

To help you in choosing and designing with HP optoelectronic components, detailed specifications for HP bar code components, motion sensing and encoder products, LED displays, lamps, light bars and bar graphs, fiber optics, optocouplers and high reliability products are included in this catalog.
How to Find the Right Information
To help you locate the product needed for your application, there is a table of contents which indicates each section by thumb-tab, an alphanumeric index following the table of contents, and product selection guides in the opening of each product line section. There are ten sections, one for each of the product lines listed above plus a section containing a complete listing of application bulletins and notes. Section 10 is an appendix containing HP sales and service as well as authorized distributor locations.

## How to Order

To order complete applications information, use the business reply card in the back of this book, or call your nearest HP sales office. Ask for the Components office. There is a listing of HP Component sales and service offices for the U.S. on Pages $10-13$ and $10-14$. In Europe and the rest of the world, look on pages $10-6$ through $10-12$ in the appendix for the worldwide listing of HP sales and service offices.
Also in the appendix is a worldwide listing of HP authorized distributors. These distributors offer off-the-shelf delivery for most HP components.


## Table of Contents

1. Motion Sensing and Control
Selection Guide ..... 1-3
Shaft Encoders ..... 1-5
Digital Potentiometers ..... 1-21
Motion Control IC's ..... 1-23
2. Bar Code Components
Selection Guide ..... 2-3
Digital Wands ..... 2-6, 2-26
Component Readers ..... 2-12
Optical Sensors ..... 2-52
Readers ..... 2-58
3. Optocouplers
Selection Guide ..... 3-3
High Speed Optocouplers ..... 3-9
Low Current Optocoupler ..... 3-19
High Gain Optocouplers ..... 3-57
Application Specific Optocouplers ..... 3-69
Hermetic Optocouplers ..... 8-66
4. Fiber Optics
Selection Guide ..... 4-3
Fiber Optic Links ..... 4-6
Cable, Connectors and Accessories ..... 4-92
Multiplexer ..... 4-100
PIN Photodiode Detectors ..... 4-106
5. Light Bars and Bar Graph Arrays
Selection Guide ..... 5-3
Light Bars ..... 5-7
Bar Graphs ..... 5-26
6. Solid State Lamps
Selection Guide ..... 6-3
Surface Mount Lamps ..... 6-17
Flat Top Lamps ..... 6-25
Tape and Reel ..... 6-43
Low Current Lamps ..... 6-47
Ultrabright Lamps ..... 6-51
Right Angle Indicators ..... 6-55
Integrated Resistor Lamps ..... 6-62
General Purpose Lamps ..... 6-72
Emitters ..... 6-111
Hermetic Lamps ..... 8-18
7. Solid State Displays
Selection Guide ..... 7-3
Smart Alphanumeric Displays ..... 7-15
Alphanumeric Displays ..... 7-31
5x7 Large Dot Matrix Alphanumeric Display ..... 7-83
Seven Segment Displays ..... 7-85
Hexadecimal and Dot Matrix Displays ..... 7-136
Hermetic Displays ..... 8-30
8. High Reliability/Hermetic Components
Hermetic Lamp Selection Guide ..... 8-4
Hermetic Displays Selection Guide ..... 8-6
Visible Product Screening Programs ..... 8-9
Hermetic Optocoupler Selection Guide ..... 8-13
Optocoupler Screening Programs ..... 8-14
Data Sheets ..... 8-18
9. Applications
Application Bulletins, Notes and Handbook Listing ..... 9-3
Abstracts ..... 9-5
10. Appendix
HP Components Authorized Distributor and Representative Directory ..... 10-2
HP International Sales and Service Offices ..... 10-6
HP Components U.S. Sales and Service Offices ..... 10-13

## Alphanumeric Index

HBCR-1000 ..... 2-18
HBCR-1022 ..... 2-18
HBCR-1024 ..... 2-18
HBCR-1025 ..... 2-18
HBCR-1043 ..... 2-18
HBCR-1045 ..... 2-18
HBCR-1900 ..... 2-18
HBCR-2000 ..... 2-12
HBCS-1100 ..... 2-52
HBCS-2200 ..... 2-26
HBCS-2300 ..... 2-26
HBCS-2400 ..... 2-26
HBCS-2500 ..... 2-26
HBCS-2999 ..... 2-63
HBCS-4300 ..... 2-32
HBCS-4500 ..... 2-32
HBCS-4999 ..... 2-63
HBCS-5000 ..... 2-6
HBCS-5100 ..... 2-6
HBCS-5200 ..... 2-6
HBCS-5300 ..... 2-6
HBCS-5400 ..... 2-6
HBCS-5500 ..... 2-6
HBCS-6100 ..... 2-6
HBCS-6300 ..... 2-6
HBCS-6500 ..... 2-6
HBCS-7000 ..... 2-68
HBCS-7001 ..... 2-68
HBCS-7100 ..... 2-68
HBCS-7101 ..... 2-68
HCPL-2200 ..... 3-19
HCPL-2300 ..... 3-23
HCPL-2400 ..... 3-29
HCPL-2502 ..... 3-9
HCPL-2530 ..... 3-15
HCPL-2531 ..... 3-15
HCPL-2601 ..... 3-39
HCPL-2602 ..... 3-43
HCPL-2630 ..... 3-49
HCPL-2631 ..... 3-53
HCPL-2730 ..... 3-61
HCPL-2731 ..... 3-61
HCPL-3700 ..... 3-69
HCPL-4100 ..... 3-75
HCPL-4200 ..... 3-83
HCPL-4502 ..... 3-9
HCPL-5700 ..... 8-79
HCPL-5701 ..... 8-79
HCPL-5730 ..... 8-83
HCPL-5731 ..... 8-83
HCTL-1000 ..... 1-23
HCTL-2000 ..... 1-43
HDSP-0760 ..... 7-145
HDSP-0761 ..... 7-145
HDSP-0762 ..... 7-145
HDSP-0763 ..... 7-145
HDSP-0770 ..... 7-145
HDSP-0771 ..... 7-145
HDSP-0772 ..... 7-145
HDSP-0781 ..... 8-38
HDSP-0781TXV ..... 8-38
HDSP-0781TXVB ..... 8-38
HDSP-0782 ..... 8-38
HDSP-0782TXV ..... 8-38
HDSP-0782TXVB ..... 8-38
HDSP-0783 ..... 8-38
HDSP-0783TXV ..... 8-38
HDSP-0783TXVB ..... 8-38
HDSP-0784 ..... 8-38
HDSP-0784TXV ..... 8-38
HDSP-0784TXVB ..... 8-38
HDSP-0791 ..... 8-38
HDSP-0791TXV ..... 8-38
HDSP-0791TXVB ..... 8-38
HDSP-0792 ..... 8-38
HDSP-0792TXV ..... 8-38
HDSP-0792TXVB ..... 8-38
HDSP-0793 ..... 8-38
HDSP-0793TXV ..... 8-38
HDSP-0793TXVB ..... 8-38
HDSP-0794 ..... 8-38
HDSP-0794TXV ..... 8-38
HDSP-0794TXVB ..... 8-38
HDSP-0860 ..... 7-145
HDSP-0861 ..... 7-145
HDSP-0862 ..... 7-145
HDSP-0863 ..... 7-145
HDSP-0881 ..... 8-38
HDSP-0881TXV ..... 8-38
HDSP-0881TXVB ..... 8-38
HDSP-0882 ..... 8-38
HDSP-0882TXV ..... 8-38
HDSP-0882TXVB ..... 8-38
HDSP-0883 ..... 8-38
HDSP-0883TXV ..... 8-38
HDSP-0883TXVB ..... 8-38
HDSP-0884 ..... 8-38
HDSP-0884TXV ..... 8-38
HDSP-0884TXVB ..... 8-38
HDSP-0960 ..... 7-145
HDSP-0961 ..... 7-145
HDSP-0962 ..... 7-145
HDSP-0963 ..... 7-145
HDSP-2000 ..... 7-31
HDSP-2001 ..... 7-31
HDSP-2002 ..... 7-31
HDSP-2003 ..... 7-31
HDSP-2010 ..... 8-46
HDSP-2010TXV ..... 8-46
HDSP-2010TXVB ..... 8-46
HDSP-2300 ..... 7-35
HDSP-2301 ..... 7-35
HDSP-2302 ..... 7-35
HDSP-2303 ..... 7-35
HDSP-2310 ..... 8-52
HDSP-2310TXV ..... 8-52
HDSP-2310TXVB ..... 8-52
HDSP-2311 ..... 8-52
HDSP-2311TXV ..... 8-52
HDSP-2311TXVB ..... 8-52
HDSP-2312 ..... 8-52
HDSP-2312TXV ..... 8-52
HDSP-2312TXVB ..... 8-52
HDSP-2381 ..... 7-41
HDSP-2382 ..... 7-41
HDSP-2383 ..... 7-41
HDSP-2416 ..... 7-56
HDSP-2424 ..... 7-56
HDSP-2432 ..... 7-56
HDSP-2440 ..... 7-56
HDSP-2450 ..... 8-59
HDSP-2450TXV ..... 8-59
HDSP-2450TXVB ..... 8-59
HDSP-2451 ..... 8-59
HDSP-2451TXV ..... 8-59
HDSP-2451TXVB ..... 8-59
HDSP-2452 ..... 8-59
HDSP-2452TXV ..... 8-59
HDSP-2452TXVB ..... 8-59
HDSP-2470 ..... 7-56
HDSP-2471 ..... 7-56
HDSP-2472 ..... 7-56
HDSP-2490 ..... 7-52
HDSP-2491 ..... 7-52
HDSP-2492 ..... 7-52
HDSP-2493 ..... 7-52
HDSP-3350 ..... 7-85
HDSP-3351 ..... 7-85
HDSP-3353 ..... 7-85
HDSP-3356 ..... 7-85
HDSP-3400 ..... 7-120
HDSP-3400, OPT S02 ..... 7-135
HDSP-3401 ..... 7-120
HDSP-3403 ..... 7-120
HDSP-3403, OPT S02 ..... 7-135
HDSP-3405 ..... 7-120
HDSP-3406 ..... 7-120
HDSP-3406, OPT S02 ..... 7-135
HDSP-3530 ..... 7-127
HDSP-3530, OPT S02 ..... 7-135
HDSP-3531 ..... 7-127
HDSP-3531, OPT S02 ..... 7-135
HDSP-3533 ..... 7-127
HDSP-3533, OPT S02 ..... 7-135
HDSP-3536 ..... 7-127
HDSP-3536, OPT S02 ..... 7-135
HDSP-3600 ..... 7-103
HDSP-3600, OPT S02 ..... 7-135
HDSP-3601 ..... 7-103
HDSP-3603 ..... 7-103
HDSP-3603, OPT S02 ..... 7-135
HDSP-3606 ..... 7-103
HDSP-3606, OPT S02 ..... 7-135
HDSP-3730 ..... 7-127
HDSP-3730, OPT S02 ..... 7-135
HDSP-3731 ..... 7-127
HDSP-3731, OPT S02 ..... 7-135
HDSP-3733 ..... 7-127
HDSP-3733, OPT S02 ..... 7-135
HDSP-3736 ..... 7-127
HDSP-3736, OPT S02 ..... 7-135
HDSP-3900 ..... 7-127
HDSP-3900, OPT S02 ..... 7-135
HDSP-3901 ..... 7-127
HDSP-3901, OPT S02 ..... 7-135
HDSP-3903 ..... 7-127
HDSP-3903, OPT S02 ..... 7-135
HDSP-3905 ..... 7-127
HDSP-3906 ..... 7-127
HDSP-3906, OPT S02 ..... 7-135
HDSP-4030 ..... 7-127
HDSP-4031 ..... 7-127
HDSP-4033 ..... 7-127
HDSP-4036 ..... 7-127
HDSP-4130 ..... 7-127
HDSP-4131 ..... 7-127
HDSP-4133 ..... 7-127
HDSP-4133, OPT S20 ..... 7-135
HDSP-4136 ..... 7-127
HDSP-4136, OPT S20 ..... 7-135
HDSP-4200 ..... 7-127
HDSP-4201 ..... 7-127
HDSP-4203 ..... 7-127
HDSP-4205 ..... 7-127
HDSP-4206 ..... 7-127
HDSP-4501 ..... 7-83
HDSP-4503 ..... 7-83
HDSP-4600 ..... 7-103
HDSP-4601 ..... 7-103
HDSP-4603 ..... 7-103
HDSP-4606 ..... 7-103
HDSP-4820 ..... 5-26
HDSP-4830 ..... 5-26
HDSP-4832 ..... 5-26
HDSP-4836 ..... 5-26
HDSP-4840 ..... 5-26
HDSP-4850 ..... 5-26
HDSP-4890 ..... 5-26
HDSP-5301 ..... 7-112
HDSP-5301, OPT S02 ..... 7-135
HDSP-5303 ..... 7-112
HDSP-5303, OPT S02 ..... 7-135
HDSP-5307 ..... 7-112
HDSP-5307, OPT S02 ..... 7-135
HDSP-5308 ..... 7-112
HDSP-5308, OPT S02 ..... 7-135
HDSP-5321 ..... 7-112
HDSP-5323 ..... 7-112
HDSP-5501 ..... 7-112
HDSP-5501, OPT S02 ..... 7-135
HDSP-5503 ..... 7-112
HDSP-5503, OPT S02 ..... 7-135
HDSP-5507 ..... 7-112
HDSP-5507, OPT S02 ..... 7-135
HDSP-5508 ..... 7-112
HDSP-5508, OPT S02 ..... 7-135
HDSP-5521 ..... 7-112
HDSP-5521, OPT S02 ..... 7-135
HDSP-5523 ..... 7-112
HDSP-5523, OPT S02 ..... 7-135
HDSP-5531 ..... 7-127
HDSP-5531, OPT S02 ..... 7-135
HDSP-5533 ..... 7-127
HDSP-5533, OPT S02 ..... 7-135
HDSP-5537 ..... 7-127
HDSP-5537, OPT S02 ..... 7-135
HDSP-5538 ..... 7-127
HDSP-5538, OPT S02 ..... 7-135
HDSP-5551 ..... 7-85
HDSP-5553 ..... 7-85
HDSP-5557 ..... 7-85
HDSP-5558 ..... 7-85
HDSP-5601 ..... 7-112
HDSP-5601, OPT S02 ..... 7-135
HDSP-5603 ..... 7-112
HDSP-5607 ..... 7-112
HDSP-5607, OPT S02 ..... 7-135
HDSP-5608 ..... 7-112
HDSP-5621 ..... 7-112
HDSP-5623 ..... 7-112
HDSP-5701 ..... 7-112
HDSP-5703 ..... 7-112
HDSP-5707 ..... 7-112
HDSP-5708 ..... 7-112
HDSP-5721 ..... 7-112
HDSP-5723 ..... 7-112
HDSP-5731 ..... 7-127
HDSP-5733 ..... 7-127
HDSP-5737 ..... 7-127
HDSP-5738 ..... 7-127
HDSP-5901 ..... 7-91
HDSP-5903 ..... 7-91
HDSP-5907 ..... 7-91
HDSP-5908 ..... 7-91
HDSP-6300 ..... 7-78
HDSP-6504 ..... 7-72
HDSP-6505 ..... 7-72
HDSP-6508 ..... 7-72
HDSP-6509 ..... 7-72
HDSP-7301 ..... 7-97
HDSP-7301, OPT S02 ..... 7-135
HDSP-7302 ..... 7-97
HDSP-7303 ..... 7-97
HDSP-7303, OPT S02 ..... 7-135
HDSP-7304 ..... 7-97
HDSP-7307 ..... 7-97
HDSP-7307, OPT S02 ..... 7-135
HDSP-7308 ..... 7-97
HDSP-7308, OPT S02 ..... 7-135
HDSP-7311 ..... 7-97
HDSP-7313 ..... 7-97
HDSP-7317 ..... 7-97
HDSP-7318 ..... 7-97
HDSP-7401 ..... 7-97
HDSP-7402 ..... 7-97
HDSP-7403 ..... 7-97
HDSP-7404 ..... 7-97
HDSP-7407 ..... 7-97
HDSP-7408 ..... 7-97
HDSP-7501 ..... 7-97
HDSP-7501, OPT S02 ..... 7-135
HDSP-7502 ..... 7-97
HDSP-7503 ..... 7-97
HDSP-7503, OPT S02 ..... 7-135
HDSP-7504 ..... 7-97
HDSP-7507 ..... 7-97
HDSP-7507, OPT S02 ..... 7-135
HDSP-7508 ..... 7-97
HDSP-7508, OPT S02 ..... 7-135
HDSP-7511 ..... 7-85
HDSP-7513 ..... 7-85
HDSP-7517 ..... 7-85
HDSP-7518 ..... 7-85
HDSP-7801 ..... 7-97
HDSP-7801, OPT S02 ..... 7-135
HDSP-7802 ..... 7-97
HDSP-7803 ..... 7-97
HDSP-7803, OPT S02 ..... 7-135
HDSP-7804 ..... 7-97
HDSP-7807 ..... 7-97
HDSP-7807, OPT S02 ..... 7-135
HDSP-7808 ..... 7-97
HDSP-7808, OPT S02 ..... 7-135
HDSP-7901 ..... 7-91
HDSP-7903 ..... 7-91
HDSP-7907 ..... 7-91
HDSP-7908 ..... 7-91
HDSP-8600 ..... 7-120
HDSP-8601 ..... 7-120
HDSP-8603 ..... 7-120
HDSP-8605 ..... 7-120
HDSP-8606 ..... 7-120
HDSP-8820 ..... 5-32
HDSP-8825 ..... 5-32
HDSP-8835 ..... 5-32
HEDS-0200 ..... 2-63
HEDS-1000 (See HBCS-1100) ..... 2-52
HEDS-3000 ..... 2-38
HEDS-3001 ..... 2-43
HEDS-3050 ..... 2-38
HEDS-3200 ..... 2-44
HEDS-3201 ..... 2-44
HEDS-3250 ..... 2-44
HEDS-3251 ..... 2-44
HEDS-5000 ..... 1-5
HEDS-5010 ..... 1-5
HEDS-5100 ..... 1-5
HEDS-5110 ..... 1-5
HEDS-5200 ..... 1-5
HEDS-5210 ..... 1-5
HEDS-5300 ..... 1-5
HEDS-5310 ..... 1-5
HEDS-6000 ..... 1-13
HEDS-6010 ..... 1-13
HEDS-6100 ..... 1-13
HEDS-6110 ..... 1-13
HEDS-6200 ..... 1-13
HEDS-6210 ..... 1-13
HEDS-6300 ..... 1-13
HEDS-6310 ..... 1-13
HEDS-7000 ..... 1-21
HEDS-7500 ..... 1-21
HEDS-7501 ..... 1-21
HEDS-8923 ..... 1-5
HEDS-8924 ..... 1-5
HEDS-8925 ..... 1-5
HEDS-8926 ..... 1-5
HEDS-8927 ..... 1-5
HEDS-8928 ..... 1-5
HEDS-8931 ..... 1-5
HEMT-6000 ..... 6-111
HFBR-0010 ..... 4-2
HFBR-0100 ..... 4-98
HFBR-0101 ..... 4-98
HFBR-0102 ..... 4-98
HFBR-0200 ..... 4-46
HFBR-0422 ..... 4-26
HFBR-0500 ..... 4-6
HFBR-1001 ..... 4-80
HFBR-1002 ..... 4-84
HFBR-1201 ..... 4-46
HFBR-1202 ..... 4-46
HFBR-1203 ..... 4-54
HFBR-1204 ..... 4-54
HFBR-1402 ..... 4-26
HFBR-1404 ..... 4-26
HFBR-1500 ..... 4-6
HFBR-1501 ..... 4-6
HFBR-1502 ..... 4-6
HFBR-1510 ..... 4-6
HFBR-1512 ..... 4-6
HFBR-2001 ..... 4-88
HFBR-2201 ..... 4-46
HFBR-2202 ..... 4-46
HFBR-2203 ..... 4-58
HFBR-2204 ..... 4-58
HFBR-2207 ..... 4-74
HFBR-2208 ..... 4-74
HFBR-2402 ..... 4-26
HFBR-2404 ..... 4-26
HFBR-2500 ..... 4-6
HFBR-2501 ..... 4-6
HFBR-2502 ..... 4-6
HFBR-2503 ..... 4-6
HFBR-3000 ..... 4-92
HFBR-3000, OPT 001 ..... 4-92
HFBR-3000, OPT 002 ..... 4-92
HFBR-3001 ..... 4-92
HFBR-3021 ..... 4-92
HFBR-3099 ..... 4-96
HFBR-3100 ..... 4-92
HFBR-3100, OPT 001 ..... 4-92
HFBR-3100, OPT 002 ..... 4-92
HFBR-3200 ..... 4-94
HFBR-3300 ..... 4-94
HFBR-3500 ..... 4-6
HFBR-3501 ..... 4-6
HFBR-3502 ..... 4-6
HFBR-3503 ..... 4-6
HFBR-3504 ..... 4-6
HFBR-3505 ..... 4-6
HFBR-3506 ..... 4-6
HFBR-3507 ..... 4-6
HFBR-3508 ..... 4-6
HFBR-3510 ..... 4-6
HFBR-3511 ..... 4-6
HFBR-3512 ..... 4-6
HFBR-3513 ..... 4-6
HFBR-3514 ..... 4-6
HFBR-3515 ..... 4-6
HFBR-3516 ..... 4-6
HFBR-3517 ..... 4-6
HFBR-3518 ..... 4-6
HFBR-3519 ..... 4-6
HFBR-3530 ..... 4-6
HFBR-3579 ..... 4-6
HFBR-3580 ..... 4-6
HFBR-3581 ..... 4-6
HFBR-3582 ..... 4-6
HFBR-3589 ..... 4-6
HFBR-3590 ..... 4-6
HFBR-3591 ..... 4-6
HFBR-3600, OPT 001 ..... 4-6
HFBR-3602 ..... 4-6
HFBR-3603 ..... 4-6
HFBR-3604 ..... 4-6
HFBR-3605 ..... 4-6
HFBR-3606 ..... 4-6
HFBR-3607 ..... 4-6
HFBR-3608 ..... 4-6
HFBR-3610 ..... 4-6
HFBR-3612 ..... 4-6
HFBR-3613 ..... 4-6
HFBR-3614 ..... 4-6
HFBR-3615 ..... 4-6
HFBR-3616 ..... 4-6
HFBR-3617 ..... 4-6
HFBR-3618 ..... 4-6
HFBR-3619 ..... 4-6
HFBR-3679 ..... 4-6
HFBR-3680 ..... 4-6
HFBR-3681 ..... 4-6
HFBR-3689 ..... 4-6
HFBR-3690 ..... 4-6
HFBR-3691 ..... 4-6
HFBR-4000 ..... 4-96
HFBR-4201 ..... 4-46
HFBR-4202 ..... 4-46
HFBR-4501 ..... 4-6
HFBR-4505 ..... 4-6
HFBR-4511 ..... 4-6
HFBR-4515 ..... 4-6
HFBR-4595 ..... 4-6
HFBR-4596 ..... 4-6
HLMP-0103 ..... 6-109
HLMP-0300 ..... 6-69
HLMP-0301 ..... 6-69
HLMP-0354 ..... 8-18
HLMP-0363 ..... 8-24
HLMP-0364 ..... 8-24
HLMP-0365 ..... 8-24
HLMP-0366 ..... 8-24
HLMP-0380 ..... 8-18
HLMP-0381 ..... 8-18
HLMP-0391 ..... 8-24
HLMP-0392 ..... 8-24
HLMP-0400 ..... 6-69
HLMP-0401 ..... 6-69
HLMP-0454 ..... 8-18
HLMP-0463 ..... 8-24
HLMP-0464 ..... 8-24
HLMP-0465 ..... 8-24
HLMP-0466 ..... 8-24
HLMP-0480 ..... 8-18
HLMP-0481 ..... 8-18
HLMP-0491 ..... 8-24
HLMP-0492 ..... 8-24
HLMP-0503 ..... 6-69
HLMP-0504 ..... 6-69
HLMP-0554 ..... 8-18
HLMP-0563 ..... 8-24
HLMP-0564 ..... 8-24
HLMP-0565 ..... 8-24
HLMP-0566 ..... 8-24
HLMP-0580 ..... 8-18
HLMP-0581 ..... 8-18
HLMP-0591 ..... 8-24
HLMP-0592 ..... 8-24
HLMP-0904 ..... 8-18
HLMP-0930 ..... 8-18
HLMP-0931 ..... 8-18
HLMP-1000 ..... 6-84
HLMP-1002 ..... 6-84
HLMP-1002, OPT 010 ..... 6-57
HLMP-1002, OPT 101 ..... 6-57
HLMP-1071 ..... 6-84
HLMP-1080 ..... 6-84
HLMP-1100 ..... 6-62
HLMP-1100, OPT 010 ..... 6-57
HLMP-1100, OPT 101 ..... 6-57
HLMP-1120 ..... 6-62
HLMP-1200 ..... 6-84
HLMP-1201 ..... 6-84
HLMP-1300 ..... 6-86
HLMP-1301 ..... 6-86
HLMP-1301, OPT 010 ..... 6-57
HLMP-1301, OPT 101 ..... 6-57
HLMP-1301, OPT 104 ..... 6-61
HLMP-1302 ..... 6-86
HLMP-1320 ..... 6-105
HLMP-1321 ..... 6-105
HLMP-1340 ..... 6-51
HLMP-1350 ..... 6-90
HLMP-1385 ..... 6-86
HLMP-1400 ..... 6-86
HLMP-1401 ..... 6-86
HLMP-1401, OPT 010 ..... 6-57
HLMP-1401, OPT 101 ..... 6-57
HLMP-1401, OPT 104 ..... 6-61
HLMP-1402 ..... 6-86
HLMP-1420 ..... 6-105
HLMP-1421 ..... 6-105
HLMP-1440 ..... 6-51
HLMP-1450 ..... 6-90
HLMP-1485 ..... 6-86
HLMP-1503 ..... 6-86
HLMP-1503, OPT 010 ..... 6-57
HLMP-1503, OPT 101 ..... 6-57
HLMP-1503, OPT 104 ..... 6-61
HLMP-1520 ..... 6-105
HLMP-1521 ..... 6-105
HLMP-1523 ..... 6-86
HLMP-1540 ..... 6-51
HLMP-1550 ..... 6-90
HLMP-1585 ..... 6-86
HLMP-1600 ..... 6-62
HLMP-1600, OPT 010 ..... 6-57
HLMP-1600, OPT 101 ..... 6-57
HLMP-1601 ..... 6-62
HLMP-1620 ..... 6-62
HLMP-1620, OPT 010 ..... 6-57
HLMP-1620, OPT 101 ..... 6-57
HLMP-1621 ..... 6-62
HLMP-1640 ..... 6-62
HLMP-1640, OPT 010 ..... 6-57
HLMP-1640, OPT 101 ..... 6-57
HLMP-1641 ..... 6-62
HLMP-1660 ..... 6-25
HLMP-1661 ..... 6-25
HLMP-1674 ..... 6-25
HLMP-1675 ..... 6-25
HLMP-1687 ..... 6-25
HLMP-1688 ..... 6-25
HLMP-1700 ..... 6-47
HLMP-1719 ..... 6-47
HLMP-1740 ..... 6-25
HLMP-1760 ..... 6-25
HLMP-1790 ..... 6-47
HLMP-1800 ..... 6-25
HLMP-1801 ..... 6-25
HLMP-1819 ..... 6-25
HLMP-1820 ..... 6-25
HLMP-1840 ..... 6-25
HLMP-1841 ..... 6-25
HLMP-2000 ..... 5-7
HLMP-2050 ..... 5-7
HLMP-2100 ..... 5-7
HLMP-2120 ..... 5-7
HLMP-2135 ..... 5-7
HLMP-2155 ..... 5-7
HLMP-2170 ..... 5-7
HLMP-2185 ..... 5-7
HLMP-2300 ..... 5-7
HLMP-2300, OPT L00 ..... 5-23
HLMP-2300, OPT L01 ..... 5-23
HLMP-2300, OPT L03 ..... 5-23
HLMP-2300, OPT L04 ..... 5-23
HLMP-2300, OPT S02 ..... 5-25
HLMP-2350 ..... 5-7
HLMP-2350, OPT S02 ..... 5-25
HLMP-2400 ..... 5-7
HLMP-2400, OPT L00 ..... 5-23
HLMP-2400, OPT L01 ..... 5-23
HLMP-2400, OPT L03 ..... 5-23
HLMP-2400, OPT L04 ..... 5-23
HLMP-2400, OPT S02 ..... 5-25
HLMP-2450 ..... 5-7
HLMP-2450, OPT S02 ..... 5-25
HLMP-2500 ..... 5-7
HLMP-2500, OPT L00 ..... 5-23
HLMP-2500, OPT L01 ..... 5-23
HLMP-2500, OPT L03 ..... 5-23
HLMP-2500, OPT L04 ..... 5-23
HLMP-2500, OPT S02 ..... 5-25
HLMP-2550 ..... 5-7
HLMP-2550, OPT S02 ..... 5-25
HLMP-2598 ..... 5-21
HLMP-2599 ..... 5-21
HLMP-2600 ..... 5-7
HLMP-2600, OPT S02 ..... 5-25
HLMP-2620 ..... 5-7
HLMP-2620, OPT S02 ..... 5-25
HLMP-2635 ..... 5-7
HLMP-2635, OPT S02 ..... 5-25
HLMP-2655 ..... 5-7
HLMP-2655, OPT L00 ..... 5-23
HLMP-2655, OPT L01 ..... 5-23
HLMP-2655, OPT L03 ..... 5-23
HLMP-2655, OPT L04 ..... 5-23
HLMP-2655, OPT L06 ..... 5-23
HLMP-2655, OPT S02 ..... 5-25
HLMP-2670 ..... 5-7
HLMP-2670, OPT S02 ..... 5-25
HLMP-2685 ..... 5-7
HLMP-2685, OPT L00 ..... 5-23
HLMP-2685, OPT L01 ..... 5-23
HLMP-2685, OPT L02 ..... 5-23
HLMP-2685, OPT L03 ..... 5-23
HLMP-2685, OPT L04 ..... 5-23
HLMP-2685, OPT L05 ..... 5-23
HLMP-2685, OPT L06 ..... 5-23
HLMP-2685, OPT S02 ..... 5-25
HLMP-2700 ..... 5-7
HLMP-2700, OPT S02 ..... 5-25
HLMP-2720 ..... 5-7
HLMP-2720, OPT S02 ..... 5-25
HLMP-2735 ..... 5-7
HLMP-2735, OPT S02 ..... 5-25
HLMP-2755 ..... 5-7
HLMP-2755, OPT L00 ..... 5-23
HLMP-2755, OPT L01 ..... 5-23
HLMP-2755, OPT L03 ..... 5-23
HLMP-2755, OPT L04 ..... 5-23
HLMP-2755, OPT L06 ..... 5-23
HLMP-2755, OPT S02 ..... 5-25
HLMP-2770 ..... 5-7
HLMP-2770, OPT S02 ..... 5-25
HLMP-2785 ..... 5-7
HLMP-2785, OPT L00 ..... 5-23
HLMP-2785, OPT L01 ..... 5-23
HLMP-2785, OPT L02 ..... 5-23
HLMP-2785, OPT L03 ..... 5-23
HLMP-2785, OPT L04 ..... 5-23
HLMP-2785, OPT L05 ..... 5-23
HLMP-2785, OPT L06 ..... 5-23
HLMP-2785, OPT S02 ..... 5-25
HLMP-2800 ..... 5-7
HLMP-2800, OPT S02 ..... 5-25
HLMP-2820 ..... 5-7
HLMP-2820, OPT S02 ..... 5-25
HLMP-2835 ..... 5-7
HLMP-2835, OPT S02 ..... 5-25
HLMP-2855 ..... 5-7
HLMP-2855, OPT L00 ..... 5-23
HLMP-2855, OPT L01 ..... 5-23
HLMP-2855, OPT L03 ..... 5-23
HLMP-2855, OPT L04 ..... 5-23
HLMP-2855, OPT L06 ..... 5-23
HLMP-2855, OPT S02 ..... 5-25
HLMP-2870 ..... 5-7
HLMP-2870, OPT S02 ..... 5-25
HLMP-2885 ..... 5-7
HLMP-2885, OPT LOO ..... 5-23
HLMP-2885, OPT L01 ..... 5-23
HLMP-2885, OPT L02 ..... 5-23
HLMP-2885, OPT L03 ..... 5-23
HLMP-2885, OPT L04 ..... 5-23
HLMP-2885, OPT L05 ..... 5-23
HLMP-2885, OPT L06 ..... 5-23
HLMP-2885, OPT S02 ..... 5-25
HLMP-2898 ..... 5-21
HLMP-2899 ..... 5-21
HLMP-2950 ..... 5-14
HLMP-2965 ..... 5-14
HLMP-2980 ..... 5-14
HLMP-3000 ..... 6-72
HLMP-3001 ..... 6-72
HLMP-3002 ..... 6-72
HLMP-3003 ..... 6-72
HLMP-3050 ..... 6-72
HLMP-3105 ..... 6-62
HLMP-3112 ..... 6-62
HLMP-3200 ..... 6-78
HLMP-3201 ..... 6-78
HLMP-3300 ..... 6-74
HLMP-3301 ..... 6-74
HLMP-3315 ..... 6-101
HLMP-3316 ..... 6-101
HLMP-3350 ..... 6-78
HLMP-3351 ..... 6-78
HLMP-3365 ..... 6-78
HLMP-3366 ..... 6-78
HLMP-3390 ..... 6-51
HLMP-3400 ..... 6-74
HLMP-3401 ..... 6-74
HLMP-3415 ..... 6-101
HLMP-3416 ..... 6-101
HLMP-3450 ..... 6-78
HLMP-3451 ..... 6-78
HLMP-3465 ..... 6-78
HLMP-3466 ..... 6-78
HLMP-3490 ..... 6-51
HLMP-3502 ..... 6-74
HLMP-3507 ..... 6-74
HLMP-3517 ..... 6-101
HLMP-3519 ..... 6-101
HLMP-3553 ..... 6-78
HLMP-3554 ..... 6-78
HLMP-3567 ..... 6-78
HLMP-3568 ..... 6-78
HLMP-3590 ..... 6-51
HLMP-3600 ..... 6-62
HLMP-3601 ..... 6-62
HLMP-3650 ..... 6-62
HLMP-3651 ..... 6-62
HLMP-3680 ..... 6-62
HLMP-3681 ..... 6-62
HLMP-3750 ..... 6-51
HLMP-3762 ..... 6-74
HLMP-3850 ..... 6-51
HLMP-3862 ..... 6-74
HLMP-3950 ..... 6-51
HLMP-3962 ..... 6-74
HLMP-4700 ..... 6-47
HLMP-4719 ..... 6-47
HLMP-4740 ..... 6-47
HLMP-5000 ..... 6-55
HLMP-5005 ..... 6-55
HLMP-5012 ..... 6-55
HLMP-5029 ..... 6-55
HLMP-5030 ..... 6-55
HLMP-5040 ..... 6-55
HLMP-5050 ..... 6-55
HLMP-5060 ..... 6-55
HLMP-5070 ..... 6-55
HLMP-5080 ..... 6-55
HLMP-6000 ..... 6-91
HLMP-6000, OPT 010 ..... 6-59
HLMP-6000, OPT 011 ..... 6-17
HLMP-6000, OPT 013 ..... 6-17
HLMP-6000, OPT 021 ..... 6-21
HLMP-6000, OPT 022 ..... 6-21
HLMP-6001 ..... 6-91
HLMP-6001, OPT 011 ..... 6-17
HLMP-6001, OPT 013 ..... 6-17
HLMP-6001, OPT 021 ..... 6-21
HLMP-6001, OPT 022 ..... 6-21
HLMP-6020 ..... 6-91
HLMP-6021 ..... 6-91
HLMP-6203 ..... 6-97
HLMP-6204 ..... 6-97
HLMP-6205 ..... 6-97
HLMP-6206 ..... 6-97
HLMP-6208 ..... 6-97
HLMP-6300 ..... 6-91
HLMP-6300, OPT 010 ..... 6-59
HLMP-6300, OPT 011 ..... 6-17
HLMP-6300, OPT 013 ..... 6-17
HLMP-6300, OPT 021 ..... 6-21.
HLMP-6300, OPT 022 ..... 6-21
HLMP-6320 ..... 6-91
HLMP-6400 ..... 6-91
HLMP-6400, OPT 010 ..... 6-59
HLMP-6400, OPT 011 ..... 6-17
HLMP-6400, OPT 013 ..... 6-17
HLMP-6400, OPT 021 ..... 6-21
HLMP-6400, OPT 022 ..... 6-21
HLMP-6420 ..... 6-91
HLMP-6500 ..... 6-91
HLMP-6500, OPT 010 ..... 6-59
HLMP-6500, OPT 011 ..... 6-17
HLMP-6500, OPT 013 ..... 6-17
HLMP-6500, OPT 021 ..... 6-21
HLMP-6500, OPT 022 ..... 6-21
HLMP-6520 ..... 6-91
HLMP-6600 ..... 6-66
HLMP-6600, OPT 011 ..... 6-17
HLMP-6600, OPT 013 ..... 6-17
HLMP-6600, OPT 021 ..... 6-21
HLMP-6600, OPT 022 ..... 6-21
HLMP-6620 ..... 6-66
HLMP-6620, OPT 011 ..... 6-17
HLMP-6620, OPT 013 ..... 6-17
HLMP-6620, OPT 021 ..... 6-21
HLMP-6620, OPT 022 ..... 6-21
HLMP-6653 ..... 6-97
HLMP-6654 ..... 6-97
HLMP-6655 ..... 6-97
HLMP-6656 ..... 6-97
HLMP-6658 ..... 6-97
HLMP-6700 ..... 6-66
HLMP-6700, OPT 011 ..... 6-17
HLMP-6700, OPT 013 ..... 6-17
HLMP-6700, OPT 021 ..... 6-21
HLMP-6700, OPT 022 ..... 6-21
HLMP-6720 ..... 6-66
HLMP-6720, OPT 011 ..... 6-17
HLMP-6720, OPT 013 ..... 6-17
HLMP-6720, OPT 021 ..... 6-21
HLMP-6720, OPT 022 ..... 6-21
HLMP-6753 ..... 6-97
HLMP-6754 ..... 6-97
HLMP-6755 ..... 6-97
HLMP-6756 ..... 6-97
HLMP-6758 ..... 6-97
HLMP-6800 ..... 6-66
HLMP-6800, OPT 011 ..... 6-17
HLMP-6800, OPT 013 ..... 6-17
HLMP-6800, OPT 021 ..... 6-21
HLMP-6800, OPT 022 ..... 6-21
HLMP-6820 ..... 6-66
HLMP-6820, OPT 011 ..... 6-17
HLMP-6820, OPT 013 ..... 6-17
HLMP-6820, OPT 021 ..... 6-21
HLMP-6820, OPT 022 ..... 6-21
HLMP-6853 ..... 6-97
HLMP-6854 ..... 6-97
HLMP-6855 ..... 6-97
HLMP-6856 ..... 6-97
HLMP-6858 ..... 6-97
HLMP-7000 ..... 6-47
HLMP-7019 ..... 6-47
HLMP-7040 ..... 6-47
HLMP-D100 ..... 6-39
HLMP-D400 ..... 6-74
HLMP-D401 ..... 6-74
HLMP-D600 ..... 6-74
HLMP-D601 ..... 6-74
HLMP-K100 ..... 6-39
HLMP-K400 ..... 6-86
HLMP-K401 ..... 6-86
HLMP-K402 ..... 6-86
HLMP-K600 ..... 6-86
HLMP-K601 ..... 6-86
HLMP-L250 ..... 6-31
HLMP-L251 ..... 6-31
HLMP-L350 ..... 6-31
HLMP-L351 ..... 6-31
HLMP-L550 ..... 6-31
HLMP-L551 ..... 6-31
HLMP-M200 ..... 6-35
HLMP-M201 ..... 6-35
HLMP-M250 ..... 6-35
HLMP-M251 ..... 6-35
HLMP-M300 ..... 6-35
HLMP-M301 ..... 6-35
HLMP-M350 ..... 6-35
HLMP-M351 ..... 6-35
HLMP-M500 ..... 6-35
HLMP-M501 ..... 6-35
HLMP-M550 ..... 6-35
HLMP-M551 ..... 6-35
HLMP-Q100 ..... 6-39
HLMP-Q400 ..... 6-91
HLMP-Q400, OPT 011 ..... 6-17
HLMP-Q400, OPT 013 ..... 6-17
HLMP-Q400, OPT 021 ..... 6-21
HLMP-Q400, OPT 022 ..... 6-21
HLMP-Q420 ..... 6-91
HLMP-Q600 ..... 6-91
HLMP-Q600, OPT 011 ..... 6-17
HLMP-Q600, OPT 013 ..... 6-17
HLMP-Q600, OPT 021 ..... 6-21
HLMP-Q600, OPT 022 ..... 6-21
HLMP-Q620 ..... 6-91
HPDL-1414 ..... 7-15
HPDL-2416 ..... 7-23
JAN1N5765 ..... 8-18
JAN1N6092 ..... 8-18
JAN1N6093 ..... 8-18
JAN1N6094 ..... 8-18
JANM19500/51901 ..... 8-18
JANM19500/52001 ..... 8-18
JANM19500/52101 ..... 8-18
JANTX1N5765 ..... 8-18
JANTX1N6092 ..... 8-18
JANTX1N6093 ..... 8-18
JANTX1N6094 ..... 8-18
JTXM19500/51902 ..... 8-18
JTXM19500/52006 ..... 8-18
JTXM19500/52102 ..... 8-18
M87157/00101ACX ..... 8-30
M87157/00102ACX ..... 8-30
M87157/00103ACX ..... 8-30
M87157/00104ACX ..... 8-30
SL5505 ..... 3-13
03075-40006 ..... 2-63
16800A ..... 2-58
16800A, OPT 001 ..... 2-64
16800A, OPT 002 ..... 2-66
16800-61000 ..... 2-63
16800-90001 ..... 2-63
16800-90004 ..... 2-63
16800-90006 ..... 2-63
16801A ..... 2-58
16801A, OPT 001 ..... 2-64
16801A, OPT 002 ..... 2-66
16830A ..... 2-63
16832A ..... 2-63
16840A ..... 2-63
16842A ..... 2-63
17355A ..... 2-63
1N5765 ..... 8-18
1N6092 ..... 8-18
1N6093 ..... 8-18
1N6094 ..... 8-18
39301A ..... 4-100
4N45 ..... 3-65
4N46 ..... 3-65
4N51 ..... 8-30
4N51TXV ..... 8-30
4N52 ..... 8-30
4N52TXV ..... 8-30
4N53 ..... 8-30
4N53TXV ..... 8-30
4N54 ..... 8-30
4N54TXV ..... 8-30
4N55 ..... 8-96
4N55TXV ..... 8-96
4N55TXVB ..... 8-96
4N55/883B ..... 8-96
5082-4200 ..... 4-106
5082-4203 ..... 4-106
5082-4204 ..... 4-106
5082-4205 ..... 4-106
5082-4207 ..... 4-106
5082-4220 ..... 4-106
5082-7100 ..... 7-68
5082-7101 ..... 7-68
5082-7.102 ..... 7-68
5082-7285 ..... 7-156
5082-7295 ..... 7-156
5082-7300 ..... 7-135
5082-7302 ..... 7-135
5082-7304 ..... 7-135
5082-7340 ..... 7-135
5082-7356 ..... 7-135
5082-7357 ..... 7-135
5082-7358 ..... 7-135
5082-7359 ..... 7-135
5082-7404 ..... 7-150
5082-7405 ..... 7-150
5082-7414 ..... 7-150
5082-7415 ..... 7-150
5082-7432 ..... 7-150
5082-7433 ..... 7-150
5082-7441 ..... 7-156
5082-7446 ..... 7-156
5082-7610 ..... 7-103
5082-7610, OPT S02 ..... 7-135
5082-7611 ..... 7-103
5082-7611, OPT S02 ..... 7-135
5082-7613 ..... 7-103
5082-7613, OPT S02 ..... 7-135
5082-7616 ..... 7-103
5082-7616, OPT S02 ..... 7-135
5082-7620 ..... 7-103
5082-7621 ..... 7-103
5082-7623 ..... 7-103
5082-7626 ..... 7-103
5082-7650 ..... 7-103
5082-7650, OPT S02 ..... 7-135
5082-7651 ..... 7-103
5082-7651, OPT S02 ..... 7-135
5082-7653 ..... 7-103
5082-7653, OPT S02 ..... 7-135
5082-7656 ..... 7-103
5082-7656, OPT S02 ..... 7-135
5082-7660 ..... 7-103
5082-7661 ..... 7-103
5082-7663 ..... 7-103
5082-7663, OPT S20 ..... 7-135
5082-7666 ..... 7-103
5082-7666, OPT S20 ..... 7-135
5082-7730 ..... 7-103
5082-7730, OPT S02 ..... 7-135
5082-7731 ..... 7-103
5082-7731, OPT S02 ..... 7-135
5082-7736 ..... 7-103
5082-7736, OPT S02 ..... 7-135
5082-7740 ..... 7-103
5082-7740, OPT S02 ..... 7-135
5082-7750 ..... 7-103
5082-7750, OPT S02 ..... 7-135
5082-7751 ..... 7-103
5082-7756 ..... 7-103
5082-7756, OPT S02 ..... 7-135
5082-7760 ..... 7-103
5082-7760, OPT S02 ..... 7-135
6N134 ..... 8-66
6N134TXV ..... 8-66
6N134TXVB ..... 8-66
6N135 ..... 3-9
6N136 ..... 3-9
6N137 ..... 3-36
6N138 ..... 3-57
6N139 ..... 3-57
6N140A ..... 8-87
6N140A883B ..... 8-87
6N140TXV ..... 8-87
6N140TXVB ..... 8-87
8102801EC ..... 8-69
8302401EC ..... 8-91


In 1964, Hewlett-Packard established a new division having the charter of developing and producing state-of-the-art electronic components for internal use. By 1975, both microwave and optoelectronic devices contributed to the growing business of Hewlett-Packard and the Components Group was formed. Today there are three divisions: the Optoelectronics division, Optical Communications division and Microwave Semiconductor division. In addition to these three divisions there is a specialized team of people to develop, manufacture and market bar code components.
The products of the Components Group are vertically integrated, from the growing of LED crystals to the development of the various on-
board integrated circuits to package design. Vertical integration insures that HP quality is maintained throughout product development and manufacturing.
Over 5200 employees are dedicated to HP Components, including manufacturing facilities in Malasia and Singapore, factory and marketing support in San Jose, California and a world-wide sales force. Marketing operations for Europe are located in Boeblingen, Germany.
Each field sales office is staffed with engineers trained to provide technical assistance. An extensive communications network links field with factory to assure that each customer can quickly attain the information and help needed.

Quality and reliability are two very important concepts to Hewlett-Packard in maintaining the commitment to product performance.
At Hewlett-Packard, quality is integral to product development, manufacturing and final introduction. "Parts per million" (PPM) as a measure of quality is used in HP's definition of product assurance. And HP's commitment to quality means that there is a continuous process of improvement and tightening of quality standards. Manufacturing quality circles and quality testing programs are important ingredients in HP products.
Reliability testing is also required for the introduction of new HP components. Lifespan calculations in "mean-time-between-failure" (MTBF) terms are published and available as reliability data sheets. HP's stringent reliability testing assures long component lifetimes and consistent product performance.

## Warranty

HP's Components are warranted against defects in material and workmanship for a period of one year from the date of shipment (in the case of designated Fiber Optics and Bar Code products 90 days from the date of shipment). If HP receives notice of such defects during the warranty period, HP will repair or, at its option,
replace components that prove to be defective in material or workmanship under proper use during the warranty period. This warranty extends only to HP customers.

## NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE<br>REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

The foregoing limitation of liability shall not apply in the event that any HP product sold hereunder is determined by a court of compentent jurisdiction to be defective and to have directly caused bodily injury, death or property damage; provided, that in no event shall HP's liability for property damage exceed the greater of $\$ 50,000$ or the purchase price of the specific product that caused such damage.


## Motion Sensing and Control

## Motion Sensing

As an extension of our emitter/detector systems capability, Hewlett-Packard has developed a family of motion sensing products. These products include optical shaft encoders for closed loop servo applications and digital potentiometers for manual input applications. HP's Optical products provide a digital link converting mechanical shaft rotation into TTL logic level signals.

Our HEDS-5000 and HEDS-6000 series encoders may be used in a wide variety of closed loop servo applications varying from computer peripherals and professional audio-video systems to automated production equipment. Encoders also find widespread use in industrial and instrument applications in which digital information is needed to monitor rotary motion.
With three easy to assemble components, the HP encoder system takes advantage of a specialized optical design and a custom integrated circuit to deliver superior performance in a compact package. The design also minimizes the mechanical tolerances required of the shaft and mounting surface. The HEDS-5000 and HEDS-6000 encoders are available with a range of options including resolution and shaft sizes.

The HEDS-7000 series digital potentiometer is a 28 mm diameter encoder completely assembled with a shaft and bushing, making it suitable for panel mounting. The device converts manual rotary inputs into digital outputs using the same high performance emitter/detector technology used in our encoders. A digital potentiometer can
be used as an input mechanism in a variety of applications including: test and measurement equipment, CAD-CAM systems, and positioning tables.

## Motion Control

To complement the motion sensing products, HP has recently released two new motion control ICs. The HCTL-1000 general purpose motion control IC greatly simplifies the task of designing digital motion control systems. The HCTL-1000 compares the command position or velocity from a host processor to the actual position or velocity from an incremental encoder, and outputs an appropriate motor command using one of four programmable position and velocity control modes. Some of its other features include a programmable digital filter, an electronic commutator, and a quadrature decoder/counter.
The HCTL-2000 Quadrature Decoder Counter IC provides a one chip, easy to implement solution to interfacing the quadrature output of an encoder or digital potentiometer to a microprocessor. It includes a quadrature decoder, a 12 bit up/down state counter, and an 8 bit bus interface. The use of Schmitt triggered inputs and a digital noise filter allows reliable operation in noisy environments.
For more information on these new product developments, contact your local Hewlett-Packard Components Field Engineer, or write HewlettPackard Optoelectronics Division, 640 Page Mill Road, Palo Alto, California 94304.


Optical Shaft Encoder


Digital Potentiometer


Motion Control IC

## Motion Sensing and Control

28 mm Diameter Encoders - HEDS-5000 Series

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Package Outline Drawing} \& \multirow[b]{2}{*}{Part No.} \& \multirow[b]{2}{*}{Channels} \& \multicolumn{2}{|c|}{Option Code} \& \multirow[b]{2}{*}{Page No.} \\
\hline \& \& \& Resolution \& Shaft Size \& \\
\hline  \& \begin{tabular}{l}
HEDS-5000 OPT \(\square\) \\
HEDS-5010 \\
OPT \(\square\)
\end{tabular} \& A, B

A, B, I \& \begin{tabular}{l}
C 100 CPR <br>
D 192 CPR <br>
E 200 CPR <br>
F 256 CPR <br>
G 360 CPR <br>
H 400 CPR <br>
A 500 CPR <br>
I 512 CPR

 \& 

$\square \square$ <br>
012 mm <br>
023 mm <br>
03 1/8 in. <br>
$04 \quad 5 / 32$ in. <br>
05 3/16 in. <br>
06 1/4 in. <br>
114 mm <br>
145 mm
\end{tabular} \& 1-5 <br>

\hline
\end{tabular}

56 mm Diameter Encoders - HEDS-6000 Series

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Package Outline Drawing} \& \multirow[b]{2}{*}{Part No.} \& \multirow[b]{2}{*}{Channels} \& \multicolumn{2}{|r|}{Option Code} \& \multirow[b]{2}{*}{Page No.} \\
\hline \& \& \& Resolution \& Shaft Size \& \\
\hline  \& \begin{tabular}{l}
HEDS-6000 OPT \\
HEDS-6010 OPTD
\end{tabular} \& A, B

A, B, I \& \begin{tabular}{l}
E 200 CPR <br>
H 400 CPR <br>
A 500 CPR <br>
I 512 CPR <br>
B 1000 CPR <br>
J 1024 CPR

 \& 

05 3/16 in. <br>
$06 \quad 1 / 4 \mathrm{in}$. <br>
07 5/16 in. <br>
$083 / 8 \mathrm{in}$. <br>
09 1/2 in. <br>
10 5/8 in. <br>
114 mm <br>
126 mm <br>
138 mm
\end{tabular} \& 1-13 <br>

\hline
\end{tabular}

Digital Potentiometer - HEDS-7500 Series

| Package Outline Drawing | Part No. | Resolution | Termination | Page No. |
| :---: | :---: | :---: | :---: | :---: |
|  | HEDS-7500 | 256 CPR | Color Coded Wire | $1-21$ |
|  | HEDS-7501 | 256 CPR | Ribbon Cable |  |


| Package Outline | Part No. | Description | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | HCTL-1000 | General Purpose Motion Control IC | 1-23 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| ADA/DB4 ${ }^{\text {a }}$ |  |  |  |
| ADS/DB5 7 , ${ }_{34}{ }^{\text {Gextcle }}$ |  |  |  |
| ${ }^{\text {D86 }}{ }^{8} \quad{ }^{33}$ TINDEX |  |  |  |
| ${ }^{\text {D87 }}{ }^{9}{ }^{32}{ }^{32} \mathrm{v}_{\text {ss }}$ |  |  |  |
| $\mathrm{vss}^{\text {c }}$ |  |  |  |
| $\mathrm{vcc}^{11} \quad 30{ }^{11} \mathrm{chi}$ |  |  |  |
| Prof $12 \quad 29{ }^{12}$ Phd |  |  |  |
| ${ }^{\text {INIT }}$ - ${ }^{13} \quad{ }^{28}{ }^{28} \mathrm{PHC}$ |  |  |  |
|  |  |  |  |
| ${ }^{\text {STOP }} 15{ }^{15}$ |  |  |  |
| PULSE ${ }^{16}$ |  |  |  |
| SIGN ${ }^{17} \quad{ }^{24}{ }^{24}$ Mc6 |  |  |  |
| мсо ${ }^{18} \quad{ }^{23}{ }^{\text {a mas }}$ |  |  |  |
|  |  |  |  |
| * should be left floating. |  |  |  |
|  | HCTL-2000 | Quadrature Decoder/Counter IC | 1-43 |
|  |  |  |  |
|  |  |  |  |
| DE/ - $^{4} \quad 13{ }^{13}{ }^{\text {D3 }}$ |  |  |  |
| RST/ ${ }^{5}$ |  |  |  |
| cha ${ }^{6}$ |  |  |  |
| снв $\mathrm{v}_{\text {ss }} \mathrm{Cl}_{8}^{7}$ |  |  |  |
|  |  |  |  |

Convenience Assembly Tools for 28 mm Diameter Encoders - Not Required


## HEDS-5000 SERIES

## Features

- SMALL SIZE - 28 mm DIAMETER
- 100-512 CYCLES/REVOLUTION AVAILABLE
- MANY RESOLUTIONS STANDARD
- LOW INERTIA
- QUICK ASSEMBLY
- 0.25 mm (. 010 INCHES) END PLAY ALLOWANCE
- TTL COMPATIBLE DIGITAL OUTPUT
- SINGLE 5V SUPPLY
- wide temperature range
- INDEX PULSE AVAILABLE


## Description

The HEDS-5000 series is a high resolution incremental optical encoder kit emphasizing reliability and ease of assembly. The 28 mm diameter package consists of 3 parts: the encoder body, a metal code wheel, and an emitter end plate. An LED source and lens transmit collimated light from the emitter module through a precision metal code wheel and phase plate into a bifurcated detector lens.
The light is focused onto pairs of closely spaced integrated detectors which output two square wave signals in quadrature and an optional index pulse. Collimated light and a custom photodetector configuration increase long life reliability by reducing sensitivity to shaft end play, shaft eccentricity and LED degradation. The outputs and the 5 V supply input of the HEDS-5000 are accessed through a 10 pin connector mounted on a .6 metre ribbon cable.


A standard selection of shaft sizes and resolutions between 100 and 512 cycles per revolution are available. Consult the factory for custom resolutions. The part number for the standard 2 channel kit is HEDS-5000, while that for the 3 channel device, with index pulse, is HEDS-5010. See Ordering Information for more details. For additional design information, see Application Note 1011.

## Applications

Printers, Plotters, Tape Drives, Positioning Tables, Automatic Handlers, Robots, and any other servo loop where a small high performance encoder is required.

## Outline Drawing



## Block Diagram and Output Waveforms



## Theory of Operation

The incremental shaft encoder operates by translating the rotation of a shaft into interruptions of a light beam which are then output as electrical pulses.
In the HEDS-5XXX the light source is a Light Emitting Diode collimated by a molded lens into a parallel beam of light. The Emitter End Plate contains two or three similar light sources, one for each channel.
The standard Code Wheel is a metal disc which has N equally spaced apertures around its circumference. A matching pattern of apertures is positioned on the stationary phase plate. The light beam is transmitted only when the apertures in the code wheel and the apertures in the phase plate line up; therefore, during a complete shaft revolution, there will be N alternating light and dark periods. A molded lens beneath the phase plate aperture collects the modulated light into a silicon detector.
The Encoder Body contains the phase plate and the detection elements for two or three channels. Each channel consists of an integrated circuit with two photodiodes and amplifiers, a comparator, and output circuitry.
The apertures for the two photodiodes are positioned so that a light period on one detector corresponds to a dark period on the other ("push-pull"). The photodiode signals are amplified and fed to the comparator whose output changes state when the difference of the two photocurrents changes sign. The second channel has a similar configuration but the location of its aperture pair provides an output which is in quadrature to the first channel (phase difference of $90^{\circ}$ ). Direction of rotation is determined by observing which of the channels is the leading waveform. The outputs are TTL logic level signals.
The optional index channel is similar in optical and electrical configuration to the A and B channels previously described. An index pulse of typically 1 cycle width is generated for each rotation of the code wheel. Using the recommended logic interface, a unique logic state ( Po ) can be identified if such accuracy is required.
The three part kit is assembled by attaching the Encoder Body to the mounting surface using three screws. The Code Wheel is set to the correct gap and secured to the shaft. Snapping the cover (Emitter End Plate) on the body completes the assembly. The only adjustment necessary is the encoder centering relative to the shaft. This optimizes quadrature and the optional index pulse outputs.

## Index Pulse Considerations

The motion sensing application and encoder interface circuitry will determine the necessary phase relationship of the index pulse to the main data tracks. A unique shaft position can be identified by using the index pulse output only or by logically relating the index pulse to the $A$ and $B$ data channels. The HEDS-5010 allows some adjustment of the index pulse position with respect to the main data channels. The position is easily adjusted during the assembly process as illustrated in the assembly procedures.

## Definitions

Electrical degrees:
1 shaft rotation $=360$ angular degrees

$$
=N \text { electrical cycles }
$$

1 cycle $\quad=360$ electrical degrees
Position Error:
The angular difference between the actual shaft position and its position as calculated by counting the encoder's cycles.
Cycle Error:
An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.
Phase:
The angle between the center of Pulse $A$ and the center of Pulse B.
Index Phase:
For counter clockwise rotation as illustrated above, the Index Phase is defined as:

$$
\Phi_{1}=\frac{\left(\phi_{1}-\phi_{2}\right)}{2} .
$$

$\phi_{1}$ is the angle, in electrical degrees between the falling edge of I and falling edge of B. $\phi_{2}$ is the angle, in electrical degrees, between the rising edge of $A$ and the rising edge of $I$.

## Index Phase Error:

The Index Phase Error $\left(\Delta \Phi_{I}\right)$ describes the change in the Index Pulse position after assembly with respect to the A and $B$ channels over the recommended operating conditions.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $T_{S}$ | -55 | 100 | ${ }^{\circ}$ Celsius |  |
| Operating Temperature | $T_{A}$ | -55 | 100 | ${ }^{\circ} \mathrm{Celsius}$ | See Note 1 |
| Vibration = | - |  | 20 | g | See Note 1 |
| Shaft Axial Play |  |  | 50 (20) | mm(1 inch/1000) TIR |  |
| Shaft Eccentricity Plus Radial Play |  | . | - 3.1 (4) | $\mathrm{mm}(1$ inch $/ 1000)$ TIR | Movement should be limited even under shock conditions. |
| Supply Voltage | VCC | -0.5 | 7 | Volts | 3 |
| Output Voltage | $V_{0}$ | -0.5 | VCC | 4 Volts |  |
| Output Current per Channel | 10 | -1 | 5 | mA |  |
| Velocity |  |  | 30,000 | R.P.M. | K |
| Acceleration | $\alpha$ |  | 250,000 | Rad. Sec ${ }^{-2}$ | - |

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature | T | -20 | 85 | ${ }^{\circ}$ Celsius | Non-condensing atmos. |
| Supply Voltage | Vec | 4.5 | 5.5 | Volt | Ripple $<100 \mathrm{mV}$ p-p |
| Code Wheel Gap |  |  | 1.1 (45) | mm (inch/1000) | Nominal gap $=$ <br> $0.63 \mathrm{~mm}(.025 \mathrm{in}$.) when shaft <br> is at minimum gap position. |
| Shaft Perpendicularity Plus Axial Play |  |  | 0.25 (10) | $\begin{gathered} \mathrm{mm}(\text { inch } / 1000) \\ \text { TIR } \end{gathered}$ |  |
| Shaft Eccentricity Plus Radial Play |  |  | 0.04 (1.5) | $\begin{gathered} \mathrm{mm}(\text { inch/1000) } \\ \text { TRR } \end{gathered}$ | 10 mm ( 0.4 inch) from mounting surface. |
| Load Capacitance | CL |  | 100 | pF |  |

## Encoding Characteristics

The specifications below apply within the recommended operating conditions and reflect performance at 500 cycles per revolution ( $N=500$ ). Some encoding characteristics improve with decreasing cycles ( $N$ ) . Consult Application Note 1011 or factory for additional details.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Notes (See Definitions) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Position Error Worst Error Full Rotation | $\Delta \Theta$ |  | 10 | 40 | Minutes of Arc | 1 Cycle $=43.2$ Minutes See Figure 5. |
| Cycle Error Worst Error Full Rotation | $\Delta \mathrm{C}$ | $\cdots$ | 3 | 5.5 | Electrical deg. |  |
| Max. Count Frequency | $f_{\text {max }}$ | 130,000 | 200,000 |  | Hertz | $f=$ Velocity (RPM) $\times$ N/60 |
| Pulse Width Error Worst Error Full Rotation | $\Delta \mathrm{P}$ |  | 16 |  | Electrical deg. | $T=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ <br> See Note 2 |
| Phase Sensitivity to Eccentricity |  |  | $\begin{array}{r} 520 \\ (13) \\ \hline \end{array}$ |  | Elec. deg. $/ \mathrm{mm}$ <br> (Elec. deg./mil) | $\mathrm{mil}=$ inch $/ 1000$ |
| Phase Sensitivity to Axial Play |  |  | $\begin{aligned} & 20 \\ & (.5) \end{aligned}$ |  | Elec. deg. $/ \mathrm{mm}$ <br> (Elec. deg./mil) | $\mathrm{mil}=$ inch $/ 1000$ |
| Logic State Width ErrorWorst Error Full Rotation | $\Delta S$ |  | 25 |  | Electrical deg. | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ <br> See Note 2 |
| Index Pulse Width | $\mathrm{Pl}_{1}$ |  | 360 |  | Electrical deg. | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ <br> See Note 3 |
| Index Phase Error | $\Delta \Phi_{1}$ |  | 0 | 17 | Electrical deg. | See Notes 4, 5 |
| Index Pulse Phase Adjustment Range |  | $\pm 70$ | $\pm 130$ |  | Electrical deg. | See Note 5 |

## Mechanical Characteristics

| Parameter | Symbol | Dimension | Tolerance | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Outline Dimensions |  | See Mech. Dwg. |  |  |  |
| Code Wheel Available to Fit the Following Standard Shaft Diameters |  | $\begin{array}{ll} 2 & 4 \\ 3 & 5 \end{array}$ | $\begin{aligned} & +.000 \\ & -.015 \end{aligned}$ | mm |  |
|  |  | 5/32 | $\begin{aligned} & +.0002 \\ & -.0005 \end{aligned}$ | inches |  |
|  |  | $3^{1 / 8} \quad 1 / 4$ | $\begin{aligned} & +.0000 \\ & -.0007 \end{aligned}$ | inches |  |
| Moment of Inertia | $J$ | $0.4\left(6 \times 10^{-6}\right)$ |  | $\mathrm{gcm}^{2}\left(\mathrm{Oz}-\mathrm{in}-\mathrm{s}^{2}\right)$ |  |
| Required Shaft Length |  | 12.8 (.50) | $\pm 0.5( \pm 0.02)$ | mm (inches) | See Figure 10. Shaft in minimum length position. |
| Bolt Circle |  | 20.9 (.823) | $\pm 0.13( \pm .005)$ | mm (inches) | See Figure 10. |
| Mounting Screw Size |  | $\begin{gathered} 1.6 \times 0.35 \times 5 \mathrm{~mm} \\ \text { DIN } 84 \\ \text { or } \\ 0-80 \times 3 / 16 \\ \text { Binding Head } \end{gathered}$ |  | mm <br> inches |  |

## Electrical Characteristics

 When operating within the recommended operating range.Electrical Characteristics over Recommended Operating Range (Typical at $25^{\circ} \mathrm{C}$ ).

| Parameter | Symbol | Min. | Typ. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current | Icc |  | 21 | 40 | mA | HEDS-5000 (2 Channel) |
|  |  |  | 36 | 60 |  | HEDS-5010 (3 Channel) |
| High Level Output Voltage | VOH | 2.4 |  |  | V | $\mathrm{IOH}=-40 \mu \mathrm{~A}$ Max. |
| Low Level Output Voltage | VoL |  |  | 0.4 | V | $10 .=3.2 \mathrm{~mA}$ |
| Rise Time | tr |  | 0.5 |  | $\mu s$ | $C_{L}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=11 \mathrm{~K}$ Pull-up |
| Fall Time | tf |  | 0.2 |  |  | See Note 6 |
| Cable Capacitance | Cco |  | 12 |  | $\mathrm{pF} /$ metres | Output Lead to Ground |

## NOTES:

1. The structural parts of the HEDS-5000 have been tested to 20 g and up to 500 Hz . For use outside this range, operation may be limited at low frequencies (high displacement) by cable fatigue and at high frequencies by code wheel resonances. Resonant frequency depends on code wheel material and number of counts per revolution. For temperatures below $-20^{\circ} \mathrm{C}$ the ribbon cable becomes brittle and sensitive to displacements. Maximum operating and storage temperature includes the surface area of the encoder mounting. Consult factory for further information. See Application Note 1011.
2. In a properly assembled lot $99 \%$ of the units, when run at $25^{\circ} \mathrm{C}$ and 8 KHz , should exhibit a pulse width error less than 35 electrical degrees, and a state width error less than 45 electrical degrees. To calculate errors at other speeds and temperatures add the values specified in Figures 1 or 2 to the typical values specified under encoding characteristics or to the maximum $99 \%$ values specified in this note.
3. In a properly assembled lot, $99 \%$ of the units when run at $25^{\circ} \mathrm{C}$ and 8 KHz should exhibit an index pulse width greater than 260 electrical degrees and less than 460 electrical degrees. To calculate index pulse widths at other speeds and temperatures add the values specified in Figures 3 or 4 to the typical $360^{\circ}$ pulse width or to the maximum $99 \%$ values specified in this note.
4. After adjusting index phase at assembly, the index phase error specification ( $\Delta \Phi_{I}$ ) indicates the expected shift in index pulse position with respect to channels $A$ and $B$ over the range of recommended operating conditions and up to 50 KHz .
5. When the index pulse is centered on the low-low states of channels $A$ and $B$ as shown on page 2, a unique Po can be defined once per revolution within the recommended operating conditions and up to 25 KHz . Figure 6 shows how Po can be derived from A, B, and I outputs. The adjustment range indicates how far from the center of the low-low state that the center of the index pulse may be adjusted.
6. The rise time is primarily a function of the $R C$ time constant of $R_{L}$ and $C_{L}$. A faster rise time can be achieved with either a lower value of $\mathrm{R}_{\mathrm{L}}$ or $\mathrm{C}_{\mathrm{L}}$. Care must be observed not to exceed the recommended value of $\mathrm{l}_{\mathrm{OL}}$ under the worst case conditions.


Figure 1. Typical Change in Pulse Width Error or in State Width Error due to Speed and Temperature


Figure 3. Typical Change in Index Pulse Width Due to Speed and Temperature


Figure 5. Position Error vs. Shaft Eccentricity


Figure 2. Maximum Change in Pulse Width Error or in State Width Error Due to Speed and Temperature


Figure 4. Maximum Change in Index Pulse Width Due to Speed and Temperature

dashed lines represent an optional index summing circuit. STANDARD 74 SERIES COULD ALSO BE USED TO IMPLEMENT THIS CIRCUIT.


Figure 7. Connector Specifications


Figure 9. Code Wheel

Figure 8. HEDS-5000 Series Encoder Kit


MILLIMETRE .X $\pm .5$. $\mathrm{XX} \pm .10$ (INCHES) (.XX $\pm .02 \quad . \mathrm{XXX} \pm .005$ )

Figure 10. Mounting Requirements

## Ordering Information



## Shaft Encoder Kit Assembly see Application Note 1011 tor turther discussion.

The following assembly procedure represents a simple and reliable method for prototype encoder assembly. High volume assembly may suggest modifications to this procedure using custom designed tooling. In certain high volume applications encoder assembly can be accomplished in less than 30 seconds. Consult factory for further details. Note: The code wheel to phase plate gap should be set between 0.015 in . and 0.045 in .

WARNING: THE ADHESIVES USED MAY BE HARMFUL. CONSULT THE MANUFACTURER'S RECOMMENDATIONS.

## READ THE INSTRUCTIONS TO THE END BEFORE STARTING ASSEMBLY.

### 1.0 SUGGESTED MATERIALS

1.1 Encoder Parts

Encoder Body
Emitter End Plate
Code Wheel
1.2 Assembly Materials

RTV - General Electric 162

- Dow Corning 3145

Epoxy-Hysol 1C
Acetone
Mounting Screws (3)
RTV and Epoxy Applicators
1.3 Suggested Assembly Tools
a) Holding Screwdriver.
b) Torque Limiting Screwdriver, $0.36 \mathrm{~cm} \mathrm{~kg} \mathrm{(5.0} \mathrm{in}. \mathrm{oz).}$.
c) Depth Micrometer or HEDS-8922 Gap Setter.
d) Oscilloscope or Phase Meter (Described in AN 1011). Either may be used for two channel phase adjustment. An oscilloscope is required for index pulse phase adjustment.

### 1.4 Suggested Circuits

a) Suggested circuit for index adjustment (HEDS-5010).



OUTPUT TO OSCILLOSCOPE
For optimal index phase, adjust encoder position to equalize $T_{1}$ and $T_{2}$ pulse widths.
b) P.hase Meter Circuit

Recommended for volume assembly. Please see Application Note 1011 for details.

### 2.0 SURFACE PREPARATION



THE ELAPSED TIME BETWEEN THIS STEP AND THE COMPLETION OF STEP 8 SHOULD NOT EXCEED $1 / 2$ HOUR.
2.1 Clean and degrease with acetone the mounting surface and shaft making sure to keep the acetone away from the motor bearings.
2.2 Load the syringe with RTV.
2.3 Apply RTV into screw threads on mounting surface. Apply more RTV on the surface by forming a daisy ring pattern connecting the screw holes as shown above.

CAUTION: KEEP RTV AWAY FROM THE SHAFT BEARING.

### 3.0 ENCODER BODY ATTACHMENT


3.1 Place the encoder body on the mounting surface and slowly rotate the body to spread the adhesive. Align the mounting screw holes with the holes in the body base.
3.2 Place the screws in the holding screwdriver and thread them into the mounting holes. Tighten to approximately 0.36 cm kg ( 5.0 in . oz.) using a torque limiting screwdriver if available (See notes $a$ and $b$ below). Remove centering cone if used.
Notes:
a) At this torque value, the encoder body should slide on the mounting surface only with considerable thumb pressure.
b) The torque limiting screwdriver should be periodically calibrated for proper torque.

### 4.0 EPOXY APPLICATION



CAUTION: HANDLE THE CODE WHEEL WITH CARE.
4.1 Collect a small dab of epoxy on an applicator.
4.2 Spread the epoxy inside the lower part of the hub bore.
4.3 Holding the code wheel by its hub, slide it down the shaft just enough to sit it squarely. About $3 \mathrm{~mm}\left(1 / 8^{\prime \prime}\right)$.

### 5.0 CODE WHEEL POSITIONING


5.1 Take up any loose play by lightly pulling down on the shaft's load end.
5.2 Using the gap setter or a depth micrometer, push the code wheel hub down to a depth of 1.65 mm (. 065 in .) below the rim of the encoder body. The registration holes in the gap setter will align with the snaps protruding from the encoder body near the cable.
5.3 Check that the gap setter or micrometer is seated squarely on the body rim and maintains contact with the code wheel hub.
5.4 No epoxy should extrude through the shaft hole.

DO NOT TOUCH THE CODE WHEEL AFTER ASSEMBLY.

### 6.0 EMITTER END PLATE


6.1 Visually check that the wire pins in the encoder body are straight and straighten if necessary.
6.2 Hold the end plate parallel to the encoder body rim. Align the guiding pin on the end plate with the hole in the encoder body and press the end plate straight down until it is locked into place.
6.3 Visually check to see if the end plate is properly seated.

### 7.0 PHASE ADJUSTMENT


7.1 The following procedure should be followed when phase adjusting channels A and B .
7.2 Connect the encoder cable.
7.3 Run the motor. Phase corresponds to motor direction. See output waveforms and definitions. Using either an oscilloscope or a phase meter, adjust the encoder for minimum phase error by sliding the encoder forward or backward on the mounting surface as shown above. See Application Note 1011 for the phase meter circuit.
7.4 No stress should be applied to the encoder package until the RTV cures. Cure time is 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hrs. at room temperature.

Note: After mounting, the encoder should be free from mechanical forces that could cause a shift in the encoder's position relative to its mounting surface.

## CODE WHEEL REMOVAL

In the event that the code wheel has to be removed after the epoxy has set, use the code wheel extractor as follows:
1 Remove the emitter end plate by prying a screwdriver in the slots provided around the encoder body rim. Avoid bending the wire leads.
2 Turn the screw on the extractor counter-clockwise until the screw tip is no longer visible.
3 Slide the extractor's horseshoe shaped lip all the way into the groove on the code wheel's hub.
4 While holding the extractor body stationary, turn the thumb screw clockwise until the screw tip pushes against the shaft.
5 Applying more turning pressure will pull the hub upwards breaking the epoxy bond.
6 Clean the shaft before reassembly.

### 8.0 INDEX PULSE ADJUSTMENT (HEDS-5010)


8.1 Some applications require that the index pulse be aligned with the main data channels. The index pulse position and the phase must be adjusted simultaneously. This procedure sets index phase to zero.
8.2 Connect the encoder cable.
8.3 Run the motor. Adjust for minimum phase error using an oscilloscope or phase meter (see 7.3).
8.4 Using an oscilloscope and the circuit shown in 1.4, set the trigger for the falling edge of the I output. Adjust the index pulse so that $T_{1}$ and $T_{2}$ are equal in width. The physical adjustment is a side to side motion as shown by the arrow.
8.5 Recheck the phase adjustment.
8.6 Repeat steps 8.3-8.5 until both phase and index pulse position are as desired.
8.7 No stress should be applied to the encoder package until the RTV has cured. Cure time: 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hrs. at room temperature.

## SPECIALITY TOOLS - Available from Hewlett-Packard

a) HEDS-8920 Hub Puller

This tool may be used to remove code wheels from shafts after the epoxy has cured.

b) HEDS-8922 Gap Setter

This tool may be used in place of a depth micrometer as an aid in large volume assembly.
$1.65 \pm .03 \mathrm{~mm}$
$(.065 \pm .001 \mathrm{in}$.

c) HEDS-892X Centering Cones For easier volume assembly this tool in its appropriate shaft size may be used in step 3.0 to initially center the encoder body with respect to the shaft and aid in locating the mounting screw holes. Depending on the resolution and accuracy required this centering may eliminate the need for phase adjustment steps 7 and 8.

| Part Number | Shaft Size |
| :---: | :---: |
| HEDS-8923 | 2 mm |
| HEDS-8924 | 3 mm |
| HEDS-8925 | 1/8 in. |
| HEDS-8926 | 5/32 in. |
| HEDS-8927 | 3/16 in. |
| HEDS-8928 | 1/4 in. |
| HEDS-8929 | 4 mm |
| HEDS-8931 | 5 mm |

d) HEDS-8930 HEDS-5000 Tool Kit

1 Holding Screwdriver

1. Torque Limiting Screwdriver, $0.36 \mathrm{~cm} \mathrm{~kg}(5.0 \mathrm{in}$. oz.)

1 HEDS-8920 Hub Puller 1 HEDS-8922 Gap Setter 1 Carrying Case

# 56 mm DIAMETER TWO AND THREE CHANNEL INCREMENTAL OPTICAL ENCODER KIT 

## Features

- 192-1024 CYCLES/REVOLUTION AVAILABLE
- MANY RESOLUTIONS STANDARD
- QUICK ASSEMBLY
- 0.25 mm (. 010 INCHES) END PLAY ALLOWANCE
- TTL COMPATIBLE DIGITAL OUTPUT
- SINGLE 5V SUPPLY
- WIDE TEMPERATURE RANGE
- SOLID STATE RELIABILITY
- INDEX PULSE AVAILABLE


## Description

The HEDS-6000 series is a high resolution incremental optical encoder kit emphasizing ease of assembly and reliability. The 56 mm diameter package consists of 3 parts: the encoder body, a metal code wheel, and emitter end plate. An LED source and lens transmit collimated light from the emitter module through a precision metal code wheel and phase plate into a bifurcated detector lens.
The light is focused onto pairs of closely spaced integrated detectors which output two square wave signals in quadrature and an optional index pulse. Collimated light and a custom photodetector configuration increase long life reliability by reducing sensitivity to shaft end play, shaft eccentricity and LED degradation. The outputs and the 5 V supply input of the HEDS-6000 are accessed through a 10 pin connector mounted on a .6 metre ribbon cable.


A standard selection of shaft sizes and resolutions between 192 and 1024 cycles per revolution are available. Consult the factory for custom resolutions. The part number for the standard 2 channel bit is HEDS-6000, while that for the 3 channel device, with index pulse, is HEDS-6010. See Ordering Information for more details. For additional design information, see Application Note 1011.

## Applications

Printers, Plotters, Tape Drives, Positioning Tables, Automatic Handlers, Robots, and any other servo loop where a small high performance encoder is required.

## Outline Drawing



## Block Diagram and Output Waveforms



## Theory of Operation

The incremental shaft encoder operates by translating the rotation of a shaft into interruptions of a light beam which are then output as electrical pulses.
In the HEDS-6XXX the light source is a Light Emitting Diode collimated by a molded lens into a parallel beam of light. The Emitter End Plate contains two or three similar light sources, one for each channel.
The standard Code Wheel is a metal disc which has N equally spaced slits around its circumference. An aperture with a matching pattern is positioned on the stationary phase plate. The light beam is transmitted only when the slits in the code wheel and the aperture line up; therefore, during a complete shaft revolution, there will be N alternating light and dark periods. A molded lens beneath the phase plate aperture collects the modulated light into a silicon detector.
The Encoder Body contains the phase plate and the detection elements for two or three channels. Each channel consists of an integrated circuit with two photodiodes and amplifiers, a comparator, and output circuitry.
The apertures for the two photodiodes are positioned so that a light period on one detector corresponds to a dark period on the other. The photodiode signals are amplified and fed to the comparator whose output changes state when the difference of the two photo currents changes sign ("PushPull"). The second channel has a similar configuration but the location of its aperture pair provides an output which is in quadrature to the first channel (phase difference of $90^{\circ}$ ). Direction of rotation is determined by observing which of the channels is the leading waveform. The outputs are TTL logic level signals.
The optional index channel is similar in optical and electrical configuration to the A,B channels previously described. An index pulse of typically 1 cycle width is generated for each rotation of the code wheel. Using the recommended logic. interface, a unique logic state ( Po ) can be identified if such accuracy is required.
The three part kit is assembled by attaching the Encoder Body to the mounting surface using two screws. The Code Wheel is set to the correct gap and secured to the shaft. Snapping the cover (Emitter End Plate) on the body completes the assembly. The only adjustment necessary is the encoder centering relative to the shaft, to optimize quadrature and optional index pulse output.

## Index Pulse Considerations

The motion sensing application and encoder interface circuitry will determine the need for relating the index pulse to the main data tracks. A unique shaft position is identified by using the index pulse output only or by logically relating the index pulse to the $A$ and $B$ data channels. The HEDS-6010 index pulse can be uniquely related with the $A$ and $B$ data tracks in a variety of ways providing maximum flexibility. Statewidth, pulse width or edge transitions can be used. The index pulse position, with respect to the main data channels, is easily adjusted during the assembly process and is illustrated in the assembly procedures.

## Definitions

## Electrical degrees:

1 shaft rotation $=360$ angular degrees

$$
=\mathrm{N} \text { electrical cycles }
$$

1 cycle $\quad=360$ electrical degrees
Position Error:
The angular difference between the actual shaft position and its position as calculated by counting the encoder's cycles.

## Cycle Error:

An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.
Phase:
The angle between the center of Pulse $A$ and the center of Pulse B.
Index Phase:
For counter clockwise rotation as illustrated above, the Index Phase is defined as:

$$
\Phi_{\mathrm{I}}=\frac{\left(\phi_{1}-\phi_{2}\right)}{2}
$$

$\phi_{1}$ is the angle, in electrical degrees, between the falling edge of 1 and falling edge of B. $\phi_{2}$ is the angle, in electrical degrees, between the rising edge of $A$ and the rising edge of $I$.
Index Phase Error:
The Index Phase Error $\left(\Delta \Phi_{1}\right)$ describes the change in the Index Pulse position after assembly with respect to the A and $B$ channels over the recommended operating conditions.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | TS | -55 | 100 | ${ }^{\circ}$ Celsius | 4 |
| Operating Temperature | $\mathrm{T}_{\text {A }}$ | - -55 | 100 | ${ }^{\circ}$ Celsius | See Note 1 |
| Vibration |  |  | 20 | g | See Note 1 |
| Shaft Axial Play |  | $1$ | $.58(23)$ | $\begin{gathered} \mathrm{mm}(\text { inch } / 1000) \\ T \mathrm{IR} \end{gathered}$ |  |
| Shaft Eccentricity Plus Radial Play |  |  | $25(10)$ | $\begin{gathered} \mathrm{mm}(\text { inch } / 4000) \\ \mathrm{TIR} \end{gathered}$ | Movement should be limited even under shock conditions. |
| Supply Voltage. | VCC | -0.5 | 4 | Volts |  |
| Output Voltage | Vo | -0.5 | $V_{\text {cc }}$ | Volts |  |
| Output Current | 10 | -1 | 5 | - mA |  |
| Velocity |  |  | 12,000 | R.P.M. |  |
| Acceleration | $\alpha$ | $\square$ | 250,000 | Rad. Sec ${ }^{-2}$ | , |

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :--- |
| Temperature | T | -20 | 85 | ${ }^{\circ}$ Celsius | Non-condensing atmos. |
| Supply Voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 5.5 | Volt | Ripple $<100 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ |
| Code Wheel Gap |  |  | $1.1(45)$ | mm (inch/1000) | Nominal gap $=$ <br> 0.76 mm (.030 in.) when shaft <br> is at minimum gap position. |
| Shaft Perpendicularity <br> Plus Axial Play |  |  | $0.25(10)$ | mm (inch/1000) |  |
| Shaft Eccentricity Plus <br> Radial Play |  |  | $0.04(1.5)$ | mm (inch/1000) <br> TIR | 10 mm ( 0.4 inch) from <br> mounting surface. |
| Load Capacitance | CL |  | 100 | pF |  |

## Encoding Characteristics

The specifications below apply within the recommended operating conditions and reflect performance at 1000 cycles per revolution ( $N=1000$ ). Some encoding characteristics improve with decreasing cycles ( N ). Consult Application Note 1011 or factory for additional details.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Notes (See Definitions) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Position Error | $\Delta \Theta$ |  | 7 | 18 | Minutes of Arc | 1 Cycle $=21.6$ Minutes See Figure 5. |
| Cycle Error | $\Delta \mathrm{C}$ |  | 3 | 5.5 | Electrical deg. |  |
| Max. Count Frequency | $f_{\text {MAX }}$ | 130,000 | 200,000 |  | Hertz | $f=$ Velocity (RPM $\times \mathrm{N} / 60$ |
| Pulse Width Error | $\Delta P$ |  | 12 |  | Electrical deg. | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ <br> See Note 2 |
| Phase Sensitivity to Eccentricity |  |  | $\begin{aligned} & 227 \\ & 5.8 \end{aligned}$ |  | Elec. deg. $/ \mathrm{mm}$ <br> Elec. deg./mil | $\mathrm{mil}=$ inch $/ 1000$ |
| Phase Sensitivity to Axial Play |  |  | $\begin{aligned} & 20 \\ & 1.5 \end{aligned}$ |  | Elec. deg. $/ \mathrm{mm}$ (Elec. deg./mil) | $\mathrm{mil}=$ inch/1000 |
| Logic State Width Error | 15 |  | 25 |  | Electrical deg. | $T=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ <br> See Note 2 |
| Index Pulse Width | $\mathrm{P}_{1}$ |  | 360 |  | Electrical deg. | $T=25^{\circ} \mathrm{C}, f=8 \mathrm{KHz}$ <br> See Note 3 |
| Index Phase Error | $\Delta \phi_{1}$ |  | 0 | 17 | Electrical deg. | See Notes 4, 5 |
| Index Pulse Adjustment Range |  |  | $\pm 165$ |  | Electrical deg. |  |

Mechanical Characteristics

| Parameter | Symbol | Dimension | Tolerance | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Outline Dimensions |  | See Mech. Dwg. |  |  |  |
| Code Wheel Available to Fit the Following Standard Shaft Diameters |  | 4 6 8 | $\begin{aligned} & +.000 \\ & -.015 \end{aligned}$ | mm |  |
|  |  | $3 / 16$ $3 / 8$ <br> $1 / 4$ $1 / 2$ <br> $5 / 16$ $5 / 8$ | $\begin{array}{r} +.0000 \\ -.0007 \end{array}$ | inches |  |
| Moment of Inertia | $J$ | $7.7\left(110 \times 10^{-6}\right)$ |  | $\mathrm{gcm}^{2}\left(\mathrm{oz}-\mathrm{in}-\mathrm{s}^{2}\right)$ |  |
| Required Shaft Length |  | 15.9 (0.625) | $\pm 0.6( \pm .024)$ | mm (inches) | See Figure 10 , Shaft at minimum length position. |
| Bolt Circle |  | 46.0 (1.811) | $\pm 0.13( \pm .005)$ | mm (tnches) | See Figure 10. |
| Mounting Screw Size |  | $\begin{gathered} 2.5 \times 0.45 \times 5 \\ \text { OR } \\ \# 2-56 \times 3 / 16 \\ \text { Pan Head } \end{gathered}$ |  | mm <br> inches |  |

Electrical Characteristics When operating within the recommended operating range.
Electrical Characteristics over Recommended Operating Range (Typical at $25^{\circ} \mathrm{C}$ ).

| Parameter | Symbol | Min. | Typ. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current | lce |  | 21 | 40 | mA | HEDS-6000 (2 Channel) |
|  |  |  | 36 | 60 |  | HEDS-6010 (3 Channel) |
| High Level Output Voltage | VOH | 2.4 |  |  | V | $\mathrm{IOH}^{=}=-40 \mu \mathrm{~A}$ Max . |
| Low Level Output Voltage | VOL |  |  | 0.4 | V | $10 \mathrm{~L}=3.2 \mathrm{~mA}$ |
| Rise Time | tr |  | 0.5 |  | $\mu \mathrm{s}$ | $C_{L}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=11 \mathrm{~K}$ Pull-up |
| Fall Time | $t_{4}$ |  | 0.2 |  |  | See Note 6 |
| Cable Capacitance | Cco |  | 12 |  | pF/meter | Output Lead to Ground |

## NOTES:

1. The structural parts of the HEDS-6000 have been successfully tested to 20 g . In a high vibration environment use is limited at low frequencies (high displacement) by cable fatigue and at high frequencies by code wheel resonances. Resonant frequency depends on code wheel material and number of counts per revolution. For temperatures below $-20^{\circ} \mathrm{C}$ the ribbon cable becomes brittle and sensitive to displacements. Maximum operating and storage temperature includes the surface area of the encoder mounting. Consult factory for further information. See Application Note 1011.
2. In a properly assembled lot $99 \%$ of the units, when run at $25^{\circ} \mathrm{C}$ and 8 KHz , should exhibit a pulse width error less than 32 electrical degrees, and a state width error less than 40 electrical degrees. To calculate errors at other speeds and temperatures add the values specified in Figures 1 or 2 to the typical values specified under encoding characteristics or to the maximum $99 \%$ values specified in this note.
3. In a properly assembled lot, $99 \%$ of the units when run at $25^{\circ} \mathrm{C}$ and 8 KHz should exhibit an index pulse width greater than 260 electrical degrees and less than 460 electrical degrees. To calculate index pulse widths at other speeds and temperatures add the values specified in Figures 3 or 4 to the typical $360^{\circ}$ pulse width or to the maximum $99 \%$ values specified in this note.
4. Index phase is adjusted at assembly. Index phase error is the maximum change in index phase expected over the full temperature range and up to 50 KHz , after assembly adjustment of the index pulse position has been made.
5. When the index pulse is centered on the low-low states of channels $A$ and $B$ as shown on page 2 , a unique Po can be defined once per revolution within the recommended operating conditions and up to 25 KHz . Figure 6 shows how Po can be derived from A , B , and I outputs. The adjustment range indicates how far from the center of the low-low state that the center of the index pulse may be adjusted.
6. The rise time is primarily a function of the RC time constant of $R_{L}$ and $C_{L}$. A faster rise time can be achieved with either a lower value of RL or CL. Care must be observed not to exceed the recommended value of lol under worst case conditions.

ELECTRICAL
DEGREES


Figure 1. Typical Change in Pulse Width Error or in State Width Error due to Speed and Temperature

ELECTRICAL
degrees


Figure 3. Typical Change in Index Pulse Width Due to Speed and Temperature


ELECTRICAL
DEGREES


Figure 2. Maximum Change in Pulse Width Error or in State Width Error Due to Speed and Temperature


Figure 4. Maximum Change in Index Pulse Width Due to Speed and Temperature

dashed lines represent an optional index summing circuit. STANDARD 74 SERIES COULD ALSO BE USED TO IMPLEMENT THIS CIRCUIT.

Figure 5. Position Error vs. Shaft Eccentricity


Figure 7. Connector Specifications

Figure 9. Code Wheel



Figure 8. HEDS-6000 Series Encoder Kit


MRE $X \pm 0.5 \quad X X \pm 0.10$

Figure 10. Mounting Requirements

## Ordering Information

 ON SPECIAL REQUEST

| SHAFT DIAMETER |
| :--- |
| $05-3 / 16 \mathrm{IN}$. |
| $06-1 / 4 \mathrm{NN}$. |
| $07-5 / 16 \mathrm{NN}$. |
| $08-3 / 8 \mathrm{IN}$. |
| $09-1 / 2 \mathrm{IN}$. |
| $10-5 / 8 \mathrm{IN}$. |
| $11-4 \mathrm{~mm}$ |
| $12-6 \mathrm{~mm}$ |
| $13-8 \mathrm{~mm}$ |
| $00-$ USE WHEN ORDERING |
| ENCODER BODIES |


*NO OPTION IS SPECIFIED WHEN ORDERING EMITTER END PLATES ONLY.

## Shaft Encoder Kit Assembly see Appication Note 1011 tor turther discussion.

The following assembly procedure represents a simple and reliable method for prototype encoder assembly. High volume assembly may suggest modifications to this procedure using custom designed tooling. In certain high volume applications encoder assembly can be accomplished in less than 30 seconds. Consult factory for further details. Note - the code wheel to phase plate gap should be set between 0.015 in . and 0.045 in .

WARNING: THE ADHESIVES USED MAY BE HARMFUL. CONSULT THE MANUFACTURER'S RECOMMENDATIONS.

## READ THE INSTRUCTIONS TO THE END BEFORE STARTING ASSEMBLY. 1.0 SUGGESTED MATERIALS <br> 3.0 ENCODER BODY ATTACHMENT

1.1 Encoder Parts

Encoder Body
Emitter End Plate
Code Wheel
1.2 Assembly Materials

RTV-General Electric 162
-Dow Corning 3145
Acetone
Mounting Screws (2)

### 1.3 Assembly Tools

a) Torque limiting screwdriver, 0.5 cm kg . 7.0 in .0 oz .).
b) Straight edge. Straight within $0.1 \mathrm{~mm}(0.004 \mathrm{in}$.)
c) Oscilloscope. (Phase meter may be optionally used for two channel calibration).
d) Hub puller. Grip-O-Matic-OTC \#1000 2-jaw or equivalent. Optional tool for removing code wheels.
e) Syringe applicator for RTV.
f) Torque limiting Allen wrench. 0.5 cm kg ( 7.0 in . oz.) 0.035 in . hex.
1.4 Suggested Circuits
a) Suggested circuit for index adjustment (HEDS-6010).


OUTPUT TO OSCILLOSCOPE
For optimal index phase adjust encoder position to equalize $T_{1}$ and $T_{2}$ pulse widths.
b) Phase Meter Circuit

Recommended for volume assembly. Please see Application Note 1011 for details.

### 2.0 SURFACE PREPARATION



THE ELAPSED TIME BETWEEN THIS STEP AND THE COMPLETION OFSTEP 8 SHOULD NOTEXCEED $1 / 2$ HOUR.
2.1 Clean and degrease with acetone the mounting surface and shaft making sure to keep the acetone away from the motor bearings.
2.2 Load the syringe with RTV.
2.3 Apply RTV into screw threads on mounting surface. Apply more RTV on the surface by forming a daisy ring pattern connecting the screw holes as shown above.

CAUTION: KEEP RTV AWAY FROM THE SHAFT BEARING.

3.1 Place the encoder body on the mounting surface and slowly rotate the body to spread the adhesive. Align the mounting screw holes with the holes in the body base.
3.2 Place the two mounting screws into the holding bosses in the body base, as shown.
3.3 Thread the screws into the mounting holes and tighten both to 0.5 cm kg ( 7.0 in . Oz.) using the torque limiting screwdriver. (See notes $A$ and $B$ ).
3.4 It is not necessary to center the encoder body at this time.

## Notes:

a) At this torque value, the encoder body should slide on the mounting surface only with considerable thumb pressure.
b) The torque limiting screwdriver should be periodically calibrated for proper torque.

### 4.0 APPLICATION OF RTV TO THE HUB


4.1 Make sure that the hex screw on the hub does not enter into the hub bore.
4.2 Apply a small amount of RTV onto the inner surface of the hub bore.
4.3 Spread the RTV evenly inside the entire hub bore.
4.4 Holding the code wheel by its hub, slide it down onto the shaft until the shaft extends at least halfway into the bore.

### 5.0 CODE WHEEL POSITIONING


5.1 Position the Allen torque wrench into the hex set screw in the hub, as shown.
5.2 Pull the shaft end down to bottom out axial shaft play. Using the straight edge, push the top of the hub even with the top of the encoder body. The Allen wrench should be used during this movement to apply a slight upward force to the hub, insuring continuous contact between the straight edge and the hub.
5.3 Tighten the hex set screw to approximately 0.5 cm . kg. ( 7.0 in . $o z$.) and remove the straight edge.
5.4 The code wheel gap may now be visually inspected to check against gross errors. A nominal gap of 0.8 mm ( 0.030 in .) should be maintained.

### 6.0 EMITTER END PLATE


6.1 Visually check that the wire pins in the encoder body are straight and straighten if necessary.
6.2 Align the emitter end plate so that the two flanges straddle the track of the encoder body where the wire pins are located. Press the end plate until it snaps into place.
6.3 Visually check to see if the end plate is properly seated.

### 7.0 PHASE ADJUSTMENT


7.1 The following procedure should be followed when phase adjusting channels A and B .
7.2 Connect the encoder cable.
7.3 Run the motor. Phase corresponds to motor direction. See output waveforms and definitions. Using either an oscilloscope or a phase meter, adjust the encoder for minimum phase error by sliding the encoder forward or backward on the mounting surface as shown above. See Application Note 1011 for the phase meter circuit.
7.4 No stress should be applied to the encoder package until the RTV cures. Curve time is 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hours at room temperature.

Note: After mounting, the encoder should be free from mechanical forces that could cause a shift in the encoder's position relative to its mounting surface.

### 8.0 INDEX PULSE ADJUSTMENT (HEDS-6010)


8.1 Some applications require that the index pulse be aligned with the main data channels. The index pulse position and the phase must be adjusted simultaneously. This procedure sets index phase to zero.
8.2 Connect the encoder cable.
8.3 Run the motor. Adjust for minimum phase error using an oscilloscope or phase meter. (See 7.3).
8.4 Using an oscilloscope and the circuit shown in 1.4, set the trigger for the falling edge of the $P_{1}$ output. Adjust the index pulse so that $T_{1}$ and $T_{2}$ are equal in width. The physical adjustment is a side to side motion as shown by the arrow.
8.5 Recheck the phase adjustment.
8.6 Repeat steps 8.3-8.5 until both phase and index pulse position are as desired.
8.7 No stress should be applied to the encoder package until the RTV has cured. Cure time: 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hours at room temperature.

## Features

- DESIGNED FOR MANUAL OPERATION
- SMALL SIZE
- RELIABLE OPTICAL TECHNOLOGY
- 256 PULSES PER REVOLUTION STANDARD Other Resolutions Available
- TTL COMPATIBLE DIGITAL OUTPUT
- SINGLE 5 V SUPPLY
- $-20^{\circ}$ TO $+85^{\circ} \mathrm{C}$ OPERATING RANGE
- 0.1 OZ.-IN. NOMINAL SHAFT TORQUE



## Description

The HEDS-7500 series is a family of digital potentiometers designed for applications where a hand operated panel mounted encoder is required. The unit outputs two digital waveforms which are 90 degrees out of phase to provide resolution and direction information. 256 pulses per revolution is available as a standard resolution. The digital outputs and the 5 V supply input of the HEDS-7500 are accessed through color coded wire or through a 10 pin connector mounted on a 6 inch ribbon cable. Each digital output is capable of driving two standard TTL loads.

The HEDS-7500 emphasizes reliability by using solid state LEDs and photodiode detectors. A non-contacting slotted
code wheel rotates between the LED and detector to provide digital pulses without wipers or noise. The HEDS-7500 is configured to provide standard potentiometer type panel mounting. Additional design information is available in Application Note 1025.

## Applications

The HEDS-7500 series digital potentiometer may be used in applications where a manually operated knob is required to convert angular position into digital information.

## Outline Drawing



## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | Ts | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature | $\mathrm{T}_{\text {A }}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Vibration |  |  | 20 | g | $20 \mathrm{~Hz}-2 \mathrm{kHz}$ |
| Shock |  |  | 30 | g | 11 msec |
| Supply Voltage | Vcc | -0.5 | 7 | V |  |
| Output Voltage | Vo | -0.5 | VCC | V |  |
| Output Current per Channel | 10 | -1 | 5 | mA |  |
| Shaft Load- Radial |  |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | lbs. lbs. |  |

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :--- |
| Temperature | T | -20 | 85 | ${ }^{\circ} \mathrm{C}$ | Non-condensing atmosphere |
| Supply Voltage | V cc | 4.5 | 5.5 | V | Ripple $<100 \mathrm{mV} \mathrm{V}_{\text {p-p }}$ |
| Rotation Speed |  |  | 300 | RPM |  |

Electrical Characteristics when operating within the recommended operating range.
Electrical Characteristics Over Recommended Operating Range Typical at $25^{\circ} \mathrm{C}$.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current | ICC |  | 21 | 40 | mA |  |
| High Level Output Voltage | VOH | 2.4 |  |  | V | $\mathrm{IOH}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ Max. |
| Low Level Output Voltage | VOL |  |  | 0.4 | V | $\mathrm{IOL}^{2}=3.2 \mathrm{~mA}$ |

CAUTION: Device not intended for applications where coupling to a motor is required.


CH B LEADS CH A FOR COUNTERCLOCKWISE ROTATION. CH A LEADS CH B FOR CLOCKWISE ROTATION.

## RECOMMENDED INTERFACE CIRCUIT



GROUND GROUND
STANDARD 74 SERIES COULD ALSO BE USED TO IMPLEMENT THIS CIRCUIT.

## TERMINATION

Ribbon Cable Termination
Color Coded Wire Termination
 CONNECTOR WILL PERMANENTLY
DAMAGE THE DETECTOR IC.
MATING CONNECTOR
BERG 65-692-001 OR EQUIVALENT

## Ordering Information

| Part Number | Description |  |
| :--- | :---: | :--- |
|  | PPR | Termination |
| HEDS-7500 | 256 | Wire |
| HEDS-7501 | 256 | Cable |

## Features

- DC, DC BRUSHLESS AND STEPPER MOTOR CONTROL
- POSITION CONTROL
- VELOCITY CONTROL
- PROGRAMMABLE VELOCITY PROFILING
- PROGRAMMABLE DIGITAL FILTER
- PROGRAMMABLE COMMUTATOR
- PROGRAMMABLE PHASE OVERLAP
- PROGRAMMABLE PHASE ADVANCE
- GENERAL 8 BIT PARALLEL I/O PORT
- 8 BIT PARALLEL MOTOR COMMAND PORT
- PWM MOTOR COMMAND PORT
- QUADRATURE DECODER FOR ENCODER SIGNALS
- 24 BIT POSITION COUNTER
- SINGLE 5V POWER SUPPLY
- TTL COMPATIBLE
- 1 OR 2 MHz CLOCK OPERATION


## General Description

The HCTL-1000 is a high performance, general purpose motion control IC fabricated in Hewlett-Packard NMOS technology. It performs all the time-intensive tasks of digital motion control, thereby freeing the host processor for other tasks. The simple programmability of all control parameters provides the user with maximum flexibility and quick design

## Package Dimensions



40-PIN PLASTIC DUAL-IN-LINE PACKAGE


Figure 1. System Block Diagram
of control systems with a minimum number of components. All that is needed for a complete servo system is a host processor to specify commands, an amplifier and motor with an incremental encoder. No analog compensation or velocity feedback is necessary (see Figure 1).

## Table of Contents

PAGES
general description ..... 1
THEORY OF OPERATION ..... 2
ABSOLUTE MAXIMUM RATINGS ..... 3
DC CHARACTERISTICS ..... 3
AC CHARACTERISTICS ..... 4
TIMING DIAGRAMS ..... 5
FUNCTIONAL PIN DESCRIPTION ..... 9
HOW TO OPERATE THE HCTL-1000 ..... 10

- USER ACCESSIBLE REGISTERS ..... 10
- OPERATING MODES ..... 12
- COMMUTATOR ..... 15
HOW TO INTERFACE TO THE HCTL-1000 ..... 17
- I/O INTERFACE ..... 17
- ENCODER INTERFACE ..... 18
- AMPLIFIER INTERFACE ..... 18

[^0]

Figure 2. Internal Block Diagram

## Introduction

The purpose of this section is to describe the organization of this data sheet. The front page includes the key features of the HCTL-1000, a general description of the part, the mechanical drawing and pin-out, and a Table of Contents. Following this section is the Theory of Operation, which gives the user a brief overview of how the HCTL-1000 operates by describing the internal block diagram shown in Figure 2. The following five sections give the specifications of the HCTL-1000, including Absolute Maximum Ratings, DC Characteristics, AC Characteristics, Timing Diagrams, and Functional Pin Descriptions. The final two sections include the detailed information on how to operate and interface to the HCTL-1000. The How to Operate section discusses the function and address of each software register, and describes how to use the four position and velocity control modes and the electronic commutator. The How to Interface section describes how to interface the HCTL-1000 to a microprocessor, an encoder, and an amplfier.

## Theory of Operation

The HCTL-1000 is a general purpose motor controller which provides position and velocity control for dc, dc brushless and stepper motors. The internal block diagram of the HCTL-1000 is shown in Figure 2. The HCTL-1000 receives its input commands from a host processor and position feedback from an incremental encoder with quadrature output. An 8-bit bidirectional multiplexed address/data bus interfaces the HCTL-1000 to the host processor. The encoder feedback is decoded into quadrature counts and a 24-bit counter keeps track of position. The HCTL-1000 executes any one of four control algorithms selected by the user. The four control modes are:

- Position Control
- Proportional Velocity Control
- Trapezoidal Profile Control for point to point moves
- Integral Velocity Control with continuous velocity profiling using linear acceleration

The resident Position Profile Generator calculates the necessary profiles for Trapezoidal Profile Control and Integral Velocity Contol. The HCTL-1000 compares the desired position (or velocity) to the actual position (or velocity) to compute compensated motor commands using a programmable digital filter $\mathrm{D}(\mathrm{z})$. The motor command is externally available at the Motor Command Port as an 8-bit byte and at the PWM Port as a Pulse Width Modulated (PWM) signal.
The HCTL-1000 has the capability of providing electronic commutation for dc brushless and stepper motors. Using the encoder position information, the motor phases are enabled in the correct sequence. The commutator is fully programmable to encompass most motor encoder combina-
tions. In addition, phase overlap and phase advance can be programmed to improve torque ripple and high speed performance. The HCTL-1000 contains a number of flags including two externally available flags, Profile and Initialization, which allow the user to see or check the status of the controller. It also has two emergency flags, $\overline{\text { Limit }}$ and $\overline{\text { Stop }}$, which allow operation of the HCTL-1000 to be interrupted under emergency conditions.
The HCTL-1000 controller is a digitally sampled data system. While information from the host processor is accepted asynchronously with respect to the control functions, the motor command is computed on a discrete sample time basis. The sample timer is programmable.

## Absolute Maximum Ratings

| Operating Temperature | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Storage Temperature | ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Supply Voltage | -0.3V to 7 V |
| Input Voltage | -0.3 V to 7 V |
| Maximum Power Dissipation | 0.95 W |
| Maximum Clock Frequency | 2 MHz |

## D.C. Characteristics $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{Vs}}=0 \mathrm{~V}$

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Power Supply | $\mathrm{V}_{\mathrm{CC}}$ | 4.75 | 5.00 | 5.25 | V |  |
| Supply Current | $\mathrm{I}_{\mathrm{CC}}$ |  | 80 | 180 | mA |  |
| Input Leakage Current | $\mathrm{I}_{\mathrm{il}}$ |  |  | 10 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\text {in }}=5.25 \mathrm{~V}$ |
| Tristate Output <br> Leakage Current | $\mathrm{I}_{\mathrm{Ioh}}$ |  |  | $\pm 10$ | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{Out}}=-0.3$ to 5.25 V |
| Input Low Voltage | $\mathrm{V}_{\mathrm{IL}}$ | -0.3 |  | 0.8 | V |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 |  | $\mathrm{~V}_{\mathrm{CC}}$ | V |  |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ | -0.3 |  | 0.4 | V | $\mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA}$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | 2.4 |  | $\mathrm{~V}_{\mathrm{CC}}$ | V | $\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$ |
| Power Dissipation | $\mathrm{P}_{\mathrm{D}}$ |  | 400 | 950 | mW |  |
| Input Capacitance | $\mathrm{C}_{\mathrm{in}}$ |  |  | 20 | pF | $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ <br> unmeasured pins <br> returned to ground |
| Output Capacitance Load | $\mathrm{C}_{\mathrm{OL}}$ |  |  | 100 |  | pF |

## 

| ID\# | Signal | Symbol | Clock Frequency |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2 MHz |  | 1 MHz |  |
|  |  |  | Min. | Max. | Min. | Max. |
| 1 | Clock Period | t CPER | 500 |  | 1000 |  |
| 2 | Pulse Width, Clock High | t CPWH | 230 |  | 300 |  |
| 3 | Pulse Width, Clock Low | t CPWL | 200 |  | 200 |  |
| 4 | Clock Rise and Fall Time | ${ }^{\text {t }}$ CR |  | 50 |  | 50 |
| 5 | Input Pulse Width $\overline{\text { Reset }}$ | $t_{\text {IRST }}$ | 2500 |  | 5000 |  |
| 6 | Input Pulse Width Stop, $\overline{\text { Limit }}$ | $\mathrm{t}_{\text {IP }}$ | 600 |  | 1100 |  |
| 7 | Input Pulse Width Index, Index | $t_{\text {IX }}$ | 1600 |  | 3100 |  |
| 8 | Input Pulse Width $\mathrm{CHA}, \mathrm{CHB}$ | ${ }_{1}{ }_{\text {IAB }}$ | 1600 |  | 3100 |  |
| 9 | Delay CHA to CHB Transition | $t_{A B}$ | 600 |  | 1100 |  |
| 10 | Input Rise/Fall Time CHA, CHB, Index | $t_{\text {IABR }}$ |  | 450 |  | 900 |
| 11 |  | $t_{\text {tR }}$ |  | 50 |  | 50 |
| 12 | Input Pulse Width $\overline{\text { ALE, }} \overline{\mathrm{CS}}$ | $\mathrm{t}_{\text {IPW }}$ | 80 |  | 80 |  |
| 13 | Delay Time, $\overline{A L E}$ Fall to $\overline{C S}$ Fall | ${ }^{t_{A C}}$ | 50 |  | 50 |  |
| 14 | Delay Time, $\overline{\text { ALE }}$ Rise to $\overline{C S}$ Rise | ${ }^{\text {t }}$ CA | 50 |  | 50 |  |
| 15 | Address Set Up Time Before ATEE Rise | $t_{\text {ASR1 }}$ | 20 |  | 20 |  |
| 16 | Address Set Up Time Before $\overline{C S}$ Fall | $t_{\text {ASR }}$ | 20 |  | 20 |  |
| 17 | Write Data Set Up Time Before CS Rise | $t_{\text {d }}{ }_{\text {DSR }}$ | 20 |  | 20 |  |
| 18 | Address/Data Hold Time | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | 20 |  | 20 |  |
| 19 | Set Up Time, R/W Before $\overline{\mathrm{CS}}$ Rise | twos | 20 |  | 20 |  |
| 20 | Hold Time, R//ָ After $\overline{\mathrm{CS}}$ Rise | ${ }^{\text {WWH }}$ | 20 |  | 20 |  |
| 21 | Delay Time, Write Cycle, $\overline{C S}$ Rise to $\overline{\text { ALE }}$ Fall | ${ }^{\text {t CSAL }}$ | 1700 |  | 3400 |  |
| 22 | Delay Time, Read/Write, $\overline{C S}$ Rise to $\overline{C S}$ Fall | ${ }^{\text {t CSSCS }}$ | 1500 |  | 3000 |  |
| 23 | Write Cycle, $\overline{\text { ALE }}$ Fall to $\overline{\text { ALE Fall }}$ | twe | 1830 |  | 3530 |  |
| 24 | Delay time, $\overline{C S}$ Rise to $\overline{O E}$ Fall | ${ }^{\text {t CSOE }}$ | 1700 |  | 3200 |  |
| 25 | Delay Time, $\overline{O E}$ Fall to Data Bus Valid | toedb | 100 |  | 100 |  |
| 26 | Delay Time, ट्डS Rise to Data Bus Valid | $\mathrm{t}_{\text {csin }}$ | 1800 |  | 3300 |  |
| 27 | Input Pulse Width $\overline{O E}$ | $\mathrm{t}_{\text {IPWOE }}$ | 100 |  | 100 |  |
| 28 | Hold Time, Data Held After ОE Rise | ${ }^{\text {t DOEH }}$ | 20 |  | 20 |  |
| 29 | Delay Time, Read Cycle, $\overline{\mathrm{CS}}$ Rise to $\overline{\text { ALE F Fall }}$ | t CSALR | 1820 |  | 3320 |  |
| 30 | Read Cycle, $\overline{\text { ALE }}$ Fall to $\overline{\text { ALE }}$ Fall | ${ }_{t}{ }_{\text {RC }}$ | 1950 |  | 3450 |  |
| 31 | Output Pulse Width, PROF, INIT, Pulse, Sign, PHA-PHD, MC Port | tof | 500 |  | 1000 |  |
| 32 | Output Rise/Fall Time, PROF, INIT, Pulse, Sign, PHA-PHD, MC Port | ${ }^{\text {t }} \mathrm{OR}$ | 20 | 150 | 20 | 150 |
| 33 | Delay Time, Clock Rise to Output Rise | $t_{\text {EP }}$ | 20 | 300 | 20 | 300 |
| 34 | Delay Time, $\overline{C S}$ Rising to MC Port Valid | ${ }^{\text {t }}$ CSMC |  | 1600 |  | 3200 |

HCTL-1000 I/O Timing Diagrams


## HCTL-1000 I/O Timing Diagrams

There are three different timing configurations which can be used to give the user flexibility to interface the HCTL-

1000 to most microprocesors. See the I/O interface section for more details.

## I. $\overline{\text { ALE/CS }}$ NON OVERLAPPED

## A. Write Cycle


B. Read Cycle


## HCTL-1000 I/O Timing Diagrams

## II. $\overline{\text { ALE }} / \overline{\mathbf{C S}}$ OVERLAPPED

## A. Write Cycle


B. Read Cycle


## HCTL-1000 I/O Timing Diagrams

III. $\overline{\text { ALE WITHIN }} \overline{\mathbf{C S}}$

## A. Write Cycle


B. Read Cycle


## Functional Pin Description

INPUT/OUTPUT SIGNALS

| Symbol | Pin Number |  | Description |
| :--- | :--- | :--- | :--- |
| AD0/DB0 - <br> AD5/DB5 | $2-7$ | Address/Data bus - Low 6 bits of 8 bit $1 / O$ port which are multiplexed between address <br> and data. |  |
| D6,D7 | 8,9 | Data bus - Upper 2 bits of 8 bit $1 / 0$ port used for data only. |  |

## INPUT SIGNALS

| Symbol | Pin Number | 4 Description |
| :---: | :---: | :---: |
| $\mathrm{CHA} / \mathrm{CHB}$ | 31, 30 | Channel A, B - input pins for position feedback from an incremental shaft encoder. Two channels, $A$ and $B, 90$ degrees out of phase are required. |
| Index | $33$ | Index Pulse - input from the reference or index pulse of an incremental encoder. Used only in conjunction with the Commutator. Either a low or high true signal can be used with the Index pin. See Timing Diagrams and Encoder Interface section for more detail. |
| R/W | 37 | Read/Write - determines direction of data exchange for the 1/O port. |
| $\overline{\text { ALE }}$ | - 38 | Address Latch Enable - enables low 6 bits of external data bus into internal address latch. |
| $\overline{\mathrm{CS}}$ | 39 | Chip Select - performs I/O operation dependent on status of R/W line. For a Write, the external bus data is written into the internal addressed location. For Read, data is read from an internal location into an internal output latch. |
| $\overline{\mathrm{OE}}$ | 40 | Output Enable - enables the data in the internal output latch onto the external data bus to complete a Read operation. |
| Limit | 14 | Limit Switch - an internal flag which when externally set, triggers an unconditional branch to the Initialization/Idle mode before the next control sample is executed. Motor Command is set to zero. Status of the Limit Flag is monitored in the Status Register. |
| $\overline{\text { Stop }}$ | 15 | Stop Flag - an internal flag that is externally set. When flag is set during Integral Velocity control mode, the Motor Command is decelerated to a stop. |
| Reset | 36 | Reset - a hard reset of internal circuitry and a branch to Reset mode. |
| ExtClk | 34 | External Clock |
| $V_{C C}$ | 11, 35 | Voltage Supply - Both V ${ }_{\text {CC }}$ pins must be connected to a 5.0 volt supply. |
| $V_{S S}$ | 10,32 | Circuit Ground |
| NC | 1 | Not Conneoted - this pin should be left floating. |

## OUTPUT SIGNALS

| Symbol | Pin Number | Description |
| :--- | :---: | :--- |
| MC0-MC7 | $18-25$ | Motor Command Port - 8 bit output port which contains the digital motor command <br> adjusted for easy bipolar DAC interfacing. MC7 is the most significant bit (MSB). |
| Pulse | 16 | Pulse - Pulse Width Modulated signal whose duty cycle is proportional to the Motor <br> Command magnitude. The frequency of the signal is External Clock/100 and pulse width is <br> resolved into 100 external clocks. |
| Sign | 17 | Sign - gives the sign/direction of the pulse signal. |
| PHA-PHD | $26-29$ | Phase A, B, C, D - phase enable outputs of the commutator. |
| Prof | 12 | Profile Flag - status flag which indicates that the controller is executing a profiled posi- <br> tion move in the Trapezoidal Profile Control Mode. |
| Init | 13 | Initialization/Idle Flag - status flag which indicates that the controller is in the fitialization/ <br> Idle mode. |

## How to Operate the HCTL-1000 User Accessible Registers

The HCTL-1000 operation is controlled by a bank of 648 -bit registers, 32 of which are user accessible. These registers contain command and configuration information necessary to properly run the controller chip. The 32 user accessible registers are listed in Table I. The register number is also the address. A functional block diagram of the HCTL-1000 which shows the role of the user accessible registers is also included in Figure 3. The other 32 registers are used by the internal CPU as scratch registers and should not be accessed by the user.
There are several registers which the user must configure to his application. These configuration registers are discussed in more detail below.

## PROGRAM COUNTER (R05H)

The program counter, which is a write only register, executes the preprogrammed functions of the controller. The program counter is used along with the control flags F0, F3, and F5 in the Flag Register ( ROOH ) to change control modes. The user can write any of the following four commands to the program counter.

00H - Software Reset
01H - Initialization/Idle mode
02H - Align mode
03H - Control modes; flags F0, F3, and F5 in the Flag Register (ROOH) specify which control mode will be executed.

The commands written to the program counter are discussed in more detail in the section called Operating Modes and are shown in flowchart form in Figure 4.

## FLAG REGISTER (ROOH)

The flag register contains flags F0 thru F5. This register is also a write only register. Each flag is set and cleared by writing an 8-bit data word to R 00 H . The upper four bits are ignored by the HCTL-1000. The bottom three bits specify the flag address and the fourth bit specifies whether to set ( $\mathrm{bit}=1$ ) or clear ( $\mathrm{bit}=0$ ) the addressed flag.

| Bit number | $\mathbf{7 - 4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Function | Don't <br> care | set/clear | AD2 | AD1 | AD0 |

F0 - Trapezoidal Profile Flag - set by the user to execute trapezoidal profile control. The flag is reset by the controller when the move is completed. The status of FO can be monitored at the Profile pin (12) and in status register R07H bit 4.
F1 - Initialization/Idle Flag - set/cleared by the HCTL1000 to indicate execution of the Initialization/Idle mode. The status of F1 can be monitored at the Initialization/Idle pin (13) and in bit 5 of the Status register (R07H). The user should never attempt to set or clear F1.

F2 - Unipolar flag - set/cleared by the user to specify bipolar (clear) or unipolar (set) mode for the Motor Command Port.

F3 - Proportional Velocity Control Flag - set by the user to specify proportional velocity control.
F4 - Hold Commutator Flag - set/cleared by the user or automatically by the Align mode. When set, this flag inhibits the internal commutator counters to allow open loop stepping of a motor by using the commutator.

F5 - Integral Velocity Control - set by the user to specify integral velocity control.

## STATUS REGISTER (R07H)

The Status Register indicates the status of the HCTL-1000. Each bit decodes into one signal. All 8 bits are user readable and are decoded as shown below. Only the lower 4 bits can be written to by the user to configure the HCTL-1000. To set or clear any of the lower 4 bits, the user writes an 8 -bit word to R07H. The upper 4 bits are ignored. Each of the lower 4 bits directly sets/clears the corresponding bit of the status register as shown below. For example, writing XXXX0101 to R07H sets the PWM Sign Reversal Inhibit, sets the Commutator Phase Configuration to " 3 Phase", and sets the Commutator Count Configuration to "full".

| Status Bit | Function | Note |
| :---: | :---: | :---: |
| 0 | PWM Sign Reversal <br> Inhibit $0=\text { off } \quad 1=\text { on }$ | Discussed in Amplifier Interface section under PWM Port. |
| 1 | Commutator Phase Configuration $0=3$ phase $1=4$ phase | Discussed in Commutator section |
| 2 | Commutator Count Configuration $0=$ quadrature 1 = full | Discussed in Commutator section |
| 3 | Should always be set to 0 |  |
| 4 | $\begin{aligned} & \text { Trapezoidal Profile } \\ & \text { Flag Fo } \\ & 1=\text { in Profile Control } \end{aligned}$ | Discussed in Operating Mode section under Trapezoidal Profile Control |
| 5 | Initialization/Idle <br> Flag F1 $1=$ in Initialization/Idle Mode | Discussed in Operating Mode section under Initialization/Idle Mode |
| 6 | Stop Flag <br> $0=$ set (Stop triggered) <br> 1 = cleared (no Stop) | Discussed in Emergency Flags Section |
| 7 | Limit Flag <br> $0=$ set (Limit triggered) <br> 1 = cleared (no Limit) | Discussed in <br> Emergency Flags <br> Section |

TABLE I: REGISTER REFERENCE TABLE


## Notes:

1. Upper 4 bits are read only.
2. Writing to ROEH (LSB) latches all 24 bits.
3. Reading R14H (LSB) latches data into R12H and R13H.
4. Writing to R13H clears Actual Position Counter to zero.
5. The scalar data is limited to positive numbers $(00 \mathrm{H}$ to 7 FH$)$.
6. The commutator registers ( $\mathrm{R} 18 \mathrm{H}, \mathrm{R} 1 \mathrm{CH}, \mathrm{R} 1 \mathrm{FH}$ ) have further limits which are discussed in the Commutator section of this data sheet.


Figure 3. Register Block Diagram

## EMERGENCY FLAGS - STOP AND LIMIT

Stop and Limit Flags are hardware set flags that signify the occurrence of an emergency condition and cause the controller to immediately take special action.
The Stop Flag affects the HCTL-1000 only in the Integral Velocity Mode. When the Stop Flag is set, the system will come to a decelerated stop and stay in this mode with a command velocity of zero until the Stop Flag is cleared and a new command velocity is specified.
The Limit Flag, when set in any control mode, causes the HCTL-1000 to go into the Initialization/Idle Mode, clearing the Motor Command and causing an immediate motor shutdown.

Stop and Limit Flags are set by a low level input at their respective pins $(15,14)$. The flags can only be cleared when the input to the corresponding pin goes high, signifying that the emergency condition has been corrected, AND a write to the Status Register (R07H) is executed. That is, after the emergency pin has been set and cleared; the flag also must be cleared by writing to R07H. Any word that is written to R07H after the emergency pin is set and cleared will clear the emergency flag, but the lower 4 bits of that word will also reconfigure the Status Register.

## DIGITAL FILTER (R22H, R20H, R21H)

All control modes use some part of the programmable digital filter $\mathrm{D}(\mathrm{z})$ to compensate for closed loop system stability. The compensation $D(z)$ has the form:

$$
D(z)=\frac{K(z-A / 256)}{4(z+B / 256)}
$$

where $z=$ the digital domain operator

$$
\begin{aligned}
& K=\text { gain }(R 22 H) \\
& A=\operatorname{zero}(R 20 H) \\
& B=\operatorname{pole}(R 21 H)
\end{aligned}
$$

The compensation is a first order lead filter which in combination with the sample timer T (ROFH) affects the dynamic step response and stability of the control system. The sample timer, $T$, determines the rate at which the control algorithm gets executed. All parameters, A, B, K, and T, are 8 -bit scalars that can be changed by the user any time.
The digital filter uses previously sampled data to calculate $D(z)$. This old internally sampled data is cleared when the Initialization/Idle Mode is executed.

## SAMPLE TIMER REGISTER (ROFH)

The contents of this register set the sampling period of the HCTL-1000. The sampling period is
$t=16($ ROFH +1$)(1 /$ frequency of the external clock $)$
The sample timer has a limit on the minimum allowable sample time depending on the control mode being executed. The limits are given below:

|  | ROFH Contents <br> Minimum Limit |
| :--- | :---: |
| Position Control | 7 |
| Proportional Velocity Control | 7 |
| Trapezoidal Profile Control | 15 |
| Integral Velocity Control | 15 |

The maximum value of ROFH is FFH ( 255 decimal). For example, with a 2 MHz clock, the sample time can vary from $64 \mu \mathrm{sec}$ to $2048 \mu \mathrm{sec}$.

## Operating Modes

The HCTL-1000 executes any one of 3 set up routines or 4 control modes selected by the user. The 3 set up routines include:

- Reset
- Initialization/Idle
- Align.

The four control modes available to the user include:

- Position Control
- Proportional Velocity Control
- Trapezoidal Profile Control
- Integral Velocity Control

The HCTL-1000 switches from one mode to another as a result of one of the following three mechanisms:

1. The user writes to the Program Counter.
2. The user sets/clears flags F0, F3, or F5 by writing to the Flag Register (ROOH).
3. The controller switches automatically when certain initial conditions are provided by the user.
This section describes the function of each set up routine and control mode and the initial conditions which must be provided by the user to switch from one mode to another. Figure 4 shows a flowchart of the set up routines and control modes, and shows the commands required to switch from one mode to another.

## SET UP ROUTINES

1. Reset

The Reset mode is entered under all conditions by either executing a hard reset (Reset Pin goes low) or a soft reset (write 00 H to the Program Counter, R05H).
When a hard reset is executed, the following conditions occur:

- All output signal pins are held low except Sign (17), Databus (2-9), and Motor Command (18-25).
- All flags (F0 to F5) are cleared.
- The PWM port (R09H) is preset to FFH.
- The Motor Command Port (R08H) is preset to 80 H .
- The Commutator logic is cleared.
- The I/O control logic is cleared.
- A soft reset is automatically executed.

When a soft reset is executed, the following conditions occur:

- The digital filter parameters are preset to
$\mathrm{A}(\mathrm{R} 20 \mathrm{H})=\mathrm{E} 5 \mathrm{H}$
$B(R 21 H)=K(R 22 H)=40 H$
- The sample timer ( R 0 FH ) is preset to 40 H .
- The status register ( R 07 H ) is cleared.
- The Position counters (R12H, R13H and R14H) are cleared to 0 .
From Reset mode, the HCTL-1000 goes automatically to Initialization/Idle mode.

2. Initialization/Idle

The Initialization/Idle mode is entered either automatically from Reset or by writing 01 H to the Program Counter (R05H) under any conditions.
In the Initialization/Idle mode, the following conditions occur:

- The Initialization/Idle Flag (F1) is set.
- The PWM port ( $\mathrm{RO9H}$ ) is set to 00 H .
- The Motor Command port (R08H) is set to 80 H .
- Previously sampled data stored in the digital filter is cleared.
It is at this point that the user should pre-program all the necessary registers needed to execute the desired control mode. The HCTL-1000 stays in this mode (idling) until a new mode command is given.

*Only one flag can be set at a time.

Figure 4. Operating Mode Flowchart

## 3. Align

The Align mode can be entered only from the Initialization/ldle mode by writing 02H to the Program Counter (R05H). This mode automatically aligns multiphase motors to the Commutator. Align mode is executed only when using the commutator feature of the HCTL-1000 and before any control modes are used.
The Align mode assumes that, during encoder/motor assembly, the encoder index pulse has been physically aligned to the last motor phase, the Commutator parameters have been correctly preprogrammed (see the section called The Commutator for details), and a hard reset has been executed while the motor is stationary.
The Align mode first disables the commutator and with open loop control enables the first phase (PHA) and then the last phase (PHC or PHD) to orient the motor on the last phase torque detent. Each phase is energized for 2048 system sampling periods. For proper operation, the motor must come to a complete stop during the last phase enable. Once the last phase torque detent is found, the Commutator is enabled and commutation is closed loop.
The HCTL-1000 then switches automatically from Align to the Control Modes.

## CONTROL MODES

Control flags F0, F3, and F5 in the Flag Register (ROOH) determine which control mode is executed. Only one control flag can be set at a time. After one of these control flags is set, the control modes are entered either automatically from Align or from the Initialization/Idle mode by writing 03 H to the Program Counter (R05H).

## 1. Position Control

## F0, F3, F5 cleared

Position Control performs point to point position moves with no velocity profiling. The user specifies a 24 -bit position command, which the controller compares to the 24 -bit actual position. The position error is calculated, the full digital lead compensation is applied and the motor command is output.
The controller will remain position locked at a destination until a new position command is given.

The actual and command position data is 24 -bit two's complement data stored in six 8 -bit registers. Position is measured in encoder quadrature counts.
The command position resides in ROCH (MSB), RODH, ROEH (LSB). Writing to ROEH latches all 24-bits at once for the control algorithm. Therefore, the command position is written in the sequence ROCH, RODH and ROEH. The command registers can be read in any desired order.

The actual position resides in R12H (MSB), R13H, and R14H (LSB). Reading R14H latches the upper two bytes into an internal buffer. Therefore, actual position registers are read in the order of $\mathrm{R} 14 \mathrm{H}, \mathrm{R} 13 \mathrm{H}$, and R 12 H for correct instantaneous position data. The position registers cannot be written to, but they can all be cleared to 0 by a write to R13H.

## 2. Proportional Velocity Control

F3 set
Proportional Velocity Control performs control of motor speed using only the gain factor, K , for compensation. The dynamic pole and zero lead compensation are not used.
The algorithm takes a user command velocity, calculates the actual velocity, and computes the velocity error. The velocity error is multiplied by K/4 and output as motor command.

The command and actual velocity are 16-bit two's complement words. The units of velocity are encoder quadrature counts/sample time. In addition, the command velocity is internally divided by 16 to produce fractional resolution. The 16 -bit command is interpreted as 12 -bits of integer and 4-bits of fraction.

| R24H | R23H |
| :--- | ---: |
| IIII IIII | IIII.FFFF |
|  |  |
| COMMAND VELOCITY FORMAT |  |

The command velocity resides in unlatched R24H (MSB) and R23H (LSB). The registers can be read or written to in any order.
The actual velocity is computed only in this algorithm and stored in scratch registers R35H (MSB) and R34H (LSB). There is no fractional component in the actual velocity registers and they can be read in any order.
The controller tracks the command velocity continuously until new mode command is given. The system behavior after a new velocity command is governed only by the system dynamics, until a steady state velocity is reached.

## 3. Integral Velocity Control

F5 set
Integral Velocity Control performs continuous velocity profiling which is specified by a command velocity and command acceleration. Figure 5 shows the capability of this control algorithm.
The user can change velocity and acceleration any time to continuously profile velocity in time. Once the specified velocity is reached, the HCTL-1000 will maintain that velocity until a new command is specified. Changes between actual velocities occur at the presently specified linear acceleration.
The command velocity is an 8-bit two's complement word stored in R3CH. The units of velocity are quadrature counts/sample time.
While the overall range of the velocity command is 8 -bits, two's complement, the difference between any two sequential commands cannot be greater than 7-bits in magnitude (i.e., 127 decimal). For example, when the HCTL-1000 is executing a command velocity of 40 H (+64D), the next velocity command must fall in the range of 7FH (+127D), the maximum command range, to C 1 H (-63D).


Figure 5. Integral Velocity Mode
The command acceleration is a 16 -bit scalar word stored in R27H and R26H. The upper byte (R27H) is the integer part and the lower byte ( R 26 H ) is the fractional part provided for resolution. The integer part has a range of 00 H to 7 FH . The contents of R26H are internally divided by 256 to produce the fractional resolution.


The units of acceleration are quadrature counts/sample time squared.
Internally, the controller performs velocity profiling through position control. From the user specified command velocity and acceleration, the controller internally generates position profiles. In control theory terms, integral compensation has been added and therefore, this system has zero steady state velocity error.
The advantage that this mode has over Proportional Velocity modes is that the system has zero steady state velocity error. However, the drawback which comes along with this advantage is that loop stability compensation is more difficult to achieve. In the Integral Velocity Mode, the system is actually a position control system and therefore the complete dynamic compensation $D(z)$ is used in this control mode.
If the external STOP flag F6 is set during this mode signaling an emergency situation, the controller automatically decelerates to zero velocity at the presently specified acceleration factor and stays in this condition until the flag is cleared. The user then can specify new velocity profiling data.

## 4. Trapezoidal Profile Control

 F0 setTrapezoidal Profile Control performs point to point position moves and profiles the velocity trajectory to a trapezoid or triangle. The user specifies only the desired final position, acceleration and maximum velocity. The controller computes the necessary profile to conform to the command data. If maximum velocity is reached before the distance halfway point, the profile will be trapezoidal, otherwise the profile will be triangular. Figure 6 shows the possible trajectories with Trapezoidal Profile control.

The command data for this control mode is a 24 -bit two's complement final position written to R2BH (MSB), R2AH, and R29H (LSB). The acceleration resides in R27H (MSB) and R26H (LSB). It is the same integer and fraction


Figure 6. Trapezoidal Profile Mode
format as discussed under Integral Velocity Control. The maximum velocity is a 7-bit scalar (range is 00 H to 7 FH ) written to R28H with units of quadrature counts/sample. The command data registers can be written/read in any order.

Once desired data is entered, flag F0 is set in the Flag Register (ROOH) to commence motion (if already in Position Control). When the Trapezoidal Profile move is finished, the controller clears FO and Position Control locks on the final position. The status of the Profile flag can be monitored in the Status Register (R07H) and at the external Profile pin. During Trapezoidal Profile move no new command data should be sent to the controller.
The internal profile generator produces a position profile using the present command position (ROCH-ROEH) as the starting point and the final position (R29H-R2BH) as the end point. The controller actually performs position control while the profile generator loads profile data into the Command Position registers. The full digital filter is applied for compensation.

## Commutator

The commutator is a digital state machine that is configured by the user to properly select the phase sequence for electronic commutation of multiphase motors. The Commutator is designed to work with 2,3 , and 4 phase motors of various winding configurations and with various encoder counts.

Besides the correct phase enable sequence, the Commutator provides programmable phase overlap and phase advance. Phase overlap is used for better torque ripple control. It can also be used to generate unique state sequences which can be further decoded externally to drive more complex amplifiers and motors.

Phase advance allows the user to compensate for the frequency characteristics of the motor/amplifier combination. By advancing the phase enable command (in position), the delay in reaction of the motor/amplifier combination can be offset and higher performance can be achieved.
The ouput of the Commutator is on PHA (26) to PHD (29). The inputs to the Commutator are the three encoder signals, Channel A, Channel B, and Index, and the configuration data stored in registers.

The Commutator uses both channels and the index pulse of an incremental encoder. The index pulse of the encoder must be physically aligned to a known torque curve location because it is used as the reference point of the rotor position with respect to the Commutator phase enables.

The index pulse should be permanently aligned during motor encoder assembly to the last motor phase. This is done by energizing the last phase of the motor during assembly and permanently attaching the encoder codewheel to the motor shaft such that the index pulse is active. Fine tuning of alignment for commutation purposes is done electronically by the Offset Register (R1CH) once the complete control system is set up.

## 1. Commutator Configuration Registers

The Commutator is programmed by the data in the following registers. Figure 7 shows an example of the relationship between all the parameters.

## Status Register (R07H)

Bit\#1 - $0=3$ phase configuration, PHA, PHB, and PHC are active outputs.
$1=4$ phase configuration, PHA - PHD are active outputs.
Bit \#2 $-0=$ rotor position measured in quadrature counts.
$1=$ rotor position measured in full counts.

## RING REGISTER (R18H)

The ring register is scalar and determines the length of the electrical cycle measured in full or quadrature counts as set by bit \#1 in R07H. The magnitude of Ring is limited to 7FH.

## X REGISTER (R1AH)

Scalar data which sets the interval during which a phase is the only one active.

## Y REGISTER (R1BH)

Scalar data which sets the interval during which two sequential phases are both active. Y is phase overlap.
$X$ and $Y$ must be such that:
$X+Y=$ Ring/(\# of phases)
These three parameters define the basic electrical commutation cycle.

## OFFSET REGISTER (R1CH)

The offset is two's complement data which determines the relative start of the electrical cycle with respect to the index pulse. Since the index pulse must be physically referenced to the rotor, offset performs fine alignment between the electrical and mechanical torque cycles.

## PHASE ADVANCE REGISTERS (R19H, R1FH)

The phase advance feature performs the function of linearly incrementing the phase advance according to measured speed of rotation up to a set maximum.

## VELOCITY TIMER REGISTER (R19H)

This register contains scalar data which determines the amount of phase advance at a given velocity. The phase advance is interpreted in the units set for the Ring counter by bit \#1 in R07H. The velocity is measured in revolutions/ second.

$$
\begin{aligned}
\text { Advance } & =\mathrm{Nv} \Delta \mathrm{t} \\
\text { where } \Delta \mathrm{t} & =\frac{16(\mathrm{R} 19 \mathrm{H}+1)}{\mathrm{f} \text { external clk }} \\
\mathrm{N} & =\text { encoder counts/revolution } \\
\mathrm{v} & =\text { velocity (revolutions/second) }
\end{aligned}
$$

3 PHASE FULL COUNTS
RING: 9

| CASE | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $X$ | 3 | 2 | 2 | 2 |
| $Y$ | 0 | 1 | 1 | 1 |
| OFFSET | 0 | 0 | 2 | 2 |
| ADVANCE | 0 | 0 | 0 | 1 |

INDEX PULSE OCCURS AT THE ORIGIN


Figure 7. Commutator Configuration

## MAXIMUM ADVANCE REGISTER (R1FH)

The scalar data sets the upper limit for phase advance regardless of rotor speed.
Figure 8 shows the relationship between the phase advance registers. Note: If the phase advance feature is not used, set both R19H and R1FH to 0.


Figure 8. Phase Advance vs. Motor Velocity.

## COMMUTATOR CONSTRAINTS

There are several numerical constraints the user should be aware of to use the Commutator.
The parameters of Ring, $X, Y$, and Max Advance must be positive numbers $(00 \mathrm{H}$ to 7 FH$)$. Additionally, the following equation must be satisfied:
$80 \mathrm{H} \leq \frac{3}{2}$ Ring + Offset $\pm$ Max Advance $\leq 7 \mathrm{FH}$ (1)
In order to utilize the greatest flexibility of the Commutator, it must be realized that the Commutator works on a circular ring counter principle, whose range is defined by the Ring Register (R18H). This means that for a ring of 96 counts and a needed offset of 10D, numerically the Offset Register can be programmed as OAH (10D) or DOH (-80D), the latter satisfying Equation 1.
Example: Suppose you want to commutate a 3 phase 15 deg/step Variable Reluctance Motor attached to a 192 count encoder.

1. Select 3 phase and quadrature mode for commutator by writing 0 to R07H.
2. With a 3 phase 15 degree/step Variable Reluctance Motor the torque cycle repeats every 45 degrees or 360 deg/45 deg/revolution.
3. $\begin{aligned} \text { Ring Register } & =\frac{(4)(192) \text { counts/revolution }}{8 / \text { revolution }} \\ & =96 \text { quadrature counts }\end{aligned}$
4. By measuring the motor torque curve in both directions, it is determined that an offset of 3 degrees, and a phase overlap of 2 degrees is needed.
Offset $=3^{\circ} \frac{(4)(192)}{360^{\circ}} \simeq 6$ quadrature counts
To numerically satisfy the commutator write A 6 H (-90D) to Offset Register (R1CH).
$y=$ overlap $=\frac{\left(2^{\circ}\right)(4)(192)}{360^{\circ}} \simeq 4$
$\frac{x+y}{3}=96$
Therefore, $x=28$

$$
y=4
$$

For the purposes of this example, the Velocity Timer and Maximum Advance are set to 0 .

## How to Interface to the HCTL-1000

## I/O INTERFACE

The HCTL-1000 looks to the user like a bank of 8 -bit registers which the user can read/write. The data in these registers control the operation of the HCTL-1000. The user communicates with these registers over an 8-bit address/ data multiplexed bidirectional bus. The four I/O control lines, $\overline{A L E}, \overline{C S}, \overline{O E}$ and $\overline{R / W}$, execute the data transfers.
There are three different timing configurations which can be used to give the user greater flexibility to interface the HCTL-1000 to most microprocessors (see Timing diagrams). They are differentiated from one another by the arrangement of the $\overline{A L E}$ signal with respect to the $\overline{C S}$ signal. The three timing configurations are listed below.

1. $\overline{\mathrm{ALE}}, \overline{\mathrm{CS}}$ non-overlapped
2. $\overline{A L E}, \overline{C S}$ overlapped
3. $\overline{\mathrm{ALE}}$ within $\overline{\mathrm{CS}}$

Any I/O operation starts by asserting the $\overline{\text { ALE }}$ signal which starts sampling the external bus into an internal address latch. Rising $\overline{\mathrm{ALE}}$ or falling $\overline{\mathrm{CS}}$ during $\overline{\mathrm{ALE}}$ stops the sampling into the address latch.
$\overline{\mathrm{CS}}$ low after rising $\overline{\mathrm{ALE}}$ samples the external bus into the data latch. Rising $\overline{C S}$ stops the sampling into the data latch, and starts the internal synchronous process.
In the case of a write, the data in the data latch is written into the addressed location. In the case of a read, the addressed location is written into an internal output latch. $\overline{\mathrm{OE}}$ low enables the internal output latch onto the external bus. The $\overline{\mathrm{OE}}$ signal and the internal output latch allow the I/O port to be flexible and avoid bus conflicts during read operations.
The I/O Port is designed to work with most microprocessor systems and is easily fitted in as part of addressable RAM.


Figure 9. I/O Port Block Diagram

## ENCODER INTERFACE

The HCTL-1000 accepts TTL compatible outputs from 2 or 3 channel incremental shaft encoders such as the HEDS5000 and 6000 series. Channels A and B are internally decoded into quadrature counts which increment or decrement the 24 -bit position counter. For example, a 500 count encoder is decoded into 2000 quadrature counts per revolution. The position counter will be incremented when Channel B leads Channel A. The Index channel is used only for the Commutator and its function is to serve as a reference point for the internal Ring Counter.
The inputs to the quadrature decoder from Channel $A$ and $B$, have a 3-bit state delay filter to filter out unwanted noise spikes on the encoder input lines. Any transition on the input pins must be stable during 3 consecutive external clock edges before it is qualified internally as a legitimate transition. This 3-bit state delay filter, together with the quadrature decoder, impose a limit on the encoder frequency.
The AC specifications give the delay requirements between encoder signal edges. When calculating the encoder frequency limit, the user must take into consideration the external clock frequency and the encoder state width error.

The index signal of an encoder is used in conjunction with the Commutator. It resets the internal ring counter which keeps track of the rotor position so that no cumulative errors are generated.
The Index pin of the HCTL-1000 also has a 3-bit filter on its input. The Index pin is active low and level transition sensitive. It detects a valid high to low transition and qualifies the low input level through the 3 -bit filter. At this point, the Index signal is internally detected by the commutator logic. This type of configuration allows an Index or Index signal to be used to generate the reference mark for commutator operation as long as the AC specifications for the Index signal are met.

## AMPLIFIER INTERFACE

The HCTL-1000 outputs a motor command in two forms: an 8 -bit Motor Command which can be connected to a DAC to drive a linear amplifier and PULSE and SIGN output to drive a PWM amplifier.
All control algorithms internally compute an error between the desired command and actual feedback which is processed through the digital filter. The result is an internal 8 -bit 2's complement motor command. Before the internal motor command is made externally available, it is addi-
tionally adjusted for different output formats and ease of interfacing to external hardware. The sections below discuss the externally available amplifier interfaces and their formats. Tables II and III summarize the amplifier interface outputs.

## 8-Bit Parallel Motor Command Port

The 8-bit Motor Command Port consists of register R08H whose data goes directly to external pins MC0-MC7. MC7 is the most significant bit. R08H can be read and written to, however, it should be written to only during Initialization/Idle mode. During any of the four Control Modes, the controller writes the motor command into R 08 H .
The Motor Command Port is the ideal interface to an 8-bit DAC, configured for bipolar output. The data written to the 8 -bit Motor Command Port by the control algorithms is the internally computed 2's complement motor command with an 80 H offset added. This allows direct interfacing to a DAC. Figure 10 shows a typical DAC interface to the HCTL-1000. An inexpensive DAC, such as MC1408 or equivalent, has its digital inputs directly connected to the Motor Command Port. The DAC produces an output current which is converted to a voltage by an operational amplifier. $\mathrm{R}_{\mathrm{O}}$ and $\mathrm{R}_{\mathrm{G}}$ control the analog offset and gain. The circuit is easily adjusted for +5 V to -5 V operation by first writing 80 H to R 08 H and adjusting $\mathrm{R}_{\mathrm{O}}$ for OV output. Then FFH is written to R 08 H and $\mathrm{R}_{\mathrm{G}}$ is adjusted until the output is 5 V . Note that 00 H in R 08 H corresponds to -5 V out.

The above interface is suitable to drive linear amplifiers and DC motors because of the bipolar output. When using commutated motors, the direction of rotation of the motor is governed by the order of firing the motor phases which is under commutator control. In this case, it is desirable to have the Motor Command be unipolar to specify magnitude only, not direction. The HCTL-1000 has the feature of digitally configuring the 8-bit Motor Command Port into unipolar mode. Flag F2 in the Flag Register ROOH controls this function.
F2 clear - Bipolar mode
F2 set - Unipolar mode
This mode functions such that, with the same circuit in Figure 10 (or any DAC configured for similar bipolar operation) setting F2 will cause the DAC to output from $0 V$ to 5 V only and to digital data on pins MC0 to MC7 to be restricted in the control modes from 80 H to FFH . Internally the commutator keeps track of the sign of the motor command for proper commutation of the motor.


Figure 10. Linear Amplifier Interface

Internally, the HCTL-1000 operates on data of 24, 16 and 8 -bit lengths to produce the 8 -bit motor command, available externally. Many times the computed motor command will be greater than 8 -bits. At this point, the motor command is saturated by the controller. The saturated value output by the controller is not the full scale value 00 H , or FFH . The saturated value is adjusted to 0 FH (negative saturation) and FOH (positive saturation). Saturation levels for the Motor Command Port are also included in Table II.

## PWM Port

The PWM port outputs the motor command as a pulse width modulated signal with the correct sign of polarity. The PWM Port consists of the Pulse and Sign pins (pins 16 and 17) and R09H.

The PWM signal at the Pulse pin has a frequency of External Clock/100 and the duty cycle is resolved into the 100 clocks.
The Sign pin gives the polarity of the command. Low output on Sign pin is positive polarity.

The 2's complement contents of R09H determine the duty cycle and polarity of the PWM command. For example, D8H (-40D) gives a $40 \%$ duty cycle signal at the Pulse pin and forces the Sign pin high. Data outside the $64 \mathrm{H}(+100 \mathrm{D})$ to 9CH (-100D) linear range gives $100 \%$ duty cycle. R09H can be read and written to. However, the user should only write to R09H when the controller is in the Initialization/Idle mode. Table II gives the PWM output vs the internal motor command.
When any Control Mode is being executed, the unadjusted internal 2's complement motor command is written to R09H. Because of the hardware limit on the linear range 64 H to $9 \mathrm{CH} ; \pm 100 \mathrm{D}$ ), the PWM port saturates sooner than the 8 -bit Motor Command Port ( 00 H to FFH ; +127D to -128D). When the internal Motor Command saturates above 8 bits, the PWM Port is saturated to the full $\pm 100 \%$ duty cycle level. Table III gives the actual values inside the PWM port. Note that the unipolar Flag, F2, does not affect the PWM port.

TABLE II. MOTOR COMMAND PORT OUTPUTS

| Functional Condition During Control Modes | Internal Motor Command 2's Complement | Motor Command Port R08H, MC0-MC7 |  | DAC Output |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bipolar $F 2=0$ | Unipolar $F 2=1$ | Biploar $F 2=0$ | Unipolar $F 2=1$ |
| Minimum Motor Command | 80 H | 0 H | FFH | -5.0 V | 5.0 V |
| Negative Internal Motor Command Saturation | $<80 \mathrm{H}$ | OFH | FOH | -4.4 V | 4.4 V |
| Zero Motor Command | OOH | 80 H | 80 H | 0 V | 0 V |
| Position Internal Motor Command Saturation | $>7 \mathrm{FH}$ | FOH | FOH | 4.4 V | 4.4 V |
| Maximum Motor Command | 7 FH | FFH | FFH | 5.0 V | 5.0 V |

TABLE III. PWM PORT OUTPUTS

| Functional Condition |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| During Control Modes | Internal <br> Motor Command | $\mathbf{R O 9 H}$ | Pulse Duty Cycle | Sign |
| Minimum Motor Command |  | 80 H | $100 \%$ | High |
| Negative Internal Motor Command Saturation | $<80 \mathrm{H}$ | 8 FH | $100 \%$ | High |
| Minimum PWM Linear Range | 9 CH | 9 CH | $100 \%$ | High |
| Zero Motor Command | 00 H | 00 H | $0 \%$ | Low |
| Positive Internal Motor Command Saturation | 77 FH | 70 H | $100 \%$ | Low |
| Maximum PWM Linear Range | 64 H | 64 H | $100 \%$ | Low |
| Maximum Motor Command | 7 FH | 7 FH | $100 \%$ | Low |

The PWM port has an option that can be used with H bridge type amplifiers. The option is Sign Reversal Inhibit, which inhibits the Pulse output for one PWM period after a sign polarity reversal. This allows one pair of transistors to turn off before others are turned on and thereby avoids a short across the power supply. Bit 0 in the Status Register (R07H) controls the sign reversal inhibit option. Figure 11 shows the output of the PWM port when Bit 0 is set.

Figure 12 shows an example of how to interface the HCTL1000 to an H bridge amplifier (amplifier schematic is simplified). An H bridge amplifier works such that either Q1 and Q4 conduct or Q2 and Q3 conduct. This allows for bipolar motor operation with a unipolar power supply. The Sign Reversal Inhibit feature prevents all transistors from being on at the same time when the direction of motion is reversed.


Figure 11. Sign Reversal Inhibit


Figure 12. H-Bridge Amplifier Interface

## Features

- FULL FUNCTION IN A SPACE SAVING PACKAGE
- SUBSTANTIALLY REDUCED SYSTEM SOFTWARE
- FULL 4X DECODE
- HIGH NOISE IMMUNITY:

SCHMITT TRIGGER INPUTS
DIGITAL NOISE FILTER

- 8 BIT TRISTATE INTERFACE
- 12 BIT BINARY UP/DOWN COUNTER TO BUFFER THE CONTROL PROCESSOR
- 12 BIT LATCH AND INHIBIT LOGIC PROVIDE A STABLE, 2 BYTE READ OPERATION
- 8 AND 12 BIT OPERATING MODES


## Description

The HCTL-2000 is an HCMOS IC that performs the quadrature decoder, counter, and bus interface function. The HCTL-2000 is designed to improve system performance in digital closed loop motion control systems and digital data input systems. It does this by shifting time intensive quadrature decoder functions to a cost effective hardware solution. The HCTL-2000 consists of a $4 x$ quadrature decoder, 12 bit binary up/down state counter, and 8 bit bus interface. The use of Schmitt triggered CMOS inputs and a 3 bit state delay filter allows reliable operation in noisy environments. The HCTL-2000 provides LSTTL compatible tri-state output buffers. Operation is specified for a temperature range from -40 to $+85^{\circ} \mathrm{C}$ at clock frequencies up to 3.9 mHz .

## Package Dimensions



LEAD FINISH: SOLDER DIPPED


DIGITAL MOTION CONTROL


## Applications

- INTERFACE QUADRATURE INCREMENTAL ENCODERS TO MICROPROCESSORS
- INTERFACE DIGITAL POTENTIOMETERS TO DIGITAL DATA INPUT BUSSES


## Table of Contents

## - OPERATING CHARACTERISTICS <br> 2

- FUNCTIONAL PIN DESCRIPTIONS ..... 3
- SWITCHING CHARACTERISTICS ..... 4
- OPERATION ..... 6
- FILTER OPTIMIZATION ..... 9
- INTERFACING ..... 11
- GENERAL ..... 11
- TO MOTOROLA 6801 ..... 12
- TO INTEL 8748 ..... 13

ESD WARNING: HCTL-2000 is implemented in a standard HCMOS process with diode protection of all I/O pads. Standard precautions for handling HCMOS devices should be observed.

## Operating Characteristics

Table 1. Absolute Maximum Ratings (all voltages below are referenced to $V_{S S}$ )

| Parameter | Symbol | Limits | Units |
| :--- | :---: | :---: | :---: |
| DC Supply Voltage | $V_{d d}$ | -0.3 to +7 | $V$ |
| Input Voltage | $V_{\mathrm{in}}$ | -0.3 to $\mathrm{V}_{\mathrm{dd}}+0.3$ | $V$ |
| Storage Temperature | $\mathrm{T}_{\mathrm{s}}$ | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |
| Operating Temperature | $\mathrm{T}_{\mathrm{a}}{ }^{11}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |

Table 2. Recommended Operating Conditions

| Parameter | Symbol | Limits | Units |
| :--- | :---: | :---: | :---: |
| DC Supply Voltage | $V_{\text {dd }}$ | +3 to +6 | $V$ |
| Ambient Temperature | $T_{a^{[1]}}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |

Table 3. DC Characteristics $\mathrm{V}_{\mathrm{dd}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Condition | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{i 1}{ }^{[2]}$ | Low-Level Input Voltage |  |  |  | 1.5 | V |
| $\mathrm{Vin}^{\text {[2] }}$ | High-Level Input Voltage |  | 3.5 |  |  | V |
| $V_{4+}{ }^{[2]}$ | Schmitt-Trigger <br> Positive-Going <br> Threshold |  |  | 3.0 | 4.0 | V |
| $V_{t-1}{ }^{[2]}$ | Schmitt-Trigger <br> Negative-Going <br> Threshold | , | 1.0 | 1.5 |  | V |
| $V_{n}$ | Schmitt-Trigger Hysteresis |  | 1.0 | 1.5 |  | V |
| In | Input Current | $\begin{aligned} & V_{\text {in }}=V_{\text {dd }} \\ & V_{\text {in }}=V_{S S} \end{aligned}$ | $\begin{aligned} & -10 \\ & -10 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{array}{r} +10 \\ +10 \\ \hline \end{array}$ | ${ }_{\mu \mathrm{A}}^{\mathrm{A}}$ |
| $\mathrm{V}_{\text {oh }}{ }^{\text {2] }}$ | High-Level Output Voltage | $\mathrm{I}_{\mathrm{oh}}=-1.6 \mathrm{~mA}$ | 2.4 | 4.5 |  | V |
| $\mathrm{Vol}^{[2]}$ | Low-Level Output Voltage | $\mathrm{l}_{\mathrm{Ol}}=+1.6 \mathrm{~mA}$ |  | 0.2 | 0.4 | V |
| loz | High-Z Output Leakage Current | $V_{o}=V_{s s}$ or $V_{\text {dd }}$ | $-10$ | 1 | $+10$ | $\mu \mathrm{A}$ |
| $I_{d d}$ | Quiescent Supply Current | $\begin{aligned} & V_{\text {in }}=V_{s s} \text { or } V_{d d} \\ & V_{d}=H i Z \end{aligned}$ |  | 60 |  | $\mu \mathrm{A}$ |
| $\mathrm{Cin}_{\text {in }}$ | Input Capacitance | Any Input ${ }^{(3]}$ |  | 5 |  | pF |
| Cout | Output Capacitance | Any Output ${ }^{(3]}$ |  | 7 |  | pF |

## NOTES:

1. Free Air.
2. In general, for any $V_{d d}$ between the allowable limits $(+3 V$ to $+6 V), V_{i l}=0.3 V_{d d}$ and $V_{\text {ih }}=0.7 V_{d d} ; V_{t}+$ and $V_{t}-$ vary as Fig $1 ; V_{\text {oh }}=V_{d d}-$ 0.5 V and $\mathrm{V}_{\mathrm{ol}}=\mathrm{V}_{\mathrm{ss}}+0.2 \mathrm{~V} @( \pm) 1.6$ ma respectively.
3. Excluding package capacitance.


Figure 1. Typical Schmitt Trigger Input Threshholds

## Functional Pin Descriptions

Table 4. Functional Pin Descriptions


## Switching Characteristics

Table 5. Switching Characteristics $\operatorname{Min} /$ Max specifications at $V_{d d}=5.0 \pm 5 \%, T_{a}=-40$ to $+85^{\circ} \mathrm{C}$; Typicals are representative of $\mathrm{V}_{\text {dd }}=5.0 \mathrm{~V}, \mathrm{~T}_{\text {case }}=25^{\circ} \mathrm{C}$

| Symbol Description |  |  | Min. ${ }^{11}$ | Typ. ${ }^{21}$ | Max. ${ }^{[1]}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $T_{\text {clk }}$ | Rising edge to rising edge of clock period | 255 | 136 | - | ns |
| 2 | Tchh | Minimum clock high hold time | 125 | 70 | - | ns |
| 3 | $\mathrm{T}_{c d}{ }^{13 i}$ | Delay from rising edge of clock to valid, updated count information on $\mathrm{DO}-7$ | - | 126 | 230 | ns |
| 4 | Tode ${ }^{[5]}$ | OE to valid data on D0-7 | - | 47 | 86 | ns |
| 5 | Todz | OE delay to $\mathrm{Hi}-\mathrm{Z}$ state on D0-7 | - | 30 | 55 | ns |
| 6 | $\mathrm{T}_{\text {sdv }}{ }^{(4 \mid}$ | SEL valid to stable, selected data byte, delay to High Byte=delay to Low Byte | - | 71 | 129 | ns |
| 7 | $T_{\text {clh }}$ | Minimum clock low hold time | 35 | 20 | - | ns |
| 8 | $T_{\text {SS }}{ }^{\|6\|}$ | SEL setup time prior to falling clock edge | 36 | 20 | - | ns |
| 9 | $T_{\text {os }}{ }^{16 \mid}$ | OE setup time prior to falling clock edge | 31 | 17 | - | ns |
| 10 | $\mathrm{T}_{\text {sh }}{ }^{\|6\|}$ | Hold time of SEL after falling clock edge | 0 | - | - | ns |
| 11 | $\mathrm{Toh}^{\text {[6] }}$ | Hold time of OE after falling clock edge | 0 | - | - | ns |
| 12 | Trst | RST active low hold time | 50 | 27 | - | ns |
| 13 | $T_{\text {dcd }}$ | Output Delay Time: Last Position Count Stable on D0-7 after Rising Clock Edge. | 5 | 36 | - | ns |
| 14 | $T_{\text {dsd }}$ | Output Delay Time: Last Data Byte Stable after next SEL state change. | 4 | 31 | - | ns |
| 15 | $\mathrm{T}_{\text {dod }}$ | Output Delay Time: Data Byte Stable after $\overline{\mathrm{OE}}$ Rising Edge | 3 | 25 | - | ns |

NOTES:

1. All times specified from valid logic level to valid logic level of relevant I/O pins. Conformance to these limits is necesary to insure proper operation over $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$.
2. Typical times are for reference only.
3. $T_{c d}$ specification and waveform assume valid stable SEL and $\overline{O E}$ from $T=-\infty$
4. $T_{\text {sdv }}$ specification and waveform assume data stable and valid on internal multiplexer inputs prior to the SEL transition.
5. $T_{\text {ode }}$ specification and waveform assume data stable on buffer inputs.
6. $T_{s s}, T_{o s}, T_{s h}, T_{\text {oh }}$ only pertain to proper operation of the inhibit logic. In other cases, such as 8 bit read operations, these setup and hold times do not need to be observed.


Figure 2. Reset Waveform


Figure 3. Waveforms for Positive Clock Edge Related Delays


Figure 4. Tri-State Output Timing


Figure 5. Bus Control Timing

## Operation

A detailed block diagram of the HCTL-2000 is shown in Figure 6. The operation of each major function is described in the following sections.


Figure 6. Simplified Logic Diagram

## DIGITAL FILTER

The digital filter section is responsible for rejecting noise on incoming quadrature signals. Schmitt-trigger conditioning addresses the problems of slow rise and fall times and low level noise. The major task of the filter is to deal with short-duration noise pulses that cause the input logic level to momentarily change. Due to the nature of quadrature decoding, noise pulses on one channel will not cause a count error, but the coincidence of two overlapping noise pulses, one on each input, can cause illegal state transitions. False counts of undetermined direction will result from the decoding of these illegal transitions (see Fig. 8).
A pair of filters rejects these noise pulses by sampling the CHA and CHB logic levels and storing a time history in a pair of shift registers. For each channel, if the input level has had the same value on three consecutive rising clock edges, that value becomes the new output of the filter; otherwise the output is unchanged. This means that the CHA filter output cannot change from high to low until the CHA input has been low for three consecutive rising clock edges. CHB is treated the same as CHA.
The operation of this digital filter section places one of two timing constraints on the minimum clock frequency in relationship to the encoder count frequency. The first con-
straint derives from the operation of the input filters. It relates the maximum clock period to the minimum encoder pulse width. The second constraint derives from the decoder operation and is covered in the "Quadrature Decoder" section. It relates the maximum clock period to the minimum encoder state width ( $\mathrm{T}_{\mathrm{es}}$ ).
The explanation of constraint one above is as follows: It takes a minimum of four positive clock transitions for a new logic level on either CHA or CHB to propagate through their respective filters, but the signal only needs to be stable for three consecutive rising clock edges (See Figure 7). This means that the minimum encoder pulse width ( $\mathrm{T}_{\mathrm{e}}$ ) on each channel must be $\geq 3 T_{\text {CLK }}$, where TCLK is the period of the clock.
In the presence of noise, the filter will require that $3 T_{\text {CLK }}$ be less than $T_{e}$, since noise pulses will interrupt the required three consecutive constant level samples necessary for the filter to accept a new input level. In general, the types of noise that this filter will deal with will derive from the rotating system, i.e., motor noise, capacitively coupled level changes from other encoder channels, etc. As such, these noise sources will be periodic in nature and proportional to the encoder frequency. Design for noise of this type is discussed later in the "Filter Optimization" section.


In addition to problems with noise, other common signal problems enter into the determination of the maximum $\mathrm{T}_{\text {CLK }}$ for each application. The following quadrature signal aberrations can all be accounted for by designing with short enough TCLK to accommodate the reduction of the effective encoder pulse width:

1) non-ideal encoder rise and fall times,
2) asymmetric pulses,
3) short (< 180 electrical degrees) pulses.

Designing for these non-ideal signals is discussed later in the "Filter Optimization" section.

## QUADRATURE DECODER

The Quadrature Decoder section samples the outputs from the CHA and CHB filters. Sampling occurs on the rising clock edge. The Decoder Section observes changes in these outputs, and, on the rising clock edge, it outputs two signals to the position counter. These signals specify when to count and in which direction (up or down).
Encoder state changes are detected by comparing the previous sampled state to the current sampled state. If the two are different, the counter section is signaled to count on the next rising clock edge. Count direction (up or down) is also determined by observing the previous and current states, as shown in the quadrature state transition diagram (figure 8). An illegal state transition, caused by a faulty encoder or noises severe enough to pass the filter, will produce a count but in an undefined direction.

The second constraint on the relationship between TCLK and the input quadrature signal, as previously mentioned in the "Digital Filter" section, is the requirement by the $4 x$ decoder for at least one positive clock transition to occur during each quadrature state to detect the state. This constraint is satisfied if: $T_{\text {es }}>T_{\text {CLK }}$, where $T_{\text {es }}$ is the time interval corresponding to the shortest state width at the maximum system velocity.

The combination of the following two errors must be examined in light of the minimum state width constraint to ensure proper operation of the decoder section:

1) Phase shift deviations from 90 electrical degrees between the CHA and CHB signals;
2) Pulse width errors resulting in $T_{e}$ shorter than 180 electrical degrees in either or both CHA and CHB.

Design for these conditions is discussed in the "Filter Optimization" section.


| CHA | CHB | STATE |
| :---: | :---: | :---: |
| 1 | 0 | 1 |
| 1 | 1 | 2 |
| 0 | 1 | 3 |
| 0 | 0 | 4 |



Figure 8. Elements of 4x Quadrature Decoding

## POSITION COUNTER

This section consists of a 12-bit binary up/down counter which counts on rising clock edges as specified by the Quadrature Decode Section. All twelve bits of data are passed to the position data latch. The system can use this count data in three ways:
A. System total range is $\leq 12$ bits, so the count represents "absolute" position.
B. The system is cyclic with $\leq 12$ bits of count per cycle, $\overline{\mathrm{RST}}$ is used to reset the counter every cycle, and the system uses the data to interpolate within the cycle.
C. System count is $>12$ bits, so the count data is used as a relative or incremental position input for a system computation of absolute position.
In case C above, counter rollover occurs. In order to prevent loss of position information, the processor must read the outputs of the HCTL-2000 at intervals shorter than 512 times the minimum encoder line period. This minimum line period ( $T_{\text {elp }}$ ) corresponds to the maximum encoder velocity of the design. Two's complement arithmetic is normally used to compute position from these periodic position updates.

## POSITION DATA LATCH

This section is a 12 -bit latch which captures the position counter output data on each rising clock edge, except when its inputs are disabled by the inhibit logic section during two-byte read operations. The output data is passed to the bus interface section. The latch is cleared asynchronously by the $\overline{R S T}$ signal. When active, a signal from the inhibit logic section prevents new data from being captured by the latch, keeping the data stable while successive byte-reads are made through the bus interface section.

## BUS INTERFACE

The bus interface section consists of a 16 to 8 line multiplexer and an 8 bit, three-state output buffer. The multiplexer allows independent access to the low and high bytes
of the position data latch output. Since the latch is only twelve bits wide, the upper four bits of the high byte are internally set to zero. The SEL and $\overline{O E}$ signals determine which byte is output and whether or not the output bus is in the high-Z state, respectively.

## INHIBIT LOGIC

The Inhibit Logic Section samples the $\overline{O E}$ and SEL signals on the falling edge of the clock and, in response to certain conditions (see Figure 9 below), inhibits the position data latch. The $\overline{\mathrm{RST}}$ signal asynchronously clears the inhibit logic, enabling the latch.

| STEP | SEL | OE | CLK | INHIBIT <br> SIGNAL | ACTION |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | $L$ | $L$ | $L$ | 1 | SET INHIBIT; READ HIGH BYTE |
| 2 | $H$ | $L$ | $L$ | 1 | READ LOW BYTE; STARTS RESET |
| 3 | $X$ | $H$ | $L$ | 0 | COMPIETES INHBBIT LOGIC RESET |

Figure 9. Two Byte Read Sequence

While the HCTL-2000 can be used with any microprocessor, the Bus Interface and Inhibit Logic sections have been optimized for use with microprocessors similar to the Motorola 6801. The 6801 has a double-byte fetch instruction (LDD) which produces two consecutive fetch cycles on the bus. In the correct interface configuration, the first cycle inhibits the position data latch and reads the high data byte, and the second cycle reads the low byte and resets the inhibit logic. A version of this configuration is illustrated in Figure 14.


Figure 10. Simplified Inhibit Logic

## Filter Optimization

System design with the HCTL-2000 will require the user to optimize its clock period for encoding errors and line noise on the CHA and CHB inputs. In the absence of noise this optimization is simplified. The critical encoding errors, minimum pulse width and minimum state width, occur at the maximum designed system operating velocity. Input noise can be caused by motor electromagnetic interference, channel cross coupling, etc. The HCTL-2000 input filter interacts with encoding errors and noise to form the major system design constraints. This section will illustrate system design techniques and will present guidelines useful in implementing the HCTL-2000.

The discussion that follows will make use of the definitions listed below:

$$
\left.\begin{array}{rl}
\mathrm{T}_{\mathrm{nf}}= & \begin{array}{l}
\text { The fundamental period character- } \\
\text { istic of a periodic noise source }
\end{array} \\
\mathrm{T}_{\mathrm{CLK}}= & \text { Period of HCTL-2000 clock input } \\
& \text { signal }
\end{array}\right\}
$$

## ENCODING ERRORS

Design for quadrature signal errors proceeds as follows for an ideal quadrature signal, i.e. all errors $=0$ :

$$
\begin{align*}
\mathrm{T}_{\text {elp }}= & 360^{\circ} \mathrm{e}=\text { defined as one electrical }  \tag{1}\\
& \text { cycle in electrical degrees } \\
\mathrm{T}_{\mathrm{e}}= & 1 / 2 \mathrm{~T}_{\text {elp }}=180^{\circ} \mathrm{e} \text { ideal pulse }  \tag{2}\\
\quad & \text { width }
\end{aligned} \quad \begin{aligned}
\mathrm{T}_{\text {es }}= & 1 / 4 \mathrm{~T}_{\text {elp }}=1 / 2 \mathrm{~T}_{\mathrm{e}}=90^{\circ} \mathrm{e} \text {, ideal } \\
& \text { state width } \tag{3}
\end{align*}
$$

In a real system there are quadrature signal errors, where these errors are:

$$
\left.\begin{array}{rl}
\Delta \mathrm{P}= & \text { Maximum encoder pulse width } \\
& \text { error in }{ }^{\circ} \mathrm{e}, \text { as a deviation from the } \\
& \text { ideal pulse width of } 180^{\circ} \mathrm{e}
\end{array}\right\}
$$

The worst cases for pulse width and state width errors in terms of time intervals will occur at the maximum designed system operating velocity. These errors are typically available from encoder manufacturer's data sheets.

$$
\begin{align*}
& T_{\text {elpmin }}=\frac{K 1}{(\mathrm{RPM})(\mathrm{N})}  \tag{4}\\
& \mathrm{T}_{\text {emin }}=\left(\frac{180-|\Delta \mathrm{P}|}{360}\right) \mathrm{T}_{\text {elpmin }}  \tag{5}\\
& \mathrm{T}_{\text {esmin }}=\left(\frac{90-|\Delta \mathrm{S}|}{360}\right) \mathrm{T}_{\text {elpmin }} \tag{6}
\end{align*}
$$

## NOISE

In the absence of noise, the system design reduces to case A in Table 6. In the presence of noise, cases B through E describe the types of noise for which the above filters are effective. Normal techniques for reducing noise on CHA and CHB inputs may be required to reduce this noise to a level that can be handled by the input filters.
Noise that can be filtered by the HCTL-2000 input filters is noise where $T_{n f}>T_{e s m i n}$ and $T_{m n}<2 T_{\text {CLK }}$. This noise can be subdivided into four categories, each having different design constraints. These categories are differentiated by the pulse width of noise on the individual encoder channels.

Dependant channel noise, as below in case B and C in Table 6, is noise where the superposition of noise from both encoder channels does not display a period shorter than the minimum state width:

$$
T_{n f}>T_{\text {esmin }}
$$

The graphic analysis of the effect of this type of noise upon the filter operation is illustrated in Figure 11.


Figure 11. Noise is Encoder Channel Dependent

Independant channel noise, as in case D and E in Table 6 , is such that the noise on each channel is independant of the noise on the other channel. The period of the noise on each channel must satisfy the condition:

$$
T_{n f}>T_{\text {esmin }}
$$

independantly. The graphic analysis of the effect of this type of noise on the filter operation is illustrated in Figure 12.

*Signal after Internal Input Filter
Figure 12. Noise is Encoder Channel Independent
The set of design rules that are presented in Table 6 can be derived by examination of Figures 11 and 12, and the following constraints:
a) The encoder output signals must stay at a logic level for a minimum of three consecutive clock pulses before the HCTL-2000 recognizes the logic level change: $\mathrm{T}_{\text {emin }}>3 \mathrm{~T}_{\text {CLK }}$.
b) After acceptance by the HCTL-2000 input filtering section, a state must exist for a minimum of TCLK to be recognized by the internal logic.
c) The minimum encoded pulse width must be greater than twice the minimum state width: $T_{\text {emin }}>2 T_{\text {esmin }}$.
d) The minimum clock period must be greater than 255 ns, which is the minimum clock period for which the HCTL-2000 is guaranteed to operate over the entire specified operating temperature range.

## FILTER DESIGN EXAMPLES

Given the above rules, we can calculate the design parameters for a typical high performance motor loop as follows:

Where RPM $=3600 \mathrm{rev} / \mathrm{min}$.

$$
\begin{aligned}
\mathrm{N}= & 1000 \text { counts } / \mathrm{rev} . \\
\Delta \mathrm{P} & = \pm 48^{\circ} \mathrm{e} \\
\Delta \mathrm{~S} & = \pm 60^{\circ} \mathrm{e} \\
& \text { at } 60^{\circ} \mathrm{C}, 1 / \mathrm{T}_{\text {elpmin }}=60 \mathrm{kHz}
\end{aligned}
$$

Then the following calculation accounts for signal errors:

$$
\begin{aligned}
T_{\text {elpmin }} & =\left(\frac{\mathrm{K} 1}{(\mathrm{RPM})(\mathrm{N})}\right)=\frac{60}{(3600)(1000)} \text { from eq. } 4 \\
& =16667 \mathrm{~ns} \\
\mathrm{~T}_{\text {emin }} & =\left(\frac{180-|\Delta \mathrm{P}|}{360}\right) T_{\text {elpmin }} \\
& =\left(\frac{180-48}{360}\right)(16667 \mathrm{~ns}) \quad \text { from eq. } 5 \\
& =6111 \mathrm{~ns} \\
T_{\text {esmin }} & =\left(\frac{90-|\Delta \mathrm{S}|}{360}\right) T_{\text {elpmin }} \\
& =\left(\frac{90-60}{360}\right)(16667 \mathrm{~ns}) \quad \text { from eq. } 6
\end{aligned}
$$

If the noise is as in case $B$ of Table 6, we can use the above to evaluate the system.

For the condition of noise such that $T_{m n}<260 \mathrm{~ns}$ :

$$
\begin{gathered}
T_{\text {CLK }}>260 \mathrm{~ns} \\
255 \mathrm{~ns} \leq T_{\text {CLK }}<\frac{T_{\text {esmin }}}{4} \\
\frac{T_{\text {esmin }}}{4}=\frac{1389}{4}=347 \mathrm{~ns}
\end{gathered}
$$

Thus, $255 \mathrm{~ns} \leq \mathrm{T}_{\text {CLK }}<347 \mathrm{~ns}$
Similar calculations can be performed to design the filter for the specifics of each system.

Table 6. Summary of Filter Design Rules for the HCTL-2000

| Case | Noise Relationship | General Conditions | Pulse Width Constraint | Clock Period Design Criteria |
| :---: | :---: | :---: | :---: | :---: |
| A | No noise on CHA or CHB | $\mathrm{T}_{\text {emin }}>2 \mathrm{~T}_{\text {esmin }}$ | $\mathrm{T}_{\text {clk }}<\mathrm{T}_{\text {esmin }}$ | $255 \mathrm{~ns} \leq \mathrm{T}_{\text {ctk }}<(1 / 3) \mathrm{T}_{\text {emin }}$ |
| B | Superposition of noise on CHA or CHB | $\begin{gathered} T_{\text {esmin }}>T_{n f} \\ T_{\text {emin }}>2 T_{\text {esmin }} \end{gathered}$ | $\mathrm{T}_{\text {clk }}>\mathrm{T}_{\mathrm{mn}}>0$ | $255 \mathrm{~ns} \leq \mathrm{T}_{\text {clk }}<(1 / 4) \mathrm{T}_{\text {esmin }}$ |
| C | Superposition of noise on CHA or CHB | $\begin{gathered} T_{\text {esmin }}>T_{n f} \\ T_{\text {emin }}>2 T_{\text {esmin }} \end{gathered}$ | $2 \mathrm{~T}_{\text {clk }}>\mathrm{T}_{\mathrm{mn}} \geq \mathrm{T}_{\text {clk }}$ | $255 \mathrm{~ns} \leq \mathrm{T}_{\text {clk }} \ll(1 / 5) \mathrm{T}_{\text {esmin }}$ |
| D | Noise on CHA or on CHB independent of each other | $\begin{gathered} T_{\text {esmin }}>T_{n f} \\ T_{\text {emin }}>2 T_{\text {esmin }} \end{gathered}$ | $\mathrm{Tclk}>\mathrm{T}_{\mathrm{mn}}>{ }^{\circ} \mathrm{O}$ | 255 ns $\leq \mathrm{T}_{\text {clk }}<(1 / 5) \mathrm{T}_{\text {esmin }}$ |
| $E$ | Noise on CHA or on CHB Independent of each other | $\begin{gathered} \mathrm{T}_{\text {esmin }}>\mathrm{T}_{\mathrm{nf}} \\ \mathrm{~T}_{\text {emin }}>2 \mathrm{~T}_{\text {esmin }} \end{gathered}$ | $2 \mathrm{~T}_{\mathrm{ckk}}>\mathrm{T}_{\mathrm{mn}} \geq \mathrm{T}_{\mathrm{clk}}$ | $255 \mathrm{~ns} \leq \mathrm{T}_{\text {clk }}<(1 / 7) \mathrm{T}_{\text {esmin }}$ |

## Interfacing the HCTL-2000: General

The 12 bit latch and inhibit logic on the HCTL-2000 allows access to 12 bits of count with an 8 bit bus. When only 8 bits of count are required, a simple 8 bit ( 1 byte) mode is available by holding SEL high continously. This disables the inhibit logic. $\overline{O E}$ provides control of the tri-state bus, and read timing is per Figures 3 and 4.

For proper operation of the inhibit logic during a two-byte read, $\overline{O E}$ and SEL must be synchronous with CLK due to the falling edge sampling of $\overline{O E}$ and SEL.

The internal inhibit logic on HCTL-2000 inhibits the transfer of data from the counter to the position data latch during the time that the latch outputs are being read. The inhibit logic allows the microprocessor to first read the high order 4 bits from the latch and then read the low order 8 bits from the latch. Meanwhile, the counter can continue to keep track of the quadrature states from the CHA and CHB input signals.

Figure 10 shows a logic diagram of the inhibit logic circuit. The operation of the circuitry is illustrated in the read timing shown in Figure 13.


Figure 13. Internal Inhibit Logic Timing

## ACTIONS

1. On the rising edge of the clock, counter data is transferred to the position data latch, provided the inhibit signal is low.
2. When $\overline{\mathrm{OE}}$ goes low, the outputs of the multiplexer are enabled onto the data lines. If SEL is low, then the high order data bytes are enabled onto the data lines. If SEL is high, then the low order data bytes are enabled onto the data lines.
3. When the HCTL-2000 detects a low on $\overline{\mathrm{OE}}$ and SEL during a falling clock edge, the internal inhibit signal is activated. This blocks new data from being transferred from the counter to the position data latch.
4. When SEL goes high, the data outputs change from high byte to low byte.
5. The first reset condition for the inhibit logic is met when the HCTL-2000 detects a logic high on SEL and a logic low on $\overline{O E}$ during a falling clock edge.
6. When $\overline{O E}$ goes high, the data lines change to a high impedance state.
7. To complete the reset of the inhibit logic, after the first reset condition has been met, the HCTL-2000 needs to detect a logic high on $\overline{O E}$ during a falling clock edge.

## Interfacing the HCTL-2000 to a Motorola 6801

This interface method provides the minimum part count when the 6801 is operated in "MODE 5". A typical 6801 circuit is shown in Figure
14. In

Figure 14

address decoder can be eliminated if the HCTL-2000 is the only occupant of Port 4.
The processor clock output ( E ) is used to clock the HCTL2000 as well as the address decoder. One of the address decoder outputs drives the $\overline{\mathrm{OE}}$ input. This results in HCTL2000 counter data being enabled onto the bus whenever an external memory access is made to the HCTL-2000. This example assumes the address assigned to the HCTL-2000 high byte is an even address. The least significant address bit is connected to the SEL input. It determines which data byte is output. When AO on the decoder equals 0 the chip selects the high byte, and when AO equals 1 , the chip selects the low byte. This configuration allows the 6801 to read both data bytes with a single double-byte fetch instruction (LDD E, 01XX). The LDD instruction is a five cycle instruction which reads external memory location 01XX and stores the high order byte in accumulator $A$ and reads external memory location 01XX +1 and stores the low order byte in accumulator B during the last two cycles. Figure 15 illustrates the sequence of events during all five cycles.

Figure 14. A Circuit to Interface to the 6801


Figure 15. Interface Timing for the 6801 LDD E

## ACTIONS

1. $E$ is the microprocessor clock output. On the rising edge of $E$, if the internal inhibit is not active, then new data is transferred from the internal counter to the position data latch.
2. An even address output from the 6801 has caused SEL to go low. E goes high which causes the address decoder output for the HCTL-2000 $\overline{\mathrm{OE}}$ input to go low. This causes the HCTL-2000 to output the high byte of the position data latch.
3. The 6801 reads the data bus on the falling edge of $E$, storing the high order data byte in accumulator $A$. The chip detects that $\overline{O E}$ and SEL are low on the falling edge of $E$ and activates the internal inhibit signal. The position data latch is inhibited and data cannot be transferred from the internal counter to the latch.
4. $E$ is now low, so the address decoder output is disabled and $\overline{\mathrm{OE}}$ goes high. The 6801 increments the address, so SEL goes high. The position data latch is still inhibited.
5. The address decoder is enabled after E goes high; so $\overline{\mathrm{OE}}$ goes low and the low data byte is enabled onto the bus.
6. The 6801 reads the data bus on the falling edge of $E$, storing the low order data byte in accumulator B . The chip detects that $\overline{O E}$ is low and SEL is high on the falling edge of $E$, so the first inhibit-reset condition is met.
7. E is now low, so the address decoder is disabled, causing $\overline{O E}$ to go high and the data lines to go to the high impedence state. The 6801 continues its instruction execution, and the state of SEL is indeterminate.
8. The HCTL-2000 detects $\overline{\mathrm{OE}}$ is high on the next falling edge of $E$. This satisfies the second inhibit reset condition so the inhibit signal is reset.

## Interfacing the HCTL-2000 to an Intel 8748

The circuit in Figure 15 shows the connections between an HCTL-2000 and an 8748. Data lines D0-D7 are connected to the 8748 bus port. Bits 0 and 1 of port 1 are used to control the SEL and $\overline{O E}$ inputs of the HCTL-2000 respectively. T0 is used to provide a clock signal to the HCTL-2000. The frequency of TO is the crystal frequency divided by 3. TO must be enabled by executing the ENTO CLK instruction after each system reset, but prior to the first encoder position change. An 8748 program which interfaces to the circuit in Figure 16 is given in Figure 17. The resulting interface timing is shown in Figure 18.


Figure 16. An HCTL-2000 to Intel 8748 Interface

| LOC | OBJECT <br> CODE | SOURCE STATEMENTS |  |
| :--- | :--- | :--- | :--- |
| 000 | 9900 | ANL P1, OOH | ENABLE OUTPUT AND OUTPUT HIGHER ORDER BITS |
| 002 | 08 | INS A, BUS | LOAD HIGHER ORDER BITS INTO ACC |
| 003 | A8 | MOVE RO A | MOVE DATA TO REGISTER 0 |
| 004 | 8903 | ORL P1, 01H | CHANGE DATA FROM HIGH ORDER TO LOW ORDER BITS |
| 006 | 08 | INS A, BUS | LOAD ORDER BITS INTO AC |
| 008 | A9 | MOV R1, A | MOVE DATA TO REGISTER 1 |
| 009 | 8903 | ORL P1, 03H | DISABLE OUTPUTS |
| $00 B$ | 93 | RETR | RETURN |

Figure 17. A Typical Program for Reading HCTL-2000 with an 8748


Figure 18. 8748 READ Cycle from Figure 14.

## ACTIONS

1. ANL P1, 00 H has just been executed. The output of bits 0 and 1 of Port 1 cause SEL and $\overline{O E}$ to be logic low. The data lines output the higher order byte.
2. The HCTL-2000 detects that $\overline{O E}$ and SEL are low on the next falling edge of the CLK and asserts the internal inhibit signal. Data can be read without regard for the phase of the CLK.
3. INS A, BUS has just been executed. Data is read into the 8748.
4. ORL PORT $1,01 \mathrm{H}$ has just been executed. The program sets SEL high and leaves $\overline{O E}$ low by writing the correct values to port 1. The HCTL-2000 responds by outputting the lower byte. The HCTL-2000 detects $\overline{O E}$ is low and SEL is high on the next falling edge of the CLK, and thus, the first inhibit-reset condition is met.
5. INS A, BUS has just been executed. Lower order data bits are read into the 8748.
6. ORL P1, 03 H has just been executed. The HCTL-2000 detects $\overline{\mathrm{OE}}$ high on the next falling edge of CLK. The program sets $\overline{O E}$ and SEL high by writing the correct values to port 1. This causes the data lines to be tristated. This satisfies the second inhibit-reset condition. On the next rising CLK edge new data is transferred from the counter to the position data latch.


#### Abstract

(-س <س,  ² ? $\qquad$   




## Bar Code Products

1986 brings with it a further expansion of Hewlett-Packard's bar code line in three widely diversified areas.
We have expanded our line of digital bar code wands again this year with the introduction of the HBCS-5XXX and HBCS-6XXX families of wands. These Low Current Digital Bar Code Wands are the latest technological advance from a company that invented the Digital Wand. Through sophisticated circuitry, these wands are able to provide superior performance while drawing less than 5 mA of current at 5 volts. Performance improvements include high ambient light rejection, including direct sunlight; a wider range of resolution choices; and a new sensor design specifically for reading thermally printed bar codes.
Of course, these wands continue to offer the other features you've come to expect from Hewlett-Packard wands: sealed, sapphire tips, wide scan angles, choice of case designs, and fully compatible digital outputs.


A totally new product for 1986 is HewlettPackard's Industrial Digital Slot Reader. This rugged scanner is designed specifically for reading bar codes printed on I.D. cards, badges, heavy paper stock, or traveller forms. It features a large slot width for handling even multiple laminated cards, a wide scan speed range, and a digital output that is compatible with wand decoding software.
Available in both an infrared ( 880 nm ) version and a visible red ( 660 nm ) version, the unit is housed in a black epoxy finished, metal case. The unique rear mounting system and tamper-proof design makes it ideal for use in security or industrial applications.
Finally, adding to our successful line of decoder IC's, is the new Multi-Purpose Decoder IC. This extraordinary device is designed specifically for the OEM who would rather not tie up valuable resources developing bar code decoding software. Packaged in a standard 40 pin DIP, the MultiPurpose Decoder IC accepts inputs from virtually all hand-held scanning devices, including handheld lasers and other solid state non-contact scanners. Now you have a way to simply and inexpensively add quality bar code decoding to your products and still retain the flexibility your customers require.
Look to Hewlett-Packard for performance products designed to meet the OEM's bar code needs!

Bar Code Wands

| Package Outline Drawing | Part No. | Description | Features | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | HBCS-5000 | Low Current Digital Bar Code Wand (with Switch) Resolution 0.33 mm | - Low Continuous Current Draw (Less Than 5 mA ) <br> - High Ambient Light Rejection <br> - 0 to $45^{\circ}$ Scan Angle <br> - Push to Read Switch for UItra Low Power Consumption <br> - Rugged Polycarbonate Case <br> - Sealed Sapphire Tip <br> - Full Line of Options Available | 2-6 |
|  | HBCS-5100 | Low Current Digital Bar Code Wand (without Switch) Resolution 0.33 mm |  |  |
|  | HBCS-5200 | Low Current Digital Bar Code Wand (with Switch) Resolution 0.19 mm |  |  |
|  | HBCS-5300 | Low Current Digital Bar Code Wand (without Switch) Resolution 0.19 mm |  |  |
|  | HBCS-5400 | Low Current Digital Bar Code Wand (with Switch) Resolution 0.13 mm |  |  |
|  | HBCS-5500 | Low Current Digital Bar Code Wand (without Switch) Resolution 0.13 mm |  |  |
|  | HBCS-6100 | Low Current Digital Bar Code Wand Resolution 0.33 mm | - Low Continuous Current Draw (Less Than 5mA) <br> - High Ambient Light Rejection <br> - 0 to $45^{\circ}$ Scan Angle <br> - Sealed Sapphire Tip <br> - Metal Case <br> - Full Line of Options Available | 2-6 |
|  | HBCS-6300 | Low Current Digital Bar Code Wand Resolution 0.19 mm |  |  |
|  | HBCS-6500 | Low Current Digital Bar Code Wand Resolution 0.13 mm |  |  |
|  | HBCS-2200 | Sapphire Tip Digital Bar Code Wand (with Switch) Resolution 0.19 mm | - Digital Output <br> - 0-45 scan angle <br> - Replaceable Sapphire Tip <br> - Internal Shielding <br> - Push-to-read switch available for Iow power applications <br> - Rugged Polycarbonate Case <br> - Full line of options available | 2-26 |
|  | HBCS-2300 | Sapphire Tip Digital Bar Code Wand (without Switch) Resolution 0.19 mm |  |  |
|  | HBCS-2400 | Sapphire Tip Digital Bar Code Wand (with Switch) Resolution 0.13 mm |  |  |
|  | HBCS-2500 | Sapphire Tip Digital Bar Code Wand (without Switch) Resolution 0.13 mm |  |  |
|  | HBCS-4300 | Industrial Digital Bar Code Wand Resolution 0.19 mm | - Digital Output <br> - 0-45 ${ }^{\circ}$ scan angle <br> - Replaceable Sapphire Tip | 2-32 |
| $\mathbb{I}$ $\square$ C) | HBCS-4500 | Industrial Digital Bar Code Wand Resolution 0.13 mm | - Full line of options available |  |

Package outline drawings not drawn to scale.

Bar Code Wands

| Package Outline Drawing | Part No. | Description | Features | Page No. |
| :---: | :---: | :---: | :---: | :---: |
|  | HEDS-3000 | Digital Bar Code Wand (with Switch) Resolution 0.3 mm | - Digital Output <br> - $0-30^{\circ}$ scan angle <br> - Replaceable Tip <br> - Internal Shielding available for improved electrical noise rejection <br> - Push-to-read switch available for low power applications <br> - Full line of options available | 2-38 |
|  | HEDS-3050 | Digital Bar Code Wand (Shielded) Resolution 0.3 mm |  |  |
|  | HEDS-3200 | Digital Bar Code Wand (with Switch) Resolution 0.19 mm |  | 2-44 |
|  | HEDS-3250 | Digital Bar Code Wand (Shielded) Resolution 0.19 mm |  |  |

## Component Level Bar Code Readers

| Package Outline Drawing | Part No. | Description | Features | $\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
|  $\square$ <br>  | HBCR-1000 HBCR-1022 HBCR-1024 HBCR-1025 <br> HBCR-1043 HBCR-1045 | Component Level Bar Code Reader with Sapphire Tip Wand <br> Component Level Bar Code Reader with Industrial Metal Wand | - Industry Standard Bar Codes <br> - Automatic Code Recognition <br> - Full Duplex Serial or Parallel ASCII Output <br> - Choice of High Performance Wands <br> - Single 5 Volt Supply | 2-18 |
|  | HBCR-2000 | Multi-Purpose Decoder IC | - Accepts Inputs from All Hand-Held Scanners, Including Lasers <br> - Largest Selection of Codes Available <br> - Automatic Code Recognition <br> - Serial ASCII Output <br> - Standard 40 Pin Package | 2-12 |
| 8 | HBCS-7000 | Industrial Digital <br> Slot Reader, Visible Red, Resolution 0.19 mm | - 125 Mil Slot Width <br> - Epoxy Finished Metal Housing <br> - Wide Scan Speed Range <br> - Tamper Proof Design | 2-68 |
| 0 0 <br> 0 0 <br> 0 0 <br> 0  | HBCS-7001 | Optics/Electornics Module, Visible Red, Resolution 0.19 mm |  |  |
|  | HBCS-7100 | Industrial Digital Slot Reader, Infra-Red, Resolution 0.19 mm |  |  |
| 0 0 0 <br> 0 0  <br> 0   | HBCS-7101 | Optics/Electronics Module, Infra-Red, Resolution 0.19 mm |  |  |

## Optical Reflective Sensors

| Package Outline Drawing | Part No. | Description | Features | $\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\qquad$ | HBCS-1100 | High Resolution Optical Reflective Sensor | - 0.19 mm spot size <br> - Fully Specified and Guaranteed for Assured Performance <br> - Visible Light Source can Detect Most Colors <br> - Photo IC Detector Optimizes Speed and Response <br> - Standard To-5 Header | 2-52 |

## Bar Code Readers

| Package Outline Drawing | Part No. | Description | Features | Page No. N |
| :---: | :---: | :---: | :---: | :---: |
|  | 16800A | Programmable <br> Bar Code <br> Reader | - Flexible Configuration <br> - All Standard Industrial and Commercial Bar Codes Supported <br> - Choice of High Performance, Rugged Wands <br> - Computer Control and Simple Operator Feedback (16800A only) <br> - Internal Power Supply <br> - Meet UL, CSA, FCC Class B, VDE Level B | 2-58 |
|  | 16801A | Non-Programmable <br> Bar Code <br> Reader |  |  |

TECHNICAL DATA JANUARY 1986

## Features

- ULTRA LOW CONTINUOUS CURRENT DRAIN - Less Than 5 mA
- HIGH AMBIENT LIGHT REJECTION
- Operates in Direct Sunlight
- AVAILABLE IN THREE RESOLUTIONS TO MEET A VARIETY OF SCANNING NEEDS
- VISIBLE RED ( 655 nm ) AND INFRARED ( 820 nm ) VERSIONS FOR READING A WIDE RANGE OF PRINTING TYPES AND COLORS
- SCAN ANGLE 0 to 45 DEGREES
- AVAILABLE IN EITHER HIGH IMPACT POLYCARBONATE OR INDUSTRIAL METAL HOUSINGS
- OPERATING TEMPERATURE $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
- SEALED REPLACEABLE SAPPHIRE TIP
- Provides Protection from Contamination Due to Dirt and Debris
- DIGITAL OUTPUT
- Open Collector Output Compatible with TTL and CMOS Logic
- SINGLE 5 VOLT SUPPLY


## Description

Hewlett-Packard's Low Current Digital Bar Code Wands are hand-held scanners optimized to provide excellent reading of all common bar code formats. The wands contain an optical sensor with a 655 nm visible red or an 820 nm infrared LED; a photodetector IC; and precision aspheric optics. The internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces.
Available in a choice of three resolutions, these wands have been designed to cover a wide range of bar code printing. The general purpose resolution wands, with their 0.19 mm ( 0.0075 in .) spot size, are excellent choices for reading a wide range of bar code symbols. For reading very high density symbols, the high resolution wands with a 0.13 mm ( 0.005 in .) spot size, are the appropriate choice. For lower resolution or poorly printed dot matrix symbols, the low resolution wands have a spot size of 0.38 mm ( 0.13 in .) to help reject extraneous spots and voids.

All of the wands have a special circuit design that provides for extremely low current drain (less than 5 mA ) with continuous operation. This makes them ideal for use on battery powered systems where low power drain will extend battery life. These wands also have excellent ambient light rejection, allowing full operation in direct sunlight.
All of HP's Low Current Digital Bar Code Wands are FCC and VDE approved. They feature a shield for maximizing immunity to electrostatic discharge (ESD), electromagnetic interference (EMI) and ground loops. The shield is also designed to eliminate noise from capacitively coupled inputs.
The standard wand configuration includes a strain relieved coiled cord, which has a comfortable extended length of 190 cm ( 75 in .). Maximum length is 250 cm ( 100 in .). The standard connector on the polycarbonate wands is a 5 pin, 240 degree DIN connector. On the metal wands the standard connector is a $5 \mathrm{pin}, 240$ degree DIN connector with metal locking ring.

## Applications

The digital bar code wand is a highly effective alternative to keyboard data entry. Bar code scanning is faster and more accurate than key entry and provides far greater throughput. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than optical character recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement, and immunity to electromagnetic fields.
Hewlett-Packard's Low Current Digital Bar Code Wands are especially designed for battery powered applications where low power drain is a primary concern. With continuous current draws of less than 5 mA , these wands can be used on battery powered systems without sacrificing battery life or requiring special "strobing" circuits. They are also ideal for AC powered systems where conventional wand current drains may require an increased power supply design.

In addition to their low current drain, these wands are also designed to work in high ambient light, such as outdoors or near large windows. This feature is extremely useful in applications such as inventory control on receiving docks, automobile tracking outdoors and check-out stands outdoors or near large store front windows.
Because the low resolution and the general purpose resolution wands use an emitter wavelength of 655 nm , they are extremely versatile in the range of printing type and colors that they will read, including thermal printing and dot matrix printing.
Available in either a light weight polycarbonate case or a rugged metal case, these wands are excellent choices for both light industrial and commercial applications, or heavy industrial and LOGMARS applications.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal Narrow Element Width HBCS-5000/5100/6100 |  | 0.33 (0.013) |  | mm (in.) |  |
| HBCS-5200/5300/6300 |  | 0.19 (0.0075) |  | mm (in.) |  |
| HBCS-5400/5500/6500 |  | 0.13 (0.005) |  | mm (in.) |  |
| Scan Velocity | $V_{\text {SCAN }}$ | 7.6 (3) | 127 (50) | $\mathrm{cm} / \mathrm{sec}(\mathrm{in} / \mathrm{sec}$ ) |  |
| Contrast | $\mathrm{R}_{\text {W }}-\mathrm{R}_{\mathrm{B}}$ | 45 |  | \% | 1 |
| Supply Voltage | $V_{S}$ | 4.5 | 5.5 | Volts | 2 |
| Temperature | $\mathrm{T}_{\text {A }}$ | -20 | +65 | ${ }^{\circ} \mathrm{C}$ |  |
| Ambient Light | Ev |  | 100,000 | lux | 3 |
| Tilt Angle | (See Figure 2) |  |  |  |  |
| Orientation | (See Figure 3) |  |  |  |  |

## NOTES:

1. Contrast is defined as $R_{W}-R_{B}$ where $R_{W}$ is the reflectance of the white spaces and $R_{B}$ is the reflectance of the black bars, measured at the emitter wavelength ( 655 nm or 820 nm ). Contrast is related to print contrast signal (PCS) by PCS $=\left(R_{W}-R_{B}\right) / R_{W}$ or $R_{W}-R_{B}=$ PCS* ${ }_{W}$.
2. Power supply ripple and noise should be less than 100 mV peak to peak.
3. Ambient light sources can be diffuse tungsten, sodium, mercury, fluorescent, sunlight, or a combination thereof.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $T_{S}$ | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature | $T_{A}$ | -20 | +65 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | $V_{S}$ | -0.5 | +6.00 | V |  |
| Output Transistor Power | $\mathrm{PT}_{\text {I }}$ |  | 150 | mW |  |
| Output Collector Voltage | $\mathrm{V}_{0}$ | -0.5 | +20 | V |  |

## Electrical Operation

The HBCS-5XXX/6XXX family of digital bar code wands consists of a precision optical sensor and an electronic circuit that creates a digital output of the bar code pattern. The open collector transistor requires only a pull-up resistor to provide a TTL compatible output from a single 4.5 V to 5.5 V DC power supply.

A non-reflecting black bar results in a logic high (1) level output, while a reflecting white space will cause a logic low (0) level output (see Figure 1). The initial state will be indeterminate. However, if no bar code is scanned, after a short period (typically less than 1 second), the wand will assume a logic low state. This feature insures that the first bar will not be missed in a normal scan.

The wands provide a case, cable and connector shield which must be terminated to logic ground or, preferably, to both logic ground and earth ground. The shield is connected to the metal housing of the 5 pin DIN connector.
All standard HP Low Current Digital Bar Code wands are certified to meet FCC Class B and VDE Level B standards. The shield must be properly terminated in order to maintain these approvals and to keep the cable from acting as an antenna, injecting electrical noise into the wand circuitry. Grounding the shield will also provide a substantial improvement in EMI/ESD immunity.
The recommended logic interface for the wands is shown in Figure 5. This interconnection provides the maximum ESD protection for both the wand and the user's electronics.

Electrical Characteristics

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current | Is |  | 3.5 | 5.0 | mA | $\mathrm{V}_{\mathrm{S}}=5.0 \mathrm{~V}$ | 4,5 |
| High Level Output Current | 1 OH |  |  | 1.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ |  |
| Low Level Output Voltage | VOL |  |  | 0.4 | V | $\mathrm{I}^{\prime} \mathrm{OL}=16 \mathrm{~mA}$ |  |
| Output Rise Time | $\mathrm{tr}_{r}$ |  | 3.4 | 20 | $\mu \mathrm{S}$ | 10\%-90\% | 6 |
| Output Fall Time | $t_{f}$ |  | 1.2 | 20 | $\mu \mathrm{s}$ | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$ | 6 |
| Switch Bounce HBCS-5000/5200/5400 | tsb |  | 0.5 | 5.0 | ms |  | 7 |
| Electrostatic Discharge Immunity | ESD |  | 25 |  | kV |  | 8 |
| Wake-Up Time | $t_{w}$ |  | 50 | 200 | ms |  | 9 |

## NOTES:

4. Push-to-read switch (if applicable) is depressed.
5. Not including pull-up resistor current.
6. See Figure 1.
7. Switch bounce causes a series of sub-millisecond pulses to appear at the output $\left(\mathrm{V}_{\mathrm{O}}\right)$.
8. Shield must be properly terminated (see Figure 9). The human body is modeled by discharging a 300 pF capacitor through a $500 \Omega$ resistor. No damage to the wand will occur at the specified discharge level.
9. After this time, the wand is operational.


Figure 1. Typical Output Waveform

## Depth of Field

Hewlett-Packard Digital Bar Code Wands are designed for contact scanning. However, it is possible to read through some overlay or covering material depending on the thickness of the material and the angle at which the wand is held. Figure 2 shows the relationship between tilt angle and depth of field.

## Testing

All Hewlett-Packard Digital Bar Code Wands are 100\% tested for performance and digitizing accuracy after manufacture. This insures you of the consistent quality product you expect from HP. More information about our test procedures, test set-up, and test limits are available upon request.

## Selection and Application Guide

|  | $\begin{gathered} \text { HBCS } \\ 5000 \end{gathered}$ | $\begin{gathered} \text { HBCS } \\ 5100 \end{gathered}$ | $\begin{gathered} \text { HBCS } \\ 5200 \end{gathered}$ | $\begin{gathered} \text { HBCS } \\ 5300 \end{gathered}$ | $\begin{gathered} \text { HBCS } \\ 5400 \end{gathered}$ | $\begin{gathered} \text { HBCS } \\ 5500 \end{gathered}$ | $\begin{aligned} & \text { HBCS } \\ & 6100 \end{aligned}$ | $\begin{aligned} & \text { HBCS } \\ & 6300 \end{aligned}$ | $\begin{gathered} \text { HBCS } \\ 6500 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wavelength ( nm ) | 655 | 655 | 655 | 655 | 820 | 820 | 655 | 655 | 820 |
| Nominal Narrow Element Width ( mm ) <br> (inch) | $\begin{gathered} 0.33 \\ 0.013 \end{gathered}$ | $\begin{gathered} 0.33 \\ 0.013 \end{gathered}$ | $\begin{gathered} 0.19 \\ 0.0075 \end{gathered}$ | $\begin{gathered} 0.19 \\ 0.0075 \end{gathered}$ | $\begin{gathered} 0.13 \\ 0.005 \end{gathered}$ | $\begin{gathered} 0.13 \\ 0.005 \end{gathered}$ | $\begin{gathered} 0.33 \\ 0.013 \end{gathered}$ | $\begin{gathered} 0.19 \\ 0.0075 \end{gathered}$ | $\begin{gathered} 0.13 \\ 0.005 \end{gathered}$ |
| Case Material Polycarbonate Metal | X | X | X | X | X | $x$ | X | X | X |
| Switch | Yes | No | Yes | No | Yes | No | No | No | No |
| Will Read Bar Codes Printed Using: <br> Regular Thermal Paper Dye-Based Inks Carbon Based Inks (Note 10) Colors (Note 11) | Yes <br> Yes <br> Yes <br> Yes | No <br> No Yes No | No <br> No <br> Yes <br> No | Yes <br> Yes <br> Yes <br> Yes | Yes <br> Yes <br> Yes <br> Yes | No <br> No <br> Yes <br> No |
| Best Choice For: <br> Widest Range of Bar Code Printing Highest Resolution Printing Low Resolution or Poor Quality Printing | $x$ | X | X | X | X | X | X | X | $x$ |

## NOTES:

10. For "black-on-black" bar codes, use the infrared ( 820 nm ) wands only.
11. For color bar codes the background (spaces) should reflect red light, and the bars should absorb red light.

## Certification

FCC Certification (USA Only)

| Model | FCC Identification |
| :---: | :---: |
| HBCS-6100 through -61XX | FCC ID: CUP6Z9HBCS-6100 <br> HEWLETT-PACKARD |
| HBCS-6300 through -63XX | FCC ID: CUP6Z9HBCS-6300 <br> HEWLETT-PACKARD |
| HBCS-6500 through -65XX | FCC ID: CUP6Z9HBCS-6500 <br> HEWLETT-PACKARD |
| HBCS-5000 through -5XXX | FCC ID: CUP6Z9HBCS-5000 <br> HEWLETT-PACKARD |
| HBCS-5100 through -51XX | FCC ID: CUP6Z9HBCS-5100 <br> HEWLETT-PACKARD |
| HBCS-5200 through -52XX | FCC ID: CUP6Z9HBCS-5200 <br> HEWLETT-PACKARD |
| HBCS-5300 through -53XX | FCC ID: CUP6Z9HBCS-5300 <br> HEWLETT-PACKARD |
| HBCS-5400 through -54XX | FCC ID: CUP6Z9HBCS-5400 <br> HEWLETT-PACKARD |
| HBCS-5500 through -55XX | FCC ID: CUP6Z9HBCS-5500 <br> HEWLETT-PACKARD |

This equipment generates radio frequency energy and if not installed and used properly, may cause interference to radio and television reception. It has been type tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart $J$ of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference, However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the wand with respect to the receiver
- Move the wand away from the receiver

If necessary, the user should consult the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet prepared by the Federal Communications Commission helpful: "How to Identify and Resolve Radio-TV Interference Problems". This booklet is available from the U.S. Government Printing Office, Washington, D.C. 20422, Stock No. 004-00345-4.

## Interface



NOTES:

1. DIMENSIONS IN MILLIMETRES AND (INCHES).

| PIN | WIRE COLOR |  |
| :--- | :--- | :--- |
| 1 | RED | FUNCTION |
| 2 | WHITE | VS SUPPLY VOLTAGE |
| 3 | BLACK | VO OUTPUT |
| 4 | N/A | GROUND |
| 5 | N/A | N/C |
| CASE | - | N/C |
|  |  | SHIELD (MUST BE |
|  |  | CONNECTED) |

Figure 4. Connector Specifications.

${ }^{\circledR}$ TRANSZORB IS A REGISTERED TRADEMARK OF GENERAL SEMICONDUCTOR INDUSTRIES. TEMPE AZ.

Figure 5. Recommended Logic Interface (When earth ground is not available, connect shield to logic ground, as shown by dotted line).

The wands include a standard $5 \mathrm{pin}, 240^{\circ}$ DIN connector. The detailed specifications and pin-outs are shown in Figure 4. Mating connectors are available from RYE Industries and SWITCHCRAFT in both 5 pin and 6 pin configurations. These connectors are listed below.

| Connector | Configuration |
| :--- | :---: |
| RYE MAB-5* | 5 Pin |
| SWITCHCRAFT 61GA5F |  |
| SWITCHCRAFT 61HA5F | 5 Pin |
| RYE MAB-6* | 5 Pin |
| SWITCHCRAFT 61HA6F | 6 Pin |

*Suitable for non-locking connector only.

## Maintenance Considerations

There are no user serviceable parts inside the wand. The tip is designed to be easily replaceable, and if damaged it should be replaced. Before unscrewing the tip, disconnect the wand from the system power source. The part number for the wand tip is HBCS-2999 for the HBCS-5XXX family and HBCS-4999 for the HBCS-6XXX family. The tips can be ordered from any Hewlett-Packard authorized distributor.

## Optional Features

For options such as special cords, connectors or labels, contact your nearest Hewlett-Packard sales office or authorized representative.

## Wand Dimensions



HBCS-50/52/5400


Figure 6A. HBCS-2999 Sapphire Tip


## Features

- IDEAL FOR HAND SCANNING APPLICATIONS AND MANY AUTOMATED SCANNING APPLICATIONS
- COMPATIBLE WITH THE SCANNERS NEEDED FOR VIRTUALLY ALL HAND-HELD SCANNING APPLICATIONS
- Laser Scanners
- Wands
- Slot Readers
- WIDE SELECTION OF INDUSTRY STANDARD BAR CODES SUPPORTED
- Code 39 (3 of 9 Code)
- Extended Code 39
- Interleaved 2 of 5 Code
- UPC/EAN/JAN Codes
- Codabar (NW7 Code)
- Code 128
- AUTOMATIC CODE RECOGNITION
- FULL DUPLEX SERIAL ASCII INTERFACE
- EXTENSIVE CONFIGURATION CONTROL THROUGH SOFTWARE COMMANDS
- STANDARD 40 PIN DIP PACKAGE
- AUDIO AND VISUAL FEEDBACK CONTROL
- SINGLE 5 VOLT SUPPLY


## Description

Hewlett-Packard's HBCR-2000 Multipurpose Bar Code Decoder IC offers a flexible bar code decoding capability designed to give OEMs the ability to address a large number of industry segments and applications. The decoder IC's flexibility is made possible through sophisticated software which allows the IC to accept data input from a wide variety of digital scanners and to decode the most popular bar code symbologies with full automatic code recognition. Implèmentation of the decoder IC is easy since it requires only a few supporting chips and provides a standard interface to the host.

The HBCR-2000 is compatible with the scanners needed for virtually all hand scanning applications. Specifically, it is compatible with moving-beam laser scanners such as the Symbol Technologies' LS7000, Symbol Technologies' LS7000 II, and Spectra Physics' SP2001; fixed-beam noncontact scanners; Hewlett-Packard digital wands; and Hewlett-Packard digital slot readers.


The decoder IC is also an excellent decoding solution for a number of the stationary scanning applications found in automated systems. In this case, the scan rates for movingbeam applications must be similar to the scan rates for most hand-held laser scanners (35-45 scans/second) and the scan speeds for fixed-beam applications must be similar to the scan speeds for wands and slot readers. For moving beam applications, it is also important for the scanner to utilize the three laser control lines on the IC.

The standard decoder IC supports the bar code symbologies now being used for most applications in the industrial, retail, commercial, government, and medical markets. The bar codes supported are: Code 39 ( 3 of 9 Code), Extended Code 39, Interleaved 2 of 5 Code, UPC/EAN/JAN Codes, Codabar (NW7 Code) and Code 128. If more than one code is enabled, the decoder IC will automatically recognize and decode the code being scanned. Bi-directional scanning is allowed for all codes except UPC/EAN/JAN codes with supplemental digits.
The HBCR-2000 communicates with the host through a flexible, full duplex serial ASCII interface. OEMs may choose either to convert this interface to a standard data communications protocol such as RS-232-C/N. 24 or to connect the decoder IC directly to another microprocessor for data processing or data re-formatting. Operator feedback is supported through pins that allow for external LED drive and beeper drive circuits. In addition, there are 21 programmable functions covering items from laser redundancy check to the tone of the beeper.

## Applications

Bar codes are rapidly becoming a preferred alternative to other forms of data entry. Bar coding has proven faster and more accurate than keyboard data entry. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than optical character recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement and immunity to electromagnetic fields.
Manufacturers of data collection terminals, point-of-sale terminals, keyboards, weighing scales, automated test equipment and other data collection or material handling equipment are finding a growing demand for bar code reading capability in their products. The HBCR-2000 Multipurpose Bar Code Decoder IC makes it easy to add bar code reading capability for a wide variety of applications without the need to invest in the development of bar code decoding software.

## Decoder IC Specifications

## GENERAL INFORMATION

The HBCR-2000 is an NMOS decoding IC in a 40 pin Dual In-Line package. When configured in a system, the HBCR2000 requires a crystal and an external 1K byte RAM. The external RAM may be implemented using either a multiplexed RAM chip (Intel 8185 or equivalent) or a nonmultiplexed RAM chip and a latch chip (Mostek MK4801 or equivalent and 74LS373). The recommended crystal frequency is 11.059 MHz (CTS Knights R1032-6BA.11.059 or equivalent).
The decoder IC is designed to interface with most standard microprocessors or other host systems through a full duplex serial asynchronous ASCII port. It offers complete compatibility with Hewlett-Packard digital wands and digital slot readers as well as hand-held laser scanners from both Spectra Physics, Inc. and Symbol Technologies, Inc. Other scanners, such as hand-held fixed-beam non-contact scanners and the scanners used in some stationary scanning applications, may also be used with the IC.

## Performance Features

## BAR CODES SUPPORTED

The HBCR-2000 decoder IC is capable of reading six popular bar code symbologies: Code 39 (3 of 9 Code), Extended Code 39, Interleaved 2 of 5 Code, UPC/EAN/JAN Codes, Codabar (NW7 Code), and Code 128.
Code 39, an alphanumeric code, and Extended Code 39, a full 128 character ASCII version of Code 39, may be read bi-directionally for message lengths up to a maximum of 32 characters. An optional check character may be used with these codes, and the decoder IC may be configured to verify this character prior to data transmission. Enabling Extended Code 39 will disable standard Code 39 as the two are mutually exclusive.
The Interleaved 2 of 5 Code, a compact numeric only bar code, may also be read bi-directionally for message lengths from 4 to 32 characters. To enhance data accuracy, optional check character verification and/or label length checking may be enabled.

All popular versions of the UPC, EAN, and JAN bar codes may be read bi-directionally, including UPC-A, UPC-E, EAN-8, EAN-13, JAN-8, and JAN-13. All codes may be enabled simultaneously or only the UPC codes may be enabled. UPC, EAN, and JAN symbols with complementary two digit or five digit supplemental encodations, or "addons", may also be read.
Codabar, a numeric only bar code with special characters, may be read bi-directionally for message lengths up to a maximum of 32 characters. The start and stop characters in the symbol are normally transmitted, but transmission of these characters may be disabled through a software command.
Code 128, a compact full ASCII bar code, may also be scanned bi-directionally for message lengths up to a maximum of 32 characters.
Automatic code recognition is provided for the Interleaved 2 of 5 Code, UPC/EAN/JAN Codes, Codabar, Code 128, and either Code 39 or Extended Code 39. Any subset of these codes may be selected for decoding. The decoder IC's default setting is for simultaneous reading of Code 39, Interleaved 2 of 5 Code with variable lengths, UPC/EAN/JAN Codes without supplements, Codabar, and Code 128.

## SCANNER INPUT

The HBCR-2000 is designed to accept a digital input signal either from a fixed-beam scanner, such as a wand, slot reader, or fixed-beam non-contact scanner, or from a moving-beam scanner such as a hand-held laser scanner. The state of pin 7 must be set prior to power-up to reflect the type of scanner connected to the decoder IC.
The decoding software has been specially designed to operate with any of Hewlett-Packard's digital bar code wands. Sapphire-tip digital wands feature a scan angle of 0 to 45 degrees, a variety of resolutions, and a TTL compatible digital output. A complete wand selection guide is presented in Table 2.
The decoder IC is also designed specifically for operation with Hewlett-Packard's digital slot readers. These slot readers feature a sealed case with a slot width of 3.2 mm ( 0.125 in .) and either an infrared ( 880 mm ) or visible red ( 660 mm ) LED light source. A separate module which contains the slot reader optics and electronics is available for stationary scanning applications or for configuration in applications requiring a different slot width.
The decoding software for moving-beam scanners has been designed to work with hand-held laser scanners manufactured by Spectra Physics, Inc. and Symbol Technologies, Inc. The delay time for automatic laser shutoff is adjustable through a software command to the IC. A redundancy check feature is available for applications which require extreme accuracy. Applications which require and ability to sense motor failure in a laser scanner or to calculate the ratio of laser on-time to laser off-time must support these requirements through external hardware.
The digital input signal from the scanner is connected to pin 12. When the decoder IC is used with a hand-held laser scanner, the laser enable, laser trigger, and scanner synchronization signal lines are connected to pins 6,8 , and 13 , respectively. Scanner input can be disabled by the host system though a software command. This allows the application program to enable bar code data entry only when
expecting the operator to enter data which has been encoded in bar code. The decoder IC also offers a single read mode which can; be enabled through a software command. The single read mode allows the application program to prevent bar code data entry until a "Next Read" command is sent, thereby allowing the host to process transmissions and verify each scan before enabling subsequent decodes.

## DATA COMMUNICATIONS

The decoder IC can communicate with the host system through a full-duplex, asynchronous, serial ASCII port. A wide range of baud rate, parity, stop bits, and terminator characters may be selected, as described in Table 1. In addition, both request-to-send/clear-to-send hardware handshake and $\mathrm{X}_{\mathrm{ON}} / \mathrm{X}_{\text {OFF }}$ (DC1/DC3) character pacing are available for control of the decoder IC's data transmission.

## OPERATOR FEEDBACK

The decoder IC has several provisions for signalling operator feedback. Pin 14 provides a signal for an LED driver and pin 15 provides a signal for a beeper driver. An LED or beeper driver connected to the decoder IC may either be connected to the decoder IC may either be controlled directly by the IC, with a signal generated after a good read, or may be controlled by the host system. In addition, the tone of the
beeper can be varied by a software command to be one of 16 tones or the beeper may be silenced.

## POWER REQUIREMENTS

The decoder IC operates from a single SV DC power supply. The maximum current draw is 175 mA . The maximum ripple voltage for the power supply should be less than 100 mV peak-to-peak.

## CONFIGURATION CONTROL

Configuration of the decoder IC may be determined through hardwire connections and/or through software commands. Hardwire selection is limited to key operating parameters. A much greater range of configuration control is available through software commands. A summary of the decoder IC features and the configuration control available for these features is presented in Table 1. A users manual which provides detailed configuration information and example schematics is suplied with the HBCR-2000.

## Handling Precautions

The decoder IC is extremely sensitive to electrostatic discharge (ESD). It is important that good anti-static procedures be observed when handling the IC. The package should not be opened except in a static free environment.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Typ. | Max. | Units | Notes |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $V_{C C}$ | 4.5 |  | 5.5 | $V$ | 1 |
| Ambient Temperature | TA $_{A}$ | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Crystal Frequency | XTAL |  | 11.059 |  | MHz | 2 |
| Element Time Interval (Moving-Beam) | ETI $_{M}$ | 22 |  | 555 | $\mu \mathrm{sec}$ | $2,3,4,5$ |
| Element Time Interval (Fixed-Beam) | ETI $_{F}$ | 150 |  | 70,000 | $\mu \mathrm{sec}$ | $2,3,5,6,7$ |

NOTES:

1. Maximum power supply ripple of 100 mV peak-to-peak.
2. Crystal frequencies from 3.5 Mhz to 12 MHz may be used. For frequencies other than 11.059 Mhz , multiply the specified baud rates, beeper frequencies, and element time interval ranges by $\frac{\text { XTAL }}{1.059 \mathrm{MHz}}$. The ETI ranges specified assume a crystal frequency of 11.059 MHz .
3. An element time interval (ETI) is the time period in the digital signal from the scanner that corresponds to the physical width of a printed element bar (bar or space) in the bar code symbol $E T I_{M}$ applies when pin 7 is tied low and $E T I_{F}$ applies when pin 7 is tied high.
4. Corresponds to a scan rate of 35 to 45 scans per second, a scan rate which is common for hand-held laser scanners.
5. Element time intervals which are smaller than the minimum ETI's specified will still be processed, but with additional width errors that may cause the input signal to be undecodable.
6. The maximum scan speed may be calculated by dividing the smallest narrow element width by $150 \mu \mathrm{sec}$. For example, for 0.19 mm ( 0.0075 in .) narrow elements, the maximum scan speed is $127 \mathrm{~cm} / \mathrm{sec}$ ( $50 \mathrm{in} . / \mathrm{sec}$ ).
7. The minimum scan speed may be calculated by dividing the largest wide element width by $70,000 \mu \mathrm{sec}$. For example, for 1.52 mm ( 0.060 in .) wide elements, the minimum scan speed is $2.2 \mathrm{~cm} / \mathrm{sec}(0.9 \mathrm{in} . / \mathrm{sec})$.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $T_{S}$ | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |  |
| Pin Voltage | $V_{\text {IN }}$ | -0.5 | +7.0 | $V$ | 8 |
| Power Dissipation | $P_{D}$ |  | 1.5 | Watts |  |

## Note:

8. Voltage on any pin with respect to ground.

TABLE 1. SUMMARY OF FEATURES AND CONFIGURATION CONTROL

|  | Feature | Function or Value | Hardwire/ Software Control[9] | Default Setting[10] |
| :---: | :---: | :---: | :---: | :---: |
|  | Scanner Type | Wand/Stot Reader or Moving Beam Laser Scanner | Hardwire | Moving Beam Laser Scanner |
|  | Laser Shutoff Delay | Defines Laser On-Time prior to Automatic Shutoff from 0 to 10 seconds in 100 ms steps | Software | 3 seconds |
|  | Laser Redundancy Check | Enables Requirement for Two Consecutive, Identical Decodes for a Good Read | Software | Not Enabled |
|  | Scanner Input Enable | Enables Data Acquisition from Scanner | Software | Enabled |
|  | Single Read Mode | Enables Requirement for a 'Next Read' Command before Processing the next Scanner Input Signal | Software | Not Enabled |
| 을$\vdots$$\frac{0}{0}$00000 |  | Extended Code 39 | Both | Code 39 |
|  | Code Select | Code 39 <br> Interleaved 2 of 5 Code UPC/EAN/JAN Codes Codabar Code 128 | Software | Interleaved 2 of 5 Code UPC/EAN/JAN Codes <br> Codabar <br> Code 128 |
|  | UPC/EAN/JAN <br> Decoding Options | UPC/EAN/JAN together; or UPC Only | Software | UPC/EAN/JAN together |
|  |  | Enable 2 or 5 Digit Supplements | Software | Supplements Not Enabled |
|  | Check Character Verification Enable | Code 39 Check Character | Both |  |
|  |  | Interleaved 2 of 5 Code Check Character | Software | Verification |
|  | Codabar Data Transmission Option | Transmit or Suppress Start/Stop Characters | Software | Transmit |
|  | Interleaved 2 of 5 Label Length Check | User Defined from 4 to 32 Characters or Variable Length | Software | Variable <br> Length |
|  | Baud Rate | 1200, 2400, 4800, 9600 | Hardwire | 1200 |
|  | Parity | O's, I's, Odd, Even | Hardwire | O's |
|  | Stop Bits | 1 or 2 | Hardwire | 1 |
|  | Terminator Character | CR, CR/LF, ETX, None | Hardwire | CR |
|  |  | User Defined (10 Characters Max.) | Software |  |
|  | Header Character | User Defined (10 Characters Max.) | Software | No Header Character |
|  | Data Output Pacing | RTS/CTS | Hardwire | No Pacing |
|  |  | $\mathrm{X}_{\text {ON }} / \mathrm{X}_{\text {OFF }}$ | Software |  |
|  | Good Read Beep Select | Enables Good Read Beep and sets 1 of 16 tones | Software | Beep Enabled; Tone 12 |
|  | Sound Tone | External Command to Initiate Beep Signal in 1 of 16 tones | Software | N/A |
|  | LED Control | Defines LED Control to be Internal, External, or both | Sottware | LED to Flash Automatically Upon Good Read |
|  | Status Request | Gives Status of Decoder IC Configuration | Software | N/A |
|  | Hard Reset | Resets Decoder IC to Hardwire Configuration and Default Software Settings | Software | N/A |

[^1]10. Default settings are those settings which result when the relevant input pins have been tied to Ground and no software commands have been sent to the decoder IC.

## Pinout



Figure 1.

## Block Diagrams

## DECODER IC TO MEMORY

$1 \mathrm{~K} \times 8$ RAM WITH ADDRESS LATCH CHIP


Figure 2.

8185 MULTIPLEXED $1 K \times 8$ RAM


Figure 3.

## Scanner Compatibility

The HBCR-2000 is compatible with the complete line of Hewlett-Packard digital wands, Hewlett-Packard digital slot readers, and hand-held laser scanners manufactured by both Symbol Technologies, Inc. and Spectra Physics, Inc.
The selection of Hewlett-Packard digital wands available for use with the HBCR-2000 is presented in Table 2. For the two families of sapphire-tip digital wands, the most widely used wands are those which specify a recommended nominal narrow element width of 0.19 mm ( 0.0075 in .). These wands are capable of reading bar codes printed with a variety of different printers and over a wide range of printed resolutions (as specified by narrow element widths) and are, therefore, considered to be general-purpose wands. The higher resolution wands, with a recommended nominal narrow element of 0.13 mm ( 0.005 in. ), are recommended for applications in which only high resolution bar codes are being read. For applications which require a scanner to read medium or low resolution bar codes, particularly those with edge roughness,
ink smearing, spots and voids, or other minor print flaws, the wands which specify a recommended nominal narrow element width of 0.3 mm ( 0.012 in .) or 0.33 mm ( 0.013 in .) are recommended.

The Hewlett-Packard slot readers and slot reader modules which are available for use with the HBCR-2000 are presented in Table 3. The standard slot readers have a slot width of 3.2 mm ( 0.125 in .) and are, therefore, capable of reading bar codes on anything from paper to doublelaminated badges. For applications which require a different slot width or which require a fixed-beam scanner in an automated system, a module which contains the slot reader optics and electronics assembly is also available.
The hand-held laser scanners compatible with the HBCR2000 include the Symbol Technologies' LS7000, Symbol Technologies' LS7000 II, and Spectra Physics' SP2001. For detailed information on these scanners, please contact these companies directly.

TABLE 2. HEWLETT-PACKARD DIGITAL BAR CODE WANDS

|  | Part Number | Recommended[11, 12] <br> Nominal Narrow <br> Element Widih | Emitter[13] <br> Wavelength | Tilt <br> Angle | Typical <br> Current | Case <br> Material | Switch | Tip |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HEDS-3000 | 0.3 mm <br> $(0.012 \mathrm{in})$. | 700 nm | $0-30^{\circ}$ | 42 ma | ABS Plastic | Yes | Open |  |

NOTES:
11. The nominal narrow element width of a symbol may also be referred to as the resolution of the symbol or as the ' $x$ ' dimension of the symbol.
12. Nominal narrow element (bar/space) width, a term which applies to the symbol and not to the scanner itself, is specified to facilitate selecting the best scanner for the symbol being read. The scanners are designed to accomodate printing tolerances around the nominal dimension specified. Bar codes having larger nominal narrow element widths (ie. lower resolu-
tion) than specified may also be read as long as print quality is good.
13. Wands with an emitter wavelength of 655 mm are recommended for reading bar codes printed on regular (white) thermal paper or printed with Hewlett-Packard's Thinkjet printer. Either 655 mm or 700 mm wands are recommended for bar codes printed with dye-based ink or in color.
14. Low current sapphire-tip wands are designed to operate in all ambient light environments including in direct sunlight and under high intensity lamps.

TABLE 3. HEWLETT-PACKARD DIGITAL SLOT READERS

| Part Number | Configuration | Recommended[15] <br> Nominal Narrow <br> Element Width | Emitter[16] <br> Wavelength | Temperature <br> Range | Case <br> Material |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HBCS-7000 | Complete Slot Reader | $0.19 \mathrm{~mm}(0.0075 \mathrm{in})$. | 660 nm | -20 to $+55^{\circ} \mathrm{C}$ | Metal |
| HBCS-7001 | Slot Reader Module | 1 | 660 nm | 1 | 1 |
| HBCS-7100 | Complete Slot Reader | $0.19 \mathrm{~mm}(0.0075 \mathrm{in})$ | 880 nm | -40 to $+70^{\circ} \mathrm{C}$ | 1 |
| HBCS-7101 | Slot Reader | 1 | 880 nm | 1 | 1 |

## NOTES:

15. The aperture design of the slot reader optical system allows reading both high resolution bar code symbols and poorly printed medium or low resolution bar code symbols with the same scanner.
16. The 880 nm slot reader is recommended for bar code symbols printed with carbon-based inks or for "black-on-black" bar code symbols. The 660 nm slot reader is recommended for bar code symbols printed with dye-based inks or printed on regular thermal paper.

## Features

- INDUSTRY STANDARD BAR CODES

3 of 9 Code
Extended 3 of 9 Code
Interleaved 2 of 5 Code
UPC/EAN/JAN Codes

- AUTOMATIC CODE RECOGNITION
- FULL DUPLEX SERIAL OR PARALLEL ASCII OUTPUT
- EXTENSIVE CONFIGURATION CONTROL THROUGH SOFTWARE COMMANDS
- DECODER IC IN A STANDARD 40 PIN DIP PACKAGE
- HIGH PERFORMANCE DIGITAL WANDS 45 Degree Scan Angle
Sealed Sapphire Tip Polycarbonate or Metal Case Wide Operating Temperature Range
- AUDIO AND VISUAL FEEDBACK CONTROL
- SINGLE 5 VOLT SUPPLY


## Description

Hewlett-Packard's HBCR-1000 series Component Bar Code Readers are high performance product sets designed to simplify the implementation of bar code reading capability in any OEM system. The standard 40 pin decoder IC has been specially designed to work with any of several Hewlett-Packard sapphire tip, digital wands. When combined with an external RAM chip, the result is a component-level reader that allows a manufacturer to easily add bar code reading to his equipment.

The standard decoding chip supports four of the most popular codes: 3 of 9 Code, Extended 3 of 9 Code, Interleaved 2 of 5 Code, and UPC/EAN/JAN Codes. If more than one standard code is enabled, the reader will automatically recognize and decode the code being scanned. Bi-directional scanning is allowed for all codes except UPC/EAN/JAN with supplemental digits. For 3 of 9 Codes and Interleaved 2 of 5 Code, a maximum of 32 characters (not including start and stop characters) are allowed.
The decoder IC may be set to communicate in either serial or parallel ASCII. Operator feedback is supported through pins that allow for external LED drive and a beeper drive circuits. In addition, there are thirteen programmable functions covering items from terminator character selection to the tone of the beeper.
The readers are standard with your choice of sapphire tip wands (see Reader Selection Guide, page 8). These wands

feature scan angles from 0 to 45 degrees, advanced $\mathrm{H}-\mathrm{P}$ optics, and are available in a wide choice of resolutions and constructions to suit a variety of needs.

## Applications

Bar codes are rapidly becoming a preferred alternative to other forms of data entry. Bar coding has proven faster and more accurate than keyboard entry. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than Optical Character Recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement and immunity to electromagnetic fields.
Manufacturers of data collection terminals, point-of-sale terminals, keyboards, weighing scales, and other data collection and material handling equipment are finding a growing demand for bar code reading capability in their products. The HBCR-1000 series Component Bar Code Readers make it easy to add this capability without the need to invest in the development of bar code decoding software.

The 40 pin decoder IC may be easily configured with most common microprocessors using either a parallel ASCII or serial ASCII interface. The IC may be added to an existing board, designed into an add-on board, or designed into an entirely new system. Using the decoder IC as an integral part of the host system will eliminate the need for the external bar code readers which are often used to perform the same function.

## Decoder IC Specifications

## General Information

The HBCR-1000 series of Component Bar Code Readers consists of an NMOS decoding IC in a 40 pin Dual In-Line package, and a high performance digital bar code wand with a sapphire tip. The readers require an external $1 \mathrm{~K} \times 8$ bit multiplexed RAM chip (Intel 8185 or similar) or a 1 K by 8 bit RAM and an address latch chip (Mostek MK4801 or similar and a 74LS373). To complete the reader, a 12 MHz crystal must also be added.
The decoding IC is designed to interface with most standard microprocessors, and can communicate in either serial or parallel ASCII. It provides complete compatibility with the output from Hewlett-Packard digital bar code wands.

## Performance Features

## Bar Codes Supported

The decoder IC in the HBCR-1000 series of Component Bar Code Readers is capable of reading four popular bar code symbologies: 3 of 9 Code, Extended 3 of 9 Code, Interleaved 2 of 5 Code and UPC/EAN/JAN Codes.
The 3 of 9 Code, an alphanumeric code, and the Extended 3 of 9 Code, a full 128 character ASCII version of the 3 of 9 Code, may be read bi-directionally for message lengths up to a maximum of 32 characters. An optional checksum character may be used with these codes, and the decoder IC may be configured to verify this character prior to data transmission. Enabling the Extended 3 of 9 Code will disable the standard 3 of 9 Code as the two are mutually exclusive.
The Interleaved 2 of 5 Code, a compact numeric only bar code, may also be read bi-directionally for message lengths up to a maximum of 32 characters. To enhance data accuracy, an optional checksum character verification and/or label length checking may be enabled.
All popular versions of the UPC, EAN, and JAN bar codes may be read bi-directionally, including UPC-A, UPC-E, EAN8, EAN-13, JAN-8, and JAN-13. All codes may be enabled simultaneously or only the UPC codes may be enabled.
UPC, EAN and JAN codes with complementary two digit or five digit supplemental encodations, or "add-ons", may also be read in one of two ways. If UPC, EAN and JAN codes are enabled but neither two digit nor five digit supplemental encodations are enabled, then only the main part of the symbols printed with supplemental encodations will be read. If the two digit or the five digit supplemental encodations are enabled, then only symbols with these supplementals will be read. In this case, the symbols may only be read in the direction which results in the supplement being scanned last.
Automatic code recognition is provided for the Interleaved 2 of 5 Code, UPC/EAN/JAN Codes, and either the 3 of 9 Code or the Extended 3 of 9 Code. The decoder IC's default setting is for simultaneous reading of the 3 of 9 Code, Interleaved 2 of 5 Code and UPC/EAN/JAN Codes.

## Wand Input

The decoder IC has been specially designed to operate with any of several Hewlett-Packard sapphire tip, digital bar code wands. All of these wands feature scan angles from 0 to 45 degrees, TTL compatible digital output, and single 5 volt
supply. Scanning speeds range from $7.6 \mathrm{~cm} / \mathrm{sec}(3 \mathrm{in} . / \mathrm{sec})$ to $127 \mathrm{~cm} / \mathrm{sec}(50 \mathrm{in} . / \mathrm{sec})$.

Wand input can be disabled by the host system through a software command. This allows the application program to control the operator's ability to enter bar code data, thereby preventing inadvertant data entry and allowing the host to verify each scan before enabling subsequent scans.

The wand is connected to pin 12 of the decoder IC (see Figures 1 and 2).

## Data Communications

The decoder IC can communicate with the host system through either a serial ASCII or parallel ASCII port. The parallel port allows for faster data communication between the two devices. Both parallel and serial ports are bi-directional.

The serial port may also be connected directly to RS-232-C level shifters to produce an RS-232-C compatible output. A wide range of baud rate, parity, stop bits and terminator characters may be selected, as described in Table 1. In addition, Xon/Xoff pacing for the decoder IC's data transmission is available.

The parallel port utilizes both a send and receive handshake for data transfer between the decoder IC and the host system. Timing diagrams for these handshakes are shown on page 5.

The decoder IC has a 255 character output buffer which will store data if transmission to the host is prevented. A buffer overflow will actuate a signal on the beeper line for the beeper to sound three times in rapid succession.

## Feedback Features

The decoder IC has several provisions for signalling operator feedback. Pin 14 provides a signal for an LED driver and pin 15 provides a signal for a beeper driver. An LED or beeper driver connected to the decoder IC may be controlled directly by the IC, with a signal generated after a good read; or may be controlled by the host system. In addition, the tone of the beeper can be varied by a software command to be one of 16 different tones.

## Power Requirements

Both the decoder IC and the wands operate from a single +5 $V$ DC power supply. The maximum current draw for the decoder IC is 175 mA . The maximum current draw for the wands is 50 mA . For both the IC and the wand power supplies, the maximum ripple voltage should be less than 100 mV peak-to-peak.

## Configuration Control

Configuration of the decoder IC may be determined through hardwire connections and/or through software commands. Hardwire selection is limited to key operating parameters. A much greater range of configuration control is available through software commands. A summary of the decoder IC features and configuration control these features is presented in the following table.

Table 1. Summary of Features and Configuration Control

| Feature | Function of Value | Hardwire/ Software Control[ ${ }^{1]}$ | Default Setting ${ }^{[2]}$ | Mode ${ }^{3]}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mode of Operation | Parallel or Serial Mode | Hardwire | Parallel | N/A |  |
| Baud Rate | 300, 1200, 2400, 9600 | Hardwire | 300 Baud | Serial |  |
| Parity | 0's, 1's, Odd, Even | Hardwire | 0's | Serial | 4 |
| Stop Bits | 1 or 2 | Hardwire | 2 | Serial |  |
| Terminator Character | CR, CR/LF, HT, None | Hardwire | CR | Serial |  |
|  | User Defined (10 Characters Max.) | Software | CR | Both | 5 |
| Header Character | User Defined (10 Characters Max.) | Software | No Header Character | Both |  |
| Data Output <br> Pacing | Xon/Xoff | Software | No Pacing | Both |  |
| Industrial Code Select | 3 of 9 Code Interleaved 2 of 5 Code | Software | 3 of 9 Code <br> Interleaved | Both |  |
|  | Extended 3 of 9 Code | Both | 2 of 5 Code |  |  |
| UPC/EAN/JAN Code Select | UPC/EAN/JAN together; or UPC Only | Software | UPC/EAN/JAN Codes |  |  |
|  | Enable 2 or 5 Digit Supplements | Software | Supplements Not Enabled |  |  |
|  | Suppress Zeros UPC-E | Software | Zeros Included |  |  |
| Checksum <br> Verification Enable | 3 of 9 Code Checksum | Both | No <br> Checksum Verification | Both |  |
|  | Interleaved 2 of 5 Checksum | Software |  |  |  |
| Interleaved 2 of 5 Label Length Check | User Defined up to 32 Characters or Variable Length | Software | Variable Length | Both |  |
| Scanner Disable | Disables Wand Input | Software | Wand Input Enabled | Both |  |
| Good Read Beep Select | Enables Good Read Beep in one of 16 Tones | Software | Beep Signal <br> Enabled; Tone $=15$ | Both |  |
| Sound Tone | External Command to Sound Tones Defines 1 of 16 Tones | Software | N/A | Both |  |
| LED Control | Controls LED Driver Circuit | Software | LED to Flash Upon Good Read | Both |  |
| Status Request | Gives Status of Decoder IC Configuration | Software | N/A | Both |  |
| Hard Reset | Resets Decoder IC to Hardwire Configuration and Default Software Settings | Software | N/A | Both |  |

## Notes:

1. Software commands are sent by means of escape sequence.
2. Default settings are those settings which result when the relevant pins have been tied to +5 V and no software commands have been sent to the decoder IC.
3. Some functions apply only when the decoder IC is operating in the serial mode. Others apply in both the parallel and serial modes.
4. In the parallel mode, the parity is always odd.
5. In the parallel mode the terminator character is "CR" unless changed through software commands.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Typ. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply <br> Voltage | VCC | 4.5 |  | 5.5 | V | 7 |
| Ambient <br> Temperature | TA $_{\text {A }}$ | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Crystal <br> Frequency | XTAL |  | 12 |  | MHz | 8 |

Note:
7. Maximum power supply ripple of 100 mV peak-to-peak.
8. 12 MHz crystal is recommended.

Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage <br> Temperature | Ts | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |  |
| Pin <br> Voltage | VIN | -0.5 | +7.0 | V | 9 |
| Power <br> Dissipation | PD |  | 2.0 | Watts |  |

Note:
9. Voltage on any pin with respect to ground.

## Block Diagrams

## SERIAL PINOUT



PARALLEL PINOUT


NC - Pins should be left floating
Figure 1.

## DECODER IC TO MEMORY



Figure 3.

Figure 2.
$1 \mathrm{~K} \times 8$ RAM WITH ADDRESS LATCH CHIP


Figure 4.

## Parallel Mode Handshake Timing

HOST COMMANDS RECEIVED BY DECODER IC

${ }^{*}$ tcR $=$ Falling edge of COMMAND READY to falling edge of COMMAND READ. Max. $=22 \mu$ (MICRO SECONDS).
tcs $=$ Command setup to rising edge of COMMAND $\overline{\text { READY. Min. }}=0 \mu \mathrm{~s}$.
*tCA $=$ Rising edge of COMMAND READY to rising edge of COMMAND READ. Typical $=6 \mu \mathrm{~s}$.
tcc = Rising edge of COMMAND READ to falling edge of COMMAND READY. Min. $=0 \mu \mathrm{~s}$.
*Note: These timing specifications given are based on the assumptions that the wand is not active at the time. Since the wand input to the microprocessor is interrupt driven, the timing might be stretched if the wand is active during that time. All the timings assume the microprocessor runs at 12 MHz .

## DECODER IC DATA SENT TO HOST


${ }^{*}$ tDo $=$ Falling edge of DATA READY to data output to bus. Max. $=140 \mu \mathrm{~s}$.

This number reflects that there is no decoding in progress, no status, terminal ID, header or terminator change command is being executed at the time.
*tDF $=$ Data output to bus to falling edge of DATA WRITE. Max. $=2 \mu \mathrm{~s}$
*tDW = Rising edge of DATA READY to rising edge of DATA WRITE. Max. $=5 \mu \mathrm{~s}$.
${ }^{*} t_{D H}=$ Data hold after rising edge of DATA WRITE. Max. $=2 \mu \mathrm{~s}$.
$t_{D D}=$ Rising edge of DATA WRITE to falling edge of DATA READY. Min. $=0 \mu \mathrm{~s}$.

DC Characteristics ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}$ )

| Symbol | Parameter | Min. | Max. | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VIL | Input Low Voltage | -0.5 | 0.8 | V |  |
| $V_{\text {IH }}$ | Input High Voltage (except Pins 9 and 18) | 2.0 | $V_{C C}+0.5$ | V |  |
| $\mathrm{V}_{1+1}$ | Input High Voltage (Pins 9 and 18) | 2.5 | $V_{C C}+0.5$ | V | Pin 19 to VSS |
| VOL | Output Low Voltage (Pins 1-8, 10-17, 21-28) |  | 0.45 | V | $\mathrm{IOL}=1.6 \mathrm{~mA}$ |
| Vol1 | Output Low Voltage (Pins 30 and 32-39) |  | 0.45 | V | $\mathrm{IOL}=3.2 \mathrm{~mA}$ |
| VOH | Output High Voltage (Pins 1-8, 10-17 and 21-28) | 2.4 |  | V | $\mathrm{IOH}=-80 \mu \mathrm{~A}$ |
| VOH 1 | Output High Voltage (Pins 30 and 32-39) | 2.4 |  | V | $1 \mathrm{OH}=-400 \mu \mathrm{~A}$ |
| IIL | Input Low Current (Pins 1-8, 10-17 and 21-28) |  | -800 | $\mu \mathrm{A}$ | $V_{1 N}=0.45 \mathrm{~V}$ |
| IIL2 | Input Low Current (Pin 18) |  | -2.5 | mA | Pin 19 to VSS; $\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$ |
| ILI | Input Leakage Current (Pins 32-39) |  | $\pm 10$ | $\mu \mathrm{A}$ | $0.45<V_{\text {IN }}<V_{\text {CC }}$ |
| \|1H1 | Input High Current to Pin 9 for Reset |  | 500 | $\mu \mathrm{A}$ | $V_{\text {IN }}=V_{\text {CC }}-1.5$ |
| ICC | Power Supply Current |  | 175 | mA | All Outputs Disconnected |

## Handling Precautions

The decoder IC is extremely sensitive to electrostatic discharge (ESD). It is important that good anti-static procedures be observed when handling the IC. It is recommended that the package not be opened except in a static free environment.

