with hysteresis and

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- ISOLATED BUS DRIVER (NETWORKING APPLICATIONS)
- SWITCHING POWER SUPPLIES
- GROUND LOOP ELIMINATION
- HIGH SPEED DISK DRIVE I/O
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION - PULSE TRANSFORMER REPLACEMENT
a three state output stage. The three state output eliminates the need for a pull-up resistor and allows for direct drive of a data bus. The hysteresis provides typically 0.25 mA of differential mode noise immunity and minimizes the potential for output signal chatter.
The HCPL-5400 and HCPL-5401 are compatible with TTL, STTL, LSTTL, and HCMOS logic families. The 35 ns pulse width distortion specification guarantees a 10 mBaud signaling rate at $125^{\circ} \mathrm{C}$ with 35% pulse width distortion. Figure 11 shows a recommended circuit for reducing pulse width distortion and improving the signaling rate of the product.
CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$V_{C C}$	4.75	5.25	Volts
Input Current (High)	$\mathrm{I}_{F(O N)}$	8	10	mA
Input Voltage (Low)	$V_{F(O F F)}$	-	0.7	Volts
Enable Voltage (Low)	$V_{E L}$	0	0.8	Volts
Enable Voltage (High)	$V_{E H}$	2.0	$V_{C C}$	Volts
Fan Out	N		5	TTL Loads

Absolute Maximum Ratings

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature............. $.260^{\circ} \mathrm{C}$ for 10 s (1.6 mm below seating plane)
Average Forward Current - $I_{\text {FAVG }}$..................... . 10 mA Peak Input Current - IFPK $20 \mathrm{~mA}{ }^{[1]}$
 Three State Enable Voltage $-V_{E} \ldots . .0 .5 \mathrm{~V}$ min., 10 V max. Average Output Current - I_{O}. ... -25 mA min., 25 mA max. Output Power Dissipation - Po 130 mW
Total Package Power Dissipation P_{d}. 400 mW

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 8 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 10 \mathrm{~mA}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EH}} \leq 5.25,0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EL}} \leq 0.8 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.7 \mathrm{~V}$, unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Figure	Note
Logic Low Output Voltage	V_{OL}			0.5	Volts	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$ (5 TTL Loads)	1	
Logic High Output Voltage	V_{OH}	2.4			Volts	$\mathrm{l}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2	
Output Leakage Current	$\mathrm{IOHH}^{\text {O }}$			100	$\mu \mathrm{A}$	$V_{O}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0.7 \mathrm{~V}$		
Logic High Enable Voltage	$\mathrm{VEH}_{\text {E }}$	2.0			Volts			
Logic Low Enable Voltage	$V_{\text {EL }}$			0.8	Volts			
Logic High Enable Current	${ }^{\text {IEH }}$			20	$\mu \mathrm{A}$	$V_{E}=2.4 \mathrm{~V}$		
				100	$\mu \mathrm{A}$	$V_{E}=5.25 \mathrm{~V}$		
Logic Low Enable Current	$I_{\text {EL }}$		-0.28	-0.4	$m A$	$V_{E}=0.4 \mathrm{~V}$		
Logic Low Supply Current	$\mathrm{I}_{\text {CCL }}$		19	26	mA	$V_{C C}=5.25 \mathrm{~V}$		
Logic High Supply Current	ICCH		17	26	mA	$V_{E}=0 \mathrm{~V}$		
High Impedance State Supply Current	I CCZ		22	28	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{E}=5.25 \mathrm{~V} \end{aligned}$		
High Impedance State Output Current	Iozl			20	$\mu \mathrm{A}$	$V_{O}=0.4 \mathrm{~V}, V_{E}=2 \mathrm{~V}$		
	lozh			20	$\mu \mathrm{A}$	$V_{O}=2.4 \mathrm{~V} \quad V_{E}=2 \mathrm{~V}$		
				100	$\mu \mathrm{A}$	$V_{0}=5.25 \mathrm{~V}$		
Input Forward Voltage	V_{F}	1.0	1.4	1.85	Volts	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	4	
Input Reverse Breakdown Voltage	$V_{\text {R }}$	5.0	7.0		Volts	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input-Output Insulation Leakage Current	11.0			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}-\mathrm{O}=500 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		2, 3
Propagation Delay Time to Logic Low Output Level	$\mathrm{t}_{\text {pHL }}$		33	75	ns	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=9 \mathrm{~mA}$	5,6,7	4
Propagation Delay Time to Logic High Output Level	tPLH		30	65	ns	$I_{\text {(ON) }}=9 \mathrm{~mA}$	5,6,7	4
Pulse Width Distortion	$\left\|t_{\text {PHL }}{ }^{-t_{\text {PLLH }}}\right\|$		3	35	ns	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=9 \mathrm{~mA}$	5, 6	
Logic High Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	500	3000		$\mathrm{V} / \mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0$	10	5
Logic Low Common Mode Transient Immunity	$\mid \mathrm{CM}_{\mathrm{L}} \mathrm{l}$	500	3000		$V / \mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	10	5

*All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Typical Characteristics

All typicals $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=9 \mathrm{~mA}$ except where noted.

Parameter	Symbol	Typ.	Units	Test Conditions	Figure	Note
Input Current Hysteresis	IhYs	0.25	mA		3	
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$	-1.11	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	4	
Input-Output Resistance	$\mathrm{R}_{1-\mathrm{O}}$	10^{12}	ohms	$V_{1-0}=500 \mathrm{VDC}$		2
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$	0.6	pF	$f=1 \mathrm{MHz}, V_{1-\mathrm{O}}=0 \mathrm{Vdc}$		2
Input Capacitance	$\mathrm{Cl}_{\text {IN }}$	15	pF	$\mathrm{f}=1 \mathrm{MHz}, V_{F}=0 \mathrm{~V}$, Pins 2 and 3		
Logic Low Short Circuit Output Current	losL	65	mA	$V_{O}=V_{C C}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		6
Logic High Short Circuit Output Current	losh	-50	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{0}=\mathrm{GND}$		6
Output Rise Time ($10-90 \%$)	t_{r}	15	ns		5	
Output Fall Time (90-10\%)	t_{f}	10	ns		5	
Output Enable Time to Logic High	tpZH	15	ns		8,9	
Output Enable Time to Logic Low	tpzi	30	ns		8.9	
Output Disable Time from Logic High	$t_{\text {pHZ }}$	20	ns		8,9	
Output Disable Time from Logic Low	tplz	15	ns		8,9	
Power Supply Noise Immunity	PSNI	0.5	V_{p-p}	$48 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{AC}} \leq 50 \mathrm{MHz}$		7

Notes:

1. Not to exceed 5% duty factor, not to exceed $50 \mu \mathrm{sec}$ pulse width.
2. Device considered a two terminal device: pin 1-4 shorted together, and pins 5-8 shorted together.
3. This is a momentary withstand test, not an operating condition.
4. t_{PHL} propagation delay is measured from the 50% level on the rising edge of the input current pulse to the 1.5 V level on the falling edge of the output pulse. The $t_{\text {PLH }}$ propagation delay is measured from the 50% level on the falling edge of the input current pulse to the 1.5 V level on the rising edge of the output pulse.
5. CM_{H} is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic high state ($\left.\mathrm{V}_{\mathrm{O}}(\mathrm{MIN})>2.0\right) . \mathrm{CM}_{\mathrm{L}}$ is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic low state $\left(\mathrm{V}_{\mathrm{O}}\right.$ (MAX) $<0.8 \mathrm{~V}$).
6. Duration of output short circuit time not to exceed 10 ms .
7. Power Supply Noise Immunity is the peak to peak amplitude of the ac ripple voltage on the $V_{C C}$ line that the device will withstand and still remain in the desired logic state. For desired logic high state, $\mathrm{V}_{\mathrm{OH}(\mathrm{MIN})}>2.0 \mathrm{~V}$, and for desired logic low state, $\mathrm{V}_{\mathrm{OL}}(\mathrm{MAX})<$ 0.8 volts.

Figure 1. Typical Logic Low Output Voltage vs. Logic Low Output Current

Figure 2. Typical Logic High Output Voltage vs. Logic High Output Current

Figure 3. Typical Output Voltage vs. Input Forward Current

V_{F} - FORWARD VOLTAGE - VOLTS
Figure 4. Typical Dlode Input Forward Current Characteristic

Figure 5. Test Circuit for $t_{\text {PLH }}, t_{\text {PHL }}, t_{r}$, and t_{f}

Figure 6. Typical Propagation Delay vs. Amblent Temperature

Figure 7. Typical Propagation Delay vs. Input Forward Current

ALL DIODES ARE ECG 519 OR EQUIVALENT
C1 $=\mathbf{3 0} \mathrm{pF}$ INCLUDING PROBE AND JIG CAPACITANCE.

Figure 8. Test Circuit for $\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PLZ }}$, and $\mathrm{t}_{\text {PZL }}$

Figure 9. Typical Enable Propagation Delay vs. Ambient Temperature

Applications

Figure 11. Recommended HCPL-5400 Interface Circuit

-TOTAL LEAD LENGTH < $\mathbf{1 0} \mathbf{~ m m}$ FROM DEVICE UNDER TEST. **SEE NOTE 5.

+ CL IS APPROXIMATELY 15 pF , WHICH INCLUDES PROBE AND

Figure 10. Test Diagram for Common Mode Transient Immunity and Typical Waveforms

Figure 12. Alternative HCPL-5400 Interface Circuit

Data Rate, and Pulse-Width Distortion Definitions

Propagation delay is a figure of merit which describes the finite amount of time required for a system to translate information from input to output when shifting logic levels. Propagation delay from low to high ($t_{\text {PLH }}$) specifies the amount of time required for a system's output to change from a Logic 0 to a Logic 1, when given a stimulus at the input. Propagation delay from high to low ($\mathrm{t}_{\mathrm{PHL}}$) specifies the amount of time required for a system's output to change from a Logic 1 to a Logic 0 , when given a stimulus at the input (see Figure 5).
When $t_{\text {PLH }}$ and $t_{\text {PHL }}$ differ in value, pulse width distortion results. Pulse width distortion is defined as $\left|t_{\text {PHL }}-t_{\text {PLH }}\right|$
and determines the maximum data rate capability of a distortion-limited system. Maximum pulse width distortion on the order of $25-35 \%$ is typically used when specifying the maximum data rate capabilities of systems. The exact figure depends on the particular application (RS-232, PCM, $T-1$, etc.).
The HCPL-5400 optocoupler offers the advantages of specified propagation delay ($t_{P L H}, t_{P H L}$), and pulse-width distortion ($\left|t_{\text {PLH }}-\mathrm{t}_{\mathrm{PHL}}\right|$) over temperature, and power supply voltage ranges.

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett-Packard's HCPL-5401 optocoupler is in compliance with MIL-STD-883, Revision C. Testing consists of 100% screening to Method 5004 and quality conformance inspection to Method 5005. Details of these test programs may be found in Hewlett-Packard's Optoelectronics Designer's Catalog.

See table below for spècific electrical tests.

PART NUMBERING SYSTEM

Commercial Product	Class B Product
HCPL-5400	HCPL-5401

Figure 13. Operating Circuit for Burn-In and Steady State Life Tests

GROUP A - ELECTRICAL TESTS
QUANTITY/ACCEPT NO. = 116/0

*Limits and conditions per Electrical Characteristics.

> DUAL CHANNEL, HIGH SPEED, HERMETICALLY SEALED OPTOCOUPLER

Features

- NEW-MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- HERMETICALLY SEALED 8 PIN DUAL IN-LINE PACKAGE
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- HIGH SPEED GUARANTEED OVER TEMPERATURE
- 75 ns MAXIMUM PROPAGATION DELAY
- 35 ns MAXIMUM PULSE WIDTH DISTORTION
- HIGH COMMON MODE REJECTION 500 V/ μ s GUARANTEED
- COMPATIBLE WITH TTL, STTL, LSTTL, AND HCMOS LOGIC FAMILIES
- HIGH POWER SUPPLY NOISE IMMUNITY
- 500 Vdc WITHSTAND TEST VOLTAGE

Description

The HCPL-5430 and HCPL-5431 units are dual channel hermetically sealed, high speed optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-5430) or with full MIL-STD-883 Class Level B testing (HCPL-5431). Both products are in eight pin hermetic dual in-line packages.

Each unit contains two channels, consisting of an AIGaAs light emitting diode optically coupled to an integrated high

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- ISOLATED BUS DRIVER (NETWORKING APPLICATIONS)
- SWITCHING POWER SUPPLIES
- GROUND LOOP ELIMINATION
- HIGH SPEED DISK DRIVE I/O
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- PULSE TRANSFORMER REPLACEMENT
speed photon detector. This combination results in very high data rate capability. The detector has a threshold with hysteresis. The hysteresis provides typically 0.25 mA of differential mode noise immunity and minimizes the potential for output signal chatter.

The HCPL-5430 and HCPL-5431 are compatible with TTL, STTL, LSTTL, and HCMOS logic families. The 35 ns pulse width distortion specification guarantees a 10 mBaud signaling rate at $125^{\circ} \mathrm{C}$ with 35% pulse width distortion. Figure 9 shows a recommended circuit for reducing pulse width distortion and improving the signaling rate of the product.

CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$V_{C C}$	4.75	5.25	Volts
Input Current (High)	$I_{F(O N)}$	8	10	mA
Input Voltage (Low)	V_{F} (OFF)	-	0.7	Volts
Fan Out (each channel)	N		5	TTL Loads

Absolute Maximum Ratings

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 8 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 10 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}_{(\mathrm{OFF})} \leq 0.7 \mathrm{~V} \text {, unless otherwise specified. }}$

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Figure	Note
Logic Low Output Voltage	$\mathrm{V}_{\text {OL }}$			0.5	Volts	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$ (5 TTL Loads)	1	9
Logic High Output Voltage	VOH	2.4			Volts	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	2	9
Output Leakage Current	$\mathrm{IOHH}^{\text {O }}$			100	$\mu \mathrm{A}$	$V_{O}=5.25 \mathrm{~V}, V_{F}=0.7 \mathrm{~V}$		9
Logic Low Supply Current	ICCL		38	52	mA	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{E}=0 \mathrm{~V} \end{aligned}$		
Logic High Supply Current	ICCH		34	52	mA			
Input Forward Voltage	V_{F}	1.0	1.4	1.85	Volts	$I_{F}=10 \mathrm{~mA}$	4	9
Input Reverse Breakdown Voltage	$V_{\text {R }}$	5.0	7.0		Volts	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		9
Input-Output Insulation Leakage Current	$\mathrm{I}_{\text {- }} \mathrm{O}$			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{1-\mathrm{O}}=500 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		2, 3
Propagation Delay Time to Logic Low Output Level	tPHL		33	75	ns	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=9 \mathrm{~mA}$	$5,6,7$	4,9
Propagation Delay Time to Logic High Output Level	$\mathrm{tpLH}^{\text {P }}$		30	65	ns	$I_{F(O N)}=9 \mathrm{~mA}$	5,6,7	4.9
Pulse Width Distortion	$\left\|t_{\text {PHL }}-\mathrm{t}_{\text {PLLH }}\right\|$		3	35	ns	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=9 \mathrm{~mA}$	5,6	9
Logic High Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	500	3000		$V / \mu \mathrm{s}$	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{F}=0$	8	5,9
Logic Low Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	500	3000		$\mathrm{V} / \mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	8	5,9

*All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=9 \mathrm{~mA}$ except where noted.

Typical Characteristics All typicals $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, I_{F}=9 \mathrm{~mA}$ except where noted.

Parameter	Symbol	Typ.	Units	Test Conditions	Figure	Note
Input Current Hysteresis	$\mathrm{I}_{\text {HYS }}$	0.25	mA	$V_{C C}=5 \mathrm{~V}$	3	
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$	-1.11	$\mathrm{mV} /^{\circ} \mathrm{C}$	$\mathrm{I}_{F}=10 \mathrm{~mA}$	4	
Input-Output Resistance	$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$	10^{12}	ohms	$V_{1-0}=500 \mathrm{VDC}$		2
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$	0.6	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}$		2
Input Capacitance	C_{in}	15	pF	$\begin{aligned} & f=1 \mathrm{MHz}, V_{0}=0 V_{1} \\ & \text { Pins } 1 \text { and } 2 \text {, Pins } 3 \text { and } 4 \end{aligned}$		
Input-Input Capacitance	C_{1-1}	1.3	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		8
Input-Input Leakage Current	I_{L}	0.5	nA	$\mathrm{V}_{\mathrm{L}-1}=500 \mathrm{VDC}, 45 \% \mathrm{RH}$		8
Input-Input Resistance	R_{1-1}	10^{12}	ohms	$V_{1-1}=500 \mathrm{VDC}$		8
Logic Low Short Circuit Output Current	lost	65	mA	$V_{O}=V_{C C}=5.25 \mathrm{~V}, I_{F}=10 \mathrm{~mA}$		6,9
Logic High Short Circuit Output Current	l OSH	-50	mA	$V_{C C}=5.25 \mathrm{~V}_{1} I_{F}=0 \mathrm{~mA}, V_{O}=G N D$		6,9
Output Rise Time ($10-90 \%$)	t_{r}	15	ns		5	
Output Fall Time (90-10\%)	t_{f}	10	ns		5	
Power Supply Noise Immunity	PSNI	0.5	V_{p-p}	$48 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{AC}} \leq 50 \mathrm{MHz}$		7

Notes:

1. Not to exceed 5% duty factor, not to exceed 50μ sec pulse width.
2. Device considered a two terminal device: pins 1-4 shorted together, and pins 5-8 shorted together.
3. This is momentary withstand test, not an operating condition.
4. $t_{\text {PHL }}$ propagation delay is measured from the 50% level on the rising edge of the input current pulse to the 1.5 V level on the falling edge of the output pulse. The $t_{\text {PLH }}$ propagation delay is measured from the 50% level on the falling edge of the input current pulse to the 1.5 V level on the rising edge of the output pulse.
5. $C M_{H}$ is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic high state (V_{O} (MIN) $>2.0 \mathrm{~V}$). CM_{L} is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic low state $\left(\mathrm{V}_{\mathrm{O}}(\mathrm{MAX})<0.8 \mathrm{~V}\right)$.
6. Duration of output short circuit time not to exceed 10 ms .
7. Power Supply Noise Immunity is the peak to peak amplitude of the ac ripple voltage on the $V_{C C}$ line that the device will withstand and still remain in the desired logic state. For desired logic high state, $\mathrm{V}_{\mathrm{OH}}(\mathrm{MIN})>2.0 \mathrm{~V}$, and for desired logic low state, $\mathrm{V}_{\mathrm{OL}}(\mathrm{MAX})<$ 0.8 volts.
8. Measured between pins 1, 2 shorted together and pins 3,4 shorted together.
9. Each channel.

Figure 1. Typical Logic Low Output Voltage vs. Logic Low Output Current

Figure 2. Typical Logic High Output Voltage vs. Logic High Output Current

Figure 3. Typical Output Voltage vs. Input Forward Current

Figure 5. Test Circuit for $\mathbf{t}_{\text {PLH }}, \mathbf{t}_{\text {PHL }}, \mathbf{t}_{\mathbf{r}}$, and $\mathbf{t}_{\mathbf{f}}$

I_{F} - INPUT FORWARD CURRENT -mA
Figure 7. Typical Propagation Delay vs. Input Forward Current

Figure 4. Typical Diode Input Forward Current Characteristic

Figure 6. Typical Propagation Delay vs. Ambient Temperature

"TOTAL LEAD LENGTH < 10 mm FROM DEVICE UNDER TEST. **SEE NOTE 5.
tC IS APPROXIMATELY 15 pF WHICH INCLUDES PROBE AND $\dagger C_{L}$ IS APPROXIMATELY 15 pF , WHICH INCLUDES PROBE AND
STRAY WIRING CAPACITANCE.

Figure 8. Test Diagram for Common Mode Transient Immunity and Typical Waveforms

Applications

Figure 9. Recommended HCPL-5430 Interface Circuit

Figure 10. Alternative HCPL-5430 Interface Circuit

Data Rate and Pulse-Width Distortion Definitions

Propagation delay is a figure of merit which describes the finite amount of time required for a system to translate information from input to output when shifting logic levels. Propagation delay from low to high ($t_{\text {pLH }}$) specifies the amount of time required for a system's output to change from a Logic 0 to a Logic 1, when given a stimulus at the input. Propagation delay from high to low ($\mathrm{t}_{\mathrm{PHL}}$) specifies the amount of time required for a system's output to change from a Logic 1 to a Logic 0 , when given a stimulus at the input (see Figure 5).

When $t_{\text {PLH }}$ and $t_{\text {PHL }}$ differ in value, pulse width distortion results. Pulse width distortion is defined as $\left|t_{\text {PHL }}-t_{\text {PLH }}\right|$ and determines the maximum data rate capability of a distortion-limited system. Maximum pulse width distortion on the order of $25-35 \%$ is typically used when specifying the maximum data rate capabilities of systems. The exact figure depends on the particular application (RS-232, PCM, $\mathrm{T}-1, \mathrm{etc}$.).

The HCPL-5430 optocoupler offers the advantages of specified propagation delay ($\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$), and pulse-width distortion ($\left|\mathrm{t}_{\mathrm{PLH}}{ }^{-\mathrm{t}_{\mathrm{PHL}}}\right|$) over temperature and power supply voltage ranges.

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett-Packard's HCPL-5431 optocoupler is in compliance with MIL-STD-883, Revision C. Testing consists of 100\% screening to Method 5004 and quality conformance inspection to Method 5005. Details of these test programs may be found in Hewlett-Packard's Optoelectronics Designer's Catalog.

See table below for specific electrical tests.

PART NUMBERING SYSTEM

Commercial Product	Class B Product
HCPL-5430	HCPL-5431

Figure 11. Operating Circuit for Burn-In and Steady State Life Tests

GROUP A - ELECTRICAL TESTS
QUANTITY/ACCEPT NO. $=116 / 0$

Subgroup 1 Static tests at $T_{A}=25^{\circ} \mathrm{C}-V_{O L}, V_{O H}, I_{O H H}, I_{C C L}, I_{C C H}, V_{F}, V_{\text {R }}, I_{\text {I- }}$
Subgroup 2 *Static tests at $T_{A}=+125^{\circ} \mathrm{C}-V_{\mathrm{OL}}, V_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OHH}}, I_{\mathrm{CLL}}, I_{\mathrm{CCH}}, V_{F}, V_{R}$
Subgroup 3 *Static tests at $T_{A}=-55^{\circ} \mathrm{C}-V_{\mathrm{OL}} V_{\mathrm{OH}}, \mathrm{IOHH}_{\mathrm{OH}} \mathrm{I}_{\mathrm{CCL}}, \mathrm{l}_{\mathrm{CCH}}, V_{F}, V_{R}$
Subgroup 4, 5, 6, 7, 8A and 8B These subgroups are not applicable to this device type.
Subgroup 9 *Switching tests at $T_{A}=25^{\circ} \mathrm{C}-t_{\text {PHL, }} t_{\text {PLH }},\left\|t_{\text {PHL }}-t_{\text {PLLH }}\right\|,\left\|C M_{H}\right\|,\left\|C M_{L}\right\|$
Subgroup 10 *Switching tests at $T_{A}=+125^{\circ} \mathrm{C}-t_{\text {PHL }}, t_{\text {PLH }},\left\|t_{\text {PHL }}-t_{\text {PLH }}\right\|$
Subgroup 11 ${ }^{*}$ Switching tests at $T_{A}=-55^{\circ} \mathrm{C}-t_{\text {PHL }}, t_{\text {PLH }}\| \|_{\text {PHLL }}-t_{\text {PLH }} \mid$

*Limits and conditions per Electrical Characteristics.

Features

- NEW-MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- HERMETICALLY SEALED 8 PIN DUAL IN-LINE PACKAGE
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ}$ C AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- 6N138, 6N139 AND 6N140A OPERATING COMPATIBILITY
- LOW INPUT CURRENT REQUIREMENT — 0.5 mA
- HIGH CURRENT TRANSFER RATIO 1500\% TYPICAL
- LOW OUTPUT SATURATION VOLTAGE 0.11 V TYPICAL
- 500 Vdc WITHSTAND TEST VOLTAGE
- HIGH COMMON MODE REJECTION
- LOW POWER CONSUMPTION
- HIGH RADIATION IMMUNITY

Description

The HCPL-5700 and 5701 units are hermetically sealed, low input current, high gain optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-5700) or with full MIL-STD-883 Class Level B testing (HCPL-5701). Both products are in eight pin hermetic dual in-line packages.
Each unit contains an AIGaAs light emitting diode which is optically coupled to an integrated high gain photon detector. The high gain output stage features an open collector output providing both lower output saturation voltage and

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- TELEPHONE RING DETECTION
- MICROPROCESSOR SYSTEM INTERFACE
- EIA RS-232-C LINE RECEIVER
- LEVEL SHIFTING
- DIGITAL LOGIC GROUND ISOLATION
- CURRENT LOOP RECEIVER
- ISOLATED INPUT LINE RECEIVER
- SYSTEM TEST EQUIPMENT ISOLATION
- PROCESS CONTROL INPUT/OUTPUT ISOLATION
higher signaling speed than possible with conventional photo-darlington optocouplers.
The supply voltage can be operated as low as 2.0 V without adversely affecting the parametric performance.
The HCPL-5700 and HCPL-5701 have a 200% minimum CTR at an input current of only 0.5 mA making them ideal for use in low input current applications such as MOS, CMOS, low power logic interfaces or line receivers. Compatibility with high voltage CMOS logic systems is assured by the 18 V Vcc, VOH current and the guaranteed maximum output leakage current at 18 V . The shallow depth and small junctions offered by the IC process provides better radiation immunity than conventional phototransistor optocouplers.

Upon special request, the following device selections can be made: CTR minimum of 300% to 600% at 0.5 mA , lower drive currents to 0.1 mA , and lower output leakage current levels to $100 \mu \mathrm{~A}$.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Voltage, Low Level	V_{FL}		0.7	V
Average Input Current High Level	$\mathrm{IFH}_{\mathrm{FH}}$	0.5	5	mA
Supply Voltage	$\mathrm{VCC}_{\mathrm{CC}}$	2.0	18	V

Absolute Maximum Ratings

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 sec . (1.6 mm below the seating plane)
Output Current lo	40 mA
Output Voltage Vo	-0.5 V to $20 \mathrm{~V}[1]$
Supply Voltage VCC	-0.5 to $20 \mathrm{~V}^{[1]}$
Output Power Dissipation	$50 \mathrm{~mW}{ }^{(2]}$
Peak Input Current	8 mA
Reverse Input Voltage, V_{R}	

Electrical Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratlo	CTR	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{gathered} 1500 \\ 1000 \\ 500 \end{gathered}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{IF}=1.6 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V C C=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \end{aligned}$	3	3
Logic Low Output Voltage	VOL		$\begin{aligned} & \hline 0.11 \\ & 0.13 \\ & 0.16 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IF}=0.5 \mathrm{~mA}, \mathrm{IO}=1.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{IF}=1.6 \mathrm{~mA}, \mathrm{IO}=3.2 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{IF}=5.0 \mathrm{~mA}, \mathrm{IO}=10 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V} \end{aligned}$	2	
Logic High Output Current	IOH		0.001	250	$\mu \mathrm{A}$	$V_{F}=0.7 \mathrm{~V}, V_{O}=V_{C C}=18 \mathrm{~V}$		
Logic Low Supply Current	ICCL		1.0	2.0	mA	$I F=1.6 \mathrm{~mA}, \mathrm{Vc}=18 \mathrm{~V}$	4	
Logic High Supply Current	1 CCH		0.001	7.5	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F} 1}=0, V \mathrm{Cc}=18 \mathrm{~V}$		
Input Forward Voltage	V_{F}	1.0	1.3	1.6	V	$\mathrm{IF}_{F}=1.6 \mathrm{~mA}_{\text {t }} \mathrm{T}_{A}=25^{\circ} \mathrm{C}$	1	
Input Reverse Breakdown Voltage	$B V_{\text {f }}$	5			V	$\mathrm{IA}_{\mathrm{A}}=10 \mu \mathrm{~A}$		
Input-Output Insulation Leakage Current	l-o			1.0	$\mu \mathrm{A}$	45% Relative Humidity, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $t=5 \mathrm{sec}, \mathrm{V}_{\mathrm{I}} \mathrm{O}=500 \mathrm{Vdc}$		4,5
Propagation Delay Time to Logic High At Output	tpelt		17	185	$\mu \mathrm{S}$	$\mathrm{IF}=0.5 \mathrm{~mA}, \mathrm{~F}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{VCC}=5 \mathrm{~V}$	7,8	
			14	115	μs	$\mathrm{IF}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, \mathrm{VCC}=5 \mathrm{~V}$	7.8	
			8	60	$\mu \mathrm{S}$	$\mathrm{IF}=5.0 \mathrm{~mA}_{\text {, }} \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{VCC}=5 \mathrm{~V}$	7,8	
Propagation Delay Time to Logic Low At Output	tpitl		10	185	$\mu \mathrm{S}$	$\mathrm{IF}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, V \mathrm{Vc}=5 \mathrm{~V}$	7,8	
			5	30	μs	$I_{F}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, \mathrm{VCC}^{\prime}=5 \mathrm{~V}$	7,8	
			2	12	$\mu \mathrm{s}$	$\mathrm{IF}_{F}=5.0 \mathrm{~mA} \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{VCC}=5 \mathrm{~V}$	7.8	
Common Mode Transient Immunity At Logic High Level Output	\| $\mathrm{CMH} \mid$	500	≥ 2000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I F=0, R_{L}=2.2 \mathrm{k} \Omega \\ & \|\mathrm{VCM}\|=50 \mathrm{~V}_{\mathrm{p}-\mathrm{p}:}, V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	9,10	6, 8
Common Mode Transient Immunity At Logic Low Level Output	$\|\mathrm{CML}\|$	500	≥ 1000		$V / \mu \mathrm{s}$	$\begin{aligned} & I F=1.6 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \mid \mathrm{VCM\mid}=50 \mathrm{~V}-\mathrm{p}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	9,10	7.8

*All typical values are at $\mathrm{V}_{\mathrm{C}} \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Typical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$

Parameter	Symbol	Typ.	Units	Test Conditions	Fig.	Note
Resistance (Input-Output)	$\mathrm{Fl}_{1-\mathrm{O}}$	10^{12}	Ω	$\mathrm{V} 1-\mathrm{O}=500 \mathrm{Vdc}$		9
Capacitance (input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$	2.0	pF	$f=1 \mathrm{MHz}$		9
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$	-1.5	$\begin{aligned} & \mathrm{mV} f \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{IF}=1.6 \mathrm{~mA}$		
Input Capacitance	CIN	15	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		

NOTES:

1. GND Pin should be the most negative voltage at the detector side. Keeping $V_{C C}$ as low as possible, but greater than 2.0 V , will provide lowest total I_{OH} over temperature.
2. Output power is collector output power plus one half of total supply power.
3. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, ${ }^{O}$, to the forward LED input current, I_{F}, times 100%.
4. Device considered a two-terminal device. Pins 1 through 4 are shorted together and pins 5 through 8 are shorted together.
5. This is a momentary withstand test, not an operating condition.
6. CM_{H} is the maximum tolerable common mode transient such that the output will

- remain in a high logic state (i.e. $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).