## Wand Specifications

## General Information

Hewlett-Packard's Sapphire Tip Digital Bar Code Wands are hand-held scanners optimized to provide excellent reading of all common bar code formats. These wands contain an optical sensor with a 700 nm visible red LED (HBCS-2200/-2300/ -4300) or an 820 nm infrared LED (HBCS-2400/-2500/-4500), a photo detector IC, and precision aspheric optics. The internal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces.

The HBCS-2200/-2300/-4300 with their nominal 0.19 mm ( 0.0075 in .) spot size, are excellent choices for reading a general range of bar code. The HBCS-2400/-2500/-4500 wands have a nominal spot size of $0.13 \mathrm{~mm}(0.005 \mathrm{in}$.) and are ideal for reading very high density bar code.
The HBCS-2XXX series of wands feature a durable, polycarbonate case. They are the ideal choices for general purpose commercial and light industrial applications. The HBCS4XXX series of wands feature a rugged metal case and are recommended for heavy industrial and LOGMARS applications.
The standard wand configuration includes a strain-relieved coiled cord which has a comfortable extended length of 190 cm ( 75 in .). Maximum length is 250 cm (100 in.). The standard connector on the HBCS-2XXX family of wands is a 5 pin, 240 degree DIN connector. The connector on the HBCS-4XXX family is a metal, 5 pin, 240 degree DIN connector with a locking ring. Mating sockets for both connectors are listed under the Mechanical Considerations section.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Nominal Narrow Element Width <br> HBCS-2200/2300/4300 |  | $0.19(0.0075)$ |  |  |  |
| HBCS-2400/2500/4500 |  | $0.13(0.005)$ |  | $\mathrm{mm}(\mathrm{in})$. |  |
| Scan Velocity | VSCAN | $7.6(3)$ | $127(50)$ | $\mathrm{cm} / \mathrm{sec}(\mathrm{in} . / \mathrm{sec})$ |  |
| Contrast | RW-RB | 45 |  | $\%$ | 10 |
| Supply Voltage | $V_{S}$ | 4.5 | 5.5 | Volts | 11 |
| Temperature | $T_{A}$ | -20 | +65 | ${ }^{\circ} \mathrm{C}$ |  |
| Tilt Angle | (See Figure 5 ) |  |  |  |  |
| Orientation | (See Figure 6 ) | 12 |  |  |  |

## Notes:

10. Contrast is defined as $R_{W}-R_{B}$, where $R_{W}$ is the reflectance of the white spaces and $R_{B}$ is the reflectance of the black bars measured at the emitter wavelength ( 700 nm or 820 nm ). Contrast is related to print contrast signal (PCS) by PCS $=R_{w}-R_{B} / R_{w}$ or $R_{w}-R_{B}=P C S * R w$ ).
11. Power supply ripple and noise should be less than 100 mV peak to peak.
12. Performance in sunlight will vary depending on shading at wand tip.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $T_{S}$ | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature | $T_{A}$ | -20 | +65 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage <br> HBCS-2200/2300/4300 | $\mathrm{V}_{S}$ | -0.5 | +6.00 | V |  |
| HBCS-2400/2500/4500 | $\mathrm{V}_{\mathrm{S}}$ | -0.5 | +5.75 | V |  |
| Output Transistor Power | PT |  | 200 | mW |  |
| Output Collector Voltage | $\mathrm{VO}_{\mathrm{O}}$ | -0.5 | +20 | V |  |



Figure 5. Wand Height vs. Tilt Angle


Figure 6. Preferred Orientation

## Mechanical Considerations

The wands include a standard $5 \mathrm{pin}, 240^{\circ}$ DIN connector. The detailed specifications and pin-outs are shown in Figure 7. Mating connectors are available from RYE industries and SWITCHCRAFT in both 5 pin and 6 pin configurations These connectors are listed below.

| Connector | Configuration |
| :--- | :---: |
| RYE MAB-5* | 5 Pin |
| SWITCHCRAFT 61GA5F* | 5 Pin |
| SWITCHCRAFT 61HA5F | 5 Pin |
| RYE MAB-6* | 6 Pin |
| SWITCHCRAFT 61HA6F | 6 Pin |

*Suitable for non-locking connector only.


HBCR-1000, -1022, -1024, -1025


HBCR-1043, -1045
NOTES:

1. DIMENSIONS IN MILLIMETRES AND (INCHES).

| PIN | WIRE COLOR | FUNCTION |
| :---: | :---: | :---: |
| 1 | RED | $V_{\text {S }}$ SUPPLY VOLTAGE |
| 2 | WHITE | $V_{0}$ OUTPUT |
| 3 | BLACK | GROUND |
| 4 | N/A | N/C |
| 5 | N/A | N/C |
| CASE | - | SHIELD (MUST BE CONNECTED) |

Figure 7. Connector Specifications

## Wand I/O Interfaces



## Note:

The shield must be connected to ground for proper wand operation.
Figure 8. Wand Interfaces

## Reader Selection Guide

The following table will help in selecting the proper Component Bar Code Reader part number for a given application. To use the table, first determine the minimum size of the narrow elements in the bar codes to be read. Next,
determine the type of environment in which the reader's wand will be used. Finally, determine whether a switched wand is required for the application.

| Type of Bar Code | Type of Environment |  |
| :--- | :--- | :--- |
|  | Commercial or Light Industrial | Heavy Industrial |
| High, Medium or Low Resolution <br> (7.5 mil or Larger) | HBCR-1000 (Non-Switched) <br> HBCR-1022 (Switched) | HBCR-1043 (Non-Switched) |
| Very High Resolution <br> (Less than 7.5 mil) | HBCR-1025 (Non-Switched) <br> HBCR-1024 (Switched) | HBCR-1045 (Non-Switched) |
| Security (Black-on-Black) Bar Code | HBCR-1025 (Non-Switched) <br> HBCR-1024 (Switched) | HBCR-1045 (Non-Switched) |
| Colored (UPC/EAN/JAN) Bar Code | HBCR-1000 (Non-Switched) <br> HBCR-1022 (Switched) | HBCR-1043 (Non-Switched) |

## Maintenance Considerations

There are no user serviceable parts inside the wands. The tip is designed to be easily replaceable, and if damaged should be replaced. The table below will help determine the correct replacement tip part number. Before attempting to replace the wand tip, be sure that the wand is disconnected from any power source.


The wands or decoder IC are also available as replacement parts. Should either become damaged, the correct replacement part numbers can be determined from the table below. These parts can be ordered from any Hewlett-Packard authorized distributor.

| Reader | Replacement Part Numbers |  |  |
| :---: | :---: | :---: | :---: |
| Part No. | Wand | Wand Tip | Decoder IC |
| HBCR-1000 | HBCS-2300 | HBCS-2999 | HBCR-1900 |
| HBCR-1022 | HBCS-2200 | HBCS-2999 | HBCR-1900 |
| HBCR-1024 | HBCS-2400 | HBCS-2999 | HBCR-1900 |
| HBCR-1025 | HBCS-2500 | HBCS-2999 | HBCR-1900 |
| HBCR-1043 | HBCS-4300 | HBCS-4999 | HBCR-1900 |
| HBCR-1045 | HBCS-4500 | HBCS-4999 | HBCR-1900 |

[^2]
# SAPPHIRE TIP DIGITAL BAR CODE 

## Features

## - SCAN ANGLE 0 TO 45 DEGREES

- OPERATING TEMPERATURE $-20^{\circ} \mathrm{C}$ TO $+65^{\circ} \mathrm{C}$
- AVAILABLE IN EITHER 0.19 mm ( 0.0075 IN.) OR 0.13 0.13 mm ( 0.005 IN.) RESOLUTION
- SEALED REPLACEABLE SAPPHIRE TIP Provides Protection from Contamination Due to Dirt and Debris
- DIGITAL OUTPUT

Open Collector Output Compatible with TTL and CMOS

- DECODABILITY SPECIFIED FOR GUARANTEED PERFORMANCE
- SINGLE 5 VOLT SUPPLY
- PUSH-TO-READ SWITCH (HBCS-2200/2400) Minimizes Power Consumption in Battery Operated Systems
- SOLID STATE RELIABILITY
- POLYCARBONATE CASE

Durable, yet Lightweight

## Description

Hewlett-Packard's Sapphire Tip Digital Bar Code Wands are hand-held scanners optimized to provide excellent reading of all common bar code formats. These wands contain an optical sensor with a 700 nm visible red LED (HBCS-2200/2300) or an 820 nm infrared LED (HBCS-2400/2500); a photo IC detector; and precision aspheric optics. The internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces.


The HBCS-2200/2300 wands, with their nominal 0.19 mm spot size, are excellent choices for reading a general range of bar codes. The HBCS-2400/2500 wands have a nominal spot size of 0.13 mm and are ideal for reading very high density bar code.

All of the wands feature an internal shield for maximizing immunity to electromagnetic interference (EMI), electrostatic discharge (ESD), and ground loops. The shield is also designed to eliminate noise from capacitively coupled inputs.
The HBCS-2200 and HBCS-2400, with their push-to-read switch, are recommended for use in battery powered applications requiring low power consumption. The HBCS-2300 and HBCS-2500 (without switch) are the usual choices for AC powered systems.

The standard wand configuration includes a strain relieved coiled cord, which has a comfortable extended length of 190 $\mathrm{cm}(75 \mathrm{in}$.). Maximum length is 250 cm (100 in.). The standard connector is a 5 pin, 240 degree DIN connector.

## Wand Dimensions



NOTE: DIMENSIONS IN MILLIMETRES AND (INCHES).


## Applications

The digital bar code wand is a highly effective alternative to keyboard data entry. Bar code scanning is faster and more accurate than key entry and provides far greater throughput. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than optical character recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement and immunity to electromagnetic fields.
Hewlett-Packard's sapphire tip wands are designed for use in applications where dirt and debris are a common occurrence
and could cause clogging in a conventional open-tip wand. In addition, the sapphire ball provides superior wear resistance and improves scanning ease. The rugged yet lightweight polycarbonate case makes these wands ideal for use in commercial or light industrial applications.
Applications include remote data collection, work-in-process tracking, point-of-sale data entry, inventory control, library circulation control, medical records tracking, and repair/ service work.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal Narrow Element Width HBCS-2200/2300 |  | 0.19 (0.0075) |  | mm (in.) |  |
| HBCS-2400/2500 |  | 0.13 (0.005) |  | mm (in.) |  |
| Scan Velocity | VSCAN | 7.6 (3) | 127 (50) | $\mathrm{cm} / \mathrm{sec}(\mathrm{in} / \mathrm{sec})$ |  |
| Contrast | Rw-RB | 45 |  | \% | 1 |
| Supply Voltage | $V_{S}$ | 4.5 | 5.5 | Volts | 2 |
| Temperature | $\mathrm{T}_{\text {A }}$ | -20 | +65 | ${ }^{\circ} \mathrm{C}$ |  |
| Tilt Angle | (See Figure 8) |  |  |  | 3 |
| Orientation | (See Figure 1) |  |  |  |  |

Notes:

1. Contrast is defined as $R_{w}-R_{B}$, where $R_{w}$ is the reflectance of the white spaces and $R_{B}$ is the reflectance of the black bars, measured at the emitter wavelength ( 700 nm or 820 nm ). Contrast is related to print contrast signal (PCS) by PCS $=\left(R_{w}-R_{B}\right) / R_{w}$ or $R_{w}-R_{B}=P C S * R w$.
2. Power supply ripple and noise should be less than 100 mV peak to peak.
3. Performance in sunlight will vary depending on shading at wand tip.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{TS}_{\mathrm{S}}$ | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature | $\mathrm{TA}_{\mathrm{A}}$ | -20 | +65 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage <br> HBCS-2200/2300 | $\mathrm{V}_{\text {S }}$ | -0.5 | +6.00 | V |  |
| HBCS-2400/2500 | $\mathrm{V}_{\mathrm{S}}$ | -0.5 | +5.75 | V |  |
| Output Transistor Power | $\mathrm{PT}_{\mathrm{T}}$ |  | 200 | mW |  |
| Output Collector Voltage | $\mathrm{V}_{\mathrm{O}}$ | -0.5 | +20 | V |  |

## Electrical Operation

The HBCS-2XXX family of digital bar code wands consists of a precision optical sensor, an analog amplifier, a digitizing circuit, and an output transistor. These elements provide a TTL compatible output from a single 4.5 V to 5.5 V power supply. The open collector transistor requires an external pull-up resistor for proper operation.
A non-reflecting black bar results in a logic high (1) level output, while a reflecting white space will cause a logic low (0) level output. The initial or "wake-up" state will be indeterminate. However, after a short period (typically less than 1 second), the waırd will assume a logic low state if no bar code is scanned. This feature insures that the first bar will not be missed in a normal scan.
The wands provide a case, cable, and connector shield which must be terminated to logic ground or, preferably, to both logic ground and earth ground. The shield is connected to the metal housing of the 5 pin DIN connector.

Grounding the shield will provide a substantial improvement in EMI/ESD immunity in AC powered systems. However, it is essential that the shield be properly terminated even when EMI and ESD are not a concern, otherwise the shield will act as an antenna, injecting electrical noise into the wand circuitry.

The HBCS-2200/2400 wands incorporate a push-to-read switch which is used to energize the LED emitter and electronic circuitry. When the switch is initially depressed, contact bounce may cause a series of random pulses to appear at the output (Vo). This pulse train will typically settle to a final value within 5 ms .

The recommended logic interface for the wands is shown in Figure 9. This interconnection provides the maximum ESD protection for both the wand and the user's electronics.

## Electrical Characteristics

( $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$, unless otherwise noted)

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current | Is |  | 42 | 50 | mA | $\mathrm{~V}_{\mathrm{S}}=5.0 \mathrm{~V}$ | 4 |
| High Level Output Current | IOH |  |  | 400 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ |  |
| Low Level Output Voltage | VOL |  |  | 0.4 | V | $\mathrm{lOL}=16 \mathrm{~mA}$ |  |
| Output Rise Time | $\mathrm{t}_{\mathrm{r}}$ |  | 3.4 | 20 | $\mu \mathrm{~s}$ | $10 \%-90 \%$ |  |
| Output Fall Time | $\mathrm{t}_{\mathrm{f}}$ |  | 1.2 | 20 | $\mu \mathrm{~s}$ | Transition <br> $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$ |  |
| Switch Bounce <br> HBCS-2200/2400 | $\mathrm{t}_{\mathrm{Sb}}$ |  | 0.5 | 5.0 | ms |  |  |
| Electrostatic Discharge Immunity | ESD |  | 25 |  | kV |  | 5 |

## Notes:

4. Push-to-read switch (if applicable) is depressed.
5. Switch bounce causes a series of sub-millisecond pulses to appear at the output (Vo).
6. Shield must be properly terminated (see Figure 9). The human body is modeled by discharging a 300 pF capacitor through a $500 \Omega$ resistor. No damage to the wand will occur at the specified discharge level.

## Block Diagram

HBCS-2300/2500 (without Switch)


HBCS-2200/2400
(with Switch)


## Scanning Performance

$\left(V_{S}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0\right.$ to $10 \mathrm{~K} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Scan Velocity $\left.=50 \mathrm{~cm} / \mathrm{sec}\right)$

| Parameter | Symbol | HBCS- | Typ. | Max. | Units | Condition | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decodability Index | DI | 2200/2300 | 9 | 22 | \% |  $1,2,3$ <br>  $4,7,9$ <br>   <br> Tilt Angle $0^{\circ}$ to $40^{\circ}$  <br> Preferred Orientation  <br> Standard Test Tag  <br>  $1,2,9$ |  | 7,8 |
|  |  | 2400/2500 | 12 | 22 | \% |  |  |  |
| Average Width Error (Narrow Bars) | $\mathrm{OS}_{\text {bn }}$ | 2200/2300 | $\begin{gathered} \hline 0.005 \\ (0.0002) \end{gathered}$ |  | $\mathrm{mm}$ (in.) |  |  | 7 |
|  |  | 2400/2500 | $\begin{gathered} 0.024 \\ (0.0009) \end{gathered}$ |  | $\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$ |  |  |  |
| Average Width Error (Wide Bars) | $\mathrm{OS}_{\mathrm{bw}}$ | 2200/2300 | $\begin{gathered} 0.003 \\ (0.0001) \end{gathered}$ |  | $\mathrm{mm}$ |  |  |  |
|  |  | 2400/2500 | $\begin{gathered} 0.023 \\ (0.009) \end{gathered}$ |  | $\begin{aligned} & \mathrm{mm} \\ & \text { (in.) } \end{aligned}$ |  |  |  |
| Average Width Error (Narrow Spaces) | $\mathrm{OS}_{\mathrm{sn}}$ | 2200/2300 | $\begin{gathered} -0.011 \\ (-0.0004) \end{gathered}$ |  | $\begin{aligned} & \mathrm{mm} \\ & \text { (in.) } \end{aligned}$ |  |  |  |
|  |  | 2400/2500 | $\begin{gathered} -0.027 \\ (-0.0106) \end{gathered}$ |  | $\frac{\mathrm{mm}}{(\mathrm{in})}$ |  |  |  |
| Average Width Error (Wide Spaces) | $\mathrm{OS}_{\text {sw }}$ | 2200/2300 | $\begin{gathered} -0.002 \\ (-0.0001) \end{gathered}$ |  | $\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$ |  |  |  |
|  |  | 2400/2500 | $\begin{gathered} -0.026 \\ (-0.0010) \end{gathered}$ |  | $\begin{aligned} & \mathrm{mm} \\ & (\mathrm{in} .) \end{aligned}$ |  |  |  |
| Deviation from Average (Internal) | $\mathrm{d}_{\mathrm{e}}$ | 2200/2300 | $\begin{gathered} 0.018 \\ (0.0007) \end{gathered}$ | $\begin{gathered} 0.048 \\ (0.0019) \end{gathered}$ | $\underset{\text { (in.) }}{\mathrm{mm}}$ |  | $\begin{aligned} & 1,2,5 \\ & 6,9 \end{aligned}$ | 7 |
|  |  | 2400/2500 | $\begin{gathered} 0.019 \\ (0.0007) \end{gathered}$ | $\begin{gathered} 0.052 \\ (0.0020) \end{gathered}$ | $\underset{\text { (in.) }}{\mathrm{mm}}$ |  |  |  |
| Deviation from Average (First Bar) | $\mathrm{db}_{1}$ | 2200/2300 | $\begin{gathered} 0.090 \\ (0.0035) \end{gathered}$ | $\begin{gathered} 0.152 \\ (0.0060) \end{gathered}$ | $\mathrm{mm}_{\text {(in) }}$ |  |  |  |
|  |  | 2400/2500 | $\begin{gathered} 0.060 \\ (0.0024) \end{gathered}$ | $\begin{gathered} 0.100 \\ (0.0039) \end{gathered}$ | $\min _{\text {(in.) }}$ |  |  |  |

## Notes:

7. The test tag for the HBCS-2200/2300 Wands (Figure 2a) consists of black bars and white spaces with a narrow element width of 0.19 mm ( 0.0075 in. ) and a wide element width of $0.42 \mathrm{~mm}(0.0165 \mathrm{in}$.). This equates to a wide-to-narrow ratio of $2.2: 1$. A margin, or white reflecting area, of at least 5 mm in width precedes the first bar.
The test tag for the HBCS-2400/2500 wands (Figure 2b) consists of black bars with a narrow element width of 0.13 mm ( 0.005 in .) and wide element width of $0.43 \mathrm{~mm}(0.017 \mathrm{in}$.) giving a ratio of $3.4: 1$. The white spaces have a narrow element width of $0.28 \mathrm{~mm}(0.011 \mathrm{in}$.) and wide element width of $0.64 \mathrm{~mm}(0.025 \mathrm{in}$.) yielding a ratio of $2.3: 1$. Both tags are photographically reproduced on diffuse reflecting paper with a PCS greater than $90 \%$.
8. Decodability index is a measure of the errors produced by the wand when scanning a standard test symbol at a constant velocity. It is expressed as a percentage of the narrow element width.
For a more detailed discussion of the terms used here, see Hewlett-Packard Application Note 1013 "Elements of a Bar Code System" (publication number 5953-9387).


HBCS-22/2400


HBCS-23/2500

a. HBCS-22/2300 Test Tag

b. HCBS-24/2500 Test Tag

Figure 1. Preferred Wand Orientation
Figure 2. Standard Test Tag Formats (Test Tags Enlarged to Show Detail)

## Typical Performance Curves

$\left(V_{S}=5 \mathrm{~V}, R_{L}=1 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C}\right.$, $\mathrm{Tilt}^{2}=15^{\circ}, \mathrm{V}_{\mathrm{SCAN}}=50 \mathrm{~cm} / \mathrm{sec}$ unless otherwise specified)


Figure 3. Decodability Index vs. Supply Voltage.


Figure 5. Deviation from Average Width Error vs. Supply Voltage.


Figure 7. Decodability Index vs. Temperature.


Figure 4. Decodability Index vs. Scan Velocity.


Figure 6. Deviation from Average Width Error vs. Scan Velocity.


Figure 8. Wand Height vs. Tilt Angle.

## Selection Guide



NOTES:
IF IT IS NECESSARY TO READ BAR CODE PRINTED IN COLORS OTHER THAN BLACK AND WHITE IT IS RECOMMENDED THAT EITHER THE HBCS-2200 OR HBCS-2300 WANDS BE SELECTED.
IF IT IS NECESSARY TO READ SECURITY "BLACK-ON-BLACK" BAR CODE (CARBON-BASED BLACK AND WHITE BAR CODE WITH A BLACK OVERLAY), IT IS RECOMMENDED THAT EITHER THE HBCS- 2400 OR THE HBCS- 2500 WANDS BE SELECTED.

${ }^{\circledR}$ TRANSZORB IS A REGISTERED TRADEMARK OF GENERAL SEMICONDUCTOR INDUSTRIES. TEMPE AZ.

Figure 9. Recommended Logic Interface (When earth ground is not available, connect shield to logic ground, as shown by dotted line).


## NOTES:

1. DIMENSIONS IN MILLIMETRES AND (INCHES).

| $\frac{\text { PIN }}{1}$ |  | WIRE COLOR |  |
| :--- | :--- | :--- | :--- |
|  | RED |  | $\frac{\text { FUNCTION }}{\text { V SUPPLY VOLTAGE }}$ |
| 2 | WHITE |  | Vo OUTPUT |
| 3 | BLACK | GROUND |  |
| 4 | N/A | N/C |  |
| 5 | N/A | N/C |  |
| CASE | - | SHIELD (MUST BE |  |
|  |  |  | CONNECTED) |

Figure 10. Connector Specifications.

## Mechanical Considerations

The wands include a standard $5 \mathrm{pin}, 240^{\circ}$ DIN connector. The detailed specifications and pin-outs are shown in Figure 10. Mating connectors are available from RYE Industries and SWITCHCRAFT in both 5 pin and 6 pin configurations. These connecors are listed below.

| Connector | Configuration |
| :--- | :---: |
| RYE MAB-5 | 5 Pin |
| SWITCHCRAFT 61GA5F | 5 Pin |
| SWITCHCRAFT 61HA5F | 5 Pin |
| RYE MAB-6 | 6 Pin |
| SWITCHCRAFT 61GA6F | 6 Pin |

## Maintenance Considerations

There are no user serviceable parts inside the wand. The tip is designed to be easily replaceable, and if damaged it should be replaced. Before unscrewing the tip, disconnect the wand from the system power source. The part number for the wand tip is HBCS-2999. The tip can be ordered from any HewlettPackard franchised distributor.


Figure 11. Sapphire Tip.

## Optional Features

For options such as special cords, connectors or labels, contact your nearest Hewlett-Packard sales office or franchised Hewlett-Packard distributor.

# INDUSTRIAL DIGITAL BAR CODE WANDS 

## Features

- SEALED METAL CASE FOR HEAVY INDUSTRIAL ENVIRONMENTS AND LOGMARS APPLICATIONS
- SCAN ANGLE 0 TO 45 DEGREES
- OPERATING TEMPERATURE $-20^{\circ} \mathrm{C}$ TO $+65^{\circ} \mathrm{C}$
- AVAILABLE IN EITHER 0.19 mm ( 0.0075 IN .) OR 0.13 mm ( 0.005 IN.) RESOLUTION
- SEALED REPLACEABLE SAPPHIRE TIP Provides Protection from Contamination Due to Dirt and Debris
- DIGITAL OUTPUT Open Collector Output Compatible with TTL and CMOS
- DECODABILITY SPECIFIED FOR GUARANTEED PERFORMANCE
- SINGLE 5 VOLT SUPPLY
- SOLID STATE RELIABILITY


## Description

Hewlett-Packard's Industrial Digital Bar Code Wands are hand-held scanners optimized to provide excellent reading of all common bar code formats. These wands contain an optical sensor with a 700 nm visible red LED (HBCS-4300) or an 820 nm infrared LED (HBCS-4500); a photodetector IC; and

precision aspheric optics. The internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces.
The HBCS-4300 wand, with its nominal 0.19 mm spot size, is an excellent choice for reading a general range of bar codes. The HBCS-4500 wand has a nominal spot size of 0.13 mm and is ideal for reading very high density bar code.
Both wands feature an integral shield for maximizing immunity to electromagnetic interference (EMI), electrostatic discharge (ESD), and ground loops. The shield is also designed to eliminate noise from capacitively coupled inputs.

The standard configuration includes a strain relieved coiled cord, which has a comfortable extended length of $190 \mathrm{~cm}(75$ in.) [maximum length is 250 cm (100 in.)]. The standard connector is a 5 pin, 240 degree, metal, locking DIN connector.

## Wand Dimensions



## Applications

The digital bar code wand is a highly effective alternative to keyboard data entry. Bar code scanning is faster and more accurate than key entry and provides far greater throughput. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than optical character recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement and immunity to electromagnetic fields.

Hewlett-Packard's industrial bar code wands are designed for use in applications which require the added ruggedness and durability that a metal wand can provide. In addition, the sapphire ball provides superior wear resistance and improves scanning ease. The rugged yet lightweight aluminum case makes these wands ideal for use in heavy industrial and LOGMARS applications such as: shop floor data collection, work-in process tracking, material tracking, and repair/service work.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal Narrow Element Width HBCS-4300 |  | 0.19 (0.0075) |  | mm (in.) |  |
| HBCS-4500 |  | 0.13 (0.005) |  | mm (in.) |  |
| Scan Velocity | VSCAN | 7.6 (3) | 127 (50) | $\mathrm{cm} / \mathrm{sec}(\mathrm{in} / \mathrm{sec})$ |  |
| Contrast | Rw-RB | 45 |  | \% | 1 |
| Supply Voltage | $V_{S}$ | 4.5 | 5.5 | Volts | 2 |
| Temperature | $\mathrm{T}_{\text {A }}$ | -20 | +65 | ${ }^{\circ} \mathrm{C}$ |  |
| Tilt Angle | (See Figure 8) |  |  |  | 3 |
| Orientation | (See Figure 1) |  |  |  |  |

## Notes:

1. Contrast is defined as $R_{w}-R_{B}$ where $R_{w}$ is the reflectance of the white spaces and $R_{B}$ is the reflectance of the black bars, measured at the emitter wavelength $\left(700 \mathrm{~nm}\right.$ or 820 nm ). Contrast is related to print contrast signal (PCS) by PCS $=\left(R_{w}-R_{B}\right) / R_{w}$ or $R_{w}-R_{B}=P C S^{\star} R_{w}$.
2. Power supply ripple and noise should be less than 100 mV peak to peak.
3. Performance in direct sunlight will vary depending on shading at the wand tip.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $T_{S}$ | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -20 | +65 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage <br> HBCS-4300 | $\mathrm{V}_{\text {S }}$ | -0.5 | +6.00 | V |  |
| HBCS-4500 | $\mathrm{V}_{\text {S }}$ | -0.5 | +5.75 | V |  |
| Output Transistor Power | $\mathrm{PT}_{T}$ |  | 200 | mW |  |
| Output Collector Voltage | $\mathrm{V}_{\mathrm{O}}$ | -0.5 | +20 | V |  |

## Electrical Operation

The HBCS-4XXX family of digital bar code wands consists of a precision optical sensor, an analog amplifier, a digitizing circuit, and an output transistor. These elements provide a TTL compatible output from a single 4.5 V to 5.5 V power supply. The open collector transistor requires a pull-up resistor for proper operation.

A non-reflecting black bar results in a logic high (1) level output, while a reflecting white space will cause a logic low (0) level output. The initial or "wake-up" state will be indeterminate. However, after a short period (typically less than 1 second), the wand will assume a logic low state if no bar code is scanned. This feature insures that the first bar will not be missed in a normal scan.

The wands provide a case, cable, and connector shield which must be terminated to logic ground or, preferably, to both logic ground and earth ground. The shield is connected to the metal housing of the 5 pin DIN connector.
The shield must be properly terminated otherwise it will act as an antenna, injecting electrical noise into the wand circuitry. Grounding the shield will also provide a substantial improvement in EMI/ESD immunity.

The recommended logic interface for the wands is shown in Figure 9. This interconnection provides the maximum ESD protection for both the wand and the user's electronics.

## Electrical Characteristics

$\left(V_{S}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$, unless otherwise noted)

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :---: |
| Supply Current | IS |  | 42 | 50 | mA | $\mathrm{~V}_{\mathrm{S}}=5.0 \mathrm{~V}$ |  |
| High Level Output Current | IOH |  |  | 400 | $\mu \mathrm{~A}$ | $\mathrm{VOH}_{\mathrm{OH}}=2.4 \mathrm{~V}$ |  |
| Low Level Output Voltage | VOL |  |  | 0.4 | V | $\mathrm{IOL}_{\mathrm{OL}}=16 \mathrm{~mA}$ |  |
| Output Rise Time | $\mathrm{t}_{\mathrm{r}}$ |  | 3.4 | 20 | $\mu \mathrm{~s}$ | $10 \%-90 \%$ |  |
| Output Fall Time | $\mathrm{tf}_{\mathrm{f}}$ |  | 1.2 | 20 | $\mu \mathrm{~S}$ | Transition <br> $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$ |  |
| Electrostatic Discharge Immunity | ESD |  | 25 |  | kV |  |  |

## Notes:

4. Shield must be properly terminated (see Figure 3). The human body is modeled by discharging a 300 pF capacitor through a $500 \Omega$ resistor. No damage to the wand will occur at the specified discharge level.

## Block Diagram



## Scanning Performance

( $\mathrm{V}_{\mathrm{S}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0$ to $10 \mathrm{~K} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Scan Velocity $=50 \mathrm{~cm} / \mathrm{sec}$ ).

| Parameter | Symbol | HBCS- | Typ. | Max. | Units | Condition | Fig. | Note |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decodability Index | DI | 4300 | 9 | 22 | $\%$ |  | $1,2,3$ | 5,6 |
|  |  | 4500 | 12 | 22 | $\%$ |  |  |  |

## Notes:

5. The test tag for the HBCS-4300 Wands (Figure 2a) consists of black bars and white spaces with a narrow element width of 0.19 mm $(0.0075 \mathrm{in}$.$) and a wide element width of 0.42 \mathrm{~mm}$ ( 0.0165 in .). This equates to a wide-to-narrow ratio of $2.2: 1$. A margin, or white reflecting area, of at least 5 mm in width precedes the first bar.
The test tag for the HBCS-4500 wands (Figure 2 b ) consists of black bars with a narrow element width of $0.13 \mathrm{~mm}(0.005 \mathrm{in}$.) and wide element width of 0.43 mm ( 0.017 in .) giving a ratio of $3.4: 1$. The white spaces have a narrow element width of $0.28 \mathrm{~mm}(0.011 \mathrm{in}$.) and wide element width of $0.64 \mathrm{~mm}^{\prime}(0.025 \mathrm{in}$.) yielding a ratio of $2 \cdot 3: 1$. Both tags are photographically reproduced on diffuse reflecting paper with a PCS greater than $90 \%$.
6. Decodability index is a measure of the errors produced by the wand when scanning a standard test symbol at a constant velocity. It is expressed as a percentage of the narrow element width.
For a more detailed discussion of the terms used here, see Hewlett-Packard Application Note 1013, "Elements of a Bar Code System" (publication number 5953-9387).


a. HBCS-4300 Test Tag

b. HBCS-4500 Test Tag

Figure 1. Preferred Wand Orientation
Figure 2. Standard Test Tag Formats
(Test Tags enlarged to show detail)

## Typical Performance Curves

$\left(\mathrm{V}_{\mathrm{S}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0\right.$ to $10 \mathrm{~K} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Tilt $=15^{\circ} \mathrm{C}, \mathrm{V}$ SCAN $=50 \mathrm{~cm} / \mathrm{sec}$, unless otherwise specified).


Figure 3. Decodability Index vs. Supply Voltage


Figure 5. Deviation from Average Width Error vs. Supply Voltage


Figure 7. Decor'ability Index vs. Temperature


Figure 4. Decodability Index vs. Scan Velocity


Figure 6. Deviation from Average Width Error vs. Scan Velocity


Figure 8. Wand Height vs. Tilt Angle

© TRANSZORB IS A REGISTERED TRADEMARK OF GENERAL SEMICONDUCTOR INDUSTRIES, TEMPE AZ.

Figure 9. Recommended Logic Interface (When earth ground is not available, connect shield to logic ground, as shown by dotted line).


## NOTES:

1. DIMENSIONS IN MILLIMETRES AND (INCHES).

| PIN | WIRE COLOR | FUNCTION |
| :---: | :---: | :---: |
| 1 | RED | $V_{\text {S }}$ SUPPLY VOLTAGE |
| 2 | WHITE | $V_{\text {O O O }}$ OUTPUT |
| 3 | BLACK | GROUND |
| 4 | N/A | N/C |
| 5 | N/A | N/C |
| CASE | - | SHIELD (MUST BE CONNECTED) |

Figure 10. Connector Specifications.

## Mechanical Considerations

The wands include a standard 5 pin, $240^{\circ}$, metal, locking DIN connector. The detailed specifications and pin-outs are shown in Figure 10. Mating connectors are available from SWITCHCRAFT in both 5 pin and 6 pin configurations. These connectors are listed below.

| Connector | Configuration |
| :--- | :---: |
| SWITCHCRAFT 61HA5F | 5 Pin |
| SWITCHCRAFT 13EL5F | 5 Pin |
| SWITCHCRAFT 61HA6F | 6 Pin |

## Maintenance Considerations

There are no user serviceable parts inside the wand. The tip is designed to be easily replaceable, and if damaged it should be replaced. Before unscrewing the tip, disconnect the wand from the system power source. The part number for the wand tip is HBCS-4999. The tip can be ordered from any HewlettPackard authorized distributor.


Figure 11. Sapphire Tip.

## Optional Features

For options such as special cords, connectors or labels, contact your nearest Hewlett-Packard sales office or authorized Hewlett-Packard distributor.

## Features

- 0.3 mm RESOLUTION Enhances the Readability of dot matrix printed bar codes
- DIGITAL OUTPUT

Open Collector Output Compatible with TTL and CMOS

- PUSH-TO-READ SWITCH (HEDS-3000) Minimizes Power in Battery Operated Systems
- SINGLE 5V SUPPLY OPERATION
- ATTRACTIVE, HUMAN ENGINEERED CASE
- DURABLE LOW FRICTION TIP
- SOLID STATE RELIABILITY Uses LED and IC Technology
- SHIELDED CASE AND CABLE (HEDS-3050)

Maximizes EMI/ESD Immunity in AC
Powered Systems

## Description

The HEDS-3000 and HEDS-3050 Digital Bar Code Wands are hand held scanners designed to read all common bar code formats that have the narrowest bars printed with a nominal width of 0.3 mm ( 0.012 in .). The wands contain an optical sensor with a 700 nm visible light source, photo IC detector, and precision aspheric optics. Internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces.
The HEDS -3000 comes equipped with a push-to-read switch which is used to activate the electronics in battery powered applications requiring lowest power consumption. The HEDS-3050 does not have a switch, and features internal metal shielding that maximizes immunity to

electromagnetic interference, electrostatic discharge, and ground loops in AC powered systems. Both wands feature a strain relieved 104 cm ( 41 in .) cord with a ninepin subminiature D-style connector.

## Applications

The Digital Bar Code Wand is an effective alternative to the keyboard when used to collect information in selfcontained blocks. Bar code scanning is faster than key entry and also more accurate since most codes have check-sums built-in to prevent incorrect reads from being entered.

Applications include remote data collection, ticket identification systems, security checkpoint verification, file folder tracking, inventory control, identifying assemblies in service, repair, and manufacturing environments, and programming appliances, intelligent instruments and personal computers.

## Wand Dimensions



## Electrical Operation

The HEDS-3000 and HEDS-3050 consist of a precision optical sensor, an analog amplifier, a digitizing circuit, and an output transistor. These elements provide a TTL compatible output from a single voltage supply range of 3.6 V to 5.75 V . A non-reflecting black bar results in a logic high (1) level, while a reflecting white space will cause a logic low (0) at the Vo connection (pin 2). The output of the wands is an open collector transistor.

The HEDS-3050 provides a case and cable shield (pin 5) which must be connected to logic ground and preferably also to earth ground. This will provide a substantial improvement in EMI/ESD immunity for the wand in AC powered systems.
The recommended logic interface for the wands is shown in Figure 3. This interconnection provides maximum ESD protection for both the wand and the user's electronics.
The HEDS-3000 incorporates a push-to-read switch which is used to energize the 700 nm LED emitter and
electronic circuitry. When the switch is initially depressed, its contact bounce may cause a series of random pulses to appear at the output, Vo. This pulse train will typically settle to a final value within 0.5 ms . This initial pulse train is eliminated when a switchless HEDS-3050 is used.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Bar Width | $\mathrm{s}, \mathrm{b}$ | 0.3 |  | mm |
| Scan Velocity | $\mathrm{V}_{\text {scan }}$ | 7.6 | 76 | $\mathrm{~cm} / \mathrm{s}$ |
| Contrast | PCS | 70 |  | $\%$ |
| Supply Voltage | $\mathrm{V}_{\mathrm{S}}$ | 3.6 | 5.75 | V |
| Temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 | 55 | ${ }^{\circ} \mathrm{C}$ |
| Orientation | See Figure 1 |  |  |  |

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{TS}_{\mathrm{S}}$ | -20 | 55 | ${ }^{\circ} \mathrm{C}$ | 1 |
| Operating Temperature | $\mathrm{TA}_{\mathrm{A}}$ | 0 | 55 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | $\mathrm{V}_{\mathrm{S}}$ | -0.5 | 6.0 | V | 2 |
| Output Transistor Power | $\mathrm{PT}_{\mathrm{T}}$ |  | 200 | mW |  |
| Output Collector Voltage | $\mathrm{VO}_{\mathrm{O}}$ |  | 20 | V |  |

Electrical Characteristics ( $\mathrm{V}_{\mathrm{S}}=3.6 \mathrm{~V}$ to 5.75 V at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} L=2.2 \mathrm{kn}$, unless otherwise noted)

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Fig. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switch Bounce(HEDS-3000) | $\mathrm{t}_{\text {sb }}$ |  | 0.5 | 5 | ms |  |  | 3 |
| High Level Output Current | IOH |  |  | 400 | $\mu \mathrm{A}$ | $\mathrm{VOH}^{=}=2.4 \mathrm{~V}$, Bar Condition (Black) | 3 |  |
| Low Level Output Voltage | VOL |  |  | 0.4 | $V$ | $\mathrm{IOL}=16 \mathrm{~mA}$, Space Condition (White) | 3 |  |
| Output Rise Time | tr |  | 2 |  | $\mu \mathrm{S}$ | 10\%-90\% Transition | 3 |  |
| Output Fall Time | $t_{f}$ |  | 100 |  | ns | 90\%-10\% Transition | 3 |  |
| Supply Current | Is |  | 42 | 50 | mA | $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, Bar Condition (Black) |  | 2,4 |

## Block Diagram

HEDS-3000 (WITH SWITCH)


HEDS-3050
(SHIELDED)


GUARANTEED WIDTH ERROR PERFORMANCE
( V S $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$, unless otherwise noted)

| Parameter |  | Symbol | Min. | Typ. | Max. | Units |  | Conditions | Fig. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bar Width Error | 1st | $\Delta b_{1}$ |  | 0.08 (3.2) | 0.13 (5.2) | $\underset{\left(\text { in. } \times 10^{-3}\right)}{\mathrm{mm}}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | Margin $\geq 5 \mathrm{~mm}$ <br> Height $=0.25 \mathrm{~mm}$ <br> Tilt $=0^{\circ}$ | $\begin{gathered} 1 \\ 2,6 \\ 11 \end{gathered}$ | $\begin{gathered} 5 \\ 7,8 \\ 9,10 \\ 11 \end{gathered}$ |
|  |  |  |  | 0.10 (3.8) | 0.15 (5.7) |  | $\begin{aligned} & T_{A}= \\ & 0^{\circ} \text { to } 55^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |
|  | Interior | $\Delta \mathrm{b}$ | -0.04(-1.4) | 0.05 (1.8) | 0.10 (3.9) | $\mathrm{mm}_{\left(\mathrm{in} . \times 10^{-3}\right)}^{\mathrm{m}}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | $v_{\text {scan }}=50 \mathrm{~cm} / \mathrm{s}$ <br> Standard Test Tag Preferred Orientation $b=s=0.3 \mathrm{~mm}(0.012 \mathrm{in} .)$ $2 \mathrm{~b}=2 \mathrm{~s}=0.6 \mathrm{~mm}$ <br> (0.024 in.) | $\begin{array}{\|c\|} \hline 1,2 \\ 6,11 \\ \hline \end{array}$ | $\begin{gathered} \hline 6,7 \\ 8,9 \\ 10,11 \end{gathered}$ |
|  |  |  | -0.05 (-2.0) | 0.05 (2.0) | 0.11 (4.3) |  | $\begin{aligned} & T_{A}= \\ & 0^{\circ} \text { to } 55^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |
| Space Width Error | Interior | $\Delta s$ | 0.04 (1.4) | -0.05 (-1.8) | -0.10(-3.9) | $\mathrm{mm}_{\left(\mathrm{in} \times 10^{-3}\right)}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | $\begin{array}{\|l} 1,2 \\ 6,11 \end{array}$ | $\begin{gathered} \hline 6,7 \\ 8,10 \\ 11 \end{gathered}$ |
|  |  |  | 0.05 (2.0) | -0.05 (-2.0) | -0.11 (-4.3) |  | $\begin{aligned} & T_{\mathrm{A}}= \\ & 0^{\circ} \text { to } 55^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |
| Tag Scan Velocity |  | $\mathrm{v}_{\text {scan }}$ | 7.6 |  | 76 | cm/s |  |  | 9 | 7 |
| Emitter Peak Wavelength |  | $\lambda$ |  | 700 |  | nm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |  |

TYPICAL WIDTH ERROR PERFORMANCE $\left(V_{S}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega\right.$, unless otherwise noted)

| Parameter |  |  | Symbol | $\begin{gathered} \text { Typical WE } \\ \text { Tilt }=0^{\circ} \\ \text { Height }=0.25 \mathrm{~mm} \end{gathered}$ | $\begin{aligned} & \text { Typical WE } \\ & \text { Tilt }=30^{\circ} \\ & \text { Height }=0.0 \mathrm{~mm} \end{aligned}$ | Units | Conditions | Fig. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bar <br> Width <br> Error | From | To | $\Delta b_{1}$ | 0.08 (3.2) | 0.11 (4.2) | $\underset{\left(\mathrm{in} . \times 10^{-3}\right)}{\mathrm{mm}}$ | $\begin{aligned} & \text { Margin } \geq 5 \mathrm{~mm} \\ & 1 \mathrm{~b}=1 \mathrm{~s}=0.3 \mathrm{~mm} \\ & 2 \mathrm{~b}=2 \mathrm{~s}=0.6 \mathrm{~mm} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{s}}=5 \mathrm{~V} \\ & \mathrm{v}_{\text {scan }}=50 \mathrm{~cm} / \mathrm{s} \\ & \text { Preferred Orientation } \\ & \text { Standard Test Tag } \end{aligned}$ | 1,2 | 5,7,8 |
|  | Margin | 1st |  |  |  |  |  |  |  |
|  | 1s | 1b | $\Delta b_{1-1}$ | 0.03 (1.2) | 0.04 (1.6) | $\mathrm{mm}_{\left(\text {in. } \times 10^{-3}\right)}$ |  | 1,2 | 6,7,8 |
|  | 2s | 1b | $\Delta b_{2-1}$ | 0.06 (2.5) | 0.07 (2.9) | $\mathrm{mm}_{\left(\text {in. } \times 10^{-3}\right)}$ |  | 1,2 | 6,7,8 |
|  | 1 s | 2b | $\Delta \mathrm{b}_{1-2}$ | 0.02 (0.9) | 0.02 (0.7) | $\mathrm{mm}_{\left(\text {in. } \times 10^{-3}\right)}$ |  | 1,2 | 6,7,8 |
|  | 2s | 2b | $\Delta b_{2-2}$ | 0.05 (1.9) | 0.05 (2.1) | $\mathrm{mm}_{\left(\text {in. } \times 10^{-3}\right)}$ |  | 1,2 | 6,7,8 |
|  | 1b | 1 s | $\Delta s_{1-1}$ | -0.04 (-1.4) | -0.04 (-1.4) | $\mathrm{mm}_{\left(\text {in. } \times 10^{-3}\right)}$ |  | 1,2 | 6,7,8 |
| Space | 2 b | 1s | $\Delta \mathrm{s}_{2-1}$ | -0.03 (-1.0) | -0.03 (-1.1) | $\mathrm{mm}_{\left(\text {in. } \times 10^{-3}\right)}$ |  | 1,2 | 6,7,8 |
| Error | 1b | 2 s | $\Delta s_{1-2}$ | -0.07 (-2.7) | -0.08 (-3.3) | $\mathrm{mm}_{\left(\text {in. } \times 10^{-3}\right)}$ |  | 1,2 | 6,7,8 |
|  | 2b | 2s | $\Delta s_{2-2}$ | -0.06 (-2.4) | -0.06 (-2.4) | $\mathrm{mm}_{\left(\text {in } \times 10^{-3}\right)}$ |  | 1,2 | 6,7,8 |

Notes:

1. Storage Temperature is dictated by Wand case.
2. Power supply ripple and noise should be less than 100 mV .
3. Switch bounce causes a series of sub-millisecond pulses to appear at the output, Vo. (HEDS-3000 only)
4. Push-to-Read switch is depressed, and the Wand is placed on a non-reflecting (black) surface. (HEDS-3000 only)
5. The margin refers to the reflecting (white) space that preceeds the first bar of the bar code.
6. The interior bars and spaces are those which follow the first bar of bar code tag.
7. The standard test tag consists of black bars, white spaces (0.3 $\mathrm{mm}, 0.012 \mathrm{in} . \mathrm{min}$.) photographed on Kodagraph Transtar TC5 ${ }^{\circledR}$ paper with a print contrast signal greater than 0.9.
8. The print contrast signal (PCS) is defined as: $P C S=\left(R_{w}-R_{b}\right)$ $/ R_{w}$, where $R_{w}$ is the reflectance at 700 nm from the white spaces, and $R_{b}$ is the reflectance at 700 nm for the bars.
9. 1.0 in . $=25.4 \mathrm{~mm}, 1 \mathrm{~mm}=0.0394 \mathrm{in}$.
10. The Wand is in the preferred orientation when the surface of the label is parallel to the height dimension of the bar code.

## OPERATION CONSIDERATIONS

The Wand resolution is specified in terms of a bar and space Width Error, WE. The width error is defined as the difference between the calculated bar (space) width, B, (S), and the optically measured bar (space) widths, $b$ ( $s$ ). When a constant scan velocity is used, the width error can be calculated from the following.
$B=t_{b} \cdot v_{s c a n}$
$S=t_{s} \cdot v_{\text {scan }}$
$\Delta b=B-b$
$\Delta \mathrm{s}=\mathrm{S}-\mathrm{s}$
Where
$\Delta \mathrm{b}, \Delta \mathrm{s}=\mathrm{bar}$, space Width Error (mm)
b, s = optical bar, space width (mm)
B, S = calculated bar, space width (mm)
$\mathrm{v}_{\text {scan }}=\mathrm{scan}$ velocity ( $\mathrm{mm} / \mathrm{s}$ )
$\mathrm{t}_{\mathrm{b}}, \mathrm{t}_{\mathrm{s}}=$ wand pulse width output(s)
The magnitude of the width error is dependent upon the width of the bar (space) preceeding the space (bar) being measured. The Guaranteed Width Errors are specified as a maximum for the margin to first bar transition, as well as, maximums and minimums for the bar and space width errors resulting from transitions internal to the body of the bar code character. The Typical Width Error Performance specifies all possible transitions in a two level code (e.g. 2 of 5 ). For example, the $\Delta b_{2 \rightarrow 1}$ Width Error specifies the width error of a single bar module ( 0.3 mm ) when preceeded by a double space module ( 0.6 mm ).
The Bar Width Error $\Delta \mathrm{b}$, typically has a positive polarity which causes the calculated bar, B, to appear wider than its printed counterpart. The typical negative polarity of the Space Width Error $\Delta \mathrm{s}$, causes the measured spaces to appear narrower. The consistency of the polarity of the bar and space Width Errors suggest decoding schemes which average the measured bars and measured spaces within a character. These techniques will produce a higher percentage of good reads.
The Wand will respond to a bar code with a nominal module width of 0.3 mm when it is scanned at tilt angles between $0^{\circ}$ and $30^{\circ}$. The optimum performance will be obtained when the Wand is held in the preferred


Figure 1. Preferred Wand Orientation.
orientation (Figure 1), tilted at an angle of $10^{\circ}$ to $20^{\circ}$, and the Wand tip is in contact with the tag. The Wand height, when held normal to the tag, is measured from the tip's aperture, and when it is tilted it is measured from the tip's surface closest to the tag. The Width Error is specified for the preferred orientation, and using a Standard Test Tag consisting of black bars and white spaces. Figure 2 illustrates the random two level bar code tag. The Standard Test Tag is photographed on Kodagraph Transtar TC5® paper with a nominal module width of 0.3 mm ( 0.012 in .) and a Print Contrast Signal (PCS) of greater than $90 \%$.


> BAR WIDTH $0.3 \mathrm{~mm}(0.012 \mathrm{in}$.$) BL.ACK \&$ WHITE
> RWHITE $^{>} 75 \%$, PCS $\geqslant 0.9$ KODAGRAPH TRANSTAR TC5 ${ }^{\circledR}$ PAPER

Figure 2. Standard Test Tag Format.


Figure 3a. Recommended Logic Interface for HtDS-3000


Figure 3b. Recommended Logic Interface for HEDS-3050. (When earth ground is not available, connect shield to logic ground, as shown by dotted line)

## Typical Performance CurveS ( $\left.\mathrm{R}_{\mathrm{L}}=\mathbf{2 . 2 k} \boldsymbol{\Omega}\right)$



Figure 4. Width Error vs. Tilt (Preferred Orientation).


Figure 6. Width Error vs. Height (Preferred Orientation).


Figure 8. Width Error vs. Bar Width.


Figure 5. Width Error vs. Tilt (Any Orientation).


Figure 7. Width Error vs. Height (Any Orientation).


Figure 9. Width Error vs. Scan Velocity.


Figure 10. Width Error vs. Supply Voltage.

## MECHANICAL CONSIDERATIONS

The HEDS-3000/-3050 include a standard nine pin D-style connector with integral squeeze-to-release retention mechanism. Two types of receptacles with the retention mechanism are available from AMP Corp. (Printed circuit header: 745001-2 Panel mount: 745018, body; 66570-3, pins). Panel mount connectors that are compatible with the Wand connector, but do not include the retention mechanism, are the Molex A7224, and AMP 2074-56-2.

## MAINTENANCE CONSIDERATIONS

While there are no user serviceable parts inside the Wand, the tip should be checked periodically for wear and dirt, or obstructions in the aperture. The tip aperture is designed to reject particles and dirt but a gradual degradation in performance will occur as the tip wears down, or becomes obstructed by foreign materials.
Before unscrewing the tip, disconnect the Wand from the system power source. The aperture can be cleaned with a cotton swab or similar device and a liquid cleaner.
The glass window on the sensor should be inspected and cleaned if dust, dirt, or fingerprints are visible. To clean the sensor window dampen a lint free cloth with a liquid cleaner, then clean the window with the cloth taking care not to disturb the orientation of the sensor. DO NOT SPRAY CLEANER DIRECTLY ON THE SENSOR OR WAND.


Figure 11. Width Error vs. Temperature.


Figure 12. Wand Tip.
After cleaning the tip aperture and sensor window, the tip should be gently and securely screwed back into the Wand assembly. The tip should be replaced if there are visible indications of wear such as a disfigured, or distorted aperture. The part number for the Wand tip is HEDS-3001. It can be ordered from any franchised HewlettPackard distributor.

## OPTIONAL FEATURES

The wand may also be ordered with the following special features:

- Special colors
- Customer specified label
- No label
- Heavy duty retractable coiled cord
- No connector
- With/without switch button

For mơre information, call your local Hewlett-Packard sales office or franchised distributor.


Figure 13. Connector Specifications.

## Features

- 0.13 mm ( 0.005 in .) SPOT SIZE Enhances Readability of High-Resolution Bar Codes
- DECODABILITY SPECIFIED FOR BAR CODES WITH 0.19 mm ( 0.0075 in .) NARROW BAR WIDTH
- PUSH-TO-READ SWITCH (HEDS-3200/3201) Minimizes Power Consumption in Battery Operated Systems
- SHIELDED CASE, CABLE, AND CONNECTOR (HEDS-3250/3251) Maximizes EMI/ESD Immunity in AC Powered Systems
- DIGITAL OUTPUT

Open Collector Output Compatible with TTL and CMOS

- SINGLE 5V SUPPLY OPERATION
- ATTRACTIVE, HUMAN ENGINEERED CASE
- DURABLE, LOW FRICTION TIP
- SOLID STATE RELIABILITY Uses LED and IC Technology


## Description

Hewlett-Packard's High-Resolution Digital Bar Code Wands are hand-held scanners optimized to read all common bar code formats that have the narrowest bars (spaces) printed with a nominal width of $0.19 \mathrm{~mm}(0.0075 \mathrm{in}$.). The wands contain an optical sensor with an 820 nm infrared LED, photo IC detector, and precision aspheric optics. Internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces. The output signal is specified to be decodable when scanning a 2-level bar code which has a narrow bar (space) width of 0.19 mm ( 0.0075 in .) and a minimum wide bar (space) to narrow bar (space) ratio of 2.2:1. The 3 of 9 Alphanumeric Code is an example of such a bar code.

The HEDS-3200/01, with a push-to-read switch, are recommended for use in battery powered applications requiring low power consumption. The HEDS-3250/51 feature an internal shield which maximizes immunity to electromagnetic interference (EMI), electrostatic discharge (ESD), and ground loops. These wands are recommended for use in AC powered systems.

Both standard wand configurations are available with

either a strain relieved 104 cm ( 41 in .) straight cord or a strain relieved coiled cord. The coiled cord has a maximum extended length of 250 cm . (100 in.) and a comfortably extended length of 190 cm . ( 75 in .). The standard connector for all models is a 5 pin, 240 degree DIN connector.

## Applications

The High-Resolution Digital Bar Code Wand is an effective alternative to the keyboard when used to collect information in compact, self-contained blocks. Bar code scanning is faster than key entry and is also more accurate since most codes have built-in checksums which prevent incorrect data from being entered.
High-resolution bar codes are typically used in applications where the number of characters to be represented and the physical space available together require a bar code symbol with high information density. The primary code characteristics which influence information density are the code structure and the narrow bar (space) width. Once the bar code type has been selected, a high-resolution symbol is used to achieve the highest information density for that code structure.
Applications for high-resolution bar codes include: material handling and inventory control; remote data collection; item identification for assemblies in service, repair, manufacturing, or testing; ticket identification; security checkpoint verification; file folder tracking; book, magazine, or general publication distribution; fixed asset accounting; and the programming of microprocessorbased systems such as consumer products (appliances, video recorders, games, etc.), intelligent instrumentation and control equipment, personal computers, and calculators.

## Selection Guide

| Part Number | Case Configuration | Cord Configuration | Note |
| :---: | :---: | :---: | :---: |
| HEDS-3200 | Switched | Straight | 1 |
| HEDS-3201 | Switched | Coiled | 2 |
| HEDS-3250 | Shielded, Non-Switched | Straight | 1 |
| HEDS-3251 | Shielded, Non-Switched | Coiled | 2 |

NOTES:

1. Straight Cord Dimensions are 41 in . wand-to-connector.
2. Coiled Cord Dimensions are 29 in . wand-to-coil, 8 in . coil (collapsed), 10 in . coil-to-connector.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{TS}_{\mathrm{S}}$ | -20 | 55 | ${ }^{\circ} \mathrm{C}$ | 3 |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -20 | 55 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | $\mathrm{V}_{\mathrm{S}}$ | -0.5 | 6.0 | V |  |
| Output Transistor Power | $\mathrm{P}_{\mathrm{t}}$ |  | 200 | mW |  |
| Output Collector Voltage | Vo |  | 20 | V |  |

NOTE:
3. Maximum Storage Temperature is dictated by the wand case.

## Recommended Operating Conditions

| Parameter | - Symbol | Min. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bar/Space Width | b, s | 0.150 (0.006) |  | mm (in.) |  |
| Scan Velocity | VSCAN | 5 | 100 | $\mathrm{cm} / \mathrm{sec}$ |  |
| Contrast | $\mathrm{R}_{\mathrm{w}}-\mathrm{R}_{\mathrm{b}}$ | 65 |  | \% | 4 |
| Temperature | $\mathrm{T}_{\text {A }}$ | -20 | 55 | ${ }^{\circ} \mathrm{C}$ |  |
| Relative Humidity | RH |  | 95 | \% | 5 |
| Ambient Light | Ev |  | 2000 | lux | 6 |
| Supply Voltage | Vs | 4.5 | 5.5 | $V$ | 7 |
| Tilt Angle | $\Theta$ | 0 | 30 | degrees |  |
| Height | See Figure 7 |  |  |  |  |
| Orientation | See Figure 1 |  |  |  | 8 |

## NOTES:

4. Contrast is defined as $R_{w}-R_{b}$ where $R_{w}$ is the reflectance at 820 nm from the white spaces and $R_{b}$ is the reflectance at 820 nm from the black bars. Contrast is directly related to Print Contrast Signal (PCS $=\left(R_{w}-R_{b} / R_{w}\right)$ as it is equivalent to $R_{w} \times P C S$.
5. Non-Condensing.
6. Ambient Light sources can be diffuse tungsten, fluorescent, sunlight, or a combination thereof. Performance in ambient light levels above 2000 lux will vary depending on the light source and shading at the wand tip.
7. Power Supply ripple and noise should be less than 100 mV .
8. The wand is in the preferred orientation when the surface of the wand label is parallel to the bars and spaces in the bar code symbol' as shown in Figure 1.

## Electrical Operation

The High-Resolution Digital Bar Code Wands consist of a precision optical sensor, an analog amplifier, a digitizing circuit, and an output transistor. These elements provide a TTL compatible output from a single 4.5 V to 5.5 V power supply. The open collector transistor used at the output requires an external pull-up resistor for proper operation.

A non-reflecting black bar results in a logic high (1) level while a reflecting white space will cause a logic low (0) level. The initial or "wake-up" state will always be the correct (logic low) state when the wand is placed on reflecting white surface. The initial state is indeterminate if the wand is placed on a black surface or is pointed into free space.
The HEDS-3250/51 provide a case, cable, and connector shield which must be terminated to logic ground or, preferably, to both logic ground and earth ground. This will
provide a substantial improvement in EMI/ESD immunity in AC powered systems. It is recommended that the shield be properly terminated even when EMI and ESD are not of concern because the shield will otherwise act as an antenna, injecting electrical noise into the wand circuitry.
The HEDS-3200/01 incorporate a push-to-read switch which is used to energize the LED emitter and electronic circuitry. When the switch is initially depressed, contact bounce may cause a series of random pulses to appear at the output Vo. This pulse train will typically settle to a final value within 5 ms . The final value will be the initial or "wake-up" state.
The recommended logic interface for the wands is shown in Figure 3. This interconnection provides maximum ESD protection for both the wand and the user's electronics.

## Electrical CharacteristicS ( $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1.0-10 \mathrm{k} \Omega$, unless otherwise noted)

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Fig. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switch Bounce (HEDS-3200/3201) | $\mathrm{t}_{56}$ |  | 0.5 | 5 | ms |  |  | 9 |
| High Level Output Current | IOH |  |  | 400 | $\mu \mathrm{A}$ | $\mathrm{VOH}=2.4 \mathrm{~V}$ <br> Bar condition (Black) | 3 |  |
| Low Level Output Voltage | Vol |  |  | 0.4 | V | $1 \mathrm{OL}=16 \mathrm{~mA}$ <br> Space Condition (White) | 3 |  |
| Output Rise Time | tr |  | 2 |  | $\mu \mathrm{S}$ | $10 \%-90 \%$ <br> Transition $\mathrm{RL}=1.0 \mathrm{k} \Omega$ | 3 |  |
| Output Fall Time | tf |  | 100 |  | ns | $90 \%-10 \%$ <br> Transition | 3 |  |
| Suppiy Current | $1 s$ |  | 35 | 50 | mA | $V_{s}=5 \mathrm{~V},$ <br> Bar Condition (Black) |  | 10 |

## NOTES:

9. Switch bounce causes a series of sub-millisecond pulses to appear at the output, Vo (HEDS-3200/3201 only).
10. Push-to-Read switch is depressed (if applicable) and the wand is scanning on a non-reflecting (black) surface.

## Block Diagram

HEDS-3200/3201 (with switch)


HEDS-3250/3251
(shielded)


## Scanning Performance $\left(V_{S}=5 \mathrm{~V}, R_{L}=1.0-10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S C A N}=50 \mathrm{~cm} / \mathrm{sec}\right)$

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Fig. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decodability Index | DI |  | 14 | 22 | \% | $\text { Tilt }=0 \text { to } 30^{\circ}$ <br> Preferred Orientation <br> Standard Test = <br> Tag | $\begin{gathered} 1,2 \\ 4,5 \\ 6,7 \\ 8 \end{gathered}$ | $\begin{gathered} 11,13 \\ 14 \end{gathered}$ |
| Average Width Error (Narrow Bars) | OSbn |  | $\begin{gathered} 0.030 \\ (0.0012) \end{gathered}$ |  | $\mathrm{mm}_{(\mathrm{in} .)}$ |  | $\begin{gathered} 1,2 \\ 9 \end{gathered}$ | 12 |
| Average Width Error (Wide Bars) | OSbw |  | $\begin{gathered} 0.021 \\ (0.0008) \end{gathered}$ |  | mm <br> (in.) |  |  |  |
| Average Width Error (Narrow Spaces) | $\mathrm{OS}_{\mathrm{sn}}$ |  | $\begin{gathered} -0.015 \\ (-0.0006) \end{gathered}$ |  | $\begin{aligned} & \mathrm{mm} \\ & \text { (in.) } \end{aligned}$ |  |  |  |
| Average Width Error (Wide Spaces) | OS $S_{\text {sw }}$ |  | $\begin{gathered} -0.044 \\ (-0.0017) \end{gathered}$ |  | $\underset{\text { (in.) }}{\mathrm{mm}}$ |  |  |  |
| Deviation from Average (Internal Elements) | de |  | $\begin{gathered} 0.023 \\ (0.0009) \end{gathered}$ | $\begin{gathered} 0.038 \\ (0.0015) \end{gathered}$ | mm <br> (in.) |  | $\begin{gathered} 1,2 \\ 4,5 \\ 6,7 \\ 8 \end{gathered}$ | 15 |
| Deviation from Average (First Bar) | $\mathrm{db}_{1}$ |  | $\begin{gathered} 0.054 \\ (0.0021) \end{gathered}$ | $\begin{gathered} 0.110 \\ (0.0043) \end{gathered}$ | $\mathrm{mm}_{(\mathrm{in} .)}$ |  |  |  |

## NOTES:

11. The standard test tag is designed to include all possible combinations of wide or narrow bars and spaces. The tag, shown in Figure 2, consists of black bars and white spaces with a narrow element width of 0.19 mm ( 0.0075 in .) and a wide element width of 0.42 mm ( 0.0165 in .). This equates to a wide-to-narrow ratio of 2.2:1. A margin, or white reflecting area, of at least 5 mm in width precedes the first bar. The test tag is photographically reproduced on KODAGRAPH TRANSTAR TC5 ${ }^{\circ}$ paper with $\mathrm{R}_{\mathrm{w}}=0.9$ and PCS greater than 0.9 , yielding a contrast greater than 0.81 .
12. The difference between the calculated bar (space) width derived from the digital output and the optically measured bar (space) width defines width error (WE). The Average Width Error for the narrow or wide bars (spaces) specifies the systematic error in the output signal. This systematic error is largely due to paper bleed and is thus very dependent on the symbol media.
13. $\mathrm{DI}=\frac{d e+\Delta \mathrm{OS} / 4}{\mathrm{~m}} \times 100$, expressed as a percentage of the module width. "de" is the deviation from the average width error for the internal bars (spaces), " $\triangle O S$ " is the difference in average width error between the wide and narrow bars (spaces), and " $m$ " is the optically measured narrow bar (space) or "module" width. The-first bar is not included due to its unique characteristics.
14. DI is calculated independently for bars and spaces and the worst-case, largest DI is used. This results in a DI specification which applies only to the bars since the DI for the bars is characteristically larger than the DI for the spaces.
15. Deviation from the Average Width Error (de, $\mathrm{d}_{1}$ ) specifies the random errors in the output signal which are largely due to digitizing noise. The first bar, which generally appears larger than the interior bars, has a deviation significantly larger than the deviation for the interior bars (spaces).



BAR WIDTH 0.19 mm ( 0.0075 in .) BLACK \& WHITE

CONTRAST $\geqslant 65 \%$ KODAGRAPH TRANSTAR TC5 ${ }^{\oplus}$ PAPER

Figure 1. Preferred Wand Orientation

Figure 2. Standard Test Tag Format


Figure 3a. Recommended Logic Interface for HEDS-3200/01
Figure 3b. Recommended Logic Interface for HEDS-3250/51. (When earth ground is not available, connect shield to logic ground, as shown by dotted line)

## Typical Performance Curves

( $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{Tilt}=15^{\circ}$, unless otherwise specified)


Figure 4. Decodability Index and Deviation from Average Width Error vs. Temperature


Figure 6. Decodability Index and Deviation from Average Width Error vs. Tilt Angle


Figure 5. Decodability Index and Deviation from Average Width Error vs. Supply Voltage


Figure 7. Wand Height vs. Tilt Angle Operating Region


Figure 8. Decodability Index and Deviation from Average Width Error vs. Scan Velocity

## Operation Considerations

The HEDS-32XX series of wands provide TTL compatible pulse widths whose widths are determined by the printed bar (space) width and the scan velocity (Vscan). When scanning a black and white printed bar code, the wand will output a logic high (1) for a non-reflecting black bar and a logic low (0) for a reflecting white space.
The serial time data from the wand represents the bar code symbol's binary data in a width modulated format. When scanning a 3 of 9 Code symbol at a constant velocity, for example, the longer (wide) time intervals encode binary ones (1) and the shorter (narrow) time intervals encode binary zeros (0). The wide (1) and narrow (0) time intervals may represent either bars or spaces.
The wand's serial data is supplied to a decoder which translates the time width data into binary character bit images. The decoding algorithm sets a decision threshold which is compared to the pulse width data supplied by the wand. Those time intervals which are larger than the threshold are decoded as ones (1), and those smaller as logic zeros ( 0 ). The accuracy of this decision is dependent upon the ability of the algorithm to compensate for systematic and random errors introduced by the wand and the printer.
Printers and wands can be characterized as having both Offset (systematic) and Noise (random) errors. The printer Offset ( $O S_{p}$ ) results from ink bleeding or ink shrinkage. Ink bleeding causes the bars to be printed wider and the spaces narrower. Conversely, ink shrinkage causes bars to be narrower and spaces wider. The random component for the printer is the variation of the printed bar (space) widths centered around the Offset (OSp).

For the wands, Offset ( $O_{w}$ ) causes bars to be wider and spaces narrower than they are actually printed. The random component ( dm ) for the wand is the variation of the width error centered around the vand Offset ( $\mathrm{OS}_{\mathrm{w}}$ ):

An algorithm that creates a separate decision threshold ( T ) for bars and spaces compensates for the offset errors of both the printer and the wand. When this is done, the dominant errors become the random components of the printer and the wand. The optimal algorithm to calculate a decision threshold ( $T$ ) selects the time mid-point between


Figure 9. Average Width Errors vs. Tilt Angle
the time intervals for the wide and narrow bars, or spaces, within a single character. This threshold, in the worst case, can be expressed by:

$$
\mathrm{T}=\frac{\mathrm{N}(\min )+\mathrm{W}(\min )}{2},
$$

where

$$
\begin{aligned}
\mathrm{T} & =\text { decision threshold } \\
\mathrm{N}(\min ) & =\text { minimum narrow } \text { width } \\
\mathrm{W}(\min ) & =\text { minimum wide } \text { width }
\end{aligned}
$$

When evaluating a population of bars and spaces, the threshold ( $T$ ) should always be greater than the widest narrow bar (space) and smaller than the narrowest wide bar (space). The condition shown below describes the worst-case condition:

$$
N(\max )<\frac{\mathrm{N}(\min )+\mathrm{W}(\min )}{2}
$$

Each of these three components - $N($ max $), N(\min )$, and $\mathrm{W}(\mathrm{min})$ - can be represented as a nominal element width plus offset and random components.
When the offset and random errors are combined to represent the narrowest narrow, and the narrowest wide bar (space), they can be inserted into the previous equations. With a little algebraic manipulation, the equation can be segmented to describe a decodability limit (DL) for the bar code as it compares to a decodability index of the printer ( $\mathrm{DI}_{\mathrm{p}}$ ) and the wand ( $\mathrm{DI}_{\mathrm{w}}$ ). This analysis leads to the two error sensitivity equations shown below:

## Bar Error Sensitivity

Decodability Limit (DLb) > Printer (DIbp) + Wand (DIbw)

$$
\begin{gathered}
\frac{(\mathrm{WB}: \mathrm{NB}-1)}{4}>\frac{\left(\mathrm{OS}_{\mathrm{bpN}}-\mathrm{OS}_{\mathrm{bpW}}\right)+\left(3 \delta_{\mathrm{bpN}}+\delta_{\mathrm{bpW}}\right)}{4 \mathrm{~m}} \\
+\frac{\left(\mathrm{OS}_{\mathrm{bwN}}-\mathrm{OS}_{\mathrm{bwW}}\right)+4 \mathrm{debw}^{4 m}}{4 m}
\end{gathered}
$$

## Space Error Sensitivity



$$
\begin{array}{r}
\frac{(W S: N S-1)}{4}>\frac{\left(O S_{\mathrm{spN}}-\mathrm{OS}_{\mathrm{spw}}\right)+\left(3 \delta_{\mathrm{spN}}+\delta_{\mathrm{spW}}\right)}{4 \mathrm{~m}} \\
\quad+\frac{\left(\mathrm{OS}_{\mathrm{swN}}-\mathrm{OS}_{\mathrm{swN}}\right)+4 \mathrm{de}_{\mathrm{sw}}}{4 \mathrm{~m}}
\end{array}
$$

The first term of the equation estimates the offset and random errors of the printer ( $D I_{p}$ ) while the second term describes the offset and random errors of the wand ( $\mathrm{DI}_{w}$ ). The random errors of the wand (debw, desw) are the combination of the wide ( $\delta_{w W}$ ) and narrow ( $\delta_{w N}$ ) random components. The individual random components are summed because, in the case of the wand, they are approximately equal.

These two equations allow a system designer to predict, given the wide to narrow ratio ( $\mathrm{W}: \mathrm{N}$ ), module width ( $m$ ), and errors (OS, $\delta$ ), whether the decoder will correctly recognize the narrow time interval as a narrow bar (space) and the wide time interval as a wide bar (space). The (W:N $-1) / 4$ factor in the equation is defined as the decodability limit (DL) of the symbology. To ensure decodability, this number should be greater than the sum of the errors introduced by the printer and wand. The wand may, however, render a decodable signal even if the combination of printer and wand errors exceed the decodability limit (DL). This results from the introduction of other random variables such as the operator scan velocity, acceleration and deceleration profiles, and the sampling times of the decoder time interval counter. These factors can bias the printer and wand errors, thus permitting the decoder to make the correct decision.

When using the prescribed decoding algorithm and the concept of decodability presented above, the system designer should independently evaluate the decodability of the bars and the spaces. The decodability index for the wand ( $\mathrm{Dl}_{\mathrm{w}}$ ) is typically larger for bars than for spaces while the decodability index for the printer is typically larger for the spaces. If an algorithm which does not separate bars and spaces is used, the designer must evaluate the offset differences between the bars and spaces in addition to the analysis presented above. This introduces another variable into the system as the wand offset is dependent on the characteristics of the paper media.

The best first read rate can be achieved when good quality printed bar code symbols are used. Good quality highresolution bar codes can be pre-printed or printed on-demand with "drummer" label printers using OCR ribbons and good quality label stock. Bar code symbols which are printed on very translucent media, as are some photolithographic symbols, can cause the wand offset to be excessive due to paper bleed. This will degrade system performance, particularly for algorithms which compare bars and spaces.
The high resolution wand is not recommended for use with bar codes printed on dot matrix printers because of the print flaws (spots and voids) which are characteristic of this printing process. These flaws may be large enough to be recognized as bars (spaces) by a high resolution wand, leading to a mis-read.

Table 1. Definition of Terms

| Bars | Spaces | Definition |
| :---: | :---: | :---: |
| DLb | DLs | decodability limit |
| Dlbp | $\mathrm{DI}_{\text {sp }}$ | printer decodability index |
| Dlbw | $\mathrm{Dl}_{\text {sw }}$ | wand decodability index |
| WB:NB | WS:NS | wide to narrow ratio |
| OSbpN | OSspN | printer offset, narrow element |
| OSbpw | OS $\mathrm{S}_{\text {spW }}$ | printer offset, wide element |
| OSbwn | OS ${ }_{\text {swn }}$ | wand offset, narrow element |
| OSbww | OS ${ }_{\text {sww }}$ | wand offset, wide element |
| $\delta_{\text {bpN }}$ | $\delta_{\text {spN }}$ | printer random error, narrow element |
| $\delta \mathrm{bpW}$ | $\delta_{\text {spW }}$ | printer random error, wide element |
| debw | $\mathrm{de}_{\text {sw }}$ | wand random error |
| m | m | module width (narrow element width) |

## Mechanical Considerations

The HEDS-32XX wands include a standard 5 pin, 240 degree DIN connector. The detailed specifications and pin-outs are shown in Figure 10. Mating connectors are available from RYE Industries and Switch Craft in both 5 pin and 6 pin configurations. These connectors are listed below:

| Connector | Configuration |
| :--- | :---: |
| RYE MAB-5 | 5 Pin |
| Switch Craft 61GA5F | 5 Pin |
| Switch Craft 61HA5F | 5 Pin |
| RYE MAB-6 | 6 Pin |
| Switch Craft 61GA6F | 6 Pin |



NOTES:

1. DIMENSIONS IN MILLIMETRES AND (INCHES).

| PIN | WIRE COLOR | HEDS-3200/01 | HEDS-3250/51 |
| :---: | :---: | :---: | :---: |
| 1 | RED | $\mathrm{V}_{\text {S }}$ SUPPLY VOLTAGE | $\mathrm{V}_{\text {S }}$ SUPPLY VOLTAGE |
| 2 | WHITE | $V_{0}$ OUTPUT | $V_{\text {o OUTPUT }}$ |
| 3 | BLACK | GROUND | GROUND |
| 4 | N/A | N/C | N/C |
| 5 | N/A | N/C | N/C |
| CASE | - | N/C | SHIELD |

Figure 10. Connector Specifications

## Maintenance Considerations

While there are no user serviceable parts inside the Wand, the tip should be checked periodically for wear and dirt, or obstructions in the aperture. The tip aperture is designed to reject particles and dirt but a gradual degradation in performance will occur as the tip wears down, or becomes obstructed by foreign materials.
Before unscrewing the tip, disconnect the Wand from the system power source. The aperture can be cleaned with a cotton swab or similar device and a liquid cleaner.
The glass window on the sensor should be inspected and cleaned if dust, dirt, or fingerprints are visible. To clean the sensor window dampen a lint free cloth with a liquid cleaner, then clean the window with the cloth taking care not to disturb the orientation of the sensor. DO NOT SPRAY CLEANER DIRECTLY ON THE SENSOR OR WAND.

After cleaning the tip aperture and sensor window, the tip should be gently and securely screwed back into the Wand assembly. The tip should be replaced if there are visible indications of wear such as a disfigured, or distorted aperture. The part number for the Wand tip is HEDS-3001. It can be ordered from any franchised Hewlett-Packard distributor.


Figure 11. Wand Tip

## Optional Features

The wand may also be ordered with the following special features:

- Special colors
- Customer specified label
- No label
- Special Retractable Coiled Cords
- 9 Pin subminiature D-style plastic connector (same as HEDS-3000/3050)
- No connector (stripped and tinned leads)

For more information, call your local Hewlett-Packard sales office or franchised distributor.

## Wand Dimensions

HEDS-3200/01


HEDS-3250/51


NOTES:

1. ALL DIMENSIONS IN MILLIMETRES AND (INCHES).

## Features

- FOCUSED EMITTER AND DETECTOR IN A SINGLE PACKAGE
- HIGH RESOLUTION - . 190 mm SPOT SIZE
- 700nm VISIBLE EMITTER
- LENS FILTERED TO REJECT AMBIENT LIGHT
- TO-5 MINIATURE SEALED PACKAGE
- PHOTODIODE AND TRANSISTOR OUTPUT
- SOLID STATE RELIABILITY


## Description

The HBCS-1100 is a fully integrated module designed for optical reflective sensing. The module contains a .178 mm (. 007 in .) diameter 700 nm visible LED emitter and a matched I.C. photodetector. A bifurcated aspheric lens is used to image the active areas of the emitter and the detector to a single spot 4.27 mm ( 0.168 in .) in front of the package. The reflected signal can be sensed directly from the photodiode or through an internal transistor that can be configured as a high gain amplifier.

## Applications

Applications include pattern recognition and verification, object sizing, optical limit switching, tachometry, textile thread counting and defect detection, dimensional monitoring, line locating, mark, and bar code scanning, and paper edge detection.


## Mechanical Considerations

The HBCS-1100 is packaged in a high profile 8 pin TO-5 metal can with a glass window. The emitter and photodetector chips are mounted on the header at the base of the package. Positioned above these active elements is a bifurcated aspheric acrylic lens that focuses them to the same point.

The sensor can be rigidly secured by commercially available two piece TO-5 style heat sinks, such as Thermalloy 2205, or Aavid Engineering 3215. These fixtures provide a stable reference platform and their tapped mounting holes allow for ease of affixing this assembly to the circuit board.

## Package Dimensions



[^3]
## Electrical Operation

The detector section of the sensor can be connected as a single photodiode, or as a photodiode transistor amplifier. When photodiode operation is desired, it is recommended that the substrate diodes be defeated by connecting the collector of the transistor to the positive potential of the power supply and shorting the base-emitter junction of the transistor. Figure 15 shows photocurrent being supplied from the anode of the photodiode to an inverting input of the operational amplifier. The circuit is recommended to improve the reflected photocurrent to stray photocurrent ratio by keeping the substrate diodes from acting as photodiodes.

The cathode of the 700 nm emitter is physically and electrically connected to the case-substrate of the device. Applications that require modulation or switching of the LED should be designed to have the cathode connected to the electrical ground of the system. This insures minimum capacitive coupling of the switching transients through the substrate diodes to the detector amplifier section.

The HBCS-1100 detector also includes an NPN transistor which can be used to increase the output current of the sensor. A current feedback amplifier as shown in Figure 6 provides moderate current gain and bias point stability.


## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Min. | Max. | Units | Fig. | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | Ts | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | TA | -20 | +70 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Lead Soldering Temperature 1.6 mm from Seating Plane |  |  | $\begin{gathered} 260 \\ \text { for } 10 \mathrm{sec} . \end{gathered}$ | ${ }^{\circ} \mathrm{C}$ |  | 11 |
| Average LED Forward Current | $\mathrm{I}_{\mathrm{F}}$ |  | 50 | mA |  | 2 |
| Peak LED Forward Current | IfPK |  | 75 | mA | 1 | 1 |
| Reverse LED Input Voltage | $V_{\text {R }}$ |  | 5 | V |  |  |
| Package Power Dissipation | Pp |  | 120 | mW |  | 3 |
| Collector Output Current | 10 |  | 8 | mA |  |  |
| Supply and Output Voltage | $\mathrm{V}_{\mathrm{D},} \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{E}}$ | -0.5 | 20 | V |  | 10 |
| Transistor Base Current | $\mathrm{I}_{\mathrm{B}}$ |  | 5 | mA |  |  |
| Transistor Emitter Base Voltage | $V_{\text {Eb }}$ |  | . 5 | $\checkmark$ |  |  |

CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be introduced by ESD.

## System Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions |  | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Photocurrent (lpr + Ips) | Ip |  |  | 575 | nA | $\mathrm{T}_{A}=-20^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{C}=5 \mathrm{~V}$ | $\begin{gathered} 2,3 \\ 15 \end{gathered}$ | 4 |
|  |  | 150 | 250 | 375 |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |  |
|  |  | 80 |  |  |  | $T_{A}=70^{\circ} \mathrm{C}$ |  |  |  |
| Reflected Photocurrent (IPR) to Internal Stray Photocurrent (Ips) | $\frac{I_{P R}}{I_{P S}}$ | 4 | 8.5 |  |  | $I_{F}=35 \mathrm{~mA}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$ |  | 3 |  |
| Transistor DC Static Current Transfer Ratio | $h_{\text {FE }}$ | 50 |  |  |  | $\mathrm{T}=2=-20^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{IC}=10 \mu \mathrm{~A}$ | 4,5 |  |
|  |  | 100 | 200 |  |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |  |
| Slew Rate |  |  | . 08 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{array}{ll} R_{L}=100 \mathrm{~K} & I_{\mathrm{KK}}=50 \mathrm{~mA} \\ R_{F}=10 \mathrm{M} & \text { to }=100 \mu \mathrm{~S}, \text { Rate }=1 \mathrm{kHz} \end{array}$ |  | 6 | 8,9 |
| Image Diameter | d |  | . 17 |  | mm | $1 \mathrm{~F}=35 \mathrm{~mA}, \ell=4.27 \mathrm{~mm}$ (0.168in.) |  | 8,10 |  |
| Maximum Signal Point | $\ell$ | 4.01 | 4.27 | 4.52 | mm | Measured from Reference Plane |  | 9 |  |
| 50\% Modulation Transfer Function | MTF |  | 2.5 |  | Inpr/mm | $\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}, \ell=4.27 \mathrm{~mm}$ |  | 10,11 | 5,7 |
| Depth of Focus | $\begin{gathered} \Delta \ell \\ \text { FWHM } \end{gathered}$ |  | 1.2 |  | mm | $50 \%$ of IP at $\ell=4.27 \mathrm{~mm}$ |  | 9 | 5 |
| Effective Numerical Aperature | N.A. |  | . 3 |  |  |  |  |  |  |
| Image Location | D |  | . 51 |  | mm | Diameter Reference to Centerline $\ell=4.27 \mathrm{~mm}$ |  |  | 6 |
| Thermal Resistance | OJc |  | 85 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |  |  |  |

Detector Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Min. | Typ. | Max. | Units |  | Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dark Current | IPD |  | 5 | 200 | pA | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | $\begin{aligned} & I F=0, V_{D}=5 V ; \\ & \text { Reflection }=0 \% \end{aligned}$ |  |  |
|  |  |  |  | 10 | nA | $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ |  |  |  |
| Capacitance | CD |  | 45 |  | pF |  |  |  |  |
| Flux Responsivity | R $\phi$ |  | . 22 |  | $\frac{A}{W}$ | $\lambda=700 \mathrm{~nm}, \mathrm{~V}_{\mathrm{D}}=5 \mathrm{~V}$ |  | 12 |  |
| Detector Area | $A_{D}$ |  | . 160 |  | mm² | Square, w | Length $=.4 \mathrm{~mm} /$ Side |  |  |

## Emitter Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Fig. | Note |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| Forward Voltage | $\mathrm{V}_{\mathrm{F}}$ |  | 1.6 | 1.8 | V | $\mathrm{I}_{\mathrm{F}=}=35 \mathrm{~mA}$ | 13 |  |
| Reverse Breakdown Voltage | $\mathrm{B} \mathrm{V}_{\mathrm{R}}$ | 5 |  |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |  |  |
| Radiant Flux | $\phi_{\mathrm{E}}$ | 5 | 9.0 |  | $\mu \mathrm{~W}$ | $\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}, \lambda=700 \mathrm{~nm}$ | 14 |  |
| Peak Wavelength | $\lambda_{\mathrm{P}}$ | 680 | 700 | 720 | nm | $\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$ | 14 |  |
| Thermal Resistance | $\Theta_{\mathrm{JC}}$ |  | 150 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |  |  |
| Temperature Coefficient of $\mathrm{V}_{\mathrm{F}}$ | $\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$ |  | -1.2 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$ |  |  |

## Transistor Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Collector-Emitter Leakage | ICEO |  | 1 |  | nA | $V_{C E}=5 \mathrm{~V}$ |  |  |
| Base-Emitter Voltage | VBE |  | . 6 |  | V | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=70 \mathrm{nA}$ |  |  |
| Collector-Emitter Saturation Voltage | VCE(SAT) |  | . 4 |  | V | $\mathrm{I}_{\mathrm{B}}=1 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$ |  |  |
| Collector-Base Capacitance | CCB |  | . 3 |  | pF | $f=1 \mathrm{MHz}, \mathrm{V}_{C B}=5 \mathrm{~V}$ |  |  |
| Base-Emitter Capacitance | Cbe |  | . 4 |  | pF | $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V}$ |  |  |
| Thermal Resistance | $\Theta J C$ |  | 200 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |  |  |

NOTES:

1. $300 \mu \mathrm{~s}$ pulse width, 1 kHz pulse rate.
2. Derate Maximum Average Current linearly from $65^{\circ} \mathrm{C}$ by $6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Without heat sinking from $\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$, derate Maximum Average Power linearly by $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Measured from a reflector coated with a $99 \%$ reflective white paint (Kodak 6080) positioned 4.27 mm ( 0.168 in.) from the reference plane.
5. Peak-to-Peak response to black and white bar patterns.
6. Center of maximum signal point image lies within a circle of diameter $D$ relative to the center line of the package. A second emitter image (through the detector lens) is also visible. This image does not affect normal operation.
7. This measurement is made with the lens cusp parallel to the black-white transition.
8. Image size is defined as the distance for the $10 \%-90 \%$ response as the sensor moves over an abrupt black-white edge.

9 . $(+)$ indicates an increase in the distance from the reflector to the reference plane.
10. All voltages referenced to Pin 4.
11. CAUTION: The thermal constraints of the acrylic lens will not permit the use of conventional wave soldering procedures. The typical preheat and post cleaning temperatures and dwell times can subject the lens to thermal stresses beyond the absolute maximum ratings and can cause it to defocus.


Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration


Figure 2. Relative Total Photocurrent vs. LED DC Forward Current


Figure 3. Ip Test Circuit


Figure 4. Normalized Transistor DC Forward Current Gain vs. Base Current at Temperature


Figure 6. Slew Rate Measurement Circuit


Figure 8. Image Size vs. Maximum Signal Point


Figure 5. Common Emitter Collector Characteristics


Figure 7. Image Location


Figure 9. Reflector Distance vs. \% Reflected Photocurrent


Figure 10. Step Edge Response


Figure 12. Detector Spectral Response


Figure 14. Relative Radiant Flux vs. Wavelength


Figure 11. Modulation Transfer Function


Figure 13. LED Forward Current vs. Forward Voltage Characteristics


Figure 15. Photodiode Interconnection


## Features

- THREE INDUSTRIAL BAR CODES STANDARD:
- 3 of 9 Code
- Interleaved 2 of 5 Code
- Industrial 2 of 5 Code
- AUTOMATIC CODE RECOGNITION
- OPTIONAL BAR CODES AVAILABLE
- UPC/EAN/JAN
- Codabar
- Others
- FLEXIBLE DUAL RS-232-C (V.24) DATA COMMUNICATIONS
- Facilitates a Wide Variety of Configurations
- PROGRAMMABLE OPERATION (16800A only):
- Two LED Status Indicators
- Beeper Control
- Code Selection
- Data Communication Configuration
- Reader Operational Status
- HIGH PERFORMANCE DIGITAL WANDS:
- 45 Degree Scan Angle
- Sealed Sapphire Tip
- Polycarbonate or Metal Case
- INTEGRAL POWER SUPPLY
- TABLETOP OR WALL MOUNTABLE
- BUILT-IN SELF TEST
- WORLDWIDE HP SERVICE


## Description

The 16800A and 16801A are high performance bar code readers. The 16800A includes a wide range of programmable features which allow the reader to be fully integrated into sophisticated data entry systems. The 16801A is nonprogrammable, providing a more cost-effective solution for applications which do not require programmability.
The standard reader supports three popular industrial bar codes: 3 of 9 code, Interleaved 2 of 5 code, and Industrial 2 of 5 code. If more than one standard code is enabled, the reader will automatically recognize which code is being read. Options are available for reading UPC/EAN/JAN codes, Codabar code, and other bar codes. Bidirectional scanning is provided for all bar codes supported.

The 16800A and 16801A may be configured with a wide range of computer systems; including minicomputers, desktop computers, and personal computers. Dual RS-232-C (V.24) ports facilitate operation in both stand-alone and eavesdrop configurations. In an eavesdrop configuration, the reader will generally be operated in conjunction with an RS-232-C terminal.
Interactive systems design is supported in the 16800A through programmable operator feedback and reader control features. A multi-tone beeper and two LED indicators are provided to allow simple, yet flexible audio and visual programmable feedback. Local operator feedback is provided in the 16801A through a beeper which sounds to signify a good read.
Reader performance can be optimized by selecting the wand appropriate for the environment and the type of symbol being read. The wands offer a 45 degree scan angle, a rugged case, and a sealed sapphire tip. The sapphire tip may be replaced by the user if it is damaged.

## Applications

Bar codes offer a method of entering data into computers which is fast, accurate, reliable, and which requires little operator training. Implementation of a bar code system can lead to increased productivity, reduced inventory costs, improved accountability, increased asset visibility, and reduced paperwork. Customer satisfaction will also improve as a result of improved quality control, reduced shipping errors, and reduced order and ship times. On-line, real-time interactive systems will allow the user to take full advantage of the contributions offered by bar code systems. The 16800A and 16801A provide a high performance solution for applications which require on-line bar code data entry.
The most common type of data stored in bar code is item identification information used in a wide range of applications such as:

- Inventory Control
- Work-in-Process Tracking
- Distribution Tracking
- Order Processing
- Records Management
- Point-of-Sale
- Government Packaging and Shipping

Bar codes can also be used in applications where information about an item or a transaction must be accurately entered into the host computer. Item location, employee identification, work steps, equipment settings, equipment status, and inspection results are some of the types of information which can be entered using bar codes.

gar CODE
componewis

## Typical Configuration

The dual RS-232-C (V.24) output provided by the 16800A and 16801A allows a single reader to be configured in a wide range of on-line applications. Three typical system configurations are outlined below:

- Stand-Alone Reader - The 16800A/16801A is in direct communication with the host minicomputer, desktop computer, or personal computer.

- Multiplexed - A cluster of 16800A/16801As communicates with the host computer through a multiplexer. Where the advantages of fiber optic data communications are desired, the Hewlett-Packard 39301A Fiber Optic Multiplexer can be used.

- Eavesdrop - The $16800 \mathrm{~A} / 16801 \mathrm{~A}$ is in an eavesdrop configuration between an RS-232-C terminal and the host computer. The reader can be configured to transmit to the computer, to the terminal, or to both simultaneously.



## Wand Selection

The 16800A and 16801A bar code readers include a 16830A digital bar code wand which is capable of reading bar code symbols which have nominal narrow bar/space widths of 0.19 mm ( 0.0075 in .) or greater. This includes a wide range of high, medium, and low resolution bar codes including standard 3 of 9 code [ 0.19 mm ( 0.0075 in .)].
An optional 16832A digital bar code wand is available for very high resolution codes with nominal narrow bar/space widths of $0.13 \mathrm{~mm}(0.005 \mathrm{in}$.$) to 0.20 \mathrm{~mm}(0.008 \mathrm{in}$.). The 820 nm near-infrared emitter in the 16832A wand also enables it to read the black-on-black bar codes used in some security systems. This wand is not recommended for dot matrix printed bar codes or colored bar codes.

The 16830A and 16832A wands feature a rugged polycarbonate case designed for light industrial and commercial
applications. Applications which require an industrial wand are supported by the optional 16840A and 16842A digital bar code wands. These wands feature a solid metal case and internal construction designed for abusive environments. The 16840A and 16842A have the same bar code reading characteristics as the 16830A and 16832A, respectively.
All wands are also available under accessory product numbers.

## Code Selection

The 16800A and 16801A offer user flexibility in the implementation of the three standard bar codes:

- Single Code Selection or Automatic Code Recognition (any combination of the three standard codes)
- Checksum Verification Selectable
- Variable Message Length up to 32 characters
- Selectable Message Length Check (Interleaved 2 of 5 code and Industrial 2 of 5 code)
- Any specified code resolution

Optional bar codes will also provide a high degree of user flexibility. The code reading configuration is switch selectable. Additional information on bar code symbologies is available in the Operating and Installation Manual and in Application Note 1013 - "Elements of a Bar Code System".

## 16800A Additional Capabilities

The 16800A offers the advantage of programmable control over all aspects of the code reading configuration. This capability enables the applications software to determine what code can be read depending on the type of data to be entered. For example, the 3 of 9 code could be enabled for entering item identification information and then the 3 of 9 code disabled and Interleaved 2 of 5 code enabled for entering a different type of data such as employee identification or job status. This allows different bar codes to be used in the system while at the same time preventing the operator from entering the wrong type of data into the data base.

## Data Communications

The 16800A and 16801A provide a flexible dual RS-232-C (V.24) serial ASCII data communications capability which can support a wide range of system configurations. The reader offers the user the choice of full or half duplex transmission when in character mode and, if in an eavesdrop configuration with a terminal, the reader can also be operated in block mode. The user can tailor the reader's data communication configuration to the application by selecting the appropriate transmission mode (full/half duplex), operating mode (character/block mode), data rate, parity, terminator, stop bits, and inter-character delay on the readily accessible DIP switches. Request to Send/Clear to Send and DC1/DC3 (XON/XOFF) traffic control is available.

## 16800A Additional Capabilities

The 16800A offers expanded data communications capabilities with the added benefit of programmable control. In addition to programmable control of the transmission mode (full/half duplex) and the operating mode (character/block mode), the 16800A provides the following programmable features:

- User-definable header (up to 10 characters)
- User-definable terminator (up to 10 characters)
- DC1/DC3 (XON/XOFF) traffic control enable/disable



## Operator Feedback

The 16800A and 16801A provide good read feedback to the operator by sounding an integral beeper. Beeper volume can be adjusted as appropriate for the application.
16800A Additional Capabilities
Interactive operator feedback is provided in the 16800A through two programmable LED indicators and programmable beeper control. The user has programmable control over operator feedback as follows:

- Local good read beep enable/disable
- Local good read beep tone (16 tones available)
- Computer commanded beep ( 16 tones available)
- Red LED Indicator on/off
- Green LED Indicator on/off

Programmable operator feedback can be used to prompt the operator, to signify that data has been validated by the computer, to differentiate between different workstations in close proximity, to provide additional LED feedback in extremely noisy environments, or for a variety of other reasons.

## Reader Control and Status (16800A only)

The 16800A provides the user with added programmable control over the reader's operation and also enables the user to obtain on-line status information regarding the reader's configuration and functionality. The programmable control and status features are described below:
Scanner Enable/Disable - When disabled, further bar code scans are ignored.
Single Read Enable/Disable - When enabled, a single bar code scan can be entered between "Next Read" commands. Hard Reset - Commands the reader to return to the operating configuration prescribed by the DIP switch settings. An automatic self-test is also executed.
Status Request - Commands the reader to send the status of its operating configuration to the computer.


## Specifications

## General

Typical Wand Reading Characteristics:

| Parameter | Units | 16830 A <br> or 16840A | 16832 A <br> or 16842A |
| :--- | :---: | :---: | :---: |
| Minimum <br> Recommended <br> Nominal Narrow <br> Element Width | mm <br> in. | 0.190 <br> 0.0075 | 0.127 <br> 0.005 |
| Tilt Angle | degrees | $0-45$ | $0-45$ |
| Scan Speed | $\mathrm{cm} / \mathrm{sec}$ |  |  |
| $\mathrm{in} . \mathrm{sec}$ |  |  |  | | $7.6-127$ |
| :---: |
| $3-50$ | | $7.6-127$ |
| :---: |
| $3-50$ |
| Wavelength |
| nm |
| 700 |

Bar Codes Supported:
Standard: 3 of 9 Code (ANSI MH10.8M-1983; MIL-STD-1189) Interleaved 2 of 5 Code (ANSI MH10.8M-1983) Industrial 2 of 5 Code
Optional: UPC/EAN/JAN (Option 001)
Codabar (Option 002) Others (contact factory)

## Data Communications

Data Rate:

Parity:
Terminator:

Programmable Header/
Terminator (16800A
only):
Stop Bits:
Inter-Character Delay:

Standard Asynchronous
Communications Interface:

Transmission Modes:

Operating Modes:

Traffic Control:

Output Buffer:
$110,300,600,1200,2400,4800$, 9600 baud. Switch Selectable.
0's, 1's, Odd, Even. Switch Selectable.
CR, CR/LF, Horizontal Tab (HT), None. Switch Selectable.
User defined. Maximum of 10 characters each.

1 or 2. Switch Selectable.
30 ms or None. Switch Selectable.

EIA Standard RS-232-C (CCITT V.24)

Full or half duplex, asynchronous. Switch selectable. Programmable in 16800A.

Character or Block Mode. Switch selectáble. Programmable in 16800A.
Request to Send/Clear to Send.
DC1/DC3 (XON/XOFF). Switch Selectable. Programmable in 16800A.

## Environmental Conditions

Temperature, Free Space Ambient:

| Non-Operating: | -40 to $75^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$ |
| :---: | :---: |
| Operating: | 0 to $+55^{\circ} \mathrm{C}\left(+32\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ |

Humidity:
5 to $95 \%$ (non-condensing)
Altitude:
Non-Operating: Sea level to 15300 metres
(50,000 feet)
Operating: Sea level to 4600 metres
(15,000 feet)
Vibration:
0.38 mm ( 0.015 in .) p-p, 5 to 55 to $5 \mathrm{~Hz}, 3$ axis

Shock:
$30 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$ sine

## Physical Specifications

Weight, including wand:
2.0 kg (4.4 pounds)

Weight, polycarbonate wand only:
(including coiled cord)
Weight, industrial $\quad 0.16 \mathrm{~kg}$ ( 0.4 pounds)
wand only:
(including coiled cord)
Reader Dimensions: $\quad 260 \mathrm{mmW} \times 189 \mathrm{mmD} \times 71 \mathrm{mmH}$ ( $10.25 \mathrm{in} . \mathrm{W} \times 7.4 \mathrm{in} . \mathrm{D} \times 2.8 \mathrm{in} . \mathrm{H}$ )
Polycarbonate Wand Dimensions:
$134 \mathrm{mmW} \times 23 \mathrm{mmD} \times 20 \mathrm{mmH}$
( 5.3 in .W $\times 0.9 \mathrm{in}$. $\mathrm{D} \times 0.8 \mathrm{in} . \mathrm{H}$ )
Industrial Wand Dimensions:
$158 \mathrm{mmW} \times 24 \mathrm{mmD} \times 18 \mathrm{mmH}$ ( 6.2 in .W $\times 0.9 \mathrm{in}$. $\times 0.7 \mathrm{in} . \mathrm{H}$ )

Wand Cord Length:
94 cm (37 in.) - retracted 206 cm (81 in.) - extended

## Power Requirements

Input Voltage: $\quad 100 \mathrm{~V}(+5 \%,-10 \%)$ at $48-66 \mathrm{~Hz}$ (Opt. 210)
$120 \mathrm{~V}(+5 \%,-10 \%)$ at $48-66 \mathrm{~Hz}$ (Standard) $220 \mathrm{~V}(+5 \%,-10 \%)$ at $48-66 \mathrm{~Hz}$ (Opt. 222)
$240 \mathrm{~V}(+5 \%,-10 \%)$ at $48-66 \mathrm{~Hz}$ (Opt. 224)

Power Consumption: 20 VA maximum

## Regulatory Agency Approvals

## RFI/EMI:

— VDE 0871 level B

- FCC Class B


## Safety Approvals:

- UL478, UL114 for EDP and office equipment
- CSA C22.2-154 for EDP equipment
- VDE 0730 part 2P for EDP and office equipment
- Complies with IEC standard \#380 and \#435 for EDP and office equipment


## Installation

All product preparation and installation can be performed by the owner/user. Refer to the Operating and Installation Manual supplied with the unit for detailed instructions.

## Supporting Literature

For further information refer to:
16800A/16801A Option 001 Data Sheet, Publication Number 5954-2156 (Available through local sales office)
16800A/16801A Option 002 Data Sheet, Publication Number 5954-2157 (Available through local sales office)
16800A/16801A Operating and Installation Manual, P/N: 16800-90001
16800A/16801A Option 001 Operating and Installation Manual Addendum, P/N: 16800-90004
16800A/16801A Option 002 Operating and Installation Manual Addendum, P/N: 16800-90006
Application Note 1013, "Elements of a Bar Code System", Publication Number: 5953-7732 (Available through local sales office)
Application Bulletin 59, "HP 16800A/16801A Bar Code Reader Configuration Guide for a DEC VT-100 or Lear

Siegler ADM-31 to a DEC PDP-11 Computer", Publication Number: 5953-9365 (Available through local sales office)

Application Bulletin 61, "HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 3276/3278 Terminal", Publication Number: 5953-9361 (Available through local sales office)
Application Bulletin 62, "HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 4955F Series 1 Process Control CPU/Protocol Converter and an IBM 3101 Terminal', Publication Number: 5953-9362 (Available through local sales office)

Application Bulletin 63, "HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 5101 Personal Computer', Publication Number: 5953-9363 (Available through local sales office)

Application Bulletin 68, "HP 16800A/16801A Bar Code Reader Configuration Guide for a MICOM Micro 280 Message Concentrator", Publication Number: 5953-9382 (Available through local sales office)

## Ordering Information

| PRODUCT NO. | DESCRIPTION |
| :---: | :---: |
| 16800A | PROGRAMMABLE BAR CODE READER - Includes 16830A digital wand, internal power supply for 120 V line voltage, power cord, and Operating and Installation Manual. Reader supports 3 of 9 Code, Interleaved 2 of 5 Code, and Industrial 2 of 5 Code. |
| 16801A | BAR CODE READER - Includes 16830A digital wand, internal power supply for 120 V line voltage, power cord, and Operating and Installation Manual. Reader supports 3 of 9 Code, Interleaved 2 of 5 Code, and Industrial 2 of 5 Code. |
| -001 | Add UPC/EAN/JAN code reading capability; Delete Industrial 2 of 5 code |
| -002 | Add Codabar code reading capability; Delete Industrial 2 of 5 code |
| -210 | 100 V power supply |
| -222 | 220 V power supply |
| -224 | 240 V power supply |
| -320 | Delete 16830A digital wand; Add 16832A digital wand |
| -400 | Delete 16830A digital wand; Add 16840A industrial digital wand |
| -420 | Delete 16830A digital wand; Add 16842A industrial digital wand |
| -610 | Add Wall Mounting Kit |
| -910 | Additional Operating and Installation Manual |
| ACCESSORIES |  |
| 16830A | General Purpose Digital Bar Code Wand |
| 16832A | High Resolution Digital Bar Code Wand |
| 16840A | Industrial (Metal) General Purpose Bar Code Wand |
| 16842A | Industrial (Metal) High Resolution Bar Code Wand |
| HBCS-2999 | 16830A/16832A Replacement Sapphire Tip |
| HBCS-4999 | 16840A/16842A Replacement Sapphire Tip |
| 16800-61000 | Wall Mount Kit |
| HEDS-0200 | 20 foot Wand Extension Cord |
| 03075-40006 | External Wand Holder |
| 17355A | 2.7 metres ( 9 feet) Male-Male RS-232-C cable. Shielded. |
| LITERATURE |  |
| 16800-90001 | Operating and Installation Manual |
| 16800-90004 | Option 001 Operating and Installation Manual Addendum |
| 16800-90006 | Option 002 Operating and Installation Manual Addendum |

## Features

- FLEXIBLE COMMERCIAL CODE READING CAPABILITY
- UPC-A, UPC-E
- EAN-8, EAN-13
- JAN-8, JAN-13
- 2-Digit Supplemental Encodation
- 5-Digit Supplemental Encodation
- TWO STANDARD INDUSTRIAL BAR CODES
- 3 of 9 Code
- Interleaved 2 of 5 Code
- AUTOMATIC CODE RECOGNITION
- COMPATIBLE WITH UPC SHIPPING CONTAINER SYMBOL SPECIFICATION
- HIGH PERFORMANCE DIGITAL WANDS
- 45 Degree Scan Angle
- Replaceable, Sealed, Sapphire Tip
- Polycarbonate or Metal Case


## Description

Option 001 adds bar code reading capability for the Universal Product Code (UPC), European Article Numbering Code (EAN), and Japanese Article Numbering Code (JAN) to the HP 16800A Programmable Bar Code Reader and HP 16801A Non-Programmable Bar Code Reader.
All popular versions of the UPC, EAN and JAN bar codes may be enabled, including UPC-A, UPC-E, EAN-8, EAN-13, JAN-8 and JAN-13. All codes may be read simultaneously, or only UPC-A and UPC-E may be enabled.
UPC, EAN, and JAN codes with complementary 2-digit or 5-digit supplemental encodations, or "add-ons", may be read in one of two ways. If UPC, EAN, and JAN codes are enabled but neither 2 -digit nor 5 -digit supplemental encodations are enabled, then symbols printed with, or without, supplements can be read and only the main symbol will be output. If 2-digit (or 5-digit) supplemental encodations are enabled, then only symbols with 2 -digit (or 5 -digit) supplements can be read and both the main symbol and the supplement are output. 2-digit and 5-digit supplemental encodations may be enabled simultaneously.

Two standard industrial codes, the 3 of 9 code and Interleaved 2 of 5 code, may also be read with Option 001. These two codes may be enabled individually, simultaneously, and/or in conjunction with the UPC, EAN, and JAN codes. The implementation of the Interleaved 2 of 5 code is compatible with the UPC Shipping Container Symbol Specification.

Industrial 2 of 5 code reading capability, available with the standard HP 16800A and HP 16801A, is not provided with Option 001.

## Applications

Option 001 to the HP 16800A and HP 16801A Bar Code Readers provides an excellent solution for both commercial and industrial applications by supporting the popular UPC, EAN, and JAN codes as well as the industry standard 3 of 9 and Interleaved 2 of 5 codes.
Typical applications for UPC, EAN, and JAN codes include:

- Point-of-sale
- Inventory control in retail stores
- Order entry for retail products
- Tracking periodical and/or book returns
- Tracking coupon receipts
- Production line tracking in consumer products manufacturing plants
The 3 of 9 code and Interleaved 2 of 5 code are commonly used for work-in-process tracking and inventory control applications. Some applications may require that the 3 of 9 code or Interleaved 2 of 5 code be read interchangeably with the UPC, EAN, and/or JAN codes. For example, products which are marked with a UPC code may be shipped in a container marked with the Interleaved 2 of 5 code. The automatic code recognition capability of the HP 16800A and HP 16801A allows these codes to be read interchangeably.
Typical applications for 3 of 9 code and Interleaved 2 of 5 code include:
- Inventory control
- Work-in-process tracking
- Distribution tracking
- Records management
- Government packaging and shipping
- Labor reporting
- Asset management


## Wand Selection

The HP 16800A and HP 16801A Bar Code Readers include an HP 16830A digital bar code wand which is capable of reading bar code symbols which have nominal narrow bar/space widths of $0.19 \mathrm{~mm}(0.0075 \mathrm{in}$.) or greater. A 700 nm visible red emitter enables the HP 16830A to read a wide variety of colored bar codes. This wand is recommended for reading the UPC, EAN, and JAN bar codes.
An optional HP 16832A digital bar code wand is available for very high resolution codes having nominal narrow bar/space widths of $0.13 \mathrm{~mm}(0.005 \mathrm{in}$.) to $0.20 \mathrm{~mm}(0.008$ in.). An 820 nm near-infrared emitter enables the HP 16832A to read black-and-white bar codes and the black-on-black bar codes used in some security systems. It
cannot read colored bar codes and, therefore, is not recommended for reading the UPC, EAN, and JAN bar codes.

Applications which require an industrial wand are supported by the optional 16840A and 16842A digital bar code wands. These wands feature a solid metal case and internal construction designed for abusive environments. The 16840A and 16842A have the same bar code reading characteristics as the 16830A and 16832A, respectively.

## Supporting Literature

For further information, refer to:
16800A/16801A Option 001 Operating and Installation Manual Addendum, P/N: 16800-90004
16800A/16801A Operating and Installation Manual, P/N: 16800-90001

16800A/16801A Data Sheet, Publication No.: 5954-2155

## Ordering Information

| Product <br> Number | Description |
| :---: | :---: |
| 16800A | PROGRAMMABLE BAR CODE |
| -001 | READER <br> Includes 16830A digital wand, internal power supply for 120 V line voltage, power cord, and Operating and Installation Manuals. Reader supports UPC, EAN, JAN, 3 of 9 , and Interleaved 2 of 5 codes. |
| 16801A | NON-PROGRAMMABLE BAR CODE |
| -001 | READER <br> Includes 16830A digital wand, internal power supply for 120 V line voltage, power cord, and Operating and Installation Manuals. Reader supports UPC, EAN, JAN, 3 of 9, and Interleaved 2 of 5 codes. |
| -210 | 100 V power supply |
| -222 | 220 V power supply |
| -224 | 240 V power supply |
| -320 | Delete 16830A digital wand; add 16832A digital wand |
| -400 | Delete 16830A digital wand; add 16840A industrial digital wand |
| -420 | Delete 16830A digital wand; add 16842A industrial digital wand |
| -610 | Add Wall Mounting Kit |
| -910 | Additional Operating and Installation Manuals |

## CODABAR BAR CODE READERS



## Features

- CODABAR CODE READING CAPABILITY
- TWO STANDARD INDUSTRIAL BAR CODES
- 3 of 9 Code
- Interleaved 2 of 5 Code
- AUTOMATIC CODE RECOGNITION
- HIGH PERFORMANCE DIGITAL WANDS
- 45 Degree Scan Angle
- Replaceable, Sealed, Sapphire Tip
- Polycarbonate or Metal Case


## Description

Option 002 adds bar code reading capability for Codabar to the HP16800A Programmable Bar Code Reader and HP16801A Non-Programmable Bar Code Reader. Transmission of the start and stop characters which are part of each Codabar symbol is user-selectable.

Two standard industrial codes, the 3 of 9 code and Interleaved 2 of 5 code, may also be read with Option 002. These two codes may be enabled individually, simultaneously, and/or in conjunction with the Codabar code.
Industrial 2 of 5 code reading capability, available with the standard HP16800A and HP16801A, is not provided with Option 002.

## Applications

Codabar code is commonly used for material tracking, customer identification, and traceability in four specific application areas:

- Libraries
- Hospitals
- Film Processing
- Package Tracking

The 3 of 9 code is also popular in these applications, especially where an alphanumeric code is preferred. In some circumstances, both the 3 of 9 code and Codabar code may need to be read interchangeably. This capability is provided by the automatic code recognition feature of the HP16800A and HP16801A.

The 3 of 9 code and Interleaved 2 of 5 code are generally preferred in industrial applications and in applications which involve interfacility or intercompany movement of goods. These applications include:

- Inventory control
- Work-in-process tracking
- Distribution tracking
- Records management
- Government packaging and shipping
- Labor reporting
- Asset management


## Wand Selection

The HP16800A and HP16801A Bar Code Readers include an HP16830A digital bar code wand which is capable of reading bar code symbols which have nominal narrow bar/space widths of $0.19 \mathrm{~mm}(0.0075 \mathrm{in}$.) or greater. This wand is recommended for reading all low resolution bar codes, such as those produced with dot matrix printers, and for reading high resolution 3 of 9 and Interleaved 2 of 5 bar codes. It may also be used to read most high resolution Codabar symbols.
An optional HP16832A digital bar code wand is available for very high resolution codes having nominal narrow $\mathrm{bar} / \mathrm{space}$ widths of $0.13 \mathrm{~mm}(0.005 \mathrm{in}$.) to $0.20 \mathrm{~mm}(0.008$ in.). This wand may provide superior performance when reading high resolution Codabar symbols since this code has a nominal narrow bar width of $0.17 \mathrm{~mm}(0.0065 \mathrm{in}$.). An 820 nm near-infrared emitter enables the HP 16832A to read black-and-white bar codes and the black-on-black bar codes used in some security systems.
Applications which require an industrial wand are supported by the optional 16840A and 16842A digital bar code wands. These wands feature a solid metal case and internal construction designed for abusive environments. The 16840A and 16842A have the same bar code reading characteristics of the 16830A and 16832A, respectively.

## Supporting Literature

For further information refer to:
16800A/16801A Option 002 Operating and Installation Manual Addendum, P/N: 16800-90006
16800A/16801A Operating and Installation Manual, P/N: 16800-90001
16800A/16801A Data Sheet, Publication No: 5954-2155

## Ordering Information

| Product Number | Description |
| :---: | :---: |
| 16800A | Programmable Bar Code Reader |
| -002 | Includes 16830A digital wand, internal power supply for 120 V line voltage, power cord, and Operating and InstalIation Manuals. Reader supports Codabar, 3 of 9 , and Interleaved 2 of 5 codes. |
| 16801A | Non-Programmable Bar Code Reader |
| -002 | Includes 16830A digital wand, internal power supply for 120 V line voltage, power cord, and Operating and InstalIation Manuals. Reader supports Codabar, 3 of 9 , and Interleaved 2 of 5 codes. |
| -210 | 100V Power Supply |
| -222 | 220V Power Supply |
| -224 | 240V Power Supply |
| -320 | Delete 16830A Digital Wand; add 16832A Digital Wand |
| -400 | Delete 16830A Digital Wand; add 16840A Industrial Digital Wand |
| -420 | Delete 16830A Digital Wand; add 16842A Industrial Digital Wand |
| -610 | Add Wall Mounting Kit |
| -910 | Additional Operating and Installation Manuals |

## Features

- MINIMAL FIRST BAR DISTORTION
- Compatible with Most Decoding Software
- LARGE SLOT WIDTH
- Allows Reading Multiple Laminated Cards
- SEALED METAL CASE
- Can Be Installed Outdoors or in Wet
Environments
- TAMPER PROOF DESIGN
- Ideal for Security Applications
- AVAILABLE IN EITHER VISIBLE 660 nm OR INFRARED 880 nm VERSIONS
- WIDE TEMPERATURE RANGE
- -40 to $70^{\circ} \mathrm{C}$ (HBCS-7100)
- -20 to $55^{\circ} \mathrm{C}$ (HBCS-7000)
- WIDE SCAN SPEED RANGE
- BLACK TEXTURED EPOXY FINISH
- SINGLE 5 VOLT SUPPLY


## Description

Hewlett-Packard's Industrial Digital Slot Readers are designed to provide excellent scanning performance on a wide variety of bar coded cards and badges. They contain a unique optical/electrical system that integrates over a large area of the bar/space pattern, providing a greatly improved first read rate even on poorly printed bar codes.
The HBCS 7000 has a visible red ( 660 nm ) optical system with a resolution of 0.19 mm ( 0.0075 in .). The HBCS-7100 model has an infrared ( 880 nm ) optical system with a resolution of 0.19 mm ( 0.0075 in. ).
The extra large depth of field allows these slot readers to have a slot width of 3.175 mm ( .125 in .), thus making it possible to read even multiple laminated cards and badges. When used as a stand alone optics module, the maximum depth of field is dependent on resolution.
The optics and electronics are housed in a rugged metal case. The cases are fully gasketed and sealed, making them suitable for use in outdoor or wet environments. The black epoxy coating adds a durable, finished look to these Digital Slot Readers. When installed using the rear screw holes, the units become tamper-proof, making them excellent choices for security access control.
The optical system is centered in the slot track, allowing the user to easily scan from either direction. The wide slot width makes it easy to insert and slide the cards. The optical system is covered with a recessed window to prevent contamination and reduce the wear on the cards.


The standard slot reader comes with the optical/electrical assembly mounted on a base plate with an opposite rail. A 104 cm ( 41 in .) straight cord and a 5 pin, 240 degree, locking DIN connector are also standard.
The optical/electrical system is also available as a separate unit which can be integrated into other equipment or used as a stand alone sensor assembly.

## Applications

The digital bar code slot reader is a highly effective alternative to keyboard data entry. Bar code scanning is faster and more accurate than key entry and provides far greater throughput. In addition, bar code scanning typically has a higher first read rate and greater data accuracy than optical character recognition. When compared to magnetic stripe encoding, bar code offers significant advantages in flexibility of media, symbol placement and immunity to electromagnetic fields.
Hewlett-Packard's Industrial Digital Slot Readers are designed for applications where high first read rate and durability are important factors. The epoxy coated metal case, with its tamper-proof mounting system, makes these slot readers ideal choices for security access control, time and attendance recording and other bar coded badge and card reading applications.

## Specifications

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal Narrow Element Width HBCS-7000/7001 |  | 0.19 (0.0075) |  | mm (in.) |  |
| HBCS-7100/7101 |  | 0.19 (0.0075) |  | mm (in.) |  |
| Scan Velocity | $V_{\text {SCAN }}$ |  | 305 (120) | $\mathrm{cm} / \mathrm{sec}(\mathrm{in} / \mathrm{sec})$ |  |
| Contrast | $R W^{-R_{B}}$ | 45 |  | \% | 1 |
| Supply Voltage | $V_{S}$ | 4.5 | 5.5 | Volts | 2 |
| Temperature HBCS-7000/7001 | $T_{A}$ | -20 | $+55$ | ${ }^{\circ} \mathrm{C}$ | 3 |
| HBCS-7100/7101 | $\cdots T_{A}$ | -40 | \% +70 | ${ }^{\circ} \mathrm{C}$ | 3 |
| Supply Current | Is |  | 100 | mA |  |

Notes:

1. Contrast is defined as $R_{W}-R_{B}$ where $R_{W}$ is the reflectance of the white spaces and $R_{B}$ is the reflectance of the black bars, measured at the emitter wavelength ( 660 nm or 880 nm ). Contrast is related to print contrast signal (PCS) by PCS $=\left(R_{W}-R_{B}\right) / R_{W}$ or $R_{W}-R_{B}=$ PCS $\times R_{w}$.
2. Power supply ripple and noise should be less than 100 mV peak to peak.
3. Non-condensing. If there is a frost or dew covering over the optics window, it should be removed for optimal scanning performance.

## Selection Guide

| Part Number | Description |
| :---: | :---: |
| HBCS-7000 | Complete Slot Reader assembly with 660 nM visible red light source and 0.19 mm <br> $(0.0075$ in.) nominal resolution. |
| HBCS-7100 | Complete Slot Reader assembly with 880 nM infrared light source and $0.19 \mathrm{~mm}(0.0075$ <br> in.) nominal resolution. |
| HBCS-7001 | Optics/electronics module only with 660 nM visible red light source and 0.19 mm <br> $(0.0075$ in.) nominal resolution. |
| HBCS-7101 | Optics/electonics module only with 880 nM infrared light source and $0.19 \mathrm{~mm}(0.0075$ <br> in.) nominal resolution. |
| HBCS-7998 | Optional side rail assembly for use with HBCS-7001/7101. |

## Dimensions




## Optocouplers

Hewlett-Packard's original approach toward integrated output detectors provides performance not found in conventional phototransistor output devices. A family of optocouplers has been established to provide reliable, economical, high performance solutions to problems caused by ground loops and induced common mode noise for both analog and digital applications in commercial, industrial and military products.
The capabilities of this family span a wide range. Device selections include: programmable AC/DC power sensing input with logic output; speeds up to 40 M bits/s; CTR gains as high as $2000 \%$ and input currents as low as 0.5 mA . HP's HCPL2200 features guaranteed propagation delay of 300 ns max. from 0 to 85 degrees $C$ with a wide $V_{C C}$ range from 4.5 V to 20 V and $\mathrm{I}_{\mathrm{C}}$ of only 6 mA . Additionally, the high CMR of $1000 \mathrm{~V} / \mu \mathrm{s}$ and built-in hysteresis help assure reliable circuit design.
Hewlett-Packard also has available highly linear optocouplers that are useful in analog applications, a unique integrated-input optically
coupled line receiver that can be connected directly to twisted pair wires without additional circuitry, and optocouplers that provide complete isolated transmit and receive functions for a 20 mA current loop. Commercial burn-in and screening programs are available for HewlettPackard's plastic optocouplers upon special request. See the High Reliability section (page 8-1) for additional details.
Many of these devices are available in dual channel versions as well as in hermetic DIP packages. For military users, Hewlett-Packard's established, and DESC recognized hi-rel capability facilitates economical, hi-rel purchases.

Hewlett-Packard plastic optocouplers are now available for surface mount (see Option 100) applications, and higher insulation voltage (see Option 010) applications. Our newest optocoupler, the HCPL-2400, features a guaranteed data rate of 20 MBaud over temperature. Additionally the HCPL-2400 simplifies high speed design with specifications for pulse width and channel distortion, and power supply noise immunity.


High Speed Optocouplers

*Standard Parts meet the UL1440 V ac test for 1 minute.
**Option 010 parts meet the UL 2500 V ac test for 1 minute.

High Gain Optocouplers

| Device |  | Description | Application[1] | Typical Data Rate (NRZ] | Current <br> Transfer Ratio | Specified Input Current | Withstand Test Voltage |  | Page$\mathrm{No}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Standard* |  |  |  |  | Option 010** |  |
|  | 6N138 |  | Low Saturation <br> Voltage, High Gain Output, $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$ Max | Line Receiver, Low Current Ground Isolation, TTL/TTL, LSTTL/TTL, CMOS/TTL | 100k bit/s | 300\% Min. | 1.6 mA | $\begin{aligned} & 3000 \mathrm{Vdc} \\ & \mathrm{~T} \end{aligned}$ | $2500 \mathrm{~V} \text { ac }$$\boldsymbol{\lambda}$ | 3-57 |
|  | 6N139 | Low Saturation Voltage, High Gain Output. $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$ Max. | Line Receiver, Ultra Low Current Ground Isolation, CMOS/ LSTTL, CMOS/TTL, CMOS/CMOS | 400\% Min. |  | 0.5 mA |  |  |  |
|  | HCPL-2730 | Dual Channel, High <br> Gain, $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$ Max. | Line Receiver, Polarity Sensing, Low Current Ground Isolation | 100k bit/s | 300\% Min. | 1.6 mA | $3000 \mathrm{~V} \mathrm{dc}$XI | $\begin{gathered} 2500 \mathrm{~V} \text { ac } \\ \text { D } \end{gathered}$ | 3-61 |  |
|  | HCPL-2731 | Dual Channel, High Gain, $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$ Max. |  |  | 400\% Min. | 0.5 mA |  |  |  |  |
|  | 4N45 | Darlington Output $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V} \text { Max. }$ | AC Isolation, RelayLogic Isolation | $3 \mathrm{kbit/s}$ | 250\% Min. | 1.0 mA | $\begin{gathered} 3000 \mathrm{~V} d c \\ \mathbf{7} \end{gathered}$ | 2500 V ac T1 | 3-65 |  |
| $\sqrt[3]{3}$ | 4N46 | Darlington Output $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$ Max. |  |  | 350\% Min. | 0.5 mA |  |  |  |  |

## AC/DC to Logic Interface Optocoupler

| Device |  | Description | Application[1] | Typical Data Rates | Input Threshold Current | Output Current | Withstand Test Voltage |  | Page$\mathrm{No}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Standard* |  |  |  |  | Option 010** |  |
|  | HCPL-3700 |  | AC/DC to Logic Threshold Sensing Interface Optocoupler | Limit Switch <br> Sensing, Low Voltage Detector, Relay Contact Monitor | 4 KHz | $\begin{aligned} & 2.5 \mathrm{~mA} \mathrm{TH}^{+} \\ & 1.3 \mathrm{~mA} \mathrm{TH} \end{aligned}$ | 4.2 mA | $3000 \mathrm{~V} \mathrm{dc}$ $7$ | 7 | 3-69 |

## 20 mA Current Loop Optocouplers

| Device |  | Description | Application[1] | Typical Data Rates | Input <br> Characteristics | Output <br> Characteristics | Withstand Test Voltage |  | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Standard* |  |  |  |  | Option 010** |  |
|  | HCPL-4100 |  | Optically Coupled 20 mA Current Loop Transmitter | Isolated 20 mA <br> Current Loop in: <br> - Computer Peripherals <br> - Industrial Control Equipment <br> - Data Communication Equipment | 20 kBd (at 400 metres) | TTL/CMOS | 27 V Max. <br> Compliance Voltage | $\begin{gathered} 3000 \mathrm{~V} \text { dc } \\ \mathbf{N} \end{gathered}$ | $2500 \mathrm{~V} \text { ac }$ | 3-75 |
|  | HCPL-4200 | Optically Coupled 20 mA Current Loop Receiver |  | . | 6.5 mA Typ. Threshold Current | 3 State Output |  |  | 3-83 |

*Standard Parts meet the UL1440 V ac test for 1 minute.
**Option 010 parts meet the UL 2500 V ac test for 1 minute.

## Optocoupler Options (Do not apply to Hermetic Optocouplers)

| Option | Description |
| :---: | :--- |
| 010 | Special construction and testing to ensure the capability to withstand 2500 V ac input to output for one minute. Testing is <br> recognized by Underwriters Laboratories, Inc. (File No. E55361). This specification is required by U.L. in some applications <br> where working voltages can exceed $220 \mathrm{~V} \mathrm{ac}$. |
| 100 | Suriace mountable optocoupler in a standard sized dual-in-line package with leads trimmed (butt joint). Provides an <br> optocoupler which is compatible with surface mounting processes. |

## Very High Voltage Isolation



Hewlett-Packard Low Cost Fiber Optic links provide cost effective isolation of voltages from 10 KV to hundreds of KV. TTL compatibility with data rates up to 5 MBd can be attained using the HFBR-1510/2501/3510. See page 6-5, 1986 Catalog for more details or contact your HewlettPackard Field Representative.

Hermetic Optocouplers

| Device |  | Description | Application | Typical Data Rate (NRZ) | Current Transfer Ratio | Specified Input Current | $\begin{gathered} \hline \text { Withstand } \\ \text { Test } \\ \text { Voltage } \end{gathered}$ | $\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6N134 | Dual Channel Hermetically Sealed Optically Coupled Logic Gate | Line Receiver, Ground Isolation for High Reliability Systems | 10M bit/s | 400\% Typ. | 10 mA | 1500 V dc | 8-66 |
|  | 8102801EC | DESC Approved 6N134 | Military/High Reliability |  |  |  |  | 8-69 |
|  | 6N134TXV | TXV - Screened | Use 8102801 EC in New Designs |  |  |  |  | 8-66 |
|  | 6N134TXVB | TXVB - Screened with Group B Data |  |  |  |  |  |  |
|  | HCPL-1930 | Dual Channel Hermetically sealed High CMR Line Receiver Optocoupler | Line receiver, High Speed Logic Ground Isolation in High Ground or Induced Noise Environments | 10M bit/s | 400\% Typ. | 10 mA | 1500 Vdc | 8-73 |
|  | HCPL-1931 | MIL-STD-883 Class B Part | Military/High Reliability |  |  |  |  |  |
|  | HCPL-5700 | Single Channel Hermetically Sealed High Gain Optocoupler | Line Receiver, Low Current Ground Isolation, TTL/TTL, LSTTL/TTL, CMOS/TTL | 60k bit/s | 200\% Min. | 0.5 mA | 500 V dc | 8-79 |
|  | HCPL-5701 | $\begin{aligned} & \hline \text { MIL-STD-883 } \\ & \text { Class B Part } \end{aligned}$ | Military/High Reliability |  |  |  |  |  |
|  | HCPL-5730 | Dual Channel Hermetically Sealed High Gain Optocoupler | Line Receiver, Polarity Sensing, Low Current Ground Isolation |  |  |  |  | 8-83 |
|  | HCPL-5731 | MIL-STD-883 Class B Part | Military/High Reliability |  |  |  |  |  |
|  | $\begin{aligned} & \text { 6N140A } \\ & \text { (6N140) } \end{aligned}$ | Hermetically Sealed Package Containing 4 Low Input Current, High Gain Optocouplers | Line Receiver. Low Power Ground Isolation for High Reliability Systems | 100k bit/s | 300\% Min. | 0.5 mA | 1500 V dc | 8-87 |
|  | 8302401EC | DESC Approved 6N140A | Military/High Reliability |  |  |  |  | 8-91 |
|  | $\begin{aligned} & \hline \text { 6N140A/883B } \\ & (6 \mathrm{~N} 140 / 883 \mathrm{~B}) \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \hline \text { MIL-STD-883 } \\ \text { Class B Part } \\ \hline \end{array}$ | Use 8302401EC in New Designs |  |  |  |  | 8-87 |
|  | 6N140TXV | TXV - Hi-Rel Screened |  |  |  |  |  |  |
|  | 6N140TXVB | TXVB - Hi-Rel Screened with Group B Data |  |  |  |  |  |  |
|  | 4N55 | Dual Channel Hermetically Sealed Analog Optical Coupler | Line Receiver, Analog Signal Ground Isolation, Switching Power Supply Feedback Element | 700k bit/s | 9\% Min. | 16 mA | 1500 V dc | 8-96 |
|  | 4N55/883B | $\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B Part } \end{aligned}$ | Military/High Reliability |  |  |  |  |  |
|  | 4N55TXV | TXV - Hi-Rel <br> Screened | Use 4N55/883B in New Designs |  |  |  |  |  |
|  | 4N55TXVB | TXVB - Hi-Rel Screened with Group B Data |  |  |  |  |  |  |

## Features

- SPECIAL CONSTRUCTION AND TESTING
- UL RECOGNITION FOR 2500 V ac/1 MINUTE REQUIREMENT (FILE NO. E55361)
- AVAILABLE FOR ALL PLASTIC OPTOCOUPLERS
- 480 V ac LINE VOLTAGE RATING


## Description

Option 010 consists of special construction on a wide range of Hewlett-Packard plastic optocouplers. After assembly, each unit is subjected to an equivalent electrical performance test to insure its capability to withstand 2500 Vac input to output for 1 minute. This test is recognized by Underwriters Laboratory as proof that these components may be used in many high voltage applications.

## Applications

The $2500 \mathrm{Vac} / 1$ Minute dielectric withstand voltage is required by Underwriters Laboratory when components are used in certain types of electronic equipment. This requirement also depends on the specific application within the equipment. Some applicable UL documents are listed below.

## UL Spec.

## Number

[^4]1012 Power Supplies

## device marking



## Specifications

All specifications for optocouplers remain unchanged when this option is ordered. The $2500 \mathrm{Vac} / 1$ Minute capability is validated by a factory $3200 \mathrm{Vac} / 1$ Second dielectric voltage withstand test.

## Ordering Information

To obtain this high voltage capability on plastic optocouplers order the standard part number and Option 010.

## Examples:

| 6N135 | HCPL-3700 |
| :--- | :--- |
| Option 010 | Option 010 |

This option is currently available on all standard catalog plastic optocouplers except SL5505.

## Features

- SURFACE MOUNTABLE Leads Trimmed for a Butt Joint Connection
- COMPATIBLE WITH.VAPOR PHASE REFLOW AND WAVE SOLDERING PROCESSES
- MEETS ALL ELECTRICAL SPECIFICATIONS OF CORRESPONDING STANDARD PART NUMBERS
- LEAD COPLANARITY WITHIN 0.004 INCHES
- AVAILABLE FOR ALL OPTOCOUPLERS IN PLASTIC PACKAGES
- AVAILABLE IN STANDARD SHIPPING TUBES


## Description

Option 100 is an optocoupler in a standard sized dual-in-line package, with trimmed leads (butt joint). The distance from the printed circuit board (PCB), to the bottom of the optocoupler package, will be typically 0.035 inches. The height of the optocoupler package is typically 0.150 inches, leaving a distance of 0.185 inches from PCB to the top of the optocoupler package.

## Applications

Option 100 enables electronic component assemblers to include HP optocouplers on a PCB that utilizes surfacemount assembly processes. Option 100 does not require "through holes" in a PCB. This reduces board costs, while potentially increasing assembly rates and increasing component density per board.

## Specifications

All electrical specifications for optocouplers remain unchanged when this option is ordered. In addition, the device will withstand typical vapor phase reflow soldering conditions of $215^{\circ} \mathrm{C}$ for 30 seconds, and wave solder immersion for 5 seconds, @ $260^{\circ} \mathrm{C}$.


## Ordering Information

Option 100 is available for all optocouplers in plastic packages.
To obtain surface-mountable optocouplers, order the standard part number and Option 100.
Examples:

| 6N136 | HCPL-2200 |
| :--- | :--- |
| Option 100 | Option 100 |

OPTION 100 DRAWING


DIMENSIONS IN MILLIMETRES (INCHES)
Note: For complete dimensions, refer to outline drawing of corresponding catalog part number.


## Features

- HIGH SPEED: 1 Mbit/s
- TTL COMPATIBLE
- HIGH COMMON MODE TRANSIENT IMMUNITY: $>1000 \mathrm{~V} / \mu \mathrm{s}$ TYPICAL
- 2 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUT
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description

These diode-transistor optocouplers use an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connection for the photodiode bias and output transistor collector increases the speed up to a hundred times that of a conventional photo-transistor coupler by reducing the base-collector capacitance.
The 6N135 is for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the 6 N 135 is $7 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.
The 6N136 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pullup resistor. CTR of the 6 N 136 is $19 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.
The HCPL-2502 is suitable for use in applications where matched or known CTR is desired. CTR is 15 to $22 \%$ at $I_{F}=16 \mathrm{~mA}$. The HCPL-4502 provides the electrical and switching performance of the 6N136 and increased ESD protection.

[^5]
** Note: For HCPL-4502, pin 7 is not connected.

## Applications

- Line Receivers - High common mode transient immunity ( $>1000 \mathrm{~V} / \mu \mathrm{s}$ ) and low input-output capacitance ( 0.6 pF ).
- High Speed Logic Ground Isolation - TTL/TTL, TTL/LTTL, TTL/CMOS, TTL/LSTTL.
- Replace Slow Phototransistor Isolators - Pins 2-7 of the 6N135/6 series conform to pins 1-6 of 6 pin phototransistor couplers. Pin 8 can be tied to any available bias voltage of 1.5 V to 30 V for high speed operation.
- Replace Pulse Transformers - Save board space and weight.
- Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.


## Absolute Maximum Ratings


Lead Solder Temperature* $\quad \begin{gathered}\text {................... } 260^{\circ} \mathrm{C} \text { for } 10 \mathrm{~s} \\ (1.6 \mathrm{~mm} \text { below seating plane) }\end{gathered}$
Average Input Current - $\mathrm{IF}^{*} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. . $25 \mathrm{~mA}|1|$
Peak Input Current - IF* ............................ $50 \mathrm{~mA}^{|2|}$
( $50 \%$ duty cycle, 1 ms pulse width)
Peak Transient Input Current - $\mathrm{IF}^{*} \quad \ldots \ldots \ldots \ldots \ldots .$. ...............
( $\leq 1 \mu$ s pulse width, 300 pps )
Reverse Input Voltage — $\mathrm{V}_{\mathrm{R}}{ }^{*}$ (Pin 3-2) $\ldots . . . . . . . . . . .$. . . 5 V
Input Power Dissipation* ........................... $45 \mathrm{~mW}{ }^{|3|}$ Average Output Current - $10^{*}$ (Pin 6) ................... 8mA
Peak Output Current* .................................. 16mA
Emitter-Base Reverse Voltage* (Pin 5-7, except -4502) ... 5V
Output Voltage* - $\mathrm{V}_{\mathrm{O}}$ (Pin 6-5) ................. -0.5 V to 15 V
Supply Voltage ${ }^{*}$ - $V_{O}(\operatorname{Pin} 6-5) \ldots . . . . . . . . . .$. . -0.5 V to 15 V
Output Voltage - Vo (Pin 6-5) ................... -0.5 V to 20 V
Supply Voltage - Vcc (Pin 8-5) $\ldots . . . . . . .$. . -0.5 V to 30 V
Base Current - $\mathrm{IB}^{*}$ (Pin 7, except HCPL-4502) ......... 5mA
Output Power Dissipation* ......................... . . $100 \mathrm{~mW}{ }^{44}$

[^6]See notes, following page.

Electrical Specifications over recommended temperature $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ unless otherwise specified.

| Parameter | Sym. | Device | Min. | Typ.** | Max. | Units | Test Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current Transfer Ratio | CTR* | 6N135 | 7 | 18 |  | \% | $\begin{aligned} & I_{F}=16 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | 1,2,4 | 5,12 |
|  |  | $\begin{gathered} 6 \mathrm{~N} 136 \\ \mathrm{HCPL}-4502 \end{gathered}$ | 19 | 24 |  | \% |  |  |  |
|  |  | HCPL-2502 | 15 | 18 | 22 | \% |  |  |  |
|  | CTR | 6 N 135 | 5 | 19 |  | \% | $I_{F}=16 \mathrm{~mA}, V_{O}=0.5 \mathrm{~V}, V_{c c}=4.5 \mathrm{~V}$ |  | 5 |
|  |  | $\begin{gathered} 6 \mathrm{~N} 136 \\ \mathrm{HCPL}-4502 \end{gathered}$ | 15 | 25 |  | $\%$ |  |  |  |
| Logic Low Output Voltage | Vot | 6 N 135 |  | 0.1 | 0.4 | V | $\begin{aligned} & I_{F}=16 \mathrm{~mA}, 10=1.1 \mathrm{~mA}, V C C=4.5 \mathrm{~V}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  |
|  |  | $6 N 136$ HCPL-2502 HCPL-4502 |  | 0.1 | 0.4 | V | $\begin{aligned} & I_{F}=16 \mathrm{~mA}_{1} \mathrm{lo}=2.4 \mathrm{~mA}, V C C=4.5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  |
| Logic High Output Current | 1 OH |  |  | 3 | 500 | nA | $\begin{aligned} & I_{F}=0 \mathrm{~mA}, V_{O}=V C C=5.5 V \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | 6 |  |
|  |  |  |  | 0.01 | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & I_{F}=0 \mathrm{~mA}, V O=V C C=15 V \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  |
|  | lOH |  |  |  | 50 | $\mu \mathrm{A}$ | $\mathrm{f}_{\mathrm{F}}=0 \mathrm{~mA}, V_{O}=V_{C C}=15 \mathrm{~V}$ |  |  |
| Logic Low Supply Current | lcct |  | . | 50 |  | $\mu A$ | $\mathrm{IF}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{Vcc}=15 \mathrm{~V}$ |  |  |
| Logie High Supply Current | $\mathrm{ICCH}^{*}$ |  |  | 0.02 | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & I_{F}=0 \mathrm{~mA}, V_{O}=\text { Open, } V C C=15 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  |
|  | ICCH |  |  |  | 2 | $\mu \mathrm{A}$ | $I_{F}=0 \mathrm{~mA}, V_{O}=0$ pen, $V_{C C}=15 \mathrm{~V}$ |  |  |
| Input Forward Voltage | $V_{F}{ }^{*}$ |  |  | 1.5 | 1.7 | V | $\underline{T}=16 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ | 3 |  |
| Temperature Coefficient of Forward Voltage | $\frac{J V_{F}}{J T_{A}}$ |  |  | -1.6 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\mathrm{fF}=16 \mathrm{~mA}$ |  |  |
| Input Reverse Breakdown Voltage | $B V_{R}{ }^{*}$ |  | 5 |  |  | $V$ | $I_{R}=10 \mu A_{s} T_{A}=25^{\circ} \mathrm{C}$ |  |  |
| Input Capacitance | CIN |  |  | 60 |  | pF | $f=1 \mathrm{MHz}, V_{F}=0$ |  |  |
| Input-Output insulation | $\frac{11-0 *}{}$ |  |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% R H_{1} t=5 \mathrm{~s}, \mathrm{~V}_{\mathrm{l} \cdot \mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 6, 11 |
| Ons OPT.010 | VISO |  | 2500 |  |  | VRMAS | $\mathrm{RH} \leq 50 \%$, $=1 \mathrm{~min}$. |  | 13 |
| Resistance (Enput-Output) | $\mathrm{Rl}_{1-\mathrm{O}}$ |  |  | $10^{12}$ |  | $\Omega$ | $\mathrm{V}_{1-0}=500 \mathrm{Vdc}$ |  | 6 |
| Capacitance (Input-Output) | $\mathrm{Cl}-\mathrm{O}$ |  |  | 0.6 |  | pF | $t=1 \mathrm{MHz}$ |  | 6 |
| Transistor DC Current Gain | hFE |  |  | 150 |  | - | $V_{0}=5 \mathrm{~V}, 10=3 \mathrm{~mA}$ |  |  |

*For JEDEC registered parts.
**All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

## Switching Specifications at $T_{A}=25^{\circ} \mathrm{C} V \mathrm{Vcc}=5 \mathrm{~V}, \mathrm{l}=16 \mathrm{~mA}$, unless otherwise spectifed

| Parameter | Sym. | Device | Min. | Typ.** | Max. | Units | Test Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to Logic Low at Output | TPHLL* | 6N135 |  | 0.2 | 1.5 | $\mu s$ | $\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \mathrm{\Omega}$ | 5,9 | 8,9 |
|  |  | 6N136 HCPL-2502 HCPL-4502 |  | 0.2 | 0.8 | $\mu s$ | $R_{L}=1.9 \mathrm{k} \Omega$ |  |  |
| Propagation Delay Time to Logic High at Outpu* | tPLIF** | 6N135 |  | 1.3 | 1.5 | $\mu \mathrm{s}$ | $\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$ | 5,9 | 8,9 |
|  |  | $6 N 136$ HCPL-2502 HCPL-4502 |  | 0.3 | 0.8 | $\mu \mathrm{S}$ | $\mathrm{RL}=1.9 \mathrm{k} \Omega$ |  |  |
| Common Mode Transient Immunity at Logic High Level Output | $\|\mathrm{CMAH}\|$ | 6 N 135 |  | 1000 |  | V/us | $\mathrm{IF}_{F}=0 \mathrm{~mA}, \mathrm{VCM}=10 \mathrm{~V}_{\mathrm{D}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{ks}$ | 10 | 7,8,9 |
|  |  | 6 N 136 HCPL-2502 HCPL-4502 |  | 1000 |  | $V / \mu s$ | $\mathrm{IF}_{F}=0 \mathrm{~m}, ~ V C M=10 \mathrm{Vp-p}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$ |  |  |
| Common Mode Transient Immunity at Logic Low Level Output |  | 6 N 135 |  | 1000 |  | $V / \mu \mathrm{S}$ | $V_{C M}=10 V_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{kSz}$ | 10 | 7,8,9 |
|  | $\|\mathrm{CML}\|$ | $\begin{gathered} 6 \mathrm{~N} 136 \\ \mathrm{HCPL}-2502 \\ \mathrm{HCPL}-4502 \end{gathered}$ |  | 1000 |  | $\mathrm{V} / \mu_{\mu} \mathrm{S}$ | $V_{C M}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p},}, \mathrm{R}_{\mathrm{t}}=1.9 \mathrm{k} \Omega$ |  |  |
| Bandwidth | BW |  |  | 2 |  | MHz | $\mathrm{R}_{\mathrm{L}}=100 \Omega$ | 8 | 10 |

NOTES: 1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. 2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector
current, $I_{O}$, to the forward LED input current, IF, times $100 \%$.
6. Device considered a two-terminal device: Pins 1,2,3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode
pulse $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic High state ( $1 . \mathrm{e}, \mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
9. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
11. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1$ sec. test.
12. The JEDEC registration for the 6N136 specifies a minimum CTR of $15 \%$. HP guarantees a minimum CTR of $19 \%$.
13. See Option 010 data sheet for more information.


Figure 1. DC and Pulsed Transfer Characteristics.


Figure 3. Input Current vs. Forward Voltage.


Figure 5. Propagation Delay vs. Temperature.


Figure 2. Current Transfer Ratio vs. Input Current.


Figure 4. Current Transfer Ratio vs. Temperature.


Figure 6. Logic High Output Current vs. Temperature.


Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.



Figure 8. Frequency Response.
$\qquad$


Figure 9. Switching Test Circuit. *


Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.


## Absolute Maximum Ratings


Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$ (Pin 3-2) ..... $3 V$
Input Power Dissipation ..... $45 \mathrm{~mW}^{[3]}$
Average Output Current - Io (Pin 6) ..... 8 mA
Peak Output Current ..... 16 mA
Emitter-Base Reverse Voltage (Pin 5-7) ..... 5 V
Supply and Output Voltage - VCc (Pin 8-5),
Vo (Pin 6-5) ..... 15V
Base Current - IB (Pin 7) ..... 5mA
Output Power Dissipation ..... $100 \mathrm{~mW}^{[4]}$

Electrical Specifications $\left(\tau_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ unless otherwise specified.

| Parameter | Symbol | Min. | Max. | Units | Test Conditions | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current Transfer Ratio | CTR | 15 | 40 | \% | $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{VO}_{0}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V}$ | 5 |
|  | CTR | 8 |  | \% | $\mathrm{IF}=2 \mathrm{~mA}, \mathrm{~V}_{O}=5.0 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$ |  |
| Logic Low Output Voltage | VOL |  | 0.4 | V | $\mathrm{IF}_{\mathrm{F}}=16 \mathrm{~mA}, 10=2.4 \mathrm{~mA}, \mathrm{Vcc}=4.5 \mathrm{~V}$ |  |
| Logic High Output Current | IOH |  | 50 | $n \mathrm{~A}$ | $\mathrm{IF}_{F}=0 \mathrm{~mA}, \mathrm{~V}_{O}=V_{C C}=10 \mathrm{~V}$ |  |
|  | IOH |  | 25 | $\mu \mathrm{A}$ | $\mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{VCC}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ |  |
| Input Forward Voltage | $V_{F}$ |  | 1.8 | V | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ |  |
| Input Reverse Current | If |  | 50 | $\mu \mathrm{A}$ | $V_{R}=3 \mathrm{~V}$ |  |
| Input-Output Insulation Leakage Current | 11-0 |  | 1.0 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \text { Relative Humidity, } t=5 \mathrm{~s} \\ & V_{1-0}=1500 \mathrm{Vdc} \end{aligned}$ | 6 |
| Resistance (Input-Output) | R1-O | $10^{9}$ |  | $\Omega$ | $\mathrm{V}_{1-0}=100 \mathrm{Vdc}$ | 6 |
| Transistor DC Current Gain | hfe | 100 | 400 | - | $V_{0}=5 \mathrm{~V}, 10=3 \mathrm{~mA}$ |  |
| Capacitance | $\mathrm{Cl}_{\mathrm{l}-\mathrm{O}}$ |  | 1.3 | pF | $\mathrm{f}=1 \mathrm{MHz}$ | 6 |

## Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$V_{C C}=5 \mathrm{~V}, I_{F}=16 \mathrm{~mA}$, unless otherwise specified

| Parameter | Symbol | Min. | Max. | Units | Test Conditions | Note |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay <br> Time to Logic Low at <br> Output (Fig. 1) | $\mathrm{t}_{\mathrm{PHL}}$ |  | 0.8 | $\mu \mathrm{~s}$ | $\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$ | 7 |
| Propagation Delay <br> Time to Logic High at <br> Output (Fig. 1) | $\mathrm{t}_{\text {PLH }}$ |  | 0.8 | $\mu \mathrm{~s}$ | $\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$ | 7 |
| Breakdown Voltage <br> Collector/Emitter | $\mathrm{V}_{(\mathrm{BR})} \mathrm{CEO}$ | 22 |  | V | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$ | 8 |
| Breakdown Voltage <br> Collector/Base | $\mathrm{V}_{(\mathrm{BR})} \mathrm{CBO}$ | 40 |  | V | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$ |  |
| Breakdown Voltage <br> Emitter/Base | $\mathrm{V}_{(\mathrm{BR})} \mathrm{EBO}$ | 3 | V | $\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$ |  |  |
| Collector/Base <br> Current | $\mathrm{I}_{\mathrm{CBO}}$ | nA | $\mathrm{V}_{\mathrm{CB}}=22 \mathrm{~V}$ |  |  |  |

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, lo, to the forward LED input current, lf, times $100 \%$.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins $5,6,7$, and 8 shorted together.
7. The $1.9 \mathrm{~K} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{~K} \Omega$ pull-up resistor.
8. Duty Cycle $\leq 2 \%$, Pulse Width $\leq 300 \mu \mathrm{~s}$.


Figure 1. Switching Test Circuit.

[^7]

## Features

- HIGH SPEED: 1 Mbit/s
- TTL COMPATIBLE
- HIGH COMMON MODE TRANSIENT IMMUNITY: $>1000 \mathrm{~V} / \mu \mathrm{s}$ TYPICAL
- HIGH DENSITY PACKAGING
- 3 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUTS
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description

The HCPL-2530/31 dual couplers contain a pair of light emitting diodes and integrated photon detectors with electical insulation between input and output. Separate connection for the photodiode bias and output transistor collectors increase the speed up to a hundred times that of a conventional phototransistor coupler by reducing the base-collector capacitance.

The HCPL-2530 is for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the -2530 is $7 \%$ minimum at $I_{F}=16 \mathrm{~mA}$.
The HCPL-2531 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output curent for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR of the -2531 is $19 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

## Applications

- Line Receivers - High common mode transient immunity ( $>1000 \mathrm{~V} / \mu \mathrm{s}$ ) and low input-output capacitance ( 0.6 pF ).
- High Speed Logic Ground Isolation - TTL/TTL, TTL/ LTTL, TTL/CMOS, TTL/LSTTL.
- Replace Pulse Transformers - Save board space and weight.
- Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.
- Polarity Sensing.
- Isolated Analog Amplifier - Dual channel packaging enhances thermal tracking.


## Absolute Maximum Ratings

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6mm below seating plane)

Average Input Current - $I_{F}$ (each channel)
25 mA [1]
Peak Input Current - $I_{F}$ (each channel) . . . . . . . . . 50mA [2]
( $50 \%$ duty cycle, 1 ms pulse width)
Peak Transient Input Current $-I_{F}$ (each channel) .... 1.0 A
( $\leqslant 1 \mu$ s pulse width, 300 pps )
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$ (each channel) . . . . . . . . . . 5V
Input Power Dissipation (each channel) . . . . . . . . 45mW[3]
Average Output Current - $I_{0}$ (each channel) . . . . . . . 8 mA
Peak Output Current - $I_{0}$ (each channel). . . . . . . . . . 16 mA
Supply Voltage - VCC (Pin 8-5) . . . . . . . . . . - 0.5 V to 30 V
Output Voltage - $\mathrm{V}_{\mathrm{O}}$ (Pin 7,6-5) . . . . . . . . -0.5 V to 20 V
Output Power Dissipation (each channel) . . . . . . 35 mW [4]

Electrical Specifications
Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ) unless otherwise specified.

| Parameter | Sym. | Device <br> HCPL- | Min. | Typ.** | Max. | Units | Test Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current Transfer Ratio | CTR | 2530 | 7 | 18 |  | \% | $\begin{aligned} & I_{F}=16 \mathrm{~mA}, V_{O}=0.5 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | 1,2 | 5,6 |
|  |  | 2531 | 19 | 24 |  | \% |  |  |  |
|  |  | 2530 | 5 |  |  | \% | $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  |  |
|  |  | 2531 | 15 |  |  | \% |  |  |  |
| Logic Low Output Voltage | VOL | 2530 |  | 0.1 | 0.5 | V | $\begin{aligned} & I_{F}=16 \mathrm{~mA}, I_{\mathrm{O}}=1.1 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 5 |
|  |  | 2531 |  | 0.1 | 0.5 | V | $\begin{aligned} & T_{F}=16 \mathrm{~mA}, I_{O}=2.4 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  |
| Logic High Output Current | 1 OH |  |  | 3 | 500 | nA | $\begin{aligned} & T_{A}=25^{\circ} C_{1} I_{F 1}=I_{F 2}=0 \\ & V_{O 1}=V_{O 2}=V_{C C}=5.5 V \end{aligned}$ | 6 | 5 |
|  |  |  |  |  | 50 | $\mu \mathrm{A}$ | $\begin{aligned} & I_{\mathrm{F} 1}=I_{F 2}=0 \\ & V_{\mathrm{O} 1}=V_{O 2}=V_{C C}=15 V \end{aligned}$ |  | 5 |
| Logic Low Supply Current | ICCL |  |  | 100 |  | $\mu \mathrm{A}$ | $\begin{aligned} & I_{F_{1}}=I_{F_{2}}=16 \mathrm{~mA} \\ & V_{O 1}=V_{O 2}=O \text { Open, } V_{C C}=15 \mathrm{~V} \end{aligned}$ |  |  |
| Logic High Supply Current | ${ }^{1} \mathrm{CCH}$ |  |  | 0.05 | 4 | $\mu \mathrm{A}$ | $\begin{aligned} & I_{F_{1}}=I F_{2}=O \mathrm{~mA} \\ & V_{\mathrm{O}_{1}}=V_{\mathrm{O}_{2}}=\text { Open, } V_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$ |  |  |
| Input Forward Voltage | $V_{F}$ |  |  | 1.5 | 1.7 | $V$ | $I_{F}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 3 | 5 |
| Temperature Coefficient of Forward Voltage | $\frac{\Delta V_{F}}{\Delta T_{A}}$ |  |  | -1.6 |  | $\mathrm{mV} 1^{\circ} \mathrm{C}$ | $I_{F}=16 \mathrm{~mA}$ |  | 5 |
| Input Reverse Breakdown Voltage | $V_{R}$ |  | 5 |  |  | V | $\mathrm{I}_{\mathrm{F}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 5 |
| Input Capacitance | CIN |  |  | 60 |  | pF | $f=1 \mathrm{MHz}, V_{F}=0$ |  | 5 |
| Input-Output | $1.0{ }^{*}$ |  |  |  | 1 | $\mu \mathrm{A}$ | $45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ |  | 7.13 |
| OPT. 010 | $\mathrm{V}_{\text {ISO }}$ |  | 2500 |  |  | $V_{\text {RMS }}$ | $\mathrm{RH} \leq 50 \%$, $=1 \mathrm{~min}$. |  | 14 |
| Resistance (Input-Output) | $\mathrm{R}_{1-\mathrm{O}}$ |  |  | $10^{12}$ |  | $\Omega$ | $\mathrm{V}_{1-0}=500 \mathrm{Vdc}$ |  | 7 |
| Capacitance (Input-Output) | $\mathrm{Cl}_{1-\mathrm{O}}$ |  |  | 0.6 |  | $\mathrm{p} F$ | $f=1 \mathrm{MHz}$ |  | 7 |
| Input-Input Insulation Leakage Current | ${ }_{1}^{1-1}$ |  |  | 0.005 |  | ${ }_{H} \mathrm{~A}$ | 45\% Relative Humidity, $t=5 \mathrm{~s}$ $V_{1-1}=500 \mathrm{Vdc}$ |  | 8 |
| Resistance (Input-Input) | $\mathrm{R}_{1-1}$ |  |  | $10^{11}$ |  | $\Omega$ | $V_{1-1}=500 \mathrm{Vdc}$ |  | 8 |
| Capacitance (Input-Input) | $\mathrm{Cl}_{1-1}$ | , |  | 0.25 |  | pF | $f=1 \mathrm{MHz}$ |  | 8 |

*For JEDEC registered parts.
**All typicals at $25^{\circ} \mathrm{C}$.
Switching Specifications'at $T_{A}=25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$, unless otherwise specified

| Parameter | Sym. | Device HCPL. | Min. | Typ. | Max. | Units | Test Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time To Logic Low at Output | ${ }_{\text {t P }}$ | 2530 |  | 0.2 | 1.5 | $\mu s$ | $R_{L}=4.1 \mathrm{k} \Omega$ | 5.9 | 10,11 |
|  |  | 2531 |  | 0.2 | 0.8 | $\mu \mathrm{s}$ | $\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$ |  |  |
| Propagation Delay Time to Logic High at Output | tPLH | 2530 |  | 1.3 | 1.5 | $\mu \mathrm{s}$ | $\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$ | 5.9 | 10,11 |
|  |  | 2531 |  | 0.3 | 0.8 | $\mu \mathrm{S}$ | $R_{L}=1.9 \mathrm{k} \Omega$ |  |  |
| Common Mode Transient Immunity at Logic High Level Output | $\|\mathrm{CMOH}\|$ | 2530 |  | 1000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\mathrm{I}_{F}=0 \mathrm{~mA} \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{V}_{C M}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ | 10 | 9,10,11 |
|  |  | 2531 |  | 1000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $1 F=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{V}_{\text {CM }}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ |  |  |
| Common Mode Transient Immunity at Logic Low Level Output | $\left\|\mathrm{CM}_{\mathrm{L}}\right\|$ | 2530 |  | 1000 |  | $V / \mu s$ | $V_{C M}=10 V_{p-p}, R_{L}=4.1 \mathrm{k} \Omega$ | 10 | 9,10,11 |
|  |  | 2531 |  | 1000 |  | $V / \mu \mathrm{s}$ | $V_{C M}=10 \mathrm{~V}_{\text {p-p }}, R_{L}=1.9 \mathrm{k} \Omega$ |  |  |
| Bandwidth | BW |  |  | 3 |  | MHz | $\mathrm{R}_{\mathrm{L}}=100 \Omega$ | 8 | 12 |

## NOTES:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. 2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. 3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Each channel.
4. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, 10 , to the forward LED input current, I $F$, times $100 \%$.
5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
6. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
7. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $d V_{C M} /$ dt on the leading edge of the common mode pulse $V_{C M}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>\mathbf{2 . 0} \mathrm{V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
8. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
9. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor
10. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
11. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test
12. See Option 010 data sheet for more information.


Figure 1. DC and Pulsed Transfer Characteristics.


Figure 3. Input Current vs. Forward Voltage.


Figure 5. Propagation Delay vs. Temperature.


Figure 2. Current Transfer Ratio vs. Input Current.


Figure 4. Current Transfer Ratio vs. Temperature.


Figure 6. Logic High Output Current vs. Temperature.


Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.



Figure 8. Frequency Response.


Figure 9. Switching Test Circuit.


Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

# LOW INPUT CURRENT LOGIC GATE OPTOCOUPLER 



## Features

- COMPATIBLE WITH LSTTL, TTL, AND CMOS LOGIC
- 2.5 MBAUD GUARANTEED OVER TEMPERATURE
- LOW INPUT CURRENT ( 1.6 mA )
- WIDE VCc RANGE (4.5 TO 20 VOLTS)
- THREE STATE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- GUARANTEED PERFORMANCE FROM $0^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Applications

- Isolation of High Speed Logic Systems
- Computer-Peripheral Interfaces
- Microprocessor System Interfaces
- Ground Loop Elimination
- Pulse Transformer Replacement
- Isolated Buss Driver
- High Speed Line Receiver


## Description

The HCPL-2200 is an optically coupled logic gate that combines a GaAsP LED and an integrated high gain photon detector. The detector has a three state output stage and has a detector threshold with hysteresis. The three state output eliminates the need for a pullup resistor and allows for direct drive of data busses. The hysteresis provides typically 0.1

mA of differential mode noise immunity and eliminates the potential for output signal chatter. The detector IC has an internal shield that provides a guaranteed common mode transient immunity of 1,000 volts $/ \mu \mathrm{sec}$. Higher CMR specifications are available upon request. Improved power supply rejection eliminates the need for special power supply bypassing precautions.
The Electrical and Switching Characteristics of the HCPL2200 are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The HCPL-2200 is guaranteed to operate over a Vcc range of 4.5 volts to 20 volts. Low IF and wide Vcc range allow compatibility with TTL, LSTTL, and CMOS logic. Low If and low Icc result in lower power consumption compared to other high speed optocouplers. Logic signals are transmitted with a typical propagation delay of 160 nsec when a 120 pF peaking capacitor is used in parallel with the $1.1 \mathrm{~K} \Omega$ current limiting resistor.
The HCPL-2200 is useful for isolating high speed logic interfaces, buffering of input and output lines, and implementing isolated line receivers in high noise environments.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Power Supply Voltage | VCC | 4.5 | 20 | Volts |
| Enable Voltage High | $V_{\text {EH }}$ | 2.0 | 20 | Volts |
| Enable Voltage Low | $\mathrm{VEL}_{\mathrm{EL}}$ | 0 | 0.8 | Volts |
| Forward Input Current | $\mathrm{IF}(\mathrm{ON})$ | 1.6 | 5 | mA |
| Forward Input Current | $\mathrm{IF}_{\mathrm{F}(\mathrm{OFF})}$ | - | 0.1 | mA |
| Operating Temperature | $\mathrm{TA}_{\mathrm{A}}$ | 0 | $85[11$ | ${ }^{\circ} \mathrm{C}$ |
| Fan Out | N |  | 4 | TTL Loads |

## Recommended Circuit Design



The 120 pF capacitor may be omitted in applications where 500 ns propagation delay is sufficient.

Figure 1. Recommended LSTTL to LSTTL Circuit

Absolute Maximum Ratings
(No Derating Required up to $70^{\circ} \mathrm{C}$ )

( 1.6 mm below seating plane)
Average Forward Input Current - IF .............. 10 mA
Peak Transient Input Current - $\mathrm{IF}_{\mathrm{F}}$. ... 1A
( $\leq 1 \mu$ s Pulse Width, 300 pps )
Reverse Input Voltage $\qquad$ .............. 5V
Supply Voltage - Vcc 0.0 V min., 20V max.

Three State Enable Voltage

- $\mathrm{V}_{\mathrm{E}}$
-0.5 V min., 20 V max.
Output Voltage - Vo -0.5 V min., 20 V max.
Total Package Power
Dissipation - P
210 mW [1]
Average Output Current - Io
25 mA


## Electrical Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}[1] \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}, 2.0 \mathrm{~V} \leq \mathrm{V}_{E H} \leq 20 \mathrm{~V}, 0.0 \mathrm{~V} \leq \mathrm{V}_{E L} \leq 0.8 \mathrm{~V}$, $0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{OFF})} \leq 0.1 \mathrm{~mA}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

*For JEDEC registered parts.

## Switching Characteristics

 For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}[1] \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}$,$0.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{OFF})} \leq 0.1 \mathrm{~mA}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to Logic Low Output Level | tPhL | , | 210 | $\cdots$ | ns | Without Peaking Capacitor | 6,7 | 4,5 |
|  |  |  | 160 | 300 |  | With Peaking Capacitor |  |  |
| Propagation Delay Time to Logic High Output Level | tpli |  | 170 | - | ns | Without Peaking Capacitor | 6,7 | 4,5 |
|  |  |  | 115 | 300 |  | With Peaking Capacitor |  |  |
| Output Enable Time to Logic High | tPZH : |  | 25 | Wen | ns |  | $8,10$ | \% |
| Output Enable Time to Logic Low | tPZL |  | 28 |  | ns |  | 8,9 |  |
| Output Disable Time from Logic High | tphz |  | 105 |  | ns |  | 8,10 |  |
| Output Disable Time from logic Low | tplz |  | 60 |  | ns | \% | 8,9 |  |
| Output Rise Time ( $10-90 \%$ ) | tr |  | 55 |  | ns |  | 6,11 |  |
| Output Fall Time (90-10\%) | ${ }_{\text {tf }}$ |  | 15 |  | ns |  | 6,11 |  |
| Logic High Common Mode Transient Immunity | $\|\mathrm{CMH}\|$ | 1000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} . \mathrm{IF}^{2}=1.6 \mathrm{~mA} \\ & V C M=50 \mathrm{~V} \end{aligned}$ | 12,13 | 6 |
| Logic Low Common Mode Transient Immunity | $\left\|\mathrm{CM}_{\mathrm{L}}\right\|$ | 1000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, I_{F}=0 \\ & V C M=50 \mathrm{~V} \end{aligned}$ | 12,13 | 6 |



Figure 2. Typical Logic Low Output Voltage vs. Temperature


Figure 5. Typical Input Diode Forward Characteristic


Figure 3. Typical Logic High Output Current vs. Temperature


Figure 6. Test Circuit for $\mathbf{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{r}}$, and $t_{f}$


Figure 4. Output Voltage vs. Forward Input Current


Figure 7. Typical Propagation Delays vs. Temperature


Figure 8. Test Circuit for $\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PLZ}}$, and $\mathrm{t}_{\mathrm{PZL}}$


Figure 11. Typical Rise, Fall Time vs. Temperature


Figure 9. Typical Logic Low Enable Propagation Delay vs. Temperature


Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms


Figure 10. Typical Logic High Enable Propagation Delay vs. Temperature


Figure 13. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude


Figure 14. LSTTL to CMOS Interface Circuit


Figure 15. Recommended LED Drive Circuit


Figure 16. Series LED Drive with Open Collector Gate ( $6.04 \mathrm{~K} \Omega$ Resistor Shunts IOH from the LED)

The 120 pF capacitor may be omitted in applications where 500 ns propagation delay is sufficient.

## Notes:

1. Derate total package power dissipation, $P$, linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Duration of output short circuit time should not exceed 10 ms .
3. Device considered a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The tpLh propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The tPHL propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.3 V point on the
trailing edge of the output pulse.
5. When the peaking capacitor is omitted, propagation delay times may increase by 100 ns .
6. CML is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ( $\mathrm{VO}_{0}<0.8 \mathrm{~V}$ ). CMH is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ( $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ).
7. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
8. See Option 010 data sheet for more information.


Figure 1. Schematic



DIMENSIONS IN MILLIMETRES AND (INCHES)


## Features

- GUARANTEED LOW THRESHOLDS: $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{F}} \leq 1.5 \mathrm{~V}$
- HIGH SPEED: GUARANTEED 5 MBd OVER temperature
- VERSATILE: COMPATIBLE WITH TTL, LSTTL AND смOS
- MORE EFFICIENT 820 nm AIGaAs IRED
- INTERNAL SHIELD FOR GUARANTEED COMMON MODE REJECTION
- SCHOTTKY CLAMPED, OPEN COLLECTOR OUTPUT WITH OPTIONAL INTEGRATED PULL-UP RESISTOR
- STATIC AND DYNAMIC PERFORMANCE GUARANTEED FROM $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- SPECIAL SELECTION FOR LOW FORWARD CURRENT APPLICATIONS ( $\mathrm{I}_{\mathrm{F}} \geq 150 \mu \mathrm{~A}$ )
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Applications

- GROUND LOOP ELIMINATION
- COMPUTER-PERIPHERAL INTERFACES
- LEVEL SHIFTING
- MICROPROCESSOR SYSTEM INTERFACES
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- RS-232-C INTERFACE
- HIGH SPEED, LONG DISTANCE ISOLATED LINE RECEIVER


## Description

The HCPL-2300 optocoupler combines an 820 nm AIGaAs photon emitting diode with an integrated high gain photon detector. This combination of Hewlett-Packard designed and manufactured semiconductor devices brings high performance capabilities to designers of isloted logic and data communication circuits.

The low current, high speed AIGaAs emitter manufactured with a unique diffused junction, has the virtue of fast rise and fall ties at low drive currents. The HCPL-2300 has a typical propagation delay of 120 ns at 0.5 mA forward current. With special selection, the device can achieve 80 ns propagation delay at $150 \mu \mathrm{~A}$. Figure 6 illustrates the propagation delay vs. input current characteristic. These unique characteristics enable this device to be used in an RS-232-C interface with ground loop isolation and improved common mode rejection. As a line receiver, the HCPL-2300 will operate over longer line lengths for a given data rate because of lower $I_{F}$ and $V_{F}$ specifications.
The output of the shielded integrated detector circuit is an open collector Schottky clamped transistor. The shield, which shunts capacitively coupled common mode noise to ground, provides a guaranteed transient immunity specification of $100 \mathrm{~V} / \mu \mathrm{s}$. The output circuit includes an optional integrated 1000 Ohm pull-up resistor for the open collector. This gives designers the flexibility to use the internal resistor for pull-up to five volt logic or to use an external resistor for 18 volt CMOS logic.

The Electrical and Switching Characteristics of the HCPL2300 are guaranteed over a temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. This data sheet will allow users of the HCPL-2300 to confidently implement all necessary static and dynamic performance requirements which may be subjected to a broad range of operating environments.

## Recommended Operating Conditions

|  | Sym. | Min. | Max. | Units |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Voltage, Low Level | $V_{F L}$ | -2.5 | 0.8 | V |  |
| Input Current <br> High Level | $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |  | 0.5 | 1.0 | mA |
|  | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |  | 0.5 | 0.75 |  |
| Supply Voltage, Output | $V_{C C}$ | 4.75 | 5.25 | V |  |
| Fan Out (TTL Load) | N |  | 5 |  |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |  |

## Absolute Maximum Ratings


$V_{F}$ - FORWARD VOLTAGE - VOLTS
Figure 2. Typical Input Diode Forward Characteristic.
(No derating required)

| Parameter | Symbol | Min. | Max. | Units | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | Ts | -55 | 125 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature | TA | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Solder Temperature | $260^{\circ} \mathrm{C}$ for $10 \mathrm{~s} .(1.6 \mathrm{~mm}$ below seating plane) |  |  |  |  |
| Average Forward Input Current | IF |  | 5 | mA | See Note 2 |
| Reverse Input Voltage | $V_{R}$ |  | 4.5 | $V$ |  |
| Supply Voltage | $V_{\text {cc }}$ | 0.0 | 7.0 | $V$ |  |
| Pull-up Resistor Voltage | VRL | -0.5 | Vcc | $V$ |  |
| Output Collector Current | lo | -25 | 25 | mA |  |
| Input Power Dissipation | Pl |  | 10 | mW |  |
| Output Collector Power Dissipation | Po |  | 40 | mW |  |
| Output Collector Voltage | Vo | -0.5 | 18 | V |  |

## Electrical Characteristics

For $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{FL}} \leq 0.8 \mathrm{~V}$, unless otherwise specified.
All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$, unless otherwise specified.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Level Output Current | IOH |  | 0.05 | 250 | $\mu \mathrm{A}$ | $V_{F}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=18 \mathrm{~V}$ | 4 |  |
|  |  |  |  | 10 |  | $\begin{aligned} & V_{F}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=18 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  |
| Low Level Output Voltage | VoL |  | 0.4 | 0.5 | V | $\begin{aligned} & \mathrm{IF}=0.5 \mathrm{~mA} \\ & \text { loL }(\text { Sinking })=8 \mathrm{~mA} \end{aligned}$ | 3 |  |
| High Level Supply Current | ICOH |  | 4.0 | 6.3 | mA | $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{VCC}=5.25 \mathrm{~V}$ |  |  |
| Low Level Supply Current | lcel. |  | 6.2 | 10.0 | mA | $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{VCC}=5.25 \mathrm{~V}$ |  |  |
| Input Forward Voltage | $V_{F}$ | 1.0 | 1.3 | 1.5 | V | $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 2 |  |
| Input Diode Temperature Coefficient | $\frac{\Delta V_{F}}{\Delta T_{A}}$ |  | -1.6 |  | $\mathrm{mV} /^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$ |  |  |
| Input Reverse Breakdown Voltage | $B V_{R}$ | 4.5 |  |  | V | $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ |  |  |
| Input Capacitance | CIN |  | 18 |  | pF | $V_{F}=0 V_{i} \mathrm{f}=1 \mathrm{MHz}$ |  |  |
| Input-Output Insulation | 11.0* |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kVdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 3,9 |
| OPT 010 | VISO | 2500 |  |  | $V_{\text {RMS }}$ | $\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MiN}$ |  | 10 |
| Resistance (Input-Output) | $\mathrm{R}_{\mathrm{l} \times \mathrm{O}}$ |  | 1012 |  | $\Omega$ | $V_{1-0}=500 \mathrm{~V}$ |  | 3 |
| Capacitance (Input-Output) | $\mathrm{C}_{\mathrm{l}} \mathrm{O}$ |  | 0.6 |  | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  | 3 |
| Internal Pull-up Resistor | RL | 680 | 1000 | 1700 | Ohms |  |  |  |

*For JEDEC registered parts.

## Switching Characteristics

For $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{FH}} \leq 0.75 \mathrm{~mA}$;
For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{FH}} \leq 1.0 \mathrm{~mA}$; With $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{FL}} \leq 0.8 \mathrm{~V}$, unless otherwise specified.
All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{IFH}=0.625 \mathrm{~mA}$, unless otherwise specified.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to Logic High Output Level | $\underbrace{\mathrm{tPLH}^{4}}$ |  | 95 |  | ns | $\mathrm{CP}_{\mathrm{p}}=0 \mathrm{pF}$ | 5,6,8 | 4,8 |
|  |  |  | 85 | * 160 |  | $\mathrm{Cp}=20 \mathrm{pF}$ | 5,8 |  |
| Propagation Delay Time to Logic Low Output Level | tpHL |  | 110 |  | ns | $\mathrm{Cp}=0 \mathrm{pF}$ | 5,6,8 | 5,8 |
|  |  |  | 35 | 200 |  | $\mathrm{CP}_{\mathrm{p}}=20 \mathrm{pF}$ | 5,8 |  |
| Output Rise Time (10-90\%) | $\mathrm{tr}_{\mathrm{r}}$ |  | 40 |  | ns | $\mathrm{Cp}=20 \mathrm{pF}$ | 7, 8 | 8 |
| Output Fall Time ( $90-10 \%$ ) | $\mathrm{tf}_{\text {f }}$ | , | 20 | \% | ns * |  |  |  |
| Common Mode Transient Immunity at High Output Level | CMH\| | 100 | 400 |  | $V / \mu \mathrm{s}$ | $V_{C M}=50 \mathrm{~V}$ (peak), <br> $\mathrm{V}_{\mathrm{O}}(\min )=.2 \mathrm{~V}$, <br> $\mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}$ | 9, 10 | 6 |
| Common Mode Transient Immunity at Low Output Level | CML | 100 | 400 |  | $\mathrm{V} / \mu \mathrm{S}$, | $V_{C M}=50 \mathrm{~V}$ (peak), <br> $V_{0}(\max )=.0.8 \mathrm{~V}$, <br> $R_{L}=560 \Omega, \mathrm{IF}_{\mathrm{F}}=0.5 \mathrm{~mA}$ | 9, 10 | 7 |

(See page 5-35 for Notes)


Figure 3. Typical Output Voltage vs. Forward Input Current vs. Temperature.

$I_{F}$ - FORWARD INPUT CURRENT - mA

Figure 6. Typical Propagation Delay vs. Forward Current.


Figure 4. Typical Logic High Output Current vs. Temperature.


Figure 7. Typical Rise, Fall Time vs. Temperature.

$\mathrm{tPHL}^{2}-\left[\begin{array}{l}\mathrm{A}\left[\begin{array}{l}-0.5 \mathrm{~mA} \text { TO } 1.0 \mathrm{~mA}, \mathrm{C}_{P}=20 \mathrm{pF} \\ -0.5 \mathrm{~mA} \text { TO } 0.75 \mathrm{~mA}, \mathrm{C}_{P}=20 \mathrm{pF} \\ \mathrm{B}-0.5 \mathrm{~mA}, \mathrm{C}_{P}=0 \mathrm{pF} \\ \mathrm{C}-1.0 \mathrm{~mA}, \mathrm{C}_{P}=0 \mathrm{pF}\end{array}\right.\end{array}\right.$

Figure 5. Typical Propagation Delay vs. Temperature and Forward Current With and Without Application of a Peaking Capacitor.


Figure 8. Test Circuit for $t_{\text {PHL }}, t_{\text {PLH }}, t_{r}$ and $t_{f}$.


Figure 9. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude.


Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

## Applications

The HCPL-2300 optocoupler has the unique combination of low 0.5 mA LED operating drive current at a 5 MBd speed performance. Low power supply current requirement of 10 mA maximum and the ability to provide isolation between logic systems fulfills numerous applications ranging from logic level translations, line receiver and party line receiver applications, microprocessor I/O port isolation, etc. The open collector output allows for wired-OR arrangement. Specific interface circuits are illustrated in Figures 11 through 18 with corresponding component values, performance data and recommended layout.
For $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range, a mid range LED forward current ( $\mathrm{I}_{\mathrm{F}}$ ) of 0.625 mA is recommended in order to prevent overdriving the integrated circuit detector due to increased LED efficiency at temperatures between $0^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$. For narrower temperature range of $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, a suggested operating LED current of 0.75 mA is recommended for the mid range operating point and for minimal propagation delay skew: A peaking capacitance of 20 pF in parallel with the current limiting resistor for the LED shortens tPHL by approximately $33 \%$ and tPLH by $13 \%$. Maintaining LED forward voltage ( $V_{F}$ ) below 0.8 V will guarantee that the HCPL- 2300 output is off.
The recommended shunt drive technique for TTL/LSTTL/ CMOS of Figure 11 provides for optimal speed performance, no leakage current path through the LED, and reduced common mode influences associated with series switching of a "floating" LED. Alternate series drive tec-
niques with either an active CMOS inverter or an open collector TTL/LSTTL inverter are illustrated in Figures 12 and 13 respectively. Open collector leakage current of 250 $\mu \mathrm{A}$ has been compensated by the 3.16 K Ohms resistor (Figure 13) at the expense of twice the operating forward current.
An application of the HCPL-2300 as an unbalanced line receiver for use in long line twisted wire pair communication links is shown in Figure 14. Low LED IF and $V_{F}$ allow longer line length, higher speed and multiple stations on the line in comparison to higher $I_{F}, V_{F}$ optocouplers. Greater speed performance along with nearly infinite common mode immunity are achieved via the balanced split phase circuit of Figure 15. Basic balanced (differential) line receiver can be accomplished with one HCPL-2300 in Figure 15, but with a typical $400 \mathrm{~V} / \mu$ s common mode immunity. Data rate versus distance for both the above unbalanced and balanced line receiver applications are compared in Figure 16. The RS-232-C interface circuit of Figure 17 provides guaranteed minimum common mode immunity of $100 \mathrm{~V} / \mu \mathrm{s}$ while maintaining the 2:1 dynamic range of $\mathrm{IF}_{\mathrm{F}}$.
A recommended layout for use with an internal 1000 Ohms resistor or an external pull-up resistor and required $V_{C c}$ bypass capacitor is given in Figure 18. $V_{C C 1}$ is used with an external pull-up resistor for output voltage levels (V0) greater than or equal to 5 V . As illustrated in Figure 18, an optional $V_{C c}$ and GND trace can be located between the input and the output leads of the HCPL-2300 to provide additional noise immunity at the compromise of insulation capability (VI-O).


Figure 11. Recommended Shunt Drive Circuit for Interfacing Between TTL/LSTTL/CMOS Logic Systems.


Figure 12. Active CMOS Series Drive Circuit.


Figure 13. Series Drive from Open Collector TTL/LSTTL Units.


Figure 14. Application of HCPL-2300 as Isolated, Unbalanced Line Receiver(s).


Figure 15. Application of Two HCPL-2300 Units Operating as an Isolated, High Speed, Balanced, Split Phase Line Receiver with Significantly Enhanced Common Mode Immunity.


Figure 16. Typical Point to Point Data Rate vs. Length of Line for Unbalanced (Figure 14) and Balanced (Figure 15) Line Receivers using HCPL-2300 Optocouplers.

*SEE NOTE 1
Figure 18. Recommended Printed Circuit Board Layout.


Figure 17. RS-232-C Interface Circuit with HCPL-2300. $0^{\circ} \mathrm{C}=\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$.

## NOTES:

1. Bypassing of the power supply line is required with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 18. The power supply bus for the optocoupler(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to $0.1 \mu \mathrm{~F}$ ) may be needed to suppress regenerative feedback via the power supply.
2. Peaking circuits may produce transient input currents up to 100 mA , 500 ns maximum pulse width, provided average current does not exceed 5 mA .
3. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The tple propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The tPHL propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. $C M_{H}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., Vout > 2.0 V ).
7. CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VOUT < 0.8 V ).
8. $C_{p}$ is the peaking capacitance. Refer to test circuit in Figure 8.
9. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
10. See Option 010 data sheet for more information

# 20 M BAUD HIGH CMR LOGIC GATE OPTOCOUPLER 

HCPL-2400

## Features

- HIGH SPEED: 40 MBd TYPICAL DATA RATE
- HIGH COMMON MODE REJECTION 1000 V/ $\mu$ s GUARANTEED MINIMUM COMMON MODE TRANSIENT IMMUNITY
- AC PERFORMANCE GUARANTEED OVER TEMPERATURE
- COMPATIBLE WITH TTL, STTL, LSTTL, AND HCMOS LOGIC FAMILIES
- NEW, HIGH SPEED AIGaAs EMITTER
- THREE STATE OUTPUT (NO PULL-UP RESISTOR REQUIRED)
- HIGH POWER SUPPLY NOISE IMMUNITY
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Applications

- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- ISOLATED BUS DRIVER (NETWORKING APPLICATIONS)
- SWITCHING POWER SUPPLIES
- GROUND LOOP ELIMINATION
- HIGH SPEED DISK DRIVE I/O
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- PULSE TRANSFORMER REPLACEMENT



## Description

The HCPL-2400 high speed optocoupler combines an 820 nm AIGaAs photon emitting diode with a high speed photon detector. This combination results in very high data rate capability and low input current. The three state output eliminates the need for a pull-up resistor and allows for direct drive of data buses. The hysteresis provides typically 0.25 mA of differential mode noise immunity and minimizes the potential for output signal chatter. Improved power supply rejection minimizes the need for special power supply bypassing precautions.
The electrical and switching characteristics of the HCPL2400 are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

The HCPL-2400 is compatible with TTL, STTL, LSTTL and HCMOS logic families. When Schottky type TTL devices (STTL) are used, a data rate performance of 20 MBd over temperature is guaranteed when using the application circuit of Figure 13. Typical data rates are 40 MBd .

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Power Supply Voltage | VCC | 4.75 | 5.25 | Volts |
| Input Current (High) | $\mathrm{IF}_{\mathrm{F}}(\mathrm{ON})$ | 4 | 8 | mA |
| Input Voltage (Low) | $V_{\mathrm{F}}(\mathrm{OFF})$ | - | 0.8 | Volts |
| Enable Voltage (Low) | VEL | 0 | 0.8 | Volts |
| Enable Voltage (High) | $\mathrm{VEH}_{\mathrm{EH}}$ | 2.0 | $V_{\mathrm{CC}}$ | Volts |
| Operating Temperature | $\mathrm{TA}_{\mathrm{A}}$ | 0 | $70^{\circ}$ | ${ }^{\circ} \mathrm{C}$ |
| Fan Out | N |  | 5 | TTL Loads |

## Absolute Maximum Ratings <br> (No derating required up to $85^{\circ} \mathrm{C}$ )

| Parameter | Symbol | Min. | Max. | Units | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | Ts | -55 | 125 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature | TA | 0 | 85 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Solder Temperature | $260^{\circ} \mathrm{C}$ for 10 s .11 .6 mm below seating plane) |  |  |  |  |
| Average Forward Input Current | If |  | 10.0 | mA |  |
| Peak Forward Input Current | IFPK |  | 20.0 | mA | 9 |
| Reverse Input Voltage | $V_{\text {R }}$ |  | 3.0 | V |  |
| Supply Voltage | VCC | 0 | 7.0 | $V$ |  |
| Three State Enable Voltage | VE | -0.5 | 10.0 | $V$ |  |
| Average Output Collector Current | 10 | -25.0 | 25.0 | mA |  |
| Output Collector Voltage | $\mathrm{V}_{0}$ | -0.5 | 10.0 | V |  |
| Output Collector Power Dissipation | Po |  | 40.0 | mW |  |

## Electrical Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{IF}_{(\mathrm{ON})} \leq 8 \mathrm{~mA}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EH}} \leq 5.25,0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EL}} \leq 0.8 \mathrm{~V}$,
$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$ except where noted. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=5.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=0 \mathrm{~V}$ except where noted.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions |  | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Logic Low Output Voltage | VoL |  |  | 0.5 | Volts | $1 \mathrm{LL}=8.0 \mathrm{~mA}$ ( 5 TTL Loads) |  | 1 |  |
| Logic High Output Voltage | VOH | 2.4 |  |  | Volts | $\mathrm{IOH}^{\text {O }}=-4.0 \mathrm{~mA}$ |  | 2 |  |
| Output Leakage Current | 1 HHH |  |  | 100 | $\mu \mathrm{A}$ | $\mathrm{V}_{0}=5.25 \mathrm{~V}$ | $V_{F}=0.8 \mathrm{~V}$ |  |  |
| Logic High Enable Voitage | $V_{\text {EH }}$ | 2.0 |  |  | Volts |  |  |  |  |
| Logic Low Enable Voltage | VEL |  |  | 0.8 | Votts |  |  |  |  |
| Logic High Enable Current | Іен |  |  | 20 | $\mu \mathrm{A}$ | $V_{E}=2.4 \mathrm{~V}$ |  |  |  |
|  |  |  |  | 100 | $\mu \mathrm{A}$ | $V_{E}=5.25 \mathrm{~V}$ |  |  |  |
| Logic Low Enable Current | lea. |  | -0.28 | -0.4 | mA | $\mathrm{V}_{\mathrm{E}}=0.4 \mathrm{~V}$ |  |  |  |
| Logic Low Supply Current | ICCL |  | 19 | 26 | mA | $\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & V_{E}=0 \mathrm{~V} \end{aligned}$ |  |  |  |
| Logic High Supply Current | 1 CCH |  | 17 | 26 | mA |  |  |  |  |
| High Impedance State Supply Current | lccz |  | 22 | 28 | mA | $\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & V_{E}=5.25 \mathrm{~V} \end{aligned}$ |  |  |  |
| High Impedance State Output Current | lozl |  |  | 20 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ | $V_{E}=2 \mathrm{~V}$ |  |  |
|  | 1 I 2 H |  |  | 20 | $\mu \mathrm{A}$ | $V_{0}=2.4 \mathrm{~V}$ | $V_{E}=2 \mathrm{~V}$ |  |  |
|  | 1 lozh |  |  | 100 | $\mu \mathrm{A}$ | $V_{0}=5.25 \mathrm{~V}$ |  |  |  |
| Logic Low Short Circuit Output Current | lost. |  | 52 |  | mA | $V_{O}=V_{C C}=5.25 \mathrm{~V}$ | $\mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}$ |  | 1 |
| Logic High Short Circuit Output Current | IOSH |  | -45 |  | mA | $V_{C C}=5.25 \mathrm{~V}$ | $\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=\mathrm{mA}, \\ & \mathrm{VO}_{\mathrm{O}}=\mathrm{GND} \end{aligned}$ |  | 1 |
| Input Current Hysteresis | liys |  | 0.25 |  | mA | $\mathrm{VCC}=5 \mathrm{~V}$ |  | 3 |  |
| Input Forward Voltage | $V_{F}$ | 1.1 | 1.3 | 1.5 | Volts | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ |  | 4 |  |
| Input Reverse Breakdown Voltage | $V_{R}$ | 3.0 | 5.0 |  | Volts | $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |  |
| Input Diode Temperature Coefficient | $\frac{\Delta V_{F}}{\Delta T_{A}}$ |  | -1.44 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\mathrm{F}=5 \mathrm{~mA}$ |  | 4 |  |
| Input-Output Insulation | ${ }_{4} \mathrm{O}$ |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=3 \mathrm{kVdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  | 2.8 |
| Option 010 | $V_{\text {ISO }}$ | 2500 |  |  | $\mathrm{V}_{\text {RMS }}$ | $\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$. |  |  | 10 |
| Input-Output Resistance | RI-O |  | 1012 |  | ohms | $\mathrm{V}_{1-0}=500 \mathrm{VDC}$ |  |  | 2 |
| Input-Output Capacitance | $\mathrm{Cl}_{\mathrm{l}} \mathrm{O}$ |  | 0.6 |  | pF | $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}-\mathrm{O}}=0 \mathrm{Vdc}$ |  |  | 2 |
| Input Capacitance | CIN |  | 20 |  | pF | $f=1 \mathrm{MHz}, V_{F}=0 \mathrm{~V}$, Pins 2 and 3 |  |  |  |

## Switching Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 0.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EN}} \leq 0.8 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}} \leq 8.0 \mathrm{~mA}$. All Typicals $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $I_{F}=5.0 \mathrm{~mA}$ except where noted.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to Logic Low Output Level | tPhis: |  |  | 55 | ns | $1 \mathrm{FION}=7.0 \mathrm{~mA}$ | 5,6.7 | 4 |
|  |  | - 15 | 33 | 60 | ns | \% | 5,6,7 | 3 |
| Propagation Defay Time to Logic High Output Level | tPLH |  |  | 55 | ns | $\mathrm{IF}_{(O N)}=7.0 \mathrm{~mA}$ | 5,6,7 | 4 |
|  |  | . 15 | 30 | 60 | ns | \% | 5,6,7. | - 3 |
| Pulse Width Distortion | $\|\mathrm{tPHL}-\mathrm{lPLH}\|$ | - | 2 | 15 | ns | $4_{\text {F }}^{(O N)}$ = $=7.0 \mathrm{~mA}$ | 5,8 | 4 |
|  |  |  | 3 | 25 | ns | \%ama | 5,8 |  |
| Channel Distortion | $\triangle \mathrm{tPHL}$ $\triangle$ tpLif |  | 8 | 25 | ns |  | 5 | 5 |
|  |  |  | 8 | 25 | ns. | * | \% 5 | 5 |
| Output Rise Time | $t_{r}$ |  | 20 |  | ns . | \% | 5 |  |
| Output Fall Time | If | , | 10 |  | ns |  | 5 | - |
| Output Enable Time to Logic High | tpze |  | 15 |  | ns |  | 9,10 |  |
| Output Enable Time to Logic Low | tpzL. |  | 30 |  | ns |  | 9,10 |  |
| Output Disable Time from Logic High | tPHz |  | 20 |  | ns |  | 9,10 |  |
| Output Disable Time from Logic Low | tplz |  | 15 |  | ns |  | 9,10 |  |
| Logic High Common Mode Transient Immunity | $\|C M H\|$ | 1000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{S}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0$ | 11,12 | 6 |
| Logic Low Common Mode Transient Immunity | $\|\mathrm{CML}\|$ | 1000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}=4 \mathrm{~mA}$ | 11,12 | 6 |
| Power Supply Noise Immunity | PSNI |  | 0.5 |  | $V_{p-p}$ | $V \mathrm{CC}=5.0 \mathrm{~V}, 48 \mathrm{~Hz} \leq \mathrm{F}_{\text {AC }} \leq 50 \mathrm{MHz}$ |  | 7 |

## Notes:

1. Duration of output short circuit time not to exceed 10 ms .
2. Device considered a two terminal device: pins 1-4 shorted together, and pins 5-8 shorted together.
3. tPHL propagation delay is measured from the $50 \%$ level on the rising edge of the input current pulse to the 1.5 V level on the falling edge of the output pulse. The tpLH propagation delay is measured from the $50 \%$ level on the falling edge of the input current pulse to the 1.5 V level on the rising edge of the output pulse.
4. This specification simulates the worst case operating conditions of the HCPL-2400 over the recommended operating temperature and Vcc range with the suggested applications circuit of Figure 13
5. Channel distortion describes the worst case variation of propagation delay from one part to another at identical operating conditions.
6. $C M_{H}$ is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic high state $\left(\mathrm{V}_{\mathrm{O}}(\mathrm{MIN})>2.0 \mathrm{~V}\right)$. CML is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic low state $\left(\mathrm{V}_{\mathrm{O}}(\mathrm{MAX})<0.8 \mathrm{~V}\right)$.
7. Power Supply Noise Immunity is the peak to peak amplitude of the ac ripple voltage on the Vcc line that the device will withstand and still remain in the desired logic state. For desired logic high state, $\mathrm{VOH}(\mathrm{MIN})>2.0 \mathrm{~V}$, and for desired logic low state, VOL(MAX) $<0.8$ volts.
8. This is a proof test. This rating is equally validated by a 2500 V ac, 1 second test per UL E55 361.
9. Peak Forward Input Current pulse width $<50 \mu \mathrm{~s}$ at 1 KHz maximum repetition rate.
10. See Option 010 data sheet for more information.


Figure 1. Typical Logic Low Output Voltage vs. Logic Low Output Current


Figure 2. Typical Logic High Output Voltage vs. Logic High Output Current


Figure 3. Typical Output Voltage vs. Input Forward Current


Figure 4. Typical Diode Input Forward Current Characteristic


Figure 5. Test Circuit for $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{r}}$, and $\mathrm{t}_{\mathrm{f}}$


Figure 6. Typical Propagation Delay vs. Ambient Temperature


Figure 7. Typical Propagation Delay vs. Input Forward Current


Figure 8. Typical Pulse Width Distortion vs. Ambient Temperature


ALL DIODES ARE EC6 519 OR EQUIVALENT
$\mathrm{C} 1=30 \mathrm{pF}$ INCLUDING PROBE AND JIG CAPACITANCE.


Figure 10. Typical Enable Propagation Delay vs. Ambient Temperature

Figure 9. Test Circuit for $\mathbf{t}_{\text {PHZ }}$, t $_{\text {PZH }}$, t $_{\text {PLZ }}$ and $\mathbf{t}_{\text {PZL }}$.

-MUST BE LOCATED < $1 \mathbf{c m}$ FROM DEVICE UNDER TEST. *SEE NOTE 6.
$\dagger C_{L}$ IS APPROXIMATELY 15 pF , WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE.

Figure 11. Test Diagram for Common Mode Transient Immunity and Typical Waveforms

## Applications



Figure 13. Recommended 20 MBd HCPL-2400 Interface Circuit


Figure 15. Typical Pulse Width Distortion vs. Input Driver Logic Family

$\mathrm{v}_{\mathrm{CM}}$ - COMMON MODE TRANSIENT VOLTAGE - V

Figure 12. Typical Common Mode Transient Immunity vs. Common Mode Transient Voltage


Figure 14. Alternative HCPL-2400 Interface Circuit


Figure 16. Modulation Code Selections

## Data Rate, Pulse-Width Distortion, and Channel Distortion Definitions

In the world of data communications, a bit is defined as the smallest unit of information a computer operates with. A bit is either a Logic 1 or Logic 0 , and is interpreted by a number of coding schemes. For example, a bit can be represented by one symbol through the use of NRZ code, or can contain two symbols in codes such as Biphase or Manchester (see Figure 16). The bit rate capability of a system is expressed in terms of bits/second (b/s) and the symbol rate is expressed in terms of Baud (symbols/second). For NRZ code, the bit rate capability equals the Baud capability because the code contains one symbol per bit of information. For Biphase and Manchester codes, the bit rate capability is equal to one half of the Baud capability, because there are two symbols per bit.
Propagation delay is a figure of merit which describes the finite amount of time required for a system to translate information from input to output when shifting logic levels. Propagation delay from low to high (tpLH) specifies the amount of time required for a system's output to change from a Logic 0 to a Logic 1, when given a stimulus at the input. Propagation delay from high to low (tpHL) specifies the amount of time required for a system's output to change from a Logic 1 to a Logic 0 , when given a stimulus at the input (see Figure 5).

When tple and tphl differ in value, pulse width distortion results. Pulse width distortion is defined as $\mid$ tPHL-tpLH| and determines the maximum data rate capability of a distortion-limited system. Maximum pulse width distortion on the order of $20-30 \%$ is typically used when specifying the maximum data rate capabilities of systems. The exact figure depends on the particular application (RS-232, PCM, T-1, etc.).
Channel distortion, ( $\Delta \mathrm{t}$ PHL, $\Delta \mathrm{tpLH}$ ), describes the worst case variation of propagation delay from device to device at identical operating conditions. Propagation delays tend to shift as operating conditions change, and channel distortion specifies the uniformity of that shift. Specifying a maximum value for channel distortion is helpful in parallel data transmission applications where the synchronization of signals on the parallel lines is important.
The HCPL-2400 optocoupler offers the advantages of specified propagation delay (tPLH, tphL), pulse-width distortion (|tpLH-tpHL|), and channel distortion ( $\Delta \mathrm{t}$ LLH, $\Delta \mathrm{tPHL}$ ) over temperature, input forward current, and power supply voltage ranges.

## Applications Circuits

A recommended application circuit for high speed operation is shown in Figure 13. Due to the fast current switching capabilities of Schottky family TTL logic ( 74 STTL ), data rates of 20 MBd are achievable from 0 to $70^{\circ} \mathrm{C}$. The $74 \mathrm{SO4}$ totem-pole driver sources current to series-drive the input of the HCPL-2400 optocoupler. The $348 \Omega$ resistor limits the LED forward current. The 30 pF speed-up capacitor assists in the turn-on and turn-off of the LED, increasing the data rate capability of the circuit. On the output side, the following logic can be directly driven by the output of the HCPL-2400, since a pull-up resistor is not required. If desired, a non-inverting buffer may be substituted on either the input or the output side to change the circuit function from $Y=\bar{A}$ to $Y=A$. This circuit satisfies all recommended operating conditions.
An alternative circuit is shown in Figure 14, which utilizes a 74 S 05 open-collector inverter to shunt-drive the HCPL2400 optocoupler. This circuit also satisfies all recommended operating conditions.
The HCPL-2400 optocoupler is compatible with other logic families, such as TTL, LSTTL, and HCMOS. However, the output drive capabilities of Schottky family devices greatly exceed those associated with TTL, LSTTL, and HCMOS logic families, and are recommended in high data rate ( 20 MBd ) applications where fast drive current transitions are required to operate the HCPL-2400 with minimum pulse-width distortion.


Figure 17. Typical HCPL-2400 Output Schematic


Figure 1.

## Features

- LSTTL/TTL COMPATIBLE: 5 V SUPPLY
- HIGH SPEED: 10 MBd TYPICAL
- LOW INPUT CURRENT REQUIRED: 5 mA
- HIGH COMMON MODE REJECTION: >1000 V/ $\mu \mathrm{s}$ TYPICAL
- GUARANTEED PERFORMANCE OVER TEMPERATURE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description/Applications

The 6N137 consists of a GaAsP photon emitting diode and a unique integrated detector. The photons are collected in the detector by a photodiode and then amplified by a high gain linear amplifier that drives a Schottky clamped open collector output transistor. The circuit is temperature, current and voltage compensated.

This unique isolator design provides maximum DC and AC circuit isolation between input and output while achieving LSTTL/TTL circuit compatibility. The isolator operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, such that a minimum input current of 5 mA will sink an eight gate fan-out ( 13 mA ) at the output with 5 volt $\mathrm{V}_{\mathrm{CC}}$ applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 ns . The enable input provides gating of the detector with input sinking and sourcing requirements compatible with LSTTL/TTL interfacing.

The 6N137 can be used in high speed digital interfacing applications where common mode signals must be rejected, such as for a line receiver and digital programming of floating power supplies, motors, and other machine control systems. The elimination of ground loops can be accomplished in system interfaces such as between a computer and a peripheral memory, printer, controller, etc.
The open collector output provides capability for bussing, OR'ing and strobing.


DIMENSIONS IN MILLIMETRES AND (INCHES).

## Recommended Operating Conditions

|  | Sym. | Min. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: |
| Input Current, Low Level <br> Each Channel | $I_{F I}$ | 0 | 250 | $\mu \mathrm{~A}$ |
| Input Current, High Level <br> Each Channel | $I_{F H}$ | $6.3^{* *}$ | 15 | mA |
| High Level Enable Voltage | $V_{\text {EH }}$ | 2.0 | $V_{C C}$ | V |
| Low Level Enable Voltage <br> (Output High) | $V_{\text {EI }}$ | 0 | 0.8 | V |
| Supply Voltage, Output | $V_{C C}$ | 4.5 | 5.5 | V |
| Fan Out <br> (TTL Load) | N |  | 8 |  |
| Operating Temperature | $\mathrm{T}_{+}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |

## Absolute Maximum Ratings*

(No derating required up to $70^{\circ} \mathrm{C}$ )
Storage Temperature $\qquad$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s ( 1.6 mm below seating plane)
Peak Forward Input Current $\qquad$ 40 mA ( $\mathrm{t} \leq 1 \mathrm{msec}$ Duration) Average Forward Input Current $\qquad$ 20 mA
Reverse Input Voltage ..... 5 V
Enable Input Voltage ..... 5.5 V
(Not to exceed $V_{\text {cc }}$ by more than 500 mV )
Supply Voltage - VCC 7 V (1 Minute Maximum)
Output Current - Io ..... 50 mA
Output Collector Power Dissipation ..... 85 mW
Output Voltage - $\mathrm{V}_{\mathrm{O}}$ ..... 7V

[^8] guardband. Initial switching threshold is 5 mA or less.

Electrical Characteristics
OVER RECOMMENDED TEMPERATURE ( $T_{A}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ ) UNLESS OTHERWISE NOTED

| Parameter | Symbol | Min. | Typ.** | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Level Output Current | $1 \mathrm{OH}^{*}$ |  | 2 | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V}, \\ & I_{F}=250 \mu \mathrm{~A}, V_{E}=2.0 \mathrm{~V} \end{aligned}$ | 6 |  |
| Low Level Output Voltage | $\mathrm{V}_{\text {OL }}{ }^{*}$ |  | 0.4 | 0.6 | V | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=5 \mathrm{~mA}, \\ & V_{E H}=2.0 \mathrm{~V} \\ & I_{O L}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$ | 3,5 |  |
| High Level Enable Current | IEH |  | $-1.0$ |  | mA | $V_{C C}=5.5 \mathrm{~V}, V_{E}=2.0 \mathrm{~V}$ |  |  |
| Low Level Enable Current | $\mathrm{leL}^{*}$ |  | $-1.4$ | $-2.0$ | mA | $V_{C C}=5.5 \mathrm{~V}, V_{E}=0.5 \mathrm{~V}$ |  |  |
| High Level Supply Current | $\mathrm{ICCH}^{*}$ |  | 7 | 15 | mA | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \\ & V_{E}=0.5 \mathrm{~V} \end{aligned}$ |  |  |
| Low Level Supply | ${ }^{\text {CCLL }}{ }^{*}$ |  | 14 | 18 | mA | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=10 \mathrm{~mA} \\ & V_{E}=0.5 \mathrm{~V} \end{aligned}$ |  |  |
| Input-Output Insulation | 1 1-0* |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{1 . \mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 5,9 |
| OPT 010 | $V_{\text {ISO }}$ | 2500 |  |  | VRMS | $\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$ |  | 10 |
| Resistance (Input-Output) | $\mathrm{R}_{\mathbf{1}-\mathrm{O}}$ |  | $10^{12}$ |  | $\Omega$ | $V_{1-O}=500 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ |  | 5 |
| Capacitance (Input-Output) | $\mathrm{Cl}_{\text {- }}$ |  | 0.6 |  | pF | $f=1 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$ |  | 5 |
| Input Forward Voltage | $V_{F}{ }^{*}$ |  | 1.5 | 1.75 | V | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 4 | 8 |
| Input Reverse Breakdown Voltage | $B V_{R}{ }^{*}$ | 5 |  |  | V | $I_{R}=10 \mu A, T_{A}=25^{\circ} \mathrm{C}$ |  |  |
| Input Capacitance | $\mathrm{C}_{\mathrm{N}}$ |  | 60 |  | pF | $V_{F}=0, f=1 \mathrm{MHz}$ |  |  |
| Current Transfer Ratio | CTR |  | 700 |  | \% | $\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ | 2 | 7 |

*For JEDEC registered parts.
**All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$

## Switching Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, ~ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to High Output Level | $t_{\text {tpLH }}{ }^{*}$ |  | 55 | 75 | ns | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$ | 7,9 | 1 |
| Propagation Delay Time to Low Output Level | ${ }_{\text {tPHL }}{ }^{*}$ |  | 55 | 75 | ns | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$ | 7,9 | 2 |
| Output Rise-Fall Time (10-90\%) | $\mathrm{tr}_{\mathrm{r}} . \mathrm{tf}$ |  | 50,20 |  | ns | $\begin{aligned} & R_{L}=350 \Omega, C_{L}=15 \mathrm{pF}, \\ & I_{F}=7.5 \mathrm{~mA} \end{aligned}$ |  |  |
| Propagation Delay Time of Enable from $V_{E H}$ to $V_{E L}$ | tel.h |  | 65 |  | ns | $\begin{aligned} & R_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, V_{E H}=3.0 \mathrm{~V}, \\ & V_{E L}=0.5 \mathrm{~V} \end{aligned}$ | 8 | 3 |
| Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$ | $t_{\text {EHL }}$ |  | 20 |  | ns | $\begin{aligned} & R_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \mathrm{~V}_{\mathrm{EH}}=3.0 \mathrm{~V} \\ & V_{E L}=0.5 \mathrm{~V} \end{aligned}$ | 8 | 4 |
| Common Mode Transient Immunity at Logic High Output Level | $\left\|\mathrm{CM}_{\mathrm{H}}\right\|$ |  | 100 |  | $v / \mu \mathrm{s}$ | $\begin{aligned} & V_{C M}=10 \mathrm{~V} R_{L}=350 \Omega, \\ & V_{O}(\mathrm{~min} .)=2 \mathrm{~V}, I_{F}=0 \mathrm{~mA} \end{aligned}$ | 11 | 6 |
| Common Mode Transient Immunity at Logic Low Output Level | $\left\|\mathrm{CM}_{\mathrm{L}}\right\|$ | .- | $-300$ |  | $v / \mu s$ | $\begin{aligned} & V_{C M}=10 \mathrm{~V} R_{L}=350 \Omega, \\ & V_{O}(\max )=0.8 \mathrm{~V}, \\ & I_{F}=5 \mathrm{~mA} \end{aligned}$ | 11 | 6 |

## Operating Procedures and Definitions

Logic Convention. The 6N137 is defined in terms of positive logic.
Bypassing. A ceramic capacitor ( .01 to $0.1 \mu \mathrm{~F}$ ) should be connected from pin 8 to pin 5 (Figure 12). Its purpose is to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching properties. The total lead length between capacitor and coupler should not exceed 20 mm .
Polarities. All voltages are referenced to network ground (pin 5). Current flowing toward a terminal is considered positive. Enable Input. No external pull-up required for a logic (1), i.e., can be open circuit.


Note: Dashed characteristics - denote pulsed operation only.


Figure 2. Optocoupler Collector Characteristics.


Figure 3. Input-Output Characteristics.

## NOTES:

1. The $t_{\text {PLH }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
2. The trat propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to 1.5 V point on the leading edge of the output pulse.
3. The teLH enable propagation delay is measured from the 1.5 V point of the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
4. The tehl enable propagation delay is measured from the 1.5 V point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
5. Device considered a two terminal device: pins 2 and 3 shorted together, and pins $5,6,7$, and 8 shorted together.
6. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>\mathbf{2 . 0 \mathrm { V }}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
7. DC Current Transfer Ratio is defined as the ratio of the output collector current to the forward bias input current times $100 \%$.
8. At $10 \mathrm{~mA} \mathrm{~V}_{\mathrm{F}}$ decreases with increasing temperature at the rate of $1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
9. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
10. See Option 010 data sheet for more information.


Figure 4. Input Diode Forward Characteristic.


Figure 5. Output Voltage, $\mathrm{V}_{\mathrm{OL}}$ vs. Temperature and Fan-Out.


Figure 6. Output Current, $\mathrm{I}_{\mathrm{OH}}$ vs. Temperature $\left(I_{F}=\mathbf{2 5 0} \mu \mathrm{A}\right)$.


Figure 7. Test Circuit for tPHL and tPLH.**
**JEDEC Registered Data.


Iff - PULSE INPUT CURRENT - mA
Figure 9. Propagation Delay, tPHL and tPLH vs. Pulse Input Current, IFH.


Figure 10. Response Delay Between TTL Gates.


Figure 11. Test Circuit for Transient Immunity and Typical Waveforms.


Figure 12. Recommended Printed Circuit Board Layout.



## Features

- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION (CMR)
- HIGH SPEED: 10 MBd TYPICAL
- GUARANTEED MINIMUM COMMON MODE TRANSIENT IMMUNITY: $1000 \mathrm{~V} / \mathrm{\mu s}$
- LSTTL/TTL COMPATIBLE
- LOW INPUT CURRENT REQUIRED: 5mA
- GUARANTEED PERFORMANCE OVER TEMPERATURE: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- STROBABLE OUTPUT
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description

The HCPL-2601 optically coupled gate combines a GaAsP light emitting diode and an integrated high gain photon detector. An enable input allows the detector to be strobed. The output of the detector I.C. is an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of 1000 volts $/ \mu \mathrm{sec}$.

This unique design provides maximum D.C. and A.C. circuit isolation while achieving TTL compatibility. The isolator D.C. operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ allowing troublefree system performance. This isolation is achieved with a typical propagation delay of 40 nsec .

The HCPL-2601's are suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.


## Applications

- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Switching Power Supply
- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement


## Recommended Operating

| COnditiOnS |
| :--- |
|  Sym. Min. Max. Units <br> Input Current, Low Level $I_{\mathrm{FL}}$ 0 250 $\mu \mathrm{~A}$ <br> Input Current, High Level $I_{\mathrm{FH}}$ $6.3^{*}$ 15 mA <br> Supply Voltage, Output $\mathrm{VCC}_{\mathrm{Cc}}$ 4.5 5.5 V <br> High Level Enable Voltage $\mathrm{V}_{\mathrm{EH}}$ 2.0 $\mathrm{~V}_{\mathrm{CC}}$ V <br> Low Level Enable Voltage $\mathrm{V}_{\mathrm{EL}}$ 0 0.8 V <br> Fan Out (TTL. Load) N  8  <br> Operating Temperature $\mathrm{TA}_{\mathrm{A}}$ 0 70 ${ }^{\circ} \mathrm{C}$ |

## Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$ )
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s ( 1.6 mm below seating plane)
Forward Input Current - $\mathrm{I}_{\mathrm{F}}$ (see Note 2) ....... 20 mA Reverse Input Voltage ................................. 5 V Supply Voltage - $\mathrm{V}_{\mathrm{CC}} \ldots \ldots . . .7 \mathrm{~V}$ (1 Minute Maximum) Enable Input Voltage - $\mathrm{V}_{\mathrm{E}} \ldots . . . . . . . . . . . . . . . . . .$.
(Not to exceed $\mathrm{V}_{\mathrm{Cc}}$ by more than 500 mV )
Output Collector Current-Io .................... 25 mA
Output Collector Power Dissipation ............. 40 mW
Output Collector Voltage - $\mathrm{V}_{\mathrm{O}}$......................... 7 V

[^9]
## Electrical Characteristics

(Over Recommended Temperature, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)

| Parameter | Symbol | Min. | Typ.* | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Level Output Current | $\mathrm{IOH}^{\text {O }}$ |  | 20 | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V} \\ & I_{F}=250 \mu \mathrm{~A}, V_{E}=2.0 \mathrm{~V} \end{aligned}$ | 2 |  |
| Low Level Output Voltage | $\mathrm{V}_{\mathrm{OL}}$ |  | 0.4 | 0.6 | V | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=5 \mathrm{~mA} \\ & V_{E}=2.0 \mathrm{~V} \\ & l_{\mathrm{OL}}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$ | 3,5 |  |
| High Level Supply Current | ICCH |  | 10 | 15 | mA | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, 1_{\mathrm{F}}=0_{\mathrm{t}} \\ & V_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$ |  |  |
| Low Level Supply Current | ICCL |  | 15 | 19 | mA | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$ |  |  |
| Low Level Enable Current | $\mathrm{I}_{\text {EL }}$ |  | -1.4 | $-2.0$ | mA | $V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$ |  |  |
| High Level Enable Current | $\mathrm{J}_{\text {EH }}$ |  | -1.0 |  | mA | $V_{C C}=5.5 \mathrm{~V}, V_{E}=2.0 \mathrm{~V}$ |  |  |
| High Level Enable Voltage | $\mathrm{V}_{\text {EH }}$ | 2.0 |  |  | V |  |  | 11 |
| Low Level Enable Voltage | $V_{\text {EL }}$ |  |  | 0.8 | V |  |  |  |
| Input Forward Voltage | $V_{F}$ |  | 1.5 | 1.75 | V | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 4 |  |
| Input Reverse Breakdown Voltage | $B V_{R}$ | 5 |  |  | V | $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |
| Input Capacitance | $\mathrm{C}_{\text {IN }}$ |  | 60 |  | pF | $V_{F}=0, \mathrm{f}=1 \mathrm{MHz}$ |  |  |
| Input Diode Temperature Coefficient | $\frac{\Delta V_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$ |  | -1.6 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$ |  |  |
| Input-Output Insulation | $\mathrm{I}_{\mathrm{L}-\mathrm{O}^{*}}$ |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{l}-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 3,12 |
| OPT 010 | $\mathrm{V}_{150}$ | 2500 |  |  | $V_{\text {RMS }}$ | $\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$ |  | 13 |
| Resistance (Input-Output) | $\mathrm{R}_{1-\mathrm{O}}$ |  | $10^{12}$ |  | $\Omega$ | $\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}$ |  | 3 |
| Capacitance (Input-Output) | $\mathrm{C}_{\mathrm{I}-\mathrm{O}}$ |  | 0.6 |  | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  | 3 |

*For JEDEC registered parts.
*All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Switching Characteristics $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to High Output level | $t_{\text {PLH }}$ |  | 40 | 75 | ns | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$ | 6 | 4 |
| Propagation Delay Time to Low Output Level | $\mathrm{tPH}_{\text {L }}$ |  | 40 | 75 | ns |  | 6 | 5 |
| Output Rise Time (10-90\%) | $t_{\text {r }}$ |  | 20 |  | ns |  |  |  |
| Output Fall Time (90-10\%) | $\mathrm{t}_{\mathrm{f}}$ |  | 30 |  | ns |  |  |  |
| Propagation Delay Time of Enable from $\mathrm{V}_{\mathrm{EH}}$ to $\mathrm{VEL}_{\mathrm{EL}}$ | telh |  | 25 |  | ns | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EH}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V} \end{aligned}$ | 9 | 6 |
| Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$ | tehe |  | 25 |  | ns | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EH}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V} \end{aligned}$ | 9 | 7 |
| Common Mode <br> Transient Immunity at High Output Level | $\|\mathrm{CMH}\|$ | 1000 | 10,000 |  | $V / \mu \mathrm{s}$ | $\begin{aligned} & \mathrm{VCM}_{\mathrm{CM}}=50 \mathrm{~V} \text { (peak), } \\ & \mathrm{V}_{\mathrm{O}}(\text { min. })=2 \mathrm{~V}, \\ & R_{\mathrm{L}}=350 \Omega, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$ | 12 | 8,10 |
| Common Mode Transient Immunity at Low Output Level | $\left\|C M_{L}\right\|$ | 1000 | 10,000 | . | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak), } \\ & V_{O}(\max )=0.8 \mathrm{~V}, \\ & R_{L}=350 \Omega, I_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$ | 12 | 9,10 |

NOTES:

1. Bypassing of the power supply line is required, with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator as illustrated in Figure 15. The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to 0.1 $\mu \mathrm{F}$ ) may be needed to suppress regenerative feedback via the power supply.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50$ ns maximum pulse width, provided average current does not exceed 20 mA .
3. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The $t_{\text {PI. }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The $t_{\text {pHL }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. The $t_{\text {til. }}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
7. The $t_{\text {FHI }}$. enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
8. $C M_{H}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\mathrm{OH}}$ $>2.0 \mathrm{~V}$ ).
9. $C M_{1}$. is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{OLT}}<0.8$ V).
10. For sinusoidal voltages, $\left(\frac{\left|d v_{C M}\right|}{d t}\right)_{\text {max }}=\pi f_{C M} V_{C M}(p-p)$
11. No external pull up is required for a high logic state on the enable input.
12. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
13. See Option 010 data sheet for more information.


Figure 2. High Level Output Current vs. Temperature.


Figure 5. Output Voltage vs. Forward Input Current.


Figure 3. Low Level Output Voltage vs. Temperature.


Figure 6. Test Circuit for $\mathrm{t}_{\mathrm{PHL}}$ and $\mathrm{t}_{\mathrm{PLH}}$.


Figure 4. Input Diode Forward Characteristic.


Figure 7. Propagation Delay vs. Temperature.


Figure 8. Propagation Delay vs. Pulse Input Current.


Figure 11. Rise, Fall Time vs. Temperature.


Figure 9. Test Circuit for $\mathrm{t}_{\mathrm{EHL}}$ and $\mathrm{t}_{\mathrm{ELH}}$.


Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.


Figure 15. Recommended Printed Circuit Board Layout.

## HIGH CMR LINE RECEIVER OPTOCOUPLER



## Features

- LINE termination included - no extra circuitry REQUIRED
- ACCEPTS A BROAD RANGE OF DRIVE CONDITIONS
- GUARDBANDED FOR LED DEGRADATION
- LED PROTECTION MINIMIZES LED EFFICIENCY DEGRADATION
- HIGH SPEED - 10MBd (LIMITED BY TRANSMISSION LINE IN MANY APPLICATIONS)
- INTERNAL SHIELD PROVIDES EXCELLENT COMMON MODE REJECTION
- external base lead allows "Led peaking" and LED CURRENT ADJUSTMENT
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description

The HCPL-2602 optically coupled line receiver combines a GaAsP light emitting diode, an input current regulator and an integrated high gain photon detector. The input regulator serves as a line termination for line receiver applications. It clamps the line voltage and regulates the LED current so line reflections do not interfere with circuit performance.

The regulator allows a typical LED current of 8.5 mA before it starts to shunt excess current. The output of the detector IC is an open collector Schottky clamped transistor. An enable input gates the detector. The internal detector shield provides a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{sec}$.


## Applications

- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Current Sensing
- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement

DC specifications are defined similar to TTL logic and are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ allowing trouble free interfacing with digital logic circuits. An input current of 5 mA will sink an eight gate fan-out (TTL) at the output with a typical propagation delay from input to output of only 45 nsec.
The HCPL-2602's are useful as line receivers in high noise environments that conventional line receivers cannot tolerate. The higher LED threshold voltage provides improved immunity to differential noise and the internally shielded detector provides orders of magnitude improvement in common mode rejection with little or no sacrifice in speed.

CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damange from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

## Recommended Operating Conditions

|  | Sym. | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Input Current, Low Level | $\mathrm{I}_{\mathrm{H}}$ | 0 | 250 | $\mu \mathrm{~A}$ |
| Input Current, High Level | $\mathrm{I}_{\mathrm{IH}}$ | $6.3^{*}$ | 60 | mA |
| Supply Voltage, Output | $\mathrm{V}_{\mathrm{C}}$ | 4.5 | 5.5 | V |
| High Level Enable Voltage | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | Vco | V |
| Low Level Enable Voltage | $\mathrm{V}_{\mathrm{E}}$. | 0 | 0.8 | V |
| Fan Out (TTL. Load) | N |  | 8 |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |

* 6.3 mA condition permits at least $20 \%$ degradation guardband. Initial switching threshold is 5 mA or less.


## NOTES:

1. Bypassing of the power supply line is required, with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator as illustrated in Figure 15. The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to 0.1 $\mu \mathrm{F}$ ) may be needed to suppress regenerative feedback via the power supply.
2. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
3. The $t_{\text {pl. }}$ p propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
4. The $t_{\text {Phi }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
5. The $t_{\text {EILH }}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.

## Absolute Maximum Ratings

| Storage Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Operating Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Lead Solder Temperature $\begin{array}{r}\text {. } \\ \\ (1.6 \mathrm{~mm}\end{array}$ | $260^{\circ} \mathrm{C}$ for 10 s <br> ( 1.6 mm below seating plane) |
| Forward Input Current - $I_{\text {I }}$ | 60 mA |
| Reverse Input Current | 60 mA |
| Supply Voltage - V CC $^{\text {c }}$. ....... 7 7 | 7V (1 Minute Maximum) |
| Enable Input Voltage - $V_{E}$ <br> (Not to exceed $V_{C C}$ | $\ldots . . . . . . . . . . . . . . . . . . . . .5 \mathrm{~V}$ |
| Output Collector Current - $\mathrm{I}_{\text {O }}$ | $\mathrm{l}_{0}$................. 25 mA |
| Output Collector Power Dissipation | ssipation ........... 40 mW |
| Output Collector Voltage - $\mathrm{V}_{( }$ |  |
| Input Current, Pin 4 | $\pm 10 \mathrm{~mA}$ |

6. The $t_{\text {filli }}$. enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
7. $C M_{I I}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{0}{ }^{-{ }^{-1}}$ $>2.0 \mathrm{~V}$ ).
8. $C M_{1}$, is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{Ol}}{ }^{[1}<0.8$
9. For sinusoidal voltages, $\left(\frac{\left|d v_{\mathrm{CM}}\right|}{d t}\right)_{\text {max }}=\pi f_{\mathrm{CM}} \mathrm{V}_{\mathrm{CM}}(p-\mathrm{p})$
10. No external pull up is required for a high logic state on the enable input.
11. This is a proof test. This rating is equall! validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
12. See Option 010 data sheet for more information.


Figure 2. Output Voltage vs. Forward Input Current.


Figure 5. Low Level Output Voltage vs. Temperature.


Figure 3. Input Characteristics.


Figure 6. Test Circuit for $t_{\text {PHL }}$ and $t_{\text {PLH }}$.


TA - TEMPERATURE - C
Figure 4. High Level Output Current vs. Temperature.


Figure 7. Propagation Delay vs. Temperature.

## Electrical Characteristics

(Over Recommended Temperature, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)

| Parameter | Symbol | Min. | Typ.** | Max. | Units | - Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Level Output Current | IOH | $\pm$ | 20 | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{D}=5.5 \mathrm{~V} \\ & I_{1}=250 \mu \mathrm{~A}, V_{E}=2.0 \mathrm{~V} \end{aligned}$ | 4 |  |
| Low Level Output Voltage | VoL |  | 0.4 |  | $V$ | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{1}=5 \mathrm{~mA} \\ & V_{E}=2.0 \mathrm{~V}, \\ & I_{O L}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$ | 2,5 |  |
| Input Voltage | $V_{1}$ |  | 2.0 | 2.4 | V | $I_{1}=5 \mathrm{~mA}$ | 3 |  |
|  |  |  | 2.3 | 2.7 |  | $\mathrm{I}_{1}=60 \mathrm{~mA}$ | 3 |  |
| Input Reverse Voltage | $V_{\text {R }}$ | 4 | 0.75 | 0.95 | V | $\mathrm{I}_{\mathrm{R}}=5 \mathrm{~mA}$ |  |  |
| Low Level Enable Current | - ${ }_{\text {IEL }}$ |  | -1.4 | -2.0 | mA | $V_{C C}=5.5 \mathrm{~V}, V_{E}=0.5 \mathrm{~V}$ |  |  |
| High Level Enable Current | $\mathrm{IEH}^{\text {\% }}$ |  | -1.0 |  | mA | $V_{C C}=5.5 \mathrm{~V}, V_{E}=2.0 \mathrm{~V}$ |  |  |
| High Level Enable Voltage | $\mathrm{V}_{\mathrm{EH}}$ | 2.0 |  | $\pm$ | - V |  |  | 10 |
| Low Level Enable Voltage | $V_{E L}$ |  |  | 0.8 | V |  |  |  |
| High Level Supply Current | ICCH |  | 10 | 15 | mA | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, 1_{1}=0, \\ & V_{E}=0.5 \mathrm{~V} \end{aligned}$ |  |  |
| Low Level Supply Current | ICCL |  | 16 | 19 | mA | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{1}=60 \mathrm{~mA} \\ & V_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$ |  |  |
| Input Capacitance | $\mathrm{ClN}_{1}$ |  | 90 |  | pF | $V_{1}=0, f=1 M H z_{i}$ <br> (PIN 2-3) |  |  |
| Input-Output Insulation | 1.0 * |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & V_{1-O}=3 \mathrm{kV} \mathrm{dc}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 2,11 |
| OPT 010 | VISO | 2500 |  |  | $V_{\text {RMS }}$ | $\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$ |  | 12 |
| Resistance (Input-Output) | $\mathrm{R}_{1-0}$ |  | $10^{12}$ |  | $\Omega$ | $\mathrm{V}_{1-0}=500 \mathrm{~V}$ |  | 2 |
| Capacitance (Input-Output) | $\mathrm{ClO}_{1-\mathrm{O}}$ |  | 0.6 |  | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  | 2 |

*For JEDEC registered parts.
${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Switching Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right.$ )

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to High Output Level | tPLH |  | 45 | 75 | ns | $\begin{aligned} & R_{L}=350 \Omega \\ & C_{L}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{I}}=7.5 \mathrm{~mA} \end{aligned}$ | 6 | 3 |
| Propagation Delay Time to Low Output Level | ${ }^{\text {tPHL }}$ |  | 45 | 75 | ns |  | 6 | 4 |
| Output Rise Time (10-90\%) | $t_{r}$ |  | 25 |  | ns |  |  |  |
| Output Fall Time ( $90-10 \%$ ) | $\mathrm{t}_{\mathrm{f}}$ |  | 25 |  | ns |  |  |  |
| Propagation Delay Time of Enable from $V_{E H}$ to $V_{E L}$ | telh |  | 25 |  | ns | $\begin{aligned} & R_{L}=350 \Omega, C_{L}=15 \mathrm{pF}, \\ & \mathrm{I}_{1}=7.5 \mathrm{~mA}, V_{E H}=3 \mathrm{~V}, \\ & V_{E L}=0 \mathrm{~V} \end{aligned}$ | 10 | 5 |
| Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$ | ${ }^{\text {teht }}$ |  | 15 |  | ns |  | 10 | 6 |
| Common Mode Transient Immunity at High Output Level | $\mathrm{CM}_{\mathrm{H}}$ \| | 1000 | 10,000 |  | $V / \mu \mathrm{s}$ | $\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak), } \\ & V_{\mathrm{O}}(\min .)=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, 1_{\mathrm{I}}=0 \mathrm{~mA} \end{aligned}$ | 12 | 7,9 |
| Common Mode Transient Immunity at Low Output Level | $\left\|\mathrm{CM} \mathrm{L}_{\mathrm{L}}\right\|$ | 1000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak), } \\ & V_{O}(\text { max. })=0.8 \mathrm{~V}, \\ & R_{\mathrm{L}}=350 \Omega, 1_{\mathrm{I}}=7.5 \mathrm{~mA} \end{aligned}$ | 12 | 8.9 |



Figure 8. Propagation Delay vs. Pulse Input Current.


Figure 11. Enable Propagation Delay vs. Temperature.


Figure 14. Relative Common Mode Transient Immunity vs. Temperature.


Figure 9. Rise, Fall Time vs. Temperature.


Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.


Figure 10. Test Circuit for $\mathrm{t}_{\mathrm{EHL}}$ and $\mathrm{t}_{\mathrm{ELH}}$.


Figure 13. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.


Figure 15. Recommended Printed Circuit Board Layout.

## Using the HCPL-2602 Line Receiver Optocoupler

The primary objectives to fulfill when connecting an optocoupler to a transmission line are to provide a minimum, but not excessive, LED current and to properly terminate the line. The internal regulator in the HCPL2602 simplifies this task. Excess current from variable drive conditions such as line length variations, line driver differences and power supply fluctuations are shunted by the regulator. In fact, with the LED current regulated, the line current can be increased to improve the immunity of the system to differential-mode-noise and to enhance the data rate capability. The designer must keep in mind the 60 mA input current maximum rating of the HCPL-2602, in such cases, and may need to use series limiting or shunting to prevent overstress.
Design of the termination circuit is also simplified; in most cases the transmission line can simply be connected directly to the input terminals of the HCPL-2602 without the need for additional series or shunt resistors. If reversing line drive is used it may be desirable to use two HCPL-2602's, or an external Schottky diode to optimize data rate.

## Polarity Non-Reversing Drive

High data rates can be obtained with the HCPL-2602 with polarity non-reversing drive. Figure (a) illustrates how a 74 S140 line driver can be used with the HCPL-2602 and shielded, twisted pair or coax cable without any additional components. There are some reflections due to the "active termination" but they do not interfere with circuit performance because the regulator clamps the line voltage. At longer line lengths $t_{\text {PLH }}$ increases faster than $t_{\text {PHL }}$ since the switching threshold is not exactly halfway between asymptotic line conditions. If optimum data rate is desired, a series resistor and peaking capacitor can be used to equalize $t_{\text {PLH }}$ and $t_{\text {PHL }}$. In general, the peaking capacitance should be as large as possible; however, if it is too large it may keep the regulator from achieving turn-off during the negative (or zero) excursions of the input signal. A safe rule:

## make $C \leqslant 16 t$

where $C$ = peaking capacitance in picofarads $t=$ data bit interval in nanoseconds

## Polarity Reversing Drive

A single HCPL-2602 can also be used with polarity reversing drive (Figure b). Current reversal is obtained by way of the substrate isolation diode (substrate to collector). Some reduction of data rate occurs, however, because the substrate diode stores charge, which must be removed when the current changes to the forward
direction. The effect of this is a longer $t_{\mathrm{PHL}}$. This effect can be eliminated and data rate improved considerably by use of a Schottky diode on the input of the HCPL-2602.

For optimum noise rejection as well as balanced delays a split-phase termination should be used along with a flipflop at the output (Figure c). The result of current reversal in split-phase operation is seen in Figure (c) with switches $A$ and $B$ both OPEN. The coupler inputs are then connected in ANTI-SERIES; however, because of the higher steady-state termination voltage, in comparison to the single HCPL-2602 termination, the forward current in the substrate diode is lower and consequently there is less junction charge to deal with when switching.
Closing switch B with A open is done mainly to enhance common mode rejection, but also reduces propagation delay slightly because line-to-line capacitance offers a slight peaking effect. With switches A and B both CLOSED, the shield acts as a current return path which prevents either input substrate diode from becoming reversed biased. Thus the data rate is optimized as shown in Figure (c).

## Improved Noise Rejection

Use of additional logic at the output of two HCPL-2602's operated in the split phase termination, will greatly improve system noise rejection in addition to balancing propagation delays as discussed earlier.
A NAND flip-flop offers infinite common mode rejection (CMR) for NEGATIVELY sloped common mode transients but requires $t_{P H L}>t_{\text {PLH }}$ for proper operation. A NOR flipflop has infinite CMR for POSITIVELY sloped transients but requires $t_{P H L}<t_{P L H}$ for proper operation. An exclusive-OR flip-flop has infinite CMR for common mode transients of EITHER polarity and operates with either $t_{\text {PHL }}>t_{\text {PLH }}$ or $t_{\text {PHL }}<t_{\text {PLH }}$.
With the line driver and transmission line shown in Figure (c), $\mathrm{t}_{\mathrm{PHL}}>\mathrm{t}_{\mathrm{PLH}}$, so NAND gates are preferred in the R-S flip-flop. A higher drive amplitude or different circuit configuration could make $\mathrm{t}_{\mathrm{PHL}}<\mathrm{t}_{\mathrm{PLH}}$, in which case NOR gates would be preferred. If it is not known whether $\mathrm{t}_{\mathrm{PHL}}>$ $\mathrm{t}_{\mathrm{PLH}}$ or $\mathrm{t}_{\mathrm{PHL}}<\mathrm{t}_{\mathrm{PLH}}$, or if the drive conditions may vary over the boundary for these conditions, the exclusive-OR flipflop of Figure (d) should be used.

## RS-422 and RS-423

Line drivers designed for RS-422 and RS-423 generally provide adequate voltage and current for operating the HCPL-2602. Most drivers also have characteristics allowing the HCPL-2602 to be connected directly to the driver terminals. Worst case drive conditions, however, would require current shunting to prevent overstress of the HCPL-2602.

propagation times shown exclude driver and line delays.
Figure a. Polarity Non-Reversing.


Figure b. Polarity Reversing, Single Ended.


Figure c. Polarity Reversing, Split Phase.


Figure d. Flip Flop Configurations.

> EXCLUSIVE-OR FLIP FLOP

## DUALTTL COMPATIBLE OPTOCOUPLER



## Features

- HIGH DENSITY PACKAGING
- LSTTL/TTL COMPATIBLE: 5V SUPPLY
- HIGH SPEED: 10 MBd TYPICAL
- LOW INPUT CURRENT REQUIRED: 5 mA
- GUARANTEED PERFORMANCE OVER TEMPERATURE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description/ Applications

The HCPL-2630 consists of a pair of inverting optically coupled gates each with a GaAsP photon emitting diode and a unique integrated detector. The photons are collected in the detector by a photodiode and then amplified by a high gain linear amplifier that drives a Schottky clamped open collector output transistor. Each circuit is temperature, current and voltage compensated.
This unique dual coupler design provides maximum DC and AC circuit isolation between each input and output while achieving LSTTL/TTL circuit compability. The coupler operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, such that a minimum input current of 5 mA in each channel will sink an eight gate fan-out ( 13 mA ) at the output with 5 volt $V_{C C}$ applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec .
The HCPL-2630 can be used in high speed digital interface applications where common mode signals must be rejected such as for a line receiver and digital programming of floating power supplies, motors, and other machine control systems. The elimination of ground loops can be accomplished between system interfaces such as between a computer and a peripheral memory, printer, controller, etc.
The open collector output provides capability for bussing, strobing and "WIRED-OR" connection. In all applications, the dual channel configuration allows for high density packaging, increased convenience and more usable board space.


Recommended Operating Conditions

|  | Sym. | Min. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: |
| Input Current, Low Level <br> Each Channel | IFL | 0 | 250 | $\mu \mathrm{~A}$ |
| Input Current, High Level <br> Each Channel | IFH $^{2}$ | $6.3^{*}$ | 15 | mA |
| Supply Voltage, Output | VCC | 4.5 | 5.5 | V |
| Fan Out (TTL Load) <br> Each Channel | N |  | 8 |  |
| Operating Temperature | TA | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |

## Absolute Maximum Ratings

(No derating required up to $70^{\circ} \mathrm{C}$ )
Storage Temperature ................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature . . . . . . . . . . . . . . . . . $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Peak Forward Input
Current (each channel) $\qquad$ $30 \mathrm{~mA}(\leqslant 1 \mathrm{msec}$ Duration) Average Forward Input Current (each channel) ..... 15 mA Reverse Input Voltage (each channel)
.................. . 5V
Supply Voltage - VCC $\qquad$ 7V (1 Minute Maximum)
Output Current - $\mathrm{I}_{\mathrm{O}}$ (each channel)
16 mA
Output Voltage - $\mathrm{V}_{\mathrm{O}}$ (each channel) . . . . . . . . . . . . . . . . . 7V
Output Collector Power Dissipation . . . . . . . . . . . . 60 mW

* 6.3 mA condition permits at least $20 \%$ CTR degradation guardband. Initial switching threshold is 5 mA or less.


## Electrical Characteristics

OVER RECOMMENDED TEMPERATURE ( $\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ ) UNLESS OTHERWISE NOTED

| Parameter | Symbol | Min. | Typ.** | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Level Output Current | IOH |  | 2 | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V} \\ & I_{F}=250 \mu \mathrm{~A} \end{aligned}$ |  | 3 |
| Low Level Output Voltage | Vol. |  | 0.5 | 0.6 | $V$ | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=5 \mathrm{~mA} \\ & I_{O L}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$ | 3 | 3 |
| High Level Supply Current | 1 CCH |  | 14 | 30 | mA | $V_{C C}=5.5 \mathrm{~V}, I_{F}=0$ <br> (Both Channels) |  |  |
| Low Level Supply | ${ }^{1} \mathrm{CCL}$ |  | 28 | 36 | mA | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=10 \mathrm{~mA} \\ & \text { (Both Channels) } \end{aligned}$ |  |  |
| Input-Output Insulation | $\mathrm{J}_{1 \ldots \mathrm{O}}{ }^{\text {* }}$ |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% R H, t=5 \mathrm{~s}, \\ & V_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 4,9 |
| OPT 010 | VISO | 2500 |  |  | $V_{\text {RMS }}$ | $\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$ |  | 10 |
| Resistance (Input-Output) | $\mathrm{R}_{1-\mathrm{O}}$ |  | $10^{12}$ |  | $\Omega$ | $\mathrm{V}_{1.0}=500 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 4 |
| Capacitance (Input-Output) | $\mathrm{Cl}_{1.0}$ |  | 0.6 |  | pF | $f=1 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$ |  | 4 |
| Input Forward Voltage | $V_{F}$ |  | 1.5 | 1.75 | $V$ | $\mathrm{I}_{F}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 4 | 7,3 |
| Input Reverse Breakdown Voltage | $B V_{R}$ | 5 |  |  | V | $\mathrm{I}_{R}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ |  |  |
| Input Capacitance | $\mathrm{ClN}_{\text {IN }}$ |  | 60 |  | pF | $V_{F}=0, f=1 \mathrm{MHz}$ |  | 3 |
| Input-Input Insulation Leakage Current | $\mathrm{I}_{1-1}$ |  | 0.005 |  | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Relative Humidity }=45 \% \text {, } \\ & t=5 s, V_{1-1}=500 \mathrm{~V} \end{aligned}$ |  | 8 |
| Resistance (Input-Input) | $R_{1-1}$ |  | $10^{11}$ |  | $\Omega$ | $\mathrm{V}_{\mathrm{H}}=500 \mathrm{~V}$ |  | 8 |
| Capacitance (Input-Input) | $\mathrm{Cl}_{1-1}$ |  | 0.25 |  | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  | 8 |
| Current Transfer Ratio | CTR |  | 700 |  | \% | $I_{F}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ | 2 | 6 |

*For JEDEC registered parts.
**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

## Switching Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

## EACH CHANNEL

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to High Output Level | $\mathrm{tplH}^{\text {P }}$ |  | 55 | 75 | ns | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$ | 6,7 | 1 |
| Propagation Delay Time to Low Output Level | tphi. |  | 55 | 75 | ns | $\begin{aligned} & R_{\mathrm{L}}=350 \Omega, C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$ | 6,7 | 2 |
| Output Rise Time (10-90\%) | $\mathrm{tr}_{r}$ |  | 50 |  | ns | $\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, |  |  |
| Output Fall Time (90-10\%) | $\mathrm{t}_{\mathrm{f}}$ |  | 20 |  | ns | $\mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$ |  |  |
| Common Mode Transient Immunity at High Output Level | $\left\|\mathrm{CM}_{\mathrm{H}}\right\|$ |  | 100 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & V_{C M}=10 V_{p-p}, \\ & R_{L}=350 \Omega \\ & V_{\mathrm{O}}(\min ,)=2 V, I_{F}=0 \mathrm{~mA} \end{aligned}$ | 9 | 5 |
| Common Mode Transient Immunity at Low Output Level | $\left\|\mathrm{CM}_{L}\right\|$ |  | 300 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & V_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & V_{\mathrm{O}}(\max .)=0.8 \mathrm{~V} \\ & I_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$ | 9 | 5 |

NOTE: It is essential that a bypass capacitor ( $.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$, ceramic) be connected from pin 8 to pin 5 . Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm . Failure to provide the bypass may impair the switching properties (Figure 5).

## NOTES:

1. The tPLH propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
2. The tPHL propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
3. Each channel.
4. Measured between pins $1,2,3$, and 4 shorted together, and pins 5,6 , 7 , and 8 shorted together.
5. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>\mathbf{2 . 0 V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
6. DC Current Transfer Ratio is defined as the ratio of the output collector current to the forward bias input current times $100 \%$.
7. At 10 mA VF decreases with increasing temperature at the rate of $1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
8. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
9. This is a proof test. This rating is equally validated by a 2500 Vac , 1 sec . test.
10. See Option 010 data sheet for more information.


NOTE: Dashed characteristics indicate pulsed operation.


Figure 2. Optocoupler Transfer Characteristics.



Figure 3. Input-Output Characteristics.


Figure 4. Input Diode Forward Characteristic


Figure 5. Recommended Printed Circuit Board Layout.


Figure 6. Test Circuit for tPHL and tPLH•


Figure 7. Propagation Delay, tPHL and tPLH vs. Pulse Input Current, IFH.


Figure 8. Response Delay Between TTL Gates.


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

## DUAL CHANNEL HIGH CMR HIGH SPEED OPTOCOUPLER



Figure 1. Schematic

## Features

- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION (CMR)
- HIGH DENSITY PACKAGING
- HIGH SPEED: 10 MBd TYPICAL
- LSTTL AND TTL COMPATIBLE
- GUARANTEED MINIMUM COMMON MODE TRANSIENT IMMUNITY: 1000 V/ $\mu \mathrm{s}$
- GUARANTEED PERFORMANCE OVER TEMPERATURE $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Applications

- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- MICROPROCESSOR SYSTEM INTERFACES
- ISOLATED LINE RECEIVER
- COMPUTER-PERIPHERAL INTERFACES
- GROUND LOOP ELIMINATION


## Description

The HCPL-2631 is a dual channel optically coupled logic gate that combines GaAsP light emitting diodes and integrated high gain photodetectors. Internal shields provide a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$. The unique design provides maximum DC and AC circuit isolation while achieving LSTTL and TTL logic compatibility. The logic isolation is achieved with a typical propagation delay of 40 nsec . The dual channel design saves space and results in increased convenience.
The HCPL-2631 is recommended for high speed logic interfacing, input/output buffering and for use as line receivers in environments that conventional line receivers cannot tolerate. The HCPL-2631 can be used for the digital programming of machine control systems, motors,

and floating power supplies. The internal shield makes the HCPL-2631 ideal for use in extremely high ground or induced noise environments.

## Recommended Operating Conditions

|  | Sym. | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Input Current, Low Level <br> Each Channel | $\mathrm{I}_{\mathrm{FL}}$ | 0 | 250 | $\mu \mathrm{~A}$ |
| Input Current, High Level <br> Each Channel | $\mathrm{IFH}_{\mathrm{FH}}$ | $6.3^{*}$ | 15 | mA |
| Supply Voltage, Output | VCC | 4.5 | 5.5 | V |
| Fan Out (TTL Load) <br> Each Channel | N |  | 8 |  |
| Operating Temperature | $\mathrm{TA}_{\mathrm{A}}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |

* 6.3 mA condition permits at least $20 \%$ CTR degradation guardband. Initial switching threshold is 5 mA or less.