7. CM_{L} is the maximum tolerable common mode transient such that the output will remain in a low logic state (i.e. $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
8. In applications where $d V / d t$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, $R_{C C}$, is recommended to protect the detector IC from destructively high surge currents. The recommended maximum value is
$R_{C C}=\frac{1 V}{0.15 I_{F}(m A)} \mathrm{k} \Omega$.
9. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together.

Figure 1. Input Current vs. Forward Voltage.

Figure 4. Normalized Supply Current vs. Input Forward Current.

If - INPUT FORWARD CURRENT (mA)
Figure 7. Propagation Delay vs. Input Forward Current.

Figure 2. Normalized DC Transfer Characteristics.

Figure 5. Propagation Delay to Logic Low vs. Input Pulse Period.

I_{F} - INPUT FORWARD CURRENT (mA)
Figure 3. Normalized Current Transfer Ratio vs. Input Forward Current.

Figure 6. Propagation Delay vs. Temperature.

Figure 8. Switching Test Circuit

Figure 9. Test Circuit for Transient Immunity and Typical Waveforms
*See Note 8

$V_{C M}$ - COMMON MODE TRANSIENT AMPLITUDE (V)
Figure 10. Common Mode Transient Immunity vs. Common Mode Transient Amplitude

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett-Packard's HCPL-5701 optocoupler is in compliance with MIL-STD-883, Revision C. Testing consists of 100\% screening to Method 5004 and quality conformance inspection to Method 5005. Details of these test programs may be found in Hewlett-Packard's Optoelectronics Designer's Catalog.

See table below for specific electrical tests.

PART NUMBERING SYSTEM

Commercial Product	Class B Product
HCPL-5700	HCPL-5701

Figure 11. Operating Circuit for Burn-In and Steady State Life Tests
GROUP A - ELECTRICAL TESTS
QUANTITY/ACCEPT NO. $=116 / 0$

Subgroup 1 *Static tests at $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}-\mathrm{IOH}, \mathrm{VOL}, \mathrm{ICCL}, \mathrm{ICCH}, \mathrm{CTR}, \mathrm{VFF}_{\mathrm{F}}, \mathrm{BV}$ R and $\mathrm{I}_{\mathrm{t}-\mathrm{O}}$				
Subgroup 2 *Static tests at $T_{A}=+125^{\circ} \mathrm{C}-1 \mathrm{OH}, \mathrm{VOL}, \mathrm{ICCL}, \mathrm{ICCH}, \mathrm{BV}$, and CTR				
Symbol	Min.	Max.	Units	Test Conditions
V_{F}		1.8	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$
Subgroup 3 ${ }^{*}$ Static tests at $T_{A}=-55^{\circ} \mathrm{C}-\mathrm{IOH}, \mathrm{VOL}$, ICCL, ICCH, BVR and CTR				
Symbol	Min.	Max.	Units	Test Conditions
V_{F}		1.8	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$
Subgroup 4, 5, 6, 7, 8A and 8B These subgroups are not applicable to this device type.				
Subgroup 9 ${ }^{*}$ Switching tests at $T_{A}=25^{\circ} \mathrm{C}-\mathrm{t}_{\text {PLH1 }}, \mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH2 }}, \mathrm{t}_{\text {PHL2 }}, \mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL3 }}, \mathrm{CM}_{H}$ and CM_{L}				
Subgroup 10 ${ }^{*}$ Switching tests at $T_{A}=+125^{\circ} \mathrm{C}-t_{\text {PLH } 1}, t_{\text {PHL }}, t_{\text {PLH } 2}, t_{\text {PHL2 }}, t_{\text {PLH }}, t_{\text {PHL }}$				
Subgroup 11 *Switching tests at $T_{A}=-55^{\circ} \mathrm{C}-\mathrm{t}_{\text {PLH } 1}, \mathrm{t}_{\text {PHL } 1}, \mathrm{t}_{\text {PLH } 2}, \mathrm{t}_{\text {PHL2 }}, \mathrm{t}_{\text {PLH3 }}, \mathrm{t}_{\text {PHL }} 3$				

*Limits and conditions per Table II.

Features

- NEW - MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- HERMETICALLY SEALED 8 PIN DUAL IN-LINE PACKAGE
- PERFORMANCE GUARANTEED OVER -55 ${ }^{\circ}$ C TO $+125^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- HCPL-2730/2731 AND 6N140A OPERATING COMPATIBILITY
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- HIGH CURRENT TRANSFER RATIO 1500\% TYPICAL
- LOW OUTPUT SATURATION VOLTAGE 0.11 V TYPICAL
- 500 Vdc WITHSTAND TEST VOLTAGE
- HIGH COMMON MODE REJECTION
- LOW POWER CONSUMPTION
- HIGH RADIATION IMMUNITY

Description

The HCPL-5730 and HCPL-5731 units are dual channel, hermetically sealed, low input current, high gain optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-5730) or with full MIL-STD-883 Class Level B testing (HCPL-5731). Both products are in eight pin hermetic dual in-line packages.
Each unit contains two independent channels, consisting of an AIGaAs light emitting diode optically coupled to an integrated high gain photon detector. The high gain output stage features an open collector output providing both

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- TELEPHONE RING DETECTION
- MICROPROCESSOR SYSTEM INTERFACE
- EIA RS-232-C LINE RECEIVER
- LEVEL SHIFTING
- DIGITAL LOGIC GROUND ISOLATION
- CURRENT LOOP RECEIVER
- ISOLATED INPUT LINE RECEIVER
- SYSTEM TEST EQUIPMENT ISOLATION
- PROCESS CONTROL INPUT/OUTPUT ISOLATION
lower output saturation voltage and higher signaling speed than possible with conventional photo-darlington optocouplers.

The supply voltage can be operated as low as 2.0 V without adversely affecting the parametric performance.
The HCPL-5730 and HCPL-5731 have a 200% minimum CTR at an input current of only 0.5 mA making them ideal for use in low input current applications such as MOS, CMOS, low power logic interfaces or line receivers. Compatibility with high voltage CMOS logic systems is assured by the 18 V Vcc, $\mathrm{VOH}_{\text {OH }}$ current and the guaranteed maximum output leakage current at 18 V . The shallow depth and small junctions offered by the IC process provides better radiation immunity than conventional phototransistor optocouplers.
Upon special request, the following device selections can be made: CTR minimum of 300% to 600% at 0.5 mA , lower drive currents to 0.1 mA , and lower output leakage current levels to $100 \mu \mathrm{~A}$.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Voltage, Low Level (Each Channel)	$V_{F L}$		0.7	V
Average Input Current High Level (Each Channel)	$\mathrm{IFH}_{\mathrm{FH}}$	0.5	5	mA
Supply Voltage	VCC	2.0	18	V

Absolute Maximum Ratings

Electrical Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1000 \\ & 500 \end{aligned}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, \mathrm{VO}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \\ & I_{F}=1.6 \mathrm{~mA}, V \mathrm{~V}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{VO}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \end{aligned}$	3	3,4
Logic Low Output Voltage	Vol		$\begin{aligned} & \hline 0.11 \\ & 0.13 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \bar{V} \\ & v \\ & V \end{aligned}$	$\begin{aligned} & I F=0.5 \mathrm{~mA}, \mathrm{IO}=1.0 \mathrm{~mA}, V C C=4.5 \mathrm{~V} \\ & \mathrm{IF}=1.6 \mathrm{~mA}, \mathrm{IO}=3.2 \mathrm{~mA}, V \mathrm{VCC}=4.5 \mathrm{~V} \\ & I F=5.0 \mathrm{~mA}, \mathrm{IO}=10 \mathrm{~mA}, V C C=4.5 \mathrm{~V} \end{aligned}$	2	3
Logic High Output Current	$\begin{gathered} \mathrm{IOHX} \\ \mathrm{IOH} \end{gathered}$		0.001	250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{F}}=0.7 \mathrm{~V}$ (Channel Under Test) If $=8 \mathrm{~mA}$ (Other Channel) $V_{0}=V_{c c}=18 \mathrm{~V}$		3.5
Logic Low Supply Current	Iecl		1.0	4	mA	$\begin{aligned} & I_{F_{1}}=I_{F 2}=1.6 \mathrm{~mA} \\ & V C C=18 \mathrm{~V} \end{aligned}$	4	
Logic High Supply Current	15 CH		0.001	15	$\mu \mathrm{A}$	$\begin{aligned} & T_{F 1}=I_{F 2}=0 \\ & V C C=18 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}	1.0	1.3	1.6	V	$i_{F}=1.6 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	3
Input Reverse Breakdown Voltage	$B V_{R}$	5			V	$\mathrm{IA}_{\mathrm{B}}=10 \mu \mathrm{~A}$		3
Input-Output Insulation Leakage Current	II-O			1.0	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \text { Relative Humidity, } T_{A}=25^{\circ} \mathrm{C} \\ & t=5 \mathrm{sec}_{1}, V_{1}-O=500 \mathrm{Vdc} \end{aligned}$		6,12
Propagation Delay Time to Logic High At Output	tPLH		17	185	$\mu \mathrm{s}$	IF $=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{VCC}=5 \mathrm{~V}$	7,8	3
			14	115	$\mu \mathrm{S}$	$\mathrm{I}_{F}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, \mathrm{VCC}=5 \mathrm{~V}$	7,8	3
			8	60	$\mu \mathrm{S}$	If $=5.0 \mathrm{~mA}, \mathrm{RL}=680 \mathrm{n}, \mathrm{VCC}=5 \mathrm{~V}$	7,8	3
Propagation Delay Time to Logic Low At Output	tPHL		10	185	$\mu \mathrm{s}$	IF $=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{kO}, \mathrm{VCC}=5 \mathrm{~V}$	7,8	3
			5	30	$\mu \mathrm{s}$	$\mathrm{If}_{F}=1.6 \mathrm{~mA}_{4} \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega, \mathrm{VCC}=5 \mathrm{~V}$	7.8	3
			2	12	$\mu \mathrm{s}$	$I_{F}=5.0 \mathrm{~mA}_{\text {, }} \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{VCC}=5 \mathrm{~V}$	7.8	3
Common Mode Transient Immunity At Logic High Level Output	[CMH\|	500	≥ 2000		V/ $/ \mathrm{s}$	$\begin{aligned} & I_{F}=0_{i} R_{L}=2.2 \mathrm{k} \Omega \\ & \|V C M\|=50 V_{p-p} V C C=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	9,10	$\begin{gathered} 3 \\ 9,11 \end{gathered}$
Common Mode Transient Immunity At Logic Low Level Output	$\|\mathrm{CML}\|$	500	≥ 1000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \|\mathrm{VCM}\|=50 \mathrm{~V} \mathrm{~V}-\mathrm{p}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	9,10	$\left\lvert\, \begin{gathered} 3 \\ 10,11 \end{gathered}\right.$

*All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Typical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Typ.	Units	Test Conditions	Fig.	Note
Resistance (Input-Output)	Rimo	10^{12}	Ω	$\mathrm{V}_{1-0}=500 \mathrm{Vdc}$		3,7
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$	2.0	pF	$f=1 \mathrm{MHz}$		3.7
Input-Input Insulation Leakage Current	H11	0.5	nA	$\begin{aligned} & 45 \% \text { Relative Humidity, } V_{1-1}=500 \mathrm{Vdc} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s} \text {. } \end{aligned}$		8
Resistance (input-Input)	R H_{1}	10^{12}	Ω	$\mathrm{V}_{\mathrm{l}-1}=500 \mathrm{Vdc}$		8
Capacitance (Input-Input)	C_{Cl}	1.3	pF	$f=1 \mathrm{MHz}$		8
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$	-1.5	$\begin{gathered} \mathrm{mV} t \\ { }^{\circ} \mathrm{C} \end{gathered}$	$I_{F}=1.6 \mathrm{~mA}$		3
Input Capacitance	CIN	15	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		3

NOTES:

1. GND Pin should be the most negative voltage at the detector side. Keeping V_{CC} as low as possible, but greater than 2.0 V , will provide lowest total I_{OH} over temperature.
2. Output power is collector output power plus one half of total supply power.
3. Each channel
4. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{0}, to the forward LED input current, I_{F}, times 100%.
5. OHX is the leakage current resulting from channel to channel optical crosstalk. $V_{F}=0.7 \mathrm{~V}$ for channel under test.
6. Device considered a two-terminal device: Pins 1 through 4 are shorted together and pins 5 through 8 are shorted together.
7. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together.
8. Measured between adjacent input pairs shorted together, i.e. between pins 1 and 2 shorted together and pins 3 and 4 shorted together.
9. CM_{H} is the maximum tolerable common mode transient such that the output will remain in a high logic state (i.e. $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).
10. CM_{L} is the maximum tolerable common mode transient such that the output will remain in a low logic state (i.e. $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
11. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, R_{CC}, is recommended to protect the detector IC's from destructively high surge currents. The recommended maximum value is

$$
R_{C C} \approx \frac{1 V}{0.3 I_{F}(\mathrm{~mA})} \mathrm{k} \Omega
$$

12. This is a momentary withstand test, not an operating condition.

Figure 1. Input Current vs. Forward Voltage.

Figure 4. Normalized Supply Current vs. Input Forward Current.

Figure 2. Normalized DC Transfer Characteristics.

Figure 5. Propagation Delay to Logic Low vs. Input Pulse Period.

Figure 3. Normalized Current Transfer Ratio vs. Input Forward Current.

Figure 6. Propagation Delay vs. Temperature.

Figure 7. Propagation Delay vs. Input Forward Current.

PULSE

Figure 8. Switching Test Circuit.

Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

Figure 10. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett-Packard's HCPL-5731 optocoupler is in compliance with MIL-STD-883, Revision C. Testing consists of 100% screening to Method 5004 and quality conformance inspection to Method 5005. Details of these test programs may be found in Hewlett-Packard's Optoelectronics Designer's Catalog.

See table below for specific electrical tests.

Figure 11. Operating Circuit for Burn-In and Steady State Life Tests.

PART NUMBERING SYSTEM

Commercial Product	Class B Product
HCPL-5730	HCPL-5731

GROUP A - ELECTRICAL TESTS

QUANTITY/ACCEPT NO. $=116 / 0$

Subgroup 1

${ }^{*}$ Static tests at $T_{A}=25^{\circ} \mathrm{C}-I_{O H}, I_{O H X}, V_{O L}, I_{C C L}, I_{C C H}, C T R, V_{F}, B_{R}$ and I_{1-O}
Subgroup 2
*Static tests at $T_{A}=+125^{\circ} \mathrm{C}-1 \mathrm{OH}, \mathrm{IOHX}, \mathrm{VOL}, \mathrm{ICCL}, \mathrm{ICCH}, \mathrm{BV}$ R and CTR

Symbol	Min.	Max.	Units	Test Conditions
V_{F}		1.8	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$

Subgroup 3

*Static tests at $T_{A}=-55^{\circ} \mathrm{C}-1 \mathrm{IOH}, \mathrm{IOHX}, \mathrm{VOL}, \mathrm{ICCL}$, $\mathrm{ICCH}, \mathrm{BV}$, and CTR

Symbol	Min.	Max.	Units	Test Conditions
V_{F}		1.8	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$

Subgroup 4, 5, 6, 7, 8A and 8B

These subgroups are not applicable to this device type.

Subgroup 9

${ }^{*}$ Switching tests at $T_{A}=25^{\circ} \mathrm{C}-t_{\text {PLH1 }}, t_{\text {PHL }}, t_{\text {PLH2 }}, t_{\text {PHL }}, t_{\text {PLH3 }}, t_{P H L 3}, C M_{H}$ and $C M_{L}$

Subgroup 10

${ }^{*}$ Switching tests at $T_{A}=+125^{\circ} \mathrm{C}-\mathrm{t}_{\text {PL.H }}, \mathrm{t}_{\text {PHL. }}, \mathrm{t}_{\text {PLH } 2}, \mathrm{t}_{\text {PHL } 2}, \mathrm{t}_{\mathrm{PL} . \mathrm{H} 3}, \mathrm{t}_{\text {PHL }} 3$

Subgroup 11

${ }^{*}$ Switching tests at $T_{A}=-55^{\circ} \mathrm{C}-t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\text {PLH2 }}, \mathrm{t}_{\text {PHL2 }}, \mathrm{t}_{\text {PLH3 }}, \mathrm{t}_{\text {PHL }} 3$
*Limits and conditions per Table II.

> AC/DC TO LOGIC INTERFACE HERMETICALLY SEALED OPTOCOUPLER

Features

- MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- HERMETICALLY SEALED 8 PIN DUAL IN-LINE PACKAGE
- PERFORMANCE GUARANTEED OVER -55 ${ }^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- AC OR DC INPUT
- PROGRAMMABLE SENSE VOLTAGE
- HYSTERESIS
- LOGIC COMPATIBLE OUTPUT
- HCPL-3700 OPERATING COMPATIBILITY
- 500 Vdc WITHSTAND TEST VOLTAGE
- THRESHOLDS GUARANTEED OVER TEMPERATURE
- THRESHOLDS INDEPENDENT OF LED CHARACTERISTICS

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- LIMIT SWITCH SENSING
- LOW VOLTAGE DETECTOR
- AC/DC VOLTAGE SENSING
- relar contact monitor
- RELAY COIL VOLTAGE MONITOR
- CURRENT SENSING
- MICROPROCESSOR INTERFACING
- TELEPHONE RING DETECTION

Description

The HCPL-5760 and HCPL-5761 units are hermetically sealed, voltage/current threshold detection optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-5760) or with full MIL-STD-883 Class Level B testing (HCPL-5761). Both products are in eight pin hermetic dual in-line packages.
Each unit contains an AIGaAs light emitting diode (LED), a threshold sensing input buffer IC, and a high gain photon detector to provide an optocoupler which permits adjustable external threshold levels. The input buffer circuit has a nominal turn on threshold of $2.5 \mathrm{~mA}\left(I_{\mathrm{TH}}\right)$ and 3.6 volts $\left(\mathrm{V}_{\mathrm{TH}}+\right.$). The addition of one or more external attenuation resistors permits the use of this device over a wide range of input voltages and currents. Threshold sensing prior to the LED and detector elements minimizes effects of different optical gain and LED variations over operating life (CTR degradation). Hysteresis is also provided in the buffer for extra noise immunity and switching stability.
The buffer circuit is designed with internal clamping diodes to protect the circuitry and LED from a wide range of overvoltage and over-current transients while the diode bridge enables easy use with ac voltage input.
The HCPL-5760/1, by combining several unique functions in a single package, provides the user with an ideal component for computer input boards and other applications where a predetermined input threshold optocoupler level is desirable.
The high gain output stage features an open collector output providing both TTL compatible saturation voltages and CMOS compatible breakdown voltages.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$V_{C C}$	3.0	18	Volts
Operating Frequency ${ }^{[1]}$	f	0	10	KHz

Absolute Maximum Ratings

Storage Temperature

O	$5^{\circ} \mathrm{C}$
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for $10 \mathrm{~s}^{[2]}$
Average Input Current - IN	. $15 \mathrm{~mA}{ }^{[3]}$
Surge Input Current - $\mathrm{I}_{\mathbf{1}, \mathrm{SG}}$	$140 \mathrm{~mA}^{[3,4]}$
Peak Transient Input Current - $1_{\text {IN,PK }}$	$.500 \mathrm{~mA}^{[3,4]}$
Input Power Dissipation - PIN	195 mW [5]
Total Package Power Dissipation - P_{d}	. 225 mW
Output Power Dissipation - P_{0}	50 mW
Average Output Current - l_{0}	40 mA
Supply Voltage - V $\mathrm{CCC}^{\text {(Pins }} 8$-5)	min., 20 V max.
Output Voltage - V_{O} (Pins 6-5)	V min., 20 V max.

Lead Solder Temperature $260^{\circ} \mathrm{C}$ for $10 \mathrm{~s}^{[2]}$
Average Input Current - $I_{\mathbb{N}}$. $15 \mathrm{~mA}^{[3]}$
Inve Current - INSG

Input Power Dissipation - PIN 195 mW[5]
Total Package Power Dissipation - P_{d}.............. 225 mW
Average Output Current - Io.......................... . . 40 mA
Supply Voltage - $V_{C c}$ (Pins $8-5$) -0.5 V min., 20 V max.
Output Voltage $-\mathrm{V}_{\mathrm{O}}$ (Pins 6-5) -0.5 V min., 20 V max.

Electrical CharacteristicS $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

*All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified.

Typical Characteristics
All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Symbol	Typ.	Units	Conditions	Fig.	Note
Hysteresis	$\mathrm{I}_{\text {HYS }}$	1.2	mA	$I_{\text {HYS }}=I_{\text {TH }}-1{ }_{\text {TH }}$	1	
	$V_{\text {HYS }}$	1.1	V	$V_{\text {HYS }}=V_{\text {TH }}+-V_{\text {TH- }}$		
Input Clamp Voltage	$V_{\text {LLC }}$	-0,76	V	$V_{\text {ILC }}=V_{2}-V_{3} ; V_{3}=G N D ; 1_{\text {IN }}=-10 \mathrm{~mA}$		
Bridge Diode Forward Voltage	$V_{01,2}$	0.62		$\mathrm{I}_{\mathrm{N}}=3 \mathrm{~mA}$ (see schematic)		
	$V_{D 3,4}$	0.73				
Input-Output Resistance	R_{1-0}	$10{ }^{12}$	Ω	$V_{1-0}=500 \mathrm{Vdc}$		9
Input-Output Capacitance	Cl_{1}	2.0	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{1-0}=0 \mathrm{Vdc}$		9
Input Capacitance	$\mathrm{Cin}^{\text {I }}$	50	pF	$f=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \text { Pins } 2 \& \mathrm{~B}_{4}$ Pins 1 \& 4 Open		
Output Rise Time (10-90\%)	t_{r}	10	$\mu \mathrm{s}$		7	
Output Fall Time (90-10\%)	t_{4}	0.5	$\mu \mathrm{S}$		7	

INPUT VOLTAGE OR CURRENT
Figure 1. Typical Transfer Characteristics (ac voltage is instantaneous value.)

Figure 2. Typical dc Threshold Levels vs. Temperature.

Notes:

1. Maximum operating frequency is defined when output waveform (Pin 6) attains only 90% of $V_{C C}$ with $R_{L}=1.8 \mathrm{k} \Omega, C_{L}=$ 15 pF using a 5 V square wave input signai.
2. Measured at a point 1.6 mm below seating plane.
3. Current into/out of any single lead.
4. Surge input current duration is 3 ms at 120 Hz pulse repetition rate. Transient input current duration is $10 \mu \mathrm{~s}$ at 120 Hz pulse repetition rate. Note that maximum input power, P_{IN}, must be observed.
5. Derate linearly above $100^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.26 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Maximum input power dissipation of 195 mW allows an input IC junction temperature of $150^{\circ} \mathrm{C}$ at an ambient temperature of $T_{A}=125^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta_{J A_{i}}=235^{\circ} \mathrm{C} / \mathrm{W}$. The typical thermal resistance from junction to case is equal to $170^{\circ} \mathrm{C} / \mathrm{W}$. Excessive PIN and T_{J} may result in device degradation.
6. The $1.8 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $4.7 \mathrm{k} \Omega$ pull-up resistor.
7. Logic low output level at Pin 6 occurs under the conditions of $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{T H}$ as well as the range of $\mathrm{V}_{I N}>\mathrm{V}_{\mathrm{TH}}$ - once V_{IN} has exceeded $V_{T H}+$. Logic high output level at Pin 6 occurs under the conditions of $V_{I N} \leq V_{T H-}$ as well as the range of $V_{I N}<$ $\mathrm{V}_{\mathrm{TH}+}$ once $\mathrm{V}_{\text {IN }}$ has decreased below $\mathrm{V}_{\mathrm{TH}-}$.
8. The ac voltage is instantaneous voltage.
9. Device considered a two terminal device: pins 1, 2, 3, 4 connected together, and Pins 5, 6, 7, 8 connected together.
10. This is a momentary withstand test, not an operating condition.
11. The $t_{\text {PHL }}$ propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse ($1 \mu \mathrm{~s}$ rise time) to the 1.5 V level on the leading edge of the output pulse (see Figure 7).
12. The $t_{\text {PLH }}$ propagation delay is measured from the 2.5 V level of the trailing edge of a 5.0 V input pulse ($1 \mu \mathrm{~s}$ fall time) to the 1.5 V level on the trailing edge of the output pulse (see Figure 7).
13. Common mode transient immunity in Logic High level is the maximum tolerable $\mathrm{dV}_{\mathrm{CM} / \mathrm{dt}}$ of the common mode voltage, V_{CM}, to ensure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode voltage, V_{CM}, to ensure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$). See Figure 8.
14. In applications where $\mathrm{dV} \mathrm{V}_{\mathrm{CM} / \mathrm{dt}}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge), a series resistor, R_{cc}, should be included to protect the detector IC from destructively high surge currents. The recommended value for R $C c$ is 240Ω per volt of allowable drop in $V_{C C}$ (between $\operatorname{Pin} 8$ and $V_{C C}$) with a minimum value of 240Ω.

Figure 3. Typical Input Characteristics, IIN vs. VIN. (ac voltage is instantaneous value.)

Figure 5. Typical High Level Supply Current, $\mathbf{I}_{\mathbf{C C H}}$ vs. Temperature.

Figure 4. Typical Input Current, $I_{I N}$, and Low level Output Voltage, V_{OL}, vs. Temperature.

Figure 6. Typical Propagation Delay vs. Temperature.

Figure 7. Switching Test Circuit.

** C_{L} IS 15 pF , WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE.

Figure 8. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett-Packard's HCPL-5761 optocoupler is in compliance with MIL-STD-883, Revision C. Testing consists of 100% screening to Method 5004 and quality conformance inspection to Method 5005. Details of these test programs may be found in Hewlett-Packard's Optoelectronics Designer's Catalog.
See table below for specific electrical tests.

GROUP A - ELECTRICAL TESTS
QUANTITY/ACCEPT NO. $=116 / 0$

PART NUMBERING SYSTEM

Commercial Product	Class B Product
HCPL-5760	HCPL-5761

Figure 9. Operating Circult for Burn-In and Steady State Life Tests

[^26]
Electrical Considerations

The HCPL-5760/1 optocoupler has internal temperature compensated, predictable voltage and current threshold points which allow selection of an external resistor, R_{x}, to determine larger external threshold voltage levels. For a desired external threshold voltage, $\mathrm{V}_{ \pm}$, a corresponding typical value of R_{x} can be obtained from Figure 10. Specific calculation of R_{X} can be obtained from Equation (1) of Figure 11. Specification of both V_{-}and V_{+}voltage threshold levels simultaneously can be obtained by the use of R_{x} and R_{p} as shown in Figure 11 and determined by Equations (2) and (3).
R_{X} can provide over-current transient protection by limiting input current during a transient condition. For monitoring contacts of a relay or switch, the HCPL-5760/1 in combination with R_{x} and R_{p} can be used to allow a specific current to be conducted through the contacts for cleaning purposes (wetting current).
The choice of which input voltage clamp level to choose depends upon the application of this device (see Figure 3). It is recommended that the low-clamp condition be used when possible to lower the input power dissipation as well as the LED current, which minimizes LED degradation over time.
In applications where $\mathrm{dV}_{\mathrm{CM} / \mathrm{dt}}$ may be extremely large (such as static discharge), a series resistor, R_{CC}, should be connected in series with V_{CC} and Pin 8 to protect the detector IC from destructively high surge currents. See note 14 for determination of R_{CC}. In addition, it is recommended that a ceramic disc bypass capacitor of $0.01 \mu \mathrm{f}$ to $0.1 \mu \mathrm{f}$ be placed between Pins 8 and 5 to reduce the effect of power supply noise.
For interfacing ac signals to TTL systems, output low pass filtering can be performed with a pullup resistor of 1.5Ω and $20 \mu \mathrm{f}$ capacitor. This application requires a Schmitt trigger gate to avoid slow rise time chatter problems. For ac input applications, a filter capacitor can be placed across the dc input terminals for either signal or transient filtering.

Figure 10. Typical External Threshold Characteristics, $\mathbf{V}_{ \pm}$vs. $\mathbf{R}_{\mathbf{x}}$.

Figure 11. External Threshold Voltage Level Selection.

Either ac (Pins 1, 4) or dc (Pins 2, 3) input can be used to determine external threshold levels.

For one specifically selected external threshold voltage level V_{+}or V_{-}, R_{x} can be determined without use of R_{p} via

For two specifically selected external threshold voltage levels, V_{+}and V_{-}, the use of R_{x} and R_{p} will permit this selection via equations (2), (3) provided the following conditions are met:
$\frac{V_{+}}{V_{-}} \geq \frac{V_{T H_{+}}}{V_{T H-}}$ and $\frac{V_{+}-V_{T H_{+}}}{V_{-}-V_{T H-}}<\frac{I_{T H_{+}}}{I_{T H_{-}}}$
$R_{X}=\frac{V_{T H_{-}}\left(V_{+}\right)-V_{T_{H^{+}}}\left(V_{-}\right)}{I_{T H^{+}}\left(V_{T_{H}-}\right)-I_{T H_{-}}\left(V_{T H_{+}}\right)}$

$$
\begin{equation*}
R_{p}=\frac{V_{T H_{-}}\left(V_{+}\right)-V_{T H_{+}}\left(V_{-}\right)}{I_{T H^{+}}\left(V_{-}-V_{T H_{-}}\right)+I_{T H-}\left(V_{T H^{+}}-V_{+}\right)} \tag{3}
\end{equation*}
$$

See Application Note 1004 for more information.