## Absolute Maximum Ratings

(No derating required up to $70^{\circ} \mathrm{C}$ )
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)

## Average Forward

Input Current (each channel) $\qquad$
Reverse Input Voltage (each channel)
15 mA (See Note 2)
............... 5 V
Supply Voltage - Vcc ......... 7 V (1 Minute Maximum)
Output Current - Io (each channel) .............. 16 mA
Output Voltage - Vo (each channel) ................. 7 V
Output Collector Power Dissipation
(each channel)
40 mW

## Electrical Characteristics

(Over Recommended Temperature, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)

| Parameter | Symbol | Min. | Typ.** | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low Level Output Voltage | VOL |  | 0.4 | 0.6 | V | $\begin{aligned} & V C C=5.5 \mathrm{~V}, \mathrm{IF}=5 \mathrm{~mA} \\ & \mathrm{lOL}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$ | 2, 3 | 3 |
| High Level Output Current | IOH |  | 20 | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & V C C=5.5 \mathrm{~V}, \mathrm{VO}=5.5 \mathrm{~V}, \\ & I F=250 \mu \mathrm{~A} \end{aligned}$ | 4 | 3 |
| High Level Supply Current | ICCH |  | 20 | 30 | mA | $V_{C C}=5.5 V, I_{F}=0$ <br> (Both Channels) |  |  |
| Low Level Supply Current | ICCL |  | 30 | 38 | mA | $V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA},$ <br> (Both Channels) |  |  |
| Input Forward Voltage | $V_{F}$ |  | 1.5 | 1.75 | V | $\mathrm{IF}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 5 | 3 |
| Input Reverse Breakdown Voltage | BVR | 5 |  |  | V | $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 3 |
| Input Capacitance | CIn |  | 60 |  | pF | $\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$ |  | 3 |
| Input Diode Temperature Coefficient | $\frac{\Delta V_{F}}{\Delta T_{A}}$ |  | -1.6 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |  |  |
| Input-Output Insulation | 1-0* |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% R H, t=5 \mathrm{~s} \\ & V_{1-O}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  | 4,5 |
| OPT 010 | $\mathrm{V}_{\text {ISO }}$ | 2500 |  |  | VAMS | $\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$ |  | 13 |
| Input-Input Leakage Current | In-1 |  | 0.005 |  | $\mu \mathrm{A}$ | $\begin{aligned} & \text { Relative Humidity }=45 \% \\ & t=5 \mathrm{~s}, V_{1-1}=500 \mathrm{~V} \end{aligned}$ |  | 6 |
| Resistance (Input-Input) | $\mathrm{R}_{1-1}$ |  | 1011 |  | $\Omega$ | $\mathrm{V}_{1-1}=500 \mathrm{~V}$ |  | 6 |
| Capacitance (Input-Input) | $\mathrm{CH}_{\mathrm{H}}$ |  | 0.25 |  | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  | 6 |
| Resistance (Input-Output) | $\mathrm{R}_{1-0}$ |  | 1012 |  | $\Omega$ | $\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V}$ |  | 4 |
| Capacitance (Input-Output) | $\mathrm{Cl}_{1-\mathrm{O}}$ |  | 0.6 |  | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  |  |

*For JEDEC registered parts.
${ }^{* *}$ All typical values are at $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Switching Characteristics

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Figure | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to High Output Level | tPLH |  | 40 | 75 | ns | $\begin{aligned} & R_{L}=350 \Omega \\ & C_{L}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$ | 6 | 3,7 |
| Propagation Delay Time to Low Output Level | tPHL |  | 40 | 75 | ns |  | 6 | 3, 8 |
| Output Rise Time ( $10-90 \%$ ) | $t_{r}$ |  | 20 |  | ns |  |  | 3 |
| Output Fall Time (90-10\%) | tf |  | 30 |  | ns |  |  | 3 |
| Common Mode Transient Immunity at High Output Level | $\|\mathrm{CMH}\|$ | 1000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $V_{C M}=50 \mathrm{~V}$ (peak), <br> $V_{0}(\min )=2 V$, <br> $\mathrm{R}_{\mathrm{L}}=350 \Omega_{\mathrm{t}} \mathrm{I}=0 \mathrm{~mA}$ | 10 | 3, 9, 11 |
| Common Mode Transient Immunity at Low Output Level | $\left\|\mathrm{CML}_{4}\right\|$ | 1000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $V_{C M}=50 \mathrm{~V}$ (peak), <br> $V_{0}($ max. $)=0.8 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=350 \mathrm{n}, \mathrm{IF}_{\mathrm{F}}=7.5 \mathrm{~mA}$ | 10 | 3,10,11 |

## NOTES:

1. Bypassing of the power supply line is required, with a 0.01 $\mu$ F ceramic disc capacitor adjacent to each isolator as illustrated in Figure 14. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm . The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to $0.1 \mu \mathrm{~F}$ ) may be needed to suppress regenerative feedback via the power supply. Failure to provide the bypass may impair the switching properties.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 15 mA .
3. Each channel.
4. Measured between pins 1,2,3, and 4 shorted together, and pins $5,6,7$, and 8 shorted together.
5. This is a proof test. This rating is equally validated by a 2500 Vac, 1 sec. test.
6. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
7. The tpLH propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
8. The tPHL propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
9. CMH is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., VOUT > 2.0 V ).
10. CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., Vout > 0.8 V ).
11. For sinusoidal voltages, $\left(\frac{\left|d V_{C M}\right|}{d t}\right)_{\max }=\pi \mathrm{fCM}_{C M}(p-p)$
12. As illustrated in Figure 14, the Vcc and GND traces can be located between the input and the output leads of the HCPL-2631 to provide additional noise immunity at the compromise of insulation capability.
13. See Option 010 data sheet for more information.


Figure 2. Low Level Output Voltage vs. Temperature


Figure 5. Input Diode Forward Characteristic


Figure 3. Output Voltage vs. Forward Input Current


Figure 6. Test Circuit for $\mathrm{t}_{\mathrm{PHL}}$ and $t_{\text {PLH }}$. Note 3


Figure 4. High Level Output Current vs. Temperature


$$
T_{A}=T E M P E R A T U R E-{ }^{\circ} C
$$

Figure 7. Propagation Delay vs. Temperature


Figure 11. Common Mode Transient Immunity vs. Common Mode Transient Amplitude


Figure 13. Relative Common Mode Transient Immunity vs. Temperature



NOTES 1,12

Figure 14. Recommended Printed Circuit Board Layout


## Features

- HIGH CURRENT TRANSFER RATIO-2000\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- TTL COMPATIBLE OUTPUT - 0.1 V V OL TYPICAL
- HIGH COMMON MODE REJECTION - $500 \mathrm{~V} / \mu \mathrm{s}$
- PERFORMANCE GUARANTEED OVER TEMPERATURE $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- BASE ACCESS ALLOWS GAIN BANDWIDTH ADJUSTMENT
- HIGH OUTPUT CURRENT - 60 mA
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description

These high gain series couplers use a Light Emitting Diode and an integrated high gain photon detector to provide extremely high current transfer ratio between input and output. Separate pins for the photodiode and output stage result in TTL compatible saturation voltages and high speed operation. Where desired the VCc and Vo terminals may be tied together to achieve conventional photodarlington operation. A base access terminal allows a gain bandwidth adjustment to be made.
The 6N139 is for use in CMOS, LSTTL or other low power applications. A $400 \%$ minimum current transfer ratio is guaranteed over a $0-70^{\circ} \mathrm{C}$ operating range for only 0.5 mA of LED current.

The 6N138 is designed for use mainly in TTL applications. Current Transfer Ratio is $300 \%$ minimum over $0-70^{\circ} \mathrm{C}$ for an LED current of 1.6 mA [1 TTL Unit load (U.L.)]. A $300 \%$ minimum CTR enables operation with 1 U.L. out with a 2.2 $k \mu$ pull-up resistor.

TECHNICAL DATA JANUARY 1986


## Applications

- Ground Isolate Most Logic Families - TTL/TTL, CMOS/ TTL, CMOS/CMOS, LSTTL/TTL, CMOS/LSTTL
- Low Input Current Line Receiver - Long Line or Party line
- EIA RS-232C Line Receiver
- Telephone Ring Detector
- 117 V ac Line Voltage Status Indicator - Low Input Power Dissipation
- Low Power Systems - Ground Isolation


## Absolute Maximum Ratings*



CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
*JEDEC Registered Data.

Electrical Specifications
OVER RECOMMENDED TEMPERATURE ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), UNLESS OTHERWISE SPECIFIED

*For JEDEC registered parts.
${ }^{* *}$ All typicals at $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$, unless otherwise noted.

## Switching Specifications

## $A T T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=\mathbf{5 V}$

| Parameter | Sym. | Device | Min. | Typ. | Max. | Units | Test Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time To Logic Law at Output | tPHL* | 6N139 |  | $\begin{gathered} 5 \\ 0.2 \end{gathered}$ | $\begin{gathered} 25 \\ 1 \end{gathered}$ | $\mu \mathrm{s}$ | $\begin{aligned} & T_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$ | 9 | 6,8 |
|  |  | 6N138 |  | 1.6 | 10 | $\mu \mathrm{s}$ | $\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ |  |  |
| Propagation Delay Time To Logic High at Output | ${ }^{\text {tPLH*}}$ | 6N139 |  | $\begin{gathered} 18 \\ 2 \end{gathered}$ | $\begin{gathered} 60 \\ 7 \end{gathered}$ | $\mu \mathrm{S}$ | $\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$ | 9 | 6,8 |
|  |  | 6N138 |  | 10 | 35 | $\mu \mathrm{s}$ | $\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ |  |  |
| Common Mode Transient Immunity at Logic High Level Output: | $\left\|\mathrm{CM}_{\mathrm{H}}\right\|$ |  |  | 500 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & I_{F}=0 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega, R_{\mathrm{CC}}=0 \\ & \left\|V_{\mathrm{cm}}\right\|=10 V_{\mathrm{p}-\mathrm{p}} \end{aligned}$ | 10 | 9,10 |
| Cormmon Mode Transient Immunity at Logic Low Level Output | $\left\|\mathrm{CM}_{L}\right\|$ |  |  | 500 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega_{,} R_{C C}=0 \\ & \mathrm{~V}_{\mathrm{cm}} \mid=10 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}} \end{aligned}$ | 10 | 9,10 |

NOTES:

1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times $100 \%$.
6. Pin 7 Open.
7. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
8. Use of a resistor between pin 5 and 7 will decrease gain and delay time. See Application Note 951-1 for more details.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV} \mathrm{cm}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{d} \mathrm{V}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
10. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge) a series resistor, $\mathrm{R}_{\mathrm{CC}}$, should be included to protect the detector IC from destructively high surge currents. The recommended value is $\mathrm{R}_{\mathrm{CC}} \approx \frac{1 \mathrm{~V}}{0.15 \mathrm{IF}_{\mathrm{F}}(\mathrm{mA})} \mathrm{k} \Omega$.
11. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1$ sec. test.
12. See Option 010 data sheet for more information.


Figure 1. 6N138/6N139 DC Transfer Characteristics


Figure 3. 6N138/6N139 Output Current vs Input Diode Forward Current


Figure 5. Propagation Delay vs. Temperature.


Figure 2. Current Transfer Ratio vs Forward Current 6N138/6N139


Figure 4. Input Diode Forward Current vs. Forward Voltage.


Figure 6. Non Saturated Rise and Fall Times vs. Load Resistance.


Figure 7. Switching Test Circuit.*


Figure 8. Test Circuit for Transient Immunity and Typical Waveforms.

# DUAL LOW INPUT CURRENT, HIGH GAIN OPTOCOUPLERS 



## Features

- HIGH CURRENT TRANSFER RATIO - 1800\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- LOW OUTPUT SATURATION VOLTAGE - 0.1V TYPICAL
- HIGH DENSITY PACKAGING
- PERFORMANCE GUARANTEED OVER $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ TEMPERATURE RANGE
- HIGH COMMON MODE REJECTION - $500 \mathrm{~V} / \mu \mathrm{S}$
- LSTTL COMPATIBLE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description

The HCPL-2730/31 dual channel couplers contain a separated pair of GaAsP light emitting diodes optically coupled to a pair of integrated high gain photon detectors. They provide extremely high current transfer ratio, 3000V dc withstand test voltage and excellent input-output common mode transient immunity. A separate pin for the photodiodes and first gain stages ( $\mathrm{V}_{\mathrm{CC}}$ ) permits lower output saturation voltage and higher speed operation than possible with conventional photodarlington type isolators. In addition $\mathrm{V}_{\mathrm{CC}}$ may be as low as 1.6 V without adversely affecting the parametric performance.
Guaranted operation at low input currents and the high current transfer ratio (CTR) reduce the magnitude and effects of CTR degradation.
The outstanding high temperature performance of this split Darlington type output amplifier results from the inclusion of an integrated emitter-base bypass resistor which shunts photodiode and first stage leakage currents to ground.


## Applications

- Digital Logic Ground Isolation
- Telephone Ring Detector
- EIA RS-232C Line Receiver
- Low Input Current Line Receiver - Long Line or Party Line
- Microprocessor Bus Isolation
- Current Loop Receiver
- Polarity Sensing
- Level Shifting
- Line Voltage Status Indicator - Low input Power Dissipation

The HCPL-2731 has a $400 \%$ minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current application such as MOS, CMOS and low power logic interfacing or RS232C data transmission systems. In addition, the high CTR and high output current capability make this device extremely useful in applications where a high fanout is required. Compatibility with high voltage CMOS logic systems is guaranteed by the $18 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{O}}$ specifications and by testing output high leakage ( $\mathrm{I}_{\mathrm{OH}}$ ) at 18 V .
The HCPL-2730 is specified at an input current of 16 mA and has a $7 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{O}}$ rating. The $300 \%$ mimimum CTR allows TTL to TTL interfacing with an input current of only 1.6 mA .

Important specifications such as CTR, leakage current and output saturation voltage are guaranteed over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range to allow trouble-free system operation.

## Electrical Specifications

(Over Recommended Temperature $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Unless Otherwise Specified)

| Parameter | Sym. | Device HCPL. | Min. | Typ.* | Max. | Units | Test Conditions |  | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current Transfer Ratio | CTR | 2731 | $\begin{aligned} & 400 \\ & 500 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1800 \\ & 1600 \\ & \hline \end{aligned}$ |  | \% | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{F}}=1.6 \mathrm{~mA}_{x} V_{O}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$ |  | 2 | 6,7 |
|  |  | 2730 | 300 | 1600 |  | \% | $I_{F}=1,6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$ |  | 2 |  |
| Logic Low Output Voltage | $V_{O L}$ | 2731 |  | $\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$ | $V$ | $\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, I_{O}=8 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=5 \mathrm{~mA}_{\mathrm{C}} \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=12 \mathrm{~mA}_{,} I_{O}=24 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$ |  | 1 | 6 |
|  |  | 2730 |  | 0.1 | 0.4 | $V$ | $\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA} \mathrm{l}^{\prime} \mathrm{l}_{\mathrm{O}}=4.8 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}$ |  |  |  |
| Logic High | ${ }^{1} \mathrm{OH}$ | 2731 |  | 0.005 | 100 | $\mu \mathrm{A}$ | $I_{F}=0 \mathrm{~mA}, V_{O}=V_{C C}=18 \mathrm{~V}$ |  |  | 6 |
| Output Current |  | 2730 |  | 0.01 | 250 | $\mu \mathrm{A}$ | $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, V_{0}=V_{C C}=7 \mathrm{~V}$ |  |  |  |
| Lagic Low Supply Current | ${ }^{1} \mathrm{CCL}$ | 2731 |  | 1.2 |  | mA | $\begin{aligned} & I_{\mathrm{F} 1}=I_{\mathrm{F} 2}=1.6 \mathrm{~mA} \\ & V_{01}=V_{02}=0 \mathrm{pen} \end{aligned}$ | $\mathrm{V}_{\mathrm{cc}} \# 18 \mathrm{~V}$ |  |  |
|  |  | 2730 |  | 0.9 |  |  |  | $V_{C c}=7 \mathrm{~V}$ |  |  |
| Logic High Supply Current | ${ }^{\mathrm{CCCH}}$ | 2731 |  | 5 |  | nA | $\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=I_{\mathrm{F} 2}=0 \mathrm{~mA} \\ & V_{\mathrm{O} 1}=V_{\mathrm{O} 2}=\text { Open } \end{aligned}$ | $V_{\text {cc }}=18 \mathrm{~V}$ |  |  |
|  |  | 2730 |  | 4 |  |  |  | $V_{C C}=7 \mathrm{~V}$ |  |  |
| Input Forward Voltage | $V_{F}$ |  |  | 1.4 | 1.7 | $V$ | $\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ |  | 4 | 6 |
| Input Reverse Breakdown Voltage | $B V_{R}$ |  | 5 |  |  | $V$ | $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | 6 |
| Temperature Coefficient of Forward Voltage | $\frac{\Delta V_{F}}{\Delta T_{A}}$ |  |  | -1.8 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $I_{F}=1.6 \mathrm{~mA}$ |  |  | 6 |
| Input Capacitance | $\mathrm{C}_{\text {IN }}$ |  |  | 60 |  | pF | $f \# 1 \mathrm{MHz} z_{\mathrm{r}} \mathrm{V}_{\mathrm{F}}=0$ |  |  | 6 |
| Input-Qutput Insutation | $1-0^{*}$ |  |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s} \\ & V_{1-0}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  | 8,12 |
| OPT. 010 | VISO |  | 2500 |  |  | VRMS | $\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$. |  |  | 13 |
| Resistance (Input-Qutput) | $\mathrm{F}_{1.0}$ |  |  | $10^{12}$ |  | $\Omega$ | $\mathrm{V}_{1.0}=500 \mathrm{VOc}$ |  |  | 8 |
| Capacitance (Input-Output) | $\mathrm{Cl}_{1.0}$ |  |  | 0.6 |  | pF | $\mathrm{f}=1 \mathrm{MHz}$ |  |  | 8 |
| Input-Input Insulation Leakage Current | $\mathrm{I}_{\mathrm{t}-\mathrm{t}}$ |  |  | 0.005 |  | $\mu \mathrm{A}$ | 45\% Refative Humidity, $\mathrm{t}=5 \mathrm{~s}$, $V_{H}=500 \mathrm{Vdc}$ |  |  | 9 |
| Resistance (Input-Input) | $\mathrm{R}_{1-1}$ |  |  | $10^{1 t}$ |  | $\Omega$ | $V_{1-\frac{1}{}}=500 \mathrm{Vdc}$ |  |  | 9 |
| Capacitance (Input-Input) | $C_{l n}$ |  |  | 0.25 |  | pF | $f=1 \mathrm{MHz}$ |  |  | 9 |

## -For JEDEC registered parts.

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

## Switching Specifications AT $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

| Parameter | Sym. | Device HCPL- | Min. | Typ. | Max | Units | Test Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time | tPHL. | 2731 |  | 25 | 100 | $\mu \mathrm{s}$ | $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, R_{\mathrm{L}}=4.7 \mathrm{k} \Omega$ | 9 | 6 |
| To Lugic Low at Output |  | 2730/1 |  | $\begin{gathered} \hline 5 \\ 0.5 \end{gathered}$ | $\begin{gathered} 20 \\ 2 \end{gathered}$ | $\mu s$ | $\begin{aligned} & \mathrm{f}_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{F}}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$ |  |  |
| Propagation Delay Time <br> To Logic High at Output | tpl. H | 2731 |  | 10 | 60 | $\mu \mathrm{s}$ | $I_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega$ | 9 | 6 |
|  |  | 2730/1 |  | $\begin{gathered} 10 \\ 1 \end{gathered}$ | $\begin{aligned} & 35 \\ & 10 \end{aligned}$ | $\mu \leqslant$ | $\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$ |  |  |
| Common Made <br> Transient Immunity at Logic High Level Output | $\left\|\mathrm{CNH}_{3}\right\|$ |  |  | 500 |  | V/us | $\begin{aligned} & I_{F}=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{kSL} \\ & \left\|\mathrm{~V}_{\mathrm{CM}}\right\|=10 \mathrm{~V}_{\mathrm{D}-\mathrm{p}} \end{aligned}$ | 10 | $6.10,11$ |
| Common Mode <br> Transient Immunity at Lagic Low Level Output | $\left\|\mathrm{CM}_{\mathrm{L}}\right\|$ |  |  | 500 |  | V教 | $\begin{aligned} & I_{\mathrm{F}}=1.6 \mathrm{~mA}_{,} \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \left\|V_{\mathrm{CM}}\right\|=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$ | 10 | $6,10,11$ |

NOTES: 1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $35^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
4. Pin 5 should be the most negative voltage at the detector side.
5. Derate linearly above $35^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output power is collector output power plus supply power.
6. Each channel.
7. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times $100 \%$.
8. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
9. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together
10. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{C M} d t$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
11. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, $\mathrm{R}_{\mathrm{CC}}$, should be included to protect the detector IC from destructively high surge currents. The recommended value is $R_{\mathrm{CC}} \approx \frac{1 \mathrm{~V}}{0.3 I_{\mathrm{F}}(\mathrm{mA})} \mathrm{k} \Omega$.
12. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test. 13. See Option 010 data sheet for more information.

## Absolute Maximum Ratings

| Storage Temperature $\ldots . . . . . . . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| :---: | :---: |
| Operating Temperature ......... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |
| Lead Solder Temperature ........ $260^{\circ} \mathrm{C}$ for 10 sec ( 1.6 mm below seating plane) |  |
| Average Input Current $-I_{F}$ <br> (each channel) $\qquad$ |  |
| Peak Input Current - $I_{F}$ <br> (each channel) $40 \mathrm{~mA}$ |  |
| (50\% duty | e width) |
| everse Input Voltage $-\mathrm{V}_{\mathrm{R}}$ (each channel) |  |

Storage Temperature $. \ldots . . . . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature .......... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Solder Temperature ....... $260^{\circ} \mathrm{C}$ for 10 sec ( 1.6 mm below seating plane)
Average Input Current $-I_{F}$
(each channel)
$20 \mathrm{~mA}^{[1]}$
Peak Input Current - $I_{F}$
(each channel) ............................. 40 mA
( $50 \%$ duty cycle, 1 ms pulse width)
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$ (each channel) 5 V

| Input Power Dissipation <br> (each channel) |  |
| :---: | :---: |
| Output Current - Io (each channel) |  |
| Supply and Output Volta $7,6-5)^{[4]}$ | $-5), V_{O}(\operatorname{Pin}$ |
| HCPL-2730 | -0.5 to 7V |
| HCPL-2731 | -0.5 to 18V |
| Output Power Dissipatio (each channel) | $100 \mathrm{~mW}^{[5]}$ |


$V_{o}$ - OUTPUT VOLTAGE - $V$

Figure 1. DC Transfer Characteristics (HCPL-2730/HCPL-2731)


Figure 4. Input Diode Forward Current vs. Forward Voltage.


Figure 2. Current Transfer Ratio vs Forward Current


Figure 5. Supply Current Per Channel vs. Input Diode Forward Current.


Figure 3. Output Current vs Input Diode Forward Current


Figure 6. Propagation Delay To Logic Low vs. Pulse Period.


Figure 7. Propagation Delay vs. Temperature.


Figure 9. Switching Test Circuit.

*See Note 11.

Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.


## Features

- HIGH CURRENT TRANSFER RATIO 1500\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT 0.5 mA
- PERFORMANCE GUARANTEED OVER $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ TEMPERATURE RANGE
- INTERNAL BASE-EMITTER RESISTOR MINIMIZES OUTPUT LEAKAGE
- GAIN-BANDWIDTH ADJUSTMENT PIN
- HIGH COMMON MODE REJECTION
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description

The 4N45/46 optocouplers contain a GaAsP light emitting diode optically coupled to a high gain photodetector IC.
The excellent performance over temperature results from the inclusion of an integrated emitter-base bypass resistor which shunts photodiode and first stage leakage currents to ground. External access to the second stage base provides better noise rejection than a conventional photodarlington detector. An external resistor or capacitor at the base can be added to make a gain-bandwidth or input current threshold adjustment. The base lead can also be used for feedback.

The high current transfer ratio at very low input currents permits circuit designs in which adequate margin can be allowed for the effects of CTR degradation over time.
The 4N46 has a $350 \%$ minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing. Compatibility with high voltage CMOS logic systems is assured by the 20 V minimum breakdown voltage of the output transistor and by the guaranteed maximum output leakage ( $\mathrm{I}_{\mathrm{OH}}$ ) at 18 V .
The 4 N 45 has a $250 \%$ minimum CTR at 1.0 mA input current and a 7 V minimum breakdown voltage rating.
*JEDEC Registered Data.


## Applications

- Telephone Ring Detector
- Digital Logic Ground Isolation
- Low Input Current Line Receiver
- Line Voltage Status Indicator - Low Input Power Dissipation
- Logic to Reed Relay Interface
- Level Shifting
- Interface Between Logic Families


## Absolute Maximum Ratings*

Storage Temperature $\ldots . . . . . . . . . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature ............... $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature ............... $260^{\circ} \mathrm{C}$ for 10 s .
( 1.6 mm below seating plane)
Average Input Current $I_{F} \quad \ldots \ldots \ldots . . . . . .$.
Peak Input Current - $I_{F}$........................... 40 mA
( $50 \%$ duty cycle, 1 ms pulse width)
Peak Transient Input Current $-I_{F} \ldots \ldots . . . . .$. ........... A
( $\leqslant 1 \mu$ s pulse width, 300 pps )

Input Power Dissipation ........................ 35mW[2]
Output Current - $I_{O}(\operatorname{Pin} 5) \ldots . . . . . . . . . .$.
Emitter-Base Reverse Voltage (Pins 4-6) .......... 0.5V
Output Voltage - $\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 5-4)$
4N45
-0.5 to 7V
4N46 ......................................... -0.5 to 20V
Output Power Dissipation .................... 100mW[4] See notes, following page

[^10]
## Electrical Specifications

OVER RECOMMENDED TEMPERATURE ( $T_{A}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ ), UNLESS OTHERWISE SPECIFIED

| Parameter | Sym. | Device | Min. | Typ.** | Max | Units | Test Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current Transfer Ratio | CTR* | 4N46 | $\begin{aligned} & 350 \\ & 500 \\ & 200 \end{aligned}$ | $\begin{aligned} & 1500 \\ & 1500 \\ & 600 \end{aligned}$ |  | \% | $\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=1.0 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=10 \mathrm{~mA}, V_{O}=1.2 \mathrm{~V} \end{aligned}$ | 4 | 5,6 |
|  |  | 4N45 | $\begin{aligned} & 250 \\ & 200 \end{aligned}$ | $\begin{gathered} 1200 \\ 500 \end{gathered}$ |  | \% | $\begin{aligned} & I_{F}=1.0 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=10 \mathrm{~mA}, V_{O}=1.2 \mathrm{~V} \end{aligned}$ |  |  |
| Logic Low Output Voltage | VOL | 4N46 |  | $\begin{aligned} & .90 \\ & .92 \\ & .95 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.2 \end{aligned}$ | v | $\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, I_{\mathrm{OL}}=1.75 \mathrm{~mA} \\ & I_{\mathrm{F}}=1.0 \mathrm{~mA}, I_{\mathrm{OL}}=5.0 \mathrm{~mA} \\ & I_{\mathrm{F}}=10 \mathrm{~mA}, I_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$ | 2 | 6 |
|  |  | 4N45 |  | $\begin{aligned} & .90 \\ & .95 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$ | V | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{IOL}=2.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$ |  |  |
| Logic High Output Current | $1 \mathrm{OH}^{*}$ | 4N46 |  | . 001 | 100 | $\mu \mathrm{A}$ | $I_{F}=0 \mathrm{~mA}, V_{O}=18 \mathrm{~V}$ |  | 6 |
|  |  | 4N45 |  | . 001 | 250 | $\mu \mathrm{A}$ | $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}$ |  |  |
| Input Forward Voltage | $V_{F}{ }^{*}$ |  |  | 1.4 | 1.7 | $\checkmark$ | $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA} \mathrm{~T}^{\text {, }}$ A $=25^{\circ} \mathrm{C}$ | 1 |  |
| Temperature Coefficient of Forward Voltage | $\frac{\Delta V_{F}}{\Lambda T_{A}}$ |  |  | -1.8 |  | $m V /{ }^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$ |  |  |
| Input Reverse Breakdown Voltage | $B V_{R}{ }^{*}$ |  | 5 |  |  | V | $I_{R}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ |  |  |
| Input Capacitance | $\mathrm{CIN}_{\text {IN }}$ |  |  | 60 |  | pF | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$ |  |  |
| Input-Output Insulation | ${ }^{1-0}$ |  |  |  | 1.0 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}_{\mathrm{s}} \\ & \mathrm{~V}_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 7,10 |
| OPT, 010 | $V_{150}$ |  | 2500 |  |  | $V_{\text {RMM }}$ | $\mathrm{AH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$. |  | 11 |
| Resistance (Input-Output) | $\mathrm{R}_{1-\mathrm{O}}$ |  |  | $10^{12}$ |  | $\Omega$ | $\mathrm{V}_{1-0}=500 \mathrm{VDC}$ |  | 7 |
| Capacitance (Input-Output) | $\mathrm{Cl}_{1-\mathrm{O}}$ |  |  | 0.6 |  | pF | $f=1 \mathrm{MHz}$ |  | 7 |

## Switching Specifications

AT $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathbf{5 . 0 V}$

| Parameter | Symbol | Min. | Tур.** | Max. | Units | Test Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time To Logic Low at Output | tPHL |  | 80 |  | $\mu \mathrm{s}$ | $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{kS}$ | 8 | 6,8 |
|  | tPHL* |  | 5 | 50 | $\mu \mathrm{s}$ | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=220 \Omega$ |  |  |
| Propagation Delay Time To Logic High at Output | ${ }^{\text {PPLH }}$ |  | 1500 |  | $\mu \mathrm{s}$ | $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ | 8 | 6.8 |
|  | ${ }^{\text {tPLH }}{ }^{*}$ |  | 150 | 500. | $\mu \mathrm{s}$ | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=220 \Omega$ |  |  |
| Common Mode Transient Immunity at Logic High Level Output | $\mathrm{ICM}_{\mathrm{H}}{ }^{\text {l }}$ |  | 500 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{cm}} \mathrm{I}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$ | 9 | 9 |
| Common Mode Transient Immunity at Logic Low Level Output | $1 \mathrm{CM}_{\mathrm{L}}$ |  | 500 |  | $V / \mu \mathrm{s}$ | $\begin{aligned} & I_{F}=1.0 \mathrm{~mA}, R_{L}=10 \mathrm{k} \Omega \\ & V_{\mathrm{cm}} \mid=10 V_{p-p} \end{aligned}$ | 9 | 9 |

*JEDEC Registered Data.
**All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
NOTES:

1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, 1 O , to the forward LED input current, $\mathrm{I}_{\mathrm{F}}$, times $100 \%$.
6. Pin 6 Open.
7. Device considered a two-terminal device: Pins $1,2,3$ shorted together and Pins 4,5 , and 6 shorted together.
8. Use of a resistor between pin 4 and 6 will decrease gain and delay time. (See Figures 10 and 12).
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.5 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<2.5 \mathrm{~V}$ ).
10. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
11. See Option 010 data sheet for more information.

$V_{F}$ - FORWARD VOLTAGE - VOLTS
Figure 1. Input Diode Forward Current vs. Forward Voltage.

$I_{F}$ - FORWARD CURRENT - mA
Figure 4. Current Transfer Ratio vs. Input Current.


Figure 2. Typical DC Transfer Characteristics.
$I_{\text {F }}$ - FORWARD CURRENT - mA
Figure 5. Propagation Delay vs. Forward Current.


Figure 3. Output Current vs. Input Current.


Figure 6. Propagation Delay vs. Temperature.


Figure 7. Propagation Delay vs Load Resistor.


Figure 8. Switching Test Circuit


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.


Figure 10. External Base Resistor, $\mathbf{R}_{\mathbf{X}}$


Figure 11. Effect of $R_{X} O n$
Current Transfer Ratio


RX - EXTERNAL RESISTOR - k $\Omega$
Figure 12. Effect of $\mathrm{R}_{\mathrm{X}} \mathrm{On}$ Propagation Delay

Applications


TTL Interface BECAUSE OF LONG $t_{r}, t_{f}$.


Line Voltage Monitor


Analog Signal Isolation


NOTE: AN INTEGRATOR MAY BE REQUIRED AT THE OUTPUT TO ELIMINATE DIALING PULSES AND LINE TRANSIENTS.

Telephone Ring Detector


CMOS Interface

## CHARACTERISTICS

$R_{\text {IN }}=30 \mathrm{M} \Omega$, Rout $=50 \Omega$
$\left.V_{\text {IN (MAX. }}\right)=V_{\mathrm{CC}_{1}}-1 \mathrm{~V}_{\text {, }}$ LINEARITY BETTER THAN $5 \%$
DESIGN COMMENTS
$R_{1}-$ NOT CRITICAL $\left(\ll \frac{V_{I N}(M A X .)-\left(-V_{C C}\right)}{I_{F}(\text { MAX })}-V_{B E}\right)$ hFE $0_{3}$
$R_{2}$ - NOT CRITICAL (OMIT IF 0.2 TO 0.3V OFFSET IS TOLERABLE)
$R_{4}>\frac{V_{\text {IN }}(M A X)+V_{B E}}{1 \mathrm{~mA}}$
$R_{5}>\frac{V_{I N}(M A X .)}{2.5 \mathrm{~mA}}$
NOTE: ADJUST $R_{3}$ SO $V_{O U T}=V_{I N} A T V_{I N}=\frac{V_{I N}(M A X .)}{2}$


## Features

- AC OR DC INPUT
- PROGRAMMABLE SENSE VOLTAGE
- HYSTERESIS
- LOGIC COMPATIBLE OUTPUT
- SMALL SIZE: STANDARD 8 PIN DIP
- THRESHOLDS GUARANTEED OVER TEMPERATURE
- THRESHOLDS INDEPENDENT OF LED DEGRADATION
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF $1440 \mathrm{Vac}, 1$ MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).


## Description

The HCPL-3700 is a voltage/current threshold detection optocoupler. This optocoupler uses an internal Light Emitting Diode (LED), a threshold sensing input buffer IC, and a high gain photon detector to provide an optocoupler which permits adjustable external threshold levels. The input buffer circuit has a nominal turn on threshold of $2.5 \mathrm{~mA}\left(I_{T H^{+}}\right)$and 3.8 volts ( $\left.\mathrm{V}_{\mathrm{TH}}{ }^{+}\right)$. The addition of one or more external attenuation resistors permits the use of this device over a wide range of input voltages and currents. Threshold sensing prior to the LED and detector elements minimizes effects of different optical gain and LED variations over operating life (CTR degradation). Hysteresis is also provided in the buffer for extra noise immunity and switching stability.


## Applications

- LIMIT SWITCH SENSING
- LOW VOLTAGE DETECTOR
- AC/DC VOLTAGE SENSING
- RELAY CONTACT MONITOR
- RELAY COIL VOLTAGE MONITOR
- CURRENT SENSING
- MICROPROCESSOR INTERFACING
- TELEPHONE RING DETECTION


The buffer circuit is designed with internal clamping diodes to protect the circuitry and LED from a wide range of over-voltage and over-current transients while the diode bridge enables easy use with ac voltage input.

The high gain output stage features an open collector output providing both TTL compatible saturation voltages and CMOS compatible breakdown voltages.

The HCPL-3700, by combining several unique functions in a sirgle package, provides the user with an ideal component for industrial control computer input boards and other applications where a predetermined input threshold optocoupler level is desirable.

## Absolute Maximum Ratings <br> (No derating required up to $70^{\circ} \mathrm{C}$ )

| Parameter |  | Symbol | Min. | Max. | Units | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | Ts | -55 | 125 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature |  | $\mathrm{T}_{\mathrm{A}}$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Soldering Cycle | Temperature |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | 1 |
|  | Time |  |  | 10 | sec |  |
| Input Current | Average | IIN |  | 50 | mA | 2 |
|  | Surge |  |  | 140 |  | 2,3 |
|  | Transient |  |  | 500 |  |  |
| Input Voltage (Pins 2-3) |  | VIN | -0.5 |  | V |  |
| Input Power Dissipation |  | Pin |  | 230 | mW | 4 |
| Total Package Power Dissipation |  | P |  | 305 | mW | 5 |
| Output Power Dissipation |  | Po |  | 210 | mW | 6 |
| Output Current | Average | 10 |  | 30 | mA | 7 |
| Supply Voltage (Pins 8-5) |  | VCC | -0.5 | 20 | V |  |
| Output Voltage (Pins 6-5) |  | Vo | -0.5 | 20 | V |  |

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Note |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | VCC $^{\text {C }}$ | 4.5 | 18 | V |  |
| Operating Temperature | $\mathrm{TA}_{\mathrm{A}}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Frequency | f | 0 | 4 | KHz | 8 |

## Switching Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{cc}}=5.0 \mathrm{v}$

| Parameter | Symbol | Min. | Typ. ${ }^{9}$ | Max. | Units | Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to Logic Low Output Level | tphe |  | 4.0 | 15 | $\mu \mathrm{S}$ | $\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$ | 6,9 | 10 |
| Propagation Delay Time to Logic High Output Level | tPLH |  | 10.0 | 40 | $\mu \mathrm{S}$ | $\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega_{,} \mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$ |  | 11 |
| Common Mode Transient Immunity at Logic Low Output Level | CML\| |  | 600 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & I_{\mathrm{N}}=3.11 \mathrm{~mA}, R_{\mathrm{L}}=4.7 \mathrm{k} \Omega \\ & V_{O} \text { max }=0.8 \mathrm{~V}, V_{C M}=140 \mathrm{~V} \end{aligned}$ | 8,10 | 12,13 |
| Common Mode Transient Immunity at Logic High Output Level | $\|\mathrm{CMH}\|$ |  | 4000 |  | $\mathrm{V} / \mu \mathrm{S}$ | $\begin{aligned} & l_{\mathrm{IN}}=0 \mathrm{~mA}, R_{\mathrm{L}}=4.7 \mathrm{k} \Omega \\ & V_{0} \min =2.0 \mathrm{~V}, V_{C M}=1400 \mathrm{~V} \end{aligned}$ |  |  |
| Output Rise Time ( $10-90 \%$ ) | $t_{r}$ |  | 20 |  | $\mu \mathrm{S}$ | $\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ | 7 |  |
| Output Fall Time (90-10\%) | $t_{f}$ |  | 0.3 |  | $\mu \mathrm{s}$ | $\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{kn}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ |  |  |

## Electrical Characteristics

Over Recommended Temperature ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) Unless Otherwise Specified

| Parameter |  | Symbol | Min. | Typ. ${ }^{9}$ | Max. | Units | Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Threshold Current |  | $\mathrm{ITH}^{+}$ | 1.96 | 2.5 | 3.11 | mA | $\begin{aligned} & V_{I N}=V_{T H}+V C C=4.5 \mathrm{~V} ; \\ & V_{O}=0.4 V ; I O \geq 4.2 \mathrm{~mA} \end{aligned}$ | $2,3$ | $14$ |
|  |  | ITH- | 1.00 | 1.3 | 1.62 | mA | $\begin{aligned} & V_{I N}=V_{T H} ; V_{C C}=4.5 V \\ & V_{O}=2.4 V ; I O H \leq 100 \mu \mathrm{~A} \end{aligned}$ |  |  |
| Input Threshold Voltage | DC <br> (Pins 2, 3) | $\mathrm{V}_{\text {TH }}+$ | 3.35 | 3.8 | 4.05 | V | $\begin{aligned} & V_{\mathbb{N}}=V_{2}-V_{3} ; \text { Pins } 1 \& 4 \text { Open } \\ & V_{C C}=4.5 V ; V_{O}=0.4 V ; \\ & I_{0} \geq 4.2 \mathrm{~mA} \end{aligned}$ |  |  |
|  |  | $V_{\text {TH- }}$ | 2.01 | 2.6 | 2.86 | V | $\begin{aligned} & V_{I N}=V_{2}-V_{3} ; \text { Pins } 1 \& 4 \text { Open } \\ & V_{C C}=4.5 V_{i} V_{O}=2.4 V \\ & l_{0} \leq 100 \mu \mathrm{~A} \end{aligned}$ |  |  |
|  | AC (Pins 1, 4) | $V_{\text {TH }}+$ | 4,23 | 5.1 | 5.50 | $v *$ | $\begin{aligned} & V_{I N}=\left\|V_{1}-V_{4}\right\| \text { Pins } 2 \& 3 \text { Open } \\ & V_{C C}=4.5 \mathrm{~V} ; V_{O}=0.4 \mathrm{~V} ; \\ & l_{O} \geq 4.2 \mathrm{~mA} \end{aligned}$ |  | 14,15 |
|  |  | VTH- | 2.87 | 3.8 | 4.24 | V | $\begin{aligned} & V_{I N}=\left\|V_{1}-V_{4}\right\| \text { Pins } 2 \& 3 \text { Open } \\ & V_{C C}=4.5 \mathrm{~V} ; V_{O}=2.4 \mathrm{~V} ; \\ & l_{0} \leq 100 \mu \mathrm{~A} \end{aligned}$ |  |  |
| Hysteresis |  | IHYS |  | 1.2 |  | mA | $I_{\text {HYS }}=I_{\text {TH }}+-I_{\text {TH- }}$ | 2 |  |
|  |  | $\mathrm{V}_{\mathrm{HYS}}$ |  | 1.2 |  | V | $V_{\text {HYS }}=V_{\text {TH }}+-V_{T H-}$ |  |  |
| Input Clamp Voltage |  | $\mathrm{V}_{\text {IHC1 }}$ | 5.4 | 5.9 | 6.6 | V | $\begin{aligned} & V_{1 H C 1}=V_{2}-V_{3} ; V_{3}=G N D ; \\ & l_{1}=10 \mathrm{~mA} ; \operatorname{Pin} 1 \& 4 \\ & \text { Connected to Pin } 3 \end{aligned}$ | 1 |  |
|  |  | $\mathrm{V}_{1 \mathrm{HC} 2}$ | 6.1 | 6.6 | 7.3 | $V$ | $V_{1 H C 2}=\left\|V_{1}-V_{4 \mid}\right\| ; \\|\|N\|=$ $10 \mathrm{~mA}_{;}$Pins 2 \& 3 Open |  |  |
|  |  | $\mathrm{ViHC3}$ |  | 12.0 | 13.4 | $V$ | $\begin{aligned} & V_{1 H C 3}=V_{2}-V_{3} ; V_{3}=G N D ; \\ & I_{N}=15 \mathrm{~mA} ; \text { Pins } \& 4 \text { Open } \end{aligned}$ |  |  |
|  |  | VILC |  | -0.76 |  | V | $\begin{aligned} & V_{\text {ILC }}=V_{2}-V_{3} ; V_{3}=G N D ; \\ & I_{\mathrm{IN}}=-10 \mathrm{~mA} \end{aligned}$ |  |  |
| Input Current |  | If | 3.0 | 3.7 | 4.4 | mA | $V_{I N}=V_{2}-V_{3}=5.0 V$ <br> Pins $1 \& 4$ Open | 5 |  |
| Bridge Diode Forward Voltage |  | V ${ }_{\text {D1, } 2}$ |  | 0.59 |  |  | $\mathrm{lin}=3 \mathrm{~mA}$ (see schematic) |  |  |
|  |  | VD3,4 |  | 0.74 |  |  |  |  |  |
| Logic Low Output Voltage |  | VOL |  | 0.1 | 0.4 | V | $V_{C C}=4.5 \mathrm{~V} ; \mathrm{IOL}=4.2 \mathrm{~mA}$ | 5 | 14 |
| Logic High Output Current |  | IOH |  |  | 100 | $\mu \mathrm{A}$ | $\mathrm{VOH}=\mathrm{VCC}=18 \mathrm{~V}$ |  |  |
| Logic Low Supply Current |  | ICCL |  | 1.2 | 4 | mA | $\begin{aligned} & V_{2}-V_{3}=5.0 \mathrm{~V} ; V_{0}=\text { Open } \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$ |  |  |
| Logic High Supply Current |  | ICCH |  | 0.002 | 4 | $\mu \mathrm{A}$ | $V_{C C}=18 \mathrm{~V} ; V_{O}=$ Open | 4 | 14 |
| Input-Output Insulation |  | 1 -0* |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \mathrm{RH}_{\mathrm{t}} \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}_{t} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 16, 17 |
|  | OPT 010 | VISO | 2500 |  |  | $V_{\text {RMS }}$ | $\mathrm{RH} \leq 50 \% \mathrm{t}=1 \mathrm{MIN}$ |  | 18 |
| Input-Output Resistance |  | R1-0 |  | 1012 |  | $\Omega$ | $\mathrm{V}_{1-0}=500 \mathrm{Vdc}$ |  | 16 |
| Input-Output Capacitance |  | $\mathrm{Cl}_{1} \mathrm{O}$ |  | 0.6 |  | pF | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}$ |  |  |
| Input Capacitance |  | Cin |  | 50 |  | pF | $f=1 \mathrm{MHz} ; V_{I N}=0 \mathrm{~V}, \text { Pins } 2 \& 3,$ $\text { Pins } 1 \& 4 \text { Open }$ |  |  |

*For JEDEC registered parts.

Notes:

1. Measured at a point 1.6 mm below seating plane.
2. Current into/out of any single lead.
3. Surge input current duration is 3 ms at 120 Hz pulse repetition rate. Transient input current duration is $10 \mu \mathrm{~s}$ at 120 Hz pulse repetition rate. Note that maximum input power, Pin, must be observed.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Maximum input power dissipation of 230 mW allows an input IC junction temperature of $125^{\circ} \mathrm{C}$ at an ambient temperature of $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta \mathrm{JA}_{\mathrm{i}}=$ $240^{\circ} \mathrm{C} / \mathrm{W}$. Excessive Pin and TJ may result in IC chip degradation.
5. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
6. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $3.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Maximum output power dissipation of 210 mW allows an output IC junction temperature of $125^{\circ} \mathrm{C}$ at an ambient temperature of $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta \mathrm{J} \mathrm{A}_{0}=$ $265^{\circ} \mathrm{C} / \mathrm{W}$.
7. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
8. Maximum operating frequency is defined when output waveform (Pin 6) obtains only $90 \%$ of $V_{c c}$ with $R_{L}=4.7 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$ using a 5 V square wave input signal.
9. All typical values are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$ unless otherwise stated.
10. The tPHL propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse ( $1 \mu \mathrm{~s}$ rise time) to the 1.5 V level on the leading edge of the output pulse (see Figure 9).
11. The tPLH propagation delay is measured from the 2.5 V level of the trailing edge of a 5.0 V input pulse ( $1 \mu \mathrm{~s}$ fall time) to the 1.5 V level on the trailing edge of the output pulse (see Figure 9).
12. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $d V_{C M / d t}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to insure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{C M} / d t$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to insure that the output will remain in a Logic Low state (i.e., Vo < 0.8 V ). See Figure 10.


Figure 1. Typical Input Characteristics, I IN vs. $V_{I N}$. (AC voltage is instantaneous value.)


Figure 3. Typical DC Threshold Levels vs. Temperature.
13. In applications where $d V_{C M / d t}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{S}$ (such as static discharge), a series resistor, Rcc, should be included to protect the detector IC from destructively high surge currents. The recommended value for $\mathrm{R}_{\mathrm{Cc}}$ is $240 \Omega$ per volt of allowable drop in $\mathrm{V}_{\mathrm{CC}}$ (between Pin 8 and $\mathrm{V}_{\mathrm{CC}}$ ) with a minimum value of $240 \Omega$.
14. Logic low output level at Pin 6 occurs under the conditions of $V_{\mathbb{N}} \geq$ $\mathrm{V}_{\mathrm{TH}}+$ as well as the range of $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{TH}}$ - once $\mathrm{V}_{\mathrm{IN}}$ has exceeded $\mathrm{V}_{\mathrm{TH}}$. Logic high output level at Pin 6 occurs under the conditions of $\mathrm{V}_{\mathrm{IN}} \leq$ $\mathrm{V}_{T H}-$ as well as the range of $\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{TH}^{+}}$once $\mathrm{V}_{\text {IN }}$ has decreased below $V_{\text {TH }}$.
15. $A C$ voltage is instantaneous voltage.
16. Device considered a two terminal device: pins 1, 2, 3, 4 connected together, and Pins 5, 6, 7, 8 connected together.
17. This is a proof test. This rating is equally validated by a 2500 Vac , 1 sec . test.
18. See Option 010 data sheet for more information.


Figure 2. Typical Transfer Characteristics. (AC voltage is instantaneous value.)


Figure 4. Typical High Level Supply Current, I CcH vs. Temperature.


Figure 5. Typical Input Current, I IN , and Low Level Output Voltage, $\mathrm{V}_{\mathrm{OL}}$, vs. Temperature.


Figure 7. Typical Rise, Fall Times vs. Temperature.


Figure 9. Switching Test Circuit.


Figure 6. Typical Propagation Delay vs. Temperature.

$\mathrm{V}_{\mathrm{CM}}$ - COMMON MODE TRANSIENT AMPLITUDE - V
Figure 8. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.


Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

## Electrical Considerations

The HCPL-3700 optocoupler has internal temperature compensated, predictable voltage and current threshold points which allow selection of an external resistor, $R_{x}$, to determine larger external threshold voltage levels. For a desired external threshold voltage, $\mathrm{V}_{ \pm}$, a corresponding typical value of $R_{x}$ can be obtained from Figure 11. Specific calculation of $R_{x}$ can be obtained from Equation (1) of Figure 12. Specification of both $\mathrm{V}_{+}$and $\mathrm{V}_{\text {- }}$ voltage threshold levels simultaneously can be obtained by the use of $R_{x}$ and $R_{p}$ as shown in Figure 12 and determined by Equations (2) and (3).
$\mathrm{R}_{\mathrm{x}}$ can provide over-current transient protection by limiting input current during a transient condition. For monitoring contacts of a relay or switch, the HCPL-3700 in combination with $R_{x}$ and $R_{p}$ can be used to allow a specific current to be conducted through the contacts for cleaning purposes (wetting current).
The choice of which input voltage clamp level to choose depends upon the application of this device (see Figure 1). It is recommended that the low clamp condition be used when possible to lower the input power dissipation as well as the LED current, which minimizes LED degradation over time.
In applications where $d V_{C M} / d t$ may be extremely large (such as static discharge), a series resistor, Rcc, should be connected in series with VCc and Pin 8 to protect the detector IC from destructively high surge currents. See note 13 for determination of Rcc. In addition, it is recommended that a ceramic disc bypass capacitor of $0.01 \mu \mathrm{f}$ be placed between Pins 8 and 5 to reduce the effect of power supply noise.
For interfacing AC signals to TTL systems, output low pass filtering can be performed with a pullup resistor of $1.5 \mathrm{k} \Omega$ and $20 \mu \mathrm{f}$ capacitor. This application requires a Schmitt trigger gate to avoid slow rise time chatter problems. For AC input applications, a filter capacitor can be placed across the DC input terminals for either signal or transient filtering.


Figure 11. Typical External Threshold Characteristic, $\mathbf{V}_{ \pm}$vs. $\mathbf{R}_{\mathbf{X}}$.


Figure 12. External Threshold Voltage Level Selection.

Either AC (Pins 1, 4) or DC (Pins 2, 3) input can be used to determine external threshold levels.
For one specifically selected external threshold voltage level $\mathrm{V}_{+}$or $\mathrm{V}_{-}$, $\mathrm{R}_{\mathrm{x}}$ can be determined without use of $\mathrm{R}_{\mathrm{p}}$ via

$$
\begin{equation*}
\mathrm{R}_{\mathrm{x}}=\frac{\mathrm{V}_{(-)}-\mathrm{V}_{T H_{+}^{+}}^{(-)}}{I_{(-)}^{+}} \tag{1}
\end{equation*}
$$

For two specifically selected external threshold voltage levels, $V_{+}$and $V_{-}$, the use of $R_{x}$ and $R_{p}$ will permit this selection via equations (2), (3) provided the following conditions are met. If the denominator of equation (2) is positive, then

$$
\frac{V_{+}}{V_{-}} \geq \frac{V_{T H_{+}}}{V_{T H_{-}}} \quad \text { and } \quad \frac{V_{+}-V_{T H_{+}}}{V_{-}-V_{T H_{-}}}<\frac{I_{T H_{+}}}{I_{T H_{-}}}
$$

Conversely, if the denominator of equation (2) is negative, then

$$
\begin{gather*}
\frac{V_{+}}{V_{-}} \leq \frac{V_{T H_{+}}}{V_{T H_{-}}} \text {and } \frac{V_{+}-V_{T H_{+}}}{V_{-}-V_{T H_{-}}}>\frac{I_{T H_{+}}}{I_{T H_{-}}} \\
R_{\mathrm{x}}=\frac{V_{T H_{-}}\left(V_{+}\right)-V_{T H_{+}}\left(V_{-}\right)}{I_{T H_{+}}\left(V_{T H_{-}}\right)-I_{T H_{-}}\left(V_{T H_{+}}\right)}  \tag{2}\\
R_{p}=\frac{V_{T H_{-}}\left(V_{+}\right)-V_{T H_{+}}\left(V_{-}\right)}{I_{T H_{+}}\left(V_{-}-V_{T H_{-}}\right)+I_{T H_{-}}\left(V_{T H_{+}-} V_{+}\right)} \tag{3}
\end{gather*}
$$

See Application Note 1004 for more information.

# OPTICALLY COUPLED 20 mA CURRENT LOOP TRANSMITTER 



## Features

- GUARANTEED 20 mA LOOP PARAMETERS - DATA INPUT COMPATIBLE WITH LSTTL, TTL AND CMOS LOGIC
- GUARANTEED PERFORMANCE OVER TEMPERATURE ( $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ )
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION
- 20 KBaud DATA RATE AT 400 METRES LINE LENGTH
- GUARANTEED ON AND OFF OUTPUT CURRENT LEVELS
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- OPTICALLY COUPLED 20 mA CURRENT LOOP RECEIVER, HCPL-4200, ALSO AVAILABLE


## Applications

- IMPLEMENT AN ISOLATED 20 mA CURRENT LOOP TRANSMITTER IN:

Computer Peripherals Industrial Control Equipment Data Communications Equipment
outline drawing*


## Description

The HCPL-4100 optocoupler is designed to operate as a transmitter in equipment using the 20 mA current loop. 20 mA current loop systems conventionally signal a logic high state by transmitting 20 mA of loop current (MARK), and signal a logic low state by allowing no more than a few milliamperes of loop current (SPACE). Optical coupling of the signal from the logic input to the 20 mA current loop breaks ground loops and provides very high immunity to common mode interference.

The HCPL-4100 data input is compatible with LSTTL, TTL, and CMOS logic gates. The input integrated circuit drives a GaAsP LED. The light emitted by the LED is sensed by a second integrated circuit that allows 20 mA to pass with a voltage drop of less than 2.7 volts when no light is emitted and allows less than 2 mA to pass when light is emitted. The transmitter output is capable of withstanding 27 volts. The input integrated circuit provides a controlled amount of LED drive current and takes into account LED light output degradation. The internal shield allows a guaranteed $1000 \mathrm{~V} / \mu$ s common mode transient immunity.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Power Supply <br> Voltage | VeC | 4.5 | 20 | Volts |
| Input Voltage Low | $V_{\text {II }}$ | 0 | 0.8 | Volts |
| Input Voltage High | $V_{\text {IH }}$ | 2.0 | 20 | Volts |
| Operating <br> Temperature | $T_{\text {A }}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |
| Output Voltage | $V_{0}$ | 0 | 27 | Volts |
| Output Current | 10 | 0 | 24 | mA |

## Absolute Maximum Ratings

(No Derating Required up to $55^{\circ} \mathrm{C}$ )
Storage Temperature .................... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature ................... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Solder Temperature . ............. $260^{\circ} \mathrm{C}$ for 10 sec .
( 1.6 mm below seating plane)
Supply Voltage - VCC . ........................... . 0 to 20 V
Average Output Current - Io ........ -30 mA to 30 mA
Peak Output Current - Io ............ internally limited
Output Voltage - Vo ...................... -0.4 V to 27 V
Input Voltage - $\mathrm{V}_{1} \ldots \ldots .$. .................. -0.5 V to 20 V
Input Power Dissipation - P। ............... $265 \mathrm{~mW}{ }^{[1]}$
Output Power Dissipation - Po ............. $125 \mathrm{~mW}{ }^{[2]}$
Total Power Dissipation - P ................. $360 \mathrm{~mW}{ }^{[3]}$

## Electrical Characteristics

for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted

*For JEDEC registered parts.
Notes:

1. Derate linearly above $55^{\circ} \mathrm{C}$ free air temperature at a rate of $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Proper application of the derating factors will prevent $I \mathrm{C}$ junction temperatures from exceeding $125^{\circ} \mathrm{C}$ for ambient temperatures up to $85^{\circ} \mathrm{C}$.
2. Derate linearly above a free-air temperature of $70^{\circ} \mathrm{C}$ at a rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. A significant amount of power may be dissipated in the HCPL-4100 output circuit during the transition from the SPACE state to the MARK state when driving a data line or capacitive load (COUT). The average power dissipation during the transition can be estimated from the following equation which assumes a linear discharge of a capacitive load: $P=I_{S C}\left(V_{S O}+V_{M O}\right) / 2$, where $V_{S O}$ is the output voltage in the SPACE state. The duration of this transition can be estimated as $t=\operatorname{Cout}\left(V_{S O}-V_{M O}\right) / I_{S C}$. For typical applications driving twisted pair data lines with NRZ data as shown in Figure 11, the transition time will be less than 10\% of one bit time.
3. Derate linearly above $55^{\circ} \mathrm{C}$ free-air temperature at a rate of $5.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The maximum current that will flow into the output in the mark state (Isc) is internally limited to protect the device. The duration of the output short circuit shall not exceed 10 ms .
5. The device is considered a two terminal device, pins $1,2,3$, and 4 are connected together, and pins $5,6,7$, and 8 are connected together.
6. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.

## Switching Characteristics

for $0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V} C \mathrm{C} \leq 20 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=5 \mathrm{~V}$ unless otherwise noted

| Parameter | Symbol | Min. | Typ. | Max. | Units | Testing Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to Logic High Output Level | tpLH |  | 0.3 | 1.6 | $\mu \mathrm{S}$ | $C_{O}=1000 \mathrm{pF}, C_{L}=15 \mathrm{pF}, 10=20 \mathrm{~mA}$ | 4, 5, 6 | 7 |
| Propagation Delay Time to Logic Low Output Level | tPHL |  | 0.2 | 1.0 | $\mu \mathrm{s}$ | $\mathrm{CO}_{0}=1000 \mathrm{pF}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, 10=20 \mathrm{~mA}$ | 4,5,6 | 8 |
| Propagation Delay Time Skew | tplu-tphL |  | 0.1 |  | $\mu \mathrm{S}$ | $10=20 \mathrm{~mA}$ |  |  |
| Output Rise Time (10-90\%) | tr |  | 16 |  | ns | $10=20 \mathrm{~mA}, \mathrm{CO}^{2}=1000 \mathrm{pF}, \mathrm{CL}^{2}=15 \mathrm{pF}$. | 5,7 | 9 |
| Output Fall Time (90-10\%) | tf |  | 23 |  | ns | $\mathrm{l}_{0}=20 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=1000 \mathrm{pF}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$. | 5,7 | * 10 |
| Common Mode Transient Immunity at Logic High Output Level | CM H | 1,000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $V_{1}=2 V_{1} T_{A}=25^{\circ} \mathrm{C}$ <br> $V_{C M}=50 \mathrm{~V}$ (peak), $V_{C C}=5 \mathrm{~V}$ <br> $\mathrm{IO}_{0}(\mathrm{~min})=.12 \mathrm{~mA}$ | 8, 9, 10 | 11 |
| Common Mode <br> Transient Immunity at Logic Low Output Level | CML\| | 1,000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & V_{1}=0.8 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{C M}=50 \mathrm{~V}(\text { peak }), V_{C C}=5 \mathrm{~V} \\ & I_{0}(\text { max. })=3 \mathrm{~mA} \end{aligned}$ | 8,9,10 | 12 |

Notes:
7. The tplh propagation delay is measured from the 1.3 volt level on the leading edge of the input pulse to the 10 mA level on the leading edge of the output pulse.
8. The tphl propagation delay is measured from the 1.3 volt level on the trailing edge of the input pulse to the 10 mA level on the trailing edge of the output pulse.
9. The rise time, $t_{r}$, is measured from the $10 \%$ to the $90 \%$ level on the rising edge of the output current pulse.
10. The fall time, t , is measured from the $90 \%$ to the $10 \%$ level on the falling edge of the output current pulse.
11. The common mode transient immunity in the logic high level is the maximum (positive) $\mathrm{dV} \mathrm{cm} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, that can be sustained with the output in a Mark ("H") state (i.e., lo> 12 mA ).
12. The common mode transient immunity in the logic low level is the maximum (negative) $\mathrm{dV} \mathrm{cm}_{\mathrm{cm}} \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, that can be sustained with the output in a Space ("L") state (i.e., lo $>3 \mathrm{~mA}$ ).
13. See Option 010 data sheet for more information.


Figure 1. Typical Mark State Output Voltage vs. Temperature


Figure 3. Typical Space State Output Current vs. Temperature
$v_{1}$


Figure 5. Waveforms for $\mathbf{t P L H}^{\prime}, \mathbf{t}_{\mathrm{PH}}, \mathbf{t}_{\mathbf{r}}$, and $\mathbf{t}_{\mathbf{f}}$


Figure 4. Test Circuit for tPLH $, \mathrm{t}_{\mathrm{PH}}, \mathrm{t}_{\mathbf{r}}$, and $\mathrm{t}_{\mathbf{f}}$


Figure 6. Typical Propagation Delay vs. Temperature


Figure 7. Typical Rise, Fall Times vs. Temperature


Figure 8. Test Circuit for Common Mode Transient Immunity


Figure 9. Typical Waveforms for Common Mode Transient Immunity

$V_{C M}$ - COMMON MODE TRANSIENT AMPLITUDE - V

Figure 10. Common Mode Transient Immunity vs. Common Mode Transient Amplitude

## Applications

Data transfer between equipment which employs current loop circuits can be accomplished via one of three configurations: simplex, half duplex or full duplex communication. With these configurations, point to point and multidrop arrangements are possible. The appropriate configuration to use depends upon data rate, number of stations, number and length of lines, direction of data flow, protocol, current source location and voltage compliance value, etc.

## SIMPLEX

The simplex configuration, whether point to point or multidrop, gives unidirectional data flow from transmitter(s) to receiver. This is the simplest configuration for use in long line length (two wire), moderate data rate, and low current source compliance level applications. A block diagram of simplex point to point arrangement is given in Figure 11 for the HCPL-4100 transmitter optocoupler.


Figure 11. Simplex Point to Point Current Loop System Configuration

Major factors which limit maximum data rate performance for a simplex loop are the location and compliance voltage of the loop current source as well as the total line capacitance. Application of the HCPL-4100 transmitter in a simplex loop necessitates that a non-isolated active receiver (containing current source) be used at the opposite end of the current loop. With long line length, large line capacitance will need to be charged to the compliance voltage level of the current source before the receiver loop current decreases to zero. This effect limits upper data rate performance. Slower data rates will occur with larger compliance voltage levels. The maximum compliance level is determined by the transmitter breakdown characteristic. In addition; adequate compliance of the current source must be available for voltage drops across station(s) during the MARK state in multidrop applications for long line lengths.
In a simplex multidrop application with multiple HCPL4100 transmitters and one non-isolated active receiver, priority of transmitters must be established.
A recommended non-isolated active receiver circuit which can be used with the HCPL-4100 in point to point or in multidrop 20 mA current loop applications is given in Figure 12. This non-isolated active receiver current threshold must be chosen properly in order to provide adequate noise immunity as well as not to detect SPACE state current (bias current) of the HCPL- 4100 transmitter. The receiver input threshold current is $V$ th $/ R t h \approx 10 \mathrm{~mA}$. A simple transistor current source provides a nominal 20 mA loop current over a Vcc compliance range of 6 V dc to 27 V dc. A resistor can be used in place of the constant current source for simple applications where the wire loop
distance and number of stations on the loop are fixed. A minimum transmitter output load capacitance of 1000 pF is required between pins 3 and 4 to ensure absolute stability.
Length of the current loop (one direction) versus minimum required DC supply voltage, VCC, of the circuit in Figure 12 is graphically illustrated in Figure 13. Multidrop configurations will require larger $V_{c C}$ than Figure 13 predicts in order to account for additional station terminal voltage drops.


Figure 13. Minimum Required Supply Voltage, $\mathbf{V}_{\mathbf{C C}}$, vs. Loop Length for Current Loop Circuit of Figure 12


Figure 12. Recommended Non-Isolated Active Receiver with HCPL-4100 Isolated Transmitter for Simplex Point to Point 20 mA Current Loop


Figure 14. Typical Data Rate vs. Distance and Supply Voltage

Typical data rate performance versus distance is illustrated in Figure 14 for the combination of a non-isolated active receiver and HCPL-4100 optically coupled current loop transmitter shown in Figure 12. Curves are shown for $25 \%$ distortion data rate at different Vcc values. $25 \%$ distortion data rate is defined as that rate at which $25 \%$ distortion occurs to output bit interval with respect to the input bit interval. Maximum data rate (dotted line) is restricted by device characteristics. An input Non-Return-to-Zero (NRZ) test waveform of 16 bits (0000001011111101) was used for data rate distortion measurements. Enhanced speed performance of the loop system can be obtained with lower Vcc supply levels, as illustrated in Figure 14. In addition, when loop current is supplied through a resistor instead of by a current source, an additional series termination resistance equal to the characteristic line impedance can be used at the HCPL4100 transmitter end to enhance speed of response by approximately $20 \%$.
The cable used contained five pairs of unshielded, twisted, 22 AWG wire (Dearborn \#862205). Loop current is 20 mA nominal. Input and output logic supply voltages are 5 V dc.


Figure 15. Full Duplex Point to Point Current Loop System Configuration

## FULL DUPLEX

Full duplex point to point communication of Figure 15 uses a four wire system to provide simultaneous, bidirectional data communication between local and remote equipment. Basic application uses two simplex point to point loops which have two separate, active, non-isolated units at one common end of the loops. The other end of each loop is isolated.
As Figure 15 illustrates, the combination of HewlettPackard current loop optocouplers, HCPL-4100 transmitter and HCPL-4200 receiver, can be used at the isolated end of current loops. Cross talk and common mode coupling are greatly reduced when optical isolation is implemented at the same end of both loops, as shown. Full duplex data rate is limited by the non-isolated active receiver current loop. Comments mentioned under simplex configuration apply to the full duplex case. Consult the HCPL-4200 receiver optocoupler data sheet for specified device performance.

## HALF DUPLEX

The half duplex configuration, whether point to point or multidrop, gives non-simultaneous bidirectional data flow from transmitters to receivers shown in Figures 16a and 16b. This configuration allows the use of two wires to carry data back and forth between local and remote units. However, protocol must be used to determine which specific transmitter can operate at any given time. Maximum data rate for a half duplex system is limited by the loop current charging time. These considerations were explained in the Simplex configuration section.
Figures 16a and 16b illustrate half duplex application for the combination of HCPL-4100/-4200 optocouplers. The unique and complementary designs of the HCPL-4100 transmitter and HCPL-4200 receiver optocouplers provide many designed-in benefits. For example, total optical isolation at one end of the current loop is easily accomplished, which results in substantial removal of common mode influences, elimination of ground potential differences and reduction of power supply requirements. With this combination of HCPL-4100/-4200 optocouplers, specific current loop noise immunity is provided, i.e., minimum SPACE state current noise immunity is 1 mA, MARK state noise immunity is 8 mA .

Voltage compliance of the current source must be of an adequate level for operating all units in the loop while not exceeding 27 V dc , the maximum breakdown voltage for the HCPL-4100. Note that the HCPL-4100 transmitter will allow output loop current to conduct when input Vcc power is off. Consult the HCPL-4200 receiver optocoupler data sheet for specified device performance.

For more informaton about the HCPL-4100/-4200 optocouplers, consult Application Note 1018.

(a) POINT TO POINT

(b) MULTIDROP

Figure 16. Half Duplex Current Loop System Configurations for (a) Point to Point, (b) Multidrop

## OPTICALLY COUPLED 20 mA CURRENT LOOP RECEIVER



TRUTH TABLE (POSITIVE LOGIC)*

| $I_{I}$ | $V_{E}$ | $V_{O}$ |
| :--- | :--- | :--- |
| $H$ | $H$ | $Z$ |
| $L$ | $H$ | $Z$ |
| $H$ | $L$ | $H$ |
| $L$ | $L$ | $L$ |

* CURRENT LOOP CONVENTION - H = MARK $I_{1} \geqslant 12 \mathrm{~mA}, L=S P A C E: I_{1} \leqslant 3 \mathrm{~mA}, \mathrm{Z}=\mathrm{OFF}$ (HIGH IMPEDANCE) STATE.


## Features

- DATA OUTPUT COMPATIBLE WITH LSTTL, TTL, AND CMOS
- 20K BAUD DATA RATE AT 1400 METRES LINE LENGTH
- GUARANTEED PERFORMANCE OVER TEMPERATURE ( $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ )
- GUARANTEED ON AND OFF THRESHOLDS
- LED IS PROTECTED FROM EXCESS CURRENT
- INPUT THRESHOLD HYSTERESIS
- THREE-STATE OUTPUT COMPATIBLE WITH DATA BUSES
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 1440 Vac, 1 MINUTE AND 2500 Vac, 1 MINUTE (OPTION 010).
- OPTICALLY COUPLED 20 mA CURRENT LOOP TRANSMITTER, HCPL-4100, ALSO AVAILABLE


## Applications

- IMPLEMENT AN ISOLATED 20 mA CURRENT LOOP RECEIVER IN: Computer Peripherals Industrial Control Equipment Data Communications Equipment


## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Power Supply <br> Voltage | $\mathrm{V}_{\mathrm{CC}}$ | 4.5 | 20 | Volts |
| Forward Input <br> Current (SPACE) | ISI | 0 | 2.0 | mA |
| Forward Input <br> Current (MARK) | ImI | 14 | 24 | mA |
| Operating <br> Temperature | $\mathrm{TA}_{\mathrm{A}}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |
| Fan Out | N | 0 | 4 | TTLL Loads |
| Logic Low <br> Enable Voltage | VEL | 0 | 0.8 | Volts |
| Logic High <br> Enable Voltage | VEH | 2.0 | 20 | Volts |

## Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$ )

| Storage Temperature . . . . . . . . . . . . . - $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ |  |
| :---: | :---: |
| Operating Temperature ................ $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |  |
| Lead Solder Temperature (1.6 mn | $260^{\circ} \mathrm{C}$ for 10 sec. the seating plane) |
| Supply Voltage - Vcc | 0 V to 20 V |
| Average Input Current - II | -30 mA to 30 mA |
| Peak Transient Input Current - II | . $0.5 \mathrm{~A}{ }^{[1]}$ |
| Enable Input Voltage - VE | -0.5 V to 20 V |
| Output Voltage - Vo | -0.5 V to 20 V |
| Average Output Current - Io | 25 mA |
| Input Power Dissipation - Pı | $90 \mathrm{~mW}{ }^{[2]}$ |
| Output Power Dissipation - Po | $210 \mathrm{~mW}^{[3]}$ |
| Total Power Dissipation - P | $255 \mathrm{~mW}{ }^{[4]}$ |

## Electrical Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{C}} \leq 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.8 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions |  | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mark State Input Current | IM1 | 12 |  |  | mA |  |  | 1,2,3 |  |
| Mark State Input Voltage | VMI |  | 2.52 | 2.75 | Volts | $\mathrm{h}=20 \mathrm{~mA}$ | $V_{E}=$ Don't Care | 3.4 |  |
| Space State Input Current | Is |  |  | 3 | mA |  |  | 1,2,3 |  |
| Space State Input Voltage | $\mathrm{V}_{\text {SI }}$ |  | 1.6 | 2.2 | Volts | $\mathrm{I}_{1}=0.5$ to 2.0 | $V_{E}=$ Don't Care | 1.3 |  |
| Input Hysteresis Current | IHYs | 0.3 | 0.8 |  | mA |  |  | 1 |  |
| Logic Low Output Voltage | VOL |  |  | 0.5 | Volts | $1 \mathrm{OL}=6.4 \mathrm{~mA}$ | TL Loads) $1 /=3 \mathrm{~mA}$ | 5 |  |
| Logic High Output Voltage | V OH | 2.4 |  |  | Volts | $1 \mathrm{OH}=-2.6 \mathrm{~mA}$ | $\mathrm{H}_{1}=12 \mathrm{~mA}$ | 6 |  |
| Output Leakage Current | IOHH |  |  | 100 | $\mu \mathrm{A}$ | $\mathrm{V}_{0}=5.5 \mathrm{~V}$ | $11=20 \mathrm{~mA}$ |  |  |
| (VOUT > VCCl |  |  |  | 500 | $\mu \mathrm{A}$ | $V_{0}=20 \mathrm{~V}$ | $\mathrm{VCC}=4.5 \mathrm{~V}$ |  |  |
| Logic High Enable Voltage | VEH | 2.0 |  |  | Volts |  |  |  |  |
| Logic Low Enable Voltage | VEL |  |  | 0.8 | Volts |  |  |  |  |
|  |  |  |  | 20 | $\mu \mathrm{A}$ | $V_{E}=2.7 \mathrm{~V}$ |  |  |  |
| Logic High Enable | Ieh |  |  | 100 | $\mu \mathrm{A}$ | $V_{E}=5.5 \mathrm{~V}$ |  |  |  |
|  |  |  | . 004 | 250 | $\mu \mathrm{A}$ | $V_{E}=20 \mathrm{~V}$ |  |  |  |
| Logic Low Enable Current | lel |  |  | -0.32 | mA | $V_{E}=0.4 \mathrm{~V}$ |  |  |  |
| Logic Low Supply | ICOL |  | 4.5 | 6.0 | mA | $V C C=5.5 \mathrm{~V}$ | $\mathrm{f}=0 \mathrm{~mA}$ |  |  |
| Current |  |  | 5.25 | 7.5 | mA | $\mathrm{VCC}=20 \mathrm{~V}$ | $V_{E}=$ Don't Care |  |  |
| Logic High Supply | ICH |  | 2.7 | 4.5 | mA | $V_{C C}=5.5 \mathrm{~V}$ | $\mathrm{l}=20 \mathrm{~mA}$ |  |  |
| Current |  |  | 3.1 | 6.0 | mA | $\mathrm{VCC}=20 \mathrm{~V}$ | $V_{E}=$ Don't Care |  |  |
|  | 10zL |  |  | -20 | $\mu \mathrm{A}$ | $V_{0}=0.4 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{E}}=2.0 \mathrm{~V}, 1 \mathrm{l}=20 \mathrm{~mA}$ |  |  |
| High Impedance State |  |  |  | 20 | $\mu \mathrm{A}$ | $\mathrm{V}_{0}=2.4 \mathrm{~V}$ |  |  |  |
| Output Current | lozh |  |  | 100 | ${ }_{\mu}{ }^{\text {A }}$ | $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ |  |  |  |
|  |  |  |  | 500 | $\mu \mathrm{A}$ | $V_{0}=20 \mathrm{~V}$ |  |  |  |
| Logic Low Short | lost | 25 |  |  | mA | $V_{O}=V_{C C}=5$ | 1 |  |  |
| Circuit Output Current |  | 40 |  |  | mA | $V_{0}=V_{c c}=2$ | $1:=0 \mathrm{~mA}$ |  | 5 |
| Logic High Short | 10 SH | -10 |  |  | mA | $\mathrm{VcC}=5.5 \mathrm{~V}$ | $\mathrm{h}=20 \mathrm{~mA}$ |  | 5 |
| Circuit Output Current |  | -25 |  |  | mA | $\mathrm{VCC}=20 \mathrm{~V}$ | $\mathrm{V}_{0}=\mathrm{GND}$ |  |  |
| Input-Output Insulation | 11.0 * |  |  | 1 | $\mu \mathrm{A}$ | $\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \\ & V_{1-0}=3 \mathrm{kV} \mathrm{~d} \end{aligned}$ | $A=25^{\circ} \mathrm{C}$ |  | 6.7 |
| OPT. 010 | $\mathrm{V}_{\text {ISO }}$ | 2500 |  |  | $\mathrm{V}_{\text {fMS }}$ | $\mathrm{BH} \leq 50 \%, \mathrm{t}$ | min. |  | 14 |
| Input-Output Resistance | Rro |  | $10^{12}$ |  | ohms | $\mathrm{V} \cdot \mathrm{O}=500 \mathrm{~V}$ |  |  | 6 |
| Input-Output Capacitance | CHO |  | 1.0 |  | pF | $f=1 \mathrm{MHz}, \mathrm{V}_{1}$ | OVdc |  | 6 |
| Input Capacitance | CIN |  | 120 |  | pF | $f=1 \mathrm{MHz}, \mathrm{V}_{1}$ | $V \mathrm{dc}$, Pins 1 and 2 |  |  |

*For JEDEC registered parts.

## Switching Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.8 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay Time to Logic High Output Level | tple |  | 0.23 | 1.6 | $\mu \mathrm{s}$ | $V_{E}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | 7, 8, 9 | 8 |
| Propagation Delay Time to Logic Low Output Level | $\mathrm{tPHL}^{\text {c }}$ | 1 | 0.17 | 1.0 | $\mu \mathrm{S}$ | $V_{E}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | 7, 8, 9 | 9 |
| Propagation Delay Time Skew | tPLH-tPHL |  | 60 |  | ns | $\mathrm{h}=20 \mathrm{~mA}, \mathrm{Cl}_{\mathrm{L}}=15 \mathrm{pF}$ | 7, 8, 9 |  |
| Output Enable Time to Logic Low Level | tPZL. |  | 25 |  | ns | $\mathrm{l}=0 \mathrm{~mA}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ | $\begin{gathered} 11,12, \\ 14 \end{gathered}$ |  |
| Output Enable Time to Logic High Level | tPZH |  | 28 |  | ns | $\mathrm{H}=20 \mathrm{~mA}, \mathrm{CL}^{2}=15 \mathrm{pF}$ | $\begin{gathered} 11,12, \\ 13 \end{gathered}$ |  |
| Output Disable Time from Logic Low Level | tplz |  | 60 |  | ns | $\\|=0 \mathrm{~mA}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$ | $\begin{gathered} 11,12 \\ 14 \end{gathered}$ |  |
| Output Disable Time from Logic High Level | tPHz |  | 105 |  | ns | $\mathrm{I}=20 \mathrm{~mA}, \mathrm{CL}=15 \mathrm{pF}$ | $\begin{gathered} 11,12, \\ 13 \end{gathered}$ |  |
| Output Rise Time (10-90\%) | $t_{r}$ |  | 55 |  | ns | $V C C=5 \mathrm{~V}, \mathrm{C}_{L}=15 \mathrm{pF}$ | 7, 8, 10 | 10 |
| Output Fall Time (90-10\%) | $\mathrm{tf}^{\text {f }}$ |  | 15 |  | ns | $V_{C C}=5 \mathrm{~V}, \mathrm{CL}_{\text {L }}=15 \mathrm{pF}$ | 7, 8, 10 | 11 |
| Common Mode <br> Transient Immunity at Logic High Output Level | \|CMH| | 1,000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{S}$ | $\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak) } \\ & \mathrm{I}=12 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | 15, 16 | 12 |
| Common Mode <br> Transient Immunity at Logic Low Output Level | $\mid C M_{L}$ \| | 1,000 | 10,000 |  | $\mathrm{V} / \mu \mathrm{s}$ | $\begin{aligned} & V C M=50 \mathrm{~V}(\text { peak }) \\ & I_{I}=3 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | 15, 16 | 13 |

## NOTES:

1. $\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps .
2. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Proper application of the derating factors will prevent IC junction temperatures from exceeding $125^{\circ} \mathrm{C}$ for ambient temperatures up to $85^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $4.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Duration of output short circuit time shall not exceed 10 ms .
6. The device is considered a two terminal device, pins $1,2,3$, and 4 are connected together and pins $5,6,7$, and 8 are connected together.
7. This is a proof test. This rating is equally validated by a $2500 \mathrm{Vac}, 1 \mathrm{sec}$. test.
8. The tpli propagation delay is measured from the 10 mA level on the leading edge of the input pulse to the 1.3 V level on the leading edge of the output pulse.
9. The tPHL propagation delay is measured from the 10 mA level on the trailing edge of the input pulse to the 1.3 V level on the trailing edge of the output pulse.
10. The rise time, $\mathrm{t}_{\mathrm{r}}$, is measured from the $10 \%$ to the $90 \%$ level on the rising edge of the output logic pulse.
11. The fall time, tf , is measured from the $90 \%$ to the $10 \%$ level on the falling edge of the output logic pulse.
12. Common mode transient immunity in the logic high level is the maximum (negative) dV см/dt on the trailing edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, which can be sustained with the output voltage in the logic high state (i.e., $\mathrm{V}_{\mathrm{O}} \geq 2 \mathrm{~V}$ ).
13. Common mode transient immunity in the logic low level is the maximum (positive) $\mathrm{dV} \mathrm{V}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, which can be sustained with the output voltage in the logic low state (i.e., $\mathrm{V}_{\mathrm{O}} \leq 0.8 \mathrm{~V}$ ).
14. See Option 010 data sheet for more information.


Figure 1. Typical Output Voltage vs. Loop Current


Figure 4. Typical Input Voltage vs. Temperature


Figure 2. Typical Current Switching Threshold vs. Temperature


Figure 5. Typical Logic Low Output Voltage vs. Temperature


Figure 3. Typical Input Loop Voltage vs. Input Current


Figure 6. Typical Logic High Output Current vs. Temperature

$\mathrm{V}_{\text {IN }}=5 \mathrm{VOLT}, 100 \mathrm{KHz} 10 \%$ DUTY CYCLE D1 - D4 ARE 1 N916 OR 1N3064

Figure 7. Test Circuit for $\mathbf{t P H L}$, $\mathrm{t}_{\mathrm{PL}}$, $\mathrm{t}_{\mathrm{r}}$, and $\mathbf{t}_{\mathrm{f}}$


Figure 8. Waveforms for $\mathbf{t}_{\text {PHL }}$, t PLH, $\mathrm{t}_{\mathbf{r}}$, and $\mathrm{t}_{\mathbf{f}}$


Figure 9. Typical Propagation Delay vs. Temperature


Figure 11. Test Circuit for $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{P}} \mathrm{HZ}$, and $\mathrm{t}_{\mathrm{PLZ}}$


Figure 13. Typical Logic High Enable Propagation Delay vs. Temperature


Figure 15. Test Circuit for Common Mode Transient Immunity


Figure 10. Typical Rise, Fall Time vs. Temperature


Figure 12. Waveforms for $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PLL}}, \mathrm{t}_{\mathrm{PHZ}}$, and $\mathrm{tpLZ}^{2}$


Figure 14. Typical Logic Low Enable Propagation Delay vs. Temperature


Figure 16. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude

## Applications

Data transfer between equipment which employs current loop circuits can be accomplished via one of three configurations: simplex, half duplex or full duplex communication. With these configurations, point-to-point and multidrop arrangements are possible. The appropriate configuration to use depends upon data rate, number of stations, number and length of lines, direction of data flow, protocol, current source location and voltage compliance value, etc.

## SIMPLEX

The simplex configuration, whether point to point or multidrop, gives unidirectional data flow from transmitter to receiver(s). This is the simplest configuration for use in long line length (two wire), for high data rate, and low current source compliance level applications. Block diagrams of simplex point-to-point and multidrop arrangements are given in Figures 17a and 17b respectively for the HCPL4200 receiver optocoupler.
For the highest data rate performance in a current loop, the configuration of a non-isolated active transmitter (containing current source) transmitting data to a remote isolated receiver(s) should be used. When the current
source is located at the transmitter end, the loop is charged approximately to $\mathrm{V}_{\mathrm{MI}}(2.5 \mathrm{~V}$ ). Alternatively, when the current source is located at the receiver end, the loop is charged to the full compliance voltage level. The lower the charged voltage level the faster the data rate will be. In the configurations of Figures $17 a$ and 17b, data rate is independent of the current source voltage compliance level. An adequate compliance level of current source must be available for voltage drops across station(s) during the MARK state in multidrop applications or for long line length. The maximum compliance level is determined by the transmitter breakdown characteristic.

A recommended non-isolated active transmitter circuit which can be used with the HCPL-4200 in point-to-point or in multidrop 20 mA current loop applications is given in Figure 18. The current source is controlled via a standard TTL 7407 buffer to provide high output impedance of current source in both the ON and OFF states. This non-isolated active transmitter provides a nominal 20 mA loop current for the listed values of Vcc, R2 and R3 in Figure 18.


Figure 17. Simplex Current Loop System Configurations for (a) Point-to-Point, (b) Multidrop


Figure 18. Recommended Non-Isolated Active Transmitter with HCPL-4200 Isolated Receiver for Simplex Point-to-Point 20 mA Current Loop

Length of current loop (one direction) versus minimum required DC supply voltage, Vcc, of the circuit in Figure 18 is graphically illustrated in Figure 19. Multidrop configurations will require larger $V_{C C}$ than Figure 19 predicts in order to account for additional station terminal voltage drops.
Typical data rate performance versus distance is illustrated in Figure 20 for the combination of a non-isolated active transmitter and HCPL-4200 optically coupled current loop receiver shown in Figure 18. Curves are shown for $10 \%$ and $25 \%$ distortion data rate. $10 \%$ ( $25 \%$ ) distortion data rate is defined as that rate at which $10 \%(25 \%)$ distortion occurs to output bit interval with respect to input bit interval. An input Non-Return-to-Zero (NRZ) test waveform of 16 bits ( 0000001011111101 ) was used for data rate distortion measurements. Data rate is independent of current source supply voltage, Vcc.
The cable used contained five pairs of unshielded, twisted, 22 AWG wire (Dearborn \#862205). Loop current is 20 mA nominal. Input and output logic supply voltages are 5 V dc.

## FULL DUPLEX

The full duplex point-to-point communication of Figure 21 uses a four wire system to provide simultaneous, bidirectional data communication between local and remote


Figure 19. Minimum Required Supply Voltage, $\mathrm{V}_{\mathrm{Cc}}$, vs. Loop Length for Current Loop Circuit of Figure 18
equipment. The basic application uses two simplex point-to-point loops which have two separate, active, nonisolated units at one common end of the loops. The other end of each loop is isolated.

As Figure 21 illustrates, the combination of HewlettPackard current loop optocouplers, HCPL-4100 transmitter and HCPL-4200 receiver, can be used at the isolated end of current loops. Cross talk and common mode coupling are greatly reduced when optical isolation is implemented at the same end of both loops, as shown. The full duplex data rate is limited by the non-isolated active receiver current loop. Comments mentioned under simplex configuration apply to the full duplex case. Consult the HCPL-4100 transmitter optocoupler data sheet for specified device performance.

## HALF DUPLEX

The half duplex configuration, whether point-to-point or multidrop, gives non-simultaneous bidirectional data flow from transmitters to receivers shown in Figures 22a and 22b. This configuration allows the use of two wires to carry data back and forth between local and remote units. However, protocol must be used to determine which specific transmitter can operate at any given time. Maximum data rate for a half duplex system is limited by the loop current charging time. These considerations were explained in the Simplex configuration section.


Figure 20. Typical Data Rate vs. Distance


Figure 21. Full Duplex Point-to-Point Current Loop System Configuration

Figures 22a and 22b illustrate half duplex application for the combination of HCPL-4100/-4200 optocouplers. The unique and complementary designs of the HCPL-4100 transmitter and HCPL-4200 receiver optocouplers provide many designed-in benefits. For example, total optical iso-

Iation at one end of the current loop is easily accomplished, which results in substantial removal of common mode influences, elimination of ground potential differences and reduction of power supply requirements. With this combination of HCPL-4100/-4200 optocouplers, specific current loop noise immunity is provided, i.e., minimum SPACE state current noise immunity is 1 mA, MARK state noise immunity is 8 mA .
Voltage compliance of the current source must be of an adequate level for operating all units in the loop while not exceeding 27 V dc , the maximum breakdown voltage for the HCPL-4100. Note that the HCPL-4100 transmitter will allow loop current to conduct when input Vcc power is off. Consult the HCPL-4100 transmitter optocoupler data sheet for specified device performance.
For more information about the HCPL-4100/-4200 optocouplers, consult Application Note 1018.


Figure 22. Half Duplex Current Loop System Configurations for (a) Point-to-Point, (b) Multidrop


## Fiber Optics

Three major families of fiber optic components offer a wide range of application solutions. The design and specification of each of these three families allow easy design-in and provide guaranteed end-to-end performance.
Hewlett-Packard's method of specification assures guaranteed link performance and easy design-in. The transmitter optical output power and receiver sensitivity are specified at the end of a length of test cable. These specifications take into account variations over temperature and connector tolerances. All families of components incorporate the fiber optic connector receptacle in the transmitter and receiver packages. Factory alignment of the emitter inside the connector receptacle minimizes the variation of optical output power, resulting in smaller dynamic range requirements for the receiver. The guaranteed distance and data rates for various transmitter/receiver pairs are shown in the following selection guide.
Hewlett-Packard offers a choice of fiber optic cable, either glass fiber or plastic, simplex or duplex, factory-connectored or bulk. Connector attachment in each case has been designed for your production-line economy.

## Plastic Snap-In Link Components

Low-cost and ease of use make this family of link components well-suited for applications connecting computers to terminals, printers, plotters and industrial-control equipment. These links are rugged, 1 millimetre diameter plastic fiber cable. Assembling the plastic snap-in connectors onto the cable is extremely easy. The HFBR-0500 evaluation kit contains a complete working link including transmitter, receiver, 5 metres of connectored cable, extra connectors, polishing kit and technical literature.

## Miniature Link Components

This family offers a wide range of price/performance choices for computer, industrial-control and military applications. The unique design of the lensed optical coupling system makes this family of components very reliable. The low cost
miniature line (HFBR-0400 series) features a Dual-in-line package which requires no mounting hardware or receptacle for use with SMA-style connectors. It is also specified for use with five fiber sizes: $100 / 140 \mu \mathrm{~m}, 85 / 125 \mu \mathrm{~m}$, $62.5 / 125 \mu \mathrm{~m}, 50 / 125 \mu \mathrm{~m}$, and $200 \mu \mathrm{~m}$ Plastic Coated Silica (PCS) cable. The standard miniature line (HFBR-0200 series) features a precision metal package for rugged applications. Both HPstyle and SMA-style connectors are available for this line. An evaluation kit is available for sampling purposes. The HFBR-0200 kit contains transmitter, receiver, 10 metres of cable and technical literature.

## High Performance Modules

Transparent TTL-TTL link capability and independence from data format restrictions make this family of modules easy to use in a variety of applications. A link monitor on the receiver provides a digital indication of link continuity, independent of the presence of data. The modules are compatible with HP-style connectors and small-diameter glass fiber cable. A transmitter, receiver, 10 metres of connectored cable and technical literature are contained in the HFBR-0010 evaluation kit.
RS-232/V. 24 to Fiber Optic Multiplexer
The 39301A 16-channel RS-232C/V. 24 to fiber optic multiplexer allows the extension of up to 16 independent 19.2 Kbps full duplex channels to distance up to 1250 m .


## Fiber Optic Selection Guide

Snap-In Link Family: Features - Plastic fiber (1 mm dia.), Plastic Snap-in connectors, TTL compatible output.

| Products/Part Nos. | Description | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: |
| Evaluation Kit HFBR-0500 | HFBR-1510 Transmitter, HFBR-2501 Receiver, 5 metre connectored cable, connectors, bulkhead feedthrough polishing kit; literature | 4-6 |
| Transmitter/Receiver Pairs  <br> 5 MBd Link HFBR-1510/-2501 <br> 1 MBd Link HFBR-1502/-2502 <br> Extended Distance Link HFBR-1512/-2503  <br> Low Current Link HFBR-1512/-2503 <br> Photo Interrupter Link HFBR-1512/-2503 <br>  HFBR-1502/-2502 | Guaranteed Distance* Guaranteed Data-Rate* <br> 17 metre 5 MBd <br> 36 metre 1 MBd <br> 65 metre 40 kBd <br> 14 metre 40 kBd <br> N/A 20 kHz <br> N/A 500 kHz | $\begin{aligned} & 4-8 \\ & 4-10 \\ & 4-12 \\ & 4-12 \\ & 4-14 \\ & 4-14 \end{aligned}$ |
| Cables <br> Simplex <br> HFBR-3511 Duplex <br> HFBR-3512 <br> HFBR-3513 HFBR-3612 <br> HFBR-3514 HFBR-3613 <br> HFBR-3515 HFBR-3614 <br> HFBR-3516 HFBR-3615 <br> HFBR-3517 HFBR-3616 <br> HFBR-3518 HFBR-3618 <br> HFBR-3519 HFBR-3619 <br> HFBR-3579 HFBR-3679 <br> HFBR-3580 HFBR-3680 <br> HFBR-3581 HFBR-3681 | Cable Length  <br> 0.1 metre  <br> 0.5 metre  <br> 1.0 metre  <br> 5.0 metre  <br> 10.0 metre  <br> 20.0 metre  <br> 30.0 metre  <br> 45.0 metre  <br> 60.0 metre  <br> 25.0 metre  <br> 100.0 metre  <br> 500.0 metre  | 4-20 |
| Connectors HFBR-4501 HFBR-4511 | Gray Connector/Crimp Ring Blue Connector/Crimp Ring | 4-22 |
| Polishing Kit HFBR-4595 HFBR-4596 | Plastic polishing fixture, abrasive paper Metal polishing fixture | 4-22 |
| Bulkhead Feedthrough/in-line Splice <br> HFBR-4505 <br> HFBR-4515 | Gray Bulkhead Feedthrough Blue Bulkhead Feedthrough | 4-22 |

Low Cost Miniature Link Family: Features - Dual-in-line package interfaces directly with SMA-style connectors specified for use with $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m} 85 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, and $200 \mu \mathrm{~m}$ Plastic Coated Silica (PCS) cable. No mounting hardware required.

| Products/Part Nos. | Description | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: |
| Transmitter/Receiver Pairs | Guaranteed Optical Power Budget* Guaranteed Data-Rate* |  |
| HFBR-1402/2402 |  | 4-31 |
|  | 9 dB (HFBR-3000 100/140 $\mu \mathrm{m}$ cable) 5 MBd | 4-31 |
|  | $6 \mathrm{~dB}(85 / 125 \mu \mathrm{~m}$ cable) 5 MBd | 4-31 |
| HFBR-1404/2402 | 9 dB ( $62.5 / 125 \mu \mathrm{~m}$ cable) $\quad 5 \mathrm{MBd}$ | 4-31 |
|  | 4 dB ( $50 / 125 \mu \mathrm{~m}$ cable) 5 MBd | 4-31 |
| HFBR-1402/2404 <br> (HFBR-0422 Tranceiver Board) | 12 dB (HFBR-3000 100/140 $\mu \mathrm{m}$ cable) 50 MBd | 4-41 |
| HFBR-1402 Standard Transmitter | Optimized for large size fiber such as $85 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, or $200 \mu \mathrm{~m}$ PCS cable | 4-27 |
| HFBR-1404 High-Performance Transmitter | Optimized for small size fiber such as $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$ cable | 4-27 |
| HFBR-2402 5 MB Receiver | TTL/CMOS Compatible receiver with - 25.4 dBm sensitivity | 4-31 |
| HFBR-2404 25 MHz Receiver | PIN-preamp receiver for data rates up to 50 MBd | 4-33 |

Miniature Link Family: Features - Glass fiber (100/400 $\mu \mathrm{m}$ ). Precision metal connectors.

| Products/Part Nas. | Description | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: |
| Evaluation Kit HFBR-0200 | HFBR-1201 Transmitter, HFBR-2201 Receiver, 10 metre connectored cable Mounting Hardware | 4-46 |
| Transmitter/Receiver Pairs  <br> HP Style Connectors SMA Style Connectors <br> HFBR-1201/-2201 HFBR-1202/-2202 <br> HFBR-1201/-2203 HFBR-1202/-2204 <br> HFBR-1203/-2201 HFBR-1204/-2202 <br> HFBR-1203/-2203 HFBR-1204/-2204 <br> HFBR-1203/-2207 HFBR-1204/-2208 | Guaranteed Distance* Guaranteed Data Rate* <br> 800 metre 5 MBd <br> 1200 metre 40 MBd <br> 1800 metre 5 MBd <br> 2100 metre 40 MBd <br> 500 metre (typical) 125 MBd (typical) | $\begin{aligned} & 4-46 \\ & 4-54 \\ & 4-58 \\ & 4-74 \end{aligned}$ |
| Transceivers. 20 MBd (to 40 MBd)  <br> HP Style Connectors SMA Style Connectors <br> HFBR-0221 HFBR-0222 | Guaranteed Distance Data Format <br> 1100 metre 33 to $67 \%$ duty factor (for <br> use with code schemes <br>  Such as Manchester) <br> 625 metre STD 95\% duty factor (for <br> use with code schemes <br> such as NRZ) <br>  Sucher | 4-66 |
| Cables  <br> Simplex Duplex <br> HFBR-3000 HFBR-3100 <br> (OPTO001) (OPTO01) <br> HFBR-3000 HFBR-3100 <br> (OPTO02) (OPT002) <br> HFBR-3200 HFBR-3300 <br> HFBR-3001  <br> HFBR-3021  | Customer specified length, connectored (HFBR-4000 connector) <br> Customer specified length, connectored (SMA style connector) <br> Customer specified length, unconnectored 10 metres connectored (HFBR-4000 connector) 10 metres connectored (SMA style connector) | $4-92$ $4-94$ |
| Connectors HFBR-4000 HFBR-3099 | Metal body, metal ferrule <br> Connector-connector junction, bulkhead feedthrough for HFBR-4000 connector | 4-96 |
| Connector Assembly Tools HFBR-0100 <br> HFBR-0101 HFBR-0102 | Field installation kit for HFBR-4000 connectors (includes case, tools, consumables) <br> Replacement consumables for HFBR-0100 Kit Custom tool set only | 4-98 |
| Mounting Hardware <br> HFBR-4201 <br> HFBR-4202 | PCB mounting bracket, EMI shield, misc. hardware for HFBR-1201/-1203/-2201/-2203 <br> PCB mounting bracket, EMI shield, misc. hardware for HFBR-1202/-1204/-2202/-2204 | 4-46 |

*Link performance at $25^{\circ} \mathrm{C}$.

High Performance Module Family: Glass fiber (100/140 $\mu \mathrm{m}$ ), Precision metal connectors, TTL compatible output, Link monitor, Transparent 3-level code

| Products/Part Nos. | Description | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: |
| Evaluation Kit HFBR-0010 | HFBR-1001 Transmitter, HFBR-2001 Receiver, 10 metre connectored cable, literature |  |
| Transmitter/Receiver Pairs HFBR-1001/-2001 HFBR-1002/-2001 | Guaranteed Distance* Guaranteed Data Rate* Connector Style <br> 180 metre 10 MBd HFBR-4000 <br> 1500 metre 10 MBd HFBR-4000 | $\begin{aligned} & 4-80 \\ & 4-84 \end{aligned}$ |
| Cables | Customer specified length, connectored (HFBR-4000 connector) <br> Customer specified length, unconnectored <br> 10 metres connectored (HFBR-4000 connector) <br> 10 metres connectored (SMA style connector) | $4-92$ $4-94$ |
| Connectors HFBR-4000 HFBR-3099 | Metal body, metal ferrule <br> Connector-connector junction, bulkhead feedthrough for HFBR-4000 connector | 4-96 |
| Connector Assembly Tools HFBR-0100 <br> HFBR-0101 <br> HFBR-0102 | Field installation kit for HFBR-4000 connectors (includes case, tools, consumables) <br> Replacement consumables for HFBR-0100 Kit <br> Custom tool set only | 4-98 |

Data Communications Equipment

| Products/Part Nos. | Description | Page <br> No. |
| :--- | :--- | :---: |
| RS-232-C/V.24 to Fiber Optic Multiplexer |  |  |
| 39301A Multiplexer | 1250 metres length, $19.2 \mathrm{kbps} /$ channel data rate, 16 channels RS-232-C <br> Input/Output | $4-100$ |

PIN Photodiodes: Variety of packages, high speed, low capacitance, low noise.

| Products/Part Nos. | Description | Page <br> No. |
| :--- | :---: | :---: |
| $5082-4200$ Series | High Speed PIN Photodiodes for use in Fiber Optic Applications | $4-106$ |

*Link performance at $25^{\circ} \mathrm{C}$.

# SNAP-IN FIBER OPTIC LINKS TRANSMITTERS, RECEIVERS, CABLE AND CONNECTORS 

HFBR-0500 SERIES

## Features

- GUARANTEED LINK PERFORMANCE OVER TEMPERATURE
High Speed Links: dc to 5 MBd Extended Distance Links up to $82 \mathbf{m}$ Low Current Links: 6 mA Peak Supply Current for an 8 m Link
Photo Interrupters
- LOW COST PLASTIC DUAL-IN-LINE PACKAGE
- EASY FIELD CONNECTORING
- EASY TO USE RECEIVERS:

Logic Compatible Output Level
Single +5 V Receiver Power Supply High Noise Immunity

- LOW LOSS PLASTIC CABLE:

Selected Super Low Loss Simplex Cable
Simplex and Zip Cord Style Duplex Cable

## Applications

- HIGH VOLTAGE ISOLATION
- SECURE DATA COMMUNICATIONS
- REMOTE PHOTO INTERRUPTER
- LOW CURRENT LINKS
- INTER/INTRA-SYSTEM LINKS
- STATIC PROTECTION
- EMC REGULATED SYSTEMS (FCC, VDE)



## Description

The HFBR-0500 series is a complete family of fiber optic link components for configuring low-cost control, data transmission, and photo interrupter links. These components are designed to mate with plastic snap-in connectors and low-cost plastic cable.* Link design is simplified by the logic compatible receivers and the ease of connectoring the plastic fiber cable. The key parameters of links configured with the HFBR-0500 family are fully guaranteed. The HFBR-0500 Evaluation Kit contains all the components and literature necessary to evaluate a working link.

[^11]
## Link Selection Guide

## GUARANTEED LINKS

|  | Data Rate | Guaranteed $0-70$ HFBR- $351 X$ /361X Series Cable | Link Length $0^{\circ} \mathrm{C}$ HFBR-3530 Cable | Typical Lin <br> HFBR-351X /361X Series Cable | k Lengths <br> HFBR-3530 Cable | Transmitter | Receiver | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 MBd Link | 5 MBd | 12 | 17 | 35 m | 48 m | HFBR-1510 | HFBR-2501 | 4-8 |
| 1 MBd Link | 1 MBd | 24 | 34 | 55 m | 76 m | HFBR-1502 | HFBR-2502 | 4-10 |
| Low Current Link | 40 kBd | 8 | 11 | 50 m | 69 m | HFBR-1512 | HFBR-2503 | 4-12 |
| Extended Distance Link | $40 \mathrm{kBd}$ | 60 | 82 | 110 m | 152.5 m | HFBR-1512 | HFBR-2503 | 4-12 |
| Photo Interrupter Link | $\left\|\begin{array}{c} 20 \mathrm{kHz} \\ 500 \mathrm{kHz} \end{array}\right\|$ | $\mathrm{N} / \mathrm{A}$ N/A | N/A N/A | N/A N/A | N/A N/A | $\begin{aligned} & \text { HFBR-1512 } \\ & \text { HFBR-1502 } \end{aligned}$ | HFBR-2503 <br> HFBR-2502 | $\begin{aligned} & 4-14 \\ & 4-14 \end{aligned}$ |
| Evaluation Kit, HFBR-0500 |  | HFBR-1510 Transmitter, HFBR-2501 Receiver, 5 metre Connectored Cable, Bulkhead Feedthrough, Connectors, Polishing Kit, Literature |  |  |  |  |  |  |

## Component Selection Guide

TRANSMITTERS

|  | Minimum Output Optical Power 0 to $70^{\circ} \mathrm{C}$ | Peak Emission Wavelength | Page |
| :---: | :---: | :---: | :---: |
| HFBR-1510 | $-16.5 \mathrm{dBm}$ | 665 nm | 11 |
| HFBR-1502 | $-13.6 \mathrm{dBm}$ | 665 nm | 11 |
| HFBR-1512 | $-13.6 \mathrm{dBm}$ | 665 nm | 11 |

## RECEIVERS

|  | Sensitivity <br> $\mathbf{0}$ to $70^{\circ} \mathbf{C}$ | Data Rate | Page |
| :--- | :---: | :---: | :---: |
|  | $\frac{5 \mathrm{MBd}}{12}$ | $\frac{12 \mathrm{dBm}}{}$ | 1 MBd |
| HFBR-2501 | -24 dBm | 12 |  |
| HFBR-2502 | -2503 | -39 dBm | 40 kBd |

CONNECTORS
Page 17
CABLES
Page 15
Connectored Plastic Fiber Optic Cable

| Single <br> Channel | Dual <br> Channel | Length ${ }^{\star}$ <br> (mFBR-3510** |
| :---: | :---: | :---: |
| HFBR-3530** | - | Customer <br> HFBR-3610** |
| HFBR-3511 | - | 0.1 |
| HFBR-3512 | HFBR-3612 | 0.5 |
| HFBR-3513 | HFBR-3613 | 1 |
| HFBR-3514 | HFBR-3614 | 5 |
| HFBR-3517 | HFBR-3617 | 30 |
| HFBR-3518 | HFBR-3618 | 45 |
| HFBR-3519 | HFBR-3619 | 60 |

Unconnectored Plastic Fiber Optic Cable

| Single <br> Channel | Dual <br> Channel | Length <br> (metres) |
| :---: | :---: | :---: |
| HFBR-3579 | HFBR-3679 | 25 |
| HFBR-3580 | HFBR-3680 | 100 |
| HFBR-3581 | HFBR-3681 | 500 |
| HFBR-3582 <br> Selected <br> (Low Loss) | - | 500 |

*All cable lengths are $+10 \%,-0 \%$ tolerance.
**HFBR-3510, HFBR-3530, HFBR-3610 Ordering Information. These cable assemblies of customer specified length have factory installed connectors. The length must be specified in 1 metre increments. The mandatory OPT 001 specifies the number of assemblies of equal length ordered.
EXAMPLE: To order 3 duplex cable assemblies, 21 metres each, specify:

$$
\begin{array}{ll}
\text { HFBR-3610 } & \text { Quantity } 63 \\
\text { OPT 001 } & \text { Quantity } 3
\end{array}
$$

## 5 MBd Link

## HFBR-1510 AND HFBR-2501

The dc to 5 MBd link is guaranteed over temperature to operate up to 17 m with a transmitter drive current of 60 mA. This link uses the 665 nm HFBR-1510 Transmitter, the

HFBR-2501 Receiver, and HFBR-3530 Cable. The receiver compatible with LSTTL/TTL/CMOS logic levels offers a choice of an internal pull-up or open collector output.

## RECOMMENDED OPERATING CONDITIONS

| Parameter | Symbol | Min. | Max. | Units | Ref. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature | $T_{A}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Transmitter Peak Forward Current | $I_{\text {FPK }}$ | 10 | 750 | mA | Note 1 |
| Avg. Forward Current | $I_{\text {FAV }}$ |  | 60 | mA |  |
| Receiver Supply Voltage | V $_{\text {CC }}$ | 4.75 | 5.25 | $V$ | Note 2 |
| Fan-Out (TTL) | N |  | 5 |  |  |

SYSTEM PERFORMANCE Using HFBR-3510/3610 series cable under recommended operating conditions unless otherwise specified.

| Parameter | Symbol | Min. | Typ.[5] | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Rate |  | dc |  | 5 | MBd | $\mathrm{BER} \leq 10^{-9}$ |  |
| Transmission Distance HFBR-351X/361X series cable | $\ell$ | $\begin{aligned} & 12 \\ & 18 \end{aligned}$ | 35 |  | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & I_{F P K}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ |  |
| Transmission Distance HFBR-3530 cable |  | $\begin{aligned} & 17 \\ & 24 \end{aligned}$ | 48 |  | $\begin{aligned} & m \\ & m \end{aligned}$ | $\begin{aligned} & I_{F P K}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C} \\ & I_{F P K}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$ |  |
| Propagation Delay | $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ |  | $\begin{aligned} & 80 \\ & 50 \end{aligned}$ | $\begin{aligned} & 140 \\ & 140 \end{aligned}$ | ns <br> ns | $\begin{aligned} & R_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{P}_{\mathrm{R}}=-21.6 \leq \mathrm{P}_{\mathrm{R}} \leq-9.5 \mathrm{dBm} \end{aligned}$ | Fig. 4, 5 Note 3 |
| Pulse Width Distortion | to |  | 30 |  | ns | $\begin{aligned} & P_{R}=-15 \mathrm{dBm} \\ & R_{L}=560 \Omega, C_{L}=30 \mathrm{pF} \end{aligned}$ | Fig. 4, 6 Note 4 |
| EMI Immunity |  |  | 8000 |  | $\mathrm{V} / \mathrm{m}$ | BER $\leq 10^{-9}$ |  |

Notes: 1. For $I_{F P K}>80 \mathrm{~mA}$, the duty factor must be such as to keep $\mathrm{I}_{\mathrm{FAV}} \leq 80 \mathrm{~mA}$. In addition, for $\mathrm{I}_{\mathrm{FPK}}>80 \mathrm{~mA}$, the following rules for pulse width apply: $I_{F P K} \leq 160 \mathrm{~mA}$ : Pulse width $\leq 1 \mathrm{~ms} \quad \mathrm{I}_{\mathrm{FPK}}>160 \mathrm{~mA}$ : Pulse width $\leq 1 \mu \mathrm{~s}$
2. It is essential that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. The propagation delay of 1 m of cable ( 5 ns ) is included.
4. $T_{D}=t_{P L H}-t_{P H L}$.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

## Link Design Considerations

The HFBR-1510/2501 Transmitter/Receiver pair is guaranteed for operation at data rates up to 5 MBd over link distances from 0 to 12 metres with HFBR-351X/361X series cable and from 0 to 17 metres with HFBR-3530 cable. The value of transmitter drive current, $\mathrm{I}_{\mathrm{F}}$, depends on the link distance as shown in Figures 2 and 3. Note that there is an upper as well as a lower limit on the value of $I_{F}$ for any
given distance. The dotted lines in Figures 2 and 3 represent pulsed operation. When operating in the pulsed mode, the conditions in Note 1 must be met. After selecting a value of the transmitter drive current $I_{F}$, the value of $R_{1}$ in Figure 1 can be calculated as follows:

$$
R_{1}=\frac{V_{c c}-V_{F}}{I_{F}}
$$



Figure 1. Typical Circuit Operation ( $5 \mathrm{MBd} \leq 12 \mathrm{~m}$ )


Figure 2. Guaranteed System Performance with HFBR-1510 and HFBR-2501


Figure 3. Guaranteed System Performance with HFBR-1510, HFBR-2501 and HFBR-3530 cable.



Figure 5. HFBR-1510/2501 Link Pulse Width Distortion vs. Optical Power


Figure 6. HFBR-1510/2501 Link Propagation Delay vs. Optical Power

## 1 MBd Link hfbr-1502 and hfbr-2502

The dc to 1 MBd link is guaranteed over temperature to operate from 0 to 34 m with a transmitter drive current of 60 mA . This link uses the 665 nm HFBR-1502 Transmitter,
the HFBR-2502 Receiver, and HFBR-3530 Cable. The receiver is compatible with LSTTL/TTL/CMOS logic levels and offers a choice of an internal pull-up or open collector output.

## RECOMMENDED OPERATING CONDITIONS

| Parameter | Symbol | Min. | Max. | Units | Ref. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature | $T_{A}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Transmitter Peak Forward Current | $I_{\text {FPK }}$ | 10 | 750 | mA | Note 1 |
| Avg. Forward Current | $I_{\text {FAV }}$ |  | 60 | mA |  |
| Receiver Supply Voltage | $V_{\text {CC }}$ | 4.75 | 5.25 | V | Note2 |
| Fan-Out (TTL) | N |  | 5 |  |  |

SYSTEM PERFORMANCE Using HFBR-3510/3610 series cable under recommended operating conditions unless otherwise specified.

| Parameter | Symbol | Min. | Typ. ${ }^{[5]}$ | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Rate |  | dc |  | 1 | MBd | $B E R \leq 10^{-9}$ |  |
| Transmission Distance HFBR-351X/361X series cable | $\ell$ | 24 |  |  | m | $I_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
|  |  | 30 | 55 |  | m | $\mathrm{IFPK}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ |  |
| Transmission Distance HFBR-3530 Cable | $\ell$ | 34 |  |  | m | $I_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
|  |  | 41 | 76 |  | m | IFPK $=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ |  |
| Transmission Distance $50 \%$ Duty Cycle - 351X/361X Series Cable | $\ell$ | 30 |  |  |  | $\mathrm{I}_{\mathrm{FPK}}=120 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
|  |  | 36 | 65 |  |  | $\mathrm{IFPK}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ |  |
| Transmission Distance $50 \%$ Duty Cycle - 3530 Cable | $\ell$ | 41 |  |  |  | $I_{\text {FPK }}=120 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
|  |  | 50 | 90 |  |  | $I_{F P K}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ |  |
| Propagation Delay | tple |  | 180 | 250 | ns | $\mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ | Fig. 4,5 <br> Note 3 |
|  | tPHL |  | 100 | 140 | ns | $\mathrm{P}_{\mathrm{R}}=-24 \mathrm{dBm}$ |  |
| Pulse Width Distortion | to |  | 80 |  | ns | $\begin{aligned} & P_{R}=-24 \mathrm{dBm} \\ & R_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ | Fig. 4,6 Note 4 |
| EMI Immunity |  |  | 8000 |  | $\mathrm{V} / \mathrm{m}$ | BER $\leq 10^{-9}$ |  |

Notes: 1. For $I_{F P K}>80 \mathrm{~mA}$, the duty factor must be such as to keep $I_{F A V} \leq 80 \mathrm{~mA}$. In addition, for $\mathrm{I}_{\mathrm{FPK}}>80 \mathrm{~mA}$, the following rules for pulse width apply: $\mathrm{I}_{\mathrm{FPK}} \leq 160 \mathrm{~mA}$ : Pulse width $\leq 1 \mathrm{~ms} \quad \mathrm{I}_{\mathrm{FPK}}>160 \mathrm{~mA}$ : Pulse width $\leq 1 \mu \mathrm{~s}$
2. It is essential that a bypass capacitor ( $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. The propagation delay of 1 m of cable ( 5 ns ) is included.
4. $T_{D}=t_{P L H}-t_{P H L}$.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

## Link Design Considerations

The HFBR-1502/2502 Transmitter/Receiver pair is guaranteed for operation at data rates up to 1 MBd over link distances from 0 to 24 metres with HFBR-351X/361X series cable and from 0 to 34 metres with HFBR- 3530 cable. The value of transmitter drive current, $I_{F}$, depends on the link distance as shown in Figures 2 and 3. Note that there is a lower limit on the value of If for any given distance. The dotted lines in Figures 2 and 3 represent pulsed operation.

When Operating in the pulsed mode, the conditions in Note 1 must be met. After selecting a value of the transmitter drive current $I_{F}$, the value of $R_{1}$ in Figure 1 can be calculated as follows:

$$
\mathrm{R}_{1}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{OL}}(75451)}{\mathrm{I}_{\mathrm{F}}}
$$

For the HFBR-1502/2502 pair, the value of the capacitor, $C_{1}$ (Figure 1) must be chosen such that $R_{1} C_{1} \leq 75 \mathrm{~ns}$.



Figure 1. Typical Circuit Operation (1 MBd $\leq \mathbf{2 4} \mathbf{~ m}$ )


Figure 2. Guaranteed System Performance with HFBR-1502 and HFBR-2502


Figure 3. Guaranteed System Performance with HFBR-1502, HFBR-2502 and HFBR-3530 cable.


Figure 4. A.C. Test Circuit


Figure 5. HFBR-1502/2502 Link Pulse Width Distortion vs. Optical Power


Figure 6. HFBR-1502/2502 Link Propagation Delay vs. Optical Power

## Low Current/Extended Distance Link

## HFBR-1512 AND HFBR-2503

The low current link requires only 6 mA peak supply current for the transmitter and receiver combined to achieve an 11 m link. Extended distances up to 82 m can be achieved at a maximum transmitter drive current of 60 mA peak. This link can be driven with TTL/LSTTL and most CMOS logic gates.

The black plastic housing of the HFBR-1512 Transmitter is designed to prevent the penetration of ambient light into the cable through the transmitter. This prevents the sensitive receiver from being triggered by ambient light pulses.

## RECOMMENDED OPERATING CONDITIONS

| Parameter | Symbol | Min. | Max. | Units | Ref. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature | TA | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Transmitter <br> Peak Forward Current | IF PK | 2 | 120 | mA | Note 1 |
| Avg. Forward Current | IF AV |  | 60 | mA |  |
| Receiver <br> Supply Voltage | VcC | 4.5 | 5.5 | V |  |
| Output Voltage | Vo |  | $V_{0 C}$ | V | Note2 |
| Fan-Out (TTL) | N |  | 1 |  |  |

SYSTEM PERFORMANCE Using HFBR-3510/3610 series cable under recommended operating conditions unless otherwise otherwise specified.

| Parameter | Symbol | Min. | Typ. ${ }^{51}$ | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Rate |  | dc |  | 40 | kBd | to $\leq 7.0 \mu \mathrm{~s}$ |  |
| Transmission Distance HFBR-351X/361X series cable | Q | 8 | 50 |  | m | IFPK $=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
|  |  | 60 | 110 |  | m | $\mathrm{IFPK}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
| Transmission Distance HFBR-3530 cable | $\ell$ | 11 | 69 |  | m | $\mathrm{I}_{\mathrm{FPK}}=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
|  |  | 82 | 152 |  | m | $\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
| Propagation Delay | tPLH |  | 4 |  | $\mu \mathrm{s}$ | $\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ | Fig. 4, 5 <br> Note 3 |
|  | tphl |  | 2.5 |  | $\mu \mathrm{s}$ | $\mathrm{Pa}_{\mathrm{A}}=-25 \mathrm{dBm}$ |  |
| Pulse Width Distortion | to |  |  | 7.0 | $\mu \mathrm{s}$ | $\begin{aligned} & -39 \leq P_{R} \leq-14 \mathrm{dBm} \\ & R_{L}=3.3 \mathrm{~K} \Omega_{1} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ | Fig. 4, 6 Note 4 |
| Bit Error Rate | BER |  | $10^{-9}$ |  |  | $P_{R}=-30 \mathrm{dBm}$ |  |
| EMI Immunity |  |  | 5000 |  | $\mathrm{V} / \mathrm{m}$ | $\mathrm{P}_{\mathrm{R}}=0 \mathrm{~mW}$ |  |

## Notes:

1. For IFPK $>80 \mathrm{~mA}$, the duty factor must be such as to keep IFAV $\leq 80 \mathrm{~mA}$. In addition, if IFAV $>80 \mathrm{~mA}$, then the pulse width must be equal to or less than 1 ms .
2. It is recommended that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver.
3. The propagation delay of 1 m of cable ( 5 ns ) is included.
4. $t_{D}=$ tPLH - tPHL. $\quad$ 5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

## Link Design Considerations

The HFBR-1512/2503 Transmitter/Receiver pair is guaranteed for operation at data rates up to 40 kBd for transmitter drives as low as 2 mA . The value of transmitter drive current, IF, depends on the link distance as shown in Figures 2 and 3 . Note that there is an upper as well as a lower limit on
the value of $I_{F}$ for any given distance. After selecting a value of the transmitter drive current $\mathrm{I}_{\mathrm{F}}$, the value of $\mathrm{R}_{1}$ in Figure 1 can be calculated as follows:


HFBR-1512

Figure 1. Typical Circuit Operation ( 40 kBd )


Figure 2. Typical Circuit Operation ( 40 kBd )


Figure 3. Guaranteed System Performance with HFBR-1512 and HFBR-2503


Figure 4. A.C. Test Circuit


Figure 5. HFBR-1512/2503 Link Pulse Width Distortion vs. Optical Power


Figure 6. HFBR-1512/2503 Link Propagation Delay vs. Optical Power

## Photo Interrupter Links

## HFBR-1502/2502

HFBR-1512/2503

These links may be used in optical switches, shaft position sensors, and velocity sensors. They are particularly useful where high voltage, electrical noise, or explosive environments prohibit the use of electromechanical or optoelectronic sensors.

The HFBR-1512/2503 link ( 20 kHz ) has an optical power budget of 24 dB , and the HFBR-1502/2502 link ( 500 kHz ) budget is 10 dB . Total system losses (cable attenuation, airgap loss, etc) must not exceed the link optical power budget.

## RECOMMENDED OPERATING CONDITIONS

| Parameter |  | Symbol | Min. | Max. | Units | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature |  | TA | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Transmitter Peak Forward Current |  | IF PK | 10 | 750 | mA | Note 1 |
| Avg. Forward Current |  | If AV |  | 60 | mA |  |
| Receiver Supply Voltage | HFBR-2503 | Vcc | 4.50 | 5.50 | V |  |
|  | HFBR-2502 |  | 4.75 | 5.25 |  | Note 2 |
| Output Voltage | HFBR-2503 | Vo |  | VCc | V |  |
|  | HFBR-2502 |  |  | 18 |  |  |
| Fanout (TTL) | HFBR-2503 |  |  | 1 |  |  |
|  | HFBR-2502 |  |  | 5 |  |  |

## SYSTEM PERFORMANCE

See HFBR-1502/2502 link data sheet (page 4-10) and HFBR-1512/2503 link data sheet (page 4-12) for more design information. These specifications apply when using HFBR-3510/3610 series cable and, unless otherwise specified, under recommended operating conditions.

| Parameter | Symbol | Min. | Typ ${ }^{[5]}$ | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HFBR-1512/HFBR-2503 |  |  |  |  |  |  |  |
| Max. Count Frequency |  | dc |  | 20 | kHz |  |  |
| Optical Power Budget |  | 25.4 |  |  | dB | $1 \mathrm{FPRK}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ | Note 3, 4 |
|  |  | 27.8 | 34 |  | dB | $\mathrm{IFPK}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ |  |
| HFBR-1502, HFBR-2502 |  |  |  |  |  |  |  |
| Max. Count Frequency |  | dc |  | 500 | kHz |  |  |
| Optical Power Budget |  | 10.4 |  |  | dB | IFPK $=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ | Note 3 |
|  |  | 12.8 | 15.6 |  | dB | IFPK $=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ |  |

## Notes:

1. For $I_{F P K}>80 \mathrm{~mA}$, the duty factor must be such as to keep $I_{F A V} \leq 80 \mathrm{~mA}$. In addition, for $I_{F P K}>80 \mathrm{~mA}$, the following rules for pulse width apply:

IFPK $\leq 160 \mathrm{~mA}$ : Pulse width $\leq 1 \mathrm{~ms}$
IFPK $>160 \mathrm{~mA}$ : Pulse width $\leq 1 \mu \mathrm{~s}$
2. A bypass capacitor ( $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) connected from pin 3 to pin 4 of the receiver is recommended for the HFBR-2503 and essential for the HFBR-2502. For the HFBR-2502, the total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. Optical Power Budget $=P_{T}$ Min. $-P_{R(L)}$ Min. Refer to HFBR-1502/1512 data sheet, page 4-16; HFBR-2502 data sheet, page 4-17; and HFBR-2503 data sheet, page 4-19 for additional design information.
4. In addition to a minimum power budget, care should be taken to avoid overdriving the HFBR-2503 receiver with too much optical power. For this reason power levels into the receiver should be kept less than -13.7 dBm to eliminate any overdrive with the recommended operating conditions.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

## Link Design Considerations

The HFBR-1512/2503 and HFBR-1502/2502 Transmitter/ Receiver pairs are intended for applications where the photo interrupter must be physically separate from the optoelectronic emitter and detector. This separation would be useful where high voltage, electrical noise or explosive environments prohibit the use of electronic devices. To ensure reliable long term operation, links designed for this application should operate with an ample optical power margin $\propto_{M} \geq 3 \mathrm{~dB}$, since the exposed fiber ends are subject to environmental contamination that will increase the optical attenuation of the slot with time. A graph of air gap separation versus attenuation for clean fiber ends with minimum radial error $\leq 0.005$ inches ( 0.127 mm ) and angular error $\left(\leq 3.0^{\circ}\right)$ is provided in Figure 2. The following equations can
now be used to determine the transmitter output power, $\mathrm{P}_{\mathrm{t}}$, for both the overdrive and minimum drive cases. Overdrive is defined as a condition where excessive optical power is delivered to the receiver. The first equation enables the maximum Pt that will not result in receiver overdrive to be calculated for a predetermined link length and slot attenuation. The second equation defines the minimum PT allowed for link operation.

$$
\begin{array}{ll}
\mathrm{PT}_{\mathrm{T}}(\mathrm{MAX})-\mathrm{PR}(\mathrm{MAX}) \leq \alpha \mathrm{O} \text { MIN } \ell+\alpha \text { SLOT } & \text { Eq. } 1 \\
\mathrm{PT}_{\mathrm{T}}(\mathrm{MI})-\mathrm{PRL}^{(M I N)} \geq \alpha \text { MAX } \ell+\alpha \text { SLOT }+\alpha \text { M } & \text { Eq. } 2
\end{array}
$$

Once $\mathrm{Pt}_{\mathrm{T}}(\mathrm{MIN})$ has been determined in the second equation for a specific link length ( $\ell$ ), slot attenuation ( $\alpha$ SLOT) and margin $(\alpha \mathrm{M})$, Figure 3 can then be used to find $\mathrm{IF}_{\mathrm{F}}$.


Figure 1. Typical Slot Interrupter Configuration. Refer to 1 MBd or Low Current Links for Schematic Diagrams


Figure 2. Typical Attenuation vs. Axial Separation


Figure 3. Typical HFBR-1502/1512 Optical Output Power vs. Transmitter $\mathrm{I}_{\mathrm{F}}\left(0-70^{\circ} \mathrm{C}\right)$

## 665 nm Transmitters

## HFBR-1502/HFBR-1510 and HFBR-1512

The HFBR-1510/1502/1512 Transmitter modules incorporate a 665 nm LED emitting at a low attenuation wavelength for the HFBR-3510/3610 plastic fiber optic cable. The transmitters can be easily interfaced to standard TTL logic. The optical power output of the HFBR-1510/1512/1502 is specified at the end of 0.5 m of cable. The HFBR-1512 output optical power is tested and guaranteed at low drive currents.

HFBR-1510/1512/1502 Transmitter


## Absolute Maximum Ratings

| Parameter |  | Symbol | Min. | Max. | Units | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | Ts | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature |  | TA | 0 | 470 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Soldering Cycle | Temp. |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1 |
|  | Time |  |  | 10 | sec. |  |
| Peak Forward Input Current |  | IF PK |  | 1000 | mA | Note 2 |
| Average Forward Input Current |  | If AV |  | 80 | mA |  |
| Reverse Input Current |  | $V_{R}$ |  | 5 | V |  |

Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless. Otherwise Specified

| Parameter |  | Symbol | Min. | Typ. ${ }^{[5]}$ | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitter Output Optical Power | HFBR-1510 | PT | -16.5 |  | -7.6 | dBm | $\mathrm{IF}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ | Fig. 2 <br> Note 4 <br> Note 3 |
|  |  |  | -14.1 |  | -8.4 | dBm | $\mathrm{IF}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ |  |
|  | $\begin{gathered} \text { HFBR-1502 } \\ \text { and } \\ \text { HFBR-1512 } \end{gathered}$ | PT | -13.6 |  | -4.5 | dBm | $\mathrm{IfF}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
|  |  |  | -11.2 |  | -5.4 | dBm | IF $=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ |  |
|  | HFBR-1512 | $\mathrm{PT}_{T}$ | -35.5 |  |  | dBm | $\mathrm{IF}=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$ |  |
| Output Optical Power Temperature Coefficient |  | $\frac{\Delta \mathrm{PT}}{\Delta T}$ |  | -0.026 |  | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ |  |  |
| Peak Emission Wavelength |  | $\lambda$ APK |  | 665 |  | nm |  |  |
| Forward Voltage |  | $V_{F}$ | 1.45 | 1.67 | 2.02 | $V$ | $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$ |  |
| Forward Voltage <br> Temperature Coefficient |  | $\frac{\Delta V_{F}}{\Delta T}$ |  | -1.37 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |  | Fig. 1 |
| Effective Diameter |  | DT |  | 1 |  | mm |  |  |
| Numerical Aperture |  | N.A. |  | 0.5 |  |  |  |  |
| Reverse Input Breakdown Voltage |  | VBR | 5.0 | 12.4 |  | V | $l_{F}=-10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |
| Diode Capacitance |  | Co |  | 86 |  | pF | $V_{F}=0, f=1 \mathrm{MHz}$ |  |
| Rise and Fall Time |  | $t_{\text {R }}$ tF |  | 50 |  | ns | 10\% to 90\% |  |

## Notes:

1. 1.6 mm below seating plane.
2. $1 \mu \mathrm{~s}$ pulse, $20 \mu \mathrm{~s}$ period.
3. Measured at the end of 0.5 m HFBR-3512 Fiber Optic Cable with large area detector.
4. Optical power, $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
5. Typical data is at $25^{\circ} \mathrm{C}$.

WARNING. When viewed under some conditions, the optical port of the Transmitter may expose the eye beyond the Maximum Permissible Exposure recommended in ANSI Z-136-1, 1981. Under most viewing conditions there is no eye hazard.


Figure 1. Typical Forward Voltage vs. Drive Current for HFBR-1510/1502/1512


Figure 2. Normalized HFBR-1510/1502/1512 Typical Output Optical Power vs. Drive Current

## Receivers

HFBR-2501 ( 5 MBd ) and HFBR-2502 ( 1 MBd )
The HFBR-2501/2502 Receiver modules feature a shielded integrated photodetector and wide bandwidth DC amplifier for high EMI immunity. A Schottky clamped open-collector output transistor allows interfacing to common logic families and enables "wired-OR" circuit designs. The open collector output is specified up to 18 V . An integrated 1000 ohm resistor internally connected to Vcc may be externally jumpered to provide a pull-up for ease-of-use with +5 V logic. The combination of high optical power levels and fast transitions falling edge could result in distortion of the output signal (HFBR-2502 only), that could lead to multiple triggering of following circuitry.

HFBR-2501/2502 Receiver


## Absolute Maximum Ratings

| Parameter |  | Symbol | Min. | Max. | Units | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | $\mathrm{T}_{S}$ | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature |  | TA | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Soldering Cycle | Temp |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1 |
|  | Time |  |  | 10 | sec |  |
| Supply Voltage |  | VCO | -0.5 | 7 | $V$ | Note 6 |
| Output Collector Current |  | 10 |  | 25 | mA |  |
| Output Collector Power Dissipation |  | POD |  | 40 | mW |  |
| Output Voltage |  | Vo | -0.5 | 18 | V |  |
| Pullup Voltage |  | VRL | -0.5 | Vcc | V |  |

Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 4.75 \leq \mathrm{Vcoc} \leq 5.25$ Unless Otherwise Specified

| Parameter |  | Symbol | Min. | Typ. ${ }^{\text {[5] }}$ | Max. | Units | Conditions | $\begin{gathered} \text { Ref. } \\ \hline \text { Note } 2, \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Receiver Input Optical Power Level for Logic "0" | HFBR-2501 | PR(L) | -21.6 |  | $-9.5$ | dBm | $\begin{array}{r} 0.70^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ 1 \mathrm{OL}=8 \mathrm{~mA} \end{array}$ |  |
|  |  |  | -21.6 |  | $-8.7$ | dBm | $\begin{array}{r} 25^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ 10 \mathrm{~L}=8 \mathrm{~mA} \end{array}$ |  |
|  | HFBR-2502 | PR (L) | -24 |  |  | dBm | $\begin{aligned} 0-70^{\circ} \mathrm{C}, \mathrm{VOL} & =0.5 \mathrm{~V} \\ \mathrm{lOL} & =8 \mathrm{~mA} \end{aligned}$ |  |
|  |  |  | -24 |  |  | dBm | $\begin{aligned} 25^{\circ} \mathrm{C}, \mathrm{VOL}^{\prime} & =0.5 \mathrm{~V} \\ 1 \mathrm{OL} & =8 \mathrm{~mA} \end{aligned}$ |  |
| Input Optical Power Level for Logic "1" |  | $\mathrm{P}_{\mathrm{R}}(\mathrm{H})$ |  |  | -43 | dBm | $\begin{aligned} & \mathrm{VOH}=5.25 \mathrm{~V} \\ & \mathrm{IOH} \leq 250 \mu \mathrm{~A} \end{aligned}$ | Note 2 |
| High Level Output Current |  | IOH |  | 5 | 250 | $\mu \mathrm{A}$ | $V_{0}=18 \mathrm{~V}, \mathrm{P}_{\mathrm{R}}=0$ | Note 4 |
| Low Level Output Voltage |  | VOL |  | 0.4 | 0.5 | V | $\begin{aligned} & \mathrm{IOL}=8 \mathrm{~mA}, \\ & P_{\mathrm{R}}=\mathrm{P}_{\mathrm{RL}} \mathrm{MIN} \end{aligned}$ | Note 4 |
| High Level Supply Current |  | ICCH |  | 3.5 | 6.3 | mA | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \end{aligned}$ | Note 4 |
| Low Level Supply Current |  | ICCL |  | 6.2 | 10 | mA | $\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & P_{\mathrm{A}}=-12.5 \mathrm{dBm} \end{aligned}$ | Note 4 |
| Effective Diameter |  | DR |  | 1 |  | mm |  |  |
| Numerical Aperture |  | N.A.R |  | 0.5 |  |  |  |  |
| Internal Pull-Up Resistor |  | RL |  | 1000 |  | Ohms |  |  |

## Notes:

1. 1.6 mm below seating plane.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
3. Measured at the end of HFBR-3510 Fiber Optic Cable with large area detector.
4. $R_{L}$ is open.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. It is essential that a bypass capacitor $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .

## High Sensitivity Receiver

HFBR-2503

The blue plastic HFBR-2503 Receiver module has a sensitivity of -39 dBm . It features an integrated photodetector and DC amplifier for high EMI immunity. The output is an open collector with a $150 \mu \mathrm{~A}$ internal current source pullup and is compatible with TTL/LSTTL and most CMOS logic families. For minimum rise time add an external pullup resistor of at least 3.3 K ohms. VCc must be greater than or equal to the supply voltage for the pull-up resistor.


## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Ref. |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | Ts | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $T_{\mathrm{A}}$ | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Lead Soldering Cycle | Temp |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1 |
|  | Time |  |  | 10 | sec |  |
| Supply Voltage | VCC | -0.5 | 7 | V | Note 7 |  |
| Output Collector Current (Average) | 10 | -1 | 5 | mA |  |  |
| Output Collector Power Dissipation | PoD |  | 25 | mW |  |  |
| Output Voltage | Vo | -0.5 | Vcc | V |  |  |

Electrical/Optical Characteristics $0^{\circ} \mathrm{c}$ to $+70^{\circ} \mathrm{c}, 4.5 \leq \mathrm{vcc} \leq 5.5$ Unless otherwise Specified

| Parameter |  | Symbol | Min. | Typ. (5) | Max. | Units | Conditions | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Receiver Input Optical Power Level for Logic " 0 " | HFBR-2503 | $\mathrm{Pr}_{\text {( }}^{\text {L }}$ ) | -39 |  | -13.7 | dBm | $\begin{aligned} 0-70^{\circ} \mathrm{C}, \mathrm{VO}_{\mathrm{O}} & =V_{\mathrm{OL}} \\ 1 \mathrm{OL} & =3.2 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \text { Note } \\ & 2,3,4 \end{aligned}$ |
|  |  |  | -39 |  | $-13.3$ | dBm | $\begin{aligned} 25^{\circ} \mathrm{C}, V_{O} & =V_{O L} \\ 1 O L & =3.2 \mathrm{~mA} \end{aligned}$ |  |
| Input Optical Power Level for Logic "1" |  | $\mathrm{P}_{\mathrm{R}}(\mathrm{H})$ |  |  | -53 | dBm | $\begin{aligned} & \mathrm{VOH}=5.5 \mathrm{~V} \\ & \mathrm{IOH} \leq 40 \mu \mathrm{~A} \end{aligned}$ | Note 2 |
| High Level Output Voltage |  | VOH | 2.4 |  |  | V | $\begin{aligned} & 10 \mathrm{H}=-40 \mu \mathrm{~A}, \\ & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \end{aligned}$ |  |
| Low Level Output Voltage |  | VoL |  |  | 0.4 | V | $\begin{aligned} & 10 \mathrm{~L}=3.2 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{PRL}_{\mathrm{RL}} \mathrm{MIN} \end{aligned}$ | Note 6 |
| High Level Supply Current |  | ICCH |  | 1.2 | 1.9 | mA | $V_{C C}=5.5 \mathrm{~V}, \mathrm{P}_{\mathrm{A}}=0 \mu \mathrm{~W}$ |  |
| Low Level Supply Current |  | ICCL |  | 2.9 | 3.7 | mA | $\begin{aligned} & V C C=5.5 V \\ & P_{\mathrm{R}} \geq P_{\mathrm{RL}}(\mathrm{MIN}) \end{aligned}$ | Note 6 |
| Effective Diameter |  | $\mathrm{D}_{\text {R }}$ |  | 1 |  | mm |  |  |
| Numerical Aperture |  | N.A.R |  | 0.5 |  |  |  |  |

## Notes:

1. 1.6 mm below seating plane.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
3. Measured at the end of the HFBR-3510 Fiber Optic Cable with large area detector.
4. Because of the very high sensitivity of the HFBR-2503, the digital output may switch in response to ambient light levels when a cable is not occupying the receiver optical port. The designer should take care to filter out signals from this source if they pose a hazard to the system.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$.
6. Including current in 3.3 K pull-up resistor.
7. It is recommended that a bypass capacitor $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic be connected from pin 3 to pin 4 of the receiver.

## Plastic Fiber Optic Cable <br> HFBR-3510/HFBR-3530

High performance plastic fiber optic cable is available in two varieties: standard low loss cable (HFBR-351X and HFBR-361X) and selected super low loss simplex cable (HFBR-3530). The HFBR-3510/3530 Simplex Fiber Optic Cable is constructed of a single step index plastic fiber sheathed in a PVC jacket. The HFBR-3610 Duplex Fiber Optic Cable has two plastic fibers, each in a cable of construction similar to the Simplex Cable, joined with a web. The individual channels are identified by a marking on one channel of the cable.

These cables are UL recognized components and pass UL VW-1 flame retardancy specification. The cable's safety in flammable environments, and non-conductive electrical properties may make the use of conduit unnecessary.
The HFBR-3510/3610 Connectored Fiber Optic Cables are available in fixed lengths ranging from 0.1 m to 60 m . Connectored cables may also be ordered in customer specified

lengths of metre increments. HFBR-3530 Connectored Fiber Optic cable may be ordered in customer specified lengths of one metre increments.

## Absolute Maximum Ratings

| Parameter |  | Symbol | Min. | Max. | Units | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | Ts | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |
| Installation Temperature |  | TI | -20 | +70 | ${ }^{\circ} \mathrm{C}$ |  |
| Short Term Tensile Force | (Single Channel) | $\mathrm{FT}_{T}$ |  | 50 | N | Note 1 |
|  | (Dual Channel) | FT |  | 100 | N |  |
| Short Term Bend Radius |  | $r$ | 10 |  | mm | Note 2 |
| Long Term Bend Radius |  | $r$ | 35 |  | mm |  |
| Long Term Tensile Load |  | Ft |  | 1 | N |  |
| Flexing |  |  |  | 1000 | Cycles | Note 3 |
| Impact |  | m |  | 0.5 | Kg | Note 4 |
|  |  | h |  | 150 | mm |  |

## Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless otherwise Specified

| Parameter | Symbol | Min. | Typ.[5] | Max. | Units | Conditions | Ret. |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :---: |
| Cable Attenuation <br> HFBR-351X/HFBR-361X | $\alpha o$ | 0.19 | 0.31 | 0.43 | $\mathrm{~dB} / \mathrm{m}$ | Source is HFBR-1502/1510/ <br> $1512(665 \mathrm{~nm}), \ell=20 \mathrm{~m}$ |  |
| HFBR-3530 | $\alpha 0$ | 0.19 | 0.25 | 0.31 | $\mathrm{~dB} / \mathrm{m}$ |  | $[6]$ |
| Numerical Aperture | N.A. |  | 0.5 |  |  | $\ell>2 \mathrm{~m}$ |  |
| Diameter, Core | DC |  | 1.0 |  | mm |  |  |
| Diameter, Jacket | D |  | 2.2 |  | mm | Simplex Cable |  |
| Travel Time Constant | W |  | 5.0 |  | $\mathrm{nsec} / \mathrm{m}$ |  |  |
| Mass per Unit Length/ <br> Channel | $\mathrm{m} / \ell$ |  | 4.6 |  | $\mathrm{~g} / \mathrm{m}$ | Without Connectors |  |
| Cable Leakage Current | IL |  | 12 |  | nA | $50 \mathrm{kV}, \ell=0.3 \mathrm{~m}$ |  |

## Notes:

1. Less than 30 minutes.
2. Less than 1 hour, non-operating.
3. $90^{\circ}$ bend on 10 mm radius mandrel.
4. Tested at 1 impact according to MIL-STD-1678, Method 2030, Procedure 1.
5. Typical data is at $25^{\circ} \mathrm{C}$.
6. In addition to standard Hewlett-Packard $100 \%$ product testing, HP provides additional margin to ensure link performance. Under certain conditions, cable installation and improper connectoring may reduce performance. Contact Hewlett-Packard for recommendations.

## Ordering Guide

HFBR-3510/3610 FIBER CABLE
Connectored Plastic Fiber Optic Cable
Unconnectored Plastic Fiber Optic Cable

| Single <br> Channel | Dual <br> Channel | Length* <br> (metres) |
| :---: | :---: | :---: |
| HFBR-3510** | HFBR-3610** | Customer |
| HFBR-3511 | - | - |
| Specified |  |  |


| Single Channel | Dual Channel | Length* (metres) |
| :---: | :---: | :---: |
| HFBR-3579 | HFBR-3679 | 25 |
| HFBR-3580 | HFBR-3680 | 100 |
| HFBR-3581 | HFBR-3681 | 500 |
| HFBR-3582 Selected (Low Loss) |  | 500 |
| Cable Lengths are $+10 \%,-0 \%$ tolerance. <br> HFBR-3510, HFBR-3530 and HFBR-3610 ordering information. hese cable assemblies of customer specified length have installed onnectors. The length must be specified in 1 metre increments. he mandatory OPT 001 specifies the number of assemblies of qual length ordered. |  |  |
| XAMPLE: To order 2 duplex cable assemblies, 21 metres each, pecify: |  |  |
| HFBR-3610 Quantity 63 |  |  |
| OPT 001 Quantity 3 |  |  |

HFBR-3500/3600 FIBER CABLE (Not recommended for new designs.)
Electrical/Optical CharacteristicS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless Otherwise Specified

| Parameter | Symbol | Min. | Typ. ${ }^{515}$ | Max. | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Cable Attenuation | $\alpha 0$ | 0.3 | 0.45 | 0.63 | $\mathrm{~dB} / \mathrm{m}$ | at 665 nm Source NA $=0.5$ |
| Numerical Aperture | N.A. |  | 0.5 |  |  | $\ell>2 \mathrm{~m}$ |
| Diameter, Core | $\mathrm{D}_{\mathrm{C}}$ |  | 1.0 |  | mm |  |
| Diameter, Jacket | $\mathrm{D}_{\mathrm{J}}$ |  | 2.3 |  | mm | Simplex Cable |
| Travel Time Constant | $1 / \mathrm{V}$ |  | 5.0 |  | $\mathrm{nsec} / \mathrm{m}$ |  |
| Mass per Unit Length/Cable | $\mathrm{m} / \ell$ |  | 4.6 |  | $\mathrm{~g} / \mathrm{m}$ | Without Connectors |
| Cable Leakage Current | IL |  | 1 |  | nA | $50 \mathrm{kV}, \ell=0.3 \mathrm{~m}$ |

## Ordering Guide

## HFBR-3500/3600

The cables listed below are still available from HewlettPackard. However, the newer HFBR-3510/3610 series shown above offers higher performance.

Connectored Plastic Fiber Optic Cable
Single
Channel
HFBR-3500
HFBR-3501
HFBR-3502
HFBR-3503
HFBR-3504
HFBR-3505
HFBR-3506
HFBR-3507
HFBR-3508

| Dual <br> Channel | Length <br> (metres) |
| :---: | :---: |
| HFBR-3600 | Customer <br> Specified |
| - | 0.1 |
| HFBR-3602 | 0.5 |
| HFBR-3603 | 1 |
| HFBR-3604 | 5 |
| HFBR-3605 | 10 |
| HFBR-3606 | 15 |
| HFBR-3607 | 20 |
| HFBR-3608 | 25 |

## Unconnectored Plastic Fiber Optic Cable

| Single <br> Channel | Dual <br> Channel | Length <br> (metres) |
| :---: | :---: | :---: |
| HFBR-3589 | HFBR-3689 | 25 |
| HFBR-3590 | HFBR-3690 | 100 |
| HFBR-3591 | HFBR-3691 | 500 |

## Snap-in Fiber Optic Connector, Bulkhead Feedthrough/Splice and Polishing Tools

## HFBR-4501/4511 CONNECTORS HFBR-4505/4515 BULKHEAD FEEDTHROUGHS

The HFBR-4501 and HFBR-4511 snap-in connectors terminate low cost plastic fiber cable and mate with the Hewlett-Packard HFBR-0500 family of fiber optic transmitters and receivers. They are quick and easy to install. The metal crimp ring provides strong and stable cable retention and the polishing technique ensures a smooth optical finish which results in consistently high optical coupling efficiency.

The HFBR-4505 and HFBR-4515 bulkhead feedthroughs mate two snap-in connectors and can be used either as an in-line splice or as a panel feedthrough for plastic fiber cable. The connector to connector loss is low and repeatable.


HFBR-4505 (GRAY)/4515 (BLUE) BULKHEAD FEEDTHROUGH


HFBR-4595 POLISHING KIT


HFBR-4596 HARDENED STEEL POLISHING FIXTURE


## Applications

- CONNECTOR


TERMINATION FOR HEWLETT-PACKARD HFBR-35XX/36XX FIBER OPTIC CABLE


INTERFACE TO HEWLETT-PACKARD HFBR-15XX/25XX SNAP-IN FIBER OPTIC LINK COMPONENTS

- BULKHEAD FEEDTHROUGH


BULKHEAD FEEDTHROUGH OR PANEL MOUNTING OF HFBR-45XX CONNECTORS


IN-LINE SPLICE FOR HFBR-35XX/36XX FIBER OPTIC CABLE

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage <br> Temperature | $\mathrm{T}_{\mathrm{S}}$ | -40 | +75 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating <br> Temperature | $\mathrm{TA}_{\mathrm{A}}$ | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |  |
| Nut Torque <br> HFBR-4505/4515 | $\mathrm{TN}_{\mathrm{N}}$ |  | $\frac{0.7}{100}$ | $\frac{\mathrm{~N}-\mathrm{m}}{\mathrm{OzF}-\mathrm{IN}}$ | 1 |

Notes:
Notes:

1. Recommended nut torque is $\frac{0.57}{80} \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{OzF}-\mathrm{IN}}$

## Mechanical/Optical Characteristics $0^{\circ}$ to $70^{\circ} \mathrm{C}$ Unless otherwise Specified.

Typical Data at $25^{\circ} \mathrm{C}$.

| Parameter | Symbol | Min. | Typ. | Max. | Units | Nate |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Retention Force Connector/Module <br> HFBR-4501/4511 to <br> HFBR-15XX/25XX | FRC |  |  |  | N |  |
| Tensile Force Connector/Cable | FT |  | 6.8 | 22 |  | N |
| HFBR-4505/4515 Conn. to <br> Conn. Loss | $\alpha \mathrm{CC}$ | 0.7 | 1.5 | 2.8 | dB | 2,3 |
| Retention Force Connector/ <br> Bulkhead HFBR-4501/4511 to <br> HFBR-4505/4515 | FRB |  | 7.8 |  | N |  |

## Notes:

2. Factory polish or field polish per recommended procedure.
3. Module to connector insertion loss is factored into the transmitter output optical power and the receiver input optical power level specifications.

## Note:

For applications where frequent temperature cycling over extremes is expected please contact Hewlett-Packard for alternate connectoring techniques.

## Cable Terminations

The following easy procedure describes how to make cable terminations. It is ideal for both field and factory installaiton. If a high volume connectoring technique is required please contact your Hewlett-Packard sales engineer for the recommended procedure and equipment.
Connectoring the cable is accomplished with the HewlettPackard HFBR-4595 Polishing Kit consisting of a Polishing Fixture and 600 grit abrasive paper and 3 micron pink lapping film (3M Company, OC3-14). No adhesive material is needed to secure the cable in the connector, and the connector can be used immediately after polishing.
Connectors may be easily installed on the cable ends with readily available tools. Materials needed for the terminating procedure are:

1) HFBR-35XX/36XX Fiber Optic Cable
2) HFBR-4595 Polishing Kit
3) HFBR-4501 Gray Connector and Crimp Ring
4) HFBR-4511 Blue Connector and Crimp Ring
5) Industrial razor blade or wire cutters
6) 16 gauge latching wire strippers
7) Crimp Tool, AMP 90364-2

## Step 1

The zip cord structure of the HFBR-36XX duplex cable permits easy separation of the channels. The channels should be separated approximately 50 mm ( 2.0 in .) back from the ends to permit connectoring and polishing.
After cutting the cable to the desired length, strip off approximately 7 mm ( 0.3 in ) of the outer jacket with the 16 gauge wire strippers. Excess webbing on duplex cable may have to be trimmed to allow the connector to slide over the cable.

## Step 2

Place the crimp ring and connector over the end of the cable; the fiber should protrude about 3 mm ( 0.12 in .) through the end of the connector. Carefully position the ring so that it is entirely on the connector and then crimp the ring in place with the crimping tool.
Note: Place the gray connector on the cable end to be connected to the transmitter and the blue connector on the cable end to be connected to the receiver to maintain the color coding (both connectors are the same mechanically).


Step 3
Any excess fiber protruding from the connector end may be cut off; however, the trimmed fiber should extend at least 1.5 mm ( 0.06 in .) from the connector end.
Insert the connector fully into the polishing fixture with the connector end protruding from the bottom of the fixture.
For high volume connectoring use the hardened steel HFBR-4596 polishing fixture.
Note: The four dots on the bottom of the polishing fixture are wear indicators. Replace the polishing fixture when any dot is no longer visible.
Place the 600 grit abrasive paper on a flat smooth surface. Pressing down on the connector, polish the fiber and the connector until the connector is flush with the end of the polishing fixture. Wipe the connector and fixture with a clean cloth or tissue.

## Step 4

Place the flush connector and polishing fixture on the dull side of the 3 micron pink lapping film and continue to polish the fiber and connector for approximately 25 strokes. The fiber end should be flat, smooth and clean.

The cable can now be used.
Note: Use of the pink lapping film fine polishing step results in approximately a $2 d B$ improvement in coupling performance of either a transmitter-receiver link or a bulkhead/splice over 600 grit polish alone. This polish is comparable to Hewlett-Packard's factory polish. The fine
 polishing step may be omitted where an extra $2 d B$ of optical power is not essential as with short link lengths.

Mechanical Dimensions All dimensions in $m m$ (inchess.
All dimensions $\pm 0.25 \mathrm{~mm}$ unless otherwise specified.

HFBR-15XX (GRAY OR BLACK)/250X (BLUE) MODULE


BULKHEAD FEEDTHROUGH WITH TWO HFBR-4501/4511 CONNECTORS



CONNECTORS DIFFER ONLY IN COLOR

HFBR-4505 (GRAY)/4515 (BLUE) BULKHEAD FEEDTHROUGH


BULKHEAD FEEDTHROUGHS DIFFER ONLY IN COLOR


Simplex
Duplex


HFBR-4596 HARDENED STEEL POLISHING FIXTURE




## Features

- LOW COST TRANSMITTERS AND RECEIVERS
- HIGH SPEED TRANSMITTERS:

Typical Rise/Fall Time of 4.0 ns

- CHOICE OF TWO RECEIVERS: 5 MBd TTL/CMOS Compatible Output 25 MHz Analog Output (50 MBd Data Rate)
- GUARANTEE WITH ANY OF THE FOLLOWING FIVE FIBER SIZES: $100 / 140 \mu \mathrm{~m}, 85 / 125 \mu \mathrm{~m}$, $62.5 / 125 \mu \mathrm{~m}, 50 / 125 \mu \mathrm{~m}$, or $200 \mu \mathrm{~m}$ PCS
- AUTO-INSERTABLE DUAL-IN-LINE PACKAGE No Mounting Hardware Required Wavesolderable and Corrosion Resistant
- OPTICAL PORT INTERFACES DIRECTLY WITH STANDARD SMA CONNECTOR
No Receptacle Required
- COLOR CODED PACKAGE
- WIDE OPERATING TEMPERATURE RANGE: $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$


## Applications

- COMPUTER TO PERIPHERAL LINKS
- LOCAL AREA NETWORKS
- PBXLINKS
- COMPUTER MONITOR LINKS
- VIDEO LINKS
- PROCESS AND NUMERICAL CONTROL LINKS
- FACTORY DATA HIGHWAYS
- SUITABLE FOR TEMPEST DATA


## Selection Guide

| Page | Description |
| :--- | :--- |
| $4-27$ | HFBR-1402/1404 Transmitters |
| $4-31$ | HFBR-2402 5 MBd TTL Receiver |
| $4-33$ | HFBR-2404 25 MHz Analog Receiver |
| $4-35$ | 5 MBd Logic Link Design |
| $4-38$ | 30750 MBd Logic Link Design |
| $4-40$ | HFBR-0422 50 MBd Evaluation Board |



## Description

The HFBR-0400 series of components is designed to provide cost effective, high performance fiber optic communication links for computer and industrial applications. Their intended use is primarily on printed circuit boards for inter/intra system links using glass core or Plastic Coated Silica (PCS) fiber with standard SMA style connectors. There are currently four components in the HFBR-0400 family: HFBR-1402 Standard Transmitter, HFBR-1404 High Performance Transmitter, HFBR-2402 5 MBd TTL Receiver, and HFBR-2404 25 MHz Analog Receiver. Distances to 2.5 kilometres at data rates up to 5 MBd are achievable using the HFBR1402/1404 Transmitter and the HFBR-2402 receiver. For data rates above 5 MBd , the HFBR-2404 Receiver should be used. Although the HFBR-2404 is an analog receiver, it is easily made compatible with digital systems for operations up to 50 MBd using the support circuit described inside the datasheet.

# HIGH SPEED LOW COST <br> FIBER OPTIC TRANSMITTER 

HFBR-1402 HFBR-1404

The HFBR-1402/1404 Fiber Optic Transmitter contains a planar 820 nm GaAIAs emitter capable of efficiently launching optical power into five different optical fiber sizes: $100 / 140 \mu \mathrm{~m}, 50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}, 85 / 125 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$ PCS. This allows the designer flexibility in choosing the fiber size. The HFBR-1402/1404 is designed to operate with the Hewlett-Packard HFBR-2402 and HFBR-2404 Fiber Optic Receivers.

The HFBR-1402/1404 transmitter's high coupling efficiency allows the emitter to be driven at low current levels resulting in low power consumption and increased reliability of the transmitter. The HFBR-1402 Standard Transmitter typically can couple -11.5 dBm of optical power into $100 / 140 \mu \mathrm{~m}$ HFBR- 3000 series fiber cable. It is ideal for large size fiber such as $85 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, and $200 \mu \mathrm{~m}$ PCS. The HFBR-1404 High Performance Transmitter is optimized for small size fiber and typically can launch -17.5 dBm optical power into $50 / 125 \mu \mathrm{~m}$ fiber and -12 dBm into $62.5 / 125 \mu \mathrm{~m}$ fiber. The high power level is also useful for systems where star couplers, taps, or inline connectors create large fixed losses.

## Absolute Maximum Ratings

| Parameter |  | Symbol | Min. | Max. | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | Ts | -55 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature |  | TA | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Soldering Cycle | Temp. |  |  | $+260$ | ${ }^{\circ} \mathrm{C}$ |  |
|  | Time |  |  | 10 | sec |  |
| Forward Input Current | Peak | IFPK |  | 70 | mA |  |
|  | DC | IfDC |  | 70 | mA |  |
| Reverse input Voltage |  | VBR |  | 1.8 | V |  |

Consistent coupling efficiency is assured by the doublelens optical system (Figure 1). Power coupled into any of the five fiber types varies less than 5 dB from part to part at a given drive current and temperature. The benefit of this is reduced dynamic range requirements on the receiver.
The HFBR-1402/1404 transmitter is housed in a low cost dual-in-line package that is made of high strength, heat resistant, chemical resistant, and UL V-O flame retardanit plastic. The optical port is color coded to distinguish transmitters and receivers.

The package is designed for auto-insertion and wave soldering so it is ideal for high volume production applications.
Recommended Operating Conditions

| Parameter |  | Symbol | Min. | Max. | Unit | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Forward <br> Input <br> Current | Peak | $I_{\text {IFPK }}$ |  | 60 | mA |  |
|  | DC | IFDC |  | 60 | mA | Note 1 |

HFBR-1402/1404 TRANSMITTER

## Mechanical Dimensions



Electrical/Optical Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

| Parameter | Symbol | Min. | Typ. ${ }^{[2]}$ | Max. | Units | Conditions | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forward Voltage | $V_{F}$ | 1.58 | 1.80 | 2.19 | $\checkmark$ | $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$ | Fig. 2 |
| Forward Voltage <br> Temperature Coefficient | $V_{F} / T$ |  | -0.86 | , | $\mathrm{mV} t^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$ | Fig. 2 |
| Reverse Input Voltage | $V_{B R}$ | 1.8 | 3.8 |  | $\checkmark$ | $\mathrm{f}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |  |
| Peak Emission Wavelength | $\lambda \rho$ |  | 820 |  | nm |  | Fig. 5 |
| Diode Capacitance | $\mathrm{C}_{\text {T }}$ |  | 145 |  | pF | $V=0 . \mathrm{f}=1 \mathrm{MHz}$ |  |
| Optical Power | $\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$ |  | -0.016 |  | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$ |  |
| Thermal Resistance | ${ }^{()_{J}{ }^{\text {a }} \text { / }}$ |  | 240 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  | Note 3 |
| Numerical Apecture IHFBR-1402: | NA 1402 |  | . 49 |  |  |  |  |
| Numerical Apecture (HFBR-1404) | $\mathrm{NA}_{1404}$ |  | . 31 |  |  |  |  |
| Optical Port Diameter IHFBR-1402; | $\mathrm{D}_{\mathrm{T}_{1402}}$ |  | 290 |  | $\mu \mathrm{m}$ |  | Note 4 |
| Optical Port Diameter (HFBR-1404: | $\mathrm{DT}_{1402}$ |  | 150 |  | ${ }_{4} \mathrm{~mm}$ |  | Note 4 |

HFBR-1402 Peak Output Optical Power Measured Out of 1m of Cable

| HFBR-3000 Series | $\mathrm{Pr}_{100}$ | -15.0 | $-11.5$ | -10 | dBm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | ${ }^{\prime} /{ }^{\prime}=60 \mathrm{~mA}$ | Notes 5,6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100/140 $\mu \mathrm{m}$ Fiber Cable |  | -16 |  | -9 | dBm | $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| Siecor 100/140 $\mu \mathrm{m}$ or | $\mathrm{P}_{\mathrm{T}_{100}}$ | -17 | -13.5 | -12 | dBm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | Notes 5,6,7 |
| $N A=0.29$ |  | -18 |  | -11 | dBm | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| $85 / 125 \mu \mathrm{~m}$ Cable. | ${ }^{P} \mathrm{~T}_{85}$ | -18.5 | -15.0 | -13.5 | dBm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | Notes 5,6 |
| $\mathrm{NA}=0.26$ |  | -19.5 |  | -12.5 | dBm | $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| 62.5/125 $\mu \mathrm{m}$ Cable. | ${ }^{P} \mathrm{~T}_{62}$ | -20.5 | -16.5 | -15.5 | dBm | $T_{A}=-25^{\circ} \mathrm{C}$ |  |  |
| $\mathrm{NA}=0.28$ |  | -21.5 |  | -14.5 | dBm | $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| $50 / 125 \mu \mathrm{~m}$ Cable, | ${ }^{\mathrm{P}_{50}}$ | -25.4 | -21.9 | -20.4 | dBm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |
| $N A=0.20$ |  | -26.4 |  | -19.4 | dBm | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| $\begin{aligned} & 200 \mu \mathrm{~m} \text { PCS. } \\ & \mathrm{NA}=0.40 \end{aligned}$ | ${ }^{P_{T}}{ }_{200}$ | -10 | -6.5 | -4 | dBm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |
|  |  | -11 |  | -3 | dBm | $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |

HFBR-1404 Peak Output Optical Power Measured Out of 1m of Cable

| $50 / 125 \mu \mathrm{~m}$ Cable, | $\mathrm{P}_{\mathrm{T}_{50}}$ | -20 | $-17.5$ | -15 | dBm | $T_{A}=25^{\circ} \mathrm{C}$ | $I_{F}=60 \mathrm{~mA}$ | Notes 5,6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N A=0.20$ |  | -21 |  | -14 | dBm | $T_{F}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| 62.51125 $\mu \mathrm{m}$ Cable. | ${ }^{P} \mathrm{~T}_{62}$ | $-15.1$ | $-12.2$ | $-10.1$ | dBm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  |
| $N A=0.28$ |  | $-16.1$ |  | -9.1 | dBm | $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| $85 / 125 \mu \mathrm{~m}$ Cable, | ${ }^{\text {PT }} 85$ | $-13.1$ | $-10.6$ | $-8.1$ | dBm | $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ |  |  |
| $\mathrm{NA}=0.26$ |  | $-14.1$ |  | $-7.1$ | dBm | $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| Siecor $100 / 140 \mu \mathrm{~m}$ or Equivalent | $\mathrm{P}_{\mathrm{T}_{100}}$ | $-11.6$ | $-9.1$ | $-6.6$ | dBm | $T_{A}=25^{\circ} \mathrm{C}$ |  | Notes 5,6,7 |
| $N A=0.29$ |  | $-12.6$ |  | $-5.6$ | dBm | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| HFBR-3000 | ${ }^{\text {PT }} \mathrm{T}_{100}$ | $-9.6$ | $-7.1$ | -4.6 | dBm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | Notes 5.6 |
| 100/140 $\mu \mathrm{m}$ Cable |  | $-10.6$ |  | -3.6 | dBm | $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| 200 mmPCS , | $\mathrm{P}_{\mathrm{T}_{200}}$ | $-4.6$ | $-3.1$ | 1.4 | aBm | $T_{A}=25^{\circ} \mathrm{C}$ |  |  |
| $\mathrm{NA}=0.40$ |  | -5.6 |  | 2.4 | dBm | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the infrared output is radiologically safe: however, when
viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

## Dynamic Characteristics

| Parameter | Symbol | Min. | Typ. ${ }^{[2]}$ | Max. | Units | Conditions | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rise Time, Fall Time (10 to 90\%) | $t_{r}, t_{f}$ |  | 4.0 | 6.5 | nsec | $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$ <br> No pre-bias | Note 1 <br> Fig. 6 |
| Propagation Delay LOW to HIGH | tplif |  | 10 |  | nsec | $\mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}$ |  |
| Propagation Delay HIGH to LOW | tPHL |  | 8 |  | nsec | $\mathrm{IFPK}^{\text {F }}=60 \mathrm{~mA}$ |  |

Notes:

1. Pre-bias is recommended if $I_{F}<30 \mathrm{~mA}$, see recommended drive circuit in Figure 4.
2. Typical data at $T_{A}=25^{\circ} \mathrm{C}$.
3. Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit board.
4. $D_{T}$ is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.
5. Measured with a large area detector at the end of 1 metre cable, with an OFTI series NOFC precision ceramic ferrule. This approximates a standard test connector.
6. When changing $\mu \mathrm{W}$ to dBm , the optical power is referenced to $1 \mathrm{~mW}(1000 \mu \mathrm{~W})$. Optical Power $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
7. The fiber $N / A$ is 0.29 measured at the end of a 2.0 metre length, the $N / A$ being defined as the sine of the half angle determined by the $6.5 \%$ of peak intensity point.

## Recommended Drive Circuit

Rise and fall times can be improved by using a pre-bias current and "speed-up" capacitor. A pre-bias current will significantly reduce the junction capacitance and will not change the extinction ratio appreciably. The recommended TTL compatible drive circuit in Figure 4 using a speed-up capacitor will provide typical rise and fall times of 4 ns . The following set of equations will give the component values for the circuit for different transmitter drive current:

$$
\begin{aligned}
R_{y} & =\frac{\left(V_{C C}-V_{F}\right)+3.2\left(V_{C C}-V_{F}-1.4 V\right)}{I_{F O N}} \\
R_{x} & =\left(\frac{R_{y}}{3.2}-10 \Omega\right) \\
R_{x_{1}} & =\frac{R_{x}+10 \Omega}{2} \\
R_{x_{2}} & =R_{x_{1}}-10 \Omega \\
C & =\frac{2.0 n s e c}{R_{x_{1}}}
\end{aligned}
$$

Example: For $\mathrm{I}_{\mathrm{FON}}=27 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}}$ can be obtained from Figure $2(=1.7 \mathrm{~V})$.

$$
\begin{aligned}
\mathrm{R}_{\mathrm{y}} & =\frac{(5 \mathrm{~V}-1.7 \mathrm{~V})+3.2(5 \mathrm{~V}-1.7 \mathrm{~V}-1.4 \mathrm{~V})}{27 \mathrm{~mA}} \\
& =\frac{3.3 \mathrm{~V}+6.1 \mathrm{~V}}{27 \mathrm{~mA}}=348 \Omega \\
\mathrm{R}_{\mathrm{x}} & =\left(\frac{348 \Omega}{3.2}\right)-10 \Omega=98.8 \Omega
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{x}_{1}} & =\frac{98.8 \Omega+10 \Omega}{2}=54.4 \Omega \\
\mathrm{R}_{\mathrm{x}_{2}} & =54.4-10=44.4 \Omega \\
\mathrm{C} & =\frac{2 \mathrm{nsec}}{\mathrm{R}_{\mathrm{x}_{1}}}=36.8 \mathrm{pF}
\end{aligned}
$$

Selected the following standard value components:

$$
\mathrm{R}_{\mathrm{y}}=330 \Omega \quad \mathrm{R}_{\mathrm{x}_{1}}=56 \Omega \quad \mathrm{R}_{\mathrm{x}_{2}}=47 \Omega \quad \mathrm{C}=39 \mathrm{pF}
$$

## Handling and Design Information

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.
Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon on a cotton swab also works well.
Three pins have been welded to the anode header connection to minimize the thermal resistance from junction to ambient. To further reduce the thermal resistance, the anode trace should be made as large as is consistent with good RF circuit design.


Figure 2. Forward Voltage and Current Characteristics


Figure 3. Normalized Transmitter Output vs. Forward Current



Figure 5. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$


Figure 6. Test Circuit for Measuring $\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$

# 5 MBd LOW COST FIBER OPTIC RECEIVER 

HFBR-2402


The HFBR-2402 Fiber Optic Receiver incorporates a monolithic photo-IC which contains a photodetector and a dc amplifier. An open collector Schottky transistor on the IC provides compatibility with TTL and CMOS logic. This receiver is designed to operate with the Hewlett-Packard HFBR-1402/1404 Fiber Optic Transmitter and 100/140 $\mu \mathrm{m}$, $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}, 85 / 125 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$ PCS fiber optic cable terminated with SMA connectors.

Consistent coupling into the receiver is assured by the lensed optical system (Figure 1). Response does not vary with fiber size.

The HFBR-2402 receiver is housed in a low cost dual-inline package that is made of high strength, heat resistant, chemically resistant, and UL V-0 flame retardant plastic. The optical port is color coded to distinguish transmitters and receivers. EMI immunity is equivalent to the HFBR2202 metal packaged receiver.
The package is designed for auto-insertion and wave soldering so it is ideal for high volume production applications.

## Absolute Maximum Ratings

| Parameter |  | Symbol | Min. | Max. | Units | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | $T_{s}$ | -55 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature |  | $T_{A}$ | -40 | $+85$ | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Soldering Cycle | Temp |  |  | +260 | ${ }^{\circ} \mathrm{C}$ | Note 1 |
|  | Time |  |  | 10 | sec |  |
| Supply Valtage |  | Vcc | -05 | 7.0 | $V$ |  |
| Quput Current |  | 10 |  | 25 | mA |  |
| Output Voltage |  | Vo | -0.5 | 18.0 | V |  |
| Output Collector Power Dissipation |  | Po av |  | 40 | mW |  |

HFBR-2402 RECEIVER


Figure 1.

## Mechanical Dimensions



## Electrical/Optical Characteristics

Fiber sizes with core diameter $\leq 200 \mu \mathrm{~m}$ and $\mathrm{NA} \leq 0.4,4.75 \leq \mathrm{V}_{\mathrm{Cc}} \leq 5.25 \mathrm{~V}$

| Parameter | Symbol | Min. | Typ. ${ }^{[2]}$ | Max. | Units | Conditions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Level Output Current | 1 OH | , | 5 | 250 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{0}=18 \mathrm{~V} \\ & P_{\mathrm{f}}=-40 \mathrm{dBm} \end{aligned}$ |  |
| Low Level Output Voltage | VoL | $\because$ | 0.4 | 0.5 | V | $\begin{aligned} & 10.8 \mathrm{~mA} \\ & \mathrm{PA}_{\mathrm{A}}=-24 \mathrm{dBm} \end{aligned}$ |  |
| High Level Supply Current | CCH |  | 3.5 | 6.3 | mA | $\begin{aligned} & V C \mathrm{CC}=5.25 \mathrm{~V} \\ & \mathrm{PA}_{\mathrm{A}}<-40 \mathrm{dBm} \end{aligned}$ |  |
| Low Level Supply Current | 1004 |  | 6.2 | 10 | mA | $\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & P_{R}=-24 \mathrm{dBm} \end{aligned}$ |  |
| Equivalent N.A. | NA |  | . 50 |  |  |  |  |
| Optical Port Diameter | $\mathrm{D}_{\mathrm{R}}$ |  | 400 |  | $\mu \mathrm{m}{ }^{\prime}$ | " . . . . . . | Note 3 |

Dynamic Characteristics
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified; $4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

| Parameter | Symbol | Min. | Typ. ${ }^{[2]}$ | Max. | Units | Conditions | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Input Power Level Logic HIGH | PRH |  |  | $\begin{gathered} -40 \\ 0.1 \end{gathered}$ | $\begin{gathered} \mathrm{dBm} \\ \mu \mathrm{~W} \end{gathered}$ | $\lambda p=820 \mathrm{~nm}$ | Note 4 |
| Peak Input Power Level Logic LOW | PRL | -25.4 |  | -11.2 | dBm | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ & 1 O L=8 \mathrm{~mA} \end{aligned}$ | Note 4 |
|  |  | 2.9 |  | 76 | $\mu \mathrm{W}$ |  |  |
|  |  | -24.0 |  | -12.0 | dBm | $\begin{aligned} & -40<T_{A}<85^{\circ} \mathrm{C}, V O L=0.5 \mathrm{~V} \\ & 10 \mathrm{~L} .=8 \mathrm{~mA} \end{aligned}$ |  |
|  |  | 4.0 |  | 63 | $\mu \mathrm{W}$ |  |  |
| Propagation Delay LOW to HIGH | tPLHR |  | 65 |  | nsec | $T_{A}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{A}}=-21 \mathrm{dBm}$ Data Rate $=5 \mathrm{MBd}$ $\mathrm{BER}=10^{-9}$ | Note 5 |
| Propagation Delay HIGH to LOW | tphla |  | 49 |  | nsec |  |  |

## Notes:

1. 2.0 mm from where leads enter case.
2. Typical data at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ dc.
3. $D_{R}$ is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
4. Measured at the end of HFBR-3000 Fiber Optic Cable with large area detector.

## Electrical Description

The HFBR-2402 Receiver incorporates an integrated photo IC containing a photodetector and dc amplifier driving an open-collector Schottky output transistor. The HFBR-2402 is designed for direct interfacing to popular logic families. The absence of an internal pull-up resistor allows the opencollector output to be used with logic families such as CMOS requiring voltage excursions much higher than $\mathrm{V}_{\mathrm{CC}}$. Both the open-collector "Data" output (Pin 6) and $\mathrm{V}_{\mathrm{CC}}$ (Pin 2) are referenced to "Com" (Pin 3, 7). The "Data" output allows busing, strobing and wired "OR" circuit configurations. The transmitter is designed to operate from a single +5 V supply. It is essential that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from Pin $2\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to $\operatorname{Pin} 3$ (circuit common) of the receiver.
5. Propagation delay through the system is the result of several sequentially-occurring phemonena. Consequently it is a combination of data-rate-limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time differentials between delays imposed on falling and rising edges.
As the cable length is increased, the propagation delays increase at 5 ns per metre of length. Data rate, as limited by pulse width distortion, is not affected by increasing cable length if the optical power level at the Receiver is maintained.

## Handling and Design Information

When soldering, it is advisable to leave the protective cap of the unit to keep the optics clean.
Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon on a cotton swab also works well.

## 25 MHz LOW COST FIBER OPTIC RECEIVER

HFBR-2404

data formats and data rates up to 50 MBaud. This distance/data rate tradeoff results in increased optical power budget at lower data rates which can be used for additional distance or splices.
The HFBR-2404 receiver is housed in a low cost dual-inline package that is made of high strength, heat resistant, chemically resistant, and UL V-O flame retardant plastic. The optical port is color coded to distinguish transmitters and receivers. EMI immunity is equivalent to the HFBR-2204 metal packaged receiver.

The package is designed for auto-insertion and wave soldering so it is ideal for high volume production applications.

## HFBR-2404 RECEIVER

Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Unil | Reference |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{T}_{5}$ | -55 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Lead <br> Soldering <br> Cycle | Temp. |  |  | +260 | ${ }^{\circ} \mathrm{C}$ | Note 1 |
| Signal Pin Voltage |  |  | 10 | sec |  |  |
| Supply Vottage | VSIGNAL | -0.5 | 1 | V |  |  |



Figure 1.

## Mechanical Dimensions



NOTE: ALL DIMENSIONS IN ALIIMETRES AND (INCHEST,


## Electrical/Optical Characteristics <br> $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \quad 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 ; \quad \mathrm{R}_{\text {LOAD }}=511 \Omega$

Fiber sizes with core dia. $\leq 200$ microns, and N.A. $\leq 0.4$ unless otherwise specified.

| Parameter | Symbol | Min. | Typ ${ }^{[5]}$ | Max. | Unit | Conditions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Responsivitity | R ${ }_{\text {P }}$ | 5.1 | 7 | 10.9 | mV ¢ $\mu \mathrm{W}$ | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \text { at } 820 \mathrm{~nm} \end{aligned}$ |  |
|  |  | 4.6 |  | 12.3 | $\mathrm{mV} / \mu \mathrm{W}$ | $-40 \leq T_{A} \leq+85^{\circ} \mathrm{C}$ |  |
| RMS Output Noise Voltage | VNo |  | . 30 | . 36 | mV | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & P_{\mathrm{R}}=0 \mu \mathrm{~W} \end{aligned}$ |  |
|  |  |  |  | . 43 | mV | $\begin{aligned} & -40 \leq T_{A} \leq 85^{\circ} \mathrm{C} \\ & P_{R}=0 \mu \mathrm{~W} \end{aligned}$ |  |
| Input Power | Ph |  |  | -12.6 | dBm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | Note 2 |
|  |  |  |  | 55 | $\mu \mathrm{W}$ |  |  |
|  |  |  |  | -14 | dBm | $-40 \leq T_{A} \leq 85^{\circ} \mathrm{C}$ |  |
|  |  |  |  | 40 | ${ }_{\mu} \mathrm{W}$ |  |  |
| Output Impedance | $\mathrm{Z}_{0}$ |  | 20 |  | n | $\begin{aligned} & \text { Test Frequency }= \\ & 20 \mathrm{MHz} \end{aligned}$ |  |
| DC Output Voltage | Vode |  | . 7 |  | V | $\mathrm{P}_{\mathrm{f}}=0 \mu \mathrm{~W}$ | Note 3 |
| Power Supply Current | ICC |  | 3.4 | 6.0 | mA | $\mathrm{R}_{\text {LOAD }}=\infty$ |  |
| Equivalent N.A. | NA |  | . 35 |  |  |  |  |
| Equivalent Diameter | $\mathrm{DR}_{R}$ |  | 250 |  | $\mu \mathrm{m}$ |  | Note 4 |
| Equivalent Optical Noise |  |  | -43.7 | -40,3 | dBm |  |  |
| Input Power | $\mathrm{P}_{\mathrm{N}}$ |  | . 042 | . 094 | $\mu \mathrm{W}$ |  |  |

## Dynamic Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \leq \mathrm{V}_{C C} \leq 5.25 ; \quad$ RLOAD $=511 \Omega$, CLOAD $=13 \mathrm{pF}$ unless otherwise specified

| Parameter | Symbol | Min. | Typ. ${ }^{[5]}$ | Max. | Units | Conditions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rise/Fall Time, $10 \%$ to $90 \%$ | $t_{\text {r }}, \mathrm{tf}_{f}$ |  | 14 | 19.5 | ns , | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{P}_{\mathrm{A}}=10 \mu \mathrm{~W} \text { Peak } \end{aligned}$ | Note 6 |
|  |  |  |  | 26 | ns | $-40 \leq T_{A} \leq 85^{\circ} \mathrm{C}$ |  |
| Pulse Width Distortion | $\mathrm{tphi}^{-}$- tah |  |  | 2 | ns | $\mathrm{P}_{\mathrm{R}}=40 \mu$ W Peak |  |
| Overshoot |  |  | 4 |  | \% | $T_{A}=25^{\circ} \mathrm{C}$ | Note 7 |
| Bandwidth |  |  | 25 |  | MHz |  |  |
| Power Supply <br> Rejection Ratio (Referred to Output | PSRR |  | 50 |  | dB | at 2 MHz | Note 8 |

## Notes:

1. 2.0 mm from where leads enter case.
2. If $\mathrm{P}_{\mathrm{R}}>40 \mu \mathrm{~W}$, then pulse width distortion may increase. At Pin $=80 \mu \mathrm{~W}$ and $T_{A}=85^{\circ} \mathrm{C}$, some units have exhibited as much as 100 ns pulse width distortion.
3. $V_{O U T}=V_{O D C}-\left(R_{P} \times P_{R}\right)$.
4. $D_{R}$ is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
5. Typical specifications are for operation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
6. Input optical signal is assumed to have $10 \%-90 \%$ rise and fall times of less than 6 ns .
7. Percent overshoot is defined as: $\quad \frac{V_{P K}-V_{100} \%}{V_{100}} \times 100 \%$
8. Output referred P.S.R.R. is defined as $20 \log \left(\frac{V_{\text {POWER SUPPLY RIPPLE }}}{\text { VOUT RIPPLE }}\right)$

## Electrical Description

The HFBR-2404 Fiber Optic Receiver contains a PIN photodiode and low noise transimpedance pre-amplifier hybrid circuit with an inverting output (see note 3). The HFBR2404 receives an optical signal and converts it to an analog voltage. The output is a buffered emitter-follower. Because
the signal amplitude from the HFBR-2404 Receiver is much larger than from a simple PIN photodiode, it is less susceptible to EMI, especially at high signal rates.
The frequency response is typically dc to 25 MHz . Although the HFBR-2404 is an analog receiver, it is easily made compatible with digital systems (see 50 MBaud Logic Link Design for more information).

It is essential that a bypass capacitor ( $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from Pin $6\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to Pin 3,7 (circuit common) of the receiver. Total lead length between both ends of the capacitor and the pins should be less than 20 mm .

## Handling and Design Information

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.
Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressd air often is sufficient to remove particles of dirt; methanol or Freon on a cotton swab also works well.

## 5 MBaud Logic Link Design

The HFBR-1402/1404 Transmitter and the HFBR-2402 Receiver can be used to design fiber optic data link for distances to 2.5 Kilometers at rates up to 5 MBaud . The components are compatible with standard SMA style connector and can operate with $100 / 140 \mu \mathrm{~m}$ fiber cable (such as HFBR-3000/3100 series), or other fiber sizes such as $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}$, or $200 \mu \mathrm{~m}$ PCS. The HFBR-1402/1404 Transmitter contains a high speed GaAlAs emitter operating at a wavelength of 820 nm . It is easily identified by the light grey color optical port. The HFBR-2402 Receiver incorporates a photo IC containing a photodetector and dc amplifier. An open collector Schottky transistor on the IC provides TTL/CMOS compatible output. The receiver is also easily identified by the dark grey color optical port.

## System Design Considerations

The HFBR-1402/2402 Logic Link is guaranteed to work with HFBR-3000 $100 / 140 \mu \mathrm{~m}$ fiber optic cable over the entire range of 0 to 625 metres at a data rate of dc to 5 MBd , with arbitrary data format and typically less than $25 \%$ pulse width distortion, if the Transmitter is driven with $\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$, $R_{1}=89 \Omega$. If it is desired to economize on power or achieve lower pulse distortion, then a lower drive current ( $I_{F}$ ) may be used. The following example will illustrate the technique for optimizing $\mathrm{I}_{\mathrm{F}}$.
EXAMPLE: Maximum distance required $=400$ metres. From Figure 2 the worst case drive current $=20 \mathrm{~mA}$. From the Transmitter data $\mathrm{V}_{\mathrm{F}}=2.33 \mathrm{~V}$ (max.).

$$
R_{1}=\frac{V_{C C}-V_{F}}{I_{F}}=\frac{5-2.33 V}{20 m A}=134 \Omega
$$

The optical power margin between the typical and worst case curves (Figure 2) at 400 metres is 6.6 dB . To calculate the worst case pulse width distortion at 400 metres, see Figure 5. The power into the Receiver is $\mathrm{P}_{\mathrm{RL}}+6.6 \mathrm{~dB}=$ -17.4 dBm . Therefore, the typical distortion is 40 ns or $20 \%$ at 5 MBd .

## Typical Circuit Configuration

NOTE:
IT IS ESSENTIAL THAT A BYPASS CAPACITOR $0.01 \mu \mathrm{~F}$ TO $0.1 \mu \mathrm{~F}$ CERAMICI BE CONNECTED FROM PIN 2 TO PIN 7 OF THE RECIEVER. TOTAL LEAD LENGTH BETWEEN BOTH ENDS OF THE CAPACITOR AND THE PINS SHOULD NOT EXCEED 20 mm .

## CABLE SELECTION

The link performance specifications on the above example are based on using the HFBR-3000/HFBR-3100 cable/ connector assemblies. These cables contain glass-clad silica fibers with a $100 \mu \mathrm{~m}$ core diameter and $140 \mu \mathrm{~m}$ cladding diameter. This fiber type is now a user accepted standard for local data communications links (RS-458, Class I, Type B). The HFBR-1402/4 Transmitter and HFBR-2402 Receiver can be used with HP's $100 / 140 \mu \mathrm{~m}$ fiber, or other fiber sizes such as $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}, 85 / 125 \mu \mathrm{~m}$, or $200 \mu \mathrm{~m}$ PCS. Before selecting an alternate fiber type, several parameters need to be carefully evaluated.
The attenuation ( $\mathrm{dB} / \mathrm{km}$ ) of the selected fiber, in conjunction with the amount of optical power coupled into it will determine the achievable link length. The parameters that will significantly affect the optical power coupled into the fiber are as follows:
a. Fiber Core Diameter. As the core diameter is increased, the optical power coupled increases, leveling off at about $250 \mu \mathrm{~m}$ diameter.
b. Numerical Aperture (NA). as the NA is increased, the optical power coupled increases, leveling off at an NA of about 0.34 .
c. Index Profile ( $\alpha$ ). The index profile parameter of fibers varies from 2 (fully graded index) to infinite (step index). Some gains in coupled optical power can be achieved at the expense of bandwidth, when $\alpha$ is increased.
In addition to the optical parameters, the environmental performance of the selected fiber/cable must be evaluated. Finally, the ease of installing connectors on the selected fiber/cable must be considered.

## SMA STYLE CONNECTORS

The HFBR-1402/4 Transmitter with HFBR-2402 Receiver are compatible with either the Type A or Type B SMA style fiber optic connector (see Figure 7). The basic difference between the two connectors is the plastic half-sleeve on the stepped ferrule tip of the Type B connector. This step provides the capability to use a full length plastic sleeve to ensure good alignment of two connectors for an inline splice. The HFBR-300/HFBR-3100, OPT 002 series connectored cable utilizes the Type A connector system.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TRANSMITTER |  |  |  |  |  |
| Ambient Temperature | $\mathrm{T}_{\text {A }}$ | -40 | $+85$ | ${ }^{\circ} \mathrm{O}$ |  |
| Peak Forward Input Current | IF.PK |  | 60 | mA |  |
| DC Forward Input Current | IFDC |  | 60 | mA |  |
| RECEIVER |  |  |  |  |  |
| Ambient Temperature | TA | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | VCC |  | 5.25 | V |  |
| Fan Out ITTL | N |  | 5 |  | Note 1, Fig. 1 |

## System Performance $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

| Parameter | Symbol | Min. | Typ. ${ }^{[2]}$ | Max. | Units | Conditions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Optical Power Budget w/50/125 $\mu \mathrm{m}$ Fiber | $\mathrm{OPB}_{50}$ | 3 | 8.5 |  | $d \mathrm{~B}$ | HFBR - 1404 Transmitter $\mathrm{w} / 50 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.20$ |  |
| Optical Power Budget w/62.5/125 $\mu \mathrm{m}$ Fiber | $\mathrm{OPB}_{62.5}$ | 8 | 13.8 |  | dB | HFBA - 1404 Transmitter $\mathrm{w} / 62.5 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.28$ |  |
| Optical Power Budget $\mathrm{w} / 85 / 125 \mu \mathrm{~m}$ Fiber | $\mathrm{OPB}_{85}$ | 4.5 | 11 |  | dB | HFBR - 1402 Transmitter $\mathrm{w} / 85 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.26$ |  |
| Optical Power Budget w/100/140 $\mu \mathrm{m}$ Fiber | $\mathrm{OPB}_{100}$ | 8 | 14.5 |  | dB | HFBR - 1402 Transmitter w/HFBR-3000 Cable |  |
| Optical Power Budget W/200 $\mu \mathrm{m}$ PCS | $\mathrm{OPB}_{200}$ | 13 | 19 |  | dB | HFBR - 1402 Transmitter $\mathrm{w} / 200 \mu \mathrm{mPCS}, \mathrm{NA}=0.40$ |  |
| Data Rate Synchronous |  | dc |  | 5 | MBaud |  | Note 3 |
| Asynchronous |  | dc |  | 2.5 | MBaud |  | Note 3, Fig. 5 |
| Propagation Delay <br> LOW to HIGH | $\mathrm{tplH}^{\text {P }}$ |  | 72 |  | nsec | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & P_{R}=-21 \mathrm{dBm} \end{aligned}$ | Fig. 4,5,6 |
| Propagation Delay HIGH to LOW | tphis |  | 46 |  | nsec |  |  |
| System Pulse Width Distortion | $\mathrm{tPLH}^{\text {- }}$ PHL |  | 25 |  | nsec | $l=1.5$ metre |  |
| Bit Error Rate | BER |  |  | $10^{-9}$ |  | Data Rate $\leq 5 \mathrm{MBaud}$ $P_{R}>-24 \mathrm{dBm}(4 \mu \mathrm{~W})$ |  |

## Notes:

1. 8 mA load $(5 \times 1.6 \mathrm{~mA}), R_{\mathrm{L}}=560 \Omega$.
2. Typical data at $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ dc.
3. Synchronous data rate limit is based on these assumptions: (a) $50 \%$ duty factor modulation. e.q. Manchester I or BiPhase (Manchester II); (b) continous data; (c) PLL (Phase Lock Loop) demodulation; (d) TTL threshold.
Asynchronous data rate limit is based on these assumptions: (a) NRZ data; (b) arbitrary timing - no duty factor restriction; c) TTL threshold.

The EYE pattern describes the timing range within which there is no uncertainty of the logic state, relative to a specific threshold, due to either noise or intersymbol (prop. delay) effects.


Figure 2. HFBR-1402/HFBR-2402 Link Design Limits with $100 / 140 \mu \mathrm{~m}$ Cable (HFBR-3000 Series)


Figure 3. HFBR-1404/HFBR-2402 Link Design Limits with $50 / 125 \mu \mathrm{~m}$ Cable


Figure 4. Propagation Delay through System with One Metre of Cable


Figure 5. Worst-Case Distortion of NRZ EYE-pattern with Pseudo Random Data at $5 \mathrm{Mb} / \mathrm{s}$. (see note 10).


Figure 6. System Propagation Delay Test Circuit and Wave form Timing Definitions

## SMA STYLE CONNECTORS

TYPE A
(Used in HFBR-3000/3100, Option 002 Cable Assemblies).


Figure 7.

## 30/50 MBaud Logic Link Design

The HFBR-1402/1404 Transmitter and the HFBR-2404 Receiver can be used to design fiber optic data link for distances to 2 kilometers at rates up to 50 MBaud . The components are compatible with standard SMA style connector and can operate with 100/140 $\mu \mathrm{m}$ fiber cable (such as HP's HFBR$3000 / 3100$ series), or other fiber sizes such as $50 / 125 \mu \mathrm{~m}$, $62.5 / 125 \mu \mathrm{~m}, 85 / 125 \mu \mathrm{~m}$, or $200 \mu \mathrm{~m}$ PCS.

The HFBR-1402/1404 Transmitter contains a high speed GaAIAs emitter operating at a wavelength of 820 nm . It is easily identified by the light grey color optical port. The HFBR-2404 Receiver contains a discrete PIN photodiode and a preamplifier IC. It is also easily identified by the dark grey color optical port.

Logic compatible signal levels are achieved by addition of low-cost external components. For speed below 30 MBaud, a simple circuit as shown in Figure 1 can be used (for detail of that design, please see the product data sheet for the HFBR-0221/2/3/4 Fiber Optic Transceivers).

For speed beyond 30 MBaud , recommended driver and amplifier circuits are presented in Figure 2. Details of the design are described in the 50 MBaud Transciever Board section. These circuits provide TTL input and complementary TTL ouputs and are available as printed circuit board assembly (the HFBR-0422 Transceiver Board) for evaluation purpose. Figure 4 gives the performance of the HFBR-0422 at 50MBd characterized over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

## System Design Considerations

## optical power budgeting

The HFBR-2404 Fiber Optic Receivers when used with the HFBR-1402/1404 Fiber Optic Transmitters can be operated at a signalling rate of more than 50 MBd over a distance greater than 2000 metres (assuming $6 \mathrm{~dB} / \mathrm{km}$ cable attenuation). For shorter transmission distances, power consumption can be reduced by decreasing Transmitter drive current. At a lower data rate, the transmission distance may be increased by applying bandwidth-filtering at the output of the HFBR-2404 Receiver; since noise is reduced as the square root of the bandwidth, the sensitivity of the circuit is proportionately improved provided these two conditions are met:
a. input-referred noise of the follow-on circuit is well below the filtered noise of the Receiver
b. logic comparator threshold is reduced in the same proportion as the noise reduction

As an example, consider a link with a maximum data rate of 10 MBd (e.g., $5 \mathrm{Mb} / \mathrm{s}$ Manchester); this requires a 3 dB bandwidth of only 5 MHz . For this example (See Figure 1) the input-referred rms noise voltage of the follow-on circuit is 0.03 mV . The equivalent optical noise power of the complete receiver ( $\mathrm{P}_{\mathrm{NO}}$ ) is given by:

$$
\left.\begin{array}{rl}
\quad P_{\mathrm{NO}}=\left[\left(\mathrm{V}_{\mathrm{NO}}\right)^{2}(\mathrm{~B} / \mathrm{Bo})+\left(\mathrm{V}_{\mathrm{NI}}\right)^{2}\right]^{0.5} / \mathrm{R}_{\mathrm{P}} \\
\mathrm{~V}_{\mathrm{NO}} & =\text { rms output noise voltage of the HFBR-2404 } \\
\quad \text { with no bandwidth filtering }
\end{array}\right\}
$$

$\mathrm{B}_{\mathrm{O}}=$ unfiltered 3dB bandwidth of the HFBR-2404 (25 MHz )
$R_{P}=$ optical-to-electrical responsivity $(\mathrm{mV} / \mu \mathrm{W})$ of the HFBR-2404.

Note that noise adds in an rms fashion, and that the square of the rms noise voltage of the HFBR-2404 is reduced by the bandwidth ratio, $\mathrm{B} / \mathrm{Bo}$.
From the receiver data (Electrical/Optical Characteristics) taking worst-case values, and applying NO bandwidth filtering ( $B / B o=1$ ):

$$
\mathrm{P}_{\mathrm{NO}}=\frac{\left|(0.43)^{2}+(0.03)^{2}\right|^{0.5} \mathrm{mV}}{4.6 \mathrm{mV} / \mu \mathrm{W}}=0.094 \mu \mathrm{~W} \text { or }-40.3 \mathrm{dBm}
$$

To ensure a bit error rate less than $10^{-9}$ requires the signal power to be 12 times larger ( +11 dB ) than the rms noise as referred to the Receiver input. The minimum Receiver input power is then:

$$
P_{\mathrm{RMIN}}=\mathrm{P}_{\mathrm{NO}}+11 \mathrm{~dB}=-29.3 \mathrm{dBm}
$$

With the application of a 5 MHz low-pass filter, the band width ratio becomes:

$$
\mathrm{B} / \mathrm{B}_{\mathrm{O}}=5 \mathrm{MHz} / 25 \mathrm{MHz}=0.2
$$

Note that 25 MHz should be used for the total noise bandwidth of the HFBR-2404. Inserting this value of the bandwidth ratio in the expressions for $\mathrm{P}_{\text {NO }}$ and $\mathrm{P}_{\text {RMIN }}$ above yields the results:

$$
\mathrm{P}_{\mathrm{NO}}=0.042 \mu \mathrm{~W} \text { or }-43.8 \mathrm{dBm} \text { and } \mathrm{PRMIN}=-32.8 \mathrm{dBm}
$$

Given the HFBR-1402 Transmitter optical power $\mathrm{P}_{\mathrm{T}}=-16$ dBm at $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$, and allowing a 3 dB margin, a minimum optical power budget of 13.8 dB is obtained:

$$
[-16 \mathrm{dBm}-3 \mathrm{~dB}-(-32.8 \mathrm{dBm})]=13.8 \mathrm{~dB}
$$

Using $8 \mathrm{~dB} / \mathrm{km}$ optical fiber, this translates into a minimum link length of 1725 metres (typical link power budget for this configuration is approximately 17.2 dB or 3130 metres with $5.5 \mathrm{~dB} / \mathrm{km}$ fiber).

## BANDWIDTH

The bandwidth of the HFBR-2404 is typically 25 MHz . Over the entire temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, the rise and fall times vary in an approximately linear fashion with temperature. Under worst case conditions, $t_{r}$ and $t_{f}$ may reach a maximum of 26 ns , which translates to a 3 dB bandwidth of:

$$
f_{3 \mathrm{~dB}} \simeq \frac{350}{\mathrm{t}_{\mathrm{r}}}=\frac{350}{26 \mathrm{~ns}}=13.5 \mathrm{MHz}
$$

The receiver response is essentially that of a single-pole system, rolling off at $6 \mathrm{~dB} /$ octave. In order for the receiver to operate up to 50 MBd even though its worst case 3 dB bandwidth is 13.5 MHz , the received optical power must be increased by 3 dB to compensate for the restricted receiver transmission bandwidth.

## PRINTED CIRCUIT BOARD LAYOUT

When operating at data rates above 10 MBd , standard PC board precautions should be taken. Lead lengths greater than 20 mm should be avoided whenever possible and a ground plane should be used. Although transmission line techniques are not required, wire wrap and plug boards are not recommended.

## 30 MBaud Transceiver Circuit

Figure 1 shows the circuit diagram for a 30 MBaud link designed for $50 \%$ duty cycle operation. The transmitter circuit uses $1 / 275451$ positive AND driver operating operating in conjunction with an HFBR-1402 fiber optic transmitter. The transmitter drive current is determined by R2 and R3. CR1, R3 and C3 are used to speed up the edges of the optical waveform.

Th receiver circuit uses the HFBR-2404 fiber optic receiver, followed by an LM-733 video amplifier and an LM-360 highspeed comparator. The resistors R8, R9, R10, R11 provide 200 mV of hysteresis. The gain of the post amplifier LM-733 is adjusted by resistor R 7 to provide a minimum of 400 mV output, which corresponds to the minimum receiver optical power input.
For additional application information, see the product data sheet for the HFBR-0221/2/3/4 Fiber Optic Transceivers product.


Figure 1. 30 MBaud Transceiver Circuit


## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Supply Voltage | +VCC | 4.75 | 5.25 | V |
| Operating <br> Te <br> Temperature | TA | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |
| Duty Factor | DF | 33 | 67 | $\%$ |
| Data Rate Range |  | 0.05 | 50 | MBd |

## Electrical/Optical CharacteristicS $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise specified

(Recommended operating conditions for transceiver for 50 MBd apply, unless otherwise specified)

| Parameter | Symbol | Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Optical Power Budget | OPB | When used with HFBR-3000 Fiber Cable/Connectors, Data Rate $=50 \mathrm{MBd}$ $B E R=10^{-9}$ | 12.0 | 18 |  | dB |
| Pulse Distortion | TPLH- $\mathrm{EPHL}^{\text {che }}$ |  |  | 7 | 12.5 | ns |
| Data Output Response Time ${ }^{[2]}$ | $\mathrm{t}_{\mathrm{r}}$ |  |  | 3 |  | ns |
|  | $\mathrm{t}_{4}$ |  |  | 2 |  |  |
| Transceiver Propagation Delay ${ }^{[3]}$ | $\begin{aligned} & \mathrm{tPLH}, \\ & \mathrm{tPHL} \\ & \hline \end{aligned}$ |  |  | 40 |  | ns |
| Supply Current | ICO |  |  | 210 |  | mA |
| Transmitter Output Optical Power ${ }^{[4]}$ into HFBR-3000 Fiber Cablef Connector Assembly | $\mathrm{P}_{\text {TAV }}$ | 50\% Data | -18.8 | -16 |  | dBm |
| Receiver Optical Input Power | $P_{\text {RaV }}$ | $\begin{aligned} & 50 \% \text { Data } \\ & \text { Data Rate }=50 \mathrm{MBa} \end{aligned}$ | -30.8 | -34 | -14 | dBm |
| TTL Gate Fanout |  |  |  |  | 4 |  |

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the infrared output is radiologically safe: however, when viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

## Notes:

1. Operating temperature of HFBR-3000 Fiber Cable/Connector is $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
2. Data Output Response Time is the $10 \%$ to $90 \%$ electrical rise and fall time on PIN 6 (DATA) and PIN 5 (DATA).
3. Transceiver propagation delay is measured by looping the transmitter back on the receiver with one metre of fiber cable. Transceiver propagation delay is the time interval between a signal applied to the DATA IN pad and the signal received at the DATA OUT pad.
4. Measured at the end of one metre of HFBR-3000 Fiber Optic Connector/Cable Assembly with a large area detector and cladding modes stripped ( $N A=0.28$ ) This represents a standard test fiber.
5. Typical specifications are at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. Operating temperature limited by support circuit.


Figure 4. HFBR-0422 Transceiver Power vs. Temperature at 50 MB


Figure 5. HFBR-0422 Receiver Sensitivity


Figure 6. HFBR-0422 Receiver Sensitivity vs. Bit Rate at $10^{-9}$ ) BER)

## Test Set-Up

## Equipment Needed

1. Dual power supply (HP 623613)
2. 100 MHz oscilloscope (HP 1725A)
3. Active oscilloscope probe and probe tip (HP 1120A/ 1122A)
4. $10: 1$ divider for oscilloscope probe (HP 10241A)
5. 50 MHz pulse generator (HP 8082A)
6. Miscellaneous cables and connectors

## Procedure

1. Connect fiber cable and edge card connector to the transceiver board.
2. Adjust the power supply to +5 V . Then connect to the transceiver board as shown below. Take care not to exceed the recommended operating voltage.
3. Adjust the pulse generator for TTL level square wave ( +3 V ) with 5 nsec, edge transition time and then connect to the transceiver board.
4. Use the oscilloscope with the active probe and 10:1 divider to observe the input and output waveforms.


Figure 7.

## Notes:

1. The data out observed through the active probe exhibits overshoot at the rising edge. This overshoot will disappear if the output is loaded to drive a TTL input.
2. Oscilloscope inputs should be terminated into 50 ohms.
3. The active probe should be set on DC for observation of lower data rates. The offset on the active probe should be off.
4. The active probe is used to avoid reflection in the observed signal through impedance matching.
5. If necessary clean the optical port of the fiber connectors with Acetone before connecting them to the transceivers.


Transmitter Circuit


Figure 2. 50 MBaud Transceiver Circuit

## 50 MBaud Transceiver Circuit

Figure 3 shows the circuit diagram for a 50 MBaud link (the HFBR-0422 Transceiver Board). The transmitter side utilizes a 10116 ECL line receiver as an amplifier with hysteresis driving a differential transistor pair, Q1 and Q2. The HFBR1042 LED is switched on and off by the pair with current source Q3 controlling the LED forward current. The shunt switch arrangement demands equal amount of supply currents while switching the HFBR-1402 LED, thus minimizing supply noise generated. 'The input resistor network ( $180 \Omega / 270 \Omega / 810 \Omega$ ) can be deleted for ECL applications and -5.2 V substituted for +5 V operation.

The receiver circuit cascades two 10116 stages to form a post amplifier. The output of the HFBR-2404 is amplified and fed to the 10116 third stage amplifier with hysteresis. The 820 and 220 resistors provide about 75 mV of hysteresis. The setting of the hysteresis affects the overall sensitivity of the receiver. Excessively high hysteresis translates to "wasted" input optical power. Low hysteresis threshold allows noise in the circuit to randomly switch the output logic state when there is no light input. The hysteresis in
the circuit is set on the low side to maximize receiver sensitivity. Increasing the 220 resistances will raise the hysteresis.
The 10 H 350 is an ECL to TTL converter. It can be eliminated for ECL applications and -5.2 V substitued for +5 V operation. Throughout the receiver circuit, proper power supply filtering is critical in order to achieve ultimate performance. The 10116 ECL line receiver used in the +5 V and ground configuration is especially susceptable to noise on the +5 V line.

Figure 3 gives the link configuration and the performance of the HFBR-0422 Transceiver Board and is specified on the next page. Figure 4 shows the transmitter output power versus temperature, Figure 5 shows the receiver sensitivity versus temperature, and Figure 6 gives the receiver sensitivity for different data rates. The test set-up for the transceiver board is shown in Figure 7, and Figure 8 gives the mechanical dimensions of the board. Component list and the circuit board layout for the 50 MBd Transceiver Board are shown in Figure 9 and Figure 10 respectively.

Figure 3. 50 MBaud TTL Duplex Link

## Mechanical Dimensions



Figure 8.

## Components List

| Resistors | Part Description |
| :---: | :---: |
| R1 | Resistor 51.1 Ohm; 1\%; 1/8W |
| R2 | Resistor 0 Ohm; Jumper Wire |
| R3,4,7,8,17,18,22,23 | Resistor 1K Ohm; 1\%; 1/8W |
| R5,6,9,10,15,16,24,25 | Resistor 510 Ohm; 5\%; 1/8W |
| R11, 12, 28, 29 | Resistor 220 Ohm; 5\%; 1/8W |
| R13, 14, 21 | Resistor 820 Ohm; 5\%; 1/8W |
| R19 | Resistor 180 Ohm; 5\%; 1/8W |
| R20 | Resistor 270 Ohm; 5\%; 1/8W |
| R26, 27 | Resistor 100 Ohm; 5\%; 1/8W |
| R30, 35 | Resistor 162 Ohm; 1\%; 1/8W |
| R31, 26 | Resistor 261 Ohm; 1\%; 1/8W |
| R32 | Resistor 560 Ohm; 5\%; 1/8W |
| R33 | Resistor 28.7 Ohm; 1\%; 1/8W |
| R34 | Resistor 10.5 Ohm; 1\%; 1/8W |
| Capacitor | Part Description |
| C1, 3, 5, 7 9, 10, 14, |  |
| 16-19 | Capacitor 0.1 f; 20\%; 50V; ceramic |
| C24-28,31,32,34,36 | Capacitor $0.1 \mu \mathrm{f}$; 20\%; 50V; ceramic |
| C4 | Capacitor 25pf; $5 \%$; 200V; ceramic |
| C6, 8, 20 | Capacitor $.01 \mu \mathrm{f} ; 20 \%$; 100 V ceramic |
| C11, 12, 29, 33 | Capacitor 18pf; 5\%; 200V; ceramic |
| C2, 13, 15, 35, 37 | Capacitor $4.7 \mu$ f; $20 \%$; 35 V ; tantalum |
| C30 | Capacitor $47 \mu \mathrm{f}$; 20\%; 8V; tantalum |


| Inductor | Part Description <br> L1, 2 |
| :--- | :--- |
| L3 | Inductor $2.7 \mu \mathrm{H}$ |, | Diode | Part Description |
| :--- | :--- |
| CR1-6 | Diode 1N5711 |
| CR7 | Diode LM113-1 |
| Transistor | Part Description |
| Q1-3 | Transistor 2N5943 |
| Integrated Circuit | Part Description |
| U1 | IC HFBR-2404 |
| U2, 4 | IC 10116 |
| U3 | IC 10H350 |
| U5 | IC HFBR-1402 |

Figure 9.

## PRINTED CIRCUIT BOARD LAYOUT



For more information on the printed circuit board layout, please contact your HP component sales representative.

Figure 10.

## Features

- DC TO 5 MBAUD DATA RATE
- MAXIMUM LINK LENGTH 625 Metres (Guaranteed) 1600 Metres (Typical)
- TTL/CMOS COMPATIBLE OUTPUT
- MINIATURE, RUGGED METAL PACKAGE
- SINGLE +5V RECEIVER POWER SUPPLY
- INTERNALLY SHIELDED RECEIVER FOR EMI/RFI IMMUNITY
- PCB AND PANEL MOUNTABLE
- LOW POWER CONSUMPTION


## Applications

- EMC REGULATED SYSTEMS (FCC, VDE)
- EXPLOSION PROOF SYSTEMS IN OIL INDUSTRY/CHEMICAL PROCESS CONTROL INDUSTRY
- SECURE DATA COMMUNICATIONS
- WEIGHT SENSITIVE SYSTEMS (e.g. Avionics, Mobile Stations)
- HIGH VOLTAGE ISOLATION IN POWER GENERATION


## Description

The HFBR-1201/2 Transmitter and HFBR-2201/2 Receiver are HFBR-4000/SMA style connector compatible fiber optic link components. Distances to 1600 metres at data rates up to 5 MBaud are achievable with these components and the HFBR-3000/3100 series fiber optic cable assemblies.
A complete evaluation kit is available (HFBR-0200) containing an HFBR-1201 transmitter, HFBR-2201 receiver, HFBR-4201 mounting hardware, 10 m of HFBR-3000 option 001 cable/connector assembly and technical literature.
The HFBR-1201/2 Transmitter contains a high efficiency GaAIAs emitter operating at 820 nm . Consistent coupling

efficiency is assured by factory alignment of the LED with the optical axis of the package. Power coupled into the fiber varies less than 4 dB from part to part at a given temperature and drive current. The benefit of this is reduced dynamic range requirements on the receiver.
The HFBR-2201/2 Receiver incorporates a photo IC containing a photodetector and dc amplifier. An open collector Schottky transistor on the IC provides logic compatibility. The combination of an internal EMI shield, the metal package and an isolated case ground provides excellent immunity to EMI/RFI. For unusually severe EMI/ESD environments, a snap-on metal shield is available. The receiver is easily identified by the black epoxy backfill.
The HFBR-1201 Transmitter and the HFBR-2201 Receiver are compatible with the HFBR-4000 Connector and HFBR3000 series, Option 001 connectored cable. The HFBR-1202 Transmitter and HFBR-2202 Receiver are compatible with SMA style connectors, types $A$ and $B$ (see Figure 12), and HFBR-3000 series, Option 002 connectored cable. HFBR3000 series cable can be ordered with or without connectors. The HFBR-0100 connector assembly kit is available if field installation of HFBR-4000 connectors is desired.

## Mechanical Dimensions

## HFBR-1201 TRANSMITTER



HFBR-2201 RECEIVER


DIMENSIONS IN AHLLIAMETRES (INCHES) UNLESS OTHERWISE SPECIFIED. THE TOLERANCES ARE:

HFBR-2202 RECEIVER

## System Design Considerations

The Miniature Fiber Optic Logic Link is guaranteed to work over the entire range of 0 to 625 metres at a data rate of dc -5 MBd , with arbitrary data format and typically less than $25 \%$ pulse width distortion, if the Transmitter is driven with $I_{F}$ $=40 \mathrm{~mA}, \mathrm{R}_{1}=82 \Omega$. If it is desired to economize on power or achieve lower pulse distortion, then a lower drive current (IF) may be used. The following example will illustrate the technique for optimizing $\mathrm{I}_{\mathrm{F}}$.
EXAMPLE: Maximum distance required $=250$ metres. From Figure 2 the worst case drive current $=20 \mathrm{~mA}$. From the Transmitter data $-V_{F}=1.8 \mathrm{~V}$ (max.).

$$
R_{1}=\frac{V_{C C}-V_{F}}{I_{F}}=\frac{5-1.8 V}{20 \mathrm{~mA}}=160 \Omega
$$

The optical power margin between the typical and worst case curves (Figure 2 ) at 250 metres is 4 dB . To calculate the worst case pulse width distortion at 250 metres, see Figure 8. The power into the Receiver is PRL $+4 \mathrm{~dB}=-20 \mathrm{dBm}$. Therefore, the typical distortion is 40 ns or $20 \%$ at 5 MBd.

## CABLE SELECTION

The link performance specifications on the following page are based on using the HFBR-3000/HFBR-3100 cable/connector assemblies. These cables contain glass-clad silica fibers with a $100 \mu \mathrm{~m}$ core diameter and $140 \mu \mathrm{~m}$ cladding diameter. This fiber type is now a user accepted standard for local data communications links (RS-458, Class I, Type B). The HFBR-1201/2 Transmitter and HFBR-2201/2 Receiver are optimized for use with the $100 / 140 \mu \mathrm{~m}$ fiber. There is, however, no fundamental restriction against using other fiber types. Before selecting an alternate fiber type, several parameters need to be carefully evaluated.
The attenuation ( $\mathrm{dB} / \mathrm{km}$ ) of the selected fiber, in conjunction with the amount of optical power coupled into it will determine the achievable link length. The parameters that
will significantly affect the optical power coupled into the fiber are as follows:
a. Fiber Core Diameter. As the core diameter is increased, the optical power coupled increases, leveling off at about $250 \mu \mathrm{~m}$ diameter.
b. Numerical Aperture (NA). As the NA is increased, the optical power coupled increases, leveling off at an NA of about 0.34 .
c. Index Profile ( $\alpha$ ). The Index profile parameter of fibers varies from 2 (fully graded index) to infinite (step index). Some gains in coupled optical power can be achieved at the expense of bandwidth, when $\alpha$ is increased.
In addition to the optical parameters, the environmental performance of the selected fiber/cable must be evaluated. Finally, the ease of installing connectors on the selected fiber/cable must be considered. Given the large number of parameters that must be evaluated when using a nonstandard fiber, it is recommended that the $100 / 140 \mu \mathrm{~m}$ fiber be used unless unusual circumstances warrant the use of an alternate fiber/cable type.

## SMA STYLE CONNECTORS

The HFBR-1202/2202 is compatible with either the Type A or Type B SMA style fiber optic conector (see Figure 12). The basic difference between the two connectors is the plastic half-sleeve on the stepped ferrule tip of the Type B connector. This step provides the capability to use a full length plastic sleeve to ensure good alignment of two connectors for an inline splice. The HFBR-3000/HFBR-3100, OPT 002 series connectored cable utilizes the Type A connector system because of the inherent environmental advantages of metal-to-metal interfaces.
The HFBR-1201/2201 is compatible with HFBR-4000 connectors and HFBR-3000/HFBR-3000 Option 001 series connectored cable

## Typical Circuit Configuration

[^12]

Figure 1.

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TRANSMITTER |  |  |  |  |  |
| Ambient Temperature | TA | -40 | $+85$ | ${ }^{\circ} \mathrm{C}$ |  |
| Peak Forward Input Current | PF, PK |  | 40 | mA | Note 7 |
| Average Forward Input Current | IFAV |  | 40 | mA | Note 7 |
| RECEIVER |  |  |  |  |  |
| Ambient Temperature | TA | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | VCC | 4.75 | 5.25 | V |  |
| Fan Out (TTL) | N |  | 5 |  | Note 3, Fig. 1 |
| CABLE (see HFBR-3000/HFBR-3100 data sheet) |  |  |  |  |  |

System Performance $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

| Parameter | Symbol | Min. ${ }^{[1]}$ | Typ. | Max. | Units | Conditions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmission Distance | \ | 625 | 1600 |  | Metres |  | Fig. 2, Note 9 |
| Data Rate Synchronous |  | dc |  | 5 | MBaud |  | Note 10 |
| Asynchronous |  | dc |  | 2.5 | MBaud |  | Note 10, Fig. 8 |
| Propagation Delay LOW to HIGH | tpli |  | 82 |  | nsec | $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & P_{R}=-21 \mathrm{dBm} \end{aligned}$ | Fig. 7, 8, 9 |
| Propagation Delay HIGH to LOW | tpHe. |  | 55 |  | nsec | $\mathrm{F} . \mathrm{PK}=15 \mathrm{~mA}$ |  |
| System Pulse Width Distortion | to |  | 27 |  | nsec | $\ell=1$ metre |  |
| Bit Error Rate | BER |  |  | $10^{-9}$ |  | Data Rate $\leq 5$ MBaud $\mathrm{PR}_{\mathrm{R}}>-24 \mathrm{dBm}(4 \mu \mathrm{~W})$ |  |




Figure 2. System Performance: HFBR-1201/2/HFBR-2201/2 with HFBR-3000/3100 Cable Assembly

## HFBR-1201/1202 TRANSMITTER

# Absolute Maximum Ratings 

| Parameter | Symbol | Min. | Max. | Unit | Reference |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -55 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ | Note 13 |  |
| Lead <br> Soldering <br> Cycle | Temp. |  |  | +260 | ${ }^{\circ} \mathrm{C}$ | Note 2 |
|  | Time |  |  | 10 | sec |  |
| Forward <br> Input <br> Current | Peak | $\mathrm{IF} PK$. | Average | $\mathrm{IF}_{\mathrm{F}, \mathrm{AV}}$ |  | 40 |
| mA | Note 7 |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{R}}$ |  | 2.5 | V |  |



Electrical/Optical CharacteristicS $-40^{\circ} \mathrm{cto}+85^{\circ} \mathrm{C}$ unless otherwise specified

| Parameter | Symbol | Min. | Typ.1] | Max. | Units | Conditions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forward Voltage | $V_{F}$ |  | 1.5 | 1.8 | $V$ | $\mathrm{IF}=40 \mathrm{~mA}$ | Figure 5 |
| Forward Voltage Temperature Coefficient | $\Delta V_{F} / \Delta T$ |  | -0.91 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$ | Figure 5 |
| Reverse Breakdown Voltage | $V_{B R}$ | 2.5 | 4.0 |  | V | $\mathrm{IR}=100 \mu \mathrm{~A}$ |  |
| Numerical Aperture | NA |  | . 34 |  |  |  |  |
| Optical Port Diameter | DT |  | 250 |  | $\mu \mathrm{m}$ |  | Note 11 |
| Peak Emission Wavelength | $\lambda P$ |  | 820 |  | nm |  | Figure 6 |
| Output Optical Power Coupled into HFBR-3000 Fiber Cable/Connector Assembly, 100/140 $\mu \mathrm{m}$ | PT | -17 | -16 | -13 | dBm | $\begin{aligned} & I_{F}=40 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | Figure 3 Notes 4, 15 |
|  |  | 20 | 25 | 50 | $\mu \mathrm{W}$ |  |  |
|  |  | -18 |  | -12.3 | dBm | $\begin{aligned} & I F=40 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C} \end{aligned}$ |  |
|  |  | 15.8 |  | 59 | $\mu \mathrm{W}$ |  |  |
| Output Optical Power Coupled into $50 / 125 \mu \mathrm{~m}$ Fiber | PT |  | -24 |  | dBm | $\begin{aligned} & I_{F}=40 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | Figure 3 <br> Notes 14, 15 |
|  |  |  | 4 | . | $\mu \mathrm{W}$ |  |  |
| Output Optical Power Coupled into Siecor 100/140 $\mu \mathrm{m}$ Fiber Cable or Equivalent | PT |  | -18 |  | dBm | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ | Figure 3 <br> Notes 15, 16 |
| Optical Power <br> Temperature Coefficient | $\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$ |  | -. 017 |  | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ |  | Figure 4 |

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

| Parameter | Symbol | Min. | Typ. ${ }^{[1]}$ | Max. | Units | Conditions | Reference |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| Propagation Delay <br> LOW to HIGH | tPLH |  | 17 |  | nsec | IF PK $=10 \mathrm{~mA}$ | Note 8 <br> Figure 7 |
| Propagation Delay <br> HIGH to LOW | tPHL |  | 6 |  | nsec |  |  |

## Notes:

1. Typical data at $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}$ dc.
2. 2.0 mm from where leads enter case.
3. 8 mA load $(5 \times 1.6 \mathrm{~mA}) . R_{L}=560 \Omega$.
4. Measured at the end of 1.0 metre HFBR-3000 Fiber Optic Cable with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.28 , measured at the end of greater than 300 metres length of fiber, the NA being defined as the sine of the half angle determined by the $10 \%$ intensity points.

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the infrared output is radiologically safe; however, when
5. Measured at the end of HFBR-3000 Fiber Optic Cable with large area detector.
6. When changing microwatts to dBm , the optical flux is referenced to one milliwatt $(1000 \mu W)$.

$$
P(\mu W)
$$

7. IFPK should not be less than 10 mA in the "ON" state. This is to avoid the long turn-on time that occurs at low input current. Ifav may be arbitrarily low, as there is no duty factor restriction.
viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in
ANSI Z136.1-1981.

| Parameter | Symbol | Min. | Max. | Units | Reference |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{TS}_{\mathrm{S}}$ | -55 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $\mathrm{TA}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Lead <br> Soldering <br> Cycle | Temp. |  |  | +260 | ${ }^{\circ} \mathrm{C}$ | Note 2 |
|  | Time |  |  | 10 | sec |  |
| Supply Voltage | VCC | -0.5 | +7.0 | V |  |  |
| Output Current | IO |  | 25 | mA |  |  |
| Output Voltage | $\mathrm{VO}_{\mathrm{O}}$ | -0.5 | +18.0 | V |  |  |
| Output Collector <br> Power Dissipation | PO, AV |  | 40 | mW |  |  |




| Parameter | Symbol | Min. | Typ. ${ }^{[1]}$ | Max. | Units | Conditions | Reference |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Level Output <br> Current | IOH |  | 5 | 250 | $\mu \mathrm{~A}$ | $\mathrm{V}_{\mathrm{O}}=18 \mathrm{~V}$ <br> $\mathrm{P}_{\mathrm{R}}<-40 \mathrm{dBm}$ |  |
| Low Level Output <br> Voltage | VOL |  | 0.4 | 0.5 | V | $10=8 \mathrm{~mA}$ <br> $\mathrm{P}_{\mathrm{R}}>-24 \mathrm{dBm}$ |  |
| High Level Supply <br> Current | ICCH |  | 3.5 | 6.3 | mA | $\mathrm{VCC}=5.25 \mathrm{~V}$ <br> $\mathrm{P}_{\mathrm{R}}<-40 \mathrm{dBm}$ |  |
| Low Level Supply <br> Current | ICCL |  | 6.2 | 10 | mA | $\mathrm{VCC}=5.25 \mathrm{~V}$ <br> $\mathrm{P}_{\mathrm{R}}>-24 \mathrm{dBm}$ |  |
| Optical Port Diameter | DR |  | 700 |  | $\mu \mathrm{~m}$ |  | Note 12 |
| Numerical Aperture | NA |  | .32 |  |  |  |  |

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $4.75 \leq \mathrm{V}_{C c} \leq 5.25 \mathrm{~V}$ unless otherwise specified.

| Parameter | Symbol | Min. | Typ. ${ }^{(1]}$ | Max. | Units | Conditions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Power Level Logic. HIGH | PrH |  |  | $\begin{gathered} -40 \\ 0.1 \end{gathered}$ | $\begin{gathered} \mathrm{dBm} \\ \mu \mathrm{~W} \end{gathered}$ | $\lambda P=820 \mathrm{~nm}$ | Note 5 |
| Input Power Level Logic LOW | PRL | -25.4 |  | -11.2 | dBm | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | Fig. 4, <br> Note 5 |
|  |  | 2.9 |  | 76 | $\mu \mathrm{W}$ |  |  |
|  |  | -24 |  | -12.0 | dBm | $-40<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ |  |
|  |  | 4.0 |  | 63 | $\mu \mathrm{W}$ |  |  |
| Propagation Delay LOW to HIGH | tPLHR |  | 65 |  | nsec | $T_{A}=25^{\circ} \mathrm{C}, P_{R}=-21 \mathrm{dBm}$ | Note 8, Fig. 7 |
| Propagation Delay HIGH to LOW | tPHLR |  | 49 |  | nsec |  |  |

## Notes:

8. Propagation delay through the system is the result of several sequentially-occurring phenomena. Consequently it is a combination of data-rate-limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time differentials between delays imposed on falling and rising edges.
As the cable length is increased, the propagation delays increase at 5 ns per metre of length increase. Data rate, as limited by pulse width distortion, is not affected by increasing cable length if the optical power level at the Receiver is maintained.
9. Worst case system performance is based on worst case performance of individual components: transmitter at $+85^{\circ} \mathrm{C}$, receiver at $-40^{\circ} \mathrm{C}$ and cable at $-20^{\circ} \mathrm{C}$.
10. Synchronous data rate limit is based on these assumptions: (a) $50 \%$ duty factor modulation, e.g. Manchester I or BiPhase (Manchester II); (b) continuous data; (c) PLL (Phase Lock Loop) demodulation; (d) TTL threshold.
Asynchronous data rate limit is based on these assumptions: (a) NRZ data; ( b ) arbitrary timing - no duty factor restriction; (c) TTL threshold.
The EYE pattern describes the timing range within which there is no uncertainty of the logic state, relative to a specific threshold, due to either noise or intersymbol (prop. delay) effects.
11. Dт is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of its maximum.
12. $D_{R}$ is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
13. HFBR-3000 series. Fiber Cable is specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
14. Measured at the end of 1.0 metre $50 / 125 \mu \mathrm{~m}$ fiber with large area detector and cladding modes stripped, approximating a Standard Test Fiber. The fiber NA is 0.21 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the $5 \%$ of peak intensity points. Measured by the method of Note 4, the corresponding NA is 0.185 .
15. Output Optical Power into connectored fiber cable other than HFBR-3000 Fiber Optic Cable/Connector Assemblies may be different than specified because of mechanical tolerances of the connector, quality of the fiber surface, and other variables.
16. Measured at the end of 1.0 metre Siecor $100 / 140 \mu \mathrm{~m}$ fiber cable or equivalent, with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.275 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the $5 \%$ of peak intensity points. Measured by the method of Note 4, the corresponding NA value is 0.232 .


Figure 3. Normalized Transmitter Output vs. Forward Current

Figure 6. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$


Figure 4. Normalized Thermal Effects in Transmitter Output, Receiver Threshold, and Link Performance (Relative Threshold)


Figure 7. Propagation Delay through System with One Metre of Cable


Figure 5. Forward Voltage and Current Characteristics for the Transmitter LED.


Figure 8. Worst-Case Distortion of NRZ EYE-pattern with Pseudo Random Data at $10 \mathrm{Mb} / \mathrm{s}$. (see note 10 ).


Figure 9. System Propagation Delay Test Circuit and Waveform Timing Definitions

## Electrical Description

The HFBR-1201/2 Transmitter contains a GaAlAs infrared emitter. Both the anode and cathode of the emitter are insulated from the case. This configuration permits the use of a variety of drive circuitry such as series switching, shuntswitching and high frequency peaking. There is no internal drive circuit or current limiter.

The HFBR-2201/2 Receiver incorporates an integrated photo IC containing a photodetector and dc amplifier driving an open-collector Schottky output transistor. The HFBR-2201/2 is designed for direct interfacing to popular logic families. The absence of an internal pull-up resistor allows the open-collector output to be used with logic families such as CMOS requiring voltage excursions much higher than Vcc. Both the open-collector "Data" output (Pin 3) and Vcc (Pin 2) are referenced to "Com" (Pin 4). The "Data" output allows busing, strobing and wired "OR" circuit configurations. Both the transmitter and receiver are designed to operate from a single +5 V supply. Note that the "Com" and "Case" pins are not connected internally.
The HFBR-1201/2 and HFBR-2201/2 optical receptacles contain a lens to optimize the coupling between the fiber and the active optical device.

## Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.


Figure 10. Cross Sectional View

## Mechanical Description

The HFBR-1201/2 fiber optic transmitter and HFBR-2201/2 receiver are housed in rugged metal packages intended for use with the HFBR-3000/HFBR-3100 cable assemblies. The low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking. A flat on the mounting threads of the device is provided to prevent rotation in all mounting configurations and to provide an orientation reference for the pin-out. Hardware is available for horizontal mounting applications on printed circuit boards. The hardware consists of a stainless steel mounting bracket fastened directly to the printed circuit board with two stainless steel self-tapping screws and a nut and washer for fastening the device in the bracket. A metal shield which snaps directly on the mounting bracket is also available for unusually severe EMI/ESD environments. When mounted in the horizontal configuration, the overall height of the component conforms with guidelines allowing printed circuit board spacing on $12.7 \mathrm{~mm}(.500)$ centers. A thorough environmental characterization has been performed on these products. The test data as well as information regarding operation beyond the specified limits is available from any Hewlett-Packard sales office.

Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {rM }}$ on a cotton swab also works well.


SMA STYLE CONNECTORS


TYPE B (NOT AVAILABLE FROM HEWLETT-PACKARD)


Figure 12.

## HFBR-1201 TRANSMITTER

1.95 (.078) DIA. HOLES ACCEPT A

2-56 SELF TAPPING SCREW


## HFBR-2201 RECEIVER

### 1.95 (.078) DIA. HOLES ACCEPT A

2-56 SELF TAPPING SCREW


HFBR-1202 TRANSMITTER
1.95 (.078) DIA. HOLES ACCEPT A

2-56 SELF TAPPING SCREW


HFBR-2202 RECEIVER


TRANSMITTER PCB LAYOUT DIMENSIONS


## RECEIVER PCB LAYOUT DIMENSIONS



Figure 13. Mounting Dimensions dimensions in millimetres (inches).

## Ordering Guide

| Transmitter: | HFBR-1201 (HP Connector Compatible) HFBR-1202 (SMA Connector Compatible) |
| :---: | :---: |
| Receiver: | HFBR-2201 (HP Connector Compatible) HFBR-2202 (SMA Connector Compatible) |
| Mounting Hardware: | HFBR-4201 (HP Connector Compatible) HFBR-4202 (SMA Connector Compatible |

HFBR-0200 Kit:
HFBR-1201 Transmitter
HFBR-2201 Receiver
HFBR-4201 Mounting Hardware (2 sets)
HFBR-3000 10 Metre Cable/Connector Assembly
Technical Literature

## Fiber Optic Cable - see data sheets

HFBR-3000 Single Channel Connectored - Custom Lengths
HFBR-3100 Dual Channel Connectored - Custom Lengths
Note: Option 001 specifies HFBR-4000 connector and Option 002 specifies SMA connectors.
HFBR-3001 Single Channel Connectored - 10 metres (HFBR-4000 connectors)
HFBR-3021 Single Channel Connectored - 10 metres (SMA connectors)
HFBR-3200 Unconnectored Single Channel - Custom Lengths
HFBR-3300 Unconnectored Dual Channel - Custom Lengths

# TRANSMITTER 

## Features

# - OPTICAL POWER COUPLED INTO $100 / 140 \mu \mathrm{~m}$ FIBER CABLE <br> -9.8 dBm Guaranteed at $25^{\circ} \mathrm{C}$ -7.4 dBm Typical <br> - FACTORY ALIGNED OPTICS <br> - RUGGED MINIATURE PACKAGE <br> - COMPATIBLE WITH HP OR SMA STYLE CONNECTORS 

## Description

The HFBR-1203/-1204 Fiber Optic Transmitter contains an etched-well 820 nm GaAlAs emitter capable of coupling greater than -10 dBm of optical power into $100 / 140 \mu \mathrm{~m}$ HFBR-3000 Fiber Cable/Connector Assemblies. This high power level is useful for fiber lengths greater than 1 km , or systems where star couplers, taps, or in-line connectors create large fixed losses.
Consistent coupling efficiency is assured by factory alignment of the LED with the mechanical axis of the package connector port. Power coupled into the fiber varies less than 5 dB from part to part at a given drive current and temperature. The benefit of this is reduced dynamic range requirements on the receiver.
High coupling efficiency allows the emitters to be driven at low current levels resulting in low power consumption and increased reliability of the transmitter. Another advantage of the high coupling efficiency is that a significant amount of power can still be launched into smaller fiber such as $50 / 125 \mu \mathrm{~m}$ ( -19.1 dBm typ.).
The HFBR-1203/-1204 transmitter is housed in a rugged miniature package. The lens is suspended to avoid mechanical contact with the active devices. This assures improved reliability by eliminating mechanical stress on the die due to the lens. For increased ESD protection and design flexibility, both the anode and cathode are insulated from the case.

## Mechanical Dimensions

## HFBR-1203



HFBR-1204

dIMENSIONS IN MILLIMETRES (INCHES)

Absolute Maximum Ratings

| Parameter |  | Symbol | Min. | Max. | Unit | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | Ts | -55 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature |  | $\mathrm{T}_{\text {A }}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ | Note 4 |
| Lead Soldering Cycle | Temp. |  |  | +260 | ${ }^{\circ} \mathrm{C}$ | Note 1 |
|  | Time |  |  | 10 | sec |  |
| Forward Input Current | Peak | IF, PK |  | 100 | mA |  |
|  | Average | If, AV |  | 100 | mA |  |
| Reverse Input Voltage |  | $V_{R}$ |  | 1.0 | V |  |
| Voltage, Case-to-Junction |  | $V_{C}$ |  | 25 | $V$ |  |



Electrical/Optical CharacteristiCS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

| Parameter | Symbol | Min. | Typ. ${ }^{[2]}$ | Max. | Units | Conditions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forward Voltage | $V_{F}$ | 1.44 | 1.72 | 1.94 | V | $\mathrm{IF}_{\mathrm{F}}=100 \mathrm{~mA}$ | Figure 2 |
| Forward Voltage Temperature Coefficient | $\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$ |  | -0.54 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$ | Figure 2 |
| Reverse Breakdown Voltage | VBR | 1.0 | 3.1 |  | V | $\mathrm{I}_{\mathrm{A}}=100 \mu \mathrm{~A}$ |  |
| Numerical Aperture | NA |  | 0.38 |  |  |  |  |
| Optical Port Diameter | DT |  | 250 |  | $\mu \mathrm{m}$ |  | Note 3 |
| Peak Emission Wavelength | $\lambda P$ |  | 820 |  | nm |  | Figure 5 |
| Output Optical Power Coupled into HFBR-3000 Fiber Cable/Connector Assembly, $100 / 140 \mu \mathrm{~m}$ Fiber | PT | -9.8 | -7.4 | -5.0 | dBm | $\begin{aligned} & \mathrm{IF}=100 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | Figure 3, 4 <br> Notes 4, 5 , $6.8$ |
|  |  | 105 | 182 | 316 | $\mu \mathrm{W}$ |  |  |
|  |  | -11.2 |  | -4.2 | dBm | $\begin{aligned} & I_{F}=100 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C} \end{aligned}$ |  |
|  |  | 76 |  | 380 | $\mu \mathrm{W}$ |  |  |
| Output Optical Power Coupled into $50 / 125 \mu \mathrm{~m}$ Fiber | PT |  | -19.1 |  | dBm | $\begin{aligned} & I_{F}=100 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | Figure 3, 4 <br> Notes 5, 7 |
|  |  |  | 12 |  | $\mu \mathrm{W}$ |  |  |
| Output Optical Power Coupled into Siecor 100/140 $\mu \mathrm{m}$ Fiber Cable or Equivalent | PT |  | -9.4 |  | dBm | $\begin{aligned} & I_{F}=100 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$ | Figure 3, 4 <br> Notes 5, 11 |
| Optical Power <br> Temperature Coefficient <br> Case Isolation <br> Resistance <br> (Case to Pins 1 or 2) | $\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$ <br> RCASE | 1 | -. 014 |  | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ <br> MS | $I_{F}=100 \mathrm{~mA}$ $V_{\text {CASE }}=25 \mathrm{~V}$ | Figure 3 |
| Thermal Resistance | $\Theta_{\text {OS }}$ |  | 90 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  | Note 9 |
| Rise Time, Fall Time (10 to 90\%) | $t_{r}, \mathrm{t}_{\text {f }}$ |  | 11 |  | nsec |  | Figure 6 Note 10 |

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the

## Notes:

1. 2.0 mm from where leads enter case.
2. Typical data at $T_{A}=25^{\circ} \mathrm{C}$.
3. $D_{T}$ is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.
4. HFBR-3000 series Fiber Cable is specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
5. Output Optical Power into connectored fiber cable other than HFBR-3000 Fiber Optic Cable/Connector Assemblies
infrared output is radiologically safe; however, when viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.
may be different than specified because of mechanical tolerances of the connector, quality of the fiber surface, and other variables.
6. Measured at the end of 1.0 metre HFBR-3000 Fiber Optic Cable with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.28 , measured at the end of greater than 300 metres length of fiber, the NA being defined as the sine of the half angle determined by the $10 \%$ intensity points.
7. Measured at the end of 1.0 metre $50 / 125 \mu \mathrm{~m}$ fiber with large area detector and cladding modes stripped, approximating a Standard Test Fiber. The fiber NA is 0.21, measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the 5\% of peak intensity points. Measured by the method of Note 6, the corresponding NA is 0.185 .
8. When changing microwatts to dBm , the optical power is referenced to 1 milliwatt ( $1000 \mu \mathrm{~W}$ ). Optical Power, $\mathbf{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$
9. Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit
board with the HFBR-4201 mounting hardware.
10. Measured with a 1 mA pre-bias current and terminated into a 50 ohm load.
11. Measured at the end of 1.0 metre Siecor $100 / 140 \mu \mathrm{~m}$ fiber cable or equivalent, with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.275 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the $5 \%$ of peak intensity points. Measured by the method of Note 6, the corresponding NA value is 0.232 .

$V_{F}$ - FORWARD VOLTAGE - VOLTS
Figure 2. Forward Voltage and Current Characteristics


Figure 4. Normalized Transmitter Output vs. DC Forward Current

## Ordering Guide

Transmitter: HFBR-1203 (HP Connector Compatible) HFBR-1204 (SMA Connector Compatible)
Receiver: HFBR-2201 (5 MBaud, HP Connector) HFBR-2202 (5 MBaud, SMA Connector) HFBR-2203 (40 MBaud, HP Connector Compatible)
HFBR-2204 (40 Mbaud, SMA Connector Compatible)
Mounting
Hardware:
HFBR-4201 (HP Connector Compatible) HFBR-4202 (SMA Connector Compatible)
Fiber Optic Cable - see data sheets
HFBR-3000 Single Channel Connectored - Custom Lengths


Figure 3. Normalized Thermal Effects in Transmitter Output


Figure 5. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$

HFBR-3100 Dual Channel Connectored - Custom Lengths
Note: Option 001 specifies HFBR-4000 HP connector and Option 002 specifies SMA connectors.
HFBR-3001 Single Channel Connectored - 10 metres (HFBR-4000 connectors)
HFBR-3021 Single Channel Connectored - 10 metres (SMA connectors)
HFBR-3200 Unconnectored Single Channel - Custom Lengths
HFBR-3300 Unconnectored Dual Channel - Custom Lengths

## High Speed Operation

Rise and fall times can be improved by using a pre-bias current and "speed-up" capacitor. A 1 mA pre-bias current will significantly reduce the junction capacitance and will couple less than -34 dBm of optical power into the fiber cable. The TTL compatible circuit in Figure 7 using a speed-up capacitor will provide typical rise and fall times of 10 ns .

$$
\begin{aligned}
& I_{\text {PEAK }}=100 \mathrm{~mA}=\frac{V_{C C}-V_{F}}{34.9 \Omega} \\
& I_{A V G}=78 \mathrm{~mA}=\frac{V_{C C}-V_{F}}{34.9+10 \Omega}
\end{aligned}
$$



Figure 6. Test Circuit for Measuring $\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$


Figure 7. High Speed TTL Circuit

## Link Design

With transmitter performance specified as power in dBm into a fiber of particular properties (core size, NA, and index profile), and receiver performance given in terms of the power in dBm radiated from the same kind of fiber, then the link design equation is simply:
(1) $\mathrm{P}_{\mathrm{T}}-\ell \cdot \alpha_{O}=\mathrm{P}_{\mathrm{R}}$
where
$\mathrm{P}_{\mathrm{T}}=$ transmitter power into fiber ( dBm )
$\ell=$ fiber (cable) length (km)
$\alpha_{0}=$ fiber attenuation ( $\mathrm{dB} / \mathrm{km}$ )
$P_{R}=$ receiver power, from fiber, ( dBm )
For transmitter input current in the range from 10 to 100 mA , the power varies approximately linearly:
(2) $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{O}}+10 \log (1 / \mathrm{lo})$
where
$P_{0}=$ transmitter power specification $(\mathrm{dBm})$ at $\mathrm{I}_{0}$
$\mathrm{l}_{0}=$ specified transmitter current ( 100 mA )
I = selected transmitter current (mA)
To allow for the dynamic range limits of proper receiver performance, it is necessary that a link with maximum transmitter power and minimum attenuation does not OVERDRIVE the receiver and that minimum transmitter power with maximum attenuation does not UNDERDRIVE it. These limits can be expressed in a combination of the two equations above:
(3) Po MAX $+10 \log \left(I_{\text {MAX }} / I_{0}\right)-\ell * \alpha_{O}$ MIN $<\mathrm{PR}_{\text {R }}$ MAX
(4) $P_{O}$ MIN $+10 \log \left(I_{\text {MIN }} / I_{0}\right)-\ell * \alpha_{O}$ MAX $>$ PR MIN where

$$
\begin{aligned}
& \text { Po MAX, } \mathrm{P}_{\mathrm{O}} \text { MIN }=\text { max., min. specified power from } \\
& \text { transmitter (dBm) at I }=l_{0} \\
& I_{\text {MAX }} I_{\text {MIN }}=\text { max., min. selected transmitter } \\
& \text { operating current (mA) } \\
& P_{\text {R MAX, }} P_{\text {R MIN }}=\text { max., min. specified power at } \\
& \text { receiver ( } \mathrm{dBm} \text { ) } \\
& \alpha_{0} \text { MAX, } \alpha_{\circ} \text { MIN }=\text { max., min. attenuation ( } \mathrm{dB} / \mathrm{km} \text { ) }
\end{aligned}
$$

A more useful form of these equations comes from solving them for the current ratio, expressed in dB :
(5) $10 \log \left(I_{\text {MAX }} / I_{0}\right)<$ Pr max - PO MAX $+\ell \cdot \alpha_{O}$ MIN
(6) $10 \log \left(I_{\text {MIN }} / I_{0}\right)>P_{R}$ MIN $-P_{O} \operatorname{MIN}+\ell \cdot \alpha$ MAX

These are plotted in Figure 8 as the OVERDRIVE LINE, and UNDERDRIVE LINE, respectively for the following components:

HFBR-1203/4 Transmitter-11.2< $\mathrm{PT}_{\mathrm{T}}<-4 \mathrm{dBm}$
HFBR-2203/4 Receiver ( 25 MHz ) $-28.5<\mathrm{P}_{\mathrm{R}}<-12.6 \mathrm{dBm}$
HFBR-2203/4 Receiver ( 2.5 MHz ) $-35.5<\mathrm{P}_{\mathrm{R}}<-12.6 \mathrm{dBm}$
HFBR-3000 Series Fiber Cable $4<\propto_{0}<8 \mathrm{~dB} / \mathrm{km}$


Figure 8. Link Design Limits.

These design equations take account only of the power loss due to attenuation. The specifications for the receiver and transmitter include loss effects in end connectors. If the system has other fixed losses, such as from directional couplers or additional in-line connectors, the effect is to shift both OVERDRIVE and UNDERDRIVE lines upward by the amount of the additional loss ratio.

## Features

- DATA RATES UP TO 40 MBd
- HIGH OPTICAL COUPLING EFFICIENCY
- RUGGED, MINIATURE METAL PACKAGE
- COMPATIBLE WITH HP OR SMA STYLE CONNECTORS
- VERSATILE ANALOG RECEIVER OUTPUT
- 25 MHz ANALOG BANDWIDTH


## Applications

- DATA ACQUISITION AND PROCESS CONTROL
- SECURE DATA COMMUNICATION
- EMC REGULATED SYSTEMS (FCC/VDE)
- EXPLOSION PROOF SYSTEMS
- WEIGHT SENSITIVE SYSTEMS (e.g., AVIONICS, MOBILE STATIONS)
- VIDEO TRANSMISSION


## Description

The HFBR-2203/04 Receiver is capable of data rates up to 40 MBd at distances greater than 1 km when used with HFBR-3000 series cable and HFBR-1201/2/3/4 Transmitters. The HFBR-2203/04 Receivers contain a discrete PIN photodiode and preamplifier IC.


The signal from this simple analog receiver can be optimized for a variety of transmission requirements. For example the HFBR-0221/02/03/04 transceivers add low-cost external components to achieve logic compatible signal levels optimized for various data formats and data rates.
Each of these fiber optic components uses the same rugged, lensed, miniature package. This package assures a consistent, efficient optical coupling between the active devices and the optical fiber.

The HFBR-2203 Receiver is compatible with the HFBR-4000 Connector and HFBR-3000 series, Option 001 connectored cable. The HFBR-2204 Receiver is compatible with SMA style connectors, types $A$ and $B$ (see Figure 11), and HFBR3000 series, Option 002 connectored cable. HFBR-3000 series cable can be ordered with or without connectors. The HFBR-0100 connector assembly kit is available if field installation of HFBR-4000 connectors is desired.

## Mechanical Dimensions

HFBR-2203 RECEIVER


HFBR-2204 RECEIVER


DIMENSIONS IN MILLIMETRES (INCHES)
UNLESS OTHERWISE SPECIFIED, THE TOLERANCES ARE:
$X \pm .51 \mathrm{~mm}(X X \pm .02$ IN)
$. X X=.13 \mathrm{~mm} \neq \times X X=.005 \mathrm{mF}$

## Electrical Description

The HFBR-2203/04 Fiber Optic Receiver contains a PIN photodiode and low noise transimpedance pre-amplifier hybrid circuit with an inverting output (see note 10). The HFBR-2203/04 receives an optical signal and converts it to an analog voltage. The output is a buffered emitter-follower. Because the signal amplitude from the HFBR-2203/04 Receiver is much larger than from a simple PIN photodiode, it is less susceptible to EMI, especially at high signal rates.

The frequency response is typically dc to 25 MHz . Although the HFBR-2203/04 is an analog receiver, it is easily made compatible with digital systems (see HFBR-0221/2/3/4 Transceiver data sheet). Separate case and signal ground leads are provided for maximum design flexibility.
It is essential that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from Pin 4 ( $\mathrm{V}_{\mathrm{cc}}$ ) to Pin 3 (circuit common) of the receiver. Total lead length between both ends of the capacitor and the pins should be less than 20 mm.

## Mechanical Description

The HFBR-2203/04 Fiber Optic Receiver is housed in a miniature package intended for use with HFBR-3000 Fiber Optic Cable/Connector Assemblies. This package has important performance advantages:

1. Precision mechanical design and assembly procedures assure the user of consistent high efficiency optical coupling.
2. The lens is suspended to avoid contact with the active devices, thereby assuring improved reliability.
3. The versatile miniature package is easy to mount. This low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking.
A complete mounting hardware package is available for horizontal PCB applications, including a snap-on metal shield for harsh EMI/ESD environments.
Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; Methanol or Freon on a cotton swab also works well. Note:
When installing connectored cable on the optical port, do not use excessive force to tighten the nut. Finger tightening is sufficient to ensure connectoring integrity, while use of a wrench may cause damage to the connector or the optics.

## System Design Considerations

For additional information, see the product data sheet for the HFBR-0221/2/3/4 Fiber Optic Transceivers.

## OPTICAL POWER BUDGETING

The HFBR-2203/04 Fiber Optic Receivers when used with the HFBR-1201/02 Fiber Optic Transmitters can be operated at a signalling rate of more than 40 MBd over a distance greater than 1000 metres (assuming $8 \mathrm{~dB} / \mathrm{km}$ cable attenuation). For shorter transmission distances, power consumption can be reduced by decreasing Transmitter drive current. At a lower data rate, the transmission distance may be increased by applying bandwidth-filtering at the

Figure 1. Cross Sectional View
output of the HFBR-2203/04 Receiver; since noise is reduced as the square root of the bandwidth, the sensitivity of the circuit is proportionately improved provided these two conditions are met:
a. input-referred noise of the follow on circuit is well below the filtered noise of the Receiver
b. logic comparator threshold is reduced in the same proportion as the noise reduction

As an example, consider a link with a maximum data rate of 10 MBd (e.g., $5 \mathrm{Mb} / \mathrm{s}$ Manchester); this requires a 3 dB bandwidth of only 5 MHz . For this example, the input-referred rms noise voltage of the follow-on circuit is 0.03 mV . The equivalent optical noise power of the complete receiver ( $\mathrm{P}_{\mathrm{NO}}$ ) is given by:

$$
P_{N O}=\left[\left(\mathrm{V}_{\mathrm{NO}}\right)^{2}(\mathrm{~B} / \mathrm{BO})+\left(\mathrm{V}_{\mathrm{NI}}\right)^{2}\right]^{0.5} / \mathrm{RP}_{\mathrm{P}}
$$

$\mathrm{V}_{\mathrm{NO}}=$ rms output noise voltage of the HFBR-2203/04 with no bandwidth filtering
$\mathrm{V}_{\mathrm{NI}}=$ input-referred rms noise voltage of the follow-on circuit
$B=$ filtered 3 dB bandwidth
Bo $=$ Unfiltered 3 dB bandwidth of the HFBR-2203/04 ( 25 MHz )
$R_{P}=$ optical-to-electrical responsivity $(\mathrm{mV} / \mu \mathrm{W})$ of the HFBR-2203/04

Note that noise adds in an rms fashion, and that the square of the rms noise voltage of the HFBR-2203/04 is reduced by the bandwidth ratio, $\mathrm{B} / \mathrm{Bo}$.

From the receiver data (Electrical/Optical Characteristics) taking worst-case values, and applying NO bandwidth filtering $(B / B o=1)$ :

$$
P_{N O}=\frac{\left[(0.43)^{2}+(0.03)^{2}\right]^{0.5} \mathrm{mV}}{4.6 \mathrm{mV} / \mu \mathrm{W}}=0.094 \mu \mathrm{~W} \text { or }-40.3 \mathrm{dBm}
$$

To ensure a bit error rate less than 10-9 requires the signal power to be 12 times larger ( +11 dB ) than the rms noise as referred to the Receiver input. The minimum Receiver input power is then:

$$
P_{\text {RMIN }}=P_{\text {NO }}+11 \mathrm{~dB}=-29.3 \mathrm{dBm}
$$

With the application of a 5 MHz low-pass filter, the bandwidth ratio becomes:

$$
\mathrm{B} / \mathrm{Bo}=5 \mathrm{MHz} / 25 \mathrm{MHz}=0.2
$$

Note that 25 MHz should be used for the total noise bandwidth of the HFBR-2203/04. Inserting this value of the bandwidth ratio in the expressions for $\mathrm{PNO}_{\text {NO }}$ and PRMIN above yields the results:

$$
\mathrm{P}_{\mathrm{NO}}=0.042 \mu \mathrm{~W} \text { or }-43.8 \mathrm{dBm} \text { and } \mathrm{P}_{\mathrm{RMIN}}=-32.8 \mathrm{dBm}
$$

Given the HFBR-1201/2 Transmitter optical power PT $=$ -18 dBm at $\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$, and allowing a 3 dB margin, a
minimum optical power budget of 11.8 dB is obtained:

$$
[-18 \mathrm{dBm}-3 \mathrm{~dB}-(-32.8 \mathrm{dBm})]=11.8 \mathrm{~dB}
$$

Using $8 \mathrm{~dB} / \mathrm{km}$ optical fiber, this translates into a minimum link length of 1475 metres (typical link power budget for this configuration is approximately 17.2 dB or 3130 metres with $5.5 \mathrm{~dB} / \mathrm{km}$ fiber).

## BANDWIDTH

The bandwidth of the HFBR-2203/04 is typically 25 MHz . Over the entire temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, the rise and fall times vary in an approximately linear fashion with temperature. Under worst case conditions, $t_{r}$ and tf may reach a maximum of 26 ns , which translates to a 3 dB bandwidth of:

$$
\mathrm{f} 3 \mathrm{~dB} \simeq \frac{350}{\mathrm{tr}_{\mathrm{r}}}=\frac{350}{26 \mathrm{~ns}}=13.5 \mathrm{MHz}
$$

The receiver response is essentially that of a single-pole system, rolling off at $6 \mathrm{~dB} /$ octave. In order for the receiver to operate up to 40 MBd even though its worst case 3 dB bandwidth is 13.5 MHz , the received optical power must be increased by 3 dB to compensate for the restricted receiver transmission bandwidth.

## PRINTED CIRCUIT BOARD LAYOUT

When operating at data rates above 10 MBd , standard PC board precautions should be taken. Lead lengths greater than 20 mm should be avoided whenever possible and a ground plane should be used. Although transmission line techniques are not required, wire wrap and plug boards are not recommended.

## OPERATION WITH HEWLETT-PACKARD TRANSMITTERS

Hewlett-Packard offers two transmitters compatible with the HFBR-2203/4. Link performance with each transmitter is shown below for $25^{\circ} \mathrm{C}$ operation with HFBR-3000 series glass fiber cable. See product data sheets for further information.

|  | HFBR-1201/2 <br> -17 dBm <br> Coupled Optical <br> Power | HFBR-1203/4 <br> -9.8 dBm <br> Coupled Optical <br> Power |
| :--- | :---: | :---: |
| HFBR-2203/4 | 1200 m | 2100 m |
| -27 dBm Sensitivity | 40 MBd | 40 MBd |
| HFBR-2203/4 | 1800 M <br> -32 dBm Sensitivity <br> 10 MBd | 2800 M |
| 10 MBd |  |  |

## HFBR-2203/2204 RECEIVER

Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Unit | Reference |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{TS}_{\mathrm{S}}$ | -55 | 85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $\mathrm{TA}_{\mathrm{A}}$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ | Note 9 |  |
| Lead <br> Soldering <br> Cycle | Temp. |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1 |
|  | Time |  |  | 10 | sec |  |
| Case Voltage | VCASE |  | 25 | V |  |  |
| Signal Pin Voltage | VSIGNAL | -0.5 | 1 | V |  |  |
| Supply Voltage | VCC | -0.5 | 7.0 | V |  |  |



Electrical/Optical Characteristics
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \leq \mathrm{VCC} \leq 5.25 ; \quad$ RLOAD $=511 \Omega$ unless otherwise specified

| Parameter | Symbol | Min. | Typ ${ }^{[4]}$ | Max. | Unit | Conditions | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Responsivitity | Rp | 5.1 | 7 | 10.9 | $\mathrm{mV} / \mu \mathrm{W}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { at } 820 \mathrm{~nm} \end{aligned}$ | Note 10 Figure 3 |
|  |  | 4.6 |  | 12.3 | $\mathrm{mV} / \mu \mathrm{W}$ | $-40 \leq T_{A} \leq+85^{\circ} \mathrm{C}$ |  |
| RMS Output Noise Voltage | $\mathrm{V}_{\mathrm{NO}}$ |  | . 30 | . 36 | mV | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{PIN}=0 \mu \mathrm{~W} \end{aligned}$ | Figures 4, 7 |
|  |  |  |  | . 43 | mV | $\begin{aligned} & -40 \leq T_{A} \leq 85^{\circ} \mathrm{C}, \\ & \text { PIN }=0 \mu \mathrm{~W} \\ & \hline \end{aligned}$ |  |
| Input Power | PR |  |  | -12.6 | dBm | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | Note 2 |
|  |  |  |  | 55 | $\mu \mathrm{W}$ |  |  |
|  |  |  |  | -14 | dBm | $-40 \leq T_{A} \leq 85^{\circ} \mathrm{C}$ |  |
|  |  |  |  | 40 | $\mu \mathrm{W}$ |  |  |
| Output Impedance | Zo |  | 20 |  | $\Omega$ | $\begin{aligned} & \text { Test Frequency }= \\ & 20 \mathrm{MHz} \end{aligned}$ |  |
| DC Output Voltage | Vodc |  | . 7 |  | V | PIN $=0 \mu \mathrm{w}$ |  |
| Power Supply Current | IcC |  | 3.4 | 6.0 | mA | RLOAD $=\infty$ |  |
| Equivalent N.A. | NA |  | . 35 |  |  |  |  |
| Equivalent Diameter | DR |  | 250 |  | $\mu \mathrm{m}$ |  | Note 3 |
| Equivalent Optical Noise |  |  | -43.7 | -40.3 | dBm |  |  |
| Input Power | PN |  | . 042 | . 094 | $\mu \mathrm{W}$ |  |  |

## Dynamic Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \leq \mathrm{VCC} \leq 5.25 ; \quad$ RLOAD $=511 \Omega, \mathrm{C}_{\text {LOAD }}=13 \mathrm{pF}$ unless otherwise specified

| Parameter | Symbol | Min. | Typ. ${ }^{[7]}$ | Max. | Units | Conditions | Reference |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Rise/Fall Time, <br> $10 \%$ to $90 \%$ | $\mathrm{tr}_{\mathrm{r}, \mathrm{t}}$ |  | 14 | 19.5 | ns | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> $\mathrm{P}_{\mathrm{IN}}=10 \mu \mathrm{~W}$ Peak | Note 5 |
|  |  |  |  | 26 | ns | $-40 \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ | Figures 8, 9 |
| Pulse Width Distortion | $\mathrm{t}_{\mathrm{phI}}-\mathrm{t}_{\mathrm{plh}}$ |  |  | 2 | ns | $\mathrm{PiN}_{\mathrm{IN}}=40 \mu \mathrm{~W}$ Peak | Figure 9 |
| Overshoot |  |  | 4 |  | $\%$ | $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | Note 6 <br> Figures 8, 9 |
| Bandwidth |  |  | 25 |  | MHz |  |  |
| Power Supply <br> Rejection <br> Ratio (Referred to <br> Output) | PSRR |  | 50 |  | dB | at 2 MHz | Note 7 <br> Figures 5,6 |

## Notes:

1. 2.0 mm from where leads enter case.
2. If $\mathrm{Pin}<40 \mu \mathrm{~W}$, then pulse width distortion may increase. At $\mathrm{Pin}=80 \mu \mathrm{~W}$ and $\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$, some units have exhibited as much as 100 ns pulse width distortion.

Notes (cont.):
3. $D_{R}$ is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
4. Typical specifications are for operation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=5.0 \mathrm{~V}$.
5. Input optical signal is assumed to have $10 \%-90 \%$ rise and fall times of less than 6 ns .
6. Percent overshoot is defined as:

$$
\frac{V_{P K}-V_{100} \%}{V_{100} \%} \times 100 \%
$$

See Figure 16.
8. It is essential that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin $4\left(\mathrm{~V}_{\mathrm{cc}}\right)$ to pin 3 (circuit common) of the receiver. Total lead length between both ends of the capacitor and the pins should be less than 20 mm .
9. HFBR- 3000 series Fiber Cable is specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
10. $V_{\text {OUT }}=V_{O D C}-\left(R_{P} \times P_{\text {IN }}\right)$.
7. Output referred P.S.R.R. is defined as
$20 \log \left(\frac{\text { VPOWER SUPPLY RIPPLE }}{\text { VOUT RIPPLE }}\right)$


Figure 3. Receiver Spectral Response Normalized to 820 nm


Figure 4. Receiver Noise Spectral Density


Figure 5. Receiver Power Supply Rej. vs. Freq.


Figure 6. Power Supply Rejection Test Circuit


Figure 7. RMS Output Noise Voltage Test Circuit


Figure 8. Rise and Fall Time Test Circuit


Figure 9. Waveform Timing Definitions

HFBR-2204 RECEIVER
1.95 (.078) DIA. HOLES ACCEPT A 2-56 SELF TAPPING SCREW
1.95 (.078) DIA. HOLES ACCEPT A


RECEIVER PCB LAYOUT DIMENSIONS


PCB EDGE
dIMENSIONS IN MILLIMETRES (INCHES).
Figure 10. Mounting Dimensions

HEWLETT-PACKARD STYLE CONNECTOR (Used in HFBR-3000/3100, Option 001 Cable Assemblies).

HFBR-4000 CONNECTOR


## SMA STYLE CONNECTORS

TYPE A
(Used in HFBR-3000/3100, Option 002 Cable Assemblies).

TYPE B
(Not Available from Hewlett-Packard)


Figure 11. Fiber Optic Connector Styles

## Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support
the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.


MOUNTING HARDWARE: HFBR-4201 (HFBR-2203)
1 EMI/ESD SHIELD
1 1/4-32 NUT
$11 / 4 \times .005$ INCH WASHER
2 2-56 SELF TAPPING SCREWS
1 MOUNTING BRACKET

MOUNTING HARDWARE: HFBR-4202 (HFBR-2204)

## 1 EMI/ESD SHIELD

1 1/4-36 NUT
$1 / 4 \times .005$ INCH WASHER
2 2-56 SELF TAPPING SCREWS
1 MOUNTING BRACKET

## Ordering Guide

| Transmitter: | HFBR-1201 (HP Connector Compatible) <br>  <br>  <br>  <br>  <br>  <br>  <br> HFBRR-1202 (SMA Connector Compatible) <br> HFBR-1203 (HP Connector Compatible) |
| :--- | :--- |
| Receiver: | HFBRR-2203 (HP Connector Compatible) |
|  | HFBR-2204 (SMA Connector Compatible) |
| Mounting |  |
| Hardware: |  |
|  | HFBR-4201 (HP Connector Compatible) |
|  | HFBR-4202 (SMA Connector Compatible) |

Fiber Optic Cable - see data sheets
HFBR-3000 Single Channel Connectored - Custom Lengths
HFBR-3100 Dual Channel Connectored - Custom Lengths
Note: Option 001 specifies HFBR-4000 connector and Option 002 specifies SMA connectors.
HFBR-3001 Single Channel Connectored - 10 metres (HFBR-4000 connectors)
HFBR-3021 Single Channel Connectored - 10 metres (SMA connectors)
HFBR-3200 Unconnectored Single Channel - Custom Lengths
HFBR-3300 Unconnectored Dual Channel - Custom Lengths

## Features

- GUARANTEED LINK PERFORMANCE
- DISTANCE/DATA RATE TRADEOFF ALLOWS INCREASED OPTICAL POWER BUDGET AT LOWER DATA RATES
- TTL I/O
- 20 MBAUD DATA RATE (CAN BE MODIFIED FOR 40 MBd OPERATION)
- COMPATIBLE WITH MOST DATA FORMATS
- AVAILABLE WITH HP OR SMA STYLE CONNECTORS
- LINK LENGTHS TYPICALLY GREATER THAN 1 km AT 20 MBd


## Applications

- DESIGN AID FOR HIGH SPEED FIBER OPTIC COMPONENTS
- DATA ACQUISITION AND PROCESS CONTROL
- SECURE DATA COMMUNICATION
- EMC REGULATED SYSTEMS (FCC/VDE)
- EXPLOSION PROOF SYSTEMS
- WEIGHT SENSITIVE SYSTEMS (e.g. AVIONICS, MOBILE STATIONS)


## Description

The HFBR-0221/2/3/4 High Speed Fiber Optic Transceivers are printed circuit board assemblies containing HFBR-1201/ -1202 Transmitters, HFBR-2203/-2204 Receivers and support circuitry to provide TTL input and complementary TTL outputs. The performance of these transceivers at 20 MBd has been characterized over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and total link performance with HFBR-3000 Fiber Cable/Connector Assembly is guaranteed.


These transceivers are optimized for 20 MBd operation. However, the support circuitry on the printed circuit board can be optimized for other data rates. Recommendations for component values and anticipated performance for operation at $1 \mathrm{MBd}, 5 \mathrm{MBd}$ and 40 MBd are included in the "Application Information" section.
There are two transceiver designs (available with HP or SMA style connector ports) which accommodate various data formats. The HFBR-0221/0222 transceivers are optimized for data formats which have 50 percent duty factors such as Manchester and biphase. The HFBR-0223/-0224 transceivers are designed for arbitrary data formats including most NRZ schemes (see "Circuit Description" for details).
The transceivers can be mounted via an edge card connector, either parallel or perpendicular to a reference printed circuit board. A right angle edge card connector is included with each transceiver for parallel mounting.

## Mechanical Dimensions



## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Applied Voltage <br> Data, Data <br> $+V_{c C}$, Data In |  | -0.5 | 5.25 | V |
| $-\mathrm{V}_{\mathrm{CC}}$ |  | -6.5 | +0.5 | V |
| Storage <br> Temperature |  |  |  |  |
| 1$]$ | Ts | -55 | 85 | ${ }^{\circ} \mathrm{C}$ |

Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Supply Voltage | $+\mathrm{V}_{\mathrm{CC}}$ | 4.75 | 5.25 | V |
|  | $-\mathrm{V}_{\mathrm{CC}}$ | -4.5 | -6.5 |  |
| Operating <br> Temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |
| Duty Factor <br> HFBR-0221/22 | DF | 33 | 67 | $\%$ |
| HFBR-0223/24 |  | 5 | 95 |  |
| Data Rate Range |  | 0.01 | 20 | MBd |

## Electrical/Optical Characteristics

(Recommended operating conditions for transceiver optimized for 20 MBd apply, unless otherwise specified)

| Parameter | Symbol | Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Optical Power Budget HFBR-0221/2 | OPB | When used with HFBR-3000 <br> Fiber Cable/Connectors, <br> Data Rate $=20 \mathrm{MBd}$ <br> BER $=10^{-9}$ | 9 | 15.5 |  | dB |
| HFBR-0223/4 |  |  | 5 | 11 |  |  |
| Pulse Distortion HFBR-0221/2 | $\begin{aligned} & \text { tPLH - } \\ & \text { tPHL } \end{aligned}$ |  |  | 7 | 12.5 | ns |
| HFBR-0223/4 |  |  |  | 2 | 12.5 |  |
| Data Output Response Time ${ }^{\text {l2 }}$ | $\mathrm{t}_{\mathrm{r}}$ |  |  | 7 |  | ns |
|  | $t_{f}$ |  |  | 5 |  |  |
| $\begin{aligned} & \text { Transceiver } \\ & \text { Propagation Delay }{ }^{(3)} \end{aligned}$ | tpLH, tphL |  |  | 70 |  | ns |
| Power Consumption $+\mathrm{Vcc}$ |  |  |  | 750 |  | mW |
| -VCC |  |  |  | 125 |  |  |
| Transmitter Output Optical Power | PT |  | -18 | -16.5 |  | dBm |
| Power coupled into HFBR-3000 Fiber Cable/ |  | Data In is high, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 15.8 | 22.4 |  | $\mu \mathrm{W}$ |
| Connector Assembly ${ }^{4]}$ |  | $\begin{aligned} & 0<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & \text { Data in is high } \end{aligned}$ | -19 |  |  | dBm |
| Data in is |  |  | 12.6 |  |  | $\mu \mathrm{W}$ |
| Power Coupled into Siecor 100/140 $\mu \mathrm{m}$ Fiber Cable or Equivalent ${ }^{6]}$ |  | Data In is High, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | -18.5 |  | dBm |
| Optical Rise and Fall Times | $\mathrm{tr}_{\mathrm{r}, \mathrm{o}} \mathrm{t}_{\mathrm{f}, \mathrm{O}}$ | 10\% to $90 \%$ |  | 10 |  | ns |
| Receiver Optical Sensitivity | PR |  | -28 | -32 |  | dBm |
| HFB-0221/2 |  |  | 1.6 | 0.6 |  | $\mu \mathrm{W}$ |
| HFBR-0223/4 |  |  | -24 | -27.5 |  | dBm |
|  |  |  | 4 | 1.8 |  | $\mu \mathrm{W}$ |
| TTL Gate Fanout |  |  |  |  | 4 |  |

WARNING: OBSERVING THE TRANSMITTER OUTPIJT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the infrared output is radiologically safe: however, when
viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.
(See notes on page 6-40)

## Test Set-Up

## Equipment Needed

1. Dual power supply (HP 623613)
2. 100 MHz oscilloscope (HP 1725A)
3. Active oscilloscope probe and probe tip (HP 1120A/ 1122A)
4. 10:1 divider for oscilloscope probe (HP 10241A)
5. 50 MHz pulse generator (HP 8082A)
6. Miscellaneous cables and connectors

## Procedure

1. Connect fiber cable and edge card conector to the transceiver board.
2. Adjust the power supply to +5 V and -5 V . Then connect to the transceiver board as shown below. Take care not to exceed the recommended operating voltage.
3. Adjust the pulse generator for TTL level square wave $(+3 \mathrm{~V})$ with a 5 nsec , edge transition time and then connect to the transceiver board.
4. Use the oscilloscope with the active probe and $10: 1$ divider to observe the input and output waveforms.


## Notes:

1. The data out observed through the active probe exhibits overshoot at the rising edge. This overshoot will disappear if the output is loaded to drive a TTL input.
2. Oscilloscope inputs should be terminated into 50 ohms.
3. The active probe should be set on DC for observation of lower data rates. The offset on the active probe should be off.
4. The active probe is used to avoid reflection in the observed signal through impedance matching.
5. If necessary clean the optical port of the fiber connectors with Acetone before connecting them to the transceivers.

## Ordering Information

|  | Connector <br> Style | Data Format |
| :--- | :---: | :--- |
| HFBR-0221 | HP | 33 to 67\% Duty Factor <br> (For use with code schemes <br> such as Manchester <br> and Biphase) |
| HFBR-0222 | SMA | 5 to $95 \%$ Duty Factor <br> For use with code schemes <br> such as NRZ and NRZ1) |
| HFBR-0223 | HP |  |
| HFBR-0224 | SMA |  |

## Fiber Optic Cable (see Data Sheets)

| HFBR-3000 | Single Channel Connectored - <br> Custom Lengths |
| :--- | :--- |
| HFBR-3100 | Dual Channel Connectored - <br> Custom Lengths |
| NOTE: Option001 specifies HFBR-4000 (HP) connector and <br> Option 002 specifies SMA style connectors. |  |
| HFBR-3001 | Single Channel Connectored - 10 metres <br> (HFBR-4000 connectors) |
| HFBR-3021 | Single Channel Connectored - 10 metres <br> (SMA connectors) |
| HFBR-3200 | Unconnectored Single Channel - <br> Custom Lengths |
| HFBR-3300 | Unconnectored Dual Channel - <br> Custom Lengths |

## Application Information TRANSCEIVER CIRCUIT DESCRIPTION

There are separate transmitting and receiving circuits that function independently so data may be simultaneously sent and received without mutual interference.

## Transmitting Circuit

On the transmitter side, the DATA IN terminal operates from TTL-level signals; the HFBR-1201/2 Transmitter is off ( $\mathrm{P}_{\mathrm{T}}=0$ ) with DATA $\operatorname{IN}$ low, and is on with DATA IN high. $\mathrm{R}_{12}$ holds the input low in the absence of anything connected. In this condition, the output transistor of U3 is on, and the current from $R_{2}$ is taken to ground through $\mathrm{CR}_{1}$, making the voltage at the anode of the HFBR-1201/2 transmitter low enough to hold the LED off, yet allow it to be slightly forward biased (by the forward voltage on $\mathrm{CR}_{1}$ ) so it can be turned on with little delay. With insignificant forward current in the LED, $\mathrm{C}_{3}$ is discharged. When DATA IN is raised, the output transistor of U3 is turned off, allowing the current from R2 to enter the LED; there is an initial rush of current as C3 charges, thus peaking the LED turn-on. In steady state "on", LED current is limited by the sum of $R_{2}$ and $R_{3}$, but during turn-on current is limited by $R_{2}$ only, so the peak-to-dc current ratio is approximately $\left(R_{2}+R_{3}\right) / R_{2}$. During turn-off, until $C_{3}$ is partly discharged, the voltage on $\mathrm{C}_{3}$ will apply a small reverse voltage to the LED, thus peaking its turn-off as long as the voltage on $\mathrm{C}_{3}$ remains higher than the voltage at the anode of $\mathrm{CR}_{1}$.

## Receiving Circuit

On the receiving side there is a similar relationship between the optical power and the TTL-level signals; that is, a rising input optical power excursion will normally cause a logic high DATA OUT.
Under steady-state conditions of optical input, both the positive and negative inputs of U1 are at ground potential, so the output of U 1 is near zero and therefore capable of excursions either up or down in response to changes at its input. U2 is a comparator; when connected as shown it has positive feedback from DATA OUT when DATA OUT is high, and from DATA OUT when DATA OUT is low. This positive feedback makes it operate as a Schmitt circuit, the hysteresis thresholds being established by the voltage division ratios in $R_{11}$, $\mathrm{R}_{9}$ when DATA OUT is high and in $R_{10}$, $R_{8}$ when DATA OUT is low.
Under dynamic conditions, a rise in optical input power causes the voltage at pin 2 of the HFBR-2203/-2204 to fall. This fall is ac-coupled by $\mathrm{C}_{11}$ to the input, pin 1 , of U 1 , where it is amplified and converted to a balanced output signal, rising at pin 8 and falling at pin 7. The falling signal coupled by $\mathrm{C}_{13}$ to U 2 will, if the amplitude exceeds the hysteresis threshold, cause U2 to latch a logic high at DATA OUT. Similarly, a drop in optical input power will cause U2 to latch a logic high at DATA OUT (low at DATA OUT).
After a change in optical input power, the U1 amplifier circuit may return to steady-state conditions, but U2 holds the logic state until an opposite excursion occurs unless there is a noise-voltage excursion that causes logic reversal. Consequently, the threshold set at U2 must be high enough that neither electromagnetic interference coupled from elsewhere on the circuit board, nor Receiver noise amplified through U1 can cause a false change. On the other hand, if the threshold is set too high, the Receiver
would require inappropriately large changes in optical input power in order to make U2 change state properly.
Within the limits of its dynamic range, U1 operates linearly, so the threshold at U2 can be referred to the input of U 1 as an equivalent threshold voltage (i.e., divided by the gain of U1). Similarly, the HFBR-2203/-2204 Receiver makes a linear conversion of optical input to voltage output' (typically 7 mV per $\mu \mathrm{W}$ ), so the U2 threshold can be referred to the optical input as an equivalent optical power level. Consequently, changes of either the gain of U1 or the threshold at U2 affect the threshold-equivalent input power.
Likewise, the rms noise voltage at the input of U1 can be referred to the optical input as noise-equivalent input power.
Sensitivity is defined relative to noise and threshold, as the optical input power excursion needed to obtain reliable operation. It can be improved by applying bandwidth filtering to reduce the noise amplitude. Since the HFBR-2203/ -2204 Receiver is well shielded, its output noise is due only to shot and thermal noise, for which the amplitude varies as the square root of the bandwidth. Consequently, applying bandwidth filtering at the output of the Receiver reduces the noise in the rest of the circuit. How this is done and with what benefit is discussed in the section on "Sensitivity Improvement with Data Rate Reduction".
Bandwidth filtering is useless unless interference (EMI) is less than the filter-reduced noise. For this reason the impedances to ground at the inputs of U1 must be balanced, even though the input signal from the HFBR-2203/ -2204 Receiver is single-ended. This is done by making $R_{5}$ the same value as $R_{6}$, and $C_{11}$ the same as $C_{12}$. This makes the impedances balanced because the internal impedance of the Receiver's output is very low, and only low values of $\mathrm{R}_{13}$ are used for bandwidth filtering. Further neutralization of EMI is achieved by making the traces connecting to the inputs of $U 1$ of approximately the same length and located as close together as possible.

## DESIGN DIFFERENCES

(HFBR-0221/-0222 and HFBR-0223/-0224)
The two versions of the Transceiver are designed with different data-handling objectives. The HFBR-0221/-0222 is intended for use with signals having a nearly $50 \%$ duty factor (such as Biphase or Manchester coded signals). The HFBR-0223/-0224 is intended for use as an edge detector (differentiator); with a very short time constant at $\mathrm{C}_{13}$ and $\mathrm{C}_{14}$, the voltage levels are restored so rapidly that response time is virtually unaffected by the time differences between transitions in optical power, and for this reason it is capable of dealing with an arbitrary data format, such as NRZ and NRZI coded signals.
The difference in response modes is shown in Figure 1. It is clear that for the HFBR-0223/-0224 version, the edge timing is restricted only at the low end (minimum edge spacing or maximum signalling rate), where encroachment of one pulse might affect the next. For the HFBR-0221/ -0222 version, a duty factor much more or much less than $50 \%$ would reduce the signal-to-noise ratio and also add propagation delay distortion.
Circuit adjustments to realize these differences in performance are mainly in the receiving side. Obviously, for the


Figure 1. Transceiver Response Waveforms

HFBR-0221/-0222 version it is necessary only to make the time constants of $\mathrm{C}_{13}$ and $\mathrm{C}_{14}$ long enough to couple a rectangular waveform to the inputs of U2, then set U1 for high gain and make the thresholds at U2 the value which provides a threshold-to-noise ratio greater than six. For the HFBR-0223/-0224 version the time constant of $\mathrm{C}_{13}, \mathrm{C}_{14}$ must be less than a third of the shortest time desired between successive edges. The peak amplitude of pulses reaching U2 will be limited by the short time constant, a situation which can be remedied somewhat by lowering the gain of $U 1$ (thus raising its bandwidth). This, in turn will require reduction of the threshold at U2.
There is a limit to how far the U2 threshold can be reduced without making it too vulnerable to EMI from the transmitting side. Because of these design constraints, the accommodation of arbitrary data format is obtained at the expense of sensitivity; that is, the HFBR-0223/-0224 version requires excursions of optical input power slightly higher than the excursions required by the HFBR-0221/0222 version.

There is also a limit to how much gain adjustment is possible at U1. The maximum possible gain is 400 with $R_{7}=0$, so the gain increase that is available is approximately 6 dB (i.e. $x 4$ because of the linear relationship to input power). Raising the gain by a factor of four permits sensitivity improvement by the same ratio if the noise bandwidth is reduced by sixteen times.

On the transmitting side the difference is very small. Both versions are operated at the same steady-state input current to the HFBR-1201/-1202 Transmitter LED, but they have different peak-to-dc current ratios. The purpose of the peaking is mainly to charge the LED and stray capacitances, so the 2:1 peak-to-dc current ratio in the HFBR-0221/ -0222 version does not overstress the LED even though the 80 mA peak exceeds the 40 mA data sheet specification for that part. In the HFBR-0223/-0224 version, the peaking is slightly reduced to make sure the trailing edge of the peak will not be sensed by the receiving circuit as a negative data transition.

## CIRCUIT LAYOUT CONSIDERATIONS

In so far as possible, given the limited space, the sensitive portions of the receiving circuit are spaced away from the parts of the transmitting circuit that have large excursions of current and voltage. Components that have no signal function (power supply decoupling elements) are placed in the space between the receiving and transmitting circuits to further enhance the shielding. Traces connecting to balanced inputs are made as nearly as possible the same length and closely spaced. Of course, a ground-plane style of PC board layout is used, and the EMI/ESD Shields in the HFBR-4201/-4202 Mounting Hardware are installed.

The transmitting side requires only a single +5 V power supply. Because of the large excursion currents in the

LED, shunt drive is used to minimize reaction on the power supply, which is shared by the receiving circuit. There is also decoupling by $\mathrm{L}_{1}, \mathrm{C}_{1}, \mathrm{C}_{2}$ in addition to the +5 V supply input bypass, $\mathrm{C}_{15}, \mathrm{C}_{16}$.
On the receiving side, the -5 V supply has only the input bypass $\mathrm{C}_{6}, \mathrm{C}_{7}$ and single decoupling for U 1 by $\mathrm{L}_{2}, \mathrm{C}_{8}$. Since the +5 V supply is shared with the transmitting circuit, considerable decoupling is needed to reduce interference. For U2 there is the first stage, L4, $\mathrm{C}_{4}, \mathrm{C}_{5}$; for U1 a second stage, $L_{3}, C_{9}$; and for the HFBR-2203/-2204 Receiver a third stage, $\mathrm{R}_{4}, \mathrm{C}_{10}$.

## SENSITIVITY IMPROVEMENT WITH DATA RATE REDUCTION

In a well-shielded receiver circuit, sensitivity is not limited by electro magnetic interference (EMI), but rather by random (Gaussian) noise for which the amplitude varies as the square root of the bandwidth. Sensitivity is defined as the amplitude of signal power needed to obtain sufficiently low Bit-Error Rate (BER), also known as Probability of Error, $\mathrm{Pe}_{\mathrm{e}}$. Obtaining $\mathrm{Pe}_{\mathrm{e}}<10^{-9}$ in an ac-coupled circuit with hysteresis, such as used in HFBR-0221/-0222 and HFBR-0223/-0224, requires
a) $\mathrm{T}>6 \mathrm{~N}$ to prevent false transition of output
b) $P>(T+6 N)$ to assure desired transition, where
$\mathrm{N}=$ noise-equivalent input power ( $\mu \mathrm{W}$ )
$\mathrm{T}=$ threshold-equivalent input power ( $\mu \mathrm{W}$ )
$\mathrm{P}=$ excursion amplitude of input power ( $\mu \mathrm{W}$ )
Noise reduction by filtering allows sensitivity improvement by reducing the noise amplitude. The filtered noise has amplitude, $N$ in a bandwidth, $B$ and the filtered/unfiltered noise ratio is:
$N / N_{0}=\left[B / B_{0}\right]^{0.5}$ as described above,
where
$\mathrm{N}_{\mathrm{O}}=$ reference noise in a bandwidth, $\mathrm{B}_{\mathrm{O}}$
$\mathrm{B}_{\mathrm{O}}=25 \mathrm{MHz}$, the unfiltered $3-\mathrm{dB}$ bandwidth of the HFBR-2203/4 Receiver

With noise reduced by the factor $N / N_{0}$, the threshold may be reduced by the same factor, and this allows the input excursion power to be reduced by $N / N_{0}$, while still obtaining $P_{e}<10^{-9}$. If the noise is reduced by filtering, but no threshold adjustment is made, there is still some sensitivity improvement, but the improvement factor may be considerably less:
$P / P_{O}=N / N_{O}$ for threshold adjustment: $T / T_{0}=N / N_{O}$ $P / P_{\mathrm{O}}=\left(1+\mathrm{N} / \mathrm{N}_{\mathrm{O}}\right) / 2$ for no threshold adjustment
Bandwidth reduction is accomplished by lengthening the time constant at the output of the HFBR-2203/-2204 Receiver. The bandwidth, B, obtained by doing this is:
$B=1 /\left[(2<\pi>)(\right.$ Req $\left.)\left(C_{17}\right)\right]$
where
Req $=$ equivalent resistance of $R_{5}$ and $R_{13}$ in parallel $=$ $1 /\left(1 / R_{5}+1 / R_{13}\right)$
$\mathrm{C}_{17}=$ capacitance added in parallel with $\mathrm{R}_{5}$
Threshold reduction can be done either by raising the gain of U1 or lowering the hysteresis set at U2, or by a combination. The simpler of the two is raising the gain of U1, since that requires changing the value of only one resistor, $R_{7}$; lowering $R_{7}$ raises the gain. The hysteresis setting at U2 should be kept balanced, so its reduction requires lowering $R_{8}$ and $R_{9}$ or raising $R_{10}$ and $R_{11}$. It may even be necessary to change all four, since their values affect the time constant with $\mathrm{C}_{13}$ and $\mathrm{C}_{14}$. The HFBR-0221/-0222 requires a long time constant, while the HFBR-0223/-0224 requires the time constant be kept short.
Bandwidth reduction will, or course, reduce the speed of response, and therefore the signalling rate will be reduced. A good rule for relating signalling rate to bandwidth is the ratio: two baud per hertz; that is, a 2 MHz bandwidth allows 4 MBd signalling.
A set of recommended component values and the anticipated result of such selection is listed in Table 1.

Table 1. Recommended Component Values and Typical Transceiver Performance ( $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ )
For HFBR-0221/-0222: (0.33 < Duty Factor < 0.67)

|  | $1 \mathbf{M B d}$ | 5 MBd | $\mathbf{2 0} \mathbf{M B d}$ | $\mathbf{3 0} \mathbf{M B d}$ |
| :--- | :---: | :---: | :---: | :---: |
| $R_{13}$ (ohms) | 100 | 100 | $20 r o$ | zero |
| $\mathrm{C}_{17}$ (pF) | 3300 | 680 | 100 | 100 |
| R $_{7}$ (ohms) | zero | 20 | 110 | 402 |
| $R_{8}$ and $\mathrm{R}_{9}$ (ohms) | 1.0 k | 1.0 k | 1.0 k | 1.0 k |
| $R_{10}$ and $R_{11}$ (ohms) | 26.1 k | 14.7 k | 14.7 k | 14.7 k |

## Minimum Power Budget (dB)

| For Cabling Loss | 17.5 | 14.0 | 9.0 | 6.0 |
| :--- | :---: | :---: | :---: | :---: |

## Cable Length (metres)

| $@ 5.5 \mathrm{~dB} / \mathrm{km}$ | 3100 | 2500 | 1600 | 1000 |
| :--- | :--- | :--- | :--- | :--- |

Table 1. Recommended Component Values and Typical Transceiver Performance ( $0^{\circ} \mathbf{C}$ to $70^{\circ} \mathrm{C}$ ) (cont.)
For HFBR-0223/-0224: (0.05 < Duty Factor < 0.95)

|  | $\mathbf{1 ~ M B d}$ | $\mathbf{5 ~ M B d}$ | 20 MBd |
| :--- | :---: | :---: | :---: |
| $R_{13}$ (ohms) | 100 | 100 | zero |
| $C_{17}(\mathrm{pF})$ | 3300 | 680 | 100 |
| $R_{7}$ (ohms) | 82.5 | 402 | 1620 |
| $\mathrm{G}_{13}$ and $\mathrm{C}_{14}(\mathrm{pF})$ | 1000 | 220 | 68 |
| $R_{8}$ and $R_{9}$ (ohms) | 0.215 k | 0.215 k | 0.215 k |
| $R_{10}$ and $R_{11}$ (ohms) | 8.25 k | 8.25 k | 8.25 k |

## Minimum Power Budget (dB)

| For Cabling Loss | 13.5 | 10.0 | 5.0 |
| :--- | :---: | :---: | :---: |

## Cable Length (metres)

| $@ 5.5 \mathrm{~dB} / \mathrm{km}$ | 2400 | 1800 | 900 |
| :---: | :---: | :---: | :---: |

## Schematic



Figure 2.

## COMPONENTS LIST

Common Components

## Resistors

$\mathrm{R}_{1}$
R4
R5,6,12
R13
Capacitors
$\mathrm{C}_{1,5,6,8,9,11,12,16}$
$\mathrm{C}_{2}$
$\mathrm{C}_{3,17}$
$\mathrm{C}_{4,7,15}$
$\mathrm{C}_{10}$
Inductors
L1,2,3,4

## Diode

CR1
Integrated Circuits
U1
U2
U3
Optional Jumpers
$W_{1,2,3}\left(W_{3}=R_{13}\right)$

## PRINTED CIRCUIT BOARD LAYOUT



## PRODUCT SPECIFIC COMPONENTS

|  | HFBR-0221/-0222 | HFBR-0223/-0224 |
| :--- | :--- | :--- |
| Resistors |  |  |
| $R_{2}$ | $43.0 \Omega ; 1 \% ; 1 / 2 \mathrm{~W}$ | $51.0 \Omega ; 5 \% ; 1 / 2 \mathrm{~W}$ |
| $R_{3}$ | $42.2 \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$ | $31.6 \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$ |
| $R_{7}$ | $110 \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$ | $1.62 \mathrm{~K} \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$ |
| $R_{8.9}$ | $1 \mathrm{~K} \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$ | $215 \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$ |
| $R_{10,11}$ | $14.7 \mathrm{~K} \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$ | $8.25 \mathrm{~K} \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$ |
| Capacitors |  |  |
| $C_{13,14}$ | $0.1 \mu$ F ceramic | 68 pF |

## FIBER OPTIC COMPONENTS

|  | HFBR-0221/-0223 | HFBR-0222/-0224 |
| :--- | :--- | :--- |
| $T_{X}$ | HFBR-1201 | HFBR-1202 |
| $R_{X}$ | HFBR-2203 | HFBR-2204 |
| Mounting <br> Hardware | HFBR-4201 | HFBR-4202 |

# PIN PHOTODIODE FIBER OPTIC RECEIVER 

## Features

- GUARANTEED PERFORMANCE: 60 MHz Bandwidth at 5 V Reverse Bias
Low Capacitance: Less than 1.6 pF
0.29 A/W Minimum Responsivity

Low Dark Current: Less than 300 pA

- MATES DIRECTLY WITH HP AND SMA STYLE CONNECTORS
- RUGGED, ISOLATED MINIATURE METAL PACKAGE WITH FACTORY ALIGNED OPTICS


## Applications

- HIGH SPEED FIBER OPTIC LINKS
- WIDE BANDWIDTH ANALOG FIBER OPTIC LINKS
- HIGH SENSITIVITY, LOW BANDWIDTH LINKS
- OPTICAL POWER SENSOR


## Description

The HFBR-2207/8 Fiber Optic Receiver is a silicon PIN photodiode mounted in a rugged metal package. Well suited for high speed applications, the HFBR-2207/8 Fiber Optic Receiver has low capacitance and low noise. The high coupling efficiency of the miniature package provides a minimum of $0.29 \mathrm{~A} / \mathrm{W}$ responsivity. Receiver responsivity includes the optical power lost in coupling light from the fiber onto the PIN photodiode as well as the responsivity of the PIN photodiode itself.
The HFBR-2207 mates with HFBR-4000 Connectors and the HFBR-2208 mates with SMA style connectors.
The HFBR-2207/8 is a member of the family of transmitters and receivers which use the miniature package. HP also offers connectored and unconnectored $100 / 140 \mu \mathrm{~m}$ fiber cable in simplex and duplex configurations.

## Mechanical Dimensions

## HFBR-2207 HP CONNECTOR COMPATIBLE




Cross Sectional View

HFBR-2208 SMA STYLE COMPATIBLE


## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Reference |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -55 | 85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | -55 | 85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Lead <br> Soldering <br> Cycle | Temp. |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | Note 1 |
|  | Time |  |  | 10 | sec |  |
| Reverse Bias Voltage | $\mathrm{V}_{\mathrm{R}}$ | -0.5 | 50 | V |  |  |
| Voltage, Case-to-Junction |  |  |  |  |  |  |



## Electrical/Optical Characteristics

$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm}$ at 820 nm unless otherwise specified. Typical data at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

| Parameter | Symbol | Min. | Typ. | Max. | Unit | Conditions |  | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Effective Optical Port DC Responsivity | Rp | 0.29 | 0.38 | 0.40 | A/W | HFBR-3000/3100 100/140 $\mu \mathrm{m}$ Fiber N.A. $=0.28, \mathrm{~g}=2$ |  | Fig. 1, 2, 3, 8 |
| Dark Current | 10 |  | 50 | 300 | pA | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} \end{aligned}$ | Fig. 4, 9 |
| Noise Equivalent Power | NEP |  |  | $\begin{aligned} & 3.4 x \\ & 10^{-14} \end{aligned}$ | $\frac{w}{\sqrt{H z}}$ | . |  | Note 5 |
| Total Capacitance | CT |  | 1.3 | 1.6 | pF |  |  | Fig. 5 |
| Series Resistance | Rs |  | 5 | 10 | $\Omega$ |  |  |  |
| Equivalent N.A. | NA |  | 0.4 |  |  |  |  |  |
| Equivalent Diameter | DR |  | 250 |  | $\mu \mathrm{m}$ |  |  | Note 3 |
| Case Isolation Resistance | Rcase | 1 |  |  | $\mathrm{M} \Omega$ | $V_{C}=100 \mathrm{~V}$ |  | Note 2, Fig. 9 |

## Dynamic Characteristics

$T_{A}=25^{\circ} \mathrm{C}$, RLOAD $=50 \Omega, P_{R}=-20 \mathrm{dBm}$ at 820 nm unless otherwise specified.

| Parameter | Symbol | Min. | Typ. | Max. | Unit | Conditions | Reference |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 3 dB Bandwidth | BW | 60 | 100 |  | MHz | $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ | Fig. 6, 7 |
|  |  | 150 | 250 |  |  | $\mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V}$ | Fig. 10 |

## Notes:

1. 2.0 mm from where leads enter case.
2. $\mathrm{V}_{\mathrm{C}}(100 \mathrm{~V})$ is applied simultaneously to Pin 2 and Pin 3 with respect to Pin 1.
3. $D_{R}$ is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
4. Rise/Fall time is calculated from the equation:

$$
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\frac{350}{3 \mathrm{dBBW}(\mathrm{MHz})} \mathrm{ns}
$$

5. For $(\lambda, f, \Delta f)=(820 \mathrm{~nm}, 100 \mathrm{~Hz}, 6 \mathrm{~Hz})$ where $f$ is the frequency for a spot noise measurement and $\Delta f$ is the noise bandwidth, NEP is the optical flux required for unity signal/noise ratio normalized for bandwidth.

Thus:

$$
N E P=\frac{\operatorname{lN} / \sqrt{\Delta f}}{R_{P}}
$$

where $I_{N} / \sqrt{\Delta f}$ is the bandwidth - normalized noise current computed from the shot noise formula:
$I_{N} / \sqrt{\Delta f}=\sqrt{2 \mathrm{q} I_{D}}=17.9 \times 10^{-15} \sqrt{I_{D}}(\mathrm{~A} / \sqrt{\mathrm{Hz}})$ where $\mathrm{I}_{\mathrm{D}}$ is nA .
6. Relative incremental response is defined as:

$$
\frac{\Delta R_{P}}{R_{P}} \times 100 \%=\frac{R_{A C}\left(P_{R}\right)-R_{A C}(-25 d B m)}{R_{A C}(-25 d B m)} \times 100 \%
$$

where:
$R_{A C}=$ Small signal $A C(20 \mathrm{MHz},-30 \mathrm{dBm})$ response $P_{R}=D C$ optical power incident on port.
$V_{R}=5 \mathrm{~V} ; \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm}$ at $820 \mathrm{~nm} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.


Figure 1. Normalized Responsivity vs. Wavelength


Figure 2. Normalized Responsivity vs. Ambient Temperature


Figure 3. Responsivity vs. Reverse Voltage


Figure 4. Dark Current vs. Ambient Temperature


Figure 5. Capacitance vs. Reverse Voltage


Figure 6. 3 dB Bandwidth vs. Reverse Voltage


Figure 7. Normalized Bandwidth vs. Ambient Temperature


Figure 8. Linearity Characteristic vs. Optical Power


Figure 9. Test Set-up


Figure 10. Bandwidth Measurement Set-up

## Mechanical Description

The HFBR-2207 and 2208 fiber optic receivers are housed in rugged metal packages intended for use with the HP or SMA style connectored fiber cables. The low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking. A flat on the mounting threads of the device is provided to prevent rotation in all mounting configurations and to provide an orientation reference for the pin-out. Hardware is available for horizontal mounting applications on printed circuit boards. The hardware consists of a stainless steel mounting bracket fastened directly to the printed circuit board with two stainless steel self-tapping screws and a nut and washer for fastening the device in the bracket. $A$
metal shield which snaps directly on the mounting bracket is also available for unusually severe EMI/ESD environments. When mounted in the horizontal configuration, the overall height of the component conforms with guidelines allowing printed circuit board spacing on $12.7 \mathrm{~mm}(0.500)$ centers. A thorough environmental characterization has been performed on these products. The test data as well as information regarding operation beyond the specified limits is available from any Hewlett-Packard sales office.
Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well.


## Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.

When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support the leads at the base of the package and bend the leads as desired.
When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

## Application Information

## NOISE FREE PROPERTIES

The noise current of the HFBR-2207/8 is negligible. This is a direct result of the exceptionally low leakage current, in accordance with the shot noise formula $\mathrm{IN}_{\mathrm{N}}=(2 \mathrm{qlo} \Delta f)^{1 / 2}$. Since the leakage current does not exceed 300 picoamps at a reverse bias of 20 volts, shot noise current is less than $9.8 \times 10^{-15} \mathrm{amp} \mathrm{Hz}{ }^{-1 / 2}$ at this voltage.

Excess noise is also very low, appearing only at frequencies below 10 Hz , and varying approximately as $1 / \mathrm{f}$. When the output of the diode is observed in a load, thermal noise of the load resistance $\left(R_{L}\right)$ is $1.28 \times 10^{-10}\left(R_{L}\right)^{-1 / 2} \times(\Delta f)^{1 / 2}$ at $25^{\circ} \mathrm{C}$, and far exceeds the diode shot noise for load resistance less than 100 megohms. Thus in high frequency operation where low values of load resistance are required for high cut-off frequency, the HFBR-2207/8 contributes virtually no noise to the system.

## HIGH SPEED PROPERTIES

High speed operation is possible since the HFBR-2207/8 has low capacitance and wide bandwidth at a low reverse bias.


Figure 11. Photodiode Equivalent Circuit

Is $=$ Signal current $\approx 0.38 \mu \mathrm{~A} / \mu \mathrm{W} \times \mathrm{PR}_{\mathrm{R}}$
$\mathrm{I}_{\mathrm{N}}=$ Shot noise current
$<9.8 \times 10^{-15} \mathrm{amps} / \mathrm{Hz}^{1 / 2}$
ID $=$ Dark current
$<300 \times 10^{-12} \mathrm{amps}$ at 20 V dc bias
$R \mathrm{R}=10^{11} \Omega$
$\mathrm{R}_{\mathrm{S}}=10 \Omega$

## LINEAR OPERATION

Operation of the photodiode is most linear when operated with a current amplifier as shown in Figure 12.


Figure 12. Linear Operation

Lowest noise is obtained with $\mathrm{E}_{\mathrm{C}}=0$, but higher speed and wider dynamic range are obtained if $5<\mathrm{E}_{\mathrm{C}}<20$ volts. The amplifier should have as high an input resistance as possible to permit high loop gain. If the photodiode is reversed, bias should also be reversed.

HFBR-2207 RECEIVER
HEWLETT-PACKARD STYLE CONNECTOR
(Used in HFBR-3000/3100, Option 001 Cable Assemblies).


HFBR-4000 CONNECTOR



RECEIVER PCB LAYOUT DIMENSIONS


SMA STYLE CONNECTORS
(Type $B$ is not available from HP)


TYPE B


DIMENSIONS IN MILLIMETRES (INCHES).

## Ordering Guide

| Receivers: | HFBR-2207 (HP Connector Compatible) <br> HFBR-2208 (SMA Connector Compatible) |
| :--- | :--- |
| Transmitters: | HFBR-1201 <br>  <br>  <br>  <br>  <br>  <br> HFBR-1202 <br> HFBR-1203 |
| HFBR-1204 |  |$\quad$ (see data sheets)

## Fiber Optic Cable

Hewlett-Packard offers connectored or unconnectored $100 / 140 \mu \mathrm{~m}$ fiber cables in simplex or duplex configurations. See data sheets for details.

# FIBER OPTIC 100 m HIGH PERFORMANCE TRANSMITTER MODULE 

## Features

- TRANSMISSION LENGTH: 100 METRES*
- DATA RATE: DC TO 10 Mbaud*
- NO DATA ENCODING REQUIRED*
- TTL INPUT LEVELS
- FUNCTIONAL LINK MONITORING*
- SINGLE +5V SUPPLY
- PCB MOUNTABLE, LOW PROFILE
- INTEGRAL, HIGH QUALITY OPTICAL CONNECTOR
- LOW POWER CONSUMPTION
*When used with HFBR-2001 Receiver and any Hewlett Packard HFBR-3000/-3100 Series Cable/Connector Assembly.



## Description

The HFBR-1001 fiber optic transmitter is an integrated electrical to optical transducer designed for digital data transmission over single fiber channels. A bipolar integrated circuit and a GaAsP LED convert TTL level inputs to optical pulses at data rates from dc to $10 \mathrm{Mb} / \mathrm{s}$ NRZ. An integral optical connector on the module allows easy interfacing without problems of source/fiber alignment. The low profile package is designed for direct printed circuit board mounting without additional heat sinking.
The HFBR-1001 is intended for use with HFBR-3000 fiber optic cable/connector assemblies, and the HFBR-2001 fiber optic receiver for transmission distances up to 100 metres. The HFBR-1001 generates optical signals in either of two externally selectable modes. The internally-coded mode produces a 3 -level coded optical signal for reception and decoding by the HFBR2001 receiver. This feature provides data format independence over the data rate range of dc to $10 \mathrm{Mb} / \mathrm{s}$ NRZ while allowing for wide dynamic range and high sensitivity at the receiver. The externally-coded mode produces a 2 -level optical signal which is a 'digital replica of the data input waveform. Used in this mode with the HFBR-2001 receiver, the user must provide proper data formatting (explained in the HFBR-2001 data sheet) to insure proper receiver operation. In either mode, the radiant output is radiologically safe (per ANSI Z136.1-1981).

## Package Dimensions


caution:

1. LOCK NUT AND BARREL SHOULD NOT BE DISTURBED.
2. SCREWS ENTERING THE 2.56 thre aded mounting holes MUST NOT TOUCH BOTTOM.
3. THE CONNECTOR SHOLLD NOT BE THGHTENED BEYOND THE LIMITS SPECIEIED IN THE HEWLETT. PPACKARD CABLE/CONNECTOR DATA SHEET FFINGER TIGHT).

| PIN | FUNCTION |
| :---: | :--- |
| 1 | MODE SELECT |
| 2 | N.C. |
| 3 | GROUND |
| 4 | V $_{\text {CC }}$ |
| 5 | DATA INPUT |

notes:

1. DIMENSIONS IA man fNCHES)
2. UNLESS OTHERWISE SPECFFIED THE TOLERAKICE ON ALL DIMENSIONS ES $\pm 0.38 \mathrm{~mm}\left( \pm 0.015^{\prime \prime}\right)$

Absolute
Maximum Ratings

| Parameter | Symbol | Min | Max | Units | Nate |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $T_{S}$ | -55 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Lead Soldering | Temperature |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | 3 |
|  | Time |  |  | 10 | s | 3 |
|  | $V_{\mathrm{CC}}$ | -0.5 | 6 | V |  |  |
| Mode Select or <br> Data Input Voltage | $V_{1}$ | -0.5 | 5.5 | V |  |  |

Recommended Operating Conditions

| Parameter | Symbol | Min | Max | Units | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature | $\mathrm{T}_{\text {A }}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | $V_{C C}$ | 4.75 | 5.25 | $V$ | 4 |
| High Level Input Voltage, Mode Select or Data Input | ${ }^{*} V_{\text {IH }}$ | 2.0 | $V_{C C}$ | $V$ |  |
| Low Level Input Voltage, Mode Select or Data Input | VIL | 0 | 0.8 | $V$ |  |
| Data Input Voltage Pulse Duration (high or low) | ${ }_{\text {t }}^{\text {H. }}$ t | 100 |  | ns. |  |

Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified

| Parameter |  |  | Symbol | Min | Typ ${ }^{(6)}$ | Max | Units |  | Con | tions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Level Input Current |  | Mode Select | IIH |  |  | 100 | $\mu \mathrm{A}$ | $V_{C C}=5.25 \mathrm{~V}, V_{1}=2.4 \mathrm{~V}$ |  |  | 2 |  |
|  |  | Data Input |  |  |  | 20 |  |  |  |  |  |
| Low Level Input Current |  | Mode Select | $\mathrm{I}_{12}$ |  |  | -1.6 | mA | $V_{C C}=5.25 \mathrm{~V}, V_{1}=0.4 \mathrm{~V}$ |  |  |  |  |
|  |  | Data Input |  |  |  | -0,6 |  |  |  |  |  |
| Supply <br> Current | Externally-Coded Mode |  | ${ }^{\text {I CC }}$ |  |  | 170 | mA | Mode Select High <br> Mode Select <br> Law | Data Input High <br> $V_{C C}=5.25 \mathrm{~V}$ <br> Data Input Low <br> $V_{C C}=4.75 \mathrm{~V}$ |  |  | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | 5 |
|  |  |  | 40 |  |  |  |  |  |  |  |  |  |
|  | Internally-Coded <br> Mode |  |  | 68 | 95 | 125 |  |  |  | nput High or Low $5.25 \mathrm{~V}$ |  |  |  |
| Optical <br> Power | High Level |  |  | $\mathrm{P}_{\mathrm{H}}$ |  | 67 |  | $\mu \mathrm{W}$ | Mode Select High |  | Data Input High | $\begin{aligned} & 1 \\ & 2, \\ & 3 \end{aligned}$ |  |
|  | Low Level |  | $P_{L}$ |  | 3 |  | Data Input Low |  |  |  |  |  |  |
|  | Mid Level lave | ge) | $\mathrm{P}_{\mathrm{M}}$ |  | 35 |  | Mode Select Low |  | Data Input Square Wave at 500 kHz |  |  |  |  |
|  | Excursion (pe | $\frac{\text { to-peak }}{2}$ | $\Delta P$ | 22 | 32 |  | Mode Select High |  |  | 9 |  |  |  |
| Amplitude Symmetry, Flux Excursion Ratio |  |  | k | 0.8 |  | 1.2 | - |  | Mode Select Low |  |  | 1 | 7 |
| Exit Numerical Aperture |  |  | N.A. |  | 0.5 |  | - |  |  |  |  | 3 |  |
| Optical Port (fiber optic core) Diam. |  |  | DC |  | 200 |  | $\mu \mathrm{m}$ |  |  |  |  |  |  |
| Coupling Loss | from area mismatch |  | $\alpha_{\text {A }}$ |  | 6.0 |  | $d B$ | with HFBR-3000 Cable/Connector Assembly |  |  |  |  |  |
|  | from numerical aperture mismatch |  | $\alpha_{N, A}$ |  | 4.0 |  |  |  |  |  |  |  |  |
| Peak Emission Wavelength |  |  | $\lambda p$ |  | 700 |  | nm |  |  |  | 4 |  |  |

## Dynamic Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified.

| Parameter |  |  | Symbal | Min | Typ ${ }^{(6)}$ | Max | Units | Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay | High-to-Law Data Input Voltage Stép |  | tPHL |  | 31 |  | ns | $V_{C C}=4.75 \mathrm{~V}$ | 1 | 8 |
|  | Low-to-High Data Input Voltage Step |  | tPLH |  | 35 |  | ns |  | 1 | 8 |
| Refresh Pulse <br> Internally-Coded Mode |  | Duration | $t_{p}$ |  | 60 |  | ns | $V \mathrm{CC}=5.00$ V. Mode Select Low | 1 | 8 |
|  |  | Repetition Rate | $f_{R}$ |  | 400 |  | kHz |  |  |  |



Figure 1. Optical Power Coding and Timing Diagram.


Figure 2. Schematic Diagram.


Figure 3. Radiation Pattern.*


Figure 4. Emission Spectrum.
*The optical fiber is recessed within the barrel at a distance of approximately 7 mm . Solid line represents radiation pattern from fiber stub without obscuration by connector barrel. Dashed line represents radiation pattern as seen from outside of connector.

Notes (cont'd):
3. Measured at a point 2 mm (. 079 in .) from where lead enters package.
4. A supply decoupling network of $2.2 \mu \mathrm{H}$ with $60 \mu \mathrm{~F}$ is recommended.
5. Average currents for steady-state conditions at Data Input.
6. For typical values, $\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
7. Optical power excursion ratio, $k$, is the ratio of optical power excursion above mid level to optical power excursion below mid level. $k=\frac{P_{H}-P_{M}}{P_{M}-P_{L}}$
8. The refresh pulse is interrupted (abbreviated) if Data Input changes state during the refresh pulse. MAX propagation delay is for Data Input changing state during the maximum excursion of the refresh pulse.
9. Optical power excursion
$\Delta \mathrm{P}=0.5\left(\mathrm{PH}_{\mathrm{H}}-\mathrm{PL}\right)$, or $\Delta \mathrm{P}=0.5\left(\mathrm{PM}-\mathrm{PL}^{2}\right) \bullet(1+\mathrm{k})$.
Notice that under the conditions specified for $\Delta \mathrm{P}$, the average flux is $\left(\Delta P+P_{L}\right)$.

## Electrical Description

The HFBR-1001 has two modes of operation: Internally-Coded mode and Externally-Coded mode. These are selected by making the Mode Select input "low" for Internally-Coded mode and "high" for Externally-Coded mode. With Mode Select "low," the optical signal generator in the HFBR-1001 produces a "mid-level" optical power which has positive or negative excursions, depending on whether Data Input is "high" or "low." In this Internally-Coded mode, a train of positive excursions is initiated when Data Input goes "high;" when Data Input goes "low," a train of negative excursions is initiated. These excursions are pulses of approximately 60 ns duration with a 400 kHz repetition rate. Each initiation of a pulse train starts with a full-duration pulse, but when Data Input changes state, the train is terminated - even at midpulse - as a new train of opposite-polarity pulses is initiated. With this coding scheme and the low duty factor, the average optical power is always near the mid-level, regardless of the data rate or duration in either state. This coding scheme is designed to operate the HFBR 2001 Fiber Optic Receiver most effectively; the mid-level flux operates the Receiver's dc-restorer and the "refresh" pulses of either polarity keep the Receiver's ALC voltage at the proper level, allowing low propagation delay for any change of state at Data Input. The Internally-Coded mode permits transmission of analog information, e.g., by means of Pulse Width Modulation. Another advantage of the 3-level Internally-Coded mode is that supply current is nearly the same for either logic state, this reducing transients on the power supply line.
With Mode Select "high," the optical signal is at full maximum (~2 X mid level) when Data Input is "high," and nearly zero when Data Input is "low." This mode provides for these three applications:

1. Steady state turn-on of the photo-emitter at maximum flux level (e.g., for system diagnosis).
2. Stand-by mode (e.g., when the system is not in use).
3. Transmission of 2-level optical signals from externally generated code (e.g., Manchester) for receivers not configured for the 3-level code. With Mode Select "high," the output is either $\mathrm{P}_{\mathrm{H}}$, or $\mathrm{PL}_{\mathrm{L}}$. Direct analog operation is not possible due to hysteresis in the response of the optical signal to the Data Input signal.

## Mechanical and Thermal Considerations

Typical power consumption is less than 500 mW so the transmitter can be mounted without consideration for external heat sinking. The optical port is an optical fiber stub centered in a metallic ferrule. This ferrule supports a split-wall cylindrical spring sleeve which aligns the ferrule in the Transmitter with the ferrule in the HFBR-3000 Fiber Optic Cable/Connector. The connection procedure is to FIRST start the Connector ferrule into the sleeve; THEN screw the coupling ring on the barrel. The barrel performs no alignment function; its purpose is to hold the ferrule faces together when the coupling ring is tightened as specified in the HFBR-3000 Fiber Optic Cable/Connector data sheet.

The HFBR-1001 should be mounted so that the lock nut at the optical port is not disturbed. Moving the lock nut can cause misalignment of the optical fiber stub inside the module resulting in a reduction of power output. Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.

Good system performance requires clean ferrule faces to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {™ }}$ on a cotton swab also works well. If it is absolutely necessary to remove the threaded barrel and lock nut to clean the transmitter ferrule face, refer to the section "Installation Measurement and Maintenance" in Hewlett-Packard Application Note 1000.

## FIBER OPTIC 1250m HIGH PERFORMANCE TRANSMITTER MODULE

HFBR-1002

TECHNICAL DATA JANUARY 1986

## Features

- PIN COMPATIBLE WITH HFBR-1001 TRANSMITTER
- TRANSMISSION LENGTH: 1250 METRES*
- DATA RATE: DC TO 10 Mbaud* $^{*}$
- NO DATA ENCODING REQUIRED*
- TTL INPUT LEVELS
- FUNCTIONAL LINK MONITORING*
- SINGLE +5V SUPPLY
- PCB MOUNTABLE, LOW PROFILE
- INTEGRAL, HIGH QUALITY OPTICAL CONNECTOR
- LOW POWER CONSUMPTION
*When used with HFBR-2001 Receiver and any Hewlett Packard HFBR-3000/-3100 Series Cable/Connector Assembly.



## Description

The HFBR-1002 fiber optic transmitter is an integrated electrical to optical transducer designed for digital data transmission over single optical fiber channels. A bipolar integrated circuit and a high efficiency GaAIAs LED convert TTL level inputs to optical pulses at data rates from dc to 10 Mbaud (see note 5). An integral optical connector on the module allows easy interfacing without problems of fiber alignment. The low profile rugged industrial package is designed for direct circuit board mounting without additional heat sinking on printed circuit boards with 12.7 mm ( $0.5^{\prime \prime}$ ) card rack spacing.
The HFBR-1002 is intended for use with Hewlett-Packard fiber optic cable/connector assemblies, and the HFBR-2001 fiber optic receiver for transmission distances to 1250 metres. It is a direct replacement for extending links currently using the HFBR-1001 (100 metre) transmitter to give 1250 metre capability. The HFBR-1002 generates optical signals in either of two externally selectable modes. True dc response (data high or low for arbitrary time interval) is available when using the Internally-Coded mode.
WARNING: OBSERVING THE TRANSMITTER OUTPUT FLUX UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the near IR output flux is radiologically safe; however, when viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

## Package Dimensions



CAUTION:

1. LOCK NUT AND BARREL SHOULD NOT BE DISTUABED.
2. SCREWS ENTERING THE 2.56 THREADED MOUNTING HOLES MUST NOT TOUCH BOTTOM.
3. THE CONNECTOR SHOULD NOT BE TIGHTENED BEYOND THE LIMITS SPECIFIED IN THE HEWLETFPACKARD CABLE/ CONNECTOR DAYA SHEET (FINGER TIGHT).

| PIN | FUNCTION |
| :---: | :--- |
| 1 | MODE SELECT |
| 2 | N.C. |
| 3 | GROUND |
| 4 | $V_{\text {CC }}$ |
| 5 | DATA INPUT |

NOTES:

1. DIMENSIONS IN mm (INCHES)
2. UNLESS OTHERWISE SPECIFIED THE TOLERANCE ON ALL DIMENSIONS $\pm S \pm .38 \mathrm{nmm}\left( \pm .015^{\prime \prime}\right)$

## Absolute Maximum Ratings

| Parameter | Symbol | Min | Max | Units | Note |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -55 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Operating Temperature | $\mathrm{T}_{\mathrm{A}}$ | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |  |  |
| Lead Soldering | Temperature |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | 3 |
|  | Time |  |  | 10 | S |  |
| Supply Voltage | $\mathrm{V}_{\mathrm{CC}}$ | -0.5 | 6 | V |  |  |
| Mode Select or <br> Data Input Voltage | $\mathrm{V}_{1}$ | -0.5 | 5.5 | V |  |  |

Recommended Operating Conditions

| Parameter | Symbol | Min | Max | Units | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature | TA | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |  |
| Supply Voltage | $V_{C C}$ | 4.75 | 5.25 | $\checkmark$ | 4 |
| High Level Input Voltage, Mode Select or Data Input | $V_{\text {IH }}$ | 2.0 | $V_{C C}$ | V |  |
| Low Level Input Voltage, Mode Select or Data Input | VIL | 0 | 0.8 | V |  |
| Data Input Voltage Pulse Duration (high or low) | ${ }^{\text {the }}$, ${ }^{\text {L }}$ | 100 |  | ns | 5 |
| Transmission Distance | $\ell$ |  | 1250 | m | 6 |

## Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless Otherwise Specified



## Dynamic Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified

| Parameter |  |  | Symbol | Min | Typ ${ }^{(7)}$ | Max | Units | Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation Delay | High-to-Low Data Input Voltage Step |  | tPHL |  | 34 |  | ns | $v_{C C}=4.75 \mathrm{~V}$ <br> Data Input Square Wave at 500 kHz | 1 | 11 |
|  | Low-to-High Data Input Voltage Step |  | tple |  | 32 |  | ns |  |  |  |
| Refresh Pulse Internally-Coded Made |  | Duration | $t_{p}$ |  | 40 |  | ns | $\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}$, Mode Select Low |  |  |
|  |  | Repetition Rate | $\mathrm{f}_{\mathrm{R}}$ |  | 400 |  | kHz |  | 1 | 11 |



Figure 1. Flux Coding and Timing Diagram.


Figure 2. Schematic Diagram. $\frac{1}{=}^{3}$ GROUND


Figure 3. Radiation Pattern.*


Figure 4. Emission Spectrum.
*The optical fiber is recessed within the barrel at a distance of approximately 7 mm . Solid line represents radiation pattern from fiber stub without obscuration by connector barrel. Dashed line represents radiation pattern as seen from outside of connector.

Notes (cont'd):
3. Measured at a point 2 mm (. 079 in .) from where lead enters package.
4. A supply decoupling network of $2.2 \mu \mathrm{H}$ with $60 \mu \mathrm{~F}$ is recommended.
5. With NRZ data, 10 Mbaud corresponds to a data rate of 10 Mbits/second. With other codes, the data rate is the baud rate divided by the number of code intervals per bit interval. Selfclocking code (e.g., Manchester) usually has two code intervals per bit interval giving 5 Mbits/second at 10 Mbaud .
6. With Hewlett-Packard HFBR-2001 and HFBR-3000 Series Cable/Connector Assembly.
7. For typical values, $\mathrm{V}_{C C}=5.00 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
8. The transmitter output, $\mathrm{P}_{\mathrm{T}}$, equals the optical power excursion, $\Delta P=\left(P_{H}-P_{L}\right) / 2$. Notice that under the conditions specified for $\Delta P$, the average optical power is $\left(P_{H}+P_{L}\right) / 2$.
9. Optical power excursion ratio, $k$, is the ratio of optical power
excursion above mid level to optical power excursion below mid level.

$$
k=\frac{P_{H}-P_{M}}{P_{M}-P_{L}}
$$

10. Average currents for steady-state conditions at Data Input.
11. The refresh pulse is interrupted (abbreviated) if Data Input changes state during the refresh pulse. MAX propagation delay is for Data Input changing state during the maximum excursion of the refresh pulse.
12 When used with the HFBR-3000/3100 cable assemblies, the total insertion loss ( $\alpha \mathrm{T}$ ) is calculated as follows:

$$
\alpha T=8.4 \mathrm{~dB} ; \ell \leq 300 \mathrm{~m}
$$

$$
\alpha T=\alpha \mathrm{F}+\alpha_{0} \cdot \ell / 1000 ; \ell>300 \mathrm{~m}
$$

Where $\alpha_{0}=$ Cable attenuation at $820 \mathrm{~nm} ; \ell=$ cable length (metres).
13. Measured at the end of 1.0 metre HFBR-3000 Fiber Optic Cable with large area detector and cladding modes stripped,

## Electrical Description

The HFBR-1002 has two modes of operation: InternallyCoded mode and Externally-Coded mode. These are selected by making the Mode Select input "low" for Internally-Coded mode and "high" for Externally-Coded mode. With Mode Select "low," the optical signal generator in the HFBR-1002 produces a "mid-level" optical power which has positive or negative excursions, depending on whether Data Input is "high" or "low". In this InternallyCoded mode, a train of positive excursions is initiated when Data Input goes "high," when Data Input goes "low", a train of negative excursions is initiated. These excursions are pulses of approximately 40 ns duration with a 400 kHz repetition rate. Each initiation of a pulse train starts with a fullduration pulse, but when Data Input changes state, the train is terminated - even at mid-pulse - as a new train of opposite-polarity pulses is initiated. With this coding scheme and the low duty factor, the average optical power is always near the mid-level, regardless of the data rate or duration in either state. This coding scheme, which is transparent to the user, is designed to operate the HFBR-2001 Fiber Optic Receiver most effectively; the mid-level flux operates the Receiver's dc-restorer and the "refresh" pulses of either polarity keep the Receiver's ALC voltage at the proper level, providing data format independence (no data encoding required) over the data rate range of dc to 10 Mbaud . The Internally-Coded mode permits transmission of analog information, e.g., by means of Pulse Width Modulation. Another advantage of the 3-level Internally-Coded mode is that supply current is nearly the same for either logic state, thus reducing transients on the power supply line.
With Mode Select "high," the optical signal is at full maximum ( $\sim 2 \times$ mid-level) when Data Input is "high," and nearly zero when Data Input is "low." Used in this mode with the HFBR-2001 Receiver, the user must provide proper data formatting (e.g., Manchester or Bi-Phase coding, explained in HFBR-2001 data sheet) to ensure proper receiver operation. This mode provides for these three applications:

1. Steady state turn-on of the photo-emitter at maximum flux level (e.g., for system diagnosis).
2. Stand-by mode (e.g., when the system is not in use).
3. Transmission of 2-level optical signals from externally generated code (e.g., Manchester) for receivers not configured for the 3 -level code. With Mode Select "high," the output is either $\mathrm{P}_{\mathrm{H}}$, or $\mathrm{P}_{\mathrm{L}}$. Direct analog operation is not possible due to hysteresis in the response of the optical signal to the Data Input signal.

## Mechanical and Thermal Considerations

Typical power consumption is less than 500 mW so the transmitter can be mounted without consideration for external heat sinking. The optical port is an optical fiber stub centered in a metallic ferrule. This ferrule supports a split-wall cylindrical spring sleeve which aligns the ferrule in the Transmitter with the ferrule in the Hewlett-Packard Fiber Optic Cable/Connector Assembly. The threaded barrel performs no alignment function; its purpose is to hold the ferrule faces together when the coupling ring is tightened finger-tight as specified in the Hewlett-Packard Fiber Optic Cable/Connector data sheet.
The HFBR-1002 should be mounted so that the lock nut at the optical port is not disturbed. Moving the lock nut can cause misalignment of the optical fiber stub inside the module resulting in a reduction of power output. Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
Good system performance requires clean ferrule faces to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well. If it is absolutely necessary to remove the threaded barrel and lock nut to clean the transmitter ferrule face, refer to the section "Installation Measurement and Maintenance" in HewlettPackard Application Note 1000.


Figure 5. Normalized Transmitter Output Flux vs. Temperature.

## FIBER OPTIC HIGH PERFORMANCE RECEIVER MODULE

## Features

- DATA RATE: DC TO 10 Mbaud*
- LOW NOISE: $10^{-9}$ BER WITH $0.8 \mu$ W INPUT*
- NO DATA ENCODING REQUIRED*
- TTL OUTPUT LEVELS
- FUNCTIONAL LINK MONITORING*
- OPTICAL POWER INPUT INDICATION
- SINGLE +5V SUPPLY
- PCB MOUNTABLE, LOW PROFILE
- INTEGRAL, HIGH QUALITY OPTICAL CONNECTOR.
*When used with HFBR-1001/-1002 Transmitters and any Hewlett Packard HFBR-3000/-3100 Series Cable/Connector Assembly.


## Description

HFBR-2001 fiber optic receiver is an integrated optical to electrical transducer designed for reception of digital data over single fiber channels. A silicon PIN photodetector and a bipolar integrated circuit convert optical pulses to TTL level outputs with an optical sensitivity of $.8 \mu \mathrm{~W}$, and data rates to $10 \mathrm{Mb} / \mathrm{s}$ NRZ. An integral optical connector on the module allows easy interfacing without problems of fiber/detector alignment. The low profile package is designed for direct printed circuit board mounting without additional heat sinking.
The HFBR-2001 is intended for use with HFBR-3000 fiber optic cable/connector assemblies and the HFBR-1001/1002 fiber optic transmitters. In order to provide wide dynamic range, dc response, and high sensitivity, the receiver must periodically extract information from the optical waveform. When operating with a transmitter in the internally-coded mode, this information is automatically provided by the transmitter. When operating in the externally-coded mode, or with another transmission source, the user must provide proper data formatting to insure proper receiver operation.
An additional TTL output called Link Monitor (LM), provides a digital indication of link continuity independent of the presence of data. Link continuity is indicated by a logical high output state.

## Package Dimensions



## Absolute Maximum Ratings

| Parameter |  | Symbol | Min | Max | Units | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Temperature |  | $T_{S}$ | -55 | 85 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temperature |  | TA | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |  |
| Lead Soldering | Temperature |  |  | 260 | ${ }^{\circ} \mathrm{C}$ | 3 |
| Cycle | Time |  |  | 10 | s |  |
| Supply Voltage |  | $V_{\text {cc }}$ | -0.5 | 6.0 | V |  |
| Output Voltage (High State) |  | V OH |  | 6.0 | V |  |

## Recommended Operating Conditions

| Parameter |  |  | Symbol | Min | Max | Units | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature |  |  | TA | 0 | 70 | ${ }^{\circ} \mathrm{C}$ | 4 |
| Supply Voltage |  |  | $V_{C C}$ | 4.75 | 5.25 | $V$ |  |
| Supply Ripple (Peak-to-Peak) |  |  | $\triangle V_{C C}$ |  | 250 | mV |  |
| High Level Output Current | Link Monitor |  | 1 OH |  | -100 | $\mu \mathrm{A}$ |  |
|  | Data Output |  |  |  | -400 |  |  |
| Low Level Output Current |  |  | 10 L |  | 8 | mA |  |
| Average Input Optical Power |  |  | PM | 0.8 | 70 | $\mu \mathrm{W}$ | 6 |
| Peak-tomPeak Input Optical Power |  |  | $\mathrm{P}_{\mathrm{H}} \mathrm{P}_{\mathrm{L}}$ | 1.6 | 140 | $\mu \mathrm{W}$ | , |
| Optical Input <br> Puise Duration and Timing | 2-Leved Code | High Level | th | 100 | 5000 | ns |  |
|  |  | Low Level | $t_{L}$ |  |  |  |  |
|  | Flux Excursion Ratio |  | k | 0.75 | 1.25 |  | 7 |
|  | 3-Level <br> Code | High Level | ${ }_{\text {t }}$ | 50 |  | ns | 8 |
|  |  | Low Level | ${ }_{L}$ |  |  |  |  |
|  |  | Mid Level | H | 0.05 | 6.7 | $\mu \mathrm{s}$ |  |
|  | Refresh | tition Rate | $\mathrm{fR}^{\text {R }}$ | 150 |  | kHz |  |
|  | Refresh | Factor | fRH, frit |  | 0.04 |  |  |

Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified

| Parameter |  |  | Symbol <br> VOH | $\begin{array}{\|c\|} \hline \text { Min } \\ \hline 2.4 \end{array}$ | $\begin{array}{\|c\|} \hline \text { Typ }{ }^{5} \\ \hline 2.85 \end{array}$ | Max |  | Conditions |  |  | Fig. | Note <br> 7.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> Voltage | High <br> State <br> Low <br> State | Data Output |  |  |  |  |  | $\mathrm{P}=\mathrm{P}_{\mathrm{M}}+0.8 \mu \mathrm{M}$ | $I_{0}=-400 \mu \mathrm{~A}$ | ${ }^{\mathrm{Ccc}}=$ |  |  |
|  |  | Link Monitor |  |  |  |  |  | $\Delta P=0.8 \mu W, l_{0}$ | $100 \mu \mathrm{~A}$ | 4.75 V |  |  |
|  |  | Data Output | VOL |  | 0.35 | 0.5 |  | $\mathrm{P}=\left(\mathrm{P}_{\mathrm{M}}-0.8 \mu \mathrm{~W}\right)$ | $\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$ |  |  |  |
|  |  | Link Monitor |  |  | 0.2 | 0.4 |  | $\Delta P=0$ | $\mathrm{V}_{C C}=4.75$ |  |  |  |
| Test Point Voltage |  |  | $V_{T}$ |  | 0 |  | V | $\mathrm{P}_{\mathrm{M}}=100 \mu \mathrm{~W}$ |  |  |  | 10 |
|  |  |  |  | 1.3 |  | $\mathrm{P}_{\mathrm{M}}=0$ |  |  |  |  |  |
| Supply Current |  |  |  | ${ }^{1} \mathrm{Cc}$ |  | 77 |  | 100 | mA | $\mathrm{VCC}=5.25 \mathrm{~V}$ |  |  |  |  |
|  |  |  | 60 |  | 77 |  | $V_{C C}=4.75 \mathrm{~V}$ |  |  |  |  |  |
| Optical Port (fiber optic core) Diameter |  |  | $\mathrm{D}_{\mathrm{C}}$ |  | 200 |  | $\mu \mathrm{m}$ |  |  |  |  |  |  |
| Numerical Aperture |  |  | N.A. |  | 0.5 |  |  |  |  |  | 3 |  |
| Peak Responsivity Wavelength |  |  | $\lambda_{p}$ |  | 770 |  | nm |  |  |  | 4 |  |

Dynamic Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified

| Parameter |  |  | Symbol | Min | Typ ${ }^{5}$ | Max | Units | Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propagation <br> Delay | High to Low | 3-Level Code |  |  | 29 |  |  | $V_{C C}=4.75 \mathrm{~V}, \mathrm{k}=1$. Link Monitor High | 1 | 1 |
|  |  | 2-Level Code |  |  | 37 |  | ns |  |  | 11 |
|  | Low to High | 3-Level Code | tPLH |  | 37 |  | ns |  |  |  |
|  |  | 2-Level Code |  |  | 45 |  |  |  |  |  |
| Link Monitor Response Time | Low-to-High |  | ${ }_{\text {T }}^{\text {MH }}$ |  | 20 |  | ms | $\begin{array}{ll} \hline V_{C C}=4.75 \mathrm{~V} & \Delta p=0.8 \mu W \\ \mathrm{IOL}^{2}=8 \mathrm{~mA} & \text { Peak-to-Peak } \\ \hline \end{array}$ |  | 13 |
|  | High-to-Low |  | tML |  | 1000 |  |  |  |  | 14 |
| Bit Error Rate at 10 M baud |  |  | BER |  |  | $10^{-9}$ |  | $k=1, \Delta p \geqslant 0.8 \mu W$ |  | 15 |

DATA INPUT TO TRANSMITTER (HFBR-1001, INTERNALLY CODED) OMITTING TRANSMISSION DELAY


DATA INPUT TO TRANSMITTER, E.G. MANCHESTER (HFBR-1001 EXTERNALLY CODED) OMITTING TRANSMISSION DELAY


Figure 1. Optical Input Timing Requirements.

## Notes (cont'd):

3. Measured at a point $2 \mathrm{~mm}\left(.079^{\prime \prime}\right)$ from where the lead enters the package.
4. If ripple exceeds the specified limit, the regulator shown in Figure 5 should be used. The LC filter shown in Figure 5 is' recommended whether the regulator is used or not.
5. For typical values, $\mathrm{V}_{C C}=5.00 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
6. Optical power is average over an interval of at least $50 \mu \mathrm{~s}$. Optical power values specified are for the equivalent of a monochromatic source between 700 nm and 820 nm .
7. For either 2-level or 3-level code, $k=\left(P_{H}-P_{M}\right) /\left(P_{M}-P_{L}\right)$.
8. For the HFBR-2001, a 3-Level Code is defined as having a mid-level, with equal-amplitude and pulse width excursions to high-level or to low-level.
9. Link Monitor provides a check of link continuity. A low Link Monitor output indicates that the optical signal path has been interrupted. For example, it might indicate a broken cable or a loose, dirty, or damaged connector. The link may still be operational with Link Monitor low, but it should be checked to determine the cause of the low indication. When the source of optical power is an Internally-Coded HFBR1001/1002 Fiber Optic Transmitter, Link Monitor high will be a valid indication of link continuity whether or not data is being transmitted. An optical input with excursions ( $\Delta \mathrm{P}$ ) greater than or equal to $0.8 \mu \mathrm{~W}$ is sufficient to hold Link Monitor high.
10. When observing $\mathrm{V}_{\mathrm{t}}$, use a voltmeter with at least $10 \mathrm{M} \Omega$ input resistance. With zero input optical power, $V_{T}$ is at its maximum value, $V_{T, m a x}$. Then when flux is being received, whether modulated or not:

$$
\left(V_{T, M A X}-V_{T}\right)=(25 \mathrm{k} \Omega)\left(I_{p}\right)=(25 \mathrm{k} \Omega)\left(\mathrm{R}_{\mathrm{P}} \mathrm{PM}_{\mathrm{M}}\right)
$$

where $\mathrm{I}_{\mathrm{p}}=$ average photodiode photocurrent
$R \mathrm{P} \approx 0.4 \mathrm{~A} / \mathrm{W}=$ photodiode responsivity $\mathrm{P}_{\mathrm{M}}=$ average flux being received
11. Measured from the time at which optical input crosses the $25 \%$ level until DATA OUTPUT $=1.5 \mathrm{~V}$ in HL transition.
12. Measured from the time at which optical input crosses the $75 \%$ level until DATA OUTPUT $=1.5 \mathrm{~V}$ in LH transition.


Figure 2. Schematic Diagram.
13. Measured from the time at which optical input fluctuation begins until LINK MONITOR rises to 1.5 V .
14. Measured from the time at which optical input fluctuation ceases until LINK MONITOR falls to 1.5 V .
15. With NRZ data, 10Mbaud corresponds to a data rate of $10 \mathrm{Mb} / \mathrm{s}$. With other codes, the data rate is the baud rate divided by the number of code intervals per bit interval-self-clocking code (e.g., Manchester) usually has two code intervals per bit interval giving $5 \mathrm{Mb} / \mathrm{s}$ at 10 Mbaud .

## Electrical Description

Flux enters the HFBR-2001 via an optical fiber stub where a PIN photodiode converts it to a photocurrent. This photocurrent goes to an I-V (current-to-voltage) amplifier which utilizes both dc feedback and ALC (automatic level control).
The function of dc feedback is to keep the average value of the signal centered in the linear range of the amplifier. The dc feedback amplifier has a high impedance output to establish a long time constant on a capacitor at its output. (The voltage on the capacitor is observable at the test point). As seen in the schematic diagram, the voltage on this capacitor extracts the average component of photocurrent from the input of the I-V amplifier so its average output is at a fixed level. Optical flux excursions above and below the average cause voltage excursion above and below the fixed level at the output of the I-V amplifier.
The voltage excursions operate a flip-flop whose output drives the Data Output amplifier; an excursion above the average level sets the data output high, where it remains until an excursion below the average level resets the flip-flop.
To prevent overdrive, an ALC circuit, responding to excursions either above or below the average level, controls the gain of the I-V amplifier. Gain is then determined by whichever polarity of excursion is the greater. If these excursions are too far from being balanced, the gain limitation imposed by the larger excursion may cause the smaller (opposite polarity) excursion to be too small to operate the flip-flop.

The Link Monitor output is driven by an amplifier which responds to the ALC voltage. The Link Monitor is high when the flux excursions are greater than or equal to $0.8 \mu \mathrm{~W}$.

## Mechanical and Thermal Considerations

Typical power consumption is less than 500 mW so the Receiver can be mounted without consideration for additional heat sinking. The optical port is an optical fiber stub centered in a metallic ferrule. This ferrule supports a split-wall cylindrical spring sleeve which aligns the ferrule in the Receiver with the ferrule in the HFBR-3000 Fiber Optic Cable/Connector. The connection procedure is to FIRST start the Connector ferrule into the sleeve, THEN screw the coupling ring on the barrel. The barrel performs no alignment function; its purpose is to hold the ferrule faces together when the coupling ring is tightened as specified in the HFBR-3000 Fiber Optic Cable/Connector data sheet.

Good system performance requires clean ferrule faces to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well. If it is absolutely necessary to remove the threaded barrel and lock nut to clean the Receiver ferrule face, refer to the section "Installation Measurement and Maintenance" in Hewlett-Packard Application Note 1000.


Figure 4. Spectral Response.


Figure 5. Power Supply Transient Filter Recommendation.

## Features

- HFBR-4000 OR SMA STYLE CONNECTORS
- CONNECTORS FACTORY INSTALLED AND TESTED
- SIMPLEX OR DUPLEX CABLE
- USER SPECIFIED CABLE LENGTHS
- UL RECOGNIZED COMPONENT PASSES UL VW-1 FLAME RETARDANCY SPECIFICATION*
- STANDARD $100 / 140 \mu \mathrm{~m}$ GLASS FIBER
- RUGGED TIGHT JACKET CONSTRUCTION
- PARAMETERS OPTIMIZED FOR LOCAL DATA COMMUNICATIONS
- BANDWIDTH: $\mathbf{4 0} \mathbf{~ M H z ~ A T ~} \mathbf{1}$ km


## Description

## Fiber Optic Cable Construction

The HFBR-3000 Simplex Fiber Optic Cable/Connector assemblies and HFBR-3100 Duplex Fiber Optic Cable/ Connector assemblies are intended for use with HP's High Performance Modules (HFBR-1001/2, HFBR-2001) and the Miniature Link series of transmitters and receivers (HFBR12XX, HFBR-22XX) and 39301A RS-232 to Fiber Optic Multiplexer. These cable assemblies are available with either HFBR-4000 connectors (OPT 001) or SMA style connectors (OPT 002).
The HFBR-3000 Simplex cable is constructed of a single graded index glass fiber surrounded by a silicone buffer, secondary jacket, and aramid strength members. The combination is covered with a scuff resistant polyurethane outer jacket.
The HFBR-3100 Duplex cable has two glass fibers each in a cable of construction similar to the simplex cable, joined with a web. The individual channels are identified by a marking on one channel of the cable.
*UL File Number E84364

## Mechanical Dimensions



CABLE LENGTH TOLERANCE

| Cable Length (Metres) | Tolerance |
| :---: | :---: |
| $1-10$ | $+10 /-0 \%$ |
| $11-100$ | $+1 /-0$ Metre |
| $>100$ | $+1 /-0 \%$ |

## NOTES:

1. DIMENSIONS ARE IN mm (INCHES).
2. FIBER END IS LOCKED FLUSH WITH FERRULE FACE.

## CAUTION:

1. COUPLING NUT SHOULD NOT BE OVERTIGHTENED: TORQUE 0.05 TO 0.1 UNITS $\mathrm{N} \cdot \mathrm{m}$ OVER
TIGHTENING MAY CAUSE EXCESSIVE FIBER MISALIGNMENT OR PERMANENT DAMAGE.
2. GOOD SYSTEM PERFORMANCE REQUIRES CLEAN FERRULE FACES TO AVOID OBSTRUCTING THE OPTICAL PATH. CLEAN COMPRESSED AIR OFTEN IS SUFFICIENT TO REMOVE PARTICLES. A COTTON SWAB SOAKED IN METHANOL OR FREON'* MAY ALSO BE USED.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Note |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Relative Humidity <br> at TA $=70^{\circ} \mathrm{C}$ |  |  | 95 | $\%$ | 13 |
| Storage Temp. | $\mathrm{Ts}_{\mathrm{S}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Operating Temp. | $\mathrm{T}_{\mathrm{A}}$ | -20 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Bend Radlus, <br> No Load | r | 20 |  | mm | 9,10 |
| Flexing |  | 50 K |  | Cycles | 1 |


| Parameter |  | Symbol | Min. | Max. | Units | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Crush Load |  | Fc |  | 200 | N | 2,8 |
| Impact |  | m |  | 1.5 | kg | 3 |
|  |  | h |  | 0.15 | m |  |
| Tensile Force | on Cable | FT |  | 300 | $N$ | 9,8 |
|  | on Connector/Cable |  |  | 100 |  |  |

Mechanical/Optical Characteristics
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified.

| Parameter |  | Symbol | Min. | Typ. ${ }^{[6]}$ | Max. | Units | Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Exit Numerical Aperture |  | N.A. |  | 0.3 |  | - | $\lambda=820 \mathrm{~nm}, \ell \geq 300 \mathrm{~m}$ |  | 4 |
| Attenuation |  | $\alpha_{0}$ | 3.5 | 5.5 | 8 | $\mathrm{dB} / \mathrm{Km}$ | $\lambda=820 \mathrm{~nm}$ | 1 | 7,12 |
| Bandwidth@1km |  | BW |  | 40 |  | MHz | $\lambda=820 \mathrm{~nm}$ (LED) |  | 5 |
| Travel Time Constant |  | I/V |  | 5 |  | $\mathrm{ns} / \mathrm{m}$ | $\lambda=820 \mathrm{~nm}$ |  | 11 |
| Optical Fiber Core Diameter |  | DC |  | 100 |  | ım |  |  |  |
| Cladding Outside Diameter |  | DCL |  | 140 |  |  |  |  |  |
| Index Grading Coefficient |  | g |  | 2 |  | - |  |  |  |
| Cable Structural Strength |  | Fc |  | 1800 |  | N |  |  | 8 |
| Mass per <br> Unit Length | Single Channel | m/8 |  | 6 |  | kg/km |  |  |  |
|  | Dual Channel |  |  | 12 |  |  |  |  |  |
| Cable Leakage Current |  | L |  | 30 |  | nA | $50 \mathrm{KV}, \ell=0.3 \mathrm{~m}$ |  |  |

## Notes:

1. $180^{\circ}$ bending at minimum bend radius, with 10 N tensile load.
2. Force applied on 2.5 mm diameter mandrel laid across the cable on a flat surface, for 100 hours, followed by flexure test.
3. Tested at 1 impact according to DOD-STD-1678, Method 2030, Procedure 1.
4. Exit N.A. is defined as the sine of the angle at which the offaxis radiant intensity is $10 \%$ of the axial radiant intensity.
5. Bandwidth is measured with a pulsed LED source ( $\lambda=820$ $\mathrm{nm})$, and varies as $\ell-0.85$, where $\ell$ is the length of the fiber (km). Pulse dispersion and bandwidth are approximately inversely related.
6. Typical values are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

## Cable Assembly-Ordering Guide

HFBR-3000/HFBR-3100 defines fiber optic cables with factory installed connectors of user specified length. The cable length must be specified in metres and can be any length in one metre increments from 1 to 1500 metres (longer cables available upon request). Option 001 specifies that the cable is terminated with HFBR-4000 connectors and Option 002 specifies that the cable is terminated with SMA style connectors. Either OPT 001 or OPT 002 must be specified.
Examples:
A. To order one Duplex Cable assembly 125 metres long, with SMA style connectors, specify:
HFBR-3100
Quantity 125

OPT 002
Quantity 1
B. To order four Simplex Cable assemblies, 150 metres each, with HFBR-4000 connectors, specify:

HFBR-3000
Quantity 600
OPT 001
Quantity 4
7. Fixed losses (length independent) are included in Transmitter/Receiver optical specifications.
8. One Newton equals approximately 0.225 pounds force.
9. Short term, $\leq 1 \mathrm{hr}$.
10. The probability of a fiber weak point occurring at a point of maximum bend is small, consequently the risk of fiber breakage from exceeding the maximum curvature is extremely low.
11. Travel time constant is the reciprocal of the group velocity for propagation of optical power. Group velocity, $\mathrm{V}=\lambda / \mathrm{n}$ where $\lambda=$ velocity of light in space $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $\mathrm{n}=$ effective core index of refraction.
12. For lower attenuation cable consult local sales office.
13. This applies to cable only.

## Features

- SIMPLEX OR DUPLEX CABLE
- USER SPECIFIED CABLE LENGTHS
- UL RECOGNIZED COMPONENT, PASSES UL VW-1 FLAME RETARDANCY SPECIFICATION*
- STANDARD $100 / 140 \mu \mathrm{~m}$ GLASS FIBER
- RUGGED TIGHT JACKET CONSTRUCTION
- PARAMETERS OPTIMIZED FOR LOCAL DATA COMMUNICATION
- BANDWIDTH: 40 MHz AT 1 km


## Description

The HFBR-3200 Simplex Fiber Optic Cables and HFBR3300 Duplex Fiber Optic Cables are intended for use with HP's High Performance Modules (HFBR-1001/2, HFBR2001) and the Miniature Link series of transmitters and receivers (HFBR-12XX, HFBR-22XX).
The HFBR-3200 Simplex Fiber Optic Cable is constructed of a single graded index glass fiber surrounded by a silicone buffer, secondary jacket, and aramid strength members. The combination is covered with a scuff resistant polyurethane outer jacket.
The HFBR-3300 Duplex Fiber Optic cable has two glass fibers, each in a cable of construction similar to the Simplex cable, joined with a web. The individual channels are identified by a marking on one channel of the cable.
The optical waveguide is a fused silica glass, graded index fiber, which gives low attenuation and wide bandwidth. The silicone buffer and secondary jacket protect the fiber from being scratched and provide a base for the helically wrapped aramid strength members.
The HFBR-3200 and :HFBR-3300 cables can be terminated with HFBR-4000 connectors using the HFBR-0100 Connector Assembly Tooling Kit. Information on cables with factory installed connectors is available in the HFBR-3000/HFBR-3100 data sheet.
The cable's resistance to mechanical abuse, safety in flammable environments, and immunity from electromagnetic interference effects may make the use of conduit unnecessary. However, the light weight and high strength of the cables allows them to be drawn through most electrical conduits.

[^13]

Fiber Optic Cable Construction


CABLE LENGTH TOLERANCE

| Cable Length (Metres) | Tolerance |
| :---: | :---: |
| $1-10$ | $+10 /-0 \%$ |
| $11-100$ | $+1 /-0$ Metre |
| $>100$ | $+1 /-0 \%$ |

## Installation

Hewlett-Packard Fiber Optic cable is designed so that when pulled through conduit, accepted wire pulling methods and tools, such as a cable grip, can be used. However, a few precautions for optical cable are necessary: the cable must not be bent tighter than its minimum bend radius; the tensile strength of the cable should not be exceeded (a cable lubricant can be used to minimize the drawing force); tensile load should be applied only to the cable and not the connector.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units | Note |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Relative Humidity <br> at $T_{A}=70^{\circ} \mathrm{C}$ |  |  | 95 | $\%$ |  |
| Storage Temp. | TS | -40 | +85 | $\circ$ |  |
| Operating Temp. | $\mathrm{T}_{\mathrm{A}}$ | -20 | +85 |  |  |
| Bend Radius, <br> No Load | r | 20 |  | mm | 8,9 |
| Flexing |  | 50 K |  | Cycles | 1 |


| Parameter | Symbol | Min. | Max. | Units | Note |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Crush Load | FC |  | 200 | N | 2,7 |
| Impact | m |  | 1.5 | kg | 3 |
|  | h |  | 0.15 | m |  |
| Tensile Force <br> Per Cable Channel | FT |  | 300 | N | 7,8 |

## Mechanical/Optical Characteristics <br> $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified.

| Parameter |  | Symbol | Min. | Typ. ${ }^{[6]}$ | Max. | Units | Conditions | Fig. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Exit Numerical Aperture |  | N.A. |  | 0.3 |  | - | $\lambda=820 \mathrm{~nm}, \quad \ell \geq 300 \mathrm{~m}$ |  | 4 |
| Attenuation |  | $\alpha_{0}$ | 3.5 | 5.5 | 8 | dB/km | $\lambda=820 \mathrm{~nm}$ | 1 | 11 |
| Bandwidth @ 1 km |  | BW |  | 40 |  | MHz | $\lambda=820 \mathrm{~nm}$ (LED) |  | 5 |
| Travel Time Constant |  | I/V |  | 5 |  | $\mathrm{ns} / \mathrm{m}$ | $\lambda=820 \mathrm{~nm}$ |  | 10 |
| Optical Fiber Core Diameter |  | Dc |  | 100 |  | $\mu \mathrm{m}$ |  |  |  |
| Cladding Outside Diameter |  | DCL |  | 140 |  |  |  |  |  |
| Index Grading Coefficient |  | g |  | 2 |  | - |  |  |  |
| Cable Structural Strength |  | Fc |  | 1800 |  | N |  |  | 7 |
| Mass per Unit Length | Single Channel | $\mathrm{m} / \ell$ |  | 6 |  | kg/km |  |  |  |
|  | Dual Channel |  |  | 12 |  |  |  |  |  |
| Cable Leakage Current |  | IL |  | 30 |  | nA | $50 \mathrm{kV}, \mathrm{l}=0.3 \mathrm{~m}$ |  |  |

## Notes:

1. $180^{\circ}$ bending at minimum bend radius, with 10 N tensile load.
2. Force applied on 2.5 mm diameter mandrel laid across the cable on a flat surface, for 100 hours, followed by flexure test.
3. Tested at 1 impact according to DOD-STD-1678, Method 2030, Procedure 1.
4. Exit N.A. is defined as the sine of the angle at which the offaxis radiant intensity is $10 \%$ of the axial radiant intensity.
5. Bandwidth is measured with a pulsed LED source ( $\lambda=820$ $n m)$; and varies as $\ell-0.85$, where $\ell$. is the length of the fiber (km). Pulse dispersion and bandwidth are approximately inversely related.

## Cable Ordering Guide

HFBR-3200/HFBR-3300 defines fiber optic cables of user specified length. The cable length must be specified in metres and can be any length in one metre increments from 1 to 1000 metres (longer cables available upon request). Option 001 specifies the number of equal length cables ordered.

Examples:
A. To order one Duplex Cable 150 metres long specify:

| HFBR-3300 | Quantity 150 |
| :--- | :--- |
| OPT 001 | Quantity 1 |

B. To order five Simplex Cables, 100 metres each, specify:

HFBR-3200
OPT 001
Quantity 500
Quantity 5
6. Typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
7. One Newton equals approximately 0.225 pounds force.
8. Short term, $\leq 1 \mathrm{hr}$.
9. The probability of a fiber weak point occurring at a point of maximum bend is small, consequently the risk of fiber breakage from exceeding the maximum curvature is extremely low.
10. Travel time constant is the reciprocal of the group velocity for propagation of optical power. Group velocity, $V=\lambda / n$ where $\lambda=$ velocity of light in space $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, \mathrm{n}=$ effective core index of refraction.
11. For lower attenuation cable consult your local sales office.


Figure 1. Typical Cable Attenuation vs. Wavelength

## Features

- TERMINATES HEWLETT-PACKARD $100 / 140 \mu \mathrm{~m}$ FIBER OPTIC CABLE
- TYPICAL INSERTION LOSS 1.5 dB
- ALL METAL PIECE-PARTS
- SIMPLE, RAPID ASSEMBLY
- STANDARD 2.50 mm FERRULE
- WIDE OPERATING TEMPERATURE RANGE
- SMALL DIAMETER


## Description

The HFBR-4000 Fiber Optic Connector is constructed of all metal piece-parts and has been designed to use a high performance epoxy to stake the optical fiber. The standard, 2.50 mm connector ferrule is prepared with a polished optical surface giving the assembly a uniformly repeatable low insertion-loss of typically 1.5 dB .
The connector can be assembled in less than 20 minutes by an experienced user with suitable tooling, such as provided

in the Hewlett-Packard HFBR-0100 Connector Assembly Tooling Kit. When properly assembled, the connector has excellent strength and repeatable performance over a wide temperature range.

The connector is compatible with Hewlett-Packard HFBR3200/3300 Fiber Optic C̣ables.
The HFBR-3099 adapter is used for making an aligned, easily disassembled, connector-to-connector junction.


CONNECTOR ASSEMBLY

## Mechanical Details


2. Untess atherwise specified. Th
$X+.51 \mathrm{~mm}_{f} f X X+02.0 \mathrm{~m}$.

3. Ferrute hole accomodates $140 \mu \mathrm{~m}$ O.D. fiber. ASSEMBLED HFBR-4000 CONNECTOR
NOTHS: Dimansions are in mm (inchest.

## Connector Piece-Parts



ID:
GOLD COLORED: SILVERED COLORED: $3.2(.12) \quad 2.8 \mathrm{t} .101$

BODYNUT
10-32 UNF 2B THD -6.4 (.25) DEEP


NOTES: 4. DIMENSIONS IN mm $\{\mathrm{in}$.)
5. TOLERANCES ARE:
$. \times .51 \mathrm{~mm} \quad \times x .12 \mathrm{~mm}$

CONNECTOR BODY

## Optical Characteristics

| Parameter | Symbol | Min. | Typ. | Max. | Units | Note |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Insertion Loss | $\alpha c c$ |  | 1.5 |  | dB | 6,7 |
| Insertion Loss <br> Repeatability | $\Delta \alpha c c$ |  | 0.2 |  | dB | 8 |

6. $\alpha \mathrm{cc}$, connector-to-connector loss; measured steady state.
7. When assembled with Hewlett-Packard HFBR-0100 procedure and HFBR-3000 series glass fiber cable.
8. 100 connection cycles.

## Applications



- TERMINATION FOR HEWLETT-PACKARD HFBR-3200/3300 FIBER OPTIC CABLE
- INTERFACE TO HEWLETT-PACKARD HFBR-12XX/22XX MINIATURE FIBER OPTIC LINK COMPONENTS

| Parameter | Symbol | Min. | Max. | Units | Note, |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Storage Temp. | $\mathrm{TS}_{S}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ | 7 |
| Operating Temp. | $\mathrm{T}_{\mathrm{A}}$ | -20 | +70 | ${ }^{\circ} \mathrm{C}$ | 7 |
| Tensile Force | FT |  | 100 | N | 7 |



- CONNECTOR-TO-CONNECTOR INTERFACE

> FIBER OPTIC CONNECTOR ASSEMBLY TOOLING KIT TOOLING KIT

## Features

- AIDS IN THE ASSEMBLY AND REPAIR OF HEWLETT-PACKARD 100/140 $\mu \mathrm{m}$ FIBER OPTIC CABLE WITH HEWLETT-PACKARD CONNECTORS
- INCLUDES AN ILLUSTRATED, STEP-BY-STEP TUTORIAL USER'S MANUAL
- PRODUCES FACTORY-QUALITY CONNECTIONS;


## 1.5 dB Typical Insertion Loss

- COMPLETE - INCLUDES ALL TOOLS, MATERIALS AND CONNECTOR PARTS REQUIRED TO ASSEMBLE 10 CONNECTORS
- RAPID, LESS THAN 20 MINUTE CONNECTOR ASSEMBLY TIME WITH EXPERIENCE
- PACKAGED IN A RUGGED CASE


## Description

The HFBR-0100 Fiber Optic Connector Assembly Tooling Kit is a complete kit designed for quick field installation of Hewlett-Packard HFBR-4000 connectors onto HewlettPackard HFBR-3200/3000 Fiber Optic Cable. The kit is packaged in a rugged case, supplying the user with everything required for terminating the fiber optic cable. The contents are:

1. A set of common connectoring tools
2. A consumables kit containing sufficient material to assemble ten fiber optic connectors (available separately as HFBR-0101).
3. A set of custom tools (available separately as HFBR-0102).
4. A set of connector piece-parts for terminating ten connector ends, and adapters for making connector-toconnector junctions (the individual unassembled connectors are available as HFBR-4000; the adapter is available as HFBR-3099).
5. An illustrated user's manual presenting the procedure in a step by step, tutorial fashion.

## User's Manual Outline

The User's Manual details the connectoring procedure for the first time user, allowing an inexperienced technician to construct factory-quality fiber optic connectors. Numerous photographs and diagrams simplify the assembly process.
The User's Manual is composed of three major sections, described as follows:


1. CABLE PREPARATION: The fiber optic cable is stripped of its jackets, and the strength members are terminated by the installation of crimp hardware.
2. CONNECTOR ASSEMBLY: The prepared cable end is assembled into the connector body using a high performance epoxy to stake the optical fiber. The epoxy is cured in ten minutes using the supplied heater.
3. CONNECTOR POLISHING: The fiber end is ground to an optically flat finish and inspected with a microscope comparing the finish with the detailed photomicrographs in the User's Manual.


## HFBR-0100 Materials List

1. COMMON CONNECTORING TOOLS WITH CASE

- Sapphire Ribbon Cleave Tool
- No-Nik ${ }^{\text {™ }}$ Strippers
- Scissors
- 50X Microscope
- Safety Glasses
- 16 AWG Wire Strippers
- Crimping Tool
- Polishing Plate
- Heater: (option 001) 100-120 VAC $50 / 60 \mathrm{~Hz}$ (option 2XX) 200-240 VAC $50 / 60 \mathrm{~Hz}$

2. TEN HFBR-4000 CONNECTORS WITH SIX HFBR-3099 ADAPTERS
3. HFBR-0101 CONSUMABLES KIT

- Hysoltw 1C Epoxy
- Propanol/Acetone swabs
- Loctite ${ }^{\text {Tw }} 495$ Adhesive
- Stirring Sticks
- Syringes with Flat-tipped Needles
- Hand Towels
- Propanol
- Lapping Film:
- Coarse grit, 12 micron
- Medium grit, 3 micron
- Fine grit, 0.5 micron
- Bottle Spout
- Mixing Pads

4. HFBR-0102 CUSTOM TOOLS

- Slotted Vise
- Polishing Weight
- Polishing Assembly

5. USER'S MANUAL

## Specifications

| Parameter | Value | Units |  |
| :--- | :--- | :---: | :---: |
| Weight | Net | $7.3(16)$ | kg (lbs) |
|  | Shipping | $8.2(18)$ |  |
|  | Height | $356(14)$ | $\mathrm{mm}(\mathrm{in})$ |
|  | Width | $457(18)$ |  |
|  | Depth | $229(9)$ |  |
| Heater Wattage | Opt 001 | 600 | W |
|  | Opt 2XX | 80 |  |

## Ordering Guide

The HFBR-0100 Connector Assembly Tooling Kit is designed to be sold as a complete unit, ready for use. Common connectoring tools, consumables, custom tools, connector piece-parts, and the user's manual are included.
The kit is ordered by specifying both the base product number (HFBR-0100) and a heater option. The heater option specifies either a 110 VAC (option 001) or a 220 VAC (option 2 XX ) heater with the appropriate power cord.

Both the Consumables Kit (HFBR-0101) and the Custom Tools (HFBR-0102) are available separately for restocking the kit. The unassembled connectors (HFBR-4000), adapters (HFBR-3099) and fiber optic cable (HFBR-3200/3300) are also available.
Order Examples:

1. Three Connector Assembly Tooling Kits - specify; HFBR-0100 Fiber Optic Connector Quantity 3 Assembly Tooling Kit
Option 202: European Continent Plug, 220 VAC
2. One Consumables Kit replacement - specify; HFBR-0101 Consumables Kit

Quantity 1

## POWER CORD (MALE PLUG) OPTIONS

$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { OPTION } \\ \text { NO. }\end{array} & \text { CONFIGURATION } & \text { COUNTRY } \\ \hline 001 & \text { ULUG* } & \text { USA, CANADA (12OV) } \\ \text { JAPAN }\end{array}\right]$
*VIEW OF PLUG FACE
E - EARTH OR SAFETY GROUND
N - NEUTRAL OR IDENTIFIED CONDUCTOR
L - LINE OR ACTIVE CONDUCTOR

## Features

- EXTEND UP TO 16 RS-232-C/V. 24 CHANNELS TO 1.25 km STANDARD, 2.5 km WITH SELECTED CABLE
- DATA UP TO 19.2 kbps ON EACH OF 16 CHANNELS SIMULTANEOUSLY
- SYSTEM IMMUNITY TO EMI SOURCES SUCH AS LIGHTNING STRIKES
- SECURE DATA TRANSMISSION
- ELIMINATION OF SPARK HAZARDS IN VOLATILE ATMOSPHERES
- BUILT-IN FAULT ISOLATION CAPABILITY
- LOW INSTALLATION COSTS DUE TO LIGHTWEIGHT FIBER OPTIC CABLE


## Description

A pair of HP 39301A Multiplexers interconnected with Hewlett-Packard HFBR-3000 Series Fiber Optic Cable, may be used to extend up to 16 full duplex RS-232-C/V. 24 channels up to 2.5 km ( 8200 ft .). Figure 1 shows a typical link configuration between a host CPU and a cluster of 16 terminal devices.


This link provides an easy way to incorporate the advantages of fiber optic links into local area terminal communications. These advantages include immunity to electromagnetic interference of all types, from lightning strikes to noisy electric motors, and freedom from static discharge and crosstalk. The fiber optic cable also provides security for data as it will not radiate electromagnetic signals. In volatile atmospheres, there is no need for special cable


Figure 1. Typical Link Configuration
shielding because no sparks can be generated by this totally dielectric medium.
Each 39301A Multiplexer has eight RS-232-C/V. 24 connectors. Each connector has both the Primary and Secondary Data channels available. This provides for a variety of possible configurations. These configurations include: sixteen independent asynchronous channels, eight independent asynchronous channels with handshake control lines, or eight independent synchronous channels with Data Terminal Equipment (DTE) supplied clock signals. The cables required to accomplish any combination of these connections are described in the Typical Configurations Section of this Data Sheet.

## Specifications

## SYSTEM PERFORMANCE

A system consists of two or more 39301A's interconnected by fiber optic cable assemblies.
Transmission Distance: The usable distance between 39301A's is determined by the optical fiber and connectors used.

| Typical Fiber | Connector | Distance |  |
| :---: | :---: | :---: | :---: |
| Size, $\infty_{0,}$ N. A. | Mir./Model | Max. | Typ. |
| Local Communi- | HP/HFBR-4000 | 1.25 km | 2.5 km |
| cation Fiber | Amphenol/ | Note 1, 2 |  |
| $100 / 140 \mu \mathrm{~m}$, | 906-120-5000 |  |  |
| $5.5 \mathrm{~dB} / \mathrm{km}, 0.28$ |  |  |  |
| Telecommunication | Amphenol/ | Note 2 | 1.5 km |
| Fiber 50/125 $\mu \mathrm{m}$, | 906-120-5001 |  |  |
| $4 \mathrm{~dB} / \mathrm{km}, 0.21$ |  |  |  |

## NOTES:

1. Guaranteed with HFBR-3000 Series cable assemblies.
2. Contact HP Sales Office for expected performance of specific fiber and connectors used.
System Bit Error Rate: One error in $10^{9}$ bits typical.

## ENVIRONMENTAL

Storage Temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Operating Temperature: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Relative Humidity: 95\%

## PHYSICAL CHARACTERISTICS

Size: $42.5 \times 8.9 \times 7.2 \mathrm{~cm}$
( $16.75 \times 3.5 \times 2.85$ inches)
Weight: $2.2 \mathrm{~kg}(4.75 \mathrm{lbs})$
Shipping Weight: $3.4 \mathrm{~kg}(7.5 \mathrm{lbs})$
Power Requirements: 18 VA Maximum
Power Cord Length: $2.3 \mathrm{~m}(7.5 \mathrm{ft}$.)

## REGULATION COMPLIANCE

RFI/EMI:

- VDE 0871 level $A$
- FCC Class A


## Safety Approvals:

- UL478, UL114 for EDP and office equipment
- CSA C22.2-154 for EDP equipment
- VDE 0730 part 2P for EDP and office equipment
- Complies with IEC standard \#380 and \#435 for EDP and office equipment


## ELECTRICAL CHANNEL INTERFACE

Electrical: Conforms to EIA standard RS-232-C Section 2 (CCITT V.24) for the assigned pins.

Each of the Primary and Secondary Data channels may operate any asynchronous protocol up to 19200 bps. Each channel may be used independently with different protocols and data rates without adjustments to the Multiplexer. This is possible because the 39301A operates as a time division multiplexer, sampling each of the 16 data channels at a 200 kHz rate. This sampled data is serialized and transmitted in real time at a rate of 7 Mbaud over the interconnecting HFBR-3000 Series Fiber Optic Cable to the companion 39301A. This serial data is then reconverted to 16 parallel channels and distributed to the respective Primary or Secondary Data channels.

Pulse Width Distortion: $+/-6 \mu \mathrm{~s}$ maximum at data rates to 19.2 kbps
(Operated with RS-232-C load of 3 K ohms and 2500 pF ).
Electrical Connector: Female 25 pin subminiature " $D$ "
PIN ASSIGNMENTS

| Pin <br> No. | ElA RS-232-C |  | CCITT V.24 |  | Notes |
| :---: | :--- | :---: | :--- | :---: | :---: |
| 1 | Protective <br> Ground <br> Transmitted | BA | Earth <br> Common <br> Transmitted <br> Data <br> (Primary) | 103 | 1 |
| 3 | Received <br> Data <br> Data | BB | Primary) <br> Received <br> Data | 104 | 4 |
| 74 | Data Set <br> Ready <br> Signal <br> Ground <br> Secontary <br> Transmitted <br> Data | SBA | AB | Data Set <br> Ready <br> Signal <br> Ground <br> Transmitted <br> Backward <br> Channel <br> Data <br> Secondary | SBB |

## Notes:

1. Pins 1 and 7 are internally connected. 3. Data to 39301A.
2. Pin 6 is internally hardwired "on" to
3. Data from 39301A. +12 V through a 316 ohm resistor.

## OPTICAL CHANNEL INTERFACE

Transmitter Optical Output Flux: -13 dBm
( $50 \mu \mathrm{~W}$ ) minimum at 820 nm
Receiver Optical Input Flux: -31 dBm
( $0.8 \mu \mathrm{~W}$ ) minimum at 820 nm
Fiber Optic Port Connector: HFBR-4000 compatible.
(HFBR-4000 installed on HFBR-3000 Series Fiber Optic
Cables. Optional SMA style connector adapters are available from HP sales offices.)

## INDICATORS AND SWITCHES

AC Line Indicator: When ON indicates that AC power is on.
Caırier Received Indicator: When ON, indicates that the 39301A is receiving a modulated signal from the remote transmitter.
Loopback Switch: In the TEST position, enables an electrical loopback at the interface between the multiplexer electronics and the fiber optic transceiver circuitry. The "Carrier Received Indicator" is disabled when this switch is in the TEST position.

## DTE Interface Configurations

Each RS-232-C/V. 24 connector on the 39301A Multiplexer can be interfaced to a variety of Data Terminal Equipment (DTE) by use of properly configured interconnecting RS-232-C/V. 24 data cables. Each connector provides two independent full duplex asynchronous channels on the Primary and Secondary Data lines. Therefore, 16 total channels are available on any 39301A link. The following figures will describe the cable configurations for four typical DTE connections. Only one end of the full 39301A link is shown in each figure. The opposite end will be a mirror image in all cases, therefore, two of the illustrated RS-232-C/V. 24 data cables will be required to complete each link. Shielded RS-$232-\mathrm{C} / \mathrm{V} .24$ cables are recommended in all cases to minimize radio frequency emissions. Any of the DTE configurations described may be intermixed and connected to a 39301A link simultaneously with the only limitation being that no more than 16 full duplex channels are available.

## ASYNCHRONOUS DATA ONLY DTE

It is possible to connect one or two "Data Only" DTEs to each connector on the 39301A. Figure 2 shows the configuration for a single DTE connection utilizing the Primary Transmitted/Received Data pins on the 39301A connector. Figure 3 shows the configuration of HP's 8120-3569 Dual Channel RS-232-C/V. 24 Adapter Cable. This 8120-3569 Cable can be used to separately access both the Primary and Secondary Data channels on each 39301A connector. Then two of the cables shown in Figure 2 can be used to extend these channels out to two separate "data only" DTEs. This 8120-3569 Cable will enable up to 16 "data only" DTEs to be connected to each 39301A link.


Figure 2. Asynchronous Data Only Configuration


Figure 3. 8120-3569: Dual Channel RS-232-C/V. 24 Adapter Cable

## ASYNCHRONOUS DATA PLUS HANDSHAKE DTE

If a DTE requires that normal modem handshake lines be active for control purposes, the Secondary Data channel on each 39301A connector can be used to establish this connection between the host CPU and the remote terminal. Figure 4 shows one possible cable configuration using the Secondary Data channel to interconnect the DTE's Request to Send/Clear to Send handshake lines. Up to eight DTEs with handshake lines may be connected to a 39301A link in this way.
Note that pin 6, Data Set Ready, on each 39301A connector is hardwired "on" to +12 V through a 316 ohm resistor. If the connected DTE does not require this signal, it may be eliminated from the RS-232-C/V. 24 data cable.

## SYNCHRONOUS DATA WITH DTE SUPPLIED CLOCK

Although the 39301A does not provide a clock for synchronous data transmission, synchronous DTE may be interconnected by the 39301A link if the DTE can supply the necessary clock signal. Figure 5 illustrates the use of a 39301A connector's Secondary Data channel to accomplish this type of DTE connection. Up to eight synchronous data DTEs with their own clock lines may be connected to a 39301A link.


Figure 4. Asynchronous Data Plus Handshake Configuration


Figure 5. Synchronous Data with DTE Supplied Clock Configuration.

## System Configurations

## Point-to-Point: See Figure 1

The 39301A's can be configured in a normal point-to-point fashion utilizing a two channel fiber optic cable assembly to interconnect them.

## Multiple Node Loop:

Several 39301A's can be interconnected in a simple closed loop configuration using single channel fiber optic cable assemblies to interconnect the transmitter of each 39301A to the receiver of the subsequent 39301A. This configuration allows one multiplexer at the computer center to address several different groups of terminals at different locations in a local facility. A maximum of 16 asynchronous "Data Only" DTE connections can be made around the loop. The unused channels at each multiplexer must be externally looped back on the 25 pin connectors, (i.e., tie pins 2 to 3 and 14 to 16). The maximum data rate of any channel in the loop is determined by the number of multiplexers in the loop and the amount of distortion that the interconnected DTE's can tolerate.

$$
\begin{array}{cc}
\text { Number of } 39301 \text { A's } & \text { Maximum Channel Data Rate } \\
\text { Up to } 3 & 19.2 \mathrm{Kbps} \\
\text { Up to } 6 & 9.6 \mathrm{Kbps} \\
\text { Up to } 15 & 4.8 \mathrm{Kbps}
\end{array}
$$

This data rate limit is due to the accumulated distortion thru the loop. The accumulated distortion will be within the $25 \%$ limits of EIA Standard RS-404, Standard for StartStop Signal Quality Between Data Terminal Equipment and Non-Synchronous Data Communications Equipment.

## Installation

The 39301A Multiplexer and the interconnecting HFBR3000 Series Fiber Optic Cable is designed for easy installation. Complete details are provided in the Installation, Operating, and Service Manual supplied with each 39301A.
It is recommended that the 39301A Multiplexer be securely mounted to protect the attached data cables. The 39301A is designed for surface or EIA standard 19 inch width rack mounting. Standard Rack/Surface Mounting Hardware supplied with each 39301A allows installation in a standard open rack or flush mounting on any convenient flat surface. Optional Recessed Rack Mounting Hardware (Option 001) allows mounting inside standard racks with closed doors without damage to the attached cables.
The HFBR-3000 Series Fiber Optic Cable required to interconnect the 39301A Multiplexers is available in several configurations. These configurations are detailed in the Support Products Section of this Data Sheet. Two channels of this cable are required to operate the link. This cable is suitable for installation in cable trays, conduits and ducts. The cable will operate in environments from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $95 \%$ Relative Humidity. Standard cable installation techniques and equipment may be used with the minor precautions stated in the 39301A Installation, Operating, and Service Manual. The precautions include maintaining the minimum bend radius of 25 mm ( 1 in .) and maximum
tensile load of $300 \mathrm{~N}(67 \mathrm{lb})$ per channel during installation.
If junction box or bulkhead splices are required in a cable run, or a link is reconfigured to a longer distance requiring additional fiber optic cable to be added to the original installation, HFBR-3099 Cable Coupling Hardware may be used to splice these cables together. The HFBR-3099 is supplied with each factory connectored HFBR-3000 Series Cable or may be ordered separately. Each in-line HFBR-3099 Coupler produces a 2 dB optical power loss in the cable run. This loss will affect the maximum separation between 39301A's by the distance equal to $2 \mathrm{~dB} \div$ cable attenuation in $\mathrm{dB} / \mathrm{km}$. For example, if standard HFBR-3000 series cable is used the maximum link length will be reduced by $2 \mathrm{~dB} \div 8 \mathrm{~dB} / \mathrm{km}=250 \mathrm{~m}$ for each intermediate HFBR-3099 used.

The RS-232-C/V. 24 data cables required for connection to various Data Terminal Equipment are detailed in the Typical Configurations Section of this Data Sheet. It is recommended that shielded cables are used for these connections for maximum suppression of radio frequency emissions. These cables should be no longer than 15 m ( 50 ft .) for compliance with the EIA and CCITT Standards, unless low capacitance cable is used.

## Service

The 39301A is designed with easy-to-use link fault isolation facilities. Loopback techniques utilizing the built-in loopback switch and fiber optic loopback cable supplied with each 39301A Multiplexer are used to quickly isolate link failures to either 39301A Multiplexer, the HFBR-3000 Series Fiber Optic Cable, or the interconnected Data Terminal Equipment. These procedures are described in the Installation, Operating, and Service Manual supplied with each 39301A. 39301A Multiplexers or HFBR-3000 Series Fiber Optic Cables may be self-serviced by the customer or returned to the nearest Hewlett-Packard Sales Office for service.
Customer self-service may be accomplished for the Multiplexer by following the procedures outlined in the Installation, Operating and Service Manual to identify the failed subassembly. Replacement subassemblies are available through HP Sales Offices. HFBR-3000 Series Fiber Optic Cables may be repaired by using the HP HFBR-0100 Connector Assembly Tool kit to splice or reconnector a damaged cable.
Hewlett-Packard service is available for the 39301A by returning the Multiplexer to the nearest HP Sales Office. This service is available either on Monthly Contract basis or for a Time and Materials charge. The HFBR-3000 Series Cable will be repaired on a Time and Materials basis upon return to the nearest HP Sales Office.

## Support Products <br> for the 39301A

## 39301A MOUNTING HARDWARE

Rack/Surface Mounting Hardware:
Supplied standard with each 39301A. Available separately as part 1600-1090.

Recessed Rack Mounting Hardware:
Supplied as Option 001 to the 39301A. Available separately as part 1600-1092.

## 39301A FIBER OPTIC LOOPBACK CABLE

Supplied standard with each 39301A. Available separately as part 5061-2694.

## 39301A INSTALLATION, OPERATING, AND SERVICE MANUAL

Supplied standard with each 39301A. Extra copies available as part 39301-90001.

## 8120-3569 DUAL CHANNEL RS-232-C/V. 24 ADAPTER CABLE

Enables two Data Terminal Equipment devices to be connected to each 39301A RS-232-C/V. 24 connector port. A wiring diagram is shown in Figure 3 of this Data Sheet. The length is 0.6 m ( 2 ft .)

## HFBR-3000* SERIES FIBER OPTIC CABLE

|  | Single <br> Channel <br> (Two Req.) |  |
| :--- | :---: | :---: |
| OR | Dual <br> Channel <br> (One Req.) |  |
| With Factory Installed <br> HFBR-4000 Fiber Optic <br> Connectors | HFBR-3000* <br> or <br> $39200 A^{*}$ | HFBR-3100* <br> or <br> $39200 B^{*}$ |
| Without Factory <br> Installed Connectors | HFBR-3200* | HFBR-3300* |

Two channels of HFBR-3000 Series Fiber Optic Cable are required to interconnect the HP 39301A Multiplexers. This cable is available in several forms as shown in the table above. It may be ordered in any length in one metre increments up to 1000 metres ( 3280 ft .)
*Detailed specifications for these products are available from HP sales offices.

## HFBR-0100* CONNECTOR ASSEMBLY TOOLING KIT

This kit allows the installation of HFBR-4000 Fiber Optic Connectors onto HFBR-3000 Series Fiber Optic Cables in the field. It is used for system installation purposes if HFBR3200/3300 unconnectored cables are used. It may also be used for field repair of HFBR-3000 Series Fiber Optic Cables.

## HFBR-4000* FIBER OPTIC CONNECTORS

These connectors are compatible with the HFBR-3000 Series Fiber Optic Cable and the fiber optic ports on the 39301A.

## HFBR-3099* FIBER OPTIC CABLE COUPLING HARDWARE

This hardware enables two cables with HFBR-4000 connectors to be coupled together for link extension or repair splices. See Installation Section of this Data Sheet for limitations on use of the HFBR-3099.

## Ordering Information <br> HP 39301A: RS-232-C/V. 24 TO FIBER OPTIC MULTIPLEXER

Two are required per link. Each 39301A is supplied with standard Rack/Surface Mounting Hardware, a Fiber Optic Loopback Cable and an Installation, Operating, and Service Manual.
Option 001: Recessed Rack Mounting Hardware
Required Power Supply Option: One required per 39301A

Option 210: $100 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Operation
Option 212: $120 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Operation
Option 222: $220 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Operation
Option 224: $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Operation

## 8120-3569: DUAL CHANNEL RS-232-C/V. 24 ADAPTER CABLE

This cable may be used to separately access both Primary and Secondary Data channels on each 39301A connector. Eight of these cables will enable up to 16 "data only" DTE to be connected to each 39301A.

## HFBR-3000 SERIES FIBER OPTIC INTERCONNECTING CABLE

Two channels are required per link.
See Support Products Section of this Data Sheet for product choices.

## Features

- HIGH SENSITIVITY (NEP <-108 dBm)
- WIDE DYNAMIC RANGE ( $1 \%$ LINEARITY OVER 100 dB )
- BROAD SPECTRAL RESPONSE
- HIGH SPEED ( $T_{r}, T_{f}$, EQUALS 1.5 ns TYP.)
- STABILITY SUITABLE FOR PHOTOMETRY/ RADIOMETRY
- HIGH RELIABILITY
- FLOATING, SHIELDED CONSTRUCTION
- LOW CAPACITANCE
- LOW NOISE
- HERMETIC PACKAGE Description
The HP silicon planar PIN photodiodes are ultra-fast light detectors for visible and near infrared radiation. Their response to blue and violet is unusually good for low dark current silicon photodiodes.
These devices are suitable for applications such as high speed tachometry, optical distance measurement, star tracking, densitometry, radiometry, and fiber-optic termination.
The low dark current of these planar diodes enables detection of very low light levels. The quantum detection efficiency is constant over ten decades of light intensity, providing a wide dynamic range.
The 5082-4203, -4204, and -4207 are packaged on a standard TO-18 header with a flat glass window cap. For

Active area: 1mm Diam
0.5 mm Diam
0.25 mm Magnified 2.5x
$5082-4207$
$\left[\begin{array}{l}\text { 5082-4203 } \\ 5082 \\ 5082-4204\end{array}\right]$ Tall
(TO-18)
$5082-4200-$ Short

- Subminiature

versatility of circuit connection, they are electrically insulated from the header. The light sensitive area of the $5082-4203$ and -4204 is 0.508 mm ( 0.020 inch) in diameter and is located 1.905 mm ( 0.075 inch) behind the window. The light sensitive area of the $5082-4207$ is $1.016 \mathrm{~mm}(0.040$ inch) in diameter and is also located 1.905 mm ( 0.075 inch) behind the window.

The 5082-4205 is in a low capacitance Kovar and ceramic package of very small dimensions, with a hemispherical glass lens.

The 5082-4220 is packaged on a TO-46 header with the $0.508 \mathrm{~mm}(0.020$ inch $)$ diameter sensitive area located 2.540 mm ( 0.100 inch) behind a flat glass window.

## Package Dimensions


-4203, -4204, -4207


Absolute Maximum Ratings operating and Storage Temperature $-55^{\circ}$ to $125^{\circ} \mathrm{C}$

| Parameter | .4203 | -4204 | -4205 | -4207 | -4220 | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P MAX Power Dissipation III | 100 | 100 | 50 | 100 | 100 | mW |
| Steady Reverse Voltage ${ }^{121}$ | 50 | 20 | 50 | 20 | 50 | volts |

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbal | Description | 4203 |  |  | . 4204 |  |  | 4205 |  |  | 4207 |  |  | 4220 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Tvo. | Max. | Min. | Typ. | Max. |  |
| $\begin{aligned} & R_{E_{E}} \cdot \theta_{F} \\ & R_{\phi} \cdot A \cdot A \end{aligned}$ | Axial Incidance Fesponse at $770 \mathrm{~nm}{ }^{131}$ |  | 0.86 |  |  | 0.86 |  |  | 1.1 |  |  | 3.4 |  |  | . 37 |  | $\frac{\mu \mathrm{A}}{\mathrm{~mW} / \mathrm{cm}}[2]$ |
| A | Active Area ${ }^{\text {I3 }}$ |  | $\begin{aligned} & 2 \times \\ & 10 \cdot 3 \end{aligned}$ |  |  | $\begin{aligned} & 2 x \\ & 10^{3} . \end{aligned}$ |  |  | $\begin{aligned} & 3 x \\ & 10^{-3 *} \end{aligned}$ |  |  | $\begin{aligned} & 8 \times \\ & 10^{-3} \end{aligned}$ |  |  | $\begin{aligned} & 2 x \\ & 10-3 \end{aligned}$ |  | $\mathrm{cm}^{[2]}$ |
| $\mathrm{R}_{\phi}$ | Flux Resnon. sivity $710 \mathrm{~nm}^{[4]}$ (Fig. 1, 3) | 3 | $0 \times 43$ |  |  | 0.43 |  |  | . 74 |  |  | 0.43 |  |  | . 37 |  | $\frac{\mu A}{\mu W}$ |
| $I_{0}$ | Dark Current ${ }^{151}$ (Fig. 4) |  |  | 2.0 |  |  | 0.6 |  |  | . 15 |  |  | 2.5 |  |  | 5.0 | nA |
| NEP | Noise Equivalent <br> Power (6) (Fig, 8) |  | $\begin{gathered} 5.9 x \\ 10^{-14} \end{gathered}$ |  |  | $\begin{aligned} & 3.2 \times \\ & 10^{-14} \end{aligned}$ |  |  | $\begin{aligned} & 1.6 \times \\ & 10-14 \end{aligned}$ |  |  | $\begin{aligned} & 6.6 \times \\ & 10^{-14} \end{aligned}$ |  |  | $\begin{aligned} & 9.3 \times \\ & 10^{-14} \end{aligned}$ |  | $\frac{\mathrm{W}}{\sqrt{\mathrm{Hz}}}$ |
| 0* | Detectivity ${ }^{\text {il] }}$ |  | $\begin{aligned} & 7.5 \times \\ & 1011 \end{aligned}$ |  |  | $\begin{aligned} & 1.4 \times \\ & 1012 \end{aligned}$ |  |  | $\begin{aligned} & 3,4 x \\ & 1012 \end{aligned}$ |  |  | $\begin{aligned} & 1.3 x \\ & 10^{12} \end{aligned}$ |  |  | $\begin{aligned} & 4.8 \times \\ & 1011 \end{aligned}$ |  | $\frac{\mathrm{cm} \sqrt{\mathrm{~Hz}}}{\mathrm{~W}}$ |
| $c_{i}$ | Juncton Capaci. tance (B) (fig. 51 |  | 1.5 |  |  | 2.0 |  |  | 0.7 |  |  | 5.5 |  |  | 2.0 |  | pF |
| $\mathrm{C}_{P}$ | Package Capacitance ${ }^{[9]}$ |  | 2 |  |  | 2 |  |  |  |  |  | 2 |  |  |  |  | pF |
| $t_{\text {f }}, t_{f}$ | Zera Bias Speed (hise, Fall Time) [10] |  | 300 |  |  | 300 |  |  | 300 |  |  | 300 |  |  | 300 |  | ns |
| $t_{r, ~} t_{f}$ | Rev.-Bias Speed (Rise, Fall Time) [11] |  | 1.5 |  |  | 1.5 |  |  | 1.5 |  |  | 1.5 |  |  | 1.5 |  | ns |
| $\mathrm{R}_{5}$ | Series Resistance |  |  | 50 |  |  | 50 |  |  | 50 |  |  | 50 |  |  | 50 | $\Omega$ |
| VBR | Breakdown Voltage | 50 |  |  | 50 |  |  | 50 |  |  | 50 |  |  | 50 |  |  | V |

## NOTES:

1. Peak Pulse Power

When exposing the diode to high level incidance the following photocurrent limits must be observed:
$I_{p}($ PEAK $)<\frac{1000 \text { A }}{t(\mu \mathrm{sec})}$ or $<500 \mathrm{~mA}$ or $<\frac{\mathrm{I}_{\mathrm{p}}(\text { avg MAX.) }}{f \times t}$ $I_{p}($ avg $M A X)<.\frac{P_{M A X}-P_{\phi}}{E_{c}}$; and in addition:


Figure 1. Spectral Response.


Figure 2. Relative Directional Sensitivity of the PIN Photodiodes.


BIAS VOLTAGE (ANODE TO CATHODE VOLTAGE)

Figure 3. Typical Output Characteristics at $\lambda=900 \mathrm{~nm}$.


Figure 4. Dark Current at -10V Bias vs. Temperature.



Figure 6. Noise vs. Load Resistance.


Figure 7. Photodiode Cut-Off Frequency vs. Load Resistance ( $C=2 \mathrm{pF}$ ).


Figure 9. Photodiode Equivalent Circuit.


Figure 8. Noise Equivalent Power vs. Load Resistance.
$I_{P}=$ Signal current $\approx 0.43 \mu \mathrm{~A} / \mu \mathrm{W} \times$ flux input at 820 nm $\mathbf{I N}_{\mathrm{N}}=$ Shot noise current
$<1.2 \times 10-14 \mathrm{mps} / \mathrm{Hz}^{1 / 2}(5082-4204)$
$<4 \times 10-14 \mathrm{amps} / \mathrm{Hz} 1 / 2(5082-4207)$
ID $=$ Dark current
$<600 \times 10-12 \mathrm{amps}$ at -10 V dc $(5082-4204)$
$<2500 \times \mathbf{1 0 - 1 2}$ amps at $\mathbf{- 1 0} \mathrm{V}$ dc (5082-4207)
$R_{p}=1011 \Omega$
$\mathbf{R}_{\mathbf{S}}=<50 \Omega$

## Application Information

## NOISE FREE PROPERTIES

The noise current of the PIN diodes is negligible. This is a direct result of the exceptionally low leakage current, in accordance with the shot noise formula $I_{N}=\left(2 q I_{R} \Delta f\right)^{1 / 2}$. Since the leakage current does not exceed 600 picoamps for the 5082-4204 at a reverse bias of 10 volts, shot noise current is less than $1.4 \times 10^{-14} \mathrm{amp} \mathrm{Hz}{ }^{-1 / 2}$ at this voltage.
Excess noise is also very low, appearing only at frequencies below 10 Hz , and varying approximately as $1 / \mathrm{f}$. When the output of the diode is observed in a load, thermal noise of the load resistance $\left(R_{L}\right)$ is $1.28 \times 10^{-10}$ $\left(R_{L}\right)^{-1 / 2} \times(\Delta f)^{1 / 2}$ at $25^{\circ} \mathrm{C}$, and far exceeds the diode shot noise for load resistance less than 100 megohms (see Figure 6). Thus in high frequency operation where low values of load resistance are required for high cut-off frequency, all PIN photodiodes contribute virtually no noise to the system (see Figures 6 and 7).

## HIGH SPEED PROPERTIES

Ultra-fast operation is possible because the HP PIN photodiodes are capable of a response time of 1.5 nanoseconds. A significant advantage of this device is that the speed of response is exhibited at relatively low reverse bias ( -10 to -20 volts).

## OFF-AXIS INCIDANCE RESPONSE

Response of the photodiodes to a uniform field of radiant incidance $E_{e}$, parallel to the polar axis is given by $I=(R A) x$ $\mathrm{E}_{\mathrm{e}}$ for 820 nm . The response from a field not parallel to the axis can be found by multiplying (RA) by a normalizing factor obtained from the radiation pattern at the angle of operation. For example, the multiplying factor for the 5082-4207 with incidance $E_{e}$ at an angle of $40^{\circ}$ from the polar axis is 0.8 . If $E_{e}=1 \mathrm{~mW} / \mathrm{cm}^{2}$, then $\mathrm{I}_{\mathrm{p}}=\mathrm{k} \times$ (RA) $\times \mathrm{E}_{e}$; $\mathrm{I}_{\mathrm{p}}=0.8 \times 4.0 \times 1=3.2 \mu \mathrm{amps}$.

## SPECTRAL RESPONSE

To obtain the response at a wavelength other than 820 nm , the relative spectral response must be considered. Referring to the spectral response curve, Figure 1, obtain response, $X$, at the wavelength desired. Then the ratio of the response at the desired wavelength to response at 820 nm is given by:

$$
\text { RATIO }=\frac{x}{.43}
$$

Multiplying this ratio by the incidance response at 820 nm gives the incidance response at the desired wavelength.

## ULTRAVIOLET RESPONSE

Under reverse bias, a region around the outside edge of the nominal active area becomes responsive. The width of this annular $\quad J$ is approximately $25 \mu \mathrm{~m}$ ( 0.001 inch) at -20 V , and expands with higher reverse voltage. Responsivity in this edge region is higher than in the interior, particularly at shorter wavelengths; at 400 nm the interior, responsivity is $0.1 \mathrm{~A} / \mathrm{W}$ while edge responsivity is 0.35 A/W. At wavelengths shorter than 400 nm , attenuation by the glass window affects response adversely. Speed of response for edge incidance is $\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}} \approx 300 \mathrm{~ns}$.

## 5082-4205 MOUNTING RECOMMENDATIONS

a. The 5082-4205 is intended to be soldered to a printed circuit board having a thickness of from 0.51 to 1.52 mm ( 0.02 to 0.06 inch).
b. Soldering temperature should be controlled so that at no time does the case temperature approach $280^{\circ} \mathrm{C}$. The lowest solder melting point in the device is $280^{\circ} \mathrm{C}$ (gold-tin eutectic). If this temperature is approached, the solder will soften, and the lens may fall off. Lead-tin solder is recommended for mounting the package, and should be applied with a small soldering iron, for the shortest possible time, to avoid the temperature approaching $280^{\circ} \mathrm{C}$.
c. Contact to the lens end should be made by soldering to one or both of the tabs provided. Care should be exercised to prevent solder from coming in contact with the lens.
d. If printed circuit board mounting is not convenient, wire leads may be soldering or welded to the devices using the precautions noted above.

## LINEAR OPERATION

Having an equivalent circuit as shown in Figure 9, operation of the photodiode is most linear when operated with a current amplifier as shown in Figure 10.


Figure 10. Linear Operation.

Lowest noise is obtained with $E_{c}=0$, but higher speed and wider dynamic range are obtained if $5<\mathrm{E}_{\mathrm{c}}<20$ volts. The amplifier should have as high an input resistance as possible to permit high loop gain. If the photodiode is reversed, bias should also be reversed.

## LOGARITHMIC OPERATION

If the photodiode is operated at zero bias with a very high impedance amplifier, the output voltage will be:

$$
V_{\text {OUT }}=\left(1+\frac{R_{2}}{R_{1}}\right) \cdot \frac{k T}{q} \cdot \ln \left(1+\frac{I_{P}}{I_{S}}\right)
$$

where $\mathrm{I}_{\mathrm{S}}=\mathrm{I}_{\mathrm{F}}\left(\mathrm{e} \frac{\mathrm{qV}}{\mathrm{kT}}-1\right)^{-1}$ at $0<\mathrm{I}_{\mathrm{F}}<0.1 \mathrm{~mA}$
using a circuit as shown in Figure 11.


Figure 11. Logarithmic Operation.
Output voltage, $\mathrm{V}_{\text {out }}$, is positive as the photocurrent, $\mathrm{I}_{\mathrm{P}}$, flows back through the photodiode making the anode positive.



## Light Bars and Bar Graph Arrays

LED Light Bars are Hewlett-Packard's innovative solution to fixed message annunciation. The large, uniformly illuminated light emitting surface may be used for backlighting legends or simple indicators. Four distinct colors are offered, high efficiency red, yellow, high performance green and emerald green, with three bicolor combinations (see page 5-14.) Each of the eight X-Y stackable package styles offers one, two, or four light emitting surfaces. Panel and Legend Mounts are also available for all devices.

In addition to light bars, HP offers effective analog message annunciation with the new 10-element and 101-element LED Bar Graph Arrays. These bar graph arrays eliminate the
matching and alignment problems commonly associated with arrays of discrete LED indicators. Each device offers easy to handle packages that are compatible with standard SIP and DIP sockets. The 10-element Bar Graph Array is available in standard red, high efficiency red, yellow, high performance green and emerald green. The new multicolor 10 -element arrays have high efficiency red, yellow and green LEDs in one package. The package is $\mathrm{X}-\mathrm{Y}$ stackable, with a unique interlock allowing easy end-to-end alignment. The 101element Bar Graph Array is offered in standard red, high efficiency red and high performance green with $1 \%$ resolution.


LED Light Bars

| Device |  | Description |  |  | Typical Luminous Intensity @ 20 mA | Typical Forward Voltage <br> @ 20 mA | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color | Package | Lens |  |  |  |
|  | HLMP-2300 | High <br> Efficiency <br> Red | 4 Pin In-Line; $.100^{\prime \prime}$ Centers; . 400 "L x .195"W x . 240 "H | Diffused | 20 mcd | 2.0 V | 5-7 |
|  | HLMP-2400 | Yellow |  | Diffused | 20 mcd | 2.1 V |  |
|  | HLMP-2500 | Green |  | Green Diffused | 25 mcd | 2.2 V |  |
|  | HLMP-2000 | Emerald |  | Diffused | 9 mcd | 2.2 V |  |
|  | HLMP-2350 | High <br> Efficiency <br> Red | 8 Pin In-Line; . 100 " Centers; $.800^{\prime \prime} \mathrm{L} x$ .195"W x . $240^{\prime \prime} \mathrm{H}$ | Diffused | 35 mcd | 2.0 V |  |
| $\pi\left\\|\left\\|\left\\|\left\\|\\| d u^{d}\right.\right.\right.\right.$ | HLMP-2450 | Yellow |  | Diffused | 35 mcd | 2.1 V |  |
|  | HLMP-2550 | Green |  | Green Diffused | 50 mcd | 2.2 V |  |
|  | HLMP-2050 | Emerald |  | Diffused | 18 mcd | 2.2 V |  |
|  | HLMP-2700 <br> HLMP-2800 | High <br> Efficiency <br> Red | 8 Pin DIP; . $100^{\prime \prime}$ <br> Centers; . 400 "L x . $400^{\prime \prime} \mathrm{W}$ x $.240^{\prime \prime} \mathrm{H}$; Dual Arrangement | Diffused | 20 mcd | 2.0 V |  |
|  |  | Yellow |  | Diffused | 18 mcd | 2.1 V |  |
|  |  | Green |  | Green Diffused | 25 mcd | 2.2 V |  |
|  | HLMP-2100 | Emerald |  | Diffused | 9 mcd | 2.2 V |  |
|  | HLMP-2620 | High <br> Efficiency <br> Red | 16 Pin DIP; . 100" <br> Centers; . $800^{\prime \prime} \mathrm{L} x$ .400" W x . $240^{\prime \prime} \mathrm{H}$; Quad Arrangement | Diffused | 20 mcd | 2.0 V |  |
|  | HLMP-2720 | Yellow |  | Diffused | 18 mcd | 2.1 V |  |
|  | HLMP-2820 | Green |  | Green Diffused | 25 mcd | 2.2 V |  |
|  | HLMP-2120 | Emerald |  | Diffused | 9 mcd | 2.2 V |  |

LED Light Bars (Continued)

| Device |  | Description |  |  | Typical Luminous Intensity @ 20 mA | Typical Forward Voltage <br> @ 20 mA | $\begin{gathered} \text { Page } \\ \mathrm{No} \text {. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color | Package | Lens |  |  |  |
|  | HLMP-2635 | High Efficiency Red | 16 Pin DIP; .100" Centers; $.800^{\prime \prime} \mathrm{L} x$ .400"W x . $240^{\prime \prime} \mathrm{H}$ Dual Bar Arrangement | Diffused | 35 mcd | 2.0 V | 5-7 |
|  | HLMP-2735 | Yellow |  | Diffused | 35 mcd | 2.1 V |  |
|  | HLMP-2835 | Green |  | Green Diffused | 50 mcd | 2.2 V |  |
|  | HLMP-2135 | Emerald |  | Diffused | 18 mcd | 2.2 V |  |
|  | HLMP-2655 | High <br> Efficiency <br> Red | 8 Pin DIP; . 100" <br> Centers; . $400^{\prime \prime} \mathrm{L} x$ <br> .400"W x . $240^{\prime \prime} \mathrm{H}$ <br> Square <br> Arrangement | Diffused | 35 mcd | 2.0 V |  |
|  | HLMP-2755 | Yellow |  | Diffused | 35 mcd | 2.1 V |  |
|  | HLMP-2855 | Green |  | Green Diffused | 50 mcd | 2.2 V |  |
|  | HLMP-2155 | Emerald |  | Diffused | 18 mcd | 2.2 V |  |
|  | HLMP-2670 | High Efficiency Red | 16 Pin DIP; . $100^{\prime \prime}$ <br> Centers; . 800"L x .400"W x . $240^{\prime \prime} \mathrm{H}$ Dual Square Arrangement | Diffused | 35 mcd | 2.0 V |  |
|  | HLMP-2770 | Yellow |  | Diffused | 35 mcd | 2.1 V |  |
|  | HLMP-2870 | Green |  | Green <br> Diffused | 50 mcd | 2.2 V |  |
|  | HLMP-2170 | Emerald |  | Diffused | 18 mcd | 2.2 V |  |
|  | HLMP-2685 | High Efficiency Red | 16 Pin DIP; . 100" <br> Centers; . 800"L x <br> 400'W x . $240^{\prime \prime} \mathrm{H}$ <br> Single Bar <br> Arrangement | Diffused | 70 mcd | 2.0 V |  |
|  | HLMP-2785 | Yellow |  | Diffused | 70 mcd | 2.1 V |  |
| $\\|\\|\\|\\|\\|$ | HLMP-2885 | Green |  | Green Diffused | 100 mcd | 2.2 V |  |
|  | HLMP-2185 | Emerald |  | Diffused | 36 mcd | 2.2 V |  |

## LED Bicolor Light Bars

| Device |  | Description |  |  | Typical Luminous Intensity @ 20 mA | Typical Forward Voltage @ 20 mA | $\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color | Package | Lens |  |  |  |
|  | HLMP-2950 | High Efficiency Red/ Yellow | 8 Pin DIP; . $100^{\prime \prime}$ <br> Centers; . 400 " $\mathrm{L} x$ <br> . $400^{\prime \prime} \mathrm{W}$ x $.240^{\prime \prime} \mathrm{H}$ <br> Square <br> Arrangment | Diffused | HER: 20 mcd Yellow: 12 mcd | HER: 2.0 V <br> Yellow: 2.1 V | 5-14 |
|  | HLMP-2965 | High <br> Efficiency <br> Red/ <br> Green |  | Diffused | HER: 20 mcd Green: 20 mcd | HER: 2.0 V <br> Green: 2.2 V |  |
|  | HLMP-2980 | High <br> Efficiency <br> Red/ <br> Emerald |  | Diffused | HER: 20 mcd Emerald: 9 mcd | HER: 2.0 V <br> Emerald: 2.2 V |  |

## Panel and Legend Mounts for LED Light Bars

| Device |  | Corresponding Light Bar Module Part Number HLMP. | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. |  |  |
|  | HLMP-2598 | 2050, 2350, 2450, 2550, 2050 | 5-21 |
|  | HLMP-2599 | 2000, 2300, 2400, 2500, 2000 |  |
|  | HLMP-2898 | 2100, 2600, 2700, 2800, 2100 2155, 2655, 2755, 2855, 2155 2950, 2965, 2980 |  |
|  | HLMP-2899 | $\begin{aligned} & 2120,2620,2720,2820,2120 \\ & 2135,2635,2735,2835,2135 \\ & 2170,2670,2770,2870,2170 \\ & 2185,2685,2785,2885,2185 \end{aligned}$ |  |

## Special Options

| Description | Option Code | Applicable Part Number HLMP. | $\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Legends | $\begin{aligned} & \hline \text { L00- } \\ & \text { L06 } \end{aligned}$ | 2300, 2400, 2500, 2000 2655, 2755, 2855, 2155 2685, 2785, 2885, 2185 | 5-23 |
| Intensity Selected | S02 | $2300,2400,2500$ $2635,2735,2835$ <br> $2350,2450,2550$ $2655,2795,2855$ <br> $2600,2700,2800$ $2670,2770,2870$ <br> $2620,2720,2820$ $2685,2785,2885$ | 5-25 |

LED Bar Graph Arrays


## Features

- LARGE, BRIGHT, UNIFORM LIGHT EMITTING AREAS
Approximately Lambertian Radiation Pattern
- CHOICE OF THREE COLORS
- CATEGORIZED FOR LIGHT OUTPUT
- yellow, green, and emerald green CATEGORIZED FOR DOMINANT WAVELENGTH
- EXCELLENT ON-OFF CONTRAST
- EASILY MOUNTED ON P.C. BOARDS OR INDUSTRY STANDARD SIP/DIP SOCKETS
- MECHANICALLY RUGGED
- X-Y STACKABLE
- FLUSH MOUNTABLE
- CAN bE USED WITH PANEL AND LEGEND MOUNTS
- LIGHT Emitting surface suitable for LEGEND ATTACHMENT PER APPLICATION NOTE 1012
- SUITABLE FOR MULTIPLEX OPERATION
- I.C. COMPATIBLE


## Description

The HLMP-2000/-2100/-2300/-2400/-2500/-2600/-2700/ -2800 series light bars are rectangular light sources designed for a variety of applications where a large, bright source of light is required. These light bars are configured in a single-in-line and dual-in-line packages that contain either


## Applications

- bUSINESS MACHINE MESSAGE ANNUNCIATORS
- TELECOMMUNICATIONS INDICATORS
- FRONT PANEL PROCESS STATUS INDICATORS
- PC BOARD IDENTIFIERS
- BAR GRAPHS
single or segmented light emitting areas. The -2300/-2400/ -2600/-2700 series devices utilizes LED chips which are made from GaAsP on a transparent GaP substrate. The -2000/-2100/-2500/-2800 series devices utilize chips made from GaP on a transparent GaP substrate.


## Selection Guide

| Light Bar Part Number HLMP. |  |  |  | Size of Light Emitting Areas | Number of Light Emitting Areas | Package Outline |  | Corresponding Panel and Legend Mount Part No. HLMP- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High Efficiency Red | Yellow | Green | Emerald Green |  |  |  |  |  |
| 2300 | 2400 | 2500 | 2000 | $8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(.350 \mathrm{in} \times .150 \mathrm{in}$. | 1 | A | $\square$ | 2599 |
| 2350 | 2450 | 2550 | 2050 | $19.05 \mathrm{~mm} \times 3.81 \mathrm{~mm}(.750 \mathrm{in} \times .150 \mathrm{in}$. | 1 | B | $\square$ | 2598 |
| 2600 | 2700 | 2800 | 2100 | $8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(.350 \mathrm{in} \times .150 \mathrm{in} .1$ | 2 | D | T] | 2698 |
| 2620 | 2720 | 2820 | 2120 | $8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(.350 \mathrm{in} \times .150 \mathrm{~m}$. | 4 | F | पT] | 2899 |
| 2635 | 2735 | 2835 | 2135 | $8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm}(.150 \mathrm{in} \times .750 \mathrm{nn})$ | 2 | G | $\square$ | 2899 |
| 2655 | 2755 | 2855 | 2155 | $8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}(.350 \mathrm{in} \times .350 \mathrm{in}$.) | 1 | C | $\square$ | 2898 |
| 2670 | 2770 | 2870 | 2170 | $8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm} 1.350 \mathrm{in} \times .350 \mathrm{~m}$. | 2 | E | $\square$ | 2899 |
| 2685 | 2785 | 2885 | 2185 | $8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm} .350 \mathrm{in} \times .750 \mathrm{in}$. | 1 | H | $\square$ | 2899 |

## Absolute Maximum Ratings

| Parameter | HLMP-2300/ -2600 Series | HLMP-2400/ -2700 Series | HLMP-2500/ -2800 Series | HLMP-2000/ -2100 Series |
| :---: | :---: | :---: | :---: | :---: |
| Average Power Dissipation per LED Chip ${ }^{11 \mid}$ | 135 mW | 85 mW | 135 mW | 135 mW |
| Peak Forward Current per LED Chip, TA $=50^{\circ} \mathrm{C}$ (Maximum Pulse Width $=2 \mathrm{~ms}^{17.2)}$ | 90 mA | 60 mA | 90 mA | 90 mA |
| Time Average Forward Current per LED Chip, Pulsed Conditions ${ }^{[2]}$ | $\begin{gathered} 25 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} 20 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=50^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} 25 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} 25 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$ |
| DC Forward Current per LED Chip, $\mathrm{T}_{A}=50^{\circ} \mathrm{C}^{(3)}$ | 30 mA | 25 mA | 30 mA | 30 mA |
| Reverse Voltage per LED Chip | 6 V |  |  |  |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $485^{\circ} \mathrm{C}$ |  | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |
| Storage Temperature Range | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |
| Lead Soldering Temperature $1,6 \mathrm{~mm}$ (1/16 inch) Below Seating Plane | $260^{\circ} \mathrm{C}$ for 3 seconds |  |  |  |

NOTES: 1. For HLMP-2000/-2100/-2300/-2500/-2600/-2800 series, derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2400/-2700 series, derate above $T_{A}=50^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 2. 2. See Figure 1 to establish pulsed operating conditions.
3. For HLMP-2000/-2100/-2300/-2500/-2600/-2800 series, derate above $T_{A}=50^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP- $2400 /-2700$ series, derate above $\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 3.

## Package Dimensions



## Internal Circuit Diagrams



## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

High Efficiency Red HLMP-2300/-2600 Series

| - Parameter | HLMP. | Symbol | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensityl ${ }^{4}$ Per Light Emitting Area | 2300 | 1 y | 6 | 23 |  | mcd | 20 mA DC |
|  |  |  |  | 26 |  | mod | 60 mAPK .1 of 3 DF |
|  | 2350 | IV | 13 | 45 |  | mod | 20 mADC |
|  |  |  |  | 52 |  | mod | 60 mAPF : 1 of 3 DF |
|  | 2600 | Iv | 6 | 22 |  | mod | 20 mA DC |
|  |  |  |  | 25 |  | mod | 60 mAPk : 1 of 3 DF |
|  | 2620 | IV | 6 | 25 |  | mod | 20 mADC |
|  |  |  |  | 29 |  | med | 60 mAPk : 1 of 3 DF |
|  | 2635 | IV | 13 | 45 |  | mod | 20 mADC |
|  |  |  |  | 52 |  | mod | 60 mAPk : 1 of 3 DF |
|  | 2655 | IV | 13 | 43 |  | mod | 20 mADC |
|  |  |  |  | 49 |  | mod | $60 \mathrm{mAPk}: 1$ of 3 DF |
|  | 2670 | IV | 13 | 45 |  | mod | 20 mA DC |
|  |  |  |  | 52 |  | mod | 60 mAPk 11 of 3 DF |
|  | 2685 | IV | 22 | 80 |  | mod | 20 mA DC |
|  |  |  |  | 92 |  | mcd | $60 \mathrm{mAPk}: 1$ of 3 DF |
| Peak Wavelength |  | $\lambda_{\text {peak }}$ |  | 635 |  | nm |  |
| Dominant Wavelength15] |  | $\lambda{ }_{c}$ |  | 626 |  | $n \mathrm{~m}$ |  |
| Forward Voltage Per LED |  | $V_{F}$ |  | 2.0 | 2.6 | $V$ | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ |
| Reverse Breakdown Voltage Per LED |  | VBR | 6 | 15 |  | $V$ | $\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| Thermal Resistance LED Junction-to-Pin |  | R $0_{J-\mathrm{PIN}}$ |  | 150 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} /$ <br> LED <br> Chip |  |

## Yellow HLMP-2400/-2700 Series

| Parameter | HLMP. | Symbol | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity\|4] Per Light Emitting Area | 2400 | IV | 6 | 20 |  | mod | 20 mA DC |
|  |  |  |  | 24 |  | mod | 60 mAPk P 1 of 3 DF |
|  | 2450 | IV | 13 | 38 |  | mcd | 20 mADC |
|  |  |  |  | 46 |  | mod | $60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF |
|  | 2700 | Iv | 6 | 18 |  | med | 20 mADC |
|  |  |  |  | 22 |  | mcd | $60 \mathrm{mAPk}: 1$ of 3 DF |
|  | 2720 | N | 6 | 18 |  | mcd | 20 mADC |
|  |  |  |  | 22 |  | mcd | 60 mAPk 1 Of 3 DF |
|  | 2735 | IV | 13 | 35 |  | mcd | 20 mADC |
|  |  |  |  | 43 |  | med | 60 mAP Pk: 1 of 3 DF |
|  | 2755 | Iv | 13 | 35 |  | mcd | 20 mADC |
|  |  |  |  | 43 |  | med | 60 mAPk 10 f 3 DF |
|  | 2770 | Iv | 13 | 35 |  | mcd | 20 mADC |
|  |  |  |  | 43 |  | med | 60 mAPk P 1 of 3 DF |
|  | 2785 | Iv | 26 | 70 |  | mad | 20 mADC |
|  |  |  |  | 85 |  | med | $60 \mathrm{mAPK}, 1$ of 3 DF |
| Peak Wavelength |  | $\lambda_{\text {peak }}$ |  | 583 |  | nm |  |
| Dominant Wavelength ${ }^{\text {( })}$ |  | $\lambda_{\text {d }}$ | - | 585 |  | nm |  |
| Forward Voltage Per LED |  | $V_{F}$ |  | 2.1 | 2.6 | V | $\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$ |
| Reverse Breakdown Voltage Per LED |  | $V_{B R}$ | 6 | 15 |  | $\checkmark$ | $\mathrm{I}_{\mathrm{R}}=100 \mathrm{HA}$ |
| Thermal Resistance LED Junction-to-Pin |  | $\mathrm{R} 0_{\text {J-PIN }}$ |  | 150 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} /$ LED Chip |  |

High Performance Green HLMP-2500/-2800 Series

| Parameter | HLMP. | Symbol | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity ${ }^{4}$ ] Per Light Emitting Area | 2500 | Iv | 5 | 25 |  | mcd | 20 mADC |
|  |  |  |  | 28 |  | med | 60 mAPK : 1 of 3 DF |
|  | 2550 | Iv | 11 | 50 |  | med | 20 mADC |
|  |  |  |  | 56 |  | med | 60 mAPk .1 of 3 DF |
|  | 2800 | IV | 5 | 25 |  | med | 20 mADC |
|  |  |  |  | 28 |  | mcd | $60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF |
|  | 2820 | IV | 5 | 25 |  | mcd | 20 mADC |
|  |  |  |  | 28 |  | med | 60 mAPFk 11 of 3 DF |
|  | 2835 | IV | 11 | 50 |  | mod | 20 mADC |
|  |  |  |  | 56 |  | mcd | $60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 DF |
|  | 2855 | IV | 11 | 50 |  | mcd | 20 mADC |
|  |  |  |  | 56 |  | mcd | $60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF |
|  | 2870 | IV | 11 | 50 |  | med | 20 mADC |
|  |  |  |  | 56 |  | mad | 60 mAPk : 1 of 3 DF |
|  | 2885 | Iv | 22 | 100 |  | med | 20 mADC |
|  |  |  |  | 111 |  | mcd | 60 mA Pk: 1 of 3 DF |
| Peak Wavelengith |  | $\lambda_{\text {peak }}$ |  | 565 |  | nm |  |
| Dominant Wavelength(5] |  | $\lambda_{d}$ |  | 572 |  | nm |  |
| Forward Voltage Per LED |  | $V_{F}$ |  | 2.2 | 2.6 | V | $\mathrm{IF}=20 \mathrm{~mA}$ |
| Reverse Breakdown Voltage Per LED |  | $V_{B R}$ | 6 | 15 |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| Thermal Resistance LED Junction-to-Pin: |  | R JJJPPIN |  | 150 |  | $\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \\ & \text { Chip } \end{aligned}$ |  |

Emerald Green HLMP-2000/-2100 Series

| Parameter | HLMP. | Symbol | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity (4) Per Light Emitting Area | 2000 | Iv | 5 | 9 |  | mod | 20 mA DC |
|  |  |  |  | 11 |  | mcd | $60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 DF |
|  | 2050 | Iv | 11 | 18 |  | mcd | 20 mA DC |
|  |  |  |  | 21 |  | 1 mcd | $60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF |
|  | 2100 | Iv | 5 | 9 | - | mad | 20 mADC |
|  |  |  |  | 11 |  | Imcd | $60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 DF |
|  | 2120 | Iv | - 5 | 9 | - | mcd | 20 mA DC |
|  |  |  |  | 11 |  | mod | 60 mA Pk : 1 of 3 DF |
|  | 2135 | Iv | 11 | 18 | $\cdots$ | mad | 20 mADC |
|  |  |  |  | 21 |  | mcd | $60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF |
|  | 2155 | Iv | 11 | 18 |  | 4 mcd | 20 mADC |
|  |  |  |  | 21 |  | mcd | $60 \mathrm{~mA} \mathrm{Pk:} 1$ af 3 DF |
|  | 2170 | Iv | 11 | 18 |  | mod | 20 mADC |
|  |  |  |  | 21 |  | mod | $60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF |
|  | 2185 | Iv | 22 | 36 |  | mcd | 20 mA DC |
|  |  |  |  | 42 |  | mcd | 60 mAPK : 1 of 3 DF |
| Peak Wavelength |  | $\lambda$ PEAK |  | 556 |  | nm |  |
| Dominant Wavelength [5] |  | $\lambda_{d}$ |  | 558 |  | nm |  |
| Forward Voltage Per LED |  | $\lambda_{F}$ |  | 2.2 | 2.6 | V | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ |
| Reverse Breakdown Voltage Per LED |  | $\mathrm{V}_{\mathrm{BR}}$ | 6 | 15 |  | V | $I_{R}=100 \mu \mathrm{~A}$ |
| Thermal Resistance LED Junction-to-Pin |  | $\mathrm{R}_{\theta \mathrm{J}-\mathrm{PIN}}$ |  | 150 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} /$ LED Chip |  |

NOTES
4. These devices are categorized for luminous intensity with the intensity category designated by a letter code on the side of the package.
5. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device. Yellow, green, and emerald, devies are categorized for dominant wavelength with the color bin designated by a number code on the side of the package.

## Electrical

The HLMP-2000/-2100/-2300/-2400/-2500/-2600/-2700/ -2800 series of light bar devices are composed of two, four or eight light emitting diodes, with the light from each LED optically scattered to form an evenly illuminated light emitting surface. The LED's have a P-N junction diffused into the epitaxial layer on a GaP transparent substrate.
The anode and cathode of each LED is brought out by separate pins. This universal pinout arrangement allows for the wiring of the LED's within a device in any of three possible configurations: parallel, series, or series/parallel.

The typical forward voltage values, scaled from Figure 5, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum $V_{F}$ values for the purpose of driver circuit design and maximum power dissipation may be calculated using the following $V_{F}$ models:

$$
\begin{aligned}
& V_{F}=1.8 \mathrm{~V}+\operatorname{IPEAK}(40 \Omega) \\
& \text { For } \operatorname{IPEAK} \geq 20 \mathrm{~mA} \\
& \mathrm{~V}_{F}=1.6 \mathrm{~V}+\operatorname{IDC}(50 \Omega) \\
& \text { For } 5 \mathrm{~mA} \leq \operatorname{IDC} \leq 20 \mathrm{~mA}
\end{aligned}
$$

The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum forward voltage and the maximum forward current. For pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any given ambient temperature and thermal resistance (R $\theta \mathrm{J}-\mathrm{A}$ ) can be determined by using Figure 2. The solid line in Figure 2 ( $\mathrm{R} \theta_{\mathrm{J}-\mathrm{A}}$ of $538^{\circ} \mathrm{C} / \mathrm{W}$ ) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistances that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

## Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:

$$
\begin{gathered}
L_{v}\left(c d / m^{2}\right)=\frac{I_{v}(c d)}{A\left(m^{2}\right)} \\
L_{v}(\text { footlamberts })=\frac{\pi l_{v}(c d)}{A\left(f t^{2}\right)}
\end{gathered}
$$

| Size of Light <br> Emitting <br> Area | Surface Area |  |
| :---: | :---: | :---: |
|  | Sq. Metres | Sq. Feet |
| $8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}$ | $67.74 \times 10^{-6}$ | $729.16 \times 10^{-6}$ |
| $8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}$ | $33.87 \times 10^{-6}$ | $364.58 \times 10^{-6}$ |
| $8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm}$ | $135.48 \times 10^{-6}$ | $1458.32 \times 10^{-6}$ |
| $3.81 \mathrm{~mm} \times 19.05 \mathrm{~mm}$ | $72.58 \times 10^{-6}$ | $781.25 \times 10^{-6}$ |

Refresh rates of 1 kHz or faster provide the most efficient operation resulting in the maximum possible time average luminous intensity.
The time average luminous intensity may be calculated using the relative efficiency characteristic of Figure 4, VIPEAK, and adjusted for operating ambient temperature. The time average luminous intensity at $T_{A}=25^{\circ} \mathrm{C}$ is calculated as follows:
Iv time avg $=\left[\frac{I_{\text {AVG }}}{20 \mathrm{~mA}}\right]\left(\eta_{I_{\text {PEAK }}}\right)\left(I_{V}\right.$ Data Sheet $)$
Example: For HLMP-2735 series

$$
\eta_{\text {IPEAK }}=1.18 \text { at } \mathrm{I}_{\text {PEAK }}=48 \mathrm{~mA}
$$

Iv TIME AVG $=\left[\frac{12 \mathrm{~mA}}{20 \mathrm{~mA}}\right] \quad(1.18)(35 \mathrm{mcd})=25 \mathrm{mcd}$

The time average luminous intensity may be adjusted for operating ambient temperature by the following exponential equation:
$\operatorname{lv}\left(T_{A}\right)=\operatorname{IV}\left(25^{\circ} C\right) e^{\mid K\left(T_{A}-25^{\circ} C \mid\right.}$

| Device | $\mathbf{K}$ |
| :---: | :---: |
| $-2300 /-2600$ Series | $-0.0131 /{ }^{\circ} \mathrm{C}$ |
| $-2400 /-2700$ Series | $-0.0112 /{ }^{\circ} \mathrm{C}$ |
| $-2500 /-2800$ Series | $-0.0104 /{ }^{\circ} \mathrm{C}$ |
| $-2000 /-2100$ Series | $-0.0104 /{ }^{\circ} \mathrm{C}$ |

Example: $I_{v}\left(80^{\circ} \mathrm{C}\right)=(25 \mathrm{mcd}) \mathrm{e}^{\mid-0.0112(80-25| |}=14 \mathrm{mcd}$

## Mechanical

These light bar devices may be operated in ambient temperatures above $+60^{\circ} \mathrm{C}$ without derating when installed in a PC board configuration that provides a thermal resistance to ambient value less than $250^{\circ} \mathrm{C} / \mathrm{W} /$ LED. See Figure 3 to determine the maximum allowed thermal resistance for the PC board, R $\theta$ PC-A, which will permit nonderated operation in a given ambient temperature.
To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse ( $3 \%$ ammonia solution or equivalent), a surfactant rinse ( $1 \%$ detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.



Figure 1. Maximum Allowed Peak Current vs. Pulse Duration.
Figure 2. Maximum Allowable Power Dissipation per LED vs. Ambient Temperature.Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction to Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.


Figure 3. Maximum Allowable DC Current per LED vs. Ambient Temperature, Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.


Figure 5. Forward Current vs. Forward Voltage Characteristics.


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.


Figure 6. Relative Luminous Intensity vs. DC Forward Current.

## Features

- LARGE, BRIGHT, UNIFORM LIGHT EMITTING AREA
$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}$ ( $0.35 \times 0.35$ inch)
Approximately Lambertian Radiation Pattern
- CHOICE OF THREE BICOLOR COMBINATIONS
- CATEGORIZED FOR LIGHT OUTPUT
- YELLOW, GREEN, AND EMERALD CATEGORIZED FOR DOMINANT WAVELENGTH
- EXCELLENT ON-OFF CONTRAST
- EASILY MOUNTED ON P.C. BOARDS OR INDUSTRY STANDARD DIP SOCKETS
- MECHANICALLY RUGGED
- X-Y STACKABLE
- FLUSH MOUNTABLE
- CAN BE USED WITH HLMP-2898 PANEL AND LEGEND MOUNT
- LIGHT EMItting SURFACE SUITABLE FOR LEGEND ATTACHMENT PER APPLICATION NOTE 1012
- I.C. COMPATIBLE


## Description

The HLMP-2950/-2965/-2980 light bars are bicolor light sources designed for a variety of applications where dual state or tristate illumination is required for the same annunciator function. In addition, both devices are capable of emitting a range of colors by pulse width modulation.


## Applications

- TRISTATE LEGEND ILLUMINATION
- SPACE-CONSCIOUS FRONT PANEL STATUS INDICATORS
- BUSINESS MACHINE MESSAGE ANNUNCIATORS
- TELECOMMUNICATIONS INDICATORS
- TWO FUNCTION LIGHTED SWITCHES

These light bars are configured in dual-in-line packages which contain a single light emitting area. The high efficiency red (HER) and yellow LED chips utilize GaAsP on a transparent Gap substrate. The green and emerald LED chips utilize GaP on a transparent substrate.

## Package Dimensions


side view


TOP VIEW


END VIEW

NOTES: DIMENSIONS IN MILLIMETRES (INCHES). TOLERANCES $+0.25 \mathrm{~mm}+0.010 \mathrm{in}$ UNLESS OTHERWISE INOICATED.

## Absolute Maximum Ratings

| Parameter | HLMP-2965 | HLMP-2950 | HLMP-2980 |
| :---: | :---: | :---: | :---: |
| Average Power Dissipation per LED Chipl1] | 135 mW | 85 mW | 135 mW |
| Peak Forward Current per LED Chip. $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ (Maximum Pulse Width $=2 \mathrm{~ms})^{[1,2]}$ | 90 mA | 60 mA | 90 mA |
| Time Average Forward Current per LED Chip, Pulsed Conditions ${ }^{[2]}$ | $\begin{gathered} 25 \mathrm{~mA}, \\ T_{A}=25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} 20 \mathrm{~mA} . \\ T_{A}=50^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} 25 \mathrm{~mA} \\ T_{A}=50^{\circ} \mathrm{C} \end{gathered}$ |
| DC Forward Current per LED Chip, $\mathrm{T}_{A}=50^{\circ} \mathrm{C}$ [3] | 30 mA | 25 mA | 30 mA |
| Operating Temperature Range | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |
| Lead Soldering Temperature, 1.6 mm (1/16 inch) Below Seating Plane | $260^{\circ} \mathrm{C}$ for 3 seconds |  |  |

NOTES:

1. For HLMP-2965, derate above $T_{A}=25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2950 and -2980 derate above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at 1.8 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 2.
2. See Figure 1 to establish pulsed operating conditions.
3. For HLMP-2965, derate above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2950 and -2980 derate above $T_{A}=60^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 3.

## Internal Circuit Diagram



## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> HIGH EFFICIENCY RED/YELLOW HLMP-2950

| Parameter |  | Symbol | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity ${ }^{4}$ | HER | Iv | 9 | 43 |  | mod | 20 mA DC |
|  |  |  |  | 49 |  | mad | 60 mA Pk: 1 of 3 Duty Factor |
|  | Yellow | IV | 8 | 35 |  | mod | 20 mADC |
|  |  |  |  | 43 |  | med | 60 mA Pk: 1 of 3 Duty Factor |
| Peak Wavelength | HER | $\lambda$ APEAK |  | 635 |  | $n \mathrm{~m}$ |  |
|  | Yellow |  |  | 583 |  |  |  |
| Dominant Wavelength ${ }^{5}$ | HER | $\lambda d$ |  | 626 |  | nm |  |
|  | Yellow |  |  | 585 |  |  |  |
| Forward Voltage | HER | $V_{F}$ |  | 2.1 | 2.6 | V | $\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$ |
|  | Yellow |  |  | 2.2 | 2.6 |  |  |
| Thermal Resistance LED Junction-to-Pin |  | $\theta \mathrm{Jc}$ |  | 150 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$ |  |

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ HIGH EFFICIENCY RED/GREEN HLMP-2965

| Parameter |  | Symbol | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity ${ }^{4}$ | HER | Iv | 9 | 43 |  | mod | 20 mA DC |
|  |  |  |  | 49 |  | mod | 60 mA Pk: 1 of 3 Duty Factor |
|  | Green | IV | 7.5 | 50 |  | mod | 20 mA DC |
|  |  |  |  | 56 |  | mod | 60 mA Pk: 1 of 3 Duty Factor |
| Peak Wavelength | HER | АРЕAK |  | 635 |  | nm |  |
|  | Green |  |  | 565 |  |  |  |
| Dominant Wavelength ${ }^{151}$ | HER | $\lambda d$ |  | 626 |  | nm |  |
|  | Green |  |  | 572 |  |  |  |
| Forward Voltage | HER | $V_{F}$ |  | 2.1 | 2.6 | V | $1 \mathrm{~F}=20 \mathrm{~mA}$ |
|  | Green |  |  | 2.2 | 2.6 |  |  |
| Thermal Resistance LED Junction-to-Pin |  | $R \theta_{\text {Jumin }}$ |  | 150 |  | - C/W/LED |  |

HIGH EFFICIENCY RED/EMERALD GREEN HLMP-2980

| Parameter |  | Symbol | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity | HER | IV | 9 | $\begin{aligned} & 43 \\ & 49 \end{aligned}$ |  | mod | 20 mADC <br> 60 mA Pk: 1 of 3 Duty Factor |
|  | Emerald | IV | 7.5 | $\begin{aligned} & 18 \\ & 22 \end{aligned}$ |  | mod | 20 mADC <br> $60 \mathrm{mAPk}: 1$ of 3 Duty Factor |
| Peak Wavelength | HER <br> Emerald | $\lambda$ PEAK |  | $\begin{aligned} & 635 \\ & 556 \end{aligned}$ |  | nm |  |
| Dominant Wavelength | HER <br> Emerald | $\lambda_{d}$ |  | $\begin{aligned} & 626 \\ & 558 \end{aligned}$ |  | nm |  |
| Forward Voltage | HER <br> Emerald | $V_{F}$ |  | $\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$ | $\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$ | V | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ |
| Thermal Resistance LED Junction-to-Pin |  | $R \theta_{J-P I N}$ |  | 150 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$ |  |

NOTES:
4. These devices are categorized for luminous intensity with the intensity categorization designated by a two letter combination code located on the side of the package ( $Z=H E R, W=$ Yellow, Green or Emerald).
5. The dominant wavelength, $\lambda_{d}$, is derived from the C.I.E. chromaticity diagram and is that single wavelength which defines the color of the device.

## Electrical

The HLMP-2950/-2965/-2980 bicolor light bar devices are composed of eight light emitting diodes: four High Efficiency Red and four that either Yellow, Green, or Emerald. The light from each LED is optically scattered to form an evenly illuminated light emitting surface. The LED's are die attached and wire bonded in bicolor pairs, with the anode/ cathode of each LED pair brought out by separate pins.

The typical forward voltage values, scaled from Figure 5, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum $V_{F}$ values for the purpose of driver circuit design and maximum power dissipation may be approximated using the following $V_{F}$ models:

$$
\begin{aligned}
& V_{F}=1.8 \mathrm{~V}+\operatorname{IPEAK}(40 \Omega) \\
& \text { For IPEAK } \geq 20 \mathrm{~mA} \\
& V_{F}=1.6 \mathrm{~V}+\operatorname{IDC}(50 \Omega) \\
& \text { For } 5 \mathrm{~mA} \leq \operatorname{IDC} \leq 20 \mathrm{~mA}
\end{aligned}
$$

The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum forward voltage and the maximum forward current. For
pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any given ambient temperature and thermal resistance (R0)J-A) can be determined by using Figure 2. The solid line in Figure 2 ( $R \theta_{J}-A$ of $538^{\circ} \mathrm{C} / \mathrm{W}$ ) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistance that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

## Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:
$\mathrm{L}_{v}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\frac{\mathrm{I}_{\mathrm{v}}(\mathrm{cd})}{\mathrm{A}\left(\mathrm{m}^{2}\right)} \quad \mathrm{L}_{v}($ footlamberts $)=\frac{\pi \mathrm{I}_{\mathrm{v}}(\mathrm{cd})}{\mathrm{A}(\mathrm{ft} 2)}$
where the area ( $A$ ) of the light emitting surface is $67.74 \times$ $10^{-6} \mathrm{~m}^{2}\left(729.16 \times 10^{-6} \mathrm{ft} .{ }^{2}\right)$.


Figure 1. Maximum Allowed Peak Current vs. Pulse Duration.


Figure 2. Maximum Allowable Power Dissipation per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance Values, LED Junction to Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.


Figure 3. Maximum Allowable DC Current per LED vs. Ambient Temperature, Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.


Figure 5. Forward Current vs. Forward Voltage Characteristics.


Figure 6. Relative Luminous Intensity vs. DC Forward Current.

## Reversing Polarity LED Drivers

Bicolor LED light bar modules require a polarity reversing scheme to turn on the desired LED. Reversing line drivers, timers and memory drivers can be used to drive bicolor LED light bars.

The reversing line driver, which was originally designed to drive a data transmission line, can also be used as a polarity reversing driver for bicolor LED modules. The reversing line driver has a totem pole output structure that differs from most TTL circuits in that the output is designed to source as much current as it is capable of sinking.

Line drivers designed to operate from a single 5 V supply are typically specified to source or sink 40 mA . Figure 7 shows the typical output characteristics of three different line drivers connected so that one output sources current across a load and the current is sunk by another output. This circuit is shown in Figure 8. At 40 mA output current, the output voltage typically varies from $2.4 \mathrm{~V}(74128$ ) to 2.9 V ( DM 8830, 9614) for $\mathrm{V}_{c c}=5.0 \mathrm{~V}$. A basic bicolor LED circuit is shown in Figure 9 . Since a line driver can supply 40 mA , it is capable of driving two LED pairs.

Some line drivers like the 9614 are constructed such that the sourcing output is brought out separately from the sinking output. With this type of line driver, the LED currents for each pair can be controlled separately. This technique is shown in Figure 10. Other line drivers provide a tri-state


Figure 7. Typical Output Characteristics of Reversing Line Drivers.
output control or provide other means for turning both LED's off. An example of this circuit technique is shown in Figure 11.

The NE556 dual timer, or two NE555 timers can also be used to drive bicolor light bars, as shown in Figure 12. The outputs at the NE555 timer are able to source or sink up to 200 mA . Connected as shown, each timer acts as an inverting buffer. This circuit has the advantage over the previous line driver circuits of being able to operate at a wide variety of power supply voltages ranging from 4.5 to 16 volts.

Memory drivers can also be used to drive bicolor light bars. Figure 13 shows a 75325 core memory driver being used to drive several pairs of bicolor LEDs. The 75325 is guaranteed to supply up to 600 mA of current with an output voltage considerably higher than 5 V line drivers. The 75325 requires an additional 7.5 V power supply at about 40 mA to properly bias the sourcing drivers. The 75325 allows tristate (red, green, yellow, or emerald, off) operation.
By employing pulse width modulation techniques to any of these circuits a range of colors can be obtained. This technique is illustrated in Figure 14.

Hewlett-Packard cannot assume responsibility for use of any circuitry described other than the circuitry entirely embodied in an HP. product.


Figure 9. Typical Line Driver Circuit; Approximately $20 \mathrm{~mA} / \mathrm{LED}$ Pair.


Figure 11. Tristate (Red, Green/Yellow/Emerald, Off) Bicolor LED Driver.


Figure 12. Use of Dual Timer to Drive Bicolor Light Bars


Figure 13. 75325 High Current Bicolor Driver


Figure 14. Pulse Width Modulation Technique

## Features

- FIRMLY MOUNTS LIGHT BARS IN PANELS
- HOLDS LEGENDS FOR FRONT PANEL OR PC BOARD APPLICATIONS ${ }^{[1]}$
- ONE PIECE, SNAP-IN ASSEMBLY
- MATTE BLACK BEZEL DESIGN ENHANCES PANEL APPEARANCE
- FOUR SIZES AVAILABLE
- MAY BE INSTALLED IN A WIDE RANGE OF PANEL THICKNESSES
- PANEL HOLE EASILY PUNCHED OR MILLED


## Description

This series of black plastic bezel mounts is designed to install Hewlett-Packard Light Bars in instrument panels ranging in thickness from 1.52 mm ( 0.060 inch ) to 3.18 mm

( 0.125 inch). A space has been provided for holding a 0.13 mm ( 0.005 inch) film legend over the light emitting surface of the light bar module.

## Selection Guide

| Panel and Legend Mount Part No. HLMP- | Corresponding Light Bar Module Part No. HLMP. | Panel Hole Installation Dimensions ${ }^{[2]}$ | Package Outline |  |
| :---: | :---: | :---: | :---: | :---: |
| 2598 | 2050, 2350, 2450, 2550 | $7.62 \mathrm{~mm}: 0.300$ inch $\times 22.86 \mathrm{~mm} \cdot 0.900$ inch, | $\longrightarrow$ | B |
| 2599 | 2000, 2300, 2400, 2500 | $7.62 \mathrm{~mm} \times 0.300$ inch $\times 12.70 \mathrm{~mm}(0.500$ inch : | $\pm$ | A |
| 2898 | $2100,2600,2700,2800$ $2155,2655,2755,2855$ $2950,2965,2980$ | $12.70 \mathrm{~mm} \cdot 0.500$ inch $\times 12.70 \mathrm{~mm} \times 0.500$ inch: | $\square$ | C |
| 2899 | $2120,2620,2720,2820$ $2135,2635,2735,2835$ $2170,2670,2770,2870$ $2185,2685,2785,2885$ | 12.70 mm 10.500 inch $\times 22.86 \mathrm{~mm} 10.900$ inch |  | D |

## Notes:

1. Application Note 1012 addresses legend fabrication options.
2. Allowed hole tolerance: $+0.00 \mathrm{~mm},-0.13 \mathrm{~mm}(+0.000$ inch, -0.005 inch ). Permitted radius: $1.60 \mathrm{~mm}(0.063$ inch $)$.

## Package Dimensions



NOTES: 1. DIMENSIONS IN MILLIMETRES (INCHES
2. UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONL.

## Mounting Instructions

1. Mill ${ }^{|3|}$ or punch a hole in the panel. Deburr, but do not chamfer, the edges of the hole.
2. Place the front of the mount against a solid, flat surface. A film legend with outside dimensions equal to the outside dimensions of the light bar may be placed in the mount or on the light bar light emitting surface. Press the light bar into the mount until the tabs snap over the back of the light bar. (When inserting the HLMP-2898, align the notched sides of the light bar with the mount sides which do not have the tabs). (See Figure 1)
3. Applying even pressure to the top of the mount, press the entire assembly into the hole from the front of the panel. ${ }^{14}$ (See Figure 2)

NOTE: For thinner panels, the mount may be pressed into the panel first, then the light bar may be pressed into the mount from the back side of the panel.

## Notes:

3. A 3.18 mm ( 0.125 inch) diameter mill may be used.
4. Repetitive insertion of the mount into the panel will degrade the retention force of the mount.

## Suggested Punch Sources

Hole punches may be ordered from one of the following sources:

Danly Machine Corporation
Punchrite Division
15400 Brookpark Road
Cleveland, OH 44135
(216) 267-1444

Ring Division
The Producto Machine Company
Jamestown, NY 14701
(800) 828-2216

Porter Precision Products Company
12522 Lakeland Road
Santa Fe Springs, CA 90670
(213) 946-1531

Di-Acro Division
Houdaille Industries 800 Jefferson Street Lake City, MN 55041
(612) 345-4571

## Installation Sketches



Figure 1. Installation of a Light Bar into a Panel Mount


Figure 2. Installation of the Light Bar/Panel Mount Assembly into a Front Panel

## Features

- FACTORY INSTALLATION SAVES TIME IN MANUFACTURING, PURCHASING AND STOCKING
- LIGHT OR DARK FIELD FORMAT (DARK FIELD STANDARD)
- HIGH STRENGTH ADHESIVE BACKING
- CUSTOM LEGENDS AVAILABLE


## Description

Light bar legends are available with factory installation on all light bars, using either standard or custom legends. Options L00 through L06 address our standard legend formats and can be specified for various size light bars in accordance with the Device/Option Selection Matrix.

## Ordering Information

To order light bar legends, include the appropriate option code along with the device catalog number. Example: to order the HLMP-2655 with the "OFF" legend, order as follows: HLMP-2655 Option L01. Minimum order quantities vary by part number.
For custom legends, please contact your local HewlettPackard sales office or franchised Hewlett-Packard distributor.


## Option Guide

| Option | Legend Title |
| :---: | :---: |
| L.00 | ON |
| L.01 | OFF |
| L.02 | READY |
| L.03 | HIGH |
| L.04 | LOW |
| L.05 | RESET |
| L06 | STOP |

## Ratings and Characteristics

The absolute maximum ratings, mechanical dimensions and electrical characteristics for light bars with legends are the same as for the standard catalog devices. Refer to the basic data sheet for the specified values. For use in applications involving high humidity conditions, please contact your Hewlett-Packard representative.
As with the standard light bar devices, the radiation pattern is approximately Lambertion. The luminous sterance for a given device is the same as for the standard light bar products. To calculate this value, refer to the "Optical" section of the LED Light Bars data sheet in this catalog.

## Dimensional Specifications for Legends



HLMP-2655 Series


Device/Option Selection Matrix

|  |  | Applicable Light Bar Series |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Option | Legend | $\begin{gathered} \text { HLMP-2300 }-2400 / \\ -2500 /-2000 \end{gathered}$ | $\begin{gathered} \text { HLMP-2655/-2755/ } \\ -2855 /-2155 \end{gathered}$ | $\begin{gathered} \text { HLMP-2685/-2785/ } \\ -2885 /-2185 \end{gathered}$ |
| L00 | ON | X | X | X |
| L01 | OFF | $X$ | $x$ | X |
| L02 | READY |  |  | $x$ |
| L03 | HIGH | $x$ | $x$ | $x$ |
| LO4 | LOW | $x$ | X | X |
| L05 | RESET |  |  | $x$ |
| L06 | STOP |  | X | X |

## Features

- INTENSITY SELECTION IMPROVES UNIFORMITY OF LIGHT OUTPUT FROM UNIT TO UNIT. AVAILABLE IN HIGH EFFICIENCY RED, YELLOW, AND HIGH PERFORMANCE GREEN.
- TWO CATEGORY SELECTION SIMPLIFIES INVENTORY CONTROL AND ASSEMBLY.


## Description

Light bars are now available from Hewlett-Packard which are selected from two adjacent intensity categories. These select light bars are basic catalog devices which are presorted for luminous intensity then selected from two predetermined adjacent categories and assigned to one convenient part number.
Example: Two luminous intensity categories are selected from the basic catalog HLMP-2300 production distribution and assigned to the part number HLMP-2300 option S02.
Selected light bars are ideal for applications which require two or more light bars per panel.

Luminous intensity selection is available for high efficiency red, yellow, and high performance green.
To ensure our customers a steady supply of product, HP must offer selected units from the center of our production distribution. If our production distribution shifts, we will need to change the intensity range of the selected units our customers receive. Typically, an intensity may have to be changed once every 1 to 3 years.
Current intensity selection information is available through a category reference chart which is available through your local field sales engineer or local franchised distributor.

## Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings, mechanical dimensions, and electrical/optical characteristics are identical to the basic catalog device.

## Device Selection Guide

The following table summarizes which basic catalog devices are available with category selection.

| Package | High Efficiency Red | Yellow | Green |
| :--- | :--- | :---: | :---: |
| 4 Pin In-Line | HLMP-2300 Option S02 | HLMP-2400 Option S02 | HLMP-2500 Option S02 |
| 8 Pin In-Line | HLMP-2350 Option S02 | HLMP-2450 Option S02 | HLMP-2550 Option S02 |
| 8 Pin DIP <br> Dual Arrangement | HLMP-2600 Option S02 | HLMP-2700 Option S02 | HLMP-2800 Option S02 |
| 16 Pin DIP <br> Quad Arrangement | HLMP-2620 Option S02 | HLMP-2720 Option S02 | HLMP-2820 Option S02 |
| 16 Pin DIP <br> Dual Bar Arrangement | HLMP-2635 Option S02 | HLMP-2735 Option S02 | HLMP-2835 Option S02 |
| 8 Pin DIP <br> Square Arrangement | HLMP-2655 Option S02 | HLMP-2755 Option S02 | HLMP-2855 Option S02 |
| 16 Pin DIP <br> Dual Square Arrangement | HLMP-2670 Option S02 | HLMP-2770 Option S02 | HLMP-2870 Option S02 |
| 16 Pin DP <br> Single Bar Arrangement | HLMP-2685 Option S02 | HLMP-2785 Option S02 | HLMP-2885 Option S02 |

[^14]
## Features

- CUSTOM MULTICOLOR ARRAY CAPABILITY
- MATCHED LEDs FOR UNIFORM APPEARANCE
- END STACKABLE
- PACKAGE INTERLOCK ENSURES CORRECT ALIGNMENT
- LOW PROFILE PACKAGE
- RUGGED CONSTRUCTIONRELIABILITY DATA SHEETS AVAILABLE
- LARGE, EASILY RECOGNIZABLE SEGMENTS
- HIGH ON-OFF CONTRAST, SEGMENT TO SEGMENT
- WIDE VIEWING ANGLE
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-4832/-4836/-4840/-4850/-4890 CATEGORIZED FOR DOMINANT WAVELENGTH


## Applications

- INDUSTRIAL CONTROLS
- INSTRUMENTATION
- OFFICE EQUIPMENT
- COMPUTER PERIPHERALS
- CONSUMER PRODUCTS



## Description

These 10 -element LED arrays are designed to display information in easily recognizable bar graph form. The packages are end stackable and therefore capable of displaying long strings of information. Use of these bar graph arrays eliminates the alignment, intensity, and color matching problems associated with discrete LEDs. The HDSP-4820/-4830/ -4840/-4850/-4890 each contain LEDs of just one color. The HDSP-4832/-4836 are multicolor arrays with HighEfficiency Red, Yellow, and Green LEDs in a single package. CUSTOM MULTICOLOR ARRAYS ARE AVAILABLE WITH MINIMUM DELIVERY REQUIREMENTS. CONTACT YOUR LOCAL DISTRIBUTOR OR HP SALES OFFICE FOR DETAILS.

## Package Dimensions



## Absolute Maximum Ratings ${ }^{[9]}$

| Parameter | HDSP-4820 | HDSP-4830 | HDSP-4840 | HDSP-4850 | HDSP-4890 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average Power Dissipation per LED $\left(T=25^{\circ} \mathrm{C}\right)^{[1]}$ | 125 mW |
| Peak Forward Current per LED | $150 \mathrm{~mA}^{[2]}$ | $90 \mathrm{~mA}{ }^{[3]}$ | $60 \mathrm{~mA}{ }^{[3]}$ | $90 \mathrm{~mA}^{[3]}$ | $90 \mathrm{mAl}{ }^{(3)}$ |
| DC Forward Current per LED | $30 \mathrm{mAl}{ }^{(4)}$ | $30 \mathrm{mAl}{ }^{5]}$ | $30 \mathrm{mAl}{ }^{6]}$ | $30 \mathrm{~mA}^{[7]}$ | $30 \mathrm{mAl7]}$ |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |
| Storage Temperature Range | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |  |
| Reverse Voltage per LED | 3.0 V |  |  |  |  |
| Lead Soldering Temperature ( $1.59 \mathrm{~mm}(1 / 16 \mathrm{inch})$ below seating plane ${ }^{[8]}$ | $260^{\circ} \mathrm{C}$ for 3 sec |  |  |  |  |

## NOTES:

1. Derate maximum average power above $T_{A}=25^{\circ} \mathrm{C}$ at $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating assumes worst case $R \Theta_{J}-\mathrm{A}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$.
2. See Figure 1 to establish pulsed operating conditions.
3. See Figure 6 to establish pulsed operating conditions.
4. Derate maximum DC current above $T_{A}=63^{\circ} \mathrm{C}$ at $0.81 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $R \Theta J-A=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 2.
5. Derate maximum DC current above $T_{A}=50^{\circ} \mathrm{C}$ at $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED. This derating assumes worst case R $\mathrm{J}_{\mathrm{J}-\mathrm{A}}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 7.
6. Derate maximum DC current above $T_{A}=70^{\circ} \mathrm{C}$ at $0.67 \mathrm{~mA}{ }^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $R \Theta \mathrm{~J}-\mathrm{A}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 8.
7. Derate maximum DC current above $T_{A}=37^{\circ} \mathrm{C}$ at $0.48 \mathrm{~mA} /^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $\mathrm{R} \Theta \mathrm{J}-\mathrm{A}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 9.
8. Clean only in water, Isopropanol, Ethanol, Freon TF or TE (or equivalent) and Genesolve DI-15 (or equivalent).
9. Absolute maximum ratings for the HER, Yellow, and Green elements of the multicolor arrays are identical to the HDSP-4830/-4840/ -4850 maximum ratings.

> Multicolor Array Segment Colors

Internal Circuit Diagram


| Segment | HDSP-4832 <br> Segment Color | HDSP-4836 <br> Segment Color |
| :---: | :---: | :---: |
| a | HER | HER |
| $b$ | HER | HER |
| c | HER | Yellow |
| d | Yellow | Yellow |
| e | Yellow | Green |
| $f$ | Yellow | Green |
| g | Yellow | Yellow |
| h | Green | Yellow |
| $i$ | Green | HER |
| j | Green | HER |

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{[1]}$

RED HDSP-4820

| Parameter | Symbol | Test Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity per LED (Unit Average) ${ }^{11}$ | IF | $\mathrm{IF}=20 \mathrm{~mA}$ | 610 | 1250 |  | $\mu \mathrm{cd}$ |
| Peak Wavelength | $\lambda$ ¢еAK |  |  | 655 |  | nm |
| Dominant Wavelength ${ }^{[2]}$ | $\lambda_{d}$ |  |  | 645 |  | nm |
| Forward Voltage per LED | $V_{F}$ | $1 \mathrm{~F}=20 \mathrm{~mA}$ |  | 1.6 | 20 | V |
| Reverse Voltage per LED | $V_{\text {R }}$ | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ | 3 | $12[5]$ |  | $V$ |
| Temperature Coefficient VF per LED | $\Delta V_{F} /{ }^{\circ} \mathrm{C}$ |  |  | -2.0 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Thermal Resistance LED Junction-to-Pin | $\mathrm{R}_{\text {¢J_PIN }}$ |  |  | 300 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} /$ LED |

HIGH-EFFICIENCY RED HDSP-4830

| Parameter | Symbol | Test Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity per LED (Unit Average) ${ }^{[1]}$ | lv | $\mathrm{l}=10 \mathrm{~mA}$ | 900 | 3500 |  | $\mu \mathrm{cd}$ |
| Peak Wavelength | $\lambda$ ¢EAK |  |  | 635 |  | nm |
| Dominant Wavelength ${ }^{1 / 1}$ | $\lambda_{d}$ |  |  | 626 |  | nm |
| Forward Voltage per LED | $V_{F}$ | $\mathrm{lF}=20 \mathrm{~mA}$ |  | 2.1 | 2.5 | $V$ |
| Reverse Voltage per LED | $V_{\text {f }}$ | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ | 3 | $30[5]$ |  | V |
| Temperature Coefficient VF per LED | $\Delta V_{F / 2}{ }^{\circ} \mathrm{C}$ |  |  | -2,0 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Thermal Resistance LED Junction-to-Pin | $\mathrm{Re}_{\mathrm{JJWIN}}$ |  |  | 300 |  | $\begin{aligned} & { }^{\circ} \mathrm{C} / W / \\ & \mathrm{LED} \end{aligned}$ |

## YELLOW HDSP-4840

| Parameter | Symbol | Test Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity per LED (Unit Average) ${ }^{11}$ | Iv | $1 \mathrm{~F}=10 \mathrm{~mA}$ | 600 | 1900 |  | $\mu \mathrm{cd}$ |
| Peak Wavelength | APEAK |  |  | 583 |  | nm |
| Dominant Wavelength ${ }^{12.31}$ | $\lambda_{d}$ |  | 581 | 585 | 592 | nm |
| Forward Voltage per LED | $V_{F}$ | $\underline{I F}=20 \mathrm{~mA}$ |  | 2.2 | 2.5 | V |
| Reverse Voltage per LED | $V_{\text {A }}$ | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ | 3 | 4015] |  | V |
| Temperature Coefficient VF per LED | $\Delta V_{F} /{ }^{\circ} \mathrm{C}$ |  |  | $-2.0$ |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Thermal Resistance LED Junction-to-Pin | $\mathrm{R}_{\Theta_{J-\mathrm{PIN}}}$ |  |  | 300 |  | $\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} t \\ \text { LED } \end{gathered}$ |

GREEN HDSP-4850

| Parameter | Symbol | Test Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity per LED (Unit Average) ${ }^{11}$ | Iv | $\mathrm{If}_{\mathrm{F}}=10 \mathrm{~mA}$ | 600 | 1900 |  | $\mu \mathrm{cd}$ |
| Peak Wavelength | APEAK |  |  | 566 |  | nm |
| Dominant Wavelength ${ }^{[2,3]}$ | $\lambda d$ |  |  | 571 | 577 | nm |
| Forward Voltage per LED | $V_{F}$ | $\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$ |  | 2.1 | 2.5 | V |
| Reverse Voltage per LED | $V_{\text {F }}$ | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ | 3 | 50151 |  | $\checkmark$ |
| Temperature Coefficient VF per LED | $\Delta \mathrm{VF}^{\prime}{ }^{\circ} \mathrm{C}$ |  |  | $-2.0$ |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Thermal Resistance LED Junction-to-Pin | $\mathrm{R}_{\text {OJ-Pin }}$ |  |  | 300 |  | $\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{LED} \end{gathered}$ |

## EMERALD GREEN HDSP-4890

| Parameter | Symbol | Test Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensify Per LED (Unit Average) ${ }^{[1]}$ | Iv | $\mathrm{IF}=10 \mathrm{~mA}$ | 250 | 1600 |  | $\mu \mathrm{cd}$ |
| Peak Wavelength | $\lambda$ PEAK |  |  | 556 |  | nm |
| Dominant Wavelength ${ }^{[2,3]}$ | $\lambda_{d}$ |  |  | 558 |  | nm |
| Forward Voltage Per L.ED | $V_{F}$ | $I f=10 \mathrm{~mA}$ |  | 2.2 | 2.5 | V |
| Reverse Voltage Per LED | $V_{\text {R }}$ | $I_{R}=100 \mu \mathrm{~A}$ | 3 | $50{ }^{[5]}$ |  |  |
| Temperature Coefficient VFPerLED | $\Delta V_{F} 7^{\circ} \mathrm{C}$ |  |  | $-2.0$ |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Thermal Resistance LED Junction-to-Pin | $R \theta_{J-P I N}$ |  |  | 300 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$ |

NOTES:

1. The bar graph arrays are categorized for luminous intensity. The category is designated by a letter located on the side of the package.
2. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
3. The HDSP-4832/-4836/-4840/-4850/-4890 bar graph arrays are categorized by dominant wavelength with the category designated by a number adjacent to the intensity category letter. Only the yellow elements of the HDSP-4832/-4836 are categorized for color.
4. Electrical/optical characteristics of the High-Efficiency Red elements of the HDSP-4832/-4836 are identical to the HDSP-4830 characteristics. Characteristics of Yellow elements of the HDSP-4832/-4836 are identical to the HDSP-4840. Characteristics of Green elements of the HDSP-4832/-4836 are identical to the HDSP-4850.
5. Reverse voltage per LED should be limited to 3.0 V Max.


Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration


Figure 2. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance, LED Junction-to-Ambient on a per LED basis. $\mathrm{T}_{\text {JMAX }}=100^{\circ} \mathrm{C}$


Figure 4. Forward Current vs. Forward Voltage


Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current


Figure 5. Relative Luminous Intensity vs. D.C. Forward Current

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.


Figure 6. HDSP-4830/-4840/-4850/-4890 Maximum Tolerable Peak Current vs. Pulse Duration


Figure 7. HDSP-4830 Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED basis. $\mathrm{T}_{\mathrm{J}}$ MAX $=100^{\circ} \mathrm{C}$.

Figure 9. HDSP-4850/-4890 Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED basis. $\mathrm{T}_{\mathrm{J} \text { MAX }}=100^{\circ} \mathrm{C}$.


$$
\mathrm{T}_{\mathrm{A}} \text { - AMBIENT TEMPERATURE - }{ }^{\circ} \mathrm{C}
$$

Figure 8. HDSP-4840 Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED basis. $\mathrm{T}_{\mathrm{J} \text { MAX }}=100^{\circ} \mathrm{C}$.


Figure 10. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.


Figure 11. Forward Current vs. Forward Voltage

## Electrical

These versatile bar graph arrays are composed of ten light emitting diodes. The light from each LED is optically stretched to form individual elements. The diodes in the HDSP-4820 bar graph utilize a Gallium Arsenide Phosphide (GaAsP) epitaxial layer on a Gallium Arsenide (GaAs) Substrate. The HDSP-4830/-4840 bar graphs utilize a GaAsP epitaxial layer on a GaP substrate to produce the brighter high-efficiency red and yellow displays. The HDSP-4850/ -4890 bar graph arrays utilize a GaP epitaxial layer on a GaP substrate. The HDSP-4832/-4836 multicolor arrays have high efficiency red, yellow, and green LEDs in one package.

These display devices are designed to allow strobed operation. The typical forward voltage values, scaled from Figure 4 or 11, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum $V_{F}$ values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following $V_{F}$ MAX models.

## HDSP-4820 (Red)

$V_{\text {F MAX }}=1.75 \mathrm{~V}+\mathrm{I}_{\text {PEAK }}(12.5 \Omega)$
For: IPEAK $\geq 5 \mathrm{~mA}$

## HDSP-4830/-4840 (High Efficiency Red/Yellow)

$V_{\text {F MAX }}=1.75 \mathrm{~V}+$ IPEAK $^{(38 \Omega)}$
For IPEAK $\geq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.6 \mathrm{~V}+\operatorname{IDC}(45 \Omega)$
For: $5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}$
HDSP-4850/-4890 (Green/Emerald)
$\mathrm{V}_{\mathrm{F}}$ MAX $=2.0 \mathrm{~V}+\mathrm{IPEAK}(50 \Omega)$
For: Ipeak > 5 mA


Figure 12. HDSP-4830/-4840/-4850/-4890 Relative Luminous Intensity vs. D.C. Forward Current

Refresh rates of 1 KHz or faster provide the most efficient operation resulting in the maximum possible time averaged luminous intensity.
The time averaged luminous intensity may be calculated using the relative efficiency characteristic shown in Figures 3 and 10. The time averaged luminous intensity at $T_{A}=$ $25^{\circ} \mathrm{C}$ is calculated as follows:

IV time AVG $=\left[\frac{I_{\text {F AVG }}}{\text { IF SPEC AVG }}\right](\eta$ IPEAK $)($ IV SPEC $)$

Example: For HDSP-4830 operating at IPEAK $=50 \mathrm{~mA}, 1$ of 4 Duty Factor

$$
\eta_{\text {PEAK }}=1.35(\text { at IPEAK }=50 \mathrm{~mA})
$$

IV time avg $=\left[\frac{12.5 \mathrm{~mA}}{10 \mathrm{~mA}}\right](1.35) 2280 \mu \mathrm{~cd}=3847 \mu \mathrm{~cd}$

TECHNICAL DATA JANUARY 1986

## Features

- HIGH RESOLUTION (1\%)
- EXCELLENT ELEMENT APPEARANCE

Wide, Recognizable Elements
Matched LEDs for Uniformity
Excellent Element Alignment

- SINGLE-IN-LINE PACKAGE DESIGN

Sturdy Leads on Industry Standard 2.54 mm (0.100") Centers

Environmentally Rugged Package
Common Cathode Configuration

- LOW POWER REQUIREMENTS
1.0 mA Average per Element at 1\% Duty Cycle
- SUPPORT ELECTRONICS

Easy Interface with Microprocessors

## Description

The HDSP-88XX series is a family of 101-element LED linear arrays designed to display information in easily recognizable bar graph or position indicator form. The HDSP-8820, utilizing red GaAsP LED chips assembled on a PC board and enclosed in a red polycarbonate cover with an epoxy backfill seal, has 1.52 mm ( 0.060 inch ) wide segments. The HDSP-8825 and HDSP-8835 are high efficiency red and high performance green respectively, each with a $1.02 \mathrm{~mm}(0.040$ inch) segment width. The HDSP8825 and HDSP-8835 have a clear polycarbonate lens. Mechanical considerations and pin-out are identical

among all 3 devices. The common cathode chips are addressed via 22 single-in-line pins extending from the back side of the package.

## Applications

- INDUSTRIAL PROCESS CONTROL SYSTEMS
- EDGEWISE PANEL METERS
- INSTRUMENTATION
- POSITION INDICATORS
- FLUID LEVEL INDICATORS


## Package Dimensions ${ }^{(1,2)}$



Internal Circuit Diagram ${ }^{\text {(5,6) }}$
Device Pin Description


NOTES:
5. ELEMENT LOCATION NUMBER = COMMON CATHODE NUMBER + ANODE NUMBER. FOR EXAMPLE, ELEMENT 83 IS OBTAINES BY ADDRESSING C80 AND A3. 6. A' AND C' ARE ANODE AND CATHODE OF EIEMENT ZERO.

| PIN |  |
| :---: | :--- |
| LOCATION | FUNCTION |
| 1 | CO |
| 2 | A4 |
| 3 | C'(6) |
| 4 | No Pin |
| 5 | C10 |
| 6 | A1 |
| 7 | A8 |
| 8 | No Pin |
| 9 | C20 |
| 10 | No Pin |
| 11 | A'(6) |
| 12 | No Pin |
| 13 | C30 |
| 14 | No Pin |
| 15 | A7 |
| 16 | No Pin |
| 17 | C40 |
| 18 | No Pin |
| 19 | A2 |
| 20 | No Pin |
| 21 | C50 |
| 22 | No Pin |
| 23 | A3 |
| 24 | No Pin |
| 25 | C60 |
| 26 | No Pin |
| 27 | A10 |
| 28 | No Pin |
| 29 | C70 |
| 30 | No Pin |
| 31 | A9 |
| 32 | No Pin |
| 33 | C80 |
| 34 | A5 |
| 35 | A6 |
| 36 | No Pin |
| 37 | C90 |
|  |  |
|  |  |

## Absolute Maximum Ratings

| Parameter | HDSP-8820 | HDSP-8825 | HDSP-8835 |
| :---: | :---: | :---: | :---: |
| Average Power per Element ( $T_{A}=25^{\circ} \mathrm{C}$ ) | 15 mW | 20 mW | 20 mW |
| Peak Forward Current per Element $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{7}$ ) (Pulse Width $\leq 300 \mu \mathrm{~s}$ ) | 200 mA | 150 mA | 150 mA |
| Average Forward Current per Element $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{[8]}$ | 7 mA | 5 mA | 5 mA |
| Operating Temperature Range | $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ |
| Reverse Voltage per Element or DP | 5.0 V | 5.0 V | 5.0 V |
| Lead Solder Temperature 1.59 mm [1.16 inch] below seating planel9 | $260^{\circ} \mathrm{C}$ for 3 sec. | $260^{\circ} \mathrm{C}$ for 3 sec . | $260^{\circ} \mathrm{C}$ for 3 sec . |

Notes:
7. See Figures 1 and 2 to establish pulsed operating conditions.
8. Derate maximum average forward current above $T_{A}=70^{\circ} \mathrm{C}$ at $0.16 \mathrm{~mA} /{ }^{\circ} \mathrm{C} /$ Element for the HDSP-8820 and 0.11 $\mathrm{mA} /{ }^{\circ} \mathrm{C} /$ Element for the HDSP-8825 and HDSP-8835. See Figures 3 and 4.
9. Clean only in water, Isopropanol, Ethanol, Freon TF or TE (or equivalent) and Genesolv DI-15 or DE-15 (or equivalent). See mechanical section of this data sheet for information on wave soldering conditions.

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RED HDSP-8820

| Parameter | Symbol | Test Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time averaged Luminous Intensity per Element (Unit average) ${ }^{101}$ | IV | 100 mA Pk.: 1 of 110 Duty Factor | 8 | 20 |  | $\mu \mathrm{cd}$ |
| Peak Wavelength | АPEAK |  |  | 655 |  | nm |
| Dominant Wavelength [11] | $\lambda_{d}$ |  |  | 640 |  | nm |
| Forward Voltage per Element | $V_{F}$ | If $=100 \mathrm{~mA}$ |  | 1.7 | 2.1 | V |
| Reverse Voltage per Element | $V_{R}$ | $\mathrm{If}_{\mathrm{H}}=100 \mu \mathrm{~A}$ | 3.0 |  |  | $V$ |
| Temperature Coefficient VF per Element | $\triangle V_{\mathrm{F} /{ }^{\circ} \mathrm{C}}$ |  |  | -2.0 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Thermal Resistance LED Junction-to-Pin | $R \Theta_{J-P I N}$ |  |  | 700 |  | $\begin{gathered} { }^{\circ} \mathrm{CIW} / \\ \mathrm{LED} \end{gathered}$ |

HIGH EFFICIENCY RED HDSP-8825

| Parameter | Symbol | Test Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time averaged Luminous Intensity per Element (Unit average) ${ }^{[10]}$ | IV | 100 mA Pk.: 1 of 110 Duty Factor | 60 | 175 |  | $\mu \mathrm{cd}$ |
| Peak Wavelength | 入PEAK |  |  | 635 |  | nm |
| Dominant Wavelength ${ }^{[11]}$ | $\lambda_{d}$ |  |  | 626 |  | nm |
| Forward Voltage per Element | $V_{F}$ | $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$ |  | 2.3 | 3.1 | V |
| Reverse Voltage per Element | $V_{R}$ | $\mathrm{IA}_{\mathrm{R}}=100 \mu \mathrm{~A}$ | 3.0 |  |  | V |
| Temperature Coefficient VF per Element | $\triangle V_{F} /{ }^{\circ} \mathrm{C}$ |  |  | $-2.0$ |  | $\mathrm{mV} /^{\circ} \mathrm{C}$ |
| Thermal Resistance LED Junction-to-Pin | ReJ.meln |  |  | 1000 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} f$ LED |

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (continued)

HIGH PERFORMANCE GREEN HDSP-8835

| Parameter | Symbol | Test Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Averaged Luminous Intensity per Element (Unit average) (t0] | IV | 100 mA Pk.: 1 of 110 Duty Factor | 70 | 175 |  | $\mu \mathrm{cd}$ |
| Peak Wavelength | $\lambda$ PEAK |  |  | 568 |  | nm |
| Dominant Wavelength ${ }^{[1]}$, | $\lambda^{-} \lambda_{\text {d }}$ | ver |  | 574 |  | \%m |
| Forward Voltage per Element | $V_{F}$ | $\mathrm{IF}_{\mathrm{F}}=100 \mathrm{~mA}$ |  | 2.3 | 3.1 | V |
| Reverse Voltage per Element | $V_{R}$ | IF $=100 \mu \mathrm{~A}$ | 3.0 |  |  | V |
| Temperature Coefficient Vf per Element | $\Delta V_{\text {F } / 2}{ }^{\circ} \mathrm{C}$ |  |  | -2.0 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Thermal Resistance LED Junction-to-Pin | $\mathrm{R} 日$ ) $\ldots$ PIN |  |  | 1000 |  | $\begin{aligned} & { }^{\circ} \mathrm{C} / W / \\ & \text { LED } \end{aligned}$ |

Notes:
10. Operation at peak currents of less than 100 mA may cause intensity mismatch. Consult factory for low current operation.
11. The dominant wavelength, $\lambda d$, is derived from the CIE chromaticity diagram and is the single wavelength which defines the color of the device.


Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration HDSP-8820


Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration HDSP-8825 and HDSP-8835


Figure 3. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance, LED Junction-toAmbient on a per LED basis. $\mathrm{T}_{\mathrm{JMAX}}=115^{\circ} \mathrm{C}$ HDSP-8820


Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current


Figure 4. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance, LED Junction-toAmbient on a per LED basis. $\mathrm{T}_{\mathrm{JMAX}}=115^{\circ} \mathrm{C}$ HDSP-8825/HDSP-8835


Figure 6. Forward Current vs. Forward Voltage

For A Detailed Explanation on the Use of Data Sheet Information, See Application Note 1005.

## Operational Considerations

## ELECTRICAL

The HDSP-88XX is a 101 element bar graph array. The linear array is arranged as ten groups of ten LED elements plus one additional element. The ten elements of each group have common cathodes. Like elements in the ten groups have common anodes. The device is addressed via 22 single-in-line pins extending from the back side of the display.
This display is designed specifically for strobed (multiplexed) operation. Minimum peak forward current at which all elements will be illuminated is 15 mA . Display aesthetics are specified at $100 \mathrm{~mA}, 1 / 110 \mathrm{DF}$, peak forward current. The typical forward voltage values, scaled from Figure 6 should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum $V_{F}$ values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following. $V_{F}$ model:

## HDSP-8820

$\mathrm{V}_{\mathrm{FMAX}}=2.02 \mathrm{~V}+\operatorname{IPEAK}(0.8 \Omega)$
For IPEAK $>40 \mathrm{~mA}$

## HDSP-8825

$V_{\text {FMAX }}=1.7 \mathrm{~V}+\mathrm{IPEAK}(14 \Omega)$
For IPEAK $>40 \mathrm{~mA}$
HDSP-8835
$V_{\text {FMAX }}=1.7 \mathrm{~V}+\operatorname{IPEAK}(14 \Omega)$
For IPEAK $>40 \mathrm{~mA}$

The time averaged luminous intensity at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ may be calculated using:

$$
\text { Iv Time Avg. }=\left[\frac{I_{F-A V G}}{I_{F-S P E C-A V G}}\right] \cdot \eta \mathrm{IPEAK} \cdot \operatorname{IV-SPEC}
$$

where $\eta$, relative efficiency, may be determined from Figure 5.

The circuit in Figure 7 displays an analog input voltage in bar graph form with 101 bit resolution. The 74390 dual decade counter has been configured to count from 0 to 99. The 1Q outputs correspond to "ones" and the 2Q outputs correspond to "tens". The "one" outputs from the counter drives the display element anodes through a 7442 1 of 10 BCD decoder. Sprague UDN 2585 drivers source the anodes with 80 mA peak/segment. The "ten" outputs from the counter drive the group cathodes through a 74145 BCD decoder. The circuit multiplexes segments 100 to 91 first, then segments 90 to 81 , and so on with segments 10 to 1 last. During the time that the output from the T.I. TL507C A/D converter is low the corresponding display elements will be illuminated.
The TL507C is an economical A/D converter with 7 bit resolution. The single output is pulse-width-modulated to correspond to the analog input voltage magnitude. With $\mathrm{VCC}=5 \mathrm{~V}$ the analog input voltage range is 1.3 V to 3.9 V . The TL507C output is reset each time the 74390 resets. Duration of the high output pulse is shorter for larger analog input voltages. A high output from the TL507C disables the display by forcing the 7442 inputs to an invalid state. Hence, as the analog input voltage increases more elements of the bar graph display are illuminated. Display element zero is DC driven.

The circuit in Figure 8 uses the HDSP-88XX as a 100 bit position indicator. Two BCD input words define the position of the illuminated element. Display duty factor, $1 / 100$, is controlled by the ENABLE signal.

## MECHANICAL

Suitable conditions for wave soldering depend on the specific kind of equipment and procedure used. A cool down period after flow solder and before flux rinse is recommended. For more information, consult the local Hewlett-Packard Sales Office or Hewlett-Packard Optoelectronics, Palo Alto, California.


Figure 7. 101 Element Bar Graph


Figure 8. 100 Element Position Indicator

\begin{abstract}



## Solid State Lamps

New products are the keystone of the HewlettPackard LED lamp products. This year the broad line of lamp products is growing by five new major product families.
Hewlett-Packard has two surface mount lamp families, one for front panel or status indication applications and the other for backlighting applications. Both families are compatible with automatic placement equipment and reflow solder processes.
For the front panel designer the new 2 mm and 4 mm flat top lamps provide wide viewing angles and uniform light output to provide excellent flush mounting ability.
Aluminum Gallium Arsenide ( AlGaAs ) is an improved red LED technology which provides higher brightness and better efficiency in an LED lamp.

Orange ( 608 nm ) and Emerald Green ( 556 nm ) are additions to the broad range of colors available for Hewlett-Packard lamps.
Last year HP introduced a family of T-1 3/4 right angle status indicators, which provide a lamp with pre-formed leads inserted into a high contrast, flat seating molded plastic package. This year the right angle family is complete with the addition of T-1 and Subminiature package sizes.
In addition to new products, Hewlett-Packard offers a broad selection of T-1, T-1 3/4, and Subminiature lamps.


Surface Mount Lamps (Gull Wing Lead)

| Device |  | Description |  |  | Typical Luminous Intensity | 2ө1/2[1] | Typical Forward Voltage | $\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color[2] | Package | Lens |  |  |  |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-6000 } \\ \text { Option } 011 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { Red } \\ & (640 \mathrm{~nm}) \\ & \hline \end{aligned}$ | Subminiature <br> Gull Wing <br> Lead <br> Configuration | Tinted Diffused | 1.2 mcd @ 10 mA | $90^{\circ}$ | $\begin{gathered} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ | 6-17 |
|  | $\begin{aligned} & \text { HLMP-6300 } \\ & \text { Option } 011 \end{aligned}$ | High Efficiency Red ( 626 nm ) |  |  | 3.0 mcd <br> @ 10 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{aligned} & \hline \text { HLMP-6400 } \\ & \text { Option } 011 \end{aligned}$ | $\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \\ & \hline \end{aligned}$ |  |  |  |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-6500 } \\ \text { Option } 011 \\ \hline \end{array}$ | $\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \\ & \hline \end{aligned}$ |  |  |  |  | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|l\|} \hline \text { HLMP-7000 } \\ \text { Option } 011 \end{array}$ | Low Current High Efficiency Red ( 626 nm ) |  |  | $\begin{aligned} & \hline 0.8 \mathrm{mcd} \\ & @ 2 \mathrm{~mA} \end{aligned}$ | $70^{\circ}$ | $\begin{gathered} 1.8 \mathrm{~V} \\ @ \\ 2 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-7019 } \\ \text { Option } 011 \end{array}$ | Low Current Yellow ( 585 nm ) |  |  | $\begin{aligned} & 0.6 \mathrm{mcd} \\ & @ 2 \mathrm{~mA} \end{aligned}$ |  | $\begin{gathered} 1.9 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{gathered} \hline \text { HLMP-7040 } \\ \text { Option } 011 \end{gathered}$ | Low Current Green ( 569 nm ) |  |  |  |  |  |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-6600 } \\ \text { Option } 011 \\ \hline \end{array}$ | Integrated <br> Resistor <br> High <br> Efficiency <br> Red <br> ( 626 nm ) |  |  | $\begin{gathered} 2.4 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$ | $80^{\circ}$ | $\begin{aligned} & 9.6 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | $\begin{aligned} & \text { HLMP-6620 } \\ & \text { Option } 011 \end{aligned}$ |  |  |  | $\begin{aligned} & 0.6 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 3.5 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |

Surface Mount Lamps (Yoke Lead)

| Device |  | Description |  |  | Typical Luminous Intensity | 2ө1/2[1] | Typical Forward Voltage | $\begin{gathered} \text { Page } \\ \mathrm{No} \text {. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outlina Drawing | Part No. | Color ${ }^{\text {[2] }}$ | Package | Lens |  |  |  |  |
| $\Omega$ | $\begin{array}{\|c\|} \hline \text { HLMP-6000 } \\ \text { Option } 021 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { Red } \\ (640 \mathrm{~nm}) \\ \hline \end{array}$ | Subminiature Yoke Lead Configuration | Tinted Diffused | $\begin{aligned} & 1.2 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ | $90^{\circ}$ | $\begin{gathered} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ | 6-21 |
|  | HLMP-6300 Option 021 | High Efficiency Red ( 626 nm ) |  |  | 3.0 mcd <br> @ 10 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-6400 } \\ \text { Option } 021 \end{array}$ | Yellow $(585 \mathrm{~nm})$ |  |  |  |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-6500 } \\ \text { Option } 021 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { Green } \\ (569 \mathrm{~nm}) \end{array}$ |  |  |  |  | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|l\|} \hline \text { HLMP-7000 } \\ \text { Option } 021 \end{array}$ | Low Current High Efficiency Red ( 626 nm ) |  |  | 0.8 mcd <br> @ 2 mA | $70^{\circ}$ | $\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-7019 } \\ \text { Option } 021 \end{array}$ | Low Current Yellow ( 585 nm ) |  |  | 0.6 mcd <br> @ 2 mA |  | $\begin{gathered} 1.9 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|l\|} \hline \text { HLMP-7040 } \\ \text { Option } 021 \end{array}$ | Low Current Green ( 569 nm ) |  |  |  |  |  |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-6600 } \\ \text { Option } 021 \\ \hline \end{array}$ | Integrated <br> Resistor <br> High <br> Efficiency <br> Red <br> ( 626 nm ) |  |  | $\begin{gathered} 2.4 \mathrm{mcd} \\ @ 5 \mathrm{~V} \\ \hline \end{gathered}$ | $80^{\circ}$ | $\begin{aligned} & 9.6 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$ |  |
|  | $\begin{aligned} & \text { HLMP-6620 } \\ & \text { Option } 021 \end{aligned}$ |  |  |  | $\begin{aligned} & 0.6 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 3.5 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |

2mm Flat Top Lamps

| Device |  | Description |  |  | Typical Luminous Intensity | 2e1/2[1] | Typical Forward Voltage | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color[2] | Package | Lens |  |  |  |  |
|  | HLMP-1800 | High Efficiency Red ( 626 nm ) | 2mm Flat Top, Round Emitting Surface | Tinted Diffused | 1.8 mcd @ 10 mA | $140^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ | 6-25 |
|  | HLMP-1801 |  |  |  | 2.9 mcd @ 10 mA |  |  |  |
|  | HLMP-1819 | $\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$ |  |  | 1.5 mcd @ 10 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-1820 |  |  |  | 2.5 mcd <br> @ 10 mA |  |  |  |
|  | HLMP-1840 | Green( 569 nm ) |  |  | $\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ |  | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-1841 |  |  |  | 3.0 mcd @ 10 mA |  |  |  |
|  | HLMP-L250 HLMP-L251 | High Efficiency Red ( 626 nm ) | 2mm Flat <br> Top, Square <br> Emitting <br> Surface | Tinted Diffused | $\begin{aligned} & 1.8 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline 2.9 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ | $140^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-L350 | Yellow( 585 nm ) |  |  | $\begin{aligned} & 1.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$ |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
| 10 | HLMP-L351 |  |  |  | $\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ |  |  |  |
|  | HLMP-L550 | $\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  |  | $\begin{aligned} & \hline 2.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$ |  | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
| $(\square)$ | HLMP-L551 |  |  |  | 3.0 mcd <br> @ 10 mA |  |  |  |

## 4mm Flat Top Lamps



AIGaAs Lamps

| Device |  | Description |  |  | Typical Luminous Intensity | 291/2[1] | Maximum Forward Voltage | $\begin{gathered} \text { Page } \\ \mathrm{No.} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color ${ }^{[2]}$ | Package | Lens |  |  |  |  |
|  | HLMP-D100 | AIGaAs Red ( 646 nm ) | T-13/4 | Tinted Diffused | 30 mcd <br> @ 20 mA | $65^{\circ}$ | $\begin{gathered} 3.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ | 6-39 |
|  | HLMP-K100 |  | T-1 |  | $\begin{aligned} & 20 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$ | $60^{\circ}$ | $\begin{gathered} 3.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-Q100 |  | Subminiature |  | 5.5 mcd <br> @ 20 mA | $70^{\circ}$ | $\begin{gathered} 3.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ |  |

Tape and Reel: Solid State Lamps

| Device |  | Description |  |  | Typical Luminous Intensity | 2ө1/2[1] | Typical Forward Voltage | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color ${ }^{[2]}$ | Package | Lens |  |  |  |  |
|  | HLMP-3300 <br> Option 001 | High <br> Efficiency <br> Red <br> ( 626 nm ) | T-13/4 | Tinted Diffused | 3.5 mcd <br> @ 10 mA | $65^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ | 6-43 |
|  | $\begin{aligned} & \text { HLMP-3300 } \\ & \text { Option } 002 \end{aligned}$ |  |  |  |  |  |  |  |
|  | $\begin{aligned} & \hline \text { HLMP-1301 } \\ & \text { Option } 001 \end{aligned}$ |  | T-1 |  | 2.5 mcd <br> @ 10 mA | $60^{\circ}$ |  |  |
|  | $\begin{array}{\|l\|} \hline \text { HLMP-1301 } \\ \text { Option } 002 \end{array}$ |  |  |  |  |  |  |  |

## Low Current Lamps



Ultrabright Lamps


Right Angle Indicators without current limiting resistor

| Device |  | Description |  |  | Typical Luminous Intensity | 2ө1/2[1] | Typical Forward Voltage | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color[2] | Package | Lens |  |  |  |  |
|  | HLMP-5000 | $\begin{aligned} & \hline \text { Red } \\ & (640 \mathrm{~nm}) \\ & \hline \end{aligned}$ | T-13/4 Right Angle Indicator | Red Diffused | $\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$ | $75^{\circ}$ | $\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ | 6-55 |
|  | HLMP-5030 | High Efficiency Red ( 626 nm ) |  |  | $\begin{aligned} & 6.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ | $65^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-5040 | Yellow <br> ( 585 nm ) |  | $\begin{array}{\|l\|} \hline \text { Yellow } \\ \text { Diffused } \end{array}$ | $\begin{aligned} & 6.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ | $75^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-5050 | $\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  | Green Diffused | $\begin{aligned} & 2.4 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ | $75^{\circ}$ | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c} \hline \text { HLMP-1002 } \\ \text { Option } 010 \\ \hline \end{array}$ | $\begin{aligned} & \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$ | T-1 <br> Right <br> Angle <br> Indicator | Red Diffused | $\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$ | $125^{\circ}$ | $\begin{gathered} 1.6 \mathrm{~V} \\ @ \\ 20 \mathrm{~mA} \end{gathered}$ | 6-57 |
|  | $\begin{array}{\|l\|} \hline \text { HLMP-1301 } \\ \text { Option } 010 \end{array}$ | High Efficiency Red $(626 \mathrm{~nm})$ |  |  | $2.5 \mathrm{mcd}$ <br> @ 10 mA | $60^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-1401 } \\ \text { Option } 010 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}$ |  | Yellow Diffused | 3.0 mcd $@ 10 \mathrm{~mA}$ |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-1503 } \\ \text { Option } 010 \\ \hline \end{array}$ | $\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  | $\begin{aligned} & \hline \text { Green } \\ & \text { Diffused } \end{aligned}$ | $\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ |  | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-6000 } \\ \text { Option } 010 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Red } \\ (640 \mathrm{~nm}) \end{array} \\ \hline \end{array}$ | Subminiature <br> Right <br> Angle <br> Indicator | Red Diffused | 1.2 mcd <br> $@ 10 \mathrm{~mA}$ <br> 3.0 mcd <br> $@ 10 \mathrm{~mA}$ | $90^{\circ}$ | $\begin{gathered} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ | 6-59 |
|  | $\begin{array}{\|c} \hline \text { HLMP-6300 } \\ \text { Option } 010 \end{array}$ | High Efficiency Red $(626 \mathrm{~nm})$ |  |  |  |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-6400 } \\ \text { Option } 010 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \\ \hline \end{array}$ |  | Yellow Diffused |  |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-6500 } \\ \text { Option } 010 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline \begin{array}{l} \text { Green } \\ (569 \mathrm{~nm}) \end{array} \\ \hline \end{array}$ |  | $\begin{aligned} & \hline \text { Green } \\ & \text { Diffused } \end{aligned}$ |  |  | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{aligned} & \hline \text { HLMP-1301 } \\ & \text { Option } 104 \end{aligned}$ | High Efficiency Red ( 626 nm ) | T-1 <br> Right Angle Indicator 4-Element Array | Tinted Diffused | 2.5 mcd <br> @ 10 mA | $60^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ | 6-61 |
|  | $\begin{array}{\|c\|} \hline \text { HLMP-1401 } \\ \text { Option } 104 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \\ & \hline \end{aligned}$ |  |  | 3.0 mcd <br> @ 10 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | $\begin{aligned} & \text { HLMP-1503 } \\ & \text { Option } 104 \end{aligned}$ | Green ( 569 nm ) |  |  | 2.0 mcd <br> @ 10 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |

Right Angle Indicators with current limiting resistor

| Device |  | Description |  |  | Typical Luminous Intensity | $2 \Theta 1 / 2[1]$ | Typical Forward Current | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color ${ }^{[2]}$ | Package | Lens |  |  |  |  |
|  | HLMP-5012 | $\begin{aligned} & \hline \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$ | T-13/4 Right Angle Indicator | Red Diffused | $\begin{aligned} & 2 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$ | $75^{\circ}$ | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$ | 6-55 |
|  | HLMP-5005 |  |  |  | $\begin{aligned} & 2 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 . \mathrm{V} \\ & \hline \end{aligned}$ |  |
|  | HLMP-5060 | High Efficiency Red ( 626 nm ) |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ | $65^{\circ}$ | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-5070 | $\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \\ \hline \end{array}$ |  | Yellow Diffused |  | $75^{\circ}$ | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-5080 | $\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \\ & \hline \end{aligned}$ |  | Green Diffused |  |  | $\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | $\begin{aligned} & \hline \text { HLMP-1100 } \\ & \text { Option } 010 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { Red } \\ & (640 \mathrm{~nm}) \\ & \hline \end{aligned}$ | T-1 Right Angle Indicator | Red Diffused | 1.5 mcd <br> @ 5 V | $60^{\circ}$ | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ | 6-62 |
|  | $\begin{gathered} \hline \text { HLMP-1600 } \\ \text { Option } 010 \end{gathered}$ | High <br> Efficiency <br> Red <br> ( 626 nm ) |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | $\begin{aligned} & \hline \text { HLMP-1620 } \\ & \text { Option } 010 \end{aligned}$ | $\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$ |  | Yellow Diffused |  |  | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | $\begin{aligned} & \text { HLMP-1640 } \\ & \text { Option } 010 \end{aligned}$ | $\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  | Green Diffused |  |  | $\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |

## Integrated Resistor Lamps

| Device |  | Description |  |  | Typical Luminous Intensity | 2ө1/2[1] | Typical Forward Current | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color ${ }^{[2]}$ | Package | Lens |  |  |  |  |
|  | HLMP-3105 | $\begin{aligned} & \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$ | T-1 3/4 | Tinted Diffused | $\begin{aligned} & 2 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ | $75^{\circ}$ | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ | 6-62 |
|  | HLMP-3112 | High Efficiency Red ( 626 nm ) |  |  | $\begin{aligned} & 2 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-3600 HLMP-3601 |  |  |  | 4 mcd <br> @ 5 V <br> 4 mcd <br> @ 12 V | $65^{\circ}$ | $\begin{aligned} & \hline 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-3650 | $\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$ |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ | $75^{\circ}$ | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$ |  |
|  | HLMP-3651 |  |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-3680 | Green( 569 nm ) |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-3681 |  |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  |
| (18) | HLMP-1100 | $\begin{array}{\|l\|} \hline \text { Red } \\ (640 \mathrm{~nm}) \end{array}$ | T-1 | $\begin{aligned} & \hline \text { Tinted } \\ & \text { Diffused } \end{aligned}$ | $\begin{aligned} & 1.5 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ | $60^{\circ}$ | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-1120 |  |  | Untinted Diffused |  | $50^{\circ}$ | \% |  |
|  | HLMP-1600 | High <br> Efficiency <br> Red <br> $(626 \mathrm{~nm})$ |  | Tinted Diffused | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$ | $60^{\circ}$ | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$ |  |
|  | HLMP-1601 |  |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  | $\begin{array}{r} 13 \mathrm{~mA} \\ \text { @ } 12 \mathrm{~V} \\ \hline \end{array}$ |  |
|  | HLMP-1620 | Yellow$(585 \mathrm{~nm})$ |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-1621 |  |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-1640 | $\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-1641 |  |  |  | $\begin{aligned} & 4 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  |

Integrated Resistor Lamps (cont.)

| Device |  | Description |  |  | Typical Luminous Intensity | 2e1/2[1] | Typical <br> Forward <br> Current | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color ${ }^{\text {[2] }}$ | Package | Lens |  |  |  |  |
|  | HLMP-6600 | High <br> Efficiency <br> Red <br> $(626 \mathrm{~nm})$ | Subminiature | Tinted Diffused | $\begin{gathered} 5.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$ | $90^{\circ}$ | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ | 6-66 |
|  | HLMP-6620 |  |  |  | $\begin{gathered} 2.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$ |  | $\begin{aligned} & 3.5 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-6700 | Yellow ( 585 nm ) |  |  | $5.0 \mathrm{mcd}$ $\text { @ } 5 \text { V }$ |  | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \end{aligned}$ |  |
|  | HLMP-6720 |  |  |  | $\begin{gathered} 2.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$ |  | $\begin{gathered} 2.5 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$ |  |
|  | HLMP-6800 | $\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  |  | $\begin{gathered} 5.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$ |  | $\begin{aligned} & \hline 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \\ & \hline \end{aligned}$ |  |
|  | HLMP-6820 |  |  |  | $\begin{gathered} 2.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$ |  | $\begin{aligned} & \hline 3.5 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-1660 | High Efficiency Red ( 626 nm ) | 2mm Flat <br> Top, Round Emitting Surface | $\begin{aligned} & \hline \text { Tinted } \\ & \text { Diffused } \end{aligned}$ | $\begin{gathered} 1.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$ | $140^{\circ}$ | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-1661 |  |  |  | 1.0 mcd <br> @ 12 V |  | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ \\ & \hline \end{aligned}$ |  |
|  | HLMP-1674 | Yellow <br> ( 585 nm ) |  |  | $\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-1675 |  |  |  | $\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-1687 | Green( 569 nm ) |  |  | $\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$ |  |
|  | HLMP-1688 |  |  |  | 1.0 mcd <br> @ 12 V |  | $\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$ |  |

## Rectangular Lamps

| Device |  | Description |  |  | Typical Luminous Intensity | 2ө1/2[1] | Typical Forward Voltage | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color ${ }^{[2]}$ | Package | Lens |  |  |  |  |
|  | HLMP-0300 | High Efficiency Red ( 626 nm ) | Rectangular | Tinted Diffused | $\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$ | $100^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ | 6-69 |
|  | HLMP-0301 |  |  |  | $\begin{aligned} & 5.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$ |  |  |  |
|  | HLMP-0400 | $\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$ |  |  | 2.5 mcd <br> @ 20 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-0401 |  |  |  | $\begin{aligned} & 5.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$ |  |  |  |
|  | HLMP-0503 | Green( 569 nm ). |  |  | $\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$ |  | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-0504 |  |  |  | 5.0 mcd @ 20 mA |  |  |  |

Diffused (Direct View) Lamps

| Device |  | Description |  |  |  | $2 \theta 1 / 2^{[1]}$ | Typical Forward Voltage | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color ${ }^{[2]}$ | Package | Lens | Intensity |  |  |  |
|  | HLMP-3000 | $\begin{aligned} & \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$ | T-1 3/4 | Tinted Diffused | $\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$ | $75^{\circ}$ | $\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ | 6-72 |
|  | HLMP-3001 |  |  |  | 4.0 mcd @ 20 mA |  |  |  |
|  | HLMP-3002 |  | Thin Leadframe |  | $\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$ |  |  |  |
|  | HLMP-3003 |  |  |  | $\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$ |  |  |  |
|  | HLMP-3300 | High Efficiency Red ( 626 nm ) | T-13/4 |  | $\begin{aligned} & 3.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ | $65^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ | 6-74 |
| $\square$ | HLMP-3301 |  |  |  | 7.0 mcd <br> @ 10 mA |  |  |  |
|  | HLMP-3762 |  |  |  | 15.0 mcd @ 10 mA |  |  |  |
|  | HLMP-D400 | $\begin{aligned} & \text { Orange } \\ & (608 \mathrm{~nm}) \end{aligned}$ |  |  | 3.5 mcd <br> @ 10 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-D401 |  |  |  | 7.0 mcd <br> @ 10 mA |  |  |  |
|  | HLMP-3400 | $\begin{aligned} & \hline \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$ |  |  | $\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ | $75^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3401 |  |  |  | $\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ |  |  |  |
| 1 | HLMP-3862 |  |  |  | 12.0 mcd $@ 10 \mathrm{~mA}$ |  |  |  |
|  | HLMP-3502 | $\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  |  | $\begin{aligned} & 2.4 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ | $75^{\circ}$ | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3507 |  |  |  | $\begin{aligned} & 5.2 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ |  |  |  |
|  | HLMP-3962 |  |  |  | $\begin{aligned} & 11.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$ |  |  |  |
|  | HLMP-D600 | Emerald Green (555 nm) |  |  | 3.0 mcd <br> @ 10 mA |  |  |  |
|  | HLMP-D601 |  |  |  | $\begin{aligned} & 6.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$ |  |  |  |
|  | HLMP-3200 | $\begin{aligned} & \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$ | T-13/4 Low Profile | Tinted Diffused | 2.0 mcd <br> @ 20 mA | $60^{\circ}$ | $\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ | 6-78 |
|  | HLMP-3201 |  |  |  | $\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$ |  |  |  |
|  | HLMP-3350 | High Efficiency Red ( 626 nm ) |  |  | 3.5 mcd $@ 10 \mathrm{~mA}$ | $50^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3351 |  |  |  | $\begin{aligned} & 9.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$ |  |  |  |
|  | HLMP-3450 | Yellow ( 585 nm ) |  |  | $\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3451 |  |  |  | 10.0 mcd <br> @ 10 mA |  |  |  |
|  | HLMP-3553 | $\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  |  | $\begin{aligned} & 3.2 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$ |  | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3554 |  |  |  | 10.0 mcd <br> @ 10 mA |  |  |  |

Diffused (Direct View) Lamps (cont.)