Features

- NEW-MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- HERMETICALLY SEALED
- HIGH SPEED: TYPICALLY 400k BIT/S
- 2 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUTS
- 18 VOLT VCC
- DUAL-IN-LINE PACKAGE
- 1500 Vdc WITHSTAND TEST VOLTAGE
- HIGH RADIATION IMMUNITY
- HCPL-2530/2531 FUNCTION COMPATIBILITY

Applications

- HIGH RELIABILITY SYSTEMS
- LINE RECEIVERS
- DIGITAL LOGIC GROUND ISOLATION
- ANALOG SIGNAL GROUND ISOLATION
- SWITCHING POWER SUPPLY FEEDBACK ELEMENT
- VEHICLE COMMAND/CONTROL
- SYSTEM TEST EQUIPMENT
- LEVEL SHIFTING

Description

The 4N55 consists of two completely independent optocouplers in a hermetically sealed ceramic package. Each
channel has a light emitting diode and an integrated photon detector. Separate connections for the photodiodes and output transistor collectors improve the speed up to a hundred times that of a conventional phototransistor optocoupler by reducing the base-collector capacitance.

The 4N55 is suitable for wide bandwidth analog applications, as well as for interfacing TTL to LSTTL or CMOS. Current Transfer Ratio (CTR) is 9% minimum at I_{F} $=16 \mathrm{~mA}$ over the full military operating temperature range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The 18 V VCc capability will enable the designer to interface any TTL family to CMOS. The availability of the base lead allows optimized gain/ bandwidth adjustment in analog applications. The
shallow depth of the IC photodiode provides better radiation immunity than conventional phototransistor couplers.

Hewlett-Packard's new high reliability part type 4N55/883B meets Class B testing requirements for MIL-STD-883. This part is the recommended and preferred device from the 4N55 product family for use in high reliability applications.

See the selection guide at the front of this section for other devices in this family.

CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Absolute Maximum Ratings*

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature (1.6 mm below seating plane) Average Input Current, IF (each channel) 20 mA Peak Input Current, IF (each channel, $\leq 1 \mathrm{~ms}$ duration) $\ldots40 \mathrm{~mA}$
Reverse Input Voltage, V_{R} (each channel) 5V
Input Power Dissipation (each channel) 36 mW
Average Output Current, lo (each channel) 8mA
Peak Output Current, lo (each channel) 16mA
Supply Voltage, VCc (each channel) -0.5 V to 20 V
Output Voltage, Vo (each channel) \qquad -0.5 V to 20 V

Emitter Base Reverse Voltage, VEBO
 3.0 V

Base Current, I_{B} (each channel) 5 mA
Output Power Dissipation (each channel) 50 mW Derate linearly above $100^{\circ} \mathrm{C}$ free air temperature at a rate of $1.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TABLEI.

Recommended Operating Conditions (each channel)

	Symbol	Min.	Max.	Units
Input Current, Low Level	$I_{F L}$		250	$\mu \mathrm{~A}$
Supply Voltage	$V_{C C}$	2	18	V

TABLE II.
Electrical CharacteristicS $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR*	9	20		\%	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	2.3	1,2
Logic High Output Current	IOH		10	100	$\mu \mathrm{A}$	$\begin{aligned} & I_{F}=0, I_{F}(\text { other channel }:=20 \mathrm{~mA} \\ & V_{O}=V_{C C}=18 \mathrm{~V} \end{aligned}$	4	1
Output Leakage Current	$\mathrm{lOH1}{ }^{*}$		30	250	$\mu \mathrm{A}$	$\begin{aligned} & I_{F}=250 \mu \mathrm{~A}, \mathrm{If} \text { tother channel } l=20 \mathrm{~mA} \\ & V_{O}=V C C=18 \mathrm{~V} \end{aligned}$	4	1
Logic Low Supply Current	ICCL*		35	200	$\mu \mathrm{A}$	$\mathrm{I}_{1}=1{ }_{\text {F }}=20 \mathrm{~mA}, V_{C C}=18 \mathrm{~V}$	5	1
Logic High Supply Current	$1 \mathrm{CCH}^{*}$		0.1	10	$\mu \mathrm{A}$	$\begin{aligned} & I_{F}=0 \mathrm{~mA}, \text { If iother channel } i=20 \mathrm{~mA} \\ & V_{C C}=18 \mathrm{~V} \end{aligned}$		1
Input Forward Voltage	VF^{*}		1.5	1.8	V	$1 \mathrm{~F}=20 \mathrm{~mA}$	1	1
Input Reverse Breakdown Voltage	Bva*	3			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		1
Input-Output Insulation Leakage Current	I'-O*			1.0	$\mu \mathrm{A}$	45\% Relative Humidity, $T_{A}=25^{\circ} \mathrm{C}, t=5 \mathrm{~s}, V_{1-0}=1500 \mathrm{Vdc}$		3,9
Propagation Delay Time to Logic High at Output	tPLH*		1.0	6.0	$\mu \mathrm{S}$	$\begin{aligned} & R_{\mathrm{L}}=8.2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, V_{C C}=5 \mathrm{~V} \end{aligned}$	6,9	1
Propagation Delay Time to Logic Low at Output	tPHL*		0.4	2.0	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{L}}=8.2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{IF}_{\mathrm{F}}=16 \mathrm{~mA}, V_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	6.9	1

*JEDEC Registered Data.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
TABLE III.
Typical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbal	Typ.	Units	Test Conditions	Fig.	Note	
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$	-1.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}=20 \mathrm{~mA}$		1	
Input Capacitance	$\mathrm{Cin}^{\text {n }}$	120	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		1	
Resistance (Input-Output)	Ri-O	1012	Ω	$V_{1-0}=500 \mathrm{Vdc}$		1	
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$	1.0	pF	$\mathrm{f}=1 \mathrm{MHz}$		1,4	
Input-Input Insulation Leakage Current	1-1	1	pA	45\% Relative Humidity, $V_{1-1}=500 \mathrm{Vdc}, \mathrm{t}=5 \mathrm{~s}$		5	
Capacitance (Input-input)	CH_{4}	. 55	pF	$f=1 \mathrm{MHz}$		5	
Transistor DC Current Gain	hfe	150	-	$\mathrm{V}_{0}=5 \mathrm{~V}, 10=3 \mathrm{~mA}$		1	
Small Signal Current Transfer Ratio	$\frac{\Delta l o}{\Delta \mathrm{~F}}$	21	\%	$V_{C C}=5 \mathrm{~V}, V_{0}=2 \mathrm{~V}$	7	1	
Common Mode Transient Immunity at Logic High Level Output	\|CMH		1000	$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & l_{\mathrm{F}}=0, R_{\mathrm{L}}=8.2 \mathrm{k} \Omega \\ & V_{C M}=10 V_{p-p} \\ & \left.V_{0} \text { (min. }\right)=2.0 \mathrm{~V} \end{aligned}$	10	1,6
Common Mode Transient Immunity at Logic Low Level Output	\|CMLI	1000	$\mathrm{V} / \mu \mathrm{s}$		10	1,7	
Bandwidth	BW	2	MHz	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	8	8	

Notes:

1. Each channel.
2. Current Transfer Ratio is defined as the ratio of output collector current, Io, to the forward LED input current, IF, times 100%, CTR is known to degrade slightly over the unit's lifetime as a function of input current, temperature, signal duty cycle and system on time. Refer to Application Note 1002 for more detail. In short it is recommended that designers allow at least 20-25\% guardband for CTR degradation.
3. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
4. Measured between each input pair shorted together and the output pins for that channel shorted together.
5. Measured between pins 3 and 4 shorted together and pins 7 and 8 shorted together.
6. $C M_{H}$ is the steepest slope ($d V / d t$) on the leading edge of the common mode pulse, $V_{C M}$, for which the output will remain in the logic high state (i.e. $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$)
7. $C M_{L}$ is the steepest slope ($\mathrm{dV} / \mathrm{dt}$) on the trailing edge of the common mode pulse, V_{CM}, for which the output will remain in the logic low state (i.e. Vo < 0.8 V)
8. Bandwidth is the frequency at which the ac output voltage is 3dB below the low frequency asymptote.
9. This is a momentary withstand test, not an operating condition.

Figure 1. Input Diode Forward Characteristic.

Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.

Figure 5. Logic Low Supply Current vs. Input Diode Forward Current.

Figure 2. DC and Pulsed Transfer Characteristic

Figure 4. Logic High Output Current vs. Temperature.

Figure 6. Propagation Delay vs. Temperature.

Figure 7. Normalized Small Signal Current Transfer Ratio vs. Quiescent Input Current.

Figure 8a. Frequency Response

Figure 8b. Frequency Response

10\% DUTY CYCLE
$1 / \mathrm{f} \leqslant 100 \mu \mathrm{~s}$

Figure 9. Switching Test Circuit ${ }^{\star}$.

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett-Packard's 883B optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawing 81028 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.
Testing consists of 100% screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD-883. Details of these test programs may be found in Hewlett-Packard's Optoelectronics Designer's Catalog.

4N55/883B Clarifications:

I. 100% screening per MIL-STD-883, Method 5004 constant acceleration - condition A not E.
II. Quality Conformance Inspection per MIL-STD-883, Method 5005, Group A, B, C and D.
Group A - See table below for specific electrical tests.
Group B - No change
Group C - Constant Acceleration - Condition A not E.
Group D - Constant Acceleration - Condition A not E.

PART NUMBERING SYSTEM

Commercial Product	Class B Product
$4 N 55$	$4 N 55 / 883 B$

Figure 12. Operating Circuit for Burn-in and Steady State Life Tests

GROUP A - ELECTRICAL TESTS

QUANTITY/ACCEPT NO. $=116 / 0$

Subgroup 1

* Static tests at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{IOH}_{1}, \mathrm{BVR}_{\mathrm{R}}, 1 \mathrm{ICL}, \mathrm{ICCH}, \mathrm{CTR}, \mathrm{VF}, \mathrm{lOH} 1$ and $\mathrm{I}_{1}-\mathrm{O}$.

Subgroup 2

* Static tests at $T_{A}=+125^{\circ} \mathrm{C}, 1 \mathrm{IOH}, \mathrm{BVR}$ ICCL, $1 \mathrm{CCH}, \mathrm{CTR}, \mathrm{VF}_{\mathrm{F}}$ and 1 OH 1

Subgroup 3

* Static tests at $T_{A}=-55^{\circ} \mathrm{C}, \mathrm{IOH}, \mathrm{BVR}$ ICCL, $\mathrm{ICCH}, \mathrm{CTR}, \mathrm{VF}_{\mathrm{F}}$ and IOH 1

Subgroup 4, 5, 6, 7, 8A and 8B

These subgroups are non-applicable to this device type

Subgroup 9

* Switching tests at $T_{A}=25^{\circ} \mathrm{C}$, tpLH and tphiL

Subgroup 10

* Switching tests at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$, tPLH and TPHL

Subgroup 11

* Switching tests at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$, tpLH and tpHL

[^27]

DUAL CHANNEL HIGH CMR HIGH SPEED HERMETICALLY SEALED OPTOCOUPLER

NOTE:
A 0.01 TO $0.1 \mu \mathrm{~F}$ BYPASS CAPACITOR MUST BE CONNECTED BETWEEN PINS 15 AND 10.

Features

- NEW - MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- HERMETICALLY SEALED
- HIGH SPEED
- NEW - INTERNAL SHIELD FOR HIGHER CMR
- TTL COMPATIBLE INPUT AND OUTPUT
- HIGH COMMON MODE REJECTION
- DUAL-IN-LINE PACKAGE
- 1500 VDC WITHSTAND TEST VOLTAGE
- EIA REGISTRATION
- HIGH RADIATION IMMUNITY
- HCPL-2631 FUNCTION COMPATIBILITY

Applications

- LOGIC GROUND ISOLATION
- LINE RECEIVER
- COMPUTER - PERIPHERAL INTERFACE
- VEHICLE COMMAND/CONTROL ISOLATION
- HARSH INDUSTRIAL ENVIRONMENTS
- SYSTEM TEST EQUIPMENT ISOLATION

Description

The 6N134 consists of a pair of inverting optically coupled gates, each with a light emitting diode and a unique high gain integrated photon detector in a hermetically sealed ceramic package. The output of the detector is an open collector Schottky clamped transistor. Internal shields provide a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$.

This unique dual coupler design provides maximum DC and $A C$ circuit isolation between each input and output while achieving TTL circuit compatibility. The isolator operational parameters are guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, such that a minimum input current of 10 mA in each channel will sink a six gate fanout (10 mA) at the output with 4.5 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec.

Hewlett-Packard's high reliability part type 8102801EC meets Class B testing requirements of MIL-STD-883. This part is the recommended and preferred device from the 6N134 product family for use in high reliability applications. Details of the 8102801EC test program may be seen in the data sheet for this part.

See the selection guide at the front of this section for other devices in this family.

[^28]
Recommended Operating Conditions

TABLE I

	Sym.	Min.	Max.	Units
Input Current, Low Level Each Channel	I_{FL}	0	250	$\mu \mathrm{~A}$
Input Current, High Level, Each Channel	I_{FH}	$12.5 \dagger$	20	mA
Supply Voltage	V_{CC}	4.5	5.5	V
Fan Out (TTL Load) Each Channel	N		6	
Operating Temperature	T_{A}	-55	125	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings*

$\dagger 12.5 \mathrm{~mA}$ condition permits at least 20\% CTR degradation guardband. Initial switching threshold is 10 mA or less.

TABLE II

Electrical Characteristics

Over Recommended Temperature ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Unless Otherwise Noted

Parameter	Symbol	Min.	Typ.**	Max.	Units	Test Conditions		Figure	Note
High Level Output Current	IOH^{*}		5	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A} \end{aligned}$			1
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}{ }^{*}$		0.4	0.6	V	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}(\text { Sinking })=10 \mathrm{~mA} \end{aligned}$		4	1,9
High Level Supply Current	${ }^{1} \mathrm{CCH}^{*}$		18	28	mA	$V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$ (Both Channels)			
Low Level Supply Current	${ }_{\text {ICCL }}{ }^{*}$		26	36	mA	$V_{C G}=5.5 \mathrm{~V}, I_{F}=20 \mathrm{~mA}$ (Both Channels)			
Input Forward Voltage.	V_{F}^{*}		1.5	1.75	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	1
	V_{F}			1.85	V	$\mathrm{I}_{F}=20 \mathrm{~mA}$		1	1
Input Reverse Breakdown Voltage	$B V_{R}{ }^{*}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1
Input-Output Insulation Leakage Current	1-0*			1.0	$\mu \mathrm{A}$	$\begin{array}{\|l} \hline V_{\mathrm{f}-\mathrm{O}}=1500 \mathrm{Vdc}, \\ \text { Relative Humidity }=45 \% \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s} \\ \hline \end{array}$			2, 10
Propagation Delay Time to High Output Level	$t_{\text {PLH }}{ }^{*}$		60	90	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\begin{aligned} & R_{L}=510 \Omega \\ & I_{F}=13 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	2,3	1, 5
	tPLH			100		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			
Propagation Delay Time to Low Output Level	tPHL^{*}		55	90	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\begin{aligned} & R_{L}=510 \Omega \\ & I_{F}=13 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	2,3	1,6
	$\mathrm{tPHL}^{\text {P }}$			100		$C_{L}=50 \mathrm{pF}$			
Common Mode Transient Immunity at High Output Level	$\left\|C M_{H}\right\|$	1000	10000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak), } \\ & V_{\mathrm{O}}(\mathrm{~min} .)=2 \mathrm{~V}, \\ & R_{\mathrm{L}}=510 \Omega, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$		6	1.7
Common Mode Transient Immunity at Low Output Level	\|CML	1000	10000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak), } \\ & V_{O}(\text { max. })=0.8 \mathrm{~V}, \\ & R_{L}=510 \Omega, I_{F}=10 \mathrm{~mA} \end{aligned}$		6	1,8

*JEDEC Registered Data
${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

TABLE III

Typical Characteristics
at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
EACH CHANNEL

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Input Capacitance	$\mathrm{CIN}_{\mathrm{I}}$		60		pF	$V_{F}=0, f=1 \mathrm{MHz}$		1
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.5		$\mathrm{mV}^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1
Resistance (Input-Output)	R_{1-0}		10^{12}		Ω	$V_{1-0}=500 \mathrm{~V}$		- 3
Capacitance (Input-Output)	C_{1-0}		1.7		pF	$f=1 \mathrm{MHz}$		3
Input-Input Leakage Current	I_{1-1}	*	0.5		nA	$\begin{aligned} & \text { Relative Humidity }=45 \% \\ & V_{1-1}=500 \mathrm{~V}, t=5 \mathrm{~s} \end{aligned}$		4
Resistance (Input-Input)	B_{1-1}		10^{12}		Ω	$V_{1-1}=500 \mathrm{~V}$		4
Capacitance (Input-Input)	C_{1-1}		0.55		pF	$\mathrm{f}=1 \mathrm{MHz}$		4
Output Rise Time (10-90\%)	tr_{r}		35		ns	$\begin{aligned} & R_{L}=510 \Omega, C_{L}=15 \mathrm{pF} \\ & I_{F}=13 \mathrm{~mA} \end{aligned}$		1
Output Fall Time (90-10\%)	tf		35		ns			

NOTES:

1. Each channel.
2. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
3. Measured between pins 1 and 2 or 5 and 6 shorted together, and pins 10,12, 14 and 15 shorted together.
4. Measured between pins 1 and 2 shorted together, and pins 5 and 6 shorted together.
5. The $t_{\text {PLH }}$ propagation delay is measured from the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
6. The t_{PHL} propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
7. CM_{H} is the max. tolerable common mode transient to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\mathrm{O}}>$ 2.0 V).
8. $C M_{\mathrm{L}}$ is the max. tolerable common mode transient to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
9. It is essential that a bypass capacitor (.01 to $0.1 \mu \mathrm{~F}$, ceramic) be connected from pin 10 to pin 15. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm .
10. This is a momentary withstand test, not an operating condition.

Figure 1. Input Diode Forward Characteristic

*C INCLUDES PRobe and stray wiring capacitance.

Figure 2. Test Circuit for ${ }^{\text {t PHL }}$ and $\mathrm{PLH}{ }^{*}$

Figure 3. Propagation Delay, tPHL and tPLH vs. Pulse Input Current, $I_{\text {FH }}$

Figure 5. Propagation Delay vs. Temperature

Figure 4. Input-Output Characteristics

Figure 6. Typical Common Mode Rejection Characteristics/Circuit

Features

- NEW—MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- RECOGNIZED BY DESC*
- HERMETICALLY SEALED
- MIL-STD-883 CLASS B TESTING
- HIGH SPEED
- NEW-INTERNAL SHIELD FOR HIGHER CMR
- PERFORMANCE GUARANTEED OVER - $55^{\circ} \mathrm{C}$ TO $+125^{\circ}$ C AMBIENT TEMPERATURE RANGE
- TTL COMPATIBLE INPUT AND OUTPUT
- DUAL-IN-LINE PACKAGE
- 1500 VDC WITHSTAND TEST VOLTAGE
- HIGH RADIATION IMMUNITY

Applications

- MILITARY/HIGH RELIABILITY SYSTEM
- LOGIC GROUND ISOLATION
- LINE RECEIVER
- COMPUTER-PERIPHERAL INTERFACE
- VEHICLE COMMAND/CONTROL ISOLATION
- SYSTEM TEST EQUIPMENT ISOLATION

Description

The 8102801EC is the DESC selected item drawing assigned by DOD for the 6N134 optocoupler which is in accordance with MIL-STD-883 class B testing. Operating characteristic curves for this part can be seen in the 6N134 data sheet.
The 810280 EC consists of a pair of inverting optically coupled gates, each with a light emitting diode and a unique high gain integrated photon detector in a hermetically sealed ceramic package. The output of the detector is an open collector Schottky clamped transistor. Internal shields provide a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$.
This unique dual coupler design provides maximum DC and AC circuit isolation between each input and output while achieving TTL circuit compatibility. The isolator operational parameters are guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, such that

a minimum input current of 10 mA in each channel will sink a six gate fanout (10 mA) at the output with 4.5 to 5.5 V VCC applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec .
The photo ICs used in this device are less susceptible to, radiation damage than PIN photo diodes or photo transistors due to their relatively thinner photo region.
The test program performed on the 8102801 EC is in compliance with DESC drawing 81028 and the provisions of Method 5008, Class B of MIL-STD-883.

Recommended Operating Conditions

Supply Voltage Range
7 V (1 minute maximum) Input Current (each channel) 20 mA dc Storage Temperature Range $\ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Maximum Power Dissipation (both channels) .. 350 mW Lead Temperature
(soldering 10 seconds)
$300^{\circ} \mathrm{C}$ for 10 seconds
(1.6 mm below seating plane) Junction Temperature (T_{J}) $175^{\circ} \mathrm{C}$

100\% Screening

MIL-STD-883, METHOD 5004 (CLASS B DEVICES)

Test Screen	Method	Conditions
1. Precap Internal Visual	2017	
2. High Temperature Storage	1008	Condition $\mathrm{C}, \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$, Time $=24$ hours minimum
3. Temperature Cycling	1010	Condition $\mathrm{C},-65^{\circ} \mathrm{C}$ to $\pm 150^{\circ} \mathrm{C}, 10$ cycles
4. Constant Acceleration	2001	Condition $A, 5 K G ' s, Y_{1}$ and Y_{2} axis only
5. Fine Leak	1014	Condition A
6. Gross Leak	1014	Condition C
7. Interim Electrical Test	-	Optional
8. Burn-In	1015	$\begin{aligned} & \text { Condition } B \text {, Time }=160 \text { hours minimum } \\ & T_{A}=+125^{\circ} \mathrm{C}, V C C=5.5 \mathrm{~V}, \mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA} \text {, } \\ & \text { Io }=25 \mathrm{~mA} \text { (Figure 1) } \end{aligned}$
9. Final Electrical Test Electrical Test	-	Group A, Subgroup 1, 5\% PDA applies Group A, Subgroup 2, 3, 9
10. External Visual	2009	

Quality Conformance Inspection

GROUP A ELECTRICAL PERFORMANCE CHARACTERISTICS
QUANTITY/ACCEPT NO. $=116 / 0$

Test	Symbol	Conditions	Group A Subgroups ${ }^{[6]}$	Limits		Unit
				Min.	Max.	
Low Level Output Voltage	Vol	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} ; \mathrm{IF}=10 \mathrm{mAl} \mid \\ & \mathrm{OL}=10 \mathrm{~mA} \end{aligned}$	1,2,3	-	0.6	V
Current Transfer Ratio	hf (CTR)	$\begin{aligned} & V_{O}=0.6 \mathrm{~V} ; \mathrm{IF}=10 \mathrm{~mA} ;[1] \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1,2,3	100	-	\%
High Level Output Current	IOH	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} ; \mathrm{VO}_{\mathrm{C}}=5.5 \mathrm{~V}\|1\| ; \\ & \mathrm{IF}_{\mathrm{F}}=250 \mu \mathrm{~A} \end{aligned}$	1,2,3	-	250	$\mu \mathrm{Ado}$
High Level Supply Current	ICCH	$V_{C C}=5.5 \mathrm{~V}_{\mathrm{\prime}} \mathrm{IF} 1=\mathrm{IF}_{\mathrm{F} 2}=0 \mathrm{~mA}$	1,2,3	-	28	mAdc
Low Level Supply Current	ICCL	$\mathrm{V}_{C C}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{F} 1}=1 \mathrm{~F} 2=20 \mathrm{~mA}$	1,2,3	-	36	mA dc
Input Forward Voltage	V_{F}	$\left.I_{F}=20 \mathrm{mAl} 1\right]$	1,2	-	1.75	$V \mathrm{dc}$
			3	-	1.85	
Input Reverse Breakdown Voltage	VBR	$I_{R}=10 \mu \mathrm{~A}[1]$	$1,2,3$	5.0	-	V dc
Input to Output Insulation Leakage Current	11-0	$V_{10}=1500 \vee \mathrm{dc}[2]$ Relative Humidity $=45$ percent $t=5$ seconds	1	-	1.0	$\mu \mathrm{Adc}$
Capacitance Between Input/Output	Ol O	$\left.f=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{Cl} 3\right]$	4	-	4.0	pF
Propagation Delay Time, Low to High Output Level	tPLH	$\begin{aligned} & R_{\mathrm{L}}=510 \mathrm{n} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF[1.4]} ; \\ & I F=13 \mathrm{~mA} \end{aligned}$	9	-	100	ns
			10, 11	-	140	
Propagation Delay Time, High to Low Output Level	tPFHL	$\begin{aligned} & R_{\mathrm{L}}=510 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pFl}[1,51 ; \\ & \mathrm{F}_{\mathrm{F}}=13 \mathrm{~mA} \end{aligned}$	9	-	100	ns
			10, 11	-	120	
Output Rise Time	tien	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=510 \mathrm{\Omega}[1] ; \\ & \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{IF}=13 \mathrm{~mA} \end{aligned}$	9, 10,11	-	90	ns
Output Fall Time	${ }_{\text {the }}$			-	40	
Common Mode Transient Immunity at High Output Level	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	$\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak); }[1,81 \\ & V_{O}=2 \mathrm{~V} \text { (minimum) } ; \\ & R_{E}=510 \Omega ; \\ & I_{F}=0 \mathrm{~mA} \end{aligned}$	9, 10, 11	1000	-	$\mathrm{V} / \mu \mathrm{s}$
Common Mode Transient Immunity at Low Output Level	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	$\begin{aligned} & V_{C M}=50 \mathrm{~V}(\text { peak }) ;[1,8] \\ & V_{O}=0.8 \mathrm{~V}(\text { maximum }) ; \\ & R_{L}=510 \Omega \\ & I_{F}=10 \mathrm{~mA} \end{aligned}$	9, 10, 11	1000	-	$\mathrm{V} / \mu \mathrm{s}$

See notes on following page.

Notes: 1. Each channel.
2. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
3. Measured between input pins 1 and 2, or 5 and 6 shorted together and output pins 10, 12, 14 and 15 shorted together.
4. The tplh propagation delay is measured from the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The tphl propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. Conditions of Group A subgroups may be seen in the High Reliability section of this catalog.
7. This is a momentary withstand test, not an operating condition.
8. The DESC drawing for this part guarantees a minimum CM_{H} and CM_{L} of $40 \mathrm{~V} / \mu \mathrm{s}$ and $-60 \mathrm{~V} / \mu \mathrm{s}$ respectively at $\mathrm{V}_{\mathrm{CM}}=$ 10 V (peak). HP's CMR testing exceeds these requirements.

GROUP B TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Physical Dimensions (Not required if Group D is to be performed)	2016		2 Devices (0 failures)
Subgroup 2 Resistance to Solvents	2015		4 Devices (0 failures)
Subgroup 3 Solderability (LTPD applies to number of leads inspected - no fewer than 3 devices shall be used.	2003	Soldering Temperature of $245 \pm 5^{\circ} \mathrm{C}$ for 10 seconds	$\begin{gathered} 10 \\ \text { (3 Devices) } \end{gathered}$
Subgroup 4 Internal Visual and Mechanical	2014		1 Device (0 failures)
Subgroup 5 Bond Strength Thermocompression: (Performed at precap, prior to seal LTPD applies to number of bond).	2011	Test Condition D	15
Subgroup 6 Internal Water Vapor Content (Not applicable - does not contain desiccant)	-		-
Subgroup 7* Electrical Test Electrostatic Discharge Sensitivity Electrical Test *(To be performed at initial qualification only)	3015	Group A, and Delta Limits in Accordance with Method 3015 Group A, and Delta Limits in Accordance with Method 3015	$3(0)$ with repeat for cumulative effects $15(0)$

GROUP C TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Steady State Life Test Endpoint Electricals at 1000 hours	1005	Condition B, Time $=1000$ hours total $T_{A}=+125^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.5 \mathrm{~V}$, $\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}, 10=25 \mathrm{~mA}$ (Figure 1) Group A, Subgroup 1, 2, 3	5
Subgroup 2 Temperature Cycling Constant Acceleration Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{aligned} & 1010 \\ & 2001 \\ & 1014 \\ & 1014 \\ & 1010 \end{aligned}$	Condition $\mathrm{C},-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, 10 cycles Condition $A, 5 K G s, Y_{1}$ and Y_{2} axis only Condition A Condition C Per Visual Criteria of Method 1010 Group A, Subgroup 1, 2, 3	15

GROUP D TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Physical Dimensions	2016		15
Subgroup 2 Lead Integrity	2004	Test Condition B2 (lead fatigue)	15
Subgroup 3 Thermal Shock Temperature Cycling Moisture Resistance Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \\ & 1014 \end{aligned}$	Condition B, $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ 15 cycles min. Condition $\mathrm{C},\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ 100 cycles min. Condition A Condition C Per Visual Criteria of Method 1004 \& 1010 Group A, Subgroup 1, 2, 3	15
Subgroup 4 Mechanical Shock Vibration Variable Frequency Constant Acceleration Fine Leak Gross Leak Visual Examination Endpoint Electricals	2002 2007 2001 1014 1014 1010	Condition B, $1500 \mathrm{G}, \mathrm{t}=0.5 \mathrm{~ms}$, 5 blows in each orientation Condition A Condition A, $5 \mathrm{KGs}, Y_{1}$ and Y_{2} axis only Condition A Condition C Per Visual Criteria of Method 1010 Group A, Subgroup 1, 2, 3	15
Subgroup 5 Salt Atmosphere Fine Leak Gross Leak Visual Examination	$\begin{aligned} & 1009 \\ & 1014 \\ & 1014 \\ & 1009 \end{aligned}$	Condition A min. Condition A Condition C Per Visual Criteria of Method 1009	15
Subgroup 6 Internal Water Vapor Content	1018	5000 ppm maximum water content at $100^{\circ} \mathrm{C}$.	3 Devices (0 failures) 5 Devices (1 failure)
Subgroup 7 Adhesion of Lead Finish	2025080		15
Subgroup 8 Lid Torque (not applicable - solder seal)	2024		5 Devices (0 failures)

Figure 1. Operating Circuit for Burn-in and Steady State Life Tests.