Diffused (Direct View) Lamps (cont.)

*Array Length

High Intensity Lamps

| Device |  | Description |  |  | Typical Luminous Intensity | 2e1/2[1] | Typical Forward Voltage | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Color[2] | Package | Lens |  |  |  |  |
|  | HLMP-3050 | $\begin{aligned} & \hline \text { Red } \\ & (640 \mathrm{~nm}) \end{aligned}$ | T-13/4 | Tinted Non-Diffused | 2.5 mcd <br> @ 20 mA | $24^{\circ}$ | $\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ | 6-72 |
|  | HLMP-3315 | High <br> Efficiency <br> Red <br> $(626 \mathrm{~nm})$ |  |  | 18.0 mcd <br> @ 10 mA | $35^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3316 |  |  |  | $\begin{aligned} & 30.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ |  |  |  |
|  | HLMP-3415 | Yellow ( 585 nm ) |  |  | 18.0 mcd <br> @ 10 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3416 |  |  |  | 30.0 mcd <br> @ 10 mA |  |  |  |
|  | HLMP-3517 | Green( 569 nm ) |  |  | $\begin{aligned} & 10.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$ | $24^{\circ}$ | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3519 |  |  |  | 25.0 mcd <br> @ 10 mA |  |  |  |

High Intensity Lamps (cont.)

| Device |  | Description |  |  | Typical Luminous Intensity | 201/2[1] | Typical Forward Voltage | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outline Drawing | Part No. | Colorl2] | Package | Lens |  |  |  |  |
|  | HLMP-3365 | High <br> Efficiency <br> Red <br> ( 626 nm ) | T-13/4 Low Profile | Tinted Non-Diffused | 10.0 mcd <br> @ 10 mA | $45^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ | 6-78 |
|  | HLMP-3366 |  |  |  | 18.0 mcd @ 10 mA |  |  |  |
|  | HLMP-3465 | $\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}$ |  |  | 12.0 mcd <br> @ 10 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3466 |  |  |  | $18.0 \mathrm{mcd}$ $\text { @ } 10 \text { mA }$ |  |  |  |
|  | HLMP-3567 | $\begin{aligned} & \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  |  | 7.0 mcd <br> @ 10 mA | $40^{\circ}$ | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-3568 |  |  |  | 15.0 mcd <br> @ 10 mA |  |  |  |
|  | HLMP-1071 | $\begin{array}{\|l\|} \hline \text { Red } \\ (640 \mathrm{~nm}) \end{array}$ | T-1 | UntintedNon-Diffused | $\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$ | $80^{\circ}$ | $\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \\ \hline \end{gathered}$ | 6-84 |
|  | HLMP-1320 | High Efficiency Red ( 626 nm ) |  |  | 12.0 mcd <br> @ 10 mA | $45^{\circ}$ | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-1321 |  |  | Tinted Non-Diffused |  |  |  |  |
|  | HLMP-1420 | Yellow$(585 \mathrm{~nm})$ |  | Untinted Non-Diffused | 12.0 mcd <br> @ 10 mA |  | $\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-1421 |  |  | Tinted Non-Diffused |  |  |  |  |
|  | HLMP-1520 | $\begin{aligned} & \hline \text { Green } \\ & (569 \mathrm{~nm}) \end{aligned}$ |  | Untinted Non-Diffused | 12.0 mcd <br> @ 10 mA |  | $\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-1521 |  |  | Tinted Diffused |  |  |  |  |

## Mounting Hardware

| Device |  |  | Page <br> No. |
| :--- | :---: | :--- | :---: |
| Package Outline Drawing | Part No. | Description | 6 -109 |
|  |  | HLMP-0103 | Mounting Clip and Ring for T-1 3/4 Lamps |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Emitter Components

| Device |  |  |  | Page <br> No. |
| :---: | :---: | :--- | :--- | :---: |
| Package Outline Drawing | Part No. | Description | Features | - Visible (Near IR) emmision facilitates alignment. <br> -Compatible with most silicon phototransistors <br> and photodiodes. |
|  |  | 6-111 |  |  |

Notes: 1) $2 \theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2) Dominant wavelength

Hermetically Sealed and High Reliability LED Lamps


## NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Dominant Wavelength.
3. PC Board Mountable.
4. Military Approved and qualified for High Reliability Applications.

## Hermetically Sealed and High Reliability LED Lamps (cont.)

| Device |  | Description |  |  | Typical Luminous Intensity | $2 \Theta 1 / 2[1]$ | Typical Forward Voltage | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package Outiline Drawing | Part No. | Color ${ }^{[2]}$ | Package | Lens |  |  |  |  |
|  | HLMP-0363 <br> HLMP-0391 <br> HLMP-0392 | High <br> Efficiency <br> Red <br> ( 626 nm ) | Hermetic T0-18[3] | Clear Class | 50 mcd <br> @ 20 mA | $18^{\circ}$ | $\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ | 8-24 |
|  | HLMP-0463 <br> HLMP-0491 <br> HLMP-0492 | Yellow <br> ( 585 nm ) |  |  | 50 mcd <br> @ 20 mA |  | $\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-0563 <br> HLMP-0591 <br> HLMP-0592 | Green <br> ( 572 nm ) |  |  | 50 mcd <br> @ 25 mA |  | $\begin{gathered} 2.1 \mathrm{~V} \\ @ 25 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-0364 <br> HLMP-0365 <br> HLMP-0366 | High <br> Efficiency <br> Red <br> ( 626 nm ) | Panel Mount Version | Clear Glass | 50 mcd <br> @ 20 mA |  | $\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-0464 <br> HLMP-0465 <br> HLMP-0466 | Yellow ( 585 nm ) |  |  | 50 mcd <br> @ 25 mA |  | $\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ |  |
|  | HLMP-0564 <br> HLMP-0565 <br> HLMP-0566 | Green <br> ( 572 nm ) |  |  | 50 mcd <br> @ 25 mA |  | $\begin{gathered} 2.1 \mathrm{~V} \\ @ 25 \mathrm{~mA} \end{gathered}$ |  |

NOTES:

1. $(\rightarrow 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Dominant Wavelength.
3. PC Board Mountable.

## SURFACE MOUNT OPTION FOR SUBMINIATURE LAMPS - GULL WING LEAD CONFIGURATION

INDIVIDUAL SUBMINIATURE LAMP SUPPLIED IN 12mm TAPE - OPTION 011 SUBBMINIATURE ARRAY SUPPLIED IN A SHIPPING TUBE - OPTION 013

TECHNICAL DATA JANUARY 1986

## Features

- GULL WING LEAD CONFIGURATION, INDIVIDUAL SUBMINIATURE LAMPS AND ARRAYS
- COMPATIBLE WITH AUTOMATIC PLACEMENT EQUIPMENT
- COMPATIBLE WITH VAPOR PHASE REFLOW SOLDER PROCESSES
- LOW PACKAGE PROFILE
- WIDE VIEWING ANGLE
- LONG LIFE - SOLID STATE RELIABILITY
- INDIVIDUAL SUBMINIATURE LAMPS ARE SUPPLIED IN 12mm TAPE
- SUBMINIATURE ARRAYS ARE SUPPLIED IN TUBES


## Description

These subminiature solid state lamps are encapsulated in an axial lead package of molded epoxy. They utilize a tinted, diffused lens providing high on-off contrast and wide angle viewing.

The leads of this device are bent in a gull wing configuration for surface mounting. The device can be mounted using automatic placement equipment.
The individual gull wing subminiature lamp is supplied in 12 mm tape on seven inch reels per ANSI/EIA standard RS481 specifications. Gull wing subminiature arrays are supplied in shipping tubes. The lamp can be mounted with either batch or in line vapor phase reflow solder processes.
Subminiature lamps for surface mount applications are available in standard red, high efficiency red, yellow, green, integrated resistor, and low current versions.

## Ordering Information

To obtain gull wing surface mount subminiature lamps, order the basic catalog device with the appropriate option code. Note: Option 011 is available for individual subminiature lamps only. Option 013 is available for subminiature arrays only.


Device Selection Guide

| Option | Description |
| :--- | :--- |
| Option 011 | Individual subminiature lamps in gull wing <br> configuration. Supplied in 12mm tape on <br> seven inch reels; 1500 pieces per reel. <br> Minimum order quantity and order incre- <br> ment are 1500 pieces. |
| Option 013 | Subminiature array in gull wing <br> coníguration. Supplied in shipping tubes. |

Examples:

HLMP-6300
Option 011 High Efficiency Red Supplied on Tape

HLMP-6658
Option 013
High Efficiency Red, 8 Element Array
Supplied in Tubes

## Vapor Phase Reflow Solder Rating

## Absolute Maximum Rating

| Vapor Phase Soldering <br> Temperature | $215^{\circ} \mathrm{C}$ for 3 minutes <br> Material FC-5311 |
| :--- | :--- |

Note: Lead soldering maximum rating is $260^{\circ} \mathrm{C}$ for 3 seconds.

## Package Dimensions

INDIVIDUAL SUBMINIATURE


## SUBMINIATURE ARRAY



## Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings and electrical/optical specifications are identical to the basic catalog device, except for the vapor phase soldering rating as specified at left.

## 12 mm TAPE AND REEL



## REEL



ARRAY SHIPPING TUBE


# SURFACE MOUNT OPTION FOR SUBMINIATURE LAMPS "YOKE" LEAD CONFIGURATION 

## Features

- "YOKE" LEAD CONFIGURATION FOR THROUGH HOLE MOUNTING ON PC BOARD
- COMPATIBLE WITH AUTOMATIC PLACEMENT EQUIPMENT
- COMPATIBLE WITH VAPOR PHASE REFLOW SOLDER PROCESSES
- LOW PACKAGE PROFILE
- WIDE VIEWING ANGLE
- LONG LIFE—SOLID STATE RELIABILITY
- SUPPLIED IN 12 mm TAPE OR BULK


## Description

These subminiature solid state lamps are encapsulated in an axial lead package of molded epoxy. The lens is diffused for even light dispersion.

The lamps are designed to be inserted through holes in the PC board to backlight switches, membrane panels, or appliques. Other backlighting applications are equally suitable. As shown in Figure 1, the leads are specially formed to give two features: mechanical strain relief and adequate solder pads.

Automatic placement equipment may be used to mount the LEDs on the PC board if the designer selects the 021 option. These lamps are supplied in 12 mm tape on seven inch reels per ANSI/EIA standard RS-481 specifications. Bulk lamps are available under the 022 option code. The lamps can be mounted using either batch or in line vapor phase reflow solder processes.

Subminiature lamps for surface mount applications are available in standard red, high efficiency red, yellow, green, integrated resistor, and low current versions.


Figure 1.


## Ordering Information

To obtain surface mount subminiature lamps with the "yoke" lead configuration, order the basic catalog device with the appropriate option code.

## Device Selection Guide

| Option | Description |
| :--- | :--- |
| Option 021 | Individual subminiature lamps in "yoke" <br> lead configuration. Supplied in 12 mm <br> tape on seven inch reels; 1500 pieces per <br> reel. Minimum order quantity and order <br> increment is 1500 pieces. |
| Option 022 | Individual subminiature lamps in "yoke" <br> lead configuration. Supplied in bulk. |

Examples:

HLMP-6300
Option 021
High Efficiency Red
Supplied on Tape

HLMP-6400
Option 022
Yellow
Supplied in Bulk

## Vapor Phase Reflow Solder Rating

## Absolute Maximum Rating

| Vapor Phase <br> Soldering Temperature | $215^{\circ} \mathrm{C}$ for 3 minutes <br> Material FC-5311 |
| :--- | :--- |

NOTE: Lead soldering maximum rating is $260^{\circ} \mathrm{C}$ for 3 seconds.

## Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings and electrical/optical specifications are identical to the basic catalog device, except for the vapor phase soldering rating as specified at left.

## Package Dimensions

## INDIVIDUAL SUBMINIATURE LAMP



NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. CATHODE LEAD IS IDENTIFIED BY THE SILVER STAPE.


## 12 mm TAPE AND REEL



NOTES：
1．EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE．
2． 7 INCH REEL－1，500 PIECES PER REEL
MINIMUM LEADER LENGTH AT EITHER END OF
THE TAPE IS 500 mm ．
4．THE MAXIMUM NUMBER OF CONSECUTIVE MISSING LAMPS IS TWO．
5．IN ACCORDANCE WITH ANSI／EIA RS－481
SPECIFICATIONS，THE CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKET HOLE



## 2mm FLAT TOP LED LAMPS <br> High Efficiency Red, Yellow, Green Lamps Low Current Lamps Integrated Resistor Lamps

HEWLETT PACKARD

TECHNICAL DATA JANUARY 1986

## Features

- WIDE VIEWING ANGLE
- UNIFORM LIGHT OUTPUT
- MOUNTS FLUSH WITH PANEL
- CHOICE OF THREE BRIGHT COLORS
- High Efficiency Red
- Yellow
- High Performance Green
- LOW CURRENT VERSION AVAILABLE - High Efficiency Red and Yellow
- INTEGRATED RESISTOR VERSION AVAILABLE
- Requires no External Current Limiter with 5 V - 12 V Supply


## Description

These rugged solid state lamps are designed for applications requiring a bright, compact source of light. Uniform light output, wide viewing angle and flat top make the lamp ideal for flush mounting on a front panel.


The red and yellow devices use Gallium Arsenide Phosphide on Gallium Phosphide light emitting diodes, the green devices use a Gallium Phosphide light emitting diode.

## Axial Luminous Intensity and Viewing Angle

| Color | Part Number HLMP- | Description | IV (mcd) |  | Test Condition | 201/2[1] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. |  |  |
| High Efficiency Red | -1800 | Tinted, Diffused | 0.8 | 1.8 | 10 mA | 140 |
|  | -1801 | Tinted, Diffused, High Brightness | 2.1 | 2.9 | 10 mA |  |
|  | -1740 | Tinted, Diffused, Low Current | 0.2 | 0.5 | 2 mA |  |
|  | -1660 | Tinted, Diffused, 5 V Integrated Resistor | 0.5 |  | 5 V |  |
|  | -1661 | Tinted, Diffused, 12 V Integrated Resistor | 0.5 |  | 12 V |  |
| Yellow | -1819 | Tinted, Diffused | 0.9 | 1.5 | 10 mA | 140 |
|  | -1820 | Tinted, Diffused, High Brightness | 1.4 | 2.5 | 10 mA |  |
|  | -1760 | Tinted, Diffused, Low Current | 0.2 | 0.4 | 2 mA |  |
|  | -1674 | Tinted, Diffused, 5 V Integrated Resistor | 0.5 |  | 5 V |  |
|  | -1675 | Tinted, Diffused, 12 V Integrated Resistor | 0.5 |  | 12 V |  |
| Green | -1840 | Tinted, Diffused | 1.0 | 2.0 | 10 mA | 140 |
|  | -1841 | Tinted, Diffused, High Brightness | 1.6 | 3.0 | 10 mA |  |
|  | -1687 | Tinted, Diffused, 5 V Integrated Resistor | 0.5 |  | 5 V |  |
|  | -1688 | Tinted, Diffused, 12 V Integrated Resistor | 0.5 |  | 12 V |  |

## NOTE:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial intensity.

## Package Dimensions



NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. AN EPOXY MINISCUS MAY EXTEND ABOUT 1 mm ( $0.040^{\circ}$ ) DOWN THE LEADS.

## Absolute Maximum Ratings at $T_{A}=25^{\circ} \mathrm{C}$ <br> HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

| Parameter | High Efficiency Red HLMP-1800/-1801 | $\begin{gathered} \text { Yellow } \\ \text { HLMP-1819/-1820 } \end{gathered}$ | $\begin{gathered} \text { Green } \\ \text { HLMP-1840/-1841 } \end{gathered}$ | Units |
| :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 90 | 60 | 90 | mA |
| Average Forward Current\|[|] | 25 | 20 | 25 | mA |
| DC Current ${ }^{2 /}$ | 30 | 20 | 30 | mA |
| Power Dissipation ${ }^{\text {/3] }}$ | 135 | 85 | 135 | mW |
| Reverse Voltage ( $\left.{ }_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$ | 5 | 5 | 5 | V |
| Transient Forward Current $141(10 \mu \mathrm{sec}$ Pulse) | 500 | 500 | 500 | mA |
| Operating Temperature Range | -55 to +100 |  | -20 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range |  |  | -55 to +100 |  |
| Lead Soldering Temperature $(1.6 \mathrm{~mm} \mid 0.063$ in. from body) | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. See Figure 3 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.2 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green Series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

## LOW CURRENT LAMPS

| Parameter | High Efficiency Red HLMP-1740 | $\begin{aligned} & \text { Yellow } \\ & \text { HLMP-1760 } \end{aligned}$ | Units |
| :---: | :---: | :---: | :---: |
| DC and Peak Forward Current ${ }^{\text {[1] }}$ | 7 | 7 | mA |
| Transient Forward Current ( 10 msec Pulse) | 500 | 500 | mA |
| Power Dissipation | 27 | 24 | mW |
| Reverse Voltage ( $\left.\mathrm{l}_{\mathrm{R}}=50 \mu \mathrm{~A}\right)$ | 5.0 |  | V |
| Operating and Storage Temperature Range | -55 to +100 |  | ${ }^{\circ} \mathrm{C}$ |
| Lead Soldering Temperature $(1.6 \mathrm{~mm} 10.063 \mathrm{in}$. from body) | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |

## NOTES:

1. Derate linearly from $92^{\circ} \mathrm{C}$ at $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

## INTEGRATED RESISTOR LAMPS

| Parameter | 5 V Lamps HER/Yellow HLMP-1660 HLMP-1674 | 12 V Lamps HER/Yellow HLMP-1661 HLMP-1675 | 5 V Lamps Green HLMP-1687 | $\begin{aligned} & 12 \mathrm{~V} \text { Lamps } \\ & \text { Green } \\ & \text { HLMP-1688 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Reverse Voltage ( IA $\left.^{\text {a }}=100 \mu \mathrm{~A}\right)$ | 5 V | 5 V | 5 V | 5 V |
| DC Forward Voltage ( $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) | 7.5 V [1] | $15 \mathrm{~V}\|2\|$ | 7.5 V [1] | $15 \mathrm{~V}[2]$ |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ |
| Lead Soldering Temperature | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.071 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 3 .
2. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.086 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 4 .

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> COMMON CHARACTERISTICS

| Symbol | Parameter | High Efficiency Red |  |  | Yellow |  |  | Green |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| 入PEAK | Peak Wavelength |  | 635 |  |  | 583 |  |  | 565 |  | nm |  |
| $\lambda d$ | Dominant Wavelength | 1 | 626 | * |  | 585 |  |  | 569 | - | nm | Note 1 |
| $\eta \times$ | Luminous Efficacy |  | 145 |  |  | 500 |  |  | 595 |  | lumen /watt | Note 2 |
| VBR | Reverse Breakdown Voltage | 5.0 |  |  | 5.0 |  |  | 5.0 |  |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |

## NOTES:

1. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, $\mathrm{l}_{\mathrm{e}}$, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta_{\mathrm{V}}$. Where Iv is the luminous intensity in candelas and $\eta_{\mathrm{V}}$ is the luminous efficacy in lumens/watt.

HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

| Symbol | Parameter | HighEfficiency RedHLMP-1800/-1801 |  |  | $\begin{gathered} \text { Yellow } \\ \text { HLMP-1819/-1820 } \end{gathered}$ |  |  | $\begin{gathered} \text { Green } \\ \text { HLMP-1840/-1841 } \end{gathered}$ |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| $V_{F}$ | Forward Voltage | 1.5 | 2.2 | 3.0 | 1.5 | 2.2 | 3.0 | 1.6 | 2.3 | 3.0 | V | $\mathrm{IF}=10 \mathrm{~mA}$ |
| Ts | Speed of Response |  | 90 |  |  | 90 |  |  | 500 |  | ns |  |
| C | Capacitance |  | 20 |  |  | 15 |  |  | 18 |  | pF | $V_{F}=0, f=1 \mathrm{MHz}$ |
| $\theta \mathrm{Jc}$ | Thermal Resistance |  | 95 |  |  | 95 |  |  | 95 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead at $0.79 \mathrm{~mm}(0.031 \mathrm{in}$, from body |

## LOW CURRENT LAMPS

| Symbol | Parameter | High Efficiency Red HLMP-1740 |  |  | YellowHLMP-1760 |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| $V_{F}$ | Forward Voltage |  | 1.8 | 2.2 |  | 1.9 | 2.7 | V | 2 mA |
| Ts | Speed of Response |  | 100 |  |  | 200 |  | ns |  |
| C | Capacitance |  | 4 |  |  | 4 |  | pF | $V_{F}=0, f=1 \mathrm{MHz}$ |
| Osc | Thermal Resistance |  | 190 |  |  | 190 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead at 0.79 mm from body |

## INTEGRATED RESISTOR LAMPS

| Symbol | Parameter | $\begin{gathered} 5 \mathrm{~V} \\ \text { HL.MP-1660/ } \\ -1674 /-1687 \\ \hline \end{gathered}$ |  |  | $\begin{gathered} 12 \mathrm{~V} \\ \text { HLMP-1661/ } \\ 1675 /-1688 \\ \hline \end{gathered}$ |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| If | Forward Current |  | 10 | 15 |  | 13 | 20 | mA | At rated voltage |
| $\theta \mathrm{Jc}$ | Thermal Resistance |  | 90 |  |  | 90 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Lead at 0.79 mm from body |



Figure 1. Relative Luminous Intensity vs. Angular Displacement


Figure 2. Relative Intensity vs. Wavelength

## HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

## HER HLMP-1800,-1801

Yellow HLMP-1819,-1820
Green HLMP-1840,-1841


Figure 3. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)


Figure 4. Forward Current vs. Forward Voltage


Figure 5. Relative Luminous Intensity vs. Forward Current


Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

## LOW CURRENT LAMPS

HER HLMP-1740
Yellow HLMP-1760


Figure 7. Forward Current vs. Forward Voltage

## INTEGRATED RESISTOR LAMPS

5 Volt HLMP-1660, -1674, 1687
12 Volt HLMP-1661, -1675, -1688


Figure 9. Forward Current vs. Applied Forward Voltage. 5 Volt Devices


Figure 8. Relative Luminous Intensity vs. Forward Current


Figure 10. Forward Current vs. Applied Forward Voltage. 12 Volt Devices


Figure 11. Relative Luminous Intensity vs. Applied Forward Voltage. 5 Volt Devices


Figure 12. Relative Luminous Intensity vs. Applied Forward Voltage. 12 Volt Devices

## Features

－WIDE VIEWING ANGLE
－UNIFORM LIGHT OUTPUT
－SQUARE LIGHT EMITTING AREA
－MOUNTS FLUSH WITH PANEL
－CHOICE OF THREE BRIGHT COLORS
－High Efficiency Red
－Yellow
－High Performance Green

## Description

These rugged solid state lamps are designed for applica－ tions requiring a bright，compact source of light．Uniform light output，wide viewing angle and flat top make the lamp ideal for flush mounting on a front panel．


The red and yellow devices use Gallium Arsenide Phos－ phide on Gallium Phosphide light emitting diodes，the green devices use a Gallium Phosphide light emitting diode．

## Axial Luminous Intensity and Viewing Angle

| Color | Part Number HLMP－ | Description | $\mathrm{IV}_{\mathrm{V}}(\mathrm{mcd})$ |  | Test Condition | 2（91／2［1］ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min． | Typ． |  |  |
| High | －L250 | Tinted，Diffused | 0.8 | 1.8 | 10 mA | 140 |
| Efficiency Red | －L251 | Tinted，Diffused，High Brightness | 2.1 | 2.9 | 10 mA |  |
| Yellow | －L350 | Tinted，Diffused | 0.9 | 1.5 | 10 mA | 140 |
|  | －L351 | Tinted，Diffused，High Brightness | 1.4 | 2.5 | 10 mA |  |
| Green | －L550 | Tinted，Diffused | 1.0 | 2.0 | 10 mA | 140 |
|  | －L551 | Tinted，Diffused，High Brightness | 1.6 | 3.0 | 10 mA |  |

## NOTE：

1．$\Theta 1 / 2$ is the off－axis angle at which the luminous intensity is half the axial intensity．

## Package Dimensions



NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm ( $0.040^{\prime}$ ) DOWN THE LEADS.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ COMMON CHARACTERISTICS

| Symbol | Parameter | High Efficiency Red L250/L251 |  |  | $\begin{aligned} & \text { Yellow } \\ & \text { L350/L351 } \end{aligned}$ |  |  | Green L550/L551 |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| APEAK | Peak Wavelength |  | 635 |  |  | 583 |  |  | 565 |  | nm |  |
| Ad | Dominant Wavelength |  | 626 |  |  | 585 |  |  | 569 |  | nm | Note 1 |
| $\eta v$ | Luminous Efficacy |  | 145 |  |  | 500 |  |  | 595 |  | lumen <br> /watt | Note 2 |
| $V_{R}$ | Reverse Breakdown Voltage | 5.0 |  |  | 5.0 |  |  | 5.0 |  |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $V_{F}$ | Forward Voltage | 1.5 | 2.2 | 3.0 | 1.5 | 2.2 | 3.0 | 1.6 | 2.3 | 3.0 | V | $\mathrm{IF}=10 \mathrm{~mA}$ |
| Ts | Speed of Response |  | 90 |  |  | 90 |  |  | 500 |  | ns |  |
| C | Capacitance |  | 20 |  |  | 15 |  |  | 18 |  | pF | $V_{F}=0, f=1 \mathrm{MHz}$ |
| ${ }^{8} \mathrm{~J}$ C | Thermal Resistance |  | 120 |  |  | 120 |  |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |

NOTES:

1. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavlength which defines the color of the device.
2. Radiant intensity, $\mathrm{I}_{\mathrm{e}}$, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta_{\mathrm{V}}$. Where $\mathrm{I}_{\mathrm{v}}$ is the luminous intensity in candelas and $\eta_{\mathrm{V}}$ is the luminous efficacy in lumens/watt.

## Absolute Maximum Ratings at $_{\mathrm{A}}=25^{\circ} \mathrm{C}$

HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

| Parameter | High Efficiency Red HLMP-L250/-L251 | $\begin{gathered} \text { Yellow } \\ \text { HLMP-L350/-L351 } \end{gathered}$ | $\begin{gathered} \text { Green } \\ \text { HLMP-L.550/-L.551 } \end{gathered}$ | Units |
| :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 90 | 60 | 90 | mA |
| Average Forward Current ${ }^{\text {1] }}$ | 25 | 20 | 25 | mA |
| DC Current ${ }^{2 \mid}$ | - 30 | 20 | 30 | mA |
| Power Dissipation\|3| | 135 | 85 | 135 | mW |
| Reverse Voltage ( ${ }_{\mathrm{P}}=100 \mu \mathrm{~A}$ ) | 5 | 5 | 5 | V |
| Transient Forward Current ${ }^{4} \mid 110 \mu$ sec Pulse) | 500 | 500 | 500 | mA |
| Operating Temperature Range | -55 to +100 |  | -20 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range |  |  | -55 to +100 |  |
| Lead Soldering Temperature $(1.6 \mathrm{~mm} \mid 0.063 \mathrm{in}$. from body) | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. See Figure 3 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.2 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green Series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.



Figure 2. Relative Intensity vs. Wavelength

## HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

HER HLMP-L250, -L251
Yellow HLMP-L350, -L351
Green HLMP-L550, -L551


Figure 3. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)


Figure 5. Relative Luminous Intensity vs. Forward Current


Figure 4. Forward Current vs. Forward Voltage


Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

## Features

- WIDE VIEWING ANGLE
- flat top
- DIFFUSED AND NONDIFFUSED PACKAGES
- CHOICE OF BRIGHT COLORS


## - High Efficiency Red

- Yellow
- High Performance Green


## Description

This line of solid state lamps is designed for applications requiring lamps with a pleasing, flat, light emitting surface in combination with a 4 mm cylindrical shape.
The red and yellow devices use Gallium Arsenide Phosphide on Gallium Phosphide light emitting diodes, the green devices use a Gallium Phosphide light emitting diode.
Select diffused or nondiffused lamps based on the radiation pattern or appearance desired. See Figure 1 for detailed radiation pattern differences.


## Axial Luminous Intensity and Viewing Angle

| Color (Material) | Part Number HLMP- | Description | $I_{V}(\mathrm{mcd})$ |  | Test Condition (mA) | $201 / 2{ }^{[1]}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. |  |  |
| High Efficiency Red (GaAsP on GaP) | M200 | Tinted, Diffused | 3.4 | 5.0 | 20 | 135 |
|  | M201 | Tinted, Diffused, High Brightness | 5.4 | 7.0 | 20 |  |
|  | M250 | Tinted, Nondiffused | 3.4 | 5.0 | 10 | 80 |
|  | M251 | Tinted, Nondiffused, High Brightness | 5.4 | 7.0 | 10 |  |
| Yellow (GaAsP on GaP) | M300 | Tinted, Diffused | 3.6 | 5.0 | 20 | 135 |
|  | M301 | Tinted, Diffused, High Brightness | 5.7 | 7.0 | 20 |  |
|  | M350 | Tinted, Nondiffused | 3.6 | 5.0 | 10 | 80 |
|  | M351 | Tinted, Nondiffused, High Brightness | 5.7 | 7.0 | 10 |  |
| Green (GaP) | M500 | Tinted, Diffused | 4.2 | 7.0 | 20 | 135 |
|  | M501 | Tinted, Diffused, High Brightness | 6.7 | 10.0 | 20 |  |
|  | M550 | Tinted, Nondiffused | 4.2 | 10.0 | 10 | 80 |
|  | M551 | Tinted, Nondiffused, High Brightness | 6.7 | 16.0 | 10 |  |

NOTE: 1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial intensity.

## Package Dimensions



DIMENSIOAS IN MILLIMETERS AND (INCHES)

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ COMMON CHARACTERISTICS

| Symbol | Parameter | High Efficiency Red HLMP-M2XX |  |  | Yellow HLMP-M3XX |  |  | $\begin{aligned} & \text { Green } \\ & \text { HLMP-M5XX } \end{aligned}$ |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ | Max. | Min. | Typ. | Max. |  |  |
| $\lambda_{\text {PEAK }}$ | Peak Wavelength |  | 635 |  |  | 583 |  |  | 565 |  | nm |  |
| $\lambda_{\text {d }}$ | Dominant Wavelength |  | 626 |  |  | 585 |  |  | 569 |  | nm | Note 1 |
| $\eta_{v}$ | Luminous Efficacy |  | 142 |  |  | 500 |  |  | 595 |  | lumen /watt | Note 2 |
| $V_{\text {R }}$ | Reverse Breakdown Voltage | 5.0 |  |  | 5.0 |  |  | 5.0 |  |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $V_{F}$ | Forward Voltage | 1.5 | 2.2 | 3.0 | 1.5 | 2.2 | 3.0 | 1.6 | 2.3 | 3.0 | V | $\mathrm{IV}_{V}=10 \mathrm{~mA}$ |
| $\mathrm{T}_{\mathrm{S}}$ | Speed of Response |  | 90 |  |  | 90 |  |  | 500 |  | ns |  |
| C | Capacitance |  | 20 |  |  | 15 |  |  | 18 |  | pF | $V_{C}=0.1=1 \mathrm{MHz}$ |
| $\theta_{\text {Jc }}$ | Thermal Resistance |  | 120 |  |  | 120 |  |  | 120 |  | ${ }^{\circ} \mathrm{C}$ / N | Junction to Cathode Lead |

NOTES:

1. The dominant wavelength, $\lambda_{\mathrm{d}}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, $\mathrm{I}_{\mathrm{e}}$, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta_{\mathrm{V}}$. Where $\mathrm{I}_{\mathrm{V}}$ is the luminous intensity in candelas and $\eta_{\mathrm{V}}$ is the luminous efficacy in lumens/watt.

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

## HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

| Parameter | High Efficiency Red HLMP-M2XX | $\begin{gathered} \text { Yellow } \\ \text { HLMP-M3XX } \end{gathered}$ | $\begin{aligned} & \text { Green } \\ & \text { HLMP-M5XX } \end{aligned}$ | Units |
| :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 90 | 60 | 90 | mA |
| Average Forward Current[1] | 25 | 20 | 25 | mA |
| DC Current ${ }^{2}$ \| $\ldots$ | - 30 | - 20 | - 30 | mA |
| Power Dissipation\|3| | 135 | 85 | 135 | mW |
| Reverse Voltage ( $\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$ | 5 | 5 | 5 | V |
| Transient Forward Current ${ }^{4}$ ) $10 \mu \mathrm{sec}$ Pulse) | 500 | 500 | 500 | mA |
| Operating Temperature Range | -55 to +100 |  | -20 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range |  |  | -55 to +100 |  |
| Lead Soldering Temperature $(1.6 \mathrm{~mm} / 0.063 \mathrm{in}$, from body) | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. See Figure 3 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at 0.2 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green Series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.


Figure 1. Relative Luminous Intensity vs. Angular Displacement


Figure 2. Relative Intensity vs. Wavelength

## HIGH EFFICIENCY RED, YELLOW AND GREEN LAMPS

HER HLMP-M2XX Series
Yellow HLMP-M3XX Series
Green HLMP-M5XX Series


Figure 3. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

Figure 5. Relative Luminous Intensity vs. Forward Current. Nondiffused Devices.


Figure 7. Relative Luminous Intensity vs. Forward Current. Diffused Devices.


Figure 4. Forward Current vs. Forward Voltage


Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current. Nondiffused Devices.


Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current. Diffused Devices.

ALUMINUM GALLIUM ARSENIDE (AIGaAs) RED LED LAMPS


TECHNICAL DATA JANUARY 1986

## Features

- LOW POWER/LOW FORWARD VOLTAGE
- HIGH BRIGHTNESS
- HIGH EFFICIENCY MATERIAL
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- WIDE VIEWING ANGLE
- CHOICE OF PACKAGE STYLES
- DEEP RED COLOR


## Applications

- LOW POWER CIRCUITS
- TELECOMMUNICATIONS INDICATORS
- PORTABLE EQUIPMENT
- GENERAL USE


## Package Dimensions



## Description

This group of solid state lamps uses Aluminum Gallium Arsenide material to emit deep red light at a dominant wavelength of 646 nm . This material is highly efficient over a wide range of drive current levels, from 2 to 30 mA and can be either DC or pulse driven. This makes these lamps ideal for either low or high current applications.


AXIAL LUMINOUS INTENSITY AND VIEWING ANGLE @ $25^{\circ} \mathrm{C}$

| Part <br> Number <br> HLMP- | Package <br> Description | IV (mcd) <br> $@ \mathbf{2 0 ~ m A ~ D C ~}$ |  | 20 1/2[1] | Package <br> Outline |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | T-1 3/4 Red Tinted Diffused | 20 | 30 |  | A |
| K100 | T-1 Red Tinted Diffused | 14 | 20 | $60^{\circ}$ | B |
| Q100 | Subminiature Red <br> Tinted Diffused | 3 | 5.5 | $70^{\circ}$ | C |

NOTES:

1. $\Theta 1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

## Absolute Maximum Ratings

| Parameter |  | Units |
| :--- | :---: | :---: |
| Peak Forward Current | 60 | mA |
| Average Forward Current ${ }^{[1]}$ | 20 | mA |
| DC Current ${ }^{[2]}$ | 20 | mA |
| Power Dissipation ${ }^{[3]}$ | 85 | mW |
| Reverse Voltage (I $=100 \mu \mathrm{~A})$ | 5 | V |
| Transient Forward Current ${ }^{[4]}$ <br> $(10 \mu$ sec Pulse) | 500 | mA |
| Operating Temperature Range | -20 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | -55 to +100 |  |

## NOTES:

1. See Figure 7 to establish pulsed operating conditions.
2. Derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | Min. | Typ. | Max. | Units | Test <br> Condition |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $V_{F}$ | Forward Voltage |  |  | 3.0 | $V$ | 20 mA |
| $V_{R}$ | Reverse Breakdown Voltage | 5.0 |  |  | V | $\mathrm{IR}=100 \mu \mathrm{~A}$ |
| $\lambda_{P}$ | Peak Wavelength |  | 662 |  | nm | Measurement at peak |
| $\lambda_{d}$ | Dominant Wavelength |  | 646 |  | nm | Note 1 |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth |  | 35 |  | nm |  |
| $\tau_{S}$ | Speed of Response |  | 50 |  | ns |  |
| $C$ | Capacitance |  | 40 |  | pF | $V \mathrm{~F}=0$ <br> $\mathrm{C}=1 \mathrm{MHz}$ <br> $\Theta_{J C}$ Thermal Resistance |
| $\eta_{V}$ | Luminous Efficacy |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode lead |

## NOTES:

1. The dominant wavelength, $\lambda_{\mathrm{D}}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, $l_{\mathrm{e}}$ in watts/steradian, may be found from the equation $l_{\mathrm{e}}=I_{\mathrm{V}} / \eta_{\mathrm{V}}$, where $I_{\mathrm{V}}$ is the luminous intensity in candelas and $\eta \mathrm{v}$ is the luminous efficacy in lumens/watt.


Figure 1. Relative Intensity vs. Wavelength


Figure 2. Forward Current vs. Forward Voltage.


Figure 4. Relative Luminous Intensity vs. Angular Displacement for T-1 3/4 Lamp


Figure 3. Relative Luminous Intensity vs. Forward Current


Figure 5. Relative Luminous Intensity vs. Angular Displacement for T-1 Lamp


Figure 6. Relative Luminous Intensity vs. Angular Displacement for Subminiature Lamp


Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

## Features

- COMPATIBLE WITH RADIAL LEAD AUTOMATIC INSERTION EQUIPMENT
- MEETS DIMENSIONAL SPECIFICATIONS OF IEC PUBLICATION 286 AND ANSI/EIA STANDARD RS-468 FOR TAPE AND REEL
- REEL PACKAGING SIMPLIFIES HANDLING AND TESTING
- T-1 AND T-1 3/4 LED LAMPS AVAILABLE PACKAGED ON TAPE AND REEL
- 5 mm (0.197 INCH) FORMED LEAD AND 2.54 mm ( 0.100 INCH) STRAIGHT LEAD SPACING AVAILABLE


## Description

T-1 and T-1 3/4 LED lamps are available on tape and reel as specified by the IEC Publication 286 and ANSI/EIA Standard RS-468. The Option 001 lamp devices have formed leads with 5 mm ( 0.197 inch) spacing for automatic insertion into PC boards by radial lead insertion equipment. The Option 002 lamp devices have straight leads with $2.54 \mathrm{~mm}(0.100 \mathrm{inch})$ spacing, packaged on tape and reel for ease of handling. T-1 lamps are packaged 1800/reel. T-1 3/4 lamps are packaged 1300/reel.

## Ordering Information

To order LED lamps packaged on tape and reel, include the appropriate option code along with the device catalog part number. Example: to order the HLMP-3300 on tape and reel with formed leads ( 5 mm lead spacing) order as follows: HLMP-3300 Option 001. Minimum order quantities vary by part number. Orders must be placed in reel increments. Please contact your local Hewlett-Packard sales office or franchised Hewlett-Packard distributor for a complete list of lamps available on tape and reel.

LED lamps with 0.46 mm ( 0.018 inch ) square leads with 5 mm ( 0.197 inch) lead spacing are recommended for use with automatic insertion equipment. It is suggested that insertion machine compatibility be confirmed.


## Device Selection Guide

| Option | Description |
| :---: | :--- |
| 001 | Tape and reel, $5 \mathrm{~mm}(0.197$ inch $)$ formed leads. |
| 002 | Tape and reel, $2.54 \mathrm{~mm}(0.100$ inch $)$ straight <br> leads. |


| Package | Quantity/Reel | Order Increments |
| :---: | :---: | :---: |
| T-1 | 1800 | 1800 |
| T-1 3/4 | 1300 | 1300 |

## Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings, mechanical dimension tolerances and electrical/optical characteristics for lamps packaged on tape and reel are identical to the basic catalog device. Refer to the basic data sheet for the specified values.

## Notes:

1. Minimum leader length at either end of tape is 3 blank part spaces.
2. Silver saver paper is used as the interlayer for silver plated lead devices.
3. The maximum number of consecutive missing lamps is 3 .
4. In accordance with EIA and IEC specs, the anode lead leaves the reel first.
5. Drawings apply to devices with $0.46 \mathrm{~mm}(0.018$ inch $)$ square leads only. Contact Hewlett-Packard Sales Office for dimensions of $0.635 \mathrm{~mm}(0.025 \mathrm{inch})$ square lead devices.

## Tape and Reel LED Configurations



Figure 1. T-1 High Profile Lamps, Option 001


Figure 3. T-1 Low Profile Lamps, Option 001


Figure 2. T-1 High Profile Lamps, Option 002


Figure 4. T-1 Low Profile Lamps, Option 002

Figure 6. T-1 3/4 High Profile Lamps, Option 002


Figure 8. T-1 3/4 Low Profile Lamps, Option 002

## Dimensional Specifications for Tape and Reel



Note:

1. Dimensions in millimetres (inches), maximum/minimum.


Figure 9. Front to Rear Alignment and Tape Thickness, Typical All Device Types
 $F=500 \mathrm{~g}$ M $\mathrm{N} . \mathrm{A}$.
FOR $3 \pm 1 \mathrm{SEC}$.


Figure 10. Device Retention Tests and Specifications


Figure 11. Reel Configuration and Labeling

## LOW CURRENT LED LAMP SERIES

T-1 3/4 (5mm) HLMP-4700, -4719, -4740
T-1 (3mm) HLMP-1700, -1719, -1790
SUBMINIATURE HLMP-7000,-7019,-7040

## Features

- LOW POWER
- HIGH EFFICIENCY
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- WIDE VIEWING ANGLE
- CHOICE OF PACKAGE STYLES
- CHOICE OF COLORS


## Applications

- LOW POWER DC CIRCUITS
- TELECOMMUNICATIONS INDICATORS
- PORTABLE EQUIPMENT
- KEYBOARD INDICATORS


## Description

These tinted diffused LED lamps were designed and optimized specifically for low DC current operation. Luminous intensity and forward voltage are tested at 2 mA to assure consistent brightness at TTL output current levels.


LOW CURRENT LAMP SELECTION GUIDE

| Size | Color |  |  |
| :---: | :---: | :---: | :---: |
|  | Red <br> HLMP- | Yellow <br> HLMP- | Green <br> HLMP- |
| T-1 3/4 | 4700 | 4719 | 4740 |
| T-1 | 1700 | 1719 | 1790 |
| Subminiature | 7000 | 7019 | 7040 |

## Package Dimensions



HLMP-4700, -4719, -4740


HLMP-7000, -7019, -7040
NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MINISCUS MAY EXTEND ABOUT $1 \mathrm{~mm}\left(0.040^{\prime \prime}\right)$ DOWN THE LEADS.

AXIAL LUMINOUS INTENSITY AND VIEWING ANGLE @ $25^{\circ} \mathrm{C}$

| Part Number HLMP. | Package Description | Color | IV (mcd) <br> @ 2 mADC |  | $2 \oplus 1 / 2^{[1]}$ | Package Outline |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. |  |  |
| -4700 | T-1 3/4 | Red | 1.2 | 2.0 | $50^{\circ}$ | A |
| -4719 | Tinted Diffused | Yellow | 1.2 | 1.8 |  |  |
| -4740 |  | Green | 1.2 | 1.8 |  |  |
| -1700 | T-1 | Red | 1.0 | 1.8 | $50^{\circ}$ | B |
| -1719 | Tinted | Yellow | 1.0 | 1.6 |  |  |
| -1790 | Diffused | Green | 1.0 | 1.6 |  |  |
| -7000 | Subminiature | Ped | 0.4 | 0.8 | $70^{\circ}$ | C |
| -7019 | Tinted Diffused | Yellow | 0.4 | 0.6 |  |  |
| -7040 |  | Green | 0.4 | 0.6 |  |  |

Notes:

1. $-1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | T-1 3/4 | T-1 | Subminiature | Min. | Typ. | Max. | Units | Test Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{F}$ | Forward Voltage | $\begin{aligned} & 4700 \\ & 4719 \\ & 4740 \end{aligned}$ | $\begin{aligned} & 1700 \\ & 1719 \\ & 1790 \end{aligned}$ | $\begin{aligned} & 7000 \\ & 7019 \\ & 7040 \end{aligned}$ |  | $\begin{aligned} & 1.8 \\ & 1.9 \\ & 1.8 \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 2.7 \\ & 2.2 \end{aligned}$ | V | 2 mA |
| VR | Reverse Breakdown Voltage | $\begin{aligned} & 4700 \\ & 4719 \\ & 4740 \end{aligned}$ | $\begin{aligned} & 1700 \\ & 1719 \\ & 1790 \end{aligned}$ | $\begin{aligned} & 7000 \\ & 7019 \\ & 7040 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 30 \\ & 40 \\ & 30 \end{aligned}$ |  | V | $\mathrm{I}_{\mathrm{R}}=50 \mu \mathrm{~A}$ |
| $\lambda D$ | Dominant Wavelength | $\begin{aligned} & 4700 \\ & 4719 \\ & 4740 \end{aligned}$ | $\begin{aligned} & 1700 \\ & 1719 \\ & 1790 \end{aligned}$ | $\begin{aligned} & 7000 \\ & 7019 \\ & 7040 \end{aligned}$ |  | $\begin{aligned} & 629 \\ & 585 \\ & 569 \end{aligned}$ |  | nm | Note 1 |
| $\pm \lambda_{1 / 2}$ | Spectral Line Halfwidth | $\begin{aligned} & 4700 \\ & 4719 \\ & 4740 \end{aligned}$ | $\begin{aligned} & 1700 \\ & 1719 \\ & 1790 \end{aligned}$ | $\begin{aligned} & 7000 \\ & 7019 \\ & 7040 \end{aligned}$ |  | $\begin{aligned} & 40 \\ & 35 \\ & 28 \end{aligned}$ |  | nm |  |
| rs | Speed of Response | $\begin{aligned} & 4700 \\ & 4719 \\ & 4740 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1700 \\ & 1719 \\ & 1790 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7000 \\ & 7019 \\ & 7040 \end{aligned}$ |  | $\begin{aligned} & 100 \\ & 200 \\ & 500 \\ & \hline \end{aligned}$ |  | ns |  |
| C | Capacitance | $\begin{array}{r} 4700 \\ 4719 \\ 4740 \end{array}$ | $\begin{aligned} & 1700 \\ & 1719 \\ & 1790 \end{aligned}$ | $\begin{aligned} & 7000 \\ & 7019 \\ & 7040 \end{aligned}$ |  | $\begin{gathered} 4 \\ 4 \\ 18 \end{gathered}$ |  | pF | $\begin{aligned} & V_{F}=0 \\ & f=1 \mathrm{MHZ} \end{aligned}$ |
| -juc | Thermal Resistance | $\begin{aligned} & 4700 \\ & 4719 \\ & 4740 \end{aligned}$ | $\begin{aligned} & 1700 \\ & 1719 \\ & 1790 \end{aligned}$ | $\begin{aligned} & 7000 \\ & 7019 \\ & 7040 \end{aligned}$ |  | $\begin{aligned} & 135 \\ & 120 \\ & 120 \end{aligned}$ |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode lead |
| $\lambda p$ | Peak Wavelength | $\begin{aligned} & 4700 \\ & 4719 \\ & 4740 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1700 \\ & 1719 \\ & 1790 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7000 \\ & 7019 \\ & 7040 \end{aligned}$ |  | $\begin{aligned} & 635 \\ & 583 \\ & 565 \\ & \hline \end{aligned}$ |  | nm | Measurement at peak |
| no | Luminous Efficacy | $\begin{aligned} & 4700 \\ & 4719 \\ & 4740 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1700 \\ & 1719 \\ & 1790 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7000 \\ & 7019 \\ & 7040 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 145 \\ & 500 \\ & 595 \end{aligned}$ |  | $\frac{\text { Lumens }}{\text { Watt }}$ | Note 2 |

Notes:

1. The dominant wavelength, $\lambda_{D}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, $l_{e}$, in watts/steradian, may be found from the equation $l_{\mathrm{e}}=l_{\mathrm{v}} / \eta_{\mathrm{v}}$, where $l_{\mathrm{y}}$ is the luminous intensity in candelas and $\eta_{\mathrm{v}}$ is the luminous efficacy in lumens/watt.

## Absolute Maximum Ratings



## Notes:

1. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.


Figure 1. Relative Intensity vs. Wavelength


Figure 2. Forward Current vs. Forward Voltage


Figure 3. Relative Luminous Intensity vs. Forward Current


Figure 4. Relative Luminous Intensity vs. Angular Displacement for T-1 3/4 Lamp


Figure 5. Relative Luminous Intensity vs. Angular Displacement for T-1 Lamp


Figure 6. Relative Luminous Intensity vs. Angular Displacement for Subminiature Lamp

## Features

- IMPROVED BRIGHTNESS
- IMPROVED COLOR PERFORMANCE
- AVAILABLE IN POPULAR T-1 and T-1 3/4 PACKAGES
- NEW STURDY LEADS
- IC COMPATIBLE/LOW CURRENT CAPABILITY
- RELIABLE AND RUGGED
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red
High Brightness Yellow
High Performance Green

## Description

These clear, non-diffused lamps out perform conventional LED lamps. By utilizing new higher intensity material, we achieve superior product performance.
The HLMP-3750/-3390/-1340 Series Lamps are Gallium Arsenide Phosphide on Gallium Phosphide red light emitting diodes. The HLMP-3850/-3490/-1440 Series are Gallium Arsenide Phosphide on Gallium Phosphide yellow light emitting diodes. The HLMP-3950/-3590/-1540 Series lamps are Gallium Phosphide green light emitting diodes.


## Applications

## - LIGHTED SWITCHES

- BACKLIGHTING FRONT PANELS
- LIGHT PIPE SOURCES
- KEYBOARD INDICATORS

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

| Part Number HLMP. | Package Description | Color | $\begin{gathered} I_{V}(\mathrm{mcd}) \\ @ 20 \mathrm{mADC} \end{gathered}$ |  | $2 \Theta 1 / 2$ <br> Note 1. | Package Outline |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. |  |  |
| 3750 | T-1 3/4 | HER | 80 | 125 | $24^{\circ}$ | A |
| 3850 |  | Yellow | 80 | 140 | $24^{\circ}$ | A |
| 3950 |  | Green | 80 | 120 | $24^{\circ}$ | A |
| 3390 | T-1 3/4 Low Profile | HER | 35 | 55 | $32^{\circ}$ | B |
| 3490 |  | Yellow | 35 | 55 | $32^{\circ}$ | B |
| 3590 |  | Green | 35 | 55 | $32^{\circ}$ | B |
| 1340 | T-1 | HER | 24 | 35 | $45^{\circ}$ | C |
| 1440 |  | Yellow | 24 | 35 | $45^{\circ}$ | c |
| 1540 |  | Green | 24 | 35 | $45^{\circ}$ | C |

## NOTE:

1. $\Theta 1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

## Package Dimensions



PACKAGE OUTLINE "A" HLMP-3750, 3850, 3950


PACKAGE OUTLINE "B" HLMP-3390, 3490, 3590


PACKAGE OUTLINE "C" HLMP-1340, 1440, 1540

NOTES:

1. All dimensions are in millimeters (inches).
2. An epoxy meniscus may extend about $1 \mathrm{~mm}\left(0.40^{\prime \prime}\right)$ down the leads.

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Red | Yellow | Green | Units |
| :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 90 | 60 | 90 | mA |
| Average Forward Current ${ }^{11}$ | 25 | 20 | 25 | mA |
| DC Current ${ }^{2}$ ] | 30 | 20 | 30 | mA |
| Power Dissipation ${ }^{31} 1$ | 135 | 85 | 135 | mW |
| Transient Forward Current ${ }^{141}$ (10 $\mu \mathrm{sec}$ pulse) | 500 | 500 | 500 | mA |
| Reverse Voltage ( $\left.\mathrm{R}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$ | 5 | 5 | 5 | V |
| Operating Temperature Range | -55 to +100 | -55 to +100 | -20 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range |  |  | -55 to +100 |  |
| Lead Soldering Temperature ( 1.6 mm t 0.063 in .) from body) | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. See Figure 2 to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | T-1 3/4 | $\begin{aligned} & \text { T-1 3/4 } \\ & \text { Low } \\ & \text { Dome } \end{aligned}$ | T-1 | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda p$ | Peak Wavelength | $\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$ | $\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$ | $\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$ |  | $\begin{aligned} & 635 \\ & 583 \\ & 565 \end{aligned}$ |  | nm | Measurement at peak |
| $\lambda d$ | Dominant Wavelength | $\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$ | $\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$ |  | $\begin{aligned} & 626 \\ & 585 \\ & 571 \end{aligned}$ |  | nm | Note 1 |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth | $\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$ | $\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$ | $\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$ |  | $\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$ |  | nm | : |
| ${ }_{\text {s }}$ | Speed of Response | $\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$ | $\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$ | $\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \\ & \hline \end{aligned}$ |  | $\begin{gathered} 90 \\ 90 \\ 500 \\ \hline \end{gathered}$ |  | ns |  |
| C | Capacitance | $\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$ | $\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 18 \\ & 18 \end{aligned}$ |  | pF | $V_{F}=0 ; f=1 \mathrm{MHz}$ |
| $\Theta_{\text {sc }}$ | Thermal Resistance | $\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$ | $\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$ | $\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$ |  | $\begin{gathered} 95 \\ 95 \\ 95 \\ 120 \\ 120 \\ 120 \end{gathered}$ |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage | $\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$ | $\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$ | $\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$ | V | $I_{F}=20 \mathrm{~mA}$ <br> (Figure 3) |
| $V_{R}$ | Reverse Breakdown Voltage | $\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$ | $\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$ | $\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$ | 5.0 |  |  | V | $\mathrm{IF}=100 \mu \mathrm{~A}$ |
| $\eta_{V}$ | Luminous Efficacy | $\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$ | $\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$ | $\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$ |  | $\begin{aligned} & 145 \\ & 500 \\ & 595 \end{aligned}$ |  | $\frac{\text { lumens }}{\text { watt }}$ | Note 2 |

## NOTES:

1. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, $\mathrm{I}_{\mathrm{e}}$, in watts/steradian, may be found from the equation $\mathrm{l}_{\mathrm{e}}=\mathrm{I}_{\mathrm{v}} / \eta_{\mathrm{v}}$, where $\mathrm{I}_{\mathrm{v}}$ is the luminous intensity in candelas and $\eta_{v}$ is the luminous efficacy in lumens/watt.

## Red, Yellow and Green



Figure 1. Relative Intensity vs. Wavelength.


Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)


Figure 4. Relative Luminous Intensity vs. Forward Current.


Figure 6. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Lamp.


Figure 3. Forward Current vs. Forward Voltage.


Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 7. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Low Profile Lamp.


Figure 8. Relative Luminous Intensity vs. Angular Displacement. T-1 Lamp.

# LED RIGHT ANGLE INDICATORS T-1 3/4 (5mm) 

| RED | HLMP-5000 | HER | HLMP-5030 | HER 5 V | HLMP-5060 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| RED 5V | HLMP-5005 | YELLOW | HLMP-5040 | YELLOW 5V | HLMP-5070 |
| RED 12V V | HLMP-5012 | GREEN | HLMP-5050 | GREEN 5V | HLMP-5080 |

## Features

- IDEAL FOR CARD EDGE STATUS INDICATION
- PACKAGE DESIGN ALLOWS FLUSH SEATING ON A PC BOARD
- MAY BE SIDE STACKED ON 6.35 mm ( 0.25 ") CENTERS
- LEDs AVAILABLE IN FOUR COLORS, WITH OR WITHOUT INTEGRATED CURRENT LIMITING RESISTOR IN T-1 3/4 TINTED DIFFUSED PACKAGES
- ADDITIONAL CATALOG LAMPS AVAILABLE AS OPTIONS


## Description

The HLMP-5000 series of Right Angle Indicators are industry standard status indicators that incorporate a tinted diffused T-1 3/4 LED lamp in a black plastic housing. The indicators are available in standard Red, High

## Package Dimensions



Efficiency Red, Yellow, or High Performance Green with or without an integrated current limiting resistor. These products are designed to be used as back panel diagnostic indicators and card edge logic status indicators.


DIAENSIONS IN AHLLIMETRES AND ONCHES). NOTE 1: 0.45 ( 0.018 ) SOUARE NOAMINAL FOR HLMP-5030/-5040)-5050. 0.64 to. 025 F SOUARE NOMINAL FOR ALL OTHER PRODUCTS.


## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RIGHT ANGLE INDICATORS WITHOUT INTEGRATED CURRENT LIMITING RESISTOR

| Part Number | Color | Luminous Intensity (Iv) med |  | Forward Voltage ( $V_{F}$ ) |  | Test Condition for $I_{V}$ and $V_{F}$ | $\begin{gathered} \text { Minimum Reverse } \\ \text { Breakdown Voltage } \\ \text { at }\left(V_{\mathrm{BR}}\right) \\ \mathrm{I}_{\mathrm{A}}=100 \mu \mathrm{~A} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Typ. | Max. |  |  |
| HLMP-5000 | Red | 2.0 | 4.0 | 1.6 | 2.0 | $\mathrm{IF}=20 \mathrm{~mA}$ | 3.0 |
| HLMP-5030 | High Efficiency Red | 3.0 | 6.0 | 2.2 | 3.0 | $\mathrm{IF}=10 \mathrm{~mA}$ | 5.0 |
| HLMP-5040 | Yellow | 3.0 | 6.0 | 2.2 | 3.0 | $\mathrm{IF}=10 \mathrm{~mA}$ | 5.0 |
| HLMP-5050 | Green | 3.0 | 6.0 | 2.3 | 3.0 | IF $=10 \mathrm{~mA}$ | 5.0 |

RIGHT ANGLE INDICATORS WITH CURRENT LIMITING RESISTOR

| Part Number | Color | Luminous Intensity <br> (Iv) med |  | Forward Current ( $\mathrm{I}_{\mathrm{F}}$ ) mA |  | Test Condition for $l_{V}$ and $I_{F}$ | $\begin{gathered} \text { Minimum Reverse } \\ \text { Breakdown Voltage } \\ \text { at }\left(V_{B A}\right) \\ I_{R}=100 \mu \mathrm{~A} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Typ. | Max. |  |  |
| HLMP-5012 | Red | 1.0 | 2.0 | 13 | 20 | $V_{F}=12 \mathrm{~V}$ | 3.0 |
| HLMP-5005 | Red | 1.0 | 2.0 | 13 | 20 | $V_{F}=5 \mathrm{~V}$ | 3.0 |
| HLMP-5060 | High Efficiency Red | 1.5 | 4.0 | 10 | 15 | $V_{F}=5 \mathrm{~V}$ | 5.0 |
| HLMP-5070 | Yellow | 1.5 | 4.0 | 10 | 15 | $V_{F}=5 \mathrm{~V}$ | 5.0 |
| HLMP-5080 | Green | 1.5 | 4.0 | 12 | 15 | $V_{F}=5 \mathrm{~V}$ | 5.0 |

## Ordering Information

To order T-1 3/4 high dome lamps in addition to the parts indicated above, select the base part number and add the option code 010. For example: HLMP-3750-010.
All Hewlett-Packard T-1 3/4 high-dome lamps, except ferrules, are available in right angle housing. Contact your local Hewlett-Packard Sales Office or authorized components distributor for additional ordering information.

## Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the T-1 3/4 LED lamps listed here. For information about these characteristics, see the data sheets of the equivalent T-1 3/4 LED lamp.

| Right Angle <br> Indicator <br> (Part Number) | Equivalent T-1 3/4 <br> LED Lamp <br> (Part Number) |
| :---: | :---: |
| HLMP-5000 | HLMP-3001 |
| HLMP-5005 | HLMP-3105 |
| HLMP-5012 | HLMP-3112 |
| HLMP-5030 | HLMP-3300 |
| HLMP-5040 | HLMP-3400 |
| HLMP-5050 | HLMP-3502 |
| HLMP-5060 | HLMP-3600 |
| HLMP-5070 | HLMP-3650 |
| HLMP-5080 | HLMP-3680 |

# T-1 (3mm) RIGHT ANGLE LED INDICATORS 

RED HLMP-1002-010 HER HLMP-1301-010 HER 5V HLMP-1600-010
RED 5V HLMP-1100-010 YELLOW HLMP-1401-010 YELLOW 5V HLMP-1620-010
GREEN 5V HLMP-1640-010

## Features

- IDEAL FOR CARD EDGE STATUS INDICATION
- PACKAGE DESIGN ALLOWS FLUSH SEATING ON A PC BOARD
- MAY BE SIDE STACKED ON 4.57 mm ( 0.18 in ) CENTERS
- UP TO 8 UNITS MAY BE COUPLED FOR A HORIZONTAL ARRAY CONFIGURATION WITH A COMMON COUPLING BAR (SEE T-1 RIGHT ANGLE ARRAY DATA SHEET)
- LEDs AVAILABLE IN ALL LED COLORS, WITH OR WITHOUT INTEGRATED CURRENT LIMITING RESISTOR IN T-1 PACKAGES
- EASY FLUX REMOVAL DESIGN
- HOUSING MATERIAL MEETS UL 94V-0 RATING
- ADDITIONAL CATALOG LAMPS AVAILABLE AS OPTIONS


## Description

Hewlett-Packard T-1 Right Angle Indicators are industry standard status indicators that incorporate a tinted diffused T-1 LED lamp in a black plastic housing. The indicators are available in Standard Red, High Efficiency Red, Orange, Yellow, High Performance Green, and Emerald Green, with or without an integrated current limiting resistor. These products are designed to be used as back panel diagnostic indicators and card edge logic status indicators.

## Package Dimensions



## Ordering Information

To order other T-1 High Dome Lamps in Right Angle Housings in addition to the parts indicated above, select the base part number and add the option code 010 or 101, depending on the lead length desired (see drawing below). For example, by ordering HLMP-1302-010, you would receive the long lead option. By ordering HLMP-1302-101, you would receive the short lead option.
Arrays made by connecting two to eight single Right Angle Indicators with a Common Coupling Bar are available. Ordering information for arrays may be found on the T-1 Right Angle Array data sheet.
The above data sheet information is for the most commonly ordered part numbers. Refer to other T-1 base part number specifications in this catalog for other lamp types that may be ordered with the right angle option.


Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
RIGHT ANGLE INDICATORS WITHOUT INTEGRATED CURRENT LIMITING RESISTOR

| Part Number | Color | Luminous Intensity (Iv) mod |  | Forward Voltage ( $V_{F}$ ) |  | Test Condition for Iv and $V_{F}$ | MinimumReverseBreakdown $V$at $\left(V_{B R}\right)$$I R=100 \mu \mathrm{~A}$ | Replaces <br> Dialight Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Typ. | Max. |  |  |  |
| HLMP-1002-010 | Red | 1.5 | 2.5 | 1.6 | 2.0 | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ | 3.0 | 551-0405 |
| HLMP-1301-010 | High Efficiency Red | 2.0 | 2.5 | 2.2 | 3.0 | $I_{F}=10 \mathrm{~mA}$ | 5.0 | N/A |
| HLMP-1401-010 | Yellow | 2.0 | 3.0 | 2.2 | 3.0 | $I_{F}=10 \mathrm{~mA}$ | 5.0 | 551-0305 |
| HLMP-1503-010 | Green | 1.0 | 2.0 | 2.3 | 3.0 | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 5.0 | 551-0205 |

RIGHT ANGLE INDICATORS WITH CURRENT LIMITING RESISTOR

| Part Number | Color | Luminous Intensity (Iv) med |  | Forward Current (IF) |  | Test Condition for $I_{V}$ and $I_{F}$ | $\begin{gathered} \text { Minimum } \\ \text { Reverse } \\ \text { Breakdown } \mathrm{V} \\ \text { at }\left(V_{B R}\right) \\ I R=100 \mu \mathrm{~A} \\ \hline \end{gathered}$ | Replaces Dialight Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Typ. | Max. |  |  |  |
| HLLMP-1100-010 | Red | 0.8 | 1.5 | 13.0 | 20.0 | $V_{F}=5 \mathrm{~V}$ | 3.0 | 555-0505 |
| HLMP-1600-010 | High <br> Efficiency <br> Red | 1.5 | 4.0 | 10.0 | 15.0 | $V_{F}=5 \mathrm{~V}$ | 5.0 | N/A |
| HLMP-1620-010 | Yellow | 1.5 | 4.0 | 10.0 | 15.0 | $V_{F}=5 \mathrm{~V}$ | 5.0 | N/A |
| HLMP-1640-010 | Green | 1.5 | 4.0 | 12.0 | 15.0 | $V_{F}=5 \mathrm{~V}$ | 5.0 | N/A |

## Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the T-1 LED lamps listed here. For information about these characteristics, see the data sheets of the equivalent T-1 LED lamp.

## Features

- IDEAL FOR PC BOARD STATUS INDICATION
- SIDE STACKABLE ON 2.54 mm ( 0.100 in ) CENTERS
- AVAILABLE IN FOUR COLORS
- HOUSING MEETS UL 94V-O FLAMMABILITY SPECIFICATIONS
- ADDITIONAL CATALOG LAMPS AVAILABLE AS OPTIONS


## Description

The Hewlett-Packard series of Subminiature Right Angle Indicators are industry standard status indicators that incorporate tinted diffused LED lamps in black plastic housings. The 2.54 mm ( 0.100 in ) wide packages may be side stacked for maximum board space savings. The silver plated leads are in line on 2.54 mm ( 0.100 in ) centers, a standard spacing that makes the PC board layout straightforward. These products are designed to be used as back panel diagnostic indicators and logic status indicators on PC boards.


## Ordering Information

To order Subminiature Right Angle indicators, order the base part number and add the option code 010. For price and delivery on Resistor Subminiature Right Angle Indicators and other subminiature LEDs not indicated above, please contact your nearest H.P. Components representative. A cross reference to Dialight part numbers appears on the next page.

## Package Dimensions




Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
RIGHT ANGLE INDICATORS WITHOUT INTEGRATED CURRENT LIMITING RESISTOR

| Part Number | Color | Luminous Intensity (Iv) med |  | Forward Voltage (VF) |  | Test Condition for IV and VF | $\begin{gathered} \text { Minimum Reverse } \\ \text { Breakdown Voltage } \\ \text { at (VBR) } \\ \text { IR }=100 \mathrm{microA} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Typ. | Max. |  |  |
| HLMP-6000-010 | Red | 0.5 | 1.2 | 1.6 | 2.0 | $\mathrm{IF}=10 \mathrm{~mA}$ | 3.0 |
| HLMP-6300-010 | High Efficiency Red | 1.0 | 3.0 | 2.2 | 3.0 | $\mathrm{IF}=10 \mathrm{~mA}$ | 5.0 |
| HLMP-6400-010 | Yellow | 1.0 | 3.0 | 2.2 | 3.0 | $1 \mathrm{~F}=10 \mathrm{~mA}$ | 5.0 |
| HLMP 6500-010 | Green | 1.0 | 3.0 | 2.3 | 3.0 | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 5.0 |

## Cross Reference

The following list crosses Hewlett-Packard Subminiature Right Angle Indicators to the closest Dialight part number. The H.P. product will meet or exceed the cross referenced part in electrical and optical performance.

| Dialight Part No. | Hewlett-Packard Part No. | Color/Description |
| :--- | :--- | :--- |
| $555-2001$ | HLMP-6000-010 | Standard Red |
| $555-2007$ | HLMP-6620-010* | Red/5V Resistor lamp |
| $555-2004$ | HLMP-6600-010* | Red/5V Resistor lamp |
| $555-2301$ | HLMP-6500-010 | Green |
| $555-2303$ | HLMP-6820-010* | Green/5V Resistor lamp |
| $555-2401$ | HLMP-6400-010* | Yellow |
| $555-2403$ | HLMP-6720-010* | Yellow/5V Resistor lamp |

*Please contact your nearest H.P. Components representative for pricing and delivery.

## Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the Subminiature lamps listed here. For information about these characteristics, see the data sheets of the equivalent Subminiature lamp.

## T-1 ( 3 mm ) RIGHT ANGLE ARRAYS

## Features

- IDEAL FOR PC BOARD STATUS INDICATION
- STANDARD 4 ELEMENT CONFIGURATION
- EASY HANDLING
- EASY FLUX REMOVAL
- HOUSING MEETS UL 94V-O FLAMMABILITY SPECIFICATIONS
- OTHER CATALOG LAMPS AVAILABLE


## Description

These 4 element right angle arrays incorporate tinted diffused standard lamps for a good balance of viewing angle and intensity. Single units are held together by a plastic tie bar. The leads of each member of the array are spaced on $2.54 \mathrm{~mm}(0.100 \mathrm{in})$ centers. Lead spacing between adjacent lamps in the array is on 2.03 mm ( 0.080 in) centers. These products are designed to be used as back panel diagnostic indicators and logic status indicators on PC boards.


## Ordering Information

Use the option code 104 in addition to the base part number to order these arrays. Arrays from 2 to 8 elements in length and special lamp color combinations within an array are also available. Please contact your nearest Hewlett-Packard Components representative for ordering information on these special items.

## Package Dimensions


dimensions in millimetres and inches.

## Features

- INTEGRAL CURRENT LIMITING RESISTOR
- TTL COMPATIBLE Requires no External Current Limiter with 5 Volt/12 Volt Supply
- COST EFFECTIVE


## Saves Space and Resistor Cost

- WIDE VIEWING ANGLE
- AVAILABLE IN ALL COLORS Red, High Efficiency Red, Yellow and High Performance Green in T-1 and T-1 3/4 Packages



## Description

The 5 volt and 12 volt series lamps contain an integral current limiting resistor in series with the LED. This allows the lamp to be driven from a 5 volt/12 volt source without an external current limiter. The red LEDs are made from GaAsP on a GaAs substrate. The High Efficiency Red and Yellow devices use GaAsP on a GaP substrate.

The green devices use GaP on a GaP substrate. The diffused lamps provide a wide off-axis viewing angle.
The T-1 3/4 lamps are provided with sturdy leads suitable for wire wrap applications. The T-1 $3 / 4$ lamps may be front panel mounted by using the HLMP-0103 clip and ring.

| Color | P/N HLMP. | Package | Operating Voltage | IV med |  | $201 / 2[1]$ | Package Outline |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. |  |  |
| Red | 1100 | T-1 Tinted Diffused | 5 | 0.8 | 1.5 | $60^{\circ}$ | A |
|  | 1120 | T-1 Untinted Diffused | 5 | 0.8 | 1.5 | $60^{\circ}$ | A |
|  | 3105 | T-1 3/4 Tinted Diffused | 5 | 1.0 | 2.0 | $75^{\circ}$ | B |
|  | 3112 |  | 12 | 1.0 | 2.0 | $75^{\circ}$ | B |
| High Efficiency Red | 1600 | T-1 Tinted Diffused | 5 | 1.5 | 4.0 | $60^{\circ}$ | A |
|  | 1601 |  | 12 |  |  |  |  |
|  | 3600 | T-1 3/4 Tinted Diffused | 5 |  |  | $65^{\circ}$ | B |
|  | 3601 |  | 12 |  |  |  |  |
| Yellow | 1620 | T-1 Tinted Diffused | 5 | 1.5 | 4.0 | $60^{\circ}$ | A |
|  | 1621 |  | 12 |  |  |  |  |
|  | 3650 | T-1 3/4 Tinted Diffused | 5 |  |  | $75^{\circ}$ | B |
|  | 3651 |  | 12 |  |  |  |  |
| High Performance Green | 1640 | T-1 Tinted Diffused | 5 | 1.5 | 4.0 | $60^{\circ}$ | A |
|  | 1641 |  | 12 |  |  |  |  |
|  | 3680 | T-1 3/4 Tinted Diffused | 5 |  |  | $75^{\circ}$ | B |
|  | 3681 |  | 12 |  |  |  |  |

Notes:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

|  | Red/HER/Yellow 5 Volt Lamps |  | Red/HER/Yellow 12 Volt Lamps |  | Green 5 Volt Lamps |  | Green 12 Volt Lamps |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC Forward Voltage ( $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ | 7.5 Volts ${ }^{121}$ |  | - 15 Volts ${ }^{\|3\|}$ |  | - 7.5 Volts ${ }^{21}$ |  | $=15$ Volts ${ }^{(3)}$ |  |
| Reverse Voltage ( $\left.I_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$ | GaAsP | 3 Volts |
|  | Gap | 5 Volts |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |  | $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |  | $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |  |
| Storage Temperature Range | $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ |  |
| Lead Soldering Temperature | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |  |  |  |  |

Notes:
2. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.071 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 3. 3. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.086 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 4 .

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Parameter | Red |  |  | High Efficiency Red |  |  | Yellow |  |  | Green |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |
| $\lambda_{\text {P }}$ | Peak Wavelength |  | 655 |  |  | 635 |  |  | 583 |  |  | 565 |  | nm | \% |
| $\lambda_{d}$ | Dominant Wavelength |  | 648 |  |  | 626 |  |  | 585 |  |  | 569 |  | nm | Note 4 |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth |  | 24 |  |  | 40 |  |  | 36 |  |  | 28 |  | nm |  |
| ${ }^{(9)} \mathrm{sc}$ | Thermal Resistance |  | 120 |  |  | 120 |  |  | 120 |  |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead (Note 6) |
| ()Jc | Thermal Resistance |  | 95 |  |  | 95 |  |  | 95 |  |  | 95 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead (Note 7) |
| $\mathrm{I}_{\mathrm{F}}$ | Forward Current 12 V Devices |  | 13 | 20 |  | 13 | 20 |  | 13 | 20 |  | 13 | 20 | mA | $V_{F}=12 \mathrm{~V}$ |
| IF | Forward Current 5 V Devices |  | 13 | 20 |  | 10 | 15 |  | 10 | 15 |  | 12 | 15 | mA | $V_{F}=5 \mathrm{~V}$ |
| 7 V | Luminous Efficacy |  | 65 |  |  | 145 |  |  | 500 |  |  | 595 |  | Iumen /watt | Note 5 |
| $V_{\text {F }}$ | Reverse Breakdown Voltage | 3.0 |  |  | 5.0 |  |  | 5.0 |  |  | 5.0 |  |  | V | $I_{R}=100 \mu \mathrm{~A}$ |

Notes:
4. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
5. Radiant intensity, $\mathrm{I}_{\mathrm{e}}$, in watts/steradian, may be found from the
equation $\mathrm{I}_{\mathrm{e}}=\mathrm{Iv} / \eta \mathrm{v}$. Where Iv is the luminous intensity in candelas and $\eta \mathrm{V}$ is the luminous efficacy in lumens/watt.
6. For Figure A package type.
7. For Figure B package type.

## Package Dimensions



## NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. AN EPOXY MENISCUS MAY EXTEND ABOUT Imm $\left(.040^{*}\right)$ DOWN THE LEADS

Figure A. T-1 Package


Figure B. T-1 3/4 Package


Figure 1. Forward Current vs. Applied Forward Voltage. 5 Volt Devices


Figure 3. Maximum Allowed Applied Forward Voltage vs. Ambient Temperature R $\theta_{\mathrm{JA}}=175^{\circ} \mathrm{C} / \mathrm{W} .5$ Volt Devices


Figure 5. Relative Luminous Intensity vs. Angular Displacement for T-1 Package


Figure 2. Forward Current vs. Applied Forward Voltage. 12 Volt Devices


Figure 4. Maximum Allowed Applied Forward Voltage vs. Ambient Temperature $\mathrm{R} \theta_{\mathrm{JA}}=175^{\circ} \mathrm{C} / \mathrm{W} .12$ Volt Devices


Figure 6. Relative Luminous Intensity vs. Angular Displacement for T-1 3/4 Package


Figure 7. Relative Luminous Intensity vs. Applied Forward Voltage. 5 Volt Devices


Figure 8. Relative Luminous Intensity vs. Applied Forward Voltage. 12 Volt Devices

# SUBMINIATURE RESISTOR LAMPS 5 VOLT 4 mA AND 5 VOLT 10 mA SERIES 

## Features

- INTEGRAL CURRENT LIMITING RESISTOR
- TTL AND LSTTL COMPATIBLE
- REQUIRES NO EXTERNAL RESISTOR WITH 5 VOLT SUPPLY
- SPACE SAVING SUBMINIATURE PACKAGE
- WIDE VIEWING ANGLE
- CHOICE OF CURRENT LEVEL, 4 mA or 10 mA
- AVAILABLE IN HIGH EFFICIENCY RED, YELLOW, AND GREEN
- IDEALLY SUITED FOR PORTABLE OR SPACE CONSTRAINED APPLICATIONS



## Description

The subminiature resistor lamps contain an integral current limiting resistor in series with the LED. This allows the lamp to be driven from a 5 volt source without an external current limiter. The high efficiency red and yellow devices use GaAsP on a GaP substrate. The green devices use GaP on a GaP substrate. The tinted, diffused epoxy lens provides high on-off contrast and a wide viewing angle. The follow-
ing special configurations are available on request:

1. Surface Mount Gull Wing Bend - Refer to the Surface Mount Gull Wing Data Sheet.
2. Tape and Reel Packaging
3. Special Lead Bending on $2.54 \mathrm{~mm}(0.100 \mathrm{in}$.) and 5.08 $\mathrm{mm}(0.200)$ in Centers

## Device Selection Guide

|  | High Efficiency Red | Yellow | Green |
| :---: | :---: | :---: | :---: |
| 5 Volt, 10 mA | HLMP-6600 | HLMP-6700 | HLMP-6800 |
| 5 Volt, 4 mA | HLMP-6620 | HLMP-6720 | HLMP-6820 |

## Package Dimensions



## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

|  | $\begin{gathered} \text { HLMP-6600/6620 } \\ 6700 / 6720 \\ \text { High Efficiency Red/Yellow } \end{gathered}$ | $\begin{gathered} \text { HLMP-6800/6820 } \\ \text { Green } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: |
| DC Forward Voltage | 6 Volts | 6 Volts |
| Reverse Voltage ( $\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$ | 5 Volts | 5 Volts |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ |  |
| Lead Soldering Temperature $1.6 \mathrm{~mm}(0.063 \mathrm{in}$, ) From Body | $260^{\circ} \mathrm{C}$ for 3 Seconds |  |

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Parameter | High Efficiency Red |  |  |  |  |  | Yellow |  |  |  |  |  | Green |  |  |  |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | HLMP. 6600 |  |  | HLMP.6620 |  |  | HLMP-6700 |  |  | HLMP. 6720 |  |  | HLMP-6800 |  |  | HLMP.6820 |  |  |  |  |
|  |  | Min. | тyp. | Max. | Min. | Тур. | Max. | Min. | Typ. | Max. |  |  |
| IV | $\begin{array}{\|l} \hline \text { Axial Lumınous } \\ \text { Intensily } \\ \hline \end{array}$ | 1.3 | 50 |  | 0.8 | 2.0 |  | 1.4 | 5.0 |  | 0.9 | 20 |  | 1.6 | 5.0 |  | 08 | 2.0 |  | mod | $V_{F}=5$ volts (See Figure 2) |
| $2{ }^{2}+1 / 2$ | Included Angle Between Haff Luminous intensity Points |  | $90^{\circ}$ |  |  | Note 1 (See Figure 3 |
| $\lambda p$ | Peak Wavelength |  | 635 |  |  | 635 |  |  | 583 |  |  | 583 |  |  | 565 |  |  | 565 |  | nim |  |
| $\lambda_{D}$ | Dominant Wavelength |  | 624 |  |  | 624 |  |  | 586 |  |  | 586 |  |  | 572 |  |  | 572 |  | nm | Note 2 |
| ${ }^{-1} \lambda_{1 / 2}$ | $\begin{aligned} & \text { Spectral Line } \\ & \text { Halfwidth } \end{aligned}$ |  | 40 |  |  | 40 |  |  | 36 |  |  | 36 |  |  | 28 |  |  | 28 |  | nm |  |
| 4 HC | Thermal Resistance |  | 120 |  |  | 120 |  |  | 120 |  |  | 120 |  |  | 120 |  |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| ${ }_{\text {I }}$ | Forward Current |  | 9.6 | 13 |  | 3.5 | 5 |  | 9.6 | 13 |  | 3.5 | 5 |  | 9.6 | 13 |  | 3.5 | 5 | mA | $V_{F}=5 \text { volts }$ <br> (See Figure 1) |
| $V_{R}$ | Reverse Breakdown Voltage | 5.0 |  |  | 5.0 |  |  | 5.0 |  |  | 50 |  |  | 50 |  |  | 5.0 |  |  | V | $I_{\text {R }}=100 \mu \mathrm{~A}$ |
| nv | Luminous Efficacy |  | 145 |  |  | 145 |  |  | 500 |  |  | 500 |  |  | 595 |  |  | 595 |  | Im/w | Note 3 |

## Notes:

1. $2 \Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity in watts/steradion, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{Iv} / \eta \mathrm{V}$, where IV is the luminous intensity in candelas and $\eta \mathrm{v}$ is the luminous efficacy in lumens/watt.


Figure 1. Forward Current vs. Forward Voltage.


Figure 2. Relative Luminous Intensity vs. Forward Voltage.


Figure 3. Relative Luminous Intensity vs. Angular Displacement.

# RECTANGULAR SOLID STATE LAMPS 

## HIGH EFFICIENCY RED HLMP-0300/0301 YELLOW HLMP-0400/0401 <br> HIGH PERFORMANCE GREEN HLMP-0503/0504

## Features

- RECTANGULAR LIGHT EMITTING SURFACE
- FLAT HIGH STERANCE EMITTING SURFACE
- STACKABLE ON 2.54 MM (0.100 INCH) CENTERS
- IDEAL AS FLUSH MOUNTED PANEL INDICATORS
- IDEAL FOR BACKLIGHTING LEGENDS
- LONG LIFE: SOLID STATE RELIABILITY
- CHOICE OF 3 bRIGHT COLORS HIGH EFFICIENCY RED YELLOW HIGH PERFORMANCE GREEN
- IC COMPATIBLE/LOW CURRENT REQUIREMENTS


## Description

The HLMP-030X, -040X, -050X are solid state lamps encapsulated in an axial lead rectangular epoxy package. They utilize a tinted, diffused epoxy to provide high on-off contrast and a flat high intensity emitting surface. Borderless package design allows creation of uninterrupted light emitting areas.
The HLMP-0300 and -0301 have a high efficiency red GaAsP on GaP LED chip in a light red epoxy package. This

lamp's efficiency is comparable to that of the GaP red, but extends to higher current levels.

The HLMP-0400 and -0401 provide a yellow GaAsP on GaP LED chip in a yellow epoxy package.

The HLMP-0503 and -0504 provide a green GaP LED chip in a green epoxy package.

1. ALL DIMENSIONS ARE IN

MILLIMETRES (INCHES)
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (.040") DOWN THE LEADS.

## NOTES:

## Package Dimensions



Axial Luminous Intensity

| Color | Part | IV (mcd) @ <br> 20 mA DC |  |
| :---: | :---: | :---: | :---: |
|  |  | Min: | Typ. |
|  | 2.5 | 2.5 |  |
| Yellow | HLMP-0400 | 1.5 | 2.5 |
|  | HLMP-0401 | 3.0 | 5.0 |
| High <br> Performance <br> Green | HLMP-0503 | 1.5 | 2.5 |

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | HLMP-0300/-0301 | HLMP-0400/0401 | HLMP-0503/-0504 | Units |
| :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 90 | 60 | 90 | mA |
| Average Forward Current[1] | 25 | 20 | 25 | mA |
| DC Current ${ }^{2]}$ | 30 | 20 | 30 | mA |
| Power Dissipation ${ }^{(3)}$ | 135 | 85 | 135 | mW |
| Reverse Voltage ( $\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$ | 5 | 5 | 5 | V |
| Transient Forward Current ${ }^{\text {4 }}$; $10 \mu \mathrm{~S}$ Pulse) | 500 | 500 | 500 | mA |
| Operating Temperature Range | -55 to +100 | -55 to +100 | -20 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range |  |  | -55 to +100 |  |
| Lead Soldering Temperature [ 1.6 mm ( 0.063 in.) from body] | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. See Figure 5 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA}{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommedned that the device be operated at peak current beyond the peak forward current listed in the Absolute. Maximum Ratings.

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | HLMP-0300/-0301 |  |  | HLIMP-0400/-0401 |  |  | HL.MP-0503/-0504 |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |  |
| $2 \Theta_{1 / 2}$ | Included Angle Between Half Luminous Intensity Points |  | 100 |  |  | 100 |  |  | 100 |  | Deg. | Note 1. Figure 6. |
| $\lambda p$ | Peak Wavelength |  | 635 |  |  | 583 |  |  | 565 |  | nm | Measurement at Peak |
| $\lambda_{0}$ | Dominant Wavelength |  | 626 |  |  | 585 |  |  | 569 |  | nm | Note 2 |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth |  | 40 |  |  | 36 |  |  | 28 |  | nm |  |
| ${ }_{\text {Ts }}$ | Speed of Response |  | 90 |  |  | 90 |  |  | 500 |  | ns |  |
| C | Capacitance |  | 16 |  |  | 18 |  |  | 18 |  | pF | $V_{F}=0 ; f=1 \mathrm{MHz}$ |
| Ouc | Thermal Resistance |  | 120 |  |  | 120 |  |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage | 1.6 | 2.2 | 3.0 | 1.6 | 2.2 | 3.0 | 1.6 | 2,3 | 3.0 | V | $I F=20 \mathrm{~mA}$ <br> Figure 2. |
| $V_{\text {R }}$ | Reverse Breakdown Voltage | 5.0 |  |  | 5.0 |  |  | 5.0 |  |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| nv | Luminous Efficacy |  | 145 |  |  | 500 |  |  | 595 |  | Im/W | Note 3 |

## NOTES:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, $\lambda_{\mathrm{d}}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, $\mathrm{I}_{\mathrm{e}}$, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta \mathrm{v}$, where $\mathrm{I}_{\mathrm{v}}$ is the luminous intensity in candelas and $\eta \mathrm{v}$ is the luminous efficacy in lumens/watt.


Figure 1. Relative Intensity vs. Wavelength.

## High Efficiency Red, Yellow and Green Rectangular Lamps


$V_{F}$ - FORWARD VOLTAGE - $V$
Figure 2. Forward Current vs. Forward Voltage.


IDC - DC CURRENT PER LED - mA

Figure 3. Relative Luminous Intensity vs. Forward Current.


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)


Figure 6. Relative Luminous Intensity vs. Angular Displacement.

## Features

- LOW COST, BROAD APPLICATIONS
- LONG LIFE, SOLID STATE RELIABILITY
- LOW POWER REQUIREMENTS: 20 mA @ 1.6V
- HIGH LIGHT OUTPUT:
2.0 mcd Typical for HLMP-3000
4.0 mcd Typical for HLMP-3001
- WIDE AND NARROW VIEWING ANGLE TYPES
- RED DIFFUSED AND NON-DIFFUSED VERSIONS


## Description

The HLMP-3000 series lamps are Gallium Arsenide Phosphide light emitting diodes intended for High Volume/ Low Cost applications such as indicators for appliances, smoke detectors, automobile instrument panels and many other commercial uses.
The HLMP-3000/-3001/-3002/-3003 have red diffused lenses where as the HLMP-3050 has a red non-diffused lens. These lamps can be panel mounted using mounting clip HLMP-0103. The HLMP-3000/-3001 lamps have $.025^{\prime \prime}$ leads and the HLMP-3002/-3003/-3050 have .018" leads.

## NOTES:

1. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

## Package Dimensions

HLMP-3002/-3003/-3050
 NOTES:

1. ALL DIMENSIONS ARE NN MILIMMETRES (INCHES) 2. AN EPOXY MENISCUS MAY EXIEND ABOETT 1 mm ( $0400^{\prime} 9$ DOWN THE LEADS.



## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | $\mathbf{3 0 0 0}$ Series | Units |
| :--- | :---: | :---: |
| Power Dissipation | 100 | mW |
| DC Forward Current (Derate <br> linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ ) | 50 | mA |
| Average Forward Current | 50 | mA |
| Peak Operating Forward Current | 1000 | mA |
| Reverse Voltage (lin $=100 \mu \mathrm{~A}$ ) | 3 | V |
| Transient Forward Current <br> $(10$ <br> $(10 \mathrm{sec}$ Pulse) | 2000 | mA |
| Operating and Storage Temp- <br> erature Range | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |  |
| Lead Solder Temperature $(1.6 \mathrm{~mm}$ <br> $[0.063$ inch] below package base) | $260^{\circ} \mathrm{C}$ for 5 seconds |  |

HLMP-3000/-3001


Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | Device H!MP- | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iv | Luminous Intensity | $\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$ | $\begin{aligned} & 1.0 \\ & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.0 \\ & 2.5 \\ & \hline \end{aligned}$ |  | mcd <br> mcd <br> mcd | $\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & I_{F}=20 \mathrm{~mA} \\ & I_{F}=20 \mathrm{~mA} \end{aligned}$ |
| $2 \Theta_{1 / 2}$ | Included Angle Between 'Half Luminous Intensity Points | $\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \end{gathered}$ |  | $\begin{aligned} & 75 \\ & 75 \\ & 24 \end{aligned}$ |  | Deg. | $\mathrm{IF}=20 \mathrm{~mA}$ |
| $\lambda P$ | Peak Wavelength | $\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \end{gathered}$ |  | $\begin{aligned} & 655 \\ & 655 \\ & 655 \\ & \hline \end{aligned}$ |  | nm | Measurement at Peak |
| $\lambda d$ | Dominant Wavelength | $\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \end{gathered}$ |  | 648 |  | nm |  |
| $\Delta \lambda_{1 / 2}$ | Spectral Lipe Halfwidth | $\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$ |  | 24 |  | nm |  |
| $\tau_{S}$ | Speed of Response | $\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$ |  | 10 |  | ns |  |
| C | Capacitance | $3000 / 3002$ $3001 / 3003$ 3050 |  | 100 |  | pF | $V_{F}=0, f=1 \mathrm{MHz}$ |
| $\Theta_{\text {J }} \mathrm{C}$ | Thermal Resistance | $\begin{gathered} 3000 / 3001 \\ 3002 / 3003 \\ 3050 \end{gathered}$ |  | $\begin{gathered} 95 \\ 120 \\ 120 \\ \hline \end{gathered}$ |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage | $\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \end{gathered}$ | 1.4 | 1.6 | 2.0 | V | $\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$ (Fig. 2) |
| $V_{R}$ | Reverse Breakdown Voltage | $\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \end{gathered}$ | 3.0 | 10 |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |


$V_{F}$ - FORWARD VOLTAGE - VOLTS
Figure 1. Forward Current Versus Forward Voltage


Figure 3. Relative Luminous Intensity Versus Angular Displacement.


Figure 2. Relative Luminous Intensity Versus Forward Current


Figure 4. Relative Luminous Intensity Versus Wavelength.

T-1 3/4 (5mm) DIFFUSED SOLID STATE LAMPS<br>HIGH EFFICIENCY RED - HLMP-3300 SERIES<br>ORANGE - HLMP-D4OO SERIES<br>YELLOW - HLMP-3400 SERIES<br>HIGH PERFORMANCE GREEN - HLMP-3500 SERIES<br>EMERALD GREEN - HLMP-D600 SERIES

TECHNICAL DATA JANUARY 1986

## Features

- HIGH INTENSITY
- CHOICE OF 5 BRIGHT COLORS

High Efficiency Red
Orange
Yellow
High Performance Green Emerald Green

- POPULAR T- $13 / 4$ DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- WIDE VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL



## Description

This family of T-13/4 lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

## Package Dimensions



Notes.

1. ALL DIMENSIONS ARE IN MILLIMETRES GINCHES
2. AN EPOXY MENISCUS MAY EXTEND ABOUT Ymm
t. $040^{\prime} \%$ ) GOWN THE LEADS

## Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | Device HLMP- | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV | Luminous Intensity | High Efficiency Red 3300 <br> 3301 <br> 3762 | $\begin{aligned} & 2.1 \\ & 4.0 \\ & 8.0 \end{aligned}$ | $\begin{gathered} 3.5 \\ 7.0 \\ 15.0 \end{gathered}$ |  | med | $I_{F}=10 \mathrm{~mA}$ |
|  |  | Orange D400 <br> D401 | $\begin{aligned} & 2.1 \\ & 4.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 7.0 \\ & \hline \end{aligned}$ |  |  |  |
|  |  | $\begin{aligned} & \text { Yellow } \\ & 3400 \\ & 3401 \\ & 3862 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 4.0 \\ & 8.0 \\ & \hline \end{aligned}$ | $\begin{array}{r} 4.0 \\ 8.0 \\ 12.0 \\ \hline \end{array}$ |  |  |  |
|  |  | $\begin{aligned} & \text { Green } \\ & 3502 \\ & 3507 \\ & 3962 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 4.2 \\ & 8.0 \end{aligned}$ | $\begin{gathered} 2.4 \\ 5.2 \\ 11.0 \end{gathered}$ |  |  |  |
|  |  | $\begin{aligned} & \text { Emerald Green } \\ & \text { D600 } \\ & \text { D601 } \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 4.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$ |  |  |  |
| 2-1/2 | Including Angle Between Half Luminous Intensity Points | High Efficiency Red |  | 65 |  | Deg. | $I_{F}=10 \mathrm{~mA}$ <br> See Note 1 |
|  |  | Orange |  | 75 |  |  |  |
|  |  | Yellow |  |  |  |  |  |
|  |  | Green |  |  |  |  |  |
|  |  | Emerald Green |  |  |  |  |  |
| $\lambda_{\text {PEAK }}$ | Peak Wavelength | High Efficiency Red Orange <br> Yellow <br> Green <br> Emerald Green |  | $\begin{aligned} & 635 \\ & 612 \\ & 583 \\ & 565 \\ & 555 \\ & \hline \end{aligned}$ |  | nm | Measurement at Peak |
| $\lambda d$ | Dominant Wavelength | High Efficiency Red Orange <br> Yellow <br> Green <br> Emerald Green |  | $\begin{aligned} & 626 \\ & 608 \\ & 585 \\ & 569 \\ & 556 \\ & \hline \end{aligned}$ |  | nm | See Note 2 |
| Ts | Speed of Response | High Efficiency Red <br> Orange <br> Yellow <br> Green <br> Emerald Green |  | $\begin{gathered} 90 \\ 280 \\ 90 \\ 500 \\ 4000 \end{gathered}$ |  | ns |  |
| C | Capacitance | High Efficiency Red Orange Yellow Green Emerald Green |  | $\begin{gathered} \hline 16 \\ 4 \\ 18 \\ 18 \\ 35 \\ \hline \end{gathered}$ |  | pF | $V_{F}=0 ; f=1 \mathrm{MHz}$ |
| $\theta_{\mathrm{Jc}}$ | Thermal Resistance | All |  | 140 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead at Seating Plane |
| $V_{F}$ | Forward Voltage | HER/Orange <br> Yellow <br> Grn/Emerald Grn | $\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$ | V | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |
| $V_{\text {f }}$ | Reverse Breakdown Volt. | All | 5.0 |  |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $\eta_{V}$ | Luminous Efficacy | High Efficiency Red Orange Yellow Green Emerald Green |  | $\begin{aligned} & 145 \\ & 262 \\ & 500 \\ & 595 \\ & 656 \end{aligned}$ |  | $\frac{\text { lumens }}{\text { Watt }}$ | See Note 3 |

## NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, $\lambda_{\mathrm{d}}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, $\mathrm{I}_{\mathrm{e}}$, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta_{\mathrm{V}}$, where $\mathrm{I}_{\mathrm{V}}$ is the luminous intensity in candelas and $\eta_{\mathrm{V}}$ is the luminous efficacy in lumens/watt.

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | HER/Orange | Yellow | Grn/Emerald Grn | Units |
| :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 90 | 60 | 90 | mA |
| Average Forward Current ${ }^{[1]}$ | 25 | 20 | 25 | $m A$ |
| DC Current ${ }^{\|2\|}$ | 30 | 20 | 30 | mA |
| Power Dissipation ${ }^{(31}$ | 135 | 85 | 135 | mW |
| Reverse Voltage ( $I_{R}=100 \mu \mathrm{~A}$ ) | 5 | 5 | 5 | $V$ |
| Transient Forward Current ${ }^{4 / 4}(10 \mu$ sec Pulse) | 500 | 500 | 500 | mA |
| Operating Temperature Range | -55 to +100 | $-5510+100$ | -20 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range |  |  | -55 to +100 |  |
| Lead Soldering Temperature [1.6 mm (0.063 in.) from body] | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. See Figure 5 (Red/Orange), 10 (Yellow) or 15 (Green/Emerald Green) to establish pulsed operating conditions.
2. For Red, Orange, Emerald Green, and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA}{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at 0.2 $\mathrm{mA}{ }^{\circ} \mathrm{C}$.
3. For Red, Orange, Emerald Green, and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.


Figure 1. Relative Intensity vs. Wavelength

## T-13/4 High Efficiency Red, Orange Diffused Lamps


$\mathrm{V}_{\mathrm{F}}$ - FORWARD VOLTAGE - V
Figure 2. Forward Current vs. Forward Voltage Characteristics.


Idc - DC CURRENT PER LED - mA

ipeak - peak current per led - ma

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.


Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings


Figure 6. Relative Luminous Intensity vs. Angular Displacement.

## T-13/4 Yellow Diffused Lamps



Figure 7. Forward Current vs. Forward Voltage Characteristics.


If - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity vs. Forward Current.


Ipeak - peak current - ma
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 11. Relative Luminous Intensity vs. Angular Displacement.

## T-13/4 Green, Emerald Green Diffused Lamps



Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 15. Maximum Tolerable Peak Current vs. Pulse
Duration. (IDC MAX as per MAX Ratings)
Figure 15. Maximum Tolerable Peak Current vs. Pulse
Duration. (IDC MAX as per MAX Ratings)


peak - Peak current per led - ma
Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.


Ipeak - PEak Current per led -ma
Figure 13. Relative Luminous Intensity vs. DC Forward Current.

HEWLETT PACKARD

## T-1 3/4 (5mm) LOW PROFILE SOLID STATE LAMPS

## RED - HLMP-3200 SERIES <br> HIGH EFFICIENCY RED • HLMP-3350 SERIES <br> YELLOW - HLMP-3450 SERIES HIGH PERFORMANCE GREEN - HLMP-3550 SERIES

## Features

- HIGH INTENSITY
- LOW PROFILE: 5.8 mm ( 0.23 in ) NOMINAL
- T-13/4 DIAMETER PACKAGE
- DIFFUSED AND NON-DIFFUSED TYPES
- GENERAL PURPOSE LEADS
- IC COMPATIBLE/LOW CURRENT REQUIREMENTS
- RELIABLE AND RUGGED



## Description

The HLMP-3200 Series are Gallium Arsenide Phosphide Red Light Emitting Diodes with a red diffused lens.

The HLMP-3350 Series are Gallium Arsenide Phosphide on Gallium Phosphide High Efficiency Red Light Emitting Diodes.

The HLMP-3450 Series are Gallium Arsenide Phosphide on Gallium Phosphide Yellow Light Emitting Diodes.

## Package Dimensions



The HLMP-3550 Series are Gallium Phosphide Green Light Emitting Diodes.

The Low Profile T-13/4 package provides space savings and is excellent for backlighting applications.

| Part Number HLMP. | Application | Lens | Color |
| :---: | :---: | :---: | :---: |
| 3200 | Indicator General Purpose | Tinted Diffused Wide Angle | Red |
| 3201 | Indicator High Brightness |  |  |
| 3350 | Indicator General Purpose | Tinted Diffused Wide Angle | High <br> Efficiency <br> Red |
| 3351 | Indicator High Brightness |  |  |
| 3365 | General Purpose Point Source | Tinted <br> Non-diffused Narrow Angle |  |
| 3366 | High Brightness Annunciator |  |  |
| 3450 | Indicator General Purpose | Tinted Diffused Wide Angle | Yellow |
| 3451 | Indicator High Brightness |  |  |
| 3465 | General Purpose Point Source | Tinted Non-diffused Narrow Angle |  |
| 3466 | High Brightness Annunciator |  |  |
| 3553 | Indicator General Purpose | Tinted Diffused Wide Angle | Green |
| 3554 | Indicator High Brightness |  |  |
| 3567 | General Purpose <br> Point Source | Tinted <br> Non-diffused <br> Narrow Angle |  |
| 3568 | High Brightness Annunciator |  |  |

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | 3200 Series | 3350 Series | 3450 Series | 3550 Series | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 1000 | - 90 | 60 | 90 | mA |
| Average Forward Current ${ }^{11}$ ] | 50 | 25 | 20 | 25 | mA |
| DC Current ${ }^{21}$ | 50 . | 30 | 20 | 30 | mA |
| Power Dissipation ${ }^{31}$ ] | 100 | 135 | - 85 | 135 | mW |
| Reverse Voltage ( $\left.\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$. | - 3 | . 5 | - 5 | 5 | $V$. |
| Transient Forward Current ${ }^{14 \mid}$ ( $10 \mu \mathrm{sec}$ Pulse) | . 2000 | 500 | 500 | 500 | mA |
| Operating Temperature Range Storage Temperature Range | - -55 to +100 | -55 to +100 | -55 to +100 | $\begin{aligned} & -20 \text { to }+100 \\ & -55 \text { to }+100 \end{aligned}$ | ${ }^{\circ} \mathrm{O}$ |
| Lead Soldering Temperature [ 1.6 mm ( 0.063 in .) from body] | *. $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |  |

## NOTES:

1. See Figure 5 (Red), 10 (High Efficiency Red), 15 (Yellow) or 20 (Green) to establish pulsed operating conditions.
2. For High Efficiency Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Red and Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
3. For High Efficiency Red and Green Series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Red and Yellow Series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak current beyond the peak forward current listed in the Absolute Maximum Ratings.


Figure 1. Relative Intensity versus Wavelength.

## RED HLMP-3200 SERIES

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | Device HLMP. | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV | Axial Luminous Intensity | 3200 | 1.0 | 2.0 |  | mod | $\mathrm{IF}=20 \mathrm{~mA}$ (Figure 3 ) |
|  |  | 3201 | 2.0 | 4.0 |  |  |  |
| 201/2 | Included Angle Between Half Luminous Intensity Points |  |  | 60 |  | deg. | Note 1 (Figure 6) |
| $\lambda_{P}$ | Peak Wavelength |  |  | 655 |  | nm | Measurement at Peak (Fig. 1) |
| $\lambda \mathrm{d}$ | Dominant Wavelength |  |  | 648 |  | nm | Note 2 |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth |  |  | 24 |  | nm |  |
| Ts | Speed of Response |  |  | 10 |  | ns |  |
| C | Capacitance |  |  | 100 |  | pF | $V_{F}=0 ; \mathrm{f}=1 \mathrm{MHz}$ |
| $\theta \mathrm{Jc}$ | Thermal Resistance |  |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage |  | 1.4 | 1.6 | 2.0 | V | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ (Fig. 2) |
| $V_{R}$ | Reverse Breakdown Voltage |  | 3 | 10 |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $\eta \mathrm{V}$ | Luminous Efficacy |  |  | 65 |  | Im/W | Note 3 |

Notes: $1 . \theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, $\lambda_{d}$, is derived from the CiE chromaticity diagram and represents the single wavelength which defines the color of the device. 3 . Radiant Intensity $l_{e}$, in watts/steradian may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where $I_{V}$ is the luminous intensity in candelas and $\eta_{V}$ is the luminous efficacy in lumens/watt.


Figure 2. Forward Current versus Forward Voltage.


Figure 5. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.


Figure 6. Relative Luminous Intensity versus Angular Displacement.

## HIGH EFFICIENCY RED HLMP-3350 SERIES <br> Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | Device HLMP. | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iv | Axial Luminous Intensity | 3350 3351 3365 3366 | $\begin{gathered} 2.0 \\ 5.0 \\ 7.0 \\ 12.0 \end{gathered}$ | $\begin{gathered} 3.5 \\ 7.0 \\ 10.0 \\ 18.0 \end{gathered}$ | = | $\mathrm{mcd}$ | $I_{F}=10 \mathrm{~mA}(\text { Fig. } 8)$ |
| $2 \theta_{1 / 2}$ | Included Angle Between Half Luminous Intensity Points | $\begin{aligned} & 3350 \\ & 3351 \\ & 3365 \\ & 3366 \end{aligned}$ |  | $\begin{aligned} & 50 \\ & 50 \\ & 45 \\ & 45 \\ & \hline \end{aligned}$ |  | Deg. | Note 1 (Fig. 11) |
| $\lambda P$ | Peak Wavelength |  |  | 635 |  | nm | Measurement at Peak (Fig. 1) |
| $\lambda_{d}$ | Dominant Wavelength |  |  | 626 |  | nm | Note 2 |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth |  |  | 40 |  | nm |  |
| Ts | Speed of Response |  |  | 90 |  | ns |  |
| C | Capacitance |  |  | 16 |  | pF | $V_{F}=0 ; f=1 \mathrm{MHz}$ |
| $\theta \mathrm{Jc}$ | Thermal Resistance |  |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage |  | 1.5 | 2.2 | 3.0 | V | IF $=10 \mathrm{~mA}$ (Fig. 7) |
| $V_{R}$ | Reverse Breakdown Voltage |  | 5.0 |  |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $\eta v$ | Luminous Efficacy |  |  | 145 |  | Im/W | Note 3 |

Notes: $1 . \theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity $\mathrm{I}_{\mathrm{e}}$, in watts/steradian may be found from the equation $I_{e}=I_{V} / \eta_{v}$, where $I_{V}$ is the luminous intensity in candelas and $\eta_{v}$ is the luminous efficacy in lumens/watt.


Figure 11. Relative Luminous Intensity versus Angular Displacement.

## YELLOW HLMP-3450 SERIES <br> Electrical Specifications at $T_{A}=25^{\circ} \mathrm{C}$

| Symbol | Description | Device HLMP- | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV | Axial Luminous Intensity | $\begin{aligned} & 3450 \\ & 3451 \\ & 3465 \\ & 3466 \end{aligned}$ | $\begin{gathered} \hline 2.5 \\ 6.0 \\ 6.0 \\ 12.0 \\ \hline \end{gathered}$ | $\begin{gathered} 4.0 \\ 10.0 \\ 12.0 \\ 18.0 \end{gathered}$ |  | mod | IF $=10 \mathrm{~mA}$ (Fig. 13 ) |
| $2 \theta_{1 / 2}$ | Included Angle Between Half Luminous Intensity Points | $\begin{aligned} & 3450 \\ & 3451 \\ & 3465 \\ & 3466 \end{aligned}$ |  | $\begin{aligned} & 50 \\ & 50 \\ & 45 \\ & 45 \end{aligned}$ |  | Deg. | Note 1 (Fig. 16) |
| $\lambda \mathrm{P}$ | Peak Wavelength |  |  | 583 |  | nm | Measurement at Peak (Fig. 1) |
| $\lambda_{d}$ | Dominant Wavelength |  |  | 585 |  | nm | Note 2 |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth |  |  | 36 |  | nm |  |
| $\tau_{S}$ | Speed of Response |  |  | 90 |  | ns |  |
| C | Capacitance |  |  | 18 |  | pF | $V_{F}=0 ; f=1 \mathrm{MHz}$ |
| QJc | Thermal Resistance |  |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage |  | 1.5 | 2.2 | 3.0 | V | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 12) |
| $V_{R}$ | Reverse Breakdown Voltage |  | 5.0 |  |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $\eta \mathrm{V}$ | Luminous Efficacy |  |  | 500 |  | Im/W | Note 3 |

Notes: 1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, $\lambda_{d}$, is derived from the $C I E$ chromaticity diagram and represents the single wavelength which defines the color of the device. 3 . Radiant Intensity $I_{e}$, in watts/steradian may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where $I_{v}$ is the luminous intensity in candelas and $\eta_{v}$ is the luminous efficacy in lumens/watt.


Figure 12. Forward Current versus Forward Voltage.

$I_{F}$ - FORWARD CURRENT - mA
Figure 13. Relative Luminous Intensity versus Forward Current.

$t_{\mathrm{p}}$ - PULSE DURATION - $\mu \mathrm{s}$

Figure 15. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings).


Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.


Figure 16. Relative Luminous Intensity versus Angular Displacement

## GREEN HLMP-3550 SERIES <br> Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | Device HLMP. | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iv | Axial Luminous Intensity | $\begin{aligned} & 3553 \\ & 3554 \\ & 3567 \\ & 3568 \end{aligned}$ | $\begin{gathered} 1.6 \\ 6.7 \\ 4.2 \\ 10.6 \end{gathered}$ | $\begin{gathered} 3.2 \\ 10.0 \\ 7.0 \\ 15.0 \end{gathered}$ |  | med | $I F=10 \mathrm{~mA}(\text { Fig. } 18)$ |
| $2 \theta_{1 / 2}$ | Included Angle Between Half Luminous Intensity Points | $\begin{aligned} & 3553 \\ & 3554 \\ & 3567 \\ & 3568 \end{aligned}$ |  | $\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 40 \end{aligned}$ |  | Deg. | Note 1 (Figure 21) |
| $\lambda p$ | Peak Wavelength |  |  | 565 |  | nm | Measurement at Peak (Fig. 1) |
| $\lambda_{d}$ | Dominant Wavelength |  |  | 569 |  | nm | Note 2 |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth |  |  | 28 |  | nm |  |
| ${ }_{\text {T }}$ | Speed of Response |  |  | 500 |  | ns | W |
| C | Capacitance |  |  | 18 |  | pF | $V_{F}=0 ; \mathrm{f}=1 \mathrm{MHz}$ |
| $\theta \mathrm{Jc}$ | Thermal Resistance |  |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage |  | 1.6 | 2.3 | 3.0 | $V$ | $I_{\text {F }}=10 \mathrm{~mA}$ (Fig. 17) |
| $V_{R}$ | Reverse Breakdown Voltage |  | 5.0 |  |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $\eta \vee$ | Luminous Efficacy |  |  | 595 |  | Im/W | Note 3 |

Notes: $1 . \theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity $I_{e}$, in watts/steradian may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where $I_{v}$ is the luminous intensity in candelas and $\eta_{v}$ is the luminous efficacy in lumens/watt.

(hi HEWLETT
PACKARD

## Features

- WIDE VIEWING ANGLE
- SMALL SIZE T-1 DIAMETER 3.18 mm (0.125")
- IC COMPATIBLE
- RELIABLE AND RUGGED


## Description

The HLMP-1000 is a series of Gallium Arsenide Phosphide Light Emitting Diodes designed for applications where space is at a premium, such as in high density arrays.
The HLMP-1000 series is available in three lens configurations.
HLMP-1000 - Red Diffused lens provides excellent on-off contrast ratio, high axial luminous intensity, and wide viewing angle.

HLMP-1080 - Same as HLMP-1000, but untinted diffused to mask red color in the "off" condition.
HLMP-1071/-1201 - Untinted non-diffused plastic lens provides a point source. Useful when illuminating external lens, annunciators, or photo-detectors.

| Part <br> Number <br> HLMP- |  <br> Lens Type | IV (mcd) <br> @ 20 mA |  | Typ. <br> Viewing <br> Angle <br> $\mathbf{2 \Theta 1 / 2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | .5 | 1.0 |
| -1000 | A-Tinted <br> Diffused | $125^{\circ}$ |  |  |
| -1002 | A-Tinted <br> Diffused | 1.5 | 2.5 | $125^{\circ}$ |
| -1080 | A-Untinted <br> Diffused | .5 | 1.5 | $125^{\circ}$ |
| -1071 | A-Untinted <br> Non-Diffused | 1.0 | 2.0 | $80^{\circ}$ |
| -1200 | B-Untinted <br> Non-Diffused | .5 | 1.0 | $120^{\circ}$ |
| -1201 | B-Untinted <br> Non-Diffused | 1.5 | 2.5 | $120^{\circ}$ |



Figure A .


Figure B.

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES) AN EPOXY MENISCUS MAY EXTEND ABOUT Imm $.040^{\circ}$ ) DOWN THE LEADS

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | $\mathbf{1 0 0 0}$ Series | Units |
| :--- | :---: | :---: |
| Power Dissipation | 100 | mW |
| DC Forward Current [1] | 50 | mA |
| Average Forward Current | 50 | mA |
| Peak Operating Forward Current | 1000 | mA |
| Reverse Voltage (IR $=100 \mu \mathrm{~A})$ | 3 | V |
| Transient Forward Current $11(10 \mu \mathrm{sec}$ Pulse) | 2000 | mA |
| Operating and Storage Temperature Range | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |  |
| Lead Solder Temperature $(1.6 \mathrm{~mm}[0.063$ inch] below package base) | $260^{\circ} \mathrm{C}$ for 5 seconds |  |

Note:

1. Derate linerarly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Parameters | Min. | Typ. | Max. | Units | Test Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| $\lambda_{\mathrm{P}}$ | Peak Wavelength |  | 655 |  | nm | Measurement at Peak |
| $\lambda_{d}$ | Dominant Wavelength |  | 648 |  | nm |  |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth |  | 24 |  | nm |  |
| $\tau_{\mathrm{s}}$ | Speed of Response |  | 10 |  | ns |  |
| C | Capacitance |  | 100 |  | pF | $\mathrm{VF}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$ |
| $\theta_{\mathrm{JC}}$ | Thermal Resistance |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{\mathrm{F}}$ | Forward Voltage | 1.4 | 1.6 | 2.0 | V | $\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$ |
| $V_{R}$ | Reverse Breakdown Voltage | 3 | 10 |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |



FORWARD CURRENT - VOLTAGE CHARACTERISTICS

Figure 4. Relative Luminous Intensity vs. Angular Displacement.

Figure 1. Forward Current vs. Voltage Characteristic.


Figure 2. Luminous Intensity vs Forward Current (IF).

HLMP-1200/-1201


Figure 3. Typical Relative Luminous Intensity vs. Angular Displacement.

## Features

- HIGH INTENSITY
- CHOICE OF 5 BRIGHT COLORS

High Efficiency Red
Orange
Yellow
High Performance Green
Emerald Green

- POPULAR T-1 DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- WIDE VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL


## Package Dimensions



NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES INCHESI.
2. AN EPOXY MENISCUS MAAY EXYENO ABOUT 1 mm $\left(0.040^{\circ}\right)$ DOWN THE LEADS.


## Description

This family of T-1 lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

| Part Number HLMP. | Application | Minimum Intensity (mcd) at 10 mA | Color (Material) |
| :---: | :---: | :---: | :---: |
| 1300 | General Purpose | 1.0 | High Efficiency Red (GaAsP on GaP ) |
| 1301 | General Purpose | 2.0 |  |
| 1302 | High Ambient | 3.0 |  |
| 1385 | Premium Lamp | 6.0 |  |
| K400 | General Purpose | 1.0 | Orange (GaAsP on GaP) |
| K401 | High Ambient | 2.0 |  |
| K402 | Premium Lamp | 3.0 |  |
| 1400 | General Purpose | 1.0 | Yellow (GaAsP on GaP ) |
| 1401 | General Purpose | 2.0 |  |
| 1402 | High Ambient | 3.0 |  |
| 1485 | Premium Lamp | 6.0 |  |
| 1503 | General Purpose | 1.0 | Green (GaP) 565 nm |
| 1523 | High Ambient | 2.6 |  |
| 1585 | Premium Lamp | 4.0 |  |
| K600 | General Purpose | 1.0 | Emerald Green (GaP) 555 nm |
| K601 | High Ambient | 2.0 |  |

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$


## NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, $\mathrm{I}_{\mathrm{e}}$, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta_{\mathrm{V}}$, where $\mathrm{I}_{\mathrm{V}}$ is the luminous intensity in candelas and $\eta_{\mathrm{V}}$ is the luminous efficacy in lumens/watt.

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | HER/Orange | Yellow | Grn/Emerald Grn | Units |
| :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 90 | 60 | 90 | mA |
| Average Forward Current ${ }^{\|1\|}$ | 25 | 20 | 25 | mA |
| DC Current ${ }^{[2]}$ | 30 | 20 | 30 | mA |
| Power Dissipation ${ }^{(3]}$ | 135 | 85 | 135 | mW |
| Reverse Voltage $\left.{ }^{\prime} \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$ | 5 | 5 | 5 | V |
| Transient Forward Current ${ }^{(41}(10 \mu \mathrm{sec}$ Pulse) | 500 | 500 | 500 | mA |
| Operating Temperature Range |  |  | -20 to +100 |  |
| Storage Temperature Range |  | , | -55 to +100 |  |
| Lead Soldering Temperature [1.6 mm (0.063 in.) from body\| | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. See Figure 5 (Red/Orange), 10 (Yellow) or 15 (Green/Emerald Green) to establish pulsed operating conditions.
2. For Red, Orange, Emerald Green, and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at 0.2 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$.
3. For Red, Orange, Emerald Green, and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.


Figure 1. Relative Intensity vs. Wavelength

## T-1 High Efficiency Red, Orange Diffused Lamps


$V_{F}$ - FORWARD VOLTAGE - $V$
Figure 2. Forward Current vs. Forward Voltage Characteristics.


Ioc - DC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current.


IPEAK - PEAK CURRENT PER LED - mA
Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.


Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings).

## T-1 Yellow Diffused Lamps



Figure 7. Forward Current vs. Forward Voltage Characteristics.


Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)


Figure 8. Relative Luminous Intensity vs. Forward Current.


Ipeak - PEAK CURRENT - ma
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 11. Relative Luminous Intensity vs. Angular Displacement.

## T-1 Green, Emerald Green Diffused Lamps


$V_{F}$ - FORWARD VOLTAGE - $V$
Figure 12. Forward Current vs. Forward Voltage Characteristics.


Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (loc MAX as per MAX Ratings.)


Ipeak - PEAK current per Led - ma
Figure 13. Relative Luminous Intensity vs. Forward Current.


Ipeak - PEAK Current per Led -mA
Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.


Figure 16. Relative Luminous Intensity vs. Angular Displacement.

## PACKARD

## High Efficiency Red HLMP-1350 <br> Yellow <br> HLMP-1450 <br> High Performance Green HLMP-1550

## Features

- LOW PROFILE HEIGHT
- SMALL T-1 SIZE DIAMETER 3.18 mm (. 125 inch )
- HIGH INTENSITY
- IC COMPATIBLE
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red
Yellow
High Performance Green

## Description

This family of solid state lamps is especially suited for applications where small package size is required without sacrificing luminous intensity. The HLMP-1350 is a red tinted, diffused lamp providing a wide viewing angle. The HLMP-1450 and HLMP-1550 are similar products in yellow and green respectively.

## Package Dimensions



## Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

| Part <br> Number <br> HLMP- | Description | IV (mod) <br> Condition <br> mA |  | 201/2 <br> (Typ.) <br> [1] | (nd <br> (nm-Typ.) <br> [2] | Color |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1350 | Tinted, Wide Angle | 1.0 | 2.0 | 10 | $55^{\circ}$ | 626 | High Efficiency <br> Red |
| 1450 | Tinted, Wide Angle | 1.0 | 2.0 | 10 | $55^{\circ}$ | 585 | Yellow |
| 1550 | Tinted, Wide Angle | 1.0 | 2.0 | 10 | $55^{\circ}$ | 569 | Green |

## NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial intensity.
2. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

For Maximum Ratings and Electrical/Optical Characteristics (including figures) see HLMP-1300/-1400/-1500 data sheet, publication number 5953-7735, except for Figure A shown here.


Figure A. Relative Luminous Intensity vs. Angular Displacement.

# SUBMINIATURE SOLID STATE LAMPS 

RED • HLMP-6000/6001<br>HIGH EFFICIENCY RED - HLMP-6300<br>ORANCE - HLMP-Q400<br>YELLOW - HLMP-6400<br>HIGH PERFORMANCE GREEN - HLMP-6500 EMERALD GREEN - HLMP-Q600

TECHNICAL DATA JANUARY 1986

## Features

- SUBMINIATURE PACKAGE STYLE
- END STACKABLE
- LOW PACKAGE PROFILE
- AXIAL LEADS
- WIDE VIEWING ANGLE
- LONG LIFE - SOLID STATE RELIABILITY
- AVAILABLE IN BULK OR ON TAPE AND REEL


## Description

Lamps in this series of solid state indicators are encapsulated in an axial lead subminiature package of molded epoxy. They utilize a tinted, diffused lens providing high on-off contrast and wide angle viewing. Small size makes these lamps suitable for PC board mounting in space sensitive applications.
Special lead bending, packaging and assembly methods can be used with these devices. For example, lead bending on $2.54 \mathrm{~mm}(0.100 \mathrm{in})$ and $5.08 \mathrm{~mm}(0.200 \mathrm{in})$ centers is available. Two special surface mount lead configurations are also available. See the data sheets for "gull wing" and "yoke lead" options for more detailed information.
Tape and reel packaging for the standard product is described in this data sheet. Similar packaging for the surface mountable "gull wing" and "yoke lead" versions is described in the respective surface mount data sheets.


5

## Package Dimensions

## OUTLINE A (SINGLE LED)



## OUTLINE B (TAPE AND REEL)



NOTES:

1. LED'S MUST FALL WITHIN $\pm 0.031^{\prime \prime}$ OF A COMMON CENTER. 2. OPTIONAL LEAD FORM IS AVAILABLE.


Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Parameter | Device HLMP- | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iv | Luminous Intensity | Standard Red 6000 <br> 6001 | $\begin{aligned} & 0.5 \\ & 1.3 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 3.2 \\ & \hline \end{aligned}$ |  | med | $l_{F}=10 \mathrm{~mA}$ <br> (Figures 3, 8, 13, 18) |
|  |  | High Efficiency Red 6300 | 1.0 | 3.0 |  |  |  |
|  |  | Orange Q400 | 1.0 | 3.0 |  |  |  |
|  |  | Yellow $6400$ | 1.0 | 3.0 |  |  |  |
|  |  | Green $6500$ | 1.0 | 3.0 |  |  |  |
|  |  | Emerald Green Q600 | 1.0 | 2.5 |  |  |  |
| 201/2 | Including Angle Between Half Luminous Intensity Points | All |  | 90 |  | Deg. | See Note 1 <br> (Figures 6, 11, 16, 21) |
| $\lambda_{\text {PEAK }}$ | Peak Wavelength | Standard Red <br> High Efficiency Red <br> Orange <br> Yellow <br> Green <br> Emerald Green |  | $\begin{aligned} & 655 \\ & 635 \\ & 612 \\ & 583 \\ & 565 \\ & 555 \end{aligned}$ |  | nm | Measurement at Peak |
| $\lambda d$ | Dominant Wavelength | Standard Red <br> High Efficiency Red <br> Orange <br> Yellow <br> Green <br> Emerald Green |  | 640 626 608 585 569 556 |  | nm | See Note 2 |
| Ts | Speed of Response | Standard Red <br> High Efficiency Red <br> Orange <br> Yellow <br> Green <br> Emerald Green |  | $\begin{gathered} 15 \\ 90 \\ 260 \\ 90 \\ 500 \\ 4000 \end{gathered}$ |  | ns |  |
| C | Capacitance | Standard Red <br> High Efficiency Red Orange <br> Yellow <br> Green <br> Emerald Green |  | $c$ 100 11 4 15 18 35 |  | pF | $V_{F}=0 ; f=1 \mathrm{MHz}$ |
| $\theta_{\mathrm{JC}}$ | Thermal Resistance | All |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage | Standard Red <br> High Efficiency Red <br> Orange <br> Yellow <br> Green <br> Emerald Green | $\begin{aligned} & 1.4 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$ | 1.6 2.2 2.2 2.2 2.3 2.2 | 2.0 3.0 3.0 3.0 3.0 3.0 | V | $I_{F}=10 \mathrm{~mA}$ <br> (Figures 2, 7, 12, 17) |
| $V_{R}$ | Reverse Breakdown Voltage | All | 5.0 |  |  | V | $I_{R}=100 \mu \mathrm{~A}$ |
| $\eta v$ | Luminous Efficacy | Standard Red <br> High Efficiency Red <br> Orange <br> Yellow <br> Green <br> Emerald Green |  | $\begin{gathered} 65 \\ 145 \\ 262 \\ 500 \\ 595 \\ 656 \end{gathered}$ |  | $\frac{\text { lumens }}{\text { Watt }}$ | See Note 3 |

Notes on following page.

## NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, $\mathrm{I}_{\mathrm{e}}$, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta_{\mathrm{V}}$. Where $\mathrm{I}_{\mathrm{V}}$ is the luminous intensity in candelas and $\eta_{\mathrm{V}}$ is the luminous efficacy in lumens/watt.

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | $\begin{gathered} \text { Red } \\ \text { HLMP-6000/1 } \end{gathered}$ | High Eff. Red HLMP-6300 | Orange HLMP-Q400 | Yellow HLMP-6400 | $\begin{gathered} \text { Green } \\ \text { HLMP-6500 } \end{gathered}$ | $\begin{aligned} & \text { Emerald Green } \\ & \text { HLMP- } 0600 \end{aligned}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Dissipation | 100 | 135 | 135 | 85 | 135 | 135 | mW |
| DC Forward Current | $50^{11]}$ | $30^{121}$ | $30^{121}$ | $20^{111}$ | $30^{[2]}$ | $30^{121}$ | mA |
| Peak Forward Current | $\begin{gathered} 1000 \\ \text { See Fig. } 5 \end{gathered}$ | $\begin{gathered} 90 \\ \text { See Fig. } 10 \end{gathered}$ | $\begin{gathered} 90 \\ \text { See Fig. } 10 \end{gathered}$ | $\begin{gathered} 60 \\ \text { See Fig. } 15 \end{gathered}$ | $\begin{gathered} 90 \\ \text { See Fig. } 20 \end{gathered}$ | $\begin{gathered} 90 \\ \text { See Fig. } 20 \end{gathered}$ | mA |
| Reverse Voltage ( $\left.l_{R}=100 \mu \mathrm{~A}\right)$ | 3 | 5 | 5 | 5 | 5 | 5 | $\checkmark$ |
| Transient Forward Current ${ }^{(3)}$ ( $10 \mu \mathrm{sec}$ Pulse) | 2000 | 500 | 500 | 500 | 500 | 500 | mA |
| Operating Temperature Range | -55 to +100 | -55 to +100 | -55 to +100 | -55 to +100 | -20 to +100 | -20 to +100 |  |
| Storage Temperature Range |  |  |  |  | -55 to +100 | -55 to +100 |  |
| Lead Soldering <br> Temperature $1.6 \mathrm{~mm}\{0.063$ <br> in. from body] | $260^{\circ} \mathrm{C}$ for 3 seconds |  |  |  |  |  |  |

## NOTES:

1. Derate from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak current beyond the peak forward current listed in the Absolute Maximum Ratings.


Figure 1. Relative Intensity vs. Wavelength

## Standard Red HLMP-6000/6001


$V_{F}$ - FORWARD VOLTAGE - VOLTS
Figure 2. Forward Current vs. Forward Voltage.


$t_{p}$ - PULSE DURATION - $\mu \mathrm{s}$
Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 3. Relative Luminous Intensity vs. Forward Current.


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 6. Relative Luminous Intensity vs. Angular Displacement.

## High Efficiency Red HLMP-6300, Orange HLMP-Q400


$V_{F}$ - FORWARD VOLTAGE $-v$
Figure 7. Forward Current vs. Forward Voltage Characteristics


Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

loc - dC current per led - ma
Figure 8. Relative Luminous Intensity vs. Forward Current.


Peak - peak current - ma
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 11. Relative Luminous Intensity vs. AngularDisplacement.

## Yellow HLMP-6400



Figure 12. Forward Current vs. Forward Voltage Characteristics


Figure 15. Maximum Tolerable Peak Current vs. Puise Duration. (IDC MAX as per MAX Ratings)


Figure 13. Relative Luminous Intensity vs. Forward Current.

$I_{\text {PEAK }}$ - PEAK CURRENT - mA
Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.


Figure 16. Relative Luminous Intensity vs.AngularDisplacement.

## Green HLMP-6500, Emerald Green HLMP-Q600



Figure 17. Forward Current vs. Forward Voltage.


Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 18. Relative Luminous Intensity vs. DC Forward Current


Figure 19. Relatiave Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current


Figure 21. Relative Luminous Intensity vs. Angular Displacement.

## Features

- IMPROVED BRIGHTNESS
- AVAILABLE IN 4 BRIGHT COLORS

Red
High Efficiency Red
Yellow
High Performance Green

- EXCELLENT UNIFORMITY BETWEEN ELEMENTS
- END STACKABLE FOR LONGER ARRAYS
- SELECTION OF VARIOUS LENGTHS
- COMPACT SUBMINIATURE PACKAGE STYLE
- NO CROSSTALK BETWEEN ELEMENTS



## Description

The HLMP-6XXX Series Arrays are comprised of several subminiature lamps molded as a single bar. Arrays are tested to assure 2.1 to 1 matching between elements and intensity binned for matching between arrays.
The HLMP-620X Series Arrays are Gallium Arsenide Phosphide red light emitting diodes. The HLMP-665X, HLMP-675X series arrays are Gallium Arsenide Phosphide on Gallium Phosphide red and yellow light emitting diodes. The HLMP-685X series arrays are Gallium Phosphide green light emitting diodes.
Each element has separately accessible leads and a diffused lens which provides a wide viewing angle and a high on/off contrast ratio. The center-to-center spacing is 2.54 mm (. 100 in .) between elements. Special lead bending is available on $2.54 \mathrm{~mm}(.100 \mathrm{in}$.) and 5.08 mm (. 200 in .) centers.

| Array <br> Length | Red | High <br> Efficiency <br> Red | Yellow | High <br> Performance <br> Green |
| :---: | :---: | :---: | :---: | :---: |
| 3-Element HLMP- | 6203 | 6653 | 6753 | 6853 |
| 4-Element HLMP- | 6204 | 6654 | 6754 | 6854 |
| 5-Element HLMP- | 6205 | 6655 | 6755 | 6855 |
| 6-Element HLMP- | 6206 | 6656 | 6756 | 6856 |
| 8-Element HLMP- | 6208 | 6658 | 6758 | 6858 |

## Applications

- INDUSTRIAL CONTROLS
- POSITION INDICATORS
- OFFICE EQUIPMENT
- INSTRUMENTATION LOGIC INDICATORS
- CONSUMER PRODUCTS


## Axial Luminous Intensity and Viewing Angle at $25^{\circ} \mathrm{C}$

| Part Number | Number of Elements | Color | IV per Element (med) <br> @ 10 mA DC |  | $\begin{gathered} 2 \Theta 1 / 2 \\ \text { Note } 1 . \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. |  |
| HLMP-620X | $\begin{gathered} x=3,4, \\ 5,6,8 \end{gathered}$ | Red | . 5 | 1.2 | $90^{\circ}$ |
| HLMP-665X | $\begin{gathered} x=3,4 \\ 5,6,8 \end{gathered}$ | $\begin{gathered} \text { High } \\ \text { Efficiency } \\ \text { Red } \end{gathered}$ | 1.0 | 3.0 | $90^{\circ}$ |
| HLMP-675X | $\begin{gathered} x=3,4 \\ 5,6,8 \end{gathered}$ | Yellow | 1.0 | 3.0 | $90^{\circ}$ |
| HLMP-685X | $\begin{gathered} x=3,4 \\ 5,6,8 \end{gathered}$ | Green | 1.0 | 3.0 | $90^{\circ}$ |

NOTE:

1. $\Theta 1 / 2$ is the off-axis angle at which the Luminous Intensity is half the axial luminous intensity.

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Red | High Efficiency Red | Yellow | Green | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 1000 | 90 | 60 | 90 | mA |
| DC Current | 5011 | $30^{121}$ | 2011 | $30 \mid 2]$ | mA |
| Power Dissipation | 100 | 135 | 85 | 135 | mW |
| Reverse Voltage ( $\left.\mathrm{IR}^{=}=100 \mu \mathrm{~A}\right)$ | 3 | 5 | 5 | 5 | V |
| Transient Forward Voltage (10 $\mu \mathrm{sec}$ Pulse) | $2000^{131}$ | 500131 | $500 \mid 31$ | $500{ }^{3]}$ | mA |
| Operating Temperature Range | -55 to +100 | -55 to +100 | -55 to +100 | -20 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | -55 to +100 | - $10+100$ | - $10+100$ | -55 to +100 | C |
| Lead Soldering Temperature 1.6 mm \| 0.063 in.$)$ from body | $260^{\circ} \mathrm{C}$ for 3 seconds |  |  |  |  |

NOTES: | 1. Derate from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. - 2. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.


Figure 1. Relative Intensity vs. Wavelength.

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | HLMP-62XX |  |  | HLMP-665X |  |  | HLMP-675X |  |  | HLMP-685X |  |  | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |
| $\lambda P$ | Peak Wavelength |  | 655 |  |  | 635 |  |  | 583 |  |  | 565 |  | nm | Measurement at Peak |
| 入o | Dominant Wavelength |  | 648 |  |  | 626 |  |  | 585 |  |  | 569 |  | nm | Note 1 |
| $\Delta \lambda_{1 / 2}$ | Spectral Line Halfwidth |  | 24 |  |  | 40 |  |  | 36 |  |  | 28 |  | nm |  |
| Ts | Speed of Response |  | 10 |  |  | 90 |  |  | 90 |  |  | 500 |  | ns |  |
| C | Capacitance |  | 100 |  |  | 16 |  |  | 18 |  |  | 18 |  | pF | $V_{F}=0 ; \mathrm{f}=1 \mathrm{MHz}$ |
| O)JC | Thermal Resistance |  | 120 |  |  | 120 |  |  | 120 |  |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| VF | Forward Voltage | 1.4 | 1.6 | 2.0 | 1.5 | 2.2 | 3.0 | 1.5 | 2,2 | 3.0 | 1.5 | 2.3 | 3.0 | V | $\begin{array}{\|l\|} \hline l F=10 \mathrm{~mA} \\ \text { Figures } 2,7,12,17 \\ \hline \end{array}$ |
| VR | Reverse Breakdown Voltage | 3.0 | 10 |  | 5.0 |  |  | 5.0 |  |  | 5.0 |  |  | V | $\mathrm{l}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $\eta \mathrm{V}$ | Luminous Efficacy |  | 65 |  |  | 145 |  |  | 500 |  |  | 595 |  | $\operatorname{lm} / \mathrm{W}$ | Noter 2 |

NOTES:

1. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, $I_{e}$, in watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where $I_{v}$ is the luminous intensity in candelas and $\eta_{v}$ is the luminous efficacy in lumens/watt.

## Package Dimensions




## Red HLMP-62XX Series


$V_{F}$ - FORWARD VOLTAGE - VOLTS
Figure 2. Forward Current vs. Forward Voltage.


Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 3. Relative Luminous Intensity vs. Forward Current.


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 6. Relative Luminous Intensity vs. Angular Displacement.

## High Efficiency Red HLMP-665X Series


$\mathrm{V}_{\mathrm{F}}$ - FORWARD VOLTAGE -V
Figure 7. Forward Current vs. Forward Voltage.


Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)


Idc - DC CURRENT PER LED - mA
Figure 8. Relative Luminous Intensity vs. DC Forward Current.


PEAK - PEAK CURRENT - mA
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

## Yellow HLMP-675X Series



Figure 12. Forward Current vs. Forward Voltage.


Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 13. Relative Luminous Intensity vs. DC Forward Current.


Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 16. Relative Luminous Intensity vs. AngularDisplacement.

## Green HLMP-685X Series



Figure 17. Forward Current vs. Forward Voltage.


Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 18. Relative Luminous Intensity vs. DC Forward Current.


Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 21. Relative Luminous Intensity vs. Angular Dlsplacement.

## (lp) <br> HEWLETT PACKARD

## Features

- HIGH INTENSITY
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red
Yellow
High Performance Green

- POPULAR T-1 3/4 DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- NARROW VIEWING ANGLE
- GENERAL PURPOSE LEADS
- Reliable and rugged
- AVAILABLE ON TAPE AND REEL



## Package Dimensions



## Description

This family of T-1 3/4 lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

| Part <br> Number <br> HLMP- | Description | Minimum <br> Intensity <br> (mod) <br> at 10 mA | Color <br> (Material) |
| :---: | :--- | :---: | :---: |
| 3315 | Illuminator/Point <br> 3316 | Source <br> (lluminator/High <br> Brightness | 20 |
| High <br> Efficiency <br> Red <br> (GaAsP <br> on GaP) |  |  |  |
| 3415 | llluminator/Point <br> Source <br> llluminator/High <br> Brightness | 20 | Yellow <br> (GaAsP <br> on GaP) |
| 3517 | lluminator/Point <br> Source | 6.7 | Green <br> (GaP) |
| 3519 | lluminator/High <br> Brightness | 10.6 |  |

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | Device HLMP. | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iv | Luminous Intensity | $\begin{aligned} & 3315 \\ & 3316 \end{aligned}$ | $\begin{aligned} & 12.0 \\ & 20.0 \end{aligned}$ | $\begin{aligned} & 18.0 \\ & 30.0 \end{aligned}$ |  | mcd | If $=10 \mathrm{~mA}$ (Figure 3) |
|  |  | $\begin{aligned} & 3415 \\ & 3416 \end{aligned}$ | $\begin{aligned} & 10.0 \\ & 20.0 \end{aligned}$ | $\begin{aligned} & 18.0 \\ & 30.0 \end{aligned}$ |  | mod | $\mathrm{IF}=10 \mathrm{~mA}$ (Figure 8 ) |
|  |  | $\begin{aligned} & 3517 \\ & 3519 \end{aligned}$ | $\begin{gathered} 6.7 \\ 10.6 \end{gathered}$ | $\begin{aligned} & 10.0 \\ & 25.0 \end{aligned}$ |  | mod | $\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3) |
| $2 \Theta 1 / 2$ | Including Angle Between Half Luminous Intensity Points | $\begin{aligned} & 3315 \\ & 3316 \end{aligned}$ |  | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ |  | Deg. | $\begin{aligned} & I F=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 6) } \end{aligned}$ |
|  |  | $\begin{aligned} & 3415 \\ & 3416 \end{aligned}$ |  | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ |  | Deg. | $I_{F}=10 \mathrm{~mA}$ <br> See Note 1 (Figure 11) |
|  |  | $\begin{aligned} & 3517 \\ & 3519 \end{aligned}$ |  | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ |  | Deg. | $\begin{aligned} & I F=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 16) } \end{aligned}$ |
| $\lambda$ dPEAK | Peak Wavelength | $\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$ |  | $\begin{aligned} & 635 \\ & 583 \\ & 565 \end{aligned}$ |  | nm | Measurement at Peak (Figure 1) |
| $\lambda_{d}$ | Dominant Wavelength | $\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$ |  | $\begin{aligned} & 626 \\ & 585 \\ & 569 \end{aligned}$ |  | nm | See Note 2 (Figure 1) |
| ${ }^{\text {s }}$ S | Speed of Response | $\begin{aligned} & 331 X \\ & 341 X \\ & 351 X \end{aligned}$ |  | $\begin{gathered} 90 \\ 90 \\ 500 \end{gathered}$ |  | ns |  |
| C | Capacitance | $\begin{aligned} & 331 X \\ & 341 X \\ & 351 X \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 18 \\ & 18 \end{aligned}$ |  | pF | $V_{F}=0 ; f=1 \mathrm{MHz}$ |
| ${ }^{\text {d }} \mathrm{C}$ | Thermal Resistance | $\begin{aligned} & 331 X \\ & 341 x \\ & 351 X \end{aligned}$ |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage | $\begin{aligned} & 331 X \\ & 341 X \\ & 351 X \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$ | V | $\begin{aligned} & I_{F}=10 \mathrm{~mA}(\text { Figure } 2) \\ & I_{F}=10 \mathrm{~mA}(\text { Figure } 7) \\ & I_{F}=10 \mathrm{~mA}(\text { Figure 12) } \end{aligned}$ |
| VBR | Reverse Breakdown Volt. | All | 5.0 |  |  | $V$ | $\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $\eta V$ | Luminous Efficacy | $\begin{aligned} & \hline 331 \mathrm{X} \\ & 341 \mathrm{X} \\ & 351 \mathrm{x} \end{aligned}$ |  | $\begin{aligned} & 145 \\ & 500 \\ & 595 \\ & \hline \end{aligned}$ |  | lumens Watt | See Note 3 |

NOTES: 1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, $I_{e}$, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where $I_{V}$ is the luminous intensity in candelas and $\eta_{V}$ is the luminous efficacy in lumens/watt.
Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | 331X Series | 341X Series | $351 \times$ Series | Units |
| :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 90 | 60 | 90 | mA |
| Average Forward Current ${ }^{11}$ | 25 | 20 | 25 | mA |
| DC Current ${ }^{2 \mid}$ | 30 | 20 | 30 | mA |
| Power Dissipation ${ }^{(3)}$ | 135 | 85 | 135 | mW |
| Reverse Voltage ( $\left.\\|_{R}=100 \mu \mathrm{~A}\right)$ | 5 | 5 | 5 | V |
| Transient Forward Current ${ }^{14 /}$ (10 $\mu \mathrm{sec}$ Pulse) | 500 | 500 | 500 | mA |
| Operating Temperature Range Storage Temperature Range | -55 to +100 | -55 to +100 | $\begin{array}{r} -20+10+100 \\ -55+10+100 \\ \hline \end{array}$ | ${ }^{\circ} \mathrm{C}$ |
| Lead Soldering Temperature [ $1.6 \mathrm{~mm}(0.063 \mathrm{in}$, ) from body] | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA}{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.


Figure 1. Relative Intensity vs. Wavelength

## High Efficiency Red HLMP-331X Series



Figure 2. Forward Current vs. Forward Voltage Characteristics


Figure 3. Relative Luminous Intensity vs. DC Forward Current


Ipeak - peak current per led - ma
Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current


Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)


Figure 6. Relative Luminous Intensity vs. Angular Displacement

## Yellow HLMP-341X Series



Figure 7. Forward Current vs. Forward Voltage Characteristics

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)


Figure 8. Relative Luminous Intensity vs. Forward Current


Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current


Figure 11. Relative Luminous Intensity vs. Angular Displacement

## Green HLMP-351X Series


$V_{F}$ - FORWARD VOLTAGE - V
Figure 12. Forward Current vs. Forward Voltage Characteristics

$t_{p}$-PULSE DURATION - $\mu s$
Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)

$\mathrm{I}_{\mathrm{f}}$-DC FORWARD CURRENT-mA
Figure 13. Relative Luminous Intensity vs. DC Forward Current


Ipeak - peak current per led - ma
Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current


Figure 16. Relative Lumiṇous Intensity vs. Angular Displacement. T-1 3/4 Lamp

## Features

- HIGH INTENSITY
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red
Yellow
High Performance Green

- POPULAR T-1 DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- NARROW VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL


## Package Dimensions



NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (.040") DOWN THE LEADS.


## Description

This family of T-1 lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

| Part <br> Number <br> HLMP- | Description | Minimum <br> Intensity <br> (mcd) <br> at 10 mA | Color <br> (Material) |
| :---: | :--- | :---: | :---: |
| 1320 | Untinted <br> Non-Diffused <br> Tinted <br> Non-Diffused | 621 | High <br> Efficiency <br> Red <br> (GaAsP <br> on GaP) |
| 1420 | Untinted <br> Non-Diffused <br> Tinted <br> Non-Diffused | 6 | Yellow <br> (GaAsP <br> on GaP) |
| 1520 | Untinted <br> Non-Diffused <br> Tinted <br> Non-Diffused | 4.2 | Green <br> (GaP) |
| 1521 |  |  |  |

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | Device HLMP- | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV | Luminous Intensity | $\begin{aligned} & 1320 \\ & 1321 \end{aligned}$ | $\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$ |  | mod | $\mathrm{IF}=10 \mathrm{~mA}$ (Figure 3) |
|  |  | $\begin{aligned} & 1420 \\ & 1421 \end{aligned}$ | $\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$ |  | med | $1 F=10 \mathrm{~mA}$ (Figure 8 ) |
|  |  | $\begin{aligned} & 1520 \\ & 1521 \end{aligned}$ | $\begin{aligned} & 4.2 \\ & 4.2 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ |  | mod | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \mathrm{(Figure} \mathrm{3)}$ |
| $2 \Theta 1 / 2$ | Including Angle Between Half Luminous Intensity Points | All |  | 45 |  | Deg. | $\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 6, 11, 16) } \end{aligned}$ |
| $\lambda$ PEAK | Peak Wavelength | $\begin{aligned} & 132 x \\ & 142 x \\ & 152 x \end{aligned}$ |  | $\begin{aligned} & 635 \\ & 583 \\ & 565 \end{aligned}$ |  | nm | Measurement at Peak (Figure 1) |
| $\lambda_{d}$ | Dominant Wavelength | $\begin{aligned} & 132 x \\ & 142 x \\ & 152 x \end{aligned}$ |  | $\begin{aligned} & \hline 626 \\ & 585 \\ & 569 \\ & \hline \end{aligned}$ |  | nm | See Note 2 (Figure 1) |
| $\tau_{S}$ | Speed of Response | $\begin{aligned} & 132 X \\ & 142 x \\ & 152 x \end{aligned}$ |  | $\begin{gathered} 90 \\ 90 \\ 500 \end{gathered}$ |  | ns |  |
| C | Capacitance | $\begin{aligned} & 132 x \\ & 142 X \\ & 152 X \end{aligned}$ |  | $\begin{aligned} & 16 \\ & 18 \\ & 18 \end{aligned}$ |  | pF | $V_{F}=0 ; f=1 \mathrm{MHz}$ |
| ${ }^{\text {ajc }}$ | Thermal Resistance | All |  | 120 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to Cathode Lead |
| $V_{F}$ | Forward Voltage | $\begin{aligned} & 131 x \\ & 142 x \\ & 152 x \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$ | V | $\mathrm{IF}=10 \mathrm{~mA}$ |
| VBR | Reverse Breakdown Volt. | All | 5.0 |  |  | V | $\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |
| $\eta V$ | Luminous Efficacy | $\begin{aligned} & 132 x \\ & 142 x \\ & 152 x \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 145 \\ & 500 \\ & 595 \end{aligned}$ |  | lumens Watt | See Note 3 |

NOTES:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, $\lambda_{d}$, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, $I_{e}$, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where $I_{V}$ is the luminous intensity in candelas and $\eta_{V}$ is the luminous efficacy in lumens/watt.

## Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Red | Yellow | Green | Units |
| :---: | :---: | :---: | :---: | :---: |
| Peak Forward Current | 90 | 60 | 90 | mA |
| Average Forward Current ${ }^{11]}$ | 25 | 20 | 25 | mA |
| DC Current ${ }^{2 / 2}$ | 30 | 20 | 30 | mA |
| Power Dissipation ${ }^{31}$ | 135 | 85 | 135 | mW |
| Reverse Voltage ( $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ ) | 5 | 5 | 5 | V |
| Transient Forward Current ${ }^{14 / 110}$ $\mu \mathrm{sec}$ Pulse) | 500 | 500 | 500 | mA |
| Operating Temperature Range Storage Temperature Range | -55 to +100 | -55 to +100 | $\frac{-20 \text { to }+100}{-55 \text { to }+100}$ | ${ }^{\circ} \mathrm{C}$ |
| Lead Soldering Temperature [ 1.6 mm ( 0.063 in .) from body] | $260^{\circ} \mathrm{C}$ for 5 seconds |  |  |  |

## NOTES:

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.


Figure 1. Relative Intensity vs. Wavelength

## T-1 High Efficiency Red Non-Diffused


$V_{F}$ - FORWARD VOLTAGE - $V$
Figure 2. Forward Current vs. Forward Voltage Characteristics


IDC - DC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current


IPEAK - PEAK CURRENT PER LED - mA
Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current


Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDCMAX as per MAX Ratings)


Figure 6. Relative Luminous Intensity vs. Angular Displacement

## T-1 Yellow Non-Diffused


$V_{f}$ - FORWARD VOLTAGE - $V$
Figure 7. Forward Current vs. Forward Voltage Characteristics

$t_{p}$ - PULSE DURATION - $\mu s$
Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDCMAX as per MAX Ratings)

$I_{F}$ - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity vs. Forward Current


I peak - Peak current - ma
Figure 9. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current


Figure 11. Relative Luminous Intensity vs. Angular Displacement

## T-1 Green Non-Diffused


$V_{F}$ - FORWARD VOLTAGE - $V$
Figure 12. Forward Current vs. Forward Voltage Characteristics


Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDCMAX as per MAX Ratings)


Figure 13. Relative Luminous Intensity vs. Forward Current


Ipeak - peak current per led - ma
Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current


Figure 16. Relative Luminous Intensity vs. Angular Displacement

## Description

The Option 009 (HLMP-0103) is a black plastic mounting clip and retaining ring. It is designed to panel mount Hewlett-Packard Solid State high profile T-1 3/4 size lamps. This clip and ring combination is intended for installation in instrument panels from $1.52 \mathrm{~mm}\left(.060^{\prime \prime}\right)$ to $3.18 \mathrm{~mm}\left(.125^{\prime \prime}\right)$ thick. For panels greater than 3.18 mm (.125") counterboring is required to the 3.18 mm (.125") thickness.

## Mounting Instructions

1. Drill an ASA C size 6.15 mm (.242") dia. hole in the panel. Deburr but do not chamfer the edges of the hole.
2. Press the panel clip into the hole from the front of the panel.
3. Press the LED into the clip from the back. Use blunt long nose pliers to push on the LED. Do not use force on the LED leads. A tool such as a nut driver may be used to press on the clip.

Note: Clip and retaining ring are also available for T-1 package, from a non-HP source. Please contact Interconsal Association, 991 Commercial St., Palo Alto, CA 94303 for additional information.
4. Slip a plastic retaining ring onto the back of the clip and press tight using tools such as two nut drivers.

## Ordering Information

T-13/4 High Dome LED Lamps can be purchased to include clip and ring by adding Option Code 009 to the device catalog part number.

## Example:

To order the HLMP-3300 including clip and ring, order as follows: HLMP-3300 Option 009.


# T-1 3/4 LED LAMP RIGHT ANGLE HOUSING 

## Features

- FITS ANY HP HIGH DOME T-1 3/4 LED LAMP
- SNAP-IN FIT MAKES MOUNTING SIMPLE
- HIGH CONTRAST BLACK PLASTIC


## Description

The HLMP-5029 is a black plastic right angle housing which mates with any Hewlett-Packard High Dome T-1 3/4 lamp. The lamp snaps into place. The material is fully compatible with environmental specifications of all Hewlett-Packard T-1 3/4 lamps.

## Physical Dimensions



ALL TOLERANCES $\pm 0.254( \pm 0.010)$ UNLESS OTHERWISE SPECIFIED. DIMENSIONS IN MILLIMETRES AND (INCHES).


# 700nm HIGH INTENSITY SUBMINIATURE EMITTER 

HEMT-6000

## Features

- HIGH RADIANT INTENSITY
- NARROW BEAM ANGLE
- NONSATURATING OUTPUT
- BANDWIDTH: DC TO 5 MHz
- IC COMPATIBLE/LOW CURRENT REQUIREMENT
- VISIBLE FLUX AIDS ALIGNMENT


## Description

The HEMT-6000 uses a GaAsP chip designed for optimum tradeoff between speed and quantum efficiency. This optimization allows a flat modulation bandwidth of 5 MHz without peaking, yet provides a radiant flux level comparable to that of 900 nm IREDs. The subminiature package allows operation of multiple closely-spaced channels, while the narrow beam angle minimizes crosstalk. The nominal 700 nm wavelength can offer spectral performance advantages over 900 nm IREDs, and is sufficiently visible to aid optical alignment. Applications include paper-tape readers, punch-card readers, bar code scanners, optical encoders or transducers, interrupt modules, safety interlocks, tape loop stabilizers and fiber optic drivers.

## Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$


[ 1.6 mm ( 0.063 in .) from body]


NOTES: 1 ALL DIMENSIONS ARE IN MILEIMETRES (INCHES).
2. SILVEh-PLATED LEADS, SEE APPLICATION BULLETIN 3.
3. USER MAY BEND LEADS AS SHOWN.
4. EPOXY ENCAPSULANT HAS A REFRACTIVE INDEX OF 1.53.
5. CHIP CENTERING WITHIN THE PACKAGE IS CONSISTENT WITHFOOTNOTE 3.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Description | Min. | Typ. | Max. | Units | Test Conditions | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{e}}$ | Radiant Intensity along Mechanical Axis | 100 | 250 |  | $\mu \mathrm{W} / \mathrm{sr}$ | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 3,4 |
| $\mathrm{K}_{\mathrm{E}}$ | Temperature Coefficient of Intensity |  | -0.005 |  | ${ }^{\circ} \mathrm{C}^{-1}$ | Note 1 |  |
| $\eta_{V}$ | Luminous Efficacy |  | 2.5 |  | Im/W | Note 2 |  |
| $2 \Theta_{1 / 2}$ | Optical Axis Half Intensity Total Angle |  | 16 |  | deg. | Note 3, $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 6 |
| $\lambda_{\text {PEAK }}$ | Peak Wavelength (Range) |  | 690-715 |  | nm | Measured @ Peak | 1 |
| $\begin{gathered} \Delta \lambda_{P E A K} / \Delta T \\ \hline \end{gathered}$ | Spectral Shift Temperature Coefficient |  | . 193 |  | $n \mathrm{~m} /{ }^{\circ} \mathrm{C}$ | Measured @ Peak, Note 4 |  |
| $\mathrm{t}_{\mathrm{r}}$ | Output Rise Time (10\%-90\%) |  | 70 |  | ns | $T_{\text {PEAK }}=10 \mathrm{~mA}$ |  |
| $\mathrm{t}_{\mathrm{f}}$ | Output Fall Time ( $90 \%-10 \%$ ) |  | 40 |  | ns | $\mathrm{I}_{\text {PEAK }}=10 \mathrm{~mA}$ |  |
| $\mathrm{C}_{0}$ | Capacitance |  | 65 |  | pF | $V_{F}=0 ; f=1 \mathrm{MHz}$ |  |
| $B V_{R}$ | Reverse Breakdown Voltage | 5 | 12 |  | V | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ |  |
| $V_{F}$ | Forward Voltage |  | 1.5 | 1.8 | V | $I_{F}=10 \mathrm{~mA}$ | 2 |
| $\Delta V_{F} / \Delta T$ | Temperature Coefficient of $V_{F}$ |  | -2.1 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{F}}=100 \mu \mathrm{~A}$ |  |
| $\Theta_{\mathrm{JC}}$ | Thermal Resistance |  | 140 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | Junction to cathode lead |  |

NOTES: 1. $I_{e}(T)=I_{e}\left(25^{\circ} \mathrm{C}\right) \exp \left[K_{e}\left(T-25^{\circ} \mathrm{C}\right)\right]$.
2. $I_{V}=\eta_{V} I_{e}$ where $I_{V}$ is in candela, $I_{e}$ in watts/steradian, and $\eta_{V}$ in lumen/watt.
3. $\Theta_{1 / 2}$ is the off-axis angle at which the radiant intensity is half the intensity along the optical axis. The deviation between the mechanical and the optical axis is typically within a conical half-angle of three degrees.
4. $\lambda_{\text {PEAK }}(T)^{2}=\lambda_{P E A K}\left(25^{\circ} \mathrm{C}\right)+\left(\Delta \lambda_{\text {PEAK }} \mid \Delta T\right)\left(T-25^{\circ} \mathrm{C}\right)$


Figure 2. Forward Current versus Forward Voltage.


Figure 3. Relative Radiant Intensity versus Forward Current.


Figure 4. Relative Efficiency (Radiant Intensity per Unit Current) versus Peak Current.


Figure 5. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 6. Far-Field Radiation Pattern.

## ■



## Solid State Displays

Hewlett-Packard's line of Solid State Displays answers all the needs of the designer. From smart alphanumeric displays to low cost numeric displays in sizes from 3 mm (. 15 in .) to $20 \mathrm{~mm}(.8 \mathrm{in})$ and colors of red, high efficiency red, yellow, and high performance green, the selection is complete.

Hewlett-Packard's $5 \times 7$ dot matrix alphanumeric display line comes in 3 character sizes: 3.8 mm (. 15 in ), 5 mm (. 2 in ), and $6.9 \mathrm{~mm}(.27 \mathrm{in})$. In addition, there are now 4 colors available for each size: standard red, yellow, high efficiency red, and green. This wide selection of package sizes and colors makes these products ideal for a variety of applications in avionics, industrial control, and instrumentation.

The newest additions to HP's alphanumeric display line are two fully-supported monolithic sixteen segment displays. Both displays have an on-board CMOS IC containing memory, ASCII decoder, multiplexing circuitry, and drivers. Two character heights are available to fit your needs $4.1 \mathrm{~mm}(.16 \mathrm{in})$ and $2.9 \mathrm{~mm}(.112 \mathrm{in})$. These displays incorporate many improvements over competitive products and are ideal for industrial, business and telecommunication applications.


Hewlett-Packard's line of numeric seven segment displays is one of the broadest. From low cost, standard red displays to high light ambient displays producing $7.5 \mathrm{mcd} /$ segment, HP's 0.3 in ., $0.43 \mathrm{in} ., 0.56 \mathrm{in}$., and 0.8 in . characters can provide a solution to every display need. HP's latest product offering include 0.56 in. dual digit displays and a new line of small package, bright 0.3 in . displays - the 0.3 in . Microbright. These are ideal for displaying numeric information in electronic instrumentation, point-of-sale equipment, appliances and automotive instrumentation.

Integrated numeric and hexadecimal displays (with on-board IC's) solve the designer's decoding/driving problems. They are available in plastic packages for general purpose usage, ceramic/glass packages for industrial applications, and hermetic packages for high reliability applications. This family of displays has been designed for ease of use in a wide range of environments.


Alphanumeric LED Displays

| Device |  | Description | Color | Application | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | HPDL-1414 | 2.85 mm (. $112^{\prime \prime}$ ) <br> Four Character Monolithic Smart Alphanumeric Display Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Red | - Portable Data Entry Devices <br> - Industrial Instrumentation <br> - Computer Perpherals <br> - Telecommunication Equipment | 7-15 |
|  | HPDL-2416 | 2.1 mm (.16") Four Character Monolithic Smart Alphanumeric Display Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Red | - Portable Data Entry Devices <br> - Medical Equipment <br> - Industrial Instrumentation <br> - Computer Peripherals <br> - Telecommunication Equipment | 7-23 |
|  | $\begin{aligned} & \text { HDSP-2000 } \\ & \text { HDSP-2001 } \\ & \text { HDSP-2002 } \\ & \text { HDSP-2003 } \end{aligned}$ | 3.7 mm (. $15^{\prime \prime}$ ) $5 \times 7$ Four Character Alphanumeric 12 Pin Ceramic 7.62 mm (. $3^{\prime \prime}$ ) DIP with untinted glass lens. <br> Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Red <br> Yellow <br> High Efficiency Red <br> High Performance Green | - Computer Terminals <br> - Business Machines <br> - Portable, Hand-held or mobile data entry, readout or communications <br> For further information see Application Note 1016. | 7-31 |
|  | HDSP-2300 <br> HDSP-2301 <br> HDSP-2302 <br> HDSP-2303 | $4.87 \mathrm{~mm}\left(.19^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 12 Pin Ceramic 6.35 mm (.25") DIP with untinted glass lens <br> Operating temperature Range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Red <br> Yellow <br> High Efficiency Red <br> High Performance Green | - Avionics <br> - Grounds Support, Cockpit, Shipboard Systems <br> - Medical Equipment <br> - Industrial and Process control <br> - Computer Peripherals and Terminals <br> For further information see Application Note 1016. | 7-35 |
|  | $\begin{aligned} & \text { HDSP-2381 } \\ & \text { HDSP-2382 } \\ & \text { HDSP-2393 } \end{aligned}$ | $4.87 \mathrm{~mm}\left(.19^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric Sunlight Viewable Display | Yellow <br> High Efficiency Red <br> High Performance Green | - Avionics <br> - Cockpit <br> - Ground Support Systems <br> - Industrial | 7-41 |
|  | HDSP-2490 HDSP-2491 HDSP-2492 HDSP-2493 | $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 28 Pin Ceramic 15.24 mm (. $6^{\prime \prime}$ ) DIP with untinted glass lens <br> Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Red <br> Yellow <br> High Efficiency Red <br> High Performance Green | - High Brightness Ambient Systems <br> - Industrial and Process Control <br> - Computer Peripherals <br> - Ground Support Systems <br> For further information see Application Note 1016. | 7-52 |
|  | $\begin{aligned} & \hline 5082-7100 \\ & 5082-7101 \\ & 5082-7102 \end{aligned}$ | $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Three Character Alphanumeric 22 Pin Ceramic 15.2 mm (.6") DIP <br> $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 28 Pin Ceramic 15.2 mm (.6") DIP <br> $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Five Character Alphnumeric 36 Pin Ceramic 15.2 mm (.6") DIP | Red Untinted Glass Lens | General Purpose Market <br> - Business Machines <br> - Calculators <br> - Solid State CRT <br> - Industrial Equipment | 7-68 |

Alphanumeric LED Displays (cont.)


## Alphanumeric Display Systems

| Device |  | Description | Package | Application | Page <br> No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | HDSP-2416 | Single-Line 16 Character Display Panel Utilizing the HDSP-2000 | $162.56 \mathrm{~mm}\left(6.4^{\prime \prime}\right) L \mathrm{~L}$$58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{Hx}$$7.11 \mathrm{~mm}\left(28^{\prime \prime}\right) \mathrm{D}$ | - Data Entry Terminals <br> - Instrumentation | 7-56 |
|  | HDSP-2424 | Single-Line 24 Character Display Panel Utilizing the HDSP-2000 |  |  |  |
|  | HDSP-2432 | Single-Line 32 Character Display Panel Utilizing the HDSP-2000 |  |  |  |
|  | HDSP-2440 | Single-Line 40 Character Display Panel Utilizing the HDSP-2000 Display | $177.80 \mathrm{~mm}\left(7.0^{\prime \prime}\right) L x$ $58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{Hx}$ $7.11 \mathrm{~mm}\left(.28^{\prime \prime}\right) \mathrm{D}$ |  |  |
| ARalk | HDSP-2470 | HDSP-2000 Display Interface Incorporating a 64 Character ASCII Decoder | $\begin{aligned} & 171.22 \mathrm{~mm}\left(6.74^{\prime \prime}\right) \mathrm{Lx} \\ & 58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{Hx} \\ & 16.51 \mathrm{~mm}\left(.65^{\prime \prime}\right) \mathrm{D} \end{aligned}$ |  |  |
|  | HDSP-2471 | HDSP-2000 Display Interface Incorporating a 128 Character ASCII Decoder |  |  |  |
|  | HDSP-2472 | HDSP-2000 Display Interface without ASCII Decoder. Instead, a 24 Pin Socket is Provided to Accept a Custom 128 Character Set from a User Programmed 1K x 8 PROM |  |  |  |

## Alphanumeric Displays

| Device |  | Description | Package | Typical IV @20 mA DC | Page <br> No. |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 00000 |  |  |  |  |  |
| 00000 |  |  |  |  |  |
| 00000 |  |  |  |  |  |
| 00000 |  |  |  |  |  |
| 00000 |  |  |  |  |  |
| 00000 |  |  |  |  |  |
| 00000 |  |  |  |  |  |

High Efficiency Red Low Current Seven Segment LED Displays

| Package | Device | Description | Typical lv @ 2 mA DC | $\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 7.62 mm (.3") <br> Microbright <br> Dual-in-Line <br> . $5^{\prime \prime}$ H x $.3^{\prime \prime}$ W x $.24^{\prime \prime}$ D | HDSP-7511 <br> HDSP-7513 <br> HDSP-7517 <br> HDSP-7518 | High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Overflow, $\pm 1$, Common Anode High Efficiency Red, Overflow, $\pm 1$, Common Cathode | $270 \mu \mathrm{~cd} / \mathrm{seg}$. | 7-85 |
|  | HDSP-3350 <br> HDSP-3351 <br> HDSP-3353 <br> HDSP-3356 | High Efficiency Red, Common Anode, LHDP High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Universal Polarity and Overflow Indicator, RHDP | $300 \mu \mathrm{~cd} / \mathrm{seg}$. | .7-85 |
| 14.2 mm (.56") <br> Dual-in-Line (Single Digit) $.67^{\prime \prime} \mathrm{H} \times .49^{\prime \prime} \mathrm{W} \times .31^{\prime \prime} \mathrm{D}$ | $\begin{array}{\|l\|l\|} \hline \text { HDSP-5551 } \\ \text { HDSP-5553 } \\ \text { HDSP-5557 } \\ \text { HDSP-5558 } \end{array}$ | High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red, Overflow, $\pm 1$, Common Anode High Efficiency Red, Overflow, $\pm 1$, Common Cathode | $370 \mu \mathrm{~cd} / \mathrm{seg}$. | 7-85 |

## Emerald Green Seven Segment LED Displays

| Package | Device | Description | Typical Iv @ 20 mA DC | $\begin{aligned} & \text { Page } \\ & \mathrm{No} \text {. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | HDSP-7901 <br> HDSP-7903 <br> HDSP-7907 <br> HDSP-7908 | Emerald Green, Common Anode, RHDP <br> Emerald Green, Common Cathode, RHDP <br> Emerald Green, Overflow, $\pm 1$, Common Anode <br> Emerald Green, Overflow, $\pm 1$, Common Cathode | $1475 \mu \mathrm{~cd} / \mathrm{seg}$. | 7-91 |
| 14.2 mm (.56") <br> Dual-in-Line (Single Digit) $.67^{\prime \prime} \mathrm{H} \times .49^{\prime \prime} \mathrm{W} \times .31^{\prime \prime} \mathrm{D}$ | HDSP-5901 <br> HDSP-5903 <br> HDSP-5907 <br> HDSP-5908 | Emerald Green, Common Anode, RHDP <br> Emerald Green, Common Cathode, RHDP <br> Emerald Green, Overflow, $\pm 1$, Common Anode <br> Emerald Green, Overflow, $\pm 1$, Common Cathode | $1550 \mu \mathrm{~cd} / \mathrm{seg}$. | 7-91 |

Red, High Efficiency Red, Yellow, and High Performance Green Seven Segment LED Displays


Red, High Efficiency Red, Yellow, and High Performance Green Seven
Segment LED Displays (continued)


Red, High Efficiency Red, Yellow, and High Performance Green Seven Segment LED Displays (continued)

| Package | Device | Description | Typical IV @ 20 mA DC | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | HDSP-3400 | Red, Common Anode, LHDP | $1200 \mu \mathrm{~cd} / \mathrm{seg}$ | 7-120 |
|  | HDSP-3401 | Red, Common Anode, RHDP |  |  |
|  | HDSP-3403 | Red, Common Cathode, RHDP |  |  |
|  | HDSP-3405 | Red, Common Cathode, LHDP |  |  |
|  | HDSP-3406 | Red, Universal Polarity Overflow Indicator, RHDP |  |  |
|  | HDSP-3900 | High Efficiency Red, Common Anode, LHDP | $4800 \mu \mathrm{~cd} / \mathrm{seg}$ |  |
|  | HDSP-3901 | High Efficiency Red, Common Anode, RHDP |  |  |
|  | HDSP-3903 | High Efficiency Red, Common Cathode, RHDP |  |  |
|  | HDSP-3905 | High Efficiency Red, Common Cathode, LHDP |  |  |
|  | HDSP-3906 | High Efficiency Red, Universal Polarity Overflow Indicator, RHDP |  |  |
|  | HDSP-4200 | Yellow, Common Anode, LHDP | $3400 \mu \mathrm{~cd} / \mathrm{seg}$ |  |
|  | HDSP-4201 | Yellow, Common Anode, RHDP |  |  |
|  | HDSP-4203 | Yellow, Common Cathode, RHDP |  |  |
|  | HDSP-4205 | Yellow, Common Cathode, LHDP |  |  |
|  | HDSP-4206 | Yellow, Universal Polarity Overflow Indicator, RHDP |  |  |
|  | HDSP-8600 | High Performance Green, Common Anode, LHDP | $3600 \mu \mathrm{~cd} / \mathrm{seg}$ |  |
| 20 mm (.$^{\prime \prime}$ ) | HDSP-8601 | High Performance Green, Common Anode, RHDP |  |  |
| Dual-in-Line | HDSP-8603 | High Performance Green, Common Cathode, RHDP |  |  |
| 1.09" H x .78" W x . 33 " D | HDSP-8605 | High Performance Green, Common Cathode, LHDP |  |  |
|  | HDSP-8606 | High Performance Green, Universal Overflow Indicator, RHDP |  |  |

Solid State Display Options

| Option | Description | Page <br> No. |
| :---: | :---: | :---: |
| Option S02 <br> Option S20 | Intensity and Color Selected Displays | $7-135$ |

High Ambient Light, High Efficiency Red, Yellow, and High Performance Green Seven Segment Displays

| Package | Device | Description | Typical IV @ 100 mA Peak 1/5 Duty Factor | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | HDSP-3530 <br> HDSP-3531 <br> HDSP-3533 <br> HDSP-3536 | High Efficiency Red, Common Anode, LHDP <br> High Efficiency Red, Common Anode, RHDP <br> High Efficiency Red, Common Cathode, RHDP <br> High Efficiency Red, Universal Polarity Overflow Indicator, RHDP | $7100 \mu \mathrm{~cd} / \mathrm{seg}$ | 7-127 |
| 7.62 mm (.3") <br> Dual-in-Line <br> .75" H x .4" W x . $18^{\prime \prime}$ D | HDSP-4030 <br> HDSP-4031 <br> HDSP-4033 <br> HDSP-4036 | Yellow, Common Anode, LHDP <br> Yellow, Common Anode, RHDP <br> Yellow, Common Cathode, RHDP <br> Yellow, Universal Polarity Overflow Indicator, RHDP | $4500 \mu \mathrm{~cd} / \mathrm{seg}$ |  |
|  | HDSP-3600 <br> HDSP-3601 <br> HDSP-3603 <br> HDSP-3606 | High Performance Green, Common Anode, LHDP <br> High Performance Green, Common Anode, RHDP <br> High Performance Green, Common Cathode, RHDP <br> High Performance Green, Universal Overflow Indicator, RHDP | $7000 \mu \mathrm{~cd} / \mathrm{seg}$ ( 90 mA Peak 1/3 Duty Factor) |  |

High Ambient Light, High Efficiency Red, Yellow, and High Performance Green Seven Segment Displays (continued)

| Package | Device | Description | Typical IV @ 100 mA Peak 1/5 Duty Factor | Page No. |
| :---: | :---: | :---: | :---: | :---: |
|  | HDSP-3730 <br> HDSP-3731 <br> HDSP-3733 <br> HDSP-3736 | High Efficiency Red, Common Anode, LHDP <br> High Efficiency Red, Common Anode, RHDP <br> High Efficiency Red, Common Cathode, RHDP <br> High Efficiency Red, Universal Polarity Overflow Indicator, RHDP | $10900 \mu \mathrm{~cd} / \mathrm{seg}$ | 7-127 |
| $\begin{aligned} & 10.92 \mathrm{~mm}\left(.43^{\prime \prime}\right) \\ & \text { Dual-in-Line } \\ & .75^{\prime \prime} \mathrm{H} \times .5 \text { "W x } .25 \text { " D } \end{aligned}$ | HDSP-4130 <br> HDSP-4131 <br> HDSP-4133 <br> HDSP-4136 | Yellow, Common Anode, LHDP <br> Yellow, Common Anode, RHDP <br> Yellow, Common Cathode, RHDP <br> Yellow, Universal Polarity Overflow Indicator, RHDP | $5000 \mu \mathrm{~cd} / \mathrm{seg}$ |  |
|  | $\begin{aligned} & \text { HDSP-4600 } \\ & \text { HDSP-4601 } \\ & \text { HDSP-4603 } \\ & \text { HDSP-4606 } \\ & \hline \end{aligned}$ | High Performance Green, Common Anode, LHDP <br> High Performance Green, Common Anode, RHDP <br> High Performance Green, Common Cathode, RHDP <br> High Performance Green, Universal Overflow Indicator, RHDP | $6800 \mu \mathrm{~cd} / \mathrm{seg}$ ( 90 mA Peak 1/3 Duty Factor) |  |
| $14.2 \mathrm{~mm}\left(.56{ }^{\prime \prime}\right)$ <br> Dual-in-Line <br> . $67^{\prime \prime}$ H x .49" W x . 31 " D | HDSP-5531 <br> HDSP-5533 <br> HDSP-5537 <br> HDSP-5538 | High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP High Efficiency Red $\pm 1$, Common Anode High Efficiency Red $\pm 1$, Common Cathode | $6000 \mu \mathrm{~cd} / \mathrm{seg}$ | 7-112 |
|  | HDSP-5731 <br> HDSP-5733 <br> HDSP-5737 <br> HDSP-5738 | Yellow, Common Anode, RHDP <br> Yellow, Common Cathode, RHDP <br> Yellow, $\pm 1$, Common Anode <br> Yellow, $\pm 1$, Common Cathode | $5500 \mu \mathrm{~cd} / \mathrm{seg}$ |  |
|  | $\begin{array}{\|l\|l\|} \hline \text { HDSP-5601 } \\ \text { HDSP-5603 } \\ \text { HDSP-5608 } \\ \hline \end{array}$ | High Performance Green, Common Anode, RHDP <br> High Performance Green, Common Cathode, RHDP <br> High Performance Green, Common Anode Overflow Indicator <br> High Performance Green, Common Cathode Overflow Indicator | $9400 \mu \mathrm{~cd} / \mathrm{seg}$ <br> ( 90 mA Peak <br> 1/3 Duty Factor) |  |
|  | HDSP-3900 <br> HDSP-3901 <br> HDSP-3903 <br> HDSP-3905 <br> HDSP-3906 | High Efficiency Red, Common Anode, LHDP <br> High Efficiency Red, Common Anode, RHDP <br> High Efficiency Red, Common Cathode, RHDP <br> High Efficiency Red, Common Cathode, LHDP <br> High Efficiency Red, Universal Overflow Indicator, RHDP | $7000 \mu \mathrm{~cd} / \mathrm{seg}$ | 7-120 |
|  | HDSP-4200 <br> HDSP-4201 <br> HDSP-4203 <br> HDSP-4205 <br> HDSP-4206 | Yellow, Common Anode, LHDP <br> Yellow, Common Anode, RHDP <br> Yellow, Common Cathode, RHDP <br> Yellow, Common Cathode, LHDP <br> Yellow, Universal Polarity Overflow Indicator, RHDP | $7000 \mu \mathrm{~cd} / \mathrm{seg}$ |  |
| $\begin{aligned} & \text { ( }+\mathrm{O}^{+}+\mathrm{mm}^{+}\left(.8^{\prime \prime}\right) \\ & \text { Dual-in-Line } \\ & 1.09^{\prime \prime} \mathrm{H} \times .78^{\prime \prime} \mathrm{W} \times .33^{\prime \prime} \mathrm{D} \end{aligned}$ | HDSP-8600 <br> HDSP-8601 <br> HDSP-8603 <br> HDSP-8605 <br> HDSP-8606 | High Performance Green, Common Anode, LHDP <br> High Performance Green, Common Anode, RHDP <br> High Performance Green, Common Cathode, RHDP <br> High Performance Green, Common Cathode, LHDP <br> High Performance Green, Universal Overflow Indicator, RHDP | $\begin{gathered} 5800 \mu \mathrm{~cd} / \mathrm{seg} \\ (90 \mathrm{~mA} \text { Peak } \\ 1 / 3 \text { Duty Factor) } \end{gathered}$ |  |

Hexadecimal and Dot Matrix Displays

| Device |  | Description | Package | Application | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (A) <br> (B) $\square$ | $\left.\begin{array}{\|c\|}\hline 5082-7300 \\ \text { (A) }\end{array}\right]$$5082-7302$ <br> (B) | Numeric RHDP <br> Built-in Decoder/Driver/Memory <br> Numeric LHDP <br> Built-in Decoder/Driver/Memory <br> Hexadecimal <br> Built-in Decoder/Driver/Memory <br> Over Range $\pm 1$ | 8 Pin Epoxy $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right)$ DIP | General Purpose Market <br> - Test Equipment <br> - Business Machines <br> - Computer Peripherals <br> - Avionics | 7-136 |
| (C) $7.4 \text { mm (.29") }$ $4 \times 7 \text { Single }$ <br> Digit <br> (D) | $\left.\begin{array}{\|c\|}\hline 5082-7356 \\ \text { (A) }\end{array}\right]$$5082-7357$ <br> (B) | Numeric RHDP <br> Built-in Decoder/Driver/Memory <br> Numeric LHDP <br> Built-in Decoder/Driver/Memory <br> Hexadecimal <br> Built-in Decoder/Driver/Memory <br> Over Range $\pm 1$ | 8 Pin Glass Ceramic $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right)$ DIP | - Medical Equipment <br> - Industrial and Process Control Equipment <br> - Computers <br> - Where Ceramic Package IC's are required <br> - High Reliability Applications | 7-140 |
| (A) <br> (C) <br> (B) <br> (D) <br> 7.4 mm (.29") <br> $4 \times 7$ Single Digit Package: <br> 8 Pin Glass Ceramic 15.2 mm (. 6 ") DIP | HDSP-0760 <br> (A) <br> HDSP-0761 <br> (B) <br> HDSP-0762 <br> (C) <br> HDSP-0763 <br> (D) <br> HDSP-0770 <br> (A) <br> HDSP-0771 <br> (B) <br> HDSP-0772 <br> (C) <br> HDSP-0763 <br> (D) <br> HDSP-0860 <br> (A) <br> HDSP-0861 <br> (B) <br> HDSP-0862 <br> (C) <br> HDSP-0863 <br> (D) | Numeric RHDP <br> Built in Decoder/Driver/Memory <br> Numeric LHDP <br> Built in Decoder/Driver/Memory <br> Hexadecimal <br> Built in Decoder/Driver/Memory <br> Over Range $\pm 1$ <br> Numeric RHDP <br> Built in Decoder/Driver/Memory <br> Numeric LHDP <br> Built in Decoder/Driver/Memory <br> Hexadecimal <br> Built in Decoder/Driver/Memory <br> Over Range $\pm 1$ <br> Numeric RHDP <br> Built in Decoder/Driver/Memory <br> Numeric LHDP <br> Built in Decoder/Driver/Memory <br> Hexadecimal <br> Built in Decoder/Driver/Memory <br> Over Range $\pm 1$ | High Efficiency Red Low Power <br> High Efficiency Red High Brightness <br> Yellow | - Military Equipment <br> - Ground Support Equipment <br> - Avionics <br> - High Reliability Applications <br> - High Brightness Ambient Systems <br> - Cockpit, Shipboard Equipment <br> - High Reliability Applications <br> - Business Machines <br> - Fire Control Systems <br> - Military Equipment <br> - High Reliability Applications | 7-145 |

Hexadecimal and Dot Matrix Displays (continued)

| Device and Package |  | Description | Color | Application | $\begin{aligned} & \text { Page } \\ & \mathrm{No.} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (See previous page) | HDSP-0960 <br> (A) | Numeric RHDP <br> Built in Decoder/Driver/Memory | High PerformanceGreen | - Business Machines <br> - Fire Control Systems <br> - Military Equipment <br> - High Reliability Applications | 7-145 |
|  | HDSP-0961 <br> (B) | Numeric LHDP <br> Built in Decoder/Driver/Memory |  |  |  |
|  | HDSP-0962 <br> (C) | Hexadecimal Built in Decoder/Driver/Memory |  |  |  |
|  | HDSP-0963 <br> (D) | Over Range $\pm 1$ |  |  |  |

## Monolithic Numeric Displays

| Device |  | Description | Package | Application | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5082-7404 | 2.79 mm (.11") Red, 4 Digits Centered D.P. | 12 Pin Epoxy, <br> 7.62 mm (.3") DIP | Small Display Market <br> - Portable/Battery Power Instruments <br> - Portable Calculators <br> - Digital Counters <br> - Digital Thermometers <br> - Digital Micrometers <br> - Stopwatches <br> - Cameras <br> - Copiers <br> - Digital Telephone Peripherals <br> - Data Entry Terminals <br> - Taxi Meters <br> For further information ask for Application Note 937. | 7-151 |
|  | 5082-7405 | $2.79 \mathrm{~mm}\left(.11^{\prime \prime}\right)$ Red, 5 Digits, Centered D.P. | 14 Pin Epoxy, <br> $7.62 \mathrm{~mm}\left(.3^{\prime \prime}\right)$ DIP |  |  |
|  | 5082-7414 | $2.79 \mathrm{~mm}\left(.11^{\prime \prime}\right)$ Red, 4 Digits, RHDP | 12 Pin Epoxy, <br> 7.62 mm (.3") DIP |  |  |
|  | 5082-7415 | 2.79 mm (.11") Red, 5 Digits, RHDP | 14 Pin Epoxy, <br> 7.62 mm (.3") DIP |  |  |
|  | 5082-7432 | 2.79 mm (.11") Red, 2 Digits, Right, RHDP | 12 Pin Epoxy, <br> 7.62 mm (.3") DIP |  |  |
|  | 5082-7433 | 2.79 mm (.11") Red, 3 Digits, RHDP |  |  |  |
| (10000000000 | 5082-7441 | $2.67 \mathrm{~mm}\left(.105{ }^{\prime \prime}\right)$ Red, 9 Digits, Mounted on P.C. Board | $50.8 \mathrm{~mm}\left(2^{\prime \prime}\right) \mathrm{PC}$ Bd., 17 Term. Edge Con. |  | 7-156 |
|  | 5082-7446 | 2.92 mm (.115") Red, 16 Digits, Mounted on P.C. Board | $69.85 \mathrm{~mm}\left(2.750^{\prime \prime}\right)$ PC Bd., 24 Term. Edge Con. |  |  |
| (2) 2 ) | 5082-7285 | 4.45 mm (. $175^{\prime \prime}$ ) Red, 5 Digits, Mounted on P.C. Board. RHDP | 50.8 mm (2") PC Bd., 15 Term. Edge Con. |  |  |
|  | 5082-7295 | 4.45 mm (. $175^{\text {" })}$ Red, 15 Digits, Mounted on P.C. Board. RHDP | 91.2 mm (3.59") PC Bd., 23 Term. Edge Con. |  |  |

## Hermetic Hexadecimal and Numeric Dot Matrix Displays


[1] Military Approved and Qualified for High Reliability Applications.

## Hermetic Hexadecimal and Numeric Dot Matrix Displays (cont.)

| Device |  | Description | Color | Application | Page $\mathrm{No}$. . |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (See previous page) | $\begin{aligned} & \text { HDSP-0783 } \\ & \text { (D) } \\ & \text { HDSP-0783 } \\ & \text { TXV } \\ & \text { HDSP-0783 } \\ & \text { TXVB } \end{aligned}$ | Overrange $\pm 1$ <br> TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 | High Efficiency Red. <br> High <br> Brightness | - Ground. Airborne. Shipboard Equipment <br> - Fire Control Systems <br> - Space Flight Systems <br> - Other High Reliability Uses | 8-38 |
|  | $\begin{aligned} & \text { HDSP-0794 } \\ & \text { (C) } \\ & \text { HDSP-0794 } \\ & \text { TXV } \\ & \text { HDSP-0794 } \\ & \text { TXVB } \end{aligned}$ | Hexadecimal, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 |  |  |  |
|  | $\begin{aligned} & \text { HDSP-0881 } \\ & \text { (A) } \\ & \text { HDSP-0881 } \\ & \text { TXV } \\ & \text { HDSP-0881 } \\ & \text { TXVB } \end{aligned}$ | Numeric RHDP. Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 | Yellow |  |  |
|  | $\begin{gathered} \hline \text { HDSP-0882 } \\ \text { (B) } \\ \text { HDSP-0882 } \\ \text { TXV } \\ \text { HDSP-0882 } \\ \text { TXVB } \end{gathered}$ | Numeric LHDP. Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 |  |  |  |
|  | $\begin{gathered} \text { HDSP-0883 } \\ \text { (D) } \\ \text { HDSP-0883 } \\ \text { TXV } \\ \text { HDSP-0883 } \\ \text { TXVB } \end{gathered}$ | Overrange $\pm 1$ <br> TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 |  |  |  |
|  | $\begin{gathered} \text { HDSP-0884 } \\ \text { (C) } \\ \text { HDSR-0884 } \\ \text { TXV } \\ \text { HDSP-0884 } \\ \text { TXVB } \end{gathered}$ | Hexadecimal, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 |  |  |  |


| Device |  | Description | Color | Application | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | HDSP-2010 <br> HDSP-2010 <br> TXV <br> HDSP-2010 <br> TXVB | 3.7 mm (. $15^{\prime \prime}$ ) $5 \times 7$ Four Character Alphanumeric Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 | Red, Red Glass Contrast Filter | - Extended temperature applications requiring high reliability. <br> - I/O Terminals <br> - Avionics <br> For further information see Application Note 1016. | 8-46 |
|  | HDSP-2310 <br> HDSP-2310 <br> TXV <br> HDSP-2310 <br> TXVB <br> HDSP-2311 <br> HDSP-2311 <br> TXV <br> HDSP-2311 <br> TXVB <br> HDSP-2312 <br> HDSP-2312 <br> TXV <br> HDSP-2312 <br> TXVB | $5.0 \mathrm{~mm}\left(.20^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric <br> 12 Pin Ceramic 6.35 mm (.25") DIP with untinted glass lens <br> Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ <br> True Hermetic Seal <br> TXV — Hi Rel Screened <br> TXVB - Hi Rel Screened to Level A MIL-D-87157 | Standard Red <br> Yellow <br> High Eff. Red | - Military Equipment <br> - Avionics <br> - High Rel Industrial Equipment | 8-52 |
|  | HDSP-2450 <br> HDSP-2450 <br> TXV <br> HDSP-2450 <br> TXVB <br> HDSP-2451 <br> HDSP-2451 <br> TXV <br> HDSP-2451 <br> TXVB <br> HDSP-2452 <br> HDSP-2452 <br> TXV <br> HDSP-2452 <br> TXVB | Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 28 Pin Ceramic 15.24 mm (.6") DIP <br> True Hermetic Seal TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157 | Red <br> Yellow <br> High Efficiency Red | - Military Equipment <br> - High Reliability Applications <br> - Avionics <br> - Ground Support, Cockpit, Shipboard Systems | 8-59 |

## Features

- SMART ALPHANUMERIC DISPLAY Built-in RAM, ASCII Decoder and LED Drive Circuitry
- WIDE OPERATING TEMPERATURE RANGE $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- FAST ACCESS TIME 160 ns
- EXCELLENT ESD PROTECTION Built-in Input Protection Diodes
- CMOS IC FOR LOW POWER CONSUMPTION
- FULL TTL COMPATIBILITY OVER OPERATING TEMPERATURE RANGE
$V_{\text {IL }}=0.8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- WAVE SOLDERABLE
- RUGGED PACKAGE CONSTRUCTION
- END-STACKABLE
- WIDE VIEWING ANGLE


## Description

The HPDL-1414 is a smart $2.85 \mathrm{~mm}\left(0.112^{\prime \prime}\right)$ four character, sixteen-segment, red GaAsP display. The on-board CMOS IC contains memory, ASCII decoder, multiplexing circuitry and drivers. The monolithic LED characters are magnified by an immersion lens which increases both character size and luminous intensity. The encapsulated dual-in-line package provides a rugged, environmentally sealed unit.
The HPDL-1414 incorporates many improvements over competitive products. It has a wide operating temperature range, very fast IC access time and improved ESD protection. The display is also fully TTL compatible, wave solderable and highly reliable. This display is ideally suited for industrial and commercial applications where a goodlooking, easy-to-use alphanumeric display is required.


## Typical Applications

- PORTABLE DATA ENTRY DEVICES
- MEDICAL EQUIPMENT
- PROCESS CONTROL EQUIPMENT
- TEST EQUIPMENT
- INDUSTRIAL INSTRUMENTATION
- COMPUTER PERIPHERALS
- TELECOMMUNICATION INSTRUMENTATION


## Absolute Maximum Ratings

Supply Voltage, Vcc to Ground ............ -0.5 V to 7.0 V Input Voltage, Any Pin to Ground .... -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ Free Air Operating Temperature Range, $T_{A}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity (non-condensing) at $65^{\circ} \mathrm{C}$
.......... $90 \%$ Storage Temperature, Ts $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Maximum Solder Temperature, 1.59 mm ( 0.063 in .) below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$. $260^{\circ} \mathrm{C}$

## Package Dimensions



NOTES:

1. UNLESS OTHERWISE SPECIFIEO THE TOTERANCE ON ALL DIMEXSSIONS IS $0.25 \mathrm{~mm}(0.010 \mathrm{im}$.).
2. DIMENSIONS IN mm finches).

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Nom. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $V_{C C}$ | 4.5 | 5.0 | 5.5 | V |
| Input Voltage High | $V_{1 H}$ | 2.0 |  |  | V |
| Input Voltage Low | $V_{\text {IL }}$ |  |  | 0.8 | V |

## DC Electrical Characteristics Over Operating Temperature Range

TYPICAL VALUES

| Parameter | Symbol | Units | $-40^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | Test Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Icc 4 digits on (10 seg/digit) 11.2 ] | lcc | mA | 90 | 85 | 70 | 60 | $V_{C C}=5.0 \mathrm{~V}$ |
| lec Blank | $\operatorname{lcc}(\overline{\mathrm{BL}})$ | mA | 1.8 | 1.5 | 1.2 | 1.1 | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{BL}=0.8 \mathrm{~V} \end{aligned}$ |
| Input Current, Max. | IIL. | $\mu \mathrm{A}$ | 23 | 20 | 17 | 12 | $\begin{aligned} & V \mathrm{VC}=5.0 \mathrm{~V} \\ & V_{\mathrm{IN}}=0.8 \mathrm{~V} \end{aligned}$ |

## GUARANTEED MAXIMUM VALUES

| Parameter | Symbol | Units | $\begin{gathered} 25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{Cc}}=5.0 \mathrm{~V} \end{gathered}$ | Maximum Over Operating Temperature Range $V_{C C}=5.5 \mathrm{~V}$ |
| :---: | :---: | :---: | :---: | :---: |
| Icc 4 digits on 110 seg/digit 11,2 | 100 | mA | 90 | 130 |
| Icc Blank | ICC ( $\overline{\mathrm{BL}}$ ) | mA | 2.3 | 4.0 |
| Input Current, Max. | ILL | $\mu \mathrm{A}$ | 30 | 50 |
| Power Dissipation ${ }^{31}$ | PD | mW | 450 | 715 |

## Notes:

1. "\%" illuminated in all four characters.
2. Measured at five seconds.
3. Power dissipation $=V_{c c} \cdot$ Icc $(10$ seg. $)$.

## AC Timing Characteristics Over Operating Temperature Range at $\mathrm{Vcc}=4.5 \mathrm{~V}$

| Parameter | Symbol | $\mathbf{- 2 0 ^ { \circ }} \mathbf{C}$ <br> $\mathbf{t}_{\text {MiN }}$ | $\mathbf{2 5} \mathbf{C}$ <br> $\mathbf{t}_{\text {MIN }}$ | $\mathbf{7 0}^{\circ} \mathbf{C}$ <br> $\mathbf{t}_{\text {MIN }}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Address Setup Time | tAS | 90 | 115 | 150 | ns |
| Write Delay Time | twD | 10 | 15 | 20 | ns |
| Write Time | tw | 80 | 100 | 130 | ns |
| Data Setup Time | tos | 40 | 60 | 80 | ns |
| Data Hold Time | tDH | 40 | 45 | 50 | ns |
| Address Hold Time | taH | 40 | 45 | 50 | ns |
| Access Time |  | 130 | 160 | 200 | ns |
| Refresh Rate |  | $420-790$ | $310-630$ | $270-550$ | Hz |

## Optical Characteristics

| Parameter | Symbol | Test Condition | Min. | Typ. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per digit, <br> 8 segments on (character average) | N Peak | $V_{\text {CC }}=5.0 \mathrm{~V}$ <br> " "illuminated in <br> all 4 digits. | 0.4 | 1.0 | mcd |
| Peak Wavelength | $\lambda$ peak |  |  | 655 | nm |
| Dominant Wavelength | $\lambda_{d}$ |  |  | 640 | nm |
| Off Axis Viewing Angle |  |  |  | $\pm 40$ | degrees |
| Digit Size |  |  |  | 2.85 | mm |

## Timing Diagram



## Magnified Character Font Description



## Electrical Description

Figure 1 shows the internal block diagram of the HPDL-1414. It consists of two parts: the display LEDs and the CMOS IC. The CMOS IC consists of a four-word ASCII memory, a 64word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal operation, the divide-by-four counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. Seven-bit ASCII data is stored in RAM. Since the display uses a 64-character decoder, half of the possible 128 input combinations are invalid. For each display location where D5=D6 in the ASCII RAM, the display character is blanked.

Data is loaded into the display through the DATA inputs ( $\mathrm{D}_{6}$-D0), ADDRESS inputs ( $\mathrm{A}_{1}-\mathrm{A}_{0}$ ), and WRITE ( $\overline{\mathrm{WR}}$ ). After a character has been written to memory, the IC decodes the ASCII data, drives the display and refreshes it without any external hardware or software.

Relative Luminous Intensity vs. Temperature


TA - AMBIENT TEMPERATURE - $\left({ }^{\circ} \mathrm{C}\right)$

The HPDL-1414 uses 12 pins to control the CMOS IC. Figure 1 shows the effect these inputs have on the display.

DATA INPUTS Seven bit ASCII data is entered into ( $D_{0}-D_{6}$, pins $1,2,8-12$ ) memory via the DATA inputs.

ADDRESS INPUTS Each location in memory has a ( $\mathrm{A}_{1}-\mathrm{A}_{0}$, pins 4 and 5 ) distinct address. ADDRESS inputs enable the designer to select a specific location in memory to store data. Address 00 accesses the far right display location. Address 11 accesses the far left location.
WRITE ( $\overline{W R}$, pin 3) Data is written into the display when the $\overline{W R}$ input is low.

These pins supply power to the display.


Figure 1. HPDL-1414 Internal Block Diagram

| WR | $\mathrm{A}_{1}$ | $A_{0}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | $\mathrm{DIG}_{3}$ | $\mathrm{DIG}_{2}$ | DIG ${ }_{1}$ | $\mathrm{DIG}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | $L$ | L | a | a | a | a | a | a | a | NC | NC | NC | A |
| L | L | H | b | $b$ | b | b | b | b | $b$ | NC | NC | B | NC |
| L | H | L | c | c | c | c | c | c | c | NC | [ | NC | NC |
| L | H | H | d | d | d | d | d | d | d | II | NC | NC | NC |
| H |  | X | X | X | X | X | X | X | X | Previously Written Data |  |  |  |

$$
\begin{array}{ll}
\text { L }=\text { LOGIC LOW INPUT } & " a "=\text { ASCII CODE CORRESPONDING TO SYMBOL "A" } \\
H=\text { LOGIC HIGH INPUT } & \text { NC }=\text { NO CHANGE } \\
X=\text { DON'T CARE } &
\end{array}
$$

Figure 2. Write Truth Table

## Using the HPDL-1414 with Microprocessors

Figures 3 and 4 show how to connect the HPDL-1414 to a Motorola 6800 or an Intel 8085. The major differences between the two circuits are:

1. The 6800 requires two latches to store the ADDRESS and ASCII DATA information to increase the address and data input hold times.
2. The 6800 requires a flip-flop to delay the display WRITE signal to increase the address input setup time.

ADDRESS inputs ( $A_{1}$ and $A_{0}$ ) are connected to microprocessor addresses $A_{1}$ and $A_{0}$. A 74LS138 may be used to generate individual display WRITE signals. Higher order microprocessor address lines are connected to the 74LS138. The microprocessor write line must be wired to one of the active low enable inputs of the 74LS138. Both figures are formatted with address 0 being the far right display character.


Figure 3: Memory Mapped Interface for the $\mathbf{6 8 0 0}$

*USE FOR HIGHER ORDER ADDRESS DECODING.

Figure 4. Memory Mapped Interface for the $\mathbf{8 0 8 5}$


Figure 5. HPDL-1414 ASCII Character Set

## Mechanical and Electrical Considerations

The HPDL-1414 is a 12 pin dual-in-line package which can be stacked horizontally and vertically to create arrays of any size. The HPDL-1414 is designed to operate continuously from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for all possible input conditions.
The HPDL-1414 is assembled by die attaching and wire bonding the four GaAsP/GaAs monolithic LED chips and the CMOS IC to a high temperature printed circuit board. An immersion lens is formed by placing the PC board assembly into a nylon lens filled with epoxy. A plastic cap creates an air gap to protect the CMOS IC. Backfill epoxy environmentally seals the display package. This package construction gives the display a high tolerance to temperature cycling.
The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results, standard CMOS handling precautions should be used. Prior to use, the HPDL-1414 should be stored in anti-static tubes or conductive material. A grounded conductive assembly area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic materials should be avoided since they may collect a static charge. Input current latchup is caused when the CMOS inputs are subjected either to a voltage below ground ( $\mathrm{V}_{\mathrm{IN}}<$ ground) or to a voltage higher than $\mathrm{V}_{\mathrm{CC}}\left(\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}\right)$, and when a high current is forced into the input.

## Soldering and Post Solder Cleaning Instructions for the HPDL-1414

The HPDL-1414 may be hand soldered or wave soldered with SN63 solder. Hand soldering may be safely performed only with an electronically temperature-controlled and securely grounded soldering iron. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux or a water soluble organic acid (OA) flux can be used. The solder wave temperature should be $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right.$ ), and the dwell in the wave should be set at $11 / 2$ to 3 seconds for optimum soldering. Preheat temperature should not exceed $93^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.

Post solder cleaning may be performed with a solvent or aqueous process. For solvent cleaning, Allied Chemical Genesolv DES, Baron Blakeslee Blaco-Tron TES or DuPont Freon TE can only be used. These solvents are azeotropes of trichlorotrifluoroethane FC-113 with low concentrations of ethanol ( $5 \%$ ). The maximum exposure time in the solvent vapors at boiling temperature should not exceed 2 minutes. Solvents containing high concentrations of alcohols, pure alcohols, isopropanol or acetone should not be used as they will chemically attack the nylon lens. Solvents containing trichloroethane FC-111 or FC-112 and trichloroethylene (TCE) are not recommended.

An aqueous cleaning process is highly recommended. A saponifier, such as Kester Bio-kleen Formula 5799 or equivalent, may be added to the wash cycle of an aqueous process to remove rosin flux residues. Organic acid flux residues must be thoroughly removed by an aqueous cleaning process to prevent corrosion of the leads and solder connections. The optimum water temperature is $60^{\circ} \mathrm{C}$ $\left(140^{\circ} \mathrm{F}\right.$ ). The maximum cumulative exposure of the HPDL1414 to wash and rinse cycles should not exceed 15 minutes.

## Optical Considerations/ Contrast Enhancement

The HPDL-1414 display uses a precision aspheric immersion lens to provide excellent readability and low off-axis distortion. The aspheric lens produces a magnified character height of $2.85 \mathrm{~mm}(0.112 \mathrm{in}$.$) and a viewing angle of \pm 40$ degrees. These features provide excellent readability at distances of up to 1.5 meters ( 4 feet).

Each HPDL-1414 display is tested for luminous intensity and marked with an intensity category on the side of the display package. To ensure intensity matching for multiple package
applications, mixing intensity categories for a given panel is not recommended.

The HPDL-1414 display is designed to provide maximum contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60, Panelgraphic Dark Red 63, SGL Homalite H100-1650, Rohm and Haas 2423, Chequers Engraving 118, and 3 M R6510. For further information on contrast enhancement, see Hewlett-Packard Application Note 1015.

# FOUR CHARACTER $4.1 \mathrm{~mm}(0.16$ in.) SMART ALPHANUMERIC DISPLAY 

## Features

- SMART ALPHANUMERIC DISPLAY Built-in RAM, ASCII Decoder, and LED Drive Circuitry
- WIDE OPERATING TEMPERATURE RANGE $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- VERY FAST ACCESS TIME 160 ns
- EXCELLENT ESD PROTECTION

Built-in Input Protection Diodes

- CMOS IC FOR LOW POWER CONSUMPTION
- FULL TTL COMPATIBILITY OVER OPERATING TEMPERATURE RANGE
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
$V_{I H}=2.0 \mathrm{~V}$
- WAVE SOLDERABLE
- RUGGED PACKAGE CONSTRUCTION
- END-STACKABLE
- WIDE VIEWING ANGLE


## Description

The HPDL-2416 has been designed to incorporate several improvements over competitive products. It has a wide operating temperature range, fast IC access time and improved ESD protection. The HPDL-2416 is fully TTL compatible, wave solderable, and highly reliable. This display is ideally suited for industrial and commercial applications where a good looking, easy-to-use alphanumeric display is required.
The HPDL-2416 is a smart $4.1 \mathrm{~mm}(0.16 \mathrm{in})$ four character, sixteen-segment red GaAsP display. The on-board CMOS IC contains memory, ASCII decoder, multiplexing circuitry, and drivers. The monolithic LED characters are magnified by an immersion lens which increases both character size and luminous intensity. The encapsulated dual-in-line package construction provides a rugged, environmentally sealed unit.


## Typical Applications

- PORTABLE DATA ENTRY DEVICES
- MEDICAL EQUIPMENT
- PROCESS CONTROL EQUIPMENT
- TEST EQUIPMENT
- INDUSTRIAL INSTRUMENTATION
- COMPUTER PERIPHERALS
- TELECOMMUNICATION EQUIPMENT


## Absolute Maximum Ratings

## Package Dimensions


$\begin{array}{lrl} & 0.51 \pm .013 \\ & (0.020 \pm 0.005)\end{array}$ TYP. $2.54\{0.100)$ TYP.
NOTES:

1. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS $0.254 \mathrm{~mm}(0.010 \mathrm{IN}$. 2. DIMENSIONS IN mm (INCHES).

## Recommended Operating Conditions

| Parameter | Symbol | Min. | Nom. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | VCC | 4.5 | 5.0 | 5.5 | V |
| Input Voltage High | $V_{\mathrm{IH}}$ | 2.0 |  |  | V |
| Input Voltage Low | VIL |  |  | 0.8 | V |

## DC Electrical Characteristics Over Operating Temperature Range

 TYPICAL VALUES| Parameter | Symbol | Units | $-40^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | Test Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 CC 4 digits on ( 10 seg/digit) ${ }^{1+2)}$ | ICC | mA | 100 | 95 | 85 | 75 | 72 | $V_{C C}=5.0 \mathrm{~V}$ |
| $l_{\text {ce Cusor }}{ }^{2,3,4]}$ | $\operatorname{lcc}$ (CU) | mA | 147 | 140 | 125 | 110 | 105 | $V_{C C}=5.0 \mathrm{~V}$ |
| Icc Blank | ICC (BL) | mA | 1.85 |  | 1.5 |  | 1.15 | $\begin{gathered} V_{C G}=5.0 \mathrm{~V} \\ B L=0.8 \mathrm{~V} \end{gathered}$ |
| Input Current, Max. | IIL. | $\mu \mathrm{A}$ | 20 |  | 17 |  | 14 | $\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ V_{I N}=0.8 \mathrm{~V} \end{gathered}$ |

## GUARANTEED VALUES

| Parameter | Symbol | Units | $\begin{gathered} 25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{gathered}$ | Maximum Over Operating Temperature Range $V_{C C}=5.5 \mathrm{~V}$ |
| :---: | :---: | :---: | :---: | :---: |
| lec 4 digits on $110 \mathrm{seg} /$ digit $)^{1,21}$ | 1 cc | mA | 115 | 170 |
| Ice Cursor\| ${ }^{2,3,41}$ | $\operatorname{lcc}(\overline{C U})$ | mA | 165 | 232 |
| Icc Blank | $\operatorname{ICC}(\overline{\mathrm{BL}})$ | mA | 3.5 | 8.0 |
| Input Current, Max. | IL | $\mu \mathrm{A}$ | 30 | 40 |
| Power Dissipation ${ }^{151}$ | PD | mW | 575 | 910 |

## Notes:

1. "\%" illuminated in all four characters.
2. Cursor operates continuously over operating temperature range.
3. Measured at five seconds.
4. Power dissipation $=\mathrm{VCC}_{\mathrm{CC}} \cdot \operatorname{Icc}(10 \mathrm{seg})$.
5. Cursor character is sixteen segments and DP on.

## AC Timing Characteristics Over Operating Temperature Range at $\mathrm{VCC}=4.5 \mathrm{~V}$

| Parameter | Symbol | $-\mathbf{2 0}{ }^{\circ} \mathbf{C}$ <br> $\mathbf{t}_{\text {MIN }}$ | $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ <br> $\mathbf{t}_{\text {MIN }}$ | $\mathbf{7 0}^{\circ} \mathbf{C}$ <br> $\mathbf{t}_{\text {MIN }}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Address Setup Time | tAS | 90 | 115 | 150 | ns |
| Write Delay Time | twD | 10 | 15 | 20 | ns |
| Write Time | tw | 80 | 100 | 130 | ns |
| Data Setup Time | tDS | 40 | 60 | 80 | ns |
| Data Hold Time | tDH | 40 | 45 | 50 | ns |
| Address Hold Time | tAH | 40 | 45 | 50 | ns |
| Chip Enable Hold Time | tCEH | 40 | 45 | 50 | ns |
| Chip Enable Setup Time | tces | 90 | 115 | 150 | ns |
| Clear Time | tCLR | 2.4 | 3.5 | 4.0 | ms |
| Access Time |  | 130 | 160 | 200 | ns |
| Refresh Rate |  | $420-790$ | $310-630$ | $270-550$ | Hz |

## Optical Characteristics

| Parameter | Symbol | Test Condition | Min. | Typ. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per digit, <br> 8 segments on (character average) | IV Peak | $V_{C C}=5.0 \mathrm{~V}$ <br> "䊂" illuminated in <br> all 4 digits. | 0.5 | 1.25 | mcd |
| Peak Wavelength | $\lambda$ peak |  |  | 655 | nm |
| Dominant Wavelength | $\lambda d$ |  |  | 640 | nm |
| Off Axis Viewing Angle |  |  |  | $\pm 50$ | degrees |
| Digit Size |  |  |  | 4.1 | mm |

## Timing Diagram



## Magnified Character Font Description



## Electrical Description

## Display Internal Block Diagram

Figure 1 shows the internal block diagram for the HPDL-2416 display. The CMOS IC consists of a four-word ASCII memory, a four-word cursor memory, a 64-word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal operation, the divide-by-four counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. For each display location, the cursor enable (CUE) selects whether the data from the ASCII RAM (CUE $=0$ ) or the stored cursor (CUE $=1$ ) is to be displayed. The cursor character is denoted by all sixteen segments and the DP ON. Seven-bit ASCII data is stored in RAM. Since the display utilizes a 64-character decoder, half of the possible 128 input combinations are invalid. For each display location where $D_{5}=D_{6}$ in the ASCII RAM, the display character is blanked. The entire display is blanked when $\overline{\mathrm{BL}}=0$.
Data is loaded into the display through the data inputs ( $\mathrm{D}_{6}{ }^{-}$ $\left.D_{0}\right)$, address inputs ( $A_{1}, A_{0}$ ), chip enables ( $\left.\overline{C E}_{1}, \overline{C E}_{2}\right)$, cursor select ( $\overline{\mathrm{CU}}$ ), and write ( $\overline{\mathrm{WR}}$ ). The cursor select ( $\overline{\mathrm{CU}})$ determines whether data is stored in the ASCII RAM ( $\overline{C U}=$ 1) or cursor memory ( $\overline{\mathrm{CU}}=0$ ). When $\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=\overline{\mathrm{WR}}=0$ and $\overline{C U}=1$, the information on the data inputs is stored in the ASCII RAM at the location specified by the address inputs ( $\mathrm{A}_{1}, \mathrm{~A}_{0}$ ). When $\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=\overline{\mathrm{WR}}=0$ and $\overline{\mathrm{CU}}=0$, information on the data input, $D_{0}$, is stored in the cursor at the location specified by the address inputs ( $A_{1}, A_{0}$ ). If $D_{0}$ $=1$, a cursor character is stored in the cursor memory. If $D_{0}=0$, a previously stored cursor character will be removed from the cursor memory.
If the clear input ( $\overline{\mathrm{CLR}}$ ) equals zero for one internal display cycle ( 4 ms minimum), the data in the ASCII RAM will be rewritten with zeroes and the display will be blanked. Note that the blanking input ( $\overline{\mathrm{BL}}$ ) must be equal to logical one during this time.

## Relative Luminous Intensity vs. Temperature



## Data Entry

Figure 2 shows a truth table for the HPDL-2416 display. Setting the chip enables ( $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ ) to their low state and the cursor select $(\overline{\mathrm{CU}})$ to its high state will enable data loading. The desired data inputs ( $D_{6}-D_{0}$ ) and address inputs ( $A_{1}$, $\left.\mathrm{A}_{0}\right)$ as well as the chip enables ( $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ ) and cursor select $(\overline{\mathrm{CU}})$ must be held stable during the write cycle to ensure that the correct data is stored into the display. Valid ASCII data codes are shown in Figure 3. The display accepts standard seven-bit ASCII data. Note that $D_{6}=D_{5}$ for the codes shown in Figure 2. If $\mathrm{D}_{6}=\mathrm{D}_{5}$ during the write cycle, then a blank will be stored in the display. Data can be loaded into the display in any order. Note that when $\mathrm{A}_{1}$ $=A_{0}=0$, data is stored in the furthest right-hand display location.

## Cursor Entry

As shown in Figure 2, setting the chip enables ( $\overline{\mathrm{CE}}, \overline{\mathrm{CE}}_{2}$ ) to their low state and the cursor select ( $\overline{\mathrm{CU}}$ ) to its low state will enable cursor loading. The cursor character is indicated by the display symbol having all 16 segments and the DP ON. The least significant data input ( $\mathrm{D}_{0}$ ), the address inputs ( $\mathrm{A}_{1}, \mathrm{~A}_{0}$ ), the chip enables ( $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ ), and the cursor select ( $\overline{\mathrm{CU}}$ ) must be held stable during the write cycle to ensure that the correct data is stored in the display. If $\mathrm{D}_{0}$ is in a low state during the write cycle, then a cursor character will be removed at the indicated location. If $D_{0}$ is in a high state euring the write cycle, then a cursor character will be stored at the indicated location. The presence or absence of a cursor character does not affect the ASCII data stored at that location. Again, when $A_{1}=A_{0}=0$, the cursor character is stored in the furthest right-hand display location.
All stored cursor characters are displayed if the cursor enable (CUE) is high. Similarly, the stored ASCII data words are displayed, regardless of the cursor characters, if the cursor enable (CUE) is low. The cursor enable (CUE) has no effect on the storage or removal of the cursor characters within the display. A flashing cursor is displayed by pulsing the cursor enable (CUE). For applications not requiring a cursor, the cursor enable (CUE) can be connected to ground and the cursor select ( $\overline{\mathrm{CU}}$ ) can be connected to VCc. This inhibits the cursor function and allows only ASCII data to be loaded into the display.


Figure 1. HPDL-2416 Internal Block Diagram

## Display Clear

As shown in Figure 2, the ASCII data stored in the display will be cleared if the clear ( $\overline{\mathrm{CLR}}$ ) is held low and the blanking input ( $\overline{\mathrm{BL}}$ ) is held high for 4 ms minimum. The cursor memory is not affected by the clear ( $\overline{\mathrm{CLR}}$ ) input. Cursor characters can be stored or removed even while the clear $(\overline{\mathrm{CLR}})$ is low. Note that the display will be cleared regardless of the state of the chip enables ( $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ ). However, to ensure that all four display characters are cleared, $\overline{\mathrm{CLR}}$ should be held low for 4 ms following the last write cycle.

## Display Blank

As shown in Figure 2, the display will be blanked if the blanking input ( $\overline{\mathrm{BL}}$ ) is held low. Note that the display will be blanked regardless of the state of the chip enables $\left(\overline{\mathrm{CE}}_{1}\right.$,
$\overline{\mathrm{CE}}_{2}$ ) or write ( $\overline{\mathrm{WR}}$ ) inputs. The ASCII data stored in the display and the cursor memory are not affected by the blanking input. ASCII data and cursor data can be stored even while the blanking input ( $\overline{\mathrm{BL}}$ ) is low. Note that while the blanking input ( $\overline{\mathrm{BL}}$ ) is low, the clear ( $\overline{\mathrm{CLR}}$ ) function is inhibited. A flashing display can be obtained by applying a low frequency square wave to the blanking input ( $\overline{\mathrm{BL}}$ ). Because the blanking input ( $\overline{\mathrm{BL}}$ ) also resets the internal display multiplex counter, the frequency applied to the blanking input $(\overline{\mathrm{BL}})$ should be much slower than the display multiplex rate. Finally, dimming of the display through the blanking input $(\overline{\mathrm{BL}})$ is not recommended.
For further application information please consult Application Note 1026.

| Function | BL | $\overline{\text { CLR }}$ | CUE | Cu | $\overline{\mathrm{CE}}_{1}$ | $\overline{\mathrm{CE}}_{2}$ | WR | $A_{1}$ | $\mathrm{A}_{0}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ | $\mathrm{DIG}_{3} \mathrm{DIG}_{2} \mathrm{D}$ | $\mathrm{DIG}_{1} \mathrm{DIG}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Write Data Memory | L$\times$ | X | X | $\begin{gathered} H \\ -O R- \\ H \end{gathered}$ | $L$ | L | L | $\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ |  | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \\ & \mathrm{c} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$ | $\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$ | $a$$b$$c$$d$$d$ | $\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$ | $\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$ | NC NC <br> NC NC <br> NC [ <br> II NG | $\begin{array}{cc} N C & A \\ B & N C \\ N C & N C \\ N C & N C \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | H | X |  | L | L | 1. |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Disable | X | $x$ | X | H | X | X | H | X | X | X | X | X | X | X | X | X | Previously | Written |
| Data | X | X | X | H | X | H | X |  |  |  |  |  |  |  |  |  |  |  |
| Memory Write | X | X | X | H | H | X | X |  |  |  |  |  |  |  |  |  |  |  |
| Write | X | X | X | L | L | L | L | L | L | X | X | X | X | X | $x$ | H | NG NC | NC |
| Cursor |  |  |  |  |  |  |  |  | H | $x$ | $x$ | $x$ | $x$ | $x$ | x | H | NC NC | * NC |
|  |  |  |  |  |  |  |  | H | L | $x$ | $x$ | $x$ | $x$ | $X$ | $x$ | H | NC ${ }^{10}$ | NC NC |
|  |  |  |  |  |  |  |  | H | H | X | X | $x$ | X | X | $x$ | H | NC | NC NC |
| Clear | $x$ | X | $X$ | L | L | L | L | L | L | X | X | X | $X$ | X | $x$ | L | NC NC | $\mathrm{NC}[\mathrm{la}$ |
| Cursor |  |  |  |  |  |  |  | L | H | X | X | X | X | X | X | $L$ | NC NC | []$N C$ |
|  |  |  |  |  |  |  |  | H | L | $x$ | X | $x$ | $x$ | X | X | L | NG ${ }^{-1}$ | NC NC |
|  |  |  |  |  |  |  |  | H | H | $x$ | $x$ | $x$ | X | $x$ | $x$ | L | C- NC | NC NC |
| Disable | $x$ | $x$ | $X$ | L | $x$ | X | H | X | X | $x$ | X | $x$ | X | X | X | X | Previously | Written |
| Cursor | $x$ | $x$ | X | L | X | H | X |  |  |  |  |  |  |  |  |  | Cursor |  |
| Memory | X | $x$ | X | L | H | X | $X$ |  |  |  |  |  |  |  |  |  |  |  |

L = LOGIC LOW INPUT "a" = ASCII CODE CORRESPONDING TO SYMBOL "月"
H = LOGIC HIGH INPUT $\quad$ NC = NO CHANGE
$X=$ DON'T CARE $\quad{ }^{*}=$ CURSOR CHARACTER (ALL SEGMENTS ON)
Figure 2a. Cursor/Data Memory Write Truth Table

| Function | BL | CLR | CUE | CU | $\overline{C E}_{1}$ | $\overline{\mathbf{C E}}_{2}$ | $\bar{W}$ | $\mathrm{DIG}_{3}$ | $\mathrm{DIG}_{2}$ | $\mathrm{DIG}_{1}$ | $\mathrm{DIG}_{0}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CUE | $\begin{aligned} & H \\ & H \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{aligned} & \text { F } \\ & \text { B } \\ & \hline \end{aligned}$ | $\begin{gathered} H \\ \text { 困 } \end{gathered}$ | $\stackrel{c}{c}$ | $\begin{gathered} 7 \\ 10 \end{gathered}$ | Display previously written data Display previously written cursor |
| Clear |  | L <br> OTE: owing data is | X <br> LR sho the last cleared | X <br> uld b WRI | $X$ <br> held Eycle | X <br> w for to en | $\overline{X^{*}}$ <br> ms ure | $\left[\begin{array}{l} {[ } \end{array}\right]$ | $[]$ | $[]$ | $[]$ | Clear data memory, cursor memory unchanged |
| Blanking | L | $X$ | $X$ | X | X | X | X | [-] | [] | T] | [-] | Blank display, data and cursor memories unchanged. |

Figure 2b. Displayed Data Truth Table


Figure 3. HPDL-2416 ASCII Character Set

## Mechanical and Electrical Considerations

The HDPL-2416 is an 18 pin dual-in-line package that can be stacked horizontally and vertically to create arrays of any size. The HPDL-2416 is designed to operate continuously from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ all possible input conditions including the illuminated cursor in all four character locations.
The HPDL-2416 is assembled by die attaching and wire bonding the four GaAsP/GaAs monolithic LED chips and the CMOS IC to a high temperature printed circuit board. An immersion lens is formed by placing the PC board assembly into a nylon lens filled with epoxy. A plastic cap creates an air gap to protect the CMOS IC. Backfill epoxy environmentally seals the display package. This package construction provides the display with a high tolerance to temperature cycling.
The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HPDL-2416 should be stored in antistatic tubes or conductive material. During assembly a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static charge build-up. Input current latchup is caused when the CMOS inputs are subjected either to a voltage below ground ( $\mathrm{V}_{\mathrm{IN}}<$ ground) or to a voltage higher than $\mathrm{V}_{\mathrm{CC}}\left(\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{CC}}\right)$ and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to $\mathrm{V}_{\mathrm{CC}}$. Voltages should not be applied to the inputs until $V_{C C}$ has been applied to the display. Transient input voltages should be eliminated.

## Soldering and Post Solder Cleaning Instructions for the HPDL-2416

The HPDL-2416 may be hand soldered or wave soldered with SN63 solder. Hand soldering may be safely performed only with an electronically temperature-controlled and securely grounded soldering iron. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$, and the dwell in the wave should be set at $11 / 2$ to 3 seconds for optimum soldering. Preheat temperature should not exceed $93^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.
Post solder cleaning may be performed with a solvent or aqueous process. For solvent cleaning, Allied Chemical Genesolv DES, Baron Blakeslee Blaco-Tron TES or DuPont Freon TE can only be used. These solvents are azeotropes of trichlorotrifluoroethane FC-113 with low concentrations of ethanol ( $5 \%$ ). The maximum exposure time in the solvent vapors at boiling temperature should not exceed 2 minutes. Solvents containing high concentrations of alcohols, pure alcohols, isopropanol or acetone should not be used as they will chemically attack the nylons lens. Solvents containing trichloroethane FC-111 or FC-112 and trichloroethylene (TCE) are not recommended.
An aqueous cleaning process is highly recommended. A saponifier, such as Kester-Bio-kleen Formula 5799 or equivalent, may be added to the wash cycle of an aqueous process to remove rosin flux residues. Organic acid flux residues must be thoroughly removed by an aqueous cleaning process to prevent corrosion of the leads and solder connections. The optimum water temperature is $60^{\circ} \mathrm{C}$ $\left(140^{\circ} \mathrm{F}\right)$. The maximum cumulative exposure of the HPDL2416 to wash and rinse cycles should not exceed 15 minutes.

## Optical Considerations/ Contrast Enhancement

The HPDL-2416 display uses a precision aspheric immersion lens to provide excellent readability and low off-axis distortion. The aspheric lens produces a magnified character height of $4.1 \mathrm{~mm}\left(0.160 \mathrm{in}\right.$.) and a viewing angle of $\pm 50^{\circ}$. These features provide excellent readability at distances up to 2 metres ( 6 feet).

Each HPDL-2416 display is tested for luminous intensity and marked with an intensity category on the side of the display package. To ensure intensity matching for multiple
package applications, mixing intensity categories for a given panel is not recommended.

The HPDL-2416 display is designed to provide maximum contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60, Panelgraphic Dark Red 63, SGL Homalite H100-1650, Rohm and Haas 2423, Chequers Engraving 118, and 3 M R6510. For further information on contrast enhancement, see Hewlett-Packard Application Note 1015.

## FOUR CHARACTER 3.8 mm ( 0.15 INCH) 5X7 ALPHANUMERIC DISPLAYS <br> STANDARD RED HDSP-2000 <br> YELLOW HDSP-2001 <br> HIGH EFFICIENCY RED HDSP-2002 <br> HIGH PERFORMANCE GREEN HDSP-2003

TECHNICAL DATA JANUARY 1986

## Features

- FOUR COLORS

Standard Red
Yellow
High Efficiency Red
High Performance Green

- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END STACKABLE FOUR CHARACTER PACKAGE
- tTL COMPATIbLE
- $5 \times 7$ LED MATRIX DISPLAYS FULL ASCII SET
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2001/2003 CATEGORIZED FOR COLOR


## Description

The HDSP-2000/-2001/-2002/-2003 series of displays are 3.8 mm ( 0.15 inch) $5 \times 7$ LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red, and high performance green.

## Package Dimensions


:.05 TY


## NOTES:

1. DIMENSIONS IN mm turchest.
2. UNLESS OTHERWISE SPECIFIED THE TOLfRANCE ON ALL DIMENSIONS IS . 38 mm ( $+.015^{\prime \prime}$ )
3. EEAD MATERIAL IS

COPPEA ALLLOY.
4. CHARACTERS ARE CENTERED WITH RESPECT TO LEAGS WITHIN , $13 \mathrm{~mm} \mathrm{t}, 005^{\circ} \mathrm{l}$.

## Absolute Maximum Ratings (HDSP-2000/-2001/-2002/-2003)

| Inputs, Data Out and $V_{B} \ldots \ldots . . . . . . . . . .$. |  |
| :---: | :---: |
|  |  |
| Column Input Voltage, VCOL . . . . . . . . . . -0.5 V to +6.0 V |  |
| Free Air Operating |  |
| emperature Rang | $-20^{\circ} \mathrm{C}$ to +85 |

Inputs, Data Out and $\mathrm{V}_{\mathrm{B}} \ldots \ldots . . . . . . . . . . .$. . -0.5 V to $\mathrm{V}_{\mathrm{CC}}$
Column Input Voltage, Vcol
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, Ts $\ldots . .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Maximum Allowable Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}[1,2,3]$ 1.24 Watts

Maximum Solder Temperature 1.59 mm ( 0.063 in)
Below Seating Plane $\mathrm{t}<5 \mathrm{sec}$
$260^{\circ} \mathrm{C}$

## Recommended Operating Conditions <br> (HDSP-2000/-2001/-2002/-2003)

| Parameter | Symbol | Min. | Nom. | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | VCc | 4.75 | 5.0 | 5.25 | $V$ |  |
| Data Out Current. Low State | 10 L |  |  | 1.6 | mA |  |
| Data Out Current, High State | 1 OH |  |  | -0.5 | mA |  |
| Column Input Voltage, Column On HDSP-2000 | VCOL | 2.4 |  | 3.5 | $V$ | 4 |
| Column Input Voltage, Column On, HDSP-2001/-2002/-2003 | $\checkmark \mathrm{COL}$ | 2.75 |  | 3.5 | V | 4 |
| Setup Time | $t_{\text {setup }}$ | 70 | 45 |  | ns | 1 |
| Hold Time | trotd | 30 | 0 |  | ns | 1 |
| Width of Clock | tw(clock) | 75 |  |  | ns | 1 |
| Clock Frequency | flock | 0 |  | 3 | MHz | 1 |
| Clock Transition Time | TTHL |  |  | 200 | ns | 1 |
| Free Air Operating Temperature Fange ${ }^{[1,2]}$ | TA | -20 |  | 85 | ${ }^{\circ} \mathrm{C}$ | 2 |

## Electrical Characteristics Over Operating Temperature Range <br> (Unless otherwise specified)

| Description |  | Symbol | Test Conditions |  | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current |  | Icc | $\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLOCK }=\text { VDATA }=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \\ & \hline \end{aligned}$ | $V_{B}=0.4 \mathrm{~V}$ |  | 45 | 60 | mA |  |
|  |  | $V_{B}=2.4 \mathrm{~V}$ |  |  | 73 | 95 | mA |  |
| Column Current at any Column Input |  |  | ICOL | $\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCOL }=3.5 \mathrm{~V} \\ & \text { All SR Stages = Logical } 1 \end{aligned}$ | $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ |  |  | 500 | $\mu \mathrm{A}$ | 4 |
| Column Current at any Column Input |  | 1 COL | $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$ |  |  | 335 | 410 | mA |  |
| Ve, Clock or Data Input Threshold High |  | V VH | $\mathrm{VCC}=\mathrm{VCOL}=4.75 \mathrm{~V}$ |  | 2.0 |  |  | $V$ |  |
| V ${ }_{\text {B, Clock or Data Input Threshold Low }}$ |  | $\mathrm{V}_{1 /}$ |  |  |  |  | 0.8 | $V$ |  |
| Input Current Logical 1 | V8, Clock | liH | $V_{C C}=5.25 \mathrm{~V}, V_{\text {H }}=2.4 \mathrm{~V}$ |  |  | 20 | 80 | $\mu \mathrm{A}$ |  |
|  | Data In | lif |  |  |  | 10 | 40 | $\mu \mathrm{A}$ |  |
| Input Current Logical 0 | $V_{\text {B, }}$ Clock | If | $\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$. |  |  | -500 | -800 | $\mu \mathrm{A}$ |  |
|  | Data in | If. |  |  |  | -250 | -400 | $\mu \mathrm{A}$ |  |
| Data Out Voltage |  | VOH | $\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{OH}=-0.5 \mathrm{~mA}, 1 \mathrm{COL}=0 \mathrm{~mA}$ |  | 2.4 | 3.4 |  | V |  |
|  |  | VOL | $\mathrm{VCC}=4.75 \mathrm{~V}, 10 \mathrm{l}=1.6 \mathrm{~mA}$, | $02=0 \mathrm{~mA}$ |  | 0.2 | 0.4 | V |  |
| Power Dissipation Per Package** |  | Po | $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3,5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDs on per character, $V_{B}=2.4 \mathrm{~V}$ |  |  | 0.72 |  | W | 2 |
| Thermal Resistance IC Junction-to-Case |  | Ratuc |  |  |  | 25 |  | ${ }^{\circ}$ C/Wt Device | 2 |

*All typical values specified at $V_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

## Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction should not exceed $125^{\circ} \mathrm{C}$ TJ and the case temperature (as measured at pin 1 or the back of the display) should not exceed $100^{\circ} \mathrm{C}$ Tc.
2. The device should be derated linearly above $50^{\circ} \mathrm{C}$ at 16.7 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $35^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{Vcc}=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 20$ LEDs on per character, $20 \% \mathrm{DF}$.

## Optical Characteristics <br> <br> STANDARD RED HDSP-2000

 <br> <br> STANDARD RED HDSP-2000}| Description | Symbol | Test Conditions | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LEDI ${ }^{4,8]}$ (Character Average) | IvPeak | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}(6), V \mathrm{~V}=2.4 \mathrm{~V} \\ & \hline \end{aligned}$ | 105 | 200 |  | $\mu \mathrm{cd}$ | 3 |
| Peak Wavelength | $\lambda$ PEAK |  |  | 655 |  | nm |  |
| Dominant Wavelength ${ }^{[7]}$ | $\lambda_{d}$ |  |  | 639 |  | nm |  |

## YELLOW HDSP-2001

| Description | Symbol | Test Conditions | Min. | Typ. | Max. | Units | Fig. |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LED <br> (4,8] <br> Character Average $)$ | IvPeak | $V_{C C}=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V}$ <br> $T_{i}=25^{\circ} \mathrm{C}[6], V_{B}=2.4 \mathrm{~V}$ | 400 | 750 |  | $\mu \mathrm{~cd}$ | 3 |
| Peak Wavelength | $\lambda_{\text {PEAK }}$ |  |  | 583 |  | $n \mathrm{~m}$ |  |
| Dominant Wavelength[5,7] | $\lambda_{d}$ |  |  | 585 |  | nm |  |

## HIGH EFFICIENCY RED HDSP-2002

| Description | Symbol | Test Conditions | Min. | Typ. | Max. | Unils | Fig. |
| :--- | :---: | :--- | :--- | :--- | :--- | :---: | :---: |
| Peak Luminous Intensity per LED <br> (4.8] <br> Character Average) | $I_{\text {vPeak }}$ | $V_{C C}=5.0 V, V C O L=3.5 \mathrm{~V}$ <br> $T_{i}=25^{\circ} \mathrm{C}[6], V_{B}=2.4 \mathrm{~V}$ | 400 | 1430 |  | $\mu \mathrm{~cd}$ | 3 |
| Peak Wavelength | $\lambda_{\text {PEAK }}$ |  |  | 635 |  | nm |  |
| Dominant Wavelength[7] | $\lambda_{d}$ |  |  | 626 |  | nm |  |

## HIGH PERFORMANCE GREEN HDSP-2003

| Description | Symbol | Test Conditions | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LED ${ }^{[4,8 \mid}$ (Character Average) | lyPeak | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}(6), \mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$ | 850 | 1550 |  | $\mu \mathrm{cd}$ | 3 |
| Peak Wavelength | גPEAK |  |  | 568 |  | nm |  |
| Dominant Wavelength[5,7] | $\lambda_{d}$ |  |  | 574 |  | nm |  |

*All typical values specified at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

## Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2001/-2003 are categorized for color with the color category designated by a number code on the bottom of the package.
6. $T_{i}$ refers to the initial case temperature of the device immediately prior to the light measurement.

## Electrical Description

The HDSP-200X series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features DATA IN and DATA OUT terminals arrayed for easy PC board interconnection. DATA OUT represents the output of the 7th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the $5 \times 7$ diode array.
The TTL compatible $V_{B}$ input may either be tied to $V_{C C}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
In the normal mode of operation, input data for digit 4 column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column 1 data for digits 3,2 and 1 is similarly shifted into the display shift register locations. The
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength $\lambda_{\mathrm{d}}$, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships: $\mathrm{L}_{\mathrm{v}}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\mathrm{Iv}_{\mathrm{v}}($ Candela $) / \mathrm{A}(\text { Metre })^{2}$ $\mathrm{L}_{v}($ Footlamberts $)=\pi / \mathrm{lv}($ Candela $) / \mathrm{A}(\text { Foot })^{2}$ $\mathrm{A}=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$ (Foot ${ }^{2}$
column 1 input is now enabled for an appropriate period of time, T. A similar process is repeated for columns $2,3,4$ and 5. If the time necessary to decode and load data into the shift register is $t$, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach $20 \%$.

For further applications information, refer to HP Application Note 1016.


Figure 1. Switching Characteristics HDSP-2000/-2001/-2002/-2003 ( $\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )

## Mechanical and Thermal Considerations

The HDSP-2000/-2001/-2002/-2003 are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. Full power operation $\left(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}\right.$ ) with worst case thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} /$ wat$t /$ device is possible up to ambient temperature of $50^{\circ} \mathrm{C}$. For operation above $50^{\circ} \mathrm{C}$, the maximum device dissipation should be derated linearly at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible.
Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, $\mathrm{V}_{\mathrm{COL}}$, can be decreased to the recommended minimum values of 2.4 V for the HDSP-2000 and 2.75V for the HDSP-2001/-2002/2003. Also, the average drive current can be decreased through pulse width modulation of $\mathrm{V}_{\mathrm{B}}$. Please refer to HP Application Note 1016 for further information.
The HDSP-2000/-2001/-2002/-2003 displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested filter materials are provided in Figure 6. Additional information on filtering and constrast enhancement can be found in HP Application Note 1015.


Figure 5. Block Diagram of HDSP-2000/-2001/-2002/-2003

Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

| Display Color | Ambient Lighting |  |  |
| :---: | :---: | :---: | :---: |
|  | Dim | Moderate | Bright |
| HDSP-2000 Std. Red | Panelgraphic <br> Dark Ped 63 <br> Fuby Red 60 <br> Chequers Fied 178 <br> Plexiglass 2423 | Polaroed HNCP37 <br> 3MA Light Contro: Fifm <br> Panelgraphte <br> Gray 10 <br> Chequers Grey $105$ |  |
| HOS ${ }^{2}$-2001 <br> (Yellow) | Panelgraphic <br> Yellow 27 <br> Chequers Amber 107 |  | Polaroid <br> HNCP10-Glass <br> Marks Polarized MPC-0304-8-10 <br> Note 1 |
| HOSP 2002 (HER) | Panelgraphuc Ruby Red 60 Chequers Red 112 |  | Polaroid <br> HNCP10-Gfass <br> Mafks Potarized MPC-0201-2-22 |
| HDSP-2003 <br> (HP Green) | Panelgraphis <br> Green 48 <br> Chequers Green 107 |  | Polaroid <br> FNCP10-Glass <br> Matks Polarized MPC-0101-5-12 |

Note: 1. Optically coated circular polarized filters, such as Polaroid HNCP10.

Figure 6. Contrast Enhancement Filters


Figure 2. Maximum Allowable Power Dissipation vs. Temperature


Figure 3. Relative Luminous Intensity vs. Temperature


Figure 4. Peak Column Current vs. Column Voltage

## (h) <br> HEWLETT PACKARD

## FOUR CHARACTER 5.0 mm ( 0.20 INCH ) 5X7 ALPHANUMERIC DISPLAYS

STANDARD RED HDSP-2300<br>YELLOW

TECHNICAL DATA JANUARY 1986

## Features

- FOUR COLORS

Standard Red
Yellow
High Efficiency Red
High Performance Green

- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END STACKABLE FOUR CHARACTER PACKAGE
- TTL COMPATIBLE
- 5 x 7 LED MATRIX DISPLAYS FULL ASCII SET
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2301/2303 CATEGORIZED FOR COLOR


## Description

The HDSP-2300/-2301/-2302/-2303 series of displays are 5.0 mm ( 0.20 inch) $5 \times 7$ LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red, and high performance green.

## Package Dimensions



## Typical Applications

- AVIONICS
- BUSINESS MACHINES
- MEDICAL INSTRUMENTS
- INDUSTRIAL PROCESS CONTROL EQUIPMENT - COMPUTER PERPHERALS

Each four character cluster is contained in a 12 pin dual-inline package. An on-board SIPO (Serial-In-Parallel-Out) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing.


## Absolute Maximum Ratings (HDSP-2300/-2301/-2302/-2303)



Maximum Allowable Power Dissipation at $T_{A}=25^{\circ} \mathrm{C}[1,2,3]$
HDSP-2300 .................................... . 1.24 Watts
HDSP-2301/-2302/-2303 .................... 1.46 Watts
Maximum Solder Temperature is 1.59 mm ( 0.063 in )
Below Seating Plane $t<5 \mathrm{sec} \ldots \ldots \ldots \ldots \ldots . . .260^{\circ} \mathrm{C}$

## YELLOW HDSP－2301／HIGH EFFICIENCY RED HDSP－2302／HIGH PERFORMANCE GREEN HDSP－2303

| Description |  | Symbol | Test Conditions |  | Min． | Typ．＊ | Max． | Units | Fig． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current |  | ICC | $\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLOCK }=\text { VOATA }=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \end{aligned}$ | $V_{B}=0.4 \mathrm{~V}$ |  | 45 | 60 | mA |  |
|  |  | $V_{B}=2.4 \mathrm{~V}$ |  |  | 73 | 95 | mA |  |
| Column Current at any Column Input |  |  | 1 col | $\begin{aligned} & \hline \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } 1 \\ & \hline \end{aligned}$ | $V_{B}=0.4 \mathrm{~V}$ |  |  | 500 | $\mu \mathrm{A}$ | 7 |
| Column Current at any Column Input |  | ICOL | $V_{B}=2.4 \mathrm{~V}$ |  | \％ | 380 | 520 | mA |  |
| VB，Clock or Data Input Threshold High $V_{\mathrm{B}}$ ．Clock or Data Input Threshold Low |  | $\mathrm{V}_{1 \mathrm{H}}$ | $V C C=V C O L=4.75 \mathrm{~V}$ |  | 2.0 | 4 | － | V |  |
|  |  | $V_{1 L}$ |  |  |  |  | 0.8 | V |  |
| Input Current Logical 1 | VB，Clock | ${ }_{1} \mathrm{H}$ | $V_{C C}=5.25 \mathrm{~V}, V_{1 H}=2.4 \mathrm{~V}$ |  |  | 20 | 80 | $\mu \mathrm{A}$ |  |
|  | Data in | 11 H |  |  |  | 10 | 40 | $\mu \mathrm{A}$ |  |
| Input Current Logical 0 | VB，Clock | liil | $\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$ |  |  | －500 | －800 | $\mu \mathrm{A}$ |  |
|  | Data in | IIL |  |  |  | －250 | －400 | $\mu \mathrm{A}$ |  |
| Data Out Voltage |  | VOH | $\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{OH}=-0.5 \mathrm{~mA}, 1 \mathrm{lCOL}=0 \mathrm{~mA}$ |  | 2.4 | 3.4 |  | V |  |
|  |  | $\mathrm{V}_{\text {OL }}$ | $\mathrm{VCC}=475 \mathrm{~V}, 1 \mathrm{LL}=1.6 \mathrm{~mA}$ ， | $\mathrm{CaL}=0 \mathrm{~mA}$ |  | 0.2 | 0.4 | V |  |
| Power Dissipation Per Package＊＊ |  | Po | $\mathrm{VCC}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDS on per character，$V_{\mathrm{B}}=2.4 \mathrm{~V}$ |  |  | 0.78 |  | W | 5 |
| Thermal Resistance iC Junction－to－Case |  | $\mathrm{R} 0 \mathrm{~J}-\mathrm{C}$ |  |  |  | 25 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device | 5 |

## Optical Characteristics

## STANDARD RED HDSP－2300

| Description | Symbol | Test Conditions | Min． | Typ．＊ | Max． | Units | Fig． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LED ${ }^{[4.8]}$ （Character Average） | IvPeak | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}(6), \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$ | 130 | 300 |  | $\mu \mathrm{cd}$ | 3 |
| Peak Wavelength | 入РЕАК |  |  | 655 |  | nm |  |
| Dominant Wavelength ${ }^{[7]}$ | $\lambda_{d}$ |  |  | 639 |  | nm |  |

## YELLOW HDSP－2301

| Description | Symbol | Test Conditions | Min． | Typ． | Max． | Units | Fig． |
| :--- | :---: | :--- | :--- | :--- | :--- | :---: | :---: |
| Peak Luminous Intensity per LED［4，8］ <br> （Character Average） | IvPeak | $V C C=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}$ <br> $T_{i}=25^{\circ} \mathrm{C}[6], V_{B}=2.4 \mathrm{~V}$ | 650 | 1140 |  | $\mu \mathrm{~cd}$ | 6 |
| Peak Wavelength | $\lambda$ PEAK |  |  | 583 |  | nm |  |
| Dominant Wavelength［5．7］ | $\lambda_{\mathrm{d}}$ |  |  | 585 |  | nm |  |

## HIGH EFFICIENCY RED HDSP－2302

| Description | Symbol | Test Conditions | Min． | Typ．＊ | Max． | Units | Fig． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LED ${ }^{[4.8]}$ （Character Average） | IyPeak | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[6]}, \mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$ | 650 | 1430 |  | $\mu \mathrm{cd}$ | 6 |
| Peak Wavelength | 入РЕАК |  |  | 635 |  | nm |  |
| Dominant Wavelength ${ }^{[7]}$ | $\lambda{ }_{\text {c }}$ |  |  | 626 |  | nm |  |

## HIGH PERFORMANCE GREEN HDSP－2303

| Description | Symbol | Test Conditions | Min． | Typ．＊ | Max． | Units | Fig． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LED［ ${ }^{[4,8]}$ （Character Average） | IvPeak | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{i}=25^{\circ} \mathrm{C}[6], \mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$ | 1280 | 2410 |  | $\mu \mathrm{cd}$ | 6 |
| Peak Wavelength | 入PEAK |  |  | 568 |  | nm |  |
| Dominant Wavelength $[5,7]$ | $\lambda_{d}$ |  |  | 574 |  | nm |  |

＊All typical values specified at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted．

## Notes：

4．The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package．
5．The HDSP－2301／－2303 are categorized for color with the color category designated by a number code on the bottom of the package．
6．Ti refers to the initial case temperature of the device imme－ diately prior to the light measurement．
＊＊Power dissipation per package with four characters illuminated．

7．Dominant wavelength $\lambda_{d}$ ，is derived from the CIE chromaticity diagram，and represents the single wavelength which defines the color of the device．
8．The luminous sterance of the LED may be calculated using the following relationships：
$\mathrm{L}_{v}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{\mathrm{v}}($ Candela $) / \mathrm{A}(\text { Metre })^{2}$
$L_{v}($ Footlamberts $)=\pi / v($ Candela $) / A($ Foot $) 2$
$A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$（Foot）${ }^{2}$


| Parameter | Condition | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| flock CLOCK Rate |  |  |  | 3 | MHz |
| tpl.h, $^{\text {t }}$ the Propagation delay CLOCK to DATA OUT | $\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=2.4 \mathrm{~K} \Omega \end{aligned}$ |  |  | 125 | ns |

Figure 1. Switching Characteristics HDSP-2300/-2301/-2302/-2303 ( $\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}{ }^{\circ} \mathrm{C}$ to ${ }^{+85^{\circ}} \mathrm{C}$ )

## HDSP-2300



Figure 2. Maximum Allowable Power Dissipation vs. Temperature

HDSP-2301/-2302/-2303


Figure 5. Maximum Allowable Power Dissipation vs. Temperature


Figure 3. Relative Luminous Intensity vs. Temperature


Figure 6. Relative Luminous Intensity vs. Temperature


Figure 4. Peak Column Current vs. Column Voltage


Figure 7. Peak Column Current vs. Column Voltage

## Electrical Description

The HDSP-230X series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electonics design. Each four character display module features DATA IN and DATA OUT terminals arrayed for easy PC board interconnection. DATA OUT represents the output of the 7 th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the Clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the $5 \times 7$ diode array.
The TTL compatible $\mathrm{V}_{\mathrm{B}}$ input may either be tied to $\mathrm{V}_{\mathrm{cc}}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
In the normal mode of operation, input data for digit 4 column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column data for digits 3,2 , and 1 is similiarly shifted into the display shift register locations. The column 1 input is now enabled for an appropriate period of time, $T$. A similar process is repeated for columns $2,3,4$ and 5 . If the time necessary to decode the load data into the shift register is $t$, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20\%.
For further applications information, refer to HP Application Note 1016.