DUAL CHANNEL LINE RECEIVER HERMETIC OPTOCOUPLER

(Positive Logic)

Input	Enable	Output
H	H	L
L	H	H
H	L	H
L	L	H

Features

- NEW-MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- HERMETICALLY SEALED
- MIL-STD-883 CLASS B TESTING
- HIGH SPEED - 10Mb/s
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ}$ C AMBIENT TEMPERATURE RANGE
- ACCEPTS A BROAD RANGE OF DRIVE CONDITIONS
- ADAPTIVE LINE TERMINATION INCLUDED
- INTERNAL SHIELD PROVIDES EXCELLENT COMMON MODE REJECTION
- EXTERNAL BASE LEAD ALLOWS "LED PEAKING" AND LED CURRENT ADJUSTMENT
- 1500 Vdc WITHSTAND TEST VOLTAGE
- HIGH RADIATION IMMUNITY
- HCPL-2602 FUNCTION COMPATIBILITY

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATED LINE RECEIVER
- SIMPLEX/MULTIPLEX DATA TRANSMISSION
- COMPUTER-PERIPHERAL INTERFACE
- MICROPROCESSOR SYSTEM INTERFACE
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- CURRENT SENSING
- INSTRUMENT INPUT/OUTPUT ISOLATION
- GROUND LOOP ELIMINATION
- PULSE TRANSFORMER REPLACEMENT

Description

The HCPL-1930 and HCPL-1931 units are dual channel, hermetically sealed, high CMR, line receiver optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-1930) or with full MIL-STD-883 Class Level B testing (HCPL-1931). Both products are in sixteen pin hermetic dual in-line packages.

Each unit contains two independent channels, consisting of a GaAsP light emitting diode, an input current regulator, and an integrated high gain photon detector. The input regulator serves as a line termination for line receiver applications. It clamps the line voltage and regulates the LED current so line reflections do not interfere with circuit performance.
(Continued on next page)

The regulator allows a typical LED current of 12.5 mA before it starts to shunt excess current. The output of the detector IC is an open collector Schottky clamped transistor. An enable input gates the detector. The internal detector shield provides a guaranteed common mode transient immunity specification of $\pm 1000 \mathrm{~V} / \mu \mathrm{sec}$.
DC specifications are compatible with TTL logic and are guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ allowing trouble free interfacing with digital logic circuits. An input current of

10 mA will sink a six gate fan-out (TTL) at the output with a typical propagation delay from input to output of only 45nsec.

CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Recommended Operating Conditions (each channel)

	Sym.	Min.	Max.	Units
Input Current, Low Level	I_{IL}	0	250	$\mu \mathrm{~A}$
Input Current, High Level	I_{IH}	12.5	60	mA
Supply Voltage, Output	$V_{C C}$	4.5	5.5	V
High Level Enable Voltage	V_{EH}	3.0	$\mathrm{~V}_{\mathrm{CC}}$	V
Low Level Enable Voltage	V_{EL}	0	0.8	V
Fan Out (TTL Load)	N		6	
Operating Temperature	T_{A}	-55	125	${ }^{\circ} \mathrm{C}$

* 12.5 mA condition permits at least 20% CTR degradation guardband. Initial switching threshold is 10 mA or less.

Absolute Maximum Ratings

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s (1.6 mm below seating plane) Forward Input Current-lI (Each Channel) \qquad $60 \mathrm{mAl}{ }^{2}$
Reverse Input Current \qquad 60 mA
Supply Voltage - VCC \qquad 7 V (1 Minute Maximum) Enable Input Voltage - V_{E} (Each Channel) 5.5 V
(Not to exceed Vcc by more than 500 mV) Output Collector Current - lo (Each Channel) 25 mA Output Collector Power Dissipation(Each Channel). 40 mW Output Collector Voltage - Vo (Each Channel) 7 V Total Package Power Dissipation 564 mW
Total Input Power Dissipation (Each Channel) ... 168 mW

Electrical Characteristics $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified

[^29]
Typical Characteristics $T_{A A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Typ.	Units	Test Conditions	Fig.	Note
Resistance (Input-Output)	$\mathrm{R}_{1-\mathrm{O}}$	10^{12}	Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$		3,13
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$	1.7	pF	$f=1 \mathrm{MHz}$		3, 13
Input-Input Insulation Leakage Current	${ }_{1-1}$	0.5	nA	45% Relative Humidity, $\mathrm{V}_{\mathrm{I}}=500 \mathrm{Vdc}$ $\mathrm{t}=5 \mathrm{~s}$.	maxa	11
Resistance (Input-Input)	R_{1-1}	10^{12}	Ω	$V_{1-1}=500 \mathrm{Vdc}$		11
Capacitance (Input-Input)	C_{1-1}	. 55	pF	$\mathrm{f}=1 \mathrm{MHz}$		11
Propagation Delay Time of Enable from $V_{E H}$ to $V_{E L}$	${ }_{\text {t ELH }}$	35	ns	$\begin{aligned} & R_{L}=510 \Omega, C_{L}=15 \mathrm{pF} \\ & I_{I}=13 \mathrm{~mA}, V_{E H}=3 \mathrm{~V}, V_{E L}=0 \mathrm{~V} \end{aligned}$	6,7	3,7
Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$	tehl	35	ns		6,7	3, 8
Output Rise Time ($10-90 \%$)	t_{r}	30	ns	$\begin{aligned} & R_{L}=510 \Omega, C_{L}=15 \mathrm{pF}, \\ & I_{I}=13 \mathrm{~mA} \end{aligned}$		3
Output Fall Time (90-10\%)	t_{t}	24	ns			3
Input Capacitance	Cl_{1}	60	pF	$f=1 \mathrm{MHz}, V_{1}=0$, PINS 1 to 2 or 5 to 6		3

NOTES:

1. Bypassing of the power supply line is required, with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator. The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to $0.1 \mu \mathrm{~F}$) may be needed to suppress regenerative feedback via the power supply.
2. Derate linearly at $1.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$.
3. Each channel.
4. Device considered a two terminal device: pins 1 through 8 are shorted together, and pins 9 through 16 are shorted together.
5. The $t_{\text {PLH }}$ propagation delay is measured from the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
6. The $t_{\text {PLH }}$ propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
7. The $t_{\text {ELH }}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
8. The t_{EHL} enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
9. CM_{H} is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e. $\mathrm{V}_{\text {OUT }}>2.0 \mathrm{~V}$).
10. $C M_{\mathrm{L}}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e. $\mathrm{V}_{\text {OUT }}<0.8 \mathrm{~V}$).
11. Measured between adjacent input leads shorted together, i.e. between :1,2 and 4 shorted together and pins 5,6 and 8 shorted together.
12. No external pull up is required for a high logic state on the enable input.
13. Measured between pins 1 and 2 or 5 and 6 shorted together, with pins 10 through 15 shorted together.

Figure 4. Propagation Delay vs. Temperature.

Figure 6. Enable Propagation Delay vs. Temperature

Figure 8. Typical Common Mode Transient Immunity

*CL INCLUDES PROBE AND STRAY WIRING CAPACITANCE

Figure 5. Test Circuit for $\mathrm{t}_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$.

Figure 7. Test Clircuit for $t_{E H L}$ and $t_{E L H}$.

Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

PART NUMBERING SYSTEM

Commercial Product	Class B Product
HCPL-1930	HCPL-1931

Figure 10. Burn In Circuit

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett-Packard's 883B Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawing 81028 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.

Testing consists of 100% screening to Method 5004 and quality conformance inspection to \cdot Method 5005 of MIL-STD-883. Details of this test program may be found in the High Reliability section of the Optoelectronics Designer's Catalog.
HCPL-1931 Clarifications:
I. 100% screening per MIL-STD-883, Method 5004 constant acceleration - Condition A not E.
II. Quality Conformance Inspection per MIL-STD-883, Method 5005, Group A, B, C, and D.
Group A - See table on next page for specific electrical tests.
Group B - No change.
Group C - Constant Acceleration - Condition A not E. Group D - Constant Acceleration - Condition A not E.

GROUP A
QUANTITY/ACCEPT NO. = 116/0

Subgroup 1 *Static tests at $T_{A}=25^{\circ} \mathrm{C}-I_{\mathrm{OH}}, V_{O L}, V_{I}, I_{C C H}, I_{C C L}, I_{E L}, V_{E H}, V_{E L}, V_{R}, I_{I-O}$			
Subgroup 2 ${ }^{*}$ Static tests at $T_{A}=+125^{\circ} \mathrm{C}-I_{O H}, V_{O L}, V_{1}, I_{C C H}, I_{C C L}, I_{E L}, V_{E H}, V_{E L}, V_{R}$			
Subgroup 3 ${ }^{*}$ Static tests at $T_{A}=-55^{\circ} \mathrm{C}-\mathrm{I}_{\mathrm{OH}}, V_{\mathrm{OL}}, V_{1}, \mathrm{I}_{\mathrm{CCH}}, I_{C C L}, I_{E L}, V_{E H}, V_{E L}, V_{R}$			
Subgroup 4, 5, 6, 7, 8A \& 8B - These subgroups are non-applicable to this device type.			
Subgroup 9 *Switching tests at $T_{A}=25^{\circ} \mathrm{C}-$ tpLH, tPHL, CM_{H} and CM_{L}			
Subgroup 10 Switching tests at $T_{A}=+125^{\circ} \mathrm{C}$			
Symbol	Max.	Units	Test Conditions
$t_{\text {PLH }}$	140	ns	$I_{1}=13 \mathrm{mAdc}, R_{L}=510 \Omega, C_{L}=50 \mathrm{pF}$
tpHL	120	ns	$\mathrm{I}_{1}=13 \mathrm{mAdc}, \mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Subgroup 11 Switching tests at $T_{A}=-55^{\circ} \mathrm{C}$			
Symbol	Max.	Units	Test Conditions
tple	140	ns	$I_{1}=13 \mathrm{mAdc}, R_{L}=510 \Omega, C_{L}=50 \mathrm{pF}$
tphL	120	ns	$\mathrm{I}_{1}=13 \mathrm{mAdc}, \mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

*Limits and conditions per Electrical Characteristics Table.

Application Circuits*

	$R=0, C=O P E N$			$\mathrm{A}=33 \mathrm{f} 2, \mathrm{C}=$ OPEN			R $=3392_{1} \mathrm{C}=390 \mathrm{pF}$			UNITS
ℓ	+1	150	300	41	150	300	<1	150	300	m
${ }_{\text {P PHL }}$	42	27	121	43	47	171	28	37	146	nsec
${ }_{\text {PPLH }}$	31	121	296	31	31	71	26	11	46	nsec

PROPAGATION DELAY TIMES SHOWN EXCLUDE DRIVER AND LINE DELAYS.
Figure A_{1} Polarity Non-Reversing.

	WITHOUT SCHOTTKY DIODES			WCHOTTKYDIODES			$\underset{A}{\text { SWITCH }}$	$\begin{gathered} \text { SWITCH } \\ B \end{gathered}$	UNITS
Q	$\times 1$	150	300	<1	150	300	+	-	m
	112	455	820	78	365	700	OPEN	OPEN	nsec
tp	52	410	730	54	305	580	OPEN	CLOSED	nsec
	52	410	490	54	395	490	CLOSED	CLOSED	nsec

PROPAGATION DELAY TIMES SHOWN EXCLUDE DRIVER AND LINE DELAYS USING $1 / 3$ 74LSO4 INVERTERS AND 74LSOO QUAD NAND

Figure $\mathbf{A}_{\mathbf{2}}$ Polarity Reversing, Split Phase.

san flop tolerate simultaneously HIGH inputs; NOR flip flop tolerates simultaneously
LOW inputs; EXCLUSIVE LOW inputs; EXCLUSI
OR flip flop tolerates simultaneously HIGH OR LOW inputs without causing either of the outputs to change. SEE HCPL-2602 DATA SHEET.

Figure A_{3} Flip Flop Configurations.

[^30]

Features

- NEW-MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ}$ C AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- HIGH DENSITY PACKAGING
- NEW-INTERNAL SHIELD FOR HIGHER CMR
- HERMETICALLY SEALED
- LOW INPUT CURRENT REQUIREMENT: 0.5 mA
- HIGH CURRENT TRANSFER RATIO: 1500\% TYPICAL
- LOW OUTPUT SATURATION VOLTAGE: 0.1 V TYPICAL
- LOW POWER CONSUMPTION
- 1500 Vdc WITHSTAND TEST VOLTAGE
- HIGH RADIATION IMMUNITY
- HCPL-2730/2731 FUNCTION COMPATIBILITY

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATED INPUT LINE RECEIVER
- SYSTEM TEST EQUIPMENT ISOLATION
- DIGITAL LOGIC GROUND ISOLATION
- EIA RS-232C LINE RECEIVER
- MICROPROCESSOR SYSTEM INTERFACE
- CURRENT LOOP RECEIVER
- LEVEL SHIFTING
- PROCESS CONTROL INPUT/OUTPUT ISOLATION

Description

The 6N140A is an EIA registered hybrid microcircuit which is capable of operation over the full military temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is electrically and functionally identical to the 6 N 140 part. It is an advanced replacement unit for the 6N140. Performance of the 6N140A over the full military temperature range results from an improved integrated bypass resistor which shunts photodiode and first stage leakage currents.
The 6N140A contains four GaAsP light emitting diodes, each of which is optically coupled to a corresponding integrated high gain photon detector. The high gain output stage features an open collector output providing both lower output saturation voltage and higher speed operation than possible with conventional photo-darlington type optocouplers. Also, the separate V_{CC} pin can be strobed low as an output disable or operated with supply voltages as low as 2.0V without adversely affecting the parametric performance.

The high current transfer ratio at very low input currents permits circuit designs in which adequate margin can be allowed for the effects of CTR degradation over time.
The 6N140A has a 300% minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing or RS-232C data transmission systems. Compatibility with high voltage CMOS logic systems is assured by the $18 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and by the guaranteed maximum output leakage (I_{OH}) at 18 V . The shallow depth of the IC photodiode provides better radiation immunity than conventional phototransistor couplers.

See the selection guide at the front of this section for other devices in this family.

TABLE I
Recommended Operating Conditions

	Symbal	Min.	Max.	Units
Input Current, Low Level (Each Channel)	IFL		2	$\mu \mathrm{~A}$
Input Current, High Level (Each Channel)	IFH	0.5	5	mA
Supply Voltage	VCC	2.0	18	V

TABLE II
Electrical Characteristics
$T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Unless Otherwise Specified

Parameter	Symbol	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note	
Current Transfer Ratio	CTR*	$\begin{aligned} & 300 \\ & 300 \\ & 200 \end{aligned}$	$\begin{array}{\|c\|} \hline 1500 \\ 1000 \\ 500 \\ \hline \end{array}$		$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=1.6 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V C C=4.5 \mathrm{~V} \\ & I_{F}=5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$	3	4,5	
Logic Low Output Voltage	Vol.		$\begin{aligned} & .1 \\ & .2 \end{aligned}$	$\begin{aligned} & .4 \\ & .4 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, I_{O L}=1.5 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=5 \mathrm{~mA}, I_{O L}=10 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$	2	4	
Logic High Output Current	$\frac{10 \mathrm{HX}}{1 \mathrm{OH}^{*}}$. 001	250	$\mu \mathrm{A}$	$I_{F}=2 \mu A$ (channel under test) $V_{0}=V_{C C}=18 \mathrm{~V}$		$\frac{4.6}{4}$	
Logic Low Supply Current	ICCL*		1.7	4	mA	$\begin{aligned} & I_{F_{1}=}=I_{\mathrm{F} 2}=I_{\mathrm{F} 3}=I_{\mathrm{F} 4}=1.6 \mathrm{~mA} \\ & V_{C C}=18 \mathrm{~V} \end{aligned}$			
Logic High Supply Current	$1 \mathrm{COH}^{*}$. 001	40	$\mu \mathrm{A}$	$\begin{aligned} & I_{F_{1}}=\mathrm{I}_{\mathrm{F} 2}=\mathrm{I}_{F 3}=\mathrm{i}_{\mathrm{F} 4}=0 \\ & \mathrm{VCC}=18 \mathrm{~V} \end{aligned}$			
Input Forward Voltage	$\mathrm{VF}_{\mathrm{F}}{ }^{*}$		1.44	1.7	V	$\mathrm{IF}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	4	
Input Reverse Breakdown Voltage	BVR**	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		4	
Input-Output Insulation Leakage Current	11-0*			1.0	$\mu \mathrm{A}$	45% Relative Humidity, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $t=5 \mathrm{~s}$., $V_{\mathrm{i}}^{\mathrm{m}} \mathrm{D}=1500 \mathrm{Vdc}$		7.13	
Propagation Delay Time To Logic High At Output	tPLu*		6	60	$\mu \mathrm{S}$	$I_{F}=0.5 \mathrm{~mA}, \mathrm{R}_{L}=4.7 \mathrm{k} \Omega, V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	8	4	
			4	20	$\mu \mathrm{s}$	$I_{F}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \mathrm{n}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	8	4	
Propagation Delay Time To Logic Low At Output	tPH. ${ }^{*}$		30	100	$\mu \mathrm{s}$	$\mathrm{I}_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	4	
			2	5	$\mu \mathrm{s}$	$1 \mathrm{Fm}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \mathrm{n}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$	8	4	
Common Mode Transient Immunity At Logic High Level Output	\|CMH		500	1000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & l_{F}=0, R_{L}=1.5 \mathrm{k} \Omega \\ & \left\|V_{C M}\right\|=50 V_{p-p}, V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	9	$\begin{gathered} 4 \\ 10,12 \end{gathered}$
Common Mode Transient Immunity At Logic Low Level Output	$\left\|C M_{L}\right\|$	500	1000		$V / \mu \mathrm{S}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=1.5 \mathrm{k} \Omega \\ & \left\|V_{C M}\right\|=50 V_{p-p}, V_{C C}=5.0 V_{+} T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	9	$\begin{gathered} 4 \\ 11,12 \end{gathered}$	

TABLE III

*JEDEC Registered Data
Typical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ Each Channel

Absolute Maximum Ratings*

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s . (1.6 mm below seating plane)
Output Current, IO (each channel)
40 mA
Output Voltage, V_{O} (each channel) $\ldots . . .-0.5$ to $20 \mathrm{~V}^{11 \mid}$
Supply Voltage, VCC -0.5 to $20 \mathrm{~V}^{|1|}$
Output Power Dissipation (each channel) ... $50 \mathrm{~mW}^{|2|}$
Peak Input Current (each channel,
$\leq 1 \mathrm{~ms}$ duration, 500 pps)
20 mA
Average Input Current, I_{F} (each channel) $\ldots . . .10 \mathrm{~mA}^{|3|}$
Reverse Input Voltage, V_{R} (each channel) 5V
${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Resistance Input-Output]	P1-0		1012		a	$V_{1-O}=500 \mathrm{Vdc} \mathrm{C} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4,8
Capacitance input-Outputi	$\mathrm{Cl}_{1+\mathrm{O}}$		1.5		pF	$f=1 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		4,8
Input-Input Insulation Leakage Current	H_{1-1}		0.5		nA	45% Relative Humidity, $V_{I-I}=500 \mathrm{Vdc}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}$.		9
Resistance (Input-input)	R_{1-1}		1012		Ω	$\mathrm{V}_{1-1}=500 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C}$		9
Capacitance (Input-Input)	$\mathrm{Cl}_{\underline{-1}}$		1		pF	$f=1 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}$		9
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.8		$\begin{aligned} & \mathrm{mv} / \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{IF}=1.6 \mathrm{~mA}$		4
Input Capacitance	CIN		60		pF	$f=1 \mathrm{MHz}, V_{F}=0, T_{A}=25^{\circ} \mathrm{C}$		4

NOTES. 1. Pin 10 should be the most negative voltage at the detector side. Keeping V_{CC} as low as possible, but greater than 2.0 volts, will provide lowest total 1 OH over temperature.
2. Output power is collector output power plus one fourth of total supply power. Derate at $1.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$.
3. Derate I_{F} at $0.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$.
4. Each channel
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I O, to the forward LED input current, I_{F}, times 100%.
6. I_{OHX} is the leakage current resulting from channel to channel optical crosstalk. $I_{F}=2 \mu \mathrm{~A}$ for channel under test. For all other channels, $I_{F}=10 \mathrm{~mA}$.
7. Device considered a two-terminal device: Pins 1 through 8 are shorted together and pins 9 through 16 are shorted together.
8. Measured between the LED anode and cathode shorted together and pins 10 through 15 shorted together.
9. Measured between adjacent input pairs shorted together, i.e. between pins 1 and 2 shorted together and pins 3 and 4 shorted together, etc.
10. $C M_{H}$ is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e. $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).
11. $C M_{\mathrm{L}}$ is the maximum tolerable common mode transient to assure that the output will remain in a low logic state (i.e. $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
12. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, R_{CC}, should be included to protect the detector IC's from destructively high surge currents. The recommended value is $R_{C C} \approx \frac{1 \mathrm{~V}}{0.6 \mathrm{I}_{\mathrm{F}}(\mathrm{mA})} \mathrm{k} \Omega$.
13. This is a momentary withstand test, not an operating condition

V_{F} - FORWARD VOLTAGE (V)
Figure 1. Input Diode Forward Current vs. Forward Voltage.

Figure 4. Normalized Supply Current vs. Input Diode Forward Current.

I_{F} - INPUT DIODE FORWARD CURRENT (mA)
Figure 7. Propagation Delay vs. Input Diode Forward Current.

Figure 2. Normalized DC Transfer Characteristics

Figure 5. Propagation Delay to Logic Low vs. Input Pulse Period.

Figure 8. Switching Test Circuit.*
(f, t_{p} not JEDEC registered)

**See Note 12.

Figure 10. Recommended Drive Circuitry Using TTL Logic.

MIL-STD-883 CLASS B TEST PROGRAM

Hewlett Packard's 883B Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawing 83024 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.
Testing consists of 100% screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD-883. Details of these test programs may be found in Hewlett-Packard's Optoelectronics Designer's Catalog. 6N140A/883B Clarifications:
I. 100% screening per MIL-STD-883, Method 5004 constant acceleration - condition A not E.
II. Quality Conformance Inspection per MIL-STD-883, Method 5005, Group A,B,C and D.
Group A - See table below for specific electrical tests:
Group B - No change

Group C - Constant Acceleration - Condition A not E. Group D - Constant Acceleration - Condition A not E.

PART NUMBERING SYSTEM

Commercial Product	Class B Product
6 N 140 A	$6 \mathrm{~N} 140 \mathrm{~A} / 883 \mathrm{~B}$

Figure 11. Operating Circuit for Burn-In and Steady State Life Tests.

GROUP A - ELECTRICAL TESTS QUANTITY/ACCEPT NO. $=\mathbf{1 1 6 / 0}$

Subgroup 1

${ }^{*}$ Static tests at $T_{A}=25^{\circ} \mathrm{C}-\mathrm{l}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}, \mathrm{CTR}, \mathrm{V}_{\mathrm{F}}, \mathrm{BV}_{\mathrm{A}}$ and $\mathrm{I}_{\mathrm{I}-\mathrm{O}}$
Subgroup 2
*Static tests at $T_{A}=+125^{\circ} \mathrm{C}-I_{\mathrm{OH}}, I_{\mathrm{OH}}, I_{\mathrm{CCL}}, I_{\mathrm{CCH}}, \mathrm{CTR}$

Symbol	Min.	Max.	Units	Test Conditions
V_{F}		1.7	V	$I_{F}=1.6 \mathrm{~mA}$
$B V_{R}$	5		V	$I_{R}=10 \mu \mathrm{~A}$

Subgroup 3

*Static tests at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}-\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OHX}}, \mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}, \mathrm{CTR}$

Symbol	Min.	Max.	Units	Test Conditions
V_{F}		1.8	V	$I_{F}=1.6 \mathrm{~mA}$
$B V_{R}$	5		V	$I_{R}=10 \mu \mathrm{~A}$

Subgroup 4, 5, 6, 7, 8A and 8B
These subgroups are not applicable to this device type.

Subgroup 9

*Switching tests at $T_{A}=25^{\circ} \mathrm{C}-\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL} 2}, \mathrm{CM}_{H}$ and CM_{L}.

Subgroup 10

Switching tests at $T_{A}=+125^{\circ} \mathrm{C}$

Symbol	Max.	Units	Test Conditions	
tpleht	60	$\mu \mathrm{S}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$	$V_{C C}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {PLH2 }}$	30	$\mu \mathrm{S}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \mathrm{n}$	$V_{C C}=5.0 \mathrm{~V}$
$\mathrm{tpHL1}$	100	$\mu \mathrm{S}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$	$V_{C C}=5.0 \mathrm{~V}$
tphe?	10	$\mu \mathrm{S}$	$\mathrm{l}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \mathrm{n}$	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$

Subgroup 11

Switching tests at $T_{A}=-55^{\circ} \mathrm{C}$

Symbol	Max.	Units	Test Conditions	
$t_{\text {PLH } 1}$	60	$\mu \mathrm{~s}$	$I_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega$	$V_{C C}=5.0 \mathrm{~V}$
$t_{\text {PLH } 2}$	30	$\mu \mathrm{~s}$	$I_{F}=5 \mathrm{~mA}, R_{L}=680 \Omega$	$V_{C C}=5.0 \mathrm{~V}$
$t_{\text {PHL } 1}$	100	$\mu \mathrm{~s}$	$I_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega$	$V_{C C}=5.0 \mathrm{~V}$
$t_{\text {PHL } 2}$	10	$\mu \mathrm{~s}$	$I_{F}=5 \mathrm{~mA}, R_{L}=680 \Omega$	$V_{C C}=5.0 \mathrm{~V}$

*Limits and conditions per Table II.

Features

- NEW—MANUFACTURED AND TESTED ON A MIL-STD-1772 CERTIFIED LINE
- RECOGNIZED BY DESC*
- HERMETICALLY SEALED
- MIL-STD-883 CLASS B TESTING
- HIGH DENSITY PACKAGING
- NEW-INTERNAL SHIELD FOR HIGHER CMR
- PERFORMANCE GUARANTEED OVER - $55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- 1500 V dc WITHSTAND TEST VOLTAGE
- LOW INPUT CURRENT REQUIREMENT: 0.5 mA
- HIGH CURRENT TRANSFER RATIO: 1500\% TYPICAL
- LOW OUTPUT SATURATION VOLTAGE: 0.1 V TYPICAL
- LOW POWER CONSUMPTION
- HIGH RADIATION IMMUNITY

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATED INPUT LINE RECEIVER
- SYSTEM TEST EQUIPMENT ISOLATION
- DIGITAL LOGIC GROUND ISOLATION
- EIA RS-232C LINE RECEIVER
- MICROPROCESSOR SYSTEM INTERFACE
- CURRENT LOOP RECEIVER
- LEVEL SHIFTING
- PROCESS CONTROL INPUT/OUTPUT ISOLATION

Description

The 8302401EC is the DESC selected item drawing assigned by DOD for the 6N140A optocoupler which is in accordance with MIL-STD-883 class B testing. Operating characteristic curves for this part can be seen in the 6N140A data sheet. This hybrid microcircuit is capable of operation over the full military temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The 8302401EC contains four GaAsP light emitting diodes, each of which is optically coupled to a corresponding integrated high gain photon detector. The high gain output stage features an open collector output providing both lower output saturation voltage and higher speed operation than possible with conventional photo-darlington type optocouplers. Also, the separate V_{CC} pin can be strobed low as an output disable or operated with supply voltages as low as 2.0 V without adversely affecting the parametric performance.

The high current transfer ratio at very low input currents permits circuit designs in which adequate margin can be allowed for the effects of CTR degradation over time.
The 8302401 EC has a 300% minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing or RS-232C data transmission systems. Compatibility with high voltage CMOS logic systems is assured by the $18 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and by the guaranteed maximum output leakage $\left(\mathrm{I}_{\mathrm{OH}}\right)$ at 18 V . The shallow depth of the IC photodiode provides better radiation immunity than conventional phototransistor couplers.
The test program performed on the 8302401 EC is in compliance with DESC drawing 83024 and the provisions of method 5008, Class B of MIL-STD-883.