Figure 8. Block Diagram of HDSP-2300/-2301/-2302/-2303

| Display Color | Amblent Lighting |  |  |
| :---: | :---: | :---: | :---: |
|  | Dim | Moderate | Bright |
| $\begin{aligned} & \text { MDSP-2000 } \\ & \text { Std. Red } \end{aligned}$ | Panetgraphic <br> Dark Red 63 <br> Ruby fied 60 <br> Cnequers Red 118 <br> Plexiglass 2423 | Polarord HNCP37 <br> 3M Light Controt Fitm <br> Panelgraphic <br> Gray 10 <br> Chequers Grey 105 |  |
| HDSP-2001 (Yellow) | Panelgraphic <br> Yellow 27 <br> Chequers Amber 107 |  | Polarona <br> HNCP10-Glass <br> Narks Pofarized MPC-0307-8-70 <br> Note 1 |
| HDSP-2002 <br> (HER) | Panelgraphtc Ruby Ped 60 Chequers Red 112 |  | Polaroid <br> HNCP10-Glass <br> Marks Pofamized MPC-0201-2.22 |
| HDSP-2003 (HPGreen) | Panelgraphic Green 48 Chequers Green 107 |  | Palaroid HNCP 10 -Gatass Marks Pofarized MPC-0101+5-12 |

Note: 1. Optically coated circular polarized filters, such as Polaroid HNCP10.

Figure 9. Contrast Enhancement Filters

## Mechanical and Thermal Considerations

The HDSP-2300/-2301/-2302/-2303 are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. The HDSP-2301/-2302/-2303 utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation ( $\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$ ) with worst case thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} /$ watt/device is possible up to ambient temperature of $37^{\circ} \mathrm{C}$. For operation above $37^{\circ} \mathrm{C}$, the maximum device dissipation should be derated
linearly at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 5). With an improved thermal design, operation at higher ambient temperatures without derating is possible. Please refer to HP Application Note 1016 for further information.
The HDSP-2300 uses a lower power IC, yet achieves excellent readabilty in indoor ambient lighting. Full power operation up to $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\left(\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=\right.$ 3.5 V ) is possible by providing a total thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} /$ watt/device maximum. For operation above $50^{\circ} \mathrm{C}$, the maximum device dissipation should be derated at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} /$ device (see Figure 2).

Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, Vcol, can be decreased to the recommended minimum values of 2.6 V for the HDSP-2300 and 2.75V for the HDSP-2301/-2302/-2303. Also, the average drive current can be decreased through pulse width modulation of $\mathrm{V}_{\mathrm{B}}$.
The HDSP-2300/-2301/-2302/-2303 displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested
filter materials are provided in Figure 9. Additional information on filtering and constrast enhancement can be found in HP Application Note 1015.
Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

## NOTE:

The HDSP-2301/-2302/-2303 are available in high intensity categories suitable for some applications where direct sunlight viewing is required. For information on displays and filters for sunlight viewable applications, contact your field salesman.

# FOUR CHARACTER 5.0 mm ( 0.20 INCH ) 5X7 ALPHANUMERIC DISPLAY FOR SUNLIGHT VIEWABLE APPLICATIONS <br> YELLOW HDSP-2381 <br> HIGH EFFICIENCY RED HDSP-2382 HIGH PERFORMANCE GREEN HDSP-2383 

## Features

- SUNLIGHT VIEWABLE UP TO 10,000 FOOTCANDLES
- THREE COLORS


## Yellow

High Efficiency Red High Performance Green

- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END AND ROW STACKABLE
- 5X7 LED MATRIX DISPLAYS FULL ASCII SET
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- TTL COMPATIBLE
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2381/-2383 CATEGORIZED FOR COLOR


## Description

The HDSP-2381/-2382/-2383 displays are designed for use in applications requiring readability in bright sunlight. With a proper contrast enhancement filter and heat sinking, these displays are readable in sunlight ambients up to 10,000 footcandles. The character font is a $5.0 \mathrm{~mm}(0.20$ inch $) 5 \times 7$ LED array for displaying alphanumeric information. These devices are available in yellow, high efficiency red, and high performance green. Each four character cluster is packaged in a


## Typical Applications

- COMMERCIAL AVIONICS - Cockpit displays, fuel management and airborne navigational radio systems
- TEST AND GROUND SUPPORT FIELD EQUIPMENT
- INDUSTRIAL VEHICLES AND EQUIPMENT
- OTHER APPLICATIONS REQUIRING READABILITY IN DIRECT SUNLIGHT

12-pin dual-in-line package. An on-board serial-in-parallelout 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing.

## Package Dimensions


$1.27 \pm .13$
$\{.050 \pm .005\}$$\rightarrow$




NOTES: 1. DIMENSIONS IN mm finches)
2. UNLESS OTHERWISE SPECIFIED THE TOLERANCE ON ALL. DIMENSIONS IS $\pm .38 \mathrm{~mm}$ ( $\left.t .015^{\circ}\right)$
3. CHARACTERS ARE CENTERED WITH GESPECT TO LEADS WITHIN $\ddagger .13 \mathrm{~mm}\left( \pm .005^{\circ}\right)$.

## Absolute Maximum Ratings (HDSP-2381/-2382/-2383)

Supply Voltage Vcc to Ground
-0.5 V to +6.0 V
Inputs, Data Out and $\mathrm{V}_{\mathrm{B}} \ldots . . . . . . . . . .$.
Column Input Voltage, VCOL ........... -0.5 V to +6.0 V
Free Air Operating Temperature
Range, $\mathrm{T}_{\mathrm{A}}{ }^{[1,2]}$
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range, Ts $\ldots . . .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Maximum Allowable Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}[1,2,3]$
HDSP-2381/-2382/-2383
1.74 Watts

Maximum Solder Temperature 1.59 mm ( 0.063 in )
Below Seating Plane $t<5$ sec
$260^{\circ} \mathrm{C}$

## Recommended Operating Conditions Over Operating

Temperature Range ( $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ) (HDSP-2381/-2382/-2383)

| Parameter | Symbol | Min. | Nom. | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vec | 4.75 | 5.0 | 5.25 | $V$ |  |
| Data Out Current. Low State | 10 L |  |  | 1.6 | mA |  |
| Data Out Current, High State | 1 OH |  |  | -0.5 | mA |  |
| Column Input Voltage, Column On HDSP-2381/-2382/-2383 | VCOL | 2.75 |  | 3.5 | $\checkmark$ | 4 |
| Setup Time | ISETUP | 70 | 45 |  | ns | 1 |
| Hold Time | thold | 30 | 0 |  | ns | 1 |
| Width of Clock | tw(CLOCK) | 75 |  |  | ns | 1 |
| Clock Frequency | fclock | 0 |  | 3 | MHz | 1 |
| Clock Transition Time | t+ $\mathrm{HL}_{4}$ |  |  | 200 | ns | 1 |
| Free Air Operating Temperature Range[1,2] | TA | $-20$ |  | 85 | ${ }^{\circ} \mathrm{C}$ | 3 |

## Electrical Characteristics Over Operating Temperature Range $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

YELLOW HDSP-2381/HIGH EFFICIENCY RED HDSP-2382/HIGH PERFORMANCE GREEN HDSP-2383

| Description |  | Symbol | Test Conditions |  | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current |  | Icc | $\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLOCK }=\text { VDATA }=2.4 \mathrm{~V} \\ & \text { All SA Stages }= \\ & \text { Logical } 1 \\ & \hline \end{aligned}$ | $V_{B}=0.4 \mathrm{~V}$ |  | 50 | 60 | mA |  |
|  |  | $V_{B}=2.4 \mathrm{~V}$ |  |  | 90 | 100 | mA |  |
| Column Input Current (any Column Pin) |  |  | ICOL | $\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \text { All SR Stages = Logical } 1 \\ & \hline \end{aligned}$ | $V_{B}=0.4 \mathrm{~V}$ |  |  | 500 | $\mu \mathrm{A}$ | 4 |
| Column Input Current (any Column Pin) |  | 1 COL | $V_{B}=2.4 \mathrm{~V}$ |  |  | 550 | 653 | mA |  |
| Vs. Clock or Data Input Threshold High |  | $\mathrm{V}_{\mathrm{H}}$ | $V \mathrm{CCO}=\mathrm{VCOL}=4.75 \mathrm{~V}$ |  | 2.0 |  |  | $V$ |  |
| V ${ }_{\text {B }}$, Clock or Data Input Threshold Low |  | $V_{1 L}$ |  |  |  |  | 0.8 | $V$ |  |
| Input Current Logical 1 | VB. Clock | lif | $V C C=5.25 \mathrm{~V}, \mathrm{~V}_{1}=2.4 \mathrm{~V}$ |  |  | 20 | 80 | $\mu \mathrm{A}$ |  |
|  | Data in | 1 IH |  |  |  | 10 | 40 | $\mu \mathrm{A}$ |  |
| Input Current Logical 0 | Vs. Clock | H2 | $V_{C C}=5.25 \mathrm{~V}, V_{\text {IL }}=0.4 \mathrm{~V}$ |  |  | -500 | -800 | $\mu \mathrm{A}$ |  |
|  | Data in | ILL |  |  |  | -250 | -400 | $\mu \mathrm{A}$ |  |
| Data Out Voltage |  | VOH | $V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\text {OH }}=-0.5 \mathrm{~mA}, 1 \mathrm{COL}=0 \mathrm{~mA}$ |  | 2.4 | 3.4 |  | V |  |
|  |  | VOL | $V C C=4.75 \mathrm{~V}, 1 \mathrm{ILL}=1.6 \mathrm{~mA}$, | $\mathrm{OL}=0 \mathrm{~mA}$ |  | 0.2 | 0.4 | V |  |
| Power Dissipation Per Package** |  | Po | $V_{C C}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDs on per chatacter, $V_{B}=2.4 \mathrm{~V}$ |  |  | 1.05 |  | W | 2 |
| Thermal Resistance IC Junction-to-Pin |  | R 0 J-Pin |  |  |  | 10 |  | ${ }^{\circ} \mathrm{CAN} /$ Device | 2 |

*All typical values specified at $\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

## Notes:

1. The HDSP-2381/-2382/-2383 should be derated linearly above $50^{\circ} \mathrm{C}$ at $24.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, based on a device mounted such that the thermal resistance from IC junction to ambient is $45^{\circ} \mathrm{C} / \mathrm{W}$ $\left(10^{\circ} \mathrm{C} / \mathrm{W}\right.$ R $\mathrm{OJ}_{\mathrm{J}}$ PIN and $35^{\circ} \mathrm{C} / \mathrm{WPIN-A}^{\prime}$ ). See Figure 2 for power deratings based on lower thermal resistance mounting.
2. Operation above $50^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction temperature should not exceed $125^{\circ} \mathrm{C}\left(T_{J}\right)$ and the temperature at the pins should not exceed $100^{\circ} \mathrm{C}$ (TC).
3. Maximum allowable dissipation is derived from $\mathrm{VCC}_{\mathrm{CC}}=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}, 20 \mathrm{LEDs}$ on per character, $20 \% \mathrm{DF}$.

## Optical Characteristics

YELLOW HDSP-2381

| Description | Symbol | Test Conditions | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LED ${ }^{[4,8 \mid}$ (Character Average) | IvPEAK | $\begin{aligned} & V C C=5.0 \mathrm{~V}, V C O L=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C}(6), V_{B}=2.4 \mathrm{~V} \end{aligned}$ | 2400 | 3400 |  | $\mu \mathrm{cd}$ | 3 |
| Dominant Wavelength[ 5,7$]$ | $\lambda_{d}$ |  |  | 585 |  | nm |  |
| Peak Wavelength | APEAK |  |  | 583 |  | nm |  |

## HIGH EFFICIENCY RED HDSP-2382

| Description | Symbol | Test Conditions | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LED[4,8] (Character Average) | IvPEAK | $\begin{aligned} & V C C=5.0 \mathrm{~V}, V \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C}[6], V_{B}=2.4 \mathrm{~V} \end{aligned}$ | 1920 | 2850 |  | $\mu \mathrm{cd}$ | 3 |
| Dominant Wavelength ${ }^{\text {[7] }}$ | $\lambda d$ |  |  | 626 |  | nm |  |
| Peak Wavelength | 入PEAK |  |  | 635 |  | nm |  |

## HIGH PERFORMANCE GREEN HDSP-2383

| Description | Symbol | Test Conditions | Min. | Typ. | Max. | Units | Fig. |
| :--- | :---: | :--- | :--- | :--- | :--- | :---: | :---: |
| Peak Luminous Intensity per LED 14.8$]$ <br> (Character Average) | IvPEAK | $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}$ <br> $\mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}[6], \mathrm{VB}=2.4 \mathrm{~V}$ | 2400 | 3000 |  | $\mu \mathrm{~cd}$ | 3 |
| Dominant Wavelength[5,7] | $\lambda_{d}$ |  |  | 574 |  | nm |  |
| Peak Wavelength | $\lambda_{\text {PEAK }}$ |  |  | 568 |  | nm |  |

${ }^{-}$All typical values specified at $\mathrm{VCC}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
*-Power dissipation per package with four characters illuminated.
7. Dominant wavelength $\lambda_{d}$, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$\mathrm{L}_{v}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{v}($ Candela $) / \mathrm{A}(\text { Metre })^{2}$
$\mathrm{L}_{v}($ Footlamberts $)=\pi \mathrm{I}_{v}\left(\right.$ Candela) $/ \mathrm{A}(\text { Foot })^{2}$
$\mathrm{A}=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$ (Foot) $)^{2}$


Figure 1. Switching Characteristics HDSP-2381/-2381/-2383 ( $\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0 ^ { \circ }} \mathbf{C}$ to $+85^{\circ} \mathrm{C}$ ).


Figure 2. Maximum Allowable Power Dissipation vs. Ambient Temperature as a Function of Thermal Resistance IC Junction to Amblent Air. R $\theta_{\text {JA }}$.


Figure 3. Relative Luminous Intensity vs. Device Substrate (PIN) Temperature.


Figure 4. Peak Column Current vs. Column Voltage.

## Electrical Description

The electrical configuration of the HDSP-238X series alphanumeric displays allows for an effective interface to a microprocessor data source. Each display device contains four $5 \times 7$ LED dot matrix characters and two integrated circuits, as diagrammed in Figure 5. The two integrated circuits, with TTL compatible inputs, form a 28 bit serial-in-parallelout column data shift register. The data input is connected to shift register bit position 1 and the data output is connected to bit position 28 . The shift register parallel outputs are connected to constant current sinking LED row drivers that sink a nominal 19.6 mA . A logic 1 stored in the shift register enables the corresponding LED row driver and a logic 0 stored in the shift register disables the corresponding LED row driver.
Column data is loaded into an on-board shift register with high to low transitions of the Clock input. To load character information into the display, column data for the character 4 is loaded first and the column data for character 1 is loaded last in the following manner: The 7 data bits for column 1 , character 4 are loaded into the on-board shift register. Next, the 7 data bits for column 1, character 3 are loaded into the on-board shift register, shifting the character 4 data over one character position. This process is repeated until all 28 bits of column data are loaded into the on-board shift register. Then, the column 1 input is energized to illuminate column 1's in all four characters. The procedure is repeated for columns 2, 3, 4 and 5.

The light output of the display may be dimmed by pulse width modulating (PWM) the blanking input $\mathrm{V}_{\mathrm{B}}$, with the brightness being in direct proportion to the LED on-time. When the blanking input is at logic high the display is illuminated and when the blanking input is at logic low the display is blanked. These displays may be dimmed by PWM on the order of a 2000:1 change in brightness while maintaining light output and color uniformity between characters.

The LED on-time duty factor, DF, may be determined when the time to load the on-board shift register, $t$, the column on-time without blanking, T , and the time display is blanked, TB, are known:

$$
D F=\frac{T}{5(t+T+T B)}
$$

Where: $5(\mathrm{t}+\mathrm{T}+\mathrm{TB})$ is $1 /$ column refresh rate
The column driver inputs should be strobed at a refresh rate of 100 Hz or faster to achieve a flicker free display. The value of DF approaches $20 \%$ when $\mathrm{TB}=0$ and t is very small compared to $T$.
For information on interfacing these displays to microprocessor data sources and techniques for intensity control, see Application Note 1016.


Figure 5. Block Diagram of an HDSP-238X Series LED Alphanumeric Display.

## Power Dissipation and Low Thermal Resistance Design Considerations

The light output of the HDSP-238X devices is a function of temperature, decreasing $1.5 \%$ for each $1^{\circ} \mathrm{C}$ increase in junction temperature. Therefore, it is desirable to maintain as low device junction temperature as possible to insure sufficient light output for sunlight readability. This is preferably achieved by designing for a low junction to ambient thermal resistance, or alternatively by controlling total display power dissipation by derating, see data sheet Figure 2.

## Power Dissipation Calculation:

Power dissipation may be calculated using the equations of Figure 6a. For typical applications, the average pixel count per character is 15 . The maximum power dissipation is calculated with a pixel count of 20 per character. As demonstrated in Figure 6c, the maximum power dissipation is 1.741 W with $\mathrm{DF}=20 \%, \mathrm{VCC}=5.25 \mathrm{~V}$ and $\mathrm{VCOL}=3.5 \mathrm{~V}$. The average power dissipation is 1.161 W per device with $\mathrm{DF}=20 \%, \mathrm{VCC}=5.0 \mathrm{~V}$ and $\mathrm{VCOL}=3.5 \mathrm{~V}$.
As shown in Figure 4 on the data sheet, the column current, ICOL, is constant when the column input voltage, VCOL, is at 2.75 V or greater. Setting Vcol substantially greater than 2.75 V does not increase light output, but does add to device total power dissipation. For optimum performance, it is recommended that Vcol be set between 2.75 V and 3.5 V .
Junction Temperature and Device Thermal Resistance:
It is necessary to control the IC junction temperature, $\mathrm{TJ}_{\mathrm{J}}(\mathrm{IC})$, to insure proper operation of the display:

$$
\text { TJ }(I C) M A X=125^{\circ} \mathrm{C}
$$

The equations to calculate $\mathrm{TJ}_{\mathrm{J}}(\mathrm{IC})$ are given in Figure 6b. TJ(IC) will be higher than the device substrate temperature where as the individual LED pixel junction temperatures, $T_{J}(L E D)$, will be nearly the same as the substrate temperature. A sample calculation is presented in Figure 6c.
An easy design rule is to obtain a IC junction to ambient thermal resistance, $\mathrm{R}_{\theta \mathrm{J}-\mathrm{A}}$, that establishes the device pin temperature less than $100^{\circ} \mathrm{C}$. The value of $\mathrm{R}_{\theta J-\mathrm{A}}=23^{\circ} \mathrm{C} / \mathrm{W}$ will permit device operation in an ambient temperature of $85^{\circ} \mathrm{C}$, without derating. Figure 7 gives the maximum values for $R \theta_{J-A}$ for reliable device operation in ambient temperatures from $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
To achieve a low value of $\mathrm{R}_{\theta \mathrm{PIN-A}}$, the following designs may be incorporated into the display system:

1. Mount the displays on a double sided maximum metalized PC board, as illustrated in Figure 8.
For single line display assemblies, a double sided maximum metalized PC board is a cost effective way to achieve a low thermal resistance to ambient. "Lands" are used instead of "traces" as the current carrying elements. Each "land" is made as wide as possible, consistent with circuit layout restrictions, to achieve metalized surface area to radiate thermal energy. Isolation strips, $0,64 \mathrm{~mm}(0.025 \mathrm{inch})$ wide, are etched from the board to electrically isolate the lands. PC board thermal resistance values in the range of $35^{\circ} \mathrm{C} / \mathrm{W}$ per device are achievable for single line display assemblies. Air flow across the display PC board assembly dissipates the heat.
2. Install a metal plate, or bar, between the display packages and the PC board, with the bar mechanically fastened to the chassis, as illustrated in Figure 9a.
For multiple display lines, a metal plate may be placed between the display packages and the PC board to conduct the heat to the chassis housing assembly. The metal plate may be electrically insulated from the PC board by a thermally conductive insulator. Heat sink bars are formed in the metal plate by milling out lead clearance slots. The ceramic package of a display rests on one of the heat sink bars with the device leads passing through the slots to make electrical contact with the PC board. The heat is transferred from the display ceramic package into the metal plate. The chassis housing acts as the thermal radiator to dissipate the heat into the surrounding environment. The metal plate must be mechanically fastened to the housing assembly, otherwise it will act only as a thermal capacitor and will not dissipate the heat.
3. Install a heat pipe between the display packages and the PC board, with the heat pipe mechanically fastened to the chassis housing, as shown in Figure 9b.
The heat pipe is a low mass alternative to the metal plate described above. A heat pipe is a small tube, filled with a chemical, that transfers heat from the source to a heat sink with minimal thermal impedance. It is not a heat sink. The heat pipe transfers the heat directly from the display ceramic package to the chassis housing which dissipates the heat into the surrounding air.
4. Utilize a heat pipe to transfer the heat from a maximum metalized PC board to a finned heat sink mounted on the back of the assembly housing, as shown in Figure 10.
The heat pipe is placed against the back side of a maximum metalized PC board, electrically isolated by a thermally conductive insulator. When the heat pipe is connected to a finned heat sink on the back of the chassis housing, PC board to external ambient thermal resistance values in the range of 10 to $15^{\circ} \mathrm{C} / \mathrm{W}$ per device can be achieved. The heat generated by the displays is directly dissipated into the external ambient surrounding the chassis housing by the finned heat sink.

Contact the following manufacturers for information on: Heat Pipe Technology:

Noren Products
3545 Haven Avenue
Menlo Park, CA 94025
(415) 365-0632

Thermally Conductive Insulators; "Sil-Pad":
Bergquist Company
5300 Edina Indl Blvd.
Minneapolis, MN 55435
(612) 835-2322
$P D=P\left(I_{C c}\right)+P\left(I_{\text {REF }}\right)+P\left(I_{\text {col }}\right) ;$ Total power dissipation per device.

$$
\begin{aligned}
\text { Where: } P\left(I_{c c}\right)= & I_{\mathrm{Cc}}\left(\mathrm{~V}_{\mathrm{B}}=0.4 \mathrm{~V}\right) \cdot V_{\mathrm{Cc}} ; \text { Power } \\
& \text { dissipated by the two ICs when the } \\
& \text { display is blanked. }
\end{aligned}
$$

$$
P\left(I_{R E F}\right)=5 \cdot\left[I_{\mathrm{CC}}\left(\mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}\right)-\mathrm{I}_{\mathrm{CC}}\left(\mathrm{~V}_{\mathrm{B}}=\right.\right.
$$ $0.4 \mathrm{~V})] \cdot \mathrm{V}_{\mathrm{CC}} \cdot(\mathrm{n} / 35) \cdot \mathrm{DF}$; Additional power dissipated by the two ICs with characters illuminated.

P( $\left.\mathrm{I}_{\text {COL }}\right)=5 \cdot \mathrm{I}_{\text {COL }} \cdot \mathrm{V}_{\text {COL }}(\mathrm{n} / 35) \cdot$ DF; Power dissipated by the LED pixels when the characters are illuminated.
$\mathrm{n}=15$ pixels per character for average power.
n=20 pixels per character for maximum power.

Figure 6a. Equations for Calculating Device Power Dissipation.

Delta $T_{J}(I C)=R \theta_{J-P I N} \cdot P D ; I C$ junction temperature rise above device pin temperature.
Where: $R \theta_{\text {J-PIN }}=10^{\circ} \mathrm{C} / \mathrm{W}$; The thermal resistance IC junction to device pin 1.
Delta $\mathbf{T}_{\text {PIN }}=\mathbf{R} \theta_{\text {PIN-A }} \cdot \mathbf{P D}$; Device pin temperature rise above the ambient temperature, $\mathrm{T}_{\mathrm{A}}$.
Where: $\mathbf{R} \theta_{\text {PIN-A }}=$ The thermal resistance, device pin to ambient through the PC board, on a per device basis.
$\mathbf{T}_{\mathbf{J}}($ IC $)=\mathbf{T}_{\mathbf{A}}+\left[\right.$ Delta $\mathbf{T}_{J}($ IC $)+$ Delta $\mathbf{T}_{\text {PIN }}$ ]; IC junction temperature, the sum of the ambient temperature and the temperature rise above ambient.

Figure 6b. Equations for Calculating IC Junction

Device Maximum Power Dissipation:
IC Maximum Power Dissipation:
$P\left(I_{c c}\right)=(0.060 \mathrm{~A})(5.25 \mathrm{~V})=0.315 \mathrm{~W}$
$P\left(I_{\text {REF }}\right)=5(0.100 \mathrm{~A}-0.060 \mathrm{~A})$
$(5.25 \mathrm{~V})(20 / 35)(1 / 5)=0.120 \mathrm{~W}$
Icol Power Dissipation:
$P\left(I_{\text {COL }}\right)=5(0.653 \mathrm{~A})(3.5 \mathrm{~V})(20 / 35)(1 / 5)=$ 1.306 W

## Device Maximum Power Dissipation:

$P D(M A X)=0.315 W+0.120 W+1.306 W=$ 1.741 W

IC Junction Temperature, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ :
IC Junction Temperature Rise Above Substrate Pin:

$$
\text { Delta } T_{J}(I C)=\left(10^{\circ} \mathrm{C} / \mathrm{W}\right)(1.741 \mathrm{~W})=17.4^{\circ} \mathrm{C} \text { Rise }
$$

Device Pin Temperature Rise Above Ambient:
Delta $\mathbf{T}($ PIN $)=\left(13^{\circ} \mathrm{C} / \mathrm{W}\right)(1.741 \mathrm{~W})=22.6^{\circ} \mathrm{C}$ Rise
IC Junction Temperature:
$\mathrm{T}_{\mathrm{J}}(\mathrm{IC})=85^{\circ} \mathrm{C}+\left(17.4^{\circ} \mathrm{C}+22.6^{\circ} \mathrm{C}\right)=125.0^{\circ} \mathrm{C}$

## Note:

ICC and ICOL values taken from the data sheet Electrical Characteristics. R $\theta \mathrm{J}-\mathrm{PIN}=10^{\circ} \mathrm{C} / \mathrm{W}$ and R $\theta_{\text {PIN }}-\mathrm{A}=13^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 6c. Sample Calculation of Device Maximum Power Dissipation and IC Junction Temperature for an HDSP-238X Series Device Operating in an Ambient of $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$.


Figure 7. Maximum Thermal Resistance IC Junction to Ambient, R $\theta_{\mathrm{J}-\mathrm{A}}$, vs. Ambient Temperature.
Based on: $P_{\text {D }}$ MAX. $=1.741 \mathrm{~W}, \mathrm{~T}_{\mathrm{J}}$ (IC) MAX. $=125^{\circ} \mathrm{C}$.


Figure 8. Maximum Metalized PC Board, Double Sided, for Mounting HDSP-238X Series Displays.


Figure 9a. Metal Plate Mounted Between Display Devices and PC Board, Mechanically Fastened to Chassis Housing.


Figure 9b. Heat Pipes Mounted Between Display Devices and PC Board, Mechanically Fastened to Chassis Housing.


Figure 10. Using a Heat Pipe to Transfer Display Generated Heat to an Externally Mounted Finned Heat Sink.

## Contrast Enhancement

The high light output of the HDSP-238X series displays in combination with improved contrast enhancement techniques, such as a new filter for the green HDSP-2383 display, make it possible to achieve readability in sunlight. Readability of the HDSP-238X series displays in sunlight is achieved by placing an antireflection coated, AR, circular polarized, CP, optically tinted glass filter in front of the display. The AR/CP optically tinted glass filter provides luminous contrast between the on-LED pixels and the display background, establishes a recognizable color difference between the onLED pixels and the display background and reduces the level of ambient light reflected off the front surface of the filter. This technology and the concept of Discrimination Index, as a measure of readability, are discussed in Application Note 1015.

An AR/CP optically tinted glass filter should have a single pass relative transmission between $11 \%$ and $17 \%$ at the peak wavelength of the LED radiated spectrum, provided by the optical tinting. The double pass relative transmission should be less than $1 \%$, provided by the circular polarizer. The filter can be either neutral density or bandpass, depending upon the properties of the optical tinting. The appropriate bandpass filter, with a peak relative transmission positioned at the peak wavelength of the LED radiated spectrum, will typically have a higher luminous contrast ratio than a neutral density filter, as it absorbs ambient light in the blue and blue-green regions. The AR coating reduces reflections off the front surface of the glass filter to a nominal $0.25 \%$.
Luminous contrast values greater than 4.0 can be achieved in $107,000 \mathrm{~lm} / \mathrm{m}^{2}(10,000 \mathrm{fc})$ sunlight, excluding the condition of a reflected image of the sun off the front surface of the filter. The luminous contrast, which includes both diffuse and specular reflectance components off the front surface of the glass filter, is the predominant factor in the determination of the Discrimination Index. The luminous contrast combined with the color difference between illuminated LED pixels and the display background, as viewed through the AR/CP filter, produce Discrimination Index values in the neighborhood of 5.0. Values of Discrimination Index greater than 4.0 have been demonstrated to correlate with acceptable readability in sunlight.
A theoretical relative transmission characteristic for an optimal bandpass filter for the HDSP-2383 is presented in

Figure 11. Diffuse and specular reflectance values are given in Figure 12. Two AR/CP glass filters that approach the theoretical characteristic are the $12 \%$ GREEN passband manufactured by Marks Polarized Corporation and the HOYA HLF-608-1G. Figures 13a, b and c present the Luminous Index, Chrominance Index and Discrimination Index calculations for the HDSP-2383/Marks 12\% GREEN filter combination. The Luminous contrast ratio of 5.22 gives a Luminance Index of 4.79 , combined with a Chrominance Index of 1.07 produces a Discrimination Index of 4.91.

The HDSP-2383 combined with a 14\% neutral density AR/CP glass filter can achieve a luminous contrast of 4.66 , providing a Discrimination Index of 4.60 which is an $16 \%$ improvement over the value of 3.97 calculated for the standard green HDSP-2303 display in Application Note 1015.
Table 1 lists calculated values for luminous contrast, Luminous Index, Chrominance Index and Discrimination Index for the three HDSP-238X series devices in combination with a $14 \%$ transmission neutral density AR/CP glass filter in sunlight.
At present, the following two filter manufacturers provide AR/CP optically tinted glass filters for use with the HDSP238X series displays in sunlight:

Marks Polarized Corporation 25B Jefryn Blvd. West Deer Park, NY 11729 (516) 242-1300

AR/CP Glass Filter: 12\% Green Bandpass Display: HDSP-2383 10\% Neutral Density Displays: HDSP-2381/ -2382

Polaroid Corporation Polarizer Division 1 Upland Road Norwood, MA 02062 (617) 769-6800

AR/CP Glass Filter: HNCP10 10\% Neutral Density Displays: HDSP-2381/ -2382/-2383

Hoya Optics, Inc. 3400 Edison Way Fremont, CA 94538 (415) 490-1880

AR/CP Glass Filter: HLF-608-1G
Display:HDSP-2383
HLF-608-34
Display: HDSP-2381
HLF-608-5-12
Displays: HDSP-2382

Hewlett-Packard has contacted various filter manufacturers, requesting development of bandpass AR/CP glass filters for all three HDSP-238X series displays. As these filters become available, Hewlett-Packard will publish application information on their luminous/color contrasts and Discrimination Index performances.

Table 1. Discrimination Index Values for the HDSP-238X Series Displays

| Display <br> Device | Time Average <br> Luminous <br> Intensity | Luminous <br> Contrast | Luminance <br> Index | Chrominance <br> Index | Discrimination <br> Index |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HDSP-2381 | $680 \mu \mathrm{~cd}$ | 4.66 | 4.46 | 1.94 | 4.86 |
| HDSP-2382 | $570 \mu \mathrm{~cd}$ | 4.09 | 4.08 | 6.86 | 7.98 |
| HDSP-2383 | $680 \mu \mathrm{~cd}$ | 4.66 | 4.46 | 1.14 | 4.60 |

Ambient: $107,000 \mathrm{Im} / \mathrm{m}^{2}(10,000 \mathrm{fc})$ Sunlight Filter Type: $14 \%$ Transmission, AR/CP, Neutral Density

Filter Surface Reflectance: 0.25\% Specular and 0.02\% Diffuse Luminous Intensity: Data Sheet Typical $\times 20 \%$ Duty Factor


Figure 11. Relative Transmission Characteristics for a Yellow-Green Bandpass Antireflection Coated, Circular Polarized Glass Filter for use with the HDSP-2383 Green LED Alphanumeric Display.


Figure 12. Reflectances off Surfaces of an HDSP-238X Series Display and an AR/CP Glass Filter.

$$
\begin{array}{ll}
I D=\sqrt{I D L^{2}+I D C^{2}} & I D L=4.79 \\
I D=\sqrt{(4.79)^{2}+(1.07)^{2}} & I D C=1.07
\end{array}
$$

Figure 13a. Discrimination Index for the HDSP-2383 Green LED Alphanumeric Display Combined with a 12\% Transmission Yellow-Green Bandpass AR/CP Glass Filter in Indirect $107000 \mathrm{Im} / \mathbf{m}^{2}$ ( $10,000 \mathrm{fc}$ ) sunlight.


Figure 13b. Contrast Ratio and Luminance Index.


$$
\text { IDC }=\frac{\sqrt{\Delta \mu^{2}+\Delta \mu^{2}}}{0.027}=\frac{0.029}{0.027}=1.07
$$

Figure 13c. Color Difference and Chrominance Index

## FOUR CHARACTER 6.9 mm ( 0.27 INCH) 5X7 ALPHANUMERIC DISPLAYS

## Features

- FOUR COLORS

Standard Red
Yellow
High Efficiency Red
High Performance Green

- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END STACKABLE FOUR CHARACTER PACKAGE
- TTL COMPATIBLE
- $5 \times 7$ LED MATRIX DISPLAYS FULL ASCII SET
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2491/2493 ALSO CATEGORIZED FOR COLOR


## Description

The HDSP-2490/-2491/-2492/-2493 series of displays are 6.9 mm ( 0.27 inch ) $5 \times 7$ LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red, and high performance green.

## Package Dimensions



## Typical Applications

- INSTRUMENTS
- BUSINESS MACHINES
- INDUSTRIAL PROCESS CONTROL EQUIPMENT
- MEDICAL INSTRUMENTS
- COMPUTER PERIPHERALS
- MILITARY GROUND SUPPORT EQUIPMENT

Each four character cluster is contained in a 28 pin dual-inline package. An on-board SIPO (Serial-In-Parallel-Out) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing.


## Absolute Maximum Ratings (HDSP-2490/-2491/-2492/-2493)

Supply Voltage Vcc to Ground<br>-0.5 V to 6.0 V<br>Inputs, Data Out and $V_{B}$<br>$\qquad$<br>-0.5 V to $\mathrm{V}_{\mathrm{cc}}$<br>Column Input Voltage, $\mathrm{V}_{\mathrm{COL}} . . . . . . . . . .$. . -0.5 V to +6.0 V<br>Free Air Operating<br>Temperature Range, $\mathrm{T}_{\mathrm{A}}{ }^{[1,2]} \ldots \ldots . .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, Ts $\ldots . .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Maximum Allowable Power Dissipation at $T_{A}=25^{\circ} \mathrm{C}$ 1.2.3 1.46 Watts Maximum Solder Temperature 1.59 mm ( 0.063 in .) Below Seating Plane $\mathrm{t}<5 \mathrm{sec}$
$260^{\circ} \mathrm{C}$

## Recommended Operating Conditions (HDSP-2490/-2491/-2492/-2493)

| Parameter | Symbol | Min. | Nom. | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.75 | 5.0 | 5.25 | V |  |
| Data Out Current, Low State | 1 l |  |  | 16 | mA |  |
| Data Out Current. High State | fOH |  |  | -0.5 | mA |  |
| Column Input Vottage, Column On HDSP-2490 | VCOL | 2.4 |  | 3.5 | $V$ | 4 |
| Column Input Voltage, Column On HDSP-2491/-2492/-2493 | VCOL | 2.75 |  | 3.5 | V | 4 |
| Setup Time | Esetup | 70 | 45 |  | ns | 1 |
| Hold Time | thald | 30 | 0 |  | ns | 1 |
| Width of Clock | twiClock) | 75 |  |  | ns | 1 |
| Clock Frequency | felock | 0 |  | 3 | $\mathrm{MH}+$ | 1 |
| Clock Transition Time | TTHL |  |  | 200 | ns | 1 |
| Free Air Operating Temperature Range ${ }^{[1,2)}$ | TA | -20 |  | 85 | ${ }^{\circ} \mathrm{C}$ | 2 |

## Electrical Characteristics Over Operating Temperature Range <br> (Unless otherwise specified

| Description |  | Symbol | Test Conditions |  | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current |  | Icc | $\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLOCK }=\text { VOATA }=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \\ & \hline \end{aligned}$ | $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ |  | 45 | 60 | mA |  |
|  |  | $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$ |  |  | 73 | 95 | mA |  |
| Column Current at any Column Input |  |  | ICOL | $\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \text { VCOL }=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } 1 \end{aligned}$ | $V_{B}=0.4 \mathrm{~V}$ |  |  | 500 | $\mu \mathrm{A}$ | 4. |
| Column Current at any Column Input |  | 1 COL | $V_{B}=2.4 \mathrm{~V}$ |  |  | 380 | 520 | mA |  |
| VB. Clock or Data Input Threshold High |  | $\mathrm{V}_{\mathrm{iH}}$ | $\mathrm{VCC}=\mathrm{VCOL}=4.75 \mathrm{~V}$ |  | 2.0 |  |  | V |  |
| VB, Clock or Data Input Threshold Low |  | $V_{\text {IL }}$ |  |  |  |  | 0.8 | $V$ |  |
| Input Current Logical 1 | $V_{\text {B. }}$ Clock | lif | $V_{C C}=5.25 \mathrm{~V}, V_{1 H}=2.4 \mathrm{~V}$ |  |  | 20 | 80 | $\mu \mathrm{A}$ |  |
|  | Dataln | liH |  |  |  | 10 | 40 | $\mu \mathrm{A}$ |  |
| Input Current Logical 0 | VB, Clock | ILL | $\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$ |  |  | -500 | -800 | $\mu \mathrm{A}$ |  |
|  | Data in | 1. |  |  |  | -250 | -400 | $\mu \mathrm{A}$ |  |
| Data Out Voltage |  | VOH | $\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}, 1 \mathrm{COL}=0 \mathrm{~mA}$ |  | 2.4 | 3.4 |  | V |  |
|  |  | Vol | $\mathrm{VCC}=4.75 \mathrm{~V}, 10 \mathrm{~L}=1.6 \mathrm{~mA}$ | $\mathrm{COL}=0 \mathrm{~mA}$ |  | 0.2 | 0.4 | V |  |
| Power Dissipation Per Package** |  | PD | $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDS on per character, $V_{B}=2.4 \mathrm{~V}$ |  |  | 0.78 |  | W | 2 |
| Thermal Resistance IC Junction-to-Case |  | R0, ${ }_{\text {S }} \mathrm{C}$ |  |  |  | 20 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device | 2 |

*All typical values specified at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

## Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction should not exceed $125^{\circ} \mathrm{C}$ TJ and the case temperature (as measured at pin 1 or the back of the display) should not exceed $100^{\circ} \mathrm{C}$ Tc.
2. The device should be derated linearly above $60^{\circ} \mathrm{C}$ at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $25^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}$ $=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 20$ LEDs on per character, $20 \% \mathrm{DF}$.

## Optical Characteristics

## STANDARD RED HDSP-2490

| Description | Symbol | Test Conditions | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LED ${ }^{\|4,8\|}$ (Character Average) | JuPeak | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, V_{\mathrm{COL}}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C} 61, V_{B}=2.4 \mathrm{~V} \end{aligned}$ | 220 | 370 |  | $\mu \mathrm{cd}$ | 3 |
| Peak Wavelength | APEAK |  |  | 655 |  | nm |  |
| Dominant Wavelength ${ }^{[7]}$ | $\lambda d$ |  |  | 639 |  | nm |  |

YELLOW HDSP-2491

| Description | Symbol | Test Conditions | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity per LED ${ }^{\|4,8\|}$ (Character Average) | IvPeak | $\begin{aligned} & V C C=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}(6), V_{B}=2.4 \mathrm{~V} \end{aligned}$ | 850 | 1400 |  | $\mu \mathrm{cd}$ | 3 |
| Peak Wavelength | APEAK |  |  | 583 |  | nm |  |
| Dominant Wavelength[5,7] | $\lambda_{\text {d }}$ |  |  | 585 |  | nm |  |

## HIGH EFFICIENCY RED HDSP-2492

| Description | Symbol | Test Conditions | Min. | Typ. | Max. | Units | Fig. |
| :--- | :---: | :--- | :--- | :--- | :--- | :---: | :---: |
| Peak Luminous Intensity per LED[4,8] <br> Character Average) | luPeak | $V C C=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}$ <br> $\mathrm{~T}_{i}=25^{\circ} \mathrm{C}[6], V_{B}=2.4 \mathrm{~V}$ | 850 | 1530 |  | $\mu \mathrm{~cd}$ | 3 |
| Peak Wavelength | $\lambda$ PEAK |  |  | 635 |  | nm |  |
| Dominant Wavelength[7] | $\lambda_{d}$ |  |  | 626 |  | nm |  |

## HIGH PERFORMANCE GREEN HDSP-2493

| Description | Symbol | Test Conditions | Min. | Typ.* | Max. | Units | Fig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Luminous intensity per LED ${ }^{4.81}$ (Character Average) | lvPeak | $\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \left.T_{1}=25^{\circ} \mathrm{C} 6\right], V_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$ | 1280 | 2410 |  | $\mu \mathrm{cd}$ | 3 |
| Peak Wavelength | 入PEAK |  |  | 568 |  | nm |  |
| Dominant Wavelength ${ }^{[5,7]}$ | $\lambda_{d}$ |  |  | 574 |  | nm |  |

*All typical values specified at $V C C=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

## Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2491/-2493 are categorized for color with the color category designated by a number code on the bottom of the package.
6. $T_{i}$ refers to the initial case temperature of the device immediately prior to the light measurement.

## Electrical Description

The HDSP-249X series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features DATA IN and DATA OUT terminals arrayed for easy PC board interconnection. DATA OUT represents the output of the 7 th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the $5 \times 7$ diode array.
The TTL compatible $V_{B}$ input may either be tied to $V_{C c}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
In the normal mode of operation, input data for digit 4 column 1 is loaded into the 7 on-board shift register locations 1 through 7. Column 1 data for digits 3,2 and 1 is similarly shifted into the display shift register locations. The
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength $\lambda_{d}$, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$\mathrm{L}_{\mathrm{v}}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{\mathrm{v}}($ Candela $) / \mathrm{A}(\text { Metre })^{2}$
$L_{v}($ Footlamberts $)=\pi / v($ Candela) $/ A($ Foot $) 2$ $A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$ (Foot 12
column 1 input is now enabled for an appropriate period of time, T. A similar process is repeated for columns 2, 3, 4 and 5 . If the time necessary to decode and load data into the shift register is $t$, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach $20 \%$.
For further applications information, refer to HP Application Note 1016.


Figure 1. Switching Characteristics HDSP-2490/-2491/-2492/-2493 ( $T_{A}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )

## Mechanical and Thermal Considerations

The HDSP-2490/-2491/-2492/-2493 are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. The HDSP-2490/-2491/-2492/-2493 utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation (VCC $=$ $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$ ) with worst case thermal resistance from IC junction to ambient of $45^{\circ} \mathrm{C} /$ watt/device is possible up to ambient temperature of $60^{\circ} \mathrm{C}$. For operation above $60^{\circ} \mathrm{C}$, the maximum device dissipation should be derated linearly at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible. Please refer to Application Note 1016 for further information.
Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, Vcol, can be decreased to the recommended minimum values of 2.4 V for the HDSP-2490 and 2.75V for the HDSP-2491/-2492/-2493. Also, the average drive current can be decreased through pulse width modulation of $\mathrm{V}_{\mathrm{B}}$.
The HDSP-2490/-2491/-2492/-2493 displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested


Figure 5. Block Diagram of HDSP-2490/-2491/-2492/-2493
filter materials are provided in Figure 6. Additional information on filtering and contrast enhancement can be found in HP Application Note 1015.
Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

| Display Color | Ambient Lighting |  |  |
| :---: | :---: | :---: | :---: |
|  | Dim | Moderate | Bright |
| HDSP-2000 <br> Sid. Red | Panelgraphic <br> Dark Red 63 <br> Ruby Red 60 <br> Chequers Hed 118 <br> Plexiglass 2423 | Polaroid HNCP37 <br> 3M Light Control Film <br> Panelgraphe Gray 10 <br> Chequers Grey 105 |  |
| HDSP-2001 <br> frellow | Panelgraphic Yellow 27 <br> Chequers Amber 197 |  | Polatol <br> HNCF10-Glass <br> Marks Polarized MPC-0301-8-10 <br> Note 1 |
| HDSP-2002 <br> (HER) | Panelgraphic Ruby Fled 60 Chequers Red 112 |  | Polarord <br> HNCP10-Gatass <br> Marks Polarized <br> MPC-0201-2-22 |
| HDSP-2003 <br> (HP Green) | Panelgraphic <br> Green 48 <br> Chequers Green $107$ |  | Polaroid <br> HNCP10-Glass <br> Marks Polarized MPC-0101-5-12 |

Note: 1. Optically coated circular polarized filters, such as Polaroid HNCP10.

Figure 6. Contrast Enhancement Filters


Figure 2. Maximum Allowable Power Dissipation vs. Temperature


Figure 3. Relative Luminous Intensity vs. Temperature


Figure 4. Peak Column Current vs. Column Voltage

## $5 \times 7$ DOT MATRIX ALPHANUMERIC DISPLAY SYSTEM

## Features

- COMPLETE ALPHANUMERIC DISPLAY SYSTEM UTILIZING THE HDSP-2000 DISPLAY
- CHOICE OF 64, 128, OR USER DEFINED ASCII CHARACTER SET
- CHOICE OF 16, 24, 32, or 40 ELEMENT DISPLAY PANEL
- MULTIPLE DATA ENTRY FORMATS Left, Right, RAM, or Block Entry
- EDITING FEATURES THAT INCLUDE CURSOR, BACKSPACE, FORWARDSPACE, INSERT, DELETE, AND CLEAR
- DATA OUTPUT CAPABILITY
- SINGLE 5.0 VOLT POWER SUPPLY
- TTL COMPATIBLE
- EASILY INTERFACED TO A KEYBOARD OR A MICROPROCESSOR


## Description

The HDSP-24XX series of alphanumeric display systems provides the user with a completely supported $5 \times 7$ dot matrix display panel. These products free the user's system from display maintenance and minimize the interaction normally required for alphanumeric displays. Each alphanumeric display system is composed of two component parts:

1. An alphanumeric display controller which consists of a preprogrammed microprocessor plus associated logic, which provides decode, memory, and drive signals necessary to properly interface a user's system to an HDSP-2000 display. In addition to these basic display support operations, the controller accepts data in any of four data entry formats and incorporates several powerful editing routines.
2. A display panel which consists of HDSP-2000 displays matched for luminous intensity and mounted on a P.C. board designed to have low thermal resistance.

These alphanumeric display systems are also available in high efficiency red, yellow, and green. In addition, they are available using the HDSP-2300 or HDSP-2490 series displays to form display systems with larger characters (5.0 mm and 6.9 mm , respectively). Contact your local HP sales office for more information.


## Typical Applications

- DATA ENTRY TERMINALS
- INSTRUMENTATION
- BUSINESS EQUIPMENT
- COMPUTER PERIPHERALS

PART NUMBER
DESCRIPTION

| Display Boards |  |
| :---: | :---: |
| HDSP-2416 | Single-line 16 character display panel utilizing the HDSP-2000 display |
| HDSP-2424 | Single-line 24 character display panel utilizing the HDSP-2000 display |
| HDSP-2432 | Single-line 32 character display panel utilizing the HDSP-2000 display |
| HDSP-2440 | Single-line 40 character display panel utilizing the HDSP-2000 display |
| Controller Boards |  |
| HDSP-2470 | HDSP-2000 display interface incorporating a 64 character ASCII decoder |
| HDSP-2471 | HDSP-2000 display interface incorporating a 128 character ASCII decoder |
| HDSP-2472 | HDSP-2000 display interface without ASCII decoder. Instead, a 24 pin socket is provided to accept a custom 128 character set from a user programmed $1 \mathrm{~K} \times 8$ PROM. |

When ordering, specify one each of the Controller Board and the Display Board for each complete system.

## HDSP-2470/-2471/-2472

## Absolute Maximum Ratings

Vcc -0.5 V to 6.0 V
Operating Temperature Range,
Ambient ( $T_{A}$ )
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range (Ts) $\ldots . .-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Voltage Applied to any Input or Output .. -0.5 V to 6.0 V Isource Continuous for any Column

Driver ........... 5.0 Amps (60 sec. max. duration)
Recommended
Operating Conditions

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Supply Voltage | VCC | 4.75 | 5.25 | V |
| Data Out | IOL |  | 0.4 | mA |
|  | IOH |  | -20 | $\mu \mathrm{~A}$ |
| Ready, Data Valid, <br> Column On, Display <br> Data | IOL |  | 1.6 | mA |
|  | IOH |  | -40 | $\mu \mathrm{~A}$ |
| Clock | IOL |  | 10.0 | mA |
|  | IOH |  | -1.0 | mA |

## Electrical Characteristics Over Operating Temperature Range

(Unless otherwise specified)

| Parameter | Symbol | Min. | Typ. | Max. | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current ${ }^{[1]}$ | Icc |  |  | 400 | mA | $V_{C C}=5.25 \mathrm{~V}$ Column On and All Outputs Open |
| Input Threshold High (except Reset) <br> Input Threshold High - Reset ${ }^{[2]}$ <br> Input Threshoid Low - All Inputs | $\mathrm{V}_{1}$ | 2.0 |  |  | V | $\mathrm{VCC}=5.0 \mathrm{~V} \pm .25 \mathrm{~V}$ |
|  | $\mathrm{V}_{\mathrm{IH}}$ | 3.0 |  |  | V | $V_{C C}=5.0 \mathrm{~V} \pm .25 \mathrm{~V}$ |
|  | $V_{\text {IL }}$ |  |  | 0.8 | V | $V_{C C}=5.0 \mathrm{~V} \pm .25 \mathrm{~V}$ |
| Data Out Voltage | VohData | 2.4 |  |  | V | $\mathrm{IOH}^{\prime}-20 \mu \mathrm{~A} \quad \mathrm{VCC}=4.75 \mathrm{~V}$ |
|  | VolData |  |  | 0.5 | V | $\mathrm{IOL}=0.4 \mathrm{~mA} \quad \mathrm{VCC}^{2}=4.75 \mathrm{~V}$ |
| Clock Output Voltage | VohClk | 2.4 |  |  | V | $\mathrm{IOH}=-1000 \mu \mathrm{~A} \quad \mathrm{VCC}^{2}=4.75 \mathrm{~V}$ |
|  | Vol Clk |  |  | 0.5 | V | $\mathrm{IOL}=10.0 \mathrm{~mA} \quad \mathrm{VCC}=4.75 \mathrm{~V}$ |
| Ready, Display Data, Data Valid, Column on Output Voltage | VOH | 2.4 |  |  | V | $1 \mathrm{OH}=-40 \mu \mathrm{~A} \quad \mathrm{VCC}=4.75 \mathrm{~V}$ |
|  | VOL |  |  | 0.5 | V | $\mathrm{IOL}=1.6 \mathrm{~mA} \quad \mathrm{VCC}=4.75 \mathrm{~V}$ |
| Input Current, ${ }^{[3]}$ All Inputs Except Reset, Chip Select, D7 | $\mathrm{IIH}^{\text {H }}$ |  |  | -0.3 | mA | $\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ |
|  | IIL |  |  | -0.6 | mA | $\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ |
| $\overline{\text { Reset }}$ Input Current | IIH |  |  | -0.3 | mA | $\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V} \quad \mathrm{~V}_{\text {CC }}=5.25 \mathrm{~V}$ |
|  | IIL |  |  | -0.6 | mA | $\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \quad \mathrm{~V}_{\text {CC }}=5.25 \mathrm{~V}$ |
| Chip Select, D7 Input Current | 11 | -10 |  | +10 | $\mu \mathrm{A}$ | $0<V_{1}<V_{C C}$ |
| Column Output Voltage | VOLCOL | 2.6 | 3.2 |  | V | IOUT $=-5.0 \mathrm{~A} \quad V_{C C}=5.00 \mathrm{~V}$ |

NOTES:

1. See Figure 11 for total system supply current.
2. External reset may be initiated by grounding Reset with either a switch or open collector TTL gate for a minimum time of 50 ms . For Power On Reset to function properly, Vcc power supply should turn on at a rate $>100 \mathrm{~V} / \mathrm{s}$.
3. Momentary peak surge currents may exist on these lines. However, these momentary currents will not interfere with proper operation of the HDSP-2470/1/2.

## HDSP-2416/-2424/-2432/-2440

Recommended
Operating Conditions

## Absolute Maximum Ratings

Supply Voltage $V_{C C}$ to Ground -0.5 V to 6.0 V
Inputs, Data Out and $V_{B} \ldots \ldots \ldots . . . .$.
Column Input Voltage, VCOL....... . -0.5 V to +6.0 V
Free Air Operating Temperature
Range, $T_{A}{ }^{[1]}$ $\qquad$
$\qquad$ $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage Temperature Range, Ts $\ldots .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

| Parameter | Symbol | Min. | Norm. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | VCC | 4.75 | 5.0 | 5.25 | V |
| Column Input <br> Voltage, Column On | VCOL | 2.6 |  |  | V |
| Setup Time | tsETUP | 70 | 45 |  | ns |
| Hold Time | tHOLD | 30 | 0 |  | ns |
| Width of Clock | tw(CLOCK) $^{2}$ | 75 |  |  | ns |
| Clock Frequency | fCLOCK | 0 |  | 3 | MHz |
| Clock Transition <br> Time | tTHL |  |  | 200 | ns |
| Free Air Operating <br> Temperature Range | TA $_{\text {A }}$ | 0 |  | 55 | ${ }^{\circ} \mathrm{C}$ |

## Electrical Characteristics Over Operating Temperature Range

(Unless otherwise specified)

| Parameter |  | Symbol | Min. | Typ.* | Max. | Units | Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current |  | loc |  | 45n | $60 n^{[2]}$ | mA | $\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & \text { VCLOCK }=V_{\text {DATA }}=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \end{aligned}$ | $\begin{aligned} & V_{B}=0.4 V \\ & V_{B}=2.4 V \end{aligned}$ |
|  |  |  | $73 n$ | $95 n$ | mA |  |  |
| Column Current at any Column Input |  |  | ICOL |  |  | $1.5 n$ | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{COL}}=5.25 \mathrm{~V}$ <br> All SR Stages $=$ Logical 1 | $V_{B}=0.4 V$ |
|  |  | ICOL |  | 335n | 410 n | mA | $V_{B}=2.4 \mathrm{~V}$ |  |
| Peak Luminous Intensity per LED (Character Average) |  | IV PEAK | 105 | 200 |  | $\mu \mathrm{cd}$ | $\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & T_{j}=25^{\circ} \mathrm{C}^{\|3\|}, V_{B}=2.4 \mathrm{~V} \end{aligned}$ |  |
| $\mathrm{V}_{\mathrm{B}}$, Clock or Data Input Threshold High |  | $\mathrm{V}_{\text {IH }}$ | 2.0 |  |  | V | $\mathrm{VCC}=\mathrm{V}_{\mathrm{COL}}=4.75 \mathrm{~V}$ |  |
| $V_{B}$, Clock or Data Input Threshold Low |  | $\mathrm{V}_{\mathrm{IL}}$ |  |  | 0.8 | $V$ |  |  |  |
| Input Current Logical 1 | $V_{B}$, Clock | l H |  |  | 80 | $\mu \mathrm{A}$ | $\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$ |  |
|  | Data In | liH |  |  | 40 | $\mu \mathrm{A}$ |  |  |  |
| Input Current Logical 0 | VB, Clock | IIL |  | $-500$ | -800 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$ |  |
|  | Data in | IIL |  | -250 | -400 | $\mu \mathrm{A}$ |  |  |  |
| Power Dissipation Per Board ${ }^{[4]}$ |  | PD |  | 0.66n |  | W | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=2.6 \mathrm{~V}$ 15 LED's on per Character, $V_{B}=2.4 \mathrm{~V}$ |  |

*All typical values specified at $\mathrm{VCC}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
NOTES:

1. Operation above $55^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{C}\right.$ MAX) may be achieved by the use of forced air ( 150 fpm normal to component side of HDSP-247X controller board at sea level). Operation down to $-20^{\circ} \mathrm{C}$ is possible in applications that do not require the use of HDSP-2470/-2471/-2472 controller boards.
2. $n=$ number of HDSP-2000 packages

| HDSP-2416 | $n=4$ |
| :--- | :--- |
| HDSP-2424 | $n=6$ |
| HDSP-2432 | $n=8$ |
| HDSP-2440 | $n=10$ |

3. Tj refers to initial case temperature immediately prior to the light measurement.
4. Power dissipation with all characters illuminated.

## System Overview

The HDSP-2470/-2471/-2472 Alphanumeric Display Controllers provide the interface between any ASCII based Alphanumeric System and the HDSP-2000 Alphanumeric Display. ASCII data is loaded into the system by means of any one of four data entry modes Left, Right, RAM or Block Entry. This ASCII data is stored in the internal RAM memory of the system. The system refreshes HDSP-2000 displays from 4 to 48 characters with the decoded data.

The user interfaces to any of the systems through eight DATA IN inputs, five ADDRESS inputs (RAM mode), a CHIP SELECT input, RESET input, seven DATA OUT
outputs, a READY output, DATA VALID output, and a COLUMN ON output. A low level on the RESET input clears the display and initializes the system. A low level on the CHIP SELECT input causes the system to load data from the DATA IN and ADDRESS inputs into the system. The controller outputs a status word, cursor address and 32 ASCII data characters through the DATA OUT outputs and DATA VALID output during the time the system is waiting to refresh the next column of the display. The COLUMN ON output can be used to synchronize the DATA OUT function. A block diagram for the HDSP-2470/-2471/-2472 systems is shown in Figure 1.


Figure 1. Block Diagram for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

The system interfaces to the HDSP-2000 display through five COLUMN outputs, a CLOCK output, DISPLAY DATA output, and the COLUMN ON output. The user should connect DISPLAY DATA to DATA IN of the leftmost HDSP-2000 cluster and cascade DATA OUT to DATA IN of all HDSP-2000 clusters. COLUMN outputs from the system are connected to the COLUMN inputs of all HDSP2000 clusters. The HDSP-24XX Series display boards are designed to interconnect directly with the HDSP-247X Series display controllers. The COLUMN outputs can source enough current to drive up to 48 characters of the HDSP-2000 display. Pulse width modulation of display luminous intensity can be provided by connecting COLUMN ON to the input of a monostable multivibrator and the output of the monostable multivibrator to the $\mathrm{V}_{\mathrm{B}}$ inputs of the HDSP-2000 displays. The system is designed to refresh the display at a fixed refresh rate of 100 Hz . COLUMN ON time is optimized for each display length in order to maximize light output as shown in Figure 2.


Figure 2. Column on Time vs. Display Length for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

## Control Mode/Data Entry

User interface to the HDSP-247X Series controller is via an 8 bit word which provides to the controller either a control word or standard ASCII data input. In addition to this user provided 8 bit word, two additional control lines, CHIP SELECT and READY, allow easily generated "handshake" signals for interface purposes.

A logic low applied to the CHIP SELECT input (minimum six microseconds) causes the controller to read the 8 DATA IN lines and determine whether a control word or ASCII data word is present, as determined by the logic state of the most significant bit ( $\mathrm{D}_{7}$ ). If the controller detects a logic high at $D_{7}$, the state of $D_{6}-D_{0}$ will define the data entry mode and the number of alphanumeric characters to be displayed.

The 8 bit control data word format is outlined in Figure 3. For the control word ( $\mathrm{D}_{7}$ high), bits $\mathrm{D}_{6}$ and $\mathrm{D}_{5}$ define the selected data entry mode (Left entry, Right entry, etc.) and bits $D_{3}$ to $D_{0}$ define display length. Bit $D_{4}$ is ignored.

Control word inputs are first checked to verify that the control word is valid. The system ignores display lengths greater than 1011 for left block or right, or 0111 for RAM. If the word is valid, the present state-next state table shown in Figure 4 is utilized to determine whether or not to clear the display. For display lengths of up to 32 characters, RAM entry can be used as a powerful editing tool, or can be used to preload the cursor. With other transitions, the internal data memory is cleared.

CONTROL
WORD: $D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$

| 1 | X X | $-\mathrm{Y} Y \mathrm{Y} Y$ |
| :--- | :--- | :--- | :--- |


| $Y$ | $Y$ | $Y$ | $Y$ | DISPLAY LENGTH: |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 4 DIGITS |  |
| 0 | 0 | 0 | 1 | 8 | $"$ |
| 0 | 0 | 1 | 0 | 12 | $"$ |
| 0 | 0 | 1 | 1 | 16 | $"$ |
| 0 | 1 | 0 | 0 | 20 | $"$ |
| 0 | 1 | 0 | 1 | 24 | $"$ |
| 0 | 1 | 1 | 0 | 28 | $"$ |
| 0 | 1 | 1 | 1 | $32^{*}$ | $"$ |
| 1 | 0 | 0 | 0 | 36 | $"$ |
| 1 | 0 | 0 | 1 | 40 | $"$ |
| 1 | 0 | 1 | 0 | 44 | $"$ |
| 1 | 0 | 1 | 1 | 48 | $"$ |

*maximum for RAM data entry mode

| $x$ | DATA ENTRY MODES |  |
| :--- | :--- | :--- |
| 0 | 0 | RAM DATA ENTRY |
| 0 | 1 | LEFT DATA ENTRY |
| 1 | 0 | RIGHT DATA ENTRY |
| 1 | 1 | BLOCK DATA ENTRY |

Figure 3. Control Word Format for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.


Figure 4. Present State-Next State Diagram for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

If $D_{7}$ is a logic low when the DATA IN lines are read, the controller will interpret $D_{6}-D_{0}$ as standard ASCII data to be stored, decoded and displayed. The system accepts seven bit ASCII for all three versions. However, the HDSP-2470 system displays only the 64 character subset [2016
(space) to $5 \mathrm{~F}_{16}(-)$ ] and ignores all ASCII characters outside this subset with the exception of those characters defined as display commands. These display commands are shown in Figure 5. Displayed character sets for the HDSP-2470/-2471 systems are shown in Figure 6.

DATA WORD: $\quad D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$ ASCII ASSIGNMENT | 0 | $A$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| LF | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BS | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| HT | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| US | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| DEL | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

DISPLAY COMMAND


Figure 5. Display Commands for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

*DISPLAY COMMANDS WHEN USED IN LEFT ENTRY +DISPLAY COMMANDS WHEN USED IN RIGHT ENTRY

Figure 6. Display Font for the HDSP-2470 (64 Character ASCII Subset), and HDSP-2471 (128 Character ASCII Set) Alphanumeric Display Controller.

Regardless of whether a control word or ASCII data word is presented by the user, a READY signal is generated by the controller after the input word is processed. This READY signal goes low for $25 \mu$ s and upon a positive transition, a new CHIP SELECT may be accepted by the controller. Data Entry Timing is shown in Figure 7.

DATA ENTRY TIMING


MAXIMUM DATA ENTRY TIMES OVER OPERATING TEMPERATURE RANGE

| DATA ENTRY MODE |  |  | FUNCTION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HDSP- | . DATA HOLD TIME* |  | DATA ENTRY | $\begin{aligned} & \text { BACK } \\ & \text { SPACE } \end{aligned}$ | CLEAR | ORWARD SPACE | DELETE | INSERT |
| LEFT (2471/2) | $135 \mu \mathrm{~s}$ |  | $235 \mu \mathrm{~s}$ | $195 \mu \mathrm{~s}$ | $505 \mu \mathrm{~s}$ | $205 \mu \mathrm{~s}$ | $725 \mu \mathrm{~s}$ | $725 \mu \mathrm{~s}$ |
| LEFT (2470) | 150 $\mu \mathrm{s}$ |  | $245 \mu$ s | $215 \mu \mathrm{~s}$ | $530 \mu \mathrm{~s}$ | $225 \mu \mathrm{~s}$ | $745 \mu \mathrm{~s}$ | $735 \mu \mathrm{~s}$ |
| RIGHT (2471/2) | $85 \mu \mathrm{~s}$ |  | $480 \mu \mathrm{~s}$ | $470 \mu \mathrm{~s}$ | $465 \mu \mathrm{~s}$ |  |  |  |
| RIGHT (2470) | $105 \mu \mathrm{~s}$ |  | $490 \mu \mathrm{~s}$ | $490 \mu \mathrm{~s}$ | $485 \mu \mathrm{~s}$ |  |  |  |
| RAM (2471/2) | $55 \mu \mathrm{~s}$ | $120 \mu \mathrm{~s}^{* *}$ | $190 \mu \mathrm{~s}$ |  |  |  |  |  |
| RAM (2470) | $55 \mu \mathrm{~s}$ | $130 \mu \mathrm{~s}^{* *}$ | $200 \mu \mathrm{~s}$ |  |  |  |  |  |
| BLOCK (2471/2) | $55 \mu \mathrm{~s}$ |  | $120 \mu \mathrm{~s}$ | (155 $\mu \mathrm{s}$ | OR RIGH | MOST CHA | CTER) |  |
| BLOCK (2470) | $55 \mu \mathrm{~s}$ |  | $130 \mu \mathrm{~s}$ | (165 $\mathrm{s}^{\text {s }}$ | R RIGH | MOST CHA | CTER) |  |
| LOAD CONTROL (2471/2) | $50 \mu \mathrm{~s}$ |  | $505 \mu \mathrm{~s}$ |  |  |  |  |  |
| LOAD CONTROL (2470) | $50 \mu \mathrm{~s}$ |  | $505 \mu \mathrm{~s}$ |  |  |  |  |  |

*Minimum time that data inputs must remain valid after Chip Select goes low.
**Minimum time that RAM address inputs must remain valid after Chip Select goes low.

Figure 7. Data Entry Timing and Data Entry Times for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

## Left Entry Mode

With Left entry, characters are entered in typewriter fashion, i.e., to the right of all previous characters. Left entry uses a blinking cursor to indicate the location where the next character is to be entered. CLEAR loads the display with spaces and resets the cursor to the leftmost display location. BACKSPACE and FORWARDSPACE move the cursor without changing the character string. Thus, the user can backspace to the character to be edited, enter a character and then forward space the cursor. The DELETE function deletes the displayed character at the cursor location and then shifts the character string following the cursor one location to the left to fill the void of the deleted character. The INSERT CHARACTER sets a flag inside the system that causes subsequent ASCII characters to be inserted to the left of the character at the cursor location. As new characters are entered, the cursor, the character at the cursor, and all characters to the right of the cursor are shifted one location to the right. The INSERT function is terminated by a second INSERT CHARACTER, or by BACKSPACE, FORWARDSPACE, CLEAR or DELETE. In Left entry mode, after the display is filled, the system ignores all characters except BACKSPACE and CLEAR. The system allows the cursor to be positioned only in the region between the leftmost display character and immediately to the right (offscreen) of the rightmost display character.

## Right Entry Mode

In Right entry mode, characters are entered at the right hand side of the display and shifted to the left as new characters are entered. In this mode, the system stores 48 ASCII characters, although only the last characters entered are displayed. CLEAR loads the display with spaces. BACKSPACE shifts the display one location to the right, deleting the last character entered and displaying the next character in the 48 character buffer. Right entry mode is a simple means to implement the walking or "Times-Square" display. FORWARDSPACE, INSERT, and DELETE have character assignments in this mode since they are not treated as editing characters. In this mode, the cursor is located immediately to the right (offscreen) of the rightmost displayed character.

## Block Entry Mode

Block entry allows the fastest data entry rate of all four modes. In this mode, characters are loaded from left to right as with Left entry. However, with Block entry, after the display is completely loaded, the next ASCII character is loaded in the leftmost display location, replacing the previous displayed character. While Block entry has a nonvisible cursor, the cursor is always loaded with the address of the next character to be entered. In this entry mode, the system can display the complete 128 character ASCII set. The display can be cleared and the cursor reset to the leftmost display location by loading in a new BLOCK control word.

## RAM Entry Mode

In RAM entry, ASCII characters are loaded at the address specified by the five bit RAM address. Due to the limitation of only five address lines, RAM data entry is allowed only
for displays less than or equal to 32 characters. Regardless of display length, address 00 is the leftmost display character. Out of range RAM addresses are ignored. While RAM entry has a non-visible cursor, the cursor is always preloaded with the address to the right of the last character entered. This allows the cursor to be preloaded with an address prior to going into any other entry mode. In RAM entry, the system can display the complete 128 character ASCII set because it does not interpret any of the characters as control functions. The display can be cleared by loading in a new RAM control word.

## Data Out

For display lengths of 32 characters or less, the data stored in the internal RAM is available to the user during the time between display refresh cycles. The system outputs a STATUS WORD, CURSOR ADDRESS, and 32 ASCII data characters. The STATUS WORD specifies the data entry mode and the display length of the system. The STATUS WORD output differs slightly from the CONTROL WORD input. This difference is depicted in Figure 8. Regardless of display length, the CURSOR ADDRESS of the rightmost character location is address 47 ( $2 \mathrm{~F}_{16}$ ) and the offscreen address of the cursor is address 48 ( 3016 ). The CURSOR ADDRESS of the leftmost location is defined as address 48 minus the display length. A general formula for CURSOR ADDRESS is:

## CURSOR ADDRESS =

(47-Display Length) + Number of Characters from Left.
For example, suppose the alphanumeric display is 16 characters long and the cursor was blinking at the third digit from the left. Then the CURSOR ADDRESS would be 47-16+3 or 34 (2216) and the 18th ASCII data word would correspond to the ASCII character at the location of the display cursor. In Left and Block entry, the CURSOR ADDRESS specifies the location where the next ASCII data character is to be entered. In RAM entry, the CURSOR ADDRESS specifies the location to the right of the last character entered. In Right entry, the CURSOR ADDRESS is always $48\left(30_{16}\right)$. The negative edge of the DATA VALID output can be used to load the 34 DATA OUT words into the user's system. The DATA OUT timing for the HDSP-247X systems are summarized in Figure 8. For displays longer than 32 characters, the system only outputs the STATUS WORD between refresh cycles.

## Master/Power On Reset

When power is first applied to the system, the system clears the display and tests the state of the DATA INPUT, $D_{7}$. If $D_{7}>2.0 \mathrm{~V}$, the systems loads the control word on the DATA INPUTS into the system. If $\mathrm{D}_{7} \leq .8 \mathrm{~V}$ or the system sees an invalid control word, the system initializes as Left entry for a 32 character display with a flashing cursor in the leftmost location. For POWER ON RESET to function properly, the power supply must turn on at a rate $>100 \mathrm{~V} / \mathrm{s}$. In addition, the system can be reset by pulling the RESET input low for a minimum of 50 milliseconds. POWER ON/MASTER RESET timing is shown in Figure 9.


> X, COLUMN OFF TIME $\begin{array}{ll}\text { (HDSP-2470) } & =30.5 \mu \mathrm{~s}+20 \mu \mathrm{~s} \times \text { Display Length } \\ \text { (HDSP-2471/-2472) } & =17.5 \mu \mathrm{~s}+17.5 \mu \mathrm{~s} \times \text { Display Lengt }\end{array}$

Y, DATA VALID TO COLUMN OFF TIME
(Display Length $\leqslant \mathbf{3 2}$ Characters)
(HDSP-2470) $\quad=813.5 \mu \mathrm{~s}-20 \mu \mathrm{~s} \times$ Display Length (HDSP-2471/-2472) $=826.2 \mu \mathrm{~s}-17.5 \mu \mathrm{~s} \times$ Display Length STATUS WORD FORMAT (WORD A)
$\begin{array}{lllllll}D_{6} & D_{5} & D_{4} & D_{3} & D_{2} & D_{1} & D_{0}\end{array}$

| 0 | 0 | 0 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 |  |  |  |
| 0 | 1 | 0 |  | $Y$ | $Y$ |
| 1 | 0 | 0 |  |  |  |

RAM ENTRY BLOCK ENTRY LEFT ENTRY RIGHT ENTRY

YYYY = DISPLAY LENGTH
CURSOR ADDRESS FORMAT (WORD B)
CURSOR ADDRESS $=(47-$ Display Length $)+$ No. of Characters from Left
DATA WORD FORMAT (WORDS 0-31)
STANDARD ASCII DATA Where Word (31) is Rightmost Displayed ASCII Character

Figure 8. Data Out Timing and Format for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.


Figure 9. Power-On/Master Reset Timing for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

## Custom Character Sets

The HDSP-2472 system has been specifically designed to permit the user to insert a custom 128 ASCII character set. This system features a 24 pin socket that is designed to accept a custom programmed 1K X 8 PROM, EPROM, or ROM. The read only memory should have an access time $\leq$ 500 ns , $\mathrm{IIL}^{\prime} \leq|-.4 \mathrm{~mA}|$ and $\mathrm{I}_{\mathrm{IH}} \leq 40 \mu \mathrm{~A}$. A list of pin compatible read only memories is shown in Figure 10. Jumper locations are provided on the HDSP-2472 P.C. board which allow the use of ROM's requiring chip enables tied either to 0 or 5 V . For further information on ROM programming, please contact the factory.

## Power Supply Requirements

The HDSP-247X Alphanumeric Display System is designed to operate from a single 5 volt supply. Total Icc requirements for the HDSP-247X Alphanumeric Display Controller and HDSP-24XX Display Panel are shown in Figure 11. Peak Icc is the instantaneous current required for the system. Maximum Peak Icc occurs for $\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}$ with 7 dots ON in the same Column in all display characters. This current must be supplied by a combination of the power supply and supply filter capacitor. Maximum Average Icc occurs for VCc $=5.25 \mathrm{~V}$ with 21 dots ON per character in all display characters. The inclusion of a 375 X microfarad capacitor (where X is the number of characters in the display) adjacent to the HDSP-247X Alphanumeric Display System will permit the use of a power supply capable of supplying the maximum average lcc.


Figure 11. Maximum Peak and Average Icc for the HDSP2470/71/72 Alphanumeric Display Controller and HDSP-2000 Display.

CONNECTORS

| FUNCTION | TYPE OF CONNECTOR | SUGGESTED MANUFACTURER |
| :---: | :---: | :---: |
| CONTROL/DATA ENTRY | $\begin{gathered} 26 \text { Pin } \\ \text { Ribbon Cable } \end{gathered}$ | 3M P/N 3399. $\times 000$ Series |
| POWER ${ }^{(1)}$ | 3 Pin <br> With Locking Ramp | Molex P/N 09-50-3031 with 08-50-0106 Terminals |
| DISPLAY <br> DRIVE ${ }^{(2,3)}$ | 17 Pin Board to Board Pin/Socket | Pin: BERG p/n 75409-041 Sockel: BERG $\mathrm{p} / \mathrm{n} 65780-017$ |

NOTES:
(1) Power leads should be 18-20 gauge stranded wire.
(2) The maximum lead length from the controller board to the display should not exceed 1 metre.

| PART NUMBER | MANUFACTURER | TYPE |
| :---: | :---: | :---: |
| 2758 | Intel | EPROM |
| 7608 | Harris | PROM |
| 3628-4 | Intel | PROM |
| 8252708 | Signetics | PROM |
| 6381 | Monolithic Mem. | PROM |
| 6385 | Monolithic Mem. | PROM |
| 87S228 | National | PROM |
| 93451 | Fairchild | PROM |
| 68308 | Motorola | ROM |
| 2607 | Signetics | ROM |
| 30000 | Mostek | ROM |


| EXTERNAL CONNECTION* |  |  |
| :---: | :---: | :---: |
| $\underline{X}$ | $\underline{Y}$ | $\underline{Z}$ |
| GND | GND | +5 |
| NC | NC | NC |
| +5 | +5 | GND |
| NC | NC | NC |
| +5 | +5 | GND |
| NC | NC | NC |
| +5 | +5 | GND |
| +5 | +5 | GND |
| $* *$ | NC | NC |
| $* *$ | NC | NC |
| $* *$ | +5 | NC |

*Board jumpers correspond to pins 18, 19 \& 21 of ROM.
**As defined by customer
Figure 10. Pin Compatible 1K x 8 Read Only Memories for the HDSP-2472 Alphanumeric Display Controller.

## Display Boards/Hardware

The mechanical layout of the HDSP-247X Series allows direct mating of the controller P.C. board to a compatible series of display boards available from Hewlett-Packard. These display boards consist of matched and tested HDSP-2000 clusters soldered to a P.C. board.

Included with the controller board are four locking circuit board support nylon standoffs (Richco LCBS-4). This hardware allows the controller board to interconnect with any of the standard display boards. Figure 12 depicts correct assembly technique.

## Assembly Steps

1. Insert the standoffs into .151 diameter holes (noted as " S " on Figure 12. The long end of the standoffs should protrude through the controller board side.
2. Position the controller board and display board with the components and displays facing out. The HP logo should be in the upper left corner when viewed facing the boards. Insert the standoffs through the mating holes on the display board and press the boards together so that the standoffs lock in place.
3. Insert the pins from the display board into the socket on the controller board.


Figure 12. Assembly Drawing.


Figure 13. HDSP-2470/-2471/-2472


Figure 14. HDSP-2416/-2424/-2432


Figure 15. HDSP-2440

## Features

- $5 \times 7$ LED MATRIX CHARACTER
- LARGE 6.9 mm (. 27 INCH) CHARACTER HEIGHT
- EXTREMELY WIDE TEMP. RANGE
- COMPACT 15.2 mm (. 600 INCH) GLASS/CERAMIC DIP
- WIDE VIEWING ANGLE
- RUGGED, SHOCK RESISTANT



## Typical Applications

- COMPUTER PERIPHERALS
- MILITARY EQUIPMENT
- INDUSTRIAL EQUIPMENT
- AVIONICS


## Description

The Hewlett-Packard 5082-7100 Series is an X-Y addressable, $5 \times 7$ LED Matrix capable of displaying the full alphanumeric character set. This alphanumeric indicator series is available in 3,4 , or 5 character endstackable clusters. The clusters permit compact presentation of information, ease of character alignment, minimum number of interconnections, and compatibility with multiplexing driving schemes.

The 5082-7100 is a three character cluster.
The 5082-7101 is a four character cluster.
The 5082-7102 is a five character cluster.

## Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: |
| Peak Forward Current Per LED <br> (Duration < 1 ms) | IPEAK |  | 100 | mA |
| Average Current Per LED | IAVG |  |  | 10 |
| Power Dissipation Per <br> Character (All diodes fit) [1] | PD $_{\mathrm{D}}$ |  | 700 | mA |
| Operating Temperature, Case | $\mathrm{T}_{\mathrm{C}}$ |  | -55 | 95 |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -55 | 100 | ${ }^{\circ} \mathrm{C}$ |
| Reverse Voltage Per LED | $\mathrm{V}_{\mathrm{R}}$ |  | 4 | ${ }^{\circ} \mathrm{C}$ |

Note 1: At $25^{\circ} \mathrm{C}$ Case Temperature; derate $8.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical / Optical Characteristics at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Min. | Typ. | Max. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Peak Luminous Intensity Per LED <br> (Character Average) @ Pulse <br> Current of 100mA/LED | $l_{\text {(PEAK) }}$ | 1.0 | 2.2 |  | mcd |
| Reverse Current Per LED @ $V_{R}=4 \mathrm{~V}$ |  |  |  |  |  |
| Peak Forward Voltage @ Pulse <br> Current of 50mA/LED | $\mathrm{V}_{\mathrm{F}}$ | 10 |  | $\mu \mathrm{~A}$ |  |
| Peak Wavelength | $\lambda_{\text {PEAK }}$ | 1.7 | 2.0 | V |  |
| Spectral Line Halfwidth | $\Delta \lambda_{1 / 2}$ |  | 655 |  | nm |
| Rise and Fall Times ${ }^{[1]}$ | $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ |  | 10 |  | nm |

Note 1. Time for a $10 \%$ - $90 \%$ change of light intensity for step change in current.


Figure 1. Forward Current-Voltage Characteristic.


Figure 3. Typical Time Average Luminous Intensity per LED vs. Average Current per LED.


Figure 2. Relative Luminous Intensity vs. Case Temperature at Fixed Current Level.


Figure 4. Typical Relative Luminous Efficiency vs. Peak Current per LED.

## Package Dimensions and Pin Configurations



## Device Pin Description

| 5082-7100 |  |  |  | 5082-7101 |  |  |  | 5082-7102 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pin | Function |
| 1 | Anode G | 12 | Anode B |  | N/C | 15 | Anode C |  | N/C | 19 | 5 E |
| 2 | 1 c | 13 | 3d | 2 | 1 c | 16 | $4 c$ | 2 | 1 c | 20 | 5 c |
| 3 | 1d | 14 | 36 | 3 | 1 f | 17 | 4 a | 3 | 1 e | 21 | 5 a |
| 4 | Anode F | 15 | Anode A | 4 | Anode G | 18 | Anode 日 | 4 | Anode F | 22 | Anode D |
| 5 | Anode E | 16 | 2 e | 5 | 2b | 19 | 3 e | 5 | 2b | 23 | 4 e |
| 6 | 2b | 17 | 2c | 6 | 2 d | 20 | 3b | 6 | 2 d | 24 | 4 c |
| 7 | 2d | 18 | 2a | 7 | Anode D | 21 | 3 a | 7 | 2 e | 25 | N/C |
| 8 | Anode C | 19 | Anode D | 8 | Anode E | 22 | 2 e | 8 | Anode E | 26 | Anode C |
| 9 | 3 a | 20 | 1 e | 9 | 3c | 23 | 2c | 9 | 3 c | 27 | 3d |
| 10 | 3 c | 21 | ib | 10 | 3 d | 24 | 2 a | 10 | 3 e . | 28 | 3 b |
| 11 | 38 | 22 | 1 a | 11 | Anode F | 25 | Anode A | 11 | Anode G | 29 | 3 a |
|  |  |  |  | 12 | 4 b | 26 | 1d | 12 | 4 a | 30 | Anode B |
|  |  |  |  | 13 | 4d | 27 | 1b | 13 | 4b | 31 | 2 c |
|  |  |  |  | 14 | 4 e | 28 | 1a | 14 | 4 d | 32 |  |
|  |  |  |  |  |  |  |  | 15 | N/C | 33 | Anode A |
|  |  |  |  |  |  |  |  | 16 | 5b | 34 | 1d |
|  |  |  |  |  |  |  |  | 17 18 | 5d $\mathrm{N} / \mathrm{C}$ | 35 36 | 16 1 a |



## Operating Considerations

## ELECTRICAL

The $5 \times 7$ matrix of LED's, which make up each character, are X-Y addressable. This allows for a simple addressing, decoding and driving scheme between the display module and customer furnished logic.
There are three main advantages to the use of this type of $X-Y$ addressable array:

1. It is an elementary addressing scheme and provides the least number of interconnection pins for the number of diodes addressed. Thus, it offers maximum flexibility toward integrating the display into particular applications.
2. This method of addressing offers the advantage of sharing the Read-Only-Memory character generator among several display elements. One character generating ROM can be shared over 25 or more $5 \times 7$ dot matrix characters with substantial cost savings.
3. In many cases equipment will already have a portion of the required decoder/driver (timing and clock circuitry plus buffer storage) logic circuitry available for the display.
To form alphanumeric characters a method called "scanning" or "strobing" is used. Information is addressed to the display by selecting one row of diodes at a time, energizing the appropriate diodes in that row and then proceeding to the next row. After all rows have been excited one at a time, the process is repeated. By scanning through all rows at least 100 times a second, a flicker free character can be produced. When information moves sequentially from row to row of the display (top to bottom) this is row scanning, as illustrated in Figure 5. Information can also be moved from column to column (left to right across the display) in a column scanning mode. For most applications ( 5 or more characters to share the same ROM) it is more economical to use row scanning.

## MECHANICAL/THERMAL MOUNTING

The solid state display typically operates with 200 mW power dissipation per character. However, if the operating conditions are such that the power dissipation exceeds the derated maximum allowable value, the device should be heat sunk. The usual mounting technique combines mechanical support and thermal heat sinking in a common structure. A metal strap or bar can be mounted behind the display using silicone grease to insure good thermal control. A well-designed heat sink can limit the case temperature to within $10^{\circ} \mathrm{C}$ of ambient.


Figure 5. Row Scanning Block Diagram.

# 16 SEGMENT SOLID STATE ALPHANUMERIC DISPLAY 

## Features

## - ALPHANUMERIC

Displays 64 Character ASCII Set and Special Characters

- 16 SEGMENT FONT PLUS CENTERED D.P. AND COLON
- 3.81 mm ( 0.150 ") CHARACTER HEIGHT
- APPLICATION FLEXIBILITY WITH PACKAGE DESIGN
4 and 8 Character Dual-In-Line Packages
End Stackable-On Both Ends for 8 Character and On One End for 4 Character
Sturdy Gold-Plated Leads on $\mathbf{2 . 5 4 m m}\left(\mathbf{0 . 1 0 0}{ }^{\prime \prime}\right)$ Centers
Environmentally Rugged Package
Common Cathode Configuration
- LOW POWER

As Low as $\mathbf{1 . 0 - 1 . 5 m A}$ Average Per Segment Depending on Peak Current Levels

- EXCELLENT CHARACTER APPEARANCE Continuous Segment Font High On/Off Contrast 6.35 mm ( 0.250 ") Character Spacing Excellent Character Alignment Excellent Readability at 2 Metres
- SECONDARY BARREL MAGNIFIER AVAILABLE Increases Character Height to 4.45 mm ( $\mathbf{0 . 1 7 5 " )}$
- SUPPORT ELECTRONICS

Can Be Driven With ROM Decoders and Drivers
Easy Interfacing With Microprocessors and LSI Circuitry

- CATEGORIZED FOR LUMINOUS INTENSITY


The HDSP-6504 and HDSP-6508 are 3.81 mm ( 0.150 ") sixteen segment GaAsP red alphanumeric displays mounted in 4 character and 8 character dual-in-line package configurations that permit mounting on PC boards or in standard IC sockets. The monolithic light emitting diode character is magnified by the integral lens which increases both character size and luminous intensity, thereby making low power consumption possible. The rugged package construction, enhanced by the backfill design, offers extended environmental capabilities compared to the standard PC board/lens type of display package. Its good temperature cycling capability is the result of the air gap which exists between the semiconductor chip/wire bond assembly and the lens. In addition to the sixteen segments, a centered D.P. and colon are included. Character spacing yields 4 characters per inch.

## Applications

These alphanumeric displays are attractive for applications such as computer peripherals and terminals, computer base emergency mobile units, automotive instrument panels, desk top calculators, in-plant control equipment, hand-held instruments and other products requiring low power, display compactness and alphanumeric display capability.

Device Selection Guide

| Characters Per Display | Configuration |  |  |  |  |  |  |  |  |  | Part No． HDSP． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Device |  |  |  |  |  |  |  |  | Package |  |
| 4 | － |  |  | ｜ 81 | － 6 | 域年 | 1871 |  |  | （Figure 6） | 6504 |
| 8 |  | 区 |  | ［171 | － | 妟 | 区－1 | E近 | － 8 | （Figure 7） | 6508 |

## Absolute Maximum Ratings

| Symbol | Parameter | Min． | Max． | Units |
| :--- | :--- | :---: | :---: | :---: |
| IPEAK | Peak Forward Current Per Segment <br> or DP（Duration $\leq 312 \mu \mathrm{~s})$ |  | 200 | mA |
| IAVG | Average Current Per Segment or <br> DP［1］ |  | 7 | mA |
| PD | Average Power Dissipation Per <br> Character［1，2］ |  | 138 | mW |
| TA | Operating Temperature，Ambient | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |
| TS | Storage Temperature | -40 | 100 | ${ }^{\circ} \mathrm{C}$ |
| VR $^{\text {Reverse Voltage }}$ | Solder Temperature at 1．59mm <br> $(1 / 16$ inch）below seating plane， <br> $t \leq 3$ Seconds |  | 5 | V |
|  |  |  |  | ${ }^{\circ} \mathrm{C}$ |

## NOTES：

1．Maximum allowed drive conditions for strobed operation are derived from Figures 1 and 2 ．See electrical section of operational considerations．
2．Derate linearly above $T_{A}=50^{\circ} \mathrm{C}$ at $2.17 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ． PD Max．$\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)=62 \mathrm{~mW}$ ．

## Electrical／Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Condition | Min． | Typ． | Max． | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV | Luminous Intensity，Time Average，Character Total with 16 Segments Illuminated［3，4］ | $1 \mathrm{PEAK}=30 \mathrm{~mA}$ 1／16 Duty Factor | 0.40 | 1.65 |  | med |
| $V_{F}$ | Forward Voltage Per Segment or DP | $\begin{gathered} I_{F}=30 \mathrm{~mA} \\ \text { (One Segment On) } \end{gathered}$ |  | 1.6 | 1.9 | $V$ |
| $\lambda$ PEAK | Peak Wavelength |  |  | 655 |  | nm |
| $\lambda_{\text {d }}$ | Dominant Wavelength［5］ |  |  | 640 |  | nm |
| If | Reverse Current Per Segment or DP | $V_{R}=5 \mathrm{~V}$ |  | 10 |  | $\mu \mathrm{A}$ |
| $\Delta V_{F} / \Delta^{\circ} \mathrm{C}$ | Temperature Coefficient of Forward Voltage |  |  | －2 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| R $0_{\text {J－PIN }}$ | Thermal Resistance LED Junction－to－Pin | ． |  | 232 |  | $\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$ |

## NOTES：

3．The luminous intensity ratio between segments within a digit is designed so that each segment will have the same luminous sterance．Thus each segment will appear with equal brightness to the eye．
4．Each character of the display is matched for luminous intensity at the test conditions shown．Operation of the display at lower peak currents may cause intensity mismatch within the display．Operation at peak currents less than 7 mA will cause objectionable display segment matching．
5．The dominant wavelength，$\lambda$ d，is derived from the C．I．E．chromaticity diagram and represents that single wavelength which defines the color of the device，standard red．


Figure 1. Maximum Allowed Peak Current vs. Pulse Duration. Derate derived operating conditions above $\mathrm{T}_{\mathrm{A}}=5 \mathbf{0}^{\circ} \mathrm{C}$ using Figure 2.


Figure 2. Temperature Derating Factor For Peak Current per Segment vs. Ambient Temperature. TJMAX $=110^{\circ} \mathrm{C}$


IPEAK - PEAK SEGMENT CURRENT - mA

Figure 3. Relative Luminous Efficiency (Luminous Intensity Per Unit Current) vs. Peak Segment Current.

$V_{F}$ - PEAK FORWARD VOLTAGE - $V$

Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.


Figure 5. Typical 64 Character ASCII Set.


Additional Character Font

## Package Dimensions



NOTES:

1. ALL DIMENSIONS IN MILLIMETRES AND (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY
3. PIN 1 IDENTIFIED BY INK DOT ADJACENT TO LEAD.

Figure 6. HDSP-6504
Figure 7. HDSP-6508

## Magnified Character Font Description

DEVICES
HDSP-6504
HDSP-6508


Figure 8.

## Device Pin Description

| Function |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | HDSP-6504 |  | HDSP-6508 |  |
| 1 | Anode | Segment $\mathrm{g}_{1}$ | Anode | Segment $\mathrm{g}_{1}$ |
| 2 | Anode | Segment DP | Anode | Segment DP |
| 3 | Cathode | Digit 1 | Cathode | Digit 1 |
| 4 | Anode | Segment d2 | Anode | Segment d2 |
| 5 | Anode | Segment I | Anode | Segment 1 |
| 6 | Cathode | Digit 3 | Cathode | Digit 3 |
| 7 | Anode | Segment e | Anode | Segment e |
| 8 | Anode | Segment m | Anode | Segment m |
| 9 | Anode | Segment k | Anode | Segment k |
| 10 | Cathode | Digit 4 | Cathode | Digit 4 |
| 11 | Anode | Segment $d_{1}$ | Anode | Segment di |
| 12 | Anode | Segment $j$ | Cathode | Digit 6 |
| 13 | Anode | Segment $\mathrm{C}_{0}$ | Cathode | Digit 8 |
| 14 | Anode | Segment $\mathrm{g}_{2}$ | Cathode | Digit 7 |
| 15 | Anode | Segment $\mathrm{a}_{2}$ | Cathode | Digit 5 |
| 16 | Anode | Segment i | Anode | Segment $j$ |
| 17 | Cathode | Digit 2 | Anode | Segment $C_{0}$ |
| 18 | Anode | Segment b | Anode | Segment $\mathrm{g}_{2}$ |
| 19 | Anode | Segment $a_{1}$ | Anode | Segment $a_{2}$ |
| 20 | Anode | Segment c | Anode | Segment i |
| 21 | Anode | Segment $h$ | Cathode | Digit 2 |
| 22 | Anode | Segment $f$ | Anode | Segment b |
| 23 |  |  | Anode | Segment $a_{1}$ |
| 24 |  |  | Anode | Segment c |
| 25 |  |  | Anode | Segment h |
| 26 |  |  | Anode | Segment f |

## Operational Considerations

## ELECTRICAL

The HDSP-6504 and -6508 devices utilize large monolithic 16 segment GaAsP LED chips with centered decimal point and colon. Like segments of each digit are electrically interconnected to form an 18 by N array, where N is the quantity of characters in the display. In the driving scheme the decimal point or colon is treated as a separate character with its own time frame.

These displays are designed specifically for strobed (multiplexed) operation. Under normal operating situations the maximum number of illuminated segments needed to represent a given character is 10 . Therefore, except where noted, the information presented in this data sheet is for a maximum of 10 segments illuminated per character.*

The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum $V_{F}$ values for the purpose of driver circuit design may be calculated using the following $V_{F}$ model:

```
\(V_{F}=1.85 \mathrm{~V}+\) IPEAK ( \(1.8 \Omega\) )
For: \(30 \mathrm{~mA} \leq\) IPEAK \(\leq 200 \mathrm{~mA}\)
\(V_{F}=1.58 \mathrm{~V}+\operatorname{IPEAK}(10.7 \Omega)\)
For: \(10 \mathrm{~mA} \leq\) IPEAK \(\leq 30 \mathrm{~mA}\)
```


## OPTICAL AND CONTRAST ENHANCEMENT

Each large monolithic chip is positioned under a separate element of a plastic aspheric magnifying lens, producing a magnified character height of 3.81 mm (. 150 inch). The aspheric lens provides wide included viewing angles of typically 75 degrees horizontal and 75 degrees vertical with low off-axis distortion. These two features, coupled with the very high segment luminous sterance, provide to the

[^15]user a display with excellent readability in bright ambient light for viewing distances in the range of 2 meters. Effective contrast enhancement can be obtained by employing any of the following optical filter products: Panelgraphic: Ruby Red 60, Dark Red 63 or Purple 90; SGL Homalite: H100-1605 Red or H100-1804 Purple, Plexiglas 2423. For very bright ambients, such as indirect sunlight, the 3M Light Control Film is recommended: Red 655, Violet, Purple or Neutral Density.

For those applications requiring only 4 or 8 characters, a secondary barrel magnifier, HP part number HDSP-6505 (four character) and -6509 (eight character), may be inserted into support grooves on the primary magnifier. This secondary magnifier increases the character height to 4.45 mm (. 175 inch) without loss of horizontal viewing angle.

## MECHANICAL

These devices are constructed by LED die attaching and wire bonding to a high temperature PC board substrate. A precision molded plastic lens is attached to the PC board and the resulting assembly is backfilled with a sealing epoxy to form an environmentally sealed unit.

The four character and eight character devices can be end stacked to form a character string which is a multiple of a basic four character grouping. As an example, one -6504 and two -6508 devices will form a 20 character string. These devices may be soldered onto a printed circuit board or inserted into 24 and 28 pin DIP LSI sockets. The socket spacing must allow for device end stacking.

Suitable conditions for wave soldering depend upon the specific kind of equipment and procedure used. For more information, consult the local HP Sales Office or HewlettPackage Components, Palo Alto, California.

OPTIONAL
4 DIGIT MAGNIFIER
HDSP-6505


OPTIONAL
HDSP-6509

END VIEW
(BOTH)

2.34
(.092)

MOUNTED ON HDSP. 6504
(1.995) $\qquad$

1. ALL DIMENSIONS IN milLImetres And (INCHES).
2. THIS SECONDARY MAGNIFIER INCREASES THE CHARACTER HEIGHT TO $4.45 \mathrm{~mm}(.175 \mathrm{in}$.

Figure 9. Design Data for Optional Barrel Magnifier in Single Display Applications.

## 16 SEGMENT SOLID STATE ALPHANUMERIC DISPLAY

## Features

## - ALPHANUMERIC <br> Displays 64 Character ASCII Set and Special Characters

- 16 SEGMENT FONT PLUS CENTERED D.P. AND COLON
- 3.56 mm ( 0.140 ") CHARACTER HEIGHT
- APPLICATION FLEXIBILITY WITH PACKAGE DESIGN

8 Character Dual-In-Line Package End Stackable
Sturdy Leads on 2.54 mm ( $0.100^{\prime \prime}$ ) Centers
Common Cathode Configuration

- LOW POWER

As Low as 1.0-1.5mA Average
Per Segment Depending on Peak Current Levels

- EXCELLENT CHARACTER APPEARANCE Continuous Segment Font High On/Off Contrast
5.08 mm ( 0.200 ") Character Spacing Excellent Character Alignment
Excellent Readability at 1.5 Metres
- SUPPORT ELECTRONICS

Can Be Driven With ROM Decoders and Drivers
Easy Interfacing With Microprocessors and LSI Circuitry

- CATEGORIZED FOR LUMINOUS INTENSITY



## Description

The HDSP-6300 is a sixteen segment GaAsP red alphanumeric display mounted in an 8 character dual-inline package configuration that permits mounting on PC boards or in standard IC sockets. The monolithic light emitting diode character is magnified by the integral lens which increases both character size and luminous intensity, thereby making low power consumption possible. The sixteen elements consist of sixteen segments for alphanumeric and special characters plus centered decimal point and colon for good visual aesthetics. Character spacing yields 5 characters per inch.

## Applications

These alphanumeric displays are attractive for applications such as computer peripherals and mobile terminals, desk top calculators, in-plant control equipment, handheld instruments and other products requiring low power, display compactness and alphanumeric display capability.

## Absolute Maximum Ratings

| Symbol | Parameter | Min. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: |
| IPEAK | Peak Forward Current Per Segment or DP (Duration $\leq 417 \mu \mathrm{~s}$ ) |  | 150 | mA |
| lavg | Average Current Per Segment or DP[1] |  | 6.25 | mA |
| PD | Average Power Dissipation Per Character [1.2] |  | $133$ | mW |
| TA | Operating Temperature, Ambient | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |
| Ts | Storage Temperature | -40 | 100 | ${ }^{\circ} \mathrm{C}$ |
| $V_{\text {R }}$ | Reverse Voltage |  | 5 | V |
|  | Solder Temperature at 1.59 mm ( $1 / 16$ inch) below seating plane, $t \leq 5$ Seconds |  | 260 | ${ }^{\circ} \mathrm{C}$ |

NOTES:

1. Maximum allowed drive conditions for strobed operation are derived from Figures 1 and 2 . See electrical section of operational considerations.
2. Derate linearly above $T_{A}=50^{\circ} \mathrm{C}$ at $2.47 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. $\mathrm{PD}_{\mathrm{D}} \operatorname{Max} .\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)=47 \mathrm{~mW}$.

## Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Condition | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV | Luminous Intensity, Time Average, Character Total with 16 Segments Illuminated [3,4] | $\mathrm{I}_{\mathrm{PEAK}}=24 \mathrm{~mA}$ 1/16 Duty Factor | 400 | 1200 |  | $\mu \mathrm{cd}$ |
| $V_{F}$ | Forward Voltage Per Segment or DP | $\mathrm{IF}=24 \mathrm{~mA}$ (One Segment On) |  | 1.6 | 1.9 | $V$ |
| 入PEAK | Peak Wavelength |  |  | 655 |  | nm |
| $\lambda_{d}$ | Dominant Wavelength[5] |  |  | 640 |  | nm |
| IR | Reverse Current Per Segment or DP | $V_{R}=5 \mathrm{~V}$ |  | 10 |  | $\mu \mathrm{A}$ |
| ROJ-PIN | Thermal Resistance LED Junction-to-Pin per Character |  |  | 250 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W} /$ <br> Char. |

NOTES:
3. The luminous intensity ratio between segments within a digit is designed so that each segment will have the same luminous sterance. Thus each segment will appear with equal brightness to the eye.
4. Each character of the display is matched for luminous intensity at the test conditions shown. Operation of the display at lower peak currents may cause intensity mismatch within the display. Operation at peak currents less than 7 mA will cause objectionable display segment matching.
5. The dominant wavelength, $\lambda \mathrm{d}$, is derived from the C.I.E. chromaticity diagram and represents that single wavelength which defines the color of the device, standard red.


Figure 1. Maximum Allowed Peak Current vs. Pulse Duration. Derate derived operating conditions above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ using Figure 2.


Figure 2. Temperature Derating Factor For Peak Current per Segment vs. Ambient Temperature. TJMAX $=110^{\circ} \mathrm{C}$


Figure 3. Relative Luminous Efficiency (Luminous Intensity Per Unit Current) vs. Peak Segment Current.


Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.


Figure 5. Typical 64 Character ASCII Set.


Additional Character Font


NOTES:

1. ALL DIMENSIONS IN MIL. E INFETRES AND $\ddagger$ \#NCHESI,
2. ALL UNTOE.ERAACED D\#MENSIONS ARE FOR REFERENCE ONLY. 3. PIN 1 IDENTIFIED BY DOT ADJACENY TO LEAD.

Figure 6.

## Magnified Character Font Description



Figure 7.

## Operational Considerations

## ELECTRICAL

The HDSP-6300 device utilizes large monolithic 16 segment plus centered decimal point and colon GaAsP LED chips. Like segments of each digit are electrically interconnected to form an 18 by N array, where N is the quantity of characters in the display. In the driving scheme the decimal point or colon is treated as a separate character with its own time frame.

This display is designed specifically for strobed (multiplexed) operation. Under normal operating situations the maximum number of illuminated segments needed to represent a given character is 10 . Therefore, except where noted, the information presented in this data sheet is for a maximum of 10 segments illuminated per character.*

## Device Pin Description

| Pin <br> No. | Function |  |
| :---: | :---: | :---: |
| 1 | Anode | Segment K |
| 2 | Anode | Segment $\mathrm{D}_{1}$ |
| 3 | Anode | Segment C |
| 4 | Cathode | Digit 1 |
| 5 | Cathode | Digit 2 |
| 6 | Cathode | Digit 3 |
| 7 | Cathode | Digit 4 |
| 8 | Anode | Segment L |
| 9 | Anode | Segment $\mathrm{G}_{2}$ |
| 10 | Anode | Segment E |
| 11 | Anode | Segment M |
| 12 | Anode | Segment D2 |
| 13 | Anode | Segment DP |
| 14 | Anode | Segment $A_{2}$ |
| 15 | Anode | Segment I |
| 16 | Anode | Segment J |
| 17 | Cathode | Digit 8 |
| 18 | Cathode | Digit 7 |
| 19 | Cathode | Digit 6 |
| 20 | Cathode | Digit 5 |
| 21 | Anode | Segment $C_{0}$ |
| 22 | Anode | Segment $\mathrm{G}_{1}$ |
| 23 | Anode | Segment B |
| 24 | Anode | Segment F |
| 25 | Anode | Segment H |
| 26 | Anode | Segment $A_{1}$ |

The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum $V_{F}$ values for the purpose of driver circuit design may be calculated using the following $V_{F}$ model:

$$
\begin{aligned}
& V_{F}=1.85 \mathrm{~V}+\operatorname{IPEAK}(1.8 \Omega) \\
& \text { For } 30 \mathrm{~mA} \leq \operatorname{IPEAK} \leq 150 \mathrm{~mA} \\
& V_{F}=1.58 \mathrm{~V}+I \text { PEAK }(10.7 \Omega) \\
& \text { For } 10 \mathrm{~mA} \leq \operatorname{IPEAK} \leq 30 \mathrm{~mA}
\end{aligned}
$$

*More than 10 segments may be illuminated in a given character, provided the maximum allowed character power dissipation, temperature derated, is not exceeded.

## OPTICAL AND CONTRAST ENHANCEMENT

Each large monolithic chip is positioned under a separate element of a plastic aspheric magnifying lens producing a magnified character height of 3.56 mm ( 0.140 inch). The aspheric lens provides wide included viewing angles of 60 degrees horizontal and 55 degrees vertical with low off axis distortion. These two features, coupled with the very high segment luminous sterance, provide to the user a display with excellent readability in bright ambient light for viewing distances in the range of 1.5 metres. Effective contrast enhancement can be obtained by employing an optical filter product such as Panelgraphic Ruby Red 60, Dark Red 63 or Purple 90; SGL Homalite H100-1605 Red or H100-1804 Purple; or Plexiglas 2423. For very bright ambients, such as indirect sunlight, the 3M Red 655 or Neutral Density Light Control Film is recommended.

## MECHANICAL

This device is constructed by LED die attaching and wire bonding to a high temperature PC board substrate. A precision molded plastic lens is attached to the PC board.

The HDSP-6300 can be end stacked to form a character string which is a multiple of a basic eight character grouping. These devices may be soldered onto a printed circuit board or inserted into 28 pin DIP LSI sockets. The socket spacing must allow for device end stacking.

Suitable conditions for wave soldering depend upon the specific kind of equipment and procedure used. It is recommended that a non-activated rosin core wire solder or a low temperature deactivating flux and solid wire solder be used in soldering operations. For more information, consult the local HP Sales Office or Hewlett-Packard Components, Palo Alto, California.

TECHNICAL DATA JANUARY 1986

## Features

- LARGE 1 INCH CHARACTER HEIGHT
- $5 \times 7$ DOT MATRIX FONT
- VIEWABLE UP TO 18 METERS ( 60 FEET)
- END AND SIDE STACKABLE
- IDEAL FOR GRAPHICS PANELS
- EXCELLENT CHARACTER APPEARANCE
- AVAILABLE IN COMMON ANODE ROW AND COMMON CATHODE ROW CONFIGURATIONS
- CATEGORIZED FOR INTENSITY
- MECHANICALLY RUGGED


## Description

The HDSP-4501/4503 are high efficiency red alphanumeric displays. These displays have a one inch tall $5 \times 7$ dot matrix character font which provides readability up to 18 meters. Each LED element is mounted at the base of a diffusing cavity which provides uniform dot size, spacing and appearance.
These devices utilize a standard 10.16 mm ( 0.4 in ) dual-inlead configuration that permits mounting on PC boards or in IC sockets.
Applications include electronic instrumentation, computer peripherals, point of sale terminals, weighing scales, and industrial electronics.


## Devices

| Part Number | Color | Description |
| :--- | :--- | :--- |
| HDSP-4501 | High | Common Anode Row |
| HDSP-4503 | Efficiency <br> Red | Common Cathode Row |

## Pin Function

## Internal Circuit Diagram

| PIN | HDSP-4501 | HDSP-4503 |
| :--- | :--- | :--- |
| 1 | COLUMN 1 CATHODE | ROW 1 CATHODE |
| 2 | NO PIN | NO PIN |
| 3 | ROW 3 ANODE | COLUMN 3 ANODE |
| 4 | COLUMN 2 CATHODE | ROW 3 CATHODE |
| 5 | NO PIN | NO PIN |
| 6 | ROW 5 ANODE | COLUMN 1 ANODE |
| 7 | NO PIN | NO PIN |
| 8 | ROW 6 ANODE | COLUMN 2 ANODE |
| 9 | ROW 7 ANODE | ROW 7 CATHODE |
|  |  |  |
| 10 | COLUMN 3 CATHODE | ROW 6 CATHODE |
| 11 | COLUMN 5 CATHODE | COLUMN 4 ANODE |
| 12 | NO PIN | NOPIN |
| 13 | ROW 4 ANODE | ROW 5 CATHODE |
| 14 | NO PIN | NO PIN |
| 15 | COLUMN 4 CATHODE | ROW 4 CATHODE |
| 16 | ROW 2 ANODE | ROW 2 CATHODE |
| 17 | NO PIN | NOPIN |
| 18 | ROW 1 ANODE | COLUMN 5 ANODE |


$X=$ ROW OR COLUMN NUMBER, $X=$ PIN NUMBER

## Absolute Maximum Ratings (All Products)

Average Power per Segment
$\left(T_{A}=25^{\circ} \mathrm{C}\right)^{[1]}$
Peak Forward Current per Segment
$\left(T_{A}=25^{\circ} \mathrm{C}\right)^{|2|}$
90 mA
Average Forward Current per Segment
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{[3]}$ 15 mA

Operating Temperature Range $\ldots . . . . . . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Reverse Voltage per Segment ............................ . 3.0 V
Lead Solder Temperature
( 1.59 mm [1/16 inch] below
seating plane)
$260^{\circ} \mathrm{C}$ for 3 sec.

## NOTES:

1. Average power/segment based on 20 segments 'on' per character. Total package power dissipation should not exceed 1.2 W.
2. Do not exceed maximum average current per segment.
3. Derate maximum average current above $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ at 0.25 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$ per segment. This derating is based on a device mounted in a socket having a thermal resistance for pin to ambient of $615^{\circ} \mathrm{C} / \mathrm{W}$ per segment.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
HIGH EFFICIENCY RED HDSP-4500 SERIES

| Description | Symbol | Test Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity/Segment[4] (Digit Average) | IV | 50 mA Pk: 1 of 5 Duty Factor ( 10 mA Avg.) | 1400 | 3500 |  | $\mu \mathrm{cd}$ |
| Peak Wavelength | APEAK |  |  | 635 |  | nm |
| Dominant Wavelengthi5] | $\lambda_{D}$ |  |  | 626 |  | nm |
| Forward Voltage/Segment | $V_{F}$ | $I_{F}=20 \mathrm{~mA}$ |  | 2.1 | 2.5 | V |
| Reverse Voltage/Segment or DP[6] | $V_{\text {R }}$ | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$ | 3.0 | 25.0 |  | V |
| Temperature Coefficient of $V_{F} /$ Segment | $\Delta V_{F} /{ }^{\circ} \mathrm{C}$ |  |  | $-2.0$ |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Thermal Resistance LED Junction-to-Pin per Segment | $R \theta_{J-P I N}$ |  |  | 380 |  | $\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} f \\ \mathrm{Seg} \end{gathered}$ |

## NOTES:

4. The displays are categorized for luminous intensity with the intensity category designated by a letter on the right hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities.
5. The dominant wavelength is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device.
6. Typical specification for reference only. Do not exceed absolute maximum ratings.

# LOW CURRENT SEVEN SEGMENT DISPLAYS 

## Features

- LOW POWER CONSUMPTION

Typical Power Consumption is $3 \mathrm{~mW} / \mathrm{Seg}$ at 2 mA Drive

- TYPICAL INTENSITY OF $300 \mu \mathrm{~cd} /$ Seg AT 2 mA DRIVE
- CAPABLE OF HIGH CURRENT DRIVE Excellent for Long Digit String Multiplexing
- COMPATIBLE WITH MONOLITHIC LED DISPLAY DRIVERS
- THREE CHARACTER SIZES

- COMMON ANODE OR COMMON CATHODE Right Hand Decimal Point
Overflow $\pm$ Character
- EXCELLENT CHARACTER APPEARANCE Wide Viewing Angle
Grey Body for Optimum Contrast
- CATEGORIZED FOR LUMINOUS INTENSITY Use of Like Categories Yields a Uniform Display



## Description

The HDSP-7510, HDSP-3350, HDSP-5550 series are 7.6 mm ( 0.3 in ), $10.9 \mathrm{~mm}(0.43 \mathrm{in})$ and $14.2 \mathrm{~mm}(0.56 \mathrm{in})$ high efficiency red displays featuring low power consumption. The HDSP-7510 series are designed for viewing distances up to 2 meters, the HDSP- 3350 series for viewing distances up to 5 meters, and the HDSP-5550 series for viewing distances up to 7 meters. Typical applications include instruments, scales, point-of-sale terminals and meters.

## Devices

| Part Number | Color | Description | Package <br> Drawing |
| :--- | :--- | :--- | :---: |
| HDSP-7511 | High | 7.6 mm Common Anode Right Hand Decimal | A |
| HDSP-7513 | Efficiency | 7.6 mm Common Cathode Right Hand Decimal | B |
| HDSP-7517 | Red | 7.6 mm Overflow $\pm 1$ Common Anode | C |
| HDSP-7518 |  | 7.6 mm Overflow $\pm 1$ Common Cathode | D |
| HDSP-3350 | High | 10.9 mm Common Anode Left Hand Decimal | E |
| HDSP-3351 | Efficiency | 10.9 mm Common Anode Right Hand Decimal | F |
| HDSP-3353 | Red | 10.9 mm Common Cathode Right Hand Decimal | G |
| HDSP-3356 |  | 10.9 mm Universal Overflow $\pm 1$ Right Hand Dec. | H |
| HDSP-5551 | High | 14.2 mm Common Anode Right Hand Decimal | I |
| HDSP-5553 | Efficiency | 14.2 mm Common Cathode Right Hand Decimal | J |
| HDSP-5557 | Red | 14.2 mm Overflow $\pm 1$ Common Anode | K |
| HDSP-5558 |  | 14.2 mm Overflow $\pm 1$ Common Cathode | L |

## Package Dimensions (HDSP-7510 Series)



A, B
Notes:


C, D

1. All dimensions in millimetres (inches).
2. Redundant anodes.

3. Maximum.
4. Redundant cathodes.
5. All untoleranced dimensions are for reference only.

| PIN | FUNCTION |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | A | B | c | D |
| 1 | ANODE [4] | CATHODE 51 | ANODE ${ }^{\text {a }}$ ] | CATHODE ${ }^{\text {S }} 1$ |
| 2 | CATHODE | ANOD | GATHODE PLUS | ANODE PLUS |
| 3 | CATHODE 9 | ANODE 9 | CATHODE MINUS | ANODE MINUS |
| 4 | CATHODE E | ANODE E | NC | NC |
| 5 | CATHODE | ANODE ${ }^{\text {d }}$ | NC | NC |
| 6 | ANODE (a) | CATHODE 51 | ANODE ${ }^{\text {a }}$ ] | CATHODE [5] |
| 7 | CATHODE OP | AAODE DP | CATHOOE OP | ANODE DP |
| 8 | CATHODE C | ANODE : | CATHOOE C | ANODE C |
| 9 | CATHODE C | ANODE b | CATHODE ${ }^{\text {b }}$ | ANODE 1 |
| 10 | CATHODE a | ANODE 3 | NC | NC |

## Package Dimensions (HDSP-3350 Series)



E


F,H

FRONT VIEW


NOTES:

1. Dimensions in millimeters and (inches).
2. All untoleranced dimensions are
for reference only
3. Unused dp position.
4. See Internal Circuit Diagram.
5. See Internal Circuit
6. Redundant cathode.
7. Redundant cathode.

## Package Dimensions (HDSP-5550 Series)

FRONT VIEW I, J TOP END VIEW I, J, K, L


Notes:

1. All dimensions in millimetres (inches).
2. Maximum.
3. All untoleranced dimensions are for reference only.
4. Redundant anodes.
5. Redundant cathodes.

## Internal Circuit Diagram



## Absolute Maximum Ratings (All Products)

```
Average Power per Segment
or DP (TA = 25 ' C)
```

$\qquad$
Peak Forward Current per Segment
or DP (TA = 25 ' C)| [1] .............................. . . 45 mA
Average or DC Forward Current per Segment }\mp@subsup{}{}{[2]
or DP (TA == 25'`) ............................... 15 mA
Operating Temperature Range ......... -40 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+8\mp@subsup{5}{}{\circ}\textrm{C
Storage Temperature Range .......... -55 C to +100 }\mp@subsup{}{}{\circ}\textrm{C
Reverse Voltage per Segment or DP .............. 3.0 V
Lead Solder Temperature
(1.59 mm [1/16 inch] below
seating plane)
260 C for 3 sec.

```

\section*{Notes:}
1. Do not exceed maximum average current per segment.
2. Derate maximum average current above \(\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}\) at \(0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\) per segment, see Figure 1. Derate maximum DC current above \(\mathrm{T}_{\mathrm{A}}=78^{\circ} \mathrm{C}\) at \(0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\) per segment.

\section*{Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}

\section*{HIGH EFFICIENCY RED HDSP-7510 SERIES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{3}{*}{Luminous Intensity/Segment \({ }^{[3]}\) (Digit Average)} & \multirow[t]{3}{*}{Iv} & 2 mADC & 160 & 270 & & \multirow[t]{3}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 5 mADC & & 1050 & & \\
\hline & & \(40 \mathrm{~mA} \mathrm{Pk}: 1\) of 4 Duty Factor & & 3500 & & \\
\hline Peak Wavelength & \(\lambda\) APEAK & & & 635 & & nm \\
\hline Dominant Wavelength141 & \(\lambda_{d}\) & & & 626 & & nm \\
\hline \multirow[t]{3}{*}{Forward Voltage/Segment or DP} & \multirow[t]{3}{*}{\(V_{F}\)} & \(\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}\) & & 1.6 & & \multirow{3}{*}{V} \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\) & & 1.7 & & \\
\hline & & \(\mathrm{IF}_{\mathrm{F}}=20 \mathrm{mAPK}\) & & 2.1 & 2.5 & \\
\hline Reverse Voltage/Segment or DP|5] & \(V_{R}\) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 3.0 & 30.0 & & \(\checkmark\) \\
\hline Temperature Coefficient of \(V_{F} /\) Segment or DP & \(\Delta V_{F} /{ }^{\circ} \mathrm{C}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Pesistance LED Junction-to-Pin & \(\mathrm{R}_{\theta_{J-P I N}}\) & & & 200 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg}
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{HIGH EFFICIENCY RED HDSP-3350 SERIES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{3}{*}{Luminous Intensity/Segmenti3/ (Digit Average)} & \multirow[t]{3}{*}{Iv} & 2 mADC & 200 & 300 & & \multirow[t]{3}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 5 mADC & & 1200 & & \\
\hline & & 40 mA Pk: 1 of 4 Duty Factor & & 3900 & & \\
\hline Peak Wavelength & \(\lambda\) ¢ЕАК & & & 635 & & nm \\
\hline Dominant Wavelength \({ }^{141}\) & \(\lambda_{d}\) & & & 626 & & nm \\
\hline \multirow[t]{3}{*}{Forward Voltage/Segment or DP} & \multirow[t]{3}{*}{\(V_{F}\)} & \(\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}\) & & 1.6 & & \multirow[t]{3}{*}{V} \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\) & & 1.7 & & \\
\hline & & \(\mathrm{IF}=20 \mathrm{mAPk}\) & & 2.1 & 2.5 & \\
\hline Reverse Voltage/Segment or DPI5]. & \(V_{\text {R }}\) & \(1 \mathrm{~F}=100 \mu \mathrm{~A}\) & 3.0 & 30.0 & & \(V\) \\
\hline Temperature Coefficient of \(V_{F / S}\) Segment or DP & \(\Delta V_{F} /{ }^{\circ} \mathrm{C}\) & . & & -2.0 & & \(\mathrm{mV} 7^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & \(\mathrm{R}^{\text {d-PIN }}\) & & & 282 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / W / \\
\mathrm{Seg} /
\end{gathered}
\] \\
\hline
\end{tabular}

HIGH EFFICIENCY RED HDSP-5550 SERIES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{3}{*}{Luminous Intensity/Segment \({ }^{3}\) (Digit Average)} & \multirow[t]{3}{*}{Iv} & 2 mADC & 270 & 370 & & \multirow[t]{3}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 10 mA DC & & 3400 & & \\
\hline & & \(40 \mathrm{~mA} \mathrm{Pk}: 1\) of 4 Duty Factor & & 4800 & & \\
\hline Peak Wavelength & 入PEAK & * & \% & 635 & & nm \\
\hline Dominant Wavelength 41 & \(\lambda_{d}\) & & & 626 & \% & nm \\
\hline \multirow[t]{3}{*}{Forward Voltage/Segment or DP} & \multirow[t]{3}{*}{\(V_{F}\)} & \(\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}\) & & 1.6 & & \multirow[t]{3}{*}{V} \\
\hline & & \(\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}\) & & 1.7 & & \\
\hline & & \(\mathrm{IFF}=20 \mathrm{~mA} \mathrm{Pk}\) & & 2.1 & 2.5 & \\
\hline Reverse Voltage/Segment or DP \({ }^{[5]}\) & \(V_{\text {R }}\) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 3.0 & 30.0 & & \(V\) \\
\hline Temperature Coefficient of VF/Segment or DP & \(\pm V_{F} /{ }^{\circ} \mathrm{C}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & \(R \theta_{J \text {-PIN }}\) & & & 345 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg}
\end{gathered}
\] \\
\hline
\end{tabular}
3. The digits are categorized for luminous intensity with the intensity category designated by a letter on the right hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included. Operation at less than 2 mA DC or peak current per segment may cause objectionable display segment matching and is not recommended.
4. The dominant wavelength is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device.
5. Typical specification for reference only. Do not exceed absolute maximum ratings.

\section*{HDSP-7510/-3350/-5550 SERIES}


Figure 1. Maximum Allowable Average Current per Segment as a Function of Ambient Temperature


Figure 3. Forward Current vs. Forward Voltage


Figure 2. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current per Segment


Figure 4. Relative Luminous Intensity vs. DC Forward Current

\section*{Electrical}

THe HDSP-7510/-3350/-5550 series of display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. These displays have their p-n junctions diffused into GaAsP epitaxial layer on a GaP substrate.

These display devices are well suited for strobed operation. The typical forward voltage values, scaled from Figure 3, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum \(V_{F}\) values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following \(V_{F}\) MAX model:
\[
\begin{aligned}
& \text { VF } M A X=1.75 \mathrm{~V}+\operatorname{IPEAK}(38 \Omega) \\
& \text { For: IPEAK } \geq 20 \mathrm{~mA} \\
& \mathrm{VF}_{\mathrm{F}} \mathrm{MAX}=1.6 \mathrm{~V}+\operatorname{IDC}(45 \Omega) \\
& \text { For: } 2 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}
\end{aligned}
\]

These displays are compatible with monolithic LED display drivers. See Application Note 1006 for more information.

\section*{Contrast Enhancement}

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readability by having the OFF-segments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the segments.
Contrast enhancement may be achieved by using one of the following suggested filters:

\footnotetext{
Panelgraphic SCARLET RED 65 or GRAY 10
SGL Homalite H100-1670 RED or -1266
GRAY
3M Louvered Filter R6310 RED or N0210
GRAY
}

\section*{Mechanical}

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or DE-15, Arklone A or K. A \(60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)\) water cleaning process may also be used, which includes a neutralizer rinse ( \(3 \%\) ammonia solution or equivalent), a surfactant rinse ( \(1 \%\) detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent
Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

\title{
EMERALD GREEN SEVEN SEGMENT DISPLAYS
}

\section*{\(7.6 \mathrm{~mm}(0.30 \mathrm{in}) \quad\) HDSP-7900 SERIES} 14.2 mm ( 0.56 in ) HDSP-5900 SERIES

TECHNICAL DATA JANUARY 1986

\section*{Features}
- TRUE GREEN COLOR
- TYPICAL DOMINANT WAVELENGTH OF 557 nm
- AVAILABLE IN TWO SIZES
- INDUSTRY STANDARD PINOUTS
- CATEGORIZED FOR LUMINOUS INTENSITY AND COLOR
- EXCELLENT CHARACTER APPEARANCE Mitered Segments Wide Viewing Angle Grey Body for Optimum Contrast

- COMMON ANODE OR COMMON CATHODE Right Hand Decimal Point
Overflow \(\pm\) Character

\section*{Description}

The HDSP-7900 and HDSP-5900 series are 7.6 mm ( 0.30 in ) and 14.2 mm ( 0.56 in ) emerald green displays. Emerald green displays feature a shorter wavelength, true green color. The HDSP-7900 series are designed for viewing distances up to 3 meters and the HDSP-5900 series are designed for viewing distances up to 7 meters. Typical applications include instruments, scales, point of sale terminals, and meters.

\section*{Devices}
\begin{tabular}{|l|l|l|c|}
\hline Part Number & Color & Description & \begin{tabular}{l} 
Package \\
Drawing
\end{tabular} \\
\hline HDSP-7901 & Emerald & 7.6 mm Common Anode Right Hand Decimal & A \\
HDSP-7903 & Green & 7.6 mm Common Cathode Right Hand Decimal & B \\
HDSP-7907 & & 7.6 mm Overflow \(\pm 1\) Common Anode & C \\
HDSP-7908 & & 7.6 mm Overflow \(\pm 1\) Common Cathode & D \\
\hline HDSP-5901 & Emerald & 14.2 mm Common Anode Right Hand Decimal & E \\
HDSP-5903 & Green & 14.2 mm Common Cathode Right Hand Decimal & F \\
HDSP-5907 & & 14.2 mm Overflow \(\pm 1\) Common Anode & G \\
HDSP-5908 & & 14.2 mm Overflow \(\pm 1\) Common Cathode & H \\
\hline
\end{tabular}

\section*{Package Dimensions (HDSP-7900 Series)}


A, B



C, D


Notes:
1. All dimensions in millimetres (inches).
2. Maximum.
3. All untoleranced dimensions are for reference only.
4. Redundant anodes.
5. Redundant cathodes.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PIN} & \multicolumn{4}{|c|}{FUNCTION} \\
\hline & A & B & c & D \\
\hline 1 & ANODE[4] & CATHODE 5 S & ANODE [4] & CATHODE \({ }^{515}\) \\
\hline 2 & CATHODE f & ANODE: & cathode plus & ANODE PLuS \\
\hline 3 & CATHODE g & ANODE \(g\) & CATHDDE Minus & ANODE MINUS \\
\hline 4 & CAIHODE E & ANOOE e & NC & NC \\
\hline 5 & CATHODE d & ANODE \({ }^{\text {d }}\) & NC & NC \\
\hline 6 & ANODE[4] & CATHODE[5] & ANODE \({ }^{\text {a }}\) & CATHODEET5 \\
\hline 7 & CATHODE DP & ANODE DP & CATHODE DP & ANODE DP \\
\hline 8 & CATHODE C & ANODE c & CATHODE C & ANODE C \\
\hline 9 & CATHODE F & ANODE b & CATHODE b & ANODE b \\
\hline 10 & CATHODE a & ANODE - & & NC \\
\hline
\end{tabular}

\section*{Internal Circuit Diagram}


A


B


C


D

\section*{Package Dimensions (HDSP-5900 Series)}

FRONT VIEW E, F TOP END VIEW E, F, G, H

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PIN} & \multicolumn{4}{|c|}{FUNCTION} \\
\hline & E & F & G & H \\
\hline 1 & CATHODE & ANODE & CATHODE C & ANODEC \\
\hline 2 & CATHODE & ANODE d & ANODE \(\mathrm{C}, \mathrm{d}\) : & CATHODEC, \({ }^{\text {d }}\) \\
\hline 3 & ANODE141 & CATHODE 5 & CATHODE & ANODE: \\
\hline 4 & CATHODE & ANODE 5 & ANODE a, b, DP & CATHODE a.b.DP \\
\hline 5 & CATHODE DP & ANODE DP & CATHODE DP & ANODE DP \\
\hline 6 & CATHODEO & ANODED & CATHODE a & ANODE a \\
\hline 7 & CATHODE a & ANODEa & ANOOE a, b. DP & CATHODE a.b. DP \\
\hline 8 & ANODE14! & CATHODEIS & ANODEC.d & CATHODE c.d \\
\hline 9 & CATHODE & ANODE: & CATHODE d & ANODE d \\
\hline 10 & CATHODE 9 & ANODEg & NO PIN & NOPIN \\
\hline
\end{tabular}

\section*{Notes:}
1. All dimensions in millimetres (inches).
2. Maximum.
3. All untoleranced dimensions are for reference only.
4. Redundant anodes.
5. Redundant cathodes.

Internal Circuit Diagram


E


F


G


H

\section*{Absolute Maximum Ratings (All Products)}
```

Average Power per Segment
or DP (TA = 25 ' C)
Peak Forward Current per Segment

```
or DP \(\left(T_{A}=25^{\circ} \mathrm{C}\right)^{[1]}\)
90 mA
Average or DC Forward Current per Segment \({ }^{|2|}\)
or DP ( \(T_{A}==25^{\circ} \mathrm{C}\) ) \(\qquad\)30 mA

Operating Temperature Range \(\ldots . . . . . .-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range ........... \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\)
Reverse Voltage per Segment or DP
3.0 V

Lead Solder Temperature
( 1.59 mm | \(1 / 16\) inch| below
seating plane)
\(260^{\circ} \mathrm{C}\) for 3 sec.

\section*{NOTES:}
1. Do not exceed maximum average current per segment.
2. Derate maximum average current above \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) at \(0.38 \mathrm{~mA}^{\circ} \mathrm{C}\) per segment, see Figure 1.

\section*{Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}

EMERALD GREEN HDSP - 7900 SERIES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{3}{*}{Luminous Intensity/Segment \({ }^{3 \mid}\) (Digit Average)} & \multirow[t]{3}{*}{Iv} & 10 mADC & 220 & 590 & & \multirow[t]{3}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 20 mADC & & 1475 & & \\
\hline & & 60 mAPk : 1 of 6 & & 750 & & \\
\hline Peak Wavelength & \(\lambda\) APEAK & & & 555 & & nm \\
\hline Dominant Wavelength \({ }^{(4)}\) & \(\lambda d\) & & & 557 & 565 & nm \\
\hline Forward Voltage/Segment or DP & \(V_{F}\) & IF \(=10 \mathrm{~mA}\) & & 2.1 & 2.5 & \(V\) \\
\hline Reverse Voltage/Segment or DP|5| & \(V_{\text {R }}\) & IF \(=100 \mu \mathrm{~A}\) & 3.0 & 30.0 & & \(V\) \\
\hline Temperature Coefficient of VF/Segment or DP & \(3 V_{F} /{ }^{\circ} \mathrm{C}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & R \(\theta_{\text {J_PIN }}\) & & & 200 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg}
\end{gathered}
\] \\
\hline
\end{tabular}

EMERALD GREEN HDSP - \(\mathbf{5 9 0 0}\) SERIES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{3}{*}{Luminous Intensity/Segment \({ }^{|3|}\) (Digit Average)} & \multirow[t]{3}{*}{IV} & 10 mA DC & 270 & 620 & & \multirow[t]{3}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 20 mA DC & & 1550 & & \\
\hline & & \(60 \mathrm{mAPk}: 1\) of 6 & & 800 & & \\
\hline Peak Wavelength & \(\lambda\) PEAK & & & 555 & & nm \\
\hline Dominant Wavelength \({ }^{(4]}\) & \(\lambda d\) & & & 557 & 565 & nm \\
\hline Forward Voltage/Segment or DP & \(V_{F}\) & \(1 \mathrm{~F}=10 \mathrm{~mA}\) & & 2.1 & 2.5 & \(V\) \\
\hline Reverse Voltage/Segment or DP \({ }^{(5)}\) & \(V_{\text {R }}\) & \(\mathrm{IF}=100 \mu \mathrm{~A}\) & 3.0 & 30.0 & & \(\checkmark\) \\
\hline Temperature Coefficient of VF/Segment or DP & \(\Delta V_{F} /{ }^{\circ} \mathrm{C}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & R \(\theta\) J-PIN & & & 345 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg}
\end{gathered}
\] \\
\hline
\end{tabular}
3. The digits are categorized for luminous intensity with the intensity category designated by a letter on the right hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included.
4. The dominant wavelength is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device. These displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
5. Typical specification for reference only. Do not exceed absolute maximum ratings.

\section*{HDSP-7900/-5900 SERIES}


Figure 1. Maximum Allowable Average Current per Segment as a Function of Ambient Temperature


Figure 3. Forward Current vs. Forward Voltage


Figure 2. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current per Segment


Figure 4. Relative Luminous Intensity vs. DC Forward Current

\section*{Electrical}

The HDSP-7900/5900 series of display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The -7900 and -5900 series have their p-n junctions diffused into a GaP epitaxial layer on a GaP substrate.
These display devices are well suited for strobed operation. The typical forward voltage values, scaled from Figure 3, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum \(V_{F}\) values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following \(V_{F}\) MAX model:
\[
\begin{aligned}
& V_{F} M A X=2.0 \mathrm{~V}+\operatorname{IPEAK}(50 \Omega) \\
& \text { For: IPEAK } \geq 5 \mathrm{~mA}
\end{aligned}
\]

\section*{Contrast Enhancement}

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readability by having the OFF-segments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the segments.
Contrast enhancement may be achieved by using one of the following suggested filters:

Panelgraphic GREEN 48
SGL Homalite H100-1440 GREEN
3M Louvered Filter G5610 GREEN or N0210
GRAY

\section*{Mechanical}

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or DE-15, Arklone A or K. A \(60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)\) water cleaning process may also be used, which includes a neutralizer rinse ( \(3 \%\) ammonia solution or equivalent), a surfactant rinse ( \(1 \%\) detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.
Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.
See Applicaton Note 1027 for additional information on soldering and cleaning LED displays.

\title{
7.6 mm (. 3 inch) MICRO BRIGHT 7 SEGMENT DISPLAYS
}

\author{
RED HDSP-7300 \\ HIGH EFFICIENCY RED HDSP-7500 \\ YELLOW HDSP-7400 \\ HIGH PERFORMANCE GREEN \\ HDSP-7800
}

TECHNICAL DATA JANUARYY 1986

\section*{Features}
- HIGH BRIGHTNESS Package Optimized for High Ambient Conditions
- COMPACT PACKAGE \(0.300 \times 0.500\) inches
- CHOICE OF FOUR COLORS: Red, High Efficiency Red, Yellow, High Performance Green
- EXCELLENT CHARACTER APPEARANCE: Evenly Lighted Segments
Mitered Segments Wide Viewing Angle Grey Package Provides Optimum On-Off Contrast
- EASY MOUNTING ON PC BOARDS OR SOCKETS 5.08 mm ( 0.2 inch) DIP Leads on 2.54 mm ( 0.1 inch) Centers
- AVAILABLE WITH COLON FOR CLOCK DISPLAY
- COMMON ANODE OR COMMON CATHODE Right Hand Decimal Point Overflow \(\pm\) Character
- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW AND GREEN ALSO CATEGORIZED FOR COLOR
Use of Like Category Yields a Uniform Display


\section*{Description}

The HDSP-7300/-7500/-7400/-7800 Series are 7.6 mm ( 0.3 inch) character LED seven segment displays in a compact package. Designed for viewing distances up to 3 metres ( 10 feet), these displays are ideal for high ambient applications where space is at a premium. Typical applications include instruments, aircraft and marine equipment, point-of-sale terminals, clocks, and appliances.

\section*{Devices}

\section*{Package Dimensions}


A, C



B, D


MITERED CORNER FOR


Notes:
1. All dimensions in millimetres (inches).
2. Maximum.
3. All untoleranced dimensions are for reference only.
4. Redundant anodes.
5. Redundant cathodes.
6. For HDSP-7400/-7800 series product only.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PIN} & \multicolumn{6}{|c|}{FUNCTION} \\
\hline & A & B & C & D & E & \(F\) \\
\hline 1 & ANODE[4] & CATHODE COLON & CATHODE \({ }^{\text {51 }}\) & ANODE COLON & ANODE[4] & CATHODE 55 \\
\hline 2 & CATHODE & CATHODE I & ANODE f & ANODE F & CATHODE PLUS & ANODE PLUS \\
\hline 3 & CATHODE g & CATHODE g & ANODE \(g\) & ANODE g & CATHODE MINUS & ANODE MINUS \\
\hline 4 & CATHODE E & CATHODE E & ANODE e & ANODE E & NC & NC \\
\hline 5 & CATHODE d & CATHODE © & ANODE d & ANODE 0 & NC & NC \\
\hline 6 & ANODE[4] & ANODE & CATHODE [5] & CATHODE & ANODE \(\{4\}\) & CATHODE 51 \\
\hline 7 & CATHODE DP & CATHODE DP & ANODE DP & ANODE DP & CATHODE DP & ANODE DP \\
\hline 8 & CATHODE C & CATHODE ¢ & ANODE C & ANODE c & CATHODE C & ANQDE C \\
\hline 9 & CATHODE \(\ddagger\) & CATHOD咗 b & ANODE b & ANODE b & CATHODE b & ANODE b \\
\hline 10 & CATHODE a & CATHODE a & ANODE a & ANODE a & NC & NC \\
\hline
\end{tabular}

\section*{Internal Circuit Diagram}


\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|c|c|c|}
\hline & HDSP-7300/ -7310 Series & \[
\begin{gathered}
\text { HDSP-7500 } \\
\text { Series }
\end{gathered}
\] & \[
\begin{aligned}
& \text { HDSP-7400 } \\
& \text { Series }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HDSP-7800 } \\
& \text { Series }
\end{aligned}
\] \\
\hline Average Power Dissipation per Segment or D.P. & 73 mW & 105 mW & 81 mW & 105 mW \\
\hline Operating Temperature Range \({ }^{[7]}\) & \multicolumn{4}{|r|}{\begin{tabular}{|l|l|}
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}} \\
\hline Storage Temperature Range & \multicolumn{4}{|c|}{\(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\)} \\
\hline Peak Forward Current per Segment or D.P. [8] & 150 mA & 90 mA & 60 mA & 90 mA \\
\hline DC Forward Current per Segment or D.P. [9] & 25 mA & 30 mA & 20 mA & 30 mA \\
\hline Reverse Voltage per Segment or D.P. & 3 V & 3 V & 3 V & 3 V \\
\hline Lead Soldering Temperature 1.59 mm ( \(1 / 16\) inch) below seating plane & \multicolumn{4}{|c|}{\(260^{\circ} \mathrm{C}\) for 3 sec.} \\
\hline
\end{tabular}
7. For operation of HDSP- 7800 series to \(-40^{\circ} \mathrm{C}\) consult Optoelectronics division.
8. See Figures 1, 6, 7, and 8 to establish pulsed operating conditions. (Figure 1, HDSP-7300 Series; Figure 6, HDSP-7500 Series; Figure 7, HDSP-7400 Series; Figure 8, HDSP-7800 Series)
9. See Figures 2, 9, 10, and 11 to derate maximum DC current. (Figure 2, HDSP-7300 Series; Figure 9, HDSP-7500 Series; Figure 10, HDSP-7400 Series; Figure 11, HDSP-7800 Series)

\section*{Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}

\section*{STANDARD RED HDSP-7300 SERIES}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Description & Device HDSP- & Symbol & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{4}{*}{Luminous Intensity/Segment \({ }^{[10]}\) (Digit Average)} & 7300 & \multirow[t]{2}{*}{Iv} & 10 mA DC & & 500 & & \multirow{4}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & & 20 mADC & 600 & 1100 & & \\
\hline & 7310 & \multirow[b]{2}{*}{4.} & 10 mA DC & & 610 & & \\
\hline & & & 20 mADC & 770 & 1355 & " & \\
\hline Peak Wavelength & & \(\lambda\) PEAK & & & 655 & & nm \\
\hline Dominant Wavelength \({ }^{11]}\) & & \(\lambda_{d}\) & & & 640 & & nm \\
\hline Forward Voltage, any Segment or D.P. & & \% \(V_{\text {F }}\) & \(\mathrm{IF}=20 \mathrm{~mA}\) & & 1.6 & 2.0 & V \\
\hline Reverse Voltage, any Segment or D.P.[13] & & \(V_{R}\) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 3.0 & 12.0 & & \(V\) \\
\hline Temperature Coefficient of Forward Voltage & & \(\Delta V_{F} /{ }^{\circ} \mathrm{C}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & & Roj-PIN & & & 200 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg}
\end{gathered}
\] \\
\hline
\end{tabular}

HIGH EFFICIENCY RED HDSP-7500 SERIES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{3}{*}{Luminous Intensity/Segment \({ }^{[10]}\) (Digit Average)} & \multirow[t]{3}{*}{Iv} & \(5 \mathrm{~mA} \mathrm{D.C}\). & 360 & 980 & & \multirow{3}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & \(20 \mathrm{~mA} \mathrm{D.C}\). & & 5390 & & \\
\hline & & 60 mA Pk: 1 of 6 Duty Factor & & 3430 & & \\
\hline Peak Wavelength & \(\lambda_{\text {PEAK }}\) & & & 635 & & nm \\
\hline Dominant Wavelength \({ }^{111]}\) & \(\lambda_{d}\) & & & 626 & & nm \\
\hline \multirow[t]{3}{*}{Forward Voltage/Segment or D.P.} & \multirow[t]{3}{*}{\(V_{F}\)} & \(\mathrm{IF}=5 \mathrm{~mA}\) & & 1.7 & & \multirow{3}{*}{V} \\
\hline & & \(\mathrm{IF}=20 \mathrm{~mA}\) & & 2.0 & 2.5 & \\
\hline & & \(\mathrm{IF}=60 \mathrm{~mA}\) & & 2.8 & & \\
\hline Reverse Voltage/Segment or D.P. \({ }^{[13]}\) & \(V_{R}\) & \(I_{R}=100 \mu \mathrm{~A}\) & 3.0 & 30.0 & & \(V\) \\
\hline Temperature Coefficient of \(V_{F / S}\) Segment or D.P. & \(\Delta V_{F} /{ }^{\circ} \mathrm{C}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & \(\mathrm{R} \theta_{\text {J-PIN }}\) & & & 200 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg} \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{YELLOW HDSP-7400 SERIES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{3}{*}{Luminous Intensity/Segment \({ }^{[10]}\) (Digit Average)} & \multirow[t]{3}{*}{Iv} & 5 mA D.C. & 225 & 480 & & \multirow{3}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 20 mA D.C. & & 2740 & & \\
\hline & & \(60 \mathrm{mAPk}: 1\) of 6 Duty Factor & & 1700 & & \\
\hline Peak Wavelength & \(\lambda\) PEAK & & & 583 & & nm \\
\hline Dominant Wavelength \({ }^{\text {[11,12] }}\) & \(\lambda_{d}\) & & 581.5 & 586 & 592.5 & nm \\
\hline \multirow[t]{3}{*}{Forward Voltage/Segment or D.P.} & \multirow[t]{3}{*}{\(V_{F}\)} & \(\mathrm{IF}=5 \mathrm{~mA}\) & & 1.8 & & \multirow{3}{*}{V} \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}\) & & 2.2 & 2.5 & \\
\hline & & \(\mathrm{IF}_{\mathrm{F}}=60 \mathrm{~mA}\) & & 3.1 & & \\
\hline Reverse Voltage/Segment or D.P. \({ }^{[13]}\) & \(V_{\text {R }}\) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 3.0 & 50.0 & & \(V\) \\
\hline Temperature Coefficient of \(V_{F / S}\) Segment or D.P. & \(\Delta V_{\text {F } /{ }^{\circ} \mathrm{C}}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & \(R \theta_{\text {J-PIN }}\) & & & 200 & & \[
\begin{array}{|c|}
\hline{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg} \\
\hline
\end{array}
\] \\
\hline
\end{tabular}
10. The digits are categorized for luminous intensity with the intensity category designated by a letter on the right hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included.
11. The dominant wavelength is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device.
12. The HDSP-7400/-7800 series are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
13. Typical specification for reference only. Do not exceed absolute maximum ratings.

HIGH PERFORMANCE GREEN HDSP-7800 SERIES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{3}{*}{Luminous Intensity/Segment \({ }^{\text {(9] }}\) (Digit Average)} & \multirow[t]{3}{*}{Iv} & 5 mA D.C. & & 545 & & \multirow{3}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 10 mA D.C. & 570 & 1480 & & \\
\hline & & 60 mA Pk: 1 of 6 Duty Factor & & 1935 & & \\
\hline Peak Wavelength & АРЕАк & & & 566 & & nm \\
\hline Dominant Wavelength \({ }^{[10, ~ 11] ~(D i g i t ~ A v e r a g e) ~}\) & \(\lambda d\) & & & 571 & 577 & nm \\
\hline Forward Voltage/Segment or D.P. & \(V_{F}\) & \(\mathrm{lF}=10 \mathrm{~mA}\) & & 2.1 & 2.5 & V \\
\hline Reverse Voltage/Segment or D.P.12| & \(V_{R}\) & \(\mathrm{lR}=100 \mu \mathrm{~A}\) & 3.0 & 50.0 & & \(\checkmark\) \\
\hline Thermal Resistance LED Junction-to-Pin & \(R \theta_{J-P / N}\) & & & 200 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg}
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{HDSP-7300 SERIES}


Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration


Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current per Segment


Figure 4. Forward Current vs. Forward Voltage


Figure 2. Maximum Allowable DC Current Dissipation per Segment as a Function of Ambient Temperature


Figure 5. Relative Luminous Intensity vs. DC Forward Current


Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration -HDSP-7500 Series


Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration -HDSP-7400 Series


Figure 8. Allowed Peak Current vs. Pulse Duration -HDSP-7800 Series


Figure 9. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature -HDSP-7500 Series


Figure 10. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature -HDSP-7400 Series


Figure 11. Maximum Allowable DC Current per Segmentivs. Ambient Temperature -HDSP-7800 Series


Figure 12. Relative Luminous Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current


Figure 13. Forward Current vs. Forward Voltage Characteristics


Figure 14. Relative Luminous Intensity vs. DC Forward Current

\section*{Electrical}

The HDSP-7300/-7400/-7500/-7800 series of display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The -7300 series uses a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The -7400 and-7500 series have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The -7800 series use a GaP epitaxial layer on GaP .

These display devices are well suited for strobed operation. The typical forward voltage values, scaled from Figure 4 or 13 , should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum \(V_{F}\) values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following \(V_{F}\) MAX models:
HDSP-7300 Series:
\(V_{F} M A X=1.85 \mathrm{~V}+\) IPEAK \((7 \Omega)\)
For: IPEAK \(\geq 5 \mathrm{~mA}\)
HDSP-7400/-7500 Series:
\(V_{F} M A X=1.75 \mathrm{~V}+\operatorname{IPEAK}(38 \Omega)\)
For: IPEAK \(\geq 20 \mathrm{~mA}\)
\(V_{F} M A X=1.6 \mathrm{~V}+\operatorname{IDC}(45 \Omega)\)
For: \(5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}\)
HDSP-7800 Series:
\(V_{F} M A X=2.0 \mathrm{~V}+\operatorname{IPEAK}(50 \Omega)\)
For: IPEAK \(\geq 5 \mathrm{~mA}\)

\section*{Contrast Enhancement}

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readability by having the OFF-segments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the segments.
Contrast enhancement may be achieved by using one of the following suggested filters:

HDSP-7300: Panelgraphic RUBY RED 60 SGL Homalite H100-1605 RED 3M Louvered Filter R6610 RED or N0210 GRAY

HDSP-7400: Panelgraphic YELLOW 27 or GRAY 10
SGL Homalite H100-1720 AMBER or -1266 GRAY
3M Louvered Filter A5910 AMBER or N0210 GRAY
HDSP-7500: Panelgraphic SCARLET RED 65 or GRAY 10 SGL Homalite H100-1670 RED or -1266 GRAY
3M Louvered Filter R6310 RED or N0210 GRAY
HDSP-7800: Panelgraphic GREEN 48 SGL Homalite H100-1440 GREEN 3M Louvered Filter G5610 GREEN or N0210 GRAY

\section*{Mechanical}

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes. with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or DE-15, Arklone A or K. A \(60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)\) water cleaning process may also be used, which includes a neutralizer rinse ( \(3 \%\) ammonia solution or equivalent), a surfactant rinse ( \(1 \%\) detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.
Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

TECHNICAL DATA JANUARY 1986

\section*{Features}
- COMPACT SIZE
- CHOICE OF 4 BRIGHT COLORS

Red
High Efficiency Red
Yellow
High Performance Green
- LOW CURRENT OPERATION

As Low as 3mA per Segment Designed for Multiplex Operation
- EXCELLENT CHARACTER APPEARANCE

Evenly Lighted Segments
Wide Viewing Angle
Body Color Improves "Off" Segment Contrast
- EASY MOUNTING ON PC BOARD OR SOCKETS

Industry Standard 7.62 mm ( 0.3 in .) DIP Leads on 2.54 mm ( 0.1 in .) Centers
- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW AND GREEN CATEGORIZED FOR COLOR

Use of Like Categories Yields a
Uniform Display
- MECHANICALLY RUGGED


\section*{Description}

The -7730/-7610/-7620/-3600 and -7750/-7650/-7660/-4600 series are \(7.62 / 10.92 \mathrm{~mm}(0.3 / .43 \mathrm{in}\).) red, high efficiency red, yellow, and green displays. The -7730/-7610/-7620/-3600 series displays are designed for viewing distances of up to three metres and the \(-7750 /-7650 /-7660 /-4600\) series displays are designed for viewing distances of up to six metres. These displays are designed for use in instruments, point of sale terminals, clocks and appliances.

\section*{Devices}
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Color & Description & Package Drawing \\
\hline \[
\begin{aligned}
& 5082-7730 \\
& 5082-7731 \\
& 5082-7736 \\
& 5082-7740
\end{aligned}
\] & Red & 7.6 mm Common Anode Left Hand Decimal 7.6 mm Common Anode Right Hand Decimal 7.6 mm Common Cathode Right Hand Decimal 7.6 mm Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& A \\
& B \\
& C \\
& C \\
& D
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 5082-7610 \\
& 5082-7611 \\
& 5082-7613 \\
& 5082-7616 \\
& \hline
\end{aligned}
\] & High Efficiency Red & 7.6 mm Common Anode Left Hand Decimal 7.6 mm Common Anode Right Hand Decimal 7.6 mm Common Cathode Right Hand Decimal 7.6 mm Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& A \\
& A \\
& B \\
& C \\
& D
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline 5082-7620 \\
& 5082-7621 \\
& 5082-7623 \\
& 5082-7626 \\
& \hline
\end{aligned}
\] & Yellow & 7.6 mm Common Anode Left Hand Decimal 7.6 mm Common Anode Right Hand Decimal 7.6 mm Common Cathode Right Hand Decimal 7.6 mm Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& A \\
& A \\
& B \\
& C \\
& D
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { HDSP-3600 } \\
& \text { HDSP-3601 } \\
& \text { HDSP-3603 } \\
& \text { HDSP-3606 }
\end{aligned}
\] & High Performance Green & 7.6 mm Common Anode Left Hand Decimal 7.6 mm Common Anode Right Hand Decimal 7.6 mm Common Cathode Right Hand Decimal 7.6 mm Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& A \\
& A \\
& B \\
& C \\
& D
\end{aligned}
\] \\
\hline
\end{tabular}

NOTE: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram \(D\).

\section*{Devices}
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Color & Description & Package Drawing \\
\hline \[
\begin{aligned}
& 5082-7750 \\
& 5082-7751 \\
& 5082-7756 \\
& 5082-7760
\end{aligned}
\] & Red & 10.9 mm Common Anode Left Hand Decima! 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& \mathrm{E} \\
& \mathrm{~F} \\
& \mathrm{G} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 5082-7650 \\
& 5082-7651 \\
& 5082-7653 \\
& 5082-7656
\end{aligned}
\] & High Efficiency Red & \begin{tabular}{l}
10.9 mm Common Anode Left Hand Decimal \\
10.9 mm Common Anode Right Hand Decimal \\
10.9 mm Common Cathode Right Hand Decimal \\
10.9 mm Universal Overflow \(\pm 1\) Right Hand Decimal
\end{tabular} & \[
\begin{aligned}
& E \\
& F \\
& G \\
& H
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 5082-7660 \\
& 5082-7661 \\
& 5082-7663 \\
& 5082-7666
\end{aligned}
\] & Yellow & 10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decima! 10.9 mm Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& E \\
& F \\
& G \\
& H
\end{aligned}
\] \\
\hline \begin{tabular}{l}
HDSP-4600 \\
HDSP-4601 \\
HDSP-4603 \\
HDSP-4606
\end{tabular} & High Performance Green & 10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& \mathrm{E} \\
& \mathrm{~F} \\
& \mathrm{G} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTE: Universal pinout brings the anode and the cathode of each segment's LED out to separate pins, see internal diagram \(H\).

\section*{Internal Circuit Diagram}


A


B


C


G


D


H

\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{gathered}
-7730 /-7750 \\
\text { Series }
\end{gathered}
\] & \[
\begin{gathered}
-7610 /-7650 \\
\text { Series }
\end{gathered}
\] & \[
\begin{gathered}
-7620 /-7660 \\
\text { Series }
\end{gathered}
\] & \[
\begin{gathered}
-3600 /-4600 \\
\text { Series }
\end{gathered}
\] \\
\hline Average Power Dissipation per Segment or DP & \(65 \mathrm{~mW}{ }^{11}\) & \(105 \mathrm{~mW}^{[2]}\) & \(81 \mathrm{~mW}^{131}\) & \(105 \mathrm{~mW}{ }^{(4)}\) \\
\hline Operating Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}^{\mid 5]}\) \\
\hline Storage Temperature & \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) \\
\hline Peak Forward Current per Segment or DP & \(150 \mathrm{~mA}^{|6|}\) & \(90 \mathrm{~mA}^{171}\) & \(60 \mathrm{~mA}^{|8|}\) & \(90 \mathrm{~mA}^{191}\) \\
\hline DC Forward Current per Segment of DP & \(25 \mathrm{~mA}{ }^{11}\) & \(30 \mathrm{~mA}^{|2|}\) & \(20 \mathrm{~mA}^{|3|}\) & \(30 \mathrm{~mA}^{141}\) \\
\hline Reverse Voltage per Segment or DP & 3.0 V & 3.0 V & 3.0 V & 3.0 V \\
\hline Lead Soldering Temperature 1.59 mm ( \(1 / 16 \mathrm{in}\).) below seating plane & \(260^{\circ} \mathrm{C}\) for 3 sec. \\
\hline
\end{tabular}

Notes: 1. See power derating curve (Figure 5).
2. See power derating curve (Figure 6).
3. See power derating cürve (Figure 7).
4. See power derating curve (Figure 8).
5. For operation to \(-40^{\circ} \mathrm{C}\) consult optoelectronics division.
6. See Figure 1 to establish pulsed operating conditions.
7. See Figure 2 to establish pulsed operating conditions.
8. See Figure 3 to establish pulsed operating conditions.
9. See Figure 4 to establish pulsed operating conditions.

(5082-7750/-7650/-7660/-4600)



F,G


Note 13

H

FRONT VIEW


END VIEW


SIDE VIEW

NOTES:
10. Dimensions in millimetres and (inches). 12. Redundant anodes.
11. All untoleranced dimensions are 13. Unused dp position, for reference only.
3. Unused dp position. 14. See Internal Circuit Diagram.
15. Redundant cathode.
16. See part number table for L.H.D.P. and R.H.D.P. designation. 17. For yellow and green devices only.

Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
RED 5082-7730/-7750 SERIES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & Device HDSP- & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{4}{*}{Luminous Intensity/ Segment \({ }^{18 /}\) (Digit Average)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& -7730 \\
& \text { Series }
\end{aligned}
\]} & \multirow[t]{4}{*}{IV} & 20 mADC & 360 & 770 & & \\
\hline & & & 100 mA Pk 1:10 Duty Factor & & 400 & & \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
-7750
\] \\
Series
\end{tabular}} & & 20 mA DC & 360 & 1100 & & \\
\hline & & & 100 mA Pk 1:10 Duty Factor & & 570 & & \\
\hline \multicolumn{2}{|l|}{Peak Wavelength} & \(\lambda_{\text {PEAK }}\) & & & 655 & & nm \\
\hline \multicolumn{2}{|l|}{Dominant Wavelength \({ }^{191}\)} & \(\lambda_{d}\) & & & 640 & & nm \\
\hline \multicolumn{2}{|l|}{Forward Voltage/Segment or D.P. \({ }^{121]}\)} & \(V_{F}\) & \(I_{F}=20 \mathrm{~mA}\) & & 1.6 & 2.0 & V \\
\hline \multicolumn{2}{|l|}{Reverse Voltage/Segment or D.P. \({ }^{121,22]}\)} & \(V_{R}\) & \(I_{R}=100 \mu \mathrm{~A}\) & 3.0 & 30.0 & & \(V\) \\
\hline \multicolumn{2}{|l|}{Temperature Coefficient of \(V_{F} /\) Segment or D.P.} & \(\triangle V_{F}{ }^{\circ} \mathrm{C}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Thermal Resistance LED Junction-to-Pin} & R \(\theta_{J . \text { PIN }}\) & & & 282 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg} \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

HIGH EFFICIENCY RED 5082-7610/-7650 SERIES


\section*{YELLOW 5082-7620/-7660 SERIES (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & Device HDSP- & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{4}{*}{Luminous Intensity/ Segment \({ }^{18 \mid}\) (Digit Average)} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
-7620
\] \\
Series
\end{tabular}} & \multirow[t]{4}{*}{Iv} & 5 mADC & 205 & 620 & & \\
\hline & & & 60 mA Pk 1:6 Duty Factor & & 2414 & & \(\mu \mathrm{cd}\) \\
\hline & \multirow[t]{2}{*}{\[
-7660
\]
Series} & & 5 mA DC & 290 & 835 & 23 & \\
\hline & & & \(60 \mathrm{~mA} \mathrm{Pk} 1: 6\) Duty Factor & & 3250 & & \\
\hline \multicolumn{2}{|l|}{Peak Wavelength} & \(\lambda_{\text {PEAK }}\) & & & 583 & & nm \\
\hline \multicolumn{2}{|l|}{Dominant Wavelength \({ }^{[19,20]}\)} & \(\lambda_{d}\) & & 581.5 & 586 & 592.5 & nm \\
\hline \multicolumn{2}{|l|}{Forward Voltage/Segment or D.P. \({ }^{\text {[21] }}\)} & \(V_{F}\) & \(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\) & & 1.8 & & \\
\hline & & & \(I_{F}=20 \mathrm{~mA}\) & & 2.2 & 2.5 & V \\
\hline & & & \(\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}\) & & 3.1 & & \\
\hline \multicolumn{2}{|l|}{Reverse Voltage/Segment or D.P. \({ }^{[21,22]}\)} & \(V_{R}\) & \(I_{R}=100 \mu \mathrm{~A}\) & 3.0 & 50.0 & & \(V\) \\
\hline \multicolumn{2}{|l|}{Temperature Coefficient of \(V_{F} /\) Segment or D.P.} & \(\Delta V_{F} /{ }^{\circ} \mathrm{C}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Thermal Resistance LED Junction-to-Pin} & \(R \theta_{J-P I N}\) & & & 282 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg} \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

HIGH PERFORMANCE GREEN HDSP-3600/-4600 SERIES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & Device HDSP- & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{4}{*}{Luminous Intensity; Segment \({ }^{181}\) (Digit Average)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline-3600 \\
& \text { Series }
\end{aligned}
\]} & \multirow[t]{4}{*}{Iv} & 10 mA DC & 570 & 1800 & & \\
\hline & & & 60 mA Pk 1:6 Duty Factor & & 2350 & & \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
- 7750 \\
Series
\end{tabular}} & & 10 mADC & 460 & 1750 & & \\
\hline & & & 60 mA Pk 1:6 Duty Factor & & 2280 & & \\
\hline \multicolumn{2}{|l|}{Peak Wavelength} & \(\lambda\) PEAK & & & 566 & & nm \\
\hline \multicolumn{2}{|l|}{Dominant Wavelength \({ }^{19,201}\) (Digit Average)} & \(\lambda_{d}\) & & & 571 & 577 & nm \\
\hline \multicolumn{2}{|l|}{Forward Voltage/Segment or D.P. \({ }^{\text {[21] }}\)} & \(V_{F}\) & \(I_{F}=10 \mathrm{~mA}\) & & 2.1 & 2.5 & V \\
\hline \multicolumn{2}{|l|}{Reverse Voltage/Segment or D.P. \({ }^{[21,22]}\)} & \(V_{R}\) & \(I_{\text {R }}=100 \mu \mathrm{~A}\) & 3.0 & 50.0 & & \(V\) \\
\hline \multicolumn{2}{|l|}{Thermal Resistance LED Junction-to-Pin} & \(R \theta_{j-P I N}\) & & & 282 & & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} / \mathrm{W} / \\
& \mathrm{Seg}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
18. The digits are categorized for luminous intensity with the intensity category designated by a letter located on the right hand side of the package.
19. The dominant wavelength, \(\lambda_{d}\), is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
20. The displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
21. Quality level for electrical characteristics is 1000 parts per million.
22. Typical specification is for reference only. Do not exceed absolute maximum ratings.


Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration) 5082-7730/-7750 Series


Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration - 5082-7610/-7650 Series


Figure 3. Maximum Tolerable Peak Current vs. Pulse Duration - 5082-7620/-7660 Series


Figure 4. Allowed Peak Current vs. Pulse Duration - HDSP-3600/-4600 Series


Figure 5. Maximum Allowable DC Current Dissipation per Segment as a Function of Ambient Temperature-5082-7730/-7750 Series


Figure 7. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature - 5082-7620/-7660 Series


Figure 6. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature - 5082-7610/-7650 Series


Figure 8. Maximum Allowable DC Current per Segment vs. Ambient Temperature - HDSP-3600/-4600 Series


Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current per Segment- 5082-7730/-7750 Series


Figure 11. Forward Current vs. Forward Voltage-5082-7730/-7750 Series.


Figure 13. Relative Luminous Intensity vs. DC Forward Current- 5082-7730/-7750 Series


Figure 10. Relative Luminous Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current


Figure 12. Forward Current vs. Forward Voltage Characteristics


Figure 14. Relative Luminous Intensity vs. DC Forward Current

\section*{Electrical}

These display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points.
These display devices are well suited for strobed operation. The typical forward voltage values, scaled from Figure 8, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum \(V_{F}\) values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following \(V_{F}\) MAX models:

5082-7730/-7750 Series:
\(V_{F}=1.55 \mathrm{~V}+I_{\text {PEAK }}(7 \Omega)\)
For \(5 \mathrm{~mA} \leq \mathrm{I}_{\text {PEAK }} \leq 150 \mathrm{~mA}\)
5082-7610/-7620/-7650/-7660 Series:
\(V_{F}\) MAX \(=1.75 \mathrm{~V}+\operatorname{IPEAK}(38 \Omega)\)
For: IPEAK \(\geq 20 \mathrm{~mA}\)
\(V_{F M A X}=1.6 \mathrm{~V}+\operatorname{IDC}(45 \Omega)\)
For: \(5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}\)
HDSP-3600/-4600 Series:
\(V_{F} M A X=2.0 \mathrm{~V}+\operatorname{IPEAK}(50 \Omega)\)
For: IPEAK \(\geq 5 \mathrm{~mA}\)

\section*{Contrast Enhancement}

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readability by having the OFF-segments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a package color which matches the encapsulating epoxy in the segments.
Contrast enhancement may be achieved by using one of the following suggested filters:
\begin{tabular}{|c|c|}
\hline 5082-7730/ & Panelgraphic RUBY RED 60 or GRAY 10 \\
\hline \multirow[t]{2}{*}{-7750} & SGL Homalite H100-1605 RED or -1266 GRAY \\
\hline & 3M Louvered Filter R6510 RED or \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { 5082-7610/ } \\
& -7650
\end{aligned}
\]} & Panelgraphic SCARLET RED 65 or GRAY 10 \\
\hline & SGL Homalite H100-1670 RED or -1266 \\
\hline & GRAY \\
\hline & 3M Louvered Filter R6310 RED or N0210 \\
\hline & GRAY \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { 5082-7620/ } \\
& -7660
\end{aligned}
\]} & Panelgraphic YELLOW 27 or GRAY 10 \\
\hline & SGL Homalite H100-1720 AMBER or -1266 \\
\hline & GRAY \\
\hline & 3M Louvered Filter A5910 AMBER or N0210 \\
\hline & GRAY \\
\hline HDSP-3600/ & Panelgraphic GREEN 48 \\
\hline \multirow[t]{3}{*}{-4600} & SGL Homalite H100-1440 GREEN \\
\hline & 3M Louvered Filter G5610 GREEN or N0210 \\
\hline & GRAY \\
\hline
\end{tabular}

GRAY 3M Louvered Filter R6510 RED or NO210 GRAY

5082-7610/ Panelgraphic SCARLET RED 65 or GRAY 10 GRAY 3M Louvered Filter R6310 RED or N0210 GRAY

5082-7620/ Panelgraphic YELLOW 27 or GRAY 10
-7660 SGL Homalite H100-1720 AMBER or -1266 GRAY Louvered Filter A5910 AMBER or N0210 GRAY

HDSP-3600/ Panelgraphic GREEN 48
-4600 SGL Homalite H100-1440 GREEN GRAY

\section*{Mechanical}

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes. with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or DE-15, Arklone A or \(\mathrm{K} . \mathrm{A} 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)\) water cleaning process may also be used, which includes a neutralizer rinse ( \(3 \%\) ammonia solution or equivalent), a surfactant rinse ( \(1 \%\) detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.
Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

TECHNICAL DATA JANUARY 1986

\section*{Features}
- INDUSTRY STANDARD SIZE
- INDUSTRY STANDARD PINOUT 15.24 mm (. 6 inch) DIP Leads on 2.54 mm (. 1 inch) Centers
- CHOICE OF FOUR COLORS Red
High-Efficiency Red Yellow
High Performance Green
- EXCELLENT CHARACTER APPEARANCE

Evenly Lighted Segments Mitered Corners on Segments Gray Package Gives Optimum Contrast
- COMMON ANODE OR COMMON CATHODE Right Hand Decimal Point
Overflow \(\pm 1\) Character
- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW AND GREEN CATEGORIZED FOR COLOR
Use of Like Categories Yields a Uniform Display
The HDSP-5300/-5500/-5600/-5700 Series are large 14.22 mm (. 56 inch) LED seven segment displays. Designed for viewing distances up to 7 metres ( 23 feet), these displays provide excellent readability in bright ambients.
These devices utilize an industry standard size package and pin function configuration. Both the numeric and \(\pm 1\) overflow devices feature a right hand decimal point and are available as either common anode or common cathode.

\section*{Devices}


\section*{Description}
\begin{tabular}{|c|c|c|c|}
\hline Part No. HDSP. & Colar & Description & Package Drawing \\
\hline 5301 & & Common Anode Right Hand Decimal & A \\
\hline 5303 & & Common Cathode Right Hand Decimal & B \\
\hline 5307 & Red & Overflow \(\pm\) Common Anode & C \\
\hline 5308 & & Overflow \(\pm\) Common Cathode & D \\
\hline 5321 & & Two Digit Common Anode Right Hand Decimal & E \\
\hline 5323 & & Two Digit Common Cathode Right Hand Decimal & F \\
\hline 5501 & & Common Anode Right Hand Decimal & A \\
\hline 5503 & & Common Cathode Right Hand Decimal & B \\
\hline 5507 & High Efficiency & Overflow \(\pm\) Common Anode & C \\
\hline 5508 & Red & Overflow \# Common Cathode & D \\
\hline 5521 & & Two Digit Common Anode Right Hand Decimal & \(E\) \\
\hline 5523 & & Two Digit Common Cathode Right Hand Decimal & F \\
\hline 5601 & & Common Anode Right Hand Decimal & A \\
\hline 5603 & & Common Cathode Right Hand Decimal & B \\
\hline 5607 & High Performance & Overflow \(\pm\) Common Anode & C \\
\hline 5608 & Green & Overflow \(\pm\) Common Cathode & D \\
\hline 5621 & & Two Digit Common Anode Right Hand Decimal & E \\
\hline 5623 & & Two Digit Common Cathode Right Hand Decimal & F \\
\hline 5701 & & Common Anode Right Hand Decimal & A \\
\hline 5703 & & Common Cathode Right Hand Decimal & B \\
\hline 5707 & Yellow & Overflow \(\pm\) Common Anode & C \\
\hline 5708 & & Overflow \(\pm\) Common Cathode & D \\
\hline 5721 & & Two Digit Common Anode Right Hand Decimal & E \\
\hline 5723 & & Two Digit Common Cathode Right Hand Decimal & F \\
\hline
\end{tabular}

\section*{Package Dimensions}


FRONT VIEW C, D

TOP END VIEW E, F

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PIN} & \multicolumn{6}{|c|}{FUNCTION} \\
\hline & A & B & C & D & E & F \\
\hline 1 & CATHODE & ANODE \(e\) & CATHODE & ANODE C & E CATHODE NO. 1 & E ANODENO. 1 \\
\hline 2 & CATHODE d & ANODEd & ANODE c, d & CATHODE c, d & D CATHODE NO. 1 & D ANODE NO. 1 \\
\hline 3 & ANODE \({ }^{[3]}\) & CATHODE \({ }^{[4]}\) & CATHODE b & ANODEb & C CATHODE NO. 1 & C ANODE NO. 1 \\
\hline 4 & CATHODE C & ANODE C & ANODE \(a, b, D P\) & CATHODE \(a, b\), DP & DP CATHODE NO. 1 & DP ANODE NO. 1 \\
\hline 5 & CATHODE DP & ANODE DP & CATHODE DP & ANODE DP & E CATHODE NO. 2 & E ANODE NO. 2 \\
\hline 6 & CATHODE b & ANODE b & CATHODE a & ANODE a & D CATHODE NO. 2 & D ANODE NO. 2 \\
\hline 7 & CATHODE a & ANODE a & ANODE a, b, DP & CATHODE a, b, DP & G CATHODE NO. 2 & G ANODE NO. 2 \\
\hline 8 & ANODE \({ }^{[3]}\) & CATHODE \({ }^{[4]}\) & ANODEc, d & CATHODE c, d & C CATHODE NO. 2 & C ANODE NO. 2 \\
\hline 9 & CATHODE f & ANODEf & CATHODE d & ANODEd & DP CATHODE NO. 2 & DP ANODE NO. 2 \\
\hline 10 & CATHODE g & ANODE g & NO PIN & NO PIN & B CATHODE NO. 2 & B ANODE NO. 2 \\
\hline 11 & & & & & A CATHODE NO. 2 & A ANODE NO. 2 \\
\hline 12 & & & & & F CATHODE NO. 2 & F ANODENO. 2 \\
\hline 13 & & & & & DIGIT NO. 2 ANODE & DIGIT NO. 2 CATHODE \\
\hline 14 & & & & & DIGIT NO. 1 ANODE & DIGIT NO. 1 CATHODE \\
\hline 15 & & & & & B CATHODE NO. 1 & B ANODE NO. 1 \\
\hline 16 & & & & & A CATHODE NO. 1 & A ANODE NO. 1 \\
\hline 17 & & & & & G CATHODE NO. 1 & G ANODE NO. 1 \\
\hline 18 & & & & & F CATHODE NO. 1 & F ANODENO. 1 \\
\hline
\end{tabular}

\section*{Notes:}
1. All dimensions in millimetres (inches).
2. All untoleranced dimensions are for reference only.
3. Redundant anodes.
4. Redundant cathodes
5. For HDSP-5600/-5700 series product only.

\section*{Internal Circuit Diagram}


C


\section*{Absolute Maximum Ratings}

Average Power per Segment or DP
Peak Forward Current per Segment or DP
\begin{tabular}{c}
-5300 Series \\
\hline 60 mW \\
\(150 \mathrm{~mA} / 6\) \\
(Pulse Width \(\leq .2 \mathrm{~ms}\) \\
25 mA \\
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) \\
3.0 V \\
\(260^{\circ} \mathrm{C}\) for 3 sec.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline -5500 Series & -5600 Series & -5700 Series \\
\hline 105 mW & 105 mW & 80 mW \\
\hline \(90 \mathrm{~mA}{ }^{\text {| }}\) | & \(90 \mathrm{~mA}{ }^{\text {7 }}{ }^{\text {| }}\) & \(60 \mathrm{~mA}{ }^{181}\) \\
\hline
\end{tabular}
(Pulse Width \(\leq 1 \mathrm{~ms}) \quad\) (Pulse Width \(\leq 1 \mathrm{~ms}\) ) (Pulse Width \(\leq 1 \mathrm{~ms}\) )

30 mA
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) 3.0 V
\(260^{\circ} \mathrm{C}\) for 3 sec .
159 mm |1/1
9. Derate Maximum DC current: See Figure 2 for -5300 Series. See Figure 9 for -5500 Series. See Figure 10 for -5600 Series. See Figure 11 for -5700 Series.
10. For Operation of HDSP-5600 Series to \(-40^{\circ} \mathrm{C}\) consult optoelectronics division.

\section*{Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}

RED HDSP-5300 Series
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{2}{*}{Luminous Intensity/Segment[11] (Digit Average)} & \multirow[b]{2}{*}{Iv} & \(\mathrm{IF}=20 \mathrm{~mA}\) & 600 & 1300 & & \multirow[t]{2}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 100 mA Peak: 1 of 5 Duty Factor & & 1400 & & \\
\hline Peak Wavelength & \(\lambda\) גPEAK & & & 655 & & nm \\
\hline Dominant Wavelength \({ }^{[12]}\) & \(\lambda_{d}\) & & & 640 & & nm \\
\hline Forward Voltage/Segment or DP[13] & \(V_{F}\) & \(\mathrm{IF}=20 \mathrm{~mA}\) & & 1.6 & 2.0 & V \\
\hline Reverse Voltage/Segment or DP[13,18] & \(V_{R}\) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 3 & 12 & & \(V\) \\
\hline Thermal Resistance LED Junction-to-Pin & ROJ-PIN & & & 345 & & \({ }^{\circ} \mathrm{C} / \mathrm{W} /\) Seg. \\
\hline
\end{tabular}

\section*{Notes:}
11. The digits are categorized for luminous intensity with category designated by a letter located on the right hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included.
12. The dominant wavelength, \(\lambda_{d}\), is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
13. Quality level for Electrical Characteristics is 1000 parts per million.

\section*{HDSP-5300 SERIES}


Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration.


Figure 2. Maximum Allowable Average Forward Current Per Segment vs. Ambient Temperature. Deratings Based on Maximum Allowed Thermal Resistance Values, LED Junction to Ambient on a per Segment Basis. TJ MAX = \(105^{\circ} \mathrm{C}\).


Figure 4. Forward Current vs. Forward Voltage.


Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current.


Figure 5. Relative Luminous Intensity vs. D.C. Forward Current.

For a Detailed Explanation of the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

\section*{HIGH EFFICIENCY RED HDSP-5500 SERIES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{2}{*}{Luminous Intensity/Segment[ \({ }^{\text {[14] }}\) (Digit Average)} & \multirow[t]{2}{*}{\(\mathrm{IV}_{1}\)} & 10 mADC & 1900 & 2800 & & \multirow[t]{2}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 60 mA Peak: 1 of 6 Duty Factor & & 3700 & & \\
\hline Peak Wavelength & 入PEAK & & & 635 & & nm \\
\hline Dominant Wavelength[15] & \(\lambda_{d}\) & & & 626 & & nm \\
\hline Forward Voltage/Segment or DP[17] & \(V_{F}\) & \(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}\) & & 2.1 & 2.5 & V \\
\hline Reverse Voltage/Segment or DP[18] & \(V_{R}\) & \(I_{R}=100 \mu \mathrm{~A}\) & 3 & 30 & & V \\
\hline Thermal Resistance LED Junction-to-Pin & R \(\mathrm{O}_{\text {J-PIN }}\) & & & 345 & & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} / \mathrm{W} / \\
& \mathrm{Seg} .
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{HIGH PERFORMANCE GREEN HDSP-5600 SERIES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{2}{*}{Luminous Intensity/Segment[14] (Digit Average)} & \multirow[t]{2}{*}{Iv} & 10 mADC & 900 & 2500 & & \multirow[t]{2}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & \begin{tabular}{l}
60 mA Peak: \\
1 of 6 Duty Factor
\end{tabular} & & 3100 & & \\
\hline Peak Wavelength & \(\lambda\) PEAK & & & 566 & & nm \\
\hline Dominant Wavelength [15,16] & \(\lambda_{d}\) & & & 571 & 577 & nm \\
\hline Forward Voltage/Segment or DP [17] & \(V_{F}\) & \(\mathrm{IF}=10 \mathrm{~mA}\) & & 2.1 & 2.5 & V \\
\hline Reverse Voltage/Segment or DP[17,18] & \(V_{\text {R }}\) & \(\mathrm{IR}=100 \mu \mathrm{~A}\) & 3 & 50 & & V \\
\hline Thermal Resistance LED Junction-to-Pin & R \(\theta_{\text {J-PIN }}\) & & & 345 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\text { Seg. }
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{YELLOW HDSP-5700 SERIES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{2}{*}{Luminous Intensity/Segment[14] (Digit Average)} & \multirow[t]{2}{*}{Iv} & 10 mADC & 600 & 1800 & & \multirow[t]{2}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & \begin{tabular}{l}
60 mA Peak: \\
1 of 6 Duty Factor
\end{tabular} & & 2700 & & \\
\hline Peak Wavelength & \(\lambda\) PEAK & & & 583 & & nm \\
\hline Dominant Wavelength[15,16] & \(\lambda_{d}\) & & 581.5 & 586 & 592.5 & nm \\
\hline Forward Voltage/Segment or DP[17] & \(V_{F}\) & \(\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}\) & & 2.2 & 2.5 & V \\
\hline Reverse Voltage/Segment or DP[17.18] & \(V_{\text {A }}\) & \(\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 3 & 40 & & \(V\) \\
\hline Thermal Resistance LED Junction-to-Pin &  & & & 345 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg} .
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Notes:}
14. The digits are categorized for luminous intensity with category designated by a letter located on top of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included.
15. The dominant wavelength, \(\lambda_{d}\), is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
16. The HDSP-5600 and HDSP-5700 series displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
17. Quality level for Electrical Characteristics is 1000 parts per million.
18. Typical specification for reference only. Do not exceed absolute maximum ratings.


Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration - HDSP-5500 Series.


Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration - HDSP-5600 Series.


Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration — HDSP-5700 Series.


Figure 9. Maximum Allowable Average Current per Segment vs. Ambient Temperature. Derating Based on Maximum Allowed Thermal Resistance Values. LED Junction to Ambient on a per Segment Basis. TJ LED MAX \(=105^{\circ} \mathrm{C}\) - HDSP-5500 Series.


Figure 11. Maximum Allowable Average Current per Segment vs. Ambient Temperature. Derating Based on Maximum Allowed Thermal Resistance Values, LED Junction to Ambient on a per Segment Basis. TJ LED MAX \(=105^{\circ} \mathrm{C}-\) HDSP-5700 Series.


Figure 13. Forward Current vs. Forward Voltage Characteristics.


Figure 10. Maximum Allowable Average Current per Segment vs. Ambient Temperature. Derating Based on Maximum Allowed Thermal Resistance Values, LED Junction to Ambient on a per Segment Basis. TJ LED MAX \(=105^{\circ}\) C. - HDSP-5600 Series.


Figure 12. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current.


Figure 14. Relative Luminous Intensity vs. DC Forward Current. HDSP-5500/-5600/-5700

\section*{Electrical}

The HDSP-5300/-5500/-5600/-5700 series of display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The -5300 series uses a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The -5500 and -5700 series have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The -5600 series use a GaP epitaxial layer on GaP .

These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4 or 13 , should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum \(V_{F}\) values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following \(V_{F}\) MAX models:
```

HDSP-5300 Series:
VF MAX = 1.55V + IPEAK (7\Omega)
For: IPEAK \geq5 mA
HDSP-5500/-5700 Series:
VF MAX = 1.75V + IPEAK ( }38\Omega\mathrm{ )
For: IPEAK \geq20 mA
VF MAX = 1.5V + loc (45\Omega)
For: 5 mA \leqloc \leq 20 mA
HDSP-5600 Series:
VF MAX = 2.0V + IPEAK (50\Omega)
For: IPEAK \geq5 mA

```

\section*{Contrast Enhancement}

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readibility by having the OFFsegments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the segments.

Contrast enhancement may be achieved by using one of the following suggested filters:

\footnotetext{
HDSP-5300: Panelgraphic RUBY RED 60 SGL Homalite H100-1605 RED 3M Louvered Filter R6610 RED or N0210 GRAY
}
HDSP-5500: Panelgrahpic SCARLET RED 65 or GRAY 10 SGL Homalite H100-1670 RED or -1266 GRAY 3M Louvered Filter R6310 RED or N0210 GRAY
HDSP-5600: Panelgraphic GREEN 48 SGL Homalite H100-1440 GREEN 3M Louvered Filter G5610 GREEN or N0210 GRAY
HDSP-5700: Panelgraphic YELLOW 27 or GRAY 10 SGL Homalite H100-1720 AMBER or -1266 GRAY 3M Louvered Filter A5910 AMBER or N0210 GRAY

\section*{Mechanical}

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or DE-15. Arklone A or K. A \(60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)\) water cleaning process may also be used, which includes a neutralizer rinse ( \(3 \%\) ammonia solution or equivalent), a surfactant rinse ( \(1 \%\) detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

\author{
RED \\ HIGH EFFICIENCY RED \\ YELLOW HIGH PERFORMANCE GREEN
}

\section*{Features}
- 20 mm ( 0.8 ") DIGIT HEIGHT Viewable Up to 10 Metres (33 Feet)
- CHOICE OF FOUR COLORS

Red Yellow
High Efficiency Red Green
- EXCELLENT CHARACTER APPEARANCE

Evenly Lighted Segments
Wide Viewing Angle
Mitered Corners on Segments
Grey Package Provides Optimum Contrast
- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW AND GREEN CATEGORIZED FOR COLOR
Use of Like Categories Yields a Uniform Display
- IC COMPATIBLE
- MECHANICALLY RUGGED

\section*{Description}

The HDSP-3400/-3900/-4200/-8600 Series are very large 20 mm ( 0.8 in .) LED seven segment displays. Designed for viewing distances up to 10 metres ( 33 feet), these single digit displays provide excellent readability.
These devices utilize a standard 15.24 mm ( 0.6 in .) dual in line package configuration that permits mounting on PC

boards or in standard IC sockets. Requiring a low forward voltage, these displays are inherently IC compatible, allowing for easy integration into electronic instrumentation, point-of-sale terminals, TVs, weighing scales, and digital clocks.

Devices
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Color & Description & Package Drawing \\
\hline HDSP-3400 HDSP-3401 HDSP-3403 HDSP-3405 HDSP-3406 & Red & Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& \hline A \\
& B \\
& C \\
& D \\
& E
\end{aligned}
\] \\
\hline HDSP-3900 HDSP-3901 HDSP-3903 HDSP-3905 HDSP-3906 & High Efficiency Red & Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& \hline A \\
& B \\
& C \\
& D \\
& D
\end{aligned}
\] \\
\hline \begin{tabular}{l}
HDSP-4200 \\
HDSP-4201 \\
HDSP-4203 \\
HDSP-4205 \\
HDSP-4206
\end{tabular} & Yellow & Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overflow w1 Right Hand Decimal & A
B
C
D
E \\
\hline HDSP-8600 HDSP-8601 HDSP-8603 HDSP-8605 HDSP-8606 & High Performance Green & Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overflow \(\pm 1\) & \[
\begin{aligned}
& \hline A \\
& B \\
& C \\
& D \\
& D
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Package Dimensions (3900/4200 Series)}


\section*{Internal Circuit Diagram}


\section*{Absolute Maximum Ratings}

Average Power per Segment or \(\mathrm{DP}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{9 \mid}\)
Operating Temperature Range \({ }^{10 \mid}\)
Storage Temperature Range
Peak Forward Current per Segment or \(\mathrm{DP} \mathrm{tT}_{\mathrm{A}}=25^{\circ} \mathrm{C}\),
Pulse Width \(=1.2 \mathrm{~ms})^{[11]}\)
DC Forward Current per Segment or \(\operatorname{DP}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{191}\)
Reverse Voltage per Segment or DP
Lead Soldering Temperature ( \(1.6 \mathrm{~mm}[1 / 6 \mathrm{in}\).) Below Seating Plane)
\begin{tabular}{|c|c|c|}
\hline-3400 Series & \begin{tabular}{c}
\(-3900 /-4200\) \\
Series
\end{tabular} & -8600 Series \\
\hline 120 mW & 105 mW & 105 mW \\
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) \\
& & \\
200 mA & 135 mA & 90 mA \\
50 mA & 40 mA & 30 mA \\
3.0 V & 3.0 V & 3.0 V \\
\(260^{\circ} \mathrm{C}\) for 3 sec. & \(260^{\circ} \mathrm{C}\) for 3 sec. & \(260^{\circ} \mathrm{C}\) for 3 sec. \\
\hline
\end{tabular}

\section*{Notes:}
9. See Power Derating Curves (see Figure 2 for -3400 Series, Figure 7 for \(-3900 /-4200\) Series, and Figure 12 for -8600 Series).
10. For operation of -8600 series to \(-40^{\circ} \mathrm{C}\) consult Optoelectronics division.
11. See appropriate curves to establish pulsed operating conditions (see Figure 1 for -3400 Series, Figure 6 for -3900/-4200 Series, Figure 11 for -8600 Series).

\section*{Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}

RED HDSP-3400 SERIES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline Luminous Intensity/Segment (Digit Average) [12,13] & Iv & \(\mathrm{IF}=20 \mathrm{~mA}\) & 500 & 1200 & & \(\mu \mathrm{cd}\) \\
\hline Peak Wavelength & \(\lambda\) ¢EAK & & & 655 & & nm \\
\hline Dominant Wavelength \({ }^{141}\) & \(\lambda d\) & & & 640 & & nm \\
\hline Forward Voltage, any Segment or DP \({ }^{16]}\) & \(V_{F}\) & \(1 \mathrm{~F}=20 \mathrm{~mA}\) & & 1.6 & 2.0 & V \\
\hline Reverse Voltage, any Segment or DP \(\left.{ }^{15} 516\right]\) & \(V_{R}\) & \(\mathrm{IF}_{\mathrm{A}}=100 \mu \mathrm{~A}\) & 3.0 & 20.0 & & V \\
\hline Temperature Coefficient of Forward Voltage & \(\Delta V_{F}{ }^{\circ} \mathrm{C}\) & \(\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}\) & & -1.5 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & Rod-PIN & & & 375 & & \[
{ }^{\circ} \mathrm{C} / \mathrm{W} /
\]
Seg \\
\hline
\end{tabular}

HIGH EFFICIENCY RED HDSP-3900 SERIES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{2}{*}{Luminous Intensity/Segment (Digit Average) [12.13]} & \multirow[t]{2}{*}{Iv} & 100 mA Pk; 1 of 5 Duty Factor & 3350 & 7000 & & \multirow[t]{2}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 20 mADC & & 4800 & & \\
\hline Peak Wavelength & \(\lambda\) גPEAK & & & 635 & & nm \\
\hline Dominant Wavelength \({ }^{[14]}\) (Digit Average) & \(\lambda_{\text {d }}\) & & & 626 & & nm \\
\hline Forward Voltage, any Segment or DP[16] & \(V_{F}\) & \(\mathrm{IF}_{\mathrm{F}}=100 \mathrm{~mA}\) & & 2.6 & 3.5 & V \\
\hline Reverse Voltage, any Segment or DP [16,17] & \(V_{R}\) & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 3.0 & 25.0 & & V \\
\hline Temperature Coefficient of Forward Voltage & \(\Delta V_{F} /{ }^{\circ} \mathrm{C}\) & \(\mathrm{lf}=100 \mathrm{~mA}\) & & -1.1 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & \(R \theta_{J} \ldots \mathrm{PIN}\) & & & 375 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg}
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{YELLOW HDSP-4200 SERIES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{2}{*}{Luminous intensity/Segment (Digit Average) \({ }^{[12,13]}\)} & \multirow[t]{2}{*}{Iv} & \(100 \mathrm{~mA} \mathrm{Pk} ; 1\) of 5 Duty Factor & 2200 & 7000 & & \multirow[t]{2}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 20 mADC & & 3400 & & \\
\hline Peak Wavelength & \(\lambda\) РEAK & & & 583 & & nm \\
\hline Dominant Wavelength[14,15] (Digit Average) & \(\lambda_{d}\) & & 581.5 & 586 & 592.5 & nm \\
\hline Forward Voltage, any Segment or DP[16] & \(V_{F}\) & \(1 \mathrm{~F}=100 \mathrm{~mA}\) & & 2.6 & 3.5 & V \\
\hline Reverse Voltage, any Segment or DP [16,17] & \(V_{\text {R }}\) & \(\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}\) & 3.0 & 25.0 & & V \\
\hline Temperature Coefficient of Forward Voltage & \(\Delta V_{F} /{ }^{\circ} \mathrm{C}\) & \(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}\) & & -1.1 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Thermal Resistance LED Junction-to-Pin & \(\mathrm{R} \theta_{\mathrm{J}} \mathrm{PIN}\) & & & 375 & & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg}
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \% Description & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{2}{*}{Luminous Intensity/Segment (Digit Average) \({ }^{[12,13]}\)} & \multirow[t]{2}{*}{Iv} & . 60 mAPF ; 1 of 5 Duty Factor & & 1960 & & \multirow[t]{2}{*}{\(\mu \mathrm{cd}\)} \\
\hline & & 10 mADC & 700 & 1500 & & \\
\hline Peak Wavelength & \(\lambda\) APAK & & & 566 & & nm \\
\hline Dominant Wavelength [14.15] (Digit Average) & \(\lambda_{d}\) & Y & * & 571 & 577 & nm \\
\hline Forward Voltage, any Segment or DP[16] & \(V_{F}\) & \(1 \mathrm{~F}=10 \mathrm{~mA}\) & & 2.1 & 2.5 & V \\
\hline Reverse Voltage, any Segment or DP [16,17] & \(V_{R}\) & \(\mathrm{l} \mathrm{R}^{2}=100 \mu \mathrm{~A}\) & 3.0 & 50.0 & & \(V\) \\
\hline Thermal Resistance LED Junction-to-Pin & \(\mathrm{R} \theta\) J-PIN & - & 18 & 375 & 1 & \[
\begin{gathered}
{ }^{\circ} \mathrm{C} / \mathrm{W} / \\
\mathrm{Seg}
\end{gathered}
\] \\
\hline
\end{tabular}

Notes:
12. Case temperature of the device immediately prior to the intensity measurement is \(25^{\circ} \mathrm{C}\).
13. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
14. The dominant wavelength, \(\lambda_{d}\), is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
15. The yellow and green displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
16. Quality level for electrical characteristics is 1000 parts per million.
17. Typical specification for reference only. Do not exceed absolute maximum ratings.

\section*{HDSP-3400 SERIES}


Figure 1. Maximum Allowable Peak Current vs. Pulse Duration


Figure 2. Maximum Allowable DC Current per Segment vs. Ambient Temperature


Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current


Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage


Figure 5. Relative Luminous Intensity vs. DC Forward Current


Figure 6. Maximum Allowed Peak Current vs. Pulse Duration


Figure 7. Maximum Allowable DC Current per Segment vs. Ambient Temperature

\(V_{F}\) - PEAK FORWARD VOLTAGE - V
Figure 9. Peak Forward Segment Current vs. Peak Forward Voltage


Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current


If - SEGMENT DC CURRENT - mA
Figure 10. Relative Luminous Intensity vs. DC Forward Current

\section*{HDSP-8600 SERIES}


Figure 11. Maximum Allowed Peak Current vs. Pulse Duration


Figure 12. Maximum Allowable DC Current per Segment vs. Ambient Temperature


Figure 14. Peak Forward Segment Current vs. Peak Forward Voltage


Figure 13. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current


Figure 15. Relative Luminous Intensity vs. DC Forward Current

\section*{Electrical}

These display devices are composed of eight light emitting diodes, with light from each LED optically stretched to form individual segments and a decimal point.
These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4, 9, or 14 should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum \(V_{F}\) values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following \(V_{F}\) MAX models:
```