Absolute Maximum Ratings

Storage Temperature Range $\ldots . \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots \ldots-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s . (1.6mm below seating plane)

Output Current, I_{O} (each channel) 40 mA
Output Voltage, V_{O} (each channel) -0.5 to $20 \mathrm{~V}^{|1|}$
Supply Voltage, $\mathrm{V}_{\mathrm{CC}} \ldots$.
Output Power Dissipation (each channel) $50 \mathrm{~mW}^{[2]}$
Peak Input Current (each channeI,
$\leq 1 \mathrm{~ms}$ duration) 20 mA
Average Input Current, I_{F} (each channel) $10 \mathrm{~mA}^{|3|}$
Reverse Input Voltage, V_{R} (each channel) 5 V

Recommended Operating Conditions

	Symbol	Min.	Max.	Units
Input Current, Low Level (Each Channel)	I_{FL}		2	$\mu \mathrm{~A}$
Input Current, High Level (Each Channel)	I_{FH}	0.5	5	mA
Supply Voltage	V_{CC}	2.0	18	V

100\% Screening

MIL-STD-883, METHOD 5004 (CLASS B DEVICES)

Test Screen	Method	Conditions
1. Precap Internal Visual	2017	
2. High Temperature Storage	1008	Condition $\mathrm{C}, \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$, Time $=24$ hours minimum
3. Temperature Cycling	1010	Condition $\mathrm{C},-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 10$ cycles
4. Constant Acceleration	2001	Condition A, 5KG's, Y_{1} and Y_{2} axis only
5. Fine Leak	1014	Condition A
6. Gross Leak	1014	Condition C
7. Interim Electrical Test	-	Optional
8. Burn-ln	1015	$\begin{aligned} & \text { Condition } \mathrm{B}, \text { Time }=160 \text { hours minimum } \\ & T_{A}=+125^{\circ} \mathrm{C}, V_{C C}=18 \mathrm{~V}, \mathrm{I}_{F}=5 \mathrm{~mA}, \\ & \left.I_{O}=10 \mathrm{~mA} \text { (Figure } 1\right) \end{aligned}$
9. Final Electrical Test Electrical Test	-	Group A, Subgroup 1, 5\% PDA applies Group A, Subgroup 2, 3, 9
10. External Visual	2009	

Quality Conformance Inspection

GROUP A ELECTRICAL PERFORMANCE CHARACTERISTICS

QUANTITY/ACCEPT NO. = 116/0

Parameter	Symbol	Test Conditions	Group A Subgroups	Limits		Unit	Note
				Min.	Max.		
Current Transfer Ratio	$\mathrm{h}_{\mathrm{F}(\mathrm{CTR})}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{~V}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$	1, 2, 3	300		\%	4,5
		$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$	1,2,3	300		\%	4,5
		$\mathrm{I}_{F}=5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$	1,2,3	200		\%	4,5
Logic Low Output Voltage	Vol	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$	1,2,3		0.4	V	4
		$\mathrm{T}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}$	1,2,3		0.4	V	4
Logic High Output Current	1 OH	$\begin{aligned} & I_{F}=2 \mu \mathrm{~A} \\ & V_{O}=V_{C C}=18 \mathrm{~V} \end{aligned}$	1,2,3		250	$\mu \mathrm{A}$	4
	$\mathrm{IOHX}^{\text {O }}$		1,2,3		250	$\mu \mathrm{A}$	4,6
Logic Low Supply Current	${ }^{\text {I CCL }}$	$\begin{aligned} & I_{F 1}=I_{F 2}=I_{F 3}=I_{F 4}=1.6 \mathrm{~mA} \\ & V_{C C}=18 \mathrm{~V} \end{aligned}$	1,2,3		4	mA	
Logic High Supply Current	$\mathrm{I}_{\mathrm{CCH}}$	$\begin{aligned} & I_{F_{1}}=I_{F 2}=I_{F 3}=I_{F 4}=0 \mathrm{~mA} \\ & V_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$	1,2,3		40	$\mu \mathrm{A}$	
Input Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	1.2		1.7	V	4
			3		1.8	V	4
Input Reverse Breakdown Voltage	$B V_{\text {A }}$	$\mathrm{I}_{\mathrm{R}}=10_{\mu} \mathrm{A}$	1, 2, 3	5		V	4
Input-Output Insulation Leakage Current	${ }_{1-0}$	45% Relative Humidity, $\mathrm{T}=25^{\circ} \mathrm{C}$, $t=5 \mathrm{~s}$., $\mathrm{V}_{1-\mathrm{O}}=1500 \mathrm{Vdc}$	1		1.0	$\mu \mathrm{A}$	7,12
Capacitance Between Input-Output	$\mathrm{C}_{1.0}$	$f=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	4		4	pF	4,8
Propagation Delay Time To Logic High At Output	${ }^{\text {f PLH }}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega, \mathrm{V}_{C C}=5.0 \mathrm{~V}$	9, 10, 11		60	$\mu \mathrm{S}$	
		$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	9		20	$\mu \mathrm{S}$	
			10,11		30	$\mu \mathrm{S}$	
Propagation Delay Time To Logic Low At Output	${ }_{\text {t }}{ }_{\text {PHL }}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	9, 10, 11		100	$\mu \mathrm{S}$	
		$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	9		5	$\mu \mathrm{s}$	
			10, 11		10	$\mu \mathrm{S}$	
Common Mode Transient Immunity At Logic High Level Output	$\left\|C M_{H}\right\|$	$\begin{aligned} & I_{F}=0, R_{L}=1.5 \mathrm{k} \Omega \\ & \left\|V_{C M}\right\|=25 V_{p-p}, V_{C C}=5.0 \mathrm{~V} \end{aligned}$	9, 10, 11	500		$\mathrm{V} / \mu \mathrm{s}$	9,11
Common Mode Transient Immunity At Logic Low Level Output	$\left\|\mathrm{CM}_{L}\right\|$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=1.5 \mathrm{k} \Omega \\ & \left\|V_{C M}\right\|=25 V_{p-p}, V_{C C}=5.0 \mathrm{~V} \end{aligned}$	9, 10, 11	500		$\mathrm{V} / \mu \mathrm{s}$	10,11

NOTES: 1. Pin 10 should be the most negative voltage at the detector side. Keeping $V_{C C}$ as low as possible, but greater than 2.0 volts, will provide lowest total I_{OH} over temperature.
2. Output power is collector output power plus one fourth of total supply power. Derate at $1.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$.
3. Derate I_{F} at $0.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$.
4. Each channel
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100%.
6. $\mathrm{I}_{\mathrm{OHx}}$ is the leakage current resulting from channel to channel optical crosstalk. $I_{F}=2 \mu \mathrm{~A}$ for channel under test. For all other channels, $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$.
7. Device considered a two-terminal device: Pins 1 through 8 are shorted together and pins 9 through 16 are shorted together.
8. Measured between the LED anode and cathode shorted together and pins 10 through 15 shorted together.
9. CM_{H} is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e. $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).
10. $C M_{\mathrm{L}}$ is the maximum tolerable common mode transient to assure that the output will remain in a low logic state (i.e. $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
11. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, R_{CC}, should be included to protect the detector IC's from destructively high surge currents. The recommended value is

$$
R_{C C} \approx \frac{1 \mathrm{~V}}{0.6 I_{\mathrm{F}}(\mathrm{~mA})} \mathrm{k} \Omega .
$$

12. This is a momentary withstand test, not an operating condition.

GROUP B TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Physical Dimensions (Not required if Group D is to be performed)	2016		2 Devices (no failuresi
Subgroup 2 Resistance to Solvents	2015		4 Devices (no failures)
Subgroup 3 Solderability (LTPD applies to number of leads inspected - no fewer than 3 devices shall be used).	2003	Soldering Temperature of 245 $\pm 5^{\circ} \mathrm{C}$ for 10 seconds	10
Subgroup 4 Internal Visual and Mechanical	2014	Devices)	
Subgroup 5 Bond Strength Thermocompression: (Periormed at precap, prior to seal LTPD applies to number of bond).	2011	Test Condition D	1 Device (no failures)
Subgroup 6 Internal Water Vapor Content (Not applicable - does not contain desiccant)	-	15	
Subgroup 7* Electrical Test Electrostatic Discharge Sensitivity Electrical Test	3015	Accordance with Method 3015 (To be performed at initial qualification only)	Group A, and Delta Limits in Accordance with Method 3015

GROUP C TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Tesi	Methad	Conditions	LTPD
Subgroup 1 Steady State Life Test Endpoint Electricals at 1000 hours	1005	$\begin{aligned} & \text { Condition } \mathrm{B}, \text { Time }=1000 \text { hours total } \\ & T_{A}=+125^{\circ} \mathrm{C}, V_{C C}=18 \mathrm{~V} \text {, } \\ & \left.I_{F}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \text { (Figure } 1\right) \end{aligned}$ Group A, Subgroup 1, 2, 3	5
Subgroup 2 Temperature Cycling Constant Acceleration Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{aligned} & 1010 \\ & 2001 \\ & 1014 \\ & 1014 \\ & 1010 \end{aligned}$	Condition $\mathrm{C},-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$, 10 cycles Condition $\mathrm{A}_{1} 5 \mathrm{KG}$'s, Y_{1} and Y_{2} axis only Condition A Condition C Per Visual Criteria of Method 1010 Group A, Subgroup 1, 2, 3	15

GROUP D TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Physical Dimensions	2016		15
Subgroup 2 Lead Integrity	2004	Test Condition B2 (lead fatigue)	15
Subgroup 3 Thermal Shock Temperature Cycling Moisture Resistance Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \\ & 1014 \end{aligned}$	Condition B, $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ 15 cycles min . Condition $\mathrm{C},\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ 100 cycles min. Condition A Condition C Per Visual Criteria of Method 1004,1010 Group A, Subgroup 1, 2, 3	15
Subgroup 4 Mechanical Shock Vibration Variable Frequency Constant Acceleration Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{aligned} & 2002 \\ & \\ & 2007 \\ & 2001 \\ & 1014 \\ & 1014 \\ & 1010 \end{aligned}$	Condition B, $1500 \mathrm{G}, \mathrm{t}=0.5 \mathrm{~ms}$, 5 blows in each orientation Condition A Condition $A, 5 K G$'s, Y_{1} and Y_{2} axis only Condition A Condition C Per Visual Criteria of Method 1010 Group A, Subgroup 1, 2, 3	15
Subgroup 5 Salt Atmosphere Fine Leak Gross Leak Visual Examination	$\begin{aligned} & 1009 \\ & 1014 \\ & 1014 \\ & 1009 \end{aligned}$	Condition A min. Condition A Condition C Per Visual Criteria of Method 1009	15
Subgroup 6 Internal Water Vapor Content	1018	$5,000 \mathrm{ppm}$ Maximum Water content at $100^{\circ} \mathrm{C}$	3 Devices (0 failures) 5 Devices (1 failure)
Subgroup 7 Adhesion of Lead Finish	2025		15
Subgroup 8 Lid Torque (not applicable-solder seal)	2024		5 Devices (0 failures)

Figure 1. Operating Circuit for Burn-In and Steady State Life Tests.

Applications

- Application Bulletins, Notes, Handbooks, and Manual Listing
- Abstracts

Applications

Because technology is growing and changing so rapidly, HP's commitment to customers includes an extensive applications department. In an effort to anticipate design needs and answer design questions, this team of engineers has published a complete library of applications literature. This literature is available, free of charge, through HP sales and service offices, authorized distributors, and direct from the factory.

This section contains a listing of all available application bulletins, application notes, technical briefs, and designer guides.

Also available for $\$ 12$ each are application handbooks which contain complete application notes bound together with additional product information, allowing you to keep the design information you need from year-to-year.

These handbooks are available through your local authorized distributor. A listing of these distributors can be found in the appendix.

Applications Listing

MOTION SENSING AND CONTROL

Model
Pub. No. (Date) Description
AN-1011 Design and Operational Considerations
5953-9393 (12/83) for the HEDS-5000 Incremental Shaft Encoder

AN-1025	Applications and Circuit Design for the
5954-0920 (9/85)	HEDS-7500 series Digital Potentiometer
AN-1032	Design of the HCTL-1000's Digital Filter
$5954-0932(4 / 86)$	Parameters by the Combination Method

bAR CODE COMPONENTS

$\left.\begin{array}{cl}\begin{array}{c}\text { Model } \\ \text { Pub. No. (Date) }\end{array} & \begin{array}{c}\text { AB-59 } \\ \text { Description }\end{array} \\ \hline \text { HP 16800A/16801A Bar Code Reader } \\ \text { Configuration Guide for a DEC VT-100 or } \\ \text { Lear Siegler ADM-31 to a DEC PDP-11 } \\ \text { Computer }\end{array}\right]$

OPTOCOUPLERS

Model Pub. No. (Date)	Description
TB-103 $5954-1017(7 / 85)$	High Speed Optocouplers vs. Pulse Transformer
AB-60	Applications Circuits for $5953-9347(4 / 83)$ HCPL-3700 and HCPL-2601
AB-69	CMOS Circuit Design using Hewlett-
5953-9384 (10/83)	Packard Optocouplers
AN-939	High Speed Optocouplers
$5953-9368(10 / 73)$	
AN-947	Digital Data Transmission Using Optically
$5953-7759(6 / 82)$	Coupled Isolators
AN-948	Performance of the 6N135, 6N136 and $5953-7716(12 / 81)$
	6N137 Optocouplers in Short to Moderate
	Length Digital Data Transmission
Systems	

AN-951-1 $5953-7794(10 / 82)$	Applications for Low Input Current, High Gain Optocouplers		
AN-951-2	Linear Applications of Optocouplers		
$5963-7730(4 / 82)$			AN-1002
:---			
$5953-7799(10 / 82)$			
Consideration of CTR Variations in			
Optically Coupled Isolator Circuit			
Designs			

FIBER OPTICS

Model Pub. No. (Date)	Description
AB-65	Using $50 / 125 \mu \mathrm{~m}$ Optical Fiber, with Hewlett-Packard Components
AB-71	Using $200 \mu \mathrm{~m}$ PCS Optical AB
$5954-1021(12 / 85)$	Fiber with HP Components

LIGHT BARSAND BAR GRAPH ARRAYS

Model Pub. No. (Date)	Description
AN-1007	Bar Graph Array Applications
$5953-0452(1 / 81)$	
AN-1012	Methods of Legend Fabrication
$5953-0478(2 / 81)$	

SOLID STATE LAMPS

Model
Pub. No. (Date) Description

AB-1 5952-8378 (1/75) Efficiency Red, Yellow and Green

Construction and Performance of High LED Materials
AB-74 Auto-Insertion of Option 002 Tape and 5954-8402 (11/86) Reel LED Lamps

SOLID STATE LAMPS (Cont.)

Model

Pub. No. (Date)	Description
AN-945 $5952-0420(10 / 73)$	Photometry of Red LEDs
AN-1005	Operational Considerations for LED
$5953-0419(3 / 80)$	Lamps and Display Devices
AN-1017	LED Solid State Reliability
$5953-7784(10 / 82)$	
AN-1019	Using the HLMP-4700/-1700/-7000 Series
$5954-0921(1 / 86)$	Low Current Lamp
AN-1021	Utilizing LED Lamps Packaged on Tape
$5953-0861(5 / 84)$	and Reel
AN-1027	Soldering LED Components
$5954-0893(7 / 85)$	
AN-1028	Surface Mount Subminiature LED Lamps
$5954-0902(9 / 85)$	

SOLID STATE DISPLAYS

Model

Pub. No. (Date) Description

$\begin{gathered} \text { AB-4 } \\ 5952-8381(4 / 75) \end{gathered}$	Detection and Indication of Segment Failures in 7-Segment LED Displays
$\begin{gathered} \mathrm{AB}-64 \\ 5953-9366(9 / 83) \end{gathered}$	Mechanical and Optical Considerations for the $0.3^{\prime \prime}$ Microbright Seven-Segment Display
$\begin{gathered} \mathrm{AB}-76 \\ 5954-8427(5 / 87) \end{gathered}$	Use of LED Lamps and Displays in Night Vision Goggle Secure Lighting Applications
$\begin{gathered} \text { AN-934 } \\ 5952-0337(11 / 72) \end{gathered}$	5082-7300 Series Solid State Display Installation Techniques
$\begin{gathered} \text { AN-1006 } \\ 5953-0439(7 / 80) \end{gathered}$	Seven Segment LED Display Applications
$\begin{gathered} \text { AN-1015 } \\ 5953-7788(11 / 82) \end{gathered}$	Contrast Enhancement Techniques for LED Displays
$\begin{gathered} \text { AN-1016 } \\ 5953-7787(3 / 84) \\ \hline \end{gathered}$	Using the HDSP-2000 Alphanumeric Display Family
$\begin{gathered} \text { AN-1026 } \\ 5954-0886(6 / 85) \\ \hline \end{gathered}$	Designing with HP's Smart Display - the HPDL-2416
$\begin{gathered} \text { AN-1029 } \\ 5954-0923(2 / 86) \end{gathered}$	Luminous Contrast and Sunlight Readability of the HDSP-238X Series LED Alphanumeric Displays for Military Applications
$\begin{gathered} \text { AN-1031 } \\ 5954-0933(3 / 86) \end{gathered}$	Achieving Uniform Front Panel Appearance using Hewlett-Packard's S02 Option LED Devices
$\begin{gathered} \text { AN-1033 } \\ 5954-8424(3 / 87) \end{gathered}$	Designing with the HDSP-211X Smart Display Family

INK-JET COMPONENTS
Model
Pub. No. (Date) Description
Designer's Guide Thermal Ink-Jet Print Cartridge
5954-8535 (11/86) Designer's Guide

APPLICATIONS HANDBOOKS

Model

Pub. No. (Date) Description

HPBK-4000	LED Indicators and Displays Applications
(1986)	Handbook
$5954-8416$	$\$ 12$
HPBK-5000	Optocouplers and Fiber Optics
(1986)	Applications Handbook
$5954-8417$	$\$ 12$

Abstracts

APPLICATION BULLETIN 1
 Construction and Performance of High Efficiency Red, Yellow and Green LED Materials

The high luminous efficiency of Hewlett-Packard's High Efficiency Red, Yellow and Green lamps and displays is made possible by a new kind of light emitting material utilizing a GaP transparent substrate. This application bulletin discusses the construction and performance of this material as compared to standard red GaAsP and red GaP materials.

APPLICATION BULLETIN 4 Detection and Indication of Segment Failures in Seven Segment LED Displays

The occurrence of a segment failure in certain applications of seven segment displays can have serious consequences if a resultant erroneous message is read by the viewer. This application bulletin discusses three techniques for detecting open segment lines and presenting this information to the viewer.

APPLICATION BULLETIN 59 HP16800A/16801A Bar Code Reader Configuration Guide for a DEC VT-100 or Lear Siegler ADM-31 to a DEC PDP-11 Computer

This application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader with a DEC-PDP-11 computer, and either a DEC-VT-100 terminal or a LEAR SIEGLER ADM-31 terminal.

APPLICATION BULLETIN 60

 Applications Circuits for HCPL-3700 and HCPL-2601Simple circuit illustrations are given for use of the HCPL=3700 threshold detection optocoupler for ac or dc sensing requirements. Programmable threshold levels are given for the HCPL-3700.
Also, a basic LSTTL to LSTTL isolation interface circuit for 10 MBd operation is given which uses the high common mode transient immunity HCPL-2601 optocoupler.

APPLICATION BULLETIN 61

HP 16800A/16801A Bar Code Reader Configuration

 Guide for an IBM 3276/3278 TerminalThis application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader with an IBM 3276/3278 terminal to an IBM 3272/3274 Remote Communications Controller. In this configuration the IBM 3272/3274 is connected to an IBM mainframe computer.

APPLICATION BULLETIN 62

 HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 4955F Series 1 Process Control CPU/ Protocol Converter and an IBM 3101 TerminalThis application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader in an eavesdrop configuration with an IBM 3101 terminal
and an IBM Series 1 Process Control CPU/Protocol Converter. In this configuration the IBM Series 1 is connected to an IBM mainframe computer.

APPLICATION BULLETIN 63 HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 5101 Personal Computer

This application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader with an IBM 5101 Personal Computer.

APPLICATION BULLETIN 64 Mechanical and Optical Considerations for the 0.3" Microbright Seven-Segment Display

The need to conserve space in electronic instruments has increased drastically in the drive to design more compact, more portable equipment. Hewlett-Packard has facilitated the saving of space in the design of front panels with the introduction of the Microbright, HewlettPackard's new HDSP-7300/-7400/-7500/-7800 series compact $0.3^{\prime \prime}$ seven segment displays. Smaller than the conventional $0.3^{\prime \prime}$ device, the Microbright requires less space without sacrificing display height and is also Hewlett-Packard's most sunlight viewable seven segment display.
This application bulletin deals with several issues in the use of the Microbright. Optical filtering is covered, with recommendations on filters to use over the devices. Adjusting the package height and recommended sockets are also presented, followed by a discussion on the brightness of the display.

APPLICATION BULLETIN 65
 Using 50/125 $\mu \mathrm{m}$ Optical Fiber with Hewlett-Packard Components

Applications Bulletin 65 explains factors that influence the power coupled into various fiber diameters and numerical apertures. Test results showing coupled power from HP LED sources into $100 / 140 \mu$ metre and $50 / 125 \mu$ metre fiber are included.

APPLICATION BULLETIN 68 HP 16800A/16801A Bar Code Reader Configuration Guide for a MICOM Micro280 message concentrator

In some applications, multiple bar code readers may be required to input data to a logging terminal or a central processing unit. However, connecting each unit to a CPU may utilize more input/output ports than desired. A port concentrator will allow several devices to be connected using only one port to the CPU. This application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader with a MICOM Micro280 Message Concentrator.

Abstracts (cont.)

APPLICATION BULLETIN 69
CMOS Circuit Design Using Hewlett-Packard Optocouplers

Within this application bulletin are CMOS isolation interface circuits for use with the various, low input current, Hewlett-Packard optocouplers, specifically, the HCPL-2200/2300/2731 and 6N139 devices. Advantages of and recommendations for different input and output circuit configurations are given in tabular form for low power operation at various signalling rates.

APPLICATION BULLETIN 71 200- $\boldsymbol{\mu}$ m PCS Fiber with Hewlett-Packard Fiber Optic Transmitters and Receivers

A description of the properties of $200-\mu \mathrm{m}$ PCS fiber is given and the performance when used with HewlettPackard fiber optic components is described in the form of graphs and tables.

APPLICATION BULLETIN 73 Low-cost Fiber Optic Transmitter and Receiver Interface Circuits

This bulletin provides assistance in designing circuits to interface Hewlett-Packard HFBR-0400 low-cost miniature fiber optic components with TTL I/O for applications at data rates up to 35 MBD. The TTL T_{x} / R_{X} circuits presented in this applications bulletin have been designed, built, and tested. They are suitable for a wide range of applications. The HFBR-0400 fiber optic components are compatible with either SMA or ST style connectors. The concepts illustrated in this bulletin are applicable to both types.

APPLICATION BULLETIN 74

 Option 002 Tape and Reel LED LampsHewlett-Packard Option 002 tape and reel LED lamps have straight leads on standard 2.54 mm (0.100 inch) center spacing. These lamps may be auto-inserted into printed circuit boards with most radial auto-insertion equipment. However, it is important to have the proper plated through hole sizie and spacing in the printed circuit to assure high insertion yields.
This application bulletin details the specific information on the printed board plated through hole size, spacing and tolerances necessary to assure high insertion yields of Option 002 LED lamps with 0.46 mm (0.018 inch) square leads.

APPLICATION BULLETIN 75 ESD Control in Portable Bar Code Readers

This application bulletin provides information to help the designer of portable bar code decoders to harden their system to ESD. (Electrostatic discharge)

APPLICATION BULLETIN 76

Use of LED Lamps and Displays in Night Vision Goggle Secure Lighting Applications
NVG secure lighting is concerned with the detectability of a light source on the ground by GEN II night vision goggles at some distance. The U.S. Army CECOM has
issued a Secure Lighting Statement of Work, SOW, which details the lighting modification guidelines that may be incorporated to make various light sources NVG secure. The objective of the Secure Lighting Program (paraphrased) is "to render all combat nomenclatured items designated for use at Corps level and below less detectable to threat image intensifier night observation as far as is practical."
This application bulletin discusses the particulars of the U.S. Army NVG Secure Lighting SOW. Highperformance green and yellow LED/NVG filter combinations that satisfy secure lighting requirements are discussed. Predicted performance values are presented in tabular format.

APPLICATION BULLETIN 77 Interfacing the Hewlett-Packard SmartWand

This application bulletin provides circuits to allow the user to interface the HP SmartWand to true RS232 connections.

APPLICATION NOTE 915

Threshold Detection of Visible and Infrared Radiation with PIN Photodiodes

PIN photodiodes are compared with multiplier phototubes in an 11-point summary of their relative merits. This is followed by a description of PIN photodiode device structure, mode of operation, and analysis of the diode's equivalent circuit.
Four pre-amplifier circuits are presented: Two of these describe use of operational amplifiers - one for linear response, the other for logarithmic response. The other two circuits are designed for substantially higher speeds of response, using discrete components to obtain wide bandwidth as well as high sensitivity.

APPLICATION NOTE 934

5082-7300 Series Solid State Display Installation Techniques

The 4N5X, HDSP-07XX/08XX/09XX, and 5082-73XX series Numeric/Hexadecimal indicators are an excellent solution to most standard display problems in commercial, industrial and military applications. The unit integrates the display character and associated drive electronics in a single package. This advantage allows for space, pin and labor cost reductions, at the same time improving overall reliability.
The information presented in this note describes general methods of incorporating this series into varied applications.

APPLICATION NOTE 945 Photometry of Red LEDs

Nearly all LEDs are used either as discrete indicator lamps or as elements of a segmented or dot-matrix display. As such, they are viewed directly by human viewers, so the primary criteria for determining their performance is the judgment of a viewer. Equipment for measuring LED light output should, therefore, simulate human vision.

Abstracts (cont.)

This application note will provide answers to these questions:

1. What to measure (definitions of terms)
2. How to measure it (apparatus arrangement)
3. Whose equipment to use (criteria for selection)

APPLICATION NOTE 947
 Digital Data Transmission Using Optically Coupled Isolators

Optocouplers make ideal line receivers for digital data transmission applications. They are especially useful for elimination of common mode interference between two isolated data transmission systems. This application note describes design considerations and circuit techniques with special emphasis on selection of line drivers, transmission lines, and line receiver termination for optimum data rate and common mode rejection. Both resistive and active terminations are described in detail. Specific techniques are described for multiplexing applications, and for common mode rejection and data rate enhancement.

APPLICATION NOTE 948
 Performance of the 6N135/6/7 Series of Optocouplers in Short to Moderate Length Digital Data Transmission Systems

Describes use of HP 6N135/6/7 optocouplers as line receivers in a TTL-TTL compatible NRZ (nonreturn-tozero) data transmission link. It describes several useful total systems including line driver, cable, terminations, and TTL compatible connections.

APPLICATION NOTE 951-1
 Applications for Low Input Current, High Gain Optocouplers

Optocouplers are useful in line receivers, logic isolation, power lines, medical equipment, and telephone lines.
This note discusses use of the 6N138/9 series high CTR optocouplers in each of these areas.

APPLICATION NOTE 951-2 Linear Applications of Optocouplers

Although optocouplers are not inherently linear, the separate photodiodes used in Hewlett-Packard optocouplers provide better linearity as well as higher speed of response than phototransistor detectors.
Linearity enhancement by use of paired optocouplers is described with specific circuit examples offering DC-to25 KHz response. These examples illustrate the relative merits of differential and servo techniques.
A circuit with linear AC response to 10 MHz is also described for analog optocouplers having the photodiode terminals externally accessible.
Digital techniques of voltage-to-frequency conversion and pulse width modulation are discussed. Their linearity is quite independent of optocoupler linearity but require use of high speed optocouplers for low distortion.

APPLICATION NOTE 1002 Consideration of CTR Variations in Optocoupler Circuit Desigńs

A persistent, and sometimes crucial, concern of désigners using optocouplers is that of the current transfer ratio, CTR, changing with time. The chánge, or CTR degradation, must be accounted for if long, functional lifetime of a system is to be guaranteed. This application note will discuss a number of different sources for this degradation.

APPLICATION-NOTE 1004

Threshold Sensing for Industrial Control Systems with the HCPL-3700 Interface Optocoupler
Interfacing from industrial control systems to logic systems is a necessary operation in order to monitor system progress. This interfacing is found in process control systems, programmable controllers, microprocessor subsystems which monitor limit and proximity switches, environmental sensors and ac line status; in switching power supplies for detection of ac power loss; in power back up systems which need an early warning of power loss in order to save special microprocessor memory information or switch to battery operation, etc. Applications of the HCPL-3700 interface optocoupler are addressed in this note. The isolation and threshold detection capability of the HCPL-3700 allows it to provide unique features which no other optocoupler can provide. Addressed in this note are the advantages of using this optocoupler for isolating systems as well as the device characteristics, dc/ac operational performance with and without filtering, simple calculations for setting desired thresholds, and four typical application examples for the HCPL-3700. Additional coverage is given to protection considerations for the optocoupler from the standpoint of power transients; thermal conditions, and electrical safety requirements of the industrial control environment.

APPLICATION NOTE 1005

Operational Considerations for LED Lamps and Display Devices

In the design of a display system, which incorporates LED lamps and display devices, the objective is to achieve an optimum between light output, power dissipation, reliability, and operating life. The performance characteristics and capabilities of each LED device must be known and understood so that an optimum design can be achieved. The primary source for this information is the LED device data sheet. The data sheet typically contains Electrical/Optical Characteristics that list the performance of the device and Absolute Maximum Ratings in conjunction with characteristic curves and other data which describe the capabilities of the device. A thorough understanding of this information and its intended use provides the basis for achieving an optimum design. This application note presents an in-depth discussion of the theory and use of the electrical and optical information contained

Abstracts (cont.)

within a data sheet. Two designs using this information in the form of numerical examples are presented, one for dc operation and one for pulsed (strobed) operation.

APPLICATION NOTE 1006

Seven Segment LED Display Applications

This application note begins with a detailed explanation of the two basic product lines that Hewlett-Packard offers in the seven segment display market. This discussion includes mechanical construction techniques, character heights, and typical areas of application. The two major display drive techniques, dc and strobed, are covered. The resultant tradeoffs of cost, power, and ease of use are discussed. This is followed by several typical instrument applications. including counters, digital voltmeters, and microprocessor interface applications. Several different microprocessor based drive techniques are presented incorporating both the monolithic and the large seven segment LED displays.
The application note contains a discussion of intensity and color considerations made necessary if the devices are to be end stacked. Hewlett-Packard has made several advances in the area of sunlight viewability of LED displays. The basic theory is discussed and recommendations made for achieving viewability in direct sunlight. Information concerning display mounting, soldering, and cleaning is presented. Finally, an extensive set of tables has been compiled to aid the designer in choosing the correct hardware to match a particular application. These tables include seven segment decoder/drivers, digit drivers, LSI chips designed for use with LEDs, printed circuit board edge connectors, and filtering materials.

APPLICATION NOTE 1007

Bar Graph Array Applications

This application note begins with a description of the manufacturing process used to construct the 10 element array. Next is a discussion of the package design and basic electrical configuration and how they affect designing with the bar graph array. Mechanical information including pin spacing and wave soldering recommendations are made:
Display interface techniques of two basic types are thoroughly discussed. The first of these two drive schemes is applicable in systems requiring display of analog signals in a bar graph format. The second major drive technique interfaces bar graph arrays in systems where the data is of a digital nature. Examples of microprocessor controlled bar graph arrays are presented.
Summarized for the design engineer are tables of available integrated circuits for use with bar graph arrays. Finally, a list of recommended filters is included.

APPLICATION NOTE 1008

Optical Sensing with the HBCS-1100

This application note gives the basic optical flux coupling design for discrete emitters and detectors. Presents the concepts of modulation transfer function,
depth of field; and reflective sensor design. It also discusses the optical and electrical operation of the HBCS-1100 High Resolution optical sensor. Finally, it presents electrical design techniques which allow the HBCS-1100 to interface with popular logic families.

APPLICATION NOTE 1011
 Design and Operational Considerations for the HEDS5000 Incremental Shaft Encoder

This application note is directed toward the system designer using the HEDS-5000 and HEDS-6000 modular incremental shaft encoders. First the note briefly analyzes the theory of design and operation of the HEDS-5000 and HEDS-6000. A practical approach to design considerations and an error analysis provide an indepth treatment of the relationship between motor mechanical parameters and encoding error accumulation. Several design examples demonstrate the analysis techniques presented. Operation considerations for assembly, test, trouble shooting and repair are presented. Finally some circuits and software concepts are introduced which will be useful in interfacing the shaft encoder to a digital or microprocessor based system. Appendix A summarizes the uses and advantages of various encoder technologies while Appendix B provides guidance for selecting DC motors suitable for use with the HEDS5000 and HEDS-6000.

APPLICATION NOTE 1012

Methods of Legend Fabrication

Hewlett-Packard LED Light Bar Modules inscribed with fixed messages or symbols can be used as economical annunciators. Annunciators are often used in front panels to convey the status of a system, to indicate a selected mode of operation or to indicate the next step in a sequence. This application note discusses alternative ways the message or symbols (legends) can be designed. A selection matrix is provided to assist in the selection of the most appropriate method of legend fabrication. Each fabrication method is explained in detail along with mounting and attachment techniques. Finally, prevention of cross-talk is discussed for legend areas of a multi-segmented light bar.

APPLICATION NOTE 1013

Elements of a Bar Code System

This application note describes in detail the elements that make up most bar code systems. Included is a discussion of the fundamental system design, detailed discussion of 7 popular code symbologies, a section on symbol generation, and methods of data entry. A glossary of terms and a reference section are also included. This is an excellent publication for people who are just learning about bar code, or for those who need a more comprehensive understanding of the subject.

APPLICATION NOTE 1015

Contrast Enhancement Techniques for LED Displays

Contrast enhancement is essential to assure readability of LED displays in a variety of indoor and outdoor

Abstracts (cont.)

ambients. Plastic filters are typically used for contrast enhancement with indoor lighting and glass circular polarized filters are typically used to achieve readability in sunlight ambients.
This application note discusses contrast enhancement technology for both indoor and outdoor ambients, the theory of Discrimination Index and provides a list of tested contrast enhancement filters and filter manufacturers.

APPLICATION NOTE 1016

Using the HDSP-2000 Alphanumeric Display Family
The HDSP-2000 family of alphanumeric display products provides the designer with a variety of easy-touse display modules with on board integrated circuit drivers. The HDSP-2000 family has been expanded to provide three display sizes with character heights ranging from $3.8 \mathrm{~mm}\left(0.15^{\prime \prime}\right)$ to $6.9 \mathrm{~mm}\left(0.27^{\prime \prime}\right)$, four display colors, and both commercial and military versions. These displays can be arranged to create both single line and multiple line alphanumeric panels.
This note is intended to serve as a design and application guide for users of the HDSP-2000 family of alphanumeric display devices. It covers the theory of the device design and operation, considerations for specific circuit designs, thermal management, power derating and heat sinking, and intensity modulation techniques.

APPLICATION NOTE 1017 LED Solid State Reliability

Light emitting diode display technology offers many attractive features including multiple display colors, sunlight readability, and a continuously variable intensity adjustment. One of the most common reasons that LED displays are designed into an application, however, is the high level of reliability of the LED display. HewlettPackard has taken a leadership role in setting reliability standards for LED displays and documenting reliability performance.
This note explains how to use the reliability data sheets published for HP LED indicators and displays. It describes the LED indicator and display packages, defines device failures, and discusses parameters affecting useful life, failure rates and mechanical test performance.

APPLICATION NOTE 1018
 Designing with the HCPL-4100 and HCPL-4200 Current Loop Optocoupler

Digital current loops provide unique advantages of large noise immunity and long distance communication at low cost. Applications are wide and varied for current loops, but one of the critical concerns of a loop system is to provide a predictable, reliable and isolated interface with the loop. The HCPL-4100 (transmitter) and HCPL-4200 (receiver) optocouplers provide for easy interfacing to and from a current loop with minimal design effort. Within this application note a complete description of the HCPL-4100/4200 devices is given
along with applications for digital, 20 mA , simplex, half duplex and full duplex loops. These loops can be either point-to-point or multidrop configurations. Factors which affect data performance are discussed. Circuit arrangements with specific data performance are given in graphical and tabular form.

APPLICATION NOTE 1019 Using the HLMP-4700/-1700/-7000 Series Low Current Lamps

Hewlett-Packard manufactures a series of LED lamps that are designed for operation at 2 mA DC . These lamps are available in high efficiency red, yellow, and high performance green in a variety of package styles. These lamps allow the designer to reduce system power dissipation, and drive circuit costs.
This application note contrasts electrical characteristics of the low-current lamp with HP's conventional lamp. Costs of implementing lamp drive circuits are discussed, as in power conservation in TTL and circuits involving higher voltages. Finally, telecommunications and battery information are presented.

APPLICATION NOTE 1021 Utilizing LED Lamps Packaged on Tape and Reel

Hewlett-Packard offers many of its LED lamps packaged on tape and reel for radial insertion by automatic equipment during high volume production of PC board assemblies.
This application note is a guide to the use of tape and reel LED lamps in the automatic insertion process. Discussed are the LED lamp tape and reel configuration, the radial lead insertion process, PC board design considerations, a method to maintain LED lamp alignment during soldering and lamp stand-off height information.

APPLICATION NOTE 1022
 High Speed Fiber Optic Link Design with Discrete Components

As the technology of fiber optic communication matures, design considerations for large volume applications focus as much on cost and reliability, as bandwidth and bit-error-rate. This application note describes a 100 MBd fiber optic communication link which was implemented with low-cost, non-exotic technology, including LED transmitter, PIN photodiode detector, off-the-shelf ICs and discrete components, laid out on epoxy-glass circuit boards.

APPLICATION NOTE 1023

Radiation Immunity of Hewlett-Packard Optocouplers
Opening with a quotation from MIL-HDBK-279 describing optocouplers containing photodiodes as superior to optocouplers containing phototransistors, the text describes the properties of ionizing radiation (particles and photons) and how it affects the performance of optocouplers. Graphs show degradation of CTR (Current Transfer Ratio) in the 6N140 as a function of gamma total dose (up to 1000

Abstracts (cont.)

rad [Si] and as a function of total neutron fluence (up to $6 \times 10^{12} \mathrm{n} / \mathrm{cm}^{2}$). A table gives radiation hardness requirements for various military requirements.

APPLICATION NOTE 1024

Ring Detection with the HCPL-3700 Optocoupler
With the increased use of modems, automatic phone answering equipment, private automatic branch exchange (PABX) systems, etc., low-cost, reliable, isolated ring detection becomes important to many electronic equipment manufacturers. This application note addresses the definition of ringing requirements (U.S.A. and Europe), applications of the HCPL-3700 optocoupler as a simple, but effective, ring detector. A design example is shown with calculations to illustrate proper use of the HCPL-3700. Features which are integrated into the HCPL-3700 provide for predictable detection, protection and isolation when compared to other optocoupler techniques.

APPLICATION NOTE 1025
 Applications and Circuit Design for the HEDS-7500 series Digital Potentiometer

This application note demonstrates some of the uses for the Hewlett-Packard HEDS-7500 series digital potentiometer, explains how a digital potentiometer works, and explains some of the advantages of a digital potentiometer over a standard resistive potentiometer. In addition, this application note provides some examples of circuitry which will interface the digital potentiometer to a microprocessor, and provides mechanical design considerations and available options for the HEDS-7500 series digital potentiometer.

APPLICATION NOTE 1026

Designing with Hewlett-Packard's Smart Display - The HPDL-2416

The trend in LED Alphanumeric displays is to simplifiy a designer's job as much as possible by incorporating on board character storage, ASCII character generation, and multiplexing within the display. The HPDL-2416 is a four character alphanumeric display which incorporates a 64 character ASCII decoder and an on board CMOS IC to perform these functions. This application note is intended to serve as a design and application guide for users of the HPDL-2416. The information presented will cover: electrical description, electrical design considerations, interfacing to micro-processors, preprogrammed message systems, mechanical and electrical handling, and contrast enhancement.

APPLICATION NOTE 1027

Soldering LED Components

The modern printed circuit board is assembled with a wide variety of semiconductor components. These components may include LED lamps and displays in combination with other components. The quantity of solder connections will be many times the component count. Therefore, the solder connections must be good on the first pass through the soldering process. The effectiveness of the soldering process is a function of
the care and attention paid to the details of the process. It is important for display system designers and PC board assembly engineers to understand the aspects of the soldering process and how they relate to LED components to assure high yields.
This application note provides an in depth discussion on the aspects of the soldering process and how they relate to LED lamps and display components, with the objective of being to serve as a guide towards achieving high yields for solder connections.

APPLICATION NOTE 1028 Surface Mount Subminiature LED Lamps

Modern printed circuit boards are being assembled with surface mounted components, replacing through hole mounted components in many traditional applications. Hewlett-Packard has surface mount options for its HLMP-6000/7000 series of subminiature LED lamps, Options 011 and 013 for "gull wing" leads and Option 021 for "yoke" leads for inverted mounting.
This application note provides information on how to surface mount and vapor phase reflow solder these surface mount subminiature LED lamps.

APPLICATION NOTE 1029
 Luminous Contrast and Sunlight Readability of the HDSP-238X Series LED Alphanumeric Displays for Military Applications

Military specifications for avionics and other kinds of electronics that require readability in sunlight use specific definitions for luminous contrast. The concept of chrominance contrast and the theory of Discrimination Index (see Hewlett-Packard Application Note 1015) are not used by the military as a means of determining readability in sunlight. Thus, the military requirements for readability in sunlight are based solely on luminous contrast measurements. This application note discusses the luminous contrasts used by military specifications, describes anti-reflection/circular polarized filters designed for use with the HDSP-238X series sunlight viewable LED displays and presents luminous contrast data for various HDSP-238X display/filter combinations.

APPLICATION NOTE 1031
 Front Panel Design

In many applications designers are faced with the problem of how to match the perceived brightness of an assortment of seven segment displays, light bars, linear arrays, and lamps on the same front panel. To simplify this problem Hewlett-Packard has introduced S02 option selected parts. S02 option selected parts provide a restricted range of luminous intensity for a given part number. This application note is written as a design guide to matching the perceived brightness of LED displays and lamps on a front panel. The procedure shown in the application note will enable the designer to calculate the needed display drive currents (either dc or pulsed) for a given ambient light level and specified filter. Two techniques are explained. The first is how to

Abstracts (cont.)

calculate the drive currents to insure minimum acceptable brightness. The second is how to calculate the drive currents to match the display on the front panel to a known display.

APPLICATION NOTE 1032

Design of the HCTL-1000's Digital Filter Parameters by the Combination Method

Digital closed loop motion control systems employing a dedicated IC as a controller are becoming increasingly popular as a solution to the need for controlled velocity and positioning systems. Hewlett-Packard's HCTL-1000 is a general purpose motion control IC which has been designed for this type of closed loop systems. A digital compensator has been designed into the HCTL-1000 to provide a stable response to an input command. This application note explains how the combination method can be used for calculation of the HCTL-1000's digital compensation filter parameters to provide a stable, closed loop position control system.

APPLICATION NOTE 1033 Designing with the HDSP-211X Smart Display Family

 Hewlett-Packard's smart alphanumeric display, the HDSP-211X, is built to simplify the user's display design. Each HDSP-211X has an onboard CMOS IC which displays eight characters. All of the IC features are software driven. These features include 128 character ASCII decoder, 16 user-defined symbols, seven brightness levels, flashing characters, a self test, and all of the circuitry needed to decode, drive, and refresh eight 5×7 dot matrix characters.This application note discusses how to interface the HDSP-211X display to either a Motorola 6808 or an Intel 8085 microprocessor. A 32 character display interface is explained for each microprocessor. The note includes a detailed description of the hardware and software. The software illustrates how the user-defined symbols and a string of ASCII characters are loaded into the display.

TECHNICAL BRIEF 101
 Fiber Optic SMA Connector Technology

Technical Brief 101 discusses tradeoffs between various SMA connector techniques and provides a contact matrix of manufacturers versus SMA connector type.

TECHNICAL BRIEF 102
 Fiber/Cable Selection for LED Based Local Communications Systems

Technical Brief 102 is intended to assist the first time user of fiber optics with the selection of a fiber cable that best meets desired system requirements. Issues discussed in Technical Brief 102 include: Tradeoffs between various fiber types, the effect of LED emitters on fiber performance, coupled power versus numerical aperture and factors that influence cable selection. A contact matrix that lists fiber cable manufacturers versus cable type is also included.

TECHNICAL BRIEF 103
 High Speed Optocouplers vs. Pulse Transformers

For high speed signaling with ground loop isolation, pulse transformers are often used. Here are summarized briefly the difficulties encountered in the use of pulse transformers, such as rise-time, sag, and interwinding capacitance. A table summarizes the parameters of Hewlett-Packard optocouplers designed for high speed signaling. A second table summarizes the advantages of using these optocouplers instead of pulse transformers.

TECHNICAL BRIEF 104
 Baseband Video Transmission with Low Cost Fiber Optic Components

The transmission of video signals over fiber-optic links offers several advantages relative to comparable wire distribution systems. Technical Brief 104 describes simple T_{X} / R_{X} circuits providing $20 \mathrm{MHz}, 3 \mathrm{~dB}$ bandwidth for high resolution analog video transmission.

TECHNICAL BRIEF 105
 ST Connector/Cable Guide

A fairly recent development, by AT\&T, is the $S T^{*}$ Connector, and its rapid acceptance by users of fiber optic components is an indication that it may soon become a standard connector.

Technical Brief 105 provides a quick comparison between the SMA and the ST style connector. A table at the end lists some suppliers of the ST style connectored cables.
*ST is a registered trademark of AT\&T Lightguide Cable Connectors.

INK-JET DESIGNER'S GUIDE

This Designer's Guide is intended to supplement the print cartridge data sheet by providing technical assistance in the design and operation of any printing device using the Thermal Ink-jet print cartridge. To this end, it will:

- provide a basic understanding of the print cartridge operation
- identify the key design parameters affecting printing performance
- suggest methods for optimizing or enhancing performance
- identify the primary failure modes and limitations of the print cartridge
- provide guidelines for maintenance and troubleshooting of the print cartridge

Appendix

- HP Components Authorized Distributor and Representative Directory
- HP International Sales and Service Offices
- HP Components U.S. Sales and Service Offices

HP Components Authorized Distributor and Representative Directory

United States

Alabama

Hall-Mark Electronics
4900 Bradford Drive
Huntsville 35807
(205) 837-8700

Hamilton/Avnet
4940 Research Drive N.W.
Huntsville 35805
(205) 837-7210

Schweber Electronics 4910 Corporate Drive, Suite J Huntsville 35805
(205) 895-0480

Arizona

Hamilton/Avnet
30 S . McKemy Avenue
Chandler 85226
(602) 961-6400

Schweber Electronics 11049 N. 23rd. Drive Suite 100
Phoenix 85029
(602) 997-4874

California

Avnet Electronics 350 McCormick Avenue
Costa Mesa 92626
(714) 754-6100

Hall-Mark Electronics
8130 Remmet Avenue
Canoga Park 91304
(818) 716-7300

Hall-Mark Electronics
6341 Auburn Blvd., Suite D
Citrus Heights 95610
(916) 722-8600

Hall-Mark Electronics
19220 S. Normandie
Torrance 90502
(213) 217-8400

Hall-Mark Electronics
1110 Ringwood Court
San Jose 95131
(408) 432-0900

Hall-Mark Electronics 14831 Franklin Avenue Tustin 92680
(714) 669-4100

Hamilton/Avnet
9650 De Soto Avenue
Chatsworth 91311
(818) 700-6565

Callfornia (cont.)
Hamilton/Avnet
Southwest Regional
Stocking Center
350 McCormick Avenue
Costa Mesa, CA 92626
(714) 754-6100

Hamilton/Avnet (Corp)
10950 W. Washington Blvd.
Culver City 90230
(213) 558-2020

Hamilton/Avnet
3002 East G Street Ontario 91764
(714) 989-4602

Hamilton/Avnet
4103 Northgate Blvd.
Sacramento 95834
(916) 925-2216

Hamilton/Avnet
4545 Viewridge Avenue
San Diego 92123
(619) 571-7510

Hamilton/Avnet
1175 Bordeaux Drive
Sunnyvale 94086
(408) 743-3300

Hamilton Electro Sales
3170 Pullman Street
Costa Mesa 92626
(714) 641-4199

Hamilton/Avnet
1361 "B" West 190th Street
Gardena 90248
(213) 217-6700

Schweber Electronics 21139 Victory Blvd.
Canoga Park 91303
(818) 999-4702

Schweber Electronics 371 Van Ness Way
Suite 100
Torrance 90501
(213) 320-8090

Schweber Electronics
17822 Gillette Avenue
Irvine 92714
(714) 863-0200

Schweber Electronics
1771 Tribute Road
Suite B
Sacramento 95815
(916) 929-9732

Schweber Electronics
6750 Nancy Ridge Drive Bldg. 7, Suites D \& E
San Diego 92121
(619) 450-0454

California (cont.)
Schweber Electronics 90 East Tasman Drive
San Jose 95134
(408) 432-7171

Colorado

Hamilton/Avnet
8765 East Orchard
Suite 708
Englewood 80111
(303) 740-1000

Schweber Electronics
8955 E. Nichols Avenue
Suite 200
Englewood 80112
(303) 799-0258

Connecticut

Hall-Mark Electronics Barnes Industrial Park
33 Village Lane
P.O. Box 5024

Wallingford 06492
(203) 269-0100

Hamilton/Avnet
Commerce Drive
Commerce Industrial Park
Danbury 06810
(203) 797-2800

Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury 06810
(203) 748-7080

Florida

Hall-Mark Electronics
15301 Roosevelt Blvd.
Suite 303
Clearwater 33520
(813) 530-4543

Hall-Mark Electronics
7648 Southland Blvd.
Suite 100
Orlando 32809
(305) 855-4020

Hall-Mark Electronics
3161 S.W. l5th Street
Pompano Beach 33069-4800
(305) 971-9280

Hamilton/Avnet
6801 N.W. 15th Way
Ft. Lauderdale 33309
(305) 971-2900

Hamilton/Avnet
3197 Tech Drive North
St. Petersburg 33702
(813) 576-3930

Florida (cont.)
Hamilton/Avnet
6947 University Blvd.
Winter Park 32792
(305) 628-3888

Schweber Electronics
317 S. North Lake Blvd.
Suite 1024
Altamonte Springs 31701
(305) 331-7555

Schweber Electronics
3665 Park Central Blvd. North
Building \#6
Pompano Beach 33064
(305) 977-7511

Georgia

Hall-Mark Electronics 6410 Atlantic Boulevard Suite 115
Norcross 30071
(404) 447-8000

Hamilton/Avnet
5825 D. Peachtree Corners East
Norcross 30092
(404) 447-7500

Schweber Electronics
303 Research Drive
Suite 210
Norcross 30092
(404) 446-5842

Illinois

Hall-Mark Electronics
210 Mittel Drive
Wooddale 60191
(312) 860-3800

Hamilton/Avnet
1130 Thorndale Avenue
Bensenville 60106
(312) 860-7700

Schweber Electronics
904 Cambridge Drive
Elk Grove Village 60007
(312) 364-3750

Indiana

Hall-Mark Electronics
4275 W. 96th Street
Indianapolis 46268
(317) 872-8875

Hamilton/Avnet
485 Gradle Drive
Carmel 46032
(317) 844'-9333

Texas
Hall-Mark Electronics (Corp.)
11333 Pagemill Drive
Dallas 75234
(214) $343-5000$
Hall-Mark Electronics
12211 Technology Blvd.
Suite B
Austin 78727 .
(512) $258-8848$
Hall-Mark Electronics
11420 Pagemill Road
Dallas 75238
(214) 553-4300
Hal1-Mark Electronics
8000 Westglen
Houston 77063
(713) $781-6100$
Hamilton/Avnet
1807A West Braker Lane
Austin 78758
(512) $837-8911$

Texas (cont.)
Hamilton/Avnet
4850 Wright Road
Stafford 77477
(713) $240-7733$

Hamilton/Avnet
2111 W. Walnut Hill Lane
Irving 75038
(214) 659-4111

Schweber Electronics
6300 La Calma Drive
Suite 240
Austin 78752
(512) 458-8253

Schweber Electronics
4202 Beltway Drive
Dallas 75234
(214) 661-5010

Schweber Electronics
10625 Richmond Avenue
Suite 100
Houston 77042 .
(713) 784-3600

Utah	Wisconsin
Hamilton/Avnet \because	Hall-Mark Electronics
1585 West 2100 South	16255 West Lincoln Ave.
Salt Lake City 84119	New Berlin 53151
(801) 972-2800	(414) 797-7844
	Hamilton/Avnet
Washington	2975 Moorland Road
	New Berlin 53151
Almac Electronics	(414) 784-4510
14360 S.E. Eastgate Way	
Bellevue 98007-6458	Schweber Electronics
(206) 643-9992 ...	3050 South Calhoun
	New Berlin 53151
Almac Electronics	(414) 784-9020
10905 Montgomery	
Spokane 99206	
(409) 924-9500	-
Hamilton/Avnet	.
14212 N.E. 21st Street	-
Bellevue 98007 .	- .
(206) 453-5844	
	\cdots. . .
- . .	
\cdots	

Wisconsin

16255 West
n Ave.
(414) 797-7844

Hamilton/Avnet
2975 Moorland Road
New Berlin 53151

Schweber Electronics
3050 South Calhoun
New Berlin 53151
(414) 784-9020

International

Australia

VSI Electronics Pty. Ltd.
Office 4
116 Melbourne Street
North Adelaide
South Australia 5006
(61) 82674848

VSI Electronics Pty. Ltd.
Suite 3, Bell Court
Cnr. Water \& Brunswick Streets
Fortitude Valley
Brisbane, Queensland 4006
(61) 7525022

VSI Electronics Pty. Ltd. Unit 1
25 Brisbane Street
East Perth, W.A. 6000
(61) 93288499

VSI Electronics Pty. Ltd. 16 Dickson Avenue
Artarmon, N.S.W. 2064
(61) 24398622

VSI Electronics Pty. Ltd.
6/417 Ferntree Gully Road
Mt. Waverley
Melbourne, Victoria 3149
(61) 35436445

Austria

Transistor V.m.b.H
Auhofstr. 41a
A- 1130 Wien
(43) 222829451

Belgium

Diode Belgium
Excelsiorlaan 53
B-1930 Zaventem
(02) 7212992

EBV Elektronik
Excelsiorlaan 35
B-1930 Zaventem
(20) 7209936

Canada

Hamilton/Avnet Electronics Ltd. 2550 Boundary Road, Suite 115 Burnaby, BC V5M $3 Z 3$
(604) 437-6667

Hamilton/Avnet Electronics Ltd. 2816 21st Street NE
Calgary, Alberta T2E 6 Z2
(403) 250-9380

Hamilton/Avnet
Electronics Ltd.
6845 Rexwood Drive
Units $3,4 \& 5$
Mississauga, Ontario L4V 1R2
(416) 677-7432

Hamilton/Avnet
Electronics Ltd.
2795 Halpern Street
St. Laurent
Montreal, Quebec H4S 1P8
(514) 335-1000

Hamilton/Avnet
Electronics Ltd
190 Colonnade Road
Nepean, Ontario K2E 7J5
(613) 226-1700

Hi-Tech Sales Limited (REP)
Box 115
339 10th Avenue S.E.
Calgary, Alberta T2G OW2
(403) 239-3773

Hi-Tech Sales Limited (REP)
7510B Kingsway
Burnaby, B.C. V3N 3C2
(604) 596-1886

Hi-Tech Sales Limited (REP)
102-902 St. James Street
Winnipeg, Manitoba R3G 3J7
(204) 786-3343

Zentronics, Ltd 8 Tilbury Court
Brampton, Ontario L6T 3T4
(416) 451-9600

Zentronics, Ltd
Bay \#1
3300 14th Avenue, N.E.
Calgary, Alberta T2A" 6 J 4
(403) 272-1021

Zentronics, Ltd.
155 Colonnade Road
Units 17 \& 18
Nepean, Ontario K2E 7K1
(613) 226-8840

Zentronics, Ltd.
817 McCaffrey Street
Ville St. Laurent
Montreal, Quebec H4T 1N3
(514) 737-9700

Zentronics, Ltd.
Unit 108
11400 Bridgeport Road
Richmond, B.C. V6X 1T2
(604) 273-5575

Zentronics, Ltd.
\#173-1222 Alberta Ave.
Saskatoon, Saskatchewan
Canada S7K 1R4
(306) 955-2202

Zentronics, Ltd.
60.1313 Border Street

Winnipeg, Manitoba R3H OX4 (204) 694-1957

China

(Peoples Republic of China)
China HP Rep Office
4th Floor, 2nd Watch Factory
Shuang Yu Shu
Bei San Huan Lu
Hai-Dian District, Beijing
(560) 280-567

Denmark

Distributoren
Silovej 18
DK-2690 Karlslunde
(45) 3140700

Finland

Field-OY
Niittylanpolku 10
SF-00620 Helsinki
(435) 807571011

France

Almex
Zone Industrielle d'Antony
48, rue de l'Aubepine
92160 Antony
(33) 16662112
F. Feutrier

8, Benoit Malon
F-92150 Surensnes
(33) 17724646
F. Feutrier

Rue des Trois Glorieuses
42271 St. Priest En Jarez
(33) 77746733
S.C.A.I.B.

80 rue d'Arceuil
Zone Silic 137
94523 Rungis Cedex
(33) 16872313

Germany

EBV-Elektronik
Oberweg 6
D-8025 Unterhaching Munich
(49) 89611051

Germany (cont.)

ING. - BUERO K. -H. Dreyer
Flensburger Strasse 3
D-2380 Schleswig
(49) 462123121

JERMYN GmbH
Im Dachsstueck 9
D-6250 Limburg/Lahn
(49) $6431508-0$

SASCO GmbH
Hermann-Oberth Strasse 16
D- 8011 Putzbrunn
Munich
(49) 8946 11-211

Distron GmbH \& Co
Behaimstrasse 3
D-1000 Berlin 10
(49) $303421041-45$

Hong Kong

CET Ltd. (REP)
22/F Chuang's Finance Centre
81-85 Lockhart Road
Wanchai
(852) 5200922
(FAX) 5285764

India

Blue Star Ltd. (REP)
Sabri Complex 11 Floor 24 Residency Road Bangalore 560025 (91) 812-578881

Blue Star Ltd. (REP)
Sahas
414/2 Veer Sarvarkar Prabhadevi
Bombay 400025
(91) 22-430-6155

Blue Star Ltd. (REP)
13 Community Centre
New Friends Colony
New Delhi 110065
(91) 11-633-773

Blue Star Ltd. (REP) 2-2-47/1108 Bolarum Road Secunderabad 500-003
(91) 842-72057

Israel

Computation \& Measurement
Systems. Ltd. (REP)
11 Masad Street
P.O. Box 25089

Tel Aviv
(972) 3388456

Italy

Celdis Italiana S.p.A.
Via Fratelli Gracchi, 36
I-20092 Cinisello Balsamo
Milano
(39) 2618391

Japan

Ryoyo Electric Corporation Meishin Building
1-20-19 Nishiki
Naka-Ku, Nagoya, 460
(81) 522030277

Ryoyo Electric Corporation
Taiyo Shoji Building
4-6 Nakanoshima
Kita-Ku, Osaka, 530
(81) 64481631

Ryoyo Electric Corporation
Konwa Building
12-22 Tsukiji, 1-Chome
Chuo-Ku, Tokyo
(81) 3543771

Tokyo Electron Company, Ltd.
Sinjuku-Nomura Building
Tokyo 160
(81) 33434411

Korea

Supertek Korea Inc. (REP)
Han Hyo Building
34-2 Yoido-Dong
Youngdungpo-Ku, Seoul
(82) 2 782-9076/8

Malaysia

Dynamar International Ltd.
Lot 3.03, 3rd Floor,
Wisma Esplanade
43, Green Hall, 10200 Penang
(60) 4377269 or 4377292

Netherlands

Diode Nederland
Meidoornkade 22
NL-3992 AE Houten
(31) 15609906

EBV Elektronik
3606 AK-Maarssenbroek
Planetenbaan 2
(31) 346562353

New Zealand

VSI Electronics Pty. Ltd.
\#7 Beasley Ave., Penrose
Auckland
(64) 9593603

VSI Electronics Pty. Ltd.
Box 21-239
Christchurch
(64) 60928

VSI Electronics Pty. Ltd.
P.O. Box 11145

Wellington
(64) 4848922

Norway

HEFRO Electronikk A/S Postboks 6, Haugenstua $\mathrm{N}-0915$ Oslo 9
(47) 2107300

Singapore

Dynamar International Ltd. (REP)
12, Lorong Bakar Batu, \#05-11
Kolam Ayer Industrial Park
Singapore 1334
(65) 747-6188

So. Africa

Advanced Semiconductor Devices (Pty) Ltd.
P.O. Box 2944

Johannesburg 2000, S.A.
(27) 11 802-5820

Spain

Diode Espana
Avda. Brasil 5, 1st Planta
E-Madrid 20
(34) 914553686

Sweden

Traco AB

Box 103
S-12322 Farsta
(46) 8930000

ITT Multikomponent $A B$
Ankdammsgatan 32
Box 1330
S-17126 Solna

Switzerland

Baerlocher AG
Foerrlibuckstrasse 150
CH-8037 Zuerich
(41) 1429900

Fabrimex Ag
Kirchenweg 5
CH-8032 Zuerich
(41) 12512929

Taiwan (Republic of China)
Morrihan International Inc.
9F, No. 176
Fu, Hsing N. Road
Taipei
(886) 27151083

Turkey

EMPA
Refik Saydam Cad 89/5
Sishane/Istanbul

United Kingdom

Celdis Ltd.
37-39 Loverock Road
Reading, Berkshire
RG3 1ED
(44) 734585171

Farnell Electronic
Components Ltd.
Canal Road
Leeds LS12 2TU
(44) 532-636311

Jermyn Distribution
Vestry Estate
Otford Road
Sevenoaks, Kent
TN14 5EU
(44) 732450144

Macro Marketing Ltd.
Burnham Lane
Slough, Berkshire
SL1 6LN
(44) 62864422

Yugoslavia

Elektrotehna

Do Junel 0.Sol.0.
Tozd Elzas O.Sol. 0 .
Titova 81
61001 Ljubljana
(38) 61347749
(38) 61347841

International Sales Offices and Representatives

Product Line Sales/Support Key
 Key Product Line
 A Analytical
 CM Components
 C Computer Systems
 E Electronic Instruments \& Measurement Systems
 M Medical Products
 P Personal Computation Products
 * Sales only for specific product line
 ** Support only for specific product line
 IMPORTANT: These symbols designate general product line capability. They do not insure sales or support availability for all products within a line, at all locations. Contact your local sales office for information regarding locations where HP support is available for specific products.