HDSP-3400 Series
VF MAX = 1.55 V + IPEAK (7\Omega)
For: IPEAK \geq5 mA
HDSP-3900/-4200 Series VFMAX =2.15 V + IPEAK (13.5\Omega)
For: IF \geq 30 mA
VFMAX = 1.9 V + IDC (21.8\Omega)
For: 10 mA \leqIF \leq 30 mA
HDSP-8600 Series }\quad\mp@subsup{V}{F}{}MAX=2.0 V + IPEAK (50\Omega
For: IPEAK \geq5 mA

```

Temperature derated strobed operating conditions are obtained from Figures 1, 6, or 11 and 2, 7, or 12. Figures 1, 6 , and 11 relate pulse duration ( \(t_{p}\) ), refresh rate ( \(f\) ), and the ratio of maximum peak current to maximum dc current (IPEAK MAX/IDC MAX). Figures 2, 7, and 12 present the maximum allowed dc current vs. ambient temperature. Figures 1, 6, and 11 are based on the principle that the peak junction temperature for pulsed operation at a specified peak current, pulse duration and refresh rate should be the same as the junction temperature at maximum DC operation. Refresh rates of 1 kHz or faster minimize the pulsed junction heating effect of the device resulting in the maximum possible time average luminous intensity.
The time average luminous intensity can be calculated knowing the average forward current and relative efficiency characteristic, ŋlPEAK, of Figures 3, 8, or 13. Time average luminous intensity for a device case temperature of \(25^{\circ} \mathrm{C}\), Iv \(\left(25^{\circ} \mathrm{C}\right)\), is calculated as follows:
\[
\operatorname{IV}\left(25^{\circ} \mathrm{C}\right)=\left[\begin{array}{l}
\left.\frac{I_{\text {AVG }}}{\text { IAVG Test }^{\text {Condition }}}\right]
\end{array}\right]\left[\eta_{\text {IPEAK }}\right][\text { IV DATA SHEET }]
\]

Example: For HDSP-4200 series
\[
\begin{aligned}
& \eta_{\text {IPEAK }}=1.00 \text { at IPEAK }=100 \mathrm{~mA} . \text { For } D F=1 / 5: \\
& \text { IV }\left(25^{\circ} \mathrm{C}\right)=\left[\frac{20 \mathrm{~mA}}{20 \mathrm{~mA}}\right][1.00][7.0 \mathrm{mcd}]=7.0 \mathrm{mcd} / \\
& \text { segment }
\end{aligned}
\]

The time average luminous intensity may be adjusted for operating junction temperature by the following exponential equation:
\[
\operatorname{lv}\left(T_{J}\right)=\operatorname{lv}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\left|k\left(\mathrm{~T}_{J}+25^{\circ} \mathrm{C}\right)\right|}
\]
where \(T_{J}=T_{A}+P_{D} \cdot R \theta_{J-A}\)
\begin{tabular}{|c|c|}
\hline Device & \(\mathbf{K}\) \\
\hline-3400 & \(-0.0188 /{ }^{\circ} \mathrm{C}\) \\
\hline-3900 & \(-0.0131 /{ }^{\circ} \mathrm{C}\) \\
\hline-4200 & \(-0.0112 /{ }^{\circ} \mathrm{C}\) \\
\hline-8600 & \(-0.0044 /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Mechanical}

These devices are constructed utilizing a lead frame in a standard DIP package. The LED dice are attached directly to the lead frame. Therefore, the cathode leads are the direct thermal and mechanical stress paths to the LED dice. The absolute maximum allowed junction temperature, TJ MAX, is \(105^{\circ} \mathrm{C}\). The maximum power ratings have been established so that the worst case \(V_{F}\) device does not exceed this limit.

Worst case thermal resistance pin-to-ambient is \(400^{\circ} \mathrm{C} /\) W/Seg when these devices are soldered into minimum trace width PC boards. When installed in a PC board that provides R \(\theta\) PIN-A less than \(400^{\circ} \mathrm{C} / \mathrm{W} /\) Seg these displays may be operated at higher average currents as shown in Figure 2.

\section*{Optical}

The radiation pattern for these devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas.
\[
\begin{gathered}
\mathrm{Lv}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\frac{\mathrm{I}_{\mathrm{v}}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{~m}^{2}\right)} \\
\mathrm{Lv}(\text { footlamberts })=\frac{\pi \mathrm{I}_{\mathrm{v}(\mathrm{~cd})}}{\mathrm{A}\left(\mathrm{ft} \mathrm{t}^{2}\right)}
\end{gathered}
\]
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Area/Seg. \\
\(\mathbf{m \mathbf { m } ^ { 2 }}\)
\end{tabular} & \begin{tabular}{c} 
Area/Seg. \\
in. \({ }^{2}\)
\end{tabular} \\
\hline 14.9 & 0.0231 \\
\hline
\end{tabular}

\section*{Contrast Enhancement}

The objective of contrast enhancement is to optimize display readability. Adequate contrast enhancement can be achieved in indoor applications through luminous contrast techniques. Luminous contrast is the observed brightness of the illuminated segment compared to the brightness of the surround. Appropriate wavelength filters maximize luminous contrast by reducing the amount of light reflected from the area around the display while transmitting most of the light emitted by the segment. These filters are described further in Application Note 1015.
Chrominance contrast can further improve display readability. Chrominance contrast refers to the color difference between the illuminated segment and the surrounding area. These displays are assembled with a gray package and untinted encapsulating epoxy in the segments to improve chrominance contrast of the ON segments. Additional contrast enhancement in bright ambients may be achieved by using a neutral density gray filter such as Panelgraphic Chromafilter Gray 10, or 3M Light Control Film (louvered filmı.

\title{
SEVEN SEGMENT DISPLAYS FOR HIGH LIGHT AMBIENT CONDITIONS
}

\section*{Features}
- HIGH LIGHT OUTPUT Typical Intensities of up to \(7.0 \mathrm{mcd} / \mathrm{seg}\) at 100 mA pk 1 of 5 duty factor.
- CAPABLE OF HIGH CURRENT DRIVE Excellent for Long Digit String Multiplexing
- FOUR CHARACTER SIZES
\(7.6 \mathrm{~mm}, 10.9 \mathrm{~mm}, 14.2 \mathrm{~mm}\), and 20.3 mm
- CHOICE OF TWO COLORS

High Efficiency Red
Yellow
- EXCELLENT CHARACTER APPEARANCE

Evenly Lighted Segments
Wide Viewing Angle
Grey Body for Optimum Contrast
- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW CATEGORIZED FOR COLOR Use of Like Categories Yields a Uniform Display
- IC COMPATIBLE
- MECHANICALLY RUGGED


\section*{Description}

The HDSP-3530/-3730/-5530/-3900 and HDSP-4030/-4130/ \(-5730 /-4200\) are \(7.6 \mathrm{~mm}, 10.9 \mathrm{~mm} / 14.2 \mathrm{~mm} / 20.3 \mathrm{~mm}\) high efficiency red and yellow displays designed for use in high light ambient condition. The four sizes of displays allow for viewing distances at \(3,6,7\), and 10 meters. These seven segment displays utilize large junction high efficiency LED chips made from GaAsP on a transparent GaP substrate. Due to the large junction area, these displays can be driven at high peak current levels needed for high ambient conditions or many character multiplexed operation.
These displays have industry standard packages, and pin configurations and \(\pm 1\) overflow display are available in all four sizes. These numeric displays are ideal for applications such as Automotive and Avionic Instrumentation, Point of Sale Terminals, and Gas Pump.

\section*{Devices}
\begin{tabular}{|l|c|c|c|}
\hline Part No. HDSP- & Color & & \begin{tabular}{c} 
Package \\
Drawing
\end{tabular} \\
\hline 3530 & & 7.6 mm Common Anode Left Hand Decimal & A \\
3531 & High Efficiency Red & 7.6 mm Common Anode Right Hand Decimal & B \\
3533 & 7.6 mm Common Cathode Right Hand Decimal & C \\
3536 & & 7.6 mm Universal Overflow \(\pm 1\) Right Hand Decimal & D \\
\hline 4030 & & 7.6 mm Common Anode Left Hand Decimal & A \\
4031 & & 7.6 mm Common Anode Right Hand Decimal & B \\
4033 & & 7.6 mm Common Cathode Right Hand Decimal & C \\
4036 & Yellow & 7.6 mm Universal Overflow \(\pm 1\) Right Hand Decimal & D \\
\hline
\end{tabular}

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagrams D and H.

\section*{Devices}
\begin{tabular}{|c|c|c|c|}
\hline Part No. HDSP & Color & Description & Package Drawing \\
\hline \[
\begin{aligned}
& 3730 \\
& 3731 \\
& 3733 \\
& 3736
\end{aligned}
\] & High Efficiency Red & 10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow \(\pm 1\) Right Hand Dec. & \[
\begin{aligned}
& E \\
& F \\
& G \\
& H
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 4130 \\
& 4131 \\
& 4133 \\
& 4136
\end{aligned}
\] & Yellow & 10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow \(\pm 1\) Right Hand Dec. & \[
\begin{aligned}
& \mathrm{E} \\
& \mathrm{~F} \\
& \mathrm{G} \\
& \mathrm{H}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 5531 \\
& 5533 \\
& 5537 \\
& 5538
\end{aligned}
\] & High Efficiency Red & 14.2 mm Common Anode Right Hand Decimal 14.2 mm Common Cathode Right Hand Decimal 14.2 mm Overflow \(\pm 1\) Common Anode 14.2 mm Overflow \(\pm 1\) Common Cathode & \[
\begin{aligned}
& \mathrm{I} \\
& \mathrm{~J} \\
& \mathrm{~K} \\
& \mathrm{~L}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 5731 \\
& 5733 \\
& 5737 \\
& 5738
\end{aligned}
\] & Yellow & 14.2 mm Common Anode Right Hand Decimal 14.2 mm Common Cathode Right Hand Decimal 14.2 mm Overflow \(\pm 1\) Common Anode 14.2 mm Overflow \(\pm 1\) Common Cathode & \[
\begin{aligned}
& \mathrm{I} \\
& \mathrm{~J} \\
& \mathrm{~K} \\
& \mathrm{~L}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 3900 \\
& 3901 \\
& 3903 \\
& 3905 \\
& 3906
\end{aligned}
\] & High Efficiency Red & 20.3 mm Common Anode Left Hand Decimal 20.3 mm Common Anode Right Hand Decimal 20.3 mm Common Cathode Right Hand Decimal 20.3 mm Common Cathode Left Hand Decimal 20.3 mm Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& M \\
& N \\
& O \\
& P \\
& Q
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 4200 \\
& 4201 \\
& 4203 \\
& 4205 \\
& 4206
\end{aligned}
\] & Yellow & 20.3 mm Common Anode Left Hand Decimal 20.3 mm Common Anode Right Hand Decimal 20.3 mm Common Cathode Right Hand Decimal 20.3 mm Common Cathode Left Hand Decimal 20.3 mm Universal Overflow \(\pm 1\) Right Hand Decimal & \[
\begin{aligned}
& M \\
& N \\
& \mathrm{~N} \\
& \mathrm{P} \\
& \mathrm{Q}
\end{aligned}
\] \\
\hline
\end{tabular}

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram Q.

\section*{Absolute Maximum Ratings (All Products)}

Average Power per Segment or \(D P\left(T_{A}=25^{\circ} \mathrm{C}\right.\) )
Peak Forward Current per Segment or \(D P\left(T_{A}=25^{\circ} \mathrm{C}\right)^{|1|}\)

DC Forward Current per Segment|2|
or DP ( \(T_{A}=25^{\circ} \mathrm{C}\) )
Operating Temperature Range
Storage Temperature Range
Reverse Voltage per Segment or DP
Lead Solder Temperature
( 1.59 mm | \(1 / 16\) inch \(\mid\) below seating plane)

105 mW
135 mA
(Pulse Width \(=0.16 \mathrm{~ms}\) )

40 mA
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) 3.0 V
\(260^{\circ} \mathrm{C}\) for 3 sec .

\section*{Notes:}
1. See Figure 1 to establish pulsed operating conditions. 2. Derate maximum DC current above \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) at \(.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\) per segment, see Figure 2.

\section*{Package Dimensions (HDSP-3530/4030 Series)}


Package Dimensions (HDSP-3730/4130 Series)


E


F,G


H

FRONT VIEW


END VIEW


SIDE VIEW


\section*{Package Dimensions (5530/5730 Series)}

FRONT VIEWI,J TOP END VIEW I,J,K, L

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{PIN} & \multicolumn{4}{|c|}{FUNCTION} \\
\hline & | 5531 & J 5533 & K 5537 & L 5538 \\
\hline 1 & CATHODE & ANODE & CATHODE 6 & ANODE c \\
\hline 2 & CATHODE d & ANODE d & ANODE c, d & \begin{tabular}{l}
CATHODE \\
c, d
\end{tabular} \\
\hline 3 & ANODE \({ }^{(3)}\) & CATHODE \({ }^{(6)}\) & CATHODE b & ANODE b \\
\hline 4 & CATHODE c & ANODE c & \[
\begin{aligned}
& \text { ANODE } 3, b \\
& \text { DP }
\end{aligned}
\] & \begin{tabular}{l}
CATHODE \\
a, b, DP
\end{tabular} \\
\hline 5 & CATHODE DP & ANODE DP & CATHODE DP & ANODE DP \\
\hline 6 & CATHODE A & ANODE b & CATHODE & ANODE a \\
\hline 7 & CATHODE a & ANODE a & ANODE a, b, DP & \begin{tabular}{l}
CATHODE \\
a, b, DP
\end{tabular} \\
\hline 8 & ANODE \({ }^{(3)}\) & CATHODE \({ }^{(6)}\) & ANODE c, d & \[
\begin{aligned}
& \text { CATHODE } \\
& \text { c. } d
\end{aligned}
\] \\
\hline 9 & CATHODE & ANODE f & CATHODE d & ANODE \({ }^{\text {d }}\) \\
\hline 10 & CATHODE g & ANODE 9 & NOPIN \({ }^{(5)}\) & NO PIN \({ }^{(51}\) \\
\hline
\end{tabular}

FRONT VIEW K, L SIDE VIEW I, J, K, L

\section*{Package Dimensions (3900/4200 Series)}


FRONT VIEW M, P


FRONT VIEW N, O


FRONT VIEW \(\mathbf{Q}\)

1. Dimensions in millimeters and (inches).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin} & \multicolumn{5}{|c|}{Function} \\
\hline & \[
\begin{gathered}
\mathrm{M} \\
3900 / 4200
\end{gathered}
\] & \[
\frac{\mathrm{N}}{3901 / 4201}
\] & \[
\begin{gathered}
0 \\
3903 / 4203
\end{gathered}
\] & \[
\underset{3905 / 4205}{\mathrm{P}}
\] & \[
\underset{3906 / 4206}{Q}
\] \\
\hline 1 & NO PIN \\
\hline 2 & Cathode a & cathode a & ANODE a & ANODE a & CATHODE a \\
\hline 3 & CATHODE f & CATHODE f & ANODE f & ANODE : & ANODE d \\
\hline 4 & ANODE \({ }^{(3)}\) & ANODE \({ }^{131}\) & CATHODE \({ }^{(6)}\) & CATHODE \({ }^{[6]}\) & cathode d \\
\hline 5 & CATHODE & CATHODE & ANODE & ANODE & CATHODE \\
\hline 6 & ANODE \({ }^{(3)}\) & ANODE \({ }^{(3)}\) & CATHODE \({ }^{(6]}\) & CATHODE \({ }^{[8]}\) & CATHODE \\
\hline 7 & CATHODE dp & No. CONNEC. & No. CONNEC. & ANODE dp & ANODE \\
\hline 8 & NO PIN & NO PIN & NO PIN & NO Pfn & CATHODE dp \\
\hline 9 & NO PIN \\
\hline 10 & NO PIN & CATHODE dp & anool dp & NO PIN & ANODE dp \\
\hline 11 & CATHODE d & CATHODE d & ANODE \({ }^{\text {d }}\) & ANODE d & CATHODE dp \\
\hline 12 & ANODE \({ }^{(3)}\) & ANODE \({ }^{[3]}\) & CATHOOE \({ }^{\text {[6] }}\) & CATHODE \({ }^{[6]}\) & CATHODE D \\
\hline 13 & CATHODE & CATHODE & ANODE C & ANODE C & ANODE B \\
\hline 14 & CATHODE g & CATHODEg & ANODE 9 & ANODE 9 & ANODE © \\
\hline 15 & CATHODE D & CATHODE b & ANODE b & ANODE \({ }^{\text {b }}\) & ANODE a \\
\hline 16 & NO PIN \\
\hline 17 & ANODE \({ }^{(3)}\) & ANODE \({ }^{(3)}\) & CATHODE \({ }^{(t)}\) & CATHODE \({ }^{\text {(6) }}\) & CATHODE a \\
\hline 18 & NO PIN \\
\hline
\end{tabular}
4. Unused dp position
7. For HDSP-4030/-4130/-5730/-4200 Series product only. 6. Redundant Cathodes.

Internal Circuit Diagram (HDSP-3530/4030 Series)


A


B

c


D

\section*{Internal Circuit Diagram (HDSP-3730/4130 Series)}


E


F


G


H

\section*{Internal Circuit Diagram (HDSP-5530/5730 Series)}


I


J


\section*{Internal Circuit Diagram (HDSP-3900/4200 Series)}


Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Device HDSP- & Test Condition & Min & Typ & Max & Units \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Luminous Intensity/ \\
Segment \({ }^{19.10 \mid}\) \\
(Digit Average)
\end{tabular}} & \multirow[t]{4}{*}{IV} & \[
\begin{aligned}
& 3530 \\
& 3730 \\
& 5530 \\
& 3900
\end{aligned}
\] & \(100 \mathrm{~mA} \mathrm{Pk} ; 1\) of 5 Duty Factor & \[
\begin{aligned}
& 2200 \\
& 3350 \\
& 2200 \\
& 2200
\end{aligned}
\] & \[
\begin{aligned}
& 7100 \\
& 10860 \\
& 6000 \\
& 7000
\end{aligned}
\] & & \(\mu \mathrm{cd}\) \\
\hline & & \[
\begin{aligned}
& 3530 \\
& 3730 \\
& 5530 \\
& 3900
\end{aligned}
\] & 20 mA DC & & \[
\begin{aligned}
& 4970 \\
& 7600 \\
& 5000 \\
& 4800
\end{aligned}
\] & & \(\mu \mathrm{cd}\) \\
\hline & & \[
\begin{aligned}
& 4030 \\
& 4130 \\
& 5730 \\
& 4200
\end{aligned}
\] & \(100 \mathrm{~mA} \mathrm{Pk} ; 1\) of 5 Duty Factor & \[
\begin{aligned}
& 1500 \\
& 1500 \\
& 2200 \\
& 2200
\end{aligned}
\] & \[
\begin{aligned}
& 4500 \\
& 5000 \\
& 5500 \\
& 7000
\end{aligned}
\] & & \(\mu \mathrm{cd}\) \\
\hline & & \[
\begin{aligned}
& 4030 \\
& 4130 \\
& 5730 \\
& 4200
\end{aligned}
\] & 20 mA DC & & \[
\begin{aligned}
& 2200 \\
& 2500 \\
& 2800 \\
& 3400
\end{aligned}
\] & & \(\mu \mathrm{cd}\) \\
\hline \multirow[t]{2}{*}{Peak Wavelength} & \multirow[t]{2}{*}{\(\lambda\) Peak} & \[
\begin{aligned}
& 3530 / 3730 t \\
& 5530 / 3900
\end{aligned}
\] & & & 635 & & nm \\
\hline & & \[
\begin{gathered}
4030 / 4130 f \\
5730 / 4200
\end{gathered}
\] & & & 583 & & nm \\
\hline \multirow[t]{2}{*}{Dominant Wavelengthi11, 12 (Digit Average)} & \multirow[t]{2}{*}{\(\lambda_{d}\)} & \[
\begin{array}{|r|}
\hline 3530 / 3730 / \\
5530 / 3900
\end{array}
\] & & & 626 & & \\
\hline & & \[
\begin{array}{|l|}
\hline 4030 / 4130 \prime \\
5730 / 4200 \\
\hline
\end{array}
\] & \(\cdot\) & 581.5 & 586 & 592.5 & nm \\
\hline Forward Voltage/Segment or D.P.[13] & \(V_{F}\) & All Devices & \(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}\) & & 2.6 & 3.5 & V \\
\hline Reverse Voltage/Segment or D.P. \({ }^{[14]}\) & \(V_{R}\) & All Devices & \(I_{R}=100 \mu \mathrm{~A}\) & 3.0 & 25.0 & & \(\checkmark\) \\
\hline Temp. Coeff, of VF/Seg or D.P. & \(\Delta V_{F} /{ }^{\circ} \mathrm{C}\) & All Devices & IF \(=100 \mathrm{~mA}\) & & \(-1.1\) & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Thermal Resistance LED Junction-to-pin} & \multirow[t]{3}{*}{\(R \theta^{\prime} \mathrm{JmPIN}\)} & \[
\begin{aligned}
& 3530 / 4030 t \\
& 3730 / 4130 \\
& \hline
\end{aligned}
\] & & & 282 & & \({ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}\) \\
\hline & & \(5530 / 5730\) & & & 345 & & \({ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}\) \\
\hline & & 3900/4200 & & & 375 & & \({ }^{\circ} \mathrm{C} /\) W/Seg \\
\hline
\end{tabular}

\section*{Notes:}
9. Case temperature of the device immediately prior to the intensity measurement is \(25^{\circ} \mathrm{C}\).
10. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
11. The dominant wavelength, \(\lambda_{d}\), is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
12. The yellow displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
13. Quality level for electrical characteristics is 1000 parts per million.
14. Typical specification for reference only. Do not exceed absolute maximum ratings.


Figure 1. Maximum Allowed Peak Current vs. Pulse Duration


Figure 2. Maximum Allowable DC Current per Segment vs. Ambient Temperature


Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage


Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current


Figure 5. Relative Luminous Intensity vs. DC Forward Current

\section*{Electrical}

These display devices are composed of eight light emitting diodes, with light from each LED optically stretched to form individual segments and a decimal point.
The devices utilize LED chips which are made from GaAsP on a transparent GaP substrate.

These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4 should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum \(\mathrm{V}_{\mathrm{F}}\) values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following \(V_{F}\) MAX models:
\[
\begin{aligned}
& V_{F} M A X=2.15 \mathrm{~V}+\operatorname{IPEAK}(13.5 \Omega) \\
& \text { For: } I_{F} \geq 30 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{F}} \mathrm{MAX}=1.9 \mathrm{~V}+\operatorname{IDC}(21.8 \Omega) \\
& \text { For: } 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}} \leq 30 \mathrm{~mA}
\end{aligned}
\]

Temperature derated strobed operating conditions are obtained from Figures 1 and 2. Figure 1 relates pulse duration ( \(\mathrm{tp}_{\mathrm{p}}\) ), refresh rate ( f ), and the ratio of maximum peak current to maximum dc current (IPEAK MAX/IDc MAX). Figure 2 presents the maximum allowed dc current vs. ambient temperature. Figure 1 is based on the principle that the peak junction temperature for pulsed operation at a specified peak current, pulse duration and refresh rate should be the same as the junction temperature at maximum DC operation. Refresh rates of 1 kHz or faster minimize the pulsed junction heating effect of the device resulting in the maximum possible time average luminous intensity.
The time average luminous intensity can be calculated knowing the average forward current and relative efficiency characteristic, ПlPEAK, of Figure 3. Time average luminous intensity for a device case temperature of \(25^{\circ} \mathrm{C}\), Iv \(\left(25^{\circ} \mathrm{C}\right)\), is calculated as follows:
\[
\operatorname{IV}\left(25^{\circ} \mathrm{C}\right)=\left[\frac{\mathrm{I}_{\mathrm{AVG}}}{20 \mathrm{~mA}}\right]\left[\eta_{\text {IPEAK }}\right][\operatorname{IV} \text { DATA SHEET }]
\]

Example: For HDSP-4030 series
\[
\begin{aligned}
& \eta_{\text {IPEAK }}=1.00 \text { at IPEAK }=100 \mathrm{~mA} . \text { For } D F=1 / 5: \\
& \text { Iv }\left(25^{\circ} \mathrm{C}\right)=\left[\frac{20 \mathrm{~mA}}{20 \mathrm{~mA}}\right][1.00][4.5 \mathrm{mcd}]=\begin{array}{r}
4.5 \mathrm{mcd} / \\
\text { segment }
\end{array}
\end{aligned}
\]

The time average luminous intensity may be adjusted for operating junction temperature by the following exponential equation:
\[
\operatorname{lv}\left(T_{J}\right)=\operatorname{lv}\left(25^{\circ} \mathrm{C}\right) e^{\left[k\left(T_{J}+25^{\circ} \mathrm{C}\right)\right]}
\]
where \(T_{J}=T_{A}+P_{D} \cdot R \theta_{J-A}\)
\begin{tabular}{|c|c|}
\hline DEVICE & \(\boldsymbol{K}\) \\
\hline\(-3530 /-3730 /-5530 /-3900\) & \(-0.0131 /{ }^{\circ} \mathrm{C}\) \\
\hline\(-4030 /-4130 /-5730 /-4200\) & \(-0.0112 /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Mechanical}

These devices are constructed utilizing a lead frame in a standard DIP package. The LED dice are attached directly to the lead frame. Therefore, the cathode leads are the direct thermal and mechanical stress paths to the LED dice. The absolute maximum allowed junction temperature, TJ MAX, is \(105^{\circ} \mathrm{C}\). The maximum power ratings have been established so that the worst case \(V_{F}\) device does not exceed this limit.
Worst case thermal resistance pin-to-ambient is \(400^{\circ} \mathrm{C} /\) W/Seg when these devices are soldered into minimum trace width PC boards. When installed in a PC board that provides R \(\theta\) PIN-A less than \(400^{\circ} \mathrm{C} / \mathrm{W} /\) Seg these displays may be operated at higher average currents as shown in Figure 2.

\section*{Optical}

The radiation pattern for these devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas.
\[
\begin{aligned}
\mathrm{Lv}\left(\mathrm{~cd} / \mathrm{m}^{2}\right) & =\frac{\mathrm{I}_{\mathrm{v}}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{~m}^{2}\right)} \\
\mathrm{Lv}(\text { footlamberts }) & =\frac{\pi \mathrm{l}_{\mathrm{v}}(\mathrm{~cd})}{\mathrm{A}(\mathrm{ft} 2)}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline DEVICE & \begin{tabular}{c} 
AREA/SEG. \\
\(\mathbf{m m}^{\mathbf{2}}\)
\end{tabular} & \begin{tabular}{c} 
AREA/SEG. \\
IN. \(\mathbf{2}\)
\end{tabular} \\
\hline\(-3530 /-4030\) & 2.5 & .0039 \\
\hline\(-3730 /-4130\) & 4.4 & .0068 \\
\hline\(-5530 /-5730\) & 8.8 & .0137 \\
\hline\(-3900 /-4200\) & 14.9 & .0231 \\
\hline
\end{tabular}

\section*{Contrast Enhancement}

The objective of contrast enhancement is to optimize display readability. Adequate contrast enhancement can be achieved in indoor applications through luminous contrast techniques. Luminous contrast is the observed brightness of the illuminated segment compared to the brightness of the surround. Appropriate wavelength filters maximize luminous contrast by reducing the amount of light reflected from the area around the display while transmitting most of the light emitted by the segment. These filters are described further in Application Note 1015.
Chrominance contrast can further improve display readability. Chrominance contrast refers to the color difference between the illuminated segment and the surrounding area. These displays are assembled with a gray package and untinted encapsulating epoxy in the segments to improve chrominance contrast of the ON segments. Additional contrast enhancement in bright ambients may be achieved by using a neutral density gray filter such as Panelgraphic Chromafilter Gray 10, or 3M Light Control Film (louvered film).

\title{
INTENSITY AND COLOR SELECTED DISPLAYS
}

TECHNICAL DATA JANUARY 1986

\section*{Features}
- INTENSITY SELECTION IMPROVES UNIFORMITY OF LIGHT OUTPUT FROM UNIT TO UNIT. AVAILABLE IN RED, HIGH EFFICIENCY RED, AND HIGH PERFORMANCE GREEN.
- COLOR SELECTION IMPROVES UNIFORMITY OF COLOR FROM UNIT TO UNIT. AVAILABLE IN YELLOW.
- TWO CATEGORY SELECTION SIMPLIFIES INVENTORY CONTROL AND ASSEMBLY.

\section*{Description}

Seven segment displays are now available from HewlettPackard which are selected from two categories. These select displays are basic catalog devices which are presorted for luminous intensity and color then selected from two predetermined adjacent categories and assigned one convenient part number.
Example: Two luminous intensity categories are selected from the basic catalog 5082-7750 production distribution and assigned to the part number 5082-7750 option S02.

Luminous intensity selection is available for red, high efficiency red, and high performance green. Color selection is available for yellow.
To ensure our customers a steady supply of product, HP must offer selected units from the center of our distribution. If our production distribution shifts, we will need to change the intensity or color range of the selected units our customers receive. Typically, an intensity may have to be changed once every 1 to 3 years.
Current intensity and color selection information is available through a category reference chart which is available through your local field sales engineer or local franchised distributor.

\section*{Absolute Maximum Ratings and Electrical/Optical Characteristics}

The absolute maximum ratings, mechanical dimensions, and electrical/optical characteristics are identical to the basic catalog device.

\section*{Device Selection Guide}

The following table summarizes which basic catalog devices are available with category selection.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{COLOR} \\
\hline Character Height & Red & High Efliciency Red & High Ambient High Efficiency Red & Yellow & High Ambient High Efficiency Yellow & High Performance Green \\
\hline \begin{tabular}{l}
\[
7.62 \mathrm{~mm}\left(0.3^{\prime \prime}\right)
\] \\
Microbright
\end{tabular} & HDSP-7301 Option S02 HDSP-7303 Option S02 HDSP-7307 Option S02 HDSP-7308 Option S02 & HDSP-7501 Option S02 HDSP-7503 Option S02 HDSP-7507 Option S02 HDSP-7508 Option S02 & Basic Family Not Applicable & Selected Version Not Available & Basic Family Not Applicable & HDSP-7801 Option S02 HDSP-7803 Option S02 HDSP-7807 Option S02 HDSP-7808 Option S02 \\
\hline 7.62 mm (0.3') & \[
\begin{aligned}
& \text { 5082-7730 Option S02 } \\
& \text { 5082-7731 Option S02 } \\
& \text { 5082-7736 Option S02 } \\
& 5082-7740 \text { Option S02 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 5082-7610 Option SO2 } \\
& \text { 5082-7611 Option S02 } \\
& \text { 5082-7613 Option SO2 } \\
& 5082-7616 \text { Option SO2 }
\end{aligned}
\] & HDSP-3530 Option S02 HDSP-3531 Option S02 HDSP-3533 Option S02 HDSP-3536 Option S02 & Selected Version Not Available & Selected Version Not Available & \begin{tabular}{l}
HDSP-3600 Option S02 \\
HDSP-3603 Option S02 HDSP-3606 Option S02
\end{tabular} \\
\hline 10.92 mm (0.43') & \[
\begin{aligned}
& \text { 5082-7750 Option SO2 } \\
& 5082-7751 \text { Option SO2 } \\
& 5082-7756 \text { Option S02 } \\
& 5082-7760 \text { Option S02 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 5082-7650 Option S02 } \\
& \text { 5082-7651 Option S02 } \\
& \text { 5082-7653 Option S02 } \\
& \text { 5082-7656 Option S02 }
\end{aligned}
\] & HDSP-3730 Option S02 HDSP-3731 Option S02 HDSP-3733 Option S02 HDSP-3736 Option S02 & \[
\begin{aligned}
& \text { 5082-7663 Option S20 } \\
& \text { 5082-7666 Option S2O }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HDSP-4133 Option S20 } \\
& \text { HDSP-4136 Option S20 }
\end{aligned}
\] & Selected Version Not Available \\
\hline \[
14.2 \mathrm{~mm}\left(0.56^{\prime \prime}\right)
\] Single Digit & HDSP-5301 Option S02 HDSP-5303 Option S02 HDSP-5307 Option S02 HDSP-5308 Option S02 & HDSP-5501 Option S02 HDSP-5503 Option S02 HDSP-5507 Option S02 HDSP-5508 Option S02 & HDSP-5531 Option S02 HDSP-5533 Option S02 HDSP-5537 Option S02 HDSP-5538 Option S02 & Selected Version Not Available & Selected Version Not Available & HDSP-5601 Option S02 HDSP-5607 Option S02 \\
\hline \[
\begin{aligned}
& 14.2 \mathrm{~mm}\left(0.56^{\prime \prime}\right) \\
& \text { Dual Digit }
\end{aligned}
\] & Selected Version Not Available & \begin{tabular}{l}
HDSP-5521 Option S02 \\
HDSP-5523 Option S02
\end{tabular} & Basic Family Not Applicable & Selected Version Not Available & Basic Family Not Applicable & Selected Version Not Available \\
\hline 20 mm (0.8') & HDSP-3400 Option S02 HDSP-3403 Option S02 HDSP-3406 Option S02 & Basic Family Not Applicable & HDSP-3900 Option S02 HDSP-3901 Option S02 HDSP-3903 Option S02 HDSP-3906 Option S02 & Basic Family Not Applicable & Selected Version Not Available & Selected Version Not Available \\
\hline
\end{tabular}

\section*{Notes:}
1. Option SO2 designates a two intensity category selection.
2. Option S20 designates a two color category selection.
3. Option S02s of different part numbers may not have the same apparent brightness. Contact your HP Field Sales Office for design assistance.

\section*{Features}
- NUMERIC 5082-7300/-7302

HEXADECIMAL 5082-7340
\(0-9\), Test State, Minus Sign, Blank States Decimal Point 7300 Right Hand D.P. 7302 Left Hand D.P.
\(0-9\), A-F, Base 16 Operation Blanking Control, Conserves Power No Decimal Point
- DTL/TTL COMPATIBLE
- INCLUDES DECODER/DRIVER WITH 5-BIT MEMORY
8421 Positive Logic Input
- \(4 \times 7\) DOT MATRIX ARRAY

Shaped Character, Excellent Readibility
- STANDARD DUAL-IN-LINE PACKAGE INCLUDING CONTRAST FILTER
\(15.2 \mathrm{~mm} \times 10.2 \mathrm{~mm}\) ( 0.6 inch \(\times 0.4\) inch)
- CATEGORIZED FOR LUMINOUS INTENSITY Assures Uniformity of Light Output from Unit to Unit within a Single Category

\section*{Description}

The HP 5082-7300 series solid state numeric and hexadecimal indicators with on-board decoder/driver and memory provide 7.4 mm ( 0.29 inch) displays for reliable, low-cost methods of displaying digital information.
The 5082-7300 numeric indicator decodes positive 8421 BCD logic inputs into characters 0-9, a "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.


The 5082-7302 is the same as the 5082-7300, except that the decimal point is located on the left-hand side of the digit.
The 5082-7340 hexadecimal indicator decodes positive 8421 logic inputs into 16 states, \(0-9\) and A-F. In place of the decimal point an input is provided for blanking the display (all LED's off), without losing the contents of the memory. Applications include terminals and computer systems using the base-16 character set.
The 5082-7304 is a \(( \pm 1\) ) overrange display including a righthand decimal point.

\section*{Applications}

Typical applications include point-of-sale terminals, instrumentation, and computer system.

\section*{Package Dimensions}

\begin{tabular}{|c|l|l|}
\hline \multirow{3}{*}{ Pin } & \multicolumn{2}{|c|}{ Function } \\
\cline { 2 - 3 } & \begin{tabular}{l}
\(5082-7300\) \\
and 7302 \\
Numeric
\end{tabular} & \begin{tabular}{l} 
5082-7340 \\
Hexadecimal
\end{tabular} \\
\hline 1 & Input 2 & Input 2 \\
\hline 2 & Input 4 & Input 4 \\
\hline 3 & Input 8 & Input 8 \\
\hline 4 & \begin{tabular}{l} 
Decimal \\
Point
\end{tabular} & \begin{tabular}{l} 
Blanking \\
Control
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Latch \\
Enable
\end{tabular} & \begin{tabular}{l} 
Latch \\
Enable
\end{tabular} \\
\hline 6 & Ground & Ground \\
\hline 7 & Vcc & VCc \\
\hline 8 & Input 1 & Input 1 \\
\hline
\end{tabular}

Notes:
1. Dimensions in millimetres and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is \(\pm 0.38 \mathrm{~mm}( \pm 0.015 \mathrm{inch})\)
3. Digit center line is \(\pm 0.25 \mathrm{~mm}\) ( \(\pm 0.01\) inch) from package center line.

\section*{Absolute Maximum Ratings}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Description } & Symbol & Min. & Max. & Unit \\
\hline Storage temperature, ambient & \(\mathrm{T}_{\mathrm{s}}\) & -40 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating temperature, case \({ }^{(1,2)}\) & \(\mathrm{T}_{\mathrm{C}}\) & -20 & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Supply voltage \({ }^{(3)}\) & \(\mathrm{V}_{\mathrm{CC}}\) & -0.5 & +7.0 & V \\
\hline Voltage applied to input logic, dp and enable pins & \(\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{DP},} \mathrm{V}_{\mathrm{E}}\) & -0.5 & +7.0 & V \\
\hline Voltage applied to blanking input \({ }^{(7)}\) & \(\mathrm{V}_{\mathrm{B}}\) & -0.5 & \(\mathrm{~V}_{\mathrm{CC}}\) & V \\
\hline \begin{tabular}{l} 
Maximum solder temperature at \(1.59 \mathrm{~mm}(.062\) inch \()\) \\
below seating plane; \(\mathrm{t} \leqslant 5\) seconds
\end{tabular} & 230 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Recommended Operating Conditions}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Description & Symbol & Min. & Nom. & Max. & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{cc}}\) & 4.5 & 5.0 & 5.5 & V \\
\hline Operating temperature, case & \(\mathrm{T}_{\mathrm{c}}\) & -20 & & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Enable Pulse Width & \(\mathrm{t}_{\mathrm{w}}\) & 120 & & & nsec \\
\hline \begin{tabular}{l} 
Time data must be held before positive transition \\
of enable line
\end{tabular} & \(\mathrm{t}_{\text {serup }}\) & 50 & & & nsec \\
\hline \begin{tabular}{l} 
Time data must be held after positive transition \\
of enable line
\end{tabular} & \(\mathrm{t}_{\text {HoLD }}\) & 50 & & & nsec \\
\hline Enable pulse rise time & \(\mathrm{t}_{\text {TLH }}\) & & & 200 & nsec \\
\hline
\end{tabular}

Electrical/Optical Characteristics ( \(\mathrm{T}_{\mathrm{c}}=-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\), unless otherwise specified).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. \({ }^{(4)}\) & Max. & Unit \\
\hline Supply Current & Icc & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\) (Numeral & & 112 & 170 & mA \\
\hline Power dissipation & \(\mathrm{P}_{\text {T }}\) & 5 and dp lighted) & & 560 & 935 & mW \\
\hline Luminous intensity per LED (Digit average) \({ }^{(5,6)}\) & 1. & \(\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\) & 32 & 70 & & \(\mu \mathrm{cd}\) \\
\hline Logic low-level input voltage & \(\mathrm{V}_{\text {IL }}\) & \multirow{6}{*}{\(\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}\)} & \multirow{3}{*}{2.0} & & 0.8 & V \\
\hline Logic high-level input voltage & \(\mathrm{V}_{\mathrm{IH}}\) & & & & & V \\
\hline Enable low-voltage; data being entered & \(V_{\text {EL }}\) & & & & 0.8 & V \\
\hline Enable high-voltage; data not being entered & \(V_{\text {EH }}\) & & 2.0 & & & V \\
\hline Blanking low-voltage; display not blanked \({ }^{(7)}\) & \(V_{\text {BL }}\) & & & & 0.8 & V \\
\hline Blanking high-voltage; display blanked \({ }^{(7)}\) & \(V_{\text {BH }}\) & & 3.5 & & & V \\
\hline Blanking low-level input current \({ }^{(7)}\) & \(\mathrm{I}_{\mathrm{BL}}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}\) & & & 20 & \(\mu \mathrm{A}\) \\
\hline Blanking high-level input current \({ }^{(7)}\) & \(\mathrm{I}_{\text {BH }}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {BH }}=4.5 \mathrm{~V}\) & & & 2.0 & mA \\
\hline Logic low-level input current & \(\mathrm{I}_{\text {LL }}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline Logic high-level input current & \(\mathrm{I}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}\) & & & +250 & \(\mu \mathrm{A}\) \\
\hline Enable low-level input current & \(\mathrm{IEL}_{\text {el }}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline Enable high-level input current & \(\mathrm{I}_{\text {EH }}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {EH }}=2.4 \mathrm{~V}\) & & & +250 & \(\mu \mathrm{A}\) \\
\hline Peak wavelength & \(\lambda_{\text {PEAK }}\) & \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & & 655 & & nm \\
\hline Dominant Wavelength \({ }^{(8)}\) & \(\lambda_{d}\) & \(\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\) & & 640 & & nm \\
\hline Weight & & & & 0.8 & & gm \\
\hline
\end{tabular}

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: \(\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\); \(\Theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W}\); 2. \(\Theta_{\mathrm{CA}}\) of a mounted display should not exceed \(35^{\circ} \mathrm{C} / \mathrm{W}\) for operation up to \(T_{\mathrm{C}}=+85^{\circ} \mathrm{C}\). 3. Voltage values are with respect to device ground, pin 6. 4. All typical values at \(V_{C C}=5.0\) Volts, \(T_{c}=25^{\circ} \mathrm{C} .5\). These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific case temperature, \(\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{c}}\right)\) may be calculated from this relationship: \(\mathrm{I}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{C}}\right)=\mathrm{I}_{\mathrm{v}}\left(25^{\circ} \mathrm{C}\right)\) e[-.0188/. \(\left.\mathrm{C}\left(\mathrm{T}_{\mathrm{C}}-25^{\circ} \mathrm{C}\right)\right]\) 7. Applies only to 7340 . 8. The dominant wavelength, \(\lambda_{d}\), is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.


Figure 1. Timing Diagram of 5082-7300 Series Logic.


Figure 4. Typical Blanking Control Input Current vs. Temperature 5082-7340.


Figure 2. Block Diagram of 5082-7300 Series Logic.


Figure 5. Typical Latch Enable Input Current vs. Voltage for the 5082-7300 Series Devices.


Figure 3. Typical Blanking Control Current vs. Voltage for 5082-7340.


Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage for the 5082-7300 Series Devices. Decimal Point Applies to 5082-7300 and -7302 Only.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TRUTH TABLE} \\
\hline \multicolumn{4}{|c|}{BCD DATA \({ }^{[1]}\)} & \multirow[b]{2}{*}{5082-7300/7302} & \multirow[b]{2}{*}{5082-7340} \\
\hline \(\mathrm{X}_{8}\) & \(\mathrm{X}_{4}\) & \(\mathrm{X}_{2}\) & \(\mathrm{X}_{1}\) & & \\
\hline L & L & L & L & " & \(\cdots\) \\
\hline L & \(L\) & 1 & H & \(\stackrel{1}{1}\) & + \\
\hline L & \(L\) & H & L & \(\cdots\) & \% \\
\hline L & \(L\) & H & H & \(\cdots\) & ? \\
\hline 1 & H & L & L & !.: & !.: \\
\hline L & H & 1 & H & \(\ldots\) & \(\cdots\) \\
\hline L & H & H & L & \(\stackrel{\square}{\square}\) & \(\cdots\) \\
\hline \(L\) & H & H & H & \(\stackrel{7}{7}\) & \(\stackrel{\square}{\square}\) \\
\hline H & 1. & L. & \(L\) & 曲: & : \\
\hline H & \(L\) & L & H & \% & ? \\
\hline H & \(L\) & H & L & \% & \% \\
\hline H & \(L\) & H & H & (BLANK) & \% \\
\hline H & H & L & L & ( BLANK ) & ! \({ }^{\circ}\) \\
\hline H & H & L & H & *** & \% \\
\hline H & H & H & \(L\) & (BLANK) & \% \\
\hline H & H & H & H & (BLANK) & \%" \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{DEC[MALPT. \({ }^{\text {[2] }}\)}} & \multicolumn{2}{|l|}{ON} & \(V_{D P}=1\) \\
\hline & & & \multicolumn{2}{|l|}{OFF} & \(V_{D P}=H\) \\
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{ENABLE \({ }^{(1)}\)}} & \multicolumn{2}{|l|}{LOAD DATA} & \(V_{E}=L\) \\
\hline & & & \multicolumn{2}{|l|}{LATCH DATA} & \(V_{E}=H\) \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{BLANKING \({ }^{[3]}\)}} & \multicolumn{2}{|l|}{DISPLAY-ON} & \(V_{B}=1\) \\
\hline & & & \multicolumn{2}{|l|}{DISPLAY-OFF} & \(V_{B}={ }^{\# \#}\) \\
\hline
\end{tabular}

Notes:
1. \(H=\) Logic High; \(L=\) Logic Low. With the enable input at logic high changes in BCD input logic levels or D.P. input have no effect upon display memory, displayed character, or D.P.
2. The decimal point input, DP, pertains only to the \(5082-7300\) and 5082-7302 displays.
3. The blanking control input, B, pertains only to the 5082-7340 hexadecimal display. Blanking input has no effect upon display memory.

\section*{Solid State Over Range Character}

For display applications requiring a \(\pm, 1\), or decimal point designation, the 5082-7304 over range character is available. This display module comes in the same package as the \(5082-7300\) series numeric indicator and is completely compatible with it.

\section*{Package Dimensions}


TRUTH TABLE FOR 5082-7304


NOTES: L: Line switching transistor in Fig. 7 cutoff. H : Line switching transistor in Fig. 7 saturated. X: 'don't care'

\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|c|c|c|}
\hline DESCRIPTION & SYMBOL & MIN & MAX & UNIT \\
\hline Storage temperature, ambient & \(\mathrm{T}_{\mathrm{S}}\) & -40 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating temperature, case & \(\mathrm{T}_{\mathrm{C}}\) & -20 & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Forward current, each LED & \(\mathrm{I}_{\mathrm{F}}\) & & 10 & \(\mathrm{~mA}^{\mathrm{CA}}\) \\
\hline Reverse voltage, each LED & \(\mathrm{V}_{\mathrm{R}}\) & & 4 & V \\
\hline
\end{tabular}

\section*{RECOMMENDED OPERATING CONDITIONS}
\begin{tabular}{|l|c|c|c|c|c|}
\hline & SYMBOL & MIN & NOM & MAX & UNIT \\
\hline LED supply voltage & \(V_{C C}\) & 4.5 & 5.0 & 5.5 & \(V\) \\
\hline Forward current, each LED & \(\mathrm{I}_{\mathrm{F}}\) & & 5.0 & 10 & mA \\
\hline
\end{tabular}

NOTE:
LED current must be externally limited. Refer to figure 7 for recommended resistor values.


Electrical/Optical Characteristics \({ }_{(T)}=-20^{\circ} \mathrm{C}\) TO \(+85^{\circ} \mathrm{C}\), UNLESS OTHÉRWISE SPECIFIED)
\begin{tabular}{|l|l|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & SYMBOL & TEST CONDITIONS & MIN & TVP & MAX \\
\hline Forward Voltage per LED & \(V_{F}\) & \(I_{F}=10 \mathrm{~mA}\) & & 1.6 & 2.0 \\
\hline Power dissipation & \(\mathrm{P}_{\mathrm{T}}\) & \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) \\
all diodes lit
\end{tabular}\(\quad \mathrm{V}\)

> HEXADECIMAL AND NUMERIC DISPLAYS FOR INDUSTRIAL APPLICATIONS

\section*{Features}
- CERAMIC/GLASS PACKAGE
- ADDED RELIABILITY
- NUMERIC 5082-7356/-7357 0-9, Test State, Minus Sign, Blank States Decimal Point

7356 Right Hand D.P.
7357 Left Hand D.P.
- HEXADECIMAL 5082-7359

0-9, A-F, Base 16 Operation Blanking Control, Conserves Power No Decimal Point
- TTL COMPATIBLE
- INCLUDES DECODER/DRIVER WITH 5 BIT MEMORY

8421 Positive Logic Input and Decimal Point
- \(4 \times 7\) DOT MATRIX ARRAY

Shaped Character, Excellent Readability
- STANDARD DUAL-IN-LINE PACKAGE
\(15.2 \mathrm{~mm} \times 10.2 \mathrm{~mm}\) ( 6 inch \(\times .4\) inch)
- CATEGORIZED FOR LUMINOUS INTENSITY

\section*{Description}

The HP 5082-7350 series solid state numeric and hexadecimal indicators with on-board decoder/driver and memory provide 7.4 mm ( 0.29 inch) displays for use in adverse industrial environments.
The 5082-7356 numeric indicator decodes positive 8421 BCD logic inputs into characters 0-9, a " -" sign, a test

\section*{Package Dimensions}



pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.
The 5082-7357 is the same as the 5082-7356 except that the decimal point is located on the left-hand side of the digit.
The 5082-7359 hexadecimal indicator decodes positive 8421 logic inputs into 16 states, 0-9 and A-F. In place of the decimal point an input is provided for blanking the display (all LED's off), without losing the contents of the memory. Applications include terminals and computer systems using the base- 16 character set.
The 5082-7358 is a ( \(\pm 1\) ) over range display including a right hand decimal point.

\section*{Applications}

Typical applications include control systems, instrumentation, communication systems, and transportation equipment.


END VIEW
\begin{tabular}{|c|l|l|}
\hline \multirow{3}{*}{ PIN } & \multicolumn{2}{|c|}{ FUNCTION } \\
\cline { 2 - 3 } & \begin{tabular}{l} 
5082.7356 \\
AND 7357 \\
NUMERIC
\end{tabular} & \begin{tabular}{l}
5082.7359 \\
HEXA \\
DECIMAL
\end{tabular} \\
\hline 1 & Input 2 & Input 2 \\
\hline 2 & Input 4 & Input 4 \\
\hline 3 & Input 8 & Input 8 \\
\hline 4 & \begin{tabular}{l} 
Decimal \\
point
\end{tabular} & \begin{tabular}{l} 
Blanking \\
control
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Latch \\
enabla
\end{tabular} & \begin{tabular}{l} 
Latch \\
enabla
\end{tabular} \\
\hline 6 & \begin{tabular}{l} 
Ground
\end{tabular} & Ground \\
\hline 7 & VCC & VCC \\
\hline 8 & Input 1 & Input 1 \\
\hline
\end{tabular}


NOTES:
1. Dimensions in millimetres and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is \(\pm .38 \mathrm{~mm}\left( \pm .015^{\prime \prime}\right)\)
3. Digit center line is \(\pm .25 \mathrm{~mm}\) ( \(\pm .01^{\prime \prime}\) ) from package center line.

Absolute Maximum Ratings
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Description } & Symbol & Min. & Max. & Unit \\
\hline Storage temperature, ambient & \(\mathrm{T}_{\mathrm{S}}\) & -65 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating temperature, ambient \({ }^{(1,2)}\) & \(\mathrm{T}_{\mathrm{A}}\) & -55 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Supply voltage \({ }^{(3)}\) & \(\mathrm{V}_{\mathrm{CC}}\) & -0.5 & +7.0 & V \\
\hline Voltage applied to input logic, dp and enable pins & \(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}\) & -0.5 & +7.0 & V \\
\hline Voltage applied to blanking input \({ }^{(7)}\) & \(\mathrm{V}_{\mathrm{B}}\) & -0.5 & \(\mathrm{~V}_{\mathrm{CC}}\) & V \\
\hline \begin{tabular}{l} 
Maximum solder temperature at \(1.59 m m(.062\) inch \()\) \\
below seating plane; \(t \leqslant 5\) seconds
\end{tabular} & & 260 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Recommended Operating Conditions}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Description & Symbol & Min. & Nom. & Max. & Unit \\
\hline Supply Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 4.5 & 5.0 & 5.5 & V \\
\hline Operating temperature, ambient & \(\mathrm{T}_{\bar{\lambda}}\) & -20 & & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Enable Pulse Width & \(\mathrm{t}_{\mathrm{w}}\) & 100 & & & nsec \\
\hline \begin{tabular}{l} 
Time data must be held before positive transition \\
of enable line
\end{tabular} & \(\mathrm{t}_{\text {SETUP }}\) & 50 & & & nsec \\
\hline \begin{tabular}{l} 
Time data must be held after positive transition \\
of enable line
\end{tabular} & \(\mathrm{t}_{\mathrm{HOLD}}\) & 50 & & & nsec \\
\hline Enable pulse rise time & \(\mathrm{t}_{\text {TLH }}\) & & & 200 & nsec \\
\hline
\end{tabular}

Electrical/Optical Characteristics \(\left(T_{A}=-20^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\right.\), Unless otherwise Specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. \({ }^{(4)}\) & Max. & Unit \\
\hline Supply Current & \(\mathrm{I}_{\mathrm{cc}}\) & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\) (Numeral 5 and dp lighted)} & & 112 & 170 & mA \\
\hline Power dissipation & \(\mathrm{P}_{\text {T }}\) & & & 560 & 935 & mW \\
\hline Luminous intensity per LED (Digit average) \({ }^{(5,6)}\) & IV & \(\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 40 & 85 & & \(\mu \mathrm{cd}\) \\
\hline Logic low-level input voltage & \(\mathrm{V}_{\text {IL }}\) & \multirow{6}{*}{\(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\)} & & & 0.8 & V \\
\hline Logic high-level input voltage & \(\mathrm{V}_{\text {IH }}\) & & 2.0 & & & V \\
\hline Enable low-voltage; data being entered & \(V_{E L}\) & & & & 0.8 & V \\
\hline Enable high-voltage; data not being entered & \(V_{\text {EH }}\) & & 2.0 & & & V \\
\hline Blanking low-voltage; display not blanked \({ }^{(7)}\) & \(V_{B L}\) & & & & 0.8 & V \\
\hline Blanking high-voltage; display blanked \({ }^{(7)}\) & \(\mathrm{V}_{\text {BH }}\) & & 3.5 & & & V \\
\hline Blanking low-level input current \({ }^{(7)}\) & \(\mathrm{I}_{\text {BL }}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}\) & & & 50 & \(\mu \mathrm{A}\) \\
\hline Blanking high-level input current \({ }^{(7)}\) & \(\mathrm{I}_{\text {BH }}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BH}}=4.5 \mathrm{~V}\) & & & 1.0 & mA \\
\hline Logic low-level input current & 1 IL & \(\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline Logic high-level input current & \(\mathrm{I}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=2.4 \mathrm{~V}\) & & & +100 & \(\mu \mathrm{A}\) \\
\hline Enable low-level input current & \(\mathrm{IEL}^{\text {L }}\) & \(\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline Enable high-level input current & \(\mathrm{I}_{\mathrm{EH}}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {EH }}=2.4 \mathrm{~V}\) & & & +130 & \(\mu \mathrm{A}\) \\
\hline Peak wavelength & \(\lambda_{\text {PEAK }}\) & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 655 & & nm \\
\hline Dominant Wavelength \({ }^{(8)}\) & \(\lambda_{d}\) & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 640 & & nm \\
\hline Weight & & & & 1.0 & & gm \\
\hline
\end{tabular}

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: \(\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\); \(\Theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W} ; 2 . \Theta_{\mathrm{cA}}\) of a mounted display should not exceed \(35^{\circ} \mathrm{C} / \mathrm{W}\) for operation up to \(\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}\). 3. Voltage values are with respect to device ground, pin 6. 4. All typical values at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Volts}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\). 5 . These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific ambient temperature, \(\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)\), may be calculated from this relationship: \(\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)=\mathrm{I}_{\mathrm{V}\left(25^{\circ} \mathrm{C}\right)}(.985)\left[\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right]\) 7. Applies only to 7359. 8. The dominant wavelength, \(\lambda_{d}\), is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.


Figure 1. Timing Diagram of 5082-735X Series Logic.


Figure 2. Block Diagram of 5082-735X Series Logic.


Figure 3. Typical Blanking Control Current vs. Voltage for 50827359.


Figure 4. Typical Blanking Control Input Current vs. Ambient Temperature for 5082-7359.


Figure 5. Typical Latch Enable Input Current vs. Voltage.


Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage.


Figure 7. Typical Logic and Enable Low Input Current vs. Ambient Temperature.


Figure 8. Typical Logic and Enable High Input Current vs. Ambient Temperature.

\section*{Operational Considerations}

\section*{ELECTRICAL}

The 5082-735X series devices use a modified \(4 \times 7\) dot matrix of light emitting diodes (LED's) to display decimal/hexadecimal numeric information. The LED's are driven by constant current drivers. BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. To avoid the latching of erroneous information, the enable pulse rise time should not exceed 200 nanoseconds. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.
The blanking control input on the 5082-7395 display blanks (turns off) the displayed hexadecimal information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 3.5 volts. This may be easily achieved by using an open collector TTL gate and a pull-up resistor. For example, (1/6) 7416 hexinverter buffer/driver and a 120 ohm pull-up resistor will provide sufficient drive to blank eight displays. The size of the blanking pull-up resistor may be calculated from the following formula, where N is the number of digits:
\[
\mathrm{R}_{\mathrm{blank}}=\left(\mathrm{V}_{\mathrm{cc}}-3.5 \mathrm{~V}\right) /[\mathrm{N}(1.0 \mathrm{~mA})]
\]

The decimal point input is active low true and this data is latched into the display memory in the same fashion as is the.BCD data. The decimal point LED is driven by the onboard IC.

\section*{MECHANICAL}

These displays are designed for use in adverse industrial environments.

These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-to-lead pin spacing is \(2.54 \mathrm{~mm}(0.100 \mathrm{inch})\) and the lead row spacing is 15.24 mm ( 0.600 inch ). These displays may be end stacked with 2.54 mm ( 0.100 inch ) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of \(+100^{\circ} \mathrm{C}\), it is important to maintain a case-to-ambient thermal resistance of less than \(35^{\circ} \mathrm{C} /\) watt as measured on top of display pin 3.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

\section*{CONTRAST ENHANCEMENT}

The 5082-735X displays have been designed to provide the maximum posible ON/OFF contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60 and Dark Red 63, SGL Homalite H100-1605, 3M Light Control Film and Polaroid HRCP Red Circular Polarizing Filter. For further information see Hewlett-Packard Application Note 964.

\section*{Solid State Over Range Character}

For display applications requiring a \(\pm, 1\), or decimal point designation, the 5082-7358 over range character is available. This display module comes in the same package as the \(5082-735 \mathrm{X}\) series numeric indicator and is completely compatible with it.

\section*{Package Dimensions}


FRONT


\begin{tabular}{|c|c|}
\hline PIN & FUNCTION \\
\hline 1 & Plus \\
\hline 2 & Numeral One \\
\hline 3 & Numeral One \\
\hline 4 & DP \\
\hline 5 & Open \\
\hline 6 & Open \\
\hline 7 & V \\
\hline 8 & Minus/Plus \\
\hline
\end{tabular}


Figure 9. Typical Driving Circuit.

TRUTH TABLE
\begin{tabular}{|c|cccc|}
\hline \multirow{2}{*}{ CHARACTER } & \multicolumn{4}{|c|}{ PIN } \\
\cline { 2 - 5 } & \(\mathbf{1}\) & 2,3 & \(\mathbf{4}\) & 8 \\
\hline+ & \(H\) & \(X\) & X & H \\
\hline- & L & X & X & H \\
\hline \(\mathbf{1}\) & X & H & X & X \\
\hline Decimal Point & X & X & H & X \\
\hline Blank & L & L & L & L \\
\hline
\end{tabular}

NOTES: L: Line switching transistor in Figure 9 cutoff.
H: Line switching transistor in Figure 9 saturated.
X: 'Don't care’

\section*{Electrical/Optical Characteristics}

5082-7358 ( \(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\), Unless Otherwise Specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DESCRIPTION & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Forward Voltage per LED & \(V_{F}\) & \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) & & 1.6 & 2.0 & V \\
\hline Power dissipation & \({ }^{P_{T}}\) & \begin{tabular}{l}
\[
I_{F}=10 \mathrm{~mA}
\] \\
all diodes lit
\end{tabular} & & 280 & 320 & mW \\
\hline Luminous Intensity per LED (digit average) & \(I_{v}\) & \[
\begin{aligned}
& \mathrm{I}_{F}=6 \mathrm{~mA} \\
& T_{C}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 40 & 85 & & \(\mu \mathrm{cd}\) \\
\hline Peak wavelength & \(\lambda_{\text {peak }}\) & \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & & 655 & & nm \\
\hline Dominant Wavelength & \(\lambda d\) & \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & & 640 & & nm \\
\hline Weight & & & & 1.0 & & gm \\
\hline
\end{tabular}

\section*{Recommended Operating Conditions}
\begin{tabular}{|l|c|c|c|c|c|}
\hline & SYMBOL & MIN & NOM & MAX & UNIT \\
\hline LED supply voltage & \(V_{\text {CC }}\) & 4.5 & 5.0 & 5.5 & \(V\) \\
\hline Forward current, each LED & \(I_{F}\) & & 5.0 & 10 & mA \\
\hline
\end{tabular}

\section*{NOTE:}

LED current must be externally limited. Refer to Figure 9 for recommended resistor values.

Absolute Maximum Ratings
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & SYMBOL & MIN. & MAX. & UNIT \\
\hline Storage temperature, ambient & \(\mathrm{T}_{\mathrm{S}}\) & -65 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating temperature, ambient & \(\mathrm{T}_{\mathrm{A}}\) & -55 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Forward current, each LED & \(\mathrm{I}_{\mathrm{F}}\) & & 10 & mA \\
\hline Reverse voltage, each LED & \(\mathrm{V}_{\mathrm{R}}\) & & 4 & V \\
\hline
\end{tabular}

HIGH EFFICIENCY RED
Low Power HDSP-0760/0761/0762/0763
High Brightness HDSP-0770/0771/0772/0763
YELLOW HDSP-0860/0861/0862/0863
GREEN HDSP-0960/0961/0962/0963
TECHNICAL DATA JANUARY 1986

\section*{Features}
- THREE COLORS

High-Efficiency Red
Yellow
High Performance Green
- THREE CHARACTER OPTIONS

Numeric
Hexadecimal
Over Range
- TWO HIGH-EFFICIENCY RED OPTIONS

Low Power
High Brightness
- PERFORMANCE GUARANTEED OVER TEMPERATURE
- MEMORY LATCH/DECODER/DRIVER TTL Compatible
- \(4 \times 7\) DOT MATRIX CHARACTER
- CATEGORIZED FOR LUMINOUS INTENSITY
- YELLOW AND GREEN CATEGORIZED FOR COLOR

\section*{Typical Applications}
- INDUSTRIAL EQUIPMENT
- COMPUTER PERIPHERALS
- INSTRUMENTATION
- TELECOMMUNICATION EQUIPMENT

\section*{Devices}

\section*{Description}

These solid state display devices are designed and tested for use in adverse industrial environments. The character height is 7.4 mm ( 0.29 inch ). The numeric and hexadecimal devices incorporate an on-board IC that contains the data memory, decoder and display driver functions.

The numeric devices decode positive BCD logic into characters " \(0-9\) ", a "-" sign, decimal point, and a test pattern. The hexadecimal devices decode positive BCD logic into 16 characters, "0-9, A-F". An input is provided on the hexadecimal devices to blank the display (all LED's off) without losing the contents of the memory.

The over range device displays " \(\pm 1\) " and right hand decimal point and is typically driven via external switching transistors.

\section*{Package Dimensions}


\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{PIN} & \multicolumn{2}{|c|}{FUNCTION} \\
\hline & NUMERIC & HEXA. DECIMAL \\
\hline 1 & Input 2 & Input 2 \\
\hline 2 & Input 4 & Input 4 \\
\hline 3 & Input 8 & Input 8 \\
\hline 4 & Decimal point & Blanking contral \\
\hline 5 & Latch enable & Latch enable \\
\hline 6 & Ground & Ground \\
\hline 7 & \(V_{\text {cc }}\) & \(V_{\text {cc }}\) \\
\hline 8 & Input 1 & Input 1 \\
\hline
\end{tabular}

NOTES:
1. Dimensions in millimetres and (inches).
2. Vertical digit center line is \(\pm .51 \mathrm{~mm}\left( \pm .02^{\prime \prime}\right)\)
from vertical package center line.
3. HDSP-0860 and HDSP-0960 Series.


Figure 1. Timing Diagram


Figure 2. Logic Block Diagram
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TRUTH TABLE} \\
\hline \multicolumn{4}{|c|}{BCD DATA \({ }^{(1)}\)} & \multirow[b]{2}{*}{NUMERIC} & \multirow[t]{2}{*}{HEXA. DECIMAL} \\
\hline \(\mathrm{X}_{8}\) & \(\mathrm{X}_{4}\) & \(\mathrm{X}_{2}\) & \({ }^{1}\) & & \\
\hline 1. & L & L & \(\downarrow\) & \% & \% \\
\hline \(\pm\) & L & 1 & H & \(\stackrel{+}{+}\) & \% \\
\hline t. & \(L\) & H & L & \(\ldots\) & \(\because\) \\
\hline L & 1 & H & H & \% & \% \\
\hline \(L\) & H & L & L & + \% & + \\
\hline L & H & \(L\) & H & \(\cdots\) & \(\cdots\) \\
\hline 1. & H & H & 1 & \(\cdots\) & \(\cdots\) \\
\hline 1 & H & H & H & \(\stackrel{\square}{\square}\) & * \\
\hline H & L & 1 & \(L\) & \% & \% \\
\hline H & L & \(L\) & H & \% & \% \\
\hline H & L & H & \(L\) & 管 & \% \\
\hline H & L & H & H & (BLANK) & \% \\
\hline H & H & 1 & 1 & (BLANK) & \(\cdots\) \\
\hline H & H & 1 & H & *** & ", \\
\hline H & H & H & L & (BLANK) &  \\
\hline H & H & H & H & (BLANK) & -' \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{DECIMAE PT, [2]}} & \multicolumn{2}{|l|}{ON} & \(V_{O P}=L\) \\
\hline & & & \multicolumn{2}{|l|}{OFF} & \(V_{D P}=\mathrm{H}\) \\
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{ENABLE \({ }^{[1]}\)}} & \multicolumn{2}{|l|}{LOAD DATA} & \(V_{E}=\mathrm{L}\) \\
\hline & & & \multicolumn{2}{|l|}{LATCH DATA} & \(V_{E}=H\) \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{BLANKING \({ }^{(3)}\)}} & \multicolumn{2}{|l|}{DISPLAY-ON} & \[
V_{B}=L
\] \\
\hline & & & \multicolumn{2}{|l|}{DISPLAY-OFF} & \(V_{B}=H\) \\
\hline
\end{tabular}

Notes:
1. \(H=\) Logic High; \(L=\) Logic Low. With the enable input at logic high changes in BCD input logic levels have no effect upon display memory, displayed character, or DP.
2. The decimal point input, DP, pertains only to the numeric displays
3. The blanking control input, B, pertains only to the hexadecimal displays. Blanking input has no effect upon display memory.

\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Description & * & Symbol & Min. & Max. & Unit \\
\hline Storage temperature, ambient & 4 & Ts & -65 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating temperature, ambient \({ }^{11}\) & & TA & -55 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Supply voltage \({ }^{\text {[2] }}\) & \% & \(\mathrm{V}_{\mathrm{cc}}\) & -0.5 & +7.0 & V \\
\hline \multicolumn{2}{|l|}{Voltage applied to input logic, dp and enable pins} & \(V_{1}, V_{\text {DP }}, V_{E}\) & - -0.5 & \(\mathrm{V}_{C C}\) & \(V\) \\
\hline Voltage applied to bianking input \({ }^{121}\) | & & \(\mathrm{V}_{\mathrm{B}}\) & -0.5 & = \(V_{\text {cc }}\) & V \\
\hline \multicolumn{2}{|l|}{Maximum solder temperature at 1.59 mm (. 062 inch) below seating plane; \(t \leqslant 5\) seconds} & & & 260 & \[
{ }^{\circ} \mathrm{C}
\] \\
\hline
\end{tabular}

\section*{Recommended Operating Conditions}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Description } & Symbol & Min. & Nom. & Max. & Unit \\
\hline Supply Voltage \(1^{2 \mid}\) & \(\mathrm{V}_{\mathrm{CC}}\) & 4.5 & 5.0 & 5.5 & V \\
\hline Operating temperature, ambient \({ }^{[1]}\) & \(\mathrm{TA}_{\mathrm{A}}\) & -55 & & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Enable Pulse Width & \(\mathrm{t}_{\mathrm{w}}\) & 100 & & & nsec \\
\hline \begin{tabular}{l} 
Time data must be held before positive transition \\
of enable line
\end{tabular} & \(\mathrm{t}_{\text {serup }}\) & 50 & & & nsec \\
\hline \begin{tabular}{l} 
Time data must be held after positive transition \\
of enable line
\end{tabular} & \(\mathrm{t}_{\text {HoLD }}\) & 50 & & & nsec \\
\hline Enable pulse rise time & \(\mathrm{t}_{\text {tLH }}\) & & & 1.0 & msec \\
\hline
\end{tabular}

\section*{Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Device & Description & Symbol & Min. & Typ. & Max. & Unit \\
\hline \multirow{3}{*}{\begin{tabular}{l}
HDSP-0760 \\
Series
\end{tabular}} & Luminous Intensity per LED (Digit Average) \({ }^{|3.4|}\) & IV & 65 & 140 & & \(\mu \mathrm{cd}\) \\
\hline & Peak Wavelength & \(\lambda\) PEAK & & 635 & & nm \\
\hline & Dominant Wavelength[5] & \(\lambda_{d}\) & & 626 & & nm \\
\hline \multirow{3}{*}{HDSP-0770 Series} & Luminous Intensity per LED (Digit Average) \({ }^{3,41}\) & IV & 260 & 620 & & \(\mu \mathrm{cd}\) \\
\hline & Peak Wavelength & \(\lambda\) PEAK & & 635 & & nm \\
\hline & Dominant Wavelength \({ }^{(5]}\) & \(\lambda_{d}\) & & 626 & & nm \\
\hline \multirow{3}{*}{\begin{tabular}{l}
HDSP-0860 \\
Series
\end{tabular}} & Luminous Intensity per LED (Digit Average) \({ }^{[3,4]}\) & Iv & 215 & 490 & & \(\mu \mathrm{cd}\) \\
\hline & Peak Wavelength & \(\lambda\) АеЕAK & & 583 & & nm \\
\hline & Dominant Wavelength \({ }^{[5,6]}\) & \(\lambda_{d}\) & & 585 & & nm \\
\hline \multirow{3}{*}{HDSP-0960 Series} & Luminous Intensity per LED (Digit Average) \({ }^{|3.4|}\) & IV & 298 & 1100 & & \(\mu \mathrm{cd}\) \\
\hline & Peak Wavelength & 入PEAK & & 568 & & nm \\
\hline & Dominant Wavelength \({ }^{[5,6]}\) & \(\lambda_{d}\) & & 574 & & nm \\
\hline
\end{tabular}

\section*{Notes:}
1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is \(R \theta J \mathrm{JA}=50^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{device}\). The device package thermal resistance is \(R \theta J-P I N=15^{\circ} \mathrm{C} / \mathrm{W} /\) device. The thermal resistance device pin-to-ambient through the \(P C\) board should not exceed \(35^{\circ} \mathrm{C} / \mathrm{W} /\) device for operation at \(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\).
2. Voltage values are with respect to device ground, pin 6.
3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to \(25^{\circ} \mathrm{C}\).

\section*{Electrical Characteristics; \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. \({ }^{[7]}\) & Max. & Unit \\
\hline Supply HDSP-0760 Series & \multirow[t]{2}{*}{ICC} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
V_{C C}=5.5 \mathrm{~V}
\] \\
(Numeral 5 and DP Illuminated)
\end{tabular}} & & 78 & 105 & \multirow[b]{2}{*}{mA} \\
\hline \begin{tabular}{ll} 
Current & \begin{tabular}{l} 
HDSP-0770 Series \\
\\
\\
\\
\\
\\
HDSP-0860 Series
\end{tabular} \\
& HDSP-0960 Series
\end{tabular} & & & & 120 & 175 & \\
\hline Power HDSP-0760 Series & \multirow[t]{2}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(V_{C C}=5.5 \mathrm{~V}\) \\
(Numeral 5 and \\
DP Illuminated)
\end{tabular}} & & 390 & 573 & \multirow[b]{2}{*}{mW} \\
\hline \begin{tabular}{rl} 
Dissipation & HDSP-0770 Series \\
& HDSP-0860 Series \\
& HDSP-0960 Series
\end{tabular} & & & & 690 & 963 & \\
\hline Logic, Enable and Blanking Low-Level Input Voltage & VIL & \multirow[b]{2}{*}{\(V_{C C}=4.5 \mathrm{~V}\)} & & & 0.8 & V \\
\hline Logic, Enable and Blanking High-Level Input Voltage & \(\mathrm{V}_{\text {IH }}\) & & 2.0 & & & V \\
\hline Logic and Enable Low-Level Input Current & I/L. & \(V C C=5.5 \mathrm{~V}\) & & & -1.6 & mA \\
\hline Blanking Low-Level Input Current & IBL & \(\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}\) & & & -10 & \(\mu \mathrm{A}\) \\
\hline Logic, Enable and Blanking High-Level Input Current & \(\mathrm{I}_{\mathrm{H}}\) & \[
\begin{aligned}
& \mathrm{VCC}=5.5 \mathrm{~V} \\
& V_{I H}=2.4 \mathrm{~V}
\end{aligned}
\] & & & \(+40\) & \(\mu \mathrm{A}\) \\
\hline Weight & & & & 1.0 & & gm \\
\hline Leak Rate & & & & & \(5 \times 10^{-8}\) & cc/sec \\
\hline
\end{tabular}

Notes:
4. The luminous intensity at a specific operating ambient temperature, \(\operatorname{lv}\left(T_{A}\right)\) may be approximated from the following expotential equation: \(\operatorname{lv}\left(T_{A}=\operatorname{lv}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\operatorname{lk}\left(\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right) \mid}\right.\).
\begin{tabular}{|l|c|}
\hline Device & K \\
\hline \begin{tabular}{l} 
HDSP-0760 Series \\
HDSP-0770 Series
\end{tabular} & \(-0.0131 /{ }^{\circ} \mathrm{C}\) \\
\hline HDSP-0860 Series & \(-0.0112 /^{\circ} \mathrm{C}\) \\
\hline HDSP-0960 Series & \(-0.0104 /^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
5. The dominant wavelength, \(\lambda_{d}\), is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
6. The HDSP-0860 and HDSP-0960 series devices are categorized as to dominant wavelength with the category designated by a number on the back side of the display package.
7. All typical values at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{Operational Considerations}

\section*{ELECTRICAL}

These devices use a modified \(4 \times 7\) dot matrix of light emitting diode to display decimal/hexadecimal numeric information. The high efficiency red and yellow LED's are GaAsP epitaxial layer on a GaP transparent substrate. The green LED's are GaP epitaxial layer on a GaP transparent substrate. The LED's are driven by constant current drivers, BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the onboard IC.

The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{MECHANICAL}

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of \(+70^{\circ} \mathrm{C}\), it is important to maintain a case-to-ambient thermal resistance of less than \(35^{\circ} \mathrm{C}\) watt/device as measured on top of display pin 3.

Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixutres formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

\section*{CONTRAST ENHANCEMENT}

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an appropriate contrast enhancement filter. The following filters are suggested:

HIGH EFFICIENCY RED
Panelgraphic Ruby Red 60
Chequers Red 112
3M Light Control Film

\section*{YELLOW}

Panelgraphic Yellow 27
Chequers Amber 107
3M Light Control Film

\section*{GREEN}

Panelgraphic Green 48
Chequers Green 107
3M Light Control Film

For many applications a neutral density gray filter in either plastic, circular polarizer or optically coated glass will provide the needed contrast enhancement. Suggested plastic neutral density gray filters are Panelgraphic Gray 10, Chequers Gray 105, or Polaroid HNCP37. The optically coated glass/circular polarized HNCP10 filter by Polaroid provides superior contrast enhancement for very bright ambients.

\section*{Over Range Character}

The over range devices display " \(\pm 1\) " and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

\section*{Package Dimensions}

\begin{tabular}{|c|c|}
\hline Pin & Function \\
\hline 1 & Plus \\
\hline 2 & Numeral One \\
\hline 3 & Numeral One \\
\hline 4 & DP. \\
\hline 5 & Open \\
\hline 6 & Open \\
\hline 7 & Vcc \\
\hline 8 & Minus/Plus \\
\hline
\end{tabular}

FRONT VIEW
Note:
1. Dimensions in millimetres and (inches).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Character } & \multicolumn{4}{|c|}{ Pin } \\
\cline { 2 - 5 } & \(\mathbf{1}\) & \(\mathbf{2 , 3}\) & \(\mathbf{4}\) & \(\mathbf{8}\) \\
\hline+ & 1 & \(X\) & \(X\) & 1 \\
\hline- & 0 & \(x\) & \(x\) & 1 \\
\hline 1 & \(X\) & 1 & \(X\) & \(X\) \\
\hline Decimal Point & \(X\) & \(x\) & 1 & \(X\) \\
\hline Blank & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Notes:}

0 : Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
X: 'don't care'

\section*{Absolute Maximum Ratings}
\begin{tabular}{|l|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Description } & Symbol & Min. & Max. & Unit \\
\hline \begin{tabular}{l} 
Storage Temperature, \\
Ambient
\end{tabular} & \(\mathrm{Ts}_{\mathrm{s}}\) & -65 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Cperating Temperature \\
Ambient
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & -55 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Forward Current, \\
Each LED
\end{tabular} & \(\mathrm{I}_{F}\) & & 10 & mA \\
\hline \begin{tabular}{l} 
Reverse Voltage, \\
Each LED
\end{tabular} & \(\mathrm{V}_{R}\) & & 5 & V \\
\hline
\end{tabular}


Figure 3. Typical Driving Circuit

Recommended Operating Conditions \(\mathrm{v}_{\mathrm{cc}}=5.0 \mathrm{v}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Device } & \begin{tabular}{c} 
Forward \\
Current Per \\
LED, \(\mathbf{~ m A ~}\)
\end{tabular} & \multicolumn{3}{|c|}{ Resistor Value } \\
\cline { 3 - 6 } & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) \\
\hline HDSP-0763 \begin{tabular}{c} 
Low Power \\
\hline \begin{tabular}{c} 
High \\
Brightness
\end{tabular} \\
\hline HDSP-0863
\end{tabular} & 2.3 & 1300 & 200 & 300 \\
\hline HDSP-0963 & 8 & 360 & 47 & 68 \\
\hline
\end{tabular}

\section*{Luminous Intensity Per LED}
(Digit Average) \({ }^{[3,4]}\) at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|l|c|c|c|}
\hline Device & Test Conditions & Min. & Typ. & Units \\
\hline HDSP-0763 & \(I_{F}=2.3 \mathrm{~mA}\) & 65 & 140 & \(\mu \mathrm{~cd}\) \\
\cline { 2 - 5 } & \(I_{F}=8 \mathrm{~mA}\) & & 620 & \(\mu \mathrm{~cd}\) \\
\hline HDSP-C863 & \(I_{F}=8 \mathrm{~mA}\) & 215 & 490 & \(\mu \mathrm{~cd}\) \\
\hline HDSP-0963 & \(I_{F}=8 \mathrm{~mA}\) & 298 & 1100 & \(\mu \mathrm{~cd}\) \\
\hline
\end{tabular}

Electrical Characteristics; \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Device & Description & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{4}{*}{HDSP-0763} & \multirow[t]{2}{*}{Power Dissipation (all LED's Illuminated)} & \multirow[b]{2}{*}{PT} & \(\mathrm{If}^{\mathrm{F}}=2.8 \mathrm{~mA}\) & & 72 & & \multirow[b]{2}{*}{mW} \\
\hline & & & IF \(=8 \mathrm{~mA}\) & & 224 & 282 & \\
\hline & \multirow[t]{2}{*}{Forward Voltage per LED} & \multirow[b]{2}{*}{\(V_{F}\)} & \(\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}\) & & 1.6 & & \multirow[t]{2}{*}{\(V\)} \\
\hline & & & \(\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}\) & & 1.75 & 2.2 & \\
\hline \multirow[t]{2}{*}{HDSP-0863} & Power Dissipation (all LED's lluminated) & \(\mathrm{P}_{T}\) & \multirow{2}{*}{\(i^{\prime}=8 \mathrm{~mA}\)} & & 237 & 282 & mW \\
\hline & Forward Voltage per LED & \(V_{F}\) & & & 1.90 & 2.2 & V \\
\hline \multirow[t]{2}{*}{HDSP-0963} & Power Dissipation (all LED's lluminated) & Pt & \multirow[b]{2}{*}{\(\mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}\)} & & 243 & 282 & mW \\
\hline & Forward Voltage per LED & \(V_{F}\) & & & 1.85 , & 2.2 & V \\
\hline
\end{tabular}

> LEADFRAME MOUNTED SEVEN SEGMENT MONOLITHIC NUMERIC INDICATORS

TECHNICAL DATA JANUARY 1986

\section*{Features}
－COMPACT PACKAGE SIZES
．25＂Package Width
＇．150＂and ．200＂Digit Spacing
－STROBED OPERATION Minimizes Lead Connections
－FULLY ENCAPSULATED STANDARD DIP PACKAGES
End Stackable Integral Red Filter
Extremely Rugged Construction
－I．C．COMPATIBLE

－CATEGORIZED FOR LUMINOUS INTENSITY Assures uniformity of light output from unit to unit within single category．

\section*{Description}

The HP 5082－7400／－7430 series are 2.79 mm （．11＂），seven segment GaAsP numeric indicators packaged in 2，3， 4 and 5 digit clusters．An integral magnification technique increases the luminous intensity，thereby making low power consumption possible．Options include either the standard lower right hand decimal point or a centered decimal point．
Applications include mobile，telephones，hand held calcu－ lators，portable instruments and many other products requiring compact，rugged，long lifetime active indicators．

\section*{Device Selection Guide}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Digits per Cluster} & Configuration & \multirow[t]{2}{*}{Inter－Digit Spacing mm （inches）} & \multicolumn{2}{|c|}{Part Number} \\
\hline & Device & & Center Decimal Point & Right Decimal Point \\
\hline 2 （right） & \(日 ⿴ 囗 十 力\) & 5.08 （．200） & & 5082－7432 \\
\hline 3 &  & 5.08 （．200） & & 5082－7433 \\
\hline 4 & \begin{tabular}{|l|l|l|l|}
\hline\(\theta\) & \(\theta\) & \(\theta\) & \(日\) \\
\hline
\end{tabular} & 3.81 （．150） & 5082－7404 & 5082－7414 \\
\hline 5 &  & 3.81 （．150） & 5082－7405 & 5082.7415 \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}
\begin{tabular}{|l|c|c|c|c|}
\hline Parameter & Symbol & Min. & Max. & Units \\
\hline \begin{tabular}{l} 
Peak Forward Current per Segment or dp (Duration < \(500 \mu \mathrm{~s}\) ) \\
\(5082-7432 / 7433\)
\end{tabular} & IPEAK & & 50 & mA \\
\hline \begin{tabular}{l} 
Peak Forward Current per Segment or dp (Duration < 1 msec ) \\
\(5082-7404 / 7405 / 7414 / 7415\)
\end{tabular} & IPEAK & & 110 & mA \\
\hline Average Current per Segment or dp & IAVG \(^{\prime}\) & & 5 & mA \\
\hline Power Dissipation per Digit \({ }^{[1]}\) & PD & & 80 & mW \\
\hline Operating Temperature, Ambient & \(\mathrm{TA}_{\mathrm{A}}\) & -40 & 75 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{Ts}_{\mathrm{S}}\) & -40 & 100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Reverse Voltage & \(\mathrm{V}_{\mathrm{R}}\) & & 5 & V \\
\hline Solder Temperature \(1 / 16^{\prime \prime}\) below seating plane \((\mathrm{t} \leq 3 \mathrm{sec})^{[2]}\) & & & 230 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Notes: 1. Derate linearly @ \(1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\) ambient.
2. See Mechanical section for recommended flux removal solvents.

Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline Luminous Intensity/Segment or \(\mathrm{dp}^{|3,4|}\) 5082-7432/7433 & Iv & \[
\begin{aligned}
& \text { lavg }=500 \mu \mathrm{~A} \\
& \text { (IPK }=5 \mathrm{~mA} \\
& \text { duty cycle }=10 \% \text { ) }
\end{aligned}
\] & 10 & 40 & & \(\mu \mathrm{cd}\) \\
\hline Luminous Intensity/Segment or \(\mathrm{dp}{ }^{|3.4|}\) (Time Averaged) 5082-7404/7405/7414/7415 & Iv & \(I_{\text {AVG }}=1 \mathrm{~mA}\) \(I_{\mathrm{PK}}=10 \mathrm{~mA}\) dutý cycle \(=10 \%\) ) & 5 & 20 & & \(\mu \mathrm{cd}\) \\
\hline Peak Wavelength & \(\lambda\) PEAK & & & 655 & & nm \\
\hline Forward Voltage/Segment or dp 5082-7432/-7433 & \(V_{F}\) & \(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\) & & 1.55 & 2.0 & V \\
\hline Forward Voltage/Segment or dp 5082-7404/7405/7414/7415 & \[
V_{F}
\] & \(\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}\) & & 1.55 & 2.0 & V \\
\hline Reverse Voltage/Segment or dp & \(V_{R}\) & \(\mathrm{I}_{\mathrm{R}}=200 \mu \mathrm{~A}\) & 5 & & & \(V\) \\
\hline Rise and Fall Time \({ }^{(5)}\) & \(\mathrm{tr}_{\mathrm{r}} \mathrm{tf}^{\text {f }}\) & & & 10 & & ns \\
\hline
\end{tabular}

NOTES:
3. The digits are categorized for luminous intensity. Intensity categories are designated by a letter located on the back side of the package.
4. Each character of the display is matched for luminous intensity at the test conditions shown. Operation of the display at lower peak currents may cause intensity mismatch within the display. Operation at peak currents less than 5.0 mA may cause objectionable display segment matching.
5. Time for a \(10 \%-90 \%\) change of light intensity for step change in current.


Figure 1. Typical Time Averaged Luminous Intensity per Segment (Digit Average) vs. Current per Segment.

5082-7432/7433


Figure 2. Relative Luminous Efficiency vs. Peak Current per Segment.

5082-7404/7405/7414/7415


Figure 3. Typical Time Averaged Luminous Intensity per Segment (Digit Average) vs. Average Current per Segment.

5082-7404/7405/7414/7415


> Ipeak - PEAK CURRENT PER SEGMENT - mA

Figure 4. Relative Luminous Efficiency vs. Peak Current per Segment.

5082-7400/7430 SERIES


Figure 5. Forward Current vs. Forward Voltage.


Figure 6. Relative Luminous Intensity vs. Case Temperature at Fixed Current Level.

\section*{Electrical/Optical}

The 5082-7400/7430 series devices utilize a monolithic GaAsP chip of 8 common cathode segments for each display digit. The segment anodes of each digit are interconnected, forming an 8 by N line array, where N is the number of characters in the display. Each chip is positioned under an integrally molded lens giving a magnified character height of 2.79 mm (0.11) inches. Satisfactory viewing will be realized within an angle of \(\pm 30^{\circ}\) for the \(7404 / 7405 / 7414 / 7415\) and \(\pm 20^{\circ}\) for the \(7432 / 7433\), measured from the center line of the digit.
The decimal point in the \(7432,7433,7414\), and 7415 displays is-located at the lower right of the digit for conventional driving schemes.
The 5082-7404 and 7405 displays contain a centrally located decimal point which is activated in place of a digit. In long registers, this technique of setting off the decimal point significantly improves the display's readability. With respect to timing, the decimal point is treated as a separate character with its own unique time frame.

To improve display contrast, the plastic incorporates a red dye that absorbs strongly at all visible wavelengths except the 655 nm emitted by the LED. An additional filter, such as Plexiglass 2423, Panelgraphic 60 or 63 , and SGL Homalite 100-1605, will further lower the ambient reflectance and improve display contrast.

\section*{Mechanical}

The 5082-7400/7430 series package is a standard 12 or 14 Pin DIP consisting of a plastic encapsulated lead frame with integral molded lenses. It is designed for plugging into DIP sockets or soldering into PC boards. The lead frame construction allows use of standard DIP insertion tools and techniques. Alignment problems are simplified due to the clustering of digits in a single package. The shoulders of the lead frame pins are intentionally raised above the bottom of the package to allow tilt mounting of up to \(20^{\circ}\) from the PC board.
To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. A \(60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{C}\right)\) water cleaning process may also be used, which includes a neutralizer rinse ( \(3 \%\) ammonia solution or equivalent), a surfactant rinse ( \(1 \%\) detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

\section*{Package Description 5082-7404, -7405, -7414, -7415}

Notes: 6. Dimensions in millimeters and (inches).
7. Tolerances on all dimension are \(\pm .38 \mathrm{~mm}\) ( \(\pm .015 \mathrm{in}\).) unless otherwise noted.


Figure 7. 5082-7404/7414
Figure 8. 5082-7405/7415.


Figure 9. 5082-7404/7405/ 7414/7415

\section*{Magnified Character Font Description}


\section*{Device Pin Description}
\begin{tabular}{|c|c|c|}
\hline PIN NO. & \begin{tabular}{c}
\(\mathbf{5 0 8 2 - 7 4 0 4 / 7 4 1 4}\) \\
FUNCTION
\end{tabular} & \begin{tabular}{c}
\(\mathbf{5 0 8 2 - 7 4 0 5 / 7 4 1 5}\) \\
FUNCTION
\end{tabular} \\
\hline 1 & CATHODE 1 & CATHODE 1 \\
\hline 2 & ANODE e & ANODE e \\
\hline 3 & ANODE c & ANODE c \\
\hline 4 & CATHODE 3 & CATHODE 3 \\
\hline 5 & ANODE dp & ANODE dp \\
\hline 6 & CATHODE 4 & ANODE d \\
\hline 7 & ANODE g & CATHODE 5 \\
\hline 8 & ANODE d & ANODE g \\
\hline 9 & ANODE f & CATHODE 4 \\
\hline 10 & CATHODE 2 & ANODE f \\
\hline 11 & ANODE b & SEE NOTE 8 \\
\hline 12 & ANODE a & ANODE b \\
\hline 13 & - & CATHODE 2 \\
\hline 14 & - & ANODE a \\
\hline
\end{tabular}

Note 8: Leave Pin Unconnected.

\section*{Package Description 5082-7432, -7433}


Figure 11.

\section*{Magnified Character Font Description}


Figure 12.

\section*{Device Pin Description}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
PIN \\
NUMBER
\end{tabular} & \begin{tabular}{c} 
5082-7432 \\
FUNCTION
\end{tabular} & \begin{tabular}{c} 
5082-7433 \\
FUNCTION
\end{tabular} \\
\hline 1 & SEE NOTE 11. & CATHODE 1 \\
\hline 2 & ANODE e & ANODE e \\
\hline 3 & ANODE d & ANODE d \\
\hline 4 & CATHODE 2 & CATHODE 2 \\
\hline 5 & ANODE c & ANODE c \\
\hline 6 & ANODE dp & ANODE dp \\
\hline 7 & CATHODE 3 & CATHODE 3 \\
\hline 8 & ANODE b & ANODE b \\
\hline 9 & ANODE 9 & ANODE g \\
\hline 10 & ANODE a & ANODE a \\
\hline 11 & ANODE f & ANODE f \\
\hline 12 & SEE NOTE 11. & SEE NOTE 11. \\
\hline
\end{tabular}

NOTE 11. Leave Pin unconnected.

\title{
PRINTED CIRCUIT BOARD MOUNTED \\ \\ SEVEN SEGMENT \\ \\ SEVEN SEGMENT NUMERIC INDICATORS
} NUMERIC INDICATORS
}

\section*{5082-7200/7440 SERIES}

TECHNICAL DATA JANUARY 1986

\section*{Features}
- MOS COMPATIBLE
- AVAILABLE IN 9 TO 16 DIGIT CONFIGURATIONS
- CHARACTER HEIGHTS OF .105", .115" AND .175"
- LOW POWER

- CATEGORIZED FOR LUMINOUS INTENSITY

\section*{Description}

The HP-5082-7200/7440 series of displays are seven segment GaAsP Numeric Indicators mounted on printed circuit boards. A plastic lens magnifies the digits and includes an integral protective bezel. Character heights of \(.105^{\prime \prime}(2.67 \mathrm{~mm}), .115^{\prime \prime}(2.92 \mathrm{~mm})\) and \(.175^{\prime \prime}\) ( 4.45 mm ) are available. For large quantity applications, digit string lengths of 8,12 and 14 digits are available by special order.
Applications are hand held calculators and portable equipment requiring compact, low power, long lite time, active displays.

\section*{Device Selection Guide}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Part \\
Number
\end{tabular} & \begin{tabular}{c} 
Digits Per \\
PC Board
\end{tabular} & Decimal Point & Package & \begin{tabular}{c} 
Character \\
Height \\
\((\mathbf{m m}) \mathbf{i n}\).
\end{tabular} & \begin{tabular}{c} 
Inter-Digit \\
Spacing \\
\((\mathbf{m m})\) in.
\end{tabular} \\
\hline \(5082-7441\) & 9 & Right Hand & Fig. 9 & \((2.67) .105^{\prime \prime}\) & \((5.08) .200^{\prime \prime}\) \\
\(5082-7446\) & 16 & Right Hand & Fig. 11 & \((2.92) .115^{\prime \prime}\) & \((3.81) .150^{\prime \prime}\) \\
\(5082-7285\) & 5 & Right Hand & Fig. 14 & \((4.45) .175^{\prime \prime}\) & \((5.84) .230^{\prime \prime}\) \\
\(5082-7295\) & 15 & Right Hand & Fig. 13 & \((4.45) .175^{\prime \prime}\) & \((5.84) .230^{\prime \prime}\) \\
\hline
\end{tabular}

Maximum Ratings 5082-7441/7446
\begin{tabular}{|l|c|c|c|c|}
\hline Parameter & Symbol & Min. & Max. & Units \\
\hline Peak Forward Current per Segment or dp (Duration \(<500 \mu \mathrm{~s}\) ) & IPEAK & & 50 & mA \\
\hline Average Current per Segment or dp \({ }^{[1]}\) & \(\mathrm{I}_{\text {AVG }}\) & & 3 & mA \\
\hline Power Dissipation per Digit \({ }^{[2]}\) & \(\mathrm{P}_{\mathrm{D}}\) & & 50 & mW \\
\hline Operating Temperature, Ambient & \(\mathrm{T}_{\mathrm{A}}\) & -20 & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\mathrm{S}}\) & -20 & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline Reverse Voltage & \(\mathrm{V}_{\mathrm{R}}\) & & 3 & V \\
\hline Solder Temperature at connector edge ( \(\mathrm{t} \leqslant 3\) sec.) \({ }^{[3]}\) & & & 230 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. Derate linearly at \(0.1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\) above \(60^{\circ} \mathrm{C}\) ambient.
2. Derate linearly at \(1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(60^{\circ} \mathrm{C}\) ambient.
3. See Mechanical section for recommended soldering techniques and flux removal solvents.

\section*{Maximum Ratings 5082-7285/7295}
\begin{tabular}{|l|c|c|c|c|}
\hline Parameter & Symbol & Min. & Max. & Units \\
\hline \begin{tabular}{l} 
Peak Forward Current per Segment or DP \\
(Duration \(<35 \mu \mathrm{~s})\)
\end{tabular} & \(\mathrm{I}_{\text {PEAK }}\) & & 200 & mA \\
\hline Average Current per Segment or DP \({ }^{(4)}\) & \(\mathrm{I}_{\mathrm{AVG}}\) & & 7 & mA \\
\hline Power Dissipation per Digit (5) & \(\mathrm{P}_{\mathrm{D}}\) & & 125 & mW \\
\hline Operating Temperature, Ambient & \(\mathrm{T}_{\mathrm{A}}\) & -20 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(\mathrm{T}_{\mathrm{S}}\) & -20 & +80 & \({ }^{\circ} \mathrm{C}\) \\
\hline Reverse Voltage & \(\mathrm{V}_{\mathrm{R}}\) & & 3 & V \\
\hline \begin{tabular}{l} 
Solder Temperature at connector edge \\
\(\left(\$ \leqslant 3\right.\) sec.) \({ }^{(6)}\)
\end{tabular} & & & 230 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 4. Derate linearly at \(0.12 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\) ambient.
5. Derate linearly at \(2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\) ambient.
6. See Mechanical section for recommended soldering techniques and flux removal solvents.

\section*{Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} 5082-7441 / 7446\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline Luminous Intensity/Segment or dp \({ }^{\text {[7] }}\) 5082-7441 & \multirow[t]{2}{*}{\({ }^{\prime} \mathrm{V}\)} & \[
\begin{aligned}
& I_{\text {AVG }}=500 \mu \mathrm{~A} \\
& \left(I_{\text {PK }}=5 \mathrm{~mA}\right. \\
& \text { duty cycle }=10 \%)
\end{aligned}
\] & 9 & 40 & & \(\mu \mathrm{cd}\) \\
\hline 5082-7446 & & 5 mA Peak 1/16 Duty Cycle & 7 & 35 & & \(\mu \mathrm{cd}\) \\
\hline Peak Wavelength & \(\lambda_{\text {peak }}\) & & & 655 & & nm \\
\hline Forward Voltage/Segment or dp & \(V_{F}\) & \(\mathrm{I}_{F}=5 \mathrm{~mA}\) & & 1.55 & & V \\
\hline
\end{tabular}

\section*{NOTES:}
7. Each character of the display is matched for luminous intensity at the test conditions shown. Operation of the display at lower peak currents may cause intensity mismatch within the display. Operation at peak currents less than 3.5 mA may cause objectionable display segment matching.


Figure 1. Peak Forward Current vs. Peak Forward Voltage.


Figure 3. Relative Luminous Intensity vs. Ambient Temperature at Fixed Current Level.


Figure 2. Typical Time Averaged Luminous Intensity per Segment vs. Average Current per Segment.


Figure 4. Relative Luminous Efficiency vs. Peak Current per Segment.

Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad 5082-7285 / 7295\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline Luminous Intensity/Segment or dp (Time Averaged) 15 digit display 5082-7295 \({ }^{|8.10|}\) & Iv & \begin{tabular}{l}
\[
\mathrm{I}_{\text {avg. }}=2 \mathrm{~mA}
\] \\
( 30 mA Peak \\
1/15 duty cycle)
\end{tabular} & 30 & 90 & & \(\mu \mathrm{cd}\) \\
\hline Luminous Intensity/Segment or dp (Time Averaged) 5 digit display 5082-7285 [8,10] & Iv & \begin{tabular}{l}
\(l_{\text {avg. }}=2 \mathrm{~mA}\) \\
( 10 mA Peak \\
1/5 duty cycle)
\end{tabular} & 30 & 70 & & \(\mu \mathrm{cd}\) \\
\hline Forward Voltage per Segment or dp 5082-7295 15 digit display & \(V_{F}\) & \(\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}\) & & 1.60 & 2.3 & V \\
\hline Forward Voltage per Segment or dp 5082-7285 5 digit display & \(V_{F}\) & \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) & & 1.55 & 2.0 & V \\
\hline Peak Wavelength & \(\lambda_{\text {Peak }}\) & & & 655 & & nm \\
\hline Dominant Wavelength \({ }^{(9)}\) & \(\lambda_{d}\) & & & 640 & & nm \\
\hline Reverse Current per Segment or dp & \(\mathrm{I}_{\mathrm{R}}\) & \(V_{R}=5 \mathrm{~V}\) & & 10 & & \(\mu \mathrm{A}\) \\
\hline Temperature Coefficient of Forward Voltage & \(\triangle \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}\) & & & -2.0 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES:
8. The luminous intensity at a specific ambient temperature, IV \(\left(T_{A}\right)\), may be calculated from this relationship:
\(\operatorname{lv}\left(T_{A}\right)=I_{V\left(25^{\circ} \mathrm{C}\right)}(.985)\left(\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right)\).
9. The dominant wavelength, \(\lambda_{d}\), is derived from the C.I.E. Chromaticity Diagram and represents the single wavelength which defines the color of the device.
10. Each character of the display is matched for luminous intensity at the test conditions shown. Operation of the display at lower peak currents may cause intensity mismatch within the display. Operation at peak currents less than 6.0 mA may cause objectionable display segment matching.


Figure 5. Peak Forward Current vs. Peak Forward Voltage.


Figure 7. Relative Luminous Intensity vs. Ambient Temperature at Fixed Current Level.

\section*{Mechanical}

These devices are constructed on a standard printed circuit board substrate. A separately molded plastic lens is attached to the PC board over the digits. The lens is an acrylic styrene material that gives good optical lens performance, but is subject to scratching so care should be exercised in handling.
The device may be mounted either by use of pins which may be hand soldered into the plated through holes at the connector edge of the PC board or by insertion into a standard PC board connector. The devices may be hand soldered for up to 3 seconds per tab at a maximum soldering temperature of \(230^{\circ} \mathrm{C}\). Heat should be applied only to the edge connector tab areas of the PC board. Heating other areas of the board to temperatures in excess of \(85^{\circ} \mathrm{C}\) can result in permanent damage to the display. It is recommended that a non-activated rosin core wire solder or a low temperature deactivating flux and solid wire solder be used in soldering operations.
The PC board is silver plated. To prevent the formation of a tarnish \(\left(\mathrm{Ag}_{2} \mathrm{~S}\right)\) which could impair solderability the


Figure 6. Typical Time Averaged Luminous Intensity per Segment vs. Average Current per Segment.


Figure 8. Relative Luminous Efficiency vs. Peak Current per Segment.
displays should be stored in the unopened shipping packages until they are used. Further information on the storage, handling, and cleaning of silver plated components is contained in Hewlett-Packard Application Bulletin No. 3.

\section*{Electrical/Optical}

The HP 5082-7441, -7446, -7285 and 7295 devices utilize a monolithic GaAsP chip containing 7 segments and a decimal point for each display digit. The segments of each digit are interconnected, forming an 8 by N line array, where N is the number of digits in the display. Each chip is positioned under a separate element of a plastic magnifying lens, producing a magnified character. Satisfactory viewing will be realized within an angle of approximately \(\pm 20^{\circ}\) from the centerline of the digit. A filter, such as plexiglass 2423, Panelgraphic 60 or 63, and Homalite 100-1600, will lower the ambient reflectance and improve display contrast. Digit encoding of these devices is performed by standard 7 segment decoder driver circuits.

\section*{Package Dimensions}


Figure 9. 5082-7441

\section*{Magnified Character Font Description}


Note: All dimensions in millimeters and (inches).

Figure 10.

\section*{Device Pin Description}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Pin \\
No.
\end{tabular} & \begin{tabular}{l} 
5082.7441 \\
Function
\end{tabular} & \begin{tabular}{l} 
Pin \\
No.
\end{tabular} & \begin{tabular}{l} 
5082.7441 \\
Function
\end{tabular} \\
\hline 1 & Dig. 1 Cathode & 10 & Seg. d Anode \\
2 & Seg. c Anode & 11 & Dig. 6 Cathode \\
3 & Dig. 2 Cathode & 12 & Seg. 9 Anode \\
4 & d.p. Anode & 13 & Dig. 7 Cathode \\
5 & Dig. 3 Cathode & 14 & Seg. b Anode \\
6 & Seg. a Anode & 15 & Dig. 8 Cathode \\
7 & Dig. 4 Cathode & 16 & Seg. f Anode \\
8 & Seg. e Anode & 17 & Dig. 9 Cathode \\
9 & Dig. 5 Cathode & & \\
\hline
\end{tabular}

\section*{Package Dimensions}


Figure 11. 5082-7446

\section*{Magnified Character Font Description}


Device Pin Description
\begin{tabular}{|c|c|c|}
\hline DEVICE & \(X\) & \(Y\) \\
\hline 5082.7446 & \begin{tabular}{c}
2.92 \\
\((.115)\)
\end{tabular} & \(\left.\begin{array}{c}1.40 \\
\\
\hline\end{array} .055\right)\) \\
\hline
\end{tabular}

NOTES:
1. ALL DIMENSIONS IN MILLIMETRES AND (INCHES).
2. TOLERANCES ON ALL DIMENSIONS ARE \(\pm 0.38\) (.015) UNLESS OTHERWISE SPECIFIED.

Figure 12.
\begin{tabular}{|c|l|}
\hline \begin{tabular}{l} 
Pin \\
No.
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c} 
5082-7446 \\
Function
\end{tabular}} \\
\hline 1 & Cathode-Digit 1 \\
2 & Cathode-Digit 2 \\
3 & Cathode-Digit 3 \\
4 & Cathode-Digit 4 \\
5 & Cathode-Digit 5 \\
6 & Anode-Segment e \\
7 & Cathode-Digit 6 \\
8 & Anode-Segment d \\
9 & Cathode-Digit 7 \\
10 & Anode-Segment a \\
11 & Cathode-Digit 8 \\
12 & Anode-Segment DP \\
13 & Cathode-Digit 9 \\
14 & Anode-Segment c \\
15 & Cathode-Digit 10 \\
16 & Anode-Segment g \\
17 & Cathode-Digit 11 \\
18 & Anode-Segment b \\
19 & Cathode-Digit 12 \\
20 & Anode-Segment \(f\) \\
21 & Cathode-Digit 13 \\
22 & Cathode-Digit 14 \\
23 & Cathode-Digit 15 \\
24 & Cathode-Digit 16 \\
\hline
\end{tabular}

\section*{Package Dimensions}

ALL DIMENSIONS IN MILLIMETERS AND (INCHES).


Magnified Character Font Description

DEVICES
5082-7285
5082-7295


ALL DIMENSIONS IN MILLIMETERS AND (INCHES).

Figure 15.

Device Pin Description
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Pin \\
No.
\end{tabular} & 5082-7285 Function & 5082-7295 Function \\
\hline 1 & Anode Segment b & Cathode Digit 1 \\
\hline 2 & Anode Segment \(g\) & Cathode Digit 2 \\
\hline 3 & Anode Segment e & Cathode Digit 3 \\
\hline 4 & No Connection & Cathode Digit 4 \\
\hline 5 & Cathode Digit 2 & Anode Segment dp \\
\hline 6 & Cathode Digit 3 & Cathode Digit 5 \\
\hline 7 & Cathode Digit 4 & Anode Segment c \\
\hline 8 & Cathode Digit 5 & Cathode Digit 6 \\
\hline 9 & Cathode Digit 6 & Anode Segment e \\
\hline 10 & No Connection & Cathode Digit 7 \\
\hline 11 & Anode Segment dp & Anode Segment a \\
\hline 12 & Anode Segment d & Cathode Digit 8 \\
\hline 13 & Anüde Segment c & Anode Segment g \\
\hline 14 & Anode Segment a & Cathode Digit 9 \\
\hline 15 & Anode Segment f & Anode Segment d \\
\hline 16 & & Cathode Digit 10 \\
\hline 17 & & Anode Segment \(f\) \\
\hline 18 & & Cathode Digit 11 \\
\hline 19 & & Anode Segment b \\
\hline 20 & & Cathode Digit 12 \\
\hline 21 & & Cathode Digit 13 \\
\hline 22 & & Cathode Digif 14 \\
\hline 23 & & Cathode Digit 15 \\
\hline
\end{tabular}


\section*{High Reliability}

Hewlett-Packard has supplied specially tested high reliability optoelectronic products since 1968 for use in state-of-the-art commercial, military, and aerospace applications. To meet the requirements of high reliability, products must be designed with rugged capabilities to withstand severe levels of environmental stress and exposure without failure. We have accomplished this objective by designing a unique family of hermetic products including lamps, displays, and optocouplers which have proven their merits in numerous advanced space and defense programs in the international marketplace.
These products receive reliability screening and qualification tests in accordance with appropriate reliability programs similar to those of MIL-S-19500, MIL-D-87157 and MIL-STD-883. HP supplies JAN and JANTX LED indicators and optocouplers in compliance with DESC selected item drawings and parts with HP standard military equipment screening programs for optocouplers and displays.
Reliability programs are also performed to individual customer control drawings and specifications when needed. Some of these special testing programs are very complex and may include Class \(S\) requirements for microcircuits.
HP's optoelectronic epoxy encapsulated products are designed for long life applications where nonman rated or ground support requirements allow their use. As with hermetic products, the capabilities of epoxy parts can be enhanced by \(100 \%\) screening and conditioning tests. Lot
capabilities can be confirmed by acceptance qualification test programs. MIL-D-87157 is used to define the military requirements for plastic LED indicators and displays.
All testing is done by experienced HewlettPackard employees using facilities which are approved by DESC for JAN products and by customer inspection for special programs. Environmental equipment capabilities and operating methods of the test laboratory meet MIL-STD-750 or MIL-STD-883 procedures.


\section*{High Reliability Optoelectronic Products}

Hewlett-Packard offers the broadest line of high reliability, solid state display products. They are specially designed to withstand severe environmental stress and exposure without failure. This unique product group includes lamps, integrated numeric and hexadecimal displays, and \(5 \times 7\) dot matrix alphanumeric displays.


The hermetically sealed, solid state lamps are listed on the Qualified Parts List (QPL) of MIL-S-19500, and are supplied as either standard JAN or JANTX devices. There are four colors: standard red, high efficiency red, yellow, and green; and each color is also available in a panel mountable fixture.

Products meeting the hermeticity requirement of MIL-D-87157 include the integrated numeric and hexadecimal displays and \(5 \times 7\) dot matrix alphanumeric displays. Hewlett-Packard offers two in-house high reliability testing programs, TXV and TXVB. The TXVB program is in conformance with Quality Level A of MIL-D-87157 with qualification and with \(100 \%\) screening test. The TXV program is a modification of Quality Level A of MIL-D-87157 with \(100 \%\) screening only. Detailed testing programs for TXV and TXVB are given in the individual data sheets.
The integrated numeric and hexadecimal displays with on-board decoder/driver and memory, are hermetically sealed, and have a character height of 7.4 mm ( 0.29 inch ). They are available in standard red; low power, high efficiency red; high brightness, high efficiency red; and yellow. These displays are designed and tested for use in military and aerospace applications.
The \(5 \times 7\) dot matrix alphanumeric displays with extended temperature range capabilities are available in three character heights: 3.8 mm ( 0.15 inch), 5 mm ( 0.2 inch), and 6.9 mm ( 0.27 inch ). In addition, these displays are available in several colors: standard red, high efficiency red, and yellow. The 5 mm ( 0.2 inch) and \(6.9 \mathrm{~mm}(0.27 \mathrm{inch})\) versions have the additional features of having a solder-glass seal and an even wider operating temperature range than the 3.8 mm ( 0.15 inch) package. This wide variety of character heights and colors makes these products ideal for a variety of applications in avionics, industrial controls, and instrumentation.

\section*{Hermetically Sealed and High Reliability LED Lamps}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Device} & \multicolumn{3}{|c|}{Description} & \multirow[t]{2}{*}{Typical Luminous Intensity} & \multirow[b]{2}{*}{\(2 \theta 1 / 2[1]\)} & \multirow[t]{2}{*}{Typical Forward Voltage} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Page } \\
\text { No. }
\end{gathered}
\]} \\
\hline Package Outline Drawing & Part No. & Colorr 2 ] & Package & Lens & & & & \\
\hline \multirow[t]{4}{*}{} & \begin{tabular}{l}
1N5765 \\
JAN1N5765[4] \\
JANTX1N5765[4]
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { Red } \\
(640 \mathrm{~nm})
\end{array}
\] & \multirow[t]{4}{*}{\[
\begin{aligned}
& \hline \text { Hermetic/ } \\
& \text { T0-46[3] }
\end{aligned}
\]} & \multirow[t]{2}{*}{Red Diffused} & \begin{tabular}{l}
1.0 mcd \\
@ 20 mA
\end{tabular} & \multirow[t]{8}{*}{\(70^{\circ}\)} & \[
\begin{gathered}
1.6 \mathrm{~V} \\
@ 20 \mathrm{~mA}
\end{gathered}
\] & \multirow[t]{8}{*}{8-18} \\
\hline & \begin{tabular}{l}
1N6092 \\
JAN1N6092[4] \\
JANTX1N6092[4]
\end{tabular} & High Efficiency Red ( 626 nm ) & & & \begin{tabular}{l}
5.0 mcd \\
@ 20 mA
\end{tabular} & & \[
\begin{aligned}
& 2.0 \mathrm{~V} \\
& @ 20 \mathrm{~mA}
\end{aligned}
\] & \\
\hline & \begin{tabular}{l}
1N6093 \\
JAN1N6093[4] \\
JANTX1N6093[4]
\end{tabular} & \[
\begin{aligned}
& \text { Yellow } \\
& (585 \mathrm{~nm})
\end{aligned}
\] & & Yellow Diffused & & & & \\
\hline & \begin{tabular}{l}
1N6094 \\
JAN1N6094[4] \\
JANTX1N6094[4]
\end{tabular} & \[
\begin{aligned}
& \text { Green } \\
& (572 \mathrm{~nm})
\end{aligned}
\] & & Green Diffused & \begin{tabular}{l}
3.0 mcd \\
@ 25 mA
\end{tabular} & & \[
\begin{gathered}
2.1 \mathrm{~V} \\
@ 25 \mathrm{~mA}
\end{gathered}
\] & \\
\hline \multirow[t]{2}{*}{} & \begin{tabular}{l}
HLMP-0904 \\
HLMP-0930 \\
HLMP-0931
\end{tabular} & \[
\begin{aligned}
& \text { Red } \\
& (640 \mathrm{~nm})
\end{aligned}
\] & \multirow[t]{4}{*}{Panel Mount Version} & \multirow[t]{2}{*}{Red Diffused} & \begin{tabular}{l}
1.0 mcd \\
@ 20 mA
\end{tabular} & & \[
\begin{aligned}
& 1.6 \mathrm{~V} \\
& @ 20 \mathrm{~mA}
\end{aligned}
\] & \\
\hline & \begin{tabular}{l}
HLMP-0354 \\
JANM19500/51901 \\
JTXM19500/51902
\end{tabular} & High Efficiency Red ( 626 nm ) & & & \multirow[t]{2}{*}{\begin{tabular}{l}
5.0 mcd \\
@ 20 mA
\end{tabular}} & & \multirow[t]{2}{*}{\[
\begin{gathered}
2.0 \mathrm{~V} \\
@ 20 \mathrm{~mA}
\end{gathered}
\]} & \\
\hline \multirow{2}{*}{} & \begin{tabular}{l}
HLMP-0454 \\
JANM 19500/52001 \\
JTXM19500/52002
\end{tabular} & Yellow ( 585 nm ) & & Yellow Diffused & & & & \\
\hline & \begin{tabular}{l}
HLMP-0554 \\
JANM19500/52101 \\
JTXM19500/52102
\end{tabular} & \[
\begin{aligned}
& \text { Green } \\
& (572 \mathrm{~nm})
\end{aligned}
\] & & Green Diffused & \begin{tabular}{l}
3.0 mcd \\
@ 25 mA
\end{tabular} & & \[
\begin{gathered}
2.1 \mathrm{~V} \\
@ 25 \mathrm{~mA}
\end{gathered}
\] & \\
\hline
\end{tabular}

NOTES:
1. \(\Theta 1 / 2\) is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Dominant Wavelength.
3. PC Board Mountable.
4. Military Approved and qualified for High Reliability Applications.

Hermetically Sealed and High Reliability LED Lamps (cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Device} & \multicolumn{3}{|c|}{Description} & \multirow[t]{2}{*}{Typical Luminous Intensity} & \multirow[b]{2}{*}{\(2 \theta 1 / 2^{[1]}\)} & \multirow[t]{2}{*}{Typical Forward Voltage} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Page } \\
& \text { No. }
\end{aligned}
\]} \\
\hline Package Outline Drawing & Part No. & Color \({ }^{[2]}\) & Package & Lens & & & & \\
\hline \multirow[t]{2}{*}{} & \begin{tabular}{l}
HLMP-0363 \\
HLMP-0391 \\
HLMP-0392
\end{tabular} & \begin{tabular}{l}
High \\
Efficiency Red \\
( 626 nm )
\end{tabular} & \multirow[t]{3}{*}{Hermetic TO-18[3]} & \multirow[t]{3}{*}{Clear Class} & \begin{tabular}{l}
50 mcd \\
@ 20 mA
\end{tabular} & \multirow[t]{6}{*}{18} & \[
\begin{gathered}
2.0 \mathrm{~V} \\
@ 20 \mathrm{~mA}
\end{gathered}
\] & \multirow[t]{6}{*}{8-24} \\
\hline & \begin{tabular}{l}
HLMP-0463 \\
HLMP-0491 \\
HLMP-0492
\end{tabular} & Yellow ( 585 nm ) & & & \begin{tabular}{l}
50 mcd \\
@ 20 mA
\end{tabular} & & \[
\begin{gathered}
2.0 \mathrm{~V} \\
@ 20 \mathrm{~mA}
\end{gathered}
\] & \\
\hline  & \begin{tabular}{l}
HLMP-0563 \\
HLMP-0591 \\
HLMP-0592
\end{tabular} & Green ( 572 nm ) & & & \begin{tabular}{l}
50 mcd \\
@ 25 mA
\end{tabular} & & \[
\begin{gathered}
2.1 \mathrm{~V} \\
@ 25 \mathrm{~mA}
\end{gathered}
\] & \\
\hline \multirow[t]{2}{*}{} & \begin{tabular}{l}
HLMP-0364 \\
HLMP-0365 \\
HLMP-0366
\end{tabular} & High Efficiency Red ( 626 nm) & \multirow[t]{3}{*}{Panel Mount Version} & \multirow[t]{3}{*}{Clear Glass} & \begin{tabular}{l}
50 mcd \\
@ 20 mA
\end{tabular} & & \[
\begin{gathered}
2.0 \mathrm{~V} \\
@ 20 \mathrm{~mA}
\end{gathered}
\] & \\
\hline & \begin{tabular}{l}
HLMP-0464 \\
HLMP-0465 \\
HLMP-0466
\end{tabular} & Yellow ( 585 nm ) & & & \begin{tabular}{l}
50 mcd \\
@ 25 mA
\end{tabular} & & \[
\begin{gathered}
2.0 \mathrm{~V} \\
@ 20 \mathrm{~mA}
\end{gathered}
\] & \\
\hline  & \begin{tabular}{l}
HLMP-0564 \\
HLMP-0565 \\
HLMP-0566
\end{tabular} & \begin{tabular}{l}
Green \\
( 572 nm )
\end{tabular} & & & \begin{tabular}{l}
50 mcd \\
@ 25 mA
\end{tabular} & & \[
\begin{gathered}
2.1 \mathrm{~V} \\
@ 25 \mathrm{~mA}
\end{gathered}
\] & \\
\hline
\end{tabular}

NOTES:
1. \(\Theta 1 / 2\) is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Dominant Wavelength.
3. PC Board Mountable.
4. Military Approved and qualified for High Reliability Applications.

\section*{Hermetic Hexadecimal and Numeric Dot Matrix Displays}


\footnotetext{
[1] Military Approved and Qualified for High Reliability Applications.
}

Hermetic Hexadecimal and Numeric Dot Matrix Displays (cont.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Device & & Description & Color & Application & \[
\begin{aligned}
& \text { Page } \\
& \mathrm{No.}
\end{aligned}
\] \\
\hline \multirow[t]{6}{*}{(See previous page)} & \[
\begin{gathered}
\text { HDSP-0783 } \\
\text { (D) } \\
\text { HDSP-0783 } \\
\text { TXV } \\
\text { HDSP-0783 } \\
\text { TXVB }
\end{gathered}
\] & Overrange \(\pm 1\) TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 & \multirow[t]{2}{*}{\begin{tabular}{l}
High Efficiency Red. \\
High \\
Brightness
\end{tabular}} & \multirow[t]{6}{*}{\begin{tabular}{l}
- Ground, Airborne, Shipboard Equipment \\
- Fire Control Systems \\
- Space Flight Systems \\
- Other High Reliability Uses
\end{tabular}} & \multirow[t]{6}{*}{8-38} \\
\hline & \[
\begin{gathered}
\text { HDSP-0794 } \\
\text { (C) } \\
\text { HDSP-0794 } \\
\text { TXV } \\
\text { HDSP-0794 } \\
\text { TXVB }
\end{gathered}
\] & Hexadecimal, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 & & & \\
\hline & \[
\begin{aligned}
& \text { HDSP-0881 } \\
& \text { (A) } \\
& \text { HDSP-0881 } \\
& \text { TXV } \\
& \text { HDSP-0881 } \\
& \text { TXVB }
\end{aligned}
\] & Numeric RHDP. Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 & \multirow[t]{4}{*}{Yellow} & & \\
\hline & \[
\begin{gathered}
\text { HDSP-0882 } \\
\text { (B) } \\
\text { HDSP-0882 } \\
\text { TXV } \\
\text { HDSP-0882 } \\
\text { TXVB }
\end{gathered}
\] & Numeric LHDP, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 & & & \\
\hline & \[
\begin{gathered}
\text { HDSP-0883 } \\
\text { (D) } \\
\text { HDSP-0883 } \\
\text { TXV } \\
\text { HDSP-0883 } \\
\text { TXVB }
\end{gathered}
\] & Overrange \(\pm 1\) TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 & & & \\
\hline & \[
\begin{aligned}
& \text { HDSP-0884 } \\
& \text { (C) } \\
& \text { HDSR-0884 } \\
& \text { TXV } \\
& \text { HDSP-0884 } \\
& \text { TXVB }
\end{aligned}
\] & Hexadecimal, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 & & & \\
\hline
\end{tabular}

\section*{Hermetic Alphanumeric Displays}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Device} & Description & Color & Application & \[
\begin{gathered}
\hline \text { Page } \\
\text { No. }
\end{gathered}
\] \\
\hline  & \begin{tabular}{l}
HDSP-2010 \\
HDSP-2010 \\
TXV \\
HDSP-2010 \\
TXVB
\end{tabular} & 3.7 mm (.15") \(5 \times 7\) Four Character Alphanumeric Operating Temperature Range: \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) TXV Hi Rel Screened TXVB Hi Rel Screened to Level A MIL-D-87157 & Red, Red Glass Contrast Filter & \begin{tabular}{l}
- Extended temperature applications requiring high reliability. \\
- I/O Terminals \\
- Avionics \\
For further information see Application Note 1016.
\end{tabular} & 8-46 \\
\hline  & \begin{tabular}{l}
\begin{tabular}{c} 
HDSP-2310 \\
HDSP-2310 \\
TXV \\
HDSP-2310 \\
TXVB \\
\hline HDSP-2311 \\
HDSP-2311 \\
TXV \\
HDSP-2311 \\
TXVB \\
\hline
\end{tabular} \\
HDSP-2312 \\
HDSP-2312 \\
TXV \\
HDSP-2312 \\
TXVB
\end{tabular} & \begin{tabular}{l}
\(5.0 \mathrm{~mm}\left(.20^{\prime \prime}\right) 5 \times 7\) Four Character Alphanumeric \\
12 Pin Ceramic 6.35 mm (.25") DIP with untinted glass lens \\
Operating Temperature Range: \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
True Hermetic Seal \\
TXV - Hi Rel Screened \\
TXVB - Hi Rel Screened to Level A MIL-D-87157
\end{tabular} & \begin{tabular}{l}
Standard Red \\
Yellow \\
High Eff. Red
\end{tabular} & \begin{tabular}{l}
- Military Equipment \\
- Avionics \\
- High Rel Industrial Equipment
\end{tabular} & 8-52 \\
\hline  & \begin{tabular}{c} 
HDSP-2450 \\
\begin{tabular}{c} 
HDSP-2450 \\
TXV \\
HDSP-2450 \\
TXVB
\end{tabular} \\
\hline \begin{tabular}{c} 
HDSP-2451 \\
HDSP-2451 \\
TXV \\
HDSP-2451 \\
TXVB
\end{tabular} \\
\hline HDSP-2452 \\
HDSP-2452 \\
TXV \\
HDSP-2452 \\
TXVB
\end{tabular} & \begin{tabular}{l}
Operating Temperature Range: \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \(6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7\) Four Character Alphanumeric 28 Pin Ceramic 15.24 mm (.6") DIP \\
True Hermetic Seal TXV — Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157
\end{tabular} & \begin{tabular}{l}
Red \\
Yellow \\
High Efficiency Red
\end{tabular} & \begin{tabular}{l}
- Military Equipment \\
- High Reliability Applications \\
- Avionics \\
- Ground Support, Cockpit, Shipboard Systems
\end{tabular} & 8-59 \\
\hline
\end{tabular}

\section*{Optoelectronic Product Qualification}

Two military documents are presently in use to qualify visible products. MIL-S-19500 establishes the standard JAN and JANTX test programs for hermetic lamps. Four hermetic lamps are listed on the Qualified Parts List (QPL) of MIL-S-19500. Descriptions of the individual devices are given in detail specifications called slash sheets.
The second military document governing the qualification of visible products is MIL-D-87157. This general specification is dated August 26, 1981, and covers solid state, light emitting diode displays. This specification may be used to cover all display products including lamps not covered in MIL-S-19500. This specification has provisions for four different quality levels as follows:


Level A Hermetically sealed displays with \(100 \%\) screening tests
Level B Hermetically sealed displays without \(100 \%\) screening tests
Level C Non-hermetic displays with \(100 \%\) screening tests
Level D Non-hermetic displays without \(100 \%\) screening tests
Hewlett-Packard devices meeting the hermeticity requirements of MIL-D-87157 include the hermetic hexadecimal, numeric, and alphanumeric displays described in this section of the catalog. If the suffix TXVB is added to the part number, the display is tested to Level A with \(100 \%\) screening tests and qualification. If only the \(100 \%\) tests are required, the suffix TXV is added.
Detailed testing programs which follow the general program for quality Level A are given in the individual data sheets.
The general program from MIL-D-87157 for quality Level C non-hermetic displays is given on the following pages.


TABLE I. 100\% SCREEN FORMAT FOR QUALITY LEVEL C
\begin{tabular}{|c|c|c|}
\hline Test Screen & MIL-STD-750 Method & Level C \\
\hline 1. Precap Visual11| & 2072 & When specified \\
\hline 2. High Temperature Storage \({ }^{11}\) & 1032 & 100\% \\
\hline 3. Temperature Cycling \({ }^{11]}\) & 1051 & 100\% \\
\hline 4. Constant Acceleration \({ }^{1,2}{ }^{1}\) & 2006 & When specified \\
\hline 5. Fine Leak \({ }^{11}\) & 1071 & N/A \\
\hline 6. Gross Leak \({ }^{11}\) & 1071 & N/A \\
\hline 7. Interim Electrical/Optical Tests \({ }^{11}\) & - & When specified \\
\hline 8. Burn-In \(11,3 \mid\) & 1015 & 100\% \\
\hline 9. Final Electrical/Optical Tests & - & 100\% \\
\hline 10. Delta Determinations \({ }^{1]}\) & - & When specified \\
\hline 11. External Visual|3| & 2009 & 100\% \\
\hline
\end{tabular}

\section*{Notes:}
1. These tests are design dependent. The conditions and limits shall be specified in the detail specification when these tests are applicable.
2. Applicable to cavity type displays only.
3. MIL-STD-883 test method applies.

TABLE II. GROUP A ELECTRICAL TESTS \({ }^{[1]}\)
\begin{tabular}{|c|c|}
\hline Subgroups & LTPD \\
\hline \begin{tabular}{l} 
Subgroup 1 \\
DC Electrical Tests at \(25^{\circ} \mathrm{C}\)
\end{tabular} & 5 \\
\hline \begin{tabular}{c} 
Subgroup 2 \\
Selected DC Electrical Tests at High Temperatures
\end{tabular} & 7 \\
\hline \begin{tabular}{l} 
Subgroup 3 \\
Selected DC Electrical Tests at Low Temperatures
\end{tabular} & 7 \\
\hline \begin{tabular}{l} 
Subgroup 4 \\
Dynamic Electrical Tests at TA \(^{\prime}=25^{\circ} \mathrm{C}\)
\end{tabular} & 5 \\
\hline \begin{tabular}{l} 
Subgroup 5 \\
Dynamic Electrical Tests at High Temperatures
\end{tabular} & 7 \\
\hline \begin{tabular}{l} 
Subgroup 6 \\
Dynamic Electrical Tests at Low Temperatures
\end{tabular} & 7 \\
\hline \begin{tabular}{c} 
Subgroup 7 \\
Optical and Functional Tests at \(25^{\circ} \mathrm{C}\)
\end{tabular} & 5 \\
\hline \begin{tabular}{c} 
Subgroup 8 \\
External Visual
\end{tabular} & 7 \\
\hline
\end{tabular}

Notes:
1. The specific parameters to be included for tests in each subgroup shall be as specified in the applicable detail specification.

TABLE IIIb. GROUP B ENVIRONMENTAL TESTS (CLASS C AND D DISPLAYS ONLY)
\begin{tabular}{|l|c|c|}
\hline Test & \begin{tabular}{c} 
MIL-STD-750 \\
Method
\end{tabular} & \begin{tabular}{c} 
Sampling Plan
\end{tabular} \\
\hline \begin{tabular}{l} 
Subgroup 1 \\
Resistance to Solvents[1] \\
Internal Visual and Mechanical[2,5]
\end{tabular} & 1022 & \begin{tabular}{c} 
4 Devices/ \\
O Failures
\end{tabular} \\
\hline \begin{tabular}{l} 
Subgroup 2[3,4] \\
Solderability \([1]\) \\
Electrical/Optical Endpoints[1]
\end{tabular} & 2014 & LTPD \(=15\) \\
\hline \begin{tabular}{l} 
Subgroup 3 \\
Thermal Shock[1] \\
(Temperature Cycling) \\
Moisture Resistance[1] \\
Electrical/Optical Endpoints[1]
\end{tabular} & 2026 & LTPD \(=15\) \\
\hline \begin{tabular}{l} 
Subgroup 4 \\
Operating Life Test (340 Hours)[1] \\
Electrical/Optical Endpoints[1]
\end{tabular} & 1051 & LTPD \(=10\)
\end{tabular}

Notes:
1. Test method or conditions in accordance with detail specification.
2. Not required for solid encapsulated displays.
3. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
4. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
5. MIL-STD-883 test method applies.

TABLE IVb. GROUP C PERIODIC TESTS (CLASS C AND D DISPLAYS ONLY)
\begin{tabular}{|l|c|c|}
\hline Test & \begin{tabular}{c} 
MIL-STD-750 \\
Method
\end{tabular} & \begin{tabular}{c} 
Sampling Plan
\end{tabular} \\
\hline \begin{tabular}{l} 
Subgroup 1[!] \\
Physical Dimensions
\end{tabular} & 2066 & \begin{tabular}{c} 
2 Devices/ \\
0 Failures
\end{tabular} \\
\hline \begin{tabular}{l} 
Subgroup 2[1] \\
Lead Integrity[6]
\end{tabular} & LTPD =15
\end{tabular}

\section*{Notes}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. Not required for solid encapsulated displays.
3. Visual requirements shall be as specified in MIL-STD-883, method 1010 or 1011.
4. Test method or conditions in accordance with detail specification.
5. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made as a basis for Group B lot acceptance or the 1000 hours endpoint measurements shall be used as the basis for both Group B and C acceptance.
6. MIL-STD-883 test method applies.

\section*{Hermetic Optocouplers}

Hewlett-Packard has selected several very popular optocoupler types for assembly in our militarized hermetic 8 and 16 pin dual in-line packages. These devices offer a wide variety of LED input current levels, speed and current transfer ratio. High performance optocouplers are used in many U.S. and international military, aerospace and high reliability applications.

HP's 8102801EC and 8302401EC products are DESC* recognized devices which conform to MIL-STD-883 Class B testing. The 8102801 EC is a 6 N 134 consisting of dual channel high speed logic gates compatible with TTL inputs and outputs. A second family of dual channel high speed logic gates, the HCPL-1930/1, were recently introduced and feature high common mode and input current regulation. The 8302401EC is a quad channel low power Darlington ideal for MOS, CMOS, or RS232-C data transmission systems. Our commercial quad optocoupler was re-registered
as 6N140A featuring its new capability of full military temperature range from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). HP recently introduced a new family of 8 pin hermetic dual in-line packaged devices consisting of both single and dual channel Darlington units, the HCPL-5700/1 and HCPL-5730/1 respectively. The military types are fully compliant to MIL-STD-883 Class B, revision level C. The 4 N 55 product is a dual channel coupler having low gain transistor output useful for isolating circuits in power supply applications, logic interfacing, and wide bandwidth analog applications.

Special testing of hermetic optocouplers for advanced commercial, military, and aerospace applications has been performed since 1975. This testing is in accordance with the latest revisions of appropriate military and customers' specifications and drawings.
*Defense Electronic Supply Center(DESC) is an agency of the United States Department of Defense (DOD).


Hermetic Optocouplers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Device} & Description & Application & Typical Data Rate (NRZ] & Current Transfer Ratio & Specified Input Current & Withstand Test Voltage & Page No. \\
\hline \multirow[t]{4}{*}{} & 6N134 & Dual Channel Hermetically Sealed Optically Coupled Logic Gate & Line Receiver, Ground Isolation for High Reliability Systems & \multirow[t]{4}{*}{10M bit/s} & \multirow[t]{4}{*}{400\% Typ.} & \multirow[t]{4}{*}{10 mA} & \multirow[t]{4}{*}{1500 V dc} & 8-66 \\
\hline & 8102801EC & DESC Approved 6N134 & Military/High Reliability & & & & & 8-69 \\
\hline & 6N134TXV & TXV - Screened & \multirow[b]{2}{*}{Use 8102801 EC in New Designs} & & & & & 8-66 \\
\hline & 6N134TXVB & \[
\begin{aligned}
& \text { TXVB - Screened } \\
& \text { with Group B } \\
& \text { Data }
\end{aligned}
\] & & & & & & \\
\hline \multirow[t]{2}{*}{} & HCPL-1930 & Dual Channel Hermetically sealed High CMR Line Receiver Optocoupler & Line receiver, High Speed Logic Ground Isolation in High Ground or Induced Noise Environments & \multirow[t]{2}{*}{10M bit/s} & \multirow[t]{2}{*}{400\% Typ.} & \multirow[t]{2}{*}{10 mA} & \multirow[t]{2}{*}{1500 Vdc} & \multirow[t]{2}{*}{8-73} \\
\hline & HCPL-1931 & MIL-STD-883 Class B Part & Military/High Reliability & & & & & \\
\hline \multirow[t]{2}{*}{} & HCPL-5700 & Single Channel Hermetically Sealed High Gain Optocoupler & Line Receiver, Low Current Ground Isolation, TTL/TTL, LSTTL/TTL, CMOS/TTL & \multirow[t]{4}{*}{60k bit/s} & \multirow[t]{4}{*}{200\% Min.} & \multirow[t]{4}{*}{0.5 mA} & \multirow[t]{4}{*}{500 V dc} & \multirow[t]{2}{*}{8-79} \\
\hline & HCPL-5701 & MIL-STD-883
Class B Part & Military/High Reliability & & & & & \\
\hline \multirow[t]{2}{*}{} & HCPL-5730 & Dual Channel Hermetically Sealed High Gain Optocoupler & Line Receiver, Polarity Sensing, Low Current Ground Isolation & & & & & \multirow[t]{2}{*}{8-83} \\
\hline & HCPL-5731 & \[
\begin{aligned}
& \text { MIL-STD-883 } \\
& \text { Class B Part }
\end{aligned}
\] & Military/High Reliability & & & & & \\
\hline \multirow[t]{5}{*}{} & 6N140A (6N140) & Hermetically Sealed Package Containing 4 Low Input Current, High Gain Optocouplers & Line Receiver, Low Power Ground Isolation for High Reliability Systems & \multirow[t]{5}{*}{100k bit/s} & \multirow[t]{5}{*}{300\% Min.} & \multirow[t]{5}{*}{0.5 mA} & \multirow[t]{5}{*}{1500 V dc} & 8-87 \\
\hline & 8302401EC & DESC Approved 6N140A & Military/High Reliability & & & & & 8-91 \\
\hline & 6N140A/883B
(6N140/883B) & \[
\begin{aligned}
& \text { MIL-STD-883 } \\
& \text { Class B Part }
\end{aligned}
\] & \multirow[t]{3}{*}{Use 8302401EC in New Designs} & & & & & \multirow[t]{3}{*}{8-87} \\
\hline & 6N140TXV & TXV - Hi-Rel Screened & & & & & & \\
\hline & 6N140TXVB & TXVB - Hi-Rel Screened with Group B Data & & & & & & \\
\hline \multirow[t]{4}{*}{} & 4N55 & Dual Channel Hermetically Sealed Analog Optical Coupler & Line Receiver, Analog Signal Ground Isolation, Switching Power Supply Feedback Element & \multirow[t]{4}{*}{700k bit/s} & \multirow[t]{4}{*}{9\% Min.} & \multirow[t]{4}{*}{16 mA} & \multirow[t]{4}{*}{1500 V dc} & \multirow[t]{4}{*}{8-96} \\
\hline & 4N55/883B & \begin{tabular}{l}
MIL-STD-883 \\
Class B Part
\end{tabular} & Military/High Reliability & & & & & \\
\hline & 4N55TXV & TXV — Hi-Rel Screened & \multirow[t]{2}{*}{Use 4N55/883B in New Designs} & & & & & \\
\hline & 4N55TXVB & TXVB - Hi-Rel Screened with Group B Data & & & & & & \\
\hline
\end{tabular}

\section*{Hermetic Optocoupler Product Qualification MIL-STD-883 Class B Test Program}

The following \(100 \%\) Screening and Quality Conformance Inspection programs show in detail the capabilities of our 4N55, 6N134, 6N140A, HCPL-5701, and 5731 optocouplers. This program will help customers understand the tests included in Methods 5004 and 5005 of MIL-STD-883 and to help in the design of special product drawings where this
testing is required. The 4N55/883B, 5701/883B, 5731/883B, \(8102801 E C\) and 8302401EC (DESC Selected Item Drawings for the 6N134 and 6N140A respectively) have standardized test programs suitable for product use in military, high reliability applications and are the preferred devices by military contractors.

\section*{100\% Screening}

MIL-STD-883, METHOD 5004 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|}
\hline Test Screen & Method & Conditions \\
\hline 1. Precap Internal Visual & 2010 & Condition B, DESC Parts \\
\hline 2. High Temperature Storage & 1008 & Condition \(\mathrm{C}, \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\), Time \(=24\) Hours minimum \\
\hline 3. Temperature Cycling & 1010 & Condition \(\mathrm{C},-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}, 10\) cycles \\
\hline 4. Constant Acceleration & 2001 & Condition A, 5K Gs, Y 1 axis only, 16 pin DIP, Condition E, 30K Gs, \(\mathrm{Y}_{1}\) axis only, 8 pin DIP \\
\hline 5. Fine Leak & 1014 & Condition A \\
\hline 6. Gross Leak & 1014 & Condition C \\
\hline 7. Interim Electrical Test & - & Group A, Subgroup 1, except l//O (optional) \\
\hline 8. Burn-In & 1015 & Condition B, Time \(=160\) Hours minimum, \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) Burn-in conditions are product dependent and are given in the individual data sheets. \\
\hline 9. Final Electrical Test Electrical Test Electrical Test Electrical Test & - & \begin{tabular}{l}
Group A, Subgroup 1, 5\% PDA applies Group A, Subgroup 2 \\
Group A, Subgroup 3 \\
Group A, Subgroup 9
\end{tabular} \\
\hline 10. External Visual & 2009 & \\
\hline
\end{tabular}

\section*{Quality Conformance Inspection}

Group A electrical tests are product dependent and are given in the individual device data sheets. Group A and B testing is performed on each inspection lot.

GROUP A TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{Subgroup 1} & LTPD \\
\hline & \\
\hline Static tests at \(T_{A}=25^{\circ} \mathrm{C}\) & 2 \\
\hline \multicolumn{2}{|l|}{Subgroup 2} \\
\hline Static tests at \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & 3 \\
\hline \multicolumn{2}{|l|}{Subgroup 3} \\
\hline Static tests at \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 5 \\
\hline \multicolumn{2}{|l|}{Subgroups 4, 5, 6, 7 and 8} \\
\hline \multicolumn{2}{|l|}{These subgroups are non-applicable to this device type} \\
\hline \multicolumn{2}{|l|}{Subgroup 9} \\
\hline Switching tests at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 2 \\
\hline \multicolumn{2}{|l|}{Subgroup 10} \\
\hline Switching tests at \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & 3 \\
\hline \multicolumn{2}{|l|}{Subgroup 11} \\
\hline Switching tests at \(\mathrm{T}_{\mathrm{A}}=-50^{\circ} \mathrm{C}\) & 5 \\
\hline
\end{tabular}

\section*{GROUP B TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)}
\begin{tabular}{|c|c|c|c|}
\hline Test & Method & Conditions & LTPD \\
\hline \begin{tabular}{l}
Subgroup 1 \\
Physical Dimensions (Not required if Group D is to be performed)
\end{tabular} & 2016 & & \begin{tabular}{l}
2 Devices/ \\
0 Failures
\end{tabular} \\
\hline Subgroup 2 Resistance to Solvents & 2015 & & 4 Devices/ 0 Failures \\
\hline \begin{tabular}{l}
Subgroup 3 \\
Solderability \\
(LTPD applies to number of leads inspected - no fewer than 3 devices shall be used.)
\end{tabular} & 2003 & Soldering Temperature of \(245 \pm 5^{\circ} \mathrm{C}\) for 10 seconds & \[
\begin{gathered}
15 \\
\text { (3 Devices) }
\end{gathered}
\] \\
\hline Subgroup 4 Internal Visual and Mechanical & 2014 & & 1 Device/ 0 Failures \\
\hline Subgroup 5 Bond Strength (1) Thermocompression (performed at precap, prior to seal. LTPD applies to number of bond pulls from a minimum of 4 devices). & 2011 & (1) Test Condition D & \[
\begin{gathered}
15 \\
\text { (4 Devices) }
\end{gathered}
\] \\
\hline Subgroup 6 Internal water vapor content (Not applicable - per footnote of MIL-STD) & - & & - \\
\hline Subgroup 7 Fine Leak Gross Leak & 1014 & Test Condition A Test Condition C & 5 \\
\hline \begin{tabular}{l}
Subgroup 8* \\
Electrical Test Electrostatic Discharge Sensitivity Electrical Test
\end{tabular} & 3015 & \begin{tabular}{l}
Group A, Subgroup 1, except II-O \\
Group A, Subgroup 1
\end{tabular} & 15 \\
\hline
\end{tabular}
*(To be performed at initial qualification only)
Group \(C\) testing is performed on a periodic basis from current manufacturing every 3 months.
GROUP C TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|c|}
\hline Test & Method & Conditions & LTPD \\
\hline Subgroup 1 Steady State Life Test & 1005 & \begin{tabular}{l}
Condition B, Time \(=1000\) Hours Total \(T_{A}=+125^{\circ} \mathrm{C}\) \\
Burn-in conditions are product dependent and are given in the individual device data sheeets.
\end{tabular} & \multirow[t]{3}{*}{5} \\
\hline Endpoint Electricals at 168 hours and 504 hours & & Group A, Subgroup 1, except II-O & \\
\hline Endpoint Electricals at 1000 hours & & Group A, Subgroup 1 & \\
\hline Subgroup 2 Temperature Cycling & 1010 & Condition \(\mathrm{C},-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\), 10 cycles & \multirow[t]{6}{*}{15} \\
\hline Constant Acceleration & 2001 & Condition A, 5KG's, \(\mathrm{Y}_{1}\) axis only & \\
\hline Fine Leak & 1014 & Condition A & \\
\hline Gross Leak & 1014 & Condition C & \\
\hline Visual Examination & 1010 & Per visual criteria of Method 1010 & \\
\hline Endpoint Electricals & & Group A, Subgroup 1 & \\
\hline
\end{tabular}

Group \(D\) testing is performed on a periodic basis from current manufacturing every 6 months.
GROUP D TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|c|}
\hline Test & Method & Conditions & LTPD \\
\hline Subgroup 1 Physical Dimensions & 2016 & & 15 \\
\hline Subgroup 2 Lead Integrity & 2004 & Test Condition B2 (lead fatigue) & 15 \\
\hline Subgroup 3 Thermal Shock & 1011 & Condition B, \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) 15 cycles min. & 15 \\
\hline Temperature Cycling & 1010 & Condition \(\mathrm{C},\left(-65^{\circ} \mathrm{C}\right.\) to \(\left.+150^{\circ} \mathrm{C}\right)\) 100 cycles min. & \\
\hline Moisture Resistance & 1004 & & \\
\hline Fine Leak & 1014 & Condition A & \\
\hline Gross Leak & 1014 & Condition C & \\
\hline Visual Examination & & Per visual criteria of Method 1004 and 1010 & \\
\hline Endpoint Electricals & & Group A, Subgroup 1 & \\
\hline Subgroup 4 & & & \\
\hline Mechanical Shock & 2002 & Condition B, \(1500 \mathrm{G}, \mathrm{t}=0.5 \mathrm{~ms}\), 5 blows in each orientation & 15 \\
\hline Vibration Variable Frequency & 2007 & Condition A min. & \\
\hline Constant Acceleration & 2001 & \begin{tabular}{l}
Condition A, 5KGs, \(Y_{1}\) axis only, 16 pin DIP, \\
Condition E, \(30 \mathrm{KGs}, \mathrm{Y}_{1}\) axis only, 8 pin DIP
\end{tabular} & \\
\hline Fine Leak & 1014 & Condition A & \\
\hline Gross Leak & 1014 & Condition C & \\
\hline Visual Examination & 1010 & Per visual criteria of Method 1010 & \\
\hline Endpoint Electricals & & Group A, Subgroup 1 & \\
\hline Subgroup 5 & & & \\
\hline Salt Atmosphere & 1009 & Condition A min. & 15 \\
\hline Fine Leak & 1014 & Condition A & \\
\hline Gross Leak & 1014 & Condition C & \\
\hline Visual Examination & 1009 & Per visual criteria of Method 1009 & \\
\hline Suogroup 6 & & & \\
\hline Internal Water Vapor Content & 1018 & \(5,000 \mathrm{ppm}\) maximum water content at \(100^{\circ} \mathrm{C}\) & \begin{tabular}{l}
3 Devices \\
(0 failures) \\
5 Devices \\
(1 failure)
\end{tabular} \\
\hline Subgroup 7 Adhesion of lead finish & 2025 & & 15 \\
\hline \begin{tabular}{l}
Subgroup 8 \\
Lid Torque \\
(Applicable to 8 pin DIP only)
\end{tabular} & 2024 & & 5 Devices (0 failures) \\
\hline
\end{tabular}

\section*{Plastic Optocouplers}

Hewlett-Packard supplies plastic optocouplers with high reliability testing for commercial/industrial applications requiring prolonged operational life. Two of the most frequently requested \(100 \%\) preconditioning and screening programs are given. The first program has burn-in and electrical test only, the second program adds temperature storage and temperature cycling. Either program is available for HP's plastic optocouplers. Electrical testing is to catalog conditions and limits and will include 100\% DC parameters, sample testing of input-output insulation
 leakage current and appropriate AC parameters. Contact your local field representative for pricing and availability of these programs.

PLASTIC OPTOCOUPLERS PRECONDITIONING AND SCREENING 100\%

COMMERCIAL BURN-IN**
\begin{tabular}{|l|c|l|}
\hline Examinations or Tests & \begin{tabular}{c} 
MIL-STD-883 \\
Methods
\end{tabular} & \multicolumn{1}{c|}{ Conditions } \\
\hline 1. Commercial Burn-in & 1015 & \(\mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, 160\) hours per designated circuit. \\
\hline 2. Electrical Test & \begin{tabular}{l} 
Per specified conditions and min./max. \\
limits at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{SCREENING PROGRAM**}
\begin{tabular}{|l|c|l|}
\hline Examinations or Tests & \begin{tabular}{c} 
MIL-STD-883 \\
Methods
\end{tabular} & \multicolumn{1}{c|}{ Conditions } \\
\hline 1. High Temperature Storage & 1008 & 24 hours at \(125^{\circ} \mathrm{C}\) \\
\hline 2. Temperature Cycling & 1010 & 10 cycles, \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline 3. Burn-in & 1015 & \(\mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, 160\) hours per designated circuit \\
\hline 4. Electrical Test & \begin{tabular}{l} 
Per specified conditions and min./max. \\
limits at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline 5. External Visual & 2009 & \\
\hline
\end{tabular}
**Contact your field salesman for details.

\title{
JAN QUALIFIED HERMETIC SOLID STATE LAMPS*
}
\begin{tabular}{|l|l} 
1N5765 & 1N6093 \\
JAN1N5765 & JAN1N6093 \\
JANTX1N5765 & JANTX1N6093 \\
\hline 1N6092 & 1N6094 \\
JAN1N6092 & JAN1N6094 \\
JANTX1N6092 & JANTX1N6094 \\
\hline
\end{tabular}

TECHNICAL DATA JANUARY 1986

\section*{Features}
- MILITARY QUALIFICATION
- CHOICE OF 4 COLORS Red High Efficiency Red Yellow Green
- DESIGNED FOR HIGH-RELIABILITY APPLICATIONS
- HERMETICALI.Y SEALED
- WIDE VIEWING ANGLE
- LOW POWER OPERATION
- IC COMPATIBLE
- LONG LIFE
- PANEL MOUNT OPTION HAS WIRE WRAPPABLE LEADS AND AN electrically isolated case

\section*{Description}

The 1N5765, 1N6092, 1N6093, and 1N6094 are hermetically sealed solid state lamps encapsulated in a TO-46 package with a tinted diffused plastic lens over a glass window. These hermetic lamps provide good on-off contrast, high axial luminous intensity and a wide viewing angle.
All of these devices are available in a panel mountable fixture: The semiconductor chips are packaged in a hermetically sealed TO-46 package with a tinted diffused plastic lens over glass window. This TO-46 package is then encapsulated in a panel mountable fixture designed for high reliability applications. The encapsulated LED lamp. assembly provides a high on-off contrast, a high axial luminous intensity and a wide viewing angle.
The 1N5765 utilizes a GaAsP LED chip with a red diffused


HERMETIC TO-46 LAMP


LAMP ASSEMBLY AS PANEL MOUNT
plastic lens over glass window.
The 1N6092 has a high efficiency red GaAsP on GaP LED chip with a red diffused plastic lens over glass window. This lamp's efficiency is comparable to that of a GaP red but extends to higher current levels.
The 1 N6093 provides a yellow GaAsP on GaP LED chip with a yellow diffused plastic lens over glass window.
The 1N6094 provides a green GaP LED chip with a green diffused plastic lens over glass window.
Part marking includes: part number from matrix below. CAQI designating code and YYWWX lot identification code including year, week and assembly plant if required. A maximum of 18 spaces can be accommodated.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{COLOR - PART NUMBER - LAMP AND PANEL MOUNT MATRIX} \\
\hline Descripiton & Standard Product & With JAN Qualification \({ }^{\text {1] }}\) & JAN Plus TX Testing \({ }^{[2]}\) & \[
\begin{aligned}
& \text { Controlling MIL-S }-19500 \\
& \text { Document }{ }^{[4]}
\end{aligned}
\] \\
\hline \multicolumn{5}{|c|}{TABLE I HERMETIC TO-46 PART NUMBER SYSTEM} \\
\hline Standard Red & 1N5765 & JAN1N5765 & JANTX1N5765 & 1467 \\
\hline High Efficiency Red & 1N6092 & JAN1N6092 & JANTX1N6092 & 1519 \\
\hline Yellow & 1N6093 & JAN7N6093 & JANTX1N6093 & 1520 \\
\hline Green & 1N6094 & JAN1N6094 & JANTXXIN6094 & 152 \\
\hline \multicolumn{5}{|c|}{TABLE II PANEL MOUNTABLE PART NUMBER SYSTEM[3]} \\
\hline Standard Red & HLMP-0904 & HL.MP-0930: - & HLMP-0931 - & NONE \\
\hline High Efficiency Red & HL.MP-0354 & HLMP-0380 \({ }^{\text {JANM }} 19500 / 51901 /\) & HLMAP-0381 (JTXM 19500/51902) & 1519 \\
\hline Yellow & HLMP-0454 & HLMP-0480 (JANM19500/52001) & HLMP-0481 (JTXM19500/52002) & 1520 \\
\hline Green & HL.MP-0554 & HLMP-0580 (JANM19500/52101) & HLMP-0581 (JTXM19500/52102) & 7521 \\
\hline
\end{tabular}

\section*{Notes:}
1. Parts are marked J1NXXXX or as indicated.
2. Parts are marked JTX INXXXX or as indicated.
3. Panel mountable packaging incorporates additional assembly of the
*Panel mount versions of all of the above are available per the selection matrix on this page

JAN PART: Samples of each lot are subjected to Group A, B and \(C\) tests listed below. All tests are to the conditions and limits specified by the appropriate MIL-S-19500 slash sheet for the device under test. A summary of the data gathered in Groups A, B and C lot acceptance testing is supplied with each shipment.
\begin{tabular}{|c|c|}
\hline Examination or Test & MIL-STD-750 Method \\
\hline \multicolumn{2}{|l|}{GROUP A INSPECTION} \\
\hline \multicolumn{2}{|l|}{Subgroup 1} \\
\hline Visual and mechanical examination & 2071 \\
\hline \multicolumn{2}{|l|}{Subgroup 2} \\
\hline Luminous intensity ( \(\theta=0^{\circ}\) ) & - \\
\hline Luminous intensity ( \(\theta=30^{\circ}\) ) & - \\
\hline Reverse current & 4016 \\
\hline Forward voltage & 4011 \\
\hline \multicolumn{2}{|l|}{Subgroup 3} \\
\hline Capacitance & 4001 \\
\hline \multicolumn{2}{|l|}{GROUP B INSPECTION} \\
\hline \multicolumn{2}{|l|}{Subgroup 1} \\
\hline Physical dimensions & 2066 \\
\hline \multicolumn{2}{|l|}{Subgroup 2} \\
\hline Solderability & 2026 \\
\hline Thermal shock (temperature cycling) & 1051 \\
\hline Thermal shock (glass strain) & 1056 \\
\hline Hermetic seal & 1071 \\
\hline Moisture resistance & 1021 \\
\hline End points: Luminous intensity ( \(\theta=0^{\circ}\) ) & ..- \\
\hline \multicolumn{2}{|l|}{Subgroup 3} \\
\hline Shock & 2016 \\
\hline Vibration, variable frequency & 2056 \\
\hline Constant acceleration & 2006 \\
\hline End points: (same as subgroup 2) & \\
\hline \multicolumn{2}{|l|}{Subgroup 4} \\
\hline Terminal strength & 2036 \\
\hline End points: Hermetic seal & 1071 \\
\hline \multicolumn{2}{|l|}{Subgroup 5} \\
\hline Salt atmosphere (corrosion) & 1041 \\
\hline \multicolumn{2}{|l|}{Subgroup 6} \\
\hline High-temperature life (nonoperating) & 1032 \\
\hline End points: Luminous intensity ( \(\theta=0^{\circ}\) ). & - \\
\hline \multicolumn{2}{|l|}{Subgroup 7} \\
\hline Steady-state operation life & 1027 \\
\hline End points: (same as subgroup 6) & \\
\hline
\end{tabular}

JANTX PART: Devices undergo 100\% screening tests as listed below to the conditions and limits specified by MIL-S19500 slash sheet. The JANTX lot has also been subjected to Group A, B and C tests as for the JAN PART above. A summary of the data gathered in Groups A, B and C acceptance testing is supplied with each shipment.
\begin{tabular}{|c|c|}
\hline Examination or Test & MIL-STD-750 Method \\
\hline \multicolumn{2}{|l|}{GROUP C INSPECTION} \\
\hline \multicolumn{2}{|l|}{Subgroup 1} \\
\hline Thermal shock (temperature cycling) End points: (same as subgroup 2 of group B) & ) 1051 \\
\hline \begin{tabular}{l}
Subgroup 2 \\
Resistance to solvents
\end{tabular} & - \\
\hline \multicolumn{2}{|l|}{Subgroup 3} \\
\hline High-temperature life (nonoperating) & 1031 \\
\hline End points: Luminous intensity ( \(\theta=0^{\circ}\) ) & - \\
\hline \multicolumn{2}{|l|}{Subgroup 4} \\
\hline Steady-state operation life & 1026 \\
\hline End points: (same as subgroup 3) & \\
\hline \multicolumn{2}{|l|}{Subgroup 5} \\
\hline Peak forward pulse current (transient) & - \\
\hline End points: (same as subgroup 6 of group B) & \\
\hline \multicolumn{2}{|l|}{Subgroup 6} \\
\hline Peak forward pulse current (operating) & - \\
\hline End points: (same as subgroup 6 of group B) & \\
\hline \multicolumn{2}{|l|}{PROCESS AND POWER CONDITION ("TX" types only)} \\
\hline High temperature storage (nonoperating) & - \\
\hline Thermal shock (temperature cycling) & 1051 \\
\hline Constant acceleration & 2006 \\
\hline Hermetic seal & 1071 \\
\hline Luminous intensity ( \(\theta=0^{\circ}\) ) & - \\
\hline Forward voltage & 4011 \\
\hline Reverse current & 4016 \\
\hline Burn-in (Forward bias) & - \\
\hline \multicolumn{2}{|l|}{End points (within 72 hours of burn-in):} \\
\hline \(\Delta\) Luminous intensity ( \(\theta=0^{\circ}\) ) & - \\
\hline \(\Delta\) Forward voltage & 4011 \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Parameter & \begin{tabular}{c} 
Red \\
HLMP-0904
\end{tabular} & \begin{tabular}{c} 
High Eff. Red \\
HLMP-0354
\end{tabular} & \begin{tabular}{c} 
Yellow \\
HLMP-0454
\end{tabular} & \begin{tabular}{c} 
Green \\
HLMP-0554
\end{tabular} & Units \\
\hline \begin{tabular}{l} 
Power Dissipation \\
(derate linearly from \(50^{\circ} \mathrm{C}\) at \\
\(1.6 \mathrm{~mW} / /^{\circ} \mathrm{C}\) )
\end{tabular} & 100 & 120 & 120 & 120 & mW \\
\hline DC Forward Current & \(50[1]\) & \(35^{[2]}\) & \(35^{[2]}\) & \(35^{[2]}\) & mA \\
\hline Peak Forward Current & \begin{tabular}{c}
1000 \\
See Fig. 5
\end{tabular} & \begin{tabular}{c}
60 \\
See Fig. 10
\end{tabular} & \begin{tabular}{c}
60 \\
See Fig. 15
\end{tabular} & \begin{tabular}{c}
60 \\
See Fig. 20
\end{tabular} & mA \\
\hline \begin{tabular}{l} 
Operating and Storage \\
Temperature Range
\end{tabular} & \multicolumn{4}{|c|}{\(-65^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\)} \\
\hline \begin{tabular}{l} 
Lead Soldering Temperature \\
{\([1.6 m m ~(0.063\) in.) from body] }
\end{tabular} & \multicolumn{5}{|c|}{\(260^{\circ} \mathrm{C}\) for 7 seconds. } \\
\hline
\end{tabular}

Notes: 1. Derate from \(50^{\circ} \mathrm{C}\) at \(0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\)
2. Derate from \(50^{\circ} \mathrm{C}\) at \(0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\)

Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Description} & \multicolumn{3}{|r|}{HLMP-0904} & \multicolumn{3}{|c|}{HLMP-0354} & \multicolumn{3}{|r|}{HLMP. 0454} & \multicolumn{3}{|c|}{HLMP-0554} & \multirow[b]{2}{*}{Units} & \multirow[b]{2}{*}{Teat Conditions} \\
\hline & & Min. & Typ. & Max. & & \\
\hline W, & Axial Luminous Intensity & 0.5 & 1.0 & & 1.0 & 5 & & 1.0 & 6 & & & \[
\begin{gathered}
3 \\
F=2
\end{gathered}
\] & & mcd & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\
& \text { Figs. } 3,8,13,18 \\
& \theta=0^{\circ}
\end{aligned}
\] \\
\hline Iv2 & Luminous Intensity at \(\theta=30^{\circ}[5]\) & 0.3 & & & 0.5 & & & 0.5 & & & 0.4 & & & med & \[
\begin{aligned}
& \mathrm{If}=20 \mathrm{~mA} \\
& \theta=30^{\circ}
\end{aligned}
\] \\
\hline \(2 \theta_{12}\) & included Angle Between Half Luminous intensity Points & & 60 & & & 70 & & & 70 & & & 70 & & deg. & \[
\begin{aligned}
& \text { [1] Figures } \\
& 6,11,16,21
\end{aligned}
\] \\
\hline APEAK & Peak Wavelength \({ }^{(5]}\) & 630 & 655 & 700 & 590 & 635 & 695 & 550 & 583 & 660 & 52.5 & 565 & 600 & пm & Measurement at Peak \\
\hline \(\lambda_{\text {da }}\) & Dominant Wavelength & & 640 & & & 626 & & & 585 & & & 570 & & \(n \mathrm{~m}\) & [2] \\
\hline Ts & Speed of Response & & 10 & & & 200 & & & 200 & & & 200 & & ns & \\
\hline C & Capacitance \({ }^{\text {[5] }}\) & & 200 & 300 & & 35 & 100 & & 35 & 100 & & 35 & 100 & pF & \(V_{k}=0 ; t=1 \mathrm{MHz}\) \\
\hline \(\theta_{19}\) & Thermal Resistance* & & 425 & & & 425 & & & 425 & & & 425 & & \({ }^{\circ} \mathrm{CH} / \mathrm{N}\) & [3] \\
\hline Ofic & Thermal Resistance** & & 550 & & & 550 & & & 550 & & & 550 & & \({ }^{\circ} \mathrm{CHW}\) & (3) \\
\hline \(V_{F}\) & Forward Voltage & & 1.6 & 20 & & 2.0 & 3.0 & & \[
2.0
\] & 3.0 & & \[
\begin{gathered}
2.1 \\
I_{F}=2
\end{gathered}
\] & \[
\begin{array}{r}
3.0 \\
5 \mathrm{~mA} \\
\hline
\end{array}
\] & \(\checkmark\) & \[
\begin{aligned}
& \mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA} \\
& \text { Figures 2, } 7 \text {. } \\
& 12,17
\end{aligned}
\] \\
\hline \(I_{\text {A }}\) & Reverse Current \({ }^{5 /}\) & & & 1.0 & & & 1.0 & & & 1.0 & & & 1.0 & \(\mu \mathrm{A}\) & \(V_{\mathrm{R}}=3 \mathrm{~V}\) \\
\hline \(\mathrm{B} V_{\mathrm{R}}\) & Reverse Breakdown Voltage & 4 & 5 & & 5.0 & & & 5.0 & & & 5.0 & & & V & \(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\) \\
\hline \(\eta\) & Luminous Efficacy & & 56 & & & 140 & & & 455 & & & 600 & & Im/W & 14] \\
\hline
\end{tabular}

\section*{NOTES:}
1. \(\theta_{1 / 2}\) is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, \(\lambda_{d}\), is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Junction to Cathode Lead with 3.18 mm ( 0.125 inch ) of leads exposed between base of flange and heat sink.
4. Radiant intensity, \(l_{e}\), in watts/steradian, may be found from the equation \(I_{c}=I_{v} / \eta_{v}\), where \(I_{v}\) is the luminous intensity in candelas and \(\eta_{v}\) is the luminous efficacy in lumens/watt.
5. Limits do not apply to non JAN parts.
-Panel mount.
**T0-46


Figure 1. Relative Intensity vs. Wavelength.

\section*{Package Dimensions}

HLMP-0904, 0354, 0454, 0554




NOTES:
1. AlL external metal surfaces of the package ARE BLACK ANODIZED EXCEPT FOR THE ALODINE AREA OF THE FLANGE AND THE GOLD PLATEO LEADS.
2. MOUNTING HARDWARE WHICH INCLUDES ONE LOCK WASHER AND ONE HEX.-NUT IS INCEUDED WITH EACH PANEL MOUNTABLE HERMETIC SOLID STATE LAMP.
3. USE OF METRIC DRILL SIZE 8.20 MILLIMETRES OR ENGLISH DRILL SIZE P (O. 323 INCH) IS RECOMMENDED FOR PRODUCING HOLE IN THE PANEL FOR PANEL NOUNTING.
4. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
5. PACKAGE WEIGHT INCLUDING LAMP AND

PANEL MOUNT IS \(1.2-1.8\) GRAMS. NUT AND WASHER IS AN EXTRA . \(6-1.0\) GRAM.

1N5765, 1N6092, 1N6093, 1N6094


NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES IINCHES).
2. GOLD.PLATED LEADS.
3. PACKAGE WEIGHT OF LAMP ALDNE

IS . 25 - . 35 GRAMS.

Family of Red 1N5765/HLMP-0904


Figure 2. Forward Current vs. Forward Voltage.

\(I_{\text {F }}\) - FORWARD CURRENT - mA
Figure 3. Relative Luminous Intensity vs. Forward Current.


Ipeak - peak current - ma
Figure 4. Relative Efficiency
(Luminous' Intensity per Unit Current) vs. Peak Current.


Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 6. Relative Luminous Intensity vs. Angular Displacement.


Figure 7. Forward Current vs. Forward Voltage.


Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

\(I_{F}\) - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity vs. Forward Current.


Ipeak - peak current - ma
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Family of Yellow 1N6093/HLMP-0454


Figure 12. Forward Current vs. Forward Voltage.


Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

\(\mathrm{I}_{\mathrm{F}}\) - FORWARD CURRENT - mA
Figure 13. Relative Luminous Intensity vs. Forward Current.


Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 16. . Relative Luminous Intensity vs. Angular Displacement.

\section*{Family of Green 1N6094/HLMP-0554}


Figure 17. Forward Current vs. Forward Voltage.


Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. IIDC MAX as per MAX Ratings)


Figure 18. Relative Luminous Intensity vs. Forward Current.


Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 21. Relative Luminous Intensity vs. Angular Displacement.

\section*{Features}
```

- SUNLIGHT VIEWABLE WITH PROPER CONTRAST ENHANCEMENT FILTER
- HERMETICALLY SEALED
- CHOICE OF 3 COLORS
High Efficiency Red
Yellow
High Performance Green
- LOW POWER OPERATION
- IC COMPATIBLE
- LONG LIFE/RELIABLE/RUGGED
- PANEL MOUNT OPTION with
Wire Wrappable leads
Electrically isolated case

```


\section*{Description}

The HLMP-0363, HLMP-0463, and HLMP-0563 are hermetically sealed solid state lamps in a TO-18 package with a clear glass lens. These hermetic lamps provide improved brightness over conventional hermetic LED lamps, good on-off contrast, and high axial luminous intensity. These LED indicators are designed for use in applications requiring readability in bright sunlight. With a proper contrast enhancement filter, these LED indicators are readable in sunlight ambients. All of these devices are available in a panel mountable fixture.
*Panel Mount version of all of the above are available per the selection matrix on this page.

The HLMP-0363 utilizes a high efficiency red GaAsP on GaP LED chip. The HLMP-0463 uses a yellow GaAsP on a GaP LED chip. The HLMP-0563 uses a green GaP LED chip.
These devices are offered with JAN equivalent quality conformance inspection (QCI) and JANTX equivalent screenings similar to MIL-S-19500/519/520/521.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{COLOR - PART NUMBER - LAMP AND PANEL MOUNT MATRIX} \\
\hline Description & Standard Product & JAN QCI & JANTX Equivalent \\
\hline \multicolumn{4}{|c|}{TABLE I HERMETIC TO-18 PART NUMBER SYSTEM} \\
\hline High Efficiency Red Yellow Green & \begin{tabular}{l}
HLMP-0363 \\
HLMP-0463 \\
HLMP-0563
\end{tabular} & \[
\begin{aligned}
& \text { HLMP-0391 } \\
& \text { HLMP-0491 } \\
& \text { HLMP-0591 }
\end{aligned}
\] & HLMP-0392 HLMP-0492 HLMP-0592 \\
\hline \multicolumn{4}{|c|}{TABLE II PANEL MOUNTABLE PART NUMBER SYSTEM[1]} \\
\hline High Efficiency Red Yellow Green & HLMP-0364 HLMP-0464 HLMP-0564 & \begin{tabular}{l}
HLMP-0365 \\
HLMP-0465 \\
HLMP-0565
\end{tabular} & \[
\begin{aligned}
& \text { HLMP-0366 } \\
& \text { HLMP-0466 } \\
& \text { HLMP-0566 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NOTE:}
1. Panel mountable packaging incorporates additional assembly of the equivalent Table I TO-18 part into the panel mount enclosure. The resulting part is then marked per Table II.

JAN QCI: Samples of each lot are subjected to Group A, B and \(C\) tests listed below. All tests are to the conditions and limits specified by the appropriate MIL-S-19500 slash sheet for the device under test. A summary of the data gathered in Groups A, B and C lot acceptance testing is supplied with each shipment.
\begin{tabular}{|c|c|}
\hline Examination or Test & MIL-STD-750 Method \\
\hline \multicolumn{2}{|l|}{GROUP A INSPECTION} \\
\hline \multicolumn{2}{|l|}{Subgroup 1} \\
\hline Visual and mechanical examination & 2071 \\
\hline \multicolumn{2}{|l|}{Subgroup 2} \\
\hline Luminous intensity ( \(\theta=0^{\circ}\) ) & - \\
\hline Reverse current & 4016 \\
\hline Forward voltage & 4011 \\
\hline \multicolumn{2}{|l|}{Subgroup 3} \\
\hline Capacitance & 4001 \\
\hline \multicolumn{2}{|l|}{GROUP B INSPECTION} \\
\hline \multicolumn{2}{|l|}{Subgroup 1} \\
\hline Physical dimensions & 2066 \\
\hline \multicolumn{2}{|l|}{Subgroup 2} \\
\hline Solderability & 2026 \\
\hline Thermal shock (temperature cycling) & 1051 \\
\hline Thermal shock (glass strain) & 1056 \\
\hline Hermetic seal & 1071 \\
\hline Moisture resistance & 1021 \\
\hline End points: Luminous intensity ( \(\theta=0^{\circ}\) ) & - \\
\hline \multicolumn{2}{|l|}{Subgroup 3} \\
\hline Shock & 2016 \\
\hline Vibration, variable frequency & 2056 \\
\hline Constant acceleration & 2006 \\
\hline End points: (same as subgroup 2) & \\
\hline \multicolumn{2}{|l|}{Subgroup 4} \\
\hline Terminal strength & 2036 \\
\hline End points: Hermetic seal & 1071 \\
\hline \multicolumn{2}{|l|}{Subgroup 5} \\
\hline Salt atmosphere (corrosion) & 1041 \\
\hline \multicolumn{2}{|l|}{Subgroup 6} \\
\hline High-temperature life (nonoperating) & 1032 \\
\hline End points: Luminous intensity ( \(\theta=0^{\circ}\) ) & - \\
\hline \multicolumn{2}{|l|}{Subgroup 7} \\
\hline \begin{tabular}{l}
Steady-state operation life \\
End points: (same as subgroup 6)
\end{tabular} & 1027 \\
\hline
\end{tabular}

JANTX Equivalent: Devices undergo 100\% screening tests as listed below to the conditions and limits specified by MIL-S-19500 slash sheet. The JANTX lot has also been subjected to Group A, B and C tests as for the JAN QCI PART above. A summary of the data gathered in Groups \(A, B\) and \(C\) acceptance testing is supplied with each shipment.


\section*{Absolute Maximum Ratings at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & High Eff. Red HLMP-0363 & Yellow
HLMP-0463 & Green
HLMP-0563 & Units \\
\hline Power Dissipation (derate linearly from \(50^{\circ} \mathrm{C}\) at \(1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) ) & 120 & 120 & 120 & mW \\
\hline DC Forward Current & 3511 & \(35^{14}\) & \(35^{11}\) & mA \\
\hline Peak Forward Current & \[
\begin{gathered}
60 \\
\text { See Fig. } 5 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
60 \\
\text { See Fig. } 10 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
60 \\
\text { See Fig. } 15 \\
\hline
\end{gathered}
\] & mA \\
\hline Operating and Storage Temperature Range & \multicolumn{4}{|c|}{\(-65^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\)} \\
\hline Lead Soldering Temperature [ 1.6 mm ( 0.063 in ) from body] & \multicolumn{4}{|c|}{\(260^{\circ} \mathrm{C}\) for 7 seconds.} \\
\hline
\end{tabular}

NOTES: 1. Derate from \(50^{\circ} \mathrm{C}\) at \(0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\)
Electrical/Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Description} & \multicolumn{3}{|c|}{HLMP-0363} & \multicolumn{3}{|c|}{HLMP-0463} & \multicolumn{3}{|c|}{HLMP-0563} & \multirow[b]{2}{*}{Units} & \multirow[b]{2}{*}{Test Conditions} \\
\hline & & Min. & Typ. & Max. & Min. & Typ. & Max. & Min. & Typ. & Max. & & \\
\hline IV1 & Axial Luminous Intensity & 20 & 50 & & 20 & 50 & &  & \[
\begin{gathered}
50 \\
F=25 \\
\hline
\end{gathered}
\] & & mod & \[
\begin{gathered}
\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\
\text { Figs. } 3,8,813 \\
\theta=0^{\circ} \\
\hline
\end{gathered}
\] \\
\hline \(2 \Theta_{1 / 2}\) & \begin{tabular}{l}
Included Angle \\
Between Half \\
Luminous Intensity \\
Points
\end{tabular} & & 18 & & & 18 & & & 18 & & deg. & \[
\begin{gathered}
\text { [1] Figures } \\
6,11,16
\end{gathered}
\] \\
\hline \(\lambda_{\text {PEAK }}\) & Peak Wavelength & 590 & 635 & 695 & 550 & 583 & 660 & 525 & 565 & 600 & nm & Measurement at Peak \\
\hline \(\lambda_{d}\) & Dominant Wavelength & & 626 & & & 585 & & & 570 & & nm & 121 \\
\hline \(\tau_{5}\) & Speed of Response & & 200 & & & 200 & & & 200 & & ns & \\
\hline C & Capacitancel \({ }^{51}\) & & 35 & 100 & & 35 & 100 & & 35 & 100 & pF & \(V_{1}=0 ; f=1 \mathrm{MHz}\) \\
\hline \(\theta_{\text {JC }}\) & Thermal Resistance* & & 425 & & & 425 & & & 425 & & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & 131 \\
\hline \(Q^{\prime} \mathrm{C}\) & Thermal Resistance** & & 550 & & & 550 & & & 550 & & \({ }^{\circ} \mathrm{CHW}\) & [3] \\
\hline \(V_{F}\) & Forward Voltage & & 2.0 & 3.0 & & 2.0 & 3.0 & & \[
\begin{gathered}
2.1 \\
F=25
\end{gathered}
\] & \[
\mathrm{A}^{3.0}
\] & \(v\) & \begin{tabular}{l}
\[
I_{F}=20 \mathrm{~mA}
\] \\
Figures 2,7,12
\end{tabular} \\
\hline \(\mathrm{I}_{R}\) & Reverse Current & & & 1.0 & & & 1.0 & & & 1.0 & \(\mu \mathrm{A}\) & \(V_{\mathrm{B}}=3 \mathrm{~V}\) \\
\hline \(\mathrm{BV}_{\mathrm{R}}\) & Reverse Breakdown Voltage & 5.0 & & & 5.0 & & & 5.0 & & & V & \(\mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}\) \\
\hline \(\eta_{V}\) & Luminous Efficacy & & 140 & & & 455 & & & 600 & & \(\operatorname{Im} / \mathrm{W}\) & [4] \\
\hline
\end{tabular}

NOTES:
1. \(\Theta_{1 / 2}\) is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, \(\lambda_{d}\), is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Junction to Cathode Lead with 3.18 mm ( 0.125 inch ) of leads exposed between base of flange and heat sink.
4. Radiant intensity, \(I_{e}\), in watts/steradian, may be found from the equation \(I_{e}=I_{v} / \eta_{v}\), where \(I_{v}\) is the luminous intensity in candelas and \(\eta_{v}\) is the luminous efficacy in lumens/watt.
5. Limits do not apply to non screened parts.
*Panel mount. **TO-18.


Figure 1. Relative Intensity vs. Wavelength.

\section*{Package Dimensions}

HLMP-0364, 0464, 0564

notes:
1. BLACK PANEL MOUNT SLEEVE
2. MOUNTING HARDWARE WHICH INCLUDES ONE LOCK WASHER AND ONE HEX.NUT IS INCLUDED WITH EACH PANEL MOUNTABLE HERMETIC SOLID STATE LAMP.
3. USE OF METRIC DALLL SIZE 8.20 MILLIMETRES OR ENGLISH DRILI SIZE P \((0.323\) INCH) IS RECOMMENDED
FOA PRODUCING HOLE IN THE PANEL. FOR PANEL
MOUNTING.
4. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
5. PACKAGE WEIGHT INCLUOING LAMP ANO

PANEL MOUNT IS 1.2-1.8 GRAMS. NUT AND WASHER IS AN EXTRA .6-1.0 GRAM

HLMP-0363, 0463, 0563


DIMENSIONS IN MILLIMETERS AND (INCHES).
OUTLINE TO-18
1. ALL. DIMENSIONS ARE IN MIELIMETRES (INCHES)
2. GOLD PLATED LEADS
3. PACKAGE WEIGHT OF LAMP ALONE S.25-.4GGRAMS.

Family of High Efficiency Red HLMP-0363/HLMP-0364


Figure 2. Forward Current vs. Forward Voltage.


Figure 5. Maximum Tolerable Peak Curent vs. Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 3. Relative Luminous Intensity vs. Forward Current.


Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.


Figure 6. Relative Luminous Intensity vs. Angular Displacement.

\section*{Family of Yellow HLMP-0463/HLMP-0464}


Figure 7. Forward Current vs. Forward Voltage.


Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (ldc MAX as per MAX Ratings)

\(I_{F}\) - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity vs. Forward Current.


Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 11. Relative Luminous Intensity vs. Angular Displacement.

\section*{Family of Green HLMP-0563/HLMP-0564}


Figure 12. Forward Current vs. Forward Voltage.


Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)


Figure 13. Relative Luminous Intensity vs. Forward Current.


Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.


Figure 16. Relative Luminous Intensity vs. Angular Displacement.

\section*{Contrast Enhancement}

The objective of contrast enhancement is to optimize. display readability. Adequate contrast enhancement can be achieved in indoor applications through luminous contrast techniques. Luminous contrast is the observed brightness of the illuminated indicator compared to the brightness of
the surround. Appropriate wavelength filters maximize luminous contrast by reducing the amount of light reflected from the area around the indicator while transmitting most of the light emitted by the indicator. These filters are described further in Application Note 1015.

\section*{Features}
- HERMETICALLY SEALED
- TXV VERSION AVAILABLE
- THREE CHARACTER OPTIONS

Numeric
Hexadecimal
Over Range
- \(4 \times 7\) DOT MATRIX CHARACTER
- PERFORMANCE GUARANTEED OVER TEMPERATURE
- HIGH TEMPERATURE STABILIZED
- GOLD PLATED LEADS
- MEMORY LATCH/DECODER/DRIVER TTL Compatible
- CATEGORIZED FOR LUMINOUS INTENSITY

\section*{Description}

The 4N51-4N54 series solid state numeric and hexadecimal indicators with on-board decoder/driver and memory are hermetically sealed 7.4 mm ( 0.29 inch) displays for use in military and aerospace applications.


The 4N51 numeric indicator decodes positive 8421 BCD logic inputs into characters \(0-9\), a "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.
The 4N52 is the same as the 4N51 except that the decimal point is located on the left-hand side of the digit.
The 4N54 hexadecimal indicator decodes positive 8421 logic inputs into 16 states, \(0-9\) and A-F. In place of the decimal point an input is provided for blanking the display (all LED's off), without losing the contents of the memory. The 4N53 is a " \(\pm 1\)." overrange display, including a righthand decimal point.

\section*{Package Dimensions*}




END VIEW

\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{ PIN } & \multicolumn{2}{|c|}{ FUNCTION } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
4N51 \\
4N52 \\
NUMERIC
\end{tabular} & \begin{tabular}{c} 
4N54 \\
HEXA \\
DECIMAL
\end{tabular} \\
\hline 1 & Input 2 & Input 2 \\
\hline 2 & Input 4 & Input 4 \\
\hline 3 & Input 8 & Input 8 \\
\hline 4 & \begin{tabular}{l} 
Decimal \\
point
\end{tabular} & \begin{tabular}{l} 
Blanking \\
control
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Latch \\
enable
\end{tabular} & \begin{tabular}{l} 
Latch \\
enable
\end{tabular} \\
\hline 6 & Ground & Ground \\
\hline 7 & \begin{tabular}{l} 
VCC
\end{tabular} & VCC \\
\hline 8 & Input 1 & Input 1 \\
\hline
\end{tabular}

NOTES:
1. Dimensions in millimetres and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is \(\pm .38 \mathrm{~mm}\left( \pm .015^{\prime \prime}\right)\)
3. Digit center line is \(\pm .25 \mathrm{~mm}\left( \pm .01^{\prime \prime}\right)\) from package center line.
4. Lead material is gold plated copper alloy.

\section*{Absolute Maximum Ratings*}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Symbol & Min. & Max. & Unit \\
\hline Storage temperature, ambient & Ts & -65 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating temperature, ambient \({ }^{(1,2)}\) & TA & -55 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Supply voltage \({ }^{(3)}\) & \(V_{\text {cc }}\) & -0.5 & +7.0 & V \\
\hline Voltage applied to input logic, dp and enable pins & \(V_{\text {I }}, V_{\text {de }}, V_{\text {E }}\) & -0.5 & \(V_{\text {cc }}\) & V \\
\hline Voltage applied to blanking input \({ }^{(7)}\) & \(\mathrm{V}_{\mathrm{B}}\) & -0.5 & \(\mathrm{V}_{\mathrm{cc}}\) & V \\
\hline Maximum solder temperature at 1.59 mm (. 062 inch) below seating plane; \(t \leqslant 5\) seconds & & & 260 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Recommended Operating Conditions*}


Electrical/Optical Characteristics \({ }^{*} \mathrm{~T}_{\lambda}=-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\), unless otherwise speified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. \({ }^{(4)}\) & Max. & Unit \\
\hline Supply Current & Icc & \(\mathrm{V}_{C C}=5.5 \mathrm{~V}\) (Numeral & & 112 & 170 & mA \\
\hline Power dissipation & \(=\mathrm{P}_{\mathrm{T}}\) & 5 and dp lighted) & & 560 & 935 & mW \\
\hline Luminous intensity per LED (Digit average) \({ }^{(5,6)}\) & \(\mathrm{I}_{\mathrm{v}}\) & \(\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) & 40 & 85 & & \(\mu \mathrm{cd}\) \\
\hline Logic low-level input voltage & \(\mathrm{V}_{\text {IL }}\) & & * & 1 & 0.8 & V \\
\hline Logic high-level input voltage & \(\mathrm{V}_{\text {IH }}\) & & 2.0 & & , & V \\
\hline Enable low-voltage; data being entered & \(V_{E L}\) & \(V_{c c}=4.5 \mathrm{~V}\) & & & 0.8 & V \\
\hline Enable high-voltage; data not being entered & \(V_{\text {EH }}\) & & 2.0 & & & V \\
\hline Blanking low-voltage; display not blanked \({ }^{\text {(7) }}\) & \(V_{\text {BL }}\) & & & & 0.8 & V \\
\hline Blanking high-voltage; display blanked (7) & \(V_{\text {BH }}\) & masm & 3.5 & & & V \\
\hline Blanking low-level input current \({ }^{71}\) & \(\mathrm{l}_{\text {BL }}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}\) & & + & 50 & \(\mu \mathrm{A}\) \\
\hline Blanking high-level input current \({ }^{(7)}\) & \(1_{\text {BH }}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {BH }}=4.5 \mathrm{~V}\) & & & 1.0 & mA \\
\hline Logic low-level input current & \(\mathrm{I}_{\text {IL }}\) & \(\mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline Logic high-level input current & \(\mathrm{I}_{\mathrm{IH}}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}\) & & & +100 & \(\mu \mathrm{A}\) \\
\hline Enable low-level input current & \(\mathrm{I}_{\mathrm{EL}}\) & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline Enable high-level input current & \(\mathrm{I}_{\text {EH }}\) & \(\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {EH }}=2.4 \mathrm{~V}\) & & & +130 & \(\mu \mathrm{A}\) \\
\hline Peak wavelength & \(\lambda_{\text {PEAK }}\) & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 655 & & nm \\
\hline Dominant Wavelength \({ }^{(8)}\) & \(\lambda_{\text {d }}\) & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 640 & & nm \\
\hline Weight ** & & & & 1.0 & & gm \\
\hline Leak Rate & & & & & \(5 \times 10^{-8}\) & \(\mathrm{cc} / \mathrm{sec}\) \\
\hline
\end{tabular}

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: \(\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\); \(\Theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W}\). 2. \(\Theta_{\mathrm{CA}}\) of a mounted display should not exceed \(35^{\circ} \mathrm{C} / \mathrm{W}\) for operation up to \(\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}\). 3. Voltage values are with respect to device ground, pin 6. 4. All typical values at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Volts}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} .5\). These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific ambient temperature, \(I_{V}\left(T_{A}\right)\), may be calculated from this relationship: \(\left.I_{V}\left(T_{A}\right)=I_{V(25}{ }^{\circ} \mathrm{C}\right)(.985)\left[T_{A}-25^{\circ} \mathrm{C}\right]\) 7. Applies only to 4 N 54.8 . The dominant wavelength, \(\lambda_{d}\), is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
*JEDEC Registered Data. **Non Registered Data.


Figure 1．Timing Diagram of 4N51－4N54 Series Logic．


Figure 2．Block Diagram of 4N51－4N54 Series Logic．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TRUTH TABLE} \\
\hline \multicolumn{4}{|c|}{BCD DATA \({ }^{\text {（1）}}\)} & \multirow[b]{2}{*}{4N51 AND 4N52} & \multirow[b]{2}{*}{4N54} \\
\hline \(\mathrm{X}_{8}\) & \(\mathrm{X}_{4}\) & \(\mathrm{X}_{2}\) & \(x_{1}\) & & \\
\hline 4 & L & 1 & 1 &  & \(\stackrel{i}{i}\) \\
\hline \(L\) & 1. & \(L\) & H & \(\stackrel{i}{4}\) & ＋ \\
\hline 4 & L & H & 1 & \(\stackrel{\square}{\square}\) & ＋\％＊ \\
\hline L & t． & H & H & \(\cdots\) & ＋ \\
\hline 6 & H & 1 & 1 & \(\cdots\) & \％ \\
\hline L & H & L． & H & 高： & \％\％ \\
\hline 1 & H & H & L． & 菏； & \％ \\
\hline L． & H & H & H & ＂1 & ＋1＋1 \\
\hline H & L． & 1 & \(L\) & \％ & \％ \\
\hline H & 1. & L & H & \％ & 菏 \\
\hline H & 1. & H & L &  & ＋in \\
\hline H & 1. & H & H & （BLANK） & － \\
\hline H & H & L． & 1. & （BLANK） & \(\cdots\) \\
\hline H & H & 1. & H & ，．． & \％ \\
\hline H & H & H & \(L\) & （BL．ANK） & \％ \\
\hline H & H & H & H & （BLANK） &  \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{DECIMAL PT．\({ }^{[2]}\)}} & \multicolumn{2}{|l|}{OV} & \(V_{p p}=L\) \\
\hline & & & \multicolumn{2}{|l|}{Off} & \(V_{\text {dp }}{ }^{2}+H\) \\
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{ENABLE \({ }^{[1]}\)}} & \multicolumn{2}{|l|}{LOAD DATA．} & \(V_{E}=1\) \\
\hline & & & \multicolumn{2}{|l|}{LATCH DATA} & \(V_{E}=H\) \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{BLANKING \({ }^{\text {（3）}}\)}} & \multicolumn{2}{|l|}{DISPLAM．ON} & \(V_{B}=1\) \\
\hline & & & \multicolumn{2}{|l|}{DISPLAY，OFF} & \({ }^{\times} \mathrm{H}\) \\
\hline
\end{tabular}

Notes：
1．\(H=\) Logic High；\(L=\) Logic Low．With the enable input at logic high changes in BCD input logic levels or D．P．input have no effect upon display memory，displayed character，or D．P．
2．The decimal point input，DP，pertains only to the 4 N 51 and 4 N 52 displays．
3．The blanking control input，B，pertains only to the \(4 N 54\) hexadecimal display．Blanking input has no effect upon display memory．


Figure 3．Typical Blanking Control Current vs．Voltage for 4N54．


Figure 4．Typical Blanking Control Input Current vs．Ambient Temperature for 4 N 54 ．


Figure 5．Typical Latch Enable Input Current vs．Voltage．


Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage.


Figure 7. Typical Logic and Enable Low Input Current vs. Ambient Temperature.


Figure 8. Typical Logic and Enable High Input Current vs. Ambient Temperature.

\section*{Operational Considerations}

\section*{ELECTRICAL}

The \(4 \mathrm{~N} 51-4 \mathrm{~N} 54\) series devices use a modified \(4 \times 7\) dot matrix of light emitting diodes (LED's) to display decimal/hexadecimal numeric information. The LED's are driven by constant current drivers. BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. To avoid the latching of erroneous information, the enable pulse rise time should not exceed 200 nanoseconds. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.
The blanking control input on the 4N54 display blanks (turns off) the displayed hexadecimal information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 3.5 volts. This may be easily achieved by using an open collectorTTL gate and a pull-up resistor. For example, (1/6) 7416 hexinverter buffer/driver and a 120 ohm pull-up resistor will provide sufficient drive to blank eight displays. The size of the blanking pull-up resistor may be calculated from the following formula, where N is the number of digits:
\[
\mathrm{R}_{\text {blank }}=\left(\mathrm{V}_{\mathrm{cc}}-3.5 \mathrm{~V}\right) /[\mathrm{N}(1.0 \mathrm{~mA})]
\]

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the onboard IC.

\section*{MECHANICAL}

4N51-4N54 series displays are hermetically tested for use in environments which require a high reliability device. These displays are designed and tested to meet a helium leak rate of \(5 \times 10^{-8} \mathrm{CC} / \mathrm{SEC}\) and a standard dye penetrant gross leak test.

These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-to-lead pin spacing is 2.54 mm ( 0.100 inch) and the lead row spacing is 15.24 mm ( 0.600 inch). These displays may be end stacked with 2.54 mm ( 0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.
The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of \(+100^{\circ} \mathrm{C}\), it is important to maintain a case-to-ambient thermal resistance of less than \(35^{\circ} \mathrm{C} /\) watt as measured on top of display pin 3.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

\section*{PRECONDITIONING}

4N51-4N54 series displays are 100\% preconditioned by 24 hour storage at \(125^{\circ} \mathrm{C}\).

\section*{CONTRAST ENHANCEMENT}

The 4N51-4N54 displays have been designed to provide the maximum posible ON/OFF contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60 and Dark Red 63, SGL Homalite H100-1605, 3M Light Control Film and Polaroid HRCP Red Circular Polarizing Filter. For further information see Hewlett-Packard Application Note 964.

\section*{Solid State Over Range Character}

For display applications requiring a,+ 1 , or decimal point designation, the \(4 N 53\) over range character is available. This display module comes in the same package as the 4N51-4N54 series numeric indicator and is completely compatible with it.

\section*{Package Dimensions*}


FRONT


NOTES:
1. DIMENSIONS IN MILLIMETRES AND IINCHES). 2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS \(\pm .38\) MM ( \(\pm .015\) INCHES).
\begin{tabular}{|c|c|}
\hline PIN & FUNCTION \\
\hline 1 & Plus \\
\hline 2 & Numeral One \\
\hline 3 & Numerai One \\
\hline 4 & DP \\
\hline 5 & Open \\
\hline 6 & Open \\
\hline 7 & \(V_{\text {cc }}\) \\
\hline 8 & Minus/Plus \\
\hline
\end{tabular}


Figure 9. Typical Driving Circuit.

TRUTH TABLE
\begin{tabular}{|c|cccc|}
\hline \multirow{2}{*}{ CHARACTER } & \multicolumn{4}{|c|}{ PIN } \\
\cline { 2 - 5 } & \(\mathbf{1}\) & 2,3 & 4 & 8 \\
\hline+ & \(H\) & \(X\) & \(X\) & \(H\) \\
\hline- & \(L\) & \(X\) & \(X\) & \(H\) \\
\hline 1 & \(X\) & \(H\) & \(X\) & \(X\) \\
\hline Decimal Point & \(X\) & \(X\) & \(H\) & \(X\) \\
\hline Blank & \(L\) & \(L\) & \(L\) & \(L\) \\
\hline
\end{tabular}

NOTES: L: Line switching transistor in Figure 9 cutoff.
H: Line switching transistor in Figure 9 saturated.
X: 'Don't care'

\section*{Electrical/Optical Characteristics*}

4N53 ( \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\), Unless Otherwise Specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DESCRIPTION & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Forward Voltage per LED & \(V_{F}\) & \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) & & 1.6 & 2.0 & V \\
\hline Power dissipation & \(\mathrm{P}_{\mathrm{T}}\) & \begin{tabular}{l}
\[
I_{F}=10 \mathrm{~mA}
\] \\
all diodes lit
\end{tabular} & & 280 & 320 & mW \\
\hline Luminous Intensity per LED (digit average) & \(I_{\nu}\) & \[
\begin{aligned}
& T_{F}=6 \mathrm{~mA} \\
& T_{C}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
40
\] & 85 & & \(\mu \mathrm{cd}\) \\
\hline Peak wavelength & \(\lambda\) peak & \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & & 655 & & nm \\
\hline Dominant Wavalength & \(\lambda d\) & \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & & 640 & & nm \\
\hline Weight * * & & & & 1.0 & & gm \\
\hline
\end{tabular}

\section*{Recommended Operating Conditions*}
\begin{tabular}{|l|c|c|c|c|c|}
\hline & SYMBOL & MIN & NOM & MAX & UNIT \\
\hline LED supply voltage & \(V_{\text {CC }}\) & 4.5 & 5.0 & 5.5 & \(V\) \\
\hline Forward current, each LED & \(\mathrm{IF}_{\mathrm{F}}\) & & 5.0 & 10 & MA \\
\hline
\end{tabular}

\section*{NOTE:}

LED current must be externally limited. Refer to Figure 9 for recommended resistor values.

Absolute Maximum Ratings*
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & SYMBOL & MIN. & MAX. & UNIT \\
\hline Storage temperature, ambient & \(T_{S}\) & -65 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating temperature, ambient & \(\mathrm{T}_{\mathrm{A}}\) & -55 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Forward current, each LED & \(\mathrm{I}_{\mathrm{F}}\) & & 10 & mA \\
\hline Reverse voltage, each LED & \(\mathrm{V}_{R}\) & & 4 & V \\
\hline
\end{tabular}
*JEDEC Registered Data. **Non Registered Data.

\section*{High Reliability Testing}

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed displays with 100\% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. A second program is an HP modification to the full conformance program and offers the \(100 \%\) screening portion of Level A, Table I, and Group A, Table II.

\section*{PART MARKING SYSTEM}
\begin{tabular}{|c|c|c|}
\hline Standard Product & \begin{tabular}{c} 
With Table I \\
and II
\end{tabular} & \begin{tabular}{c} 
With Tables I, \\
II, Illa and IVa
\end{tabular} \\
\hline \multicolumn{2}{|c|}{ PREFERRED PART NUMBER SYSTEM } \\
\hline \multicolumn{4}{|c|}{} \\
\hline 4N51 & 4N51TXV & M87157/00101ACX \\
4N52 & 4N52TXV & M87157/00102ACX \\
4N54 & 4N54TXV & M87157/00103ACX \\
4N53 & 4N53TXV & M87157/00104ACX \\
\hline
\end{tabular}

100\% Screening
TABLE \(I\).
QUALITY LEVEL A OF MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Test Screen & MIL-STD-750 Method & Conditions \\
\hline 1. Precap Visual & - & HP Procedure 5956-7572-52 \\
\hline 2. High Temperature Storage & 1032 & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\), Time \(=24\) hours \\
\hline 3. Temperature Cycling & 1051 & Condition B, 10 Cycles, 15 Min . Dwell \\
\hline 4. Constant Acceleration & 2006 & 10,000 G's at \(Y_{1}\) orientation \\
\hline 5. Fine Leak & 1071 & Condition H \\
\hline 6. Gross Leak & 1071 & Condition C \\
\hline 7. Interim Electrical/Optical Tests \({ }^{[2]}\) & - & Iv, Icc, IBL, IEH, IEL, IEH, IL, and IH. \(T_{A}=25^{\circ} \mathrm{C}\) \\
\hline 8. Burn-In \([1,3]\) & 1015 & Condition B at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and cycle through logic at 1 character per second. \(T_{A}=100^{\circ} \mathrm{C}, \mathrm{t}=160\) hours \\
\hline 9. Final Electrical Test[2] & - & Same as Step 7 \\
\hline 10. Delta Determinations & - & \[
\begin{aligned}
& \Delta \mathrm{IV}=-20 \%, \Delta \mathrm{ICC}= \pm 10 \mathrm{~mA}, \Delta \mathrm{I}_{\mathrm{IH}}= \pm 10 \mu \mathrm{~A} \\
& \text { and } \Delta \mathrm{IEH}= \pm 13 \mu \mathrm{~A}
\end{aligned}
\] \\
\hline 11. External Visuall 1 & 2009 & \\
\hline
\end{tabular}

\section*{Notes:}
1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics.
3. Burn-in for the over range shall use Condition \(B\) at a nominal \(I_{F}=8 \mathrm{~mA}\) with ' +1 ' illuminated for \(t=160\) hours.

TABLE II
GROUP A ELECTRICAL TESTS - MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Test & Parameters & LTPD \\
\hline Subgroup 1 DC Electrical Tests at \(25^{\circ} \mathrm{C}^{\text {[1] }}\) & \(\mathrm{IV}, \mathrm{ICC}_{\mathrm{C}} \mathrm{I}_{\mathrm{BL}}, \mathrm{I}_{\mathrm{BH}}\), IEL, IEH, IIL, and \(\mathrm{IIFH}_{\mathrm{H}}\) and visual function, \(T_{A}=25^{\circ} \mathrm{C}\) & 5 \\
\hline Subgroup 2 DC Electrical Tests at High Temperature \({ }^{[1]}\) & Same as Subgroup 1, except delete ly and visual function. \(T_{A}=+100^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 3 DC Electrical Tests at Low Temperature \({ }^{[1]}\) & Same as Subgroup 1, except delete Iv and visual function. \(T_{A}=-55^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 4, 5, and 6 not tested & & \\
\hline \begin{tabular}{l}
Subgroup 7 \\
Optical and Functional Tests at \(25^{\circ} \mathrm{C}\)
\end{tabular} & Satisfied by Subgroup 1 & 5 \\
\hline \begin{tabular}{l}
Subgroup 8 \\
External Visual
\end{tabular} & & 7 \\
\hline
\end{tabular}
1. Limits and conditions are per the electrical/optical characteristics.

TABLE IIIa
GROUP B, CLASS A AND B OF MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Test & MIL-STD-750 Method & Conditions & Sample Size \\
\hline Subgroup 1 Resistance to Solvents & 1022 & & 4 Devices/ 0 Failures \\
\hline Internal Visual and Mechanical & 2075 & & 1 Device/ 0 Failures \\
\hline Subgroup 2 \({ }^{[1,2]}\) Solderability & 2026 & \(\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}\) for 5 seconds & LTPD \(=15\) \\
\hline Subgroup 3 Thermal Shock (Temp. Cycle) & 1051 & Condition B1, 15 Min . Dwell & \multirow[t]{5}{*}{LTPD \(=15\)} \\
\hline Moisture Resistance \({ }^{[3]}\) & 1021 & & \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C & \\
\hline Electrical/Optical Endpoints \({ }^{[4]}\) & - & IV, ICC, IBL, IBH, IEL, IEH, IIL, IIH and visual function. \(T_{A}=25^{\circ} \mathrm{C}\) & \\
\hline Subgroup 4 Operating Life Test ( 340 hrs .) \({ }^{[5]}\) & 1027 & \(T_{A}=+100^{\circ} \mathrm{C}\) at \(V_{C C}=5.0 \mathrm{~V}\) and cycling through logic ai 1 character per second. & \multirow[t]{2}{*}{LTPD \(=10\)} \\
\hline Electrical/Optical Endpoints| \({ }^{4]}\) & - & Same as Subgroup 3. & \\
\hline Subgroup 5 Non-operating (Storage) Life Test ( 340 hrs .) & 1032 & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & \multirow[t]{2}{*}{LTPD \(=10\)} \\
\hline Electrical/Optical Endpoints[4] & - & Same as Subgroup 3 & \\
\hline
\end{tabular}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. Initial conditioning should be a \(15^{\circ}\) bent inward one cycle.
4. Limits and conditions are per the electrical/optical characteristics.
5. Burn-in for the over range shall use Condition \(B\) at a nominal \(I_{F}=8 \mathrm{~mA}\) with ' +1 ' illuminated for \(t=160\) hours.

TABLE IVa
GROUP C, CLASS A AND B OF MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Test & MIL-STD-750 Method & Conditions & Sample Size \\
\hline Subgroup 1 Physical Dimensions & 2066 & & \begin{tabular}{l}
2 Devices/ \\
0 Failures
\end{tabular} \\
\hline Subgroup 2[2,7] Lead Integrity & 2004 & Condition B2. & \multirow[t]{3}{*}{LTPD \(=15\)} \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C & \\
\hline Subgroup 3 Shock & 2016 & 1500G, Time \(=0.5 \mathrm{~ms}, 5\) blows in each orientation \(X_{1}, Y_{1}, Z_{1}\) & \multirow[t]{5}{*}{LTPD \(=15\)} \\
\hline Vibration, Variable Frequency & 2056 & & \\
\hline Constant Acceleration & 2006 & 10,000G at \(Y_{1}\) orientation & \\
\hline External Visuall4] & 1010 or 1011 & & \\
\hline Electrical/Optical Endpoints[8] & - & IV, ICC, IBL, IBH, IEL, IEH, IIL, IIH and visual Function, \(T_{A}=25^{\circ} \mathrm{C}\) & \\
\hline Subgroup 4[1,3] Salt Atmosphere & 1041 & & \multirow[t]{2}{*}{LTPD \(=15\)} \\
\hline External Visual \({ }^{4]}\) & 1010 or 1011 & & \\
\hline Subgroup 5 Bond Strength \({ }^{[5]}\) & 2037 & Condition A & \[
\begin{gathered}
\angle T P D=20 \\
(C=0)
\end{gathered}
\] \\
\hline Subgroup 6 Operating Life Test \({ }^{[6]}\) & 1026 & \(T_{A}=+100^{\circ} \mathrm{C}\) & \multirow[t]{2}{*}{\(\lambda=10\)} \\
\hline Electrical/Optical Endpoints[8] & - & Same as Subgroup 3 & \\
\hline
\end{tabular}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C Life Test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.

High Brightness
HDSP-079X/079XTXV/079XTXVB HDSP-088X/088XTXV/088XTXVB

\section*{Features}
- CONFORM TO MIL-D-87157, QUALITY LEVEL A
- HERMETICALLY SEALED
- TXV AND TXVB VERSIONS AVAILABLE
- THREE CHARACTER OPTIONS Numeric
Hexadecimal Over Range
- \(4 \times 7\) DOT MATRIX CHARACTER
- HIGH EFFICIENCY RED AND YELLOW
- TWO HIGH EFFICIENCY RED OPTIONS Low Power High Brightness
- PERFORMANCE GUARANTEED OVER TEMPERATURE
- HIGH TEMPERATURE STABILIZED
- GOLD PLATED LEADS
- MEMORY LATCH/DECODER/DRIVER TTL Compatible
- CATEGORIZED FOR LUMINOUS INTENSITY

\section*{Description}

These displays are hermetic, solid state numeric and hexadecimal indicators with on-board decoder/drivers and memory. They are designed and tested for use in military and aero-space applications. The character height is 7.4 \(\mathrm{mm}(0.29 \mathrm{inch})\). The TXVB versions of these products conform to Quality Level A of MIL-D-87157, the general specification for light emitting diode displays.

The numeric devices decode positive BCD logic into characters " \(0-9\) ", a "一" sign, decimal point, and a test pattern. The hexadecimal devices decode positive BCD logic into 16 characters, " \(0-9, A-F\) ". An input is provided on the hexadecimal devices to blank the display (all LEDs off) without losing the contents of the memory.

The over range device displays " \(\pm 1\) " and right hand decimal point and is typically driven via external switching transistors.

\section*{Devices}
\begin{tabular}{|c|c|c|c|}
\hline Part Number HDSP. & Color & Description & Front View \\
\hline 0781/0781TXV/0781TXVB 0782/0782TXV/0782TXVB 0783/0783TXV/0783TXVB 0784/0784TXV/0784TXVB & High-Efficiency Red Low Power & Numeric, Right Hand DP Numeric, Left Hand DP Over Range \(\pm 1\) Hexadecimal & \[
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~B} \\
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] \\
\hline 0791/0791TXV/0791TXVB 0792/0792TXV/0792TXVB 0783/0783TXV/0783TXVB 0794/0794TXV/0794TXVB & High-Efficiency Red High Brightness & Numeric, Right Hand DP Numeric, Left Hand DP Over Range \(\pm 1\) Hexadecimal & \[
\begin{aligned}
& A \\
& B \\
& C \\
& D
\end{aligned}
\] \\
\hline 0881/0881TXV/0881TXVB 0882/0882TXV/0882TXVB 0883/0883TXV/0883TXVB 0884/0884TXV/0884TXVB & Yellow & Numeric, Right Hand DP Numeric, Left Hand DP Over Range \(\pm 1\) Hexadecimal & \[
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~B} \\
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Package Dimensions}

FRONT VIEW A


FRONT VIEW B


FRONT VIEW D


END VIEW

\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{PIN} & \multicolumn{2}{|c|}{FUNCTION} \\
\hline & NUMERIC & HEXA. DECIMAL \\
\hline 1 & Input 2 & Input 2 \\
\hline 2 & Input 4 & Input 4 \\
\hline 3 & Input 8 & Input 8 \\
\hline 4 & Decimal point & Blanking control \\
\hline 5 & Latch enable & Latch enable \\
\hline 6 & Ground & Ground \\
\hline 7 & \(\mathrm{V}_{\text {CC }}\) & \(V_{C C}\) \\
\hline 8 & Input 1 & Input 1 \\
\hline
\end{tabular}

Notes:
1. Dimensions in millimetres and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is \(\pm .38 \mathrm{~mm}\left( \pm .015^{\prime \prime}\right)\).
3. Digit center line is \(\pm .25 \mathrm{~mm}\left( \pm .01^{\prime \prime}\right)\) from package center line.
4. Lead material is gold plated copper alloy.
5. Color code for HDSP-088X series.


Figure 1. Timing Diagram

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{\multirow[t]{2}{*}{BCD DATA \({ }^{[1]}\) TR}} & tRuth table & \multirow[b]{3}{*}{HEXA. DECIMAL} \\
\hline & & & & \multirow[t]{2}{*}{NUMERIC} & \\
\hline \(\mathrm{x}_{8}\) & \(\mathrm{X}_{4}\) & \(x_{2}\) & \(x_{1}\) & & \\
\hline 4 & \(\stackrel{1}{4}\) & \(L\) & L & ! & \% \\
\hline L & L & L & H & ; & \\
\hline L & L & H & L & \(\ldots\) & \(\cdots\) \\
\hline L & L & H & H & \(\cdots\) & \(\cdots\) \\
\hline L & H & L & L & \(\cdots\) & \% \\
\hline L & H & 1 & H & \(\ldots\) & \(\cdots\) \\
\hline 1 & H & H & L & \% & \(\cdots\) \\
\hline 1 & \({ }_{3}\) & H & H & ! & \% \\
\hline H & L & L & 1 & \(\because\) &  \\
\hline \({ }_{4}\) & 4 & L & H & \% & W \\
\hline H & L & H & L & \% & \% \\
\hline H & 1 & H & H & (BLANK) & \% \\
\hline \({ }_{H}\) & H & 1 & \(L\) & (BLANK) & "' \\
\hline H & H & t. & H & \(\cdots\) & ! \\
\hline H & H & H & 1 & (BLANK) & \(\ldots\) \\
\hline H & H & H & H & (BLANK) & \(\stackrel{+}{*}\) \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{DECIMALPT, \({ }^{\text {[2] }}\)}} & \multicolumn{2}{|l|}{ON} & \(V_{D P}=t\) \\
\hline & & & \multicolumn{2}{|l|}{OFF} & \(V_{D P}=H\) \\
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{ENABLE \({ }^{[1]}\)}} & \multicolumn{2}{|l|}{LOAD DATA} & \(V_{E}=\mathrm{L}\) \\
\hline & & & \multicolumn{2}{|l|}{LATCH DATA} & \(\mathrm{V}_{\mathrm{E}}=\mathrm{H}\) \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{BLANKING \({ }^{(3)}\)}} & \multicolumn{2}{|l|}{DISPPLAY.ON} & \(V_{B}=t\) \\
\hline & & & \multicolumn{2}{|l|}{OISPLAY.OFF} & \(V_{B}=H\) \\
\hline
\end{tabular}

\section*{Notes:}
1. \(H=\) Logic High; \(L=\) Logic Low. With the enable input at logic high changes in BCD input logic levels have no effect upon display memory, displayed character, or DP
2. The decimal point input, DP, pertains only to the numeric displays.
3. The blanking control input, B, pertains only to the hexadecimal displays. Blanking input has no effect upon display memory.

Figure 2. Logic Block Diagram

\section*{Absolute Maximum Ratings}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Description } & Symbol & Min． & Max． & Unit \\
\hline Storage temperature，ambient & \(\mathrm{T}_{\mathrm{S}}\) & -65 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating temperature，ambient \([1]\) & \(\mathrm{T}_{\mathrm{A}}\) & -55 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Supply voltage \([2]\) & \(\mathrm{V}_{\mathrm{CC}}\) & -0.5 & +7.0 & V \\
\hline Voltage applied to input logic，dp and enable pins & \(\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{F}}\) & -0.5 & \(\mathrm{~V}_{\mathrm{cc}}\) & V \\
\hline Voltage applied to blanking input \({ }^{[2]}\) & \(\mathrm{V}_{\mathrm{B}}\) & -0.5 & \(\mathrm{~V}_{\mathrm{CC}}\) & V \\
\hline \begin{tabular}{l} 
Maximum solder temperature at \(1.59 m m(.062\) inch \()\) \\
below seating plane； \(\mathrm{t} \leqslant 5\) seconds
\end{tabular} & 260 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Description & Symbol & Min． & Nom． & Max． & Unit \\
\hline Supply Voltage［2］ & \(\mathrm{V}_{\text {CC }}\) & 4.5 & 5.0 & 5.5 & V \\
\hline Operating temperature，ambient［1］ & \(T_{1}\) & －55 & & ＋100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Enable Pulse Width & \(t_{w}\) & 100 & & & nsec \\
\hline Time data must be held before positive transition of enable line & \(\mathrm{t}_{\text {SEIT }}\) & 50 & & & nsec \\
\hline Time data must be held after positive transition of enable line & \(t_{\text {Hold }}\) & 50 & & & nsec \\
\hline Enable pulse rise time & \(\mathrm{t}_{\text {IU．}}\) & & & 1.0 & msec \\
\hline
\end{tabular}

\section*{Optical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Device & Description & Symbol & Min． & Typ． & Max． & Unit \\
\hline \multirow{3}{*}{\begin{tabular}{l}
HDSP－078X \\
Series
\end{tabular}} & Luminous Intensity per LED （Digit Average）\([3,4]\) & IV & 65 & 140 & & \(\mu \mathrm{cd}\) \\
\hline & Peak Wavelength & 入PEAK & & 635 & & nm \\
\hline & Dominant Wavelength（5］ & 入d & & 626 & & nm \\
\hline \multirow{3}{*}{\begin{tabular}{l}
HDSP－079X \\
Series
\end{tabular}} & Luminous Intensity per LED （Digit Average）\([3.4]\) & IV & 260 & 620 & & \(\mu \mathrm{Cd}\) \\
\hline & Peak Wavelength &  & & 635 & & nm \\
\hline & Dominant Wavelength \({ }^{(5]}\) & \(\lambda d\) & & 626 & & nm \\
\hline \multirow{3}{*}{\begin{tabular}{l}
HDSP－088X \\
Series
\end{tabular}} & Luminous Intensity per LED （Digit Average）\({ }^{[3,4]}\) & Iv & 215 & 490 & & \(\mu \mathrm{Cd}\) \\
\hline & Peak Wavelength & 入PEAK & & 583 & & nm \\
\hline & Dominant Wavelength \({ }^{(5,6]}\) & \(\lambda d\) & & 585 & & nm \\
\hline
\end{tabular}

Notes：
1．The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is \(\mathrm{R} \theta \mathrm{JA}=50^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{device}\) ． The device package thermal resistance is \(R \theta J-P I N=15^{\circ} \mathrm{C} / \mathrm{W} /\) device．The thermal resistance device pin－to－ambient through the PC board should not exceed \(35^{\circ} \mathrm{C} / \mathrm{W} /\) device for operation at \(\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}\) ．
2．Voltage values are with respect to device ground，pin 6.
3．These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package．Case temperature of the device immediately prior to the light measurement is equal to \(25^{\circ} \mathrm{C}\) ．

Electrical Characteristics; ( \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\), unless otherwise specilied)


Notes:
4. The luminous intensity at a specific operating ambient temperature, Iv ( \(T_{A}\) ) may be approximated from the following expotential equation: \(\operatorname{Iv}\left(T_{A}=\operatorname{lv}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\mathrm{k} \mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}}\right.\)
\begin{tabular}{|l|c|}
\hline Device & K \\
\hline HDSP-078X Series & \(-0.01311^{\circ} \mathrm{C}\) \\
HDSP-079X Series & \(-2.01121^{\circ} \mathrm{C}\) \\
\hline HDSP-088X Series & -0.011 \\
\hline
\end{tabular}
5. The dominant wavelength, \(\lambda_{d}\), is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
6. The HDSP-088X series devices are categorized as to dominant wavelength with the category designated by a number on the back side of the display package.
7. All typical values at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{Operational Considerations}

\section*{ELECTRICAL}

These devices use a modified \(4 \times 7\) dot matrix of light emitting diodes to display decimal/hexadecimal numeric information. The high efficiency red and yellow LEDs are GaAsP epitaxial layer on a GaP transparent substrate. The LEDs are driven by constant current drivers, BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the onboard IC.

The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{MECHANICAL}

These displays are hermetically sealed for use in environments that require a high reliability device. These displays are designed and tested to meet a helium leak rate of \(5 \times\) \(10^{-8} \mathrm{cc} / \mathrm{sec}\).

These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-tolead pin spacing is \(2.54 \mathrm{~mm}(0.100 \mathrm{inch})\) and the lead row spacing is 15.24 mm ( 0.600 inch ). These displays may be end stacked with 2.54 mm ( 0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of \(+70^{\circ} \mathrm{C}\), it is important to maintain a base-to-ambient thermal resistance of less than \(35^{\circ} \mathrm{C}\) watt/device as measured on top of display pin 3.

Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or

Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

\section*{PRECONDITIONING}

These displays are \(100 \%\) preconditioned by 24 hour storage at \(125^{\circ} \mathrm{C}\).

\section*{CONTRAST ENHANCEMENT}

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an appropriate contrast enhancement filter. The following filters are suggested:

\section*{HIGH EFFICIENCY RED}

Panelgraphic Scarlet Red 65
SGL Homalite H100-1670
3M Louvered Filter R6310

\section*{YELLOW}

Panelgraphic Yellow 27
SGL Homalite H100-1720
3M Louvered Filter A5910
For many applications a neutral density gray filter in either plastic, circular polarizer or optically coated glass will provide the needed contrast enhancement. Suggested plastic neutral density gray filters are Panelgraphic Gray 10, SGL Homalite H100-1266 or 3M N0220. The optically coated glass/circular polarized SUNGARD filter by Optical Coating Laboratory, Inc., or the HNCP10 filter by Polaroid, pfovides superior contrast enhancement for very bright ambients.

\section*{Over Range Character}

The over range devices display " \(\pm 1\) " and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

\section*{Package Dimensions}

FRONT VIEW C

\begin{tabular}{|c|c|}
\hline Pin & Function \\
\hline 1 & Plus \\
\hline 2 & Numeral One \\
\hline 3 & Numeral One \\
\hline 4 & DP. \\
\hline 5 & Open \\
\hline 6 & Open \\
\hline 7 & VCC \\
\hline 8 & Minus/Plus \\
\hline
\end{tabular}

\section*{Note:}
1. Dimensions in millimetres and (inches).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Character } & \multicolumn{4}{|c|}{ Pin } \\
\cline { 2 - 5 } & \(\mathbf{1}\) & \(\mathbf{2 , 3}\) & \(\mathbf{4}\) & \(\mathbf{8}\) \\
\hline+ & 1 & \(X\) & \(X\) & 1 \\
\hline- & 0 & \(X\) & \(X\) & 1 \\
\hline 1 & \(X\) & 1 & \(X\) & \(X\) \\
\hline Decimal Point & \(X\) & \(X\) & 1 & \(X\) \\
\hline Blank & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Notes:
0 : Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
X : 'don't care'

\section*{Absolute Maximum Ratings}
\begin{tabular}{|l|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Description } & Symbol & Min. & Max. & Unit \\
\hline \begin{tabular}{l} 
Storage Temperature, \\
Ambient
\end{tabular} & \(\mathrm{TS}_{S}\) & -65 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Operating Temperature \\
Ambient
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}\) & -55 & +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Forward Current, \\
Each LED
\end{tabular} & \(\mathrm{IF}_{\mathrm{F}}\) & & 10 & mA \\
\hline \begin{tabular}{l} 
Reverse Voltage. \\
Each LED
\end{tabular} & \(\mathrm{V}_{\mathrm{A}}\) & & 5 & V \\
\hline
\end{tabular}


Figure 3. Typical Driving Circuit

\section*{Recommended}

Operating Conditions \(\mathrm{v}_{\mathrm{cc}}=5 . \mathrm{ov}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Device } & \begin{tabular}{c} 
Forward \\
Current Per \\
LED, mA
\end{tabular} & \multicolumn{3}{|c|}{ Resistor Value } \\
\cline { 3 - 6 } & \(\mathbf{R}_{1}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) \\
\hline HDSP-0783 & \begin{tabular}{l} 
Low Power \\
\begin{tabular}{l} 
High \\
Brightness
\end{tabular} \\
\hline HDSP-0883
\end{tabular} & 2.3 & 1300 & 200 & 300 \\
\hline
\end{tabular}

\section*{Luminous Intensity Per LED}
(Digit Average) at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|l|c|c|c|}
\hline Device & Test Conditions & Min. & Typ. & Units \\
\hline \multirow{2}{*}{ HDSP-0783 } & \(I_{F}=2.3 \mathrm{~mA}\) & 65 & 140 & \(\mu \mathrm{Cd}\) \\
\cline { 2 - 5 } & \(I_{F}=8 \mathrm{~mA}\) & & 620 & \(\mu \mathrm{Cd}\) \\
\hline HDSP-0883 & \(I_{F}=8 \mathrm{~mA}\) & 215 & 490 & \(\mu \mathrm{Cd}\) \\
\hline
\end{tabular}

Electrical Characteristics; \(\left(T_{A}=-55^{\circ} \mathrm{C}\right.\) to \(+100^{\circ} \mathrm{C}\), unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Device & Description & Symbol & Test Condition & Min. & Typ. & Max. & Units \\
\hline \multirow[t]{4}{*}{HDSP-0783} & \multirow[t]{2}{*}{Power Dissipation (all LEDs Illuminated)} & \multirow[b]{2}{*}{PT} & \(\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}\) & & 72 & & \multirow[b]{2}{*}{mW} \\
\hline & & & \(\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}\) & & 224 & 282 & \\
\hline & \multirow[t]{2}{*}{Forward Voltage per LED} & \multirow[b]{2}{*}{\(V_{F}\)} & \(\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}\) & & 1.6 & & \multirow[b]{2}{*}{V} \\
\hline & & & \(\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}\) & & 1.75 & 2.2 & \\
\hline \multirow[t]{2}{*}{HDSP-0883} & Power Dissipation (all LEDs Illuminated) & PT & \multirow{2}{*}{\(\mathrm{IF}=8 \mathrm{~mA}\)} & & 237 & 282 & mW \\
\hline & Forward Voltage per LED & \(V_{F}\) & & & 1.90 & 2.2 & V \\
\hline
\end{tabular}

\section*{High Reliability Testing}

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed displays with \(100 \%\) screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. A second program is an HP modification to the full conformance program and offers the \(100 \%\) screening portion of Level A, Table I, and Group A, Table II.

100\% Screening
TABLE \(I\).
QUALITY LEVEL A OF MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Test Screen & MIL-STD-750 Method & Conditions \\
\hline 1. Precap Visual & - & HP Procedure 5956-7572-52 \\
\hline 2. High Temperature Storage & 1032 & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\), Time \(=24\) hours \\
\hline 3. Temperature Cycling & 1051 & Condition B, 10 Cycles, 15 Min . Dwell \\
\hline 4. Constant Acceleration & 2006 & \(10,000 \mathrm{G}\) at \(\mathrm{Y}_{1}\) orientation \\
\hline 5. Fine Leak & 1071 & Condition H \\
\hline 6. Gross Leak & 1071 & Condition C \\
\hline 7. Interim Electrical/Optical Tests|2] & - & \(I_{V}, I_{C C}, I_{B L}, I_{B H}, I_{E L}, I_{E H}, I_{L L}\), and \(I_{I H}\) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
\hline 8. Burn-In \(11.3 \mid\) & 1015 & Condition B at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and cycle through logic at 1 character per second. \(\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{t}=160\) hours \\
\hline 9. Final Electrical Test \({ }^{|2|}\) & - & Same as Step 7 \\
\hline 10. Delta Determinations & - & \[
\begin{aligned}
& \Delta \mathrm{lv}_{\mathrm{V}}=-20 \%, \Delta \mathrm{I}_{\mathrm{CC}}= \pm 10 \mathrm{~mA}, \Delta \mathrm{I}_{\mathrm{H}}= \pm 10 \mu \mathrm{~A} \\
& \text { and } \Delta \mathrm{IEH}_{\mathrm{EH}}= \pm 13 \mu \mathrm{~A}
\end{aligned}
\] \\
\hline 11. External Visual \({ }^{1 /}\) & 2009 & \\
\hline
\end{tabular}

\section*{Notes:}
1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics.
3. Burn-in for the over range display shall use Condition \(B\) at a nominal \(I_{F}=8 \mathrm{~mA}\) with ' +1 ' illuminated for \(\mathrm{t}=160\) hours.

TABLE II
GROUP A ELECTRICAL TESTS - MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Test & Parameters & LTPD \\
\hline Subgroup 1 DC Electrical Tests at \(25^{\circ} \mathrm{C}^{|1|}\) & \(I_{V,} I_{C c}, I_{B L}, I_{B H}, I_{E L}, I_{E H}, I_{I L}\), and \(I_{I H}\) and visual function, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 5 \\
\hline \begin{tabular}{l}
Subgroup 2 \\
DC Electrical Tests at High Temperature \({ }^{[1]}\)
\end{tabular} & Same as Subgroup 1, except delete Iv and visual function. \(T_{A}=+100^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 3 DC Electrical Tests at Low Temperature \({ }^{11}\) & Same as Subgroup 1, except delete Iv and visual function. \(T_{A}=-55^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 4, 5, and 6 not tested & & \\
\hline \begin{tabular}{l}
Subgroup 7 \\
Optical and Functional Tests at \(25^{\circ} \mathrm{C}\)
\end{tabular} & Satisfied by Subgroup 1 & 5 \\
\hline Subgroup 8 External Visual & & 7 \\
\hline
\end{tabular}
1. Limits and conditions are per the electrical/optical characteristics.

TABLE IIIa
GROUP B, CLASS A AND B OF MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Test & MIL-STD-750 Method & Conditions & Sample Size \\
\hline Subgroup 1 Resistance to Solvents & 1022 & & 4 Devices/ 0 Failures \\
\hline Internal Visual and Mechanical|3| & 2075 & & 1 Device/ 0 Failures \\
\hline Subgroup 2[1,2] Solderability & 2026 & \(\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}\) for 5 seconds & LTPD \(=15\) \\
\hline Subgroup 3 Thermal Shock (Temp. Cycle) & 1051 & Condition B1, 15 min. Dwell & \multirow[t]{5}{*}{LTPD \(=15\)} \\
\hline Moisture Resistancel3| & 1021 & & \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C & \\
\hline Electrical/Optical Endpoints \({ }^{[4]}\) & - & IV, ICC, IBL, IBH, IEL, IEH, IIL, IIH and visual function. \(T_{A}=25^{\circ} \mathrm{C}\) & \\
\hline Subgroup 4 Operating Life Test ( 340 hrs .) \({ }^{|5|}\) & 1027 & \(\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}\) at \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\) and cycling through logic at 1 character per second. & \multirow[t]{2}{*}{LTPD \(=10\)} \\
\hline Electrical/Optical Endpoints \({ }^{\text {[4] }}\) & - & Same as Subgroup 3. & \\
\hline \begin{tabular}{l}
Subgroup 5 \\
Non-operating (Storage) Life Test ( 340 hrs .)
\end{tabular} & 1032 & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & \multirow[t]{2}{*}{LTPD = 10} \\
\hline Electrical/Optical Endpoints/4] & - & Same as Subgroup 3 & \\
\hline
\end{tabular}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. Initial conditioning should be a \(15^{\circ}\) bent inward one cycle.
4. Limits and conditions are per the electrical/optical characteristics.
5. Burn-in for the over range display shall use Condition \(B\) at a nominal \(I_{F} \pm 8 \mathrm{~mA}\) with ' + ' illuminated for \(t=160\) hours.

TABLE IVa
GROUP C, CLASS A AND B OF MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Test & MIL-STD-750 Method & Conditions & Sample Size \\
\hline \begin{tabular}{l}
Subgroup 1 \\
Physical Dimensions
\end{tabular} & 2066 & & \begin{tabular}{l}
2 Devices/ \\
0 Failures
\end{tabular} \\
\hline \begin{tabular}{l}
Subgroup 2[2,7] \\
Lead Integrity
\end{tabular} & 2004 & Condition B2 & \multirow[t]{3}{*}{LTPD \(=15\)} \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C & \\
\hline Subgroup 3 Shock & 2016 & 1500G, Time \(=0.5 \mathrm{~ms}, 5\) blows in each orientation \(X_{1}, Y_{1}, Z_{1}\) & \multirow[t]{5}{*}{LTPD \(=15\)} \\
\hline Vibration, Variable Frequency & 2056 & & \\
\hline Constant Acceleration & 2006 & 10,000G at \(Y_{1}\) orientation & \\
\hline External Visual \({ }^{41}\) & 1010 or 1011 & & \\
\hline Electrical/Optical Endpoints[8] & - & Iv, ICC, IBL, IBH, IEL, IEH, ILL, IIH and visual Function, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & \\
\hline Subgroup 4[1,3] Salt Atmosphere & 1041 & & \multirow[t]{2}{*}{LTPD \(=15\)} \\
\hline External Visual \({ }^{4]}\) & 1010 or 1011 & & \\
\hline Subgroup 5 Bond Strength \({ }^{(5)}\) & 2037 & Condition A & \[
\begin{gathered}
\text { LTPD }=20 \\
(C=0)
\end{gathered}
\] \\
\hline Subgroup 6 Operating Life Test|6| & 1026 & \(\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}\) & \multirow[t]{2}{*}{\(\lambda=10\)} \\
\hline Electrical/Optical Endpoints \({ }^{(8)}\) & - & Same as Subgroup 3 & \\
\hline
\end{tabular}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C Life Test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.

> FOUR CHARACTER RED ALPHANUMERIC DISPLAY FOR EXTENDED TEMPERATURE APPLICATIONS

HDSP-2010
HDSP-2010TXV
HDSP-2010TXVB

\section*{Features}
- OPERATION GUARANTEED TO \(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\)
- LEAK RATE GUARANTEED.
- TXVB VERSION CONFORMS TO QUALITY LEVEL A OF MIL-D-87157
- GOLD PLATED LEADS
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- CERAMIC 7.62 mm (. 3 in.) DIP Integral Red Glass Contrast Filter
- WIDE VIEWING ANGLE
- END STACKABLE 4 CHARACTER PACKAGE
- PIN ECONOMY

12 Pins for 4 Characters
- TTL COMPATIBLE
- \(5 \times 7\) LED MATRIX DISPLAYS FULL ASCII CODE
- RUGGED, LONG OPERATING LIFE
- CATEGORIZED FOR LUMINOUS INTENSITY

Assures Ease of Package to
Package Brightness Matching

\section*{Package Dimensions}



\section*{Description}

The HDSP-2010 display is designed for use in applications requiring high reliability. The character font is a 3.8 mm ( 0.15 inch) \(5 \times 7\) red LED array for displaying alphanumeric information. The device is available in 4 character clusters and is packaged in a 12-pin dual-in-line type package. An on-board SIPO (serial-in-parallel-out) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing. The constant current LED drivers are externally programmable and typically capable of sinking 13.5 mA peak per diode. Applications include interactive I/O terminals, avionics, portable telecommunications gear, and hand held equipment requiring alphanumeric displays.
\begin{tabular}{|l|l|r|l|}
\hline PIN & FUNCTION & PIN & FUNCTION \\
\hline 1 & COLUMN 1 & 7 & DATA OUT \\
\hline 2 & COLUMN 2 & 8 & \(V_{B}\) \\
\hline 3 & COLUMN 3 & 9 & \(V_{C C}\) \\
\hline 4 & COLUMN 4 & 10 & CLOCK \\
\hline 5 & COLUMN 5 & 11 & GROUND \\
\hline 6 & INT. CONNECT & 12 & DATA IN \\
\hline
\end{tabular}
"DO NOT CONNECT OR USE


NOTES
1. DIMENSIONS IN mm (inches).
2. UNLESS OTHERWISE SPECIFIED THE TOLERANCE ON ALL DIMENSIONS IS \(\pm .38 \mathrm{~mm}\) ( \(\ddagger .015^{\circ}\) ")
3. LEAD MATERIAL IS GOLD PLATED COPPER ALLOY
4. CHARACTERS ARE CENTERED WITH RESPECT TO LEAOS WITHIN \(\cdot .13 \mathrm{~mm}\left(\cdot .005{ }^{\prime \prime}\right)\).

\section*{Absolute Maximum Ratings}

Supply Voltage \(V_{C C}\) to Ground \(\qquad\) -0.5 V to 6.0 V Inputs, Data Out and \(V_{B}\) -0.5 V to Vcc
Column Input Voltage, \(\mathrm{V}_{\text {col }}\)
-0.5 V to +6.0 V
Free Air Operating Temperature Range, \(\mathrm{T}^{(2)}\).

\author{
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
}

Storage Temperature Range, \(\mathrm{T}_{\mathrm{s}} \ldots .5^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) Maximum Allowable Power Dissipation at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(1,2,6)}\)
1.29 Watts

Maximum Solder Temperature 1.59 mm (.063")
Below Seating Plane \(\mathrm{t}<5\) secs \(\ldots \ldots . \ldots \ldots . .260^{\circ} \mathrm{C}\)

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min. & Nom. & Max. & Units \\
\hline Supply Voltage & VCC & 4.75 & 5.0 & 5.25 & V \\
\hline Data Out Current, Low State & 1 OL . & & & 1.6 & mA \\
\hline Data Out Current, HighState & \(\mathrm{I}_{\mathrm{OH}}\) & & & -0.5 & mA \\
\hline Column Input Voltage, Column On & \(V_{\text {col }}\) & 2.6 & & 3.5 & V \\
\hline Setup Time & \(\mathrm{t}_{\text {setup }}\) & 70 & 45 & & ns \\
\hline Hold Time & \(\mathrm{t}_{\text {hold }}\) & 30 & 0 & & ns \\
\hline Width of Clock & \(t_{\text {w(Clock })}\) & 75 & & & ns \\
\hline Clock Frequency & \(\mathrm{f}_{\text {clock }}\) & 0 & & 3 & MHz \\
\hline Clock Transition Time & \(\mathrm{t}_{\mathrm{HLL}}\) & & & 200 & ns \\
\hline Free Air Operating Temperature Range & TA & -40 & & 85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Electrical Characteristics Over Operating Temperature Range}
(Unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Description & Symbol & \multicolumn{2}{|l|}{Test Conditions} & Min. & Typ.* & Max. & Units \\
\hline \multirow[t]{2}{*}{Supply Current} & \multirow[t]{2}{*}{lco} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{VCC}=5.25 \mathrm{~V} \\
& \text { VCLOCK }=\text { VDATA }=2.4 \mathrm{~V} \\
& \text { All SR Stages }= \\
& \text { Logical } 1
\end{aligned}
\]} & \(V_{B}=0.4 \mathrm{~V}\) & & 45 & 60 & mA \\
\hline & & & \(V_{B}=2.4 \mathrm{~V}\) & & 73 & 95 & mA \\
\hline Column Current at any Column Input & ICOL & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{VCC}=5.25 \mathrm{~V} \\
& \mathrm{VCOL}=3.5 \mathrm{~V} \\
& \text { All SR Stages }=\text { Logical } 1
\end{aligned}
\]} & \(V_{B}=0.4 \mathrm{~V}\) & & & 500 & \(\mu \mathrm{A}\) \\
\hline Column Current at any Column Input & ICOL & & \(V_{B}=2.4 \mathrm{~V}\) & & 350 & 435 & mA \\
\hline Peak Luminous Intensity per LED \({ }^{\mid 3,7]}\) (Character Average) & IvPEAK & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\
& T_{i}=25^{\circ} \mathrm{C}^{14 \mid} V_{B}=2.4 \mathrm{~V}
\end{aligned}
\]} & 105 & 200 & & \(\mu \mathrm{cd}\) \\
\hline \(V_{B}\). Clock or Data Input Threshold High & VIH & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(V_{C C}=V_{C O L}=4.75 \mathrm{~V}\)}} & 2.0 & & & V \\
\hline \(V_{B}\), Data Input Threshold Low & \(V_{\text {IL }}\) & & & & & 0.8 & V \\
\hline Clock Threshold Low & VIL & & & & & 0.6 & V \\
\hline \multirow[t]{2}{*}{Input Current Logical 1} & IIH & \multirow[b]{2}{*}{\(V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=2.4 \mathrm{~V}\)} & & & 20 & 80 & \(\mu \mathrm{A}\) \\
\hline & IIH & & & & 10 & 40 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Input Current Logical 0} & IIL & \multirow[t]{2}{*}{\(V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}\)} & & & -500 & -800 & \(\mu \mathrm{A}\) \\
\hline & IIL & & & & -250 & -400 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Data Out Voltage} & VOH & \(\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{lOH}=-0.5 \mathrm{~mA}\) & \(\mathrm{COL}=\mathrm{OV}\) & 2.4 & 3.4 & & V \\
\hline & VOL & \(\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{lL}=1.6 \mathrm{~mA}\) & \(\mathrm{OL}=\mathrm{OV}\) & & 0.2 & 0.4 & V \\
\hline Power Dissipation Per Package** & PD & \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 17
\] \\
15 LEDs on per character,
\end{tabular} & \[
\begin{aligned}
& \% \mathrm{DF} \\
& =2.4 \mathrm{~V}
\end{aligned}
\] & & . 74 & & W \\
\hline Peak Wavelength & 入PEAK & & & & 655 & & nm \\
\hline Dominant Wavelength|5| & \(\lambda d\) & & & & 640 & & nm \\
\hline Thermal Resistance IC Junction-to-Case & \(\mathrm{R} \theta_{\mathrm{J}} \mathrm{C}\) & & & & 25 & & \({ }^{\circ} \mathrm{C} / \mathrm{W} /\) Device \\
\hline Leak Rate & & & & & & \(5 \times 10^{-7}\) & \(\mathrm{cc} / \mathrm{s}\) \\
\hline
\end{tabular}
-All typical values specified at \(V_{C C}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.
**Power dissipation per package with 4 characters illuminated.
1. Operation above \(85^{\circ} \mathrm{C}\) ambient is possible provided the following conditions are met. The junction temperature should not exceed \(125^{\circ} \mathrm{C}\) \(T_{J}\) and the case temperature as measured at pin 1 or the back of the display should not exceed \(100^{\circ} \mathrm{C} \mathrm{Tc}\).
2. The device should be derated linearly above \(50^{\circ} \mathrm{C}\) at \(16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\). This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at \(35^{\circ} \mathrm{C} / \mathrm{W}\) per device. See Figure 2 for power deratings based on a lower thermal resistances.
3. The characters are categorized for Luminous Intensity with the category designated by a letter code on the bottom of the package.
4. \(T_{i}\) refers to the initial case temperature of the device immediately. prior to the light measurement.
5. Dominant wavelength \(\lambda_{d}\), is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
6. Maximum allowable dissipation is derived from \(V_{C C}=V_{B}=5.25\) Volts, \(\mathrm{V}_{C O L}=3.5 \mathrm{~V}, 20\) LEDs on per character, \(20 \% \mathrm{DF}\).
7. The luminous stearance of the LED may be calculated using the following relationships: \(\mathrm{Lv}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{\mathrm{v}}\left(\right.\) Candela/A (Metre) \({ }^{2}\)
\(\mathrm{Lv}_{\mathrm{v}}(\) Footlamberts \()=\pi \mathrm{Iv}_{\mathrm{v}}(\) Candela \() / \mathrm{A}(\text { Foot })^{2}\)
\(A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}(\text { Foot })^{2}\)

\begin{tabular}{|l|c|c|c|c|c|}
\hline Parameter & Condition & Min. & Typ. & Max. & Units \\
\hline \begin{tabular}{l} 
fllock \\
CLOCK Rate
\end{tabular} & & & & 3 & MHz \\
\hline \begin{tabular}{l} 
tplef, \(t_{\text {PHL }}\) \\
Propagation \\
delay CLOCK \\
to DATA OUT
\end{tabular} & \begin{tabular}{c}
\(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) \\
\(\mathrm{R}_{\mathrm{L}}=2.4 \mathrm{~K} \Omega\)
\end{tabular} & & & & \\
\hline
\end{tabular}

Figure 1. Switching Characteristics. ( \(\mathbf{V}_{\mathbf{c c}}=\mathbf{5 V}\), \(\mathrm{TA}=-40^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) )

\section*{Mechanical and Thermal Considerations}

The HDSP-2010 is available in a standard 12 lead ceramicglass dual in-line package. It is designed for plugging into DIP sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size.
The HDSP-2010 can be operated over a wide range of temperature and supply voltages. Power reduction can be achieved by either decreasing VCOL or decreasing the average drive current through pulse width modulation of \(V_{B}\).

The HDSP-2010 display has a glass lens. A front panel contrast filter is desirable in most actual display applications. Some suggested filters are Panel graphic Ruby Red 60, SGL Homalite H100-1605 Red and

3M Light Control Film (louvered filters). OCLI Sungard optically coated glass filters offer superior contrast enhancement.

Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

\section*{Electrical Description}

The HDSP-2010 display provides on-board storage of decoded column data and constant current sinking row drivers for each of 28 rows in the 4 character display. The device consists of four LED matrices and two integrated circuits that form a 28 -bit serial input-parallel output (SIPO) shift register, see Figure 5 . Each character is a \(5 \times 7\) diode array arranged with the cathodes of each row connected to one constant current sinking output of the SIPO shift register. The anodes of each column are connected together, with the same column of each of the 4 characters connected together (i.e. column 1 of all four characters are connected to pin 1). Any LED within any character may be addressed by shifting data to the appropriate shift register location and applying a voltage to the appropriate column.
Associated with each shift register location is a constant current sinking LED driver, capable of sinking a nominal 13.5 mA . A logical 1 loaded into a shift register location enables the current source at that location. A voltage applied to the appropriate column input turns on the desired LED.
The display is column strobed on a 1 of 5 basis by loading 7 bits of row data per character for a selected column. The data is shifted through the SIPO shift register, one bit location for each high-to-low transition of the clock. When the HDSP-2010 display is operated with pin 1 in the lower left hand corner, the first bit that is loaded into the SIPO shift register will be the information for row 7 of the right most character. The 28th bit loaded into the SIPO shift register will be the information for row 1 of the left most character. When the 28 bits of row data for column 1 have been loaded into the SIPO shift register, the first column is energized for a time period, \(T\), illuminating column 1 in all four characters. Column 1 is turned off and the process is repeated for columns 2 through 5.


Figure 2. Maximum Allowable Power Dissipation vs. Temperature.


Figure 3. Relative Luminous Intensity vs. Temperature.


Figure 4. Peak Column Current vs. Column Voltage.


Figure 5. Block Dlagram of the HDSP-2010 Display
The time frame allotted per column is \((t+T)\) and the minimum recommended refresh rate for a flicker free display is 100 Hz , so that \((t+T) \leq 2 \mathrm{~ms}\). If the display is operated at the 3 MHz maximum clock rate, it is possible to maintain \(t \ll T\). For display strings of 24 characters or less, the LED on time DF will be approximately 19.4\%. For
longer display strings, operation of the display with DF approximately \(10 \%\) will provide adequate light output for indoor applications.
The 28th stage of the SIPO shift register is connected to the Data Output, which is designed to interface directly to the Data Input of the next HDSP-2010 in the display string.
The \(V_{B}\) input may be used to control the apparent brightness of the display. A logic high applied to the \(\mathrm{V}_{B}\) input enables the display to be turned ON, and a logic low blanks the display by disabling the constant current LED drivers. Therefore, the time average luminous intensity of the display can be varied by pulse width modulation of \(\mathrm{V}_{\mathrm{B}}\). For application and drive circuit information refer to HP Application Note 1016.

\section*{High Reliability Testing}

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed displays with 100\% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. A second program is an HP modification to the full conformance program and offers the \(100 \%\) screening portion of Level A, Table I, and Group A, Table II.

PART MARKING SYSTEM
\begin{tabular}{|c|c|c|}
\hline Standard Product & \begin{tabular}{c} 
With Table I \\
and II
\end{tabular} & \begin{tabular}{c} 
With Tables \\
I, II, IIIa, and \\
IVa
\end{tabular} \\
\hline HDSP-2010 & \begin{tabular}{c} 
HDSP-2010 \\
TXV
\end{tabular} & \begin{tabular}{c} 
HDSP-2010 \\
TXVB
\end{tabular} \\
\hline
\end{tabular}

100\% Screening
TABLE I. QUALITY LEVEL A OF MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Test Screen & MIL-STD-750 Method & Conditions \\
\hline 1. Precap Visual & - & HP Procedure 5956-7512-52 \\
\hline 2. High Temperature Storage & 1032 & \(\mathrm{T}_{A}=100^{\circ} \mathrm{C}\), Time \(=24\) hours \\
\hline 3. Temperature Cycling & 1051 & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}, 10\) cycles, 15 min.dwell \\
\hline 4. Constant Acceleration & 2006 & \(10,000 \mathrm{G}\) 's at \(\mathrm{Y}_{1}\) orientation \\
\hline 5. Fine Leak & 1071 & Condition H, Leak Rate \(\leq 5 \times 10^{-7} \mathrm{cc} / \mathrm{s}\) \\
\hline 6. Gross Leak & 1071 & Condition C , except fluid temperature shall be \(+100^{\circ} \mathrm{C}\) \\
\hline 7. Interim Electrical/Optical Tests \({ }^{2}\) ] & - & \begin{tabular}{l}
ICC (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), ICOL (at \(\mathrm{V}_{\mathrm{B}}=\) 0.4 V and 2.4 V ) \\
IIH (VB, Clock and Data In), IIL (VB, Clock and Data In), IOH, IOL \\
and IV Peak. \(\mathrm{V}_{\mathrm{IH}}\) and \(\mathrm{V}_{\mathrm{IL}}\) inputs are guaranteed by the electronic shift register test. \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline 8. Burn- \(\ln [1]\) & 1015 & \[
\begin{aligned}
& \text { Condition } B \text { at } V_{C C}=V_{B}=5.25 \mathrm{~V}, V_{C O L}= \\
& 3.5 \mathrm{~V}, \mathrm{~T}_{A}=+85^{\circ} \mathrm{C} \\
& \text { LED ON-Time Duty Factor }=5 \% \text {, } \\
& t=160 \text { hours }
\end{aligned}
\] \\
\hline 9. Final Electrical Test \({ }^{[2]}\) & - & Same as Step 7 \\
\hline 10. Delta Determinations & - &  \\
\hline 11. External Visual & 2009 & \\
\hline
\end{tabular}

\section*{Notes:}
1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics. The IOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.

TABLE II
GROUP A ELECTRICAL TESTS MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Test & Parameters & LTPD \\
\hline Subgroup 1 DC Electrical Tests at \(25^{\circ} \mathrm{C}|1|\). & \begin{tabular}{l}
\(\mathrm{Icc}\left(\right.\) at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), IcOL \\
(at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ) \\
\(\mathrm{IIH}_{\mathrm{I}}\) (VB, Clock and Data In), IIL (VB, Clock and Data In), Ioh, lol Visual Function and IV peak. \(\mathrm{V}_{\mathrm{IH}}\) and \(\mathrm{V}_{\mathrm{IL}}\) inputs are guaranteed by the electronic shift register test.
\end{tabular} & 5 \\
\hline Subgroup 2 DC Electrical Tests at High Temperature \({ }^{11]}\) & Same as Subgroup 1, except delete Iv and visual function. \(T_{A}=+85^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 3 DC Electrical Tests at Low Temperature \({ }^{[1]}\) & Same as Subgroup 1, except delete Iv and visual function. \(T_{A}=-40^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 4, 5, and 6 not tested & & \\
\hline Subgroup 7 Optical and Functional Tests at \(25^{\circ} \mathrm{C}\) & Satisfied by Subgroup 1 & 5 \\
\hline Subgroup 8 External Visual & & 7 \\
\hline
\end{tabular}
1. Limits and conditions are per the electrical/optical characteristics. The IOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.

TABLE IIIa
GROUP B, CLASS A AND B OF MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Test & MIL-STD-750 Method & Conditions & Sample Size \\
\hline Subgroup 1 Resistance to Solvents & 1022 & & 4 Devices/ 0 Failures \\
\hline Internal Visual and Mechanical & 2075 & & 1 Device/ 0 Failures \\
\hline Subgroup 2[1,2] Solderability & 2026 & \(T_{A}=245^{\circ} \mathrm{C}\) for 5 seconds & LTPD \(=15\) \\
\hline \begin{tabular}{l}
Subgroup 3 \\
Thermal Shock (Temp. Cycle)
\end{tabular} & 1051 & \begin{tabular}{l}
\[
\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C}
\] \\
15 min . dwell
\end{tabular} & \multirow[t]{5}{*}{LTPD \(=15\)} \\
\hline Moisture Resistance \({ }^{[3]}\) & 1021 & & \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C, except fluid temperature shall be \(+100^{\circ} \mathrm{C}\) & \\
\hline Electrical/Optical Endpoints \({ }^{[4]}\) & - & \(\mathrm{ICC}\left(\right.\) at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), ICOL (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), IIH (VB. Clock and Data In), IIL (VB, Clock and Data In), Ioh, Iol Visual Function and IV peak. \(\mathrm{V}_{I H}\) and \(\mathrm{V}_{I L}\) inputs are guaranteed by the electronic shift register test. \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & \\
\hline Subgroup 4 Operating Life Test (340 hrs.) & 1027 & \begin{tabular}{l}
\[
\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \text { at } \mathrm{V}_{C C}=\mathrm{V}_{B}=5.25 \mathrm{~V} \text {, }
\] \\
\(V_{\text {COL }}=3.5 \mathrm{~V}\), LED ON-Time Duty Fac-
\[
\text { tor }=5 \%
\]
\end{tabular} & \multirow[t]{2}{*}{LTPD \(=10\)} \\
\hline Electrical/Optical Endpoints[4] & - & Same as Subgroup 3 & \\
\hline Subgroup 5 Non-operating (Storage) Life Test (340 hrs.) & 1032 & \(\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}\) & \multirow[t]{2}{*}{LTPD \(=10\)} \\
\hline Electrical/Optical Endpoints[4] & - & Same as Subgroup 3 & \\
\hline
\end{tabular}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. Initial conditioning should be a \(15^{\circ}\) bent inward one cycle.
4. Limits and conditions are per the electrical/optical characteristics. The loH and lol tests are the inverse of VOH and VOL specified in the electrical characteristics.

TABLE IVa
GROUP C, CLASS A AND B OF MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Test & MIL-STD-750 Method & Conditions & Sample Size \\
\hline Subgroup \(1^{[1]}\) Physical Dimensions & 2066 & & 2 Devices/ 0 Failures \\
\hline Subgroup 2[2,7] Lead Integrity & 2004 & Condition B2 & \multirow[t]{3}{*}{LTPD \(=15\)} \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C , except fluid temperature shall be \(+100^{\circ} \mathrm{C}\) & \\
\hline Subgroup 3 Shock & 2016 & 1500G, Time \(=0.5 \mathrm{~ms}, 5\) blows in each orientation \(X_{1}, Y_{1}, Z_{1}\) & \multirow[t]{5}{*}{LTPD \(=15\)} \\
\hline Vibration, Variable Frequency & 2056 & & \\
\hline Constant Acceleration & 2006 & 10,000G at \(Y_{1}\) orientation & \\
\hline External Visual|4] & 1010 or 1011 & & \\
\hline Electrical/Optical Endpoints \({ }^{(8)}\) & - & Icc (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ) ICOL (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ) \(\mathrm{I}_{\mathrm{IH}}\) (VB, Clock and Data In) IIL (VB, Clock and Data In) IOH, IOL, Visual Function and Iv peak. \(V_{I H}\) and \(V_{I L}\) inputs are guaranteed by the electronic shift register test. \(T_{A}=25^{\circ} \mathrm{C}\). & \\
\hline Subgroup 4[1,3] Salt Atmosphere & 1041 & & \multirow[t]{2}{*}{LTPD \(=15\)} \\
\hline External Visual \({ }^{4]}\) & 1010 or 1011 & & \\
\hline Subgroup 5 Bond Strength \({ }^{|5|}\) & 2037 & Condition A & \[
\begin{gathered}
\text { LTPD }=20 \\
\quad(C=0)
\end{gathered}
\] \\
\hline Subgroup 6 Operating Life Test \({ }^{[6]}\) & 1026 & \[
\begin{aligned}
& T_{A}=+85^{\circ} \mathrm{C} \text { at } \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{B}=5.25 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}
\end{aligned}
\] & \multirow[t]{2}{*}{\(\lambda=10\)} \\
\hline Electrical/Optical Endpoints[8] & - & Same as Subgroup 3 & \\
\hline
\end{tabular}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The loH and lol tests are the inverse of VOH and Vol specified in the electrical characteristics.

\title{
HERMETIC, EXTENDED TEMPERATURE RANGE 5.0 mm (.20") 5X7 ALPHANUMERIC DISPLAYS
}

\author{
STANDARD RED HDSP-2310/2310TXV/2310TXVB \\ YELLOW \\ HIGH EFFICIENCY RED \\ HDSP-2311/2311TXV/2311TXVB \\ HDSP-2312/2312TXV/2312TXVB
}

\section*{Features}
- wide operating temperature range \(-55^{\circ} \mathrm{C}\) TO \(+85^{\circ} \mathrm{C}\)
- TRUE HERMETIC PACKAGE
- TXVB VERSION CONFORMS TO QUALITY LEVEL A OF MIL-D-87157
- THREE COLORS Standard Red High Efficiency Red Yellow
- CATEGORIZED FOR LUMINOUS INTENSITY
- YELLOW DISPLAYS CATEGORIZED FOR COLOR
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- 5x7 LED MATRIX DISPLAYS FULL ASCII CHARACTER SET
- WIDE VIEWING ANGLE
- END STACKABLE
- TTL COMPATIBLE

\section*{Description}

The HDSP-2310 series displays are 5.0 mm ( 0.20 in .) \(5 \times 7\) LED arrays for display of alphanumeric information. These devices are available in standard red, yellow and high efficiency red. Each four character cluster is contained in a


\section*{Typical Applications}
- MILITARY EQUIPMENT
- AVIONICS
- HIGH RELIABILITY INDUSTRIAL EQUIPMENT

\section*{Package Dimensions}


\section*{Absolute Maximum Ratings (HDSP-2310/-2311/-2312)}

\author{
Supply Voltage Vcc to Ground \\ \(\qquad\) \\ -0.5 V to 6.0 V \\ Inputs, Data Out and \(V_{B} \ldots \ldots . . . . . . . . .\). . -0.5 V to \(\mathrm{V}_{\mathrm{CC}}\) \\ Column Input Voltage, V COL \(\ldots \ldots . . . .{ }^{-}-0.5 \mathrm{~V}\) to +6.0 V \\ Free Air Operating \\ 
}

Storage Temperature Range, Ts ..... \(-65^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) Maximum Allowable Power Dissipation at \(T_{A}=25^{\circ} \mathrm{C}[1,2,3]\)
1.46 Watts

Maximum Solder Temperature 1.59 mm (.063")
Below Seating Plane \(\mathrm{t}<5\) secs
\(260^{\circ} \mathrm{C}\)

\section*{Recommended Operating Conditions (HDSP-2310/-2311/-2312)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min. & Nom. & Max. & Units & Fig. \\
\hline Supply Voltage & VCC & 4.75 & 5.0 & 5.25 & V & \\
\hline Data Out Current, Low State & IOL & & & 16 & mA & \\
\hline Data Out Current, High State & IOH & & & -0.5 & mA & \\
\hline Column Input Voltage, Column On HDSP-2310 & VCOL & 24 & & 3.5 & V & 4 \\
\hline Column Input Voltage, Column On HDSP-2311/-2312/-2313 & VCOL & 2.75 & & 3.5 & V & 4 \\
\hline Setup Time & tsetup & 70 & 45 & & ns & 1 \\
\hline Hold Time & thold & 30 & 0 & & ns & 1 \\
\hline Width of Clock & tw (Clock) & 75 & & & ns & 1 \\
\hline Clock Frequency & \(f\) clock & 0 & & 3 & MHz & 1 \\
\hline Clock Transition Tıme & tTHL & & & 200 & ns & 1 \\
\hline Free Air Operating Temperature Range \({ }^{|1.2|}\) & TA & -55 & & 85 & \({ }^{\circ} \mathrm{C}\) & \\
\hline
\end{tabular}

\section*{Electrical Characteristics Over Operating Temperature Range \\ (Unless otherwise specified)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & Symbol & \multicolumn{2}{|l|}{Test Conditions} & Min. & Typ.* & Max. & Units & Fig. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Supply Current}} & \multirow[t]{2}{*}{Icc} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
V_{C C}=5.25 \mathrm{~V}
\] \\
\(V_{C L O C K}=V_{\text {DATA }}=2.4 \mathrm{~V}\) \\
All SR Stages = \\
Logical 1
\end{tabular}} & \(V_{B}=0.4 \mathrm{~V}\) & & 45 & 60 & mA & \\
\hline & & & & \(V_{B}=2.4 \mathrm{~V}\) & & 73 & 95 & mA & \\
\hline \multicolumn{2}{|l|}{Column Current at any Column Input} & ICOL & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} \\
& \text { All SR Stages = Logical } 1
\end{aligned}
\]} & \(V_{B}=0.4 \mathrm{~V}\) & & & 500 & \(\mu \mathrm{A}\) & 4 \\
\hline \multicolumn{2}{|l|}{Column Current at any Column Input} & ICOL & & \(V_{B}=2.4 \mathrm{~V}\) & & 380 & 520 & mA & \\
\hline \multicolumn{2}{|l|}{VB, Clock or Data Input Threshold High} & \(\mathrm{V}_{\text {IH }}\) & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
V_{C C}=4.75 \mathrm{~V}
\]}} & 2.0 & & & V & \\
\hline \multicolumn{2}{|l|}{\(V_{B}\), Data Input Threshold Low} & \(V_{\text {IL }}\) & & & & & 0.8 & V & \\
\hline \multicolumn{2}{|l|}{Clock Input Threshold Low} & VIL & & & & & 0.6 & V & \\
\hline \multirow[t]{2}{*}{Input Current Logical 1} & VB, Clock & IIH & \multirow[b]{2}{*}{\(V_{C C}=5.25 \mathrm{~V} . \mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}\)} & & & 20 & 80 & \(\mu \mathrm{A}\) & \\
\hline & Data In & IIH & & & & 10 & 40 & \(\mu \mathrm{A}\) & \\
\hline \multirow[t]{2}{*}{Input Current Logical 0} & V \({ }_{\text {B }}\) Clock & IIL & \multirow[b]{2}{*}{\(V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}\)} & & & -500 & -800 & \(\mu \mathrm{A}\) & \\
\hline & Data In & ILL & & & & -250 & -400 & \(\mu \mathrm{A}\) & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Data Out Voltage}} & VOH & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}, \mathrm{ICOL}=0 \mathrm{~mA}\)} & 2.4 & 3.4 & & V & \\
\hline & & VOL & \(\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{IOL}=1.6 \mathrm{~mA}\) & \(\mathrm{COL}=0 \mathrm{~mA}\) & & 0.2 & 0.4 & V & \\
\hline \multicolumn{2}{|l|}{Power Dissipation Per Package**} & PD & \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}
\] \\
15 LEDs on per character
\end{tabular} & \[
\begin{aligned}
& 5 \% \mathrm{DF} \\
& =2.4 \mathrm{~V}
\end{aligned}
\] & & 0.78 & & W & 2 \\
\hline \multicolumn{2}{|l|}{Thermal Resistance IC Junction-to-Case} & R \(\mathrm{O}_{\mathrm{J}-\mathrm{C}}\) & & & & 25 & & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C} / \mathrm{W} /\) \\
Device
\end{tabular} & 2 \\
\hline \multicolumn{2}{|l|}{Leak Rate} & & & & & & \(5 \times 10^{-8}\) & \(\mathrm{cc} / \mathrm{sec}\) & \\
\hline
\end{tabular}
*All typical values specified at \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.
*Power dissipation per package with four characters illuminated.
\(35^{\circ} \mathrm{C} / \mathrm{W}\) per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from \(\mathrm{Vcc}=5.25 \mathrm{~V}\), \(\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 20 \mathrm{LEDs}\) on per character, \(20 \% \mathrm{DF}\).

\section*{Optical Characteristics}

\section*{STANDARD RED HDSP-2310}
\begin{tabular}{|l|c|l|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units & Fig. \\
\hline \begin{tabular}{l} 
Peak Luminous Intensity per LED \\
(Character Average)
\end{tabular} & IVPeak \(^{\text {(C) }}\) & \begin{tabular}{l}
\(\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}\) \\
\(T_{i}=25^{\circ} \mathrm{C}(6), \mathrm{VB}=2.4 \mathrm{~V}\)
\end{tabular} & 220 & 370 & & \(\mu \mathrm{~cd}\) & 3 \\
\hline Peak Wavelength & \(\lambda_{P E A K}\) & & & 655 & & nm & \\
\hline Dominant Wavelength \({ }^{[7]}\) & \(\lambda_{d}\) & & & 639 & & nm & \\
\hline
\end{tabular}

\section*{YELLOW HDSP-2311}
\begin{tabular}{|l|c|l|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units & Fig. \\
\hline \begin{tabular}{l} 
Peak Luminous Intensity per LED \\
(Character Average)
\end{tabular} & \(I_{\text {VPeak }}\) & \begin{tabular}{l}
\(\mathrm{VCC}=5 . \mathrm{VV}, \mathrm{VCOL}=3.5 \mathrm{~V}\) \\
\(\mathrm{~T}_{1}=25^{\circ} \mathrm{C}[6], V_{B}=2.4 \mathrm{~V}\)
\end{tabular} & 650 & 1140 & & \(\mu \mathrm{~cd}\) & 3 \\
\hline Peak Wavelength & \(\lambda_{\text {PEAK }}\) & & & 583 & & nm & \\
\hline Dominant Wavelength[5.7] & \(\lambda_{d}\) & & & 585 & & nm & \\
\hline
\end{tabular}

\section*{HIGH EFFICIENCY RED HDSP-2312}
\begin{tabular}{|l|c|l|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ. & Max. & Units & Fig. \\
\hline \begin{tabular}{l} 
Peak Luminous Intensity per LED \\
(Character Average)
\end{tabular} & lvPeak & \begin{tabular}{l}
\(V C C=5.0 \mathrm{~V}, \mathrm{VCOL} \equiv 3.5 \mathrm{~V}\) \\
\(T_{j}=25^{\circ} \mathrm{C}[6], V_{B}=2.4 \mathrm{~V}\)
\end{tabular} & 650 & 1430 & & \(\mu \mathrm{~cd}\) & 3 \\
\hline Peak Wavelength & \(\lambda_{\text {PEAK }}\) & & & 635 & & nm & \\
\hline Dominant Wavelength[7] & \(\lambda_{d}\) & & & 626 & & nm & \\
\hline
\end{tabular}
-All typical values specified at \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.
*Power dissipation per package with four characters illuminated.

\section*{Notes:}
4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2311 is categorized for color with the color category designated by a number code on the bottom of the package.
6. The luminous intensity is measured at \(T_{A}=T_{j}=25^{\circ} \mathrm{C}\). No time is allowed for the device to warm-up prior to measurement.

\section*{Electrical Description}

The HDSP-2310 series of four charater alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character module is arranged as a 28 bit serial in parallel out shift register as is shown in Figure 5. The display module features Data In and Data Out terminals arrayed for easy PC board interconnection. Data Out represents the output of the 7th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the Clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the \(5 \times 7\) diode array.

The TTL compatible \(V_{B}\) input may either be tied to \(V_{C c}\) for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.

In the normal mode of operation, input data for digit 4, column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column 1 data for digits 3,2 , and 1 is similarly shifted into the display shift register locations. The column 1 input is now enabled for an appropriate period of time, T. A similar process is repeated for columns 2, 3, 4 and

7 Dominant wavelength \(\lambda_{d}\), is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
\(\mathrm{LV}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\operatorname{lv}\left(\right.\) Candela) \(/ \mathrm{A}(\text { Metre })^{2}\)
\(\operatorname{Lv}(\) Footlamberts \()=\pi I V=(\) Candela \() / A(\text { Foot })^{2}\) \(A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}(\text { Foot })^{2}\)
5. If the time necessary to decode and load data into the shift register is \(t\), then with 5 columns, each column of the display is operating at a duty factor of:
\[
\text { D.F. }=\frac{T}{5(t+T)}
\]

The time frame, \(t+T\), alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.

With five columns to be addressed, this refresh rate then gives a value for the time \(t+T\) of:
\[
1 /[5 \times(100)]=2 \mathrm{msec}
\]

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain \(t \ll T\). For short display strings, the duty factor will then approach \(20 \%\).

For further applications information, refer to HP Application Note 1016.


Figure 1. Switching Characteristics HDSP-2310/2311/-2312 ( \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) )

\section*{Mechanical and Thermal Considerations}

The HDSP-2310 series displays are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. HDSP-2310 series displays utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation ( \(\mathrm{VCC}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}\) ). with worst case thermal resistance from IC junction to ambient of \(60^{\circ} \mathrm{C} / \mathrm{watt} /\) device is possible up to ambient temperature of \(37^{\circ} \mathrm{C}\). For operation above \(37^{\circ} \mathrm{C}\), the maximum device dissipation should be derated linearly at \(16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible.
Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, Vcol, can be decreased to the recommended minimum values of 2.4V for the HDSP-2310 and 2.75V for the HDSP-2311/ -2312. Also, the average drive current can be decreased through pulse width modulation of \(\mathrm{V}_{\mathrm{B}}\).
The HDSP-2310 series displays have integral glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some sug-


Figure 5. Block Diagram of HDSP-2310/-2311/-2312
gested filter materials are provided in Figure 6. Additional information on filtering and contrast enhancement can be found in HP Application Note 1015.

Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Display Color} & \multicolumn{3}{|c|}{Ambient Lighting} \\
\hline & Dim & Moderate & Bright \\
\hline \begin{tabular}{l}
HDSP-2310 \\
Std. Red
\end{tabular} & \begin{tabular}{l}
Panetgraphic \\
Dark Red 63 \\
Ruby Red 60 \\
Chequers Red 118 \\
Plexiglass 2423
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
Polarold HNCP37 \\
3M Light Control Film \\
Panelgraphic Gray 10 \\
Chequers Grey 105
\end{tabular}} &  \\
\hline HDSP-2311 (Yellow) & \begin{tabular}{l}
Panelgraphic Yellow 27 \\
Chequers Amber 107
\end{tabular} & & Polaroid HNCP10 \\
\hline \[
\begin{aligned}
& \text { HDSP-2312 } \\
& (H E R)
\end{aligned}
\] & Panelgraphic Ruby Red 60 Chequers Red 112 & & \\
\hline
\end{tabular}

Figure 6. Contrast Enhancement Filters


Figure 2. Maximum Allowable Power Dissipation vs. Temperature


Figure 3. Relative Luminous Intensity vs. Temperature

\(\mathrm{v}_{\text {COL }}\) - COLUMN VOLTAGE - Volts
Figure 4. Peak Column Current vs. Column Voltage

\section*{High Reliability Testing}

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed LED displays with \(100 \%\) screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. The TXV program is an HP modification to the full conformance program and offers the \(100 \%\) screening of Quality Level A, Table I, and Group A, Table II.
\begin{tabular}{|c|c|c|}
\hline Standard Product & With Table I and II & \begin{tabular}{c} 
With Tables \\
I, II, Illa, IVa
\end{tabular} \\
\hline HDSP-2310 & HDSP-2310 TXV & HDSP-2310 TXVB \\
HDSP-2311 & HDSP-2311 TXV & HDSP-2311 TXVB \\
HDSP-2312 & HDSP-2312 TXV & HDSP-2312 TXVB \\
\hline
\end{tabular}

\section*{100\% Screening}

Table I. Quality Level A of MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Test Screen & Method & Conditions \\
\hline 1. Precap Visual & - & HP Procedure 5956-7512-52, based on MIL-STD-883B \\
\hline 2. High Temperature Storage & \begin{tabular}{l}
MIL-STD-750 \\
Method 1032
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\), Time \(=24\) hours \\
\hline 3. Temperature Cycling & \begin{tabular}{l}
MIL-STD-750 \\
Method 1051
\end{tabular} & Condition B, 10 cycles, 15 min. dwell \\
\hline 4. Constant Acceleration & \begin{tabular}{l}
MIL-STD-750 \\
Method 2006
\end{tabular} & 10,000 G's at \(Y_{1}\) orientation \\
\hline 5. Fine Leak & \begin{tabular}{l}
MIL-STD-750 \\
Method 1071
\end{tabular} & Condition H \\
\hline 6. Gross Leak & \begin{tabular}{l}
MIL-STD-750 \\
Method 1071
\end{tabular} & Condition C \\
\hline 7. Interim Electrical/Optical Tests \({ }^{[2]}\) & - & \begin{tabular}{l}
ICC (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), ICOL (at \(\mathrm{V}_{\mathrm{B}}=\) 0.4 V and 2.4 V ) \\
\(\mathrm{IIH}_{\mathrm{H}}\left(\mathrm{V}_{\mathrm{B}}\right.\), Clock and Data In), ILL (VB, Clock and Data In), IOH, IOL \\
and IV Peak. \(\mathrm{V}_{\mathrm{IH}}\) and \(\mathrm{V}_{\mathrm{IL}}\) inpuis are guaranteed by the electronic shift register test. \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline 8. Burn-In \({ }^{[1]}\) & MIL-STD-883 Method 1015 & \begin{tabular}{l}
Condition B at \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=\) \(3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\), \\
LED ON-Time Duty Factor \(=5 \%, 35\) Dots On; \(t=160\) hours
\end{tabular} \\
\hline 9. Final Electrical Test \({ }^{[2]}\) & - & Same as Step 7 \\
\hline 10. Delta Determinations & - & \[
\begin{aligned}
& \Delta I_{\mathrm{CC}}= \pm 6 \mathrm{~mA}, \Delta \mathrm{I}_{\mathrm{IH}}(\text { clock })= \pm 10 \mu \mathrm{~A}, \\
& \Delta \mathrm{I}_{\mathrm{H}}(\text { Data } \mathrm{In})= \pm 10 \mu \mathrm{~A} \\
& \Delta I_{\mathrm{OH}}= \pm 10 \% \text { of initial value, and } \\
& \Delta I_{\mathrm{V}}=-20 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline 11. External Visual & MIL-STD-883 Method 2009 & \\
\hline
\end{tabular}

\section*{Notes:}
1. MIL-STD-883 Test Method Applies
2. Limits and conditions are per the electrical optical characteristics. The \(\operatorname{IOH}\) and IOL tests are the inverse of \(\mathrm{V}_{\mathrm{OH}}\) and VOL specified in the electrical characteristics.

Table II. Group A Electrical Tests — MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Subgroup/Test & Parameters & LTPD \\
\hline Subgroup 1 DC Electrical Tests at \(25^{\circ} \mathrm{C}|1|\) & \begin{tabular}{l}
Icc (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), ICOL \\
(at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ) \\
\(I_{\mathrm{IH}}\left(\mathrm{V}_{\mathrm{B}}\right.\), Clock and Data In), IIL (VB, Clock and Data In), IOH, lol Visual Function and IV peak. VIH and VIL inputs are guaranteed by the electronic shift register test.
\end{tabular} & 5 \\
\hline Subgroup 2 DC Electrical Tests at High Temperature \({ }^{11}\) & Same as Subgroup 1, except delete Iv and visual function, \(T_{A}=+85^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 3 DC Electrical Tests at Low Temperature \({ }^{11}\) & Same as Subgroup 1, except delete Iv and visual function, \(T_{A}=-55^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 4, 5, and 6 not tested & & \\
\hline \begin{tabular}{l}
Subgroup 7 \\
Optical and Functional Tests at \(25^{\circ} \mathrm{C}\)
\end{tabular} & Satisfied by Subgroup 1 & 5 \\
\hline Subgroup 8 External Visual & & 7 \\
\hline
\end{tabular}

Note:
1. Limits and conditions are per the electrical/optical characteristics. The loh and lol tests are the inverse of \(\mathrm{VOH}_{\mathrm{OH}}\) and \(\mathrm{VOL}_{\mathrm{O}}\) specified in the electrical characteristics.

Table IIIa. Group B, Class A and B of MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Subgroup/Test & \[
\begin{aligned}
& \text { MIL-STD-750 } \\
& \text { Method }
\end{aligned}
\] & Conditions & Sample Size \\
\hline Subgroup 1 Resistance to Solvents & 1022 & & 4 Devices/ 0 Failures \\
\hline Internal Visual and Mechanical & 2075 & & 1 Device/ 0 Failures \\
\hline Subgroup 2[1,2] Solderability & 2026 & \(T_{A}=245^{\circ} \mathrm{C}\) for 5 seconds & LTPD \(=15\) \\
\hline \begin{tabular}{l}
Subgroup 3 \\
Thermal Shock (Temp. Cycle)
\end{tabular} & 1051 & Condition B1, 15 min . Dwell & LTPD \(=15\) \\
\hline Moisture Resistance \({ }^{3 \mid}\) & 1021 & & \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C & \\
\hline Electrical/Optical Endpoints| \({ }^{\text {|4| }}\) & - & \begin{tabular}{l}
ICC (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), ICOL (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), \\
IIH (VB, Clock and Data In), IIL (VB, Clock and Data In), IOH, IOL Visual Function and IV peak. \(V_{I H}\) and \(V_{I L}\) inputs are guaranteed by the electronic shift register test. \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\end{tabular} & \\
\hline Subgroup 4 Operating Life Test (340 hrs.) & 1027 & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \text { at } \mathrm{V}_{C C}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}, \mathrm{LED} \text { ON-Time Duty Fac- } \\
& \text { tor }=5 \%, 35 \text { Dots On }
\end{aligned}
\] & LTPD \(=10\) \\
\hline Electrical/Optical Endpoints \({ }^{4}\) | & - & Same as Subgroup 3 & \\
\hline Subgroup 5 Non-operating (Storage) Life Test ( 340 hrs .) & 1032 & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & LTPD \(=10\) \\
\hline Electrical/Optical Endpoints/41 & - & Same as Subgroup 3 & \\
\hline
\end{tabular}

\section*{Notes:}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. Initial conditioning should be a \(15^{\circ}\) bent inward one cycle.
4. Limits and conditions are per the electrical/optical characteristics. The IOH and loL tests are the inverse of \(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}}\) specified in the electrical characteristics.

Table IVa. Group C, Class A and B of MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Subgroup/Test & MIL-STD-750 Method & Conditions & Sample Size \\
\hline Subgroup 1 Physical Dimensions & 2066 & & \begin{tabular}{l}
2 Devices/ \\
0 Failures
\end{tabular} \\
\hline Subgroup 2[2,7] Lead Integrity & 2004 & Condition B2 & \multirow[t]{3}{*}{LTPD \(=15\)} \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C & \\
\hline Subgroup 3 Shock & 2016 & 1500G, Time \(=0.5 \mathrm{~ms}, 5\) blows in each orientation \(X_{1}, Y_{1}, Z_{1}\) & \multirow[t]{5}{*}{LTPD \(=15\)} \\
\hline Vibration, Variable Frequency & 2056 & & \\
\hline Constant Acceleration & 2006 & 10,000G at \(\mathrm{Y}_{1}\) orientation & \\
\hline External Visual| \({ }^{41}\) & 1010 or 1011 & & \\
\hline Electrical/Optical Endpoints \({ }^{\text {[8] }}\) & - & ICC (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ) ICOL (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ) IIH (VB, Clock and Data In) ILL (VB, Clock and Data In) \(\mathrm{IOH}, \mathrm{IOL}\), Visual Function and IV peak. \(\mathrm{V}_{\mathrm{IH}}\) and \(\mathrm{V}_{\mathrm{IL}}\) inputs are guaranteed by the electronic shift register test. \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\). & \\
\hline Subgroup 4[1,3] Salt Atmosphere & 1041 & & \multirow[t]{2}{*}{LTPD \(=15\)} \\
\hline External Visual| 41 & 1010 or 1011 & & \\
\hline Subgroup 5 Bond Strength \({ }^{|5|}\) & 2037 & Condition A & \[
\begin{gathered}
\angle T P D=20 \\
(C=0)
\end{gathered}
\] \\
\hline Subgroup 6 Operating Life Test \({ }^{|6|}\) & 1026 & \[
\begin{aligned}
& T_{A}=+85^{\circ} \mathrm{C} \text { at } V_{C C}=V_{B}=5.25 \mathrm{~V}, \\
& V_{C O L}=3.5 \mathrm{~V}, 35 \text { Dots On }
\end{aligned}
\] & \multirow[t]{2}{*}{\(\lambda=10\)} \\
\hline Electrical/Optical Endpoints \({ }^{\text {[8] }}\) & - & Same as Subgroup 3 & \\
\hline
\end{tabular}

\section*{Notes:}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The IOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.

\title{
HERMETIC, EXTENDED TEMPERATURE RANGE 6.9 mm (.27") 5x7 ALPHANUMERIC DISPLAYS
}

\author{
STANDARD RED HDSP-2450/2450TXV/2450TXVB \\ YELLOW \\ HDSP-2451/2451TXV/2451TXVB \\ HIGH EFFICIENCY RED HDSP-2452/2452TXV/2452TXVB
}

TECHNICAL DATA JANUARY 1986

\section*{Features}
- WIDE OPERATING TEMPERATURE RANGE \(-55^{\circ} \mathrm{C}\) TO \(+85^{\circ} \mathrm{C}\)
- true hermetic package
- TXVB VERSIONS CONFORM TO QUALITY LEVEL A OF MIL-D-87157
- THREE COLORS Standard Red High Efficiency Red Yellow
- CATEGORIZED FOR LUMINOUS INTENSITY
- YELLOW DISPLAYS CATEGORIZED FOR COLOR
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- 5x7 LED MATRIX DISPLAYS FULL ASCII CHARACTER SET
- WIDE VIEWING ANGLE
- END STACKABLE
- TTL COMPATIBLE

\section*{Description}

The HDSP-2450 series displays are 6.9 mm ( 0.27 in .) \(5 \times 7\) LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red and high performance green. Each four character cluster is contained in a hermetic 28 pin dual-in-


\section*{Typical Applications}
- MILITARY EQUIPMENT
- AVIONICS
- HIGH RELIABILITY INDUSTRIAL EQUIPMENT

\section*{Package Dimensions}


\section*{Absolute Maximum Ratings (HDSP-2450/-2451/-2452)}
\begin{tabular}{|c|c|}
\hline Supply Voltage Vcc to Ground & 0.5 V to 6.0 V \\
\hline Inputs, Data Out and \(\mathrm{V}_{\mathrm{B}}\) & -0.5 V to Vcc \\
\hline Column Input Voltage, VCOL & -0.5 V to +6.0 V \\
\hline Free Air Operating & \\
\hline Temperature Range & \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Supply Voltage Vcc to Ground ........... -0.5 V to 6.0 V
Column Input Voltage VCOL ............. 0.5 V to +6.0 V
Free Air Operating


Storage Temperature Range, Ts ..... - \(65^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) Maximum Allowable Package Dissipation at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}[1,2,3]\)
1.46 Watts

Maximum Solder Temperature 1.59 mm ( 0.063 ")
Below Seating Plane t < 5 secs
\(260^{\circ} \mathrm{C}\)

\section*{Recommended Operating Conditions (HDSP-2450/-2451/-2452)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min. & Nom. & Max. & Units & Fig. \\
\hline Supply Voltage & VCC & 4.75 & 5.0 & 5.25 & V & \\
\hline Data Out Current, Low State & IOL & & & 1.6 & mA & \\
\hline Data Out Current, High State & IOH & & & -0.5 & mA & \\
\hline Column Input Voltage, Column On HDSP-2450 & VCOL & 2.4 & & 3.5 & V & 4 \\
\hline Column Input Voltage, Column On HDSP-2451/2452/2453 & VCOL & 2.75 & & 3.5 & V & 4 \\
\hline Setup Time & \(t_{\text {setup }}\) & 70 & 45 & & ns & 1 \\
\hline Hold Time & thold & 30 & 0 & & ns & 1 \\
\hline Width of Clock & tw(Clock) & 75 & & & ns & 1 \\
\hline Clock Frequency & \(f_{\text {clock }}\) & 0 & & 3 & MHz & 1 \\
\hline Clock Transition Time & TTHL & & & 200 & ns & 1 \\
\hline Free Air Operating Temperature Range \({ }^{11,2]}\) & TA & -55 & & 85 & \({ }^{\circ} \mathrm{C}\) & \\
\hline
\end{tabular}

\section*{Electrical Characteristics Over Operating Temperature Range \\ (Unless otherwise specified)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Description} & Symbol & \multicolumn{2}{|l|}{Test Conditions} & Min. & Typ.* & Max. & Units & Fig. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Supply Current}} & \multirow[t]{2}{*}{lcc} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VCC }=5.25 \mathrm{~V} \\
& \text { VCLOCK }=\text { VOATA }=2.4 \mathrm{~V} \\
& \text { All SR Stages = } \\
& \text { Logical } 1
\end{aligned}
\]} & \(V_{B}=0.4 \mathrm{~V}\) & & 45 & 60 & mA & \\
\hline & & & & \(V_{B}=2.4 \mathrm{~V}\) & & 73 & 95 & mA & \\
\hline \multicolumn{2}{|l|}{Column Current at any Column Input} & ICOL & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \mathrm{VCC}=5.25 \mathrm{~V} \\
& \mathrm{VCOL}=3.5 \mathrm{~V} \\
& \text { All SR Stages }=\text { Logical } 1
\end{aligned}
\]} & \(V_{B}=0.4 \mathrm{~V}\) & & & 500 & \(\mu \mathrm{A}\) & 4 \\
\hline \multicolumn{2}{|l|}{Column Current at any Column Input} & ICOL & & \(V_{B}=2.4 \mathrm{~V}\) & & 380 & 520 & mA & \\
\hline \multicolumn{2}{|l|}{VB, Clock or Data Input Threshold High} & V H & \multicolumn{2}{|l|}{\multirow{3}{*}{\(V_{C C O}=4.75 \mathrm{~V}\)}} & 2.0 & & & V & \\
\hline \multicolumn{2}{|l|}{VB, Data Input Threshold Low} & \(V_{\text {IL }}\) & & & & & 0.8 & V & \\
\hline \multicolumn{2}{|l|}{Clock Input Threshold Low} & \(V_{12}\) & & & & & 0.6 & V & \\
\hline \multirow[t]{2}{*}{Input Current Logical 1} & VB, Clock & \(\mathrm{IH}_{\mathrm{H}}\) & \multirow[b]{2}{*}{\(V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}\)} & & & 20 & 80 & \(\mu \mathrm{A}\) & \\
\hline & Dataln & 1 H & & & & 10 & 40 & \(\mu \mathrm{A}\) & \\
\hline \multirow[t]{2}{*}{Input Current Logical 0} & VB. Clock & ILL & \multirow[b]{2}{*}{\(V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}\)} & & & -500 & -800 & \(\mu \mathrm{A}\) & \\
\hline & Data In & Ill & & & & -250 & -400 & \(\mu \mathrm{A}\) & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Data Out Voltage}} & VOH & \multicolumn{2}{|l|}{\(\mathrm{VCO}=4.75 \mathrm{~V}, \mathrm{FOH}=0.5 \mathrm{~mA}, \mathrm{ICOL}=0 \mathrm{~mA}\)} & 2.4 & 3.4 & & V & \\
\hline & & VOL & \(\mathrm{VCC}=4.75 \mathrm{~V} \mathrm{OL}=1.6 \mathrm{~mA}\) & \(\mathrm{COL}=0 \mathrm{~mA}\) & & 0.2 & 0.4 & V & \\
\hline \multicolumn{2}{|l|}{Power Dissipation Per Package**} & Po & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF} \\
& 15 \mathrm{LED} \text { on per character, } \mathrm{VB}=2.4 \mathrm{~V} \\
& \hline
\end{aligned}
\]} & & 0.78 & & W & 2 \\
\hline \multicolumn{2}{|l|}{Thermal Resistance IC Junction-to-Case} & R \(\mathrm{O}_{\mathrm{J}} \mathrm{c}\) & & & & 20 & & \({ }^{\circ} \mathrm{C} / \mathrm{W} /\) Device & 2 \\
\hline \multicolumn{2}{|l|}{Leak Rate} & & & & & & \(5 \times 10^{-8}\) & \(\mathrm{cc} / \mathrm{sec}\) & \\
\hline
\end{tabular}
*All typical values specified at \(\mathrm{VCC}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.
**Power dissipation per package with four characters illuminated.

\section*{Notes:}
1. Operation above \(85^{\circ} \mathrm{C}\) ambient is possible provided the IC junction temperature, \(\mathrm{T}_{\mathrm{J}}\), does not exceed \(125^{\circ} \mathrm{C}\).
2. The device should be derated linearly above \(60^{\circ} \mathrm{C}\) at \(22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\). This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at
\(25^{\circ} \mathrm{C} / \mathrm{W}\) per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}\) \(=2.4 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} 20\) LEDs on per character, \(20 \% \mathrm{DF}\).

\section*{Optical Characteristics (continued)}

\section*{STANDARD RED HDSP-2450}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ.* & Max. & Units & Fig. \\
\hline Peak Luminous Intensity per LEDi4.8 (Character Average) & IvPeak & \[
\begin{aligned}
& \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{H}}=25^{\circ} \mathrm{Cl6]}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}
\end{aligned}
\] & 220 & 370 & & \(\mu \mathrm{cd}\) & 3 \\
\hline Peak Wavelength & \(\lambda\) PEAK & & & 655 & & nm & \\
\hline Dominant Wavelength[7] & \(\lambda d\) & 4 - & & 639 & & nm & \\
\hline
\end{tabular}

\section*{YELLOW HDSP-2451}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Description & Symbol & Test Conditions & Min. & Typ.* & Max. & Units & Fig. \\
\hline Peak Luminous Intensity per LED \({ }^{(4,8)}\) (Character Average) & IvPeak & \[
\begin{aligned}
& \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{I}}=25^{\circ} \mathrm{Cl} 61, \mathrm{VB}=2.4 \mathrm{~V}
\end{aligned}
\] & 850 & 1400 & & \(\mu \mathrm{cd}\) & 3 \\
\hline Peak Wavelength & \(\lambda\) PEAK & - \({ }^{\text {and }}\) & & 583 & & nm & \% \\
\hline Dominant Wavelength[5.7] . & \(\lambda d\) & - . \({ }^{\text {P }}\) & & 585 & & nm & - \\
\hline
\end{tabular}

HIGH EFFICIENCY RED HDSP-2452
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Description . & Symbol & Test Conditions & Min. & Typ.* & Max. & Units & Fig. \\
\hline Peak Luminous Intensity per LED \({ }^{[4.8 \mid}\) Character Average) & lvPeak & \[
\begin{aligned}
& V_{\mathrm{GC}}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}(6), V_{\mathrm{B}}=2.4 \mathrm{~V}
\end{aligned}
\] & 850 & 1530 & & \(\mu \mathrm{cd}\) & 3 \\
\hline Peak Wavelength & \(\lambda\) PEAK & & & 635 & & nm & \\
\hline Dominant Wavelength \({ }^{[7]}\) & \(\lambda_{\text {d }}\) & & & 626 & & nm & \\
\hline
\end{tabular}
*All typical values specified at \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted.
**Power dissipation per package with four characters illuminated.

\section*{Notes:}
4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2451 is categorized for color with the color category designated by a number code on the bottom of the package.
6. The luminous intensity is measured at \(T_{A}=T_{j}=25^{\circ} \mathrm{C}\). No time is allowed for the device to warm-up prior to measurement.
7. Dominant wavelength \(\lambda_{d}\), is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
\(L_{v} \mid C d / m^{2}\) = \(I_{v}\) iCandela \(/ / A\), Metre \(\left.\right|^{2}\)
\(L_{v}(\) Footlamberts \()=\pi I_{v}(\) Candela \() / A(\text { Foot })^{2}\)
\(A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}\) Foot 2

\section*{Electrical Description}

The HDSP-2450 series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features Data In and Data Out terminals arrayed for easy PC board interconnection. Data Out represents the output of the 7th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the Clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the \(5 \times 7\) diode array.
The TTL compatible \(V_{B}\) input may either be tied to \(V_{C c}\) for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
The normal mode of operation input data for digit 4, column 1 is loaded into the 7 on-board shift register locations 1 through 7. Column 1 data for digits 3,2 , and 1 is similarly shifted into the display shift register locations. The column 1 input is now enabled for an appropriate period of time, T. A similar process is repeated for columns \(2,3,4\) and 5 . If the
time necessary to decode and load data into the shift register is \(t\), then with 5 columns, each column of the display is operating at a duty factor of:
\[
\text { D.F. }=\frac{T}{5(t+T)}
\]

The time frame, \(t+T\), alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time \(t+T\) of:
\[
1 /[5 \times(100)]=2 \mathrm{msec}
\]

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain \(t \ll T\). For short display strings, the duty factor will then approach \(20 \%\).

For further applications information, refer to HP Application Note 1016.


Figure 1. Switching Characteristirs HDSP-2450/-2451/-2452 ( \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) )

\section*{Mechanical and Thermal Considerations}

The HDSP-2450 series displays are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. HDSP- 2450 series displays utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation ( \(\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=\) \(2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}\) ) with worst case thermal resistance from IC junction to ambient of \(45^{\circ} \mathrm{C} /\) watt/device is possible up to ambient temperature of \(60^{\circ} \mathrm{C}\). For operation above \(60^{\circ} \mathrm{C}\), the maximum device dissipation should be derated linearly at \(22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible.
Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, Vcol, can be decreased to the recommended minimum values of 2.4 V for the HDSP-2450 and 2.75V for the HDSP-2451/-2452. Also, the average drive current can be decreased through pulse width modulation of \(V_{B}\).
The HDSP-2450 series displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested filter materials are


Figure 5. Block Diagram of HDSP-2450/-2451/-2452
provided in Figure 6. Additional information on filtering and contrast enhancement can be found in HP Application Note 1015.

Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Display Color} & \multicolumn{3}{|l|}{Ambient Lighting} \\
\hline & Dim & Moderate & Bright \\
\hline \begin{tabular}{l}
HDSP-2450 \\
Std. Red
\end{tabular} & \begin{tabular}{l}
Panelgraphic \\
Dark Red 63 \\
Ruby Red 60 \\
Chequers Red 118 \\
Plexiglass 2423
\end{tabular} & \begin{tabular}{l}
Polaroid HNCP37 \\
3M Light Control \\
Film \\
Panelgraphic \\
Gray 10
\end{tabular} & \\
\hline HDSP-2451 (Yellow) & \begin{tabular}{l}
Panelgraphic Yellow 27 \\
Chequers Amber 107
\end{tabular} & Chequers Grey
\[
105
\] & Polaroid HNCP10 \\
\hline \[
\begin{aligned}
& \text { HDSP-2452 } \\
& \text { (HER) }
\end{aligned}
\] & Panelgraphic Ruby Red 60 Chequers Red 112 & & \\
\hline
\end{tabular}

Figure 6. Contrast Enhancement Filters


Figure 2. Maximum Allowable Power Dissipation vs. Temperature


Figure 3. Relative Luminous Intensity vs. Temperature


Figure 4. Peak Column Current vs. Column Voltage

\section*{High Reliability Testing}

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed LED displays with \(100 \%\) screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. The TXV program is an HP modification to the full conformance program and offers the \(100 \%\) screening of Quality Level A, Table I, and Group A, Table II.
\begin{tabular}{|c|c|c|}
\hline Standard Product & with Table I and II & \begin{tabular}{c} 
with Tables \\
\(\mathbf{I}, \mathbf{I I}, \mathbf{I I} \mathbf{l}, \mathbf{I V a}\)
\end{tabular} \\
\hline HDSP-2450 & HDSP-2450 TXV & HDSP-2450 TXVB \\
HDSP-2451 & HDSP-2451 TXV & HDSP-2451 TXVB \\
HDSP-2452 & HDSP-2452 TXV & HDSP-2452 TXVB \\
\hline
\end{tabular}

\section*{100\% Screening}

Table I. Quality Level A of MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Test Screen & Method & Conditions \\
\hline 1. Precap Visual & - & HP Procedure 5956-7512-52, based on MIL-STD-883B \\
\hline 2. High Temperature Storage & \begin{tabular}{l}
MIL-STD-750 \\
Method 1032
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\), Time \(=24\) hours \\
\hline 3. Temperature Cycling & MIL-STD-750 Method 1051 & Condition B, 10 cycles \\
\hline 4. Constant Acceleration & \begin{tabular}{l}
MIL-STD-750 \\
Method 2006
\end{tabular} & 10,000 G's at \(Y_{1}\) orientation \\
\hline 5. Fine Leak & MIL-STD-750 Method 1071 & Condition H \\
\hline 6. Gross Leak & MIL-STD-750 Method 1071 & Condition C \\
\hline 7. Interim Electrical/Optical Tests \({ }^{2 /}\) & - & \begin{tabular}{l}
ICC (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), ICOL (at \(\mathrm{V}_{\mathrm{B}}=\) 0.4 V and 2.4 V ) \\
IIH (VB, Clock and Data In), IIL (VB, Clock and Data In ), \(\mathrm{IOH}_{\mathrm{I}}\) IOL \\
and IV Peak. \(\mathrm{V}_{\mathrm{IH}}\) and \(\mathrm{V}_{\mathrm{IL}}\) inputs are guaranteed by the electronic shift register test. \(T_{A}=25^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline 8. Burn-In & MIL-STD-883 Method 1015 & \begin{tabular}{l}
Condition B at \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=\) \(3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\), \\
LED ON-Time Duty Factor \(=5 \%, 35\) dots On; \(t=160\) hours
\end{tabular} \\
\hline 9. Final Electrical Test \({ }^{2 \mid}\) & - & Same as Step 7 \\
\hline 10. Delta Determinations & - & \[
\begin{aligned}
& \Delta \mathrm{ICC}_{\mathrm{CC}}= \pm 6 \mathrm{~mA}, \Delta \mathrm{I}_{\mathrm{H}} \text { (clock) }= \pm 8 \mu \mathrm{~A}, \\
& \Delta \mathrm{I}_{\mathrm{IH}}(\text { Data } \mathrm{In})= \pm 5 \mu \mathrm{~A} \\
& \Delta \mathrm{IOH}_{\mathrm{OH}}= \pm 50 \mu \mathrm{~A}, \text { and } \Delta \mathrm{lV}=-20 \%, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline 11. External Visual & MIL-STD-883 Method 2009 & \\
\hline
\end{tabular}

\section*{Notes:}
1. MIL-STD-883 Test Method Applies
2. Limits and conditions are per the electrical optical characteristics. The loH and lol tests are the inverse of VOH and VOL specified in the electrical characteristics.

Table II. Group A Electrical Tests — MIL-D-87157
\begin{tabular}{|c|c|c|}
\hline Subgroup/Test & Parameters & LTPD \\
\hline Subgroup 1 DC Electrical Tests at \(25^{\circ} \mathrm{C}|1|\) & \begin{tabular}{l}
Icc (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), ICOL \\
(at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ) \\
IIH (VB, Clock and Data In), IIL (VB, Clock and Data In), IOH, lol Visual Function and IV peak. \(V_{I H}\) and \(V_{I L}\) inputs are guaranteed by the electronic shift register test.
\end{tabular} & 5 \\
\hline Subgroup 2 DC Electrical Tests at High Temperature \({ }^{11}\) & Same as Subgroup 1, except delete Iv and visual function, \(T_{A}=+85^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 3 DC Electrical Tests at Low Temperature \({ }^{11]}\) & Same as Subgroup 1, except delete Iv and visual function, \(T_{A}=-55^{\circ} \mathrm{C}\) & 7 \\
\hline Subgroup 4, 5, and 6 not tested & & \\
\hline Subgroup 7 Optical and Functional Tests at \(25^{\circ} \mathrm{C}\) & Satisfied by Subgroup 1 & 5 \\
\hline Subgroup 8 External Visual & & 7 \\
\hline
\end{tabular}

Note:
1. Limits and conditions are per the electrical/optical characteristics. The IOH and loL tests are the inverse of VOH and VOL specified in the electrical characteristics.

Table IIIa. Group B, Class A and B of MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Subgroup/Test & MIL-STD-750 Method & Conditions & Sample Size \\
\hline Subgroup 1 Resistaince to Solvents & 1022 & & 4 Devices/ 0 Failures \\
\hline Internal Visual and Mechanical & 2075 & & 1 Device/ 0 Failures \\
\hline Subgroup 2[1,2] Solderability & 2026 & \(\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}\) for 5 seconds & LTPD \(=15\) \\
\hline Subgroup 3 Thermal Shock (Tomp. Cycle) & 1051 & Condition B1, 15 Min. Dwell & LTPD \(=15\) \\
\hline Moisture Resistance \({ }^{[3]}\) & 1021 & & \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C & \\
\hline Electrical/Optical Endpoints[4] & - & \begin{tabular}{l}
ICC ( at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), ICOL (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ), \\
\(\mathrm{IIH}_{\mathrm{IH}}\left(\mathrm{V}_{\mathrm{B}}\right.\), Clock and Data In), IIL (VB, Clock and Data In), IOH, IOL Visual Function and IV peak. \(V_{I H}\) and \(V_{I L}\) inputs are guaranteed by the electronic shift register test. \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\end{tabular} & \\
\hline Subgroup 4 Operating Life Test (340 hrs.) & 1027 & \begin{tabular}{l}
\[
\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \text { at } \mathrm{V}_{C C}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V},
\] \\
\(V_{C O L}=3.5 \mathrm{~V}\), LED ON-Time Duty Factor \(=5 \%, 35\) Dots On
\end{tabular} & LTPD = 10 \\
\hline Electrical/Optical Endpoints \({ }^{(4 \mid}\) & - & Same as Subgroup 3 & \\
\hline Subgroup 5 Non-operating (Storage) Life Test ( 340 hrs .) & 1032 & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & LTPD \(=10\) \\
\hline Electrical/Optical Endpoints|4] & - & Same as Subgroup 3 & \\
\hline
\end{tabular}

\section*{Notes:}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. Initial conditioning should be a \(15^{\circ}\) bent inward one cycle.
4. Limits and conditions are per the electrical/optical characteristics. The IOH and loL tests are the inverse of \(\mathrm{VOH}_{\mathrm{OH}}\) and VOL specified in the electrical characteristics.

Table IVa. Group C, Class A and B of MIL-D-87157
\begin{tabular}{|c|c|c|c|}
\hline Subgroup/Test & MIL-STD-750 Method & Conditions & Sample Size \\
\hline \begin{tabular}{l}
Subgroup 1 \\
Physical Dimensions
\end{tabular} & 2066 & & 2 Devices/ 0 Failures \\
\hline \begin{tabular}{l}
Subgroup \(2^{[2,7]}\) \\
Lead Integrity
\end{tabular} & 2004 & Condition B2 & \multirow[t]{3}{*}{LTPD \(=15\)} \\
\hline Fine Leak & 1071 & Condition H & \\
\hline Gross Leak & 1071 & Condition C & \\
\hline Subgroup 3 Shock & 2016 & 1500G, Time \(=0.5 \mathrm{~ms}, 5\) blows in each orientation \(X_{1}, Y_{1}, Z_{1}\) & \multirow[t]{5}{*}{LTPD = 15} \\
\hline Vibration, Variable Frequency & 2056 & & \\
\hline Constant Acceleration & 2006 & 10,000G at \(Y_{1}\) orientation & \\
\hline External Visual|4| & 1010 or 1011 & & \\
\hline Electrical/Optical Endpoints \({ }^{[8]}\) & - & Icc (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ) ICOL (at \(\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\) and 2.4 V ) IIH (VB, Clock and Data In) IIL (VB, Clock and Data In) IOH, IOL, Visual Function and Iv peak. \(\mathrm{V}_{\mathrm{IH}}\) and \(\mathrm{V}_{\mathrm{IL}}\) inputs are guaranteed by the electronic shift register test. \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\). & \\
\hline Subgroup 4[1,3] Salt Atmosphere & 1041 & & \multirow[t]{2}{*}{LTPD \(=15\)} \\
\hline External Visual \({ }^{4}\) & 1010 or 1011 & & \\
\hline Subgroup 5 Bond Strength \({ }^{|5|}\) & 2037 & Condition A & \[
\begin{gathered}
\angle T P D=20 \\
(C=0)
\end{gathered}
\] \\
\hline Subgroup 6 Operating Life Test \({ }^{|6|}\) & 1026 & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \text { at } \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}, 35 \text { Dots On }
\end{aligned}
\] & \multirow[t]{2}{*}{\(\lambda=10\)} \\
\hline Electrical/Optical Endpoints \({ }^{\text {P }}\) | & - & Same as Subgroup 3 & \\
\hline
\end{tabular}

\section*{Notes:}
1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The lOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.


\section*{Features}
- PERFORMANCE GUARANTEED OVER -55 \({ }^{\circ}\) C TO \(+125^{\circ}\) C AMBIENT TEMPERATURE RANGE
- HERMETICALLY SEALED
- HIGH SPEED
- TTL COMPATIBLE INPUT AND OUTPUT
- HIGH COMMON MODE REJECTION
- DUAL-IN-LINE PACKAGE
- 1500 VDC WITHSTAND TEST VOLTAGE
- EIA REGISTRATION
- HIGH RADIATION IMMUNITY

\section*{Applications}
- Logic Ground Isolation
- Line Receiver
- Computer - Peripheral Interface
- Vehicle Command/Control Isolation
- Harsh Industrial Environments
- System Test Equipment Isolation

\section*{Description}

The 6N134 consists of a pair of inverting optically coupled gates, each with a light emitting diode and a unique high gain integrated photon detector in a hermetically sealed ceramic package. The output of the detector is an open collector Schottky clamped transistor.
This unique dual coupler design provides maximum DC and AC circuit isolation between each input and output while achieving TTL circuit compatibility. The isolator operational parameters are guaranteed from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), such that a minimum input current of 10 mA in each channel will sink a six gate fanout ( 10 mA ) at the output with 4.5 to 5.5 V Vcc applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec .
Hewlett-Packard's high reliability part type 8102801EC meets Class B testing requirements of MIL-STD-883. This part is the recommended and preferred device from the 6N134 product family for use in high reliability applications. Details of the \(8102801 E C\) test program may be seen in the data sheet for this part.
See the selection guide at the front of this section for other devices in this family.


\section*{Recommended Operating Conditions}

\section*{TABLE I}
\begin{tabular}{|c|c|c|c|c|}
\hline & Sym. & Min. & Max. & Units \\
\hline \begin{tabular}{c} 
Input Current, Low Level \\
Each Channel
\end{tabular} & & & & \\
\hline \begin{tabular}{c} 
Input Current, High Level \\
Each Channel
\end{tabular} & FL & 0 & 250 & \(\mu \mathrm{~A}\) \\
\hline Supply Voltage & FH & \(12.5 \dagger\) & 20 & mA \\
\hline \begin{tabular}{c} 
Fan Out (TTL Load) \\
Each Channel
\end{tabular} & CC & 4.5 & 5.5 & V \\
\hline Operating Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -55 & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings*}
(No derating required up to \(125^{\circ} \mathrm{C}\) )
Storage Temperature
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Lead Solder Temperature
\(\qquad\)

Peak Forward Input
\(\qquad\) \(260^{\circ} \mathrm{C}\) for 10 s

Current (each channel)
( 1.6 mm below seating plane) Average Input Forward Current Input Power Dissipation (each channel) ..... 20 mA
Reverse Input Voltage (each channel) . . . . . . . . . . . . . . . . 5V
Supply Voltage - VCC ........... 7V (1 minute maximum) Output Current - \(\mathrm{I}_{\mathrm{O}}(\) each channel) . . . . . . . . . . . . . . 25 mA Output Power Dissipation (each channel) .......... . . 40 mW
Output Voltage - \(\mathrm{V}_{\mathrm{O}}\) (each channel) . . . . . . . . . . . . . . . . . 7V
Total Power Dissipation (both channels) .......... 350 mW
\(\dagger 12.5 \mathrm{~mA}\) condition permits at least 20\% CTR degradation guardband. Initial switching threshold is 10 mA or less.

\section*{TABLE II}

Electrical Characteristics
OVER RECOMMENDED TEMPERATURE ( \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) TO \(+125^{\circ} \mathrm{C}\) ) UNLESS OTHERWISE NOTED


TABLE III
Typical Characteristics AT \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \quad\) EACH CHANNEL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min. & Typ. & Max. & Units & Test Conditions & Figure & Note \\
\hline Input Capacitance & \(\mathrm{CiN}^{\text {N }}\) & & 60 & & pF & \(V_{F}=0, f=1 \mathrm{MHz}\) & & 1 \\
\hline Input Diode Temperature Coefficient & \[
\frac{\Delta V_{F}}{\Delta T_{A}}
\] & & -1.5 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) & \(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}\) & & 1 \\
\hline Resistance (Input-Output) & \(\mathrm{R}_{1-0}\) & & 1012 & & \(\Omega\) & \(V_{1-0}=500 \mathrm{~V}\) & & 3 \\
\hline Capacitance (Input-Output) & \(\mathrm{C}_{1-0}\) & & 1.7 & & pF & \(f=1 \mathrm{MHz}\) & & 3 \\
\hline \begin{tabular}{l}
Input-Input \\
Leakage Current
\end{tabular} & \(I_{1-1}\) & & 0.5 & & nA & Relative Humidity \(=45 \%\) \(V_{1-1}=500 \mathrm{~V}, \mathrm{t}=5 \mathrm{~s}\) & & 4 \\
\hline Resistance (Input-Input) & \(\mathrm{R}_{1-1}\) & & \(10^{12}\) & & \(\Omega\) & \(V_{1-1}=500 \mathrm{~V}\) & & 4 \\
\hline Capacitance (Input-Input) & \(\mathrm{C}_{1-1}\) & & 0.55 & & pF & \(f=1 \mathrm{MHz}\) & & 4 \\
\hline Output Rise Time (10-90\%) & \(t_{r}\) & & 35 & & ns & \(\mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & & 1 \\
\hline Output Fall Time (90-10\%) & \(\mathrm{t}_{\mathrm{f}}\) & & 35 & & ns & \(\mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA}\) & & \\
\hline Common Mode Transient Immunity at High Output Level & \(\mathrm{CM}_{\mathrm{H}}\) & & 100 & & \(\mathrm{V} / \mu^{\mathrm{s}}\) & \[
\begin{aligned}
& V_{C M}=10 \mathrm{~V}(\text { peak }) \\
& V_{O}(\min .)=2 \mathrm{~V} \\
& R_{\mathrm{L}}=510 \Omega, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}
\end{aligned}
\] & 6 & 1,7 \\
\hline Common Mode Transient Immunity at Low Output Level & \(\mathrm{CM}_{\mathrm{L}}\) & & -400 & & \(V / \mu \mathrm{s}\) & \[
\begin{aligned}
& V_{C M}=10 \mathrm{~V}(\text { peak }), \\
& V_{O}(\text { max. })=0.8 \mathrm{~V} \\
& R_{\mathrm{L}}=510 \Omega I_{\mathrm{F}}=10 \mathrm{~mA}
\end{aligned}
\] & 6 & 1,8 \\
\hline
\end{tabular}

\section*{NOTES:}
1. Each channel.
2. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
3. Measured between pins 1 and 2 or 5 and 6 shorted together, 'and pins 10, 12, 14 and 15 shorted together.
4. Measured between pins 1 and 2 shorted together, and pins 5 and 6 shorted together.
5. The tPLH propagation delay is measured from the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
6. The tPHL propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
7. \(\mathrm{CMH}_{H}\) is the max. tolerable common mode transient to assure that the output will remain in a high logic state (i.e., \(\mathrm{V}_{\mathrm{Q}}>2.0 \mathrm{~V}\) ).
8. \(C M_{\mathrm{L}}\) is the max. tolerable common mode transient to assure that the output will remain in a low logic state (i.e., \(\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}\) ).
9. It is essential that a byass capacitor ( .01 to \(0.1 \mu \mathrm{~F}\), ceramic) be connected from pin 10 to pin 15. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm .
10. This is a momentary withstand test, not an operating condition


Figure 1. Input Diode Forward Characteristic


Figure 3. Propagation Delay, tPHL and tPLH vs. Pulse Input Current, IFH


Figure 5. Propagation Delay vs. Temperature

\(C_{L}\) INCLUDES PROBE AND STRAY WIRING CAPACITANCE.


Figure 2. Test Circuit for tPHL and tPLH*


Figure 4. Input-Output Characteristics


Figure 6. Typical Common Mode Rejection Characteristics/Circuit



\section*{Features}
－RECOGNIZED BY DESC＊
－HERMETICALLY SEALED
－MIL－STD－883 CLASS B TESTING
－HIGH SPEED
－PERFORMANCE GUARANTEED OVER \(-55^{\circ} \mathrm{C}\) TO \(+125^{\circ} \mathrm{C}\) AMBIENT TEMPERATURE RANGE
－TTL COMPATIBLE INPUT AND OUTPUT
－DUAL－IN－LINE PACKAGE
－ 1500 VDC WITHSTAND TEST VOLTAGE
－HIGH RADIATION IMMUNITY

\section*{Applications}
－MILITARY／HIGH RELIABILITY SYSTEMS
－LOGIC GROUND ISOLATION
－LINE RECEIVER
－COMPUTER－PERIPHERAL INTERFACE
－VEHICLE COMMAND／CONTROL ISOLATION
－SYSTEM TEST EQUIPMENT ISOLATION

\section*{Description}

The 8102801EC is the DESC selected item drawing assigned by DOD for the 6N134 optocoupler which is in accordance with MIL－STD－883 class B testing．Operating characteristic curves for this part can be seen in the 6N134 data sheet．
The 8102801EC consists of a pair of inverting optically coupled gates，each with a light emitting diode and a unique high gain integrated photon detector in a hermetically sealed ceramic package．The output of the detector is an open collector Schottky clamped transistor．
This unique dual coupler design provides maximum DC and AC circuit isolation between each input and output while achieving TTL circuit compatibility．The isolator operational parameters are guaranteed from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) ，such that a minimum input current of 10 mA in each channel will sink a

six gate fanout（ 10 mA ）at the output with 4.5 to 5.5 V Vcc applied to the detector．This isolation and coupling is achieved with a typical propagation delay of 55 nsec ．
The photo ICs used in this device are less susceptible to radiation damage than PIN photo diodes or photo transis－ tors due to their relatively thinner photo region．
The test program performed on the 8102801 EC is in com－ pliance with DESC drawing 81028 and the provisions of Method 5008，Class B of MIL－STD－883．

\section*{Recommended Operating Conditions}

Supply Voltage
4.5 V dc minimum to 5.5 V dc maximum

High Level Input Current \({ }^{11}\)
12.5 mA dc minimum （each channel）
Low Level Input Current \(250 \mu \mathrm{~A}\) dc maximum （each channel）
Normalized Fanout（TTL Load） \(\qquad\) （each channel）
Operating Temperature Range
\(\ldots . . .-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
1．This condition permits at least 20 percent \(h F\)（CTR）degradation． The initial switching threshold is 10 mA dc or less．

Absolute Maximum Ratings
Supply Voltage Range \(\ldots . . \ldots . .7 \mathrm{~V}\)（1 minute maximum） Input Current（each channel）．．．．．．．．．．．．．．．．．． 20 mA dc Storage Temperature Range ．．．．．．．．．．\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) Maximum Power Dissipation（both channels）．． 350 mW Lead Temperature
（soldering 10 seconds）．．．．．．．．．．． \(300^{\circ} \mathrm{C}\) for 10 seconds （ 1.6 mm below seating plane） Junction Temperature（ \(\mathrm{T}_{\mathrm{J}}\) ） \(175^{\circ} \mathrm{C}\)

MIL-STD-883, METHOD 5004 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|}
\hline Test Screen & Method & Conditions \\
\hline 1. Precap Internal Visual & 2017 & \\
\hline 2. High Temperature Storage & 1008 & Condition \(\mathrm{C}_{1} \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\), Time \(=24\) hours minimum \\
\hline 3. Temperature Cycling & 1010 & Condition \(\mathrm{C},-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}, 10\) cycles \\
\hline 4. Constant Acceleration & 2001 & Condition \(\mathrm{A}, 5 \mathrm{KG's}, \mathrm{Y}_{1}\) axis only \\
\hline 5. Fine Leak & 1014 & Condition A \\
\hline 6. Gross Leak & 1014 & Condition C \\
\hline 7. Interim Electrical Test & - & Optional \\
\hline 8. Burn-In & 1015 & \[
\begin{aligned}
& \text { Condition } \mathrm{B}, \text { Time }=160 \text { hours minimum } \\
& T_{A}=+125^{\circ} \mathrm{C}, \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA} \text {, } \\
& 10=25 \mathrm{~mA} \text { (Figure } 1 \text { ) }
\end{aligned}
\] \\
\hline 9. Final Electrical Test Electrical Test Electrical Test & - & Group A, Subgroup 1, 5\% PDA applies Group A, Subgroup 2 Group A, Subgroup 3 \\
\hline 10. External Visual & 2009 & \\
\hline
\end{tabular}

\section*{Quality Conformance Inspection}

GROUP A ELECTRICAL PERFORMANCE CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Test} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Conditions} & \multirow[t]{2}{*}{Group A Subgroups \({ }^{[6]}\)} & \multicolumn{2}{|r|}{Limits} & \multirow[b]{2}{*}{Unit} \\
\hline & & & & Min. & Max. & \\
\hline Low Level Output Voltage & Vol & \[
\begin{aligned}
& V C C=5.5 \mathrm{~V} ; \mathrm{IF}_{\mathrm{F}}=10 \mathrm{mAl} \mid ; \\
& \mathrm{IOL}^{2}=10 \mathrm{~mA}
\end{aligned}
\] & 1, 2, 3 & - & 0.6 & V \\
\hline Current Transfer Ratio & hF (CTR) & \[
\begin{aligned}
& V_{O}=0.6 \mathrm{~V} ; I_{F}=10 \mathrm{~mA} ;[1] \\
& V_{C C}=5.5 \mathrm{~V}
\end{aligned}
\] & 1,2,3 & 100 & \(\cdots\) & \% \\
\hline High Level Output Current & IOH & \[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V} \text {; } V_{O}=5.5 \mathrm{~V} 11 \mid ; \\
& I_{F}=250 \mu \mathrm{~A}
\end{aligned}
\] & 1,2,3 & - & 250 & \(\mu \mathrm{Adc}\) \\
\hline High Level Supply Current & ICCH & \(\mathrm{V}_{C C}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA}\) & 1,2,3 & - & 28 & mA dc \\
\hline Low Level Supply Current & lccl. & \(\mathrm{V}_{C C}=5.5 \mathrm{~V}\); \(\mathrm{F}^{1}=\mathrm{I}_{\mathrm{F} 2}=20 \mathrm{~mA}\) & 1,2,3 & - & 36 & mA dc \\
\hline \multirow[t]{2}{*}{Input Forward Voltage} & \multirow[t]{2}{*}{VF} & \multirow[t]{2}{*}{\(\mathrm{IF}=20 \mathrm{~mA}{ }^{111}\)} & 1,2 & - & 1.75 & \multirow{2}{*}{V dc} \\
\hline & & & 3 & - & 1.85 & \\
\hline Input Reverse Breakdown Voltage & VBR & \(l_{R}=10 \mu \mathrm{~A}^{|1|}\) & 1,2,3 & 5.0 & - & V dc \\
\hline Input to Output Insulation Leakage Current & 11-0 & \[
\begin{aligned}
& V_{I O}=1500 \mathrm{Vdc}(2] ; \\
& \text { Relative Humidity }=45 \text { percent } \\
& t=5 \text { seconds }
\end{aligned}
\] & 1 & - & 1.0 & \(\mu \mathrm{Adc}\) \\
\hline Capacitance Between Input/Output & \(\mathrm{Cl}_{1-\mathrm{O}}\) & \(f=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{Cl} 3 \mid\) & 4 & - & 4.0 & pF \\
\hline \multirow[t]{2}{*}{Propagation Delay Time, Low to High Output Level} & \multirow[b]{2}{*}{tPLH} & \multirow[t]{2}{*}{\[
\begin{aligned}
& R_{L}=510 \Omega ; C_{L}=50 \mathrm{pF}[1,4]_{;} \\
& I_{F}=13 \mathrm{~mA}
\end{aligned}
\]} & 9 & - & 100 & \multirow[b]{2}{*}{ns} \\
\hline & & & 10,11 & - & 140 & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time, High to Low Output Level} & \multirow[b]{2}{*}{tPHL} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \left.R_{\mathrm{L}}=510 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF[ } 11.5\right] \\
& \mathrm{IF}_{\mathrm{F}}=13 \mathrm{~mA}
\end{aligned}
\]} & 9 & - & 100 & \multirow[b]{2}{*}{ns} \\
\hline & & & 10, 11 & - & 120 & \\
\hline Output Rise Time & tLH & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=510 \Omega[1] ; \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\
& \mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA}
\end{aligned}
\]} & \multirow[t]{2}{*}{9, 10, 11} & - & 90 & \multirow[b]{2}{*}{ns} \\
\hline Output Fall Time & thL. & & & - & 40 & \\
\hline Common Mode Transient Immunity at High Output Level & CMH & \[
\begin{aligned}
& V_{C M}=10 \mathrm{~V}(\text { peak }) ;[1] \\
& V_{O}=2 \mathrm{~V}(\text { minimum }) ; \\
& R_{L}=510 \Omega ; \\
& I_{F}=0 \mathrm{~mA}
\end{aligned}
\] & 9, 10, 11 & 40 & - & \(\mathrm{V} / \mu \mathrm{S}\) \\
\hline Common Mode Transient Immunity at Low Output Level & CML & \[
\begin{aligned}
& V_{C M}=10 \mathrm{~V}(\text { peak }) ;[1] \\
& V_{O}=0.8 \mathrm{~V}(\text { maximum } ; \\
& R_{\mathrm{L}}=510 \Omega ; \\
& I_{F}=10 \mathrm{~mA}
\end{aligned}
\] & 9, 10, 11 & -60 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline
\end{tabular}

See notes on following page.

Notes: 1. Each channel.
2. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
3. Measured between input pins 1 and 2 , or 5 and 6 shorted together and output pins 10, 12, 14 and 15 shorted together.
4. The tpLH propagation delay is measured from the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The tPHL propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. Conditions of Group A subgroups may be seen in the High Reliability section of this catalog.
7. This is a momentary withstand test, not an operating condition.

GROUP B TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|c|}
\hline Test & Method & Conditions & LTPD \\
\hline \begin{tabular}{l}
Subgroup 1 \\
Physical Dimensions (Not required if Group D is to be performed)
\end{tabular} & 2016 & & \begin{tabular}{l}
2 Devices \\
(0 failures)
\end{tabular} \\
\hline \begin{tabular}{l}
Subgroup 2 \\
Resistance to Solvents
\end{tabular} & 2015 & & \begin{tabular}{l}
4 Devices \\
(0 failures)
\end{tabular} \\
\hline \begin{tabular}{l}
Subgroup 3 \\
Solderability \\
(LTPD applies to number of leads inspected - no fewer than 3 devices shall be used).
\end{tabular} & 2003 & Soldering Temperature of \(245 \pm 5^{\circ} \mathrm{C}\) for 10 seconds & \[
\begin{gathered}
15 \\
(3 \text { Devices) }
\end{gathered}
\] \\
\hline Subgroup 4 Internal Visual and Mechanical & 2014 & & 1 Device (D failures) \\
\hline \begin{tabular}{l}
Subgroup 5 \\
Bond Strength Thermocompression: (Performed at precap, prior to seal LTPD applies to number of bond pulls from a minimum of 4 devices).
\end{tabular} & 2011 & Test Condition D & \[
\begin{gathered}
15 \\
(4 \text { Devices) }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Subgroup 6 \\
Internal Water Vapor Content (Not applicable - does not contain desiccant)
\end{tabular} & - & & - \\
\hline Subgroup 7 Fine Leak Gross Leak & 1014 & Condition A Condition C & 5 \\
\hline \begin{tabular}{l}
Subgroup 8* \\
Electrical Test \\
Electrostatic Discharge Sensitivity \\
Electrical Test \\
*(To be performed at initial qualification only)
\end{tabular} & 3015 & \begin{tabular}{l}
Group A, Subgroup 1, except II-O \\
Group A, Subgroup 1
\end{tabular} & 15 \\
\hline
\end{tabular}

GROUP C TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|c|}
\hline Test & Method & Conditions & LTPD \\
\hline Subgroup 1 Steady State Life Test Endpoint Electricals at 1000 hours & 1005 & \begin{tabular}{l}
Condition B, Time \(=1000\) hours total
\[
\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}
\]
\[
I_{F}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=25 \mathrm{~mA}(\text { Figure } 1)
\] \\
Group A, Subgroup 1, 2, 3
\end{tabular} & 5 \\
\hline \begin{tabular}{l}
Subgroup 2 \\
Temperature Cycling \\
Constant Acceleration \\
Fine Leak \\
Gross Leak \\
Visual Examination \\
Endpoint Electricals
\end{tabular} & \[
\begin{aligned}
& 1010 \\
& 2001 \\
& 1014 \\
& 1014 \\
& 1010
\end{aligned}
\] & \begin{tabular}{l}
Condition \(\mathrm{C},-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\), 10 cycles \\
Condition \(A, 5 K G s, Y_{1}\) axis only \\
Condition A \\
Condition C \\
Per Visual Criteria of Method 1010 \\
Group A, Subgroup 1, 2, 3
\end{tabular} & 15 \\
\hline
\end{tabular}

GROUP D TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|c|}
\hline Test & Method & Conditions & LTPD \\
\hline Subgroup 1 Physical Dimensions & 2016 & & 15 \\
\hline Subgroup 2 Lead Integrity & 2004 & Test Condition B2 (lead fatigue) & 15 \\
\hline \begin{tabular}{l}
Subgroup 3 \\
Thermal Shock \\
Temperature Cycling \\
Moisture Resistance \\
Fine Leak \\
Gross Leak \\
Visual Examination \\
Endpoint Electricals
\end{tabular} & \[
\begin{aligned}
& 1011 \\
& 1010 \\
& 1004 \\
& 1014 \\
& 1014
\end{aligned}
\] & \begin{tabular}{l}
Condition \(\mathrm{B},\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) \\
15 cycles min. \\
Condition \(\mathrm{C},\left(-65^{\circ} \mathrm{C}\right.\) to \(\left.+150^{\circ} \mathrm{C}\right)\) \\
100 cycles min. \\
Condition A \\
Condition C \\
Per Visual Criteria of Method 1004 \\
Group A, Subgroup 1, 2, 3
\end{tabular} & 15 \\
\hline \begin{tabular}{l}
Subgroup 4 \\
Mechanical Shock \\
Vibration Variable Frequency Constant Acceleration Fine Leak Gross Leak Visual Examination Endpoint Electricals
\end{tabular} & \[
\begin{aligned}
& 2002 \\
& \\
& 2007 \\
& 2001 \\
& 1014 \\
& 1014 \\
& 1010
\end{aligned}
\] & \begin{tabular}{l}
Condition B, \(1500 \mathrm{G}, \mathrm{t}=0.5 \mathrm{~ms}\), \\
5 blows in each orientation \\
Condition A \\
Condition \(\mathrm{A}, 5 \mathrm{KGs}, \mathrm{Y}_{1}\) axis only \\
Condition A \\
Condition C \\
Per Visual Criteria of Method 1010 \\
Group A, Subgroup 1, 2, 3
\end{tabular} & 15 \\
\hline \begin{tabular}{l}
Subgroup 5 \\
Salt Atmosphere \\
Fine Leak Gross Leak Visual Examination
\end{tabular} & \[
\begin{aligned}
& 1009 \\
& 1014 \\
& 1014 \\
& 1009
\end{aligned}
\] & \begin{tabular}{l}
Condition A min. \\
Condition A \\
Condition C \\
Per Visual Criteria of Method 1009
\end{tabular} & 15 \\
\hline Subgroup 6 Internal Water Vapor Content & 1018 & 5000 ppm maximum water content at \(100^{\circ} \mathrm{C}\). & \begin{tabular}{l}
3 Devices \\
(0 failures) \\
5 Devices \\
( 1 failure)
\end{tabular} \\
\hline \begin{tabular}{l}
Subgroup 7 \\
Adhesion of Lead Finish
\end{tabular} & 2025 & & 15 \\
\hline \begin{tabular}{l}
Subgroup 8 \\
Lid Torque (not applicable - solder seal)
\end{tabular} & 2024 & & \begin{tabular}{l}
5 Devices \\
(0 failures)
\end{tabular} \\
\hline
\end{tabular}


Figure 1. Operating Circuit for Burn-in and Steady State Life Tests.

\section*{DUAL CHANINEL LINE RECEIVER HERMETIC}
\begin{tabular}{|c|c|c|}
\hline (Positive Logic) \\
\hline Input & Enable & Output \\
\hline\(H\) & \(H\) & L \\
\hline\(L\) & \(H\) & \(H\) \\
\hline\(H\) & \(L\) & \(H\) \\
\hline\(L\) & L & \(H\) \\
\hline
\end{tabular}


\section*{Features}
- HERMETICALLY SEAL.ED
- MIL-STD-883 CLASS B TESTING
- HIGH SPEED - 10Mb/s
- PERFORMANCE GUARANTEED OVER - \(55^{\circ} \mathrm{C}\) TO \(+125^{\circ}\) C AMBIENT TEMPERATURE RANGE
- ACCEPTS A BROAD RANGE OF DRIVE CONDITIONS
- LINE TERMINATION INCLUDED
- INTERNAL SHIELD PROVIDES EXCELLENT COMMON MODE REJECTION
- EXTERNAL BASE LEAD ALLOWS "LED PEAKING" AND LED CURRENT ADJUSTMENT
- 1500 Vdc WITHSTAND TEST VOLTAGE
- HIGH RADIATION IMMUNITY

\section*{Applications}
- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATED LINE RECEIVER
- SIMPLEX/MULTIPLEX DATA TRANSMISSION
- COMPUTER-PERIPHERAL INTERFACE
- MICROPROCESSOR SYSTEM INTERFACE
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- CURRENT SENSING
- INSTRUMENT INPUT/OUTPUT ISOLATION
- GROUND LOOP ELIMINATION
- PULSE TRANSFORMER REPLACEMENT

\section*{Description}

The HCPL-1930 and HCPL-1931 units are dual channel, hermetically sealed, high CMR, line receiver optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-1930) or with full MIL-STD-883 Class Level B testing (HCPL-1931). Both products are in sixteen pin hermetic dual in-line packages.

Each unit contains two independent channels, consisting of a GaAsP light emitting diode, an input current regulator, and an integrated high gain photon detector. The input regulator serves as a line termination for line receiver applications. It clamps the line voltage and regulates the LED current so line reflections do not interfere with circuit performance.
(Continued on next page)

The regulator allows a typical LED current of 12.5 mA before it starts to shunt excess current. The output of the detector IC is an open collector Schottky clamped transistor. An enable input gates the detector. The internal detector shield provides a guaranteed common mode transient immunity specification of \(\pm 1000 \mathrm{~V} / \mu \mathrm{sec}\).
DC specifications are compatible with TTL logic and are guaranteed from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) allowing trouble free interfacing with digital logic circuits. An input current of

10 mA will sink a six gate fan-out (TTL) at the output with a typical propagation delay from input to output of only 45 nsec.

CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

\section*{Recommended Operating Conditions (EACH Channel)}
\begin{tabular}{|l|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & Sym. & Min. & Max. & Units \\
\hline Input Current, Low Level & \(\mathrm{I}_{\mathrm{IL}}\) & 0 & 250 & \(\mu \mathrm{~A}\) \\
\hline Input Current, High Level* & \(\mathrm{I}_{\mathrm{fH}}\) & 12.5 & 60 & mA \\
\hline Supply Voltage, Output & \(\mathrm{V}_{\mathrm{CC}}\) & 4.5 & 5.5 & V \\
\hline High Level Enable Voltage & \(\mathrm{V}_{\text {EH }}\) & 3.0 & \(\mathrm{~V}_{\mathrm{CC}}\) & V \\
\hline Low Level Enable Voltage & \(\mathrm{V}_{E L}\) & 0 & 0.8 & V \\
\hline Fan Out (TTL Load) & N & & 6 & \\
\hline Operating Temperature & \(\mathrm{T}_{\mathrm{A}}\) & -55 & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
* 12.5 mA condition permits at least \(20 \%\) CTR degradation guardband. Initial switching threshoid is 10 mA or less.

\section*{Absolute Maximum Ratings}

Storage Temperature ..................... \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature . .................. \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Lead Solder Temperature ................. \(260^{\circ} \mathrm{C}\) for 10 s
( 1.6 mm below seating plane)
Forward Input Current-lI (Each Channel) ...... \(60 \mathrm{mAl}{ }^{2]}\)
Reverse Input Current ................................. 60 mA
Supply Voltage - VCC .......... 7V (1 Minute Maximum)
Enable Input Voltage - \(V_{E}\) (Each Channel) .......... 5.5 V
(Not to exceed VCc by more than 500 mV ).
Output Collector Current - lo (Each Channel) .... 25 mA
Output Collector Power Dissipation (Each Channel). 40 mW
Output Collector Voltage - Vo (Each Channel) ...... 7 V
Total Package Power Dissipation ................. 564 mW
Total Input Power Dissipation (Each Channel) ... 168 mW

\section*{Electrical Characteristics \(T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), unless otherwise specified}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min. & Typ* & Max. & Units & \multicolumn{2}{|l|}{Test Conditions} & Figure & Note \\
\hline High Level Output Current & \({ }^{\mathrm{OH}}\) & & 20 & 250 & \(\mu \mathrm{A}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V} \\
& I_{1}=250 \mu \mathrm{~A}, V_{E}=3.0 \mathrm{~V}
\end{aligned}
\]} & 3 & 3 \\
\hline Low Level Output Voltage & \(\mathrm{V}_{\text {OL }}\) & & 0.3 & 0.6 & V & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{1}=10 \mathrm{~mA} \\
& V_{E}=3.0 \mathrm{~V}, \\
& \left.I_{\text {OL }} \text { (Sinking }\right)=10 \mathrm{~mA}
\end{aligned}
\]} & 1 & 3 \\
\hline \multirow[t]{2}{*}{Input Voltage} & \multirow[t]{2}{*}{\(V_{1}\)} & & 2.2 & 2.6 & \multirow[t]{2}{*}{v} & \multicolumn{2}{|l|}{\(H_{1}=10 \mathrm{~mA}\)} & 2 & 3 \\
\hline & & & 2.35 & 2.75 & & \multicolumn{2}{|l|}{\(\mathrm{H}_{1}=60 \mathrm{~mA}\)} & 2 & 3 \\
\hline Input Reverse Voltage & \(V_{\text {R }}\) & & 0.8 & 1.10 & \(V\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}\)} & & 3 \\
\hline Low Level Enable Current & lel & & -1,45 & -2.0 & mA & \multicolumn{2}{|l|}{} & & 3 \\
\hline High Level Enable Voltage & \(\mathrm{VEH}_{\text {E }}\) & 2.0 & & & V & \multicolumn{2}{|l|}{\(V_{C C}=5.5 \mathrm{~V}, V_{E}=0.5 \mathrm{~V}\)} & & 3, 12 \\
\hline Low level Enable Voltage & \(V_{E L}\) & & & 0.8 & V & & & & 3 \\
\hline High Level Supply Current & \(\mathrm{I}_{\mathrm{CCH}}\) & & 21 & 28 & mA & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{1}=0, \\
& V_{E}=0.5 \mathrm{~V} \text { both channels }
\end{aligned}
\]} & & \\
\hline Low Level Supply Current & \({ }^{1} \mathrm{CCL}\). & & 27 & 36 & mA & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{1}=60 \mathrm{~mA} \\
& V_{E}=0.5 \mathrm{~V} \text { both channels }
\end{aligned}
\]} & & \\
\hline Input-Output Insulation Leakage Current & \(\mathrm{I}_{\mathrm{H}} \mathrm{O}\) & & & 1 & \(\mu \mathrm{A}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Relative Humidity }=45 \% \\
& T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}, \\
& V_{1-0}=1500 \mathrm{VdC} \\
& \hline
\end{aligned}
\]} & & 4 \\
\hline \multirow[t]{2}{*}{Propagation Delay Time to High Output Level} & \multirow[t]{2}{*}{\({ }_{\text {tPLH }}\)} & & 45 & & \multirow[t]{2}{*}{ns} & \(C_{L}=15 \mathrm{pF}\) & \multirow[b]{4}{*}{\[
\begin{aligned}
& R_{L}=510 \Omega, \\
& i_{1}=13 \mathrm{~mA} \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\]} & \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{3,5} \\
\hline & & & 55 & 100 & & \(C_{L}=50 \mathrm{pF}\) & & & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time to Low Output Level} & \multirow[t]{2}{*}{tpHL} & & 55 & & \multirow[t]{2}{*}{ns} & \(C_{L}=15 \mathrm{pF}\) & & 5 & 3,6 \\
\hline & & & 60 & 100 & & & & & \\
\hline Common Mode Transient Immunity at High Output Level & [CM \({ }_{\text {H }}\) & 1000 & 10,000 & & \(\mathrm{V} / \mu \mathrm{s}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C M}=50 \mathrm{~V} \text { (peak), } \\
& V_{O}\left(\mathrm{~min}_{\mathrm{N}}=2 \mathrm{~V},\right. \\
& T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~B}_{\mathrm{L}}=510 \mathrm{n}, \\
& H_{1}=0 \mathrm{~mA}
\end{aligned}
\]} & 7 & 3.9 \\
\hline Common Mode Transient Immunity at Low Output Level & \(\left[C M_{\mathrm{L}} \mathrm{l}\right.\) & 1000 & 10,000 & & \(\mathrm{V} / \mu \mathrm{s}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C M}=50 \mathrm{~V} \text { (peak) } \\
& V_{O}(\text { max. })=0.8 \mathrm{~V}, \\
& T_{A}=25^{\circ} \mathrm{C}_{1} R_{\mathrm{L}}=510 \Omega, \\
& H_{1}=10 \mathrm{~mA}
\end{aligned}
\]} & 7 & 3, 10 \\
\hline
\end{tabular}
*All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{Typical Characteristics \(T_{A}=25^{\circ}, V_{C C}=5 \mathrm{~V}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Typ. & Units & Test Conditions & Fig. & Note \\
\hline Resistance (Input-Output) & \(\mathrm{R}_{1-\mathrm{O}}\) & \(10^{12}\) & \(\Omega\) & \(\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}\) & & 3, 13 \\
\hline Capacitance (Input-Output) & \(\mathrm{Cl}_{1-\mathrm{O}}\) & \(\underline{1.7}\) & pF = & \(f=1 \mathrm{MHz}\) & * & 3,13 \\
\hline Input-Input Insulation Leakage Current & \(\cdots 1-1\) & 0.5 & \(n \mathrm{~A}\) & \(45 \%\) Relative Humidity, \(V_{1-1}=500 \mathrm{Vdc}\) \(\mathrm{t}=5 \mathrm{~s}\). & & 11 \\
\hline Resistance (Input-Input) & \(\mathrm{R}_{1-1}\) & \(10^{12}\) & \(\Omega\) & \(\mathrm{V}_{1-1}=500 \mathrm{Vdc}\) & & 11 \\
\hline Capacitance (Input-Input) \& & \(\mathrm{C}_{1-1}\) & . 55 & pF & \(\mathrm{f}=1 \mathrm{MHz}\) & & 11 \\
\hline Propagation Delay Time of Enable from \(V_{E H}\) to \(V_{E L}\) & \({ }^{\text {a }}\) tELH & 35 & ns & \[
\begin{aligned}
& R_{L}=510 \Omega, C_{L}=15 p F \\
& I_{I}=13 \mathrm{~mA}, V_{E H}=3 \mathrm{~V}, V_{E L}=0 \mathrm{~V}
\end{aligned}
\] & 6 & 3.7 \\
\hline Propagation Delay Time of Enable from \(V_{E L}\) to \(V_{E H}\) & \({ }^{\text {t E HL }}\) & 35 & ns & & \[
6
\] & 3, 8 \\
\hline Output Rise Time ( \(10-90 \%\) ) & \(\mathrm{t}_{\mathrm{r}}\) & 30 & ns & \(\mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), & & 3 \\
\hline Output Fall Time (9J-10\%) & \(t_{f}\) & 24 & ns & \(\mathrm{I}_{1}=13 \mathrm{~mA}\) & & 3 \\
\hline Input Capacitance & \(\mathrm{Cl}_{1}\) & 60 & pF & \(f=1 \mathrm{MHz}, V_{1}=0\), PINS 1 to 2 or 5 to 6 & & 3 \\
\hline
\end{tabular}

\section*{NOTES:}
1. Bypassing of the power supply line is required, with a \(0.01 \mu \mathrm{~F}\) ceramic disc capacitor adjacent to each isolator. The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to \(0.1 \mu \mathrm{~F}\) ) may be needed to suppress regenerative feedback via the power supply.
2. Derate linearly at \(1.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\) above \(\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}\).
3. Each channel.
4. Device considered a two terminal device: pins 1 through 8 are shorted together, and pins 9 through 16 are shorted together.
5. The \(t_{\text {PLH }}\) propagation delay is measured from the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
6. The \(t_{\text {PLH }}\) propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
7. The \(\mathrm{t}_{\mathrm{ELH}}\) enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
8. The \(t_{E H L}\) enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
9. \(\mathrm{CM}_{\mathrm{H}}\) is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e. \(\mathrm{V}_{\text {OUT }}>2.0 \mathrm{~V}\) ).
10. \(C M_{L}\) is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e. \(\mathrm{V}_{\text {OUT }}<0.8 \mathrm{~V}\) ).
11. Measured between adjacent input leads shorted together, i.e. between 1,2 and 4 shorted together and pins 5,6 and 8 shorted together.
12. No external pull up is required for a high logic state on the enable input.
13. Measured between pins 1 and 2 or 5 and 6 shorted together, with pins 10 through 15 shorted together.


Figure 1. Input-Output Characteristics


Figure 2. Input Characteristics.


Figure 3. High Level Output Current vs. Temperature.


Figure 4. Propagation Delay vs. Temperature.


Figure 5. Test Circuit for \(t_{\text {PHL }}\) and \(t_{\text {PLH. }}\).


Figure 6. Test Circuit for \(\mathrm{t}_{\mathrm{EHL}}\) and \(\mathrm{t}_{\mathrm{ELH}}\).


Figure 7. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

\section*{PART NUMBERING SYSTEM}
\begin{tabular}{|c|c|}
\hline Commercial Product & Class B Product \\
\hline HCPL-1930 & HCPL-1931 \\
\hline
\end{tabular}


Figure 8. Burn In Circuit

\section*{MIL-STD-883 CLASS B TEST PROGRAM}

Hewlett Packard's 883B Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawing 81028 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.
Testing consists of \(100 \%\) screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD-883. See the pages of this section entitled Hermetic Optocoupler MIL-STD-883 Class B Test Program for details of this test program.

\section*{HCPL-1931 Clarifications:}
I. \(100 \%\) screening per MIL-STD-883, Method 5004 constant acceleration - Condition A not E.
II. Quality Conformance Inspection per MIL-STD-883, Method 5005, Group A, B, C, and D.
Group A - See table on next page for specific electrical tests.
Group B - No change.
Group C - Constant Acceleration - Condition A not E. Group D - Constant Acceleration - Condition A not E.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Subgroup 1 \\
\({ }^{*}\) Static tests at \(T_{A}=25^{\circ} \mathrm{C}-\mathrm{I}_{\mathrm{OH}}, V_{O L}, V_{I}, I_{C C H}, I_{C C L}, I_{E L}, V_{E H}, V_{E L}, V_{R}, I_{1-O}\)
\end{tabular}} & \[
\begin{gathered}
\text { LTPD } \\
2
\end{gathered}
\] \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Subgroup 2 \\
*Static tests at \(T_{A}=+125^{\circ} \mathrm{C}-I_{O H}, V_{O L}, V_{I}, I_{C C H}, I_{C C L}, I_{E L}, V_{E H}, V_{E L}, V_{R}\)
\end{tabular}} & 3 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Subgroup 3 \\
*Static tests at \(T_{A}=-55^{\circ} \mathrm{C}-\mathrm{I}_{\mathrm{OH}}, V_{\mathrm{OL}}, V_{1}, I_{\mathrm{CCH}}, I_{\mathrm{CCL}}, I_{\mathrm{EL}}, V_{E H}, V_{E L}, V_{\mathrm{R}}\)
\end{tabular}} & 5 \\
\hline \multicolumn{5}{|l|}{Subgroup 4,5,6,7\&8-These subgroups are non-applicable to this device type.} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Subgroup 9 \\
\({ }^{*}\) Switching tests at \(T_{A}=25^{\circ} \mathrm{C}-\) tpLH, \(\mathrm{tPHL}, \mathrm{CM}_{\mathrm{H}}\) and \(\mathrm{CM}_{\mathrm{L}}\)
\end{tabular}} & 2 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Subgroup 10 \\
Switching tests at \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\)
\end{tabular}} & 3 \\
\hline Symbol & Max, & Units & Test Conditions & \\
\hline tple & 140 & ns & \(I_{1}=13 \mathrm{mAdc}, \mathrm{R}_{\mathrm{L}}=510 \mathrm{n}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) & \\
\hline tpHL & 120 & ns & \(I_{1}=13 \mathrm{mAdc}, R_{L}=510 \Omega, C_{L}=50 \mathrm{pF}\) & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Subgroup 11 \\
Switching tests at \(T_{A}=-55^{\circ} \mathrm{C}\)
\end{tabular}} & 5 \\
\hline Symbol & Max. & Units & Test Conditions & \\
\hline \(t_{\text {flH }}\) & 140 & ns & \(1_{1}=13 \mathrm{mAdc}, R_{L}=510 \Omega, C_{L}=50 \mathrm{pF}\) & \\
\hline tpHL & 120 & ns & \(\Lambda_{1}=13 \mathrm{mAdc}, \mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) & \\
\hline
\end{tabular}
*Limits and conditions per Electrical Characteristics Table.

\title{
LOW INPUT CURRENT, HIGH GAIN, HERMETICALLY SEALED OPTOCOUPLER
}


\section*{Features}
- HERMETICALLY SEALED 8 PIN DUAL IN-LINE PACKAGE
- PERFORMANCE GUARANTEED OVER \(-55^{\circ} \mathrm{C}\) TO \(+125^{\circ} \mathrm{C}\) AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- 6N138, 6N139 AND 6N140A OPERATING COMPATIBILITY
- LOW INPUT CURRENT REGUIREMENT - 0.5 mA
- HIGH CURRENT TRANSFER RATIO 1500\% TYPICAL
- LOW OUTPUT SATURATION VOLTAGE 0.11 V TYPICAL
- 500 Vdc WITHSTAND TEST VOLTAGE
- HIGH COMMON MODE REJECTION
- LOW POWER CONSUMPTION
- HIGH RADIATION IMMUNITY

\section*{Description}

The HCPL-5700 and 5701 units are hermetically sealed, low input current, high gain optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-5700) or with full MIL-STD-883 Class Level B testing (HCPL-5701). Both products are in eight pin hermetic dual in-line packages.
Each unit contains an AIGaAs light emitting diode which is optically coupled to an integrated high gain photon detector. The high gain output stage features an open collector output providing both lower output saturation voltage and


\section*{Applications}
- MILITARY/HIGH RELIABILITY SYSTEMS
- TELEPHONE RING DETECTION
- MICROPROCESSOR SYSTEM INTERFACE
- EIA RS-232-C LINE RECEIVER
- LEVEL SHIFTING
- DIGITAL LOGIC GROUND ISOLATION
- CURRENT LOOP RECEIVER
- ISOLATED INPUT LINE RECEIVER
- SYSTEM TEST EQUIPMENT ISOLATION
- PROCESS CONTROL INPUT/OUTPUT ISOLATION
higher signaling speed than possible with conventional photo-darlington optocouplers.
The supply voltage can be operated as low as 2.0 V without adversely affecting the parametric performance.
The HCPL-5700 and HCPL-5701 have a \(200 \%\) minimum CTR at an input current of only 0.5 mA making them ideal for use in low input current applications such as MOS, CMOS, low power logic interfaces or line receivers. Compatibility with high voltage CMOS logic systems is assured by the 18 V Vcc, \(\mathrm{VOH}_{\mathrm{OH}}\) current and the guaranteed maximum output leakage current at 18 V . The shallow depth and small junctions offered by the IC process provides better radiation immunity than conventional phototransistor optocouplers.
Upon special request, the following device selections can be made: CTR minimum of \(300 \%\) to \(600 \%\) at 0.5 mA , lower drive currents to 0.1 mA , and lower output leakage current levels to \(100 \mu \mathrm{~A}\).

\section*{Recommended Operating Conditions}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Symbol & Min. & Max. & Units \\
\hline \begin{tabular}{l} 
Input Voltage, Low \\
Level
\end{tabular} & \(V_{F L}\) & & 0.7 & V \\
\hline \begin{tabular}{l} 
Average Input Current \\
High Level
\end{tabular} & \(\mathrm{IFH}_{\mathrm{FH}}\) & 0.5 & 5 & mA \\
\hline Supply Voltage & \(\mathrm{VCC}_{C C}\) & 2.0 & 18 & V \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

Storage Temperature \(\ldots \ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) Operating Temperature \(. . . . . . . . . . . . . . . . . . . \quad-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) Lead Solder Temperature ...................... \(260^{\circ} \mathrm{C}\) for 10 sec . ( 1.6 mm below the seating plane)
Output Current lo ......................................... 40 mA
Output Voltage Vo ............................. -0.5 V to \(20 \mathrm{~V}[1]\)

Supply Voltage Vcc ................................ -0.5 to \(20 \mathrm{~V}^{(1)}\)
Output Power Dissipation ............................ \(50 \mathrm{~mW}{ }^{[2]}\)
Peak Input Current ........................................ 8 mA


\section*{Electrical Characteristics \\ \(T_{A}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\), unless otherwise specified}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min. & Typ.* & Max. & Units & Test Conditions & Fig. & Note \\
\hline Current Transfer Ratio & CTR & \[
\begin{aligned}
& 200 \\
& 200 \\
& 200
\end{aligned}
\] & \[
\begin{gathered}
1500 \\
1000 \\
500
\end{gathered}
\] & & \[
\begin{aligned}
& \% \\
& \% \\
& \% \\
& \%
\end{aligned}
\] & \[
\begin{aligned}
& \text { IF }=0.5 \mathrm{~mA}, ~ V O=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \\
& \mathrm{IF}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{VO}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \\
& \mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{VO}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V}
\end{aligned}
\] & 3 & 3 \\
\hline Logic Low Output Voltage & VOL & & \[
\begin{aligned}
& \hline 0.11 \\
& 0.13 \\
& 0.16
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 0.4 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& I_{F}=0.5 \mathrm{~mA}, l_{O}=1.0 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\
& I_{F}=1.6 \mathrm{~mA}, l_{O}=3.2 \mathrm{~mA}, V C C=4.5 \mathrm{~V} \\
& I_{F}=5.0 \mathrm{~mA}, l_{0}=10 \mathrm{~mA}, V C C=4.5 \mathrm{~V}
\end{aligned}
\] & 2 & \\
\hline Logic High Output Current & lOH & & 0.001 & 250 & \(\mu \mathrm{A}\) & \(V_{F}=0.7 \mathrm{~V}, \mathrm{VO}_{O}=V_{C C}=18 \mathrm{~V}\) & & \\
\hline Logic Low Supply Current & ICOL & & 1.0 & 2.0 & mA & \(\mathrm{IF}=1.6 \mathrm{~mA}, \mathrm{VCC}=18 \mathrm{~V}\) & 4 & \\
\hline Logic High Supply Current & ICCH & & 0.001 & 7.5 & \(\mu \mathrm{A}\) & \(\mathrm{I}_{\mathrm{F} 1}=0, V_{C C}=18 \mathrm{~V}\) & & \\
\hline Input Forward Voltage & \(V_{F}\) & 1.0 & 1.3 & 1.6 & V & \(\mathrm{IF}_{\mathrm{F}}=1.6 \mathrm{~mA}_{\text {t }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 1 & \\
\hline Input Reverse Breakdown Voltage & \(B V_{R}\) & 5 & & & V & \(I A R^{\prime}=10 \mu \mathrm{~A}\) & & \\
\hline Input-Output Insulation Leakage Current & 11-0 & & & 1.0 & \(\mu \mathrm{A}\) & \(45 \%\) Relative Humidity, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \(t=5 \mathrm{sec}, \mathrm{V} /-\mathrm{O}=500 \mathrm{Vdc}\) & & 4,5 \\
\hline \multirow[t]{3}{*}{Propagation Delay Time to Logic High At Output} & \multirow{3}{*}{IPLH} & & 17 & 185 & \(\mu \mathrm{S}\) & \(I_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) & 7,8 & \\
\hline & & & 14 & 115 & \(\mu \mathrm{s}\) & \(I_{F}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega_{\mathrm{k}}, \mathrm{VCC}=5 \mathrm{~V}\) & 7,8 & \\
\hline & & & 8 & 60 & \(\mu \mathrm{S}\) & \(\mathrm{IF}_{\mathrm{F}}=5.0 \mathrm{~mA}_{\text {, }} \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{VCC}=5 \mathrm{~V}\) & 7,8 & \\
\hline \multirow[t]{3}{*}{Propagation Delay Time to Logic Low At Output} & \multirow{3}{*}{tPtil} & & 10 & 185 & \(\mu \mathrm{S}\) & \(\mathrm{IF}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{Vcc}=5 \mathrm{~V}\) & 7,8 & \\
\hline & & & 5 & 30 & \(\mu \mathrm{s}\) & \(\mathrm{If}=1.6 \mathrm{~mA}, \mathrm{RLL}=2.2 \mathrm{k} \mathrm{\Omega}, \mathrm{VCC}=5 \mathrm{~V}\) & 7,8 & \\
\hline & & & 2 & 12 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega \mathrm{l}, \mathrm{VCC}=5 \mathrm{~V}\) & 7,8 & \\
\hline Common Mode Transient Immunity At Logic High Level Output & \(\mid \mathrm{CMH\mid}\) & 500 & \(\geq 2000\) & & \(V / \mu \mathrm{s}\) & \[
\begin{aligned}
& \mathrm{IF}=0, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\
& |\mathrm{VCM}|=50 \mathrm{~V}_{\mathrm{p}-\mathrm{p} .}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 9,10 & 6,8 \\
\hline Common Mode Transient Immunity At Logic Low Level Output & \(\mid \mathrm{CML}\) | & 500 & \(\geq 1000\) & & \(\mathrm{V} / \mu \mathrm{s}\) & \[
\begin{aligned}
& \mathrm{IF}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\
& |\mathrm{VCM}|=50 \mathrm{~V} \cdot \mathrm{p} \cdot \mathrm{~V}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 9,10 & 7,8 \\
\hline
\end{tabular}
*All typical values are at \(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{Typical Characteristics \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Typ. & Units & Test Conditions & Fig. & Note \\
\hline Resistance (Input-Output) & RI-O & \(10^{12}\) & \(\Omega\) & \(\mathrm{V}_{1-0}=500 \mathrm{Vdc}\) & & 9 \\
\hline Capacitance (Input-Output) & \(\mathrm{Cl}-\mathrm{O}\) & 2.0 & pF & \(\mathrm{f}=1 \mathrm{MHz}\) & & 9 \\
\hline Temperature Coefficient of Forward Voltage & \[
\frac{\Delta V_{F}}{\Delta T_{A}}
\] & -1.5 & \[
{ }^{\mathrm{m} V f}
\] & \(\mathrm{l}=1.6 \mathrm{~mA}\) & & \\
\hline Input Capacitance & CIN & 15 & pF & \(\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0\) & & \\
\hline
\end{tabular}

\section*{NOTES:}
1. GND Pin should be the most negative voltage at the detector side. Keeping \(V_{C C}\) as low as possible, but greater than 2.0 V , will provide lowest total \(\mathrm{I}_{\mathrm{OH}}\) over temperature.
2. Output power is collector output power plus one half of total supply power.
3. CURRENT TRANSFER RATIO is defined as the ratio of output collector current \(I^{O}\), to the forward LED input current, \(I_{F}\), times \(100 \%\).
4. Device considered a two-terminal device. Pins 1 through 4 are shorted together and pins 5 through 8 are shorted together.
5. This is a momentary withstand test, not an operating condition.
6. \(C M_{H}\) is the maximum tolerable common mode transient such that the output will - remain in a high logic state (i.e. \(\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}\) ).
7. \(C M_{\mathrm{L}}\) is the maximum tolerable common mode transient such that the output will remain in a low logic state (i.e. \(\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}\) ).
8. In applications where dV/dt may exceed \(50,000 \mathrm{~V} / \mu \mathrm{s}\) (such as a static discharge) a series resistor, \(\mathrm{R}_{\mathrm{CC}}\), is recommended to protect the detector IC from destructively high surge currents. The recommended maximum value is
\[
\mathrm{R}_{\mathrm{CC}} \approx \frac{1 \mathrm{~V}}{0.15 \mathrm{I}_{\mathrm{F}}(\mathrm{~mA})} \mathrm{k} \Omega .
\]
9. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together.


Figure 1. Input Current vs. Forward Voltage.


If - INPUT FORWARD CURRENT (mA)
Figure 4. Normalized Supply Current vs. Input Forward Current.


If - INPUT FORWARD CURRENT (mA)
Figure 7. Propagation Delay vs. Input Forward Current.


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms
*See Note 8



Figure 2. Normalized DC Transfer Characteristics.


Figure 5. Propagation Delay to Logic Low vs. Input Pulse Period.

Figure 3. Normalized Current Transfer Ratio vs. Input Forward Current.


Figure 6. Propagation Delay vs. Temperature.


Figure 8. Switching Test Circuit

\(\mathrm{V}_{\mathrm{CM}}\) - COMMON MODE TRANSIENT AMPLITUDE (V)
Figure 10. Common Mode Transient Immunity vs. Common Mode Transient Amplitude

\section*{MIL-STD-883 CLASS B TEST PROGRAM}

Hewlett-Packard's HCPL-5701 optocoupler is in compliance with MIL-STD-883, Revision C. Testing consists of \(100 \%\) screening to Method 5004 and quality conformance inspection to Method 5005. Details of these test programs may be found in the hermetic optocoupler product qualification section of Hewlett-Packard's Optoelectronics Designer's Catalog 1985.
See table below for specific electrical tests.

\section*{PART NUMBERING SYSTEM}
\begin{tabular}{|c|c|}
\hline Commercial Product & Class B Product \\
\hline HCPL-5700 & HCPL-5701 \\
\hline
\end{tabular}


Figure 11. Operating Circuit for Burn-In and Steady State Life Tests

\section*{GROUP A - ELECTRICAL TESTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
Subgroup 1 \\
\({ }^{*}\) Static tests at \(T_{A}=25^{\circ} \mathrm{C}-\mathrm{IOH}, \mathrm{VOL}\), ICCL, ICCH, CTR, VF, BVR and \(\mathrm{I}_{1-\mathrm{O}}\)
\end{tabular}}} & LTPD \\
\hline & & & & & 2 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Subgroup 2 \\
*Static tests at \(T_{A}=+125^{\circ} \mathrm{C}-\mathrm{IOH}, \mathrm{V}_{\mathrm{OL}}, \mathrm{ICCL}, \mathrm{ICCH}, \mathrm{BV}\) R and CTR
\end{tabular}} & \multirow[t]{3}{*}{3} \\
\hline Symbol & Min. & Max. & Units & Test Conditions & \\
\hline \(V_{F}\) & & 1.8 & V & \(\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}\) & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Subgroup 3 \\
\({ }^{*}\) Static tests at \(T_{A}=-55^{\circ} \mathrm{C}-\mathrm{IOH}, \mathrm{VOL}_{\mathrm{O}} \mathrm{ICCL}, \mathrm{ICCH}, \mathrm{BV}\) R and CTR
\end{tabular}} & \multirow[t]{3}{*}{5} \\
\hline Symbol & Min. & Max. & Units & Test Conditions & \\
\hline \(V_{F}\) & & 1.8 & V & \(\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}\) & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Subgroup 4, 5, 6, 7 and 8 \\
These subgroups are not applicable to this device type.
\end{tabular}} & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Subgroup 9 \\
\({ }^{*}\) Switching tests at \(T_{A}=25^{\circ} \mathrm{C}-\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL1 }}, \mathrm{t}_{\text {PLH2 }}, \mathrm{t}_{\text {PHL2 }}, \mathrm{t}_{\text {PLH3 }}, \mathrm{t}_{\text {PHL3 }}, \mathrm{CM}_{H}\) and \(\mathrm{CM}_{\mathrm{L}}\)
\end{tabular}} & 2 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Subgroup 10 \\
\({ }^{*}\) Switching tests at \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}-\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHLL }}, \mathrm{t}_{\text {PLH2 }}, \mathrm{t}_{\text {PHL2 }}, \mathrm{t}_{\text {PLH3 }}, \mathrm{t}_{\text {PHL }} 3\)
\end{tabular}} & 3 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Subgroup 11 \\
\({ }^{*}\) Switching tests at \(T_{A}=-55^{\circ} \mathrm{C}-\mathrm{t}_{\text {PLH1 }}, \mathrm{t}_{\text {PHL1 }}, \mathrm{t}_{\text {PLH2 }}, \mathrm{t}_{\text {PHL2 }}, \mathrm{t}_{\text {PLH3 }}, \mathrm{t}_{\text {PHL }} 3\)
\end{tabular}} & 5 \\
\hline
\end{tabular}
*Limits and conditions per Table II.

JANUARY 1986


\section*{Features}
- HERMETICALLY SEALED 8 PIN DUAL IN-LINE PACKAGE
- PERFORMANCE GUARANTEED OVER \(-55^{\circ} \mathrm{C}\) TO \(+125^{\circ} \mathrm{C}\) AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- HCPL-2730/2731 AND 6N140A OPERATING COMPATIBILITY
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- HIGH CURRENT TRANSFER RATIO 1500\% TYPICAL
- LOW OUTPUT SATURATION VOLTAGE 0.11 V TYPICAL
- 500 Vdc WITHSTAND TEST VOLTAGE
- HIGH COMMON MODE REJECTION
- LOW POWER CONSUMPTION
- HIGH RADIATION IMMUNITY

\section*{Description}

The HCPL-5730 and HCPL-5731 units are dual channel, hermetically sealed, low input current, high gain optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-5730) or with full MIL-STD-883 Class Level B testing (HCPL-5731). Both products are in eight pin hermetic dual in-line packages.
Each unit contains two independent channels, consisting of an AIGaAs light emitting diode optically coupled to an integrated high gain photon detector. The high gain output stage features an open collector output providing both


\section*{Applications}
- MILITARY/HIGH RELIABILITY SYSTEMS
- TELEPHONE RING DETECTION
- MICROPROCESSOR SYSTEM INTERFACE
- EIA RS-232-C LINE RECEIVER
- LEVEL SHIFTING
- DIGITAL LOGIC GROUND ISOLATION
- CURRENT LOOP RECEIVER
- ISOLATED INPUT LINE RECEIVER
- SYSTEM TEST EQUIPMENT ISOLATION
- PROCESS CONTROL INPUT/OUTPUT ISOLATION
lower output saturation voltage and higher signaling speed than possible with conventional photo-darlington optocouplers.

The supply voltage can be operated as low as 2.0 V without adversely affecting the parametric performance.
The HCPL-5730 and HCPL-5731 have a 200\% minimum CTR at an input current of only 0.5 mA making them ideal for use in low input current applications such as MOS, CMOS, low power logic interfaces or line receivers. Compatibility with high voltage CMOS logic systems is assured by the 18 V Vcc, \(\mathrm{V}_{\mathrm{OH}}\) current and the guaranteed maximum output leakage current at 18 V . The shallow depth and small junctions offered by the IC process provides better radiation immunity than conventional phototransistor optocouplers.

Upon special request, the following device selections can be made: CTR minimum of \(300 \%\) to \(600 \%\) at 0.5 mA , lower drive currents to 0.1 mA , and lower output leakage current levels to \(100 \mu \mathrm{~A}\).

\section*{Recommended Operating Conditions}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Symbol & Min. & Max. & Units \\
\hline \begin{tabular}{l} 
Input Voltage, Low \\
Level (Each Channel)
\end{tabular} & VFL \(^{2}\) & & 0.7 & V \\
\hline \begin{tabular}{l} 
Average Input Current \\
High Level (Each Channel)
\end{tabular} & IFH & 0.5 & 5 & mA \\
\hline Supply Voltage & VCC & 2.0 & 18 & V \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}


Electrical Characteristics
\(T_{A}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\), unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min. & Typ.* & Max. & Units & Test Conditions & Fig. & Nole \\
\hline Current Transfer Ratio & CTR & \[
\begin{aligned}
& 200 \\
& 200 \\
& 200
\end{aligned}
\] & \[
\begin{aligned}
& 1500 \\
& 1000 \\
& 500
\end{aligned}
\] & & \[
\begin{aligned}
& \% \\
& \% \\
& \% \\
& \%
\end{aligned}
\] & \[
\begin{aligned}
& I_{F}=0.5 \mathrm{~mA}, \mathrm{VO}=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, V O=0.4 \mathrm{~V}, V \mathrm{VCC}=4.5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, V O=0.4 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V}
\end{aligned}
\] & 3 & 3,4 \\
\hline Logic Low Output Voltage & Vol & & \[
\begin{aligned}
& \hline 0.11 \\
& 0.13 \\
& 0.16
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \\
& 0.4 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& I_{F}=0.5 \mathrm{~mA}, l_{0}=1.0 \mathrm{~mA}, V C C=4.5 \mathrm{~V} \\
& \mathrm{I}_{F}=1.6 \mathrm{~mA}, \mathrm{lo}=3.2 \mathrm{~mA}, V C C=4.5 \mathrm{~V} \\
& I_{F}=5.0 \mathrm{~mA}, l_{0}=10 \mathrm{~mA}, V C C=4.5 \mathrm{~V}
\end{aligned}
\] & 2 & 3 \\
\hline Logic High Output Current & \[
\begin{aligned}
& \mathrm{IOHX} \\
& \mathrm{IOH}
\end{aligned}
\] & & 0.001 & 250 & \({ }_{\mu} \mathrm{A}\) & \(\mathrm{V}_{\mathrm{F}}=0.7 \mathrm{~V}\) (Channel Under Test) \(\mathrm{IF}=8 \mathrm{~mA}\) (Other Channel)
\[
V_{O}=V_{C C}=18 \mathrm{~V}
\] & & 3,5 \\
\hline Logic Low Supply Current & ICCL & & 1.0 & 4 & mA & \[
\begin{aligned}
& I_{F_{1}}=I_{F_{2}}=1.6 \mathrm{~mA} \\
& V C C=18 \mathrm{~V}
\end{aligned}
\] & 4 & \\
\hline Logic High Supply Current & ICCH & & 0.001 & 15 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& T_{\mathrm{F} 1}=1_{\mathrm{F} 2}=0 \\
& V C C=18 \mathrm{~V}
\end{aligned}
\] & & \\
\hline Input Forward Voltage & \(V_{F}\) & 1.0 & 1.3 & 1.6 & V & If \(=1.6 \mathrm{~mA}, \mathrm{TA}=25^{\circ} \mathrm{C}\) & 1 & 3 \\
\hline Input Reverse Breakdown Voltage & \(B V_{R}\) & 5 & & & V & \(\mathrm{I}_{\mathrm{A}}=10 \mu \mathrm{~A}\) & & 3 \\
\hline Input-Output insulation Leakage Current & H-O & & & 1.0 & \(\mu \mathrm{A}\) & \(45 \%\) Relative Humidity, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \(\mathrm{t}=5 \mathrm{sec}_{1} \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{Vdc}\) & & 6. 12 \\
\hline \multirow[t]{3}{*}{Propagation Delay Time to Logic High At Output} & \multirow{3}{*}{tPL. H} & \multirow[t]{3}{*}{} & 17 & 185 & \(\mu \mathrm{s}\) & \(\mathrm{IF}=0.5 \mathrm{~mA}_{,} \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{VCC}=5 \mathrm{~V}\) & 7,8 & 3 \\
\hline & & & 14 & 115 & \(\mu s\) & \(\mathrm{IF}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{RL}=2.2 \mathrm{k} \Omega, \mathrm{VCC}=5 \mathrm{~V}\) & 7.8 & 3 \\
\hline & & & 8 & 60 & \(\mu \mathrm{s}\) & \(\mathrm{If}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega_{\text {, }} \mathrm{VCC}=5 \mathrm{~V}\) & 7,8 & 3 \\
\hline \multirow[t]{3}{*}{Propagation Delay Time to Logic Low At Output} & \multirow{3}{*}{tpHL} & \multirow[t]{3}{*}{} & 10 & 185 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{VCC}=5 \mathrm{~V}\) & 7,8 & 3 \\
\hline & & & 5 & 30 & \(\mu \mathrm{s}\) & IF \(=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{kal}, \mathrm{VCC}=5 \mathrm{~V}\) & 7,8 & 3 \\
\hline & & & 2 & 12 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{~V}_{C C}=5 \mathrm{~V}\) & 7,8 & 3 \\
\hline Common Mode Transient Immunity At Logic High Level Output & |cmin & 500 & \(\geq 2000\) & & \(\mathrm{V} / \mu \mathrm{s}\) & \[
\begin{aligned}
& \mathrm{F}=0, \mathrm{RL}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\
& |\mathrm{VCM}|=50 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 9,10 & \[
\begin{gathered}
3 \\
9,11
\end{gathered}
\] \\
\hline Common Mode Transient Immunity At Logic Low Level Output & |CMu.| & 500 & \(\geq 1000\) & & \(\mathrm{V} / \mu \mathrm{s}\) & \[
\begin{aligned}
& \mathrm{IF}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{E}}=2.2 \mathrm{k} \Omega \\
& |\mathrm{VCM}|=50 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 9,10 & \[
\begin{array}{|c}
3 \\
10,11
\end{array}
\] \\
\hline
\end{tabular}
\({ }^{*}\) All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{Typical Characteristics \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Vc}}=5 \mathrm{~V}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Typ. & Units & Test Conditions & Fig. & Note \\
\hline Resistance (Input-Output) & R1-O & \(10^{12}\) & \(\Omega\) & \(\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}\) & & 3,7 \\
\hline Capacitance (Input-Output) & \(\mathrm{O}_{1}-\mathrm{O}\) & 2.0 & pF & \(f=1 \mathrm{MHz}\) & & 3,7 \\
\hline input-Input insulation Leakage Current & H-1 & 0.5 & nA & \(45 \%\) Relative Humidity, \(\mathrm{V}_{\mathrm{I}-\mathrm{t}}=500 \mathrm{Vdc}\) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}\). & & 8 \\
\hline Resistance (Input-Input) & \(\mathrm{R}_{(-1}\) & \(10^{72}\) & \(\Omega\) & \(\mathrm{V}_{1-1}=500 \mathrm{Vdc}\) & & 8 \\
\hline Capacitance (Input-Input) & \(\mathrm{Cl}_{1+1}\) & 1.3 & pF & \(f=1 \mathrm{MHz}\) & & 8 \\
\hline Temperature Coefficient of Forward Voltage & \[
\frac{\Delta V_{F}}{\Delta T_{A}}
\] & -1.5 & \[
{ }_{{ }^{\circ} \mathrm{C} V}
\] & \(\mathrm{J}_{\mathrm{F}}=1.6 \mathrm{~mA}\) & & 3 \\
\hline Input Capacitance & CIN & 15 & pF & \(\mathrm{f}=1 \mathrm{MHz}, V_{F}=0\) & & 3 \\
\hline
\end{tabular}

\section*{NOTES:}
1. GND Pin should be the most negative voltage at the detector side. Keeping \(V_{C C}\) as low as possible, but greater than 2.0 V , will provide lowest total \(\mathrm{I}_{\mathrm{OH}}\) over temperature.
2. Output power is collector output power plus one half of total supply power.
3. Each channel
4. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, \(I_{0}\), to the forward LED input current, \(I_{F}\), times \(100 \%\)
5. \(\mathrm{I}_{\mathrm{OHX}}\) is the leakage current resulting from channel to channel optical crosstalk. \(V_{F}=0.7 \mathrm{~V}\) for channel under test.
6. Device considered a two-terminal device: Pins 1 through 4 are shorted together and pins 5 through 8 are shorted together.
7. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together.
8. Measured between adjacent input pairs shorted together, i.e. between pins 1 and 2 shorted together and pins 3 and 4 shorted together.
9. \(\mathrm{CM}_{\mathrm{H}}\) is the maximum tolerable common mode transient such that the output will remain in a high logic state (i.e. \(V_{O}>2.0 \mathrm{~V}\) ).
10. \(\mathrm{CM}_{\mathrm{L}}\) is the maximum tolerable common mode transient such that the output will remain in a low logic state (i.e. \(\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}\) ).
1. In applications where \(\mathrm{dV} / \mathrm{dt}\) may exceed \(50,000 \mathrm{~V} / \mu \mathrm{s}\) (such as a static discharge) a series resistor, \(\mathrm{R}_{\mathrm{CC}}\), is recommended to protect the detector IC's from destructively high surge currents. The recommended maximum value is
\[
R_{C C} \approx \frac{1 \mathrm{~V}}{0.3 \mathrm{I}_{\mathrm{F}}(\mathrm{~mA})} \mathrm{k} \Omega
\]
12. This is a momentary withstand test, not an operating condition.


Figure 1. Input Current vs. Forward Voltage.


Figure 4. Normalized Supply Current vs. Input Forward Current.


Figure 2. Normalized DC Transfer Characteristics.


Figure 3. Normalized Current Transfer Ratio vs. Input Forward Current.


Figure 6. Propagation Delay vs. Temperature.

\(I_{\text {F }}\) - INPUT FORWARD CURRENT (mA)
Figure 7. Propagation Delay vs. Input Forward Current.



Figure 8. Switching Test Circuit.


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.


Figure 10. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.

\section*{MIL-STD-883 CLASS B TEST PROGRAM}

Hewlett-Packard's HCPL-5731 optocoupler is in compliance with MIL-STD-883, Revision C. Testing consists of \(100 \%\) screening to Method 5004 and quality conformance inspection to Method 5005. Details of these test programs may be found in the hermetic optocoupler product qualification section of Hewlett-Packard's Optoelectronics Designer's Catalog 1985.
See table below for specific electrical tests.


Figure 11. Operating Circuit for Burn-In and Steady State Life Tests.

\section*{PART NUMBERING SYSTEM}
\begin{tabular}{|c|c|}
\hline Commercial Product & Class B Product \\
\hline HCPL-5730 & HCPL-5731 \\
\hline
\end{tabular}

\section*{GROUP A - ELECTRICAL TESTS}

*Limits and conditions per Table II.

\section*{HERMETICALLY SEALED FOUR CHANNEL \\ 6N140A 6N140A/883B OPTOCOUPLER}

TECHNICAL DATA JANUARY 1986


\section*{Features}
- PERFORMANCE GUARANTEED OVER \(-55^{\circ} \mathrm{C}\) TO \(+125^{\circ}\) C AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- HIGH DENSITY PACKAGING
- HERMETICALLY SEALED
- LOW INPUT CURRENT REQUIREMENT: 0.5 mA
- HIGH CURRENT TRANSFER RATIO: \(1500 \%\) TYPICAL
- LOW OUTPUT SATURATION VOLTAGE: 0.1 V TYPICAL
- LOW POWER CONSUMPTION
- 1500 Vdc WITHSTAND TEST VOLTAGE
- HIGH RADIATION IMMUNITY

\section*{Applications}
- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATED INPUT LINE RECEIVER
- SYSTEM TEST EQUIPMENT ISOLATION
- DIGITAL LOGIC GROUND ISOLATION
- EIA RS-232C LINE RECEIVER
- MICROPROCESSOR SYSTEM INTERFACE
- CURRENT LOOP RECEIVER
- LEVEL SHIFTING
- PROCESS CONTROL INPUT/OUTPUT ISOLATION

\section*{Description}

The 6N140A is an EIA registered hybrid microcircuit which is capable of operation over the full military temperature range from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and is electrically and functionally


Outline Drawing*

TABLE I
Recommended Operating Conditions
\begin{tabular}{|l|c|c|c|c|}
\hline & Symbol & Min. & Max. & Units \\
\hline \begin{tabular}{l} 
Input Current, Low Level \\
f(Each Channel)
\end{tabular} & IFL & & 2 & \(\mu \mathrm{~A}\) \\
\hline \begin{tabular}{l} 
Input Current, High Level \\
(Each Channel)
\end{tabular} & IFH & 0.5 & 5 & mA \\
\hline Supply Voltage & \(V_{\mathrm{CC}}\) & 2.0 & 18 & V \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings*}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Storage Temperature} \\
\hline \multicolumn{2}{|l|}{Operating Temperature} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Lead Solder Temperature . ................ \(260^{\circ} \mathrm{C}\) for 10 s . \\
( 1.6 mm below seating plane)
\end{tabular}} \\
\hline Output Current, Io (each channel) & 40 mA \\
\hline Output Voltage, \(\mathrm{V}_{\mathrm{O}}\) (each channel) & -0.5 to \(20 \mathrm{~V}^{11}\) \\
\hline Supply Voltage, VCC & -0.5 to \(20 \mathrm{~V}^{11 \mid}\) \\
\hline Output Power Dissipation (each channel) & 50 mW \\
\hline Peak Input Current (each channel, \(\leq 1 \mathrm{~ms}\) duration, 500 pps ) & \[
20 \mathrm{~mA}
\] \\
\hline Average Input Current, \(I_{F}\) (each channel) & \(10 \mathrm{~mA}^{|3|}\) \\
\hline Reverse Input Voltage, \(\mathrm{V}_{\mathrm{R}}\) (each channel) & \\
\hline
\end{tabular}
enge
( 1.6 mm below seating plane)
Output Current, Io (each channel) ............... 40 mA
Output Voltage, \(\mathrm{V}_{\mathrm{O}}\) (each channel) ...... -0.5 to \(20 \mathrm{~V}|1|\)
Supply Voltage, \(\mathrm{V}_{\mathrm{CC}}\)........................ -0.5 to \(20 \mathrm{~V}^{|1|}\)
Output Power Dissipation (each channel) \(\ldots 50 \mathrm{~mW}^{|2|}\)
Peak Input Current (each channel,
Average Input Current, \(I_{F}\) (each channel) \(\ldots . . .10 \mathrm{~mA}^{|3|}\)
Reverse Input Voltage, \(\mathrm{V}_{\mathrm{R}}\) (each channel) .......... 5 V

TABLE II
Electrical Characteristics \(T_{A}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\). Unless Otherwise Specified


\section*{TABLE III}
*JEDEC Registered Data
**All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Typical Characteristics \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) Each Channe
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min. & Typ. & Max. & Units & Test Conditions & Fig. & Note \\
\hline Resistance (Input-Output) & \(\mathrm{R}_{1-0}\) & & 1012 & & \(\Omega\) & \(\mathrm{V}_{1}-\mathrm{O}=500 \mathrm{Vdc}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}\) & & 4,8 \\
\hline Capacitance Input-Output1 & Ci-O & & 1.5 & & pF & \(f=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 4,8 \\
\hline Input-Input Insulation Leakage Current & 1:1 & & 0.5 & & nA & \(45 \%\) Relative Humidity, \(\mathrm{V}_{1-1}=500 \mathrm{Vdc}\), \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}\). & & 9 \\
\hline Resistance (Input-Input & \(\mathrm{R}_{1-1}\) & & 1012 & & \(\Omega\) & \(\mathrm{V}_{1+1}=500 \mathrm{Vdc}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}\) & & 9 \\
\hline Capacitance (Input-Input) & \(\mathrm{Cl}_{1-1}\) & & 1 & & pF & \(\ddagger=1 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}\) & & 9 \\
\hline Temperature Coefficient of Forward Voltage & \[
\frac{\Delta V_{F}}{J T_{A}}
\] & & -1.8 & & \[
\begin{aligned}
& \mathrm{mV} / \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] & \(1 \mathrm{~F}=1.6 \mathrm{~mA}\) & & 4 \\
\hline Input Capacitance & Cin & & 60 & & pF & \(f=1 \mathrm{MHz}, V_{F}=0, T_{A}=25^{\circ} \mathrm{C}\) & & 4 \\
\hline
\end{tabular}

NOTES: 1. Pin 10 should be the most negative voltage at the detector side. Keeping \(\mathrm{V}_{\mathrm{CC}}\) as low as possible, but greater than 2.0 volts, will provide lowest total I OH over temperature.
2. Output power is collector output power plus one fourth of total supply power. Derate at \(1.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(110^{\circ} \mathrm{C}\).
Derate \(\mathrm{I}_{\mathrm{F}}\) at \(0.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\) above \(110^{\circ} \mathrm{C}\)
Each channel
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, \(I_{\mathrm{O}}\), to the forward LED input current, \(\mathrm{I}_{\mathrm{F}}\), times \(100 \%\).
6. \(\mathrm{I}_{\mathrm{OHX}}\) is the leakage current resulting from channel to channel optical crosstalk. \(I_{F}=2 \mu \mathrm{~A}\) for channel under test. For all other channels, \(I_{F}=10 \mathrm{~mA}\).
. Device considered a two-terminal device: Pins 1 through 8 are shorted together and pins 9 through 16 are shorted together.
8. Measured between the LED anode and cathode shorted together and pins 10 through 15 shorted together.
9. Measured between adjacent input pairs shorted together, i.e. between pins 1 and 2 shorted together and pins 3 and 4 shorted together, etc.
10. \(\mathrm{CM}_{\mathrm{H}}\) is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e. \(\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}\) ).
11. \(\mathrm{CM}_{\mathrm{L}}\) is the maximum tolerable common mode transient to assure that the output will remain in a low logic state (i.e. \(\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}\) ).
12. In applications where \(d V / d t\) may exceed \(50,000 \mathrm{~V} / \mu \mathrm{s}\) (such as a static discharge) a series resistor, \(R_{\text {CC }}\), should be included to protect the detector IC's from destructively high surge currents. The recommended value is \(R_{C C} \approx \frac{1 \mathrm{~V}}{0.6 \mathrm{I}_{F}(\mathrm{~mA})} \mathrm{k} \Omega\).
13. This is a momentary withstand test, not an operating condition.

\(\mathrm{V}_{\mathrm{F}}\) - FORWARD VOLTAGE (V)
Figure 1. Input Diode Forward Current vs. Forward Voltage.


Figure 4. Normalized Supply Current vs. Input Diode Forward Current.


IF - INPUT DIODE FORWARD CURRENT (mA)
Figure 7. Propagation Delay vs. Input Diode Forward Current.


Vo - output voltage -V
Figure 2. Normalized DC Transfer Characteristics


Figure 5. Propagation Delay to Logic Low vs. Input Pulse Period.


Figure 8. Switching Test Circuit.*
( \(f, t_{p}\) not JEDEC registered)

**See Note 12.


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.


If - INPUT DIODE FORWARD CURRENT (mA)
Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.


Figure 6. Propagation Delay vs. Temperature

\section*{MIL-STD-883 CLASS B TEST PROGRAM}

Hewlett Packard's 883B Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawing 83024 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.
Testing consists of \(100 \%\) screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD-883. See the pages of this section entitled Hermetic Optocoupler MIL-STD-883 Class B Test Program for details of this test program.

\section*{6N140A/883B Clarifications:}
I. \(100 \%\) screening per MIL-STD-883, Method 5004 constant acceleration - condition \(A\) not \(E\).
II. Quality Conformance Inspection per MIL-STD-883, Method 5005, Group A,B,C and D.
Group A - See table below for specific electrical tests.

\section*{Group B - No change}

Group C - Constant Acceleration - Condition A not E.
Group D - Constant Acceleration - Condition A not E.

\section*{PART NUMBERING SYSTEM}
\begin{tabular}{|c|c|}
\hline Commercial Product & Class B Product \\
\hline \(6 N 140 A\) & \(6 N 140 A / 883 B\) \\
\hline
\end{tabular}


Figure 11. Operating Circuit for Burn-In and Steady State Life Tests.

GROUP A - ELECTRICAL TESTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{} & LTPD \\
\hline \multicolumn{6}{|l|}{\({ }^{*}\) Static tests at \(T_{A}=25^{\circ} \mathrm{C}-I_{\text {OH, }}, \mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}, \mathrm{CTR}, \mathrm{V}_{\mathrm{F}}, \mathrm{BV}_{\mathrm{R}}\) and \(\mathrm{I}_{\mathrm{I}-\mathrm{O}}\)} & 2 \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Subgroup 2 \\
*Static tests at \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{G}-\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OHX}}, \mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}\), CTR
\end{tabular}} & 3 \\
\hline Symbol & Min. & Max. & Units & Test Cond & & \\
\hline \(V_{F}\) & & 1.8 & \(V\) & \(I_{F}=1.6 \mathrm{~mA}\) & & \\
\hline \(B V_{\text {R }}\) & 5 & & V & \(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\) & & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Subgroup 3 \\
\({ }^{*}\) Static tests at \(T_{A}=-55^{\circ} \mathrm{C}-I_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OHX}}, \mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{OCH}}\), CTR
\end{tabular}} & 5 \\
\hline Symbol & Min. & Max. & Units & Test Cond & & \\
\hline \(V_{F}\) & & 1.8 & V & \(\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}\) & & \\
\hline \(\mathrm{BV}_{\mathrm{R}}\) & 5 & & V & \(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\) & & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Subgroup 4, 5, 6, 7 and 8 \\
These subgroups are not applicable to this device type.
\end{tabular}} & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Subgroup 9 \\
\({ }^{*}\) Switching tests at \(T_{A}=25^{\circ} \mathrm{C}-\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH} 2}, \mathrm{t}_{\mathrm{PH} / 2}, \mathrm{CM}_{H}\) and \(\mathrm{CM}_{1}\)
\end{tabular}} & 2 \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Subgroup 10 \\
Switching tests at \(T_{A}=+125^{\circ} \mathrm{C}\)
\end{tabular}} & 3 \\
\hline Symbol & Max. & Units & Test Con & & & \\
\hline \(\mathrm{tplH1}^{\text {P }}\) & 300 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=0.5\) & \(\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega\) & \(V_{C C}=5.0 \mathrm{~V}\) & \\
\hline tPLH 2 & 80 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~m}\) & \(=680 \mathrm{~s}\) & \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\) & \\
\hline tpHL1 & 200 & \(\mu s\) & \(\mathrm{I}_{\mathrm{F}}=0.5\) & \(\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{kS}\) & \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\) & \\
\hline \(\mathrm{tPHL2}\) & 10 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~m}\) & \(=680 \Omega\) & \(\mathrm{V}_{C C}=5.0 \mathrm{~V}\) & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Subgroup 11 \\
Switching tests at \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\)
\end{tabular}} & 5 \\
\hline Symbol & Max. & Units & \multicolumn{3}{|l|}{Test Conditions} & \\
\hline \(\mathrm{t}_{\text {PLH1 }}\) & 300 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=0.5\) & \(\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega\) & \(V_{C C}=5.0 \mathrm{~V}\) & \\
\hline \(\mathrm{t}_{\text {PLH2 }}\) & 80 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~m}\) & \(=680 \Omega\) & \(V_{C C}=5.0 \mathrm{~V}\) & \\
\hline \(t_{\text {PHL1 }}\) & 200 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=0.5\) & \(R_{L}=4.7 \mathrm{k} \Omega\) & \(V_{C C}=5.0 \mathrm{~V}\) & \\
\hline \(t_{\text {PHL2 }}\) & 10 & \(\mu \mathrm{s}\) & \(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~m}\) & \(=680 \mathrm{\Omega}\) & \(V_{C C}=5.0 \mathrm{~V}\) & \\
\hline
\end{tabular}
*Limits and conditions per Table II.


\section*{Features}
- RECOGNIZED BY DESC*
- HERMETICALLY SEALED
- MIL-STD-883 CLASS B TESTING
- HIGH DENSITY PACKAGING
- PERFORMANCE GUARANTEED OVER \(-55^{\circ} \mathrm{C}\) TO \(+125^{\circ}\) C AMBIENT TEMPERATURE RANGE
- 1500 V dc WITHSTAND TEST VOLTAGE
- LOW INPUT CURRENT REQUIREMENT: 0.5 mA
- HIGH CURRENT TRANSFER RATIO: 1500\% TYPICAL
- LOW OUTPUT SATURATION VOLTAGE: 0.1 V TYPICAL
- LOW POWER CONSUMPTION
- HIGH RADIATION IMMUNITY

\section*{Applications}
- MILITARY/HIGH RELIABILITY SYSTEMS
- ISOLATED INPUT LINE RECEIVER
- SYSTEM TEST EQUIPMENT ISOLATION
- DIGITAL LOGIC GROUND ISOLATION
- EIA RS-232C LINE RECEIVER
- MICROPROCESSOR SYSTEM INTERFACE
- CURRENT LOOP RECEIVER
- LEVEL SHIFTING
- PROCESS CONTROL INPUT/OUTPUT ISOLATION

OUTLINE DRAWING



DIMENSIONS IN MILLIMETERS AND (INCHES).

\section*{Description}

The 8302401EC is the DESC selected item drawing assigned by DOD for the 6N140A optocoupler which is in accordance with MIL-STD-883 class B testing. Operating characteristic curves for this part can be seen in the 6N140A data sheet. This hybrid microcircuit is capable of operation over the full military temperature range from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).
The 8302401EC contains four GaAsP light emitting diodes, each of which is optically coupled to a corresponding integrated high gain photon detector. The high gain output stage features an open collector output providing both lower output saturation voltage and higher speed operation than possible with conventional photo-darlington type optocouplers. Also, the separate \(\mathrm{V}_{\mathrm{CC}}\) pin can be strobed low as an output disable or operated with supply voltages as low as 2.0 V without adversely affecting the parametric performance.

The high current transfer ratio at very low input currents permits circuit designs in which adequate margin can be allowed for the effects of CTR degradation over time.
The 8302401 EC has a \(300 \%\) minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing or RS-232C data transmission systems. Compatibility with high voltage CMOS logic systems is assured by the \(18 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}\) and by the guaranteed maximum output leakage ( \(\mathrm{I}_{\mathrm{OH}}\) ) at 18 V . The shallow depth of the IC photodiode provides better radiation immunity than conventional phototransistor couplers.
The test program performed on the 8302401EC is in compliance with DESC drawing 83024 and the provisions of method 5008, Class B of MIL-STD-883.

\section*{Recommended Operating Conditions}
\begin{tabular}{|l|c|c|c|c|}
\hline & Symbol & Min. & Max. & Units \\
\hline \begin{tabular}{l} 
Input Current, Low Level \\
(Each Channell
\end{tabular} & \(I_{\mathrm{FL}}\) & & 2 & \(\mu \mathrm{~A}\) \\
\hline \begin{tabular}{l} 
Input Current, High Level \\
(Each Channel)
\end{tabular} & \(\mathrm{I}_{\mathrm{FH}}\) & 0.5 & 5 & mA \\
\hline Supp!y Voltage & \(\mathrm{V}_{\mathrm{CC}}\) & 2.0 & 18 & V \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

Storage Temperature Range ........... \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature ................. \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Lead Solder Temperature ................ \(260^{\circ} \mathrm{C}\) for 10 s .
( 1.6 mm below seating plane)
Output Current, IO (each channel) ... 40 mA
Output Voltage, \(\mathrm{V}_{\mathrm{O}}\) (each channel) \(\ldots . . .{ }^{-0.5}\) to \(20 \mathrm{~V}^{[1]}\)
Supply Voltage, \(\mathrm{V}_{\mathrm{CC}} \ldots \ldots . . . . . . . . . .\).
Output Power Dissipation (each channel) ...... \(50 \mathrm{~mW}{ }^{|2|}\)
Peak Input Current (each channel,
\(\leq 1 \mathrm{~ms}\) duration)
Average Input Current, \(\mathrm{I}_{\mathrm{F}}\) (each channel) ....... \(10 \mathrm{~mA}^{|3|}\)
Reverse Input Voltage, \(\mathrm{V}_{\mathrm{R}}\) (each channel) ............. 5 V

100\% Screening
MIL-STD-883, METHOD 5004 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|}
\hline Test Screen & Method & Conditions \\
\hline 1. Precap Internal Visual & 2017 & \\
\hline 2. High Temperature Storage & 1008 & Condition \(\mathrm{C}, \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\), Time \(=24\) hours minimum \\
\hline 3. Temperature Cycling & 1010 & Condition \(\mathrm{C},-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}, 10\) cycles \\
\hline 4. Constant Acceleration & 2001 & Condition A, 5KG's, \(Y_{1}\) axis only \\
\hline 5. Fine Leak & 1014 & Condition A \\
\hline 6. Gross Leak & 1014 & Condition C \\
\hline 7. Interim Electrical Test & - & Optional \\
\hline 8. Burn-In & 1015 & \[
\begin{aligned}
& \text { Condition } \mathrm{B}, \text { Time }=160 \text { hours minimum } \\
& T_{A}=+125^{\circ} \mathrm{C}, V_{C C}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\
& \left.I_{O}=10 \mathrm{~mA} \text { (Figure } 1\right)
\end{aligned}
\] \\
\hline 9. Final Electrical Test Electrical Test Electrical Test & - & \begin{tabular}{l}
Group A, Subgroup 1, 5\% PDA applies Group A, Subgroup 2 \\
Group A, Subgroup 3
\end{tabular} \\
\hline 10. External Visual & 2009 & \\
\hline
\end{tabular}

\section*{Quality Conformance Inspection}

GROUP A ELECTRICAL PERFORMANCE CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Test Conditions} & \multirow[t]{2}{*}{Group A Subgroups} & \multicolumn{2}{|r|}{Limits} & \multirow[b]{2}{*}{Unit} & \multirow[b]{2}{*}{Note} \\
\hline & & & & Min. & Max. & & \\
\hline \multirow[b]{3}{*}{Current Transfer Ratio} & \multirow{3}{*}{\(h_{\text {F }}\) (CTAIM} & \(\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{~V}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}\) & 1,2,3 & 300 & & \% & 4,5 \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}\) & 1,2,3 & 300 & - & \% & 4,5 \\
\hline & & \(I_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\) & 1,2,3 & 200 & & \% & 4. 5 \\
\hline \multirow[b]{2}{*}{Logic Low Output Voltage} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \(\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\) & 1,2,3 & & 0.4 & V & 4 \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\text {OL }}=10 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}\) & 1,2,3 & & 0.4 & \(V\) & 4 \\
\hline \multirow{2}{*}{Logic High Output Current} & IOH & \multirow[t]{2}{*}{\[
\begin{aligned}
& I_{F}=2 \mu \mathrm{~A} \\
& V_{\mathrm{O}}=V_{C C}=18 \mathrm{~V}
\end{aligned}
\]} & 1,2,3 & & 250 & \(\mu \mathrm{A}\) \% & 4 \\
\hline & \(\mathrm{I}_{\mathrm{OHX}}\) & & 1,2,3 & & 250 & \(\mu \mathrm{A}\) & 4,6 \\
\hline Logic Low Supply Current & \(\mathrm{I}_{\mathrm{CCL}}\) & \[
\begin{aligned}
& I_{F 1}=I_{F 2}=I_{F 3}=I_{F 4}=1.6 \mathrm{~mA} \\
& V_{C C}=18 \mathrm{~V}
\end{aligned}
\] & 1, 2, 3 & & 4 & mA & \\
\hline Logic High Supply Current & ICCH & \[
\begin{aligned}
& I_{F_{1}}=I_{F_{2}}=I_{F 3}=I_{F 4}=0 \mathrm{~mA} \\
& V_{C C}=18 \mathrm{~V}
\end{aligned}
\] & 1,2,3 & & 40 & \(\mu \mathrm{A}\) & \\
\hline \multirow[b]{2}{*}{Input Forward Voltage} & \multirow[b]{2}{*}{\(V_{F}\)} & \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}\)} & 1,2 & & 1.7 & V & 4 \\
\hline & & & 3 & & 1.8 & V & 4 \\
\hline Input Reverse Breakdown Voltage & \(B V_{R}\) & \(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\) & 1, 2, 3 & 5 & & V & 4 \\
\hline Input-Output Insulation Leakage Current & \(1_{1-0}\) & \(45 \%\) Relative Humidity, \(\mathrm{T}=25^{\circ} \mathrm{C}\), \(t=5 \mathrm{~s} ., V_{1-\mathrm{O}}=1500 \mathrm{Vdc}\) & 1 & & 1.0 & \(\mu \mathrm{A}\) & 7,12 \\
\hline Capacitance Between Input-Output & \(\mathrm{C}_{1-\mathrm{O}}\) & \(f=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & 4 & & 4 & pF & 4,8 \\
\hline \multirow{3}{*}{Propagation Delay Time To Logic High At Output} & \multirow{3}{*}{\(\mathrm{t}_{\mathrm{PL} \mathrm{H}}\)} & \(\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{V}_{C C}=5.0 \mathrm{~V}\) & 9, 10, 11 & & 60 & \(\mu \mathrm{s}\) & \\
\hline & & \(1=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{~V}_{C C}=5.0 \mathrm{~V}\) & 9 & & 20 & \(\mu \mathrm{S}\) & \\
\hline & & \(\mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{~V}_{C C}=5.0 \mathrm{~V}\) & 10, 11 & & 30 & \(\mu \mathrm{S}\) & \\
\hline \multirow{3}{*}{Propagation Delay Time To Logic Low At Output} & \multirow{3}{*}{\(t_{\text {PHL }}\)} & \(\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{V}_{C C}=5.0 \mathrm{~V}\) & 9, 10, 11 & & 100 & \(\mu \mathrm{s}\) & \\
\hline & & \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \mathrm{~V}_{C C}=5.0 \mathrm{~V}\)} & 9 & & 5 & \(\mu \mathrm{s}\) & \\
\hline & & & 10, 11 & & 10 & \(\mu \mathrm{S}\) & \\
\hline Common Mode Transient Immunity At Logic High Level Output & \(\mathrm{CM}_{\mathrm{H}}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega \\
& \left|V_{C M}\right|=25 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 9, 10, 11 & 500 & & \(\mathrm{V} / \mu \mathrm{s}\) & 9,11 \\
\hline Common Mode Transient Immunity At Logic Low Level Output & \(\mathrm{CM}_{\mathrm{L}}\) & \[
\begin{aligned}
& I_{F}=1.6 \mathrm{~mA}, R_{L}=1.5 \mathrm{k} \Omega \\
& \left|V_{C M}\right|=25 V_{p-p}, V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 9, 10, 11 & \(-500\) & & \(\mathrm{V} / \mu \mathrm{s}\) & 10, 11 \\
\hline
\end{tabular}

NOTES: 1. Pin 10 should be the most negative voltage at the detector side. Keeping \(\mathrm{V}_{\mathrm{CC}}\) as low as possible, but greater than 2.0 volts, will provide lowest total \(I_{\mathrm{OH}}\) over temperature.
2. Output power is collector output power plus one fourth of total supply power. Derate at \(1.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(110^{\circ} \mathrm{C}\).
3. Derate \(\mathrm{I}_{\mathrm{F}}\) at \(0.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\) above \(110^{\circ} \mathrm{C}\).
4. Each channel
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, \(\mathrm{I}_{\mathrm{O}}\), to the forward LED input current, \(I_{F}\), times \(100 \%\).
6. \(\mathrm{I}_{\mathrm{OHx}}\) is the leakage current resulting from channel to channel optical crosstalk. \(I_{F}=2 \mu \mathrm{~A}\) for channel under test. For all other channels, \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\).
7. Device considered a two-terminal device: Pins 1 through 8 are shorted together and pins 9 through 16 are shorted together.
8. Measured between the LED anode and cathode shorted together and pins 10 through 15 shorted together.
9. \(\mathrm{CM}_{\mathrm{H}}\) is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e. \(V_{O}>2.0 \mathrm{~V}\) ).
10. \(\mathrm{CM}_{\mathrm{L}}\) is the maximum tolerable common mode transient to assure that the output will remain in a low logic state (i.e. \(\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}\) ).
11. In applications where \(\mathrm{dV} / \mathrm{dt}\) may exceed \(50,000 \mathrm{~V} / \mu \mathrm{s}\) (such as a static discharge) a series resistor, \(\mathrm{R}_{\mathrm{CC}}\), should be included to protect the detector IC's from destructively high surge currents. The recommended value is
\[
R_{\mathrm{CC}} \approx \frac{1 \mathrm{~V}}{0.6 I_{\mathrm{F}}(\mathrm{~mA})} \mathrm{k} \Omega .
\]
12. This is a momentary withstand test, not an operating condition.

GROUP B TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|c|}
\hline Test & Method & Conditions & LTPD \\
\hline \begin{tabular}{l}
Subgroup 1 \\
Physical Dimensions (Not required if Group \(D\) is to be performed)
\end{tabular} & 2016 & & 2 Devices (no failures) \\
\hline \begin{tabular}{l}
Subgroup 2 \\
Resistance to Solvents
\end{tabular} & 2015 & & 4 Devices (no failures) \\
\hline \begin{tabular}{l}
Subgroup 3 \\
Solderability \\
(LTPD applies to number of leads inspected - no fewer than 3 devices shall be used).
\end{tabular} & 2003 & Soldering Temperature of \(245 \pm 5^{\circ} \mathrm{C}\) for 10 seconds & \begin{tabular}{l}
15 \\
(3 Devices)
\end{tabular} \\
\hline Subgroup 4 Internal Visual and Mechanical & 2014 & & 1 Device (no failures) \\
\hline \begin{tabular}{l}
Subgroup 5 \\
Bond Strength \\
Thermocompression: \\
(Performed at precap, prior to seal LTPD applies to number of bond pulls from a minimum of 4 devices).
\end{tabular} & 2011 & Test Condition D & \begin{tabular}{l}
15 \\
(4 Devices)
\end{tabular} \\
\hline \begin{tabular}{l}
Subgroup 6 \\
Internal Water Vapor Content (Not applicable - does not contain desiccant)
\end{tabular} & - & & - \\
\hline Subgroup 7 Fine Leak Gross Leak & 1014 & Condition A Condition C & 5 \\
\hline \begin{tabular}{l}
Subgroup 8* \\
Electrical Test \\
Electrostatic Discharge Sensitivity \\
Electrical Test \\
*(To be performed at initial qualification only)
\end{tabular} & 3015 & \begin{tabular}{l}
Group A, Subgroup 1, except \(\mathrm{I}_{1-\mathrm{O}}\) \\
Group A, Subgroup 1
\end{tabular} & 15 \\
\hline
\end{tabular}

GROUP C TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|c|}
\hline Test & Method & Conditions & LTPD \\
\hline Subgroup 1 Steady State Life Test Endpoint Electricals at 1000 hours & 1005 & \begin{tabular}{l}
Condition B, Time \(=1000\) hours total
\[
T_{A}=+125^{\circ} \mathrm{C}, V_{C C}=18 \mathrm{~V}
\] \\
\(I_{F}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}\) (Figure 1 ) \\
Group A, Subgroup 1, 2, 3
\end{tabular} & 5 \\
\hline \begin{tabular}{l}
Subgroup 2 \\
Temperature Cycling \\
Constant Acceleration \\
Fine Leak \\
Gross Leak \\
Visual Examination \\
Endpoint Electricals
\end{tabular} & \[
\begin{aligned}
& 1010 \\
& 2001 \\
& 1014 \\
& 1014 \\
& 1010
\end{aligned}
\] & \begin{tabular}{l}
Condition \(\mathrm{C}_{2}-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\), 10 cycles \\
Condition A, 5KGs, \(Y_{\uparrow}\) axis only \\
Condition A \\
Condition C \\
Per Visual Criteria of Method 1010 \\
Group A, Subgroup 1, 2, 3
\end{tabular} & 15 \\
\hline
\end{tabular}

GROUP D TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)
\begin{tabular}{|c|c|c|c|}
\hline Test & Method & Conditions & LTPD \\
\hline Subgroup 1 Physical Dimensions & 2016 & & 15 \\
\hline Subgroup 2 Lead Integrity & 2004 & Test Condition B2 (lead fatigue) & 15 \\
\hline \begin{tabular}{l}
Subgroup 3 \\
Thermal Shock \\
Temperature Cycling \\
Moisture Resistance Fine Leak Gross Leak Visual Examination Endpoint Electricals
\end{tabular} & \[
\begin{aligned}
& 1011 \\
& 1010 \\
& 1004 \\
& 1014 \\
& 1014
\end{aligned}
\] & \begin{tabular}{l}
Condition B, \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) \\
15 cycles min. \\
Condition \(\mathrm{C}_{1}\left(-65^{\circ} \mathrm{C}\right.\) to \(\left.+150^{\circ} \mathrm{C}\right)\) 100 cycles min. \\
Condition A \\
Condition C \\
Per Visual Criteria of Method 1004 \\
Group A, Subgroup 1, 2, 3
\end{tabular} & 15 \\
\hline \begin{tabular}{l}
Subgroup 4 \\
Mechanical Shock \\
Vibration Variable Frequency \\
Constant Acceleration \\
Fine Leak \\
Gross Leak \\
Visual Examination \\
Endpoint Electricals
\end{tabular} & \[
\begin{aligned}
& 2002 \\
& 2007 \\
& 2001 \\
& 1014 \\
& 1014 \\
& 1010
\end{aligned}
\] & \begin{tabular}{l}
Condition \(\mathrm{B}, 1500 \mathrm{G}, \mathrm{t}=0.5 \mathrm{~ms}\), \\
5 blows in each orientation \\
Condition A \\
Condition A, 5KGs, \(Y_{1}\) axis only \\
Condition A \\
Condition C \\
Per Visual Criteria of Method 1010 Group A, Subgroup 1, 2, 3
\end{tabular} & 15 \\
\hline Subgroup 5 Salt Atmosphere Fine Leak Gross Leak Visual Examination & \[
\begin{aligned}
& 1009 \\
& 1014 \\
& 1014 \\
& 1009
\end{aligned}
\] & \begin{tabular}{l}
Condition A min. \\
Condition A \\
Condition C \\
Per Visual Criteria of Method 1009
\end{tabular} & 15 \\
\hline Subgroup 6 Internal Water Vapor Content & 1018 & \begin{tabular}{l}
\(5,000 \mathrm{ppm}\) Maximum \\
Water content at \(100^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l}
3 Devices \\
(0 failures) \\
5 Devices \\
(1 failure)
\end{tabular} \\
\hline Subgroup 7 Adhesion of Lead Finish & 2025 & & 15 \\
\hline \begin{tabular}{l}
Subgroup 8 \\
Lid Torque (not applicable-solder seal)
\end{tabular} & 2024 & & \begin{tabular}{l}
5 Devices \\
(0 failures)
\end{tabular} \\
\hline
\end{tabular}


Figure 1. Operating Circuit for Burn-In and Steady State Life Tests.


\section*{Features}
- PERFORMANCE GUARANTEED OVER \(-55^{\circ} \mathrm{C}\) TO \(+125^{\circ} \mathrm{C}\) AMBIENT TEMPERATURE RANGE
- MIL-STD-883 CLASS B TESTING
- HERMETICALLY SEALED
- HIGH SPEED: TYPICALLY 400k BIT/S
- 2 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUTS
- 18 VOLT VCC
- DUAL-IN-LINE PACKAGE
- 1500 Vdc WITHSTAND TEST VOLTAGE
- HIGH RADIATION IMMUNITY

\section*{Description}

The 4N55 consists of two completely independent optocouplers in a hermetically sealed ceramic package. Each channel has a light emitting diode and an integrated photon detector. Separate connections for the photodiodes and output transistor collectors improve the speed up to a hundred times that of a conventional phototransistor optocoupler by reducing the base-collector capacitance.

The \(4 N 55\) is suitable for wide bandwidth analog applications, as well as for interfacing TTL to LSTTL or CMOS. Current Transfer Ratio (CTR) is \(9 \%\) minimum at \(I_{F}\) \(=16 \mathrm{~mA}\) over the full military operating temperature range, \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). The 18 V VCC capability will enable the designer to interface any TTL family to CMOS. The availability of the base lead allows optimized gain/ bandwidth adjustment in analog applications. The

Outline Drawing*


DIMENSIONS IN MILLIMETERS AND (INCHES)


\section*{Applications}
- high reliability systems
- LINE RECEIVERS
- DIGITAL LOGIC GROUND ISOLATION
- ANALOG SIGNAL GROUND ISOLATION
- SWITCHING POWER SUPPLY FEEDBACK ELEMENT
- VEHICLE COMMAND/CONTROL
- SYSTEM TEST EQUIPMENT
- LEVEL SHIFTing
shallow depth of the IC photodiode provides better radiation immunity than conventional phototransistor couplers.

Hewlett-Packard's new high reliability part type 4N55/883B meets Class B testing requirements for MIL-STD-883. This part is the recommended and preferred device from the 4N55 product family for use in high reliability applications.

See the selection guide at the front of this section for other devices in this family.

\footnotetext{
CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
}

\section*{Absolute Maximum Ratings*}

Storage Temperature
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Lead Solder Temperature ............. \(260^{\circ} \mathrm{C}\) for 10 s ( 1.6 mm below seating plane)
Average Input Current, IF (each channel) ...... 20 mA
Peak Input Current, If (each
channel, \(\leq 1 \mathrm{~ms}\) duration)
40 mA
Reverse Input Voltage, \(\mathrm{V}_{\mathrm{R}}\) (each channel) .......... 5V
Input Power Dissipation (each channel) ...... 36 mW
Average Output Current, Io (each channel) ..... 8mA
Peak Output Current, lo (each channel) ........ 16mA
Supply Voltage, VCc (each channel) ..... -0.5V to 20 V
Output Voltage, Vo (each channel) ...... -0.5 V to 20 V
Emitter Base Reverse Voltage, VEBO .............. 3.0V
Base Current, IB (each channel)
5 mA
Output Power Dissipation (each channel) 50 mW
Derate linearly above \(100^{\circ} \mathrm{C}\) free air
temperature at a rate of \(1.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\).

TABLE \(I\).
Recommended Operating Conditions (EACH CHANNEL)
\begin{tabular}{|l|c|c|c|c|}
\hline & Symbol & Min. & Max. & Units \\
\hline Input Current, Low Level & \(\mathrm{IFL}_{\mathrm{FL}}\) & & 250 & \(\mu \mathrm{~A}\) \\
\hline Supply Voltage & \(\mathrm{VCC}_{\mathrm{CC}}\) & 2 & 18 & V \\
\hline
\end{tabular}

TABLE II.
Electrical CharacteristicS \(T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Min. & Typ.** & Max. & Units & Test Conditions & Fig. & Note \\
\hline Current Transfer Ratio & CTR \({ }^{\text {+ }}\) & 9 & 20 & & \% & \(\mathrm{IF}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\) & 2,3 & 1,2 \\
\hline Logic High Output Current & IOH & & 20 & 100 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& I F=0, \text { If } \text { iother channe }:=20 \mathrm{~mA} \\
& V_{0}=V_{C C}=18 V \\
& \hline
\end{aligned}
\] & 4 & 1 \\
\hline Output Leakage Current & IOH1* & & 70 & 250 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& I_{F}=250 \mu \mathrm{~A}, I_{f} \text { tother channel }=20 \mathrm{~mA} \\
& V_{0}=V_{C C}=18 \mathrm{~V}
\end{aligned}
\] & 4 & 1 \\
\hline Logic Low Supply Current & ICCL* & & 35 & 200 & \(\mu \mathrm{A}\) & \(\mathrm{IF}_{1}=\mathrm{I}_{\mathrm{F} 2}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V}\) & 5 & 1 \\
\hline Logic High Supply Current & \(\mathrm{ICCH}^{*}\) & & 0.2 & 10 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \left.\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \text { If } \text { (other channe }\right)=20 \mathrm{~mA} \\
& \mathrm{VCC}^{2}=18 \mathrm{~V}
\end{aligned}
\] & & 1 \\
\hline input Forward Voltage & \(V_{F}{ }^{*}\) & & 1.5 & 1.8 & \(V\) & \(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}\) & 1 & 1 \\
\hline Input Reverse Breakdown Voltage & BvR* & 3 & & & V & \(\mathrm{IR}_{\mathrm{R}}=10 \mu \mathrm{~A}\) & & 1 \\
\hline Input-Output Insulation Leakage Current & 11-0* & & & 1.0 & \(\mu \mathrm{A}\) & 45\% Relative Humidity, \(T_{A}=25^{\circ} \mathrm{C}, t=5 \mathrm{~s}, V_{1-O}=1500 \mathrm{Vdc}\) & & 3.9 \\
\hline Propagation Delay Time to Logic High at Output & tpl.h* & & 2.0 & 6.0 & \(\mu \mathrm{s}\) & \[
\begin{aligned}
& R_{L}=8.2 \mathrm{~K} \Omega, C_{L}=50 \mathrm{pF} \\
& \mathrm{IF}_{\mathrm{F}}=16 \mathrm{~mA}, V_{C C}=5 \mathrm{~V}
\end{aligned}
\] & 6,9 & 1 \\
\hline Propagation Delay Time to Logic Low at Output & tPHL* & & 0.4 & 2.0 & \(\mu \mathrm{S}\) & \[
\begin{aligned}
& R_{\mathrm{L}}=8.2 \mathrm{~K} \Omega, C_{L}=50 \mathrm{pF} \\
& \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}
\end{aligned}
\] & 6,9 & 1 \\
\hline
\end{tabular}
*JEDEC Registered Data.
"All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
TABLE III.
Typical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Typ. & Units & Test Conditions & Fig. & Note \\
\hline Temperature Coefficient of Forward Voltage & \(\frac{\Delta V_{F}}{\Delta T_{A}}\) & -1.5 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) & \(\mathrm{IF}=20 \mathrm{~mA}\) & & 1 \\
\hline Input Capacitance & \(\mathrm{Cin}_{\text {in }}\) & 120 & pF & \(f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0\) & & 1 \\
\hline Resistance (Input-Output) & \(\mathrm{R}_{1} \mathrm{O}\) & 1012 & n & \(\mathrm{V}_{1}-\mathrm{O}=500 \mathrm{Vdc}\) & & 1 \\
\hline Capacitance (Input-Output) & \(\mathrm{Cl}_{1-\mathrm{O}}\) & 1.0 & pF & \(f=1 \mathrm{MHz}\) & & 1.4 \\
\hline Input-Input Insulation Leakage Current & 1-1 & 1 & pA & 45\% Relative Humidity, \(V_{1-1}=500 \mathrm{Vdc}, t=5 \mathrm{~s}\) & & 5 \\
\hline Capacitance (Input-Input) & \(\mathrm{Cl}_{1-1}\) & . 55 & pF & \(f=1 \mathrm{MHz}\) & & 5 \\
\hline Transistor DC Current Gain & hfe & 150 & - & \(V_{0}=5 \mathrm{~V}, 10=3 \mathrm{~mA}\) & & 1 \\
\hline Small Signal Current Transfer Ratio & \[
\frac{\Delta l_{0}}{\Delta \mathrm{IF}_{\mathrm{F}}}
\] & 21 & \% & \(V_{C C}=5 \mathrm{~V}, V_{0}=2 \mathrm{~V}\) & 7 & 1 \\
\hline Common Mode Transient Immunity at Logic High Level Output & CMH & 1000 & \(\mathrm{V} / \mu \mathrm{s}\) & \[
\begin{aligned}
& I_{F}=0, R_{L}=8.2 \mathrm{k} \Omega \\
& V_{C M}=10 V_{p-p} \\
& V_{0}(\mathrm{~min} .)=2.0 \mathrm{~V}
\end{aligned}
\] & 10 & 1.6 \\
\hline Common Mode Transient Immunity at Logic Low Level Output & CML & -1000 & \(\mathrm{V} / \mu \mathrm{s}\) & \[
\begin{aligned}
& I_{F}=16 \mathrm{~mA}, R_{L}=8.2 \mathrm{k} \Omega \\
& V_{C M}=10 V_{p-p} \\
& V_{0}(\text { max. })=0.8 \mathrm{~V}
\end{aligned}
\] & 10 & 1.7 \\
\hline Bandwidth & BW & 2 & MHz & \(\mathrm{R}_{\mathrm{L}}=100 \Omega\) & 8 & 8 \\
\hline
\end{tabular}

\section*{Notes:}
1. Each channel.
2. Current Transfer Ratio is defined as the ratio of output collector current, Io, to the forward LED input current, IF, times \(100 \%\). CTR is known to degrade slightly over the unit's lifetime as a function of input current, temperature, signal duty cycle and system on time. Refer to Application Note 1002 for more detail. In short it is recommended that designers allow at least \(20-25 \%\) guardband for CTR degradation.
3. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
4. Measured between each input pair shorted together and the output pins for that channel shorted together.
5. Measured between pins 3 and 4 shorted together and pins 7 and 8 shorted together.
6. \(\mathrm{CMH}_{H}\) is the steepest slope ( \(\mathrm{dV} / \mathrm{dt}\) ) on the leading edge of the common mode pulse, \(\mathrm{V}_{\mathrm{CM}}\), for which the output will remain in the logic high state (i.e. \(V_{0}>2.0 \mathrm{~V}\) ).
7. \(C M L\) is the steepest slope ( \(\mathrm{dV} / \mathrm{dt}\) ) on the trailing edge of the common mode pulse, \(\mathrm{V}_{\mathrm{CM}}\), for which the output will remain in the logic low state (i.e. Vo \(<0.8 \mathrm{~V}\) ).
8. Bandwidth is the frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
9. This is a momentary withstand test, not an operating condition.


Figure 1. Input Diode Forward Characteristic


Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.


Figure 5. Logic Low Supply Current vs. Input Diode Forward Current.


Figure 2. DC and Pulsed Transfer Characteristic


Figure 4. Logic High Output Current vs. Temperature.


Figure 6. Propagation Delay vs. Temperature.


Figure 7. Normalized Small Signal Current Transfer Ratio vs. Quiescent Input Current


Figure 8a. Frequency Response


Figure 8b. Frequency Response


10\% DUTY CYCLE
\(1 / \mathrm{f} \leqslant 100 \mu \mathrm{~s}\)


Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

\begin{tabular}{|l|c|c|c|}
\hline LOGIC FAMILY & LSTTL & CMOS \\
\hline DEVICE NO. & \(54 L \$ 14\) & CD40106BM \\
\hline VCC \(^{2}\) & 5 V & 5 V & 15 V \\
\hline RL \(^{5 \%}\) & & & \\
TOLERANCE & "18k \(\Omega\) & \(8.2 \mathrm{k} \Omega\) & \(22 \mathrm{k} \Omega\) \\
\hline
\end{tabular}
*THE EQUIVALENT OUTPUT LOAD RESISTANCE IS AFFECTED BY THE LSTTL INPUT CURRENT AND IS APPROXIMATELY \(8.2 \mathrm{k} \Omega\).

This is a worst case design which takes into account \(25 \%\) degradation of CTR. See App. Note 1002 to assess actual degradation and lifetime.

Figure 11. Recommended Logic Interface.

\section*{MIL-STD-883 CLASS B TEST PROGRAM}

Hewlett-Packard's 883B optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawing 81028 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.
Testing consists of \(100 \%\) screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD-883. See the pages of this section entitled Hermetic Optocoupler Product Qualification for details of this test program.

\section*{4N55/883B Clarifications:}
I. \(100 \%\) screening per MIL-STD-883, Method 5004 constant acceleration - condition A not E.
II. Quality Conformance Inspection per MIL-STD-883, Method 5005, Group A, B, C and D.
Group A - See table below for specific electrical tests.
Group B - No change
Group C - Constant Acceleration - Condition A not E.
Group D - Constant Acceleration - Condition A not E.

\section*{PART NUMBERING SYSTEM}
\begin{tabular}{|c|c|}
\hline Commercial Product & Class B Product \\
\hline \(4 N 55\) & \(4 N 55 / 883 B\) \\
\hline
\end{tabular}


Figure 12. Operating Circuit for Burn-in and Steady State Life Tests

GROUP A - ELECTRICAL TESTS
\begin{tabular}{|c|c|}
\hline & LTPD \\
\hline \begin{tabular}{l}
Subgroup 1 \\
* Static tests at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IOH}, \mathrm{BV}\), \(\mathrm{ICCL}, \mathrm{ICCH}, \mathrm{CTR}, \mathrm{V}_{\mathrm{F}}, \mathrm{IOH}_{1}\) and \(\mathrm{I}-\mathrm{O}\).
\end{tabular} & 2 \\
\hline \begin{tabular}{l}
Subgroup 2 \\
* Static tests at \(T_{A}=+125^{\circ} \mathrm{C}, \mathrm{IOH}_{1}, \mathrm{BV}\) R \(\mathrm{ICCL} . \mathrm{ICCH}_{4} \mathrm{CTR}, \mathrm{VF}\) and \(\mathrm{IOH}_{\mathrm{O}}\)
\end{tabular} & 3 \\
\hline \begin{tabular}{l}
Subgroup 3 \\
* Static tests at \(T_{A}=-55^{\circ} \mathrm{C}, \mathrm{IOH}, \mathrm{BV}, \mathrm{ICCL}^{2}, \mathrm{ICCH}_{\mathrm{CH}}, \mathrm{CTR}, \mathrm{V}_{\mathrm{F}}\) and IOH 1
\end{tabular} & 5 \\
\hline \begin{tabular}{l}
Subgroups 4, 5, 6, 7 and 8 \\
These subgroups are non-applicable to this device type
\end{tabular} & \\
\hline \begin{tabular}{l}
Subgroup 9 \\
* Switching tests at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), tpLH and tpHL.
\end{tabular} & 2 \\
\hline \begin{tabular}{l}
Subgroup 10 \\
* Switching tests at \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{G}\), tpLH and tphL
\end{tabular} & 3 \\
\hline \begin{tabular}{l}
Subgroup 11 \\
* Switching tests at \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\), tPLH \(^{2}\) and tPHL .
\end{tabular} & 5 \\
\hline
\end{tabular}

\footnotetext{
*Limits and Conditions per Table II.
}

\section*{9:}

\section*{Applications}

Because technology is growing and changing so rapidly, HP's commitment to customers includes an extensive applications department. In an effort to anticipate design needs and answer design questions, this team of engineers has published a complete library of applications literature available through HP sales and service offices, authorized distributors and direct from the factory. A listing of all application bulletins and application notes is on the facing page.
This year application handbooks which contain complete application notes bound together with additional product information are available. Now you can keep the design information you need from year-to-year.

These handbooks sell for \(\$ 12\) each, U.S. price. Look in the back of this catalog for a business reply card to order yours. For individual application notes either use the business reply card or call your nearest HP sales and service office. Ask for the Components department. A listing of these offices can be found in the appendix, section 10.
In 1981, the second edition of the Optoelectronics/Fiber Optics Applications Manual was published by McGraw-Hill. This hard-bound manual was prepared by HP's applications engineering staff and contains design information on LED's, displays, optocouplers and fiber optics. It can be purchased from an authorized distributor or directly from McGrawHill for \(\$ 25\).


\section*{Applications Listing}

\section*{MOTION SENSING AND CONTROL}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Model \\
Pub. No. (Date)
\end{tabular} & Description \\
\hline \[
\begin{gathered}
\text { AN-1011 } \\
5953-9393(12 / 83)
\end{gathered}
\] & Design and Operational Considerations for the HEDS-5000 Incremental Shaft Encoder \\
\hline \[
\begin{gathered}
\text { AN-1025 } \\
5954-0920(9 / 85) \\
\hline
\end{gathered}
\] & Applications and Circuit Design for the HEDS-7500 series Digital Potentiometer \\
\hline
\end{tabular}

\section*{BAR CODE COMPONENTS}
\begin{tabular}{cl}
\begin{tabular}{c} 
Model \\
Pub. No. (Date)
\end{tabular} & \begin{tabular}{cl} 
Description
\end{tabular} \\
\hline AB-59 & HP 16800A/16801A Bar Code Reader \\
Configuration Guide for a DEC VT-100 or \\
Lear Siegler ADM-31 to a DEC PDP-11 \\
Computer
\end{tabular}
\begin{tabular}{cl}
\hline \begin{tabular}{c} 
AN-951-2 \\
\(5963-7730(4 / 82)\)
\end{tabular} & Linear Applications of Optocouplers \\
\hline \begin{tabular}{cl} 
AN-1002 \\
\(5953-7799(10 / 82)\)
\end{tabular} & \begin{tabular}{l} 
Consideration of CTR Variations in \\
Optically Coupled Isolator Circuit \\
Designs
\end{tabular} \\
\hline AN-1004 & \begin{tabular}{l} 
Threshold Sensing for Industrial Control \\
Systems with the HCPL-3700 Interface \\
Optocoupler
\end{tabular} \\
\hline AN-1018 & \begin{tabular}{l} 
Designing with HCPL-4100 and \\
\(5953-9359(8 / 83)\)
\end{tabular} \\
\hline HCPL-4200 20 mA Optocouplers
\end{tabular}

\section*{FIBER OPTICS}

\section*{Model}
Pub. No (Date)
\begin{tabular}{cl} 
Pub. No. (Date) & Description \\
\hline AB-65 & Using \(50 / 125 \mu \mathrm{~m}\) Optical Fiber with \\
\(5953-9370(9 / 83)\) & Hewlett-Packard Components \\
\hline AB-71 & Using 200 \(\mu \mathrm{m}\) PCS Optical \\
\(5954-1021(12 / 85)\) & Fiber with HP Components \\
\hline AN-915 & Threshold Detection of Visible and \\
\(5953-0431(4 / 80)\) & Infrared Radiation with PIN Photodiodes \\
\hline AN-1000 & Digital Data Transmission with the HP \\
\(5953-0463(1 / 82)\) & Fiber Optic System \\
\hline AN-1022 & High Speed Fiber Optic Link Design with \\
\(5954-0979(1 / 85)\) & Discrete Components \\
\hline
\end{tabular}

\section*{LIGHT BARS AND BAR GRAPH ARRAYS}

Model
Pub. No. (Date)
AN-1007 Bar Graph Array Applications
Description

5953-0452 (1/81)
AN-1012
Methods of Legend Fabrication
5953-0478 (2/81)

\section*{SOLID STATE LAMPS}

Model
Pub. No. (Date)
AB-1 Construction and Performance of High
5952-8378 (1/75) Efficiency Red, Yellow and Green LED Materials
\begin{tabular}{cl}
\hline \begin{tabular}{c} 
AN-945 \\
\(5952-0420(10 / 73)\)
\end{tabular} & Photometry of Red LEDs \\
\hline AN-1005 & Operational Considerations for LED \\
\(5953-0419(3 / 80)\) & Lamps and Display Devices \\
\hline AN-1017 & LED Solid State Reliability \\
\(5953-7784(10 / 82)\) & \\
\hline AN-1019 & Using the HLMP-4700/-1700/-7000 Series \\
\(5954-0921(1 / 86)\) & Low Current Lamp \\
\hline AN-1021 & Utilizing LED Lamps Packaged on Tape \\
\(5953-0861(5 / 84)\) & and Reel \\
\hline AN-1027 & Soldering LED Components \\
\(5954-0893(7 / 85)\) & \\
\hline AN-1028 & Surface Mount Subminiature LED Lamps \\
\(5954-0902(9 / 85)\) & \\
\hline
\end{tabular}

\section*{SOLID STATE DISPLAYS}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Model \\
Pub. No. (Date)
\end{tabular} & Description \\
\hline \[
\begin{gathered}
\text { AB-4 } \\
5952-8381(4 / 75) \\
\hline
\end{gathered}
\] & Detection and Indication of Segment Failures in 7-Segment LED Displays \\
\hline \[
\begin{gathered}
\text { AB-64 } \\
5953-9366(9 / 83)
\end{gathered}
\] & \begin{tabular}{l}
Mechanical and Optical Considerations for the 0.3" Microbright \\
Seven-Segment Display
\end{tabular} \\
\hline \[
\begin{gathered}
\text { AB-70 } \\
5954-0868(11 / 84) \\
\hline
\end{gathered}
\] & Green LED Displays and GEN III ANVIS Night Vision Goggle Compatibility \\
\hline \[
\begin{gathered}
\text { AN-934 } \\
5952-0337(11 / 72) \\
\hline
\end{gathered}
\] & 5082-7300 Series Solid State Display Installation Techniques \\
\hline \[
\begin{gathered}
\text { AN-1006 } \\
5953-0439(7 / 80) \\
\hline
\end{gathered}
\] & Seven Segment LED Display Applications \\
\hline \[
\begin{gathered}
\text { AN-1015 } \\
5953-7788(11 / 82) \\
\hline
\end{gathered}
\] & Contrast Enhancement Techniques for LED Displays \\
\hline \[
\begin{gathered}
\text { AN-1016 } \\
5953-7787(3 / 84) \\
\hline
\end{gathered}
\] & Using the HDSP-2000 Alphanumeric Display Family \\
\hline \[
\begin{gathered}
\text { AN-1026 } \\
5954-0886(6 / 85) \\
\hline
\end{gathered}
\] & Designing with HP's Smart Display - the HPDL-2416 \\
\hline
\end{tabular}

\section*{APPLICATIONS HANDBOOKS}
\begin{tabular}{cl}
\begin{tabular}{c} 
Model \\
Pub. No. (Date)
\end{tabular} & \begin{tabular}{ll} 
HPBK-4000 \\
\((1986)\)
\end{tabular} \\
\hline \begin{tabular}{ll} 
HPBK-5000 \\
\((1986)\)
\end{tabular} & \begin{tabular}{l} 
LED Indicators and Displays Applications \\
Handbook \\
\(\$ 10\)
\end{tabular} \\
\hline Aptocouplers and Fiber Optics \\
Applications Handbook \\
\$10
\end{tabular}

\title{
Abstracts
}

\begin{abstract}
APPLICATION BULLETIN 1
Construction and Performance of High Efficiency Red, Yellow and Green LED Materials
The high luminous efficiency of Hewlett-Packard's High Efficiency Red, Yellow and Green lamps and displays is made possible by a new kind of light emitting material utilizing a GaP transparent substrate. This application bulletin discusses the construction and performance of this material as compared to standard red GaAsP and red GaP materials.
\end{abstract}

\section*{APPLICATION BULLETIN 4 \\ Detection and Indication of Segment Failures in Seven Segment LED Displays}

The occurrence of a segment failure in certain applications of seven segment displays can have serious consequences if a resultant erroneous message is read by the viewer. This application bulletin discusses three techniques for detecting open segment lines and presenting this information to the viewer.

\section*{APPLICATION BULLETIN 59 HP16800A/16801A Bar Code Reader Configuration Guide for a DEC VT-100 or Lear Siegler ADM-31 to a DEC PDP-11 Computer}

This application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader with a DEC-PDP-11 computer, and either a DEC-VT-100 terminal or a LEAR SIEGLER ADM-31 terminal.

\section*{APPLICATION BULLETIN 60}

Applications Circuits for HCPL-3700 and HCPL-2601
Simple circuit illustrations are given for use of the HCPL-3700 threshold detection optocoupler for ac or dc sensing requirements. Programmable threshold levels are given for the HCPL-3700.
Also, a basic LSTTL to LSTTL isolation interface circuit for 10 MBd operation is given which uses the high common mode transient immunity HCPL-2601 optocoupler.

\section*{APPLICATION BULLETIN 61} HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 3276/3278 Terminal
This application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader with an IBM 3276/3278 terminal to an IBM 3272/3274 Remote Communications Controller. In this configuration the IBM 3272/3274 is connected to an IBM mainframe computer.

\section*{APPLICATION BULLETIN 62}

HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 4955F Series 1 Process Control CPU/ Protocol Converter and an IBM 3101 Terminal
This application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader in an eavesdrop configuration with an IBM 3101 terminal
and an IBM Series 1 Process Control CPU/Protocol Converter. In this configuration the IBM Series 1 is connected to an IBM mainframe computer.

\section*{APPLICATION BULLETIN 63 HP 16800A/16801A Bar Code Reader Configuration Guide for an IBM 5101 Personal Computer}

This application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader with an IBM 5101 Personal Computer.

\section*{APPLICATION BULLETIN 64 Mechanical and Optical Considerations for the 0.3" Microbright Seven-Segment Display}

The need to conserve space in electronic instruments has increased drastically in the drive to design more compact, more portable equipment. Hewlett-Packard has facilitated the saving of space in the design of front panels with the introduction of the Microbright, HewlettPackard's new HDSP-7300/-7400/-7500/-7800 series compact \(0.3^{\prime \prime}\) seven segment displays. Smaller than the conventional \(0.3^{\prime \prime}\) device, the Microbright requires less space without sacrificing display height and is also Hewlett-Packard's most sunlight viewable seven segment display.

This application bulletin deals with several issues in the use of the Microbright. Optical filtering is covered, with recommendations on filters to use over the devices. Adjusting the package height and recommended sockets are also presented, followed by a discussion on the brightness of the display.

\section*{APPLICATION BULLETIN 65 \\ Using 50/125 \(\mu \mathrm{m}\) Optical Fiber with Hewlett-Packard Components}

Applications Bulletin 65 explains factors that influence the power coupled into various fiber diameters and numerical apertures. Test results showing coupled power from HP LED sources into 100/140 \(\mu\) metre and \(50 / 125 \mu\) metre fiber are included.

\section*{APPLICATION BULLETIN 68 \\ HP 16800A/16801A Bar Code Reader Configuration Guide for a MICOM Micro280 message concentrator}

In some applications, multiple bar code readers may be required to input data to a logging terminal or a central processing unit. However, connecting each unit to a CPU may utilize more input/output ports than desired. A port concentrator will allow several devices to be connected using only one port to the CPU. This application bulletin provides information to aid in configuring the HP 16800A/16801A bar code reader with a MICOM Micro280 Message Concentrator.

\section*{Abstracts (cont.)}

\section*{APPLICATION BULLETIN 69 \\ CMOS Circuit Design Using Hewlett-Packard Optocouplers}

Within this application bulletin are CMOS isolation interface circuits for use with the various, low input current, Hewlett-Packard optocouplers, specifically, the HCPL-2200/2300/2731 and 6N139 devices. Advantages of and recommendations for different input and output circuit configurations are given in tabular form for low power operation at various signalling rates.

\section*{APPLICATION BULLETIN 70 \\ Green LED Displays and GEN III ANVIS Night Vision Goggle Compatibility}

The military is incorporating GEN III Aviator's Night Vision Imaging System (ANVIS) night vision goggles (NVG) to provide vision capability during night operations. Aircraft instrument lighting and other equipment must be compatible with the GEN III ANVIS goggles so as not to interfere with their operation.

NVG compatibility can be achieved with HewlettPackard green LED displays when combined with the proper NVG filters. The topics discussed in this application bulletin include a description of the GEN III ANVIS night vision goggles, NVG compatibility problems, the military ANVIS Radiance requirement for NVG compatibility and technical data on NVG filters for use with green LED displays.

\section*{APPLICATION BULLETIN 71 \\ 200- \(\mu \mathrm{m}\) PCS Fiber with Hewlett-Packard Fiber Optic Transmitters and Receivers}

A description of the properties of \(200-\mu \mathrm{m}\) PCS fiber is given and the performance when used with HewlettPackard fiber optic components is described in the form of graphs and tables.

\section*{APPLICATION NOTE 915}

\section*{Threshold Detection of Visible and Infrared Radiation with PIN Photodiodes}

PIN photodiodes are compared with multiplier phototubes in an 11-point summary of their relative merits. This is followed by a description of PIN photodiode device structure, mode of operation, and analysis of the diode's equivalent circuit.
Four pre-amplifier circuits are presented. Two of these describe use of operational amplifiers - one for linear response, the other for logarithmic response. The other two circuits are designed for substantially higher speeds of response, using discrete components to obtain wide bandwidth as well as high sensitivity.

\section*{APPLICATION NOTE 934}

5082-7300 Series Solid State Display Installation Techniques
The 4N5X, HDSP-07XX/08XX/09XX, and 5082-73XX series Numeric/Hexadecimal indicators are an excellent solution to most standard display problems in
commercial, industrial and military applications. The unit integrates the display character and associated drive electronics in a single package. This advantage allows for space, pin and labor cost reductions, at the same time improving overall reliability.

The information presented in this note describes general methods of incorporating this series into varied applications.

\section*{APPLICATION NOTE 945 Photometry of Red LEDs}

Nearly all LEDs are used either as discrete indicator lamps or as elements of a segmented or dot-matrix display. As such, they are viewed directly by human viewers, so the primary criteria for determining their performance is the judgment of a viewer. Equipment for measuring LED light output should, therefore, simulate human vision.
This application note will provide answers to these questions:
1. What to measure (definitions of terms)
2. How to measure it (apparatus arrangement)
3. Whose equipment to use (criteria for selection)

\section*{APPLICATION NOTE 947}

\section*{Digital Data Transmission Using Optically Coupled} Isolators

Optocouplers make ideal line receivers for digital data transmission applications. They are especially useful for elimination of common mode interference between two isolated data transmission systems. This application note describes design considerations and circuit techniques with special emphasis on selection of line drivers, transmission lines, and line receiver termination for optimum data rate and common mode rejection. Both resistive and active terminations are described in detail. Specific techniques are described for multiplexing applications, and for common mode rejection and data rate enhancement.

\section*{APPLICATION NOTE 948}

Performance of the 6N135/6/7 Series of Optocouplers in Short to Moderate Length Digital Data Transmission Systems
Describes use of HP 6N135/6/7 optocouplers as line receivers in a TTL-TTL compatible NRZ (nonreturn-tozero) data transmission link. It describes several useful total systems including line driver, cable, terminations, and TTL compatible connections.

\section*{APPLICATION NOTE 951-1}

\section*{Applications for Low Input Current, High Gain Optocouplers}

Optocouplers are useful in line receivers, logic isolation, power lines, medical equipment, and telephone lines. This note discusses use of the 6N138/9 series high CTR optocouplers in each of these areas.

\section*{Abstracts (cont.)}

\section*{APPLICATION NOTE 951-2 \\ Linear Applications of Optocouplers}

Although optocouplers are not inherently linear, the separate photodiodes used in Hewlett-Packard optocouplers provide better linearity as well as higher speed of response than phototransistor detectors.

Linearity enhancement by use of paired optocouplers is described with specific circuit examples offering DC-to25 KHz response. These examples illustrate the relative merits of differential and servo techniques.
A circuit with linear \(A C\) response to 10 MHz is also described for analog optocouplers having the photodiode terminals externally accessible.
Digital techniques of voltage-to-frequency conversion and pulse width modulation are discussed. Their linearity is quite independent of optocoupler linearity but require use of high speed optocouplers for low distortion.

\section*{APPLICATION NOTE 1000 \\ Digital Data Transmission with the HP Fiber Optic System}

Fiber optics can provide solutions to many data transmission system design problems. The purpose of this application note is to aid designers in obtaining optimal benefits from this relatively new technology. Following a brief review of the merits, as well as the limitations, of fiber optics relative to other media, there is a description of the optical, mechanical, and electrical fundamentals of fiber optic data transmission system design. How these fundamentals apply is seen in the detailed description of the Hewlett-Packard system. The remainder of the note deals with techniques recommended for operation and maintenance of the Hewlett-Packard system, with particular attention given to deriving maximum benefit from the unique features it provides.

\section*{APPLICATION NOTE 1002 \\ Consideration of CTR Variations in Optocoupler Circuit Designs}

A persistent, and sometimes crucial, concern of designers using optocouplers is that of the current transfer ratio, CTR, changing with time. The change, or CTR degradation, must be accounted for if long, functional lifetime of a system is to be guaranteed. This application note will discuss a number of different sources for this degradation.

\section*{APPLICATION NOTE 1004}

\section*{Threshold Sensing for Industrial Control Systems with the HCPL-3700 Interface Optocoupler}

Interfacing from industrial control systems to logic systems is a necessary operation in order to monitor system progress. This interfacing is found in process control systems, programmable controllers, microprocessor subsystems which monitor limit and proximity switches, environmental sensors and ac line status; in switching power supplies for detection of ac
power loss; in power back up systems which need an early warning of power loss in order to save special microprocessor memory information or switch to battery operation, etc. Applications of the HCPL-3700 interface optocoupler are addressed in this note. The isolation and threshold detection capability of the HCPL-3700 allows it to provide unique features which no other optocoupler can provide. Addressed in this note are the advantages of using this optocoupler for isolating systems as well as the device characteristics, dc/ac operational performance with and without filtering, simple calculations for setting desired thresholds, and four typical application examples for the HCPL-3700. Additional coverage is given to protection considerations for the optocoupler from the standpoint of power transients, thermal conditions, and electrical safety requirements of the industrial control environment.

\section*{APPLICATION NOTE 1005 \\ Operational Considerations for LED Lamps and Display Devices}

In the design of a display system, which incorporates LED lamps and display devices, the objective is to achieve an optimum between light output, power dissipation, reliability, and operating life. The performance characteristics and capabilities of each LED device must be known and understood so that an optimum design can be achieved. The primary source for this information is the LED device data sheet. The data sheet typically contains Electrical/Optical Characteristics that list the performance of the device and Absolute Maximum Ratings in conjunction with characteristic curves and other data which describe the capabilities of the device. A thorough understanding of this information and its intended use provides the basis for achieving an optimum design. This application note presents an in-depth discussion of the theory and use of the electrical and optical information contained within a data sheet. Two designs using this information in the form of numerical examples are presented, one for dc operation and one for pulsed (strobed) operation.

\section*{APPLICATION NOTE 1006}

\section*{Seven Segment LED Display Applications}

This application note begins with a detailed explanation of the two basic product lines that Hewlett-Packard offers in the seven segment display market. This discussion includes mechanical construction techniques, character heights, and typical areas of application. The two major display drive techniques, dc and strobed, are covered. The resultant tradeoffs of cost, power, and ease of use are discussed. This is followed by several typical instrument applications including counters, digital voltmeters, and microprocessor interface applications. Several different microprocessor based drive techniques are presented incorporating both the monolithic and the large seven segment LED displays.

\section*{Abstracts (cont.)}

The application note contains a discussion of intensity and color considerations made necessary if the devices are to be end stacked. Hewlett-Packard has made several advances in the area of sunlight viewability of LED displays. The basic theory is discussed and recommendations made for achieving viewability in direct sunlight. Information concerning display mounting, soldering, and cleaning is presented. Finally, an extensive set of tables has been compiled to aid the designer in choosing the correct hardware to match a particular application. These tables include seven segment decoder/drivers, digit drivers, LSI chips designed for use with LEDs, printed circuit board edge connectors, and filtering materials.

\section*{APPLICATION NOTE 1007}

\section*{Bar Graph Array Applications}

This application note begins with a description of the manufacturing process used to construct the 10 element array. Next is a discussion of the package design and basic electrical configuration and how they affect designing with the bar graph array. Mechanical information including pin spacing and wave soldering recommendations are made.
Display interface techniques of two basic types are thoroughly discussed. The first of these two drive schemes is applicable in systems requiring display of analog signals in a bar graph format. The second major drive technique interfaces bar graph arrays in systems where the data is of a digital nature. Examples of microprocessor controlled bar graph arrays are presented.
Summarized for the design engineer are tables of available integrated circuits for use with bar graph arrays. Finally, a list of recommended filters is included.

\section*{APPLICATION NOTE 1008}

\section*{Optical Sensing with the HBCS-1100}

This application note gives the basic optical flux coupling design for discrete emitters and detectors. Presents the concepts of modulation transfer function, depth of field, and reflective sensor design. It also discusses the optical and electrical operation of the HBCS-1100 High Resolution optical sensor. Finally, it presents electrical design techniques which allow the HBCS-1100 to interface with popular logic families.

\section*{APPLICATION NOTE 1011}

\section*{Design and Operational Considerations for the HEDS5000 Incremental Shaft Encoder}

This application note is directed toward the system designer using the HEDS-5000 and HEDS-6000 modular incremental shaft encoders. First the note briefly analyzes the theory of design and operation of the HEDS-5000 and HEDS-6000. A practical approach to design considerations and an error analysis provide an indepth treatment of the relationship between motor mechanical parameters and encoding error accumulation. Several design examples demonstrate the analysis techniques presented. Operation
considerations for assembly, test, trouble shooting and repair are presented. Finally some circuits and software concepts are introduced which will be useful in interfacing the shaft encoder to a digital or microprocessor based system. Appendix A summarizes the uses and advantages of various encoder technologies while Appendix B provides guidance for selecting DC motors suitable for use with the HEDS5000 and HEDS-6000.

\section*{APPLICATION NOTE 1012 Methods of Legend Fabrication}

Hewlett-Packard LED Light Bar Modules inscribed with fixed messages or symbols can be used as economical annunciators. Annunciators are often used in front panels to convey the status of a system, to indicate a selected mode of operation or to indicate the next step in a sequence. This application note discusses alternative ways the message or symbols (legends) can be designed. A selection matrix is provided to assist in the selection of the most appropriate method of legend fabrication. Each fabrication method is explained in detail along with mounting and attachment techniques. Finally, prevention of cross-talk is discussed for legend areas of a multi-segmented light bar.

\section*{APPLICATION NOTE 1013}

\section*{Elements of a Bar Code System}

This application note describes in detail the elements that make up most bar code systems. Included is a discussion of the fundamental system design, detailed discussion of 7 . popular code symbologies, a section on symbol generation, and methods of data entry. A glossary of terms and a reference section are also included. This is an excellent publication for people who are just learning about bar code, or for those who need a more comprehensive understanding of the subject.

\section*{APPLICATION NOTE 1015}

\section*{Contrast Enhancement Techniques for LED Displays}

Contrast enhancement is essential to assure readability of LED displays in a variety of indoor and outdoor ambients. Plastic filters are typically used for contrast enhancement with indoor lighting and glass circular polarized filters are typically used to achieve readability in sunlight ambients.
This application note discusses contrast enhancement technology for both indoor and outdoor ambients, the theory of Discrimination Index and provides a list of tested contrast enhancement filters and filter manufacturers.

\section*{APPLICATION NOTE 1016 Using the HDSP-2000 Alphanumeric Display Family}

The HDSP-2000 family of alphanumeric display products provides the designer with a variety of easy-touse display modules with on board integrated circuit drivers. The HDSP-2000 family has been expanded to provide three display sizes with character heights

\section*{Abstracts (cont.)}
ranging from \(3.8 \mathrm{~mm}\left(0.15^{\prime \prime}\right)\) to \(6.9 \mathrm{~mm}\left(0.27^{\prime \prime}\right)\), four display colors, and both commercial and military versions. These displays can be arranged to create both single line and multiple line alphanumeric panels.
This note is intended to serve as a design and application guide for users of the HDSP-2000 family of alphanumeric display devices. It covers the theory of the device design and operation, considerations for specific circuit designs, thermal management, power derating and heat sinking, and intensity modulation techniques.

\section*{APPLICATION NOTE 1017 LED Solid State Reliability}

Light emitting diode display technology offers many attractive features including multiple display colors, sunlight readability, and a continuously variable intensity adjustment. One of the most common reasons that LED displays are designed into an application, however, is the high level of reliability of the LED display. HewlettPackard has taken a leadership role in setting reliability standards for LED displays and documenting reliability performance.
This note explains how to use the reliability data sheets published for HP LED indicators and displays. It describes the LED indicator and display packages, defines device failures, and discusses parameters affecting useful life, failure rates and mechanical test performance.

\section*{APPLICATION NOTE 1018 \\ Designing with the HCPL-4100 and HCPL-4200 Current Loop Optocoupler}

Digital current loops provide unique advantages of large noise immunity and long distance communication at low cost. Applications are wide and varied for current loops, but one of the critical concerns of a loop system is to provide a predictable, reliable and isolated interface with the loop. The HCPL-4100 (transmitter) and HCPL-4200 (receiver) optocouplers provide for easy interfacing to and from a current loop with minimal design effort. Within this application note a complete description of the HCPL-4100/4200 devices is given along with applications for digital, 20 mA , simplex, half duplex and full duplex loops. These loops can be either point-to-point or multidrop configurations. Factors which affect data performance are discussed. Circuit arrangements with specific data performance are given in graphical and tabular form.

\section*{APPLICATION NOTE 1019}

\section*{Using the HLMP-4700/-1700/-7000 Series Low Current Lamps}

Hewlett-Packard manufactures a series of LED lamps that are designed for operation at 2 mA DC . These lamps are available in high efficiency red, yellow, and high performance green in a variety of package styles. These lamps allow the designer to reduce system power dissipation, and drive circuit costs.
This application note contrasts electrical characteristics of the low-current lamp with HP's conventional lamp.

Costs of implementing lamp drive circuits are discussed, as in power conservation in TTL and circuits involving higher voltages. Finally, telecommunications and battery information are presented.

\section*{APPLICATION NOTE 1021}

Utilizing LED Lamps Packaged on Tape and Reel
Hewlett-Packard offers many of its LED lamps packaged on tape and reel for radial insertion by automatic equipment during high volume production of PC board assemblies.

This application note is a guide to the use of tape and reel LED lamps in the automatic insertion process. Discussed are the LED lamp tape and reel configuration, the radial lead insertion process, PC board design considerations, a method to maintain LED lamp alignment during soldering and lamp stand-off height information.

\section*{APPLICATION NOTE 1022 \\ High Speed Fiber Optic Link Design with Discrete Components}

As the technology of fiber optic communication matures, design considerations for large volume applications focus as much on cost and reliability, as bandwidth and bit-error-rate. This application note describes a 100 MBd fiber optic communication link which was implemented with low-cost, non-exotic technology, including LED transmitter, PIN photodiode detector, off-the-shelf ICs and discrete components, laid out on epoxy-glass circuit boards.

\section*{APPLICATION NOTE 1023}

\section*{Radiation Immunity of Hewlett-Packard Optocouplers}

Opening with a quotation from MIL-HDBK-279 describing optocouplers containing photodiodes as superior to optocouplers containing phototransistors, the text describes the properties of ionizing radiation (particles and photons) and how it affects the performance of optocouplers. Graphs show degradation of CTR (Current Transfer Ratio) in the 6N140 as a function of gamma total dose (up to 1000 \(\operatorname{rad}[\mathrm{Si}]\) and as a function of total neutron fluence (up to \(6 \times 10^{12} \mathrm{n} / \mathrm{cm}^{2}\) ). A table gives radiation hardness requirements for various military requirements.

\section*{APPLICATION NOTE 1024}

\section*{Ring Detection with the HCPL-3700 Optocoupler}

With the increased use of modems, automatic phone answering equipment, private automatic branch exchange (PABX) systems, etc., low-cost, reliable, isolated ring detection becomes important to many electronic equipment manufacturers. This application note addresses the definition of ringing requirements (U.S.A. and Europe), applications of the HCPL-3700 optocoupler as a simple, but effective, ring detector. A design example is shown with calculations to illustrate proper use of the HCPL-3700. Features which are integrated into the HCPL-3700 provide for predictable detection, protection and isolation when compared to other optocoupler techniques.

\section*{Abstracts (cont.)}

\section*{APPLICATION NOTE 1025 \\ Applications and Circuit Design for the HEDS-7500 series Digital Potentiometer}

This application note demonstrates some of the uses for the Hewlett-Packard HEDS-7500 series digital potentiometer, explains how a digital potentiometer works, and explains some of the advantages of a digital potentiometer over a standard resistive potentiometer. In addition, this application note provides some examples of circuitry which will interface the digital potentiometer to a microprocessor, and provides mechanical design considerations and available options for the HEDS-7500 series digital potentiometer.

\section*{APPLICATION NOTE 1026 \\ Designing with Hewlett-Packard's Smart Display - The HPDL-2416}

The trend in LED Alphanumeric displays is to simplifiy a designer's job as much as possible by incorporating on board character storage, ASCII character generation, and multiplexing within the display. The HPDL-2416 is a four character alphanumeric display which incorporates a 64 character ASCII decoder and an on board CMOS IC to perform these functions. This application note is intended to serve as a design and application guide for users of the HPDL-2416. The information presented will cover: electrical description, electrical design considerations, interfacing to micro-processors, preprogrammed message systems, mechanical and electrical handling, and contrast enhancement.

\section*{APPLICATION NOTE 1027}

\section*{Soldering LED Components}

The modern printed circuit board is assembled with a wide variety of semiconductor components. These components may include LED lamps and displays in combination with other components. The quantity of solder connections will be many times the component count. Therefore, the solder connections must be good on the first pass through the soldering process. The effectiveness of the soldering process is a function of the care and attention paid to the details of the process. It is important for display system designers and PC board assembly engineers to understand the aspects of the soldering process and how they relate to LED components to assure high yields.

This application note provides an in depth discussion on the aspects of the soldering process and how they relate to LED lamps and display components, with the objective of being to serve as a guide towards achieving high yields for solder connections.

\section*{APPLICATION NOTE 1028}

\section*{Surface Mount Subminiature LED Lamps}

Modern printed circuit boards are being assembled with surface mounted components, replacing through hole mounted components in many traditional applications. Hewlett-Packard has surface mount options for its HLMP-6000/7000 series of subminiature LED lamps, Options 011 and 013 for "gull wing" leads and Option 021 for "yoke" leads for inverted mounting.
This application note provides information on how to surface mount and vapor phase reflow solder these surface mount subminiature LED lamps.

\section*{TECHNICAL BRIEF 101 Fiber Optic SMA Connector Technology}

Technical Brief 101 discusses tradeoffs between various SMA connector techniques and provides a contact matrix of manufacturers versus SMA connector type.

\section*{TECHNICAL BRIEF 102 \\ Fiber/Cable Selection for LED Based Local Communications Systems}

Technical Brief 102 is intended to assist the first time user of fiber optics with the selection of a fiber cable that best meets desired system requirements. Issues discussed in Technical Brief 102 include: Tradeoffs between various fiber types, the effect of LED emitters on fiber performance, coupled power versus numerical aperture and factors that influence cable selection. A contact matrix that lists fiber cable manufacturers versus cable type is also included.

\section*{TECHNICAL BRIEF 103}

\section*{High Speed Optocouplers vs. Pulse Transformers}

For high speed signaling with ground loop isolation, pulse transformers are often used. Here are summarized briefly the difficulties encountered in the use of pulse transformers, such as rise-time, sag, and interwinding capacitance. A table summarizes the parameters of Hewlett-Packard optocouplers designed for high speed signaling. A second table summarizes the advantages of using these optocouplers instead of pulse transformers.


\title{
HP Components Authorized Distributor and Representative Directory
}

\section*{United States}
Alabama
Hall-Mark Electronics
4900 Bradford Drive
Huntsville 35807
(205) 837-8700
Hamilton/Avnet
4940 Research Drive N.W.
Huntsville 35805
(205) 837-7210
Schweber Electronics
2227 Drake Avenue
Suite 14
Huntsville 35805
(205) 882-2200

\section*{Arizona}
Hamilton/Avnet
505 South Madison
Tempe 85281
(602) 231-5100
Schweber Electronics 11049 N. 23rd. Drive Suite 100
Phoenix 85029
(602) 997-4874

\section*{California}
Hall-Mark Electronics 8130 Remmet Avenue Canoga Park 91304 (818) 716-7300
Hall-Mark Electronics 2221 E. Rosecrans Blvd. Suite 104
El Segundo 90245
(213) 643-9101
Hall-Mark Electronics 1110 Ringwood Court San Jose 95131
(408) 946-0900
Hall-Mark Electronics 14831 Franklin Avenue Tustin 92680
(714) 669-4700
Hamilton/Avnet
3002 East G Street
Ontario 91764
(714) 989-4602
Hamilton/Avnet
4103 Northgate Blvd.
Sacramento 95834
(916) 925-2216
Hamilton/Avnet
4545 Viewridge Avenue San Diego 92123
(619) 571-7510
Hamilton/Avnet
1175 Bordeaux Drive
Sunnyvale 94086

\section*{California (cont.)}

Hamilton Electro Sales
9650 De Soto Avenue
Chatsworth 91311
(818) 700-6500

Hamilton Electro Sales
3170 Pullman Street
Costa Mesa 92626
(714) 641-4166

Hamilton Electro Sales
10950 W. Washington Blvd.
Culver City 90230
(213) 558-2121

Schweber Electronics
21139 Victory Blvd.
Canoga Park 91303 (818) 999-4702

Schweber Electronics
1225 W. lgoth Street
Suite 360
Gardena, CA 90248
(213) 327-8409

Schweber Electronics
17822 Gillette Avenue
Irvine 92714
(714) 863-0200

Schweber Eleatronics
1771 Tribute Road
Suite B
Sacramento 95815
(916) -929-9732

Schweber Electronics
6750 Nancy Ridge Drive
Bldg. 7, Suites D \& E
San Diego 92121
(619) 450-0454

Schweber Electronics
90 East Tasman Drive
San Jose 95134
(408) 946-7171

\section*{Colorado}

Hamilton/Avnet
8765 East Orchard
Suite 708
Englewood 80111
(303) 740-1000

Schweber Electronics
8955 E. Nichols Avenue
Highland Tech Business Plaza
Englewood 80112
(303) 799-0258

\section*{Connecticut}

Hall-Mark Electronics Barnes Industrial Park
33 Village Lane
P.O. Box 5024

Wallingford 06492
(203) 269-0100
(408) 743-3355

\section*{Connecticut (cont.)}

Hamilton/Avnet
Commerce Drive
Commerce Industrial Park
Danbury 06810
(203) 797-1100

Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury 06810
(203) 748-7080

\section*{Florida}

Hall-Mark Electronics
15301 Roosevelt Blvd.
Suite 303
Clearwater 33520
(813) 530-4543

Hall-Mark Electronics
7648 Southland Blvd.
Suite 100
Orlando 32809
(305) 855-4020

Hall-Mark Electronics
3161 S.W. 15th Street
Pompano Beach 33069-4800
(305) 971-9280

Hamilton/Avnet
6801 N.W. 15th Way
Ft. Lauderdale 33309
(305) 971-2900
hamilton/Avnet
3197 Tech Drive North
St. Petersburg 33702
(813) 576-3930

Hamilton/Avnet
6947 University Blvd.
Winter Park 32792
(305) 628-3888

Schweber Electronics
215 N. Lake Blvd.
Altamonte Springs 32701
(305) 331-7555

Schweber Electronics
2830 N. 28th Terrace
Hollywood 33020
(305) 927-0511

\section*{Georgia}

Hall-Mark Electronics 6410 Atlantic Boulevard
Suite 115
Norcross 30071
(404) 447-8000

Hamilton/Avnet
5825 D. Peachtree Corners
East
Norcross 30092
(404) 447-7507

Schweber Electronics
303 Research Drive
Suite 210
Norcross 30092
(404) 449-9 170

\section*{Illinois}

Hall-Mark Electronics 1177 Industrial Drive Bensenville 60106 (312) 860-3800

Hamilton/Avnet
1130 Thorndale Avenue
Bensenville 60106
(312) 860-7700

Schweber Eiectronics
904 Cambridge Drive
Elk Grove Village 60007
(312) 364-3750

\section*{Indiana}

Hamilton/Avnet
485 Gradle Drive
Carmel 46032
(317) 844-9333

\section*{lowa}

Hamilton/Avnet
915 33rd Avenue S.W.
Cedar Rapids 52404
(319) 362-4757

Schweber Electronics
5270 North Park Place N.E.
Cedar Rapids 52402
(319) 373-1417

\section*{Kansas}

Hall-Mark Electronics
10815 Lakeview Drive
Lenexa 66215
(913) 888-4747

Hamilton/Avnet
9219 Quivira Road
Overland Park 66215
(913) 888-8900

Schweber Electronics
10300 W. 103rd. Street
Suite 200
Overland Park 66214
(913) 492-2922

\section*{Maryland}

Hall-Mark Electronics
10240 Old Columbia Road
Columbia 21046
(301) 988-9800

Hamilton/Avnet
6822 Oak Hall Lane
Columbia 21045
(301) 995-3500

Schweber Electronics
9330 Gaither Road
Gaithersburg 20877
(301) 840-5900

\section*{Massachusetts}

Hall-Mark Electronics
6 Cook Street
Pinehurst Park
Billerica 01521
(617) 935-9777

Hamilton/Avnet
50 Tower Office Park
Woburn 01801
(6,17) 273-7500
Schweber Electronics
25 Wiggins Avenue
Bedford 01730
(617) 275-5100

\section*{Michigan}

Hamilton/Avnet
2215 29th Street S.E.
Grand Rapids 49508
(616) 243-8805

Hamilton/Avnet
32487 Schoolcraft Road
Livonia 48150
(313) 522-4700

Schweber Electronics
12060 Hubbard Drive
Livonia 48150
(313) 525-8100

\section*{Minnesota}

Hall-Mark Electronics 7838 12th Avenue, So. Bloomington 55420 (612) 854-3223

\section*{Hamilton/Avnet} 10300 Bren Road E.
Minneapolis 55343
(612) 932-0600

Schweber Electronics
7424 W. 78th Street
Edina 55435
(612) 941-5280

\section*{Missouri}

Hall-Mark Electronics
13750 Shoreline Drive
Earth City 63045
(314) 291-5350

Hamilton/Avnet
13743 Shoreline Court
Earth City 63045
(314) 344-1200

Schweber Electronics
502 Earth City Expwy.
Suite 203
Earth City 63045
(314) 739-0526

\section*{New Hampshire}

Hamilton/Avnet
444 East Industrial Park Dr.
Manchester 03103
(603) 624-9400

Schweber Electronics Bedford Farms, Bldg. Kilton \& South River Road Manchester 03102
(603) 625-2250

New Jersey
Hall-Mark Electronics
107 Fairfield Road
Suite 1B
Fairfield 07006
(201) 575-4415

Hall-Mark Electronics 1000 Midlantic Drive Mt. Laurel 08054
(609) 235-1900

Hamilton/Avnet
1 Keystone Avenue Cherry Hill 08003 (609) 424-0100

Hamilton/Avnet
10 Industrial Road
Fairfield 07006
(201) 575-3390

Schweber Electronics
18 Madison Road
Fairfield 07006
(201) 227-7880

\section*{New Mexico}

Hamilton/Avnet 2524 Baylor S.E. Albuquerque 87106
(505) 765-1500

\section*{New York}

Hall-Mark Electronics 1 Comac Loop
Ronkonkoma 11779
(516) 737-0600

Hamilton/Avnet
933 Motor Park Way
Hauppauge 11788
(516) 231-9800

Hamilton/Avnet
333 Metro Park Drive
Rochester 14623
(716) 475-9130

Hamilton/Avnet
103 Twin Oaks Drive Syracuse 13206
(315) 437-2641

Schweber Electronics
3 Town Line Circle
Rochester 14623
(716) 424-2222

Schweber Electronics
Jericho Turnpike
Westbury 11590
(516) 334-7474

\section*{North Carolina}

Hall-Mark Electronics 5237 North Boulevard Raleigh 27604
(919) 872-0712

Hamilton/Avnet
3510 Spring Forest Road Raleigh 27604
(919) 878-0810

Schweber Electronics 1 North Commerce Center 5285 North Boulevard
Raleigh 27604
(919) 876-0000

\section*{Ohio}

Hall-Mark Electronics 4460 Lake Forest Drive Suite 202
Cincinnati 45242
(513) 563-5980

Hall-Mark Electronics 5821 Harper Road
Solon 44139
(216) 349-4632

Hall-Mark Electronics
6130 Sunburry Road
Suite B
Westerville 43081
(614) 891-4555

Hamilton/Avnet
4588 Emery Industrial Parkway
Cleveland 44128
(216) 831-3500

Hamilton/Avnet
945 Senate Drive
Dayton 45459
(513) 433-0610

Hamilton/Avnet
777 Brooksedge Blvd.
Westerville 43081
(614) 882-7389

Schweber Electronics
23880 Commerce Park Road
Beachwood 44122
(216) 464-2970

Schweber Electronics
7865 Paragon Road
Suite 210
Dayton 45459
(513) 439-1800

\section*{Oklahoma}

Hall-Mark Electronics 5460 S. 103 rd East Avenue Tulsa 74145
(918) 665-3200

Schweber Electronics
4815 S. Sheridan
Suite 109
Tulsa 74145
(918) 622-8000

\section*{Oregon}

Hamilton/Avnet
6024 S.W. Jean Road
Bldg. C, Suite 10
Lake Oswego 97034
(503) 635-8831

\section*{Pennsylvania}

Hamilton/Avnet
2800 Liberty Avenue
Pittsburgh 15222
(412) 281-4150

Schweber Electronics
231 Gibralter Road
Horsham 19044
(215) 441-0600

Schweber Electronics
1000 R.I.D.C. Plaza
Suite 203
Pittsburgh 15238
(412) 782-1600

\section*{Texas}

Hall-Mark Electronics(Corp.)
11333 Pagemill Drive
Dallas 75234
(214) 343-5000

Hall-Mark Electronics
12211 Technology Blvd.
Austin 78727
(512) 258-8848

Hall-Mark Electronics
10375 Brockwood Road
Dallas 75238
(214) 553-4300

Hall-Mark Electronics
8000 Westglen
Houston 77063
(713) 781-6100

Hamilton/Avnet
2401 Rutland
Austin 78758
(512) 837-8911

Hamilton/Avnet
8750 West Park
Houston 77063
(713) 780-1771

Hamilton/Avnet
2111 W. Walnut Hill Lane
Irving 75062
(214) 659-4111

Schweber Electronics
6300 La Calma Drive
Suite 240
Austin 78752
(512) 458-8253

Schweber Electronics
4202 Beltway Drive
Dallas 75234'
(214) 661-5010

Schweber Electronics
10625 Richmond Avenue
Suite 100
Houston 77042
(713) 784-3600

\section*{Utah}

Hamilton/Avnet
1585 West 21 st \(S\).
Salt Lake City 84119
(801) 972-2800

\section*{Washington}

Hamilton/Avnet
14212 N.E. 21 st Street
Bellevue 98006
(206) 453-5844

\section*{Wisconsin}

Hall-Mark Electronics
16255 West Lincoln Ave.
New Berlin 53151
(414) 797-7844

Hamilton/Avnet
2975 Moorland Road
New Berlin 53151
(414) 784-4510

Schweber Electronics
150 S. Sunnyslope Road
rookfield 53005
(414) 784-9020

\section*{International}

\section*{Australia}

VSI Electronics Pty. Ltd. Office 8
116 Melbourne Street
North Adelaide
South Australia 5006
(61) 82674848

VSI Electronics Pty. Ltd.
Suite 3, Bell Court
CNR.Water \& Brunswick Streets
Fortitude Valley
Brisbane, Queensland 4006
(61) 7525022

VSI Electronics Pty. Ltd.
Suite 3
118 Church Street
Hawthorn, Victoria 3122
(61) 38195044

VSI Electronics Pty. Ltd. Unit 1
25 Brisbane Street
East Perth, W.A. 6000
(61) 93288499

VSI Electronics Pty. Ltd.
16 Dickson Avenue
Artarmon, N.S.W. 2064
(61) 24398622

\section*{Austria}
```

Transistor V.m.b.H
Auhofstr. 41a
A-1130 Wien
(43) 222 }82945

```

\section*{Belgium}

Diode Belgium
Luchtschipstraat 2
Rue De L'Aeronef 2
B-1140 Brussels
(32) 22162100

\section*{Brazil}

Datatronix Electronica LTDA
Av. Pacaembu, 746-C11
Sao Paulo
(55) 118260111

\section*{Canada}

Hamilton/Avnet
Electronics Ltd.
6845 Rexwood Drive
Units 3, 4 \& 5
Mississauga, Ontario L4V 1R2
(416) 677-7432

Hamilton/Avnet
Electronics Ltd.
2795 Halpern Street
St. Laurent
Montreal, Quebec H4S 1P8
(514) 335-1000

Hamilton/Avnet
Electronics Ltd.
190 Colonnade Road
Nepean, Ontario K7E 7 J 5
(613) 226-1700

Hi-Tech Sales Limited (REP)
Box 115
339 10th Avenue S.E.
Calgary, Alberta T2G OW2
(403) 251-4745

Hi-Tech Sales Limited (REP)
7510B Kingsway
Burnaby, B.C. V3N 3C2
(604) 524-2131
\begin{tabular}{|c|c|}
\hline Canada (cont.) & Germany \\
\hline Hi-Tech Sales Limited (REP) & Distron GmbH \\
\hline 102-902 St. James Street & Behaimstrasse 3 \\
\hline Winnipeg, Manitoba R3G 3J7 & D-1000 Berlin 10 \\
\hline (204) 786-3343 & (49) 303421041 \\
\hline Zentronics, Ltd. & EBV Elektronik \\
\hline 8 Tilbury Court & Oberweg 6 \\
\hline Brampton, Ontario L6T 3T4 & D-8025 Unterhaching \\
\hline Zentronics, Ltd. & Ingenieurbuero Dreyer \\
\hline Bay \#1 & Flensburger Strasse 3 \\
\hline 3300 14th Avenue, N.E. & D-2380 Schleswig. \\
\hline Calgary, Alberta T2A 6J4 & (49) 462124055 \\
\hline & Jermyn GmbH \\
\hline Zentronics, Ltd. & Postfach 1180 \\
\hline 155 Colonnade Road & D-6277 Camberg \\
\hline Units 17 \& 18 & (49) 6434230 \\
\hline Nepean, Ontario K2E 7K1 (613) 226-8840 & SASCO GmbH \\
\hline & Hermann-Oberth Strasse 16 \\
\hline Zentronics, Ltd. & D-8011 Putzbrunn \\
\hline 505 Locke Street & Munich \\
\hline St. Laurent & (49) 894611-211 \\
\hline Montreal, Quebec H4T 1X7 (514) 735-5361 & (49) 894611-211 \\
\hline Zentronics, Ltd. & Hong Kong \\
\hline Unit 108 & \\
\hline 11400 Bridgeport Road & CET Ltd. (REP) \\
\hline Richmond, B.C. V6X 1 T2 & 10/F Hua Hsia Bldg. \\
\hline (604) 273-5575 & 64-66 Gloucester Road (852) 5200922 \\
\hline Zentronics, Ltd. & \\
\hline 546 Weber St. N. & \\
\hline Unit 10 - 506 & India \\
\hline Waterloo, Ontario N2L 5C6 (519) 884-5700 & India \\
\hline & Blue Star Ltd. (REP) \\
\hline Zentronics, Ltd. & Sabri Complex II Floor \\
\hline 590 Berry Street & 24 Residency Road \\
\hline Winnipeg, Manitoba R3H OS1 & Bangalore 560025 \\
\hline (204) 775-8661 & Tel: 55660 \\
\hline & Blue Star Ltd. (REP) \\
\hline Denmark & Sahas \(414 / 2\) Vir Savarkar Marg \\
\hline Denmark & 414/2 Vir Savarkar Marg Prabhadeví \\
\hline Interelko APA & Bombay 400025 \\
\hline Silovej 18 & Tel: 422-6155 \\
\hline DK-2690 Karlslunde & \\
\hline (45) 3140700 & Blue Star Ltd. (REP) \\
\hline & Bhandari House, \\
\hline & 7 th/8th Floors \\
\hline Finland & 91 Nehru Place \\
\hline Finland & New Delhi 110024 \\
\hline Field-OY & Tel: 682547 \\
\hline Veneentekijantie 18 SF-00210 Helsinki 21 & \\
\hline (358) 06922577 & Israel \\
\hline & Computation \& Measurement \\
\hline France & 11 Systems. Ltd. (REP) \\
\hline & 11. Masad Street \\
\hline Almex & P.O. Box 25089 \\
\hline Zone Industrielle d'Antony & Tel Aviv 38388 \\
\hline 48, rue de l'Aubepine & (972) 3388388 \\
\hline 92160 Antony & \\
\hline (33) 16662112 & Italy \\
\hline Feutrier & \\
\hline 8, Benoit Malon & Celdis Italiana S.p.A. \\
\hline 92150 Surensnes & Via Fratelli Gracchi, 36 \\
\hline (33) 17724646 & I-20092 Cinisello Balsamo \\
\hline & Milano \\
\hline Feutrier & (39) 26120041 \\
\hline Rue de Trois Glorieuses & \\
\hline 42270 St. Priest En Jarez & Eledra 3 S S.p.A. \\
\hline (33) 77746733 & Viale Elvezia, 18 \\
\hline & I-20154 Milano \\
\hline S.C.A.I.B. & (39) 2349751 \\
\hline 80 rue d'Arcueil & \\
\hline Zone Silic 137 & \\
\hline 94523 Rungis Cedex & \\
\hline (33) 16872313 & \\
\hline
\end{tabular}

\section*{ada (cont)}

102-902 St James Street
Winnipeg, Manitoba R3G 3J7
(204) 786-3343

Zentronics, Ltd
Brampton, Ontario L6T 3T4
(416) 451-9600

Zentronics, Ltd
Bay \#1
3300 14th Avenue, N.E.
Calgary, Alberta T2A 6 J 4
onics, Ltd
Units 17 \& 18
Nepean, Ontario K2E 7K1
(613) 226-8840
ntronics, Ltd
505 Locke Street
Laurent
Montreal, Quebec H4T 1X7

Zentronics, Ltd.
Unit 108
Ryoud
(604) 273-5575

Zentronics, Ltd.
546 Weber St. N.
Unit 10
Waterloo, Ontario N2L 5C6
519) 884-5700

Zentronics, Ltd
590 Berry Street
Winnipeg, Manitoba R3H OS 1
(204) 775-8661

\section*{Denmark}

Interelko APA
Silovej 18
DK-2690 Karlslunde
(45) 3140700

Field-OY
Veneentekijantie 18
SF-00210 Helsinki 21
(358) 06922577

\section*{France}

\section*{A1mex}
one Industrielle d'Antony
48, rue de l'Aubepine
92160 Antony

Feutrier
8, Benoit Malon
92150 Surensnes

Feutrier
Rue de Trois Glorieuses 42270 St.Priest En Jarez
S.C.A.I.B.

80 rue d'Arcueil
Zone Silic 137
94523 Rungis Cedex
(33) 16872313

\section*{Germany}
stron GmbH
mstrasse 3
(49) 303421041

EBV Elektronik
D-8025 Unterhaching
(49) 89611051

Ingenieurbuero Dreyer
Flensburger Strasse 3
462124055

Jermyn GmbH
Postfach 1180
D-6277 Cambers

SASCO GmbH
Hermann-Oberth Strasse 16
Munich
(49) 894611-211

\section*{Hong Kong}

CET Ltd. (REP)
10/F Hua Hsia Bldg.
64-66 Gloucester Road

\section*{India}

Ltd. (REP)
24 Residency Road
Bangalore 560025
Tel: 55660
Blue Star Ltd. (REP)
414/2 Vir Savarkar Marg
Prabhadevi
Bombay 400025
lue Star Ltd. (REP)
and House
91 Nehru Place
New Delhi 110024
Tel: 682547

\section*{srael}

Computation \& Measurement
(REP)
Stree
Tel Aviv
(972) 3388388

\section*{Italy}

Celdis Italiana S.p.A. Via Fratelli Gracchi, 36 I-20092 Cinisello Balsamo Milano
(39) 612004

Vial
iale Elvezia, 18
I-20154 Milano
(39) 2349751

\section*{Japan}

Ryoyo Electric Corporation
Meishin Building
1-20-19 Nishiki
Naka-Ku, Nagoya, 460
(81) 522030277

Ryoyo Electric Corporation
Taiyo Shoji Building
4-6 Nakanoshima
Kita-Ku, Osaka, 530
(81) 64481631

Ryoyo Electric Corporation
Konwa Building
12-22 Tsukiji, 1-Chome
Chuo-Ku, Tokyo
(81) 3543771

Tokyo Electron Company, Ltd.
Sinjuku-Nomura Building
Tokyo 160
(81) 33434411

\section*{Korea}

Supertek Korea Inc. (REP)
Han Hyo Building
34-2 Yoido-Dong
Youngdungpo-Ku, Seoul
(82) 2 782-9076/8

\section*{Netherlands}

Koning en Hartman
Elektrotechniek BV
Koperwerf 30
2504 AE Den Haag
(31) 70210101

\section*{New Zealand}

VSI Electronics Pty. Ltd.
123 Manukau Road, Epsom
Auckland
(64) 97686042

VSI Electronics Pty. Ltd.
Box 21-239
Christchurch
(64) 60928

VSI Electronics Pty. Ltd.
P.O. Box 11145

Wellington
(64)4848922

\section*{Norway}

HEFRO Teknisk A/S
P.O. Box 6596, Rodeloekka

N-0501 Oslo 5
(47) 2380286

\section*{Singapore}

Dynamar International Ltd. (REP)
Suite 05-11
12, Lorong Bakar Batu
Kolam Ayer Industrial Estate
Singapore 1334
(65) 747-6188

\section*{So. Africa}

Advanced Semiconductor Devices
(Pty) Ltd.
P.O. Box 2944

Johannesburg 2000, S.A.
(27) 11 802-5820


\title{
International Sales Offices and Representatives
}

\section*{Product Line Sales/Support Key}

Key Product Line
A Analytical
CM Components
C Computer Systems Sales Only
CH Computer Systems Hardware Sales and Service
CS Computer Systems Software Sales and Services
E Electronic Instruments \& Measurement Systems
M Medical Products
P Personal Computation Products
IMPORTANT: These symbols designate general product line capability. They do not insure sales or support availability for all products within a line, at all locations. Contact your local sales office for information regarding locations where HP support is available for specific products.
+ Indicates main office
HP distributors are printed in italics.

\section*{Arranged Alphabetically by country}

\section*{ANGOLA}

Telectra
Empresa Tecnica de Equipamentos
R. Barbosa Rodrigues, 41.1 DT.

Caixa Postal 6487
LUANDA
Tel: 35515,35516
E,P
ARGENTINA
Hewlett-Packard Argentina S.A.
Montaneses 2140150
1428 BUENOS AIRES
Tel: 783-4886/4836/4730
4705/4729
Cable: HEWPACKARG
A,E,CH,CS,P
Biotron
S.A.C.I.M. e.I.

Av Paso Colon 221, Piso 9
1399 BUENOS AIRES
Tel: 541.333-490 541.322.587

Telex: 17595 BIONAR
ESANCO S.R.L.
A/ASCO 2328
1416 BUENOS AIRES
Tel: 581981, 592767
Telex: c/o 9400 HPARGENTINA A

\section*{AUSTRALIA}

Adelaide, South Australia Office
Hewlett-Packard Australia Ltd.
153 Greenhill Road
PARKSIDE, S.A. 5063
Tel: 272-5911
Telex: 82536
Cable: HEWPARD Adelaide
A,CH,CS,CM,E,M,P
Brisbane, Queensland
Office
Hewlett-Packard Australia Ltd.
10 Payne Road
THE GAP, Queensland 4061
Tel: 30.4133
Telex: 42133
Cable: HEWPARD Brisbane
A,CH,CS,CM,E,M,P

Canberra, Australia
Capital Territory
Office
Hewlett-Packard Australia Ltd.
121 Wollongong Street
FYSHWICK, A.C.T. 2609
Tel: 804244
Telex: 62650
Cable: HEWPARD Canberra
C,CH,CM,CS,E,P
Melbourne, Victoria
Office
+ Hewlett•Packard Australia Ltd
\(31-41\) Joseph Street
BLACKBURN, Victoria 3130
Tel: \(895-2895\)
Telex: 31.024
Cable: HEWPARD Melbourne
A,CH,CM,CS,E,M,P
Perth, Western Australia

\section*{Office}

Hewlett-Packard Australia Ltd.
261 Stirling Highway
CLAREMONT, W.A. 6010
Tel: 383-2188
Telex: 93859
Cable: HEWPARD Perth
A,CH,CM,CS,E,M,P
Sydney, New South Wales
Office
Hewlett-Packard Australia Ltd.
17.23 Talavera Road
P.O. Box 308

NORTH RYDE, N.S.W. 2113
Tel: \(888-4444\)
Telex: 21561
Cable: HEWPARD Sydney
A,CH,CM,CS,E,M,P
AUSTRIA
Hewlett-Packard Ges.m.b.h.
Grottenhofstrasse 94
A. 8052 GRAZ

Tel: (0316) 291566
Telex: 32375
CH,E
+ Hewlett-Packard Ges.m.b.h
Lieblgasse 1
P.O. Box 72

A- 1222 VIENNA
Tel: (0222) 236511.0
Telex: 134425 HEPA A
A,CH,CM,CS,E,M,P

BAHRAIN
Green Salon
P.O. Box 557

Manama
BAHRAIN
Tel: 255503.255950
Telex: 84419
\(P\)
Wael Pharmacy
P.O. Box 648

BAHRAIN
Tel: 256123
Telex: 8550 WAEL BN
E,M

\section*{BELGIUM}

Hewlett-Packard Belgium S.A.IN.V.
Blvd de la Woluwe, 100
Blvd de la
Woluwedal
Boluwedal
B-1200 BRUSSELS
Telex: 23.494 paloben bru
A,CH,CM,CS,E,M,P
BERMUDA
Applied Computer Technologies
Atlantic House Building
Atlantic House Bu
Par-La-Ville Road
Par-La.VIlle Road
HAMILTON 5
Tel: 295.1816
Telex: 380 3589/ACT BA

BOLIVIA
Arrellano Ltda
Av. 20 de Octubre \#2125
Casilla 1383
LA PAZ
Tel: 368541
A
BRAZIL
Hewlett-Packard do Brasil l.e.C.
Ltda.
Alameda Rio Negro, 750
ALPHAVILLE
06400 Barueri SP
06400 Barueri SP
Tel.: (011) 421.131
Tel.: (011) 421.1311
Telex: (011) 33872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CS,E,M,P
Hewlett Packard do Brasil I.e C.Ltda,
Praia de Botafogo 228 .
\(6^{\circ}\) andar-conj 614
\({ }^{6}\) Edificio Argentina - Ala A
Editicio Argentina - Ala A
22250 - RIO DE JANEIRO
\(22250-R I O\) DE
RJ
Tel: (021) 552.6422
Tel: (021) 552.6422
Telex: 021 ) 21905 HPBR-BR
Cable: HEWPACK Rio de Janeiro
A,CH,CM,E,M,P
ConvexNan Den
Rua Jose Bonifacio
458 Todos Os Santos
CEP 20771
RIO DE JANEIRO, RJ
Tel: (021) 5910197
Telex: 33487 EGLB BR
Tele
ANAMED I.C.E.I. Ltda.
Rua Bage, 103
Rua Bage, 103
04012 SAO PA
Tel: 1011 SAO PAULO, \(5 P 12.2537\)
Tel: (011) 572.6537
Telex: 24740
M

\section*{CANADA}

Alberta
Hewlett-Packard (Canada) Ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta
T2A 6T7
Tel: (403) 235.3100
A,CH,CM,E,M,P

Hewlett-Packard (Canada) Ltd. 11120-178th Street EDMONTON, Alberta
T5S 1P2
Tel: (403) 486.6666
A,CH,CM,CS,E,M,P
British Columbia
Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way
RICHMOND,
British Columbia
V6X 2W7
Tel: (604) 270.2277
A,CH,CM,CS,E,M,P
Hewlett-Packard (Canada) Ltd.
121-3350 Douglas Street VICTORIA, British Columbia
V82.3L1
Tel: (604) 381.6616
CH,CS
Manitoba
Hewlett-Packard (Canada) Ltd.
1825 Inkster Blvd.
WINNIPEG, Manitoba
R2X 1 R3
Tel: (204) 694-2777
A,CH,CM,E,M,P

New Brunswick
Hewlett-Packard (Canada) Ltd.
37 Shediac Road
MONCTON, New Brunswick
E1A 2R6
Tel: (506) 855-2841
CH,CS

\section*{Nova Scotia}

Hewlett-Packard (Canada) Ltd.
900 Windmill Road
DARTMOUTH, Nova Scotia
B3B 1 L2
Tel: (902) 469-7820
CH,CM,CS,E,M,P
Ontario
Hewlett-Packard (Canada) Ltd.
3325 N. Service Rd., Unit \#3 BURLINGTON, Ontario
L7N 3G2
Tel: (416) 335.8644
CH, M
Hewlett-Packard (Canada) Ltd.
496 Days Road
KINGSTON, Ontario
K7M 5R4
Tel: (613) 384-2088
CH,CS
Hewlett-Packard (Canada) Ltd.
552 Newbold Street
LONDON, Ontario
N6E 2S5
Tel: (519) 686-9181
A,CH,CM,E,M,P
+ Hewlett-Packard (Canada) Ltd.
6877. Goreway Drive

MISSISSAUGA, Ontario
L4V 1M8
Tel: (416) 678-9430
Telex: 069.8644
A,CH,CM,CS,E,M,P

CANADA (Cont'd)
Hewlett-Packard (Canada) Ltd.
2670 Queensview Dr.
OTTAWA, Ontario
K2B 8K1
Tel: (613) 820.6483
A,CH,CM,CS,E,M,P
Hewlett-Packard (Canada) Ltd.
The Oaks Place, Unit 9
2140 Regent Street
SUDBURY, Ontario
P3E 5S8
Tel: (705) 522.0202
CH

Hewlett-Packard (Canada) Ltd.
3790 Victoria Park Avenue
WILLOWDALE, Ontario
M2H 3H7
Tel: (416) 499.2550
CH,E
Quebec
Hewlett-Packard (Canada) Ltd
17500 Trans-Canada Highway
South Service Road
KIRKLAND, Quebec
H9J \(2 \times 8\)
Tel: (514) 697.4232
Telex: 058-21521
A,CH,CM,CS,E,M,P
Hewlett-Packard (Canada) Ltd.
1150, rue Claire Fontaine QUEBEC CITY, Quebec QUEBEC
Tel: (418) 648-0726
CH, CS
Hewlett-Packard (Canada) Ltd.
\#7.130 Robin Crescent
SASKATOON, Saskatchewan
S7L 6M7
Tel: (306) 242-3702
CH,CS
CHILE
ASC Ltda.
Austria 2041
SANTIAGO
T.e: 223.5946, 223.6148

Telex: 340192 ASC CK P,C

Isical Ltda.
Av. Italia 634 Santiago
Casilla 16475
SANTIAGO 9
Tel: 222.0222
Telex: 440283 JCYCL CZ
CM, E, M
Metrolab S.A.
Monjitas 454 of. 206
SANTIAGO
Tel: 395752, 398296
Telex: 340866 METLAB CK
A
Olympia (Chile) Ltda.
Av. Rodrigo de Araya
Casilla 256.V
Casilla \(256 . V\)
SANTIAGO
Telex: 340892 OLYMP
Cable: Olympiachile Santiagochile
CHINA, People's
Republic of
China Hewlett-Packard Ltd.
P.O. Box 9610, Beijing

4th Floor, 2nd Watch Factory Main Bldg.
Shuang Yu Shu, Bei San Huan Road
Hai Dian District
BEIJING
Tel: 28.0567
Telex: 22601 CTSHP CN
Cable: 1920 Beijing
A,CH,CM,CS,E,P,M
China-Hewlett-Packard Co. Ltd.
China Resources Building, 47/F
26 Harbour Road, Wanchai
HONG KONG
Tel: \(5 \cdot 8330833\)
Telex: 76793 HEWPA HX A,C,CH,CS,E,M,P

\section*{CHINA (Cont'd)}

China Hewlett-Packard Rep. Office P.O. Box 418

1A Lane 2, Luchang St.
Beiwei Rd., Xuanwu District
BEIJING
Tel: 33.5950
Telex: 22601 CTSHP CN
Cable: 1920
A,CH,CM,CS,E,M,P
COLOMBIA
Instrumentacion
H.A. Langebaek \& Kier S.A.

Carrerra 4a, A No. 52 A 26
Apartado Aereo 6287
BOGOTA I, D.E.
Tel: 212.1466
Telex: 44400INST CO
Nefromedicas Ltda.
Cable 123 No. 98.31
Apartado Aereo 100.958
BOGOTA D.E., 10
Tel: 213.5267, 213.1615
Telex: 43415 HEGAS CO
A
Compumundo
Avenida 15 \# 107.80
BOGOTA D.E.
Tel: 214.4458
Telex: 45466 MARCO
\(P\)
Carvajal S.A.
Calle 29 Norte No. 6A-40 Apartado Aereo 46 CALI Tel: 3681111
Telex: 55650
COSTA RICA
Cientifica Costarricense S.A.
Avenida 2, Calle 5
San Pedro de Montes de Oca
Apartado 10159
SAN JOSE
Tel: 24.38-20, 24.08-19
Telex: 2367 GALGUR CR
CM, E,M

\section*{CYPRUS}

Telerexa Ltd.
P.O. Box 4809

14C Stassinos Avenue
NICOSIA
Tel: 62698
Telex: 2894 LEVIDO CY
E,M,P
DENMARK
Hewlett-Packard A/S
Datavej 52
DK-3460 BIRKEROD
Tel: (02) 81.66.40
Telex: 37409 hpas dk
A.CH,CM,CS,E,M,P

Hewlett-Packard Iceland
Hoefdabakka 9
110 Reykjavik
Tel: (1) 671000
Tel: (1) 671000
A,CH,CM,CS,E,M,P
Hewlett-Packard A/S
Rolighedsvei 32
DK-8240 RISSKOV, Aarhus
Tel: (06) 17.60.00
Telex: 37409 hpas dk
CH,E
DOMINICAN REPUBLIC

\section*{Microprog S.A.}

Juan Tomas Mejia y Cotes No. 60
Arroyo Hondo
Arroyo Hondo
SANTO 565.6268
Tel: 565.6268
Telex: 4510 ARENTA DR (RCA) \(P\)
ECUADOR
CYEDE Cia. Ltda
Avenida Eloy Alfaro 1749
y Belgica
Casilla 6423 CCI
Casilia \({ }^{\text {QuITO }}\)
Tel: \(450.975,243-052\)
Telex: 22548 CYEDE ED

Ecuador Overseas Agencies C.A.
Calle 9 de Octubre \#818
P.O. Box 1296

\section*{GUAYAQUIL}

Tel: 306022
Telex: 3361 PBCGYE ED
Hospitalar S.A.
Hospitalar S.A.
Robles 625
Casilla 3590
QUITO
Tel: \(545 \cdot 250,545 \cdot 122\)
Telex: 2485 HOSPTL ED Cable: HOSPITALAR-Quito

\section*{M}

Meditronics
Vallodolid 524 Madrid
P.O. box 9171

\section*{QUITO}

Tel: 2-238-951
Telex: 2298 ECUAME ED
EGYPT
Sakrco Enterprises
P.O. Box 259

ALEXANDRIA
Tel: 802908,808020, 805302
Telex: 54333
Egyptian International
Office for Foreign Trade
P.O. Box 2558

42 El-Zahraa Street
Dokki, CAIRO,
Tel: 712230
Telex: 93337 EGPOR UN
Cable: EGYPOR
P, \(A\)
International Engineering Associates
24 Hussein Hegazi Street
Kasr-el-Aini
Kasr-el-Aini
CAIRO,
Tel: 23829,21641
Telex: 93830 IEA UN
Cable: INTEGASSO
E
Sakrco Enterprises
P.O. Box 1133

7, El Boustani El Saidy Str.
Talaat Harb Square
CAIRO
Tel: 762612,765189, 756071
Telex: 93156
S.S.C. Medical

40 Gezerat EI Arab Street Mohandessin
CAIRO,
Tel: \(803844,805998,810263\)
Telex: 20503 SSC UN
\(M\)
EL SALVADOR
IPESA de El Salvador S.A.
29 Avenida Norte 1223
SAN SALVADOR
Tel: \(26.6858,26.6868\)
Telex: 20539 IPESA SAL
A,CH,CM,CS,E, \(P\)
FINLAND
Hewlett-Packard Oy
Piispanall
On
Piispankalliontie 17
02200 ESPOO
Tel: 00358.0.88721
Telex: 121563 HEWPA SF CH,CM,CS,P

\section*{FRANCE}

Hewlett-Packard France
Z.I. Mercure B

Rue Berthelot
F. 13763 Les Milles Cedex

AIX-EN-PROVENCE
AIX-EN-PROVEN
Tel: (42) 59.41 .02
Telex: 410770 F
A,CH,E,M,P
Hewlett-Packard France
64, rue Marchand Saillant
F. 61000 ALENCON

Tel: (33) 290442

Hewlett-Packard France
Boite Pustale 503
F- 25026 BESANCON
28 rue de la Republique
F-25000 BESANCON
Tel: (81) 83-16.22
Telex: 361157
Telex:
CH,M
Hewlett-Packard France
13, Place Napoleon III
F-29000 BREST
Tel: 198 ) 03.38.35
Hewlett-Packard France
Chemin des Mouilles
Chemin des Mouilles

Tel: (78) 833.81-25
Telex: 310617 F
A,CH,CS,E,M,
+ Hewlett-Packard France
Parc d'Activite du Bois Briard
Ave. du Lac
F. 91040 EVRY Cedex

Tel: 6077.8383
Telex: 692315F

\section*{E}

Hewlett-Packard France
5, avenue Raymond Chanas
F. 38320 EYBENS (Grenoble)

Tel: 76 62.67.98
Telex: 980124 HP GRENOB EYBE
\(\stackrel{C H}{C H}\)
Hewlett•Packard France
Centre d'Affaire Paris-Nord
Batiment Ampere 5 etage
Rue de la Commune de Paris
Boite Postale 300
F. 93153 LE BLANC MESNIL

Tel: (1) \(865 \cdot 44-52\)
Telex: 211032F
CH,CS,E,M
Hewlett-Packard France
Parc d'Activites Cadera
Quartier Jean Mermoz
Avenue du President JF Kennedy
F. 33700 MERIGNAC (Bordeaux)

Tel: (56) 34-00.84
Tel: (56) \(34.00 \cdot 8\)
Telex: 550105 F
Telex:
CH,E,M
Hewlett-Packard France
Immueble "Les 3 B"
Nouveau Chemin de la Gard
ZAC de Bois Briand
F. 44085 NANTES Cedex

Tel: (40) 50-32.22
Telex: 711085F

Hewlett-Packard France
125, rue du Faubourg Bannier
F. 45000 ORLEANS

Tel: (38) 680163
Hewlett-Packard France
Zone Industrielle de Courtaboeuf
Avenue des Tropiques
F. 91947 Les Ulis Cedex ORSAY

Tel: (6) 907-78-25
Telex: 600048F
A,CH,CM,CS,E,M,P
Hewlett-Packard France
Paris Porte-Maillot
15, Avenue de L'Amiral Bruix
F-75782 PARIS CEDEX 16
Tel: (1) 502-12-20
Telex: 613663F
Telex: 6
\(\mathrm{CH}, \mathrm{M}, \mathrm{P}\)
Hewlett-Packard France
124, Boulevard Tourasse
F. 64000 PAU

Tel: (59) 803802
Hewlett-Packard France
2 Allee de la Bourgonnette
2 Allee de la Bourgonn
F-35100 RENNES
Tel: (99) \(51-42.4\)
Telex: 740912 F
Telex: 740912F
CH,CM,E,M, P

FRANCE (Cont'd)
Hewlett-Packard France
98 Avenue de Bretagne
F. 76100 ROUEN

Tel: (35) 63.57.66
Telex: 770035F
Telex
CS
Hewlett-Packard France
4 Rue Thomas Mann
Boite Postale 56
F. 67033 STRASBOURG Cedex

Tel: (88) 26-36-46
Telex: 890141F
CH,E,M,P
Hewlett-Packard France
Le Peripole
20 Chemin du Pigeonnier de la C
piere
F. 31083 TOULOUSE Cedex

Tel: (61) 40.11.12
Telex: 531639F
A,CH,CS,E,P
Hewlett-Packard France
9, rue Baudin
F-26000 VALENCE
Tel: (75) 427616
Hewlett-Packard France
Carolor
ZAC de Bois Briand
F-57640 VIGY (Metz)
Tel: (8) 7712022
CH
Hewlett-Packard France
Immeuble Pericentre
F. 59658 VILLENEUVE D'ASCQ

Cedex
Tel: (20) 91-41.25
Telex: 160124 F
CH,E,M,P

\section*{GERMAN FEDERAL}

\section*{REPUBLIC}

Hewlett•Packard GmbH
Geschaftsstelle Berlin
Keithstrasse 2.4
1000 BERLIN 30
Tel: (030) 219904-0
Telex: 183405 hpbln
A,CH,E,M,P
+ Hewlett-Packard GmbH
Zentralbereich Marketing
Herrenberger Strasse 130
7030 BOBLINGEN
Tel: (7031) 14.0
Telex: 7265739 hep
A,CH,CM,CS,E,M,P
Hewlett-Packard GmbH
Vertriebszentrum Boblingen
Schickardstrasse 2
7030 BOBLINGEN
Postfach 1427
Tel: (7031) 645-0
Telex: 7265743 hep
Hewlett-Packard GmbH
Geschaftsstelle Dortmund
Schleefstr. 28
4600 DORTMUND 41
Tel: 10231) 45001.0
Telex: 822858 hepdod
Hewlett•Packard GmbH
Reparaturszentrum Frankfurt
Berner Strasse 117
6000 FRANKFURT am Main 60
Tel: (069) 5004-1
Telex: 413249 hpffm
A,CH,CM,CS,E,M,P
Hewlett-Packard GmbH Vertriebszentrale Deutschland
Hewlett-Packard Strasse
Postfach 1641
6380 BAD HOMBURG v.d.H.
Tel: (06172) 400-0
Telex: 410844 hpbhg
Hewlett.Packard GmbH
Vertriebszentrum Nord
Kapstadtring 5
2000 HAMBURG 60
Tel: (040) 63804.0
Telex: 2163032 hphh
A,CH,CS,E,M,P

Hewlett•Packard GmbH
Geschaftsstelle Hannover
Heidering 37.39
3000 HANNOVER 61
Tel: (0511) 5706.0
Telex: 923259 hphan
A,CH,CM,E,M,P
Hewlett-Packard GmbH
Geschaftsstelle Mannheim
Rosslauer Weg 2.4
6800 MANNHEIM 31
6800 MANNHEIM
Telex: 462105 hpmhm
A,C,E
Hewlett-Packard GmbH
Geschaftsstelle Neu Ulm
Messerschmittstrasse 7
7910 NEU ULM
Tel: (0731) 7073.0
Telex: 712816 hpulm
A,C,E
Hewlett-Packard GmbH
Geschaftsstelle Nurnberg
Emmericher Strasse 13
8500 NURNBERG 10
Tel: (0911) 5205.0
Telex: 623860 hpnbg
CH,CM,E,M,P
Hewlett-Packard GmbH
Vertriebszentrum Ratingen
Berliner Strasse 111
4030 RATINGEN 4
Postfach 3112
Tel: (02102) 494.0
Telex: 589070 hprad
Hewlett-Packard GmbH
Vertriebszentrum Munchen
Eschenstrasse 5
8028 TAUFKIRCHEN
Tel: (089) 61207.0
Telex: 524985 hpmch
A,CH,CM, E,M,P
Hewlett-Packard HmbH
Geschaftsstelle Karlsruhe
Ermlisallee
7517 WALDBRONN 2
Postfach 1251
Tel: (07243) 602.0
Telex: 782838 hepk

\section*{GREAT BRITAIN}

\section*{(See United Kingdom)}

\section*{GREECE}

Hewlett-Packard Hellas
178, Kifissias Avenue
6th Floor
Halandri-ATHENS
Greece
Tel: 6471673, 6471543, 6472971
A,CM,E,M,P
Kostas Karaynnis S.A.
8 Omirou Street
ATHENS 133
Tel: 3230303,3237371
Telex: 215962 RKAR GR
A,CH,CM,CS,E,M, P
PLAISIO S.A.
Eliopoulos Brothers Ltd.
11854 ATHENS
Tel: 34.51.911
Telex: 216286
\(p\)

\section*{GUATEMALA}

IPESA
Avenida Reforma 3.48, Zona 9
GUATEMALA CITY
Tel: 316827, 314786
Telex: 4192 TELTRO GU
A,CH,CM,CS,E,M,P

\section*{HONG KONG}
+ Hewlett-Packard Hong Kong, Ltd.
G.P.O. Box 795

5th Floor, Sun Hung Kai Centre 30 Harbour Road, HONG KONG
Tel: 5-8323211
Telex: 66678 HEWPA HX Cable: HEWPACK HONG KONG E,CH,CS, P

CET Ltd
10th Floor, Hua Hsia, Bldg.
64.66 Gloucester Road

HONG KONG
Tel: (5) 200922
Telex: 85148 CET HX
CM
Schmidt \& Co. (Hong Kongl Ltd.
18th Floor, Great Eagle Centre
23 Harbour Road, Wanchai
HONG KONG
Tel: 5.8330222
Telex: 74766 SCHMC. \(H X\) A, M
ICELAND
Elding Trading Company Inc.
Hafnarnvoli:-Tryggvagotu
P.O. Box 895

IS-REYKJAVIK
Tel: 1.58.20, 1.63.03

\section*{M}

\section*{INDIA}

Blue Star Ltd.
Sabri Complex 2nd Floor, 24 Residency
Rd.
BANGALORE 560025
Tel: 55660, 578881
Telex: 0845.430
Cable: BLUESTAR
A,CM, \(E\)
Blue Star Ltd.
Band Box House, Prabhadevi
BOMBAY 400025
Tel: 49331014933222
Telex: 011.71051
Cable: BLUESTAR
A, M
Blue Star Ltd.
Sahas, 414/2 Vir Savarkar Marg
Prabhadevi
BOMBAY 400025
Tel: 422.6155, 422.6556
Telex: 011.71193 BSSS IN
Cable: FROSTBLUE
A,CM,E,M
Blue Star Ltd.
Kalyan, 19 Vishwas Colony
Alkapuri, BARODA, 390005
Tel: 65235
Cable: BLUE STAR
A
Blue Star Ltd.
7 Hare Street
CALCUTTA 700001
Tel: 230131, 230132
Telex: 021-7655
Cable: BLUESTAR
A, M
Blue Star Ltd.
133 Kodambakkam High Road
MADRAS 600034
Tel: 472056, 470238
Telex: 041.379
Cable: BLUESTAR
A, M
Blue Star Ltd.
13. Community Center

New Friends Colony
NEW DEL.HI 110065
Tel: 633773
Tel: 633773
Telex: 031.61120
Cable: BLUEFROST
A,CM,E,M.
Blue Star Ltd.
15/16 C Wellesley Rd.
PUNE 411011
Tel: 22775
Cable: BLUE STAR
Blue Star Ltd.
2.2.47/1108 Bolarum Rd.

SECUNDERABAD 500003
Tel: 72057
Telex: 0155.645
Cable: BLUESTAR
Telex: 0155.645
Cable: BLUESTAR
A, \(E\)
Blue Star Ltd.
T.C. 7/603 Poornima, Maruthankuzhi

TRIVANDRUM 695013
Tel: 65799
Telex: 0884.259
Cable: BLUESTAR

INDONESIA
BERCA Indonesia P.I.
P.O. Box 496/Jkt.

Jl. Abdul Muis 62, JAKARTA
Tel: 21-373009
Telex: 46748 BERSAL IA
Telex: 46748 BERSAL IA
Cable: BERSAL JAKARTA
Cable
\(P\)
BERCA Indonesia P.T.
P.O. Box 2497/Jkt.

Antara Bldg., 12th Floor
JI. Medan Merdeka Selatan 17
JAKARTA-PUSAT
Tel: 340417,341445
Telex: 46748 BERSAL IA
\(A, C S, E, M\)
BERCA Indonesia P.T.
JI. Kutai no. 24, SURABAYA
Tel: 1031) 67118
Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
\(A, E, M, P\)

\section*{IRAO}

Hewlett-Packard Trading S.A.
Service Operation
Al Mansoor City 9B/3/7
BAGHDAD
Tel: 551.49.73
Telex: 212.455 HEPAIRAQ IK
CH,CS

\section*{IRELAND}

Hewlett-Packard lreland Ltd.
82183 Lower Lesson Street
dublin 2
Tel: 0001608800
Telex: 30439
CH,CS,E,P
Cardiac Services Ltd.
Kilmore Road
Artane
DUBLIN 5
Tel: (01) 351820
Telex: 30439

\section*{M}

ISRAEL
Eldan Electronic Instrument Lto.
P.O. Box 1270

JERUSALEM 91000
16, Dhaliav St.
JERUSALEM 94467
Tel: 533 221, 553242
Tel: 533 221, 553242
Telex: 25231 AB/PAKRD IL
A, M
Computation and Measurement
Systems (CMS) Ltd.
11 Masad Street
67060 TEL-AVIV
Tel: 388388
Telex: 33569 Motil IL
CM,CH,CS,E,P

\section*{ITALY}

Hewlett-Packard Italiana S.p.A.
Traversa 99C
Via Giulio Petroni, 19
1.70124 BARI

Tel: (080) 41.07-44
\(\mathrm{CH}, \mathrm{M}\),
Hewlett-Packard Italiana S.p.A.
Via Martin Luther King, 38/III
I. 40132 BOLOGNA

Tel: (051) 402394
Telex: 511630
CH,CS,E,M
Hewlett-Packard Italiana S.p.A.
Via Principe Nicola 43G/C
I. 95126 CATANIA

Tel: (095) 37-10.87
Telex: 970291
CH
Hewlett-Packard Italiana S.p.A.
Via G. Di Vittorio 9
I-20063 CERNUSCO SUL
NAVIGLIO
(Milano)
Tel: (02) 923691
Telex: 334632
A,CH,CM,CS,E,M,P

ITALY (Cont'd)
Hewlett.Packard Italiana S.p.A.
Via C. Colombo 49
1.20090 TREZZANO SUL

NAVIGLIO
(Milano)
Tel: (02) 4459041
Telex: 322116
CH,CS
Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco a
Capodimonte, 62/A
1.80131 NAPOLI

Tel: (081) 7413544
Telex: 710698
CH,CS,E,M
Hewlett-Packard Italiana S.p.A.
Viale G. Modugno 33
\(1 \cdot 16156\) GENOVA PEGLI
Tel: (010) 68.37.07
Telex: 215238
E,C
Hewlett-Packard Italiana S.p.A.
Via Pelizzo 15
1.35128 PADOVA

Tel: (049) 664888
Telex: 430315
A,CH,CS,E,M,
Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340
1.00144 ROMA EUR

Tel: (06) 54831
Telex: 610514
A,CH,CS,E,M,P
Hewlett-Packard Italiana S.p.A.
Via di Casellina 571C
I.50018 SCANDICCI-FIRENZE

Tel: (055) 753863
CH,E,M,
Hewlett-Packard Italiana S.p.A.
Corso Svizzera, 185
l.10144 TORINO

Tel: (011) 744044
Telex: 221079
A,CS,CH,E
JAPAN
Yokogawa-Hewlett.Packard Ltd.
152-1, Onna
ATSUGI, Kanagawa, 243
Tel: (0462) 25.0031
CM,C,E
Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei Bldg. 6F
Meil Hon Chiba-Cho
3-1 Hon Chiba-Ch
CHIBA, 280
CHIBA, 280
Tel: (0472) 257701
E,CH,CS
Yokogawa-Hewlett.Packard Ltd. Yasuda-Seimei Hiroshima Bldg. 6-11, Hon-dori, Naka-ku
HIROSHIMA, 730
Tel: (082) 241.0611
Yokogawa-Hewlett-Packard Ltd.
Towa Building
2-3, Kaigan-dori, 2 Chome Chuo-ku
KOBE, 650
Tel: (078) 392.4791
C,E
Yokogawa-Hewlett-Packard Ltd.
Kumagaya Asahi 82 Bldg.
3.4 Tsukuba

KUMAGAYA, Saitama 360
Tel: (0485) 24.6563
CH,CM, E
Yokogawa-Hewlett-Packard Ltd. Asahi Shinbun Daiichi Seimei Bldg.
4.7. Hanabata-cho

KU'МАМОТО, 860
Tel: (0963) 54.7311
CH, E
Yokogawa-Hewlett-Packard Ltd.
Shin-Kyoto Center Bldg.
614, Higashi-Shiokoji.cho
Karasuma-Nishiru
Shiokoji-dori, Shimogyo-ku
KYOTO, 600
Tel: 075-343-0921
CH,E
Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Bldg.
4.73, Sanno-maru, 1 Chome

MITO, Ibaraki 310
Tel: (0292) 25.7470
CH,CM,E

Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei Kokubun Bldg. 7.8 Kokubun, 1 Chome, Sendai
KiYubil, 980
Tel: (0222) 25.1011
C,E
Yokogawa-Hewlett-Packard Ltd.
Nagoya Kokusai Center Bldg.
47.1 Nagono 1 Chome

Nakamura-ku
NAGOYA, 450
Tel: (052) 571-5171
CH,CM,CS,E,M
Yokogawa-Hewlett-Packard Ltd. Chuo Bldg.
\(4 \cdot 20\) Nishinakajima, 5 Chome
Yodogawa-ku
OSAKA, 532
Tel: (06) 304.602
Telex: YHPOSA 523.3624
A,CH,CM,CS,E,M,P
Yokogawa-Hewlett-Packard Ltd.
27-15, Yabe, 1 Chome
SAGAMIHARA Kanagawa, 229
Tel: 042759.1311
Yokogawa-Hewlett-Packard Ltd.
Daiichi Seimei Bldg.
7-1, Nishi Shinjuku, 2 Chome
Shinjuku-ku, TOKYO 160
Tel: 03-348-4611
CH,E,M
Yokogawa Hewlett.Packard Ltd. 9.1, Takakura-cho Hachioji-shi, TOKYO, 192 Tel: 0426-42-1261 CH,E
+ Yokogawa-Hewlett•Packard Ltd. 29.21 Takaido-Higashi, 3 Chome Suginami-ku TOKYO 168
Tel: (03) 331.6111
Telex: 232-2024 YHPTOK A,CH,CM,CS,E,P

Yokogawa-Hewlett-Packard Ltd. Meiji-Seimei Utsunomiya Oodori Bldg. 1.5 Oodori, 2 Chome UTSUNOMIYA, Tochigi 320 Tel: (0286) 34-1175 CH,CS,E
Yokogawa-Hewlett-Packard Ltd.
Yasuda Seimei Nishiguchi Bldg.
\(30-4\) Tsuruya-cho, 3 Chome
YOKOHAMA 221
Tel: (045) 312-1252 CH,CM,E

\section*{JORDAN}

Scientific and Medical Supplies Co.
P.O. Box 1387

AMMAN
Tel: 24907, 39907
Telex: 21456 SABCO Jo
CH,E,M, P
KENYA
ADCOM Ltd., Inc., Kenya
P.O. Box 30070

NAIROBI
Tel: 331955
Telex: 22639
E,M

\section*{KOREA}

Samsung Hewlett-Packard Co. Ltd.
Dongband Yeoeuido Bldg.
12.16th Floors
36.1 Yeoeuido.Dong

Youngdeungpo-ku
SEOUL
Tel: 784.4666, 784.2666
Telex: 25166 SAMSAN K
A,CH,CM,CS,E,M,P
Dongbang Healthcare Products Co. Ltd.
Suite 301 Medical Supply Center
Bldg. 1.31 Dongsungdong
Jong Ro.gu, SEOUL
Tel: 764.1171
Telex: К25706 TKBKO
Cable: TKBEEPKO
M
Young-in Scientific Co. Ltd.
Younguha Bldg.
547 Shinsa.Dong
Kangnam-Ku, SEOUL
Tel: 546 -7771
Telex: K23457 GINSCO

KUWAIT
AI Khaldiya Trading
\& Contracting
P.O. Box 83

SAFAT
Tel: 424910,411726
Telex: 22481 AREEG KT
Cable: VISCOUNT
E,M,A
Photo \& Cine Equipment
P.O. Box 270

SAFAT
Tel: 2445111
Telex: 22247 MATIN KT Cable: MATIN KUWAIT
\(P\)
W.J. Towell Computer Services
P.O. Box 5897

SAFAT
Tel: 2462640/1
Telex: 30336 TOWELL KT
c
LEBANON
Computer Information Systems
P.O. Box 11.6274

BEIRUT
Tel: 894073
Telex: 42309
C, E,M,P

\section*{LUXEMBOURG}

Hewlett-Packard Belgium S.A.IN.V.
Blvd. de la Woluwe, 100
Woluwedal
B. 1200 BRUSSELS

Tel: (02) 762.32.00
Telex: 23.494 paloben bru
A,CH,CM,CS,E,M,P

\section*{MALAYSIA}

Hewlett-Packard Sales (Malaysia) Sdn.Bhd.
9th Floor, Chung Khiaw Bank Building
46 Jln Raja Laut
KUALA LUMPUR
Tel: 986555
Telex: HPSM MA 31011
A,CH,E,M,P
Protel Engineering
P.O. Box 1917

Lot 6624, Section 64
23/4 Pending Road
Kuching, SARAWAK
Tel: 36299
Telex: MA 70904 PROMAL
Cable: PROTELENG
A,E,M
MALTA
Philip Toledo Ltd.
P.O. Box LL

Notabile Rd.
MRIEHEL
Tel: 447 47, 45566,491525
Telex: Media MW 649
E, P,M

\section*{MEXICO}
+ Hewlett-Packard de Mexico, S.A.
de C.V.
Av. Periferico Sur No. 650
Tepepan, Xochimilco
16020 MEXICO D.F.
Tel: 6.76.46-00
Telex: 17.74 .507 HEWPACK MEX
Telex: 17.74 .507
Hewlett-Packard de Mexico, S.A.
de C.V.
Czda.del Valle
409 Ote. - 4th Piso
Colonia del Valle
Municipio de Garza Garcia Nuevo Ieon
66220 MONTERREY
Tel: 784241
Telex: 038410
CH
Hewlett-Packard de Mexico, S.A.
Francisco J. Allen \#30
Colonia Nueva
Los Angeles 27140
COAHUILA, Torreon
Tel: 37220
Microcomputadoras Hewlett-Packard S.A.
Monte 115 Pelvoux de C.V.
Mexico, D.F. LOS LOMAS
Tel: 520.9127

Equipos Cientificos de Occidente,
S.A.

Av. Lazaro Cardenas 3540
GUADALAJARA
Tel: 21-66.91
Telex: 0684186 ECOME
A
Infograficas y Sistemas del
Noreste, S.A.
Rio Orinoco \#171 Oriente
Despacho 2001
Colonia Del Valle
MONTERREY
Tel: 782499, 781259
\(A, E\)
Hewlett-Packard de Mexico (Polanco)
Avenida Ejercito Nacional \#579
2do y 3er Piso
COLONIA GRANADA 11520
Mexico, D.F.
Tel: 211-3683

\section*{MOROCCO}

Dolbeau
81 rue Karatchi
CASABLANCA
Tel: 3041-82, 3068.38
Telex: 23051, 22822
E
Gerep
2 rue d'Agadir
Boite Postale 156
CASABLANCA
Tel: 272093, 272095
Telex: 23739
\(P\)
Sema-Maroc
Rue Lapebie
CASABLANCA
Tel: 26.09.80
CH,CS, \(P\)
+ NETHERLANDS
Hewlett-Packard Nederland B.V.
Startbaan 16
1187 XR Amstelveen
P.O. Box 667

NL-1180 AR AMSTELVEEN
Tel: (20) 5476911
Telex: 13216 hepa nl
A,CH,CM,CS,E,P
Hewlett-Packard Nederland B.V.
Bongerd 2
NL 2906VK CAPELLE A/D IJSSEL
P.O. Box 41

NL. 2900AA CAPELLE A/D IJSSEL.
Tel: (10) 51-64-44
Telex: 21261 HEPAC NL.
A,CH,CS,E
Hewlett-Packard Nederland B.V.
Pastoor Petersstraat 134-136
NL 5612 LV EINDHOVEN
P.O. Box 2342

NL 5600 CH EINDHOVEN
Tel: (040) 326911
Telex: 51484 hepae nl
NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
5 Owens Road
P.O. Box 26-189

Epsom, AUCKLAND
Epsom, AUCK
Tel: 687.159
Tel: 687.159
Cable: HEWPAK Auckland
CH,CS,CM,E,P
+ Hewlett-Packard (N.Z.) Ltd.
4-12 Cruickshank Street
Kilbirnie, WELLINGTON 3
P.O. Box 9443

Courtenay Place, WELLINGTON 3
Tel: 877.199
Cable: HEWPACK Wellington
CH,CS,CM,E,P
Northrop Instruments \& Systems
369 Khyber Pass Road
P.O. Box 8602

AUCKLAND
Tel: 794.091
Telex: 60605
A, M
\(\square\)

NEW ZEALAND (Cont'd)
Northrop Instruments \& Systems
Ltd.
110 Mandeville St.
P.O. Box 8388

CHRISTCHURCH
Tel: 488.873
Telex: 4203
A, M
Northrop Instruments \& Systems
Ltd.
Sturdee House
85.87 Ghuznee Street
P.O. Box 2406

WELLINGTON
Tel: 850.091
Telex: NZ 3380
A, M

\section*{NORWAY}

Hewlett-Packard Norge A/S
Folke Bernadottes vei 50
P.O. Box 3558

N-5033 FYLLINGSDALEN (Bergen)
Tel: 0047/5/16 5540
Telex: 76621 hpnas n CH,CS,E,M
+ Hewlett-Packard Norge A/S
Osterndalen 16.18
P.O. Box 34

N- 1345 OSTERAS
Tel: 0047/2/17 1180
Telex: 76621 hpnas \(n\)
A,CH,CM,CS,E,M,P
OMAN
Khimjil Ramdas
P.O. Box 19

MUSCAT
Tel: 722225, 745601
Telex: 5289 BROKER MB MUSCAT
\(P\)
Suhail \& Saud Bahwan
P.O. Box 169

MUSCAT
Tel: 734201.3
Telex: 5274 BAHWAN MB'
E
Imtac LLC
P.O. Box 8676

MUTRAH
Tel: 601695
Telex: 5741 Tawoos On
A,C,M
-PAKISTAN
Mushko \& Company Ltd.
House No. 16, Street No. 16
Sector F.6/3
ISLAMABAD
Tel: 824545
Telex: 54001 MUSKI PK
Cable: FEMUS Islamabad

\section*{\(A, E, P\)}

Mushko \& Company Ltd.
Oosman Chambers
Abdullah Haroon Road
KARACHI 0302
Tel: 524131, 524132
Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
\(A, E, P\)

\section*{PANAMA}

Electronico Balboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929

\section*{PANAMA 5}

Tel: 642700
Telex: 3483 ELECTRON PG
\(A, C M, E, M, P\)

PERU
Cia Electro Medica S.A.
los Flamencos 145, San Isidro
Casilla 1030
LIMA 1
Tel: 41-4325, 41.37015
Telex: Pub. Booth 25306 PEC PISIDR CM,E,M,P
SAMS S.A.
Avenida Republica de Panama 3534
SAN ISIDRO, Lima
Tel: 419928/417108
Telex: 20450 PE LIBERTAD

\section*{PHILIPPINES}

The Online Advanced Systems
Corporation
2/F Electra House
Esteban Street
Legaspi Village
Makati
Metro MANILA
Tel: \(815 \cdot 38-11\) (up to 161
Telex: 63274 Online PN
A,CH,CS, E,M,P

\section*{PORTUGAL}

Mundinter
Intercambio Mundial de Comercio S.A.R.L.
P.O. Box 2761

Av. Antonio Augusto de Aguiar 138 P.LISBON

Tel: (19) 53.21-31, 53.21.37
Telex: 16691 munter p
M
Soquimica
Av. da Liberdade, 220.2
1298 LISBON Codex
Tel: 5621 81/2/3
Telex: 13316 SABASA
\(P\)
Telectra-Empresa Tecnica de
Equipmentos Electricos S.A.R.L.
Rua Rodrigo da Fonseca 103
P.O. Box 2531
P.LISBON 1

Tel: (19) 68-60.72
Telex: 12598
CM,E
Rarcentro Ltda
R. Costa Cabral 575

4200 PORTO
Tel: 499174/495173
Telex: 26054
CH,CS
QATAR
Computer Arabia
P.O. Box 2750

DOHA
Tel: 428555
Telex: 4806 CHPARB

\section*{\(P\)}

Nasser Trading \& Contracting
P.O. Box 1563

DOHA
Tel: 422170
Telex: 4439 NASSER DH M

SAUDI ARABIA
Modern Electronic Establishment
Hewlett-Packard Division
P.O. Box 281

Thuobah
AL-KHOBAR
Tel: \(895.1760,895.1764\)
Telex: 671106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR CH,CS,E,M

Modern Electronic Establishment
Hewlett-Packard Division
P.O. Box 1228

Redec Plaza, 6th Floor

\section*{JEDDAH}

Tel: 6449628
Telex: 402712 FARNAS SJ
Cable: ELECTA JEDDAH
A,CH,CS,CM,E,M,P
- Modern Electronic Establishment

Hewlett-Packard Division
P.O. Box 22015

RIYADH
Tel: 491.97 15, 491.6387
Telex: 202049 MEERYD SJ
CH,CS,E,M
Abdul Ghani EI Ajou
P.O. Box 78

RIYADH
Tel: 4041717
Telex: 200932 EL AJOU
\(P\)
SCOTLAND
See United Kingdom
SINGAPORE
Hewlett•Packard Singapore (Sales)
Pte. Ltd.
\#08.00 Inchcape House
450.2 Alexandra Road
P.O. Box 58 Alexandra Rd. Post

Office
SINGAPORE, 9115
Tel: 4731788
Telex: HPSGSO RS 34209
Cable: HEWPACK, Singapore
A,CH,CS,E,M,P
Dynamar International Ltd.
Unit 05.11 Block 6
Kolam Ayer Industrial Estate
SINGAPORE 1334
Tel: 747.6188
Telex: RS 26283

\section*{CM}

\section*{SOUTH AFRICA}

Hewlett•Packard So Africa (Pty.)
Ltd.
P.O. Box 120

Howard Place CAPE PROVINCE
7430
Pine Park Center, Forest Drive,
Pinelands
CAPE PROVINCE 7405
Tel: 53.7954
Telex: 57.20006
A,CH,CM,E,M,P
Hewlett-Packard So Africa (Pty.)

\section*{Ltd.}
P.O. Box 37099

Overport Drive 92
DURBAN 4067
Tel: \(28-4178\)
Telex: 6-22954
CH,CM
Hewlett-Packard So Africa (Pty.)
Ltd.
6 LInton Arcade
511 Cape Road
Linton Grange
PORT ELIZABETH 6001
Tel: 041-301201
CH
Hewlett-Packard So Africa (Pty.)
Ltd.
Fountain Center
Kalkden Str.
Monument Park
Ext 2
PRETORIA 0105
Tel: 45-5723
Telex: 32163
Telex:
CH,E

Hewlett-Packard So Africa (Pty.) Ltd.
Private Bag Wendywood
SANDTON 2144
Tel: 802.5111, 802.5125
Telex: 4.20877
Cable: HEWPACK Johannesburg
A,CH,CM,CS,E,M,P

\section*{SPAIN}

Hewlett-Packard Espanola S.A.
Calle Entenza, 321
E-BARCELONA 29
Tel: 322.24.51, 321.73.54
Telex: 52603 hpbee
A,CH,CS,E,M,P
Hewlett-Packard Espanola S.A.
Calle San Vicente S/No
Edificio Albia II • 7B
E-BILBAO 1
Tel: 423.83.06
A,CH,E,M
+ Hewlett•Packard Espanola S.A.
Crta. de la Coruna, Km. 16, 400
Las Rozas
E-MADRID
Tel: (1) 637.00 .11
Telex: 23515 HPE
CH,CS,M
Hewlett-Packard Espanola S.A.
Avda. S. Francisco Javier, S/no
Planta 10. Edificio Sevilla 2,
E.SEVILLA 5

Tel: 66.44 .54
Telex: 72933
A,CS,M,P
Hewlett-Packard Espanola S.A.
C/lsabel La Catolica, 8
E. 46004 VALENCIA

Tel: 0034/6/351 5944
CH, P

\section*{SWEDEN}

Hewlett-Packard Sverige AB
Ostra Tullgatan 3
S-21128 MALMO
Tel: (040) 70270
Telex: (854) 17886 (via Spanga office)
Hewlett-Packard Sverige AB
Vastra Vintergatan 9
S. 70344 OREBRO

Tel: (19) 10.48.80
Telex: (854) 17886 (via Spanga office)
CH
Hewlett-Packard Sverige AB
Skalholtsgatan 9, Kista
Box 19
S. 16393 SPANGA

Tel: (08) 750 -2000
Telex: (854) 17886
Telefax: (08) 7527781
A,CH,CM,CS,E,M,P
Hewlett-Packard Sverige AB
Frotallsgatan 30
S-42132 VASTRA FROLUNDA
(near Gothenburg)
Tel: (31) 490950
Telex: (854) 17886 (via Spanga office)
A,CH,CM,CS,E,M,P

SWEDEN (Cont'd)
Hewlett:Packard Sverige AB
Frotallisgatan 30
S. 42132 VASTRA-FROLUNDA

Tel: (031) 49.09.50
Telex: (854) 17886 (via Spanga office) CH,CS,P,E

\section*{SWITZERLAND}

Hewlett:Packard (Schweiz) AG
Clarastrasse 12
CH. 4057 BASEL
Tel: (61) \(33 \cdot 59 \cdot 20\)
A
Hewlett-Packard (Suisse) SA
7, rue du Bois dublan
Case Postale 365
CH. 1217 MEYRIN 2
Tel: (0041) 22-83-11-11
Telex: 23984 HPAG CH
CH,CM,CS
+ Hewlett-Packard (Schweiz) AG
Allmend 2
CH-8967 WIDEN
Tel: (004:1) 57312111
Telex: 53933 hpag ch
Cable: HPAG CH
A,CH,CM,CS,E,M,P

\section*{SYRIA}

General Electronic Inc.
Nuri Basha Ahnaf Ebn Kays Street
P.O. Box 5781

DAMASCUS
Tel: 33-24.87
Telex: 411215
Cable: ELECTROBOR DAMASCUS
E
Middle East Electronics
P.O. Box 2308

Abu Rumnaneh
DAMASCUS
Tel: 33.45.92
Telex: 411304
M
TAIWAN
Hewlett-Packard Taiwan
Kaohsiung Office
11/F 456, Chung Hsiao 1st Road
KAOHSIUNG
Tel: (07) 2412318
CH,CS,E
+ Hewlett-Packard Taiwan
8th Floor Hewlett-Packard Building 337 Fu Hsing North Road
TAIPEI
Tel: (02) 712.0404
Telex: 24439 HEWPACK
Cable: HEWPACK Taipei
A,CH,CM,CS,E,M,P
Ing Lih Trading Co.
3rd Floor, 7 Jen-Ai Road, Sec. 2
TAIPEI 100
Tel: (102) 3948191
Cable: INGLIH TAIPEI
A
THAILAND
Unimesa Co. Ltd.
30 Patpong Ave., Suriwong
BANGKOK 5
Tel: 235.5727
Telex: 84439 Simonco \(T H\)
Cable: UNIMESA Bangkok
A,CH,CS,E,M

\section*{TOGO}

Societe Africaine De
Promotion
B.P. 12271

LOME
Tel: 21.62 .88
Telex: 5304

TRINIDAD \& TOBAGO
Caribbean Telecoms Ltd.
Corner McAllister Street \&
Eastern Main Road, Laventille
P.O. Box 732

PORT-OF-SPAIN
Tel: 624.4213
Telex: 22561 Cartel WG
Cable: CARTEL, PORT OF SPAIN
CM,E,M,P,A
Computer and Controls Ltd.
P.O. Box 51

66 Independence Square
PORT-OF-SPAIN
Tel: 623.4472
Telex: 3000 POSTLX WG, ACCT 10060 AGENCY 1264

\section*{\(P, A\)}

\section*{TUNISIA}

Tunisie Electronique
31 Avenue de la Liberte
TUNIS
Tel: 280.144
CH,CS, E, P
Corema
1 ter. Av. de Carthage
TUNIS
Tel: 253.821
Telex: 12319 CABAM TN
M

\section*{TURKEY}
E.M.A.

Mediha Eldem Sokak No. 41/6
Yenisehir
ANKARA
Tel: 319175
Telex: 42321 KTX TR
Cable: EMATRADE ANKARA
M
Kurt \& Kurt A.S.
Mithatpasa Caddesi No. 75
Kat 4 Kizilay
ANKARA
Tel: 318875/6/7/8
Telex: 42490 MESR TR
A
Saniva Bilgisayar Sistemleri A.S.
Buyukdere Caddesi 103/6
Gayrettepe
ISTANBUL
Tel: 1673180
Telex: 26345 SANI TR
C, \(P\)
Teknim Company Ltd.
Iran Caddesi No. 7
Kavaklidere
ANKARA
Tel: 275800
Telex: 42155 TKNM TR
E,CM
UNITED ARAB

\section*{EMIRATES}
+ Emitac Ltd.
P.O. Box 1641

SHARJAH,
Tel: 591181,
Telex: 68136 EMITAC EM
Cable: EMITAC SHARJAH
\(E, C, M, P, A\)
Emitac Ltd.
P.O. Box 2711

ABU DHABI,
Tel: 820419-20
Cable: EMITACH ABUDHABI
Emitac Ltd.
P.O. Box 8391

DUBAI,
Tel: 377591
Emitac Ltd.
P.O. Box 473

RAS AL KHAIMAH,
Tel: 28133, 21270

UNITED KINGDOM
GREAT BRITAIN
Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM
Cheshire WA14 INU
Tel: 0619286422
Telex: 668068
A,CH,CS, E,M,P
+ Hewlett-Packard Ltd.
Miller House
The Ring, BRACKNELL
Berks RG12 1XN
Tel: (0344) 424898
Telex: 848733
C,M,P
Hewlett-Packard Ltd.
Elstree House, Elstree Way
BOREHAMWOOD, Herts WDG ISG
Tel: 012075000
Telex: 8952716
E,CH,CS
Hewlett-Packard Ltd.
Oakfield House, Dakfield Grove
Clifton BRISTOL, Avon BS8 2BN
Tel: 0272736806
Telex: 444302
CH,CS,E
Hewlett-Packard Ltd.
Bridewell House
Bridewell Place
LONDON EC4V 6BS
Tel: 015836565
Telex: 298163
CH,CS,P
Hewlett-Packard Ltd.
Harman House
1 George Street
Uxbridge,
MIDDLESEX, UB8 1 YH
Tel: 089572020
Telex: 893134/5
E,CH,CM,M
Hewlett-Packard Ltd.
Pontefract Road
NORMANTON, West Yorkshire

\section*{WF6 1RN}

Tel: 0924895566
Telex: 557355
\(\mathrm{CH}, \mathrm{CS}\)
Hewlett-Packard Ltd.
The Quadrangle
106.118 Station Road

REDHILL, Surrey RH1 1PS
Tel: 073768655
Telex: 947234
CH,CS,E,
Hewlett•Packard Ltd.
Avon House
435 Stratford Road
Shirley, SOLIHULL, West Midlands B90 4BL
Tel: 0217458800
Telex: 339105
CH,CS
Hewlett-Packard Ltd.
West End House
41 High Street, West End
SOUTHAMPTON
Hampshire S03 300
Tel: (0703) 476767
Telex: 477138
CH,CS
Hewlett-Packard Ltd.
King Street Lane
Winnersh, WOKINGHAM
Berkshire RG11 5AR
Tel: 0734784774
Telex: 847178
CH,CS,E,

Hewlett-Packard Ltd.,
Customer Support Centre
Customer Support Centre
Eskdale Road,
Winnersh, WOKINGHAM
Berkshire, RG115D2
Tel: (0734) 696622
Telex: 848884
A
SCOTLAND
Hewlett-Packard Lid.
15 Carden Place,
ABERDEEN
AB1 IUR
Tel: 0224638042
E,CH
Hewlett-Packard Ltd.
SOUTH QUEENSFERRY
West Lothian, EH30 9TG
Tel: 0313311188
Telex: 72682/3
A,CH,CM,CS,E,M,P
URUGUAY
Pablo Ferrando S.A.C. e I.
Avenida Italia 2877
Casilla de Correo 370
MONTEVIDEO
Tel: 80.2586
Telex: Public Booth 901
A,CM,E,M
Olympia de Uruguay S.A.
Maquines de Oficina
Avda. del Libertador 1997
Casilla de Correos 6644
MONTEVIDEO
Tel: 91-1809, 98.3807
Telex: 6342 OROU UY
P

\section*{VENEZUELA}

Hewlett-Packard de Venezuela C.A.
3A Transversal Los Ruices Norte
Edificio Segre 2 \& 3
CARACAS 1071
Tel: 239.4133
Telex: 251046 HEWPACK
A,CH,CS,E,M,P
Hewlett-Packard de Venezuela, C.A.
Centro Ciudad Comercial Tamanaco
Nivel C-2 (Nueva Etapa)
Local 53H05
CHUAO, Caracas
Tel: 928291
P
Hewlett-Packard de Venezuela C.A.
Residencias Tia Betty Local 1
Avenida 3 y con Calle 75
MARACAIBO, Estado Zulia
Apartado 2646
Tel: (061) \(75801.75805 \cdot 75806\).
80304
Telex: 62464 HPMAR
C,E
Hewlett-Packard de Venezuela C.A.
Urb. Lomas del Este
Torre Trebol - Piso 11
VALENCIA, Estado Carabobo
Apartado 3347
Tel: (041) 222992/223024
CH,CS,P
Albis Venezolana S.R.L.
Av. Las Marias, Ota. Alix,
El Pedregal
Apartado 81025
CARACAS \(1080 A\)
Tel: 747984, 742146
Telex: 24009 ALBIS VC
A
Tecnologica Medica del Caribe,
C.A.

Multicentro Empresarial del Este
Ave. Libertador
Edif. Libertador
Nucleo " C " - Oficina 51.52
CARACAS
Tel: \(339867 / 333780\)

YUGOSLAVIA
Hermes
General Zdanova 4
Telex: YU. 11000 BEOGRAD
A,CH,E,P
Hermes
Titova 50
Telex: YU. 31583 LJUBLJANA
CH,CS,E,M,P
Elektrotehna
titova 50
Telex: YU. 61000 LJUBLJANA
CM
ZAMBIA
R.J. Tilbury (Zambia) Ltd.
P.O. Box 32792

LUSAKA
Tel: 215590
Telex: 40128
E
ZIMBABWE
field Technical Sales
45 Kelvin Road, North
P.B. 3458

SALISBURY
Tel: 705231
Telex: 4.122 RH
\(E, P\)

REGIONAL HEADQUARTERS OFFICES
If there is no sales office listed for your area, contact one of these headquarters offices.

AFRICA AND
MIDDLE EAST
Hewlett-Packard S.A.
Mediterranean and Middle East Operations
Atrina Centre
32 Kifissias Ave.
Paradissos-Amarousion, ATHENS
Greece
Tel: 6828811
Telex: 21.6588 HPAT GR
Cable: HEWPACKSA Athens
NORTH CENTRAL

\section*{AFRICA}

Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 831212
Telex: 27835 hpse
Cable: HEWPACKSA Geneve

\section*{ASIA}

Hewlett-Packard Asia Ltd.
47IF, China Resources Bldg.
26 Harbour Rd., HONG KONG
G.P.O. Box 863 ,

Tel: 5.8330833
Telex: 76793 HPA HX
Cable: HPASIALTD TD

\section*{EASTERN EUROPE}

Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72
A. 1222 VIENNA, Austria

Tel: (222) 2365110
Telex: 134425 HEPA A
NORTHERN EUROPE
Hewlett-Packard S.A.
Uilenstede 475
P.O. Box 999

NL. 1180 AZ AMSTELVEEN
The Netherlands
Tel: 20437771

\section*{SOUTH EAST EUROPE}

World Trade Center
110 Avenue Louis Casal
1215 Cointrin, GENEVA
Switzerland
Tel: (022) 989651
Telex: 27225 hpser

\section*{OTHER INTERNATIONAL}

\section*{AREAS}

Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034.8300
Cable: HEWPACK

\section*{ABOUT HEWLETT-PACKARD}

David Packard and William Hewlett founded the company as a partnership in Palo Alto, California in 1939 . Worldwide sales in fiscal year 1984 totalled U.S. \(\$ 6.04\) billion. International sales accounted for almost \(43 \%\) of this figure.

\section*{PEOPLE}

Worldwide employment is over 83,000 with 26,000 employees outside the United States.

\section*{PRODUCTS}

The company designs, manufactures, and markets measurement and computation products and systems used in business, industry, science, engineering, education, and medicine.

\section*{FACILITIES}

Hewlett-Packard has manufacturing facilities the United States, Canada, Latin America, Europe, and Asia. The company has established joint ventures in Japan, the People's Republic of China, Mexico, and South Korea. Hewlett-Packard has 330 sales and support activities in 76 countries. Intercontinental Operations headquarters and HP's corporate offices are located in Palo Alto, California. European Operations are headquartered in Geneva, Switzerland.

\section*{HP Components Sales and Service}

\section*{Alabama}
P.O. Box 7700

420 Wynn Dr., N.W.
Huntsville 35805
Tel: (205) 830-2000

\section*{Arizona}

8080 Pointe Parkway West
Phoenix 85044
Tel: (602) 273-8000

\section*{California}

1421 So. Manhattan Ave.
Fullerton 92631
Tel: (714) 999-6700
9606 Aero Dr.
P.O. Box 23333

San Diego 92123
Tel: (714) 279-3200
3003 Scott Blvd.
Santa Clara 95050
Tel: (408) 988-7000
2150 West Hillcrest Dr.
Thousand Oaks 91320
Tel: (805) 373-7000

\section*{Colorado}

24 Inverness Place East
Englewood 80110
Tel: (303) 649-5000

\section*{Connecticut}

27 Barnes Industrial Rd. So. P.O. Box 5007

Wallingford 06492
Tel: (203) 265-7801

\section*{Florida}
P.O. Box 13910

6177 Lake Ellenor Dr.
Orlando 32809
Tel: (305) 859-2900

\section*{Georgia}
P.O. Box 105005

2000 South Park Place
Atlanta 30348
Tel: (404) 955-1500

\section*{Illinois}

5201 Tollview Dr.
Rolling Meadows 60008
Tel: (312) 255-9800

\section*{Indiana}

11911 No. Meridian Street Carmel 46032
Tel: (317) 844-4100

\section*{Maryland}

3701 Koppers St.
Baltimore 21227
Tel: (301) 644-5800
P.O. Box 1648

4 Choke Cherry Rd.
Rockille 20850
Tel: (301) 948-6370
Massachusetts
1775 Minuteman Rd.
Andover 01810
Tel: (617) 682-1500

\section*{Michigan}

39550 Orchard Hill Place Dr. Novi 48050
Tel: (313) 349-9200

\section*{Minnesota}

2025 W. Larpenteur Ave.
St. Paul 55113
Tel: (612) 644-1100

\section*{Missouri}

1001 East 101 Terr.
Suite 120
P.O. Box 24796

Kansas City 64131
Tel: (816) 941-0411

\section*{New Jersey}

60 New England Ave. West
Piscataway 08854
Tel: (201) 981-1199
W. 120 Century Rd.

Paramus 07652
Tel: (201) 265-5000

\section*{New Mexico}

7801 Jefferson St., NE
Albuquerque 87109
Tel: (505) 823-6100
New York
7641 Henry Clay Blvd.
Liverpool 13088
Tel: (315) 451-1820
200 Cross Keys Office
Fairport 14450
Tel: (716) 223-9950
250 Westchester Ave.
White Plains 10604
Tel: (914) 684-6100
3 Crossways Park West
Woodbury 11797
Tel: (516) 921-0300
North Carolina
305 Gregson Dr.
Cary 27511
Tel: (919) 467-6600

\section*{Ohio}

16500 Sprague Rd.
Cleveland 44130
Tel: (216) 243-7300
675 Brooksedge Blvd.
Westerville 43081
Tel: (614) 891-3344

\section*{Oregon}
P.O. Box 328

Wilsonville 97070
Tel: (503) 682-8000

\section*{Pennsylvania} 2750 Monroe Blvd. P.O. Box 713 Valley Forge 19482
Tel: (215) 666-9000

\section*{Texas}

11002-B Metric Blvd.
Austin 78758
Tel: (512) 835-6771
10535 Harwin
Houston 77036
Tel: (713) 776-6400
930 E. Campbell Rd.
P.O. Box 831270

Richardson 75083-1270
Tel: (214) 231-6101

\section*{Washington}

Bellefield Office Pk. 15815 S.E. 37th St. Bellevue 98006
Tel: (206) 643-4000

\section*{(hi) HEWLETT PACKARD}```


[^0]:    ESD WARNING: Since this is an NMOS device, normal precautions should be taken to avoid static damage.

[^1]:    9. Hardwire control is accomplished by tying the appropriate input pins high or low. Software commands are sent by means of escape sequences.
[^2]:    © Hewlett-Packard Company 1984

[^3]:    NOTES:

    1. ALL DIMENSIONS IN MILLIMETERS AND (INCHES).
    2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
    3. THE REFERENCE PLANE IS THE TOP SURFACE OF THE PACKAGE.
    4. NICKEL CAN AND GOLD PLATED LEADS
    5. S.P. SEATING PLANE.
    6. THE LEAD DIAMETER IS $0.45 \mathrm{~mm}(0.018 \mathrm{in}$.) TYP.
[^4]:    Specification Title
    1577 Standard for Optical Isolators Applications
    114 Appliance and Business Equipment
    $347 \quad$ High Voltage Industrial Control
    Equipment
    478 Information Processing and Business Equipment
    Industrial Control Equipment
    Medical and Dental Equipment
    Industrial Control Equipment for Use in
    Hazardous Locations
    Plug-in, Locking Type Photocontrols
    Intrinsically Safe Apparatus and
    Associated Apparatus
    Standard for Energy Management Equipment

    1244 Electrical and Electronic Measuring and Testing Equipment
    1410 Television and Video Products

[^5]:    *JEDEC Registered Data (The HCPL-2502 and HCPL-4502 are not registered.)

[^6]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^7]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/ordegradation which may be induced by ESD.

[^8]:    ** 6.3 mA condition permits at least $20 \%$ CTR degradation

[^9]:    * 6.3 mA condition permits at least $20 \%$ CTR degradation guardband. Initial switching threshold is 5 mA or less.

[^10]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^11]:    * Cable is available in standard low loss and selected super low lost varieties.

[^12]:    NOTE:
    IT IS ESSENTIAL THAT A BYPASS CAPACITOR $10.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ CERAMICI BE CONNECTED FROM PIN 2 TO PIN 4 OF THE RECEIVER TOTAL LEAD I.ENGTH BETWEEN BOTH ENOS OF THE CAPACTTOR TOTAL LEAD LENGTH BETWEEN BOTH ENDS
    AND THE PINS SHOULD NOT EXCEED 20 mm .

[^13]:    *UL File Number E84364

[^14]:    Note: Option S02 designates a two intensity category selection. Option SO2s of different part numbers may not have the same apparent brightness. Contact your HP Field Sales Office for design assistance.

[^15]:    *More than 10 segments may be illuminated in a given character, provided the maximum allowed character power dissipation, temperature derated, is not exceeded.