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these headquarter offices.

ASIA

Hewlett-Packard Asia Ltd. 47/F, 26 Harbour Rd. Wanchai, HONG KONG
G.P.O. Box 863, Hong Kong

Tel: 5-8330833
Telex: 76793 HPA HX
Cable: HPASIAL TD

CANADA

Hewlett-Packard (Canada) Ltd.
3877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 069-8644
EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72

A- 1222 VIENNA, Austria
Tel: (222) 2500-0
Telex: 134425 HEPA A
NORTHERN EUROPE
Hewlett-Packard S.A.
V. D. Hooplaan 241
P.0. Box 999

NL-118 LN 15 AMSTELVEEN
The Netherlands
Tel: 205479999
Telex: 18919 hpner
SOUTHEAST EUROPE
Hewlett-Packard S.A.
World Trade Center
110 Avenue Louis-Casai
1215 Cointrin, GENEVA
Switzerland
Tel: (022) 989651
Telex: 27225 hpser
Mail Address:
P.O. Box

CH-1217 Meyrin 1
GENEVA
Switzerland

MIDDLE EAST AND

CENTRAL AFRICA
Hewlett-Packard S.A.
Middle East/Central
Africa Sales H.Q.
7, rue du Bois-du-Lan
P.O. Box 364
$\mathrm{CH}-1217$ Meyrin 1
GENEVA
Switzerland
Tel: (022) 831212
Telex: 27835 hmea ch
Telefax: (022) 831535

UNITED KINGDOM
Hewlett-Packard Ltd.
Nine Mile Ride
WOKINGHAM
Berkshire, RG113LL
Tel: 0344773100
Telex: 848805/848814/848912
UNITED STATES OF
AMERICA
Customer Information Center
(800) 752-0900

6:00 AM to 5 PM Pacific Time

EASTERN USA

Hewlett-Packard Co.
4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
MIDWESTERN USA
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

SOUTHERN USA

Hewlett-Packard Co.
2000 South Park Place
ATLANTA, GA 30339
Tel: (404) 955-1500

WESTERN USA

Hewlett-Packard Co.
5161 Lankershim Blvd.
NORTH HOLLYWOOD, CA 91601
Tei: (818) 505-5600

OTHER

INTERNATIONAL

AREAS

Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034-8300
Cable: HEWPACK

ALGERIA

Hewlett-Packard Trading S.A.
Bureau de Liaison Alger
Villa des Lions
9, Hai Galloul
DZ-BORDJ EL BAHRI
Tel: 760336
Telex: 63343 dilon dz

ANGOLA

Telectra Angola LDA
Empresa Tecnica de
Equipamentos
16 rue Cons. Julio de Vihelma
LUANDA
Tel: 355 15,355 16
Telex: 3134
E.P

ARGENTINA

Hewlett-Packard Argentina S.A.
Montaneses 2140/50
1428 BUENOS AIRES
Tel: 541-11-1441
Telex: 22796 HEW PAC-AR
A,C,E,P
Biotron S.A.C.I.M.e.I.
Av. Paso Colon 221, Piso 9
1399 BUENOS AIRES
Tel: 541-333-490,
541-322-587
Telex: 17595 BIONAR
M
Laboratorio Rodriguez
Corswant S.R.L.
Misiones, 1156-1876
Bernal, Oeste
BUENOS AIRES
Tel: 252-3958, 252-4991
A
Intermaco S.R.L.
Florida 537/71
Galeria Jardin-Local 28
1005 BUENOS AIRES
Tel: 393-4471/1928
Telex: 22796 HEW PAC-AR
P (Calculators)
Argentina Esanco S.R.L.
A/ASCO 2328
1416 BUENOS AIRES
Tel: 541-58-1981, 541-59-2767
Telex: 22796 HEW PAC-AR
A
All Computers S.A.
Montaneses 2140/50 5 Piso
1428 BUENOS AIRES
Tel: 781-4030/4039/783-4886
Telex: 18148 Ocme
P
AUSTRALIA
Adelaide, South
Australia Office
Hewlett-Packard Australia Ltd.
153 Greenhill Road
PARKSIDE, S.A. 5063
Tel: 61-8-272-5911
Telex: 82536
Cable: HEWPARD Adelaide
A*,C,CM,E,P

Brisbane, Queensland
Office
Hewlett-Packard Australia Ltd.
10 Payne Road
THE GAP, Queensland 4061
Tel: 61-7-300-4133
Telex: 42133
Cable: HEWPARD Brisbane
A,C,CM,E,M,P
Canberra, Australia
Capital Territory

Office

Hewlett-Packard Australia Ltd. Thynne Street, Fern Hill Park
BRUCE, A.C.T. 2617
P.O. Box 257 ,

JAMISON, A.C.T. 2614
Tel: 61-62-80-4244
Telex: 62650
Cable: HEWPARD Canberra
C,CM,E,P
Melbourne, Victoria
Office
Hewlett-Packard Australia Ltd.
31-41 Joseph Street
P.0. Box 221

BLACKBURN, Victoria 3130
Tel: 61-3-895-2895
Telex: 31-024
Cable: HEWPARD Melbourne
A,C,CM,E,M,P
Perth, Western Australia
Office
Hewlett-Packard Australia Ltd.
Herdsman Business Park
CLAREMONT, W.A. 6010
Tel: 61-9-383-2188
Telex: 93859
Cable: HEWPARD Perth
C,CM,E,P
Sydney, New South
Wales Office
Hewlett-Packard Australia Ltd.
17-23 Talavera Road
P.0. Box 308

NORTH RYDE, N.S.W. 2113
Tel: 61-2-888-4444
Telex: 21561
Cable: HEWPARD Sydney
A,C,CM,E,M,P

AUSTRIA

Hewlett-Packard Ges.m.b.h.
Verkaufsbuero Graz
Grottenhofstrasse 94
A-8052 GRAZ
Tel: 43-316-291-5660
Telex: 312375
C, E
Hewlett-Packard Ges.m.b.h
Lieblgasse 1
P.0. Box 72

A-1222 VIENNA
Tel: 43-222-2500
Telex: 134425 HEPA A
A,C,CM,E,M,P

BAHRAIN

Green Salon
P.O. Box 557

MANAMA
Tel: 255503-250950
Telex: 84419

Wael Pharmacy
P.O. Box 648

MANAMA
Tel: 256123
Telex: 8550 WAEL BN
E,M
Zayani Computer Systems
218 Shair Mubarak Building
Government Avenue
P.O. Box 5918

MANAMA
Tel: 276278
Telex: 9015 plans bn
BELGIUM
Hewlett-Packard Belgium S.A./N.V
Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 32-2-761-31-11
Telex: 23494 hewpac
A,C,CM,E,M,P
BERMUDA
Applied Computer Technologies
Atlantic House Building
P.O. Box HM 2091

Par-La-Ville Road
HAMILTON 5
Tel: 295-1616
Telex: 380 3589/ACT BA
P
BOLIVIA
Arrellano Ltda
Av. 20 de Octubre \#2125
Casilla 1383
LA PAZ
Tel: 368541
M
BRAZIL
Hewlett-Packard do Brasil S.A.
Alameda Rio Negro, 750-L AND.
ALPHAVILLE
06400 Barueri SP
Tel: (011) 421.1311
Telex: (011) 71351 HPBR BR
Cable: HEWPACK Sao Paulo
CM, E
Hewlett-Packard do Brasil S.A.
Praia de Botafago 228-A-614
6. AND.-CONJ. 601

Edificio Argentina - Ala A
22250 RIO DE JANEIRO, RJ
Tel: (021) 552-6422
Telex: 21905 HPBR BR
Cable: HEWPACK Rio de Janeiro E

Van Den Cientifica L.tda.
Rua Jose Bonifacio, 458
Todos os Santos
20771 RIO DE JANEIRO, RJ
Tel: (021) 593-8223
Telex: 33487 EGLB BR
A
ANAMED I.C.E.I. Ltda.
Rua Vergueiro, 360
04012 SAO PAULO, SP
Tel: (011) 572-1106
Telex: 24720 HPBR BR
Datatronix Electronica Ltda.
Av. Pacaembu 746-C11
SAO PAULO, SP
Tel: (118) 260111

[^31]
BRUNEI

Komputer Wisman Sdn Bhd G6, Chandrawaseh Cmplx, Jalan Tutong
P.O. Box 1297,

BANDAR SERI BEGAWAN
NEGARA BRUNI DARUSSALAM Tel: 673-2-2000-70/26711
C,E,P
CAMEROON
Beriac
B.P. 23

DOUALA
Tel: 420153
Telex: 5351
C,P

CANADA

Alberta
Hewlett-Packard (Canada) Ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A 6 T7
Tel: (403) 235-3100
A,C,CM,E*,M,P*
Hewlett-Packard (Canada) Ltd. 11120-178th Street
EDMONTON, Alberta T5S 1P2
Tel: (403) 486-6666
A,C,CM,E,M,P
British Columbia
Hewlett-Packard (Canada) Ltd. 10691 Shellbridge Way RICHMOND,
British Columbia V6X 2W8
Tel: (604) 270-2277
Telex: 610-922-5059
A,C,CM,E*,M,P*
Hewlett-Packard (Canada) Ltd.
121-3350 Douglas Street VICTORIA, British Columbia V8Z 3LT
Tel: (604) 381-6616
C
Manitoba
Hewlett-Packard (Canada) Ltd. 1825 Inkster Blvd.
WINNIPEG, Manitoba R2X 1R3
Tel: (204) 694-2777
A,C,CM,E,M,P*
New Brunswick
Hewlett-Packard (Canada) Ltd.
14 Main Street
MONCTON, New Brunswick
E1C 1E6
Tel: (506) 855-2841
C
Nova Scotia
Hewlett-Packard (Canada) Ltd. Suite 111
900 Windmill Road
DARTMOUTH, Nova Scotia
B3B 1P7
Tel: (902) 469-7820
C,CM,E*,M, P*

Ontario

Hewlett-Packard (Canada) Ltd. 3325 N. Service Rd. Unit W03 BURLINGTON, Ontario L7N 3G2 Tel: (416) 335-8644
C,M*
Hewlett-Packard (Canada) Ltd.
552 Newbold Stree
LONDON, Ontario N6E 2S5
Tel: (519) 686-9181
A,C,CM,E*,M, P**

Hewlett-Packard (Canada) Ltd.

6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 069-83644
A,C,CM,E,M,P
Hewlett-Packard (Canada) Ltd. 2670 Queensview Dr.
OTTAWA, Ontario K2B 8K1
Tel: (613) 820-6483
A,C,CM, E*,M, P*
Hewlett-Packard (Canada) Ltd.
3790 Victoria Park Ave.
WILLOWDALE, Ontario M2H 3H7
Tel: (416) 499-2550
C, E
Quebec
Hewlett-Packard (Canada) Ltd.
17500 Trans Canada Highway
South Service Road
KIRKLAND, Quebec H9J 2XB
Tel: (514) 697-4232
Telex: 058-21521
A,C,CM,E,M,P*
Hewlett-Packard (Canada) Ltd.
1150 rue Claire Fontaine
QUEBEC CITY, Quebec G1R 5G4
Tel: (418) 648-0726
C
Hewlett-Packard (Canada) Ltd. 130 Robin Crescent
SASKATOON, Saskatchewan
S7L 6M7
Tel: (306) 242-3702
C
CHILE
ASC Ltda.
Austria 2041
SANTIAGO
Tel: 223-5946, 223-6148 Telex: 392-340192 ASC CK C,P
Jorge Calcagni y Cia
Av. Italia 634 Santiago
Casilla 16475
SANTIAGO 9
Tel: 9-011-562-222-0222
Telex: 392-440283 JCYCL CZ CM,E,M
Metrolab S.A.
Monjitas 454 of. 206
SANTIAGO
Tel: 395752, 398296
Telex: 340866 METLAB CK A
Olympia (Chile) Ltda.
Av. Rodrigo de Araya 1045
Casilla 256-V
SANTIAGO 21
Tel: 225-5044
Telex: 340892 OLYMP
Cable: Olympiachile
Santiagochile
C, P
CHINA, People's

Republic of

China Hewlett-Packard Co., Ltd.
47/F China Resources Bldg
26 Harbour Road
HONG KONG
Tel: 5-8330833
Telex: 76793 HPA HX
Cable: HP ASIA LTD
A^{*}, M^{*}

China Hewlett-Packard Co., Ltd.
P.0. Box 9610, Beijing

4th Floor,
2nd Watch Factory Main
Shuang Yu Shou,
Bei San Huan Road
Hai Dian District
BEIJING
Tel: 33-1947 33-7426
Telex: 22601 CTSHP CN
Cable: 1920 Beijing
A,C,CM,E,M,P
China Hewlett-Packard Co.; Ltd.
CHP Shanghai Branch
23/F Shanghai Union Building
100 Yan An Rd. East
SHANG-HA
Tel: 265550
Telex: 33571 CHPSB CN
Cable: 3416 Shanghai
A,C,CM,E,M,P
COLOMBIA
Instrumentacion
H.A. Langebaek \& Kier S.A.

Carrerra 4A No.52A-26
Apartado Aereo 6287
BOGOTA 1, D.E.
Tel: 212-1466
Telex: 44400 INST CO
Cable: AARIS Bogota
CM,E,M
Nefromedicas Ltda.
Calle 123 No. 9B-31
Apartado Aereo 100-958
BOGOTA D.E, 10
Tel: 213-5267, 213-1615
Telex: 43415 HEGAS CO
A
Compumundo
Avenida 15 \# 107-80
BOGOTA D.E.
Tel: 57-214-4458
Telex: 39645466 MARCO
P
Carvajal, S.A.
Calle 29 Norte No. 6A-40
Apartado Aereo 46
CALI
Tel: 9-011-57-3-621888
Telex: 39655650 CUJCL CO
C,E,P
CONGO
Seric-Congo
B.P. 2105

BRAZZAVILLE
Tel: 815034
Telex: 5262

COSTA RICA

Cientifica Costarricense S.A
Avenida 2, Calle 5
San Pedro de Montes de Oca
Apartado 10159
SAN JOSE
Tel: 9-011-506-243-820
Telex: 3032367 GALGUR CR

CM,E,M

0.Fischel R. Y. Cia. S.A.

Apartados 434-10174
SAN JOSE
Tel: 23-72-44
Telex: 2379
Cable: OFIR
A

CYPRUS
Telerexa Ltd.
P.O. Box 1152

Valentine House
8 Stassandrou St.
NICOSIA
Tel: 45628,62698
Telex: 5845 tirx cy
E,M,P
DENMARK
Hewlett-Packard A/S
Kongevejen 25
DK-3460 BIRKEROD
Tel: 45-02-81-6640
Telex: 37409 hpas dk
A,C,CM,E,M,P
Hewlett-Packard A/S
Rolighedsvej 32
DK-8240 RISSKOV, Aarhus
Tel: 45-06-17-6000
Telex: 37409 hpas dk C, E
licroprog S A
Juan Tomas Mejia y Cotes No. 60
Arroyo Hondo
SANTO DOMINGO
Tel: 565-6268
Telex: 4510 ARENTA DR (RCA)
ECUADOR
CYEDE Cia. Ltda
Avenida Eloy Alfaro 1749
y Belgica
Casilla 6423 CCI
QUITO
Tel: 9-011-593-2-450975
Telex: 39322548 CYEDE ED
E,P
Medtronics
Valladolid 524 Madrid
P.O. 9171, QUITO

Tel: 2-238-951
Telex: 2298 ECUAME ED
A
Hospitalar S.A.
Robles 625
Casilla 3590
QUITO
Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Quito M
Ecuador Overseas Agencies C.A.
Calle 9 de Octubre \#818
P.O. Box 1296, Guayaquil

QUITO
Tel: 306022
Telex: 3361 PBCGYE ED
M
EGYPT
Sakrco Enterprises
P.O. Box 259

ALEXANDRIA
Tel: 802908, 808020, 805302

Telex: 54333

C

International Engineering
Associates
6 El Gamea Street
Agouza
CAIRO
Tel: 71-21-68134-80-940
Telex: 93830 IEA UN
Cable: INTEGASSO
E
Sakrco Enterprises
70 Mossadak Street
Dokki, Giza
CAIRO
Tel: 706 440, 701087
Telex: 9337
C
S.S.C. Medical

40 Gezerat El Arab Street
Mohandessin
CAIRO
Tel: 803844, 805998, 810263
Telex: 20503 SSC UN

M*

EL SALVADOR
IPESA de El Salvador S.A.
29 Avenida Norte 1223
SAN SALVADOR
Tel: 9-011-503-266-858
Telex: 30120539 IPESA SAL
A,C,CM,E,P

ETHIOPIA

Seric-Ethiopia
P.O. Box 2764

ADDIS ABABA
Tel: 185114
Telex: 21150
C,P

FINLAND

Hewlett-Packard Finland
Field Oy
Niittylanpolku IO
00620 HELSINKI
Tel: (90) 757-1011
Telex: 122022 Field SF
CM
Hewlett-Packard Oy
Piispankalliontie 17
02200 ESP00
Tel: (90) 887-21
Telex: 121563 HEWPA SF
A,C,E,M.P
FRANCE
Hewlett-Packard France
Z.I. Mercure B

Rue Berthelot
13763 Les Milles Cedex
AIX-EN-PROVENCE
Tel: 33-42-59-4102
Telex: 410770F
A,C,E,M
Hewlett-Packard France
64, Rue Marchand Saillant
F-61000 ALENCON
Tel: (33) 290442
C**
Hewlett-Packard France
Batiment Levitan
2585, route de Grasse
Bretelle Autoroute
06600 ANTIBES
Tel: (93) 74-59-19
-

$$
\underline{ـ}
$$

FRANCE (Cont'd)
Hewlett-Packard France
28 Rue de la Republique Boite Postale 503 25026 BESANCON Cedex Tel: (81) 83-16-22
Telex: 361157
C,E*
Hewlett-Packard France
ZA Kergaradec
Rue Fernand Forest
F-29239 GOUEESNOU
Tel: (98) 41-87-90
E
Hewlett-Packard France
Chemin des Mouilles
Boite Postale 162
69131 ECULLY Cedex (Lyon)
Tel: 33-78-33-8125
Telex: 310617 F
A,C.E.M.P**
Hewlett-Packard France
Parc d'activites du Bois Briard
2 Avenue du Lac
F-91040 EVRY Cedex
Tel: 3311/6077 9660
Telex: 692315F
C
Hewlett-Packard France
Application Center
5, avenue Raymond Chanas
38320 EYBENS (Grenoble)
Tel: (76) 62-57-98
Telex: 980124
HP GRENOB EYBE C
Hewlett-Packard France
Rue Fernand, Forest
Z.A. Kergaradec

29239 GOUESNOU
Tel: (98) 41-87-90
Hewlett-Packard France
Parc Club des Tanneries
Batiment 84
4, Rue de la Faisanderie
67381 LINCOLSHEIM
(Strasbourg)
Tel: (88) 76-15-00
Telex: 890141F
C, $\mathrm{E}^{*}, \mathrm{M}^{*}, \mathrm{P}^{*}$
Hewlett-Packard France
Centre d'affaires Paris-Nord
Batiment Ampere
Rue de la Commune de Paris
Boite Postale 300
93153 LE BLANC-MESNIL
Tel: (1) 865-44-52
Telex: 211032F
C,E,M
Hewlett-Packard France
Parc d'activites Cadera
Quartier Jean-Mermoz
Avenue du President JF
Kennedy
33700 MERIGNAC (Bordeaux)
Tel: 33-56-34-0084
Telex: 550105F
C,E,M

Hewlett-Packard France
3. Rue Graham Bell

BP 5149
57074 METZ Cedex
Tel: (87) 36-13-31
Telex: 860602F
C.E.

Hewlett-Packard France
Miniparc-ZIRST
Chemin du Vieux Chene
38240 MEYLAN (Grenoble)
Tel: (76) 90-38-40
980124 HP Grenobe
C
Hewlett-Packard France
Bureau vert du Bois Briand
Cheman de la Garde
-CP 212212
44085 NANTES Cedex
Tel: (40) 50-32-22
Telex: 711085F
A,C,E,CM*, P
Hewlett-Packard France
125, Rue du Faubourg
Bannier
45000 ORLEANS
Tel: 33-38-62-2031
E, P^{*}
Hewlett-Packard France
Zone Industrielle de
Courtaboeuf
Avenue des Tropiques
91947 LES ULIS Cedex
(Orsay)
Tel: 33-6-907 7825
Telex: 600048F
A,C,CM,E,M, ${ }^{* *}$
Hewlett-Packard France
15, Avenue de L'Amiral-Bruix
75782 PARIS Cedex 16
Tel: 33-15-02-1220
Telex: 613663F
C, P^{*}
Hewlett-Packard France
242 Ter. Ave J Mermoz
64000 PAU
Tel: 33-59-80-3802
Telex: 550365F
C, E*
Hewlett-Packard France
6, Place Sainte Croix
86000 POITIERS
Tel: 33-49-41-2707
Telex: 792335F
C, E*
Hewlett-Packard France
47, Rue de Chativesle
51100 REIMS
Tel: 33-26-88-6919
C, P^{*}
Hewlett-Packard France
Parc d'activites de la Poterie
Rue Louis Kerautel-Botmel
35000 RENNES
Tel: 33-99-51-4244
Telex: 740912F
A^{*}, C, E, M, P^{*}
Hewlett-Packard France
98 Avenue de Bretagne
76100 ROUEN
Tel: 33-35-63-5766
Telex: 770035F
C, E

Hewlett-Packard France
4. Rue Thomas-Mann

Boita Postale 56
67033 STRASBOURG Cedex
Tel: (88) 28-56-46
Telex: 890141F
C,E,M, P*
Hewlett-Packard France
Le Peripole III
3. Chemin du Pigeonnier de
la Cepiere
31081 TOULOUSE Cedex
Tel: 33-61-40-1112
Telex: 531639F
A,C,E,M, P*
Hewlett-Packard France
Les Cardoulines
Batiment B2
Route des Dolines
Parc d'activite de Valbonne
Sophia Antipolis
06560 VALBONNE (Nice)
Tel: (93) 65-39-40
C
Hewlett-Packard France
9, Rue Baudin
26000 VALENCE
Tel: 33-75-42-7616
Hewlett-Packard France
Carolor
ZAC de Bois Briand
57640 VIGY (Metz)
Tel: (8) 77120 २2
C
Hewlett-Packard France
Parc d'activite des Pres

1. Rue Papin Cedex

59658 VILLENEUVE D'ASCQ
Tel: 33-20-91-4125
Telex: 160124F
Telex: 160124F
C, E, M, P
Hewlett-Packard France
Parc d'activites Paris-Nord 11.
Boite Postale 60020
95971 Roissy Charles de Gaulle
VILLEPINTE
Tel: (1) 48638080
Telex: 211032F
C,E,M,P*
GABON
Sho Gabon
P.O. Box 89

LIBREVILLE
Tel: 721484
Telex: 5230
GERMAN FEDERAL

REPUBLIC

Hewlett-Packard GmbH
Vertriebszentrum Mitte
Hewlett-Packard-Strasse
D-6380 BAD HOMBURG
Tel: (06172) 400-0
Telex: 410844 hpbhg
A,C,E,M,P
Hewlett-Packard GmbH
Geschaftsstelle
Keithstrasse 2-4
D-1000 BERLIN 30
Tel: (030) 2199 04-0
Telex: 0183405 hpbln d
A,C,E,M,P

Hewlett-Packard GmbH
Verbindungsstelle Bonn
Friedrich-Ebert-Allee 26
5300 BONN
Tel: (0228) 234001
Telex: 8869421
Hewlett-Packard GmbH
Vertriebszentrun Sudwest
Schickardstrasse 2
D-7030 BOBLINGEN
Postlach 1427
Tel: (07031) 645-0
Telex: 7265743 hep
A,C,CM,E,M,P
Hewlett-Packard GmbH
Zeneralbereich Mktg
Herrenberger Strasse 130
D-7030 BOBLINGEN
Tel: (07031) 14-0
Telex: 7265739 hep
Hewlett-Packard GmbH
Geschaftsstelle
Schleefstr. 28a
D-4600 DORTMUND-41
Tel: (0231) 45001
Telex: 822858 hepdod
A,C,E
Hewlett-Packard GmbH
Reparaturzentrum Frankfurt
Berner Strasse 117
6000 FRANKFURT/MAIN 60
Tel: (069) 500001-0
Telex: 413249 hpffm
Hewlett-Packard GmbH
Vertriebszentrum Nord
Kapstadtring 5
D-2000 HAMBURG 60
Tel: 49-40-63-804-0
Telex: 02163032 hphh d
A,C,E,M,P
Hewlett-Packard GmbH
Geschaftsstelle
Heidering 37-39
D-3000 HANNOVER 61
Tel: (0511) 5706-0
Telex: 0923259 hphan
A,C,CM,E,M,P
Hewlett-Packard GmbH
Geschaftsstelle
Rosslauer Weg 2-4
D-6800 MANNHEIM
Tel: 49-0621-70-05-0
Telex: 0462105 hpmhm
A,C,E
Hewlett-Packard GmbH
Geschaftsstelle
Messerschmittstrasse 7
D-7910 NEU ULM
Tel: 49-0731-70-73-0
Telex: 0712816 HP ULM-D
A, C, E*
Hewlett-Packard GmbH
Geschaftsstelle
Emmericher Strasse 13
D-8500 NURNBERG 10
Tel: (0911) 5205-0
Telex: 0623860 hpnbg
C,CM,E,M,P

Hewlett-Packard GmbH
Vertriebszentrum Ratingen
Berliner Strasse 111
D-4030 RATINGEN 4
Postfach 3112
Tel: (02102) 494-0
Telex: 589070 hprad
A,C,E,M,P
Hewlett-Packard GmbH
Vertriebszentrum Muchen
Eschenstrasse 5
D-8028 TAUFKIRCHEN
Tel: 49-89-61-2070
Telex: 0524985 hpmch
A,C,CM,E,M,P
Hewlett-Packard GmbH
Geschaftsstelle
Ermlisallee
7517 WALDBRONN 2
Postfach 1251
Tel: (07243) 602-0
Telex: 782838 hepk
A,C,E
GREAT BRITAIN
See United Kingdom

GREECE

Hewlett-Packard A.E.
178, Kirissias Ave. Je
6th Floor
Halandri-ATHENS
Greece
Tel: 301116473360
301116726090
Telex: 221286 HPHLGR
A,C,CM**,E;M;P
Kostas Karaynnis S.A.
8, Omirou Street
ATHENS 133
Tel: 3230 303, 3237371
Telex: 215962 RKAR GR
A, C*, CM, E
Impexin
Intelect Div.
209 Mesogion
11525 ATHENS
Tel: 6474481/2
Telex: 216286
P
Haril Company
38, Mihalakopoulou
ATHENS 612
Tel: 7236071
Telex: 218767
M^{*}
Hellamco
P.O. Box 87528

18507 PIRAEUS
Tel: 4827049
Telex: 241441
A
GUATEMALA
IPESA DE GUATEMALA
Avenida Reforma 3-48, Zona 9
GUATEMALA CITY
Tel: 316627, 317853,66471/5
9-011-502-2-316627
Telex: 3055765 IPESA GU
A,C,CM,E,M,P

$$
\square-\cdots-
$$

HONG KONG

Hewlett-Packard Hong Kong, Ltd. 7 Hare Stree
G.P.O. Box 795

5th Floor, Sun Hung Kai Centre 30 Harbour Road, Wan Chai
HONG KONG
Tel: 852-5-832-3211
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E, P
CET Ltd.
10th Floor, Hua Asia Bldg.
64-66 Gloucester Road
HONG KONG
Tel: (5) 200922
Telex: 85148 CET HX
CM
Schmidt \& Co. (Hong Kong) Ltd
18th Floor, Great Eagle Centre
23 Harbour Road, Wanchai
HONG KONG
Tel: 5-8330222
Telex: 74766 SCHMC HX

A,M

ICELAND
Hewlett-Packard Iceland
oefdabakka 9
112 REYKJAVIK
Tel: 354-1-67-1000
Telex: 37409
A,C,CM,E,M,P

INDIA

Computer products are sold through Blue Star Ltd. All computer repairs and maintenance service is done through Computer Maintenance Corp.

Blue Star Ltd.
B. D. Patel House

Near Sardar Patel Colony
AHMEDABAD 380014
Tel: 403531, 403532
Telex: 0121-234
Cable: BLUE FROST
A,C,CM,E
Blue Star Ltd.
40/4 Lavelle Road ANGALORE 560001
Tel: 57881, 867780
Telex: 0845-430 BSLBIN
Cable: BLUESTAR
A,C*,CM,E
Blue Star Ltd.
Band Box House
Prabhadevi
BOMBAY 400025
Tel: 4933101, 4933222
Telex: 011-71051
Cable: BLUESTAR
A,M
Blue Star Ltd.
Sahas
414/2 Vir Savarkar Marg
Prabhadevi
BOMBAY 400025
Tel: 422-6155
Telex: 011-71193 BSSS IN
Cable: FROSTBLUE
A,CM,E,M
Blue Star Ltd
Kalyan, 19 Vishwas Colony Alkapuri, BORODA, 390005
Tel: 65235, 65236
Cable: BLUE STAR

Blue Star Ltd.
P.O. Box 506

CALCUTTA 700001
Tel: 230131, 230132
Telex: 031-61120 BSNF IN
Cable: BLUESTAR
A,M,C,E
Blue Star Ltd.
133 Kodambakkam High Road
MADRAS 600034
Tel: 472056, 470238
Telex: 041-379
Cable: BLUESTAR
A,M
Blue Star Ltd.
13 Community Center
New Friends Colony
NEW DELHI 110065
Tel: 682547
Telex: 031-2463
Cable: BLUEFROST
A, C*,CM,E,M
Blue Star Ltd
15/16 C Wellesley Rd.
PUNE 411011
Tel: 22775
Cable: BLUESTAR
A
Blue Star Ltd.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500003
Tel: 72057, 72058
Telex: 0155-459
Cable: BLUEFROST
A,C,E
Blue Star Ltd.
T.C. 7/603 Poornima

Maruthunkuzhi
TRIVANDRUM 695013
Tel: 65799, 65820
Telex: 0884-259
Cable: BLUESTAR
E
Computer Maintenance
Corporation Ltd
115, Sarojini Devi Road
SECUNDERABAD 500003
Tel: 310-184, 345-774
Telex: 031-2960
C**

INDONESIA

BERCA Indonesia P.T
P.O. Box 496/Jkt.

JI. Abdul Muis 62
JAKARTA
Tel: 21-373009
Telex: 46748 BERSAL IA Cable: BERSAL JAKARTA P

BERCA Indonesia P.T.
P.O. Box 2497/Jkt.

Antara BIdg., 12th Floor
JL Medan Merdeka Selatan 17 JAKARTA-PUSAT
Tel: 21-340417
Telex: 46748 BERSAL IA
A,C,E,M,P
BERCA Indonesia P.T.
Jalan Kutai 24
SURABAYA
Tel: 67118
Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
A^{*}, E, M, P

RAQ
Hewlett-Packard Trading S.A.
Service Operation
AI Mansoor City 9B/3/7
BAGHDAD
Tel: 551-49-73
Telex: 212-455 HEPAIRAQ IK

C

IRELAND
Hewlett-Packard Ireland Ltd.
Temple House, Temple Road
Blackrock, Co. DUBLIN
Tel: 88/333/99
Telex: 30439
C,E,P
Hewlett-Packard Ltd.
75 Belfast Rd, Carrickfergus
Belfast BT38 8PH
NORTHERN IRELAND
Tel: 09603-67333
Telex: 747626
M
ISRAEL
Eldan Electronic Instrument Ltd
P.O. Box 1270

JERUSALEM 91000
16, Ohaliav St.
JERUSALEM 94467
Tel: 533221,553242
Telex: 25231 AB/PAKRD IL
A,M
Computation and Measurement
Systems (CMS) Ltd.
11 Masad Street
67060
TEL-AVIV
Tel: 388388
Telex: 33569 Motil IL
C,CM,E,P
ITALY
Hewlètt-Packard Italiana S.p.A
Traversa 99C
Via Glulio Petroni, 19
1-70124 BARI
Tel: (080) 41-07-44
C,M
Hewlett-Packard Italiana S.p.A.
Via Emilia, 51/C
1-40011 BOLOGNA Anzola
Dell'Emilia
Tel: 39-051-731061
Telex: 511630
C,E,M
Hewlett-Packard Italiana S.p.A.
Via Principe Nicola 43G/C
-95126 CATANIA
Tel: (095) 37-10-87
Telex: 970291
C
Hewlett-Packard Italiana S.p.A
Via G. di Vittorio 10
20094 CORSICO (Milano)
Tel: 39-02-4408351
Hewlett-Packard Italiana S.p.A.
Viale Brigata Bisagno 2
16129 GENOVA
Tel: 39-10-541141
Telex: 215238
Hewlett-Packard Italiana S.p.A
Viale G. Modugno 33
1-16156 GENOVA PEGU
Tel: (010) 68-37-07
Telex: 215238
C,E

Hewlett-Packard Italiana S.p.A
Via G. di Vittorio 9
I-20063 CERNUSCO SUL
NAVIGLIO
(Milano)
Tel: (02) 923691
Telex: 334632
A,C,CM,E,M,P
Hewlett-Packard Italiana S.p.A. Via Nuova Rivoltana 95
20090 LIMITO (Milano)
Tel: 02-92761
Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco a
Capodimonte, 62/A
1-80131 NAPOLI
Tel: (081) 7413544
Telex: 710698
A**,C,E,M
Hewlett-Packard Italiana S.p.A.
Via Orazio 16
80122 NAPOLI
Tel: (081) 7611444
Telex: 710698
Hewlett-Packard Italiana, S.p.A.
Via Pellizzo 15
35128 PADOVA
Tel: 39-49-664-888
Telex: 430315
A,C,E,M
Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340
1-00144 ROMA EUR
Tel: 39-65-48-31
Telex: 610514
A,C,E,M,P*
Hewlett-Packard Italiana S.p.A.
Via di Casellina 57/C
500518 SCANDICCI-FIRENZE
Tel: 39-55-753863
C, E,M
Hewlett-Packard Italiana S.p.A.
Corso Svizzera, 185
-10144 TORINO
Tel: 39-11-74-4044
Telex: 221079
A^{*}, C, E
IVORY COAST
S.I.T.E.L.

Societe Ivoirienne de
Telecommunications
Bd. Giscard d'Estaing Carrefour Marcory
Zone 4.A.
Boite postale 2580
ABIDJAN 01
Tel: 353600
Telex: 43175
E.I.T.I

Immeuble "La General"
Av.du General de Gaulle 01 BP 161
ABIDJAN 01
Tel: 321227
Telex: 22149
C,P

JAPAN

Yokogawa-Hewlett-Packard Ltd.
152-1, Onna
ATSUGG, Kanagawa, 243
Tel: (0462) 25-0031
C,CM,E

Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei Bldg. 6F
3-1 Motochiba-Cho
CHIBA, 280
Tel: (0472) 257701
C, E
Yokogawa-Hewlett-Packard Ltd.
Yasuda-Seimei Hiroshima Bldg.
6-11, Hon-dori, Naka-ku
HIROSHIMA, 730
Tel: (082) 241-0611
Yokogawa-Hewlett-Packard Ltd.
Towa Building
2-2-3 Kaigan-dori, Chuo-ku
KOBE, 650
Tel: (078) 392-4791
C, E
Yokogawa-Hewlett-Packard Ltd.
Kumagaya Asahi 82 BIdg.
3-4 Tsukuba
KUMAGAYA, Saitama 360
Tel: (0485) 24-6563
C,CM,E
Yokogawa-Hewlett-Packard Ltd.
Asahi Shinbun Daiichi Seimei Bldg
4-7. Hanabata-cho
KUMAMOTO, 860
Tel: 96-354-7311
C,E
Yokogawa-Hewlett-Packard Ltd.
Shin-Kyoto Center Bldg.
614, Higashi-Shiokoji-cho
Karasuma-Nishiiru
KYOTO, 600
Tel: 075-343-0921
C,E
Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Bldg
1-4-73, Sanno-maru
MITO, Ibaraki 310
Tel: (0292) 25-7470
C.CM,E

Yokogawa-Hewlett-Packard L.td.
Meiji-Seimei Kokubun Bldg.
7-8 Kokubun, 1 Chome, Sendal
MIYAGI, 980
Tel: (0222) 25-1011
C,E
Yokogawa-Hewlett-Packard Ltd.
Gohda Bldg. 2F
1-2-10 Gohda Okaya-Shi
Okaya-Shi
NAGANO, 394
Tel: (0266) 230851
C,E
Yokogawa-Hewlett-Packard Ltd.
Nagoya Kokusai Center Building
1-47-1, Nagono, Nakamura-ku
NAGOYA, AICHI 450
Tel: (052) 571-5171
C,CM, E, M
Yokogawa-Hewlett-Packard Ltd.
Sai-Kyo-Ren Building
1-2 Dote-cho
OOMIYA-SHI SAITAMA 330
Tel: (0486) 45-8031

JAPAN (Cont'd)
Yokogawa-Hewlett-Packard Ltd.
Chuo Bldg., 5-4-20
Nishi-Nakajima
4-20 Nishinakajima, 5 Chome
Yodogawa-ku
OSAKA. 532
Tel: (06) 304-6021
Telex: YHPOSA 523-3624
C,CM,E,M.P*
Yokogawa-Hewlett-Packard Ltd. 1-27-15, Yabe
SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311
Yokogawa-Hewlett-Packard Ltd. Hamamtsu Motoshiro-Cho
Daichi
Seimei Bldg. 219-21,
Motoshiro-Cho
Hamamatsu-shi
SHIZUOKA. 430
Tel: (0534) 561771
C.E

Yokogawa-Hewlett-Packard Ltd.
Shinjuku Daiichi Seimei Bldg.
2-7-1. Nishi Shinjukü
Shinjuku-ku, TOKYO 163
Tel: 03-348-4611
C,E,M
Yokogawa-Hewlett-Packard Ltd.
9.1, Takakura-cho

Hachioji-shi, TOKYO, 192
Tel: 81-426-42-1231
C, E
Yokogawa-Hewlett-Packard Ltd.
3-29-21 Takaido-Higashi,'
3 Chome
Suginami-ku TOKYO 168
Tel: (03) 331-6111
Telex: 232-2024 YHPTOK C,CM,E,P*

Yokogawa Hokushin Electric
Corporation
Shinjuku-NS Bldg. 10F
4-1 Nishi-Shinjuku 2-Chome
Shinjuku-ku
TOKYO, 163
Tel: (03) 349-1859
Telex: J27584
A
Yokogawa Hokushin Electric Corp
9-32 Nokacho 2 Chome
Musashino-shi
TOKYO, 180
Tel: (0422) 54-1111
Telex: 02822-421 YEW MTK J A,
Yokogawa-Hewlett-Packard Ltd. Meiji-Seimei
Odori-Utsunomlya Building
1-5 Odori, 2 Chome
UTSUNOMIYA, Tochigi 320
Tel: (0286) 33-1153
C,E
Yokogawa-Hewlett-Packard Ltd. Yasuda Seimei Nishiguchi Bldg. 30-4 Tsuruya-cho, 3 Chome Kanagawa-ku, YOKOHAMA 221 Tel: (045) 312-1252 C,CM,E,

JORDAN
Scientific and Medical
Supplies Co.
P.O. Box 1387

AMMAN
Tel: 24907, 39907
Telex: 21456 SABCO JO
C.E.M.P

KENYA

ADCOM Ltd., Inc..: Kenya
P.O. Box 30070

NAIROBI
Tel: 331955
Telex: 22639

E.M

KOREA
Samsung Hewlett-Packard
Co. Ltd.
Dongbang Yeoeuido Building
12-16th Floors
36-1 Yeoeuido-Dong
Youngdeungpo-Ku
SEOUL
Tel: 784-4666, 784-2666
Telex: 25166 SAMSAN K
C,CM,E,M,P
Young in Scientific Co., Ltd.
Youngwha Building
547 Shinsa Dong, Kangnam-Ku
SEOUL 135
Tel: 546-7771
Telex: K23457 GINSCO
Telex:
Dongbang Healthcare
Products Co . Ltd.
Suite 301 Medical Supply Center
Bldg. 1-31 Dongsungdong
Jong Ro-gu, SEOUL
Tel: 764-1171, 741-1641
Telex: K25706 TKBKO
Cable: TKBEEPKO
M
KUWAIT
Al-Khaldiya Trading \&
Contracting
P.0. Box 830

SAFAT
Tel: 424910, 411726
Telex: 22481 AREEG KT
Cable: VISCOUNT
E,M,A
Gulf Computing Systems
P.O. Box 25125

SAFAT
Tel: 435969
Telex: 23648
P
Photo \& Cine Equipment
P.0. Box 270

SAFAT
Tel: 2445111
Telex: 22247 MATIN KT
Cable: MATIN KUWAIT
P
W.J. Towell Computer Services
P.O. Box 5897

SAFAT
Tel: 2462640/1
Telex: 30336 TOWELL KT C

LEBANON
Compu
Chammas Building
P.O. Box 11-6274 Dora

BEIRUT
Tel: 8940.73
Telex: 42309 chacis le
C,E,M.P
LIBERIA
Unichemicals Inc.
P.O. Box 4509

MONROVIA
Tel: 224282
Telex: 4509
E
MADAGASCAR
Technique et Precision
12. rue de Nice
P.O. Box 1227

101 ANTANANARIVO
Tel: 22090
Telex: 22255
P
LUXEMBOURG
Hewlett-Packard Belgium
S.A./N.V.

Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,C,CM,E,M,P.

MALAYSIA

Hewlett-Packard Sales
(Malaysia)
Sdn. Bhd.
9th Floor
Chung Khiaw Bank Building
46, Jalan Raja Laut
50736 KUALA LUMPUR,
MALAYSIA
Tel: 03-2986555
Telex: 31011 HPSM MA
A,C,E,M, ${ }^{*}$
Protel Engineering
P.O. Box 1917

Lot 6624, Section 64
23/4 Pending Road
Kuching, SARAWAK
Tel: 36299
Telex: 70904 PROMAL MA
Cable: PROTELENG
A, E,M

MALTA

Philip Toledo Ltd.
Kirkara P.O. Box 11
Notabile Rd.
MRIEHEL
Tel: 447 47, 455 66, 491525
Telex: Media MW 649
E,M,P

MAURITIUS

Blanche Birger Co. Ltd.
18, Jules Koenig Street
PORT LOUIS
Tel: 20828
Telex: 4296
P
MEXICO
Hewlett-Packard de Mexico
S.A. de C.V.

Rio Nio No. 4049 Desp. 12
Fracc. Cordoba
JUAREZ
Tel: 161-3-15-62

Hewlett-Packard de Mexico.
S.A. de C.V.

Condominio Kadereyta
Circuito del Mezon
No. 186 Desp. 6
COL DEL PRADO-76030 Qro.
Tel: 463-6-02-71
P E
Hewlett-Packard de Mexico,
S.A. de C.V.

Monti Morelos No. 299
Fraccionamiento
Loma Bonita 45060
GUADALAJARA, Jalisco
Tel: 36-31-48-00
Telex: 0684186 ECOME
P
Microcomputadoras
Hewlett-Packard, S.A.
Monti Pelvoux 115
LOS LOMAS, Mexico, D.F.
Tel: 520-9127
P
Microcomputadoras
Hewlett-Packard. S.A. de C.V.
Monte Pelvoux No. 115
Lomas de Chapultepec, 11000
MEXICO, D.F.
Tel: 520-9127
P
Hewlett-Packard de Mexico,
S.A. de C.V.

Monte Pelvoux No. 111
Lomas de Chapultepec
11000 MEXICO, D.F.
Tel: 5-40-62-28, 72-66, 50-25
Telex: 17-74-507 HEWPACK MEX

A,C,CM,E,M,P

Hewlett-Packard de Mexico
(Polanco)
Avenida Ejercito Nacional \#579
2da y 3er piso
Colonia Granada 11560
MEXICO D.F
Tel: 254-4433
P
Hewlett-Packard de Mexico,
S.A. de C.V.

Czda. del Valle
409 Ote. 4th Piso
Colonia del Valle
Municipio de Garza
Garcia Nuevo Leon
66220 MONTERREY, Nuevo Leon
Tel: 83-78-42-40
Telex: 382410 HPMY C

Infograficas y Sistemas
del Noreste, S.A.
Rio Orinoco \#171 Oriente
Despacho 2001
Colonia Del Valle
MONTERREY
Tel: 559-4415, 575-3837
Telex: 483164
A, E
Hewlett-Packard de Mexico,
S.A. de C.V.

Blvd. Independencia No. 2000 Ote.
Col. Estrella
TORREON, COAH.
Tel: 171-18-21-99

MOROCCO
Etablissement Hubert Dolbeau \& Fils
81 rue Karatchi
B.P. 11133

CASABLANCA
Tel: 3041-82. 3068-38
Telex: 23051, 22822
E
Gerep
2, rue Agadir
Boite Postale 156
CASABLANCA 01
Tel: 272093, 272095
Telex: 23739
P
Sema-Maroc
Dept. Seric
6. rue Laprbie

CASABLANCA
Tel: 260980
Telex: 21641
C, P

NETHERLANDS

Hewlett-Packard Nederland B.V.
Startbaan 16
NL-1187 XR AMSTELVEEN
P.O. Box 667

NL-1180 AR AMSTELVEEN
Tel: (020) 547-6911
Telex: 13216 HEPA NL
A,C,CM,E,M,P
Hewlett-Packard Nederland B.V.
Bongerd 2
P.O. Box 41

NL 2900AA CAPELLE A/D IJSSEL
Tel: 31-20-51-6444
Telex: 21261 HEPAC NL
C, E
Hewlett-Packard Nederland B.V.
Pastoor Petersstraat 134-136
P.O. Box 2342

NL 5600 CH EINDHOVEN
Tel: 31-40-32-6911
Telex: 51484 hepae nl
C,E,P
NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
5 Owens Road
P.O. Box 26-189

Epsom, AUCKLAND
Tel: 64-9-687-159
Cable: HEWPAK Auckland
C,CM, E, P*
Hewlett-Packard (N.Z.) Ltd.
184-190 Willis Street
WELLINGTON
P.O. Box 9443

Courtenay Place, WELLINGTON 3
Tel: 64-4-887-199
Cable: HEWPACK Wellington

Northrop Instruments \& Systems Ltd.
369 Khyber Pass Road
P.O. Box 8602

AUCKLAND
Tel: 794-091
Telex:60605
${ }^{\text {Tel: }}$

[^32]都
P
A,M

NEW ZEALAND (Cont'd)

Northrop instruments
\& Systems Ltd.
110 Mandeville St
P.O. Box 8388

CHRISTCHURCH
Tel: 488-873
Telex: 4203
A, M
Northrop Instruments
\& Systems Ltd.
Sturdee House
85-87 Ghuznee Street
P.O. Box 2406

WELLINGTON
Tel: 850-091
Telex: NZ 3380
A, M
NIGERIA
Elmeco Nigeria Ltd.
45 Saka Tirubu St.
Victoria Island
LAGOS
Tel: 61-98-94
Telex: 20-117
E P

E

Mushko \& Company Ltd.
Dosman Chambers
Abdullah Haroon Road
KARACHI 0302
Tel: 524131, 524132
Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
A, E, P^{*}
PANAMA
Electronico Balboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929
PANAMA CITY
Tel: 9-011-507-636613
Telex: 3683483 ELECTRON PG
CM,E,M,P
PERU
Cia Electro Medica S.A.
Los Flamencos 145, Ofc. 301/2
San Isidro
Casilla 1030
LIMA 1
Tel: 9-011-511-4-414325, 41-3705
Telex: 39425257 PE PB SIS
CM,E,M,P

PUERTO RICO

Hewlett-Packard Puerto Rico
101 Munoz Rivera Av
Esu. Calle Ochoa
HATO REY, Puerto Rico 00918
Tel: (809) 754-7800
A,C,CM,M,E,P
QATAR
Computer Arabia
P.O. Box 2750

DOHA
Tel: 428555
Telex: 4806 CHPARB
P
Nasser Trading \& Contracting
P.O. Box 1563

DOHA
Tel: 422170
Telex: 4439 NASSER DH

M

SAUDI ARABIA
Modern Electronics
Establishment
Hewlett-Packard Division
P.O. Box 281

SINGAPORE
Hewlett-Packard
Singapore (Sales)
Hewlett-Packard Espanola S.A
Avda. S. Francisco Javier, S/N
Planta 10. Edificicio Sevilla 2
Pte. Ltd.
E-SEVILLA 5, SPAIN
1150 Depot Road Tel: 54/64 4454
SINGAPORE, 0410
Telex: 72933
A,C,M,P
Hewlett-Packard Espanola, S.A.
sabel La Catolica, 8
E-46004 VALENCIA
Tel: 34-6-361 1354
Telex: 63435
C,P
Hewlett-Packard Espanola, S.A.
Av. de Zugazarte, 8
Las Arenas-Guecho
E-48930 VIZCAYA
VIZCAYA
Tel: 34-423-83 06
Telex: 33032
SWEDEN
Hewlett-Packard Sverige AB
Ostra Tullgatan 3
S-20011 MALM0
Box 6132
Tel: 46-40-702-70
Telex: (854) 17886 (via Spanga office)
C,P
Hewlett-Packard Sverige AB
Elementvagen 16
S-7022 7 OREBRO
Tel: 49-019-10-4820
Telex: (854) 17886 (via Spanga office)
C
Hewlett-Packard Sverige AB
Skalholtsgatan 9, Kista
P.0. Box 19

S-16393 SPANGA
Tel: (08) 750-2000
Telex (854) 17886
Telefax: (08) 7527781
A,C,CM,E,M,P
Hewlett-Packard Sverige AB
Box 266
Topasgatan 1A
S-42123 VASTRA-FROLUNDA
(Gothenburg)

Tel: 46-031-89-1000
Telex: (854) 17886(via Spanga
office)
A,C,CM,E,M,P
SUDAN
Mediterranean Engineering
\& Trading Co. Ltd.
P.O. Box 1025

KHARTOUM
Tel: 41184
Telex: 24052
C,P
Hewlett-Packard Espanola, S.A.
Calle Entenza, 321
E-BARCELONA 29
Tel: $3 / 3222451,3217354$
Telex: 52603 hpbee
A,C,E,M,P
Hewlett-Packard Espanola, S.A.
Calle San Vicente S / N
Edificio Albia II-7B
48001 BILBAO
Tel: 4/423 8306
A,C,E,M
Tel: (0041) 22-83-11-11
Telex: 27333 HPAG CH
, S.A. A,C,CM,E,M,P
Crta. N-VI, Km. 16, 400
Las Rozas
E-MADRID
Tel: (1) 637.00.11
Telex: 23515 HPE
C,M
SWITZERLAND
Hewlett-Packard (Schweiz) AG
Clarastrasse 12
CH-4058 BASEL
Tel: 41-61-33-5920
A, C, E, P
Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan
Case postale 365-1366
CH-1217 MEYRIN 1
Tel: (0041) 22-83-11-11
Telex: 27333 HPAG CH
Te. (012) 45

Pty.) Ltd.
Private Bag Wendywood
:27-1-802-5111, 27-11-802-5125
Cable: HEWPACK Johannesburg
E,M,P

SPAIN

A.
?
(Pty.) Ltd.

RT ELIZABETH 6001
\qquad
CAPE PROVINCE
atan 3

Packard So. Africa
(Pty.) Ltd.
arpor Driv

Tel: 27-31-28-4178

Pty.) Ltd
Shop 6 Linton Arcade
(Pty.) Ltd.
Kalkoen Str
Monument Park Ext 2

HP Components Sales and Service

Alabama
P.O. Box 7700
420 Wynn Dr., N.W.
Huntsville 35805
Tel: (205) 830-2000

Arizona

8080 Pointe Parkway West
Phoenix 85044
Tel: (602) 273-8000

California

1421 So. Manhattan Ave.
Fullerton 92631
Tel: (714) 999-6700
5651 West Manchester Ave.
Los Angeles 90045
Tel: (213) 337-8000
9606 Aero Dr.
P.O. Box 23333

San Diego 92123
Tel: (714) 279-3200
3003 Scott Blvd.
Santa Clara 95050
Tel: (408) 988-7000
2150 West Hillcrest Dr.
Thousand Oaks 91320
Tel: (805) 373-7000

Colorado

24 Inverness Place East
Englewood 80110
Tel: (303) 649-5000
Connecticut
47 Barnes Industrial Rd. So.
P.O. Box 5007

Wallingford 06492
Tel: (203) 265-7801

Fiorida

P.O. Box 13910

6177 Lake Ellenor Dr.
Orlando 32809
Tel: (305) 859-2900
5550 W. Idlewild Avenue,
Suite 150
Tampa 33634
Tel: (813) 884-3282

Georgia

P.O. Box 105005

2000 South Park Place
Atlanta 30348
Tel: (404) 955-1500

Illinois

5201 Tollview Dr.
Rolling Meadows 60008
Tel: (312) 255-9800

Indiana

11911 No. Meridian Street
Carmel 46032
Tel: (317) 844-4100

Maryland

3701 Koppers St.
Baltimore 21227
Tel: (301) 644-5800

Massachusetts

1775 Minuteman Rd.
Andover 01810
Tel: (617) 682-1500

Michigan

39550 Orchard Hill Place Dr. Novi 48050
Tel: (313) 349-9200

Minnesota

2025 W. Larpenteur Ave.
St. Paul 55113
Tel: (612) 644-1100

Missouri

1001 East 101 Terr.
Suite 120
P.O. Box 24796

Kansas City 64131
Tel: 1816 , 941-0411

New Jersey

20 New England Ave. West
Piscataway 08854
Tel: (201) 981-1199
W. 120 Century Rd.

Paramus 07652
Tel: (201) 599-5000

New Mexico

7801 Jefferson St.; NE
Albuquerque 87109
Tel: , 505, 823-6100

New York

7641 Henry Clay Blvd.
Liverpool 13088
Tel: (315) 451-1820
200 Cross Keys Office
Fairport 14450
Tel: (716) 223-9950
3 Crossways Park West
Woodbury 11797
Tel: (516) 921-0300
North Carolina
305 Gregson Dr.
Cary 27511
Tel: (919) 467-6600

Ohio
15885 Sprague Rd.
Cleveland 44136
Tel: (216) 243-7300
9080 Springboro Pike
Miamisburg 45342
(513) 433-2223

675 Brooksedge Blvd.
Westerville 43081
Tel: (614) 891-3344

Oregon

9255 S.W. Pioneer Ct.
P.O. Box 328

Wilsonville 97070
Tel: (503) 682-8000
Pennsylvania
2750 Monroe Blvd.
P.O. Box 713

Valley Forge 19482
Tel: (215) 666-9000

Texas

1826-P Kramer Lane.
Austin 78758
Tel: (512) 835-6771
930 E. Campbell Rd.
P.O. Box 831270

Richardson 75083-1270
Tel: (214) 231-6101

Washington

Bellefield Office Pk.
15815 S.E. 37th St.
Bellevue 98006
Tel: (206) 643-4000

Warranty

HP's Components are warranted against defects in material and workmanship for a period of one year from the date of shipment (in the case of designated Fiber Optics and Bar Code products 90 days from the date of shipment). If HP receives notice of such defects during the warranty period, HP will repair or, at its option, replace components that prove to be defective in material or workmanship under proper use during the warranty period. This warranty extends only to HP customers.

NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED. HP
SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON: CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

The foregoing limitation of liability shall not apply in the event that any HP product sold hereunder is determined by a court of compentent jurisdiction to be defective and to have directly caused bodily injury, death or property damage; provided, that in no event shall HP's liability for property damage exceed the greater of $\$ 50,000$ or the purchase price of the specific product that caused such damage.

NOTES

[^0]: [1] Military Approved and Qualified for High Reliability Applications.

[^1]: *Suitable for non-locking connector only.

[^2]: NOTES:

 1. MOUNTING HOLES ON HBCS-7000/7100 ARE SUITABLE FOR EITHER \#10-32 OR

 M5-0.80 SCREWS.
 2. MOUNTING HOLES ON HBCS-7050/7150 ARE FOR \#8-32 SCREWS.
 3. MOUNTING HOLES ON HBCS-7998 ARE FOR \#8-32 SCREWS.
 4. THICKNESS OF THE HBCS-7999 MOUNTING BRACKET IS 3.2 mm (0.125 in .)
 5. HBCS-7000/7100 SLOT READERS, HBCS-7050/7150 MODULES, AND HBCS-7998

 RAILS HAVE A BLACK TEXTURED EPOXY FINISH. HBCS-7999 MOUNTING
 BRACKETS HAVE AN ELECTROLESS NICKEL FINISH.
 6. ALL DIMENSIONS ARE NOMINAL AND ARE STATED IN MILLIMETRES AND (INCHES).

[^3]: ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE.

[^4]: For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

[^5]: Notes on following page.

[^6]: NOTES: \quad ALLL DIMENSIOAS ARE IN MILLIMETRES (INCHES)
 2. AN EPOXY MENISGUS MAY EXTEND ABOUT 1 mm l.040'f DOWN THE LEADS.

[^7]: NOTES
 7. ALL DIMENSIONS ARE IN MILLIMETRES (INCHESS.
 2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (. $040^{\prime \prime}$) DOWN THE LEADS.

[^8]: *Panel mount versions of all of the above are available per the selection matrix on the next page.

[^9]: [1] Military Approved and Qualified for High Reliability Applications.

[^10]: ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED WITH THE HDSP- 2111 AND HDSP-2112.

[^11]: When ordering, specify one each of the Controller Board and the Display Board for each complete system.

[^12]: *More than 10 segments may be illuminated in a given character, provided the maximum allowed character power dissipation, temperature derated, is not exceeded.

[^13]: 4. Unused dp position.
 5. See Internal Circuit Diagram.
 6. Redundant cathode.
[^14]: Panelgraphic SCARLET RED 65 or GRAY 10 SGL Homalite H100-1670 RED or -1266 GRAY
 3M Louvered Filter R6310 RED or N0210
 GRAY

[^15]: Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagrams D and H.

[^16]: * Link performance at $25^{\circ} \mathrm{C}$.

[^17]: *ST is a registered trademark of AT\&T Lightguide Cable Connectors.

[^18]: *Standard Parts meet the UL 1440 V ac test for 1 minute.
 **Option 010 parts meet the UL 2500 V ac test for 1 minute.

[^19]: *2.2 mA condition includes an LED degradation guardband. Initial switching threshold is 1.6 mA or less. See Figure 11.

[^20]: **6.3mA condition permits at least 20\% CTR degradation guardband. Initial switching threshold is 5 mA or less.

[^21]: *JEDEC Registered Data (The HCPL-2502 and HCPL-4502 are not registered.)

[^22]: CAUTION: The small junction sizes inherent to the design of this

[^23]: CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/ordegradation which may be induced by ESD.
 *JEDEC Registered Data. **JEDEC Registered $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

[^24]: CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^25]: - IMPLEMENT AN ISOLATED 20 mA CURRENT LOOP TRANSMITTER IN: Computer Peripherals Industrial Control Equipment Data Communications Equipment

[^26]: *Limits and conditions per Electrical Characteristics.

[^27]: *Limits and Conditions per Table II.

[^28]: *JEDEC Registered Data

[^29]: ${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^30]: **THE INCREMENTAL DELAY TIMES ARE THE TIME DIFFERENCES BETWEEN THE TIME AT WHICH THE OUTPUT VOLTAGE CROSSES THE 1.5-V LEVEL AND THE TIME AT WHICH THE VOLTAGE WAVEFORM CROSSES 50\% ON A RESISTIVE TERMINATION OF THE TRANSMISSION LINE.

[^31]: .

[^32]:

