

Optoelectronics Designer's Catalog 1983

Components and Subsystems

Intensive solid state research, the development of advanced manufacturing techniques and continued expansion has enabled Hewlett-Packard to become a high volume supplier of quality, competitively priced LED displays, LED lamps, light bars, bar graph arrays, optocouplers, fiber optics, shaft encoders, and bar code products.

In addition to our broad product line, Hewlett-Packard also offers the following services:
immediate delivery from any of our authorized stocking distributors, applications support, special QA testing, and a one year guarantee on most of our optoelectronic products.
This package of products and services has enabled HewlettPackard to become a recognized leader in the optoelectronic industry.

Table of Contents

Optocouplers

Selection Guide 3
High Speed Optocouplers 5
Low Current Optocoupler 25
High Gain Optocouplers 47
Logic Interface Optocouplers 59
Hermetic Optocouplers 65
Fiber Optics
Selection Guide 85
Snap-In Fiber Optic Link 86
Miniature Fiber Optic Link 94
High Performance Modules 122
Cable 134
Connectors 138
Multiplexer 142
Detectors 148
Bar Code Products
Selection Guide 155
Digital Wands 156
Bar Code Readers 170
Decoders 176
Bar Code Scanner 184
Shaft Encoders
Selection Guide 193
28mm Diameter Encoders 194
56mm Diameter Encoders 202

Solid State Lamps

Selection Guide 213
New Low Current Lamp 220
High Efficiency Red, Yellow and Green Lamps 224
T-1 3/4 and T-1 Lamps 231
Rectangular and Subminiature Lamps 252
Integrated Lamps 263
Hermetic Lamps 271
Emitters 278
Light Bars and Bar Graph Arrays
Selection Guide 285
Light Bars 288
Bar Graphs 306
Solid State Displays
Selection Guide 321
Alphanumeric Displays 329
Alphanumeric Systems 371
Red, High Efficiency Red, Yellow and Green Seven Segment Displays 395
Red Numeric and Hexadecimal Dot Matrix Displays 433
High Efficiency Red, Yellow and Green Numeric and Hexadecimal Displays 450
Red Seven Segment Displays 462
High Reliability
Testing Programs 476
Selection Guide 484
Applications
Application Bulletins, Notes and Manual Listing 491
Abstracts 492
Application Bulletins and Notes 494
Appendix
HP Components Authorized Distributor and Representative Directory 744
HP Sales and Service Offices 748

Alphanumeric Index

HCPL-2200 25
HCPL-2502 (5082-4352) 5
HCPL-2503 9
HCPL-2530 (5082-4354) 16
HCPL-2531 (5082-4355) 16
HCPL-2533 20
HCPL-2601 (5082-4361) 33
HCPL-2602 37
HCPL-2630 (5082-4364) 43
HCPL-2730 51
HCPL-2731 51
HCPL-3700 59
HDSP-0760 450
HDSP-0761 450
HDSP-0762 450
HDSP-0763 450
HDSP-0770 450
HDSP-0771 450
HDSP-0772 450
HDSP-0860 450
HDSP-0861 450
HDSP-0862 450
HDSP-0863 450
HDSP-0960 450
HDSP-0961 450
HDSP-0962 450
HDSP-0963 450
HDSP-2000 329
HDSP-2001 329
HDSP-2002 329
HDSP-2003 329
HDSP-2010 350
HDSP-2010 TXV 350
HDSP-2010 TXVB 350
HDSP-2300 333
HDSP-2301 333
HDSP-2302 333
HDSP-2303 333
HDSP-2416 371
HDSP-2424 371
HDSP-2432 371
HDSP-2440 371
HDSP-2450 371
HDSP-2451 371
HDSP-2452 371
HDSP-2470 371
HDSP-2471 371
HDSP-2472 371
HDSP-2490 339
HDSP-2491 339
HDSP-2492 339
HDSP-2493 339
HDSP-3400 42
HDSP-3401 42
HDSP-3403 429
HDSP-3405 429
HDSP-3406 429
HDSP-3530 403
HDSP-3531 403
HDSP-3533 403
HDSP-3536 403
HDSP-3600 395
HDSP-3601 395
HDSP-3603 395
HDSP-3606 395
HDSP-3730 403
HDSP-3731 403
HDSP-3733 403
HDSP-3736 403
HDSP-3900 403
HDSP-3901 403
HDSP-3903 403
HDSP-3905 403
HDSP-3906 403
HDSP-4030 403
HDSP-4031 403
HDSP-4033 403
HDSP-4036 403
HDSP-4130 403
HDSP-4131 403
HDSP-4133 403
HDSP-4136 403
HDSP-4200 403
HDSP-4201 403
HDSP-4203 403
HDSP-4205 403
HDSP-4206 403
HDSP-4820 306
HDSP-4830 306
HDSP-4840 306
HDSP-5301 421
HDSP-5303 421
HDSP-5307 421
HDSP-5308 421
HDSP-5501 421
HDSP-5503 421
HDSP-5507 421
HDSP-5508 421
HDSP-5531 403
HDSP-5533 403
HDSP-5537 403
HDSP-5538 403
HDSP-5601 395
HDSP-5603 395
HDSP-5607 395
HDSP-5608 395
HDSP-5701 421
HDSP-5703 421
HDSP-5707 421
HDSP-5708 421
HDSP-5731 403
HDSP-5733 403
HDSP-5737 403
HDSP-5738 403
HDSP-6300 366
HDSP-6504 360
HDSP-6505 360
HDSP-6508 360
HDSP-6509 360
HDSP-8600 395
HDSP-8601 395
HDSP-8603 395
HDSP-8605 395
HDSP-8606 395
HDSP-8716 383
HDSP-8724 383
HDSP-8732 383
HDSP-8740 383
HDSP-8820 312
HEDS-0100 176
HEDS-0150 176
HEDS-1000 184
HEDS-3000 156
HEDS-3050 156
HEDS-3200 162
HEDS-3201 162
HEDS-3250 162
HEDS-3251 162
HEDS-5000 194
HEDS-5010 194
HEDS-6000 202
HEDS-6010 202
HEDS-8930 194
HEMT-3300 278
HEMT-6000 280
HFBR-0100 140
HFBR-0101 140
HFBR-0102 140
HFBR-0200 94
HFBR-0500 86
HFBR-1001 122
HFBR-1002 126
HFBR-1201 94, 110
HFBR-1202 102
HFBR-1500 86
HFBR-1501 86
HFBR-1502 86
HFBR-2001 130
HFBR-2201 94, 110
HFBR-2202 102
HFBR-2203 110
HFBR-2204 110
HFBR-2500 86
HFBR-2501 86
HFBR-2502 86
HFBR-3000, OPT 001 134
HFBR-3000, OPT 002 134
HFBR-3001 134
HFBR-3021 134
HFBR-3099 138
HFBR-3100, OPT 001 134
HFBR-3100, OPT 002 134
HFBR-3200 136
HFBR-3300 94
HFBR-3500 86
HFBR-3501 86
HFBR-3502 86
HFBR-3503 86
HFBR-3504 86
HFBR-3505 86
HFBR-3506 86
HFBR-3507 86
HFBR-3508 86
HFBR-3589 86
HFBR-3590 86
HFBR-3591 86
HFBR-3602 86
HFBR-3603 86
HFBR-3604 86
HFBR-3605 86
HFBR-3606 86
HFBR-3607 86
HFBR-3608 86
HFBR-3689 86
HFBR-3690 86
HFBR-3691 86
HFBR-4000 138
HFBR-4201 94
HFBR-4202 102
HFBR-4501 86
HFBR-4511 86
HFBR-4595 86
HLMP-0101 243
HLMP-0102 243
HLMP-0103 277
HLMP-0140 243
HLMP-0141 243
HLMP-0200 243
HLMP-0202 243
HLMP-0220 243
HLMP-0222 243
HLMP-0240 243
HLMP-0242 243
HLMP-0280 265
HLMP-0300 252
HLMP-0301 252
HLMP-0400 252
HLMP-0401 252
HLMP-0503 252
HLMP-0504 252
HLMP-0930 271
HLMP-0931 271
HLMP-1000 250
HLMP-1002 250
HLMP-1071 250
HLMP-1080 250
HLMP-1100 250
HLMP-1120 265
HLMP-1142 269
HLMP-1200 250
HLMP-1201 250
HLMP-1300 245
HLMP-1301 245
HLMP-1302 245
HLMP-1320 245
HLMP-1321 245
HLMP-1340 224
HLMP-1350 249
HLMP-1400 245
HLMP-1401 245
HLMP-1402 245
HLMP-1420 245
HLMP-1421 245
HLMP-1440 224
HLMP-1450 249
HLMP-1503 245
HLMP-1520 245
HLMP-1521 245
HLMP-1523 245
HLMP-1540 224
HLMP-1550 249
HLMP-1700 220
HLMP-1719 220
HLMP-2300 288
HLMP-2350 288
HLMP-2400 288
HLMP-2450 288
HLMP-2500 288
HLMP-2550 288
HLMP-2598 304
HLMP-2599 304
HLMP-2600 292
HLMP-2620 292
HLMP-2635 292
HLMP-2655 292
HLMP-2670 292
HLMP-2685 292
HLMP-2700 292
HLMP-2720 292
HLMP-2735 292
HLMP-2755 292
HLMP-2770 292
HLMP-2785 292
HLMP-2800 292
HLMP-2820 292
HLMP-2835 292
HLMP-2855 292
HLMP-2870 292
HLMP-2885 292
HLMP-2898 304
HLMP-2899 304
HLMP-2950 298
HLMP-2965 298
HLMP-3000 241
HLMP-3001 241
HLMP-3002 241
HLMP-3050 241
HLMP-3105 265
HLMP-3112 265
HLMP-3200 235
HLMP-3201 235
HLMP-3300 231
HLMP-3301 231
HLMP-3315 231
HLMP-3316 231
HLMP-3350 235
HLMP-3351 235
HLMP-3365 235
HLMP-3366 235
HLMP-3390 224
HLMP-3400 231
HLMP-3401 231
HLMP-3415 231
HLMP-3416 231
HLMP-3450 235
HLMP-3451 235
HLMP-3465 235
HLMP-3466 235
HLMP-3490 224
HLMP-3502 231
HLMP-3507 231
HLMP-3517 231
HLMP-3519 231
HLMP-3553 235
HLMP-3554 235
HLMP-3567 235
HLMP-3568 235
HLMP-3590 224
HLMP-3600 265
HLMP-3650 265
HLMP-3680 265
HLMP-3750 224
HLMP-3850 224
HLMP-3950 224
HLMP-4600 228
HLMP-4601 228
HLMP-4610 228
HLMP-4700 220
HLMP-4719 220
HLMP-6000 259
HLMP-6001 259
HLMP-6203 255
HLMP-6204 255
HLMP-6205 255
HLMP-6206 255
HLMP-6208 255
HLMP-6300 259
HLMP-6400 259
HLMP-6500 259
HLMP-6600 263
HLMP-6620 263
HLMP-6653 255
HLMP-6654 255
HLMP-6655 255
HLMP-6656 255
HLMP-6658 255
HLMP-6753 255
HLMP-6754 255
HLMP-6755 255
HLMP-6756 255
HLMP-6758 255
HLMP-6853 255
HLMP-6854 255
HLMP-6855 255
HLMP-6856 255
HLMP-6858 255
HLMP-7000 220
HLMP-7019 220
HPBK-2000 490
JANTX1N5765 271
JANTX1N6092 271
JANTX1N6093 271
JANTX1N6094 271
JAN1N5765 271
JAN1N6092 271
JAN1N6093 271
JAN1N6094 271
M19500/519-01 271
M19500/519-02 271
M19500/520-01 271
M19500/520-02 271
M19500/521-01 271
M19500/521-02 271
SL5505 14
1N5765 271
1N6092 271
1N6093 271
1N6094 271
16800A 170
16801A 170
39301A 142
4N45 55
4N46 55
4N51 442
4N51TXV 442
4N51TXVB 442
4N52 442
4N52TXV 442

New Products in BOLD Type.
4N52TXVB 442
4N53 442
4N53TXV 442
4N53TXVB 442
4N54 442
4N54TXV 442
4N54TXVB 442
4N55 76
4N55/883B 76
4N55TXV 76
4N55TXVB 76
5082-4100 (see HLMP-6000) 259
5082-4101 (see HLMP-6001) 259
5082-4150 (see HLMP-6400) 259
5082-4160 (see HLMP-6300) 259
5082-4190 (see HLMP-6500) 259
5082-4203 148
5082-4204 148
5082-4205 148
5082-4207 148
5082-4220 148
5082-4403 (see HLMP-0102) 243
5082-4415 (see HLMP-0141) 243
5082-4440 (see HLMP-0101) 243
5082-4444 (see HLMP-0140) 243
5082-4468 (see HLMP-1120) 265
5082-4480 (see HLMP-1000) 250
5082-4483 (see HLMP-1080) 250
5082-4486 (see HLMP-1071) 250
5082-4487 (see HLMP-1200) 250
5082-4488 (see HLMP-1201) 250
5082-4494 (see HLMP-1002) 250
5082-4550 (see HLMP-3400) 231
5082-4555 (see HLMP-3401) 231
5082-4557 (see HLMP-3415) 231
5082-4558 (see HLMP-3416) 231
5082-4587 271
5082-4590 (see HLMP-3450) 235
5082-4592 (see HLMP-3451) 235
5082-4595 (see HLMP-3465) 235
5082-4597 (see HLMP-3466) 235
5082-4650 (see HLMP-3300) 231
5082-4655 (see HLMP-3301) 231
5082-4657 (see HLMP-3315) 231
5082-4658 (see HLMP-3316) 231
5082-4687 271
5082-4690 (see HLMP-3350) 235
5082-4693 (see HLMP-3351) 235
5082-4694 (see HLMP-3365) 235
5082-4695 (see HLMP-3366) 235
5082-4707 (see HLMP-0103) 277
5082-4732 (see HLMP-1142) 269
5082-4787 271
5082-4790 (see HLMP-3200) 235
5082-4791 (see HLMP-3201) 235
5082-4850 (see HLMP-3000) 241
5082-4855 (see HLMP-3001) 241
5082-4860 (see HLMP-0280) 265
5082-4880 (see HLMP-0200) 243
5082-4882 (see HLMP-0202) 243
5082-4883 (see HLMP-0220) 243
5082-4885 (see HLMP-0222) 243
5082-4886 (see HLMP-0240) 243
5082-4888 (see HLMP-0242) 243
5082-4987 271
5082-7010 456
5082-7011 456
5082-7100 356
5082-7101 356
5082-7102 356
5082-7285 467
5082-7295 467
5082-7300 433
5082-7302 433
5082-7304 433
5082-7340 433
5082-7356 437
5082-7357 437
5082-7358 437
5082-7359 437

New Products in BOLD Type.
5082-7391 442
5082-7391TXV 442
5082-7391TXVB 442
5082-7392 442
5082-7392TXV 442
5082-7392TXVB 442
5082-7393 442
5082-7393TXV 442
5082-7393TXVB 442
5082-7395 442
5082-7395TXV 442
5082-7395TXVB 442
5082-7404 462
5082-7405 462
5082-7414 462
5082-7415 462
5082-7432 462
5082-7433 462
5082-7441 467
5082-7446 467
5082-7610 411
5082-7611 411
5082-7613 411
5082-7616 411
5082-7620 411
5082-7621 411
5082-7623 411
5082-7626 411
5082-7650 411
5082-7651 411
5082-7653 411
5082-7656 411
5082-7660 411
5082-7661 411
5082-7663 411
5082-7666 411
5082-7730 417
5082-7731 417
5082-7736 417
5082-7740 417
5082-7750 417
5082-7751 417
5082-7756 417
5082-7760 417
6N134 (5082-4365) 65
6N134TXV (TX-4365) 65
6N134TXVB (TXB-4365) 65
6N135 (5082-4350) 5
6N136 (5082-4351) 5
6N137 (5082-4360) 29
6N138 (5082-4370) 48
6N139 (5082-4371) 48
6N140 72
6N140/883B 72
6N140TXV 72
6N140TXVB 72
8102801EC 68

A few words about . . .

Hewlett-Packard Quality

When quality represents a competitive edge, or when the reputation and dependability of your products is on the line, you can depend on Hewlett-Packard Optoelectronic components. Reliability considerations and rigorous testing are an integral part of new product design and introduction at Hewlett-Packard. Once a product is in production, on-going product assurance monitors are aggressively applied to assure that you receive optimum value for your purchasing dollar.

In recent years, the term "parts per million" (PPM) has come to be considered an appropriate measure of on-going product quality with discriminating component users. HewlettPackard is pleased to acknowledge and encourage this trend. We are especially hopeful that we can make a contribution to your product by making visible the current product assurance level of HewlettPackard optoelectronic components in these same "parts per million" terms. Since the pursuit of improved quality is a continuous process, the standards are tightened periodically. Please consult your local Hewlett-Packard
components field engineer for a listing of the current standards or write to Hewlett-Packard Optoelectronics Division at 640 Page Mill Road, Palo Alto, California 94304, Attention: Product Marketing and request such data. HewlettPackard believes this level of
performance leads our industry, and we are committed to even further progress in the quality of our products.

Look to Hewlett-Packard in the optoelectronics industry for quality, performance and innovation leadership.

A Brief Sketch

Hewlett-Packard is one of the world's leading designers and manufacturers of electronic, medical, analytical and computing instruments and systems, diodes, transistors, and optoelectronic products. Since its founding in Palo Alto, California, in 1939, HP has done its best to offer only products that represent significant technological advancements.

To maintain its leadership in instrument and component technology, Hewlett-Packard invests heavily in new product
development. Research and development expenditures traditionally average about 10 percent of sales revenue, and over 1,500 engineers and scientists are assigned the responsibilities of carrying out the company's various R and D projects.

For the customer, HewlettPackard is no further away than the nearest telephone. HewlettPackard currently has sales and service offices located around the world.

These field offices are staffed by trained engineers, each of whom has the primary responsibility of providing technical assistance and data to customers. A vast communications network has been established to link each field office with the factories and with corporate offices. No matter what the product or the request, a customer can be accommodated by a single contact with the company.

Where Reputation and Quality Count

When quality represents a competitive edge, or when the reputation and dependability of your products is on the line, you can count on Hewlett-Packard Optoelectronic components for excellent product consistency.
The optoelectronic products available include a complete line of GaAsP and GaP discrete light emitting diodes (LED's), light bars, bar graph arrays, numeric, hexadecimal, and alphanumeric displays, optocouplers, fiber optics, optical shaft encoders and bar code products. There is complete technical data included in this designer's catalog for each of the HewlettPackard Optoelectronics products.

About this Caralog

This Optoelectronics Designer's Catalog contains detailed, up-todate specifications on our complete optoelectronic product line. It is divided into eight major product sections: Optocouplers, Fiber Optics, Optical Shaft Encoders, Bar Code Products, LED Lamps, LED Displays, Light Bars and Bar Graphs, and High Reliability Products. A special section which includes all of the application notes in either full or abstract form follows the High Reliability product section.

How to Use This Catalog

Three methods are incorporated for locating components:

- a Table of Contents with tabs that allow you to locate components by their general description
- a Numeric Index that lists all components by part number and,
- a Selection Guide for each product group giving a brief overview of the product line.

How to Order

All Hewlett-Packard components may be ordered through any of the Sales and Service Offices listed on pages 748-753. In addition, for immediate delivery of Hewlett-Packard optoelectronic components, contact any of the world wide stocking distributors and representatives listed on pages 744-747.

Warranty

HP's Components are warranted against defects in material and workmanship for a period of one year from the date of shipment (in the case of designated Fiber Optics and Bar Code products 90 days from the date of shipment). HP will repair or, at its option, replace components that prove to be defective in material or workmanship under proper use during the warranty period. This warranty extends only to HP customers.

NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY.

The foregoing limitation of liability shall not apply in the event that any HP product sold hereunder is determined by a court of competent jurisdiction to be defective and to have directly caused bodily injury, death or property damage; provided, that in no event shall HP's liability for property damage exceed the greater of $\$ 50,000$ or the purchase price of the specific product that caused such damage.

11

 T

Optocouplers

Hewlett-Packard's original approach toward integrated output detectors provides performance not found in conventional phototransistor output devices. A family of optocouplers has been established to provide reliable, economical, high performance solutions to problems caused by ground loops and induced common mode noise for both analog and digital applications in commercial, industrial and military products.
The capabilities of this family span a wide range. Device selections include: programmable AC/DC power sensing input with logic output; speeds up to 10 M bits/s; CTR gains as high as 700% and input currents as low as 0.5 mA . Hewlett-Packard also has available highly linear optocouplers that are useful in analog applications, and a unique integrated-input optically
coupled line receiver that can be connected directly to twisted pair wires without additional circuitry. Most of these devices are available in dual channel versions, as well as in hermetic DIP packages. For military users, Hewlett-Packard's established, and DESC recognized hi-rel capability facilitates economical, hi-rel purchases.

Hewlett-Packard's newest optocoupler, the HCPL-2200, features guaranteed propagation delay of 400 ns MAX. (see data sheet) from 0 to 85 degrees C with a wide V_{CC} range from 4.5 V to 20 V and I_{CC} of only 6 mA . Additionally, the high CMR of $1000 \mathrm{~V} / \mu \mathrm{S}$ and built in hysteresis help assure reliable circuit design.

High Speed Optocouplers

Device		Description	Application ${ }^{[1]}$	Typical Data Rate (NRZ)	Current Transfer Ratio	Specified Input Current	Withstand Test Voltage	$\begin{array}{\|c} \text { Page } \\ \text { No. } \end{array}$
	$6 \text { N135 }$	Transistor Output	Line Receiver, Analog Circuits, TTL/CMOS, TTL/LSTTL Ground Isolation	1 $\mathrm{M} \mathrm{bit} / \mathrm{s}$	7\% Min.	16 mA	$\begin{aligned} & 3000 \mathrm{Vdc} \\ & 7 \mathbf{I I}^{[3]} \end{aligned}$	5
	6N136				19\% Min.			
	HCPL-2502				15-22\% ${ }^{[2]}$			
	HCPL-2503		LSTTL/LSTTL Logic Interface	250K bit/s	15\% Min.	8 mA	$\begin{gathered} 3000 \mathrm{Vdc} \\ \mathbf{7}{ }^{[3]} \\ \hline \end{gathered}$	9
	SL5505		Telephone circuits, Approved by CNET	$1 \mathrm{M} \mathrm{bit/s}$	$\begin{array}{\|l\|} \hline 15 \% \text { Min. } \\ \hline 40 \% \text { Max. } \\ \hline \end{array}$	16 mA	1500 Vdc	14
	HCPL-2530 HCPL-2531	Dual Channel Transistor Output	Line Receiver, Analog Circuits, TTL/CMOS, TTL/LSTTL Ground Isolation	1 $\mathrm{M} \mathrm{bit} / \mathrm{s}$	7% Min.	16 mA	$\begin{gathered} 3000 \mathrm{Vdc} \\ 7 \mathbf{I}^{[3]} \end{gathered}$	16
	HCPL-2533		TTL/LSTTL Logic Interface	250K bit/s	12\% Min.			20
			LSTTL/LSTTL Logic Interface		15\% Min.	8 mA		
	HCPL-2200	Low Input Current Optically Coupled Logic Gate $V_{C C}=20 \mathrm{~V} \text { Max. }$	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface	5 M bits/s	3 State Output	1.6 mA		25
	6N137	Optically Coupled Logic Gate	Line Receiver, High Speed Logic Ground Isolation	10M bit/s	700\% Typ.	5.0 mA	$\begin{gathered} 3000 \mathrm{Vdc} \\ 7]^{(3)} \end{gathered}$	29
CATHOOE	HCPL-2601	High Common Mode Rejection, Optically Coupled Logic Gate	Line Receiver, High Speed Logic Ground Isolation In High Ground or Induced Noise Environments	10M bit/s	700\% Typ.	5.0 mA	$\begin{gathered} 3000 \mathrm{Vdc} \\ 7 \mathrm{I}^{[3]} \end{gathered}$	33
	HCPL-2602	Optically Coupled Line Receiver	Replace Conventional Line Receivers In High Ground or Induced Noise Environments	10M bit/s	700\% Typ.	5.0 mA	$\begin{gathered} 3000 \mathrm{Vdc} \\ 7 \mathbf{N}^{[3]} \end{gathered}$	37
	HCPL-2630	Dual Channel Optically Coupled Gate	Line Receiver, High Speed Logic Ground Isolation.	10M bit/s	700\% Typ.	5.0 mA	$\begin{aligned} & 3000 \mathrm{Vdc} \\ & >\pi^{[3]} \end{aligned}$	43

High Gain Optocouplers

Device		Description	Application ${ }^{1]}$	Typical Data Rate (NRZ)	Current Transfer Ratio	Specified Input Current	Withstand Test Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
	6N138	Low Saturation Voltage, High Gain Output, $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{VMax}$.	Line Receiver, Low Current Ground Isolation, TTL/TTL, LSTTL/TTL, CMOS/ TTL	300k bit/s	300\% Min.	1.6 mA	$\begin{gathered} 3000 \mathrm{Vdc} \\ 7 \mathrm{I}^{[3]} \end{gathered}$	47
	6N139	Low Saturation Voltage, High Gain Output, $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$ Max.	Line Receiver, Ultra Low Current Ground Isolation, CMOS/LSTTL CMOS/TTL, CMOS/ CMOS		400\% Min.	0.5 mA		

High Gain Optocouplers (cont.)

Device		Description	Application ${ }^{17}$	Typical Data Rate (NRZ)	Current Transfer Ratio	Specified Input Current	Withstand Test Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
	HCPL-2730	Dual Channel, High Gain, $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$ Max.	Line Receiver, Polarity Sensing, Low Current Ground Isolation	300k bit/s	300\% Min.	1.6 mA	3000 Vdc $71^{[3]}$	51
	HCPL-2731	Dual Channel, High Gain, $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$ Max.			400\%Min.	0.5 mA		
	4N45	Darlington Output $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$ Max.	AC Isolation, RelayLogic Isolation	3k bit/s	250\% Min.	1.0 mA	$\begin{array}{\|c\|} \hline 3000 \mathrm{Vdc} \\ 7 \mathrm{I}^{[3]} \end{array}$	55
	4N46	Darlington Output $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$ Max.			350\% Min.	0.5 mA		

AC/DC to Logic Interface Optocoupler

Device		Description	Application ${ }^{[1]}$	Typical Data Rates	Input Threshold Current	Output Current	Withstand Test Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-3700	AC/DC to Logic Threshold Sensing Interface Optocoupler	Limit Switch Sensing, Low Voltage Detector, Relay Contact Monitor	4 KHz	$\left.\begin{array}{\|l\|} \hline 2.5 \mathrm{~mA} \mathrm{TH} \\ 1.3 \mathrm{~mA} \mathrm{TH} \end{array} \right\rvert\,$	4.2 mA	$\begin{array}{r} 3000 \mathrm{Vdc} \\ 7 \mathbf{1}^{[3]} \end{array}$	57

Hermetic Optocouplers

Device		Description	Application	Typical Data Rate (NRZ)	Current Transfer Ratio	Specified Input Current	Withstand Test Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	6N134	Dual Channel Hermetically Sealed Optically Coupled Logic Gate.	Line Receiver, Ground Isolation for High Reliability Systems	10M bit/s	400\% Typ.	10 mA	1500 Vdc	65
	8102801 EC	DESC Approved 6N134	Military/High Reliability					68
	6N134TXV	TXV - Screened	Use 8102801 EC if Possible.					65
	6N134TXVB	TXVB - Screened with Group B Data						
	6N140	Hermetically Sealed Package Containing 4 Low Input Current, High Gain Optocouplers	Line Receiver, Low Power Ground Isolation for High Reliability Systems	300k bit/s	300\% Min.	0.5 mA	1500 Vdc	72
	6N140/883B	MIL-STD-883 Class B Part	Military/High Reliability					
	6N140TXV	$\begin{array}{\|l\|} \hline \text { TXV - Hi-Rel } \\ \text { Screened } \\ \hline \end{array}$	Use 6N 140/883B if Possible					
	6N140TXVB	TXVB - Hi-Rel Screened with Group B Data						
	4N55	Dual Channel Hermetically Sealed Analog Optical Coupler	Line Receiver, Analog Signal Ground Isolation, Switching Power Supply Feedback Element	700k bit/s	7\% Min.	16 mA	1500 Vdc	76
	4N55/883B	MIL-STD-883 Class B Part	Military/High Reliability					
	4N55TXV	TXV - Hi-Rel Screened	Use 4N55/883B if Possible					
	4N55TXVB	TXVB - Hi-Rel Screened with Group B Data						

Notes:

1. For further information, AN-939, AN-948, AN-951-1, and AN-951-2 are available from HP free of charge or can be found starting on page 492.
2. The HCPL-2502 Current Transfer Ratio Specification is guaranteed to be 15% minimum and 22% maximum.
3. Recognized under the Component Recognition Program of Underwriters Laboratories Inc. (File No. E55361), 220 VAC working voltage. This is guaranteed by a 3000 Vdc withstand voltage test for 5 seconds.

Features

- HIGH SPEED: 1 Mbit/s
- TTL COMPATIBLE
- HIGH COMMON MODE TRANSIENT IMMUNITY: 1000V/us
- 3000 Vdc WITHSTAND TEST VOLTAGE
- 2 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUT
- RECOGNIZED UNDER THE COMPONENT
PROGRAM OF UNDERWRITERS
LABORATORIES, INC. (FILE NO. E55361)

Description

These diode-transistor optocouplers use a light emitting diode and an integrated photon detector to provide 3000 V dc electrical insulation between input and output. Separate connection for the photodiode bias and output transistor collector improve the speed up to a hundred times that of a conventional photo-transistor coupler by reducing the basecollector capacitance.
The 6N135 is suitable for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the 6 N 135 is 7% minimum at $\mathrm{I}_{F}=16 \mathrm{~mA}$.
The 6N136 is suitable for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR of the 6N136 is 19% minimum at $\mathrm{I}_{\mathrm{F}}=$ 16 mA .

The HCPL-2502 is suitable for use in applications where matched or known CTR is desired. CTR is 15 to 22% at $\mathrm{I}_{\mathrm{F}}=$ 16 mA .

Applications

- Line Receivers - High common mode transient immunity ($>1000 \mathrm{~V} / \mu \mathrm{s}$) and low input-output capacitance (0.6 pF).
- High Speed Logic Ground Isolation - TTL/TTL, TTL/ LTTL, TTL/CMOS, TTL/LSTTL.
- Replace Slow Phototransistor Isolators - Pins 2-7 of the 6N135/6 series conform to pins $1-6$ of 6 pin phototransistor couplers. Pin 8 can be tied to any available bias voltage of 1.5 V to 15 V for high speed operation.
- Replace Pulse Transformers - Save board space and weight.
- Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.

Absolute Maximum Ratings ${ }^{\text {© }}$

$$
\begin{aligned}
& \text { Storage Temperature }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& \text { Operating Temperature }-55^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \\
& \text { Lead Solder Temperature } 260^{\circ} \mathrm{C} \text { for } 10 \text { s } \\
& \text { (1.6mm below seating plane) } \\
& \text { Average Input Current - } i_{F} \text {. } 25 \mathrm{~mA} \text { [1] } \\
& \text { Peak Input Current - } I_{F} \text {. 50mA[2] } \\
& \text { (50\% duty cycle, } 1 \mathrm{~ms} \text { pulse width) } \\
& \text { Peak Transient Input Current - } I_{F} \text {. 1.0A } \\
& (\leqslant 1 \mu \mathrm{~s} \text { pulse width, } 300 \mathrm{pps} \text {) } \\
& \text { Reverse Input Voltage - } \mathrm{V}_{\mathrm{R}} \text { (Pin 3-2) 5V } \\
& \text { Input Power Dissipation 45mW[3] } \\
& \text { Average Output Current - } \mathrm{I}_{\mathrm{O}}(\mathrm{Pin} 6) \ldots8 \mathrm{~mA} \\
& \text { Peak Output Current . 16mA } \\
& \text { Emitter-Base Reverse Voltage (Pin 5-7). 5V } \\
& \text { Supply and Output Voltage - } \mathrm{V}_{\mathrm{CC}}\left(\text { Pin 8-5), } \mathrm{V}_{\mathrm{O}}(\text { Pin 6-5) }\right. \\
& \text { Base Current - IB (Pin 7) }-0.5 \mathrm{~V} \text { to } 15 \mathrm{~V} \\
& \text { Output Power Dissipation 100mW[4] }
\end{aligned}
$$

[^0]See notes, following page.
*JEDEC Registered Data. (The HCPL-2502 is not registered.)

Electrical Specifications

Over recommended temperature ($\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR*	6N 135	7	18		\%	$\begin{aligned} & I_{F}=16 \mathrm{~mA}_{,} V_{\mathrm{O}}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1,2	5
		6N136	19	24		\%			
		HCPL-2502	15		22	\%			
	CTR	6N135	5	13		\%	$\mathrm{I}_{F}=16 \mathrm{~mA}, V_{O}=0.5 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V}$		
		6N136	15	21		\%			
		6N135		0.1	0.4	V	$I_{F}=16 \mathrm{~mA}, \mathrm{I}_{0}=1.1 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}$		
Output Voltage	VOL	$\begin{gathered} 6 N 136 \\ \mathrm{HCPL}-2502 \end{gathered}$		0.1	0.4	V	$I_{F}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2.4 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}$		
Logic High Output Current	${ }^{1} \mathrm{OH}^{*}$			3	500	nA	$\begin{aligned} & I_{F}=0 \mathrm{~mA}, V_{O}=V_{C C}=5.5 V_{*} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	6	
				0.01	1	$\mu \mathrm{A}$	$\begin{aligned} & T_{F}=0 \mathrm{~mA}_{A} V_{O}=V_{C C}=15 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		
	${ }^{1} \mathrm{OH}$				50	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{O}=V_{C C}=15 \mathrm{~V}$		
Logic Low Supply Current	${ }^{\text {I CCL }}$			40		$\mu \mathrm{A}$	$I_{F}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $V_{C C}=15 \mathrm{~V}$		
Logic High Supply Current	${ }^{1} \mathrm{CCH}^{*}$			0.02	1	$\mu \mathrm{A}$	$\begin{aligned} & T_{F}=O \mathrm{~mA}, V_{O}=\text { Open, } V C C=15 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		
	ICCH				2	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{O}=0 \mathrm{pen}, V_{C C}=15 \mathrm{~V}$		
Input Forward Voltage	$V_{F}{ }^{*}$			1.5	1.7	\checkmark	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	3	
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1,6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$I_{F}=16 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$B V_{R}{ }^{*}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Input Capacitance	CIN			60		pF	$f=1 \mathrm{MHz}, V_{F}=0$		
Input-Output Insulation Leakage Current	IL-O*				1.0	${ }_{\mu} \mathrm{A}$	45\% Relative Humidity, $\mathbf{t}=5 \mathrm{~s}$ $V_{1-0}=3000 \mathrm{Vdc}_{,} T_{A}=25^{\circ} \mathrm{C}$		6
Resistance (Input-Output)	R1-O			10^{12}		Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$		6
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$			0.6		pF	$f=1 \mathrm{MHz}$		6
Transistor DC Current Gain	hfe			175		-	$V_{0}=5 V_{1} 1_{0}=3 \mathrm{~mA}$		

**All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Switching Specifications at $T_{A}=25^{\circ} \mathrm{C} V_{C C}=5 V, I_{F}=16 \mathrm{~mA}$, unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay		6N135		0.5	1.5	$\mu \mathrm{s}$	$R_{L}=4.1 \mathrm{k} \Omega$	5×9	8,9
Time To Logic Low at Output	${ }_{\text {IPHL* }}$	$\begin{aligned} & 6 \mathrm{~N} 136 \\ & \text { HCPL-2502 } \end{aligned}$		0.2	0.8	$\mu \mathrm{s}$	$R_{L}=1.9 \mathrm{k} \Omega$		
Propagation Delay		6 N 135		0.4	1.5	$\mu \mathrm{s}$	$R_{L}=4.1 \mathrm{k} \Omega$	5,9	8,9
Time To Logic High at Output	tPLH*	$\begin{aligned} & \text { 6N136 } \\ & \text { HCPL-2502 } \end{aligned}$		0.3	0.8	$\mu \mathrm{s}$	$R_{L}=1.9 \mathrm{k} \Omega$		
Common Mode Tran-		6 N 135		1000		$\mathrm{V} / \mathrm{\mu s}$	$I_{F}=0 \mathrm{~mA}, V_{C M}=10 \mathrm{Vp-p}, R_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	10	7,8,9
sient Immunity at Logic High Level Output	$\mathrm{CMH}_{\mathrm{H}}$	$\begin{aligned} & \text { 6N136 } \\ & \text { HCPL-2502 } \end{aligned}$		1000		$\mathrm{V} / \mathrm{\mu s}$	$I_{F}=0 \mathrm{~mA}, V_{C M}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \cdot \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
Common Mode Transient Immunity at Logic Low Level Output	CM_{L}	6 W135		-1000		$\mathrm{V} / \mathrm{\mu} \mathrm{~s}$	$V_{C M}=10 \mathrm{~V}$ p-p, $R_{L}=4.1 \mathrm{k} \Omega$	10	7,8,9
		$\begin{aligned} & \text { 6N136 } \\ & \text { HCPL-2502 } \end{aligned}$		-1000		$\mathrm{V} / \mathrm{\mu}$	$V_{C M}=10 V_{p-p}, R_{L}=1.9 \mathrm{k} \Omega$		
Bandwidth	BW			2		MH_{z}	$R_{L}=100 \Omega$	8	10

NOTES

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100%.
6. Device considered a two-terminal device: Pins $1,2,3$, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $d V_{C M} / d t$ on the leading edge of the common mode
pulse $V_{C M}$, to assure that the output vvill remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low evel is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$)
8. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.

9 . The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.

Figure 1. DC and Pulsed Transfer Characteristics.

Figure 3. Input Current vs. Forward Voltage.

Figure 5. Propagation Delay vs. Temperature.

Figure 2. Current Transfer Ratio vs. Input Current.

Figure 4. Current Transfer Ratio vs. Temperature

Figure 6. Logic High Output Current vs. Temperature.

Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.

Figure 8. Frequency Response.

Figure 9. Switching Test Circuit. *

Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

Features

- DATA RATES TO 250K b/s NRZ
- LSTTL COMPATIBLE
- HIGH COMMON MODE TRANSIENT IMMUNITY: $>1000 \mathrm{~V} / \mu \mathrm{s}$
- 3000 Vdc WITHSTAND TEST VOLTAGE
- OPEN COLLECTOR OUTPUT
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)

Description

The HCPL-2503 optocoupler is specified for use in LSTTL to LSTTL and TTL to LSTTL logic interfaces. A nominal 8 mA sink current through the input LED will provide enough output current for proper operation of 1 LSTTL gate under worst-case conditions when used in the recommended circuits. The CTR of the HCPL-2503 is 15% minimum at $\mathrm{IF}_{\mathrm{F}}=8$ mA .

The HCPL-2503 contains a light emitting diode and an integrated photon detector with a 3000 V dc withstand test between input and output. Separate connection for the photodiode bias and output transistor collector reduce the basecollector capacitance, giving improved speed compared with conventional phototransistor couplers.

Applications

- HIGH SPEED LOGIC GROUND ISOLATION -LSTTL-TO-LSTTL AND TTL-TO-LSTTL

Absolute Maximum Ratings

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Average Input Current - IF . 25mA ${ }^{[1]}$
Peak Input Current - IF $50 \mathrm{~mA}^{|2|}$
(50% duty cycle, 1 ms pulse width)
Peak Transient Input Current - IF 1.0 A
($\leq 1 \mu$ s pulse width, 300 pps)
Reverse Input Voltage - V_{R} (Pin 3-2) 5V
Input Power Dissipation $45 \mathrm{~mW}^{[3]}$
Average Output Current - IO (Pin 6) 8mA
Peak Output Current - Io 16mA
Emitter-Base Reverse Voltage (Pin 5-7) 5V
Supply and Output Voltage - Vcc (Pin 8-5),
Vo (Pin 6-5)
-0.5 V to 7 V
Base Current - IB (Pin 7) 5mA
Output Power Dissipation 100mW ${ }^{|4|}$
See notes, following page.)
CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Electrical Specifications, LSTTL/LSTTL

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	15	22	,	\%	$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}_{,} \mathrm{VO}=0.5 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1	5
		11	15		\%	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{O}=0.5 \mathrm{~V}, \mathrm{VcC}=4.5 \mathrm{~V}$		
Logic Low Output Voltage	Vol		0.2	0.5	V	$\begin{aligned} & I \mathrm{I}=8 \mathrm{~mA}, 10=0.7 \mathrm{~mA}, \\ & \mathrm{VCC}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Supply Current	ICCL		20		$\mu \mathrm{A}$	$\begin{aligned} & I_{F}=8 \mathrm{~mA} \\ & V_{O}=O p e n, V_{C C}=5.5 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}		1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2	
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}=8 \mathrm{~mA}$		

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low at Outpu:	tphi.		1.0	1.5	$\mu \mathrm{S}$		4,6	8
Propagation Delay Time to Logic High at Output	tPLH		1.5	2.5	$\mu \mathrm{S}$		4,6	8
Common Mode Transient Immunity at Logic High Level Output	CMH		1000		$\mathrm{V} / \mu \mathrm{s}$	$I_{F}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	7	7,8
Common Mode Transient Immunity at Logic Low Level Output	CML		-1000		$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=10 V_{p-p}$	7	7,8

Electrical Specifications, TTL/LSTTL

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	12	18		\%	$\begin{aligned} & I_{F}=16 \mathrm{~mA}, V_{O}=0.5 \mathrm{~V} \\ & V_{C C}=4.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1	5
		9	13		\%	$\begin{aligned} & I_{F}=16 \mathrm{~mA}_{,} V_{O}=0.5 \mathrm{~V}, \\ & V_{C C}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	Vol		0.2	0.5	V	$\begin{aligned} & \mathrm{IF}=16 \mathrm{~mA}, \mathrm{IO}=1.1 \mathrm{~mA}, \\ & \mathrm{VCC}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Supply Current	ICCL		40		$\mu \mathrm{A}$	$\begin{aligned} & I_{F}=16 \mathrm{~mA} \\ & V_{O}=O p e n, V_{C C}=5.5 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}		1.5	1.7	V	$\mathrm{If}=16 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	2	
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{lF}=16 \mathrm{~mA}$		

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$V_{C C}=5 \mathrm{~V}, \mathrm{IF}_{\mathrm{F}}=16 \mathrm{~mA}, R_{\mathrm{L}}=4.7 \mathrm{k} \Omega$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low at Output	tPHL		0.4	1.5	$\mu \mathrm{~s}$		4,6	9
Propagation Delay Time to Logic High at Output	tPLH		1.5	2.5	$\mu \mathrm{~s}$		4,6	9
Common Mode Tran- Sient Immunity at Logic High Level Output	CMH		1000		$\mathrm{~V} / \mu \mathrm{s}$	$\mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}$ pup		7
Common Mode Tran- Sient Immunity at Logic Low Level Output	CML		-1000		$\mathrm{~V} / \mu \mathrm{s}$	$\mathrm{VCM}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	7,9	

*All typicals at $25^{\circ} \mathrm{C}$.
(See following page for notes.)

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Logic High Output Current	OH		0.5		nA	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, I_{F}=0 \mathrm{~mA} \\ & V_{O}=V C C=5.5 \mathrm{~V} \end{aligned}$	5	
				50	\# ${ }^{\text {A }}$	$\begin{aligned} & \mathrm{IF}=0 \mathrm{~mA} \\ & V_{O}=V_{C C}=5.5 \mathrm{~V} \end{aligned}$		
Logic High Supply Current	ICCH		0.05	4	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & V_{O}=O \mathrm{Open}, V_{C C}=5.5 \mathrm{~V} \end{aligned}$		
Input Reverse Breakdown Voltage	V_{R}	5			V	$\mathrm{t}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Input Capacitance	CIN		60		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		
Input-Output Insulation Leakage Current	H.-0			1.0	$\mu \mathrm{A}$	45% Relative Humidity, $t=5 \mathrm{~s}$ $\mathrm{V}_{1-\mathrm{O}}=3000 \mathrm{~V} \mathrm{dc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6
Resistance (Input-Output)	R_{1} - O		1012		Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$		6
Capacitance (Input-Output)	$\mathrm{Clm}_{\text {to }}$		0.6		pF	$f=1 \mathrm{MHz}$		6

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I/O, to the forward LED input current, IF, times 100%.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together
7. Common mode transient immunity in Logic High level is the maximum tolerable (positive) dV CM/dt on the leading edge of the common mode pulse VCM, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dVCm} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
8. The 7.5 k load represents 1 LSTTL until load of 0.36 mA and a $20 \mathrm{k} \Omega$ pull-up resistor.
9. The 4.7 k load represents 1 LSTTL unit load of 0.36 mA and an $8.2 \mathrm{k} \Omega$ pull-up resistor.

Figure 1. Current Transfer Ratio vs. Input Current

Figure 3. Current Transfer Ratio vs. Temperature

Figure 4. Propagation Delay vs. Temperature

Figure 5. Logic High Output Current vs. Temperature

Figure 6. Switching Test Circuit

Figure 7. Test Circuit for Transient Immunity and Typical Waveforms

Recommended Operation

The HCPL-2503 optocoupler is specified for use in LSTTL-to-LSTTL and TTL-to-LSTTL interfaces. The recommended circuits show the interface design and give suggested component values. The input current IF is given as both a nominal value and a range. The range in I_{F} results from the tolerances in $V_{C C}$ and the input resistor RIN. The CTR of the optocoupler
is given as the minimum initial value over temperature, taken directly from the Electrical Specifications. The value given for $\mathrm{IOL}_{(\mathrm{min}}$) is based on the minimum CTR and the minimum IF_{F} using worst case values for R_{L} and $V_{C c}$. The resulting lol (\min) has ample design margin, allowing more than 20% for CTR degradation even under these worst case conditions. For additional information on CTR degradation see Application Note 1002.

Figure 8. Recommended Circuits

Recommended Circuit Design Parameters

Parameter	Symbol	LSTTL to LSTTL	TTL to LSTTL	Units	Comments	Fig.	Note
INPUT							
Logic Low Output Voltage - Input Gate	Vol (A)	0.5	0.4	V	Maximum		
Supply Voltage - Input	Vac1	5.0	5.0	V	$\pm 5 \%$		
Input Resistor	Rin	360	180	Ω	$\pm 5 \%$	8a	
		430	200			8b	
Input Current	IF	8	16	mA	Nominal		
Input Current Range	IF	$6.75-10$	14.0-20	mA		8a	
			14.5-20			8b	
OUTPUT							
Logic Low Output Voltage - HCPL-2503	Vol(B)	0.5	0.5	V	Maximum		
Supply Voltage - Output	VCC2	5.0	5.0	V	$\pm 5 \%$		
Pull-Up Resistor	R_{L}	20	8.2	$\mathrm{k} \Omega$	$\pm 5 \%$		11
Required Current Sink for Logic Low	loL (max)	0.61	1.0	mA	Worst Case Vcc, RL, Ili. ${ }^{\text {B }}$		12
HCPL-2503 Current Transfer Ratio	CTR	11	9	\%	Minimum $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	
Logic Low Output Current - HCPL-2503	IOL (min)	0.74	1.26 1.30	mA	Worst Case Vcc, CTR, IF $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\frac{8 a}{8 b}$	13
Data Rate	fo	250	250	Kb/s	$N R Z, T_{A}=25^{\circ} \mathrm{C}$		14

Notes:

10. The inverting circuit has higher power consumption and must use open collector gates on the input
11. The load resistor R_{L} must be large enough to guarantee logic LOW and small enough to guarantee logic HIGH under worst case conditions:

$$
\frac{V_{C C}(\max)-V_{O L}}{I_{O L}(2503)-I_{I L}(B)} \leq R_{L} \leq \frac{V_{C C}(\min)-V_{I H}(B)}{I_{O H}(2503)-I_{I H}(B)}
$$

The selection of R_{L} is the same for both inverting and non-inverting circuits.
12. The maximum current sink required for logic LOW is
$\operatorname{loL}_{\mathrm{L}}(\max)=\mathrm{I}_{\mathrm{L}}(\mathrm{B})(\max)+\mathrm{I}_{\mathrm{R}}(\max)$ where I_{R} is the current through R_{L}.
13. The ratio of $\mathrm{IOL}(\min)$ to $\mathrm{IOL}(\max)$ gives the design margin for CTR degradation. See Application Note 1002.
14. The maximum data rate is defined as
$f_{D}=\frac{1}{t_{P H L}+t_{P L H}}$ bits/second NRZ

HIGH SPEED OPTOCOUPLER

Absolute Maximum Ratings

Reverse Input Voltage $-\mathrm{V}_{\mathrm{R}}(\operatorname{Pin} 3-2) \ldots \ldots \ldots \ldots$.
Input Power Dissipation
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
Electrical Specifications $\left(T_{A}=25^{\circ} \mathrm{C}\right)$ unless otherwise specified.

Parameter	Symbol	Min.	Max.	Units	Test Conditions	Note
Current Transfer Ratio	CTR	15	40	\%	IF $=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$	5
	CTR	8		\%	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$	
Logic Low Output Voltage	VOL		0.4	V	$I_{F}=16 \mathrm{~mA}, \mathrm{I}_{0}=2.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	
Logic High Output Current	IOH		50	nA	$\mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{0}=\mathrm{Vcc}=10 \mathrm{~V}$	
	IOH		25	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}_{1} \mathrm{~V}_{0}=\mathrm{V}_{C C}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	
Input Forward Voltage	V_{F}		1.8	V	$1 \mathrm{~F}=20 \mathrm{~mA}$	
Input Reverse Current	If		50	$\mu \mathrm{A}$	$V_{R}=3 V$	
Input-Output Insulation Leakage Current	I-O		1.0	$\mu \mathrm{A}$	45% Relative Humidity, $t=5 \mathrm{~s}$ $V_{1-0}=1500 \mathrm{Vdc}$	6
Resistance (Input-Output)	$\mathrm{R}_{1-\mathrm{O}}$	10^{9}		Ω	$\mathrm{V}_{1-0}=100 \mathrm{Vdc}$	6
Transistor DC Current Gain	hfe	100	400	-	$\mathrm{V}_{0}=5 \mathrm{~V}, 10=3 \mathrm{~mA}$	
Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$		1.3	pF	$\mathrm{f}=1 \mathrm{MHz}$	6

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, I_{F}=16 \mathrm{~mA}$, unless otherwise specified

Parameter	Symbol	Min.	Max.	Units	Test Conditions	Note
Propagation Delay Time to Logic Low at Output (Fig. 1)	$t_{\text {PHL }}$		0.8	μs	$R_{L}=1.9 \mathrm{k} \Omega$	7
Propagation Delay Time to Logic High at Output (Fig. 1)	$t_{\text {PLH }}$		0.8	$\mu \mathrm{s}$	$R_{L}=1.9 \mathrm{k} \Omega$	7
Breakdown Voltage Collector/Emitter	$V_{\text {(BR) }} \mathrm{CEO}$	22		V	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	8
Breakdown Voltage Collector/Base	$V_{(B R)} \mathrm{CBO}$	40		V	$I_{C}=10 \mu A$	
Breakdown Voltage Emitter/Base	$V_{(B R)}$ EBO	3		V	$I_{E}=10 \mu \mathrm{~A}$	
Collector/Base Current	$\mathrm{I}_{\mathrm{CBO}}$		50	nA	$V_{C B}=22 \mathrm{~V}$	

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, lo, to the forward LED input current, IF, times 100%.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. The $1.9 \mathrm{~K} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{~K} \Omega$ pull-up resistor.
8. Duty Cycle $\leq 2 \%$, Pulse Width $\leq 300 \mu \mathrm{~s}$.

Figure 1. Switching Test Circuit.

[^1]

Features

- HIGH SPEED: 1 Mbit/s
- TTL COMPATIBLE
- HIGH COMMON MODE TRANSIENT IMMUNITY: $>1000 \mathrm{~V} / \mu \mathrm{s}$
- HIGH DENSITY PACKAGING
- 3000 Vdc WITHSTAND TEST VOLTAGE
- 3 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUTS
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)

Applications

- Line Receivers - High common mode transient immunity ($>1000 \mathrm{~V} / \mu \mathrm{s}$) and low input-output capacitance (0.6 pF).
- High Speed Logic Ground Isolation - TTL/TTL, TTL/ LTTL, TTL/CMOS, TTL/LSTTL.
- Replace Pulse Transformers - Save board space and weight.
- Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.
- Polarity Sensing.
- Isolated Analog Amplifier - Dual channel packaging enhances thermal tracking.

Absolute Maximum Ratings

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Average Input Current - I_{F} (each channel) $25 \mathrm{~mA}[1]$
Peak Input Current $-I_{F}$ (each channel) 50mA[2]
(50\% duty cycle, 1 ms pulse width)
Peak Transient Input Current - I_{F} (each channel) 1.0 A
($\leqslant 1 \mu$ s pulse width, 300 pps)
Reverse Input Voltage $-\mathrm{V}_{\mathrm{R}}$ (each channel) 5V
Input Power Dissipation (each channel) 45mW[3]
Average Output Current - I_{0} (each channel) 8mA
Peak Output Current - I_{O} (each channel). 16mA
Supply and Output Voltage - $\mathrm{V}_{\mathrm{CC}}(\operatorname{Pin} 8-5), \mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 7,6-5)$
Output Power Dissipation (each channel) 35 mW [4]

Description

The HCPL-2530/31 dual couplers contain a pair of light emitting diodes and integrated photon detectors with 3000 V dc electrical insulation between input and output. Separate connection for the photodiode bias and output transistor collectors improve the speed up to a hundred times that of a conventional phototransistor coupler by reducing the base-collector capacitance.

The HCPL-2530 is suitable for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the -2530 is 7% minimum at $I_{F}=16 \mathrm{~mA}$.

The HCPL-2531 is suitable for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR of the -2531 is 19% minimum at $I_{F}=16 \mathrm{~mA}$.

Electrical Specifications
Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Sym.	Denvice HCPL	Min.	Typ.**	Max.	Units	- Test Conditions	Fig.	Nota
Current Transfer Ratio	CTR	2530	7	18		\%	$\begin{aligned} & I_{F}=16 \mathrm{~mA}, V_{O}=0.5 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	12	5,6
		2531	19	24		\%			
		2530	5	13	:	\%	If $=16 \mathrm{~mA}, V_{O}=0.5 V, V_{C C}=4,5 \mathrm{~V}$		
		2531	15	21		\%			
Logic Low Output Voltage	V OL	2530		0.1	0.5	V	$\begin{aligned} & T_{F}=16 \mathrm{~mA}^{\circ}, \mathrm{L}_{\mathrm{O}}=1.1 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		5
		2531		0.1	0.5	V	$\begin{aligned} & T_{F}=16 \mathrm{~mA}, 10=2.4 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		
Logic High Output Current	IOH		-	3	500	nA	$\begin{aligned} & T_{A}=25^{\circ} C_{,} I_{F 1}=I_{F 2}=0 \\ & V_{O 1}=V_{O 2}=V_{C C}=5.5 V \end{aligned}$	6	5
		\cdots		\because	50	$\mu \mathrm{A}$	$\begin{aligned} & I_{F 1}=I_{F 2}=0, \\ & V_{O 1}=V_{O 2}=V_{C C}=15 V \end{aligned}$		5
Logic Low Supply Current	ICCL			80		$\mu \mathrm{A}$	$\begin{aligned} & I_{F 1}=I_{F_{2}}=16 \mathrm{~mA} \\ & V_{O 1}=V_{O 2}=O O_{n}, V_{C C}-15 V \end{aligned}$		
Logic High Supply Current	1 CCH			0.05	4	$\mu \mathrm{A}$	$\begin{aligned} & I_{F 1}=I_{F 2}=O \mathrm{~mA} \\ & V_{O 1}=V_{O 2}=O p n, V_{C C}=15 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}			1.5	1.7	V	$I_{F}=16 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	3	5
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$I_{F}=16 \mathrm{~mA}$		5
Input Reverse Breakdown Voltage	V_{R}		5			V	$I_{F}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5
Input Capacitance	CIN			60		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		5
Input - Output Insulation Leakage Current	I-O				1.0	$\mu \mathrm{A}$	45\% Relative Humidity, $t=5 \mathrm{~s}$ $V_{i-O}=3000 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7
Resistance (Input-Output)	R1-0		\cdots	10^{12}		Ω	$\mathrm{V}_{1-0}=500 \mathrm{Vdc}$		7
Capacitance (Input-Output)	$\mathrm{Cl}_{1} \mathrm{O}$			0.6		pF	$f=1 \mathrm{MHz}$		7
Input-Input Insulation Leakage Current	1/-1			0.005		$\mu \mathrm{A}$	45\% Relative Humidity, $\mathrm{t}=5 \mathrm{~s}$ $V_{1-1}=500 \mathrm{Vdc}$		8
Resistance (Input-Input)	R_{1-1}			10^{11}		Ω	$V_{1-1}=500 \mathrm{Vdc}$		8
Capacitance (Input-Input)	c_{1-1}			0.25		pF	$f=1 \mathrm{MHz}$		8

**All typicals at $25^{\circ} \mathrm{C}$.
Switching Specifications at $T_{A}=25^{\circ} \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V}, 1_{F}=16 \mathrm{~mA}$, unless otherwise specified

Parameter	Sym.	Device HCPL.	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time To Logic Low at Output	tPHL	2530		0.3	1.5	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	5,9	10,11
		2531		0.2	0.8	$\mu \mathrm{s}$	$R_{L}=1.9 \mathrm{k} \Omega$		
Propagation Delay Time to Logic High at Output	tPLH	2530		0.4	1.5	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	5,9	10,11
		2531		0.3	0.8	$\mu \mathrm{s}$	$R_{L}=1.9 \mathrm{k} \Omega$		
Common Mode Transient Immunity at Logic High Level Output	CM_{H}	2530		1000		$\mathrm{V} / \mathrm{\mu s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{R}_{L}=4.1 \mathrm{k} \Omega, \mathrm{V}_{C M}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	10	9,10,11
		2531		1000		$\mathrm{V} / \mathrm{\mu s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega^{\prime}, V_{C M}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		
Common Mode Transient Immunity at Logic Low Level Output	CM_{L}	2530		-1000		V/us	$V_{C M}=10 V_{p-p,} R_{L}=4.1 \mathrm{kS}$	10	9,10,11
		2531		-1000		$\mathrm{V} / \mathrm{m}_{\mathrm{s}}$	$V_{C M}=10 V_{p-p,} R_{L}=1.9 \mathrm{k} \Omega$		
Bandwidth	BW			3		MHz	$R_{L}=100 \Omega$	8	12

NOTES

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA}{ }^{\circ} \mathrm{C}$ 2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. 3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. . Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Each channel.
. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{0}, to the forward LED input current, I_{F}, times 100%. Device considered a two-terminal device: Pins 1,2,3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
2. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
3. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $d V_{C M} / d t$ on the leading edge of the common mode pulse V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV} / \mathrm{CM} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $V_{C M}$, to assure that the output will remain in a Logic Low state (i.e., $V_{\mathrm{O}}<0.8 \mathrm{~V}$).
4. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.

Figure 1. DC and Pulsed Transfer Characteristics.

Figure 3. Input Current vs. Forward Voltage.

Figure 5. Propagation Delay vs. Temperature.

Figure 2. Current Transfer Ratio vs. Input Current.

Figure 4. Current Transfer Ratio vs. Temperature.

Figure 6. Logic High Output Current vs. Temperature.

Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.

Figure 8. Frequency Response.

Figure 9. Switching Test Circuit.

Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

Features

- DATA RATES TO 250k b/s NRZ
- LSTTL COMPATIBLE
- HIGH COMMON MODE TRANSIENT IMMUNITY: $>1000 \mathrm{~V} / \mu \mathrm{s}$
- HIGH DENSITY PACKAGING
- 3000 Vdc WITHSTAND TEST VOLTAGE
- OPEN COLLECTION OUTPUTS
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)

Description

The HCPL-2533 is a dual channel optocoupler which is specified for use in LSTTL to LSTTL and TTL to LSTTL logic interfaces. A nominal 8 mA LSTTL sink current through the input LED will provide enough output current for proper operation of 1 LSTTL gate under worst-case conditions when used in the recommended circuits. The CTR of the HCPL2533 is 15% minimum at $\mathrm{I}_{F}=8 \mathrm{~mA}$.

The HCPL-2533 contains a pair of light emitting diodes and integrated photon detectors with a 3000 V dc withstand test between input and output. Separate connection for the photodiode bias and output transistor collector reduce the basecollector capacitance, giving improved speed compared with conventional phototransistor couplers.

Applications

- HIGH SPEED LOGIC GROUND ISOLATION -LSTTL-TO-LSTTL AND TTL-TO-LSTTL

Absolute Maximum Ratings

Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Operating Temperature $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Average Input Current - IF (each channel) $25 \mathrm{~mA}^{|1|}$
Peak Input Current - IF (each channel) 50mA ${ }^{|2|}$
(50\% duty cycle, 1 ms pulse width)
Peak Transient Input Current If (each channel) 1.0 A
($\leq 1 \mu$ s pulse width, 300 pps)
Reverse Input Voltage $-\mathrm{V}_{\mathrm{R}}$ (each channel) 5 V Input Power Dissipation (each channel) $\ldots45 \mathrm{~mW}^{|3|}$ Average Output Current - Io (each channel) 8 mA Peak Output Current - Io (each channel) 16mA
Supply and Output Voltage - Vcc (Pin 8-5),
Vo (Pin 7,6-5)
-0.5 V to 7 V
Output Power Dissipation (each channel) $35 \mathrm{~mW}^{|4|}$
(See notes, following page.)

Electrical Specifications, LSTTL/LSTTL

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Condlions	Fig.	Note
Current Transfer Ratio	CTR	15	22		\%	$\begin{aligned} & I_{F}=8 \mathrm{~mA}_{,} V O=0.5 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1	5,6
		11	15		\%	If $=8 \mathrm{~mA}, V_{O}=0.5 \mathrm{~V}, \mathrm{VCC}=4.5 \mathrm{~V}$		
Logic Low Output Voltage	VOL		0.2	0.5	V	$\begin{aligned} & \text { If }=8 \mathrm{~mA}, 10=0.7 \mathrm{~mA} \\ & V C C=4.5 \mathrm{~V} \end{aligned}$		5
Logic Low Supply Current	ICCL		40		$\mu \mathrm{A}$	$\begin{aligned} & I_{1}=I_{F 2}=8 \mathrm{~mA} \\ & V_{O 1}=V_{O 2}=O p e n, V C C=5.5 \mathrm{~V} \end{aligned}$		\checkmark
input Forward Voltage	V_{F}		1.5	1.7	V	IF $=8 \mathrm{~mA}^{\text {, }} \mathrm{TA}=25^{\circ} \mathrm{C}$	2	5
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	If $=8 \mathrm{mmA}$		5

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$V_{C C}=5 \mathrm{~V}, I_{F}=8 \mathrm{~mA}, R_{L}=7.5 \mathrm{k} \Omega$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low at Output	tphit		0.8	1.5	$\mu \mathrm{S}$		4.6	10
Propagation Delay Time to Logic High at Output	tple		1.0	2.5	${ }_{\mu} \mathrm{S}$		4,6	10
Common Mode Transient Immunity at Logic High Level Output	$\mathrm{CMH}^{\text {H }}$		1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	7	9,10
Common Mode Transient Immunity at Logic Low Level Output	CML		-1000		$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=10 V_{p-p}$	7	9,10

Electrical Specifications, TTL/LSTTL

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Condilions	Fig.	Note
Current Transfer Ratio	CTR	12	18		\%	$\begin{aligned} & \text { If }=16 \mathrm{~mA}, V O=0.5 \mathrm{~V}, \\ & V C C=4.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1	5,5
		9	13		\%	$\begin{aligned} & \mathrm{If}=16 \mathrm{~mA}, V O=0.5 \mathrm{~V}, \\ & V C C=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	Vot.		0.2	0.5	V	$\begin{aligned} & I F=16 \mathrm{~mA}, 10=1.1 \mathrm{~mA}, \\ & V C C=4.5 \mathrm{~V} \end{aligned}$		5
Logic Low Supply Current	ICCL		80		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{IF}_{1}=\mathrm{IFO}_{2}=16 \mathrm{~mA} \\ & \mathrm{VO}_{\mathrm{O}}=\mathrm{VO}_{\mathrm{O}}=\mathrm{Open}, \mathrm{VCC}_{C}=5.5 \mathrm{~V} \end{aligned}$		
input Forward Voltage	V_{F}		1.5	1.7	\checkmark	$\mathrm{IF}_{5}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2	5
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$m v /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}_{\mathrm{F}}=16 \mathrm{~mA}$		5

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$V_{C C}=5 \mathrm{~V}, I_{F}=16 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low at Output	tphis		0.3	1.5	$\mu \mathrm{s}$		4,6	11
Propagation Delay Time to Logic High at Output	tPLH		1.1	2.5	$\mu \mathrm{S}$		4,6	11
Common Mode Transient Immunity at Logic High Level Output	$\mathrm{CMH}^{\text {H}}$		1000		$V / \mu \mathrm{s}$	$\mathrm{IF}^{\prime}=0 \mathrm{~mA}, ~ \vee C M=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	7	9,11
Common Mode Transient Immunity at Logic Low Level Output	CML		-1000		$V / \mu s$	$V C M=10 V_{p-p}$	7	9,11

Electrical Specifications

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Nole
Logic High Output Current	lOH		0.5		nA	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, I_{F 1}=I F R 2 O \mathrm{~mA} \\ & V O 1=V_{O 2}=V_{C C}=5.5 \mathrm{~V} \end{aligned}$	5	5
				50	${ }_{\mu} \mathrm{A}$	$\begin{aligned} & I_{F_{1}}=I_{F 2}=0 \mathrm{~mA} \\ & V_{O 1}=V_{O 2}=V_{C C}=5.5 \mathrm{~V} \end{aligned}$		5
Logic High Supply Current	ICCH		0.05	4	$\mu \mathrm{A}$	$\begin{aligned} & T_{\mathrm{F}_{4}}=\mathrm{I}_{2} \mathrm{OmA} \\ & \mathrm{VO}_{1}=\mathrm{VO}_{\mathrm{O}}=\mathrm{Open}, \mathrm{VCC}=5.5 \mathrm{~V} \end{aligned}$		
Input Reverse Breakdown Voltage	V_{R}	5			V	$\mathrm{IF}_{F}=10 \mu \mathrm{~A}_{\text {t }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5
Input Capacitance	Cin		60		pF	$\mathrm{f}=1 \mathrm{MHz}, V_{F}=0 \mathrm{~V}$		5
Input-Output Insulation Leakage Current	11-0			1.0	$\mu \mathrm{A}$	45% Relative Humidity, $t=5 \mathrm{~s}$ $\mathrm{V}, \mathrm{O}=3000 \mathrm{~V} \mathrm{dc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7
Resistance (Input-Output)	R1-O		1012		Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$		7
Capacitance (Input-Output)	$\mathrm{Cl}-\mathrm{O}$		0.6		pF	$f=1 \mathrm{MHz}$		7
Input-Input Insulation Leakage Current	$\mathrm{H}-1$		0.005		${ }_{\mu} \mathrm{A}$	45% Relative Humidity, $\mathrm{t}=5 \mathrm{~s}$ $V_{1-1}=500 \mathrm{~V}$ dc		8
Resistance (Input-Input)	Ri-i		1011		Ω	$\mathrm{V}_{1-1}=500 \mathrm{~V} d \mathrm{c}$		8
Capacitance (Input-Input)	Cl_{H}		0.25		pF	$f=1 \mathrm{MHz}$		8

Notes

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Each channel
6. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, Io, to the forward LED input current, IF, times 100%
7. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6,7, and 8 shorted together.
8. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV} \mathrm{CM} / \mathrm{dt}$ on the leading edge of the common mode pulse $V_{C M}$, to assure that the output will remain in a Logic High state (i.e., Vo $>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dVCm} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $V_{C M}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
10. The 7.5 k load represents 1 LSTTL until load of 0.36 mA and a $20 \mathrm{k} \Omega$ pull-up resistor.
11. The 4.7 k load represents 1 LSTTL unit load of 0.36 mA and an $8.2 \mathrm{k} \Omega$ pull-up resistor.

Figure 1. Current Transfer Ratio vs. Input Current

Figure 3. Current Transfer Ratio vs. Temperature

Figure 4. Propagation Delay vs. Temperature

Figure 5. Logic High Output Current vs. Temperature

Figure 6. Switching Test Circuit

Figure 7. Test Circuit for Transient Immunity and Typical Waveforms

Recommended Operation

The HCPL-2533 optocoupler is specified for use in LSTTL-to-LSTTL and TTL-to-LSTTL interfaces. The recommended circuits show the interface design and give suggested component values. The input current I_{F} is given as both a nominal value and a range. The range in I_{F} results from the tolerances in V_{CC} and the input resistor RIN. The CTR of the optocoupler
is given as the minimum initial value over temperature, taken directly from the Electrical Specifications. The value given for $\mathrm{IOL}_{(\mathrm{min})}$) is based on the minimum CTR and the minimum IF_{F} using worst case values for R_{L} and $V_{C c}$. The resulting lol(\min) has ample design margin, allowing more than 20\% for CTR degradation even under these worst case conditions. For additional information on CTR degradation see Application Note 1002.

Figure 8. Recommended Circuits

Recommended Circuit Design Parameters

Parameter	Symbol	LSTTL to LSTTL	TTL to LSTTL	Units	Comments	Fig.	Note
INPUT							
Logic Low Output Voltage - Input Gate	Vol(A)	0.5	0.4	V	Maximum		
Supply Voltage - Input	Vcct	5.0	5.0	V	$\pm 5 \%$		
Input Resistor	RIN	360	180	Ω	$\pm 5 \%$	8 a	
		430	200			8b	
Input Current	If	8	16	mA	Nominal		
Input Current Range	if	6.75-10	14.0-20	mA		8 a	
			14.5-20			8 b	
OUTPUT							
Logic Low Output Voltage - HCPL-2533	Vol (B)	0.5	0.5	V	Maximum		
Supply Voltage - Output	Vcc2	5.0	5.0	V	$\pm 5 \%$		
Pull-Up Resistor	R_{L}	20	8.2	k Ω	$\pm 5 \%$		13
Required Current Sink for Logic Low	loL (max)	0.61	1.0	mA	Worst Case Vcc, RL, ILI(B)		14
HCPL-2533 Current Transfer Ratio	CTR	11	9	\%	Minimum $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
Logic Low Output Current - HCPL-2533	lol (min)	0.74	1.26 1.30	mA	Worst Case Vcc, CTR, If $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Ba	15
Data Rate	fo	250	250	Kb / s	$N R Z, T_{A}=25^{\circ} \mathrm{C}$		16

Notes

12. The inverting circuit has higher power consumption and must use open collector gates on the input.
13. The load resistor RL must be large enough to guarantee logic LOW and small enough to guarantee logic HIGH under worst case conditions:

$$
\frac{V_{C C}(\max)-V_{O L}}{I_{L L}(2533)-I_{L L}(B)} \leq R_{L} \leq \frac{V_{C C}(\min)-V_{I H}(B)}{\operatorname{IOH}(2533)-I_{I H}(B)}
$$

The selection of R_{L} is the same for both inverting and non-inverting circuits.
14. The maximum current sink required for logic LOW is:
$\operatorname{loL}(\max)=\operatorname{IL}(B)(\max)+I_{R}(\max)$
where I_{R} is the current through R_{L}
15. The ratio of loL (min) to loL (\max) gives the design margin for CTR degradation. See Application Note 1002.
16. The maximum data rate is defined as

$$
\mathrm{fD}_{\mathrm{D}}=\frac{1}{\mathrm{tPHL}+\mathrm{tPLH}} \text { bits } / \text { second } N R Z
$$

LOW INPUT CURRENT LOGIC GATE OPTOCOUPLER

Features

- COMPATIBLE WITH LSTTL, TTL, AND CMOS LOGIC
- 2.5 MBAUD GUARANTEED OVER TEMPERATURE
- LOW INPUT CURRENT (1.6 mA)
- WIDE VCc RANGE (4.5 TO 20 VOLTS)
- THREE STATE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- GUARANTEED PERFORMANCE FROM $0^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION

Applications

- Isolation of High Speed Logic Systems
- Computer-Peripheral Interfaces
- Microprocessor System Interfaces
- Ground Loop Elimination
- Pulse Transformer Replacement
- Isolated Buss Driver
- High Speed Line Receiver

Description

The HCPL-2200 is an optically coupled logic gate that combines a GaAsP LED and an integrated high gain photon detector. The detector has a three state output stage and has a detector threshold with hysteresis. The three state output eliminates the need for a pullup resistor and allows for direct

drive of data busses. The hysteresis provides typically 0.1 mA of differential mode noise immunity and eliminates the potential for output signal chatter. The detector IC has an internal shield that provides a guaranteed common mode transient immunity of 1,000 volts $/ \mu \mathrm{sec}$, equivalent to rejecting a 300 volt sinusoid at 1 MHz . Improved power supply rejection eliminates the need for special power supply bypassing precautions.

The Electrical and Switching Characteristics of the HCPL2200 are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The HCPL-2200 is guaranteed to operate over a VCC range of 4.5 volts to 20 volts. Low IF and wide VCC range allow compatibility with TTL, LSTTL, and CMOS logic. Low If and low Icc result in lower power consumption compared to other high speed optocouplers. Logic signals are transmitted with a typical propagation delay of 160 nsec when a 120 pF peaking capacitor is used in parallel with the $1.1 \mathrm{~K} \Omega$ current limiting resistor.
The HCPL-2200 is useful for isolating high speed logic interfaces, buffering of input and output lines, and implementing isolated line receivers in high noise environments.

Recommended Operating Conditions

Pazameter	Symbol	Min.	Max.	Units
Power Supply Voltage	VCC	4.5	20	Volts
Forward Input Current	IfloN $)$	1.6^{*}	5	mA
Forward Input Current	If(OFF)	-	0.1	mA
Operating Temperature	TA_{A}	0	$85 \cdot 1 /$	${ }^{\circ} \mathrm{C}$
Fan Out	N		4	TTL Loads

[^2]
Recommended Circuit Design

The 120 pF capacitor may be omitted in applications where 500 ns propagation delay is sufficient.

Figure 1. Recommended LSTTL to LSTTL Circuit

Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$)
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}[1]$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Average Forward Input Current - IF 10 mA
Peak Transient Input Current - IF 1A
($\leq 1 \mu$ s Pulse Width, 300 pps)
Reverse Input Voltage 5V
Supply Voltage - Vcc 0.0 V min., 20V max.
Three State Enable Voltage
$-V_{E}$ \qquad -0.5 V min., 20 V max.
Output Voltage - Vo
-0.5 V min., 20 V max.
Total Package Power
Dissipation - P
$210 \mathrm{~mW}{ }^{11]}$
Average Output Current - lo 25 mA

Electrical Characteristics for $0^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}}{ }^{11 \mid} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}$,
$0.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{OFF})} \leq 0.1 \mathrm{~mA}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

Switching Characteristics For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}|1| \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}$,
$0.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{OFF})} \leq 0.1 \mathrm{~mA}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output Level	tprat		210		ns	Without Peaking Capacitor	6,7	4,5
			160	400		With Peaking Capacitor		
Propagation Detay Time to Logic High Output Level	tPi. ${ }^{\text {d }}$		170		ns	Without Peaking Capacitor	6,7	4,5
			115	400		With Peaking Capacitor		
Output Enable Time to Logic High	tpzir		25		ns		8,10	
Output Enable Time to Logic Low	tpzi.		28		ns		8.9	
Output Disable Time from Logic High	tehz		105		ns		8,10	
Output Disable Time from Logic Low	telz		60		ns		8,9	
Output Rise Time (10-90\%)	tr		55		ns		6,11	
Output Fall Time $990-10 \%$)	t		15		ns		6.11	
Logic High Common Mode Transient Immunity	$\mathrm{CMH}^{\text {H }}$	-1000	-10,000		$\mathrm{V} / \mu \mathrm{s}$	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{l}=1.6 \mathrm{~mA}$	12,13	6
Logic Low Common Mode Transient immunity	CML	1000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$T_{A}=25^{\circ} \mathrm{C}, ~ I F=0$	12,13	6

Figure 2. Typical Logic Low Output Voltage vs. Temperature

Figure 5. Typical Input Diode Forward Characteristic

Figure 3. Typical Logic High Output Current vs. Temperature

ALL DIODES ARE 1 N916 OR 1N3064
infut if

Figure 6. Test Circuit for $\mathbf{t}_{\text {PLH }}, \mathbf{t}_{\mathbf{P H L}}, \mathbf{t}_{\mathbf{r}}$, and \mathbf{t}_{f}

Figure 4. Output Voltage vs. Forward Input Current

Figure 7. Typical Propagation Delays vs. Temperature

Figure 8. Test Circuit for $\mathbf{t}_{\text {PHZ }}, \mathbf{t}_{\text {PZH }}, \mathrm{t}_{\text {PLZ }}$, and $\mathrm{t}_{\mathrm{PZL}}$

Figure 11. Typical Rise, Fall Time vs. Temperature

Figure 9. Typical Logic Low Enable Propagation Delay vs. Temperature

Figure 10. Typical Logic High Enable Propagation Delay vs. Temperature

Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

Figure 13. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude

Figure 14. Recommended LSTTL to CMOS Circuit

Figure 15. Alternative LED Drive Circuit

Figure 16. Series LED Drive with Open Collector Gate ($6.81 \mathrm{~K} \Omega$ Resistor Shunts IOH from the LED)

The 120 pF capacitor may be omitted in applications where 500 ns propagation delay is sufficient.

Notes:

1. Derate total package power dissipation, P, linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Duration of output short circuit time should not exceed 10 ms .
3. Device considered a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The tPLH propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The tPHL propagation delay is measured from the 50%
point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
5. When the peaking capacitor is omitted, propagation delay times may increase by 100 ns .
6. $C M_{L}$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{VO}<0.8 \mathrm{~V}$). $C M_{H}$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state $\left(V_{O}>2.0 \mathrm{~V}\right)$.

LSTTL/TTL COMPATIBLE OPTOCOUPLER

Figure 1.

Features

- LSTTL/TTL COMPATIBLE: 5V SUPPLY
- ULTRA HIGH SPEED
- LOW INPUT CURRENT REQUIRED
- HIGH COMMON MODE REJECTION
- GUARANTEED PERFORMANCE OVER TEMPERATURE
- 3000 Vdc WITHSTAND TEST VOLTAGE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)

Description Applications

The 6N137 consists of a GaAsP photon emitting diode and a unique integrated detector. The photons are collected in the detector by a photodiode and then amplified by a high gain linear amplifier that drives a Schottky clamped open collector output transistor. The circuit is temperature, current and voltage compensated.
This unique isolator design provides maximum DC and AC circuit isolation between input and output while achieving LSTTL/TTL circuit compatibility. The isolator operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, such that a minimum input current of 5 mA will sink an eight gate fan-out (13 mA) at the output with 5 volt V_{CC} applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 45 ns . The enable input provides gating of the detector with input sinking and sourcing requirements compatible with LSTTL/TTL interfacing and a propagation delay of 25 ns typical.
The 6N137 can be used in high speed digital interfacing applications where common mode signals must be rejected, such as for a line receiver and digital programming of floating power supplies, motors, and other machine control systems. The elimination of ground loops can be accomplished in system interfaces such as between a computer and a peripheral memory, printer, controller, etc.
The open collector output provides capability for bussing, OR'ing and strobing.

OUTLINE DRAWING*

Recommended Operating Conditions

Absolute Maximum Ratings*

(No derating required up to $70^{\circ} \mathrm{C}$)
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
Peak Forward Input (1.6mm below seating plane)
Current $40 \mathrm{~mA}(1 \leq 1 \mathrm{msec}$ Duration)
Average Forward Input Current 20 mA
Reverse Input Voltage .. 5V
Enable Input Voltage ... 5.5V
(Not to exceed $V_{\text {cc }}$ by more than 500 mV)
Supply Voltage - VCC 7V (1 Minute Maximum)
Output Current - Io ... 50 mA
Output Collector Power Dissipation 85mW
Output Voltage - V ${ }_{0}$... 7V
**6.3mA condition permits at least 20\% CTR degradation guardband. Initial switching threshold is 5 mA or less.

Electrical Characteristics

OVER RECOMMENDED TEMPERATURE ($T_{A}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$) UNLESS OTHERWISE NOTED

Parameter	Symbal	Min.	Typ.**	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	${ }^{1} \mathrm{OH}{ }^{*}$		2	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V}, \\ & I_{F}=250 \mu A, V_{E}=2.0 \mathrm{~V} \end{aligned}$	6	
Low Level Output Voltage	VOL. ${ }^{*}$		0.4	0.6	V	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=5 \mathrm{~mA}, \\ & V_{E H}=2.0 \mathrm{~V} \\ & I_{\mathrm{OL}}(\operatorname{Sin} k \mathrm{ing})=13 \mathrm{~mA} \end{aligned}$	3,5	
High Level Enable Current	IEH		-0.8		mA	$V_{C C}=5.5 \mathrm{~V}, V_{E}=2.0 \mathrm{~V}$		
Low Level Enable Current	$1_{E L}{ }^{*}$		-1.2	-2.0	mA	$V_{C C}=5.5 \mathrm{~V}, V_{E}=0.5 \mathrm{~V}$		
High Level Supply Current	$\mathrm{I}_{\mathrm{CCH}}{ }^{*}$		7	15	mA	$\begin{aligned} & V_{C C}=5.5 V, I_{F}=0 \\ & V_{E}=0.5 V \end{aligned}$		
Low Level Supply	$\mathrm{I}_{\mathrm{CCL}}{ }^{*}$		13	18	mA	$\begin{aligned} & V_{C C}=5.5 V, I_{F}=10 \mathrm{~mA} \\ & V_{E}=0.5 V \end{aligned}$		
Input-Output Insulation Leakage Current	$11.0 *$			1.0	$\mu \mathrm{A}$	Relative Humidity $=45 \%$ $\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s} \\ & V_{1-O}=3000 \mathrm{Vdc} \end{aligned}$		5
Resistance (Input-Output)	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	$V_{1-O}=500 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$		5
Capacitance (Input-Output)	$\mathrm{Cl}_{1} \mathrm{O}$		0.6		pF	$f=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5
Input Forward Voltage	$V_{F}{ }^{*}$		1.5	1.75	V	$T_{F}=10 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$	4	8
Input Reverse Breakdown Voltage	$B V_{R}{ }^{*}$	5			V	$I_{R}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		60		pF	$V_{F}=0, f=1 \mathrm{MHz}$		
Current Transfer Ratio	CTR		700		$\%$	$\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	2	7

**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to High Output Level	tPLH^{*}		45	75	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$	7,9	1
Propagation Delay Time to Low Output Level	${ }_{\text {tPHL }}{ }^{*}$		45	75	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega_{,} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{i}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$	7.9	2
Output Rise-Fafl Time (10-90\%)	t_{r}. t_{f}		20,30		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$		
Propagation Delay Time of Enable from $V_{E H}$ to $V_{E L}$.	telf		40		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EH}}=3.0 \mathrm{~V}, \\ & \mathrm{~V}_{E L}=0.5 \mathrm{~V} \end{aligned}$	8	3
Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$	$t_{\text {EHL }}$		25		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \mathrm{~V}_{\mathrm{EH}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EL}}=0.5 \mathrm{~V} \end{aligned}$	8	4
Common Mode Transient Immunity at Logic High Output Level	CM_{H}		50		$v / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=10 V R_{L}=350 \Omega_{x} \\ & V_{O}(\min .)=2 V, I_{F}=0 \mathrm{~mA} \end{aligned}$	11	6
Common Mode Transient Immunity at Logic Low Output Level	CM_{L}		-150		$v / \mu s$	$\begin{aligned} & \mathrm{V}_{C M}=10 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{~V}_{\mathrm{O}}(\max .)=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \end{aligned}$	11	6

Operating Procedures and Definitions

Logic Convention. The 6N137 is defined in terms of positive logic.
Bypassing. A ceramic capacitor (.01 to $0.1 \mu \mathrm{~F}$) should be connected from pin 8 to pin 5 (Figure 12). Its purpose is to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching properties. The total lead length between capacitor and coupler should not exceed 20 mm .
Polarities. All voltages are referenced to network ground (pin 5). Current flowing toward a terminal is considered positive. Enable Input. No external pull-up required for a logic (1), i.e., can be open circuit.

Note: Dashed characteristics - denote puised operation only.

Figure 2. Optocoupler Collector Characteristics.

Figure 3. Input-Output Characteristics.

NOTES:

1. The $t_{\text {PLH }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input puise to the 1.5 V point on the trailing edge of the output pulse.
2. The $t_{\text {PHL }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to 1.5 V point on the leading edge of the output pulse.
3. The $t_{E L H}$ enable propagation delay is measured from the 1.5 V point of the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
4. The $t_{E H L}$ enable propagation delay is measured from the 1.5 V point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
5. Device considered a two terminal device: pins 2 and 3 shorted together, and pins $5,6,7$, and 8 shorted together.
6. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $d V_{C M} / d t$ on the leading edge of the common mode pulse, $V_{C M}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
7. DC Current Transfer Ratio is defined as the ratio of the output collector current to the forward bias input current times 100%.
8. At $10 \mathrm{~mA} \mathrm{~V}_{\mathrm{F}}$ decreases with increasing temperature at the rate of $1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Figure 4. Input Diode Forward Characteristic.

Figure 5. Output Voltage, V_{OL} vs. Temperature and Fan-Out.

Figure 6. Output Current, I_{OH} vs. Temperature ($\mathrm{I}_{\mathrm{F}}=\mathbf{2 5 0} \mu \mathrm{A}$).

Figure 7. Test Circuit for tPHL and tPLH.**

Figure 8. Test Circuit for ${ }^{t} E L H$ and $t E H L$.

Figure 10. Response Delay Between TTL Gates.

Figure 9. Propagation Delay, tPHL and tPLH vs. Pulse Input Current, IFH.

Figure 11. Test Circuit for Transient Immunity and Typical Waveforms.

Figure 12. Recommended Printed Circuit Board Layout.

HIGH CMR, HIGH SPEED OPTOCOUPLER

Features

- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION (CMR)
- HIGH SPEED
- GUARANTEED MINIMUM COMMON MODE TRANSIENT IMMUNITY: $1000 \mathrm{~V} / \mu \mathrm{s}$
- LSTTL/TTL COMPATIBLE
- LOW INPUT CURRENT REQUIRED: 5mA
- GUARANTEED PERFORMANCE OVER TEMPERATURE: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- STROBABLE OUTPUT
- 3000 Vdc WITHSTAND TEST VOLTAGE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)

Description

The HCPL-2601 optically coupled gate combines a GaAsP light emitting diode and an integrated high gain photon detector. An enable input allows the detector to be strobed. The output of the detector I.C. is an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of 1000 volts $/ \mu \mathrm{sec}$., equivalent to rejecting a 300 volt $P-P$ sinusoid at 1 MHz .
This unique design provides maximum D.C. and A.C. circuit isolation while achieving TTL compatibility. The isolator D.C. operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ allowing troublefree system performance. This isolation is achieved with a typical propagation delay of 35 nsec .
The HCPL-2601's are suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

Applications

- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Switching Power Supply
- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement

Recommended Operating

COnditiOnS
Sym. Min. Max. Units Input Current, Low Level $I_{F I}$ 0 250 $\mu \mathrm{~A}$ Input Current, High Level $I_{F H}$ 6.3^{*} 15 mA Supply Voltage, Output $V_{C E}$ 4.5 5.5 V High Level Enable Voltage $V_{E H}$ 2.0 $V_{C C}$ V Low Level Enable Voltage $V_{E I}$ 0 0.8 V Fan Out (TTL Load) N 8 Operating Temperature T_{A} 0 70 ${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$)
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature
$260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Forward Input Current - I_{F} (see Note 2) 20 mA Reverse Input Voltage 5 V Supply Voltage $-\mathrm{V}_{\mathrm{CC}} \ldots \ldots . . .7 \mathrm{~V}$ (1 Minute Maximum)

(Not to exceed $\mathrm{V}_{C C}$ by more than 500 mV) Output Collector Current-Io 25 mA Output Collector Power Dissipation 40 mW
Output Collector Voltage - V_{O}........................ 7 V

Electrical Characteristics

(Over Recommended Temperature, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	1 OH		20	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V} \\ & I_{F}=250 \mu \mathrm{~A}, V_{E}=2.0 \mathrm{~V} \end{aligned}$	2	
Low Level Output Voltage	VoL		0.4	0.6	V	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=5 \mathrm{~mA} \\ & V_{\mathrm{E}}=2.0 \mathrm{~V} \\ & l_{\mathrm{OL}}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$	3.5	
High Level Supply Current	ICCH		10	15	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \\ & V_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		
Low Level Supply Current	lece		15	19	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=10 \mathrm{~mA}, \\ & V_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		
Low Level Enable Current	IEr.		-1.4	-2.0	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$		
High Level Enable Current	$\mathrm{IEH}^{\text {en }}$		-1.0		mA	$V_{\text {CC }}=5.5 \mathrm{~V}, V_{\mathrm{E}}=2.0 \mathrm{~V}$		
High Level Enable Voltage	$\mathrm{V}_{\text {EH }}$	2.0			V			11
Low Level Enable Voltage	V_{EL}			0.8	V			
Input Forward Voltage	$V_{\text {F }}$		1.5	1.75	V	$I_{F}=10 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$	4	
Input Reverse Breakdown Voltage	$B V_{R}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Input Capacitance	$\mathrm{Cln}^{\text {IN }}$		60		pF	$V_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$		
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$t_{F}=10 \mathrm{~mA}$		
Input-Output Insulation Leakage Current	I_{1-0}			1	$\mu \mathrm{A}$	$\begin{aligned} & \text { Relative Humidity }=45 \% \\ & T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s} \\ & V_{\mathrm{I}-\mathrm{O}}=3000 \mathrm{Vdc} \end{aligned}$		3
Resistance (Input-Output)	R_{1-0}		10^{12}		n	$\mathrm{V}_{1-0}=500 \mathrm{~V}$		3
Capacitance (Input-Output)	C_{1-0}		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		3

*All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics
 $\left(T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to High Output level	$t_{\text {PLH }}$		40	75	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$	6	4
Propagation Delay Time to Low Output Level	$t_{\text {phe }}$		40	75	ns		6	5
Output Rise Time ($10-90 \%$)	t_{4}		20		ns			
Output Fall Time (90-10\%)	t_{f}		30		ns			
Propagation Delay Time of Enable from $V_{\text {eh }}$ to $V_{\text {EL }}$	$\mathrm{t}_{\text {ELH }}$		25		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EH}}=3 \mathrm{~V} . \\ & \mathrm{V}_{\mathrm{EL}}=0 \mathrm{~V} \end{aligned}$	9	6
Propagation Delay Time of Enable from $V_{\text {EL }}$ to $V_{E H}$	tehl		25		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{IF}_{\mathrm{F}}=7.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EH}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V} \end{aligned}$	9	7
Common Mode Transient Immunity at High Output Level	CM_{H}	1000	10,000		$\mathrm{V} / \mu \mathrm{S}$	$\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak) } \\ & V_{O}(\min .)=2 \mathrm{~V}, \\ & R_{\mathrm{L}}=350 \Omega . \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$	12	8,10
Common Mode Transient Immunity at Low Output Level	CM_{1}	-1000	-10,000		$\mathrm{V} / \mu \mathrm{s}$	$V_{C M}=50 \mathrm{~V}$ (peak), V_{0} (max.) $=0.8 \mathrm{~V}$, $R_{L}=350 \Omega, I_{F}=7.5 \mathrm{~mA}$	12	9,10

NOTES:

1. Bypassing of the power supply line is required, with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator as illustrated in Figure 15. The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to 0.1 $\mu \mathrm{F}$) may be needed to suppress regenerative feedback via the power supply.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50$ ns maximum pulse width, provided average current does not exceed 20 mA.
3. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together
4. The $t_{\text {PI. }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The $t_{\text {PHL }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. The $t_{\mathrm{El}, \mathrm{H}}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
7. The $t_{\text {EHI }}$, enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
8. $C M_{H}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high. logic state (i.e., $\mathrm{V}_{\left(0 t^{\prime \prime}\right.}$ $>2.0 \mathrm{~V}$).
9. $C M_{1}$, is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{O})} \cdots<0.8$ V).
10. For sinusoidal voltages, $\left(\frac{\left|d v_{C M}\right|}{d t}\right)_{\max }=\pi f_{C M} V_{C M}(p-p)$
11. No external pull up is required for a high logic state on the enable input.

Figure 2. High Level Output Current vs. Temperature.

Figure 5. Output Voltage vs. Forward Input Current.

Figure 3. Low Level Output Voltage vs. Temperature.

Figure 6. Test Circuit for $t_{\text {PHL }}$ and $t_{\text {PLH }}$.

Figure 4. Input Diode Forward Characteristic.

Figure 7. Propagation Delay vs. Temperature.

Features

- LINE TERMINATION INCLUDED - NO EXTRA CIRCUITRY REQUIRED
- ACCEPTS A BROAD RANGE OF DRIVE CONDITIONS
- GUARDBANDED FOR LED DEGRADATION
- LED PROTECTION MINIMIZES LED EFFICIENCY DEGRADATION
- HIGH SPEED - 10Mbs (LIMITED BY TRANSMISSION LINE IN MANY APPLICATIONS)
- INTERNAL SHIELD PROVIDES EXCELLENT COMMON MODE REJECTION
- EXTERNAL BASE LEAD ALLOWS "LED PEAKING" AND LED CURRENT ADJUSTMENT
- 3000 Vdc WITHSTAND TEST VOLTAGE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)

Applications

- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Current Sensing
- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement

Description

The HCPL-2602 optically coupled line receiver combines a GaAsP light emitting diode, an input current regulator and an integrated high gain photon detector. The input regulator serves as a line termination for line receiver applications. It clamps the line voltage and regulates the LED current so line reflections do not interfere with circuit performance.
The regulator allows a typical LED current of 8.5 mA before it starts to shunt excess current. The output of the detector IC is an open collector Schottky clamped transistor. An enable input gates the detector. The internal detector shield provides a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{sec}$, equivalent to rejecting a 300 V P-P sinusoid at 1 MHz .
$D C$ specifications are defined similar to TTL logic and are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ allowing trouble free interfacing with digital logic circuits. An input current of 5 mA will sink an eight gate fan-out (TTL) at the output with a typical propagation delay from input to output of only 45 nsec .
The HCPL-2602's are useful as line receivers in high noise environments that conventional line receivers cannot tolerate. The higher LED threshold voltage provides improved immunity to differential noise and the internally shielded detector provides orders of magnitude improvement in common mode rejection with little or no sacrifice in speed.

Electrical Characteristics

(Over Recommended Temperature, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	l OH		20	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.5 V_{,} V_{O}=5.5 \mathrm{~V} \\ & I_{1}=250 \mu A_{,} V_{E}=2.0 \mathrm{~V} \end{aligned}$	4	
Low Level Output Voltage	VOL		0.4	0.6	V	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{1}=5 \mathrm{~mA} \\ & V_{E}=2.0 \mathrm{~V}, \\ & \mathrm{O}_{\mathrm{OL}}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$	2,5	2
Input Voltage	V_{1}		2.0	2.4	V	$\boldsymbol{I}=5 \mathrm{~mA}$	3	
			2.3	2.7		$1=60 \mathrm{~mA}$	3	
Input Reverse Voltage	V_{R}		0.75	0.95	V	$\mathrm{I}_{\mathrm{R}}=5 \mathrm{~mA}$		
Low Level Enable Current	$\mathrm{IEL}_{\text {L }}$		-1.4	-2.0	mA	$V_{C C}=5.5 \mathrm{~V}, V_{E}=0.5 \mathrm{~V}$		
High Level Enable Current	IEH		-1.0		mA	$V_{C C}=5.5 \mathrm{~V}, V_{E}=2.0 \mathrm{~V}$		
High Level Enable Voltage	$V_{E H}$	2.0			V			11
Low Level Enable Voltage	$V_{\text {EL }}$			0.8	V			
High Level Supply Current	lCCH		10	15	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{1}=0, \\ & V_{E}=0.5 \mathrm{~V} \end{aligned}$		
Low Level Supply Current	lCCL		16	19	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, 1_{1}=60 \mathrm{~mA} \\ & V_{E}=0.5 \mathrm{~V} \end{aligned}$		
Input Capacitance	Cl_{1}		90		pF	$V_{1}=0, f=1 \mathrm{MHz}$ (PIN 2-3)		
Input-Output Insulation Leakage Current	$\mathrm{I}_{1-\mathrm{O}}$			1	$\mu \mathrm{A}$	$\begin{aligned} & \text { Relative Humidity }=45 \% \\ & T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}, \\ & V_{1-0}=3000 \mathrm{Vdc} \end{aligned}$		3
Resistance (Input-Output)	$\mathrm{R}_{1-\mathrm{O}}$		1012		Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V}$		3
Capacitance (Input-Output)	$\mathrm{Cl}_{1} \mathrm{O}$		0.6		pF	$f=1 \mathrm{MHz}$		3

*All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics

$\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right.$)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to High Output Level	tPLH		45	75	ns	$\begin{aligned} & R_{L}=350 \Omega \\ & C_{L}=15 \mathrm{pF} \\ & I_{1}=7.5 \mathrm{~mA} \end{aligned}$	6	4
Propagation Delay Time to Low Output Level	tphL		45	75	ns		6	5
Output Rise Time (10-90\%)	t_{r}		25		ns			
Output Fall Time (90-10\%)	t_{f}		25		ns			
Propagation Delay Time of Enable from $V_{E H}$ to $V_{E L}$	${ }^{\text {teLh }}$		25		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{I}}=7.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EH}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V} \end{aligned}$	10	6
Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$	$t_{\text {EHL }}$		15		ns		10	7
Common Mode Transient Immunity at High Output Level	CM_{H}	1000	10,000		$V / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak), } \\ & V_{0}(\text { min. })=2 \mathrm{~V}, \\ & R_{\mathrm{L}}=350 \Omega, 1_{1}=0 \mathrm{~mA} \end{aligned}$	12	8
Common Mode Transient Immunity at Low Output Level	CM_{L}	-1000	-10,000		$V / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V} \text { (peak), } \\ & \mathrm{V}_{\mathrm{O}}(\text { max. })=0.8 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, 1_{\mathrm{I}}=7.5 \mathrm{~mA} \end{aligned}$	12	9

Using the HCPL-2602 Line Receiver Optocoupler

The primary objectives to fulfill when connecting an optocoupler to a transmission line are to provide a minimum, but not excessive, LED current and to properly terminate the line. The internal regulator in the HCPL2602 simplifies this task. Excess current from variable drive conditions such as line length variations, line driver differences and power supply fluctuations are shunted by the regulator. In fact, with the LED current regulated, the line current can be increased to improve the immunity of the system to differential-mode-noise and to enhance the data rate capability. The designer must keep in mind the 60 mA input current maximum rating of the HCPL-2602, in such cases, and may need to use series limiting or shunting to prevent overstress.

Design of the termination circuit is also simplified; in most cases the transmission line can simply be connected directly to the input terminals of the HCPL-2602 without the need for additional series or shunt resistors. If reversing line drive is used it may be desirable to use two HCPL-2602's, or an external Schottky diode to optimize data rate.

Polarity Non-Reversing Drive

High data rates can be obtained with the HCPL-2602 with polarity non-reversing drive. Figure (a) illustrates how a 74S140 line driver can be used with the HCPL-2602 and shielded, twisted pair or coax cable without any additional components. There are some reflections due to the "active termination" but they do not interfere with circuit performance because the regulator clamps the line voltage. At longer line lengths $t_{P L H}$ increases faster than $t_{\text {PHL }}$ since the switching threshold is not exactly halfway between asymptotic line conditions. If optimum data rate is desired, a series resistor and peaking capacitor can be used to equalize $t_{P L H}$ and $t_{P H L}$. In general, the peaking capacitance should be as large as possible; however, if it is too large it may keep the regulator from achieving turn-off during the negative (or zero) excursions of the input signal. A safe rule:

make $C \leqslant 16 t$

where $C=$ peaking capacitance in picofarads
$t=$ data bit interval in nanoseconds

Polarity Reversing Drive

A single HCPL-2602 can also be used with polarity reversing drive (Figure b). Current reversal is obtained by way of the substrate isolation diode (substrate to collector). Some reduction of data rate occurs, however, because the substrate diode stores charge, which must be removed when the current changes to the forward
direction. The effect of this is a longer t_{PHL}. This effect can be eliminated and data rate improved considerably by use of a Schottky diode on the input of the HCPL-2602.

For optimum noise rejection as well as balanced delays a split-phase termination should be used along with a flipflop at the output (Figure c). The result of current reversal in split-phase operation is seen in Figure (c) with switches A and B both OPEN. The coupler inputs are then connected in ANTI-SERIES; however, because of the higher steady-state termination voltage, in comparison to the single HCPL-2602 termination, the forward current in the substrate diode is lower and consequently there is less junction charge to deal with when switching.
Closing switch B with A open is done mainly to enhance common mode rejection, but also reduces propagation delay slightly because line-to-line capacitance offers a slight peaking effect. With switches A and B both CLOSED, the shield acts as a current return path which prevents either input substrate diode from becoming reversed biased. Thus the data rate is optimized as shown in Figure (c).

Improved Noise Rejection

Use of additional logic at the output of two HCPL-2602's operated in the split phase termination, will greatly improve system noise rejection in addition to balancing propagation delays as discussed earlier.
A NAND flip-flop offers infinite common mode rejection (CMR) for NEGATIVELY sloped common mode transients but requires $t_{P H L}>t_{P L H}$ for proper operation. A NOR flipflop has infinite CMR for POSITIVELY sloped transients but requires $t_{P H L}<t_{P L H}$ for proper operation. An exclusive-OR flip-flop has infinite CMR for common mode transients of EITHER polarity and operates with either $t_{\mathrm{PHL}}>\mathrm{t}_{\mathrm{PLH}}$ or $\mathrm{t}_{\mathrm{PHL}}<\mathrm{t}_{\mathrm{PLH}}$.
With the line driver and transmission line shown in Figure (c), $\mathrm{t}_{\mathrm{PHL}}>\mathrm{t}_{\mathrm{PLH}}$, so NAND gates are preferred in the R-S flip-flop. A higher drive amplitude or different circuit configuration could make $\mathrm{t}_{\mathrm{PHL}}<\mathrm{t}_{\mathrm{PLH}}$, in which case NOR gates would be preferred. If it is not known whether $t_{\mathrm{PHL}}>$ $t_{\text {PLH }}$ or $t_{\text {PHL }}<t_{\text {PLH }}$, or if the drive conditions may vary over the boundary for these conditions, the exclusive-OR flipflop of Figure (d) should be used.

RS-422 and RS-423

Line drivers designed for RS-422 and RS-423 generally provide adequate voltage and current for operating the HCPL-2602. Most drivers also have characteristics allowing the HCPL-2602 to be connected directly to the driver terminals. Worst case drive conditions, however, would require current shunting to prevent overstress of the HCPL-2602.

Figure a. Polarity Non-Reversing.

Figure b. Polarity Reversing, Single Ended.

Figure c. Polarity Reversing, Split Phase.

Figure d. Flip Flop Configurations.

Recommended Operating Conditions

	Sym.	Min.	Max.	Units
Input Current, Low Level	$\mathrm{IIL}_{\mathrm{IL}}$	0	250	$\mu \mathrm{~A}$
Input Current, High Level	$\mathrm{IIH}_{\mathrm{H}}$	5	60	mA
Supply Voltage, Output	$\mathrm{V}_{\text {CC }}$	4.5	5.5	V
High Level Enable Voltage	$\mathrm{V}_{\text {EH }}$	2.0	VCC_{2}	V
Low Level Enable Voltage	$\mathrm{V}_{\text {Fi }}$	0	0.8	V
Fan Out (TTL Load)	N		8	
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature
$260^{\circ} \mathrm{C}$ for 10 s

(1.6mm below seating plane)

Forward Input Current - $I_{\text {I }}$	
Reverse Input Current	60 mA
Supply Voltage - V ${ }_{\text {CC }}$. $7 \mathrm{7V}$ (1 Minute Maximum)	
Enable Input Voltage $-V_{E} \ldots \ldots$ (Not to exceed $V_{C C}$	$\begin{aligned} & \ldots 5.5 \mathrm{~V} \\ & 500 \mathrm{mV} \text {) } \end{aligned}$
Output Collector Current - Io	25 mA
Output Collector Power Dissipation	40 mW
Output Collector Voltage - V_{0}	
Input Current, Pin 4	10 m

NOTES:

1. Bypassing of the power supply line is required, with a $0.01 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator as illustrated in Figure 15. The power supply bus for the isolator(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to 0.1 μ F) may be needed to suppress regenerative feedback via the power supply.
2. The HCPL-2602 is tested such that operation at ! minimum of 5 mA will provide the user a minimum of 20% guardband for LED light output degradation.
3. Device considered a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together
4. The $t_{\text {PI } H \text { I }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse
5. The $t_{\text {PHI }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.

Figure 2. Output Voltage vs. Forward Input Current.

Figure 5. Low Level Output Voltage vs. Temperature.

Figure 3. Input Characteristics.

Figure 6. Test Circuit for $\mathbf{t}_{\mathbf{P H L}}$ and $\mathbf{t}_{\mathrm{PLH}}$

Figure 4. High Level Output Current vs. Temperature.

Figure 7. Propagation Delay vs. Temperature.

Figure 8. Propagation Delay vs. Pulse Input Current.

Figure 11. Enable Propagation Delay vs. Temperature.

Figure 14. Relative Common Mode Transient Immunity vs. Temperature.

Figure 10. Test Circuit for $\mathrm{t}_{\mathrm{EHL}}$ and $\mathrm{t}_{\mathrm{ELH}}$ -

Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

Figure 13. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.

Figure 15. Recommended Printed Circuit Board Layout.

Features

- HIGH DENSITY PACKAGING
- DTL/TTL COMPATIBLE: 5V SUPPLY
- ULTRA HIGH SPEED
- LOW INPUT CURRENT REQUIRED
- HIGH COMMON MODE REJECTION
- GUARANTEED PERFORMANCE OVER TEMPERATURE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)
- 3000Vdc WITHSTAND TEST VOLTAGE

Description/ Applications

The HCPL-2630 consists of a pair of inverting optically coupled gates each with a GaAsP photon emitting diode and a unique integrated detector. The photons are collected in the detector by a photodiode and then amplified by a high gain linear amplifier that drives a Schottky clamped open collector output transistor. Each circuit is temperature, current and voltage compensated.
This unique dual coupler design provides maximum DC and AC circuit isolation between each input and output while achieving DTL/TTL circuit compatibility. The coupler operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, such that a minimum input current of 5 mA in each channel will sink an eight gate fan-out (13 mA) at the output with 5 volt V_{CC} applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 50 nsec.
The HCPL-2630 can be used in high speed digital interface applications where common mode signals must be rejected such as for a line receiver and digital programming of floating power supplies, motors, and other machine control systems. The elimination of ground loops can be accomplished between system interfaces such as between a computer and a peripheral memory, printer, controller, etc.
The open collector output provides capability for bussing, strobing and "WIRED-OR" connection. In all applications, the dual channel configuration allows for high density packaging, increased convenience and more usable board space.

Recommended Operating Conditions

	Sym.	Min.	Max.	Units
Input Current, Low Level Each Channel	IFL	0	250	$\mu \mathrm{~A}$
Input Current, High Level Each Channel	IFH	6.3^{*}	15	mA
Supply Voltage, Output	VCC	4.5	5.5	V
Fan Out (TTL Load) Each Chanrel	N		8	
Operating Temperature	TA	0	70	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings

(No derating required up to $70^{\circ} \mathrm{C}$)
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Peak Forward Input
Current (each channel) 30 mA ($\leqslant 1 \mathrm{msec}$ Duration) Average Forward Input Current (each channel) 15 mA Reverse Input Voltage (each channel) 5V Supply Voltage - V CC 7V (1 Minute Maximum)
Output Current - I_{O} (each channeI) 16 mA
Output Voltage - V_{O} (each channel) 7V
Output Collector Power Dissipation 60 mW

* 6.3 mA condition permits at least 20% CTR degradation guardband. Initial switching threshold is 5 mA or less.

Electrical Characteristics

OVER RECOMMENDED TEMPERATURE ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$) UNLESS OTHERWISE NOTED

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	I_{OH}		2	250	μA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V} \\ & I_{F}=250 \mu \mathrm{~A} \end{aligned}$		3
Low Level Output Voltage	V_{OL}		0.5	0.6	V	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=5 \mathrm{~mA} \\ & I_{O L}(\sin \mathrm{ing})=13 \mathrm{~mA} \end{aligned}$	3	3
High Level Supply Current	$\mathrm{I}_{\mathrm{CCH}}$		14	30	mA	$V_{C C}=5.5 V, I_{F}=0$ (Both Channels)		
Low Level Supply	$I_{\text {CCL }}$		26	36	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=10 \mathrm{~mA} \\ & \text { (Both Channels) } \end{aligned}$		
Input - Output Insulation Leakage Current	1-0			1.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { Relative Humidity }=45 \% \\ & T_{A}=25^{\circ} \mathrm{C}, t=5 s_{r} \\ & V_{1 \ldots \mathrm{O}}=3000 \mathrm{Vdc} \end{aligned}$		4
Resistance (Input-Output)	$\mathrm{R}_{1.0}$		10^{12}		Ω	$V_{1.0}=500 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$		4
Capacitance (Input-Output)	$\mathrm{C}_{1.0}$		0.6		pF	$f=1 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}$		4
Input Forward Voltage	V_{F}		1.5	1.75	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4	7,3
Input Reverse Breakdown Voltage	$B V_{R}$	5			V	$I_{R}=10 \mu \mathrm{~A}, T_{A}=25^{\circ} \mathrm{C}$		
Input Capacitance	CIIN		60		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$		3
Input-Input Insulation Leakage Current	1_{1-1}		0.005		$\mu \mathrm{A}$	$\begin{aligned} & \text { Relative Humidity }=45 \% \\ & t=5 s, V_{1-1}=500 \mathrm{~V} \end{aligned}$		8
Resistance (Input-I nput)	R_{1-1}		10^{11}		Ω	$V_{1-1}=500 \mathrm{~V}$		8
Capacitance (Input-Input)	$\mathrm{Cl}_{1.1}$		0.25		pF	$f=1 \mathrm{MHz}$		8
Current Transfer Ratio	CTR		700		\%	$\mathrm{I}_{F}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	2	6

* All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
EACH CHANNEL

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to High Output Level	${ }_{\text {tPLH }}$		45	75	ns	$\begin{aligned} & R_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$	6,7	1
Propagation Delay Time to Low Output Level	${ }^{\text {tPHL }}$		45	75	ns	$\begin{aligned} & R_{L}=350 \Omega, C_{L}=15 \mathrm{pF} \\ & I_{F}=7.5 \mathrm{~mA} \end{aligned}$	6,7	2
Output Rise Fall Time (10-90\%)	t_{r}, t_{f}		20,30		ns	$\begin{aligned} & R_{L}=350 \Omega, C_{L}=15 \mathrm{pF}, \\ & I_{F}=7.5 \mathrm{~mA} \end{aligned}$		
Common Mode Transient Immunity at High Output Level	CM_{H}		50		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=10 V_{p-p}, \\ & R_{L}=350 \Omega, \\ & V_{O}(\min .)=2 V, I_{F}=0 \mathrm{~mA} \end{aligned}$	9	5
Common Mode Transient Immunity at Low Output Level	CM_{L}		-150		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & R_{\mathrm{L}}=350 \Omega \\ & V_{\mathrm{O}}(\text { max. })=0.8 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA} \end{aligned}$	9	5

NOTE: It is essential that a bypass capacitor ($.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$, ceramic) be connected from pin 8 to pin 5 . Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm . Failure to provide the bypass may impair the switching properties (Figure 5).

NOTES:

1. The tPLH propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
2. The tPHL propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
3. Each channel.
4. Measured between piris 1, 2, 3, and 4 shorted together, and pins 5, 6, 7 , and 8 shorted together.
5. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $d V_{C M} / d t$ on the leading edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
6. DC Current Transfer Ratio is defined as the ratio of the output collector current to the forward bias input current times 100%.
7. At $10 \mathrm{~mA} V F$ decreases with increasing temperature at the rate of $1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
8. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

NOTE: Dashed characteristics indicate pulsed operation.

Figure 2. Optocoupler Transfer Characteristics.

Figure 3. Input-Output Characteristics.

Figure 4. Input Diode Forward Characteristic

Figure 5. Recommended Printed Circuit Board Layout.

Figure 6. Test Circuit for tPHL and tPLH•

Figure 7. Propagation Delay, tPHL and tPLH vs. Pulse Input Current, I FH.

Figure 8. Response Delay Between TTL Gates.

Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

LOW INPUT CURRENT, HIGH GAIN OPTOCOUPLERS

Features

- HIGH CURRENT TRANSFER RATIO - 800\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT - 0.5mA
- TTL COMPATIBLE OUTPUT - 0.1 V VOL
- 3000 Vdc WITHSTAND TEST VOLTAGE
- HIGH COMMON MODE REJECTION - 500V/us
- PERFORMANCE GUARANTEED OVER TEMPERATURE $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- BASE ACCESS ALLOWS GAIN BANDWIDTH ADJUSTMENT
- HIGH OUTPUT CURRENT - 60mA
- DC TO 1M bit/s OPERATION
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)

Description

These high gain series couplers use a Light Emitting Diode and an integrated high gain photon detector to provide 3000 V dc electrical insulation, $500 \mathrm{~V} / \mu$ s common mode transient immunity and extremely high current transfer ratio between input and output. Separate pins for the photodiode and output stage result in TTL compatible saturation voltages and high speed operation. Where desired the V_{CC} and V_{O} terminals may be tied together to achieve conventional photodarlington operation. A base access terminal allows a gain bandwidth adjustment to be made.

The 6N139 is suitable for use in CMOS, LTTL or other low power applications. A 400% minimum current transfer ratio is guaranteed over a $0-70^{\circ} \mathrm{C}$ operating range for only 0.5 mA of LED current.

The 6N138 is suitable for use mainly in TTL applications. Current Transfer Ratio is 300% minimum over $0-70^{\circ} \mathrm{C}$ for an LED current of 1.6 mA [1 TTL unit load (U.L.)]. A 300% minimum CTR enables operation with 1 U.L. in, 1 U.L. out with a $2.2 \mathrm{k} \Omega$ pull-up resistor.

TECHNICAL DATA JANUARY 1983

SCHEMATIC

Applications

- Ground Isolate Most Logic Families - TTL/TTL, CMOS/ TTL, CMOS/CMOS, LTTL/TTL, CMOS/LTTL
- Low Input Current Line Receiver - Long Line or Partyline
- EIA RS-232C Line Receiver
- Telephone Ring Detector
- 117 V ac Line Voltage Status Indicator - Low Input Power Dissipation
- Low Power Systems - Ground Isolation

Absolute Maximum Ratings*

 See notes, following page.

CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
*JEDEC Registered Data

Electrical Specifications
OVER RECOMMENDED TEMPERATURE ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$), UNLESS OTHERWISE SPECIFIED

Parameter	Sym.	Device	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR*	6N139	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 800 \\ & 900 \end{aligned}$		\%	$\begin{aligned} & T_{F}=0.5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & T_{F}=1.6 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$	3	5,6
		6N138	300	600		\%	$T_{F}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$		
Logic Low Output Voltage	VOL	6N139	\cdots	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, I_{O}=6.4 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=5 \mathrm{~mA}, I_{O}=15 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=12 \mathrm{~mA}, I_{O}=24 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$	1.2	6
		6 N 138		0.1	0.4	V	$T_{F}=1.6 \mathrm{~mA}, I^{\prime}=4.8 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}$		
Logic High Output Current	$1 \mathrm{OH}^{*}$	6 N 139		0.05	100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$	-	6
		6N138		0.1	250	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{O}=V_{C C}=7 V$		
Logic Low Supply Current	${ }^{\text {I CCL }}$			0.2		mA	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{C C}=5 \mathrm{~V}$		6
Logic High Supply Current	ICCH			10		nA	$\mathrm{f}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		6 :
Input Forward Voltage	$V_{F}{ }^{*}$			1.4	1.7	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4	
Input Reverse Breakdown Voltage	$B V_{R}{ }^{*}$		5		V		$I_{R}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$		
Input Capacitance	$\mathrm{CIN}^{\text {IN }}$			60		pF	$f=1 \mathrm{MHz}, \mathrm{VF}_{F}=0$		
Input - Output Insulation Leakage Current	1.0*				1.0	$\mu \mathrm{A}$	45% Relative Humidity, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $t=5 \mathrm{~s}, \mathrm{~V}_{1-\mathrm{O}}=3000 \mathrm{Vdc}$		7
Resistance (Input-Output)	$\mathrm{R}_{1.0}$			10^{12}		Ω	$V_{1-0}=500 \mathrm{Vdc}$		7
Capacitance (Input-Output)	$\mathrm{Cl}_{1.0}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		7

**All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted.

Switching Specifications

AT $T_{A}=25^{\circ} \mathrm{C}$

Parameter	Sym.	Device	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time To Logic Low at Output	tPHL*	6N139		$\begin{gathered} 5 \\ 0.2 \end{gathered}$	$\begin{gathered} 25 \\ 1 \end{gathered}$	$\mu \mathrm{s}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$	9	6,8
		6 N 138		1	10	$\mu \mathrm{s}$	$T_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega$		
Propagation Delay Time To Logic High at Output	tPLH*	6N139		$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{gathered} 60 \\ 7 \end{gathered}$	$\mu \mathrm{s}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$	9	6,8
		6N138		4	35	$\mu \mathrm{s}$	$\mathrm{IF}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$		
Common Mode Transient Immunity at Logic High Level Output	CM_{H}			500		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=O m A, R_{L}=2.2 \mathrm{k} \Omega, R_{C C}=0 \\ & V_{\mathrm{Cm}} \mid=10 V_{p-p} \end{aligned}$	10	9,10
Common Mode Transient Immunity at Logic Low Level Output	CM_{L}		-	-500		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega, R_{C C}=0 \\ & \left\|V_{\mathrm{cm}}\right\|=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$	10	9,10

NOTES:

1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I^{O}, to the forward LED input current, I_{F}, times 100%.
6. Pin 7 Open.
7. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
8. Use of a resistor between pin 5 and 7 will decrease gain and delay time. See Application Note 951-1 for more details.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, V_{cm}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{cm}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
10. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge) a series resistor, R CC , should be included to protect the detector $I C$ from destructively high surge currents. The recommended value is $\mathrm{R}_{\mathrm{CC}} \approx \frac{1 \mathrm{~V}}{0.15 \mathrm{IF}(\mathrm{mA})} \mathrm{k} \Omega$

Figure 1. 6N139 DC Transfer Characteristics.

If - FORWARD CURRENT - mA
Figure 3. Current Transfer Ratio vs. Forward Current.

Figure 5. 6N139 Output Current vs. Input Diode Forward Current.

Vo - OUTPUT VOLTAGE - V
Figure 2. 6N138 DC Transfer Characteristics.

Figure 4. Input Diode Forward Current vs. Forward Voltage.

Figure 6. 6N138 Output Current vs. Input Diode Forward Current.

Figure 7. Propagation Delay vs. Temperature.

Figure 8. Non Saturated Rise and Fall Times vs. Load Resistance.

Figure 9. Switching Test Circuit.*

Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

Features

- HIGH CURRENT TRANSFER RATIO - 1000\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- LOW OUTPUT SATURATION VOLTAGE - 0.1V TYPICAL
- HIGH DENSITY PACKAGING
- 3000 Vdc WITHSTAND TEST VOLTAGE
- PERFORMANCE GUARANTEED OVER $0^{\circ} \mathrm{C}$ TO $\mathbf{7 0}{ }^{\circ} \mathrm{C}$ TEMPERATURE RANGE
- HIGH COMMON MODE REJECTION
- DATA RATES UP TO 200K BIT/s
- HIGH FANOUT
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361).

Applications

- Digital Logic Ground Isolation
- Telephone Ring Detector
- EIA RS-232C Line Receiver
- Low Input Current Line Receiver - Long Line or Partyline
- Microprocessor Bus Isolation
- Current Loop Receiver
- Polarity Sensing
- Level Shifting
- Line Voltage Status Indicator - Low input Power Dissipation

Description

The HCPL-2730/31 dual channel couplers contain a separated pair of GaAsP light emitting diodes optically coupled to a pair of integrated high gain photon detectors. They provide extremely high current transfer ratio, 3000V dc electrical insulation and excellent input-output common mode transient immunity. A separate pin for the photodiodes and first gain stages (V_{CC}) permits lower output saturation voltage and higher speed operation than possible with conventional photodarlington type isolators. The separate $V_{C c}$ pin can be strobed low as an output disable. In addition $V_{c c}$ may be as low as 1.6 V without adversely affecting the parametric performance.

Guaranteed operation at low input currents and the high current transfer ratio (CTR) reduce the magnitude and effects of CTR degradation.
The outstanding high temperature performance of this split Darlington type output amplifier results from the inclusion of an integrated emitter-base bypass resistor which shunts photodiode and first stage leakage currents to ground.
The HCPL-2731 has a 400% minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing or RS232C data transmission systems. In addition, the high CTR and high output current capability make this device extremely useful in applications where a high fanout is required. Compatibility with high voltage CMOS logic systems is guaranteed by the $18 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and V_{O} specifications and by testing output high leakage (I_{OH}) at 18 V .
The HCPL-2730 is specified at an input current of 1.6 mA and has a $7 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and V_{O} rating. The 300% minimum CTR allows TTL to TTL interfacing with an input current of only 1.6 mA .
Important specifications such as CTR, leakage current and output saturation voltage are guaranteed over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range to allow trouble-free system operation.

Electrical Specifications

(Over Recommended Temperature $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Unless Otherwise Specified)

Parameter	Sym.	Device HCPL.	Min.	Typ.*	Max.	Units	Test Conditions		Fig.	Note
Current Transfer Ratio	CTR	2731	$\begin{aligned} & 400 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 1100 \\ & \hline \end{aligned}$		\%	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=1.6 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$		2	6,7
		2730	300	1000		$\%$	$I_{F}=1.6 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V}$		2	
Logic Low Output Voltage	VOL	2731		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{F}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & \mathrm{I}_{F}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & \mathrm{I}_{F}=12 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$		1	6
		2730		0.1	0.4	V	$I_{F}=1.6 \mathrm{~mA}, \mathrm{t}_{O}=4.8 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}$			
Logic High	${ }^{1} \mathrm{OH}$	2731		0.005	100	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{O}=V_{C C}=18 \mathrm{~V}$			6
Output Current		2730		0.01	250	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{0}=\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$			
Logic Low	${ }^{1} \mathrm{CCL}$	2731		1.2		mA	$\begin{aligned} & I_{F 1}=I_{F 2}=1.6 \mathrm{~mA} \\ & V_{01}=V_{02}=0 \text { pen } \end{aligned}$	$V_{C C}=18 \mathrm{~V}$		
Supply Current		2730		0.9				$V_{C C}=7 \mathrm{~V}$		
Logic High	${ }^{\mathrm{I} C \mathrm{CH}}$	2731		5		nA	$\begin{aligned} & I_{F 1}=I_{F 2}=0 \mathrm{~mA} \\ & V_{01}=V_{02}=0 \text { pen } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$		
Supply Current		2730		4				$\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$		
Input Forward Voltage	V_{F}			1.4	1.7	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	6
Input Reverse Breakdown Voltage	$B V_{\mathrm{F}}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$			6
Input Capacitance	$\mathrm{Cl}_{\text {IN }}$			60		pF	$f=1 \mathrm{MHz}, V_{F}=0$			6
Input-Output Insulation Leakage Current	110				1.0	$\mu \mathrm{A}$	45% Relative Humidity, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$$t=5 \mathrm{~s}, V_{10}=3000 \mathrm{Vdc}$			8
Resistance (Input-Output)	$\mathrm{R}_{1.0}$			10^{12}		Ω	$V_{1.0}=500 \mathrm{Vdc}$			8
Capacitance (Input-Output)	$\mathrm{C}_{1-\mathrm{O}}$			0.6		pF	$f=1 \mathrm{MHz}$			8
Input-Input Insulation Leakage Current	1_{1-1}			0.005		$\mu \mathrm{A}$	45\% Relative Húmidity, $t=5 \mathrm{~s}$,$V_{\mathrm{H}}=500 \mathrm{Vdc}$			9
Resistance (Input-Input)	$\mathrm{R}_{4.1}$			10^{11}		Ω	$V_{1-1}=500 \mathrm{Vdc}$			9
Capacitance (Input-Input)	C_{1-1}			0.25		pF	$f=1 \mathrm{MHz}$			9

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Sym.	Device HCPL.	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Defay Time		2731		25	100	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$	9	
To Logic Low at Output	tPhil	$2730 / 1$		$\begin{gathered} 5 \\ 0.5 \end{gathered}$	$\begin{gathered} 20 \\ 2 \end{gathered}$	$\mu \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$		
Propagation Delay Time		2731		20	60	μ	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$	9	
To Logic High at Output	tpur	2730/1		$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & 35 \\ & 10 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$		
Common Mode Transient Immunity at Logic High Level Output	CM_{H}			500		$V / \mu s$	$\begin{aligned} & I_{F}=0 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \left\|V_{C M}\right\|=10 V_{\mathrm{p} \cdot \mathrm{D}} \end{aligned}$	10	10,11
Common Mode Transient Immunity at Logic Low Level Output	CM_{L}			-500		V/ $/ \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \left\|V_{\mathrm{CM}}\right\|=10 \mathrm{~V}_{\mathrm{DP}} \end{aligned}$	10	10,11

NOTES: 1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} / /^{\circ} \mathrm{C}$.
3. Derate linearly above $35^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Pin 5 should be the most negative voltage at the detector side.
5. Derate linearly above $35^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output power is collector output power plus supply power.
6. Each channel.
7. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, 1 O , to the forward LED input current, If, times 100%.
8. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
9. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
10. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{d} \mathrm{V}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse V_{CM}, to assure that the output will remain in Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{C M} d t$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
11. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, R_{CC}, should be included to protect the detector IC from destructively high surge currents. The recommendec value is $\mathrm{R}_{\mathrm{CC}} \approx \frac{1 \mathrm{~V}}{0.3 \mathrm{I}_{\mathrm{F}}(\mathrm{mA})} \mathrm{k} \Omega$.

Absolute Maximum Ratings

(50\% duty cycle, 1 ms pulse width)
Reverse Input Voltage $-\mathrm{V}_{\mathrm{R}}$ (each channel)

5V
Input Power Dissipation (each channel) $35 \mathrm{~mW}{ }^{[2]}$
Output Current - I_{O} (each channel) $60 \mathrm{~mA}^{[3]}$
Supply and Output Voltage $-\mathrm{V}_{\mathrm{CC}}(\operatorname{Pin} 8-5), \mathrm{V}_{\mathrm{O}}(\mathrm{Pin}$$7,6-5)^{[4]}$HCPL-2730-0.5 to 7 V
HCPL-2731 -0.5 to 18 V
Output Power Dissipation(each channel)

Vo - OUTPUT VOLTAGE-V

Figure 1. DC Transfer Characteristics.

Figure 4. Input Diode Forward Current vs. Forward Voltage.

Figure 2. Current Transfer Ratio vs. Forward Current.

Figure 5. Supply Current Per Channel vs. Input Diode Forward Current.

Figure 3. Output Current vs. Input Diode Forward Current.

Figure 6. Propagation Delay To Logic Low vs. Pulse Period.

Figure 9. Switching Test Circuit.

Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

Features

- HIGH CURRENT TRANSFER RATIO 1000\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT 0.5 mA
- 3000 Vdc WITHSTAND TEST VOLTAGE
- PERFORMANCE GUARANTEED OVER $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ TEMPERATURE RANGE
- INTERNAL BASE-EMITTER RESISTOR MINIMIZES OUTPUT LEAKAGE
- GAIN-BANDWIDTH ADJUSTMENT PIN
- HIGH COMMON MODE REJECTION
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES INC. (FILE NO. E55361)

Description

The 4N45/46 optocouplers contain a GaAsP light emitting diode optically coupled to a high gain photodetector IC.

The excellent performance over temperature results from the inclusion of an integrated emitter-base bypass resistor which shunts photodiode and first stage leakage currents to ground. External access to the second stage base provides better noise rejection than a conventional photodarlington detector. An external resistor or capacitor at the base can be added to make a gain-bandwidth or input current threshold adjustment. The base lead can also be used for feedback.

The high current transfer ratio at very low input currents permits circuit designs in which adequate margin can be allowed for the effects of CTR degradation over time.
The 4 N 46 has a 350% minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing. Compatibility with high voltage CMOS logic systems is assured by the 20 V minimum breakdown voltage of the output transistor and by the guaranteed maximum output leakage $\left(\mathrm{I}_{\mathrm{OH}}\right)$ at 18 V .
The 4 N 45 has a 250% minimum CTR at 1.0 mA input current and a 7 V minimum breakdown voltage rating.
*JEDEC Registered Data.

Applications

- Telephone Ring Detector
- Digital Logic Ground Isolation
- Low Input Current Line Receiver
- Line Voltage Status Indicator - Low Input Power Dissipation
- Logic to Reed Relay Interface
- Level Shifting
- Interface Between Logic Families

Absolute Maximum Ratings*

Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ead Solder Temperature	$260^{\circ} \mathrm{C}$ for 10

(1.6 mm below seating plane)
Average Input Current - $I_{F} \ldots \ldots$.
Peak Input Current - I_{F}........................... 40 mA
(50% duty cycle, 1 ms pulse width)
Peak Transient Input Current - I_{F}.................. 1.0A
($\leqslant 1 \mu$ s pulse width, 300pps)
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}} \ldots \ldots$. . 5 V
Input Power Dissipation $35 \mathrm{~mW}{ }^{[2]}$
Output Current - I_{O} (Pin 5)
$60 \mathrm{~mA}^{[3]}$
Emitter-Base Reverse Voltage (Pins 4-6) 0.5V
Output Voltage $-\mathrm{V}_{\mathrm{O}}($ Pin 5-4)
4N45 ... -0.5 to 7V
4N46 .. -0.5 to 20V
Output Power Dissipation 100mW[4] See notes, following page

[^3]Electrical Specifications
OVER RECOMMENDED TEMPERATURE ($T_{A}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$), UNLESS OTHERWISE SPECIFIED

Parameter	Sym.	Device	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR*	4N46	$\begin{aligned} & 350 \\ & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \\ & 600 \end{aligned}$		\%	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=1.0 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=10 \mathrm{~mA}, V_{O}=1.2 \mathrm{~V} \end{aligned}$	4	5,6
		4N45	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{gathered} 1200 \\ 500 \end{gathered}$		\%	$\begin{aligned} & I_{F}=1.0 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=10 \mathrm{~mA}, V_{O}=1.2 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	VOL	4N46		$\begin{aligned} & .90 \\ & .92 \\ & .95 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.2 \end{aligned}$	v	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, I_{O L}=1.75 \mathrm{~mA} \\ & I_{F}=1.0 \mathrm{~mA}, 1 O L=5.0 \mathrm{~mA} \\ & I_{F}=10 \mathrm{~mA}, 1 \mathrm{OL}=20 \mathrm{~mA} \end{aligned}$	2	6
		4N45		$\begin{aligned} & .90 \\ & .95 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	V	$\begin{aligned} & I_{F}=1.0 \mathrm{~mA}, \mathrm{IOL}=2.5 \mathrm{~mA} \\ & \mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$		
Logic High Output Current	${ }^{10}{ }^{*}$	4N46		. 001	100	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, \mathrm{~V}_{0}=18 \mathrm{~V}$		6
		4N45		. 001	250	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{0}=5 \mathrm{~V}$		
Input Forward Voltage	$V_{F}{ }^{*}$			1.4	1.7	V	$I^{\prime}=1.0 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$	1	
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$I_{F}=1.0 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$B V_{R}{ }^{*}$		5			V	$I_{R}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$			60		pF	$f=1 \mathrm{MHz}, \mathrm{VF}_{\mathrm{F}}=0$		
Input-Output insulation Leakage Current	1-0*				1.0	$\mu \mathrm{A}$	45% Relative Humidity, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{t}=5 \mathrm{~s}, \mathrm{~V}_{1-\mathrm{O}}=3000 \mathrm{VDC}$		7
Resistance (Input-Output)	R_{1-0}			10^{12}		Ω	$V_{1-0}=500 \mathrm{VDC}$		7
Capacitance (Input-Output)	Cl_{1-0}			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		7

Switching Specifications

AT $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time To Logic Low at Output	tPHL		80		$\mu \mathrm{s}$	$I_{F}=1.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	8	6,8
	tPHL**		5	50	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=220 \Omega$		
Propagation Delay Time To Logic High at Output	tPLH		1500		$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	8	6,8
	${ }^{\text {tPLH* }}$		150	500	$\mu \mathrm{s}$	$I_{F}=10 \mathrm{~mA}, R_{L}=220 \Omega$		
Common Mode Transient Immunity at Logic High Level Output	$\mathrm{CMH}_{\mathrm{H}}$		500		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=0 m A_{,} R_{L}=10 k \Omega \\ & \left\|V_{c m}\right\|=10 V_{p-p} \end{aligned}$	9	9
Common Mode Transient Immunity at Logic L.ow Level Output	CMI		-500		$\mathrm{V} / \mathrm{s} \mathrm{s}$	$\begin{aligned} & I_{F}=1.0 \mathrm{~mA} A, R_{L}=10 \mathrm{k} \Omega \\ & V_{c m} \mid=10 V_{p-p} \end{aligned}$	9	9

*JEDEC Registered Data.
**All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

NOTES:

1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{0}, to the forward LED input current, I_{F}, times 100%.
6. Pin 6 Open.
7. Device considered a two-terminal device: Pins 1, 2, 3 shorted together and Pins 4, 5, and 6 shorted together.
8. Use of a resistor between pin 4 and 6 will decrease gain and delay time. (See Figures 10 and 12).
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, V_{cm}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.5 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{cm}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<2.5 \mathrm{~V}$).

Figure 1. Input Diode Forward Current vs. Forward Voltage.

Figure 4. Current Transfer Ratio vs. Input Current.

Figure 7. Propagation Delay vs Load Resistor.

Figure 2. Typical DC Transfer Characteristics.

Figure 5. Propagation Delay vs. Forward Current.

Figure 3. Output Current vs. Input Current.

Figure 6. Propagation Delay vs. Temperature.

Figure 8. Switching Test Circuit

Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

Figure 10. External Base Resistor, $\mathbf{R X}_{\mathbf{X}}$

Figure 11. Eftect of $\mathbf{R}_{\mathbf{X}}$ On Current Transfer Ratio

Figure 12. Effect of R_{X} On Propagation Delay

Applications

Line Voltage Monitor

Analog Signal Isolation

NOTE: AN INTEGRATOR MAY BE REQUIRED AT THE OUTPUT TO ELIMINATE DIALING PULSES AND LINE TRANSIENTS.

Telephone Ring Detector

CMOS Interface

CHARACTERISTICS

$R_{\text {IN }} \approx 30 \mathrm{M} \Omega, R_{\text {OUT }} \approx 50 \Omega$
$\mathrm{V}_{\text {IN (MAX.) }}=\mathrm{V}_{\mathrm{CC}_{1}}-1 \mathrm{~V}$, LINEARITY BETTER THAN 5\%
DESIGN COMMENTS
$R_{1}-$ NOT CRITICAL $\left(\ll \frac{V_{I N}(M A X .)-\left(-V_{C C_{1}}\right)-V_{B E}}{I_{F} \text { (MAX.) }}\right)_{\text {hFE }} \mathbf{Q}_{3}$
R_{2} - NOT CRITICAL (OMIT IF 0.2 TO O.3V OFFSET IS TOLERABLE)
$R_{4}>\frac{V_{\text {IN (MAX.) }}+V_{B E}}{1 \mathrm{~mA}}$
$R_{5}>\frac{V_{\text {IN (MAX.) }}}{2.5 \mathrm{~mA}}$
NOTE: ADJUST R_{3} SO $V_{O U T}=V_{I N} A T V_{I N}=\frac{V_{I N} \text { (MAX.) }}{2}$

Features

- AC OR DC INPUT
- programmable sense voltage
- HYSTERESIS
- LOGIC COMPATIBLE OUTPUT
- SMALL SIZE: STANDARD 8 PIN DIP
- THRESHOLDS GUARANTEED OVER TEMPERATURE
- THRESHOLDS INDEPENDENT OF LED DEGRADATION
- 3000V WITHSTAND TEST VOLTAGE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)

Description

The HCPL-3700 is a voltage/current threshold detection optocoupler. This optocoupler uses an internal Light Emitting Diode (LED), a threshold sensing input buffer IC, and a high gain photon detector to provide an optocoupler which permits adjustable external threshold levels. The input buffer circuit has a nominal turn on threshold of $2.5 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{TH}+}\right)$ and 3.8 volts ($\mathrm{V}_{\mathrm{TH}}+$) . The addition of one or more external attenuation resistors permits the use of this device over a wide range of input voltages and currents. Threshold sensing prior to the LED and detector elements minimizes effects of different optical gain and LED variations over operating life (CTR degradation). Hysteresis is also provided in the buffer for extra noise immunity and switching stability.

Applications

- LIMIT SWITCH SENSING
- LOW VOLTAGE DETECTOR
- 5V-240V AC/DC VOLTAGE SENSING
- RELAY CONTACT MONITOR
- RELAY COIL VOLTAGE MONITOR
- CURRENT SENSING
- MICROPROCESSOR INTERFACING

The buffer circuit is designed with internal clamping diodes to protect the circuitry and LED from a wide range of over-voltage and over-current transients while the diode bridge enables easy use with ac voltage input.

The high gain output stage features an open collector output providing both TTL compatible saturation voltages and CMOS compatible breakdown voltages.

The HCPL-3700, by combining several unique functions in a sirgle package, provides the user with an ideal component for industrial control computer input boards and other applications where a predetermined input threshold optocoupler level is desirable.

Absolute Maximum Ratings (No derating required up to $70^{\circ} \mathrm{C}$,

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	Ts	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	TA	-25	85	${ }^{\circ} \mathrm{C}$	
Lead Temperature			260	${ }^{\circ} \mathrm{C}$	1
Cycle Time			10	sec	
Average	lin		50	mA	2
Tnput Current Surge			140		2,3
Transient			500		
Input Voltage (Pins 2-3)	$V_{\text {IN }}$	-0.5		V	
Input Power Dissipation	$\mathrm{PiN}_{\text {I }}$		230	mW	4
Total Package Power Dissipation	P		305	mW	5
Output Power Dissipation	Po		210	mW	6
Output Current	10		30	mA	7
Supply Voltage (Pins 8-5)	Vcc	-0.5	20	\checkmark	
Output Voltage (Pins 6-5)	Vo	-0.5	20	V	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	VCC	4.5	18	V	
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Operating Frequency	f	0	4	KHz	8

Switching Characteristics
 at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Parameter	Symbol	Min.	Typ. ${ }^{9}$	Max.	Units	Conditions	Fig.	Note
Propagation Delay Time to Logic Low Output Level	tpHL		4.0	15	$\mu \mathrm{S}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	6,9	10
Propagation Delay Time to Logic High Output Level	tPL.H		10.0	40	$\mu \mathrm{S}$	$\mathrm{R}_{\mathrm{L} .}=4.7 \mathrm{k} \Omega_{4} \mathrm{CL}=30 \mathrm{pF}$		11
Common Mode Transient Immunity at Logic Low Output Level	CML.		-600		$V / \mu s$	$\begin{aligned} & I_{\mathbb{N}}=3.11 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega \\ & V_{O \text { max }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=140 \mathrm{~V} \end{aligned}$	8,10	12,13
Common Mode Transient Immunity at Logic High Output Level	CMH		4000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & l_{\mathrm{N}}=0 \mathrm{~mA}, R_{\mathrm{L}}=4.7 \mathrm{k} \Omega \\ & V_{O \text { min }}=2.0 \mathrm{~V}, V_{C M_{H}}=1400 \mathrm{~V} \end{aligned}$		
Output Rise Time ($10-90 \%$)	tr_{r}		20		$\mu \mathrm{S}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	7	
Output Fall Time ($90-10 \%$)	$\mathrm{tf}^{\text {f }}$		0.3		$\mu \mathrm{S}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{CL}=30 \mathrm{pF}$		

Electrical Characteristics

Over Recommended Temperature ($0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$) Unless Otherwise Specified

Notes:

1. Measured at a point 1.6 mm below seating plane.
2. Current into/out of any single lead.
3. Surge input current duration is 3 ms at 120 Hz pulse repetition rate. Transient input current duration is $10 \mu \mathrm{~s}$ at 120 Hz pulse repetition rate. Note that maximum input power, PiN, must be observed.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Maximum input power dissipation of 230 mW allows an input IC junction temperature of $125^{\circ} \mathrm{C}$ at an ambient temperature of $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta \mathrm{JA}_{\mathrm{i}}=$ $240^{\circ} \mathrm{C} / \mathrm{W}$. Excessive Pin and TJ may result in IC chip degradation.
5. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
6. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $3.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Maximum output power dissipation of 210 mW allows an output IC junction temperature of $125^{\circ} \mathrm{C}$ at an ambient temperature of $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta \mathrm{J} A_{0}=$ $265^{\circ} \mathrm{C} / \mathrm{W}$.
7. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
8. Maximum operating frequency is defined when output waveform (Pin 6) obtains only 90% of $V_{C C}$ with $R_{L}=4.7 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$ using a 5 V square wave input signal.
9. All typical values are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$ unless otherwise stated.
10. The tPhl propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse ($1 \mu \mathrm{~s}$ rise time) to the 1.5 V level on the leading edge of the output pulse (see Figure 9).
11. The tPLH propagation delay is measured from the 2.5 V level of the trailing edge of a 5.0 V input pulse $(1 \mu \mathrm{~s}$ fall time) to the 1.5 V level on the trailing edge of the output pulse (see Figure 9).
12. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV} \mathrm{CM} / \mathrm{dt}$ on the leading edge of the common mode pulse, $V_{C M}$, to insure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV} / \mathrm{CM} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to insure that the output will remain in a Logic Low state (i.e, $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$). See Figure 10.

Figure 1. Typical Input Characteristics, IIN vs. $V_{I N}$. (AC voltage is instantaneous value.)

Figure 3. Typical DC Threshold Levels vs. Temperature.
13. In applications where dV CM/dt may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge), a series resistor, Rcc, should be included to protect the detector IC from destructively high surge currents. The recommended value for Rcc is 240Ω per volt of allowable drop in V_{Cc} (between Pin 8 and $V_{C C}$) with a minimum value of 240Ω.
14. Logic low output level at Pin 6 occurs under the conditions of $V_{I N} \geq$ $\mathrm{V}_{\mathrm{TH}}+$ as well as the range of $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{TH}}$ - once $\mathrm{V}_{\text {IN }}$ has exceeded $\mathrm{V}_{\mathrm{TH}}+$. Logic high output level at Pin 6 occurs under the conditions of $V_{I N} \leq$ $\mathrm{V}_{\mathrm{TH}}-$ as well as the range of $\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{TH}}+$ once V_{IN} has decreased below $V_{T H}$.
15. $A C$ voltage is instantaneous voltage.
16. Device considered a two terminal device: pins 1, 2, 3, 4 connected together, and Pins 5, 6, 7, 8 connected together.

Figure 2. Typical Transfer Characteristics. (AC voltage is instantaneous value.)

Figure 4. Typical High Level Supply Current, $\mathbf{I}_{\mathrm{CCH}}$ vs. Temperature.

Figure 5. Typical Input Current, $I_{I N}$, and Low Level Output Voltage, V_{OL}, vs. Temperature.

Figure 7. Typical Rise, Fall Times vs. Temperature.

Figure 9. Switching Test Circuit.

Figure 6. Typical Propagation Delay vs. Temperature.

V_{CM} - COMMON MODE TRANSIENT AMPLITUDE - V
Figure 8. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.

Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

Electrical Considerations

The HCPL-3700 optocoupler has internal temperature compensated, predictable voltage and current threshold points which allow selection of an external resistor, R_{x}, to determine larger external threshold voltage levels. For a desired external threshold voltage, $\mathrm{V}_{ \pm}$, a corresponding typical value of R_{x} can be obtained from Figure 11. Specific calculation of R_{x} can be obtained from Equation (1) of Figure 12. Specification of both V_{+}and V - voltage threshold levels simultaneously can be obtained by the use of R_{x} and R_{p} as shown in Figure 12 and determined by Equations (2) and (3).
R_{x} can provide over-current transient protection by limiting input current during a transient condition. For monitoring contacts of a relay or switch, the HCPL-3700 in combination with R_{x} and R_{p} can be used to allow a specific current to be conducted through the contacts for cleaning purposes (wetting current).
The choice of which input voltage clamp level to choose depends upon the application of this device (see Figure 1). It is recommended that the low clamp condition be used when possible to lower the input power dissipation as well as the LED current, which minimizes LED degradation over time.
In applications where $d V_{C M / d t}$ may be extremely large (such as static discharge), a series resistor, Rcc, should be connected in series with VCc and Pin 8 to protect the detector IC from destructively high surge currents. See note 13 for determination of Rcc. In addition, it is recommended that a ceramic disc bypass capacitor of $0.01 \mu \mathrm{f}$ be placed between Pins 8 and 5 to reduce the effect of power supply noise.
For interfacing AC signals to TTL systems, output low pass filtering can be performed with a pullup resistor of $1.5 \mathrm{k} \Omega$ and $20 \mu \mathrm{f}$ capacitor. This application requires a Schmitt trigger gate to avoid slow rise time chatter problems. For AC input applications, a filter capacitor can be placed across the DC input terminals for either signal or transient filtering.

Figure 11. Typical External Threshold Characteristic, $\mathbf{V}_{ \pm}$vs. $\mathbf{R}_{\mathbf{X}}$.

Figure 12. External Threshold Voltage Level Selection.

Either AC (Pins 1, 4) or DC (Pins 2, 3) input can be used to determine external threshold levels.
For one specifically selected external threshold voltage level V_{+}or V_{-}, R_{x} can be determined without use of R_{p} via

$$
\begin{equation*}
\mathrm{R}_{\mathrm{x}}=\frac{\mathrm{V}_{+(-)}-\mathrm{V}_{T H_{+}^{+}}}{I_{T-)}^{+}} \tag{1}
\end{equation*}
$$

For two specifically selected external threshold voltage levels, V_{+}and V_{-}, the use of R_{x} and R_{p} will permit this selection via equations (2), (3) provided the following conditions are met. If the denominator of equation (2) is positive, then

$$
\frac{V_{+}}{V_{-}} \geq \frac{V_{T H_{+}}}{V_{T H_{-}}} \text {and } \frac{V_{+}-V_{T H_{+}}}{V_{-}-V_{T H_{-}}}<\frac{I_{T H_{+}}}{I_{T H_{-}}}
$$

Conversely, if the denominator of equation (2) is negative, then

$$
\begin{gather*}
\frac{V_{+}}{V_{-}} \leq \frac{V_{T H_{+}}}{V_{T H_{-}}} \text {and } \frac{V_{+}-V_{T H_{+}}}{V_{-}-V_{T H_{-}}}>\frac{I T H_{+}}{I T H_{-}} \\
R_{x}=\frac{V_{T H_{-}}\left(V_{+}\right)-V_{T H_{+}}\left(V_{-}\right)}{I T H_{+}\left(V_{T H_{-}}\right)-I T H_{-}\left(V_{T H_{+}}\right)} \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
R_{p}=\frac{V_{T H_{-}}\left(V_{+}\right)-V_{T H_{+}}\left(V_{-}\right)}{I_{T H_{+}}\left(V_{-}-V_{T H_{-}}\right)+I_{T H_{-}}\left(V_{T H_{+}}-V_{+}\right)} \tag{3}
\end{equation*}
$$

See Application Note 1004 for more information.

Features

- HERMETICALLY SEALED
- HIGH SPEED
- PERFORMANCE GUARANTEED OVER - $55^{\circ} \mathrm{C}$ TO
$+125^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- STANDARD HIGH RELIABILITY SCREENED PARTS AVAILABLE
- TTL COMPATIBLE INPUT AND OUTPUT
- HIGH COMMON MODE REJECTION
- DUAL-IN-LINE PACKAGE
- 1500 VDC WITHSTAND TEST VOLTAGE
- EIA REGISTRATION
- HIGH RADIATION IMMUNITY

Applications

- Logic Ground Isolation
- Line Receiver
- Computer - Peripheral Interface
- Vehicle Command/Control Isolation
- High Reliability Systems
- System Test Equipment Isolation

Description

The 6N134 consists of a pair of inverting optically coupled gates, each with a light emitting diode and a unique high gain integrated photon detector in a hermetically sealed ceramic package. The output of the detector is an open collector Schottky clamped transistor.
This unique dual coupler design provides maximum DC and AC circuit isolation between each input and output while achieving TTL circuit compatibility. The isolator operational parameters are guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, such that a minimum input current of 10 mA in each channel will sink a six gate fanout (10 mA) at the output with 4.5 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec .
*JEDEC Registered Data.
** Hewlett-Packard's new high reliability part type 8102801EC meets class B testing requirements of MIL-STD-883. The 6N134TXV and 6N134TXVB parts remain available but the DESC approved 8102801EC is preferred for new designs and wherever possible in existing applications. Details of the 8102801 EC test program may be seen in the data sheet for this part. Contact your field salesman for details of the TXV and TXVB programs.

DIMENSIONS IN ALLLIMETRES AND HNCHESK.

Recommended Operating Conditions

TABLE I

	Sym.	Min.	Max.	Units
Input Current Low Level Each Channeq	IFL	0	250	\# ${ }_{\text {A }}$
Input Current, High Level Each Channet	IFH	$12.5{ }^{\dagger}$	20	mA
Supply Valtage	VCC	4.5	5.5	\checkmark
Fan Out (TTL Load) Each Channel	N		6	
Operating Temperature	$\mathrm{T}_{\text {A }}$	-55	125	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings*

(No derating required up to $125^{\circ} \mathrm{C}$)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)

Peak Forward Input

 Current (each channel) $40 \mathrm{~mA}(\leqslant 1 \mathrm{~ms}$ Duration) Average Input Forward Current (each channel) 20 mAInput Power Dissipation (each channel) 35 mW
Reverse Input Voltage (each channel) 5V
Supply Voltage - VCC 7V (1 minute maximum) Output Current - Io (each channel) 25 mA Output Power Dissipation (each channel) 40 mW
Output Voltage - V_{0} (each channel) 7V 7 V
Total Power Dissipation (both channels) 350 mW
$\dagger 12.5 \mathrm{~mA}$ condition permits at least 20% CTR degradation guardband. Initial switching threshold is 10 mA or less.

TABLE II

Electrical Characteristics

OVER RECOMMENDED TEMPERATURE ($T_{A}=-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$) UNLESS OTHERWISE NOTED

Parameter "	Symbol	Min.	Typ.**	Max.	Units	Test Conditions	Figure	Note
High Level Output Current	IOH^{*}		5	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{O}=5.5 \mathrm{~V} \\ & I_{F}=250 \mu \mathrm{~A} \end{aligned}$		1
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}{ }^{*}$		0.5	0.6	V	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, I_{F}=10 \mathrm{~mA} \\ & I_{O L}(\text { Sinking })=10 \mathrm{~mA} \end{aligned}$	4	1,9
High Level Supply Current	${ }^{1} \mathrm{CCH} *$		18	28	mA	$V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$ (Both Channels)		:
Low Level Supply Current	ICCL*		26	36	mA	$V_{C C}=5.5 \mathrm{~V}, I_{F}=20 \mathrm{~mA}$ (Both Channels)	ザ	
Input Forward Voltage	$V_{F}{ }^{*}$		1.5	1.75	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	1
Input Reverse Breakdown Voltage	$B V_{R}{ }^{*}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Input-Output Insulation Leakage Current	$1.0{ }^{*}$		-	1.0	$\mu \mathrm{A}$	$V_{1-0}=1500 \mathrm{Vdc},$ Relative Humidity $=45 \%$ $T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}$		2
Propagation Delay Time to High Output Level	${ }^{\text {tPLH* }}$		65	90	ns	$\begin{aligned} & R_{L}=510 \Omega, C_{L}=15 \mathrm{pF}, \\ & I_{F}=13 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	2,3	5
Propagation Delay Time to Low Output Level	tpHL^{*}		55	90	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	2,3	6

**All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
TABLE III
Typical CharacteristicS AT $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \quad$ EACH CHANNEL

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Input Capacitance	$\mathrm{CIN}^{\text {IN }}$		60		pF	$V_{F}=0, f=1 \mathrm{MHz}$		1
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1
Resistance (Input-Output)	R_{1-0}		10^{12}		Ω	$V_{1-0}=500 \mathrm{~V}$		3
Capacitance (Input-Output)	Cl_{1-0}		1.7		pF	$f=1 \mathrm{MHz}$		3
Input-Input Insulation Leakage Current	I_{1-1}		0.5		nA	Relative Humidity $=45 \%$ $V_{1-1}=500 \mathrm{~V}, \mathrm{t}=5 \mathrm{~s}$		4
Resistance (Input-Input)	R_{1-1}		1012		Ω	$V_{1-1}=500 \mathrm{~V}$		4
Capacitance (Input-Input)	C_{1-1}		0.55		pF	$f=1 \mathrm{MHz}$		4
Output Rise-Fall Time (10-90\%)	t_{r}, t_{f}		35		ns	$\begin{aligned} & R_{L}=510 \Omega, C_{L}=15 p F \\ & I_{F}=13 \mathrm{~mA} \end{aligned}$		
Common Mode Transient Immunity at High Output Level	CM_{H}		100	-	$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=10 \mathrm{~V} \text { (peak), } \\ & V_{O}(\min .)=2 \mathrm{~V}, \\ & R_{L}=510 \Omega, I_{F}=0 \mathrm{~mA} \end{aligned}$	6	7
Common Mode Transient Immunity at Low Output Level	CM ${ }_{\text {L }}$		-400		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & V_{C M}=10 \mathrm{~V}(\text { peak }), \\ & V_{O}(\text { max. })=0.8 \mathrm{~V} \\ & R_{L}=510 \Omega, I_{F}=10 \mathrm{~mA} \end{aligned}$	6	8

NOTES:

1. Each channel.
2. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
3. Measured between pins 1 and 2 or 5 and 6 shorted together, and pins 9 through 16 shorted together.
4. Measured between pins 1 and 2 shorted together, and pins 5 and 6 shorted together.
5. The $t_{\text {PLH }}$ propagation delay is measured from the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
6. The $t_{P H L}$ propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse
7. $C M_{H}$ is the max. tolerable common mode transient to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).
8. $C M_{L}$ is the max. tolerable common mode transient to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{0}<0.8 \mathrm{~V}$).
9. It is essential that a bypass capacitor (.01 to $0.1 \mu \mathrm{~F}$, ceramic) be connected from pin 10 to pin 15 . Total lead length between both ends of the capacitor and the isolator pins should not exceed 20mm (Fig. 7).

Figure 1. Input Diode Forward Characteristic

Figure 3. Propagation Delay, tPHL and tPLH vs. Pulse Input Current, IFH

Figure 5. Propagation Delay vs. Temperature

* C_{L} is approximately 15 pF , which includes probe and stray wiring capacitance.

Figure 2. Test Circuit for ${ }^{\text {tPHL }}$ and PLH*

Figure 4. Input-Output Characteristics

Figure 6. Typical Common Mode Rejection Characteristics/Circuit PACKARD

TECHNICAL DATA JANUARY 1983

Features

- RECOGNIZED BY DESC*
- HERMETICALLY SEALED
- MIL-STD-883 CLASS B TESTING
- HIGH SPEED
- PERFORMANCE GUARANTEED OVER -55 ${ }^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- TTL COMPATIBLE INPUT AND OUTPUT
- DUAL-IN-LINE PACKAGE
- 1500 VDC WITHSTAND TEST VOLTAGE
- high radiation immunity

Applications

- MILITARY/HIGH RELIABILITY SYSTEMS
- LOGIC GROUND ISOLATION
- LINE RECEIVER
- COMPUTER - PERIPHERAL INTERFACE
- VEHICLE COMMAND/CONTROL ISOLATION
- SYSTEM TEST EQUIPMENT ISOLATION

Description

The 8102801EC is the DESC selected item drawing assigned by DOD for the 6N134 optocoupler which is in accordance with MIL-STD-883 class B testing. Operating characteristic curves for this part can be seen in the 6N134 data sheet.
The 8102801 EC consists of a pair of inverting optically coupled gates, each with a light emitting diode and a unique high gain integrated photon detector in a hermetically sealed ceramic package. The output of the detector is an open collector Schottky clamped transistor.
This unique dual coupler design provides maximum DC and AC circuit isolation between each input and output while achieving TTL circuit compatibility. The isolator operational parameters are guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, such that a minimum input current of 10 mA in each channel will sink a

OUTLINE DRAWING*

DIMENSGONS IN MFLLIMETRES AND \{INCHESI.
six gate fanout (10 mA) at the output with 4.5 to 5.5 V VCC applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec .
The photo ICs used in this device are less susceptable to radiation damage than PIN photo diodes or photo transistors due to their relatively thinner photo region.
The following test program is performed on the 81028 OIEC.

Recommended Operating Conditions

Supply Voltage
4.5 V dc minimum to 5.5 V dc maximum

High Level Input Current ${ }^{[1]}$. 12.5 mA dc minimum (each channel)
Low Level Input Current $250 \mu \mathrm{~A}$ dc maximum (each channel)
Normalized Fanout (TTL Load) 6 maximum (each channel)
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

1. This condition permits at least 20 percent hF (CTR) degradation. The initial switching threshold is 10 mA dc or less.

Absolute Maximum Ratings

100\% Screening
MIL-STD-883, METHOD 5004 (CLASS B DEVICES)

Quality Conformance Inspection

GROUP A ELECTRICAL PERFORMANCE CHARACTERISTICS

Test	Symbol	Condilions	Group A Sulogroups	Limils		Unit
				Min.	Max.	
Low Level Output Voltage	Vol	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{IF}=10 \mathrm{mAl} \mid \\ & 10 \mathrm{~m}=10 \mathrm{~mA} \end{aligned}$: $1,2,3$	-	0.6	V
Current Transfer Ratio	bF (CTR)	$\begin{aligned} & V 0=0.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{F}}=10 \mathrm{~mA} ; \\ & \mathrm{VCO}=5.5 \mathrm{~V} \end{aligned}$	$1,2,3$	100	-	\%
High Level Output Voltage	loH	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} ; \text { Vo }=5.5 \mathrm{~V} 11 \mathrm{i} \\ & \mathrm{IF}=250 \mu \mathrm{~A} \end{aligned}$	1,2,3	-	250	$\mu \mathrm{Adc}$
High Level Supply Carrent	ICCH	$V \mathrm{Cc}=5.5 \mathrm{~V} ; 1 \mathrm{~F}=1 \mathrm{~F} 2=0 \mathrm{~mA}$	1,2,3	-	28	mA de
Low Level Supply Current	ICCL	$V_{C C}=5.5 \mathrm{~V}, \mathrm{l}_{\mathrm{F}}=1 \mathrm{~F} 2=20 \mathrm{~mA}$	1, 2, 3	-	36	mA dc
Input Forward Voltage	V_{F}	$\mathrm{IF}=20 \mathrm{mAl}$ I	1,2	-	1.75	$V \mathrm{dc}$
			3	-	1.85	
Input Reverse Breakdown Voltage	VBR	$\mathrm{IR}_{\mathrm{R}}=10 \mu \mathrm{Al1]}$	$1,2,3$	5.0	-	$V \mathrm{dc}$
Input to Output Insulation Leakage Current	10	$V 10=1500 \mathrm{Vdcl} 21$ Relative Humidity $=45$ percent $t=5$ seconds	1	-	1.0	${ }_{H} \mathrm{~A} d \mathrm{dc}$
Capacitance Between Input/Output	Cio	$f=1 \mathrm{MHz} ; \mathrm{Tc}_{\mathrm{c}}=25^{\circ} \mathrm{Cl}$	4	-	4.0	pF
Propagation Delay Time, Low to High Output Level	tple	$\begin{aligned} & R_{\mathrm{L}}=510 \Omega_{;} \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF} / 4 \mathrm{~F} \\ & \mathrm{IF}_{\mathrm{F}}=13 \mathrm{~mA} \end{aligned}$	9	-	100	ns
			10,11	-	140	
Propagation Delay Time, High to Low Output Level	tphi	$\begin{aligned} & R_{\mathrm{L}}=510 \mathrm{a} ; \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF} / \mathrm{F}^{5} ; \\ & \mathrm{IF}_{\mathrm{F}}=13 \mathrm{~mA} \end{aligned}$	9	-	100	ns
			10, 11	-	120	
Output Rise Time	tLH	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=510 \Omega_{;} \\ & \mathrm{Cl}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA} \end{aligned}$	$9.10,11$	-	90	ns
Output Fall Time	that.			-	40	
Common Mode Transient Immunity at High Output Level	CMH	$\begin{aligned} & V C M=10 \mathrm{~V}(\text { peak }) ; \\ & \mathrm{VO}=2 \mathrm{~V} \text { (minimum); } \\ & \mathrm{RL}=510 \mathrm{\Omega} ; \\ & \mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$	9,10,11	40	-	$V / \mu \mathrm{s}$
Common Mode Transient Immunity at Low Output Level	CML	$\begin{aligned} & V_{C M}=10 \mathrm{~V} \text { (peak); } \\ & V_{O}=0.8 \mathrm{~V} \text { (maximum); } \\ & R_{\mathrm{L}}=510 \Omega \\ & \mathrm{~F}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	$9,10,11$	-60	-	$\mathrm{V} / \mu \mathrm{s}$

See notes on following page

Notes: 1. Each channel.
2. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
3. Measured between input pins 1 and 2, or 5 and 6 shorted together and output pins $10,12,14$ and 15 shorted together.
4. The tPLH propagation delay is measured from the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The tPHL propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.

GROUP B TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Condilions	LTPD
Subgroup 1 Physical Dimensions (Not required if Group D is to be performed	2016		2 Devices (no failures)
Subgroup 2 Resistance to Solvents	2015		4 Devices (no failures)
Subgroup 3 Solderability (LTPD applies to number of leads inspected - no fewer than 3 devices shall be used.	2003	Soldering Temperature of $260 \pm 10^{\circ} \mathrm{C}$ for 10 seconds	15 (3 Devices)
Subgroup 4 Internal Visual and Mechanical (May be performed at precap)	2014		1 Device (no failures)
Subgroup 5 Bond Strength Thermocompression: (Performed at precap, prior to seal LTPD applies to number of bond pulls from a minimum of 4 devices).	2011	Test Condition D	$\begin{gathered} 15 \\ (4 \text { Devices) } \end{gathered}$
Subgroup 6 Internal Water Vapor Content (Not applicable - does not contain desiccant	-		-
Subgroup 7 Fine Leak Gross Leak (Not applicable - performed in 100% screen)	-		-
Subgroup 8* Electrical Test Electrostatic Discharge Sensitivity Electrical Test *(To be performed at initial qualification only)	3015	Group A, Subgroup 1, except 1-o Group A, Subgroup 1	15 (0)

GROUP C TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Steady State Life Test Endpoint Electricals at 1000 hours	1005	Condition B, Time $=1000$ hours total $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{CC}=5.5 \mathrm{~V}$ $\mathrm{IF}_{\mathrm{F}}=13 \mathrm{~mA}, 10=25 \mathrm{~mA}$ (Figure 1) Group A, Subgroup 1, 2, 3	5
Subgroup 2 Temperature Cycling Constant Acceleration Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{aligned} & 1010 \\ & 2001 \\ & 1014 \\ & 1014 \\ & 1010 \end{aligned}$	Condition $\mathrm{C},-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, 10 cycles Condition A, 5KGs, Y_{1} axis only Condition A Condition C Per Visual Criteria of Method 1010 Group A, Subgroup 1, 2, 3	15

GROUP D TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Physical Dimensions	2016		15
Subgroup 2 Lead integrity Fine Leak Gross Leak Lid Torque* *(Not applicable -- solder seal)	$\begin{aligned} & 2004 \\ & 1014 \\ & 1014 \\ & 2024 \end{aligned}$	Test Condition B2 (lead fatigue) Condition A Condition C	15
Subgroup 3 Thermal Shock Temperature Cycling Molsture Resistance Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \\ & 1014 \end{aligned}$	Condition B, $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ 15 cycles min. Condition $\mathrm{C},\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ 100 cycles min. Condition A Condition C Per Visual Criteria of Method 1004 Group A, Subgroup 1, 2, 3	15
Subgroup 4 Mechanical Shock Vibration Variable Frequency Constant Acceleration Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{aligned} & 2002 \\ & 2007 \\ & 2001 \\ & 1014 \\ & 1014 \\ & 1010 \end{aligned}$	Condition $\mathrm{B}, 1500 \mathrm{G}, \mathrm{t}=0.5 \mathrm{~ms}$, 5 blows in each orientation Condition A Condition $\mathrm{A}, 5 \mathrm{KGs}, \mathrm{Y}_{1}$ axis only Condition A Condition C Per Visual Criteria of Method 1010 Group A, Subgroup 1, 2, 3	15
Subgroup 5 Salt Atmosphere Fine Leak Gross Leak Visual Examination	$\begin{aligned} & 1009 \\ & 1014 \\ & 1014 \\ & 1009 \end{aligned}$	Condition A min. Condition A Condition C Per Visual Criteria of Method 1009	15
Subgroup 6 Internal Water Vapor Content	1018		3 Devices (0 failures) 5 Devices (1 failure)
Subgroup 7 Adhesion of Lead Finish	2025		15

Figure 1. Burn-In Circuit

> HERMETICALLY SEALED, FOUR CHANNEL,

> 6N140 6N140/883B (6N140TXV)** (6N140TXVB])* LOW INPUT CURRENT OPTOCOUPLER

Features

- HERMETICALLY SEALED
- CONFORMANCE TO MIL-STD-883
- HIGH DENSITY PACKAGING
- HIGH CURRENT TRANSFER RATIO: 500\% TYPICAL
- CTR AND IOH GUARANTEED OVER -55 ${ }^{\circ} \mathrm{C}$ TO $100^{\circ} \mathrm{C}$ AMBIENT TEMPERATURE RANGE
- STANDARD HIGH RELIABILITY SCREENED PARTS AVAILABLE
- 1500 Vdc WITHSTAND TEST VOLTAGE
- LOW INPUT CURRENT REQUIREMENT: 0.5 mA
- LOW OUTPUT SATURATION VOLTAGE: 0.1V TYPICAL
- LOW POWER CONSUMPTION
- HIGH RADIATION IMMUNITY

Applications

- Isolated Input Line Receiver
- System Test Equipment Isolation
- Digital Logic Ground Isolation
- Vehicle Command/Control Isolation
- EIA RS-232C Line Receiver
- Microprocessor System Interface
- Current Loop Receiver
- Level Shifting
- Process Control Input/Output Isolation
*JEDEC Registered Data.
**Hewlett-Packard's new high reliability part type 6N140/883B meets class B testing requirements of MIL-STD-883. The 6N140TXV and 6N140TXVB parts remain available but the military compliant 6N140/883B is preferred for new designs and wherever possible in existing applications. Details of the 6 N140/883B test program may be seen in the high reliability section of this data sheet. Contact your field salesman for details of the TXV and TXVB programs.

Outline Drawing*

Description

The 6N140 contains four GaAsP light emitting diodes, each of which is optically coupled to a corresponding integrated high gain photon detector. A common pin for the photodiodes and first stage of each detector IC (Vcc) permits lower output saturation voltage and higher speed operation than possible with conventional photodarlington type optocouplers. Also, the separate Vcc pin can be strobed low as an output disable or operated with supply voltages as low as 2.0 V without adversely affecting the parametric performance.
The outstanding high temperature performance of this split Darlington type output amplifier results from the inclusion of an integrated emitter-base bypass resistor which shunts photodiode and first stage leakage currents to ground.

The high current transfer ratio at very low input currents permits circuit designs in which adequate margin can be allowed for the effects of CTR degradation over time.
The 6N140 has a 300% minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing or RS-232C data transmission systems. Compatibility with high voltage CMOS logic systems is assured by the 18 V Vcc and by the guaranteed maximum output leakage (IOH) at 18 V .
Important specifications such as CTR, leakage current, supply current and output saturation voltage are guaranteed over the $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ temperature range to allow trouble free system operation.

TABLE I

Recommended Operating Conditions

	Symbol	Min.	Max.	Units
Imput Current, Low Level (Each Channel)	IFL.		2	$\mu \mathrm{~A}$
Input Current, High Level (Each Channel)	IFH	0.5	5	mA
Supply Voltage	VCC	2.0	18	V

Absolute Maximum Ratings*

Storage Temperature	
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Lead Solder Temperature $\begin{array}{r}\text {. } \\ \text { (1.6mm b }\end{array}$	$260^{\circ} \mathrm{C}$ for 10 s . seating plane)
Output Current, IO (each channel)	A
Output Voltage, VO (each channel)	-0.5 to $20 \mathrm{~V}[1]$
Supply Voltage, V ${ }_{\text {CC }}$	-0.5 to $20 \mathrm{~V}[1]$
Output Power Dissipation (each channel)	50 mW [2]
Peak Input Current (each channel, $\leqslant 1 \mathrm{~ms}$ duration)	20 mA
Average Input Current, I_{F} (each channel)	$10 \mathrm{~mA}{ }^{[3]}$
Reverse Input Voltage, V_{R} (each channel)	

TABLE II.
Electrical CharacteristicS $T_{A}=-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, Unless Otherwise Specifiea

Paramefer	Symbol	Min.	Typ.*	Max.	Units	Test Condifions	Fig.	Note
Current Transfer Ratio	CTR*	$\begin{aligned} & 300 \\ & 300 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 1000 \\ 750 \\ 400 \\ \hline \end{array}$		$\begin{aligned} & \% \% \\ & \% \\ & \% \\ & \hline \% \end{aligned}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V O=0.4 \mathrm{~V}, V C C=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, V O=0.4 \mathrm{~V}, V C C=4.5 \mathrm{~V} \\ & I_{\mathrm{F}}=5 \mathrm{~mA}, V O=0.4 \mathrm{~V}, V C C=4.5 \mathrm{~V} \end{aligned}$	3	4,5
Logic Low Output Voltage	Vol		$\begin{aligned} & .1 \\ & .1 \end{aligned}$	$\begin{aligned} & .4 \\ & 4 \end{aligned}$	$\begin{aligned} & \bar{V} \\ & V \end{aligned}$	$\begin{aligned} & l_{F=}=5 \mathrm{~mA}, \quad 1 \mathrm{OL}=1.5 \mathrm{~mA}, V C C=4.5 \mathrm{~V} \\ & l_{F}=5 \mathrm{~mA}, 10 \mathrm{~L}=10 \mathrm{~mA}, V C C=4.5 \mathrm{~V} \end{aligned}$	2	4
Logic High Output Current	$10{ }^{*}$. 005	250	${ }_{\mu}{ }^{\text {A }}$	$\begin{aligned} & I=2 \mu A \\ & V O=V C C=18 V \end{aligned}$		4,6
Logic Low Supply Current	lcca**		2	4	mA			
Logie High Supply Current	$1 \mathrm{COH}^{*}$. 010	40	${ }_{\mu}{ }^{\text {A }}$			
Input Forward Voltage	$\mathrm{VF}^{*}{ }^{*}$		1.4	1.7	\checkmark	$I_{F}=1.6 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$	1	4
Input Reverse Breakdown Voltage	BVR*	5			V	$\mathrm{IR}^{\prime}=10,4 \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		4
Input-Output Insulation Leakage Current	11.0^{*}			1.0	$\mu \mathrm{A}$	45% Relative Humidity, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $t=5 \mathrm{~s} ., \mathrm{V}_{1-\mathrm{O}}=1500 \mathrm{Vdc}$		7
Propagation Delay Time To Logic High At Output	tPLH*		25	60	${ }^{\mu \mathrm{S}}$	$1 \%=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	
			10	20	$\mu \mathrm{S}$	$\mathrm{IF}^{\prime}=5 \mathrm{~mA}_{4} \mathrm{R}_{\mathrm{L}}=680 \Omega_{1}, V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$	8	
Propagation Delay Time To Logic Low At Output	tPHL. ${ }^{*}$		35	100	$\mu \mathrm{S}$	$\mathrm{IF}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega_{\mathrm{t}}$ VCC $=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	8	
			2	5	$\mu \mathrm{s}$	$\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	8	
Common Mode Transient Immunity At Logic High Level Output	$\mathrm{CMH}^{\text {H}}$	500	1000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & l_{F=0,} R_{L}=1.5 \mathrm{k} \Omega \\ & \|V C M\|=50 V_{\rho-p}, V C C=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	9	10,12
Common Mode Transient Immunity At Logic Low Level Output	CML	-500	-1000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I=1.6 \mathrm{~mA}, R_{L}=1.5 \mathrm{k} \Omega \\ & \|V C M\|=50 V_{p-p}, V C C=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	9	11,12

TABLE III.
${ }^{* *}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Typical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$ Each Channel

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Resistance (input-Output)	R1-0		10^{12}		Ω	$\mathrm{V}_{\mathrm{i}-\mathrm{O}}=500 \mathrm{Vdc}, \mathrm{T}_{4}=25^{\circ} \mathrm{C}$		4,8
Capacitance (Input-Output)	$\mathrm{Cl}_{1} \mathrm{O}$		1.5		pF	$f=1 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}$		4,8
Input-Input insulation Leakage Current	1-1		0.5		nA	45% Relative Humidity, $\mathrm{V}_{1-1}=500 \mathrm{Vdc}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}$.		9
Resistance (Input-input)	$\mathrm{R}_{\mathrm{i}-1}$		1012		Ω	$V_{1-1}=500 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C}$		9
Capacitance (Input-Input)	Cl_{-1}		1		pF	$f=1 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}$		9
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.8		$\begin{aligned} & \mathrm{m} V t \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{IF}_{\mathrm{F}=1.6 \mathrm{~mA}}$		4
Input Capacitance	CIN		60		pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		4

NOTES: 1. Pin 10 should be the most negative voltage at the detector side. Keeping VCC as low as possible, but greater than 2.0 volts, will provide lowest total IOH over temperature.
2. Output power is collector output power plus one fourth of total supply power. Derate at $1.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $80^{\circ} \mathrm{C}$.
3. Derate If at $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $80^{\circ} \mathrm{C}$.
4. Each channel.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, Io, to the forward LED input current, If, times 100%
6. $I_{F}=2 \mu \mathrm{~A}$ for channel under test. For all other channels, $I_{F}=10 \mathrm{~mA}$.
7. Device considered a two-terminal device: Pins 1 through 8 are shorted together and pins 9 through 16 are shorted together.
8. Measured between each input pair shorted together and all output pins.
9. Measured between adjacent input pairs shorted together, i.e. between pins 1 and 2 shorted together and pins 3 and 4 shorted together, etc.
10. $C M_{H}$ is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e. $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).
11. $C M_{L}$ is the maximum tolerable common mode transient to assure that the output will remain in a low logic state (i.e. $V_{0}<0.8 \mathrm{~V}$).
12. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, Rcc, should be included to protect the detector IC's from destructively high surge currents. The recommended value is $\operatorname{Rcc} \approx \frac{1 V}{0.61 F(\mathrm{~mA})} \mathrm{k} \Omega$.

Figure 1. Input Diode Forward Current vs. Forward Voltage.

Figure 4. Normalized Supply Current vs. Input Diode Forward Current.

I_{F} - INPUT DIODE FORWARD CURRENT - mA
Figure 7. Propagation Delay vs. Input Diode Forward Current.

V_{0} - OUTPUT VOLTAGE - V
Figure 2. Normalized DC Transfer Characteristics.

Figure 5. Propagation Delay to Logic Low vs. Input Pulse Period.

Figure 8. Switching Test Circuit.*
(f, t_{p} not JEDEC registered)

Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

I_{F} - INPUT DIODE FORWARD CURRENT - mA
Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.

Figure 6. Propagation Delay vs. Temperature

stered Data

High Reliability Test Program

Hewlett Packard provides standard high reliability test
programs, patterned after MIL-M-38510 in order to
facilitate the use of HP products in military programs.
HP offers two levels of high reliability testing:

- The TXV suffix identifies a part which has been preconditioned and screened per Table IV.
- The TXVB suffix identifies a part which has been preconditioned and screened per Table IV, and comes from a lot which has been subjected to the Group B tests detailed in Table V.

Part Number System

Commercial Product	With TXV Screening	With TXV Screening PlusGroup B
$6 N 140$	GN140TXV	6N140TXVB

TABLE IV TXV Preconditioning and Screening - 100\%

TABLE V, Group B

Examination or Test	MIL-STD-883		LTPD
	Mathod	Condition	
Subgroup 1 Physical Dimensions	2016	See Product Outine Drawing	15
Subgroup 2 Solderability	2003	Immersion within 2.5 mm of body. 16 terminations	20
Temperature Cyeling	1010	Test Condition C	15
Thermal Shock	1011	Test Condition A, 5 cycles	
Hermetic Seal, Fine Leak	1014	Test Condition A	
Hermetic Seal, Gross Leak	1014	Test Condition C	
End Points: $\text { CTR, } \mathrm{IOH}, \mathrm{ICCL}, I \mathrm{CCH}, V_{F}, \mathrm{BV}_{\mathrm{R}}$		Per Table II, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4			
Shock, non-operating	2002	$1500 \mathrm{G}, t=0.5 \mathrm{~ms}^{2} 5$ blows in each orientation X_{1}, Y_{1}, Y_{2}	45
Constant Acceleration	2001	${ }_{5} \mathrm{KG}, \mathrm{Y}_{1}$	
End Points: Same as Subgroup 3			
Subgroup 5 Terminal Strength, tension	2004	Test Condition A, 4.5N $11 \mathrm{lb} .1,15 \mathrm{~s}$,	15
Subgroup 6		, ${ }^{\text {a }}$, ${ }^{\circ}$	
High Temperature Life	1008	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$, non-operating	$\lambda=10$
End Points: Same as Subgroup 3			
Subgroup 7			
Steady State Operating Life	1005	$V_{C C} \# 18 V, 1 F=5 \mathrm{~mA}, \mathrm{I}_{0}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	$\lambda=10$
End Points: Same as Subgroup 3			

DIMEASIONS 詩 MIELIMETRES ANO (INCHEST.
Outline Drawing

Features

- hermetically sealed
- CONFORMANCE TO MIL-STD-883
- HIGH SPEED: TYPICALLY 400k bit/s
- PERFORMANCE GUARANTEED OVER $-55^{\circ} \mathrm{C}$ TO $+125^{\circ}$ C AMBIENT TEMPERATURE RANGE
- Standard high reliability screened PARTS AVAILABLE
- 2 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUTS
- 18 VOLT VCC
- dUAL-IN-LINE PACKAGE
- 1500 Vdc WIthStand test voltage
- HIGH RADIATION IMMUNITY

Description

The 4N55 consists of two completely isolated optocouplers in a hermetically sealed ceramic package. Each channel has a light emitting diode and an integrated photon detector providing 1500 Vdc electrical isolation between input and output. Separate connections for the photodiodes and output transistor collectors improve the speed up to a hundred times that of a conventional phototransistor optocoupler by reducing the base-collector capacitance.
The 4 N55 is suitable for wide bandwidth analog applications, as well as for interfacing TTL to LSTTL or CMOS. Current Transfer Ratio (CTR) is 9\% minimum at IF $=16 \mathrm{~mA}$ over the full military operating temperature range,

Applications

- high reliability systems
- LINE RECEIVERS
- DIGITAL LOGIC GROUND ISOLATION
- ANALOG SIGNAL GROUND ISOLATION
- SWITCHING POWER SUPPLY FEEDBACK ELEMENT
- VEHICLE COMMAND/CONTROL
- SYSTEM TEST EQUIPMENT
- LEVEL SHIfTING
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The 18 V VCc capability will enable the designer to interface any TTL family to CMOS. The availability of the base lead allows optimized gain/ bandwidth adjustment in analog applications. The shallow depth of the IC photodiode provides better radiation immunity than conventional phototransistor couplers.

[^4]
Absolute Maximum Ratings

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s (1.6 mm below seating plane)
Average Input Current, IF (each channel) 20 mA
Peak Input Current, If (each
channel, $\leq 1 \mathrm{~ms}$ duration) 40 mA
Reverse Input Voltage, V_{R} (each channel) 5V
Input Power Dissipation (each channel) 36 mW
Average Output Current, lo (each channel) 8mA
Peak Output Current, lo (each channel) 16mA
Supply Voltage, Vcc (each channel) -0.5V to 20 V

Emitter Base Reverse Voltage, VEBO 3.0V
TABLE II.
Electrical Characteristics
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	9	20		\%	$1 F=16 \mathrm{~mA}, \mathrm{VO}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=4.5 \mathrm{~V}$	2,3	1,2
Logic High Output Current	IOH		20	100	$\mu \mathrm{A}$	$\begin{aligned} & \text { If }=0, \text { IF (other channel) }=20 \mathrm{~mA} \\ & \text { Vo }=\mathrm{VcC}=18 \mathrm{~V} \end{aligned}$	4	1
Output Leakage Current	OHH		70	250	$\mu \mathrm{A}$	$\begin{aligned} & I F=250 \mu \mathrm{~A}, \text { If (other channel) }=20 \mathrm{~mA} \\ & \mathrm{VO}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$	4.	1
Logic Low Supply Current	ICCL		35	200	$\mu \mathrm{A}$	$I_{F 9}=1{ }_{F}=20 \mathrm{~mA}, V_{C C}=18 \mathrm{~V}$	5	1
Logic High Supply Current	ICOH		0.2	10	$\mu \mathrm{A}$	$\text { If }=0 \mathrm{~mA}, \text { If } \text { (other channel })=20 \mathrm{~mA}$ $V_{c c}=18 \mathrm{~V}$		1
Input Forward Voltage	V_{F}		1.5	1.8	V	$1 \mathrm{~F}=20 \mathrm{~mA}$	1	1
Input Reverse Breakdown Voltage	EvR	3			V	$I_{R}=10 \mu \mathrm{~A}$		1
Input-Output Insulation Leakage Current	11-0			1.0	$\mu \mathrm{A}$	45\% Relative Humidity, $T_{A}=25^{\circ} \mathrm{C}, t=5 \mathrm{~s}, V_{1-0}=1500 \mathrm{Vdc}$		3
Propagation Delay Time to Logic High at Output	tPLH		2.0	6.0	$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{Kn}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{IF}=16 \mathrm{~mA}, \mathrm{VCC}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	6,9	1
Propagation Delay Time to Logic Low at Output	tPHL		0.4	2.0	$\mu \mathrm{S}$	$\begin{aligned} & R_{\mathrm{L}}=8.2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{IF}=16 \mathrm{~mA}, \mathrm{VCC}=5 \mathrm{~V} \end{aligned}$	6,9	1

Notes:
*All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

1. Each channel.
2. Current Transfer Ratio is defined as the ratio of output collector current, Io, to the forward LED input current, If, times 100%. CTR is known to degrade slightly over the unit's lifetime as a function of input current, temperature, signal duty cycle and system on time. Refer to Application Note 1002 for more detail. In short it is recommended that designers allow at least 20-25\% guardband for CTR degradation.
3. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.

Figure 1. Input Diode Forward Characteristic.

Vo - OUTPUT VOLTAGE - V
Figure 2. DC and Pulsed Transfer Characteristic

TABLE III.

Typical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Typ.	Units	Test Conditions	Fig.	Note
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$	-1.9	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}=18 \mathrm{~mA}$		1
Input Capacitance	Cin	120	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		1
Resistance (Input-Output)	R_{1-0}	1012	Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$		1
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$	1.0	pF	$f=1 \mathrm{MHz}$		1,4
Input-Input Insulation Leakage Current	$11-1$	1	pA	45\% Reiative Humidity, $\mathrm{V}_{1-1}=500 \mathrm{Vdc}, \mathrm{t}=5 \mathrm{~s}$		5
Capacitance (Input-Input)	Cl_{1-1}	. 55	pF	$\mathrm{f}=1 \mathrm{MHz}$		5
Transistor DC Current Gain	hFE	250	-	$\mathrm{V}_{0}=5 \mathrm{~V}, 10=3 \mathrm{~mA}$		1
Small Signal Current Transfer Ratio	$\frac{\Delta \mathrm{l}_{\mathrm{O}}}{\Delta \mathrm{I}_{\mathrm{F}}}$	21	\%	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}$	7	1
Common Mode Transient Immunity at Logic High Level Output	CMH	1000	$\mathrm{V} / \mu \mathrm{S}$	$\begin{aligned} & I_{F}=0, R_{L}=8.2 \mathrm{k} \Omega \\ & V_{C M}=10 V_{p-p} \end{aligned}$	10	1,6
Common Mode Transient Immunity at Logic Low Level Output	CML	-1000	$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=16 \mathrm{~mA}, R_{L}=8.2 \mathrm{k} \Omega \\ & V_{C M}=10 V_{p-p} \end{aligned}$	10	1,7
Bandwidth	BW	2	MHz	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	8	8

Notes (cont.):
4. Measured between each input pair shorted together and the output pins for that chanhel shorted together.
5. Measured between pins 3 and 4 shorted together and pins 7 and 8 shorted together.
6. $C M_{H}$ is the steepest slope ($\mathrm{dV} / \mathrm{dt}$) on the leading edge of the common mode pulse, V_{CM}, for which the output will remain in the logic high state.
7. $C M_{L}$ is the steepest slope ($\mathrm{dV} / \mathrm{dt}$) on the trailing edge of the common mode pulse, V_{CM}, for which the output will remain in the logic low state.
8. Bandwidth is the frequency at which the ac output voltage is 3 dB below the low frequency asymptote.

Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.

Figure 4. Logic High Output Current vs. Temperature.

Figure 5. Logic Low Supply Current vs. Input Diode Forward Current.

Figure 6. Propagation Delay vs. Temperature.

Figure 7. Normalized Small Signal Current Transfer Ratio vs. Quiescent Input Current.

Figure 8. Frequency Response.

10\% DUTY CYCLE
$1 / \mathrm{f} \leqslant 100 \mu \mathrm{~s}$

Figure 9. Switching Test Circuit.

Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

Locic family	LSTMI.	CMOS	
DEVICE NO.	64LS14	CD40	06BM
Vec	5 V	5 V	55 V
$\begin{aligned} & \mathrm{R}_{1} \text { 汭 } \\ & \text { TOLERANCE } \end{aligned}$	*18k 2	8.2k8	22kS

*THE EQUIVALENT OUTPUT LOAD RESISTANCE IS AFFECTED BY THE LSTTL INPUT CURRENT AND IS APPROXIMATELY $8.2 \mathrm{k} \Omega$.

> This is a worst case design which takes into account 25% degradation of CTR. See App. Note 1002 to assess actual degradation and lifetime.

Figure 11. Recommended Logic Interface.

PART NUMBERING SYSTEM

Commercial Product	Method 5004 and 5005 of MIL-STD-883
4 N55	4 N55/883B

Figure 12. Burn-in Circuit

HIGH RELIABILITY TEST PROGRAM

Hewlett-Packard has upgraded their standard high reliability testing programs to conform with MIL-M-38510. With certain clarifications of testing conditions listed below, the 883B part fully complies with Class B testing of MIL-STD-883. Testing consists of 100% screening to Method 5004 and Quality Conformance to Method 5005 of MIL-STD-883. The 883B suffix identifies this Class B equivalent.
4N55/883B Clarifications:
I. 100% screening per MIL-STD-883, Method 5004.

1. Constant acceleration - condition A not E.
2. Burn-in conditions per Figure 12.
II. Quality Conformance per MIL-STD-883, Method 5005.

Group B

Per Method 5005

Group C

1. Steady state life conditions per Figure 12.
2. Constant acceleration - condition A not E.

Group D

1. Constant acceleration - condition A not E.
2. Internal water vapor content - not performed.

8

 Ti
 5

Fiber Optics

Hewlett-Packard offers three families of fiber optic link components - the Snap-In Link family, the Miniature Logic Link family and the High
Performance Module family. Each of these families offers complete, cost-effective fiber optic links, supported by documented reliability data.
The 39301A 16-channel RS232C/V. 24 to fiber optic multiplexer allows the extension of up to 16 independent 19.2 Kbps full duplex channels to distances up to 1 Km .
Our approach to fiber optic hardware is "system-oriented" and offers guaranteed reliability. All the different components of the complete fiber optic data links are specially designed to function together as a system over life and temperature range.

Fiber Optic Selection Guide

Snap-In Link Family: Features - Plastic fiber (1 mm dia.), Plastic Snap-in connectors, TTL compatible output

Miniature Link Family: Features - Glass fiber ($100 / 400 \mu \mathrm{~m}$). Precision metal connectors

Products/Part Nos.	Description				Page No.
Transmitter/Receiver Pairs	Guaranteed Distance		Guaranteed Data Rate	Connector Style	
HFBR-1201/HFBR-2201 HFBR-1202/HFBR-2202 HFBR-1201/HFBR-2203 HFBR-1202/HFBR-2204	$\begin{aligned} & 500 \mathrm{~m} \\ & 400 \mathrm{~m} \\ & 800 \mathrm{~m} \\ & 700 \mathrm{~m} \\ & \hline \end{aligned}$		5 MBd 5 MBd	HFBR-4000 SMA Style HFBR-4000 SMA Style	$\begin{gathered} 94 \\ 102 \end{gathered}$
			$\begin{aligned} & 40 \mathrm{MBd} \\ & 40 \mathrm{MBd} \\ & \hline \end{aligned}$		110
Evaluation Kit HFBR-0200	HFBR-1201 Transmitter, HFBR-2201 Receiver, 10m HFBR-3001, Mounting Hardware				94
Cables Simplex	Duplex	Customer specified length, connectored (HFBR-4000 connector) Customer specified length, connectored (SMA style connector) Customer specified length, unconnectored 10 metres connectored (HFBR-4000 connector) 10 metres connectored (SMA style connector)			
HFBR-3000, OPTO01 HFBR-3000, OPTOO2 HFBR-3200 HFBR-3001 HFBR-3021	HFBR-3100, OPTO01 HFBR-3100, OPTO02 HFBR-3300				$\begin{aligned} & 134, \\ & 136 \end{aligned}$
Connectors HFBR-4000 HFBR-3099	Metal body, metal ferruleConnector-connector junction, bulkhead feed through for HFBR-4000 connector				138
Connector Assembly Tools HFBR-0100 HFBR-0101 HFBR-0102	Field installation kit for HFBR-4000 connectors (includes case, tools, consumables) Replacement consumables for HFBR-0100 Kit Custom tool set only				140
Mounting Hardware HFBR-4201 HFBR-4202	PCB mounting bracket, EMI shield, misc. hardware for HFBR-1 201/-2201/-2203 PCB mounting bracket, EMI shield, misc. hardware for HFBR-1202/-2202/-2204				94

High Performance Module Family: Features - Glass fiber ($100 / 140 \mu \mathrm{~m}$), Precision metal connectors, TTL compatible output, Link monitor, Transparent 3-level code

Products/Part Nos.	Description			Page No.
Transmitter/Receiver Pairs HFBR-1001/HFBR-2001 HFBR-1002/HFBR-2001		$\begin{gathered} \hline \text { Guaranteed Data Rate } \\ 10 \mathrm{MBd} \\ 10 \mathrm{MBd} \\ \hline \end{gathered}$	Connector Style HFBR-4000 HFBR-4000	$\begin{aligned} & 122 \\ & 126 \end{aligned}$
Evaluation Kit HFBR-0010	HFBR-1001 Transmitter, HFBR-2001 Receiver, 10m connectored cable, literature			
Cables Same as Miniature Link Family	(see above)			$\begin{gathered} 134, \\ 136 \end{gathered}$
Connectors Same as Miniature Link Family	(see above)			138
Connector Assembly Tools Same as Miniature Link Family	(see above)			140
RS-232-C/V. 24 To Fiber Optic Multiplexer 39301A Multiplexer		1000 m length, $19.2 \mathrm{kbps} / \mathrm{channel}$ data rate, RS-232-C Input/Output		142

PIN Photodiodes

Features

- LOW COST PLASTIC DUAL-IN-LINE PACKAGE
- SNAP-IN CONNECTOR
- 665 nm EMITTER OPTIMIZED FOR PLASTIC CABLE
- EASY FIELD TERMINATIONS
- SHIELDED RECEIVER FOR HIGH NOISE IMMUNITY
- OPERATION TO 22 METRES - GUARANTEED OVER TEMPERATURE
- DC TO 5 MBaud DATA RATE
- LSTTL/TTL COMPATIBLE OUTPUT LEVEL
- CHOICE OF INTERNAL PULL-UP OR OPEN COLLECTOR OUTPUT
- STANDARD OR SPECIAL LENGTH CABLES
- SINGLE +5V RECEIVER POWER SUPPLY
- COLOR CODED TRANSMITTER AND RECEIVER
- SIMPLEX AND ZIP CORD STYLE DUPLEX CABLE

Applications

- EMC REGULATED SYSTEMS (FCC, VDE)
- INTER/INTRA-SYSTEM DATA LINK
- STATIC PROTECTION
- HIGH VOLTAGE ISOLATION
- MEDICAL EQUIPMENT
- SECURE DATA COMMUNICATIONS

Mechanical Dimensions

Description

The HFBR-0500 series is a complete family of fiber optic link components for configuring low-cost, short distance digital data transmission links. These components are designed to mate with plastic snap-in connectors and low-cost plastic fiber cable. Link design is simplified by the logic compatible receivers and the ease of terminating the plastic fiber cable. The key parameters of links configured with the HFBR-0500 family are fully guaranteed. The HFBR-0500 evaluation kit contains all the components and literature necessary to evaluate a working link.

Ordering Guide

Connectored Plastic Fiber Optic Cable

Single Channel
HFBR-3500*^
HFBR-3501
HFBR-3502
HFBR-3503
HFBR-3504
HFBR-3505
HFBR-3506
HFBR-3507
HFBR-3508
Dual
Channel
HFBR-3600**

HFBR-3602
HFBR-3603
HFBR-3604
HFBR-3605
HFBR-3606
HFBR-3607
HFBR-3608

Length* (metres)
Customer Specified
0.1
0.5

1
5
10
15
20
25
*All cable lengths are $+10 \%,-0 \%$ tolerance.
**HFBR-3500, HFBR-3600 Ordering Information
These cable assemblies of customer specified length, have factory installed connectors. The length must be specified in 1 metre increments. The mandatory OPT 001, specifies the number of assemblies of equal length ordered.
EXAMPLE: To order 3 Duplex cable assemblies, 21 metres each, specify
$\begin{array}{ll}\text { HFBR-3600 } & \text { Quantity } 63 \\ \text { OPT } 001 & \text { Quantity } 3\end{array}$

Modules/Connectors

HFBR-1501/1502 Transmitters
HFBR-2501/2502 Receivers
HFBR-4501 Gray Connector/Crimp Ring HFBR-4511 Blue Connector/Crimp Ring
Unconnectored Plastic Fiber Optic Cable
Single
Channel

HFBR-3589
HFBR-3590
HFBR-3591

Dual

HFBR-3689
Length*
(metres)
25
100
500
HFBR-4595 Polishing Kit
Polishing Fixture - Abrasive Paper

HFBR-0500 Evaluation Kit

HFBR-1501 Transmitter (Gray)
HFBR-2501 Receiver (Blue)
HFBR-3504 5m Connectored Cable
HFBR-4501 Connector/Crimp Ring (Gray)
HFBR-4511 Connector/Crimp Ring (Blue)
HFBR-4595 Polishing Kit
Technical Literature

Link Design Considerations

The first step in designing the link is to choose either the HFBR-1501/2501 or the HFBR-1502/2502 Transmitter/ Receiver pair based on the data-rate and distance requirements. The value of the transmitter drive current, I_{F}, must be determined next from Figure 2. For the HFBR-1501/2501 pair (Figure 2A), note that there is an upper as well as a lower limit on the value of I_{F} for any given distance. The dotted lines in Figure 2A and Figure 2B represent pulsed operation. When operating in the pulsed mode, the conditions in Note 1 must be met.

After selecting a value for the transmitter drive current I_{F}, the value of R_{1} in Figure 1 can be calculated as follows:

$$
R_{1}=\frac{V_{c c}-V_{F}}{I_{F}}
$$

For the HFBR-1502/2502 pair, the value of the capacitor, C_{1} (Figure 1B), must be chosen such that $\mathrm{R}_{1} \mathrm{C}_{1} \geq 75 \mathrm{~ns}$.

A. HFBR-1501/HFBR-2501 Link (5 MBaud, $\leq 10 \mathrm{~m}$)

B. HFBR-1502/HFBR-2502 Link (1 MBaud, $\leq \mathbf{2 2 m}$)

Figure 1. Typical Circuit Configuration

Recommended Operating Conditions

Parameter	Symbol	Mini	Max.	Units	Rel.
AMEIENTTEMPERATURE:	TA	0	70	${ }^{\circ} \mathrm{C}$	
TRANSMITTER Pealk forward Current	IF PK	10	750	mA	Note 1
Avg Forward Current	IFAV		60	mA	
RECEVER Supply Voltage	Vec	\% 4775	5.25	V	Note 2
Fan-Out TTL)	N	\%	5		
CABLE Long Term Bend Radius	1	35		mm	Note 3
Long Term Tensile Load	FT	\%	1	N	

System Performance

Parameter	Symbol	Min.	Typ. (17)	Max.	Units	Conditions	nef.
HFBR-1501/AFBR-2501							
Data Rate		de		5	MBa	$B E R \leq 10^{-9}$	
Transmission Distance	1	10			m	$1 \mathrm{FPK}=60 \mathrm{~mA}, 0.70^{\circ} \mathrm{C}$	
		17			m	IFPK $=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Propagation Delay	TPLH	-		140	$\begin{gathered} \text { ns } \\ \text { ns } \end{gathered}$	$\begin{aligned} & R_{L}-560 n_{1} \mathrm{C}_{\mathrm{L}}-30 \mathrm{pF} \\ & -1.6 \leq P_{R} \leq-95 \mathrm{dBm} \end{aligned}$	Fig. 5,3 Note 4
	${ }_{\text {PPLL }}$			140			
Pulse Width Oistortion	tsk				ns	$\mathrm{P}_{\mathrm{F}}=-15 \mathrm{dBm}$	Tig. 4 Note 5

| HFBR-150X/250X | 8000 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EMI Immunity | | V/m | BER 10^{-9} | |

ℓ - CABLE LENGTH - METERS
Figure 2A. System Performance with HFBR-1501 and HFBR-2501

Figure 2B. System Performance with HFBR-1502 and HFBR-2502

Transmitters

The gray plastic HFBR-1501/1502 Transmitter modules incorporate a 665 nm LED targeted at the low attenuation window for the HFBR-3500/3600 plastic fiber optic cable. The transmitters can be easily interfaced to standard TTL logic. The optical power output of the HFBR-1501/1502 is specified at the end of 0.5 m of cable.

HFBR-1501/1502 Transmitter

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Rel.	
Storage Temperature	TS	-40	+75	${ }^{\circ} \mathrm{C}$		
Operating Temperature		TA	0	+70	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp			260	${ }^{\circ} \mathrm{C}$	Note 6
	Time			10	sec	
Peak Forward Input Current	IF PK		1000	mA	Note 7	
Average Forward Input Current	IF AV		80	mA		
Reverse Inpui Voltage	VR		5	V		

Electrical/Optical Characteristics (Cont.) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{(17)}$	Max.	Units	Conditions	Ref. Note 8 Note 9
Transmitter Output Optical Power	HFBR-1501	PT	-14.8		-8.4	dBm	$1 \mathrm{~F}=60 \mathrm{~mA}_{1} 0-70^{\circ} \mathrm{C}$	
			-11.7		-9.3	dBm	$1 \mathrm{~F}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	HFER-1502	PT	-13.6		-5.5	dBm	$\mathrm{IF}_{\mathrm{F}}=60 \mathrm{~mA}, 0.70^{\circ} \mathrm{C}$	
			-10.4		-6.4	dBm	$\mathrm{If}^{\prime}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Output Optical Power Temperature Coefficient		$\frac{\Delta P_{T}}{\Delta T}$		-0.026		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$		
Peak Emission Wavelength		APK		665		nm		
Forward Voltage		V_{F}	1.45	1.67	2.02	\checkmark	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	
Forward Voltage Temperature Coefficient		$\frac{\Delta V_{F}}{\Delta T}$		-1.37		$\mathrm{mV}{ }^{\circ} \mathrm{C}$		
Effective Diameter		DT		1		mm		
Numerical Aperture		N.A.		0.5				
Reverse Input Breakdown Voltage		VBR	5.0	12.4		V	$\mathrm{I}_{F}=-10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Diode Capacitance		Co		86		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$	

[^5]
Receivers

The blue plastic HFBR-2501/2502 Receiver modules feature a shielded integrated photodetector and wide bandwidth DC amplifier for high EMI immunity. A Schottky clamped open-collector output transistor allows interfacing to common logic families and enables "wired-OR" circuit designs. The open collector output is specified up to 18 V . An integrated 1000 ohm resistor internally connected to $V_{c c}$ may be externally jumpered to provide a pull-up for ease-of-use
 with +5 V logic. The combination of high optical power levels and fast transitions falling edge could result in distortion of the output signal (HFBR-2502 only), that could lead to multiple triggering of following circuitry. Optical power waveshaping circuitry as in Figure 1B may be required for proper link operation.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Rel.
Storage Temperature		Ts	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	0	$+70$	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp			260	${ }^{\circ} \mathrm{C}$	Note 6
	Time			10	sec	
Supply Voltage		VCC	-0.5	7	V	
Output Collector Current		10		25	mA	
Output Collector Power Dissipation		POD		40	mW	
Output Voltage		Vo	-0.5	18	V	
Pullup Voltage		VRL.	-0.5	Vcc	V	

Electrical/Optical Characteristics

(Cont.) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{17}$	Max.	Units	Conditions	
Receiver Input Optical Power Level for Logic "0"	HFBR-2501	$\mathrm{PR}_{\mathrm{R}}^{(t)}$	-21.6		-9.5	dBm	$\begin{array}{r} 0-70^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ 10 \mathrm{~L}=8 \mathrm{~mA} \end{array}$	Note$9,10$
			-21.6		-8.7	dBm	$\begin{array}{r} 25^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ 1 \mathrm{OL}=8 \mathrm{~mA} \end{array}$	
	HFBR-2502	PR (L)	-24			dBm	$\begin{array}{r} 0-70^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ 10 \mathrm{~L}=8 \mathrm{~mA} \end{array}$	
			-24			dBm	$\begin{array}{r} 25^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ 10 \mathrm{OL}=8 \mathrm{~mA} \end{array}$	
Input Optical Power Level for Logic "1"		$\mathrm{P}_{\mathrm{R}}(\mathrm{H})$			-43	dBm	$\begin{aligned} & \mathrm{VOH}=5.25 \mathrm{~V}, \\ & \mathrm{lOH} \leq 250 \mu \mathrm{~A} \end{aligned}$	Note 9
High Level Output Current		IOH		5	250	$\mu \mathrm{A}$	$V_{0}=18 \mathrm{~V}, \mathrm{~Pa}_{\mathrm{A}}=0$	Note 16
Low Level Output Voltage		VOL		0.4	0.5	V	$\begin{aligned} & \mathrm{IOL}=8 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{PRL}_{\mathrm{RL}} . \mathrm{MN} \end{aligned}$	Note 16
High Level Supply Current		1 COH		3.5	6.3	mA	$V C C=5.25 V, \phi R=0$	Note 16
Low Level Supply Current		ICCL		6.2	10	mA	$\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & \mathrm{PR}_{\mathrm{R}}=-12.5 \mathrm{dBm} \end{aligned}$	Note 16
Effective Diameter		DR		1		mm		
Numerical Aperture		N.A.R		0.5				
Internal Pull-Up Resistor		R_{L}		1000		Ohms		

Plastic Fiber Cable

The HFBR-3500/3600 series cables contain 1 mm diameter plastic fibers. These cables are extremely easy to connector. Simplex (HFBR-3500) and Duplex (HFBR-3600) cables are available with or without factory installed connectors.

Duplex

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max	Units	Ref.	
Storage Temperature	Ts	-40	+75	${ }^{\circ} \mathrm{C}$		
Installation Temperature		Tl	-20	+70	${ }^{\circ} \mathrm{C}$	
Tensile Force	Single Channel)	FT		50	N	
	(Dual Channel)	FT		100	N	Note 11
	Cable/Connector	FT		5	N	
Bend Radius	r	10		mm	Note 12	
Flexing			1000	Cycles	Note 13	
Impact	m		1	kg	Note 14	

Electrical/Optical CharacteristicS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter	Symbol	Min.	Typ. (17)	Max.	Units	Conditions	Ref.
Link Coupling Variation	$\Delta \alpha \mathrm{LC}$		0.9	2.0	dB		Note 15
Cable Attenuation	α_{0}	0.3	0.45	0.63	$\mathrm{~dB} / \mathrm{m}$	$@ 665 \mathrm{~nm}$ Source NA $=0.5$	
Numerical Aperture	N.A.		0.5			$\ell>2 \mathrm{~m}$	
Diameter, Core	DC		1.0		mm		
Diameter, Jacket	DJ		2.2		mm	Simplex Cable	
Delay	tpdc		5.0		$\mathrm{nsec} / \mathrm{m}$		
Mass per Unit Length/Channel	m / X		4.6		$\mathrm{~g} / \mathrm{m}$	Without Connectors	
Cable Leakage Current	IL		1		nA	$10 \mathrm{kV}, \ell=0.1 \mathrm{~m}$	

CABLE TERMINATIONS

Connectoring the cable is accomplished with the HewlettPackard HFBR-4595 Polishing Kit consisting of a Polishing Fixture and 600 grit abrasive paper. No adhesive material is needed to secure the cable in the connector, and the connector can be used immediately after polishing.
Connectors may be easily installed on the cable ends with readily available tools. Materials needed for the terminating procedure are:

1) HFBR-3500/3600 Fiber Optic Cable
2) HFBR-4595 Polishing Fixture, 600 grit sand paper
3) HFBR-4501 Connector crimp ring (gray)
4) HFBR-4511 Connector crimp ring (blue)
5) Industrial Razor Blade
6) 16 gauge latching wire strippers
7) Crimp Tool, AMP 90364-2

The zip cord structure of the HFBR-3600 duplex cable permits easy separation of the channels. The channels should be separated approximately 50 mm back from the ends to permit connectoring and polishing.
After cutting the cable to the desired length, strip off approximately 7 mm (0.275 in) of the outer jacket with the 16 guage wire strippers.
Place the crimp ring and connector over the end of the cable;
the fiber should protrude about $3 \mathrm{~mm}(0.120 \mathrm{in})$ through the end of the connector. Carefully position the ring so that it is entirely on the connector and then crimp the ring in place with the crimping tool.

NOTE: Place the gray connector on the cable end to be connected to the transmitter and the blue connector on the cable end to be connected to the receiver to maintain the color coding (both connectors are the same mechanically).
Any excess fiber protruding from the connector end may be trimmed with the razor blade; however, the trimmed fiber should extend at least $1.5 \mathrm{~mm}(0.060 \mathrm{in})$ from the connector end.
Insert the connector fully into the polishing fixture with the connector end protruding from the bottom of the fixture.

NOTE: The four dots on the bottom of the polishing fixture are wear indicators. Replace the polishing fixture when any dot is no longer visible.
Using a figure-eight motion of the polishing fixture on the 600 grit abrasive, trim the fiber and the connector until the connector is flush with the end of the polishing fixture. The fiber end should be flat and smooth with no large irregularities.
The cable can now be used.

Figure 3. AC Test Circuit

Figure 4. Pulse Width Distortion vs. Optical Power

Figure 6. Forward Current vs. Forward Voltage

Figure 5. Propagation Delay vs. Optical Power

Figure 7. Normalized Transmitter Output Optical Power vs. Input Current

Optic Power Measurement

The optical power at the end of the HFBR-3500 series Fiber Optic Cable can be easily measured using a large area Radiometer such as the EG\&G-550, Photodyne 88XL, or United Detector Technology S550, that has been calibrated at 665 nm .

The output optical power for the Transmitter has been specified at the end of 0.5 metres of HFBR-3500 Fiber Optic Cable and can therefore be easily measured using one of the above instruments.

Extended Distance Operation

Distances greater than $22 \mathrm{~m}\left(0-70^{\circ} \mathrm{C}\right)$, are achievable by using high peak current pulses to drive the Transmitter. Ifav must be limited to 80 mA and IFPK to 1000 mA . The pulse width must be controlled. (Note 1).

Figure 8 shows a simple circuit suitable for RS-232 applications using the HFBR-1502 Transmitter and HFBR-2502 Receiver for 30 metre operation.
$I_{\text {FPK }}=500 \mathrm{~mA}$ (From Figure 2B, $\ell=31 \mathrm{~m}$); IFAV $=25 \mathrm{~mA}$ at a Data Rate of 55 Kbd or less, Pulse Width Distortion < 25\% ($4.5 \mu \mathrm{~s}$ max.)

NOTE: Ifpk up to 1000 mA may be used for distances up to 35 m .

An MOS clock driver may be used to provide transient current sinking capability up to 1000 mA .

Even longer distances can be achieved using specially selected components - contact your local HewlettPackard Sales Representative.

NOTES:

1. For IFPK $>80 \mathrm{~mA}$, the duty factor must be such as to keep IFAV $\leq 80 \mathrm{~mA}$. In addition, for IFPK $>80 \mathrm{~mA}$, the following rules for pulse width apply: IFPK $\leq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mathrm{~ms}$
IFPK $>160 \mathrm{~mA}$: Pulse width $\leq 1 \mu \mathrm{~S}$
2. It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. See cable absolute maximum ratings for short-term bend radius and tensile load.
4. The propagation delay of 1 m of cable (4.5 ns) is included.
5. $\mathrm{t}_{\mathrm{SK}}=\mathrm{tpLH}-\mathrm{tPHL} \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
6.1 .6 mm below seating plane.
6. 1μ s pulse, 20μ s period.
7. Measured at the end of 0.5 m HFBR-3502 Fiber Optic Cable with a large area detector.
8. Optical flux, $\mathbf{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
9. Measured at the end of HFBR-3500 Fiber Optic Cable with large area detector.
10. Less than 30 minutes.
11. Less than 1 hour, non-operating.
13.90° bend on 10 mm radius mandrel.
14.1 Kg weight dropped from 15 mm height on 2.5 mm radius mandrel laid on cable.
12. Included in P_{T} and P_{R}.
13. R_{L} is open.
14. Typical data at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \mathrm{dc}$.

Miniature Fiber Optic Logic Link

Features

- DC TO 5 MBAUD DATA RATE
- MAXIMUM LINK LENGTH 500 Metres (Guaranteed) 1200 Metres (Typical)
- TTL/CMOS COMPATIBLE OUTPUT
- MINIATURE, RUGGED METAL PACKAGE
- SINGLE +5V RECEIVER POWER SUPPLY
- INTERNALLY SHIELDED RECEIVER FOR EMI/RFI IMMUNITY
- PCB AND PANEL MOUNTABLE
- LOW POWER CONSUMPTION

Applications

- EMC REGULATED SYSTEMS

- EXPLOSION PROOF SYSTEMS IN OIL INDUSTRY/CHEMICAL PROCESS CONTROL INDUSTRY
- SECURE DATA COMMUNICATIONS
- WEIGHT SENSITIVE SYSTEMS (e.g. Avionics, Mobile Stations)
- HIGH VOLTAGE ISOLATION IN POWER GENERATION

Description

The HFBR-0200 Series is a dc to 5 MBaud fiber optic data link capable of transmission over distances of 500 metres or more.
A complete evaluation kit is available (HFBR-0200) containing a transmitter, receiver, mounting hardware, 10 m of cable and technical literature. The HFBR-1201 Transmitter

and HFBR-2201 Receiver are housed in miniature, rugged packages compatible with the HFBR-4000 connector and HFBR-3000 series glass fiber optic cable. The HFBR-3000 series fiber optic cable can be ordered with or without installed connectors. The HFBR-0100 connector assembly kit is available if field installation of connectors is desired.
The HFBR-1201 Transmitter contains a high efficiency GaAIAs emitter operating at a wavelength of 820 nm . The transmitter is easily identified by the white epoxy backfill.
The HFBR-2201 Receiver contains an integrated photodetector and dc amplifier. An open collector Schottky transistor provides logic compatibility. The combination of an internal EMI shield, the metal package, and an isolated case ground provides excellent immunity to EMI/RFI. For unusually severe EMI/ESD environments, a metal shield is provided which snaps directly onto the mounting bracket. The receiver is easily identified by the black epoxy backfill.

Mechanical Dimensions

Electrical Description

The HFBR-1201 Transmitter contains a GaAIAs infrared emitter. Both the anode and cathode of the emitter are insulated from the case. This configuration permits the use of a variety of drive circuitry such as series switching, shuntswitching and high frequency peaking. There is no internal drive circuit or current limiter.

The HFBR-2201 Receiver incorporates an integrated photo IC containing a photodetector and dc amplifier driving an open-collector Schottky output transistor. The HFBR-2201 is designed for direct interfacing to popular logic families. The absence of an internal pull-up resistor allows the opencollector output to be used with logic families such as CMOS requiring voltage excursions much higher than V_{CC}. Both the open-collector "Data" output (Pin 3) and V_{CC} (Pin 2) are referenced to "Com" (Pin 4). The "Data" output allows busing, strobing and wired "OR" circuit configurations. Both the transmitter and receiver are designed to operate from a single +5 V supply. Note that the "Com" and "Case" pins are not connected internally.
The HFBR-1201 and HFBR-2201 optical receptacles contain a lens to optimize the coupling between the fiber and the active optical device.

Figure 1. Cross Sectional View

Mechanical Description

The HFBR-1201 fiber optic transmitter and HFBR-2201 receiver are housed in rugged metal packages intended for use with the HFBR-3000 fiber optic cable/connector assemblies. The low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking. A flat on the mounting threads of the device is provided to prevent rotation in all mounting configurations and to provide an orientation reference for the pin-out. Hardware is available for horizontal mounting applications on printed circuit boards. The hardware consists of a stainless steel mounting bracket fastened directly to the printed circuit board with two stainless steel self-tapping screws and a nut and washer for fastening the device in the bracket. A metal shield which snaps directly on the mounting bracket is also available for unusually severe EMI/ESD environments. When mounted in the horizontal configuration, the overall height of the component conforms with guidelines allowing printed circuit board spacing on $12.7 \mathrm{~mm}(.500)$ centers. A thorough environmental characterization has been performed on these products. The test data as well as information regarding operation beyond the specified limits is available from any Hewlett-Packard sales office.

System Design Considerations

The Miniature Fiber Optic Logic Link is guaranteed to work over the entire range of 0 to 500 metres at a data rate of dc -5 MBd with arbitrary data format and typically less than 25\% pulse width distortion, if the Transmitter is driven with $I_{F}=40 \mathrm{~mA}\left(R_{1}=82 \Omega\right)$. If it is desired to economize on power or achieve lower pulse distortion, then a lower drive current (IF) may be used. The following example will illustrate the technique for optimizing I_{F}.
EXAMPLE: Maximum distance required $=200$ meters. From Fig. 3, the worst case drive current $=20 \mathrm{~mA}$. From the Transmitter data, $\mathrm{V}_{\mathrm{F}}=1.7 \mathrm{~V}$ (max.).

$$
R_{1}=\frac{V_{C C}-V_{F}}{I_{F}}=\frac{5-1.7 V}{20 \mathrm{~mA}}=165 \Omega
$$

The optical power margin between the typical and worst case curves (Fig. 3) at 200 metres is 4 dB . To calculate the worst case pulse width distortion at 200 metres, see Fig. 9. The power into the Receiver is PRL $+4 \mathrm{~dB}=-20 \mathrm{dBm}$ Therefore, the typical distortion is 40 ns or 20% at 5 MBd .

Figure 2.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Reterence
TRANSMITTER					
Ambient Temperature	T_{A}	-40	$+85$	${ }^{\circ} \mathrm{C}$	
Peak Forward Imput Current	If, PK		40	mA	Note 7
Average Forward input Current	IFAV		40	$m A$	Note 7
RECEIVER					
Ambient Temperature	$\mathrm{T}_{\text {A }}$	-20	$+85$	${ }^{\circ} \mathrm{C}$	
Supply Voltage	Vcc	4.75	5.25	V	
Fan Out (TTL)	N		5		Note 3, Fig. 2

System Performance $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Reference
Transmission Distance	Q	500	1200		Metres		Fig. 3
Data Rate Synchronous		de		5	MBaud		Note 10
Asynchronous		dc		2.5	MBaud		Note 10, Fig. 9
Propagation Delay LOW to HIGH	tPLH		82		nsec	$\begin{aligned} & \mathrm{TA}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{PR}_{\mathrm{R}}=-21 \mathrm{dBm} \\ & \mathrm{I}_{\mathrm{F}, \mathrm{PK}=15 \mathrm{~mA}} \\ & \hat{\ell}=1 \text { metre } \end{aligned}$	Fig. 8, 9, 10
Propagation Delay HIGH to LOW	tPHL.		55		nsec		
System Puise Width Distortion	to		27		nsec		
Bit Error Rate	BER			10^{-9}		Data Rate ≤ 5 MBaud $\mathrm{P}_{\mathrm{R}}>-24 \mathrm{dBm}(4 \mu \mathrm{~W})$	

Figure 3. System Performance: HFBR-1201/-2201 with -3000
Series Cable

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Unit	Reference
Storage Temperature		Ts	-55	485	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.			$+260$	${ }^{\circ} \mathrm{C}$	Note 2
	Time			10	sec	
Forward Input Current	Peak	IF, PK		40	mA	Note 7
	Average	IF, AV		40	mA	
Reverse Input Voltage		VBR		2.5	V	

Electrical/Optical Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Reference
Forward Voltage	V_{F}		1.44	1.7	V	$I_{F}=20 \mathrm{~mA}$	Fig. 6
Forward Voltage Temperature Coefficient	$\Delta V_{F} / \Delta T$		-0.91		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$	Fig. 6
Reverse Input Voltage	V_{BF}	2.5	4.0		V	$\mathrm{If}=100 \mu \mathrm{~A}$	
Numerical Aperture	NA		.35				
Optical Port Diameter	DT		180		$\mu \mathrm{~m}$		
Peak Emission Wavelength	λ_{P}		820		nm		Fig. 7

Dynamic Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Reference
Output Optical Power	Pt	-20	-19		dBm	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Fig. 4 Note 4
		10	12		$\mu \mathrm{W}$		
		-21			dBm	$\begin{aligned} & \mathrm{IF}=20 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C} \end{aligned}$	
		8			$\mu \mathrm{W}$		
Optical Power Temperature Coefficient	$\Delta \mathrm{P}_{T} / \Delta T$		-. 017		$\mathrm{dB} 1^{\circ} \mathrm{C}$		Fig. 5
Propagation Delay LOW to HIGH	tPLH		17		nsec	IF.PK $=10 \mathrm{~mA}$	Note 8 Fig. 8
Propagation Delay HIGH to LOW	TPHL		6		nsec		

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the infrared output is radiologically safe; however, when
viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Reference
Storage Temperature		Ts	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	-20	+85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Fig. 2
	Time			10	sec	
Supply Voltage		Vcc	-0.5	+7.0	V	
Output Current		10		25	mA	
Output Voltage		Vo	-0.5	+18.0	V	
Output Collector Power Dissipation		Po, AV		40	mW	

Electrical/Optical Characteristics $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbal	Min.	Typ.	Max.	Units	Conditions	Reference
High Level Output Current	IOH		5	250	$\mu \mathrm{A}$	$\begin{aligned} & V_{0}=18 \mathrm{~V} \\ & P_{\mathrm{R}}<-40 \mathrm{dBm} \end{aligned}$	
Low Level Output Voltage	Vol		0.4	0.5	V	$\begin{aligned} & 10=8 \mathrm{~mA} \\ & P_{\mathrm{R}}>-24 \mathrm{dBm} \end{aligned}$	
High Level Supply Current	ICCH		3.5	6.3	mA	$\begin{aligned} & V \mathrm{Cc}=5.25 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{R}}<-40 \mathrm{dBm} \end{aligned}$	
Low Level Supply Current	1 CCL.		6.2	10	mA	$\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & P_{R}>-24 \mathrm{dBm} \end{aligned}$	
Optical Port Diameter	Dr		900		$\mu \mathrm{m}$		
Numerical Aperture	N_{A}		. 5				

Dynamic Characteristics $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Reference
Input Power Level Logic HIGH	PRH			$\begin{gathered} -40 \\ 0.1 \end{gathered}$	dBm $\mu \mathrm{W}$	$\lambda \mathrm{p}=820 \mathrm{~nm}$	Note 5
Input Power Level Logic LOW	PRL		$\begin{aligned} & -25 \\ & 3.2 \end{aligned}$		$\begin{gathered} \mathrm{dBm} \\ \mu W \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Fig. 5 , Note 5
		$\begin{aligned} & -24 \\ & 4.0 \end{aligned}$			$\begin{gathered} \mathrm{dBm} \\ { }_{\mu \mathrm{W}} \end{gathered}$	$-20<T_{A}<85^{\circ} \mathrm{C}$	
Propagation Delay LOW to HIGH	tri.h		65		nsec	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{R}}=-21 \mathrm{dBm}$	Note 8, Fig. 8
Propagation Delay HIGH to LOW	tPHL		49		nsec		

Notes:

1. Typical data at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ dc.
2. 2.0 mm from where leads enter case
3. 8 mA load $(5 \times 1.6 \mathrm{~mA}) . \mathrm{R}_{\mathrm{L}}=560 \Omega$
4. Measured at the end of 1.0 metre HFBR-3000 Fiber Optic Cable with large area detector
5. Measured at the end of HFBR-3000 Fiber Optic Cable with large area detector.
6. When changing microwatts to dBm , the optical flux is referenced to one
milliwatt ($1000 \mu \mathrm{~W})$.
Optical Flux, P $(\mathrm{dBm})=10 \log \frac{\mathrm{P}(\mu \mathrm{W})}{\mathrm{PO}} \quad\left(\mathrm{PO}_{0}=1000 \mu \mathrm{~W}\right)$
7. IFPK should not be less than 10 mA in the "ON" state. This is to avoid the long turn-on time that occurs at low input current. Ifav may be arbitrarily low, as there is no duty factor restriction.
8. Propagation delay through the system is the result of several sequentially-occurring phenomena. Consequently it is a combination of data-rate-limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time
differentials between delays imposed on falling and rising edges.
As the cable length is increased, the propagation delays increase at 5 ns per metre of length increase. Data rate, as limited by pulse width distortion, is not affected by increasing cable length if the optical power level at the Receiver is maintained.
9. Worst case system performance is based on worst case performance o individual components: transmitter at $+85^{\circ} \mathrm{C}$, receiver and cable at $-20^{\circ} \mathrm{C}$.
10. Synchronous data rate limit is based on these assumptions: (a) 50% duty factor modulation, e.g. Manchester I or BiPhase (Manchester II); b) continuous data; (c) PLL (Phase Lock Loop) demodulation; (d) TTL threshold.
Asynchronous data rate limit is based on these assumptions: (a) NRZ data; (b) arbitrary timing - no duty factor restriction; (c) TTL threshold.
The EYE pattern describes the timing range within which there is no uncertainty of the logic state, relative to a specific threshold, due to either noise or intersymbol (prop. delay) effects.

Figure 4. Normalized Transmitter Output vs. Forward Current

Figure 7. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 5. Normalized Thermal Effects in Transmitter Output,
Receiver Threshold, and Link Performance (Relative Threshold)

Figure 8. Propagation Delay through System with One Metre of Cable

Figure 6. Forward Voltage and Current Characteristics for the Transmitter LED

Figure 9. Worst-Case Distortion of NRZ EYE-pattern with Pseudo Random Data at 10 Mb / s. (see note 10).

Figure 10. System Propagation Delay Test Circuit and Waveform Timing Definitions

Typical Circuit Configuration

HFBR-1201 TRANSMITTER

HFBR-2201 RECEIVER

Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well.

It is essential that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 2 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .

Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support
the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

HFBR-1201 TRANSMITTER

DIMENSIONS IN MILLIMETRES (INCHES).

Ordering Guide

HFBR-0200 Kit:

- HFBR-1201 Transmitter
- HFBR-2201 Receiver
- HFBR-4201 Mounting Hardware (2 sets)
- HFBR-3000 10 Metre Cable/Connector Assembly
- Technical Literature

Modules:

HFBR-1201 - Transmitter
HFBR-2201 - Receiver

Connector HFBR-4000

(See data sheet)

Fiber Optic Cable (See data sheet)

- HFBR-3000 Simplex Connectored
- HFBR-3200 Simplex Unconnectored
- HFBR-3100 Duplex Connectored
- HFBR-3300 Duplex Unconnectored

Mounting Hardware: HFBR-4201
1 EMI/ESD shield
$11 / 4-32$ nut
$11 / 4 \times .005^{\prime \prime}$ washer
2 2-56 self tapping screws
1 mounting bracket
Connector Assembly Tooling Kit HFBR-0100
(See data sheet)

MIINATURE FIBER OPTIC LOGIC LINK (SMA Compatible)

HFBR-1202
HFBR-2202
HFBR-4202

Features

- DC TO 5 MBAUD DATA RATE
- MAXIMUM LINK LENGTH 400 Metres (Guaranteed) 1000 Metres (Typical)
- TTL/CMOS COMPATIBLE OUTPUT
- MINIATURE, RUGGED METAL PACKAGE
- SINGLE +5V RECEIVER POWER SUPPLY
- INTERNALLY SHIELDED RECEIVER FOR EMI/RFI IMMUNITY
- PCB AND PANEL MOUNTABLE
- LOW POWER CONSUMPTION

Applications

- EMC REGULATED SYSTEMS (FCC, VDE)
- EXPLOSION PROOF SYSTEMS IN OIL INDUSTRY/CHEMICAL PROCESS CONTROL INDUSTRY
- SECURE DATA COMMUNICATIONS
- WEIGHT SENSITIVE SYSTEMS
(e.g. Avionics, Mobile Stations)
- HIGH VOLTAGE ISOLATION IN POWER GENERATION

Description

The HFBR-1202 Transmitter and HFBR-2202 Receiver are SMA connector compatible fiber optic link components. Distances to 1000 metres at data rates up to 5 MBaud are achievable with these components and the HFBR3000/3100, OPT 002 series fiber optic cable assemblies.

The HFBR-1202 Transmitter contains a high efficiency GaAlAs emitter operating at a wavelength of 820 nm . The transmitter is easily identified by the white epoxy backfill.
The HFBR-2202 Receiver incorporates a photo IC containing a photodetector and dc amplifier. An open collector Schottky transistor on the IC provides logic compatibility. The combination of an internal EMI shield, the metal package and an isolated case ground provides excellent immunity to EMI/RFI. For unusually severe EMI/ESD environments, a snap-on metal shield is available. The receiver is easily identified by the black epoxy backfill.
The HFBR-3000 (Simplex) and HFBR-3100 (Duplex) cable assemblies are available with SMA connectors (OPT 002). Unconnectored cable is also available for users who wish to make their own cable/connector assemblies.

Mechanical Dimensions

System Design Considerations

The Miniature Fiber Optic Logic Link is guaranteed to work over the entire range of 0 to 400 metres at a data rate of dc -5 MBd , with arbitrary data format and typically less than 25% pulse width distortion, if the Transmitter is driven with IF $=40 \mathrm{~mA}, \mathrm{R}_{1}=82 \Omega$. If it is desired to economize on power or achieve lower pulse distortion, then a lower drive current (IF) may be used. The following example will illustrate the technique for optimizing IF_{F}.
EXAMPLE: Maximum distance required $=200$ metres. From Figure 2 the worst case drive current $=24 \mathrm{~mA}$. From the Transmitter data $-V_{F}=1.7 \mathrm{~V}$ (max.).

$$
R_{1}=\frac{V_{C C}-V_{F}}{I_{F}}=\frac{5-1.7 V}{24 m A}=138 \Omega
$$

The optical power margin between the typical and worst case curves (Figure 2) at 200 metres is 4 dB . To calculate the worst case pulse width distortion at 200 metres, see Figure 8. The power into the Receiver is PRL $+4 \mathrm{~dB}=-20 \mathrm{dBm}$. Therefore, the typical distortion is 40 ns or 20% at 5 MBd .

CABLE SELECTION

The link performance specifications on the following page are based on using the HFBR-3000/HFBR-3100, OPT 002 cable assemblies. These cables contain glass-clad silica fibers with a $100 \mu \mathrm{~m}$ core diameter and $140 \mu \mathrm{~m}$ cladding diameter. This fiber type is now a user accepted standard for local data communications links (RS-458, Class I, Type B). The HFBR-1202 Transmitter and HFBR-2202 Receiver are optimized for use with the $100 / 140 \mu \mathrm{~m}$ fiber. There is, however, no fundamental restriction against using other fiber types. Before selecting an alternate fiber type, several parameters need to be carefully evaluated.
The attenuation ($\mathrm{dB} / \mathrm{km}$) of the selected fiber, in conjunction with the amount of optical power coupled into it will determine the achievable link length. The parameters that
will significantly affect the optical power coupled into the fiber are as follows:
a. Fiber Core Diameter. As the core diameter is increased, the optical power coupled increases, leveling off at about $250 \mu \mathrm{~m}$ diameter.
b. Numerical Aperture (NA). As the NA is increased, the optical power coupled increases, leveling off at an NA of about 0.34 .
c. Index Profile (α). The Index profile parameter of fibers varies from 2 (fully graded index) to infinite (step index). Some gains in coupled optical power can be achieved at the expense of bandwidth, when α is increased.
In addition to the optical parameters, the environmental performance of the selected fiber/cable must be evaluated. Finally, the ease of installing connectors on the selected fiber/cable must be considered. Given the large number of parameters that must be evaluated when using a nonstandard fiber, it is recommended that the $100 / 140 \mu \mathrm{~m}$ fiber be used unless unusual circumstances warrant the use of an alternate fiber/cable type.

SMA STYLE CONNECTORS

The HFBR-1202/2202 is compatible with either the Type A or Type B SMA style fiber optic connector (see Figure 13). The basic difference between the two connectors is the plastic half-sleeve on the stepped ferrule tip of the Type B connector. This step provides the capability to use a full length plastic sleeve to ensure good alignment of two connectors for an inline splice. The HFBR-3000/HFBR-3100, OPT 002 series connectored cable utilizes the Type A connector system because of the inherent environmental advantages of metal-to-metal interfaces.

Typical Circuit Configuration

```
NOTE:
TT ES ESSENTIAL THAT A BYPASS GAPACITOR t0.01 uF to 0.1 IF
CERAMICI BE CONNECTED FROM PIN 2 TOPIN 4 OF TH W RECEEVER.
TOTAL LEAD LENGTH BETWEEN BOTH ENDS OF THE CAPACITOR
AND THE PINS SHOULD NOT EXCGEO 20 mm .
```


Figure 1.

Recommended Operating Conditions

Parameter - :	Symbol	Min.	Max.	Units	Reference:
TRANSMITTER					
Ambient Temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Peak Forward input Current	IF, PK		40	mA	Note 7
Average Forward input Current	Ifav		40	mA	Note 7
RECEIVER					
Ambient Temperature	TA	-20	+85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	VaC	4.75	5.25	\checkmark	
Fan Out (TTL)	N	.	5		Note 3. Fig. 1
CABLE (see HFBR-3000/MFBR-3100, OPT 002 data sheet)					

System Performance $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min ${ }^{[1]}$	Typ.	Max.	Units	Conditions	Reference
Transmission Distance	2	400	1000		Metres		Fig. 2, Note 9
Data Rate Synchronous		dc		5	MBaud		Note 10
Asynchronous		dc		2.5	MBaud		Note 10, Fig. 8
Propagation Delay LOW to HIGH	tPLH		82		nsec	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & P_{A}=-21 \mathrm{dBm} \end{aligned}$	Fig. 7, 8, 9
Propagation Delay HIGH to LOW	tPH.		55		nsec	$\text { IF, } \mathrm{PK}=15 \mathrm{~mA}$	
System Pulse Width Distortion	to		27		nsec	Q $=1$ metre	
Bit Error Rate	BER			10^{-9}		Data Rate ≤ 5 MBaud $\mathrm{P}_{\mathrm{R}}>-24 \mathrm{dBm}(4 \mu \mathrm{~W})$	

Figure 2. System Performance: HFBR-1202/HFBR-2202 with HFBR-3000/3100, OPT 002 Cable Assembly

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Reference	
Storage Temperature	TS	-55	+85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 2
	Time			10	sec	
Forward Input Current	Peak	IF. PK		40	mA	Note 7
	Average	IF, AV		40	mA	
Reverse Input Voltage	VBR		2.5	V		

Electrical/Optical Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Units	Conditions	Reference
Forward Voltage	V_{F}		1.44	1.7	V	If $=20 \mathrm{~mA}$	Fig. 5
Forward Voltage Temperature Coefficient	JVF/ $\$ T & & -0.91 & & $\mathrm{mV} f^{\circ} \mathrm{C}$	$\mathrm{IF}=20 \mathrm{~mA}$	Fig. 5				
Reverse Input Voltage	VER	2.5	4.0		V	$\mathrm{IR}=100 \mu \mathrm{~A}$	
Numerical Aperture	NA		. 34				
Optical Port Diameter	DT		250		$\mu \mathrm{m}$		Note 11
Peak Emission Wavelength	λP		820		nm		Fig. 6

Dynamic Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Units	Conditions	Reference
Output Optical Power Measured Out of 1 m of $\mathrm{HFBR}-3000$ Fiber Cable	Pt	-21	-20		dBm	$\begin{aligned} & I F=20 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Fig. 3 Note 4
		7.9	10		${ }_{\mu} \mathrm{W}$		
		-22			dBm	$\begin{aligned} & \mathrm{IF}=20 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C} \end{aligned}$	
		6.3			$\mu \mathrm{W}$		
Optical Power Temperature Coefficient	$\triangle \mathrm{PT} / \Delta \mathrm{T}$		- 0.017		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$		Fig. 4
Propagation Delay LOW to HIGH	tplht		17		nsec	$\mathrm{IF}, \mathrm{PK}=10 \mathrm{~mA}$	Note 8 Fig. 7
Propagation Delay HIGH to LOW	tPhL.		6		nsec		

Notes:

1. Typical data at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \mathrm{dc}$
. 2.0 mm from where leads enter case.
2. 8 mA load $(5 \times 1.6 \mathrm{~mA})$. $\mathrm{R}_{\mathrm{L}}=560 \Omega$.
3. Measured at the end of 1.0 metre HFBR-3000 Fiber Optic Cable (NA $=$ 0.28) with large area detector.
4. Measured at the end of HFBR-3000 Fiber Optic Cable with large area detector.

WARNING: OBSERVING THE TRANSMITTER OUTPUT

 POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the infrared output is radiologically safe; however, when6. When changing microwatts to dBm , the optical flux is referenced to one milliwatt ($1000 \mu \mathrm{~W}$).

Optical Flux, P (dBm) $=10 \log \frac{\mathrm{P}(\mu \mathrm{W})}{1000 \mu \mathrm{~W}}$
7. IFPK should not be less than 10 mA in the "ON" state. This is to avoid the long turn-on time that occurs at low input current. Ifav may be arbitrarily low, as there is no duty factor restriction.
viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in
ANSI Z136.1-1981.

HFBR-2202 RECEIVER

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference
Storage Temperature	T_{S}	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-20	+85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$
Note 2					
	Time			10	sec
Supply Voltage	VCC	-0.5	+7.0	V	
Output Current	10		25	mA	
Output Voltage	VO	-0.5	+18.0	V	
Output Collector Power Dissipation	PO. AV		40	mW	

Electrical/Optical Characteristics
 $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{111}$	Max.	Units	Conditions	Reference
High Level Output Current	IOH		5	250	${ }_{4} \mathrm{~A}$	$\begin{aligned} & V_{0}=18 \mathrm{~V} \\ & P_{R}<40 \mathrm{dBm} \end{aligned}$	
Low Level Output Voltage	VOL		0.4	0.5	V	$\begin{aligned} & I_{0}=8 \mathrm{~mA} \\ & P_{R}=-24 \mathrm{dBm} \end{aligned}$	
High Level Supply Current	ICCH		3.5	6.3	mA	$\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & P_{\text {A }}<-40 \mathrm{dBm} \end{aligned}$	
Low Level Supply Current	ICCL		6.2	10	mA	$\begin{aligned} & V C C=5.25 \mathrm{~V} \\ & P_{R}>-24 \mathrm{dBm} \end{aligned}$	
Optical Port Diameter	DR		700		$\mu \mathrm{m}$		Note 12
Numerical Aperture	NA		. 32				

Dynamic Characteristics $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{1 / 1}$	Max.	Units	Conditions	Reference
Input Power Level Logic HIGH	$\mathrm{P}_{\text {RH }}$			$\begin{gathered} -40 \\ 0.1 \end{gathered}$	dBm μW	$\lambda \mathrm{p}=820 \mathrm{~nm}$	Note 5
Input Power Level Logic LOW	$P_{\text {RL }}$		$\begin{aligned} & -25 \\ & 3.2 \end{aligned}$		dBm $\mu \mathrm{W}$	$\mathrm{TA}+25^{\circ} \mathrm{C}$	Fig, 4, Note 5
		$\begin{aligned} & \hline-24 \\ & 4.0 \end{aligned}$			$\begin{gathered} \mathrm{dBm} \\ \mu \mathrm{~W} \end{gathered}$	$-20<T_{A}<85^{\circ} \mathrm{C}$	
Propagation Delay LOW to HIGH	tPLHR		65		nsec	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{PA}=-21 \mathrm{dBm}$	Note 8 , Fig. 7
Propagation Delay HIGH to LOW	tPhLR		49		nsec		

Notes:

8. Propagation delay through the system is the result of several sequentially-occurring phenomena. Consequently it is a combination of data-rate-limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time differentials between delays imposed on falling and rising edges.
As the cable length is increased, the propagation delays increase at 5 ns per metre of length increase. Data rate, as limited by pulse width distortion, is not affected by increasing cable length if the optical power level at the Receiver is maintained.
9. Worst case system performance is based on worst case performance of individual components: transmitter at $+85^{\circ} \mathrm{C}$, receiver and cable at $-20^{\circ} \mathrm{C}$.
10. Synchronous data rate limit is based on these assumptions: (a) 50% duty factor modulation, e.g. Manchester I or BiPhase (Manchester II);
(b) continuous data; (c) PLL (Phase Lock Loop) demodulation; (d) TTL threshold.
Asynchronous data rate limit is based on these assumptions: (a) NRZ data; (b) arbitrary timing - no duty factor restriction; (c) TTL threshold.
The EYE pattern describes the timing range within which there is no uncertainty of the logic state, relative to a specific threshold, due to either noise or intersymbol (prop. delay) effects.
11. D_{T} is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of its maximum.
12. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.

Figure 3. Normalized Transmitter Output vs. Forward Current

Figure 6. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$

Figure 4. Normalized Thermal Effects in Transmitter Output, Receiver Threshold, and Link Performance (Relative Threshold)

Figure 7. Propagation Delay through System with One Metre of Cable

Figure 5. Forward Voltage and Current Characteristics for the Transmitter LED.

Figure 8. Worst-Case Distortion of NRZ EYE-pattern with Pseudo Random Data at $10 \mathrm{Mb} / \mathrm{s}$. (see note 10).

Figure 9. System Propagation Delay Test Circuit and Waveform Timing Definitions

Electrical Description

The HFBR-1202 Transmitter contains a GaAIAs infrared emitter. Both the anode and cathode of the emitter are insulated from the case. This configuration permits the use of a variety of drive circuitry such as series switching, shuntswitching and high frequency peaking. There is no internal drive circuit or current limiter.

The HFBR-2202 Receiver incorporates an integrated photo IC containing a photodetector and dc amplifier driving an open-collector Schottky output transistor. The HFBR-2202 is designed for direct interfacing to popular logic families. The absence of an internal pull-up resistor allows the opencollector output to be used with logic families such as CMOS requiring voltage excursions much higher than $V_{\text {CC }}$. Both the open-collector "Data" output (Pin 3) and $V_{\text {CC }}(P i n 2)$ are referenced to "Com" (Pin 4). The "Data" output allows busing, strobing and wired "OR" circuit configurations. Both the transmitter and receiver are designed to operate from a single +5 V supply. Note that the "Com" and "Case" pins are not connected internally.
The HFBR-1202 and HFBR-2202 optical receptacles contain a lens to optimize the coupling between the fiber and the active optical device.

Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.

When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

Figure 10. Cross Sectional View

Mechanical Description

The HFBR-1202 fiber optic transmitter and HFBR-2202 receiver are housed in rugged metal packages intended for use with the HFBR-3000/HFBR-3100, (OPT 002) cable assemblies. The low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking. A flat on the mounting threads of the device is provided to prevent rotation in all mounting configurations and to provide an orientation reference for the pin-out. Hardware is available for horizontal mounting applications on printed circuit boards. The hardware consists of a stainless steel mounting bracket fastened directly to the printed circuit board with two stainless steel self-tapping screws and a nut and washer for fastening the device in the bracket. A metal shield which snaps directly on the mounting bracket is also available for unusually severe EMI/ESD environments. When mounted in the horizontal configuration, the overall height of the component conforms with guidelines allowing printed circuit board spacing on 12.7 mm (.500) centers. A thorough environmental characterization has been performed on these products. The test data as well as information regarding operation beyond the specified limits is available from any Hewlett-Packard sales office.

Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well.

HIGH SPEED FIBER OPTIC LINK COMPONENTS

Features

- DATA RATES UP TO 40 MBAUD
- TYPICAL LINK LENGTHS GREATER THAN 1 km
- HIGH OPTICAL COUPLING EFFICIENCY
- LOW POWER CONSUMPTION
- RUGGED, MINIATURE METAL PACKAGE
- COMPATIBLE WITH HP OR SMA STYLE CONNECTORS
- VERSATILE ANALOG RECEIVER OUTPUT
- 25 MHz ANALOG BANDWIDTH
- OPTIMIZED FOR USE WITH $100 / 140 \mu \mathrm{~m}$ FIBER

Applications

- DATA ACQUISITION AND PROCESS CONTROL
- SECURE DATA COMMUNICATION
- EMC REGULATED SYSTEMS (FCC/VDE)
- EXPLOSION PROOF SYSTEMS
- WEIGHT SENSITIVE SYSTEMS (e.g., AVIONICS, MOBILE STATIONS)
- VIDEO TRANSMISSION

Description

The HFBR-1201/02 Transmitter and the HFBR-2203/04 Receivers are capable of data rates up to 40 MBd at distances greater than 1 km when used with HFBR-3000 series cable. The HFBR-1201/02 Transmitters contain a highefficiency 820 nm GaAIAs LED. The HFBR-2203/04 Receivers contain a discrete PIN photodiode and preamplifier IC.

Logic compatible signal levels are achieved by addition of low-cost external components. Recommended driver and amplifier circuits with PCB layout are presented in Figures 4 and 5.

Each of these fiber optic components uses the same rugged, lensed, miniature package. This package assures a consistent, efficient optical coupling between the active devices and the optical fiber. The transmitter LEDs can be driven at low current levels which means improved reliability and low power consumption.
The HFBR-1201 Transmitter and the HFBR-2203 Receiver are compatible with the HFBR-4000 Connector and HFBR-3000 series, Option 001 connectored cable. The HFBR-1202 Transmitter and HFBR-2204 Receiver are compatible with SMA style connectors, types A and B (see Figure 18), and HFBR-3000 series, Option 002 connectored cable. HFBR-3000 series cable can be ordered with or without connectors. The HFBR-0100 connector assembly kit is available if field installation of HFBR-4000 connectors is desired

Mechanical Dimensions

HFBR-1201 TRANSMITTER

HFBR-2203 RECEIVER

HFBR-1202 TRANSMITTER

Electrical Description

The HFBR-2203/04 Fiber Optic Receiver contains a PIN photodiode and low noise transimpedance pre-amplifier hybrid circuit with an inverting output (see note 16). The HFBR-2203/04 receives an optical signal and converts it to an analog voltage. The output is a buffered emitter-follower. Because the signal amplitude from the HFBR-2203/04 Receiver is much larger than from a simple PIN photodiode, it is less susceptible to EMI, especially at high signal rates.
The frequency response is typically dc to 25 MHz . Although the HFBR-2203/04 is an analog receiver, it is easily made compatible with digital systems using circuitry such as shown in Figure 4. Separate case and signal ground leads are provided for maximum design flexibility.
The HFBR-1201/02 Transmitter contains a GaAIAs emitter with both the anode and cathode insulated from the case. This configuration permits the use of a variety of drive circuits such as series or shunt switching and high frequency peaking. There is no internal drive circuit or current limiter.

It is essential that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from Pin $4(\mathrm{VCC})$ to Pin 3 (circuit common) of the receiver. Total lead length between both ends of the capacitor and the pins should be less than 20 mm .

Mechanical Description

The HFBR-1201/02 Fiber Optic Transmitter and the HFBR2203/04 Fiber Optic Receiver are housed in a miniature package intended for use with HFBR-3000 Fiber Optic Cable/Connector Assemblies. This package has important
performance advantages:

1. High coupling efficiency allows the emitters to be driven at low power levels. Advantages of this are low power consumption and increased reliability of the LED emitter.
2. Precision mechanical design and assembly procedures assure the user of consistent high efficiency optical coupling.
3. The lens is suspended to avoid contact with the active devices, thereby assuring improved reliability.
4. The versatile miniature package is easy to mount. This low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking.
A complete mounting hardware package is available for horizontal PCB applications, including a snap-on metal shield for harsh EMI/ESD environments.
Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; Methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well.

Note:

When installing connectored cable on the optical port, do not use excessive force to tighten the nut. Finger tightening is sufficient to ensure connectoring integrity, while use of a wrench may cause damage to the connector or the optics.

Figure 1. Cross Sectional View

System Design Considerations

 OPTICAL POWER BUDGETINGThe HFBR-1201/2203 and HFBR-1202/2204 Fiber Optic Links are designed to operate at a data rate of 40 MBaud over a minimum distance of $800 / 700$ metres, respectively (assuming $10 \mathrm{~dB} / \mathrm{km}$ optical fiber attenuation), when used in the circuit configuration shown in Figures 4 and 5. For shorter transmission distances, power consumption can be reduced by decreasing transmitter drive current (IF). For a lower data rate the link length may be increased, since receiver circuit optical power sensitivity varies as the inverse of the square root of the follow-on circuit bandwidth.

As an example, consider a link with a maximum data rate of 10 MBd (e.g., $5 \mathrm{Mb} / \mathrm{s}$ Manchester) using follow-on receiver circuitry having input referred rms noise voltage of 0.03 mV . The equivalent optical noise power of the receiver ($\mathrm{PNO}_{\mathrm{NO}}$) is given by:
$\mathrm{P}_{\mathrm{NO}}=\left(\left(\mathrm{V}_{\mathrm{NO}}\right)^{2}+\left(\mathrm{V}_{\mathrm{NI}}\right)^{2}\right)^{1 / 2} / \mathrm{RP}_{\mathrm{P}}$, where
$\mathrm{V}_{\mathrm{NO}}=$ output noise voltage of the HFBR-2203/04
$\mathrm{V}_{\mathrm{NI}}=$ input referred noise voltage of the follow-on circuit
$R_{P}=$ optical to electrical responsivity $(\mathrm{mV} / \mu \mathrm{W})$ of the HFBR-2203/04

Note that noise adds in an RMS fashion.
From the receiver data (page 7):
$\mathrm{P}_{\mathrm{NO}}=\left((0.43)^{2}+(0.03)^{2}\right)^{1 / 2} \mathrm{mV} / 4.6(\mathrm{mV} / \mu \mathrm{W})=.094 \mu \mathrm{~W}$ or -40.3 dBm .

The sensitivity improvement ($\Delta \mathrm{S}_{\mathrm{R}}$) from decreasing the follow-on circuit bandwidth is given by:

$$
\Delta \mathrm{S}_{\mathrm{R}}=10 \log \left[\frac{5 \mathrm{MHz}}{25 \mathrm{MHz}}\right]^{-1 / 2}=3.5 \mathrm{~dB}
$$

Note that 25 MHz should be used for the total noise bandwidth of the HFBR-2203/04. Finally, a minimum of 22 dB voltage signal to noise ratio (11 dB power ratio) is required to ensure a bit error rate of 10^{-9}. Then the minimum receiver input power is given by

$$
\begin{aligned}
& P_{\mathrm{RMIN}}=\mathrm{P}_{\mathrm{NO}}-\Delta \mathrm{S}_{\mathrm{R}}+11 \mathrm{~dB} \\
& \mathrm{P}_{\mathrm{RMIN}}=-40.3-3.5+11.0=-32.8 \mathrm{dBm}
\end{aligned}
$$

Given the transmitter optical power $\mathrm{P}_{\mathrm{T}}=-18 \mathrm{dBm}$, at $\mathrm{I}_{\mathrm{F}}=40$ mA , and adding in 3 dB of margin, a minimum optical power budget of 11.8 dB is obtained. Using $10 \mathrm{~dB} / \mathrm{km}$ optical fiber, this translates to a minimum link length of 1180 metres (typical link power budget for this configuration $\approx 17.2 \mathrm{~dB}$ or 2460 m with $7 \mathrm{~dB} / \mathrm{km}$ cable).

CONNECTOR/CABLE SELECTION

The HFBR-1201 couples 1 dB more power into a fiber terminated with an HFBR-4000 connector than the HFBR-1202 couples into a fiber terminated with an SMA style connector. The result is 1 dB extra optical power budget with links which use HFBR-4000 connectors.
The transmitter and receiver are optimized for use with 100/140 $\mu \mathrm{m}$ HFBR-3000 series fiber cable. When using other fiber cable, it is necessary to consider core/cladding diameter, numerical aperature (NA), index profile (\propto), attenuation per kilometer and bandwidth. See Application Note 1000 for more information.

BANDWIDTH

The bandwidth of the HFBR-2203/04 is typically 25 MHz . Over the entire temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, the rise and fall times vary in an approximately linear fashion with temperature. Under worst case conditions, tr_{r} and t_{f} may reach a maximum of 26 ns , which translates to a 3 dB bandwidth of:

$$
f_{3 \mathrm{~dB}} \simeq \frac{.35}{\mathrm{t}_{\mathrm{r}}}=\frac{.35}{26 \mathrm{~ns}}=13.5 \mathrm{MHz}
$$

The receiver response is essentially that of a single-pole system, rolling off at $6 \mathrm{~dB} / o c t a v e$. In order for the receiver to operate up to 40 MBd even though its worst case 3 dB bandwidth is 13.5 MHz , the received optical power must be increased by 3 dB to compensate for the restricted receiver transmission bandwidth. The 40 MBd link circuitry in Figure 4 is designed to operate over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ without special selection of transmitter and receiver devices.

PRINTED CIRCUIT BOARD LAYOUT

When operating at data rates above 10 MBd , standard PC board precautions should be taken. Lead lengths greater than 20 mm should be avoided whenever possible and a ground plane should be used. Although transmission line techniques are not required, wire wrap and plug boards are not recommended.

OPTICAL POWER MEASUREMENTS

Optical power is specified in two ways: absolute power (in units of $\mu \mathrm{W}$), and power relative to a fixed reference (dB). The term "dBm" means the optical power is referenced to 1 $\mathrm{mW}(1000 \mu \mathrm{~W})$. These units are related as follows:

$$
\text { Optical Power } \mathrm{P}(\mathrm{dBm})=10 \log \left[\frac{\mathrm{P}(\mu \mathrm{~W})}{1000 \mu \mathrm{~W}}\right]
$$

The dBm notation is preferred for use in calculating the optical flux budget of a fiber optic system. Figure 2 is a nomograph for quick conversion between $\mu \mathrm{W}$ and dBm .

Figure 2. Nomograph

Application Circuit for 40 Mbaud Link CIRCUIT DESCRIPTION

Figures 4 and 5 show the circuit diagram and PC board layout for a 40 MBd link designed for 50% duty cycle operation. The transmitter circuit uses $1 / 255451$ positive AND driver operating in conjunction with an HFBR-1201 fiber optic transmitter. The transmitter drive current is determined by R_{2} and R_{3}. $C R_{1}, R_{3}$ and C_{3} are used to speed up the edges of the optical waveform. (This edge sharpening technique is helpful at data rates above 10 MBd .)
The receiver circuit uses the HFBR-2203 fiber optic receiver, followed by an LM-733 video amplifier and an LM-160 highspeed comparator. The resistors $\mathrm{R}_{8}, \mathrm{R}_{9}, \mathrm{R}_{10}, \mathrm{R}_{11}$ provide $\pm 200 \mathrm{mV}$ of hysteresis. The gain of the post amplifier LM-733 is adjusted by resistor R_{7} to provide a minimum of 400 mV output, which corresponds to the minimum receiver optical
power input. (The circuit as shown is optimized for 40 MBd operation. This adjustment, in conjunction with filtering of the receiver output, allows optimization of the circuit for lower data rates).

In laying out the PC board, proper care must be taken to minimize the various lead lengths. The bypass capacitors should be placed as close to the ICs as possible. In addition, R_{5}, C_{12} and R_{6} should be connected to a single ground point. Resistor R_{7} should be placed as close to U_{1} as possible with minimal lead length. $R_{2}, C R_{1}, R_{3}$ and C_{3} should be placed close to the fiber optic transmitter with minimal lead lengths. Standard high-frequency filtering of the power supply line is required for proper operation of the circuit, as shown in Figure 4.

LINK CONFIGURATION

Figure 3. 40 MBaud TTL Duplex Link

TYPICAL PERFORMANCE

Based on recommended circuit design and PC board layout using HFBR-1201/2203 (see note 15, Figures 4 \& 5).
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (Military Grade IC's) unless otherwise specified (see note 12).

Parameter	Symbol	Min.	Typ [7]	Max.	Units	Conditions	Reference
Data Rate		. 01		40	MBaud	$B E R=10^{-9}$	
Link Length	¢	900	2000		Metres	$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$	Note 14
		800					
Power Consumption (+5 V)	P		750		mW		
Power Consumption (-5V)			125				
Transmitter Output Optical Power (Peak)	Ptpeak	-18	-16		dBm	$1 \mathrm{~F}=40 \mathrm{~mA}$	
		15.8	25		$\mu \mathrm{W}$	$\mathrm{R}_{2}=\mathrm{R}_{3}=42.2 \Omega$	Note 4
Receiver Optical	$P_{\text {R }}$	-26	-30		dBm		Note 13
Sensitivity		2.5	1.0		$\mu \mathrm{W}$		
Optical Power Budget		8	14		dB		

sChematic

Figure 4. Schematic

COMPONENTS LIST

Resistors		Part Description
R_{1}		$10 \mathrm{~K} \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$
$R_{2,3}$		$42.2 \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$
R_{4}		$1.1 \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$
$R_{5}, 6,8,9,12$		$1 \mathrm{~K} \Omega ; 1 \% ; 18 \mathrm{~W}$
R $_{7}$		$110 \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$
$R_{10,11}$		$14.7 \mathrm{~K} \Omega ; 1 \% ; 1 / 8 \mathrm{~W}$

Capacitors
$\mathrm{C}_{1,5}, 6,8,9,10$,

$11,12,13,14,16$	$0.1 \mu \mathrm{~F}$ Ceramic
$\mathrm{C}_{2,4}, 7,15$	$4.7 \mu \mathrm{~F}$ Tantalum
C_{3}	100 pF

Inductors
L1, 2, 3, 4

Diodes
CR1
Optional
Jumpers
$W_{1,2}$
Integrated
Circuits

U_{1}

 U_{2} U_{3}Fiber Optic Components

Tx	Fiber Optic Transmitter	- HFBR-1201
Rx	Fiber Optic Receiver	- HFBR-2203
	Mounting Hardware	- HFBR-4201

PC BOARD LAYOUT

COMPONENT SIDE
CIRCUIT SIDE

Figure 5. Printed Circuit Board Layout

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Unit	Reference
Storage Temperature		Ts	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$T_{\text {A }}$	-40	$+85$	${ }^{\circ} \mathrm{C}$	Note 12
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec,	
Forward Input Current	Peak	IF, PK		40	mA	Note 2
	Average	IF, AV		40	mA	
Reverse Input Voltage		VBR		2.5	V	

Electrical/Optical Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ ${ }^{[7]}$	Max.	Units	Conditions	Reference
Forward Voltage	V_{F}		1.44	1.7	V	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$	Figure 8
Forward Voltage Temperature Coefficient	$\Delta V_{F} / \Delta T$		-0.91		$\mathrm{mV}^{\prime} \mathrm{C}$	$\mathrm{IF}_{F}=20 \mathrm{~mA}$	Figure 8
Reverse Input Voltage	VBr	2.5	4.0		V	$l_{\text {A }}=100 \mu \mathrm{~A}$	
Numerical Aperture	NA		. 34				
Optical Port Diameter	DT		250		$\mu \mathrm{m}$		Note 3
Peak Emission Wavelength	λ_{P}		820		nm		Figure 7
Output Optical Power HFBR-1201	Pt	-20	-19		dBm	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 6 Notes 4, 12
		10	12		$\mu \mathrm{W}$		
		-21			dBm	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C} \end{aligned}$	
		8			$\mu \mathrm{W}$		
Output Optical Power HFBR-1202	Pt	-21	-20		dBm	$\begin{aligned} & \mathrm{IF}=20 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 6 Notes 4, 12
		7.9	10		$\mu \mathrm{W}$		
		-22			dBm	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C} \end{aligned}$	
		6.3			$\mu \mathrm{W}$		
Optical Power Temperature Coefficient	$\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$		-.017		$\mathrm{dB}^{\circ}{ }^{\circ} \mathrm{C}$		Figure 9

Dynamic Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[7]}$	Max.	Units	Conditions	Reference
Propagation Delay LOW to HIGH	tPLH^{2}		17		nsec	IF PK $=10 \mathrm{~mA}$	
Propagation Delay HIGH to LOW	tPHL		6		nsec		
Rise Time, Fall Time	$\mathrm{tr}_{2} \mathrm{tf}$		10		nsec	When used in circuit shown Figures 4,5	Figures 4,5

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the
infrared output is radiologically safe; however, when viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Reference
Storage Temperature		Ts	- -55	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	-40	85	${ }^{\circ} \mathrm{C}$	Note 12
Lead Soldering Cycle	Temp			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Supply Voltage		Vcc	-0.5	7.0	V	
Input Power		Pin		-14	dBm	Note 5
			40	$\mu \mathrm{W}$		

Electrical/Optical Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \leq$ VCC $\leq 5.25 ;$ RLOAD $=511 \Omega$ unless otherwise specified

Parameter	Symbol	Min.	Typ ${ }^{[7]}$	Max.	Unit	Conditions	Reference
Responsivitity	Rp	5.1	7	10.9	$\mathrm{mV} / \mu \mathrm{W}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \text { ai } 820 \mathrm{~nm} \end{aligned}$	Note 16
		4.6		12.3	$\mathrm{mV} / \mu \mathrm{W}$	$-40 \leq T A \leq+85^{\circ} \mathrm{C}$	
RMS Output Noise Voltage	VNo		. 30	. 36	mV	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{PIN}=0 \mu \mathrm{~W} \end{aligned}$	Figures 11, 14
				. 43	mV	$\begin{aligned} & -40 \leq \mathrm{TA}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & \mathrm{P}_{\mathrm{IN}}=0 \mu \mathrm{~W} \end{aligned}$	
Output Impedance	Zo		20		n	$\begin{aligned} & \text { Test Frequency }= \\ & 20 \mathrm{MHz} \end{aligned}$	
DC Output Voltage	Vode		7		V	$P_{\text {IN }}=0 \mu \mathrm{~W}$	
Power Supply Current	Icc		3.4	6.0	mA	RLOAD $=\infty$	
Equivalent N.A.	NA		. 35				
Equivalent Diameter	DR		250		$\mu \mathrm{m}$		Note 6
Equivalent Optical Noise Input Power	PN		-43.7	-40.3	dBm		
			. 042	. 094	${ }_{\mu} \mathrm{W}$		

Dynamic Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \leq \mathrm{V}_{C C} \leq 5.25 ;$ RLOAD $=511 \Omega$, CLOAD $=13 \mathrm{pF}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[7]}$	Max.	Units	Conditions	Reference
Rise/Fall Time	$\mathrm{tr}_{\text {r }}$, $\mathrm{t}_{\text {f }}$		14	19.5	ns	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & P_{I N}=10 \mu \mathrm{~W} \text { Peak } \end{aligned}$	Note 8
				26	ns	$-40 \leq T_{A} \leq 85^{\circ} \mathrm{C}$	Figures 15, 16
Pulse Width Distortion	tpht - $\mathrm{tplin}^{\text {che }}$			2	ns	$\mathrm{P}_{\text {IN }}=40 \mu \mathrm{~W}$ Peak	Figure 16
Overshoot			4		\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Note 9 Figures 15, 16
Bandwidth			25		MHz		
Power Supply Rejection Ratio (Referred to Output)	PSRR		50		dB	at 2 MHz	Note 10 Figures 12, 13

Notes:

1. 2.0 mm from where leads enter case.
2. IfPK should not be less than 10 mA in the "ON" state. This is to avoid the long turn-on time that occurs at low input current. Ifav may be arbitrarily low, as there is no duty factor restriction.
3. DT is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.
4. Measured at the end of 1.0 metre HFBR-3000 Fiber Optic Cable with large area detector and cladding modes stripped ($\mathrm{NA}=.28$).
5. If $\mathrm{Pin}>40 \mu \mathrm{~W}$, then pulse width distortion may increase. At Pin $=80 \mu \mathrm{~W}$ and $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$, some units have exhibited as much as 100 ns pulse width distortion.

Notes (cont.):
6. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
7. Typical specifications are for operation at $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5.0 \mathrm{~V}$.
8. Input optical signal is assumed to have $10 \%-90 \%$ rise and fall times of less than 6 ns .
9. Percent overshoot is defined as:

$$
\frac{V_{P K}-V_{100} \%}{V_{100} \%} \times 100 \% \quad \text { See Figure } 16
$$

$V_{100 \%}$
P.S.R.R. is defined as
10. Output referred P.S.R.R. is defined as

$$
20 \log \left(\frac{\text { VOUT - RIPPLE }}{\text { VPOWER SUPPLY - RIPPLE }}\right)
$$

11. It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin $4(\mathrm{VCc})$ to pin 3 (circuit common) of the receiver. Total lead length between both ends of the capacitor and the pins should be less than 20 mm .
12. HFBR-3000 series Fiber Cable is specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
13. The worst case receiver sensitivity is $-29.3 \mathrm{dBm}(-40.3 \mathrm{dBm}+11 \mathrm{dBm})$. An additional 3 dB is allocated for the restricted receiver transmission band width resulting in receiver optical sensitivity of -26 dBm (rounded to the nearest dBm .)
14. Using HFBR-3000 series Fiber Optic Cable/Connector Assemblies. Minimum link length assumes $10 \mathrm{~dB} / \mathrm{km}$ fiber attenuation; typical link length assumes $7 \mathrm{~dB} / \mathrm{km}$.
15. Due to mechanical tolerances, the HFBR-1201 couples 1 dB more power into fiber terminated with an HFBR-4000 connector than the HFBR-1202 couples into fiber terminated with an SMA style connector.
16. $V_{\text {OUT }}=V_{O D C}-\left(R_{P} \times P I N\right)$.

Figure 6. Normalized Transmitter Output vs. Forward Current

Figure 9. Normalized Thermal Effects in Transmitter Output

Figure 12. Receiver Power Supply Rej. vs. Freq.

Figure 7. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$.

Figure 10. Receiver Spectral Response Normalized to 820 nm

Figure 8. Forward Voltage and Current Characteristics for the Transmitter LED

Figure 11. Receiver Noise Spectral Density

Figure 13. Power Supply Rejection Test Circuit

Figure 14. RMS Output Noise Voltage Test Circuit

Figure 15. Rise and Fall Time Test Circuit

Figure 17. Mounting Dimensions
DIMENSIONS IN MILLIMETRES (INCHES).

SMA STYLE CONNECTORS

TYPE A
(Used in HFBR-3000/3100, Option 002 Cable Assemblies).

NOTES:

1. DIMENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED; THE TOLERANCES ARE:
$. X \pm .51 \mathrm{~mm},(. X X \pm .02 \mathrm{in}$.
3. FIBER END IS LOCKED FLUSH WITH FERRULE FACE.

Figure 18. Fiber Optic Connector Styles

Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.

When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support
the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

MOUNTING HARDWARE: HFBR-4201 (HFBR-1201/2203)
1 EMI/ESD SHIELD
1 1/4-32 NUT
$11 / 4 \times .005$ INCH WASHER
2 2-56 SELF TAPPING SCREWS
1 MOUNTING BRACKET

MOUNTING HARDWARE: HFBR-4202 (HFBR-1202/2204)

1 EMI/ESD SHIELD

1 1/4-36 NUT
$11 / 4 \times .005$ INCH WASHER
2 2-56 SELF TAPPING SCREWS
1 MOUNTING BRACKET

Ordering Guide

Transmitter:
HFBR-1201 (HP Connector Compatible) HFBR-1202 (SMA Connector Compatible)

Receiver: HFBR-2203 (HP Connector Compatible) HFBR-2204 (SMA Connector Compatible)
Mounting Hardware:

HFBR-4201 (HP Connector Compatible) HFBR-4202 (SMA Connector Compatible)

Fiber Optic Cable - see data sheets

HFBR-3000 Single Channel Connectored - Custom Lengths
HFBR-3100 Dual Channel Connectored - Custom Lengths
Note: Option 001 specifies HFBR-4000 connector and Option 002 specifies SMA connectors.
HFBR-3001 Single Channel Connectored - 10 metres (HFBR-4000 connectors)
HFBR-3021 Single Channel Connectored - 10 metres (SMA connectors)
HFBR-3200 Unconnectored Single Channel - Custom Lengths
HFBR-3300 Unconnectored Dual Channel - Custom Lengths

Features

- TRANSMISSION LENGTH: 100 METRES*
- DATA RATE: DC TO 10 Mbaud*
- NO DATA ENCODING REQUIRED*
- TTL INPUT LEVELS
- FUNCTIONAL LINK MONITORING*
- SINGLE +5V SUPPLY
- PCB MOUNTABLE, LOW PROFILE
- INTEGRAL, HIGH QUALITY OPTICAL CONNECTOR

- LOW POWER CONSUMPTION

*When used with HFBR-2001 Receiver and any Hewlett Packard HFBR-3000/-3100 Series Cable/Connector Assembly.

Description

The HFBR-1001 fiber optic transmitter is an integrated electrical to optical transducer designed for digital data transmission over single fiber channels. A bipolar integrated circuit and a GaAsP LED convert TTL level inputs to optical pulses at data rates from dc to $10 \mathrm{Mb} / \mathrm{s}$ NRZ. An integral optical connector on the module allows easy interfacing without problems of source/fiber alignment. The low profile package is designed for direct printed circuit board mounting without additional heat sinking.
The HFBR-1001 is intended for use with HFBR-3000 fiber optic cable/connector assemblies, and the HFBR-2001 fiber optic receiver for transmission distances up to 100 metres. The HFBR-1001 generates optical signals in either of two externally selectable modes. The internally-coded mode produces a 3-level coded optical signal for reception and decoding by the HFBR2001 receiver. This feature provides data format independence over the data rate range of dc to $10 \mathrm{Mb} / \mathrm{s}$ NRZ while allowing for wide dynamic range and high sensitivity at the receiver. The externally-coded mode produces a 2 -level optical signal which is a digital replica of the data input waveform. Used in this mode with the HFBR-2001 receiver, the user must provide proper data formatting (explained in the HFBR-2001 data sheet) to insure proper receiver operation. In either mode, the radiant output is radiologically safe (per ANSI Z136.1-1981).

Package Dimensions

CAUTHON:

1. LOCK NUT AND BARREE SHOULO NOT BE DISTUAEED.
2. SCREWS ENTERING THE 2.56 THREADED HHOUNTING HOLESS MUST NOT TOUCH BOTTOM. 3. THE HFBR-30DO CONNECTOR SHOULD NOT BE TIGHFENED BEYOND THE LIMITS SPECIFIED IN THE HFBR-3000 DATA SHEET,

PIN	FUNCTION
1	MODE SELECT
2	N.C.
3	GROUND
4	$V_{C C}$
5	DATA INPUT

NOTES:

1. DIMENSIONS IN Mm (INCHES)
2. UNLESS OTHERWISE SPECIFIEO

THE TOLERANCE ON ALH
DIMENSIONS IS $x .38 \mathrm{~mm}$ \{

Absolute
 Maximum Ratings

Parameter	Symbol	Min	Max	Units	Note	
Storage Temperature	T_{S}	-55	+85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	TA_{A}	0	70	${ }^{\circ} \mathrm{C}$		
Lead Soldering	Temperature			260	${ }^{\circ} \mathrm{C}$	
	Time			10	s	3
Supply Voltage	V_{CC}	-0.5	6	V		
Mode Select or Data Input Voltage	V_{I}	-0.5	5.5	V		

Recommended
Operating Conditions

Parameter	Symbol	Min	Max	Units	Note
Ambient Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	4.75	5.25	V	4
High Level Input Voltage, Mode Select or Data Input	V_{IH}	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
Low Leval Input Voltage, Mode Select or Data Input	V_{IL}	0	0.8	V	
Data Input Voltage Pulse Duration (high or lowl	$\mathrm{tH}_{\mathrm{H}}, \mathrm{t}_{\mathrm{L}}$	100		ns.	

Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter			Symbol IH	Min	Typ ${ }^{(6)}$	$\begin{array}{\|c} \text { Max } \\ \hline 100 \\ \hline 20 \\ \hline \end{array}$	$\begin{aligned} & \text { Units } \\ & \mu \mathrm{A} \end{aligned}$	Conditions			Fig.	Note	
High Level Input Current		Mode Select						$V_{C C}=5.25 \mathrm{~V}, V_{1}=2.4 \mathrm{~V}$			2		
		Data Input											
Low Level Input Current		Mode Select	IL				mA	$V_{C C}=5.25 V_{*} V_{1}=0.4 \mathrm{~V}$					
		Data Input				-0.6							
Supply Current	Externatly-Coded Mode		Icc			170		Mode Select High	Data VCC	$\begin{aligned} & \text { Input High } \\ & =5,25 \mathrm{~V} \end{aligned}$			
			40			mA			nput Low $=4.75 \mathrm{~V}$	2		5	
	Internally-Coded Mode			68	95	125		Mode Select Low	$\begin{array}{\|l\|} \hline \text { Data } \\ V_{\mathrm{cc}} \end{array}$	Input High or Low $=5.25 \mathrm{~V}$			
Optical Power	High Level			P_{H}		67		$\mu \mathrm{W}$	Mode Select High		Data Input High		
	Low Level		P_{L}		3		Data Input Low				1.		
	Mid Level (average)		PM		35		Made Seleet		Low	Data input	2.		
	Excursion ($\frac{\text { peak-to-peak }}{2}$)		Δp	22	32		Mode Select		High	Square Wave at 500 kHz	3	9	
Amplitude Symmetry, Flux Exeursion Ratio			k	0.8		1.2	-	Mode Select	Low		1	7	
Exit Numerical Aperture			N,A.		0.5		-				3		
Optical Port (fiber optic core) Diam.			${ }^{\text {D }}$		200		$\mu \mathrm{m}$						
Coupling Loss	from area mismatch		$\alpha_{\text {A }}$		6.0		dB	with HFBR-3000 Cable/Connector Assembly					
	from numerical aperture mismatch		$\alpha_{\text {N.A. }}$		4.0								
Peak Emission Wavelength			λp		700		nm				4		

Dynamic Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter			Symbol	Min	Typ ${ }^{(6)}$	Max	Units	Conditions	Fig.	Note
Propagation Delay	High-to-Low Data Input Voltage Step		tPHL		31		ns	$\mathrm{VCC}=4.75 \mathrm{~V}$		
	Low-to-High Data Input Voltage Step		tPLH		35		ns		1	8
Reffesh Pulse Internally-Coded Mode		Duration	t_{p}		60		ns	VCC $=5.00 \mathrm{~V}$, Mode Select Low	1	8
		Fepetition Rate	${ }_{f}$		400		kHz			8

Figure 1. Optical Power Coding and Timing Diagram.

Figure 2. Schematic Diagram.

Figure 3. Radiation Pattern.*

Figure 4. Emission Spectrum.
*The optical fiber is recessed within the barrel at a distance of approximately 7 mm . Solid line represents radiation pattern from fiber stub without obscuration by connector barrel. Dashed line represents radiation pattern as seen from outside of connector.

Notes (cont'd):

3. Measured at a point $2 \mathrm{~mm}(.079 \mathrm{in}$.) from where lead enters package.
4. A supply decoupling network of $2.2 \mu \mathrm{H}$ with $60 \mu \mathrm{~F}$ is recommended.
5. Average currents for steady-state conditions at Data Input.
6. For typical values, $\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
7. Optical power excursion ratio, k, is the ratio of optical power excursion above mid level to optical power excursion below mid level.

$$
k=\frac{P_{H}-P_{M}}{P_{M}-P_{L}}
$$

8. The refresh pulse is interrupted (abbreviated) if Data Input changes state during the refresh pulse. MAX propagation delay is for Data Input changing state during the maximum excursion of the refresh pulse.
9. Optical power excursion

$$
\Delta \mathrm{P}=0.5\left(\mathrm{PH}-\mathrm{P}_{\mathrm{L}}\right) \text {, or } \Delta \mathrm{P}=0.5\left(\mathrm{PM}-\mathrm{PL}_{\mathrm{L}}\right) \bullet(1+\mathrm{k}) .
$$

Notice that under the conditions specified for ΔP, the average flux is ($\Delta \mathrm{P}+\mathrm{P}_{\mathrm{L}}$).

Electrical Description

The HFBR-1001 has two modes of operation: Internally-Coded mode and Externally-Coded mode. These are selected by making the Mode Select input "low" for Internally-Coded mode and "high" for Externally-Coded mode. With Mode Select "low," the optical signal generator in the HFBR-1001 produces a "mid-level" optical power which has positive or negative excursions, depending on whether Data Input is "high" or "low." In this Internally-Coded mode, a train of positive excursions is initiated when Data Input goes "high;" when Data Input goes "low," a train of negative excursions is initiated. These excursions are pulses of approximately 60 ns duration with a 400 kHz repetition rate. Each initiation of a pulse train starts with a full-duration pulse, but when Data Input changes state, the train is terminated - even at midpulse - as a new train of opposite-polarity pulses is initiated. With this coding scheme and the low duty factor, the average optical power is always near the mid-level, regardless of the data rate or duration in either state. This coding scheme is designed to operate the HFBR 2001 Fiber Optic Receiver most effectively; the mid-level flux operates the Receiver's dc-restorer and the "refresh" pulses of either polarity keep the Receiver's ALC voltage at the proper level, allowing low propagation delay for any change of state at Data Input. The Internally-Coded mode permits transmission of analog information, e.g., by means of Pulse Width Modulation. Another advantage of the 3-level Internally-Coded mode is that supply current is nearly the same for either logic state, this reducing transients on the power supply line.
With Mode Select "high," the optical signal is at full maximum ($\sim 2 \times$ mid level) when Data Input is "high," and nearly zero when Data Input is "low." This mode provides for these three applications:

1. Steady state turn-on of the photo-emitter at maximum flux level (e.g., for system diagnosis).
2. Stand-by mode (e.g., when the system is not in use).
3. Transmission of 2 -level optical signals from externally generated code (e.g., Manchester) for receivers not configured for the 3-level code. With Mode Select "high," the output is either P_{H}, or PL_{L}. Direct analog operation is not possible due to hysteresis in the response of the optical signal to the Data Input signal.

Mechanical and
 Thermal Considerations

Typical power consumption is less than 500 mW so the transmitter can be mounted without consideration for external heat sinking. The optical port is an optical fiber stub centered in a metallic ferrule. This ferrule supports a split-wall cylindrical spring sleeve which aligns the ferrule in the Transmitter with the ferrule in the HFBR-3000 Fiber Optic Cable/Connector. The connection procedure is to FIRST start the Connector ferrule into the sleeve; THEN screw the coupling ring on the barrel. The barrel performs no alignment function; its purpose is to hold the ferrule faces together when the coupling ring is tightened as specified in the HFBR-3000 Fiber Optic Cable/Connector data sheet.

The HFBR-1001 should be mounted so that the lock nut at the optical port is not disturbed. Moving the lock nut can cause misalignment of the optical fiber stub inside the module resulting in a reduction of power output. Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.

Good system performance requires clean ferrule faces to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {™ }}$ on a cotton swab also works well. If it is absolutely necessary to remove the threaded barrel and lock nut to clean the transmitter ferrule face, refer to the section "Installation Measurement and Maintenance" in Hewlett-Packard Application Note 1000.

FIBER OPTIC 1000m HIGH PERFORMANCE TRANSMITTER MODULE

Features

- PIN COMPATIBLE WITH HFBR-1001

 TRANSMITTER- TRANSMISSION LENGTH: 1000 METRES*
- DATA RATE: DC TO 10 Mbaud*
- NO DATA ENCODING REQUIRED*
- TTLINPUT LEVELS
- FUNCTIONAL LINK MONITORING*
- SINGLE +5V SUPPLY
- PCB MOUNTABLE, LOW PROFILE
- INTEGRAL, HIGH QUALITY OPTICAL CONNECTOR
- LOW POWER CONSUMPTION
*When used with HFBR-2001 Receiver and any Hewlett Packard HFBR-3000/-3100 Series Cable/Connector Assembly.

Description

The HFBR-1002 fiber optic transmitter is an integrated electrical to optical transducer designed for digital data transmission over single optical fiber channels. A bipolar integrated circuit and a high efficiency GaAIAs LED convert TTL level inputs to optical pulses at data rates from dc to 10 Mbaud (see note 5). An integral optical connector on the module allows easy interfacing without problems of fiber alignment. The low profile rugged industrial package is designed for direct circuit board mounting without additional heat sinking on printed circuit boards with 12.7 mm ($0.5^{\prime \prime}$) card rack spacing.
The HFBR-1002 is intended for use with Hewlett-Packard fiber optic cable/connector assemblies, and the HFBR-2001 fiber optic receiver for transmission distances to 1000 metres. It is a direct replacement for extending links currently using the HFBR-1001 (100 metre) transmitter to give 1000 metre capability. The HFBR-1002 generates optical signals in either of two externally selectable modes. True dc response (data high or low for arbitrary time interval) is available when using the Internally-Coded mode.
WARNING: OBSERVING THE TRANSMITTER OUTPUT FLUX UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the near IR output flux is radiologically safe; however, when viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

Package Dimensions

CAUTION:

1. LOCK NUT AND BARREL SHOULD NOT BE DISTURBED
2. SCREWS ENTERING THE 2.56 THREADED MOUNTING HOLES MUST NOT YOUCH BOTTOM.
3. THE CONNECTOR SHOULD NOT BE TIGHTENED BEYOND THE LIMATS PACKARD CABLE CONLECTOR DATA SHEET (FINGER TIGHT).

PIN	FUNCTION
1	MODE SELECT
2	N.C.
3	GROUND
4	V $_{\text {CC }}$
5	DATA INPUT

NOTES:

1. DIMENSIONS IN Mm \{INCHES)
2. UNLESS OTHERWISE SPECIFIED THE TOLERANCE ON AL.L DIMENSIONS IS $\pm .38 \mathrm{~mm}$ ($\mathrm{E} .015 \%$)

Absolute Maximum Ratings

Parameter		Symbol	Min	Max	Units	Nate
Storage Temperature		T_{S}	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	0	+70	${ }^{\circ} \mathrm{C}$	
Lead Soldering	Temperature			260	${ }^{\circ} \mathrm{C}$	3
	Time			10	5	
Supply Voltage		$V_{C C}$	-0.5	6	V	
Mode Select or Data Input Voltage		V_{1}	-0.5	5.5	V	

Recommended
Operating Conditions

Parameter	Symbol	Min	Max	Units	Note
Ambient Temperature	$\mathrm{T}_{\text {A }}$	0	+70	${ }^{\circ} \mathrm{C}$	
Supply Voltage	VCC	4.75	5.25	V	4
High Level Inpuः Voltage, Mode Sefect or Data Input	$V_{1 H}$	2.0	VCc	V	
Low Level Input Voltage, Mode Sefect or Data Input	$V_{1 L}$	0	0.8	V	
Data Input Voltage Pulse Ouration (high or low)	${ }_{4} \mathrm{H}$ it.	100		ns	5
Transmission Distance	ℓ		1000	m	6

Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Dynamic Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter			Symbol	Min	Typ ${ }^{(7)}$	Max	Units	Conditions	Fig.	Note
Propagation Detay	Highnto-Low Data Input Voftage Step		tPHL		34		ns	$v_{\mathrm{Cc}}=4.75 \mathrm{~V}$ Data Input Square Wave at 500 kHz		
	Low-to-High Data Input Voltage Step		${ }^{\text {tPLH }}$		32		ns			
Refresh Pulse Internally-Coded Mode		Duration	t_{p}		40		ns	$V_{C C}=5.00 \mathrm{~V}$, Made Select Low		
		Repetition Rate	f_{A}		400		kHz		1	11

*The optical fiber is recessed within the barrel at a distance of approximately 7 mm . Solid line represents radiation pattern from fiber stub without obscuration by connector barrel. Dashed line represents radiation pattern as seen from outside of connector.

Notes (cont'd):

3. Measured at a point 2 mm (. 079 in .) from where lead enters package.
4. A supply decoupling network of $2.2 \mu \mathrm{H}$ with $60 \mu \mathrm{~F}$ is recommended.
5. With NRZ data, 10 Mbaud corresponds to a data rate of 10 Mbits/second. With other codes, the data rate is the baud rate divided by the number of code intervals per bit interval. Selfclocking code (e.g., Manchester) usually has two code intervals per bit interval giving $5 \mathrm{Mbits} /$ second at 10 Mbaud .
6. With Hewlett-Packard HFBR-2001 and HFBR-3000 Series Cable/Connector Assembly.
7. For typical values, $\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
8. The transmitter output, P_{T}, equals the optical power excursion, $\Delta \mathrm{P}=\left(\mathrm{P}_{\mathrm{H}}-\mathrm{P}_{\mathrm{L}}\right) / 2$. Notice that under the conditions specified for ΔP, the average optical power is $\left(P_{H}+P_{L}\right) / 2$.
9. Optical power excursion ratio, k, is the ratio of optical power excursion above mid level to optical power excursion below mid level.

$$
k=\frac{P_{H}-P_{M}}{P_{M}-P_{L}}
$$

10. Average currents for steady-state conditions at Data Input.
11. The refresh pulse is interrupted (abbreviated) if Data Input changes state during the refresh pulse. MAX propagation delay is for Data Input changing state during the maximum excursion of the refresh pulse.
12. When used with the HFBR-3000/3100 cable assemblies, the total insertion loss (αT) is calculated as follows:

$$
\alpha \mathrm{T}=8.4 \mathrm{~dB} ; \ell \leq 300 \mathrm{~m}
$$

$\alpha T=\alpha \mathrm{F}+\alpha_{0} \cdot \ell / 1000 ; \ell>300 \mathrm{~m}$
Where $\alpha_{0}=$ Cable attenuation at $820 \mathrm{~nm} ; \ell=$ cable length (metres).

Electrical Description

The HFBR-1002 has two modes of operation: InternallyCoded mode and Externally-Coded mode. These are selected by making the Mode Select input "low" for Internally-Coded mode and "high" for Externally-Coded mode. With Mode Select "low," the optical signal generator in the HFBR-1002 produces a "mid-level" optical power which has positive or negative excursions, depending on whether Data Input is "high" or "low". In this InternallyCoded mode, a train of positive excursions is initiated when Data Input goes "high," when Data Input goes "low", a train of negative excursions is initiated. These excursions are pulses of approximately 40 ns duration with a 400 kHz repetition rate. Each initiation of a pulse train starts with a fullduration pulse, but when Data Input changes state, the train is terminated - even at mid-pulse - as a new train of opposite-polarity pulses is initiated. With this coding scheme and the low duty factor, the average optical power is always near the mid-level, regardless of the data rate or duration in either state. This coding scheme, which is transparent to the user, is designed to operate the HFBR-2001 Fiber Optic Receiver most effectively; the mid-level flux operates the Receiver's dc-restorer and the "refresh" pulses of either polarity keep the Receiver's ALC voltage at the proper level, providing data format independence (no data encoding required) over the data rate range of dc to 10 Mbaud . The Internally-Coded mode permits transmission of analog information, e.g., by means of Pulse Width Modulation. Another advantage of the 3-level Internally-Coded mode is that supply current is nearly the same for either logic state, thus reducing transients on the power supply line.

With Mode Select "high," the optical signal is at full maximum ($\sim 2 \mathrm{X}$ mid-level) when Data Input is "high," and nearly zero when Data Input is "low." Used in this mode with the HFBR-2001 Receiver, the user must provide proper data formatting (e.g., Manchester or Bi-Phase coding, explained in HFBR-2001 data sheet) to ensure proper receiver operation. This mode provides for these three applications:

1. Steady state turn-on of the photo-emitter at maximum flux level (e.g., for system diagnosis).
2. Stand-by mode (e.g., when the system is not in use).
3. Transmission of 2-level optical signals from externally generated code (e.g., Manchester) for receivers not configured for the 3-level code. With Mode Select "high," the output is either PH, or PL. Direct analog operation is not possible due to hysteresis in the response of the optical signal to the Data Input signal.

Mechanical and Thermal Considerations

Typical power consumption is less than 500 mW so the transmitter can be mounted without consideration for external heat sinking. The optical port is an optical fiber stub centered in a metallic ferrule. This ferrule supports a split-wall cylindrical spring sleeve which aligns the ferrule in the Transmitter with the ferrule in the Hewlett-Packard Fiber Optic Cable/Connector Assembly. The threaded barrel performs no alignment function; its purpose is to hold the ferrule faces together when the coupling ring is tightened finger-tight as specified in the Hewlett-Packard Fiber Optic Cable/Connector data sheet.
The HFBR-1002 should be mounted so that the lock nut at the optical port is not disturbed. Moving the lock nut can cause misalignment of the optical fiber stub inside the module resulting in a reduction of power output. Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
Good system performance requires clean ferrule faces to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well. If it is absolutely necessary to remove the threaded barrel and lock nut to clean the transmitter ferrule face, refer to the section "Installation Measurement and Maintenance" in HewlettPackard Application Note 1000.

Figure 5. Normalized Transmitter Output Flux vs. Temperature.

Features

- DATA RATE: DC TO 10 Mbaud*
- LOW NOISE: 10^{-9} BER WITH 0.8μ W INPUT*
- NO DATA ENCODING REQUIRED*
- TTL OUTPUT LEVELS
- FUNCTIONAL LINK MONITORING*
- OPTICAL POWER INPUT INDICATION
- SINGLE +5V SUPPLY
- PCB MOUNTABLE, LOW PROFILE
- INTEGRAL, HIGH QUALITY OPTICAL CONNECTOR.

*When used with HFBR-1001/-1002 Transmitters and any Hewlett Packard HFBR-3000/-3100 Series Cable/Connector Assembly.

Description

HFBR-2001 fiber optic receiver is an integrated optical to electrical transducer designed for reception of digital data over single fiber channels. A silicon PIN photodetector and a bipolar integrated circuit convert optical pulses to TTL level outputs with an optical sensitivity of $.8 \mu \mathrm{~W}$, and data rates to $10 \mathrm{Mb} / \mathrm{s}$ NRZ. An integral optical connector on the module allows easy interfacing without problems of fiber/detector alignment. The low profile package is designed for direct printed circuit board mounting without additional heat sinking.
The HFBR-2001 is intended for use with HFBR-3000 fiber optic cable/connector assemblies and the HFBR-1001/1002 fiber optic transmitters. In order to provide wide dynamic range, dc response, and high sensitivity, the receiver must periodically extract information from the optical waveform. When operating with a transmitter in the internally-coded mode, this information is automatically provided by the transmitter. When operating in the externally-coded mode, or with another transmission source, the user must provide proper data formatting to insure proper receiver operation.
An additional TTL output called Link Monitor (LM), provides a digital indication of link continuity independent of the presence of data. Link continuity is indicated by a logical high output state.

Package Dimensions

CAUTION:

1. LOCK NUT AND EARREL. SHOULD NOT BE DISTGREED.
2. SCREWS ENTERING THE 2 \#6 THRE AOEO MOUNTGNGHOLES MUST AOT TOUCH BOTTON.
3. THE HFBR 3000 CONAECTOR SHOULD NOT BE TIGHTENED BEYOND THE も期TS SPECIFIED IA THE HFBR-3000 DATA SHEET.

PIN	FUNCTION
1	TEST POINT
2	LINK MONITOR
3	GROUND
4	$V_{\text {CC }}$
5	DATA OUTPUT

NOTES:

1. DIMENSIONS :N Mm (INCHES)
2. UNE ESS QTHERWISE SPECIFIED

THE TOLERANCE ON ALL
OHENENSTONS IS $\pm, 38 \mathrm{~mm}\left(2,01 \mathrm{~B}^{*}\right)$

Absolute Maximum Ratings

Parameter		Symbat	Min	Max	Units	Note
Storage Temperature		T_{S}	-55	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature		- $\mathrm{TA}_{\text {A }}$	0	70	${ }^{\circ} \mathrm{C}$	
Lead Soldering	Temperature			260	${ }^{\circ} \mathrm{C}$	3
Cycle	Time			10	\$	
Supply Voltage		VCC	-0.5	6.0	V	
Output Voltage (High State)		VOH		6.0	v	

Recommended Operating Conditions

Parameter			Symbol	Min	Max	Units	Note
Ambient Temperature			TA	0	70	${ }^{\circ} \mathrm{C}$	
Supply Voltage			VCC	4.75	5.25	V	
Supply Ripple (Peak-to-Peak)			$\Delta V_{C c}$		250	mV	4
High Level Output Current	Link Monitor		IOH		-100		
	Data Output				-400	$\mu \mathrm{A}$	
Low Level Output Current			10 L		8	mA	
Average Imput Optical Power			PM	0.8	70	$\mu \mathrm{W}$	6
Peak-to-Peak Input Optical Power			$\mathrm{PH}_{\mathrm{H}} \mathrm{P}_{\mathrm{L}}$	1.6	140	$\mu \mathrm{W}$	
Optical Input Pulse Duration and Timing	24mved	High Level	+	100	5000	ns	
	Code	Low Level	${ }_{t}$				
	Flux Excursion Ratio		k	0.75	1.25		7
	3-Level Code	High Level	${ }_{\text {H }}$	50		ns	8
		Low Level	${ }_{\text {L }}$				
		Mid Level	tM	0.05	6.7	$\mu \mathrm{s}$	
	Refresh Repetition Rate		f_{R}	150		kHz	
	Refresh Duty Factor		${ }_{\text {frat }}$		0.04		

Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter			$\frac{\text { Symbol }}{\mathrm{VOH}^{\prime}}$	$\begin{array}{\|c\|} \hline \operatorname{Min} \\ \hline 2.4 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Typ }^{5} \\ \hline 2.85 \end{array}$	Max		Conditions			Fig.$1,2$	$\begin{array}{\|c} \text { Note } \\ \vdots \\ 7.9 \end{array}$		
Output Vottage	HighStateLowState	Data Output						$\mathbf{P}=\mathrm{P}_{\mathrm{M}}+0.8 \mu \mathrm{~W}$	$I_{0}=-400 \mu \mathrm{~A}$	VCC $=$				
		Link Monitor						$\Delta \mathrm{P}=0.8 \mu \mathrm{~W}, \mathrm{I}_{0}$	$100 \mu \mathrm{~A}$	4.75 V				
		Data Output	VOL		0.35	0.5	\checkmark	$\mathrm{P}=\left(\mathrm{P}_{\mathrm{M}} \mathrm{H}-0.8 \mu \mathrm{~W}\right)$	$\mathrm{I}_{0}=8 \mathrm{~mA}$					
		Link Monitor			0.2	0.4	v	$\Delta P=0$	$V_{C C}=4.75$					
Test Point Voltage			V_{T}		0		V	$\mathrm{P}_{\mathrm{M}}=100 \mu \mathrm{~W}$				10		
				1.3		$\mathrm{P}_{\mathrm{M}}=0$								
Supply Current				Ice		77		100	mA	$\mathrm{VCC}=5.25 \mathrm{~V}$				
			60		77		$\mathrm{VCC}=4.75 \mathrm{~V}$							
Optical Port (fiber optic core) Diameter			D_{c}		200		$\mu \mathrm{m}$							
Numerical Aperture			N.A.		0.5						3			
Peak Responsivity Wavelength			λ_{p}		770		nm				4			

Dynamic Characteristics $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter			Symbol	Min	Typ ${ }^{5}$	Max	Units	Conditions	Fig.	Note
Propagation Defay	High to Low	3-Level Code	tPHL		29		ns	$V C C=4.75 \vee, k=1$, Link Monitor High	1	11
		2-Level Code			37					
	Low to High	3-Lavel Code	${ }_{\text {tPL }}$		37		ns			2
		2-Level Code			45					
Link Monitor Response Time	Lownto-High		M MH		20		ms	$\begin{array}{ll} V_{C C}=4.75 \mathrm{~V} & \Delta \mathrm{p}=0.8 \mu \mathrm{~W} \\ 1 \mathrm{OL}=8 \mathrm{~mA} & \text { Peak-to-Peak } \end{array}$		13
	High-to-Low		$\mathrm{TMI}_{\text {c }}$		1000					14
Bit Error Rate at 10 M baud			BER			10^{-9}		$k=1, \Delta p \geqslant 0.8 \mu W$		15

DATA INPUT TO TRANSMITTER (HFBR-1001, INTERNALLY CODED) OMITTING TRANSMISSION DELAY

DATA INPUT TO TRANSMITTER, E.G. MANCHESTER (HFBR-1001 EXTERNALLY CODED) OMITTING TRANSMISSION DELAY

Figure 1. Optical Input Timing Requirements.

Notes (cont'd):

3. Measured at a point $2 \mathrm{~mm}\left(.079^{\prime \prime}\right)$ from where the lead enters the package.
4. If ripple exceeds the specified limit, the regulator shown in Figure 5 should be used. The LC filter shown in Figure 5 is' recommended whether the regulator is used or not.
5. For typical values, $\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
6. Optical power is average over an interval of at least $50 \mu \mathrm{~s}$. Optical power values specified are for the equivalent of a monochromatic source between 700 nm and 820 nm .
7. For either 2 -level or 3 -level code, $\left.\mathrm{k}=\left(\mathrm{P}_{\mathrm{H}}-\mathrm{P}_{\mathrm{M}}\right) / / \mathrm{P}_{\mathrm{M}}-\mathrm{P}_{\mathrm{L}}\right)$.
8. For the HFBR-2001, a 3-Level Code is defined as having a mid-level, with equal-amplitude and pulse width excursions to high-level or to low-level.
9. Link Monitor provides a check of link continuity. A low Link Monitor output indicates that the optical signal path has been interrupted. For example, it might indicate a broken cable or a loose, dirty, or damaged connector. The link may still be operational with Link Monitor low, but it should be checked to determine the cause of the low indication. When the source of optical power is an Internally-Coded HFBR1001/1002 Fiber Optic Transmitter, Link Monitor high will be a valid indication of link continuity whether or not data is being transmitted. An optical input with excursions ($\Delta \mathrm{P}$) greater than or equal to $0.8 \mu \mathrm{~W}$ is sufficient to hold Link Monitor high.
10. When observing V_{T}, use a voltmeter with at least $10 \mathrm{M} \Omega$ input resistance. With zero input optical power, V_{T} is at its maximum value, $V_{T, m a x}$. Then when flux is being received, whether modulated or not:

$$
\left(V_{T, M A X}-V_{T}\right)=(25 \mathrm{k} \Omega)\left(I_{p}\right)=(25 \mathrm{k} \Omega)\left(R_{P} P_{M}\right)
$$ where $I_{p}=$ average photodiode photocurrent

$$
\mathrm{R}_{\mathrm{P}} \approx 0.4 \mathrm{~A} / \mathrm{W}=\text { photodiode responsivity }
$$ $\mathrm{P}_{\mathrm{M}}=$ average flux being received

11. Measured from the time at which optical input crosses the 25% level until DATA OUTPUT $=1.5 \mathrm{~V}$ in HL transition.
12. Measured from the time at which optical input crosses the 75% level until DATA OUTPUT $=1.5 \mathrm{~V}$ in LH transition.

Figure 2. Schematic Diagram.
13. Measured from the time at which optical input fluctuation begins until LINK MONITOR rises to 1.5 V .
14. Measured from the time at which optical input fluctuation ceases until LINK MONITOR falls to 1.5 V .
15. With NRZ data, 10Mbaud corresponds to a data rate of $10 \mathrm{Mb} / \mathrm{s}$. With other codes, the data rate is the baud rate divided by the number of code intervals per bit interval-self-clocking code (e.g., Manchester) usually has two code intervals per bit interval giving $5 \mathrm{Mb} / \mathrm{s}$ at 10 Mbaud .

Electrical Description

Flux enters the HFBR-2001 via an optical fiber stub where a PIN photodiode converts it to a photocurrent. This photocurrent goes to an I-V (current-to-voltage) amplifier which utilizes both dc feedback and ALC (automatic level control).
The function of dc feedback is to keep the average value of the signal centered in the linear range of the amplifier. The dc feedback amplifier has a high impedance output to establish a long time constant on a capacitor at its output. (The voltage on the capacitor is observable at the test point). As seen in the schematic diagram, the voltage on this capacitor extracts the average component of photocurrent from the input of the I-V amplifier so its average output is at a fixed level. Optical flux excursions above and below the average cause voltage excursion above and below the fixed level at the output of the I-V amplifier.
The voltage excursions operate a flip-flop whose output drives the Data Output amplifier; an excursion above the average level sets the data output high, where it remains until an excursion below the average level resets the flip-flop.
To prevent overdrive, an ALC circuit, responding to excursions either above or below the average level, controls the gain of the I-V amplifier. Gain is then determined by whichever polarity of excursion is the greater. If these excursions are too far from being balanced, the gain limitation imposed by the larger excursion may cause the smaller (opposite polarity) excursion to be too small to operate the flip-flop.

The Link Monitor output is driven by an amplifier which responds to the ALC voltage. The Link Monitor is high when the flux excursions are greater than or equal to $0.8 \mu \mathrm{~W}$.

Mechanical and Thermal Considerations

Typical power consumption is less than 500 mW so the Receiver can be mounted without consideration for additional heat sinking. The optical port is an optical fiber stub centered in a metallic ferrule. This ferrule supports a split-wall cylindrical spring sleeve which aligns the ferrule in the Receiver with the ferrule in the HFBR-3000 Fiber Optic Cable/Connector. The connection procedure is to FIRST start the Connector ferrule into the sleeve, THEN screw the coupling ring on the barrel. The barrel performs no alignment function; its purpose is to hold the ferrule faces together when the coupling ring is tightened as specified in the HFBR-3000 Fiber Optic Cable/Connector data sheet.

Good system performance requires clean ferrule faces to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {™ }}$ on a cotton swab also works well. If it is absolutely necessary to remove the threaded barrel and lock nut to clean the Receiver ferrule face, refer to the section "Installation Measurement and Maintenance" in Hewlett-Packard Application Note 1000.

*The optical fiber is recessed within the barrel at a distance of approximately 7 mm . Solid line represents reception pattern at fiber stub without obscuration by connector barrel. Dashed line represents reception pattern as seen from outside of connector.

Figure 3. Reception Pattern.*

Figure 4. Spectral Response.

Figure 5. Power Supply Transient Filter Recommendation.

FIBER OPTIC SINGLE CHANNEL CABLE/CONNECTOR ASSEMBLIES
 HFBR-3000

Features

- USER SPECIFIED CABLE LENGTHS
- CONNECTORS FACTORY INSTALLED AND TESTED
- PERFORMANCE GUARANTEED OVER TEMPERATURE AND HUMIDITY
- HIGH STRENGTH
- LIGHT WEIGHT
- SMALL BEND RADIUS

Description

The HFBR-3000 Simplex Fiber Optic Cable/Connector Assemblies are intended for use with the HFBR-1001/-1002 Transmitters and HFBR-2001 Receiver for digital data transmission. The Connectors mate directly with the optical ports on the Transmitters and Receiver. The cable uses a single fused silica, partially graded index, glassclad fiber surrounded by silicone coating, buffer jacket, and tensile strength members. This combination is then covered by a scuff-resistant outer jacket. The cable resistance to mechanical abuse, safety in flammable environments, and inherent absence of electromagnetic interference effects may make the use of conduit unnecessary. However, the light weight and high strength of these assemblies allows them to be drawn through most electrical conduits. The HFBR-3099 Adapter, for interconnecting cables, consists of two parts: a sleeve to align the ferrules and barrel to join the connector couplings.

HFBR-3000 CABLE LENGTH TOLERANCE

Cable Length (Metres)	Tolerance	Units
$1-10$	$\frac{+10}{-0}$	$\%$
$11-100$	$\frac{+1}{-0}$	Metre
>100	$\frac{ \pm 1}{-0}$	$\%$

Mechanical Dimensions

Cable/Connector Ordering Guide

HFBR-3000 defines an optical cable of user specified length supplied with factory installed and tested connectors. Length must be specified in metres and can be any one metre increment from 1 to 1000 metres.
Systems intended to operate at distances greater than 1000 metres may require special component selection, depending upon operating conditions. For cable lengths greater than 1000 metres contact your local HewlettPackard sales office.

CAIFION:
A. COUPLING SHOUZD NOT BE OVERTIGHTENED. SEE AFECHANIEAL/OPTICAL CHARACTERISTICS AND NOTE 14.
B. GOOO SYSTEM PERFORMANCE REQUIRES OEEAT FERRULE FACESTO AVOID OBSTRUCTING THE OPTICAI. PATH. CLEAN COMPRESSED AIR OFTEN IS SUFFICIENT TO FEMOVEPARTICLES, A COTTON SWAB SOAKEO IT METHAEVOL OR FREON ${ }^{+K M}$ MAY ALSO BE USED.

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note	Parameter	Symbol	Min.	Max.	Units	Note
Relative Humidity at $T_{A}=70^{\circ} \mathrm{C}$				95	\%	12	Bend Radius	r	25		mm	10,15
Storage Temperature		Ts	-40	+85	${ }^{\circ} \mathrm{C}$		Flexing			50,000	cycles	4
Operating Temperature		TA	-20	+70			Crush Load	Fc		200	N	5
Tensile Force	on Cable	FT_{T}		300	N	10	Impact	m		1	kg	6
	on Connector/Cable			100				h		0.3	m	6

Mechanical/ Optical Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Exit Numerical Aperture		N.A.		0.28		-	$\lambda=820 \mathrm{~nm}$ Q $\geq 300 \mathrm{~m}$	1	7
Insertion Loss	Length	α_{0}		16	20	$\mathrm{dB} / \mathrm{km}$	$\lambda=700 \mathrm{~nm}$ Q $=100 \mathrm{~m}$	2	9,11
	Dependent			7	10		$\lambda=820 \mathrm{~nm} \quad \ell>300 \mathrm{~m}$		
	Fixed	$\alpha_{\text {F }}$		5.4	8.4	dB	$\lambda=820 \mathrm{~mm} \ell \leq 300 \mathrm{~m}$		13,14
Fiber Dispersion		$\Delta t / 2$		17.5		$\mathrm{ns} / \mathrm{km}$	$700<\lambda<820 \mathrm{~nm}$	3	
Fiber 3dB Bandwidth		$\Delta f \cdot \ell$		20		$\mathrm{MHz} \cdot \mathrm{km}$			8
Optical Fiber Core Diameter		DC		100		$\mu \mathrm{m}$			
Cladding Outside Diameter		DCL		140					
Optical Fiber Profile Index		α_{1}		8		-			
Cable Structural Strength		Fc		2000		N			
Mass per Unit Length		m / l		6		$\mathrm{kg} / \mathrm{km}$			
Cable Outside Diameter		DCA		2.65		mm			

Notes (cont'd):
4. 180° bending at minimum bend radius, with 10 N tensile load
5. Force applied on a 2.5 cm diameter mandrel laid across the cable on a flat surface, for 100 hours, followed by flexure test.
6. For mass m dropped from height h on 25 mm diameter mandrel laid across the cable on a flat surface.
7. Exit N.A. is defined as the sine of the angle at which the off-axis radiant intensity is 10% of the axial radiant intensity
8. Fiber 3 dB Bandwidth • Length, $(\mathrm{MHz} \bullet \mathrm{km})$ is defined as $350 / \mathrm{fiber}$ dispersion (ns/km).
9. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
10. This applies for short term testing, less than one hour.
11. Fiber loss exclusive of connector loss.
12. This applies to cable only
13. When using HFBR-1002 transmitter with HFBR-3000 Cable/ Connector Assembly, Total Insertion Loss, $\alpha_{T}=\alpha_{F}+\alpha_{O}(\ell-300)$ for $\ell>300 \mathrm{~m}$; for lengths $\ell \leq 300 \mathrm{~m}, \alpha_{\top}=\alpha_{\mathrm{F}} . \quad 1000$
14. Coupling Ring "Finger Tight", torque $0.05<L<0.1 \mathrm{~N} \cdot \mathrm{~m}$. Overtightening may cause excessive fiber misalignment or permanent damage.
15. The probability of a fiber weak point occurring at a point of maximum bend is small, consequently the risk of fiber breakage from exceeding the maximum curvature is extremely low.

Figure 1. Optical Fiber Output Radiation Pattern.

Figure 2. Spectral Transmission. The actual fiber dispersion is determined from the RMS Pulse Spreading and can be approximated by:

Figure 3. Fiber Dispersion

Features

- SIMPLEX OR DUPLEX CABLE
- USER SPECIFIED CABLE LENGTHS
- FLAME RETARDANT
- STANDARD $100 / 140 ~ \mu \mathrm{~m}$ GLASS FIBER
- RUGGED TIGHT JACKET CONSTRUCTION
- PARAMETERS OPTIMISED FOR LOCAL DATA COMMUNICATION
- BANDWIDTH: $\mathbf{4 0} \mathbf{~ M H z ~ A T ~} \mathbf{1}$ km

Description

The HFBR-3200 Simplex Fiber Optic Cables and HFBR3300 Duplex Fiber Optic Cables are intended for use with HP's High Performance Modules (HFBR-1001/2, HFBR2001) and the Miniature Link series of transmitters and receivers (HFBR-12XX, HFBR-22XX).
The HFBR-3200 Simplex Fiber Optic Cable is constructed of a single graded index glass fiber surrounded by a silicone buffer, secondary jacket, and aramid strength members. The combination is covered with a scuff resistant polyurethane outer jacket.
The HFBR-3300 Duplex Fiber Optic cable has two glass fibers, each in a cable of construction similar to the Simplex cable, joined with a web. The individual channels are identified by a marking on one channel of the cable.
The optical waveguide is a fused silica glass, graded index fiber, which gives low attenuation and wide bandwidth. The silicone buffer and secondary jacket protect the fiber from being scratched and provide a base for the helically wrapped aramid strength members.
The HFBR-3200 and HFBR-3300 cables can be terminated with HFBR-4000 connectors using the HFBR-0100 Connector Assembly Tooling Kit. Information on cables with factory installed connectors is available in the HFBR-3000/HFBR-3100 data sheet.

The cable's resistance to mechanical abuse, safety in flammable environments, and immunity from electromagnetic interference effects may make the use of conduit unnecessary. However, the light weight and high strength of the cables allows them to be drawn through most electrical conduits.

Fiber Optic Cable Construction

CABLE LENGTH TOLERANCE

Cable Length (Metres)	Tolerance
$1-10$	$+10 /-0 \%$
$11-100$	$+1 /-0$ Metre
>100	$+1 /-0 \%$

Installation

Hewlett-Packard Fiber Optic cable is designed so that when pulled through conduit, accepted wire pulling methods and tools, such as a cable grip, can be used. However, a few precautions for optical cable are necessary: the cable must not be bent tighter than its minimum bend radius; the tensile strength of the cable should not be exceeded (a cable lubricant can be used to minimize the drawing force); tensile load should be applied only to the cable and not the connector.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Relative Humidity at $\mathrm{TA}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			95	$\%$	
Storage Temp.	Ts	-40	+85	\circ	
Operating Temp.	TA_{A}	-20	+70		
Bend Radius, No Load	r	20		mm	8,9
Flexing		50 K		Cycles	1

Parameter	Symbol	Min.	Max.	Units	Note
Crush Load	FG		200	N	2,8
Impact	m		1.5	kg	3
	h		0.15	m	3
	FT		300	N	7,8

Mechanical/Optical Characteristics $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless otherwise Specified.

Parameter		Symbol	Min.	Typ. ${ }^{[6]}$	Max.	Units	Conditions	Fig.	Note	
Exit Numerical Aperture		N.A.		0.3		-	$\lambda=820 \mathrm{~nm} \quad \ell \geq 300 \mathrm{~m}$		4	
Attenuation		α_{0}		7	10	$\mathrm{dB} / \mathrm{km}$	$\lambda=820 \mathrm{~nm}$			
			12	20	$\mathrm{dB} / \mathrm{km}$	$\lambda=700 \mathrm{~nm}$				
Bandwidth@1km			BW		40		MHz	$\lambda=820 \mathrm{~nm}$	1	5
Optical Fiber Core Diameter		Dc		100		$\mu \mathrm{m}$				
Cladding Outside Diameter		DCL		140						
Optical Fiber Profile Index		α_{1}		$\alpha 2$		-				
Cable Structural Strength		F_{C}		1800		N			7	
Mass per Unit Length	Single Channel	m / ℓ		6		$\mathrm{kg} / \mathrm{km}$				
	Dual Channel			12			,			

Notes:

1. 180° bending at minimum bend radius, with 10 N tensile load.
2. Force applied on 2.5 mm diameter mandrel laid across the cable on a flat surface, for 100 hours, followed by flexure test.
3. Tested at 1 impact according to MIL-STD-1678, Method 2030, Procedure 1.
4. Exit N.A. is defined as the sine of the angle at which the offaxis radiant intensity is 10% of the axial radiant intensity.
5. Bandwidth is measured with a pulsed LED source ($\lambda=820$ $\mathrm{nm})$, and varies as $\ell-0.85$, where ℓ is the length of the fiber (km). Pulse dispersion and bandwidth are approximately inversely related.
6. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
7. One Newton equals approximately 0.225 pounds force.
8. Short term, $\leq 1 \mathrm{hr}$.
9. The probability of a fiber weak point occurring at a point of maximum bend is small, consequently the risk of fiber breakage from exceeding the maximum curvature is extremely low.

Cable Ordering Guide

HFBR-3200/HFBR-3300 defines fiber optic cables of user specified length. The cable length must be specified in metres and can be any length in one metre increments from 1 to 1000 metres. Option 001 specifies the number of equal length cables ordered.
Examples:
A. To order one Duplex Cable assembly 150 metres Iong specify:
HFBR-3300
Quantity 150
OPT 001
Quantity 1
B. To order five Simplex Cables, 100 metres each, specify:

HFBR-3200
Quantity 500
Quantity 5

Figure 1. Attenuation vs. Wavelength

> FIBER OPTIC CONNECTOR

Features

- TERMINATES HEWLETT-PACKARD $100 / 140 \mu \mathrm{~m}$ FIBER OPTIC CABLE
- TYPICAL INSERTION LOSS 1.5 dB
- ALL METAL PIECE-PARTS
- SIMPLE, RAPID ASSEMBLY
- STANDARD 2.50 mm FERRULE
- WIDE OPERATING TEMPERATURE RANGE
- SMALL DIAMETER

Description

The HFBR-4000 Fiber Optic Connector is constructed of all metal piece-parts and has been designed to use a high performance epoxy to stake the optical fiber. The standard, 2.50 mm connector ferrule is prepared with a polished optical surface giving the assembly a uniformly repeatable low insertion-loss of typically 1.5 dB .

The connector can be assembled in less than 20 minutes by an experienced user with suitable tooling, such as provided

in the Hewlett-Packard HFBR-0100 Connector Assembly Tooling Kit. When properly assembled, the connector has excellent strength and repeatable performance over a wide temperature range.

The connector is compatible with Hewlett-Packard HFBR3200/3300 Fiber Optic Cables.

The HFBR-3099 adapter is used for making an aligned, easily disassembled, connector-to-connector junction.

CONNECTOR ASSEMBLY

Mechanical Details

Connector Piece-Parts

ID:
GOLD COLORED: SILYERED COLORED:
body nut

NOTES: 4. DMMENSTONS IN mm fin.)
5. TOLEAAACES APE.
$\times .57 \mathrm{~mm} \quad \times x .12 \mathrm{may}$

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temp.	Ts	-40	+85	${ }^{\circ} \mathrm{C}$	7
Operating Temp.	TA_{A}	-20	+70	${ }^{\circ} \mathrm{C}$	7
Tensile Force	FT		100	N	7

6. $\alpha \mathrm{cc}$, connector-to-connector loss; measured steady state.
7. When assembled with Hewlett-Packard HFBR-0100 procedure and HFBR-3000 series glass fiber cable.
8. 100 connection cycles.

Applications

- TERMINATION FOR HEWLETT-PACKARD HFBR-3200/3300 FIBER OPTIC CABLE

- INTERFACE TO HEWLETT-PACKARD HFBR-12XX/22XX MINIATURE FIBER OPTIC LINK COMPONENTS

- BULKHEAD OR PANEL MOUNTING OF HFBR-4000 CONNECTORS

- INTERFACE TO HEWLETT-PACKARD HFBR-1001/1002/2001 FIBER OPTIC MODULES

> FIBER OPTIC CONNECTOR ASSEMBLY TOOLING KIT

HFBR-0100 TOOLING KIT
HFBR-0101 CONSUMABLES KIT
HFBR-0102
CUSTOM TOOLS

Features

- AIDS IN THE ASSEMBLY AND REPAIR OF HEWLETT-PACKARD 100/140 $\mu \mathrm{m}$ FIBER OPTIC CABLE WITH HEWLETT-PACKARD CONNECTORS
- INCLUDES AN ILLUSTRATED, STEP-BY-STEP TUTORIAL USER'S MANUAL
- PRODUCES FACTORY-QUALITY CONNECTIONS;
1.5 dB Typical Insertion Loss
- COMPLETE - INCLUDES ALL TOOLS, MATERIALS AND CONNECTOR PARTS REQUIRED TO ASSEMBLE 10 CONNECTORS
- RAPID, LESS THAN 20 MINUTE CONNECTOR ASSEMBLY TIME WITH EXPERIENCE
- PACKAGED IN A RUGGED CASE

Description

The HFBR-0100 Fiber Optic Connector Assembly Tooling Kit is a complete kit designed for quick field installation of Hewlett-Packard HFBR-4000 connectors onto HewlettPackard HFBR-3200/3000 Fiber Optic Cable. The kit is packaged in a rugged case, supplying the user with everything required for terminating the fiber optic cable. The contents are:

1. A set of common connectoring tools
2. A consumables kit containing sufficient material to assemble ten fiber optic connectors (available separately as HFBR-0101).
3. A set of custom tools (available separately as HFBR-0102).
4. A set of connector piece-parts for terminating ten connector ends, and adapters for making connector-toconnector junctions (the individual unassembled connectors are available as HFBR-4000; the adapter is available as HFBR-3099).
5. An illustrated user's manual presenting the procedure in a step by step, tutorial fashion.

User's Manual Outline

The User's Manual details the connectoring procedure for the first time user, allowing an inexperienced technician to construct factory-quality fiber optic connectors. Numerous photographs and diagrams simplify the assembly process.
The User's Manual is composed of three major sections, described as follows:

1. CABLE PREPARATION: The fiber optic cable is stripped of its jackets, and the strength members are terminated by the installation of crimp hardware.
2. CONNECTOR ASSEMBLY: The prepared cable end is assembled into the connector body using a high performance epoxy to stake the optical fiber. The epoxy is cured in ten minutes using the supplied heater.
3. CONNECTOR POLISHING: The fiber end is ground to an optically flat finish and inspected with a microscope comparing the finish with the detailed photomicrographs in the User's Manual.

HFBR-0100 Materials List

1. COMMON CONNECTORING TOOLS WITH CASE

- Diagonal Cutters
- No-Nik ${ }^{\text {Tu }}$ Strippers
- Scissors
- 50X Microscope
- Safety Glasses
- 16 AWG Wire Strippers
- Crimping Tool
- Polishing Plate
- Heater:
(option 001) 100-120 VAC $50 / 60 \mathrm{~Hz}$
(option 2XX) 200-240 VAC $50 / 60 \mathrm{~Hz}$

2. TEN HFBR-4000 CONNECTORS WITH SIX HFBR-3099 ADAPTERS
3. HFBR-0101 CONSUMABLES KIT

- Hysol ${ }^{\text {º }} 1 \mathrm{C}$ Epoxy
- Propanol/Acetone swabs
- Loctite ${ }^{\text {TM }} 495$ Adhesive
- Stirring Sticks
- Syringes with Flat-tipped Needles
- Hand Towels
- Propanol
- Lapping Film:
- Coarse grit, 12 micron
- Medium grit, 3 micron
- Fine grit, 0.5 micron
- Bottle Spout
- Mixing Pads

4. HFBR-0102 CUSTOM TOOLS

- Slotted Vise
- Polishing Weight
- Polishing Assembly

5. USER'S MANUAL

Specifications

Parameter		Value	Units
Weight	Nei	$7.3(16)$	$\mathrm{kg}(\mathrm{lbs})$
	Shipping	$8.2(18)$	
	Height	$356(14)$	$\mathrm{mm}(\mathrm{in})$
	Width	$457(18)$	
	Depth	$229(9)$	
Heater Wattage	Opt 001	600	W
	Opt 2XX	80	

Ordering Guide

The HFBR-0100 Connector Assembly Tooling Kit is designed to be sold as a complete unit, ready for use. Common connectoring tools, consumables, custom tools, connector piece-parts, and the user's manual are included.
The kit is ordered by specifying both the base product number (HFBR-0100) and a heater option. The heater option specifies either a 110 VAC (option 001) or a 220 VAC (option 2XX) heater with the appropriate power cord.
Both the Consumables Kit (HFBR-0101) and the Custom Tools (HFBR-0102) are available separately for restocking the kit. The unassembled connectors (HFBR-4000), adapters (HFBR-3099) and fiber optic cable (HFBR-3200/3300) are also available.

Order Examples:

1. Three Connector Assembly Tooling Kits - specify; HFBR-0100 Fiber Optic Connector Quantity 3 Assembly Tooling Kit
Option 202: European Continent Plug, 220 VAC
2. One Consumables Kit replacement - specify; HFBR-0101 Consumables Kit

Quantity 1

POWER CORD (MALE PLUG) OPTIONS

$\begin{gathered} \text { OPYION } \\ \text { NQ. } \end{gathered}$	Plug* CONFIGURATION	country
001		USA, CANADA $\begin{gathered}\text { JAPAN } \\ \text { (120V) }\end{gathered}$
200	$$	U.K.
201	$\left.\begin{array}{cc} \square E \\ D^{L} & N \end{array}\right)$	Australia NEW ZEALAND
202		EUROPEAN CONTHENT
206		SWITZEPL.AND
212		denmark

*VIEW OF PLUG FACE
E - EARTH OR SAFETY GROUND
N - NEUTRAL OR IDENTIFIED CONDUCTOR
L - LINE OR ACTIVE CONDUCTOR

Features

- EXTEND UP TO 16 RS-232-C/V. 24 CHANNELS TO 1000 m (3280 ft .)
- DATA UP TO 19.2 kbps ON EACH OF 16 CHANNELS SIMULTANEOUSLY
- SYSTEM IMMUNITY TO EMI SOURCES SUCH AS LIGHTNING STRIKES
- SECURE DATA TRANSMISSION
- ELIMINATION OF SPARK HAZARDS IN VOLATILE ATMOSPHERES
- BUILT-IN FAULT ISOLATION CAPABILITY
- LOW INSTALLATION COSTS DUE TO LIGHTWEIGHT FIBER OPTIC CABLE

Description

A pair of HP 39301A Multiplexers interconnected with Hewlett-Packard HFBR-3000 Series Fiber Optic Cable, may be used to extend up to 16 full duplex RS-232-C/V. 24 channels up to 1 km (3280 ft .). Figure 1 shows a typical link configuration between a host CPU and a cluster of 16 terminal devices.

This link provides an easy way to incorporate the advantages of fiber optic links into local area terminal communications. These advantages include immunity to electromagnetic interference of all types, from lightning strikes to noisy electric motors, and freedom from static discharge and crosstalk. The fiber optic cable also provides security for data as it will not radiate electromagnetic signals. In volatile atmospheres, there is no need for special cable

Figure 1. Typical Link Configuration
shielding because no sparks can be generated by this totally dielectric medium.

Each 39301A Multiplexer has eight RS-232-C/V. 24 connectors. Each connector has both the Primary and Secondary Data channels available. This provides for a variety of possible configurations. These configurations include: sixteen independent asynchronous channels, eight independent asynchronous channels with handshake control lines, or eight independent synchronous channels with Data Terminal Equipment (DTE) supplied clock signals. The cables required to accomplish any combination of these connections are described in the Typical Configurations Section of this Data Sheet.

Each of the Primary and Secondary Data channels may operate any asynchronous protocol up to 19200 bps. Each channel may be used independently with different protocols and data rates without adjustments to the Multiplexer. This is possible because the 39301A operates as a time division multiplexer, sampling each of the 16 data channels at a 200 kHz rate. This sampled data is serialized and transmitted in real time at a rate of 7 Mbaud over the interconnecting HFBR-3000 Series Fiber Optic Cable to the companion 39301A. This serial data is then reconverted to 16 parallel channels and distributed to the respective Primary or Secondary Data channels.

Specifications

SYSTEM PERFORMANCE
A system consists of two 39301As interconnected with two channels of HFBR-3000 series Fiber Optic Cable.
System Bit Error Rate: One error in 10^{9} bits typical.
Pulse Width Distortion: $+/-6 \mu \mathrm{~s}$ maximum
(Operated with RS-232-C load of 3K ohms and 2500 pF)

ELECTRICAL CHANNEL INTERFACE

Electrical: Conforms to EIA standard RS-232-C Section 2 (CCITT V.24) for the assigned pins.
Electrical Connector: Female 25 pin subminiature "D"
PIN ASSIGNMENTS

Pin No.	EIA RS-232-C		CCITT V. 24		Notes
1	Protective Ground	AA	Earth Common	101	1
2	Transmitted Data (Primary)	BA	Transmitted Data	103	3
3	Received Data (Primary)	BB	Received Data	104	4
6	Data Set Ready	CC	Data Set Ready	107	2
7	Signal Ground	$A B$	Signal Ground	102	1
14	Secondary Transmitted Data	SBA	Transmitted Backward Channel Data	118	3
16	Secondary Received Data	SBB	Received Backward Channel Data	119	4

Notes:

1. Pins 1 and 7 are internally connected.
2. Pin 6 is internally hardwired "on" to +12 V through a 316 ohm resistor
3. Data to 39301A.
4. Data from 39301A.

OPTICAL CHANNEL INTERFACE

Transmitter Optical Output Flux: -13 dBm
($50 \mu \mathrm{~W}$) minimum at 820 nm
Receiver Optical Input Flux: -31 dBm
($0.8 \mu \mathrm{~W}$) minimum at 820 nm
Fiber Optic Port Connector: HFBR-4000 compatible. (HFBR-4000 installed on HFBR-3000 Series Fiber Optic Cables)

INDICATORS AND SWITCHES

AC Line Indicator: When ON indicates that AC power is on.
Carrier Received Indicator: When ON, indicates that the 39301A is receiving a modulated signal from the remote transmitter.
Loopback Switch: In the TEST position, enables an electrical loopback at the interface between the multiplexer electronics and the fiber optic transceiver circuitry. The "Carrier Received Indicator" is disabled when this switch is in the TEST position.

ENVIRONMENTAL

Storage Temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Operating Temperature: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Relative Humidity: 95\%

PHYSICAL CHARACTERISTICS

Size: $42.5 \times 8.9 \times 7.2 \mathrm{~cm}$
($16.75 \times 3.5 \times 2.85$ inches)
Weight: 2.2 kg (4.75 lbs)
Shipping Weight: 3.4 kg (7.5 lbs)
Power Requirements: 18 VA Maximum
Power Cord Length: 2.3 m (7.5 ft .)
REGULATION COMPLIANCE

Safety

UL listed for EDP and Business Equipment. Submitted for CSA certification and IEC compliance for EDP and Business Equipment.
RFI
In compliance with US FCC Regulations. Submitted for FTZ License.

Typical Configurations

Each RS-232-C/V. 24 connector on the 39301A Multiplexer can be interfaced to a variety of Data Terminal Equipment (DTE) by use of properly configured interconnecting RS-232-C/V. 24 data cables. Each connector provides two independent full duplex asynchronous channels on the Primary and Secondary Data lines. Therefore, 16 total channels are available on any 39301A link. The following figures will describe the cable configurations for four typical DTE connections. Only one end of the full 39301A link is shown in each figure. The opposite end will be a mirror image in all cases, therefore, two of the illustrated RS-232-C/V. 24 data cables will be required to complete each link. Shielded RS-232-C/V. 24 cables are recommended in all cases to minimize radio frequency emissions. Any of the DTE configurations described may be intermixed and connected to a 39301A link simultaneously with the only limitation being that no more than 16 full duplex channels are available.

ASYNCHRONOUS DATA ONLY DTE

It is possible to connect one or two "Data Only" DTEs to each connector on the 39301A. Figure 2 shows the configuration for a single DTE connection utilizing the Primary Transmitted/Received Data pins on the 39301A connector. Figure 3 shows the configuration of HP's 8120-3569 Dual Channel RS-232-C/V. 24 Adapter Cable. This 8120-3569 Cable can be used to separately access both the Primary and Secondary Data channels on each 39301A connector. Then two of the cables shown in Figure 2 can be used to extend these channels out to two separate "data only" DTEs. This 8120-3569 Cable will enable up to 16 "data only" DTEs to be connected to each 39301A link.

Figure 2. Asynchronous Data Only Configuration

NOTE: THE SEPARATION BETWEEN MALE AND FEMALE
CONNECTORS IS $0.6 \mathrm{~m}(2 \mathrm{ft})$.

Figure 3. 8120-3569: Dual Channel RS-232-C/V. 24 Adapter Cable HP Part

ASYNCHRONOUS DATA PLUS HANDSHAKE DTE

If a DTE requires that normal modem handshake lines be active for control purposes, the Secondary Data channel on each 39301A connector can be used to establish this connection between the host CPU and the remote terminal. Figure 4 shows one possible cable configuration using the Secondary Data channel to interconnect the DTE's Request to Send/Clear to Send handshake lines. Up to eight DTEs with handshake lines may be connected to a 39301A link in this way.

Note that pin 6, Data Set Ready, on each 39301A connector is hardwired "on" to +12 V through a 316 ohm resistor. If the connected DTE does not require this signal, it may be eliminated from the RS-232-C/V. 24 data cable.

SYNCHRONOUS DATA WITH DTE SUPPLIED CLOCK

Although the 39301A does not provide a clock for synchronous data transmission, synchronous DTE may be interconnected by the 39301A link if the DTE can supply the necessary clock signal. Figure 5 illustrates the use of a 39301A connector's Secondary Data channel to accomplish this type of DTE connection. Up to eight synchronous data DTEs with their own clock lines may be connected to a 39301A link.

Figure 4. Asynchronous Data Plus Handshake Configuration

Figure 5. Synchronous Data with DTE Supplied Clock Configuration.

Installation

The 39301A Multiplexer and the interconnecting HFBR3000 Series Fiber Optic Cable is designed for easy installation. Complete details are provided in the Installation, Operating, and Service Manual supplied with each 39301A.

It is recommended that the 39301A Multiplexer be securely mounted to protect the attached data cables. The 39301A is designed for surface or EIA standard 19 inch width rack mounting. Standard Rack/Surface Mounting Hardware supplied with each 39301A allows installation in a standard open rack or flush mounting on any convenient flat surface. Optional Recessed Rack Mounting Hardware (Option 001) allows mounting inside standard racks with closed doors without damage to the attached cables.
The HFBR-3000 Series Fiber Optic Cable required to interconnect the 39301A Multiplexers is available in several configurations. These configurations are detailed in the Support Products Section of this Data Sheet. Two channels of this cable are required to operate the link. This cable is suitable for installation in cable trays, conduits and ducts. The cable will operate in environments from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and 95% Relative Humidity. Standard cable installation techniques and equipment may be used with the minor precautions stated in the 39301A Installation, Operating, and Service Manual. The precautions include maintaining the minimum bend radius of 25 mm (1 in .) and maximum tensile load of $300 \mathrm{~N}(67 \mathrm{lb})$ per channel during installation.
If junction box or bulkhead splices are required in a cable run, or a link is reconfigured to a longer distance requiring additional fiber optic cable to be added to the original installation, HFBR-3099 Cable Coupling Hardware may be used to splice these cables together. The HFBR-3099 is supplied with each factory connectored HFBR-3000 Series Cable or may be ordered separately. The total link length limitations shown in the following table must be observed when using the HFBR-3099 coupling hardware.

Number of In-Line HFBR-3099 Couplers	Maximum Separation Between 39301A's
0	$1000 \mathrm{~m}(3280 \mathrm{ft})$
1	$800 \mathrm{~m}(2624 \mathrm{ft})$
2	$600 \mathrm{~m}(1968 \mathrm{ft})$
3	$400 \mathrm{~m}(1312 \mathrm{ft})$.
4	$200 \mathrm{~m}(656 \mathrm{ft})$

The RS-232-C/V. 24 data cables required for connection to various Data Terminal Equipment are detailed in the Typical Configurations Section of this Data Sheet. It is recommended that shielded cables are used for these connections for maximum suppression of radio frequency emissions. These cables should be no longer than 15m (50 ft .) for compliance with the EIA and CCITT Standards.

Service

The 39301A is designed with easy-to-use link fault isolation facilities. Loopback techniques utilizing the built-in loopback switch and fiber optic loopback cable supplied with each 39301A Multiplexer are used to quickly isolate link failures to either 39301A Multiplexer, the HFBR-3000 Series Fiber Optic Cable, or the interconnected Data Terminal Equipment. These procedures are described in the Installation, Operating, and Service Manual supplied with each 39301A. 39301A Multiplexers or HFBR-3000 Series Fiber Optic Cables may be self-serviced by the customer or returned to the nearest Hewlett-Packard Sales Office for service.

Customer self-service may be accomplished for the Multiplexer by following the procedures outlined in the Installation, Operating and Service Manual to identify the failed subassembly. Replacement subassemblies are available through HP Sales Offices. HFBR-3000 Series Fiber Optic Cables may be repaired by using the HP HFBR-0100 Connector Assembly Tool kit to splice or reconnector a damaged cable.

Hewlett-Packard service is available for the 39301A by returning the Multiplexer to the nearest HP Sales Office. This service is available either on Monthly Contract basis or for a Time and Materials charge. The HFBR-3000 Series Cable will be repaired on a Time and Materials basis upon return to the nearest HP Sales Office.

Support Products for the 39301A

39301A MOUNTING HARDWARE

Rack/Surface Mounting Hardware:

Supplied standard with each 39301A. Available separately as part 1600-1090.

Recessed Rack Mounting Hardware:

Supplied as Option 001 to the 39301A. Available separately as part 1600-1092.

39301A FIBER OPTIC LOOPBACK CABLE

Supplied standard with each 39301A. Available separately as part 5061-2694.

39301A INSTALLATION, OPERATING, AND SERVICE MANUAL

Supplied standard with each 39301A. Extra copies available as part 39301-90001.

8120-3569 DUAL CHANNEL RS-232-C/V. 24 ADAPTER CABLE

Enables two Data Terminal Equipment devices to be connected to each 39301A RS-232-C/V. 24 connector port. A wiring diagram is shown in Figure 3 of this Data Sheet. The length is 0.6 m (2 ft .)

HFBR-3000* SERIES FIBER OPTIC CABLE

	Single Channel (Two Req.)	
OR	Dual Channel (One Req.)	
With Factory Installed HFBR-4000 Fiber Optic Connectors	HFBR-3000*	HFBR-3100*
Without Factory Installed Connectors	HFBR-3200*	HFBR-3300*

Two channels of HFBR-3000 Series Fiber Optic Cable are required to interconnect the HP 39301A Multiplexers. This cable is available in several forms as shown in the table above. It may be ordered in any length in one metre increments up to 1000 metres (3280 ft .)

HFBR-0100* CONNECTOR ASSEMBLY TOOLING KIT

This kit allows the installation of HFBR-4000 Fiber Optic Connectors onto HFBR-3000 Series Fiber Optic Cables in the field. It is used for system installation purposes if HFBR$3200 / 3300$ unconnectored cables are used. It may also be used for field repair of HFBR-3000 Series Fiber Optic Cables.

HFBR-4000* FIBER OPTIC CONNECTORS

These connectors are compatible with the HFBR-3000 Series Fiber Optic Cable and the fiber optic ports on the 39301A.

HFBR-3099* FIBER OPTIC CABLE COUPLING HARDWARE

This hardware enables two cables with HFBR-4000 connectors to be coupled together for link extension or repair splices. See Installation Section of this Data Sheet for limitations on use of the HFBR-3099.
*Detailed specifications for these products are available from HP sales offices.

Ordering Information HP 39301A: RS-232-C/V. 24 TO FIBER OPTIC MULTIPLEXER

Two are required per link. Each 39301A is supplied with standard Rack/Surface Mounting Hardware, a Fiber Optic Loopback Cable and an Installation, Operating, and Service Manual.
Option 001: Recessed Rack Mounting Hardware
Required Power Supply Option: One required per 39301A

Option 210: $100 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Operation
Option 212: $120 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Operation
Option 222: $220 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Operation
Option 224: $240 \mathrm{~V} 50 / 50 \mathrm{~Hz}$ Operation
8120-3569: DUAL CHANNEL RS-232-C/V. 24 ADAPTER CABLE

This cable may be used to separately access both Primary and Secondary Data channels on each 39301A connector. Eight of these cables will enable up to 16 "data only" DTE to be connected to each 39301A.

HFBR-3000 SERIES FIBER OPTIC INTERCONNECTING CABLE

Two channels are required per link.
See Support Products Section of this Data Sheet for product choices.

Features

- HIGH SENSITIVITY (NEP <-108 dBm)
- WIDE DYNAMIC RANGE (1% LINEARITY OVER 100 dB)
- BROAD SPECTRAL RESPONSE
- HIGH SPEED ($\left.T_{r}, T_{f},<1 n s\right)$
- STABILITY SUITABLE FOR PHOTOMETRY/ RADIOMETRY
- HIGH RELIABILITY
- FLOATING, SHIELDED CONSTRUCTION
- LOW CAPACITANCE
- LOW NOISE

Description

The HP silicon planar PIN photodiodes are ultra-fast light detectors for visible and near infrared radiation. Their response to blue and violet is unusually good for low dark current silicon photodiodes.
These devices are suitable for applications such as high speed tachometry, optical distance measurement, star tracking, densitometry, radiometry, and fiber-optic termination.
The speed of response of these detectors is less than one nanosecond. Laser pulses shorter than 0.1 nanosecond may be observed. The frequency response extends from dc to 1 GHz .
The low dark current of these planar diodes enables detection of very low light levels. The quantum detection efficiency is constant over ten decades of light intensity, providing a wide dynamic range.

Active area: 1mm Diam
0.5 mm Diam
0.25 mm Magnified 2.5x

5082-4207
[5082-4203
5082-4204
508-4220 - Short (TO-46)
5082-4205 - Subminiature

The 5082-4203, -4204, and -4207 are packaged on a standard TO-18 header with a flat glass window cap. For versatility of circuit connection, they are electrically insulated from the header. The light sensitive area of the $5082-4203$ and -4204 is 0.508 mm (0.020 inch) in diameter and is located 1.905 mm (0.075 inch) behind the window. The light sensitive area of the $5082-4207$ is $1.016 \mathrm{~mm}(0.040$ inch) in diameter and is also located 1.905 mm (0.075 inch) behind the window.

The 5082-4205 is in a low capacitance Kovar and ceramic package of very small dimensions, with a hemispherical glass lens.
The 5082-4220 is packaged on a TO-46 header with the 0.508 mm (0.020 inch) diameter sensitive area located 2.540 mm (0.100 inch) behind a flat glass window.

Package Dimensions

$-4203,-4204,-4207$

DIMENSIONS IN MILLIMETRES (INCHES)

-4220

Absolute Maximum Ratings operating and Storage Temperature -55° to $125^{\circ} \mathrm{C}$

Parameter	. 4203	-4204	-4205	4207	-4220	Units
$\mathrm{P}_{\text {MAX }}$ Power Dissipation ${ }^{1}$	100	100	50	100	100	mW
Steady Reverse Voltage ${ }^{3}$	50	20	50	20	50.	volts

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbal	Deseription	-4203			4204			4205			4207			4220			Units
		Min.	Typ.	Max.	Mia,	Typ.	Max.										
$\begin{aligned} & R_{E}, \theta^{m} \\ & R_{\phi} \cdot A \end{aligned}$	Axial Incidance Response at $770 \mathrm{~nm}(4)$		1.0			1.0			1.5*	\because		4.0	\because	,	1.0	$\because \because$	$\frac{\mu}{m W / \mathrm{cml} 2}$
A	Active Area 4		$\begin{aligned} & \hline 2 x \\ & 10^{-3} \end{aligned}$			$\begin{aligned} & 2 x \\ & 10^{-3} \end{aligned}$			$\begin{aligned} & 3 x \\ & 10^{34} \end{aligned}$			$\begin{aligned} & 8 \times \\ & 10.3 \end{aligned}$,	$\begin{aligned} & 2 \times \\ & 10^{-3} \end{aligned}$		$\mathrm{cm}{ }^{(2)}$
$\mathbf{R}_{\boldsymbol{\phi}}$	Flux Responsivity $770 \mathrm{~mm}^{5}$ (Fig. 1, 3)		. 5			. 5			. 5 .	.		. 5			. 5		$\frac{\mu}{\mu W}$
Io	Dark Current ${ }^{6}$ (Fig. 4)			2.0			0.6		,	. 15			2.5			5.0	nA
NEP	Noise Equivalent Power 7 (Fig. 8)			$\begin{gathered} \hline 5.1 x \\ 10^{-14} \\ \hline \end{gathered}$			$\begin{aligned} & 2.8 \times \\ & 10.14 \end{aligned}$			$\begin{aligned} & 1.4 x \\ & 10.14 \end{aligned}$			$\begin{aligned} & 5.7 x \\ & 10.14 \end{aligned}$,	$\begin{aligned} & 8.1 x \\ & 1014 \end{aligned}$	$\frac{\mathrm{N}}{\sqrt{\mathrm{Hz}}}$
D*	Detectivity ${ }^{8}$	$\begin{aligned} & 8.7 x \\ & 10^{11} \end{aligned}$			$\begin{aligned} & 1.6 \times \\ & 1012 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \times * \\ & 1012 \end{aligned}$			$\begin{aligned} & 1.5 \times x \\ & 1012 \end{aligned}$			$\begin{aligned} & 5.6 \times \\ & 1011 \end{aligned}$		-	$\frac{\mathrm{cm} / \mathrm{hz}^{\text {a }}}{\mathrm{W}}$
c_{j}	Junction Capacitance ${ }^{9}$ (Fig. 5)		1.5			2.0			0.7	,		5.5			2.0		pF
C_{p}	Package Capacitance 10		2			2						2					BF
$\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{f}}$	Zero Bias Speed (Rise, Fall Time) 11		300			300			300	,		300			300		ns
t_{r}, t_{f}	Rev.-Bias Speed (Rise, Fall Time) 12			1			1			1			1.			1	ns
R_{S}	Series Resistance			50			50			50			50			50	3

*see Note 4.
NOTES:

1. Peak Pulse Power

When exposing the diode to high level incidance the following photocurrent limits must be observed:
$\mathrm{I}_{\mathrm{p}(\text { avg }}$ MAX.) $<\frac{\mathrm{P}_{\mathrm{MAX}}-\mathrm{P}_{\phi}}{\mathrm{E}_{\mathrm{c}}}$; and in addition:
$I_{p(\text { PEAK })}<\frac{1000 \mathrm{~A}}{\mathrm{t}(\mu \mathrm{sec})}$ or $<500 \mathrm{~mA}$ or $<\frac{\mathrm{I} p(\text { avg MAX.) }}{f \times t}$
whichever of the above three conditions is least.
I_{p} - photocurrent (A) f-pulse repetion rate (MHz)
E_{c} - supply voltage (V) \mathbf{P}_{ϕ}-power input via photon flux
t-pulse duration ($\mu \mathrm{s}$) $\quad \mathrm{P}_{\text {MAX }}$ - max dissipation (W)

Power dissipation limits apply to the sum of both the optical power input to the device and the electrical power input from flow of photocurrent when reverse voltage is applied.
2. Exceeding the Peak Reverse Voltage will cause permanent damage to the diode. Forward current is harmless to the diode, within the power dissipation limit. For optimum performance, the diode should be reversed biased with E_{c} between 5 and 20 volts.
3. Exceeding the Steady Reverse Voltage may impair the low-noise properties of the photodiodes, an effect which is noticeable only if operation is diode-noise limited (see Figure 8).
4. The 5082-4205 has a lens with approximately $2.5 x$ magnification; the actual junction area is $0.5 \times 10^{-3} \mathrm{~cm}^{2}$, corresponding to a diameter of $0.25 \mathrm{~mm}\left(.010^{\prime \prime}\right)$. Specification includes lens effect.
5. At any particular wavelength and for the flux in a small spot falling entirely within the active area, responsivity is the ratio of incremental photodiode current to the incremental flux producing it. It is related to quantum efficiency, η_{q} in electrons per photon by:

$$
\mathbf{R}_{\phi}=\eta_{\mathbf{q}}\left(\frac{\lambda}{1240}\right)
$$

where λ is the wavelength in nanometers. Thus, at 770 nm , a responsivity of $0.5 \mathrm{~A} / \mathrm{W}$ corresponds to a quantum efficiency of 0.81 (or 81%) electrons per photon.
6. At -10 V for the 5082-4204, -4205 , and -4207 ; at -25 V for the 5082-4203 and $\mathbf{- 4 2 2 0}$.
7. For $(\lambda, f, \Delta f)=(770 \mathrm{~nm}, 100 \mathrm{~Hz}, 6 \mathrm{~Hz})$ where f is the frequency for a spot noise measurement and Δf is the noise bandwidth, NEP is the optical flux required for unity signal/noise ratio normalized for bandwidth. Thus:

$$
\begin{aligned}
& \text { NEP }=\frac{I_{N} / \sqrt{\Delta f}}{R_{\phi}} \quad \text { where } I_{N} / \sqrt{\Delta f} \text { is the bandwidth - normalized noise current computed from the shot noise formula: } \\
& \text { 8. Detectivity, } D^{*} \text { is the active-area-normalized signal to noise ratio. It is computed: } \quad I^{\prime} / \sqrt{\Delta f}=\sqrt{2 q I_{D}}=17.9 \times 10^{-15} \sqrt{I_{D}(A / \sqrt{H z}) \text { where } I_{D} \text { is in } n A .} \begin{array}{l}
\text { for }(\lambda, f, \Delta f)=(770 \mathrm{~nm}, 100 H z, 6 H z) .
\end{array}
\end{aligned}
$$

9. At -10 V for $5082-4204,-4205,-4207,-4220$; at -25 V for 5082-4203.
10. Between diode cathode lead and case - does not apply to 5082-4205, -4220.
11. With 50Ω load.
12. With 50Ω load and -20 V bias.

Figure 1. Spectral Response.

Figure 2. Relative Directional Sensitivity of the PIN Photodiodes.

BIAS VOLTAGE (ANODE TO CATHODE VOLTAGE)

Figure 3. Typical Output Characteristics at $\lambda=900 \mathrm{~nm}$.

Figure 4. Dark Current at -10 V Bias vs. Temperature.

$R_{\text {L }}$ - LOAD RESISTANCE -- OHMS

Figure 7. Photodiode Cut-Off Frequency vs. Load Resistance ($C=2 p F$).

Figure 5. Typical Capacitance Variation With Applied Voltage.

Figure 6. Noise vs. Load Resistance.

Figure 8. Noise Equivalent Power vs. Load Resistance.

Application Information

NOISE FREE PROPERTIES

The noise current of the PIN diodes is negligible. This is a direct result of the exceptionally low leakage current, in accordance with the shot noise formula $I_{N}=\left(2 q I_{R} \Delta f\right)^{1 / 2}$. Since the leakage current does not exceed 600 picoamps for the 5082-4204 at a reverse bias of 10 volts, shot noise current is less than $1.4 \times 10^{-14} \mathrm{amp} \mathrm{Hz}$ Excess noise is also very low, appearing only at frequencies below 10 Hz , and varying approximately as $1 / \mathrm{f}$. When the output of the diode is observed in a load, thermal noise of the load resistance $\left(R_{L}\right)$ is 1.28×10^{-10} $\left(R_{L}\right)^{-1 / 2} \times(\Delta f)^{1 / 2}$ at $25^{\circ} \mathrm{C}$, and far exceeds the diode shot noise for load resistance less than 100 megohms (see Figure 6). Thus in high frequency operation where low values of load resistance are required for high cut-off frequency, all PIN photodiodes contribute virtually no noise to the system (see Figures 6 and 7).

HIGH SPEED PROPERTIES

Ultra-fast aperation is possible because the HP PIN photodiodes are capable of a response time less than one nanosecond. A significant advantage of this device is that the speed of response is exhibited at relatively low reverse bias (-10 to -20 volts).

OFF-AXIS INCIDANCE RESPONSE

Response of the photodiodes to a uniform field of radiant incidance E_{e}, parallel to the polar axis is given by $I=(R A) x$ E_{e} for 770 nm . The response from a field not parallel to the axis can be found by multiplying (RA) by a normalizing factor obtained from the radiation pattern at the angle of operation. For example, the multiplying factor for the 5082-4207 with incidance E_{e} at an angle of 40° from the polar axis is 0.8 . If $E_{e}=1 \mathrm{~mW} / \mathrm{cm}^{2}$, then $I_{p}=k \times(R A) \times E_{e}$; $I_{p}=0.8 \times 4.0 \times 1=3.2 \mu \mathrm{amps}$.

SPECTRAL RESPONSE

To obtain the response at a wavelength other than 770 nm , the relative spectral response must be considered. Referring to the spectral response curve, Figure 1, obtain response, X , at the wavelength desired. Then the ratio of the response at the desired wavelength to response at 770 nm is given by:

$$
\text { RATIO }=\frac{X}{0: 5}
$$

Multiplying this ratio by the incidance response at 770 nm gives the incidance response at the desired wavelength.

ULTRAVIOLET RESPONSE

Under reverse bias, a region around the outside edge of the nominal active area becomes responsive. The width of this annular ring is approximately $25 \mu \mathrm{~m}$ (0.001 inch) at -20 V , and expands with higher reverse voltage. Responsivity in this edge region is higher than in the interior, particularly at shorter wavelengths; at 400 nm the interior, responsivity is $0.1 \mathrm{~A} / \mathrm{W}$ while edge responsivity is 0.35 A/W. At wavelengths shorter than 400 nm , attenuation by the glass window affects response adversely. Speed of response for edge incidance is $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \approx 300 \mathrm{~ns}$.

5082-4205 MOUNTING RECOMMENDATIONS

a. The 5082-4205 is intended to be soldered to a printed circuit board having a thickness of from 0.51 to 1.52 mm (0.02 to 0.06 inch).
b. Soldering temperature should be controlled so that at no time does the case temperature approach $280^{\circ} \mathrm{C}$. The lowest solder melting point in the device is $280^{\circ} \mathrm{C}$ (gold-tin eutectic). If this temperature is approached, the solder will soften, and the lens may fall off. Lead-tin solder is recommended for mounting the package, and should be applied with a small soldering iron, for the shortest possible time, to avoid the temperature approaching $280^{\circ} \mathrm{C}$.
c. Contact to the lens end should be made by soldering to one or both of the tabs provided. Care should be exercised to prevent solder from coming in contact with the lens.
d. If printed circuit board mounting is not convenient, wire leads may be soldering or welded to the devices using the precautions noted above.

LINEAR OPERATION

Having an equivalent circuit as shown in Figure 9, operation of the photodiode is most linear when operated with a current amplifier as shown in Figure 10.

Figure 10. Linear Operation.

Lowest noise is obtained with $\mathrm{E}_{\mathrm{c}}=0$, but higher speed and wider dynamic range are obtained if $5<\mathrm{E}_{\mathrm{c}}<20$ volts. The amplifier should have as high an input resistance as possible to permit high loop gain. If the photodiode is reversed, bias should also be reversed.

LOGARITHMIC OPERATION

If the photodiode is operated at zero bias with a very high impedance amplifier, the output voltage will be:

$$
V_{\text {OUT }}=\left(1+\frac{R_{2}}{R_{1}}\right) \cdot \frac{k T}{q} \cdot \ln \quad\left(1+\frac{I_{P}}{I_{S}}\right)
$$

where $\mathrm{I}_{\mathrm{S}}=\mathrm{I}_{\mathrm{F}}\left(\mathrm{e} \frac{\mathrm{qV}}{\mathrm{kT}}-1\right)^{-1}$ at $0<\mathrm{I}_{\mathrm{F}}<0.1 \mathrm{~mA}$
using a circuit as shown in Figure 11.

Figure 11. Logarithmic Operation.
Output voltage, $V_{\text {out, }}$ is positive as the photocurrent, I_{P}, flows back through the photodiode making the anode positive.

Bar Code Products

HP has taken years of experience in LED materials technology, bipolar photo IC processing, and precision lens design to develop the HEDS-3000 (medium resolution) and HEDS-3200 (high resolution) digital bar code wand families. HP wands are housed in attractive and rugged plastic cases designed to comfortably fit the human hand. The digital output is compatible with standard TTL and CMOS circuitry, thus providing an easy design interface and eliminating the design time, cost, and space otherwise required for an analog-to-digital interface. The performance of the HP digital wands is fully specified, allowing the software engineer to optimize decoding software.
For customers not wishing to invest in decoding technology, HP is developing decoding products as an extension of its bar code product line. The first of these, the HEDS-0100/-0150, is a fully integrated 3 of 9 code decoder board ideally suited to serve as a slave MPU board to almost any data entry terminal, or as the heart of a small transmit-only terminal. When combined with the HEDS-3050 or HEDS-3250, the module provides a complete OEM data entry package for low, medium, or high resolution 3 of 9 bar codes. This complete package provides a cost effective, high performance solution in applications where extensive investment in bar code decoding software is not warranted.

Two new bar code readers are being introduced this year, the 16800A programmable model and the 16801A nonprogrammable model. Both can be configured in a variety of ways and provide visual and audio operator feedback. Watch for more exciting products as HP grows as a supplier to the bar code data collection market.

Advantages of Bar Code Data Entry:

- Faster than most other data entry techniques
- Greater accuracy due to builtin error checking and optional checksum characters
- Little operator training required
- Symbols easily produced on a wide variety of printers
- Cost competitive with other technologies

Bar Code Products

Package Outline Drawing	Part No.	Description	Features	$\begin{aligned} & \hline \text { Page } \\ & \text { No. } \end{aligned}$
	HEDS-3000	Medium Resolution Digital Bar Code Wand (with Switch)	- Digital Output - Specified for 0.3 mm (0.012 in .) Narrow Element Width - Push-to-read Switch Available for Low Powered Applications - Internal Shielding Available for Improved Electrical Noise Rejection - Full Line of Options Available	156
	HEDS-3050	Medium Resolution Digital Bar Code Wand (Shielded, Non-Switched)		
	HEDS-3200 HEDS-3201	High Resolution Digital Bar Code Wand (with Switch)	- Digital Output - Specified for 0.19 mm (0.0075 in .) Narrow Element Width - Push-to-read Switch Available for Low Powered Applications - Internal Shielding Available for Improved Electrical Noise Rejection - Full Line of Options Available	162
	HEDS-3250 HEDS-3251	High Resolution Digital Bar Code Wand (Shielded, Non-Switched)		
	HEDS-0100 HEDS-0150	Bar Code Decoder Module	- Standard PC Board Designs - Decodes 3 of 9 Code - RS-232-C; 2400 Baud Standard, 1200, 4800, 9600 Baud Available - Parallel ASCII Interface	176
	16800A	Programmable Bar Code Reader	- Flexible Configuration - Computer Control Capability (16800A) - Wide Bar Code Selection - Choice of High Performance Wands - Meets HP Class B Environmental Specifications	170
	16801A	Non-Programmable Bar Code Reader		

Detector Components

Package Outline Drawing	Part No.	Description	Features	Page No.
\square	HEDS-1000	High Resolution Optical Reflective Sensor	- Fully Specified and Guaranteed for Assured Performance - Visible Light Source can Detect Most Colors - Photo IC Detector Optimizes Speed and Response - Standard TO-5 Header	184

BAR CODE WAND

Features

- 0.3 mm RESOLUTION Enhances the Readability of dot matrix printed bar codes
- DIGITAL OUTPUT Open Collector Output Compatible with TTL and CMOS
- PUSH-TO-READ SWITCH (HEDS-3000) Minimizes Power in Battery Operated Systems
- SINGLE 5V SUPPLY OPERATION
- ATTRACTIVE, HUMAN ENGINEERED CASE
- DURABLE LOW FRICTION TIP
- SOLID STATE RELIABILITY Uses LED and IC Technology
- SHIELDED CASE AND CABLE (HEDS-3050) Maximizes EMI/ESD Immunity in AC Powered Systems

Description

The HEDS-3000 and HEDS-3050 Digital Bar Code Wands are hand held scanners designed to read all common bar code formats that have the narrowest bars printed with a nominal width of 0.3 mm (0.012 in .). The wands contain an optical sensor with a 700 nm visible light source, photo IC detector, and precision aspheric optics. Internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces.
The HEDS -3000 comes equipped with a push-to-read switch which is used to activate the electronics in battery powered applications requiring lowest power consumption. The HEDS-3050 does not have a switch, and features internal metal shielding that maximizes immunity to

electromagnetic interference, electrostatic discharge, and ground loops in AC powered systems. Both wands feature a strain relieved 104 cm (41 in .) cord with a ninepin subminiature D-style connector.

Applications

The Digital Bar Code Wand is an effective alternative to the keyboard when used to collect information in selfcontained blocks. Bar code scanning is faster than key entry and also more accurate since most codes have check-sums built-in to prevent incorrect reads from being entered.
Applications include remote data collection, ticket identification systems, security checkpoint verification, file folder tracking, inventory control, identifying assemblies in service, repair, and manufacturing environments, and programming appliances, intelligent instruments and personal computers.

Wand Dimensions

Electrical Operation

The HEDS-3000 and HEDS-3050 consist of a precision optical sensor, an analog amplifier, a digitizing circuit, and an output transistor. These elements provide a TTL compatible output from a single voltage supply range of 3.6 V to 5.75 V . A non-reflecting black bar results in a logic high (1) level, while a reflecting white space will cause a logic low (0) at the Vo connection (pin 2). The output of the wands is an open collector transistor.
The HEDS-3050 provides a case and cable shield (pin 5) which must be connected to logic ground and preferably also to earth ground. This will provide a substantial improvement in EMI/ESD immunity for the wand in AC powered systems.
The recommended logic interface for the wands is shown in Figure 3. This interconnection provides maximum ESD protection for both the wand and the user's electronics.
The HEDS-3000 incorporates a push-to-read switch which is used to energize the 700 nm LED emitter and
electronic circuitry. When the switch is initially depressed, its contact bounce may cause a series of random pulses to appear at the output, Vo. This pulse train will typically settle to a final value within 0.5 ms . This initial pulse train is eliminated when a switchless HEDS-3050 is used.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	
Bar Width	s, b	0.3		mm	
Scan Velocity	$\mathrm{V}_{\text {scen }}$	7.6	76	$\mathrm{~cm} / \mathrm{s}$	
Contrast	PCS	70		$\%$	
Supply Voltage	V_{S}	3.6	5.75	V	
Temperature	T_{A}	0	55	${ }^{\circ} \mathrm{C}$	
Orientation	See Figure 1				

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-20	55	${ }^{\circ} \mathrm{C}$	1
Operating Temperature	T_{A}	0	55	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{S}	-0.5	6.0	V	2
Output Transistor Power	PT_{T}		200	mW	
Output Collector Voltage	V_{0}		20	V	

Electrical CharacteristicS $\left(V_{S}=3.6 \mathrm{~V}\right.$ to $5.75 \mathrm{~V}_{\text {at }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{KR}$, unless otherwise noted $)$

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Notes
Switch Bounce(HEDS-3000)	$t_{\text {sb }}$		0.5	5	ms			3
High Level Output Current	IOH			400	$\mu \mathrm{A}$	VOH $=2.4 \mathrm{~V}$, Bar Condition (Black)	3	
Low Level Output Voltage	VOL			0.4	V	$10 \mathrm{~L}=16 \mathrm{~mA}$, Space Condition (White)	3	
Output Rise Time	t_{4}		2		$\mu \mathrm{s}$	10\%-90\% Transition	3	
Output Fall Time	tif		100		ns	90\%-10\% Transition	3	
Supply Current	Is		42	50	mA	$V_{S}=5 \mathrm{~V}$, Bar Condition (Black)		2,4

Block Diagram

HEDS-3000 (WITH SWITCH)

HEDS-3050
(SHIELDED)

GUARANTEED WIDTH ERROR PERFORMANCE

($\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$, unless otherwise noted)

Parameter		Symbol	Min.	Typ.	Max.	Units		Conditions	Fig.	Notes
Bar Width Error	1st	3 bl		0.08 (3.2)	0.13 (5.2)	$\mathrm{mm}_{\left(\mathrm{in}, \times 10^{-3}\right)}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}= \\ & 0^{\circ} \text { to } 55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Margin } \geq 5 \mathrm{~mm} \\ & \text { Height }=0.25 \mathrm{~mm} \\ & \text { Tilt }=0^{\circ} \end{aligned}$	12,611	$\begin{gathered} 5 \\ 7,8 \\ 9,10 \\ 11 \end{gathered}$
				0.10 (3.8)	0.15					
	Interior	ab	-0.04 (-1.4)	0.05 (1.8)	0.10 (3.9)	$\begin{gathered} \mathrm{mm} \\ \text { (in. } \left.\times 10^{-3}\right) \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$v_{\text {scan }}=50 \mathrm{~cm} / \mathrm{s}$ Standard Test Tag Preferred Orientation $b=s=0.3 \mathrm{~mm}(0.012 \mathrm{in}$. $2 \mathrm{~b}=2 \mathrm{~s}=0.6 \mathrm{~mm}$ (0.024 in .)	$\begin{gathered} 1,2 \\ 6,11 \end{gathered}$	$\begin{array}{\|c\|} \hline 6,7 \\ 8,9 \\ 10,11 \end{array}$
			-0.05 (-2.0)	0.05 (2.0)	0.11 (4.3)		$\begin{aligned} & T_{A}= \\ & 0^{\circ} \text { to } 55^{\circ} \mathrm{C} \end{aligned}$			
Space Width Error	Interior	ds	0.04 (1.4)	-0.05 (-1.8)	-0.10(-3.9)	$\mathrm{mm}_{\left(\text {in } \times 10^{-3}\right)}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{array}{\|c\|} \hline 1,2 \\ 6,11 \end{array}$	$\begin{gathered} 6,7 \\ 8,10 \\ 11 \end{gathered}$
			0.05 (2.01	-0.05 (-2.0)	-0.11 (-4.3)		$\begin{aligned} & T_{A}= \\ & 0^{\circ} \text { to } 55^{\circ} \mathrm{C} \end{aligned}$			
Tag Scan Velocity		$v_{\text {scan }}$	7.6		76	cm / s			9	7
Emitter Peak Wavelength		λ		700		nm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			

TYPICAL WIDTH ERROR PERFORMANCE ($\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$, unless otherwise noted)

Parameter			Symbol	$\begin{gathered} \text { Typical WE } \\ \text { Tilt }=0^{\circ} \\ \text { Height }=0.25 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \text { Typical WE } \\ & \text { Tilt }=30^{\circ} \\ & \text { Height }=0.0 \mathrm{~mm} \end{aligned}$	Units	Conditions	Fig.	Notes
Bar Width Error	From	To	$\Delta \mathrm{b}_{1}$	0.08 (3.2)	0.11 (4.2)	$\left\lvert\, \begin{gathered} \mathrm{mm} \\ \text { (in. } \left.\times 10^{-3}\right) \end{gathered}\right.$	$\begin{aligned} & \text { Margin } \geq 5 \mathrm{~mm} \\ & 1 \mathrm{~b}=1 \mathrm{~s}=0.3 \mathrm{~mm} \\ & 2 \mathrm{~b}=2 \mathrm{~s}=0.6 \mathrm{~mm} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{S}=5 \mathrm{~V} \\ & \text { Vscan }=50 \mathrm{~cm} / \mathrm{s} \\ & \text { Preferred Orientation } \\ & \text { Standard Test Tag } \end{aligned}$	1,2	5,7,8
	Margin	1st							
	1s	1b	Lb $\dagger-1$	0.03 (1.2)	0.04 (1.6)	$\left\lvert\, \begin{gathered} \mathrm{mm} \\ \text { (in. } \left.\times 10^{-3}\right) \end{gathered}\right.$		1,2	6,7,8
	2s	1 b	$\Delta b_{2 \rightarrow 1}$	0.06 (2.5)	0.07 (2.9)	$\begin{array}{\|c\|} \hline \mathrm{mm} \\ \text { (in. } \left.\times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8
	1s	2b	Δb_{1-2}	0.02 (0.9	0.02 (0.7)	$\begin{gathered} \mathrm{mm} \\ \left(\mathrm{in} . \times 10^{-3}\right) \\ \hline \end{gathered}$		1,2	6,7,8
	2s	2b	دb S_{2-2}	0.05 (1.9	0.05 (2.1)	$\begin{array}{\|c\|} \left.\hline \text { (in. } \times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8
Space Width Error	1 b	1s	$\pm s 1-1$	-0.04 (-1.4)	-0.04 (-1.4)	$\begin{array}{\|c\|} \mathrm{mm} \\ \left(\mathrm{in} \times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8
	2b	1s	Δs_{2-1}	-0.03 (-1.0)	-0.03 (-1.1)	$\underset{\left(\mathrm{in} . \times 10^{-3}\right)}{\mathrm{mm}}$		1,2	6,7,8
	1b	2s	Δs_{1-2}	-0.07 (-2.7)	-0.08 (-3.3)	$\begin{gathered} \mathrm{mm} \\ \left(\mathrm{in} . \times 10^{-3}\right) \\ \hline \end{gathered}$		1,2	6,7,8
	2b	2s	$\pm s_{2-2}$	-0.06 (-2,4)	-0.06 (-2.4)	$\begin{array}{\|c\|} \hline \mathrm{mm} \\ \left(\mathrm{in} \times 10^{-3}\right) \\ \hline \end{array}$		1,2	6,7,8

Notes:

1. Storage Temperature is dictated by Wand case.
2. Power supply ripple and noise should be less than 100 mV .
3. Switch bounce causes a series of sub-millisecond pulses to appear at the output, Vo. (HEDS-3000 only)
4. Push-to-Read switch is depressed, and the Wand is placed on a non-reflecting (black) surface. (HEDS-3000 only)
5. The margin refers to the reflecting (white) space that preceeds the first bar of the bar code.
6. The interior bars and spaces are those which follow the first bar of bar code tag.
7. The standard test tag consists of black bars, white spaces (0.3 $\mathrm{mm}, 0.012 \mathrm{in}$. min.) photographed on Kodagraph Transtar TC5 ${ }^{\circledR}$ paper with a print contrast signal greater than 0.9.
8. The print contrast signal (PCS) is defined as: $\mathrm{PCS}=\left(R_{w}-R_{b}\right)$ $/ R_{w}$, where R_{w} is the reflectance at 700 nm from the white spaces, and R_{b} is the reflectance at 700 nm for the bars.
9. 1.0 in . $=25.4 \mathrm{~mm}, 1 \mathrm{~mm}=0.0394 \mathrm{in}$.
10. The Wand is in the preferred orientation when the surface of the label is parallel to the height dimension of the bar code.

OPERATION CONSIDERATIONS

The Wand resolution is specified in terms of a bar and space Width Error, WE. The width error is defined as the difference between the calculated bar (space) width, B, (S), and the optically measured bar (space) widths, b (s). When a constant scan velocity is used, the width error can be calculated from the following.
$B=t_{b} \cdot v_{s c a n}$
$S=t_{s} \cdot v_{\text {scan }}$
$\Delta b=B-b$
$\Delta \mathrm{s}=\mathrm{S}-\mathrm{s}$
Where
$\Delta b, \Delta s=$ bar, space Width Error (mm)
$\mathrm{b}, \mathrm{s}=$ optical bar, space width (mm)
B, $\mathrm{S}=$ calculated bar, space width (mm)
$\mathrm{v}_{\text {scan }}=$ scan velocity (mm / s)
$\mathrm{t}_{\mathrm{b}}, \mathrm{t}_{\mathrm{s}}=$ wand pulse width output(s)
The magnitude of the width error is dependent upon the width of the bar (space) preceeding the space (bar) being measured. The Guaranteed Width Errors are specified as a maximum for the margin to first bar transition, as well as, maximums and minimums for the bar and space width errors resulting from transitions internal to the body of the bar code character. The Typical Width Error Performance specifies all possible transitions in a two level code (e.g. 2 of 5). For example, the $\Delta \mathrm{b}_{2 \rightarrow 1}$ Width Error specifies the width error of a single bar module (0.3 mm) when preceeded by a double space module (0.6 mm).
The Bar Width Error $\Delta \mathrm{b}$, typically has a positive polarity which causes the calculated bar, B, to appear wider than its printed counterpart. The typical negative polarity of the Space Width Error $\Delta \mathrm{s}$, causes the measured spaces to appear narrower. The consistency of the polarity of the bar and space Width Errors suggest decoding schemes which average the measured bars and measured spaces within a character. These techniques will produce a higher percentage of good reads.
The Wand will respond to a bar code with a nominal module width of 0.3 mm when it is scanned at tilt angles between 0° and 30°. The optimum performance will be obtained when the Wand is held in the preferred

HEDS-3000

HEDS-3050

Figure 1. Preferred Wand Orientation.
orientation (Figure 1), tilted at an angle of 10° to 20°, and the Wand tip is in contact with the tag. The Wand height, when held normal to the tag, is measured from the tip's aperture, and when it is tilted it is measured from the tip's surface closest to the tag. The Width Error is specified for the preferred orientation, and using a Standard Test Tag consisting of black bars and white spaces. Figure 2 illustrates the random two level bar code tag. The Standard Test Tag is photographed on Kodagraph Transtar TC5® paper with a nominal module width of 0.3 mm (0.012 in .) and a Print Contrast Signal (PCS) of greater than 90%.

Figure 2. Standard Test Tag Format.

Figure 3a. Recommended Logic Interface for HEDS-3000

Figure 3b. Recommended Logic Interface for HEDS-3050. (When earth ground is not available, connect shield to logic ground, as shown by dotted line)

Figure 4. Width Error vs. Tilt (Preferred Orientation).

Figure 6. Width Error vs. Height (Preferred Orientation).

Figure 8. Width Error vs. Bar Width.

Figure 5. Width Error vs. Tilt (Any Orientation).

Figure 7. Width Error vs. Height (Any Orientation).

Figure 9. Width Error vs. Scan Velocity.

Figure 10. Width Error vs. Supply Voltage.

MECHANICAL CONSIDERATIONS

The HEDS-3000/-3050 include a standard nine pin D-style connector with integral squeeze-to-release retention mechanism. Two types of receptacles with the retention mechanism are available from AMP Corp. (Printed circuit header: 745001-2 Panel mount: 745018, body; 66570-3, pins). Panel mount connectors that are compatible with the Wand connector, but do not include the retention mechanism, are the Molex A7224, and AMP 2074-56-2.

MAINTENANCE CONSIDERATIONS

While there are no user serviceable parts inside the Wand, the tip should be checked periodically for wear and dirt, or obstructions in the aperture. The tip aperture is designed to reject particles and dirt but a gradual degradation in performance will occur as the tip wears down, or becomes obstructed by foreign materials.
Before unscrewing the tip, disconnect the Wand from the system power source. The aperture can be cleaned with a cotton swab or similar device and a liquid cleaner.
The glass window on the sensor should be inspected and cleaned if dust, dirt, or fingerprints are visible. To clean the sensor window dampen a lint free cloth with a liquid cleaner, then clean the window with the cloth taking care not to disturb the orientation of the sensor. DO NOT SPRAY CLEANER DIRECTLY ON THE SENSOR OR WAND.

Figure 12. Wand Tip.
After cleaning the tip aperture and sensor window, the tip should be gently and securely screwed back into the Wand assembly. The tip should be replaced if there are visible indications of wear such as a disfigured, or distorted aperture. The part number for the Wand tip is HEDS-3001. It can be ordered from any franchised HewlettPackard distributor.

OPTIONAL FEATURES

The wand may also be ordered with the following special features:

- Special colors
- Customer specified label
- No label
- Heavy duty retractable coiled cord
- No connector
- With/without switch button

For more information, call your local Hewlett-Packard sales office or franchised distributor.

Figure 13. Connector Specifications.

Features

- 0.13 mm (0.005 in .) SPOT SIZE Enhances Readability of High-Resolution Bar Codes
- DECODABILITY SPECIFIED FOR BAR CODES WITH 0.19 mm (0.0075 in .) NARROW BAR WIDTH
- PUSH-TO-READ SWITCH (HEDS-3200/3201) Minimizes Power Consumption in Battery Operated Systems
- SHIELDED CASE, CABLE, AND CONNECTOR (HEDS-3250/3251) Maximizes EMI/ESD Immunity in AC Powered Systems
- DIGITAL OUTPUT

Open Collector Output Compatible with TTL and CMOS

- SINGLE 5V SUPPLY OPERATION
- ATTRACTIVE, HUMAN ENGINEERED CASE
- DURABLE, LOW FRICTION TIP
- SOLID STATE RELIABILITY

Uses LED and IC Technology

Description

Hewlett-Packard's High-Resolution Digital Bar Code Wands are hand-held scanners optimized to read all common bar code formats that have the narrowest bars (spaces) printed with a nominal width of $0.19 \mathrm{~mm}(0.0075 \mathrm{in}$.). The wands contain an optical sensor with an 820 nm infrared LED, photo IC detector, and precision aspheric optics. Internal signal conditioning circuitry converts the optical information into a logic level pulse width representation of the bars and spaces. The output signal is specified to be decodable when scanning a 2-level bar code which has a narrow bar (space) width of 0.19 mm (0.0075 in .) and a minimum wide bar (space) to narrow bar (space) ratio of 2.2:1. The 3 of 9 Alphanumeric Code is an example of such a bar code.
The HEDS-3200/01, with a push-to-read switch, are recommended for use in battery powered applications requiring low power consumption. The HEDS-3250/51 feature an internal shield which maximizes immunity to electromagnetic interference (EMI), electrostatic discharge (ESD), and ground loops. These wands are recommended for use in AC powered systems.
Both standard wand configurations are available with

either a strain relieved 104 cm (41 in .) straight cord or a strain relieved coiled cord. The coiled cord has a maximum extended length of 250 cm . (100 in.) and a comfortably extended length of 190 cm . (75 in .). The standard connector for all models is a 5 pin, 240 degree DIN connector.

Applications

The High-Resolution Digital Bar Code Wand is an effective alternative to the keyboard when used to collect information in compact, self-contained blocks. Bar code scanning is faster than key entry and is also more accurate since most codes have built-in checksums which prevent incorrect data from being entered.
High-resolution bar codes are typically used in applications where the number of characters to be represented and the physical space available together require a bar code symbol with high information density. The primary code characteristics which influence information density are the code structure and the narrow bar (space) width. Once the bar code type has been selected, a high-resolution symbol is used to achieve the highest information density for that code structure.
Applications for high-resolution bar codes include: material handling and inventory control; remote data collection; item identification for assemblies in service, repair, manufacturing, or testing; ticket identification; security checkpoint verification; file folder tracking; book, magazine, or general publication distribution; fixed asset accounting; and the programming of microprocessorbased systems such as consumer products (appliances, video recorders, games, etc.), intelligent instrumentation and control equipment, personal computers, and calculators.

Selection Guide

Part Number	Case Configuration	Cord Conflguration	Note
HEDS-3200	Switched	Straight	1
HEDS-3201	Switched	Coited	2
HEDS-3250	Shielded, Non-Switched	Straight	1
HEDS-3251	Shielded, Non-Switched	Coiled	2

NOTES:

1. Straight Cord Dimensions are 41 in. wand-to-connector.
2. Coiled Cord Dimensions are 29 in . wand-to-coil, 8 in . coil (collapsed), 10 in . coil-to-connector.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-20	55	${ }^{\circ} \mathrm{C}$	3
Operating Temperature	T_{A}	-20	55	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{S}	-0.5	6.0	V	
Output Transistor Power	P_{t}		200	mW	
Output Collector Voltage	V_{0}		20	V	

NOTE:
3. Maximum Storage Temperature is dictated by the wand case.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Bar/Space Width	b, s	$0.150(0.006)$		mm (in.)	
Scan Velocity	VSCAN	5	100	$\mathrm{cm} / \mathrm{sec}$	
Contrast	$\mathrm{R}_{\mathrm{w}}-\mathrm{R}_{\mathrm{b}}$	65		\%	4
Temperature	T_{A}	-20	55	${ }^{\circ} \mathrm{C}$	
Relative Humidity	AH		95	\%	5
Arnblent Light	Ev		2000	lux	6
Supply Voltage	$V_{\text {S }}$	4.5	5.5	V	7
Tilt Angle	θ	0	30	degrees	
Height	See Figure 7				
Orientation	See Figure 1				8

NOTES:

4. Contrast is defined as $R_{w}-R_{b}$ where R_{w} is the reflectance at 820 nm from the white spaces and R_{b} is the reflectance at 820 nm from the black bars. Contrast is directly related to Print Contrast Signal ($\mathrm{PCS}=\left(\mathrm{R}_{w}-R_{b} / R_{w}\right)$ as it is equivalent to $R_{w} \times P C S$.
5. Non-Condensing.
6. Ambient Light sources can be diffuse tungsten, fluorescent, sunlight, or a combination thereof. Performance in ambient light levels above 2000 lux will vary depending on the light source and shading at the wand tip.
7. Power Supply ripple and noise should be less than 100 mV .
8. The wand is in the preferred orientation when the surface of the wand label is parallel to the bars and spaces in the bar code symbol as shown in Figure 1.

Electrical Operation

The High-Resolution Digital Bar Code Wands consist of a precision optical sensor, an analog amplifier, a digitizing circuit, and an output transistor. These elements provide a TTL compatible output from a single 4.5 V to 5.5 V power supply. The open collector transistor used at the output requires an external pull-up resistor for proper operation.

A non-reflecting black bar results in a logic high (1) level while a reflecting white space will cause a logic low (0) level. The initial or "wake-up" state will always be the correct (logic low) state when the wand is placed on reflecting white surface. The initial state is indeterminate if the wand is placed on a black surface or is pointed into free space.

The HEDS-3250/51 provide a case, cable, and connector shield which must be terminated to logic ground or, preferably, to both logic ground and earth ground. This will
provide a substantial improvement in EMI/ESD immunity in AC powered systems. It is recommended that the shield be properly terminated even when EMI and ESD are not of concern because the shield will otherwise act as an antenna, injecting electrical noise into the wand circuitry.
The HEDS-3200/01 incorporate a push-to-read switch which is used to energize the LED emitter and electronic circuitry. When the switch is initially depressed, contact bounce may cause a series of random pulses to appear at the output V_{o}. This pulse train will typically settle to a final value within 5 ms . The final value will be the initial or "wake-up" state.
The recommended logic interface for the wands is shown in Figure 3. This interconnection provides maximum ESD protection for both the wand and the user's electronics.

Electrical CharacteristicS (Vs $=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RL}=1.0-10 \mathrm{kR}$, unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Notes
Switch Bounce (HEDS-3200/3201)	t_{sb}		0.5	5	ms			9
High Level Output Current	IOH			400	$\mu \mathrm{A}$	$\mathrm{VOH}=2.4 \mathrm{~V}$ Bar condition (Black)	3	
Low Level Output Voltage	VOL			0.4	V	$10 \mathrm{~L}=16 \mathrm{~mA}$ Space Condition (White)	3	
Output Rise Time	tr		2		μs	$10 \%-90 \%$ Transition $R_{L}=1.0 \mathrm{k} \Omega$	3	
Output Fall Time	t_{f}		100		ns	$90 \%-10 \%$ Transition	3	
Supply Current	Is		35	50	mA	$V_{S}=5 \mathrm{~V} .$ Bar Condition (Black)	*	10

NOTES:

9. Switch bounce causes a series of sub-millisecond pulses to appear at the output, Vo (HEDS-3200/3201 only).
10. Push-to-Read switch is depressed (if applicable) and the wand is scanning on a non-reflecting (black) surface.

Block Diagram

HEDS-3200/3201
(with switch)

HEDS-3250/3251
(shielded)

Scanning Performance ($\left.\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0-10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vscan}=50 \mathrm{~cm} / \mathrm{sec}\right)$

Parameter	Symbel	Min.	Typ.	Max.	Units	Conditions	Fig.	Notes
Decodablity Index	DI	'	14	-22	$\therefore \%$ $\therefore \quad \%$ $\therefore \quad \because$	$\text { Tilt }=0 \text { to } 30^{\circ}$ Preferred Orientation	$\begin{gathered} 1,2 \\ 4,5 \\ 6,7 \\ 8 \end{gathered}$	$\begin{gathered} 11,13 \\ \vdots 14 \end{gathered}$
Average Width Error (Narrow Bars)	OS_{m}		$\begin{gathered} 0.030 \\ (0.0012) \end{gathered}$	…	min (inif:	Standard Tost Tag	$\frac{12}{9}$	12
Average Width Error (Wide Bars)	OSbw	"	$\begin{gathered} 0.021 \\ (0.0008) \end{gathered}$		mm (in.)		\because	
Average Width Error (Narrow Spaces)	OS $\mathrm{S}_{3 n}$		$\begin{array}{r} -0.015 \\ (-0.0006) \\ \hline \end{array}$	'	mm (in)			
Average Width Error (Wide Spaces)	OSsw	',	$\begin{array}{r} -0.044 \\ (-0.0017) \end{array}$		mm (in)	\therefore		
Deviation from Average (Internal Elements)	de		$\begin{gathered} 0.023 \\ 0.0009 \end{gathered}$	$\begin{gathered} 0.038 \\ (0.0015) \\ \hline \end{gathered}$	mm (ini)		$\begin{gathered} 1,2 \\ 4,5 \\ 6,7 \\ 8 \end{gathered}$	15
Deviation from Average (First Bar)	abl		$\begin{gathered} 0.054 \\ (0.0021) \end{gathered}$	$\begin{gathered} 0.110 \\ (0.0043) \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$			

NOTES:

11. The standard test tag is designed to include all possible combinations of wide or narrow bars and spaces. The tag, shown in Figure 2 , consists of black bars and white spaces with a narrow element width of $0.19 \mathrm{~mm}(0.0075 \mathrm{in}$.) and a wide element width of 0.42 mm (0.0165 in .). This equates to a wide-to-narrow ratio of 2.2:1. A margin, or white reflecting area, of at least 5 mm in width precedes the first bar. The test tag is photographically reproduced on KODAGRAPH TRANSTAR TC5® paper with $\mathrm{R}_{\mathrm{w}}=0.9$ and PCS greater than 0.9 , yielding a contrast greater than 0.81 .
12. The difference between the calculated bar (space) width derived from the digital output and the optically measured bar (space) width defines width error (WE). The Average Width Error for the narrow or wide bars (spaces) specifies the systematic error in the output signal. This systematic error is largely due to paper bleed and is thus very dependent on the symbol media.
13. $\mathrm{DI}=\frac{d e}{}+\Delta \mathrm{OS} / 4 \times 100$, expressed as a percentage of the module width. "de" is the deviation from the average width error for the internal bars (spaces), " $\Delta \mathrm{OS}$ " is the difference in average width error between the wide and narrow bars (spaces), and " m " is the optically measured narrow bar (space) or "module" width. The-first bar is not included due to its unique characteristics.
14. DI is calculated independently for bars and spaces and the worst-case, largest DI is used. This results in a DI specification which applies only to the bars since the DI for the bars is characteristically larger than the DI for the spaces.
15. Deviation from the Average Width Error (de, db_{1}) specifies the random errors in the output signal which are largely due to digitizing noise. The first bar, which generally appears larger than the interior bars, has a deviation significantly larger than the deviation for the interior bars (spaces).

HEDS-3200/01

HEDS-3250/51

BAR WIDTH 0.19 mm (0.0075 in .) BLACK \& WHITE

CONTRAST $\geqslant 65 \%$ KODAGRAPH TRANSTAR TC5 ${ }^{\circledR}$ PAPER

Figure 1. Preferred Wand Orientation

Figure 2. Standard Test Tag Format

Figure 3a. Recommended Logic Interface for HEDS-3200/01

Figure 3b. Recommended Logic Interface for HEDS-3250/51. (When earth ground is not available, connect shield to logic ground, as shown by dotted line)

Typical Performance Curves

$\left(V_{S}=5 \mathrm{~V}, R_{L}=1.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Tilt $=15^{\circ}$, unless otherwise specified)

Figure 4. Decodability Index and Deviation from Average Width Error vs. Temperature

Figure 6. Decodability Index and Deviation from Average Width Error vs. Tilt Angle

Figure 5. Decodability Index and Deviation from Average Width Error vs. Supply Voltage

Θ - TILT ANGLE - DEGREES
Figure 7. Wand Height vs. Tilt Angle Operating Region

Figure 8. Decodability Index and Deviation from Average Width Error vs. Scan Velocity

Operation Considerations

The HEDS-32XX series of wands provide TTL compatible pulse widths whose widths are determined by the printed bar (space) width and the scan velocity (VSCAN). When scanning a black and white printed bar code, the wand will output a logic high (1) for a non-reflecting black bar and a logic low (0) for a reflecting white space.

The serial time data from the wand represents the bar code symbol's binary data in a width modulated format. When scanning a 3 of 9 Code symbol at a constant velocity, for example, the longer (wide) time intervals encode binary ones (1) and the shorter (narrow) time intervals encode binary zeros (0). The wide (1) and narrow (0) time intervals may represent either bars or spaces.

The wand's serial data is supplied to a decoder which translates the time width data into binary character bit images. The decoding algorithm sets a decision threshold which is compared to the pulse width data supplied by the wand. Those time intervals which are larger than the threshold are decoded as ones (1), and those smaller as logic zeros (0). The accuracy of this decision is dependent upon the ability of the algorithm to compensate for systematic and random errors introduced by the wand and the printer.

Printers and wands can be characterized as having both Offset (systematic) and Noise (random) errors. The printer Offset (OS_{p}) results from ink bleeding or ink shrinkage. Ink bleeding causes the bars to be printed wider and the spaces narrower. Conversely, ink shrinkage causes bars to be narrower and spaces wider. The random component for the printer is the variation of the printed bar (space) widths centered around the Offset (OSp).

For the wands, Offset (OS_{w}) causes bars to be wider and spaces narrower than they are actually printed. The random component (dm) for the wand is the variation of the width error centered around the wand Offset (OS_{w}):

An algorithm that creates a separate decision threshold (T) for bars and spaces compensates for the offset errors of both the printer and the wand. When this is done, the dominant errors become the random components of the printer and the wand. The optimal algorithm to calculate a decision threshold (T) selects the time mid-point between

Figure 9. Average Width Errors vs. Tilt Angle
the time intervals for the wide and narrow bars, or spaces, within a single character. This threshold, in the worst case, can be expressed by:

$$
\mathrm{T}=\frac{\mathrm{N}(\min)+\mathrm{W}(\min)}{2},
$$

where

$$
\mathrm{T}=\text { decision threshold }
$$

$N(\min)=$ minimum narrow width
$\mathrm{W}(\mathrm{min})=$ minimum wide width
When evaluating a population of bars and spaces, the threshold (T) should always be greater than the widest narrow bar (space) and smaller than the narrowest wide bar (space). The condition shown below describes the worst-case condition:

$$
\mathrm{N}(\max)<\frac{\mathrm{N}(\min)+\mathrm{W}(\min)}{2}
$$

Each of these three components - $\mathrm{N}(\max), \mathrm{N}(\min)$, and W(min) - can be represented as a nominal element width plus offset and random components.

When the offset and random errors are combined to represent the narrowest narrow, and the narrowest wide bar (space), they can be inserted into the previous equations. With a little algebraic manipulation, the equation can be segmented to describe a decodability limit (DL) for the bar code as it compares to a decodability index of the printer ($D I_{p}$) and the wand ($D I_{w}$). This analysis leads to the two error sensitivity equations shown below:

Bar Error Sensitivity

Decodability Limit ($D L_{b}$) > Printer ($D \mathrm{l}_{\mathrm{bp}}$) + Wand ($\mathrm{Dl}_{\mathrm{bw}}$)

$$
\begin{gathered}
\frac{(W B: N B-1)}{4}>\frac{\left(\mathrm{OS}_{\mathrm{bpN}}-\mathrm{OS}_{\mathrm{bpW}}\right)+\left(3 \delta_{\mathrm{bpN}}+\delta_{\mathrm{bpW}}\right)}{4 m} \\
+\frac{\left(\mathrm{OS}_{\mathrm{bwN}}-\mathrm{OS}_{\mathrm{bwW}}\right)+4 \mathrm{de}_{\mathrm{bw}}}{4 m}
\end{gathered}
$$

Space Error Sensitivity

Decodability Limit $\left(\mathrm{DL}_{\mathrm{s}}\right)>\operatorname{Printer}\left(\mathrm{DI}_{\mathrm{sp}}\right)+$ Wand $\left(\mathrm{Dl} \mathrm{sw}_{\text {w }}\right)$

$$
\begin{gathered}
\frac{(W S: N S-1)}{4}>\frac{\left(O S_{\mathrm{spN}}-O \mathrm{OS}_{\mathrm{spW}}\right)+\left(3 \delta_{\mathrm{spN}}+\delta_{\mathrm{spW}}\right)}{4 \mathrm{~m}} \\
+\frac{\left(O S_{\mathrm{swN}}-O S_{\mathrm{swN}}\right)+4 \mathrm{de}_{\mathrm{sw}}}{4 m}
\end{gathered}
$$

The first term of the equation estimates the offset and random errors of the printer (DI p) while the second term describes the offset and random errors of the wand (DIw). The random errors of the wand (debw, de sw) are the combination of the wide ($\delta w w$) and narrow ($\delta \mathrm{wN}$) random components. The individual random components are summed because, in the case of the wand, they are approximately equal.
These two equations allow a system designer to predict, given the wide to narrow ratio ($\mathrm{W}: \mathrm{N}$), module width (m), and errors (OS, δ), whether the decoder will correctly recognize the narrow time interval as a narrow bar (space) and the wide time interval as a wide bar (space). The (W:N $-1) / 4$ factor in the equation is defined as the decodability limit (DL) of the symbology. To ensure decodability, this number should be greater than the sum of the errors introduced by the printer and wand. The wand may, however, render a decodable signal even if the combination of printer and wand errors exceed the decodability limit (DL). This results from the introduction of other random variables such as the operator scan velocity, acceleration and deceleration profiles, and the sampling times of the decoder time interval counter. These factors can bias the printer and wand errors, thus permitting the decoder to make the correct decision.
When using the prescribed decoding algorithm and the concept of decodability presented above, the system designer should independently evaluate the decodability of the bars and the spaces. The decodability index for the wand ($\mathrm{D} \mathrm{I}_{\mathrm{w}}$) is typically larger for bars than for spaces while the decodability index for the printer is typically larger for the spaces. If an algorithm which does not separate bars and spaces is used, the designer must evaluate the offset differences between the bars and spaces in addition to the analysis presented above. This introduces another variable into the system as the wand offset is dependent on the characteristics of the paper media.
The best first read rate can be achieved when good quality printed bar code symbols are used. Good quality highresolution bar codes can be pre-printed or printed on-demand with "drummer" label printers using OCR ribbons and good quality label stock. Bar code symbols which are printed on very translucent media. as are some photolithographic symbols, can cause the wand offset to be excessive due to paper bleed. This will degrade system performance, particularly for algorithms which compare bars and spaces.
The high resolution wand is not recommended for use with bar codes printed on dot matrix printers because of the print flaws (spots and voids) which are characteristic of this printing process. These flaws may be large enough to be recognized as bars (spaces) by a high resolution wand, leading to a mis-read.

Table 1. Definition of Terms

Bars	Spaces	Definition
DLb	DLs	decodability limit
Dlbp	$\mathrm{DI}_{\text {sp }}$	printer decodability index
Dibw	Disw	wand decodability index
WB:NB	WS:NS	wide to narrow ratio
OSbpn	OSspN	printer offset, narrow element
OSbpW	OSspW	printer offset, wide element
OSbwn	$\mathrm{OS}_{\text {swN }}$	wand offset, narrow element
OSbwW	OSsww	wand offset, wide element
$\delta_{\text {bpN }}$	$\delta_{\text {spN }}$	printer random error, narrow element
¢bpW	$\delta_{\text {spW }}$	printer random error, wide element
debw	de ${ }_{\text {sw }}$	wand randorn error
m	m	module width (narrow element width)

Mechanical Considerations

The HEDS-32XX wands include a standard 5 pin, 240 degree DIN connector. The detailed specifications and pin-outs are shown in Figure 10. Mating connectors are available from RYE Industries and Switch Craft in both 5 pin and 6 pin configurations. These connectors are listed below:

Connector	Configuration
RYE MAB-5	5 Pin
Switch Craft 61GA5F	5 Pin
Switch Craft 61HA5F	5 Pin
RYE MAB-6	6 Pin
Switch Craft 61GA6F	6 Pin

NOTES:

1. DIMENSIONS IN MILLIMETRES AND (INCHES).

PIN	WIRE COLOR	HEDS-3200/01	HEDS-3250/51
1	RED	$V_{\text {S }}$ SUPPLY VOLTAGE	$\mathrm{V}_{\text {S }}$ SUPPLY VOLTAGE
2	WHITE	V_{0} OUTPUT	V_{0} OUTPUT
3	BLACK	GROUND	GROUND
4	N/A	N/C	N / C
5	N/A	N/C	N/C
CASE	-	N/C	SHIELD

Figure 10. Connector Specifications

Maintenance Considerations

While there are no user serviceable parts inside the Wand, the tip should be checked periodically for wear and dirt, or obstructions in the aperture. The tip aperture is designed to reject particles and dirt but a gradual degradation in performance will occur as the tip wears down, or becomes obstructed by foreign materials.
Before unscrewing the tip, disconnect the Wand from the system power source. The aperture can be cleaned with a cotton swab or similar device and a liquid cleaner.
The glass window on the sensor should be inspected and cleaned if dust, dirt, or fingerprints are visible. To clean the sensor window dampen a lint free cloth with a liquid cleaner, then clean the window with the cloth taking care not to disturb the orientation of the sensor. DO NOT SPRAY CLEANER DIRECTLY ON THE SENSOR OR WAND.

After cleaning the tip aperture and sensor window, the tip should be gently and securely screwed back into the Wand assembly. The tip should be replaced if there are visible indications of wear such as a disfigured, or distorted aperture. The part number for the Wand tip is HEDS-3001. It can be ordered from any franchised Hewlett-Packard distributor.

Figure 11. Wand Tip

Optional Features

The wand may also be ordered with the following special features:

- Special colors
- Customer specified label
- No label
- Special Retractable Coiled Cords
- 9 Pin subminiature D-style plastic connector (same as HEDS-3000/3050)
- No connector (stripped and tinned leads)

For more information, call your local Hewlett-Packard sales office or franchised distributor.

Wand Dimensions

Notes:
4. ALi dimensions isi mitalmetres And (inches).

Features

- THREE INDUSTRIAL BAR CODES STANDARD:
- 3 of 9 Code
- Interleaved 2 of 5 Code
- Industrial 2 of 5 Code
- AUTOMATIC RECOGNITION AVAILABLE FOR STANDARD CODES
- OPTIONAL BAR CODES AVAILABLE
- FLEXIBLE DUAL RS-232-C (V.24) DATA COMMUNICATIONS
- Facilitates a Wide Variety of Configurations
- PROGRAMMABLE OPERATION (16800A only):
- Two LED Status Indicators
- Beeper Control
- Code Selection
- Data Communication Configuration
- Reader Operational Status
- HIGH PERFORMANCE DIGITAL WANDS:
- 45 Degree Scan Angle
- Sealed Sapphire Tip
- Rugged Case
- INTEGRAL POWER SUPPLY
- TABLETOP OR WALL MOUNTABLE
- BUILT-IN SELF TEST
- WORLDWIDE HP SERVICE

Description

The 16800A and 16801A are high performance bar code readers. The 16800A includes a wide range of programmable features which allow the reader to be fully integrated into sophisticated data entry systems. The 16801A is nonprogrammable, providing a more cost-effective solution for applications which do not require programmability.

The standard reader supports three popular industrial bar codes: 3 of 9 code, Interleaved 2 of 5 code, and Industrial 2 of 5 code. If more than one standard code is enabled, the reader will automatically recognize which code is being read. Additional bar codes are available. Bidirectional scanning is provided for all bar codes supported.

The 16800A and 16801A may be configured with a wide range of computer systems; including minicomputers, desktop computers, and personal computers. Dual RS-232-C (V.24) ports facilitate operation in both stand-alone and eavesdrop configurations. In an eavesdrop configuration, the reader will generally be operated in conjunction with an RS-232-C terminal.

Interactive systems design is supported in the 16800A through programmable operator feedback and reader control features. A multi-tone beeper and two LED indicators are provided to allow simple, yet flexible audio and visual programmable feedback. Local operator feedback is provided in the 16801A through a beeper which sounds to signify a good read.

Reader performance can be optimized by selecting the wand appropriate for the type of symbol being read. The wands offer a 45 degree scan angle, a rugged case, and a sealed sapphire tip. The sapphire tip may be replaced by the user if it is damaged.

Applications

Bar codes offer a method of entering data into computers which is fast, accurate, reliable, and which requires little operator training. Implementation of a bar code system can lead to increased productivity, reduced inventory costs, improved accountability, increased asset visibility, and reduced paperwork. Customer satisfaction will also improve as a result of improved quality control, reduced shipping errors, and reduced order and ship times. On-line, real-time interactive systems will allow the user to take full advantage of the contributions offered by bar code systems. The 16800A and 16801A provide a high performance solution for applications which require on-line bar code data entry.

The most common type of data stored in bar code is item identification information used in a wide range of applications such as:

- Inventory Control
- Work-in-Process Tracking
- Distribution Tracking
- Order Processing
- Records Management
- Point-of-Sale
- Government Packaging and Shipping

Bar codes can also be used in applications where information about an item or a transaction must be accurately entered into the host computer. Item location, employee identification, work steps, equipment settings, equipment status, and inspection results are some of the types of information which can be entered using bar codes.

Typical Configuration

The dual RS-232-C (V.24) output provided by the 16800A and 16801A allows a single reader to be configured in a wide range of on-line applications. Three typical system configurations are outlined below:

- Stand-Alone Reader - The 16800A/16801A is in direct communication with the host minicomputer, desktop computer, or personal computer.

- Multiplexed - A cluster of 16800A/16801As communicates with the host computer through a multiplexer. Where the advantages of fiber optic data communications are desired, the Hewlett-Packard 39301A Fiber Optic Multiplexer can be used.

- Eavesdrop - The 16800A/16801A is in an eavesdrop configuration between an RS-232-C terminal and the host computer. The reader can be configured to transmit to the computer, to the terminal, or to both simultaneously.

Wand Selection

The 16800A and 16801A bar code readers include a 16830A digital bar code wand which is capable of reading bar code symbols which have nominal narrow bar/space widths of 0.19 mm (0.0075 in .) or greater. This includes a wide range of high, medium, and low resolution bar codes including standard 3 of 9 code [0.19 mm (0.0075 in.$)]$.
An optional 16832A digital bar code wand is available for very high resolution codes with nominal narrow bar/space widths of 0.13 mm (0.005 in .) to 0.20 mm (0.008 in .). This wand is not recommended for dot matrix printed bar codes.

Both wands are also available under accessory product numbers.

Code Selection

The 16800A and 16801A offer user flexibility in the implementation of the three standard bar codes:

- Single Code Selection or Automatic Code Recognition (any combination of the three standard codes)
- Checksum Verification Selectable
- Variable Message Length up to 32 characters
- Selectable Message Length Check (Interleaved 2 of 5 code and Industrial 2 of 5 code)
- Any specified code resolution

Optional bar codes will also provide a high degree of user flexibility. The code reading configuration is switch selectable. Additional information on bar code symbologies is available in the Operating and Installation Manual and in Application Note 1013 - "Elements of a Bar Code System".

16800A Additional Capabilities

The 16800A offers the advantage of programmable control over all aspects of the code reading configuration. This capability enables the applications software to determine what code can be read depending on the type of data to be entered. For example, the 3 of 9 code could be enabled for entering item identification information and then the 3 of 9 code disabled and Interleaved 2 of 5 code enabled for entering a different type of data such as employee identification or job status. This allows different bar codes to be used in the system while at the same time preventing the operator from entering the wrong type of data into the data base.

Data Communications

The 16800A and 16801A provide a flexible dual RS-232-C (V.24) serial ASCII data communications capability which can support a wide range of system configurations. The reader offers the user the choice of full or half duplex transmission when in character mode and, if in an eavesdrop configuration with a terminal, the reader can also be operated in block mode. The user can tailor the reader's data communication configuration to the application by selecting the appropriate transmission mode (full/half duplex), operating mode (character/block mode), data rate, parity, terminator, stop bits, and inter-character delay on the readily accessible DIP switches. Request to Send/Clear to Send and DC1/DC3 (XON/XOFF) traffic control is available.

16800A Additional Capabilities

The 16800A offers expanded data communications capabilities with the added benefit of programmable control. In addition to programmable control of the transmission mode (full/half duplex) and the operating mode (character/block mode), the 16800A provides the following programmable features:

- User-definable header (up to 10 characters)
- User-definable terminator (up to 10 characters)
- DC1/DC3 (XON/XOFF) traffic control enable/disable

Operator Feedback

The 16800A and 16801A provide good read feedback to the operator by sounding an integral beeper. Beeper volume can be adjusted as appropriate for the application.

16800A Additional Capabilities

Interactive operator feedback is provided in the 16800A through two programmable LED indicators and programmable beeper control. The user has programmable control over operator feedback as follows:

- Local good read beep enable/disable
- Local good read beep tone (16 tones available)
- Computer commanded beep (16 tones available)
- Red LED Indicator on/off
- Green LED Indicator on/off

Programmable operator feedback can be used to prompt the operator, to signify that data has been validated by the computer, to differentiate between different workstations in close proximity, to provide additional LED feedback in extremely noisy environments, or for a variety of other reasons.

Reader Control and Status (16800A only)

The 16800A provides the user with added programmable control over the reader's operation and also enables the user to obtain on-line status information regarding the reader's configuration and functionality. The programmable control and status features are described below:
Scanner Enable/Disable - When disabled, further bar code scans are ignored.
Single Read Enable/Disable - When enabled, a single bar code scan can be entered between "Next Read" commands. Hard Reset - Commands the reader to return to the operating configuration prescribed by the DIP switch settings. An automatic self-test is also executed.
Status Request - Commands the reader to send the status of its operating configuration to the computer.

Specifications

General

Typical Wand Reading Characteristics:

Parameter	Units	$16830 \mathrm{~A}$ (Standard)	16832A (Option 320)
Minimum Recommended Nominal Narrow Element Widith	mm in.	$\begin{gathered} 0.190 \\ 0.0075 \end{gathered}$	$\begin{aligned} & 0.127 \\ & 0.005 \end{aligned}$
Tilt Angle	degrees	0-45	0.45
Scan Speed	$\mathrm{cm} / \mathrm{sec}$ in. sec	$\begin{gathered} 7.6-76 \\ 3-30 \end{gathered}$	$\begin{gathered} 7.6-76 \\ 3-30 \end{gathered}$
Wavelength	nm	700	820

\(\left.\begin{array}{ll}Bar Codes Supported:

Standard: \& 3 of 9 Code (USD-3; MIL-STD-1189)

\& Interleaved 2 of 5 Code (USD-1)

\& Industrial 2 of 5 Code\end{array}\right\}\)| Optional: | contact factory |
| :--- | :--- |

Data Communications

Data Rate:	$110,300,600,1200,2400,4800,$ 9600 baud. Switch Selectable.
Parity:	0 's, 1's, Odd, Even. Switch Selectable.
Terminator:	CR, CR/LF, Horizontal Tab (HT), None. Switch Selectable.
Programmable Header/ Terminator (16800A only):	User defined. Maximum of 10 characters each.
Stop Bits:	1 or 2. Switch Selectable.
Inter-Character Delay:	20 ms or None. Switch Selectable.
Standard Asynchronous Communications Interface:	EIA Standard RS-232-C (CCITT V.24)
Transmission Modes:	Full or half duplex, asynchronous. Switch selectable. Programmable in 16800A.
Operating Modes:	Character or Block Mode. Switch selectable. Programmable in 16800A.
Traffic Control:	Request to Send/Clear to Send.
	DC1/DC3 (XON/XOFF). Switch Selectable. Programmable in 16800A.
Output Buffer:	256 Characters

Environmental Conditions

Temperature, Free Space Ambient:

$$
\begin{array}{rr}
\text { Non-Operating: } & -40 \text { to } 75^{\circ} \mathrm{C}\left(-40 \text { to }+167^{\circ} \mathrm{F}\right) \\
\text { Operating: } & 0 \text { to }+55^{\circ} \mathrm{C}\left(+32 \text { to } 131^{\circ} \mathrm{F}\right)
\end{array}
$$

Humidity:
5 to 95\% (non-condensing)
Altitude:
Non-Operating: \quad Sea level to 15300 metres
(50,000 feet)
Operating: \quad Sea level to 4600 metres
(15,000 feet)
Vibration:
0.38 mm (0.015 in.$)$ p-p, 5 to 55 to $5 \mathrm{~Hz}, 3$ axis
Shock:
$30 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$ sine

Physical Specifications

Weight, including wand: 2.0 kg (4.4 pounds)

Weight, wand only: 0.18 kg (0.4 pounds)

Reader Dimensions:

Wand Dimensions:

Wand Cord Length:
$260 \mathrm{mmW} \times 189 \mathrm{mmD} \times 71 \mathrm{mmH}$ ($10.25 \mathrm{in} . \mathrm{W} \times 7.4 \mathrm{in} . \mathrm{D} \times 2.8 \mathrm{in} . \mathrm{H}$)
$132 \mathrm{mmW} \times 23 \mathrm{mmD} \times 20 \mathrm{mmH}$
($5.2 \mathrm{in} . \mathrm{W} \times 0.9 \mathrm{in}$.D $\times 0.8 \mathrm{in} . \mathrm{H}$)

Power Requirements

Input Voltage: $\quad 100 \mathrm{~V}(+5 \%,-10 \%)$ at $48-66 \mathrm{~Hz}$ (Opt. 210)
$120 \mathrm{~V}(+5 \%,-10 \%)$ at $48-66 \mathrm{~Hz}$ (Standard)
$220 \mathrm{~V}(+5 \%,-10 \%)$ at $48-66 \mathrm{~Hz}$
(Opt. 222)
$240 \mathrm{~V}(+5 \%,-10 \%)$ at $48-66 \mathrm{~Hz}$
(Opt. 224)
Power Consumption: 24 VA maximum

Regulatory Agency Approvals

RFI/EMI:

- VDE 0871 level A
- FCC Class A

Safety Approvals:

- UL478, UL114 for EDP and office equipment
- CSA C22.2-154 for EDP equipment
- VDE 0730.part 2P for EDP and office equipment
- Complies with IEC standard \#380 and \#435 for EDP and office equipment

Installation

All product preparation and installation can be performed by the owner/user. Refer to the Operating and Installation Manual supplied with the unit for detailed instructions.

Supporting Literature

For further information refer to:
16800A/16801A Operating and Installation Manual, P/N: 16800-90001
Application Note 1013, "Elements of a Bar Code System", Publication Number: 5953-7732 (Available through local sales office)

Ordering Information

PRODUCT NUMBER	DESCRIPTION
16800A	PROGRAMMABLE BAR CODE READER Includes 16830 A digital wand, internal power supply for 120 V line voltage, power cord, and Operating and Installation Manual. Reader supports 3 of 9 Code, Interleaved 2 of 5 Code, and Industrial 2 of 5 Code.
16801A	BAR CODE READER Includes 16830A digital wand, internal power supply for 120V line voltage, power cord, and Operating and Installation Manual. Reader supports 3 of 9 Code, Interleaved 2 of 5 Code, and Industrial 2 of 5 Code.
-210	100 V power supply
-222	220 V power supply
-224	240 V power supply
-320	Delete 16830A digital wand; Add 16832A digital wand
-610	Add Wall Mounting Kit
-910	Additional Operating and Installation Manual
ACCESSORIES	
16830A	Standard Digital Bar Code Wand
16832A	High Resolution Digital Bar Code Wand
16800-60010	Replacement Sapphire Wand Tip
16800-61000	Wall Mount Kit
03075-40006	External Wand Holder
13242M	5.0 metres (16.7 feet) Male-Male RS-232-C cable. Shielded.
LITERATURE $16800-90001$	
	Operating and installation Manual

BAR CODE DECODER MODULE

Features

- INTERFACES DIRECTLY TO HP DIGITAL BAR CODE WANDS
- DECODES CODE 3 OF 9 BI-DIRECTIONALLY
- RS-232-C TRANSMIT PORT:

2400 Baud Standard, 1200, 4800, 9600 Baud Available

- 8-BIT PARALLEL ASCII PORT, INTERFACES DIRECTLY TO AN HDSP-2470 CONTROLLER AND HDSP-2432 DISPLAY
- EASY MICROPROCESSOR INTERFACE
- EASY PROTOTYPING INTERFACE
- 7 OPTIONAL USER PROMPTS
- SINGLE +5V OPERATION
- TTL COMPATIBLE
- STANDARD 44 PIN EDGE CONNECTOR .156" CENTERS (HEDS-0100)
- DIN 41612B MALE 64 PIN CONNECTOR (HEDS-0150)

Description

The HEDS-01XX is a fully integrated bar code decoder board which decodes code 3 of 9 . The data from HP Digital Bar Code Wands, such as the HEDS-3050 or HEDS-3250, is decoded and output over a parallel ASCII port or a serial ASCII RS-232-C port. Optional user prompts showing both wanding errors and read status are available to help increase the user read rate. The bipolar voltages required for the RS-232-C port are generated on-board by a DC-DC converter.

Applications

The HEDS-01XX has been designed as an integral bar code decoding printed circuit board for installation within most data entry terminals. The board can function either as a dedicated data collection terminal or as a slave MPU board within the user's terminal. In a dedicated function, the HEDS-01XX serves as the heart of a stand-alone terminal where communication to the host processor is through a transmit only RS-232-C port with a handshake. As a slave MPU board, the HEDS-01XX operates in tandem with the user's terminal where communication to the host processor is provided by the terminal. The compact size and choice of output configurations make the HEDS-01XX compatible with most terminals.

Block Diagram

System Operational Characteristics

over operating temperature range

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Note
Supply Current	Is		350	600	mA		
Scan Vetocity	VSCAN	7.6		150	$\mathrm{~cm} / \mathrm{s}$	0.3 mm narrow element width	1
		3		76	$\mathrm{~cm} / \mathrm{s}$	0.19 mm narrow element width	

Note:

1. Perfect bar code with $2.2: 1$ wide-to-narrow ratio

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V_{S}	4.75	5.25	V II
Temperature	TA_{A}	0	55	${ }^{\circ} \mathrm{C}$
Relative Humidity (non-condensing	RH	5	95	$\% / \%$
Power Supply Rise Time	TPS	100		$\mathrm{~V} / \mathrm{s}$

Note:

1. Power supply noise and ripple should be less than 100 mV p-p.

Data Input - TTL pulse train from HP Digital Wands. The required pull-up resistor is located on the printed circuit board.

Serial Output - ASCII RS-232-C at 2400 Baud with one start bit, seven data bits, parity bit set to zero, and one stop bit. A "mark" is represented by V^{-}and a "space" by V^{+}. The serial port is driven by an MC1488 line driver.

Parallel Output - 8-bit ASCII with bit 7 set to zero. This is designed for use with an HDSP-2432 display board and an HDSP-2470 controller board. This tri-state port is easily interfaced to microprocessors. Start and stop characters are added to the data string. The output format is as follows:

OA $_{16}$ LF	OO 16 NULL	DATA WORD	DATA WORD		DATA WORD	$7 F_{16}$ (DEL

The driver for the parallel port is a 74LS244.
Bar Code - Code 3 of 9 may be scanned bidirectionally. No other bar codes are decoded. The incoming data is checked to insure that it complies with the code rules. Checksum verification is selectable on the edge connector.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Storage Temperature	Ts	-40	70	${ }^{\circ} \mathrm{C}$
Operating Temperature	T_{A}	0	55	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{S}	-0.5	6.0	${ }^{\mathrm{V}}$

Figure 1. RS-232-C Character Transfer

Figure 2. Parallel Character Transfer

Output Configurations

Figure 3. Parallel Prompts and Data

Figure 4. Serial Data

Figure 5. Beeper Outputs

Input Configurations

Figure 6. TTL Level

Figure 7. RS-232-C Level

System Overview

The HEDS-0100/-0150 accepts serial TTL data from Hewlett-Packard Digital Wands and converts this data into the ASCII characters represented. These characters are then output through the serial and parallel data ports.

An internal timer measures the input TTL data pulse widths and compares their value to a reference to determine a logic value. After a start character has been recognized, the decoded data bits are shifted into a 9 -bit data word. When a complete word has been collected, the corresponding ASCII character is determined through the use of a look-up table. The decoded characters are stored in a message buffer until a stop character is seen. At this point the message is output to the selected data ports.

Figure 8. System Software Flow Chart

The user interfaces to the system through a WAND DATA input line, a transmit-only RS-232-C port, an 8-bit parallel port, five error and two read status prompts, and an ENABLE line that controls the tri-state capability of the parallel port and the prompt lines. Except for the RS-232-C port, all inputs and outputs are TTL compatible. The serial and parallel ports can be selected separately or simultaneously. The block diagram of the system is on the bottom of page 1, and the flowchart of the basic system software is in Figure 8.

Parallel Data Output

Data can be output through the parallel port in two modes, normal or polled. With the HEDS-01XX operating in the normal mode, the first start character (Table 1) is output without a handshake. This can be used to clear a display. To accomplish this, the $\overline{\mathrm{CS}}$ line is lowered for $12 \mu \mathrm{~s}$ followed by a pause of $625 \mu \mathrm{~s}$ for the parallel device to accept the data (Figure 2). The second start character is then output with the $\overline{R E A D Y}$ line handshake (Figure 2). When the handshake is complete, the first character of data is output. After the complete message has been sent, the termination character is output.
Operation of the polled mode would be as follows. When the host processor requests information, it enables the parallel bus by lowering the ENABLE line. If a NULL is present on the bus, it means character data is ready for transfer. The $\overline{\text { READY }}$ line is toggled low to signal the decoder that the host is ready for the next character. When the character data is valid, the decoder will lower the $\overline{\mathrm{CS}}$ line for $12 \mu \mathrm{~s}$. After the host has accepted a character, the $\overline{R E A D Y}$ line should be toggled low. The $\overline{R E A D Y}$ line should be toggled when a DEL is received to signal the decoder that the host has received all of the data.

Table 1. Start and Termination Characters (HEX)

Port	Start	Termination
Parallel	LF, Null (OA) (OO)	Del $(7 \mathrm{~F})$
Serial	-	CR, LF $(20)(O A)$

Serial Data Output Transmit Only RS-232-C

The serial port is a transmit only RS-232-C port. The five lines listed below are used for serial communication with a handshake.
$\left.\begin{array}{ll}\text { RTS - Request to send - circuit CA } \\ \text { CTS - Clear to send } & \text { - circuit CB } \\ \text { TXD - Transmitted data - circuit BA } \\ \text { RXD - Received data } & \text { - circuit BB } \\ \text { GND - Signal ground } & \text { - circuit AB }\end{array}\right\}$ EIA Circuit
In the normal output mode the data is configured as eight data bits with the parity bit (bit 7) set to zero, one start bit, and one stop bit. The speed of data transfer is 2400 baud. Data is transmitted one character at a time with a RTS-CTS handshake preceeding each character. The RTS line is raised and the HEDS-01XX waits for the CTS line to go high (Figure 1). After this occurs a character is transmitted.

Figure 9. RS-232-C Connection for Communication to a DTE.

Figure 10. RS-232-C Connection for Communication to a DCE.

When the RS-232-C port is disabled by inserting jumper W2 or by inputting V^{+}to the CTS line, data is still transmitted, but no handshake is required.
For the HEDS-01XX to communicate to a piece of Data Terminal Equipment (DTE), the DP25 connector should be wired as shown in Figure 9. When communications to a piece of Data Communications Equipment (DCE) is necessary, the wiring shown in Figure 10 should be used.
The receiver on the end of the serial data line should be an active receiver, such as an MC1489. It is recommended that the EIA line load limit of $3000 \Omega, 2500 \mathrm{pF}$ not be exceeded.
If bi-directional serial data transmission is needed for the user to receive data back from a computer (such as the verification of valid data) additional circuitry is needed to allow the HEDS-01XX to transmit data and another device (such as a terminal) to both transmit and receive data. This configuration is ideal where data entry can be accomplished by bar codes or by a keyboard. The circuit in Figure 11 will accomplish this function. It assumes that jumper W2 has been inserted.

Figure 11. RS-232-C Parallel Connection HEDS-01XX and Terminal to Computer

Output Format Selection

The user can select either the parallel or serial RS-232-C formats by the use of on-board jumpers, or by the presence of signals on the edge connector. To set up the desired type of output, see Table 2.
Table 2. Output Format Selection

Jumper		PC PIN		Modes Selected
W1	W2	CTS	READY	Serial and Parallel
-	-	-	-	
X	-	-	-	Serial
-	-	-	GND	
-	X	-	-	Parallel
-	-	$V+$	-	

Data Output Sequence

Once a bar code tag has been decoded sucessfully, data is output in the following sequence. The good read prompt is lowered for the duration of the good read beep. If checksum verification has been selected, and the last character of the message is the correct checksum for the message, the checksum prompt line is lowered and the checksum character is suppressed. The parallel port start characters are sent (Table 1), followed by the first message character. After the parallel handshake, the first character is output on the serial port. The process of transmitting one character over the parallel port and then over the serial port is repeated until all characters have been sent. When the data transfer is complete, the serial port terminators are sent, followed by the parallel port termination character. The parallel port termination character is the last character transmitted. If one of the output ports has been disabled, all output to that port is skipped.

Wand Input

To minimize the possibility of coupling noise onto the wand data line, it is recommended that the lead length from the wand connector to the PC connector be kept as short as possible. To prevent electrostatic discharge from harming the decoder board or the wand, Transzorbs ${ }^{\circledR}$ should be

NOTE: IF EARTH GROUND NOT AVAILABLE, CONNECT SHIELD TO LOGIC GROUND, AS SHOWN BY DOTTED LINE.

Figure 12. Logic Interface for HEDS-3050 or HEDS-3250.
placed physically and electrically as close as possible to the wand connector. (Figure 12) The shield pin of the HEDS3050 or HEDS-3250 wand should be connected to earth ground to prevent the coupling of line frequency noise onto the wand data line. If earth ground is not available, the shield should be connected to signal ground.

Checksum Calculation Code 3 of 9

Selection of Checksum Verification

PC Board Lines		
Code 1	Code 2	Resuli
1	X	Checksum verification
0	X	No checksum verification

Checksums are used to reduce substitution errors in the system. When such an error happens, the calculated checksum will not match the printed checksum, and checksum verification will not occur.
When checksum verifiction has been selected, a checksum value is calculated for the message and then compared to the value of the checksum character in the symbol. If a match exists, the checksum is deleted from the character string, the checksum prompt is lowered, and the message is transmitted over the enabled ports. If a match does not exist, the invalid message prompt is lowered and no data transmission occurs. The calculated checksum value is the modulus 43 sum of the numeric values assigned to the characters in the message. The conversion table used to assign numeric values is shown in Table 3.
Table 3. Code 3 of 9 ASCII Conversion Table

ASCII Character	Binary Word	Bars	Spaces	Checksum Value
0	000110100	00110	0100	0
1	100100001	10001	0100	1
2	001100001	01001	0100	2
3	101100000	11000	0100	3
4	000110001	00101	0100	4
5	100110000	10100	0100	5
6	001110000	01100	0100	6
7	000100101	00011	0100	7
8	100100100	10010	0100	8
9	001100100	01010	0100	9
A	100001001	10001	0010	10
B	001001001	01001	0010	11
C	101001000	11000	0010	12
D	000011001	00101	0010	13
E	100011000	10100	0010	14
F	001011000	01100	0010	15
G	000001101	00011	0010	16
H	100001100	10010	0010	17
1	001001100	01010	0010	18
J	000011100	00110	0010	19
K	100000011	10001	0001	20
L	001000011	01001	0001	21
M	101000010	11000	0001	22
N	000010011	00101	0001	23
0	100010010	10100	0001	24
P	001010010	01100	0001	25
Q	000000111	00011	0001	26
R	100000110	10010	0001	27
S	001000110	01010	0001	28
T	000010110	00110	0001	29
U	110000001.	10001	1000	30
V	011000001	01001	1000	31
w	111000000	11000	1000	32
X	010010001	00101	1000	33
Y	110010000	10100	1000	34
z	011010000	01100	1000	35
-	010000101	00011	1000	36
	110000100	10010	1000	37
SPACE	011000100	01010	1000	38
\$	010101000	00000	1110	39
1	010100010	00000	1101	40
+	010001010	00000	1011	41
\%	000101010 010010100	00000	0111 1000	42
*	010010100	00110	1000	NA.

For example if a checksum is to be generated for the message HEWLETT PACKARD, the sum of the characters would be as follows:
$17+14+32+21+14+29+29+38+25+10+12+20+10+27+13=311$
The modulus 43 sum is determined by dividing the total by 43 and keeping the remainder.

$$
311 / 43=7 \quad \text { Remainder } 10
$$

The numeric value 10 corresponds to the letter A. The complete message with the checksum added becomes HEWLETT PACKARDA.

Decoding Prompts

To help the user achieve the highest possible read rate, seven operator prompts are available to aid in learning proper scanning techniques. Of the seven prompts, five signal errors and two signal read status. The five error prompts are available as ASCII prompts over the parallel port, and as TTL levels that go through 74LS244 drivers. The five error prompts, their ASCII symbols, causes and suggested solutions are listed in Table 4.
The two read status prompts signify whether or not a checksum character was present at the end of the message, and if a good read occurred. These prompts are available only as TTL levels. If the last character in the data string is the valid checksum, and if checksum verification has been selected, the checksum prompt is lowered and the checksum character is not transmitted. When the good read prompt is activated, it goes low for the duration of the beeper signal (16 ms). These prompts can be used to verify that data entered into the system is good.
If the ASCII prompts are desired on the parallel port, they may be enabled by either inserting jumper W4 or by driving
Table 4. ASCII Error Prompts

Prompt Symbot	Prompl Belinition	Cause and Solution
***	Invalid Character	CAUSE: A valta start character pattern lor stop character pattern in reverse; was not recognized at the beginning of the symbol or a message character did not have three wide elements. This is caused by missing part of the start (or stop) character, by not allowing an adequate margin, by scanning a symbol which is defective tor not a code 3 of 9 symbol), or by using a wand which does not have high enough resolution for the symbol. SOLUTION: Make sure that the symbol is a good code 3 of 9 symbol and that the wand thas adequate resolution. Then scan the symbol again making sure that the scan starts betore the first bar anc ends after the last bar of the symbol.
1	Incomplete Scan	CAUSE: A valid stop character pattern sor start character pattern in reverse; was not seen at the end of the symbol. This will result if the scan exits the symbol before the end, it the scan stops betore the end of the symbol, or if the symbol is missing a series of interior bars. resulting in an apparent margin area. SOLUTION Make sure that the labet good. if it m, make sure to end the scan after the last bars ${ }^{+}$scanning over all bars in the tag.
***	Bar Code Message too Long	CAUSE: More than 29 characters, incluoing the checksum, were scanned in one fabel. SOLUTION: Scan a shorter bar code.
<<	Bar Code Scanned 100 Fast	CAUSE: The user scanned at a rate of speed that caused the timer to underftow. SOLUTION: Scan stower.
23>>	Bar Code Scanned too Slow	CAUSE: The user scanned at a fate of speed that caused the timer to overfiow. SOLUTION: Scan faster.

Figure 14. Good Read Verification

Figure 15. Tone Generator

Figure 16. Direct Beeper Connection

In addition to the LED prompt, the good read signal is also generated as a pulse train. Two separate voltage levels, a TTL level, and an RS-232-C level, are available. The TTL level is driven by an MC1489 and is available on pin U (6B). The RS-232-C level is driven by an MC1488 and is present in pin 15 (9B). These outputs can be directly connected to a piezioelectric crystal to generate the good read beep, (Figure 16), or they can be sent to an amplifier to power any kind of annunciator desired.

Prototyping Interface

A prototype bar code data entry system is often required to demonstrate the concept of bar codes as an alternative to other forms of data entry. To assist a system designer, space for a connector (J1) that directly connects to an HDSP-2470 controller board has been provided. An HDSP-2432 display board is recommended. 3M connector No. 3429-2002 is recommended to solder directly onto the decoder board. Since this interface is the same as the parallel interface, both cannot be used at the same time. A $1.0 \mu \mathrm{~F}$ capacitor is needed to properly power up the display system, and space is provided (C22, HEDS-01XX drawings, page 8). The display system can be powered from a separate power supply as long as there is a common ground. The power supply requirements of the display system are 5V @ 2 A and a voltage rise time of $100 \mathrm{~V} / \mathrm{s}$.

Read Rate Considerations

To achieve a high read rate, several factors need to be considered. The decoder needs a proper margin or "quiet zone" before a first bar of a bar code to recognize that the wand transitions being generated come from valid bar code. The margin should be at least 1 cm . Cycle time (the time required between scans) has a large effect on repetitive read rate. The main contribution to the length of the cycle time is the length of the message. As message length increases, more time is spent in the output routines. The speed which the handshakes are answered will affect the time spent in the output routines. If several codes are to be scanned in rapid succession, proper margins should be used. (Figure 18).

To properly scan a bar code, place the wand in the preferred orientation with the tip approximately 1 cm from the first bar of the code. Use the wand to draw an imaginary line through the center of the bar code, finishing the scan after all bars and spaces have been passed over. To prolong wand tip and bar code tag life, the wand tip needs only to be in light contact with the bar code tag surface.

Self-Test Character

The self-test character (Figure 19) can be used to verify that the HEDS-01XX is operating properly. When the character is scanned a good read beep is sounded. The program then checks all of the RAM that is used for decoding and outputs the result of the test, either RAM GOOD or RAM BAD, over the selected output ports. After a .5 second delay, the program generates a 8 -bit checksum of all bytes of program memory and compares this to the proper value. The result ROM GOOD or ROM BAD is output as before. The revision number message HEDS-0100/0150 REV X.XX is output followed by a beeper test. The LED prompts are then lowered for . 5 seconds each in the order shown in Figure 13.
The minimum system required for the self-test is a HEDS-01XX, a wand, and one of the output ports connected (Figure 17). The self-test routine will output to the prompt LEDs and to the BEEPER regardless of whether or not they are present. The self-test function is ideal for an incoming QA test to verify proper operation of the HEDS-01XX.

Figure 17. Minimum System Required

Figure 18. Minimum Intermessage Space

Figure 19. Self-Test Character

Board Dimensions
HEDS-0100 PINOUT

PIN	FUNCTION	PIN	FUNCTION
1	GND	A	GND
2	V cc	B	$V_{\text {cc }}$
3	TxD	C	NC
4	RTS	D	NC
5	PPE	E	NC
6	NC	F	NC
7	DATA 1	H	DATA 0
8	DATA 2	J	DATA 3
9	DATA 5	K	DATA 4
10	DATA 7	L	DATA 6
11	CHIP SELECT	M	BEEPER
12	NO START CHAR	N	TOO LONG
13	TOO FAST	P	TOO SLOW
14	CODE 2	R	CHECKSUM
15	BEEPER OUT (\pm V)	S	CTS
16	CODE 1	T	NO STOP CHAR
17	NC	U	BEEPER OUT (+5 V)
18	READY	V	NC
19	$\mathrm{V}+$	W	V -
20	ENABLE	X	WAND DATA IN
21	NC	Y	NC
22	GND	Z	GND

HEDS-0100

(3) MTG HOLES PROVIDED FOR CONNECTOR J1 3M SCOTCHFLEX 3429-2002

PINOUT OF CONNECTOR J1

RECOMMENDED WAND CONNECTORS

WAND	PANEL MOUNT	PC HEADER
HEDS-3050	AMP 2074-56-2 MOLEX A7224	AMP 745001-2; AMP 745018 body; 66570-3 pins
HEDS-3250	RYE MAB-6 Switch Craft 61GA5F	

RECOMMENDED PC BOARD CONNECTORS
TRW CINCH 2512230261
TRW CINCH 2512230260
TRW CINCH 2512230161
TRW CINCH 2512230160

ITT CANNON	G11 Series
DALE	EB8 Series
ELCO	6007 Series
SYLVANIA	AG Series

RECOMMENDED PROTOTYPE CONNECTOR
3M 3429-2002

HIGH RESOLUTION OPTICAL REFLECTIVE SENSOR

HEDS-1000

Features

- FOCUSED EMITTER AND DETECTOR IN A SINGLE PACKAGE
- HIGH RESOLUTION - . 190 mm SPOT SIZE
- 700nm VISIBLE EMITTER
- LENS FILTERED TO REJECT AMBIENT LIGHT
- TO-5 MINIATURE SEALED PACKAGE
- PHOTODIODE AND TRANSISTOR OUTPUT
- SOLID STATE RELIABILITY

Description

The HEDS-1000 is a fully integrated module designed for optical reflective sensing. The module contains a .178 mm (. 007 in .) diameter 700 nm visible LED emitter and a matched I.C. photodetector. A bifurcated aspheric lens is used to image the active areas of the emitter and the detector to a single spot $4.27 \mathrm{~mm}(0.168 \mathrm{in}$.) in front of the package. The reflected signal can be sensed directly from the photodiode or through an internal transistor that can be configured as a high gain amplifier.

Applications

Applications include pattern recognition and verification, object sizing, optical limit switching, tachometry, textile thread counting and defect detection, dimensional monitoring, line locating, mark, and bar code scanning, and paper edge detection.

Mechanical Considerations

The HEDS-1000 is packaged in a high profile 8 pin TO- 5 metal can with a glass window. The emitter and photodetector chips are mounted on the header at the base of the package. Positioned above these active elements is a bifurcated aspheric acrylic lens that focuses them to the same point.

The sensor can be rigidly secured by commercially available two piece TO-5 style heat sinks, such as Thermalloy 2205, or Aavid Engineering 3215. These fixtures provide a stable reference platform and their tapped mounting holes allow for ease of affixing this assembly to the circuit board.

Package Dimensions

notes:

1. ALL DIMENSIONS IN MLLLMETEAS AND (HNCHES).
2. ALL UNTOLERANCED DIMENSKONS ARE FOR REFERENCE ONLY.
3. THE REFEAENCE PLANE IS THIE TOP SURFACE OF THE PACKAGE,
4. NICKEL CAN AND GOLD PLATED LEADS,
5. SP. SEATING PLANE.
6. THE LEAD DIAMETER 150.45 mm fo.018in.) TYP.

Electrical Operation

The detector section of the sensor can be connected as a single photodiode, or as a photodiode transistor amplifier. When photodiode operation is desired, it is recommended that the substrate diodes be defeated by connecting the collector of the transistor to the positive potential of the power supply and shorting the base-emitter junction of the transistor. Figure 15 shows photocurrent being supplied from the anode of the photodiode to an inverting input of the operational amplifier. The circuit is recommended to improve the reflected photocurrent to stray photocurrent ratio by keeping the substrate diodes from acting as photodiodes.

The cathode of the 700 nm emitter is physically and electrically connected to the case-substrate of the device. Applications that require modulation or switching of the LED should be designed to have the cathode connected to the electrical ground of the system. This insures minimum capacitive coupling of the switching transients through the substrate diodes to the detector amplifier section.
The HEDS-1000 detector also includes an NPN transistor which can be used to increase the output current of the sensor. A current feedback amplifier as shown in Figure 6 provides moderate current gain and bias point stability.

CONNECTION DIAGRAM

TOP VIEW

PIN	FUNCTION
1	TRANSISTOR COLLEECTOR
2	TRANSISTOR BASE, PHOTODIODE ANODE
3	PHOTODIODE CATHODE
4	LEO CATHODE, SUASTRATE, CASE
5	NC
6	LEZ ANODE
7	NC
8	TRAASISTOR EMITTER

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Units	Fig.	Notes
Storage Temperature	Ts	-40	+75	${ }^{\circ} \mathrm{C}$		
Operating Temperature	$\mathrm{T}_{\text {A }}$	-20	$+70$	${ }^{\circ} \mathrm{C}$		
Lead Soldering Temperature 1.6 mm from Seating Plane			$\begin{gathered} 260 \\ \text { for } 10 \mathrm{sec} . \end{gathered}$	${ }^{\circ} \mathrm{C}$		11
Average LED Forward Current	If		50	mA		2
Peak LED Forward Current	IFPK		75	mA	1	1
Reverse LED Input Voltage	$V_{\text {R }}$		5	\checkmark		
Package Power Dissipation	Pp		120	mW		3
Collector Output Current	10		8	mA		
Supply and Output Voltage	$V_{D}, V_{C,}, V_{E}$	-0.5	20	V		10
Transistor Base Current	1 l		5	mA		
Transistor Emitter Ease Voltage	Veb		. 5	V		

CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be introduced by ESD.

System Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Detector Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units		Conditions	Fig.	Note
Dark Current	IPD		5	120	pA	$T_{A}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=0, V_{D}=5 V \\ & \text { Reflection }=0 \% \end{aligned}$		
				10	nA	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			
Capacitance	Co		45		pF	$V_{D}=0 V_{,} i_{p=0}=0, t=1 \mathrm{MHz}$			
Flux Responsivity	R ϕ_{ϕ}		. 22		$\frac{A}{W}$	$\lambda=700 \mathrm{~mm}, \mathrm{~V}_{\mathrm{D}}=5 \mathrm{~V}$		12	
Detector Area	$A D$. 160		mm^{2}	Square, wi	Length $=.4 \mathrm{~mm} /$ Side		

Emitter Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Forward Voltage	V_{F}		1.6	1.8	V	$\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$	13	
Reverse Breakdown Voltage	BVR	5			\checkmark	$1 \mathrm{~A}=100 \mu \mathrm{~A}$		
Radiant Flux	$\phi_{\text {E }}$	5	9.0		$\mu \mathrm{W}$	$\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}, \lambda=700 \mathrm{~nm}$	14	
Peak Wavelength	λ_{p}	680	700	720	nm	$1 \mathrm{~F}=35 \mathrm{~mA}$	14	
Thermal Resistance	$\theta_{\text {JC }}$		150		${ }^{\circ} \mathrm{C} / \mathrm{W}$			
Temperature Coefficient of V_{F}	$\Delta V_{F} / \Delta T$		-1.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$1 \mathrm{~F}=35 \mathrm{~mA}$		

Transistor Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Collector-Emitter Leakage	ICEO		1		pA	$V_{\text {CE }}=5 \mathrm{~V}$		
Base-Emitter Voltage	Vbe		. 6		\checkmark	$\mathrm{IC}_{\mathrm{C}}=10 \mu \mathrm{~A}, 1 \mathrm{lb}=70 \mathrm{nA}$		
Collector-Emitter Saturation Voltage	$V_{\text {CE }}(S A T)$. 4		V	$\mathrm{IB}_{\mathrm{B}}=1 \mu \mathrm{~A}, \mathrm{IE}=10 \mu \mathrm{~A}$		
Collector-Base Capacitance	Ccb		. 3		pF	$f=1 \mathrm{MHz}, V_{C B}=5 \mathrm{~V}$		
Base-Emitter Capacitance	Cbe		4		PF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BE}}=0 \mathrm{OV}$		
Thermal Resistance	Ojc		200		${ }^{\circ} \mathrm{CH}$			

NOTES:

1. $300 \mu \mathrm{~s}$ pulse width, 1 kHz pulse rate.
2. Derate Maximum Average Current linearly from $65^{\circ} \mathrm{C}$ by $6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Without heat sinking from $\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$, derate Maximum Average Power linearly by $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Measured from a reflector coated with a 99% reflective white paint (Kodak 6080) positioned $4.27 \mathrm{~mm}(0.168 \mathrm{in}$.) from the reference plane.
5. Peak-to-Peak response to black and white bar patterns.
6. Center of maximum signal point image lies within a circle of diameter D relative to the center line of the package. A second emitter image (through the detector lens) is also visible. This image does not affect normal operation.
7. This measurement is made with the lens cusp parallel to the black-white transition.
8. Image size is defined as the distance for the $10 \%-90 \%$ response as the sensor moves over an abrupt black-white edge.
9. $(+)$ indicates an increase in the distance from the reflector to the reference plane.
10. All voltages referenced to Pin 4.
11. CAUTION: The thermal constraints of the acrylic lens will not permit the use of conventional wave soldering procedures. The typical preheat and post cleaning temperatures and dwell times can subject the lens to thermal stresses beyond the absolute maximum ratings and can cause it to defocus.

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 2. Relative Total Photocurrent vs. LED DC Forward Current

Figure 3. Ip Test Circuit

Figure 4. Normalized Transistor DC Forward Current Gain vs. Base Current at Temperature

Figure 6. Slew Rate Measurement Circuit

Figure 8. Image Size vs. Maximum Signal Point

Figure 5. Common Emitter Collector Characteristics

Figure 7. Image Location

Figure 9. Reflector Distance vs. \% Reflected Photocurrent

Figure 10. Step Edge Response

Figure 12. Detector Spectral Response

Figure 11. Modulation Transfer Function

Figure 13. LED Forward Current vs. Forward Voltage Characteristics

Figure 14. Relative Radiant Flux vs. Wavelength
Figure 15. Photodiode Interconnection

Shaft Encoders

As an extension of our emitter/detector systems capability, Hewlett-Packard has developed optical shaft encoding systems. HP's optical encoders are motion sensors that provide a digital link converting mechanical shaft rotation into TTL logic level signals. Encoders are used in a wide variety of closed loop servo applications varying from computer peripherals and professional audio-video systems to automated production equipment. Encoders also find widespread usage in industrial and instrument applications where digital information is needed to monitor rotary motion.
With three easy to assemble components, the HP encoder system takes advantage of a specialized optical design and a custom integrated circuit to deliver superior performance in a compact package. The design also minimizes the mechanical tolerances required of the shaft and mounting surface.
A range of products are available including options for standard shaft sizes and count resolutions ideal for your application.
For more information on these new product developments, contact your local HewlettPackard Components Field Engineer, or write HewlettPackard Optoelectronics Division, 640 Page Mill Rd., Palo Alto, California 94304.

HP System Features

- Fully tested, prealigned components
- Quick assembly - No special tools required
- 2 digital outputs in quadrature
- 1 digital index channel
- Fully integrated electronics for high performance and high reliability

28mm Diameter Encoders

- Small Size
- Low Inertia
- Balanced system compensates for variations in components over time and temperature
- TTL compatible
- 130 KHz minimum frequency response
- $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating range
- 0.25 mm (. 010 inches) shaft endplay allowance

56mm Diameter Encoders

- High Resolution
- Large Shaft Sizes

Optical Shaft Encoders

28 mm Diameter Encoders - HEDS-5000 Series

Package Outline Drawing	Part No.	STD Resolution Others Available	Channels	Option Code	Shaft Size	Page No.
	HEDS-5000 HEDS-5010	500 CPR	A, B	OPT A01 OPT A02 OPT A03 OPT A04 OPT A05 OPT A06 OPT A11	2 mm 3 mm $1 / 8 \mathrm{in}$. 5/32 in. 3/16 in. $1 / 4 \mathrm{in}$. 4 mm	194

56 mm Diameter Encoders - HEDS-6000 Series

	HEDS-6000	1000 CPR	A, B	OPT B05 OPT B06 OPT B07 OPT B08 OPT B09 OPT B10 OPT B11 OPT B12 OPT B13	3/16 in. 1/4 in. 5/16 in. $3 / 8$ in. $1 / 2$ in. $5 / 8 \mathrm{in}$. 4 mm 6 mm 8 mm	202

Convenience Assembly Tools for 28 mm Diameter Encoders - Not Required

Package Outline Drawing	Part No.	Description	Page No.
	HEDS-8930	$\begin{array}{ll} \text { HEDS-5000 Series Tool Kit } & \bullet \text { Holding Screwdriver } \\ & \bullet \text { Torque Limiting Screwdriver } \\ & \bullet \text { HEDS-8920 Hub Fuller } \\ & \bullet \text { HEDS-8922 Gap Setter } \end{array}$	194
	HEDS-892X	Centering Cones \bullet Aid in High Volume Assembly \bullet Order in Appropriate Shaft Size	

Features

- SMALL SIZE - 28 mm DIAMETER
- 500 CYCLES/REVOLUTION STANDARD
- OTHER RESOLUTIONS AVAILABLE
- LOW INERTIA
- QUICK ASSEMBLY
- 0.25 mm (. 010 INCHES) END PLAY ALLOWANCE
- TTL COMPATIBLE DIGITAL OUTPUT
- SINGLE 5V SUPPLY
- -20° TO $85^{\circ} \mathrm{C}$ OPERATING RANGE
- INDEX PULSE AVAILABLE

Description

The HEDS-5000 series is a high resolution incremental optical encoder kit emphasizing reliability and ease of assembly. The 28 mm diameter package consists of 3 parts: the encoder body, a metal code wheel, and an emitter end plate. An LED source and lens transmit collimated light from the emitter module through a precision metal code wheel and phase plate into a bifurcated detector lens.
The light is focused onto pairs of closely spaced integrated detectors which output two square wave signals in quadrature and an optional index pulse. Collimated light and a custom photodetector configuration increase long life reliability by reducing sensitivity to shaft end play, shaft eccentricity and LED degradation. The outputs and the 5V supply input of the HEDS-5000 are accessed through a 10 pin connector mounted on a .6 metre ribbon cable.

Outline Drawing

Block Diagram and Output Waveforms

Theory of Operation

The incremental shaft encoder operates by translating the rotation of a shaft into interruptions of a light beam which are then output as electrical pulses.
In the HEDS-5XXX the light source is a Light Emitting Diode collimated by a molded lens into a parallel beam of light. The Emitter End Plate contains two or three similar light sources, one for each channel.
The standard Code Wheel is a metal disc which has 500 equally spaced apertures around its circumference. A matching pattern of apertures is positioned on the stationary phase plate. The light beam is transmitted only when the apertures in the code wheel and the apertures in the phase plate line up; therefore, during a complete shaft revolution, there will be 500 alternating light and dark periods. A molded lens beneath the phase plate aperture collects the modulated light into a silicon detector.
The Encoder Body contains the phase plate and the detection elements for two or three channels. Each channel consists of an integrated circuit with two photodiodes and amplifiers, a comparator, and output circuitry.
The apertures for the two photodiodes are positioned so that a light period on one detector corresponds to a dark period on the other ("push-pull"). The photodiode signals are amplified and fed to the comparator whose output changes state when the difference of the two photocurrents changes sign. The second channel has a similar configuration but the location of its aperture pair provides an output which is in quadrature to the first channel (phase difference of 90°). Direction of rotation is determined by observing which of the channels is the leading waveform. The outputs are TTL logic level signals.
The optional index channel is similar in optical and electrical configuration to the A and B channels previously described. An index pulse of typically 1 cycle width is generated for each rotation of the code wheel. Using the recommended logic interface, a unique logic state (P_{0}) can be identified if such accuracy is required.
The three part kit is assembled by attaching the Encoder Body to the mounting surface using three screws. The Code Wheel is set to the correct gap and secured to the shaft. Snapping the cover (Emitter End Plate) on the body completes the assembly. The only adjustment necessary is the encoder centering relative to the shaft. This optimizes quadrature and the optional index pulse outputs.

Index Pulse Considerations

The motion sensing application and encoder interface circuitry will determine the necessary phase relationship of the index pulse to the main data tracks. A unique shaft position can be identified by using the index pulse output only or by logically relating the index pulse to the A and B data channels. The HEDS-5010 allows some adjustment of the index pulse position with respect to the main data channels. The position is easily adjusted during the assembly process as illustrated in the assembly procedures.

Definitions

Electrical degrees:
1 shaft rotation $=360$ angular degrees

$$
=N \text { electrical cycles }
$$

1 cycle $=360$ electrical degrees
Position Error:
The angular difference between the actual shaft position and its position as calculated by counting the encoder's cycles.

Cycle Error:

An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.
Phase:
The angle between the center of Pulse A and the center of Pulse B.
Index Phase:
For counter clockwise rotation as illustrated above, the Index Phase is defined as:

$$
\Phi_{1}=\frac{\left(\phi_{1}-\phi_{2}\right)}{2} .
$$

ϕ_{1} is the angle, in electrical degrees between the falling edge of 1 and falling edge of B . ϕ_{2} is the angle, in electrical degrees, between the rising edge of A and the rising edge of I.
Index Phase Error:
The Index Phase Error $\left(\Delta \Phi_{I}\right)$ describes the change in the Index Pulse position after assembly with respect to the A and B channels over the recommended operating conditions.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{s}	-55	100	${ }^{\circ}$ Celsius	
Operating Temperature	TA	-55	85	${ }^{\circ}$ Celsius	See Note 1
Yibration			20	9	See Note 1
Shaft Axial Play			. 50 (20)	mm(1inch/1000) TIR	
Shaft Eccentricity Plus Radial Play			. 1 (4)	mm(1 inch/1000) TIR	Movement should be limited even under shock conditions.
Supply Voltage	VCC	-0.5	7	Volts	
Output Voltage	Vo	-0.5	VCC	Volts	
Output Current per Channel	10	-1	5	mA .	
Velocity			30,000	R.P.M.	
Acceleration	α		250,000	Rad. Sec^{-2}	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Nates
Temperature	T	-20	85	- Celsius	Non-condensing atmos.
Supply Voltage	VCc	4.5	5.5	Volt	Ripple < 100 mV pmp
Code Wheel Gap			1.1 (45)	mm (inch/1000)	Nominal gap $=$
Shaft Perpendicularity Plus Axial Play			0.25 (10)	$\begin{gathered} \mathrm{mm}(\text { inch } / 1000) \\ T I R \end{gathered}$	$0.63 \mathrm{~mm}(.025 \mathrm{in}$.) when shaft is at minimum gap position.
Shaft Eccentricity Plus Radial Play			0.04 (1.5)	$\begin{gathered} \mathrm{mm}(\text { inch/1000) } \\ \operatorname{TiR} \\ \hline \end{gathered}$	10 mm (0.4 inch) from mounting surface.
Load Capacitance	CL		100	pF	

Encoding Characteristics

The specifications below apply within the recommended operating conditions and reflect performance at 500 cycles per revolution ($\mathrm{N}=500$).

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes (See Definitions)
Position Error Worst Error Full Rotation	$\Delta \Theta$		10	40	Minutes of Arc	1 Cycle $=43.2$ Minutes See Figure 5.
Cycle Error Worst Error Full Rotation	$\Delta \mathrm{C}$		3	5.5	Electrical deg.	
Max. Count Frequency	$f_{\text {max }}$	130,000	200,000		Hertz	$f=$ Velocity (RPM) $\times \mathrm{N} / 60$
Pulse Width Error Worst Error Full Rotation	$\Delta \mathrm{P}$		16		Electrical deg.	$T=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 2
Phase Sensitivity to Eccentricity			$\begin{array}{r} 520 \\ (13) \\ \hline \end{array}$		Elec. deg. $/ \mathrm{mm}$ (Elec. deg./mil)	$\mathrm{mil}=$ inch $/ 1000$
Phase Sensitivity to Axial Play			$\begin{gathered} 20 \\ (.5) \\ \hline \end{gathered}$		Elec. deg. $/ \mathrm{mm}$ (Elec. deg./mil)	mil $=$ inch/1000
Loglc State Width Error Worst Error Full Rotation	ΔS		25		Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 2
Index Pulse Width	P_{1}		360		Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 3
Index Phase Error	$\Delta \Phi_{1}$		0	17	Electrical deg.	See Notes 4,5
Index Pulse Phase Adjustment Range		± 70	± 130		Electrical deg.	See Note 5

Mechanical Characteristics

Parameter	Symbol	Dimension	Tolerance	Unite	Notes
Outline Dimensions		See Mech. Dwg.			
Code Wheel Available to Fit the Following Standard Shaft Diameters		$\begin{array}{r}2 \\ 3 \\ 4 \\ \hline\end{array}$	$\begin{array}{r} +000 \\ -0.015 \end{array}$	mm	
		$5 / 32$	$\begin{array}{r} +0002 \\ \quad-.0005 \end{array}$	inches	
		$3 / 16^{1 / 8} 1 / 4$	$\begin{aligned} & +.0000 \\ & -.0007 \end{aligned}$	inches	
Moment of Inertia	J	$0.4\left(6 \times 10^{-6}\right)$:	$9 \mathrm{~cm}^{2}\left(0 z-i n-s^{2}\right)$	
Required Shaft Length		12.8 (.50)	$\pm 0.5 . \pm 0.02)$: mm (inches)	See Figure 10 . Shaft in minimum length position.
Bolt Circle		20.9 (.823)	\pm 0.13 ($\pm 005)$	mm (inches)	See figure 10.
Mounting Screw Size		$\begin{gathered} 1.6 \times 0.35 \times 5 \mathrm{~mm} \\ \text { DIN } 84 \\ 0 \mathrm{r} \\ 0-80 \times 3 / 16 \\ \text { Binding Head } \end{gathered}$		mm inches	

Electrical CharacteristicS when operating within the recommended operating range.
Electrical Characteristics over Recommended Operating Range (Typical at $25^{\circ} \mathrm{C}$).

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	lec	,	21	40	mA	HEDS-5000 (2 Channel)
			36	60		HEDS-5010 (3 Channel)
High Level Output Voltage	VOH	2.4			V	$\mathrm{IOH}=-40 \mu \mathrm{~A}$ Max ${ }_{\text {x }}$
Low Level Output Voltage	VO			0.4	V	$10 \mathrm{~L}=1.6 \mathrm{~mA}$
Rise Time	t_{r}		0.5		μs	$C_{L}=25 \mathrm{pF}, \mathrm{B}_{\mathrm{L}}=11 \mathrm{~K}$
Fall Time	安		0.2		$\mu \mathrm{s}$	$C_{L}=25 \mathrm{pF}, R_{L}=11 \mathrm{~K}$
Cable Capacitance	Cco		12		pF/metres	Output Lead to Ground See Note 7.

NOTES:

1. The structural parts of the HEDS- 5000 have been tested to 20 g and up to 500 Hz . For use outside this range, operation may be limited at low frequencies (high displacement) by cable fatigue and at high frequencies by code wheel resonances. Resonant frequency depends on code wheel material and number of counts per revolution. For temperatures below $-20^{\circ} \mathrm{C}$ the ribbon cable becomes brittle and sensitive to displacements. Consult factory for further information. See Application Note 1011.
2. In a properly assembled lot 99% of the units, when run at $25^{\circ} \mathrm{C}$ and 8 KHz , should exhibit a pulse width error less than 35 electrical degrees, and a state width error less than 45 electrical degrees. To calculate errors at other speeds and temperatures add the values specified in Figures 1 or 2 to to the typical values specified under encoding characteristics or to the maximum 99% values specified in this note.
3. In a properly assembled lot, 99% of the units when run at $25^{\circ} \mathrm{C}$ and 8 KHz should exhibit an index pulse width greater than 260 electrical degrees and less than 460 electrical degrees. To calculate index pulse widths at other speeds and temperatures add the values specified in Figures 3 or 4 to the typical 360° pulse width or to the maximum 99% values specified in this note.
4. After adjusting index phase at assembly, the index phase error specification ($\left.\Delta \Phi_{I}\right)$ indicates the expected shift in index pulse position with respect to channels A and B over the range of recommended operating conditions and up to 50 KHz .
5. When the index pulse is centered on the low-low states of channels A and B as shown on page 2 , a unique Po can be defined once per revolution within the recommended operating conditions and up to 25 KHz . Figure 6 shows how Po can be derived from A, B, and I outputs. The adjustment range indicates how far from the center of the low-low state that the center of the index pulse may be adjusted.
6. The typical length of an assembled HEDS-5000 encoder is 17.8 (.70 inch). However, it is recommended that room be left to accomodate a length of 21.6 (. 85 inch). Future developments may result in an enhanced version of the HEDS-5000 encoder that is slightly longer.
7. Consult factory for cable lengths over 2 metres.

Figure 1. Typical Change in Pulse Width Error or in State Width Error due to Speed and Temperature

Figure 3. Typical Change in Index Pulse Width Due to Speed and Temperature

Figure 5. Position Error vs. Shaft Eccentricity

ELECTRICAL DEGREES

Figure 2. Maximum Change in Pulse Width Error or in State Width Error Due to Speed and Temperature

Figure 4. Maximum Change in Index Pulse Width Due to Speed and Temperature

DASHED LINES REPRESENT AN OPTIONAL INDEX SUMMING CIRCUIT. STANDARD 74 SERIES COULD ALSO BE USED TO IMPLEMENT THIS CIRCUIT.

Figure 6. Recommended Interface Circuit

вотtом VIEW
NOTE: REVERSE INSERTION OF THE CONNECTOR WILL PERMANENTLY DAMAGE THE DETECTOR IC.

MATING CONNECTOR
BERG 65-692-001 OR EQUIVALENT

Figure 7. Connector Specifications

Figure 8. HEDS-5000 Series Encoder Kit

Figure 9. Code Wheel

MILLIMETRE $X \pm .5 \quad . X X \pm .10$
(INCHES) (.XX $\pm .02 . X X X \pm .005)$

Figure 10. Mounting Requirements

Ordering Information

*NO OPTION IS SPECIFIED WHEN ORDERING EMITTER END PLATES ONLY.

Shaft Encoder Kit Assembly see Application Note 1011 tor turther discussion.

The kit assembly requires four major steps: a. securing the body, b. gap setting, c. code wheel insertion, d. phase and index adjustments (HEDS-5010). The method below provides a quick and reliable assembly. Large volume assembly may suggest modifications to this procedure using custom designed tooling. For a limited prototype evaluation general purpose tools may be used to carry out the same basic steps. Note - the code wheel to phase plate gap should be set between .015 in and .045 in .

WARNING: THE ADHESIVES USED MAY BE HARMFUL. CONSULT THE MANUFACTURER'S RECOMMENDATIONS.

READ THE INSTRUCTIONS TO THE END BEFORE STARTING ASSEMBLY.

1.0 SUGGESTED MATERIALS

1.1 Encoder Parts

Encoder Body
Emitter End Plate
Code Wheel
1.2 Assembly Materials

RTV - General Electric 162

- Dow Corning 3145

Epoxy-Hysol 1C
Acetone
Mounting Screws (3)
RTV and Epoxy Applicators
1.3 Suggested Assembly Tools
a) Holding Screwdriver.
b) Torque Limiting Screwdriver, 0.36 cm kg (5.0 in . oz.).
c) Depth Micrometer or HEDS-8922 Gap Setter.
d) Oscilloscope or Phase Meter (Described in AN 1011). Either may be used for two channel phase adjustment. An oscilloscope is required for index pulse phase adjustment.

1.4 Suggested Circuits

a) Suggested circuit for index adjustment (HEDS-5010).
 For optimal index phase, adjust encoder position to equalize T_{1} and T_{2} pulse widths.
b) Phase Meter Circuit

Recommended for volume assembly. Please see Application Note 1011 for details.

2.0 SURFACE PREPARATION

THE ELAPSED TIME BETWEEN THIS STEP AND THE COMPLETION OF STEP 8 SHOULD NOT EXCEED $1 / 2$ HOUR.
2.1 Clean and degrease with acetone the mounting surface and shaft making sure to keep the acetone away from the motor bearings.
2.2 Load the syringe with RTV.
2.3 Apply RTV into screw threads on mounting surface. Apply more RTV on the surface by forming a daisy ring pattern connecting the screw holes as shown above.

CAUTION: KEEP RTV AWAY FROM THE SHAFT BEARING.

3.0 ENCODER BODY ATTACHMENT

3.1 Place the encoder body on the mounting surface and slowly rotate the body to spread the adhesive. Align the mounting screw holes with the holes in the body base.
3.2 Place the screws in the holding screwdriver and thread them into the mounting holes. Tighten to approximately 0.36 cm kg ($5.0 \mathrm{in} . ~ o z$.) using a torque limiting screwdriver if available (See notes a and b below). Remove centering cone if used.

Notes:

a) At this torque value, the encoder body should slide on the mounting surface only with considerable thumb pressure.
b) The torque limiting screwdriver should be periodically calibrated for proper torque.

4.0 EPOXY APPLICATION

CAUTION: HANDLE THE CODE WHEEL WITH CARE.
4.1 Collect a small dab of epoxy on an applicator.
4.2 Spread the epoxy inside the lower part of the hub bore.
4.3 Holding the code wheel by its hub, slide it down the shaft just enough to sit it squarely. About 3 mm (1/8").

5.0 CODE WHEEL POSITIONING

5.1 Take up any loose play by lightly pulling down on the shaft's load end.
5.2 Using the gap setter or a depth micrometer, push the code wheel hub down to a depth of 1.65 mm (. 065 in .) below the rim of the encoder body. The registration holes in the gap setter will align with the snaps protruding from the encoder body near the cable.
5.3 Check that the gap setter or micrometer is seated squarely on the body rim and maintains contact with the code wheel hub.
5.4 No epoxy should extrude through the shaft hole.

DO NOT TOUCH THE CODE WHEEL AFTER ASSEMBLY.

6.0 EMITTER END PLATE

6.1 Visually check that the wire pins in the encoder body are straight and straighten if necessary.
6.2 Hold the end plate parallel to the encoder body rim. Align the guiding pin on the end plate with the hole in the encoder body and press the end plate straight down until it is locked into place.
6.3 Visually check to see if the end plate is properly seated.

7.0 PHASE ADJUSTMENT

7.1 The following procedure should be followed when phase adjusting channels A and B .
7.2 Connect the encoder cable.
7.3 Run the motor. Phase corresponds to motor direction. See output waveforms and definitions. Using either an oscilloscope or a phase meter, adjust the encoder for minimum phase error by sliding the encoder forward or backward on the mounting surface as shown above. See Application Note 1011 for the phase meter circuit.
7.4 No stress should be applied to the encoder package until the RTV cures. Cure time is 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hrs . at room temperature.

Note: After mounting, the encoder should be free from mechanical forces that could cause a shift in the encoder's position relative to its mounting surface.

CODE WHEEL REMOVAL

In the event that the code wheel has to be removed after the epoxy has set, use the code wheel extractor as follows:
1 Remove the emitter end plate by prying a screwdriver in the slots provided around the encoder body rim. Avoid bending the wire leads.
2 Turn the screw on the extractor counter-clockwise until the screw tip is no longer visible.
3 Slide the extractor's horseshoe shaped lip all the way into the groove on the code wheel's hub.
4. While holding the extractor body stationary, turn the thumb screw clockwise until the screw tip pushes against the shaft.
5 Applying more turning pressure will pull the hub upwards breaking the epoxy bond.
6 Clean the shaft before reassembly.

8.0 INDEX PULSE ADJUSTMENT (HEDS-5010)

8.1 Some applications require that the index pulse be aligned with the main data channels. The index pulse position and the phase must be adjusted simultaneously. This procedure sets index phase to zero.
8.2 Connect the encoder cable.
8.3 Run the motor. Adjust for minimum phase error using an oscilloscope or phase meter (see 7.3).
8.4 Using an oscilloscope and the circuit shown in 1.4, set the trigger for the falling edge of the I output. Adjust the index pulse so that T_{1} and T_{2} are equal in width. The physical adjustment is a side to side motion as shown by the arrow.
8.5 Recheck the phase adjustment.
8.6 Repeat steps 8.3-8.5 until both phase and index pulse position are as desired.
8.7 No stress should be applied to the encoder package until the RTV has cured. Cure time: 2 hours @ $70^{\circ} \mathrm{C}$ or 24 hrs. at room temperature.

SPECIALITY TOOLS - Available from Hewlett-Packard

a) HEDS-8920 Hub Puller

This tool may be used to remove code wheels from shafts after the epoxy has cured.
b) HEDS-8922 Gap Setter

This tool may be used in place of a depth micrometer as an aid in large volume assembly.

c) HEDS-892X Centering Cones

For easier volume assembly this tool in its appropriate shaft size may be used in step 3.0 to initially center the encoder body with respect to the shaft and aid in locating the mounting screw holes. Depending on the resolution and accuracy required this centering may eliminate the need for phase adjustment steps 7 and 8.

Part Number	Shaft Size
HEDS-8923	2 mm
HEDS-8924	3 mm
HEDS-8925	$1 / 8 \mathrm{in}$.
HEDS-8926	$5 / 32 \mathrm{in}$.
HEDS-8927	$3 / 16 \mathrm{in}$.
HEDS-8928	$1 / 4 \mathrm{in}$.
HEDS-8929	4 mm

d) HEDS-8930 HEDS-5000 Tool Kit

1 Holding Screwdriver
Torque Limiting Screwdriver, $0.36 \mathrm{~cm} \mathrm{~kg}(5.0 \mathrm{in}$. oz.) HEDS-8920 Hub Puller HEDS-8922 Gap Setter Carrying Case

Features

- 1000 CYCLES/REVOLUTION STANDARD
- OTHER RESOLUTIONS AVAILABLE
- QUICK ASSEMBLY
- 0.25 mm (. 010 INCHES) END PLAY ALLOWANCE
- TTL COMPATIBLE DIGITAL OUTPUT
- SINGLE 5V SUPPLY
- -20° TO $85^{\circ} \mathrm{C}$ OPERATING RANGE
- SOLID STATE RELIABILITY
- INDEX PULSE AVAILABLE

Description

The HEDS-6000 series is a high resolution incremental optical encoder kit emphasizing ease of assembly and reliability. The 56 mm diameter package consists of 3 parts: the encoder body, a metal code wheel, and emitter end plate. An LED source and lens transmit collimated light from the emitter module through a precision metal code wheel and phase plate into a bifurcated detector lens.

The light is focused onto pairs of closely spaced integrated detectors which output two square wave signals in quadrature and an optional index pulse. Collimated light and a custom photodetector configuration increase long life reliability by reducing sensitivity to shaft end play, shaft eccentricity and LED degradation. The outputs and the 5 V supply input of the HEDS-6000 are accessed through a 10 pin connector mounted on a .6 metre ribbon cable.

Outline Drawing

Block Diagram and Output Waveforms

Theory of Operation

The incremental shaft encoder operates by translating the rotation of a shaft into interruptions of a light beam which are then output as electrical pulses.
In the HEDS-6XXX the light source is a Light Emitting Diode collimated by a molded lens into a parallel beam of light. The Emitter End Plate contains two or three similar light sources, one for each channel.

The standard Code Wheel is a metal disc which has 1000 equally spaced slits around its circumference. An aperture with a matching pattern is positioned on the stationary phase plate. The light beam is transmitted only when the slits in the code wheel and the aperture line up; therefore, during a complete shaft revolution, there will be 1000 alternating light and dark periods. A molded lens beneath the phase plate aperture collects the modulated light into a silicon detector.

The Encoder Body contains the phase plate and the detection elements for two or three channels. Each channel consists of an integrated circuit with two photodiodes and amplifiers, a comparator, and output circuitry.

The apertures for the two photodiodes are positioned so that a light period on one detector corresponds to a dark period on the other. The photodiode signals are amplified and fed to the comparator whose output changes state when the difference of the two photo currents changes sign ("PushPull"). The second channel has a similar configuration but the location of its aperture pair provides an output which is in quadrature to the first channel (phase difference of 90°). Direction of rotation is determined by observing which of the channels is the leading waveform. The outputs are TTL logic level signals.
The optional index channel is similar in optical and electrical configuration to the A,B channels previously described. An index pulse of typically 1 cycle width is generated for each rotation of the code wheel. Using the recommended logic interface, a unique logic state (P_{0}) can be identified if such accuracy is required.
The three part kit is assembled by attaching the Encoder Body to the mounting surface using two screws. The Code Wheel is set to the correct gap and secured to the shaft. Snapping the cover (Emitter End Plate) on the body completes the assembly. The only adjustment necessary is the encoder centering relative to the shaft, to optimize quadrature and optional index pulse output.

Index Pulse Considerations

The motion sensing application and encoder interface circuitry will determine the need for relating the index pulse to the main data tracks. A unique shaft position is identified by using the index pulse output only or by logically relating the index pulse to the A and B data channels. The HEDS-6010 index pulse can be uniquely related with the A and B data tracks in a variety of ways providing maximum flexibility. Statewidth, pulse width or edge transitions can be used. The index pulse position, with respect to the main data channels, is easily adjusted during the assembly process and is illustrated in the assembly procedures.

Definitions

Electrical degrees:
1 shaft rotation $=360$ angular degrees

$$
=1000 \text { cycles }
$$

1 cycle $\quad=360$ electrical degrees
Position Error:
The angular difference between the actual shaft position and its position as calculated by counting the encoder's cycles.

Cycle Error:
An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / 1000$ of a revolution.

Phase:
The angle between the center of Pulse A and the center of Pulse B.
Index Phase:
For counter clockwise rotation as illustrated above, the Index Phase is defined as:

$$
\Phi_{\mathrm{I}}=\frac{\left(\phi_{1}-\phi_{2}\right)}{2} .
$$

ϕ_{1} is the angle, in electrical degrees, between the falling edge of I and falling edge of B. $\phi 2$ is the angle, in electrical degrees, between the rising edge of A and the rising edge of I.
Index Phase Error:
The Index Phase Error $\left(\Delta \Phi_{I}\right)$ describes the change in the Index Pulse position after assembly with respect to the A and B channels over the recommended operating conditions.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{5}	-55	100	${ }^{\circ} \mathrm{Celsins}$	
Operating Temperature	$T_{\text {A }}$	-55	85	${ }^{\text {a }}$ Celsius	See Note 1
Vibration			20	g	See Note 1
Shaft Axial Play			. 58 (23)	$\begin{gathered} \text { mm } \begin{array}{c} \text { inch } / 1000) \\ \operatorname{TiR} \end{array} \end{gathered}$	
Shaft Eccentricity Plus Radial Play	\cdots		. 25 (10)	$\begin{gathered} \mathrm{mm}(\mathrm{inch} / 1000) \\ T \mathrm{TR} \end{gathered}$	Movement should belimited even under shock conditions.
Supply Voltage.	Vcc	-0.5	7	Volts	
Output Voltage	V_{0}	-0.5	VCC	Volts	
Output Current	10	-1	15	mA	
Velocity			12.000	R.P.M.	
Acceleration	α		250,000	Rad. Sec^{-2}	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Temperature	T	-20	85	${ }^{-}$Celsius	Non-condensing atmos.
Supply Voltage	V_{cc}	4.5	5.5	Volt	Ripple < $100 \mathrm{mV} \mathrm{V}_{p-\mathrm{p}}$
Code Wheel Gap			1.1(45)	mm (inch/1000)	Nominal gap $=$ $0.76 \mathrm{~mm}(.030 \mathrm{in}$) when shaft is at minimum gap position.
Shaft Perpendicularity Plus Axial Play			0.25 (10)	$\begin{gathered} \mathrm{mm}(\text { inch/ } 1000) \\ \text { TIR } \end{gathered}$	
Shaft Eccentricity Plus Radial Play	'		0.04 (1.5)	$\begin{gathered} \mathrm{mm}(\text { inch } / 1000) \\ \text { TIR } \end{gathered}$	10 mm (0.4 inch) from mounting surface.
Load Capacitance	CL		100	pF	

Encoding Characteristics

The specifications below apply within the recommended operating conditions and reflect performance at 1000 cycles per revolution ($\mathrm{N}=1000$).

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes (See Definitions)
Position Error	$\Delta \Theta$		7	18	Minutes of Arc	1 Cycle $=21.6$ Minutes See Figure 5.
Cycle Error	ΔC		3	5.5	Electrical deg.	
Max. Count Frequency	$\mathrm{fmax}^{\text {P }}$	130,000	200,000		Hertz	$f=$ Velocity (RPM) \times N/60
Pulse Width Error	$\Delta \mathrm{P}$		12		Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 2
Phase Sensitivity to Eccentricity			$\begin{aligned} & 227 \\ & (5.8) \end{aligned}$		Elec. deg. $/ \mathrm{mm}$ (Elec. deg. $/ \mathrm{mil}$)	$\mathrm{mil}=\mathrm{inch} / 1000$
Phase Sensitivity to Axial Play			$\begin{aligned} & 20 \\ & (.5) \end{aligned}$		Elec. deg. $/ \mathrm{mm}$ (Elec. deg.fmil)	$\mathrm{mit}=$ inch $/ 1000$
Logic State Width Error	18		25	-	Electrical deg.	$T=25^{\circ} \mathrm{C} . f=8 \mathrm{KHz}$ See Note 2
Index Pulse Width	Pl		360		Electrical deg.	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{f}=8 \mathrm{KHz}$ See Note 3
Index Phase Error	$\Delta \Phi$		0	17	Electrical deg.	See Notes 4, 5
Index Pulse Adjustment Range			± 165		Electrical deg.	

Mechanical Characteristics

Parameter,	Symbol	Dimension	Tolerance	Units	Notes
Outine Dimensions	.	See Mech. Dwg.			
Code Wheel Avaliable to Fit the Following Standard Shaft Diameters	'ar:		+.000 -.015 +0000 -.0007	mrn inches	\therefore
Moment of Inertia	'3.	$\left.7.71110 \times 10^{-6}\right)$	\because :	$9 \mathrm{~cm}^{2} 102-\mathrm{in}-\mathrm{s}^{2}$	
Required Shatt Length		$15.9(0.625)$	$\pm 0.6(\pm .024)$	mm finches)	See Figure 10. Shaft at minimum length position.
Bolt Circle		46.011 .8111	$\pm 0.13 \pm 005$	mm tinches	See Figure 10.
Mounting Screw Size	-	$\begin{gathered} 2.5 \times 0.45 \times 5 \\ 0 R \\ \# 2-56 \times 3 / 16 \\ \text { Pan Head } \end{gathered}$		mm inches	-

Electrical Characteristics
When operating within the recommended operating range.
Electrical Characteristics over Recommended Operating Range (Typical at $25^{\circ} \mathrm{C}$).

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	lec		21	40	mA	HEDS-6000 (2 Channel)
			36	60		HEDS-6010 3 Channel:
High Level Output Voltage	Von.	2.4			V	$\mathrm{lOH}=-40 \mu \mathrm{~A} \mathrm{Max}$.
Low Level Output Voltage	Vow			0.4	V	$10 \mathrm{~L}=1.6 \mathrm{~mA}$
Rise Time	4	,	0.5		μs	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=11 \mathrm{~K}$
Fall Time	${ }_{\text {\% }}$		0.2		$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{RL}=11 \mathrm{~K}$
Cable Capacitance	CCO		12		pF/meter	Output Lead to Ground

NOTES:

1. The structural parts of the HEDS-6000 have been successfully tested to 20 g . In a high vibration environment use is limited at low frequencies (high displacement) by cable fatigue and at high frequencies by code wheel resonances. Resonant frequency depends on code wheel material and number of counts per revolution. For temperatures below $-20^{\circ} \mathrm{C}$ the ribbon cable becomes brittle and sensitive to displacements. Consult factory for further information. See Application Note 1011.
2. In a properly assembled lot 99% of the units, when run at $25^{\circ} \mathrm{C}$ and 8 KHz , should exhibit a pulse width error less than 32 electrical degrees, and a state width error less than 40 electrical degrees. To calculate errors at other speeds and temperatures refer to Figures 1 and 2 . To determine the total pulse width or state width errors add the value specified under encoding characteristics or in this note to the change in $\Delta \mathrm{P}$ or $\Delta \mathrm{S}$ as specified in Figures 1 and 2.
3. In a properly assembled lot, 99% of the units when run at $25^{\circ} \mathrm{C}$ and 8 KHz should exhibit an index pulse width greater than 260 electrical degrees and less than 460 electrical degrees. To calculate index pulse widths at other speeds and temperatures refer to Figures 3 and 4. To determine the total index pulse width add the values specified under encoding characteristics or in this note to the change in Pl_{1} as specified in Figures 3 or 4.
4. Index phase is adjusted at assembly. Index phase error is the maximum change in index phase expected over the full temperature range and up to 50 KHz , after assembly adjustment of the index pulse position has been made.
5. The index phase error specification ($\Delta \Phi_{l}$) indicates the expected shift in index pulse position with respect to channels A and B over the range of recommended operating conditions. When the index pulse is centered on the low-low states of channels A and B as shown on page 2, a unique P_{0} state can be defined once per revolution within the recommended operating conditions. Figure 6 shows how Po can be derived from channel A, B, and I outputs.

Figure 1. Typical Change in Pulse Width Error or in State Width Error due to Speed and Temperature

Figure 3. Typical Change in Index Pulse Width Due to Speed and Temperature

Figure 5. Position Error vs. Shaft Eccentricity

ELECTRICAL DEGREES

Figure 2. Maximum Change in Pulse Width Error or in State Width Error Due to Speed and Temperature

Figure 4. Maximum Change in Index Pulse Width Due to Speed and Temperature

DASHED LINES REPRESENT AN OPTIONAL INDEX SUMMING CIRCUIT. STANDARD 74 SERIES COULD ALSO BE USED TO IMPLEMENT THIS CIRCUIT.

Figure 6. Recommended Interface Circuit

Figure 7. Connector Specifications

Figure 9. Code Wheel

Figure 8. HEDS-6000 Series Encoder Kit

MILLIMETRE $\mathrm{X} \pm 0.5 . \mathrm{XX} \pm 0.10$
(INCHES) $(. X X \pm 0.02 . X X X \pm 0.005$)
Figure 10. Mounting Requirements

Ordering Information

Shaft Encoder Kit Assembly see Application Note 1011 tor turther discussion.

The kit assembly requires four major steps: a. securing the body, b. gap setting, c. code wheel insertion, d. Phase and Index adjustments (HEDS-6010). The method below provides a quick and reliable assembly. Large volume assembly may suggest modifications to this procedure using custom designed tooling. For a limited prototype evaluation general purpose tools may be used to carry out the same basic steps. Note - the code wheel to phase plate gap should be set between .015 in and .045 in .

WARNING: THE ADHESIVES USED MAY BE HARMFUL. CONSULT THE MANUFACTURER'S RECOMMENDATIONS.

READ THE INSTRUCTIONS TO THE END BEFORE STARTING ASSEMBLY.

1.0 SUGGESTED MATERIALS

1.1 Encoder Parts

Encoder Body
Emitter End Plate
Code Wheel
1.2 Assembly Materials

RTV-General Electric 162
-Dow Corning 3145
Acetone
Mounting Screws (2)
1.3 Assembly Tools
a) Torque limiting screwdriver, 0.5 cm kg . ($7.0 \mathrm{in} . \mathrm{oz}$.).
b) Straight edge. Straight within $0.1 \mathrm{~mm}(0.004 \mathrm{in}$.)
c) Oscilloscope. (Phase meter may be optionally used for two channel calibration).
d) Hub puller. Grip-O-Matic-OTC \#1000 2-jaw or equivalent. Optional tool for removing code wheels.
e) Syringe applicator for RTV.
f) Torque limiting Allen wrench. 0.5 cm kg ($7.0 \mathrm{in} . \mathrm{oz}$.) 0.035 in . hex.
1.4 Suggested Circuits
a) Suggested circuit for index adjustment (HEDS-6010).

For optimal index phase adjust encoder position to equalize T_{1} and T_{2} pulse widths.
b) Phase Meter Circuit Recommended for volume assembly. Please see Application Note 1011 for details.

2.0 SURFACE PREPARATION

THE ELAPSED TIME BETWEEN THIS STEP AND THE COMPLETION OFSTEP 8 SHOULD NOTEXCEED 1/2 HOUR.
2.1 Clean and degrease with acetone the mounting surface and shaft making sure to keep the acetone away from the motor bearings.
2.2 Load the syringe with RTV.
2.3 Apply RTV into screw threads on mounting surface. Apply more RTV on the surface by forming a daisy ring pattern connecting the screw holes as shown above.

CAUTION: KEEP RTV AWAY FROM THE SHAFT BEARING.

3.0 ENCODER BODY ATTACHMENT

3.1 Place the encoder body on the mounting surface and slowly rotate the body to spread the adhesive. Align the mounting screw holes with the holes in the body base.
3.2 Place the two mounting screws into the holding bosses in the body base, as shown.
3.3 Thread the screws into the mounting holes and tighten both to 0.5 cm kg (7.0 in .0 oz .) using the torque limiting screwdriver. (See notes A and B).
3.4 It is not necessary to center the encoder body at this time.

Notes:

a) At this torque value, the encoder body should slide on the mounting surface only with considerable thumb pressure.
b) The torque limiting screwdriver should be periodically calibrated for proper torque.

4.0 APPLICATION OF RTV TO THE HUB

CAUTION: HANDLE THE CODE WHEEL WITH CARE.
4.1 Make sure that the hex screw on the hub does not enter into the hub bore.
4.2 Apply a small amount of RTV onto the inner surface of the hub bore.
4.3 Spread the RTV evenly inside the entire hub bore.
4.4 Holding the code wheel by its hub, slide it down onto the shaft until the shaft extends at least halfway into the bore.

5.0 CODE WHEEL POSITIONING

5.1 Position the Allen torque wrench into the hex set screw in the hub, as shown.
5.2 Pull the shaft end down to bottom out axial shaft play. Using the straight edge, push the top of the hub even with the top of the encoder body. The Allen wrench should be used during this movement to apply a slight upward force to the hub, insuring continuous contact between the straight edge and the hub.
5.3 Tighten the hex set screw to approximately 0.5 cm . kg. (7.0 in . oz.) and remove the straight edge.
5.4 The code wheel gap may now be visually inspected to check against gross errors. A nominal gap of 0.8 mm (0.030 in .) should be maintained.

6.0 EMITTER END PLATE

6.1 Visually check that the wire pins in the encoder body are straight and straighten if necessary.
6.2 Align the emitter end plate so that the two flanges straddle the track of the encoder body where the wire pins are located. Press the end plate until it snaps into place.
6.3 Visually check to see if the end plate is properly seated.

7.0 PHASE ADJUSTMENT

7.1 The following procedure should be followed when phase adjusting channels A and B .
7.2 Connect the encoder cable.
7.3 Run the motor. Phase corresponds to motor direction. See output waveforms and definitions. Using either an oscilloscope or a phase meter, adjust the encoder for minimum phase error by sliding the encoder forward or backward on the mounting surface as shown above. See Application Note 1011 for the phase meter circuit.
7.4 No stress should be applied to the encoder package until the RTV cures. Cure time is 2 hours @ $70^{\circ} \mathrm{C}$.

Note: After mounting, the encoder should be free from mechanical forces that could cause a shift in the encoder's position relative to its mounting surface.

8.0 INDEX PULSE ADJUSTMENT (HEDS-6010)

8.1 Some applications require that the index pulse be aligned with the main data channels. The index pulse position and the phase must be adjusted simultaneously. This procedure sets index phase to zero.
8.2 Connect the encoder cable.
8.3 Run the motor. Adjust for minimum phase error using an oscilloscope or phase meter. (See 7.3).
8.4 Using an oscilloscope and the circuit shown in 1.4, set the trigger for the falling edge of the Pi output. Adjust the index pulse so that T_{1} and T_{2} are equal in width. The physical adjustment is a side to side motion as shown by the arrow.
8.5 Recheck the phase adjustment.
8.6 Repeat steps 8.3-8.5 until both phase and index pulse position are as desired.
8.7 No stress should be applied to the encoder package until the RTV has cured. Cure time: 2 hours @ $70^{\circ} \mathrm{C}$.

Solici Stote lamps

- Low Current Lamp

- High Efficiency Red, Yellow, and Green Lamps
- T-1 3/4 and T-1 Lamps
- Rectangular and Subminiature Lamps
- Integrated Lamps
- Hermetically Sealed Lamps
- Panel Mounting Kit
- Emitters

Solid Stare Lamps

High intensity and high quality performance characterize Hewlett-Packard's broad line of LED lamp offerings. Recent product introductions such as the Ultra-Bright family of lamps are examples of HP leadership in this field.

Hewlett-Packard's LED lamps are available in a wide variety of P.C. board-mountable plastic and hermetic packages to satisfy almost any application. Package styles include the traditional T-1 3/4 and T-1, high and low dome, as well as subminiature (single and tape and reel), rectangular, and panel mountable hermetic packages. Military screening procedures apply to all hermetic lamps.

Recently Hewlett-Packard has converted its part numbering system for LED Lamps from a 5082 prefix to the HLMP system. Please refer to the alphanumeric index for cross reference.

Low Current Lamps

Ultra Bright Lamps

High Efficiency Red，Yellow，High Performance Green LED Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2[1]$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No．	Color［2］	Package	Lens				
ㅁ)	HLMP－3300	HighEfficiencyRed（626 nm）	T－13／4［3］	RedDiffused	3.5 mcd ＠ 10 mA	90°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	231
	HLMP－3301				7.0 mcd ＠ 10 mA			
	HLMP－4600				$\begin{aligned} & 10.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	32°		228
	HLMP－4601				$\begin{aligned} & 20.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$			
	HLMP－3315			Red Non－Diffused	$\begin{aligned} & 18.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	35°		231
	HLMP－3316				$\begin{aligned} & \hline 30.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$			
	HLMP－3400	Yellow （ 585 nm ）		Yellow Diffused	$\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	90°		
	HLMP－3401				$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$			
	HLMP－3415			YellowNon－Diffused	$\begin{aligned} & \hline 18.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$	35°		
	HLMP－3416				$\begin{aligned} & \hline 30.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP－3502	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$		Green Diffused	$\begin{array}{r} 6.0 \mathrm{mcd} \\ @ 20 \mathrm{~mA} \end{array}$	75°	$\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP－3507				$\begin{aligned} & 12.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$			
	HLMP－3517			Green Non－Diffused	$\begin{aligned} & 25.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	24°		
	HLMP－3519				50.0 mcd ＠ 20 mA			
	HLMP-4610 [1]	High Efficiency Red $(626 \mathrm{~nm})$	Heavy Leadframe	Red Diffused	$\begin{aligned} & 10 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	32°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	228
	HLMP－3350	High Efficiency Red （ 626 nm ）	$\mathrm{T}-13 / 4$ Low Profile	Red Diffused	$\begin{aligned} & 3.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	50°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	235
	HLMP－3351				$\begin{aligned} & 7.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$			
	HLMP－3365			Red Non－Diffused	$\begin{aligned} & 10.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	45°		
	HLMP－3366				$\begin{aligned} & 18.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$			
	HLMP－3450	Yellow$(585 \mathrm{~nm})$		Yellow Diffused	$\begin{array}{r} 4.0 \mathrm{mcd} \\ @ 10 \mathrm{~mA} \\ \hline \end{array}$	50°		
	HLMP－3451				$\begin{aligned} & 10.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \\ & \hline \end{aligned}$			
	HLMP－3465			Yellow Non－Diffused	$\begin{aligned} & 12.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	45°		
	HLMP－3466				$\begin{aligned} & 18.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP－3553	$\begin{aligned} & \text { Green } \\ & (572 \mathrm{~nm}) \end{aligned}$		$\begin{aligned} & \text { Green } \\ & \text { Diffused } \end{aligned}$	$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$	50°	$\begin{gathered} 2.4 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP－3554				$\begin{aligned} & 15.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \\ & \hline \end{aligned}$			
	HLMP－3567			Green Non－Diffused	15.0 mcd ＠ 20 mA	40°		
	HLMP－3568				$\begin{aligned} & 35.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$			

High Efficiency Red, Yellow, High Performance Green LED Lamps (continued)

High Efficiency Red, Yellow, High Performance Green LED Lamps (continued)

Device		Description				Typical Luminous Intensity	$2 \Theta 1 / 2[1]$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color [2]	Package	*	Lens				
	HLMP-6653 HLMP-6654 HLMP-6655 HLMP-6656 HLMP-6658		Sub- miniature Array	$\begin{aligned} & \hline 3 \\ & 4 \\ & 5 \\ & 6 \\ & 8 \end{aligned}$		3.0 mcd @ 10 mA	80°	$\begin{aligned} & \hline 2.2 \text { Volts } \\ & @ 10 \mathrm{~mA} \end{aligned}$	255
	HLMP-6753 HLMP-6754 HLMP-6755 HLMP-6756 HLMP-6758	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$	Sub- miniature Array	$\begin{array}{\|l} \hline 3 \\ 4 \\ 5 \\ 6 \\ 8 \end{array}$	Yellow Diffused		90°		
	HLMP-6853 HLMP-6854 HLMP-6855 HLMP-6856 HLMP-6858	Green $(569 \mathrm{~nm})$	Sub- miniature Array	3 4 5 6 8	Green Diffused		70°	$\begin{aligned} & 2.3 \text { Volts } \\ & @ 10 \mathrm{~mA} \end{aligned}$	

* Array Length

Red LED Lamps

Red LED Lamps (continued)

Device		Description			Typical Luminous Intensity	2 $\mathrm{S}_{1 / 2}[1]$	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color [2]	Package	Lens				
	HLMP-1000	$\begin{gathered} \text { Red } \\ (640 \mathrm{~nm}) \end{gathered}$	T-1 [4]	Red Diffused	$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	125°	$\begin{aligned} & 1.6 \text { Volts } \\ & @ 20 \mathrm{~mA} \end{aligned}$	250
	HLMP-1002				$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$			
	HLMP-1080			Untinted Diffused	$\begin{array}{r} 1.5 \mathrm{mcd} \\ @ 20 \mathrm{~mA} \\ \hline \end{array}$			
	HLMP-1071			Untinted Non-Diffused	$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	80°		
(1)	HLMP-1200		$\begin{gathered} \text { T-1 } \\ \text { Low Profile [4] } \end{gathered}$	Untinted Non-Diffused	$\begin{array}{r} 1.0 \mathrm{mcd} \\ @ 20 \mathrm{~mA} \\ \hline \end{array}$	120°		
	HLMP-1201				$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$			
$\square=5$	HLMP-6000		Subminiature	Red Diffused	$1.0 \mathrm{mcd}$	45°	$\begin{aligned} & 1.6 \text { Volts } \\ & @ 10 \mathrm{~mA} \end{aligned}$	259
$\square \square \square$	HLMP-6001				$\begin{aligned} & 1.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-6203 HLMP-6204 HLMP-6205 HLMP-6206 HLMP-6208		$\stackrel{*}{3}$ Sub- 3 Miniature 4 5 6 8 8	Red Diffused	1.2 mcd @ 10 mA			255

*Array Length

Integrated LED Lamps

Device		Description			Typical Luminous Intensity	$2 \theta^{1 / 2}[1]$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color ${ }^{\text {[2] }}$	Package	Lens				
	HLMP-1100	$\begin{gathered} \text { Red } \\ (640 \mathrm{~nm}) \end{gathered}$	T-1 [4]	Tinted Diffused	$\begin{gathered} 1.5 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$	60°	$\begin{aligned} & 16 \mathrm{~mA} \\ & @ \\ & \mathrm{5V} \end{aligned}$	250
	HLMP-1120			Untinted Diffused		70°		265
	HLMP-1142			Red Diffused	$\begin{aligned} & 0.7 \mathrm{mcd} \\ & @ 2.75 \mathrm{~V} \end{aligned}$	95°	$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 2.75 \mathrm{~V} \end{aligned}$	269
	HLMP-0280		T-13/4[3]		$\begin{gathered} 2.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$	58°	$\begin{gathered} 16 \mathrm{~mA} \\ @ \mathrm{5V} \end{gathered}$	265
	HLMP-3105				$\begin{gathered} 2.0 \mathrm{mcd} \\ @ 5 \mathrm{~V} \end{gathered}$	90°	$\begin{gathered} 20 \mathrm{~mA} \\ @ 5 \mathrm{~V} \end{gathered}$	
	HLMP-3112						14 mA @ 12V	
	HLMP-3600	High Eff. Red (626 nm)			$\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		15 mA	
	HLMP-3650	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$		Yellow Diffused				
	HLMP-3680	$\begin{gathered} \hline \text { Green } \\ (569 \mathrm{~nm}) \\ \hline \end{gathered}$		Green Diffused				
$\square=O=$	HLMP-6600	HighEfficiencyRed$(626 \mathrm{~nm})$	Subminiature Radial Leads	RedDiffused	2.4 mcd @ 5V		$\begin{aligned} & 9.6 \mathrm{~mA} \\ & @ \mathrm{5V} \end{aligned}$	263
$\square \square \square \square$	HLMP-6620				$\begin{aligned} & 0.6 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 3.5 \mathrm{~mA} \\ @ 5 \mathrm{~V} \end{gathered}$	

NOTES: 1. $\Theta \frac{1}{2}$ is the off-axis angle at which the luminous intensity is half the axial luminous iritensity.
2. Dominant Wavelength
3. Panel Mountable. For Panel Mounting Kit, see page 239.
4. PC Board Mountable
5. Military Approved and qualified for High Reliability Applications.
6. Wire Wrappable Leads.

Hermetically Sealed and High Reliability LED Lamps

Emitter Components

| Package Outline Drawing | Part No. | $\begin{array}{c}\text { Description }\end{array}$ | Features |
| :--- | :--- | :--- | :--- | :--- |$]$| No. |
| :--- |

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Peak Wavelength.
3. PC Board Mountable.
4. Military Approval and qualified for High Reliability Applications. l-01 suffix is JAN level, -02 suffix is JANTX level).

(ip) HEWLETT PACKARD

LOW CURRENT LED LAMP SERIES

T-1 3/4 (5mm) HLMP-4700,-4719 T-1 (3mm) SUBMINIATURE
 HLMP-1700, -1719
 HLMP-7000, -7019

TECHNICAL DATA JANUARY 1983

Features

- LOW POWER
- HIGH EFFICIENCY
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- WIDE VIEWING ANGLE
- CHOICE OF PACKAGE STYLES
- CHOICE OF COLORS

Applications

- LOW POWER DC CIRCUITS
- TELECOMMUNICATIONS INDICATORS
- PORTABLE EQUIPMENT
- KEYBOARD INDICATORS

Description

These tinted diffused LED lamps were designed and optimized specifically for low DC current operation. Luminous intensity and forward voltage are tested at 2 mA to assure consistent brightness at TTL output current levels.

Package Dimensions

HLMP-4700, $\mathbf{- 4 7 1 9}$

The semiconductor material is Gallium Arsenide Phosphide on Gallium Phosphide. The HLMP-4700, -1700, -7000 are red LED's. The HLMP-4719, -1719, -7019 are yellow LED's.

HLMP-1700, -1719

HLMP-7000, $\mathbf{- 7 0 1 9}$

NOTES:

1. ALL Dimensions are in millmetres (inches)
2. ARI EPOXY GAINISCUS MAY EXTEND ABOUT
$1 \mathrm{~mm}\left(0.040^{\circ}\right)$ DOWN THE LEADS.

AXIAL LUMINOUS INTENSITY AND VIEWING ANGLE @ $25^{\circ} \mathrm{C}$

Part Number HLMP	Package Description	Color	IV (med) @ 2 mADC		$201 / 2[1]$	Package Outline
			Min.	Typ.		
-4700	T-13/4	Red	1.2	2.0	50°	A
-4719	Tinted Diffused	Yellow	1.2	1.8		
-1700	T-1 Tinted $/$	Red	1.0	1.8	50°	8
-1719	Diffused	Yellow	1.0	1.6		
-7000	Subminiature	Red	0.4	0.8	70°	0
-7019	Tinted Diffused	Yellow	0.4	0.6		

Notes:

1. $\Theta 1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

Absolute Maximum Ratings

Parameter	Maximum Rating		Units
Power Dissipation (Derate linearly from $92^{\circ} \mathrm{C}$ at $1.0 \mathrm{~mA}^{\circ} \mathrm{C}$	Red	27	mW
	Yellow	24	
DC and Peak Forward Current	7		mA
Transient Forward Current (10 msec pulse)	500		mA
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$		
Lead Soldering Temperature (1.6 mm 10.063 in$]$ from body)	$260^{\circ} \mathrm{C}$ for 5 Seconds ($\mathrm{T}-1, \mathrm{~T}-13 / 4$) $260^{\circ} \mathrm{C}$ for 3 Seconds (Subminiature)		

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	T-13/4	T-1	Subminiature	Min.	Typ.	Max.	Units	Test Condition
V_{F}	Forward Voltage	$\begin{aligned} & 4700 \\ & 4719 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1719 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7019 \end{aligned}$		$\begin{aligned} & 1.8 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.7 \end{aligned}$	V	2 mA
BVA	Reverse Breakdown	$\begin{aligned} & 4700 \\ & 4719 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1719 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7019 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$		V	$\mathrm{If}_{\mathrm{R}}=50 \mu \mathrm{~A}$
λp	Peak Wavelength	$\begin{aligned} & 4700 \\ & 4719 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1719 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7019 \end{aligned}$		$\begin{aligned} & 635 \\ & 583 \end{aligned}$		nm	Measurement at peak
λD	Dominant Wavelength	$\begin{aligned} & 4700 \\ & 4719 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1719 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7019 \end{aligned}$		$\begin{aligned} & 629 \\ & 585 \end{aligned}$		nm	Note 2
Ts	Speed of Response	$\begin{aligned} & 4700 \\ & 4719 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1719 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7019 \end{aligned}$		$\begin{aligned} & 100 \\ & 200 \end{aligned}$		ns	
C	Capacitance	$\begin{aligned} & 4700 \\ & 4719 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1719 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7019 \end{aligned}$		$\begin{aligned} & 4 \\ & 4 \end{aligned}$		pF	$\begin{aligned} & V_{F}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$
Quc	Thermal Resistance	$\begin{aligned} & 4700 \\ & 4719 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1719 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7019 \end{aligned}$		190		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode lead at 0.079 mm (0.031 in) from body
η	Luminous Efficacy	$\begin{aligned} & 4700 \\ & 4719 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1719 \end{aligned}$	$\begin{aligned} & 7000 \\ & 7019 \end{aligned}$		$\begin{aligned} & 147 \\ & 570 \end{aligned}$		Lumens/ Watt	Note 3

Notes:
2. The dominant wavelength, λ_{D}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, l_{e}, in watts/steradian, may be found from the equation $l_{e}=l_{v} / \eta_{v}$, where l_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength

Figure 2. Forward Current vs. Forward Voltage

Figure 4. Relative Luminous Intensity vs. Angular Displacement for T-1 3/4 Lamp

Figure 3. Relative Luminous Intensity vs. Forward Current

Figure 5. Relative Luminous Intensity vs. Angular Displacement for T-1 Lamp

Figure 6. Relative Luminous Intensity vs. Angular Displacement for Subminiature Lamp

ULTRA-BRIGHT LED LAMP SERIES

T-1 3/4 HLMP-3750,-3850,-3950
T-1 3/4 LOW PROFILE HLMP-3390,-3490,-3590
T-1 HLMP-1340,-1440,-1540

TECHNICAL DATA JANUARY 1983

Features

- IMPROVED BRIGHTNESS
- IMPROVED COLOR PERFORMANCE
- AVAILABLE IN POPULAR T-1 and T-1 3/4 PACKAGES
- NEW STURDY LEADS
- IC COMPATIBLE/LOW CURRENT CAPABILITY
- RELIABLE AND RUGGED
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red
High Brightness Yellow
High Performance Green

Description

These clear, non-diffused lamps out perform conventional LED lamps. By utilizing new higher intensity material, we achieve superior product performance.
The HLMP-3750/-3390/-1340 Series Lamps are Gallium Arsenide Phosphide on Gallium Phosphide red light emitting diodes. The HLMP-3850/-3490/-1440 Series are Gallium Arsenide Phosphide on Gallium Phosphide yellow light emitting diodes. The HLMP-3950/-3590/-1540 Series lamps are Gallium Phosphide green light emitting diodes.

Applications

- LIGHTED SWITCHES
- BACKLIGHTING FRONT PANELS
- LIGHT PIPE SOURCES
- KEYBOARD INDICATORS

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

Part Number HLMP.	Package Description	Color	$\begin{gathered} \operatorname{lv}(\mathrm{mcd}) \\ 20 \mathrm{mADC} \end{gathered}$		$2(1 / 2$ Note 1.	Package Outline
			Min.	Typ.		
3750	T-1 3/4	Red	80	125	24°	A
3850		Yellow	80	140	24°	A
3950		Green	80	120	24°	A
3390	T-1 3/4 Low Profile	Red	35	55	32°	B
3490		Yellow	35	55	32°	B
3590		Green	35	55	32°	B
1340	T-1	Red	24	35	45°	C
1440		Yellow	24	35	45°	C
1540		Green	24	35	45°	C

NOTE:

1. $\Theta 1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

Package Dimensions

PACKAGE OUTLINE "A" HLMP-3750, 3850, 3950

PACKAGE OUTLINE "B" HLMP-3390, 3490, 3590

PACKAGE OUTLINE "C" HLMP-1340, 1440, 1540

NOTES:

1. All dimensions are in millimeters (inches).
2. Silver plated leads. See Application Bulletin 3.
3. An epoxy meniscus may extend about $1 \mathrm{~mm}\left(0.40^{\prime \prime}\right)$ down the leads.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Red	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{1+1}$	25	20	25	mA
DC Currenti2	30	20	30	mA
Power Dissipation ${ }^{13}$	135	85	135	mW
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$			
Lead Soldering Temperature ($1.6 \mathrm{~mm}(0.063 \mathrm{in}$.$) from Body)$	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 2 to establisin pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	T-1 3/4	T-1 3/4 Low Dame	T-1	Min.	Typ.	Max.	Units	Test Conditions
λ_{p}	Peak Wavelength	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \\ & \hline \end{aligned}$		$\begin{aligned} & 635 \\ & 583 \\ & 565 \\ & \hline \end{aligned}$		nm	Measurement at Peak
λ_{d}	Dominant Wavelength	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3990 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \\ & \hline \end{aligned}$		$\begin{aligned} & 629 \\ & 585 \\ & 571 \end{aligned}$		nm	Note 1
Ts	Speed of Response	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \\ & \hline \end{aligned}$		$\begin{gathered} 90 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \\ & 18 \end{aligned}$		pF	$V_{F}=0 ; 1=1 \mathrm{MHz}$
Quc	Thermal Resistance	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{gathered} 140 \\ 140 \\ 140 \\ 95 \\ 95 \\ 95 \\ \hline \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead at 0.79 mm (0.031 in.) from Body
V_{F}	Forward Voltage	$\begin{array}{r} 3750 \\ 3850 \\ 3950 \\ \hline \end{array}$	$\begin{array}{r} 3390 \\ 3490 \\ 3590 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1340 \\ 1440 \\ 1540 \\ \hline \end{array}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	V	$I_{F}=20 \mathrm{~mA}$ (Figure 3)
BVR	Reverse Breakdown Voltage	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \\ & \hline \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \\ & \hline \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \\ & \hline \end{aligned}$	5.0			V	$\mathrm{I}_{\mathrm{F}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 147 \\ & 570 \\ & 630 \\ & \hline \end{aligned}$		lumens/ watt	Note 2

NOTES:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Red, Yellow and Green

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

IDC - DC CURRENT PER LED - mA
Figure 4. Relative Luminous Intensity vs. Forward Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Lamp.

V_{F} - FORWARD VOLTAGE - V
Figure 3. Forward Current vs. Forward Voltage.

IPEAK - PEAK CURRENT PER LED - mA
Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 7. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Low Profile Lamp.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. T-1 Lamp.

HIGH BRIGHTNESS
 DIFFUSED LED LAMPS

HIGH EFFICIENCY RED • HLMP-4600 SERIES

TECHNICAL DATA JANUARY 1983

Features

- HIGH INTENSITY
- HIGH PERFORMANCE RED LAMP
- POPULAR T-13/4 PACKAGE
- LIGHT OUTPUT CATEGORIES
- DIFFUSED LENS/NARROW VIEWING ANGLE
- GENERAL PURPOSE AND WIRE WRAPPABLE LEADS
- IC COMPATIBLE/LOW CURRENT REQUIREMENTS
- RELIABLE AND RUGGED
- COMPATIBLE WITH HLMP-0103 PANEL MOUNT

Description

The HLMP-4600 Series lamps are Gallium Arsenide Phosphide on Gallium Phosphide diodes emitting red light.

General purpose and selected brightness versions of the diffused lens type are available.
The HLMP-4600/-4601 are high performance red T-1 3/4 lamps made to be used in illuminator and general purpose applications. The HLMP-4610 is a 4600 lamp with .025" leads.

Package Dimensions

Part Number HLMP-	Application	Lens	Color
$4600 /$ 4610	Indicator - General Purpose	Tinted Diffused	High Efficiency Red
4601	Indicator - High Brightness	Tinted Diffused	High Efficiency Red

HLMP-4600/01

HLMP-4610

[^6](040") DOWN FHE ŁEADS

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parame'er	4600 Series	Units
Power Dissipation ${ }^{11}$	135	mW
DC Forward Current ${ }^{127}$	30	mA
Average Forward Current ${ }^{3 / 3}$	25	mA
Peak Operating Forward Current	90	mA
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Lead Solder Temperature (1.6 mm 10.063 inch) below package base)	$260^{\circ} \mathrm{C}$ for 5 seconds	

NOTES:

$\begin{array}{ll}\text { 1. Derate from } 25^{\circ} \mathrm{C} \text { at } 1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \text {. } & \text { 3. See Figure } 5 \text { to establish pulsed operating conditions. } \\ \text { 2. Derate from } 50^{\circ} \mathrm{C} \text { at } 0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C} \text {. } & \end{array}$
2. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device 5082-	Min.	Typ.	Max.	Units	Test Conditions
Iv	Luminous Intensity	4600/10	2.0	4.0		mcd	$1 \mathrm{~F}=10 \mathrm{~mA}$ ($\mathrm{Fig}, 3$)
				10.0		med	$I f F^{\prime}=20 \mathrm{~mA}$
		4601	4.0	8.0		med	If $=10 \mathrm{~mA}$
				20.0		mod	IF $=20 \mathrm{~mA}$
$2 \Theta_{1 / 2}$	Viewing Angle	4600/01/10		32		Deg	$\begin{aligned} & \text { IF }=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Fig. } 6 \text {) } \end{aligned}$
入PEAK	Peak Wavelength	4600/01/10		635		$n \mathrm{~m}$	Measurement at Peak (Fig. 1)
Ad	Dominant Wavelength	4600/01/10		626		nm	See Note 2
TS	Speed of Response	4600/01/10		90		ns	
C	Capacitance	4600/01/10		16		pF	$V_{F}=0, \mathrm{f}=1 \mathrm{MHz}$
Ojc	Thermal Resistance	4600/01/10		135		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead at Seating Plane
V_{F}	Forward Voltage	4600/01/10	1.5	2.2	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 2)
VBR	Reverse Breakdown Voltage	4600/01/10	5.0			\checkmark	$\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η	Luminous Efficacy	4600/01/10		147		lumens/ watt	See Note 3

Notes:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, l_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength

High Efficiency Red HLMP-4600 Series

Figure 2. Forward Current vs Forward Voltage Characteristics.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement

Features

－HIGH INTENSITY
－CHOICE OF 3 BRIGHT COLORS High Efficiency Red Yellow
High Performance Green
－POPULAR T－134 DIAMETER PACKAGE
－LIGHT OUTPUT CATEGORIES
－WIDE VIEWING ANGLE AND NARROW VIEWING ANGLE TYPES
－GENERAL PURPOSE LEADS
－IC COMPATIBLE／LOW CURRENT REQUIREMENTS

－RELIABLE AND RUGGED

Description

The HLMP－3300 and the HLMP－3400 Series lamps are Gallium Arsenide Phosphide on Gallium Phosphide diodes emitting red and yellow light respectively．The HLMP－3500 Series lamps are green light emitting Gallium Phosphide diodes．
General purpose and selected brightness versions of both the diffused and non－diffused lens type are available in each family．

Package Dimensions

Part Number HLMP．	Application	Lens	Color
3300	Indicator－ General Purpose	Diffused	High Efficiency Red
3301	Indicator－ High Ambient	Wide Angle	
3315	lluminator／Point Source	Non Diffused Narrow Angle	
3316	Illuminator／High Brightness		
3400	Indicator General Purpose	Diffused Wide Angle	Yellow
3401	Indicator－ High Ambient		
3415	Illuminator／Point Source	Non Diffused Narrow Angle	
3416	Illuminatorfl－figh Brightness		
3502	Indicator－ General Purpose	Diffused Wide Angle	Green
3507	Indicator－ High Ambient		
3517	Illuminator Point Source	Non Diffused Narrow Angle	
3519	Illuminator／High Brightness		

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP.	Min.	Typ.	Max.	Units	Test Conditions
Iv	Luminous Intensity	$\begin{aligned} & 3300 \\ & 3301 \\ & 3315 \\ & 3316 \end{aligned}$	$\begin{gathered} 2.0 \\ 4.0 \\ 12.0 \\ 20.0 \end{gathered}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 18.0 \\ 30.0 \end{gathered}$		mod	$\mathrm{IF}=10 \mathrm{~mA}$ (Figure 8)
		$\begin{aligned} & 3400 \\ & 3401 \\ & 3415 \\ & 3416 \end{aligned}$	$\begin{gathered} \hline 2.0 \\ 4.0 \\ 10.0 \\ 20.0 \end{gathered}$	$\begin{aligned} & \hline 4.0 \\ & 8.0 \\ & 18.0 \\ & 30.0 \end{aligned}$		mod	$f=10 \mathrm{~mA}$ (Figure 8)
		$\begin{aligned} & 3502 \\ & 3507 \\ & 3517 \\ & 3519 \end{aligned}$	$\begin{gathered} 3.0 \\ 7.0 \\ 12.0 \\ 30.0 \end{gathered}$	$\begin{gathered} 6.0 \\ 12.0 \\ 25.0 \\ 50.0 \end{gathered}$		mod	$1 F=20 \mathrm{~mA}$ (Figure 13)
$2 \oplus 1 / 2$	Including Angle Between Half Luminous Intensity Points	$\begin{aligned} & 3300 \\ & 3301 \\ & 3315 \\ & 3316 \end{aligned}$		$\begin{aligned} & 90 \\ & 90 \\ & 35 \\ & 35 \end{aligned}$		Deg.	$\begin{aligned} & \text { IF }=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 6) } \end{aligned}$
		$\begin{aligned} & 3400 \\ & 3401 \\ & 3415 \\ & 3416 \end{aligned}$		$\begin{aligned} & 90 \\ & 90 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$		Deg.	$\begin{aligned} & I f=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 11) } \end{aligned}$
		$\begin{aligned} & 3502 \\ & 3507 \\ & 3517 \\ & 3519 \end{aligned}$		$\begin{aligned} & 75^{\circ} \\ & 75^{\circ} \\ & 24^{\circ} \\ & 24^{\circ} \end{aligned}$		Deg.	$I_{F}=20 \mathrm{~mA}$ See Note 1 (Figure 16)
$\lambda_{\text {Peak }}$	Peak Wavelength	$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \end{aligned}$		$\begin{aligned} & 635 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak (Figure 1)
λ_{d}	Dominant Wavelength	$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \\ & \hline \end{aligned}$		$\begin{aligned} & 626 \\ & 585 \\ & 569 \\ & \hline \end{aligned}$		nm	See Note 2 (Figure 1)
\%s	Speed of Response	$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \\ & \hline \end{aligned}$		$\begin{gathered} 90 \\ 90 \\ 500 \\ \hline \end{gathered}$		ns	
0	Capacitance	$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \\ & \hline \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \\ & 18 \end{aligned}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
${ }^{0}{ }^{\text {J }}$	Thermal Resistance	$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \end{aligned}$		140		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead at Seating Plane
V_{F}	Forward Voltage	$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.6 \end{aligned}$	2.2 2.2 2.3	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	V	$\begin{aligned} & I_{F}=10 \mathrm{~mA}(\text { Figure 2) } \\ & I_{F}=10 \mathrm{~mA}(\text { Figure } 7) \\ & \mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}(\text { Figure 12 } \end{aligned}$
VBR	Reverse Breakdown Volt.	All	5.0			\checkmark	$\mathrm{fR}=100 \mu \mathrm{~A}$
WV	Luminous Efficacy	$\begin{aligned} & 3300 \\ & 3400 \\ & 3500 \end{aligned}$		$\begin{aligned} & 147 \\ & 570 \\ & 630 \end{aligned}$		fumens Watt	See Note 3

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	3300 Series	3400 Series	3500 Series	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{11}$	25	20	25	mA
DC Current ${ }^{2}$ i	30	20	30	mA
Power Dissipation ${ }^{31}$	135	85	135	mW
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$			
Lead Soldering Temperature 11.6 mm (0.063 in .) from Body)	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 (Red), 10 (Yellow) or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Figure 1. Relative Intensity vs. Wavelength

High Efficiency Red HLMP-3300 Series

V_{F} - FORWARD VOLTAGE - V
Figure 2. Forward Current vs. Forward Voltage Characteristics.

ldc - dC Current per Led - ma
Figure 3. Relative Luminous Intensity
vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

p - PULSE DURATION - $\mu \mathrm{s}$
Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Yellow HLMP-3400 Series

Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Relative Luminous Intensity vs. Forward Current.

' PEAK - PEAK CURRENT - mA
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Green HLMP-3500 Series

V_{F} - FORWARD VOLTAGE - V
Figure 12. Forward Current vs. Forward Voltage Characteristics.

$I_{F}-$ DC FORWARD CURRENT-mA
Figure 13. Relative Luminous Intensity vs. DC Forward Current.

Ipeak - Peak current per led - ma
Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 16. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Lamp.

Features

- HIGH INTENSITY
- LOW PROFILE: 5.8 mm (0.23 in) NOMINAL
- T-13/4 DIAMETER PACKAGE
- LIGHT OUTPUT CATEGORIES
- DIFFUSED AND NON-DIFFUSED TYPES
- GENERAL PURPOSE LEADS
- IC COMPATIBLE/LOW CURRENT REQUIREMENTS
- RELIABLE AND RUGGED

Description

The HLMP-3200 Series are Gallium Arsenide Phosphide Red Light Emitting Diodes with a red diffused lens.

The HLMP-3350 Series are Gallium Arsenide Phosphide on Gallium Phosphide High Efficiency Red Light Emitting Diodes.

The HLMP-3450 Series are Gallium Arsenide Phosphide on Gallium Phosphide Yellow Light Emitting Diodes.

Package Dimensions

The HLMP-3550 Series are Gallium Phosphide Green Light Emitting Diodes.
The Low Profile T-13/4 package provides space savings and is excellent for backlighting applications.

Part Number HLMP-	Application	Lens	Color
3200	Indicator General Purpose	Tinted Diftused Wide Angle	Red
3201	Indicator High Brightness		
3350	Indicator General Purpose	Tinted Diffused Wide Angle	High Efficiency Red
3351	Indicator High Brightness		
3365	General Purpose Point Source	Tinted Non-diffused Narrow Angle	
3366	High Brightness Annunciator		
3450	Indicator General Purpose	Tinted Diffused Wide Angle	Yellow
3451	Indicator High Brightness		
3465	General Purpose Point Source	Tinted Non-diffused Narrow Angle	
3466	High Brightness Annunciator		
3553	Indicator General Purpose	Tinted Diffused Wide Angle	Green
3554	Indicator High Brightness		
3567	General Purpose Point Source	Tinted Non-diffused Narrow Angle	
3568	High Brightness Annunciator		

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	3200 Series	3350 Series	3450 Series	3550 Series	Units
Peak Forward Current	1000	90	60	90	mA
Average Forward Current ${ }^{1 T_{1}}$	50	25	20	25	mA
DC Current ${ }^{12}$	50	30	20	30	mA
Power Dissipation ${ }^{13}$	100	135	85	135	mW
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$				
Lead Soldering Temperature [1.6 mm (0.063 in) from Body]	$260^{\circ} \mathrm{C}$ for 5 seconds				

NOTES:

1. See Figure 5 (Red), 10 (High Efficiency Red), 15 (Yellow) or 20 (Green) to establish pulsed operating conditions.
2. For High Efficiency Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Red and Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For High Efficiency Red and Green Series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Red and Yellow Series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Figure 1. Relative Intensity versus Wavelength.

RED HLMP-3200 SERIES
 Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP.	Min.	Typ.	Max.	Units	Test Conditions
1 V	Axial Luminous Intensity	3200	1.0	2.0		med	$I F_{F}=20 \mathrm{~mA}$ (Fig .3$)$
		3201	2.0	4.0			
$2 \theta^{7 / 2}$	Included Angle Between Half Luminous Intensity Points			60		deg.	Note 1 (Fig. 6)
$\lambda_{\text {PEAK }}$	Peak Wavelength			655		nm	Measurement @ Peak (Fig. 1)
λ_{d}	Dominant Wavelength			648		nm	Note 2
$T_{\text {s }}$	Speed of Response			15		ns	
C	Capacitance			100		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
θ_{Jc}	Thermal Resistance			125		${ }^{\circ} \mathrm{CNW}$	Junction to Cathode Lead 1.6 mm (0.063 in .) from Body
V_{F}	Forward Voltage		1.4	1.6	2.0	V	$I_{F}=20 \mathrm{~mA}$ (Fig. 2)
VBR	Reverse Breakdown Voltage		3	10		V	$I_{R}=100 \mu A$
7	Luminous Efficacy			55		$\operatorname{Im} N$	Note 3

Notes: $1 . \theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the CiE chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity I_{e}, in watts/steradian may be found from the equation $I_{e}=I_{\mathbf{v}} / \eta_{\mathbf{v}}$, where $I_{\mathbf{v}}$ is the luminous intensity in candelas and $\eta_{\mathbf{v}}$ is the luminous efficacy in lumens/watt.

Figure 2. Furward Current versus Forward Voltage.

I_{F} - FORWARD CURRENT - mA
Figure 3. Relative Luminous Intensity versus Forward Current.

IPEAK - PEAK CURRENT - mA
Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

$t_{\mathbf{p}}$ - PULSE DURATION $-\mu \mathrm{s}$

Figure 5. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)

HIGH EFFICIENCY RED HLMP-3350 SERIES
 Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP	Min.	Typ.	Max.	Units	Test Conditions
lv	Axial Luminous Intensity	$\begin{aligned} & 3350 \\ & 3351 \\ & 3365 \\ & 3366 \end{aligned}$	$\begin{gathered} 2.0 \\ 5.0 \\ 7.0 \\ 12.0 \end{gathered}$	$\begin{array}{\|c\|} \hline 3.5 \\ 7.0 \\ 10.0 \\ 18.0 \end{array}$		med	$\mathrm{F}_{\mathrm{F}}=10 \mathrm{~mA}(\mathrm{Fig} .8)$
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points	$\begin{aligned} & 3350 \\ & 3351 \\ & 3365 \\ & 3366 \end{aligned}$		50 50 45 45		deg.	Note 1 (Fig. 11)
$\lambda_{\text {PEAK }}$	Peak Wavelength			635		nm	Measurement @ Peak (Fig. 1)
λ_{d}	Dominant Wavelength			626		nm	Note 2
${ }_{\text {s }}$	Speed of Response			90		ns	
C	Capacitance			16		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta_{\text {ac }}$	Thermal Resistance			130		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead 1.6 mm (0.063 in .) from Body
V_{F}	Forward Voltage		1.5	2.2	3.0	V	$I_{F}=10 \mathrm{~mA}($ Fig. 7$)$
VBR	Reverse Breakdown Voltage		5.0			V	$I_{R}=100 \mu \mathrm{~A}$
7	Luminous Efficacy			147		$\operatorname{Im} N$	Note 3

Notes: $1 . \theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity I_{e}, in watts/steradian may be found from the equation $I_{e}=I_{V} / \eta_{v}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Figure 7. Forward Current versus Forward Voltage.

Figure 8. Relative Luminous Intensity versus Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

Figure 10. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 11. Relative Luminous Intensity versus Angular Displacement.

YELLOW HLMP-3450 SERIES

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Dascription	Device HLMP	Min.	Typ.	Max.	Units	Test Conditions
vo	Axial Luminous Intensity	$\begin{aligned} & 3450 \\ & 3451 \\ & 3465 \\ & 3466 \end{aligned}$	$\begin{gathered} 2.5 \\ 6.0 \\ 6.0 \\ 12.0 \end{gathered}$	$\begin{gathered} 4.0 \\ 10.0 \\ 12.0 \\ 18.0 \end{gathered}$		med	$I_{F}=10 \mathrm{~mA}$ (Fig. 13)
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points	$\begin{aligned} & 3450 \\ & 3451 \\ & 3465 \\ & 3466 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & 45 \\ & 45 \end{aligned}$,	deg.	Note 1 (Fig. 16)
$\lambda_{\text {PEAK }}$	Peak Wavelength			583		nm	Measur ement @ Peak (Fig. 1)
λ_{d}	Dominant Wavelength			585		nm	Note 2
$\tau_{\text {s }}$	Speed of Response			90		ns	
C	Capacitance			18		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
θ_{Jc}	Thermal Resistance			100		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead 1.6 mm (0.063 in .) from Body
V_{F}	Forward Voltage		1.5	2.2	3.0	V	$I_{F}=10 \mathrm{~mA} \mathrm{(Fig}. \mathrm{12)}$
$V_{B R}$	Reverse Breakdown Voltage		5.0			\checkmark	$\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy			570		$\operatorname{Im} / \mathrm{W}$	Note 3

Notes: 1. $\theta_{1 / 2}$ is the off-ax is angle at which the luminous intensity is half the axial luminous intensity. 2 . Dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity l_{e}, in watts/steradian may be found from the equation $l_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt

Figure 12. Forward Current versus Forward Voltage.

Figure 15. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings).

$t_{\mathbf{p}}$ - PULSE DURATION - $\mu \mathbf{s}$

$I_{\text {PEAK }}$ - PEAK CURRENT - mA
Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

Figure 16. Relative Luminous Intensity versus Angular Displacement

GREEN HLMP-3550 SERIES
 Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Descriplion	Device HLMP	Min.	Typ.	Max.	Units	Test Conditions
IV	Axial Luminous Intensity	$\begin{aligned} & 3553 \\ & 3554 \\ & 3567 \\ & 3568 \end{aligned}$	$\begin{gathered} \hline 3 \\ 10 \\ 8 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ 15 \\ 15 \\ 35 \\ \hline \end{gathered}$		mod	$\mathrm{FF}=20 \mathrm{~mA}$ (Figure 18)
$2 \Theta 1 / 2$	Included Angle Between Half Luminous Intensity Points	$\begin{aligned} & 3553 \\ & 3554 \\ & 3567 \\ & 3568 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 40 \end{aligned}$		deg.	Note 1 (Figure 21)
APEAK	Peak Wavelength			565		nm	Measurement @ Peak (Figure 1)
λ_{d}	Dominant Wavelength			569		nm	Note 2
${ }^{\text {s }}$ s	Speed of Response			500		ns	
C	Capacitance			18		pF	$V \mathrm{~F}=0 ; \mathrm{f}=1 \mathrm{MHz}$
$\Theta^{\text {jc }}$	Thermal Resistance			90		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead 1.6 mm 10.063 in. from Body
V_{F}	Forward Voltage		1.6	2.3	3.0	V	IF $=20 \mathrm{~mA}$ (Figure 17)
$V_{B R}$	Reverse Breakdown Voltage		5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
nv	Luminous Efficacy			630		Im / W	Note 3

Notes: $1 . \theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2 . Dominant wavelength, λ_{d}, is derived from the $C I E$ chromaticity diagram and represents the single wavelength which defines the color of the device. 3 . Radiant Intensity le, in watts/steradian may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

V_{F} - FORWARD VOLTAGE - V
Figure 17. Forward Current versus Forward Voltage.

I_{F} - FORWARD CURRENT - mA
Figure 18. Relative Luminous Intensity versus Forward Current.

Ipeak - peak current per led - ma
Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

t_{p} - PULSE DURATION $-\mu$
Figure 20. Maximum Tolerable Peak Current versus Puise Duration. (IDC MAX as per MAX ratings).

Figure 21. Relative Luminous Intensity versus Angular Displacement.

$\mathrm{T}-13 / 4$ (5mm)
 RED SOLID STATE LAMPS

HLMP-3000
HLMP-3001
HLMP-3002
HLMP-3050
TECHNICAL DATA JANUARY 1983

Features

- LOW COST, BROAD APPLICATIONS
- LONG LIFE, SOLID STATE RELIABILITY
- LOW POWER REQUIREMENTS: $20 \mathrm{~mA} @ 1.6 \mathrm{~V}$
- HIGH LIGHT OUTPUT:
2.0 mcd Typical for HLMP-3000
4.0 mcd Typical for HLMP-3001
- WIDE AND NARROW VIEWING ANGLE TYPES
- RED DIFFUSED AND NON-DIFFUSED VERSIONS

Description

The HLMP-3000 series lamps are Gallium Arsenide Phosphide light emitting diodes intended for High Volume/ Low Cost applications such as indicators for appliances, smoke detectors, automobile instrument panels and many other commercial uses.

The HLMP-3000/-3001/-3002 have red diffused lenses where as the HLMP-3050 has a red non-diffused lens. These lamps can be panel mounted using mounting clip HLMP0103. The HLMP-3000/-3001 lamps have .025" leads and the HLMP-3002/-3050 have .018" leads.

Package Dimensions

HLMP-3000/-3001

NOTES:

1. ALL DIMENSIONS ARE IN MLLIMETRES (INCHES).
2. AN EPOXY MENISCUSMAY EXTEND ABOUT 1 mm (.040*) DOWN THE LEADS.

100 mW
DC Forward Current (Derate linearly from
$50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$)
50 mA
Peak Forward Current 1 Amp
(1μ sec pulse width, 300 pps)
Operating and Storage
Temperature Range
.................... . $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature $260^{\circ} \mathrm{C}$ for 5 sec.

HLMP-3002/-3050

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbal	Parameters	HLMP-3000			HLMP-3001			HLMP -3002			HLMP-3050			Units	Test Conditions
		Min.	Typ.	Max.											
Iv	Luminous Intensity	1.0	2.0		2.0	4.0		0.8	3.0		1.0	2.5		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\lambda_{\text {PEAK }}$	Wavelength		655			655			655			655		nm	Measurement at Peak
7_{5}	Speed of Response		10			10			10			10		ns	
C	Capacitance		100	-		100			100			100		pF	$\begin{aligned} & V F=0, \\ & f=1 \mathrm{MHz} \end{aligned}$
V_{F}	Forward Voltage	1.4	1.6	2.0	1.4	1.6	2.0	1.4	1.6	2.0	1.4	1.6	2.0	V	$1 \mathrm{~F}=20 \mathrm{~mA}$
$V_{B R}$	Reverse Breakdown Voltage	3	10		3	10		3	10		3	10		V	IR $\mathrm{F}=100 \mathrm{~mA}$
${ }^{0} \mathrm{JC}$	Thermai Resistance		100			100			100			100		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
$2 \theta^{1 / 2}$	Included Angle Between Half Luminous Intensity Points, Both Axes		90			90			90			24		Deg.	$1 \mathrm{~F}=20 \mathrm{~mA}$

Figure 1. Forward Current Versus Forward Voltage Characteristic For HLMP-3000/-3001/-3050/-3002.

Figure 3. Relative Luminous Intensity Versus Angular Displacement. T-1 3/4 Lamp. HLMP-3050.

Figure 2. Relative Luminous Intensity Versus Forward Current For HLMP-3000/-3001/-3050/-3002.

Figure 4. Relative Luminous Intensity Versus Angular Displacement For HLMP-3000/-3001/-3002.

Features

- EASILY PANEL MOUNTABLE USING HLMP-0103 CLIP AND RING
- HIGH BRIGHTNESS OVER A WIDE VIEWING ANGLE
- RUGGED CONSTRUCTION FOR EASE OF HANDLING
- STURDY LEADS ON 2.54 mm (0.10 in .) CENTERS
- IC COMPATIBLE/LOW POWER CONSUMPTION
- LONG LIFE
- METAL BASE FERRULE LAMP

Description

These LED lamps are plastic encapsulated Gallium Arsenide Phosphide Light Emitting Diodes. They radiate light in the 655 nanometer (red light) region.
The HLMP-0101 and -0102 are LEDs with a red tinted diffused plastic lens, providing high visibilty for circuit board or panel mounting with a clip.
The HLMP-0140 and -0141 have the added feature of a 90° lead bend for edge mounting on circuit boards.
The HLMP-0200 series is available in three different lens configurations. These are red tinted diffused, untinted diffused, and untinted non-diffused.
The red tinted diffused lens provides an excellent off/on contrast ratio. The untinted non-diffused lens is designed for applications where a point source is desired. It is particularly useful where the light must be focused or diffused with external optics. The untinted diffused lens is useful in masking the red color in the off condition.

Figure B HLMP-0140 HLMP-0141

Figure C HLMP-0200 Series

LED SELECTION GUIDE

Short Lead Ferrule Lamp Red Tinted, Diffused Lens				Light Output (med)	
Unbent Leads (Fig. A)			Leads (Fig. B)	Min.	Typ.
HLMP-0101			HLMP-0140	0.5	1
HLMP-0102			HLMP-0141	1.2	2
Long Lead Ferrule Lamp Unbent Leads (Fig. C)				Light Output (mcd)	
Red Tinted, Diffused Lens	Untin	ens	Untinted, Diffused Lens	Min.	Typ.
HLMP-0200			HLMP-0240	1	2
HLMP-0202			HLMP-0242	2	3

Maximum Ratings
 at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

DC power Dissipation
100 mW
DC Forward Current 50 mA
(Derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA}{ }^{\circ} \mathrm{C}$)
Peak Transient Forward Current 1 Amp
($1 \mu \mathrm{sec}$ pulse width, 300 pps)
Isolation Voltage
300 V
(between lead and base)
Operating and Storage
Temperature Range $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Lead Soldering Temperature $\quad 260^{\circ} \mathrm{C}$ for 5 sec .

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
	Wavelength		655		nm	Measurement at Peak
Ts	Speed of Response		15		ns	
C	Capacitance		100		pF	
ajc	Thermal Resistance		87		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	1.4	1.6	2.0	V	$1 \mathrm{~F}=20 \mathrm{~mA}$
$B V_{8}$	Reverse Breakdown Voltage	3	10		V	$\mathrm{If}_{\mathrm{A}}=100 \mu \mathrm{~A}$

TYPICAL RELATIVE LUMINOUS INTENSITY VERSUS ANGULAR DISPLACEMENT

HLMP-0240/-0242
VIEWING ANGLE (2Ө1/2) $=60^{\circ}$

LUMINOUS INTENSITY VS. FORWARD CURRENT (I_{F})

High Efficiency Red

Features

- IMPROVED INTENSITY
- CHOICE OF VIEWING ANGLE
- SMALL SIZE T-1 DIAMETER 3.18 mm (0.125 inch)
- IC COMPATIBLE
- RELIABLE AND RUGGED
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red
Yellow
High Performance Green

Description

These solid state lamps are available in a broad matrix of colors and finished package appearance to suit your particular application. Each device is designed to generate high axial luminous intensity and good on-off contrast.

The red and yellow devices utilize Gallium Arsenide Phosphide on Gallium Phosphide light emitting diode and the green devices utilize a Gallium Phosphide light emitting diode. The HLMP-1300, -1301, -1302 are high efficiency red

lamps particularly designed for wide angle viewabilty under a variety of ambient conditions. The HLMP-1400, -1401 , -1402 serve a similar function in yellow, The HLMP-1503 and -1523 do likewise for green. The HLMP-1320 and -1321 are high efficiency red LED lamps with a more narrow viewing angle better suited for backlighting or particularly severe high ambient conditions. The HLMP-1420/1421 and HLMP1520/1521 are similar devices in yellow and green respectively.

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

Part Number HLMP.	Description	IV (med)		Test Condition (ma)	201/2 (typ.) (1)	$\begin{gathered} \lambda D \\ (\mathrm{nm-typ} .) \\ (2) \end{gathered}$	Color
		Min.	Typ.				
1300	Tinted, Diffused	1.0	2.0		60°		
1301	Tinted, Diffused	2.0	2.5		60°		High
1302	Tinted, Diffused	3.0	4.0	10	60°	626	Efficiency
1320	Untinted, Non-Diffused	6.0	12.0		45°		Red
1321	Tinted, Non-Diffused	6.0	12.0		45°		
1400	Tinted, Diffused	1.0	2.0		60°		
1401	Tinted, Diffused	2.0	3.0		60°		
1402	Tinted, Diffused	3.0	4.0	10	60°	585	Yellow
1420	Untinted, Non-Diffused	6.0	12.0		45°		
1421	Tinted, Non-Diffused	6.0	12.0		45°		
1503	Tinted, Diffused	2.0	5.0		60°		
1523	Tinted, Diffused	5.0	10.0	20	60°	569	
1520	Untinted, Non-Diffused	6.0	12.0		45°	571	Green
1521	Tinted, Non-Diffused	6.0	12.0		45°	569	

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Red	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{[1]}$	25	20	25	mA
DC Current ${ }^{2]}$	30	20	30	mA
Power Dissipation ${ }^{[3]}$	135	85	135	mW
Operating and Storage Temperature Range	$\quad-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$			
Lead Soldering Temperature $[16 \mathrm{~mm}(0.063$ in.) from Body]	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	$\begin{aligned} & \text { HLMP-1300, }-1301 \\ & -1302,-1320,-1321 \end{aligned}$			$\begin{aligned} & \text { HLMP-1400 },-1401 \\ & -1402,-1420,-1421 \end{aligned}$			$\begin{gathered} \hline \text { HLMP } \mathrm{MP}_{-1503},-1523 \\ -1520,-1521 \\ \hline \end{gathered}$			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\lambda_{\text {peak }}$	Peak Wavelength		635			583			565		nm	Measurement at Peak, Fig. 1
Ts	Speed of Response		90			90			500		ns	
C	Capacitance		20			15			18		pF	$V_{F}=0 ; 0 \leq 1 \mathrm{MHz}$
Ojc	Thermal Resistance		95			95			95		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead at 0.79 mm 10.031 in .) From Body
V_{F}	Forward Voltage	1.5	2.2	3.0	1.5	2.2	3.0	1.6	$\begin{gathered} 2.3 \\ 1 F=20 \end{gathered}$		V	$\begin{aligned} & \text { IF } 10 \mathrm{~mA} \\ & \text { fFigs, } 2,7,12 \text {) } \end{aligned}$
$B V_{R}$	Reverse Breakdown Voltage	5.0			5,0			5.0			V	$I \mathrm{P}=100 \mu \mathrm{~A}$
no	Luminous Etficacy		147			570			630		$1 \mathrm{~m} / \mathrm{W}$	Note 1

NOTES:

1. Radiant intensity, l_{e}, in watts/steradian, may be found from the equation $l_{e}=l_{v} / \eta_{v}$, where l_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red HLMP-1300, -1301, -1302, -1320, -1321

V_{F} - FORWARD VOLTAGE - V
Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDCMAX as per MAX Ratings).

loc - DC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Ipeak - peak current per led - ma
Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Yellow HLMP-1400, -1401, -1402, -1420, -1421

V_{F} - FORWARD VOLTAGE - V
Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

$I_{\text {F }}$ - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity vs. Forward Current.

I peak - peak current - ma
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Green HLMP-1503, -1523, -1520, -1521

V_{F} - FORWARD VOLTAGE - V
Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Package Dimensions

Notes:

1. ALL DIMENSIONS ARE IN MLLIMETHES INCHESS.
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0.040°) DOW ${ }^{(1)}$ THE LEADS.

LOW PROFILE T-1 (3mm) LED LAMPS

High Efficiency Red
Yellow
HLMP-1350
HLMP-1450 High Performance Green HLMP-1550

Features

- LOW PROFILE HEIGHT
- SMALL T-1 SIZE DIAMETER
3.18 mm (. 125 inch)
- HIGH INTENSITY
- IC COMPATIBLE
- CHOICE OF 3 BRIGHT COLORS High Efficiency Red Yellow
High Performance Green

Description

This family of solid state lamps is especially suited for applications where small package size is required without sacrificing luminous intensity. The HLMP-1350 is a red tinted, diffused lamp providing a wide viewing angle. The HLMP-1450 and HLMP-1550 are similar products in yellow and green respectively.

Package Dimensions

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

PartNumber HL.MP.	Description	Iv (med)		Test Condition (ma)	2e1/2 (typ.) (1)	$\begin{gathered} \lambda d \\ \left(\mathrm{~nm}{ }^{2+t y p}\right) \end{gathered}$ (2)	Color
		Min.	Typ.				
1350	Tinted, Wide Angle	1.0	2.0	10	55°	626	High Efficiency Red
1450	Tinted, Wide Angle	1.0	20	10	55°	585	Yellow
1550	Tinted, Wide Angle	1.0	2.0	20	55°	569	Green

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

For Maximum Ratings and Electrical/Optical Characteristics (including figures) see HLMP-1300/-1400/-1500 data sheet, publication number 5953-7735, except for Figure A shown here.

Figure A. Relative Luminous Intensity vs. Angular Displacement.
-
TECHNICAL DATA
JANUARY 1983

Features

- WIDE VIEWING ANGLE
- SMALL SIZE T-1 DIAMETER 3.18 mm ($\mathbf{0 . 1 2 5 \prime \text { ') }}$
- IC COMPATIBLE
- RELIABLE AND RUGGED

Description

The HLMP-1000 is a series of Gallium Arsenide Phosphide Light Emitting Diodes designed for applications where space is at a premium, such as in high density arrays.
The HLMP-1000 series is available in three lens configurations.
HLMP-1000 - Red Diffused lens provides excellent on-off contrast ratio, high axial luminous intensity, and wide viewing angle.

HLMP-1080 - Same as HLMP-1000, but untinted diffused to mask red color in the "off" condition.
HLMP-1071/-1201 - Untinted non-diffused plastic lens provides a point source. Useful when illuminating external lens, annunciators, or photo-detectors.

Part Number HLMP.	 Lens Type	IV (med) (2) 20 mA		Viewing Angle $2 \times 1 / 2$
		Min.	Typ.	
-1000	A-Tinted Diffused	5	1.0	125°
-1002	A-Tinted Diffused	1.5	2.5	125°
-1080	A-Untinted Diffused	. 5	1.5	125°
-1071	A-Untinted Non-Diffused	1.0	2,0	80°
-1200	B-Untinted Non-Diffused	. 5	1.0	120°
-1201	B-Untinted Non-Diffused	1.5	2.5	120°

Figure A.

Figure 8.
NOTES:

2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm AN EPPOXY
$\left\{.040^{*}\right]$ DOWN THE LEADS,

Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

DC Power Dissipation	100 mW
DC Forward Current (Dera	50 mA rom $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$)
Peak Forward Current	$\begin{array}{r} 1 \mathrm{Amp} \\ \text { Nidth, } 300 \mathrm{pps} \end{array}$
Operating and Storage	
Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Te	$260^{\circ} \mathrm{C}$ for 5 sec.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameters	Min.	Typ.	Max.	Units	Test Conditions
$\lambda_{\text {PEAK }}$	Wavelength		655		nm	
τ_{s}	Speed of Response		15		ns	
C	Capacitance		100		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
θ_{JC}	Thermal Resistance		270		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	1.4	1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
V_{BR}	Reverse Breakdown Voltage	3	10		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$

FORWARD CURRENT - VOLTAGE CHARACTERISTICS
Figure 1. Forward Current vs. Voltage Characteristic.

I_{F} - FORWARD CURRENT - mA
Figure 2. Luminous Intensity vs. Forward Current (IF).

HLMP-1200/-1201 (5082-4487/-4488)

Figure 3. Typical Relative Luminous Intensity vs. Angular Displacement.

HLMP-1000/-1002/-1080 (5082-4480/-4494/-4483)

Figure 4. Relative Luminous Intensity vs. Angular Displacement.

Figure 5. Relative Luminous Intensity vs. Angular Displacement.

RECTANGULAR SOLID STATE LAMPS
 HIGH EFFICIENCY RED
 HLMP-0300/0301 YELLOW HLMP-0400/0401 HIGH PERFORMANCE GREEN HLMP-0503/0504

TECHNICAL DATA JANUARY 1983

Features

- RECTANGULAR LIGHT EMITTING SURFACE
- FLAT HIGH STERANCE EMITTING SURFACE
- STACKABLE ON 2.54 MM (0.100 INCH) CENTERS
- IDEAL AS FLUSH MOUNTED PANEL INDICATORS
- IDEAL FOR BACKLIGHTING LEGENDS
- LONG LIFE: SOLID STATE RELIABILITY
- CHOICE OF 3 BRIGHT COLORS

HIGH EFFICIENCY RED
YELLOW
HIGH PERFORMANCE GREEN

- IC COMPATIBLE/LOW CURRENT REQUIREMENTS

Description

The HLMP-030X, -040X, -050X are solid state lamps encapsulated in an axial lead rectangular epoxy package. They utilize a tinted, diffused epoxy to provide high on-off contrast and a flat high intensity emitting surface. Borderless package design allows creation of uninterrupted light emitting areas.
The HLMP-0300 and -0301 have a high efficiency red GaAsP on GaP LED chip in a light red epoxy package. This

Package Dimensions

Axial Luminous Intensity

Color	Part Number	Iv (med) @ 20 mADC	
		Min.	Typ.
High Efficiency Fed	HLMP-0300	1.0	2.5
	HL.MP-0301	2.5	5.0
Yellow	HLMP-0400	1.5	2.5
	HLMP-0401	3.0	5.0
High Performance Green	HLIMP-0503	1.5	2,5
	HLMP-0504	3.0	5.0

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parnmeter	RILMP $0300 /$-0301	HLMP-0400/-0401	HLMP-0503/-0504	Units
Peak Eorwarr Current	80	60	90	mA
Avarage fowwry cument,	\% 26	20	25	mA
	30	20	30	mA
	, 4135	85	\% 135	mW
Operdind whe Storage Temperature Range	$-55^{\circ} \mathrm{C} \text { to }+10^{\circ} \mathrm{C}$			
Levd Soldoring Temperatura 16 mm 10063 in 1rom Booy]	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 to establish pulsed operating conditions.
2. For Red and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	HLMP-0300/0301			HLMP-0400/0401			HLMP-0508/0504			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
2012	Included Angle Eetween Half Luminous Intensity Points, Both Axes		$\begin{gathered} 100 \\ \because \end{gathered}$	\because		100			100	,	deg.	Note 1. Figure 6.
APAK	Feak Wavelength		635	:		583			565		nim	Measurement at Peak
入id	Dominant Wavelength		626		\because	585			569		nm	Note 2
Ts	Speed of Response		00			90			500		ns	
C	Capacitance		17			17			18		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
Oxc	Thermal Resistance		140		:	140			140		${ }^{\circ} \mathrm{CAW}$	Junction to Cathode Lead at 1.6 mm (0.063 in.) from Body
$\mathrm{V}_{\mathrm{F}} \quad \because$	Forward Voltage	1.6	2.1	3.0	1.6	2.2	3.0	1.6	2.3	3.0	V	$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Figure } 2 . \end{aligned}$
VBA	Reverse Breakdown Voltage	5.0			5.0			5.0			V	$I_{R}=100 \mu \mathrm{~A}$
x_{v}	Luminous Efficacy		147			570			630		$1 \mathrm{~m} / \mathrm{W}$	Note 3

NOTES:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta \mathrm{V}$, where I_{V} is the luminous intensity in candelas and $\eta \mathrm{v}$ is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red, Yellow and Green Rectangular Lamps

VF - FORWARD VOLTAGE - V
Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

HEWLETT

MATCHED ARRAYS OF SUBMINIATURE LAMPS

RED
 HIGH EFFICIENCY RED
 YELLOW
 GREEN
 HLMP-6200 SERIES HLMP-6650 SERIES HLMP-6750 SERIES HLMP-6850 SERIES

TECHNICAL DATA JANUARY 1983

Features

- IMPROVED BRIGHTNESS
- AVAILABLE IN 4 BRIGHT COLORS Red
High Efficiency Red
Yellow
High Performance Green
- EXCELLENT UNIFORMITY BETWEEN ELEMENTS
- END STACKABLE FOR LONGER ARRAYS
- SELECTION OF VARIOUS LENGTHS
- COMPACT SUBMINIATURE PACKAGE STYLE
- NO CROSSTALK BETWEEN ELEMENTS

Description

The HLMP-6XXX Series Arrays are comprised of several subminiature lamps molded as a single bar. Arrays are tested to assure 2.1 to 1 matching between elements and intensity binned for matching between arrays.
The HLMP-620X Series Arrays are Gallium Arsenide Phosphide red light emitting diodes. The HLMP-665X, HLMP-675X series arrays are Gallium Arsenide Phosphide on Gallium Phosphide red and yellow light emitting diodes. The HLMP-685X series arrays are Gallium Phosphide green light emitting diodes.
Each element has separately accessible leads and a diffused lens which provides a wide viewing angle and a high on/off contrast ratio. The center-to-center spacing is 2.54 mm (. 100 in .) between elements. Special lead bending is available on $2.54 \mathrm{~mm}(.100 \mathrm{in}$.) and 5.08 mm (. 200 in.) centers.

Array Length	Red	High Efficiency Red	Yellow	High Performance Green
3-Element HLMP	6203	6653	6753	6853
4-Element HLMP-	6204	6654	6754	6854
5-Element HLMP-	6205	6655	6755	6855
6-Element HLMP	6206	6656	6756	6856
8-Element HLMP-	6208	6658	6758	6858

Applications

- INDUSTRIAL CONTROLS
- POSITION INDICATORS
- OFFICE EQUIPMENT
- INSTRUMENTATION LOGIC INDICATORS
- CONSUMER PRODUCTS

Axial Luminous Intensity and Viewing Angle at $25^{\circ} \mathrm{C}$

Part Number	Number of Elements	Color	Iv per Element (med) (10) 10 mADC		$2 \oplus 1 / 2$ Note 1.
			Min.	Typ.	
HLMP-520X	$\begin{gathered} x=3,4 \\ 5,6,8 \end{gathered}$	Red	. 5	1.2	45°
HLMP-665X	$\begin{gathered} x=3,4 \\ 5,6,8 \end{gathered}$	High Efficiency Red	1.0	3.0	80°
HLMP-675X	$\begin{gathered} x=3,4 \\ 5,6,8 \end{gathered}$	Yellow	1.0	3.0	90°
HLMP-685X	$\begin{gathered} x=3,4 \\ 5,6.8 \end{gathered}$	Green	1.0	3.0	70°

NOTE:

1. $\Theta 1 / 2$ is the off-axis angle at which the Luminous Intensity is half the axial luminous intensity.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameler	Red	High Efficiency Red	Yellow	Green	Unils
Peak Forward Current	1000	60	60	60	mA
DC Current	$50{ }^{14}$	30^{121}	$20^{[1]}$	$30^{12!}$	mA
Power Dissipation	100	120	120	120	mW
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$				
Lead Soldering Temperature 1.6 mm (10.063 in.\| from Body	$260^{\circ} \mathrm{C}$ for 3 seconds				

NOTES: 1. Derate from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Figure 1. Relative Intensity vs. Wavelength.
Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Descripilon	HLTMP-62\%X			HLMP-655X.			HLMP-675X			HLMP-685X			Unlt	Teat Conditons
		Min.	7yp.	Max.	Nin.	Typ.	Max.	Min.	Typ.	Max.	Min*	Typ.	Max.		
APEAK	Peak Wavelength		655			635		.	583			505		nm :	Measurement at Peak
λ_{d}	Dominant Wavetength		640	,		629			585			569		nm	Note 1.
${ }^{*}$	Speed of Response		15			90			90			500		$n s$	
c	Capacitance		100			11	.	.	15			18		PF	
\%r	Thermal Resistance.		125		.	120			100			100		${ }^{\circ} \mathrm{CNO}$	Junction to Cathode Lead at 0.79 mm (.031 in) from Body
V_{F}	Forwaro Voftage	1.4	16	2.0	1.5	2.2	3.0	1.5	2.2	3.0	1.5	2.3	3.0	V	$I_{2}=10 \mathrm{~mA}$ Figures 2.7 $12,17$
EV积	Reverse Breakdown Voltage	30.	10	.	5.0	15		5.0	15		5.0	20		\checkmark	$I_{R}=100 \sim A$
7	Luminous Elficacy		55			147			570			630		Imw	Note 2.

NOTES:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $l_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Package Dimensions

Notes:

1. All dimensions are in millimetres (inches). 2. Optional lead form available.
2. Overall length is the number of elements times 2.54 mm (. 100 in.).

Red HLMP-62XX Series

Figure 2. Forward Current vs. Forward Voltage.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

High Efficiency Red HLMP-665X Series

V_{F} - FORWARD VOLTAGE - V
Figure 7. Forward Current vs Forward Voltage.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

IDC - DC CURRENT PER LED - mA
Figure 8. Relative Luminous Intensity vs. DC Forward Current.

PEAK - PEAK CURRENT - mA
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Yellow HLMP-675X Series

Figure 12. Forward Current vs. Forward Voltage.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 13. Relative Luminous Intensity vs. DC Forward Current.

IPEAK - PEAK CURRENT - mA
Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Green HLMP-685X Series

Figure 17. Forward Current vs. Forward Voltage.

Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 18. Relative Luminous Intensity vs. DC Forward Current.

Figure 21. Relative Luminous Intensity vs. Angular Displacement.

SUBMINIATURE SOLID STATE LAMPS

RED * HLMP-6000/6001
HIGH EFFICIENCY RED • HLMP-6300
YELLOW - HLMP-6400
HIGH PERFORMANCE GREEN - HLMP-6500

TECHNICAL DATA JANUARY 1983

Features

- SUBMINIATURE PACKAGE STYLE
- END STACKABLE
- LOW PACKAGE PROFILE
- RADIAL LEADS
- WIDE VIEWING ANGLE
- LONG LIFE - SOLID STATE RELIABILITY

Description

The $6 x x x$ are solid state lamps encapsulated in a radial lead subminiature package of molded epoxy. They utilize a tinted, diffused lens providing high on-off contrast and wide angle viewing.
The 6000/6001 utilizes a GaAsP LED chip in a deep red molded package.
The 6300 has a high-efficiency red GaAsP on GaP LED chip in a light red molded package.
The 6400 provides a yellow GaAsP on GaP LED chip in a yellow molded package.
The 6500 provides a green GaP LED chip in a green molded package.
Special lead bending is available on 2.54 mm (. 100 in) and $5.08 \mathrm{~mm}(.200 \mathrm{in})$ centers.

Tape-and-reel mounting is available on request.
Tape and Reel Order Chart

Std. Product HLMP-	6000	6001	6300	6400	6500
Tape \& Reel P/N	HLMP- 6020	HLMP- 6021	HLMP- 6320	HLMP- 6420	HLMP- 6520

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. OPTIONAL LEAD FORM AVAILABLE.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	$\begin{gathered} \text { Red } \\ \text { HLMP }-6000 / 1 \end{gathered}$	High Eff. Red HLMP-6300	Yellow HLMP-6400	$\begin{aligned} & \text { Green } \\ & \text { HLMP. } 6500 \end{aligned}$	Units
Power Dissipation	100	120	120	120	mW
DC Forward Current	50111	30^{121}	$20[1]$	$30^{[2]}$	mA
Peak Forward Current	$\begin{gathered} 1000 \\ \text { See Fig. } 5 \end{gathered}$	$\text { See Fig. } 10$	$\begin{gathered} 60 \\ \text { See Fig. } 15 \end{gathered}$	$\begin{gathered} 60 \\ \text { See Fig. } 20 \end{gathered}$	mA
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$				
Lead Soldering Temperature [1.6 mm (0.063 in .) from body]	$260^{\circ} \mathrm{C}$ for 3 seconds				

1. Derate from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
2. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	HLWP-6000/1			HLMP-6300			HLMP-6400			HLMP-6500			Units	Test Condlitions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Tур.	Max*	Win.	Typ.	Hax.		
F*	Axdal Luminous Intensity	-10.5	1.2		1.0	3.0		1.0	3.0		1.0	3.0		med	$\begin{aligned} & \text { lF=10mA } \mathrm{F}_{4} \\ & \text { Figs. } 3,8,13,18 \end{aligned}$
$29_{1 / 2}$	Included Angle Between Half Luminous intensity Points		45			80			90			70		deg.	Note 1, Figures 6, 11, 16, 21
APEAK	Peak Wavelength		655			635			583			565		nm	Measurement at Peak
$\lambda_{\text {d }}$	Dominant Wavelength		640			629			585			569		$n \mathrm{~m}$	Note 2
${ }_{5}$	Speed of Response		15			90			90			500		ns	
c	Capacitance		100			11			15			18		pF	$\mathrm{V}_{\mathrm{F}}=0 ; 0=1 \mathrm{MHz}$
0 c	Thermal Resistance		125			120			100			100		${ }^{\circ} \mathrm{CNW}$	Junction to Cathode Lead at $0.79 \mathrm{~mm}(.031 \mathrm{in})$ from Body
V_{F}	Forward Voltage	1.4	1.6	2.0	1.5	2.2	3.0	1.5	2.2	3.0	1.5	23	3.0	V	$\mathrm{F}_{\mathrm{p}}=10 \mathrm{~mA}$, Figures 2. 7 . 12. 17
Ven	Reverse Breakdown Voltage	3.0	10		5.0	15		5.0	15		5.0	20		V	$\mathrm{I}_{\mathrm{R}}=100_{\mu} \mathrm{A}$
\%	Luminous Efficacy		55			147			570			630		Im / W	Note 3

NOTES:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, l_{e}, in watts/steradian, may be found from the equation $l_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficlency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

High Efficiency Red HLMP-6300

Figure 7. Forward Current vs. Forward Voltage Characteristics

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

loc - DC Current per led - mA
Figure 8. Relative Luminous Intensity vs. Forward Current.

IPEAK - PEAK CURRENT - mA
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Yellow HLMP-6400

Figure 12. Forward Current vs. Forward Voltage Characteristics

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

I_{F} - FORWARD CURRENT - mA
Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 16. Relative Luminous Intensity vs. AngularDisplacement.

Green HLMP-6500

V_{F}-FORWARD VOLTAGE-V
Figure 17. Forward Current vs. Forward Voltage.

Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

ldC - dC Current per led - ma
Figure 18. Relative Luminous Intensity vs. DC Forward Current

Figure 21. Relative Luminous Intensity vs. Angular Displacement.

SUBMINIATURE RESISTOR LAMPS

Features

- IDEAL FOR TTL AND LSTTL GATE STATUS INDICATION
- REQUIRES NO EXTERNAL RESISTORS WITH 5 VOLT SUPPLY
- SPACE SAVING SUBMINIATURE PACKAGE
- TWO CHOICES OF CURRENT LEVEL
- EXCELLENT VIEWING ANGLE

Description

The HLMP-6600 and HLMP-6620 provide a Red Gallium Arsenide Phosphide on Gallium Phosphide Light Emitting Diode together with an integral biasing resistor. The package has a red diffused lens and radial leads. Tape-and-reel mounting is available on request.

Special lead bending is available on 2.54 mm (. 100 in) and 5.08 mm (. 200 in) centers.

Absolute Maximum Ratings

	HLMP-6600/-6620
DC Forward Voltage	6 Volts
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Soldering Temperature	
(0.063 in.) from body]	$260^{\circ} \mathrm{C}$ for 3 sec.

Tape and Reel Order Chart

Standard Product HLMP-	6600	6620
Tape \& Reel P/N	HLMP- 	HLMP- 6607

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. OPTIONAL LEAD FORM AVAILABLE.

SIDE VIEW

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	HLMP-6600			HLTMP-6620			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.		
Iv	Axial Luminous Intensity.	1.0	2.4		0.2	0.6	-	med	$V_{F}=5$ Volts (See Figure 3)
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points		80°			80°			Note 1 (See Figure 4)
АРЕА页	Peak Wavelength		635			635		nm	Measurement at Peak
λ_{d}	Dominant Wavelength		629			629		nm	Note 2
0	Thermal Resistance		120			120		${ }^{\circ} \mathrm{CNW}$	Junction to Cathode Lead at $0.79 \mathrm{~mm}(0.031 \mathrm{in}$.) From Body
IF	Forward Current		9.6	13		3.5	5	mA	VF=5 Volts (See Figure 2)
VBR	Reverse Voltage	5.0	15.0		5.0	15.0		V	If $=100 \mu \mathrm{~A}$
Hy	Luminous Efficacy		147			147		$1 \mathrm{~m} / \mathrm{W}$	Note 3

NOTES:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, l_{e}, in watts/ steradian, may be found from the equation $l_{\mathrm{e}}=I_{V} / \eta_{V}$, where l_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

V_{F} - FORWARD VOLTAGE - VOLTS
Figure 3. Relative Luminous Intensity vs. Forward Voltage.

Figure 4. Relative Luminous Intensity vs. Angular Displacement.

INTEGRATED RESISTOR LAMPS

5 Volt T-1 3/4 HLMP-0280/-3105
HLMP-3600/-3650/-3680
HLMP-1100/-1120 12 Volt T-1 3/4 HLMP-3112

TECHNICAL DATA JANUARY 1983

Features

- INTEGRAL CURRENT LIMITING RESISTOR

- TTL COMPATIBLE:

Requires no External Current Limiter with

 5 Volt/12 Volt Supply- COST EFFECTIVE: Space Saving
- WIRE WRAPPABLE LEADS
- WIDE VIEWING ANGLE

Description

The 5 volt and 12 volt series lamps contain an integral current limiting resistor in series with the LED. This allows the lamp to be driven from a 5 volt/ 12 volt source without the need for an external current limiter. The HLMP-1120, -0280, -3105 , and -3112 lamps utilize standard red LED chips which are made from GaAsP on a GaAs substrate. The 3600 and 3650 lamps utilize a High Efficiency Red and yellow LED chips which are made from GaAsP on a
transparent GaP substrate. The 3680 lamp utilizes a High Performance Green LED chip made from GaP on a transparent GaP substrate. The diffused lamps provide a wide off-axis viewing angle.

The T-1 3/4 lamps are provided with sturdy leads suitable for wire wrappable applications. They also may be front panel mounted by using the HLMP-0103 clip and ring.

Color	Part Number HLMP.	Package	Operating Vollage	Iy med ${ }^{[2]}$		$201 / 2[1]$	Package Outline
				min .	typ.		
Red	1100	T-1 Tinted Diffused	5	0.8	1.5	60°	A
	1120	T-1 Untinted Diffused	5	0.8	1.5	70°	A
	0280	Ferrule T-13/4 Diffused	5	1.0	2.0	58°	B
	8105	T-13/4 Diffused	5	1.0	2.0	90°	C
	3112		12	1.0	2.0	90°	C
High Efficiency Red	3600	T-1 3/4 Diffused	5	1.5	4.0	90°	c
Yellow	3650	T-13/4 Diffused	5	1.5	4.0	90°	C
High Performance Green	3680	T-13/4 Diffused	5	1.5	4.0	90°	C

Notes:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The luminous intensity may be adjusted for operating ambient temperature by the following exponential equation: $\operatorname{lv}\left(T_{A}\right)=\operatorname{IV}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}\left[-0.0188\left(\mathrm{~T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right)\right]$

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	5 Volt Lamps	12 Volt Lamps
DC Forward Voltage $\left(T_{A}=25^{\circ} \mathrm{C}\right)$	7.5 Volts ${ }^{131}$	15 Volts ${ }^{14}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Soldering Temperature	$260^{\circ} \mathrm{C}$ for 5 seconds	

NOTES:

3. Derate from $\mathrm{T}_{A}=50^{\circ} \mathrm{C}$ at $0.071 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Fig. 3 .
4. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.086 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Fig. 3 .

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbel	Parameter	ned ${ }^{\text {I7 }}$			HLMP-3600.			HLMP-3650			HLMP.3680			Units	Test Conditions
		min.	typ.	max.	min.	typ.	max.	min.	6yp.	max.	min.	typ.	max.		
APEAK	Peak Wavelength		655			635			583			565		nm	
λ_{d}	Dominant Wavelength		640			626			585			569		nm	Nate 5.
FAbJTP4N	Thermal Resistance		90			90			90			90		${ }^{\circ} \mathrm{C} / \mathrm{N}$	Junction to lead at 3 mm from body
If	Forward Current		13	20		10	15		10	15		12	15	mA	At rated vortage
ηV	Luminous Efficacy	'	55			147			570			630		lumens /watt	Note 6.
$V_{B A}$	feverse Breakdown Voltage	3.0			5.0			5.0			5.0			V	$\mathrm{IR}=100 \mu \mathrm{~A}$

Notes:
5. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
6. Radiant intensity, l_{e}, in watts/steradian, may be found from the equation $l_{e}=l_{v} / \eta_{v}$. Where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.
7. GaAsP lamps HLMP-0280/-1100/-1120/-3105/-3112.

Package Dimensions

Figure A. HLMP-1100, $\mathbf{- 1 1 2 0}$.

Figure B. HLMP-0280.

NOTES:

1. All dimensions are fn mllimethes (inches), 2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm
t.040') DOWN THE LEADS'.

Standard Red HLMP-0280/-1100/-1120/-3105/-3112 Lamps

Figure 1. Forward Current vs. Applied Forward Voltage

Figure 3. Maximum Allowed Applied Forward Voltage vs. Ambient Temperature $R_{\theta J A}=175^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 5. Relative Luminous Intensity vs. Angular Displacement.

Figure 2. Relative Luminous Intensity vs. Applied Forward Voltage

Figure 4. Relative Luminous Intesity vs. Angular Displacement.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

High Efficiency Red, Yellow, Green Lamps

HLMP-3600/-3650/-3680

Figure 7. Relative Luminous Intensity vs. Applied Forward Voltage.

Figure 9. Relative Luminous Intensity vs. Angular Displacement.

Figure 8. Forward Current vs. Applied Forward Voltage.

Figure 10. Max. Allowed Applied Forward Voltage vs. Ambient Temp.

Features

- HIGH SENSITIVITY: 10 mV ON TO OFF
- BUILT IN LED CURRENT LIMITING
- TEMPERATURE COMPENSATED THRESHOLD VOLTAGE
- COMPACT: PACKAGE INCLUDES INTEGRATED CIRCUIT AND LED
- GUARANTEED MINIMUM LUMINOUS INTENSITY
- THRESHOLD VOLTAGE CAN BE INCREASED WITH EXTERNAL COMPONENT

Applications

- Push-to-test battery voltage tester (pagers, cameras, appliances, radios, test equipment. . .)
- Logic level indicator
- Power supply voltage monitor
- V-U meter
- Analog level sense
- Voltage indicating arrays - use several with different thresholds
- Current monitor

Description

The HP voltage sensing LEDs use an integrated circuit and a red GaAsP LED to provide a complete voltage sensing function in a standard red diffused T-1 LED package. When the input voltage (V_{IN}) exceeds the threshold voltage (V_{TH}) the LED turns "on". The high gain of the comparator provides unambiguous indication by the LED of the input voltage with respect to the threshold voltage. The V-I characteristics are resistive above and below the threshold voltage. This allows battery testing under simulated load conditions. Use of a resistor, diode or zener in series allows the threshold voltage to be increased to any desired voltage. A resistor in parallel allows the sensing LED to be used as a current threshold indicator.

The HLMP-1142 has a nominal threshold voltage of 2.7 V .

Absolute Maximum Ratings

St	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating Temperature.	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for 5 Sec .
Input Voltage - $\mathrm{V}_{\mathbf{I N}}{ }^{\text {[1] }}$	+5 V dc
Reverse Input Voltage - V	-0.5

Electro-Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Sym.	HLMP-1142			Units	Test Conditions	Fig.
		Min.	Typ.	Max.			
Threshold Voltage	$V_{\text {TH }}$	2.5	2.7	2.9	V		1,2
Temperature Coefficient of Threshold	$\frac{\Delta V_{T H}}{\Delta T_{A}}$		-1		mVfo		
Input Current	I'N		$\begin{aligned} & 13 \\ & 33 \end{aligned}$	50	$\begin{aligned} & m A \\ & m A \end{aligned}$	$\begin{aligned} & V_{I N}=2.75 \mathrm{~V} \\ & V_{\mathrm{IN}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
Luminous Intensity	I_{4}	0.3	0.7		mad	$V_{1 N}=2.75 \mathrm{~V}$	1
Wavelength	入PEAK		655		nm	Measurement at peak	
Dominant Wavelength	λ_{d}		640		nm	Note 1	

Figure 1. Luminous Intensity vs. Input Voltage.

Figure 2. Input Current vs. Input Voltage. Figure 3. Relative Luminous Intensity vs. Angular Displacement.

Techniques For Increasing The Threshold Voltage

	External Component	V'TH	$T c=\frac{\Delta V^{\not} T H}{\Delta T_{A}}\{m V / \rho c)$
		V TH +0.45 V	-2
		VTH +0.75 V	-2.5
		$\mathrm{V}_{\text {TH }}+1.6 \mathrm{~V}$	-2.9
	Zener Diode	$V_{T H}+V_{Z}$	-1+2ener TC

Notes: 1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. $I_{T H}$ is the maximum current just below the threshold, $V_{T H}$. Since both $I_{T H}$ and $V_{T H}$ are variable, a precise value of $\mathrm{V}^{\prime} \mathrm{TH}$ is obtainable only by selecting R to fit the measured characteristics of the individual devices (e.g., with curve tracer).
3. The temperature coefficient (TC) will be a function of the resistor TC and the value of the resistor.

Features

- MILITARY QUALIFICATION
- CHOICE OF 4 COLORS

Red
High Efficiency Red
Yellow
Green

- DESIGNED FOR HIGH-RELIABILITY APPLICATIONS
- HERMETICALLY SEALED
- WIDE VIEWING ANGLE
- LOW POWER OPERATION
- IC COMPATIBLE
- LONG LIFE
- PANEL MOUNT OPTION HAS WIRE WRAPPABLE LEADS AND AN ELECTRICALLY ISOLATED CASE

Description

The 1N5765, 1N6092, 1N6093, and 1N6094 are hermetically sealed solid state lamps encapsulated in a TO-46 package with a tinted diffused plastic lens over a glass window. These hermetic lamps provide good on-off contrast, high axial luminous intensity and a wide viewing angle.
All of these devices are available in a panel mountable fixture. The semiconductor chips are packaged in a hermetically sealed TO-46 package with a tinted diffused plastic lens over glass window. This TO-46 package is then encapsulated in a panel mountable fixture designed for high reliability applications. The encapsulated LED lamp assembly provides a high on-off contrast, a high axial luminous intensity and a wide viewing angle.
The 1N5765 utilizes a GaAsP LED chip with a red diffused

HERMETIC TO-46 LAMP

PANEL MOUNT AS LAMP ASSEMBLY
plastic lens over glass window.
The 1N6092 has a high efficiency red GaAsP on GaP LED chip with a red diffused plastic lens over glass window. This lamp's efficiency is comparable to that of a GaP red but extends to higher current levels.
The 1N6093 provides a yellow GaAsP on GaP LED chip with a yellow diffused plastic lens over glass window.
The 1 N6094 provides a green GaP LED chip with a green diffused plastic lens over glass window.
Part marking includes: part number from matrix below. CAQI designating code and YYWWX lot identification code including year, week and assembly plant if required. A maximum of 18 spaces can be accommodated.

COLOR - PAFT NUMEER - LAMP AND PANEL MOUNT MATRIX				
Description	Standard Produel	With JAN Quallication ${ }^{[1]}$	JAN Plus TX Testing ${ }^{[2]}$	Controlling Mit-S-19500
TABLE IHERMETIC TO-46 PART NUMBER SYSTEM				
Standard Red High Efficiency Red Yellow Green	$\begin{aligned} & \text { IN5765 (HLMP-C903) } \\ & \text { IN6092 :HLMP-0353 } \\ & \text { 1N6093 (HLMP-0453 } \\ & \text { 1N6094 (HLMP-0553 } \end{aligned}$	JAN1N5765 (HLMP-0911) JAN1N6092 (HLMP-0371) JAN1N6093 (HLMP-0471) JAN1N6094 (HL.AP-0571)	JANTXIN5765 (HLMP-0912) JANTXIN6092 (HL MP-0372) JANTXIN6093 (書LLMP-0472) JANTX1N6094 (HI MP-0572)	$\begin{aligned} & 7467 \\ & 7519 \\ & 7520 \\ & 7521 \end{aligned}$
TABLE II PANEL MOUNTADELE PART NUMBER SYSTEM ${ }^{\text {I }}$				
Stanclard Fed High Efficiency Red Yelfow Green	$\begin{aligned} & \text { HLMP-0904 (5082-4787) } \\ & \text { HLMP-0354 (5082-4687) } \\ & \text { HLMP-0454 (5082-4587) } \\ & \text { HLMP-0554 (5082-4987) } \end{aligned}$		$\begin{aligned} & \text { HLMP-0931 } \\ & \text { HLMP-0381 (M9500/519-02) } \\ & \text { HLMP-0481 (M19500/520-02 } \\ & \text { HLMP-0581 (M19500/521-02 } \end{aligned}$	$\begin{gathered} \text { NONE } \\ 1519 \\ f 520 \\ \text { /521 } \\ \hline \end{gathered}$

Notes:

1. Parts are marked J1NXXXX or as indicated.
2. Parts are marked JTX INXXXX or as indicated.
3. Panel mountable packaging incorporates additional assembly of the
*Panel mount versions of all of the above are available per the selection matrix on this page.

JAN PART: Samples of each lot are subjected to Group A, B and C tests listed below. All tests are to the conditions and limits specified by the appropriate MIL-S-19500 slash sheet for the device under test. A summary of the data gathered in Groups A, B and C lot acceptance testing is supplied with each shipment.

Examination or Test	MIL-STD-750 Method
GROUP A INSPECTION	
Subgroup 1	
Visual and mechanical examination	2071
Subgroup 2	
Luminous intensity ($\theta=0^{\circ}$)	-
Luminous intensity ($\theta=30^{\circ}$)	-
Reverse current	4016
Forward voltage	4011
Subgroup 3	
Capacitance	4001
GROUP B INSPECTION	
Subgroup 1	
Physical dimensions	2066
Subgroup 2	
Solderability	2026
Thermal shock (temperature cycling)	1051
Thermal shock (glass strain)	1056
Hermetic seal	1071
Moisture resistance	1021
End points: Luminous intensity ($\theta=0^{\circ}$)	-
Subgroup 3	
Shock	2016
Vibration, variable frequency	2056
Constant acceleration	2006
End points: (same as subgroup 2)	
Subgroup 4	
Terminal strength	2036
End points: Hermetic seal	1071
Subgroup 5	
Salt atmosphere (corrosion)	1041
Subgroup 6	
High-temperature life (nonoperating)	1032
End points: Luminous intensity ($\theta=0^{\circ}$)	-
Subgroup 7	
Steady-state operation life End points: (same as subgroup 6)	1027

JANTX PART: Devices undergo 100\% screening tests as listed below to the conditions and limits specified by MIL-S19500 slash sheet. The JANTX lot has also been subjected to Group A, B and C tests as for the JAN PART above. A summary of the data gathered in Groups A, B and C acceptance testing is supplied with each shipment.

Examination or Test	MIL-STD-750 Method
GROUP C INSPECTION	
Subgroup 1	
Thermal shock (temperature cycling)	1051
End points: (same as subgroup 2 of group B)	
Subgroup 2	
Resistance to solvents	-
Subgroup 3	
High-temperature life (nonoperating)	1031
End points: Luminous intensity ($\theta=0^{\circ}$)	-
Subgroup 4	
Steady-state operation life	1026
End points: (same as subgroup 3)	
Subgroup 5	
Peak forward pulse current (transient)	-
End points: (same as subgroup 6 of group B)	
Subgroup 6	
Peak forward pulse current (operating)	-
End points: (same as subgroup 6 of group B)	
PROCESS AND POWER CONDITION ("TX" types only)	
High temperature storage (nonoperating)	-
Thermal shock (temperature cycling)	1051
Constant acceleration	2006
Hermetic seal	1071
Luminous intensity ($\theta=0^{\circ}$)	-
Forward voltage	4011
Reverse current	4016
Burn-in (Forward bias)	-
End points (within 72 hours of burn-in):	
Δ Luminous intensity ($\theta=0^{\circ}$)	-
Δ Forward voltage	4011

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	$\begin{gathered} \text { Red } \\ \text { HLMP-0904 } \end{gathered}$	High Eff, Red HLMP-0354	$\begin{aligned} & \text { Yellow } \\ & \text { HL.MP- } 0454 \end{aligned}$	Green HLMP-0554	Unlts
Power Dissipation (derate linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	100	120	120	120	mW
DC Forward Current	$50^{[1]}$	$35^{[2]}$	$35^{[2]}$	$35^{[2]}$	mA
Peak Forward Current	$\begin{gathered} 1000 \\ \text { See Fig. } 5 \end{gathered}$	$\begin{aligned} & \text { S0 } \\ & \text { See Fig. } 10 \end{aligned}$	$\begin{gathered} 60 \\ \text { See Fig. } 15 \end{gathered}$	$\begin{gathered} 60 \\ \text { See Fig. } 20 \end{gathered}$	mA
Operating and Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$				
Lead Soldering Temperature [1.6 mm (0.063 in .) from body]	$260^{\circ} \mathrm{C}$ for 7 seconds.				

Notes: 1. Derate from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
2. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbod	Description	HLMP-0904			HLMP-0354			HLMP.0454			HLMP-0554			Un號	Tuat Condtion*
		Min.	Typ.	Max.	Min.	Typ.	Max.	Minx	Typ.	Max.	Aln.	Typ.	Max.		
Iva	Axial Luminous Intensity	0.5	1.0		1.0	5		1.0	6		0.8	$\begin{gathered} 3 \\ = \end{gathered}$		med	$\begin{aligned} & \mathrm{l}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Figs. } 3,8,13,18 \\ & \theta=\theta^{\circ} \end{aligned}$
IV2	Luminous Intensity at $\theta=30^{\circ}(5)$	0.3			0.5			0.5			0.4			mod	$\begin{aligned} & \text { If }=20 \mathrm{~mA} \\ & \theta=30^{\circ} \end{aligned}$
$2 \Theta_{12}$	Included Angle Between Fatif Luminous Intensity Points		60			70			70			70		deg.	$\begin{aligned} & 11 \mid \text { Figures } \\ & 6,11,16,21 \end{aligned}$
	Feak Wavelength ${ }^{[5]}$	630	655	700	590	635	695	550	583	660	525	565	600	nrm	Measurement at Peak
$\lambda_{\text {d }}$	Dominant Wavelength		640			626			585			570		nm	12]
48	Speed of Response		10			200			200			200		ns	
C	Capacitancel5]		200	300		35	100		35	100		35	100	pF	$\mathrm{V}_{\mathrm{k}}=0 ; 9 \mathrm{~F}=1 \mathrm{MHz}$
θ_{13}	Thermal Resistance*		425			425			425			425		${ }^{\circ} \mathrm{CH}$ W	3
$0^{2} \mathrm{~F}$	Thermal Resistance**		550			550			550			550		${ }^{\circ} \mathrm{CH}$	\|3]
V_{F}	Forward Voltage		$\pm .6$	2.0		2.0	3.0		2.0	3.0		$\begin{gathered} 2.4 \\ \mathrm{IF}_{\mathrm{F}}=2 \end{gathered}$	$\begin{array}{r} 3.0 \\ 5 \mathrm{~mA} \\ \hline \end{array}$	\checkmark	$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Figures } 2.7 . \\ & 12.17 \end{aligned}$
$1{ }_{\text {I }}$	Reverse Current (5]			1.0			1.0			1.0			1.0	1 A	$V_{\text {R }}=3 \mathrm{~V}$
$B V_{R}$	Reverse Breakdown Voltage	4	5		5.0			5.0			5.0			\checkmark	$I_{R}=100{ }_{\text {m }} \mathrm{A}$
nx	Luminous Efficacy		56			140			455			600		Im/W	14]

NOTES:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Junction to Cathode Lead with 3.18 mm (0.125 inch) of leads exposed between base of flange and heat sink.
4. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.
5. Limits do not apply to non JAN parts.
*Panel mount.
**T0-46

Figure 1. Relative Intensity vs. Wavelength.

Package Dimensions
HLMP-0904, 0354, 0454, 0554

NOTES:

2. GOLDPLATEO LEADS
3. PACKAGE WEtGMT OF LAMP ALONE IS $25-35$ GRAMS.

Family of Red 1N5765/HLMP-0904

Figure 2. Forward Current vs. Forward Voltage.

$I_{\text {F }}$ - FORWARD CURRENT - MA
Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Family of High Efficiency Red 1N6092/5082-4687

Figure 7. Forward Current vs. Forward Voltage.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Family of Yellow 1N6093/5082-4587

V_{F} - PEAK FORWARD VOLTAGE - V
Figure 12. Forward Current vs. Forward Voltage.

t_{p} - PULSE DURATION - $\mu \mathrm{s}$
Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

I_{F} - FORWARD CURRENT - mA
Figure 13. Relative Luminous Intensity vs. Forward Current.

I PEAK - PEAK CURRENT - mA
Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Family of Green 1N6094/5082-4987

Figure 17. Forward Current vs. Forward Voltage.

Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 18. Relative Luminous Intensity vs. Forward Current.

Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 21. Relative Luminous Intensity vs. Angular Displacement.

TECHNICAL DATA JANUARY 1983

Description

The HLMP-0103 is a black plastic mounting clip and retaining ring. It is designed to panel mount Hewlett Packard Solid State high profile T-13/4 size lamps. This clip and ring combination is intended for installation in instrument panels from $1.52 \mathrm{~mm}\left(.060^{\prime \prime}\right)$ to $3.18 \mathrm{~mm}\left(.125^{\prime \prime}\right)$ thick. For panels greater than $3.18 \mathrm{~mm}\left(.125^{\prime \prime}\right)$, counterboring is required to the $3.18 \mathrm{~mm}\left(.125^{\prime \prime}\right)$ thickness.

Mounting Instructions

1. Drill an ASA C size 6.15 mm (.242") dia. hole in the panel. Deburr but do not chamfer the edges of the hole.
2. Press the panel clip into the hole from the front of the panel.
3. Press the LED into the clip from the back. Use blunt long nose pliers to push on the LED. Do not use force on the LED leads. A tool such as a nut driver may be used to press on the clip.
4. Slip a plastic retaining ring onto the back of the clip and press tight using tools such as two nut drivers.

Note: Clip and retaining ring are also available for T-1. package. Please contact your Hewlett-Packard sales representative for information.

Features

- HIGH EFFICIENCY
- NONSATURATING OUTPUT
- NARROW BEAM ANGLE
- VISIBLE FLUX AIDS ALIGNMENT
- BANDWIDTH: DC TO 3 MHz
- IC COMPATIBLE/LOW CURRENT REQUIREMENT

Description

The HEMT-3300 is a visible, near-IR, source using a GaAsP on GaP LED chip optimized for maximum quantum efficiency at 670 nm . The emitter's beam is sufficiently narrow to minimize stray flux problems, yet broad enough to simplify optical alignment. This product is suitable for use in consumer and industrial applications such as optical transducers and encoders, smoke detectors, assembly line monitors, small parts counters, paper tape readers and fiber optic drivers.

Package Dimensions

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Units	Test Conditions	Figure
le	Axial Radiant Intensity	200	500		$\mu \mathrm{W} / \mathrm{sr}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	3,4
K e	Temperature Coefficient of Intensity		-0.009		${ }^{\circ} \mathrm{C}^{-1}$	$I_{F}=10 \mathrm{~mA}$, Note 1	
nv	Luminous Efficacy		22		$1 \mathrm{~m} / \mathrm{N}$	Note 2	
$2 \Theta_{1 / 2}$	Half Intensity Total Angle		22		deg.	Note 3, $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	6
$\lambda_{\text {PEAK }}$	Peak Wavelength		670		nm	Measured at Peak	1
$\Delta \lambda_{\text {PEAK }} / \Delta T$	Spectral Shift Temperature Coefficient		0.089		$n \mathrm{~m} /{ }^{\circ} \mathrm{C}$	Measured at Peak, Note 4	
${ }_{4}$	Output Rise Time $(10 \%-90 \%)$		120		ns	$I_{\text {PEAK }}=10 \mathrm{~mA}$	
t_{f}	Output Fall Time $(90 \%-10 \%)$		50		ns	$I_{\text {PEAK }}=10 \mathrm{~mA}$ Pulse	
C_{0}	Capacitance		15		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$	
$B V_{R}$	Reverse Breakdown Voltage	5.0			V	$\mathrm{l}_{\mathrm{R}}=100 \mu \mathrm{~A}$	
V_{F}	Forward Voltage		1.9	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	2
$\Delta V_{F} / \Delta T$	Temperature Coefficient of V_{F}		-2.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$l_{F}=100 \mu \mathrm{~A}$	
Θ_{JC}	Thermal Resistance		160		${ }^{\circ} \mathrm{C} N$	Junction to cathode lead at seating plane.	

Notes: 1. $I_{e}(T)=I_{e}\left(25^{\circ} C\right) \exp \left[K_{e}\left(T-25^{\circ} C\right)\right] 2 . I_{v}=\eta_{v} I_{e}$ where I_{v} is in candela, I_{e} in watts/steradian and η_{v} in lumen/watt.
3. $\Theta_{1 / 2}$ is the off-ax is angle at which the radiant intensity is half the axial intensity. The deviation between the mechanical and optical axis is typically within a conical half-angle of five degrees. 4. λ PEAK $(T)=\lambda$ PEAK $\left(25^{\circ} \mathrm{C}\right)+(\Delta \lambda$ PEAK $/ \Delta T)\left(T-25^{\circ} \mathrm{C}\right)$.

Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Power Dissipation 120 mW
(derate linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Average Forward Current 30 mA (derate linearly from $50^{\circ} \mathrm{C}$ at $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$)
Peak Forward Current
See Figure 5 Operating and Storage

Temperature Range $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Lead Soldering Temperature $260^{\circ} \mathrm{C}$ for 5 sec.
(1.6 mm [0.063 inch] from body)

Figure 1. Relative Intensity versus Wavelength.

Figure 2. Forward Current versus Forward Voltage.

Figure 3. Relative Radiant Intensity versus Forward Current.

Figure 4. Relative Efficiency (Radiant Intensity per Unit Current) versus Peak Current.

Figure 5. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 6. Far-Field Radiation Pattern.

HEMT-6000

Features

- HIGH RADIANT INTENSITY

- NARROW BEAM ANGLE
- NONSATURATING OUTPUT
- BANDWIDTH: DC TO 5 MHz
- IC COMPATIBLE/LOW CURRENT REQUIREMENT
- VISIBLE FLUX AIDS ALIGNMENT

Description

The HEMT-6000 uses a GaAsP chip designed for optimum tradeoff between speed and quantum efficiency. This optimization allows a flat modulation bandwidth of 5 MHz without peaking, yet provides a radiant flux level comparable to that of 900 nm IREDs. The subminiature package allows operation of multiple closely-spaced channels, while the narrow beam angle minimizes crosstalk. The nominal 700 nm wavelength can offer spectral performance advantages over 900 nm IREDs, and is sufficiently visible to aid optical alignment. Applications include paper-tape readers, punch-card readers, bar code scanners, optical encoders or transducers, interrupt modules, safety interlocks, tape loop stabilizers and fiber optic drivers.

Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Power Dissipation
(derate linearly from $70^{\circ} \mathrm{C} @ 1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Average Forward Current
20 mA
(derate linearly from $70^{\circ} \mathrm{C} @ 0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$)
Peak Forward Current See Figure 5

Operating and Storage
Temperature Range -55° to $+100^{\circ} \mathrm{C}$
Lead Soldering
Temperature
......................... $260^{\circ} \mathrm{C}$ for 5 sec.
[1.6 mm (0.063 in.) from body]

NOTES

1. AL L OLAENSIONS ARE IN MLLAMETRES ZNCHESI.
 3. USER MAY BEAD LEADS ASSHOWN.
2. EROXY ENCAPSULANT HAS A REFRA
3. CGTP CENTER\#NG WITHEN THE PACKAGE IS CONSISYEAT WTHFOOTNOTE

Figure 1. Relative Intensity versus Wavelength.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Units	Test Conditions	Fig.
${ }_{0}$	Radiant Intensity along Mechanical Axis	100	250		$\mu \mathrm{W} / \mathrm{sr}$	$I_{F}=10 \mathrm{~mA}$	3,4
K_{e}	Temperature Coefficient of Intensity		-0.005		${ }^{0} \mathrm{C}^{-1}$	Note 1	
η_{v}	Luminous Efficacy		2.5		Im/W	Note 2	
$2 \Theta_{1 / 2}$	Optical Axis Half Intensity Total Angle		16		deg.	Note 3, $I_{F}=10 \mathrm{~mA}$	6
$\lambda_{\text {PEAK }}$	Peak Wavelength (Range)		690-715		nm	Measured@ Peak	1
$\begin{gathered} \Delta \lambda_{\text {PEAK }} / \Delta T \\ \hline \end{gathered}$	Spectral Shift Temperature Coefficient		. 193		$n \mathrm{~m} /{ }^{\circ} \mathrm{C}$	Measured @ Peak, Note 4	
t_{r}	Output Rise Time (10\%-90\%)		70		ns	$I_{\text {PEAK }}=10 \mathrm{~mA}$	
t_{f}	Output Fall Time (90%-10\%)		40		ns	$I_{\text {PEAK }}=10 \mathrm{~mA}$	
C_{0}	Capacitance		65		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$	
$B V_{R}$	Reverse Breakdown Voltage	5	12		V	$I_{R}=100 \mu \mathrm{~A}$	
V_{F}	Forward Voltage		1.5	1.8	V	$I_{F}=10 \mathrm{~mA}$	2
$\Delta V_{F} / \Delta T$	Temperature Coefficient of V_{F}		-2.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$I_{F}=100 \mu \mathrm{~A}$	
Θ_{Jc}	Thermal Resistance		140		${ }^{\circ} \mathrm{CNW}$	Junction to cathode lead at 0.79 mm (. 031 in) from body	

NOTES: 1. $I_{e}(T)=I_{e}\left(25^{\circ} \mathrm{C}\right) \exp \left[K_{e}\left(T-25^{\circ} \mathrm{C}\right)\right]$.
2. $I_{v}=\eta_{v} I_{e}$ where I_{v} is in candela, I_{e} in watts/steradian, and η_{V} in lumen/watt.
3. $\Theta_{1 / 2}$ is the off-axis angle at which the radiant intensity is half the intensity along the optical axis. The deviation between the mechanical and the optical axis is typically within a conical half-angle of three degrees.
4. $\lambda_{P E A K}(T)^{\prime}=\lambda_{P E A K}\left(25^{\circ} \mathrm{C}\right)+\left(\Delta \lambda_{P E A K} / \Delta T\right)\left(T-25^{\circ} \mathrm{C}\right)$

Light Bars and Bar Graph Arrays

LED Light Bars are HewlettPackard's innovative solution to fixed message annunciation. The large, uniformly illuminated light emitting surface may be used for backlighting legends or simple indicators. Three distinct colors are offered, high efficiency red, yellow, and high performance green, with two bicolor combinations (see page 298). Each of the eight X-Y stackable package styles offers one, two, or four light emitting surfaces. Each device has a universal pinout arrangement allowing series, parallel, or series/parallel configurations. Panel and Legend Mounts are also available for all devices.
In addition to light bars, HP offers effective analog message annunication with the new $10-$ element and 101-element LED Bar Graph Arrays. These bar graph arrays eliminate the matching and alignment problems commonly associated with discrete LED indicators. Each device offers easy to handle packages that are compatible with standard SIP and DIP sockets. The 10-Element Bar Graph Array is available in standard red, high efficiency red, and yellow. Watch for the introduction of a High Performance Green version. The package is $X-Y$ stackable, with a unique interlock allowing easy end-to-end alignment. The 101Element Bar Graph Array is offered in standard red with 1\% resolution.

LED Light Bars

Device		Description			Typical Luminous Intensity @ 20 mA	Typical Forward Voltage @ 20 mA	Page No.
Package Outline Drawing	Part No.	Color	Package	Lens			
	HLMP-2300	High Efficiency Red	4 Pin In-Line; $100^{\prime \prime}$ Centers; . 400"L x .195' $\mathrm{W} \times .240^{\prime \prime} \mathrm{H}$	Diffused	10 mcd	1.9 Volts	288
	HLMP-2400	Yellow		Diffused	6 mcd	2.0 Volts	
	HLMP-2500	Green		Green Diffused	10 mcd	2.1 Volts	
	HLMP-2350	High Efficiency Red	$\begin{aligned} & 8 \text { Pin In-Line; } .100^{\prime \prime} \\ & \text { Centers; } .800^{\prime \prime} \mathrm{L} x \\ & .195^{\prime} \mathrm{W} \times .240^{\prime \prime} \mathrm{H} \end{aligned}$	Diffused	20 mcd	1.9 Volts	
	HLMP-2450	Yellow		Diffused	12 mcd	2.0 Volts	
	HLMP-2550	Green		Green Diffused	20 mcd	2.1 Volts	
	HLMP-2600	High Efficiency Red	8 Pin DIP; . 100" Centers; . $400 \mathrm{~L} x$ $.400^{\prime} \mathrm{W} \times .240^{\prime \prime} \mathrm{H} ;$ Dual Arrangement	Diffused	10 mcd		292
	HLMP-2700	Yellow		Diffused	6 mcd	2.2 Volts	
	HLMP-2800	Green		Green Diffused	10 mcd		
	HLMP-2620	High Efficiency Red	16 Pin DIP; . $100^{\prime \prime}$ Centers; .800'L x $.400^{\prime} \mathrm{W} \times .240^{\prime \prime} \mathrm{H} ;$ Quad Arrangement	Diffused	10 mcd	2.1 Volts	
	HLMP-2720	Yellow		Diffused	6 mcd	2.2 Volts	
V \|	HLMP-2820	Green		Green Diffused	10 mcd		

LED Light Bars (Continued)

LED Bicolor Light Bars

Device		Description			Typical Luminous Intensity @ 20 mA DC	Typical Forward Voltage @ 20 mA	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens			
	HLMP-2950	High Efficiency Red/ Yellow	8 Pin DIP; . $100^{\prime \prime}$ Centers; ${\text {. } 400^{\prime \prime}}^{\text {L } ~ x ~}$.400'W x . $240^{\prime \prime} \mathrm{H}$; Square Arrange-	Diffused	HER: 20 mcd Yellow: 12 mcd	HER: 2.1 V Yellow: 2.2V	298
	HLMP-2965	High Efficiency Red/ Green		Diffused	HER: 20 mcd Green: $\mathbf{2 0}$ mcd	HER: 2.1V Green: 2.2V	

LED Bar Graph Arrays

Features

- LARGE, BRIGHT, UNIFORM LIGHT EMITTING AREA
Approximately Lambertian Radiation Pattern
- CHOICE OF THREE COLORS
- CATEGORIZED FOR LIGHT OUTPUT
- YELLOW AND GREEN CATEGORIZED FOR DOMINANT WAVELENGTH
- EXCELLENT ON-OFF CONTRAST
- EASILY MOUNTED ON P.C. BOARDS OR SIP SOCKETS
- MECHANICALLY RUGGED
- X-Y STACKABLE
- FLUSH MOUNTABLE
- CAN BE USED WITH PANEL AND LEGEND MOUNTS
- LIGHT EMITTING SURFACE SUITABLE FOR LEGEND ATTACHMENT PER APPLICATION NOTE 1012
- SUITABLE FOR MULTIPLEX OPERATION
- I.C. COMPATIBLE

Description

The HLMP-2300/-2400/-2500 series light bars are rectangular light sources designed for a variety of applications where a large, bright source of light is required. These light bars are configured in single-in-line packages that contain

Applications

- BUSINESS MACHINE MESSAGE ANNUNCIATORS
- TELECOMMUNICATIONS INDICATORS
- FRONT PANEL PROCESS STATUS INDICATORS
- PC BOARD IDENTIFIERS
- BAR GRAPHS
a single light emitting area. The -2300 and -2400 series devices utilize LED chips which are made from GaAsP on a transparent GaP substrate. The - 2500 series devices utilize chips made from GaP on a transparent GaP substrate.

Selection Guide

Light Bar Part Number HLMP.			Size of Light Emitting Area	Package Outine		Corresponding Panel and Legend Mounf Part No. HLMP.
High Efficiency Red	Yellow	Green				
2300	2400	2500	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(350 \mathrm{in} . \times .150 \mathrm{in}$.	A		2599
2350	2450	2550	$19.05 \mathrm{~mm} \times 3.81 \mathrm{~mm} 1.750 \mathrm{in} \times .150 \mathrm{in}$,	B		2598

Absolute Maximum Ratings

Parameter	$\begin{aligned} & \text { MLMP-2300/ } \\ & 2500 \text { Series } \end{aligned}$	$\begin{aligned} & \text { HLMP-2400 } \\ & \text { Series } \end{aligned}$
Average Power Dissipation per LED Chipl1	135 mW	85 mW
Peak Forward Current per LeD Chip, $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ (Maximum Pulse Width $\left.=2 \mathrm{~ms}\right) 1,21$	90 mA	60 mA
Time Average Forward Current per LED Chip. Pulsed Conditionsi2	$\begin{gathered} 25 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 20 \mathrm{~mA} \\ \mathrm{TA}_{\mathrm{A}}=50^{\circ} \mathrm{C} \end{gathered}$
DC Forward Current per LED Chip, $\left.T_{A}=50^{\circ} \mathrm{C} / 3\right]$	30 mA	25 mA
Reverse Voltage per LED Chip	6 V	
Operating Temperature Range	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Soldering Temperature, 1.6 mm (1/16 inch) Below Seating Plane	$260^{\circ} \mathrm{C}$ for 3 Seconds	

NOTES

1. For HLMP-2300/-2500 series, derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at
$1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED Chip. For HLMP-2400 series, derate above
$\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED Chip. See Figure 2.
2. See Figure 1 to establish pulsed operating conditions.
3. For HLMP-2300/-2500 series, derate above $T_{A}=50^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED Chip. For HLMP-2400 series, derate above $T_{A}=60^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED Chip. See Figure 3.

Package Dimensions

CATHODE EAD

TOP A

SIDE B

NOTES: Dimensions in milimetres (inches).
Tolerances $\pm .25 \mathrm{~mm}(\pm 0.010 \mathrm{in}$.$) unless otherwise indicated.$

Internal Circuit Diagram

A

B

PIN FUNCTION		
PIN	$\begin{gathered} A \\ -2300 /-2400 \\ -2500 \end{gathered}$	$\begin{gathered} B \\ -2350 /-2450 \\ -2550 \\ \hline \end{gathered}$
1	Cathode - a	Cathode - a
2	Anode - a	Anode - a
3	Cathode - b	Cathode - b
4	Anode - b	Anode - b
5		Cathode - c
6		Anode - C
7		Cathode - d
8		Anode - d

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

High Efficiency Red HLMP-2300/-2350

Parameter	HLMP.	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{\text {/ }}$	2300	IV	4.5	10		mcd	20 mADC
				15		mcd	$60 \mathrm{mAPK}: 1$ Of 3 DF
	2350	Iv	9	20		mcd	20 mADC
				30		med	$60 \mathrm{mAPk} \times 1$ of 3 DF
Peak Wavelength		λ Peak		635		nm	
Dominant Wavelength[5]		λ_{d}		626		nm	
Forward Voltage per LED		V_{F}		1.9	2.6	V	$\mathrm{If}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED		VBR	6	15		V	$\mathrm{I}_{\mathrm{A}}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		R $\theta_{\text {JJ_PIN }}$		150		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$	

Yellow HLMP-2400/-2450

Parameter	HLMP.	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{4}$	2400	IV	4	6		mcd	20 mA DC
				10		mod	$60 \mathrm{mAPk}: 1$ of 3 DF
	2450	IV	8	12		med	20 mADC
				20		macd	$60 \mathrm{~mA} \mathrm{PK:} 1013 \mathrm{DF}$
Peak Wavelength		APEAK		583		nm	
Dominant Wavelength\|5]		Ad		585		nm	
Forward Voltage per LED		V_{F}		2	2.6	\checkmark	$I_{F}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED		VBR	6	15		V	IR $=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		$\mathrm{R} 0 . \mathrm{FPIN}$		150		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$	

Green HLMP-2500/-2550

Parameter	HLMP.	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{14}$	2500	Iv	3.7	10		mod	20 mADC
				15		mad	60 mAPk .1 of 3 DF
	2550	Iv	7.5	20		med	20 mADC
				30		mad	60 mAPk 11 of 3 DF
Peak Wavelength		λ PEAK		565		nm	
Dominant Wavelength ${ }^{\text {5 }}$		λ_{d}		572		nm	
Forward Voltage per LED		V_{F}		2, 1	2.6	V	$\mathrm{t}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED		$V_{B R}$	6	15		\checkmark	$I_{\text {A }}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		R $\theta_{\text {J-PIN }}$		150		${ }^{\circ} \mathrm{C}$ W/LED	

NOTES: 4. Each device is categorized for luminous intensity with the intensity category designated by a letter code on the package.
5. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.

Electrical

The HLMP-2300/-2400/-2500 series of light bar devices are composed of two or four light emitting diodes, with the light from each LED optically scattered to form an evenly illuminated light emitting surface. The LED's have a P-N junction diffused into the epitaxial layer on a GaP transparent substrate.
The anode and cathode of each LED is brought out by separate pins. This universal pinout arrangement allows for the wiring of the LED's within a device in any of three possible configurations: parallel, series, or series/parallel.
The typical forward voltage values, scaled from Figure 5, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design and
maximum power dissipation may be calculated using the following V_{F} models:

```
VF=1.8V + IPEAK (40\Omega)
    For IPEAK }\geq20\textrm{mA
```

$V_{F}=1.6 \mathrm{~V}+\mathrm{IDC}(50 \Omega)$
For $5 \mathrm{~mA} \leq 1 \mathrm{DC} \leq 20 \mathrm{~mA}$

The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum forward voltage and the maximum forward current. For pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any
given ambient temperature and thermal resistance (R θ_{J-A}) can be determined by using Figure 2. The solid line in Figure $2\left(\mathrm{R} \theta_{J}-\mathrm{A}\right.$ of $\left.538^{\circ} \mathrm{C} / \mathrm{W}\right)$ represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistances that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration

Figure 3. Maximum Allowable DC Current per LED vs. Ambient Temperature, Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.

V_{F} - FORWARD VOLTAGE - V
Figure 5. Forward Current vs. Forward Voltage Characteristics.

Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:

SIZE OF	SURFACE AREA	
EAITTING AREA	SQ. NETRES	SQ, FE世T
$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}$	33.87×10^{-6}	364.58×10^{-6}
$19.05 \mathrm{~mm} \times 3.81 \mathrm{~mm}$	72.58×10^{-6}	781.25×10^{-8}

Figure 2. Maximum Allowable Power Dissipation per LED vs. Ambient Temperature Deratings based on Maximum Allowable Thermal Resistance Values, LED Junction to Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

IDC-DC CURRENT PER LED-mA
Figure 6. Relative Luminous Intensity vs. DC Forward Current.

DIP - Single or Segmented Light Emitting Areas

> HIGH EFFICIENCY RED HLMP-2600 SERIES
> YELLOW HLMP-2700 SERIES
> HIGH PERFORMANCE GREEN HLMP-2800 SERIES

TECHNICAL DATA JANUARY 1983

Features

- LARGE, BRIGHT, UNIFORM LIGHT EMITTING AREAS
Approximately Lambertian Radiation Pattern
- CHOICE OF THREE COLORS
- CATEGORIZED FOR LIGHT OUTPUT
- YELLOW AND GREEN CATEGORIZED FOR DOMINANT WAVELENGTH
- EXCELLENT ON-OFF CONTRAST
- EASILY MOUNTED ON P.C. BOARDS OR INDUSTRY STANDARD DIP SOCKETS
- MECHANICALLY RUGGED
- X-Y STACKABLE
- FLUSH MOUNTABLE
- CAN BE USED WITH PANEL AND LEGEND MOUNTS
- LIGHT EMITTING SURFACE SUITABLE FOR LEGEND ATTACHMENT PER APPLICATION NOTE 1012
- SUITABLE FOR MULTIPLEX OPERATION
- I.C. COMPATIBLE

Description

The HLMP-2600/-2700/-2800 series light bars are rectangular light sources designed for a variety of applications where a large, bright source of light is required. These light bars are configured in dual-in-line packages that contain either single or segmented light emitting areas. The -2600

Applications

- BUSINESS MACHINE MESSAGE ANNUNCIATORS
- TELECOMMUNICATIONS INDICATORS
- FRONT PANEL PROCESS STATUS INDICATORS
- PC BOARD IDENTIFIERS
- BAR GRAPHS
and -2700 series devices utilize LED chips which are made from GaAsP on a transparent GaP substrate. The -2800 series devices utilize chips made from GaP on a transparent GaP substrate.

Selection Guide

Light Bar Part Number HLMP.			Size of Light Emitting Areas	NumberofLightEmittingAreas	Package Outline		Corresponding Panel and Legend Mount Part No. HLMP.
High Efficiency Red	Yellow	Green					
2600	2700	2800	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(.350 \mathrm{in} \times .150 \mathrm{in}$.	2	B	[]	2898
2620	2720	2820	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}(350 \mathrm{in} . \times .150 \mathrm{in}$.	4	D	प11	2899
2635	2735	2835	$8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm}(.150 \mathrm{in} . \times .750 \mathrm{in}$.	2	E	\square	2899
2655	2755	2855	$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}(.350 \mathrm{in} . \times .350 \mathrm{in}$.	1	A	\square	2898
2670	2770	2870	$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}(.350 \mathrm{in} . \times .350 \mathrm{in}$.	2	C	\square	2899
2685	2785	2885	$8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm}(.350 \mathrm{in} . \times .750 \mathrm{in}$.	1	F	\square	2899

Absolute Maximum Ratings

Parameter	$\begin{aligned} & \text { HLMP-2600 } f \\ & 2800 \text { Series } \end{aligned}$	$\begin{gathered} \text { HLMP-2700 } \\ \text { Series } \end{gathered}$
Average Power Dissipation per LED Chip ${ }^{11}$	135 mW	85 mW
Peak Forward Current per LED Chip, $T_{A}=50^{\circ} \mathrm{C}$ (Maximum Pulse Width $\left.=2 \mathrm{~ms}\right)^{1 /, 21}$	90 mA	60 mA
Time Average Forward Current per LED Chip. Pulsed Conditionsin ${ }^{2}$	$\begin{gathered} 25 m A_{1} \\ T_{A}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 20 \mathrm{~mA}_{t} \\ \mathrm{TA}_{\mathrm{A}}=50^{\circ} \mathrm{C} \end{gathered}$
DC Forward Current per LED Cnip, TA $=50^{\circ} \mathrm{C}$ 退	30 mA	25 mA
Reverse Voltage per LED Chip	6 V	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Sotdering Temperature, 1.6 mm (1/16 inch) Below Seating Plane	$260^{\circ} \mathrm{C}$ for 3 Seconds	

NOTES:

1. For HLMP-2600/-2800 series, derate above $T_{A}=25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2700 series, derate above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 2.
2. See Figure 1 to establish pulsed operating conditions.
3. For HLMP-2600/-2800 series, derate above $T_{A}=50^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2700 series, derate above $\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 3.

Package Dimensions

Internal Circuit Diagrams

A,B

PIN	PIN FUNCTION	
	A, B	C, D, E, F
1	CATHODE ${ }^{\text {a }}$	CATHODE
2	ANODE a	ANODE a
3	ANODE 6	ANODE D
4	CATHODE b	CATHODE b
5	CATHODE	CATHODE
6	ANODE c	ANODE
7	ANODE d	ANODE
8	CATHODE A	CATHODE
9		CATHODE
10		ANODE
11		ANODE 9
12		CATHODE
13		CATHODE g
14		ANODE 9
15		ANODE h
16		CATHODE h

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

High Efficiency Red HLMP-2600 Series

Parameter	HLMP.	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{14}$! Per Light Emitting Area	2600	IV	4.5	10		mcd	20 mA DC
				15		med	60 mAPk : 1 of 3 DF
	2620	Iv	4.5	10		mcd	20 mA DC
				15		med	60 mAPk : 1 of 3 DF
	2635	IV	9	20		mcd	20 mA DC
				30		mcd	60 mA Pk : 1 of 3 DF
	2655	Iv	9	20		mod	20 mA DC
				30		mod	$60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 DF
	2670	V	9	20		med	20 mA DC
				30		mod	$60 \mathrm{mAPK}: 1$ of 3 DF
	2685	Iv	18	40		med	20 mADC
				60		med	$60 \mathrm{mAPk}: 1$ of 3 DF
Peak Wavelength		$\lambda_{\text {peak }}$		635		nm	
Dominant Wavelength ${ }^{151}$		λd		626		nm	
Forward Voltage Per LED		V_{F}		2.1	2.6	V	$\mathrm{IF}=20 \mathrm{~mA}$
Reverse Breakdown Voltage Per LED		VBR	6	15		V	$\mathrm{IR}_{\mathrm{R}}=100{ }_{\mu} \mathrm{A}$
Thermal Resistance LED Junction-to-Pin		R $0_{\text {J-PIN }}$		150		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \\ & \text { Chip } \end{aligned}$	

Yellow HLMP-2700 Series

Parameter	HLMP.	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{141}$ Per Light Emitting Area	2700	Iv	4	6		med	20 mA DC
				10		mod	60 mAPk : 1 of 3 DF
	2720	Iv	4	6		mcd	20 mA DC
				10		mcd	60 mAPk : 1 of 3 DF
	2735	Iv	8	12		mod	20 mA DC
				20		mod	$60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 DF
	2755	IV	8	12		mod	20 mA DC
				20		mod	$60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF
	2770	Iv	8	12		mod	20 mA DC
				20		mod	$60 \mathrm{mAPk}: 1$ of 3 DF
	2785	Iv	16	24		mod	20 mADC
				40		mod	$60 \mathrm{~mA} \mathrm{Pk:} 1$ of 3 DF
Peak Wavelength		$\lambda_{\text {ppak }}$		583		nm	
Dominant Wavelength ${ }^{151}$		λ_{d}		585		nm	
Forward Voftage Per LED		V_{F}		2.2	2.6	\checkmark	$\mathrm{IF}_{5}=20 \mathrm{~mA}$
Reverse Breakdown Voltage Per LED		VBR	6	15		V	$\mathrm{IR}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		R 0 J-PIN		150		$\begin{aligned} & { }^{\circ} \mathrm{C} \text { W } \mathrm{F} \\ & \text { LED } \\ & \text { Chip } \end{aligned}$	

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Green HLMP-2800 Series

Parameter	HLMP.	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{141}$ Per Light Emitting Area	2800	Iv	3.7	10		mcd	20 mADC
				15		med	60 mAPk 1 of 3 DF
	2820	Iv	3.7	10		med	20 mADC
				15		med	60 mAPk 11 of 3 DF
	2835	Iv	7.5	20		med	20 mA DC
				30		mcd	60 mAPk 1 of 3 DF
	2855	Iv	7.5	20		med	20 mA DC
				30		mod	60 mAPk 11 of 3 DF
	2870	Iv	7.5	20		mcd	20 mA DC
				30		mod	$60 \mathrm{mAPk}: 1$ of 3 DF
	2885	Iv	15	40		med	20 mADC
				60		med	$60 \mathrm{mAPk}: 10 \% 3 \mathrm{DF}$
Peak Wavelength		δ peak		565		nm	
Dominant Wavelength ${ }^{[5]}$		$\delta_{\text {d }}$		572		nm	
Forward Voltage Per LED		V_{F}	"	2.2	2.6	V	$I_{F}=20 \mathrm{~mA}$
Reverse Breakdown Voltage Per LED		VBR	6	15		V	$I_{R}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-fo-Pin				150		$\begin{aligned} & \text { C/W } \\ & \text { LED } \\ & \text { Chip } \end{aligned}$	

NOTES:
4. These devices are categorized for luminous intensity with the intensity category designated by a letter code on the side of the package.
5. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.

Electrical

The HLMP-2600/-2700/-2800 series of light bar devices are composed of four or eight light emitting diodes, with the light from each LED optically scattered to form an evenly illuminated light emitting surface. The LED's have a P-N junction diffused into the epitaxial layer on a GaP transparent substrate.
The anode and cathode of each LED is brought out by separate pins. This universal pinout arrangement allows for the wiring of the LED's within a device in any of three possible configurations: parallel, series, or series/parallel.
The typical forward voltage values, scaled from Figure 5, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design and maximum power dissipation may be calculated using the following V_{F} models:

The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum forward voltage and the maximum forward current. For pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any given ambient temperature and thermal resistance ($\mathrm{R} \theta \mathrm{J}-\mathrm{A}$) can be determined by using Figure 2. The solid line in Figure 2 (R θ_{J-A} of $538^{\circ} \mathrm{C} / \mathrm{W}$) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistances that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

$$
V_{F}=1.8 V+\operatorname{IPEAK}(40 \Omega)
$$

For IPEAK $\geq 20 \mathrm{~mA}$
$V_{F}=1.6 \mathrm{~V}+\operatorname{IDC}(50 \Omega)$
For $5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}$

Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:

$$
L_{v}\left(c d / m^{2}\right)=\frac{I_{v}(c d)}{A\left(m^{2}\right)}
$$

$\mathrm{L}_{v}($ footlamberts $)=\frac{\pi \mathrm{I}_{\mathrm{v}}(\mathrm{cd})}{\mathrm{A}\left(\mathrm{ft}^{2}\right)}$

Size of Light Emitting Area	Surface Area	
	Sq. Metres	Sq. Feet
$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}$	67.74×10^{-6}	729.16×10^{-6}
$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}$	33.87×10^{-6}	364.58×10^{-6}
$8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm}$	135.48×10^{-6}	1458.32×10^{-6}
$3.81 \mathrm{~mm} \times 19.05 \mathrm{~mm}$	72.58×10^{-6}	781.25×10^{-6}

Refresh rates of 1 kHz or faster provide the most efficient operation resulting in the maximum possible time average luminous intensity.
The time average luminous intensity may be calculated using the relative efficiency characteristic of Figure 3, $\eta_{\text {IPEAK }}$, and adjusted for operating ambient temperature. The time average luminous intensity at $T_{A}=25^{\circ} \mathrm{C}$ is calculated as follows:
$I_{\text {v Time avg }}=\left[\frac{I_{\text {AVG }}}{20 \mathrm{~mA}}\right]\left(\eta_{I_{\text {PEAK }}}\right)\left(I_{V}\right.$ Data Sheet $)$
Example: For HLMP-2735 series

$$
\eta_{I_{\text {PEAK }}}=1.18 \text { at } \mathrm{IPEAK}=48 \mathrm{~mA}
$$

I_{V} TIME AVG $=\left[\frac{12 \mathrm{~mA}}{20 \mathrm{~mA}}\right](1.18)(10 \mathrm{mcd})=7 \mathrm{mcd}$
The time average luminous intensity may be adjusted for operating ambient temperature by the following exponential equation:
$\operatorname{IV}\left(T_{A}\right)=\operatorname{IV}\left(25^{\circ} \mathrm{C}\right) e^{\left[K\left(T_{A}-25^{\circ} \mathrm{C}\right)\right]}$

Device	K
-2600 Series	$-0.0131 /{ }^{\circ} \mathrm{C}$
-2700 Series	$-0.0112 /{ }^{\circ} \mathrm{C}$
-2800 Series	$-0.0104 /{ }^{\circ} \mathrm{C}$

Example: $I_{V}\left(80^{\circ} \mathrm{C}\right)=(7 \mathrm{mcd}) \mathrm{e}^{[-0.0112(80-25)]}=3.8 \mathrm{mcd}$
These light bar devices may be operated in ambient temperatures above $+60^{\circ} \mathrm{C}$ without derating when installed in a PC board configuration that provides a thermal resistance to ambient value less than $250^{\circ} \mathrm{C} / \mathrm{W} /$ LED. See Figure 6 to determine the maximum allowed thermal resistance for the PC board, R ${ }_{\theta P C-A}$, which will permit nonderated operation in a given ambient temperature.
To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

Mechanical

These devices are constructed utilizing a lead frame in a DIP package. The LED dice are attached directly to the lead frame. Therefore, the cathode leads are the direct thermal and mechanical stress paths to the LED dice. The absolute maximum allowed junction temperature, TJMAX, is $100^{\circ} \mathrm{C}$. The maximum power ratings have been established so that the worst case V_{F} device does not exceed this limit. For most reliable operation, it is recommended that the device pin-to-ambient thermal resistance through the PC board be less than $250^{\circ} \mathrm{C} / \mathrm{W} /$ LED. This will then establish a maximum thermal resistance LED junction-to-ambient of $400^{\circ} \mathrm{C} / \mathrm{W} /$ LED.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration.

Figure 3. Maximum Allowable DC Current per LED vs. Ambient Temperature, Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.

Figure 2. Maximum Allowable Power Dissipation per LED vs. Ambient Temperature Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction to Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 6. Relative Luminous Intensity vs. DC Forward Current.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Features

- LARGE, BRIGHT, UNIFORM LIGHT EMITTING AREA
$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}$ (0.35×0.35 inch) Approximately Lambertian Radiation Pattern
- CHOICE OF TWO BICOLOR COMBINATIONS
- CATEGORIZED FOR LIGHT OUTPUT
- YELLOW AND GREEN CATEGORIZED FOR DOMINANT WAVELENGTH
- EXCELLENT ON-OFF CONTRAST
- EASILY MOUNTED ON P.C. BOARDS OR INDUSTRY STANDARD DIP SOCKETS
- MECHANICALLY RUGGED
- X-Y STACKABLE
- FLUSH MOUNTABLE
- CAN BE USED WITH HLMP-2898 PANEL AND LEGEND MOUNT
- LIGHT EMITTING SURFACE SUITABLE FOR LEGEND ATTACHMENT PER APPLICATION NOTE 1012
- I.C. COMPATIBLE

Description

The HLMP-2950/-2965 light bars are bicolor light sources designed for a variety of applications where dual state or tristate illumination is required for the same annunciator function. In addition, both devices are capable of emitting a range of colors by pulse width modulation. These light bars

Applications

- TRISTATE LEGEND ILLUMINATION
- SPACE-CONSCIOUS FRONT PANEL STATUS INDICATORS
- BUSINESS MACHINE MESSAGE ANNUNCIATORS
- TELECOMMUNICATIONS INDICATORS
- TWO FUNCTION LIGHTED SWITCHES
are configured in dual-in-line packages which contain a single light emitting area. The high efficiency red (HER) and yellow LED chips utilize GaAsP on a transparent GaP substrate. The green LED chips utilize GaP on a transparent substrate.

Package Dimensions

Side view

TOP VIEW

END VEW

NOTES: DIMENSIONS IN MILLIAETRES (INCHES) TOLERANCES $\pm 0.25 \mathrm{~mm}(\pm 0.010 \mathrm{in})$ UNLESS OTHERWISE INDICATED.

Absolute Maximum Ratings

Parameter	HLMP-2965	HLMP-2950
Average Power Dissipation per LED Chip ${ }^{[1]}$	135 mW	85 mW
Peak Forward Current per LED Chip, $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ (Maximum Pulse Width $\left.=2 \mathrm{~ms}\right)^{[1,2]}$	90 mA	60 mA
Time Average Forward Current per LED Chip. Pulsed Conditions ${ }^{12 \mid}$	$\begin{gathered} 25 \mathrm{~mA}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 20 \mathrm{~mA}_{1} \\ \mathrm{~T}_{\mathrm{A}}=50^{\circ} \mathrm{C} \end{gathered}$
DC Forward Current per LED Chip, $T_{A}=50^{\circ} \mathrm{C}^{(3]}$	30 mA	25 mA
Operating Temperature Fange	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Soldering Temperature, 16 mm (1/16 inch) Below Seating Plane	$260^{\circ} \mathrm{C}$ for 3 seconds	

NOTES:

1. For HLMP-2965, derate above $T_{A}=25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2950 derate above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 2.
2. See Figure 1 to establish pulsed operating conditions.
3. For HLMP-2965, derate above $T_{A}=50^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. For HLMP-2950, derate above $T_{A}=60^{\circ} \mathrm{C}$ at $0.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED chip. See Figure 3.

Internal Circuit Diagram

PIN	PIN FUNCTION	
	HER	YELLOW or GREEN
1	CATHODE a	ANODE E
2	ANODE	CATHODE
3	ANODE b	CATHODEf
4	CATHODE b	ANODE f
5	CATHODE	ANODE g
6	ANODE C	CATHODE g
7	ANODE d	CATHODE h
8	CATHODE d	ANODE h

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
HIGH EFFICIENCY RED/YELLOW HLMP-2950

Parameter		Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{\text {[4] }}$	HER	Iv	9	20		med	20 mADC
				30		med	$60 \mathrm{~mA} \mathrm{Pk}: 1$ of 3 Duty Factor
	Yellow	Iv	8	12		mod	20 mADC
				20		mod	60 mA Pk: 1 of 3 Duty Factor
Peak Wavelength	HER	גPEAK		635		nm	
	Yellow			583			
Dominant Wavelength ${ }^{\|5\|}$	HER	λ_{0}		626		nm	
	Yellow			585			
Forward Voltage	HER	V_{F}		2.1	2.6	V	If $=20 \mathrm{~mA}$
	Yellow			2.2	2.6		
Thermal Resistance LED Junction-to-Pin		$\mathrm{R} \theta_{\text {J-PIN }}$		150		${ }^{\circ} \mathrm{C} / W / L E D$	

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ HIGH EFFICIENCY RED/GREEN HLMP-2965

Parameter		Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity ${ }^{\|4\|}$	HER	IV	9	20		mod	20 mA DC
				30		mcd	60 mA Pk: 1 of 3 Duty Factor
	Green	IV	7.5	20		mcd	20 mADC
				30		med	$60 \mathrm{~mA} \mathrm{Fk}: 1$ of 3 Duty Factor
Peak Wavelength	HER	λ ¢feak		635		$n \mathrm{~m}$	
	Green			565			
Dominant Wavelength ${ }^{[5]}$	HER	λd		626		nm	
	Green			572			
Forward Voltage	HER	V_{F}		2.1	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Green			2.2	2.6		
Thermal Resistance LED Junction-to-Pin		R $\theta_{\text {J_PIN }}$		150		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$	

NOTES:

4. These devices are categorized for luminous intensity with the intensity categorization designated by a two letter combination code located on the side of the package ($Z=H E R, W=$ Yellow or Green).
5. The dominant wavelength, λ_{d}, is derived from the C.I.E. chromaticity diagram and is that single wavelength which defines the color of the device.

Electrical

The HLMP-2950/-2965 bicolor light bar devices are composed of eight light emitting diodes: four High Efficiency Red and four that are either Yellow or Green. The light from each LED is optically scattered to form an evenly illuminated light emitting surface. The LED's are die attached and wire bonded in bicolor pairs, with the anode/cathode of each LED pair brought out by separate pins.
The typical forward voltage values, scaled from Figure 5, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design and maximum power dissipation may be approximated using the following V_{F} models:

$$
\begin{aligned}
& V_{F}=1.8 \mathrm{~V}+\operatorname{IPEAK}(40 \Omega) \\
& \text { For IPEAK } \geq 20 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{F}}=1.6 \mathrm{~V}+\operatorname{IDC}(50 \Omega) \\
& \text { For } 5 \mathrm{~mA} \leq \operatorname{IDC} \leq 20 \mathrm{~mA}
\end{aligned}
$$

The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum forward voltage and the maximum forward current. For
pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any given ambient temperature and thermal resistance ($R \theta_{J}-A$) can be determined by using Figure 2. The solid line in Figure $2\left(R \theta J-A\right.$ of $538^{\circ} \mathrm{C} / \mathrm{W}$) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistance that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:
$\mathrm{L}_{\mathrm{v}}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\frac{\mathrm{I}_{\mathrm{v}}(\mathrm{cd})}{\mathrm{A}\left(\mathrm{m}^{2}\right)} \quad \mathrm{L}_{v}($ footlamberts $)=\frac{\pi \mathrm{I}_{v}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{ft}^{2}\right)}$
where the area (A) of the light emitting surface is $67.74 \times$ $10^{-6} \mathrm{~m}^{2}\left(729.16 \times 10^{-6} \mathrm{ft} .{ }^{2}\right)$.

> For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, see Application Note 1005.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration.

Figure 3. Maximum Allowable DC Current per LED vs. Ambient Temperature, Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-to-Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.

Figure 5. Forward Current vs. Forward Voltage Characteristics.

Figure 2. Maximum Allowable Power Dissipation per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance Values, LED Junction to Ambient on a per LED Basis, Tj MAX $=100^{\circ} \mathrm{C}$.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 6. Relative Luminous Intensity vs. DC Forward Current.

Reversing Polarity LED Drivers

Bicolor LED light bar modules require a polarity reversing scheme to turn on the desired LED. Reversing line drivers, timers and memory drivers can be used to drive bicolor LED light bars.
The reversing line driver, which was originally designed to drive a data transmission line, can also be used as a polarity reversing driver for bicolor LED modules. The reversing line driver has a totem pole output structure that differs from most TTL circuits in that the output is designed to source as much current as it is capable of sinking.
Line drivers designed to operate from a single 5 V supply are typically specified to source or sink 40 mA . Figure 7 shows the typical output characteristics of three different line drivers connected so that one output sources current across a load and the current is sunk by another output. This circuit is shown in Figure 8. At 40 mA output current, the output voltage typically varies from $2.4 \mathrm{~V}(74128)$ to 2.9 V (DM 8830, 9614) for $\mathrm{V}_{c c}=5.0 \mathrm{~V}$. A basic bicolor LED circuit is shown in Figure 9 . Since a line driver can supply 40 mA , it is capable of driving two LED pairs.
Some line drivers like the 9614 are constructed such that the sourcing output is brought out separately from the sinking output. With this type of line driver, the LED currents for each pair can be controlled separately. This technique is shown in Figure 10. Other line drivers provide a tri-state

Figure 7. Typical Output Characteristics of Reversing Line Drivers.
output control or provide other means for turning both LED's off. An example of this circuit technique is shown in Figure 11.
The NE556 dual timer, or two NE555 timers can also be used to drive bicolor light bars, as shown in Figure 12. The outputs at the NE555 timer are able to source or sink up to 200 mA . Connected as shown, each timer acts as an inverting buffer. This circuit has the advantage over the previous line driver circuits of being able to operate at a wide variety of power supply voltages ranging from 4.5 to 16 volts.
Memory drivers can also be used to drive bicolor light bars. Figure 13 shows a 75325 core memory driver being used to drive several pairs of bicolor LEDs. The 75325 is guaranteed to supply up to 600 mA of current with an output voltage considerably higher than 5V line drivers. The 75325 requires an additional 7.5 V power supply at about 40 mA to properly bias the sourcing drivers. The 75325 allows tristate (red, green or yellow, off) operation.
By employing pulse width modulation techniques to any of these circuits a range of colors can be obtained. This technique is illustrated in Figure 14.

Hewlett-Packard cannot assume responsibility for use of any circuitry described other than the circuitry entirely embodied in an HP product.

Figure 8. Line Driver Equivalent Circuit.

Figure 9. Typical Line Driver Circuit; Approximately 20mA/LED Pair.

YIELDS APPROXIMATELY $20 \mathrm{~mA} /$ RED LED YIELDS APPROXIMATELY $25 \mathrm{~mA} /$ YELLOW OR GREEN LED

Figure 10. Techniques for Varying the Current of Each LED.

Figure 11. Tristate (Red, Green/Yellow, Off) Bicolor LED Driver.

Figure 12. Use of Dual Timer to Drive Bicolor Light Bars

Figure 13. 75325 High Current Bicolor Driver

Figure 14. Pulse Width Modulation Technique

Features

- FIRMLY MOUNTS LIGHT BARS IN PANELS
- HOLDS LEGENDS FOR FRONT PANEL OR PC BOARD APPLICATIONS ${ }^{[1]}$
- ONE PIECE, SNAP-IN ASSEMBLY
- MATTE BLACK BEZEL DESIGN ENHANCES PANEL APPEARANCE
- FOUR SIZES AVAILABLE
- MAY BE INSTALLED IN A WIDE RANGE OF PANEL THICKNESSES
- PANEL HOLE EASILY PUNCHED OR MILLED

Description

This series of black plastic bezel mounts is designed to install Hewlett-Packard Light Bars in instrument panels ranging in thickness from 1.52 mm (0.060 inch) to 3.18 mm
(0.125 inch). A space has been provided for holding a 0.13 mm (0.005 inch) film legend over the light emitting surface of the light bar module.

Selection Guide

Panel and Legend Mount Part No. HLMP.	Corresponding Light Bar Module Part No. HLMP.	Panel Hole Installation Dimensions ${ }^{[2]}$	Package Outine	
2598	2350, 2450, 2550	7.62 mm 0.300 inchi $\times 22.86 \mathrm{~mm} \cdot 0.900$ inch:	"	B
2599	2300, 2400, 2500	7.62 mm 10.300 inch $\times 12.70 \mathrm{~mm} 10.500$ inch :	Im	A
2898	$\begin{aligned} & 2600,2700,2800 \\ & 2655,2755,2855 \\ & 2950,2965 \end{aligned}$	$12.70 \mathrm{~mm} \cdot 0.500$ inch $\times 12.70 \mathrm{~mm} \cdot 0.500$ inch:		c
2899	$2620,2720,2820$ $2635,2735,2835$ $2670,2770,2870$ $2685,2785,2885$	$12.70 \mathrm{~mm} \times 0.500 \mathrm{inch}$. $\times 22.86 \mathrm{~mm}$ (0.900 inch)		D

Notes:

1. Application Note 1012 addresses legend fabrication options.
2. Allowed hole tolerance: $+0.00 \mathrm{~mm},-0.13 \mathrm{~mm}$ (+0.000 inch, -0.005 inch). Permitted radius: $1.60 \mathrm{~mm}(0.063 \mathrm{inch})$.

Package Dimensions

NOTES: 1. DIAENSIONS IN MILLINETRES (INCHES)
2. UATOLERANCED DFMENSIONS ARE FOR REFERENCE ONLY

Mounting Instructions

1. Mill| ${ }^{3 \mid}$ or punch a hole in the panel. Deburr, but do not chamfer, the edges of the hole.
2. Place the front of the mount against a solid, flat surface. A film legend with outside dimensions equal to the outside dimensions of the light bar may be placed in the mount or on the light bar light emitting surface. Press the light bar into the mount until the tabs snap over the back of the light bar. (When inserting the HLMP-2898, align the notched sides of the light bar with the mount sides which do not have the tabs). (See Figure 1)
3. Applying even pressure to the top of the mount, press the entire assembly into the hole from the front of the panel. ${ }^{[4]}$ (See Figure 2)
NOTE: For thinner panels, the mount may be pressed into the panel first, then the light bar may be pressed into the mount from the back side of the panel.

Notes:
3. A $3.18 \mathrm{~mm}(0.125 \mathrm{inch})$ diameter mill may be used.
4. Repetitive insertion of the mount into the panel will degrade the retention force of the mount.

Suggested Punch Sources

Hole punches may be ordered from one of the following sources:
Danly Machine Corporation
Punchrite Division
15400 Brookpark Road
Cleveland, OH 44135
(216) 267-1444

Ring Division
The Producto Machine Company
Jamestown, NY 14701
(800) 828-2216

Porter Precision Products Company
12522 Lakeland Road
Santa Fe Springs, CA 90670
(213) 946-1531

Di-Acro Division
Houdaille Industries 800 Jefferson Street
Lake City, MN 55041
(612) $345-4571$

Installation Sketches

Figure 1. Installation of a Light Bar into a Panel Mount

Figure 2. Installation of the Light Bar/Panel Mount Assembly into a Front Panel

10-ELEMENT BAR GRAPH ARRAY

RED
 HDSP-4820
 HIGH-EFFICIENCY RED
 HDSP-4830
 YELLOW
 HDSP-4840

Features

- LARGE, EASILY RECOGNIZABLE SEGMENTS
- MATCHED LEDs FOR UNIFORM APPEARANCE
- END STACKABLE
- PACKAGE INTERLOCK ENSURES CORRECT ALIGNMENT
- RUGGED CONSTRUCTION
- INDIVIDUALLY ADDRESSABLE LEDs FOR CHOICE OF DRIVE
- INDUSTRY STANDARD 7.62 mm (0.30 INCH) WIDE AND 2.54 mm (0.10 INCH) SPACED DUAL-IN-LINE LEAD CONFIGURATION
- HIGH ON-OFF CONTRAST, SEGMENT TO SEGMENT
- WIDE VIEWING ANGLE
- LOW PROFILE PACKAGE
- IC COMPATIBLE
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-4840 CATEGORIZED FOR DOMINANT WAVELENGTH

Applications

- INDUSTRIAL CONTROLS
- INSTRUMENTATION
- OFFICE EQUIPMENT
- COMPUTER PERIPHERALS
- CONSUMER PRODUCTS

Description

The HDSP-4820/-4830/-4840 are 10-element LED arrays designed to display information in easily recognizable bar graph form. The packages are end stackable and therefore capable of displaying long strings of information. Use of these bar graph arrays eliminates the alignment, intensity, and color matching problems associated with discrete LEDs. The anode and cathode of each LED segment are located at external pins allowing the user complete flexibility in designing drive circuits.

Package Dimensions

Absolute Maximum Ratings

Parameter	HDSP-4820		$\begin{aligned} & \text { HDSP-4830 } \\ & \text { HDSP-4840 } \end{aligned}$	
Average Power Dissipation per LED	$T_{A}=60^{\circ} \mathrm{C}$	65 mW	$\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$	81 mW
Peak Forward Current per LED		$150 \mathrm{~mA}^{[1]}$		$60 \mathrm{~mA}^{\text {2] }}$
DC Forward Current per LED		$25 \mathrm{~mA}{ }^{(3)}$		$20 \mathrm{~mA}^{141}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Reverse Voltage per LED	3.0 V			
Lead Soldering Temperature [1.59 mm ($1 / 16$ inch) below seating plane) ${ }^{\text {\|5 }}$	$260^{\circ} \mathrm{C}$ for 3 sec.			

Notes:

1. See Figure 1 to establish pulsed operating conditions.
2. See Figure 6 to establish pulsed operating conditions.
3. Derate maximum DC current above $T_{A}=60^{\circ} \mathrm{C}$ at $0.65 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $\mathrm{R}_{\Theta \mathrm{JA}}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 2.
4. Derate maximum DC current above $T_{A}=50^{\circ} \mathrm{C}$ at $0.40 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per LED. This derating assumes worst case $\mathrm{R}_{\Theta \mathrm{JA}}=600^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. With an improved thermal design, operation at higher temperatures without derating is possible. See Figure 7.
5. Clean only in water, isopropanol, ethanol, Freon TF or TE (or equivalent) and Genesolv DI-15 or DE-15 (or equivalent).

Internal Circuit Diagram

HDSP - 4820
HDSP - 4830
HDSP - 4840

Pin	Function	Pin	Function
1	Anode a	11	Cathode j
2	Anode b	12	Cathode I
3	Anode e	13	Cathode h
4	Anode d	14	Cathode 9
5	Anode e	15	Cathode f
6	Anode f	16	Cathode e
7	Anode g	17	Cathode d
8	Anode h	18	Cathode c
9	Anode i	19	Cathode b
10	Anode i	20	Cathode a

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RED HDSP-4820

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) ${ }^{1}$.	If	IF $=20 \mathrm{~mA}$	250	880		$\mu \mathrm{cd}$
Peak Wavelength	λ PEAK			655		nm
Dominant Wavelength ${ }^{\text {a }}$	λd			645		nm
Forward Voltage per LED	V_{F}	IF $=20 \mathrm{~mA}$		1.6	2.0	\checkmark
Reverse Current per LED	IR	$V_{R} \# 3 \mathrm{~V}$			100	$\mu \mathrm{A}$
Temperature Coefficient V_{F} per LED	$\triangle V_{F}{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	Reu-pin			300		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \end{aligned}$

HIGH-EFFICIENCY RED HDSP-4830

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) ${ }^{11}$	Iv	$1 F=10 \mathrm{~mA}$	600	1700		$\mu \mathrm{cd}$
Peak Wavelength	λ APEAK			635		nm
Dominant Wavelength ${ }^{\text {2 }}$	λ_{d}			626		$n \mathrm{~m}$
Forward Voltage per LED	V_{F}	$I_{F}=20 \mathrm{~mA}$		2.1	2.5	V
Reverse Current per LED	IR	$V_{R}=3 \mathrm{~V}$			100	$\mu \mathrm{A}$
Temperature Coefficient VF per LED	$\pm V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$\mathrm{R}_{\text {OJ }} \mathrm{PIN}$			300		$\begin{aligned} & { }^{\circ} \mathrm{C} / W / \\ & \text { LED } \end{aligned}$

YELLOW HDSP-4840

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) ${ }^{11}$	Iv	$\mathrm{IF}=10 \mathrm{~mA}$	600	1200		$\mu \mathrm{cd}$
Peak Wavelength	λ PEAK			583		nm
Dorninant Wavelengt ${ }^{12,31}$	$\lambda{ }_{\text {d }}$		581	585	592	nm
Forward Voltage per LED	V_{F}	$1 F=20 \mathrm{~mA}$		2.2	2.5	\checkmark
Reverse Current per LED	If	$V_{R}=3 \mathrm{~V}$			100	$\mu \mathrm{A}$
Temperature Coefficient VF per LED	$\pm V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$\mathrm{R}_{\text {OJ-PIN }}$			300		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \end{aligned}$

Notes:

1. The bar graph arrays are categorized for luminous intensity. The category is designated by a letter located on the side of the package.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
3. The HDSP-4840 yellow bar graph arrays are categorized by dominant wavelength with the category designated by a number adjacent to the intensity category letter.

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 2. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance, LED Junction-to-Ambient on a per LED basis. JJMAX $=100^{\circ} \mathrm{C}$

Figure 4. Forward Current vs. Forward Voltage

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 5. Relative Luminous Intensity vs. D.C. Forward Current

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 7. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance Values, LED Junction-toAmbient on a per LED basis. $\mathrm{T}_{\mathrm{J} \text { MAX }}=10 \mathbf{0}^{\circ} \mathrm{C}$

V_{F} - FORWARD VOLTAGE - V
Figure 9. Forward Current vs. Forward Voltage Characteristics

Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

$I_{F}-$ SEGMENT DC CURRENT $-m A$
Figure 10. Relative Luminous Intensity vs. D.C. Forward Current

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Electrical

The HDSP-4820/-4830/-4840 series of bar graph arrays are composed of ten light emitting diodes. The light from each LED is optically stretched to form individual elements. The diodes in the HDSP-4820 bar graph utilize a Gallium Arsenide Phosphide (GaAsP) epitaxial layer on a Gallium Arsenide (GaAs) Substrate. The HDSP-4830/-4840 bar graphs utilize a GaAsP epitaxial layer on a GaP substrate to produce the brighter high-efficiency red and yellow displays.
These display devices are designed to allow strobed operation. The typical forward voltage values, scaled from Figure 4 or 9 , should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following VF MAX models.

HDSP-4820

$V_{\text {F MAX }}=1.55 \mathrm{~V}+\operatorname{IPEAK}(7 \Omega)$
For: IPEAK $\geq 5 \mathrm{~mA}$
HDSP-4830/-4840
$V_{\text {F MAX }}=1.75 \mathrm{~V}+$ IPEAK (38Ω)
For IPEAK $\geq 20 \mathrm{~mA}$
$V_{\text {F MAX }}=1.6 \mathrm{~V}+\operatorname{IDC}(45 \Omega)$
For: $5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}$

Refresh rates of 1 KHz or faster provide the most efficient operation resulting in the maximum possible time averaged luminous intensity.

The time averaged luminous intensity may be calculated using the relative efficiency characteristic shown in Figures 3 and 8 . The time averaged luminous intensity at $T_{A}=25^{\circ} \mathrm{C}$ is calculated as follows:

IV TIME AVG $=\left[\frac{I_{\text {F AVG }}}{I_{\text {F SPEC AVG }}}\right](\eta$ IPEAK $)($ IV SPEC $)$

Example: For HDSP-4830 operating at IPEAK $=50 \mathrm{~mA}, 1$ of 4 Duty Factor

$$
\eta_{\text {IPEAK }}=1.35(\text { at IPEAK }=50 \mathrm{~mA})
$$

IV time avg $=\left[\frac{12.5 \mathrm{~mA}}{10 \mathrm{~mA}}\right](1.35)(1700 \mu \mathrm{~cd})=2869 \mu \mathrm{~cd}$

101 ELEMENT BAR GRAPH ARRAY

RED HDSP-8820

Features

- EXCELLENT RESOLUTION (1\%)
- EXCELLENT ELEMENT APPEARANCE
1.52 mm ($0.060^{\prime \prime}$) WIDE, EASILY

RECOGNIZABLE ELEMENTS
Matched LEDs for Uniformity
Excellent Element Alignment
Easy Readability at 1 Meter

- SINGLE-IN-LINE PACKAGE DESIGN

Sturdy Leads on Industry Standard 2.54mm (0.100") Centers

Environmentally Rugged Package
Common Cathode Configuration

- LOW POWER REQUIREMENTS

As low as 1.0-1.5 mA average per element depending on Peak Current Levels.

- SUPPORT ELECTRONICS

Easy Interface with Microprocessors

Description

The HDSP-8820 is a 101-element monolithic LED linear array. It is designed to display information in easily recognizable bar graph or position indicator form. The device utilizes GaAsP LED chips assembled on a PC board which is enclosed in a red polycarbonate cover with an epoxy backfill seal. The common cathode chips are addressed via 22 single-in-line pins extending from the back side of the package.

Applications

- INDUSTRIAL PROCESS CONTROL SYSTEMS
- EDGEWISE PANEL METERS
- INSTRUMENTATION
- POSITION INDICATORS
- FLUID LEVEL INDICATORS

Package Dimensions ${ }^{(1,2)}$

1. ALI DIMENSIONS IN MILLIAETRES AND (INCHESI.
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY:
3. PIN 1 IDENTIFIED BY INK DOT ADJACENT TO LEAD AND HP PART NUMBER ON BACK OF PACKAGE.

Internal Circuit Diagram ${ }^{(4,5)}$

NOTES:
4. ELEMENT LOCATION NUMBER = COMMON CATHODE NUMBER + ANODE NUMBER. FOR EXAMPLE, ELEMENT 83 IS OBTAINED BY ADDRESSING C80 AND A3. 5. A^{\prime} AND C^{\prime} ARE ANODE AND CATHODE OF ELEMENT ZERO.

PIN	
LOCATION	FUNCTION
1	CO
2	A4
3	C'(5)
4	No Pin
5	C10
6	A1
7	A8
8	No Pin
9	C20
10	No Pin
11	A
12	No Pin
13	C30
14	No Pin
15	A7
16	No Pin
17	C40
18	No Pin
19	A2
20	No Pin
21	C50
22	No Pin
23	A3
24	No Pin
25	C60
26	No Pin
27	A10
28	No Pin
29	C70
30	No Pin
31	A9
32	No Pin
33	C80
34	A5
35	A6
36	No Pin
37	C90

Absolute Maximum Ratings

Parameter	HDSP-8820
Average Power per Element, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	15 mW
Peak Forward Current per Element, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Maximum Pulse Width $\left.=300 \mu \mathrm{~s}\right)^{66}$	200 mA
Average Forward Current per Element, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{71}$	7 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Reverse Voltage per Element	5 V
Lead Solder Temperature, $1.59 \mathrm{~mm}(1 / 16$ inch) Below Seating Plane	

NOTE:
6. See Figure 1 to establish pulsed operating conditions.
7. Derate maximum average forward current above $T_{A}=70^{\circ} \mathrm{C}$ at $0.16 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per element. See Figure 2.
8. Clean only in water, Isopropanol, Ethanol. Freon TF or TE (or equivalent), or Genesolv DI-15 or DE-15 (or Equivalent). See mechanical section of this data sheet for information on wave soldering conditions.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Time averaged Luminous Intensity per Element (Unit average) ${ }^{\text {(9) }}$	IV	100 mA PK.. 1 of 110 Duty Factor	8	20		$\mu \mathrm{cd}$
Peak Wavelength	λ PEAK			655		nm
Dominant Wavelength ${ }^{110 ;}$	λd			640		nm
Forward Voltage per Element	V_{F}	$\mathrm{IF}=100 \mathrm{~mA}$		1.7	2.1	V
Reverse Voltage per Element	V_{R}	$\mathrm{IR}=100 \mu \mathrm{~A}$	3.0			V
Temperature Coefficient VF per Element	$\triangle V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$R \Theta_{J \rightarrow P I N}$			700		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{LED} \end{gathered}$

Notes:
9. Operation at peak currents of less than 15 mA is not recommended. Display aesthetics are specified at $100 \mathrm{~mA}, 1$ of 110 DF .
10. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 2. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings based on Maximum Allowable Thermal Resistance, LED Junction-to-Ambient on a per LED basis.
$T_{\text {JMAX }}=115^{\circ} \mathrm{C}$

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 4. Forward Current vs. Forward Voltage

For A Detailed Explanation on the Use of Data Sheet Information, See Application Note 1005.

Operational Considerations

electrical

The HDSP-8820 is a 101 element monolithic bar graph array. The device utilizes GaAsP red LED chips assembled on a PC board which is enclosed in a red polycarbonate cover with an epoxy backfill seal. The linear array is arranged as ten groups of ten LED elements plus one additional element. The ten elements of each group have common cathodes. Like elements in the ten groups have common anodes. The device is addressed via 22 single-inline pins extending from the back side of the display.
This display is designed specifically for strobed (multplexed) operation. Minimum peak forward current at which all elements will be illuminated is $15 \mathrm{~mA}, 1 / 110 \mathrm{DF}$. Display aesthetics are specified at $100 \mathrm{~mA}, 1 / 110 \mathrm{DF}$, peak forward current. The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} model:

$$
V_{F}=2.02 \mathrm{~V}+\operatorname{IPEAK}(0.8 \Omega)
$$

For IPEAK $>40 \mathrm{~mA}$
The time averaged luminous intensity at $T_{A}=25^{\circ} \mathrm{C}$ may be calculated using:

$$
\text { IV Time Avg. }=\left[\frac{I_{F-A V G}}{I_{F-S P E C-A V G}}\right] \bullet \eta \text { IPEAK } \bullet I_{V-S P E C}
$$

where η, relative efficiency, may be determined from Figure 3.

The circuit in Figure 5 displays an analog input voltage in bar graph form with 101 bit resolution. The 74390 dual decade counter has been configured to count from 0 to 99 . The 1Q outputs correspond to "ones" and the 2Q outputs cor-
responds to "tens". The "one" outputs from the counter drives the display element anodes through a 74421 of 10 BCD decoder. Sprague UDN 2585 drivers source the anodes with 80 mA peak/segment. The "ten" outputs from the counter drives the group cathodes through a 74145 BCD decoder. The circuit multiplexes segments 100 to 91 first, then segments 90 to 81, and so on with segments 10 to 1 last. During the time that the output from the TL507C A/D converter is low the corresponding display elements will be illuminated.

The TL507C is an economical A/D converter with 7 bit resolution. The single output is pulse-width-modulated to correspond to the analog input voltage magnitude. With Vcc $=5 \mathrm{~V}$ the analog input voltage range is 1.3 V to 3.9 V . The TL507C output is reset each time the 74390 resets. Duration of the high output pulse is shorter for larger analog input voltages. A high output from the TL507C disables the display by forcing the 7442 inputs to an invalid state. Hence, as the analog input voltage increases more elements of the bargraph display are illuminated. Display element zero is DC driven.
The circuit in Figure 6 uses the HDSP-8820 as a 100 bit position indicator. Two BCD input words define the position of the illuminated element. Display duty factor, $1 / 100$, is controlled by the ENABLE signal.

MECHANICAL

Suitable conditions for wave soldering depend on the specific kind of equipment and procedure used. A cool down period after flow solder and before flux rinse is recommended. For more information, consult the local Hewlett-Packard Sales Office or Hewlett-Packard Optoelectronics, Palo Alto, California.

Figure 5. 101 Element Bar Graph

Figure 6. 100 Element Position Indicator

Solid State Displays

Hewlett-Packard's line of Solid State Displays answers all the needs of the designer. From alphanumeric displays to low cost numeric displays in sizes from 3 mm (.15") to 20 mm (.8") and colors of red, high efficiency red, yellow, and high performance green, the selection is complete.
Hewlett-Packard's 5x7 dot matrix alphanumeric display line comes in 3 character sizes: 3.8 mm (.15"), 5 mm (.2"), and 6.9 mm (.27"). In turn, there are now 4 colors available for each size: standard red, yellow, high efficiency red, and green. This wide variety of package sizes and colors makes these products ideal for a variety of applications in avionics, industrial control, and instrumentation.

For military applications, we offer 5×7 dot matrix alphanumeric displays with extended temperature range capabilities in two package sizes: 3.8 mm (.15") and 6.9 mm (.27'). The $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right)$ version has the additional feature of having a true hermetic seal and an even wider operating temperature range than the 3.8 mm (.15") package. The capability this part offers truly establishes HewlettPackard as a leader in displays for military applications.
Hewlett-Packard's line of numeric seven segment displays is one of the broadest. From low cost, standard red displays to high light ambient displays producing $7.0 \mathrm{mcd} /$ segment, HP has . 3", . $43^{\prime \prime}, .56^{\prime \prime}$, and $.8^{\prime \prime}$ character sizes. The line's superior-performance high
efficiency red and yellow devices have been complemented by the addition of high performance green displays. These products are more than twice as bright as previous products, and they have a guaranteed maximum wavelength specification to insure they are green. These products are ideal for displaying numeric information in electronic instrumentation, point of sale equipment, appliances, and automotive instrumentation.

Integrated numeric and hexadecimal displays (with onboard IC's) solve the designer's decoding/driving problem. They are available in plastic package for general purpose usage, ceramic/glass package for industrial applications, and hermetic packages for high reliability applications. This family of displays has been designed for ease of use in a wide range of environments.

Alphanumeric LED Displays

Device		Description	Color	Application	$\begin{gathered} \hline \begin{array}{c} \text { Page } \\ \text { No. } \end{array} \\ \hline 329 \\ \hline \end{gathered}$
	HDSP-2000	3.7 mm (.15') 5×7 Four Character Alphanumeric 12 Pin Ceramic 7.62 mm (.3") DIP with untinted glass lens	Red	- Computer Terminals - Business Machines - Medical Instruments - Portable, Hand-held or mobile data entry, readout or communications For further information see Application Note 1016.	
	HDSP-2001		Yellow		
			High Eff. Red		
	HDSP-2003		High Performance Green		
	$\begin{aligned} & \text { HDSP-2010 } \\ & \text { HDSP-2010 } \\ & \text { TXV } \\ & \text { HDSP-2010 } \\ & \text { TXVB } \end{aligned}$	Extended Temperature to $T_{A}=-40^{\circ} \mathrm{C}$ 3.7 mm (.15") 5×7 Four Character Alphanumeric TXV Hi Rel Screened TXVB Hi Rel Screened	Red, Red Glass Contrast Filter	- Extended temperature applications requiring high reliability. - I/O Terminals - Avionics For further information see Application Note 1016.	350
	HDSP-2300	4.87 mm (.19") 5×7 Four Character Alphanumeric, 12 Pin Ceramic 6.35 mm (.25") DIP/Low Power	Red	- Avionics - Ground Support, Cockpit, Shipboard systems - Medical Equipment - Industrial and Process control - Computer Peripherals and Terminals - Outdoor Metering Equipment - Computer Base Mobile Units - High Brightness Ambient Systems For further information see Application Note 1016.	333
	HDSP-2301		Yellow, High Brightness		
	HDSP-2302		High Eff, Red, High Brightness		
	HDSP-2303		High Performance Green, High Brightness		
	HDSP-2490	$6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric, 28 Pin Ceramic 15.24 mm (.6") DIP	Red		
	HDSP-2491		Yellow, High Brightness		
	HDSP-2492		High Eff. Red, High Brightness		
	H DSP-2403		High Performance Green, High Brightness		
	HDSP-2450 HDSP-2450 TXV HDSP-2450 TXVB	Hermetic Extended Temperature Range to $T_{A}=-55^{\circ} \mathrm{C}$ $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 28 Pin Ceramic 15.24 mm (.6") DIP	Red TXV-Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87117	- Military Equipment - High Reliability Applications	343
	HDSP-2451		Yellow		
	$\begin{aligned} & \text { HDSP-2451 } \\ & \text { TXV } \end{aligned}$		TXV - Hi Rel Screened		
	$\begin{aligned} & \text { HDSP-2451 } \\ & \text { TXVB } \end{aligned}$		TXVB - Hi Rel Screened to Level A Mil-D-87157		
	$\begin{aligned} & \text { HDSP-2452 } \\ & \text { HDSP-2452 } \\ & \text { TXV } \end{aligned}$		High Efficiency Red TXV - Hi Rel Screened		
	$\begin{aligned} & \text { HDSP-2452 } \\ & \text { TXVB } \end{aligned}$		TXVB - Hi Rel Screened to Level A MIL-D-87157		
	5082-7100	6.9 mm (.27") 5×7 Three Digit Alphanumeric 22 Pin Ceramic 15.2 mm (. $6^{\prime \prime}$) DIP	Red Untinted Glass Lens	General Purpose Market - Business Machines - Calculators - Solid State CRT - High Reliability Applications For further information ask for Application Note 931 on Alphanumeric Displays.	356
	5082-7101	$6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Digit Alphanumeric 28 Pin Ceramic 15.2 mm (. $6^{\prime \prime}$) DIP			
	5082-7102	6.9 mm (.27") 5×7 Five Digit Alphanumeric 36 Pin Ceramic 15.2 mm (. $6^{\prime \prime}$) DIP			

Alphanumeric LED Displays (cont.)

Device		Description	$\begin{gathered} \text { Color } \\ \hline \text { Red } \end{gathered}$	Application	Page No.
	HDSP-6504	3.8 mm (.15") Sixteen Segment Four Character Alphanumeric 22 Pin $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right) \mathrm{DIP}$		- Computer Terminals - Hand Held Instruments - In-Plant Control Equipment - Diagnostic Equipment	360
	HDSP-6508	3.8 mm (.15") Sixteen Segment Eight Character Alphanumeric 26 Pin $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right)$ DIP			
	HDSP-6300	3.56 mm (.14") Sixteen Segment Eight Character Alphanumeric 26 Pin $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right)$ DIP		- Computer Peripherals and Terminals - Computer Base Emergency Mobile Units - Automotive Instrument Panels - Desk Top Calculators - Hand-held Instruments For further information ask for Application Note 931.	366

Alphanumeric Display Systems

Device			Description	Package	Application	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Anornts		HDSP-2416	Single-Line 16 Character Display Panel Utilizing the HDSP-2000 Display	$\begin{aligned} & 162.56 \mathrm{~mm}\left(6.4^{\prime \prime}\right) \mathrm{Lx} \\ & 58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{Hx} \\ & 7.11 \mathrm{~mm}\left(.28^{\prime \prime}\right) \mathrm{D} \end{aligned}$	- Data Entry Terminals - Instrumentation For further information see Application Note 1001.	
		HDSP-2424	Single-Line 24 Character Display Panel Utilizing the HDSP-2000 Display.			
		HDSP-2432	Single-Line 32 Character Display Panel Utilizing the HDSP-2000 Display			
		HDSP-2440	Single-Line 40 Character Display Panel Utilizing the HDSP-2000 Display	$\begin{aligned} & 177.80 \mathrm{~mm}\left(7.0^{\prime \prime}\right) \mathrm{Lx} \\ & 58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{H} \mathrm{x} \\ & 7.11 \mathrm{~mm}\left(.28^{\prime \prime}\right) \mathrm{D} \\ & \hline \end{aligned}$		
		H DSP-2470	HDSP-2000 Display Interface Incorporating a 64 Character ASCII Decoder	$\begin{aligned} & 171.22 \mathrm{~mm}\left(6.74^{\prime \prime}\right) \mathrm{Lx} \\ & 58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{H} \mathrm{x} \\ & 16.51 \mathrm{~mm}\left(.65^{\prime \prime}\right) \mathrm{D} \end{aligned}$		
		HDSP-2471	HDSP-2000 Display Interface Incorporating a 128 Character ASCII Decoder			
		HDSP-2472	H DSP-2000 Display Interface without ASCII Decoder. Instead, a 24 Pin Socket is Provided to Accept a Custom 128 Character Set from a User Programmed 1K x 8 PROM			
		HDSP-8716	Single-line 16 Character Alphanumeric Display System Utilizing the HDSP-6508 Display	$\begin{aligned} & 167.64 \mathrm{~mm}\left(6.6^{\prime \prime}\right) \mathrm{L} \\ & \times 58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{H} \\ & \times 33 \mathrm{~mm}\left(1.3^{\prime \prime}\right) \mathrm{D} \end{aligned}$	- Data Entry Terminals - Instrumentation	383
		HDSP-8724	Single-line 24 Character Alphanumeric Display System Utilizing the HDSP-6508 Display			
		HDSP-8732	Single-line 32 Character Alphanumeric Display System Utilizing the HDSP-6508 Display	$\begin{aligned} & 218.44 \mathrm{~mm}\left(8.6^{\prime \prime}\right) \mathrm{L} \\ & \times 58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{H} \\ & \times 33 \mathrm{~mm}\left(1.3^{\prime \prime}\right) \mathrm{D} \end{aligned}$		
		HDSP-8740	Single-line 40 Character Alphanumeric Display System Utilizing the HDSP-6508 Display	$\begin{aligned} & 269.24 \mathrm{~mm}\left(10.6^{\prime \prime}\right) \mathrm{L} \\ & \times 58.42 \mathrm{~mm}\left(2.3^{\prime \prime}\right) \mathrm{H} \\ & \times 33 \mathrm{~mm}\left(1.3^{\prime \prime}\right) \mathrm{D} \end{aligned}$		

High Performance Green Seven Segment Displays

Package	Device	Description	Typical I_{v} @ 20 mA	Page No.
7.62 mm (. $3^{\prime \prime}$) Dual-In-Line .75"H x .4 'W x $.18{ }^{\prime \prime}$ D	HDSP-3600	High Performance Green, Common Anode, LHDP	$2.53 \mathrm{mcd} / \mathrm{seg}$	395
	HDSP-3601	High Performance Green, Common Anode, RHDP		
	HDSP-3603	High Performance Green, Common Cathode, RHDP		
	HDSP-3606	High Performance Green, Universal Overflow Indicator		
$\begin{aligned} & {\left[\begin{array}{lll} + & & + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \end{array}\right.} \\ & \hline \end{aligned}$	HDSP-4600	High Performance Green, Common Anode, LHDP	$3.0 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-4601	High Performance Green, Common Anode, RHDP		
	HDSP-4603	High Performance Green, Common Cathode, RHDP		
	HDSP-4606	High Performance Green, Universal Overflow Indicator		
14.2 mm (.56") Dual-In-Line . $67^{\prime \prime} \mathrm{H}$ x $.49^{\prime \prime} \mathrm{W}$ x $.31^{\prime \prime} \mathrm{D}$	HDSP-5601	High Performance Green, Common Anode, RHDP	$3.45 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-5603	High Performance Green, Common Cathode, RHDP		
	HDSP-5607	High Performance Green, Common Anode Overflow Indicator		
	HDSP-5608	High Performance Green, Common Cathode Overflow Indicator		
$20.32 \mathrm{~mm}\left(.8^{\prime \prime}\right)$ Dual-In-Line $1.09^{\prime \prime} \mathrm{H}$ x $.78^{\prime \prime} \mathrm{W}$ x $.33^{\prime \prime} \mathrm{D}$ (18 Pin Epoxy)	HDSP-8600	High Performance Green, Common Anode, LHDP	$3.45 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-8601	High Performance Green, Common Anode, RHDP		
	HDSP-8603	High Performance Green, Common Cathode, RHDP		
	HDSP-8605	High Performance Green, Common Cathode, LHDP		
	HDSP-8606	High Performance Green, Universal Overflow Indicator		

High Ambient Light High Efficiency Red and Yellow Seven Segment Displays

Package	Device	Description	Typical $I_{V} @ 100 \mathrm{~mA}$ Peak 1/5 Duty Factor	Page No.
	HDSP-3530	High Efficiency Red, Common Anode, LHDP	$4.5 \mathrm{mcd} / \mathrm{seg}$	403
	HDSP-3531	High Efficiency Red, Common Anode, RHDP		
	HDSP-3533	High Efficiency Red, Common Cathode, RHDP		
	HDSP-3536	7.11 mm (.29") High Efficiency Red, Universal Polarity Overflow Indicator, RHDP		
7.62mm (.3")	HDSP-4030	Yellow, Common Anode, LHDP	$4.5 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-4031	Yellow, Common Anode, RHDP		
	HDSP-4033	Yellow, Common Cathode, RHDP		
Dual-In-Line $.75^{\prime \prime \prime} \mathrm{H} \times .4^{\prime \prime} \mathrm{W} \times .18^{\prime \prime} \mathrm{D}$	HDSP-4036	$7.11 \mathrm{~mm}\left(.29^{\prime \prime}\right)$ Yellow, Universal Polarity Overflow Indicator, RHDP		

High Ambient Light High Efficiency Red and Yellow Seven Segment Displays

Package	Device	Description	Typical IV @ 100 mA Peak 1/5 Duty Factor	$\begin{gathered} \text { Page } \\ \text { No. } \\ \hline \end{gathered}$
	HDSP-3730	High Efficiency Red, Common Anode, LHDP	$5.0 \mathrm{mcd} / \mathrm{seg}$	403
	HDSP-3731	High Efficiency Red, Common Anode, RHDP		
	HDSP-3733	High Efficiency Red, Common Cathode, RHDP		
	HDSP-3736	10.36 mm (. $4^{\prime \prime}$) High Efficiency Red, Universal Polarity Overflow Indicator, RHDP	$5.0 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-4130	Yellow, Common Anode, LHDP		
	HDSP-4131	Yellow, Common Anode, RHDP		
$\begin{aligned} & 10.92 \mathrm{~mm}\left(.43^{\prime \prime}\right) \text { Dual-In-Line } \\ & .75^{\prime \prime} \mathrm{H} \times .5^{\prime \prime} \mathrm{W} \times .25 \text { "'D } \\ & \text { (14 Pin Epoxy) } \\ & \hline \end{aligned}$	HDSP-4133	Yellow, Common Cathode, RHDP		
	HDSP-4136	$10.36 \mathrm{~mm}\left(.4^{\prime \prime}\right)$ Yellow, Universal Polarity Overflow Indicator, RHDP		
	HDSP-5531	High Efficiency Red, Common Anode, RHDP	$7.0 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-5533	High Efficiency Red, Common Cathode, RHDP		
	HDSP-5537	High Efficiency Red $\pm \mathbf{1}$, Common Anode		
14.2 mm (.56 ${ }^{\prime \prime}$) Dual-In-Line $\text { . } 67^{\prime \prime \prime} \mathrm{H} \times .49^{\prime \prime} \mathrm{W} \text { x }$	HDSP-5538	High Efficiency Red \pm 1, Common Cathode		
	HDSP-5731	Yellow, Common Anode, RH DP	$7.0 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-5733	Yellow, Common Cathode, RHDP		
	HDSP-5737	Yellow ± 1, Common Anode		
	HDSP-5738	Yellow ± 1, Common Cathode		
	HDSP-3900	High Efficiency Red, Common Anode, LHDP	7.0 mcd/seg	
	HDSP-3901	High Efficiency Red, Common Anode, RHDP		
	HDSP-3903	High Efficiency Red, Common Cathode, RHDP		
	HDSP-3905	High Efficiency Red, Common Cathode, LHDP		
	HDSP-3906	18.87 mm (.74") High Efficiency Red, Universal Polarity Overflow Indicator, RHDP		
$20.32 \mathrm{~mm}\left(.8^{\prime \prime}\right)$ Dual-In-Line $1.09^{\prime \prime} \mathrm{H}$ x $.78^{\prime \prime} \mathrm{W}$ x $.33^{\prime \prime} \mathrm{D}$ (18 Pin Epoxy)	HDSP-4200	Yellow, Common Anode, LHDP	$7.0 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-4201	Yellow, Common Anode, RHDP		
	HDSP-4203	Yellow, Common Cathode, RHDP		
	HDSP-4205	Yellow, Common Cathode, LHDP		
	HDSP-4206	$18.87 \mathrm{~mm}\left(.74^{\prime \prime}\right)$ Yellow, Universal Polarity Overflow Indicator, RHDP		

Red, High Efficiency Red, Yellow and Green Seven Segment LED Displays

Package	Device	Description	Typical I_{V} @ 20mA	$\begin{gathered} \text { Page } \\ \text { No. } \\ \hline \end{gathered}$
	5082-7610	High Efficiency Red, Common Anode, LHDP	$3.0 \mathrm{mcd} / \mathrm{seg}$	411
	5082-7611	High Efficiency Red, Common Anode, RHDP		
	5082.7613	High Efficiency Red, Common Cathode, RHDP		
	5082-7616	7.11 mm (.29") High Efficiency Red, Universal Polarity Overflow Indicator RHDP		
+	5082-7620	Yellow, Common Anode LHDP	$2.3 \mathrm{mcd} / \mathrm{seg}$	
	5082-7621	Yellow, Common Anode RHDP		
$\underline{+}$	5082-7623	Yellow, Common Cathode, RHDP		
7.62 mm (.3") Dual-In-Line $.75^{\prime \prime} \mathrm{H} \times .4^{\prime \prime} \mathrm{W} \times .18^{\prime \prime} \mathrm{D}$	5082-7626	$7.11 \mathrm{~mm}\left(.29^{\prime \prime}\right)$ Yellow, Universal Polarity and Overflow Indicator RHDP		

Red, High Efficiency Red, Yellow and Green Seven Segment LED Displays (cont.)

Package	Device	Description	Typical $\mathbf{I V}_{\mathbf{V}}$ @ 20 mA	Page No.
	5082-7650	High Efficiency Red, Common Anode, LHDP	$3.0 \mathrm{mcd} / \mathrm{seg}$	411
	5082-7651	High Efficiency Red, Common Anode, RHDP		
	5082-7653	High Efficiency Red, Common Cathode RHDP		
	5082-7656	10.36 (.4") High Efficiency Red Universal Polarity and Overflow Indicator RHDP		
$\begin{aligned} & 10.92 \mathrm{~mm} \text { (. } 43^{\prime \prime} \text {) } \\ & \text { Dual-In-Line } \\ & .75^{\prime \prime H} \times .5^{\prime \prime W} \times .25^{\prime \prime D} \\ & \text { (14 Pin Epoxy) } \end{aligned}$	5082-7660	Yellow Common Anode LHDP	$2.3 \mathrm{mcd} / \mathrm{seg}$	
	5082-7661	Yellow Common Anode RHDP		
	5082-7663	Yellow Common Cathode RHDP		
	5082-7666	10.36 (.4") Yellow Universal Polarity and Overflow Indicator RHDP		
7.62 mm (. $3^{\prime \prime}$) Dual-In-Line $\text { . } 75^{\prime \prime} \mathrm{H} \text { x } .4^{\prime \prime W} \mathrm{~W} \times .18^{2}$	5082-7730	Red, Common Anode, LHDP	$700 \mu \mathrm{~cd} / \mathrm{seg}$	417
	5082-7731	Red, Common Anode, RHDP		
	5082-7736	7.11 mm (.29") Red, Common Anode, Polarity and Overflow Indicator		
	5082-7740	Red, Common Cathode, RHDP		
	5082-7750	Red, Common Anode, LHDP		
	5082-7751	Red, Common Anode, RHDP		
	5082-7756	10.36 mm (.4") Red, Universal Polarity and Overflow Indicator, RHDP		
	5082-7760	Red, Common Cathode, RHDP		
$14.2 \mathrm{~mm}\left(.56^{\prime \prime}\right)$ Dual-In-Line $\text { b7"'H x .49'W x . } 31 \text { " }$	HDSP-5301	Red, Common Anode RHDP	$900 \mu \mathrm{~cd} / \mathrm{seg}$	421
	HDSP-5303	Red, Common Cathode RHDP		
	HDSP-5307	Red ± 1, Common Anode		
	HDSP-5308	Red ± 1, Common Cathode		
	HDSP-5501	High Efficiency Red, Common Anode, RHDP	$4.6 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-5503	High Efficiency Red, Common Cathode, RHDP		
	HDSP-5507	High Efficiency Red ± 1, Common Anode		
	HDSP-5508	High Efficiency Red ± 1, Common Cathode		
	HDSP-5701	Yellow, Common Anode, RHDP	$3.6 \mathrm{mcd} / \mathrm{seg}$	
	HDSP-5703	Yellow, Common Cathode, RHDP		
	HDSP-5707	Yellow ± 1, Common Anode		
	HDSP-5708	Yellow ± 1, Common Cathode		
	HDSP-3400	Red, Common Anode, LHDP	$900 \mu \mathrm{~cd} / \mathrm{seg}$	429
$: 0 \rightarrow$	HDSP-3401	Red, Common Anode, RHDP		
	HDSP-3403	Red, Common Cathode, RHDP		
	HDSP-3405	Red, Common Cathode, LHDP		
$\begin{aligned} & 20.32 \mathrm{~mm}\left(.8^{\prime \prime}\right) \text { Dual-In-Line } \\ & 1.09{ }^{\prime \prime H} \times .78^{\prime \prime} \mathrm{W} \times .33^{\prime \prime} \mathrm{D} \\ & \text { (18 Pin Epoxy) } \end{aligned}$	HDSP-3406	18.87 mm (.74") Red, Universal Polarity Overflow Indicator, RHDP		

Standard Red Numeric and Hexadecimal Dot Matrix Display

Device		Description	Package	Application	Page No.
(A) (C) (D) 7.4 mm (.29")	$5082-7300$ (A) 5082.7302 (B) 5082.7340 (C) $5082-7304$ (D)	Numeric RHDP Built-in Decoder/Driver/Memory Numeric LHDP Built-in Decoder/Driver/Memory Hexadecimal Built-in Decoder/Driver/Memory Character Plus/Minus Sign	8 Pin Epoxy 15.2 mm (.6") DIP	General Purpose Market - Test Equipment - Business Machines - Computer Peripherals - Avionics	433
	$5082-7356$ (A) 5082.7357 (B) 5082.7359 (C) 5082.7358 (D)	Numeric RHDP Built-in Decoder/Driver/Memory Numeric LHDP Built-in Decoder/Driver/Memory Hexadecimal Built-in Decoder/Driver/Memory Character Plus/Minus Sign	8 Pin Glass Ceramic 15.2mm (. $6^{\prime \prime}$) DIP	- Medical Equipment - Industrial and Process Control Equipment - Computers - Where Ceramic Package IC's required - High Reliability Applications	437
	4N51 (5082-7391) 4N51TXV 4N51TXVB (A) 4N52 (5082-7392) 4N52TXV 4N52TXVB (B) 4N54 (5082-7395) 4N54TXV 4N54TXVB (C) 4N53 (5082-7393) 4N53TXV 4N53TXVB (D)	Numeric RHDP Built in Decoder/Driver/Memory TXV - Hi Rel Screened TXVB - Hi Rel Screened with Group B data Numeric LHDP Built in Decoder/Driver/Memory TXV - Hi Rel Screened TXVB - Hi Rel Screened with Group B data Hexadecimal Built in Decoder/Driver/Memory TXV - Hi Rel Screened TXVB - Hi Rel Screened with Group B data Character Plus/Minus Sign TXV - Hi Rel Screened TXVB - Hi Rel Screened with Group B data	8 Pin Hermetic 15.2 mm (. $6^{\prime \prime}$) DIP with gold plated leads	- Ground, Airborne, Shipboard Equipment - Fire Control Systems - Space Flight Systems - Other High Reliability Applications	442
(A) (B) 6.8 mm (.27") 5×7 Single Digit	5082-7010 (A) 5082-7011 (B)	Numeric LHDP Built-in Decoder/Driver/Memory Plus/Minus Sign	8 Pin Metal can 2.54 mm (.100") Pin Centers	- Ground, Airborne, Shipboard Equipment - Fire Control Systems - Space Flight Systems	456

High Efficiency Red, Yellow and Green Numeric and Hexadecimal Displays

Device and Package		Description	Color	Application	Page No.
(A) (C) (B) (D) $7.4 \mathrm{~mm}\left(.29^{\prime \prime}\right)$ 4×7 Single Digit Package: 8 Pin Glass Ceramic $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right)$ DIP	HDSP-0760 (A)	Numeric RHDP Built in Decoder/Driver/Memory	High Efficiency Red Low Power	- Military Equipment - Ground Support Equipment - Avionics - High Reliability Applications	450
	HDSP-0761 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0762 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0763 (D)	Over Range ± 1			
	HDSP-0770 (A)	Numeric RHDP Built in Decoder/Driver/Memory	High Efficiency Red High Brightness	- High Brightness Ambient Systems - Cockpit, Shipboard Equipment - High Reliability Applications	
	HDSP-0771 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0772 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0763 (D)	Over Range ± 1			
	HDSP-0860 (A)	Numeric RHDP Built in Decoder/Driver/Memory	Yellow	- Business Machines - Fire Control Systems - Military Equipment - High Reliability Applications	
	HDSP-0861 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0862 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0863 (D)	Over Range ± 1			
	HDSP-0960 (A)	Numeric RHDP Built in Decoder/Driver/Memory	High PerformanceGreen	- Business Machines - Fire Control Systems - Military Equipment - High Reliability Applications	
	HDSP-0961 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0962 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0963 (D)	Over Range ± 1			

Red Seven Segment LED Displays

Device		Description	Package	Application	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	5082-7404	2.79mm(.11") Red, 4 Digits Centered D.P.	12 Pin Epoxy, 7.62 mm (. $3^{\prime \prime}$) DIP	Small Display Market - Portable/Battery Power Instruments - Portable Calculators - Digital Counters - Digital Thermometers - Digital Micrometers - Stopwatches - Cameras - Copiers - Digital Telephone Peripherals - Data Entry Terminals - Taxi Meters For further information ask for Application Note 937.	462
	5082-7405	$2.79 \mathrm{~mm}\left(.11^{\prime \prime}\right)$ Red, 5 Digits, Centered D.P.	14 Pin Epoxy, 7.62 mm (. $3^{\prime \prime}$) DIP		
	5082-7414	$\begin{aligned} & \text { 2.79mm(. } \left.11^{\prime \prime}\right) \text { Red, } 4 \text { Digit, } \\ & \text { RHDP } \end{aligned}$	12 Pin Epoxy, 7.62 mm (. $3^{\prime \prime}$) DIP		
	5082-7415	$\begin{aligned} & 2.79 \mathrm{~mm}\left(.11^{\prime \prime}\right) \text { Red, } 5 \text { Digit, } \\ & \text { RHDP } \end{aligned}$	14 Pin Epoxy, 7.62 mm (. $3^{\prime \prime}$) DIP		
	5082-7432	$2.79 \mathrm{~mm}\left(.11^{\prime \prime}\right)$ Red, 2 Digits Right, [2] RHDP	12 Pin Epoxy, 7.62 mm (.3") DIP		
	5082-7433	2.79 mm (.11") Red, 3 Digits, RHDP			
(1000000000	5082.7441	$2.67 \mathrm{~mm}\left(.105^{\prime \prime}\right)$ Red, 9 Digits, Mounted on P.C. Board	$50.8 \mathrm{~mm}\left(2^{\prime \prime}\right)$ PC Bd., 17 Term. Edge Con.		467
	5082-7446	$2.92 \mathrm{~mm}\left(.115^{\prime \prime}\right)$ Red, 16 Digits, Mounted on P.C. Board	$69.85 \mathrm{~mm}\left(2.750^{\prime \prime}\right)$ PC Bd., 24 Term. Edge Con.		
3	5082-7285	$4.45 \mathrm{~mm}\left(.175^{\prime \prime}\right)$ Red, 5 Digits Mounted on P.C. Board. RHDP	$50.8 \mathrm{~mm}\left(2^{\prime \prime}\right)$ PC Bd., 15 Term. Edge Con.		
	5082-7295	$4.45 \mathrm{~mm}\left(.175^{\prime \prime}\right)$ Red, 15 Digits, Mounted on P.C. Board. RHDP	91.2 mm (3.59") PC Bd., 23 Term. Edge Con.		

Features

- FOUR COLORS

Standard Red
Yellow
High Efficiency Red High Performance Green

- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END STACKABLE FOUR CHARACTER PACKAGE
- TTL COMPATIBLE
- 5×7 LED MATRIX DISPLAYS FULL ASCII SET
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2001/2003 CATEGORIZED FOR COLOR

Description

The HDSP-2000/-2001/-2002/-2003 series of displays are 3.8 $\mathrm{mm}(0.15 \mathrm{inch}) 5 \times 7$ LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red, and high performance green.

Package Dimensions

Typical Applications

- Portable Data Entry Devices
- Business Machines
- Programmable Legend Switches
- Medical Instruments

Each four character cluster is contained in a 12 pin dual-inline package. An on-board SIPO (Serial-In-Parallel-Out) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing.

NOTES:

1. DIMENSIONS AN mm finchash.
2. UNLESS OTHERWUSE SPECIFIED THE TOLERANCE ON ALL DIMENSIONS

3. EEAD MATERIAE IS COPPER Aflo O Y.
4. GHARACTERS ARE CENTEREO WIFH RESPECT TO LEADS WITHEN

Absolute Maximum Ratings (HDSP-2000/-2001/-2002/-2003)

Supply Voltage VCC to Ground
-0.5 V to 6.0 V
Inputs, Data Out and V_{B}
-0.5 V to VCC
Column Input Voltage, Vcol
-0.5 V to +6.0 V
Free Air Operating
Temperature Range, $T_{A}[1,2]$
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Maximum Solder Temperature 1.59 mm (0.063 ")
Below Seating Plane $\mathrm{t}<5 \mathrm{sec}$
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions
 (HDSP-2000/-2001/-2002/-2003)

Parameter	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	VCC	4.75	5.0	5.25	V	
Data Out Current. Low State	1 OL			1.6	mA	
Data Out Current, High State	10 H			-0.5	mA	
Column Input Voltage, Column On HDSP-2000	VCOL	2.4		3.5	V	4
Column inpux Voltage, Column On, HDSP-2001/-2002/-2003	VCOL	2.75		3.5	V	4
Setup Time	tsetup	70	45		ns	1
Hold Time	thold	30	0		ns	1
Width of Clock	twiclock	75			ns	1
Clock Frequency	flock	0		3	M1-iz	1
Clock Transition Time	THHL.			200	ns	1
Free Air Operating Temperature Rangel [1,2] :	TA	-20		85	${ }^{\circ} \mathrm{C}$	2

Electrical Characteristics Over Operating Temperature Range
 (Unless otherwise specified)

Description		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		Icc	VCC $=5.25 \mathrm{~V}$ VCLOCK $=V_{\text {DATA }}=2.4 \mathrm{~V}$ All SA Stages = Logical 1	$V_{B}=0.4 V$		45	60	mA		
		$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$			73	95	mA			
Column Current at any Column Input			160 L	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \text { VCOL }=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } 1 \end{aligned}$	$\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$			500	$\mu \mathrm{A}$	4
Column Current at any Column Input		1 COL	$V_{B}=2.4 \mathrm{~V}$			335	410	mA		
VB. Clock or Data Input Threshold High		$\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{VCC}=\mathrm{VCOL}=4.75 \mathrm{~V}$		2.0			V		
V ${ }_{\text {B }, ~ C l o c k ~ o r ~ D a t a ~ I n p u t ~ T h r e s h o l d ~ L o w ~}^{\text {a }}$		Vil					0.8	V		
Input Current Logical 1	VB. Clock	1 H	$\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{iH}}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$		
	Dataln	1 H				10	40	$\mu \mathrm{A}$		
Input Current Logical 0	V ${ }_{\text {B, }}$ Clock	IIL	$\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$		
	Data In	11.				-250	-400	$\mu \mathrm{A}$		
Data Out Vottage		VOH	$\mathrm{VCC}=4.75 \mathrm{~V}, 10 \mathrm{H}=-0.5 \mathrm{~mA}, 1 \mathrm{lCOL}=0 \mathrm{~mA}$		2.4	3.4		V		
		Vol	$\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{OL}=1.6 \mathrm{~mA}$,	$\mathrm{COL}=0 \mathrm{~mA}$		0.2	0.4	V		
Power Dissipation Per Package**		PD	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDs on per character, $V_{B}=2.4 \mathrm{~V}$			0.72		W	2	
Thermal Resistance IC Junction-to-Case						25		${ }^{\circ} \mathrm{CH} / \mathrm{W} /$ Device	2	

*All typical values specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction should not exceed $125^{\circ} \mathrm{C}$ TJ and the case temperature as measured at pin 1 or the back of the display) should not exceed $100^{\circ} \mathrm{C}$ Tc.
2. The device should be derated linearly above $50^{\circ} \mathrm{C}$ at 16.7 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $35^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 20$ LEDs on per character, $20 \% \mathrm{DF}$.

Optical Characteristics

STANDARD RED HDSP-2000

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{(4,8]}$ (Character Average)	IvPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}(6), V \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	105	200		$\mu \mathrm{cd}$	3
Peak Wavelength	λ 入PEAK			655		nm	
Dominant Wavelength[7]	$\lambda_{\text {d }}$			539		nm	

YELLOW HDSP-2001

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{(4,8]}$ (Character Average)	IvPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, V C O L=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{Cl6}, V_{B}=2.4 \mathrm{~V} \end{aligned}$	400	750		$\mu \mathrm{cd}$	3
Peak Wavelength	入PEAK			583		nm	
Dominant Wavelength[5,7]	λd			585		nm	

HIGH EFFICIENCY RED HDSP-2002

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{4,8 \mid}$ (Character Average)	lypeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C}(6), V_{B}=2.4 \mathrm{~V} \end{aligned}$	400	1430		$\mu \mathrm{cd}$	3
Peak Wavelength	גPEAK			635		nm	
Dominant Wavelength(7)	λ_{d}			626		nm	

HIGH PERFORMANCE GREEN HDSP-2003

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8]}$ (Character Average)	twPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, V \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C}[6], V_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$	850	1550		$\mu \mathrm{cd}$	3
Peak Wavelength	λ АЕЕAK			568		nm	
Dominant Wavelength[5,7]	λ_{d}			574		nm	

*All typical values specified at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2001/-2003 are categorized for color with the color category designated by a number code on the bottom of the package.
6. T_{i} refers to the initial case temperature of the device immediately prior to the light measurement.

Electrical Description

The HDSP-200X series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features Data In and Data Out terminals arrayed for easy PC board interconnection. Data Out represents the output of the 7 th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5×7 diode array.
The TTL compatible V_{B} input may either be tied to $V_{C C}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
The normal mode of operation input data for digit 4, column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column 1 data for digits 3,2 , and 1 is similarly shifted into the display shift register locations. The column 1 input is now enabled for an appropriate period of time, T. A
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$L_{v}\left(c d / m^{2}\right)=I_{v}($ Candela $) / A(\text { Metre })^{2}$
$L_{v}($ Footlamberts $)=\pi i_{v}($ Candela $) / A\left(\right.$ Foot ${ }_{2} 2$ $A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$ (Foot ${ }^{2}$
similar process is repeated for columns $2,3,4$ and 5 . If the time necessary to decode and load data into the shift register is t, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20%.

For further applications information, refer to HP Application Note 1016.

Figure 1. Switching Characteristics HDSP-2000/-2001/-2002/-2003 ($T_{A}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Mechanical and Thermal Considerations

The HDSP-2000/-2001/-2002/-2003 are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. Full power operation $\left(V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}\right)$ with worst case thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} /$ wat$t / d e v i c e ~ i s ~ p o s s i b l e ~ u p ~ t o ~ a m b i e n t ~ t e m p e r a t u r e ~ o f ~ 50^{\circ} \mathrm{C}$. For operation above $50^{\circ} \mathrm{C}$, the maximum device dissipation should be derated linearly at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible.

Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, Vcol, can be decreased to the recommended minimum values of 2.4 V for the HDSP-2000 and 2.75V for the HDSP-2001/-2002/-2003. Also, the average drive current can be decreased through pulse width modulation of V_{B}.
The HDSP-2000/-2001/-2002/-2003 displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested filter materials are provided in Figure 6. Additional information on filtering and constrast enhancement can be found in HP Application Note 1015.

Figure 5. Block Diagram of HDSP-2000/-2001/-2002/-2003

Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

Display Color	Ambient Lighting		
	Dim	Moderate	Bright
HDSP-2000 Std, Red	Panelgraphic Dark Red 63 Ruby Fed 60 Chequers Red 118 Plexiglass 2423	Polaroid HNCP37 3M Light Contro: Film Panelgraphic Gray 10 Chequers Grey 105	
HDSP-2001 (Yellow)	Panelgraphic Yellow 27 Chequers Amber 107		Polaroid HNCP10
$\begin{aligned} & \text { HDSP-2002 } \\ & \text { (HER) } \end{aligned}$	Panelgraphic Ruby Red 60 Chequers Red 112		
HDSP-2003	Panetgraphic Green 48 Chequers Green 107		

Figure 6. Contrast Enhancement Filters

Figure 2. Maximum Allowable Power Dissipation vs. Temperature

Figure 3. Relative Luminous Intensity vs. Temperature

Figure 4. Peak Column Current vs. Column Voltage

Features

- FOUR COLORS

Standard Red
Yellow
High Efficiency Red
High Performance Green

- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END STACKABLE FOUR CHARACTER PACKAGE
- TTL COMPATIBLE
- 5×7 LED MATRIX DISPLAYS FULL ASCII SET
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2301/2303 CATEGORIZED FOR COLOR

Description

The HDSP-2300/-2301/-2302/-2303 series of displays are 5.0 mm (0.20 inch) 5×7 LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, high efficiency red, and high performance green.

Package Dimensions

PIN	FUNCTION	PIN	FUNCTION
1	COLUMN 1	7	DATA OUT
2	COLUMN 2	8	V $_{\mathrm{B}}$
3	COLUMN 3	9	VCC $^{\text {COCK }}$
4	COLUMN 4	10	CLOCK
5	COLUMN 5	11	GROUND
6	INT. CONNECT*	12	DATA IN

DO NOT COANECT OR USE
*DO NOT CONNECT OR USE
NOTES:

1. DIMENSIONS 䥻 mm tinchas),
 TOLERANCE ON ALL DIMENSIONS $15 \pm .38 \mathrm{~mm}$ ($\pm .015^{* \prime}$)
2. CHARACTERS ARE CENTERED WITH RESPECT TO LEADS WHTHIN +. $13 \mathrm{mmm}\left(\pm .005^{\circ}\right)_{.}$

Absolute Maximum Ratings (HDSP-2300/-2301/-2302/-2303)

Supply Voltage Vcc to Ground
-0.5 V to 6.0 V
Inputs, Data Out and $V_{B} \ldots \ldots$.
Column Input Voltage, $\mathrm{V}_{\mathrm{COL}} \ldots$.
Free Air Operating
Temperature Range, $\mathrm{T}_{\mathrm{A}}{ }^{[1,2]} \ldots-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range, Ts $\ldots . .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Maximum Allowable Package Dissipation
at $T_{A}=25^{\circ} \mathrm{C}[1,2,3]$
HDSP-2300
1.24 Watts

HDSP-2301/-2302/-2303
1.46 Watts

Maximum Solder Temperature 1.59 mm (0.063 ")
Below Seating Plane $t<5$ sec $260^{\circ} \mathrm{C}$

Recommended Operating Conditions (HDSP-2300/-2301/-2302/-2303)

Parameter	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	VCO	4.75	5.0	5.25	V	
Data Out Current. Low State	102			16	mA	
Data Out Current. High State	1 OH			-0.5	mA	
Column Input Voltage, Column On HDSP-2300	VCOL	2.4		3.5	V	4
Column Input Voltage, Column On HDSP-2301/-2302/-2303	VCO	2.75		3.5	V	7
Setup Time	tsetup	70	45		ns	1
Hold Time	thold	30	0		ns	1
Width of Clock	twictock)	75			ns	1
Clock Frequency	felock	0		3	MHz	1
Clock Transition Time	tTHL			200	ns	1
Free Air Operating Temperature Range[1,2]	TA	-20		85	${ }^{\circ} \mathrm{C}$	3,5

Electrical Characteristics Over Operating Temperature Range
 (Unless otherwise specified)

STANDARD RED HDSP-2300

Descripfion		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		Icc	$V_{C C}=5.25 \mathrm{~V}$ $V_{C L O C K}=V_{\text {DATA }}=2.4 \mathrm{~V}$ All SR Stages $=$ Logical 1	$\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$		45	60	mA		
		$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$			73	95	mA			
Column Current at any Column Input			160 L	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \text { Al SR Stages }=\text { Logical } 1 \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$			500	$\mu \mathrm{A}$	4
Column Current at any Column Input		1 COL	$V_{B}=2.4 V$			335	410	$m A$		
VB, Clock or Data input Threshold High		V_{1}	$\mathrm{VCC}=\mathrm{VCOL}=4.75 \mathrm{~V}$		2.0			V		
$V_{8,}$, Clock or Data Input Threshold Low		Viti.					0.8	V		
Input Current Logical 1	VB, Clock	${ }_{1}$	$\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=2.4 \mathrm{~V}$			20	80	${ }_{\text {\# }}$ A		
	Data In	${ }_{\text {H }}$				10	40	$\mu \mathrm{A}$		
Tnput Current Logical 0	VB, Clock	ILL	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$		
	Data in	IfL				-250	-400	${ }_{\square}{ }^{\text {A }}$		
Data Out Voltage		VOH	$V_{C C}=4.75 \mathrm{~V}, 10 \mathrm{CH}=-0.5 \mathrm{~mA}, 1 \mathrm{COL}=0 \mathrm{~mA}$		2.4	3.4		V		
		VoL	$\mathrm{VCCC}=4.75 \mathrm{~V}, 10 \mathrm{l}=1.6 \mathrm{~mA}$	$\mathrm{COL}=0 \mathrm{~mA}$		0.2	0.4	V		
Power Dissipation Per Package**		PD	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}^{2}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDS on per character, $V_{B}=2.4 \mathrm{~V}$			0.72		W	2	
Thermal Resistance IC Junction-to-Case		R $\boldsymbol{\theta s}_{\text {S-c }}$				25		${ }^{\circ}$ CAN t Device	2	

*All typical values specified at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction temperature should not exceed $125^{\circ} \mathrm{C}$ TJ and the case temperature (as measureed at pin 1 or the back of the display) should not exceed $100^{\circ} \mathrm{C}$ Tc.
2. The HDSP-2300 should be derated linearly above $50^{\circ} \mathrm{C}$ at 16.7 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. The HDSP-2301/-2302/-2303 should be derated linearly above $37^{\circ} \mathrm{C}$ at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $35^{\circ * *}$ C/W per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 20 \mathrm{LEDs}$ on per character, $20 \% \mathrm{DF}$.

YELLOW HDSP-2301/HIGH EFFICIENCY RED HDSP-2302/HIGH PERFORMANCE GREEN HDSP-2303

Description		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		lec	$\mathrm{VCC}=5.25 \mathrm{~V}$ $V_{C L O C K}=V_{\text {DATA }}=2.4 V$ All SR Stages $=$ Logical 1	$V_{B}=0.4 \mathrm{~V}$		45	60	mA		
		VB ${ }^{\text {m }} 2.4 \mathrm{4V}$			73	95	mA			
Column Current at any Column Input			$1 \mathrm{cos}$.	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCOL }=3.5 \mathrm{~V} \\ & \text { All SR Stages }=\text { Logical } \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$			500	$\mu \mathrm{A}$	7
Column Current at any Column mput		1 COL	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$			380	520	mA		
V8. Clock or Data mmput Threshold High		$\mathrm{V}_{1} \mathrm{H}$	$\mathrm{Vcc}=\mathrm{VCO}=4.75 \mathrm{~V}$		2.0			V		
V_{B}, Clock or Data input Threshold Low		V ${ }_{\text {Lit }}$					0.8	V		
Input Current Logical 1	VB. Clock	$\mathrm{H}_{1 \mathrm{H}}$	$\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=2.4 \mathrm{~V}$			20	80	${ }_{\text {H }}$ A		
	Data In	HiH				10	40	$\mu \mathrm{A}$		
Input Current Logical 0	VB, Clock	H	$V_{C C O}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-500	-800	HA		
	Data in	IL2				-250	-400	$\mu \mathrm{A}$		
Data Out Voltage		VOH	$\mathrm{VCCC}=4.75 \mathrm{~V}, 1 \mathrm{OH}=0.5 \mathrm{~mA}, 1 \mathrm{lCO}=0 \mathrm{~mA}$		2.4	3.4		V		
		VoL	$V C C=4.75 \mathrm{~V} .10 \mathrm{~L}=1.6 \mathrm{~mA}$.	Cot =0 mA		0.2	0.4	V		
Power Dissipation Per Package**		PD	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF} \\ & 15 \mathrm{LED} \text { on per character, } \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$			0.78		W	5	
Thermal Resistance IC Junction-to-Case		$\mathrm{R} \mathrm{O}_{\mathrm{J}-\mathrm{c}}$				25		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device	5	

Optical Characteristics

STANDARD RED HDSP-2300

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8]}$ (Character Average)	IvPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{i}=25^{\circ} \mathrm{C} 6 \mathrm{~F}, \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	130	300		$\mu \mathrm{cd}$	3
Peak Wavelength	APEAK			655		nm	
Dominant Wavelength[7]	λd			639		nm	

YELLOW HDSP-2301

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4.8]}$ (Character Average)	IVPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C}[6], V_{B}=2.4 \mathrm{~V} \end{aligned}$	650	1140		$\mu \mathrm{cd}$	6
Peak Wavelength	APEAK			583		nm	
Dominant Wavelength $[5,7]$	λd			585		nm	

HIGH EFFICIENCY RED HDSP-2302

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8]}$ (Character Average)	lvPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C} 6, \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	650	1430		$\mu \mathrm{cd}$	6
Peak Wavelength	АРЕAK			635		nm	
Dominant Wavelength ${ }^{[7]}$	$\lambda_{\text {d }}$			626		nm	

HIGH PERFORMANCE GREEN HDSP-2303

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8]}$ (Character Average)	lyPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{Cl} 6, \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	1280	2410		$\mu \mathrm{Cd}$	6
Peak Wavelength	λ APEAK			568		nm	
Dominant Wavelength[5,7]	λ_{d}			574		nm	

*All typical values specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2301/-2303 are categorized for color with the color category designated by a number code on the bottom of the package.
6. T_{i} refers to the initial case temperature of the device immediately prior to the light measurement.
**Power dissipation per package with four characters illuminated
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$\mathrm{L}_{\mathrm{v}}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{\mathrm{v}}($ Candela $) / \mathrm{A}(\text { Metre })^{2}$
$\mathrm{L}_{\mathrm{v}}($ Footlamberts $)=\pi \mathrm{iv}($ Candela $) / \mathrm{A}(\text { Foot })^{2}$ $\mathrm{A}=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}(\text { Foot })^{2}$

Parameter	Condition	Min.	Typ.	Max	Units
fclock CLOCK Rate				3	MHz
tpan, $\mathrm{t}_{\text {PhL }}$ Propagation delay CLOCK to DATA OUT	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=2.4 \mathrm{~K} \Omega \end{aligned}$			125	ns

Figure 1. Switching Characteristics HDSP-2300/-2301/-2302/-2303 ($\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

HDSP-2300

Figure 2. Maximum Allowable Power Dissipation vs. Temperature

Figure 3. Relative Luminous Intensity vs. Temperature

Figure 6. Relative Luminous Intensity vs. Temperature

Figure 4. Peak Column Current vs. Column Voltage

HDSP-2301/-2302/-2303

Figure 5. Maximum Allowable Power Dissipation vs. Temperature

Figure 7. Peak Column Current vs. Column Voltage

Electrical Description

The HDSP-230X series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features Data In and Data Out terminals arrayed for easy PC board interconnection. Data Out represents the output of the 7 th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the Clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 8 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5×7 diode array.
The TTL compatible V_{B} input may either be tied to $V_{C C}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
The normal mode of operation input data for digit 4, column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column 1 data for digits 3,2 , and 1 is similarly shifted into the display shift register locations. The column 1 input is now enabled for an appropriate period of time, T. A similar process is repeated for columns $2,3,4$ and 5 . If the time necessary to decode and load data into the shift register is t, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20%.

For further applications information, refer to HP Application Note 1016.

Figure 8. Block Diagram of HDSP-2300/-2301/-2302/-2303

Display Color	Amblent Lighting		
	Dim	Moderate	Bright
HDSP-2300 Std. Red	Panelgraphic Dark Red 63 Ruby Red 60 Chequers Red 118 Plexiglass 2423		
HDSP-2301 (Yellow)	Panelgraphic Yellow 27 Chequers Amber 107	Polaroid HNCP37 3 M Lignt Controf Film Panelgraphic Gray 10	
$\begin{aligned} & \begin{array}{l} \text { HDSP-2302 } \\ \text { (HER) } \end{array} \end{aligned}$	Panelgraphic Auby Fed 60 Chequers Red 112	Chequers ©rey 105	Polaroid HNCP10
$\begin{array}{\|l\|} \hline \text { HDSP-2303 } \\ \text { (HP Green) } \end{array}$	Panelgraphic Green 48 Chequers Green 107		

Figure 9. Contrast Enhancement Filters

Mechanical and Thermal Considerations

The HDSP-2300/-2301/-2302/-2303 are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. The HDSP-2301/-2302/-2303 utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation ($\mathrm{VCC}=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$) with worst case thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} /$ watt/device is possible up to ambient temperature of $37^{\circ} \mathrm{C}$. For operation above $37^{\circ} \mathrm{C}$, the maximum device dissipation should be derated
linearly at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 5). With an improved thermal design, operation at higher ambient temperatures without derating is possible.

The HDSP-2300 uses a lower power IC, yet achieves excellent readabilty in indoor ambient lighting. Full power operation up to $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\left(\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V} C O L=\right.$ 3.5 V) is possible by providing a total thermal resistance from IC junction to ambient of $60^{\circ} \mathrm{C} /$ watt/device maximum. For operation above $50^{\circ} \mathrm{C}$, the maximum device dissipation should be derated at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} /$ device (see Figure 2).

Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, Vcol, can be decreased to the recommended minimum values of 2.6 V for the HDSP-2300 and 2.75V for the HDSP-2301/-2302/-2303. Also, the average drive current can be decreased through pulse width modulation of V_{B}.

The HDSP-2300/-2301/-2302/-2303 displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested
filter materials are provided in Figure 9. Additional information on filtering and constrast enhancement can be found in HP Application Note 1015.

Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

FOUR CHARACTER 6.9 mm (0.27 INCH) 5×7 ALPHANUMERIC DISPLAYS STANDARD RED HDSP-2490 YELLOW HDSP-2491
HICH EFFICIENCY RED HDSP-2492 HIGH PERFORMANCE GREEN HDSP-2493

Features

- FOUR COLORS

Standard Red

Yellow

High Efficiency Red

High Performance Green

- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- COMPACT CERAMIC PACKAGE
- WIDE VIEWING ANGLE
- END STACKABLE FOUR CHARACTER

PACKAGE

- TTL COMPATIBLE
- 5×7 LED MATRIX DISPLAYS FULL ASCII SET
- CATEGORIZED FOR LUMINOUS INTENSITY
- HDSP-2491/2493 ALSO CATEGORIZED FOR COLOR

Description

The HDSP-2490/-2491/-2492/-2493 series of displays are 6.9 mm (0.27 inch) 5×7 LED arrays for display of alphanumeric information. These devices are available in standard red; yellow, high efficiency red, and high performance green.

Package Dimensions

Absolute Maximum Ratings (HDSP-2490/-2491/-2492/-2493)

Supply Voltage VCc to Ground	5 V to 6.0 V
Inputs, Data Out and V_{B}	0.5 V to Vcc
Column Input Voltage, $\mathrm{V}_{\text {COL }}$	0.5 V to +6.0 V
Free Air Operating	
Temperature Range, $\mathrm{TA}^{[1,2]}$	$-20^{\circ} \mathrm{C}$ to +85

Storage Temperature Range, Ts $\ldots .-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Maximum Allowable Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 1.2.3 1.46 Watts

Maximum Solder Temperature 1.59 mm (0.063 ")
Below Seating Plane $\mathrm{t}<5 \mathrm{sec}$
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions (HDSP-2490/-2491/-2492/-2493)

Parameter	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	VCC	4.75	5.0	5.25	\checkmark	
Data Out Curfent, Low State	1 OL			1.6	mA	
Data Out Current, High State	for			-0.5	mA	
Columin Input Voltage, Column On HDSP-2490	VCOL	2.4		3.5	V	4
Column Input Voltage; Column On H0Sp-2491/-2492/-2493	VCOL	2.75		3.5	V	4
Setup Time	Lsetup	70	45		ns	1
Hold Time	thold	30	0		AS	1
Wioth of Clock	$t_{\text {wi (}}$ (lock)	75			ns	1
Clock Frequency	flock	0		3	MHHz	1
Clock Transition Time	TTHL			200	ns	1
Free Air Operating Temperature Range [1,2]	TA	-20		85	${ }^{\circ} \mathrm{C}$	2

Electrical Characteristics Over Operating Temperature Range
 (Unless otherwise specified)

Description		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		Icc	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLOCK }=\text { VDATA }=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical } 1 \\ & \hline \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$		45	60	mA		
		$V_{B}=2.4 \mathrm{~V}$			73	95	mA			
Column Current at any Column Input			100 L	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & V C O=3.5 \mathrm{~V} \\ & \text { All SR Stages Logical 1 } \end{aligned}$	$V_{B}=0.4 \mathrm{~V}$			500	$\mu \mathrm{A}$	4
Column Current at any Column Input		16 OL	$V_{B}=2.4 \mathrm{~V}$			380	520	mA		
Ve, Clock or Data Input Threshold High		$\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{VCC}=\mathrm{VCOL}=4.75 \mathrm{~V}$		2.0			V		
VB, Clock or Data input Threshold Low		Vit.					0.8	V		
Input Curfent Logical 1	VB, Clock	H H	$V C C=5.25 \mathrm{~V}, V_{1 /}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$		
	Data in	${ }_{1} \mathrm{H}$				10	40	$\mu \mathrm{A}$		
Input Current Logical 0	VB. Clock	He	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=0.4 \mathrm{~V}$			-500	-800	$\mu \mathrm{A}$		
	Data In	1 IL				-250	-400	${ }_{\mu} \mathrm{A}$		
Data Out Voltage		V OH	$V C C=4.75 \mathrm{~V}, 1 \mathrm{OH}=-0.5 \mathrm{~mA}, 1 \mathrm{lCOL}=0 \mathrm{~mA}$		2.4	3.4		V		
		VOL		$\mathrm{OL}=0 \mathrm{~mA}$		0.2	0.4	V		
Power Dissipation Per Package**		Po	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF} \\ & 15 \mathrm{LEDS} \text { on per character, } \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$			0.78		W	2	
Thermal Resistance IC Junction-to-Case		R $\mathrm{JJJC}_{\text {- }}$				20		${ }^{\circ} \mathrm{OW} /$ Device	2	

*All typical values specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction should not exceed $125^{\circ} \mathrm{C} \mathrm{TJ}_{J}$ and the case temperature (as measured at pin 1 or the back of the display) should not exceed $100^{\circ} \mathrm{C}$ Tc.
2. The device should be derated linearly above $60^{\circ} \mathrm{C}$ at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $25^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}$ $=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} 20$ LEDs on per character, $20 \% \mathrm{DF}$.

Optical Characteristics

STANDARD RED HDSP-2490

Description.	Symbol	Test Conditions	Min.	Typ*	Nax.	Units	F19.
Peak Luminous Intensify per LED ${ }^{4,81}$ (Character Average)	lyPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{1}=25^{\circ} \mathrm{C}^{60}, V_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$	220	370	\therefore	$\mu \mathrm{cd}$	3
Peak Wavelength	APEAK			655	\%	nm	
Dominant Wavelength[7]	Na			539	$*$	nm.	

YELLOW HDSP-2491

Description	Symbol	Test Condilions	Min.	Tye*	Max:	Units	F1\%
Peak Luminous Intensity per LED[${ }^{[4,8]}$ (Character Average)	lyPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{Cm}, V \mathrm{VB}=24 \mathrm{~V} \end{aligned}$	850	1400		$\mu \mathrm{cd}$	3
Peak Wavelength	入PEAK	\cdots	\%	683		nm	
Dominant Wavelength[5,7]	$\lambda \mathrm{dd}$			585	\% \%	mm	

HIGH EFFICIENCY RED HDSP-2492

Description	Symbol	Test Conditions	Min.	Typ"	Max:	Unlts	Flg,
Peak Luminous intensity per LED ${ }^{[4,8]}$ (Character Average)	IuPeak	$\begin{aligned} & V C C=5.0 \mathrm{~V}, V \mathrm{VCA}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{Cl6,}, \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	850	1630		Hed	3
Peak Wavelength	APEAK			635		m	
Dominant Wavelength[?]	λd			626		nim	

HIGH PERFORMANCE GREEN HDSP-2493

Description	Symbol	Test Condillons	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8]}$ (Character Average)	fuPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}(6), \mathrm{VB}_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$	1280	2410		med	3
Peak Wavelength	入РЕAK			568		nm	
Dominant Wavelength[5,7]	λd			574		nm	

*All typical values specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the dackage.
5. The HDSP-2491/-2493 are categorized for color with the color category designated by a number code on the bottom of the package.
6. T_{i} refers to the initial case temperature of the device immediately prior to the light measurement.

Electrical Description

The HDSP-249X series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features Data In and Data Out terminals arrayed for easy PC board interconnection. Data Out represents the output of the 7th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block diagram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5×7 diode array.

The TTL compatible V_{B} input may either be tied to $V_{C c}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
The normal mode of operation input data for digit 4, column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column 1 data for digits 3,2 , and 1 is similarly shifted into the display shift register locations. The column 1 input is now enabled for an appropriate period of time, T. A
**Power dissipation per package with four characters illuminated.
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$\mathrm{L}_{\mathrm{v}}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{\mathrm{v}}($ Candela $) / \mathrm{A}(\text { Metre })^{2}$
$\mathrm{L}_{\mathrm{v}}($ Footlamberts $)=\pi \mathrm{iv}($ Candela $) / \mathrm{A}($ Foot $/ 2$
$\mathrm{A}=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$ (Foot ${ }^{2}$
similar process is repeated for columns 2, 3, 4 and 5 . If the time necessary to decode and load data into the shift register is t, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20%.

For further applications information, refer to HP Application Note 1016.

Figure 1. Switching Characteristics HDSP-2490/-2491/-2492/-2493 ($\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Mechanical and Thermal Considerations

The HDSP-2490/-2491/-2492/-2493 are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. The HDSP-2490/-2491/-2492/-2493 utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation ($\mathrm{V}_{\mathrm{CC}}=$ $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$) with worst case thermal resistance from IC junction to ambient of $45^{\circ} \mathrm{C} /$ watt/device is possible up to ambient temperature of $60^{\circ} \mathrm{C}$. For operation above $60^{\circ} \mathrm{C}$, the maximum device dissipation should be derated linearly at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible.
Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, VcOL, can be decreased to the recommended minimum values of 2.4 V for the HDSP-2490 and 2.75V for the HDSP-2491/-2492/-2493. Also, the average drive current can be decreased through pulse width modulation of V_{B}.

The HDSP-2490/-2491/-2492/-2493 displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested filter materials are provided in Figure 6. Additional informa-

Figure 5. Block Diagram of HDSP-2490/-2491/-2492/-2493
tion on filtering and contrast enhancement can be found in HP Application Note 1015.
Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

Display Color	Ambient Lighting		
	Dim	Moderate	Bright
HDSP-2490 Std. Red	Panelgraphic Dark Fed 63 Ruby Red 60 Chequers Red 118 Plexiglass 2423	Polaroid HNCP37 3M Light Control Film Panelgraphic Gray 10 Chequers Grey 105	
HDSP-2491 (Yellow)	Panelgraphic Yellow 27 Chequers Amber 107		Polaroid HNCP10
HDSP-2492 (HER)	Panelgraphic Fuby Red 60 Chequers Red 112		
HDSP-2493 (HP Green)	Panelgraphic Green 48 Chequers Green 107		

Figure 6. Contrast Enhancement Filters

Figure 2. Maximum Allowable Power Dissipation vs. Temperature

Figure 3. Relative Luminous Intensity vs. Temperature

Figure 4. Peak Column Current vs. Column Voltage

STANDARD RED HDSP-2450/2450TXV/2450TXVB
YELLOW HDSP-2451/2451TXV/2451TXVB
HICH EFFICIENCY RED HDSP-2452/2452TXV/2452TXVB

TECHNICAL DATA JANUARY 1983

Features

- WIDE OPERATING TEMPERATURE RANGE $-55^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- TRUE HERMETIC PACKAGE
- CAPABLE OF LEVEL A MIL-D-87157
- THREE COLORS Standard Red High Efficiency Red Yellow
- CATEGORIZED FOR LUMINOUS INTENSITY
- YELLOW DISPLAYS CATEGORIZED FOR COLOR
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- 5x7 LED MATRIX DISPLAYS FULL ASCII CHARACTER SET
- WIDE VIEWING ANGLE
- END STACKABLE
- TTL COMPATIBLE

Description

The HDSP-2450 series displays are 6.9 mm (0.27 in .) 5×7 LED arrays for display of alphanumeric information. These devices are available in standard red, yellow, and high efficiency red. Each four character cluster is contained in a

Typical Applications

- MILITARY EQUIPMENT
- AVIONICS
- HIGH RELIABILITY INDUSTRIAL EQUIPMENT
hermetic 28 pin dual-in-line, solder glass sealed ceramic package. An on-board SIPO (Serial-In-Parallel-Out) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing.

Package Dimensions

Absolute Maximum Ratings (HDSP-2450/-2451/-2452)

Supply Vol	5 V to
Inputs, Data Out and V_{B}	to Vcc
Column Input Voltage, Vcol	0.5 V to +6.0 V
Free Air Operating	
Temperature Range, $\mathrm{T}^{(1,2]}$.	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, Ts Maximum Allowable Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}{ }^{11,2,3 \mid}$ \qquad $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
1.46 Watts

Maximum Solder Temperature 1.59 mm (0.063 ")
Below Seating Plane t < 5 secs
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions (HDSP-2450/-2451/-2452)

Parameter	Symbol	Min.	Nom.	Max.	Units	Fig.
Supply Voltage	Vcc	4.75	5.0	5.25	V	
Data Out Current. Low State	10 L			1.6	mA	
Data Out Current, High State	1 OH			-0.5	mA	
Column input Voltage, Column On HDSP-2450	VCOL	2.4		3.5	V	4
Column input Vottage, Column On HDSP-2451/2452	VCOL	275		3.5	V	4
Setup Time	tsetup	70	45		ns	1
Hold Time	thoid	30	0		ns	1
Width of Clock	twictock	75			ns	1
Clock Frequency	fclock	0		3	MHz	1
Clock Transition Time	TTHL			200	ns	1
Free Air Operating Temperature Range ${ }^{11,2}$	TA	-55		85	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics Over Operating Temperature Range
 (Unless otherwise specified)

Description		Symbol	Test Conditions		Min.	Typ.*	Max.	Units	Fig.	
Supply Current		100	$\begin{aligned} & \text { VCC }=5.25 \mathrm{~V} \\ & \text { VCLOCK }=\text { VATA }=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical 1 } \end{aligned}$	$\mathrm{VB}_{\mathrm{B}}=0.4 \mathrm{~V}$		45	60	$m A$		
		$V_{B}=2.4 \mathrm{~V}$			73	95	mA			
Column Current at any Column Input			1 col	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{VCO}=3.5 \mathrm{~V} \\ & \text { All SR Stages = Logical 1 } \\ & \hline \end{aligned}$	$\mathrm{VB}=0.4 \mathrm{~V}$			500	${ }_{\mu}{ }^{\text {A }}$	4
Column Current at any Column Input		l COL	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$			380	520	mA		
VB. Clock or Data input Threshold Migh		V_{H}	$V c c=4.75 \mathrm{~V}$		2.0			V		
$V_{\text {B, }}$ Clock or Data Input Threshold Low		VIL					0.8	V		
Clock Input Threshold Low		Vil					0.6	V		
Input Current Logical 1	VB, Clock	IH	$V_{C c}=5.25 V_{*} V_{1 H}=2.4 \mathrm{~V}$			20	80	HA		
	Data In	lif				10	40	$\mu \mathrm{A}$		
Input Current Logicalo	$V_{\text {B, }}$ Clock	Ili.	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-500	-800	$\mathrm{A}^{\text {A }}$		
	Data In	1 L				-250	-400	$\mu \mathrm{A}$		
Data Out Voltage		VOH	$V C C=4.75 \mathrm{~V}, 10 \mathrm{H}=-0.5 \mathrm{~mA}, 1 \mathrm{COL}=0 \mathrm{~mA}$		2.4	3.4		V		
		VoL	$V C C=4,75 \mathrm{~V}, \mathrm{loH}=1.6 \mathrm{~mA},$	COL $=0 \mathrm{~mA}$		0.2	0.4	V		
Power Dissipation Per Package**		Po	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}, 17.5 \% \mathrm{DF}$ 15 LEDs on per character, $V_{B}=2.4 \mathrm{~V}$			0.78		W	2	
Thermal Resistance ic Junction-to-Case		$\mathrm{R} 0 \mathrm{~J}=\mathrm{C}$				20		${ }^{\circ} \mathrm{CD} / 7$ Device	2	
Leak Rate							5×10^{-8}	cc/sec		

*All typical values specified at $\mathrm{VCC}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

Notes:

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the IC junction temperature, T_{J}, does not exceed $125^{\circ} \mathrm{C}$.
2. The device should be derated linearly above $60^{\circ} \mathrm{C}$ at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $25^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistance.
3. Maximum allowable dissipation is derived from $\mathrm{V}_{C C}=5.25 \mathrm{~V}$, V_{B} $=2.4 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} 20$ LEDs on per character, $20 \% \mathrm{DF}$.

Optical Characteristics

STANDARD RED HDSP-2450

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED[4,8] (Character Average)	IvPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}[6], V_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$	220	370		$\mu \mathrm{cd}$	3
Peak Wavelength	APEAK			655		nm	
Dominant Wavelength[7]	$\lambda_{\text {d }}$			539		nm	

YELLOW HDSP-2451

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{[4,8]}$ (Character Average)	TrPeak	$\begin{aligned} & V C G=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C}[6], V \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$	850	1400		$\mu \mathrm{cd}$	3
Peak Wavelength	入PEAK			583		nm	
Dominant Wavelength [5,7]	λ_{d}			585		nm	

HIGH EFFICIENCY RED HDSP-2452

Description	Symbol	Test Conditions	Min.	Typ.*	Max.	Units	Fig.
Peak Luminous Intensity per LED ${ }^{4,8]}$ (Character Average)	lyPeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & \mathrm{~T}_{i}=25^{\circ} \mathrm{C}[6], \mathrm{VB}_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$	850	1530		$\mu \mathrm{cd}$	3
Peak Wavelength	АРЕAK			635		nm	
Dominant Wavelength[7]	λ_{d}			626		nm	

*All typical values specified at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with four characters illuminated.

Notes:

4. The characters are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
5. The HDSP-2451 is categorized for color with the color category designated by a number code on the bottom of the package.
6. T_{i} refers to the initial case temperature of the device immediately prior to the light measurement.

Electrical Description

The HDSP-2450 series of four character alphanumeric displays have been designed to allow the user maximum flexibility in interface electronics design. Each four character display module features Data In and Data Out terminals arrayed for easy PC board interconnection. Data Out represents the output of the 7 th bit of digit number 4 shift register. Shift register clocking occurs on the high to low transition of the Clock input. The like columns of each character in a display cluster are tied to a single pin. Figure 5 is the block disgram for the displays. High true data in the shift register enables the output current mirror driver stage associated with each row of LEDs in the 5×7 diode array.
The TTL compatible V_{B} input may either be tied to $V_{C C}$ for maximum display intensity or pulse width modulated to achieve intensity control and reduction in power consumption.
The normal mode of operation input data for digit 4, column 1 is loaded into the 7 on-board shift register locations 1 through 7 . Column 1 data for digits 3,2 , and 1 is similarly shifted into the display shift register locations. The column 1 input is now enabled for an appropriate period of time, T. A similar process is repeated for columns $2,3,4$ and 5 . If the
7. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
8. The luminous sterance of the LED may be calculated using the following relationships:
$L_{v}\left(c d / m^{2}\right)=I_{v}($ Candela $) / A(\text { Metre })^{2}$
$L_{v} \cdot$ Footlamberts $:=\pi i_{v}$, Candela $/ / A_{1}$ Foot 2
$A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}$, Foot ${ }^{2}$
time necessary to decode and load data into the shift register is t, then with 5 columns, each column of the display is operating at a duty factor of:

$$
\text { D.F. }=\frac{T}{5(t+T)}
$$

The time frame, $t+T$, alloted to each column of the display is generally chosen to provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display. For most strobed display systems, each column of the display should be refreshed (turned on) at a minimum rate of 100 times per second.
With columns to be addressed, this refresh rate then gives a value for the time $t+T$ of:

$$
1 /[5 \times(100)]=2 \mathrm{msec}
$$

If the device is operated at 3.0 MHz clock rate maximum, it is possible to maintain $t \ll T$. For short display strings, the duty factor will then approach 20%.

For further applications information, refer to HP Application Bulletin 56 and Application Note 1016.

Figure 1. Switching Characteristics HDSP-2450/-2451/-2452 ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Mechanical and Thermal Considerations

The HDSP-2450 series displays are available in standard ceramic dual-in-line packages. They are designed for plugging into sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size. HDSP-2450 series displays utilize a high output current IC to provide excellent readability in bright ambient lighting. Full power operation ($\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=$ $2.4 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V}$) with worst case thermal resistance from IC junction to ambient of $45^{\circ} \mathrm{C} /$ watt/device is possible up to ambient temperature of $60^{\circ} \mathrm{C}$. For operation above $60^{\circ} \mathrm{C}$, the maximum device dissipation should be derated linearly at $22.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (see Figure 2). With an improved thermal design, operation at higher ambient temperatures without derating is possible.

Power derating for this family of displays can be achieved in several ways. The power supply voltage can be lowered to a minimum of 4.75 V . Column Input Voltage, VCOL, can be decreased to the recommended minimum values of 2.4 V for the HDSP-2450 and 2.75 V for the HDSP-2451/-2452. Also, the average drive current can be decreased through pulse width modulation of V_{B}.

The HDSP-2450 series displays have glass windows. A front panel contrast enhancement filter is desirable in most actual display applications. Some suggested filter materials are

Figure 5. Block Diagram of HDSP-2450/-2451/-2452
provided in Figure 6. Additional information on filtering and contrast enhancement can be found in HP Application Note 1015.

Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, and water.

Display Color	Ambient Lighting		
	Dim	Moderale	Bright
HDSP-2450 Std. Red	Panelgraphic Dark Red 63 Ruby Red 60 Chequers Red 118 Plexiglass 2423	Polaroid HNCP37 3MLight Control Fitm Panelgraphic Gray to	
HDSP-2451 (Yellow)	Panelgraphic Yellow 27 Chequers Amber 107	Chequers Grey 105	Polaroid HNCP10
$\begin{aligned} & \begin{array}{l} \text { HDSP-2452 } \\ \text { (HER) } \end{array} \\ & \hline \end{aligned}$	Panelgraphic Ruby Red 60 Chequers Red 112		,

Figure 6. Contrast Enhancement Filters

Figure 2. Maximum Allowable Power Dissipation vs. Temperature

Figure 3. Relative Luminous Intensity vs. Temperature

Figure 4. Peak Column Current vs. Column Voltage

High Reliability Testing

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed LED displays with 100% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. The TXV program is an HP modification to the full conformance program and offers the 100% screening of Quality Level A, Table I, and Group A, Table II.

Standard Produet	With Table I and II	With Tables $1, \mathrm{H}, \mathrm{Ha}, \mathrm{IVa}$
HDSP-2450	HDSP-2450TXV	HDSP-2450TXVB
HDSP-2451	HDSP-2451TXV	HDSP-2451TXVE
HDSP-2452	HDSP-2452TXV	HDSP-2452TXVB

100\% Screening

Table I. Quality Level A of MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	-	HP Procedure 5956-7512-52
2. High Temperature Storage	1032	$\mathrm{T}_{\text {A }}=125^{\circ} \mathrm{C}$, Time $=24$ hours
3. Temperature Cycling	1051	Condition B, 10 cycles, 15 min . dwell
4. Constant Acceleration	2006	$10,000 \mathrm{G}$'s at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C
7. Interim Electrical/Optical Tests[2]	-	Icc (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V) 1 coL (at $\mathrm{VB}=$ 0.4 V and 2.4 V) IH (VB, Clock and Data In), ILL (VB, Clock and Data In), $10 \mathrm{H}, 1 \mathrm{IL}$, Visual Function and ly Peak. VIH and VIL inputs are guaranteed by the electronic shift register test. $T_{A}=25^{\circ} \mathrm{C}$
8. Burn-in\|1]	1015	Condition B at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CO}}=$ $3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$, LED ON-Time Duty Factor $=5 \%$, $t=168$ hours
9. Final Electrical Test ${ }^{(2)}$	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta I C C= \pm 6 \mathrm{~mA}, \Delta \mathrm{llH}(\text { clock })= \pm 10 \mu \mathrm{~A} \\ & \Delta I \mathrm{lH}(\text { Data } \mathrm{n})= \pm 10 \mu \mathrm{~A} \\ & \Delta l \mathrm{OH}= \pm 10 \% \text { of initial value, and } \\ & \Delta l \mathrm{~V}=-20 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
11. External Visual	2009	

Notes:

1. MIL-STD-883 Test Method Applies
2. Limits and conditions are per the electrical optical characteristics. The loH and loL tests are the inverse of VOH and VOL specified in the electrical characteristics.

Table II. Group A Electrical Tests - MIL-D-87157

Subgroup/Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $\left.25^{\circ} \mathrm{Cl} 1\right]$	$1 \mathrm{lce}\left(\right.$ at $V_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V), Icol (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V) $\mathrm{Ifin}(\mathrm{VE}$, Clock and Data In), ILL (VB, Clock and Data In), $10 \mathrm{H}, \mathrm{lOL}$ Visual Function and Iv peak. ViH and VIL. inputs are guaranteed by the electronic shift register test.	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{11}$	Same as Subgroup 1, except delete ly and visual function, $T_{A}=+85^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{11}$	Same as Subgroup 1, except delete Iv and visual function, $T_{A}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not tested		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual		7

Note:

1. Limits and conditions are per the electrical/optical characteristics. The $I_{O H}$ and IOL tests are the inverse of $\mathrm{VOH}_{\mathrm{OH}}$ and $\mathrm{VOL}_{\mathrm{OL}}$ specified in the electrical characteristics.

Table IIIa. Group B, Class A and B of MIL-D-87157

Subgroup/Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices / 0 Failures
Internal Visual and Mechanical ${ }^{\text {] }}$	2014		1 Devicef 0 Failures
Subgroup $2^{[1,2]}$ Solderability	2026	$\mathrm{TA}_{\mathrm{A}}=260^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition $\mathrm{B}_{1} 10$ cycles, 15 min , dwell	$L T P D=15$
Moisture Resistance	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Electrical/Optical Endpoints ${ }^{(4)}$	-	$\mathrm{ICC}\left(\mathrm{at} \mathrm{VB}_{\mathrm{B}}=0.4 \mathrm{~V}\right.$ and 2.4 V$)$, 1 COL (at $\mathrm{VB}=0.4 \mathrm{~V}$ and 2.4 V), $\mathrm{IIH}_{\mathrm{H}}(\mathrm{VB}$. Clock and Data In), ILL (VB: Clock and Data In), loh, lot Visual Function and IV_{V} peak. V_{H} and V_{1}. inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Sulbgroup 4 Operating Life Test (340 hrs .)	1027	$T_{A}=+85^{\circ} \mathrm{C}$ at $V_{C C}=V_{B}=5.25 \mathrm{~V}$, VCOL $=3.5 \mathrm{~V}$, LED ON-Time Duty Factor $=5 \%$	$L T P D=10$
Electrical/Optical Endpoints[4]	-	Same as Subgroup 3	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs)	1032	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	LTPD $=10$
Electrical/Optical Endpoints ${ }^{41}$	-	Same as Subgroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. MIL-STD-883 test methods apply.
4. Limits and conditions are per the electrical/optical characteristics. The IOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.

Table IVa. Group C, Class A and B of MIL-D-87157

Subgroup/Test	MLLSTD-750 Method	Condilions	Sample Size
Subgroup 1 Physical Dimensions	2066	. . .	2 Devices/ 0 Failures
Subgroup $2{ }^{2} 2, n$ Lead Integrity	2004	Condition B2	$\angle T P D=15$
Fine Leak.	1071	Condition H	
Gross Leak	1071	Condition C	
Subgroup 3 Shock	$\therefore 2016$	1500 G . Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Y_{2}	LTPD $=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	10,000G at Y_{1} orientation	
External Visuall 4	1010 or 1011	-	
Electrical/Optical Endpoints ${ }^{(8)}$	$-$	$\mathrm{lce}\left(\mathrm{at} \mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\right.$ and 2.4 V$)$ lcol (at $V_{B}=0.4 \mathrm{~V}$ and 2.4 V) lm (VB, Clock and Data In) ItL (VB, Clock and Data In) $1 \mathrm{OH}, \mathrm{IOL}$ Visual Function and IV peak. V_{IH} and V_{IL} inputs are guaranteed by the electronic shift register test. $T_{A}=25^{\circ} \mathrm{C}$.	
Subgroup 4[1,3] Salt Atmosphere	1041		LTPD $=15$
External Visuall4	1010 or 1011		
Subgroup 5 Bond Strengthisl	2037	Condition A	$\begin{gathered} \angle T P D=20 \\ (C=0) \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{6 \mid}$	1026	$\begin{aligned} & T_{A}=+85^{\circ} \mathrm{C} \text { at } V_{C C}=V_{B}=5.25 \mathrm{~V}, \\ & \mathrm{VCOL}=3.5 \mathrm{~V} \end{aligned}$	$\lambda=10$
Electrical/Optical Endpoints ${ }^{\text {[8] }}$	-	Same as Subgroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The loH and loL tests are the inverse of VOH and VOL specified in the electrical characteristics.

Features

- OPERATION GUARANTEED TO $T_{A}=-40^{\circ} \mathrm{C}$
- LEAK RATE GUARANTEED
- QUALITY LEVEL A OF MIL-D-87157
- 100\% TEMPERATURE CYCLED $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- GOLD PLATED LEADS
- INTEGRATED SHIFT REGISTERS WITH CONSTANT CURRENT DRIVERS
- CERAMIC 7.62 mm (. 3 in .) DIP Integral Red Glass Contrast Filter
- WIDE VIEWING ANGLE
- END STACKABLE 4 CHARACTER PACKAGE
- PIN ECONOMY

12 Pins for 4 Characters

- TTL COMPATIBLE
- 5×7 LED MATRIX DISPLAYS FULL ASCII CODE
- RUGGED, LONG OPERATING LIFE
- CATEGORIZED FOR LUMINOUS INTENSITY Assures Ease of Package to Package Brightness Matching

Package Dimensions

Description

The HDSP-2010 display is designed for use in applications requiring high reliability. The character font is a 3.8 mm (0.15 inch) 5×7 red LED array for displaying alphanumeric information. The device is available in 4 character clusters and is packaged in a 12-pin dual-in-line type package. An on-board SIPO (serial-in-parallel-out) 7-bit shift register associated with each digit controls constant current LED row drivers. Full character display is achieved by external column strobing. The constant current LED drivers are externally programmable and typically capable of sinking 13.5 mA peak per diode. Applications include interactive I/O terminals, avionics, portable telecommunications gear, and hand held equipment requiring alphanumeric displays.

3. DIMENSIONS IN mm firches).
2. UNLESS OTHERWISE SPECIFIED THE TOLERANCE ON ALL OHMENSIONS

3. LEAD MATERIAI IS GOLI PLATED COPPEN ALLOY.
4. CHARACTERS ARE CENTERED WITH AESPECT TO LEADS WITHIN $1+13 \mathrm{mme}\left(8.005^{\prime}\right)$)

Absolute Maximum Ratings

Supply Voltage $\mathrm{V}_{\text {cc }}$ to Ground	-0.5 V to 6.0 V	Storage Temperature Range, $\mathrm{T}_{\text {S }} \ldots \ldots-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Inputs, Data Out and V_{B}	-0.5 V to V_{cc}	Maximum Allowable Package Dissipation
Column Input Voltage, $\mathrm{V}_{\text {col }}$	-0.5 V to +6.0 V	
Free Air Operating Temperature		Maximum Solder Temperature 1.59mm (.063")
Range, $T_{A}{ }^{(2)}$.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Below Seating Plane t<5 secs $260^{\circ} \mathrm{C}$

Recommended Operating Conditions

Parameter	Symbol	Min.	Nom.	Max.	Units
Supply Voltage	$V_{c c}$	4.75	5.0	5.25	V
Data Out Current, Low State	lat			1.6	mA
Data Out Current, HighState	lor			-0.5	mA
Column Input Voitage, Column On	$V_{\text {col }}$	2.6		3.5	V
Setup Time	$t_{\text {seaup }}$	70	45		ns
Hold Time	theld	30	0		ns
Width of Clock	tutcteck	75			ns
Clock Frequency	$f_{\text {clack }}$	0		3	MHz
Clock Transition Time	$\mathrm{t}_{1 \times 2}$			200	ns
Free Air Operating Temperature Range	T_{A}	-40		85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Operating Temperature Range
(Unless otherwise specified.)

Descriplion	Symbol	Test Conditions		Min.	Typ.*	Max.	Units
Supply Current	lcc	```VCC=5.25V VCLOCK = VDATA =2,4V All SR Stages = Logical }```	$V_{B}=0.4 \mathrm{~V}$		45	60	mA
			$V_{s}=2.4 V$		73	95	mA
Column Current at any Column Input	1 COL	$V_{C C}=5.25 \mathrm{~V}$ $\mathrm{VCOL}=3.5 \mathrm{~V}$ All SR Stages = Logical 1	$V_{B}=0.4 \mathrm{~V}$			1.5	mA
Column Current at any Column Input	ICOL		$V_{B}=2.4 \mathrm{~V}$		350	435	mA
Peak Luminous Intensity per LED ${ }^{[3,7]}$ (Character Average)	lupeak	$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VCOL}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C}^{44} \mathrm{VB}=2.4 \mathrm{~V} \end{aligned}$		105	200		$\mu \mathrm{Cd}$
V_{B}, Clock or Data input Threshold High	VIH	$V \mathrm{CC}=\mathrm{VCOL}=4.75 \mathrm{~V}$		2.0			V
VB. Data Input Threshold Low	VIL					0.8	V
Clock Threshold Low	V_{1}					0.6	\checkmark
Input Current Logical 1 $\mathrm{V}_{\mathrm{B}, \text { Clock }}$	IR10	$\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {H }}=2.4 \mathrm{~V}$			20	80	$\mu \mathrm{A}$
Input Current Logical 0	11 H				10	40	$\mu \mathrm{A}$
	HiL	$V_{C C}=5.25 V^{\prime} V_{\text {IL }}=0.4 V$			-500	-800	$\mu \mathrm{A}$
	ILIL				-250	-400	$\mu \mathrm{A}$
Data Out Voltage	VOH	$\mathrm{VCC}=4.75 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}$,	$\mathrm{COL}=0 \mathrm{~V}$	2.4	3.4		V
	Vom	$\mathrm{VCC}=4.75 \mathrm{~V}, 1 \mathrm{loL}=1.6 \mathrm{~mA}$,	$\mathrm{COL}=0 \mathrm{~V}$		0.2	0.4	V
Power Dissipation Per Package**	PD	$V C C=5.0 V_{1} V C O L=2.6 \mathrm{~V}$ $15 \text { LEDS on per characte }$	$V_{B}=2,4 \mathrm{~V}$		0.66		W
Peak Wavelength	APEAK				655		nm
Dominant Wavelengthisi	Ad				640		nm
Thermal Resistance IC Junction-to-Case	Rôj-c				25		${ }^{\circ} \mathrm{CH} / \mathrm{N} /$ Device
Leak Rate						5×10^{-7}	cc / s

*All typical values specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
**Power dissipation per package with 4 characters illuminated.

1. Operation above $85^{\circ} \mathrm{C}$ ambient is possible provided the following conditions are met. The junction temperature should not exceed $125^{\circ} \mathrm{C}$ T_{J} and the case temperature as measured at pin 1 or the back of the display should not exceed $100^{\circ} \mathrm{C} \mathrm{TC}$.
2. The device should be derated linearly above $50^{\circ} \mathrm{C}$ at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance from case to ambient at $35^{\circ} \mathrm{C} / \mathrm{W}$ per device. See Figure 2 for power deratings based on a lower thermal resistances.
3. The characters are categorized for Luminous Intensity with the category designated by a letter code on the bottom of the package.
4. T_{i} refers to the initial case temperature of the device immediately prior to the light measurement.
5. Dominant wavelength λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.
6. Maximum allowable dissipation is derived from $V_{C C}=V_{B}=5.25$ Volts, $V_{C O L}=3.5 \mathrm{~V}, 20$ LEDs on per character, $20 \% \mathrm{DF}$.
7. The luminous stearance of the LED may be calculated using the following relationships:
$L_{v}($ Lux $)=I_{v}($ Candela $) / A(\text { Metre })^{2}$
$\mathrm{L}_{\mathrm{v}}($ Footlamberts $)=\pi \mathrm{I}_{\mathrm{v}}($ Candela $) / \mathrm{A}(\text { Foot })^{2}$
$A=5.3 \times 10^{-8} \mathrm{M}^{2}=5.8 \times 10^{-7}(\text { Foot })^{2}$

$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Parameter } & \text { Condition } & \text { Min. Typ. } & \text { Max. } & \text { Units } \\ \hline \begin{array}{l}\text { felock } \\ \text { CLOCK Rate }\end{array} & & & & 3 & \text { MHz } \\ \hline \begin{array}{l}\text { tpa. }\end{array} \\ \begin{array}{l}\text { Propagation } \\ \text { delay CLOCK } \\ \text { to DATA OUT }\end{array} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} & & & & \\ \mathrm{R}_{\mathrm{L}}=2.4 \mathrm{KN}\end{array}\right)$

Figure 1. Switching Characteristics. ($\mathrm{V}_{\mathrm{cc}}=\mathbf{5 V}$, $T A=-43^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Mechanical and Thermal Considerations

The HDSP-2010 is available in a standard 12 lead ceramicglass dual in-line package. It is designed for plugging into DIP sockets or soldering into PC boards. The packages may be horizontally or vertically stacked for character arrays of any desired size.
The HDSP-2010 can be operated over a wide range of temperature and supply voltages. Power reduction can be achieved by either decreasing $\mathrm{V}_{\mathrm{COL}}$ or decreasing the average drive current through pulse width modulation of V_{B}.

The HDSP-2010 display has a glass lens. A front panel contrast filter is desirable in most actual display applications. Some suggested filters are Panel graphic Ruby Red 60, SGL Homalite H100-1605 Red and

3M Light Control Film (louvered filters). OCLI Sungard optically coated glass filters offer superior contrast enhancement.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

Electrical Description

The HDSP-2010 display provides on-board storage of decoded column data and constant current sinking row drivers for each of 28 rows in the 4 character display. The device consists of four LED matrices and two integrated circuits that form a 28-bit serial input-parallel output (SIPO) shift register, see Figure 5 . Each character is a 5×7 diode array arranged with the cathodes of each row connected to one constant current sinking output of the SIPO shift register. The anodes of each column are connected together, with the same column of each of the 4 characters connected together (i.e. column 1 of all four characters are connected to pin 1). Any LED within any character may be addressed by shifting data to the appropriate shift register location and applying a voltage to the appropriate column.
Associated with each shift register location is a constant current sinking LED driver, capable of sinking a nominal 13.5 mA . A logical 1 loaded into a shift register location enables the current source at that location. A voltage applied to the appropriate column input turns on the desired LED.
The display is column strobed on a 1 of 5 basis by loading 7 bits of row data per character for a selected column. The data is shifted through the SIPO shift register, one bit location for each high-to-low transition of the clock. When the HDSP-2010 display is operated with pin 1 in the lower left hand corner, the first bit that is loaded into the SIPO shift register will be the information for row 7 of the right most character. The 28th bit loaded into the SIPO shift register will be the information for row 1 of the left most character. When the 28 bits of row data for column 1 have been loaded into the SIPO shift register, the first column is energized for a time period, T, illuminating column 1 in all four characters. Column 1 is turned off and the process is repeated for columns 2 through 5.

Figure 2. Maximum Allowable Power Dissipation vs. Temperature.

Figure 3. Relative Luminous Intensity vs. Temperature.

Figure 4. Peak Column Current vs. Column Voltage.

Figure 5. Block Diagram of the HDSP-2010 Display
The time frame allotted per column is ($t+T$) and the minimum recommended refresh rate for a flicker free display is 100 Hz , so that $(t+T) \leq 2 \mathrm{~ms}$. If the display is operated at the 3 MHz maximum clock rate, it is possible to maintain $\mathrm{t} \ll \mathrm{T}$. For display strings of 24 characters or less, the LED on time DF will be approximately 19.4%. For
longer display strings, operation of the display with DF approximately 10% will provide adequate light output for indoor applications.
The 28th stage of the SIPO shift register is connected to the Data Output, which is designed to interface directly to the Data Input of the next HDSP-2010 in the display string.

The V_{B} input may be used to control the apparent brightness of the display. A logic high applied to the V_{B} input enables the display to be turned $O N$, and a logic low blanks the display by disabling the constant current LED drivers. Therefore, the time average luminous intensity of the display can be varied by pulse width modulation of V_{B}. For application and drive circuit information refer to HP Application Note 1016.

High Reliability Testing

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed displays with 100% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. A second program is an HP modification to the full conformance program and offers the 100% screening portion of Level A, Table I, and Group A, Table II.

PART MARKING SYSTEM

Standard Product	Wth Table I and II	With Tables 1, n, Illa, and IVa
HDSP-2010	HDSP-2010 TXV	HDSP-2010 TXVB

100\% Screening
TABLE I. QUALITY LEVEL A OF MIL-D-87157

Test Screen	MLL-STD-750 Method	Condilions
1. Precap Visual	-	HP Procedure 5956-7512-52
2. High Temperature Storage	1032	$\mathrm{TA}=100^{\circ} \mathrm{C}_{4}$ Time $=24$ hours
3. Temperature Cycling	1051	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}, 10$ cycles, 15 min.dwell
4. Constant Acceleration	2006	10,000 G's at Y_{1} orientation
5. Fine Leak	1071	Condition H , Leak Rate $\leq 5 \times 10^{-7} \mathrm{cc} / \mathrm{s}$
6. Gross Leak	1071	Condition $\mathrm{C}_{\text {, except }}$ fluid temperature shall be $+100^{\circ} \mathrm{C}$
7. Interim Electrical/Optical Tests[2] ..	- \vdots	$100(\mathrm{at} \mathrm{VB}=0.4 \mathrm{~V}$ and 2.4 V$)$, lcOL . at $\mathrm{VB}=$ 0.4 V and 2.4 V) If (V_{B}, Clock and Data in), In. (VB, Clock and Data $\operatorname{In})_{t} \mathrm{IOH}, \mathrm{IOL}$, Visual Function and IV Peak. V_{H} and Vi. inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
8. Burn-Inl1	1015	Condition B at $\mathrm{VCC}=\mathrm{VB}=5.25 \mathrm{~V}, \mathrm{VcOL}=$ $3.5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ LED ON-Time Duty Factor $=5 \%$, $t=168$ hours
9. Final Electrical Test ${ }^{21}$	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta l c c= \pm 6 \mathrm{~mA}, \Delta l_{\mathrm{lH}} \text { (clock }= \pm 10 \mu \mathrm{~A} \\ & \Delta \mathrm{lH}(\text { Data } \mathrm{ln})= \pm 10 \mu \mathrm{~A} \\ & \Delta \mathrm{OH}= \pm 10 \% \text { of initial value and } \Delta \mathrm{ly}=-20 \% \end{aligned}$
11. External Visual	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics. The lOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.

TABLE II
GROUP A ELECTRICAL TESTS MIL-D-87157

Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C} 11$,	$\mathrm{Icc}\left(\mathrm{at} \mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\right.$ and 2.4 V), IcOL (at $\mathrm{VB}=0.4 \mathrm{~V}$ and 2.4 V) $\mathrm{Ifm}_{\mathrm{H}}$ (VB, Clock and Data In), In (VB, Clock and Data Int, 10 H , loL Visual Function and fv peak. V_{IH} and V_{IL} inputs are guaranteed by the electronic shift register test.	5
Subgroup 2 DC Electrical Tests at High Temperature [1]	Same as Subgroup 1, except delete Iv and visual function. $T_{A}=+85^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{11}$]	Same as Subgroup 1, except delete IV and visual function. $T_{A}=-40^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not tested		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual		7

1. Limits and conditions are per the electrical/optical characteristics. The IOH and loL tests are the inverse of Vor and Vol specified in the electrical characteristics.

TABLE IIIa
GROUP B, CLASS A AND B OF MIL-D-87157

Test	ML-STD-750 Method	Conditions - -	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices 0 Failures
Internal Visual and Mechanical\|31	2014		1 Device/ 0 Failures
Subgroup 2[1,2] Solderability	2026	$T_{A}=260^{\circ} \mathrm{C}$ for 5 seconds	$L T P D=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	$T_{A}=-55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C}, 10 \text { cycles, }$ 15 min. dwell.	$L T P D=15$
Moisture Resistance	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C , except fluid temperature shall be $+100^{\circ} \mathrm{C}$	
Electrical/Optical Endpoints ${ }^{[4]}$	-	$\operatorname{lcc}(\mathrm{at} \mathrm{VB}=0.4 \mathrm{~V}$ and 2.4 V$)$. ICOL (at $\mathrm{VB}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V), I_{H} (VB, Clock and Data In), HLL (VB, Clock and Data fn), IOH, IOL. Visual Function and Iv peak. $V_{1 H}$ and $V_{1 L}$ inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs.)	1027	$T_{A}=+85^{\circ} \mathrm{C}$ at $V_{C C}=V_{B}=5.25 \mathrm{~V}$, VCOL $=3.5 \mathrm{~V}$, LED ON-Time Duty Factor $=5 \%$	LTPD $=10$
Electrical/Optical Endpoints[4]	-	Same as Subgroup 3	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs .)	1032	$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	LTPD $=10$
Electrical/Optical Endpointsi4]	-	Same as Subgroup 3	

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. MIL-STD-883 methods apply.
4. Limits and conditions are per the electrical/optical characteristics. The lor and IOL tests are the inverse of VOH and Vol specified in the electrical characteristics.

TABLE IVa

GROUP C, CLASS A AND B OF MIL-D-87157

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The IOH and IOL tests are the inverse of VOH and VOL specified in the electrical characteristics.

HEWLETT PACKARD

Features

- 5×7 LED MATRIX CHARACTER
- LARGE 6.9 mm (. 27 INCH) CHARACTER HEIGHT
- EXTREMELY WIDE TEMP. RANGE
- COMPACT 15.2 mm (. 600 INCH) GLASS/CERAMIC DIP
- WIDE VIEWING ANGLE
- RUGGED, SHOCK RESISTANT

Description

The Hewlett-Packard 5082-7100 Series is an X-Y addressable, 5×7 LED Matrix capable of displaying the full alphanumeric character set. This alphanumeric indicator series is available in 3, 4, or 5 character endstackable clusters. The clusters permit compact presentation of information, ease of character alignment, minimum number of interconnections, and compatibility with multiplexing driving schemes.
Alphanumeric applications include computer terminals, calculators, military equipment and space flight readouts.

The 5082-7100 is a three character cluster.
The 5082-7101 is a four character cluster.
The 5082-7102 is a five character cluster.

Absolute Maximum Ratings

- Parameter	Symbol	Min.	Max.	Units
Peak Forward Current Per LED (Duration < 1 ms)	IPEAK		100	mA.
Average Current Per LED	I AVG		10	mA
Power Dissípation Per Character (All diodes lit) ${ }^{\text {(1) }}$	P_{D}		700	mW
Operating Temperature, Case	T_{C}	-55	95	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{S}	-55	100	${ }^{\circ} \mathrm{C}$
Reverse Voltage Per LED	V_{R}		4	V

Note 1: At $25^{\circ} \mathrm{C}$ Case Temperature; derate $8.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical / Optical Characteristics at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

Parameter	Symbor	Min.	Typ.	Max	Units
Peak Luminous Intensity Per LED (Character Average)@ Pulse Current of $100 \mathrm{~mA} / \mathrm{LED}$	1 (PEAK)	10	2.2		mod
Reverse Current Per LED @ $V_{R}=4 \mathbf{V}$		2	10	,	$\mu \mathrm{A}$
Peak Forward Voltage @ Pulse Current of $50 \mathrm{~mA} / \mathrm{LED}$	V_{F}		- 1.7	2.0	V
Poak Wavelength	- APEAK	2	655		nm
Spectral Line Halfwidth	- $\Delta \lambda_{1 / 2}$	\%	30	5	nm
Fise and Fall Times ${ }^{\text {[1] }}$	Trit $^{\text {t }}$		-10	\%	ns, \%6

Note 1. Time for a $10 \%-90 \%$ change of light intensity for step change in current.

Figure 1. Forward Current-Voltage Characteristic.

Figure 3. Typical Time Average Luminous Intensity per LED vs. Average Current per LED.

Figure 2. Relative Luminous Intensity vs. Case Temperature at Fixed Current Level.

Figure 4. Typical Relative Luminous Efficiency vs. Peak Current per LED.

Package Dimensions and Pin Configurations

Device Pin Description

5082.7100				5082-7101				5082.7102			
Pin	Function										
1	Anode G	12	Anode B	,	N/C	15	Anode C	1	N/C	19	5 e
2	1 c	13	3d	2	1 c	16	4 c	2	1 c	20	5 c
3	1d	14	3b	3	1 e	17	4a	3	1 1e	21	5 S
4	Anode F	15	Anode A	4	Anode G	18	Anode B	4	Anode F	22	Anode D
5	Anode E	16	2 e	5	2b	19	3 e	5	2b	23	
6	2b	17	2c	6	2d	20	3b	6	2 d	24	4 c
7	2 d	18	2 a	7	Anode D	21	3 a	7	2 e	25	N/C
8	Anode C	19	Anode D	8	Anode E	22	2 e	8	Anode E	26	Anode C
9	3 a	20	$1{ }^{\text {1 }}$	9	3 c	23	2 c	9	3 c	27	3 d
10	3 c	21	1b	10	3d	24	2 a	10	3 e	28	3 b
11	3 e	22	1a	11	Anode F.	25	Anode A	11	Anode G	29	3 a
				12	4 b	26	1 d	12	4a	30	Anode B
				13	4 d	27	1 b	13	4 b	31	2 c
				14	$4{ }^{\text {e }}$	28	1 a	14	4 d	32	
								15	N/C	33	Anode A
								16	5 b	34	1 d
								17	5 d	35	1 b
								18	N/C	36	1 a

[^7]
Operating Considerations

ELECTRICAL

The 5×7 matrix of LED's, which make up each character, are $X-Y$ addressable. This allows for a simple addressing, decoding and driving scheme between the display module and customer furnished logic.
There are three main advantages to the use of this type of $\mathrm{X}-\mathrm{Y}$ addressable array:

1. It is an elementary addressing scheme and provides the least number of interconnection pins for the number of diodes addressed. Thus, it offers maximum flexibility toward integrating the display into particular applications.
2. This method of addressing offers the advantage of sharing the Read-Only-Memory character generator among several display elements. One character generating ROM can be shared over 25 or more 5×7 dot matrix characters with substantial cost savings.
3. In many cases equipments will already have a portion of the required decoder/driver (timing and clock circuitry plus buffer storage) logic circuitry available for the display.
To form alphanumeric characters a method called "scanning" or "strobing" is used. Information is addressed to the display by selecting one row of diodes at a time, energizing the appropriate diodes in that row and then proceeding to the next row. After all rows have been excited one at a time, the process is repeated. By scanning through all rows at least 100 times a second, a flicker free character can be produced. When information moves sequentially from row to row of the display (top to bottom) this is row scanning, as illustrated in Figure 5. Information can also be moved from column to column (left to right across the display) in a column scanning mode. For most applications (5 or more characters to share the same ROM) it is more economical to use row scanning.
A much more detailed description of general scanning techniques along with specific circuit recommendations is contained in HP Application Note 931.

MECHANICAL/THERMAL MOUNTING

The solid state display typically operates with 200 mW power dissipation per character. However, if the operating conditions are such that the power dissipation exceeds the derated maximum allowable value, the device should be heat sunk. The usual mounting technique combines mechanical support and thermal heat sinking in a common structure. A metal strap or bar can be mounted behind the display using silicone grease to insure good thermal control. A well-designed heat sink can limit the case temperature to within $10^{\circ} \mathrm{C}$ of ambient.

Figure 5. Row Scanning Block Diagram.

16 SEGMENT SOLID STATE ALPHANUMERIC DISPLAY

Features

- ALPHANUMERIC

Displays 64 Character ASCII Set and Special Characters

- 16 SEGMENT FONT PLUS CENTERED D.P. AND COLON
- 3.81 mm (0.150 ") CHARACTER HEIGHT
- APPLICATION FLEXIBILITY WITH PACKAGE DESIGN
4 and 8 Character Dual-In-Line Packages End Stackable-On Both Ends for 8 Character and On One End for 4 Character
Sturdy Gold-Plated Leads on $\mathbf{2 . 5 4 m m}$ ($0.100^{\prime \prime}$) Centers
Environmentally Rugged Package
Common Cathode Configuration
- LOW POWER

As Low as 1.0-1.5mA Average Per Segment Depending on Peak Current Levels

- EXCELLENT CHARACTER APPEARANCE Continuous Segment Font High On/Off Contrast 6.35 mm ($0.250^{\prime \prime}$) Character Spacing

Excellent Character Alignment
Excellent Readability at 2 Metres

- SUPPORT ELECTRONICS

Can Be Driven With ROM Decoders and Drivers
Easy Interfacing With Microprocessors and LSI Circuitry

- CATEGORIZED FOR LUMINOUS INTENSITY Assures Uniformity of Light Output From Unit to Unit Within a Single Category

Description

The HDSP-6504 and HDSP-6508 are 3.81mm (0.150") sixteen segment GaAsP red alphanumeric displays mounted in 4 character and 8 character dual-in-line package configurations that permit mounting on PC boards or in standard IC sockets. The monolithic light emitting diode character is magnified by the integral lens which increases both character size and luminous intensity, thereby making low power consumption possible. The rugged package construction, enhanced by the back fill design, offers extended environmental capabilities compared to the standard PC board/lens type of display package. Its temperature cycling capability is the result of the air gap which exists between the semiconductor chip/wire bond assembly and the lens. In addition to the sixteen segments, a centered D.P. and colon are included. Character spacing yields 4 characters per inch.

Applications

These alphanumeric displays are attractive for applications such as computer peripherals and terminals, computer base emergency mobile units, automotive instrument panels, desk top calculators, in-plant control equipment, hand-held instruments and other products requiring low power, display compactness and alphanumeric display capability.

Device Selection Guide

Absolute Maximum Ratings

Symbol	Parameter	Min.	Max.	Units
IPEAK	Peak Forward Current Per Segment or DP (Duration $\leq 312 \mu \mathrm{~s}$)		200	mA
lava	Average Current Per Segment or DP[1]		7	mA
PD	Average Power Dissipation Per Character [1,2]	\therefore	138	mW
$T_{\text {A }}$	Operating Temperature, Ambient	-40	85	${ }^{\circ} \mathrm{C}$
Ts	Storage Temperature	-40	100	${ }^{\circ} \mathrm{C}$
V_{R}	Reverse Voltage		5	V
	Solder Temperature at 1.59 mm (1/16 inch) below seating plane, $t \leq 3$ Seconds		260	${ }^{\circ} \mathrm{C}$

NOTES:

1. Maximum allowed drive conditions for strobed operation are derived from Figures 1 and 2. See electrical section of operational considerations.
2. Derate linearly above $T_{A}=50^{\circ} \mathrm{C}$ at $2.17 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. PD_{D} Max. $\left(\mathrm{T}_{A}=85^{\circ} \mathrm{C}\right)=62 \mathrm{~mW}$.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Units
Iv	Luminous Intensity, Time Average, Character Total with 16 Segments Illuminated [3,4]	1 PEAK $=30 \mathrm{~mA}$ 1/16 Duty Factor	0.40	1.65		mcd
V_{F}	Forward Voltage Per Segment or DP	$I_{F}=30 \mathrm{~mA}$ (One Segment On)		1.6	1.9	V
λ APEAK	Peak Wavelength			655		nm
λ_{d}	Dominant Wavelength [5]			640		nm
IR	Reverse Current Per Segment or DP	$V_{R}=5 \mathrm{~V}$		10		$\mu \mathrm{A}$
$\Delta V_{F} / \Delta^{\circ} \mathrm{C}$	Temperature Coefficient of Forward Voltage	-.. .		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
R $\theta_{\text {J-PIN }}$	Thermal Resistance LED Junction-to-Pin			232		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$

NOTES:

3. The luminous intensity ratio between segments within a digit is designed so that each segment will have the same luminous sterance. Thus each segment will appear with equal brightness to the eye.
4. Operation at peak currents of less than 7 mA is not recommended.
5. The dominant wavelength, λd, is derived from the C.I.E. chromaticity diagram and represents that single wavelength which defines the color of the device, standard red.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration. Derate derived operating conditions above $\mathrm{T}_{\mathrm{A}}=5 \mathbf{0}^{\circ} \mathrm{C}$ using Figure 2.

Figure 2. Temperature Derating Factor For Peak Current per Segment vs.
Ambient Temperature. $\mathrm{T}_{\mathrm{J} M A X}=11 \mathbf{0}^{\circ} \mathrm{C}$

Figure 3. Relative Luminous Efficiency (Luminous Intensity Per Unit Current) vs. Peak Segment Current.

V_{F} - PEAK FORWARD VOLTAGE - V

Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Figure 5. Typical 64 Character ASCII Set.

Package Dimensions

NOTES:

1. ALL DIMENSIONS IN MILLIMETRES AND (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. PIN 1 IDENTIFIED BY INK DOT ADJACENT TO LEAD.

Figure 6. HDSP-6504
Figure 7. HDSP-6508

Magnified Character Font Description

DEVICES
HDSP-6504
HDSP-6508

Figure 8.

Device Pin Description

Function				
Pin No.	HDSP-6504		HDSP-6508	
1	Anode	Segment g_{1}	Anode	Segment g_{1}
2	Anode	Segment DP	Anode	Segment DP
3	Cathode	Digit 1	Cathode	Digit 1
4	Anode	Segment d_{2}	Anode	Segment d_{2}
5	Anode	Segment 1	Anode	Segment I
6	Cathode	Digit 3	Cathode	Digit 3
7	Anode	Segment e	Anode	Segment e
8	Anode	Segment m	Anode	Segment m
9	Anode	Segment k	Anode	Segment k
10	Cathode	Digit 4	Cathode	Digit 4
11	Anode	Segment d_{1}	Anode	Segment d_{1}
12	Anode	Segment j	Cathode	Digit 6
13	Anode	Segment C_{0}	Cathode	Digit 8
14	Anode	Segment g2	Cathode	Digit 7
15	Anode	Segment a_{2}	Cathode	Digit 5
16	Anode	Segment i	Anode	Segment j
17	Cathode	Digit 2	Anode	Segment C_{0}
18	Anode	Segment b	Anode	Segment g_{2}
19	Anode	Segment a_{1}	Anode	Segment a_{2}
20	Anode	Segment c	Anode	Segment i
21	Anode	Segment h	Cathode	Digit 2
22	Anode	Segment f	Anode	Segment b
23			Anode	Segment a_{1}
24			Anode	Segment c
25			Anode	Segment h
26			Anode	Segment f

Operational Considerations

ELECTRICAL

The HDSP-6504 and -6508 devices utilize large monolithic 16 segment GaAsP LED chips with centered decimal point and colon. Like segments of each digit are electrically interconnected to form an 18 by N array, where N is the quantity of characters in the display. In the driving scheme the decimal point or colon is treated as a separate character with its own time frame. A detailed discussion of character font capabilities, ASCII code to 18 segment decoding and display drive techniques appear in Application Note 1003.
These displays are designed specifically for strobed (multiplexed) operation, with a minimum recommended time peak forward current per segment of 7 mA . Under normal operating situations the maximum number of illuminated segments needed to represent a given character is 10. Therefore, except where noted, the information presented in this data sheet is for a maximum of 10 segments illuminated per character.*
The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design may be calculated using the following V_{F} model:

```
\(V_{F}=1.85 \mathrm{~V}+\operatorname{IPEAK}(1.8 \Omega)\)
For: \(30 \mathrm{~mA} \leq\) IPEAK \(\leq 200 \mathrm{~mA}\)
\(V_{F}=1.58 \mathrm{~V}+\operatorname{IPEAK}(10.7 \Omega)\)
For: \(10 \mathrm{~mA} \leq\) IPEAK \(\leq 30 \mathrm{~mA}\)
```


OPTICAL AND CONTRAST ENHANCEMENT

Each large monolithic chip is positioned under a separate element of a plastic aspheric magnifying lens, producing a magnified character height of 3.810 mm (. 150 inch). The aspheric lens provides wide included viewing angles of typically 75 degrees horizontal and 75 degrees vertical with low off axis distortion. These two features, coupled
*More than 10 segments may be illuminated in a given character, provided the maximum allowed character power dissipation, temperature derated, is not exceeded.
with the very high segment luminous sterance, provide to the user a display with excellent readability in bright ambient light for viewing distances in the range of 2 metres. Effective contrast enhancement can be obtained by employing any of the following optical filter products: Panelgraphic: Ruby Red 60, Dark Red 63 or Purple 90; SGL Homalite: H100-1605 Red or H100-1804 Purple, Plexiglas 2423. For very bright ambients, such as indirect sunlight, the 3M Light Control Film is recommended: Red 655, Violet, Purple or Neutral Density.

For those applications requiring only 4 or 8 characters, a secondary barrel magnifier, HP part number HDSP-6505 (four character) and -6509 (eight character), may be inserted into support grooves on the primary magnifier. This secondary magnifier increases the character height to 4.45 mm (. 175 inch) without loss of horizontal viewing angle (see below).

MECHANICAL

These devices are constructed by LED die attaching and wire bonding to a high temperature PC board substrate. A precision molded plastic lens is attached to the PC board and the resulting assembly is backfilled with a sealing epoxy to form an environmentally sealed unit.
The four character and eight character devices can be end stacked to form a character string which is a multiple of a basic four character grouping. As an example, one -6504 and two -6508 devices will form a 20 character string. These devices may be soldered onto a printed circuit board or inserted into 24 and 28 pin DIP LSI sockets. The socket spacing must allow for device end stacking.

Suitable conditions for wave soldering depend upon the specific kind of equipment and procedure used. For more information, consult the local HP Sales Office or HewlettPackage Components, Palo Alto, California.

Figure 9. Design Data for Optional Barrel Magnifier in Single Display Applications.

Features

- ALPHANUMERIC Displays 64 Character ASCII Set and Special Characters
- 16 SEGMENT FONT PLUS CENTERED D.P. AND COLON
- 3.56 mm (0.140 ") CHARACTER HEIGHT
- APPLICATION FLEXIBILITY WITH PACKAGE DESIGN
8 Character Dual-In-Line Package End Stackable
Sturdy Leads on 2.54 mm (0.100 ") Centers Common Cathode Configuration
- LOW POWER

As Low as $\mathbf{1 . 0 - 1 . 5 m A}$ Average Per Segment Depending on Peak Current Levels

- EXCELLENT CHARACTER APPEARANCE Continuous Segment Font High On/Off Contrast
5.08 mm (0.200 ") Character Spacing

Excellent Character Alignment
Excellent Readability at 1.5 Metres

- SUPPORT ELECTRONICS

Can Be Driven With ROM Decoders and Drivers
Easy Interfacing With Microprocessors and LSI Circuitry

- CATEGORIZED FOR LUMINOUS INTENSITY Assures Uniformity of Light Output From Unit to Unit Within a Single Category

Description

The HDSP-6300 is a sixteen segment GaAsP red alphanumeric display mounted in an 8 character dual-inline package configuration that permits mounting on PC boards or in standard IC sockets. The monolithic light emitting diode character is magnified by the integral lens which increases both character size and luminous intensity, thereby making low power consumption possible. The sixteen elements consist of sixteen segments for alphanumeric and special characters plus centered decimal point and colon for good visual aesthetics. Character spacing yields 5 characters per inch.

Applications

These alphanumeric displays are attractive for applications such as computer peripherals and mobile terminals, desk top calculators, in-plant control equipment, handheld instruments and other products requiring low power, display compactness and alphanumeric display capability.

Absolute Maximum Ratings

NOTES:

1. Maximum allowed drive conditions for strobed operation are derived from Figures 1 and 2 . See electrical section of operational considerations.
2. Derate linearly above $T_{A}=50^{\circ} \mathrm{C}$ at $2.47 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. PD Max. $\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)=47 \mathrm{~mW}$.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Units
IV	Luminous Intensity, Time Average, Character Total with 16 Segments Illuminated [3,4]	$I_{\text {PEAK }}=24 \mathrm{~mA}$ 1/16 Duty Factor	400	1200		$\mu \mathrm{cd}$
V_{F}	Forward Voltage Per Segment or DP	$I_{F}=24 \mathrm{~mA}$ (One Segment On)		1.6	1.9	V
入PEAK	Peak Wavelength			655		nm
λ_{d}	Dominant Wavelength [5]			640		nm
If	Reverse Current Per Segment or DP	$V_{R}=5 \mathrm{~V}$		10		$\mu \mathrm{A}$
R $0_{\text {J-PIN }}$	Thermal Resistance LED Junction-to-Pin per Character			250		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Char.

NOTES:
3. The luminous intensity ratio between segments within a digit is designed so that each segment will have the same luminous sterance. Thus each segment will appear with equal brightness to the eye.
4. Operation at peak currents of less than 7 mA is not recommended.
5. The dominant wavelength, λd, is derived from the C.I.E. chromaticity diagram and represents that single wavelength which defines the color of the device, standard red.

tp - PULLSE DURATION - $\mu \mathbf{S}$

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration. Derate derived operating conditions above $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ using Figure 2.

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

Figure 2. Temperature Derating Factor For Peak Current per Segment vs. Ambient Temperature. $\mathrm{T}_{\mathbf{J}} \mathrm{MAX}=11 \mathbf{0}^{\circ} \mathrm{C}$

Figure 3. Relative Luminous Efficiency (Luminous Intensity Per Unit Current) vs. Peak Segment Current.

Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Figure 5. Typical 64 Character ASCII Set.

NOTES:

1. ALL DIMENSIQNS IN MiELINETRES AND (ENCHES).
2. AL. UNTOLERANCED DINENSIONS ARE FOR REEERENCE ONLX. 3. PIN 1 IOENTIFIED BY DOT ADJACENT TQ LEAD.

Figure 6.

Magnified Character Font Description

Figure 7.

Device Pin Description

Pin No.		
1	Function	
2	Anode	Segment K
3	Anode	Segment D_{1}
4	Cathode	Segment C
5	Cathode	Digit 1
6	Cathode	Digit 3
7	Cathode	Digit 4
8	Anode	Segment L
9	Anode	Segment G_{2}
10	Anode	Segment E
11	Anode	Segment M
12	Anode	Segment D_{2}
13	Anode	Segment DP
14	Anode	Segment A_{2}
15	Anode	Segment
16	Anode	Segment J
17	Cathode	Digit 8
18	Cathode	Digit 7
19	Cathode	Digit 6
20	Cathode	Digit S
21	Anode	Segment C_{0}
22	Anode	Segment G_{1}
23	Anode	Segment B
24	Anode	Segment F
25	Anode	Segment H
26	Anode	Segment A_{1}

[^8]
OPTICAL AND CONTRAST ENHANCEMENT

Each large monolithic chip is positioned under a separate element of a plastic aspheric magnifying lens producing a magnified character height of 3.56 mm (0.140 inch). The aspheric lens provides wide included viewing angles of 60 degrees horizontal and 55 degrees vertical with low off axis distortion. These two features, coupled with the very high segment luminous sterance, provide to the user a display with excellent readability in bright ambient light for viewing distances in the range of 1.5 metres. Effective contrast enhancement can be obtained by employing an optical filter product such as Panelgraphic Ruby Red 60, Dark Red 63 or Purple 90; SGL Homalite H100-1605 Red or H100-1804 Purple; or Plexiglas 2423. For very bright ambients, such as indirect sunlight, the 3M Red 655 or Neutral Density Light Control Film is recommended.

MECHANICAL

This device is constructed by LED die attaching and wire bonding to a high temperature PC board substrate. A precision molded plastic lens is attached to the PC board.

The HDSP-6300 can be end stacked to form a character string which is a multiple of a basic eight character grouping. These devices may be soldered onto a printed circuit board or inserted into 28 pin DIP LSI sockets. The socket spacing must allow for device end stacking.

Suitable conditions for wave soldering depend upon the specific kind of equipment and procedure used. It is recommended that a non-activated rosin core wire solder or a low temperature deactivating flux and solid wire solder be used in soldering operations. For more information, consult the local HP Sales Office or Hewlett-Packard Components, Palo Alto, California.

Features

- COMPLETE ALPHANUMERIC DISPLAY SYSTEM UTILIZING THE HDSP-2000 DISPLAY
- CHOICE OF 64, 128, OR USER DEFINED ASCII CHARACTER SET
- CHOICE OF 16, 24, 32, or 40 ELEMENT DISPLAY PANEL
- MULTIPLE DATA ENTRY FORMATS Left, Right, RAM, or Block Entry
- EDITING FEATURES THAT INCLUDE CURSOR, BACKSPACE, FORWARDSPACE, INSERT, DELETE, AND CLEAR
- DATA OUTPUT CAPABILITY
- SINGLE 5.0 VOLT POWER SUPPLY
- TTL COMPATIBLE
- EASILY INTERFACED TO A KEYBOARD OR A MICROPROCESSOR

Description

The HDSP-24XX series of alphanumeric display systems provides the user with a completely supported 5×7 dot matrix display panel. These products free the user's system from display maintenance and minimize the interaction normally required for alphanumeric displays. Each alphanumeric display system is composed of two component parts:

1. An alphanumeric display controller which consists of a preprogrammed microprocessor plus associated logic, which provides decode, memory, and drive signals necessary to properly interface a user's system to an HDSP-2000 display. In addition to these basic display support operations, the controller accepts data in any of four data entry formats and incorporates several powerful editing routines.
2. A display panel which consists of HDSP-2000 displays matched for luminous intensity and mounted on a P.C. board designed to have low thermal resistance.
These alphanumeric display systems are attractive for applications such as data entry terminals, instrumentation, electronic typewriters, and other products which require an easy to use 5×7 dot matrix alphanumeric display system.

When ordering, specify one each of the Controller Board and the Display Board for each complete system.

Absolute Maximum Ratings

Vcc
Operating Temperature Range,
Ambient (T_{A}) -0.5 V to 6.0 V

Storage Temperature Range (Ts) $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Voltage Applied to any Input or Output .. -0.5 V to 6.0 V Isource Continuous for any Column

Driver 5.0 Amps (60 sec . max. duration)

Recommended
Operating Conditions

Parameter	Symbol:	Min.	Max	Units
Supply Voltage	VCC	4.75	5.25	V
Data Out	10 L		0.4	mA
	1 OH		-20	${ }^{4} \mathrm{~A}$
Ready, Data Valid, Column On, Display Data	101		1.6	mA
	1 OH		-40	$\mu \mathrm{A}$
Clock	10 L		10.0	mA
	1 OH	\cdots	-1,0	mA
Columni-5	ISOURCE		-5.0	A

Electrical Characteristics Over Operating Temperature Range

(Unless otherwise specified)

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Supply Current ${ }^{[1]}$	Icc			400	mA	$V_{C C}=5.25 \mathrm{~V}$ Column On and All Outputs Open
Input Threshold High (except Reset) Input Threshold High - Reset ${ }^{[2]}$ Input Threshold Low - All Inputs	$\mathrm{V}_{1} \mathrm{H}$	2.0		\cdots	V	$\mathrm{VCC}=5.0 \mathrm{~V} \pm .25 \mathrm{~V}$
	V_{1}	3.0			V	$V C C=5.0 \mathrm{~V} \pm .25 \mathrm{~V}$
	VIL			0.8	V	$V_{C C}=5.0 \mathrm{~V} \pm .25 \mathrm{~V}$
Data Out Voltage	Vor Data	2.4			V	$\mathrm{IOH}^{2}=-20 \mu \mathrm{~A} \quad \mathrm{VCC}=4.75 \mathrm{~V}$
	Vol Data			0.5	V	$1 \mathrm{LL}=0.4 \mathrm{~mA} \quad \mathrm{VCC}^{2}=4.75 \mathrm{~V}$
Clock Output Voltage	VOHClk	2.4			V	$1 \mathrm{OH}=-1000 \mu \mathrm{~A} \quad \mathrm{VCC}=4.75 \mathrm{~V}$
	Volclk			0.5	V	$10 \mathrm{~L}=10.0 \mathrm{~mA} \quad \mathrm{~V}_{\text {CC }}=4.75 \mathrm{~V}$
Ready, Display Data, Data Valid, Column on Output Voltage	VOH	2.4			V	$10 \mathrm{H}=-40 \mu \mathrm{~A} \quad \mathrm{VCC}=4.75 \mathrm{~V}$
	Vol			0.5	V	$\mathrm{IOL}=1.6 \mathrm{~mA} \quad \mathrm{VCC}=4.75 \mathrm{~V}$
Input Current, ${ }^{[3]}$ All Inputs Except Reset, Chip Select, D7	IH_{H}			-0.3	mA	$V_{1 H}=2.4 \mathrm{~V} \quad V_{C C}=5.25 \mathrm{~V}$
	I/L			-0.6	mA	$V_{1 L}=0.5 \mathrm{~V} \quad \because \quad V_{C C}=5.25 \mathrm{~V}$
$\overline{\text { Reset }}$ Input Current	IH			-0.3	mA	$V_{I H}=3.0 \mathrm{~V} \quad V_{C C}=5.25 \mathrm{~V}$
	IIL			-0.6	mA	$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V} \quad V_{\mathrm{CC}}=5.25 \mathrm{~V}$
Chip Select, D7 Input Current	1	-10.		+10	$\mu \mathrm{A}$	$0<V_{1}<V_{c c}$
Column Output Voltage	VOLCOL	2.6	3.2		V	lout $=-5.0 \mathrm{~A} \quad \because \quad \mathrm{VCC}=5.00 \mathrm{~V}$

NOTES:

1. See Figure 11 for total system supply current.
2. External reset may be initiated by grounding Reset with either a switch or open collector TTL gate for a minimum time of 50 ms . For Power On Reset to function properly, Vcc power supply should turn on at a rate $>100 \mathrm{~V} / \mathrm{s}$.
3. Momentary peak surge currents may exist on these lines. However, these momentary currents will not interfere with proper operation of the HDSP-2470/1/2.

HDSP-2416/-2424/-2432/-2440

Absolute Maximum Ratings

Supply Voltage Vcc to Ground \qquad -0.5 V to 6.0 V
Inputs, Data Out and V_{B} \qquad -0.5 V to Vcc
Column Input Voltage, V col $\ldots \quad-0.5 \mathrm{~V}$ to +6.0 V
Free Air Operating Temperature
Range, $T_{A}{ }^{[1]}$
Storage Temperature Range, Ts $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Recommended
Operating Conditions

Parameter	Symbol	Min.	Norm.	Max	UnIt
Supply Voltage	Vcc	4.75	5.0.	5.25	\% 2
Column input Voltage, Column On	VCOL	2.6			V/4
Setup Time	ISETUP	70	45		ns
Hold Time	thoco	30.	0		ns
Width of Clock	WW(CLOCK)	75	\%e\%		ns
Clock Frequency	folock	0		3	MHz
Clock Transition Time	tTHL			200	ns
Free Air Operating ${ }^{[1]}$ Temperature Range	TA	0		55	C

Electrical Characteristics Over Operating Temperature Range

(Unless otherwise specified)

Parameter		Symbol	Min.	Typ.*	Max.	Units	Conditions		
Supply Current		Icc		45n	60n[2]	ma	$\begin{aligned} & V_{C C C}=5.25 \mathrm{~V} \\ & V_{C L O C K}=V_{D A T A}=2.4 \mathrm{~V} \\ & \text { All SR Stages }= \\ & \text { Logical 1 } \end{aligned}$	$\begin{aligned} & V_{B}=0.4 V \\ & V_{B}=2.4 V \end{aligned}$	
			$73 n$	95 n	mA				
Column Current at any Column Input			100 L			$1.5 n$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{VCOL}=5.25 \mathrm{~V}$ All SR Stages = Logical 1	$V_{B}=0.4 \mathrm{~V}$
		1002		$335 n$	410 n	mA	$V_{B}=2.4 \mathrm{~V}$		
Peak Luminous Intensity per LED (Character Average)		IV PEAK	105	200		$\mu \mathrm{cd}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{C O L}=3.5 \mathrm{~V} \\ & T_{i}=25^{\circ} \mathrm{C}(3), V_{B}=2.4 \mathrm{~V} \end{aligned}$		
VB, Clock or Data Input Threshold High		$\mathrm{V}_{\text {IH }}$	2.0			V	$\mathrm{VCC}=\mathrm{VCOL}=4.75 \mathrm{~V}$		
$\mathrm{V}_{\mathrm{B}, \mathrm{Clock}}$ or Data Input Threshold Low		VIL			0.8	V			
Input Current Logical 1	V_{B}, Clock	HiH			80	$\mu \mathrm{A}$	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$		
	Data In	Ith			40	$\mu \mathrm{A}$			
Input Current Logical 0	VB, Clock	1 L		-500	-800	$\mu \mathrm{A}$	$V_{C C}=5.25 \mathrm{~V}, V_{\text {IL }}=0.4 \mathrm{~V}$		
	Data In	1 lL		-250	-400.	$\mu \mathrm{A}$			
Power Dissipation Per Board ${ }^{41}$		PD		0.66 n		W	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=2.6 \mathrm{~V}$ 15 LED's on per Character, $\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$		

*All typical values specified at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

NOTES:

1. Operation above $55^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{C}\right.$ MAX) may be achieved by the use of forced air (150 fpm normal to component side of HDSP-247X controller board at sea level). Operation down to $-20^{\circ} \mathrm{C}$ is possible in applications that do not require the use of HDSP-2470/-2471/-2472 controller boards.
2. $n=$ number of HDSP-2000 packages

$$
\begin{array}{ll}
\text { HDSP-2416 } & n=4 \\
\text { HDSP-2424 } & n=6 \\
\text { HDSP-2432 } & n=8 \\
\text { HDSP-2440 } & n=10
\end{array}
$$

3. Tj refers to initial case temperature immediately prior to the light measurement.
4. Power dissipation with all characters illuminated.

System Overview

The HDSP-2470/-2471/-2472 Alphanumeric Display Controllers provide the interface between any ASCII based Alphanumeric System and the HDSP-2000 Alphanumeric Display. ASCII data is loaded into the system by means of any one of four data entry modes Left, Right, RAM or Block Entry. This ASCII data is stored in the internal RAM memory of the system. The system refreshes HDSP-2000 displays from 4 to 48 characters with the decoded data.
The user interfaces to any of the systems through eight DATA IN inputs, five ADDRESS inputs (RAM mode), a CHIP SELECT input, RESET input, seven DATA OUT
outputs, a READY output, DATA VALID output, and a COLUMN ON output. A low level on the RESET input clears the display and initializes the system. A low level on the CHIP SELECT input causes the system to load data from the DATA IN and ADDRESS inputs into the system. The controller outputs a status word, cursor address and 32 ASCII data characters through the DATA OUT outputs and DATA VALID output during the time the system is waiting to refresh the next column of the display. The COLUMN ON output can be used to synchronize the DATA OUT function. A block diagram for the HDSP-2470/-2471/-2472 systems is shown in Figure 1.

Figure 1. Block Diagram for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

The system interfaces to the HDSP-2000 display through five COLUMN outputs, a CLOCK output, DISPLAY DATA output, and the COLUMN ON output. The user should connect DISPLAY DATA to DATA IN of the leftmost HDSP-2000 cluster and cascade DATA OUT to DATA IN of all HDSP-2000 clusters. COLUMN outputs from the system are connected to the COLUMN inputs of all HDSP2000 clusters. The HDSP-24XX Series display boards are designed to interconnect directly with the HDSP-247X Series display controllers. The COLUMN outputs can source enough current to drive up to 48 characters of the HDSP-2000 display. Pulse width modulation of display luminous intensity can be provided by connecting COLUMN ON to the input of a monostable multivibrator and the output of the monostable multivibrator to the V_{B} inputs of the HDSP-2000 displays. The system is designed to refresh the display at a fixed refresh rate of 100 Hz . COLUMN ON time is optimized for each display length in order to maximize light output as shown in Figure 2.

Figure 2. Column on Time vs. Display Length for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

Control Mode/Data Entry

User interface to the HDSP-247X Series controller is via an 8 bit word which provides to the controller either a control word or standard ASCII data input. In addition to this user provided 8 bit word, two additional control lines, CHIP SELECT and READY, allow easily generated "handshake" signals for interface purposes.

A logic low applied to the CHIP SELECT input (minimum six microseconds) causes the controller to read the 8 DATA IN lines and determine whether a control word or ASCII data word is present, as determined by the logic state of the most significant bit (D7). If the controller detects a logic high at D_{7}, the state of $\mathrm{D}_{6}-\mathrm{D}_{0}$ will define the data entry mode and the number of alphanumeric characters to be displayed.

The 8 bit control data word format is outlined in Figure 3. For the control word (D_{7} high), bits D_{6} and D_{5} define the selected data entry mode (Left entry, Right entry, etc.) and bits D_{3} to D_{0} define display length. Bit D_{4} is ignored.

Control word inputs are first checked to verify that the control word is valid. The system ignores display lengths greater than 1011 for left block or right, or 0111 for RAM. If the word is valid, the present state-next state table shown in Figure 4 is utilized to determine whether or not to clear the display. For display lengths of up to 32 characters, RAM entry can be used as a powerful editing tool, or can be used to preload the cursor. With other transitions, the internal data memory is cleared.

CONTROL
WORD: $\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$

Y Y Y Y	DISPLAY LENGTH:
0000	4 DIGITS
0001	8
0010	12
0011	16
0100	20
0101	24
0110	28
0111	32* "
1000	36
1001	40
1010	44
1011	48

*maximum for RAM data entry mode

$\mathrm{X} X$	DATA ENTRY MODES
0	0
0	1
1	RAM DATA ENTRY
10	REFT DATA ENTRY
10	RLGHT DATA ENTRY
	BLOCK DATA ENTRY

Figure 3. Control Word Format for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

(1) RAM ENTRY MODE IS VALID FOR DISPLAYS OF 32 CHARACTERS OR LESS IN LENGTH.
(2) FOLLOWING A TRANSITION FROM RAM TO BLOCK, WHEN THE CURSOR ADDRESS IS 48 $\left(30_{16}\right)$ DURING THE TRANSITION, THE FIRST VALID ASCII CHARACTER WILL BE IGNORED AND THE SECOND VALID ASCII CHARACTER WILL BE LOADED IN THE LEFT- MOST DISPLAY LOCATION.

WHERE BEGIN IS DEFINED AS FOLLOWS:

Figure 4. Present State-Next State Diagram for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

If D_{7} is a logic low when the DATA IN lines are read, the controller will interpret $\mathrm{D}_{6}-\mathrm{D}_{0}$ as standard ASCII data to be stored, decoded and displayed. The system accepts seven bit ASCII for all three versions. However, the HDSP-2470 system displays only the 64 character subset [2016
(space) to $5 \mathrm{~F}_{16}\left(_\right)$] and ignores all ASCII characters outside this subset with the exception of those characters defined as display commands. These display commands are shown in Figure 5. Displayed character sets for the HDSP-2470/-2471 systems are shown in Figure 6.

DATA WORD:		D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}			
ASCII ASSIGNMENT	0	A	A	A	A	A	A	A	DISPLAY COMMAND		
LF		0	0	0	1	0	1	0	CLEAR	Valid in Right Entry Mode	
HT		0	0	0	1	0	0	1	BACKSPACE CURSOR Mode		Valid in Left Entry
US		0	0	1	1	1	1	1	INSERT CHARACTER		Mode
DEL		1	1	1	1	1	1	1	DELETE CHARACTER		

Figure 5. Display Commands for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

*DISPLAY COMMANDS WHEN USED IN LEFT ENTRY
+DISPLAY COMMANDS WHEN USED IN RIGHT ENTRY

Figure 6. Display Font for the HDSP-2470 (64 Character ASCII Subset), and HDSP-2471 (128 Character ASCII Set) Alphanumeric Display Controller.

Regardless of whether a control word or ASCII data word is presented by the user, a READY signal is generated by* the controller after the input word is processed. This READY signal goes low for $25 \mu \mathrm{~s}$ and upon a positive transition, a new CHIP SELECT may be accepted by the controller. Data Entry Timing is shown in Figure 7.

MAXIMUM DATA ENTRY TIMES OVER OPERATING TEMPERATURE RANGE

DATA ENTRY MODE			FUNCTION					
HDSP.	DATA HOLD TIME*		DATA ENTRY	$\begin{aligned} & \text { BACK } \\ & \text { SPACE } \\ & \hline \end{aligned}$	CLEAR	FORWARD SPACE	DELETE	INSERT
LEFT (2471/2)	$135 \mu \mathrm{~s}$		$235 \mu \mathrm{~s}$	$195 \mu \mathrm{~s}$	$505 \mu \mathrm{~s}$	$205 \mu \mathrm{~s}$	$725 \mu \mathrm{~s}$	$725 \mu \mathrm{~s}$
LEFT (2470)	$150 \mu \mathrm{~s}$		245μ s	215μ s	$530 \mu \mathrm{~s}$	225μ s	745μ s	735μ s
RIGHT (2471/2)	$85 \mu \mathrm{~s}$		$480 \mu \mathrm{~s}$	$470 \mu \mathrm{~s}$	$465 \mu \mathrm{~s}$			
RIGHT (2470)	$105 \mu \mathrm{~s}$		$490 \mu \mathrm{~s}$	$490 \mu \mathrm{~s}$	$485 \mu \mathrm{~s}$			
RAM (2471/2)	$55 \mu \mathrm{~s}$	$120 \mu \mathrm{~s}^{* *}$	$190 \mu \mathrm{~s}$					
RAM (2470)	$55 \mu \mathrm{~s}$	$130 \mu \mathrm{~s}^{* *}$	$200 \mu \mathrm{~s}$					
BLOCK (2471/2)	$55 \mu \mathrm{~s}$		$120 \mu \mathrm{~s}$	(155 μ s F	OR RIGH	MOST CHA	CTER)	
BLOCK (2470)	$55 \mu \mathrm{~s}$		$130 \mu \mathrm{~s}$	(165 μ s F	OR RIGH	MOST CHA	(TER)	
LOAD CONTROL (2471/2)	$50 \mu \mathrm{~s}$		$505 \mu \mathrm{~s}$					
LOAD CONTROL (2470)	$50 \mu \mathrm{~s}$		$505 \mu \mathrm{~s}$					

Figure 7. Data Entry Timing and Data Entry Times for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

Left Entry Mode

With Left entry, characters are entered in typewriter fashion, i.e., to the right of all previous characters. Left entry uses a blinking cursor to indicate the location where the next character is to be entered. CLEAR loads the display with spaces and resets the cursor to the leftmost display location. BACKSPACE and FORWARDSPACE move the cursor without changing the character string. Thus, the user can backspace to the character to be edited, enter a character and then forward space the cursor. The DELETE function deletes the displayed character at the cursor location and then shifts the character string following the cursor one location to the left to fill the void of the deleted character. The INSERT CHARACTER sets a flag inside the system that causes subsequent ASCII characters to be inserted to the left of the character at the cursor location. As new characters are entered, the cursor, the character at the cursor, and all characters to the right of the cursor are shifted one location to the right. The INSERT function is terminated by a second INSERT CHARACTER, or by BACKSPACE, FORWARDSPACE, CLEAR or DELETE. In Left entry mode, after the display is filled, the system ignores all characters except BACKSPACE and CLEAR. The system allows the cursor to be positioned only in the region between the leftmost display character and immediately to the right (offscreen) of the rightmost display character.

Right Entry Mode

In Right entry mode, characters are entered at the right hand side of the display and shifted to the left as new characters are entered. In this mode, the system stores 48 ASCII characters, although only the last characters entered are displayed. CLEAR loads the display with spaces. BACKSPACE shifts the display one location to the right, deleting the last character entered and displaying the next character in the 48 character buffer. Right entry mode is a simple means to implement the walking or "Times-Square" display. FORWARDSPACE, INSERT, and DELETE have character assignments in this mode since they are not treated as editing characters. In this mode, the cursor is located immediately to the right (offscreen) of the rightmost displayed character.

Block Entry Mode

Block entry allows the fastest data entry rate of all four modes. In this mode, characters are loaded from left to right as with Left entry. However, with Block entry, after the display is completely loaded, the next ASCII character is loaded in the leftmost display location, replacing the previous displayed character. While Block entry has a nonvisible cursor, the cursor is always loaded with the address of the next character to be entered. In this entry mode, the system can display the complete 128 character ASCII set. The display can be cleared and the cursor reset to the leftmost display location by loading in a new BLOCK control word.

RAM Entry Mode

In RAM entry, ASCII characters are loaded at the address specified by the five bit RAM address. Due to the limitation of only five address lines, RAM data entry is allowed only
for displays less than or equal to 32 characters. Regardless of display length, address 00 is the leftmost display character. Out of range RAM addresses are ignored. While RAM entry has a non-visible cursor, the cursor is always preloaded with the address to the right of the last character entered. This allows the cursor to be preloaded with an address prior to going into any other entry mode. In RAM entry, the system can display the complete 128 character ASCII set because it does not interpret any of the characters as control functions. The display can be cleared by loading in a new RAM control word.

Data Out

For display lengths of 32 characters or less, the data stored in the internal RAM is available to the user during the time between display refresh cycles. The system outputs a STATUS WORD, CURSOR ADDRESS, and 32 ASCII data characters. The STATUS WORD specifies the data entry mode and the display length of the system. The STATUS WORD output differs slightly from the CONTROL WORD input. This difference is depicted in Figure 8. Regardless of display length, the CURSOR ADDRESS of the rightmost character location is address $47\left(2 \mathrm{~F}_{16}\right)$ and the offscreen address of the cursor is address 48 (3016). The CURSOR ADDRESS of the leftmost location is defined as address 48 minus the display length. A general formula for CURSOR ADDRESS is:

CURSOR ADDRESS =

(47-Display Length) + Number of Characters from Left.
For example, suppose the alphanumeric display is 16 characters long and the cursor was blinking at the third digit from the left. Then the CURSOR ADDRESS would be 47-16+3 or 34 (2216) and the 18th ASCII data word would correspond to the ASCII character at the location of the display cursor. In Left and Block entry, the CURSOR ADDRESS specifies the location where the next ASCII data character is to be entered. In RAM entry, the CURSOR ADDRESS specifies the location to the right of the last character entered. In Right entry, the CURSOR ADDRESS is always $48\left(30_{16}\right)$. The negative edge of the DATA VALID output can be used to load the 34 DATA OUT words into the user's system. The DATA OUT timing for the HDSP-247X systems are summarized in Figure 8. For displays longer than 32 characters, the system only outputs the STATUS WORD between refresh cycles.

Master/Power On Reset

When power is first applied to the system, the system clears the display and tests the state of the DATA INPUT, D_{7}. If $D_{7}>2.0 \mathrm{~V}$, the systems loads the control word on the DATA INPUTS into the system. If $\mathrm{D}_{7} \leq .8 \mathrm{~V}$ or the system sees an invalid control word, the system initializes as Left entry for a 32 character display with a flashing cursor in the leftmost location. For POWER ON RESET to function properly, the power supply must turn on at a rate $>100 \mathrm{~V} / \mathrm{s}$. In addition, the system can be reset by pulling the RESET input low for a minimum of 50 milliseconds. POWER ON/MASTER RESET timing is shown in Figure 9.

Figure 8. Data Out Timing and Format for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

Figure 9. Power-On/Master Reset Timing for the HDSP-2470/-2471/-2472 Alphanumeric Display Controller.

Custom Character Sets

The HDSP-2472 system has been specifically designed to permit the user to insert a custom 128 ASCII character set. This system features a 24 pin socket that is designed to accept a custom programmed $1 \mathrm{~K} \times 8$ PROM, EPROM, or ROM. The read only memory should have an access time \leq 500 ns , $\mathrm{I} \mathrm{IL} \leq|-.4 \mathrm{~mA}|$ and $\mathrm{I}_{\mathrm{H}} \leq 40 \mu \mathrm{~A}$. A list of pin compatible read only memories is shown.in Figure 10. Jumper locations are provided on the HDSP-2472 P.C. board which allow the use of ROM's requiring chip enables tied either to 0 or 5 V . For further information on ROM programming, please contact the factory.

Power Supply Requirements

The HDSP-247X Alphanumeric Display System is designed to operate from a single 5 volt supply. Total Icc requirements for the HDSP-247X Alphanumeric Display Controller and HDSP-24XX Display Panel are shown in Figure 11. Peak ICC is the instantaneous current required for the system. Maximum Peak Icc occurs for Vcc $=5.25 \mathrm{~V}$ with 7 dots ON in the same Column in all display characters. This current must be supplied by a combination of the power supply and supply filter capacitor. Maximum Average Icc occurs for Vcc $=5.25 \mathrm{~V}$ with 21 dots ON per character in all display characters. The inclusion of a 375 X microfarad capacitor (where X is the number of characters in the display) adjacent to the HDSP-247X Alphanumeric Display System will permit the use of a power supply capable of supplying the maximum average Icc.

Figure 11. Maximum Peak and Average Icc for the HDSP2470/71/72 Alphanumeric Display Controller and HDSP-2000 Display.

CONNECTORS

FUNGTION	TYPE OF CONNECTOR	SUGGESTED MANUFACTURER
CONTROL/DATA ENTRY	26 Pin Ribbon Cable	3 M P/N 3399-X000 Series
POWER ${ }^{(1)}$	3 Pin With Locking Ramp	Molex P/N 09-50-3031 with $08-50.0106$ Terminals
DISPLAY DRIVE 2,3$)$	17 Lead Board to Board	Amp P/N 1-530500-7, also available in board to cable and other configurations

NOTES:
(1) Power leads should be 18-20 gauge stranded wire.
(2) The maximum lead length from the controller board to the display should not exceed 1 metre.
(3) The suggested Amp connector is supplied with the controller.

PART NUMBER	MANUFACTURER	TYPE	CONSTRUCTION
2758	Intel	EPROM	NMOS
7608	Harris	PROM	BIPOLAR-NiCr
3628-4	Intel	PROM	BIPOLAR-Si
82S2708	Signetics	PROM	BIPOLAR-NiCr
6381	Monolithic Mem.	PROM	BIPOLAR-NiCr
6385	Monolithic Mem.	PROM	BIPOLAR-NiCr
875228	National	PROM	BIPOLAR-TIW
93451	Fairchild	PROM	BIPOLAR-NiCr
68308	Motorola	ROM	NMOS
2607	Signetics	ROM	NMOS
30000	Mostek	ROM	NMOS

EXTERNAL CONNECTION*		
\underline{X}	\underline{Y}	$\underline{\underline{z}}$
GND	GND	+5
NC	NC	NC
+5	+5	GND
NC	NC	NC
+5	+5	GND
NC	NC	NC
+5	+5	GND
+5	+5	GND
**	NC	NC
**	NC	NC
**	+5	NC
*Board jumpers correspond		
to pins $18,19 \& 21$ of ROM.		
**As defined by customer		

Figure 10. Pin Compatible 1K x 8 Read Only Memories for the HDSP-2472 Alphanumeric Display Controller.

Display Boards/Hardware

The mechanical layout of the HDSP-247X Series allows direct mating of the controller P.C. board to a compatible series of display boards available from Hewlett-Packard. These display boards consist of matched and tested HDSP-2000 clusters soldered to a P.C. board.

Included with the controller board are: 1 each Amp P/N 1-530500-7 board to board connector, and 4 each locking circuit board support nylon standoffs (Richco LCBS-4). This hardware allows the controller board to interconnect with any of the standard display boards. Figure 12 depicts correct assembly technique.

Assembly Steps

1. Insert the standoffs into 151 diameter holes (noted as "S" on Figure 12. The long end of the standoffs should protrude through the controller board side.
2. Position the controller board and display board with the components and displays facing out. The HP logo should be in the upper left corner when viewed facing the boards. Insert the standoffs through the mating holes on the display board and press the boards together so that the standoffs.lock in place.
3. After the standoffs are secured, the Amp connector should be placed on the edge connect pads (marked " A " through " Q " Figure 12) at the top of the boards. Visual alignment of this connector may be done on the controller board by determining that the first connector contact finger is centered on the pad labeled " A ".

Figure 12. Assembly Drawing.

Figure 13. HDSP-2470/-2471/-2472

Figure 14. HDSP-2416/-2424/-2432

Figure 15. HDSP-2440

Features

- COMPLETE ALPHANUMERIC DISPLAY SYSTEM UTILIZING THE HDSP-6508 DISPLAY

- DISPLAYS 64 CHARACTER ASCII SET
- CHOICE OF 16, 24, 32, OR 40 ELEMENT DISPLAY PANEL
- MULTIPLE DATA ENTRY FORMATS Left, Right, RAM, or Block Entry
- EDITING FEATURES THAT INCLUDE CURSOR, BACKSPACE, FORWARDSPACE, INSERT, DELETE, CARRIAGE RETURN, AND CLEAR
- DATA OUTPUT CAPABILITY
- SINGLE 5.0 VOLT POWER SUPPLY
- TTL COMPATIBLE
- EASILY INTERFACED TO A KEYBOARD OR A MICROPROCESSOR

Description

The HDSP-87XX series of alphanumeric display systems provides the user with a completely supported 16 segment display panel. These products free the user's system from display maintenance and minimize the interaction normally required for alphanumeric displays.
Each alphanumeric display system consists of a preprogrammed microprocessor plus associated logic, which provides decode, memory, and drive signals necessary to properly interface a user's system to an HDSP-6508 display. In addition to these basic display support operations, the controller accepts data in any of four data entry formats and incorporates several powerful editing routines. This microprocessor controller is mounted behind a single line display panel consisting of HDSP-6508 displays matched for luminous intensity.

These alphanumeric display systems are attractive for applications such as data entry terminals, instrumentation,, electronic typewriters, and other products which require an easy to use 16 segment alphanumeric display system.

HDSP-8716/-8724/-8732/-8740

Absolute Maximum Ratings

```
Vcc
    -0.5V to 6.0V
Operating Temperature Range,
    Ambient (TA)
    0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }7\mp@subsup{0}{}{\circ}\textrm{C
Storage Temperature Range (Ts) ...... }-4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }8\mp@subsup{5}{}{\circ}\textrm{C
Voltage Applied to any
    Input or Output
    -0:5V to 6.0V
```

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	VCC	4.75	5.25	V
Data Out, Data Valid	10 L		3.2	mA
Ready, Refresh	1 OH		-80	$\mu \mathrm{~A}$
	IOL		1.6	mA
Active, Clock	IOH		-40	$\mu \mathrm{~A}$

Electrical Characteristics Over Operating Temperature Range

(Unless otherwise specified)

Parameter		Symbol	Min.	Typ. ${ }^{\text {(5) }}$	Max.	Units	Conditions
Supply Current	HDSP-8716/-8724	Icc		560	1150	mA	Vcc=5.25V, "\$" Displayed in All Character Locations, All Outputs Open
	HDSP-8732/-8740'	Icc		700	1320	mA	
Time Average Luminous Intensity Per Digit, 10 Segments on ${ }^{[1]}$		IV	. 24	. 70		mod	VCC=5.0V, Digit Average '\$' Displayed In All Character Locations, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Threshold High (except $\overline{\text { Reset }}$) Input Threshold High - $\overline{\text { Reset }^{[2]}}$ Input Threshold Low - All Inputs		V_{1}	2.0			V	$V_{C C}=5.0 \mathrm{~V} \pm .25 \mathrm{~V}$
		$V_{\text {IH }}$	3.0			V	
		$\mathrm{V}_{\text {IL }}$			0.8	V	
Data Out, Data Valid, Ready, Refresh, Output Voltage		VOH	2.4			V	$1 \mathrm{OH}=-80 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
		VOL			0.5	V	$10 L=3.2 \mathrm{~mA}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}$
$\overline{\text { Active, Clock Output Voltage }}$		VOH	2.4			V	$1 \mathrm{OH}=-40 \mu \mathrm{~A}, \mathrm{VCC}=4.75 \mathrm{~V}$
		VOL			0.5	V	$10 \mathrm{~L}=1.6 \mathrm{~mA}, V_{C C}=4.75 \mathrm{~V}$
Address, ${ }^{[3]}$ Expand, Input Current		IIH			-0.3	mA	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=5.25 \mathrm{~V}$
		IIL			-0.6	mA	$\mathrm{V}_{11}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=5.25 \mathrm{~V}$
$\overline{\text { Blank Input Current }}$		SIH			-0.5	mA	$\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
		IIL			-1.0	mA	$V_{\text {IL }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.25 \mathrm{~V}$
Reset Input Current		HH	,		-0.5	mA	$\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V}, \mathrm{~V}_{C C}=5.25 \mathrm{~V}$
		IIL			-1.0	mA	$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=5.25 \mathrm{~V}$
Data In, $\overline{\text { Chip Select, Input Current }}$		11	-10		+10	$\mu \mathrm{A}$	$0<V_{1}<V_{c c}$
Peak Wavelength		APEAK		655		nm	
Dominant Wavelength ${ }^{[4]}$		λ_{d}		640		nm	

NOTES:

1. The luminous intensity ratio between segments within a digit is designed so that each segment will have the same luminous sterance. Thus, each segment will appear with equal brightness to the eye.
2. External reset may be initiated by grounding Reset with either a switch or open collector TTL gate for a minimum time of 50 ms . For Power On Reset to function properly, Vcc power supply should turn on at a rate $>100 \mathrm{~V} / \mathrm{S}$.
3. Momentary peak surge currents may exist on these lines. However, these momentary currents will not interfere with proper operation of the HDSP-8716/-8724/-8732/-8740.
4. The dominant wavelength, λ_{d}, is derived from the C.I.E. chromaticity diagram and represents that single wavelength which defines the color of the device, standard red.
5. All typical values at $\mathrm{VCC}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

System Overview

The HDSP-8716/-8724/-8732/-8740 Alphanumeric Display Controllers provide the interface between any ASCII based Alphanumeric System and the HDSP-6508 Alphanumeric Display. ASCII data is loaded into the system by means of any one of four data entry modes - Left, Right, RAM, or Block Entry. This ASCII data is stored in the internal RAM memory of the system. The system may also be expanded to form multiple line panels with system to system control signals.

The user interfaces to any of the system through eight DATA IN inputs, six ADDRESS inputs (RAM mode), a $\overline{\text { CHIP SELECT }}$ input, $\overline{\text { RESET }}$ input, $\overline{\text { BLANK }}$ input, EXPAND input, six DATA OUT outputs, a READY output, DATA VALID output, REFRESH output, and CLOCK output. A low level on the $\overline{\text { RESET }}$ input clears the display and initializes the system. A low level on the $\overline{\mathrm{CHIP}}$
$\overline{\text { SELECT }}$ input causes the system to load data from the DATA IN and ADDRESS inputs into the system. A special control word causes the controller to output a STATUS WORD, CURSOR ADDRESS, and a string of ASCII characters through the DATA OUT outputs and DATA VALID output. A low level on the EXPAND input allows two or more systems to be configured for multiple line display panels. Pulse width modulation of display luminous intensity can be provided by connecting $\overline{\text { REFRESH }}$ to the input of a monostable multivibrator and the output of the monostable multivibrator to the BLANK input. A 400 kHz clock is provided on the CLOCK output. A system block diagram for the HDSP-8716/-8724/-8732/8740 systems is shown in Figure 1. The system is designed to refresh the display at a fixed refresh rate of 100 Hz . The display duty factor is optimized for each display length in order to maximize light output.

Figure 1. Block Diagram of the HDSP-8716/-8724/-8732/-8740 Alphanumeric Display System.

Control Mode/Data Entry

User interface to the HDSP-87XX series controller is via an 8-bit word which provides to the controller either a control word or standard ASCII data input. In addition to this user provided 8-bit word, two additional control lines, $\overline{\mathrm{CHIP}}$ SELECT and READY, allow easily generated "handshake" signals for interface purposes.
A logic low applied to the CHIP SELECT input (minimum six microseconds) causes the controller to read the 8 DATA IN lines and determine whether a control word or ASCII data word is present, as determined by the logic state of the most significant bit (D_{7}). If the controller detects a logic high at D_{7}, the state of $D_{6}-D_{0}$ will define the data entry mode and appropriate display length.

The 8 bit control data word format is outlined in Figure 2. For the control word (D_{7} high), bits D_{5} and D_{4} define the selected data entry mode (Left entry, Right entry, etc.) and bits D_{3} to D_{0} define display length. Bit D_{6} is ignored.
Control word inputs are first checked to verify that the control word is valid. If the word is valid, the present state - next state table shown in Figure 3 is utilized to determine whether or not to clear the display. RAM entry can be used as a powerful editing tool or can be used to preload the cursor. With other transitions, the internal memory is cleared. The CONTROL WORD $1 X X X 11 X_{2}$ is used by the controller to initiate the DATA OUT function.

Figure 2. Control Word Format for the HDSP-8716/-8724/-8732/-8740 Alphanumeric Display System.

Figure 3. Present State-Next State Diagram for the HDSP-8716/-8724/-8732/-8740 Alphanumeric Display System.

Figure 4. Display Commands for the HDSP-87 16/-8724/-8732/-8740 Alphanumeric Display System.

If D_{7} is a logic low when the DATA IN lines are read，the controller will interpret $\mathrm{D}_{6}-\mathrm{D}_{0}$ as standard ASCII data to be stored，decoded，and displayed．The system accepts the standard 7－bit ASCII code．However，the HDSP－87XX system displays only the 64 character subset｜2016（space） to $5 \mathrm{~F}_{16}$（ \uparrow ）and ignores all ASCII characters outside this subset with the exception of those characters defined as display commands．These display commands are shown in Figure 4．The displayed character set for the HDSP－ 87 XX system is shown in Figure 5.

Regardless of whether a control word or ASCII data word is presented by the user，a READY signal is generated by the controller after the input word is processed．This READY signal goes low for 35μ s and upon a positive transition，a new CHIP SELECT may be accepted by the controller．Data Entry Timing is shown in Figure 6.

8irs	$\begin{array}{\|l\|l} \substack{0_{3} \\ p_{0} \\ p_{0} \\ 0_{0}} \end{array}$	¿			$\left\|\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \end{array}\right\|$?		：	$\begin{aligned} & i \\ & \vdots \\ & i \end{aligned}$			1	$\begin{array}{\|l\|l} 1 \\ \vdots \\ 0 \end{array}$		\vdots	$\begin{aligned} & 1 \\ & \vdots \\ & \vdots \end{aligned}$						\vdots	！
$\mathrm{O}_{6} \mathrm{O}_{5} \mathrm{o}_{4}$	Hex	－		1	2			4	5		6	7	8			A				－		E	
\cdots	2	moam	mea）	$!$	＂	王		鴯	名		L	1	＜	〉		＊	＋			－			1
$0 \cdot 1$	3	\square		1	2	\exists		4	5	\square		7	日	5		：				$=$		د	
100	4	区	\square	A	日	［		D	E	F	F	\square	H	H	I	J	K		L	M		N	\square
10.1	5	P	P	\square	R	5		T	\sqcup		V	W	X		Y	Z	［			$]$		\nearrow	¢

Figure 5．Display Font for the HDSP－8716／－8724／－8732／－8740 Alphanumeric Display System．

DATA ENTRY TIMING

DATA EATRY MODE		FUNCTION									
	DATA HOLDTINE＊	DATA． ENTRY BS	HT	LF	CR	US	WSERT	DEL．	VT	$F \mathrm{~F}$	RS
LEFT， Single	25 μ s	250μ \％ 215 峧	23504	505ks	220Hs	200\％s	6650	645\％／5			
LEFT， EXPANDED	25 $\mu \mathrm{s}$	3454ts $265 / 15$	265 μ \＄	265如	245\％／3	245 ${ }^{\text {a }}$	$206 \mu s$	6909rs	250 $\mu \mathrm{s}$ ．	630 $/ \mathrm{s}$	2454．
HIGHT	26／s	$480 \mu \mathrm{~s}$ 480jes		485μ							
RAMA		220， 5									
BLOCK	25 cs ，		FOLLO	WING	GHTMO	STCHAR	RACTEA				
CONTROL	26／4	5450， 5									
DATA OUT	25 $\mu \mathrm{s}$	280／us $+36 \mathrm{n} / \mathrm{s}$	WHERE	$n=C O$	FFiGUR	ED OIS	LAY LE	NGTH			

＊MINIMUM TIME THAT DATA INPUTS MUST REMAIN VALID AFTER CHIP SELECT GOES LOW．
＊＊MINIMUM TIME THAT RAM ADDRESS INPUTS MUST REMAIN VALID AFTER CHIP SELECT GOES LOW．

Figure 6．Data Entry Timing and Data Entry Times for the HDSP－8716／－8724／－8732／－8740 Alphanumeric Display System．

Left Entry Mode

With Left entry, characters are entered in typewriter fashion, i.e., to the right of all previous characters. Left entry uses a blinking cursor to indicate the location where the next character is to be entered. CLEAR loads the display with spaces and resets the cursor to the leftmost display location. BACKSPACE and FORWARDSPACE move the cursor without changing the character string. Thus, the user can backspace to the character to be edited, enter a character and then forwardspace the cursor. CARRIAGE RETURN resets the cursor to the leftmost display location leaving the display unchanged. The DELETE function deletes the displayed character at the cursor location and then shifts the character string following the cursor one location to the left to fill the void of the deleted character. The INSERT CHARACTER sets a flag inside the system that causes subsequent ASCII characters to be inserted to the left of the character at the cursor location. As new characters are entered, the cursor, the character at the cursor, and all characters to the right of the cursor are shifted one location to the right. The INSERT function is terminated by a second INSERT CHARACTER, or by BACKSPACE, FORWARDSPACE, CLEAR, CARRIAGE RETURN, or DELETE. In Left entry mode, after the display is filled, the system ignores all characters except BACKSPACE, CARRIAGE RETURN, and CLEAR. The system allows the cursor to be positioned only in the region between the leftmost display character and immediately to the right (offscreen) of the rightmost display character.
Expanded Left entry is selected by grounding the EXPAND input prior to $\overline{R E S E T}$. Expanded Left entry mode
allows several HDSP-87XX systems to be connected into a multiple line panel. Expanded Left entry uses the ERI input, $\overline{E L I}$ input, $\overline{\text { LEFT }}$ input, and $\overline{\text { ACTIVE }}$ output to provide a handshake between each system as shown in Figure 7. With the proper connections, the cursor can be moved in a circular fashion from the end of the last line to the beginning of the first line, or such that it shifts offscreen and is lost until the next CLEAR/HOME display command. Expanded Left entry adds three display commands: CURSOR UP moves the cursor to the same location in the preceeding line; CURSOR DOWN moves the cursor to the same location in the following line; CLEAR/HOME loads all displays with spaces and resets the cursor to the leftmost display location in the first line. The CLEAR command in Left entry mode is replaced by the LINE FEED function. LINE FEED moves the cursor to the leftmost display location in the following line leaving the current line unchanged.

Right Entry Mode

In Right entry mode, characters are entered at the right hand side of the display and shifted to the left as new characters are entered. In this mode, the system stores 48 ASCII characters, although only the last characters entered are displayed. CLEAR loads the display with spaces. BACKSPACE shifts the display one location to the right, deleting the last character entered and displaying the next character in the 48 character buffer. Right entry mode is a simple means to implement the walking or "Times-Square" display. In this mode, the cursor is located immediately to the right (offscreen) of the rightmost displayed character.

Figure 7. External Connections for Expanded Left Entry Mode for the HDSP-8716/-8724/-8732/-8740 Alphanumeric Display System.

Block Entry Mode

Block entry allows the fastest data entry rate of all four modes. In this mode, characters are loaded from left to right as with Left entry. However, with Block entry, after the display is completely loaded, the next ASCII character is loaded in the leftmost display location, replacing the previous displayed character. While Block entry has a non-visible cursor, the cursor is always loaded with the address of the next character to be entered. The display can be cleared and the cursor reset to the leftmost display location by loading in a new BLOCK control word.

RAM Entry Mode

In RAM entry, ASCII characters are loaded at the address specified by the six bit RAM address. Regardless of display length, address 00 is the leftmost display character. Out of range RAM addresses are ignored. While RAM entry has a non-visible cursor, the cursor is always
preloaded with the address to the right of the last character entered. This allows the cursor to be preloaded with an address prior to going into any other entry mode. The display can be cleared by loading in a new RAM control word.

Power-On Reset/Reset

When power is first applied to the system, the system clears the display and tests the state of the DATA INPUT, D_{7}. If $D_{7}>2.0 \mathrm{~V}$, the system loads the control word on the DATA INPUTS into the system. If $\mathrm{D}_{7} \leq 0.8 \mathrm{~V}$ or the system sees an invalid control word, the system initializes as Left entry for a 40 character display with a flashing cursor in the leftmost location. During RESET, the system also tests the state of the EXPAND input. If EXPAND is low, the system initializes in expanded left entry mode. A flow chart that describes the $\overline{\operatorname{RESET}}$ function is shown in Figure 8. For POWER-ON RESET to function properly, the

Figure 8. Reset Sequence for the HDSP-87 16/-8724/-8732/-8740 Alphanumeric Display System
power supply must turn on at a rate $>100 \mathrm{~V} / \mathrm{s}$. In addition, the system can be reset by pulling the $\overline{\text { RESET input low for }}$ a minimum of 50 milliseconds. POWER-ON RESET/ $\overline{\text { RESET }}$ timing is shown in Figure 9.
If some entry mode or display length is desired other than 40 character Left entry, it is necessary to either load the
appropriate control word or provide a control word during POWER-ON RESET/RESET. The circuit shown in Figure 10 can be used to load any desired preprogrammed control word into the HDSP-87XX Series Display Controller during POWER-ON RESET/RESET.

Figure 9. POWER-ON RESET/RESET Timing for the HDSP-8716/-8724/-8732/-8740 Alphanumeric Display System.

Figure 10. External Circuitry to Load a Control Word into the HDSP-8716/-8724/-8732/-8740 Alphanumeric Display System Upon POWER-ON RESET/RESET.

Data Out

Data stored in the HDSP-87XX system is available to the user upon command. Data Out is initiated by the control word 1 XXX 11 XX 2. Following this control word, the system outputs a STATUS WORD, CURSOR ADDRESS, and a string of ASCII data characters. The STATUS WORD specifies the data entry mode and the display length of the system. The STATUS WORD is the same format as a valid control word with D_{7} and D_{6} deleted. The CURSOR ADDRESS specifies the location of the cursor within the display. The CURSOR ADDRESS of the leftmost display location is address 00. In Expanded Left entry mode, a CURSOR ADDRESS of $63\left(3 F_{16}\right)$ is used to indicate a nonactive line. The system outputs the same number of ASCII data characters as the display length specified by the control word. The first ASCII data character is always the leftmost display character. The positive edge of the DATA VALID output can be used to load the DATA OUTPUT words into the user's system. The DATA OUT timing for the HDSP-87XX systems is summarized in Figure 11.

Luminous Intensity Modulation

Pulse width modulation of display luminous intensity can be provided by connecting the REFRESH output of the system to the input of a monostable multivibrator. The output of the monostable multivibrator should then be connected to the BLANK input of the system. Modulation of display luminous intensity is then achieved by varying the delay of the monostable multivibrator with a potentiometer or photoresistor. $\overline{\text { REFRESH }}$ is repeated at a rate of 10 ms divided by the configured display length. For example, an HDSP-8732 system, when configured for a 32 character display length, would pulse the REFRESH output every $312.5 \mu \mathrm{~s}$. The circuit shown in Figure 12 may be utilized to provide manual control of display luminous intensity. Automatic control may be achieved by substituting an appropriate value photoconductor for potentiometer R_{1}. If luminous intensity modulation is not desired, BLANK should be left open.

STATUS WORD FORMAT (A)

$$
D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}
$$

Y Y Y Y = DISPLAY LENGTH

CURSOR ADDRESS FORMAT (B)
CURSOR ADDRESS $=$ NO. OF CHARACTERS FROM THE LEFT

DATA WORD FORMAT (1 - N)
LOWEST 6 BITS OF ASCII CODE
WORD (1) = LEFTMOST DISPLAY CHARACTER
WORD $(\mathrm{N})=$ RIGHTMOST DISPLAY CHARACTER

Figure 11. Data Out Timing and Format for the HDSP-8716/-8724/-8732/-8740 Alphanumeric Display System.

Microprocessor Interface

Interfacing the HDSP-87XX Series Display System to microprocessor systems depends on the needs of the particular application. Figure 13 shows a latched interface between the host microprocessor and the HDSP-87XX system. The latch provides temporary storage to avoid making the host microprocessor wait for the system to accept data. Data from the host microprocessor system is loaded into the 74LS273 octal register on the positive transition of the clock input (pin 11). At the same time, the $\overline{\text { CHIP SELECT }}$ input is forced low. The CHIP SELECT input stays low until READY goes low. The host microprocessor should avoid loading new data into the 74LS273 as long as BUSY is high. The latched interface can be implemented with an octal register and $\overline{S R}$ flip-flop if the HDSP-87XX system is operated in Left, Right, or Block entry. RAM entry requires an additional register for the RAM address inputs. Additional flexibility can be achieved by using a peripheral interface adapter (PIA) to interface the HDSP-87XX system to the host microprocessor system. The PIA provides a data entry handshake between the host microprocessor system and the HDSP-87XX system and allows the host microprocessor system to read the Data Output port of the HDSP-87XX system.

Figure 12. External Circuitry to Vary the Luminous Intensity of the HDSP-8716/-8724/-8732/-8740 Alphanumeric Display System.

*CS IS A LOGICAL COMBINATION OF HIGH ORDER ADDRESS BITS THAT DISTINGUISH THE ADDRESS OF THE HDSP-8716/-8724/-8732/-8740 FROM THE REST OF THE MICROPROCESSOR SYSTEM.

Figure 13. Latched Interface to the HDSP-87XX Series Alphanumeric Display System.

Package Dimensions

HDSP-8716

HDSP-8724
\qquad

HDSP-8732

Package Dimensions

HDSP-8740

NOTES: (1) POWER LEADS SHOULD BE 18-20 GAUGE STRANDED WIRE.

PIN	DESCRIPTION
1	RAM ADDRESS, A_{0}
2	$\overline{\text { EXPAND }}$
3	RAM ADDRESS, A_{1}
4	$\overline{\text { CHIP SELECT }}$
5	RAM ADDRESS, A_{2}
6	DATA IN, D_{0}
7	RAM ADDRESS, A
8	DATA IN, D_{1}
9	RAM ADDRESS, A_{4} (ERI)
10	DATA IN, D_{2}
11	RAM ADDRESS, A5 (LEFT)
12	DATA IN, D_{3}
13	$\overline{\text { ACTIVE }}$
14	DATA IN, D_{4}
15	RESET
16	DATA IN, D
17	NOCONNECTION

PIN	DESCRIPTION
18	DATA IN, D
19	NO CONNECTION
20	DATA IN, D7
21	NO CONNECTION
22	DATA OUT, DO
23	DATA OUT, DO
24	DATA OUT, DO
25	DATA OUT, DO
25	DATA OUT, DO4
26	DATA OUT, DO5
27	READY
28	DATA VALID
29	DATA
30	4OO KHZ CLOCK OUT
31	REFRESH
32	NO CONNECTION
33	DISPLAY BLANK
34	NO CONNECTION

HEWLETT PACKARD

HIGH PERFORMANCE GREEN DISPLAYS

$3^{\prime \prime}(7.6 \mathrm{~mm})$ HDSP- 3600 Series $.43^{\prime \prime}$ (10.9 mm) HDSP-4600 Series
 $.56^{\prime \prime}(14.2 \mathrm{~mm})$ HDSP-5600 Series $.8^{\prime \prime}(20 \mathrm{~mm})$ HDSP-8600 series

Features

- HIGH LIGHT OUTPUT
- LOW CURRENT OPERATION
- AVAILABLE IN FOUR SIZES
- INDUSTRY STANDARD PINOUTS
- CATEGORIZED FOR LUMINOUS INTENSITY AND COLOR
- IC COMPATIBLE
- MECHANICALLY RUGGED
- . 56 " AVAILABLE IN SINGLE AND DUAL DIGIT PACKAGES

Description

These displays are built using Gallium Phosphide green light emitting diodes. To optimize contrast, the package faces are painted gray. The different character sizes are viewable at varying distances: . 3 ", 10 feet; . 43 ", 15 feet; .56 ", 20 feet; $.8 ", 30$ feet. These displays are ideal for use in instruments, point of sale terminals, clocks, and appliances.

Devices

Part No. HDSP-	Character Size	Description	Package Drawing
$\begin{aligned} & -3600 \\ & -3601 \\ & -3603 \\ & -3606 \end{aligned}$	$\begin{gathered} .3^{*} \\ (7.6 \mathrm{~mm}) \end{gathered}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal Overflow $=1$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$
$\begin{aligned} & -4600 \\ & -4601 \\ & -4603 \\ & -4606 \end{aligned}$	$\begin{gathered} .43^{\prime \prime} \\ (10.9 \mathrm{~mm}) \end{gathered}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal Overtow ± 1	$\begin{aligned} & E \\ & F \\ & G \\ & H \end{aligned}$
$\begin{aligned} & -5601 \\ & -5603 \\ & -5607 \\ & -5608 \\ & -5621 \\ & -5623 \end{aligned}$	$\begin{gathered} .56^{*} \\ (14.2 \mathrm{~mm}) \end{gathered}$	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Overflow \pm Common Anode Overflow \pm Common Cathode Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	I J K L M N
$\begin{aligned} & -8600 \\ & -8601 \\ & -8603 \\ & -8605 \\ & -8606 \end{aligned}$	$\begin{gathered} .8^{\prime \prime} \\ (20 \mathrm{~mm}) \end{gathered}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal Overflow ± 1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{P} \\ & \mathrm{Q} \\ & \mathrm{R} \\ & \mathrm{~S} \end{aligned}$

Package Dimensions (HDSP-3600 Series)

A,B,C

D

	FUNCTION			
PIN	$\underset{3600}{A}$	$\underset{3601}{8}$	3603	$\underset{3606}{0}$
1	CATHODE-:	CATHODE-	CATEODEIG:	ANODE-4
2	CATHODE.	CATHODE:	Anodes	NOPAN
3	ANODEt3	ANODE ${ }^{\text {a }}$	ANOCES	CATHODEd
4	NO PIN	NO Pin	ANODE	CATHODE
${ }^{*}$	NOP PIN	NOP Pan	ANODE*	Cathode
6	CATHODE.dp	NO CONA. ${ }^{51}$	CATHODEI ${ }^{\text {a }}$	ANODE:
7	CATHODEA	CATHODEA	ANODE ${ }^{\text {d }}$ -	ANODE
*	Cathoderd	CATHODE.d	ANODE-4	ANODE-dp
9	NO CONN, 5 [CATHODE-dp	ANODE ${ }^{\text {A }}$	NOPN
10	CATHOOE.	CATHOOE-6	ANODE	CATHODE
11	CATHODE,	CATHODES		CATHODED
12	NOO PIN	NO PIN		CATHODE
13	CATHODED	CATHODE-G	,	ANODE-
14	ANODEt 3	ANODE ${ }^{\text {a }}$ (ANODE.6

A,B,D

SIDE

C
SIDE

A,B,C,D
END

Package Dimensions (HDSP-4600 Series)

E

F,G

H

FRONT VIEW

E, F, G, H
END VIEW

E, F, G, H
SIDE VIEW

PIN	FUNCTION			
	$\underset{4600}{E}$	$\underset{4601}{F}$	$\underset{4608}{G}$	$\begin{gathered} \mathrm{H} \\ 4806 \end{gathered}$
${ }^{*}$	CATHODE.a	CATHODE-A	ANODE:A	CATHODE-d
2	CATHODE. ${ }^{\text {a }}$	CATHODE:	ANOD**	ANODE ${ }^{\text {d }}$
3	AnODIt ${ }^{\text {a }}$	ANODEIs]	CATHONEIt	NO Plat
4	NO PIN	NOPAN	NO PIN	CATHODE-G
\$	NOP PN	no Pata	NO PAN	CATHOEE.
6	CATHODE-dp	NO CONM. [5]	NO CONN: ${ }^{\text {a }}$	ANODE
7	CAIHODE	CATHODE	ANOLEE	ANOOE ${ }^{\text {a }}$
8	CATHODE 4	CATHODE ${ }^{\text {C }}$	ANODE-	ANODE-dp
9	NO CONN. ${ }^{\text {c }}$]	CATHODE 6	ANODE-dp	CATHODE-dp
10	CATHODE-K	CATHODE -	ANODE-	CATHODE. ${ }^{\text {b }}$
11	CATHODE.	CATHOOE-9	ANODE,	CATHODE:
12	NOP PiN	NO PIN	No Plin	NO PiN
13	CATHODED	CATHODE.	ANODE	ANODE-a
14	ANODEL31	ANODEtal	CATHOEm的	ANODE: ${ }^{\text {a }}$

Package Dimensions (HDSP-5600 Series)

PIN	FUNCTION					
	$\stackrel{1}{5601}$	$\underset{5603}{J}$	$\stackrel{K}{\mathbf{K}}$	$\frac{1}{5608}$	5621	$\begin{gathered} \mathrm{N} \\ 5623 \end{gathered}$
1	CATHODE	ANODE	CATHODE	ANODE C	ECATHODENO. 1	E ANODE NO. 1
2	CATHODED	ANODE d	ANODE C, ${ }^{\text {d }}$	CATHODE C ,	D CATHODENO. 1	D ANODE NO. 1
3	ANODE ${ }^{(3)}$	CATHODE ${ }^{(6)}$	CATHODE b	ANODE ${ }^{\text {a }}$	C CATHODE NO. 1	C ANODENO. 1
4	CATHODEC	ANODE 9	ANODE a, b, DP	CATHODE $a, b, D P$	DP CATHODE NO. 1	DP ANODE NO. 1
5	CATHODE DP	ANODE DP	CATHODEDP	ANODE DP	ECATHODE NO. 2	E ANODE NO. 2
6	CATHODED	ANODE ${ }^{\text {a }}$	CATHODE	ANODE a	D CATHODE NO. 2	D ANODE NO, 2
7	CATHODE	ANODE a	ANODE $\mathrm{a}_{1}, \mathrm{~b}, \mathrm{DP}$	CATHODE $a, b, D P$	G CATHODE NO. 2	G ANODE NO: 2
8	ANODE ${ }^{\text {[3] }}$	CATHODE ${ }^{\text {Pi }}$	ANODE c , d	CATHODE C ,	C CATHODE NO. 2	C ANODE NO. 2
9	CATHODE f	ANODE:	CATHODE d	ANODE ${ }^{\text {a }}$	DP CATHODE NO. 2	DP ANODE NO. 2
10	CATHODE 9	ANODE 9	NO PIN	NO PIN	B CATHODE NO. 2	B ANODE NO. 2
11					A CATHODE NO. 2	A ANODE NO. 2
12					F CATHODE NO. 2	F ANODE NO. 2
13					DIGIT NO. 2 ANODE	DIGIT NO. 2 CATHODE
14.					DlGIT NO. 1 ANODE	DIGIT NO. 1 CATHODE
15				-	Q CATHODE NO. 1	B ANODE NO. 1
16					A CATHODE NO. 1	A ANODE NO. 1
17					G CATHODE NO. 1	Q ANODE NO. 1
18					F CATHODE NO. 1	FANODE NO. 1

Package Dimensions (8600 Series)

FRONT VIEW P, Q

1. Dimensions in millimeters and (inches).
2. All untoleranced dimensions are for reference only.
3. Redundant anodes.
4. Unused dp position
5. See Internal Circuit Diagram.
6. Redundant Cathodes.

Internal Circuit Diagram (HDSP-3600 Series)

A

B

C

D

Internal Circuit Diagram (HDSP-4600 Series)

Internal Circuit Diagram (HDSP-5600 Series)

K

L

Internal Circuit Diagram (HDSP-8600 Series)

0

P

0

R

s

Absolute Maximum Ratings (All Products)

Average Power per Segment
or DP ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Peak Forward Current per Segment|8| or DP ($T_{A}=25^{\circ} \mathrm{C}$)
DC Forward Current per Segment ${ }^{[9]}$ or $D P\left(T_{A}=25^{\circ} \mathrm{C}\right.$)

Operating Temperature Range
Storage Temperature Range
Reverse Voltage per Segment or DP
Lead Solder Temperature
(1.59 mm [1/16 inch] below seating plane)

105 mW
90 mA
(Pulse Width $\leq 2 \mathrm{~ms}$)

30 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
3.0 V

Notes:

8. See Figure 1 to establish pulsed operating conditions. 9. Derate maximum DC current above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at $.38^{\circ} \mathrm{C}$ per segment, see Figure 2.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Device HDSP.	Test Condition	Min	Typ	Max	Units
Luminous Intensity/ Segment[10, 11] (Digit Average)	lv	3600 Series	10 mADC	400	1100		$\mu \mathrm{cd}$
			60 mA Pk 1:6 Duty Factor	"	1440		
		4600 Series	10 mA DC	460	1300		$\mu \mathrm{cd}$
			60 mAPk 1.6 Duty Factor		1700		
		5600 Series	10 mADC	600	1500		$\mu \mathrm{cd}$
			60 mA PK 1:6 Duty Factor		1960		
"		$\begin{aligned} & 8600 \\ & \text { Series } \end{aligned}$	10 mA DC	700	1500		$\mu \mathrm{cd}$
			60 mAPk 1:6 Duty Factor		1960		
Peak Wavelength	АреAK	All Devices			566		nm
Dominant Wavelength[12, 13] (Digit Average)	λd	All Devices	,		571	577	nm
Forward Voltage/Seg. or D.P.[14]	V_{F}	All Devices	IF $=10 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage/Seg. or D.P. [14]	$V_{\text {f }}$	All Devices	$\mathrm{IR}^{2}=100 \mu \mathrm{~A}$	3.0	50.0		\checkmark
Thermal Resistance LED Junction-to-pin	R(0)-PIN	$\begin{gathered} 3600 / 4600 \\ \text { Series } \end{gathered}$			285		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$
		5600 Series			345		
		8600 Series			375		

Notes:

10. Case temperature of the device immediately prior to the intensity measurement is $25^{\circ} \mathrm{C}$.
11. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
12. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
13. The displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
14. Quality level for electrical characteristics is 1000 parts per million.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration.

Figure 2. Maximum Allowable DC Current per Segment vs. Ambient Temperature.

Figure 4. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

Electrical

These display devices are composed of eight light emitting diodes per digit, with light from each LED optically stretched to form individual segments and decimal points.
The devices utilize LED chips which are made from GaP on transparent GaP substrate.
These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4 should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:

$$
\begin{aligned}
& V_{F} M A X=2.0 \mathrm{~V}+\mathrm{JPEAK}(50 \Omega) \\
& \text { For: IPEAK } \geq 5 \mathrm{~mA}
\end{aligned}
$$

Temperature derated strobed operating conditions are obtained from Figures 1 and 2. Figure 1 relates pulse duration (t_{p}), refresh rate (\mathbf{f}), and the ratio of maximum peak current to maximum dc current (IPEAK MAX/IDC MAX). Figure 2 presents the maximum allowed dc current vs. ambient temperature. Figure 1 is based on the principle that the peak junction temperature for pulsed operation at a specified peak current, pulse duration and refresh rate should be the same as the junction temperature at maximum DC operation. Refresh rates of 1 kHz or faster minimize the pulsed junction heating effect of the device resulting in the maximum possible time average luminous intensity.

The time average luminous intensity can be calculated knowing the average forward current and relative efficiency characteristic, ƏIPEAK, of Figure 3. Time average luminous intensity for a device case temperature of $25^{\circ} \mathrm{C}$, Iv $\left(25^{\circ} \mathrm{C}\right.$), is calculated as follows:

$$
\text { IV }\left(25^{\circ} \mathrm{C}\right)=\left[\frac{I_{\mathrm{AVG}}}{10 \mathrm{~mA}}\right]\left[\eta_{\text {IPEAK }}\right][\operatorname{IV} \text { DATA SHEET }]
$$

Example: For HDSP-4600 series

$$
\begin{aligned}
\eta \text { IPEAK } & =1.31 \text { at IPEAK }=60 \mathrm{~mA} . \text { For } D F=1 / 6 \\
\text { IV }\left(25^{\circ} \mathrm{C}\right) & =\left[\frac{10 \mathrm{~mA}}{10 \mathrm{~mA}}\right][1.31][1.3 \mathrm{mcd}]=\begin{array}{l}
1.7 \mathrm{mcd} / \\
\text { segment }
\end{array}
\end{aligned}
$$

The time average luminous intensity may be adjusted for operating junction temperature by the following exponential equation:

$$
\operatorname{lv}\left(T_{J}\right)=\operatorname{lv}\left(25^{\circ} C\right) e^{\left[k\left(T_{J}+25^{\circ} C\right)\right]}
$$

where $T_{J}=T_{A}+P_{D} \cdot R \theta_{J-A}$

DEVICE	K
$-3600 /-4600 /-5600 /-8600$	$-0.0044 /^{\circ} \mathrm{C}$

Mechanical

These devices are constructed utilizing a lead frame in a standard DIP package. The LED dice are attached directly to the lead frame. Therefore, the cathode leads are the direct thermal and mechanical stress paths to the LED dice. The absolute maximum allowed junction temperature, TJ MAX, is $105^{\circ} \mathrm{C}$. The maximum power ratings have been established so that the worst case V_{F} device does not exceed this limit.

Worst case thermal resistance pin-to-ambient is $400^{\circ} \mathrm{C} /$ W/Seg when these devices are soldered into minimum trace width PC boards. When installed in a PC board that provides R θ PIN-A less than $400^{\circ} \mathrm{C} / \mathrm{W} /$ Seg these displays may be operated at higher average currents as shown in Figure 2.
To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.
Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

Optical

The radiation pattern for these devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas.

$$
\operatorname{Lv}\left(c d / m^{2}\right)=\frac{I_{v}(c d)}{A\left(m^{2}\right)} \quad L v(f o o t l a m b e r t s)=\frac{\pi l_{v}(c d)}{A\left(f t^{2}\right)}
$$

DEVICE	AREA/SEG. mm 2	AREASEG. IN.2
HOSP-360X	2.5	.0039
HDSP-460X	4.4	0068
HDSP-560X	8.8	0137
HDSP-860X	14.9	.0231

Contrast Enhancement

The objective of contrast enhancement is to optimize display readability. Adequate contrast enhancement can be achieved in indoor applications through luminous contrast techniques. Luminous contrast is the observed brightness of the illuminated segment compared to the brightness of the surround. Appropriate wavelength filters maximize luminous contrast by reducing the amount of light reflected from the area around the display while transmitting most of the light emitted by the segment. These filters are described further in Application Note 964.

Chrominance contrast can further improve display readability. Chrominance contrast refers to the color difference between the illuminated segment and the surrounding area. These displays are assembled with a gray package and untinted encapsulating epoxy in the segments to improve chrominance contrast of the ON segments. Additional contrast enhancement in bright ambients may be achieved by using a neutral density gray filter such as. Panelgraphic Chromafilter Gray 10, or 3M Light Control Film (louvered film.

SEVEN SEGMENT DISPLAYS FOR HIGH LIGHT AMBIENT CONDITIONS

Features

- HIGH LIGHT OUTPUT Typical Intensities of up to $7.0 \mathrm{mcd} / \mathrm{seg}$ at 100 mA pk 1 of 5 duty factor.
- CAPABLE OF HIGH CURRENT DRIVE Excellent for Long Digit String Multiplexing
- FOUR CHARACTER SIZES
$7.6 \mathrm{~mm}, 10.9 \mathrm{~mm}, 14.2 \mathrm{~mm}$, and 20.3 mm
- CHOICE OF TWO COLORS

High Efficiency Red
Yellow

- EXCELLENT CHARACTER APPEARANCE

Evenly Lighted Segments
Wide Viewing Angle
Grey Body for Optimum Contrast

- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW CATEGORIZED FOR COLOR Use of Like Categories Yields a Uniform Display
- IC COMPATIBLE
- MECHANICALLY RUGGED

Description

The HDSP-3530/-3730/-5530/-3900 and HDSP-4030/-4130/ $-5730 /-4200$ are $7.6 \mathrm{~mm}, 10.9 \mathrm{~mm} / 14.2 \mathrm{~mm} / 20.3 \mathrm{~mm}$ high efficiency red and yellow displays designed for use in high light ambient condition. The four sizes of displays allow for viewing distances at $3,6,7$, and 10 meters. These seven segment displays utilize large junction high efficiency LED chips made from GaAsP on a transparent GaP substrate. Due to the large junction area, these displays can be driven at high peak current levels needed for high ambient conditions or many character multiplexed operation.

These displays have industry standard packages, and pin configurations and ± 1 overflow display are available in all four sizes. These numeric displays are ideal for applications such as Automotive and Avionic Instrumentation, Point of Sale Terminals, and Gas Pump.

Devices

			Descriptlon
Part No. HDSP-	Color		Package Drawing
3530		7.6 mm Common Anode Left Hand Decimal	A
3531	High Efficiency Red	7.6 mm Common Anode Right Hand Decimal	B
3533		7.6 mm Common Cathode Right Hand Decimal	C
3536		7.6 mm Universal Overflow ± 1 Right Hand Decimal	D
4030		7.6 mm Common Anode Left Hand Decimal	A
4031		7.6 mm Common Anode Right Hand Decimal	B
4033		7.6 mm Common Cathode Right Hand Decimal	C
4036	Yellow	7.6 mm Universal Overflow ± 1 Right Hand Decimal	D

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagrams D and H.

Part No. HDSP	Color	Description	Package Drawing
$\begin{aligned} & 3730 \\ & 3731 \\ & 3733 \\ & 3736 \end{aligned}$	High Efficiency Red	10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow ± 1 Right Hand Dec.	$\begin{aligned} & E \\ & F \\ & G \\ & H \end{aligned}$
$\begin{aligned} & 4130 \\ & 4131 \\ & 4133 \\ & 4136 \end{aligned}$	Yellow	10.9 mm Common Anode Left Hand Decimal 10.9 mm Common Anode Right Hand Decimal 10.9 mm Common Cathode Right Hand Decimal 10.9 mm Universal Overflow ± 1 Right Hand Dec.	$\begin{aligned} & E \\ & F \\ & G \\ & H \end{aligned}$
$\begin{aligned} & 5531 \\ & 5533 \\ & 5537 \\ & 5538 \end{aligned}$	High Efficiency Red	14.2 mm Common Anode Right Hand Decimal 14.2 mm Common Cathode Right Hand Decimal 14.2 mm Overflow ± 1 Common Anode 14.2 mm Overflow ± 1 Common Cathode	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~J} \\ & \mathrm{~K} \\ & \mathrm{~L} \end{aligned}$
$\begin{aligned} & 5731 \\ & 5733 \\ & 5737 \\ & 5738 \end{aligned}$	Yellow	14.2 mm Common Anode Right Hand Decimal 14.2 mm Common Cathode Right Hand Decimal 14.2 mm Overflow ± 1 Common Anode 14.2 mm Overflow ± 1 Common Cathode	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~J} \\ & \mathrm{~K} \\ & \mathrm{~L} \end{aligned}$
$\begin{aligned} & 3900 \\ & 3901 \\ & 3903 \\ & 3905 \\ & 3906 \end{aligned}$	High Efficiency Red	20.3 mm Common Anode Left Hand Decimal 20.3 mm Common Anode Right Hand Decimal 20.3 mm Common Cathode Right Hand Decimal 20.3 mm Common Cathode Left Hand Decimal 20.3 mm Universal Overflow ± 1 Right Hand Decimal	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{O} \\ & \mathrm{P} \\ & \mathrm{Q} \end{aligned}$
$\begin{aligned} & 4200 \\ & 4201 \\ & 4203 \\ & 4205 \\ & 4206 \end{aligned}$	Yellow	20.3 mm Common Anode Left Hand Decimal 20.3 mm Common Anode Right Hand Decimal 20.3 mm Common Cathode Right Hand Decimal $20,3 \mathrm{~mm}$ Common Cathode Left Hand Decimal 20.3 mm Universal Overflow ± 1 Right Hand Decimal	$\begin{aligned} & M \\ & N \\ & O \\ & P \\ & Q \end{aligned}$

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram Q.

Absolute Maximum Ratings (All Products)

Average Power per Segment
or DP ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Peak Forward Current per Segment or DP $\left(T_{A}=25^{\circ} \mathrm{C}\right)^{[1]}$

DC Forward Current per Segment|2|
or $\mathrm{DP}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)
Operating Temperature Range
Storage Temperature Range
Reverse Voltage per Segment or DP
Lead Solder Temperature
(1.59 mm [1/16 inch] below seating plane)
105 mW
135 mA
(Pulse Width $=0.16 \mathrm{~ms}$)
40 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
3.0 V
$260^{\circ} \mathrm{C}$ for 3 sec .

Notes:

1. See Figure 1 to establish pulsed operating conditions. 2. Derate maximum DC current above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at $.50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per segment, see Figure 2.

Package Dimensions (HDSP-3530/4030 Series)

A,B,C

D

	FUNCTION			
PIN	$\stackrel{A}{+3530 /-4030}$	$\begin{gathered} \mathrm{B} \\ -3531 f .4031 \end{gathered}$	$\begin{gathered} G \\ -2533 /-4033 \end{gathered}$	$\begin{gathered} D \\ -3536 \div 4036 \end{gathered}$
1	CATHODE*a	CATHODE.\&	CATHODE[6]	ANODE-d
2	CATHODE	CATHODE-	ANODE ${ }^{\text {a }}$	NO PIN
3	ANODE 3 3	ANODEE3砤	ANOEH ${ }^{\text {A }} 9$	CATHODE
4	NO PIN	NOPIN	ANODE-E	CATHODEC
5	\#	NO PAN	ANODE d	CATHODE
6	CATHODE dp	NO CONA [5]	CATHODEI6	ANODE-A
7	CATHODE	CATHODE-	ANODE- ${ }^{\text {P }}$	AAOODECC
8	CATHODEA	CATHODE ${ }^{\text {d }}$	ANODE 2	ANODE dia
9	NO CONN, 51	CATHODEdy	ANODE-b	NO PIN
10	CATHODE-C	CATHODEC	ANODE A	CATHULVE-dg
11	CATHODE	CATHOOE.g		CATHODE.
12	NO PIN	NO PIN		CATHODE-a
13	CATHODED	CATHODE*		ANODE-a
14	ANODEl3)	ANODE[3]		ANODE ${ }^{\text {a }}$

A,B,D SIDE

C
SIDE

END

Package Dimensions (HDSP-3730/4130 Series)

E

F,G
FRONT VIEW

H

Package Dimensions (5530/5730 Series)

PiN	FUNCTION			
	1	\downarrow	K	1.
1	CATHODE	ANODE	CATHODE	ANODE ${ }^{\text {a }}$
2	CATHODE ${ }^{\text {d }}$	ANODE d	ANODE c , d	CATHODE ϵ, d
3	ANODE ${ }^{(3)}$	CATHODE ${ }^{(6)}$	CATHODED	ANODE 6
4	CATHODE	ANODE 6	$\begin{aligned} & \text { ANODE a,b } \\ & \text { DP } \end{aligned}$	CATHODE a, b, DP
5	CATHODE DP	ANOOE DP	CATHODE OP	ANODE OP
6	CATHODE B	ANODE b	CATHODE	ANODEa
7	CATHODE a	ANODE a	ANODE $a_{c} b_{k}$ DP	CATHODE a.b. DP
8	ANODE ${ }^{(3)}$	CATHODE ${ }^{(6)}$	ANODE c, d	$\begin{aligned} & \text { CAFHODE } \\ & \text { c, } d \end{aligned}$
9	CATHODE f	ANODEf	CATHODEd	ANODE d
10	CATHODEg	ANODEg	NO Pin ${ }^{(51}$	NO PIN ${ }^{(5)}$

FRONT VIEW K, L SIDE VIEW I, J, K, L

Package Dimensions (3900/4200 Series)

FRONT VIEW M, P

FRONT VIEW N, O

FRONT VIEW 0

Pln	Function				
	$\begin{gathered} \bar{M} \\ 3900 / 4200 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 3901 / 4201 \end{gathered}$	$\begin{gathered} 0 \\ 3903 / 4303 \end{gathered}$	$\begin{gathered} P \\ 3905 / 4205 \end{gathered}$	$\frac{Q}{3906: 4206}$
1	NO PIN	NO PIN	NO PIN	ND PIN	NO PIN
2	CATHOOE A	CATHODE a	ANODE a	ANODE a	GATHODE A
3	CATHODE I	CATHODE	ANODE 1	ANODE 1	ANQDE A
4	ANODE ${ }^{33}$	ANODE ${ }^{[3]}$	GATHODE ${ }^{16:}$	CATHODE ${ }^{[5]}$	CATHODE
5	CATHCOE E	CATHOOE	ANODE E	ANODE E	CATHODE
6	ANODE ${ }^{\text {a }}$	ANODE'3	CATHODE ${ }^{198}$	CATHODE ${ }^{\text {c }}$ (CATHODE
7	CATHODE dp	NO. CONNEC	NO. CONNEC	ANODE dP	ANODE ${ }^{\text {a }}$
8	NO PiN	NO FIN	NOPIN	NO PIN	GATHODE dP
9	NO PIN	NO PEN	NO PIN	NO PIN	NO PIN
10	NO.PIN	CATHODE SP	ANODE do	NOPIN	ANODE dy
11	CATHODE A	CATHOOE A	ANODE ${ }^{\text {a }}$	ANODE A	CATHODE dP
12	ANODE ${ }^{\text {[3] }}$	ANODE ${ }^{\text {a }}$:	CATHODE ${ }^{\text {a }}$	CATHODE ${ }^{\text {明 }}$	CATHODE D
13	CATHODE C	CATHODE	ANODE c	ANODE C	ANODE
4	CATHOOE g	CATHODE g	ANODE 9	ANODE g	ANODE
15	CATHODE D	GATHODE b	ANODF b	ANODE ${ }^{\text {a }}$	ANODE a
16	NO PIN	NO PIN	NO PIN	INO PIN	NO PIN
17	ANODE ${ }^{33}$	ANODE ${ }^{(3)}$	CATHODE ${ }^{\text {E }}$	CATHODE ${ }^{(8)}$	CATHODEA
18	NO PIN	NO PIN	NOP PIN	NOPIN	NO PIN

[^9]
Internal Circuit Diagram (HDSP-3530/4030 Series)

A

B

C

D

Internal Circuit Diagram (HDSP-3730/4130 Series)

E

F

G

H

Internal Circuit Diagram (HDSP-5530/5730 Series)

1

J

K

L

Internal Circuit Diagram (HDSP-3900/4200 Series)

M

N

0

P

a

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Device HDSP.	Test Condition	Min	Typ	Max	Units
Luminous Intensity/ Segment ${ }^{19,10 \mid}$ (Digit Average)	Iv	$\begin{aligned} & 3530 \\ & 3730 \\ & 5530 \\ & 3900 \end{aligned}$	$100 \mathrm{~mA} \mathrm{Pk} ; 1$ of 5 Duty Factor	$\begin{aligned} & 1500 \\ & 1500 \\ & 2200 \\ & 2200 \end{aligned}$	$\begin{aligned} & 4500 \\ & 5000 \\ & 7000 \\ & 7000 \end{aligned}$		$\mu \mathrm{cd}$
		$\begin{aligned} & 3530 \\ & 3730 \\ & 5530 \\ & 3900 \end{aligned}$	20 mA DC		$\begin{aligned} & 3100 \\ & 3500 \\ & 4800 \\ & 4800 \end{aligned}$		$\mu \mathrm{cd}$
		$\begin{aligned} & 4030 \\ & 4130 \\ & 5730 \\ & 4200 \end{aligned}$	$100 \mathrm{~mA} \mathrm{Pk} ; 1$ of 5 Duty Factor	$\begin{aligned} & 1500 \\ & 1500 \\ & 2200 \\ & 2200 \end{aligned}$	$\begin{aligned} & 4500 \\ & 5000 \\ & 7000 \\ & 7000 \end{aligned}$		$\mu \mathrm{cd}$
		$\begin{aligned} & 4030 \\ & 4130 \\ & 5730 \\ & 4200 \end{aligned}$	20 mA DC		$\begin{aligned} & 2200 \\ & 2500 \\ & 3400 \\ & 3400 \end{aligned}$		$\mu c d$
Peak Wavelength	入PEAK	$\begin{aligned} & 3530 / 3730 / \\ & 5530 / 3900 \end{aligned}$			635		nm
		$\begin{aligned} & 4030 / 4130 t \\ & 5730 / 4200 \end{aligned}$			583		nm
Dominant Wavelengthi41, 12] (Digit Average)	λ_{d}	$\begin{array}{\|l\|} \hline 3530 / 3730 / \\ 5530 / 3900 \end{array}$			626		nm
		$\begin{aligned} & 4030 / 4130 / \\ & 5730 / 4200 \end{aligned}$		581.5	586	592.5	nm
Forward Voltage/Segment or D.P.[13]	V_{F}	All Devices	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		2.6	3.5	V
Reverse Voltage/Segment or D.P[13]	$V_{\text {R }}$	All Devices	$\mathrm{If}_{\mathrm{R}}=100 \mathrm{~mA}$	3.0	25.0		V
Temp, Coeff. of VF/Seg or D.P.	$\triangle V_{F}{ }^{\circ} \mathrm{C}$	All Devices	$\mathrm{IF}=100 \mathrm{~mA}$		-1.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-pin	R 0 J-PIN	$\begin{aligned} & 3530 / 4030 t \\ & 3730 / 4130 \end{aligned}$			282		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$
		$5530 / 5730$			345		${ }^{\circ} \mathrm{C} / W /$ Seg
		3900/4200			375		${ }^{\circ} \mathrm{C} /$ W/Seg

Notes:

9. Case temperature of the device immediately prior to the intensity measurement is $25^{\circ} \mathrm{C}$.
10. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
11. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
12. The yellow displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
13. Quality level for electrical characteristics is 1000 parts per million.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration

Figure 2. Maximum Allowable DC Current per Segment vs. Ambient Temperature

Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 5. Relative Luminous Intensity vs. DC Forward Current

Electrical

These display devices are composed of eight light emitting diodes, with light from each LED optically stretched to form individual segments and a decimal point.

The devices utilize LED chips which are made from GaAsP on a transparent GaP substrate.

These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4 should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:

$$
\begin{aligned}
& V_{F} M A X=2.15 \mathrm{~V}+\operatorname{IPEAK}(13.5 \Omega) \\
& \text { For: } I_{F} \geq 30 \mathrm{~mA}
\end{aligned}
$$

$$
V_{F} M A X=1.9 V+\operatorname{IDC}(21.8 \Omega)
$$

$$
\text { For: } 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}} \leq 30 \mathrm{~mA}
$$

Temperature derated strobed operating conditions are obtained from Figures 1 and 2. Figure 1 relates pulse duration (t_{p}), refresh rate (f), and the ratio of maximum peak current to maximum dc current (IPEAK MAX/IDC MAX). Figure 2 presents the maximum allowed dc current vs. ambient temperature. Figure 1 is based on the principle that the peak junction temperature for pulsed operation at a specified peak current, pulse duration and refresh rate should be the same as the junction temperature at maximum DC operation. Refresh rates of 1 kHz or faster minimize the pulsed junction heating effect of the device resulting in the maximum possible time average luminous intensity.

The time average luminous intensity can be calculated knowing the average forward current and relative efficiency characteristic, 引lPEAK, of Figure 3. Time average luminous intensity for a device case temperature of $25^{\circ} \mathrm{C}$, Iv ($25^{\circ} \mathrm{C}$), is calculated as follows:

$$
\operatorname{IV}\left(25^{\circ} \mathrm{C}\right)=\left[\frac{I_{\mathrm{AVG}}}{20 \mathrm{~mA}}\right]\left[\eta_{\text {IPEAK }}\right][\text { IV DATA SHEET }]
$$

Example: For HDSP-4030 series

$$
\begin{aligned}
& \eta_{\text {IPEAK }}=1.00 \mathrm{at} \text { IPEAK }=100 \mathrm{~mA} . \text { For } \mathrm{DF}=1 / 5: \\
& \operatorname{IV}\left(25^{\circ} \mathrm{C}\right)=\left[\frac{20 \mathrm{~mA}}{20 \mathrm{~mA}}\right][1.00][4.5 \mathrm{mcd}]=\begin{array}{r}
4.5 \mathrm{mcd} / \\
\text { segment }
\end{array}
\end{aligned}
$$

The time average luminous intensity may be adjusted for operating junction temperature by the following exponential equation

$$
\operatorname{Iv}\left(T_{J}\right)=\operatorname{Iv}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\left[\mathrm{k}\left(\mathrm{~T}_{J}+25^{\circ} \mathrm{C}\right)\right]}
$$

where $T_{J}=T_{A}+P_{D} \cdot R \theta_{J-A}$

DEVICE	K
$-3530 /-3730 /-5530 /-3900$	$-0.0131 /{ }^{\circ} \mathrm{C}$
$-4030 /-4130 /-5730 /-4200$	$-0.0112 /{ }^{\circ} \mathrm{C}$

Mechanical

These devices are constructed utilizing a lead frame in a standard DIP package. The LED dice are attached directly to the lead frame. Therefore, the cathode leads are the direct thermal and mechanical stress paths to the LED dice. The absolute maximum allowed junction temperature, TJ MAX, is $105^{\circ} \mathrm{C}$. The maximum power ratings have been established so that the worst case V_{F} device does not exceed this limit.

Worst case thermal resistance pin-to-ambient is $400^{\circ} \mathrm{C} /$ W/Seg when these devices are soldered into minimum trace width PC boards. When installed in a PC board that provides R θ PIN-A less than $400^{\circ} \mathrm{C} /$ W/Seg these displays may be operated at higher average currents as shown in Figure 2.

Optical

The radiation pattern for these devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas.

$$
\begin{gathered}
\mathrm{Lv}_{\mathrm{V}}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\frac{\mathrm{I}_{\mathrm{v}}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{~m}^{2}\right)} \\
\mathrm{Lv}_{\mathrm{V}}(\text { footlamberts })=\frac{\pi \operatorname{l}_{\mathrm{v}}(\mathrm{~cd})}{\mathrm{A}(\mathrm{ft} 2)}
\end{gathered}
$$

DEVICE	AREA/SEG. $\mathbf{m m}^{2}$	AREA/SEG. IN.2
$-3530 /-4030$	2.5	.0039
$-3730 /-4130$	4.4	.0068
$-5530 /-5730$	8.8	.0137
$-3900 /-4200$	14.9	.0231

Contrast Enhancement

The objective of contrast enhancement is to optimize display readability. Adequate contrast enhancement can be achieved in indoor applications through luminous contrast techniques. Luminous contrast is the observed brightness of the illuminated segment compared to the brightness of the surround. Appropriate wavelength filters maximize luminous contrast by reducing the amount of light reflected from the area around the display while transmitting most of the light emitted by the segment. These filters are described further in Application Note 964.
Chrominance contrast can further improve display readability. Chrominance contrast refers to the color difference between the illuminated segment and the surrounding area. These displays are assembled with a gray package and untinted encapsulating epoxy in the segments to improve chrominance contrast of the ON segments. Additional contrast enhancement in bright ambients may be achieved by using a neutral density gray filter such as Panelgraphic Chromafilter Gray 10, or 3M Light Control Film (louvered film).
7.6/10.9 mm (0.3/0.43 INCH) SEVEN SEGMENT DISPLAYS

HIGH EFFICIENCY RED • 5082-7610/-7650 SERIES YELLOW • 5082-7620/7660 SERIES

Features

- COMPACT SIZE

- CHOICE OF 2 BRIGHT COLORS

High Efficiency Red
Yellow

- LOW CURRENT OPERATION

As Low as 3mA per Segment Designed for Multiplex Operation

- EXCELLENT CHARACTER APPEARANCE

Evenly Lighted Segments
Wide Viewing Angle
Body Color Improves "Off" Segment Contrast

- EASY MOUNTING ON PC BOARD OR SOCKETS

Industry Standard 7.62 mm (0.3 in .) DIP Leads on 2.54 mm (0.1 in .) Centers

- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW CATEGORIZED FOR COLOR

Use of Like Categories Yields a Uniform Display

- IC COMPATIBLE
- MECHANICALLY RUGGED

Description

The 5082-7610/-7620 and -7650/-7660 series are $7.62 / 10.92 \mathrm{~mm}$ ($0.3 / 0.43 \mathrm{in}$) high efficiency red and yellow displays. The $5082-7610 /-7620$ series displays are designed for viewing distances of up to three metres and the 5082-7650/-7660 series displays are designed for viewing distances of up to six metres. These displays are designed for use in instruments, point of sale terminals, clocks, and appliances. The 5082-7610/-7620/-7650/-7660 series devices utilize high efficiency chips which are made from GaAsP on a transparent GaP substrate.

Devices

Part No. $5082-$	Color	Description	Package Drawing
7610	High Efficiency Red	7.6 mm Common Anode Left Hand Decimal	A
7611	High Efficiency Red	7.6 mm Common Anode Right Hand Decimal	B
7613	High Efficiency Red	7.6 mm Common Cathode Right Hand Decimal	C
7616	High Efficiency Red	7.6 mm Universal Overflow ± 1 Right Hand Decimal	D
7620	Yellow	7.6 mm Common Anode Left Hand Decimal	A
7621	Yellow	7.6 mm Common Anode Right Hand Decimal	B
7623	Yellow	7.6 mm Common Cathode Right Hand Decimal	C
7626	Yellow	7.6 mm Universal Overtlow ± 1 Right Hand Decimal	D

NOTE: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram D.

Devices

Part No. $\mathbf{5 0 8 2}$	Color	Description	Package Drawing
7650	High Efficiency Red	10.9 mm Common Anode Left Hand Decimal	E
7651	High Efficiency Red	10.9 mm Common Anode Right Hand Decimal	F
7653	High Efficiency Red	10.9 mm Common Cathode Right Hand Decimal	G
7656	High Efficiency Red	10.9 mm Universal Overflow ± 1 Right Hand Decimal	H
7660	Yellow	10.9 mm Common Anode Left Hand Decimal	E
7661	Yellow	10.9 mm Common Anode Right Hand Decimal	F
7663	Yellow	10.9 mm Common Cathode Right Hand Decimal	G
7666	Yellow	10.9 mm Universal Overflow ± 1 Right Hand Decimal	H

NOTE: Universal pinout brings the anode and the cathode of each segment's LED out to separate pins, see internal diagram H.

Internal Circuit Diagram

Absolute Maximum Ratings

	$\begin{gathered} 7610 / 7650 \\ \text { Series } \end{gathered}$	$\begin{gathered} 7620 / 7660 \\ \text { Series } \end{gathered}$	
Average Power Dissipation per Segment or D.P.	$105 \mathrm{~mW}{ }^{\text {[1] }}$	$81 \mathrm{~mW}{ }^{[2]}$	NOTES:
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1. See power derating curve (Figure 3)
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3. See Figure 1 to establish pulsed
Peak Forward Current per Segment or D.P.	$90 \mathrm{~mA}{ }^{[3]}$	$60 \mathrm{~mA}{ }^{[4]}$	4. See Figure 2 to establish pulsed
DC Forward Current per Segment or D.P.	$30 \mathrm{~mA}{ }^{[1]}$	$20 \mathrm{~mA}{ }^{[2]}$	operating conditions.
Reverse Voltage per Segment or D.P.	3 V	3 V	
Lead Soldering Temperature	$260^{\circ} \mathrm{C}$ for 3 sec.	$260^{\circ} \mathrm{C}$ for 3 sec.	
1.59 mm (1/16 inch)	ow seating plane		

(5082-7650/-7660)

E

F,G

Note 8

H
FRONT VIEW

END VIEW

SIDE VIEW

NOTES:
5. Dimensions in millimetres and (inches)
6. All untoleranced dimensions are for reference only.
7. Redundant anodes.
8. Unused dp position.
9. See Internal Circuit Diagram.
10. See Internal Circuit
10. Redundant cathode.
11. See part number table for L.H.D.P. and R.H.D.P. designation.
12. For 76201/-7660 Series Devices only.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

HIGH EFFICIENCY RED 5082-7610/-7611/-7613/-7616/-7650/-7651/-7653/-7656

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{(13)}$	$1 *$	$5 \mathrm{~mA} \mathrm{D.C}$.	200	550		$\mu \mathrm{cd}$
		$20 \mathrm{~mA} \mathrm{D.C}$.		3025		$\mu \mathrm{cd}$
		60 mA Pk 1 of 6 Duty Factor		1765		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			635		nm
Dominant Wavelength ${ }^{(14)}$	$\lambda_{\text {d }}$			626		nm
Forward Voltage/Segment or D.P. ${ }^{177}$	V_{F}	$\mathrm{J}_{F}=5 \mathrm{~mA}$		1.7		V
		$I_{F}=20 \mathrm{~mA}$		2.0	2.5	
		$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$		2.8		
Reverse Voltage/Segment or D.P. ${ }^{(17)}$	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	30.0		V
Response Time ${ }^{166}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{1}$			90		ns
Temperature Coefficient of $V_{F} /$ Segment or D.P.	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	R 0 J-PIN			282		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$

YELLOW 5082-7620/-7621/-7623/-7626/-7660/-7661/-7663/-7666

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{(13)}$	I.	5 mA D.C.	160	400		$\mu \mathrm{Cd}$
		$20 \mathrm{~mA} \mathrm{D.C}$.		2280		$\mu \mathrm{cd}$
(Digit Average)		$60 \mathrm{~mA} \mathrm{Pk:} 1$ of 6 Duty Factor		1440		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			583		nm
Dominant Wavelength ${ }^{14,19)}$	λ_{d}		581.5	586	592.5	nm
Forward Voltage/Segment or D.P. ${ }^{[7]}$	$V_{\text {E }}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		1.8		V
		$I_{t}=20 \mathrm{~mA}$		2.2	2.5	
		$\mathrm{I}_{\mathrm{r}}=60 \mathrm{~mA}$		3.1		
Reverse Voltage Segment or D.P. ${ }^{(17)}$	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	50.0		V
Response Time ${ }^{(16)}$	t_{1}, t_{1}			90		ns
Temperature Coefficient of $\mathrm{V}_{1} /$ Segment or D.P.	$V_{1} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	R θ J-PIN			282		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$

NOTES: 13. The digits are categorized for luminous intensity with the intensity category designated by a letter located on the right hand side of the package.
14. The dominant wavelength, λ_{d}, is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
15. The 5082-7620/-7660 series yellow displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
16. Time for a $10 \%-90 \%$ change of light intensity for step change in current.
17. Quality level for electrical characteristics is 1000 parts per million.

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 3. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature

Figure 4. Maximum Allowable DC Current and DC Power Dissipation per Segment as a Function of Ambient Temperature

> For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Figure 5. Relative Luminous Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 6. Forward Current vs. Forward Voltage Characteristics

Figure 7. Relative Luminous Intensity vs. DC Forward Current

Electrical

These display devices are composed of eight light emitting diodes, with light from each LED optically stretched to form individual segments and a decimal point.

These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 6, should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be caculated using the following V_{F} MAX models:

$$
\begin{gathered}
5082-7610 /-7620 /-7650 /-7660 \\
V_{F}=1.75 \mathrm{~V}+\operatorname{IPEAK}(38 \Omega) \\
\text { For: IPEAK } \geq 20 \mathrm{~mA} \\
V_{F}=1.60 \mathrm{~V}+\operatorname{IDC}(45 \Omega)
\end{gathered}
$$

$$
\text { For: } 5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}
$$

Temperature derated strobed operating conditions are obtained from Figures 1, 2 and 3, 4. Figures 1, 2 relate pulse duration (t_{p}), refresh rate (f), and the ratio of maximum peak current to maximum dc current (IPEAK MAX/IDC MAX). Figures 3,4 present the maximum allowed dc current vs. ambient temperature. Figures 1, 2 are based on the principle that the peak junction temperature for pulsed operation at a specified peak current, pulse duration and refresh rate should be the same as the junction temperature at maximum DC operation. Refresh rates of 1 kHz or faster minimize the pulsed junction heating effect of the device resulting in the maximum possible time average luminous intensity.

Mechanical

These devices are constructed utilizing a lead frame in a standard DIP package. The LED dice are attached directly to the lead frame. Therefore, the cathode leads are the direct thermal and mechanical stress paths to the LED dice. The absolute maximum allowed junction temperature, $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}$, is $105^{\circ} \mathrm{C}$. The maximum power ratings have been established so that the worst case V_{F} device does not exceed this limit.

Worst case thermal resistance pin-to-ambient is $500^{\circ} \mathrm{C} / \mathrm{W} /$ Seg when these devices are soldered into minimum trace width PC boards. When installed in a PC board that provides R θ PIN-A less than $500^{\circ} \mathrm{C} /$ W/Seg these displays may be operated at higher average currents as shown in Figure

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readability by having the OFFsegments blend into the display background and have the ON-segments stand out vividly against this same background. Contrast enhancement may be achieved by using one of the following suggested filters:

5082-7610	Panelgraphic SCARLET RED 65 or
or	GRAY 10
$5082-7650$	SGL Homalite H100-1670 RED or
	-1266 GRAY
	3M Louvered Filter R6310 RED or
	N0210 Gray
$5082-7620$	Panelgraphic YELLOW 27 or GRAY 10
or	SGL Homalite H100-1720 AMBER or
$5082-7660$	-1266 GRAY
	3M Louvered Filter A5910 AMBER or
	NO210 Gray

TECHNICAL DATA JANUARY 1983

Features

- EXCELLENT CHARACTER APPEARANCE Continuous Uniform Segments
Wide Viewing Angle
High Contrast
- IC COMPATIBLE
1.6 V dc per Segment
- STANDARD 0.3" DIP LEAD CONFIGURATION PC Board or Standard Socket Mountable
- CATEGORIZED FOR LUMINOUS INTENSITY Assures Uniformity of Light Output from Unit to Unit within a Single Category
- MECHANICALLY RUGGED

Description

The 5082-7730/7740 series and $5082-7750 / 7760$ series displays are $7.62 / 10.92 \mathrm{~mm}$ ($0.3 / 0.43 \mathrm{in}$) high red LED displays. The 7730/7740 series devices are designed for viewing distances of up to three meters and the 7750/7760 series devices are designed for viewing distances of up to six meters. These displays are designed for use in instruments, point of saleterminals, clocks and appliances. These devices use LED die made with GaAsP on a GaAs substrate.

Devices

Part No. $5082 \boldsymbol{*}$	Description	Package Drawing
7730	7.6 mm Common Anode Left Hand Decimal	A
7731	7.6 mm Common Anode Right Hand Decimal	B
7736	7.6 mm Universal Overflow ± 1 Right Hand Decimal	C
7740	7.6 mm Common Cathode Right Hand Decimal	D
7750	10.9 mm Common Anode Left Hand Decimal	E
7751	10.9 mm Common Anode Right Hand Decimal	F
7756	10.9 mm Universal Overflow ± 1 Right Hand Decimal	G
7760	10.9 mm Common Cathode Right Hand Decimal	H

[^10]
Package Dimensions 5082-7730/-7731/-7736/-7740

A,B,D

C

	FUNCTION			
PIN	$\text { A } 7730$	$\begin{gathered} \text { B } \\ -7731 \end{gathered}$	$\underset{.7736}{\mathrm{C}}$	$\begin{gathered} D \\ .7740 \end{gathered}$
1	CATHODE	CATHODE A	ANODE-d	CATHODE ${ }^{(6)}$
2	CATHODE. 4	CATHODE.f	NO PIN	ANODE 4
3	ANODE[3]	ANODE[3]	CATHODE-d	ANODE. 9
4	NO PIN	NO PIN	CATHODE-C	ANODE-
5	NO PIN	NO PIN	CATHODE-	ANODE.d
6	CATHODE-dp	NO CONN. ${ }^{151}$	ANODE	CATHODE[6]
7	CATHODE E	CATHODE	ANODE c	ANODE-dp
8	CATHODE-d	CATHODE.d	ANODE-dp	ANODE-E
9	NO CONN. 515	CATHODE-dp	NO PIN	ANODE.b
10	CATHODE	CATHODEC	CATHODE-dp	ANODE-a
11	CATHODE-y	CATHODE-g	CATHODE-b	
12	NO PIN	NO PIN	CATHODE:	
13	CATHODE-b	Cathodeb	ANODE-a	
14	ANODE[3]	ANODE[3]	ANODE.b	

5082-7750/-7751/-7756/-7760

F,H

PIN	FUNCTION			
	$\begin{gathered} E \\ .7750 \end{gathered}$	$\begin{gathered} F \\ .7751 \end{gathered}$	$\begin{gathered} \mathbf{G} \\ .7756 \end{gathered}$	$\begin{gathered} \text { H } \\ .7760 \end{gathered}$
1	CATHODE-a	CATHODE-a	CATHODE-d	ANODE-a
2	CATHODE.f	CATHODE.f	ANODE-d	ANODE.f
3	ANODE [3]	ANODE [3]	NO PIN	Cathode [6]
4	NO PIN	NO PIN	CATHODE.C	NO PIN
5	NO PIN	NO PIN	CATHODE-	NO PIN
6	CATHODE-dp	NO CONN. [5]	ANODE ${ }^{\text {e }}$	NO CONN. ${ }^{[5]}$
7	CATHODE E	CATHODE-e	ANODE-c	ANODE.e
8	CATHODE.d	CATHODE.d	ANODE-dp	ANODE-d
9	No Conn. ${ }^{\text {[5] }}$	CATHODE.dp	CATHODE.dp	ANODE.dp
10	CATHODE.c	CATHODE.c	CATHODE-b	ANODE.c
11	CATHODE.g	CATHODE-g	CATHODE-a	ANODE.g
12	NO PIN	NO PIN	NO PIN	NO PIN
13	CATHODE-b	CATHODE-b	ANODE-a	ANODE-b
14	ANODE ${ }^{\text {[3] }}$	ANODE [3]	ANODE.b	CATHODE [6]

NOTES:

1. Dimensions in millimeters and (inches).
2. All untoleranced dimensions are
3. Unused dp position.
4. See Internal Circuit Diagram.
for reference only
5. Redundant cathode.
6. Redundant anodes
7. See part number table for L.H.D.P. and R.H.D.P. designation.

Internal Circuit Diagram

A

E

B

F

C

G

D

H

Absolute Maximum Ratings

Average Power Dissipation Per Segment or D.P. ${ }^{(1)}\left(T_{A}=50^{\circ} \mathrm{C}\right)$.............. 65 mW
Operating Temperature Range .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Peak Forward Current Per Segment or D.P. ${ }^{(3)}\left(T_{A}=50^{\circ} \mathrm{C}\right)$. 150 mA
Average Forward Current Per Segment or D.P. ${ }^{(1,2)}\left(T_{A}=50^{\circ} \mathrm{C}\right) \ldots . . \ldots25 \mathrm{~mA}$
Reverse Voltage Per Segment or D.P. ... 3. 3 V
Lead Soldering Temperature
$260^{\circ} \mathrm{C}$ for 3 Sec
[1.59mm ($1 / 16$ inch) below seating plane ${ }^{(4)}$]

Notes:

1. The digits are categorized for luminous intensity with the intensity category designated by a letter located on the right hand side of the package.
2. The dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
3. Time for a $10 \%-90 \%$ change of light intensity for step change in current.
4. Quality level for electrical characteristics is 1000 parts per million.

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration.

Figure 2. Maximum Allowable DC Current Dissipation per Segment as a Function of Ambient Temperature.

Ipeak - PEAK SEGMENT CURRENT - mA

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current per Segment.

V_{F} - FORWARD VOLTAGE - V

Figure 4. Forward Current vs. Forward Voltage.

If - SEGMENT DC CURRENT - mA

Figure 5. Relative Luminous Intensity vs. DC Forward Current

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

ELECTRICAL 5082-77XX

The 5082-77XX series of display devices are composed of eight light emitting diodes, with the light from each LED optically stretched to form individual segments and a decimal point. The LEDs have the P-N junction diffused into a GaAsP epitaxial layer on a GaAs substrate.
These display devices are designed for strobed operation at high peak currents. The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose
of driver circuit design may be calculated using the following V_{F} model:

$$
\begin{aligned}
& V_{F}=1.55 \mathrm{~V}+\operatorname{IPEAK}(7 \Omega) \\
& \text { For } 5 \mathrm{~mA} \leq \operatorname{IPEAK} \leq 150 \mathrm{~mA}
\end{aligned}
$$

CONTRAST ENHANCEMENT

The 5082-77XX series display may be effectively filtered using one of the following filter products: Homalite H100-1605: H 100-1804 (purple); Panelgraphic Ruby Red 60: Dark Red 63: Purple 90; Plexiglas 2423; 3M Brand Light Control Film for daylight viewing.

14.2mm (. 56 INCH) SEVEN SEGMENT DISPLAYS
 RED HDSP-5300 SERIES HIGH EFFICIENCY RED HDSP-5500 SERIES HIGH PERFORMANCE GREEN HDSP-5600 SERIES YELLOW HDSP-5700 SERIES

Features

- INDUSTRY STANDARD SIZE
- INDUSTRY STANDARD PINOUT 15.24 mm (. 6 inch) DIP Leads on 2.54 mm (.1 inch) Centers
- CHOICE OF FOUR COLORS

Red
Yellow
High-Efficiency Red
High Performance Green

- EXCELLENT CHARACTER APPEARANCE Evenly Lighted Segments Mitered Corners on Segments Gray Package Gives Optimum Contrast
- COMMON ANODE OR COMMON CATHODE Right Hand Decimal Point Overflow ± 1 Character
- CATEGORIZED FOR LUMINOUS INTENSITY; YELLOW AND GREEN CATEGORIZED FOR COLOR
Use of Like Categories Yields a Uniform Display

Devices

Description

The HDSP-5300/-5500/-5600/-5700 Series are large 14.22 mm (. 56 inch) LED seven segment displays. Designed for viewing distances up to 7 metres (23 feet), these displays provide excellent readability in bright ambients.

These devices utilize an industry standard size package and pin function configuration. Both the numeric and ± 1 overflow devices feature a right hand decimal point and are available as either common anode or common cathode.

Part No. HDSP.	Color	Description	Package Drawing
5301		Common Anode Right Hand Decimal	A
5303		Common Cathode Right Hand Decimal	B
5307	Red	Overflow \pm Common Anode	C
5308		Overflow \pm Common Cathode	D
5321		Two Digit Common Anode Right Hand Decimal	E
5323		Two Digit Common Cathode Right Hand Decimal	F
5501		Common Anode Right Hand Decimal	A
5503		Common Cathode Right Hand Decimal	B
5507	High Efficiency	Overflow \pm Common Anode	C
5508	Red	Overflow \pm Common Cathode	D
5521		Two Digit Common Anode Right Hand Decimal	E
5523		Two Digit Common Cathode Right Hand Decimal	F
5601		Common Anode Right Hand Decimal	A
5603		Common Cathode Right Hand Decimal	B
5607	High Performance	Overflow \pm Common Anode	C
5608	Green	Overflow \pm Common Cathode	D
5621		Two Digit Common Anode Right Hand Decimal	E
5623		Two Digit Common Cathode Right Hand Decimal	F
5701		Common Anode Right Hand Decimal	A
5703		Common Cathode Right Hand Decimal	B
5707	Yellow	Overflow \pm Common Anode	C
5708		Overflow \pm Common Cathode	D
5721		Two Digit Common Anode Right Hand Decimal	E
5723		Two Digit Common Cathode Right Hand Decimal	F

Package Dimensions

PIN	FUNCTION					
	A	B	C	D	E	F
1	CATHODE	ANODE	CATHODE C	ANODE C	E CATHODE NO. 1	E ANODE NO. 1
2	CATHODE d	ANODE d	ANODE c, d	CATHODE c , d	D CATHODE NO. 1	D ANODE NO. 1
3	ANODE ${ }^{[3]}$	CATHODE ${ }^{[4]}$	CATHODE D	ANODE b	C CATHODE NO. 1	C ANODE NO. 1
4	CATHODEC	ANODE C	ANODE $\mathrm{a}, \mathrm{b}, \mathrm{DP}$	CATHODE $\mathrm{a}, \mathrm{b}, \mathrm{DP}$	DP CATHODE NO. 1	DP ANODE NO. 1
5	CATHODE DP	ANODEDP	CATHODE DP	ANODE DP	E CATHODE NO. 2	E ANODE NO. 2
6	CATHODED	ANODEb	CATHODEa	ANODE a	D CATHODE NO. 2	D ANODE NO. 2
7	CATHODE a	ANODE a	ANODE $\mathrm{a}, \mathrm{b}, \mathrm{DP}$	CATHODE a, b, DP	G CATHODE NO. 2	G ANODE NO. 2
8	ANODE ${ }^{[3]}$	CATHODE ${ }^{[4]}$	ANODE c, d	CATHODE c , d	C CATHODENO. 2	C ANODENO. 2
9	CATHODEf	ANODE f	CATHODEd	ANODEd	DP CATHODE NO. 2	DP ANODE NO. 2
10	CATHODEg	ANODEg	NO PIN	NO PIN	B CATHODE NO. 2	B ANODE NO. 2
11					A CATHODE NO. 2	A ANODE NO. 2
12					F CATHODE NO. 2	F ANODE NO. 2
13					DIGIT NO. 2 ANODE	DIGIT NO. 2 CATHODE
14					DIGIT NO. 1 ANODE	DIGIT NO. 1 CATHODE
15					B CATHODE NO. 1	B ANODE NO. 1
16					A CATHODE NO. 1	A ANODE NO. 1
17					G CATHODE NO. 1	G ANODE NO. 1
18					FCATHODENO. 1	FANODE NO. 1

Notes:

1. All dimensions in millimetres (inches).
2. All untoleranced dimensions are for reference only.
3. Redundant anodes.
4. Redundant cathodes.
5. For HDSP-5600/-5700 series product only.

Internal Circuit Diagram

C

D

Absolute Maximum Ratings

Average Power per Segment or DP
Peak Forward Current per Segment or DP
DC Forward Current per Segment ${ }^{[9]}$ or DP Operating Temperature Range
Storage Temperature Range
Reverse Voltage per Segment or DP
Lead Solder Temperature

-5300 Series	-5500/-5600 Series	-5700 Series
60 mW	105 mW	80 mW
$150 \mathrm{~mA}{ }^{[6]}$	90 mA [7]	$60 \mathrm{~mA}{ }^{[8]}$
(Pulse Width $\leq .2 \mathrm{~ms}$)	(Pulse Width $\leq 1 \mathrm{~ms}$)	(Pulse Width $\leq 1 \mathrm{~ms}$)
25 mA	30 mA	20 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
3.0 V	3.0 V	3.0 V
$260^{\circ} \mathrm{C}$ for 3 sec.	$260^{\circ} \mathrm{C}$ for 3 sec. [1/16 in.] below seat	$260^{\circ} \mathrm{C}$ for 3 sec . ane)
$\begin{aligned} & \text { HDSP-5500. See } \\ & \text { SP-5600. } \end{aligned}$	Maximum DC current:	

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

RED HDSP-5300 Series

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{[10]}$ (Digit Average)	Iv	If $=20 \mathrm{~mA}$	400	1200		$\mu \mathrm{cd}$
		100 mA Peak: 1 of 5 Duty Factor		1300		
Peak Wavelength	APEAK			655		nm
Dominant Wavelength ${ }^{[11]}$	λ_{d}			640		nm
Forward Voltage/Segment or DP ${ }^{[12]}$	V_{F}	$\mathrm{If}_{\mathrm{F}}=20 \mathrm{~mA}$		1.6	2.0	V
Reverse Voltage/Segment or DP[12]	V_{R}	$I_{R}=100 \mu \mathrm{~A}$	3	12		V
Thermal Resistance LED Junction-to-Pin	R $\theta_{\text {J-PIN }}$			345		${ }^{\circ} \mathrm{C} / \mathrm{W} t$ Seg.

Notes:

10. The digits are categorized for luminous intensity with category designated by a letter located on the right hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included.
11. The dominant wavelength, λ_{d}, is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
12. Quality level for Electrical Characteristics is 1000 parts per million.

HDSP-5300 SERIES

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration.

Figure 2. Maximum Allowable Average Forward Current Per Segment vs. Ambient Temperature. Deratings Based on Maximum Allowed Thermal Resistance Values, LED Junction to Ambient on a per Segment Basis. TJ MAX = $105^{\circ} \mathrm{C}$.

Figure 4. Forward Current vs. Forward Voltage.

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current.

Figure 5. Relative Luminous Intensity vs. D.C. Forward Current.

For a Detailed Explanation of the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

HIGH EFFICIENCY RED HDSP-5500 SERIES

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{[13]}$ (Digit Average)	Iv	10 mADC	600	2500		$\mu \mathrm{cd}$
		60 mA Peak: 1 of 6 Duty Factor		3300		
Peak Wavelength	APEAK			635		nm
Dominant Wavelength[14]	λ_{d}			626		nm
Forward Voltage/Segment or DP[16]	V_{F}	$1 \mathrm{~F}=20 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage/Segment or DP[16]	$V_{\text {R }}$	$I_{R}=100 \mu \mathrm{~A}$	3	30		V
Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta \mathrm{J}$-PIN			345		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Seg.

HIGH PERFORMANCE GREEN HDSP-5600 SERIES

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{131}$ (Digit Average)	Iv	10 mA DC	600	1500		$\mu \mathrm{cd}$
		60 mA Peak: 1 of 6 Duty Factor		1920		
Peak Wavelength	λ 入PEAK			566		nm
Dominant Wavelength ${ }^{144}$, 15]	λd			571	577	nm
Forward Voltage/Segment or DP[16]	V_{F}	IF $=10 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage/Segment or DP[16]	V_{R}	$1 \mathrm{~A}=100 \mu \mathrm{~A}$	3	50		V
Thermal Resistance LED Junction-to-Pin	R θ_{J} - PIN			345		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} t \\ & \mathrm{Seg} . \end{aligned}$

YELLOW HDSP-5700 SERIES

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment ${ }^{[13]}$ (Digit Average)	Iy	10 mADC	600	1800		$\mu \mathrm{cd}$
		60 mA Peak: 1 of 6 Duty Factor		2750		
Peak Wavelength	λ PPEAK			583		nm
Dominant Wavelength ${ }^{144,15]}$	$\lambda_{\text {d }}$		581.5	586	592.5	nm
Forward Voltage/Segment or DP[16]	V_{F}	$\mathrm{IF}=20 \mathrm{~mA}$		2.2	2.5	V
Reverse Voltage/Segment or DP[16]	V_{R}	$I_{R}=100 \mu \mathrm{~A}$	3	40		V
Thermal Resistance LED Junction-to-Pin	R $\operatorname{JJJMPIN}^{\text {a }}$			345		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} . \end{gathered}$

Notes:

13. The digits are categorized for luminous intensity with category designated by a letter located on top of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual segment intensities, decimal point not included.
14. The dominant wavelength, λ_{d}, is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
15. The HDSP- 5700 series yellow displays are categorized as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.
16. Quality level for Electrical Characteristics is 1000 parts per million.

Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration - HDSP-5500 Series.

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration - HDSP-5600 Series.

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration - HDSP-5700 Series.

Figure 9. Maximum Allowable Average Current per Segment vs. Ambient Temperature. Derating Based on Maximum Allowed Thermal Resistance Values. LED Junction to Ambient on a per Segment Basis. TJ LED MAX $=105^{\circ} \mathrm{C}$ - HDSP- 5500 Series.

Figure 11. Maximum Allowable Average Current per Segment vs. Ambient Temperature. Derating Based on Maximum Allowed Thermal Resistance Values, LED Junction to Ambient on a per Segment Basis. TJ LED MAX $=105^{\circ} \mathrm{C}$ - HDSP-5700 Series.

Figure 13. Forward Current vs. Forward Voltage Characteristics.

Figure 10. Maximum Allowable Average Current per Segment vs. Ambient Temperature. Derating Based on Maximum Allowed Thermal Resistance Values, LED Junction to Ambient on a per Segment Basis. TJ LED MAX $=105^{\circ}$ C. - HDSP-5600 Series.

Figure 12. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current.

Figure 14. Relative Luminous Intensity vs. DC Forward Current. HDSP-5500/-5600/-5700

Electrical

The HDSP-5300/-5500/-5600/-5700 series of display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The -5300 series uses a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The -5500 and -5700 series have their $p-n$ junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The -5600 series use a GaP epitaxial layer on GaP.
These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4 or 13 , should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum V_{F} values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:
HDSP-5300 Series:
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.55 \mathrm{~V}+\operatorname{IPEAK}(7 \Omega)$
For: ІРЕАК $\geq 5 \mathrm{~mA}$
HDSP-5500/-5700 Series:
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.75 \mathrm{~V}+$ IPEAK (38Ω)
For: IPEAK $\geq 20 \mathrm{~mA}$
$V_{F} M A X=1.5 V+\operatorname{lDC}(45 \Omega)$
For: $5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}$
HDSP-5600 Series:
V_{F} MAX $=2.0 \mathrm{~V}+\operatorname{IPEAK}(50 \Omega)$
For: IPEAK $\geq 5 \mathrm{~mA}$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance readibility by having the OFFsegments blend into the display background and the ON-segments stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the segments.

Contrast enhancement may be achieved by using one of the following suggested filters:

```
HDSP-5300: Panelgraphic RUBY RED 60
SGL Homalite H100-1605 RED
3M Louvered Filter R6610 RED or N0210
GRAY
```

HDSP-5500: | Panelgrahpic SCARLET RED 65 or GRAY 10 |
| :--- |
| SGL Homalite H100-1670 RED or -1266 GRAY |
| 3M Louvered Filter R6310 RED or N0210 |
| GRAY |
| HDSP-5600: |
| Panelgraphic GREEN 48 |
| |
| SGL Homalite H100-1440 GREEN |
| |
| 3M Louvered Filter G5610 GREEN or N0210 |
| |
| GRAY |

HDSP-5700:
Panelgraphic YELLOW 27 or GRAY 10
SGL Homalite H100-1720 AMBER or -1266
GRAY
3M Louvered Filter A5910 AMBER or N0210

Mechanical

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolve DI-15 or DE-15. Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

Such cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the packages of plastic LED devices.

20mm (0.8") RED SEVEN SEGMENT DISPLAY

Features

- 20 mm (0.8 ") DIGIT HEIGHT Viewing Up to 10 Metres (33 Feet)
- EXCELLENT CHARACTER APPEARANCE Excellent Readability in Bright Ambients Through Superior Contrast Enhancement
- Gray Body Color
- Untinted Segments

Wide Viewing Angle
Evenly Lighted Segments
Mitered Corners on Segments

- LOW POWER REQUIREMENTS Single GaAsP Chip per Segment
- EASY MOUNTING ON PC BOARD OR SOCKETS Industry Standard 15.24 mm (0.6 ") DIP with Lead Spacing on 2.54 mm (0.1 ") Centers Industry Standard Package Dimensions and Pinouts
- CATEGORIZED FOR LUMINOUS INTENSITY

Assures Uniformity of Light Output from Unit to Unit Within a Single Category

- IC COMPATIBLE
- MECHANICALLY RUGGED

Description

The HDSP-3400 Series are very large 20.32 mm (0.8 in .) GaAsP LED seven segment displays. Designed for viewing distances up to 10 metres (33 feet), these single digit displays provide excellent readability in bright ambients.

These devices utilize a standard 15.24 mm (0.6 in .) dual in line package configuration that permits mounting on PC boards or in standard IC sockets. Requiring a low forward voltage, these displays are inherently IC compatible, allowing for easy integration into electronic instrumentation, point-of-sale terminals, TVs, weighing scales, and digital clocks.

Devices

Part No. HDSP	Description	Package Drawing
-3400	Common Anode Left Hand Decimal	A
-3401	Common Anode Right Hand Decimal	B
-3403	Common Cathode Right Hand Decimal	C
-3405	Common Cathode Left Hand Decimal	D
-3406	Universal Overflow ± 1 Right Hand Decimal	E

[^11]
Package Dimensions

FRONT VIEW B,C

FRONT VIEW E

NOTES:

1. Dimensions in millimetres and (inches).
2. All untoleranced dimensions are for reference only
3. Redundant anodes.
4. Unused dp position.
5. See Internal Circuit Diagram.
6. Redundant cathodes.

Internal Circuit Diagram

A

B

C

D

E

Absolute Maximum Ratings

Notes:

1. Derate maximum $D C$ current above $T_{A}=50^{\circ} \mathrm{C}$ at $1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ per segment, see Figure 2 .
2. See Figure 1 to establish pulsed operating conditions.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment (Digit Average) [i]	Iv	$1 \mathrm{~F}=20 \mathrm{~mA}$	500	1200		$\mu \mathrm{cd}$
Peak Wavelength	入PEAK			1440		nm
Dominant Wavelength ${ }^{(2)}$	λ_{d}			640		nm
Forward Voltage, any Segment or DP[4]	V_{F}	$\mathrm{IF}=20 \mathrm{~mA}$		1.6	2.0	V
Forward Voltage, any Segment or DP[4]	$V_{\text {R }}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	20.0		V
Rise and Fall Time ${ }^{[3]}$	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\text {t }}$			10		ns
Temperature Coefficient of Forward Voltage	$\Delta V_{F} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$		-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	R $\theta_{\text {J-PIN }}$			375		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{Seg} \end{aligned}$

Notes:

1. The digits are categorized for luminous intensity with the intensity category designated by a letter located on the right hand side of the package.
2. The dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
3. Time for a $10 \%-90 \%$ change of light intensity for step change in current.
4. Quality level for electrical characteristics is 1000 parts per million.

Electrical

The HDSP-3400 series of display devices are composed of eight light emitting diodes, with the light from each LED optically stretched to form individual segments and a decimal point. The LEDs have the P-N junction diffused into a GaAsP epitaxial layer on a GaAs substrate.
These display devices are designed for strobed operation at high peak currents. The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design may be calculated using the following V_{F} model:

$$
\begin{aligned}
& V_{F}=1.55+\operatorname{IPEAK}(7 \Omega) \\
& \text { For IPEAK } \geq 5 \mathrm{~mA}
\end{aligned}
$$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to have the OFF-segments blend into the display background and to have the ON-segments stand out vividly against this same background. To achieve this goal the HDSP-3400 displays use a gray package and untinted segments to maximize readability in bright ambients.

Contrast enhancement is achieved by using one of the following filter products: SGL Homalite H100-1605 RED or H100-1804 PURPLE: Panelgraphic RUBY RED 60, DARK RED 63 or PURPLE 90; Plexiglass 2423; 3M Light Control Film (louvered filters) in 80\% Neutral Density, RED 655, VIOLET or PURPLE colors.

Figure 1. Maximum Allowable Peak Current vs. Pulse Duration.

Figure 2. Maximum Allowable DC Current per Segment vs. Ambient Temperature. Deratings Based on Maximum Allowed Thermal Resistance Values, LED Junction-to-Ambient on a per Segment Basis. $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=100^{\circ} \mathrm{C}$.

Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage.

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Features

- NUMERIC 5082-7300/-7302
$0-9$, Test State, Minus
Sign, Blank States
Decimal Point
7300 Right Hand D.P.
7302 Left Hand D.P.
- DTL/TTL COMPATIBLE
- INCLUDES DECODER/DRIVER WITH 5 BIT MEMORY 8421 Positive Logic Input
- 4×7 DOT MATRIX ARRAY

Shaped Character, Excellent Readibility

- STANDARD . 600 INCH x $\mathbf{~} 400$ INCH DUAL-IN-LINE

PACKAGE INCLUDING CONTRAST FILTER

- CATEGORIZED FOR LUMINOUS INTENSITY

Assures Uniformity of Light Output from
Unit to Unit within a Single Category
ECIMAL 5082-7340
0-9, A-F, Base 16 Operation Blanking Control, Conserves Power No Decimal Point

Description

The HP 5082-7300 series solid state numeric and hexadecimal indicators with on-board decoder/driver and memory provide a reliable, low-cost method for displaying digital information.
The 5082-7300 numeric indicator decodes positive 8421 BCD logic inputs into characters $0-9$, a " - " sign, a test pattern, and four blanks in the invalid BCD states, The unit employs a right-hand decimal point. Typical applications include point-of-sale terminals, instrumentation, and computer systems.

The 5082-7302 is the same as the 5082-7300, except that the decimal point is located on the left-hand side of the digit.
The 5082-7340 hexadecimal indicator decodes positive 8421 logic inputs into 16 states, 0-9 and A-F. In place of the decimal point an input is provided for blanking the display (all LED's off), without losing the contents of the memory. Applications include terminals and computer systems using the base-16 character set.
The 5082-7304 is a $(\pm 1$.) overrange character, including decimal point, used in instrumentation applications.

Package Dimensions

PIN	FUNCTION	
	$5082-7300$ and 7302 Numeric	$5082-7340$ Hexadecimal
1	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal point	Blanking control
5	Latch enable	Latch enable
6	Ground	Ground
7	V cc	$V_{\text {cc }}$
8	Input 1	Input 1

NOTES:

1. Dimensions in millimetres and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is $\pm .38 \mathrm{~mm}\left(\pm .015^{\prime \prime}\right)$
3. Digit center line is $\pm .25 \mathrm{~mm}$ ($\pm .01^{\prime \prime}$) from package center line.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	T_{s}	-40	+100	${ }^{\circ} \mathrm{C}$
Operating temperature, case ${ }^{(1,2)}$	T_{C}	-20	+85	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	V_{CC}	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	+7.0	V
Voltage applied to blanking input ${ }^{(7)}$	V_{B}	-0.5	V	V
Maximum solder temperature at $1.59 \mathrm{~mm}(.062$ inch $)$ below seating plane; $\mathrm{t} \leqslant 5$ seconds		230	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	V_{cc}	4.5	5.0	5.5	V
Operating temperature, case	T_{C}	-20		+85	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	120			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {serup }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\mathrm{HoLD}}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{1 \mathrm{LH}}$			200	nsec

Electrical/Optical Characteristics ($\mathrm{T}_{\mathrm{c}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified).

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{(4)}$	Max.	Unit
Supply Current	I_{CC}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Numeral 5 and dp lighted)		112	170	mA
Power dissipation	P_{T}			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{(3,6)}$	1.	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	32	70		$\mu \mathrm{cd}$
Logic low-level input voltage	$\mathrm{V}_{\text {IL }}$	$V_{C C}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	$\mathrm{V}_{\text {IH }}$		2.0			V
Enable low-voltage; data being entered	$V_{\text {EL }}$				0.8	V
Enable high-voltage; data not being entered	$V_{\text {EH }}$		2.0			V
Blanking low-voltage; display not blanked ${ }^{(7)}$	$V_{B L}$				0.8	V
Blanking high-voltage; display blanked ${ }^{(7)}$	$V_{\text {BH }}$		3.5			V
Blanking low-level input current ${ }^{(7)}$	I_{BL}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			20	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{(7)}$	IB	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BH}}=4.5 \mathrm{~V}$			2.0	mA
Logic low-level input current	$\mathrm{IIL}^{\text {L }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-1.6	mA
Logic high-level input current	$\mathrm{I}_{\text {IH }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{JH}}=2.4 \mathrm{~V}$			+250	$\mu \mathrm{A}$
Enable low-level input current	$\mathrm{I}_{\text {EL }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {EL }}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	$\mathrm{I}_{\text {EH }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=2.4 \mathrm{~V}$			+250	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {PEAK }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{(8)}$	λ_{d}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		640		nm
Weight				0.8		gm

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}$; $\Theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W} ; 2 . \Theta_{\mathrm{CA}}$ of a mounted display should not exceed $35^{\circ} \mathrm{C} / \mathrm{W}$ for operation up to $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$. 3. Voltage values are with respect to device ground, pin 6. 4. All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0$ Volts, $\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$. 5. These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific case temperature, $I_{v}\left(T_{c}\right)$ may be calculated from this relationship: $\left.I_{v}\left(T_{c}\right)=I_{v}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\left[-.0188 /{ }^{\circ} \mathrm{C}\right.}\left(\mathrm{T}_{\mathrm{c}}-25^{\circ} \mathrm{C}\right)\right]$ 7. Applies only to 7340. 8. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Figure 1. Timing Diagram of 5082-7300 Series Logic.

TC - CASE TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 4. Typical Blanking Control Input Current vs. Temperature 5082-7340.

Figure 2. Block Diagram of 5082-7300 Series Logic.

Figure 5. Typical Latch Enable Input Current vs. Voltage for the 5082-7300 Series Devices.

TRUTH TABLE					
BCD DATA ${ }^{[1]}$				5082-7300/7302	5082-7340
X_{8}	X_{4}	X_{2}	X_{1}		
L	L	L	L.	!	\%
L	L	1	H	,	+
1	L	H	L.	\%	\cdots
L	1	H	H	\cdots	\cdots
1	H	L	1	\cdots	!
1	H	L	H	\ldots	\ldots
L	H	H	L	\%	\because
L	H	H	H	\square	\square
H	L	4	L	\%	\%
H	1	L	H	\%	\%
H	1.	H	L	\%	\%
H	L	H	H	(BLANK)	\%
H	H	L	1	(BLANK)	\ldots
H	H	L	H	\cdots	\%
H	H	H	L	(BLANK)	:*
H	H	H	H	(BLANK)	:
DECIMALPT. ${ }^{[2]}$			ON		$\mathrm{V}_{\mathrm{DP}}=\mathrm{L}$
			OFF		$V_{\text {DP }}=H$
ENABLE ${ }^{[1]}$			LOAD DATA		$V_{E}=\mathrm{L}$
			LATCH DATA		$V_{E}=H$
BLANKING ${ }^{(3)}$			DISPLAY.ON		
			DISPLAY-OFF		$V_{B}=H$

Figure 3. Typical Blanking Control Current vs. Voltage for 5082-7340.

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage for the 5082-7300 Series Devices. Decimal Point Applies to 5082-7300 and -7302 Only.

Notes:

1. $H=$ Logic High; $L=$ Logic Low. With the enable input at logic high changes in BCD input logic levels or D.P. input have no effect upon display memory, displayed character, or D.P.
2. The decimal point input, DP, pertains only to the 5082-7300 and 5082-7302 displays.
3. The blanking control input, B, pertains only to the 5082-7340 hexadecimal display. Blanking input has no effect upon display memory.

Solid State Over Range Character

For display applications requiring a $\pm, 1$, or decimal point designation, the $5082-7304$ over range character is available. This display module comes in the same package as the 5082-7300 series numeric indicator and is completely compatible with it.

Package Dimensions

TRUTH TABLE FOR 5082-7304

| CHARACTER | PIN | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2,3 | 4 | 8 |
| + | H | X | X | H |
| - | L | X | X | H |
| 1 | X | H | X | X |
| Decimal Point | X | X | H | X |
| Blank | L | L | L | L |

NOTES: L: Line switching transistor in Fig. 7 cutoff.
H : Line switching transistor in Fig. 7 saturated.
X: 'don't care'

Absolute Maximum Ratings

DESCRIPTION	SYMBOL	MIN	MAX	UNIT
Storage temperature, ambient	T_{s}	-40	+100	${ }^{\circ} \mathrm{C}$
Operating temperature, case	T_{C}	-20	+85	${ }^{\circ} \mathrm{C}$
Forward current, each LED	I_{F}		10	mA
Reverse voltage, each LED	V_{R}		4	V

RECOMMENDED OPERATING CONDITIONS

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply voltage	$V_{\text {GE }}$	4.5	5.0	5.5	V
Forward current, each LED	F_{F}		5.0	10	mA

NOTE:
LED current must be externally limited. Refer to figure 7

TYPICAL DRIVING CIRCUIT FOR 5082-7304.

Figure 7. for recommended resistor values.
Electrical/Optical Characteristics ${ }_{\left(T_{C} \mathrm{C}\right.}=-20^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$, UNLESS OTHERWISE SPECIFIED)

DESCRIPTION	SYMBOL	TEST CONDITIONS	MIN	TVP	MAX	UNIT
Forward Voltage per LED	V_{F}	$I_{F}=10 \mathrm{~mA}$		1.6	2.0	V
Power dissipation	P_{T}	$f_{F}=10 \mathrm{~mA}$ all diodes lit		250	320	mW
Luminous Intensity per LED (digit average)	I_{v}	$\begin{aligned} & T_{F}=6 \mathrm{~mA} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	32	70		$\mu \mathrm{cd}$
Peak wavelength	$\lambda_{\text {peak }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength	$\lambda \mathrm{d}$	$\mathrm{T}^{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$		640		nm
Weight				0.8		gm

Features

- CERAMIC/GLASS PACKAGE
- ADDED RELIABILITY
- NUMERIC 5082-7356/-7357

0-9, Test State, Minus Sign, Blank States Decimal Point
7356 Right Hand D.P.
7357 Left Hand D.P.

- HEXADECIMAL 5082-7359

0-9, A-F, Base 16 Operation
Blanking Control, Conserves Power
No Decimal Point

- TTL COMPATIBLE
- INCLUDES DECODER/DRIVER WITH 5 BIT MEMORY

8421 Positive Logic Input and Decimal Point - 4 x 7 DOT MATRIX ARRAY

Shaped Character, Excellent Readability

- STANDARD DUAL-IN-LINE PACKAGE
$15.2 \mathrm{~mm} \times 10.2 \mathrm{~mm}$ (. 6 inch $\times .4$ inch)
- CATEGORIZED FOR LUMINOUS INTENSITY

Assures Uniformity of Light Output from Unit to Unit within a Single Category

Description

The HP 5082-7350 series solid state numeric and hexadecimal indicators with on-board decoder/driver and memory provide 7.4 mm (0.29 inch) displays for use in adverse industrial environments.

The 5082-7356 numeric indicator decodes positive 8421 BCD logic inputs into characters 0-9, a " -" sign, a test

Package Dimensions

pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point. Typical applications include control systems, instrumentation, communication systems and transportation equipment.

The 5082-7357 is the same as the 5082-7356 except that the decimal point is located on the left-hand side of the digit.

The 5082-7359 hexadecimal indicator decodes positive 8421 logic inputs into 16 states, 0-9 and A-F. In place of the decimal point an input is provided for blanking the display (all LED's off), without losing the contents of the memory. Applications include terminals and computer systems using the base-16 character set.

The $5082-7358$ is a " ± 1." overrange display, including a right hand decimal point.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	Ts	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient ${ }^{(12,2)}$	$\mathrm{T}_{\text {A }}$	-55	+100	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	$V_{C C}$	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{1}, \mathrm{~V}_{\text {DP }}, \mathrm{V}_{\mathrm{E}}$	-0.5	+7.0	V
Voltage applied to blanking input ${ }^{(7)}$	V_{B}	-0.5	$\mathrm{V}_{\text {cc }}$	V
Maximum solder temperature at 1.59 mm (. 062 inch) below seating plane; $t \leqslant 5$ seconds			260	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Operating temperature, ambient	T_{A}	-20		+70	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {SETUP }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\text {HoLD }}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\mathrm{TLH}}$			200	nsec

Electrical/Optical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\right.$, Unless Otherwise Specified)

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{(4)}$	Max.	Unit
Supply Current	$\mathrm{lCO}_{\text {c }}$	$V_{C C}=5.5 \mathrm{~V}$ (Numeral 5 and dp lighted)		112	170	mA
Power dissipation	P_{T}			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{(5,6)}$	1.	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	85		$\mu \mathrm{cd}$
Logic low-level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	$\mathrm{V}_{\text {IH }}$		2.0			V
Enable low-voltage; data being entered	$V_{\text {EL }}$				0.8	V
Enable high-voltage; data not being entered	$V_{\text {EH }}$		2.0			V
Blanking low-voltage; display not blanked ${ }^{(7)}$	$V_{\text {BL }}$				0.8	V
Blanking high-voltage; display blanked ${ }^{\text {(7) }}$	$V_{B H}$		3.5			V
Blanking low-level input current ${ }^{(7)}$	I_{BL}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			50	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{(7)}$	I_{BH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BH}}=4.5 \mathrm{~V}$			1.0	mA
Logic low-level input current	$\mathrm{IIL}^{\text {IL }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			-1.6	mA
Logic high-level input current	I_{H}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{HI}}=2.4 \mathrm{~V}$			+100	$\mu \mathrm{A}$
Enable low-level input current	I_{EL}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	I_{EH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=2.4 \mathrm{~V}$			+130	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {PEAK }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{(8)}$	λ_{d}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		640		nm
Weight				1.0		gm

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}$; $\Theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W} ; 2 . \Theta_{\mathrm{CA}}$ of a mounted display should not exceed $35^{\circ} \mathrm{C} / \mathrm{W}$ for operation up to $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$. 3. Voltage values are with respect to device ground, pin 6. 4. All typical values at $V_{C C}=5.0$ Volts, $T_{A}=25^{\circ} \mathrm{C}$. 5 . These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific ambient temperature, $I_{V}\left(T_{A}\right)$, may be calculated from this relationship: $\left.I_{V}\left(T_{A}\right)=I_{V(25}{ }^{\circ} \mathrm{C}\right)(.985)\left[T_{A}-25^{\circ} \mathrm{C}\right]$ 7. Applies only to 7359. 8. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Figure 1. Timing Diagram of 5082-7350 Series Logic.

Figure 2. Block Diagram of 5082-7350 Series Logic.

TRUTH TABLE					
BCD DATA ${ }^{\text {[]] }}$				5082.7356/7357	5082.7359
x_{8}	X_{4}	x_{2}	x_{1}		
L	L	1	L.	1	\%
4	1	1	H	!	\%
L	L	H	L	\%	\%
L	\downarrow	${ }^{H}$	H	\because	\#1
L.	H	1	1	!	!
L.	H	1.	H	\cdots	\%
L.	H	H	L.	\cdots	\cdots
L	H	H	H	\%	T
H	L	L	L	\%	\%
H	L	1	H	\because	$\%$
H	L	H	1	\%	1
H	L	H	H	(BLANK)	\cdots
H	H	L	L	(BLANK)	\ldots
H	H	1	H	\%
H	H	H	L.	(BLANK)	\cdots
H	H	H	H	(BLANK)	\cdots
DECIMAL PT. ${ }^{[2]}$			ON		$V_{D P}=L$
			OFF		$V_{D P}=\mathrm{H}$
ENABLE ${ }^{\text {[1] }}$			LOAD DATA		$V_{E}=1$
			LATCH DATA		$V_{E}=H$
BLANKINGI3:			DISPLAY.ON		$V_{B}=I$
			DISPLAY.OFF		$V_{B}=H$

Notes:

1. $H=$ Logic High; $L=$ Logic Low. With the enable input at logic high changes in BCD input logic levels or D.P. input have no effect upon display memory, displayed character, or D.P.
2. The decimal point input, DP, pertains only to the 5082-7356 and 5082-7357 displays.
3. The blanking control input, B, pertains only to the 5082-7359 hexadecimal display. Blanking input has no effect upon display memory.

Figure 3. Typical Blanking Control Current vs. Voltage for 50827359.

Figure 4. Typical Blanking Control Input Current vs. Ambient Temperature for 5082-7359.

Figure 5. Typical Latch Enable Input Current vs. Voltage.

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage.

Figure 7. Typical Logic and Enable Low Input Current vs. Ambient Temperature.

Figure 8. Typical Logic and Enable High Input Current vs. Ambient Temperature.

Operational Considerations

ELECTRICAL

The 5082-7350 series devices use a modified 4×7 dot matrix of light emitting diodes (LED's) to display decimal/hexadecimal numeric information. The LED's are driven by constant current drivers. BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. To avoid the latching of erroneous information, the enable pulse rise time should not exceed 200 nanoseconds. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The blanking control input on the 5082-7395 display blanks (turns off) the displayed hexadecimal information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 3.5 volts. This may be easily achieved by using an open collector TTL gate and a pull-up resistor. For example, (1/6) 7416 hexinverter buffer/driver and a 120 ohm pull-up resistor will provide sufficient drive to blank eight displays. The size of the blanking pull-up resistor may be calculated from the following formula, where N is the number of digits:

$$
R_{\text {blank }}=\left(\mathrm{V}_{\mathrm{Cc}}-3.5 \mathrm{~V}\right) /[\mathrm{N}(1.0 \mathrm{~mA})]
$$

The decimal point input is active low true and this data is latched into the display memory in the same fashion as is the BCD data. The decimal point LED is driven by the onboard IC.

MECHANICAL

These displays are designed for use in adverse industrial environments.

These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.
The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a case-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C}$ /watt as measured on top of display pin 3 .

Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

CONTRAST ENHANCEMENT

The 5082-7350 displays have been designed to provide the maximum posible ON/OFF contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60 and Dark Red 63, SGL Homalite H100-1605, 3M Light Control Film and Polaroid HRCP Red Circular Polarizing Filter. For further information see Hewlett-Packard Application Note 964.

Solid State Over Range Character

For display applications requiring $a \pm, 1$, or decimal point designation, the 5082-7358 over range character is available. This display module comes in the same package as the 5082-7350 series numeric indicator and is completely compatible with it.

Package Dimensions

Figure 9. Typical Driving Circuit.

TRUTH TABLE

CHARACTER	PIN			
	$\mathbf{1}$	2,3	4	8
+	H	X	X	H
-	L	X	X	H
I	X	H	X	X
Decimal Point	X	X	H	X
Blank	L	L	L	L

NOTES: L: Line switching transistor in Figure 9 cutoff.
H : Line switching transistor in Figure 9 saturated.
X: 'Don't care'

Electrical/Optical Characteristics

$5082-7358\left(T_{A}=-20^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$, Unless Otherwise Specified)

DESCRIPTION	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Forward Voltage per LED	V_{F}	${ }^{I_{F}}=10 \mathrm{~mA}$		1.6	2.0	V
Power dissipation	P_{T}	$I_{F}=10 \mathrm{~mA}$ all diodes lit		280	320	mW
Luminous intensity per LED (digit average)	${ }^{\prime}$	$\begin{aligned} & T_{F}=6 \mathrm{~mA} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	40	85		$\mu \mathrm{cd}$
Peak wavelength	Apeak	$T_{C}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength	入d	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640.		nm
Weight				1.0		gm

Recommended Operating Conditions

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply votage	$V_{C C}$	4.5	5.0	5.5	V
Forward current, each LEO	T_{F}		5.0	10	IA

NOTE:
LED current must be externally limited. Refer to Figure 9 for recommended resistor values.

Absolute Maximum Ratings

DESCRIPTION	SYMBOL	MIN.	MAX.	UNIT
Storage temperature, ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Forward current, each LED	IF_{C}		10	mA
Reverse voltage, each LED	V_{R}		4	V

Features

- PERFORMANCE GUARANTEED OVER

 TEMPERATURE- HERMETICITY GUARANTEED
- QUALITY LEVEL A OF MIL-D-87157
- GOLD PLATED LEADS
- HIGH TEMPERATURE STABILIZED
- NUMERIC

4N51 Right Hand D.P.
4N52 Left Hand D.P.

- HEXADECIMAL

4N54

- TTL COMPATIBLE
- DECODER/DRIVER WITH 5 BIT MEMORY
- 4×7 DOT MATRIX ARRAY

Shaped Character, Excellent Readability

- STANDARD DUAL-IN-LINE PACKAGE
- CATEGORIZED FOR LUMINOUS INTENSITY

Assures Uniformity of Light Output from Unit to Unit within a Single Category

Description

The 4N51-4N54 series solid state numeric and hexadecimal indicators with on-board decoder/driver and memory are hermetically tested 7.4 mm (0.29 inch) displays for use in military and aerospace applications.

The 4N51 numeric indicator decodes positive 8421 BCD logic inputs into characters $0-9$, a "一" sign, a test

pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point. Typical applications include control systems, instrumentation, communication systems and transportation equipment.
The 4N52 is the same as the 4N51 except that the decimal point is located on the left-hand side of the digit.
The 4N54 hexadecimal indicator decodes positive 8421 logic inputs into 16 states, 0-9 and A-F. In place of the decimal point an input is provided for blanking the display (all LED's off), without losing the contents of the memory. Applications include terminals and computer systems using the base-16 character set.

The $4 N 53$ is a " ± 1." overrange display, including a righthand decimal point.

Package Dimensions*

END VIEW

PIN	FUNCTION	
	$\begin{gathered} \text { 4N51 } \\ \text { 4N52 } \\ \text { NUMERIC } \end{gathered}$	$\begin{aligned} & \text { 4N54 } \\ & \text { HEXA. } \\ & \text { DECIMAL } \end{aligned}$
1	input 2	Input 2
2	Inpat 4	Input 4
3	Input 8	Input 8
4	Decimal point	Blanking control
5	Latch enable	Lateh enable
6	Ground	Ground
7	$V_{\text {ce }}$	$V_{\text {cc }}$
8	Input 1	Input 1

NOTES:

1. Dimensions in millimetres and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is $\pm .38 \mathrm{~mm}\left(\pm .015^{\prime \prime}\right)$
3. Digit center line is $\pm .25 \mathrm{~mm}$ ($\pm .01^{\prime \prime}$) from package center line.
4. Lead material is gold plated copper alloy.

Absolute Maximum Ratings*

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	$\mathrm{T}_{\text {s }}$	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient ${ }^{(1,2)}$	$\mathrm{T}_{\text {A }}$	-55	+100	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	$V_{\text {cc }}$	-0.5	+7.0	V
Voltage applied to input logic, $d p$ and enable pins	$V_{\text {L }}, V_{\text {DR }}, V_{E}$	-0.5	$+7.0$	V
Voltage applied to blanking input ${ }^{\text {(7) }}$	V_{B}	-0.5	V_{cc}	V
Maximum solder temperature at 1.59 mm (. 062 inch) below seating plane; $t \leqslant 5$ seconds			260	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions*

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	V_{cc}	4.5	5.0	5.5	V
Operating temperature, ambient ${ }^{(1,2)}$	$\mathrm{T}_{\text {A }}$	-55		$+100$	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	tw	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {SETuF }}$	50			nsec
Time data must be held after positive transition of enable line	thow	50			nsec
Enable pulse rise time	$\mathrm{t}_{\text {tien }}$			200	nsec

Electrical/Optical Characteristics ${ }^{*} \tau_{A}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise specified)

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{\text {+4 }}$	Max.	Unit
Supply Current	lcc	$V_{c c}=5.5 \mathrm{~V}$ (Numeral 5 and dp lighted)		112	170	mA
Power dissipation	P_{T}			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{[566)}$	1.	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	85		$\mu \mathrm{cd}$
Logic low-level input voltage	$\mathrm{V}_{\text {IL }}$	$V_{\mathrm{cc}}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	$\mathrm{V}_{\text {IH }}$		2.0			V
Enable low-voltage; data being entered	$\mathrm{VEL}_{\mathrm{EL}}$				0.8	V
Enable high-voltage; data not being entered	V_{EH}		2.0			V
Blanking low-voltage; display not blanked ${ }^{(7)}$	$V_{\text {BL }}$				0.8	V
Blanking high-voltage; display blanked (7)	$V_{\text {BH }}$		3.5			V
Blanking low-level input current ${ }^{677}$	I_{BL}	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			50	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{\text {t7) }}$	I_{BH}	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BH}}=4.5 \mathrm{~V}$			1.0	mA
Logic low-level input current	IL	$V_{c c}=5.5 \mathrm{~V}, V_{\text {IL }}=0.4 \mathrm{~V}$			-1.6	$m A$
Logic high-level input current	I_{H}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			$+100$	$\mu \mathrm{A}$
Enable low-level input current	lex	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	$I_{\text {EH }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=2.4 \mathrm{~V}$			+130	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {PEAK }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{(8)}$	λ_{d}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		640		nm
Weight**				1.0		gm
Leak Rate					5×10^{-8}	co/sec

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}$; $\Theta_{\mathrm{IC}}=15^{\circ} \mathrm{C} / \mathrm{W}$. 2. Θ_{CA} of a mounted display should not exceed $35^{\circ} \mathrm{C} / \mathrm{W}$ for operation up to $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$. 3. Voltage values are with respect to device ground, pin 6. 4. All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0$ Volts, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. 5 . These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific ambient temperature, $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)$, may be calculated from this relationship: $\mathrm{IV}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)=\mathrm{I}_{\mathrm{V}\left(25^{\circ} \mathrm{C}\right)}(.985)\left[\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right]$ 7. Applies only to 4 N 54 . 8. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
*JEDEC Registered Data. **Non Registered Data.

Figure 1．Timing Diagram of 4N51－4N54 Series Logic．

Figure 2．Block Diagram of 4N51－4N54 Series Logic．

TRUTH TABEE					
BCD DATA ${ }^{\text {fil }}$				4N51 AND 4NS2	4N54
X_{6}	X_{4}	X_{2}	x_{1}		
4	L	\pm	t	＋＂！	＋
4	L	L	H	\％	$\stackrel{1}{4}$
1	L	性	1	\％＂	年
1.	4	H	H	＋	\％
t．	H	系	L	－	食
L	H	L．	H		\％
1	H	H	1	\％；	\％
4.	H	H	H	＂1／	＋1
H	4	も	L	为	5in
H	1.	1	H	＋	\％
种	L	H	L	䓣	＋is
H	t	H	H	（BLANK）	
H	H	1.	1.	（ 8 ！${ }_{\text {a }}$ ANK）	＋＂
H	H	1	H	＊＊	！
H	H	H	4	（BLANK）	
H	W	H	H	（BLANK）	\cdots
DECIMAEPT ${ }^{\text {P }}$			ON		$V_{\text {DP }}=L$
			OFF		$V_{\text {OP }}{ }^{*+1}$
ENABLE ${ }^{[1]}$			LOAD DATA		$V_{E}=L_{\text {m }}$
			CATCH DATA		$V_{E}=H$
BIANKING ${ }^{\text {I3I }}$			DFSPEAYON		$V_{B} \ldots \mathrm{~L}$
			DISPLAY OFF		$V_{B}=\mathrm{H}$

Notes：
1．$H=$ Logic High；$L=$ Logic Low．With the enable input at logic high changes in BCD input logic levels or D．P．input have no effect upon display memory，displayed character，or D．P．
2．The decimal point input，DP，pertains only to the 4N51 and 4N52 displays．
3．The blanking control input，B，pertains only to the $4 N 54$ hexadecimal display．Blanking input has no effect upon display memory．

Figure 3．Typical Blanking Control Current vs．Voltage for $\mathbf{4 N} 54$.

Figure 4．Typical Blanking Control Input Current vs．Ambient Temperature for 4 N 54 ．

Figure 5．Typical Latch Enable Input Current vs．Voltage．

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage.

Figure 7. Typical Logic and Enable Low Input Current vs. Amblent Temperature.

Figure 8. Typical Logic and Enable High Input Current vs. Amblent Temperature.

Operational Considerations

ELECTRICAL

The 4 N51-4N54 series devices use a modified 4×7 dot matrix of light emitting diodes (LED's) to display decimal/hexadecimal numeric information. The LED's are driven by constant current drivers. BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. To avoid the latching of erroneous information, the enable pulse rise time should not exceed 200 nanoseconds. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.
The blanking control input on the 4N54 display blanks (turns off) the displayed hexadecimal information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 3.5 volts. This may be easily achieved by using an open collector TTL gate and a pull-up resistor. For example, (1/6) 7416 hexinverter buffer/driver and a 120 ohm pull-up resistor will provide sufficient drive to blank eight displays. The size of the blanking pull-up resistor may be calculated from the following formula, where \mathbf{N} is the number of digits:

$$
\mathrm{R}_{\text {blank }}=\left(\mathrm{V}_{\mathrm{cc}}-3.5 \mathrm{~V}\right) /[\mathrm{N}(1.0 \mathrm{~mA})]
$$

The decimal point input is active low true and this data is latched into the display memory in the same fashion as is the BCD data. The decimal point LED is driven by the onboard IC.

MECHANICAL

4N51-4N54 series displays are hermetically tested for use in environments which require a high reliability device. These displays are designed and tested to meet a helium leak rate of $5 \times 10^{-8} \mathrm{CC} / \mathrm{SEC}$ and a standard dye penetrant gross leak test.

These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.
The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a case-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C} /$ watt as measured on top of display pin 3.

Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

PRECONDITIONING

4N51-4N54 series displays are 100\% preconditioned by 24 hour storage at $125^{\circ} \mathrm{C}$.

CONTRAST ENHANCEMENT

The 4N51-4N54 displays have been designed to provide the maximum posible ON/OFF contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60 and Dark Red 63, SGL Homalite H100-1605, 3M Light Control Film and Polaroid HRCP Red Circular Polarizing Filter. For further information see Hewlett-Packard Application Note 964.

High Reliability Testing

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A of MIL-D-87157 for hermetically sealed displays with 100% screening tests. A TXVB product is tested to Tables I, II, IIIa, and IVa. A second program is an HP modification to the full conformance program and offers the 100% screening portion of Level A, Table I, and Group A, Table II.

Standard Product	With Table I and II	With Tables I, II, IIla and IVa
PREFERRED PART NUMBER SYSTEM		
4N51	4N5ITXV	4N51TXVB
4N55	4N52TXV	4N52TXVB
4N54	4N54TXV	4N54TXVB
4N53	4N53TXV	4N53TXVB
ALTERNATE PART NUMBER SYSTEM		
$5082-7391$	TXV-7391	TXVB-7391
5082-7392	TXV-7392	TXVB-7392
$5082-7395$	TXV-7395	TXVB-7395
$5082-7393$	TXV-7393	TXVB-7393

100\% Screening
TABLE I.
QUALITY LEVEL A OF MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	-	HP Procedure 5956-7572-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours
3. Temperature Cycling	1051	Condition B, 10 Cycles, 15 Min . Dwell
4. Constant Acceleration	2006	10,000 G's at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C
7. Interim Electrical/Optical Tests[2;	-	IV, ICC, Ibl, Ibh, IEL, IEh, Ih, and IIH and visual function. $T_{A}=25^{\circ} \mathrm{C}$
8. Burn- $\mathrm{ln}^{\prime} 1$	1015	Condition B at $\mathrm{VCC}=5 \mathrm{~V}$ and cycle through logic at 1 character per second. $T_{A}=100^{\circ} \mathrm{C}, \mathrm{t}=168$ hours
9. Final Electrical Test[2]	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta \mathrm{IV}=-20 \%, \Delta \mathrm{lcc}= \pm 10 \mathrm{~mA}, \Delta \mathrm{lH}= \pm 10 \mu \mathrm{~A} \\ & \text { and } \Delta \mathrm{lEH}= \pm 13 \mu \mathrm{~A} \end{aligned}$
11. External Visual	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics.

TABLE II
GROUP A ELECTRICAL TESTS - MIL-D-87157

Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}^{[1]}$	visual function, $T_{A}=25^{\circ} \mathrm{C}$	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{(1)}$	Same as Subgroup 1, except delete lv and visual function. $T_{A}=+100^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{11}$	Same as Subgroup 1, except delete IV and visual function. $T_{A}=-55^{\circ} \mathrm{C}$	7
Subgroup 4,5, and 6 not fested		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual		7

[^12]TABLE IIIa
GROUP B, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices 0 Failures
fnternal Visual and Mechanical ${ }^{\text {a }]}$	2014		1 Device/ 0 Failures
Subgroup 241,21 Solderability	2026	$T_{\text {A }}=260^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition B, 10 Cycles, 15 Min. Dwell	LTPD $=15$
Moisture Resistance	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Electrical/Optical Endpoints[4]	-	IV, ICC, IBL, IBH, IEL, IEH, IL, I/H and visual function. $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs.)	1027	$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$ at $\mathrm{VCC}=5.0 \mathrm{~V}$ and cycling through logic at 1 character. per second.	$L T P D=10$
Electrical/Optical Endpoints[4]	-	Same as Subgroup 3.	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs .)	1032	$T_{A}=+125^{\circ} \mathrm{C}$	LTPD $=10$
Electrical/Optical Endpoints[4]	-	Same as Subgroup 3	

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. MIL-STD-883 methods apply
4. Limits and conditions are per the electrical/optical characteristics.

TABLE IVa
GROUP C, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sámple Size
Subgroup 1 Physical Dimensions	2066	. . .	2 Devices f 0 Failures
Subgroup 2[27] Lead Integrity	2004	Condition B2	LTPD $=15$
- Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C	
Subgroup 3 shock	2016	1500G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Y_{2}	$L T P D=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	10,000 ${ }^{\text {at }} \mathrm{Y}_{1}$ orientation	
External Visualil	1010 or 1011		
Electrical/Optical Endpoints[8]	-	$\mathrm{IV}, \mathrm{ICC}, \mathrm{IBL}, \mathrm{IBH}, \mathrm{IEL}, \mathrm{IEH}, \mathrm{h}$, , IH and visual Function, $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4[1,3] Salt Atmosphere	1041		LTPD $=15$
External Visuall4	1010 or 1011		
Subgroup 5 Bond Strength ${ }^{(5]}$	2037	Condition A	$\begin{gathered} \text { LTPD }=20 \\ (C=0) \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{(6)}$	1026	$T_{A}=+100^{\circ} \mathrm{C}$	$\lambda=10$
Efectrical/Optical Endpoints ${ }^{81}$	-	Same as Subgroup 3	

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LT'PD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C Life Test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.

Solid State Over Range Character

For display applications requiring a+,1, or decimal point designation, the 4N53 over range character is available. This display module comes in the same package as the $4 \mathrm{~N} 51-4 \mathrm{~N} 54$ series numeric indicator and is completely compatible with it.

Package Dimensions*

Figure 9. Typical Driving Circuit.

TRUTH TABLE

CHARACTER	PIN			
	1	2,3	4	8
+	H	X	X	H
-	L	X	X	H
1	X	H	X	X
Decimal Point	X	X	H	X
Blank	L	L	L	L

NOTES: L: Line switching transistor in Figure 9 cutoff.
H : Line switching transistor in Figure 9 saturated.
X: 'Don't care'

Electrical/Optical Characteristics*

4N53 ($T_{A}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, Unless Otherwise Specified)

DESCRIPTION	SYMEOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Forward Voitage per LED	V_{F}	$I_{F}=10 \mathrm{~mA}$		1.6	2.0	V
Power dissipation	${ }^{P_{T}}$	$I_{F}=10 \mathrm{~mA}$ all diodes lit		280	320	mW
Luminous Intensity per LED (digit average)	I_{v}	$\begin{aligned} & I_{F}=6 \mathrm{~mA} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	40	85		$\mu \mathrm{cd}$
Peak wavelength	$\lambda_{\text {peak }}$	${ }^{T}{ }_{C}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength	λd	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640		nm
Weight * *				1.0		gm

Recommended Operating Conditions*

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply voitage	$V_{\text {CC }}$	4.5	5.0	5.5	V
Forward current, each LEO	IF $_{\text {F }}$		5.0	10	MA

NOTE:

LED current must be externally limited. Refer to Figure 9 for recommended resistor values.
*JEDEC Registered Data. **Non Registered Data.

Absolute Maximum Ratings*

DESCRIPTION	SYMBOL	MiN.	MAX.	UNIT
Storage temperature, ambient	$\mathrm{T}_{\text {S }}$	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient	TA	-45	$+100$	${ }^{\circ} \mathrm{C}$
Forward current, each LED	If		10	mA
Reverse voltage, each LED	$V_{\text {f }}$		4	V

Features

- three Colors

High-Efficiency Red
Yellow
High Performance Green

- THREE CHARACTER OPTIONS

Numeric
Hexadecimal
Over Range

- TWO HIGH-EFFICIENCY RED OPTIONS

Low Power
High Brightness

- PERFORMANCE GUARANTEED OVER TEMPERATURE
- MEMORY LATCH/DECODER/DRIVER

TTL Compatible

- 4x7 DOT MATRIX CHARACTER
- CATEGORIZED FOR LUMINOUS INTENSITY YELLOW AND GREEN CATEGORIZED FOR COLOR
Use of Like Categories Yields a Uniform Display

Devices

Description

These solid state display devices are designed and tested for use in adverse industrial environments. The character height is 7.4 mm (0.29 inch). The numeric and hexadecimal devices incorporate an on-board IC that contains the data memory, decoder and display driver functions.
The numeric devices decode positive BCD logic into characters " $0-9$ ", a "-" sign, decimal point, and a test pattern. The hexadecimal devices decode positive BCD logic into 16 characters, " $0-9, A-F$ ". An input is provided on the hexadecimal devices to blank the display (all LED's off) without losing the contents of the memory.

The over range device displays " ± 1 " and right hand decimal point and is typically driven via external switching transistors.

Part Number HDSP.	Color	Description	Front View
$\begin{aligned} & 0760 \\ & 0761 \\ & 0762 \\ & 0763 \end{aligned}$	High-Efficiency Red Low Power	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & A \\ & B \\ & C \\ & D \end{aligned}$
$\begin{aligned} & 0770 \\ & 0771 \\ & 0772 \\ & 0763 \end{aligned}$	High-Efficiency Red High Brightness	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & A \\ & B \\ & C \\ & D \\ & \hline \end{aligned}$
0860 0861 0862 0863	Yellow	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$
$\begin{aligned} & 0960 \\ & 0961 \\ & 0962 \\ & 0963 \end{aligned}$	Green	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$

Package Dimensions

END VIEW

PIN	FUNCTION	
	NUMERIC	HEXA. DECIMAL
1	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal point	Blanking control
5.	Latch enable	Latch nable
6	Ground	Ground
7	$V_{c c}$	$V_{\text {cc }}$
8	Input 1	Input 1

NOTES:

1. Dimensions in millimetres and (inches).
2. Vertical digit center line is $\pm .51 \mathrm{~mm}\left(\pm .02^{\prime \prime}\right)$ from vertical package center line.
3. HDSP- 0860 and HDSP- 0960 Series.

Figure 1. Timing Diagram

GROUND

TRUTH TABLE					
BCD DATA ${ }^{[1]}$				NUMERIC	HEXA. DECIMAL
X_{8}	X_{4}	X_{2}	X_{1}		
L	L.	4	1	!	\%
L.	L	L.	H	¢	$\stackrel{3}{6}$
L	L	H	1	\ldots \cdots \cdots	\ldots
t.	1	H	H	\%	\cdots
1.	H	L	L	\cdots	!
L	H	L.	H	\ldots	管:
L	H	H	1.	\because	-
1.	H	H	H	$\stackrel{\square}{1}$	$\stackrel{*}{\square}$
H	1	L.	L	号	\because
H	1	L.	H	+	\%
H	L	H	1.	+	\%
H	4	H	H	(BLANK)	+
H	H	1.	L	(RLANK)	\cdots
H	H	1.	H	\cdots	${ }_{4}^{4}$
H	H	H	L	(BLANK)	(\%
H	H	H	H	(BLANK)	+
DECIMAL PT, ${ }^{21}$			ON		$V_{\text {Op }}=1$
			OFF		$V_{D P}=H$
ENABLE ${ }^{(1)}$			LOAD DATA		$V_{E}=L$
			LATCH DATA		$V_{E}=H$
BLANKING ${ }^{\text {I3I }}$			DISPLAY-ON		$V_{B}=1$
			DISPL.AY,OFF		$V_{B}=\mathrm{H}$

Notes:

1. $\mathrm{H}=$ Logic High; $\mathrm{L}=$ Logic Low. With the enable input at logic high changes in BCD input logic levels have no effect upon display memory, displayed character, or DP.
2. The decimal point input, DP, pertains only to the numeric displays.
3. The blanking control input, B, pertains only to the hexadecimal displays. Blanking input has no effect upon display memory.

Figure 2. Logic Block Diagram

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	$\mathrm{T}_{\text {s }}$	-65	± 100	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient [1]	$\mathrm{T}_{\text {A }}$	-55	+70	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{121}$	VCX_{C}	-0.5	$+7.0$	V
Voltage applied to input logic, dp and enable pins	$V_{1}, V_{D P}, V_{E}$	-0.5	$\mathrm{VCC}_{\text {ce }}$	V
Voltage applied to blanking input ${ }^{\text {a }}$ (V_{B}	-0.5	V_{cc}	V
Maximum solder temperature at 1.59 mm (.062 inch) below seating plane; $t \leqslant 5$ seconds			260	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage [2]	V_{cc}	4.5	5.0	5.5	V
Operating temperature, ambient [1]	TA	-55		+70	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	$\mathrm{t}_{\text {w }}$	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {seftep }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathbf{t}_{\text {Hold }}$	50			nsec
Enable pulse rise time	$t_{\text {tuh }}$			1.0	msec

Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Device	Description	Symbol	Min.	Typ.	Max.	Unit
HDSP-0760 Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	Iv	65	140		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		635		nm
	Dominant Wavelength ${ }^{(5]}$	λd		626		nm
HDSP-0770 Series	Luminous Intensity per LED (Digit Average) ${ }^{3,4]}$	IV	260	620		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		635		nm
	Dominant Wavelength ${ }^{51}$	λd		626		nm
HDSP-0860 Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	IV	215	490		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		583		nm
	Dominant Wavelength ${ }^{[5,6]}$	λd		585		nm
HDSP-0960 Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	Iv	298	1100		$\mu \mathrm{cd}$
	Peak Wavelength	入PEAK		568		$n \mathrm{~m}$
	Dominant Wavelength ${ }^{[5,6]}$	λd		574		nm

Notes:

1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is $R \theta J A=50^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{device}$. The device package thermal resistance is $R \theta_{J-P I N}=15^{\circ} \mathrm{C} / \mathrm{W} /$ device. The thermal resistance device pin-to-ambient through the PC board should not exceed $35^{\circ} \mathrm{C} / \mathrm{W} /$ device for operation at $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$.
2. Voltage values are with respect to device ground, pin 6.
3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to $25^{\circ} \mathrm{C}$.

Electrical Characteristics; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Deserption	Symbol	Teat Condilions	Min.	Typ. ${ }^{717}$	Max.	Unit
	lec	$\mathrm{VCC}=5.5 \mathrm{~V}$ (Numeral 5 and DP Illuminated)		78	105	mA
				120	175	
Power, HDSP-0760 Series	PT	$\mathrm{VCC}=5.5 \mathrm{~V}$ (Numeral 5 and DP llluminated)		390	573	mW
DissipationHDSP-0770 Series HDSP-0860 Series HDSP-0960 Series				690	963	
Logic, Enable and Blanking Low-Level Input Voltage	VIL	$\mathrm{VCC}=4.5 \mathrm{~V}$		\because	0.8	v
Logic, Enable and Blanking High-Level Input Voltage	$V_{1 H}$		2.0			v
Logic and Enable Low-Level Input Current	III	$V_{C C}=5.5 \mathrm{~V}$			-1.6	mA
Blanking Low-Level Input Current	lab	$\mathrm{V}_{\mathrm{LL}}=0.4 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Logic, Enable and Blanking High-Level Input Current	$\mathrm{IIH}^{\text {H }}$	$\begin{aligned} & V C C=5.5 \mathrm{~V} \\ & V_{H H}=2.4 \mathrm{~V} \end{aligned}$			+40	$\mu \mathrm{A}$
Weight				1.0		gm
Leak Rate					5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$

Notes:
4. The luminous intensity at a specific operating ambient temperature, Iv (T_{A}) may be approximated from the following expotential equation: $\operatorname{lv}\left(\mathrm{T}_{\mathrm{A}}=\operatorname{lv}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\mathrm{k}}\left(\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right)\right.$).

Device	\mathbf{K}
HDSP-0760 Series	$-0.0131 /^{\circ} \mathrm{C}$
HDSP-0770 Series	$-0.012 /^{\circ} \mathrm{C}$
HDSP-0860 Series	$-0.014 \%^{\circ} \mathrm{C}$
HDSP-0960 Series	-0.0104

5. The dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
6. The HDSP-0860 and HDSP-0960 series devices are categorized as to dominant wavelength with the category designated by a number on the back side of the display package.
7. All typical values at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Operational Considerations

ELECTRICAL

These devices use a modified 4×7 dot matrix of light emitting diode to display decimal/hexadecimal numeric information. The high efficiency red and yellow LED's are GaAsP epitaxial layer on a GaP transparent substrate. The green LED's are GaP epitaxial layer on a GaP transparent substrate. The LED's are driven by constant current drivers, BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The decimal point input is active low true and this data is latched into the display memory in the same fashion as is the BCD data. The decimal point LED is driven by the onboard IC.

The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

MECHANICAL

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+70^{\circ} \mathrm{C}$, it is important to maintain a case-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C}$ watt/device as measured on top of display pin 3.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixutres formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

CONTRAST ENHANCEMENT

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an appropriate contrast enhancement filter. The following filters are suggested:

HIGH EFFICIENCY RED
Panelgraphic Ruby Red 60
Chequers Red 112
3M Light Control Film

YELLOW

Panelgraphic Yellow 27
Chequers Amber 107
3M Light Control Film

GREEN

Panelgraphic Green 48
Chequers Green 107
3M Light Control Film

For many applications a neutral density gray filter in either plastic, circular polarizer or optically coated glass will provide the needed contrast enhancement. Suggested plastic neutral density gray filters are Panelgraphic Gray 10, Chequers Gray 105, or Polaroid HNCP37. The optically coated glass/circular polarized HNCP10 filter by Polaroid provides superior contrast enhancement for very bright ambients.

Over Range Character

The over range devices display " ± 1 " and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

Package Dimensions

Pin	Function
1	Plus
2	Numeral One
3	Numeral One
4	DP
5	Open
6	Open
7	VCC
8	Minus/Plus

FRONT VIEW
Note:

1. Dimensions in millimetres and (inches).

Character	Pin			
	1	2,3	4	8
+	1	X	X	1
-	0	X	X	1
1	X	1	X	X
Decimal Point	X	X	1	X
Blank	0	0	0	0

Notes:
0 : Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
X: 'don't care'

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	TS $^{\text {Am }}$	-65	+100	${ }^{\circ} \mathrm{C}$
Operating Temperature Ambient	TA_{A}	-55	+70	${ }^{\circ} \mathrm{C}$
Forward Current, Each LED	IF		10	mA
Reverse Voltage. Each LED	V_{A}		5	V

Figure 3. Typical Driving Circuit

Recommended Operating Conditions vcc= 5.0 v

Device		Forward Current Per LED, mA	Resistor Value			
		R_{1}	\mathbf{R}_{2}	R_{3}		
	Low Power		2.3	1100	200	270
HDSP-0763	High Brightness	8	400	130	200	
HDSP-0863		8	360	120	180	
HDSP-0963		8	330	100	160	

Luminous Intensity Per LED

(Digit Average) ${ }^{[3,4]}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Device	Test Conditions	Min.	Typ.	Units
HDSP-0763	$I_{F}=2.3 \mathrm{~mA}$	65	140	$\mu \mathrm{Cd}$
	$I_{F}=8 \mathrm{~mA}$		620	$\mu \mathrm{~cd}$
HDSP	0863	$I_{F}=8 \mathrm{~mA}$	215	490
HDSP -0963	$I_{F}=8 \mathrm{~mA}$			

Electrical Characteristics; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Device	Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
HDSP-0763	Power Dissipation (all LED's Illuminated)	Pt	$\mathrm{IF}_{\mathrm{F}}=2.8 \mathrm{~mA}$		72		mW
			IF $=8 \mathrm{~mA}$		224	282	
	Forward Voltage per LED	V_{F}	$\mathrm{IF}_{\mathrm{F}}=2.8 \mathrm{~mA}$		1.6		V
			$\mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}$		1.75	2.2	
HDSP-0863	Power Dissipation (all LED's lluminated)	PT	$1 \mathrm{~F}=8 \mathrm{~mA}$		237	282	mW
	Forward Voltage per LED	V_{F}			1.90	2.2	V
HDSP-0963	Power Dissipation fall LED's Illuminated)	$P_{\text {t }}$	$\mathrm{IF}=8 \mathrm{~mA}$		243	282	mW
	Forward Voltage per LED	VF			1.85	2.2	V

SOLID STATE NUMERIC INDICATOR

Features

- RUGGED, SHOCK RESISTANT
- DESIGNED TO MEET MIL STANDARDS
- INCLUDES DECODER/DRIVER BCD Inputs
- TTL/DTL COMPATIBLE
- CONTROLLABLE LIGHT OUTPUT
- 5×7 LED MATRIX CHARACTER

Description

The HP 5082-7010 solid state numeric indicator with built-in decoder/driver provides an excellent 6.8 mm (0.27 in .) display for use in military or adverse industrial environments. Typical applications include ground, airborne and shipboard equipment, fire control systems, medical instruments, and space flight systems.
The 5082-7010 is a modified 5×7 matrix display that indicates the numerals $0-9$ when presented with a BCD code. The BCD code is negative logic with blanks
displayed for invalid codes. A left-hand decimal point is included which must be externally current limited.

The 5082-7011 is a companion plus/minus sign in the same type package. Plus/minus indications require only that voltage be applied to two input pins.
Both displays allow luminous intensity to be varied by changing the DC drive voltage or by pulse duration modulation of the LED voltage.

Package Dimensions

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	T_{S}	-65	+100	${ }^{\circ} \mathrm{C}$
Operating Temperature, Case	T_{C}	-55	+95	${ }^{\circ} \mathrm{C}$
Logic Supply Voltage to Ground	V_{CC}	-0.5	+7.0	V
Logic Input Voltage	$\mathrm{V}_{\text {}}$	-0.5	+5.5	V
LED Supply Voltage to Ground	$\mathrm{V}_{\text {LED }}{ }^{[1]}$	-0.5	+5.5	V
Decimal Point Current	I_{DP}		-10	mA

Note: 1. Above $T_{C}=65^{\circ} \mathrm{C}$ derate $V_{\text {LED }}$ per derating curve in Figure 10.

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Logic Supply Voltage	$V_{\text {CC }}$	4.5	5.0	5.5	V
LED Supply Voltage, Display Off	V LED	-0.5	0	+1.0	V
LED Supply Voltage, Display On	$\mathrm{V}_{\text {LED }}$	3.0	4.2	5.5	V
Decimal Point Current	$\mathrm{I}_{\mathrm{DP}}[2]$	0	-5.0	-10.0	mA
Logic Input Voltage, "H" State	$\mathrm{V}_{\text {IH }}$	2.0		5.5	V
Logic Input Voltage, "L" State	$\mathrm{V}_{1 \mathrm{~L}}$	0		0.8	V

Note: 2. Decimal point current must be externally current limited. See application information.

Electrical/Optical Characteristics

Case Temperature, $\mathbf{T}_{\mathbf{C}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise specified

Description	Symbol	Test Conditions		Min.	Typ. ${ }^{[4]}$	Max.	Unit
Logic Supply Current	ICC	$V_{C C}=5.5 \mathrm{~V}$			45	75	mA
LED Supply Current	$\begin{aligned} & \text { I LED } \\ & {[3]} \\ & {[5]} \end{aligned}$	$V_{C C}$	$\mathrm{V}_{\text {LED }}$				mA
		5.5 V	5.5 V		255	350	
		5.5 V	4.2 V		170	235	
		5.5 V	3.5 V		125		
Logic Input Current, "H" State (ea. input)	I_{IH}	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{I H}=2.4 \mathrm{~V} \end{aligned}$				100	$\mu \mathrm{A}$
Logic Input Current, "L" State (ea. input)	$I_{\text {IL }}$	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{I L}=0.4 \mathrm{~V} \end{aligned}$				-1.6	mA
Decimal Point Voltage Drop	$\begin{aligned} & \mathrm{V}_{\mathrm{LED}} \\ & -\mathrm{V}_{\mathrm{DP}} \end{aligned}$	$\mathrm{I}_{\mathrm{DP}}=-10 \mathrm{~mA}$			1.6	2.0	V
Power Dissipation	P_{T} [3] [5]	VCC	VLED				W
		5.5 V	5.5 V		1.7	2.3	
		5.5 V	4.2 V		1.0	1.4	
		5.5 V	3.5 V		0.7		
Luminous Intensity per LED (digit avg.)	Iv	VLED	TC				$\mu \mathrm{cd}$
		5.5 V	$25^{\circ} \mathrm{C}$	60	115		
		4.2 V	$25^{\circ} \mathrm{C}$	40	80		
		3.5 V	$25^{\circ} \mathrm{C}$		50		
Peak Wavelength	$\lambda_{\text {peak }}$				655		nm
Spectral Halfwidth	$\Delta \lambda_{1 / 2}$				30		nm
Weight					4.9		gram

Notes: 3. With numeral 8 displayed.
4. All typical values at $T_{C}=25^{\circ} \mathrm{C}$.
5. $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ for $\mathrm{V}_{\mathrm{LED}}=5.5 \mathrm{~V}$.

Truth Table

$V_{I L}=0.0$ to 0.8 V
$\mathrm{V}_{\text {IH }}=2.0$ to 5.5 V

Figure 1. Equivalent input circuit of the 5082-7010 decoder. Note: Display metal case is isolated from ground pin \#6.

Figure 3. Equivalent circuit of $5082-7011$ plus/minus sign. All resistors 345Ω typical. Note: Display metal case is isolated from ground pin \#6.

Figure 5. Logic " H " input current as a function of case temperature, each input.

Figure 2. Equivalent circuit of the $\mathbf{5 0 8 2 - 7 0 1 0}$ as seen from LED and decimal point drive lines.

Figure 4. Input current as a function of input voltage, each input.

Figure 6. Logic " L " input current as a function of case temperature, each input.

Figure 7. LED supply current as a function of LED supply voltage.

Figure 9. Maximum power derating as a function of case temperature.

Figure 11. Relative luminous intensity as a function of case temperature at fixed current level.

Figure 8. Luminous intensity per LED (digit average) as a function of LED supply voltage.

Figure 10. LED voltage derating as a function of case temperature.

Figure 12. LED voltage derating as a function of ambient temperature, display soldered into P.C. board without heat sink.

Solid State Plus/Minus Sign

For display applications requiring \pm designation, the 50827011 solid state plus/minus sign is available. This display module comes in the same package as the 5082-7010 numeric indicator and is completely compatible with it. Plus or minus information can be indicated by supplying voltage to one (minus sign) or two (plus sign) input leads. A third lead is provided for the ground connection. Luminous intensity is controlled by changing the LED drive voltage. Each LED has its own built-in 345Ω (nominal) current limiting resistor. Therefore, no external current limiting is required for voltages at 5.5 V or lower. Like the numeric indicator, the $\mathbf{- 7 0 1 1}$ plus/minus sign is TTL/DTL compatible.

Truth Table

CHARACTER	PIN	
	3	7
+	H	H
-	L	H
Blank	L	L

$\mathrm{V}_{\mathrm{L}}=-0.5$ to 1.0 V
$\mathrm{V}_{\mathrm{H}}=3.0$ to 5.5 V

Electrical/Optical Characteristics

Case Temperature, $\mathbf{T}_{\mathbf{C}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise specified

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{[1]}$	Max.	Unit
LED Supply Current	ILED	$V_{\text {LED }}=5.5 \mathrm{~V}$		105	150	mA
		$V_{\text {LED }}=4.2 \mathrm{~V}$		70	100	
Power Dissipation	P_{T}	$\mathrm{V}_{\text {LED }}=5.5 \mathrm{~V}$		0.6	0.9	W
		$V_{\text {LED }}=4.2 \mathrm{~V}$		0.3	0.6	
Luminous Intensity per LED (Digit Avg.)	$\mathrm{I}^{[2]}$	$V_{\text {LED }}=5.5 \mathrm{~V}$	60	115		$\mu \mathrm{cd}$
		$V_{\text {LED }}=4.2 \mathrm{~V}$	40	80		
		$V_{\text {LED }}=3.5 \mathrm{~V}$		50		
Peak Wavelength	$\lambda_{\text {peak }}$			655		nm
Spectral Halfwidth	$\Delta \lambda_{1 / 2}$			30		nm
Weight				4.9		gram

Notes: 1. All typical values at $T_{C}=25^{\circ} \mathrm{C}$
2. At $T_{C}=25^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	T_{S}	-65	+100	${ }^{\circ} \mathrm{C}$
Operating Temperature, Case	T_{C}	-55	+95	${ }^{\circ} \mathrm{C}$
Plus, Plus/Minus Input Potential to Ground	$\mathrm{V}_{\text {LED }}$	-0.5	5.5	V

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
LED Supply Voltage, Display Off	V LED	-0.5	0	1.0	V
LED Supply Voltage, Display On	V LED	3.0	4.2	5.5	V

Applications

Decimal Point Limiting Resistor

The decimal point of the 5082-7010 display requires an external current limiting resistor, between pin 2 and ground. Recommended resistor value is $220 \Omega, 1 / 4$ watt.

Mounting

The 5082-7010 and 5082-7011 displays are packaged with two rows of 4 contact pins each in a DIP configuration with a row center line spacing of 0.890 inches.

Normal mounting is directly onto a printed circuit board. If desired, these displays may be socket mounted using contact strip connectors such as Augat's 325-AGI or AMP 583773-1 or 583774-1.

Heat Sink Operation

Optimum display case operating temperature for the 50827010 and 7011 displays is $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ as measured on back surface. Maintaining the display case operating temperature within this range may be achieved by mount-
ing the display on an appropriate heat sink or metal core printed circuit board. Thermal conducting compound such as Wakefield 120 or Dow Corning 340 can be used between display and heat sink. See figure 10 for $V_{\text {LED }}$ derating vs. display case temperature.

Operation Without Heat Sink

These displays may also be operated without the use of a heat sink. The thermal resistance from case to ambient for these displays when soldered into a printed circuit board is nominally $\theta_{C A}=30^{\circ} \mathrm{C} / \mathrm{W}$. See figure 12 for $V_{\text {LED }}$ derating vs. ambient temperature.

Cleaning

Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/ alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

(hp)
 HEWLETT PACKARD

LEADFRAME MOUNTED SEVEN SEGMENT MONOLITHIC NUMERIC INDICATORS

Features

- COMPACT PACKAGE SIZES
.25" Package Width
.150" and .200" Digit Spacing
- STROBED OPERATION Minimizes Lead Connections
- FULLY ENCAPSULATED STANDARD DIP PACKAGES
End Stackable
Integral Red Filter
Extremely Rugged Construction
- I.C. COMPATIBLE

- CATEGORIZED FOR LUMINOUS INTENSITY Assures uniformity of light output from unit to unit within single category.

Description

The HP 5082-7400/-7430 series are $2.79 \mathrm{~mm}(.11$ "), seven segment GaAsP numeric indicators packaged in 2, 3, 4 and 5 digit clusters. An integral magnification technique increases the luminous intensity, thereby making low power consumption possible. Options include either the standard lower right hand decimal point or a centered decimal point.
Applications include hand held calculators, portable instruments and many other products requiring compact, rugged, long lifetime active indicators.

Device Selection Guide

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Peak Forward Current per Segment or dp (Duration $<500 \mu \mathrm{~S})$ $5082-7432 / 7433$	IPEAK		50	mA
Peak Forward Current per Segment or dp (Duration $<1 \mathrm{msec}$) $5082-7404 / 7405 / 7414 / 7415$	IPEAK		110	mA
Average Current per Segment or dp	IAVG		5	mA
Power Dissipation per Digit ${ }^{11]}$	PD		80	mW
Operating Temperature, Ambient	TA	-40	75	${ }^{\circ} \mathrm{C}$
Storage Temperature	Ts	-40	100	${ }^{\circ} \mathrm{C}$
Reverse Voltage	VA		5	V
Solder Temperature $1 / 16^{\prime \prime}$ below seating plane $(\mathrm{t} \leq 3 \text { sec })^{[21}$			230	${ }^{\circ} \mathrm{C}$

Notes: 1. Derate linearly @ $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ambient.
2. See Mechanical section for recommended flux removal solvents.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment or $\mathrm{dp}^{3,3 /}$ 5082-7432/7433	Iv	$\begin{aligned} & l_{A V G}=500 \mu \mathrm{~A} \\ & \text { llpK }=5 \mathrm{~mA} \\ & \text { duty cycle }=10 \% \text {) } \end{aligned}$	10	40		$\mu \mathrm{cd}$
Luminous Intensity/Segment or $\mathrm{dp}^{13.4}$ \{Time Averaged 5082-7404/7405/7414/7415	Iv	$\begin{aligned} & \text { lavg }=1 \mathrm{~mA} \\ & \text { lPK }=10 \mathrm{~mA} \\ & \text { duty cycle }=10 \% \end{aligned}$	5	20		$\mu \mathrm{cd}$
Peak Wavelength	λ APEAK			655		nm
Forward Voltage/Segment or dp 5082-7432/-7433	V_{F}	$\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}$		1.55	2.0	V
Forward Voltage/Segment or dp 5082-7404/7405/7414/7415	VF	$I F=10 \mathrm{~mA}$		1.55	2.0	V
Reverse Voltage/Segment or dp	V_{R}	$I_{R}=200 \mu \mathrm{~A}$	5			V
Rise and Fall Time ${ }^{\text {si }}$	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			10		ns

Notes: 3. The digits are categorized for luminous intensity. Intensity categories are designated by a letter located on the back side of the package.
4. Operation at Peak Currents less than 5.0 mA is not recommended.
5. Time for a $10 \%-90 \%$ change of light intensity for step change in current.

I ${ }_{\text {AVG }}$ - AVERAGE CURRENT PER SEGMENT - mA

Figure 1. Typical Time Averaged Luminous Intensity per Segment (Digit Average) vs. Current per Segment.

IPEAK - PEAK CURRENT PER SEGMENT - mA

Figure 2. Relative Luminous Efficiency vs. Peak Current per Segment.

Figure 3. Typical Time Averaged Luminous Intensity per Segment (Digit Average) vs. Average Current per Segment.

5082-7404/7405/7414/7415

IPEAK - PEAK CURRENT PER SEGMENT - mA
Figure 4. Relative Luminous Efficiency vs. Peak Current per Segment.

5082-7400/7430 SERIES

Figure 5. Forward Current vs. Forward Voltage.

Electrical/Optical

The 5082-7400/7430 series devices utilize a monolithic GaAsP chip of 8 common cathode segments for each display digit. The segment anodes of each digit are interconnected, forming an 8 by N line array, where N is the number of characters in the display. Each chip is positioned under an integrally molded lens giving a magnified character height of 2.79 mm (0.11) inches. Satisfactory viewing will be realized within an angle of $\pm 30^{\circ}$ for the $7404 / 7405 / 7414 / 7415$ and $\pm 20^{\circ}$ for the $7432 / 7433$, measured from the center line of the digit.
The decimal point in the $7432,7433,7414$, and 7415 displays is located at the lower right of the digit for conventional driving schemes.
The 5082-7404 and 7405 displays contain a centrally located decimal point which is activated in place of a digit. In long registers, this technique of setting off the decimal point significantly improves the display's readability. With respect to timing, the decimal point is treated as a separate character with its own unique time frame.
To improve display contrast, the plastic incorporates a red dye that absorbs strongly at all visible wavelengths except the 655 nm emitted by the LED. In addition, the lead frames are selectively darkened to reduce reflectance. An additional filter, such as Plexiglass 2423, Panelgraphic 60 or 63, and SGL Homalite 100-1605, will further lower the ambient reflectance and improve display contrast.

Figure 6. Relative Luminous Intensity vs. Case Temperature at Fixed Current Level.

Mechanical

The 5082-7400/7430 series package is a standard 12 or 14 Pin DIP consisting of a plastic encapsulated lead frame with integral molded lenses. It is designed for plugging into DIP sockets or soldering into PC boards. The lead frame construction allows use of standard DIP insertion tools and techniques. Alignment problems are simplified due to the clustering of digits in a single package. The shoulders of the lead frame pins are intentionally raised above the bottom of the package to allow tilt mounting of up to 20° from the PC board.
To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{C}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

Package Description 5082-7404, -7405, -7414, -7415

Notes: 6. Dimensions in millimeters and (inches).
7. Tolerances on all dimensions are $\pm 0.038 \mathrm{~mm}$ ($\pm .015 \mathrm{in}$.) unless otherwise noted

Figure 7. 5082-7404/7414

Magnified Character Font Description

Figure 8. 5082-7405/7415.

Figure 9. 5082-7404/7405/ 7414/7415

Package Description 5082-7432,-7433

NOTES: 9. DIMENSIONS IN MLLLIMETERS AND (INCHES). 10. TOLERANCES ON ALI. OIMENSIONS ARE $0.038 \div(.015)$ UNLESS OTHERWISE SPECIFEED.

Figure 11.

Magnified Character Font Description

Figure 12.

Device Pin Description

PIN NUMBER	5082-7432 FUNCTION	5082-7433 FUNCTION
1	SEE NOTE 11.	CATHODE 1
2	ANODE e	ANODE e
3	ANODE d	ANODE d
4	CATHODE 2	CATHODE 2
5	ANODE c	ANODE c
6	ANODE dp	ANODE dp
7	CATHODE 3	CATHODE 3
8	ANODE b	ANODE b
9	ANODE g	ANODE g
10	ANODE a	ANODE a
11	ANODE f	ANODE f
12	SEE NOTE 11.	SEE NOTE 11.

NOTE 11. Leave Pin unconnected.

PRINTED CIRCUIT BOARD MOUNTED
 SEVEN SEGMENT NUMERIC INDICATORS

Features

- MOS COMPATIBLE
- AVAILABLE IN 9 TO 16 DIGIT CONFIGURATIONS
- CHARACTER HEIGHTS OF .105", .115"

AND .175"

- LOW POWER
- CATEGORIZED FOR LUMINOUS INTENSITY

Description

The HP-5082-7200/7440 series of displays are seven segment GaAsP Numeric Indicators mounted on printed circuit boards. A plastic lens magnifies the digits and includes an integral protective bezel. Character heights of $.105^{\prime \prime}(2.67 \mathrm{~mm})$, $.115^{\prime \prime}(2.92 \mathrm{~mm})$ and $.175^{\prime \prime}(4.45 \mathrm{~mm})$ are available. For large quantity applications, digit string lengths of 8,12 and 14 digits are available by special order.

Applications are hand held calculators and portable equipment requiring compact, low power, long life time, active displays.

Device Selection Guide

Part Number	Digits Per PC Board	Decimal Point	Package	Character Height $(\mathbf{m m}) \mathbf{i n}$.	Inter-Digit Spacing $(\mathbf{m m})$ in.
$5082-7441$	9	Right Hand	Fig. 9	$(2.67) .105^{\prime \prime}$	$(5.08) .200^{\prime \prime}$
$5082-7446$	16	Right Hand	Fig.11	$(2.92) .115^{\prime \prime}$	$(3.81) .150^{\prime \prime}$
$5082-7285$	5	Right Hand	Fig.14	$(4.45) .175^{\prime \prime}$	$(5.84) .230^{\prime \prime}$
$5082-7295$	15	Right Hand	Fig.13	$(4.45) .175^{\prime \prime}$	$(5.84) .230^{\prime \prime}$

Maximum Ratings 5082-7441/7446

Parameter	Symbol	Min.	Max.	Units
Peak Forward Current per Segment or dp (Duration < 500μ s)	IPEAK		50	mA
Average Current per Segment or dp ${ }^{[1]}$	$\mathrm{l}_{\text {AVG }}$		3	mA
Power Dissipation per Digit [2]	P_{D}		50	mW
Operating Temperature, Ambient	$\mathrm{T}_{\text {A }}$	-20	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{S}	-20	485	${ }^{\circ} \mathrm{C}$
Reverse Voltage	$V_{\text {A }}$		3	V
Solder Temperature at connector edge $(t \leqslant 3 \text { sec. })^{[3]}$			230	${ }^{\circ} \mathrm{C}$

NOTES: 1. Derate linearly at $0.1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $60^{\circ} \mathrm{C}$ ambient.
2. Derate linearly at $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $60^{\circ} \mathrm{C}$ ambient.
3. See Mechanical section for recommended soldering techniques and flux removal solvents.

Maximum Ratings 5082-7285/7295

Parameter	Symbol	Min.	Max.	Units
Peak Forward Current per Segment or DP (Duration $<35 \mu \mathrm{~s}$)	Ipeak		200	mA
Average Current per Segment or DP ${ }^{141}$	lavg		7	mA
Power Dissipation per Digit ${ }^{15 \text { \% }}$	PD		125	mW
Operating Temperature, Ambient	$\mathrm{T}_{\text {A }}$	-20	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{s}	-20	$+80$	${ }^{\circ} \mathrm{C}$
Reverse Voltage	$V_{\text {R }}$		3	V
Solder Temperature at connector edge $(t \leqslant 3 \text { sec. })^{16}$.			230	${ }^{\circ} \mathrm{C}$

NOTES: 4. Derate linearly at $0.12 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ambient.
5. Derate linearly at $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ambient.
6. See Mechanical section for recommended soldering techniques and flux removal solvents.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} 5082-7441 / 7446$

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment or dp ${ }^{[7]}$ $5082-7440$	IV	$\begin{aligned} & \mathrm{I}_{\text {AVG }}=500 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{PK}}=5 \mathrm{~mA} \\ & \text { duty cycle }=10 \% \end{aligned}$	9	40		$\mu \mathrm{cd}$
5082-7446		5 mA Peak 1/16 Duty Cycle	7	35		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {peak }}$			655		nm
Forward Voltage/Segment or dp	V_{F}	$I_{F}=5 \mathrm{~mA}$.	1.55		V

NOTES: 7. Operation at Peak Currents of less than 3.5 mA is not recommended.

Figure 1. Peak Forward Current vs. Peak Forward Voltage.

Figure 3. Relative Luminous Intensity vs. Ambient Temperature at Fixed Current Level.

Figure 2. Typical Time Averaged Luminous Intensity per Segment vs. Average Current per Segment.

Figure 4. Relative Luminous Efficiency vs. Peak Current per Segment.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad 5082-7285 / 7295$

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Units
Luminous Intensity/Segment or dp (Time Averaged) 15 digit display 5082-7295isitiol	1	$t_{\text {双 }}=2 \mathrm{~mA}$ (30 mA Peak 1/15 duty cycle)	30	90		$\mu \mathrm{cd}$
Luminous Intenstit/Segment or dp (Time Averaged) 5 digit display 5082-728510,70\|	1.	$\begin{aligned} & l_{\text {aveg. }}=2 \mathrm{~mA} \\ & (10 \mathrm{~mA} \text { Peak } \\ & 1 / 5 \text { duty cycle) } \end{aligned}$	30	70		Hed
Forward Voltage per Segment or dp 5082-7295 15 digit display	V_{F}	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$		1.60	2.3	V
Forward Voltage per Segment or dp 5082-7285 5 digit display	V_{F}	$t_{F}=10 \mathrm{~mA}$		1.55	2.0	V
Peak Wavelength	$\lambda_{\text {PEAK }}$			655		nm
Dominant Wavelength ${ }^{\text {9 }}$	λ_{d}			640		nm
Neverse Current per Segment or dp	1 R	$V_{R}=5 \mathrm{~V}$		10		${ }_{\mu \mathrm{A}}$
Temperature Coefficient of Forward Voltage	$\triangle V_{F} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

NOTES: 8. The luminous intensity at a specific ambient temperature, $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)$, may be calculated from this relationship: $\mathrm{Iv}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)=\mathrm{I}_{\mathrm{V}(25 \mathrm{C})}(.985)^{\left(\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right)}$
9. The dominant wavelength λ_{d}, is derived from the C.I.E. Chromaticity Diagram and represents the single wavelength which defines the color of the device.
10. Operation at peak currents of less than 6.0 mA is not recommended.

Figure 5. Peak Forward Current vs. Peak Forward Voltage.

Figure 7. Relative Luminous Intensity vs. Ambient Temperature at Fixed Current Level.

Mechanical

These devices are constructed on a standard printed circuit board substrate. A separately molded plastic lens is attached to the PC board over the digits. The lens is an acrylic styrene material that gives good optical lens performance, but is subject to scratching so care should be exercised in handling.

The device may be mounted either by use of pins which may be hand soldered into the plated through holes at the connector edge of the PC board or by insertion into a standard PC board connector. The devices may be hand soldered for up to 3 seconds per tab at a maximum soldering temperature of $230^{\circ} \mathrm{C}$. Heat should be applied only to the edge connector tab areas of the PC board. Heating other areas of the board to temperatures in excess of $85^{\circ} \mathrm{C}$ can result in permanent damage to the display. It is recommended that a non-activated rosin core wire solder or a low temperature deactivating flux and solid wire solder be used in soldering operations.
The PC board is silver plated. To prevent the formation of a tarnish $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$ which could impair solderability the

Figure 6. Typical Time Averaged Luminous Intensity per Segment vs. Average Current per Segment.

Figure 8. Relative Luminous Efficiency vs. Peak Current per Segment.
displays should be stored in the unopened shipping packages until they are used. Further information on the storage, handling, and cleaning of silver plated components is contained in Hewlett-Packard Application Bulletin No. 3.

Electrical/Optical

The HP 5082-7441, -7446, -7285 and 7295 devices utilize a monolithic GaAsP chip containing 7 segments and a decimal point for each display digit. The segments of each digit are interconnected, forming an 8 by N line array, where N is the number of digits in the display. Each chip is positioned under a separate element of a plastic magnifying lens, producing a magnified character. Satisfactory viewing will be realized within an angle of approximately $\pm 20^{\circ}$ from the centerline of the digit. A filter, such as plexiglass 2423, Panelgraphic 60 or 63 , and Homalite 100-1600, will lower the ambient reflectance and improve display contrast. Digit encoding of these devices is performed by standard 7 segment decoder driver circuits.

Package Dimensions

NOTES:

1. Dimensions in millimeters and (inches).
2. Logo and part number are on back of package.
3. Secondary 1.25 X magnifier that slides into primary lens and increases character height
to 3.33 (.131) available as special product.
4. Tolerances: $\pm .881$ (.015)

Figure 9. 5082-7441

Magnified Character Font Description

Note:
All dimensions in millimeters and (inches).

Figure 10.

Device Pin Description

Pin No.	5082-7441 Function	Pin No.	5082.7441 Function
1	Dig. 1 Cathode	10	Seg. d Anode
2	Seg. c Anode	11	Dig. 6 Cathode
3	Dig. 2 Cathode	12	Seg. g Anode
4	d.p. Anode	13	Dig. 7 Cathode
5	Dig. 3 Cathode	14	Seg. b Anode
6	Seg. a Anode	15	Dig. 8 Cathode
7	Dig. 4 Cathode	16	Seg. f Anode
8	Seg. e Anode	17	Dig. 9 Cathode
9	Dig. 5 Cathode		

Package Dimensions

Figure 11. 5082-7446

Magnified Character Font Description

DEVICE	X	Y
5082.7446	2.92	1.40
	$(.115)$	$1.055)$

Figure 12.

Device Pin Description

NOTES: 1. ALL DIMENSIONS IN MILLIMETRES AND (INCHES).
2. TOLERANCES ON ALL DIMENSIONS ARE ± 0.38 (.015) UNLESS OTHERWISE SPECIFIED.

Pin No.	5082-7446 Function
1	Cathode-Digit \dagger
2	Cathode-Digit 2
3	Cathode-Digit 3
4	Cathode-Digit 4
5	Cathode-Digit 5
6	Anode-Segment e
7	Cathode-Digit 6
8	Anode-Segment d
9	Cathode-Digit 7
10	Anode-Segment a
11	Cathode-Digit 8
12	Anode-Segment DP
13	Cathode-Digit 9
14	Anode-Segment c
15	Cathode-Digit 10
16	Anode-Segment g
17	Cathode-Digit 11
18	Anode-Segment b
19	Cathode-Digit 12
20	Anode-Segment \dagger
21	Cathode-Digit 13
22	Cathode-Digit 14
23	Cathode-Digit 15
24	Cathode-Digit 16

Package Dimensions

Magnified Character Font Description

DEVICES

5082-7285
5082-7295

ALL DIMENSIONS IN MILLIMETERS AND (INCHES).

Figure 15.

Device Pin Description

Pin No.	5082-7285 Function	5082-7295 Function
1	Anode Segment b	Cathode Digit
2	Anode Segment g	Cathode Digit 2
3	Anode Segment e	Cathode Digit 3
4	Cathode Digit 1	Cathode Digit 4
5	Cathode Digit 2	Anode Segment dp
6	Cathode Digit 3	Cathode Digit 5
7	Cathode Digit 4	Anode Segment c
8	Cathode Digit 5	Cathode Digit 6
9	Cathode Digit 6	Anode Segment e
10	Cathode Digit 7	Cathode Digit 7
11	Anode Segment dp	Anode Segment a
12	Anode Segment d	Cathode Digit 8
13	Anode Segment c	Anode Segment 9
14	Arocte Segment a	Cathode Digit 9
15	Anode Segment f	Anode Segment d
16		Cathode Digit 10
17		Anode Segment
18		Cathode Digit 11
19		Anode Segment b
20		Cathode Digit 12
21		Cathode Digit 13
22		Cathode Digit 14
23		Cathode Digit 15

 1 1 \% W\%
 \%

\%
4

High Reliability

Hewlett-Packard has supplied specially tested high reliability optoelectronic products since 1968 for use in state-of-the-art commercial, military, and aerospace applications. To meet the requirements of high reliability, products must be designed with rugged capabilities to withstand severe levels of environmental stress and exposure without failure. We have accomplished this objective by designing a unique family of hermetic products including lamps, displays, and optocouplers which have proven their merits in numerous advanced space and defense programs in the international marketplace. These products receive reliability screening and qualification tests in accordance with appropriate reliability programs similar to those of MIL-S-19500, MIL-M38510, and MIL-D-87157. HP supplies JAN and JANTX LED indicators, a DESC drawing for an optocoupler, and HP standard military equivalent screening programs for optocouplers (MIL-M-38510) and displays (MIL-D-87157). Reliability programs are also performed to individual customer control drawings and specifications when needed. Some of these special testing programs are very complex and may include Class S requirements for microcircuits.

HP's optoelectronic epoxy encapsulated products are designed for long life applications where non-man rated or ground support requirements allow their use. As with hermetic products, the capabilities of epoxy parts can be enhanced by 100% screening and conditioning tests. Lot capabilities can be confirmed by acceptance qualification test programs. MIL-D-87157 is used to define the military requirements
for plastic LED indicators and displays.

All testing is done by experienced Hewlett-Packard employees using facilities which are approved by DESC for JAN products and by customer inspection for special programs. Environmental equipment capabilities and operating methods of the test laboratory meet MIL-STD-750 or MIL-STD883 procedures.

Visible Product Qualification

Two military documents are presently in use to qualify visible products. MIL-S-19500 establishes the standard JAN and JANTX test programs for hermetic lamps. Four hermetic lamps are listed on the Qualified Parts List (QPL) of MIL-S-19500. Descriptions of the individual devices are given in detail specifications called slash sheets. The lamp section of this catalog gives more information on these products.

1N5765	MIL-S-19500/467	Standard Red
1N6092	MIL-S-19500/519	High Efficiency Red
1N6093	MIL-S-19500/520	Yellow
1N6094	MIL-S-19500/521	Green

The second military document governing the qualification of visible products is MIL-D-87157. This general specification was dated August 26, 1981, and covers solid state, light emitting diode displays. This specification may be used to cover all display products including lamps not covered in MIL-S-19500. This specification has provisions for four different quality levels as follows:

Level A Hermetically sealed displays with 100\% screening tests
Level B Hermetically sealed displays without 100\% screening tests
Level C Non-hermetic displays with 100% screening tests
Level D Non-hermetic displays without 100\% screening tests

Displays meeting the hermeticity requirements of MIL-D87157 include the dot matrix family; 4N51, 4N52, 4N53, 4N54, and the alphanumeric families; HDSP-2010 and HDSP-2450, 2451, 2452. These devices may be purchased to Level A of MIL-D-87157 by adding the suffix TXVB to the part number. If only the 100% screening tests are required, the suffix TXV is added.

Detailed testing programs for hermetic products are given in the individual data sheets which follow the general program for quality Level A.

The general program for quality Level C non-hermetic displays from MIL-D-87157 is given below.

TABLE I. 100\% SCREEN FORMAT FOR QUALITY LEVEL C

Test Screen	MIL-STD-750 Method	Level C
1. Precap Visual ${ }^{1 \mid}$	2072	When specified
2. High Temperature Storage ${ }^{11}$	1032	100\%
3. Temperature Cycling ${ }^{\|1\|}$	1051	100\%
4. Constant Acceleration ${ }^{[1,2]}$	2006	When specified
5. Fine Leak ${ }^{11]}$	1071	N/A
6. Gross Leak ${ }^{11}$	1071	N/A
7. Interim Electrical/Optical Tests[1]	-	When specified
8. Burn-In ${ }^{11,3 \mid}$	1015	100\%
9. Final Electrical/Optical Tests	-	100\%
10. Delta Determinations ${ }^{11 \mid}$	-	When specified
11. External Visual ${ }^{\text {\|3] }}$	2009	100\%

Notes:

1. These tests are design dependent. The conditions and limits shall be specified in the detail specification when these tests are applicable.
2. Applicable to cavity type displays only.
3. MIL-STD-883 test method applies.

TABLE II. GROUP A ELECTRICAL TESTS ${ }^{[1]}$

Subgroups	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}$	5
Subgroup 2 Selected DC Electrical Tests at High Temperatures Subgroup 3 Selected DC Electrical Tests at Low Temperatures	7
Subgroup 4 Dynamic Electrical Tests at TA $=25^{\circ} \mathrm{C}$	7
Subgroup 5 Dynamic Electrical Tests at High Temperatures	5
Subgroup 6 Dynamic Electrical Tests at Low Temperatures	7
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	7
Subgroup 8 External Visual	5

Notes:

1. The specific parameters to be included for tests in each subgroup shall be as specified in the applicable detail specification.

TABLE IIIb. GROUP B ENVIRONMENTAL TESTS (CLASS C AND D DISPLAYS ONLY)

Test	MIL-STD-750 Method	Sampling Plan	
Subgroup 1 Resistance to Solvents\|1		1022	4 Devices/ 0 Failures
Internal Visual and Mechanical\|2,5		2014	1 Device/ 0 Failures
Subgroup 2[3,4] Solderability ${ }^{[1]}$ Electrical/Optical Endpoints[1]	2026	LTPD $=15$	
Subgroup 3 Thermal Shock ${ }^{[1]}$ (Temperature Cycling)	1051	LTPD $=15$	
Moisture Resistance ${ }^{[1]}$ Electrical/Optical Endpoints\|1]	1021		
Subgroup 4 Operating Life Test (340 Hours) [1] Electrical/Optical Endpoints[1]	1027	LTPD = 10	
Subgroup 5 Non-Operating (Storage) Life Test (340 Hours) ${ }^{[1]}$ Electrical/Optical Endpoints[1]	1032	LTPD = 10	

Notes:

1. Test method or conditions in accordance with detail specification.
2. Not required for solid encapsulated displays.
3. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
4. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
5. MIL-STD-883 test method applies.

TABLE IVb. GROUP C PERIODIC TESTS (CLASS C AND D DISPLAYS ONLY)

Test	MIL-STD-750 Method	Sampling Plan
Subgroup 1[1] Physical Dimensions	2066	2 Devices/ 0 Failures
Subgroup 2[1] Lead Integrity ${ }^{[6]}$	2004	LTPD $=15$
Subgroup 3 Shock ${ }^{[2]}$ Vibration, Variable Frequency ${ }^{[2]}$ Constant Acceleration[2] External Visual $[3]$ Electrical/Optical Endpoints ${ }^{[4]}$	2016 2056 2006 1001 or 1011	LTPD $=15$
Subgroup 4 Operating Life Test ${ }^{4,5}$ Electrical/Optical Endpoints(4)	1026	$\lambda=10$
Subgroup 5 Temperature Cycling (25 cycles min.) ${ }^{[4]}$ Electrical/Optical Endpoints[4]	1051	LTPD $=20$

Notes

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. Not required for solid encapsulated displays
3. Visual requirements shall be as specified in MIL-STD-883, method 1010 or 1011.
4. Test method or conditions in accordance with detail specification.
5. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made as a basis for Group B lot acceptance or the 1000 hours endpoint measurements shall be used as the basis for both Group B and C acceptance.
6. MIL-STD-883 test method applies.

Optocoupler Product Qualification

Hewlett-Packard optocouplers are hybrid microcircuits which are tested to Class B requirements of MIL-STD-883. Devices which meet these stringent conditions are the hermetically sealed 4N55, 6N134, and 6N140 optocouplers. With certain clarifications of their new testing conditions given in the individual data sheets, these products are now available in compliance with the 100% screening program in Method 5004 and the Quality Conformance testing in

Method 5005 of MIL-STD-883 Class B. The new military compliant products are: 4N55/883B, 6N140/883B, and 8102801 EC (selected item drawing number assigned to the DESC approved 6N134 optocoupler.) Complete details of this testing program are given below. The Hewlett-Packard high reliability parts with TXV and TXVB testing remain available but the new military compliant parts are preferred for new designs and wherever possible in existing equipments.

100\% Screening

MIL-STD-883, METHOD 5004 (CLASS B DEVICES)

Test Screen	Method	Conditions
1. Precap Internal Visual	2010	Condition B
2. High Temperature Storage	1008	Condition $\mathrm{C}, \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$, Time $=24$ Hours minimum
3. Temperature Cycling	1010	Condition C, $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 10$ cycles
4. Constant Acceleration	2001	Condition A, 5K G's, Y1 axis only
5. Fine Leak	1014	Condition A
6. Gross Leak	1014	Condition C
7. Interim Electrical Test	-	Group A, Subgroup 1, except II/O (optional)
8. Burn-In	1015	$\begin{aligned} & \text { Condition } \mathrm{B}, \mathrm{Time}=160 \text { Hours minimum } \\ & 6 \mathrm{~N} 134: \mathrm{T}_{A}=+125^{\circ} \mathrm{C}, \mathrm{~V} C \mathrm{C}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA}, \mathrm{IO}=25 \mathrm{~mA} \\ & 6 \mathrm{~N} 140: \mathrm{T}_{A}=+100^{\circ} \mathrm{C}, \mathrm{VCC}=18 \mathrm{~V}, \mathrm{I}_{F}=5 \mathrm{~mA}, \\ & \mathrm{I}_{0}=10 \mathrm{~mA} \\ & 4 \mathrm{~N} 55: \mathrm{T}_{A}=+125^{\circ} \mathrm{C}, \mathrm{~V}_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{F}=20 \mathrm{~mA}, \mathrm{VOC}_{\mathrm{C}}=3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=270 \Omega \end{aligned}$
9. Final Electrical Test Electrical Test Electrical Test Electrical Test	-	Group A, Subgroup 1 Group A, Subgroup 2 Group A, Subgroup 3 Group A, Subgroup 9
10. External Visual	2009	

Qualification/Quality Conformance

Group A electrical tests are product dependent and are given in the individual device data sheets. Group B testing is performed on each manufactured lot.

GROUP B TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Physical Dimensions (Not required if Groub D is to be performed)	2016		2 Devices/ 0 Failures
Subgroup 2 Resistance to Solvents	2015		4 Devices/ 0 Failures
Subgroup 3 Solderability (LTPD applies to number of leads inspected - no fewer than 3 devices shall be used.)	2003	Soldering Temperature of $260 \pm 10^{\circ} \mathrm{C}$ for 10 seconds	$\begin{gathered} 15 \\ \text { (3 Devices) } \end{gathered}$
Subgroup 4 Internal Visual and Mechanical (may be performed at precap)	2014		1 Device/ 0 Failures
Subgroup 5 Bond Strength (1) Thermocompression (performed at precap, prior to seal. LTPD applies to number of bond pulls from a minimum of 4 devices).	2011	(1) Test Condition D	$\begin{gathered} 15 \\ (4 \text { Devices) } \end{gathered}$
Subgroup 6 Internal water vapor content (Not applicable - per footnote of MIL-STD)	-		-
Subgroup 7 Fine Leak Gross Leak (Not applicable - per footnote of MIL-STD)	-		-
Subgroup 8* Electrical Test Electrostatic Discharge Sensitivity Electrical Test	3015	Group A, Subgroup 1, except I/O Group A, Subgroup 1	15 (0)

*(To be performed at initial qualification only)

Group C testing is performed on a periodic basis from current manufacturing every 3 months.
GROUP C TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Steady State Life Test			5
	1005	Condition B, Time $=1000$ Hours Total	
		$6 \mathrm{~N} 134: \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{VCC}=5.5 \mathrm{~V}$, $\mathrm{IF}=13 \mathrm{~mA}, \mathrm{IO}=25 \mathrm{~mA}$	
		$6 \mathrm{~N} 140: T_{A}=+100^{\circ} \mathrm{C}, V_{C C}=18 \mathrm{~V}$	
		$4 \mathrm{~N} 55: \quad \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.5 \mathrm{~V}$, $I_{F}=20 \mathrm{~mA}, V_{O C}=3.5 \mathrm{~V}, R_{L}=270 \Omega$	
Endpoint Electricals at 168 hours and 504 hours		Group A, Subgroup 1, except II/O	
Endpoint Electricals at 1000 hours		Group A, Subgroup 1	
Subgroup 2			
Temperature Cycling	1010	Condition $\mathrm{C},-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, 10 cycles	15
Constant Acceleration	2001	Condition A, 5KG's, Y_{1} axis only	
Fine Leak	1014	Condition A	
Gross Leak	1014	Condition C	
Visual Examination	1010	Per visual criteria of Method 1010	
Endpoint Electricals		Group A, Subgroup 1	

Group D testing is performed on a periodic basis from current manufacturing every 6 months.
GROUP D TESTING MIL-STD-883, METHOD 5005 (CLASS B DEVICES)

Test	Method	Conditions	LTPD
Subgroup 1 Physical Dimensions	2016		15
Subgroup 2 Lead Integrity Fine Leak Gross Leak Lid Torque* *(Not applicable per footnote of MIL-STD	$\begin{aligned} & \frac{2004}{1014} \\ & \hline \frac{1014}{2024} \end{aligned}$	Test Condition B2 (lead fatigue) Condition A Condition C	15
Subgroup 3 Thermal Shock Temperature Cycling Moisture Resistance Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{gathered} 1011 \\ \hline 1010 \\ \hline \frac{1004}{1014} \\ \hline 1014 \end{gathered}$	Condition B, $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ 15 cycles min. Condition $\mathrm{C},\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ 100 cycles min. Condition A Condition C Per visual criteria of Method 1004 Group A, Subgroup 1	15
Subgroup 4 Mechanical Shock Vibration Variable Frequency Constant Acceleration Fine Leak Gross Leak Visual Examination Endpoint Electricals	$\begin{aligned} & 2002 \\ & \hline \frac{2007}{2001} \\ & \hline \frac{1014}{1014} \\ & \hline 1010 \end{aligned}$	Condition B, 1500G, $\mathrm{t}=0.5 \mathrm{~ms}$, 5 blows in each orientation Condition A Condition A, 5 KG's, Y_{1} axis only Condition A Condition C Per visual criteria of Method 1010 Group A, Subgroup 1	15
Subgroup 5 Salt Atmosphere Fine Leak Gross Leak Visual Examination	$\frac{\frac{1009}{1014}}{\frac{1014}{1009}}$	Condition A min. Condition A Condition C Per visual criteria of Method 1009	15
Subgroup 6 Internal Water Vapor Content (exception being taken)	1018		-
Subgroup 7 Adhesion of lead finish	2025		15

Plastic Optocouplers

Hewlett-Packard supplies plastic optocouplers with high reliability testing for commercial/industrial applications requiring prolonged operational life. Two of the most frequently requested 100% preconditioning and screening programs are given. The first program has burn-in and electrical test only, the second program adds temperature storage and temperature cycling. Either program can be supplied on request for HP's plastic optocouplers. Electrical testing is to catalog conditions and limits and will include 100% DC parameters, sample testing of input-output insulation leakage current and appropriate AC parameters. Contact your local field representative for pricing and availability of these programs.

PLASTIC ISOLATORS PRECONDITIONING AND SCREENING 100\%

Examinations or Tests	MIL-STD-883 Methods	Conditions
1. Burn-in	1015	$\mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, 168$ hours per designated circuit
2. Electrical Test	Per specified conditions and min./max. limits at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	

Examinations or Tests	MIL-STD-883 Methods	Conditions
1. High Temperature Storage	1008	24 hours at $125^{\circ} \mathrm{C}$
2. Temperature Cycling	1010	10 cycles, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
3. Burn-in	1015	$\mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, 168$ hours per designated circuit
4. Electrical Test	Per specified conditions and min./max. limits at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
5. External Visual		

Hermetic Optocouplers

Device		Description	Application	Typical Data Rate (NRZ)	Current Transfer Ratio	Specified Input Current	Withstand Test Voltage	Page No.
	6N134	Dual Channel Hermetically Sealed Optically Coupled Logic Gate.	Line Receiver, Ground Isolation for High Reliability Systems	10M bit/s	400\% Typ.	10 mA	1500 Vdc	65
	8102801EC	DESC Approved 6N134	Military/High Reliability					68
	6N134TXV	TXV - Screened	Use 8102801EC if Possible.					65
	6N134TXVB	TXVB - Screened with Group B Data						
	6N140	Hermetically Sealed Package Containing 4 Low Input Current, High Gain Optocouplers	Line Receiver, Low Power Ground Isolation for High Reliability Systems	300k bit/s	300\% Min.	0.5 mA	1500 Vdc	72
	6N 140/883B	MIL-STD-883 Class B Part	Military/High Reliability					
	6N140TXV	TXV - Hi-Rel Screened	Use 6N140/883B if Possible					
	6N140TXVB	TXVB - Hi-Rel Screened with Group B Data						
	4N55	Dual Channel Hermetically Sealed Analog Optical Coupler	Line Receiver, Analog Signal Ground Isolation, Switching Power Supply Feedback Element	700k bit/s	7\% Min.	16 mA	1500 Vdc	76
	4N55/883B	MIL-STD-883 Class B Part	Military/High Reliability					
	4N55TXV	TXV - Hi-Rel Screened	Use 4N55/883B if Possible					
	4N55TXVB	TXVB - Hi-Rel Screened with Group B Data						

Hermetically Sealed Integrated LED Displays

Device		Description	Package	Application	Page No.
(A) (C) (B) (D) 7.4 mm (.29́) 4×7 Single Digit	$\begin{array}{\|c\|} \text { 4N51 } \\ \text { (5082-7391) } \\ \text { 4N51TXV } \\ \text { 4N51TXVB } \\ \text { (A) } \end{array}$	Numeric RHDP Built in Decoder/Driver/Memory TXV - Hi Rel Screened TXVB - Hi Rel Screened with Group B data	8 Pin Hermetic 15.2 mm (. $6^{\prime \prime}$) DIP with gold plated leads	- Military High Reliability Applications - Avionics/Space Flight Systems - Fire Control Systems - Ground Support, Shipboard Equipment	442
	4N52 (5082-7392) 4N52TXV	Numeric LHDP Built in Decoder/Driver/Memory TXV - Hi Rel Screened			
	4N52TXV 4N52TXVB (B)	TXVB - Hi Rel Screened with Group B data			
	$\begin{array}{\|c\|} \hline \text { 4N54 } \\ \text { (5082-7395) } \end{array}$	Hexadecimal Built in Decoder/Driver/Memory			
	4N54TXV 4N54TXVB (C)	TXV - Hi Rel Screened TXVB - Hi Rel Screened with Group B data			
	4N53 (5082-7393)	Character Plus/Minus Sign			
	4N53TXV 4N53TXVB (D)	TXV - Hi Rel Screened TXVB - Hi Rel Screened with Group B data			

Device and Package		Description	Color	Application	Page No.
(A) (C) (B) (D) $7.4 \mathrm{~mm}\left(.29^{\prime \prime}\right)$ 4×7 Single Digit Package: 8 Pin Glass Ceramic $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right)$ DIP	$5082-7356$ (A) $5082-7357$ (B) $5082-7359$ (C) $5082-7358$ (D)	Numeric RHDP Built-in Decoder/Driver/Memory Numeric LHDP Built-in Decoder/Driver/Memory Hexadecimal Built-in Decoder/Driver/Memory Character Plus/Minus Sign	Standard Red	- Medical Equipment - Industrial and Process Control Equipment - Computers - Where Ceramic Package IC's required - High Reliability Applications	437
	HDSP-0760 (A) HDSP-0761 (B)	Numeric RHDP Built in Decoder/Driver/Memory Numeric LHDP Built in Decoder/Driver/Memory	High Efficiency Red Low Power	- Military Equipment - Ground Support Equipment - Avionics - High Reliability - Applications	450
	HDSP-0762 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0763 (D)	Over Range ± 1			
	HDSP-0770 (A)	Numeric RHDP Built in Decoder/Driver/Memory	High Efficiency Red High Brightness	- High Brightness Ambient Systems - Cockpit, Shipboard Equipment - High Reliability Applications	
	HDSP-0771 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0772 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	$\begin{gathered} \text { HDSP-0763 } \\ \text { (D) } \end{gathered}$	Over Range ± 1			
	HDSP-0860 (A)	Numeric RHDP Built in Decoder/Driver/Memory	Yellow	- Business Machines - Fire Control Systems - Military Equipment - High Relaibility Applications	
	HDSP-0861 (B)	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0862 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0863 (D)	Over Range ± 1			
	$\begin{array}{\|c\|} \hline \text { HDSP-0960 } \\ \text { (A) } \end{array}$	Numeric RHDP Built in Decoder/Driver/Memory	Green	- Business Machines - Fire Control Systems - Military Equipment - High Reliability Applications	
	$\begin{gathered} \text { HDSP-0961 } \\ \text { (B) } \\ \hline \end{gathered}$	Numeric LHDP Built in Decoder/Driver/Memory			
	HDSP-0962 (C)	Hexadecimal Built in Decoder/Driver/Memory			
	HDSP-0963 (D)	Over Range ± 1			
-	5082-7010	8 Pin Metal Can, 2.54 mm (. $100^{\prime \prime}$) Pin Centers, 6.8 mm (.27") 5×7 Single Digit Numeric, LHDP, Built-in Decoder/Driver	Red	- Ground, Airborne, Shipboard Equipment - Fire Control Systems - Space Flight Systems	456
	5082-7011	6.8 mm (.27') Plus/Minus Sign			

Military/Industrial Grade Displays (cont.)

Device		Description	Color	Application	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	5082-7100	$6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Three Digit Alphanumeric 22 Pin Ceramic 15.2 mm (. $6^{\prime \prime}$) DIP	Red Untinted Glass Lens	General Purpose Market - Business Machines - Calculators - Solid State CRT - High Reliability Applications For further information ask for Application Note 931 on Alphanumeric Displays.	356
	5082-7101	$6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Digit Alphanumeric 28 Pin Ceramic 15.2 mm (. $6^{\prime \prime}$) DIP			
	5082-7102	$6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Five Digit Alphanumeric 36 Pin Ceramic $15.2 \mathrm{~mm}\left(.6^{\prime \prime}\right)$ DIP			

Alphanumeric LED Displays

Device		Description	Color	Application	$\begin{aligned} & \text { Page } \\ & \text { No. } \\ & \hline 329 \end{aligned}$
	HDSP-2000	3.7 mm (.15") 5×7 Four Character Alphanumeric 12 Pin Ceramic 7.62 mm (.3") DIP with untinted glass lens	Red	- Computer Terminals - Business Machines - Medical Instruments - Portable, Hand-held or mobile data entry, readout or communications For further information see Application Note. 1016.	
	HDSP-2001		Yellow		
			High Eff. Red		
	HDSP-2003		High Performance Green		
	HDSP-2010 HDSP-2010 TXV HDSP-2010 TXVB	Extended Temperature to $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ 3.7 mm (.15") 5×7 Four Character Alphanumeric TXV Hi Rel Screened TXVB Hi Rel Screened	Red, Red Glass Contrast Filter	- Extended temperature applications requiring high reliability. - $1 / 0$ Terminals - Avionics For further information see Application Note 1016.	350
	HDSP-2300	4.87 mm (.19") 5×7 Four Character Alphanumeric, 12 Pin Ceramic 6.35 mm (. $25^{\prime \prime}$) DIP/Low Power	Red	- Avionics - Ground Support, Cockpit, Shipboard systems - Medical Equipment - Industrial and Process control - Computer Peripherals and Terminals - Outdoor Metering Equipment - Computer Base Mobile Units - High Brightness Ambient Systems For further information see Application Note 1016.	333
	HDSP-2301		Yellow, High Brightness		
	HDSP-2302		High Eff. Red, High Brightness		
	HDSP-2303		High Performance Green, High Brightness		
	HDSP-2490	6.9 mm (. $27^{\prime \prime}$) 5×7 Four Character Alphanumeric, 28 Pin Ceramic 15.24 mm (. $6^{\prime \prime}$) DIP	Red		
	HDSP-2491		Yellow, High Brightness		
	HDSP-2492		High Eff. Red, High Brightness		
	HDSP-2403		High Performance Green, High Brightness		
	$\begin{aligned} & \text { HDSP-2450 } \\ & \text { HDSP-2450 } \\ & \text { TXV } \\ & \text { HDSP-2450 } \\ & \text { TXVB } \end{aligned}$	Hermetic Extended Temperature Range to $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ $6.9 \mathrm{~mm}\left(.27^{\prime \prime}\right) 5 \times 7$ Four Character Alphanumeric 28 Pin Ceramic 15.24 mm (. $\mathbf{6}^{\prime \prime}$) DIP	Red TXV-Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87117	- Military Equipment - High Reliability Applications	343
	HDSP-2451		Yellow		
	$\begin{aligned} & \text { HDSP-2451 } \\ & \text { TXV } \end{aligned}$		TXV - Hi Rel Screened		
	$\begin{aligned} & \text { HDSP-2451 } \\ & \text { TXVB. } \end{aligned}$		TXVB - Hi Rel Screened to Level A Mil-D-87157		
	$\begin{aligned} & \text { HDSP- } 2452 \\ & \text { HDSP-2452 } \\ & \text { TXV } \end{aligned}$		High Efficiency Red TXV - Hi Rel Screened		
	$\begin{aligned} & \text { HDSP-2452 } \\ & \text { TXVB } \end{aligned}$		TXVB - Hi Rel Screened to Level A MIL-D-87157		

Hermetically Sealed and High Reliability LED Lamps

Device		Description			Minimum Luminous Intensity	$2 \Theta 1 / 2{ }^{[1]}$	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color ${ }^{[2]}$	Package	Lens				
	1N5765 JAN1N5765[4] JANTX1N5765[4]	Red (640 nm)	Hermetic/T0-46 ${ }^{\text {[3] }}$	Red Diffused	0.5 mcd @ 20mA	70°	1.6 Volts @ 20mA	271
	1N6092 JAN1N6092 ${ }^{[4]}$ JANTX1N6092[4]	High Efficiency Red $(626 \mathrm{~nm})$			1.0 mcd @ 20 mA		2.0 Volts @ 20mA	
	1N6093 JAN1N6093[4] JANTX1N6093[4]	Yellow (585 nm)		Yellow Diffused				
	1N6094 JAN1N6094[4] JANTX1N6094[4]	$\begin{aligned} & \text { Green } \\ & (572 \mathrm{~nm}) \end{aligned}$		Green Diffused	0.8 mcd @ 25 mA		2.1 Volts @ 20 mA	
	HLMP-0930 HLMP-0931	$\begin{array}{\|l} \text { Red } \\ (640 \mathrm{~nm}) \end{array}$	Panel Mount Version	Red Diffused	0.5 mcd @ 20 mA		$\begin{aligned} & \text { 1.6 Volts } \\ & @ 20 \mathrm{~mA} \end{aligned}$	
	M19500/519-01[4] M19500/519-02[4]	High Efficiency Red (626 nm)			$1.0 \mathrm{mcd} @ 20 \mathrm{~mA}$		2.0 Volts @ 20mA	
	M19500/520-01[4] M19500/520-02[4]	$\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$		Yellow Diffused				
	M19500/521-01[4] M19500/521-02[4]	$\begin{aligned} & \text { Green } \\ & (572 \mathrm{~nm}) \end{aligned}$		Green Diffused	0.8 mcd @ 25 mA		2.1 Volts @ 20 mA	

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. Peak Wavelength.
3. PC Board Mountable.
4. Military Approval and qualified for High Reliability Applications. (-01 suffix is JAN level, -02 suffix is JANTX level).

11

Applications

Hewlett-Packard's 5082-7300 dot matrix display was chosen by HP's Stanford Park division for use in their highly sophisticated low noise signal generator, the 8662. This low noise signal generator was designed to have extremely low RFI and spurious emission. As a result, it was necessary to pay extreme attention to potential RFI and to find a display that did not require strobing. The 5082-7300, with its on board electronics, satisfied this requirement and provided an aesthetic front panel display.

(HPBK-2000) OPTOELECTRONICS/ FIBER-OPTICS APPLICATIONS MANUAL

A vastly expanded version of the original Optoelectronics Applications Manual published by McGraw-Hill in 1977, this new edition provides the electronic engineer with up to date design techniques on state of the art optoelectronic products. Added to the original extensive coverage of LED's, Displays, and Optocouplers is a new wealth of information on Fiber Optics, Industrial Uses of Optocouplers, Back Lighting, Interfacing displays to Microprocessors, Sunlight Viewable displays, and Precision reflective optical position sensing.
This book can be purchased from a HewlettPackard franchised distributor or from the McGraw-Hill Publishing Company. A complete listing of all HP Components authorized distributors can be found on pages 744-747.

Below is a complete listing of all of the Optoelectronic Applications Information available. For those items which were not included in this catalog, a brief abstract is shown. These are available in their entirety from your local HP Sales Office or nearest HP Components Franchised Distributor or Representative.

APPLICATION BULLETINS

Model Pub. No. (Date)	Description	Ref.
$\begin{gathered} \text { AB-1 } \\ 5952-8378(1 / 75) \end{gathered}$	Construction and Performance of High Efficiency Red, Yellow and Green LED Materials	Abstract
$\begin{gathered} \text { AB-3 } \\ 5952-8380(3 / 75) \end{gathered}$	Soldering Hewlett-Packard Silver Plated Lead Framed LED Devices	p. 494
$\begin{gathered} \mathrm{AB}-4 \\ 5952-8381(4 / 75) \end{gathered}$	Detection and Indication of Segment Failures in 7-Segment LED Displays	Abstract
$\begin{gathered} \mathrm{AB}-54 \\ 5953-0363(7 / 77) \end{gathered}$	Mechanical Handling of Subminiature LED Lamps and Arrays	Abstract

APPLICATION NOTES

Model Pub. No. (Date)	Description	Ref.
$\begin{gathered} \text { AN-915 } \\ 5953-0431(4 / 80) \end{gathered}$	Threshold Detection of Visible and Infrared Radiation with PIN Photodiodes	p. 498
$\begin{gathered} \hline \text { AN-934 } \\ 5952-0337(11 / 72) \end{gathered}$	5082-7300 Series Solid State Display Installation Techniques	Abstract
$\begin{gathered} \text { AN-939 } \\ 5952-0331(11 / 72) \end{gathered}$	High Speed Optically Coupled Isolators	Abstract
$\begin{gathered} \hline \text { AN-945 } \\ 5952-0420(10 / 73) \end{gathered}$	Photometry of Red LEDs	Abstract
$\begin{gathered} \text { AN-947 } \\ 5952-8497(7 / 76) \end{gathered}$	Digital Data Transmission Using Optically Coupled Isolators	Abstract
$\begin{gathered} \text { AN-948 } \\ 5952-0458(3 / 74) \end{gathered}$	Performance of the 50824350/51/60 Series of Isolators in Short to Moderate Length Digital Data Transmission Systems	p. 504
$\begin{gathered} \hline \text { AN-951-1 } \\ 5953-0413(11 / 79) \end{gathered}$	Applications for Low Input Current, High Gain Optically Coupled Isolators	p. 513
AN-951-2 $5952-8451(5 / 76)$	Linear Applications of Optically Coupled Isolators	p. 517
$\begin{gathered} \hline \text { AN-1000 } \\ 5953-0391(11 / 78) \end{gathered}$	Digital Data Transmission with the HP Fiber Optic System	p. 521
$\begin{gathered} \text { AN-1002 } \\ 5953-0385(6 / 79) \end{gathered}$	Consideration of CTR Variations in Optically Coupled Isolator Circuit Designs	p. 540
$\begin{gathered} \text { AN-1003 } \\ 5953-0405(9 / 79) \end{gathered}$	Interfacing 18-Segment Displays to Microprocessors	p. 556
$\begin{gathered} \hline \mathrm{AN}-1004 \\ 5953-0406(11 / 79) \end{gathered}$	Threshold Sensing for Industrial Control Systems with the HCPL-3700 Interface Optocoupler	p. 576
$\begin{gathered} \text { AN-1005 } \\ 5953-0419(3 / 80) \end{gathered}$	Operational Considerations for LED Lamps and Display Devices	p. 590

APPLICATION NOTES (Cont'd)

Model Pub. No. (Date)	Description	Ref.
$\begin{gathered} \text { AN-1006 } \\ 5953-0439(7 / 80) \end{gathered}$	Seven Segment LED Display Applications	p. 596
$\begin{gathered} \hline \text { AN-1007 } \\ 5953-0452(1 / 81) \\ \hline \end{gathered}$	Bar Graph Array Applications	p. 616
$\begin{gathered} \hline \text { AN-1008 } \\ 5953-0460(12 / 80) \end{gathered}$	Optical Sensing with the HEDS-1000	p. 624
$\begin{gathered} \hline \text { AN-1009 } \\ 5953-0455(11 / 80) \end{gathered}$	Designing with the HFBR-0500 Series Snap-in Fiber-Optic Link	Abstract
$\begin{gathered} \text { AN-1011 } \\ 5953-0482(4 / 81) \end{gathered}$	Design and Operational Considerations for the HEDS-5000 Incremental Shaft Encoder	p. 644
$\begin{gathered} \mathrm{AN}-1012 \\ 5953-0478(2 / 81) \\ \hline \end{gathered}$	Methods of Legend Fabrication	p. 664
$\begin{gathered} \text { AN-1015 } \\ 5953-7788(9 / 82) \end{gathered}$	Contrast Enhancement Techniques for LED Displays	p. 670
$\begin{gathered} \text { AN-1016 } \\ 5953-7787(9 / 82) \\ \hline \end{gathered}$	Using the HDSP-2000 Alphanumeric Display Family	p. 702
$\begin{gathered} \text { AN-1017 } \\ 5953-7784(9 / 82) \end{gathered}$	LED Solid State Reliability	p. 734

APPLICATIONS MANUAL

Model

Pub. No. (Date)	Description	Ref.
HPBK-2000	Optoelectronics/Fiber-Optics	p.490
McGraw-Hill	Applications Manual	
(No.93203815)		
(1981)		

Abstracts

APPLICATION BULLETIN 1

Construction and Performance of High Efficiency Red, Yellow and Green LED Materials

The high luminous efficiency of HewlettPackard's High Efficiency Red, Yellow and Green lamps and displays is made possible by a new kind of light emitting material utilizing a GaP transparent substrate. This application bulletin discusses the construction and performance of this material as compared to standard red GaAsP and red GaP materials.

APPLICATION BULLETIN 4 Detection and Indication of Segment Failures in Seven Segment LED Displays

The occurrence of a segment failure in certain applications of seven segment displays can have serious consequences if a resultant erroneous message is read by the viewer. This application bulletin discusses three techniques for detecting open segment lines and presenting this information to the viewer.

APPLICATION BULLETIN 54
 Mechanical Handling of Subminiature LED Lamps and Arrays

The Need for Careful Mechanical Handling
Hewlett-Packard manufactures a series of individual LED lamps and lamp arrays that are very small epoxy encapsulated devices. These devices are classified as having a SUBMINIATURE package configuration. When carefully installed on a printed circuit board, these devices will reliably function with a long predictable operating life.
To obtain long operating life, these subminiature devices must be carefully installed on the printed circuit board in such a manner as to insure the integrity of the encapsulating epoxy. This will in turn maintain the integrity of the device by not permitting mechanical and thermal stresses to induce strains on the LED die attach and wire bonds which may cause failure.
This application bulletin describes the subminiature package assembly, the package's mechanical limitations and offers specific suggestions for proper installation.

APPLICATION NOTE 934
 5082-7300 Series Solid State Display Installation Techniques

The 5082-7300 series Numeric/Hexadecimal indicators are an excellent solution to most standard display problems in commercial, industrial and military applications. The unit integrates the display character and associated drive electronics in a single package. This advantage allows for space, pin and labor cost reductions, at the same time improving overall reliability.
The information presented in this note describes general methods of incorporating the -7300 into varied applications.

APPLICATION NOTE 939 High Speed Optically Coupled Isolators

Often designers are faced with the problem of providing circuit isolation in order to prevent ground loops and common mode signals. Typical devices for doing this have been relays, transformers and line receivers. However, both relays and transformers are low speed devices, incompatible with modern logic circuits. Line receiver circuits are fast enough, but are limited to a common mode voltage of 3 volts.
In addition, they do not protect very well against ground loop signals. Now Optically Coupled Isolators are available which solve most isolation problems.
This Application Note contains a description of Hewlett-Packard's high speed isolators, and discusses their applications in digital and analog systems.

Abstracts

APPLICATION NOTE 945 Photometry of Red LEDs

Nearly all LEDs are used either as discrete indicator lamps or as elements of a segmented or dot-matrix display. As such, they are viewed directly by human viewers, so the primary criteria for determining their performance is the judgment of a viewer. Equipment for measuring LED light output should, therefore, simulate human vision.

This Application Note will provide answers to these questions:

1. What to measure (definitions of terms)
2. How to measure it (apparatus arrangement)
3. Whose equipment to use (criteria for selection)

APPLICATION NOTE 947

Digital Data Transmission Using Optically Coupled Isolators

Optically coupled isolators make ideal line receivers for digital data transmission applications. They are especially useful for elimination of common mode interference between two isolated data transmission systems. This application note describes design considerations and circuit techniques with special emphasis on selection of line drivers, transmission lines, and line receiver termination for optimum data rate and common mode rejection. Both resistive and active terminations are described in detail. Specific techniques are described for multiplexing applications, and for common mode rejection and data rate enhancement.

APPLICATION NOTE 1009
 Snap-In Fiber Optic Link Application Note

This note describes the theoretical considerations of designing a short distance low cost fiber optic link. Included in the investigation are fiber considerations, emitters, and receiving circuits. A practical solution to achieving low cost and high performance with all plastic, lensed modules with unique snap-in connectors is presented. The dc coupled receiver design allows use in many circuits where asynchronous data is transmitted and the integral shield provides a high degree of immunity to EMI. System flux budgeting calculations bring out link length limitations and several designs are presented for temperature compensation and pulse distortion compensation allowing the recommended link lengths to be tripled. Several applications on interfacing to standard logic families, and standard logic interfaces along with multipoint network configurations point out the usefulness and advantages of the SNAP-IN FIBER OPTIC LINK.

Soldering Hewlett-Packard Silver Plated Lead Frame LED Devices

INTRODUCTION

Since the price of gold has increased several times over past years, the cost of a gold plated lead frame has increased substantially above the cost of a silver plated lead frame. The impact of this increase in cost has been industry wide.
By using silver plating, no additional manufacturing process steps are required. Silver has excellent electrical conductivity. LED die attach and wire bonding to a silver lead frame is accomplished with the same reliability as with a gold lead frame. Also, soldering to a silver lead frame provides a reliable electrical and mechanical solder joint. Soldering silver plated lead frame LED devices into a printed circuit board is not more complicated than soldering LED devices with gold plated lead frames. This application bulletin offers some suggestions on how to solder HP silver plated lead frame LED devices.

THE SILVER PLATING

The silver plating process is performed as follows: The lead frame base metal is activated (cleaned) and then plated with a copper strike, nominally 50 microinches (0.00127 mm) thick. Then a minimum 100 microinch (0.00381 mm) thick plating of silver is added. A "brightener" is usually added to the silver plating bath to insure an optimum surface texture to the silver plating. The term "brightener" comes from the medium bright surface reflectance of the silver plate.
Since silver is porous with respect to oxygen, the copper strike acts as an oxygen barrier for the lead frame base metal. Thus, oxide compounds of the base metal are prevented from forming underneath the silver plating. Copper readily diffuses into silver forming a solution that has a low temperature eutectic point. The interdiffusion between the copper strike and the silver overplate improves the solderability of the overall plating system. If basic soldering time and temperature limits are not exceeded, a lead frame base metal-copper-silver-solder metallurgical bonding system will be obtained.

THE EFFECT OF TARNISH

Silver reacts chemically with sulfur to form the tarnish, silver sulfide ($\mathrm{Ag}_{2} \mathrm{~S}$). The build-up of tarnish is the primary reason for poor solderability. However, the density of the tarnish and the kind of solder flux used actually determine
the solderability. As the density of the tarnish increases, the more active the flux must be to penetrate and remove the tarnish layer. Some recommended fluxes and cleaner/surface conditions are discussed in the "Solder, Flux and Cleaners" section.

STORAGE AND HANDLING

The best technique for insuring good solderability of a silver plated lead frame device is to prevent the formation of tarnish. This is easily accomplished by preventing the leads from being exposed to sulfur and sulfur compounds. The two primary sources of sulfur are free air and most paper products such as paper sacks and cardboard containers. The best defense against the formation of tarnish is to keep silver lead frame devices in protective packaging until just prior to the soldering operation. One way to accomplish this is to store the LED devices unwrapped in their original packaging as received from HP. For example, Hewlett-Packard ships its seven segment display products in plastic tubes which are sealed air tight in polyethylene. It is best to leave the polyethylene intact during storage and open just prior to soldering.
Listed below are a few suggestions for storing silver lead frame devices.

1. Store the devices in the original wrapping unopened until just prior to soldering.
2. If only a portion of the devices from a single tube are to be used, tightly re-wrap the plastic tube containing the unused devices in the original or a new polyethylene sheet to keep out free air.
3. Loose devices may be stored in zip-lock or tightly sealed polyethylene bags.
4. For long term storage of parts, place one or two petroleum napthalene mothballs inside the plastic package containing the devices. The evaporating napthalene creates a vapor pressure inside the plastic package which keeps out free air.
5. Any silver lead frame device may be wrapped in "Silver Saver" paper for positive protection against the formation of tarnish. "Silver Saver" is manufactured by:

[^13]6. To reduce shelf storage time, it will be worthwhile to use inventory control to insure that the devices first received will be the first devices to be used.
One caution: The adhesives used on pressure sensitive tapes such as cellophane, electrical and masking tape can soak through silver protecting papers and may leave an adhesive film on the leads. This film reduces solderability and should be removed with freon T-P35, freon T-E35 or equivalent prior to soldering.

SOLDER, FLUX AND CLEANERS

The solder most widely used for soldering electronic components into printed circuit boards is Sn 60 (60% tin and 40% lead) per federal standard QQ-S-571. Two alternates are the eutectic composition Sn63 and the 2\% silver solder Sn62.
As the device leads pass through the solder wave of a flow solder process, the tin in the solder scavenges silver from the silver plating and forms one of two silver-tin intermetallics $\left(\mathrm{Ag}_{6} \mathrm{Sn}\right.$ or $\left.\mathrm{Ag}_{3} \mathrm{Sn}\right)$. This silver in the molten solder should not be considered a contaminant. As the silver content increases, the rate of scavenging decreases and the probability of obtaining the desired base metal-copper-silver-solder metallurgical system is improved. The result is that the silver content in solder, which reaches a maximum of $2-1 / 2 \%$ in Sn 60 at $230^{\circ} \mathrm{C}$, aids in producing reliable solder joints on silver plated lead frames.
Solder flux classifications per federal standard QQ-S-571, listed in order of increasing strength, are as follows:
Type R: Non-Activated Rosin Flux
Type RMA: Mildly Activated Rosin Flux
Type RA: Activated Rosin Flux
Type AC: Organic Acid Flux, Water Soluble
Suggested applications of these flux types with respect to various tarnish levels are as follows:
Silver plated lead frames that are clean, contaminant and tarnish free may be soldered using a Type R flux such as Alpha 100.

Minor Tarnish

Since some minor tarnish or other contaminant may be present on the leads, a type RMA flux such as Alpha 611 or 611 Foam, Kester 197 or equivalent is recommended. Minor tarnish may be identified by reduced reflectance of the ordinarily medium bright surface of the silver plating. Type RMA fluxes which meet MIL-F-14256 are used in the construction of telephone communication, military and aero space equipment.

Mild Tarnish

For a mild tarnish, a type RA flux such as Alpha 711-35, Alpha 809 foam, Kester 1544, Kester 1585 or equivalent should be used. A mild tarnish may be identified by a light yellow tint to the surface of the silver plating.

Moderate Tarnish

A type AC water soluable flux such as Alpha 830, Alpha 842 , Kester 1429 or 1429 foam, Lonco 3355 or equivalent will give acceptable results on surface conditions up to a moderate tarnish. A moderate tarnish may be identified by a light yellow-tan color on the surface of the silver plating.

If a more severe tarnish is present, such as a heavy tarnish identified by a dark tan to black color, a cleaner/surface
conditioner must be used. Some possible cleaner/surface conditioners are Alpha 140, Alpha 174, Kester 5560, and Lonco TL-1. The immersion time for each cleaner/surface conditioner will be just a few seconds and each is used at room temperature. For example, Alpha 140 will remove severe tarnish almost upon contact; therefore, the immersion time need not exceed 2 seconds. These cleaner/surface conditioners are acidic formulations. Therefore, thoroughly wash all devices which have been cleaned with a cleaner/surface conditioner in cold water. A hot water wash will cause undue etching of the surface of the silver plating. A post rinse in deionized water is advisable.
CAUTION: These cleaner/surface conditioners may etch exposed glass and may have a detrimental effect upon the glass filled encapsulating epoxies used in optoelectronic devices. Complete immersion of an optoelectronic device into a surface conditioner solution is NOT recommended. For best results, immerse only the tarnished leads and do not expose the encapsulating epoxy to the solutions.
The cleaning of printed circuit boards after soldering is important to remove ionic contaminants and increase circuit reliability. When a Type RMA or Type RA flux is used, vapor clean with an azeotrope of fluorocarbon F113 and approximately 15% alcohol by weight. Some equivalent products are Allied Chemical Genesolve DI-15/DE-15, Blaco-Tron DE-15/DI-15 and Arklone K. A Type RMA or Type RA flux is a mixture of basic Type R rosin flux and an organic acid. The fluorocarbon F113 removes the residual rosin and the alcohol removes the residual active ions. Room temperature cleaning may be accomplished by using Freon T-E35, T-P35 or equivalent. When a Type AC flux is used, wash thoroughly with water. Specific cleaning processes are suggested in the soldering process section.

SOLDERING PROCESS

Before the actual soldering begins, the printed circuit boards and components to be soldered should be free of dirt, oil, grease, finger prints and other contaminants. Fluorinated cleaners such as Freon T-P35 may be used to preclean both the printed circuit boards and LED devices. Operators may wear cotton gloves to prevent finger prints when loading components into the printed circuit boards.
If the silver lead frames have acquired an unacceptable layer of tarnish, remove this tarnish layer with a cleaner/surface conditioner just prior to soldering. Since a cleaner/surface conditioner does slightly etch the surface of the silver plating, the silver leads are now more susceptible to tarnish formation. Therefore, use a cleaner/surface conditioner only on those silver lead frame devices which will be soldered within a four hour time period. The effect of various tarnish levels on the choice of flux is discussed in the previous section.
Many of Hewlett-Packard's LED Lamps and Display products have a soldering specification of $230^{\circ} \mathrm{C}\left(446^{\circ} \mathrm{F}\right)$ for a maximum time period of 5 seconds. Therefore, in a flow solder operation adjust the solder temperature and belt speed to conform to this specification, or as is specified on the device data sheet. The flow solder operation may now proceed in a normal fashion. For best results, any one single lead should be immersed in molten solder for as short a time period as possible. At a solder
temperature of $230^{\circ} \mathrm{C}\left(446^{\circ} \mathrm{F}\right)$, Sn 60 solder will dissolve silver at the rate of 60 microinches per second. Therefore, with an initial silver plating thickness of 100 microinches, an immersion time of 2 seconds will completely dissolve the silver plating. At a solder temperature of $260^{\circ} \mathrm{C}\left(500^{\circ} \mathrm{F}\right)$, Sn60 solder will dissolve silver at the rate of 80 microinches per second. These dissolving rates decrease as the silver content increases in the molten solder bath.

Post cleaning of soldered assemblies when a type RMA or Type RA flux has been used may be accomplished via a vapor cleaning process in a degreasing tank, using an azeotrope of fluorocarbon F113 and alcohol as the cleaning agent. A recommended method is a 15 second suspension in vapors, a 15 to 30 second spray wash in liquid cleaner, and finally a one minute suspension in the vapors. When a water soluable Type AC flux such as Alpha 830 or Kester 1429/1429F is used, the following post cleaning process is suggested: thoroughly wash with water, neutralize using Alpha 2441 or Kester 5760 or Kester 5761 foaming, then thoroughly wash with water and air dry.

CAUTION: The use of tetrachloro-di-fluoroethane (F112), acetone, trichloroethylene, MEK, carbon tetrachloride and similar solvents as cleaning agents is NOT recommended, as these cleaners will attack or dissolve the epoxies used in optoelectronic devices.

A WORD ABOUT PRINTED CIRCUIT BOARDS

Printed circuit boards, either single sided, double sided or multilayer, may be manufactured with plated through holes with a metal trace pad surrounding the hole on both sides of the printed circuit board. The plated through hole is desirable to provide a sufficient surface for the solder to wet, and thereby be pulled up by capillary attraction along the lead through the hole to the top of the printed circuit board. This provides the best possible solder connection between the printed circuit board and the leads of the LED device.

SOLDERED LEADS

Figure 1 illustrates an ideally soldered lead. The amount of solder which has flowed to the top of the printed circuit board is not critical. A sound electrical and mechanical joint is formed.
Figure 2 illustrates a soldered lead which is undesirable.

Figure 1. Ideally Soldered Lead

Figure 2. Undesirable Soldered Lead

LIST OF MANUFACTURERS

Alpha Metals, Inc.
56 G Water Street
Jersey City, New Jersey 07304
(302) 434-6778

London Chemical Co. (Lonco®)
240 G Foster
Bensenville, Illinois 60106
(312) 287-9477
E.I. DuPonte De Nemours \& Co

Freon Products Division
Wilminton, Delaware 19898
(302) 774-8341

Frank Curran Co. (Petroleum Napthalene Mothballs
8101 South Lemont Road
Downers Grove, Illinois 60515
(312) 969-2200

Kester Solder Co.
4201 G Wrightwood Avenue
Chicago, Illinois 60639
(312) 235-1600

Allied Chemical Corporation
Speciality Chemicals Division
P.O. Box 1087R

Morristown, New Jersey 07960
(201) 455-5083

Baron-Blakeslee (Blaco-Tron) ${ }^{(6)}$
1620 S. Laramie Avenue
Chicago, Ilfinois 60650
(312) 656-7300

Imperial Chemical Industries, Ltd. (Arklone) ${ }^{\circledR}$
Imperial Chemical House, Millbank
London SW1P3JF, England

REFERENCES

Manko, Howard H. Solders and Soldering. New York: McGraw-Hill, 1964.

Coombs, Clyde F. Printed Circuits Handbook. New York: McGraw-Hill, 1964.

Flaskerud, Paul and Rick Mann. "Silver Plated Lead Frames for Large Molded Packages," IEEE Catalog No. 74CH0839-1PHY (1974), pp. 211-222.

Threshold Detection of Visible and Infrared Radiation with PIN Photodiodes

Traditionally, the detection and demodulation of extremely low level optical signals has been performed with multiplier phototubes. Because of this tradition, solid-state photodetectors are often overlooked even though they have a number of clear functional advantages and in some applications provide superior performance as well. Some of these advantages are summarized below and become even more apparent in the following discussion.

ADVANTAGES OF PIN PHOTODIODES VERSUS MULTIPLIER PHOTOTUBES

1. Size and weight:

PIN photodiodes are approximately three orders of magnitude smaller and lighter. This greatly simplifies and reduces the cost of mounting.
2. Power Supply:

Multiplier phototubes require more than 1000 volts, which must be precisely regulated and divided among the dynodes. By comparison, PIN photodiodes and associated amplifiers operate stably on less than 20 volts, which does not require precise regulation.
3. Cost:

The cost, including that of the necessary amplifier, is lower for the PIN photodiode because of lower power supply requirements.
4. Spectral Response:

Broad skirts of the PIN photodiode make it useful from the ultra-violet, through the visible, and well into the infrared region. This exceeds the range of any other device of comparable sensitivity.
5. Sensitivity:

Noise equivalent power of the PIN photodiode is lower than that of any other type of photodetector. The signal levels are extremely low, however, and to achieve low level performance they require a high gain, high input resistance amplifier. Multiplier phototubes have built-in gain and do not require additional lownoise amplification. Moreover, the high input resistance needed for sensitive performance precludes fast response, whereas the response time of multiplier phototubes may be in the nanosecond region even in the sensitive mode.
6. Stability:

The characteristics of noise, responsivity, and spectral response of the PIN photodiode are not dependent on time, temperature, or other environmental considerations. The same conditions may be hazardous to multiplier phototubes.
7. Overloading:

In the presence of excessive signal, multiplier phototubes of comparable sensitivity are capable of destroying themselves as a result of excessive output current. The PIN photodiode is unaffected by exposure to room light or even direct sunlight.
8. Ruggedness:

PIN photodiodes can tolerate exposure to extreme levels of shock and vibration. Typical shock capability is 1500 G's for 0.5 millisecond.
9. Magnetic Fields:

Multiplier phototube gain is affected by fields as small as one gauss. If the interfering field is fluctuating, the output will be modulated by it. The PIN photodiode is insensitive to magnetic fields.
10. Precision:

The responsivity of the PIN photodiode is inherently precise and repeatable. Within a given type, the characteristics agree (from unit to unit) within plus or minus 0.1 decade. Responsivity of multiplier phototubes may vary over more than a decade from one unit to another.
11. Sensitive Area:

The small sensitive area of the PIN photodiode makes it unnecessary to establish an aperture which may be required for some applications. However, in some applications good optical alignment is imposed by the small area.

PIN PHOTODIODE DETECTORS

At the present time a variety of different types of solidstate photodetectors are available. Of these, the Silicon PIN Photodiode has the broadest applicability and is the subject of this note. The PIN photodiode's main advantages are: broad spectral response, a wide dynamic range, high speed, and extremely low noise. With appropriate terminal circuits it is well suited for many applications that require converting an optical signal to an electrical signal. The
present discussion, however, will be limited to the description of the PIN photodiode's threshold detection sensitivity and the design of suitable terminal circuits that will realize this capability.

PHOTODIODE DESCRIPTION Construction

A brief description of the PIN photodiode will be helpful in understanding its performance and the principles for designing appropriate circuits to be used with it. Figure 1 shows a typical construction of the PIN photodiode. This figure is for the purpose of explanation only and is not to scale. The relative proportions have been deliberately distorted for the sake of clarity.

The PIN structure is produced by diffusion through an oxide ($\mathrm{S}_{\mathrm{i}} \mathrm{O}_{2}$) mask which also serves to protect the surface. Since most metals are very opaque to optical radiation, especially at infrared wavelengths, the gold contact is deposited only around the perimeter of the P-layer, and the gold contact pattern provides for lead attachment a short distance away from the junction region, so the lead is not in the light path.

Mode of Operation

When a photon is absorbed by the silicon it produces a hole and an electron. If the absorption of the photon occurs in the I-layer, as shown in Figure 1, the hole and the electron are separated by the electric field in the I-layer. For the highest quantum conversion efficiency (electrons per photon) it is desirable to have the P-layer as thin as possible and the I-layer as thick as possible. The thickness of the P-layer also determines the value of the parasitic series resistance (R_{S} in Figure 2). The thinner the P-layer the higher the R_{s}. Since R_{S} affects high frequency performance there is therefore a design trade-off between quantum efficiency and bandwidth. Once the trade-off is settled, the desired thickness is then controlled during the diffusion process. The effective thickness of the I-layer is controlled partly by the manufacturing diffusion process and partly by the magnitude of the electric field applied to the diodethe higher the field, the thicker will be the effective I-layer. It is therefore desirable to operate the diode with an external reverse bias, as shown in Figure 2. As the reverse bias voltage is increased from zero, there are three beneficial effects: hole and electron transit time decreases; conversion efficiency increases slightly; and most importantly, the capacitance decreases sharply with bias up to about ten volts and continues to decrease slightly up to about twenty volts reverse bias.

Figure 1. PIN Photodiode Cutaway View

Figure 2. PIN Photodiode Schematic Symbol, and Equivalent Circuit

In the presence of optical signals there is a slight modulation of the shunt conductance as the presence of photonproduced holes and electrons in the I-layer modulate its conductivity. This effect can be quite significant at very high levels of illumination since the I-layer may become saturated, resulting in a decrease in quantum efficiency and an increase in rise time. Saturation can be prevented by applying a very high reverse bias voltage (up to 200 volts). However, such a high voltage, applied over a long period of time, may cause a degradation of the diode's leakage properties. Since our present concern is with threshold performance, reverse bias voltages greater than twenty volts need not be considered.

Equivalent Circuit

When properly biased, the PIN photodiode can be accu-rately represented by the equivalent circuit shown in Figure 2. Here i_{p} is the external current resulting when the diode is illuminated. It has a time constant of 10 picoseconds and a value of approximately 0.5 amp per watt of input at a wavelength of 8000 angstroms (800 nanometers). This corresponds to a quantum efficiency of 75%, that is, 0.75 electrons per photon. The quantum efficiency is constant from 500 nanometers to 800 nanometers ($5,000 \AA$ to 8,000 Å).
i_{N} is the noise current of the PIN photodiode. Since the diode is reverse biased, the shot noise formula is applicable, so that the noise current can be computed from:

$$
\begin{equation*}
\frac{\mathrm{i}_{v}^{2}}{\mathrm{~B}}=2 \mathrm{q}_{d c} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{B} & =\text { system output bandwidth, } \mathrm{Hz} \\
\mathrm{q} & =\text { electron charge, } 1.6 \times 10^{-19} \text { coulombs } \\
\mathrm{I}_{d c} & =\mathrm{dc} \text { current, Amp. }
\end{aligned}
$$

In the case of the photodiode, I_{dc} is simply the dark current, I_{R}, which has a value determined by the construction and dimensions of the particular diode type. Maximum values are: 100 picoamps for $5082-4204,150$ picoamps for 5082-4205 and 2 nanoamps for 5082-4203.
Shunt resistance, R_{p}, is very large, being usually greater than 10 gigaohms (10,000 megohms), and its noise current may therefore be neglected. Shunt capacitance, C_{p}, has a value from two to five picofarads, depending upon the diode type and reverse bias. For high frequency operation it is important to minimize C_{p} because the cutoff frequency is determined by:

$$
\begin{equation*}
\mathrm{f}_{c}=\frac{1}{2 \pi \mathrm{R}_{s} \mathrm{C}_{p}} \tag{2}
\end{equation*}
$$

Although our present concern is with low frequency threshold operation, there is another reason for minimizing C_{p}. This will be discussed later, when circuit design principles are presented.

Performance

Threshold performance can and has been specified in a number of different ways. The most commonly understood and usable expression takes the form of a noise equivalent input signal. This is the input signal which produces an output signal level that is equal in value to the noise level that is present when no input signal is applied. The noise equivalent input in watts is called Noise Equivalent Power (NEP) and is defined by:

$$
\begin{equation*}
\text { NEP }=\frac{\text { NOISE CURRENT (amps per root hertz) }}{\text { CURRENT RESPONSIVITY (amps per watt) }} \tag{3}
\end{equation*}
$$

which has the units of watts per root hertz. Devices for photo-detection could then be compared on the basis of NEP. The lower the NEP the more sensitive is the device.

Another method of defining threshold sensitivity is on the basis of signal-to-noise ratio for given input signal power levels. Taking a power level of one picowatt, for example, the signal-to-noise ratio at the output can be obtained from:

$$
\text { SNR }=\frac{\text { RESPONSIVITY }\left(\frac{\mathrm{amps}}{\text { watts }}\right) \times \text { INPUT }(\text { watts })}{\text { NOISE CURRENT }(\mathrm{amps})}
$$

This is a ratio of currents. To express it in dB we would take twenty times its log to base ten, even though the expression converts linearly to a power ratio. This is because the devices respond linearly to input power.
Figure 3 shows spectral sensitivity characteristics of several PIN photodiodes and multiplier phototubes. Sensitivity is given in terms of SNR and NEP. The latter is in terms of dBm. Several interesting features are evident in Figure 3. Although the quantum efficiency for PIN photodiodes is constant from 500 to 800 nanometers, the sensitivity curve is not. This is due to the fact that the energy per quantum (photon) of radiant energy varies with wavelength.

The curves for the three different PIN photodiodes also show the dependence of sensitivity on leakage current. Here the highest sensitivity is obtained with the 5082-4204 which has a maximum leakage current of 100 picoamps. Next is the 5082-4205 with 150 picoamps and finally the 5082-4203 with maximum leakage of 2 nanoamps. The three curves are in effect displaced by the magnitude of the noise current difference because quantum efficiency is equal for all. These curves also show the inherent broad response of PIN photodiodes with respect to multiplier phototubes. Therefore, the power responsivity of the PIN photodiode

Figure 3. Spectral Sensitivity Comparisons of Photodetectors
has a corresponding slope. Notice how the inherently broad response of silicon, enhanced by the thick I-layer construction, extends the range of useful performance over the response ranges of two types of photocathodes.

Although the threshold sensitivity of multiplier phototubes is superior in the visible region, nevertheless for many applications the advantage is not significant enough to outweigh the disadvantages of generally unstable and tempera-ture-sensitive gain, large size and weight, and the need of very high and stable power supply voltages. On the other hand, the superior red and infrared threshold performance of the PIN photodiode does not necessarily mean it is better in any application, because one must take into account its small sensitive area and low signal levels. Realization of the performance capability described in Figure 3 also requires fairly careful attention to the design of the terminal circuits into which the PIN photodiode operates.

TERMINAL CIRCUIT DESIGN PRINCIPLES

The design of the terminal amplifier must consider the usual design objectives of low noise, broad band, wide dynamic range, etc. In addition, there are two fundamental considerations which are dictated by the PIN photodiode:

1. High Reverse Voltage:

The diode must be operated at ten to twenty volts of reverse bias to reduce shunt capacitance.
2. High Input Resistance:

This is a fundamental consideration in the sensitivity/rise time trade-off.
The effects of reverse voltage on capacitance have been discussed earlier. However, the effect is sufficiently important to deserve a re-emphasis here.

A high input resistance is necessary in order to maintain a high signal-to-noise ratio. Since the output signal from the photodiode is a current, and its own internal noise is repre-
sented by a current, it is appropriate to represent the noise of the terminal amplifier as an equivalent noise current at the input. The smallest value of resistor which may be connected to the input is then limited by its noise current according to the formula for thermal noise:

$$
\begin{equation*}
\frac{\mathrm{i}_{N}^{2}(\text { thermal })}{\mathrm{B}}=\frac{4 \mathrm{kT}}{\mathrm{R}} \tag{5}
\end{equation*}
$$

By comparing eq(1), relating diode noise current to leakage current, with eq(5), relating resistor noise current to its resistance value, it is clear that there is some value of resistance below which the NEP of the system, i.e., threshold sensitivity, would be degraded at the rate of 5 dB per decade of decreasing resistance. For example, in the case of the 5082-4203, assuming a maximum leakage current of 2 nanoamps , the value of resistance should be greater than 25 megohms, to avoid degrading the threshold sensitivity.

TRANSISTOR AMPLIFIER

In addition to keeping the input noise current low by using large values of input resistance, it is also important to keep other sources of noise in the amplifier at a minimum. Using ordinary transistors (PNP or NPN) it is not possible to approach the ultimate sensitivity of which the PIN photodiode alone is capable, even when low-noise transistors, such as the 2 N 2484 , are used. However, in those applications where it is possible to sacrifice sensitivity for simplicity, transistors may be used. A typical transistor circuit is shown in Figure 4. With this circuit, a sensitivity corresponding to an NEP of -95 dBm was obtained. In this case, Q1 was operated at the lowest possible collector current which would still give adequate gain. A high loop gain was desired in order to compensate, with negative feedback, for the long open-loop rise time produced by the high input resistance. A resistance higher than 10 megohms was not necessary here, since the transistor itself sets the fundamental noise limitation. A PNP transistor was selected for Q2 in order to balance out most of the base-to-emitter voltage of Q1, so that the output would tend to be near zero without any zero adjustment. A slight zero adjustment, provided by R2 and R3,
gives the necessary range without appreciably attenuating the feedback current. As the photocurrent, I_{2}, increases, the amplifier causes the voltage at the emitter of Q3 to decrease, which causes a current in R1 to flow out of the node (base of Q1) into which I_{2} flows.

Basic Amplifier Arrangements

For linear operation, the photodiode should be operated with as small a load resistance as possible. Figure 5 shows the recommended amplifier arrangement. The negative-going input is at virtual ground; the dynamic resistance seen there by the photodiode is R_{1} divided by loop gain. If the op-amp has extremely high input resistance, loop gain is very nearly the forward gain of the op-amp. R_{2} can be omitted if the photocurrent is reasonably high - its purpose is only to balance off the effect of offset current. As shown, the output voltage will rise in response to the optical signal. If it is preferable to have the output drop in response to optical input, then both the photodiode and E_{c} should be reversed. E_{c} may, of course, be zero. Speed of response is usually limited by the time constant of R_{1} with its own capacitance, so it is improved by using a string of two or more resistors in place of a single R_{1}.
Logarithmic operation requires the highest possible load resistance - at least $10 \mathrm{G} \Omega$. With an FET-input op-amp, this is

$$
v_{\text {OUT }}=R_{1}\left(I_{P}+I_{\text {DARK }}\right)
$$

Figure 5. Linear Response; Photodiode and Amplifier Circuit Arrangement

$400 \mathrm{uV} / \mathrm{cm} \times 1 \mathrm{msec} / \mathrm{cm}$

VERTICAL: (UNSPECIFIED)
HORIZONTAL: 20 usec/cm

Figure 4. Transistor Photodiode Amplifier Schematic
easily achieved as in Figure 6. If the offset current of the amplifier poses a problem, a resistor can be added between the positive- and negative-going inputs. Its value should not be less than $10 \mathrm{G} \Omega$ divided by loop gain. If the amplifier has a very high input resistance, loop gain is equal to the forward gain of the amplifier divided by $(1+R / R 1)$ so making $R_{2}=0$ allows the smallest possible resistance between the inputs. The speed of response of this amplifier will be very low, with a time constant

$$
\begin{aligned}
V_{\text {OUT }}= & \left(1+\frac{R_{2}}{R_{1}}\right) \frac{k T}{q} \log _{\epsilon}\left(1+\frac{I_{P}}{I_{S}}\right) \\
& \frac{k T}{q} \approx 25 \mathrm{mV} \\
I_{S}= & \frac{I_{F}}{\frac{q V}{k T}} \text { AT } \quad 0<I_{F}<0.1 \mathrm{~mA}
\end{aligned}
$$

Figure 6. Logarithmic Response; Photodiode and Amplifier Circuit Arrangement
$\tau \approx 0.1 \mathrm{~s}$. If high speed logarithmic operation is required, it is best to use the linear amplifier of Figure 5 followed by a logarithmic converter.

High Speed Photodiode Amplifier

Applications that call for high speed data signaling, such as CRT light pens, require amplifiers that have a wider bandwidth than the circuit shown in Figure 5.

Using a five transistor array (RCA CA3127E) it is possible to construct a high speed, high gain photodiode amplifier. This circuit is shown in Figure 8. It is configured as a two stage amplifier. The first stage is composed of transistors Q1-Q3, where Q1 is an input emitter follower with feedback obtained from the emitter of Q3. Q2 functions as an inverting amplifier interconnecting Q1 to Q3. The second stage consists of Q4 and Q5 which provide additional gain and output buffering, of the first stage. These two stages provide an equivalent transresistance of 420 K ohms. This means that the output voltage Vo is equal to the photocurrent, Ip, times 420 K ohms.
When high speed circuit layout techniques are used it is possible to obtain the rise and fall time performance shown in Figure 7. This speed is equivalent to a bandwidth of 9.5 MHz with an input flux of $1.9 \mu \mathrm{~W}$. This flux level can be obtained from a HEMT-6000 700nm High Intensity Subminiature Emitter when it is operated at 10 mA , at a distance of 1 cm from the $5082-4207$ PIN photodiode.

Figure 7. Pulse Response of Photodiode Amplifier

NOTES: TRANSISTORS ARE SINGLE PACKAGE, CA3127E. PINS LABELED FOR EACH. PIN 5 IS SUBSTRATE.

Figure 8. High Speed, High Gain Photodiode Amplifier

Performance of the 6N135, 6NI36 and 6N137 Optocouplers in Short To Moderate Length Digital Data Transmission Systems

Abstract

This application note assists system designers by describing the performance to be expected from the use of HP 6N135-6N137 optocouplers as a line receiver in a TTL-TTL compatibe NRZ ${ }^{1}$ data transmission link. It describes several useful total systems including line driver, cable, terminations and TTL compatible connections. The systems described utilize inexpensive cable and operate satisfactorily over the range of transmission distances from 1 ft . to 300 ft . Over this range of distances, the data rate varies from 0.6 megabits per second to 19 megabits per second largely limited by coupler performance at short distances, and cable losses at longer distances.

1 Non-return to ziero

INTRODUCTION

Optocouplers can function as excellent alternatives to integrated circuit line receivers in digital data transmission applications. Their major advantages consist of superior common-mode noise rejection and true ground isolation between the two subsystems. For example, a conventional line receiver is limited to a $\pm 20 \mathrm{~V}$ common-mode noise rejection at best from DC over its operating frequency range, while an optocoupler can achieve rejections of $\pm 2.5 \mathrm{kV}$ at 60 Hz .

A conventional optocoupler that utilizes a photo-transistor is limited in its minimum total switching time. At the higher data rates, above $200-500 \mathrm{kbits} / \mathrm{s}$, these delay times can become very significant. The HP 6N135 and 6N136 utilize an integrated photo-diode and transistor to produce lower total switching time. The HP 6N137 adds an integrated amplifier within its package to decrease these delay times still further. All three units can produce data rates well in excess of $500 \mathrm{kbits} / \mathrm{s}$, while the 6 N 137 can couple an isolated 9.5 MHz (19 M bits $/ \mathrm{s}$) clock from its input to its output. These data rates are achieved with common-mode noise voltage rejection in excess of that provided by most types of line receivers at all frequencies.

The information contained in this application note covers the performance of optocoupler line receiver circuits; however, it does not describe design details. These details are covered in Application Note 947 "Digital Data Transmission Using Optically Coupled Isolators".

This application note describes the basic design elements of a data transmission link and presents several examples of total systems that will be useful to systems designers at distances that range from 1 ft . to 300 ft . and have a mod-
erate overall cost. First, a few measures of performance are defined to allow systems to be compared with one another. Second, the elements of an optocoupler data transmission system are discussed. Third, circuit examples and demonstrated performance of a selected set of systems are presented for the various transmission distances. This presentation includes schematics, representative waveforms at intermediate circuit points, and a summary performance table. It compares the results of passive (resistive) terminations with active terminations that improve overall performance at the longer transmission distances. Fourth, the trade-offs that were made to arrive at the selected system components are described. Along with the trade-offs, there is a discussion of approaches to increase performance by selection of other circuit components or by "peaking" a given length system.

DEFINITIONS OF PERFORMANCE

In data transmission systems that utilize optocouplers, there are no standardized definitions that allow performance capability to be specified. The major performance parameters that are of interest are data rate capability, usually specified in bits per second; and immunity to common mode noise at the coupler input, usually specified as AC or DC common mode voltage rejection in volts, or transient voltage noise rejection in volts/microsecond.

To arrive at a definition of maximum data rate capability requires that the total system be specified including all components, and in addition, data modulation and demodulation techniques. In order to compare the various systems presented in the application note, it is necessary to define some useful terms.

One commonly used modulation technique for digital data data transmission is NRZ, or non-return-to-zero transmission. In the most common form of this technique, a twisted pair transmission line is driven by a balanced driver with an alternating plus or minus voltage signal. A number of integrated circuits are available to provide the drive signals and create a straightforward design.

One potential measure of system performance for NRZ, and potentially other modulation techniques as well, is the measurement of the maximum 50% duty cycle clock frequency that the system will pass. Since a clock represents a total $1 / 0$ and $0 / 1$ transition each full cycle, this square wave provides two bits of data for each cycle. As the upper clock frequency limit of a system using couplers is reached, the duty cycle will change from 50%. The MAXIMUM CLOCK DATA RATE is found by observing the system output as a function of a square wave input until the output distorts to a 10% duty cycle and multiplying this frequency by two (two bits/cycle). At this input frequency, the system data rate is very close to its absolute maximum and any potential recovery of a signal at a higher data rate is impractical. A more detailed definition of this term appears in the glossary.

Another parameter indicative of the performance of a system is to measure the system transient response in its worst case condition. The step response of a transmission system using isolators is a function of the duty cycle and repetition rate. For NRZ, if this term is properly defined, it can indicate a worst case maximum data rate that the system will faithfully transmit, regardless of the combination of ones and zeroes in the data bit stream. This step response term will be referred to as the STEP TRANSIENT DATA RATE MAXIMUM. It assumes that the pulse propagation delay down the transmission line is essentially constant, and defines a data rate maximum at which a single bit of data in a stream of all zeroes and a one, or all ones and a zero may be successfully sent through the system. This is simulated by placing a very low frequency square wave input into the line. Then the circuit delay time from a pulse received at the end of the line until the system output makes a transition is measured. This delay time is a function of the cable output risetime and the delays experienced in the coupler and its associated circuitry. The specific delay times are called $t_{\text {PHL }}$ and $t_{\text {PLH }}$, indicating delay times for a $1 / 0$ and $0 / 1$ transition respectively. The STEP TRANSIENT DATA RATE MAXIMUM is defined as the inverse of $t_{\text {PLH }}$ or $t_{\text {PHL, }}$ whichever is longer. In general, this data rate will be lower than the MAXIMUM CLOCK DATA RATE. A more exact definition of $t_{P H L}, t_{P L H}$ and STEP TRANSIENT DATA RATE appears in the glossary.

The parameters used to define worst-case common mode noise immunity are measured for the coupler and associated circuitry without the transmission cable. The common mode voltage rejection is a function of frequency and indicates the maximum AC steady state signal voltage common to both inputs and output ground that will not create an error in the output. This rejection reaches a minimum at some frequency. The transient voltage noise immunity is
a measure of the maximum rate of rise (or fall) that can be placed across the common input terminals and output ground without producing an error voltage in the output. This term is a function of the input pulse magnitude and rate of rise for an optocoupler and is stated as a dv/dt minimum in volts per microsecond. Further definitions of these terms appear in the glossary. It should be noted that common mode characteristics of such systems are largely determined by the point at which the noise enters the transmission system. Common mode rejection for a total system would be expected to improve with increasing distance between the common mode insertion point and the input to optocoupler.

ELEMENTS OF AN OPTOCOUPLER DATA TRANSMISSION SYSTEM

The basic elements of an optocoupler transmission system are:

Line Driver
Transmission Cable
Line Termination Circuit
Optocoupler
\square TTL Interface Circuit

In order that the performance of systems using the 6N1356N137 optocouplers might be demonstrated, component elements had to be defined for several systems. These elements are chosen to be TTL compatible at the input and the output. They are also chosen to produce high performance, be moderate in cost, and work over a range of distances of one foot to 300 feet. This can then maximize the utility to systems designers of the circuits demonstrated, thus allowing them to be used without change in a variety of specific applications to produce a known level of performance.

CIRCUIT EXAMPLES AND DEMONSTRATED PERFORMANCE

To reduce the number of complete systems upon which performance is demonstrated to a practical number, a basic representative set of elements must be selected or designed. This includes a single line driver and cable type with performance measurements taken at three transmission distances 1 ft ., 100 ft ., and 300 ft . It also includes two termination types, active and passive, and three types of couplers with companion TTL interface circuits. This produces six total data transmission systems upon which data rate performance can be observed at the three transmission distances. Figure 1 illustrates the line driver and cable combination selected. Figure 2 illustrates the pulse response of this driver/cable combination. Figures 3 through 8 indicate the line termination, coupler, and TTL interface circuitry for the various terminations. Included are representative waveforms measured on the three passive termination systems at the 300 ft . transmission distance. Table 1 outlines the critical parameters of the cable used and Tables 2, 3, and 4 summarize the performance demonstrated on all of the transmission systems.

The performance tabulated for the 1 ft . transmission length is indicative of that which might be achieved by a system with negligible performance degradation in the cable. The performance at 100 ft . and 300 ft . indicates the decrease in data rate due to cable losses as the transmission distance increases. This decrease is the most critical data rate limitation and is indicative of the change in performance of systems using low cost cable. Clearly evident in the tables is the increase in performance of the active termination at the 300 ft . transmission distance. Note also that the data rate of the system utilizing the 6N137 at short transmission distances is less with the active than with the passive termination. This decrease is due to the additional delay added by the active termination.

These performance tables can be used to select a design suitable for an application required by a system designer. For example, assume it is desired to design a data transmission system of variable lengths up to 100 ft . and data rates of up to $1.6 \mathrm{Mbits} / \mathrm{s}$. The circuit shown in Figure 4 and the line driver and cable shown in Figure 1 could be selected to assure this level of performance.

SELECTION OF DEMONSTRATION CIRCUIT ELEMENTS

The foregoing systems exemplify achievable performance and incorporate a number of design decisions which are discussed in this section.

LINE DRIVER

Line Drivers generate the signal that is sent down the transmission line. They have limits as to voltage swing, output impedance, and switching time. A good compromise is provided by National Semiconductor's DM 8830. Any similar device with a low output impedance such as the Fairchild 9614 would operate satisfactorily. These devices are TTL input compatible, require no external components, are relatively inexpensive and readily available. They provide adequate performance and produce directly a dual rail (inverting and non-inverting) output.
For systems requiring higher data rates, more sophisticated
and expensive drivers can be selected or designed. Figure 9 illustrates a circuit that has a higher current output and produces a higher data rate than an integrated driver. It uses several components, but does not require a supply voltage above the standard TTL 5 volts. To obtain still higher data rates, the driver line voltage output must be increased. This in turn requires a supply voltage above 5 volts. The National Semiconductor LH 0002C is an example of an integrated circuit that can be used to produce directly a higher line voltage. Numerous other discrete circuits could be designed.

TRANSMISSION CABLE

Transmission cables are very critical in the overall system. They can decrease the effect of extraneous noise voltages on system performance by providing shielding. They also greatly affect the signal losses as the transmission length increases. By controlling these losses, cables can permit a single set of system elements to function adequately for both long and short transmission distances. The critical performance parameters of a transmission cable include cost, transmission length, line series resistance (DC losses), high frequency losses, type and amount of shielding and characteristic impedance.
The Belden type 8777 is representative of a relatively wellshielded, inexpensive cable with typical transmission loss. The important characteristics of this cable are summarized in Table 1.
If it is desired to attain higher performance, the line cost becomes considerably more expensive and tends to dominate system costs. These higher performance cables utilize a large conductor size to lower DC losses, and provide considerably lower losses at high frequencies. Examples of such a cable would be Belden 9269 (IBM 32392), Belden 9250 or their equivalents.
The pulse response of the DM 8830 and the Belden 8777 illustrates the waveform degradation of signals sent down this driver/transmission line pair, regardless of the line receiver employed. Figure 1 illustrates this circuit combination, and Figure 2 illustrates the pulse waveform degradation at 1 ft ., 100 ft ., and 300 ft . into a 68Ω equivalent load.

Figure 1. Line Driver and Cable Combination Selected for Use on All Six Systems to Indicate Their Performance.

Figure 2. Pulse Characteristics of the Selected Line Driver and Cable. Measurement Observed with a 68Ω Equivalent Termination at One, 100, and 300' Distances. All Waveforms are Line to Line Voltage, Time Referenced to zero feet. Note Time Delay and Waveform Degradation.

LINE TERMINATION CIRCUIT

The line termination circuit converts the voltage arriving at the end of the line to a current impulse to drive the coupler emitter diode. In these system examples, performance of both passive and active circuits was measured.

A passive circuit consists of a set of resistors to match the line to its characteristic impedance and to convert the line voltage to a current. The circuits illustrated here were designed to provide good performance at 300 ft ., while not exceeding the coupler input drive current maximum at the 1 ft . line length condition. With this design criterion, these circuits are useful over this range of transmission cable lengths. These design characteristics required that two resistive line termination circuits be designed for the three isolators. They are illustrated in Figures 3, 4, and 5.

An improvement in the performance of a resistive termination can be obtained by peaking the line to operate at a specific length as shown in Figure 10. This technique allows the coupler to operate from the peak to peak voltage at the end of the line. To avoid overdriving the coupler, the peaking capacitor value must be minimized. It is chosen by observing the circuit delay time $\mathrm{t}_{\text {PLH }}$ and selecting the smallest value of capacitor that significantly decreases this delay. With this technique, performance can be expected to improve by as much as $20-30 \%$ or more, but the values of peaking capacitor tend to vary with many of the characteristics of components in all of the elements of the system. These include driver output voltage, line length, line losses, coupler delay, etc. This in turn requires each individual system to have a selected value of peaking capacitor.

An active termination utilizes a transistor to act as a line voltage to coupler input current regulator. This technique ignores any attempt to match the line, but instead converts any incoming voltage to a suitable current, once the circuit threshold voltage is exceeded. This tends to decrease circuit sensitivity to line length and other line voltage variations. The delay of an active circuit can limit the maximum system data rate, especially for short transmission distances. But, in general, their use can improve the maximum data rate at the longer distances. In the system examples, two active termination circuits were designed and are illustrated in Figures 6, 7 and 8.

Improving the performance of the active circuit consists of finding transistors and circuit designs to perform the voltage to input current regulation function without limiting overall system performance.

OUTPUT TO TTL INTERFACE

The 6N136 and 6N137 have sufficiently high input to output coupling efficiency (CTR) that the only component required to interface the optocoupler to a TTL input gate is a pull-up resistor. The 6N135 has a somewhat lower CTR and requires an external transistor and resistor to interface with a TTL gate input. The actual circuit configuration and values required for these interface circuits are illustrated in Figures 3 through 8 . The circuits illustrate, in general, the optimum interface for a TTL-TTL compatible circuit. Performance could be improved through the use of lower pull-up resistor values in the coupler output collectors and high speed TTL compatible comparators.

Table 1

IMPORTANT LINE CHARACTERiSTICS OF BELDEN 8777

- Three sets of two conductor, twisted and individually foil shielded, 22 gauge wire
- Z_{0} (Measured Characteristic Impedance)-68 $\mathbf{~}$ line to line
- Line-to-line capacitance $-30 \mathrm{pF} / \mathrm{ft}$.
- Line Resistance $-3.2 \Omega / 100 \mathrm{ft}$. (per conductor pair)
- Attenuation at $10 \mathrm{MHz} \simeq 4 \mathrm{~dB} / 100 \mathrm{ft}$.
- Delay $\simeq 1.5 \mathrm{nsec} / \mathrm{ft}$.
- Cost $\approx 5 d / \mathrm{ft} . /$ Transmission Pair

GLOSSARY

1. DATA RATE - This term is typically stated in bits per second and has no standardized definition when used in reference to optocouplers. It is related to the minimum pulse transition time that will be passed by the system and detected. This in turn is related to the distortion or change in duration the pulse experiences upon passing through the system.
2. STEP TRANSIENT DATA RATE MAXIMUM - This term, stated in bits per second, is a function of the maximum delay experienced by a $0 / 1$ or a $1 / 0$ transition in passing through the optocoupler. The step transient data rate maximum is defined as:

STEP TRANSIENT DATA RATE (MAX) =

$$
\frac{1}{t_{P H L}} \text { or } \frac{1}{t_{P L H}}
$$

whichever is smaller. Where $t_{P L H}$ and $t_{P H L}$ are measured at the coupler termination input (end of the line) and the TTL output and are defined as follows:

The $t_{P H L}$ and $t_{P L H}$ measured under these conditions approach the maximum delay that will be experienced by data sent through the isolator.
3. MAXIMUM CLOCK DATA RATE - This term defines the maximum data rate at which a 50% duty cycle square wave (clock) will be distorted to a $90 \% / 10 \%$ pulse. It is
very close to the maximum alternating $1 / 0$ and $0 / 1$ transition that can be passed by the system. It is defined mathematically as:
MAXIMUM CLOCK DATA RATE $=\frac{1}{t_{1}}$
where t_{1} is defined as:

4. COMMON MODE REJECTION VOLTAGE - This term is defined as the maximum sinusoidal voltage at a given frequency that can be applied simultaneously to both inputs with respect to output ground and not produce an error signal in the system output. In optocouplers, the value of this voltage is very high at low frequencies and decreases with increasing frequency until it reaches a minimum. The effect is caused by the effective intercircuit capacitance of the emitter and detector chips, and the detector gain and bandwidth. (See Figure 11.)
5. COMMON MODE dv/dt REJECTION MINIMUM - This term is defined as the maximum rate of change of voltage that can be applied to both inputs simultaneous/y with respect to output ground and not produce an error in the system output. Note that this parameter is a function of the duration of the change, or equivalently the pulse amplitude. The stated values in this application note are for a 10 V step pulse amplitude generated by a source having a controlled risetime and falltime (e.g., HP 8007B). (See Figure 11.)

Figure 3. TTL Compatible Passive (Resistive) Termination for the 6N135 and Photographs Indicating Measured Performance at the End of the 300 Ft. Transmission Cable.

Figure 6. TTL Compatible Active Termination for the 6N135.

Table 2. Summary of Performance of 6 N 135 Data Transmission Systems at 1, 100, and 300 ft .

Figure 4. TTL Compatible Passive (Resistive) Termination for the 6N136 and Photographs Indicating Measured Performance at the End of the 300 Ft Cable.

Figure 7. TTL Compatible Active Termination for the 6N136.
Table 3. Summary of Performance of 6N136 Data Transmission Systems at 1, 100, and 300 ft .

	Transmission Distance (ft)	$\begin{aligned} & \text { tpLH } \\ & \text { (ns) } \end{aligned}$	tpHL (ns)	Step Transient Data Rate Max. (Mbits/s)	Clock Data Rate Max. (Mbits/s)	Worst Case Common Mode Noise Rejection	
						Sinusoidal	$d V / d t$
RESISTIVE (PASSIVE) Fig. 4	$\begin{array}{r} 1 \\ 100 \\ 300 \end{array}$	$\begin{array}{r} 320 \\ 640 \\ 1200 \end{array}$	$\begin{aligned} & 270 \\ & 265 \\ & 220 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 1.6 \\ & 0.8 \end{aligned}$	$\begin{array}{r} 10.0 \\ 4.0 \\ 1.2 \end{array}$	$\begin{aligned} & \text { K10kHz: } \\ & 5.0 \mathrm{kV} \\ & \text { pk-pk } \\ & 1 \mathrm{MHz}: 84 \mathrm{~V} \end{aligned}$	250V/ $\mu \mathrm{s}$ min.
ACTIVE Fig. 7	$\begin{array}{r} 1 \\ 100 \\ 300 \end{array}$	$\begin{aligned} & 375 \\ & 440 \\ & 700 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.3 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 5.0 \\ & 2.4 \end{aligned}$	pk-pk min.	

Illustration of tPLH Waveforms Horizontal $100 \mathrm{~ns} / \mathrm{div}$.

Illustration of tPHL Waveforms Horizontal 20 ns/div.

Figure 5. TTL Compatible Passive (Resistive) Termination for the 6 N 137 and Photographs Indicating Measured Performance at the End of the 300 Ft. Transmission Cable.

Figure 8. TTL Compatible Active Termination for the 6N137.
Table 4. Summary of Performance of 6 N 137 Data Transmission Systems at 1, 100, and 300 ft .

	Transmission Distance (ft)	$\begin{aligned} & \text { tPLH } \\ & \text { (ns) } \end{aligned}$	tPHL (ns)	Step Transient Data Rate Max. (Mbits/s)	Clock Data Rate Max. (Mbits/s)	Worst Case Common Mode Noise Rejection	
						Sinusoidal	$\mathrm{dV} / \mathrm{dt}$
RESISTIVE (PASSIVE)	$\begin{array}{r} 1 \\ 100 \\ 300 \end{array}$	$\begin{aligned} & 105 \\ & 170 \\ & 625 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.8 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 19.0 \\ 8.0 \\ 2.0 \end{array}$	$\begin{aligned} & \leqslant 10 \mathrm{kHz}: \\ & 5.0 \mathrm{kV} \\ & \mathrm{pk-pk} \\ & 8 \mathrm{MHz}: 22 \mathrm{~V} \end{aligned}$	$40 \mathrm{~V} / \mu \mathrm{s}$ min.
ACTIVE	$\begin{array}{r} 1 \\ 100 \\ 300 \end{array}$	$\begin{aligned} & 190 \\ & 190 \\ & 275 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \\ & 80 \end{aligned}$	5.3 5.3 3.9	$\begin{array}{r} 11.0 \\ 13.2 \\ 8.2 \end{array}$	pk-pk min.	

Figure 9. High Output Voltage Swing, High Current, Wide Bandwidth Line Driver that Operates From a 5 Volt Supply and Produces a $\mathbf{> 8 . 5 V}$ Pk to Pk Pulse into $\mathbf{3 0 0}$ Ft. of Belden 8777 at 10 MHz .

Figure 10. An Example of Circuit Peaking to Improve the Performance of the Passive Termination. C_{1} is Chosen for the Minimum Value that Significantly Reduces Input to Output Delay Time. In General, C1 Must be Selected Individually For Each System.

Figure 11. Common Mode Measurement Circuit.

Applications for Low Input Current, High Gain Optocouplers

Optically coupled isolators are useful in applications where large common mode signals are encountered. Examples are: line receivers, logic isolation, power lines, medical equipment and telephone lines. This application note has at least one example in each of these areas for the 6N138/9 series high CTR couplers.

HP's 6N138/9 series couplers contain a high gain, high speed photodetector that provides a minimum current trans-
fer ratio (CTR) of 300% at input currents of 1.6 mA for the 6 N 138 and 400% at 0.5 mA for the 6 N 139 . The excellent low input current CTR enables these devices to be used in applications where low power consumption is required and those applications that do not provide sufficient input current for other couplers. Separate pin connections for the photodiode and output transistor permit high speed operation and TTL compatible output. A base access terminal allows a gain bandwidth adjustment to be made.

RS-232C COMPATIBLE LINE RECEIVER

- 2500 V 60 Hz Common Mode Rejection
- Allows use of Low Cost Line
- Full 40kbs Data Rate for Line Lengths up to $\mathbf{5 0 0 0}^{\circ}$
- Hysteresis for Increased Noise Immunity
*ANTIPARALLEL DIODE IS NEEDED ONLY IF REVERSE LINE VOLTAGE EXCEEDS 15 V (TO PREVENT HIGH REVERSE VOLTAGE FROM CAUSING POWER DISSIPATION IN EXCESS OF INPUT DIODE MAXIMUM RATING).

REMOVE R_{A} ANO R_{B} FOR NO HYSTERESIS

R_{A}	R_{B}	R_{C}	R_{L}	Q
$680 \mathrm{k} \Omega$	$1.5 \mathrm{M} \Omega$	$1.8 \mathrm{k} \Omega$	$15 \mathrm{k} \Omega$	2 N 3904

LOW POWER INTERFACE

- Operation at $I_{F} \geq 0.5 \mathrm{~mA}$
- $10 \mathrm{kHz} \mathrm{f}_{\mathrm{MAX}}$
- Low Power Consumption

LINE RECEIVER FOR PARTY LINE

- 1-8 Receivers can be used with circuit shown
- Uses conventional IC Line Driver
- Total Line Length 1-300'
- Typical Data Rate $\mathbf{- 1 8 0 k b s}$
$\left(t_{\text {PHL }}, t_{\text {PLH }}=3 \mu \mathrm{sec}\right)$
- Allows use of Low Cost Line

ISOLATOR LOADS MAY BE DISTRIBUTED RANDOMLY ALONG THE LENGTH OF THE LINE, OR ALL MAY BE LUMPED AT THE END. If FOR 1 AND 8 ISOLATOR LOADS WOULD BE 2.7 AND 1.BmA RESPECTIVELY.

```
PROPAGATION DELAY: tPHL, tPLH}=0.5 to 5 + $ 
``` BE ELECTRICALLY SEPARATED


\section*{TELEPHONE RING DETECTOR}
- Discriminates between Ring and Dial Signals
- Minimal Line Loading (\(1 \mathrm{M} \Omega \mathrm{dc}, 450 \mathrm{k} \Omega\)
at 20 Hz)
- 2500 V Insulation from Telephone Line
- Small Size
- Integrator Included

\section*{TTL TO TTL INTERFACE}
- Direct Input and Output Compatibility
- Adjustable Data Rate
- High Fan-Out

\section*{GAIN/SPEED TRADE OFF}
- Obtain Maximum Speed at Required Gain
m Single Resistor Required
- Use same device for Multiple Applications

fMAXIS THE FREOUENCY AT WHICH A \(50 \%\) DUTY FACTOR AT THE INPUT ISDEGENERATED TO \(10 \%\) or \(90 \%\) DUTY FACTOR AT THE OUTPUT.
\begin{tabular}{|c|c|c|c|}
\hline\(R_{X}(\Omega)\) & \(R_{L}(\Omega)\) & \(I_{L}(\mathrm{~mA})\) & \(\mathrm{f}_{\text {MAX }}(\mathrm{kHz})\) \\
\hline NONE & 100 & 46 & 250 \\
\hline 820 & 1000 & 4.6 & 650 \\
\hline
\end{tabular}

\subsection*{1.5000 FT. LINE RECEIVER}
* Drive with Standard TTL Buffer Gate
- 2500 V 60 Hz Common Mode Rejection
- Allows use of Low Cost Line
* 40kbs Data Rate
- TTL Compatible Output

\section*{HIGH VOLTAGE STATUS INDICATOR}
- Low Power Consumption
- TTL Compatible Output
- High Speed
- Use for Power Turn On Anticipation Circuit, 117V Line Monitor or Other High Voltage Sensing

\begin{tabular}{|c|c|c|}
\hline\(V(V d c\) or \(V r m s)\) & \(R_{S}\) & \(V \cdot I_{F}(m W)\) \\
\hline 24 & \(47 \mathrm{k} \Omega\) & 11 \\
\hline 48 & \(100 \mathrm{k} \Omega\) & 22 \\
\hline 117 & \(220 \mathrm{k} \Omega\) & 62 \\
\hline 230 & \(470 \mathrm{k} \Omega\) & 113 \\
\hline
\end{tabular}

\section*{MEDICAL EQUIPMENT ISOLATION}
- Low Power Consumption
- 2500 V 60 Hz Isolation
- Digital or Analog Operation

\section*{CONVENTIONAL DARLINGTON}
- No Bias Supply Required
- Base Lead available for Gain/Bandwidth Adjust
- Data Rates of 2kbs

\title{
Linear Applications of Optocouplers
}

Optocouplers are useful in applications where analog or DC signals need to be transferred from one module to another in the presence of a large potential difference or induced noise between the ground or common points of these modules.

Potential applications are those in which large transformers, expensive instrumentation amplifiers or complicated A/D conversion schemes are used. Examples are: sensing circuits (thermocouples, transducers ...), patient monitoring equipment, power supply feedback, high voltage current monitoring, adaptive control systems, audio amplifiers and video amplifiers.
HP's optocouplers have integrated photodetector/amplifiers with speed and linearity advantages over conventional phototransistors. In a photo transistor, the photodetector is the collector-base junction so the capacitance impairs the collector rise time. Also, amplified photocurrent flows in the collector-base junction and modulates the photo-response, thereby causing non-linearity. The photodetector in an HP optocoupler is a separately integrated diode so its photoresponse is not affected by amplified photocurrent and its capacitance does not impair speed. Some linear isolation schemes employ digital conversion techniques (A/D-D/A, PWM, PCM, etc.) in which the higher speed of the integrated photodetector permits better linearity and bandwidth.

The 6N135/6N136 is recommended for single channel AC analog designs. The HCPL-2530/31 is recommended for dual channel DC linear designs. The 6N135/6 series or the 6 N 137 series are recommended for digital conversion schemes.
If the output transistor is biased in the active region, the current transfer relationship for the 6N135 series optocoupler can be represented as:
\[
I_{C}=K\left(\frac{I_{F}}{I_{F}^{\prime}}\right)^{n}
\]
where \(I_{C}\) is the collector current; \(I_{F}\) is the input LED current; \(\mathrm{I}_{\mathrm{F}}\) is the current at which K is measured; K is the collector current when \(\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}}\); and n is the slopeof \(\mathrm{I}_{\mathrm{C}}\) vs. \(\mathrm{I}_{\mathrm{F}}\) on logarithmic coordinates.

The exponent \(n\) varies with \(I_{F}\), but over some limited range of \(\Delta \mathrm{I}_{\mathrm{F}}, \mathrm{n}\) can be regarded as a constant. The current transfer relationship for an opto isolator will be linear only if \(n\) equals one.

For the 6 N 135 series optocoupler, \(n\) varies from approximately 2 at input currents less than 5 mA to approximately 1 at input currents greater than 16 mA . For AC coupled applications, reasonable linearity can be obtained with a single optocoupler. The optocoupler is biased at higher levels of input LED current where the ratio of incremental photodiode current to incremental LED current \(\left(\partial I_{\mathrm{D}} / \partial \mathrm{I}_{\mathrm{F}}\right)\) is more nearly constant.
For better linearity and stability, servo or differential linearization techniques can be used.

The servo linearizer forces the input current of one optocoupler to track the input current of the second optocoupler by servo action. Thus, if \(\mathrm{n}_{1} \approx \mathrm{n}_{2}\) over the excursion range, the non linearities will cancel and the overall transfer function will be linear. In the differential linearizer, an input signal causes the input current of one optocoupler to increase by the same amount that input current of the second optocoupler is decreased. If \(n_{2} \simeq n_{2} \simeq 2\), then a gain increment in the first optocoupler will be balanced by a gain decrement in the second optocoupler and the overall transfer function will be linear. With these techniques, matching of K will not effect the overall linearity of the circuit but will simplify circuit realization by reducing the required dynamic range of the zero and offset potentiometers.
Gain and offset stability over temperature is dependent on the stability of current sources, resistors, and the optocoupler. For the servo technique, changes of \(K\) over temperature will have only a small effect on overall gain and offset as long as the ratio of \(\mathrm{K}_{1}\) to \(\mathrm{K}_{2}\) remains constant. With the differential technique, changes of K over temperature will cause a change in gain of the circuit. Offset will remain stable as long as the ratio of \(\mathrm{K}_{1}\) to \(\mathrm{K}_{2}\) remains constant. In the AC circuit, since (\(\partial I_{D} / \partial I_{F}\)) varies with temperature, the gain will also vary with temperature. A thermister can be used in the output amplifiers of the Differential and AC circuits to compensate for this change in gain over temperature.

There are also several digital techniques to transmit an optocoupler analog signal. Optocouplers can be used to transmit a frequency or pulse width modulated signal. In these applications, overall circuit bandwidth is determined by the required linearity as well as the propagation delay of the optocoupler. The 6N137 series optocoupler features propagation delays typically less than 50 ns and
the 6N135 series optocoupler features propagation typically less than 300 ns .
In several places the circuits shown call for a current source. They can be realized in several ways. If \(\mathrm{V}_{\mathrm{Cc}}\) is stable, the current source can be a mirror type circuit as shown in Figure 1.

Figure 1.
If \(V_{C C}\) is not stable, a simple current source such as the ones shown in Figure 2 can be realized with an LED as a voltage reference. The LED will approximately compensate the transistor over temperature since \(\Delta \mathrm{V}_{\text {be }} / \Delta \mathrm{T} \cong\) \(\Delta V_{F} / \Delta T=-2 m V /{ }^{\circ} \mathrm{C}\) :

Figure 2.

\section*{SERVO ISOLATION AMPLIFIER}

The servo amplifier shown in Figure 3 operates on the principle that two optocouplers will track each other if their gain changes by the same amount over some operating region. \(\mathrm{U}_{2}\) compares the outputs of each optocoupler and forces \(I_{F 2}\) through \(D_{2}\) to be equal to \(I_{F 1}\) through \(\mathrm{D}_{1}\). The constant current sources bias each \(\mathrm{I}_{\mathrm{F}}\) at 3 mA quiescent current. \(\mathrm{R}_{1}\) has been selected so that IF1 varies over the range of 2 mA to 4 mA as VIN varies from -5 V to +5 V . \(\mathrm{R}_{1}\) can be adjusted to accommodate any desired range. With \(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{R}_{2}\), is adjusted so that \(\mathrm{V}_{\text {out }}=0\). Then with VIN at some value, \(\mathrm{R}_{4}\) can be adjusted for a gain of 1. Values for \(R_{2}\) and \(R_{4}\) have been picked for a worst case spread of optocoupler or current transfer ratios. The transfer function of the servo amplifier is:
\[
V_{\text {OUT }}=R_{4}\left[\left(I_{F^{\prime}}\right)\left(\frac{K_{1} R_{2}\left(I_{C C_{1}}\right)^{n_{1}}}{K_{2} R_{3}\left(I_{F}^{\prime}\right)^{n_{1}}}\right)^{1 / n_{2}}\left(1+\frac{V_{I N}}{R_{1} I_{\mathrm{CC}}^{1}}\right)^{n_{1} / n_{2}}-I_{C C_{2}}\right]
\]

After zero adjustment, this transfer function reduces to:
\[
V_{\text {OUT }}=R_{4} I_{\mathrm{CC}_{2}}[(1+x) n-1] \text {, where } x=\frac{V_{I N}}{R_{1} I_{C C_{1}}}, n=\frac{n_{1}}{n_{2}}
\]

The non linearities in the transfer function where \(n_{1} \neq n_{2}\) can be written as shown below. For example, if \(|x| \leqslant .35, \mathrm{n}=\) 1.05 , then the linearity error is \(1 \%\) of the desired signal.

Figure 3. Servo Type DC Isolation Amplifier.

\section*{Typical Performance for the Servo Linearized DC Amplifier:}
\(1 \%\) linearity for 10 V p-p dynamic range
Unity voltage gain
25 kHz bandwidth (limited by \(\mathrm{U}_{1}, \mathrm{U}_{2}\))
Gain drift: \(-.03 \% /{ }^{\circ} \mathrm{C}\)
Offset drift: \(\pm 1 \mathrm{mV} /{ }^{\circ} \mathrm{C}\)
Common mode rejection: 46 dB at 1 kHz
500 V DC insulation (3000 V if 2 single couplers are used)

\section*{DIFFERENTIAL ISOLATION AMPLIFIER}

The differential amplifier shown in Figure 4 operates on the principle that an operating region exists where a gain increment in one optocoupler can be approximately balanced by a gain decrement in the second optocoupler. As \(\mathrm{I}_{\mathrm{F} 1}\) increases due to changes in \(\mathrm{V}_{\mathrm{IN}}, \mathrm{I}_{\mathrm{F} 2}\) decreases by an equal amount. If \(n_{1}=n_{2}=2\), then the gain increment caused by increases in \(\mathrm{I}_{\mathrm{F} 1}\) will be balanced by the gain decrement caused by decreases in \(\mathrm{I}_{\mathrm{F} 2}\). The constant current source biases each \(I_{F}\) at 3 mA quiescent current. \(\mathrm{R}_{1}\) and \(R_{2}\) are designed so that \(I_{F}\) varies over the range of 2 mA to 4 mA as \(\mathrm{V}_{\text {IN }}\) varies from -5 V to +5 V . \(R_{1}\) and \(\mathrm{R}_{2}\) can be adjusted to accommodate any desired dynamic range. \(U_{3}\) and \(U_{4}\) are used as a differential current amplifier:
\[
V_{O U T}=R_{5}\left[\left(R_{3} / R_{4}\right) I_{C 1}-I_{C 2}\right]
\]
\(R_{3}, R_{4}, R_{5}\) have been picked for an amplifier with a gain of 1 for a worst case spread of coupler current transfer ratios. The transfer function of the differential amplifier is:
\(V_{\text {OUT }}=R_{5}\left[\left(\frac{K_{1} R_{3}}{R_{4}}\right)\left(\frac{I_{C C}}{2 I_{F_{1}^{\prime}}}\right)^{n_{1}}\left(1+\frac{V_{I N}}{R I_{C C}}\right)^{n_{1}}-K_{2}\left(\frac{I_{C C}}{2 I_{F_{2}^{\prime}}^{\prime}}\right)^{n_{2}}\left(1-\frac{V_{I N}}{R I_{C C}}\right)^{n_{2}}\right]\)
if \(R \equiv R_{1} \equiv R_{2}\)

After zero adjustment, this transfer function reduces to:
\[
\begin{aligned}
& V_{\text {OUT }}=R_{5} K^{\prime}\left[\left(1+\frac{V_{I N}}{R I_{C C}}\right)^{n_{1}}-\left(1-\frac{V_{I N}}{R I_{C C}}\right)^{n_{2}}\right], \\
& \text { where } K^{\prime}=\frac{K_{1} R_{3}}{R_{4}}\left(\frac{I_{C C}}{2 I_{F_{1}^{\prime}}}\right)^{n_{1}}=K_{2}\left(\frac{I_{C C}}{2 I_{F_{2}^{\prime}}}\right)^{n_{2}}
\end{aligned}
\]

The non linearities in the transfer function when \(\mathrm{n}_{1} \neq \mathrm{n}_{2} \neq\) 2 can be written as shown below. For example, if \(|x| \leqslant .35\), \(n_{1}=1.9, n_{2}=1.8\), then the linearity error is \(1.5 \%\) of the desired signal.
\[
\frac{\text { linearity error }}{\text { desired signal }}=\frac{(1+x)^{n_{1}}-(1-x)^{n_{2}}-\left(n_{1}+n_{2}\right) x}{\left(n_{1}+n_{2}\right) x}, \text { where } x=\frac{V_{I N}}{R I_{C C}}
\]

Figure 4. Differential Type DC Isolation Amplifier.

\section*{Typical Performance of the Differential Linearized DC Amplifier:}
\(3 \%\) linearity for 10 V p-p dynamic range
Unity voltage gain
25 kHz bandwidth (limited by \(\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathrm{U}_{4}\))
Gain drift: \(-.4 \% /{ }^{\circ} \mathrm{C}\)
Offset drift: \(\pm 4 \mathrm{mV} /{ }^{\circ} \mathrm{C}\)
Common mode rejection: 70 dB at 1 kHz
3000V DC insulation

\section*{AC COUPLED AMPLIFIER}

In an AC circuit, since there is no requirement for a DC reference, a single optocoupler can be utilized by biasing the optocoupler in a region of constant incremental CTR \(\left(\partial I_{D} / \partial I_{F}\right)\). An example of this type of circuit is shown in Figure 5. \(Q_{1}\) is biased by \(R_{1}, R_{2}\) and \(R_{3}\) for a collector quiescent current of \(20 \mathrm{~mA} . R_{3}\) is selected so that \(I_{F}\) varies from 15 mA to 25 mA for \(\mathrm{V}_{\mathrm{IN}}\) of \(1 \mathrm{~V} p-\mathrm{p}\). Under these

Figure 5. Wide Bandwidth AC Isolation Amplifier.
operating conditions, the 6N136 operates in a region of almost constant incremental CTR. Linearity can be improved at the expense of signal-to-noise ratio by reducing \(I_{F}\) excursions. This can be accomplished by increasing \(R_{3}\), then adding a resistor from the collector of \(Q_{1}\) to ground to obtain the desired quiescent \(I_{F}\) of 20 mA . \(Q_{2}\) and \(Q_{3}\) form a cascade amplifier with feedback applied through \(R_{4}\) and \(R_{6}\). \(R_{6}\) is selected as \(V_{\text {be }} / l_{3}\) with \(I_{3}\) selected for maximum gain bandwidth product of \(Q_{3} . R_{7}\) is selected to allow maximum excursions of \(\mathrm{V}_{\text {out }}\) without clipping. \(\mathrm{R}_{5}\) provides DC bias to \(\mathrm{Q}_{3}\). Closed loop gain (\(\Delta \mathrm{V}_{\text {out }} / \Delta \mathrm{V}_{\text {IN }}\)) can be adjusted with \(\mathrm{R}_{4}\). The transfer function of the amplifier is:
\[
\frac{V_{\text {OUT }}}{V_{I N}} \cong\left(\frac{\partial I_{D}}{\partial I_{F}}\right)\left(\frac{1}{R_{3}}\right)\left(\frac{R_{4} R_{7}}{R_{6}}\right)
\]

\section*{Typical Performance of the Wide Bandwidth AC Amplifier:}
\(2 \%\) linearity over 1 V p-p dynamic range
Unity voltage gain
10 MHz bandwidth
Gain drift: \(-.6 \% /{ }^{\circ} \mathrm{C}\)
Common mode rejection: 22 dB at 1 MHz
3000V DC insulation

\section*{DIGITAL ISOLATION TECHNIQUES}

Digital conversion techniques can be used to transfer an analog signal between two isolated systems. With these techniques, the analog signal is converted into some digital form and transmitted through the optocoupler. This digital information is then converted back to the analog signal at the output. Since the optocoupler is used only as a switch, the overall circuit linearity is primarily dependent on the accuracy by which the analog signal can be converted into digital form and then back to the analog signal. However, the overall circuit bandwidth is limited by the propagation delays of the optocoupler.

Figure 6 shows a pulse width modulated scheme to isolate an analog signal. The oscillator operates at a fixed frequency, \(f\), and the monostable multivibrator varies the duty factor of the oscillator proportional to the input signal, \(\mathrm{V}_{\text {IN. }}\). The maximum frequency at which the oscillator can be operated is determined by the required linearity of the circuit and the propagation delay of the opto isolators:
\[
\left(t_{\max }-t_{\min }\right)(\text { required linearity }) \geqslant\left|t_{\text {PLH }}-t_{\text {PHL }}\right|
\]

At the output, the pulse width modulated signal is then converted back to the original analog signal. This can be
accomplished with an integrator circuit followed by a low pass filter or through some type of demodulator circuit that gives an output voltage proportional to the duty factor of the oscillator.
Figure 7 shows a voltage to frequency conversion scheme to isolate an analog signal. The voltage to frequency converter gives an output frequency proportional to \(\mathrm{V}_{\mathrm{IN}}\). The maximum frequency that can be transmitted through the optocoupler is approximately:
\(f_{\max } \approx \frac{1}{t}\), where \(t=t_{P L H}\) or \(t_{P H L}\), whichever is larger.

Figure 6. Pulse Width Modulation.

Figure 7. Voltage to Frequency Conversion.
At the output, the frequency is converted back into a voltage. The overall circuit linearity is dependent only on the linearity of the V-F and F-V converters.

Another scheme similar to voltage to frequency conversion is frequency modulation. A carrier frequency, \(f_{o}\), is modulated by \(\Delta f\) such that \(f_{o} \pm \Delta f\) is proportional to \(V_{i N}\). Then at the output, \(\mathrm{V}_{\text {out }}\) is reconstructed with a phase locked loop or similar circuit.

One further scheme to isolate an analog signal is to use A-D and D-A converters and transfer the binary or BCD information through optocoupler. The information can be transmitted through the optocoupler in parallel or serial format depending on the outputs available from the A-D converter. If serial outputs are not available, the A-D outputs can be converted into serial form with a PISO shift register and transmitted through one high speed optocoupler. This scheme becomes economical especially where high resolution is required allowing several optocouplers to be replaced with one high speed optocoupler. Refer to HP Application Note 947 for further discussion of digital data transmission techniques.

\title{
Digital Data Transmission With the HP Fiber Optic System
}

Fiber optics can provide solutions to many data transmission system design problems. The purpose of this application note is to aid designers in obtaining optimal benefits from this relatively new technology. Following a brief review of the merits, as well as the limitations, of fiber optics relative to other media, there is a description of the optical, mechanical, and electrical fundamentals of fiber optic data transmission system design. How these fundamentals apply is seen in the detailed description of the Hewlett-Packard system. The remainder of the note deals with techniques recommended for operation and maintenance of the Hewlett-Packard system, with particular attention given to deriving maximum benefit from the unique features it provides.

\section*{ELECTRICAL WIRE VS. FIBER OPTICS}

In fiber optic cables, the signals are transmitted in the form of energy packets (photons) which have no electrical charge. Consequently, it is physically impossible for high electric fields (lightning, high-voltage, etc.) or large magnetic fields (heavy electrical machinery, transformers, cyclotrons, etc.) to affect the transmission. Although there can be a slight leakage of flux from an optical fiber, shielding is easily done with an opaque jacket, so signal-bearing fibers cannot interfere with each other or with the most sensitive electric circuits, and the optically-transmitted information is, therefore, secure from external detection. In some applications, optical fibers carry signals large enough to be energetically useful (e.g., for photocoagulation) and potentially harmful, but in most data communication applications, economy dictates the use of flux levels of \(100 \mu \mathrm{~W}\) or less. Such levels are radiologically safe and in the event of a broken or damaged cable, the escaping flux is harmless in explosive environments where a spark from a broken wire could be disastrous. Jacketed fiber optic cables can tolerate more mechanical abuse (crush, impact, flexure) than electrical cables of comparable size; moreover, fiber optic cables have an enormous weight and size advantage - for equivalent information capacity. Properly cabled optical fibers can tolerate any kind of weather and can, without ill-effect, be immersed in most fluids, including polluted air and water.
Bandwidth considerations clearly give the advantage to fiber optics. In either parallel- or coaxial-wire cable, the
bandwidth varies inversely as the square of the length, while in fiber optic cable it varies inversely as only the FIRST power of the length. Here are some typical values for length, \(\ell\), in metres:
(1) \(f_{3 \mathrm{~dB}}=\frac{12,000}{\ell} \mathrm{MHz}\) for HFBR-3000/-3100 cables
(2) \(\mathrm{f}_{3 \mathrm{~dB}}=\frac{225,000}{\ell^{2}} \mathrm{MHz}\) for typical \(50 \Omega \operatorname{coax}(\) RG-59)

For example, if \(\ell=100 \mathrm{~m}\), the 3 dB frequency is only 22.5 MHz for the coax cable, but for the fiber optic cable it is 120 MHz .
The limitations of fiber optics arise mainly from the means for producing the optical flux and from flux losses. While the power into a wire cable can easily and inexpensively be made several watts, the flux into a fiber optic cable is typically much less than a milliwatt. Wire cable may have several signal "taps"; multiple taps on fiber optic cables are economically impractical at present.

The losses in a point-to-point fiber optic system are insertion loss at the input and output, connector loss, and transmission loss proportional to cable length. Variations in these losses require a receiver with a dynamic range capable of accommodating these variations and yet able to provide adequate BW (bandwidth) and SNR (signalto noise) ratio at the lowest flux level. Fortunately, no noise is picked up by a fiber optic cable so the receiver SNR at any BW is limited only by the noise produced within the receiver.

Fiber optics is not the best solution to every data transmission problem; but where safety, security, durability, electrical isolation, noise immunity, size, weight, and bandwidth are paramount, it has a clear advantage over wire.

\section*{FIBER OPTIC FUNDAMENTALS}

Flux coupled into an optical fiber is largely prevented from escaping through the wall by being re-directed toward the center of the fiber. The basis for such re-direction is the index of refraction, \(n_{1}\), of the core relative to the index of refraction, \(\mathrm{n}_{2}\), of the cladding.
Index of refraction is defined as the ratio of the velocity of light in a given medium to the velocity of light in a vacuum.

Figure 1. Snell's Law.

As a ray of light passes from one medium into another of a different index of refraction, the direction changes according to Snell's Law:
\[
\text { (3) } n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \quad \text { SNELL'S LAW }
\]

This is illustrated in Figure 1. Notice that the relationship between the angles is the same, whether the ray is incident from the high-index side (\(n_{1}\)) or low-index side (\(n_{2}\)). For rays incident from the high-index side, there is a particular incidence angle for which the exit angle is ninety degrees. This is called the critical angle. At incidence angles less than the critical angle, there is only a partial reflection, but for angles greater than the critical angle, the ray is totally reflected. This phenomenon is called TOTAL INTERNAL REFLECTION (TIR).

\section*{Numerical Aperture.}

Rays within the core of an optical fiber may be incident at various angles, but TIR applies only to those rays which are incident at angles greater than the critical angle. TIR prevents these rays from leaving the core until they reach the far end of the fiber. Figure 2 shows how the reflection angle at the core/cladding interface is related to the angle at which a ray enters the face of the fiber. The acceptance angle, \(\theta_{\mathrm{A}}\), is the maximum angle, with respect to the fiber axis, at which an entering ray will experience TIR. With respect to the index of refraction, no, of the external medium, the acceptance angle is related to the indices of refraction of the core and cladding. When the external medium is air (\(n_{0} \approx 1\)), the sine of the acceptance angle is called the NUMERICAL APERTURE (N.A.) of the fiber:
(4) NUMERICAL APERTURE, N.A. \(=\sin \theta\) A

The derivation in Figure 2 applies only to meridional rays, i.e., rays passing through the axis of the fiber; skew rays (non-meridional) can also be transmitted, and these account for the observation that the reception and

Figure 2. Total Internal Reflection.
radiation patterns of optical fibers are not perfect step functions at the acceptance angle. For this reason, the practical definition of N.A. is somewhat arbitrary.

\section*{Modes of Propagation}

Within the limits imposed by the N.A., rays may propagate at various angles. Those propagating at small angles with respect to the fiber axis are called LOW-ORDER MODES, and those propagating at larger angles are called HIGHORDER MODES. These modes do not exist as a continuum. At any given wavelength, there are a number of discrete angles where propagation occurs. SINGLEMODE fibers result when the core area and the N.A. are so small that only one mode can propagate.

In addition to high- and low-order modes, there are others, called LEAKY MODES, which are trapped as skew rays partly in the core, but mostly in the cladding where they are called CLADDING MODES. As implied by the term, leaky modes do not propagate as well as the more nearly meridional modes; their persistence, depending mainly on the structure of the optical fiber, ranges from less than a metre to more than fifty metres. The presence of leaky modes will, of course, affect the results obtained in measurement of N.A. and transmission loss, making them both artificially high. For this reason, N.A. is usually specified in terms of the EXIT N.A. for a fiber of length adequate to assure that leaky modes have effectively disappeared. Since most leaky mode propagation is in the cladding, it can be "stripped." Such cladding mode stripping is done by surrounding the unjacketed fiber with a material having a refractive index higher than that of the cladding.

EXIT N.A. is defined as the sine of the angle at which the radiation pattern (relative intensity vs. off-axis angle) has a particular value. This value is usually taken at \(10 \%\) of the axial (maximum) value.

\section*{Transmission Loss}

Regular core (non-leaky) modes also exhibit transmission losses. These are due to (1) scattering by foreign matter, (2) molecular (material) absorption, (3) irregularities at the core/cladding interface, and (4) microbending of the optical fiber by the cable structure. The first two loss mechanisms depend on the length of path taken by a ray; the third depends on the number of reflections of the ray before it emerges. It is clear from Figure 2 that the higher order modes have longer paths and more reflections with consequently higher loss. Larger N.A. fibers permit higher-order-mode propagation and, therefore, exhibit generally a higher transmission loss. Transmission loss is exponential and is, therefore, usually expressed in "dB per km." Coupling loss consideration usually favors larger N.A.

The four main loss mechanisms for coupling between fibers or between fibers and the optical ports of other devices are: (1) relative N.A.'s, (2) relative areas, (3) relative index gradings of the optical ports, and (4) Fresnel (reflection) loss. In addition to these, there may be coupling loss due to misalignment and/or separation of optical ports.
Relative N.A. loss can be ignored (\(\approx\) zero \(d B\)) whenever the N.A. of the receiving port (fiber or detector) is larger than the N.A. of the source port (flux generator or fiber), otherwise:
(5) N.A. LOSS \((\mathrm{dB})=20 \log \frac{\text { N.A. of Source Port }}{\text { N.A. of Receiver Port }}=\alpha_{\text {NA }}\)

Relative area loss can be ignored whenever the area of the receiver port is larger than the area of the source port, otherwise:
(6) AREA LOSS \((\mathrm{dB})=20 \log \frac{\text { Diam. of Source }}{\text { Diam. of Receiver }}=\alpha_{\mathrm{A}}\)

In applying equation (6) to coupling between single fibers, the diameter to be used is the CORE DIAMETER.

Relative index grading loss can be ignored whenever the index grading coefficient for the receiving port is larger than the index grading coefficient of the source port, otherwise:
(7) INDEX GRADING LOSS \((\mathrm{dB})=10 \log \frac{1+\frac{2}{\alpha_{R}}}{1+\frac{2}{\alpha_{S}}}=\alpha_{1}\)
where \(\alpha_{R}=\) index grading coefficient of the receiving port and
\(\alpha_{S}=\) index grading coefficient of the source port
The index grading coefficient is described later under Construction of Fiber Optics.
Fresnel loss occurs when a ray passes from one medium to another having a different index of refraction. Part of the flux is reflected; the fraction transmitted is described by the transmittance, \(\tau\), so the loss is:
(8) FRESNEL LOSS \((d B)=10 \log \frac{1}{\tau}=10 \log \frac{2+\frac{n_{x}}{n_{y}}+\frac{n_{y}}{n_{x}}}{4}\)
\(\mathrm{n}_{\mathrm{x}}=\) index of refraction of medium x
\(n_{y}=\) index of refraction of medium \(y\)
It is clear from equation (8) that the loss is the same in either direction. If two fibers are joined with an air gap between their faces, taking \(n_{x}=1\) for air and \(n_{y}=1.49\) for
the cores of the fibers, the fiber-to-air Fresnel loss is 0.17 dB . The air-to-fiber loss is the same, so the total airgap loss is 0.34 dB . If several such connections are made, the loss could be high enough to make it worthwhile to use a coupling medium, such as silicone, to remove the air gap.

The use of a coupling medium is more significant when a fiber is coupled to an LED or IRED source. These sources are usually of gallium arsenide, or related substances, with a refractive index of 3.6. With such a high index of refraction, the use of an epoxy cement can reduce coupling loss by approximately 1 dB . Figure 3 shows how the flux coupling is derived.
At the receiving end, where the silicon of the detector has an index of refraction of nearly 3.6, the Fresnel loss is also very high.

Fresnel losses at the emitter and detector surfaces can generally be ignored in designing systems with components having either connectors or pigtail fiber optic ports. This is possible because performance of such components is usually specified with reference to the external optical port so the internal Fresnel losses have already been taken into account.

\section*{Rise Time Dispersion}

Bandwidth limitation in fiber optics is the result of a phenomenon called DISPERSION, which is a composite of MATERIAL dispersion and MODAL dispersion. Both of these relate to the velocity of flux transmission in the core. Velocity varies inversely as the index of refraction, and if the index of refraction varies over the wavelength spectrum of the source, the flux having a wavelength at which the refractive index is lower will travel faster than the flux having a wavelength at which the index is higher. Thus, all portions of the spectrum of flux launched simultaneously will not arrive simultaneously, but will suffer time dispersion due to differences in travel time. This is MATERIAL DISPERSION. It is reduced by using sources of narrow spectrum (e.g., lasers) or fibers with a core index of refraction which is constant over the source spectrum.

epoxy does not affect acceptance angle but does reduce FRESNEL LOSS

Figure 3. Acceptance Angle and Fresnel Loss Effects.

Figure 4. Rise Time Dispersion.

In Figure 2, notice that rays moving parallel to the axis travel a path length which is shorter than that of rays which are not paraxial. Those rays propagating in the higher-order modes will, therefore, have a longer travel time than those in lower-order modes, and simultaneously launched rays will suffer dispersion of their arrival times. This is MODAL DISPERSION. It can be reduced by reducing the N.A. (smaller acceptance angle) to allow only lower-order modes to propagate, or by using gradedindex fiber.

Whether the dispersion is material or modal (or both), it is measured, as shown in Figure 4, by applying an impulse of flux and measuring the 3 dB pulse widths at the input and output of a fiber long enough to exhibit significant dispersion. Time dispersion is then defined as

\section*{(9) RISE TIME DISPERSION}
\[
\frac{\Delta t}{\ell}(\mathrm{~ns} / \mathrm{km})=\frac{1}{\ell}\left[\mathrm{tp}_{2}^{2}-\mathrm{tp}^{2}\right]^{0.5}
\]
where \(\ell\) is the length (in kilometers) of the fiber and \(\mathrm{t}_{\mathrm{P}_{1}}\) and tp2 are the 3dB widths in nanoseconds (or FWHM) of the pulses into and out of the fiber.

Modulation frequency response of a fiber has a 6 dB per octave roll-off, so the effect of rise time dispersion can also be described in terms of a length-bandwidth product:
(10) 3dB BANDWIDTH • LENGTH \((\mathrm{MHz} \cdot \mathrm{km})=\) 350 \(\overline{\text { DISPERSION (ns/km) }}\)

\section*{Construction of Fiber Optics}

Fibers having a sharp boundary between core and cladding, as in Figure 2, are called STEP INDEX fibers. The reflection at the boundary is not a "zero-distance" phenomenon - the ray, in being reflected, is actually entering a minute distance into the cladding and there is some loss. This loss can be seen as a faint glow along the length of unjacketed lossy fibers carrying visible flux. To reduce such reflection loss, it is possible to make the rays turn less sharply by reducing the index of refraction gradually, rather than sharply, from core to cladding. A fiber of such a form is called a GRADED INDEX fiber and the rays propagate as shown in Figure 5. Graded index fiber has not only a very low transmission loss, but modal dispersion is also very low. Higher-order modes do travel longer paths, but in the off-axis, lower-index regions they travel faster so the travel time differential between high-order and low-order modes is not as large as it is in step index fibers.

From the center of the core to the outer limit of the core (inner wall of the cladding) the grading of the index of refraction is described by the index grading coefficient, \(\alpha\), with this approximate relationship:
\[
\left(\frac{n_{1}^{2}-n^{2}}{n_{1}^{2}-n_{2}^{2}}\right)=\left(\frac{r}{a}\right)^{\alpha} \quad \begin{aligned}
& \text { at radius, } r \\
& 0<r<a
\end{aligned}
\]
where
\[
\begin{aligned}
& \mathrm{a}=\text { radius of the core } \\
& \mathrm{n}=\text { index of refraction at } \mathrm{r} \\
& \mathrm{n}_{2}=\text { index of refraction at } \mathrm{r}=\mathrm{a} \\
& \mathrm{n}_{1}=\text { index of refraction at } \mathrm{r}=0
\end{aligned}
\]

With \(\alpha=2\), the index of refraction profile is approximately parabolic, and modal dispersion is minimized. This is called fully graded index. However, as seen in Equation (7), there is additional coupling loss when flux is sent from a high-index fiber into a low-index fiber. For moderate distances and data rates there is some value of the index grading coefficient (\(\alpha \approx 8\)) that optimizes performance, resulting in what is called partially graded index. In step index fiber the grading coefficient is so high (\(\alpha \approx 100\)) that the index grading loss can be ignored.

Graded index fiber has higher coupling loss and may be more costly than step index fiber. It is, therefore, used mainly in applications requiring transmission over many kilometres at modulation bandwidths over 50 MHz . For shorter distances and/or lower bandwidths, a variety of step index fibers are available at a variety of costs.

LONGER PATHS OF HIGHER ORDER MODES PARTLY COMPENSATED BY HIGHER VELOCITY IN OFF-AXIS REGION

Figure 5. Graded Index Fiber Modes.

Figure 6. Step Index Fiber Optic Cable Construction.
Figure 6 shows the construction of a Hewlett-Packard fiber optic cable. Over the fused-silica, step-index, glassclad fiber there is a silicone coating to protect the thin (\(20 \mu \mathrm{~m}\)) cladding from scuffing. Over the buffer jacket are the tensile strength members, which allow the cable to be pulled through long conduits, and an outer jacket to protect the cable against crush and impact damage. This cable tolerates far more abuse than most wire cable. A sample was laid across the main entrance to the HewlettPackard headquarters and factory at 1501 Page Mill Road, Palo Alto. After several weeks of being driven over, night and day, there was no impairment of performance.
Other materials used in step index fibers are glass-clad glass, plastic-clad glass or fused silica, and plastic-clad plastic. These have N.A.'s ranging from less than 0.2 to more than 0.5, and transmission losses from less than \(10 \mathrm{~dB} / \mathrm{km}\) to more than \(1000 \mathrm{~dB} / \mathrm{km}\). Some manufacturers offer bundled fibers in which the individual glass fibers are small enough to allow the cable to be very flexible. In earlier days of fiber optic development, bundled fibers were considered necessary for reliability because breakage of one or more fibers could be tolerated without total loss of signal transmission. Also, the large diameter of the fiber bundle allowed more tolerance in connector alignment. The popularity of fiber bundles has dwindled because the single-fiber cable durability is better than had been anticipated, and connectors are now available which are capable of providing the precise alignment required for low coupling loss with small-diameter single fibers.

\section*{Flux Budgeting}

Flux requirements for fiber optic systems are established by the characteristics of the receiver noise and bandwidth, coupling losses at connectors, and transmission loss in the cable.
The flux level at the receiver must be high enough that the signal-to-noise ratio (SNR) allows an adequately low probability of error, Pe. In the Hewlett-Packard fiber optic system, the receiver bandwidth and noise properties allow a \(\mathrm{P}_{\mathrm{e}}<10^{-9}\) with a receiver input flux of \(0.8 \mu \mathrm{~W}\) under worstcase conditions. At higher flux levels, the \(\mathrm{Pe}_{\mathrm{e}}\) is reduced.
From the receiver flux requirement (for given \(\mathrm{Pe}_{\mathrm{e}}\)), the flux which the transmitter must produce is determined from the expression for a point-to-point system:
(11)
\[
10 \log \left(\frac{\phi_{T}}{\phi_{\mathrm{R}}}\right)=\alpha_{0} \ell+\alpha_{\mathrm{TC}}+\alpha_{\mathrm{CR}}+\mathrm{n} \alpha_{\mathrm{CC}}+\alpha_{M}
\]
where \(\phi_{T}\) is the flux (in \(\mu \mathrm{W}\)) available from the transmitter \(\phi_{\mathrm{R}}\) is the flux (in \(\mu \mathrm{W}\)) required by the Receiver at \(\mathrm{Pe}_{\mathrm{e}}\) \(\alpha_{0}\) is the fiber attenuation constant (\(\mathrm{dB} / \mathrm{km}\))
\(\ell\) is the fiber length (\(k m\))
\(\alpha_{T C}\) is the Transmitter-to-Fiber coupling loss (dB) \(\alpha_{\mathrm{CC}}\) is the Fiber-to-Fiber loss (dB) for in-line connęctors
\(n\) is the number of in-line connectors; \(n\) does not include connectors at the transmitter and receiver optical ports
\(\alpha_{C R}\) is the Fiber-to-Receiver coupling loss (dB)
\(\alpha_{M}\) is the Margin (dB), chosen by the designer, by which the Transmitter flux exceeds the system requirement
Equation (11) is called the FLUX BUDGET and it is represented graphically in Figure 7. The same basic units (watts) are used for flux and for power, so it is correct and convenient to express flux in " dBm ".
(12) \(\phi(\mathrm{dBm})=10 \log \left(\frac{\phi(\mathrm{~mW})}{1 \mathrm{~mW}}\right)=10 \log \left(\frac{\phi(\mu \mathrm{~W})}{1000 \mu \mathrm{~W}}\right)\)

Figure 7. Flux Budget - Graphical Representation.
Here is an example of how the flux budget works:
\[
\begin{array}{ll}
\text { 1. Transmitter } & \phi_{T}=44 \mu \mathrm{~W}^{*} \\
\text { 2. Receiver } & \phi_{\mathrm{R}}=1.6 \mu \mathrm{~W}^{*} \\
{ }^{\text {*peak-to-peak }}
\end{array}>10 \log \left(\frac{\phi_{T}}{\phi_{\mathrm{R}}}\right)=14.39 \mathrm{~dB}
\]

Transmitter optical port: N.A. \(=0.5\), diam. \(=200 \mu \mathrm{~m}, \alpha=100\)
Optical fiber (cable):N.A. \(=0.3\), core diam. \(=100 \mu \mathrm{~m}, \alpha=10\)
3. From Equations (5), (6), (7):
\[
\begin{gathered}
\alpha_{\mathrm{TC}}=\alpha_{\mathrm{NA}}+\alpha_{\mathrm{A}}+\alpha_{1} \\
=20 \log \left(\frac{0.5}{0.3}\right)+20 \log \left(\frac{200}{100}\right)+10 \log \left(\frac{1+\frac{2}{10}}{1+\frac{2}{100}}\right)
\end{gathered}
\]
\[
=4.44 \mathrm{~dB}+6.02 \mathrm{~dB}+0.71 \mathrm{~dB}=11.17 \mathrm{~dB}
\]

Receiver optical port: N.A. \(=0.5\), diam. \(=200 \mu \mathrm{~m}, \alpha=100\)
4. Because the N.A., diameter, and \(\alpha\) of the receiver are all larger than those of the fiber, there remains only a small amount of Fresnel loss, making \(\alpha C R \approx 0.17 \mathrm{~dB}\).
5. Apply equation (11) to see what the flux budget allows:
\[
\begin{aligned}
& 14.39 \mathrm{~dB}=\alpha_{0} \ell+11.17 \mathrm{~dB}+\mathrm{n} \alpha \mathrm{CC}+0.17 \mathrm{~dB}+\alpha \mathrm{M} \\
& \alpha_{0} \ell+\mathrm{n} \alpha \mathrm{CC}+\alpha_{\mathrm{M}}=(14.39-11.17-0.17) \mathrm{dB}=3.05 \mathrm{~dB}
\end{aligned}
\]
6. In accounting for cabling losses, two options are considered:
(a) with one in-line connector, possibly to allow for later insertion of a repeater. Taking 2.0 dB for the connector leaves:
\[
\alpha_{0} l+\alpha_{M}=3.05-2.0=1.05 \mathrm{~dB}
\]

With cable having attenuation of \(20 \mathrm{~dB} / \mathrm{km}\) a length of 35 metres leaves:
\[
\alpha \mathrm{M}=1.05-(0.02 \mathrm{~dB} / \mathrm{m})(35 \mathrm{~m})=0.35 \mathrm{~dB}
\]
(b) Without in-line connector, there is only attenuation to consider. A length of 50 metres leaves:
\[
\alpha_{\mathrm{M}}=3.05-(0.02 \mathrm{~dB} / \mathrm{m})(50 \mathrm{~m})=2.05 \mathrm{~dB}
\]

In flux budgeting, \(\alpha_{M}\) should always be large enough to allow for degradation of the efficiency of the flux generator in the transmitter (LED, IRED, laser, etc.). On the other hand, in dealing with more powerful transmitters, \(\alpha_{M}\) must not be so large that it exceeds the dynamic range of the receiver.

\section*{Dynamic Range}

The dynamic range of the receiver must be large enough to accommodate all the variables a system may present. For example, if the system flexibility requirement is for transmission distances ranging from 10 metres to 1000 metres with \(12.5 \mathrm{~dB} / \mathrm{km}\) cable, and up to two in-line connectors, the dynamic range requirement is:
\[
\begin{aligned}
\alpha_{0} \ell=1 \mathrm{~km} \times 12.5 \mathrm{~dB} / \mathrm{km} & =12.5 \mathrm{~dB} \\
\mathrm{n} \alpha_{\mathrm{CC}}=2 \times 2 \mathrm{~dB} & =4.0 \mathrm{~dB} \\
\alpha_{\mathrm{M}} & =3.0 \mathrm{~dB} \\
\text { thermal variations } & =\frac{1.0 \mathrm{~dB}}{20.5 \mathrm{~dB}} \text { (estimated) }
\end{aligned}
\]

Accommodating a 20 dB dynamic range plus providing high sensitivity requires the receiver to have two important features: automatic level control, and a-c coupling or its equivalent. The a-c coupling keeps the output of the amplifier at a fixed quiescent level, relative to the logic thresholds, so that signal excursions as small as the specified minimum can cause the amplifier output to exceed the logic threshold. This function can also be called d-c restoration.

ALC (automatic level control) adjusts the gain of the amplifier. Low-amplitude excursions are amplified at full gain; high-amplitude excursions are amplified at a gain which is automatically reduced enough to prevent saturation of the output amplifier. Saturation affects propagation delay adversely so ALC is needed to allow high speed performance at high, as well as low, signal levels.

\section*{HEWLETT-PACKARD'S FIBER OPTIC SYSTEM}

A number of objectives were established as targets for this development. Convenience and simplicity of installation and operation were the primary objectives, along with a probability of error \(\mathrm{Pe}_{\mathrm{e}}<10^{-9}\) at \(10 \mathrm{Mb} / \mathrm{s}\) NRZ, over moderate distances. In addition, there were the traditional

Hewlett-Packard objectives of rugged construction and reliable performance. Manufacturing costs had to be low enough to make the system attractively priced relative to its performance.
Electrical convenience is provided by several system features. The Receiver and the Transmitter require only a single +5 -volt supply. All inputs and outputs function at TTL logic levels. No receiver adjustments are ever necessary because the dynamic range of the Receiver is 21 dB or more, accommodating fiber length variations as well as age and thermal affects. When the system is operated in its internally coded mode, it has NRZ (arbitrarily timed data) capability and is no more complicated to operate than a non-inverting logic element. Built-in performance indicators are available in the Receiver; the Link Monitor indicates satisfactory signal conditions and the Test Point allows simple periodic maintenance checks on the system's flux margin.
There are also several optical and mechanical convenience features. The optical ports of the Transmitter and Receiver are well defined by optical fiber stubs built into receptacles that mate with self-aligning connectors. Low-profile packaging and low power dissipation permit the modules to be mounted without heat-sink provision on P.C. boards spaced as close as 12.5 mm (0.5 in .).

The internally-coded mode of operation is the simplest way to use the Hewlett-Packard system. This mode places no restriction on the data format as long as either positive or negative pulse duration is not less than the minimum specified. The simplicity is achieved by use of a 3-level coding scheme called a PULSE BI-POLAR (PBP) code. This mode is selected simply by applying a logic low (or grounding) to the Mode Select terminal on the Transmitter - no conditioning signal or adjustment is necessary in the Hewlett-Packard Receiver because it automatically responds to the PBP code.
The externally coded mode makes the waveform of the output flux a digital replica of the Data Input signal. This 2-level mode is called the FULL ON-OFF (FOO) mode; it is selected by applying a logic high (or VCc) to the Mode Select terminal. When used with the Hewlett-Packard Receiver, the FOO mode must have a Data Input signal with a \(50 \%\) duty factor, as seen later.

\section*{Transmitter Description}

Figure 8 shows symbolically the logical arrangement of the Transmitter, and waveforms for the output flux. The arrangement shown is logically correct but circuit details are not actually realized as shown. For example, the current sources actually have partial compensation for the negative temperature coefficient of the LED (or IRED). In Figure 8, there are five important things to notice.
First, notice that the bias current, \(I_{C}\), is never turned off not even when the Transmitter is operated in the externally coded mode (Mode Select "high"). This is done to enhance the switching speed of the LED (or IRED) in either internally- or externally-coded mode. The bias current also stabilizes the flux excursion ratio (\(\mathbf{k}\) in Equation 14) symmetry in the internally-coded mode.
Second, notice that
\(\phi_{L}\), the low-level flux, is produced by IC
\(\phi_{M}\), the mid-level flux, requires \(I_{B}+I_{C}\)
\(\phi_{H}\), the high-level flux, requires \(I_{A}+I_{B}+I_{C}\)

Figure 8. Transmitter Block Diagram and Waveforms.

As far as the Receiver is concerned, the excursion flux, \(\Delta \phi\), produced by switching \(I_{A}\) and \(I_{B}\), is the important parameter of the Transmitter. Average flux is, of course, related to excursion flux but is not as important in establishing the SNR of the system.
Third, notice that with Mode Select "low" and a 500 kHz signal at Data Input, there will be only one refresh pulse generated in each logic state. The excursions (\(\phi_{H^{-}} \phi_{M}\)) and (\(\phi_{\mathrm{M}}-\phi_{\mathrm{L}}\)) are nearly balanced so an average-reading flux meter will indicate the mid-level flux, \(\phi_{M}\), within \(+0.6 \%\) or \(-0.6 \%\) depending on whether the flux excursion ratio, \(k\), is at its maximum or at its minimum limit.
Fourth, notice that, with Mode Select "low", any Data Input transition (either H-L or L-H) retriggers the Refresh Multivibrator to start a new train of pulses. All refresh pulses for either logic state have the same duration. This keeps the average flux very near the mid-level even when the duration in either logic state of arbitrarily timed input data is very short. Notice also that any refresh pulse is overridden (abbreviated) by the occurrence of a Data Input transition so there is additional jitter (\(\approx 15 \mathrm{~ns}\)) when the duration of the Data Input in either state is the same length of time as the refresh interval. The refresh interval is very long, relative to the refresh pulse duration, making a duty factor of approximately \(2 \%\), this also is done to keep the average flux near mid-level regardless of how long

Data Input remains in either logic state. The only condition under which the average flux can deviate significantly from the mid-level occurs when Data Input remains in one state for a period of time LESS than the duration of the refresh pulse. If this is likely to occur, the format should be configured so the numbers of 1's and 0's are balanced as they would be in Manchester code. Observing this data format allows the use of the internallycoded mode of the Hewlett-Packard system at data rates ranging from arbitrarily low to higher than 10M baud, with the absolute limit being that at which the signal intervals become as short as tPHL and/or tplh.

Fifth, notice that with Mode Select "high," the Q output of the Refresh Multivibrator is "high" (and \(\bar{Q}\) is "low"). Under this condition, \(\mathrm{I}_{\mathrm{A}}\) and \(\mathrm{I}_{\mathrm{B}}\) are both ON when Data Input is "high" and both OFF when it is "low". This makes the output flux excursion a logical replica of the Data Input.

\section*{Flux Measurement}

The Transmitter has two important flux parameters, flux excursion and flux excursion ratio. The flux excursion is defined as half of the peak-to-peak value:
(13) FLUX EXCURSION, \(\Delta \phi=\frac{\phi H-\phi L}{2}\)

Flux excursion ratio is defined as the ratio of excursion above the average level to the excursion below the average value. In the PBP mode, the average flux is the mid-level flux, and the flux excursion ratio is established by internal circuitry of the Transmitter:
(14) FLUX EXCURSION RATIO, \(k=\frac{\phi_{H}-\phi_{M}}{\phi_{M}-\phi_{\mathrm{L}}}\)

Ideally, \(k=1\) because the Receiver logic thresholds are referred to the average flux level, and therefore specifications for the "k-factor" are given in the data sheets. Verification of these important parameters does not require sophisticated high-speed equipment; a simple average-reading flux meter can be used by operating the Transmitter in three conditions and applying a simple calculation to the flux meter observations:
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & MODE SELECT (MODE) & DATA INPUT & \begin{tabular}{l}
AVG. \\
FLUX OUTPUT
\end{tabular} & FLUX OBSERVED \\
\hline 1 & \multirow[b]{2}{*}{H (FOO)} & L & \(\phi_{L}\) & A \\
\hline 2 & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 500 \mathrm{kHz} \\
& 50 \% \mathrm{D} . \mathrm{F} .
\end{aligned}
\]} & \(\frac{\phi_{H}+\phi_{L}}{2}\) & B \\
\hline 3 & \(L(P B P)\) & & \(\phi_{\mathrm{M}}\) & C \\
\hline \(k=\) & \[
\begin{gathered}
\Delta \phi=\frac{\phi_{H}-}{2} \\
\frac{\phi_{H}-\phi_{M}}{\phi_{M}-\phi_{L}}
\end{gathered}
\] & \[
\begin{aligned}
& =(B-A) \\
& \quad \frac{\phi_{H}-\phi_{L}}{\phi_{M}-\phi_{L}}
\end{aligned}
\] & \[
-1=\frac{2}{C}
\] & \[
\frac{-A)}{4}-1
\] \\
\hline
\end{tabular}

It appears that the observation might be further simplified by omitting the \(500-\mathrm{kHz}\) modulation in Step 2, and measuring \(\phi \mathrm{H}\) directly by making Data Input a steady High, with Mode Select High (FOO). However, this would raise the emitter diode junction to an unrealistically high temperature and give an incorrect measurement.

In the FOO mode there is, of course, no mid-level of flux. Nevertheless, the definition of flux excursion ratio is the same as for PBP mode, and in Equation (14) the average flux value is used in place of the mid-level flux, \(\phi \mathrm{M}\). In FOO mode, the average flux is:
\(\begin{gathered}\text { (15) } \text { AVERAGE FLUX } \\ \text { (FOO mode) }\end{gathered}=\frac{\phi_{H} \Sigma t_{H}+\phi_{L} \Sigma t_{\mathrm{L}}}{\Sigma \mathrm{t}_{\mathrm{H}}+\Sigma \mathrm{t}_{\mathrm{L}}}\)
where \(\Sigma t_{H}\) is the total time the flux is at level \(\phi_{H}\) \(\Sigma t_{L}\) is the total time the flux is at level \(\phi_{L}\)
Substitution of the expression in Equation (15) for \(\phi \mathrm{M}\) in Equation (14) leads to:
(16) FLUX EXCURSION RATIO \(=k=\frac{\Sigma t L}{\Sigma t_{H}}\)

Equation (16) shows why it is that when the FOO mode is used (e.g., with Mode-Select "high" in the HewlettPackard Transmitter) the data input signal must, on average, have a \(50 \%\) duty factor to make \(k=1\). That is, in the averaging interval, the total number of "mark" intervals should be equal to the total number of "space" intervals, such as in Manchester code.
Use of the FOO mode also requires that the input flux remain for less than \(5 \mu \mathrm{~s}\) at either high or low level. This is

Figure 9. Receiver Block Diagram.
necessary to avoid "pulling" the receiver dc restorer voltage too far away from the value corresponding to the average flux, and possibly losing occasional bits.

\section*{Receiver Description}

The Hewlett-Packard Receiver block diagram is shown in Figure 9. There are four functional blocks:
1. The amplifier, including a gain-control stage and splitphase outputs with a voltage divider for each.
2. The dc-restorer with a long time constant.
3. Logic comparators with an R-S latch.
4. Positive and negative peak comparator with singleended output for the ALC and link monitor circuits.
Optical flux at the input is converted by the PIN photodiode to a photocurrent, Ip, which is converted to a voltage by the PREAMPLIFIER. This voltage is amplified to a positive-going output, \(\mathrm{V}_{\mathrm{P} 1}\), and a negative-going output, \(\mathrm{V}_{\mathrm{N} 1}\). A rising input flux will cause \(\mathrm{V}_{\mathrm{P} 1}\) to rise and \(\mathrm{V}_{\mathrm{N} 1}\) to fall. These voltages are applied to the differential inputs of the DC RESTORER AMPLIFIER whose output, \(\mathrm{V}_{\mathrm{T}}\), falls until it is low enough to draw the average photocurrent away from the preamplifier via the 25 k resistor. This makes \(\mathrm{V}_{\mathrm{P} 1} \approx \mathrm{~V}_{\mathrm{N} 1}\) when the input flux is at the average level. The output impedance of the dc restorer amplifier is very high, making a long time constant with the filter capacitor, \(\mathrm{C}_{\mathbf{T}}\). The long time constant is required for loop stability when input flux levels are so low that there is little or no ALC gain reduction, with consequently high loop gain. With no input flux, \(V_{T}=V_{T M A X}\) as input flux rises, \(\mathrm{V}_{T}\) falls proportionately, so the voltage at the TEST POINT can be used as an indicator of the average input flux. With respect to the Receiver optical port, the responsivity of the PIN photodiode is approximately \(0.4 \mathrm{~A} / \mathrm{W}\), leading to the expression:
(17) AVERAGE INPUT FLUX, \(\phi_{A V}(\mu W) \approx \frac{\left[V_{T M A X}-V_{T}\right](m V)}{10}\)
where \(V_{\text {tMAX }}=\) Test Point Voltage with no optical input signal.
The instrument for observing \(\mathrm{V}_{\mathrm{T}}\) must not load the Test Point significantly, so an input resistance of \(10 \mathrm{M} \Omega\) is recommended.
As described above, when the input flux is at the average level, the positive-going and negative-going output voltages \(\mathrm{V}_{\mathrm{P} 1}\) and \(\mathrm{V}_{\mathrm{N} 1}\) are approximately equal. Notice that this makes the outputs of both logic comparators low. A positive flux excursion, rising faster than the dc restorer (with its long time constant) can follow, will cause \(\mathrm{V}_{\mathrm{P} 1}\) to rise and \(\mathrm{V}_{\mathrm{N} 1}\) to fall. If the positive flux excursion is high enough, the LOGIC HIGH COMPARATOR input voltage (\(\mathrm{V}_{\mathrm{P} 2}-\mathrm{V}_{\mathrm{N} 1}\)) becomes positive, and a SET pulse is produced for the R-S flip-flop. [Similarly, a negative flux excursion of such amplitude would make (\(V_{N 2}-V_{P 1}\)) become positive and a RESET pulse would be produced.] A larger amplitude of positive flux excursion would make the POSITIVE PEAK DETECTOR input voltage (\(\mathrm{V}_{\mathrm{P} 3}-\mathrm{V}_{\mathrm{N} 1}\)) change from negative to positive and cause current to flow into the ALC FILTER capacitor. When the voltage \(\mathrm{V}_{\mathrm{A}}\) starts to rise above VREF, the ALC AMPLIFIER output will operate on the GAIN CONTROL AMPLIFIER to limit the Receiver's forward gain. Notice that the ALC action is the same for a negative flux excursion, so that the Receiver's gain limitation is determined EITHER by positive flux
excursion OR by negative flux excursion - whichever is the larger. For this reason, the positive and negative excursions must be nearly balanced with respect to the average flux. The allowable imbalance is determined by the values of the resistors in the negative and positive voltage dividers. The ALC action limits the maximum excursion to a voltage lo (\(R_{1}+R_{2}\)), whereas the logic threshold is only lo \(R_{1}\). Actual limits are established by the tolerances on the resistors and current sources. Notice that the ALC voltage, \(V_{A}\), activates both the ALC COMPARATOR and the LINK MONITOR COMPARATOR. Therefore, a "high" LINK MONITOR signifies two conditions:
1. The input flux excursions are high enough to cause ALC action (gain limitation).
2. The excursions are more than adequate for operation of the logic comparator.

Notice that the LINK MONITOR could be "high," but k could be outside the specified limits such that \(P_{e}\) exceeds \(10^{-9}\). Conversely, because of safety margin in the Receiver design, it is also possible to have \(\mathrm{Pe}_{\mathrm{e}}<10^{-9}\) when the flux excursions are too small to make the LINK MONITOR "high".

\section*{OPERATION OF THE HEWLETT-PACKARD SYSTEM}

\section*{With Hewlett-Packard Components Exclusively}

The main concern in a fiber optic link is the flux budget. Other areas of concern are: data rate, data format, and the interface with other elements of a data transmission system.
Flux budgeting, using the Hewlett-Packard Transmitter, Receiver, Connector, and Cable components is very straight forward for most applications. It is necessary only to use the data sheet information correctly in making the coupling loss and transmission loss allowances.
When used with other Hewlett-Packard components, the optical characteristics of the Receivers are not critical. Their optical ports have a diameter and N.A. which are both greater than the size and N.A. of the Hewlett-Packard Cable. The Receivers also have a high responsivity and the spectral response is nearly constant over the spectrums radiated by Hewlett-Packard Transmitters.

\section*{With Components From Other Manufacturers}

When using the Hewlett-Packard Receivers with other cables, it may be necessary to account for N.A. loss and/or area mismatch loss. When other sources are used, it may be necessary to compute an effective flux ratio:
(18) EFFECTIVE FLUX RATIO, EFRs \(=\frac{\int \phi_{\lambda} R_{r \lambda} d_{\lambda}}{\int \phi_{\lambda} d_{\lambda}}\)
(Source Spectrum)
where \(R_{r \lambda}\) is the relative response of the Receiver (from data sheet)
\(\phi_{\lambda}\) is the spectral flux function of the source
If the transmission loss of the cable varies sharply over the wavelength range of the source spectrum, then the spectral transmittance of the cable should be included in the computation of EFR. The spectral transmittance varies
with cable length, so the integration must be performed using the cable length required in a particular installation:
(19) EFFECTIVE FLUX RATIO, EFRCS \(=\frac{\int \tau_{\lambda} \phi_{\lambda} R_{r \lambda} d_{\lambda}}{\int \tau_{\lambda} \phi_{\lambda} d_{\lambda}}\)
(Cable and Source) where \(\tau_{\lambda}\) is the spectral transmittance of the installed length of fiber optic cable, computed as:
(20) \(\tau_{\lambda}=10^{-\left(\frac{\ell}{10}\right) \alpha_{0 \lambda}}\)
where \(\alpha_{0 \lambda}\) is the spectral function in (\(\mathrm{dB} / \mathrm{km}\)) of the fiber optic cable and \(\ell\) is the installed cable length (km)

Notice that as the length is reduced, \(\tau_{\lambda}\) becomes more nearly a constant and may be factored out of both numerator and denominator of Equation (19). When EFR is significantly less than unity, it enters the flux budget expression, Equation (11).
(21) \(\begin{aligned} 10 \log \left(\frac{\phi_{T}}{\phi_{R}}\right)= & \alpha_{T C}+\alpha_{\mathrm{CR}}+\mathrm{n} \alpha_{\mathrm{CC}}+\alpha_{0} \ell+\alpha_{M} \\ & -10 \log (\mathrm{EFR})\end{aligned}\)

See Equations 11, 18, and 19 for definition of terms.
The optical ports of Hewlett-Packard Transmitters are designed for mating with Hewlett-Packard Cable/ Connector assemblies, but their characteristics require a little more attention than do the Receiver optical ports. The Transmitter and Cable/Connector data sheets should be consulted for the correct values of size and N.A., or for the directly-given value of transmitter-to-fiber coupling loss, \(\alpha_{\text {TC }}\), to use in flux budgeting. In applications having very short transmission distances, but requiring a number of in-line (cable-to-cable) connections, it is likely to be advantageous to use fiber optics of larger core diameter and N.A., such as some of the plastic types. The larger core diameter reduces the likelihood of losses in connectors due to misalignment. Depending on the size and N.A. of the Transmitter optical port, a larger core diameter and N.A. in the fiber optic cable may also reduce \(\alpha_{\mathrm{T}}\), but if the cable core diameter is too large, the cable-to-receiver loss, \(\alpha_{C R}\), may be excessive.

\section*{Data Rate and Format}

The other areas of concern (data rate, data format, and interface) are interactive, depending on system requirements. In any single transmitter-to-receiver link, the flux budget along with probability of error \(\mathrm{Pe}_{\mathrm{e}}\), establish the signaling rate, in baud units (symbols per second), while the data rate, in bits per second, depends also on the data format, or transmission code. NRZ (Non-Return-to-Zero). is the term for a transmission code in which the signal does not periodically return to zero. If a stream of NRZ data contains a series of consecutive "1s", the signal remains at the " 1 " level; similarly, the signal remains at the " 0 " level for consecutive " 0 s". RZ (Return-to-Zero) code signals a " 1 " by changing from low level to high level and back, never remaining at high level for a period of time longer than half a bit interval. Some examples of codes are given in Figure 10. Notice that NRZ code uses the channel capacity most efficiently since it requires only one code symbol per bit. The RZ code illustrated uses two code symbols per bit while other codes may require an even higher channel capacity for a given data rate. NRZ code requires a clock signal at the receiving end to define, for each interval, the point in time at which the
data is valid. The time at which the data is clocked must be sufficiently clear of the interval edges to avoid phase-shift errors due to jitter, rise time, or propagation delay. Since the clock signal is separately transmitted, phase shift in the clock channel can contribute to the phase-shift error unless it is equal, in direction and magnitude, to the phase shift in the data channel. For this reason, fiber optic channels carrying clock signals should use the same type of cable and the same length, unless the transmission distance is very short. Note that the transmission time delay in an optical fiber depends on the core index of refraction:
(22) TRANSMISSION DELAY, \(t_{\ell}=\left(\frac{1}{c}\right) \ell n\)
where \(c\) is the velocity of light in a vacuum, \(c=3 \times 108 \mathrm{~m} / \mathrm{s}\) \(\ell\) is the fiber optic cable length (m) \(n\) is the core index of refraction
and differential delay between a data channel and a clock channel is:
(23) DIFFERENTIAL DELAY, \(\mathrm{t}=\left(\frac{1}{\mathrm{c}}\right)\left[\ell_{2} \mathrm{n}_{2}-\ell_{1} \mathrm{n}_{1}\right]\)

Some codes are self-clocking - i.e., a separate channel to transmit the clock signal is not required, so there is no problem with differential delay. For this reason, self clocking codes may be preferred even though the data rate is less than that of NRZ. Note that in its internally coded mode, the Hewlett-Packard fiber optic system transmits either NRZ or codes of arbitrary format and duty factor. In the externally coded mode, the system requires the duty factor of the code to be \(50 \%\) and the signal must remain LESS than \(5 \mu \mathrm{~s}\) in either high state or low state.
The Hewlett-Packard system is capable of a 10 Mbaud signaling rate. If a higher data rate is required, the data stream can be divided among additional channels. If each channel is coded, such as with Manchester code, the capacity of each channel is \(5 \mathrm{Mb} / \mathrm{s}\) and if the total data rate requirement is \(20 \mathrm{Mb} / \mathrm{s}\), four channels are required. Using NRZ, the \(20 \mathrm{Mb} / \mathrm{s}\) data can be transmitted on two channels, with a third channel for the clock signal. Thus, if the data rate requirement exceeds \(15 \mathrm{Mb} / \mathrm{s}\), the NRZ format requires fewer fiber optic channels.

\section*{System Configuration}

The simplex arrangement in Figure 11 allows data in one direction only, and the format should, therefore, include error checks, such as parity bits. The full duplex arrangement requires two Transmitter/Receiver (T/R) pairs and two cables but allows data to go in both directions simultaneously. If, at a given time, Station 1 is transmitting, the return transmission from Station 2 can be unrelated to the information from Station 1, but could also be a relay or re-transmission of the data received by Station 2, so a logic delay and comparator circuit in Station 1 can check for errors and allow corrections. The same is true for the full triplex arrangement. Extension to larger numbers of stations is possible and the benefits are the same, but the number of T/R pairs increase rapidly, as shown by the series in Figure 11, requiring \(n(n-1) T / R\) pairs for \(n\) stations.
Half-duplex (not illustrated) is a means for allowing two stations to alternately use the same transmission medium. With a wire cable, half-duplex operation is commonly and easily done; it can also be done with fiber optic cable but

\begin{tabular}{|c|c|c|c|c|c|}
\hline & CODE & DESCRIPTION & CHANNEL REQUIRED & \[
\begin{gathered}
\text { REQUIRES } \\
\text { DC? }
\end{gathered}
\] & REQUIRES CLOCK? \\
\hline A & \begin{tabular}{l}
NRZ \\
(NON-RETURN TO ZERO)
\end{tabular} & High during entire "mark", low during entire "space" interval & 1 Mbaud per Mb/s & YES & YES \\
\hline B & \begin{tabular}{l}
NRZI \\
(NRZ INVERTABLE) \\
(SELF-CLOCKING)
\end{tabular} & Transition for "space" No transition for "mark" & 1 Mbaud per Mb/s & YES & NO* \\
\hline C & \begin{tabular}{l}
RZ \\
(RETURN TO ZERO)
\end{tabular} & Low during entire "space", momentarily high during "mark" interval & 2 Mbaud per Mb/s & NO & YES \\
\hline D & MANCHESTER (SELF-CLOCKING) & Positive transition for "space", negative transition for "mark" & 2 Mbaud per Mb/s & NO & No \\
\hline E & BIPHASE MARK (MANCHESTER II) (SELF-CLOCKING) & Each bit period begins with a transition. "Space" has NO transition during bit period "mark" has one transition during bit period & 2 Mbaud per Mb/s & NO & NO \\
\hline
\end{tabular}

NOTE THAT C, D, E HAVE 50\% DUTY FACTOR (\(k=1.00\))
*WITH PHASE-LOCK LOOP AND BIT STUFFING

Figure 10. Examples of NRZ and RZ Code Patterns.

Figure 11. Simplex, Full-Duplex, Full Triplex, Full-n-plex Fiber Optic Links.
the fiber-furcating couplers for accomplishing it are very lossy, are not commonly available, and will not be discussed.
Data interchange among a large number of stations can be accomplished with fewer T/R pairs by using the Master Station Multiplex (MSM) arrangement in Figure 12. The MSM arrangement requires only \(2(n-1)\) T/R pairs for \(n\) stations (master \(+(n-1)\) slaves). Its operation differs from the full n-plex arrangement of Figure 11 in that only the master station transmits directly to all other stations. Data from any slave station is transmitted to master and retransmitted to all slave stations according to the "retransmit enable" (\(E_{1} \ldots \mathrm{Ex}^{\text {}}\)) selection made in the master station. Thus, a complete error check is possible. Regardless of how many slave stations are added, the transmission delay from any slave to any other slave is just the delay of two fiber optic links plus the propagation delay in the master station's relay circuit. The time delay between re-transmission from the master and the error-check return transmissions from the slaves is the same if each link length is the same, i.e., two links plus relay time. Notice that a complete error check requires an error check in the master, plus an error check in the station where the data originated. Another feature of the MSM system is that any slave station can be disconnected or turned off without affecting the other stations. With slightly more complicated relay control logic in the master stations, the MSM system can provide even more flexibility in the control of data movement - the schematic in Figure 12 is intended only to illustrate the potential flexibility of MSM.
At the expense of less flexibility and longer transmission delay, multiplex operation can be done with an even smaller number of \(T / R\) pairs by means of Looped-Station Multiplexing (LSM) as in Figure 13. In addition to requiring only \(n\) T/R pairs for \(n\) stations, LSM offers the advantage that an error check is required only at the station from which the data originates. There are some disadvantages. A relatively minor disadvantage is the data delay around the loop to where the data originated. A less minor disadvantage is the fact that, even if one of the stations in the loop is designated for loop control, it does not have
control as absolute as that of the master station in MSM. A major disadvantage is that removal of one or more stations from the loop may require a re-run of the fiber optic cable unless the flux budget allows insertion of a connector to replace the station(s) removed. There is some error accumulation around the loop, but this is not a disadvantage if error correction is applied.

\section*{Error Accumulation}

Where error correction is inconvenient or impossible, the accumulation of error through data relay units may be significant. With Hewlett-Packard components operated within the limits prescribed by the data sheet parameters and the flux budget, any point-to-point link has a probability of error \(\mathrm{Pe}_{\mathrm{e}}<10^{-9}\). This means that \(\mathrm{Pe}_{\mathrm{e}}<10^{-9}\) as long as the loss margin, \(\alpha_{M}(\mathrm{~dB})\) is above zero. With a number, \(n\), of repeater links, the worst case estimate of cumulative probability of error is the RMS value:
\[
\begin{aligned}
& \text { (24) CUMULATIVE PROBABILITY } \\
& \text { OF ERROR, } \quad P_{e, n}=1-\prod_{i=1}^{n}\left(1-P_{e, i}\right) \approx \sum_{i=1}^{n} P_{e, i}
\end{aligned}
\]
where \(\mathrm{P}_{\mathrm{e}, \mathrm{i}}\) is the probability of error in link " i "
If each link has the same probability of error, \(\mathrm{Pe}_{\mathrm{e}}\), then the cumulative value of Pe is estimated at:
(25) CUMULATIVE PROBABILITY OF ERROR FOR EQUAL Pe's \(\quad P_{e, n} \approx n P_{e}\)

However, as in any chain, the probability of error is usually just that of the "weakest link," that is, the link having the highest probability of error.

Measuring the probability of error can be very timeconsuming if \(\mathrm{P}_{\mathrm{e}}\) has a very low value. For instance, if \(\mathrm{P}_{\mathrm{e}}=\) \(10^{-9}\) at 10 Mbaud (\(\mathrm{BER}=10^{-9}\)), this suggests that if the system is operated for 100 seconds at 10 Mbaud (accumulate 109 bits) with one error, the \(\mathrm{Pe}_{\mathrm{e}}=10^{-9}\) is verified. This is not necessarily true. The significance of \(\mathrm{P}_{\mathrm{e}}\) \(=10^{-9}\) is that over several such periods the average error is one per 100 seconds. A less time-consuming procedure is to lower the signal (flux) level until the error rate, \(\mathrm{Pe}, \mathrm{N}\) is measurably high in a comfortable period of time, and note

Figure 12. Master Station Multiplex Arrangement for Fiber Optic Links.

Figure 13. Looped-Stations Multiplex Arrangement for Fiber Optic Links.
the Bit Error Rate (BER) as a function of flux level into the Receiver. At these lower levels of flux, the Probability of Error \(\left(\mathrm{Pe}_{\mathrm{e}}\right)\) is:
\(P_{e}=B E R=\frac{\text { NO. OF ERRORS IN A PERIOD }}{\text { NO. OF BITS IN SAME PERIOD }}\)
Since the occurrence of error is random, the probability of error can be described by the Complementary Error Function, erfc:
(26) \(\mathrm{Pe}_{\mathrm{e}}=0.5 \mathrm{erfc}[(\phi-\mathrm{C}) / \sigma \sqrt{2}]\)
where
\(\sigma=\) standard deviation (W) referred to Receiver input.
c = logic comparator level as referred to Receiver input (W)
\(\phi=\) input flux (W)
With the BER observations made at two or more flux levels, the arguments of the Complementary Error Function values corresponding to these data points can be used to form a set of simultaneous equations to be solved for " \(c\) " and " \(\sigma\) ". Due to the randomness of the data, a curve-fitting approach is recommended, using:
\[
\operatorname{erfc}^{-1}\left(2 P_{e}\right)=y_{i}=\left[\left(x_{i}-b\right) / \sigma \sqrt{2}\right]
\]
where \(x_{i}=\) flux level
Values of the inverse of the Complementary Error Func- . tion can be obtained from a table, but when \(\mathrm{Pe}_{\mathrm{e}}<10^{-4}\) adequate precision is obtained from the approximation:
\[
\operatorname{erfc} X \approx 0.54 /\left(X \epsilon^{x^{2}}\right)=0.54 \epsilon^{-\left(x^{2}+\ln x\right)}
\]
(see Appendix)

\section*{INSTALLATION, MEASUREMENT, AND MAINTENANCE}

The shielded metal packages of Hewlett-Packard Fiber Optic Modules are very sturdy and can be mounted in any position. Both Transmitter and Receiver dissipate very low power, so heat sinking is not required. A cool location is preferred, especially for the Transmitter. The main concern in selecting the locations of both modules is accessibility of the optical ports.

\section*{Mounting}

The preferred mounting is with two \#2-56 screws on a printed circuit board. Clearance must be provided for the Lock Nut, which protrudes 0.5 mm to 1.0 mm (depending on angular position) beyond the plane of the module's bottom surface. The usual way to deal with this is to allow the Lock Nut to overhang the edge of the P.C. board as in Figure 14. Lock Nut clearance could also be provided by

Figure 14. Lead Bending and P.C. Board Mounting.
an opening in the board, or by using washers of 1 mm thickness on the \#2-56 mounting screws to space the Module bottom 1 mm from the board. Screws entering the \#2-56 tapped holes MUST NOT TOUCH BOTTOM AS THIS MAY DAMAGE THE MODULE. The \#2-56 tapped hole is 5.6 mm (0.22 in .) deep, which provides an ample purchase on the thread.

\section*{P.C. Board Thickness}
\begin{tabular}{ll}
\(\frac{\mathbf{m m}}{}\) & \\
\hline 0.79 & \\
\hline 1.59 & \(1 / 32\) \\
2.38 & \(3 / 32\)
\end{tabular}

Recommended
Screw Length — mm (in.)
\begin{tabular}{ccc}
W/O Spacer & & W/1-mm Spacer \\
\cline { 1 - 1 }\((.78(.188)\) & & \(6.35(.250)\) \\
\(6.35(.250)\) & & \(6.35(.250)\) \\
\(6.35(.250)\) & & \(6.35(.250)\)
\end{tabular}

The \#2-56 holes near the front of the package are the only screw holes that may be used for mounting the module. UNDER NO CIRCUMSTANCES MAY THE SCREWS ALREADY INSTALLED OR THE SET SCREW BE DISTURBED. Disturbing these may cause interior damage.
For additional support, the electrical leads may be bent down and soldered into the P.C. board. In bending the leads, care must be taken to avoid strain at the point where the leads enter the glass seal. This can be done by applying mechanical support between the module and the bending point which should be at least 1.0 mm (0.04 in .) from the end of the module. A needle-nose pliers can also be used to bend the leads individually, providing no bending moment is transferred to the seal. See Figure 14 for details fo these techniques.
Panel mounting can also be used. This is an especially attractive mounting when R.F. shield integrity must be maintained. As seen in Figure 15, the panel thickness must be less than 4 mm (\(5 / 32 \mathrm{in}\).) and have a counter-bore to receive the Lock Nut. This will make the mounting secure and leave enough of the Barrel outside the panel to permit installation of an external mounting nut as well as the Cable Connector.

\section*{Fiber Optic Cable Connections}

The data sheet cautions against disturbing the Lock Nut and Barrel. This is to prevent damage by someone who has not read the following material:
As seen in Figure 16, there is a clearance between the interior end of the Barrel and a shoulder on the Fiber

Alignment Sleeve. If this clearance is not maintained, there is a risk that a force applied to the Barrel may be transmitted by the Fiber Alignment Sleeve to the optical fiber stub, forcing the stub against the face of the source or detector. The source (or detector) is an extremely fragile semiconductor device and even a very small force can cause severe damage. Should it be necessary to remove the Lock Nut and Barrel, they should be reinstalled with this procedure:
1. Lightly and carefully thread the Barrel into the Module body until it comes against the shoulder of the Fiber Alignment Sleeve.
2. Back the Barrel OUT ONE FULL TURN, then HOLD THE BARREL FROM TURNING while seating the Lock Nut securely against the body. During final tightening of the Lock Nut, the Barrel may be allowed to enter no more than HALF A TURN. Final barrel position must be between a HALF-TURN and a FULL TURN from the alignment sleeve shoulder.

When Hewlett-Packard Cable Connectors are joined, either to each other or to the optical port of a Transmitter or Receiver, there is a cylindrical spring Sleeve that aligns the Ferrules. This is shown in Figures 16 and 17. It may be difficult to see, but the Sleeve does have a slightly flattened "leaf" on either side of a notch. The notch makes the leaves spring separately, allowing the Ferrules at

Figure 15. Panel Mounting.

Figure 16. Opto-Mechanical Structure of T/R Modules.

Figure 17. In-Line Connector Arrangement.
opposite ends of the sleeve to have slightly different diameters and yet be firmly aligned by the curved interior wall. A chamfer on the edge of the Ferrule aids insertion. In making temporary Cable-to-Cable connection, it is permissible, and often convenient, to omit the Barrel, since it does not perform an alignment function. When the Barrel is used for a more sturdy joint, the connection procedure is:
1. Install the Sleeve and Barrel on one Connector, using only FINGER TIGHTNESS of the Coupling on the Barrel.
2. Start the Ferrule of the second Connector into the Sleeve.
3. Engage the Coupling on the Barrel threads and tighten FINGER TIGHT.

Alignment of the Ferrules (and hence the fiber optics) is performed by the Sleeve; the Barrel and Couplings are intended only for tensile support, but if they are OVER tightened, they may cause misalignment. Loss of coupling due to misalignment can be observed at the \(\mathrm{V}_{\mathrm{T}}\) (Test Point) on the Receiver when the System is active:
\[
\Delta \mathrm{V}_{T} / \Delta \phi \approx 10 \mathrm{mV} / \mu \mathrm{W}
\]

The procedure above applies also to making Cable connection at the Receiver and Transmitter, except that the Sleeve and Barrel are already installed. In manufacture, the Sleeve in the Module is pre-stressed for a tighter fit on the Ferrule in the Module than on the Ferrule in the Connector. The Sleeve is not likely to be pulled out when the Module is disconnected, but if that does happen, it can be reinstalled without removing the Barrel by using the Connector Ferrule to guide and support it.
In connecting fiber optics other than those from HewlettPackard to a Hewlett-Packard module, it is necessary to center the fiber in a cylinder with the same outside diameter as the Hewlett-Packard Ferrule over a length (to first shoulder) equal to half the length of the Sleeve, i.e., 3.5 mm . This is adequate for a temporary connection. For a more permanent connection, add a coupling to fit the \#10-32 thread on the Barrel.

\section*{Power Supply Requirements}

Power supply lines for the Transmitter and the Receiver should each have a pi filter of two \(60 \mu \mathrm{~F}\) shunt capacitors and a \(2.2 \mu \mathrm{H}(<1 \Omega)\) inductor. The Transmitter needs this filter to prevent transients from reaching other equipment when the LED (or IRED) currents are switched. The Receiver needs the filter to keep line transients from interfering with its extremely sensitive amplifier. In addition, the Receiver may need its own regulator, as shown in the data sheet, to prevent low-frequency transients or ripple from interfering with the data stream. If a regulator is used, the pi filter should be between the regulator output and the Receiver supply terminal. The Transmitter needs no regulator if the supply voltage is in the specified range.

\section*{System Performance Evaluation}

System performance checks may be done by using errordetection equipment, such as the Hewlett-Packard Mod. 3760A Word Generator and 3761 Error Detector as indicated in Figure 18. The Mod. 3780A Pattern Generator/Error Detector which contains both word generator and error detector is also usable, although it has less flexibility in word generation and a lower data rate capability. These instruments have low-impedance (\(50 \Omega\) and \(75 \Omega\)) inputs and outputs. The outputs have adequate voltage swing to drive the Fiber Optic Transmitter Data Input, but ringing may occur unless the signal line is properly terminated. The low-impedance inputs require a buffer amplifier between the Receiver output and the Error Detector input. Here also the voltage swing is ample, so a simple emitter follower will do as a buffer.

With Mode Select "low" (on the Fiber Optic Transmitter), the Word Generator may be set for either NRZ or RZ code, and there is no restriction of any kind on word length or composition (pseudo random or selected). With Mode Select "high", the code selection must be such that:
1. No interval \(>5 \mu \mathrm{~s}\) of consecutive marks or consecutive spaces
2. Duty factor: . \(44<\mathrm{DF}<.57\) or \(.75<\mathrm{k}<1.25\)

Figure 18. Bit Error Rate Measurement Arrangement.

The first condition can be examined with an oscilloscope, but if word length is such that:
\[
\frac{\text { word length (bits) }}{\text { data rate (bits/second) }}<5 \text { microseconds }
\]
then there is no way that any consecutive marks or spaces can extend over \(5 \mu \mathrm{~s}\).

The easiest way to check duty factor is by observing \(k\) directly on an ac coupled oscilloscope: first establish the baseline position (e.g., center of scope face) with zero signal input, then with the data signal applied:
\[
k=\frac{\text { excursion above baseline position }}{\text { excursion below baseline position }}
\]
where the oscilloscope deflects upward for positive input. For this observation, the oscilloscope need not be synchronized - it could be free-running. The word composition should be adjusted to bring \(k\) within the specified limits. The word composition can be adjusted by adding zeroes, changing word length, or by handselecting the bit sequence.

Either error detector has two modes of operation: BER (Bit Error Rate) mode and "count" mode. The count mode is simplest to use and gives an earlier indication of the result of any system adjustment.

With the System at normal operating flux level, the error rate is so low that it would take several hours or even days to make an accurate BER measurement. If the flux level is reduced, SNR falls and BER rises until it becomes measurable. Then the error function [see Equation (26)] can be applied to determine the BER at the normal flux level in terms of the constants "a" and "b". The problem now is that the flux may be too low to measure with equip-
ment at hand. The solution is in the Receiver Test Point voltage, \(V_{T}\), which varies linearly as Receiver input flux -see Equation (17). But even this method has limits: when the flux becomes a small fraction of a microwatt, the voltage difference (\(\mathrm{V}_{\mathrm{TMAX}}-\mathrm{V}_{\mathrm{T}}\)) cannot be accurately observed. The solution to this problem is in the Transmitter-to-Cable connection. Just back off the Coupling, noting the number of turns while observing \(\mathrm{V}_{\mathrm{T}}\), then plot a curve like that of Figure 19. The curve is quite repeatable if care is taken to avoid backlash and rotation of the Connector Body (rotate Coupling only) but the curve is not the same for each System.

\section*{Operating Margin Measurement}

The approximate flux margin, \(\alpha \mathrm{M}\), for a system can be found using the Connector on the Transmitter as an adjustable attenuator as described above, proceeding as follows:
1. Prepare a curve similar to Figure 19.
2. Count the turns, \(N\), needed to get measurable error, \(\mathrm{Pe}, \mathrm{N} \approx 10^{-6}\)
3. Find \(\alpha_{N}(\mathrm{~dB})\) from N and the curve from Step 1.
(27) \(\alpha \mathrm{M}(\mathrm{dB})=\alpha \mathrm{N}(\mathrm{dB})-0.5 \mathrm{~dB}\)

The 0.5 dB in Equation (27) is to allow for the fact that the operating BER should be \(10^{-9}\), but the BER at which error is easily observed is near \(10^{-5}\). At \(B E R=10^{-5}\) the flux level is 0.5 dB below the flux level needed for \(\mathrm{BER}=10^{-9}\).

If any kind of relative flux indicator is available (e.g., a photodiode or radiometer) the flux margin can be observed in a similar manner, but the counting of turns, \(N\),

Figure 19. Flux Decoupling by Rotation of Connector Coupling.
and use of Figure 19 become unnecessary. The procedure is:
1. Unscrew the Transmitter connector until error is observed at the Receiver.
2. Transfer the Receiver connector to the flux indicator and note indication \(I_{1}\) then, without changing the coupling to the flux indicator, reseat the Transmitter connector and note indication \(\mathrm{I}_{2}\).
3. \(\alpha_{M}(\mathrm{~dB})=10 \log \left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)-0.5 \mathrm{~dB}\)

Absolute flux levels at " \(N\) " turns can be found by measuring the flux level when \(\mathrm{N}=0\) and applying a ratio. A rough measurement can be made using the Test Point voltage, \(\mathrm{V}_{\mathrm{T}}\), and Equation (15). A more precise measurement requires a calibrated radiometer, such as the EG\&G Mod. 550, used as shown in Figure 20a. With its "flat" filter installed, the EG\&G Mod. 550 reads the radiant incidance, \(E\), in \(W / \mathrm{cm}^{2}\) on an aperture area, \(A_{D}=1 \mathrm{~cm}^{2}\) and N.A. \(=1\). With the filter removed, a fiber optic cable can be placed so close to the aperture that there is no flux loss, and since the radiometer N.A. exceeds the fiber N.A., the radiometer will have a reading in \(W / \mathrm{cm}^{2}\) which is numerically equal to the flux in watts. However, a correction must be made for the removal of the filter.
The insertion loss of the filter must be evaluated at the measurement wavelength because it varies with wavelength to compensate for spectral variation in the response of the silicon detector. The arrangement shown in Figure 20 for measurement of radiant intensity is a good one for measuring insertion loss of the filter. Two observations are made - one with and one without the filter. Error due to ambient radiation is avoided by working in subdued ambient and for each observation taking two radiometer readings (source off and source on); the difference in readings is the observation of the radiant incidance, \(\mathrm{E}_{\mathrm{e}}\), produced by the radiant intensity, \(\mathrm{l}_{\mathrm{e}}\), of the source. The ratio of the two observations gives:
(28) FILTER INSERTION LOSS, \(\alpha_{F}=10 \log \frac{E_{e(f i l t e r ~ o u t) ~}}{E_{e(f i l t e r ~ i n) ~}}\)

This same arrangement can be used to measure the average flux of the Transmitter as shown in Figure 20b. From the observation of \(E_{e}\) with the filter \(I N\) :
(29) AVERAGE INTENSITY, Ie \(\left(\frac{\mu \mathrm{W}}{\mathrm{sr}}\right)=\mathrm{E}_{\mathrm{e}}\left(\frac{\mu \mathrm{W}}{\mathrm{cm}^{2}}\right) \times \mathrm{d}^{2}\left(\mathrm{~cm}^{2}\right)\)
(30) AVERAGE FLUX, \(\phi_{\mathrm{e}}(\mu \mathrm{W})=\mathrm{l}_{\mathrm{e}}\left(\frac{\mu \mathrm{W}}{\mathrm{sr}}\right)\left[\frac{\phi(\theta)}{\mathrm{I}(0)}\right.\) (MAX)] value from radiation pattern integral \(>\) in Transmitter Data Sheet

\section*{SYSTEM MAINTENANCE}

\section*{Preventive Maintenance}

Good system performance requires clean surfaces at the faces of the optical fibers to avoid obstruction of the optical path. This is true for the fiber faces in the Transmitter/ Receiver modules, as well as in the Cable Connectors. Compressed air is often sufficient to remove particles of foreign matter; methanol or Freon \({ }^{\text {M }}\) on a cotton swab also works well. If it is necessary to remove the threaded barrel and lock nut to clean the Transmitter (or Receiver) optical port, refer to the earlier section "Fiber Optic Cable Connections" for re-assembly instructions. Severely groundin or adhering foreign material may require repeated cleaning efforts to restore original optical performance.

Long-term degradation occurs in any LED and LED degradation affects the Hewlett-Packard Fiber Optic Systern in two ways: reduced average flux, affecting either externally- or internally-coded mode, and altered flux excursion ratio, affecting only the internally-coded mode. Significant degradation of either the flux or the flux excursion ratio can be detected by regular observation of the flux margin, \(\alpha_{M}\), and of \(k\).
\(\alpha_{M}\) is evaluated as explained under Operating Margin Measurement from Equation (27). A plot of \(\alpha_{M}\) against the logarithm of the cumulative hours of operation will allow an estimate to be made of the operating time remaining until \(\alpha_{M}=0\) FOR THE Pe DESIRED.
\(k\) must be evaluated by measuring \(\phi_{H}, \phi_{M}\), and \(\phi_{\mathrm{L}}\) as explained in the Transmitter description. The Test Point voltage can be used in making this measurement - see Equation (15). The upper and lower margins on \(k\) for a particular Receiver can be found by operating the Transmitter with Mode Select "high" and a rectangular signal (\(f \approx 500 \mathrm{kHz}\)) at Data Input. As the duty factor of the signal is varied, the limits on \(k\) are found as those at which the Receiver fails to follow the Data Input signal.
(31) \(k=\left(\frac{1}{\mathrm{ft}_{\mathrm{p}}}\right)-1=\frac{1}{\frac{1}{\mathrm{ftN}}-1}\)
where \(\mathrm{ft}_{\mathrm{p}}\) is the positive-pulse duty factor \(\mathrm{ft}_{\mathrm{N}}\) is the negative-pulse duty factor

Changes in \(k\) of the Transmitter do not affect the Receiver performance in externally-coded (FOO) mode, and if this mode is used, then flux margin, \(\alpha_{M}\), is the only concern.

(a) MEASUREMENT OF TRANSMITTER AVERAGE FLUX

(b) MEASUREMENT OF AVERAGE RECEIVER INPUT FLUX AND FLUX DECOUPLING AT TRANSMITTER CONNECTOR.

Figure 20. Flux Measurement with EG\&G Mod 550 Radiometer.

\section*{Corrective Maintenance}

Trouble in the System may range from complete breakdown to excessive BER. The flux used in the Hewlett-Packard System is visible so the cause of complete breakdown can sometimes be localized by simply looking at the output of the Cable and the Transmitter. If there is visible output from the cable, then, when the Cable is connected to the Receiver, there should be an 8 mV change in Test Point voltage, \(\mathrm{V}_{\mathrm{t}}\), as the Transmitter (Mode Select "low") is turned on and off by switching Vcc . If \(\Delta \mathrm{V}_{\mathrm{T}}\) is more than 8 mV but the system is not working, then either the Receiver logic is not functioning properly or the flux excursion ratio, \(k\), is either too high or too low. Excursion ratio can be checked as described above, using \(\mathrm{V}_{\mathrm{T}}\). If k is satisfactory, the logic malfunction could be due to incorrect supply voltage or output loading.
If the System is functioning but has excessive BER, either the flux and flux excursion ratio are marginal (can be checked as described above) or there is too much interference from noise or other effects. If the Data Input voltage levels are correct, either random noise is high or errors are occurring due to incorrect supply voltage or output loading, or due to noise on the supply line. Random noise effects can be checked by lowering the flux level to a point where \(P_{e}\) is measurably high. If \(P_{e}\) varies with flux level according to \(\mathrm{P}_{\mathrm{e}}=\operatorname{erfc}(\mathrm{X})\), as in Equation (26), then the problem is excessive random noise. Random noise can also be checked by changing the data rate while the flux level is low enough to make \(P_{e}\) measurable. If \(P_{e}\) is the same at any data rate, the problem is excessive random noise. Excessive random noise is more likely to occur in the Receiver than in the Transmitter; the best way to check is by replacement of the Receiver. Noise on the supply line is difficult to trace. If there is any doubt, the Receiver should be operated from its own supply (e.g., a 5 V regulator). Receiver noise should be low enough to make \(\mathrm{Pe}_{\mathrm{e}}<10^{-9}\) at 10 Mbaud with normal flux level \(\left(\Delta \mathrm{V}_{T}>8 \mathrm{mV}\right.\) by the method described above indicates normal flux level).

\section*{APPENDIX}

Find the values of the constants, \(c\) and \(\sigma\) for Equation (26) by least-squares curve fitting to data of errors vs. input flux level, using the approximation:
(A1) \(Y=\operatorname{erfc} X \approx 0.54 \epsilon^{-\left(X^{2}+\ln X\right)}=0.54 /\left(X \epsilon^{x^{2}}\right)\) which has adequate precision for \(10^{-3}<Y<10^{-12}\)
The value of \(X\) corresponding to a given \(Y\) is easily obtained by repetitively computing:
(A2) \(X_{m+1}=\sqrt{\ln \frac{0.54}{Y}+\ln \frac{1}{X_{m}}}\)
until \(X_{m+1}=X_{m}\) (4 to 10 loops for 9-place accuracy)
then, \(X \approx \operatorname{erfc}^{-1} Y\)
\(\underset{\underset{\text { DAIRS }}{n}}{\underset{\text { DATA }}{n}}\left\{\begin{array}{l}X_{i}=\text { flux level }(\mu W) \\ P_{\text {ei }}=\text { bit error rate at } X_{i}\end{array}\right\} 1 \leq i \leq n\)
Using Equation (A2) with \(\mathrm{Y}=2\) Pei, compute:
(A3) \(Y_{i} \approx \operatorname{erfc}^{-1}\left(2 \mathrm{Pei}_{\mathrm{e}}\right)\)
Then, for the n data pairs, prepare the summations:
\(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}{ }^{2}, \sum_{i=1}^{n} y_{i}, \sum_{i=1}^{n} x_{i} y_{i}, n=\sum_{i=1}^{n} 1\)
The constant for a least-squares fit to Equation (26) are:
(A4) \(\sigma=\frac{1}{\sqrt{2}}\left[\frac{n\left(\sum \mathrm{X}_{\mathrm{i}}{ }^{2}\right)-\left(\sum \mathrm{X}_{\mathrm{i}}\right)^{2}}{n\left(\sum \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}\right)-\left(\sum \mathrm{X}_{\mathrm{i}}\right)\left(\sum \mathrm{Y}_{\mathrm{i}}\right)}\right]\)
(A5)
\[
c=\frac{\left(\sum x_{i}\right)\left(\sum x_{i} Y_{i}\right)-\left(\sum Y_{i}\right)\left(\sum x_{i}{ }^{2}\right)}{n\left(\sum x_{i} Y_{i}\right)-\left(\sum x_{i}\right)\left(\sum Y_{i}\right)}
\]

\section*{APPLICATION NOTE 1002}

\title{
Consideration of CTR Variations in Optocoupler Circuit Designs
}

\section*{INTRODUCTION - Optocouplers Aging Problem}

A persistent, and sometimes crucial, concern of designers using optocouplers is that of the current transfer ratio, CTR, changing with time. The CTR is defined as the ratio of the output current, \(\mathrm{I}_{\mathrm{O}}\), of the optocoupler divided by the input current, \(\mathrm{I}_{\mathrm{F}}\), to the light emitting diode expressed as a percentage value at a specified input current. The resulting optocoupler's gain change, \(\Delta \mathrm{CTR}^{+}\), with time is referred to as CTR degradation. This change, or degradation, must be accounted for if long, functional lifetime of a system is to be guaranteed.

A number of different sources for this degradation will be explained in the next section, but numerous studies have demonstrated that the predominant factor for degradation is reduction of the total photon flux being emitted from the LED, which, in turn, reduces the device's CTR. This degradation occurs to some extent in all optocouplers.
\({ }^{+} \Delta C T R=\) CTR \(_{\text {final }}-\) CTR \(_{\text {initial }}\)

\section*{Causes}

The main cause for CTR degradation is the reduction in efficiency of the light emitting diode within the optocoupler. Its quantum efficiency, \(\eta\), defined as the total photons per electron of input current, decreases with time at a constant current. The LED current is comprised primarily of two components, a diffusion current component, and a space-charge recombination current:
(2)

where \(A\) and \(B\) are independent of \(V_{F}, q\) is electron
charge, k is Boltzmann's constant, T is temperature in degrees Kelvin, and \(\mathrm{V}_{\mathrm{F}}\) is the forward voltage across the light emitting diode.

The diffusion current component is the important radiative current and the non-radiative current is the space-charge recombination current. Over time, at fixed \(\mathrm{V}_{\mathrm{F}}\), the total current increases through an increase in the value of \(B\). From another point of view, with fixed total current, if the space-charge recombination current increases, due to an increase in the value of \(B\), then the diffusion current, the radiative component, will decrease. The specific reasons for this increase in the space-charge recombination current component with time are not fully understood.

The reduction in light output through an increase in the proportion of recombination current at a specific \(\mathrm{I}_{\mathrm{F}}\) is due to both the junction current density, \(\mathbf{J}\), and junction temperature, \(\mathrm{T}_{\mathbf{J}}\). In any particular optocoupler, the emitter current density will be a function of not only the required current necessary to produce the desired output, but also of the junction geometry and of the resistivity of both the \(P\) and N regions of the diode. For this reason, it is important not to operate a coupler at a current in excess of the manufacturer's maximum ratings. The junction temperature is a function of the coupler packaging, power dissipation and ambient temperature. As with current density, high \(\mathrm{T}_{\mathrm{J}}\) will promote a more rapid increase in the proportion of recombination current.

The junction and IC detector temperature of HewlettPackard optocouplers can be calculated from the following expressions:
\[
\begin{aligned}
& T_{J}=T_{A}+\theta_{J A}\left(V_{F} I_{F}\right)+\theta_{D-E}\left(V_{O} I_{0}+V_{c c} \prime_{c c}\right) \\
& T_{D}=T_{A}+\theta_{E-D}\left(V_{F} I_{F}\right)+\theta_{D A}\left(V_{o} I_{O}+V_{c c} \prime_{c c}\right)
\end{aligned}
\]
where the \(T_{\mathbf{J}}\) is the junction temperature of the LED emitter, \(\mathrm{T}_{\mathrm{D}}\) is the junction temperature of the detector \(\mathrm{IC}, \mathrm{T}_{\mathrm{A}}\) is ambient temperature, and the thermal resistances are the emitter junction to ambient, \(\theta_{\mathrm{JA}}=370^{\circ} \mathrm{C} / \mathrm{W}=\theta\) DA detector to ambient, and the detector to emitter thermal resistance is \(\theta_{\mathrm{D}-\mathrm{E}}=170^{\circ} \mathrm{C} / \mathrm{W}=\theta_{\mathrm{E}-\mathrm{D}} . \mathrm{V}_{\mathrm{F}}, \mathrm{I}_{\mathrm{F}}\) are the forward LED voltage and current; \(\mathrm{V}_{\mathrm{O}}, \mathrm{I}_{\mathrm{o}}\) are the output stage voltage, and current and \(\mathrm{V}_{c c}, \mathrm{I}_{\mathrm{cc}}\) are the power supply voltage and current to the device. In general, it is desirable to maintain \(\mathrm{T}_{\mathrm{J}} \leqslant 125^{\circ} \mathrm{C}\).

A useful model can be constructed to describe the basic optocoupler's parameters which are capable of influencing the current transfer ratio. The 6 N 135 optocoupler, Figure 1 is the simplest device and one which is easily accessible for needed parameter measurements. However, any optocoupler can be modeled in this fashion within its linear region. Figure 1 shows the system block diagram which yields the relationship of input current, \(\mathrm{I}_{\mathrm{F}}\), to output current, \(\mathrm{I}_{\mathrm{o}}\). The resulting expression for CTR is:
\(\operatorname{CTR}=\frac{I_{\mathbf{o}}}{I_{F}}(100 \%)=K R \eta\left(I_{F}, t\right) \beta\left(I_{P}, t\right)\)
where K represents the total transmission factor of the optical path, generally considered a constant as is R, the responsivity of the photodetector, defined in terms of electrons of photocurrent per photon. \(\eta\) is the quantum
efficiency of the emitter defined as the photons emitted per electron of input current and depends upon the level of input current, \(\mathrm{I}_{\mathrm{F}}\), and upon time. Finally, \(\beta\) is the gain of the output amplifier and is dependent upon \(I_{P}\), the photocurrent, and time. Temperature variations would, of course, cause changes in \(\eta, \beta\) as well.

From Equation (4), a normalized change in CTR, at constant \(\mathrm{I}_{\mathrm{F}}\), can be expressed as:
(5)
\(\frac{\Delta C T R}{\mathbf{C T R}}=\left(\frac{\Delta \eta}{\eta}\right)_{\mathbf{I}_{\mathbf{F}}}+\left(\frac{\Delta \eta}{\eta}\right)_{\mathbf{I}_{\mathbf{F}}}\left(\frac{\partial \ln \beta}{\partial \ln \mathbf{I}_{\mathbf{P}}}\right)_{\mathbf{t}}+\left(\frac{\Delta \beta}{\beta}\right) \mathbf{I}_{\mathbf{P}}\)

The first term, \(\Delta \eta / \eta\), represents the major contribution to \(\Delta\) CTR due to the relative emitter efficiency change; generally, over time, \(\Delta \eta\) is negative. This change is strongly related to the input current level, \(\mathrm{I}_{\mathrm{F}}\), as discussed earlier and more elaboration will be given later. The second term, \((\Delta \eta / \eta)_{\mathrm{I}} \quad\left(\partial \ln \beta / \partial \ln \mathrm{I}_{\mathrm{P}}\right)_{\mathrm{t}}\), represents a second order effect of a shift, positive or negative, in the operating point of the output amplifier as the emitter efficiency changes. The third term, \((\Delta \beta / \beta)_{\mathrm{I}}\), is a generally negligible effect which represents a positive or negative change in the output transistor gain over time. The parameters \(K\) and \(R\) are considered constants in this model.

Figure 1. System Model for an Optocoupler

\section*{Degradation Model}

In this section, an extensive test program conducted at Hewlett-Packard to characterize the CTR degradation of optocouplers is discussed. The development which will follow is mainly of interest to those concerned with reliability and quality assurance. From the basic data, the CTR degradation equations will be developed in order to predict the percentage change in CTR with time. Complete data and analysis of CTR degradation will be found in an internal Hewlett-Packard report.

This study is based on a total of 640 optocouplers of the 6 N 135 type (Figure 1) with \(700 \mathrm{~nm} \mathrm{GaAs} .{ }_{7} \mathrm{P}_{3}\) LEDs from twenty different epitaxial growth lots representing a range of n-type doping and radiance. The 6N135 allows access to measurement of the emitter degradation via the relative percentage change in photodiode current, \(\Delta \mathrm{I}_{\mathrm{P}} / \mathrm{I}_{\mathrm{P}}\), as well as output amplifier \(\beta\) change. Stress currents of \(\mathrm{I}_{\mathrm{FS}}=.6,7.5,25\) and 40 mA were applied to different groups of optocouplers, and at each measurement time of \(\mathrm{t}=0,24,168,1000,2000,4000\) and 10,000 hours, measurement currents of \(\mathrm{I}_{\mathrm{FM}}=.5,1.6,7.5,25\) and 40 mA were used to determine the CTR.

The important results to be noted are the following. First, a factor of major significance in the study of CTR degradation is the \(\Delta C T R\) varies as a function of the ratio of \(\mathrm{I}_{\mathrm{FS}} / \mathrm{I}_{\mathrm{FM}} \equiv \mathrm{R}\). Large values of R will result in greater CTR degradation than at lower \(R\) values with the same magnitude of \(\mathrm{I}_{\mathrm{FS}}\). However, knowledge of the ratio of \(\mathrm{I}_{\mathrm{FS}} / \mathrm{I}_{\mathrm{FM}}\) alone does not give a complete picture of degradation because \(\triangle \mathrm{CTR}\) is also dependent upon the absolute magnitude of the stress current, \(\left|\mathrm{I}_{\mathrm{FS}}\right|\). The following data will allow the derivation of the necessary equations with which to predict \(\Delta \mathrm{CTR}\) as a function of \(\mathrm{I}_{\mathrm{FS}}, \mathrm{I}_{\mathrm{FM}}\) and time.

Figure 2 displays the mean and mean plus \(2 \sigma\) values of emitter degradation versus R for \(1 \mathrm{~K}, 4 \mathrm{~K}\), and 10 K hours at \(25^{\circ} \mathrm{C}\). Accelerated degradation can be seen at larger R values.

The data of Figure 2 can be replotted to illustrate the percentage degradation versus time as a function of \(R\). Figure 3 illustrates the mean and mean plus \(2 \sigma\) distribution with \(\mathrm{R}=1\) and 50 .

From this curve, a useful expression which relates the average degradation in emitter efficiency to time is obtained for the mean or mean plus \(2 \sigma\) distributions. [The symbol "D" will refer to CTR degradation due solely to emitter degradation, \(\Delta \eta / \eta\), whereas \(\Delta \mathrm{CTR} / \mathrm{CTR}\) will refer to total CTR degradation as expressed in Equation (5)] .
\[
\begin{equation*}
\bar{D}_{\bar{x}} \text { or } \bar{D}_{\bar{x}+2 \sigma} \equiv \frac{-\Delta I_{P}}{I_{P}}=A_{o} R \alpha_{t} n(R) \text { in \% for } I_{F S}=\bar{I}_{F S} \tag{6}
\end{equation*}
\]
where t is in \(10^{3}\) hours and \(\mathrm{A}_{0}\) and \(\alpha\) differ for mean or mean plus \(2 \sigma\). Equation (6) represents an average degradation corresponding to a specific \(R\), \(t\), and an average stress current \(\overline{I_{F S}}\). A knowledge of \(\overline{I_{F S}}\) and the actual device operating stress \(I_{F S}\) can be utilized to correct \(\overline{\mathrm{D}}\) to a value D which reflects the actual absolute magnitude of \(\mathrm{I}_{\mathrm{FS}}\). This will be shown in the development of Equations (11) and (13). The data shows that \(\overline{\mathrm{I}_{\mathrm{FS}}}\) increases with R and can be represented as follows:
\[
\begin{equation*}
\bar{I}_{F S}(R)=14.13+9.06 \log 10 R, m A, T_{A}=25^{\circ} \mathrm{C} \tag{7}
\end{equation*}
\]
\(I_{F S}(R)=10.5+5.76 \log 10 R, m A, T_{A}=85^{\circ} C\)

Figure 2. Emitter Degradation vs. R (Ratio of Stress Current to Measurement Current) for \(\mathbf{1 k}, \mathbf{4 k}\), and 10k Hours, Mean, Mean \(+2 \sigma\) Distribution, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

Figure 3. Emitter Degradation vs. Time at \(\mathbf{R}=1\) and \(\mathbf{R}=50\) for Mean, Mean \(+2 \sigma\) Distributions, \(\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathbf{C}\)

These equations are obtained from averaged degradation data versus \(\mathrm{I}_{\mathrm{FS}}\) at different measurement times.

The expression for \(n(R)\) was found to obey the relationship
\(n(R)=.0475 \log _{10} R+.25\)
\(\mathrm{A}_{\mathrm{O}}\) and \(\alpha\) were determined from degradation data versus R and are found in Figure 7, "Matrix of Coefficients."

Equation (6) gives a direct relationship between the average degradation, \(\overline{\mathrm{D}}\), and time. As mentioned earlier, the magnitude of the stress current also determines the amount of degradation. In order to allow for the effect of \(\left|I_{F S}\right|\), empirical observations were made on \(D\) at different \(\mathrm{I}_{\mathrm{FS}}\) and at different times for several values of R . The dependence of degradation on stress current is linear up to \(I_{F S}=40 \mathrm{~mA}\), for all values of R . From these observations, the average rate of change, or slope, \(S(R, t)\), of degradation D with \(\mathrm{I}_{\mathrm{FS}}\) over time was found to behave in the following fashion for any R :
\(S \equiv \frac{\partial D}{\partial I_{F S}}=\alpha(R) \log _{10} t+\beta(R) \quad \% / m A\)
where \(t\) is in \(10^{3}\) hours, the coefficients \(\alpha(\mathrm{R})\) and \(\beta(\mathrm{R})\) can be found on Figure 7.

Along with Equation (10), the mean distribution degradation, \(\mathrm{D}_{\overline{\mathrm{x}}}\), can be estimated for any specific stress current, \(I_{F S}\), ratio \(R\), and time \(t\) via the subsequent expression:
\(D_{\bar{x}}=\bar{D}_{\bar{x}}+S\left[I_{F S}-\bar{I}_{F S}\right] \quad \%\)
or substituting Equation (6),
\[
\begin{equation*}
D_{\bar{x}}=A_{o} R^{\alpha} t^{n(R)}+S\left[I_{F S}-I_{F S}\right] \quad \% \tag{12}
\end{equation*}
\]
where, again, \(\overline{\mathrm{D}} \overline{\mathrm{x}}\) is the average degradation at time t , in units of \(10^{3}\) hours, corresponding to an average stress current, \(\mathrm{I}_{\mathrm{FS}}\), given by Equations (7) and (8); \(\mathrm{I}_{\mathrm{FS}}\) is the actual stress current. In equation (12) \(\mathrm{R}=\mathrm{I}_{\mathrm{FS}} / \mathrm{I}_{\mathrm{FM}}\); S is the expression (10) for the change of slope of \(D\) versus \(I_{F S}\) with time; \(n(R)\) is a power of \(t\), given by Equation (9), and \(A_{0}, \alpha\) are found in Figure 7.

Equation (11) gives the mean distribution degradation by using an average degradation value, \(\overline{\mathrm{D}}_{\overline{\mathrm{X}}}\) (first term), corresponding to the ratio of \(I_{F S} / I_{F M}\), or an average stress current, \(\overline{\mathrm{I}}_{\mathrm{FS}}\), and then applying a correction quantity (second term) to \(\overline{\mathrm{D}}_{\overline{\mathrm{x}}}\) due to the magnitude of the actual stress current, \(I_{F S}\), yielding the actual degradation \(\mathrm{D}_{\overline{\mathrm{x}}}\).

The expression for the mean \(+2 \sigma\) distribution degradation, \(\mathrm{D}_{\overline{\mathrm{x}}}+2 \sigma\), (worst case) is almost of the same form as Equation (11). The dissimilarity arises from the fact that the standard deviation, \(\sigma\), is dependent upon the stress current, \(\mathrm{I}_{\mathrm{FS}}\), the ratio \(R\), and upon time. This complex dependency was analytically deduced from the data to be the following expression:
\(D_{\overline{\mathrm{x}}+2 \sigma}=\overline{\mathrm{D}}_{\overline{\mathrm{x}}+2 \sigma}+[\mathbf{S}+2 \mathrm{P}]\left[\mathrm{I}_{\mathrm{FS}}-\overline{\mathrm{I}}_{\mathrm{FS}}\right] \%\)
or substituting Equation (6)
\(D_{\bar{x}+2 \sigma}=A_{o} R^{\alpha_{t} n(R)}+[S+2 P]\left[I_{F S}-T_{F S}\right] \%\)
where \(\overline{\mathrm{D}_{\overline{\mathrm{x}}}}+2 \sigma\) is the average degradation for \(\overline{\mathrm{x}}+2 \sigma\) distribution corresponding to the average stress current \(\overline{\mathrm{I}}_{\mathrm{FS}}\),

Equations (7) and (8). In equation (14) \(A_{o}\) and \(\alpha\) are found in Figure 7 under the \(\overline{\mathrm{x}}+2 \sigma\) category. S [Equation (10)] represents the slope to correct for actual \(\mathrm{I}_{\mathrm{FS}}\) versus \(\overline{\mathrm{I}}_{\mathrm{FS}}\) current levels, and \(P\) [Equation (15)] is the new term which is a slope to correct for the \(\sigma\) variation with \(\mathrm{I}_{\mathrm{FS}}, \mathrm{R}\) and t . The coefficients \(\gamma(\mathrm{R}), \delta(\mathrm{R})\) in P are found in Figure 7.
\(\mathbf{P}=\gamma(\mathbf{R}) \log _{10} \mathbf{t}+\delta(\mathbf{R}) \quad \% / \mathrm{mA}\)
where \(t\) is in \(10^{3}\) hours.

The degradation Equations (11) and (13) are considered accurate for the ranges of \(\mathrm{I}_{\mathrm{FS}} \leqslant 40 \mathrm{~mA}\) and \(\mathrm{R} \leqslant 20\); outside this range, the model does not predict degradation as well. Hence, check to see if \(I_{F S}\) and \(R\) satisfy the above conditions. If \(\mathrm{I}_{\mathrm{FS}}\) or R exceed these limits, prediction of \(D\) will be, in general, greater than the actual degradation due to large values for S and P which do not reflect actual \(S\) and \(P\). If \(\overline{\mathrm{I}}_{\mathrm{FS}}\) is approximately equal to the actual \(\mathrm{I}_{\mathrm{FS}}\), then the second term in the degradation equations need not be determined. Otherwise, the second term needs to be determined to obtain true emitter degradation, D . If \(\mathrm{I}_{\mathrm{FS}}<\overline{\mathrm{I}}_{\mathrm{FS}}\), then the degradation, D , will be less than the degradation, \(\overline{\mathrm{D}}\), corresponding to \(\overline{\mathrm{I}}_{\mathrm{FS}}\), and vice versa when \(\mathrm{I}_{\mathrm{FS}}>\overline{\mathrm{I}}_{\mathrm{FS}}\). A quick and coarse estimate for degradation \(\bar{D}\) can be obtained by using \(\bar{D}=A_{o} R^{\alpha} t^{(R)}\) for a specific \(R\) with approximate values for \(\alpha \approx 0.4\) and \(n \approx 0.3\). Figure 4 represents plots of Equations (11) and (13) for \(\mathrm{R}=1\) and \(\mathrm{IFS}_{\mathrm{FS}}=1.6,6.3\), and 16 mA at both \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\). These plots are very useful in making a quick approximation of D for the specific conditions for which the plots have been made. These conditions represent the recommended operating conditions for the three HP optocoupler families.

This discussion of reliability data and its interpretation with model equations is qualified to specific optocouplers, 6N135 and 6N138, where continuous LED operation was maintained, and extrapolation of data for times beyond 10,000 hours is assumed to be valid. Different types of LEDs or preparation processes may produce different results than those presented in this section. These expressions only incorporate the first order effect, emitter degradation \(\Delta \eta / \eta\), whereas comments about higher order effects upon total CTR degradation will be given in the following section. With these expressions for degradation, accelerated testing may be accomplished by employing large values of \(R\). Such testing can provide a means by which to determine acceptable emitter lots for optocoupler fabrication, acceptable degradation performed for lot selection, or predict functional lifetime expectance for optocouplers under specific operational conditions.

An important point to note is that the total operational life of an optocoupler is greater than the worst case mean plus \(2 \sigma\) distribution implies. Specifically, the worst case degradation given in Figures \(4 \mathrm{a}\left(25^{\circ} \mathrm{C}\right)\) and \(4 \mathrm{~b}\left(85^{\circ} \mathrm{C}\right)\) are for the continuous operation of the 6 N 135 optocoupler.

The actual lifetime for an optocoupler is greater than Figures 4 a and 4 b would indicate since the majority of units will be centered around the mean distribution lifetime. Secondly, the optocoupler which is operated at some signal duty factor less than \(100 \%\), for example \(50 \%\), would increase the optocoupler's life by a factor of two. Third, the fact that an optocoupler is used within equipment which may have a typical 2000 hours per year (8 hours/day - 5 days/week - 50 weeks/year) instrument or system operating time, could expect to increase the optocoupler's life by another factor of 4.4 in terms of years of useful life.

Figure 4. Calculated Curves of Relative Emitter Efficiency vs. Time for \(R=1\) : IFS \(=I_{F M}=1.6,6.3\), and 16 mA which are Recommended \(I_{F}\) for 6 N 138 , 6N137, and 6N 135 Optocouplers Respectively. Mean, Mean + \(2 \sigma\) Distributions. a) \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\), b) \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\).

The appropriate operating time considerations will vary depending upon the designer's knowledge of the system in which the optocoupler will be used. The operating lifetime of an optocoupler can be expressed, for a maximum allowable degradation at a particular \(\mathrm{I}_{\mathrm{FS}}\), by using Figures 4 a and 4 b for \(\mathrm{t}_{\text {continuous lifetime }}\) and the following expression:
(16)
\({ }^{\mathrm{t}_{\text {continuous }}}=\left[\begin{array}{c}\mathrm{t}_{\text {system }} \\ \text { lifetimetime }\end{array}\right]\left[\begin{array}{c}\text { Data Duty } \\ \text { Factor }\end{array}\right]\left[\begin{array}{c}\text { System Use } \\ \text { Data Factor }\end{array}\right]\)
Another equally important point to observe is that of the worst case conditions under which the optocoupler is used. As will be illustrated in the design examples, the worst possible combination of variations in \(\mathrm{V}_{\mathrm{cc} 1}, \mathrm{~V}_{\mathrm{cc} 2}, \mathrm{R}_{\mathrm{in}}\), CTR, \(\mathrm{R}_{\mathrm{L}}, \mathrm{I}_{\mathrm{IL}}\), and temperature still result in the optocoupler functioning over an extended length of time (\(10^{5}\) hours) for a particular maximum allowable degradation. However, the likelihood of seven parameters all deviating in their worst directions at the same time is extremely remote. A thorough statistical error accumulation analysis would illustrate that this worst-worst case is not a representative situation from which to design.

\section*{Higher Order Effects}

The first order effect of emitter degradation, \(\Delta \eta / \eta\), has a pronounced influence upon the \(\triangle C T R\) as explained in the previous sections; however, consideration of higher order effects is important as well.

Consider the second term in Equation (5) \((\Delta \eta / \eta)_{\mathrm{IF}}\) \(\left(\partial \ln \beta / \partial \ln \mathrm{I}_{\mathrm{P}}\right)_{\mathrm{t}}\), the emitter degradation part has been explained; however, \(\left(\partial \ln \beta / \partial \ln I_{P}\right)_{t}\) represents a shift in the operating point of the output amplifier of an optocoupler. The term \(\left(\partial \ln \beta / \partial \ln \mathrm{I}_{\mathrm{P}}\right)\) can be rewritten as \((1 / 2.3 \beta)\) \(\left(\partial \beta / \partial \log _{10} \mathrm{I} \mathrm{P}\right.\)) which is more convenient to use with the accompanying typical curves of \(\beta\) versus \(\log _{10} I_{P}\) for the two optocouplers 6N135 and 6N138, given in Figure 5a.

If the operating photocurrent, \(\mathrm{I}_{\mathrm{P}}\), is to the right of the maximum \(\beta\) point of either curve, then with reduced emitter efficiency over time, \(\mathrm{I}_{\mathrm{P}}\) will decrease, but the increasing \(\beta\) will tend to compensate for this degradation. However, if the operating \(\mathrm{I}_{\mathrm{P}}\) is to the left of the maximum \(\beta\) and then \(\mathrm{I}_{\mathrm{P}}\) decreases, the \(\beta\) change will accentuate the emitter's degradation, yielding a larger CTR loss. The magnitude of the contributions of \(\partial \ln \beta / \partial \ln \mathrm{I}_{\mathrm{P}}\) to overall CTR degradation can be illustrated by the following examples.

Consider a 6 N 138 optocoupler of Figure 5 c operating at its recommended \(\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}\) which corresponds to an \(\mathrm{I}_{\mathrm{P}} \approx 1.6 \mu \mathrm{~A}\). (An \(\mathrm{I}_{\mathrm{F}}\) to \(\mathrm{I}_{\mathrm{P}}\) relationship for HewlettPackard optocouplers is 1 mA input current yields approximately \(1 \mu \mathrm{~A}\) of photodiode current.) At \(\mathrm{I}_{\mathrm{P}}=1.6 \mu \mathrm{~A}\), the slope of the \(V_{C E}=5 \mathrm{~V}\) curve is equal to \(-15,000\) and the
gain is \(\beta=26,000\); hence, \(\partial \ln \beta / \partial \ln \mathrm{I}_{\mathrm{P}} \approx-0.25\). If, for instance, the emitter degradation \(\Delta \eta / \eta\) is \(-10 \%\), then the second order term would improve the overall CTR degradation, i.e.,
\(\frac{\Delta \text { CTR }}{\text { CTR }}=\left(\frac{\Delta \eta}{\eta}\right)+\left(\frac{\Delta \eta}{\eta}\right)\left(\frac{\partial \ln \beta}{\partial \ln I_{P}}\right)+\ldots=-10 \%+2.5 \%=-7.5 \%\)

This improvement is what was expected while operating on the right side of the \(\beta\) maximum. In fact, with an \(\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}\) or \(\mathrm{I}_{\mathrm{P}} \approx 4 \mu \mathrm{~A}\), the term \(\partial \ln \beta / \partial \ln \mathrm{I}_{\mathrm{P}}=-0.8\), and again, if \(\Delta \eta / \eta=-10 \%\), the resulting \(\Delta\) CTR/CTR \(=-2 \%\), nearly cancelling the emitter's degradation.

Figure 5. a) Typical DC Current Gain, \(\beta\), vs. Photocurrent, IP, for 6N135 and 6N138 Optocouplers. Current Diagrams and Typical Values of \(I_{F}\) and CTR for Hewlett-Packard Optocouplers, b) 6N135, c) 6 N 138 .

With the 6 N 135 optocoupler, Figure 5 b operating at \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\), or \(\mathrm{I}_{\mathrm{P}} \approx 10 \mu \mathrm{~A}\), which corresponds to the maximum \(\beta\) point on the \(\mathrm{V}_{\mathrm{CE}}=.4 \mathrm{~V}\) curve, the slope is zero and the total CTR degradation is basically the emitter's degradation.

Another subtle effect is seen from the third term in Equation (5), (\(\Delta \beta / \beta) \mathrm{IP}\), over time. At constant IP, \(\beta\) can increase or decrease by a few percent over 10,000 hours. This change is so small that the third term is generally neglected.

a

b

Figure 6. a) Typical Output Current, IO, vs. Photocurrent, Ip, for 6N137 Optocoupler.
b) Circuit Diagram and Typical Values of IF and CTR for 6N137 Optocoupler.

For the optocouplers containing an output amplifier, such as the 6 N 137 , which switches abruptly about a particular threshold input current, the actual emitter degradation can be determined from Equations (11) and (13). An appropriate \(\mathrm{I}_{\mathrm{F} \text { initial }}\) can be determined to provide for adequate guard band current which will allow the optocoupler emitter to degrade while maintaining sufficient \(\mathrm{I}_{\mathrm{P}}\) to switch the amplifier. An actual design procedure to determine the needed \(\mathrm{IF}_{\text {initial }}\) for proper operation of Hewlett-Packard optocouplers is given in the design examples section.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{MATRIX OF COEFFICIENTS} \\
\hline & \multicolumn{2}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{4}{|c|}{\(85^{\circ} \mathrm{C}\)} \\
\hline & \multirow{2}{*}{\(\overline{\mathbf{x}}\)} & \multirow{2}{*}{\(\overline{\mathbf{X}}+2 \sigma\)} & \multicolumn{2}{|c|}{\(\overline{\mathbf{x}}\)} & \multicolumn{2}{|r|}{\(\overline{\mathrm{X}}+2 \sigma\)} \\
\hline & & & R<6 & 6 \(\leqslant\) R & \(\mathrm{R}<8\) & \(8 \leqslant R\) \\
\hline A & 4.95 & 9.7 & 6.8 & 5.0 & 15.0 & 11.0 \\
\hline \multirow[t]{3}{*}{\(\alpha\)} & . 388 & . 428 & . 302 & . 467 & . 284 & . 430 \\
\hline & \multicolumn{2}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{4}{|c|}{\(85^{\circ} \mathrm{C}\)} \\
\hline & \(\mathrm{R} \leqslant 1\) & \(R \geqslant 1\) & \multicolumn{2}{|c|}{\(\mathrm{R} \leqslant 1\)} & \multicolumn{2}{|r|}{\(\mathrm{R} \geqslant 1\)} \\
\hline \(\alpha(\mathrm{R})\) & . 19 R 052 & . \(19 \mathrm{R}^{.32}\) & \multicolumn{2}{|l|}{. 32 R . 08} & \multicolumn{2}{|l|}{. 32 R \({ }^{30}\)} \\
\hline \multirow[t]{2}{*}{\(\beta(\mathbf{R})\)} & . 055 & . 055 R \({ }^{.68}\) & \multicolumn{2}{|l|}{. 11 R \({ }^{25}\)} & \multicolumn{2}{|l|}{. 11 R \({ }^{65}\)} \\
\hline & \multicolumn{2}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{4}{|c|}{\(85^{\circ} \mathrm{C}\)} \\
\hline \(\gamma(\mathrm{R})\) & \multicolumn{2}{|c|}{. 063 R \({ }^{\text {. }}\)} & \multicolumn{4}{|c|}{. 154 R \({ }^{26}\)} \\
\hline \(\delta(\mathbf{R})\) & \multicolumn{2}{|c|}{. 081 R \({ }^{38}\)} & \multicolumn{4}{|c|}{. 196 R \({ }^{39}\)} \\
\hline
\end{tabular}

Figure 7. Matrix of Coefficients.
1. Specify \(I_{F S}, I_{F M}\)
2. Determine \(R=I_{F S} / I_{F M} \leqslant \mathbf{2 0}\)

Degradation Model Equations (11) and (13) Valid
3. First Approximation of Degradation
\[
\begin{aligned}
& \bar{D}_{\bar{x}}=A_{o} R^{\alpha_{t}}{ }^{n} \\
& \text { or } \\
& \bar{x}+2 \sigma
\end{aligned}
\]
(\%) with \(\alpha \approx .4, A_{o}\) (Figure 7)
\(\mathrm{n} \approx .3, \mathrm{t}\) in \(10^{3}\) hours
(\(\overline{\mathrm{D}}\) corresponds to \(\bar{I}_{\mathrm{FS}}\))
4. Calculate \(\bar{I}_{F S}= \begin{cases}14.13+9.06 \log _{10} R @ 25^{\circ} \mathrm{C} \mathrm{mA} \\ 10.5+5.76 \log _{10} R @ 85^{\circ} \mathrm{C} \mathrm{mA} & \text { Equation (7) } \\ & \text { If } I_{F S} \approx I_{F S}, S t e p ~ \\ & \text { Equations }(11) \text { and (13) do second terms in } \\ & \text { Equation (8) }\end{cases}\)
5. Calculate \(n(R)=.0475 \log _{10} R+.25\)
6. Calculate
\[
\left.\begin{array}{lll}
\mathbf{S}=\alpha(\mathbf{R}) \log _{10} t+\beta(\mathbf{R}) & \% / \mathrm{mA} & \alpha(\mathbf{R}), \beta(\mathbf{R}) \\
\mathbf{P}=\gamma(\mathbf{R}) \log _{10} \mathbf{t}+\delta(\mathbf{R}) & \% / \mathrm{mA} & \gamma(\mathbf{R}), \delta(\mathbf{R})
\end{array}\right\} \quad \begin{aligned}
& \text { Figure } 7 \\
& \mathbf{t} \text { in } 10^{3} \text { hours }
\end{aligned}
\]
7. Calculate Mean, Mean \(+2 \sigma\) Degradation (No Approximation)
\[
\begin{aligned}
& D_{\bar{x}}=A_{o} R^{\alpha_{t}} n^{n(R)}+S\left[I_{F S}-\bar{I}_{F S}\right] \\
& D_{\bar{x}}+2 \sigma=A_{o} R^{\alpha_{t} n(R)}+[S+2 P]\left[I_{F S}-I_{F S}\right] \\
& \left(A_{0}, \alpha \text { via Figure } 7, t \text { in } 10^{3} \text { hours }\right)
\end{aligned}
\]

8 For Second Order Effect, Determine Slope
\[
\frac{\partial \ln \beta}{\left.\partial \ln \right|_{\mathbf{P}}}=\frac{1}{2.3 \beta} \frac{\partial \beta}{\partial \log _{10} I_{P}}
\]

Figure 5a-typical curves with an approximation for HP optocouplers of \(I_{F}=1 \mathrm{~mA}\) yields \(I_{P} \approx 1 \mu \mathrm{~A}\)

9a. Total CTR Degradation for Mean Distribution
\[
\frac{\Delta C T R}{C T R}=D_{\bar{x}}+D_{\bar{x}}\left(\frac{\partial \ln \beta}{\partial \ln I_{P}}\right)
\]

9b. Total CTR Degradation for Mean \(+2 \sigma\) Distribution
\[
\frac{\Delta C T R}{C T R}=D_{\bar{x}}+2 \sigma+D_{\bar{x}}+2 \sigma\left(\frac{\partial \ln \beta}{\partial \ln I_{\mathrm{P}}}\right)
\]

\section*{Practical Application}

A very common application of an optocoupler is to function as the interfacing element between digital logic. In this section, the designer will be shown an approach which will insure the initial and long term performance of such an interface, and take into account the practical aspects of the system that surrounds it. These system elements include the data rate, the logic families being interfaced, the variations of the power supply, the tolerances of the components used, the operational temperature range, and lastly the expected lifetime of the system.

The system data speed can be considered as the primary selection criteria for selecting a specific optocoupler family. Figure 9 lists the ranges of data rates for four HewlettPackard optocoupler families when driven at specified LED input current, IF. With this table, and the knowledge of the system data rate requirements, it is possible to select an optimum coupler.

An example of an optocoupler interconnecting two logic gates is shown in Figure 8. A logic low level is insured when the saturated output sinking current, \(\mathrm{I}_{\mathrm{O}}\), is greater than the combined sourcing currents of the pull-up resistor, and the logic low input current, \(\mathrm{I}_{\mathrm{IL}}\), of the interconnecting gate. Using the coupler specifications selected from Figure 9 and the corresponding CTR (MIN) from Figure 10,

Figure 8. Typical Digital Interface Using an Optocoupler.
\[
\begin{align*}
& I_{F(M I N)}=\frac{V_{c c 1 \text { (MIN) }}-V_{F(M A X)}-v_{O L}}{R_{\text {in (MAX) }}} \tag{18}\\
& I_{F(M A X)}=\frac{v_{c c 1}(M A X)-V_{F(M I N)}-V_{O L}}{R_{\text {in (MIN) }}} \tag{19}
\end{align*}
\]
\(I_{F}=\frac{I_{0} \times 100}{\operatorname{CTR}(M I N)}\)
\(R_{\text {in }}=\frac{V_{c c 1}-V_{F}-V_{O L}}{I_{F}}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{FAMILY} & \multirow[t]{2}{*}{NRZ DATA RATE BITS/S} & \multicolumn{7}{|c|}{INPUT CURRENT - \(\mathbf{I}_{\mathbf{F}}\)} \\
\hline & & . 5 mA & 1.0 mA & 1.6 mA & 7.5 mA & 10 mA & 12 mA & 16 mA \\
\hline 6N135/6 ANODE & MIN & & & & & & & 333k \\
\hline TRANSISTOR GNO & TYP & & & & & & & 2M \\
\hline & MIN & 12k & & 22k & & & 125k & \\
\hline DARLINGTON 4 [40 & TYP & 100k & & 200k & & & 840k & \\
\hline ANODE 1 - \(\mathrm{V}_{6}\) & MIN & & & & & 1.8k & & \\
\hline & TYP & & 640 & & & 6.5k & & \\
\hline \begin{tabular}{l}
6N137 \\
\(1 \mathrm{~T}_{\mathrm{cc}}^{8}\) \\
anode \\
2-7 \(v_{E}\)
\end{tabular} & MIN & & & & 6.7M & & & \\
\hline GATE 5
\(\square\) & TYP & & & & 10M & & & \\
\hline
\end{tabular}

Figure 9. Figure 13.5-2. Optocoupler Data Rates Specifications.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow{2}{*}{FAMILY}} & \multicolumn{6}{|c|}{\(\% C T R @ I_{F}=(m A)\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TEMP } \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\]} & \multirow{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} \\
\hline & & . 5 & 1.0 & 1.6 & 5 & 10 & 16 & & \\
\hline \multirow{2}{*}{\begin{tabular}{l}
SINGLE \\
TRANSISTOR
\end{tabular}} & 6N135 & & & & & & 7 & 25 & 0.4 \\
\hline & 6N136 & & & & & & 19 & & \\
\hline \multirow{2}{*}{\begin{tabular}{l}
SPLIT \\
DARLINGTON
\end{tabular}} & 6N138 & & 300 & & & & & 0-70 & 0.4 \\
\hline & 6N139 & 400 & 500 & & & & & 0-70 & 0.4 \\
\hline \multirow{2}{*}{DARLINGTON} & 4N45 & & 250 & & & 200 & & 0-70 & 1.0 \\
\hline & 4N46 & 350 & 500 & & & 200 & & 0-70 & 1.0 \\
\hline \begin{tabular}{l}
OPTICALLY \\
COUPLED \\
GATE
\end{tabular} & 6N137 & & & & 400 & & & 0-70 & 0.6 \\
\hline
\end{tabular}

Figure 10. Optocoupler CTR (MIN).
it is possible to determine from Equation (20) the minimum initial value of \(I_{F}\) for the coupler. The design criteria is that \(\mathrm{I}_{\mathrm{O}} \geqslant \mathrm{I}_{\mathrm{IL}}+\mathrm{I}_{\mathrm{R}}\) for the \(\mathrm{V}_{\mathrm{IL}}\) specified in Figure 11.

Using Equation (21), the typical value of \(\mathrm{R}_{\text {in }}\) can be calculated for the selected \(\mathrm{I}_{\mathrm{F}}\) and the logic low output voltage, \(\mathrm{V}_{\mathrm{OL}}\), of the driving gate. The \(\mathrm{V}_{\mathrm{OL}}\) of the logic family is given in Figure 11. The next step is to determine the worst case value of the LED input current, \(\mathrm{I}_{\mathrm{F}}\), resulting from the tolerance variations of the LED current limiting resistor, \(\mathrm{R}_{\text {in }}\), and the power supply voltage, \(\mathrm{V}_{\mathrm{cc} 1}\). The conditions of \(\mathrm{I}_{\mathrm{F}}\) (MIN) and the initial CTR (MIN) are then used to determine the initial worst case value of \(\mathrm{I}_{\mathrm{O}(\mathrm{MIN}) \text {. Conversely, the worst case CTR }}\) degradation will occur when the LED is stressed at \(\mathrm{I}_{\mathrm{F}}\) (MAX) conditions; thus, \(\mathrm{I}_{\mathrm{F}}\) (MAX) will be used to determine the worst case degradation of the optocoupler performance. Using the maximum \(\mathrm{V}_{\mathrm{cc} 1}\) and the minimum \(\mathrm{R}_{\text {in }}\) will accomplish this worst case calculation, as shown in Equation (19).
\begin{tabular}{|l||cccc||ccc|}
\hline TTL FAMILY & \(I_{I L}\) & \(V_{I L}\) & \(I_{I H}\) & \(V_{I H}\) & \(I_{O L}\) & \(V_{O L}\) & \(I_{O H}\) \\
\hline 74 S & -2 mA & .8 V & \(50 \mu \mathrm{OH}\) & 2 V & 20 mA & .5 V & \(-1000 \mu \mathrm{~A}\) \\
\hline 74 H & -2 mA & .8 V & \(50 \mu \mathrm{~A}\) & 2 V & 20 mA & .4 V & \(-500 \mu \mathrm{~A}\) \\
2.4 V \\
74 & -1.6 mA & .8 V & \(40 \mu \mathrm{~A}\) & 2 V & 16 mA & .4 V & \(-400 \mu \mathrm{~A}\) \\
\hline 74 LS & -.36 mA & .8 V & \(20 \mu \mathrm{~V}\) & 2 V & 8 mA & .5 V & \(-400 \mu \mathrm{~A}\) \\
2.7 V \\
74 L & -.18 mA & .7 V & \(10 \mu \mathrm{~A}\) & 2 V & 3.6 mA & .4 V & \(-200 \mu \mathrm{~A}\) \\
\hline
\end{tabular}

Figure 11. Logic Interface Parameters.
The change in CTR from the initial value at time \(t=0\) to a final value at some later time can be compensated by
choosing \(a\) value of \(R_{L}\) which is consistent with \(\mathrm{I}_{\mathrm{O}}(\mathrm{MIN})^{-m I} \mathrm{IL}^{\text {at }}\) at the end of system life. Equation (22) describes this worst case calculation.

\(\mathrm{D}_{\mathrm{x}+2 \sigma}=\) worst case CTR degradation
The selection of the maximum value of \(\mathrm{R}_{\mathrm{L}}\) is also of important in that its value insures that the collector is pulled up to the logic one voltage conditions, \(\mathrm{V}_{\mathrm{IH}}\), under the conditions of maximum \(\mathrm{I}_{\mathrm{OH}}\) of the coupler, and the \(\mathrm{I}_{\mathrm{IH}}\) of the interconnecting gate.
\(R_{L(\text { MAX })} \leqslant \frac{V_{c c 2}(\text { MIN })-V_{O H}}{I_{O H}(\text { MAX })+m I_{I H}}\)

The selection of the value of \(\mathrm{R}_{\mathrm{L}}\) between the boundaries of \(\mathrm{R}_{\mathrm{L} \text { (MIN) }}\), and \(\mathrm{R}_{\mathrm{L}}\) (MAX) has certain trade offs. As in any open collector logic system, \(\mathrm{T}_{\mathrm{PLH}}\) increases with increasing \(\mathrm{R}_{\mathrm{L}}\). Conversely, as \(\mathrm{R}_{\mathrm{L}}\) is increased above \(\mathrm{R}_{\mathrm{L}}\) MIN , a larger guardband between \(\mathrm{I}_{\mathrm{OMIN}}\) and \(\mathrm{I}_{\mathrm{IL}}+\mathrm{I}_{\mathrm{R}}\) is achieved. Engineering judgement should be employed here to achieve the optimum trade off for desired performance.

Using the coefficient Figure 7 and Equations (11) and (13), the following examples are developed to demonstrate the methods of optocoupler system design in the presence of the mean and mean plus two sigma CTR degradation.

\section*{Example 1.}

\section*{System Specifications}

Data Rate
Logic Family
Power Supply 1 \& 2
Component Tolerances
Temperature Range
Expected System Lifetime

20 k bit NRZ
Standard TTL
\(5 \mathrm{~V} \pm 5\)
\(\pm 5 \%\)
\(0-70^{\circ} \mathrm{C}\)
\(350 \mathrm{k} \mathrm{hr}(40 \mathrm{yr})\) at \(50 \%\) system use time and 50\% Data Duty Factor
\(I_{F(M I N)}=\frac{4.75-1.7-.4}{1890 \Omega}=1.4 \mathrm{~mA}\)

Step 3. \(I_{F}\) (MAX)
\(I_{F(M A X)}=\frac{V_{\text {cc1 (MAX) }}-V_{F(\text { MIN })}-V_{O L}}{R_{\text {in (MIN) }}}\)
\(I_{F(M A X)}=\frac{5.25-1.4-.4}{1710 \Omega}=2.02 \mathrm{~mA}\)

Step 4. Determine continuous operation time for LED emitter.
\(\underset{\text { lifetime }}{\mathrm{t}_{\text {continuous }}}=\left[\begin{array}{c}\mathrm{t}_{\text {system }} \\ \text { lifetime }\end{array}\right]\left[\begin{array}{c}\text { Data Duty } \\ \text { Factor }\end{array}\right]\left[\begin{array}{l}\text { System Use } \\ \text { Duty Factor }\end{array}\right]\)
\(=(40 \mathrm{yr} \times 8.76 \mathrm{k} \mathrm{hr} / \mathrm{yr})(50 \%)(50 \%)\)
\(t_{\text {continuous }}=87.60 \mathrm{~K} \mathrm{hr}\) lifetime

Step 5. Obtain the mean and mean \(+2 \sigma\) CTR degradation at \(I_{F}\) (MAX) and \(t_{\text {continuous lifetime }}{ }^{\text {either as an }}\) approximation from Figure 4 or by calculations as shown below.

Step 5a. Determine \(D_{\bar{x}}\)
\(D_{\bar{x}}=A_{o} t^{25}+S\left[I_{F S}-\bar{I}_{F S}\right]\)
\[
\begin{equation*}
\left.D_{\bar{x}}=4.95 t_{(k ~ h r}\right)^{.25}+\left[.186 \log t_{(k ~ h r)}+.055\right] \tag{27}
\end{equation*}
\]
\[
\left[I_{F(M A X)}-14.13 \mathrm{~mA}\right]
\]
\[
D_{\bar{x}}=4.95(87.6)^{25}+(.186 \log 87.6+.055)
\]
\[
(2.02 \mathrm{~mA}-14.13 \mathrm{~mA})
\]
\(D_{\bar{x}}=\mathbf{1 0 . 1 0 \%}\) for 40 yr system operation
Step 5b. Determine \(\bar{D}_{\mathbf{x}}+2 \sigma\)
\(D_{\bar{x}+2 \sigma}=A_{o} \mathrm{t}^{25}+[\mathrm{S}+2 \mathrm{P}]\left[\mathrm{I}_{\mathrm{FS}}+\bar{I}_{\mathrm{FS}}\right]\)
\(\left.\mathrm{D}_{\overline{\mathrm{x}}+2 \sigma}=9.7 \mathrm{t}_{(\mathrm{k} \mathrm{hr}}\right)^{.25}+\left[2\left(.063 \log \mathrm{t}_{(\mathrm{k} \mathrm{hr})}+.081\right)\right.\)
\[
\begin{aligned}
& \left.\left.+\left(.186 \log t_{(k ~ h r}\right)+.055\right)\right] \\
& \times\left[I_{F(M A X)}-14.13 \mathrm{~mA}\right] \\
\mathrm{D}_{\overline{\mathrm{x}}}+2 \sigma= & 9.7(87.6) \cdot 25+[2(.063 \log 87.6+.081) \\
& +(.186 \log 87.6+.055)] \\
& x[2.02 \mathrm{~mA}-14.13 \mathrm{~mA}] \\
\mathrm{D}_{\overline{\mathrm{x}}+2 \sigma}= & 19.71 \%
\end{aligned}
\]

Step 6. Guardband the worst case value of CTR degradation.

It is often desirable to add some additional operating margin over and above conditions dictated by simple worst case analysis. The use of engineering judgement to increase the worst possible CTR degradation by an additional \(5 \%\) margin would insure that the entire distribution would fall within the analysis. Thus,
\(\mathrm{D}_{\overline{\mathrm{x}}}+2 \sigma+5 \%=24.71 \%\)
Step 7. Selecting \(R_{L}\) (MIN) for guardbanded worst case
\(D_{\bar{x}+2 \sigma}+5 \% \quad, m=1\)

\(R_{L(\text { MIN })} \geqslant \frac{5.25-.4}{\frac{1.4 \times 10^{-3} \cdot 500 \%\left(1-\frac{24.71 \%}{100}\right)}{100}-1(1.6 \mathrm{~mA})}\)
\(R_{L}(\) MIN \()=1.32 \mathrm{k} \Omega\)

Step 8. \(\quad\) Select \(R_{L}\) (MAX)
\(R_{L(M A X)} \leqslant \frac{V_{c c 2}(M I N)-V_{O H}}{I_{O H}(M A X)+m I_{I H}}\)
\(R_{L(\text { MAX })} \leqslant \frac{4.75-2.4}{250 \mu \mathrm{~A}+40 \mu \mathrm{~A}}=8.1 \mathrm{k}\)

The range of \(\mathrm{R}_{\mathrm{L}}\) is from \(1.32 \mathrm{k} \Omega\) to \(8.1 \mathrm{k} \Omega\). It is desirable to select a pull-up resistor which optimizes both speed performance and additional \(\mathrm{I}_{\mathrm{O}}\) guardband. This criteria leads to a tradeoff between a value close to \(R_{L}\) (MIN) for speed performance and one bordering near \(R_{L}\) (MAX) for \({ }^{1} \mathrm{O}\) guardbanding. In this design example, the system's lifetime has a higher priority than does the moderate speed performance demanded from the optocoupler. An \(\mathrm{R}_{\mathrm{L}}\) of \(3.3 \mathrm{k} \Omega \pm 5 \%\) is selected under this condition.

An additional guardband of \(5 \%\) was added to the worst case \(\mathrm{D}_{\overline{\mathrm{x}}}+{ }_{2 \sigma}\) CTR degradation guardband to insure that even a greater percentage of the distribution would be accounted for. The actual percentage difference between \(I_{O L}\) (MAX) and \(\mathrm{I}_{\mathrm{O}}\) (MIN) at the end of system life is shown below:
(30)
\(\mathrm{I}_{\mathrm{O}(\mathrm{MIN})}=\frac{\operatorname{CTR}_{(\text {MIN })} \cdot \mathrm{I}_{\mathrm{F}(\text { MIN })}\left(1-\frac{\overline{\mathrm{D}}_{\overline{\mathrm{x}}}+2 \sigma}{100}\right)}{100}\)
\(I_{O L(M A X)}=\frac{v_{c c 2(M A X)}-v_{O L}}{R_{L(T Y P-5 \%)}}+m\left|I_{I L}\right|\)
\% Guardband \(=\left[1-\frac{\mathrm{I}_{\mathrm{OL}}(\mathrm{MAX})}{\mathrm{I}_{\mathrm{O}}(\text { MIN })}\right] \times 100\)
For the example shown, the additional end of system life \(\mathrm{I}_{\mathrm{O}}\) guardband results from the selection of an \(\mathrm{R}_{\mathrm{L}}\) greater than the \(\mathrm{R}_{\mathrm{L}}\) (MIN) \({ }^{\text {as shown in Steps } 9,10 \text {, and } 11 . ~}\)

Step 9. \(I^{\prime}\) (MIN \(^{\text {at }}\) and of system life
\(I_{O(\text { MIN })}=\frac{500 \% \cdot 1.4 \mathrm{~mA} \cdot\left(1-\frac{19.17 \%}{100}\right)}{100}=5.65 \mathrm{~mA}\)

Step 10. \(I_{O L}(M A X)\) for worst case of \(I_{R(M A X)}+I_{I L}\)
\(\mathrm{I}_{\mathrm{OL}(\mathrm{MAX})}=\frac{5.25-.4}{3.13 \mathrm{k} \Omega}+1.6 \mathrm{~mA}=3.14 \mathrm{~mA}\)
Step 11. \% Guardband
\(\%=1-\frac{3.14 \mathrm{~mA}}{5.65 \mathrm{~mA}} \quad 100=44.4 \%\)
(34)

Thus, this circuit interface design offers an additional \(44.4 \% \mathrm{I}_{\mathrm{O}}\) guardband beyond the \(19.71 \%\) required to compensate for the CTR change caused by 86.7 k hr of continuous operation at an \(I_{F}\) (MAX) of 2 mA . This extra guardband results from having chosen an \(\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k}\) rather than the lowest allowable value of \(\mathrm{R}_{\mathrm{L}}\) plus the engineering guardband chosen in Step 6.

\section*{Example 2.}

\section*{System Specifications}

Data Rate
Logic Family
Power Supply 1 and 2
Component Tolerance
Temperature Range
Expected System Lifetime

250K bit NRZ
TTL to LSTTL
\(5 \mathrm{~V} \pm 5 \%\)
\(\pm 5 \%\)
\(25^{\circ} \mathrm{C}\)
\(175 \mathrm{k} \mathrm{hr} \mathrm{(20} \mathrm{yr)} \mathrm{at}\) 50\% System Use Time and 50\% Data Duty Factor

\section*{Interface Conditions}

Coupler 6N136
\begin{tabular}{ll}
\(\mathrm{CTR}_{(\text {MIN })}\) & \(=19 \% @ \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\) \\
\(\mathrm{~V}_{\mathrm{OL}}\) & \(=.4 \mathrm{~V}\) \\
\(\mathrm{I}_{\mathrm{OH}}\) & \(=500 \mathrm{nA} @ \mathrm{~V}_{\mathrm{cc} 2}=5.0 \mathrm{~V}\) \\
\(\mathrm{~V}_{\mathrm{F}(\mathrm{TYP})}\) & \(=1.6 \mathrm{~V} @ \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\) \\
\(\mathrm{~V}_{\mathrm{F}(\mathrm{MIN})}\) & \(=1.5 \mathrm{~V} @ \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\) \\
\(\mathrm{~V}_{\mathrm{F}(\text { MAX })}\) & \(=1.7 \mathrm{~V} @ \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\)
\end{tabular}

Logic LSTTL

Again using Figure 7, the data rate dictates the use of a 6 N 136 at an \(\mathrm{I}_{\mathrm{F}}\) (TYP) of 16 mA . Using the same 12 step worst case analysis, it is possible to determine the values of \(\mathrm{R}_{\mathrm{in}}, \mathrm{R}_{\mathrm{L}}\) and the degree of guardbanding of \(\mathrm{I}_{\mathrm{O}}\) at end of system lifetime.

Step 1. \(R_{\text {in }}=187 \Omega\), select \(180 \Omega \pm 5 \%\)
\[
\begin{aligned}
& R_{L}(\text { MIN })=179 \Omega \\
& R_{L}(\text { MAX })
\end{aligned}=189 \Omega
\]

Step 2. \(I_{F(\text { MIN })}=14.02 \mathrm{~mA}\)
Step 3. \(I_{F(M A X)}=19 \mathrm{~mA}\)

Step 4. System Lifetime
\(t=43.8 \mathrm{khr}\)

Step 5. \(D_{\bar{x}}\) and \(D_{\bar{x}}+2 \sigma\) for \(I_{F(M A X)}\) of 19 mA
by calculation or from Figure 4

Step 6. Engineering Guardband of 5\%,
\(D_{\bar{x}}+2 \sigma+5 \%=33.5 \%\)
Step 7. \(R_{L}\) selection with guardbanding of \(D_{X+2 \sigma}+5 \%\)
\(R_{L(\text { MIN })}=3.44 \mathrm{k} \Omega\)
Step 8. \(R_{L(M A X)}=50 k \Omega\)
Step 9. \(R_{L}(T Y P)=5.1 k \Omega \pm 5 \%, R_{L}(T Y P-5 \%)\)
\(=4.84 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}(\mathrm{MAX}+5 \%)\)
\(=5.35 \mathrm{k} \Omega\)

Step 10. End of System Life \(\mathbf{I}_{\mathrm{O}}\) (MIN)
\(\mathrm{I}_{\mathrm{O}}(\mathrm{MIN})=1.5 \mathrm{~mA}\)
Step 11. \(I_{\mathrm{OL}}(\mathrm{MAX})=1.36 \mathrm{~mA}\)
Step 12. Engineering \% Guardband of \(\mathrm{I}_{\mathrm{O}}\) (MIN) \(=9.3 \%\)

\section*{Example 3.}

If a particular design requirements specifies a maximum tolerable degradation over a system lifetime, the optimum value of IF(TYP) can be obtained from Figure 12. For example, if a maximum acceptable degradation, \(\mathrm{D}_{\overline{\mathrm{x}}}+2 \sigma\), is \(40 \%\), and a continuous operation of 400 k hr is desired, this curve specifies that \(\mathrm{I}_{\mathrm{F}}\) (TYP) should be less than or equal to 10 mA . A 400 k hr continuous operation with \(100 \%\) system duty factor as might be encountered in telephone switching equipment is equivalent to 45 years of system lifetime.

If a 6 N139 split Darlington were used to interface an LSTTL logic gate with the system specifications stated, a collector pull-up resistor of as low as \(160 \Omega\) could be used. If an \(\mathrm{R}_{\mathrm{L}}\) of 1 k were selected, this optocoupler would offer an additional end of life guardband of \(81.8 \%\). This worst case analysis points out that with the knowledge of selecting proper values of \(\mathrm{R}_{\mathrm{L}}\), the CTR performance of the

Figure 12. Stress Current (\(\mathrm{I}_{\mathrm{FS}}\)) vs. Time vs. \% Degradation.
coupler far exceeds the normal MTBF requirements for most commercial electronic systems.

\section*{Consideration of the Optically Coupled Gate}

System data speed requirements in the multi-megabit range can also be communicated through an optocoupler. The first three coupler families listed in Figure 9 are not applicable in these very high speed data interface applications; however, the optically coupled gate, 6 N 137 , will function to speeds of up to 10 MHz . This type of coupler differs in operation from the single transistor and Darlington style units in that it exhibits a non-linear transfer relationship of \(\mathrm{I}_{\mathrm{F}}\) to \(\mathrm{I}_{\mathrm{O}}\). This is shown in Figure 13. The relationship is described as a minimum threshold of LED input current, IFth which is required to cause the output transistor to sink the current supplied by the pull-up resistor and interconnected gate. As the LED degrades, the effect is that a larger value of \(I F\) th is required to create the same detector photodiode current necessary to switch the output gate.

In the previous interface examples, the worst case analysis and guardbanding is based on the output collector current, \(\mathrm{I}_{\mathrm{O}}\). With the optically coupled gate, worst case guardbanding is concerned with the selection of the initial value of the \(\mathrm{I}_{\mathrm{F}}\), which at end of system lifetime will generate the necessary threshold photocurrent demanded by the gate's amplifier to change state.

Figure 13. 6N137 Input - Output Characteristics.

The calculation of the required \(\mathrm{I}_{\mathrm{F}}\) to allow for worst case LED degradation is approached by guardbanding the guaranteed minimum isolator input current, \(\mathrm{I}_{\mathrm{FH}}\), for a specified IOL and VOL interface. Equation (35) shows the relationship of the Ip to \(I_{F}\) for this coupler.
\(I_{P} \alpha\left(I_{F}\right)^{n} \quad\), where \(1.1 \leqslant n \leqslant 1.3\)

Using the concept that the guardbanding of the initial value of \(I_{F}\) will result in a similarly guardbanded \(I_{P}\), the relationship presented in Equation (36) results:
\(\left[1-\frac{D_{\bar{x}}+2 \sigma}{100}\right]=\left[\frac{I_{P H}}{I_{P}}\right]=\left[\frac{I_{F H}}{I_{F}}\right]^{n}\)
\(I_{F}=\frac{I_{F H}}{\left[1-\frac{D_{\bar{x}+2 \sigma}}{100}\right]^{n}}\)

The previous interface example showed that the first term of the \(\mathrm{D}_{\mathrm{x}}+2 \sigma\) equation dominated the magnitude of the worst case degradation. This term, \(A_{o} R^{\alpha_{t}} n^{n(R)}\), i.e., \(\left(9.7 \mathrm{t}_{(\mathrm{k} \mathrm{hr})} .25\right)\), does not contain an \(\mathrm{I}_{\mathrm{F}}\) current dependent term; thus, an approximation of the worst case LED degradation can be made that relates to the system's lifetime. This initial value of \(\mathrm{D}_{\mathrm{x}}+2 \sigma\) can be used in Equation (37) to calculate the initial value of the IF. With this initial IF, a more accurate degradation value can be calculated using Equation (28). This procedure results in an iterative process to zero in on a value of \(\mathrm{I}_{\mathrm{F}}\) that will insure reliable operation.

The following example will illustrate this approach.

\section*{Example 4.}

\section*{System Specifications}

Data Rate
6 MHz NRZ

Logic Family
Power Supply 1 and 2
Component Tolerance
Temperature Range
Expected System Lifetime
LSTTL to TTL
\(5 \mathrm{~V} \pm 5 \%\)
\(\pm 5 \%\)
\(0-70^{\circ} \mathrm{C}\)
\(203 \mathrm{k} \mathrm{hr} \mathrm{(23} \mathrm{yr)} \mathrm{at} 50 \%\)
System Use Time and
50\% Data Duty Factor
Step 1. Determine the continuous operation time for LED emitter

Step 2. Calculate the worst case LED degradation
\(D_{x+2 \sigma} \approx 9.7 t_{(k h r)} .25\)
\(D_{x+2 \sigma} \approx 9.7(50.3) .25\)
\(D_{\mathrm{x}+2 \sigma} \approx 26 \%\)
Step 3. Calculate the first approximation of guardbanded \(I_{F}, n=1.2\)
\(I_{F}=\frac{\mathrm{I}_{\mathrm{FH}}}{\left[1-\frac{\left(\approx \mathrm{D}_{\overline{\mathrm{x}}+2 \sigma}\right)}{100}\right]^{1 / \mathrm{n}}}=\frac{5 \mathrm{~mA}}{.78}=6.41 \mathrm{~mA}\)

Step 4. Calculate input resistor \(\mathbf{R}_{\text {in }}\)
\(R_{\text {in }} \leqslant \frac{v_{c c 1}(\text { MIN })}{}-V_{F(M A X)}-V_{O L}\)
\(R_{\text {in }} \leqslant \frac{4.75-1.7-.4}{.00641}\)
\(R_{\text {in }} \leqslant 413 \Omega\) select \(R_{\text {in }}=390 \Omega \pm 5 \%\)
Rin (MAX)
\(R_{\text {in }(M A X)}=409 \Omega\)
\(R_{\text {in (MIN) }}=370 \Omega\)

Step 5. Calculate the \(I_{F}\) (MAX)
\(I_{F(\text { MAX })}=\frac{V_{c c 1}(\text { MAX })}{}-V_{F(\text { MIN })}-V_{\text {OL }}\)
\(I_{F}=\frac{5.25-1.4-.4}{370}\)
\(I_{F}=9.32 \mathrm{~mA}\)

Step 6. Calculate the worst case \(D_{\overline{\mathbf{x}}}+2 \sigma\) for \(I_{F}\) (MAX)
\(D_{\bar{x}}+2 \sigma=25.8 \%+.747(9.32 \mathrm{~mA}-14.13 \mathrm{~mA})\)
\(D_{\overline{\mathrm{x}}+2 \sigma}=22.2 \%\)

Step 7. Calculate the new minimum required \(I_{F}\) at end of life based on degradation found in Step 6.
\(I_{(E O L)}=\frac{I_{F H}}{\left[1-\frac{22.2}{100}\right]^{1 / 1.2}}=\frac{5}{.81}=6.16 \mathrm{~mA}\)
Step 8. Calculate \(I_{F}\) (MIN)
\(\left.I_{F(\text { MIN })}=\frac{V_{c c 1}(\text { MIN })}{}-V_{F(\text { MAX }}-V_{O L}\right) ~\left(R_{\text {in (MAX) }}\right.\)
\(I_{F(\text { MIN })}=\frac{4.75-1.7-.4}{409}\)
\(I_{F(\mathrm{MIN})}=6.47 \mathrm{~mA}\)
Step 9. \(R_{L}(\) MIN \() \quad, m=1\)
\(R_{L(M I N)}=\frac{v_{c c 2}(M A X)-v_{O L}}{I_{O L}(M I N)^{-m I_{I L}}}\)
\[
=\frac{5.25-.6}{.016-.0016}
\]
\(R_{L(\text { MIN })}=332 \Omega\)
Step 10. \(R_{L}(\) MAX \() \quad, m=1\)
\(R_{L(M A X)}=\frac{V_{c c 2}(M A X)-V_{O H}}{I_{O H}(M A X)+\mathrm{ml}_{\mathrm{IH}}}\)
\(R_{L(M A X)}=\frac{4.75-2.4}{250 \mu A+40 \mu \mathrm{~A}}\)
\(R_{L(M A X)}=8.1 k \Omega\)

Step 11. Minimum \% Emitter Degradation Guardband
\(\%_{(M I N)}=\left[1-\frac{I_{F}(E O L)}{I_{F}(\text { MIN })} \quad 100\right]\)
\(4.8 \%=\left[\begin{array}{ll}1-\frac{6.16 \mathrm{~mA}}{6.47 \mathrm{~mA}} & 100\end{array}\right]\)
where IF (EOL) represents the switching threshold at the end of life.

Step 12. Maximum \% Emitter Degradation Guardband
\(\%_{(M A X)}=\left[1-\frac{I_{F}(E O L)}{I_{F}(M A X)}\right] 100\)
\(34 \%=\left[1-\frac{6.16 \mathrm{~mA}}{9.32 \mathrm{~mA}} 100\right]\)

The conclusions that are to be drawn from this analysis are that as long as the \(\mathrm{I}_{\mathrm{F}}\) (MAX) is less than \(\mathrm{I} \overline{\mathrm{FS}}=14.13 \mathrm{~mA}\), the worst-worst case CTR degradation may be calculated using only the first term, \(\mathrm{A}_{0} \mathrm{R}^{\alpha} \mathrm{t}^{\mathrm{n}(\mathrm{R})}\), of the \(\mathrm{D}_{\overline{\mathrm{x}}}+2 \sigma\) case. In the example presented, \(26 \%\) degradation was determined from the first term, and when the more accurate calculation using Equation (28) was used, a \(22 \%\) degradation resulted. The end of life IF guardband may be calculated using Equations (38) and (39). Using Equation (38), the minimum guardband is \(5.7 \%\), and with Equation (39), the maximum guardband is \(35 \%\).

\title{
Interfacing 18 Segment Displays to Microprocessors
}

\section*{INTRODUCTION}

Over the past four years, the need for alphanumeric displays has grown very rapidly due to the extensive use of microprocessors in new system designs. The HDSP-6508 and HDSP-6300 alphanumeric displays were developed to provide a low cost, easy-to-use alternative to \(5 \times 7\) dot matrix displays. These displays use an 18 segment display font that includes a centered decimal point and colon for increased readability. This font is capable of displaying the 64 character ASCII subset (numbers, punctuation symbols, and upper case alphabet) as well as many special purpose symbols. The HDSP-6504 and HDSP6508 are \(3.81 \mathrm{~mm}\left(0.150^{\prime \prime}\right)\) red 4 or 8 character displays in a dual-in-line package. The HDSP-6300 is a 3.56 mm (0.140 ") red 8 character display in a dual-in-line package. The HDSP-6508 has character-to-character spacing on \(6.35 \mathrm{~mm}(0.250\) ") centers while the HDSP-6300 has character-to-character spacing on \(5.08 \mathrm{~mm}(0.200\) ") centers. Paralleling the development of these alphanumeric displays have been the introduction of several new display interface circuits that simplify the use of the 18 segment display. These circuits include an ASCII to 18 segment decoder/driver and improved NPN Darlington digit drivers that are designed to interface directly to 5 volt digital logic. This Application Note deals with several techniques to interface the 18 segment display to microprocessor systems. Depending upon the overall system configuration, microprocessor time available to dedicate to display support, and the type of information to be displayed, the system designer would choose the best interface technique to drive an 18 segment display.

\section*{DISPLAY INTERFACE TECHNIQUES}

This application note will deal with four different techniques, as shown in Figure 1a-d, for interfacing the HDSP-6508 and HDSP-6300 displays to microprocessor systems.

1a. The REFRESH CONTROLLER interfaces the microprocessor system to a multiplexed LED display. The controller periodically interrupts the microprocessor and after each interrupt, the microprocessor supplies new display data for the next refresh cycle of the display.

1b. The DECODED DATA CONTROLLER refreshes a multiplexed LED display independently from the microprocessor system. A local RAM stores decoded display data. This data is continuously read from the RAM and then used to refresh the display. Whenever the display message is changed, the microprocessor decodes each character in software and writes the decoded data into the local RAM.

1c. The CODED DATA CONTROLLER also refreshes a multiplexed LED display independently from the microprocessor system. The local RAM stores ASCII data which is continuously read from the RAM, decoded, and used to refresh the display. The display message is changed by writing new ASCII characters within the local RAM.

1d. The DISPLAY PROCESSOR CONTROLLER uses a separate microprocessor to drive the LED display. This microprocessor provides ASCII storage, ASCII decode, and display refresh independently from the main microprocessor system. Software within the dedicated microprocessor provides many powerful features not available in the other controllers. The main microprocessor updates the LED display by sending new ASCII characters to the slave microprocessor.

\section*{COMPARISON OF INTERFACE TECHNIQUES}

The choice of a particular interface is an important consideration because it affects the design of the entire microprocessor system. Each interface requires one or more memory or I/O addresses. These addresses are generated by decoding the microprocessor address bus. The display decoder can be located within the microprocessor program or as circuitry within the display interface. Location of the display decoder within the microprocessor program gives the designer total control of the display font within the program. This feature can be particularly important if the display will be used to display different languages and special graphics symbols. The interface technique chosen may limit or interfere with some programming techniques used in the rest of the microprocessor program. For example, the use of an

WITHOUT DECODED
ASCII LOOKUP TABLE

Figure 1a. REFRESH CONTROLLER Display Interface

Figure 1c. CODED DATA CONTROLLER Display Interface

Figure 1b. DECODED DATA CONTROLLER Display Interface

Figure 1d. DISPLAY PROCESSOR CONTROLLER Display Interface
interrupt may restrict the use of some programming techniques used in the interruptable portions of the microprocessor program.
The REFRESH CONTROLLER requires continuous interaction from the microprocessor system. Since the microprocessor actively strobes the LED display, the display interface circuitry is reduced. Generally, this technique provides the lowest hardware cost for any given display length. The display decoder can be located either within the microprocessor program or as circuitry within the interface. Display strobing is accomplished through use of the microprocessor interrupt circuitry. Demands upon microprocessor time are directly proportional to display length.

The DECODED DATA CONTROLLER and CODED DATA CONTROLLER require microprocessor interaction only when the display message is changed. Both techniques employ a local RAM memory that is continuously scanned by the display interface electronics. For the DECODED DATA CONTROLLER, the display decoder is located within the microprocessor software and the local RAM stores decoded display data. The CODED DATA CONTROLLER includes the display decoder within the display interface circuitry and the local RAM stores ASCII data. Since ASCII data is more compact than decoded display data, the CODED DATA CONTROLLER uses a smaller RAM than the DECODED DATA CONTROLLER. Both techniques allow the microprocessor to individually
change each display character by a memory or I/O write to a specific display address. These interface techniques can accept new data at a very high rate.
The DISPLAY PROCESSOR CONTROLLER, like the previously defined CODED and DECODED DATA CONTROLLERS, requires microprocessor interaction only when the display message is changed. By using a dedicated microprocessor, the DISPLAY PROCESSOR CONTROLLER provides many additional display features. These features include multiple entry modes, a blinking cursor, editing commands, and a data output function. The software with the DISPLAY PROCESSOR CONTROLLER further reduces microprocessor interaction by providing more sophisticated data entry modes compared to the RAM entry mode provided by the DECODED DATA and CODED DATA CONTROLLERS. The display decoder can either be designed into the dedicated display microprocessor or can be located within a separate PROM. The use of a PROM allows the user to provide a special character font with additional circuitry. The DISPLAY PROCESSOR CONTROLLER does not allow as high a data entry rate as either the DECODED DATA or CODED DATA CONTROLLERS.

\section*{MICROPROCESSOR OPERATION}

In order to effectively utilize the interface techniques outlined in the following sections, an understanding of microprocessor fundamentals is required. A brief description of microprocessor fundamentals is included in the following section. A microprocessor system usually consists of a microprocessor, ROM memory, RAM memory, and a specific I/O interface as outline in Figure 2. The microprocessor performs the desired system function by executing a program stored within the ROM. The RAM memory provides temporary storage for the microprocessor system. The I/O interface consists of circuitry that is used as an input to the system or as an output from the system. The microprocessor interfaces to this system
through an address bus, data bus, and control bus. The address bus consists of several outputs (\(A_{0}, A_{1}, \ldots A_{n}\)) from the microprocessor which collectively specify a binary number. This number or "address" uniquely specifies each word in the ROM memory, RAM memory, and I/O interface. The data bus serves as an input to the microprocessor during a memory or input read and as an output from the microprocessor during a memory or output write. The control bus provides the required timing and signals to the microprocessor system to distinguish a memory read from a memory write, and in some systems an I/O read from an I/O write. These control lines and the timing between the address bus, data bus, and control bus vary for different microprocessors.

The address, data, and control buses provide the flow of instructions and data into the microprocesor. Program execution consists of a series of memory reads (instruction fetches) which are sometimes followed by a memory read or write (instruction execution). The microprocessor performs a memory read by outputting the memory address of the word to be read on the address bus. This address uniquely specifies a word within the memory system. The microprocessor also outputs a signal on the control bus, which instructs the memory system to perform a memory read. The address selects one memory element, either RAM or ROM, within the memory system. Then, the desired word within the selected memory element is gated on the data bus by the read signal. Meanwhile, the unselected memory elements tristate their output lines so that only the selected memory element is active on the data bus. After sufficient delay, the microprocessor reads the word that appears on the data bus. Similarly, for a memory write, the microprocessor outputs the memory address of the word to be written on the address bus. After sufficient delay, the microprocessor outputs a signal on the control bus, which instructs the memory system to perform a memory write.

Figure 2. Biock Diagram of a Typical Microprocessor System

The microprocessor also outputs the desired memory word on the data bus. The address selects one RAM memory element within the memory system. The write signal causes the memory element to read the word on the data bus and store it at the desired location. After the write cycle has been completed, the new word will have replaced the previous word within the RAM memory. During the memory write, outputs from the unselected memory elements remain tristated so that only the microprocessor is active on the data bus. These control lines and the timing for the address bus, data bus, and control bus vary for different microprocessors.
Some microprocessors, such as the Motorola 6800 microprocessor family, handle memory and I/O in exactly the same way. Memory and I/O occupy a common address space and are accessed by the same instructions. With this type of microprocessor, the hardware decoding of the address bus determines whether the read or write is to a memory or I/O element. Other microprocessors, such as the Intel 8080A, Intel 8085A, and the Zilog Z-80 have separate address spaces for memory and I/O. These microprocessors use different instructions for a memory access or an I/O access and provide signals on the control bus to distinguish between memory and I/O. One advantage of this approach is that the I/O address space can be made smaller to simplify device decoding. However, the I/O instructions that are available are usually not as powerful as the memory reference instructions. Of course, the user can always locate specific I/O devices within the memory address space through proper decoding of the address and control buses. This would allow these I/O devices to be accessed with memory reference instructions.
The 6800 microprocessor family has a 16 line address bus, 8 line data bus, and a control bus that includes the signals VMA (Valid Memory Address), R/W (Read/Write), DBE (Data Bus Enable), and clock signals \(\phi_{1}\) and \(\phi_{2}\). R/W specifies either a memory read or write while VMA is used in conjunction with \(R / \bar{W}\) to specify a valid memory address. DBE gates the internal data bus of the 6800 to the external data bus. In many applications, DBE is connected to \(\phi_{2}\). Additional data hold time, \(\mathrm{t}_{\mathrm{H}}\), can be achieved by delaying \(\phi 2\) to the microprocessor or by extending DBE beyond the falling edge of \(\phi 2\). The timing between the address bus, data bus, VMA, and R/W for a memory write is shown in Figure 3.
For the 8080A microprocessor, the address bus consists of 16 lines, the data bus consists of 8 lines, and the control bus consists of several lines including DBIN (Data Bus In), \(\overline{W R}\) (Write), SYNC (Synchronizing Signal), READY, and clock signals \(\phi_{1}\) and \(\phi_{2}\). DBIN and WR are used to specify a read or write operation. The 8080A microprocessor distinguishes memory from I/O through the use of a status word that precedes every machine cycle. When SYNC is high, the status word should be loaded into an octal latch on the positive edge of \(\phi_{1}\). The outputs from the latch can then be decoded to specify whether the machine cycle is a memory write, memory read, I/O write, or I/O read. The Intel 8228 or 8238 System Controller provides this status latch and additionally encodes the outputs of the status latch with DBIN and \(\overline{W R}\) to generate four timing signals \(\overline{\text { MEM R (Memory Read), MEM W (Memory Write), } \overline{\mathrm{I} / \mathrm{OR}} \mathrm{I}}\) (I/O Read), and I/O W (I/O Write). However, the 8228 and 8238 do not provide the outputs of the status latch. The timing between the address bus, data bus, \(\overline{W R}\), and SYNC

Figure 3. Memory Write Timing for the Motorola 6800 Microprocessor Family.
for both a memory write and an I/O write is shown in Figure 4. The 8080A also provides an input, READY, which allows the memory system to extend the time the address and data bus is valid by integral clock cycles.

\section*{REFRESH CONTROLLERS}

Figure 5 shows a REFRESH CONTROLLER for a 16 character 18 segment alphanumeric display. The circuit operates by interrupting the microprocessor at a 1600 Hz rate. Following each interrupt, the microprocessor responds by outputting a new ASCII character to the Texas Instruments AC5947 ASCII to 18 Segment Decoder/Driver and a new digit word to the 74LS174. The character font for the AC5947 is shown in Figure 6. The outputs of the 74LS174 are decoded such that digit word \(00_{16}\) turns the leftmost display character on, digit word \(0 F_{16}\) turns the rightmost display character on, and digit word \(1 \mathrm{~F}_{16}\) turns all digits off. The interface can be expanded to 24 characters with an additional Signetics NE590 driver. This change would also require modifications in IF peak, and the interrupt rate.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{8080 MICROPROCESSOR WITH 8228 CLOCK} & \multicolumn{4}{|c|}{MINIMUM TIMES (nS)} \\
\hline & \({ }^{\text {t }}\) AW & \({ }^{\text {t }}\) WA & \({ }^{\text {t }}\) WW & \({ }^{\text {t }}\) WD \\
\hline \(8080 \mathrm{~A}, \mathrm{t}_{\mathrm{C}} \mathbf{Y}=480\) & 740 & 90 & 230 & 90 \\
\hline \(8080 \mathrm{~A}-2, \mathrm{t}_{\mathrm{c}} \mathrm{C}=380\) & 560 & 80 & 140 & 80 \\
\hline \(8080 \mathrm{~A}-1, \mathrm{t}_{\mathrm{C}} \mathrm{C}=320\) & 470 & 70 & 110 & 70 \\
\hline
\end{tabular}
\({ }^{t_{A W}}={ }^{2 t^{t}} \mathrm{CY}^{-{ }^{\mathrm{t}} \mathrm{D} 3} \mathbf{-}\) [140(A), 130(A-2), 110(A-1)]
\(t_{W A}=t_{W D}=t_{D 3}+10\)
\({ }^{t_{D W}}={ }^{{ }^{C}}{ }_{C Y}-{ }^{t_{D 3}}-[170(A), 170(A-2), 150(A-1)]\)
From INTEL Component Data Catalog, 1978
NOTE 1: Status Word should be loaded into an octal latch when SYNC \(=1\) on positive edge of \(\phi_{1}\).

NOTE 2: Additional wait cycles can be inserted here. A wait cycle is added by forcing READY low prior to the falling edge of \(\phi_{2}\) during the clock cycle preceeding the falling edge of \(\overline{W R}\).

Figure 4. Memory and I/O Write Timing for the Intel 8080A Microprocessor Family

Figure 5. \(\mathbf{6 8 0 0}\) or 8080A Microprocessor Interface to the HDSP-6508 REFRESH CONTROLLER Utilizing the Texas Instruments AC5947 ASCII to 18 Segment Decoder/Driver
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\mid
\] & & & & & & & & & & & & ！ & \[
\begin{aligned}
& \vdots \\
& \vdots
\end{aligned}
\] & & & & \\
\hline \({ }_{6} 0_{5} 0_{4}\) & nex & ． & & & 2 & & & & & & － & & & & & & & \\
\hline \(\bigcirc \cdot\) & 2 & － & ！ & ＂ & ＂王 & 王 & ¢ & 多 & L & & ＜ & ＞ & ＊ & ＋ & & － & & \\
\hline \(\cdots\) & & \(\square\) & 1 & 2 & 2 & ヨ & 4 & 5 & 5 & 7 & 日 & 9 & & ； & ＜ & \(=\) & & \\
\hline \(\cdots\) & & ［ & & H & 日 & ［ & & & F & G & H & & & K & L & & & \\
\hline & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Figure 6． 18 Segment Display Font for the Texas Instruments AC5947 ASCII to 18 Segment Decoder／Driver

A 6800 microprocessor program that interfaces to this REFRESH controller is shown in Figure 7．Following each interrupt，the program＂RFRSH＂is executed．The program uses a scratch pad register＂POINT＂that points to the location within a 16 byte ASCII message of the next ASCII character to be stored in the display interface．The scratch pad register＂DIGIT＂contains the next digit word to be loaded into the display interface．The program interfaces to the circuit through two memory or I／O addresses．A memory write to address＂SEG＂writes a six bit word into the AC5947，and a memory write to address＂DIG＂writes a five bit word into the 74LS174．To prevent undesirable ghosting，the digit drivers are turned off prior to loading the next ASCII character into the AC5947．After sufficient
delay，the next digit is turned on．Registers＂POINT＂and ＂DIGIT＂are then updated by the program．Following execution of the＂RTI＂instruction，execution of the main program is resumed．A similar program written for an 8080A microprocessor is shown in Figure 8．The 6800 microprocessor program shown in Figure 7 operated with a 1 MHz clock requires \(0.11 \%+0.72 \mathrm{n} \%\) of the available microprocessor time to refresh the display at a 100 Hz refresh rate，where n is the display length．The 8080A microprocessor program shown in Figure 8 when operated with a 2 MHz clock requires \(0.31 \%+0.96 \mathrm{n} \%\) of the available microprocessor time to refresh the display at a 100 Hz refresh rate，where n is the display length．For example，the 16 character display shown in Figure 5

Figure 7． \(\mathbf{6 8 0 0}\) Microprocessor Program and Flowchart that Interfaces to the REFRESH CONTROLLER Shown in Figure 5

Figure 8. 8080A Microprocessor Program and Flowchart that Interfaces to the REFRESH CONTROLLER Shown in Figure 5
requires \(11.6 \%\) of the 6800 microprocessor time or \(15.7 \%\) of the 8080A microprocessor time to refresh the display at a 100 Hz refresh rate. Faster versions of the 6800 and 8080A microprocessors can reduce this microprocessor time by \(50 \%\).

\section*{DECODED CONTROLLERS}

Figure 9 shows a DECODED DATA CONTROLLER designed for a 32 character 18 segment alphanumeric display. To simplify the circuitry, the display is configured as a 14 segment display with decimal point and colon. This allows each display character to be specified by two 8 bit words. One possible display font is shown in Figure 10. The Motorola 6810 RAM stores 64 bytes of display data that are continually read and displayed. The display data is organized within the RAM such that addresses \(A_{5}, A_{4}\), \(A_{3}, A_{2}\), and \(A_{1}\) specify the desired character and address \(A_{0}\) differentiates between the two words of display data for each character. The display data is formatted such that word \(0\left(D_{7}-D_{0}\right)\) is decoded as \(G_{2}, G_{1}, F, E, D, C, B\), and \(A\); and word 1 (\(D_{7}-D_{0}\)) is decoded as COLON, DP, M, L, \(K, J\), I , and H . The display data is coded low true such that a low output turns the appropriate segment on. Strobing of the display is accomplished with the 74LS14 oscillator and 74LS393 counter. The counter continuously reads display data from the RAM and enables the appropriate digit driver. The time allotted to each digit is broken into four segments. During the first segment of time, the display is turned off and work 0 is read from the RAM and stored in the 74LS273 octal register. During the next three segments of time, word 1 is read from the RAM and the display is turned on. Thus, the display duty factor is \((1 / 32)\)
(\(3 / 4\)) or \(1 / 42.6\). For values of \(R\) and \(C\) specified, the display is strobed at a 130 Hz refresh rate.

Data is entered into the RAM from the address and data bus of the microprocessor via two control lines, Chip Select and Write. When Chip Select goes low, the address generated by the counter is disabled and the microprocessor address and data bus is gated to the RAM. Then, after sufficient delay, the Write input is pulsed, which stores the data within the RAM. The data entry timing for the 18 segment DECODED DATA CONTROLLER is shown in Figure 11. Because of the requirement that the address inputs of the 6810 RAM must be stable prior to the falling edge of Write, Chip Select should go low for time tow prior to the falling edge of Write. To guarantee that the address and data inputs of the RAM remain stable until after \(\bar{W}\) rite goes high, \(\overline{\text { Chip Select }}\) should remain low for time \(\mathrm{t}_{\mathrm{CH}}\) following the rising edge of \(\overline{\text { Write. This requirement for two separate timing signals is }}\) also required for the CODED DATA CONTROLLER shown in Figure 15. Because this interface timing is somewhat more difficult than the previously described circuits, the following methods are presented for interfacing to commonly used microprocessors.
Interface to the 6800 microprocessor family is accomplished by NANDing together VMA and some specified combination of high order address lines to generate \(\overline{\text { Chip }}\) \(\overline{\text { Select }}\) and using \(\phi_{2}\) to generate Write.

For the 8080A and 8085A microprocessor families, the limited flexibility of the output instruction requires that the 18 segment DECODED DATA CONTROLLER must be addressed as memory instead of I/O. The 8080A micro-

Figure 9. 6800, 8080A, and General Interface to the HDSP-6508 DECODED DATA CONTROLLER

Figure 10. One Possible 16 Segment Display Font (14 Segments Plus Decimal Point and Colon) for the DECODED DATA CONTROLLER Shown in Figure 9.
processor requires an external status latch to hold status information provided during program execution. This status latch function can be implemented with an octal register such as the Intel 8212 or 74LS273. A Memory Write signal can be generated by NORing together all outputs of this status latch. This signal can then be NANDed with some specified combination of high order address lines to generate Chip Select. The 8080A WR output can then be connected to Write. The Intel 8238 System Controller, which is commonly used with the 8080A microprocessor, prevents direct access to the outputs of the status latch. An example of an interfacing to
a system utilizing the 8238 is illustrated in Figure 9. \(\overline{\mathrm{MEM}}\) \(\bar{W}\) from the 8238 is inverted and then NANDed with some specified combination of high order address lines to generate \(\overline{\text { Chip Select. The 74LS113 generates } \overline{\text { Write }} \text { from }}\) the microprocessor clock, \(\phi_{2}\) (TTL).
Interface to the 8085A microprocessor family can be accomplished by inverting the \(I / O / \bar{M}\) output and NANDing the resulting signal with the \(\mathrm{S}_{0}\) output and some specified combination of high order address lines to generate \(\overline{\text { Chip Select. The } \overline{W R} \text { output from the }}\) microprocessor is connected directly to Write.

\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & SYMBOL & MIN. \\
\hline WRITE CYCLE & \(t_{W C}\) & 425 ns \\
\hline WRITE DELAY & \(t_{\text {AW }}\) & 65 ns \\
\hline CHIP ENABLE TO WRITE & \(\mathrm{t}_{\mathrm{CW}}\) & 65 ns \\
\hline DATA SETUP & \(\mathrm{t}_{\mathrm{DW}}\) & 210 ns \\
\hline DATA HOLD & \(\mathrm{t}_{\mathrm{DH}}\) & 35 ns \\
\hline WRITE PULSE & \(\mathrm{t}_{\text {WP }}\) & 325 ns \\
\hline WRITE RECOVERY & \(\mathrm{t}_{\text {WR }}\) & 25 ns \\
\hline CHIP ENABLE HOLD & \(\mathrm{t}_{\mathrm{CH}}\) & 35 ns \\
\hline
\end{tabular}

Figure 11. Data Entry Timing for the DECODED DATA CONTROLLER Shown in Figure 9
\begin{tabular}{|c|c|c|c|c|c|}
\hline LOC & \multicolumn{3}{|l|}{OBJECT CODE} & \multicolumn{2}{|l|}{SOURCE STATEMENTS} \\
\hline & BF00 & & DSPLY & EQU & \$BF00 \\
\hline & 0600 & & DECDR & EQU & \$0600 \\
\hline 0000 & 0006 & & ASCII & FDB & MESSGE \\
\hline 0002 & BF00 & & PAD1 & FDB & DSPLY \\
\hline 0004 & 0600 & & PAD2 & FDB & DECDR \\
\hline 0006 & & & MESSGE & RMB & 32 \\
\hline 0400 & & & & ORG & \$0400 \\
\hline 0400 & CE & BF00 & LOAD & LDX & I,DSPLY \\
\hline 0403 & DF & 02 & & STX & D,PADI \\
\hline 0405 & CE & 0600 & & LDX & I,DECDR \\
\hline 0408 & DF & 04 & & STX & D,PAD2 \\
\hline 040A & DE & 00 & LOOP1 & LDX & D,ASCII \\
\hline 040C & A6 & 00 & & LDA A & X, 0 \\
\hline 040E & 08 & & & INX & \\
\hline 040F & DF & 00 & & STX & D,ASCII \\
\hline 0411 & 48 & & & ASL A & \\
\hline 0412 & 97 & 05 & & STA A & D,PAD2+1 \\
\hline 0414 & DE & 04 & & LDX & D,PAD2 \\
\hline 0416 & A6 & 00 & & LDA A & X, 0 \\
\hline 0418 & E6 & 01 & & LDA B & X,1 \\
\hline 041A & DE & 02 & & LDX & D,PAD1 \\
\hline 041C & A7 & 00 & & STA A & X,0 \\
\hline 041 E & 08 & & & INX & \\
\hline 041 F & E7 & 00 & & STA B & X,0 \\
\hline 0421 & 08 & & & INX & \\
\hline 0422 & DF & 02 & & STX & D,PAD1 \\
\hline 0424 & 8C & BF40 & & CPX & 1,DSPLY+64 \\
\hline 0427 & 26 & E1 & & BNE & LOOP1 \\
\hline 0429 & 39 & & & RTS & \\
\hline
\end{tabular}

Figure 12. \(\mathbf{6 8 0 0}\) Microprocessor Program and Flowchart that Interfaces to the DECODED DATA CONTROLLER Shown in Figure 9

The simplest interface to the Z-80 microprocessor family is accomplished by addressing the 18 segment DECODED DATA CONTROLLER as I/O instead of memory. An example of this interface is shown in Figure 15. The IORQ output is inverted and NANDed with some specified combination of address lines to generate Chip Select. The 74LS113 circuit generates Write from the inverted microprocessor clock \(\bar{\phi}\).

A 6800 microprocessor program that interfaces to the 18 segment DECODED DATA CONTROLLER is shown in Figure 12. This program decodes 32 ASCII characters and stores the resulting decoded display data within the display. The scratch pad register "ASCII" points to the location of the next ASCII character to be decoded. The program reads the first ASCII character, increments the point, "ASCII," and then looks up two words of display data within the 64 character ASCII look-up table "DECDR." These words of display data are then stored at the two addresses for the leftmost display location. Subsequent ASCII characters are decoded, and stored at the appropriate address within the display until all 32 characters have been decoded. After the program is finished, the pointer "ASCII" will have been incremented by 32. This program requires 2.4 ms for a 1 MHz clock to decode and load 32 ASCII characters into the 18 segment

DECODED DATA CONTROLLER. The corresponding 8080A microprocessor program is shown in Figure 13. This program requires 1.4 ms for a 2 MHz clock to decode and load 32 ASCII characters into the 18 segment DECODED DATA CONTROLLER.
The 64 character ASCII font shown in Figure 10 can be generated using the table shown in Figure 14. This ASCII decoder uses two 8 bit words to represent each ASCII character. The format of the decoder is consistent with either the 6800 microprocessor program shown in Figure 12 or the 8080A microprocessor program shown in Figure 13.

\section*{CODED DATA CONTROLLERS}

Figure 15 shows a CODED DATA CONTROLLER designed for a 32 character 18 segment alphanumeric display. Operation of this circuit is similar to the DECODED DATA CONTROLLER shown in Figure 9 except that the Motorola 6810 RAM stores 32 six bit ASCII words and the Texas Instruments AC5947 decodes this ASCII data into 18 segment display data. The resulting display font is shown in Figure 6. Strobing of the display is accomplished by the 74LS14 oscillator and 74LS393 counter. Because the long propagation delay through the AC5947 tends to cause display ghosting, the display is

Figure 13. 8080A Microprocessor Program and Flowchart that Interfaces to the DECODED DATA CONTROLLER Shown in Figure 9
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ASCII & SYMBOL & WORD 0 & WORD 1 & ASCII & SYMBOL & WORD 0 & WORD 1 \\
\hline 20 & (SPACE) & FF & FF & 40 & (a) & 44 & FD \\
\hline 21 & ! & FF & BD & 41 & A & 08 & FF \\
\hline 22 & " & DF & FD & 42 & B & 70 & ED \\
\hline 23 & \# & 36 & ED & 43 & C & C6 & FF \\
\hline 24 & \$ & 12 & ED & 44 & D & F0 & ED \\
\hline 25 & \% & 1 B & D2 & 45 & E & 86 & FF \\
\hline 26 & \& & F2 & CA & 46 & F & 8 E & FF \\
\hline 27 & , & FF & FD & 47 & G & 42 & FF \\
\hline 28 & (& FF & F3 & 48 & H & 09 & FF \\
\hline 29 &) & FF & DE & 49 & I & F6 & ED \\
\hline 2 A & * & 3 F & C0 & 4A & J & E1 & FF \\
\hline 2B & + & 3F & ED & 4B & K & 8 F & F3 \\
\hline 2 C & & FF & DF & 4 C & L & C7 & FF \\
\hline 2D & - & 3F & FF & 4D & M & C9 & FA \\
\hline 2 E & & FF & BF & 4 E & N & C9 & F6 \\
\hline 2 F & 1 & FF & DB & 4F & 0 & C0 & FF \\
\hline 30 & 0 & C0 & DB & 50 & P & 0 C & FF \\
\hline 31 & 1 & FF & ED & 51 & Q & C0 & F7 \\
\hline 32 & 2 & 24 & FF & 52 & R & OC & F7 \\
\hline 33 & 3 & 30 & FF & 53 & S & 12 & FF \\
\hline 34 & 4 & 19 & FF & 54 & T & FE & ED \\
\hline 35 & 5 & 96 & F7 & 55 & U & C1 & FF \\
\hline 36 & 6 & 02 & FF & 56 & V & CF & DB \\
\hline 37 & 7 & F8 & FF & 57 & W & C9 & D7 \\
\hline 38 & 8 & 00 & FF & 58 & X & FF & D2 \\
\hline 39 & 9 & 18 & FF & 59 & Y & FF & EA \\
\hline 3A & , & FF & 3F & 5A & Z & F6 & DB \\
\hline 3B & ; & FF & 5F & 5B & [& 7F & F3 \\
\hline 3 C & \(<\) & 7F & FB & 5 C & 1 & FF & F6 \\
\hline 3D & \(=\) & 37 & FF & 5D &] & BF & DE \\
\hline 3E & > & BF & FE & 5 E & \(\wedge\) & FF & D7 \\
\hline 3F & ? & 7 C & EF & 5F & - & F7 & FF \\
\hline
\end{tabular}

Figure 14. 64 Character ASCII Decoder Table for the Microprocessor Programs Shown in Figures 12 and 13. 18 Segment Display Font is Shown in Figure 10.

Figure 15. General Interfaces to the HDSP-6508 CODED DATA CONTROLLER

Figure 16. Data Entry Timing for the CODED DATA CONTROLLER Shown in Figure 15
blanked momentarily after each new character is read from the RAM. This is accomplished by breaking the total time allotted for each digit into four segments. During the first segment, the display is turned off to allow data to ripple through the AC5947 and during the next three segments, the display is turned on. The resulting display duty factor is \((1 / 32)(3 / 4)\) or \(1 / 42.6\). The display is strobed at a 130 Hz refresh rate.

Data is entered into the RAM from the address and data bus of the microprocessor via two control lines Chip \(\overline{\text { Select }}\) and Write. When Chip Select goes low, the address from the counter is tristated and the microprocessor address bus and data bus is gated to the RAM. Then after sufficient delay, the Write input is pulsed, which stores the data within the RAM. Data entry timing for the 18 segment CODED DATA CONTROLLER is shown in Figure 16. Since this timing is very similar to the DECODED DATA CONTROLLER shown in Figure 9, interface to the various microprocessor families is the same as described in the section on DECODED DATA CONTROLLERS.

\section*{DISPLAY PROCESSOR CONTROLLERS}

The DISPLAY PROCESSOR CONTROLLER provides a powerful, smart interface which performs many of the functions normally found in a small terminal. The DISPLAY PROCESSOR CONTROLLER is designed around a slave microprocessor or custom LSI integrated circuit that provides display storage and multiplexing with a very minimum of circuit complexity. The simplest DISPLAY PROCESSOR CONTROLLER designed for a 16 digit 18 segment alphanumeric display is shown in Figure
17. This circuit is designed around the Intel 8279 Programmable Keyboard/Display Interface. This LSI chip contains the circuitry necessary to interface directly to a microprocessor bus and provides a \(16 \times 8\) RAM, programmable scan counter, and keyboard debounce and control logic. While the 8279 is specifically designed for 7 segment displays, inclusion of the Texas Instruments AC5947 ASCII to 18 segment decoder/driver allows the use of an 18 segment alphanumeric display. The 8279 Keyboard/Display Controller interfaces to a microprocessor via an eight line bidirectional Data Bus, control lines \(\overline{R D}(\overline{\text { Read }}), \overline{W R}(\overline{\text { Write }}), \overline{C S}\) (Chip Select), A0 (Command/Data), RESET, IRQ (Interrupt Request), and a clock input, CLK. The display is scanned by outputs \(\mathrm{A}_{0-3}\) and \(B_{0-3}\) which are connected to the inputs of the AC5947, and outputs SLo-3 which are connected to the digit scanning circuitry. The 74LS122 is used to provide interdigit blanking to prevent display ghosting. In addition to display scanning, the 8279 also has the ability to scan many different types of encoded or decoded keyboards, X-Y matrix keyboards, or provide a strobed data input to the microprocessor. The 8279 provides for either block data entry, where data enters from left to right across the display overflowing to the leftmost display location; right data entry, where data enters at the righthand side of the display and previous data shifts toward the left; and RAM data entry, where a four bit field in the control word specifies the address at which the next data word will be written. The 8279 allows data written into the display to be read by the microprocessor, and provides commands to either blank or clear the display.

The HDSP-8716/-8724/-8732/-8740 DISPLAY PROCESSOR CONTROLLER shown in Figure 18 is designed to provide a flexible 18 segment display interface for displays up to 40 characters in length. This circuit utilizes a dedicated Intel 8048 single chip microprocessor to provide features such as a blinking cursor, display editing routines, multiple data entry modes, variable display string length, and data out. This controller is available as a series of printed circuit board subsystems of 16, 24, 32, and 40 characters in length. The user interfaces to the 8048 microprocessor through eight Data In inputs, six Address inputs, a \(\overline{C h i p ~ S e l e c t ~ i n p u t, ~} \overline{\text { Reset }}\) input, \(\overline{\text { Blank }}\) input, six Data Out outputs, Data Valid output, Refresh output, and Clock output. The software within the 8048 microprocessor provides four data entry modes - Left Entry with a blinking cursor, Right Entry, Block Entry, and RAM Entry. The Data Out port allows the user to read the ASCII data stored within the display, determine the configured data entry mode and display length, and locate the position of the cursor within the display. Since the Data Out port is separate from the Data In port, the 18 segment DISPLAY PROCESSOR CONTROLLER can be used for text editing independent of the main microprocessor system. In Left Entry mode, the controller provides the Clear, Carriage Return, Backspace, Forwardspace, Insert, and Delete editing functions; while in Right Entry mode, the controller provides Clear and Backspace editing functions. The controller can also be expanded into multiple line panels.

The 8048 microprocessor interfaces to the display via the Port 2 output. The output is configured to enable the microprocessor to send a six bit word to one of three destinations as selected by \(\mathrm{P}_{26}\) and \(\mathrm{P}_{27}\). The \(\overline{\text { PROG output }}\)

Figure 17. HDSP-6508 DISPLAY PROCESSOR CONTROLLER Utilizing the Intel 8279 Programmable Keyboard Display Interface
is then used to store this word at the specified destination. Destinationo is the 74LS174 hex register. The outputs of this register are decoded by the 74LS259 addressable latches and Sprague ULN 2815 digit drivers. Output \(3 F_{16}\) is decoded to turn on the rightmost display digit while the address of the leftmost display digit varies from 1816 for a 40 character display to 3016 for a 16 character display. Destination 1 is the AC5947 18 segment decoder/driver. The positive edge of PROG stores a six bit ASCII code within the AC5947. Because destination 1 is pulsed once every time a digit is refreshed, this output is also used as the Refresh output. Destination2 is the Data Valid output of the Data Out port. Thus, Data Out actually consists of a series of six bit words that are sent to Destination2. Display refresh is accomplished by first turning off the digit drivers by outputting a \(0_{16}\) to the 74LS174. Then a new ASCII character is stored within the AC5947. Finally, a new digit
word is stored within the 74LS174. The actual time that each digit is on varies according to the configured display length so as to provide a fixed 100 Hz refresh rate.

Interfacing the DISPLAY PROCESSOR CONTROLLER shown in Figure 18 to microprocessor systems depends on the needs of the particular application. Since the information on the Data In and Address inputs is loaded into the controller through a program within the 8048 microprocessor, the time required to read these inputs varies from about 100 to 700 microseconds. A latch as shown in the HDSP-8716/-8724/-8732/-8740 Data Sheet can be used as a buffer between these inputs and the data bus and address bus of the main microprocessor system. The latch provides temporary storage to avoid making the main microprocessor wait for the DISPLAY PROCESSOR CONTROLLER to accept data.

Figure 18. HDSP-8716/-8724/-8732/-8740 DISPLAY PROCESSOR CONTROLLER

The 18 segment DISPLAY PROCESSOR CONTROLLER shown in Figure 18 can also be interfaced to the main microprocessor system through a Peripheral Interface Adapter (PIA). The Data In inputs of the controller would be connected to an output port of the PIA. In RAM Entry mode, the Address inputs of the controller would be connected to another output port of the PIA. The PIA provides a handshake back to the main microprocessor system that tells when the DISPLAY PROCESSOR CONTROLLER is ready to accept another data input word from the main microprocessor. This allows the microprocessor to load data into the controller at the highest possible rate. A PIA can also be used to allow the 18 segment DISPLAY PROCESSOR CONTROLLER to act as a buffer between a keyboard and the main microprocessor. In this configur-
ation, the main processor could output a prompting message to the user via the DISPLAY PROCESSOR CONTROLLER. The user could then enter data from the keyboard into the display utilizing the controller's editing capability. After the message has been entered and edited, the user would instruct the main microprocessor to read the final edited message from the Data Out port. One port from the PIA can be used to control the Data In inputs of the DISPLAY PROCESSOR CONTROLLER and another port of the PIA can be used to read the Data Out port. Figure 19 shows a 6800 microprocessor system using a Motorola 6821 PIA to control the DISPLAY PROCESSOR CONTROLLER shown in Figure 18. The \(\mathrm{PB}_{7}\) output of the PIA determines whether data is entered into the controller

APplcations

Figure 19. \(\mathbf{6 8 0 0}\) Microprocessor Interface to the DISPLAY PROCESSOR CONTROLLER Shown in Figure 18 Utilizing a Motorola 6821 PIA

Figure 20. \(\mathbf{6 8 0 0}\) Microprocessor Program and Flowchart that Interfaces to the Circuit Shown in Figure 19
from the microprocessor system or from the keyboard. Control lines CA1 and CA 2 are used to provide a data entry handshake to allow data to be loaded into the controller at the highest possible rate. Data is read into the main microprocessor system through Port B of the PIA using the \(\mathrm{CB}_{1}\) input as a data strobe.
The 6800 microprocessor program shown in Figure 20 is used to operate the PIA interface described in Figure 19. The microprocessor program following "START" is used to initialize the 6821 PIA. Once initialized, the PIA can be used either to load data into the controller via the main microprocessor, allow data to be loaded into the controller via the keyboard, or to read data from the Data Out port into the main microprocessor. The instruction CLR E, PRB at location 051B \({ }_{16}\) forces PB7 low to connect the outputs of Port \(A\) to the Data In inputs of the controller.

Subroutine "LOAD" then loads a series of eight bit words into the controller. "LOAD" continues to output words until it reads an \(\mathrm{FF}_{16}\) to denote the end of the prompting message. The instruction sequence LDA A I, \(\$ 80\) and STA A E, PRB at location \(0526_{16}\) forces \(\mathrm{PB}_{7}\) high to connect the output of the keyboard to the Data In inputs of the controller. In this mode, the user can enter or edit data into the DISPLAY PROCESSOR CONTROLLER. The 4B input of the 74LS157 has been grounded to prevent the keyboard from loading a control word into the DISPLAY PROCESSOR CONTROLLER. The instructions LDA A I, \$0E and STA A E, CRB at location 052B16 enables the "ER" key on the keyboard to interrupt the microprocessor when the edited message is complete. Subroutine "READ" would then be used to read data into the 6800 system. First, subroutine "READ" outputs a special control word,

Figure 21. 8080A Microprocessor Interface to the DISPLAY PROCESSOR CONTROLLER Shown in Figure 18 Utilizing an Intel 8255 PIA

Figure 22. 8080A Microprocessor Program and Flowchart that Interfaces to the Circuit Shown in Figure 21

FF \(_{16}\), to the Data In inputs of the DISPLAY PROCESSOR CONTROLLER. This control word causes the controller to begin its data output sequence. The controller outputs a series of data output words that define the configured entry mode and display length, location of the cursor, and the ASCII text stored within the DISPLAY PROCESSOR CONTROLLER. "LOOP 1" within the program continuously reads the Data Valid output and waits until the controller outputs the STATUS word. This STATUS word, the subsequent CURSOR ADDRESS word, and the string of ASCII characters are then stored in consecutive words of scratch pad memory starting at address "STATUS."
A similar PIA interface designed for an 8080A microprocessor system that uses an Intel 8255A PIA is shown in Figure 21. This interface operates in much the same way as the 6821 PIA interface that was previously described. The PC4 output of the PIA determines whether the Data In inputs of the 18 segment DISPLAY PROCESSOR CONTROLLER shown in Figure 18 are connected to the PIA or to the keyboard. Control lines \(\mathrm{PC}_{6}\) and \(\mathrm{PC}_{7}\) are used to provide a data entry handshake between the 8080A microprocessor and the DISPLAY PROCESSOR CONTROLLER. Data is read into the 8080A microprocessor system through Port B of the PIA using \(\mathrm{PC}_{2}\) as the data strobe.

The 8080A microprocessor program shown in Figure 22 is used to operate the PIA interface described in Figure 21. The microprocessor program following "START" is used to initialize the 8255A PIA. The instructions MVI A, 08H and OUT CNTRL at location E457 16 force \(\mathrm{PC}_{4}\) low to connect Port A of the PIA to the Data In inputs of the DISPLAY PROCESSOR CONTROLLER. Subroutine "LOAD" would then be used to load a prompting message into the controller. The instructions MVI A, 09H and OUT CNTRL at location E45E \(\mathrm{E}_{16}\) connect the keyboard to the Data In inputs of the controller. In this mode, the user can enter data into the DISPLAY PROCESSOR CONTROLLER, or to edit an existing line. Subroutine "READ" would then be used to read the data from the Data Out port into the 8080A microprocessor system.
Subroutine "READ" begins the data output sequence by outputting the special control word FFH to the Data In inputs of the DISPLAY PROCESSOR CONTROLLER. Then, the subroutine reads the series of data output words that are outputted by the controller and stores them in consecutive words of scratch pad memory starting at address STAT.

\title{
Threshold Sensing For Industrial Control Systems With the HCPL-3700 Interface Optocoupler
}

\section*{INTRODUCTION}

The use of electronic logic circuitry in most applications outside of a controlled environment very quickly brings the design engineer into contact with the problems and hazards involved in interfacing between the logic function and the controlled function. These problems have always been particularly evident in the field of industrial control where the electrically "noisy" environment produced by motors, power lines, lightning and other sources of interference may mask the desired signal, and in some cases even result in the destruction of the logic control system itself. In these situations, the designer must resort to solutions which will provide isolation between the logic system and the input or output function Traditional methods of isolation involve the use of such devices as capacitors, relays, tranformers, and optocouplers. Of these methods, the optocoupler provides an ideal combination of speed, dc response, high common mode rejection, and low input to output coupling capacitance.

In the implementation of an interface from an electrically noisy environment into logic systems, it is often desirable, if not mandatory, to establish some current or voltage switching point or threshold at which the input signal is considered true. Since the input, or feedback, signal in industrial control systems may be ac or dc and may range from low, 5 volt, levels to 110 or 240 volts ac, the design of such a threshold switching system can become more than a trivial problem. This is especially true when using the optocoupler, considering the relatively large range of current transfer ratio (CTR) found in most devices.

The problem of establishing an input switching threshold is resolved in the design of the Hewlett-Packard HCPL-3700 optocoupler. This device combines an ac or dc voltage and/ or current detection function with a high insulation voltage optocoupler in a single eight pin plastic dual in-line package.

As shown in the block diagram of Figure 1, this device con-

Figure 1. Block Diagram of the HCPL-3700
sists of a full-wave bridge rectifier and threshold detection, integrated circuit, an LED, and an optically coupled detector integrated circuit. The detector circuit is a combination of a photodiode and a high current gain, split Darlington, amplifier.

The input circuit will operate from an ac or dc source and provide a guaranteed, temperature compensated threshold level with hysteresis. The device may be programmed for higher switching thresholds through the use of a single external resistor.

With threshold level detection provided prior to the optical isolation path and subsequent gain stage, variations in the current transfer ratio of the device with time or from unit to unit are no longer important.

In addition to allowing ac or dc input signals, the Zener diodes of the bridge circuit also provide input voltage clamping to protect the threshold circuitry and LED from over voltage/current stress conditions. The LED current is provided by a switched current source.

The HCPL-3700 optocoupler output is an open collector, high gain, split Darlington configuration. The output is compatible with TTL and CMOS logic levels. High common mode rejection, or transient immunity of \(600 \mathrm{~V} / \mu \mathrm{s}\), allows excellent isolation. Insulation capability is 3000 volts dc. The recommended operating temperature range is \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\).

The HCPL-3700 meets the requirements of the industrial control environment for interfacing signals from ac or dc power equipment to logic control electronics. Isolated monitoring of relay contact closure or relay coil voltages, monitoring of limit or proximity switch operation or sensor signals for temperature or pressure, etc., can be accomplished by the HCPL-3700. The HCPL-3700 may also be used for sensing low power line voltage (Brown Out) or loss of line power (Black Out).

\section*{Device Characteristics}

The function of the HCPL-3700 can best be understood through a review of the input \(\mathrm{V} / \mathrm{I}\) function and the input to output transfer function. Figure 2 shows the input characteristics, \(I_{I N}(\mathrm{~mA})\) versus \(\mathrm{V}_{\text {IN }}\) (volts), for both the ac and dc cases.

The dc input of the HCPL-3700 appears as a \(1000 \Omega\) resistor in series with a one volt offset. If the ac pins \((1,4)\) are left unconnected, the dc input voltage can increase to 12 V (two Zener diode voltages) before the onset of input voltage clamping occurs. If the ac pins \((1,4)\) are connected to ground or to dc pins \((2,3)\) respectively, the dc input voltage will clamp at 6.0 V (one Zener diode voltage). Under clamping conditions, it is important that the maximum input current limits not be exceeded. Also, to prevent excessive current flow in a substrate diode, the dc input can not be backbiased more than -0.5 V . The choice of the input voltage clamp level is determined by the requirements of the system design. The advantages of clamping the input at a low voltage level is in limiting the magnitude of forward current to the LED as well as limiting the input power

note: ac voltage values represent instantaneous peak.
Figure 2. Typical Input Characteristics, \(I_{I N}\) vs. \(V_{I N}\)

NOTE: AC VOLTAGE VALUES REPRESENT INSTANTANEOUS PEAK.
Figure 3. Typical Transfer Characteristics of the HCPL-3700
to the device during large voltage or current transients in the industrial control environment. The internal limiting will in some cases eliminate the need for additional protection components.

The ac input appears similar to the dc input except that the circuit has two additional diode forward voltages. The ac input voltage will clamp at 6.7V (one Zener diode voltage plus one forward biased diode voltage), and is symmetric for plus or minus polarity. The ac voltage clamp level can not be changed with different possible dc pin connections.

The transfer characteristic displayed in Figure 3 shows how the output voltage varies with input voltage, or current, levels. Hysteresis is provided to enhance noise immunity, as well as to maintain a fast transition response (\(t_{r}, t_{f}\)) for slowly changing input signals.

The hysteresis of the device is given in voltage terms as \(\mathrm{V}_{\mathrm{HYS}}=\mathrm{V}_{\mathrm{TH}+}-\mathrm{V}_{\mathrm{TH}-}\), or in terms of current as \(\mathrm{I}_{\mathrm{HYS}}=\) \(\mathrm{I}_{\mathrm{TH}+} \mathrm{I}_{\mathrm{TH}-}\). The optocoupler output is in the high state until the input voltage (current) exceeds \(\left.\mathrm{V}_{\mathrm{TH}+}{ }^{(1} \mathrm{TH}_{+}\right)\). The output state will return high when the input voltage (current) becomes less than \(\mathrm{V}_{\mathrm{TH}}{ }^{(}{ }_{\mathrm{TH}}{ }^{\text {I }}\)).

As is shown in Figure 3, the HCPL-3700 has preprogrammed ac and dc switching threshold levels. Higher input switching thresholds may be programmed through the use of a single series input resistance as defined in Equation (1). In some cases, it may be desirable to split this resistance in half to achieve transient protection on each input lead and reduce the power dissipation requirement of each of the resistors.

Figure 4 illustrates three typical interface situations which a designer may encounter in utilizing a microprocessor as a controller in industrial environments.

Example 1. A dc voltage applied to the motor is monitored as an indication of proper speed and/ or load condition.

Figure 4. Applications of the HCPL- 3700 for Interfacing AC and DC Voltages to a Microprocessor

Example 2. A limit switch uses a 115 V ac or 220 V ac control loop to improve noise immunity and because it is a convenient high voltage for that purpose.

Example 3. An HCPL-3700 is used to monitor a computer power line to sense a loss of line power condition. Use of a resistive shunt for improvement of threshold accuracy is analyzed in this example.

Also illustrated is an application in which two HCPL-3700's are used to monitor a window of safe operating temperatures for some process parameters. This example also requires a rather precise control of the optocoupler switching threshold. An additional dedicated leased line system example is also shown (Example 4).

\section*{Example 1. DC Voltage Sensing}

The dc motor monitor function is established to provide an indication that the motor is operating at a minimum desired speed prior to the initiation of another process phase. If the applied voltage, \(\mathrm{V}_{\mathrm{M}}\), is greater than 5 V , it is assumed that the desired speed is obtained. The maximum applied voltage in the system is 10 V . The HCPL-3700 circuit configuration for this dc application is shown in Figure 5.

Figure 5. Interfacing a DC Voltage to an MPU using the HCPL-3700

NOTE: See Appendix for a definition of terms and symbols for this and all other examples.

The following conditions are given for the external voltage threshold level and input requirements of the HCPL-3700:
\[
\begin{aligned}
& \text { External Voltage Levels }-\mathrm{V}_{\mathrm{M}} \\
& \mathrm{~V}_{+}=5 \mathrm{~V} \mathrm{dc}(50 \%) \\
& \mathrm{V}_{\text {peak }}=10 \mathrm{~V} \mathrm{dc}
\end{aligned}
\]

HCPL-3700 Input Levels
\(\mathrm{V}_{\text {TH+ }}=3.8 \mathrm{~V}\)
\(\mathrm{~V}_{\text {TH- }}=2.6 \mathrm{~V}\)
\(\mathrm{~V}_{\text {ICH3 }}=12 \mathrm{~V}\)
\(\mathrm{I}_{\text {TH+ }}=2.5 \mathrm{~mA}\)
\(\mathrm{I}_{\text {TH- }}=1.3 \mathrm{~mA}\)

For the 5 V threshold, \(\mathrm{R}_{\mathrm{x}}\) is calculated via the expression:
\[
\begin{equation*}
R_{x} \cdot=\frac{v_{+}-v_{T H+}}{I_{T H+}} \tag{1}
\end{equation*}
\]
\[
=\frac{5 \mathrm{~V}-3.8 \mathrm{~V}}{2.5 \mathrm{~mA}}
\]
\(R_{X}=480 \Omega \quad(470 \Omega \pm 5 \%)\)
The resultant lower threshold level is formed by using the following expression:
\(\mathrm{V}_{-}=\mathrm{I}_{\mathrm{TH}} \mathrm{R}_{\mathrm{x}}+\mathrm{V}_{\mathrm{TH}}\)
\[
=(1.3 \mathrm{~mA}) 470 \Omega+2.60 \mathrm{~V}
\]
\(V_{-}=3.21 \mathrm{~V}\)
With the possible unit to unit variations in the input threshold levels as well as \(\pm 5 \%\) tolerance variations with \(R_{x}\), the variation of \(V_{+}\)is \(+12.4 \%,-15 \%\) and \(V_{-}\)varies \(+14 \%\), \(-23.5 \%\). (NOTE: With a low, external, voltage threshold level, \(\mathrm{V}_{+}\), which is comparable in magnitude to the \(\mathrm{V}_{\mathrm{TH}}+\) voltage threshold level of the optocoupler (\(\mathrm{V}_{+} \leqslant 10 \mathrm{~V}_{\mathrm{TH}}\)) the tolerance variations are not significantly improved by the use of a \(1 \%\) precision resistor for \(R_{\mathbf{x}}\). However, at a large external voltage threshold level compared to \(\mathrm{V}_{\mathrm{TH}}+\) \(\left(V_{+}>10 V_{T H+}\right)\), the use of a precision \(1 \%\) resistor for \(R_{X}\) does reduce the variation of \(V_{+}\).)

For simultaneous selection of external upper, \(\mathrm{V}_{+}\), and lower, \(V_{\text {_ }}\), voltage threshold points a combination of a series and parallel input resistors can be used. Refer to the example on "ac operation with improved threshold control and accuracy" for detailed information.

Calculation of the maximum power dissipation in \(R_{x}\) is determined by knowing which of the following inequalities is true:
\(\frac{V_{+}}{V_{\text {peak }}}>\frac{V_{\text {TH }}}{V_{\text {IHC }}}\)
(\(V_{\text {IN }}\) will not clamp)
\(\frac{\mathrm{V}_{+}}{\mathrm{V}_{\text {peak }}}<\frac{\mathrm{V}_{\mathrm{TH}}}{\mathrm{V}_{\text {IHC }}}\)
\[
\begin{equation*}
\left(V_{\text {IN }}\right. \text { will clamp) } \tag{4}
\end{equation*}
\]
where \(\mathrm{V}_{\text {IHC }}\) is the particular input clamp voltage listed on the data sheet.

For this dc application with ac pins \((1,4)\) open, input voltage clamping will not occur, i.e.,
\(\frac{\mathrm{V}_{+}}{\mathrm{V}_{\text {peak }}}>\frac{\mathrm{V}_{\mathrm{TH}+}}{\mathrm{V}_{\text {IHC3 }}}\)
\(\frac{5 \mathrm{~V}}{10 \mathrm{~V}}>\frac{3.8 \mathrm{~V}}{12.0 \mathrm{~V}}\)

Consequently, a conservative value for the maximum power dissipation in \(R_{x}\) for the unclamped input voltage condition ignoring the input offset voltage is given by:
\(P_{R_{X}}=\frac{\left[V_{\text {peak }}\left(\frac{R_{x}}{R_{x}+1 k \Omega}\right)\right]^{2}}{R_{x}}\) (Unclamped Input)
\[
=\frac{\left[10 \mathrm{~V}\left(\frac{470 \Omega}{1470 \Omega}\right)\right]^{2}}{470 \Omega}
\]
\(P_{R_{X}}=21.8 \mathrm{~mW}\)
If \(\mathrm{V}_{+} / \mathrm{V}_{\text {peak }}<\mathrm{V}_{\mathrm{TH}+} / \mathrm{V}_{\text {IHC }}\) was true (clamped input voltage condition), then the formula for the maximum power dissipation in \(R_{x}\) becomes:
\(P_{R_{X}}=\frac{\left(V_{\text {peak }}-V_{I H C}\right)^{2}}{R_{X}} \quad\) (Clamped Input)
The maximum input current or power must be determined to ensure that it is within the maximum input rating of the HCPL-3700. For the clamped input voltage condition,
\[
\begin{equation*}
I_{I N}=\frac{V_{\text {peak }}-V_{I H C}}{R_{x}}<I_{I N(\max)} \tag{7}
\end{equation*}
\]

Clamped Condition

Figure 6. Interfacing an AC Voltage to an MPU using the HCPL-3700

For the unclamped input voltage condition, the maximum input current, or power will not be exceeded, because maximum input current and power will occur only under clamp conditions.

An output load resistance is not needed in this application because the peripheral interface adapter, such as MC6821, has an internal pullup resistor connected to its input.

\section*{Example 2. AC Operation}

As shown in Figure 6, an ac application is that of a monitored 115 V ac limit switch. Ac sensing is commonly used and the HCPL- 3700 conveniently provides an internal rectification circuit. With the HCPL-3700 interfacing to the P.I.A., a choice can be made not to filter the ac signal or to filter the ac signal at the input or output of the device. All three conditions will be explored. Simplicity is obtained with no filtering at all, but software detection techniques must be used. Output filtering is a standard method, but may present problems with slow RC rise time of the output waveform when TTL logic is used. Input filtering avoids the RC rise time problem of output filtering, but introduces an extra time delay at the input.

\section*{AC Operation With No Filtering}

In this example, a \(\mathrm{V}_{+}\)value of 98 V is selected based on a criteria of \(60 \%\) of \(V_{\text {peak }}\). Monitoring a limit switch for a \(60 \%\) level of the signal will give sufficient noise immunity from an open 115 V ac line while allowing the HCPL-3700 to turn on under low line voltage conditions of \(-15 \%\) from nominal values when the limit switch is closed.

The value of \(R_{x}\) for the upper threshold detection level without the filter capacitor, \(C\), across the dc input, can be obtained from the following expression.
\(R_{x}=\frac{V_{+}-V_{T H+}}{I_{T H+}}\)
\[
\begin{equation*}
v_{\mathrm{TH}+}=5.1 \mathrm{~V} \tag{9}
\end{equation*}
\]
(ac instantaneous)
\(I_{\mathrm{TH}_{+}}=2.5 \mathrm{~mA}\)

Figure 7. Typical External Threshold Characteristic, \(\mathbf{V}_{ \pm}\)vs. \(R_{\mathbf{X}}\)

(use \(R_{\mathbf{x}} / 2=18.7 \mathrm{k} \Omega, 1 \%\) resistor for each input lead)

The resulting lower threshold point is
\[
\begin{aligned}
V_{-} & =I_{T H-} R_{x}+V_{T H-} \\
& =(1.3 \mathrm{~mA})(37.4 \mathrm{k} \Omega)+3.8 \mathrm{~V} \\
V_{-} & =52.4 \mathrm{~V}
\end{aligned}
\]
(32\% of peak input voltage)

Figure 7 provides a convenient, graphical choice for the external series resistor, \(\mathrm{R}_{\mathbf{x}^{\prime}}\) and a particular external threshold voltage \(\mathrm{V}_{ \pm}\).

The corresponding \(R_{x}\) value and output waveform of the HCPL-3700 for a \(V_{+}=98 \mathrm{~V}\) (\(60 \%\) of peak) is shown in Figure 8.

Figure 8. Output Waveforms of the HCPL-3700 Design in Figure 7 with no Filtering Applied

Figure 9. Determination of Off/On State Time
To determine the time in the high state, refer to Figure 9 and Equation (11).

Due to symmetry of sinusoidal waveform, the high state time is \(t_{-}+t_{+}\)where \(t_{ \pm}\)is given by:
\(t_{ \pm}=\frac{T}{360^{\circ}} \sin ^{-1}\left(\frac{V_{ \pm}}{V_{\text {peak }}}\right)\)
where arc sine is in degrees and \(T=\) period of sinusoidal waveform.

In the unfiltered condition, the output waveform of Figure 8 must be used as sensed information. Software can be created in which the microprocessor will examine the waveform from the optocoupler at specific intervals to determine if ac is present or absent at the input to the HCPL3700. This technique eliminates the problem of filtering, and accompanying delays, but requires more sohpisticated software implementation in the microprocessor.

\section*{Input Filtering for AC Operation}

A convenient method by which to achieve a continuous output low state in the presence of the applied ac signal is to filter the input dc terminals (pins 2-3) with a capacitance \(C\) while the ac signal is applied to the ac input (pins 1-4) of the full wave rectifier bridge. Input filtering allows flexibility in using the HCPL- 3700 output for direct interfacing with TTL or CMOS devices without the slow rise time which would be encountered with output filtering. In addition, the input filter capacitor provides extra transient and contact bounce filtering. Because filtering is done after \(R_{x}\), the capacitor working voltage is limited by the \(\mathrm{V}_{1 H C 2}\) clamp voltage rating which is 6.7 V peak for ac operation. The disadvantage of input filtering is that this technique introduces time delays at turn on and turn off of the optocoupler due to initial charge/discharge of the input filter capacitor.

Figure 10. Input Filtering with the HCPL-3700

The application of ac input filtering is illustrated in Figure 10 and is described in the following example. The ac input conditions are the same as in the previous example of the 115 V ac limit switch.

The minimum value of capacitance \(C\) to ensure proper ac filtering is determined by the parameters of the optocoupler. At low ac input voltage, the capacitor must charge to at least \(\mathrm{V}_{\mathrm{TH}}+\) in order to turn on, but must not discharge to \(\mathrm{V}_{\mathrm{TH}}\) - during the discharge cycle. A conservative estimate for the minimum value of \(C\) is given by the following equations.
\(\mathrm{V}_{\mathrm{TH}+}-\mathrm{V}_{\mathrm{TH}-}=\mathrm{V}_{\mathrm{TH}+{ }^{\mathrm{e}}} \mathrm{t}^{\mathrm{t} / \tau}, \tau=\mathrm{R}_{\mathrm{IN}} \mathrm{C}_{\text {min }}\)
where \(R_{I N}\) is the equivalent input resistance of the HCPL3700.
\(c_{\text {min }}=\frac{t}{R_{\text {IN }} \ln \left(\frac{V_{T H+}}{V_{T H+}-V_{T H-}}\right)}\)
with \(R_{I N}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{TH}+}=3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{TH}-}=2.6 \mathrm{~V}\) and \(\mathrm{t}=\) 8.33 ms for 60 Hz or \(\mathrm{t}=10 \mathrm{~ms}\) for 50 Hz .
\(C_{\text {min }}=7.23 \mu \mathrm{~F}\) for 60 Hz
\(C_{\text {min }}=8.68 \mu \mathrm{~F}\) for 50 Hz
To ensure proper filtering, the recommended value of C should be large enough such that with the tolerance variation, \(C\) will always be greater than \(C_{\min }(C\) should otherwise be kept as small as possible to minimize the inherent delay times which are encountered with this technique). Since the filter capacitor affects the input impedance, a slightly different value of \(R_{x}\) is required for the input filtered condition. Figure 11 shows the \(R_{x}\) versus \(V_{ \pm}\) threshold voltage for \(C=10 \mu \mathrm{~F}, 22 \mu \mathrm{~F}\), and \(47 \mu \mathrm{~F}\). For an application of monitoring a 115 V RMS line for \(65 \%\) of nominal voltage condition (75 V RMS), an \(R_{x}=26.7 \mathrm{k} \Omega \pm\) \(1 \%\) with \(C=10 \mu \mathrm{~F}\) will yield the desired threshold. The power dissipation for \(R_{x}\) is determined from the clamped

Figure 11. External Threshold Voltage versus \(\mathbf{R}_{\mathbf{X}}\) for Applications Using an Input Filter Capacitor C (Figure 10)
condition (\(\mathrm{V}_{+} / \mathrm{V}_{\text {peak }}<\mathrm{V}_{\mathrm{TH}+} / \mathrm{V}_{\mathrm{ICH} 2}\)) and is 455 mW (see Figure 6) which suggests \(R_{x} / 2\) of \(1 / 2\) watt resistors for each input lead.

\section*{Example 3. AC Operation with Improved Threshold Control and Accuracy}

Some applications may occur which require threshold level detection at specific upper and lower threshold points. The ability to independently set the upper and lower threshold levels will provide the designer with more flexibility to meet special design criteria. As illustrated in Figure 12, a computer power line is monitored for a power failure condition in order to prevent loss of memory information during power line failure.

In this design, the HCPL-3700 optocoupler monitors the computer power line and the output of the optocoupler is interfaced to a TTL Schmitt trigger gate (7414).

In the earlier ac application of the HCPL-3700 (limit switch example), a single external series resistor, \(R_{x}\), was used to determine one of the threshold levels. The other threshold level was determined by the hysteresis of the device, and not the designer. A potential problem of single threshold

Figure 12. An AC Power Line Monitor with Simultaneous Selection of Upper and Lower Threshold Levels and Output Filtering
selection with 115 V line application would be to determine \(R_{x}\) for a lower threshold level of \(50 \%\) of nominal peak input voltage, only to find that the upper threshold level is \(90 \%\) of peak input voltage. With the possible ac line voltage variations (\(+10 \%,-15 \%\)), it would be possible that the optocoupler could never reach the upper threshold point with an ac line that is at \(-15 \%\) of nominal value. To give the designer more control over both threshold points, a combination of series resistance, \(\mathrm{R}_{\mathrm{x}}\), and parallel resistance, \(R_{p}\), may be used, as shown in Figure 12.

Two equations can be written for the two external threshold level conditions. At the upper threshold point,
\(v_{+}=R_{x}\left(I_{T H+}+\frac{v_{T H+}}{R_{P}}\right)+v_{T H+}\)
and at the lower threshold point,
\(V_{-}=R_{x}\left(I_{T H-}+\frac{V_{T H-}}{R_{P}}\right)+V_{T H-}\)
Solving these equations for \(R_{x}\) and \(R_{P}\) yield the following expressions:
\(R_{X}=\frac{V_{T_{H-}}\left(V_{+}\right)-V_{T_{H+}}\left(V_{-}\right)}{I_{T_{+}+}\left(V_{T_{H}-}\right)-I_{T_{H-}}\left(V_{T_{H+}}\right)}\)
\(R_{P}=\frac{v_{T H-}\left(V_{+}\right)-v_{T H+}\left(V_{-}\right)}{I_{T H+}\left(V_{-}-V_{T H-}\right)+I_{T H-}\left(V_{T H+}-V_{+}\right)}\)
Equations (16) and (17) are valid only if the conditions of Equations (18) or (19) are met. The desired external voltage threshold levels, \(V_{+}\)and \(V_{-}\), are established and the values for \(\mathrm{V}_{\mathrm{TH} \pm}\) and \(\mathrm{I}_{\mathrm{TH} \pm}\) are found from the data sheet. With the \(V_{T H \pm,} I_{T H \pm}\) values, the denominator of \(R_{x^{\prime}}\) Equation (16) is checked to see of it is positive or negative. If it is positive, then the following ratios must be met:
\(\frac{\mathrm{V}_{+}}{\mathrm{V}_{-}} \geqslant \frac{\mathrm{V}_{\mathrm{TH}+}}{\mathrm{V}_{\mathrm{TH}_{-}}}\)and \(\frac{\mathrm{V}_{+}-\mathrm{V}_{\mathrm{TH}+}}{\mathrm{V}_{-}-\mathrm{V}_{\mathrm{TH}_{-}}}<\frac{\mathrm{I}_{\mathrm{TH}+}}{\mathrm{I}_{\mathrm{TH}_{-}}}\)
Conversely, if the denominator of \(R_{x}\) Equation (16) is negative, then the following ratios must hold:
\(\frac{V_{+}}{V_{-}} \leqslant \frac{V_{T H+}}{V_{T_{H-}}}\) and \(\frac{V_{+}-V_{T_{H}}}{V_{-}-V_{T_{H}}}>\frac{I_{T H+}}{I_{T_{H}}}\)

Consider that the computer power line is monitored for a \(50 \%\) line drop condition and a \(75 \%\) line presence condition. The 115 V 60 Hz ac line (163 V peak) can vary from \(85 \%\) (139 V) to \(110 \%(179 \mathrm{~V})\) of nominal value.

Require:
\(V_{-}=81.5 \mathrm{~V}(50 \%)-\) Turn off threshold
\(V_{+}=122.5 \mathrm{~V}(75 \%)-\) Turn on threshold

Given:
\(\begin{array}{lll}\mathrm{V}_{\mathrm{TH}+}=5.1 \mathrm{~V} & \mathrm{I}_{\mathrm{TH}+}=2.5 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IHC2}}=6.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{TH}-}=3.8 \mathrm{~V} & \mathrm{I}_{\mathrm{TH}-}=1.3 \mathrm{~mA} & \end{array}\)
Using the Equations \((16,17)\) for \(R_{x}, R_{p}\) with the conditions of Equations \((18,19)\) being met yields
\(R_{x}=17.4 k \Omega \quad\) use \(18 \mathrm{k} \Omega \quad 5 \%\)
\(R_{P}=1.2 \mathrm{k} \Omega \quad\) use \(1.2 \mathrm{k} \Omega \quad 5 \%\)
To complete the input calculations for maximum input current, \(I_{I N}\), to the device and maximum power dissipation in \(R_{x}\) and \(R_{p}\), a check must be made to determine if the input voltage will clamp at peak applied voltage. Using Equations (3) and (4) to determine if a clamp or no clamp exists, it is found that the ratios
\(0.75=\frac{V_{+}}{V_{\text {peak }}} \approx \frac{V_{\text {TH }}}{V_{\text {IHC2 }}}=0.76\)
indicate that \(\mathrm{V}_{\mathrm{IN}}\) slightly entered clamp condition. In this application, the operating input current, \(I_{I N}\), is given approximately by
\(I_{I N}=\frac{V-\frac{V_{I H C 2}}{\sqrt{2}}}{R_{x}}-\frac{\frac{V_{I H C 2}}{\sqrt{2}}}{R_{P}}<I_{I N(\max)}\)
\[
=\frac{115 \mathrm{~V}-\frac{6.7 \mathrm{~V}}{\sqrt{2}}}{18 \mathrm{k} \Omega}-\frac{\frac{6.7 \mathrm{~V}}{\sqrt{2}}}{1.2 \mathrm{k} \Omega}
\]
\(I_{I N}=2.18 \mathrm{~mA} \mathrm{RMS}<34.3 \mathrm{~mA}\)
Power dissipation in \(R_{x}\) is determined from the following equation,
\(P_{R_{X}}=\frac{\left(v-\frac{V_{1 H C 2}}{\sqrt{2}}\right)^{2}}{R_{x}}\)
which yields 0.675 W . With the clamp condition existing, the maximum power dissipation for \(R_{P}\) is 18.7 mW which is determined from
\(P_{R_{P}}=\frac{\left(\frac{V_{I H C 2}}{\sqrt{2}}\right)^{2}}{R_{P}}\)

\section*{Output Filtering}

The advantages of filtering at the output of the HCPL-3700 are that it is a simple method to implement. The output waveform introduces only one additional delay time at turn off condition as opposed to the input filtering method which introduces additional delay times at both the turn on and turn off conditions due to initial charge or discharge of the input filter capacitor. The disadvantage of output filtering is that the long transition time, \(\mathrm{t}_{\mathrm{r}}\), which is introduced by the output RC filter requires a Schmitt trigger logic gate to buffer the output filter circuit from the subsequent logic circuits to prevent logic chatter problems. The determination of load resistance and capacitance is illustrated in the following text.

The following given values specify the interface conditions.

\section*{HCPL-3700}
\(V_{\mathrm{OL}}=0.4 \mathrm{~V}\)
\(\mathrm{I}_{\mathrm{OL}}=4.2 \mathrm{~mA}\)
\(I_{\mathrm{OH}}=100 \mu \mathrm{~A}\) max
\(V_{C C}=5.0 \mathrm{~V} \pm 5 \%\)
7414
\(\left.\begin{array}{l}V_{T+(\min)}=1.5 \mathrm{~V} \\ V_{T+(\max)}=2.0 \mathrm{~V} \\ I_{I H}=40 \mu \mathrm{~A} \text { max } \\ I_{I L}=-1.2 \mathrm{~mA} \max \end{array}\right\} \quad \begin{array}{r}\text { Schmitt trigger upper } \\ \text { threshold level }\end{array}\)
With the current convention shown in Figure 12, the minimum value of \(R_{L}\) which ensures that the output transistor remains in saturation is:
\[
\begin{align*}
R_{L(\min)} & \geqslant \frac{V_{C C(\max)}-V_{\mathrm{OL}}}{\mathrm{I}_{\mathrm{OL}}+I_{\mathrm{IL}}} \tag{23}\\
& =\frac{5.25 \mathrm{~V}-0.4 \mathrm{~V}}{4.2 \mathrm{~mA}-1.2 \mathrm{~mA}}=1.62 \mathrm{k} \Omega
\end{align*}
\]

The maximum value for \(R_{L}\) is calculated allowing for a guardband of 0.4 V in \(\mathrm{V}_{\mathrm{T}+}\) (max \(^{\text {marameter, or }} \mathrm{V}_{\mathrm{IH}}=\) \(\mathrm{V}_{\mathrm{T}+(\max)}+0.4 \mathrm{~V}\).

Figure 13. Output Waveforms of the HCPL-3700
\(R_{L(\text { max })} \leqslant \frac{V_{C C}(\text { min })}{}-V_{I H}\)
\[
=\frac{4.75 \mathrm{~V}-2.4 \mathrm{~V}}{0.1 \mathrm{~mA}+0.04 \mathrm{~mA}}=16.8 \mathrm{k} \Omega
\]
\(R_{L}\) is chosen to be \(1650 \Omega\).
\(C_{L}\) can be determined in the following fashion. As illustrated in Figure 8, the output of the optocoupler will be in the high state for a specific amount of time dependent upon the selected \(\mathrm{V}_{+}\)levels. In this example, \(\mathrm{V}_{+}=122.5 \mathrm{~V}\) (\(75 \%\)) and \(V_{-}=81.5 \mathrm{~V}(50 \%)\) and allowing for a minimum peak line voltage of \(138 \mathrm{~V}(-15 \%)\), the high state time (without \(C_{L}\)) is from Equation (11), 4.58 ms . With the appropriate \(C_{L}\) value, the output waveform (solid line) shown in Figure 13 is filtered.

The maximum ripple amplitude above \(V_{O L}\) is chosen to be 0.6 V ; that is, \(\mathrm{V}_{\mathrm{OL}}+\Delta \mathrm{V}_{\mathrm{OL}}=1.0 \mathrm{~V}\). This gives a 0.5 V noise margin before \(V_{T+(\min)}=1.5 \mathrm{~V}\) is reached. The exponential ripple waveform is caused by the \(C_{L}\) being charged through \(R_{L}\) and input resistance, \(R_{I N T T L}\), of TTL gate. An expression for the allowable change in \(\mathrm{V}_{\mathrm{OL}}\) can be written:
\(\Delta \mathbf{V}_{\mathrm{OL}}=\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right)\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)\)
where \(\tau=R^{\prime} C_{L}\) with \(R_{L}^{\prime}\) equal to parallel combination of \(R_{L}\) and \(R_{I N T T L}\).

Below \(\mathrm{V}_{\mathrm{T}++}=1.5 \mathrm{~V}(\mathrm{~min}), \mathrm{R}_{\text {INTTL }}\) is constant and nominally \(6 \mathrm{k} \Omega\). Hence:
\(\mathbf{R}_{\mathbf{L}}^{\prime}=\frac{\mathbf{R}_{\mathbf{L}} \mathbf{R}_{\text {IN }}{ }_{\text {TTL }}}{\mathbf{R}_{\mathbf{L}}+\mathbf{R}_{\text {IN }}}\)
\(\begin{aligned} & =\frac{(1.65 \mathrm{k} \Omega)(6 \mathrm{k} \Omega)}{1.65 \mathrm{k} \Omega+6 \mathrm{k} \Omega} \\ R_{L}^{\prime} & =1.29 \mathrm{k} \Omega\end{aligned}\)
Solving Equation (25) for \(\tau\) yields
\(\tau=\frac{t}{\ln \left(\frac{\mathrm{~V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}-\Delta \mathrm{V}_{\mathrm{OL}}}\right)}\)
and substituting previous parameter values and using \(\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-\left(I_{\mathrm{OH}}+I_{\mathrm{IH}}\right) \mathrm{R}_{\mathrm{L}}\) results in
\[
=\frac{4.58 \mathrm{~ms}}{\ln \left(\frac{4.8 V-0.4 V}{4.8 V-0.4 V-0.6 V}\right)}
\]
\(\tau=31.24 \mathrm{~ms}\)
\(C_{L}\) can be calculated directly,
\[
\begin{equation*}
c_{L}=\frac{\tau}{R_{L}^{\prime}} \tag{28}
\end{equation*}
\]
\[
\begin{aligned}
& =\frac{31.24 \mathrm{~ms}}{1.29 \mathrm{k} \Omega} \\
\mathrm{C}_{\mathrm{L}} & =24.2 \mu \mathrm{~F}
\end{aligned} \quad \begin{aligned}
& \text { use } 27 \mu \mathrm{~F} \pm 10 \% \\
& \\
& \\
& \text { or } 33 \mu \mathrm{~F} \pm 20 \%
\end{aligned}
\]

With this value of \(C_{L}\), the time the \(R_{L} C_{L}\) filter network takes to reach \(V_{T+}\) of the TTL gate is found as follows.
\(\mathrm{V}_{\mathrm{OL}}+\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right)\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)=\mathrm{V}_{\mathrm{T}+}\)
Solving for t ,
\(t=\tau \ln \left(\frac{\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}}{\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{T}+(\min)}}\right)\)
and substituting \(\mathrm{V}_{\mathrm{OH}}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}+(\min)}=\) 1.5 V , and \(\tau=31.24 \mathrm{~ms}\) yields
\[
\mathbf{t}=9.0 \mathrm{~ms}
\]

This is the delay time that the system takes to respond to the ac line voltage going below the \(50 \%\) (V_) threshold level. In essence, the response time is slightly more than a half cycle (8.33 ms) of 60 Hz ac line with worst case line variation taken into account. This delay time is acceptable for system power line protection. In this example, a complete worst case analysis was not performed. A worst case analysis should be done to ensure proper function of the circuit over variations in line voltage, unit to unit device parameter variations, component tolerances and temperature.

\section*{Threshold Accuracy Improvement}

In the above example on output filtering, the two external threshold levels were selected for turn on conditions at \(\mathrm{V}_{+}=122.5 \mathrm{~V}(75 \%)\) and turn off at \(\mathrm{V}_{-}=81.5 \mathrm{~V}(50 \%)\). The calculated external resistor values were \(R_{x}=17.4 \mathrm{k} \Omega\) and \(R_{p}=1.2 \mathrm{k} \Omega\). Using standard \(5 \%\) resistors of \(18 \mathrm{k} \Omega\) and \(1.2 \mathrm{k} \Omega\) respectively, the upper threshold voltage was actually 126.6 V nominal.

Examination of the worst possible combination of variations of the HCPL- 3700 optocoupler \(\mathrm{V}_{\mathrm{TH}+}{ }^{\prime}{ }^{1} \mathrm{TH}+\), levels from unit to unit, and the \(\pm 5 \%\) variations of \(R_{x}\) and \(R_{P}\) can result in the \(V_{+}\)level changing \(+23 \%\) to \(-25 \%\) from design nominal.

If higher threshold accuracy is desired, it can be accomplished by decreasing the value of \(R_{P}\) in order to allow \(R_{P}\) to dominate the input resistance variations of the optocoupler. Using a \(1 \%\) resistor for \(R_{P}\) and resistance of sufficiently small magnitude, the \(\mathrm{V}_{+}\)tolerance variations can be significantly improved. The following analysis will allow the designer to obtain nearly optimum threshold accuracy from unit to unit. It should be noted that the HCPL-3700 demonstrates excellent threshold repeatability once the external resistors are adjusted for a particular level and unit. The compromise which is made for the added control on threshold accuracy is that more input power must be consumed within the \(R_{p}, R_{x}\) resistors.

In Figure 14, assume the circuit is at the upper threshold point. At constant \(\mathrm{V}_{\mathrm{TH}+}\), it is desired to maintain \(I_{+}\)to within \(\pm 5 \%\) variation of nominal value while allowing \(\pm 1 \%\) variation in \(\mathrm{I}_{\mathrm{P}+}\). With this requirement, Equations (31) and (32) can be written and solved for the magnitude of \(I_{P_{+}}\) which is needed to maintain the desired condition on \(I_{+} \cdot I_{+}\) is the sum of \(\mathrm{I}_{\mathrm{P}+}\) and \(\mathrm{I}_{\mathrm{TH}+}\).
\(\left.\begin{array}{l}1.05 I_{+}=1.01 I_{\mathrm{P}_{+}}+\mathrm{I}_{\mathrm{TH}+(\max)} \\ 0.95 \mathrm{I}_{+}=0.99 \mathrm{I}_{\mathrm{P}+}+\mathrm{I}_{\mathrm{TH}+(\min)}\end{array}\right\}\) at constant \(\mathrm{V}_{\mathrm{TH}+}\)
where
\({ }^{1} \mathrm{TH}+(\max)=3.11 \mathrm{~mA}\)
\(\mathrm{I}_{\mathrm{TH}+(\min)}=1.96 \mathrm{~mA}\)

Figure 14. Threshold Accuracy Improvement through the Use of External \(\mathbf{R}_{\mathbf{x}}\) and \(\mathbf{R}_{\mathbf{p}}\) Resistors

Solving for \(\mathrm{I}_{\mathrm{P}+}\) yields
\(I_{P_{+}}=11.2 \mathrm{~mA}\),
and
\(R_{P}=\frac{V_{T H+}}{I_{P+}}\)
\(R_{P}=433 \Omega\)
(use \(453 \Omega, 1 \%\) resistor)

This new value of \(R_{P}\) replaces the earlier \(R_{P}=1.2 \mathrm{k} \Omega\), and the circuit requires a new \(R_{x}\) value to maintain the same \(V_{+}\) threshold level.
\[
\begin{align*}
R_{x} & =\frac{V_{+}-V_{T H+}}{I_{+}} \text {where } \quad \begin{aligned}
I_{+} & =I_{P_{+}+}+I_{T H+} \\
& =11.2 \mathrm{~mA}+2.5 \mathrm{~mA} \\
& =\frac{122.5 \mathrm{~V}-5.1 \mathrm{~V}}{13.7 \mathrm{~mA}} \\
R_{x} & =8.57 \mathrm{k} \Omega \quad \text { (use } 8.66 \mathrm{k} \Omega, 1 \% \text { resistor) }
\end{aligned} \tag{34}
\end{align*}
\]

With the possible variation of \(\pm 1 \%\) in \(R_{P}\) and \(R_{x}\), as well as unit to unit variations in the optocoupler \(\mathrm{V}_{\mathrm{TH}+}{ }^{\prime} \mathrm{I}_{\mathrm{TH}+}\), the upper threshold level \(\mathrm{V}_{+}\)will vary significantly less than in the \(5 \%\) resistor design case. The variations in \(V_{+}\), which is given by \(V_{+}=R_{x} I_{+}+V_{T H+}\), where \(I_{+}=I_{P_{+}}+I_{T H+}\), are compared in Table 1.

Table 1 illustrates the possible improvements in \(\mathrm{V}_{+}\)tolerance as \(R_{x}\) and \(R_{p}\) are adjusted to limit the variation of the external input threshold current, \(I_{+}\), to the resistor network and optocoupler. This table is centered at a nominal external input threshold voltage of \(\mathrm{V}_{+}=122.5 \mathrm{~V}\). It is the designer's compromise to keep power consumption low, but threshold accuracy high.

NOTE: \(\quad\) The above method for selection of \(R_{P}\) and \(R_{x}\) can be adapted for applications where larger sense currents (wet sensing) may be appropriate.

\section*{Example 4. Dedicated Lines for Remote Control}

In situations involving a substantial separation between the signal source and the receiving station, it may be desirable to lease a dedicated private line metallic circuit (dc path) for supervisory control of remote equipment. The HCPL3700 can provide the interface requirements of voltage threshold detection and optical isolation from the metallic line to the remote equipment. This greatly reduces the expense of using a sophisticated modem system over a convention telephone line.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{R}_{\mathbf{x}}\) & T
\(\mathbf{O}\)
L. & \(\mathbf{R}_{\mathbf{p}}\) & T
0
L. & \(I_{+}\)TOLERANCE & \multicolumn{2}{|l|}{\(\mathrm{V}_{+}\)TOLERANCE} & MAXIMUM TOTAL POWER IN \(R_{x}+R_{p}(R M S)\) \\
\hline \(18 \mathrm{k} \Omega\) & 5\% & \(1.2 \mathrm{k} \Omega\) & 5\% & \[
\begin{aligned}
& +17.5 \% \\
& -21.2 \%
\end{aligned}
\] & + 23\% & - 25\% & 0.69 W \\
\hline \(8.66 \mathrm{k} \Omega\) & 1\% & \(453 \Omega\) & 1\% & \(\pm 5 \%\) & +12.7\% & -19.3\% & 1.45 W \\
\hline \(4.32 \mathrm{k} \Omega\) & 1\% & \(205 \Omega\) & 1\% & \(\pm 3 \%\) & +11.2\% & -18.9\% & 2.92 W \\
\hline \(2.15 \mathrm{k} \Omega\) & 1\% & \(97.5 \Omega\) & 1\% & \(\pm 2 \%\) & +10.6\% & -18.8\% & 5.89 W \\
\hline
\end{tabular}

Table 1. Comparison of the \(\mathbf{V}_{+}\)Threshold Accuracy Improvement versus \(\mathbf{R}_{\mathbf{x}}\) and \(\mathbf{R}_{\mathbf{p}}\) and Power Dissipation for a Nominal \(V_{+}=122.5 \mathrm{~V}\)

Figure 15 represents the application of the HCPL- 3700 for a line which is to control tank levels in a water district.

Some comments are needed about dedicated metallic lines. The use of a private metallic line places restrictions upon the designer's signal levels. The line in this example would be used in the interrupted dc mode (duration of each interruption greater than one second), the maximum allowed voltage between any conductor and ground is \(\leqslant 135\) volts. Maximum current should be limited to 150 mA if the cable has compensating inductive coils in it. Balanced operation of the line is strongly recommended to reduce possible cross talk interference as well as to allow larger signal magnitudes to be used. Precaution also should be taken to protect the line and equipment. The line needs to be fused to ensure against equipment failure causing excessive current to flow through telephone company equipment. In addition, protection from damaging transients must be taken via spark gap arrestors and commercial transient suppressors. Details of private line metallic circuits can be founded in the American Telephone and Telegraph Company publication 43401.

In this application, a 48 V dc floating power source supplies the signal for the metallic line. The HCPL-3700 upper voltage threshold level is set for \(\mathrm{V}_{+}=36 \mathrm{~V}\) (75\%). Consequently, \(R_{x}\) is
\[
\begin{align*}
R_{x} & =\frac{V_{+}-V_{T H+}}{I_{T H+}} \tag{35}\\
& =\frac{36 \mathrm{~V}-3.8 \mathrm{~V}}{2.5 \mathrm{~mA}} \\
& =12.9 \mathrm{k} \Omega
\end{align*}
\]

The resulting lower voltage threshold level is
\[
\begin{align*}
V_{-} & =R_{x} I_{T H-}+V_{T H-} \tag{36}\\
& =13 \mathrm{k} \Omega(1.3 \mathrm{~mA})+2.6 \mathrm{~V} \\
V_{-} & =19.5 \mathrm{~V}
\end{align*}
\]
(use \(R_{x} / 2=6.49 \mathrm{k} \Omega, 1 \%\) resistor in each input level)

FLOAT SWITCH AND WATER PUMP ARE REMOTELY LOCATED WITH RESPECT TO EACH OTHER.
Figure 15. Application of the HCPL-3700 to Private Metallic Telephone Circuits for Remote Control
yielding \(\mathrm{V}_{\mathrm{HYS}}=16.5 \mathrm{~V}\). The average induced ac voltage from adjacent power lines is usually less than 10 volts (reference ATT publication 43401) which would not falsely turn on, or off, the HCPL-3700, but could affect conventional optocouplers.

Under normal operation (full reservoir), the optocoupler is off. When the float switch is closed (low reservoir), the optocoupler output (\(\mathrm{V}_{\mathrm{OL}}\)) needs inversion, via a transistor, to drive the power Darlington transistor which controls a motor starting relay. The relay applies ac power to the system water pump. With \(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}_{2}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}_{1}}=\) 0.5 mA .
\[
\begin{align*}
R_{1} & =\frac{V_{C C}-2 V_{B E}}{I_{B_{2}}} \tag{37}\\
& =\frac{10 \mathrm{~V}-1.4 \mathrm{~V}}{0.5 \mathrm{~mA}} \\
\mathrm{R}_{1} & =17.2 \mathrm{k} \Omega \\
\left(\mathrm{R}_{1}\right. & =18 \mathrm{k} \Omega) \\
\mathrm{R}_{\mathrm{L}} & =\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{B}_{1}}} \tag{38}\\
& =\frac{10 \mathrm{~V}-0.7 \mathrm{~V}}{0.5 \mathrm{~mA}} \\
\mathrm{R}_{\mathrm{L}} & =18.6 \mathrm{k} \Omega \\
\left(\mathrm{R}_{\mathrm{L}}\right. & =18 \mathrm{k} \Omega)
\end{align*}
\]

For this application, the ac inputs could also be used, which would remove any concern about the polarity of the input signal.

\section*{General Protection Considerations for the HCPL-3700}

The HCPL-3700 optocoupler combines a unique function of threshold level detection and optical isolation for interfacing sensed signals from electrically noisy, and potentially harmful, environments. Protection from transients which could damage the threshold detection circuit and LED is provided internally by the Zener diode bridge rectifier and an external series resistor. By examination of Figure 1, it is seen that an input ac voltage clamp condition will occur at a maximum of a Zener diode voltage plus a forward biased diode voltage.

At clamp condition, the bridge diodes limit the applied input voltage at the device and shunt excess input current which could damage the threshold detection circuit or cause excessive stress to the LED.

The HCPL-3700 optocoupler can tolerate significant input current transient conditions. The maximum dc input current into or out of any lead is 50 mA . The maximum
input surge current is 140 mA for 3 ms at 120 Hz pulse repetition rate, and the maximum input transient current is 500 mA for \(10 \mu \mathrm{~s}\) at 120 Hz pulse repetition rate. The use of an external series resistor, \(\mathrm{R}_{\mathbf{x}}\), provides current limiting to the device when a large voltage transient is present. The amplitude of the acceptable voltage transient is directly proportional to the value of \(\mathrm{R}_{\mathbf{x}}\).

However, in order to protect the HCPL- 3700 when the input voltage to the device is clamped, the maximum input current must not be exceeded. An external means by which to enhance transient protection can be seen in Figure 16.

A transient \(R_{X} C_{P}\) filter can be formed with \(C_{p}\) chosen by the designer to provide a sufficiently low break point for the low pass filter to reduce high frequency transients. However, the break point must not be so low as to attenuate the signal frequency. Consider the previous ac application where no filtering was used. In that application, \(\mathrm{R}_{\mathrm{x}}=\) \(37.4 \mathrm{k} \Omega\), and if the bandwidth of the transient filter needs to be 600 Hz , then \(\mathrm{C}_{\mathrm{p}}\) is:
\[
\begin{equation*}
c_{P}=\frac{1}{2 \pi f R_{x}} \tag{39}
\end{equation*}
\]
\(C_{P}=0.0071 \mu \mathrm{~F} \quad\) (use \(0.0068 \mu \mathrm{~F}\) capacitor @ 50 V dc)
Should additional protection be needed, a very effective external transient suppression technique is to use a commercial transient suppressor, such as a Transzorb \({ }^{\circledR}\), or metal oxide varistor, MOV \({ }^{\circledR}\), at the input to the resistor network prior to the optocoupler. The Transzorb \({ }^{\circledR}\) will provide extremely fast transient response, clamp the input voltage to a definite level, and absorb the transient energy. Selection of a Transzorb \({ }^{\circledR}\) is made by ensuring that the reverse stand off voltage is greater than the continuous peak operating voltage level. Transzorbs \({ }^{\circledR}\) can be stacked in series or parallel for higher peak power ratings. Depending upon the designer's potential transient problems, a solution may warrent the expense of a commercial suppression device.

\section*{Thermal Considerations}

Thermal considerations which should be observed with the HCPL-3700 are few. The plastic 8 pin DIP package is designed to be operated over a temperature range of \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\). The absolute maximum ratings are established for

Figure 16. \(\mathbf{R}_{\mathbf{x}} \mathbf{C}_{\mathbf{p}}\) Transient Filter for the HCPL-3700
a \(70^{\circ} \mathrm{C}\) ambient temperature requiring slight derating to \(85^{\circ} \mathrm{C}\). In general, if operation of the HCPL-3700 is at ambient temperature of \(70^{\circ} \mathrm{C}\) or less, no heat sinking is required. However, for operation between \(70^{\circ} \mathrm{C}\) and \(85^{\circ} \mathrm{C}\) ambient temperature, the maximum ratings should be derated per the data sheet specifications.

\section*{Mechanical and Safety Considerations}

\section*{Mechanical Mounting Considerations}

The HCPL-3700 optocoupler is a standard 8 pin dual-inline plastic package designed to interface ac or dc power systems to logic systems. This optocoupler can be mounted directly onto a printed circuit board by wave soldering.

\section*{Electrical Safety Considerations}

Special considerations must be given for printed circuit board lead spacing for different safety agency requirements. Various standards exist with safety agencies (U.L., V.D.E., I.E.C., etc.) and should be checked prior to PC board layout. The HCPL-3700 optocoupler component is recognized under the Component Program of Underwriters Laboratories, Inc. in file number E55361. This file qualifies the component to specific electrical tests to 220 V ac operation.

The spacing required for the PC board leads depends upon the potential difference that would be observed on the board. Some standards that could pertain to equipment which would use the HCPL-3700 are UL1244, Electrical and Electronic Measuring and Testing Equipment, UL1092, Process Control Equipment, and IEC348, Electronic Measuring Apparatus. Spacing for the worst case in an uncontrolled environment with a 2000 volt-amperes maximum supplying source rating must be \(3.2 \mathrm{~mm}(0.125\) inches) for \(51-250\) volts RMS potential difference over a surface (creepage distance), and 3 mm (0.118 inches)
through air (bare wire). These separations are between any uninsulated live part and uninsulated live part of opposite polarity, or uninsulated ground part other than the enclosure or an exposed metal part.

An uncontrolled environment is an environment which has contaminants, chemical vapors, particulates or any substances which would cause corrosion, decrease resistance between PC board traces or, in general, be an unhealthy environment to human beings.

For \(0-50\) volts RMS, the spacing is 1.6 mm (0.063 inches) through air or over surfaces.

\section*{Electrical Connectors}

The HCPL-3700 provides the needed isolation between a power signal environment and a control logic system. However, there exists a physical requirement to actually interconnect these two environments. This interconnection can be accomplished with barrier strips, edge card connectors, and PCB socket connectors which provide the electrical cable/field wire connection to the I/O logic system. These connectors provide for easy removal of the PC board for repair or substitution of boards in the I/O housing and are needed to satisfy the safety agency (U.L., V.D.E., I.E.C.) requirements for spacing and insulation. Connectors are readily available from many commercial manufacturers, such as Connection Inc., Buchanan, etc. The style of connector to choose is dependent upon the application for which the PC board is used. If possible it is wise to choose a style which does not mount to the PC board. This would enable the PC card to be removed without having to disconnect field wires. The use of connectors which are called "gas tight connectors" provide for good electrical and mechanical reliability by reducing corrosion effects over time.

\section*{APPENDIX I. List of Parameters}

V \(\quad \equiv\) Externally Applied Voltage
\(V_{+} \quad \equiv\) External Upper Threshold Voltage Level
\(V_{-} \quad \equiv\) External Lower Threshold Voltage Level
\(\mathrm{V}_{\text {IHC1 }}=\) Device* Input Voltage Clamp Level; Low Voltage DC Case
\(V_{\text {1HC2 }}=\) Low Voltage AC Case
\(V_{\text {IHC3 }}=\) High Voltage DC Case
\(I_{\text {IN }}=\) Device Input Current
\(\mathrm{V}_{\text {IN }}=\) Device Input Voltage
\(\mathrm{V}_{\mathrm{TH}+}=\) Device Upper Voltage Threshold Level
\(\mathrm{V}_{\mathrm{TH}} \mathrm{TH}^{-}=\)Device Lower Voltage Threshold Level
\(I_{\mathrm{TH}}+=\) Device Upper Input Current Threshold Level
\({ }^{1} \mathrm{TH}_{-}=\)Device Lower Input Current Threshold Level
\(R_{x}=\) External Series Resistor for Selection of External Threshold Level
\(R_{P}=\) External Parallel Resistor for Simultaneous Selection/Accuracy Improvement of External Threshold Voltage Levels
\(=\) Total Input Current at Upper Threshold Level to External Resistor Network (\(\mathrm{R}_{\mathbf{x}}, \mathrm{R}_{\mathrm{P}}\)) and Device
\(I_{P_{+}} \quad=\) Current in \(R_{P}\) at Upper Threshold Levels
\(V_{\text {peak }}=\) Peak Externally Applied Voltage
\(=\) Output Voltage of Device
\begin{tabular}{|c|c|}
\hline \(\mathrm{V}_{\mathrm{OL}}\) & = Output Low Voltage of Device \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & \(=\) Output High Voltage of Device \\
\hline \({ }^{1} \mathrm{OH}\) & \(=\) Output High Leakage Current of Device \\
\hline \({ }^{1} \mathrm{OL}\) & = Output Low Sinking Current of Device \\
\hline \(\mathrm{I}_{\text {IH }}\) & = Input High Current of Driven Gate \\
\hline \(1 / \mathrm{L}\) & \(=\) Input Low current of Driven Gate \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & = Positive Supply Voltage \\
\hline \(\mathrm{R}_{\text {IN }}\) & = Input Resistance of HCPL-3700 \\
\hline \(\mathrm{V}_{\mathrm{T}+}\) & \[
\begin{aligned}
& \equiv \text { Schmitt Trigger Upper Threshold Voltage of } \\
& \text { TTL Gate (7414) }
\end{aligned}
\] \\
\hline \(\mathrm{R}_{\mathrm{L}}\) & = Output Pullup Resistance \\
\hline \(C_{L}\) & = Output Filter Capacitance \\
\hline C & = Input Filter Capacitor \\
\hline \(\mathrm{TH}_{+}\) & = Upper Threshold Level \\
\hline TH_ & \(=\) Lower Threshold Level \\
\hline \(\mathrm{PR}_{\mathrm{R}_{\mathrm{X}}}\) & \(=\) Power Dissipation in \(\mathrm{R}_{\mathrm{x}}\) \\
\hline \(P_{\text {IN }}\) & \(=\) Power Dissipation in HCPL-3700 Input IC \\
\hline PA & \(=\) Input Signal Port to P.I.A. \\
\hline \(\mathrm{t}_{+}\) & = Turn On Time \\
\hline t & \(=\) Turn Off Time \\
\hline T & = Period of Waveform \\
\hline \(\mathrm{C}_{P}\) & \(=\) Similar to \(\mathrm{R}_{\mathbf{P}}\) \\
\hline *Devic & = HCPL-3700 \\
\hline
\end{tabular}

\title{
Operational Considerations for LED Lamps and Display Devices
}

In the design of a display system, which incorporates LED lamps and display devices, the objective is to achieve an optimum between light output, power dissipation, reliability, and operating life. The performance characteristics and capabilities of each LED device must be known and understood so that an optimum design can be achieved. The primary source for this information is the LED device data sheet.

The data sheet typically contains Electrical/Optical Characteristics that list the performance of the device and Absolute Maximum Ratings in conjunction with characteristic curves and other data which describe the capabilities of the device. A thorough understanding of this information and its intended use provides the basis for achieving an optimum design.

This application note presents an in-depth discussion of the theory and use of the electrical and optical information contained within a data sheet. Two designs using this information in the form of numerical examples are presented, one for dc operation and one for pulsed (strobed) operation. The calculated results for each example are underlined and accented by an arrow (-) for each identification. Specific information on operation without derating and the soldering of plant: L.ED devices is also presented.

\section*{Typical Data Sheet Information}

A data sheet typically contains Absolute Maximum Ratings, Electrical/Optical Characteristics, and typical operating graphs. The Absolute Maximum Ratings list such items as the maximum allowed forward currents, power dissipation, and operating ambient temperature range. The Electrical/Optical Characteristics list such data as the luminous intensity specification (\(I_{V}\)), forward voltage \(\left(V_{F}\right)\), peak wavelength (\(\lambda_{\text {PEAK }}\)), dominant wavelength (\(\lambda_{d}\)), and the device thermal resistance LED junction-:o-pin on a per LED element basis (\(\mathrm{R} \theta_{\mathrm{J}-\mathrm{PIN}}\)).
The five graphs that are usually contained within a data sheet are:

Figure 1: Pulsed Mode Operating Curves
Figure 2: Current Derating vs. Temperature
Figure 3: Relative Luminous Efficiency
Figure 4: Forward Voltage Characteristic
Figure 5: Light Output vs. DC Drive Current

The data sheer also provides an equation to calculate the expected maximum forward voltage at a given current.

\section*{Design Criteria}

This application note assumes that the objective of a specific design is to achieve a maximum light output from a display that is operated in an elevated ambient temperature. The two criteria that establish the operating limits are the maximum drive current and the maximum LED junction temperature. The maximum drive current has been established to ensure a long operating life and the maximum LED junction temperature is governed by the device package. The data sheet will list the maximum allowed drive currents for a specific device. The absolute maximum allowed LED junction temperature (\(T_{J}\) MAX) differs for the various device package configurations. For most plastic display devices, \(\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=100^{\circ} \mathrm{C}\); for most plastic lamps, \(\mathrm{T}_{j} \mathrm{MAX}=110^{\circ} \mathrm{C}\); and for alphanumeric PC board monolithic displays, \(T_{J} M A X=110^{\circ} \mathrm{C}\) (for some PC board monolithic displays, \(T_{J} M A X=80^{\circ} \mathrm{C}\)).

\section*{Thermal Resistance}

The LED junction temperature is the sum of the ambient temperature \(\left(T_{A}\right)\) and the temperature rise above ambient (\(\Delta T_{J}\)), which is the product of the power dissipated within the junction (\(P_{D}\)) times the thermal resistance LED junction-to-ambient (\(R \theta_{J A}\)).
\[
\begin{align*}
& T_{J}\left({ }^{\circ} \mathrm{C}\right)=T_{A}+\Delta T_{J} \tag{1}\\
& T_{J}\left({ }^{\circ} \mathrm{C}\right)=T_{A}+P_{D} R \theta_{J A}
\end{align*}
\]

The cathode pins of an LED device are the primary thermal paths for heat dissipation from the LED junction into the surrounding environment. The data sheet lists the thermal resistance LED junction-to-pin (\(\mathrm{R} \theta_{J-P I N}\)) for the device. This device junction-to-pin thermal resistance is added to the thermal resistance-to-ambient of the PC board mounting assembly (\(\mathrm{R} \theta_{\mathrm{PC}-\mathrm{A}}\)) to obtain the overall value of \(R \theta_{J A}\) on a per LED element basis. (NOTE: For monolithic displays, thermal resistance is calculated on a per digit basis.)
\[
\begin{align*}
\mathrm{R} \theta \mathrm{JA} & =\mathrm{R} \theta \mathrm{~J}-\mathrm{PIN}+\mathrm{R} \theta \mathrm{PC}-\mathrm{A} \tag{2}\\
& ={ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED} \text { Element }
\end{align*}
\]

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration

Figure 2. Maximum Allowable DC Current per Segment vs. Ambient Temperature. Deratings Based on Maximum Allowed Thermal Resistance Values, LED Junction-toAmbient on a per Segment Basis. \(\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=100^{\circ} \mathrm{C}\)

Figure 4. Forward Current vs. Forward Voltage Characteristic

Figure 3. Relative Luminous Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

Figure 5. Relative Luminous Intensity vs. DC Forward Current

For reliable operation, it is recommended that the value of R \(\theta\) PC-A be designed low enough to ensure that the LED junction temperature does not exceed the maximum allowed value.

\section*{Derating vs. Temperature}

The derating vs. temperature, Figure 2 , is derived from the LED junction temperature rise above ambient as estabby the maximum allowed power dissipation (PD MAX) which is derated linearly to zero power when \(T_{A}=T_{J} M A X\). The values of R \(\theta_{J A}\) shown on Figure 2 are derived from the quotient of \(\triangle T J\) and \(P D M A X\) for a specified operating temperature.
\(R \phi j A\left({ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}\right)=\)
\[
\begin{equation*}
\frac{\Delta T J\left({ }^{\circ} \mathrm{C}\right)}{P_{D} M A X(W)}=\frac{T_{J} \text { MAX }-T_{A} \text { OPERATING }}{P_{D} M A X} \tag{3}
\end{equation*}
\]

The value of \(P D\). MAX is the power dissipation within a maximum forward voltage device when driven at the maximum data sheet current. Thus, R \(\theta\) JA is determined on the basis of worst case power dissipation.
The derating curve with the largest R \(\theta J A\) value in Figure 2, normally a derating from \(T_{A}=50^{\circ} \mathrm{C}\), represents a mandatory derating for a typical application that utilizes a single sided PC board with 0.51 mm (0.020 inch) wide traces, assuming that no other provision is provided for heat dissipation. The other derating curves from higher ambient temperatures, shown as dashed lines on Figure 2, represent allowed increased drive currents when the design incorporates a more elaborate PC board mounting assembly to obtain a lower R \(\theta\) JA value for increased heat dissipation. The temperature deratings of Figure 2 ensure reliable operation for both dc and pulsed mode operation.

\section*{Worst Case Power Calculation}

The worst case power is that power dissipated within the junction of a maximum forward voltage device. The worst case power is used for determining the worst case \(\mathrm{T}_{\mathrm{J}}\) that will result from a specific drive current and thermal resistance, see Equation 1. The expected maximum forward voltage (\(V_{F}\) MAX) at a selected drive current is determined by an equation on the data sheet of the form:
\(V_{F} M A X=V_{O N}+(\) IPEAK \()(\) LED Dynamic Resistance \()\)
The worst case power is the product of the time average current under pulsed operation (dc current for dc operation) times \(\mathrm{V}_{\mathrm{F}}\) MAX:
\[
\begin{array}{r}
\text { PWORST CASE }=(\text { IDC })\left(V_{F} \text { MAX }\right) ; \text { For DC Operation } \\
\text { PWORST CASE }=(\text { IPEAK })(\text { DUTY FACTOR })\left(V_{F} \text { MAX at IPEAK }\right) ; \\
\text { For Pulsed Operation }
\end{array}
\]

\section*{Current Limiting}

An LED is a current operated device and some kind of current limiter must be incorporated as part of the drive circuitry. This current limiter usually takes the form of a resistor placed in series with the LED. The typical forward voltage characteristic of Figure 4 is used to calculate the series current limiter for each LED element.

Rlimiter \(=\)
VCC(POWER SUPPLY) - \(\mathrm{VSAT}^{\text {SARIV }}\) (DRIVE TRANSISTORS) \(-\mathrm{VF}_{\text {F(FIGURE 4) }}\)

\footnotetext{
Ipeak current per led element
}

\section*{Light Output}

The time averaged luminous intensity (\(\mathrm{I}_{\mathrm{V}}\)) at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) for a particular drive condition may be calculated using the relative luminous intensity characteristic of Figure 5 for dc operation or the relative efficiency characteristic (\(\eta_{\text {IPEAK }}\)) of Figure 3 for pulsed operation. For dc operation, \(\operatorname{lv}\left(T_{A}=\right.\) \(25^{\circ} \mathrm{C}\)) is equal to the product of the data sheet luminous intensity specification times the relative factor for a specific dc current from Figure 5.

\section*{Iv DC =}
(Iv DATA SHEET) (FACTOR FROM FIGURE 5)
FOR: \(T_{A}=25^{\circ} \mathrm{C}\)
For pulsed operation, the time averaged luminous at \(T_{A}=\) \(25^{\circ} \mathrm{C}\) is calculated using the following equation:

Iv TIME AVG =
\(\left[\frac{\text { Iavg }}{\text { Iavg DATA SHEET }}\right]\left[\eta_{\text {IPEAK }}\right]\) [Iv DATA SHEET]
Where: \(I_{A V G}=\) The average forward current through an LED element
IAVg DATASHEET \(=\) The average current at which \(I_{V}\) DATA SHEET is measured

The luminous intensity value at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) is adjusted by the following exponential equation to obtain the light output value at the operating ambient temperature.
\(\operatorname{Iv}\left(T_{A}\right.\) OPERATING \()=\operatorname{Iv}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\left[\mathrm{k}\left(T_{A}-25^{\circ} \mathrm{C}\right)\right]}\)
\begin{tabular}{|c|c|}
\hline LED & \\
\hline Standard Red & \(-.0188 /^{\circ} \mathrm{C}\) \\
\hline High Efficiency Red & \(-0131 /{ }^{\circ} \mathrm{C}\) \\
\hline Yellow & \(-0112 /^{\circ} \mathrm{C}\) \\
\hline Green & \(-0104 /^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Pulsed Mode vs. DC Operation}

When operating an LED device under dc drive conditions, the junction temperature is a linear function of the dc power dissipation multiplied by R \(\theta\) JA. The light output is proportional to the dc drive current as expressed in Equation 7.
The use of a 50 or 60 Hertz half or full-wave rectified ac as the drive current for LED devices is not recommended, since the rms power in a rectified sine wave is greater than the time averaged power of a rectangular waveform of an equivalent peak value. Pulsed drive conditions are based on the assumption that the drive current pulses are a rectangular waveform. If a rectified sine wave is to be used, in no case should the value of the peak current exceed the maximum allowed dc current value.
When operating an LED device in a pulsed mode, it is the peak junction temperature (not the average) that governs
the performance of the device as to the allowed time average power dissipation and light output. The lower the peak junction temperature (\(T\) J PEAK) is in relationship to the time average junction temperature (\(T J\) AVG), the greater is the light output of the device. At slow refresh rates (the number of times per second a device is pulsed) in the range of \(100 \mathrm{~Hz}, T_{J}\) PEAK is greater than TJ AVG. As the refresh rate approaches 1000 Hz , the value of TJ PEAK approaches the value of \(T_{J}\) AVG. Therefore, it is recommended that whenever possible LED devices be refreshed at a 1 KHz rate or faster, since at these faster pulse rates \(\mathrm{T}_{J}\) PEAK is assumed to be equal to TJ AVG and the light output is a function of \(T J A V G\).

\section*{Design Steps}

In order to determine the derated drive conditions from the data sheet for an elevated ambient temperature, a value for R \(\theta_{J A}\) must be selected. Once a value for R \(\theta_{J A}\) has been selected, the required current derating can be determined for the operating ambient temperature directly from Figure 2. As illustrated in the pulsed mode design example, the dc derating is used to determine the pulsed current derating.

The four basic design steps are:
1. Determine derated drive currents.
2. Calculate the required value of \(R \theta P C-A\) for the \(P C\) board mounting configuration.
3. Calculate the value of the current limiting resistor. Use the nearest standard value resistor larger than the calculated value.
4. Calculate the light output.

\section*{DC Design Example}

A high efficiency red seven segment display is to be operated in an ambient of \(\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}\). Pertinent data for this device are:

Maximum DC Current per segment (\(T_{A}=50^{\circ} \mathrm{C}\)) \(=20 \mathrm{~mA}\)
Maximum Average Power Dissipation (\(\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}\)) \(=81 \mathrm{~mW}\) \(I_{V}\) TYPICAL \(=300 \mu \mathrm{~cd}\) per segment at \(\mathrm{IDC}=5 \mathrm{~mA}\)
\(R \theta J-\) PIN \(=282^{\circ} \mathrm{C} / \mathrm{W} /\) Segment
\(\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.60 \mathrm{~V}+\mathrm{IDC}(45 \Omega)\); for \(5 \mathrm{~mA} \leq \mathrm{IDC} \leq 20 \mathrm{~mA}\)
\(T J M A X=100^{\circ} \mathrm{C}\)
The data sheet curves on page 2 apply to this device. It is assumed that a value of R \(\theta_{J A}=494^{\circ} \mathrm{C} / \mathrm{W} /\) Segment or less will be incorporated into the display system design.
Step 1.
The derated dc drive current is determined from Figure 2.
At \(\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}\) and \(\mathrm{R} \theta_{\mathrm{JA}} \leq 494^{\circ} \mathrm{C} / \mathrm{W} /\) Segment,
IDC MAX \(=17.5 \mathrm{~mA} \longleftarrow\) IDC MAX
Step 2.
The required maximum thermal resistance for the PC board assembly is calculated from Equation 2:
\(R \theta_{\mathrm{PC}-\mathrm{A}} \leq(494-282)=212^{\circ} \mathrm{C} / \mathrm{W} /\) Segment \(<\) R \(\theta_{\mathrm{PC}-\mathrm{A}}\) Step 3.
A value of VSAT \(=0.4\) volts is assumed for the LED drive transistors. From Figure 4,
\(\mathrm{V}_{\mathrm{F}} \operatorname{TYP}(17.5 \mathrm{~mA})=2.0 \mathrm{~V}\)

From Equation 6 and assuming \(\mathrm{Vcc}=5 . \mathrm{OV}\) :
RLIMITER \(=\frac{5.0 \mathrm{~V}-0.4 \mathrm{~V}-2.0 \mathrm{~V}}{0.0175 \mathrm{~A}}=\underline{\underline{149 \Omega} \longleftarrow \text { RLIMITER }}\)
Use a \(150 \Omega\) standard value resistor.
Step 4.
From Figure 5, the normalized light at 17.5 mA is a factor of \(4.4 \times\) the light output at 5 mA .
From Equation 7 :
Iv \(\left(25^{\circ} \mathrm{C}\right)=(300 \mu \mathrm{~cd})(4.4)=1320 \mu \mathrm{~cd} /\) segment
Using Equation 9 to adjust the light output for \(\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}\) :
Iv \(\left(65^{\circ} \mathrm{C}\right)=(1320 \mu \mathrm{Cd}) \mathrm{e}^{\left[-.0131 /{ }^{\circ} \mathrm{C}(65-25)^{\circ} \mathrm{C}\right]}\)
Iv \(\left(65^{\circ} \mathrm{C}\right)=(1320)(0.592)=782 \mu \mathrm{~cd} /\) segment \(\longleftarrow-I_{v}\)

\section*{Pulsed Mode Design Example}

A four digit display using the same high efficiency red seven segment display described in the DC Design Example is to be operated in a pulsed mode in an ambient of \(\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}\). Additional pertinent data for this device are:

Maximum Peak Current per Segment
\[
\begin{gathered}
\left(\mathrm{T}_{A}=50^{\circ} \mathrm{C}, \text { Pulse Width }=2 \mathrm{~ms}\right)=60 \mathrm{~mA} \\
V_{F} M A X=1.75 \mathrm{~V}+\operatorname{IPEAK}(38 \Omega) ; \text { for IPEAK } \geq 20 \mathrm{~mA}
\end{gathered}
\]

It is assumed that a value of R \(\theta J A=494^{\circ} \mathrm{C} / \mathrm{W} /\) segment or less will be incorporated into the display system design.
Figure 1 is used to select the refresh conditions for pulsed operation. These refresh conditions are junction temperature related to the dc current deratings of Figure 2. Figure 1 relates the ratio of maximum-peak current to temperature derated maximum dc current (IPEAK MAX/IDC MAX) and pulse duration (\(t_{p}\)) as a function of refresh rate (f). The allowed average power dissipation decreases below \(f=1 \mathrm{kHz}\) since the difference between TJ PEAK and TJ AVG increases with decreasing refresh rates. This condition is illustrated by the dashed line shown on Figure 1, which shows the ratio of IPEAK MAX to IDC MAX decreasing with slower refresh rates with the duty factor fixed at 1 of 4.

Step 1.
For best performance, a refresh rate of 1 kHz will be used:
\(f=1 \mathrm{kHz}\)
A four digit display sets the duty factor (D.F.) at one of four:
D.F. \(=1 / 4 \longleftarrow\) D.F.
\(t_{p}=(1 / f)(\) D.F. \()=(1 / 1000 \mathrm{~Hz})(1 / 4)=250 \mu \mathrm{~s} \longleftarrow \mathrm{t}_{\mathrm{p}}\)
From Figure 1:
IPEAK/IDC MAX \(=3.3\); for \(t_{p}=250 \mu \mathrm{~s}\) and \(\mathrm{f}=1 \mathrm{kHz}\)
From Figure 2:
IDC MAX, at \(\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}\) and \(\mathrm{R} \theta \mathrm{JA}=494^{\circ} \mathrm{C} / \mathrm{W} /\) Segment, is 17.5 mA

IPEAK \(=(\) IPEAK MAX/IDC MAX) (IDC MAX from Figure 2)
IPEAK \(=(3.3)(17.5 \mathrm{~mA})=57.8 \mathrm{~mA}\) per Segment \(\longleftarrow\) IPEAK
\(I_{\text {AVG }}=(\) IPEAK \()(D . F)=.(57.8 \mathrm{~mA})(1 / 4)=14.5 \mathrm{~mA} \longleftarrow I_{\text {AVG }}\)
These are the maximum pulsed mode drive currents for this design as defined by \(T_{A}=65^{\circ} \mathrm{C}\) and \(R \theta J A \leq 494^{\circ} \mathrm{C} / \mathrm{W} /\) segment.

Step 2.
The required maximum thermal resistance for the PC board assembly is calculated from Equation 2:

Step 3.
A value of VSAT \(=1.2\) volts is assumed for the LED drive transistors. From Figure 4,
\(V_{F} \operatorname{TYP}(57.8 \mathrm{~mA})=2.85 \mathrm{~V}\)
From Equation 6 and assuming \(V_{C C}=5.0 \mathrm{~V}\) :
RLIMITER \(=\frac{5.0 \mathrm{~V}-1.2 \mathrm{~V}-2.85 \mathrm{~V}}{0.578 \mathrm{~A}}=16 \Omega \longleftarrow\) RLIMITER
Use a \(17 \Omega\) standard value resistor.
Step 4.
From Figure 3, the relative efficiency for IPEAK \(=57.8 \mathrm{~mA}\) is:
\(\eta_{\text {IPEAK }}=1.61\)
From Equation 8:
\(\operatorname{Iv}\left(25^{\circ} \mathrm{C}\right)=\left[\frac{14.5 \mathrm{~mA}}{5 \mathrm{~mA}}\right][1.61][300 \mu \mathrm{~cd}]=\)
\(1401 \mu \mathrm{~cd}\) per segment
Using Equation 9 to adjust the light output for \(T_{A}=65^{\circ} \mathrm{C}\) :
\(\operatorname{Iv}\left(65^{\circ} \mathrm{C}\right)=(1401 \mu \mathrm{~cd}) \mathrm{e}^{\left[-.0131 /{ }^{\circ} \mathrm{C}(65-25)^{\circ} \mathrm{C}\right]}\)
Iv \(\left(65^{\circ} \mathrm{C}\right)=(1401)(0.592)=829 \mu \mathrm{~cd}\) per Segment -Iv

\section*{Operation Without Derating}

LED lamp and display devices may be operated in elevated ambient temperature environments without derating only when the PC board mounting configuration is designed for a sufficiently low thermal resistance. The critical criterion is that the LED junction temperature must not exceed the TJ MAX value for the device. This low thermal resistance design will typically include such items as a maximum metallized PC board and possible heat sinking to ensure adequate heat dissipation. In no situation should the absolute maximum current limitations be exceeded.
The necessary thermal resistance requirements for operation without derating are calculated using the value for worst case power dissipation. A numerical example using the LED display device from the above two examples will illustrate the calculation procedure.

\section*{Step 1.}

Determine the maximum permissible value for R \(\theta J A\).
The absolute maximum power dissipation as listed on the data sheet for this particular LED device is 81 mW . The operating ambient temperature is to be \(65^{\circ} \mathrm{C}\).
Referring to Equation 3
\(R\) RJA MAX \(\leq \frac{T_{J} M A X-T_{A} \text { OPERATING }}{P_{\text {MAX }} \text { DATA SHEET }}\)
For this example:
RoJA MAX \(\leq \frac{100^{\circ} \mathrm{C}-65^{\circ} \mathrm{C}}{.081 \mathrm{~W}}=432^{\circ} \mathrm{C} / \mathrm{W} /\) Segment
The required limit on the thermal resistance for the PC board mounting configuration is derived by rewriting Equation 2:
\[
R \theta_{P C-A} M A X \leq R \theta_{J A} M A X-R \theta_{J-P I N}
\]

For this example:
\(R \theta_{\text {PC }-A} \leq(432-282)=150^{\circ} \mathrm{C} /\) W/segment \(-R \theta P C-A M A\)
The particular LED display device used in this example may be operated at maximum power dissipation in an ambient of \(T_{A}=65^{\circ} \mathrm{C}\) without derating as long as the PC board mounting configuration is designed to have R \(\theta\) PC-A \(\leq 150^{\circ} \mathrm{C} / \mathrm{W} /\) Segment.

CAUTION: Since these calculations are based on only TJ AVG and exclude the consideration of TJ PEAK, pulsed operation without derating is only recommended for refresh rates of 1 kHz or faster.

\section*{Soldering Plastic LED Devices}

Because plastic LED devices utilizing a lead frame construction have the LED dice attached directly to the cathode lead, the cathode lead is the direct thermal and mechanical stress path to the LED dice. For this reason, it is necessary to carefully control the solder temperature and dwell time in the solder wave to ensure subsequent reliable operation. LED devices can be effectively wave soldered with a wave temperature of \(245^{\circ} \mathrm{C}\) and a dwell time of \(11 / 2\) to 2 seconds.

The post solder cleaning process is also crucial to ensuring reliable performance. In order to optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. \(\mathrm{A} 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)\) water cleaning process may also be used, which includes a neutralizer rinse (\(3 \%\) ammonia solution or equivalent), a surfactant rinse (\(1 \%\) detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

Some LED devices may require special handling during soldering, during post solder cleaning, or may not lend themselves to a wave soldering process. Three specific considerations are:
1. Plastic LED Lamps: The plastic encapsulant that forms the lamp package is the only supporting element for the leads. It is important to prevent stresses from entering the device package which could damage the LED die attach and wire bonds. The leads of a lamp may be bent to a desired angle by observing the following procedure. Firmly grasp the leads at the base of the lamp package with a pair of needle nose pliers to support the lamp while bending the leads. Overheating during soldering will cause melting of the plastic, allowing possible lead movement to occur which may result in the catastrophic failure of the die attach or wire bonds. Care should be taken to ensure that no stresses are applied to the leads during the soldering process. External stresses applied to the leads during soldering could induce strains within the device package that may induce latent failure. Once properly soldered in place, an LED lamp will typically exhibit a very high degree of reliability.
2. PC Board Monolithic Displays: Many PC board monolithic displays do not lend themselves to a wave soldering process. The plastic lens that covers the LED chips and wire bonds is attached to the PC board without forming a seal. The chemicals used in a wave soldering process can collect underneath the lens. The post solder cleaning process may not remove all of the trapped chemicals and prolonged exposure of the LED dice and wirebonds to these chemicals can cause permanent damage. Also, the plastic used to make some of the lenses is susceptible to damage from rosin fluxes and hydrocarbon cleaners. The two recommended installation procedures are either to hand solder flexible cable to the display contacts or use solderless connector pins such as the 022-002 series
supplied by JAV Manufacturing, 125 Wilbur Place, Bohemia, NY 11716. Effective room temperature cleaning may be accomplished using Freon TP-35 or TE-35, solvent temperature \(\leq 30^{\circ} \mathrm{C}\) and an immersion time \(\leq 2\) minutes.
3. Silver Lead Frames: Many plastic LED devices utilize a silver plated lead frame. Silver plating provides excellent solderability as long as the leads are kept free from tarnish buildup due to coming in contact with sulfur compounds. Application Bulletin 3 offers specific information on the effective use and soldering of silver lead frame devices.

It is suggested that the device data sheet be consulted for specific information on wave soldering.

\title{
Seven Segment LED Display Applications
}

\section*{INTRODUCTION}

Hewlett-Packard's line of seven segment LED display products can be divided into two broad categories. The first product family is the large seven segment display which is constructed using individual LEDs for each segment. These large single digit LED display devices have become common in instruments throughout the industry. The other standard type of seven segment device is known as the monolithic display. Monolithic displays are constructed by diffusing several LED junctions in a single GaAsP die. This type of display is characterized by its small size, low cost, and low power requirements. The monolithic display typically has several digits per package and is often found in calculators and hand held or portable instruments.
This application note begins with a detailed explanation of the two basic product lines that Hewlett-Packard offers in the seven segment display market. This discussion includes mechanical construction techniques, character heights, and typical areas of application. The two major display drive techniques, dc and strobed, are covered. The resultant tradeoffs of cost, power, and ease of use are discussed. This is followed by several typical instrument applications including counters, digital voltmeters, and microprocessor interface applications. Several different microprocessor based drive techniques are presented incorporating both the monolithic and the large seven segment LED displays.
The application note contains a discussion of intensity and color considerations made necessary if the devices are to be end stacked. Hewlett-Packard has made several advances in the area of sunlight viewability of LED displays. The basic theory is discussed and recommendations made for achieving viewability in direct sunlight. Information concerning display mounting, soldering, and cleaning is presented. Finally, an extensive set of tables has been compiled to aid the designer in choosing the correct hardware to match a particular application. These tables include seven segment decoder/drivers, digit drivers, LSI chips designed for use with LEDs, printed circuit board edge connectors, and filtering materials.

Figure 1. Large Seven Segment Display

\section*{LARGE SEVEN SEGMENT DISPLAYS}

The large seven segment displays are designed to be easy to read single digit LED devices (Figure 1). They are typically used in electronic instruments, point-of-sale terminals, weighing scales, digital clocks, televisions, and appliances. The colors available are standard red, high efficiency red, yellow, and green. The standard red product is made from Gallium Arsenide Phosphide (GaAsP) on a GaAsP substrate. Both the high efficiency red and yellow seven segment displays are made from GaAsP on a Gallium Phosphide (GaP) substrate. The green seven segment displays are made from GaP on a GaP substrate. The increased efficiency of the GaP material results in the high efficiency red, yellow, and green displays having 3 to 5 times the minimum luminous intensity of the standard red displays.
A wide range of character heights varying from 7.6 mm (0.3 inch) to 20.3 mm (0.8 inch) allow the designer to choose the correct size display for the desired viewing range. The information in Figure 2 can be used to determine which character size display should be used for easy readibility. The information has been compiled for a standard viewer (20/20 eyesight) in typical office ambient condition (1001000 lux) with the displays driven at recommended data sheet values.

Figure 2. Large Seven Segment Display Viewing Distances
The large LED display devices are manufactured using the concept of stretching the light from an LED by diffusion and reflection. The LED chips are mechanically supported and electrically connected by a lead frame. A cone shaped reflecting cavity is cast inside a rectangular package above each LED. This is done using glass filled epoxy with the top of this cavity forming the stretched segment. The plastic housing, called a "scrambler," forms the display package and contains the segment cavities. The stretched segment displays offer a variety of colors, sizes, and good on/off contrast.
These seven segment display products are available in either common anode or common cathode configuration with either right hand or left hand decimal point. The displays can be either dc driven or operated in the strobed mode. The low forward voltage of the LEDs makes the displays inherently IC compatible. The \(\pm 1\) overflow digit in the 14.1 mm (0.56 inch) package style is available in both common anode and common cathode configurations. For all other large seven segment displays, a universal overflow \(\pm 1\) digit with right hand decimal point is available. The \(\pm 1\) overflow digit has each LED anode and cathode present on external pins for ease of use.

\section*{MONOLITHIC SEVEN SEGMENT DISPLAYS}

The monolithic seven segment displays are small, low cost, low power, multi-digit LED devices. They are typically used in desktop calculators, hand held instruments, metering devices, and various consumer products. With character heights ranging from 2.5 mm (0.1 inch) to 4.4 mm (0.175 inch), the monolithic products provide a flexible family of seven segment displays. The 2.5 mm (0.1 inch) character height displays are designed for hand held applications, whereas the 4.4 mm (0.175 inch) displays can be easily read at distances up to 2 metres.
Monolithic displays differ from other types of LED displays in that the individual light emitting segments are formed by diffusing separate LED junctions on a single chip of GaAsP. Because GaAsP is relatively expensive, most monolithic displays are magnified to keep chip sizes small. In most cases, the monolithic display is magnified by an external lens to attain a viewable character size.

Monolithic displays can be classified into two basic categories according to whether the lens is of the immersion or non-immersion type. Immersion lenses are formed by molding a lens directly over the LED chip. Non-immersion lenses have at least one layer of air between the LED chip and the lens assembly. Monolithic displays constructed with immersion lenses (Figure 3a) are manufactured by die attaching the monolithic GaAsP chips to the lead frame. The die attach pad also forms the common cathode electrical connection to the monolithic chip. The aluminum contact for each segment on the monolithic chip is then wire bonded to the appropriate anode contact. The
completed device is then fully encapsulated in epoxy. The magnifying lens is formed during encapsulation.

Monolithic displays with non-immersion lenses (Figure 3b) are usually constructed by epoxy die attaching the monolithic GaAsP chips to a special high temperature printed circuit board. The electrical contact for each segment on the monolithic chip is wire bonded to the appropriate anode trace on the printed circuit board. A precision injection molded lens is then aligned and attached to the printed circuit board. This attachment is done using holes that were drilled during fabrication of the printed circuit board to ensure alignment.
Hewlett-Packard's monolithic displays are of common cathode configuration since the GaAsP substrate is \(n\) doped material and each LED junction is formed by a \(\mathrm{P}_{+}\) diffusion. Due to the monolithic display's low dynamic resistance in the forward region, multiplexing at relatively high peak current is possible while keeping forward voltage typically less than 1.8 volts. For this reason, long strings can be easily strobed.

Figure 3a. Immersion Lens Monolithic Display

Figure 3b. Non-Immersion Lens Monolithic Display

\section*{DC DRIVE TECHNIQUES (Large Seven Segment Displays Only)}

When seven segment displays are dc driven, each character is continuously illuminated. This is usually done with one decoder/driver per character and is commonly used for short display strings. If the display length is sufficiently short, the cost of dc decoding may be less than that of strobing circuitry. The fact that the drivers need not handle high current levels is a distinct advantage of dc operation.

Figure 4a. DC Drive Circuit for the 5082-7660 Common Anode Display

Figure 4a shows the standard configuration for a common anode display. The current level, set here at 20 mA per segment, is determined by the relation
\[
R=\frac{V_{C C}-V_{F}-V_{0(O N)}}{I_{F}}=\frac{5.0 \mathrm{~V}-2.2 \mathrm{~V}-0.35 \mathrm{~V}}{20 \mathrm{~mA}}=125 \Omega
\]
where
\begin{tabular}{ll}
\(\mathrm{V}_{C c}\) & \(=\) voltage supply potential \\
\(\mathrm{V}_{\mathrm{F}}\) & \(=\) forward voltage of LED at desired \(I_{F}\) \\
\(\mathrm{~V}_{0(O N)}=\) & ON state output voltage of display \\
& driver \((74 \mathrm{LS} 47)\) \\
\(I_{F} \quad=\) & desired forward current \((20 \mathrm{~mA})\)
\end{tabular}

An analogous circuit is shown in Figure 4b for a common cathode display. The Fairchild 9368 is a seven segment decoder/driver incorporating input latches and constant 15 mA current outputs to directly drive common cathode LED displays.

Figure 4b. DC Drive Circuit for the 5082-7663
Common Cathode Display

\section*{MULTIPLEXED DRIVE TECHNIQUES}

When multiplexing drive circuitry is used, the decoder is timeshared among digits in the display. The digits are electrically connected with like segments wired in parallel. This forms a seven (seven segments) by \(N\) (number of digits) array. In operation, the appropriate segment enable lines are activated for the particular character to be displayed. Simultaneously, a digit enable line is selected so that the character appears at the proper digit location. The strobe then progresses to the next digit position, activating the proper segments and digit enable line for that position. Figure 5 contains a block diagram of a typical five digit multiplexed LED display.

Since the eye is a relatively slow time average sensor, a viewer will perceive a repetitive visual phenomenon to be continuous if it occurs at a rate in excess of about 60 events per second. Therefore, if the refresh rate for each digit is maintained at 100 times or more per second, the perceived display will appear flicker-free and easy to read.

Figure 5. Block Diagram of a Multiplexed Five Digit LED Display

Figure 6a. Relative Luminous Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current

In displays subject to vibration, a minimum strobe rate of five times the vibration frequency should be maintained.

In addition to reducing the number of decoders and drivers, strobing requires less power than dc drive to achieve the same display intensity. This is due to a basic property of GaAsP where luminous efficiency (light output/unit current) increases with the peak current level (see Figure \(6 \mathrm{a})\). Thus, for the same average current, the use of lower duty cycles and higher peak current levels results in increased light output. This phenomenon is illustrated in Figure 6b. Notice that the graph is normalized to one at a forward current of 5 mA dc. If this same device were operated at 25 mA peak, \(20 \%\) duty factor (as if in a five digit strobed display) the time averaged luminous intensity would increase 40\%.
For common decoder/driver circuits, a series resistor is placed in each segment line to limit the LED current. This is done to prevent uneven current distribution among segments. Referring to Figure 7, the current limiting resistor values may be calculated using the following formula:
\[
R=\frac{V_{C C}-V_{C E}(S E G)-V_{F}-V_{C E}(D I G)}{I_{P E A K}}
\]
where
\[
\begin{aligned}
& \text { VCC = voltage supply potential } \\
& V_{C E}(S E G)=\text { saturation voltage drop across segment } \\
& \text { driver at IPEAK } \\
& V_{F} \quad=\text { LED forward voltage at IPEAK } \\
& V_{C E} \text { (DIG) }=\text { saturation voltage drop across digit driver } \\
& \text { at [IPEAK } \times 8 \text { (worst case number of } \\
& \text { segments ON)] } \\
& \text { IPEAK = I AVERAGE } \times \text { number of digits }=\text { peak LED } \\
& \text { segment current } \\
& \text { OR }
\end{aligned}
\]
\[
I_{\text {PEAK }}=\frac{I_{\mathrm{AVG}}}{\mathrm{D} \cdot F}
\]

Figure 6b. Relative Luminous Intensity per Segment vs. Average Current (5082-7650)

Figure 7. Typical Segment

\section*{TYPICAL APPLICATIONS}

Figure 8 shows the complete circuitry for a minimum component universal counter. The Intersil ICM7226B is a fully integrated universal counter and LED display driver. It combines a high frequency oscillator, a decade timebase counter, an eight decade data counter with latches, a seven segment decoder, a digit multiplexer, and eight segment and eight digit drivers that drive monolithic LEDs directly. If the designer wishes to use the ICM7226A or B (common anode or cathode) to drive large seven segment products, he should consider his application carefully because higher drive currents are required to produce a readable display.
The ICM7226B updates the segment information and refreshes the common cathode displays at an IPEAK of 15 \(\mathrm{mA} /\) segment on a \(12 \%\) duty cycle. This drive current is ideal for the monolithic seven segment family. The circuit in Figure 8 employs two 5082-7414 monolithic devices as the display portion of the counter. Typical devices will exhibit a \(30 \mu \mathrm{~cd}\) time averaged luminous intensity, thus

Figure 8. 10 MHz Universal Counter
providing excellent readability. Combining the compactness of the monolithic displays and the complexity of the single chip universal counter system, an extremely powerful hand held instrument can be realized.
Figure 9 shows the circuitry necessary for a high performance, low power 3-1/2 digit panel meter. The circuit utilizes the Intersil ICL7107 (CMOS) A/D converter, seven passive components, and four large seven segment displays. All necessary active devices are contained on the chip. This includes seven segment decoders, display drivers, a reference voltage, and a clock.
The ICL7107 is designed to dc drive 3 seven segment displays and one overflow digit at a typical forward current of 8 mA per segment. The segment information is decoded and updated continuously by the control logic within the chip. The 7.6 mm (0.3 inch) standard red displays (5082-7736/-7740) provide an attractive display for this low cost digital panel meter. For higher light output, the high efficiency red, yellow, or green displays can be used.

\section*{MICROPROCESSOR DISPLAY INTERFACE TECHNIQUES}

The four basic techniques for interfacing microprocessors to seven segment displays are listed below:
1. The DC Driven Controller statically drives an LED
seven segment display from a microprocessor output port. In the standard configuration, each display is assigned a different address so that a Memory or I/O Write to that address changes the contents of the corresponding display digit.
2. The Refresh Controller interfaces the microprocessor to a multiplexed LED display. The controller periodically interrupts the microprocessor and after each interrupt, the microprocessor supplies new display data for the next refresh cycle of the display.
3. The Decoded Data Controller refreshes a multiplexed LED display independently from the microprocessor system. The local RAM stores decoded display data. This data is continuously read from the RAM and then used to refresh the display. Whenever the display message is changed, the microprocessor decodes each character in software and writes the decoded data into the local RAM.
4. The Coded Data Controller also refreshes a multiplexed LED display independently from the microprocessor system. The local RAM stores BCD data which is continuously read, decoded, and used to refresh the display. The display message is changed by writing new BCD characters into the local RAM.

Figure 9. 3-1/2 Digit Voltmeter

Figure 10. DC Driven Controller

\section*{DC DRIVEN CONTROLLERS}

When the seven segment display is driven on a dc basis, a seven segment decoder/driver or latch is required for each display. Figure 10 shows an example of a seven segment display to microprocessor interface. Each display is driven by its own seven segment driver. The Fairchild 9374 has current sink outputs that drive each LED segment at 15 mA dc. The decimal points and overflow digit are driven by two National DS 8859's. These hex latches have programmable current sink outputs. The Intel 8080A microprocessor updates each display with an OUTput instruction which accesses up to 256 output devices and ports.

Upon execution of the OUTput instruction, the lower five bits of the accumulator are loaded into the DS8859 associated with the overflow digit. Next, the decimal point is updated in a similar fashion. Finally, the four decoder/ drivers are sucessively loaded with the correct BCD information.

Figure 11 shows a DC Driven Controller utilizing the National MM5450 LED Display Driver. The MM5450 is a serial in-parallel out shift register with 34 output pins that can sink up to 15 mA each. It is specifically designed to operate with common anode displays and minimal interface with the source of data. Serial data transfer from the data source, in this case the microprocessor, to the display driver is accomplished with two signals. These signals are SERIAL DATA and CLOCK. By using a format of a leading " 1 " bit followed by the 35 data bits, data transfer
is allowed without any additional handshaking signals. The 35 data bits are latched after the 36 th bit is complete. This provides non-multiplexed, direct drive to the seven segment displays.
Figures 12a and 12b contain the software necessary to interface the MM5450 to the 6800 and 8080A microprocessors respectively. The serial display data is transferred to the microprocessor via bit 7 of the Data Bus. The data is clocked in each time the microprocessor writes to the MM5450. In the case of the 8080A, this is done with the I/O WRITE signal and a combination of lower ordered addresses. The 6800 accomplishes this task with the VMA signal and a combination of higher address bits. The decoded segment data is assumed to be in four successive memory bytes starting at location \(\$ 0006\). The format of the decoded segment data for all microprocessor interfaces in this note is shown in Figure 13.
The software first outputs a start bit to the MM5450. Next, the first digit's segment information is clocked into MM5450. The segment information is then rotated left eight times with this data being clocked into the display after each shift. This procedure is repeated for each digit, thus providing 33 clock pulses (the start bit plus (\(4 \times 8\)) segment bits). In order for the segment data to be latched to the display, a complete set of 36 clocks must occur. For this reason, there are three dummy clocks at the end of the program. The term "dummy" is used because the data that is being clocked into MM5450 never appears on the seven segment display.

Figure11. DC Driven Controller with Serial Data Interface to \(\mathbf{6 8 0 0}\) and 8080A
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{3}{*}{} & B0 & 00 & DSPLY & EQU & \$B000 & \\
\hline 0006 & & & & & ORG & \$0006 & \\
\hline 0006 & & & & DATA & RMB & \$4 & \\
\hline 0400 & & & & & ORG & \$0400 & \\
\hline 0400 & CE & 00 & 06 & LOAD & LDX & I.DATA & \\
\hline 0403 & 86 & 80 & & & LDA A & 1. \(\$ 80\) & LOAD START BIT \\
\hline 0405 & B7 & B0 & 00 & & STA A & E.DSPLY & OUTPUT START BIT \\
\hline 0408 & C6 & 08 & & START & LDA B & I. 8 & INITIALIZE COUNTER \\
\hline 040A & A6 & 00 & & & LDA A & X, 0 & LOAD DATA \\
\hline 040C & B7 & B0 & 00 & LOOP & STA A & E.DSPLY & OUTPUT DATA TO DISPLAY \\
\hline 040 F & 49 & & & & ROL A & & ROTATE TO NEXT BIT \\
\hline 0410 & 5A & & & & DEC B & & DECREMENT COUNTER \\
\hline 0411 & 26 & F9 & & & BNE & LOOP & BRANCH IF NOT DONE, ELSE CONTINUE \\
\hline 0413 & 08 & & & & INX & & \\
\hline 0414 & 8 C & 00 & 04 & & CPX & 1. \(\$ 04\) & LAST WORD? \\
\hline 0417 & 26 & EF & & & BNE & START & BRANCH IF NOT LAST WORD. ELSE CONTINUE \\
\hline 0419 & B7 & B0 & 00 & & STA A & E.DSPLY & DUMMY CLOCK I \\
\hline 041 C & B7 & B0 & 00 & & STA A & E.DSPLY & DUMMY CLOCK 2 \\
\hline 04IF & B7 & & 00 & & STA A & E,DSPLY & DUMMY CLOCK 3, SEG DATA LATCHED \\
\hline 0422 & 39 & & & & RTS & & \\
\hline
\end{tabular}

Figure 12a. 6800 Interface to DC Drive Controller
Shown in Figure 11
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline E000 & & & & DSPLY & EQU & 001 CH & \\
\hline E000 & & & & & ORG & 0E006H & \\
\hline E006 & & & & DATA & DS & 4 & \\
\hline E00A & & & & & ORG & 0E400H & \\
\hline E400 & 3E & 80 & & LOAD & MVI & A, 80 H & LOAD START BIT \\
\hline E402 & D3 & 1 C & & & OUT & DSPLY & OUTPUT START BIT \\
\hline E404 & 21 & 06 & E0 & & LXI & H, DATA & GET ADDRESS OF SEG DATA \\
\hline E407 & 06 & 08 & & START & MVI & B, 08 H & INITIALIZE COUNTER \\
\hline E409 & 7 E & & & & MOV & A, M & LOAD SEG DATA \\
\hline E40A & D3 & IC & & LOOP & OUT & DSPLY & OUTPUT SEG DATA TO DISPLAY \\
\hline E400 & 07 & & & & RLC & & ROTATE TO NEXT BIT \\
\hline E40D & 05 & & & & DCR & B & DECREMENT COUNTER \\
\hline E40E & 02 & 0A & E4 & & JNZ & LOOP & JUMP IF NOT DONE, ELSE CONTINUE \\
\hline E411 & 2 C & & & & INR L & & \\
\hline E412 & 7 D & & & & MOV & A.L & \\
\hline E413 & FE & 0A & & & CPI & 0AH & LAST WORD? \\
\hline E415 & C2 & 07 & E4 & & JNZ & START & JUMP IF NOT LAST WORD, ELSE CONTINUE \\
\hline E418 & D3 & 1 C & & & OUT & DSPLY & DUMMY CLOCK 1 \\
\hline E419 & D3 & 1 C & & & OUT & DSPLY & DUMMY CLOCK 2 \\
\hline E4IC & D3 & 1 C & & & OUT & DSPLY & DUMMYCLOCK 3, SEG DATA LATCHED \\
\hline E4IE & C9 & & & & RET & & \\
\hline
\end{tabular}

Figure 13. Format for Decoded Segment Data

The 5082-7610 7.6mm (0.3 inch) high efficiency red displays driven at \(15 \mathrm{~mA} /\) segment dc provide a large, easy to read, four digit display. The \(100 \mathrm{~K} \Omega\) potentiometer sets a reference current for the LEDs and provides brightness control for applications in varying ambients.

\section*{REFRESH CONTROLLER}

The Refresth Controller uses the microprocessor to actively strobe the display. This strobing is accomplished via an interrupt that causes the microprocessor to service the refresh subroutine. The refresh program provides new segment and digit information for the display. This application note shows two types of Refresh Controllers. The basic difference between the controllers is the nature of data that is transferred from the microprocessor to the controller. The first type (Figure 14) requires eight data lines to transfer the decoded segment and decimal point information. The second type of Refresh Controller (Figure 15) requires only five data lines to interface to the microprocessor. The data is transferred using BCD data and a decimal point bit. The technique for digit strobing also is slightly different due to the difference in display length.

Figure 14. Sunlight Viewable Refresh Controller

Figure 15. Refresh Controller

The circuit in Figure 14 utilizes the 10.9 mm (0.43 inch) yellow HDSP-4133 seven segment displays. These displays are readable in direct sunlight when driven near the data sheet maximums as they are in Figure 14. The Sprague segment drivers are sourcing 120 mA peak on a \(1 / 4\) duty factor. The ULN-2068B can sink a maximum of 1.75A and therefore is an excellent digit driver as the maximum digit current is (120 mA) (8 segments) \(\cong 1 \mathrm{Amp}\). The retriggerable monostable multivibrator (74LS122) senses strobing activity on the segment lines. If the strobing stops for any reason (microprocessor crash, etc.), the digit drivers are turned off immediately. This protects the displays from the 120 mA dc they would pass if the strobing ceased.
Figure \(16 a\) and \(16 b\) contain the software necessary to interface the Refresh Controller in Figure 14 to the 6800 and the 8080A microprocessors respectively. The programs consist of two subroutines. The first subroutine LOAD is called by the user's main program. LOAD should
be called the first time data is to be displayed and any time when new display data is desired. This subroutine assumes the user has stored three consecutive bytes of BCD data and decimal point information in locations WORD1, WORD2, and DP. The subroutine unpacks the coded data stored in these locations, decodes it into segment data, and stores it in locations DD1, DD2, DD3, and DD4. Figure 16 c graphically shows the effect of the subroutine LOAD.
LOAD uses a segment data lookup table located in ROM. The lookup table consists of sixteen successive locations that contain the segment information for displaying numbers 0-9 and letters A-F. A 1 bit corresponds to an ON segment and a 0 bit to an OFF segment. All dp bits have been programmed to a logical 0 in the lookup table. Subroutine LOAD assumes that only one decimal point will be ON in the four digit string. The code beginning with label DCPT determines which digit should display a decimal point and changes the dp bit to a logical 1. The subroutine is now complete and control returns to the main program.

Figure 16b. 8080A interface to Refresh Controller in Figure 14

Upon interruption by the 555 timer, the microprocessor is vectored to service the routine RFRSH. This routine uses the register POINT to locate segment information (DD1, DD2, DD3 and DD4) to be output to the display. Label SEG is the address to which segment data is to be written. The label DIG is used in a similar manner to identify the address where digit data is to be written. RFRSH updates the display by first blanking all segments. This interdigit blanking eliminates the phenomenon of partially illuminated segments known as ghosting. Next, segment information is written to the octal latch (74LS273). Finally, the digit information is written to the quad latch (74LS175). Control is then returned to the main program. This process is repeated with the correct segment information for each of the four digits.

With proper display filtering, the circuit in Figure 12 controlled by either the 6800 or 8080A programs provides an excellent four digit, sunlight viewable display.
The Refresh Controller shown in Figure 15 is quite similar to the circuit in Figure 14. However, there are a few minor differences that should be pointed out. The Refresh Controller in Figure 15 utilizes the National DS8858 BCD-toseven segment decoder driver. This enables the user to write BCD data to the Refresh Controller without utilizing the LOAD subroutine. This saves both RAM space and microprocessor time. The software to interface this Refresh Controller to the 6800 and the 8080A microprocessors is shown in Figures 17a and 17b respectively. The circuit uses the green 5082-7673 large seven segment common cathode displays.
\begin{tabular}{l|c|c|}
& \(D_{7} D_{6} D_{5} D_{4}\) & \(D_{3} D_{2} D_{1} D_{0}\) \\
\cline { 2 - 4 } \begin{tabular}{l}
WORD 1 \\
WORD 2 \\
dp
\end{tabular} & \(B C D 1(M S D)\) & \(B C D 2\) \\
\hline & \(B C D 3\) & \(B C D 4\) (LSD) \\
\hline 0 & &
\end{tabular}
(WORD 1, WORD, AND dp ARE CONSECUTIVE RAM LOCATIONS)

(DD1, DD2, DD3, AND DD4 ARE CONSECUTIVE RAM LOCATIONS)

Figure 16c. Subroutine LOAD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & BF & & & SEG & EQU & & \$BF04 & \\
\hline & BF & 05 & & DIG & EQU & & \$BF04 & \\
\hline 0000 & & & & POINT & RMB & & 2 & \\
\hline 0002 & & & & DIGIT & RMB & & 1 & \\
\hline 0003 & & & & DATA & RMB & & 8 & \\
\hline 0400 & & & & & ORG & & \$0400 & \\
\hline 0400 & CE & 00 & 03 & INIT & LDX & & 1,50003 & \\
\hline 0403 & DF & 00 & & & STX & & D,POINT & INITIALIZE POINT \\
\hline 0405 & 7F & 00 & 02 & & CLR & & E,DIGIT & INITIALIZE DIGIT \\
\hline 0408 & 0 F & & & RFRSH & SEI & & & DISABLE INTERRUPTS \\
\hline 0409 & DE & 00 & & & LDX & & D,POINT & GET POINT \\
\hline 040B & E6 & 00 & & & LDA & B & \(\mathrm{X}, 0\) & \\
\hline 040D & 86 & 08 & & & LDA & A & 1,\$08 & \\
\hline 040 F & B7 & BF & 05 & & STA & A & E,DIG & BLANK DISPLAY \\
\hline 0412 & F7 & BF & 04 & & STA & B & E,SEG & OUTPUT SEG. DATA TO DISPLAY \\
\hline 0415 & 96 & 02 & & & LDA & A & D,DIGIT & GET DIGIT \\
\hline 0417 & 81 & 07 & & & CMP & A & 1,\$07 & \\
\hline 0419 & 27 & 0B & & & BEQ & & LOOP1 & BRANCH IF LAST DIGIT, ELSE CONTINUE \\
\hline 041 B & 7 C & 00 & 02 & & INC & & E,DIGIT & INCREMENT TO NEXT DIGIT \\
\hline 041E & B7 & BF & 05 & & STA & A & E,DIG & OUTPUT DIGIT DATA TO DISPLAY \\
\hline 0421 & 7 C & 00 & 01 & & INC & & E,POINT+1 & POINT POINTS TO NEXT BCD WORD \\
\hline 0424 & 0E & & & & CLI & & & \\
\hline 0425 & 3B & & & & RTI & & & \\
\hline 0426 & B7 & BF & 05 & LOOPI & STA & A & E,DIG & OUTPUT DIGIT DATA TO DISPLAY \\
\hline 0429 & CE & 00 & 03 & & LDX & & 1,S0003 & \\
\hline 042 C & DF & 00 & & & STX & & D,POINT & RE-INITIALIZE POINT \\
\hline 042E & 7 F & 00 & 02 & & CLR & & E,DIGIT & RE-INITIALIZE DIGIT \\
\hline 0431 & 0 E & & & & CLI & & & \\
\hline 0432 & 3B & & & & RTI & & & \\
\hline
\end{tabular}

Figure 17a. 6800 Interface to Refresh Controller Shown in Figure 15
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { E000 } \\
& \text { E000 }
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { SEG } \\
& \text { DIG }
\end{aligned}
\] & \[
\begin{aligned}
& \text { EQU } \\
& \text { EQU }
\end{aligned}
\] & \[
\begin{aligned}
& 001 \mathrm{CH} \\
& 001 \mathrm{DH}
\end{aligned}
\] & \\
\hline E000 & & & & & ORG & 0E000H & \\
\hline E000 & 03 & E0 & & POINT & DW & DATA & \\
\hline E002 & & & & DIGIT & DS & 01 H & \\
\hline E003 & & & & DATA & DS & 08H & \\
\hline E00B & & & & & ORG & 0E400H & \\
\hline E400 & 21 & 03 & E0 & INIT & LXI & H,0E003H & \\
\hline E403 & 22 & 00 & E0 & & SHLD & POINT & INITIALIZE POINT \\
\hline E406 & 3 E & 00 & & & MVI & A,0 & \\
\hline E408 & 32 & 02 & E0 & & STA & DIGIT & INITIALIZE DIGIT \\
\hline E40B & F3 & & & RFRSH & DI & & DISABLE INTERRUPTS \\
\hline E40C & F5 & & & & PUSH & PSW & SAVE \\
\hline E40D & E5 & & & & PUSH & H & SAVE \\
\hline E40E & 2A & 00 & E0 & & LHLD & POINT & GET POINT \\
\hline E411 & 3 E & 08 & & & MVI & A, 08 H & \\
\hline E413 & D3 & 1D & & & OUT & DIG & BLANK DISPLAY \\
\hline E415 & 7E & & & & MOV & A, M & \\
\hline E416 & D3 & IC & & & OUT & SEG & OUTPUT SEG. DATA TO DISPLAY \\
\hline E418 & 3A & & E0 & & LDA & DIGIT & GET DIGIT \\
\hline E41B & D3 & 1D & & & OUT & DIG & OUTPUT DIGIT DATA TO DISPLAY \\
\hline E4ID & FE & 07 & & & CPI & 07H & \\
\hline E41F & CA & 2 E & E4 & & JZ & LOOP1 & BRANCH IF LAST, ELSE CONTINUE \\
\hline E422 & 3 C & & & & INR & A & \\
\hline E423 & 32 & 02 & E0 & & STA & DIGIT & INCREMENT TO NEXT DIGIT \\
\hline E426 & 23 & & & & INX & H & \\
\hline E427 & 22 & 00 & E0 & LOOP2 & SHLD & POINT & POINT POINTS TO NEXT BCD WORD \\
\hline E42A & E1 & & & & POP & H & \\
\hline E42B & F1 & & & & POP & PSW & \\
\hline E42C & FB & & & & E1 & & ENABLE INTERRUPTS \\
\hline E42D & C9 & & & & RET & & \\
\hline E42E & 3 E & 00 & & LOOP1 & MVI & A,0 & \\
\hline E430 & 32 & 02 & E0 & & STA & DIGIT & RE-INITIALIZE DIGIT \\
\hline E433 & & & E0 & & LXI & H,0E003H & RE-INITIALIZE POINT \\
\hline E436 & C3 & 27 & E4 & & JMP & LOOP2 & \\
\hline
\end{tabular}

Figure 17b. 8080A Interface to Refresh Controller Shown in Figure 15

\section*{CODED DATA CONTROLLER}

Figure 18 shows a Coded Data Controller designed for an eight character monolithic seven segment display. The circuit uses the Intersil ICM7218D to provide BCD data storage and display multiplexing. The ICM7218D is designed to drive common cathode LED displays at 10 mA IPEAK/segment (minimum) on a \(12 \%\) duty cycle.
The circuit illustrated in Figure 18 uses the ICM7218D to drive an eight digit 5082-7240 monolithic LED display. The common anode version (ICM7218C) is rated at 20 mA IPEAK/segment (minimum). If higher drive currents are needed and a four digit display is acceptable, the eight
digit lines on the ICM7218D can be paralleled to drive four digits at twice the minimum current. The microprocessor interfaces to the ICM7218D through five Data Inputs (BCD and \(\overline{\mathrm{dp}}\)), three digit address lines (DAO, DA1, and DA2), a MODE input, and a WRITE input. Data can be written in to the eight memory locations in the static memory of the ICM7218D via a three bit binary code on the digit address inputs. When the digit address lines are valid, a negative going WRITE pulse clocks the BCD and dp data into the RAM. This method of memory addressing allows the user to update the display information only where it is necessary.

(NOTE 1) MODE IS A TRISTATE INPUT SUCH THAT
WHEN MODE = HIGH, THE 7218 PROVIDES
HEXIDECIMAL DECODING; WHEN MODE =
FLOATING, THE 7218 PROVIDES CODE B
DECODING; AND WHEN MODE = LOW, THE 7218 BLANKS THE DISPLAY.

Figure 18. Coded Data Controller

\section*{DECODED DATA CONTROLLER}

Figure 19 shows a Decoded Data Controller designed for use with 20.3 mm (0.8 inch) seven segment displays. The circuit utilizes the National MM74C911 to directly drive four of the large seven segment displays. The MM74C911 is used to provide segment data storage and display multiplexing. The MM74C911 is designed to drive common cathode displays at 100 mA Ipeak/segment on a \(25 \%\) duty cycle. The circuit illustrated in Figure 17 uses the MM74C911 to drive four HDSP-3403 20.3 mm (0.8 inch) standard red common cathode displays.
The microprocessor interfaces to the MM74C911 through eight data lines (\(a, b, c, d, e, f, g, d p\)), two address inputs \(K_{1}\) and \(K_{2}\), \(\overline{C H I P ~ E N A B L E, ~ a n d ~ W R I T E ~ E N A B L E . ~ T h e ~ d e s i r e d ~}\) segment data is written into the register selected by the address information when \(\overline{\mathrm{CE}}\) and \(\overline{\mathrm{WE}}\) are low. This data is latched when either \(\overline{\mathrm{CE}}\) or \(\overline{\mathrm{WE}}\) return high. Data hold time is not required.
An internal oscillator sequentially presents the stored data to the output drivers which directly drive the LED display. The drivers are active when, the control pin labelled SEGMENT OUTPUT ENABLE (SOE) is low, and are tri-stated when \(\overline{S O E}\) is high. This feature allows duty cycle brightness control for varying ambient light conditions. Also, \(\overline{\text { SOE can be used to disable the output drivers }}\) for power conservation. The digit outputs directly drive the base of the digit transistor when the control pin labelled DIGIT INPUT OUTPUT (DIO) is low.

\section*{INTENSITY MATCHING}

All Hewlett-Packard seven segment displays are tested for luminous intensity to ensure that data sheet values are
met. All displays which can be end stacked are categorized according to their intensity levels. The eye can detect roughly a \(2: 1\) change in luminous intensity and, therefore, this is the criterion for intensity categories. This categorization allows end stacking of the displays, thereby providing a panel with a pleasing, uniform appearance.
The large seven segment displays are individually tested and categorized for luminous intensity. The intensity category is designated by a single or double letter located on the right hand side of the package. When end stacking, it is preferable that the user choose devices from a single category to provide uniform intensity across the display panel.
The monolithic seven segment display clusters are inherently intensity matched digit to digit in one display package. The immersion type monolithic displays which are designed for end stacking are categorized for intensity. The category is designated by a letter on the back side of the package. The user should choose devices from a single category when end stacking the displays.

\section*{COLOR MATCHING}

Color uniformity of the large seven segment displays is an important consideration. The standard red and high efficiency red displays have inherent color uniformity and need not be categorized. However, the eye is more sensitive to color differences in the yellow and green regions. Therefore, displays of these color types are categorized by dominant wavelength. This category is denoted by a number on the right hand side of the package. The user should choose units from a single category to achieve a display panel with optimal color uniformity.

R = REFRESH (DIGIT LINES SEQUENCIALLY PULSED)

Figure 19. Decoded Data Controller

\section*{SUNLIGHT VIEWABILITY}

The rapid growth of sophisticated electronic systems for use in avionic, automotive, machine, and military equipment has created the need for an electronic information display that is viewable in bright sunlight. By combining the newest LED product design technology and the most recent techniques for contrast enhancement, HewlettPackard can now provide the display system designer with devices that are useable in direct 107,000 lumens per square meter (10,000 foot candle) sunlight.
The HDSP-3530/-3730/-4030/-4130 series of large seven segment displays optimize the following parameters that contribute to the readability of the LED display in bright sunlight:
a. LED Color
b. Luminance Contrast
c. Chrominance Contrast (color difference)
d. Front Surface Reflections

These sunlight viewable display devices are assembled with Gallium Arsenide Phosphide (GaAsP) LED chips on a Gallium Phosphide (GaP) substrate. These materials produce the needed light output when driven with peak currents up to 120 mA . High current LED chips are used to allow high peak and average current in the display. The high efficiency red and yellow displays provide the most light output for a given input current and can easily be made visible in bright sunlight. The package configuration uses a neutral gray body and untinted segments to allow the display system designer to achieve readability by obtaining an optimum combination of both luminous and chrominance contrast. When placed behind a \(20 \%\) to \(25 \%\) neutral density gray filter, the illuminated segments provide a distinctly visible chrominance contrast with respect to the gray package.

\section*{MOUNTING CONSIDERATIONS}

The large segment display devices are constructed utilizing a lead frame in a standard DIP package. All \(7.6 \mathrm{~mm}(0.3\) inch) and 10.9 mm (0.43 inch) displays are manufactured with leads on 2.54 mm (0.10 inch) centers with a row-to-row spacing of 7.6 mm (0.3 inch). The 20.3 mm (0.8 inch) displays are also on 2.54 mm (0.10 inch) centers but the row-torow spacing is 15.2 mm (0.6 inch). The 14.1 mm (0.56 inch) displays are on 2.54 mm (0.10 inch) centers with row-to-row spacing of 15.2 mm (0.6 inch). However, the leads are aligned along the top and bottom of the package rather than down the sides. Both the 14.1 mm (0.56 inch) and 20.3 mm (0.8 inch) displays can be socketed using a standard 24 pin IC socket or strip sockets. All large seven segment devices are end stackable and are designed for PC board mounting and wave soldering.
If the large segment devices are to be wave soldered, Sn60 or Sn 63 solder is recommended. The solder wave is
recommended to be at \(245^{\circ} \mathrm{C}\) with a dwell time of 1-1/2 to 2 seconds. The 20.3 mm (0.8 inch) displays have a small tab at each corner to establish a 1 mm (0.040 inch) seating plane above the printed circuit board. The other large seven segment displays have a shoulder on the lead frame to achieve a similar seating plane above the printed circuit board.
The non-immersion type monolithic displays may be mounted either by use of pins which may be soldered into the plated holes at the connector edge of the PC board or by insertion into a standard PC board connector (Table IV). The devices may be soldered for up to three seconds per tab at a maximum soldering temperature of \(230^{\circ} \mathrm{C}\). Heat should be applied only to the edge connector tab areas of the PC board. Heating other areas of the board to temperatures in excess of \(85^{\circ} \mathrm{C}\) can result in permanent damage to the lens. It is recommended that a rosin core wire solder or a low temperature deactivating flux and solid wire be used in soldering operations.

The immersion type monolithic displays are designed for insertion into 12 or 14 pin DIP sockets or soldering into PC boards. All of these type of displays are manufactured on 2.54 mm (0.100 inch) centers with a row-to-row spacing of 7.6 mm (0.300 inch). If the displays are to be soldered into a PC board, the solder temperature must be kept at or below \(245^{\circ} \mathrm{C}, 1 / 16\) inch below the seating plane, for a maximum of five seconds. The shoulders of the lead frame pins are intentionally raised above the bottom of the packąge so that the display can be mounted at an angle to the PC board. Mounting angles up to \(20^{\circ}\) are often necessary in hand held or desk top applications and are easily attainable with immersion type monolithic displays. Refer to Application Note 937 for further instructions concerning installation of these devices.
LED displays, as well as all electronic components, operate more reliably at lower temperatures. Thermal considerations are important, and any method of cooling or heat sinking the displays will result in more reliable operation. Under no conditions should the absolute maximum temperature ratings be exceeded.
To optimize device optical performance, specially developed plastics are used in all display products. These plastics restrict the solvents that may be used for cleaning. Tests have demonstrated that the only fluorocarbon cleaner that is compatible with plastic LED devices is trichloro-fluoroethane (F113). This cleaner is sold commercially under the trade names Freon, Genesolv D, and Arkalone. Water can be used to clean both large seven segment displays and the immersion lens type monolithic displays. Water can also be used for hand cleaning the non-immersion type monolithic seven segment displays if care is taken to prevent water from collecting under the lens.

TABLE I. BCD to Seven Segment Decoder/Drivers
\begin{tabular}{|l|l|l|c|c|l|}
\hline \begin{tabular}{c}
Part \\
Number
\end{tabular} & \multicolumn{1}{|c|}{ Vendor* } & \multicolumn{1}{|c|}{\begin{tabular}{c}
Output \\
Structure
\end{tabular}} & \begin{tabular}{c}
Output \\
Current
\end{tabular} & \begin{tabular}{c}
Output \\
Active \\
State
\end{tabular} & \multicolumn{1}{c|}{ Features } \\
\hline 74 LS47 & \begin{tabular}{l}
TI, Fairchild, \\
National
\end{tabular} & Open Collector & 24 mA & Low & Auto Zero-Blanking, Lamp Test, 0-9 \\
\hline 74 LS48 & \begin{tabular}{l}
TI, Fairchild, \\
National
\end{tabular} & 2 2K Pull-Up & 6 mA & High & Auto Zero-Blanking, Lamp Test, 0-9 \\
\hline 74 LS49 & TI, National & Open Collector & 8 mA & High & Auto Zero-Blanking, Lamp Test, 0-9 \\
\hline 8 T04 & Signetics & Open Collector & 40 mA & Low & Auto Zero-Blanking, Lamp Test, 0-9 \\
\hline 8 T06 & Signetics & Open Collector & 40 mA & High & Auto Zero-Blanking, Lamp Test, 0-9 \\
\hline 9368 & Fairchild & Open Emitter & -19 mA & High & \begin{tabular}{l}
Constant Current, Latch, Auto Zero-Blanking, \\
\(0-9\), A-F
\end{tabular} \\
\hline 9370 & Fairchild & Open Collector & 40 mA & Low & Latch, Auto Zero-Blanking, O-9, A-F \\
\hline 9384 & Fairchild & Current Mirror & 15 mA & Low & \begin{tabular}{l}
Constant Current, Latch, Auto Zero-Blanking, \\
\(0-9\), E,H,C,D
\end{tabular} \\
\hline DS8669 & National & Open Collector & 25 mA & Low & 2 Digit (14 Outputs), 0-9, C,A,P,E,H,J,L,F,- \\
\hline MC14511 & Motorola & \begin{tabular}{l}
NPN Bipolar \\
Emitter
\end{tabular} & -25 mA & High & \begin{tabular}{l}
Latch, Lamp Test, Blanking Inpuf,0-9
\end{tabular} \\
\hline MC14547 & Motorola & \begin{tabular}{l}
NPN Bipolar \\
Emitter
\end{tabular} & -65 mA & High & Latch, Blanking Input, 0-9 \\
\hline
\end{tabular}
*This is a partial list of vendors. Other suppliers for the same part may exist.

TABLE II. Display Drivers
\begin{tabular}{|c|c|c|c|c|c|}
\hline Part Number & Vendor* & Number of Drivers & Input Compatiblity & \begin{tabular}{l}
Output \\
Current (mA)
\end{tabular} & Features \\
\hline DS8859 & National & 6 & TTL & 0-40 (Max) & Programmable Constant Current \\
\hline DS8867 & National & 8 & 7 V MOS & -14 (Typ) & Constant Current \\
\hline DS8877 & National & 6 & MOS, TTL & 50 (Typ) & Low Current Version of 75492 \\
\hline DS8874/76/79 & National & 9 & 9 V MOS & 50 (Min) & Serial Input, Low Battery Indicator \\
\hline ULN-2031/33 & Sprague & 7 & TTL, 5V-15V CMOS & \(\pm 80\) (Max) & NPN or PNP Darlington Pair \\
\hline 75497/498 & TI & 7 & MOS, TTL & 125 (Max) & \\
\hline 75492 & TI, Fairchild, Motorola, National & 6 & 9 MOS & 250 (Max) & Darlington Pair \\
\hline DS8870 & National & 6 & 9 V MOS & 350 (Max) & \\
\hline DS8863/8963 & National & 8 & 9 V MOS & 500 (Max) & \\
\hline \begin{tabular}{l}
ULN-2003A \\
(MC1413)
\end{tabular} & Sprague, TI Motorola & 7 & TTL, 5V CMOS & 500 (Max) & \(2.7 \mathrm{k} \Omega\) Series Resistance to Darlington Pair \\
\hline ULN-2981A & Sprague & 8 & TTL, 5V CMOS & -500 (Max) & \\
\hline ULN-2068B & Sprague & 4 & TTL, 5V CMOS & 1500 (Max) & Predriver Stage to Darlington Pair \\
\hline
\end{tabular}

1 OF N DECODERS
\begin{tabular}{|l|l|c|l|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Part \\
Number
\end{tabular}} & \multicolumn{1}{|c|}{ Vendor* } & \begin{tabular}{c}
Number \\
of \\
Drivers
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c}
Input \\
Compatibility
\end{tabular}} & \begin{tabular}{c}
Output \\
Current \\
(mA)
\end{tabular} & \multicolumn{1}{c|}{ Features } \\
\hline 74 SS259 & TI, Signetics & 8 & TTL & 8 (Max) & Active High, Four Mode Operation \\
DS8665 & National & 14 & \(9 V\) MOS & -20 (Max) & Active Low, Oscillator Output \\
NE590 & Signetics & 8 & TTL & 250 (Max) & Active Low, Four Mode Operation \\
\hline
\end{tabular}

\footnotetext{
*This is a partial list of vendors. Other suppliers for the same part may exist.
}

TABLE III. Multifunction Display Drivers
COUNTERS
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Vendor & Function & Drive Conditions \\
\hline MM74C925/6/7/8 & National & CMOS counter with internal output latch and self-contained internal oscillator and scanning circuitry & 4 Digit Common Cathode 40 mA pk (typ) 1 of 4 D.F. \\
\hline MK50395-9 & MOSTEK & Six decade counter/display decoder; look ahead carry or borrow, loadable counter & 6 Digit Common Anode segment and digit drivers required \\
\hline MK5002/517 & MOSTEK & Four decade counter, latch, decoder with leading zero blanking & 4 Digit Common Anode or Common Cathode segment and digit drivers required \\
\hline \begin{tabular}{l}
ICM7217 \\
ICM7227
\end{tabular} & Intersil & CMOS up/down counter; presettable start/count and compare register; for hard-wired microprocessor control applications; cascadable & \begin{tabular}{l}
4 Digit Common Cathode (A,C) \\
12.5 mA pk (typ), \(10 \mathrm{~mA} \mathrm{pk}(\mathrm{min}) 1\) of 4 D.F. \\
Four Digit Common Anode (B) \\
\(40 \mathrm{~mA} \mathrm{pk}(\mathrm{typ}), 25 \mathrm{~mA} \mathrm{pk}(\mathrm{min}) 1\) of 4 D.F.
\end{tabular} \\
\hline ICM7208 & Intersil & Seven decade counter with scanning circuitry, display blanking, reset & 7 Digit Common Cathode 15 mA pk (typ) 1 of 8 D.F. \\
\hline ICM7225 & Intersil & High speed (25 MHz typ) counter/ decoder/driver & 4-1/2 Digit Common Anode \(8 \mathrm{~mA} \mathrm{dc}(\mathrm{typ}), 5 \mathrm{~mA} \mathrm{dc}(\mathrm{min})\) \\
\hline \begin{tabular}{l}
ICM7216 \\
ICM7226
\end{tabular} & Intersil & Universal Counter that measures frequency, period, frequency ratio, time interval, units & \begin{tabular}{l}
8 Digit Common Anode (A/C) \\
35 mA pk (typ), 25 mA pk (min) 1 of 8 D.F. \\
8 Digit Common Cathode (B/D) \\
15 mA pk (typ), 10 mA pk (min) 1 of 8 D.F.
\end{tabular} \\
\hline ZN1040E & Ferranti Packard & Universal Up/Down Synchronous Counter, with separate memory latches, look ahead or borrow, internal oscillator, and scanning circuitry & 4 Digit Common Anode or Common Cathode 80 mA pk (typ), \(50 \mathrm{~mA} \mathrm{pk}(\mathrm{min}) 1\) of 4 D.F. \\
\hline
\end{tabular}

DISPLAY CONTROLLERS
\begin{tabular}{|l|l|l|l|}
\hline Part Number & Vendor & \multicolumn{1}{c|}{ Function } & \multicolumn{1}{c|}{ Drive Conditions }
\end{tabular}\(|\)\begin{tabular}{l}
Intel \\
\hline \begin{tabular}{l}
8279 \\
\(8279-5\)
\end{tabular} \\
\hline \begin{tabular}{l}
MM74C912 \\
(BCD-7 Segment) \\
MM74C917 \\
(Binary-Hex)
\end{tabular} \\
\hline MM74C911
\end{tabular}

\section*{CLOCKS AND STOPWATCHES}
\begin{tabular}{|l|l|l|l|}
\hline Part Number & Vendor & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Drive Conditions } \\
\hline ICM7045A & Intersil & \begin{tabular}{l}
Complete industrial stopwatch, pre- \\
cision decade timer to count seconds, \\
minutes or hours by relation of suitable \\
oscillatory frequencies
\end{tabular} & \begin{tabular}{l}
7 Digit Common Cathode \\
15 mA pk (typ), \(10 \mathrm{~mA} \mathrm{pk}(\mathrm{min}) 1\) of \(8 \mathrm{D.F}\).
\end{tabular} \\
\hline ICM7215 & Intersil & Split and Taylor time stopwatch circuit & \begin{tabular}{l}
6 Digit Common Cathode \\
13.2 mA pk (typ), \(9 \mathrm{~mA} \mathrm{pk}(\mathrm{min}) 1\) of \(8 \mathrm{D.F}\).
\end{tabular} \\
\hline S1998A1B & AMI & \begin{tabular}{l}
Digital Alarm Clock with snooze and \\
sleep timer
\end{tabular} & \begin{tabular}{l}
4 Digit Common Anode \\
\(16 \mathrm{~mA} \mathrm{dc} \mathrm{(typ)}\)
\end{tabular} \\
\hline MSM5523 & OKI & \begin{tabular}{l}
Multifunction clock and radio, fre- \\
quency counter; five time modes, four \\
frequency modes, AM/FM indicator
\end{tabular} & \begin{tabular}{l}
\(4-1 / 2\) Digit Common Anode or Common \\
Cathode segment and digit drivers required
\end{tabular} \\
\hline MSM5929 & OKI & \begin{tabular}{l}
Auto Clock; 12 or 24 hour format, \\
blinking colon, leading zero blanking
\end{tabular} & \begin{tabular}{l}
4 Digit Common Anode or Common \\
Cathode segment and digit drivers required
\end{tabular} \\
\hline
\end{tabular}

TABLE III. Multifunction Display Drivers (Continued)
A/D CONVERTERS
\begin{tabular}{|l|l|l|l|}
\hline Part Number & Vendor & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Drive Conditions } \\
\hline ICL7107 & Intersil & \begin{tabular}{l}
A/D Converter with decoder/drivers \\
and clock
\end{tabular} & \begin{tabular}{l}
\(3-1 / 2\) Digit Common Cathode \\
8 mA dc (typ), 5 mA dc (min)
\end{tabular} \\
\hline ADD3501/3701 & National & \begin{tabular}{l}
DVM with pulse modulation A-D \\
conversion, internal or external clock \\
overflow displayed
\end{tabular} & \begin{tabular}{l}
\(3-1 / 2\) Digit Common Cathode \\
\(50 \mathrm{~mA} \mathrm{pk}(t y p) 1\) of 4 D.F. \\
digit drivers required
\end{tabular} \\
\hline LD130 & Siliconix & CMOS A/D Converter; BCD outputs & \begin{tabular}{l}
3-1/2 Digit Common Anode or Common \\
Cathode required BCD-7 segment decoder \\
and digit drivers
\end{tabular} \\
\hline
\end{tabular}

TABLE IV. Connectors for Non-Immersion Lens Monolithic Seven Segment Displays
\begin{tabular}{|c|c|c|}
\hline Vendor & Part Number & Description \\
\hline \begin{tabular}{l}
Teledyne Kinetics \\
410 South Cedros Avenue \\
P.O. Box 427 \\
Solano Beach, CA 92075 \\
(714) 755-1181
\end{tabular} & \begin{tabular}{l}
Model S4050 \\
Model S4200
\end{tabular} & Glass filled thermoplastic polyester with spring contacts. Parallel and \(90^{\circ}\) mounting as well as high and low profile available. Model S4200 is available with up to 40 contacts. \\
\hline Precision Concepts, Inc. 1595B Ocean Avenue Bohemia, NY 11716 (516) 567-0995 & \[
\begin{aligned}
& 1255 \\
& 90-1255
\end{aligned}
\] & Snapper connector. Any number of contacts can be supplied on a strip with any of the following angles from horizontal (\(0^{\circ}, 45^{\circ}\), \(60^{\circ}, 90^{\circ}\)). Solder plug pins also available. \\
\hline William Prym-Werke KG 519 Stolberg/Rheinland (02402) 14331/14465 & Specify Contact Pin & Contact pin with knurling. Standard dimensions with special designs done on request. \\
\hline J.A.V. Manufacturing, Inc. 125 Wilbur Place Bohemia, NY 11716
(516) 567-9030 & Series
022-002 & Snap in friction fit. Available in \(30^{\circ}\) angle from horizontal. Up to 17 contacts. Solder plug pins also available. \\
\hline
\end{tabular}

TABLE V. Filter Materials
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline LED Color & Panelgraphic & SGL Homalite & 3M Company & Glarecheq & Rohm and Haas & Schott & OCLI & Polarold \\
\hline Standard Red & Ruby Red 60 Dark Red 63 Purple 90 & \[
\begin{aligned}
& \text { H100-1600 } \\
& \text { H100-1605 } \\
& \text { H100-1804 } \\
& \text { (Purple) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { R6510 } \\
& \text { P7710 }
\end{aligned}
\] & \begin{tabular}{l}
Spectrafilter 112 \\
Spectrafilter 118
\end{tabular} & Plexiglass 2423 Oroglass 2414 & \[
\begin{array}{|l|}
\text { RG-645 } \\
\text { RG-630 }
\end{array}
\] & & \\
\hline High Efficiency Red & \begin{tabular}{l}
Scarlet Red 65 \\
Neutral \\
Gray 10
\end{tabular} & H100-1670 & \[
\begin{aligned}
& \hline \text { R6310 } \\
& \text { N0220 } \\
& \text { (Neutral Gray) } \\
& \hline
\end{aligned}
\] & Spectrafilter 110 Spectrafilter 105 (Neutral Gray & & RG-610 & Sunguard \({ }^{\text {º }}\) (Neutral Gray) & HNCP10 (Neutral Gray) \\
\hline Yellow & Yellow 27 Neutral Gray 10 & H100-1720 & \[
\begin{aligned}
& \hline \text { A5910 } \\
& \text { No220 } \\
& \text { (Neutral Gray) } \\
& \hline
\end{aligned}
\] & Spectrafilter 106 Spectrafilter 105 (Neutral Gray & & & Sunguard \({ }^{\text {ºw }}\) (Neutral Gray) & HNCP10 (Neutral Gray) \\
\hline Green & Green 48 Neutral Gray 10 & H100-1440 & \begin{tabular}{l}
G5610 \\
N0220 \\
(Neutral Gray)
\end{tabular} & Spectrafilter 107 Spectrafilter 105 (Neutral Gray) & & & Sunguard \({ }^{\text {™ }}\) (Neutral Gray) & \begin{tabular}{l}
HNCP10 \\
(Neutral Gray)
\end{tabular} \\
\hline
\end{tabular}

Addresses for companies listed above.

Panelgraphic Corporation 10 Henderson Drive
West Caldwell, NJ 07006
(201) 227-1500

SGL Homalite
11 Brookside Drive
Wilmington, DE 19804
(302) 652-3686

3M Company
Visual Products Division
3M Center, Bldg. 220-10W
St. Paul, MN 55101
(612) 733-0128

\section*{Glarecheq}

Chequers Engraving Ltd.
1-4 Christina Street
London EC2A P4A
England
(01) 739-6964

Rohm and Haas
Independence Mall West
Philadelphia, PA 19105
(215) 592-3000

Schott Optical Glass
Duryea, PA 13642
(717) 457-7485

Optical Coating Labs, Inc. (OCLI)
2789 Griffen Avenue Santa Rosa, CA 95401 (707) 545-6440

Polaroid Corporation Polarizer Division 20 Ames Street
Cambridge, MA
(617) 577-2000/3655

\title{
Bar Graph Array Applications
}

\section*{INTRODUCTION}

The need for converting analog information into a visual display exists in many applications. Historically, the designer has had two possible solutions: the traditional panel meter or discrete indicators aligned in an array. There are serious drawbacks with both solutions. Analog panel meters with inherently mechanical movements have been plagued with low tolerance for mechanical shock. Also, there is a strong customer demand for a more aesthetically pleasing display medium. Discrete indicators cause problems due to high parts count, difficult mechanical and optical alignment, as well as intensity and color variations across a display panel. Hewlett-Packard has solved many of these typical problems by introducing the HDSP-4820/-4830/-4840 series of 10 element LED bar graph arrays. The 10 element bar graph array series, available in standard red, high efficiency red, and yellow, offers the designer ultimate flexibility and ease of use in designing a display system.
This application note begins with a description of the manufacturing process used to construct the 10 element array. Next is a discussion of the package design and basic electrical configuration and how they affect designing with the bar graph array. Mechanical information including pin spacing and wave soldering recommendations are made.
Display interface techniques of two basic types are thoroughly discussed. The first of these two drive schemes is applicable in systems requiring display of analog signals in a bar graph format. The second major drive technique interfaces bar graph arrays in systems where the data is of a digital nature. Examples of microprocessor controlled bar graph arrays are presented.
Summarized for the design engineer are tables of available integrated circuits for use with bar graph arrays. Finally, a list of recommended filters is included.

\section*{DEVICE CHARACTERISTICS}

The 10 element bar graph array devices are manufactured using the concept of "stretching" the light from an LED by diffusion and reflection as shown in Figure 1. The LED chips are mechanically supported and electrically con-

Figure 1. 10 Element Bar Graph (Cutaway)
nected by a lead frame. The plastic housing, called a "scrambler", contains reflective cavities which act as light pipes. These cavities are filled with a diffusant epoxy to provide uniform illumination at the emitting surface.
All bar graph arrays are manufactured in standard DIP packages with leads on 2.54 mm (0.100 inch) centers with a row-to-row spacing of \(7.6 \mathrm{~mm}(0.300 \mathrm{inch})\). As shown in the device schematic in Figure 2, each LED anode and cathode is present on external pins for ease of use.
Each of the 10 elements within the device is matched for luminous intensity. The effect of this matching is that users of a single ten element array need not worry about element-to-element matching within the package. The average luminous intensity for the device is coded by a letter on the side of the package. In applications requiring two or more bargraph arrays end stacked, the user merely chooses devices from a single light intensity category to provide uniform brightness across the display panel.

Figure 2. 10 Element Bar Graph Array Schematic

Color uniformity of the bar graph arrays is an important consideration. The standard red and high efficiency red displays have inherent color uniformity and need not be categorized. However, the eye is more sensitive to color differences in the yellow region. Therefore, the yellow bar graph arrays are categorized by dominant wavelength. These categories are coded by a number on the side of the package. The user should choose units from a single color category to achieve a display panel with optimal color uniformity.

The bar graph arrays have a neutral gray top surface and untinted segments to ensure maximum color difference between on and off segments. To maximize contrast enhancement, specially developed filters should be used in conjunction with the bar graph arrays. A list of recommended filters is contained in Table I.

The bar graph arrays offer substantial improvement over discrete devices in the area of mechanical alignment. Because the ten light emitting cavities are molded in a single package, element-to-element consistency as well as mechanical and optical alignment are vastly improved. The package also has a unique interlocking mechanism that eases alignment in applications requiring arrays to be end stacked.

If the bar graph arrays are to be wave soldered, Sn60 or Sn63 Solder is recommended. The solder wave temperature should be no greater than \(260^{\circ} \mathrm{C}\) with a maximum dwell time of 3 seconds. The devices have a \(1 \mathrm{~mm}(0.040\) inch) standoff which provides clearance above the printed circuit board to facilitate flux removal.
To optimize optical performance, specifically developed plastics are used in the bar graph arrays. These plastics restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes. The immersion time in the vapors should be less than two (2) minutes. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. A \(60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)\) water cleaning process may also be used, which includes a neutralizer rinse (\(3 \%\) ammonia solution or equivalent), a surfactant rinse (\(1 \%\) detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

\(\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {REF1 }}\) OUTPUT DRIVER 1 ENABLED
\(V_{\text {IN }}>V_{\text {REF2 }}\) OUTPUT DRIVERS 1,2 ENABLED
\(V_{\text {IN }}>V_{\text {REF3 }} \quad\) OUTPUT DRIVERS 1, 2, 3 ENABLED
\(V_{I N}>V_{\text {REF4 }} \quad\) OUTPUT DRIVERS 1, 2,3,4 ENABLED
\(V_{\text {IN }}>\) V REF5 \(\quad\) OUTPUT DRIVERS \(1,2,3,4,5\) ENABLED

Figure 3. Typical Analog Input Bar Graph Decoder

\section*{ANALOG INPUT INTERFACE TECHNIQUES}

Many applications for bar graph arrays are in systems where the analog signal needs to be displayed with little or no conditioning. Several analog input IC decoders are available from different manufacturers and are listed in Table II. Although these decoders differ somewhat from manufacturer to manufacturer, the principle upon which they all operate is the same. A block diagram of a typical five element analog input bar graph decoder is shown in Figure 3. Within each IC is a reference voltage network and a set of comparators to detect the level of the analog input signal. When the input signal is greater than the reference voltage for the first comparator, the first output is enabled. As the input signal is increased, subsequent outputs are also enabled. Some manufacturers have incorporated two types of input signal decoding. The first type of decoding turns on all LEDs with voltage thresholds below the analog input (standard bar graph). The second type of decoding turns on only one output at any given time. When the analog input lies within the active region of a particular comparator (\(\mathrm{V}_{\mathrm{REF}} \mathrm{N} \leq \mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{REF}} \mathrm{N}+1\)), that output is enabled and all others are disabled. This is known as position indicator mode. Since only one LED is on at any time in the position indicator mode, power dissipation is significantly reduced. Examples of both types of decoding are discussed in this section.

Figure 4. Audio VU Meter

The circuit shown in Figure 4 uses the Texas Instruments TL480C and the HDSP-4820 to form a low cost audio system VU meter. The ten comparators combined with the voltage reference network within the TL480C detect the level of an analog input signal at the A input. Output Q1 is switched to a logic low at a typical input voltage of 203 millivolts. Due to the logarithmic scaling within the part, as the input signal is increased by 2 dB increments, the subsequent outputs are switched to logic low levels and the LEDs are illuminated. If the TL480C is set to display full scale when the analog input is at 2.0 volts, 0 dB to 18 dB can be displayed on the bar graph array.

The circuit shown in Figure 5 utilizes the National LM3914 and the HDSP-4830 to form a flexible, ten element bar graph. The LM3914 is a versatile decoder in that it can operate in two distinct modes. The state of MODE (pin 9) determines the display format. When it is tied directly to Vcc (pin 3), full bar graph decoding occurs. But when MODE is tied to pin 11 the LM3914 operates in position indicator mode. This MODE pin can also be used to cascade additional LM3914s to form bar graphs of greater resolution.

The circuit in Figure 5 displays a 0 V to 5 V signal on the HDSP-4830 high efficiency red bar graph array. The full scale reading is determined by the adjustable voltage at the REF OUT node. The LM3914 forces a nominal 1.25 V constant voltage between REF OUT (pin 7) and REF ADJ (pin 8). In Figure 5 this voltage is applied across resistor R1. Since this voltage is constant, a constant current flows through R1 giving an output voltage REF OUT as calculated below.
\[
\text { REF OUT }=1.25 \mathrm{~V}(1+\mathrm{R} 2 / \mathrm{R} 1)+\mathrm{I}_{\mathrm{ADJ}}(\mathrm{R} 2)
\]

The value of R1 also determines the LED current. Approximately ten times the current that flows from REF OUT (pin 7) is drawn by each lighted LED. The calculation of LED current is shown below.
\[
\text { ILED }=(1.25 \mathrm{~V} / \mathrm{R} 1)(10)
\]

Figure 5. OV-5V Bar Graph/Position Indicator Meter

Therefore, by choosing R1 for the desired LED brightness, and using the value of \(I_{\text {ADJ }}\) stated in the LM3914 data sheet (\(75 \mu\) A typical), R2 can be determined. By using a potentiometer for R2, the value of REF OUT can be adjusted to the precise level desired.
The LED current in Figure 5 has been set nominally to 10 \(\mathrm{mA} D C\) using the techniques described above. When operated in position indicator mode with \(\mathrm{Vcc}=6.8 \mathrm{~V}\), the power dissipation is approximately 110 mW . The worst case power dissipation when operated in bar mode (10 elements on) is approximately 720 mW .

If low power dissipation and full bar graph decoding is desired, the LM3914 can be operated as shown in Figure 6. The LM3914 is again operated in position indicator mode. However, the ten LEDs are driven in series from a +24 V power supply. The REF OUT voltage is adjusted so the bar graph reads +5 V full scale. When Vin lies between 0 V and +0.5 V , no LEDs will be on. When Vin lies between +0.5 V and +1.0 V , Output 1 is enabled and LED 1 is illuminated. Each time the input voltage increases 0.5 V , the 10 mA sink moves to the next output pin, illuminating an additional LED. When the input voltage is +5 V or more \((+35 \mathrm{~V}\) maximum), all ten LEDs are illuminated with the same 10 mA . To the observer the bar graph appears to operate identically to the one in Figure 5 when in BAR mode. However, the worst case power dissipation has been reduced by approximately one half to 380 mW .

\section*{DIGITAL INPUT INTERFACE TECHNIQUES}

Many applications for bar graph arrays are in digital systems. While the data being displayed may relate directly to an analog signal, it often will be converted to a digital format for processing. This conversion can be accomplished by a microprocessor and/or dedicated hardware. Several interface techniques that have been developed for displaying this

Figure 6. Low Power OV-5V Bar Graph Meter
digitized data in bar graph form are covered in this section. A list of digital input integrated circuits suitable for use as bar graph drivers is compiled in Table III.
Binary Coded Decimal (BCD) is one commonly used method for coding display data in digital systems. Figures 7 and 8 contain circuits designed for interfacing BCD systems to a ten element bar graph. In each case a 1-of-10 decoder (7442) is used to convert the BCD information to the display format. The circuit in Figure 7 drives the bar graph in position indicator mode. That is, only the one LED corresponding to the BCD input is on at any one time. The circuit in Figure 8 has additional hardware to provide a true bar graph display. Therefore, when any output is decoded and turned on, that LED and all the LEDs below it are illuminated. The circuits in Figures 7 and 8 use the HDSP-4840 yellow bar graph with the forward current set nominally at 10 mADC .

Figure 9 shows a thirty element, DC driven bar graph array utilizing the National MM5450 LED Display Driver. The cir-

Figure 7. 1 of 10 Position Indicator
cuit uses 3 HDSP-4830 high efficiency red bar graphs end stacked to form the display portion of the circuit. The MM5450 is a serial in-parallel out shift register with 34 output pins that can sink up to 15 mA each. This current can be adjusted by an external potentiometer applied between VDD (pin 20) and Brightness Control (pin 19). Serial data transfer from the data source, in this case the microprocessor, to the display driver is accomplished with the two signals SERIAL DATA and CLOCK. By using a format of a leading " 1 " bit followed by 35 data bits, data transfer is allowed with a minimal hardware interface. The 35 data bits are latched after the 36th bit is complete. This provides non-multiplexed, direct drive to the bar graph array.
Figure 10 contains the software necessary to interface the MM5450 to the 6800 microprocessor. The serial display data is transferred from the microprocessor via bit 7 of the Data Bus. The data is clocked in each time the microprocessor writes to the MM5450. The clocking is accomplished through a combination of higher order addresses, R/W, VMA and \(\$ 2\).

The software first outputs a start bit to the MM5450. Next, the binary number corresponding to the number of bar graph elements to be displayed is loaded from memory location BINARY. This value is subtracted from \(3410=22 \mathrm{H}\), leaving the number of OFF elements to be clocked. These OFF bits are clocked first, followed immediately by the ON bits. Finally, the 36 th clock pulse is generated, and the bar graph is illuminated. This display will remain illuminated without the need for microprocessor interaction until the data needs changing.

The user should ensure that the correct number of clock pulses are always applied to the MM5450. If this condition is violated once, the bar graph will display erroneous data until it is reset. Due to the lack of an external reset pin on the MM5450, the chip must then be turned off and subsequently repowered to reset and initialize correctly.

Figure 8. BCD to 10 Element Bar Graph Array

Figure 9. Serial Data Interface Between 6800 and 30 Element Bar Graph Array
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{B000}} & \multicolumn{3}{|l|}{ASMB, A, L} & \\
\hline 0006 & & & & ORG & \$0006 & \\
\hline 0006 & & & BINARY & RMB & \$1 & NUMBER OF ELEMENTS ON (\(30{ }_{10}=1 \mathrm{E}_{\mathrm{H}}\) OR LESS) \\
\hline 0400 & & & & ORG & \$0400 & \\
\hline 0400 & 86 & 80 & & LDA A & I, \$80 & \\
\hline 0402 & B7 & B000 & & STA A & E, DSPLY & OUTPUT START BIT \\
\hline 0405 & D6 & 06 & & LDA B & D, BINARY & GET BINARY \\
\hline 0407 & 86 & 22 & & LDA A & I, \$22 & \\
\hline 0409 & 10 & & & SBA & & DETERMINE NUMBER OF ZEROS \\
\hline 040A & 81 & 00 & ZEROS & CMP A & I, \$0 & NO ZEROS THEN BRANCH, ELSE CONTINUE \\
\hline 040C & 27 & 06 & & BEQ & ONES & \\
\hline 040E & 7 F & B000 & & CLR & E, DSPLY & OUTPUT ZERO \\
\hline 0411 & 4A & & & DEC A & & \\
\hline 0412 & 20 & F6 & & BRA & ZEROS & LOOP \\
\hline 0414 & 86 & 80 & ONES & LDA A & I, \$80 & LOAD ONES \\
\hline 0416 & C1 & 00 & & CMP B & I, \$00 & \\
\hline '0418 & 27 & 07 & & BEQ & QUIT & BRANCH IF DONE, ELSE CONTINUE \\
\hline 041A & B7 & B000 & & STA A & E, DSPLY & OUTPUT ONE \\
\hline 041D & 5A & & & DEC B & & \\
\hline 041E & 7 E & 0416 & & JMP & ONES + 2 & LOOP \\
\hline 0421 & 7 F & B000 & QUIT & CLR & E, DSPLY & FINAL CLOCK, DATA LATCHED \\
\hline & & & & END & & \\
\hline
\end{tabular}

Figure 10. Software to Interface 6800 to the Circuit in Figure 9.

Figure 11. Parallel Data Interface Between 8080A and 30 Element Bar Graph Array

Figure 11 shows an 8080A microprocessor to bar graph interface utilizing the Intersil ICM7218A. This display driver has an \(8 \times 8\) static RAM to store display data, sourcing and sinking drivers, and refresh timing for interfacing up to 64 LED elements to a microprocessor. However, the ICM7218A drives these elements at 20 mA IPEAK/ELEMENT (MINIMUM) on a \(12 \%\) duty factor which may result in unacceptably low average current and brightness. For this reason, the eight digit drivers are paralleled in pairs in Figure 11. This results in a thirty element bar graph array operating at 20 mA Ipeak/segment (minimum) with a duty factor of \(24 \%\).

The software to interface the 8080A to the ICM7218A is shown in Figure 14. With the MODE input at a logic, high WRITE is pulsed low. This clocks a control word from the data bus to the ICM7218A. This control word is decoded as described in Figure 12. Inputs ID4, ID5, and ID7 are all logic highs which initialize the device into the proper mode of operation. This means that the next eight data words that are clocked into the ICM7218A will appear on the strobed outputs.

Memory location BINARY contains the number of elements in the bar graph that are to be illuminated. The software converts this information to bar graph form by rotating a 1 bit through the accumulator until BINARY decrements to zero. Since the logic is inverted for the d.p. output, an exclusive OR mask has been used to complement this bit. Also since the digit drivers have been paired, two OUTput instructions are required for each byte decoded. The software is graphically depicted in Figure 13. When the ICM7218A has
received nine words (control word and eight data words), the information is displayed on the bar graph. This bar graph array will remain illuminated without the need for microprocessor interaction until the data needs changing.

MODE \(=1 \quad\) CONTROL WORD FORMAT

\(\mathrm{C}=0\) BLANK DISPLAY (RAM CONTENTS UNCHANGED)
\(\mathrm{C}=1\) NORMAL OPERATION
\(\mathrm{X}=\) DON'T CARE

MODE \(=0 \quad\) DATA WORD FORMAT

UNCODED SEGMENT INFORMATION
LOGIC 1 REPRESENTS AN ON SEGMENT FOR ALL INPUTS EXCEPT d.p., WHERE LOGIC 0 REPRESENTS AN ON d.p.

Figure 12. MODE and DATA Words for the ICM7218A

d.p.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

ICM7218A RAM

\author{
EXAMPLE: BINARY \(=21_{10}=15_{\mathrm{H}}\)
}

Figure 13. Subroutine LOAD
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 001C & & & & DSPLY & EQU & 001CH & \\
\hline 002C & & & & MODE & EQU & 002 CH & \\
\hline 0000 & & & & & ORG & 0 E 000 H & \\
\hline E000 & 01 & & & BINARY & DB & 1 & ;NUMBER OF ELEMENTS ON (\(30_{10}=1 \mathrm{E}_{\mathrm{H}}\) OR LESS) \\
\hline E001 & F5 & & & LOAD & PUSH & PSW & \\
\hline E002 & C5 & & & & PUSH & B & \\
\hline E003 & E5 & & & & PUSH & H & \\
\hline E004 & 3 E & F0 & & & MVI & A, 0F0H & \\
\hline E006 & D3 & 2C & & & OUT & MODE & ;MODE IS ONE \\
\hline E008 & D3 & 1C & & & OUT & DSPLY & ;CLOCK CONTROL WORD \\
\hline E00A & 3E & 00 & & & MVI & A, 00 H & \\
\hline E00C & D3 & 2 C & & & OUT & MODE & ;MODE IS ZERO \\
\hline E00E & 06 & 08 & & & MVI & B, 08 H & ;BIT COUNTER \\
\hline E010 & 0E & 04 & & & MVI & C, 04 H & ;BYTE COUNTER \\
\hline E012 & 21 & 00 & E0 & & LXI & H, BINARY & ;GET BINARY \\
\hline E015 & 7 E & & & & MOV & A, M & \\
\hline E016 & FE & 00 & & & CPI & 00 & \\
\hline E018 & CA & 33 & E0 & & JZ & LOOP 1 & ;JUMP IF ZERO, ELSE CONTINUE \\
\hline E01B & 3E & 00 & & CLEAR & MVI & A, 00 & \\
\hline E01D & 37 & & & SET & STC & & ;SET CARRY \\
\hline E01E & 17 & & & & RAL & & ;ROTATE ONE BIT \\
\hline E01F & 35 & & & & DCR & M & \\
\hline E020 & CA & 33 & E0 & & JZ & LOOP 1 & ;JUMP IF ZERO, ELSE CONTINUE \\
\hline E023 & 05 & & & & DCR & B & ;DECREMENT BIT COUNTER \\
\hline E024 & C2 & 1D & E0 & & JNZ & SET & ;JUMP IF NOT ZERO, ELSE CONTINUE \\
\hline E027 & EE & 80 & & & XRI & 80 H & ;COMPLEMENT BIT 7 \\
\hline E029 & D3 & 1C & & & OUT & DSPLY & ;CLOCK DISPLAY \\
\hline E02B & D3 & 1C & & & OUT & DSPLY & ;CLOCK DISPLAY \\
\hline E02D & 0D & & & & DCR & C & ;DECREMENT BYTE COUNTER \\
\hline E02E & 06 & 08 & & & MVI & B, 08 H & ;RESET BIT COUNTER \\
\hline E030 & C3 & 1B & E0 & & JMP & CLEAR & ;START NEW BYTE \\
\hline E033 & EE & 80 & & LOOP 1 & XRI & 80 H & ;COMPLEMENT BIT 7 \\
\hline E035 & D3 & 1C & & & OUT & DSPLY & ;CLOCK DISPLAY \\
\hline E037 & D3 & 1C & & & OUT & DSPLY & ;CLOCK DISPLAY \\
\hline E039 & 0D & & & & DCR & C & ;DECREMENT BYTE COUNTER \\
\hline E03A & CA & 42 & E0 & & JZ & QUIT & ;JUMP IF ZERO, ELSE CONTINUE \\
\hline E03D & 3E & 80 & & & MVI & A, 80H & ;ENSURE BIT 7 CORRECT \\
\hline E03F & C3 & 35 & E0 & & JMP & LOOP \(1+2\) & \\
\hline E042 & E1 & & & QUIT & POP & H & \\
\hline E043 & C1 & & & & POP & B & \\
\hline E044 & F1 & & & & POP & PSW & \\
\hline E045 & C9 & & & & RET & & \\
\hline E046 & & & & & END & & \\
\hline
\end{tabular}

Figure 14. Software to Interface 8080A to the Circuits in Figure 11.

Table I. Filter Materials

Table II. Analog Input Bar Graph Array Drivers
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Part \\
Number
\end{tabular} & Vendor* & Drive Conditions & Scale & Elements & Comments \\
\hline UAA170 & Siemens & \(\leq 50 \mathrm{~mA} \mathrm{DC}\) & External & 16 & Position indicator only, user sets scale \\
\hline UAA180 & Siemens & \(10 \mathrm{~mA} \mathrm{DC} \mathrm{(typ)}\) & External & 12 & User sets scale \\
\hline TL489 & TI & \(\leq 40 \mathrm{~mA} \mathrm{DC}\) & Linear & 5 & 200 mV increments \\
\hline TL487 & TI & \(\leq 40 \mathrm{~mA} \mathrm{DC}\) & Log & 5 & 3 dB increments \\
\hline TL490 & TI & \(\leq 40 \mathrm{~mA} \mathrm{DC}\) & Linear & 10 & \(50-200 \mathrm{mV}\) adjustable increments \\
\hline TL480 & TI & \(\leq 40 \mathrm{~mA} \mathrm{DC}\) & Log & 10 & 2 dB increments \\
\hline TL491 & TI & \(\leq-25 \mathrm{~mA} \mathrm{DC}\) & Linear & 10 & \(50-200 \mathrm{mV}\) adjustable increments \\
\hline TL481 & TI & \(\leq-25 \mathrm{~mA} \mathrm{DC}\) & Log & 10 & 2 dB increments \\
\hline LM3914 & National & \(2 \leq 1 \leq 30 \mathrm{~mA} \mathrm{DC}\) & Linear & 10 & Position indicator/bar option \\
\hline LM3915 & National & \(2 \leq 1 \leq 30 \mathrm{~mA} \mathrm{DC}\) & Log & 10 & Position indicator/bar option \\
\hline LM3916 & National & \(2 \leq 1 \leq 30 \mathrm{~mA} \mathrm{DC}\) & Log & 10 & Position indicator/bar option \\
\hline U237B & AEG-Tel. & 20 mA (typ) & Linear & 5 & 200 mV increments (200 mV -1000 mV) \\
\hline U244B & AEG-Tel. & 20 mA (typ) & Linear & 5 & 180 mV increments (200 mV -1000 mV with overlap) \\
\hline U247B & AEG-Tel. & 20 mA (typ) & Linear & 5 & 200 mV increments (\(100 \mathrm{mV}-900 \mathrm{mV}\)) \\
\hline U254B & AEG-Tel. & 20 mA (typ) & Linear & 5 & 100 mV increments (\(110 \mathrm{mV}-900 \mathrm{mV}\) with overlap) \\
\hline U257B & AEG-Tel. & 20 mA (typ) & Log & 5 & -15 dB to +6 dB \\
\hline U267B & AEG-Tel. & 20 mA (typ) & Log & 5 & -20 dB to +3 dB \\
\hline XR-2277 & Exar & \(\leq 18 \mathrm{mADC}\) & Log & 12 & -30 dB to +6 dB , position indicator/bar option \\
\hline XR-2278 & Exar & \(\leq 18 \mathrm{~mA} \mathrm{DC}\) & Log & 12 & -20 dB to +8 dB , position indicator/bar option \\
\hline XR-2279 & Exar & \(\leq 18 \mathrm{~mA} \mathrm{DC}\) & Log & 12 & 3 dB increments, position indicator/bar option \\
\hline
\end{tabular}
*This is a partial list of vendors. Other suppliers may exist.
Table III. Digital Input Bar Graph Drivers
\begin{tabular}{|l|l|l|c|l|}
\hline \begin{tabular}{l}
Part \\
Number
\end{tabular} & Vendor* \(^{*}\) & \begin{tabular}{l}
Drive \\
Conditions
\end{tabular} & Elements & Comments \\
\hline MM74C911 & National & \(100 \mathrm{~mA} \mathrm{pk}, 25 \%\) DF & 32 & Software decode, parallel interface \\
\hline MM5450/51 & National & \(\leq 15 \mathrm{~mA} \mathrm{DC}\) & \(34 / 35\) & Software decode, serial interface \\
\hline ICM7218A & Intersil & \(20 \mathrm{~mA} \mathrm{pk}, 12 \%\) DF & 64 & Common Anode, software decode, parallel interface \\
\hline 8243 & Signetics & 13 mA DC & 8 & n of 8 decoder \\
\hline 7442 & \begin{tabular}{l}
Tl, \\
Fairchild, \\
et al
\end{tabular} & 16 mA DC & 10 & 1 of 10 decoder \\
\hline
\end{tabular}

\section*{(h)}

\section*{Optical Sensing for the HEDS-1000}

\section*{Introduction}

The rapid growth of the digital processing used in commercial, industrial and consumer products, has created the need for sensors that convert physical parameters into electrical signals which may directly interface to a digital system. Optical sensors have utility in each of these areas, in that they provide a quick noncontact response to the parameters sought as a data source. Commercial applications include bar code scanning, paper edge sensing, end of tape sensing, and position and magnetic tape loop stabilizing. Industrial uses may consist of optical tachometry, assembly line monitoring, and safety interlocks, while the consumer uses of the optical sensor may be found in audio products, entertainment products, and video games.

This application note describes the electrical and optical design considerations for using discrete optoelectronic devices, or the HEDS-1000 High Resolution Optical Reflective Sensor. The application areas addressed include non-contact transmittive, or reflective sensor systems.

Each of these application areas includes an opticalemitter, a transmission path, and a detector to perform the sensing function. The sensing may occur by having the object obstruct the transmission path, or complete it by reflecting the emitter beam to the detector. In either the transmissive or reflective sensing configuration, there are optical, electrical, and mechanical considerations that must be addressed in order to insure optimum performance of the emitter/detector system.

\section*{System Elements}

Every optical sensor system includes a source of optical flux, a transmission path, and a receiving detector. In most sensor system analysis, the available flux and the responsivity of the receiver are considered to be constant and consequently the dynamic incidance change found at the receiver results from modifications of the transmission path. Figure 1 shows a paper tape reader and densitometer examples of transmissive sensor systems. The presence or absence of the paper hole results in a binary

Figure 1. Different Techniques of Flux Path Modulation.

ON-OFF transmission path attenuation. The densitometer functions by causing an analog modulation of the transmission path. Bar code scanning and paper edge sensing are applications of reflective sensor techniques shown in Figure 1. The bar code provides a reflective contrast between the background and the bars. It is the reflective differential that modulates the transmission path. In paper edge sensing applications, the paper edge creates a digital responding transmission system. When the paper edge is not present in the reflecting field of the sensor, the flux transmission will be zero, and the transmittance will increase when the edge is in the field.

\section*{Optical Transfer Function}

The characteristics of the transmission path can be estimated through the use of an optical transfer function, OTF. The function is the ratio of the total optical flux available, \(\phi_{\mathrm{e}}\), to the incident flux arriving at the receiver, \(\phi_{e}(R)\). This function allows the designer to calculate the amount of photocurrent available for the detector amplifier.

OTF \(=\frac{\phi_{e} \text { (RECEIVED) }}{\phi_{e}(\text { AVAILABLE })}\)

The optical flux attenuation comes from a number of causes. One cause is the transmission loss as the flux is incident upon and passes through the transmission media. These losses come about because of reflection at the surface of the material, and scattering and absorption within the material. For the calculation of the optical transfer function, it is customary to describe these losses, \(\tau\), in terms of a transmittance, \(T\), of the material for the wavelength of the source. The transmittance is equal to:
\[
\begin{equation*}
T=(1-\tau) \tag{2}
\end{equation*}
\]

Another cause of attenuation is the incomplete coupling of the flux from the source to the receiver caused by the mismatch of the receiver relative aperture to the source relative aperture.

\section*{Coupling Fundamentals}

The general case of source flux coupled to a receiver is dependent upon the source radiation pattern, the sourcereceiver spacing, and the receiver area. The following analyses show how these parameters affect the OTF.

Figure 2 shows a source which is located at the center of a hemisphere with a receiver of an area A located at a distance, \(\mathbf{d}\), from the apex. The ratio of the receiver area to the distance squared defines the solid angle, \(\omega\), sub-

Figure 2. Definition of the Solid Angle, \(\omega\).
tended by the area, A. The total flux, \(\phi_{\mathrm{e}}\), being radiated is the integral of the flux incident within the hemisphere. The radiation pattern of a Lambertian source is shown in Figure 3. The pattern describes the ratio of the radiant intensity at an off-axis angle, \(\mathrm{I}_{\mathrm{e}}(\theta)\) to the axial radiant intensity, \(\mathrm{I}_{\mathrm{e}}(0)\). The radiation pattern for a Lambertian source (or the reception pattern for a Lambertian receiver) is described by the cosine of the off-axis angle. The Lambertian radiation pattern function is:

Figure 3. Radiation Pattern of a Lambertian Source.
\(I_{e}(\theta)=I_{e}(0) \cos \theta\)
When the radiation pattern, \(\mathrm{I}_{\mathrm{e}}(\theta) / \mathrm{I}_{\mathrm{e}}(0)\), and the axial radiant intensity, \(I_{e}(0)\), are known, Equation (4) can be used to determine the total flux into the hemisphere, \(\left(\theta=90^{\circ}\right)\) or the flux into a cone created by the area, A.
\(\phi_{e}(\theta)=I_{e}(0) \int_{0}^{\theta} \frac{I_{e}(\theta)}{I_{e}(0)} 2 \pi \sin \theta d \theta\)

When a Lambertian radiator is used as a source, the flux into the cone specified by the off-axis angle, \(\theta\), is calculated from Equations (3) and (4).
\(\phi_{e}(\theta)=I_{e}(0) \int_{0}^{\theta} 2 \pi \cos \theta \sin \theta d \theta\)
\(\phi_{\mathrm{e}}(\theta)=I_{\mathrm{e}}(0) \pi \sin ^{2} \theta\)
The total flux, \(\phi_{e}\), of the Lambertian source is obtained from Equation (5) when \(\theta=90^{\circ}\). Thus, the total flux \(\phi_{\mathrm{e}}\) is \(\pi\) times the axial radiant intensity, \(\mathrm{I}_{\mathrm{e}}(0)\).

The amount of flux coupled into the receiver area A relates to the relative aperture of the receiver. The relative aperture, also known as the numerical aperture, N.A., defines the ability of the receiver to accept flux arriving at off-axis angles. When a source with a specific radiation pattern is considered, a receiver with a large numerical aperture will capture more flux than one with a smaller N.A. The numerical aperture is defined as the sine of onehalf the included angle of the receiver cone. Thus,
N.A. \(=\sin \theta\)
(6)
where \(\theta=1 / 2\) cone angle.

As seen in Figure 4, when smallangles of \(\theta\) are considered, the numerical aperture can be calculated as:

Figure 4. Illustration of Numerical Aperture Relationships.
N.A. \(=\sin \theta \approx D / 2 d\)
N.A. \(=\sin \theta \approx(A / \pi)^{1 / 2} / \mathrm{d}\)
N.A. \({ }^{2}=\sin ^{2} \theta \approx A / \pi d^{2}\)

In Figure 4 are shown a source and a receiver separated by a distance, \(d\). At that distance, the cone (\(\theta_{1}\)) of radiation from the source irradiates an area, \(A_{S}\). Clearly, the receiver having an area, \(A_{R}\), much smaller than \(A_{S}\), describes a smaller cone \(\left(\theta_{2}\right)\) and will receive only a fraction of the flux radiated by the source. This fraction describes the Optical Transfer Function (OTF) for this simple situation, and a good estimate of the value of this fraction is the ratio of the areas \(A_{R} / A_{S}\). Then, applying the relationship derived in Equation (7), the OTF can be defined in terms of the cones for source and receiver which are described by numerical apertures:
\[
\begin{align*}
\text { OTF } & =\frac{\phi_{R}}{\phi_{S}}=\frac{A_{R}}{A_{S}}=\frac{\pi d^{2} N \cdot A \cdot R^{2}}{\pi d^{2} N \cdot A \cdot S^{2}} \tag{8}\\
& =\left(\frac{N \cdot A \cdot R}{N \cdot A \cdot S}\right)^{2}=\left(\frac{\sin \theta_{2}}{\sin \theta_{1}}\right)^{2}
\end{align*}
\]

In estimating OTF, it is necessary only to recognize and evaluate such cones of coupling - exit cone (or N.A.) and acceptance cones. As a general rule, the cone angle, \(\theta\), is defined as the angle at which coupling is \(0.1(10 \%)\) of the axial value \((\theta=0)\). A case of special interest is that of a Lambertian emitter having a radiation pattern varying as \(\cos \theta\). The angle at which \(\cos \theta=0.1\) is \(84.26^{\circ}\), at which \(\sin\) \(\theta=\) N.A. \(=0.995\); thus, for practical purposes, a Lambertian source is regarded as having N.A. \(=1\). If, in Figure 4, a Lambertian source were used, the relationship in Equation (8) reduces:
\[
\begin{equation*}
\text { OTF }=\left(\frac{\text { N.A.R }}{\text { N.A.S }}\right)^{2}=\left(\frac{N \cdot A \cdot R}{1}\right)^{2}=(N . A \cdot R)^{2} \tag{9}
\end{equation*}
\]

This simplification is important as it is used extensively in the sections to follow. Notice, however, that OTF cannot
exceed unity, so that if N.A.R \(>\) N.A.S, then OTF \(=1\). This occurs when the acceptance cone of the receiver is larger than the exit cone of the source.

\section*{Lens Fundamentals}

In practical sensor applications, the source-receiver distance might be ten or more times the diameter of the receiver. If the receiver area is small relative to \(d\), then by Equation (7), the receiver numerical aperture will be small. If the source is Lambertian, the totalflux coupling will then relate to the square of this small numerical aperture.

Through the use of lens, more efficient coupling will result. In order to understand how this is accomplished, it is helpful to present a few rules of optics. The first is the basic lens equation. Referring to Figure 5 a double convex condensing lens is shown relaying an image from the source to the receiver. The source is located a distance, \(\mathrm{d}_{\mathrm{S}}\), from the lens and the real image is located at a distance, \({ }^{d_{R}}\), which is related to the focal length of the lens. Thus, the relationship of \(\mathrm{d}_{\mathrm{S}}, \mathrm{d}_{\mathrm{R}}, \mathrm{f}\) is called the basic lens equation.
\[
\begin{equation*}
\frac{1}{f}=\frac{1}{d_{S}}+\frac{1}{d_{R}} \tag{10}
\end{equation*}
\]
\[
\text { where } \begin{aligned}
f & =\text { Focal Length } \\
\mathbf{d}_{\mathbf{S}} & =\text { Source Lens Distance } \\
\mathbf{d}_{\mathbf{R}} & =\text { Received Image Distance }
\end{aligned}
\]

This relay lens system is focused when the receiver is placed at the distance, \(\mathrm{d}_{\mathrm{R}}\), [from Equation (10) when f and \(\mathrm{d}_{\mathrm{S}}\) are known] from the lens.

Under the focused condition, the image of the source (at the plane of the receiver) is magnified. The degree of magnification, \(m\), is equal to the ratio of \(d_{R}\) to \(d_{S}\).
\(m=\frac{d_{R}}{d_{S}}\)
\(m^{2}=\frac{A_{S, M}}{A_{S}}\)
where \(\quad A_{S, M}=\) Source Image (Source Magnified)
AS = Source Area

Figure 5. Focused Emitter Detector System Using a Double Convex Lens.

Using Equations (10) and (11), the magnification can be represented in terms of the focal length and source to lens distance, \(\mathrm{d}_{\mathrm{S}}\).
\[
\begin{equation*}
A_{S}, M=m^{2} A_{S}=\left(\frac{f}{d S-f}\right)^{2} \cdot A_{S} \tag{13}
\end{equation*}
\]

When the source-lens distance, \(\mathrm{d}_{\mathrm{S}}\), is twice the focal length, f , the image will appear at \(\mathrm{d}_{\mathrm{R}}=2 \mathrm{f}\) on the other side of the lens. Under a \(2 f\) focused condition, the area of the image \(A_{S, M}\), is equal to the area of the source \(A_{S}\). This configuration is termed a 1:1 magnification or 2 f system.

Lenses also have relative aperture qualities. The relative aperture may be specified as either a numerical aperture, N.A., or as an f-number, f/. The f-number is equal to the ratio of the focal length to the diameter of the lens. The f-number and the numerical aperture are inversely related, such that a smaller f-number will result in a proportionately larger N.A.

In Figure 5, the effective diameter of the lens is \(D_{L}\), and relative to this, the numerical aperture is approximately \(D_{L} 2 d_{S}\) as in Equation (7). Comparing the definitions of \(\mathrm{f} /\) no and N.A.:
\(f / n o=\frac{f}{D_{L}} \quad\) N.A. \(\approx \frac{D_{L}}{2 d_{S}}\)
\(f / n o=\frac{1}{2 N . A .}\left(\frac{f}{d S}\right)\)
When \(\mathrm{d}_{\mathrm{S}}=\mathrm{f}\), the source is focused at infinity, making N.A. \(=\) \(1 / 2(\mathrm{f} / \mathrm{no})\); when \(\mathrm{d}_{\mathrm{S}}<\mathrm{f}\), there is no realimage, but a virtual image of the source lying on the same side of the lens, and the lens is less effective in improving the coupling.

\section*{Lens Coupling}

The amount of flux coupled into the lens is dependent upon the numerical aperture of the lens and the exit aperture of the source. When a focused lens system is considered such as that shown in Figure 5, the flux that arrives at the received image point is equal to the ratio of the square of the numerical aperture of the lens divided by the square of the exit numerical aperture of the source, this total times the transmittance, T , of the lens. Thus, the lensed OTF is equal to:

OTF \(=\frac{\phi_{R}}{\phi_{S}}=\left[\frac{N \cdot A_{L}}{N \cdot A \cdot S}\right]^{2} \cdot T\)

When the source is Lambertian, the equation simplifies to:
\(O T F=\frac{\phi_{R}}{\phi_{S}}=N \cdot A \cdot{ }_{L}{ }^{2} \cdot T\)
The following will illustrate a practical example:

Given: Detector Area \(A_{D}=.1 \mathrm{~mm}^{2}\)
Lambertian Source \(A_{S}=.1 \mathrm{~mm}^{2}, \phi_{S}=100 \mu \mathrm{~W}\)
Lens Numerical Aperture N.A.L \(=.5\)
Lens Focal Length, \(f=5 \mathrm{~mm}\)
Lens Transmittance, \(\mathrm{T}=.95\)
Lens to Source Distance, \(\mathrm{d}_{\mathrm{S}}=20 \mathrm{~mm}\)
Lens to Receiver Distance, \(\mathrm{d}_{\mathrm{R}}=\mathbf{6 . 6 7} \mathrm{mm}\)
Using Equation (15), the flux at the receiver will be:
\(\phi_{R}=\phi_{S}\) N.A. \({ }^{2} \cdot \mathbf{T}\)
\(\phi_{R}=100 \mu \mathrm{~W}(.5)^{2} \cdot .95\)
\(\phi_{\mathbf{R}}=23.75 \mu \mathrm{~W}\)
The received area is determined by Equation (12).
\[
\begin{align*}
& A_{S, M}=\left(\frac{f}{d_{S}-f}\right)^{2} \cdot A_{S} \\
& A_{S, M}=\left(\frac{5 \mathrm{~mm}}{20 \mathrm{~mm}-5 \mathrm{~mm}}\right)^{2} \cdot .1 \mathrm{~mm}^{2}=.011 \mathrm{~mm}^{2} \tag{18}
\end{align*}
\]

Thus, into an area of \(.011 \mathrm{~mm}^{2}\), a flux of \(23.75 \mu \mathrm{~W}\) is concentrated. Using the basic lens equation, (10), the received image lies 6.7 mm from the lens. If a photodiode with an area, \(A_{D}\), were placed at this distance, \(d_{R}\), the fraction of this flux that couples the detector is the ratio of \(A_{D}\) to \(A_{S, M}\) if the detector area lies entirely within the source image area. In general, this fraction is the ratio of that portion of the source image that overlaps the receiver, divided by the total source image area, and therefore cannot exceed unity, even when the detector area \(A_{D}\) is much larger than the source image area, \(\mathrm{A}_{\mathrm{S}, \mathrm{M}}\).
\[
\begin{equation*}
\text { Detector Coupling }=K_{D}=\frac{A_{D}}{A_{R}} \leqslant 1 \tag{19}
\end{equation*}
\]

When a lens coupling is compared with non-lens coupling, the improvement is described by:
\(\frac{\phi_{L}}{\phi_{n-L}}=\frac{N \cdot A_{\cdot}{ }^{2} \cdot T}{N \cdot A_{\cdot}{ }^{2}} ; N \cdot A_{R}{ }^{2}=A_{D} /\left[\pi\left(d_{S}+d_{R}\right)^{2}\right]\)
where N.A.R is found from Equation (7) with \(d=d S+d R\)
\[
\frac{\phi_{L}}{\phi_{n-L}}=\frac{(.5)^{2} \cdot .95}{4.47 \times 10^{-5}}=5.3 \times 10^{3}
\]

Thus, this simple example using a lens improves the coupling gain by 37 dB .

\section*{Reflector Fundamentals}

Sensor applications, such as bar code scanning, paper edge detection, and optical tachometry, use the reflective properties of the object or element that they sense.

The reflection of the incident flux may either be specular or diffuse. A specular reflector is one where the angle of the reflected ray of flux is equal to the incident ray of flux. Thus, if a ray of flux was incident to the reflector at \(20^{\circ}\) from the normal, the reflected ray would also be \(20^{\circ}\) from the normal and \(40^{\circ}\) from the incident. A first surface mirror or a highly polished code wheel are examples of specular reflectors. They are characterized as having reflection coefficients, \(\rho\), of almost unity. It has a numerical aperture, N.A.R-S, equal to the N.A. of the source that is incident upon it. The reflected flux would be equal to incident flux times the reflection coefficient.
\(\phi_{\text {OUT }}=\phi_{\text {IN }} \frac{\text { N.A. }^{2}}{{ }^{2}}{ }_{\text {N.A.R.S }}{ }^{2} \cdot \rho ; \quad\) where N.A.RS \(=\) N.A.L
\(\phi_{\text {OUT }}=\phi_{\mathbf{I N}^{\rho}}\)
The reflection coefficient is assumed to be constant over the wavelengths of interest. If this is not true, then a correction coefficient, \(\mathrm{k} \rho(\lambda)\) must be introduced to correct for this spectral property.

A perfectly diffuse reflector is characterized as having a Lambertian radiation pattern. The flux that is coupled from the reflector is equal to:
\(\frac{\phi_{\text {OUT }}}{\phi_{\text {IN }}}=\frac{\text { N.A. RECEIVER }}{}{ }^{2}{ }^{2} \cdot \rho\)
In typical applications, the numerical aperture of the receiver will be that of the receiving lens. Also, the N.A. of the diffuse surface is unity; therefore, Equation (21) can be rewritten as:
\(\frac{\phi_{\text {OUT }}}{\phi_{\text {IN }}}=\) N.A. \({ }^{2}{ }^{2} \cdot \rho\)
Most reflectors are neither perfectly specular or diffuse, but a combination of the two. A typical diffuse reflector may appear more specular at one wavelength and more diffuse at another. Also, the angle of incidence may modify the reflection properties.

It may be desirable in reflective sensor applications to compute the relative ratio of reflection between a specular and a diffuse reflector. Assuming both applications have the same \(\phi_{\mathrm{IN}}\) and the same receiving lens, and using Equations (20) and (21), this ratio becomes:
\(\frac{\phi_{\text {OUT (SPECULAR) }}}{\phi_{\text {OUT (DIFFUSE) }}}=\frac{\rho_{S}}{\text { N.A.L }{ }^{2} \rho_{\text {D }}}\)

Thus, if the receiving lens had a N.A.L \(=.3\), the effective gain of using a specular over a diffuse reflector would be 10.45 dB .

\section*{Confocal Coupling}

It was shown in the lens coupling section that the area of the source could be reduced or magnified through the use of a lens. The technique of reducing the image of the receiver and the source, such that they lie on the same plane located a distance between the source and sensor can be accomplished by using two confocally spaced pair of lenses.

Figure 6 shows two plano-convex lenses positioned so that they are confocally focused. Using the coupling concept developed in the coupling fundamentals the overall OTF can be developed in the following steps.

Figure 6. Confocal Spaced Emitter Detector System Employing Two Plano Convex Lenses.

Step 1. Flux into Lens 1.
\(\frac{\phi_{L I}}{\phi_{S}}=\frac{\text { entrance } N \cdot A \cdot L 1^{2}}{N \cdot A \cdot S^{2}} \cdot T_{L I}\)
Step 2. Flux into Lens 2 from Lens 1.
\(\frac{\phi_{\mathrm{L} 2}}{\phi_{\mathrm{L} 1}}=\frac{\text { entrance } \mathrm{N} \cdot \mathrm{A} \cdot \mathrm{L2}{ }^{2}}{\text { exit N.A.L1 }}{ }^{2}\)
Step 3. Total OTF.
OTF \(=\frac{\phi_{\mathrm{L} 2}}{\phi_{\mathrm{S}}}\)
\[
=\frac{\text { entrance N.A.L1 }{ }^{2}}{\text { exit N.A. }{ }^{2}} \cdot \frac{\text { entrance N.A.L2 }{ }^{2}}{\text { exit N.A.L1 }{ }^{2}} \cdot T_{L 1} \cdot T_{L 2}
\]

The convenient fact about such a transfer function is that each element of the linear system can be evaluated and then the total function is the product of the individual terms.

In a practical application, the exit N.A. of lens 1 and the entrance N.A. of lens 2 will be equal. If a Lambertian
source were used in Equation (24), it would reduce to N.A. \({ }_{L 1}{ }^{2} T_{L 1}\). These two conditions allow the following.

Confocal OTF \(=\frac{\phi_{L 2}}{\phi_{S}}=N \cdot A_{L 1}{ }^{2} \cdot T_{L 1} \cdot T_{L 2}\)
The image size appearing equidistant between the two lens surfaces is determined by the magnification factor, \(\mathrm{m}=\mathrm{d}_{\mathrm{SL}} / \mathrm{d}_{\mathrm{S}}\). Thus, a large source and receiver can be focused down to a point in space, and when confocally coupled, the imaged source-receiver area can become the interruption point for a hole edge, or paper edge sensor.

\section*{Lens Reflective Coupling}

If one of the lenses of a confocally coupled lens system were placed adjacent to the other lens element and skewed so that the two images in front of the lenses intersected, a lensed reflective sensor would result. This is shown in Figure 7.

Figure 7. Reflective Coupling Employing Confocally Spaced Lenses.

Every mechanical system has alignment tolerances which may allow the two images at the focused point to move with respect to one another so that the area of the source and receiver images do not totally overlap. The ratio of the image overlap is termed the overlap fraction, OF.

This fraction can vary from zero to unity. When it is zero, no coupling occurs and at unity, maximum coupling results. If the receiver image overlaps the entire source image, the O.F. will have its maximum value of unity. Having a larger receiver image provides a more consistent O.F. by reducing variability due to alignment difficulty.

The amount of flux coupling would be dependent upon the type and reflectance of the reflector placed at the image intersection, as well as on the N.A.'s of the lenses.

Using Equations (26) or (27), along with (22), and (28), the optical transfer function for a diffuse reflector can be determined.
\(O T F=N . A_{L 1}{ }^{2} \cdot T_{L 1} \cdot T_{L 2} \cdot N . A_{L 2}{ }^{2} \cdot \rho_{D} \cdot O . F\).
where \(\rho_{\mathrm{D}}=\) reflection coefficient of a diffuse reflector and other terms are as defined in Figure 28.

In a similar manner, the OTF for the specular reflector may be determined.
\(O T F=N \cdot A \cdot L{ }^{2} \cdot T_{L 1} \cdot T_{L 2} \cdot \rho_{S} \cdot O . F\).
where \(\rho_{\mathrm{S}}=\) reflectance coefficient of a specular reflector
The conclusions to be drawn here are that a specular reflector will provide a much larger received flux. However, it suffers from a coupling problem where a movement of the normal of the reflecting plane, with respect to the normal of the confocally spaced lens system, causes the incident flux upon the reflector to be reflected outside of the aperture of the receiving lens. This is shown in Figure 8.

Figure 8. Positioning Sensitivity Caused by the Use of a Specular Reflecting Surface.

\section*{HEDS-1000 Reflective Coupling}

Many of the alignment problems found in discrete confocally spaced reflective sensor systems can be eliminated with the use of the HEDS-1000 High Resolution Optical Reflective Sensor. Tuis sensor includes a source and receiver focused with 2 f optics. The optics system is a bifurcated aspheric lens with an effective numerical aperture of .3 . These elements are housed in a T0-5 package with a glass window which is shown in Figure 9.

In the data sheet, radiant flux, \(\phi_{\mathrm{e}}\), is specified as the flux coupled by the source lens to the image. This means that to develop the optical transfer function, only the receiving lens OTF need be described. The OTF for the HEDS-1000 and a diffuse reflector will appear very similar to that of a single lens system with the addition of the transmittance of the glass window, \(\mathrm{T}_{\mathrm{G}}\), and the OTF of the reflector.

OTF \(=\frac{\phi_{\text {RECEIVER }}}{\phi_{\text {REFLECTOR }}}=T_{L} \cdot T_{G} \cdot O . F^{\prime} \cdot O T_{\text {REFLECTOR }}\)
The HEDS-1000 receiver area \(A_{R}\) is \(.160 \mathrm{~mm}^{2}\), and the source area \(A_{S}\) is \(.023 \mathrm{~mm}^{2}\). The ratio of \(A_{R} / A_{S}\) is greater than one which means that for focused operation, the overlap fraction O.F. is equal to one.

The following example shows the expected flux at the receiver photodiode from a diffuse reflector.

Step 1. Diffuse Reflector OTF.
OTF \(=\) N.A. \(\mathbf{L}^{2} \cdot \rho_{D}\)

Step 2. Total OTF for HEDS-1000 Using Step 1 and Equation (31).
\(O T F=T_{L} \cdot T_{G} \cdot O . F \cdot \cdot N \cdot A_{L}{ }^{2} \cdot \rho_{D}\)

Step 3. Using the Following:
N.A. \(=.3 \quad \rho_{\mathbf{D}}=98 \%, \phi_{e}\) (DATA SHEET) \(=9 \mu \mathrm{~W}\)
\(T_{G}=.9 \quad T_{L}=.8 \quad\) O.F. \(=1\)
\(\mathrm{OTF}=(.8)(.9)(1)(.3)^{2}(.98)=.064\)
Step 4. \(\quad \phi_{\text {REFLECTOR }}=\phi_{\mathrm{e}}\) (DATA SHEET)
\(\phi_{\text {RECEIVER }}=\phi_{\text {REFLECTOR }}\) (OTF)
\(\phi_{\text {RECEIVER }}=576 \mathrm{nW}\)

If a specular reflector were used, the flux at the receiver would be the product of the transmittance of the glass and lens, the overlap fraction, O.F., and the reflectance of the specular reflector \(\rho_{\mathrm{S}}\). This is shown in Equation (33).
\(\phi_{\text {RECEIVER }}=\phi_{\text {REFLECTOR }}\left(\mathbf{T}_{\mathrm{L}}\right)\left(\mathrm{T}_{\mathrm{G}}\right)(0 . \mathrm{F}).\left(\rho_{\mathrm{S}}\right)\)
\(\rho_{\mathrm{S}}=.95\)
\(\phi\) RECEIVER \(=9 \mu \mathrm{~W}(.8)(.9)(1)(.95)=6.16 \mu \mathrm{~W}\)
Through the use of the numerical aperture of the receiver lens, it is possible to determine the Optical Transfer Function, and using this OTF, the radiant flux that appears at the receiver surface. From the responsivity of the receiver diode, the photocurrent can be estimated.

\section*{OPTICAL SENSOR PARAMETERS}

\section*{Introduction}

Bar code scanning, paper edge sensing, and optical tachometry applications place specific requirements on optical resolution and electrical performance of a reflective sensor system.

This section will describe the expected optical resolution and electrical performance of the HEDS-1000 as the object being sensed is placed at a location other than the optical focus point.

\section*{Modulation Transfer Function}

The optical resolution of a reflective sensor system is determined by the overlap area of the images focused at the reflector surface. This may be limited by either source or receiver image size, whichever is the smaller. Optical resolution of a reflective sensor system is defined as the ability to discriminate the reflection of closely spaced lines with unequal reflectances. Figure 10 shows a series of reflectors and bars, and the response to this pattern as the imaged source and receiver, are moved laterally across the surface. The assumption is made that the reflector reflectance, \(\rho_{\text {REFLECTOR }}\), is much greater than the reflectance of the bar between the reflectors. The conclusion that can be drawn from this illustration is that the ability of the sensor to discriminate between reflectors spaced a distance, s, apart increases as the space, \(s\), increases.

Figure 9. Elements of the HEDS-1000 High Resolution Optical Reflective Sensor.

Figure 10. Resolution of an Optical Reflective Sensor System.

Resolution \(\alpha \frac{s}{d}\)

Figure 1la, b shows a reflector object with a reflecting surface composed of equal width reflecting (white), and non-reflecting (black) lines. When a receiver with a circular image with a diameter, d , is positioned over the reflector so that the image area totally intersects the white line, a maximum or \(100 \%\) peak reflected response will result. In a similar manner, when the image is positioned over the black line, a minimum or \(0 \%\) peak reflected response will occur. The difference between maximum and minimum response specifies the peak amplitude response under these line width-image diameter conditions.

If this scanning spot were scanned laterally across the black-white transition, the response would be a ramp with a slope (\(\%\) RESPONSE/lateral distance) determined by the image diameter. This is shown in Figure 12a. The \(50 \%\) response point shown in Figure 12b indicates that the image area is equally intersecting the black-white reflecting areas. If the lateral scanning were continued across the surface, the reflected response for Figure 1la would be a trapezoidal wave form. This is shown in Figure 11b.

If an image is used to scan a black-white pattern where the line width is much smaller than the image diameter, the minimum to maximum response will be reduced from the response obtained when the line width is much larger than the image size.

An example of this is shown in Figure 13. A total \(0-100 \%\) response occurs for a \(W_{2}=3\) condition, while

Figure 11. a,b. Image Response for Equally Spaced White and Black Lines.

b) \(\mathbf{5 0 \%}\) REFLECTED RESPONSE LOCATION

Figure 12. Image Transition Response.
a) Edge Response
b) 50\% Reflected Response Location

Figure 13. Reflection Modulation for Different Line Widths.
only a \(33 \%\) minimum to maximum response is obtained when \(\mathrm{W}_{1}=1\). Thùs, as the line width gets smaller with respect to the image, the difference between the minimum and maximum is also reduced. When the performance at smaller line widths is compared to the performance for line widths resulting in \(100 \%\) response, a modulation ratio is obtained. This ratio is shown in Equation (35) using data from Figure 13.

Modulation \(=\frac{\text { MAX }- \text { MIN }}{\text { MAX }+ \text { MIN }}\)
The modulation performance for different line pair widths for a fixed image size is called the Modulation Transfer Function, MTF, of the optical image system. The MTF is specified as a percent response at a particular spatial frequency. The spatial frequency, \(F\), is defined as the number of equal width white-black line pairs per lateral distance. The common units for spatial frequency is line pairs per millimeter, \(\ln \mathrm{pr} / \mathrm{mm}\). The spatial frequency is determined by Equation (36).
\[
\begin{equation*}
F=\operatorname{ln~} \mathrm{pr} / \mathrm{mm}=\frac{1}{2 \text { line width }(\mathrm{mm})} \tag{36}
\end{equation*}
\]

SPATIAL FREQUENCY (LINE PAIR/mm)

Figure 14. Modulation Transfer Function of the HEDS-1000.

Figure 14 shows the modulation transfer function, MTF, for the HEDS-1000. In applications such as bar code scanning and optical tachometry, the spatial frequency can be calculated with Equation 36. If a black-white line pattern with a line width of .254 mm (. 01 in.) were to be scanned by the HEDS-1000, the performance can be determined through the use of Figure 14 and Equation (36). The spatial frequency is determined to be \(1.97 \mathrm{ln} \mathrm{pr} / \mathrm{mm}\) which results in an MTF response of \(70 \%\).

The MTF performance indicates that when a line pattern is scanned by the HEDS-1000, the reflected flux is degraded from the amount of flux obtained from a nonpatterned reflector. Thus, the MTF response becomes another element to be added to the optical transfer function, OTF, as given in Equations (32) and (33).

\section*{Depth of Field}

The optical transfer function, OTF, of a reflective sensing system was presented in the Lens Reflective Coupling, and the HEDS-1000 Reflective Coupling Sections. In each case, the assumption was that the source and the received image were focused on the same plane. In most applications, the mechanical alignment of the sensor to the reflecting element will not be at the fixed focused point.

As the reflecting object moves away from the focus point, the image will become defocused resulting in a blurred image. In a reflective sensor system, the defocusing will occur for both the source and received image. The ratio of the intersection of the two image areas determines an overlap fraction, O.F.. As the system is defocused, the overlap, O.F., decreases.

Figure 15. Defocusing Versus Depth of Field.

The defocused coupling response versus reflector distance is referred to as the depth of field, \(\Delta \ell\). Figure 18 shows the relative response versus reflector distance. One will note an assymetrical response on either side of the maximum signal point. There is a much sharper \(\% I_{P}(\Delta \ell)\) response roll-off for the distance between the reference plane to the maximum signal point, MSP, than from the MSP, to distances further away. This is due to the fact that the amount of blurring on the near side of the MSP is less than that on the far side. This is shown in Figure 15. The blurred image at \(\Delta \ell\) inside is smaller than the blurred image at \(\Delta \ell\) outside. When a reflective type of lensed system, as shown in Figure 9, is considered, the overlap fraction, O.F., is smaller at a \(\Delta \ell\) inside than that for the same \(\Delta l\) outside.

The defocusing of the optical system also impacts the modulation transfer function. As the system is defocused, the image size will increase causing a reduction in the MTF for a specified line pair per millimeter.

\section*{HEDS-1000 Total Transfer Function}

The optical transfer function for the HEDS-1000 was developed in the HEDS-1000 Reflective Coupling Section. This development specified the performance of the reflective sensor as a ratio of flux incident at the receiver \(\phi_{\mathrm{R}}\) to the flux \(\phi_{\mathrm{e}}\) incident at the reflector, OTF \(=\phi_{\mathrm{R}} / \phi_{\mathrm{e}}\). The electrical designer needs to know the relationship of the current supplied to the emitter, \(\mathrm{I}_{\mathrm{F}}\), which produces a photocurrent, \(I_{P R}\) in the detector. This relationship will be referred to as the sensor electrical transferfunction or total transfer function, TTF.

The TTF is the product of the optical transfer function, the flux from the emitter, \(\phi_{\mathrm{e}}\), and the flux responsivity, \(\mathrm{R}_{\phi}\), of the photodiode. This is shown in Equation (37).
\(T T F=\frac{I_{P R}}{I_{F}}=R_{\phi} \cdot O T F \cdot \phi_{e}\left(I_{F}\right) \cdot K\)

Figure 16. K-factor of \(\phi_{\mathbf{e}}\) Versus LED DC Forward Current.

The flux responsivity, \(\mathrm{R}_{\phi}\), of the photodiode at 700 nm is specified as \(.22 \mathrm{~A} / \mathrm{W}\). The flux responsivity, \(\mathrm{R}_{\phi}\), will be considered a constant throughout the calculations. The radiant flux, \(\phi_{\mathrm{e}}\), from the source is dependent upon the current through the LED emitter. The K-factor relationship of the output flux, \(\phi_{e}\), to LED forward current, \(\mathrm{I}_{\mathrm{F}}\), is shown in Figure 17. This graph is normalized at 35 mA and \(25^{\circ} \mathrm{C}\). Thus, the data sheet typical of \(9 \mu \mathrm{~W}\) occurs at 35 mA and \(25^{\circ} \mathrm{C}\).

The following example will illustrate how the TTF is used for a bar code scanner.

Given: \(\quad I_{F}=45 \mathrm{~mA} \quad \phi_{\mathrm{e}}(35 \mathrm{~mA})=9 \mu \mathrm{~W}\)
\(T_{A}=25^{\circ} \mathrm{C}\)
Reflector \(=\) Lambertian, \(\rho_{D}=.85 @ 700 \mathrm{~nm}\)
Bar Width \(=.01^{\prime \prime},=0.254 \mathrm{~nm}\)
Depth of Field \(=\Delta l=.6 \mathrm{~mm}\)
\(\mathrm{N}_{\mathrm{R}} \mathrm{A}_{\mathrm{L}}=.3 \quad \mathrm{~T}_{\mathbf{G}}=.9 \quad \mathrm{~T}_{\mathrm{L}}=.8\)
\(\mathrm{R}_{\phi}=.22 \mathrm{~A} / \mathrm{W}\)
The total transfer function, TTF, is:
\[
\begin{align*}
\mathrm{TTF}=\frac{\mathrm{I}_{\mathrm{PR}}}{\mathrm{I}_{\mathrm{F}}} & =R_{\phi} \cdot T_{L} \cdot T_{G} \cdot N \cdot A_{L} \cdot{ }^{2} \cdot \rho_{\mathrm{D}} \cdot O . F .(\Delta l) \tag{38}\\
x \text { MTF } & \bullet \phi_{\mathrm{e}} \cdot K
\end{align*}
\]

The first step is to evaluate the overlap fraction, O.F. \((\Delta \ell)=\% \mathrm{I}_{\mathrm{PR}}(\Delta \ell)\), a function of the depth of field, \(\Delta \ell\). From Figure 19 , the \(\% \mathrm{I}_{\mathrm{PR}}(\Delta \ell)=50 \%=.5\). Thus, the O.F. is equal to .5 .

The second step is to determine the MTF response for a bar width of .254 mm , for a depth of field of .6 mm . Equation (36) is used to arrive at an \(F(A P P)=1.97 \mathrm{ln} \mathrm{pr} / \mathrm{mm}\). Figure 14 is used to determine the MTF (APP) of \(70 \%\). Thus, MTF (\(1.97 \operatorname{ln~pr} / \mathrm{mm}\)) is equal to \(70 \%\).

The third step is to determine the K -factor. This is can be found from Figure 16. The K-factor for an \(\mathrm{I}_{\mathrm{F}}=45 \mathrm{~mA}\) is equal to 1.3 at \(25^{\circ} \mathrm{C}\).

These values of O.F. (\(\Delta \ell\)), MTF(APP), and \(K\) are substituted into Equation (38) to determine the reflected photocurrent, \(\mathrm{I}_{\mathrm{PR}}\).
\[
\begin{aligned}
& I_{P R}=.22 \mathrm{~A} / \mathrm{W} \cdot .8 \cdot .9 \cdot(.3)^{2} \cdot .85 \cdot .5 \cdot .7 \cdot 9 \mu \mathrm{~W} \cdot 1.3 \\
& I_{P R}=49.6 \mathrm{nA}
\end{aligned}
\]

The conclusion that can be drawn from this example is that there are many factors contributing to the total transfer function.

\section*{HEDS-1000 Logic Interfacing}

Optical sensing applications may be accomplished with the HEDS-1000 High Resolution Reflective Optical Sensor. This device includes a 700 nm emitter, a bifurcated aspheric lens, and a photodetector. The cathode of the LED emitter and the substrate of the photodetector are electrically connected to the mechanical package. The photodetector may be interconnected as a discrete photodiode or a photo-diode-transistor amplifier.

\section*{Photodiode Interconnection}

The photodiode, within the integrated photodetector, is isolated from the substrate-case by substrate diodes. These diodes appear from the common substrate-case to the transistor collector, and to the cathode of the photodiode.

Figure 17 shows recommended interconnection of the unused terminals of the sensor when discrete photodiode operation is desired. Care should be taken to ensure that these substrate diodes are always reverse biased so that they do not create a conductive path that may damage the substrate or other circuit elements.

The photodiode behaves like a current source, such that when optical flux falls on the device, it will generate a photocurrent in relationship to its responsivity, \(\mathrm{R}_{\phi}\), of approximately \(.22 \mu \mathrm{~A} / \mu \mathrm{W}\) at 700 nm . The total photocurrent, \(\mathrm{I}_{\mathrm{P}}\), generated by this photodiode is the summation of two currents, the reflected photocurrent, \(\mathrm{I}_{\mathrm{PR}}\), and a stray photocurrent, \(\mathrm{I}_{\mathrm{PS}}\). Thus, \(\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{PR}}+\mathrm{I}_{\mathrm{PS}}\).

Figure 17. Photodiode Transresistance Amplifier.

\section*{Stray Photocurrent - IPS}

The stray photocurrent, \(\mathrm{I}_{\mathrm{PS}}\), results from flux falling on the detector from sources other than the reflector surface. The principle source of stray photocurrent is from the scattered flux of the LED emitter that is reflected within the mechanical package. Ambient light can also be a source of the stray photocurrent, but this source has been greatly minimized by the use of an optical long wave filter. This filter action is provided by the red coloration found in the bifurcated lens.

\section*{\(I_{P R}-I_{P S}\) Ratio}

The magnitude of the stray photocurrent resulting from internal scattering is directly proportional to the forward current, \(\mathrm{I}_{\mathrm{F}}\), through the LED and the emitter relative efficiency. DC operation of the emitter will result in a steady state stray photocurrent that will range in direct relationship to the specifications and the worst case or typical value of \(\mathrm{I}_{\mathrm{P}}\) (MIN) and \(\mathrm{I}_{\mathrm{P} \text { (MAX) }}\) related to the stray photocurrent ratio, \(\mathrm{I}_{\mathrm{PR}} / \mathrm{I}_{\mathrm{PS}}\). The photocurrent specified for the HEDS-1000 is the total photocurrent, \(I_{P}\), which is equal to the sum of \(\mathrm{I}_{P R}\) and \(\mathrm{I}_{P S}\). The ratio of \(\mathrm{I}_{\mathrm{PR}}\) to \(\mathrm{I}_{\mathrm{PS}}\) is designated a quality or Q -factor of the sensor. Thus, as \(Q\) increases for a given \(I_{P}\), the value of stray photocurrent, \(\mathrm{I}_{\mathrm{PS}}\), decreases. A worst case analysis for \(\mathrm{I}_{\mathrm{PS}}\) under the condition of minimum \(\mathrm{Q}=4\), and an LED current of 35 mA results in an \(\mathrm{I}_{\mathrm{PS}}\) (MIN) \(=20 \mathrm{nA}\) for \(\mathrm{I}_{\mathrm{P}(\mathrm{MIN})}=100 \mathrm{nA}\), and \(\mathrm{I}_{\mathrm{PS}(\mathrm{MAX})}=50 \mathrm{nA} \quad\) for \(\mathrm{I}_{\mathrm{P}}(\mathrm{MAX}) 250 \mathrm{nA}\). A typical value of \(\mathrm{Q}=6.5\) would cause \(\mathrm{I}_{\mathrm{PS}}\) to range from 13 nA to 33 nA .

The quality factor, Q , relationship to \(\mathrm{I}_{\mathrm{P}}, \mathrm{I}_{\mathrm{PS}}\), and \(\mathrm{I}_{\mathrm{PR}}\) is shown in Equation (39).
\[
\begin{align*}
& 0=\frac{I_{P R}}{I_{P S}} \quad I_{P}=I_{P S}+I_{P R} \tag{39}\\
& I_{P R}=I_{P}[Q /(Q+1)] \quad I_{P S}=I_{P}[1 /(0+1)]
\end{align*}
\]
\[
\begin{array}{ll}
\text { where } \quad \mathbf{Q}=\text { Quality Factor } \\
& \mathbf{I}_{\mathbf{P}}=\text { Total Photocurrent } \\
& \mathbf{I}_{\mathbf{P R}}=\text { Reflected Photocurrent } \\
& \mathbf{I}_{\mathbf{P S}}=\text { Stray Photocurrent }
\end{array}
\]

\section*{Depth of Field With Respect to Maximum Signal Point}

Figure 18 shows that the \(100 \%\) maximum reflected photocurrent, \(\mathrm{I}_{\mathrm{PR}}\), response occurs at the location from the reference plane defined as the Maximum Signal Point, MSP. It also shows that the value of the reflected photocurrent \(\mathrm{I}_{\mathrm{PR}}\) is reduced as the reflector is moved in either direction away from the maximum signal point. The HEDS-1000 has a relatively symetrical response of \(\mathrm{I}_{\mathrm{PR}}\) versus the distance, \(\ell\), from the MSP. The depth of field of this optical system is defined as the distance, \(\Delta \ell\), between two equal percentage response points on either side of the MSP. The \(50 \% \mathrm{I}_{\mathrm{PR}}\) response is referred to as the depth of field full width half maximum, FWHM. The depth of field, \(\Delta \ell\), FWHM shown in Figure 18 is found to be 1.2 mm . Thus, if the

Figure 18. Depth of Field vs. Maximum Signal Point.
reflector were moved one half of the total FWHM distance, \(\Delta \ell\), from the MSP, the \(50 \% I_{P R}\) point would occur approximately .6 mm on either side of the MSP location. The reflected photocurrent, \(\mathrm{I}_{\mathrm{PR}}\), response at a specific depth of field is referred to as the \(\% \mathrm{I} \mathrm{PR}(\Delta \ell)\). This value is always less than or equal to \(100 \%\).

The specific value of the \(I_{P R}\) is dependent upon the flux from the emitter and the type and reflection coefficient, \(p\), of the reflector. The reflector fundamentals section presented the characteristics of the reflectors, and demonstrated that a specular reflecting surface offers and order of magnitude improvement in the reflecting photocurrent when compared to a diffuse surface.

When a diffuse reflector is used, the expected value of the reflected photocurrent, at a specific depth of field, \(\mathrm{I}_{\mathrm{PR}}(\Delta \ell)\), is the product of the percent response of \(\mathrm{I}_{\mathrm{PR}}{ }^{\text {at }}\) the depth of field \(\% I_{P R}(\Delta l)\), the reflection coefficient, \(\rho\), of the reflector, the total photocurrent measured at the MSP from a diffuse reflector at a specific LED current \(\mathrm{I}_{\mathrm{P}}\left(\mathrm{I}_{\mathrm{F}}\right)\), and the quality ratio \(\mathrm{Q} / \mathrm{Q}+1\). This relationship is shown in Equation (40).
\[
\begin{equation*}
I_{P R}(\Delta \ell)=\% I_{P R}(\Delta \ell) \cdot \rho \cdot I_{P}\left(I_{F}\right) \cdot Q /(Q+1) \tag{40}
\end{equation*}
\]

When a specular reflector is used, an additional coefficient is introduced. The HEDS-1000 \(\mathrm{I}_{\mathrm{PR}}\) performance is specified for a diffuse reflector; thus, when a specular reflector is used, an improvement factor dictated by Equation (23) is obtained. This factor indicates the \(I_{P R}\) improvement, for \(\mathrm{p}_{\mathrm{S}}=\mathrm{p}_{\mathrm{D}}\), is inverse of the lens numerical aperture squared. The \(\mathrm{I}_{\mathrm{PR}}(\Delta \ell)\) response for a specular reflector is shown in Equation (41).
\(I_{P R}(\Delta \ell)=\% I_{P R}(\Delta \ell) \cdot \rho \cdot I_{P}\left(I_{F}\right) \cdot Q /(Q+1) \cdot 1 / N \cdot A \cdot{ }_{L}{ }^{2}\)
(41)

The expected value of \(\mathrm{I}_{\mathrm{PR}}(\Delta \ell)\) using a diffuse reflector with a relector having a reflectance of \(75 \%\), a total depth of field of 1.2 mm (. 6 mm each way), and LED emitter current of 35 mA , and quality factor \(\mathrm{Q}=6.5\), can be deter- mined from Equation (40). The depth of field of 1.2 mm is equal to a \(51_{P R}(\Delta \ell)\) of \(50 \%\), and typical \(I_{P}(35 \mathrm{~mA}=140 \mathrm{nA}\). The \(\mathrm{I}_{\mathrm{PR}}(\Delta \ell)\) under these conditions is equal to 45.5 nA . If a specular reflector were used, an \(I_{P R}(\Delta \ell)=506 \mathrm{NA}\) would be found from Equation (41), for N.A.L \(=0.3\).

These two equations are useful in determining the expected range of \(\mathrm{I}_{\mathrm{PR}}\) for a given reflector and a depth of field. These two system elements are very important in bar code scanning and paper edge sensing where the type of reflector and specific depth of field are variables.

\section*{Amplifier Considerations}

Each sensor application will generally specify the electrical interface required and the range of the types of reflectors which will be utilized. The magnitude of the photocurrent generated by the photodiode is normally too small to interface directly to a logic gate. This condition indicates that an amplifier is needed. The amplifier electrical performance parameters, such as current and voltage gain, and the type of coupling are determined by the logic family to be interfaced, the application, and the magnitude of the reflected photocurrent.
Applications using specular reflectors include tachometry and optical limit sensing, while diffuse reflectors are more generally found in paper edge sensing and bar code reading. An ac coupled amplifier is acceptable in tachometry and bar code reading, while a dc coupled amplifier is required for steady state applications such as paper edge sensing and optical limit sensing.
The relationship of the reflected photocurrent, \(I_{P R}\), to stray photocurrent, \(\mathrm{I}_{\mathrm{PS}}\), has a large effect on the type of dc amplifier design selected. The initial step in amplifier design is to determine the worst case magnitude of the stray photocurrent, \(I_{P S}\). It is this worst case value of \(I_{P S}\) that becomes the input quiescent bias current, which sets the threshold for the dc amplifier output voltage.

\section*{Transresistance - TTL Interface}

A very common dc amplifier used with photodiodes is the transresistance type of amplifier. The simplest form is shown in Figure 15.4.1-1. The circuit configuration described by the electrical transfer function, \(V_{o}=-I_{P} R_{F}\), is often called a current to voltage converter. A single power supply transresistance amplifier is shown in Figure 20 Here the photodiode is connected to the inverting input, and an offset voltage derived from \(\mathrm{V}_{\mathrm{cc}}\) is determined by a resistive voltage divider, \(1+\mathrm{R}_{2} / \mathrm{R}_{1}\) and is applied to the non-inverting input. The electrical transfer function is:
\(v_{o}=\frac{V_{c c}}{1+R_{2} / R_{1}}-I_{P} R_{F}\)
where \(I_{P}=I_{P R}+I_{P S}\)

Figure 19. Photodiode Transresistance Amplifier with Offset Voltage.

Equation (43) indicates that under the condition of zero reflected photocurrent, \(\mathrm{I}_{\mathrm{PR}}=0\), the output voltage, \(\mathrm{V}_{\mathrm{o}}\), will be the offset voltage less the voltage developed by the stray photocurrent, \(\mathrm{I}_{\mathrm{PS}}\), times the transresistance, \(\mathrm{R}_{\mathrm{F}}\). Thus, the relationship for \(I_{P R}=0\) is:
\[
\begin{equation*}
V_{0}=\frac{V_{c c}}{1+R_{2} / R_{1}}-I_{P S} R_{F} \tag{43}
\end{equation*}
\]

When the transresistance amplifier shown in Figure 19 is used to interface the photodiode to a TTL logic device, the output voltage, \(\mathrm{V}_{\mathrm{o}}\), of the amplifier must change from a logic high, \(\mathrm{V}_{\mathrm{IH}}\), of 2.0 V to a logic low, \(\mathrm{V}_{\mathrm{IL}}\), of .8 V . To improve the noise immunity of the interface, it is desirable to broaden the range of \(\mathrm{V}_{\mathrm{IH}}\) to \(\mathrm{V}_{\mathrm{IL}}\) to 2.4 V and .4 V . The offset voltage and the value of the transresistance resistor, \(\mathrm{R}_{\mathrm{F}}\), is selected to insure that the maximum value of stray photocurrent, \(\mathrm{I}_{\mathrm{PS}}(\mathrm{MAX})=50 \mathrm{nA}\), does not cause the output voltage, \(\mathrm{V}_{\mathrm{o}}\), to fall below \(\mathrm{V}_{\mathrm{IH}}\) of 2.4 V , and the minimum total photocurrent, \(\mathrm{I}_{\mathrm{P}}(\mathrm{MIN})=100 \mathrm{nA}\), will cause the \(\mathrm{V}_{\mathrm{o}}\) to be equal to a \(\mathrm{V}_{\mathrm{IL}}=.4 \mathrm{~V}\).

It is very unlikely that an \(\mathrm{I}_{\mathrm{PS}(\mathrm{MAX})} 50 \mathrm{nA}\) and \(I_{P(M I N)}=100 \mathrm{nA}\) will occur simultaneously for a single device. A device that has an I PS (MAX) of 50 nA would also have an \(I_{P}\) (MIN) of 250 nA . In a similar manner, a device that has an IP(MIN) of 100 nA would most likely have an \(I_{P S}\) (MAX) of 20 nA .

Figure 20 shows the graphic construction of the electrical transfer function for Equation (42). The interface conditions of \(\left[\mathrm{I}_{\mathrm{PS}}(\mathrm{MAX}), \mathrm{V}_{\mathrm{IH}}\right]\) and \(\left[I_{P}(\mathrm{MIN}), \mathrm{V}_{\mathrm{IL}}\right.\)] describe a line whose y intercept dictates the offset voltage, \(\mathrm{V}_{\text {offset }}\), and whose slope determines the transresistance, \(\mathrm{R}_{\mathrm{F}}\). Using Equations (44) and (45), the offset voltage, \(V_{\text {offset }}\), and the transresistance can be determined.

Figure 20. Graphical Solution of Transresistance Amplifier Design.
\(v_{\text {offset }}=\frac{V_{I L} I_{P S}(M A X)-V_{I H} I_{P(M I N)}}{I_{P S}(M A X)-I_{P(M I N)}}\)
\(R_{F}=-\frac{V_{I H}-V_{I L}}{I_{P S}(M A X)-I_{P(M I N)}}\)

The value of \(\mathrm{V}_{\text {offset }}\) and \(\mathrm{R}_{\mathrm{F}}\) which satisfy the TTL interface conditions can be determined from Equations (44) and (45). For the example, \(V_{\text {offset }}=4.4 \mathrm{~V}\), and \(R_{F}=40 \mathrm{M} \Omega\).

This example of photodiode-logic interfaces places parametric demands on the instrumentation operational amplifier selected. This amplifier should have a very low input offset current, thus allowing sensing of \(I_{P}\) at very low levels. It should have a gain greater than that required for the interface. For example, the required current gain for the photodiode-TTL amplifier is approximately 85 dB ; thus, an amplifier with an open loop gain of 100 dB would be desirable. The slew rate of a transresistance amplifier may be slower than that required for TTL logic interconnection; thus, it may be necessary to specify a Schmitt trigger gate as the interconnecting logic element.

\section*{CMOS Interface}

The internal transistor of the HEDS-1000 may also be used as a gain element in a single or multiple stage amplifier. Figure 21 shows an example of interconnecting the photodiode to a CMOS buffer gate, CD4049, using the internal transistor as a gain element.

It was shown previously that the value of \(I_{P S}\) and \(I_{P}\) can vary from unit to unit under similar conditions of \(\mathrm{I}_{\mathrm{F}}\), reflector type and distance, \(\ell\). There will also be variations
of the \(\mathrm{h}_{\mathrm{FE}}\) of the transistor from unit to unit. The design of the photodiode-transistor amplifier to CMOS logic gate must take into consideration the variations of \(\mathrm{I}_{\mathrm{PS}}, \mathrm{I}_{\mathrm{P}}\), and \(\mathrm{h}_{\mathrm{FE}}\) when a direct coupled interconnection is desired. Figure 21 presents a design for an HEDS-1000 CMOS interface. The first step is to calculate the worst case stray photocurrent, \(I_{P S}\) (MAX). The \(I_{P S}\) (MAX) becomes the transistor base current which, when multiplied by the \(\mathrm{h}_{\mathrm{FE}}\) (MAX), will determine the maximum collector current resulting from stray photocurrent. It is a requirement of this circuit that the collector current resulting from \({ }^{1} \mathrm{P}\) (MAX) does not cause the collector output voltage to fall below the input logic high level, \(\mathrm{V}_{\mathrm{IH}}\), of 4 volts. Thus, the maximum value of the load resistor is selected based on the \(I_{P S}\) (MAX) \({ }^{\text {and }} h_{\text {FE (MAX) }}\) of the sensor.

CONDITIONS
\[
\begin{array}{ll}
I_{F}=35 \mathrm{~mA} & I_{P}=M I N=100 \mathrm{nA}, M A X=250 \mathrm{nA} \\
h_{F E}=M I N=100, M A X=300 &
\end{array}
\]
\[
\left[\frac{I_{P R}}{I_{P S}}\right]_{(M I N)}=q_{(M I N)}=4 \therefore I_{P S}=\frac{20 \mathrm{nA} \text { MIN }}{50 \mathrm{nA} \text { MAX }}
\]

Figure 21. HEDS-1000 Interface to a CMOS Gate.

It is desirable in this type of interface to have at least a two to one difference between the \(\mathrm{I}_{\mathrm{PS}}\) (MAX) and the \(\mathrm{I}_{\mathrm{P}}\) (MIN): Such a stipulation will place constraints on the type of reflector, the depth of field, and the allowable spread between \(h_{\text {FE (MIN) }}\) to \(h_{\text {FE (MAX) }}\). Equations (40) and (41) are used to calculate the \(I_{P}(\Delta l)\) for worst case conditions of \(\mathrm{I}_{\mathrm{P}}\) (MIN) when a depth of field of 1.2 mm is desired. Thus, a diffuse reflector would cause 37.5 nA \({ }^{\mathrm{I}} \mathrm{P}\) (MIN) and a specular reflector would result in an \({ }^{I} P\) (MIN) of 416 nA . Using the criteria of \(\mathrm{I}_{\mathrm{P}}(\Delta \ell) / \mathrm{I}_{\mathrm{PS}}(\mathrm{MAX}) \geqslant 2\) [where \(\mathrm{I}_{\mathrm{P}}(\Delta \ell)\) is evaluated for \(\left.\mathrm{I}_{\mathrm{P}}(\mathrm{MIN})\right]\) indicates that a reflector with specular properties should be used.

The next step is to determine the minimum value of \(\mathrm{R}_{\mathrm{L}}\) for the minimum value of \(\mathrm{I}_{\mathrm{P}}(\Delta \ell)\) and \(\mathrm{h}_{\mathrm{FE}}\) (MIN) which causes the transistor collector voltage to fall below the \(\mathrm{V}_{\mathrm{IL}}\) of the CMOS gate.

This worst case analysis of Table 1 indicates that there is a very narrow range between the \(R_{L}\) (MAX) and \(\mathrm{R}_{\mathrm{L}(\mathrm{MIN})}\). If a smaller depth of field \(\Delta \ell\) were selected, the range would be larger, thus giving a greater design margin.

Table 1. HEDS-1000 to CMOS Interface Design Procedure.

\section*{Step 1. Maximum Stray Photocurrent}
\(I_{P S}(M A X)=\frac{I_{P(M A X)}}{Q_{M I N}+1}=\frac{250 n A}{4+1}=50 n A\)
\(\mathrm{a}_{\text {MIN }}=\frac{I_{\text {PR (MIN) }}}{I_{\text {PS (MAX) }}}\)
Step 2. \(R_{L}(M A X)\) for \(V_{I H}\)
\(\begin{aligned} R_{L(M A X)} & =\frac{V_{c c}-V_{I H}}{h_{F E}(\text { MAX }) \cdot I_{P S}(\text { MAX })}=\frac{5.0-4.0}{300 \cdot 50 \times 10^{-9}} \\ & =66.7 \mathrm{k}\end{aligned}\)

Step 3. Minimum Photocurrent from Specular Reflector at \(\Delta l=1.2 \mathrm{~mm}\)

From Equation (41):
\(I_{p}(\Delta l)=\% I_{p}(\Delta l) \cdot \rho \cdot I_{p}\left[\frac{N . A \cdot(\text { SURFACE })}{N . A .(\text { LENS })}\right]^{2}\)
\(I_{p}(\Delta l)=.5 \cdot .75 \cdot 100 n A\left[\frac{1}{.3}\right]^{2}=416 n A\)
\(\rho=75 \%\)
N.A. \((\) SURFACE \()=1\)
\(I_{P(M I N)}{ }^{@} I_{F}=35 \mathrm{~mA}=100 \mathrm{nA}\)
N.A.(LENS) \(=.3 \quad{ }^{(} I_{P}(\Delta \ell), \Delta \ell \quad 1.2 \mathrm{~mm}=.5\)

Step 4. \(R_{L}(\) MIN \()\) for \(V_{I L}\) at \(\Delta \ell\)
\(R_{L}=\frac{V_{c c}-V_{I L}}{h_{F E}(\text { MIN }) \cdot I_{P}(\Delta \ell)}=\frac{5.0-2.25}{100 \times 416 \mathrm{nA}}=66.1 \mathrm{k}\)

Step 5. Select \(R_{L}=66.2 k \quad 1 \%\)

\section*{Current Feedback Amplifier}

Another common design problem is to interface the photo-diode-transistor amplifier to a differential comparator such as the LM311 family. Here the design goals are similar to those specified in Figure 21 but an even greater
degree of output voltage, \(\mathrm{V}_{\mathrm{o}}\), stability is desired. By using a simple current feedback amplifier such as the one shown in Figure 22, the variations of \(\mathrm{V}_{\mathrm{o}}\) caused by \(\Delta \mathrm{h}_{\mathrm{FF}}\) and \(\Delta \mathrm{I}_{\mathrm{PS}}\) will be minimized. In this amplifier design, the tradeoffs are between voltage/current gain, stability, and amplifier speed. As the ratio of \(\mathrm{R}_{\mathrm{F}}\) to \(\mathrm{R}_{\mathrm{L}}\) approaches unity, the \(\mathrm{V}_{\mathrm{o}}\) stability improves, but there is a loss in signal gain. The difference between the \(\mathrm{I}_{P S}\) and \(\mathrm{I}_{\mathrm{P}}(\Delta \ell)\) will specify a current that will cause a change in the output voltage, \(\mathrm{V}_{\mathrm{o}}\). When a larger swing in \(\mathrm{V}_{\mathrm{O}}\) is desired, the value of \(\mathrm{R}_{\mathrm{L}}\) is increased, such that \(\Delta \mathrm{V}_{\mathrm{o}} \alpha\left(\mathrm{I}_{\mathrm{P}}-\mathrm{I}_{\mathrm{PS}}\right) \mathrm{R}_{\mathrm{L}}\). However, as \(\mathrm{R}_{\mathrm{L}}\) increases, the speed of the circuit decreases. Tables 2 and 3 show a design example using an \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{R}_{\mathrm{F}}=10 \mathrm{M} \Omega\). In Figure 22, the differential comparator threshold is set by the resistor ratio \(R_{1}, R_{2}\) and should be equal to 1.25 V . This is below the minimum quiescent, \(\mathrm{V}_{\mathrm{o}}\), of 1.3 V caused by the variations of \(\mathrm{h}_{\mathrm{FE}}\) and \(\mathrm{I}_{\mathrm{PS}}\). The change of the quiescent voltage caused by the variation of \(\mathrm{h}_{\mathrm{FE}}\) can be calculated through the use of the stability factor defined as \(s "\). This factor is the incremental change of \(\mathrm{I}_{\mathrm{C}}\) caused by an incremental change in \(\mathrm{h}_{\mathrm{FE}}\). Specifically,
\(s^{\prime \prime}=\left(\frac{\Delta I_{C}}{\Delta h_{F E}}\right) \quad I P=0\)
The \(\mathrm{V}_{\mathrm{o}}\) stability is improved as the value of s " is reduced. The incremental \(\mathrm{V}_{\mathrm{o}}\) change of the circuit shown in Figure 22 can be calculated from the following relationship:
\(\Delta V_{o}=-\Delta h F E\left[s^{\prime \prime} R_{L}+\frac{\delta^{2} V_{o}}{\delta h_{F E} \delta I_{P}}\right]\)

Figure 22. Current Feedback Amplifier Interface to an A nalog Comparator.

Table 2 Current Feedback Amplifier Design Procedure.
OUTPUT VOLTAGE, \(\mathbf{V}_{0}\)
\[
\begin{aligned}
& V_{0}=\frac{V_{C C}\left(\frac{R_{F}}{h_{F E} R_{L}}\right)+V_{B E}\left(1+\frac{1}{h_{F E}}\right)-R_{F I P}}{\left(\frac{R_{F}}{h_{F E} R_{L}}\right)+\left(1+\frac{1}{h_{F E}}\right)} \\
& \text { STABILITY FACTOR, } s^{\prime \prime}=\frac{\Delta I_{C}}{\Delta h_{F E}} \\
& s^{\prime \prime} \approx \frac{\left(R_{L}+R_{F}\right)\left(V_{c c}-V_{B E}\right)}{\left(R_{F}+R_{L}+R_{L} h_{F E}\right)^{2}}
\end{aligned}
\]

Table 3 Practical Example of a Current Feedback Amplifier Design.
\(h_{\text {FE }} \quad \operatorname{MIN}=100 \quad\) MAX \(=300 \quad \operatorname{IPS}(\) MAX \()=41 n A\)
\(R_{L}=100 \mathrm{k} \Omega \quad R_{F}=10 \mathrm{M} \Omega \quad V_{c c}=5.0 \mathrm{~V}, V_{B E}=.6 \mathrm{~V}\)
\begin{tabular}{l|c|c}
& hFE \(=100\) & hFE \(=300\) \\
\hline \(\mathrm{~V}_{0}\) & 2.60 V & 1.39 V \\
\(\mathrm{~s}^{\prime \prime}\) & \(1.1 \times 10^{-7}\) &
\end{tabular}

The \(s\) " parameter is important in dc coupled amplifier circuits because the change in \(V_{o}\) caused by the \(\Delta h_{F E}\) may result in the succeeding gain stages being driven into saturation.

\section*{Current-Voltage Feedback Amplifier}

When even greater output voltage stability is desired, a modified current-voltage feedback amplifier may be necessary. This bias approach uses \(\mathrm{R}_{\mathrm{F}}\) and \(\mathrm{R}_{\mathrm{N}}\) as shown in Figure 23, to force a \(V_{B}\) which sets \(I_{C}\) to a level determined by \(\mathrm{V}_{\mathrm{B}} / \mathrm{R}_{\mathrm{E}}\). This circuit can offer an s " ten times better than the current beedback amplifier. The design is such that an \(h_{\mathrm{FE}}\) variation of \(100-300\) will cause a 0.3 V change in \(\mathrm{V}_{\mathrm{o}}\) in the current-voltage feedback configuration, while this same \(\Delta \mathrm{h}_{\mathrm{FE}}\) for Figure 22 will cause a 1.2 V change.

Figure 23. Current-Voltage Feedback Amplifier.

The design example given in Table 4 sets the \(\mathrm{V}_{\mathrm{o}}\) at 2.5 V and offers an \(\mathrm{s}^{\prime \prime}\) of \(7.5 \times 10^{-9}\). The output voltage \(\mathrm{V}_{\mathrm{o}}\) will be reduced from a design center of 2.5 V to a worst case \(\left(\mathrm{V}_{\mathrm{O}}-\right.\) \(\left.\mathrm{s}^{\prime \prime} \Delta \mathrm{h}_{\mathrm{FE}} \mathrm{R}_{\mathrm{L}}\right)=2.25 \mathrm{~V}\). This implies that the threshold of the comparator should be set to a level of 1.55 V . This amplifier offers a transresistance of \(8 \mathrm{M} \Omega\) which means for a 100 nA \(\mathrm{I}_{\mathrm{P}}(\Delta \ell)\), the output voltage \(\mathrm{V}_{\mathrm{o}}\) will fall to 1.5 V which is a sufficient differential to cause the LM311 output to change logic states.

Table 4. Design Equations for the Current-Voltage Feedback Amplifier.

Step 1. Select \(R_{L} \quad\) Given: \(V_{o}\) and \(I_{C}\)
\(R_{L}=\frac{\left(V_{c c}-V_{0}\right)}{I_{C}}=\frac{2.5 \mathrm{~V}}{5 \mu \mathrm{~A}}=500 \mathrm{k}\)

Step 2. Select \(R_{E}\)
Given: \(V_{E}\) and \(I_{E}\)
\(R_{E}=\frac{V_{E}}{I_{E}}=\frac{.5}{4.91 \times 10^{-6}}=101 \mathrm{k} \approx 100 \mathrm{k}\)

\section*{Step 3. Select \(\mathbf{R}_{\mathbf{N}}\)}

Given: \(\mathbf{I}_{\mathbf{N}}\)
\(R_{N}=\frac{V_{E}+V_{B E}}{I_{N}}=\frac{.5+.6}{75 n A}=14.6 \mathrm{M} \Omega \approx 15 \mathrm{M} \Omega\)
\(R_{F}=\frac{V_{0}-V_{E}-V_{B E}}{I_{N}+I_{B}}=\frac{2.5-.5-.6}{75 n A+50 n A}\)
\(=11.2 \mathrm{M} \Omega \approx 12 \mathrm{M} \Omega\)

\section*{Step 5. Stability Factor, s"}

where \(g=\frac{R_{E}}{R_{N}}\left(1+\frac{R_{L}}{R_{F}}\right)+\frac{R_{E}+R_{L}}{R_{F}}\)
\(s^{\prime \prime}=7.5 \times 10^{-9}\)

\section*{LSTTL Interface}

The previous circuits dealt with CMOS and comparator type interfaces. Figure 24 shows a two transistor amplifier to LSTTL interface. This circuit can either be ac or dc coupled, only the direct coupled configuration will be presented. The design approach is similar to that of Figure 21 with the additional analysis of the second stage.

Figure 24. DC Coupled HEDS-1000 to LSTTL Interface.

The first transistor, \(\mathrm{Q}_{1}\), is biased by the photodiode in a common emitter configuration. Under the conditions of \(\mathrm{I}_{\mathrm{PS}}\) (MAX), the collector of \(\mathrm{Q}_{1}\) is pulled up to within .5 V of \(V_{c c}\), thus insuring that \(Q_{2}\) is not conducting. This condition sets the maximum value of \(\mathrm{R}_{1}\). When a reflected
photocurrent is present, the resulting \({ }_{C}\) of \(Q_{1}\) is the combination of current through \(R_{1}\) and the \(I_{B}\) of \(Q_{2}\). Thus, \(R_{1}\) must be large enough that the current sinking capability of \(Q_{1}\) (dictated by \(h_{F E}\) and \(I_{P}\)) will result in sufficient \(I_{B}\) in \(Q_{2}\) to cause \(Q_{2}\) to saturate.

In the absence of reflected photocurrent, both \(Q_{1}\) and \(Q_{2}\) are normally off. Under this condition, the load resistor, \(\mathrm{R}_{2}\), must be able to sink the \(\mathrm{I}_{\mathrm{IL}}\) of the LSTTL gate at the desired \(\mathrm{V}_{\mathrm{IL}}\). To satisfy the desired logic condition, \(\mathrm{R}_{2}\) must be less than \(V_{I L} / I_{I L}\). The minimum value of \(R_{2}\) is determined by the current sourcing capability of \(\mathrm{Q}_{2}\) produced by \(I_{B}\). The collector current of \(Q_{2}\) must generate a voltage drop across \(R_{2}\) greater than the \(\mathrm{V}_{I H}\) of the gate. It is recommended that a high gain, low leakage PNP transistor, such as a 2 N 3906 , be selected for \(\mathrm{Q}_{2}\).

The rate at which the output voltage of \(Q_{2}\) changes is directly related to the speed at which the reflecting surface is moving into the reflection plane of the sensor. In many applications, the rate of change of \(V_{o}\) through the switching region of the LS gate is so slow that it may cause logic level chatter at the output of the gate. If this chatter is observed, it is recommended that a Schmitt trigger gate, such as the 74LS14, be used.

\section*{REFLECTIVE SENSOR APPLICATIONS}

\section*{Rotary Tachometry}

A reflective sensor can be used as the transducer to determine the rotary speed of a motor shaft. This can be accomplished by utilizing a disc with equally spaced
reflective and non-reflective lines placed around the circumference of the disc. The number of line pairs per revolution will then give a specific pulse count per revolution. In many applications, it is desired to have a very high density of line pairs around the perimeter of a small diameter disc. The performance of the reflective sensor is determined by the MTF for the spatial frequency, F , of line pairs on the disc. The spatial frequency for a disc is determined by Equation (48).
\(F=\frac{\text { lines } / \mathrm{rev} .}{4 \pi r}\)

Using Figure 25 , the spatial frequency can be determined assuming the radius is to the center point of the line pattern. Given the radius, \(\mathrm{r}=10 \mathrm{~mm}\), and 220 lines/ revolution, a spatial frequency of \(1.75 \ln \mathrm{pr} / \mathrm{mm}\) is calculated. When an HEDS-1000 is used as the sensor for this code wheel, an MTF response of \(75 \%\) is obtained from Figure 14.

The code wheel is afixed to a hub which is placed on the rotating shaft. The reflective sensor is positioned perpendicular to the disc and at a distance such that the maximum signal point, MSP, is at the plane of the code pattern. The highest reflected photocurrent, \(I_{P R}\), is obtained from a specular reflecting code pattern. This can be implemented by photolithographing a pattern of opaque bars on a shiny metallic wheel-hub assembly. A diffuse code wheel assembly should be used when the mechanical tolerance of the axial alignment of the HEDS-1000 to the normal of the code wheel exceeds \(10^{\circ}\).

SPATIAL FREQUENCY OF CODE WHEEL

Figure 25. Spatial Frequency of a Code Wheel.

Tachometry applications allow an ac coupled amplifier to be used, such as the current feedback type in Figure 22. AC coupling the output of the HEDS-1000 eliminates the dc output offset voltage variations caused by the stray photocurrent.

\section*{HEDS-1000 Analog Tachometer}

The HEDS-1000 can be used as the transducer in high speed rotary tachometry applications. Figure 26 shows a circuit diagram that uses the reflective sensor as a pulse source input to a frequency to voltage converter.

The HEDS-1000 is configured as a current feedback amplifier and ac coupled to an LM2907 frequency to voltage converter. The transistor \(Q_{1}\) is used as a current source to supply the \(I_{F}\) to the LED emitter.

The reflective sensor generates \(n\) pulses per revolution, where \(n\) is the number of line pairs per revolution. The magnitude of the frequency, \(f\), applied to the F-V converter is \(n\) times the number of revolutions per minute. This is the relationship shown in Equation (49).
\(n=\frac{\pi r}{\text { line width }}=\frac{2 \pi r}{\text { In pr width }}\)
\(f=n \mathrm{rev} / \min \times \frac{1}{60} \cdot \frac{\min }{\mathrm{sec}} \quad\) where \(f=\mathrm{Hz}\)
The capacitor, C , is the dominant factor in determining the maximum output voltage for a required full scale frequency indication. The capacitor required to determine a full scale output voltage for a specific full scale frequency is shown in Equation (50).
\(\mathbf{c}=\frac{\mathrm{V}_{\text {OUT FULL SGALE }}}{\mathrm{R} \cdot \mathrm{V}_{\mathbf{c c} \cdot} \cdot \mathrm{f}_{\text {FULL }} \text { SCALE }}\)
A \(V_{\text {OUT }}\) FULL SCALE \(=1 \mathrm{~V}, 0-25,000 \mathrm{rev} / \mathrm{min}\) tachometer can be designed using a code wheel with a radius of 20 mm and a line width of .63 mm . The approach is to determine maximum full scale frequency from Equation (49), and then using Equation (50), the full scale frequency

Figure 26. Analog Tachometer Circuit.

Figure 27. Reflective Type Paper Edge Sensor.
is 41.5 kHz and C is calculated to be 57 pF . A 62 pF capacitor is used for this example.

The F-V converter will respond to a minimum input signal swing of 250 mV . This input level can be insured through the use of a specular reflector. In the HEDS-1000 Total Transfer Function Section it was shown that the IPR increases by 10.45 dB when a specular reflector is used over a diffuse reflector. The limitation of a specular reflecting code wheel is that the HEDS-1000 alignment to the code wheel must not be greater than \(10^{\circ}\) from the normal. If the deviation is greater than \(10^{\circ}\) the image of the source will not be reflected to the detector.

\section*{Paper Edge Sensor}

The accurate detection of the edge of a piece of paper can be accomplished with an HEDS-1000 reflective sensor. If the range of reflectivity of the paper is known, either a paper reflective or an obscuration system can be selected.

When a paper type which is highly reflective is considered, it is desirable to utilize a reflective system of the type that positions the sensor so that the maximum signal point lies at the surface of the paper platten. This approach is shown in Figure 27. When a low reflectance paper type is being sensed, the obscuration type system may be more suitable. Such a system is shown in Figure 28.

The edge position sensing accuracy is dependent on the spot location as referenced to the mechanical system. The HEDS-1000 offers a reflective sensing spot location of \(\pm .51 \mathrm{~mm}\) with respect to the package center line.

When an obscuration sensor system is used, the two transistor amplifiers shown in Figure 24 provide a convenient dc coupling to a 74LS logic family. When the reflective system is applied, a transresistance amplifier of the type shown in Figure 19 should be considered.

Figure 28. Obscuration Type Paper Edge Sensor.

\section*{Bar Code Scanner}

A reflective optical sensor can be used as the transducer in a bar code scanner application. The bar code is an encoded form of binary data storage. The relative width difference bar to bar, and space to space, describe the typical encoding scheme of Differential Width encoding. This is the data format used in the Universal Product Code. UPC.

The sensor provides an electrical output signal with a pulse width determined by the bar and space widths, and signal amplitude dependent upon the bar and space reflection coefficients.

The Differential Width encoding scheme requires that output pulse width, bar to bar, or space to space, be an accurate representation of the distance per unit time. The accuracy of the scanning output improves when the reflecting spot size is smaller than the minimum bar or space width. The smaller the scanning image, the more abrupt the transition from bar to space.

The output signal amplitude is determined by the difference between the bar reflectance and space reflectance. The minimum output signal to maximum output signal ratio is directly proportional to the bar to space reflectance.

The signal amplifier that is interconnected to the sensor must have a large dynamic operating range to accomodate the variations of reflector types, and also provide adequate signal differential for the bar to space reflectivity difference.

Figure 13 shows the trapezoidal pulse train that is obtained from scanning a bar code of equal width bars and spaces. As the image size increases due to defocusing, the pulse train amplitude is reduced and the waveform becomes triangular. It is desirable that the amplifier provides the signal amplitude change at the same scanning location as the bar to space transition.

Figure 29. Bar Code Scanner Circuit.

Figure 29 shows a schematic for an amplifier system that will convert the bar and space widths into TTL compatible logic signals. The circuit uses the CA3130 as a transresistance amplifier for the HEDS-1000 photodiode. The output of the amplifier is applied to positive peak (LM124-1) and negative peak (LM124-2) detectors. The resistors \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) set the reference (negative-going) input to the code comparator (LM124-3) at a voltage which is halfway between the positive peak and the negative peak, so the switching threshold is therefore at
\(50 \%\) of the peak-to-peak modulation. The noise gate (LM124-4) compares the negative peak to a voltage which is two diode voltage drops (\(\mathrm{D}_{1}\) and \(\mathrm{D}_{2}\)) below the positive peak, so unless the peak-to-peak amplitude exceeds two diode drops, the G input of the 74LS75 remains low and \(\bar{Q}\) cannot change. This ensures that the \(\overline{\mathrm{Q}}\) output of the 74LS75 will remain fixed unless the excursions at the output of the CA3130 are of adequate amplitude (two diode drops) that noise will not interfere.

\title{
Design and Operational Considerations for the HEDS-5000 Incremental Shaft Encoder
}

\section*{INTRODUCTION}

A shaft encoder is a component which translates the rotational movement of a shaft into an electrical waveform.
This note is directed to the system designer using the Hewlett-Packard HEDS-5000 modular incremental shaft encoder. The contents are therefore specific and require initial understanding of shaft encoders and their associated systems.
The first section of this note briefly analyzes the theory of design and operation of the HEDS-5000. The second section, covering Design Considerations and Error Analysis, provides an in-depth treatment of the relationship of motor mechanical parameters to encoding error accumulation. Several design examples demonstrate practical utilizations of the techniques presented. The section on Operating Considerations presents information on assembly and test procedures as well as trouble shooting and repair. The last section introduces some circuits and software concepts which will be useful in interfacing the shaft encoder to a digital or a microprocessor based system. A selection guide summarizing the uses and
advantages of various encoder characteristics is presented in the Appendix. Also included is a selection of motors suitable for mating with the HEDS-5000 encoder.

\section*{DESCRIPTION}

A shaft encoder used in a system such as a servo motor control enables the use of digital components in the loop, i.e., a microprocessor instead of servo amplifier, thus lowering the total system cost. A typical digital control loop is shown in Figure 1.

The optical shaft encoder offers several advantages over other encoder types. It is noncontacting, thus it does not burden the system with added inertia and friction, and is inherently more reliable. The encoding speed is high and it offers high noise immunity.
The HEDS-5000 series is a family of modular incremental shaft encoders. Two similar channels whose outputs are in quadrature (90 degrees phase difference) provide velocity and direction information. The output waveform is digital and is compatible with LSTTL logic.

Figure 1. Digital Motor Control Block Diagram

The modular encoder kit is assembled from three parts:
1. The Encoder Body, which contains the phase plate, detectors, and integrated circuits.
2. The Code Wheel, which is mounted on the system's shaft.
3. The Emitter End Plate, containing the light source (LED), which snaps onto the body to form a dust resistant unit.

The assembled encoder is approximately 28 mm in diameter and 18 mm high with a 0.6 metre flat cable providing the electrical connections.
A further physical and parametric description of the product is provided in the HEDS-5000 data sheet.

\section*{THEORY OF OPERATION}

A light beam interrupted by a rotating code wheel is the essence of an optical shaft encoder. To allow for higher resolution at a given diameter than that achievable by a simple direct beam interruption method, a mask or "Phase Plate" is placed in the light path above the photo detectors. Both the code wheel and the phase plate display a similar pattern of slits and bars, and when viewed together they form what is known as a Moiré pattern. The light from the LED can only reach the detectors when the code wheel slits are aligned with the slits on the phase plate, and since the code wheel is rotating, the detector receives alternating periods of light and dark.
As the resolution of the encoder is increased and the line spacing of the code wheel is decreased, satisfactory
operation becomes very sensitive to the collimation of the light transmitted through the code wheel and phase plate, as well as sensitive to the gap spacing between the code wheel and phase plate. To increase the reliability of operation, the HEDS-5000 employs an aspherical lens system and miniature point source emitter which highly collimates the light beam. This highly collimated light allows the code wheel and phase plate separation to be much greater than that achieved in existing discrete component encoders, and also reduces the encoder's sensitivity to shaft axial end play.
Each channel contains two photodetectors with corresponding phase plate patterns spaced in a manner that causes one detector to be dark while the other is fully illuminated. The currents produced by the photodetectors are amplified by a differential amplifier (push-pull). The differential configuration reduces the sensitivity to LED light level changes and thus eliminates the need for any electrical gain adjustments. Digitizing for each channel is accomplished by a comparator which switches when the analog values are equal. The output of the comparator provides LSTTL compatible logic signals.
A block diagram of the HEDS-5000 is presented in Figure 2.

\section*{DESIGN CONSIDERATIONS \& ERROR ANALYSIS}

As in most measurement systems, the encoding process is not error free. It is important to know the causes of errors and understand their effects in order to select a suitable encoder and to define the mechanical requirements of the motor shaft on which the encoder will be mounted.

Figure 2. HEDS-5000 Block Diagram

\section*{DEFINITIONS}

Angular Degree:
The mechanical unit of shaft rotation, i.e., one shaft rotation \(=360\) degrees.
Code Wheel Count (\(\mathbf{N}\)):
The number of bar and space pairs around the code wheel, i.e., \(N=500\) in the HEDS-5000 - AXX.

Cycle:
The portion of the output waveform which corresponds to the occurence of a full light and dark period on one detector pair, i.e., there are N cycles in one complete shaft rotation.

Electrical Degree:
The units of the output waveform: 1 cycle \(=360\) Electrical Degrees \(=360 / \mathrm{N}\) angular degrees.

Pulse and State Widths:
Portions of the digital output of the 2-channel encoder. See Figure 3 for definitions.

Figure 3. Output Waveform

\section*{Phase:}

The angle in electrical degrees between the center of the channel A pulse and the center of the corresponding channel \(B\) pulse.

\section*{Resolution:}

The smallest angular motion that can be resolved. Resolution can be expressed as either the number of output transitions in one complete revolution or as the angle of shaft rotation between two consecutive transitions.

\section*{ENCODING CHARACTERISTICS}

Since there are 500 cycles per each shaft revolution, there are 500 values for each encoding parameter. In the HEDS5000 data sheet encoding errors are defined in the following manner:
- Typical Error: The average value (over a large batch of encoders) of the maximum error observed in a complete shaft revolution of each encoder.
- Maximum Error: The largest error that should be observed in any batch.

\section*{STATISTICAL NATURE OF ERRORS}

In a modular encoder, the encoding characteristics of a particular unit cannot be measured directly until the unit is assembled on a system. It would be useful to be able to predict its performance, but, while the errors of any particular unit cannot be predicted with certainty, a statistical treatment will usually result in a good approximation to the behavior of a large batch. The distribution of component characteristics is usually Gaussian and can be described by its mean (\(\overline{\mathbf{E}}\)) and standard deviation (\(\boldsymbol{\sigma}\)). In the case of encoder errors, \(\overline{\mathrm{E}}\) is defined to be the average of the absolute value of the errors.
When two (or more) factors combine to form a third parameter, their errors can combine vectorially or algebraically. In a vectorial combination, the resultant error could be smaller or larger than the original errors (and sometimes zero). For example, the eccentricity resulting from the random assembly of a code wheel (which has an eccentricity error) and an eccentric shaft is a vectorial combination. An algebraic combination occurs when the two errors always make the resultant error larger as is the case when the pulse width error combines with the phase error to produce state width error.

When estimating the distribution of an error derived from such combinations, the following formulas are used:
1. The new mean is either:
a. The sum of means in an algebraic combination
\[
\bar{E}_{\mathrm{T}}=\overline{\mathrm{E}}_{1}+\overline{\mathrm{E}}_{2}+\ldots \overline{\mathrm{E}}_{\mathrm{n}}
\]
b. The root of the sum of squares in a vectorial combination
\[
\bar{E}_{T}=\sqrt{\left(\bar{E}_{1}\right)^{2}+\left(\bar{E}_{2}\right)^{2}+\ldots\left(\bar{E}_{n}\right)^{2}}
\]
2. The new standard deviation is derived from the equation:
\[
\sigma_{\mathrm{T}}=\sqrt{{\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}+\ldots \sigma_{\mathrm{n}}{ }^{2}}^{\text {. }} \text {. }}
\]

\section*{DESIGN CONSIDERATIONS}

The performance of a modular shaft encoder is affected by assembly and shaft tolerances to a much greater degree than in a pre-assembled encoder with self-contained shaft and bearings. Those factors plus shaft velocity, temperature, and others combine with the intrinsic encoder characteristics to yield the resultant accuracy. A quantitative discussion of the relationship between environmental conditions and accuracy can only be made for a specific encoder type, (i.e., the HEDS-5000), although the general concepts can be extended to others.

Table 1 summarizes the relationships between the encoding parameters and the environmental factors that affect them.

The check mark indicates that the factor listed affects the corresponding encoding characteristics. As can be seen, cycle uniformity is virtually unaffected by factors outside the encoder, while the state width which is the sum of all the encoder transitions will be affected by most of these factors.

\section*{Eccentricity and Radial Play}

Eccentricity primarily affects position, phase and state width errors. A quantitative discussion of this factor is presented in the specific Encoder Errors section.
The shaft eccentricity which affects the encoder performance is actually a combination of four separate and independent factors:
- Eccentricity: the cyclic off-axis motion of the shaft.
- Radial Play: the random motion due to bearing tolerance and uneven loading.
- Shaft Undersize Tolerance: the cyclic off-axis motion of the code wheel caused by off center mounting of the hub on an undersize shaft.
- Code Wheel/Hub Assembly: the cyclic off-axis motion of the code wheel caused by off center mounting of the code wheel with respect to the hub bore.

\section*{Shaft Axial Play}

The shaft axial play affects mainly the phase (or quadrature) between the two encoder channels, and to a much lesser degree the pulse width. Aside from phase jitter considerations, the axial play should be restricted to less than 0.5 mm due to the physical constraints of the encoder. The recommended assembly procedure protects the code wheel and phase plate by holding the shaft at its closest point to the phase plate when setting the code wheel. The axial motion is therefore always in the direction of increasing separation, which increases reliability without deteriorating the pulse width performance. When the maximum allowable play is exceeded, the top of the code wheel hub can hit the Emitter End Plate, which is not necessarily catastrophic but certainly undesirable.

\section*{Velocity and Temperature}

Both position and cycle accuracy are measured between similar transitions of the output waveform and are virtually unaffected by the velocity of rotation. Since counting cycles (by toggling a TTL counter or a similar device) require only a very small time between the logic transitions, the count frequency can typically reach 200 kHz before losing count.
On the other hand, the pulse width is measured between two different transitions and the accuracy will be limited by any difference in the propagation delay of the transitions. This time difference becomes a greater portion of the Pulse Width as the frequency is increased. Propagation delays are also slightly affected by temperature variations.

\section*{Assembly}

The only adjustment necessary during the assembly of the HEDS-5000 is optimization of the phase between channels. The phase adjustment aligns the axial center of the phase plate pattern to match that of the code wheel. The average phase should be adjusted to 90 degrees. The error in the adjustment process can be limited to about 10 degrees using an oscilloscope presentation of the output. Tighter adjustment tolerances can be achieved by using an averaging phase meter as described in the assembly procedure section.

Table 1
\begin{tabular}{l|c|c|c|c|c}
\hline \multirow{2}{*}{\begin{tabular}{c}
Encoding \\
Characteristic
\end{tabular}} & \multicolumn{5}{|c}{ Factors Outside Encoder Manufacturer's Control } \\
\cline { 2 - 6 } & Eccentricity & Axial Play & Velocity & Temperature & Assembly \\
\hline Position Accuracy & X & & & & \\
\hline Cycle Uniformity & X & & & & \\
\hline Pulse Width & & & X & X & \\
\hline Phase & X & X & & X \\
\hline State Width & X & X & X & X & \\
\hline
\end{tabular}

\section*{ENCODER ERRORS}

Each encoder characteristic contains errors resulting from the relationship between the internal encoder components and the environment. As previously shown, more than one environmental factor affects any encoding error. The discussion below will define these encoder errors, discuss the primary factors contributing to the errors and provide sample calculations as necessary.

\section*{Position Error}

Position error expressed in minutes of arc or electrical degrees is defined as the difference between the actual shaft position and the position as determined by the output of the shaft encoder. Figure 4 illustrates position error for a code wheel with 8 cycles per revolution.

Position error is primarily caused by off-axis rotation of the code wheel with respect to the phase plate and detectors. The effect of eccentricity is inversely proportioned to the code wheel radius. The position error, \(\Delta \theta\), resulting from eccentricity is calculated as follows:
\[
\Delta \theta=\frac{\mathrm{kE}}{\mathrm{R}} \quad \text { (degrees) }
\]
where
\[
\begin{aligned}
\mathrm{k} & =\frac{360}{2 \pi} \\
E & =\text { eccentricity (mm TIR) } \\
R & =\text { code wheel radius } \\
& =10.9 \mathrm{~mm} \text { for the HEDS }-5000
\end{aligned}
\]

A sensitivity factor \(Q_{p}\) can be defined in order to estimate the contribution of eccentricity to position error.

\[
Q_{p}=\frac{k}{R}=5.3 \begin{aligned}
& \text { angular degrees } / \mathrm{mm} \text { of } \\
& \text { eccentricity for the HEDS }-5000
\end{aligned}
\]

Code wheel and phase plate artwork contribute to position error; however, the magnitude is small and can be neglected.

Position error is a concern for high resolution positioning systems. The following example estimates position error of the HEDS-5000 based upon eccentric motion of the code wheel pattern. Such eccentric movement affecting the encoder is actually a combination of the four separate and independent factors discussed earlier.

\section*{To Calculate Position Error}
1. List the contributing factors. Table 2 presents data which is consistent with the recommended operating conditions as specified in the HEDS-5000 Data Sheet. Code wheel/hub assembly data presented is impirically determined for the HEDS-5000.

Table 2
\begin{tabular}{l|c|c}
\hline \multicolumn{1}{c|}{\begin{tabular}{c}
Contributing \\
Factor
\end{tabular}} & \begin{tabular}{c}
Mean \\
\(\overline{\mathbf{E}}\)
\end{tabular} & \begin{tabular}{c}
Std Dev. \\
\(\sigma\)
\end{tabular} \\
\hline Code Wheel/ & & \\
Hub Assembly & 0.040 mm & 0.015 mm \\
Shaft Eccentricity & 0.020 mm & 0.005 mm \\
Shaft Undersize & 0.015 mm & 0.010 mm \\
\hline
\end{tabular}

Note that shaft radial play is not included due to the random nature of the contribution. The three factors listed cause predictable cyclic error that are combined vectorially. Radial play contributes to phase and state width error as explained in the following sections.
2. Combine the errors as outlined in the section on the statistical nature of errors to calculate the vector sum of the mean:
\[
\begin{aligned}
\bar{E}_{\mathrm{T}} & =\sqrt{\left(\bar{E}_{1}\right)^{2}+\left(\bar{E}_{2}\right)^{2}+\left(\bar{E}_{3}\right)^{2}} \\
& =4.7 \times 10^{-2} \mathrm{~mm}
\end{aligned}
\]

Compute the standard deviation
\[
\begin{aligned}
\sigma_{\mathrm{T}} & =\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}} \\
& =1.9 \times 10^{-2} \mathrm{~mm}
\end{aligned}
\]
3. To estimate the encoder accuracy it is necessary to multiply by the total eccentricity factor \(Q_{p}\) which denotes the contribution to position error. Recall that
\[
Q_{p}=5.3 \text { angular degrees } / \mathrm{mm} \text { eccentricity }
\]

Figure 4. Shaft Encoder Transitions vs. Angle of Rotation
for the HEDS-5000. The average position error, \(\Delta \theta\), is:
\[
\begin{aligned}
\Delta \bar{\theta} & =\overline{\mathrm{E}}_{\mathrm{T}} \mathrm{Q}_{\mathrm{r}} \\
& =\left(4.7 \times 10^{-2} \mathrm{~mm}\right)(5.3 \text { angular degrees } / \mathrm{mm}) \\
& =0.25 \text { angular degrees } \\
& =15 \text { minutes of arc }
\end{aligned}
\]

The standard deviation \(\sigma(\Delta \theta)\) is:
\[
\begin{aligned}
\sigma(\Delta \theta) & =\sigma_{\mathrm{T}} \mathrm{Q}_{\mathbf{p}} \\
& =\left(1.9 \times 10^{-2} \mathrm{~mm}\right)(5.3 \text { angular degrees } / \mathrm{mm}) \\
& =0.1 \text { angular degrees } \\
& =6 \text { minutes of arc }
\end{aligned}
\]

The maximum position error \(\Delta \theta_{\max }\) is approximately:
\[
\begin{aligned}
\Delta \theta_{\text {max }} & =\Delta \bar{\theta}+2[\sigma(\Delta \theta)] \\
& =0.25+2(0.1) \text { angular degrees } \\
& =27 \text { minutes of arc } \\
& =225 \text { electrical degrees }
\end{aligned}
\]
(\(\overline{\mathrm{X}}+2 \sigma\) will contain 98 percent of a normal distribution)
The relationship between shaft eccentricity and position accuracy is illustrated in Figure 5. The residual position error (where shaft eccentricity \(=0\) in Figure 5) denotes the code wheel/hub assembly contribution to position error. The remainder of the graph includes contribution from both shaft eccentricity and shaft undersize. \(\mathrm{E}_{\mathrm{T}}+2 \sigma\) from our example yields 0.085 mm for maximum eccentricity which corresponds to about 27 minutes of arc on the typical curve. The 99 percentile curve is an indication of the manufacturing process distribution giving rise to the residual position error.

\section*{Cycle Error}

All cycles will contain 360 electrical degrees; however, the number of mechanical degrees represented by each cycle may vary from the ideal of \(360 / \mathrm{N}\). Cycle error, \(\Delta \mathrm{C}\), is usually expressed in electrical degrees, hence the equivalent angular error:
\[
\text { Angular Cycle Error }=\frac{\Delta \mathrm{C}}{500}
\]

The quality of the code wheel and phase plate artwork is the main factor affecting the cycle error. Data on this parameter is presented in the data sheet. Eccentricity has a minor affect on cycle error and need not be calculated as a significant contribution.

\section*{Pulse Width Error}

Pulse width error is the maximum deviation of the pulse from the nominal value of 180 electrical degrees.
Although the use of a differential amplification greatly reduces the sensitivity to component and circuit variables, some pulse error will result from a non-uniform light pattern impinging on the differential detectors or an imbalance of the differential elements. An additional error can be observed if, over the temperature range, the encoder is run at high velocities. This is caused by the unequal propagation delays of the falling and rising edges of the digital pulse trains. As with most I.C. parameters, this propagation delay differential is temperature dependent. At 25 degrees centigrade the propagation delays are nearly equal but with increasing or decreasing temperature the delays become unequal. The following equation describes both the frequency and temperature dependence of the pulse width.
\[
\Delta \mathbf{P}=\propto * \Delta T^{*} \mathrm{f}
\]
where:
\[
\begin{aligned}
& \Delta \mathrm{P}(\text { Electrical degrees })= \text { Change in pulse } \\
& \text { width due to } \\
& \text { operating conditions }
\end{aligned}
\]
\(\Delta T(\) Degrees Celcius \()=T_{\text {operating }}-25\)
\(f(H z)=\) Output Frequency \(=\left[\frac{\text { Velocity (RPM) }}{60}\right] 500\)
\(\propto=\) Temperature coefficient (from data sheet)

The typical value for \(\propto\) is
\(1.0 \times 10^{-5}\) electrical degrees \(/{ }^{\circ} \mathrm{C} * \mathrm{~Hz}\)
but this parameter can reach
a maximum of \(2.5 \times 10^{-5}\) electrical degrees \(/{ }^{\circ} \mathrm{C} * \mathrm{~Hz}\)

Figure 5. Position Error vs. Shaft Eccentricity

Figure 6. Pulse Width Change (\(\Delta P\)) vs. Temperature

Figure 6 illustrates the effect of temperature and velocity on the pulse width.

\section*{Phase Error}

Phase error is the maximum deviation from the nominal value of phase (90 electrical degrees) between channel \(A\) and channel B.

Since phase does not extend between two output transitions, strictly speaking it is not an encoding parameter. But since phase error is a direct contributor to State Width Error, it is important to understand the mechanism by which phase error arises.
The average phase of most encoder systems is adjusted during the assembly procedure to be as close as possible to the nominal value of 90 degrees. This helps to average out cyclic variations in phase during a shaft rotation. Therefore the design concern is primarily with respect to the amount that the phase varies as the shaft moves randomly during its rotation.
A shift of the phase between the two encoder channels occurs due to the axial, radial and eccentric movement of the code wheel pattern with respect to the phase plate.

\section*{Phase Error Due To Radial Play}

The radial play and eccentricity will change the phase in an amount inversely proportional to the square of the code wheel radius.
\[
\Delta \phi_{\mathrm{R}}=\frac{\mathrm{K}_{2} N E}{\mathrm{R}^{2}}
\]

A phase sensitivity factor can be defined in order to estimate the contribution of radial play and eccentricity to phase error.
\[
Q_{e}=\frac{K_{2} N}{R^{2}}
\]
\(=550\) electrical degrees \(/ \mathrm{mm}\) (typical for the HEDS-5000)

The contribution that phase error has on state width error is calculated in the state width error design example and is divided between cyclic eccentricity and random shaft radial play.

\section*{Phase Error Due to Axial Movement}

Axial movement will also result in a change of phase if the light beams illuminating the two channels are not perfectly parallel. The equation governing phase change due to axial movement is:
\[
\Delta \phi_{\mathrm{A}}=\Delta \mathrm{G} * \mathrm{Q}_{\mathrm{ma}}
\]
where:
\[
\begin{aligned}
\Delta \mathrm{G} & =\text { change in gap due to axial play (mm) } \\
Q_{m a} & =\text { misalignment factor (electrical degree } / \mathrm{mm} \text {) }
\end{aligned}
\]

A typical value for \(Q_{m a}\) as observed in a sample of a HEDS5000 production run is:
\[
Q_{\mathrm{ma}}=20 \text { degree } / \mathrm{mm}
\]

\section*{Total Phase Error}

Phase error contributions due to radial play and axial movement are summed vectorially to give total Phase Error:
\[
\Delta \phi_{\mathrm{T}}=\sqrt{\Delta \phi_{\mathrm{R}}^{2}+\Delta \phi_{\mathrm{A}}^{2}}
\]

\section*{State Width Error}

State Width Error is the maximum deviation of the state width from its nominal value of 90 electrical degrees.
Since the State Width is the combination of all the encoder's transitions, all of the factors which contribute to pulse width and phase error will also contribute to state width error. These error contributions can best be thought of as falling into three categories. The first includes eccentricity contributions resulting in cyclic errors as outlined in the preceding position error section. The second category is factors creating random errors. The third category includes those factors that are due to the intrinsic design of the encoder such as lens quality, I.C. switching characteristics, and I.C. hysteresis. For the HEDS-5000, this collective error is 12 electrical degrees on the average.
A quantitative discussion of the effect that these factors have on state width error is presented in the following design examples.

\section*{DESIGN EXAMPLES}

In the following examples the state width error of a hypothetical production batch will be estimated. State width is crucial in providing direction information. Thus a minimum state width must be maintained over the whole range of operating conditions. The value of that minimum can range from 1 to 20 electrical degrees or more, and is dependent upon the type of counting circuitry used where directional information must be obtained. Two approaches to the analysis will be discussed. First, state width error at room
temperature will be estimated without considering velocity extremes. The second example will answer the question, "What should the test limit at room temperature be to ensure a minimum state width at the extremes of the temperature and velocity ranges?"
Not all of the numbers required in the procedure are available in the data sheet. HEDS-5000 data sheet values are used where possible, and the other encoder values were empirically derived from testing of production assemblies. The numbers relating to shaft variables must be estimated or measured by the designer. The values used below are only for a particular set of motor parameters within the recommended operating conditions of the HEDS-5000. The examples also assume that a phase error adjustment has been made during assembly so that average phase error over 360 mechanical degrees is nearly zero.
Any error in phase results in a corresponding error in state width of equal magnitude. Therefore the sensitivity factors established for phase are used in calculating state width error.

\section*{Room Temperature Analysis Example}

ECCENTRICITY, \(\Delta \mathrm{S}_{1}\)
Total code wheel pattern eccentricity was estimated in the position error example.
\[
\begin{aligned}
& \text { Mean eccentricity }=4.7 \times 10^{-2} \mathrm{~mm} \\
& \text { Standard deviation of eccentricity }=1.9 \times 10^{-2} \mathrm{~mm}
\end{aligned}
\]

The effect of eccentricity on the state width is obtained by multiplying the total expected eccentricity by the phase sensitivity factor \(Q_{e}=550\) electrical degrees \(/ \mathrm{mm}\).

Since eccentricity is measured as a peak-to-peak value (TIR) and average phase error has been preadjusted to be nearly zero, then the maximum expected movement of the code wheel with respect to the phase plate should be less than or equal to \(1 / 2\) the TIR values specified for eccentricity. Hence the mean and standard deviation values for eccentricity used in calculating \(\Delta S_{1}\) are divided by two.

The eccentricity contribution \(\Delta S_{1}\), is:
\[
\begin{aligned}
\overline{\Delta S}_{1} & =\left(\frac{4.7 \times 10^{-2} \mathrm{~mm}}{2}\right)(550 \text { electrical degrees } / \mathrm{mm}) \\
& =12.9 \text { electrical degrees } \\
\sigma(\Delta \mathrm{S}) & =\frac{\left(1.9 \times 10^{-2} \mathrm{~mm}\right)}{2}(550 \text { electrical degrees } / \mathrm{mm}) \\
& =5.2 \text { electrical degrees }
\end{aligned}
\]

\section*{RANDOM PHASE, \(\Delta \mathrm{S}_{2}\)}

The contributing factors to random phase should be estimated in conjunction with a \(Q\) factor relating to their contribution to state width error. Table 3 summarizes these factors. The shaft axial play and radial play in this example were derived from a typical 31.75 mm (1-1/4 in.) motor with ball bearings. Again, the phase sensitivity factors, \(Q_{e}\) and \(Q_{\text {ma }}\) which were presented earlier, are used to establish error contribution. The number presented for assembly
errors were derived from a typical production run using a phase meter (see "Test Procedures" section) as an adjustment aid.

Table 3
\begin{tabular}{l|c|c|c|c}
\hline Factor & Units & \begin{tabular}{c}
Mean \\
\(\overline{\mathbf{E}}\)
\end{tabular} & \begin{tabular}{c}
Std. Dev. \\
\(\sigma\)
\end{tabular} & \begin{tabular}{c}
Phase \\
Sensitivity \\
Factor, Q
\end{tabular} \\
\hline \begin{tabular}{l}
Shaft Axial \\
Play
\end{tabular} & mm & 0.1 & 0.06 & \begin{tabular}{c}
Qma \\
20 elect. deg./ \\
mm
\end{tabular} \\
\hline \begin{tabular}{l}
Shaft Radial \\
Play
\end{tabular} & mm & 0.006 & 0.003 & \begin{tabular}{c}
\(Q_{e}\) \\
550 elect. deg./ \\
mm
\end{tabular} \\
\hline \begin{tabular}{l}
Assembly \\
Adjustment
\end{tabular} & Elect. Deg. & 3 & 3 & none \\
\hline
\end{tabular}

Multiply the mean and standard deviation of each factor by the appropriate \(Q\). Then calculate the total mean contribution by vectorially combining the weighted means. The total standard deviation is obtained by vectorially combining the standard deviation for each factor.
\[
\begin{aligned}
\overline{\Delta S}_{2} & =\sqrt{[(0.1) 20]^{2}+[(0.006) 550]^{2}+[3]^{2}} \\
& =4.9 \text { electrical degrees } \\
\sigma\left(\Delta \mathrm{S}_{2}\right) & =\sqrt{[(0.06)(20)]^{2}+[(0.003)(550)]^{2}+[3]^{2}} \\
& =3.6 \text { electrical degrees }
\end{aligned}
\]

\section*{INTERNAL ERRORS, \(\Delta S_{3}\)}

The combination of errors intrinsic to the HEDS-5000 and not directly affected by shaft and assembly tolerances are a result of lens quality, IC switching characteristics and miscellaneous tolerances. These affects summed are approximately the following:
\[
\begin{aligned}
\overline{\Delta \mathrm{S}}_{3} & =12 \text { electrical degrees } \\
\sigma\left(\Delta \mathrm{S}_{3}\right) & =6 \text { electrical degrees }
\end{aligned}
\]

This data was obtained from sample production lots.

\section*{Error Distribution}

The state width error distribution is computed by algebraically summing* the means of Eccentricity, Random Phase, and Internal Errors. The standard deviations are combined vectorially.
\[
\begin{aligned}
& \text { Mean State } \Delta \overline{\mathrm{S}}_{\mathrm{T}}=12.9+4.9+12 \\
& \begin{array}{l}
\text { Width Error } \\
=30 \text { electrical degrees } \\
\text { Standard Deviation } \sigma\left(\Delta \mathrm{S}_{\mathrm{T}}\right)
\end{array}=\sqrt{(5.2)^{2}+(3.6)^{2}+(6)^{2}} \\
& \begin{aligned}
\text { of State Width Error } & =8.7 \text { Electrical degrees }
\end{aligned}
\end{aligned}
\]
*The error contributions are algebraically summed in order to obtain a worst case performance.

The example above predicts the mean state width error for an encoder batch would be 30 electrical degrees when parameters are kept within the recommended operating conditions as specified in the HEDS-5000 data sheet. The state width error for \(95 \%(1.65 \sigma)\) of the batch is computed as follows:
\[
\begin{aligned}
\Delta \mathrm{S}_{\mathrm{T}} & =\Delta \overline{\mathrm{S}}_{\mathrm{T}}+1.65\left[\sigma \Delta\left(\mathrm{~S}_{\mathrm{T}}\right)\right] \\
& =30+(1.65)(8.7) \\
& =44 \text { electrical degrees }
\end{aligned}
\]
and is less than 45 electrical degrees. Note: these figures agree with the state width error as specified in the HEDS5000 data sheet.
Encoders and motors with characteristics resembling the example have been assembled and tested. The resultant state width error histogram is illustrated in Figure 7.

Figure 7. State Width Error Distribution Sample Manufacturing Batch

\section*{Designing for Temperature Range}

To ensure correct decoding over the full temperature range, the designer might choose one of two approaches:
a. All systems shall be screened over temperature.
b. A guard-banded test limit at room temperature will be chosen to ensure operation over the whole temperature range.
The first approach offers the benefit of higher yields especially when the constraints are tight, but it is cumbersome and often impractical to implement. In the second, the worst case temperature contribution to error is computed
and thus the guardband for the room temperature test limit is established.
Below are the steps needed to calculate a room temperature state width error limit that corresponds to an elevated temperature performance specification.
a. Determine the operational requirements - the specifications desired in this example will be to require a minimum state width time of \(\mathrm{T}_{\mathrm{s}}=2 \mu \mathrm{sec}\) at a temperature up to 60 degrees centigrade with a maximum velocity of rotation of 3000 RPM.
b. Translate the environmental conditions into maximum allowable error - to find the frequency in Hz .
\[
\begin{aligned}
f & =3000 \mathrm{RPM}\left[\frac{500\left(\frac{\text { cycles }}{\text { revolution }}\right)}{60\left(\frac{\text { seconds }}{\text { minute }}\right)}\right] \\
& =25 \mathrm{kHz}
\end{aligned}
\]

The minimum state width is then
\[
\begin{aligned}
S_{\min } & =T_{\mathrm{s}}{ }^{*} \mathrm{f}^{*} 360 \\
& =(2 \mu \mathrm{sec})(25 \mathrm{KHz})\left(360 \frac{\text { electrical degrees }}{\text { cycle }}\right) \\
& =18 \text { electrical degrees }
\end{aligned}
\]
or the maximum error is
\[
\Delta \mathrm{S}_{\max }=90-\mathrm{S}_{\min }=72 \text { electrical degrees }
\]
c. Calculate the temperature dependent error - the formula is:
\[
\Delta S=\propto * \Delta T * f
\]

When \(\alpha\) is at the worst case value (from data sheet)
\[
\begin{aligned}
\propto & \left.=2.5 \times 10^{-5} \text { (electrical degree } /{ }^{\circ} \mathrm{C} * \mathrm{~Hz}\right) \\
\Delta \mathrm{S} & =\left(2.5 \times 10^{-5}\right)(70-25)(25) \\
& =28 \text { electrical degrees }
\end{aligned}
\]
d. Calculate the room temperature test limit:
\[
\begin{aligned}
\Delta S_{\max } & =72 \text { electrical degrees }-28 \text { electrical degrees } \\
& =44 \text { electrical degrees }
\end{aligned}
\]

In the previous example, it has been shown that \(95 \%\) of the units are expected to pass this test limit. If we were to use the first approach, i.e. test all units at 70 degrees centigrade, over \(99 \%\) of the units are expected to pass the 72 degrees centigrade limit. The reason for the discrepancy is the conservatism of a worst case design.

\section*{OPERATING CONSIDERATIONS}

\section*{Assembly Mounting Surface}

The encoder may be mounted directly on a motor which has a two-sided shaft extension or on a remote bearing support at the end of a shaft.
In either case, the mounting surface should be flat and smooth. No special operations are required for the surface finish except removal of burrs that might interfere with the phase adjustment operation which entails sliding the encoder over the mounting surface. The encoder is attached by means of three screws. The mounting surface should therefore be drilled as shown in Figure 8 below and tapped with metric or English threads as required.

MILLIMETRE .X \(\pm .5\). \(\mathrm{XX} \pm .10\)
(INCHES) (.XX \(\pm .02 \quad . X X X \pm .005)\)

Figure 8. Mounting Requirements

\section*{Adhesives}

Two different kinds of adhesives are used in the assembly of the encoder.
R.T.V. (silicone rubber) is used on the mounting surface to fill the following functions:
1. Provide a lubricating medium to ease the sliding of the encoder while adjusting phase.
2. Provide a flexible adhesive to accommodate differentials in expansion coefficients between the encoder and its mounting surface.

Dow Corning 3145 (or GE 162) was chosen because in addition to meeting the criteria above, they are noncorrosive and do not emit corrosive vapors.
The Hysol epoxy used in mounting the code wheel onto the shaft was selected to provide a rigid bond when set, and it presents a reasonable compromise between initial viscosity necessary for holding the code wheel in position before setting, setting time, and useful pot life. R.T.V. can be used with success on shaft sizes greater than \(1 / 4 \mathrm{inch}\). However, the use of R.T.V. on shaft sizes smaller than \(1 / 4\) inch is not recommended since the smaller contact area results in a smaller initial holding force and a weaker bond.

\section*{ASSEMBLY PROCEDURE}

CAUTION: The shaft encoder circuitry may be damaged by an electrostatic discharge. The cable extremities are the susceptible areas. Normal precautions such as ground straps for assembly personnel should eliminate any damage due to electrostatic discharge.

The HEDS-5000 data sheet describes in detail a typical assembly procedure. While the exact procedure in any manufacturing environment might differ due to the variety of applications, it is worthwhile to understand the underlying rationale in the assembly before establishing a specific procedure. There are three steps which may affect the encoder's performance: centering, gap setting and phase adjustment.

Centering the encoder around the shaft using the cone tipped tool (HEDS-891X) provides easier screw insertion and a good starting point for the final phase adjustment.
Although the HEDS-5000 is very tolerant of variations in gap between the code wheel and the fixed phase plate, only a correct initial gap setting will assure full benefits from this feature. It is essential that the code wheel does not touch the phase plate through its rotation, axial movement and vibration. The gap setting tool was designed to eliminate the uncertainties in phase plate height by actually using the plate as a reference for the assembly of each unit. This operation is simple and fast. Assembly of the code wheel at a predetermined height is not recommended since the encoder body worst case tolerances, coupled with the shaft tolerances, could cause the code wheel and phase plate to come into contact. (See the next section for visual inspection procedure of the code wheel/phase plate gap.) Applying R.T.V. on the emitter end plate is recommended as a dust shield but is not required in dust-free environments.

The final step in the assembly is the phase adjustment which can also serve as the final inspection. As mentioned before, in most applications this is a necessary step to provide the required encoding characteristics. Since it is a contributor to state width error, the average phase should be adjusted to a value as close as possible 90 electrical degrees. A plus or minus 10 degree adjustment can be easily achieved using a phase meter as described in the "Test Procedures" section. Adjustment according to an oscilloscope trace of the output is less accurate and demands more training, but the above requirements can be achieved with the proper care and attention.

Where phasing between channels is not of concern (tachometer applications) or if a large initial deviation from proper phasing can be tolerated and corrected, phase adjustment may be modified or omitted.

\section*{TEST PROCEDURES}

All piece parts of a modular encoder are tested at the factory prior to shipment. Testing the piece parts at the customer's location is difficult since it requires specialized test fixtures. The encoder can best be tested after it is assembled, although some simple tests can be incorporated if an incoming inspection is required.

\section*{INCOMING INSPECTION}

\section*{For Encoder Piece Parts:}

Code Wheel: Visually check for shipping damage, i.e., bending or dents which exceed the data sheet limits (code wheel part drawing).

Emitter End Plate: The LEDs can be turned on by passing current through the emitter end plate leads. See Figure 9. The current should be limited to 10 mA and the supply voltage compliance should not exceed 10 V for the protection of the LEDs.

Encoder Body: When the 5V supply and ground are connected through the 10 pin connector, the outputs can be observed on a scope. Moving the encoder body in front of an illumination source (e.g., light bulb) will cause the outputs to toggle.

Figure 9. Emitter End Plate Test Configuration

\section*{For Motors:}

Shaft: For shaft tolerance definitions and testing see Appendix C.

Assembly: The gap at which the code wheel was set cannot be measured directly but with some practice a visual estimate can be made by observing, with proper magnification, the parallax between the code wheel slits and the phase plate pattern.

Phase Adjustment/Final Test: The final step in assembly is the phase adjustment. It can be achieved using a scope or an averaging phase meter. The set up and waveform for the scope test are presented in Figure 10. When setting the phase, it is advisable to turn the shaft in both directions and adjust for minimum phase error.

OSCILLOSCOPE WAVEFORMS

Figure 10. Scope Test Set-Up

Figure 11 is a schematic for an averaging phase meter which makes the task of adjusting the phase between channels easier and more accurate.
Operating Instructions:
1. Observe the LEDs on the phase meter to verify that the shaft rotation and LED director indication correspond.
2. Recheck shaft direction or adjust the phase until correct.
3. Adjust the encoder (see assembly instructions in data sheet) for zero reading on the phase meter.
Note: Occasionally due to statistical variations in the pieceparts, a high pulse width or phase error may be observed and can be improved by replacing the emitter end plate with another. The original end plate can subsequently be used on another unit, usually without causing the problematic symptoms.

\section*{TROUBLE SHOOTING AND REPAIR}

The HEDS-5000 does not require any adjustments after it is assembled, thus minimizing the need for field service. The emitter end plate can be removed, but care must be exercised to prevent bending the wire leads on the encoder body. Pry slots are provided on the end plate circumference for easy opening. When the end plate is removed, a light source can be directed towards the encoder body and the shaft rotated to observe the change of state in the output channels. If the encoder body checks OK, and the wire leads are inspected, a new end plate can be snapped into place and the encoder retested. The removed end plate can then be inspected as described in incoming inspection procedures.

NOTE: THE RED L.E.D. IS LIT WHEN CHANNEL A (PIN 1) IS THE LEADING WAVEFORM.

Figure 11. Phase Meter Circuit

\section*{OPERATING ENVIRONMENT}

Certain operating environments could have an adverse affect on the materials used in the manufacture of the HEDS-5000. To allow the user to evaluate these situations, the following information on the generic material constituents of the encoder is supplied.
\begin{tabular}{l|l}
\hline Piece Part & Material \\
\hline Encoder Body \& End Plate & Glass Filled Nylon \\
Emitter \& Detector Lenses & Polycarbonate \\
Cable Jacket & Polyvinylchloride \\
Code Wheel & Nickel Alloy \\
\hline
\end{tabular}

\section*{INTERFACE}

For the encoder to serve as a useful function in a system, it must be interfaced correctly both mechanically and electrically.

\section*{HARDWARE}

The flat ribbon cable supplied with the encoder is a cost effective cable for most applications. An unshielded cable can sustain relatively high levels of electromagnetic interference without affecting the encoder's performance. On
the other hand, this cable is constructed of solid copper wire which is not designed for repeated flexing or relative motion between the encoder body and connector. Figure 12 illustrates the location of stress concentration during flexture. To avoid stress concentrations during relative movement or in a high vibration environment, it is recommended that the cable be tied down as shown in Figure 13. The remainder of the cable should be mounted to minimize repeated flexture in any specific area. Consult the factory for further information involving relative movement of the encoder.

Figure 12.

Table 4

Figure 13.

The standard HEDS-5000 is supplied with a 10-pin female insulation displacement type connector mounted on the ribbon cable. Table 4 lists a few of the available mating connectors which may be utilized to interconnect the encoder to external circuitry.

\section*{CIRCUITS}

Although some applications require the use of only one channel, i.e., tachometers or a unidirectional shaft rotation,
\begin{tabular}{l|l}
\hline Manufacturer & Part Number \\
\hline AMP & \(102154-1\) \\
Molex & \(102160-1\) \\
& \(10-56-2101\) \\
3M & \(10-55-2101\) \\
& \(3446-2002\) \\
Berg & \(3446-1002\) \\
Robinson-Nugent & \(65962-001\) \\
& IDH-10-S1 \\
& IDH-10-SR1 \\
\hline
\end{tabular}
the most common application will involve the integration (count) of the shaft position, and thus require the information from both channels to determine the direction of rotation. The basic circuit counts cycles, while a slightly more complex version which counts both transitions of a channel (\(2 x\)) is sometimes useful. In all cases it is recommended that the digital output of the encoder be buffered by an LSTTL Schmitt trigger (74LS14). The use of a Schmitt trigger gate increases the fan out capabilities while lowering the system's susceptibility to errors caused by slow transition times of the encoder's output.

The circuit depicted in Figure 14 provides an up or down pulse for every cycle. Due to the latched hysteresis configuration, the circuit avoids the multiple count problem which can occur in the event of a stationary shaft oscillating slightly about a transition.

BASIC DIRECTIONAL SENSING. FOR CLOCKWISE ROTATION, \(Q_{1}\) PULSATES; FOR ANTICLOCKWISE ROTATION, \(Q_{2}\) PULSATES.

Figure 14. Cycle Count (1X) Circuit

Figure 15. 2X Count Circuit

By counting each transition of an output channel, the resolution can be increased to enable the distinction between the high and low states of the channel. The edge detection circuit shown in Figure 15 provides a pulse for each transition of channel A. The Exclusive OR gate toggles at twice the channel frequency of each channel, but when observed coincident with the negative slope of the edge detector output, its state corresponds to the direction of rotation. These two outputs can be used to drive the clock and control inputs of an Up/Down counter such as the 74'_S168.

\section*{MICROPROCESSOR INTERFACE}

The approach used for interfacing to a microprocessor could vary depending on the design requirements. An interrupt driver routine is simple to implement and is suitable for
lower speeds. Using a programmed input routine can lead to a minimum hardware design and can accommodate higher rotational velocities. For very high velocities the encoder output can be buffered to a hardware counter before being input to the microprocessor.

\section*{Interrupt Driver Design}

Interrupt Routine:
Input channel A \& B into Accumulator.
Mask all but bits \(0 \& 1\).
IF Accumulator \(=1\) or 2 .
THEN
Increment count register.
ELSE
Decrement count register.

Utilization of the overflow flag enables the designer to increase the effective counter width to fill his maximum count requirement.
Programmed Input: The sampling of the decoder outputs and the decode algorithm are written as an integral part of the program flow thus eliminating the time overhead associated with interrupt routines. Since the sampling is now independent of the encoder transitions, the shaft velocity must be limited, to enable the processor to sample the encoder at least once per output logic state.
The maximum velocity can be computed as follows:
1. The minimum state width is required to be longer than the program cycle.

where:
\(T_{\mathrm{S}}=\) Nominal state width time at maximum frequency
\(T_{p}=\) Program Sampling Period
\(\Delta S_{\text {max }}=\) Maximum State Width error
2. Substituting Ts from above, the maximum frequency is:
\[
f_{\max }=\frac{1}{4 T_{S}}=\left(\frac{1-\frac{\Delta S_{\max }}{90}}{4 T_{p}}\right) \mathrm{Hz}
\]
\(\Delta S\) maximum is estimated using the methods outlined in the "Design Considerations" section. Since \(\Delta S\) is also a function of frequency, a first guess at the frequency should be assumed and a second iteration might be required (for very fast program cycles) to converge the result and the assumption.

The maximum allowed velocity is derived from \(f_{\text {max }}\) :
\(\omega_{\text {max }}=\left(2 \pi f_{\text {max }} / N\right) \mathrm{rad} / \mathrm{sec}\)
where:
\(N=\) Code Wheel count

Example: A motor which is required to run at speeds up to 600 R.P.M.: The estimated state width error is 45 electrical degrees. Compute the maximum sampling period.
\[
\begin{aligned}
& f=\left(\frac{600}{60}\right) \quad 500=5 \mathrm{KHz} \\
& T_{S}=\frac{1}{4 f} \\
& =0.05 \mathrm{msec} \\
& T_{p} \leqslant T_{S}\left(1-\frac{\Delta S_{\max }}{90}\right) \\
& \leqslant 0.05 \quad\left(1-\frac{45}{90}\right) \mathrm{msec} \\
& \leqslant 25 \mu \mathrm{sec}
\end{aligned}
\]

The maximum allowable time between input samples is 25 \(\mu \mathrm{sec}\). The total program cycle should not exceed that number if none of the encoder's counts are to be missed.

\section*{DECODE ROUTINE}

A programmed decode routine should have the previous state stored in memory. After the present state is input, a decision can be made on the direction of rotation (if any). This can be handled by accessing a look up table at a location determined by the two bit word representing the previous state, and whose content is the expected word for the next state in a clockwise rotation.

\section*{BUFFERED DESIGN}

The level of buffering will depend upon the ratio of the encoder's frequency and the microprocessor sampling frequency.

The single stage memory element (Flip-Flop) described in Figure 15 will increase the maximum allowable encoder frequency by a factor of approximately 2.5 and still enable the counting of 2 transitions per cycle.
To achieve higher shaft velocities, the encoder can be buffered by an up/down counter. The parallel counter word is accessed by the microprocessor.

Figure 17. 2X Up/Down Buffer

\section*{SHAFT POSITION COUNTER}

An optical incremental shaft encoder is a cost effective, reliable component for measuring shaft position. Since its output is a pulse for every increment of rotation, external circuitry is required to integrate the pulse train and indicate the shaft's position.

The circuitry presented in Figure 17 translates the encoder's output into the inputs required by an Up/Down counter. The count resolution is two times the code wheel count.

\section*{APPENDIX A \\ ENCODER SELECTION}
\begin{tabular}{lll}
\hline PARAMETER & DESCRIPTION & MAIN ADVANTAGES \\
\hline TYPE: & \begin{tabular}{l}
Provides a binary "word" for \\
each position. Each bit requires \\
a separate optical channel. \\
The resolution is equal to the \\
number of output bits.
\end{tabular} & \begin{tabular}{l}
Constantly retains the correct position \\
information for one revolution. \\
NBS affected by power shut-off.
\end{tabular} \\
INCREMENTAL & \begin{tabular}{l}
Provides a pulse for each \\
increment of shaft movement.
\end{tabular} & \begin{tabular}{l}
Lower cost than absolute due to the \\
limited number of channels. \\
Higher reliability.
\end{tabular} \\
& \begin{tabular}{l}
Usually consists of two optical \\
channels to enable the deter- \\
mination of the direction \\
of rotation.
\end{tabular} & \begin{tabular}{l}
Encoded position not limited to one \\
revolution.
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
\hline PARAMETER & DESCRIPTION & MAIN ADVANTAGES \\
\hline \begin{tabular}{l}
NO. OF \\
CHANNELS:
\end{tabular} & Only one pulse train. & \begin{tabular}{l}
All the information required for \\
unidirectional applications.
\end{tabular} \\
1 CHANNEL & Timing is proportional to speed. & \begin{tabular}{l}
Least expensive electronics.
\end{tabular} \\
2 CHANNEL & \begin{tabular}{l}
Two output waveforms in \\
quadrature.
\end{tabular} & \begin{tabular}{l}
Provides information on direction of \\
rotation. \\
Can be integrated to obtain position.
\end{tabular} \\
& \begin{tabular}{l}
As in two channel, plus an \\
output providing a single pulse \\
per revolution.
\end{tabular} & \begin{tabular}{l}
Provides an absolute indication of shaft \\
position once per revolution. \\
Can be used to reset position counters.
\end{tabular}
\end{tabular}

\section*{CONSTRUCTION:}

SELF-
CONTAINED

MODULAR

The encoder is supplied as a functional unit containing its own bearings and shaft.

The encoder is supplied in kit form and assembled by the user on the system's shaft.

Easy to use.
Less assembly and testing required. Less affected by shaft eccentricity and loading.

Lower cost.
Smaller size.
Less inertia and friction due to the elimination of the internal bearing. Does not require alignment of two shafts.
Does not add torsional resonance between encoder and motor due to long shaft.

\section*{ENCODING:}

DIRECT

MOIRÉ

A slotted wheel interrupts the light path between a light source and a photo-detector. The spokes and slots on the wheel are as wide as the light beam, thus limiting the maximum resolution.

A mask of a bar/slot pattern is placed on the photodetector. A code wheel which has a similar pattern is rotated in the light path. The light reaches the detector only when the slots on the code wheel and the mask line up. The resolution is therefore limited only by the slot spacing on the mask and code wheel and not by the light beam diameter.

Simple.
Low cost.

High resolution can be achieved without sacrificing detector size.
\begin{tabular}{|c|c|c|}
\hline PARAMETER & DESCRIPTION & MAIN ADVANTAGES \\
\hline \multicolumn{3}{|l|}{OPTICS:} \\
\hline NOT LENSED & The light beam is allowed to diverge from the source. In this configuration the separation (gap) between the code wheel and the masked detector has to be very small in order to maintain sufficient light modulation on the detector. & Low cost, suitable for lower resolution encoder. \\
\hline FOCUSED & A lens focuses the emitted light on the code wheel. Any shaft play will move the code wheel from the optimal position increasing the beam size and thus reducing the modulation contrast. & \begin{tabular}{l}
Efficient light collection. \\
Allows higher resolution than the non lensed design - when not using the Moire encoding method.
\end{tabular} \\
\hline COLLIMATED & A lens collects the light from a small source and transforms it into a parallel pencil of light directed towards the code wheel and the masked detector. The light modulation is not sensitive to the code wheel-mask separation, allowing wider gap at higher resolution. & \begin{tabular}{l}
Wider gap. Allows looser shaft play specifications. \\
Allows higher resolution. \\
Efficient light collection.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{LIGHT SOURCE:} \\
\hline INCANDESCENT & A small light blub. & High output power. \\
\hline SOLID STATE & A light emitting diode provides red or near infra-red light. & \begin{tabular}{l}
Lower current consumption. \\
Better reliability. \\
Smaller, more consistent source enables better collimation.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{CODE WHEEL:} \\
\hline GLASS & The bar pattern is printed on a glass wheel. & More resolution capability. Better cycle accuracy. Flat. \\
\hline METAL & The pattern is composed of slots in a metallic disc. & \begin{tabular}{l}
Lower inertia. \\
Higher Resolution/Inertia ratio. Pattern is scratch resistant. Rugged.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline PARAMETER & DESCRIPTION & MAIN ADVANTAGES \\
SIGNAL CONDITIONING: & & \\
SINGLE ENDED & \begin{tabular}{ll}
A single detector per channel col- \\
lects the modulated light. The \\
resultant photo current is amplified \\
by a single ended amplifier. Digiti- \\
zation is accomplished by com- \\
paring the amplifier output to \\
a reference level (usually at half \\
the peak value). Any change in the \\
light path, i.e., source degradation, \\
will affect the symmetry of the dig- \\
itized waveform.
\end{tabular} & \begin{tabular}{l}
Low cost.
\end{tabular} \\
& \begin{tabular}{l}
The mask pattern of two adjacent \\
detectors is spaced so that a light
\end{tabular} & \begin{tabular}{l}
Stable waveform. Less affected by time, \\
period on one corresponds to a \\
dark period on the other detector. \\
The resultant currents are ampli- \\
fied by a differential amplifier. \\
Digitization is accomplished by \\
comparing the outputs to each \\
other.
\end{tabular}
\end{tabular}

\section*{APPENDIX B SUITABLE DC MOTORS}

The use of encoded motors in position control applications often requires that the motor be specially fabricated to meet particular requirements with respect to torque, speed, diameter, shafts, housings, etc. It is not, therefore, practical to list to any significant extent all of the motors which may be utilized in conjunction with the HEDS-5000.

There are four mechanical motor shaft parameters which must be held within specified limits in order for the encoder to operate properly. These parameters are:

Axial End Play
Shaft Perpendicularity
Shaft Eccentricity (run out)
Radial Play
Absolute maximum values for these parameters, along with recommended operating conditions, are specified in the HEDS-5000 data sheet.

As a resource for those who wish to obtain motors for evaluation of the HEDS-5000 performance, the products as listed in Table 5 have been evaluated and samples have been found to meet the required data sheet specifications. There are many other manufacturers of motors suitable for use with the HEDS-5000, as well as other motors from the listed manufacturers which are equally suitable.

Table 5
\begin{tabular}{l|r}
\hline \multicolumn{1}{c|}{ Manufacturer } & \multicolumn{1}{c}{ Family } \\
\hline Electro Craft & 508,510 Series \\
Pittman & \(8000,9000 \& 13000\) Series \\
Portescap & 23021, 26PC11, 28PL21, 34L11 Series \\
Transicoil & All motors which have 5/32" \& 1/4" shafts \\
\hline
\end{tabular}

In reviewing motor data sheets, it will be found that size is well specified; however, motor vendors rarely specify the previously mentioned mechanical parameters in their data sheets. Dialog with the manufacturer will be necessary in order to obtain data on motor shaft parameters.

Some suppliers offer sleeve bearings or pre-loaded ball bearings for securing the shaft. Pre-loaded ball bearings improve the shaft parameter values and may be required in order to achieve the desired specifications.

The encoder mounting requirements must be communicated to the motor vendor to ensure correct alignment of the encoder. This may require that an additional mounting plate with screw holes be machined for the motor.

Testing for axial end play, shaft perpendicularity, shaft eccentricity, and radial play is necessary to determine acceptance of motors to incoming inspection criteria. The user should be sure that the test conditions represent the requirements of the HEDS-5000 encoder. For example the code wheel is placed approximately 10 mm from the mounting surface when the encoder is assembled. Therefore perpendicularity, eccentricity, and radial play measurements should be made 10 mm from the mounting surface.

\section*{APPENDIX C MOTOR SHAFT PARAMETERS}

\section*{Methods Of Legend Fabrication}

\section*{INTRODUCTION}

Hewlett-Packard LED Light Bar Modules inscribed with fixed messages or symbols can be used to construct economical annunciators. Annunciators can be used in a variety of ways; to convey the status of a system, to indicate a selected mode of operation, or to indicate the next step in a sequence. Light bars are available in \(5.08 \mathrm{~mm} \times 10.16 \mathrm{~mm}\) (0.2 inch \(\times 0.4\) inch), \(5.08 \mathrm{~mm} \times 20.32 \mathrm{~mm}\) (0.2 inch \(x\) 0.8 inch), \(10.16 \mathrm{~mm} \times 10.16 \mathrm{~mm}(0.4\) inch \(\times 0.4\) inch \()\), and \(10.16 \mathrm{~mm} \times 20.32 \mathrm{~mm}\) (0.4 inch \(\times 0.8\) inch) sizes and in either single surface or multi-segmented form. Light bars can be easily installed in front panels using the HewlettPackard Panel and Legend Mount (HLMP-2598, -2599, -2898, -2899).
This application note discusses alternative ways the message or symbols (legends) can be designed. A selection matrix is then provided to assist in the selection of the most appropriate method of legend fabrication. Each fabrication method is explained in detail along with mounting and attachment techniques. Finally, prevention of cross-talk is discussed for legend areas of a multi-segmented light bar

\section*{LEGEND DESIGN}

\section*{Format}

The two basic legend formats are shown in Figure 1. Dark field format consists of a transparent message with an opaque surround. Dark field formats are typically used to display a message that conveys routine information, such as the next step in a sequence or a selected mode of operation. Light field format, the inverse, consists of an opaque message with a transparent surround. The transparent surround permits a maximum amount of emitted light to catch the eye of an observer. Light field formats are typically used to indicate critical messages, for example, when a tank nears empty and needs to be refilled:

\section*{Font}

Easy-to-read bold faced characters or symbols are more

Figure 1. The Two Basic Legend Formats

desirable than light faced characters or symbols (Figure 2). Suggested type faces are Helvetica, Futura Demi-Bold or Univers 65.

The size of the characters in the legends are directly related to the distance at which they are viewed. The following table, based on normal visual acuity \({ }^{11}\), shows character height necessary to comfortably read the display from various distances.

Table 1. Viewing Distance vs. Character Height
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Viewing Distance \\
Metres (Feet)
\end{tabular} & \begin{tabular}{c}
Min. Character Height \\
mm (Inch)
\end{tabular} \\
\hline \(1(3.3)\) & \(1.45(0.06)\) \\
\(2(6.6)\) & \(2.91(0.11)\) \\
\(3(9.9)\) & \(4.36(0.17)\) \\
\(4(13.2)\) & \(5.82(0.23)\) \\
\hline
\end{tabular}

Note: 1. Character Height \((\mathrm{mm})=\) Viewing Distance \((\mathrm{m}) \times 1.454\) Visual activity \(=5\) minutes of arc for 20/20 vision Tangent of 5 minutes of \(\operatorname{arc}=1.454 \times 10^{-3}\).

\section*{BOLD}

Figure 2. Boldfaced Characters and Symbols Make Legends that are Easy to Read

\section*{Front Panel Appearance}

If it is desirable to conceal the message when the device is OFF, a Dead Front can be employed. A Dead Front can be achieved by placing a low transmission filter over the display to reduce contrast between off segments and the background of the legend. It may also be necessary to reduce the color difference between off segments and the background by using transparent and neutral density gray areas to form the legend. In this case, the transparent portions of the legend as they reflect ambient light in the OFF condition will appear similar in color to the neutral density gray. In the ON condition, the illuminated transparent areas of the legend will contrast vividly with the neutral density gray.
In many cases it may be desirable for the observer to be aware of the message in both the ON and OFF state. This is achieved by using a higher transmission filter and/or legend areas with a large color difference, such as black and transparent areas. In the OFF state the background area will have a recognizable color difference from the transparent area and the message will be readable.

\section*{SUMMARY AND COMPARISON OF LEGEND GENERATION TECHNIQUES}

Two basic methods can be used to fabricate legends for light bar modules. The first involves engraving directly on the front surface of the light bar and filling the engraved area with opaque enamel. The second method involves fabricating a thin film legend such as an exposed photographic film, silkscreened polycarbonate film, prefabricated adhesive film or instant lettering. These thin film legends are applied to the light bar with the Hewlett-Packard Panel and Legend Mount, with double sided transparent tape or
with adhesive backing. Figure 3 shows the steps required in each fabrication method.
Durability of the legend is often an important factor to the designer. The following tests have ben performed on samples of each of these legend fabrication methods, where applicable:
\(\left.\left.\begin{array}{ll}\text { Temperature Cycling: } & \begin{array}{l}100 \text { cycles from }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
15 \mathrm{~min} . \text { at extremes, } 5 \mathrm{~min} . \\
\text { transfer }\end{array} \\
\text { Temperature Storage: } & +55^{\circ} \mathrm{C} 1000 \text { hours }\end{array}\right\} \begin{array}{ll}5 \text { days, } 90-98 \% \mathrm{RH},-10^{\circ} \mathrm{C} \text { to } \\
+65^{\circ} \mathrm{C} \text { non-operating }\end{array}\right]\)\begin{tabular}{ll}
Humidity Test: & \begin{tabular}{l}
Visual inspection
\end{tabular} \\
Transmission Test: & \begin{tabular}{l}
Maximum dynamometer \\
rate of peel (12"/minute)
\end{tabular} \\
Taber Abrasion Test: & \begin{tabular}{l}
500 grams for 1,000 cycles
\end{tabular} \\
UV Testing: & \begin{tabular}{l}
2 years simulated UV exposure \\
under QUV® weathering \\
equipment
\end{tabular} \\
Solvent Resistance & \begin{tabular}{l}
Freon, Methanol, Isopropanol \\
Alcohol, Water
\end{tabular}
\end{tabular}

Table 2 shows results of these tests and also provides information on relative costs.

Figure 3. Legend Fabrication Methods

Table 2. Selection Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Format/Mounting} & \multicolumn{4}{|c|}{Durability} & \multicolumn{2}{|r|}{Relative Cost} \\
\hline Legend Fabrication Method & \begin{tabular}{l}
Dark \\
Field
\end{tabular} & Light Field & \begin{tabular}{l}
Dead \\
Front
\end{tabular} & HP Panel and Legend Mount & \begin{tabular}{l}
Abrasion \\
Resistance
\end{tabular} & Temp. Compatibility & Peel Strength & Solvent Resistance & Set-Up Cost & Manufacturing Cost \\
\hline Engraving & & \(x\) & & X & \(x\) & \(x\) & Excellent & Good & High & High \\
\hline Photographic & x & X & x & X & X & X & Good & Good & Low & Med Low \\
\hline Silkscreen \({ }^{11}\) & \(\times\) & \(x\) & x & x & [1] & X & Good & Fair & Med & Med Low \\
\hline Prefab with \({ }^{2 ?}\) Adhesive Eacking & x & x & x & X & x & X & Good & Good & Low & Low \\
\hline Instant Lettering \({ }^{\text {[3] }}\) & & \(x\) & & X & & & Poor & Poor & Low & Med \\
\hline
\end{tabular}

\section*{Set-Up Cost:}

Cost of original artwork, tools, equipment necessary to begin legend fabrication.

\section*{Manufacturing Cost:}

Cost of raw materials, and labor necessary to fabricate and assemble a legend on a light bar.

Notes:
1. Abrasion resistant only when backprinted.
2. For extreme ultra-violet exposure, Brady-Panel® is the recommended fabrication method.
3. Recommended for prototype applications only.

\section*{ENGRAVING}

Engraving is recommended for high temperature and high humidity applications. It should be noted, however, that engraving is only appropriate for light field formats.
Since small areas are to be engraved, such factors as type font, letter height and spacing between letters is very important. For smaller letters regular master type is recommended and for larger letters condensed master type is recommended. After the master type is set the light bar must be rigidly mounted in a vice which holds three sides in place and prevents the leads from bending.
For best results a calibrated engraving machine is necessary to control depth of cut and alignment. Several manufacturers of engraving machinery and cutting tools are listed below:
\(\left.\begin{array}{ll}\text { New Hermes } & \begin{array}{l}1711 \text { Monarch Street } \\
\text { Garden Grove, CA 92641 }\end{array} \\
\text { Incorporated } & (714) 898-9265\end{array}\right]\)\begin{tabular}{l}
1925 Roosevelt Avenue \\
Lars Machine Inc. \\
Rorine, Wisconsin 53406 \\
\\
(414) 554-8880
\end{tabular}

The depth of cut should be only 0.245 mm (0.010 inch) deep. Carbide cutters are recommended because they are extremely rigid and long lasting. The tool shape can either be a tapered shank cutter with a conical point \(\left(65^{\circ} \pm 5^{\circ}\right.\) included angle) or a straight shank end mill. For visual balance smaller letters need smaller width end mills and larger letters need larger width end mills. As a guide, for letter heights greater than or equal to 3.06 mm (0.125 inch) a 0.382 mm (0.0156 inch) end mill is recommended.

The end mill, although more fragile than a tapered cutter, offers some advantages. The shape of the end mill allows the operator to be less concerned about variations in cutting depth because the width of cut is dependent only on
the width of the end mill. When using the tapered cutter the operator must be careful to engrave at a constant depth because width of cut is dependent on depth of cut. Also, due to its shape, the tapered cutter may need to be resharpened more often than an end mill. If the tip of the tapered cutter becomes dulled the width of cut will increase whereas, if the tip of the end mill becomes dulled the width of cut will remain the same.

Fill the engraved area with a viscous flat black enamel for best results. The following enamels are recommended:
\begin{tabular}{|c|c|}
\hline Gliddens 908 Flat Black \({ }^{\text {® }}\) & SCM Corporation \\
\hline All Purpose Enamel & Gliddens Coatings and Resins Division 801 Cantebury Rd. Westlake, Ohio 44145 (216) 344-8000 \\
\hline Impervo-Flat Enamel \({ }^{\text {® }}\) Black 23581 & Benjamin Moore Co. 51 Chestnut Ridge Rd. Montvale, NJ 07645 (201) 573-9600 \\
\hline Rust-Oleum Matte Black \({ }^{\circledR}\) 7776 enamel-oil base & Rust-Oleum Corporation 11 Hawthorne Parkway Vernon Hills, IL 60061 (312) 367-7700 \\
\hline \begin{tabular}{l}
New Hermes-Engravers \({ }^{\circledR}\) \\
Enamel Black 30-450-35
\end{tabular} & \begin{tabular}{l}
1711 Monarch St. \\
Garden Grove, CA 92641 (714) 898-9265
\end{tabular} \\
\hline
\end{tabular}

Enamel is applied with a small brush (standard 2 or 3), with a lintless wipe used immediately after to clean off the excess. The excess enamel should be kept away from the edges of the module. If, however, some enamel does become lodged along the border between the epoxy encapsulant and polycarbonate package, a solvent, such as Shell Sol BT-67® manufactured by Shell Oil Company, can be applied with a lintless wipe to clean the edges. Finally, after the enamel is nearly dry, a lintless wipe dipped in methanol or isopropanol alcohol can be used to clean the module.

\section*{THIN FILM LEGENDS}

\section*{Legend Artwork}

All thin film methods except "instant lettering" require the generation of photo-reproducible artwork. For best results this artwork layout should be done carefully on an enlarged scale and then reduced. Since legends must be precisely placed on the face of the light bar, alignment marks should be included in the artwork. The legend artwork, shown in Figure 4a, contains alignment marks and notched corners. By making the legend 0.005 inch oversized on each edge, any slight misalignment that might occur during attachment will not be noticeable (Figure 4b).

Figure 4a. Legend Artwork with Alignment Marks

Figure 4b. Legend Artwork with Overhang to Allow for Alignment

\section*{PHOTOGRAPHIC PROCESS}

The photographic process is fast and relatively inexpensive. First, the artwork is reduced, stepped and repeated onto a master negative. Then, this master negative is used to expose each sheet of film in such a way that the legend is read through the film stock. Thus, when a legend is attached to a light bar the emulsion is in contact with the tape or epoxy encapsulant. Although the film stock protects the fragile emulsion from exposure or abrasion specular reflection off the front surface is increased.
Polyester based films which feature dimensional stability, high contrast, maximum optical density and a very low fog
level are recommended. Two polyester based films have been tested and found satisfactory - Kodak Reproduction Film \(4566{ }^{\circledR}\) and Kodalith Ortho Film type 3 4556®. Similar films can also be obtained from other manufacturers, such as Agfa Gavaert, GAF, or Dupont. Both recommended films have the same polyester base but different emulsions and development procedures. Kodak Reproduction Film, traditionally used in line work reproduction, offers greater strength and less susceptibility to pin-holes. The KodalithOrtho film is more sensitive to pin-holes or dust, and has been traditionally used in half-tone reproduction.

\section*{SILKSCREEN}

\section*{The Legend Substrate}

A thin untinted transparent film of polycarbonate or polyester may be used as the legend substrate. A material that exhibits very good performance is 0.102 mm (0.004 inch) thick LEXAN \({ }^{\circledR}\) Film No. 8010-112 manufactured by General Electric, Plastics Division, Speciality Plastics Department, 1 Plastics Avenue, Pittsfield, Massachusetts 01201. Silkscreening paints and inks adhere very well to LEXAN®. LEXAN® also exhibits very good dimensional stability with temperature variations. Polyester film, such as 0.102 mm (0.004 inch) Formula Type S MYLAR \({ }^{\circledR}\) produced by the E.I. Dupont de Nemours Company, Wilmington, Delaware 19898, may also be used as a legend substrate, although specially formulated inks are required. Epoxy inks and acrylic inks should not be used on Polyester films because the ink does not adhere well to the film.

\section*{The Silkscreening Ink}

Certain formulated inks, acrylic laquer type inks or epoxy inks may be used in the silkscreening process. Both polycarbonate and polyester may be screened with GF 140®, a formulated ink produced by General Formulations, 350 S . Union, Sparta, Michigan 49345 . GF \(140{ }^{\circledR}\) is unusually tough and flexible, but due to its solubility characteristics special caution is required. The ink exhibits an extremely strong affinity for polyester and polycarbonate and other materials such as paper. Therefore, silkscreened film sheets should not be stacked on top of each other or stacked interleaved with paper until after the ink has been cured.
Nazdar 70-111®, a modified acrylic-lacquer type ink, may also be used to print on polycarbonates. Nazdar inks are manufactured by the Nazdar Company, 1087 N. North Branch Street, Chicago, Illinois 60622.

This ink is very easy to handle and to clean up. However, adhesion to the polycarbonate substrate is not as permanent as with the other recommended inks. One epoxy ink recommended for use only on polycarbonate films is the WORNOWINK® Series 50 with \#9 catalyst produced by the Hysol Division, Dexter Corporation, 15051 E. Don Julian Road, Industry, California 91749. After screening an epoxy ink will quickly air dry to a semi-hard state that permits the legends to be sheared or cut to size without any smearing, chipping or peeling. With epoxy based ink, care must be taken to add the proper amount of catalyst. If too much catalyst is added the ink may continue to harden after the normal cure cycle. This hardening occurs over a period of several months and may cause the ink to become brittle. Thus, screened sheets may have a limited shelf life and should not be stored for a long period of time prior to light bar adhesion. When cured at elevated temperatures epoxy paints exhibit a high degree of abrasion resistance and chemical resistance.

\section*{Screen Mesh}

Ink thickness is determined by the screen mesh and to a lesser degree the height of the screen above the polycarbonate sheet. The silkscreening process should produce a controlled ink thickness of 0.025 mm (0.001 inch). A thicker layer of ink may cause the legend substrate to curl or the ink to crack during temperature cycling. For each of the inks listed above the following screen mesh sizes are recommended:
\begin{tabular}{ll}
50/9 WORNOWINK & 200 mesh \\
GF 140 & 200 mesh, 325 mesh \\
Nazdar \(70-111\) & 325 mesh
\end{tabular}

\section*{Printing}

Front printed legends are formed by screen printing the ink on the top side of the legends. When the legends are attached to the light bar the ink is exposed. Because the ink is exposed, front printed legends are not suited for abrasive environments. All the inks described above are suitable for front-printing; however, only one ink, GF 140, can be used for back printing.
A back-printed legend is formed by screening the ink on the backside of the legends. Thus, when applied to a light bar, the ink is in contact with the tape, and the polyester film serves as a protective coating. Back-printed legends with GF 140 ink exhibit abrasion resistance and slightly stronger adhesion than front printed GF 140 legends.

\section*{PREFABRICATED LEGENDS WITH ADHESIVE BACKINGS}

Some manufacturers sell custom constructed polycarbonate or polyester legends backed with an industrial strength adhesive. Brady manufactures Poly-Panel®, a material constructed from second surface printed polycarbonate. Brady Poly-Panel \({ }^{\circledR}\) comes in a variety of colors and textures. A shiny clear texture material transmits the most light, but increases specular reflections. Therefore, this material should only be used behind a filter. A velvet texture, on the other hand, offers a diffused dead front appearance but at the cost of a greater attenuation of light. Brady Poly Panel \({ }^{\circledR}\), thickness not to exceed 0.010 inch, can be ordered with \(\mathrm{B}-196{ }^{\circledR}\) adhesive backing, a transparent unsupported acrylic pressure sensitive adhesive backing.
The Brady Poly-Panel® has no loss of properties due to abrasion or UV exposure. Data sheets with extensive reliability testing can be obtained from the manufacturer:
W.H. Brady Co.
Nameplate Division
750 West Glendale Avenue
P.O. Box 571
Milwaukee, Wisconsin 53201
(414) \(332-7620\)

Poly-panel with polycarbonate substrate B-196 adhesive thickness -0.005-0.010 inch texture - clear or velvet

\section*{INSTANT LETTERING}

Instant lettering is a quick method of legend fabrication. It is usually limited to prototype applications, because under extreme temperature cycling and humidity testing noticeable bubbles may form. Also, the adhesive bond between instant lettering and the light bar is weak.

Letraset, a manufacturer of instant lettering, offers a broad line of typefaces and symbols that are easy to apply. The
letters or symbols are simply transferred to the light bar with a burnishing tool. To protect Letraset a polycarbonate sheet (see silkscreening section) may be attached over the instant letters.

\section*{ATTACHING A LEGEND TO A HEWLETT-PACKARD LIGHT BAR}

Using the Legend in a Light Bar Panel and Legend Mount Hewlett-Packard Panel and Legend Mounts (HLMP-2598, -2599, -2898, -2899), are used to install light bars in front panels. A space has been provided for holding a 0.13 mm (0.005 inch) thin film legend over the front surface of the light bar. Legends should be trimmed to the size of the light bar prior to installation.
Panel and legend mounts are convenient because no adhesive or tape is required to hold the legend in place. For more specific instructions on mounting techniques refer to the Hewlett-Packard Panel and Legend Mount data sheet.

\section*{Tape}

All thin film legends, except those with adhesive backings can be bonded to the face of a light bar with an optically transparent tape. Two tapes which have been tested and found satisfactory are M69®, produced by the Connecticut Hard Rubber Company, 407 East Street, New Haven, Connecticut 06509, and POLYKEN 126® produced by the Kendall Company, Polyken Division, 1 Federal Street, Boston, Massachusetts 02101. These optically transparent tapes consist of a polyester film carrier with acrylic adhesive on each side and a release backing. The thickness of the adhesive and carrier combination is typically 0.102 mm (0.004 inch). Both tapes can be purchased slit to desired width and of the two tapes M69® exhibits slightly stronger adhesion to the film substrate.

Figure 5. Securely Attached Legend Prevents Reduction of Light Due to Fresnel Loss

\section*{Bond}

The steps to bond legends without adhesive backings to the face of the light bar are:
1. With release backing intact, apply the exposed adhesive side of the tape to the back side of the legend or front surface of the light bar with firm pressure.
2. Remove the release backing. Align the legend to the face of the light bar and apply with firm pressure. It is important to ensure that there are no voids in the adhesive/ legend and adhesive/light bar interfaces. Voids in the adhesive interfaces, as illustrated in Figure 5, reduce light transmission through the legend due to Fresnel loss and do not permit a secure bond to take place.
3. Trim the legend to size with a pair of scissors or a small shear. (Figure 6)
4. For increased adhesion, oven cure the assembly at a temperature of \(115^{\circ} \mathrm{C}\left(240^{\circ} \mathrm{F}\right)\) for 4 hours.

Note: For legends with adhesive backings follow steps 2 and 3 only.

\section*{REDUCTION OF CROSS-TALK IN A MULTI-FUNCTION ANNUNCIATOR}

Some Hewlett-Packard Light Bars provide more than one light emitting surface within the same package. Each light emitting surface may be illuminated independently. A single multi-function legend may be applied to a multisegmented light bar to form a small annunciator that is capable of displaying as many as four independent messages or symbols.

However, the legend substrate and the acrylic adhesive tend to act as light pipes. Some light travels from an illuminated area of the multi-function legend to adjacent non-illuminated areas, as illustrated in Figure 7. This light leakage, called cross-talk, if severe enough can cause confusion between the ON and OFF status of the adjacent functions displayed by the legend areas.
Cross-talk can be reduced by using dark field format and by printing on the back side of the legend substrate. Back side printing reduces the amount of emitted light that enters the substrate. Thus, the amount of light than can leak into adjacent legend areas is decreased.

Figure 7. Light Leakage (Cross-Talk) Between Illuminated and Non-Illuminated Porsions of a Multi-Function Legend Bonded in a Multi-Cavity Light Bar

\title{
Contrast Enhancement Techniques For LED Displays
}

\section*{GENERAL INTRODUCTION}

Readability is the most important feature of an electronic display system. Moreover, readability must be achieved in ambient lighting conditions ranging from darkness to bright sunlight. One of the major contributions to readability in bright ambients is the contrast between the "on" elements of a display and their background. This contrast is expressed as a combination of luminance contrast and chrominance contrast.
At Hewlett-Packard, a considerable amount of work has been done to define and understand the parameters that affect the luminance contrast and chrominance contrast of an LED display. We have expanded upon the work done by Jean Pierre Galves and Jean Brun and have determined new ways to calculate and optimize the values of the most relevant measure of a display's readability in bright ambients, the "discrimination index". 11 |
One of the most readily available techniques to improve the "discrimination index" of a display is to use a carefully selected optical filter in front of the display.
The first section of this application note will discuss contrast enhancement techniques for indoor ambients where all Hewlett-Packard LED displays can be used. The second section will discuss specific Hewlett-Packard LED displays and contrast enhancement techniques for the difficult task of achieving good readability in bright sunlight ambients.

\section*{SECTION 1: FILTERING FOR INDOOR AMBIENT APPLICATIONS}

In dim to moderately bright indoor ambients readability can be obtained by optimizing luminance contrast. The objective is to maximize the luminance contrast between the light emitting elements and the background while minimizing the luminance contrast between the non-illuminated elements and the background. For LED displays, this can be achieved by:
1. Designing the display package for low reflectance so that the luminance of the non-illuminated elements matches the luminance of the display package.
2. Choosing a filter that transmits a maximum amount of

LED light while attenuating the reflected light off the display package.
3. Choosing a filter with low front surface reflectance for a given ambient lighting condition.
On the other hand, to obtain readability in bright indoor and sunlight ambients the optimization of chrominance contrast as well as luminance contrast becomes important. Chrominance contrast refers to the color difference between the light emitting elements and the background. The optimization of chrominance contrast is more fully explained in section two while this section concentrates on the optimization of luminance contrast.

Figure 1. CIE Standard Observer Eye Response Curve (Photopic Curve), Including CIE Vivid Color Ranges.

First, to obtain a better understanding of filtering, the more commonly used terms in contrast enhancement will be defined. Next, specific filter transmission recommendations for each LED color will be presented. Also, plastic versus glass filter materials and the effects of ambient lighting on luminance contrast will be discussed. Finally, recommended filter manufacturers and the materials they offer will be listed.

\section*{DEFINITIONS}

\section*{Eye Response - Standard Observer Curve}

The Standard Observer Curve is important in contrast enhancement because the eye's sensitivity to light emitting sources, ambient lighting and display backgrounds is very dependent on the wavelengths of emitted or reflected visible light. The eye response of a standard observer to various wavelengths of light is shown in Figure 1. The Standard Observer Curve was established in 1931 by the CIE (Commision Internationale De L'Eclairage) as the industry standard for relating the total power (radiant flux) emitted from a source to the amount of power to which the eye is sensitive (luminous flux). The curve is on a logarithmic scale and for reference various wavelengths of energy are labeled by color. As can be seen, the eye's response peaks in the yellow-green region, which means that per watt of radiated power a source in this region will have more lumens than sources of other wavelengths. The exact conversion factor at the peak (555 nm) is 680 lumens of luminous flux (Im) per watt of radiated power (W).

\section*{Peak Wavelength and Filter Transmission}

The wavelength at the peak of the LED radiated spectrum is called peak wavelength (\(\lambda\) p). Figure 2 and Table 1 show the typical LED radiated spectrum for four standard colors; red (\(\lambda p=655 \mathrm{~nm}\)), high efficiency red (\(\lambda p=635 \mathrm{~nm}\)), yellow \((\lambda p=583 \mathrm{~nm})\) and green (\(\lambda \mathrm{p}=569 \mathrm{~nm}\)). All four standard colors fall in the region of visible light. The appropriate filter

Table 1. LED Spectrums Normalized To One At Typical Peak Wavelengths
\begin{tabular}{|c|c|c|c|c|}
\hline Wavelength (nm) & Standard Red & High Efficiency Red & Yellow & Green \\
\hline 540 & & & . 01 & . 03 \\
\hline 545 & & & . 02 & . 05 \\
\hline 550 & & & . 03 & . 13 \\
\hline 555 & & & . 05 & . 33 \\
\hline 560 & & & . 12 & . 65 \\
\hline 565 & & & . 24 & . 87 \\
\hline 570 & & & . 47 & 1.00 \\
\hline 575 & & & . 73 & . 85 \\
\hline 580 & & & . 92 & . 67 \\
\hline 585 & & & 1.00 & . 55 \\
\hline 590 & & . 01 & . 94 & . 42 \\
\hline 595 & & . 03 & . 78 & . 33 \\
\hline 600 & & . 04 & . 62 & . 26 \\
\hline 605 & . 01 & . 12 & . 48 & . 18 \\
\hline 610 & . 01 & . 20 & . 37 & . 14 \\
\hline 615 & . 03 & . 40 & . 28 & . 11 \\
\hline 620 & . 05 & . 61 & . 17 & . 08 \\
\hline 625 & . 13 & . 78 & . 13 & . 07 \\
\hline 630 & . 20 & . 96 & . 11 & . 05 \\
\hline 635 & . 37 & 1.00 & . 08 & . 04 \\
\hline 640 & . 55 & . 91 & . 07 & . 03 \\
\hline 645 & . 75 & . 81 & . 06 & . 03 \\
\hline 650 & . 94 & . 71 & . 05 & . 02 \\
\hline 655 & 1.00 & . 58 & . 05 & . 02 \\
\hline 660 & . 96 & . 45 & . 04 & . 01 \\
\hline 665 & . 84 & . 36 & . 04 & . 01 \\
\hline 670 & . 72 & . 27 & . 03 & \\
\hline 675 & . 60 & . 21 & . 01 & \\
\hline 680 & . 47 & . 15 & & \\
\hline 685 & . 36 & . 12 & & \\
\hline 690 & . 25 & . 09 & & \\
\hline 695 & . 21 & . 05 & & \\
\hline 700 & . 16 & . 01 & & \\
\hline
\end{tabular}

Figure 2. Relative Intensity vs. Wavelength.
for use with any of these four colors is chosen according to its published transmission curve. Filter transmission curves exhibit relative transmittance vs. wavelength over the region of visible wavelengths. The relative transmittance of a filter with respect to any particular wavelength is defined as:
\[
\text { Relative Transmittance } T(\lambda)=\frac{\begin{array}{l}
\text { Luminous Flux with Filter at } \\
\text { Wavelength } \lambda p
\end{array}}{\begin{array}{l}
\text { Luminous Flux without Filter } \\
\text { at Wavelength } \lambda p
\end{array}}
\]

If a particular optical filter has a fairly constant transmission over the LED radiated spectrum, then the transmission at the peak wavelength may be used to estimate the amount of display emitted light that passes through the filter. For example, if a filter has a relatively flat transmittance of \(60 \%\) at a given \(\lambda_{P}\), then approximately \(60 \%\) of the display emitted light will pass through the filter to the observer and \(40 \%\) will be absorbed. In actuality, the display emitted light passing through a filter (L) is an integral that is the product of several functions. As defined by the following equation, the Standard Observer Curve and LED Spectrum must be integrated with the filter transmission curve.
\(L=\int \ell(\lambda) Y(\lambda) T(\lambda) d \lambda\)
Where \(\ell(\lambda)=\) radiated spectrum of the illuminated light emitting element (See Table 1)
\[
\begin{aligned}
Y(\lambda)= & \text { the } 1931 \text { CIE photopic curve } \\
& \text { (See Wyzecki \& Stiles, Color Science) }
\end{aligned}
\]
\(T(\lambda)=\) relative transmission characteristic of the filter (Supplied by Filter Manufacturer)
As shown in Figure 3, if the slope of the filter transmission curve changes rapidly in the region of the LED radiated spectrum, then the transmission at the peak wavelength will no longer be an accurate estimate of display emitted light that passes through the filter. On the other hand, for a more constant transmission, as also shown in Figure 3, the estimate is fairly accurate.

Figure 3. Comparison Between Two Long Pass Red Filters for Use with High-Efficiency Red Displays.

\section*{Filter Characteristics Which Determine Light Transmission}

As mentioned in Peak Wavelength and Filter Transmission, filters are chosen according to their published transmission curves which exhibit relative transmittance vs. wavelength over the region of visible light.
For any filter, the total transmitted light is equal to the LED emitted light less the light absorbed within the filter and the light reflected at the filter-to-air interfaces.

The relative absorption characteristics are determined by the dye color and dye concentration while the reflectance characteristics are determined by the index of refraction of the filter material. Since the index of refraction is nearly a constant, dye coloring and dye concentration are varied to obtain the appropriate transmission at any given wavelength.
When choosing a filter or molding your own material, it is important that the dye color and dye concentration are carefully controlled so that the internal transmission characteristics are consistent from one filter to another. Internal transmittance can be considered the LED emitted light minus the light absorbed within the filter material. Thus, the formula for the LED light transmitted through the filter becomes:
\begin{tabular}{c}
Luminous flux \\
with filter at \\
wavelength \(\lambda p\)
\end{tabular}\(=\)\begin{tabular}{c}
Luminous flux \\
internally transmitted \\
through the filter
\end{tabular}\(\quad\)\begin{tabular}{c}
Luminous Flux \\
reflected at filter- \\
to-air interfaces
\end{tabular}

If the dye coloring is held at a constant density, the internal transmission through the filter material at any given wavelength \(\mathrm{Ti}(\lambda \mathrm{p})\), is an exponential function of the thickness of the material
(Internal
Transmission) \(\quad \mathrm{Ti}=e^{-a x}\)
where: \(x=\) The quantity of unit thicknesses of filter material.
\(e=2.71828\)
\(\mathrm{a}=\) Absorbtion coefficient and is equal to \(-\ln (\mathrm{t})\) where \(t\) is the internal transmission for a unit thickness.
As shown in Figure 4, the internal transmission through 1.0 mm thickness of filter material is 0.875 at a wavelength of 655 nm . The same filter material at a thickness of 2.5 mm has a relative transmission of 0.716 .
\[
\begin{aligned}
& -\ln (0.875)=0.1335=\mathrm{a} \\
& \mathrm{~T}=\mathrm{e}^{-(.1335)(2.5)}=0.716
\end{aligned}
\]

Light that is not internally transmitted through the filter or absorbed within the filter material is reflected at the filter-air interfaces. The amount of reflected light is dependent upon the index of refraction of the filter material as compared to the index of refraction for air. Mathematically, the percentage of reflected light is given by the following ratio:
\[
\begin{equation*}
R=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2} \tag{4}
\end{equation*}
\]
where: \(\mathrm{n}_{1}=\) Index of refraction of the filter material.
\[
\mathrm{n}_{2}=\text { Index of refraction for air }=1.0
\]

It is important to choose a filter with a homogeneous index of refraction. As shown below, a plastic filter with an average index of refraction equal to 1.5 , for the range of wavelengths encompassing the LED's radiated spectrum will reflect \(4 \%\) of the normal incident light at each filter/air interface.
\[
\begin{aligned}
& R=\left(\frac{1.5-1.0}{1.5+1.0}\right)^{2} \\
& R=0.04
\end{aligned}
\]

Since there are two filter-air interfaces, the percentage of LED light lost due to reflection for a filter with an internal transmittance of 0.875 is \(7 \%\). Therefore, the total transmittance through the filter according to equation (2) is 0.805 (0.875-0.07 \(=0.805\)).

Figure 4. Variation in Relative Transmittance vs. Thickness for a Constant Density Filter Material.
\[
\begin{aligned}
& \begin{aligned}
\begin{array}{l}
\text { LED emitted light } \\
\text { lost due to reflection }
\end{array} & \begin{array}{l}
\text { loss at 1st } \\
\text { interface }
\end{array}+\begin{array}{l}
\text { loss at } \\
\text { 2nd interface }
\end{array} \\
& =0.04+(0.96)(0.875)(0.04) \\
& =0.04+0.03 \\
& =0.07
\end{aligned}
\end{aligned}
\]

In addition to attenuating a portion of the light emitted by the display, a filter also shifts the perceived color of the LED. For a given LED spectrum, the color shift depends on the cut-off wavelength and shape of the filter transmission curve. A choice among available filters must be made on the basis of which filter and LED combination is most pleasing to the eye.

\section*{Luminance Contrast}

Conceptually, the luminance contrast is the observed brightness of the illuminated element compared to the brightness of the surround. The brightness of the illuminated element is the combination of the emitted light and the ambient light reflected off the element, while the brightness of the background is due only to reflected ambient light.

\section*{Display Luminance Contrast}

For a display without a filter, the luminance contrast ratio can be considered the sterance (intensity/unit area) of the illuminated element plus the ambient light reflected off the element divided by the sterance of the ambient light reflected off the background.

Where \(L_{v} S=\) Sterance of illuminated element
\(\mathrm{L}_{v} \mathrm{OFF}=\) Sterance of light reflected off the element
\(L_{v} B \quad=\) Sterance of light reflected off the
background

Mathematically:
\[
\begin{array}{ll}
\mathrm{L}_{v} S & =\int \ell(\lambda) Y(\lambda) d \lambda \\
\mathrm{~L}_{\mathrm{v}} O F F & =\int X(\lambda) Y(\lambda) R_{\ell}(\lambda) d \lambda \\
\mathrm{~L}_{\mathrm{v}} B & =\int X(\lambda) Y(\lambda) R_{B}(\lambda) d \lambda
\end{array}
\]
where \(\ell(\lambda)=\) radiated spectrum of the illuminated light emitting element (See Table 1)
\(Y(\lambda)=\) the 1931 CIE photopic curve (See Wyzecki \& Stiles, Color Science)
\(X(\lambda)=\) radiated spectrum of the ambient light source (See Wyzecki \& Stiles, Color Science)
\(R \ell(\lambda)=\) relative reflection characteristic of the light emitting element (See Figures 24 and 35)
\(R_{B}(\lambda)=\) relative reflection characteristic of the surrounding background (See Figures 24 and 35)
When designing a display for optimum luminance contrast, two conditions must be considered. First, it is desirable to have as large a contrast ratio as possible between the illuminated elements and the surrounding background (CON \(=L_{v} S / L_{v} B \geqslant 1\)). This is achieved by choosing a background with low reflectance. Second, it is desirable to minimize the contrast ratio between the non-illuminated lightemitting elements and the background, both of which reflect ambient light (\(C_{o f f}=L_{v} O F F / L_{v} B=1\)). This second condition is achieved by choosing a background that nearly matches the reflective characteristics and color of the non-illuminated elements. Thus, the non-illuminated elements will blend into the background in the off condition and in the on condition the eye will not be confused as to which elements are illuminated. For example, HP stretched segment displays for indoor applications are designed such that the painted surrounding package matches the reflected luminance and color of the tinted epoxy segments. Another type of stretched segment display has been designed for high ambient applications. This display package is painted gray to match the luminance and color of the untinted segments.

\section*{Enhancement of Luminance Contrast - Filtering}

The purpose of filtering is to create a high value of luminance contrast by reducing the luminous sterance of the background to a level that is far less than the luminous sterance of the illuminated segments. Wavelength filters increase contrast by passing the wavelengths of LED emitted light while partially absorbing other wavelengths of ambient light. Neutral density filters increase contrast by attenuating ambient light twice, as it enters the filter and after reflection, whereas the LED emitted light is attenuated only once.

Figure 5. Luminance Contrast for a Light-Emitting Display with a Filter.

When a filter is placed in front of a display, the luminance contrast equation (5) is altered due to two effects. First, the sterance of the illuminated elements and the background is attenuated by the filter. Second, the eye adds the ambient light reflected off the front surface of the filter to both the illuminated elements and the background. Therefore, as shown in Figure 5, the luminance contrast ratio for a light emitting display with a filter can be expressed as:

Where \(\mathrm{L}_{v} \mathrm{~S}=\) Sterance of illuminated element through the filter
\(\begin{aligned} L_{v} O F F= & \text { Sterance of light reflected off the element } \\ & \text { through the filter }\end{aligned}\)
\(\mathrm{L}_{v} \mathrm{~B}\) = Sterance of light reflected off the background through the filter
\(\mathrm{L}_{v} \mathrm{~F} \quad=\) Sterance of light reflected off the filter
Mathematically:
\(L_{v} S=\int \ell(\lambda) Y(\lambda) T(\lambda) d \lambda\)
\(L_{v} O F F=\int X(\lambda) Y(\lambda) T(\lambda)^{2 R}(\lambda) d \lambda\)
\(L_{v} B=\int X(\lambda) Y(\lambda) T(\lambda)^{2} R_{B}(\lambda) d \lambda\)
\(L_{.} F=\int X(\lambda) Y(\lambda) R_{F}(\lambda) d \lambda\)
where \(\ell(\lambda)=\) radiated spectrum of the illuminated light emitting element (See Table 1)
\(Y(\lambda)=\) the 1931 CIE photopic curve (See Wyzecki \& Stiles, Color Science)
\(T(\lambda)=\) relative transmission characteristic of the filter (Supplied by Filter Manufacturer)
\(X(\lambda)=\) radiated spectrum of the ambient light source (See Wyzecki \& Stiles, Color Science)
\(R_{\ell}(\lambda)=\) relative reflection characteristic of the light emitting element (See Figures 24 and 35)
\(R_{B}(\lambda)=\) relative reflection characteristic of the surrounding background (See Figures 24 and 35)
\(R_{F}(\lambda)=\) relative reflection characteristic of the filter front surface (See Table 5 and Figure 37)
As exhibited by the luminance contrast equation display readability is greatly affected by the amount and direction of ambient light reflected back into the observer's eyes (LvF). If too much ambient light is reflected back into the observer's eyes, the luminance contrast ratio will approach a value of 1 and the illuminated elements will be masked from view. The reflected ambient light, \(L v F\), is determined by both the filter material and the front surface texture.

For dim to moderate ambients a textured surface may be advantageous to diffusely scatter any specular reflectances from nearby light sources. However, care must be exercised when choosing the amount of front surface texture. It should be remembered that both the incident ambient and display emitted light will be diffused. Therefore, to prevent the display image from appearing too blurred, the filter should be mounted as close as possible to the display. (d<1/4")

If higher levels of ambient light may be present from a light source or nearby window, the front surface should have only a very slightly textured finish. Due to the larger quantities of incident ambient light, too coarse a texture will create a large amount of scattered diffuse glare and obs-
cure view of the display. As explained later in Front Surface Reflectance and Filters for Contrast Enhancement-Seven Segment LED Displays, the other option in higher ambient light levels is to use an untextured surface and cant the filter slightly forward such that specular reflectances are directed dowriward, away from the eyes of the observer.

\section*{Typical Lighting Levels}

The level and spectrum of ambient lighting affects the luminance contrast of any display and filter assembly. According to the IES lighting handbook, the following illumination standards are typical for tasks performed indoors; 25-75 footcandles for passageways and active storage rooms, 75200 footcandles for desk work and up to 1000 footcandles for extra fine bench or machine work. \({ }^{|2|}\) In this application note, 25-75 footcandles ambient illumination will be referred to as dim ambients, 75-200 footcandles as moderate ambients and 250-1000 footcandles as bright ambients. Illumination levels can be easily measured with a calibrated color corrected light meter. Some commercially available light meters are the Gossen Panlux Electronic Luxmeter, the Spectra Lumicon and the Sekonic L398. For indoor applications, the spectrum of ambient lighting can vary from fluorescent to incandescent or even sunlight from a nearby window.

\section*{RECOMMENDATIONS FOR WAVELENGTH FILTERING}

Figure 2 shows the radiated spectrum for a typical standard red, high efficency red, yellow and green LED and Figures 6 through 10 along with Table 2 summarize the recommended filter transmission curves for each of these colors. Filters with similar characteristics are commercially available and specific manufacturers are listed in Tables 3 and 4. For all colors there are three recommended curves: one for dim ambients, another for moderate ambients and finally a third curve for bright ambients. The curves for moderate and bright ambients have a lower transmission to further reduce the greater amount of reflected ambient light off the display background. In the following section the reasons for specifying a particular transmission curve for each LED color are explained.

\section*{Filtering Standard Red Displays (\(\lambda_{\mathbf{P}}=\mathbf{6 5 5} \mathbf{~ n m}\))}

In dim to moderate ambients, filtering out reflected ambient light from red displays is easily accomplished with a long wavelength pass filter having a sharp cut-off in the 600 nm to 630 nm range (see Figure 6). This long wavelength pass filter absorbs the shorter yellow, green and blue wavelengths while passing the red wavelengths and those longer wavelengths to which the eye is not very sensitive. In brighter ambients, above 200 footcandles a gray filter with 18\(25 \%\) transmission is recommended (See Figure 10). As explained later in Filtering in Bright Sunlight Ambients, the gray filter increases readability in brighter ambients by enhancing the color contrast between the illuminated elements and the background.

\section*{Filtering High Efficiency Red Displays (\(\lambda_{\mathbf{p}}=\mathbf{6 3 5} \mathbf{n m}\))}

In dim to moderate ambients, the use of a long wavelength pass filter with a cut-off in the 570 to 600 nm gives essentially the same results as obtained when filtering red displays (see Figure 7). The resulting color is a deep reddish orange. If several displays are to be assembled in a line, the particular red filter should be chosen carefully. Many red filters have a sharp cut off in the 610-640 nm range, which
falls in the same region as the peak wavelengths of high efficiency red LEDs. As explained in Peak Wavelength and Filter Transmission this sharp cut-off may cause an LED with a peak wavelength of 640 nm to pass much more LED emitted light through the filter when compared to an LED with a peak wavelength of 630 nm . If the cut-off is too sharp, the eye may perceive intensity mismatches between these light emitting elements. Two possible filtering techniques can be employed to minimize intensity variations. First, a red filter can be used which exhibits \(35-50 \%\) transmission and a relatively flat transmission curve in the 620-640 nm wavelength range (see Figure 7). Or, second, a gray filter that has a constant \(18-25 \%\) transmission across the visible spectrum can be used (see Figure 10). Gray filters with 18\(25 \%\) transmission are also recommended for bright ambients above 200 footcandles. As explained later in Filtering in Bright Sunlight Ambients the gray filter increases readability in brighter ambients by enhancing the color contrast between the illuminated elements and the background.

Figure 6. Typical Transmittance Curves for Filters to be Used with Standard Red Displays.

Figure 7. Typical Transmittance Curves for Filters to be Used with High-Efficiency Red Displays.

Figure 8. Typical Transmittance Curves for Filters to be Used with Yellow Displays.

Figure 9. Typical Transmittance Curves for Filters to be Used with Green Displays.

Figure 10. Typical Transmittance Curves for Filters to be Used with All Colored Displays.

Table 2. Filter Recommendations For Various Display Colors And Levels of Ambient Illumination
\begin{tabular}{|c|c|c|c|}
\hline Color & Ambient Illumination & Recommended
Filter Type & Comments \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Standard Red \\
(\(\lambda\) p Typical \(=655 \mathrm{~nm}\))
\end{tabular}} & \[
\operatorname{Dim}_{(25-75 \mathrm{fc})}
\] & Red Long Pass (\(70 \% \mathrm{~T}\)) with cut-off in 600-630 nm region & Red Filters will save power because a maximum amount of LED light is transmitted through the filter \\
\hline & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Moderate } \\
(75-200 \mathrm{fc})
\end{gathered}
\]} & Red Long Pass (45\%T) & \\
\hline & & Neutral Density Gray or Bronze (20-25\%T) & \\
\hline & \[
\begin{gathered}
\text { Bright } \\
(200-1000 \mathrm{fc})
\end{gathered}
\] & Neutral Density Gray or Bronze (18-23\%T) & Gray or Bronze filters enhance color contrast \\
\hline \multirow[t]{4}{*}{High Efficiency Red (\(\lambda\) p Typical \(=655 \mathrm{~nm}\))} & Dim & Red Long Pass \((65 \% T)\) with cut-off in 570-600 nm region & Red Filters will save power because a maximum amount of LED light is transmitted through the filter \\
\hline & \multirow[t]{2}{*}{Moderate} & Red Long Pass (\(40 \%\) T) & \multirow[t]{2}{*}{Red filters with sharp cut-off in the 610-640 nm range may cause intensity mismatches} \\
\hline & & Neutral Density Gray or Bronze (20-25\%T) & \\
\hline & Bright & Neutral Density Gray or Bronze (18-23\%T) & Gray or Bronze filters enhance color contrast \\
\hline \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Yellow } \\
(\lambda p \text { Typical }=583 \mathrm{~nm})
\end{gathered}
\]} & \multirow[t]{2}{*}{Dim} & Yellow Band Pass (30\%T) & \multirow[t]{3}{*}{Most effective filter is amber although a yellow band pass filter may be used} \\
\hline & & Amber Long Pass (40\%T) & \\
\hline & Moderate & Amber Long Pass (40\%T) & \\
\hline & \multirow[t]{2}{*}{Bright} & Neutral Density Gray or Bronze (18-23\%T) & \multirow[t]{2}{*}{Gray, Bronze, or Gray/Amber combination filters enhance color contrast} \\
\hline & & Neutral Density Gray (30\%T)/ Light Amber (\(80 \% \mathrm{~T}\)) combination & \\
\hline \multirow[t]{3}{*}{Green (\(\lambda\) p Typical \(=569 \mathrm{~nm}\))} & Dim & Green Band Pass (45\%T) & \\
\hline & Moderate & Neutral Density Gray or Bronze (20-25\%T) & Gray recommended for moderatebright ambients because the eye is very sensative to background reflected light in the green region \\
\hline & Bright & Neutral Density Gray or Bronze (18-23\%T) & Gray or Bronze Filters enhance color contrast \\
\hline
\end{tabular}

\section*{Filtering Yellow Displays (\(\lambda_{\mathbf{p}}=\mathbf{5 8 3} \mathbf{n m}\))}

In dim ambients, amber filters or yellow band pass filters are recommended for filtering yellow displays (see Figure 8). It is more difficult to achieve a high contrast when filtering yellow displays because yellow is in the region of the standard observer curve where the eye is most sensitive. In this case, both the yellow LED emitted light and the yellow ambient light reflected off the display background will be passed by the filter. In order to achieve a noticeable contrast between the LED emitted light and the background reflected light, the filter must absorb a greater amount of ambient light than a red filter.

The most effective filters are dark yellow or orange (amber), although a lower transmittance yellow band pass filter may be used. Figure 11 shows the effect of such a yellow band pass filter on a yellow LED display with a peak wavelength of 583 nm . Although only \(27 \%\) of the display emitted light passes through the filter, the contrast is enhanced. For moderate ambients an amber filter or a gray filter with 20\(25 \%\) transmission is recommended. And as recommended for red displays in brighter ambients above 200 footcandles a gray filter with \(18-23 \%\) transmission should be used.

Figure 11. Effect of a Wavelength Filter on a Yellow LED Display.

Table 3. Plastic and Glass Filter Manufacturers PLASTIC FILTER MANUFACTURERS
\begin{tabular}{|c|c|}
\hline Manufacturer & Product \\
\hline \begin{tabular}{l}
SGL HOMALITE \\
11 Brookside Drive Wilmington, DE 19804 \\
Phone: (302) 652-3686 \\
SGL International 76 Euclid Avenue Haddonfield, NJ 08033 Phone: (609) 429-7400
\end{tabular} & Polyester wavelength and neutral density filters; two optional anti-reflection surfaces and three different grades of polyester available. \\
\hline \begin{tabular}{l}
Rohm and Haas \\
Independence Mall West \\
Philadelphia, PA 19105 \\
Phone: (215) 592-3000 \\
Rohm and Haas Canada, Ltd. \\
2 Manse Road \\
West Hill, Ontario MIE 3T9 \\
Phone: (416) 284-4711 \\
Rohm and Haas Company \\
European Operations \\
Chesterfield House, 4th Floor \\
Barter Street \\
London WC 1A2TP \\
Phone: 01-242-4455
\end{tabular} & Plexiglas®; sheet and molding powder; wavelength and neutral density filters. \\
\hline Chequers Engraving, Ltd. 1-4 Christina Street, London EC2A 4PA Phone: 01-779-6964/5 & Spectrafilter®; wavelength and neutral density filters with optional glarecheq anti-reflection surface. \\
\hline \begin{tabular}{l}
3M-Company Industrial Optics Carbonless/Related Prod. Div. 225-35 3M Center \\
St. Paul, MN 55144 \\
Phone: (612) 733-4403
\end{tabular} & Panel Film® and Louvered Light Control Film \({ }^{\text {® }}\) wavelength and neutral density filters with abrasionresistant and anti-reflection surfaces available. \\
\hline \begin{tabular}{l}
Panelgraphic Corporation 10 Henderson Drive \\
West Caldwell, NJ 07006 \\
Phone: (201) 227-1500 \\
Thorne/Panelgraphic \\
Great Cambridge Road \\
Enfield, Middlesex \\
England \\
Phone: 01-366-1291
\end{tabular} & Chromafilter®; wavelength and neutral density filters with scratch-resistant and anti-reflection surfaces available. \\
\hline Polaroid Corporation Polarizer Division One Upland road Norwood, MA 02062 Phone: (617) 769-6800 & Circular Polarizing filters with an optional anti-glare surface. \\
\hline Duralith Corporation 525 Orange Street Milville, New Jersey 08332 Phone: (609) 825-6900 & Polyester, Polycarbonate or Acrylic laminated display panels and membrane switch panels \\
\hline
\end{tabular}

\section*{Filtering Green Displays (\(\lambda_{\mathbf{P}}=\mathbf{5 6 5} \mathbf{~ n m}\))}

Since the peak wavelength of a green display is typically only 10 nm away from the peak of the standard observer curve, it is difficult to achieve high contrast through filtering. A long wavelength pass filter, such as is used for red and yellow displays, is no longer effective. An effective filter for dim ambients is a band pass yellow-green filter which peaks in the region of the LED spectrum. Similar to yellow band pass filters, the recommended green band pass filter reduces background reflected light (see Figure 9) by having

Glass Filter Manufacturers
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Manufacturer } & \multicolumn{1}{c|}{ Product } \\
\hline Schott Optical Glass Inc. & Glass wavelength and \\
Duryea, PA 18642 & neutral density filters. \\
Phone: (717) 457-7485 & \\
Schott Glass Vlaswerke & \\
Hattenbergstrasse No. 10 & \\
6500 Mainz & \\
W. Germany & \\
Phone: 49-61-31-661 & \\
\hline Hoya Optics U.S.A., Inc. & Glass wavelength and \\
3400 Edison Way & neutral density filters. \\
Fremont, CA 94538 & \\
Phone: (415) 490-1880 & \\
\hline OCLI & \\
Optical Coating Laboratories, Inc. & anti-refficiency, \\
2789 Northpoint Parkway (HEA®) & coatings for glass filters. \\
Santa Rosa, CA 95401-7397 & \\
Phone: (707) 545-6440 & \\
OCLI Europe & \\
621 London Road & \\
High Wycombe, Buckinghamshire & \\
England HP11 1ET & \\
Phone: (0494) 36286 & \\
\hline Polaroid Corporation & Optically-coated glass \\
Polarizer Division & with circular polarizer. \\
One Upland Road & \\
Norwood, MA 02062 & \\
Phone: (617) 769-6800 & \\
Polarizers (U.K.) Ltd. & \\
Lincoln Road & \\
Cressex Estates & \\
High Wycombe, Buckinghamshire \\
England & \\
Phone: High Wycombe01-205-025 & \\
\hline
\end{tabular}
a much lower transmission than a red filter. Figure 12 shows the effect of a green band pass filter on a green LED with a peak wavelength of 565 nm . Although only \(33 \%\) of LED emitted light passes through the filter, the contrast is enhanced. Due to the increased sensitivity of the eye to background reflected light, a gray filter with 20-25\% transmission is recommended for moderate ambients and a lower transmission gray filter of \(18-20 \%\) for brighter ambients.

Figure 12. Effect of a Bandpass Wavelength Filter on a Green LED Display.

Table 4. Recommended Products and Applications for Plastic and Glass Filters
\begin{tabular}{|c|c|c|c|c|}
\hline Filter Products & \% Transmission at LED Peak & \begin{tabular}{l}
LED \\
Display Color
\end{tabular} & Ambient Lighting & Maximum Front Surface Texture If Desired \\
\hline \multicolumn{5}{|l|}{PLASTIC FILTER PRODUCTS} \\
\hline \multicolumn{5}{|l|}{SGL Homalite Grade 100} \\
\hline H100-1650 & 75\% & \begin{tabular}{l}
Stand. \\
Red
\end{tabular} & \begin{tabular}{l}
Dim \\
Moderate
\end{tabular} & \[
\begin{aligned}
& \text { LR-72 } \\
& \hline
\end{aligned}
\] \\
\hline H100-1670 & 71\% & High Effic. Red & \begin{tabular}{l}
Dim \\
Moderate
\end{tabular} & \[
\begin{aligned}
& \text { LR-72 } \\
& \text { LR-92 }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{H} 100-1720 \\
& \mathrm{H} 100-1726
\end{aligned}
\] & \[
\begin{aligned}
& 46 \% \\
& 34 \%
\end{aligned}
\] & Yellow & Dim to Moderate & LR-72 \\
\hline \[
\begin{aligned}
& \mathrm{H} 100-1440 \\
& \mathrm{H} 100-1425
\end{aligned}
\] & \[
\begin{aligned}
& 40 \% \\
& 25 \%
\end{aligned}
\] & Green & Dim & \[
\begin{aligned}
& \text { LR-72 } \\
& \text { LR-92 }
\end{aligned}
\] \\
\hline H100-1266 (Gray) H100-1250 (Gray) H100-1230 (Bronze) & \[
\begin{aligned}
& 25 \% \\
& 26 \% \\
& 25 \%
\end{aligned}
\] & All & Bright or Sunlight & None \\
\hline \multicolumn{5}{|l|}{Rohm \& Haas - Plexiglas \({ }^{\text {® }}\)} \\
\hline 2423 & 65\% & Stand. Red & Moderate & \\
\hline 2074 (Gray) 2370 (Bronze) 2538 (Gray) & \[
\begin{aligned}
& 20 \% \\
& 15 \% \\
& 16 \%
\end{aligned}
\] & All & Bright or Sunlight & \\
\hline \multicolumn{5}{|l|}{Chequers Engraving Ltd. - Spectrafilter®} \\
\hline \[
\begin{aligned}
& 118 \\
& 112
\end{aligned}
\] & \[
\begin{aligned}
& 85 \% \\
& 45 \%
\end{aligned}
\] & \begin{tabular}{l}
Stand. \\
Red
\end{tabular} & \begin{tabular}{l}
Dim \\
Moderate
\end{tabular} & Glarecheq \\
\hline \[
\begin{aligned}
& 110 \\
& 112
\end{aligned}
\] & \[
\begin{aligned}
& 80 \% \\
& 20 \%
\end{aligned}
\] & High Effic. Red & \begin{tabular}{l}
Dim \\
Moderate
\end{tabular} & Glarecheq \\
\hline 106 & 32\% & Yellow & Moderate & Glarecheq \\
\hline 107 & 48\% & Green & Dim & Glarecheq \\
\hline 105 (Gray) & 23\% & All & \begin{tabular}{l}
Bright or \\
Sunlight
\end{tabular} & None \\
\hline \multicolumn{5}{|l|}{3M Company - Panel Film \({ }^{\text {® }}\) or Light Control Film \({ }^{\text {® }}\)} \\
\hline \begin{tabular}{l}
R6510 \\
P7710 (Purple)
\end{tabular} & \[
\begin{aligned}
& 70 \% \\
& 85 \% \\
& \hline
\end{aligned}
\] & Stand. Red & Dim to Moderate & ABM6 \\
\hline R6310 & 67\% & High Effic. Red & Dim to Moderate & ABM6 \\
\hline A5910 & 45\% & Yellow & Moderate & ABM6 \\
\hline ND0220 (Gray) & 27\% & All & Bright or Sunlight & Glos \\
\hline \multicolumn{5}{|l|}{Panelgraphic Corporation Chromafilter®} \\
\hline Ruby Red 60 Dark Red 63 & \[
\begin{aligned}
& \hline 70 \% \\
& 50 \%
\end{aligned}
\] & Stand. Red & \begin{tabular}{l}
Dim \\
Moderate
\end{tabular} & Anti-Reflection None \\
\hline Scarlet Red 65 & 60\% & High Effic. Red & Dim & Anti-Reflection \\
\hline \begin{tabular}{l}
Yellow 27 \\
Amber 23
\end{tabular} & \[
\begin{aligned}
& 30 \% \\
& 27 \%
\end{aligned}
\] & Yellow & \begin{tabular}{l}
Dim \\
Moderate
\end{tabular} & Anti-Reflection None \\
\hline Green 48 & 48\% & Green & Dim & Anti-Reflection \\
\hline Gray 15 Gray 10 & \[
\begin{aligned}
& \hline 17 \% \\
& 23 \%
\end{aligned}
\] & All & Bright or Sunlight & None \\
\hline \multicolumn{5}{|l|}{Duralith Corporation} \\
\hline \begin{tabular}{l}
Red \\
Gray
\end{tabular} & \% transmi can be requested & Stand. Red High Effic. All & & \\
\hline
\end{tabular}

Table 4. Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Filter Products & \begin{tabular}{l}
\% \\
Transmission at LED Peak
\end{tabular} & LED Display Color & Ambient Lighting & Maximum Front Surface Texture If Desired \\
\hline \multicolumn{5}{|l|}{Polaroid Corporation - Polarizing Filters} \\
\hline HRCP Red & 30\% & Stand. Red & Moderate & Non-Glare \\
\hline HACP Amber HACP 10 (Amber/Gray) & \[
\begin{aligned}
& 37 \% \\
& 13 \%
\end{aligned}
\] & Yellow & Moderate Bright or Sunlight & Non-Glare None \\
\hline HNCP 37 (Gray) & 37\% & All & Moderate & Non-Glare \\
\hline \multicolumn{5}{|l|}{GLASS FILTER PRODUCTS} \\
\hline \multicolumn{5}{|l|}{Schott Optical Glass Inc.} \\
\hline \[
\begin{aligned}
& \text { RG-645 } \\
& \text { RG-630 }
\end{aligned}
\] & \[
\begin{aligned}
& 80 \% \\
& 97 \%
\end{aligned}
\] & Stand. Red & Moderate Dim & \\
\hline RG-610 & 95\% & High Effic. Red & Dim & \\
\hline \multicolumn{5}{|l|}{Hoya Optics Inc.} \\
\hline R-62 & 90\% & Stand. Red & Moderate & \\
\hline RG-60 & 85\% & High Effic. Red & Moderate & \\
\hline \multicolumn{5}{|l|}{Polaroid Corporation - Polarizing Filters} \\
\hline HNCP10 (Gray) & 10\% & All & Sunlight & HEA Coated Glass \\
\hline \multicolumn{5}{|l|}{OCLI Laboratories} \\
\hline HEA® Coatings Placed o & ters & & & \\
\hline
\end{tabular}

\section*{Filtering All Display Colors}

If displays of different colors are to be placed behind one filter, a neutral density gray filter is the best choice. Neutral density gray filters have nearly constant transmission across the visible spectrum. They enhance contrast by attenuating ambient light twice, both as it enters the filter and after reflection, whereas the LED emitted light is attenuated only once. To maximize the contrast between off elements and the background, \(18-25 \%\) transmission is recommended (see Figure 10). To minimize the contrast between off elements and the background, a gray bodied display should be used, although colored bodied displays can also be used behind a gray filter. Also, as mentioned in filtering high efficiency red displays, neutral density gray filters with nearly constant transmission offer the advantage of minimizing intensity variations between displays.
In addition, neutral density gray filters with 18-25\% transmission are recommended for bright indoor ambients above 200 footcandles and for sunlight ambients. As explained later in Section 2 the gray filter increases readability in bright ambients by enhancing the color contrast between the illuminated elements and the background. The exact transmission is dependent upon the filter front surface reflectance and the level of ambient lighting. In moderate to bright ambients a filter with fairly low diffuse reflectance and \(20-25 \%\) transmission is recommended. For brighter ambients, above 1000 footcandles, a filter with lower diffuse reflectance and \(15-20 \%\) transmission is recommended.

\section*{Special Wavelength Filters and Filters In Combination}

A designer is not limited to a single color wavelength or a neutral density filter to achieve the desired contrast and front panel appearance. Some unique wavelength filters and filter combinations have been successfully developed. One is the purple color filter for use with red LED displays, and another is the use of a neutral density filter in combination with a light amber filter to achieve a dark front panel for yellow LED displays.

The Purple Contrast Filter for Red LED Displays: The filters that have been previously discussed provide a high level of contrast between the illuminated display elements and the surrounding background. Another approach achieves the same contrast ratio, but has a background color quite different than the color of the illuminated LEDs. This color contrast is accomplished by using a dark purple filter with standard red LED displays, as shown in Figure 13. Purple is a mixture of red and blue light which is perceived by the eye as a distinct color from red. Psychologically, a purple contrast filter is more pleasing to many people than a red filter. The reason for this may be that when illuminated, the standard red display stands out vividly against the purple background. Since it is the color difference that enhances the contrast, the purple contrast filter is extremely effective in bright ambients.

Filters in Combination: A neutral density gray filter is often used in combination with other filters to provide a dead front appearance as well as increased contrast in bright ambients. A typical example is given in Figure 14. The resulting filter is the product of the relative transmittance of the light amber, \(\operatorname{TLA}(\lambda)\), and the relative transmittance of the neutral density gray, TNG(\(\lambda\)).
\[
\text { Filter Transmission }(\lambda)=\{\operatorname{TLA}(\lambda) \operatorname{TNG}(\lambda)\rfloor
\]

The amount of light reaching the eye of a viewer is \(24 \%\) of the unfiltered LED spectrum.

Fraction of
Available Light
Through a
\[
=\frac{\int \ell(\lambda) Y(\lambda)[T L A(\lambda) T N G(\lambda)] d \lambda}{\int \ell(\lambda) Y(\lambda) d \lambda}
\]

Combination Filter
Where \(\ell(\lambda)=\) radiated spectrum of the illuminated light emitting element (see Table 1)
\(Y(\lambda)=\) the 1931 CIE standard observer curve (see Wyzecki \& Stiles, Color Science)

TLA \((\lambda)=\) relative transmission characteristic of the filter (supplied by filter manufacturer)
\(\mathrm{TNG}(\lambda)=\) relative transmission characteristic of the filter. (For neutral density gray filters the transmission can be considered a constant across the visible spectrum)

The advantage is a dark gray front panel window with very low luminous sterance (zero transmission below 525 nm) that retains its appearance in bright ambients. The disadvantage is a considerable reduction in the luminous sterance of the display. This is somewhat offset by the distinct color difference between the illuminated yellow segments of the display and the dark gray background.

Another example is a purple or long pass red filter used behind a neutral density gray filter. The recommended transmittance for both of these filter combinations is dis-
cussed further in Section 2, Filter Recommendations for Seven Segment Displays and Filter Recommendations for Dot Matrix Displays.

The disadvantage of using two filters in combination is the added loss of LED emitted light due to four filter air interfaces rather than two interfaces. As shown in Filter Transmittance, a single plastic filter with a homogeneous index of refraction equal to 1.5 will lose \(4 \%\) of LED emitted light at each interface. To avoid any additional loss the two filters should be laminated together with an epoxy that nearly matches the index of refraction of the filter materials.

Figure 14. A Neutral Density Gray Filter in Combination with a Light Amber Filter for Use with Yellow Displays.

Figure 13. A Purple Color Wavelength Filter for Standard Red LED Displays.

\section*{FILTER MATERIAL AND FILTER REFLECTANCE}

\section*{Plastic Filters}

Due to their low cost, ease in machining to size and resistance to breakage, plastic contrast filters are being used in the majority of display applications. Most manufacturers of plastic filters for use with LED displays provide relative transmission curves similar to those presented in Figures 6 through 10. When selecting a filter, the transmittance curve shape, attenuation at the peak wavelength, wavelength cut off and front surface reflectance should be carefully considered to obtain optimum contrast. As mentioned previously, in dim to moderate ambients, a textured plastic filter can be used. However, in bright ambients an untextured filter with low diffuse reflectance is the best choice.
Four manufacturers of plastic wavelength filters include Rohm \& Haas Company (Plexiglas \({ }^{\circledR}\)), Chequers Ltd. (Spectrafilter \({ }^{\circledR}\)), SGL Homalite, 3M-Company (Panel Film \({ }^{\circledR}\)), and Panelgraphic Corp. (Chromafilter \({ }^{\circledR}\)). The LED filters produced by these manufacturers are usable with all LED displays and lamps. Table 3 lists some of the filter manufacturers and where to obtain more information. Table 4 lists specific wavelength and neutral density filters along with recommended applications.

\section*{Optical Glass Filters}

Optical glass filters are typically designed with constant density, so it is the thickness of the glass that determines the transmission. This is just the opposite of plastic filters which are usually designed such that all material thicknesses have the same transmission.
The primary advantage of an optical glass contrast filter over a plastic filter is its superior performance. This is especially true for red LED filters. Figure 15 illustrates a red optical glass filter for use with high efficiency red LED displays. The relative transmittance is generally higher than that of a comparable plastic filter, and the slope of the relative transmittance curve is usually much steeper and more closely follows the shape of the radiated spectrum of the LED.
The front surface of an uncoated glass filter typically has \(4 \%\) specular reflectance and negligible diffuse reflectance. If the filter is to be used in a bright ambient, a High Efficiency Antireflection (HEA) coating can be applied to the front surface. As explained in Example - Dot Matrix LED Display and Filter, HEA coatings reduce front surface specular reflectances to \(0.25 \%\) across the visible spectrum.
Some leading manufacturers of optical glass filters are the Schott Optical Glass, Inc. of Duryea, Pennsylvania and Munich, Germany and Hoya Optics of Fremont, California.
A leading producer of High Efficiency Antireflection (HEA) coated glass is OCLI, Optical Coating Laboratories Inc. of Santa Rosa, California. Table 3 lists some of the filter manufacturers and where to obtain more information. Table 4 lists specific wavelength and neutral density filters along with recommended applications.

\section*{EFFECTIVENESS OF A WAVELENGTH FILTER IN AN AMBIENT OF ARTIFICIAL LIGHTING}

Contrast is very dependent upon the ambient lighting. Figure 16 reproduces the spectral distribution for fluorescent lighting, incandescent lighting, and sunlight. \({ }^{|3|}\) Fluorescent lighting contains almost no red, yet contains a considerable amount of yellow and long wavelength green. Incandescent lighting is just the opposite. Due to these differences in color content, it is very important to define all lighting spectrums under which the display may be viewed. If a filter is chosen using indoor incandescent lighting, the display may not be readable when used in a sunlight ambient. One frequently encountered example was found in watches and calculators where a high pass red filter was used with a red light emitting display.
If most of the spectral distribution of the artificial lighting is outside of the radiated spectrum of the LED, it is very easy to reduce the reflected ambient light to a very low level without sacrificing too much LED emitted light. Figure 16 also shows the relationship between the peak wavelengths of a red, yellow and green LED and artificial lighting. A red LED can be effectively filtered in a fluorescent ambient because of the lack of red wavelengths in that spectrum. Whereas, in incandescent lighting it is very difficult to reduce the reflected ambient light off a red LED display package. A green LED display can be effectively filtered in an incandescent ambient because of the lack of green wavelengths in that spectrum. Whereas, in fluorescent lighting it is difficult to reduce the reflected ambient light off the display package without significantly decreasing the LED emitted light.

Figure 15. A Red Optical Glass Filter for use with High Efficiency Red LED Displays.

\section*{SECTION 2: FILTERING IN BRIGHT SUNLIGHT AMBIENTS}

In recent years, light emitting diode (LED) displays have been used in an increasing number of avionics, automotive, and other applications where high levels of ambient light are present. LED displays of the latest package design and with the brightest dye and appropriate contrast enhancement filters, are now being used in ambients up to 107,000 \(\mathrm{Im} / \mathrm{m}^{2}\) (10,000 footcandles). In these bright ambients the following parameters effect the readability of an LED display:
a) Luminance contrast
b) Chrominance (color) contrast
c) Front surface reflections

Historically, when determining sunlight readability, most engineers have considered only the luminance contrast the ratio of sterance between the illuminated element and its background. Unfortunately, this approach neglects the chrominance contrast of the display - the color difference between the illuminated element and its background. Color must be considered because the eye is sensitive to color differences, as well as differences in luminance. Finally, the luminance and chrominance contrast can be combined into a quantitative measure of sunlight readability, known as the discrimination index. This index was first proposed in 1975 by Jean Pierre Galves and Jean Brun \({ }^{4 \mid}\) at the 29th Agard Avionics Panel Technical meeting in Paris, France
and later adapted to LED displays in 1977 by Dave Evans. \({ }^{|5|}\) Discrimination indices determined under similar ambient conditions permit LED displays to be ranked in order of readability.
The effect of ambient reflected light, briefly mentioned in the Discrimination Index theory is more fully defined in this application note. Specifically examined is how light reflected off the front surface of the filter affects the calculation of luminance contrast and how the color of the emitted light mixed with ambient reflected light affects the chrominance contrast. In order to quantify these effects, the sunlight ambient, the reflectance characteristics of the display and filter surfaces, as well as the observer's viewpoint must be defined.
Sunlight is defined according to it's spectrum, intensity and luminous distribution. As shown in Figure 16 the spectrum of bright sunlight is nearly a flat curve across the visible spectrum. The worst case intensity of bright sunlight can range from 5,000 footcandles falling on an automobile dashboard to 7,000 footcandles for commercial aircraft with a fixed overhead, up to 10,000 footcandles for military aircraft. Two worse case sky luminous distributions should be considered; the sun as a single spot source, and a diffuse sunlight ambient. The first condition describes a clear blue

Figure 16. Spectral Distribution for Sunlight, Daylight Fluorescent and Incandescent Ambient Lighting.
sky where the bright glare of the sun's image is reflected back into the observer's view. Because the sterance of the sun's reflected image off of any optical filter is several orders of magnitude greater than the sterance of the illuminated elements, a portion of the illuminated elements will be masked from view. However, it should be remembered that in reality this worst case viewing condition is seldom encountered. Also, with standard mounting techniques the reflected image of the sun can be blocked from the front surface of the filter.
On the other hand, a more commonly encountered worst case viewing condition is a diffuse sunlight ambient that is incident on a filtered display. This condition describes a clear blue sky, ignoring the reflected image of the sun. In the following sections the sky luminous distribution is considered to be a diffuse sunlight ambient.
To understand filtering in bright sunlight ambients according to the Discrimination Index Theory the following topics will be discussed. First, the effectiveness of wavelength filters in diffuse sunlight ambients will be determined. Second, the reflectance of LED display and filter front surfaces will be discussed. Third, the luminance, chrominance and discrimination indices will be defined with special consideration for the effect of ambient reflected light. Fourth, specific filtering techniques will be presented using a seven segment display example and an alphanumeric display example in an ambient of \(107,000 \mathrm{Im} / \mathrm{m}^{2}\). Finally, as a guide for design engineers, specific recommendations for filtering red, yellow, and green displays will be presented along with a list of plastic and glass filter manufacturers.

\section*{EFFECTIVENESS OF A WAVELENGTH FILTER IN SUNLIGHT AMBIENTS}

Wavelength filters are not recommended for sunlight ambients due to the undesirable affects on luminance and chrominance contrast. Certain high transmission wavelength filters will create insufficient luminance contrast. This occurs when the combination of reflected sterance off the display background, as seen through the filter and off the front surface of the filter, is far greater than the sterance of the light emitting elements.
Also, wavelength filters create little color contrast between the light emitting elements and the background. This is due to the fact that color is determined by the wavelengths of emitted or reflected light. Wavelength filters pass a large amount of reflected background light having the same wavelength as the LED emitted light. Thus, a red display with a red filter in a sunlight ambient will appear to have both red light emitting elements and a red background. Readability will be poor due to the lack of color contrast.
Although wavelength filters are not recommended for sunlight ambients other filters can be used. Actually, LED displays are quite readable in diffuse sunlight ambients if the package design and filtering techniques optimize both luminance and chrominance contrast. Before defining luminance and chrominance contrast, the effect of front surface reflectance should be considered.

\section*{DISCRIMINATION INDEX THEORY}

\section*{Front Surface Reflectance}

The Discrimination Index theory can be applied to any display technology. However, it is important to consider the front surface reflectance of the display package and even
more importantly the reflectance of the filters which are typically used to enhance contrast. Front surface reflectance will decrease the contrast ratio and also desaturate the color of the display. Color desaturation occurs in bright sunlight when the eye mixes the display emitted light with the reflected ambient light.
The amount of reflected ambient light in a diffuse sunlight ambient is dependent upon the front surface material and also on the viewing condition. As shown in Figure 17 there are two viewing conditions that should be considered. First is a typical viewing condition where the observer sees only diffuse reflectance. Diffuse reflectance refers to scattered light. A highly diffusing surface will appear equally bright from all angles of view because the radiation pattern is nearly lambertian. For a lambertian pattern, the intensity of emitted light varies as the cosine of the off-axis angle. The examples in LED Seven Segment Display Example and Dot Matrix LED Display Example assume all devices measured are lambertian. Thus, for diffuse reflectance the total percent reflected light is divided by \(\pi\) to arrive at the sterance (\(\mathrm{cd} / \mathrm{m}^{2}\)).

DIFFUSE WITH SPECULAR COMPONENT

Figure 17. Types of Background Reflections from Display Surfaces - Two Viewing Conditions.

Second, is a worst case viewing condition where the observer sees both diffuse and specular reflectance. Specular reflectance refers to a ray or beam of light that is reflected from a planar surface, such as a mirror, where the angle of reflection equals the angle of incidence. Both angles are measured from a line perpendicular to the surface called the normal. The formulas used to calculate luminance index and chrominance index under conditions of reflected ambient light are derived in the following section. Appendix A shows the integrals used in computation.

\section*{Luminance Contrast and Luminance Index \({ }^{[6]}\)}

As previously defined in Enhancement of Luminance Contrast - Filtering, the luminance contrast ratio for a filtered LED display is given by the following equation:
\[
\begin{equation*}
\underset{\text { Contrast }}{\text { Ratio }} \quad \mathrm{CR}=\frac{\mathrm{L}_{v} \mathrm{~S}+\mathrm{L}_{v} \mathrm{OFF}+\mathrm{L}_{v} \mathrm{~F}}{\mathrm{~L}_{v} \mathrm{~B}+\mathrm{L}_{v} \mathrm{~F}} \tag{7}
\end{equation*}
\]

Luminance difference, EL, can be defined as the eye's response to the contrast ratio. Because the eye responds to changes in light levels logarithmically, EL is defined as
\[
\begin{equation*}
\text { (Luminance Difference) } E L=\log C R \tag{8}
\end{equation*}
\]

As established in photography and television, the smallest discernable contrast ratio the eye can perceive is 1.05 . This contrast ratio of 1.05 inserted in the luminance difference equation (EL) yields a threshold luminance difference (ELTH) of 0.021 . However, for comfortable discernability it has been demonstrated in photography and television that a contrast ratio of 1.4 between two pieces of monochrome information is desirable. This yields a luminance difference of 0.15 , called a unitary luminance difference (ELU) which is seven times the threshold luminance difference (ELTH).
\[
\begin{equation*}
\text { ELTH }=\log 1.05=0.021 \tag{9}
\end{equation*}
\]
\[
\operatorname{ELU}=\log 1.4=0.15
\]

The unitary luminance difference (ELU) can be visually observed by comparing two monochromatic steps on the Kodak gray scale that are four steps apart. On the gray scale each step represents a \(10 \%\) change in luminance, so two steps, four steps apart, represents a \(40 \%\) change in luminance.
The ratio of the luminance difference of an actual display compared to the unitary luminance difference (ELU) is called the luminance index (IDL). An IDL value of one would imply a display with a luminance difference just large enough for comfortable discernability. Any value of luminance index greater than or equal to one is desirable.
\[
\begin{align*}
& \text { (Luminance } \\
& \text { Index) }
\end{align*} \mathrm{IDL}=\frac{E L}{E L U}=\frac{\log C R}{0.15}
\]

Thus, using the previously defined contrast equation, the luminance index for a filtered LED display becomes:
\[
\left.\underset{\text { Filtered LED Display }}{\text { Luminance Index }} \text { IDL }=\log \frac{\left(\frac{L_{v} S+L_{v} O F F+L_{v} F}{L_{v} B+L_{v} F}\right)}{0.15}\right)_{(11)}
\]

\section*{Chrominance Contrast and Chrominance Index \({ }^{[7]}\)}

Chrominance contrast is a normal part of everyday life. For example, an observer can easily distinguish a gold braid on a purple robe. Even so, the concept of chrominance contrast has only recently been applied to light emitting displays in order to achieve readability in bright sunlight. Before defining chrominance contrast and chrominance index, the determination of LED color and the concept of color difference must be explained.
LED Color: High efficiency red, yellow and green devices of the GaP substrate technology are possible colors for use in sunlight ambients. The GaP (gallium phosphide) substrate LED technology is chosen because its quantum efficiency is significantly higher than the GaAs (gallium arsenide) substrate technology.
The 1931 CIE Chromaticity Diagram is used to objectively determine the color of an LED. The CIE system is based on the concept of additive color mixing as derived from experiments in which colors were matched by mixing colored lights. LED color is defined by the dominant wavelength which is that wavelength of the color spectrum which, when additively mixed with the light from the source CIE illuminant \(C\), will be perceived by the eye as the same color as is produced by the radiated spectrum. CIE illuminant C is a 6500-degree Kelvin color temperature source
that produces light which simulates the daylight produced by an overcast sky. A graphical definition of \(\lambda \mathrm{d}\) and color purity is given on the CIE chromaticity diagram in Figure 18. The dominant wavelength is derived by first obtaining the \(x, y\) color coordinates from the radiated spectrum. These color coordinates are then plotted on the CIE chromaticity diagram. A line is drawn from the illuminant \(C\) point through the \(x, y\) color point intersecting the perimeter of the diagram. The point where the line intersects the perimeter is the dominant wavelength, \(\lambda \mathrm{d}\). The dominant wavelengths and corresponding colors for LEDs are shown on the CIE chromaticity diagram in Figure 19.

Also shown in Figure 18 is the color purity, or saturation, which is defined as the ratio of the distance from the \(x, y\) color point to the illuminant \(C\) point, divided by the sum of this distance and the distance from the \(x, y\) point to the perimeter. The \(\mathrm{x}, \mathrm{y}\) color coordinates for LEDs plot very close to the perimeter of the chromaticity diagram. Therefore, the color purity approaches a value of 1 , typical of the color saturation obtained from a monochromatic light source. However, as discussed in the following section, this color purity is desaturated by reflected ambient light.
Chromatic Distance and the 1960 CIE-UCS Chromaticity Diagram: The ability of the eye to discern the color difference between the illuminated LED and the background can be evaluated by measuring the distance between their respective color coordinates. In this case, the 1931 CIE color system should not be used because the areas of unitary observed color differences are ellipses which leads to errors when using the distance between two color coordinates in the diagram as a measure of color difference. \({ }^{[8]}\) The 1931 system was reshaped in 1960 so that the areas of observed color difference are nearly circular. Although the 1960 Chromaticity Diagram was again reshaped in 1976 to a more uniform color space, a comparison between these two systems shows rather close agreement in red-green chromaticity difference perception and significant disagreement in blue-purple chromaticity difference perception.

In this diagram the distance between any two chromaticity coordinates in the green to red region can be considered a measure of their color difference. For example, Figure 21 shows the chromatic distance (EC) between a gray background and red LED. According to the Discrimination Index Theory, the chromatic distance between an illuminated element and its background can be calculated using the following equation based on the 1960 CIE UCS Chromaticity Diagram.
\[
\text { (Chromatic Distance) } \mathrm{EC}=\sqrt{\left(\mathrm{u}_{\ell}-\mathrm{ub}_{\mathrm{b}}\right)^{2}+\left(\mathrm{v}_{\ell}-\mathrm{v}_{\mathrm{b}}\right)^{2}}
\]

Where \(\left(u_{\ell}, v_{\ell}\right)=\) Color of emitted light

\section*{(\(u_{b}, v_{b}\)) = Color of background reflected light}

However, in actual practice, this chromatic distance is reduced by desaturation of the display color which occurs when ambient light is reflected off the front surface of the filter and the illuminated LED element. The amount of desaturation depends upon the luminance ratio between the LED emitted light and the reflected ambient light. To account for this effect, the Chromatic Distance (EC) equation must be re-written, where the terms \(\mathrm{ub}_{\mathrm{b}} \ell, \mathrm{vb} \ell\) are the color coordinates of the mixture of emitted light and reflected light.

Figure 18. Definition of Dominant Wavelength and Color Purity, Shown on the CIE Chromaticity Diagram.

Figure 20. Additive Color Mixture.

Figure 19. Dominant Wavelengths and Corresponding Colors for LEDs, Shown on the CIE Chromaticity Diagram.
(Chromatic Distance) EC \(=\sqrt{\left(u_{b} \ell^{-} u_{b}\right)^{2}+\left(v_{b} \ell^{-v_{b}}\right)^{2}}\) (13) Where
\[
\left(u_{b_{\ell}}, v_{b_{\ell}}\right)=\underset{\text { reflected light }}{\text { Color mixture of emitted light and }}
\]
(\(u_{b}, v_{b}\)) = Color of background reflected light
The \(u\) and \(v\) coordinates used in the above equations can be calculated using the following principle illustrated in Figure 20, the 1931 Chromacity Diagram.
The chromaticity coordinates representing the mixture of a light source which has luminance \(L\) and chromaticity coordinates (\(\mathrm{x}_{\ell}, \mathrm{y}_{\ell}\)) with a light source which has luminance \(B\) and chromaticity coordinates (\(\mathrm{x}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}\)) lies at point (\(\mathrm{x}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}\)) on the straight line joining (\(x_{\ell}, y_{\ell}\)) and (\(x_{b}, y_{b}\)). The exact point at which (\(\mathrm{x}_{\mathrm{b} \ell, \mathrm{yb}_{\ell} \text {) lies depends upon the ratio of the }}\) luminances L and B. \({ }^{|9|}\) In this case, the ambient reflected light is specified by a sterance B and chromaticity coordinates \(x_{b}, y_{b}{ }^{*}\). The emitted light is specified by a sterance \(L\) and chromaticity coordinates \(x_{\ell}, y_{\ell}\).* The color produced by mixing the emitted light with the reflected ambient light is specified by: \({ }^{[10]}\)
\[
\begin{array}{ll}
x_{b \ell}=\frac{M_{\ell} x_{\ell}+M_{b} x_{b}}{M_{\ell}+M_{b}} & y_{b}=\frac{M_{\ell} y_{\ell}+M_{b} y_{b}}{M_{\ell}+M_{b}} \tag{14}\\
M_{\ell}=\frac{L}{y_{\ell}} & M_{b}=\frac{B}{y_{b}}
\end{array}
\]
* Note: See Appendix B for integrals used to calculate x,y chromaticity coordinates of background and illuminated element.

The quantities \(L\) and \(B\) are in this case specified in \(c d / m^{2}\), however any units of luminous sterance such as footlamberts can be used.

The new chromaticity coordinates \(\mathrm{xb}_{\mathrm{b}}\) and ybl are translated to the 1960 CIE (U,V) coordinate system. The background chromaticity coordinates \(\mathrm{x}_{\mathrm{b}}\) and \(\mathrm{y}_{\mathrm{b}}\) are also translated to \(\mathrm{u}, \mathrm{v}\) coordinates. The results (\(\mathrm{u}_{\mathrm{b} \ell}, \mathrm{v}_{\mathrm{b} \ell}\)) and (\(\mathrm{u}_{\mathrm{b}}, \mathrm{v}_{\mathrm{b}}\)) are used in the previously defined chromatic distance equation (13).

\section*{Chrominance Index}

Threshold chrominance (ECTH), the smallest color difference the eye can discern, was determined by A.H. Jones in 1968 to equal 0.00384 . \({ }^{111 \text { | Based on the assumption that }}\) comfortable color differences can be equated to comfortable luminance differences, Jean Pierre Galves and Jean Brun determined experimentally that the unitary color difference (ECU) for comfortable discernability is seven times the threshold chrominance difference (ECTH).
\[
\begin{align*}
& \mathrm{ECTH}=0.00384 \\
& \mathrm{ECU}=7 \times 0.00384=0.027 \tag{15}
\end{align*}
\]

The ratio of the chrominance difference of an actual display to the unitary chrominance difference (ECU) is called the chrominance index (IDC). A chrominance index of one would imply a display with a color difference just large enough for comfortable discernability. Any chrominance index greater than or equal to one is desirable.
\[
\begin{equation*}
\left(\text { Chrominance Index) IDC }=\frac{E C}{E C U}=\frac{E C}{0.027}\right. \tag{16}
\end{equation*}
\]

Thus, the chrominance index for the illuminated element becomes:
\[
\begin{equation*}
\mathrm{IDC}=\frac{\mathrm{EC}}{0.027}=\frac{\sqrt{\left(u_{\mathrm{b}} \ell-u_{\mathrm{b}}\right)^{2}+\left(\mathrm{v}_{\mathrm{b}} \ell-\mathrm{v}_{\mathrm{b}}\right)^{2}}}{0.027} \tag{17}
\end{equation*}
\]

\section*{Chrominance Contrast of Red, Yellow, Green Displays and} a Gray Background: To increase chrominance contrast most Hewlett-Packard sunlight viewable displays are designed with a neutral gray background. Figure 21 shows the color coordinates for a typical gray background and for a red, yellow and green LED. As can be seen, the chromatic distance between the red LED and the gray background is 3 times the chromatic distance between the yellow LED and the gray background. The difference is even greater when the chromatic distance between a red LED and gray background and green LED and gray background are compared. Therefore, for equal sterance a red display has a chrominance contrast advantage over the yellow or green display. However, all displays can be viewable in sunlight ambients when appropriate filtering techniques are employed.

Figure 21. 1960 CIE-UCS Chromaticity Diagram with the Chromatic Distance Between a Green, Yellow or Red LED and a Gray Background.

\section*{Discrimination Index[12]}

The luminance and chrominance indices can be combined into a figure of merit for readability called the discrimination index. The minimum value of discrimination index for comfortable readability is achieved when either the luminance or chrominance indices are equal to unity.
\[
\begin{align*}
I D & =\sqrt{I D L^{2}+I D C^{2}} \\
I D \min & =1.0 \tag{18}
\end{align*}
\]

To visualize the total achieved contrast between the illuminated element and its background, the discrimination index may be plotted in the three dimensional 1960 CIE-UCS photocolorimetric space. The photocolorimetric space is defined in the horizontal plane by the 1960 (U,V) Chromaticity System and in the vertical plane by the logarithmic luminance scale. \({ }^{113 \mid}\) In Figure 22, the luminance index and chrominance index of the illuminated element is plotted as one point and the display background as another. The distance between these two distinct points is the discrimination index.

Figure 22. Photocolorimetric Space.

\section*{LED SEVEN SEGMENT DISPLAY EXAMPLE}

\section*{LED Seven Segment Display Package}

Seven Segment LED displays designed for high light ambient conditions can be used to illustrate the discrimination index theory. Figure 23 shows the four sizes of displays which allow for viewing distances of \(3,6,7\) and 10 meters. These displays are well suited for bright ambient applications due to the chrominance contrast provided by the display package and luminance contrast due to high brightness LEDs. The LEDs are large junction gallium phosphide chips which have high light output and can be driven at increased drive currents. The segment cavities are designed to maximize sterance (intensity/unit area) as well as to maximize chrominance contrast. The color and reflective characteristics of the untinted epoxy segment nearly matches the color and reflectance of the gray painted background. Thus, the off segments blend into the back-

Figure 23. Sunlight Viewable LED Displays.

Figure 24. Reflectance Characteristic for the Face of a Gray Body Stretched Segment Sunlight Viewable LED Display.
ground in the off condition and in the on condition the eye is not confused as to which segment is illuminated.
To determine sunlight readability of this particular display package diffuse and specular reflectance measurements, as defined in Front Surface Reflectance were taken on the gray paint and the epoxy. The diffuse measurements were taken using a MacBeth densitometer (RD-100R) which measures at an angle of \(45^{\circ}\) and the specular measurements were taken using the Hewlett-Packard 8450A spectrophotometer which measures at an angle of \(30^{\circ}\).
Figure 24 shows the typical reflectance characteristics for the face of a gray body, seven segment display. The gray paint exhibited less than \(0.02 \%\) specular reflectance and 9 \(12 \%\) diffuse reflectance. The epoxy was very close with less than \(0.02 \%\) specular reflectance and \(9 \%\) diffuse reflectance.

\section*{Filters for Contrast Enhancement - Seven Segment LED Displays}

Background diffuse reflectances can be reduced to a low level by using a neutral density gray filter with \(18-25 \%\) transmission across the visible spectrum. Besides attenuating reflected light off the display the neutral density gray filter enhances the chrominance contrast between the illuminated element and the gray display package.

Another consideration is the reflected ambient light, which will significantly reduce the contrast ratio and desaturate the color of the LED emitted light. In Table 5, typical values of diffuse and specular reflectance are shown for plastic filters with textured or untextured front surfaces.

The specular reflectance of either the untextured (4-6\%) or textured (\(2-4 \%\)) filter is fairly high. Thus, when viewed at the angle of specular reflectance the glare off the filter will wash out the light emitting elements. However, untextured plastic filters are frequently used in bright sublight. Untextured filters have a smooth front surface and therefore exhibit large amounts of specular reflectance and little diffuse reflectance. As long as the specular reflectances are directed away from the observer's view, the untextured filter will offer the advantage of minimizing diffuse reflectance. For example, the diagram in Table 5 shows how tilting the top of the filter slightly forward will direct specular reflectance downward, away from the observer's eyes.

The particular transmittance [15-25\%] is dependent upon the filter front surface reflectance and desired front panel appearance. Plastic filters with low diffuse reflectance (0.3-0.7\%) give best results at \(18 \%\) transmission. This lower transmission of \(18 \%\) will also produce a more noticeable dead front appearance than a \(25 \%\) transmission filter.

\section*{Example - Seven Segment LED Display and Filter}

In the following example, a 0.3 -inch yellow LED seven segment display (HDSP-4030) is used with an \(0.7 \%\) diffuse reflectance, neutral density gray untextured plastic filter with \(23 \%\) transmission in an ambient of \(107,000 \mathrm{Im} / \mathrm{m}^{2}(10,000\) footcandles). Only diffuse reflectance is considered because the filter has been mounted such that specular reflectances are directed away from the eyes of the observer.

In Figures 25 through 29 luminance, chrominance and discrimination indices are calculated for two conditions. First, with no consideration of front surface reflectance and second, for a typical viewing condition where the observer only sees diffuse reflectance. As can be seen, the value of each index is reduced by front surface reflectance. If an engineer fails to consider front surface reflectance in his calculations, he may be misled in two ways. First, he may believe that a contrast ratio of 1.79:1 can be achieved. However, when diffuse reflectance is considered, the contrast ratio is reduced to 1.42:1. Second, he may also believe that the chromatic distance between the illuminated LED and the background is 0.0853 . However, when desaturation due to diffuse reflectance is considered the chromatic distance is reduced to 0.0229 .

Finally, when the contrast ratio and chromatic distance are combined into the discrimination index, the consequences of front surface reflectance are evident. The discrimination index without front surface reflectance is 1.58 . When front surface reflectance is considered, the discrimination index is reduced to 1.31, which is still above the minimum of 1.0 for comfortable readability. Although the discrimination index of 1.31 is lower than 1.58 , it is a more realistic value of the discrimination index perceived by the eye.

Table 5. Typical Values of Diffuse and Specular Reflectance for Plastic Filters.

\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Plastic Filter } & \multirow{2}{*}{\begin{tabular}{c}
Diffuse Reflectance \\
at \(\mathbf{0}^{\circ}\)
\end{tabular}} & \multicolumn{2}{|c|}{ Specular Reflectance } \\
\cline { 3 - 4 } & & \(\mathbf{1 0}^{\circ}\) & \(\mathbf{3 0}\) \\
\hline Untextured & \(.3-1.0 \%\) & \(3.0-5.0 \%\) & \(4.0-6.0 \%\) \\
Textured & \(.6-1.3 \%\) & \(1.0-3.0 \%\) & \(2.0-4.0 \%\) \\
\hline
\end{tabular}

NOTE:
A FILTER WINDOW CANTED FORWARD WITH RESPECT TO THE PLANE OF the face of the display directs reflection away from the eyes OF AN OBSERVER

\[
\begin{aligned}
\mathrm{IDL} & =\frac{\mathrm{LOG} \mathrm{CR}}{0.15} \\
\mathrm{CR} & =\frac{\mathrm{LvS}+\mathrm{LvB}}{\mathrm{LvB}} \\
\mathrm{CR} & =\frac{573 \mathrm{~cd} / \mathrm{m}^{2}+721 \mathrm{~cd} / \mathrm{m}^{2}}{721 \mathrm{~cd} / \mathrm{m}^{2}} \\
\mathrm{CR} & =1.79 \\
\mathrm{IDL} & =1.69
\end{aligned}
\]

Figure 25. Luminance Index - No Front Surface Reflectance.

\[
\begin{aligned}
\text { IDC } & =\frac{\sqrt{\Delta u^{2}+\Delta v^{2}}}{0.027} \\
\sqrt{\Delta u^{2}+\Delta v^{2}} & =0.0853 \\
\text { IDC } & =\frac{0.0853}{0.027} \\
\text { IDC } & =3.16
\end{aligned}
\]

\(\mathrm{IDL}=\frac{\mathrm{LOGCR}}{0.15}\)
\(C R=\frac{L_{v} S+L_{v} B+L_{v} F}{L_{v} B+L_{v} F}\)
\(\mathrm{CR}=\frac{573 \mathrm{~cd} / \mathrm{m}^{2}+721 \mathrm{~cd} / \mathrm{m}^{2}+681 \mathrm{~cd} / \mathrm{m}^{2}}{721 \mathrm{~cd} / \mathrm{m}^{2}+681 \mathrm{~cd} / \mathrm{m}^{2}}\)
\(\mathrm{CR}=1.41\)
IDL \(=0.99\)

Figure 26. Luminance Index - Diffuse Front Surface Reflectance.

\[
\begin{aligned}
\text { IDC } & =\frac{\sqrt{\Delta u^{2}+\Delta v^{2}}}{0.027} \\
\sqrt{\Delta u^{2}+\Delta v^{2}} & =0.0229 \\
\text { IDC } & =\frac{0.0229}{0.027} \\
\text { IDC } & =0.848
\end{aligned}
\]
\[
I D=\sqrt{I D L^{2}+I D C^{2}}
\]
HDSP-4030 @ 6.3mcd/
segment
No Front Surface
Reflectance \(\quad\)\begin{tabular}{rl}
IDL \(=1.69\) \\
IDC \(=3.16\) \\
ID \(=\sqrt{1.692+3.162}\) \\
ID \(=3.58\)
\end{tabular}
HDSP-4030 @ 6.3mcd/ segment .7\% Diffuse Front Surface Reflectance
\[
\begin{aligned}
\mathrm{IDL} & =.99 \\
\mathrm{IDC} & =.85 \\
\mathrm{ID} & =\sqrt{.99^{2}+.85^{2}} \\
\mathrm{ID} & =1.31
\end{aligned}
\]

Figure 29. Discrimination Index Calculations for no Front Surface Reflectance and for Diffuse Front Surface Reflectance.

\section*{FILTER RECOMMENDATIONS FOR SEVEN SEGMENT DISPLAYS}

\section*{Plastic, 0.7\% Diffuse Reflectance}

To obtain filter recommendations for design engineers, three red, yellow, and green seven segment displays were modeled in a computer program in the same fashion as the previous example. A variety of untextured plastic filters, each with a typical diffuse front surface reflectance of \(0.7 \%\) were also modeled, and discrimination indices calculated in an ambient of \(107,000 \mathrm{~lm} / \mathrm{m}^{2}(10,000\) footcandles). Based on the discrimination index theory and observation at Hewlett-Packard, the following recommendations are suggested to maximize readability.
For High Efficiency Red Seven Segment Displays, A Neutral Density Gray Filter or Double Band Pass Filter Produces Highest Values of Discrimination Index (see Figure 30).

Figure 30 summarizes luminance, chrominance and discrimination indices for neutral density gray (\(23 \% \mathrm{~T}\)), long pass (\(70 \% \mathrm{~T}\) at LED peak), and double band pass (\(520-560 \mathrm{~nm} 30 \%\) T, \(610-660 \mathrm{~nm} 30 \%\) T) filters. The chrominance index of the neutral density gray filter is seven times the chrominance index of the long pass red filter. This is because the color of the display background is a function of its reflectivity and the wavelengths of reflected light. The gray background of seven segment displays reflects all wavelengths of visible light equally. The neutral density gray filter also attenuates all wavelengths of visible light equally, and therefore, the display background maintains its original gray color. This is advantageous because the large color difference between the gray background and red illuminated LED improves readability.

On the other hand, the long pass red filter does not attenuate all wavelengths of visible light equally. It passes wavelengths only in the red region which causes the gray display background to appear red in color. For this reason, red filters that are perfectly acceptable indoors are difficult to use in bright sunlight, where there is very little color difference between the red background and the red illuminated LED.

A theoretical double band pass filter was also programmed into the computer. The idea was to create a greater chrominance difference between the illuminated element and the background by passing more reflected light at a wavelength other than that of the illuminated LED. In this case, a chrominance index of 4.03 was achieved in comparison to a chrominance index of 3.07 for a neutral density gray filter. The resulting discrimination
index of 4.17 is larger than the discrimination index of 3.21 for a neutral density gray filter. This double band pass filter may be achievable by placing a purple filter (\(50 \% \mathrm{~T}\)) behind a neutral density gray filter (\(45 \% \mathrm{~T}\)).

Figure 30. HDSP-3530 High Efficiency Red 0.30-inch Display.
For Yellow Seven Segment Displays a Combination Neutral Density Gray/Amber or Neutral Density Gray Filter Produces High Values of Discrimination Index (see Figure 31).

Figure 31. HDSP-4030 Yellow 0.30 -inch Display.

The value of discrimination index for a neutral density gray/amber filter with \(20 \%\) transmission at the LED peak is 1.50; and for a neutral density gray filter with \(23 \%\) transmission across the visible spectrum is 1.31 . Of these two filters the luminance and chrominance indices of the amber/neutral density gray filter is slightly higher than the luminance and chrominance indices of the neutral density gray filter. Either filter is acceptable depending on the desired front panel appearance.

For Green Seven Segment Displays a Neutral Density Gray Filter Produces Highest Values of Discrimination Index (see Figure 32).
A neutral density gray filter with 23\% transmission across the visible spectrum produces a discrimination index of 1.10. Another possibility is a double band pass filter which would increase the chrominance difference between the illuminated LED and the background by passing reflected light of a wavelength other than that of the illuminated LED. However, the feasibility of production and expense of this filter may not warrant its development for use with green seven segment displays.

Figure 32. HDSP Green 0.30 -inch Display.

\section*{Plastic, Louvered Filters}

A louvered filter operates similarly to a venetian blind. As shown in Figure 33, light from the LED display passes between the louvers to the observer. On the other hand, incoming off-axis ambient light is blocked by the louvers and therefore is not reflected off the face of the display back to the observer. Although this results in a very high contrast ratio, the trade-off is a restricted viewing angle. For example, the zero degree louver filter shown in Figure 33 has a horizontal viewing angle of \(180^{\circ}\), however, the vertical viewing included angle is \(60^{\circ}\). The louver aspect ratio (louver depth/distance between louvers) determines viewing angle.
Some applications require a louver orientation other than zero degrees. For one example, an \(18^{\circ}\) louvered filter may be used on the sloping top surface of a point of sale terminal. A second example is the use of a \(45^{\circ}\) louvered filter on overhead instrumentation to block out ambient light from ceiling mounted lighting fixtures.
AVAILABLE OPTIONS FOR LOUVERED FILTERS -
ANY COMBINATION IS POSSIBLE
\begin{tabular}{|c|c|l|}
\hline ASPECT RATIO AND \\
VIEWING ANGLE & LOUVER & LOUVER COLOR \\
\hline \(2.75: 1=60^{\circ}\) & \(0^{\circ}\) & OPAQUE BLACK \\
\(2.00: 1=90^{\circ}\) & \(18^{\circ}\) & TRANSLUCENT GRAY \\
\(3.50: 1=48^{\circ}\) & \(30^{\circ}\) & TRANSPARENT BLACK \\
& \(45^{\circ}\) & \\
\hline
\end{tabular}

EXAMPLE: 2.75: 1 - \(18^{\circ}\) - TRANSPARENT BLACK

Figure 33. The Operation of a Louvered Filter.
In bright sunlight, neutral density filters with transparent black louvers are most effective. A secondary colored filter may be placed behind the neutral density louvered filters to increase color contrast at the expense of LED emitted light. For sunlight applications, two different louver options are recommended. First a \(45^{\circ}\) neutral density louvered filter is recommended. This particular filter produces a horizontal and vertical included viewing angle of \(60^{\circ}\) for a louver aspect ratio of \(2.75: 1\). Another possibility is a neutral density crosshatch filter which increases the contrast but further reduces the vertical and horizontal viewing angle to \(40^{\circ}\) for a louver aspect ratio of 2.75:1. A crosshatch filter is essentially two zero-degree neutral density louvered filters oriented at \(90^{\circ}\) to each other. With this filter, red, yellow and green digits mounted side by side will be clearly visible as long as the sunlight is not parallel to the viewing axis.
Louvered filters for LED displays are manufactured by 3M Company, Light Control Division, St. Paul, Minnesota.

Figure 34. Small Alphanumeric Display.

\section*{DOT MATRIX LED DISPLAY EXAMPLE}

\section*{Dot Matrix LED Display Package}

Dot Matrix LED displays can also be used to illustrate the discrimination index theory. Figure 34 shows a particular dot matrix alphanumeric display, with four characters in each package. These displays are well suited for bright ambient applications due to the high sterance of each individual dot in the \(5 \times 7\) matrix.

The display package consists of a dark ceramic substrate, 140 LED chips and two integrated circuits all covered by a transparent glass window. Each of these materials and the interconnecting gold traces reflect light. To determine sunlight readability of this particular package, specular and diffuse reflectance measurements were taken on each of the package materials. For this particular display package, the diffuse measurements were taken using a MacBeth densitometer (RD-100R) which measures at an angle of \(45^{\circ}\) and the specular measurements were taken using the Hewlett-Packard 8450A spectrophotometer which measures at an angle of \(30^{\circ}\).
Figure 35 shows that without a filter this display has a high amount of specular reflectance due to the traces, LED chips, IC's and the glass window.

\section*{Filters for Contrast Enhancement Dot Matrix Display}

Specular reflectances off the display package can be reduced to a very low level by using a circular polarizer. The circular polarizer shown in Figure 36 consists of a linear polarizer and a quarter wave plate laminated together. The linear polarization axis is oriented at \(45^{\circ}\) to the optical axis of the quarter wave plate. Non-polarized sunlight passing through the linear polarizer is broken into \(x\) and \(y\) components which emerge from the quarter wave plate, \(90^{\circ}\) out of phase, circularly polarized. Upon reflection by the specular reflecting display surface, the direction of this circular polarized light is reversed. Passing back through the quarter wave plate, the \(x\) and \(y\) components are placed back in phase, but since they are linearly polarized at \(90^{\circ}\) to the linear polarizer, this reflected light is absorbed by the filter.

Another consideration is the ambient light reflected off the front surface of the filter. Too much reflected ambient light will significantly reduce the contrast ratio and desaturate the color of the LED emitted light. Untextured plastic

Figure 35. Dot Matrix Alphanumeric Display, Typical Values of Reflectance at \(30^{\circ}\).

Figure 36. Operation of a Circular Polarizer.
filters are frequently used, and they can perform quite well in bright sunlight if they are mounted in such a way as to direct specular reflectances away from the observer's eyes. For sunlight ambients where specular reflectance cannot be directed away from the observer's eyes, a glass filter with a quarter wavelength, high efficiency antireflection (HEA) coating can be used. The quarter wavelength coating minimizes specular reflectances by reducing the apparent index of refraction of the glass filter to a value which closely approximates the index of refraction of air.
This index matching reduces the amount of LED emitted light lost at the glass to air interface and also reduces the amount of ambient light reflected off the front surface of the filter.
The amount of LED emitted light lost at the glass-toair interface can be calculated by the index of refraction equation discussed in Peak Wavelength and Filter Transmission.
\[
\begin{equation*}
\mathrm{R}=\left(\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}\right)^{2} \tag{19}
\end{equation*}
\]

Where \(n_{1}=\) index of refraction for filter material \(\mathrm{n}_{2}=\) index of refraction for air

Reflection Loss \(=2(R)(100 \%)\)
For a clear uncoated glass the reflection loss as calculated below is \(10.6 \%\).
\[
\begin{equation*}
R=\left(\frac{1.6-1.0}{1.6+1.0}\right)^{2}=0.053 \tag{21}
\end{equation*}
\]

Where \(n=1.6\), a typical index of refraction for glass \(n=1.0\), index of refraction for air
\[
\begin{equation*}
\text { Reflection Loss }=2(0.053) 100 \%=10.6 \% \tag{22}
\end{equation*}
\]

In Table 6 typical values of specular and diffuse reflectance are shown for a commercial grade HEA coating supplied by Optical Coating Laboratories in Santa Rosa, California. The reflectance of the commercial grade HEA coating (\#11-002A) was measured on a Gardner Hazeguard XL-211 Hazemeter (diffuse reflectance) and a

Table 6. Typical Values of Diffuse and Specular Reflectance for HEA Coatings.

\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ Specular Reflectance } & \begin{tabular}{c}
Diffuse \\
Reflectance
\end{tabular} \\
\cline { 2 - 4 } \begin{tabular}{c}
Angle of \\
Incidence
\end{tabular} & \begin{tabular}{c}
Commercial \\
Grade
\end{tabular} & \begin{tabular}{c}
Military \\
Grade
\end{tabular} & \begin{tabular}{c}
Both \\
Grades
\end{tabular} \\
\hline \(10^{\circ}\) & \(.10 \%\) & \(.05 \%\) & \(<.02 \%\) \\
\(30^{\circ}\) & \(.25 \%\) & \(.10 \%\) & \(.02 \%\) \\
\(45^{\circ}\) & \(.45 \%\) & \(.25 \%\) & \(.04 \%\) \\
\hline
\end{tabular}

Beckman DK2A Spectrophotometer (specular reflectance). As can be observed from the table, HEA coatings are most effective between 0 and \(30^{\circ}\). Also shown on Table 6 are reflectance values for a military grade coating - data supplied by manufacturers of HEA coatings. Since the values of specular reflectance are very low (0.20\(0.45 \%\)), these filters can be used in diffuse as well as specular reflecting viewing conditions. As illustrated in Figure 37, the specualar reflectance of the commercial grade coating (\(\# 11-002 \mathrm{~A}\)) is typically \(0.25 \%\) for any wavelength in the visible spectrum. For a piece of optically coated clear glass, the amount of LED light lost at the glass-to-air interfaces due to reflection is \(0.50 \%\). A reflectance loss of \(0.50 \%\) through a clear coated glass filter is considerably less than \(10.6 \%\) for a clear uncoated glass filter.
\[
\begin{equation*}
R=\left(\frac{1.105-1.0}{1.105+1.0}\right)^{2}=0.0025 \tag{23}
\end{equation*}
\]

Where \(n=1.105\), a typical index of refraction for optically coated glass
\[
n=1.0, \text { index of refraction for air }
\]
\[
\begin{equation*}
\text { Reflection Loss }=2(0.0025)(100 \%)=0.5 \% \tag{24}
\end{equation*}
\]

The amount of ambient light reflected off the face of an HEA coated glass filter can also be calculated. The luminous sterance of the specular reflected glare in a \(107,000 \mathrm{~lm} / \mathrm{m}^{2}\) ambient is \(267 \mathrm{~cd} / \mathrm{m}^{2}\) for coated glass with \(0.25 \%\) reflectance, which is considerably less than \(2140 \mathrm{~cd} / \mathrm{m}^{2}\) for an untextured plastic filter with \(2.0 \%\) reflectance or \(4280 \mathrm{~cd} / \mathrm{m}^{2}\) for an uncoated piece of glass with \(4.0 \%\) reflectance.
Several manufacturers produce filters consisting of a circular polarizer sandwiched between two pieces of glass, one of which is HEA coated. The Polaroid HNCP10, a neutral density gray circular polarizing filter with 10-12\% transmission across the visible spectrum is one such filter. Figure 38 is a cut away view of the filter, and Figure 39 portrays its spectral characteristics. The top curve depicts the transmission of unpolarized light (LED emitted light and diffuse reflectances), and the bottom curve the transmission of polarized light (specular reflectances). The bottom curve shows that specular reflectances from the glass window of the display, the top surfaces of the LED's and the on board IC's are reduced to a very low level.

Figure 37. Front Surface Reflectance of Glass with Double Sided 1/4 Wave Optical Coating.

Figure 38. Circular Polarizer Laminated Between a Piece of HEA Coated Glass and a Piece of Uncoated Glass.

Figure 39. Spectral Characteristics of a Circular Polarizing Optically Coated Glass Filter.

\section*{No Front Surface Reflectance}
\[
\begin{aligned}
& I D L=\frac{L O G C R}{0.15} \\
& C R=\frac{L v S+L v B+L v G}{L v B+L v G} \\
& C R=\frac{1248 \mathrm{~cd} / \mathrm{m}^{2}+194 \mathrm{~cd} / \mathrm{m}^{2}}{194 \mathrm{~cd} / \mathrm{m}^{2}} \\
& \mathrm{CR}=7.43 \\
& \mathrm{IDL}=5.81
\end{aligned}
\]

Figure 40a. Luminance Index - No Front Surface Reflectance.

\section*{Example - Dot Matrix LED Display and Filter}

In the following example, a 0.20 inch green LED alphanumeric dot matrix display (HDSP-2303) is used with a \(0.25 \%\) HEA coated neutral density gray circular polarizing filter with 12-14\% transmission in an ambient of \(107,000 \mathrm{~lm} / \mathrm{m}^{2}\) (10,000 footcandles). The angle chosen for analysis is \(30^{\circ}\) off axis. This represents the maximum angle at which HEA coatings are still very effective.
In Figures 40, 41, and 42 luminance, chrominance and discrimination indices are calculated for three conditions. First, with no consideration of front surface reflectance, second, a typical viewing condition where the observer sees only diffuse reflectance and finally, a worst case viewing condition where the observer sees both diffuse and specular reflectance combined. The last two conditions are described and illustrated in the Front Surface Reflectance section. As can be seen, the value of each index is reduced by front surface reflectance. If an engineer fails to consider front surface reflectance in his calculations, he may be misled in two ways. First, he may believe that a contrast ratio of \(7.43: 1\) can be achieved.

\section*{Diffuse Front Surface Reflectance}

IDL \(=\frac{\text { LOG CR }}{0.15}\)
\(C R=\frac{L v S+L v B+L v G+L v F}{L v B+L v G+L v F}\)
\(C R=\frac{1248 \mathrm{~cd} / \mathrm{m}^{2}+194 \mathrm{~cd} / \mathrm{m}^{2}+6.8 \mathrm{~cd} / \mathrm{m}^{2}}{194 \mathrm{~cd} / \mathrm{m}^{2}+6.8 \mathrm{~cd} / \mathrm{m}^{2}}\)
\(C R=7.21\)
\(\mathrm{IDL}=5.72\)

Diffuse and Specular Front Surface Reflectance
\[
\begin{aligned}
& I D L=\frac{L O G C R}{0.15} \\
& C R=\frac{L v S+L v B+L v G+L v F}{L v B+L v G+L v F} \\
& C R=\frac{1248 \mathrm{~cd} / \mathrm{m}^{2}+207 \mathrm{~cd} / \mathrm{m}^{2}+274 \mathrm{~cd} / \mathrm{m}^{2}}{207 \mathrm{~cd} / \mathrm{m}^{2}+274 \mathrm{~cd} / \mathrm{m}^{2}} \\
& \mathrm{CR}=3.59 \\
& \mathrm{IDL}=3.70
\end{aligned}
\]

Figure 40b. Luminance Index - Front Surface Reflectance.

No Front Surface Reflectance
\[
\begin{aligned}
\text { IDC } & =\frac{\sqrt{\Delta u^{2}+\Delta v^{2}}}{0.027} \\
\sqrt{\Delta u^{2}+\Delta \mathrm{v}^{2}} & =0.0565 \\
\text { IDC } & =\frac{0.0565}{0.027} \\
\text { IDC } & =2.09
\end{aligned}
\]

Figure 41a. Chrominance Index - No Front Surface Reflectance.

However, when diffuse reflectance is considered, the contrast ratio is reduced to \(7.23: 1\). When both diffuse and specular reflectances are considered, the contrast ratio is significantly reduced to \(3.59: 1\). Second, he may also believe that the chromatic distance between the illuminated LED and the background is 0.0565 . However, when desaturation due to diffuse reflectance is considered, the chromatic distance is reduced to 0.0493 , and when both specular and diffuse reflectances are considered, the chromatic distance is further reduced to 0.0390 .

Finally, when the contrast ratio and chromatic distance are combined into the discrimination index, the consequences of front surface reflectance are evident. The discrimination index without front surface reflectance is 6.18 ; with diffuse front surface reflectance is 6.0 ; and when both specular and diffuse reflectances are considered, it is 3.97. Although both 6.0 and 3.97 are lower numbers than 6.18, they represent more realistic values of the discrimination index perceived by the eye.

Diffuse Front Surface Reflectance
\[
\begin{aligned}
\text { IDC } & =\frac{\sqrt{\Delta u^{2}+\Delta v^{2}}}{0.027} \\
\sqrt{\Delta u^{2}+\Delta v^{2}} & =0.0493 \\
\text { IDC } & =\frac{0.0493}{0.027} \\
\text { IDC } & =1.83
\end{aligned}
\]

Diffuse and Specular Front Surface Reflectance
\[
\begin{aligned}
\text { IDC } & =\frac{\sqrt{\Delta u^{2}+\Delta v^{2}}}{0.027} \\
\sqrt{\Delta u^{2}+\Delta v^{2}} & =0.0390 \\
\text { IDC } & =\frac{0.0390}{0.027} \\
\text { IDC } & =1.44
\end{aligned}
\]

Figure 41b. Chrominance Index - Front Surface Reflectance.
(HDSP-2303 at \(482 \mu \mathrm{~cd} / \mathrm{dot}\)) Diffuse Front Surface Reflectance

IDL \(=5.72\)
IDC \(=1.83\)
ID \(=\sqrt{5.72^{2}+1.832}\)
ID \(=6.00\)
(HDSP-2303 at \(482 \mu \mathrm{~cd} /\) dot) Diffuse and Specular Front Surface Reflectance
\[
\begin{aligned}
& \text { IDL }=3.70 \\
& \text { IDC }=1.44 \\
& \text { ID }=\sqrt{3.702+1.442} \\
& \text { ID }=3.97
\end{aligned}
\]

Figure 42b. Discrimination Index - Front Surface Reflectance.

\section*{FILTER RECOMMENDATIONS FOR DOT MATRIX DISPLAYS (CIRCULAR POLARIZERS, HEA-COATED GLASS)}

To determine filter recommendations for design engineers, three green, yellow, and high efficiency red alphanumeric displays were modeled in a computer program in the same fashion as the previous example. A variety of filters each consisting of a circular polarizer sandwiched between HEA-coated glass were also modeled, and discrimination indices calculated in an ambient of \(107,000 \mathrm{Im} / \mathrm{m}^{2}\) (10,000 footcandles). Figures 43,44 , and 45 summarize the results for each of the three colors. Based on the discrimination index theory and observation at Hewlett-Packard, the following filter recommendations are suggested to maximize readability.
For Green Displays, a Neutral Density Gray or a Double Band Pass Filter may Increase the Discrimination Index (see Figure 43).
A neutral density gray filter with \(14 \%\) transmission across the visible spectrum produces a discrimination index of 3.97 .

To increase the chrominance difference between the illuminated LED and the background by passing reflected light of a wavelength other than that of the illuminated LED, a double band pass filter was also modeled. In this case, a chrominance index of 3.87 was achieved in comparison to the chrominance index of 1.44 for a neutral density gray filter. This particular band pass filter passes \(30 \%\) of the LED emitted light in a 20 nm bandwidth (\(560-580 \mathrm{~nm}\)) and \(60 \%\) of the red ambient light in a 40 nm bandwidth (610-650 nm\()\). The final discrimination index is 5.20 .

INTENSITY: \(=482 \mu \mathrm{~cd} / \mathrm{dot}\)
AMBIENT: \(=107,000\) lum \(/ \mathrm{m}^{2}\)
FILTER: = CIRCULAR POLARIZER HEA COATING (.25\%)

IDL \(=3.70\)
IDC \(=1.44\)
IDC = 1.44
ID = 3.97

DOUBLE BAND PASS
\[
\begin{aligned}
I D L & =3.47 \\
I D C & =3.87 \\
I D & =5.20
\end{aligned}
\]

Figure 43. HDSP- 2303 Green Alphanumeric 0.20 -inch Display.

For Yellow Displays, a Neutral Density Gray/Amber Filter Combination or a Neutral Density Gray Filter Yields High Values of Discrimination Index (see Figure 44).
The value of discrimination index for an amber/neutral density gray filter with \(11 \%\) transmission at the LED peak is 3.32 ; and for a neutral density gray filter with \(14 \%\) transmission across the visible spectrum, the discrimination index is 2.87 . Of these two filters, the amber/neutral density gray filter used with a yellow LED display produces the highest values of chrominance and discrimination indices. Another possibility not shown in Figure 44 is a double band pass filter with \(35 \%\) transmission between \(570-590 \mathrm{~nm}\) and \(60 \%\) transmission between 630660 nm . Although this filter yielded highest values of discrimination index (3.81), it is questionable whether its development would be cost effective and if the added improvement would be significantly noticeable.

Figure 44. HDSP-2301 Yellow Alphanumeric 0.20-inch Display.
For High Efficiency Red Displays, a Neutral Density Gray Filter Produces High Values of Discrimination Index (see Figure 45).
Figure 45 summarizes luminance, chrominance and discrimination indices for neutral density gray (\(14 \% \mathrm{~T}\)), long pass (\(70 \% \mathrm{~T}\) at LED peak), and double band pass filters (520-560 nm \(50 \%\) T, \(610-660 \mathrm{~nm} \mathrm{30} \mathrm{\% T}\)). The chrominance index of the neutral density gray filter is ten times the chrominance index of the long pass red filter. This is because the color of the display background is a function of its reflectivity and the wavelengths of reflected light. The gray background of alphanumeric displays
reflects all wavelengths of visible light equally. The neutral density gray filter also attenuates all wavelengths of visible light equally, and therefore, the display background maintains its original gray color. This is advantageous because the large color difference between the gray background and red illuminated LED improves readability. On the other hand, the long pass red filter does not attenuate all wavelengths of visible light equally. It passes wavelengths only in the red region which causes the gray display background to appear red in color. For this reason, red filters that are perfectly acceptable indoors are difficult to use in bright sunlight, where there is very little color difference between the red background and the red illuminated LED.
A theoretical double band pass filter was also programmed into the computer. The idea was to create a greater chrominance difference between the illuminated element and the background by passing more reflected light at a wavelength other than that of the illuminated LED. In this case, a chrominance index of 6.50 was achieved in comparison to a chrominance index of 5.62 for a neutral density gray filter. This double band pass filter may be achievable by placing a purple filter (\(50 \% \mathrm{~T}\)) behind a neutral density gray filter (\(30 \% \mathrm{~T}\)).
INTENSITY: \(=228 \mu \mathrm{~cd} / \mathrm{dot}\)
 AMBIENT: \(=107,000\) lum \(/ \mathrm{m}^{2}\)
 FMBIENT: \(=107,000 \mathrm{lum} / \mathrm{m}^{2}\).
 REFLECTANCE: = DIFFUSE AND SPECULAR @ \(30^{\circ}\)

DOUBLE BAND PASS

Figure 45. HDSP-2302 High Efficiency Red 0.20-inch Display.

\section*{GENERAL CONCLUSIONS}

In the previous sections filter recommendations that pertain specifically to seven segment displays and alphanumeric displays have been discussed. There are also some general recommendations that should be followed when choosing any LED display and filter for use in a bright sunlight ambient. The four most important general recommendations are discussed in this section.

\section*{Front Surface Filter Reflectance Should be Reduced (see Figure 46).}

This is important because as the front surface reflectance is reduced, the discrimination index increases. For example, an uncoated neutral density circular polarizing glass filter (\(14 \% \mathrm{~T}\)) with \(4.0 \%\) specular reflectance provides a discrimination index of 0.82 . This same glass filter with an HEA coating of \(0.45 \%\) provides a discrimination index of 3.23 . On the other hand, the same filter with an HEA coating of \(0.25 \%\) provides a discrimination index of 3.97, while a military grade circular polarizing HEA coated filter of \(0.10 \%\) provides a discrimination index of 4.86 .

Figure 46. Effect of Reducing Front Surface Reflectance.

Figure 47. Optimal Neutral Density Gray Filter Transmission.

For a Given Front Surface Filter Reflectance, The Optimal Neutral Density Gray Filter Transmission Can be Determined (see Figure 47).
The optimal neutral density gray filter transmission is dependent upon the amount of front surface filter reflectance and the reflectance of the materials in the display package.
As an example, a plastic neutral density gray filter with \(0.7 \%\) diffuse reflectance used with a yellow seven segment display has an optimal transmission of \(18-23 \%\). This produces a discrimination index of 1.31 for a \(23 \%\) transmission filter. A significantly lower transmission filter of \(10 \%\) will attenuate display emitted light too much in comparison to the amount of front surface reflected light, and its discrimination index will be less than 1.31. On the other hand, a significantly higher transmission filter of \(60 \%\) will transmit too much background reflected light, so the discrimination index will also be less than 1.31 .
As another example, a neutral density gray circular polarizing HEA-coated glass filter with \(0.25 \%\) antireflection coating used with a green alphanumeric display has an optimal transmission of \(10-14 \%\). This produces a discrimination index of 3.97 for a 14\% transmission filter. A significantly lower transmission filter of \(6 \%\) will attenuate display emitted light too much in comparison to the amount of front surface reflected light, and its discrimination index will be less than 3.97. On the other hand, a significantly higher transmission filter of \(40 \%\) will transmit too much background reflected light, so the discrimination index will also be less than 3.97.

\section*{Reduce Incident Ambient Light When Possible (see Figure 48).}

As shown in Figure 48, as ambient light is reduced, the discrimination index is increased. As an example, in an ambient of \(107,000 \mathrm{Im} / \mathrm{m}^{2}\), the background reflected light off a gray bodied seven segment display is \(721 \mathrm{~cd} / \mathrm{m}^{2}\), plastic filter reflected light is \(681 \mathrm{~cd} / \mathrm{m}^{2}\) and the discrimination index is 1.31 . If the ambient is decreased to \(50,000 \mathrm{~lm} / \mathrm{m}^{2}\), the background reflected light is reduced to \(337 \mathrm{~cd} / \mathrm{m}^{2}\), filter reflected light to \(318 \mathrm{~cd} / \mathrm{m}^{2}\), and the discrimination index is increased to 2.29 .

Figure 48. Effect of Reducing Ambient Lighting.

As a second example, in an ambient of \(107,000 \mathrm{Im} / \mathrm{m}^{2}\), the background reflected light off an alphanumeric display is \(207 \mathrm{~cd} / \mathrm{m}^{2}\), HEA-coated filter reflected light is \(274 \mathrm{~cd} / \mathrm{m}^{2}\), and the discrimination index is 3.97 . If the ambient is decreased to \(70,000 \mathrm{Im} / \mathrm{m}^{2}\), the background reflected light is reduced to \(135 \mathrm{~cd} / \mathrm{m}^{2}\), filter reflected light to \(180 \mathrm{~cd} / \mathrm{m}^{2}\), and the discrimination index is increased to 4.91.

\section*{High Efficiency Red LEDs Product Highest Values of} Discrimination Index (see Figure 49).

For high efficiency red, yellow, and green seven segment displays of data sheet typical intensity, all filtered with a \(23 \%\) transmission neutral density gray filter, discrimination index values are 3.21 for high efficiency red, 1.31 for yellow and 1.10 for green. The difference in discrimination indices is due to differences in chrominance indices. The chrominance index of a high efficiency red display is 3 times greater than the
chrominance index of the yellow display. This is shown by referring back to the 1960 CIE chromaticity diagram (see Figure 21). On this diagram, the chromatic distance between the neutral density gray background and a red LED is approximately 3 times as large as the chromatic distance between the neutral density gray background and the yellow LED.
Similarly, for high efficiency red, yellow, and green alphanumeric displays of data sheet typical intensity, all filtered with a \(14 \%\) T circular polarizing HEA-coated filter, the discrimination index values are 6.09 for high efficiency red, 2.87 for yellow and 3.97 for green. Again, the high efficiency red display has the greatest chrominance index followed by yellow and green respectively. In this case the discrimination index for the green display is greater than the yellow display due to the higher light output of green LEDs.

\section*{.3" SEVEN SEGMENT DISPLAYS}

\author{
Ambient: \(\mathbf{1 0 7 , 0 0 0 ~} \mathrm{Im} / \mathrm{m}^{2}\) \\ Filter: Neutral Density Gray Plastic (23\%T) .7\% Diffuse Filter Reflectance \\ Reflectance: Diffuse Only
}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
LED \\
Color
\end{tabular}} & \begin{tabular}{c}
Device \\
Intensity
\end{tabular} & \begin{tabular}{c}
Background \\
Reflectance
\end{tabular} & \begin{tabular}{c}
Luminance \\
Index
\end{tabular} & \begin{tabular}{c}
Chrominance \\
Index
\end{tabular} & \begin{tabular}{c}
Discrimination \\
Index
\end{tabular} \\
\hline \begin{tabular}{l}
High \\
Efficiency
\end{tabular} & \(6.3 \mathrm{mcd} / \mathrm{seg}\) & \(12 \%\) & 0.96 & 3.10 & 3.21 \\
\begin{tabular}{l}
Red
\end{tabular} & & & & \\
Yellow & \(6.3 \mathrm{mcd} / \mathrm{seg}\) & \(12 \%\) & 0.99 & 0.85 & 1.31 \\
Green & \(4.5 \mathrm{mcd} / \mathrm{seg}\) & \(7 \%\) & 0.98 & 0.50 & 1.10 \\
\hline
\end{tabular}
.20" ALPHANUMERIC DISPLAYS
```

Ambient: $\mathbf{1 0 7 , 0 0 0 ~ I m / m ²}$
Filter: Neutral Density Gray Glass (14\%T)
Circular Polarizer, HEA Coated Glass (.25\% Specular Reflectance) Reflectance: Diffuse and Specular at $30^{\circ}$

```
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
LED \\
Color
\end{tabular}} & \begin{tabular}{c}
Device \\
Intensity
\end{tabular} & \begin{tabular}{c}
Luminance \\
Index
\end{tabular} & \begin{tabular}{c}
Chrominance \\
Index
\end{tabular} & \begin{tabular}{c}
Discrimination \\
Index
\end{tabular} \\
\hline \begin{tabular}{l}
High \\
Efficiency
\end{tabular} & \(228 \mu \mathrm{~cd} /\) DOT & 2.33 & 5.62 & 6.09 \\
\begin{tabular}{l}
Red
\end{tabular} & & & 1.69 & 2.87 \\
Yellow & \(228 \mu \mathrm{~cd} /\) DOT & 2.32 & 1.44 & 3.97 \\
\hline
\end{tabular}

Figure 49. Comparison of High Efficiency Red, Yellow, Green LED Displays at Typical Intensity Levels.

\section*{SPECIFIC MANUFACTURERS OF NEUTRAL DENSITY PLASTIC AND GLASS FILTERS}

Table 7 lists several neutral density filters that can be used with Hewlett-Packard Sunlight Viewable LED Displays. For increased contrast the neutral density filters can be combined with some of the wavelength filters listed in Table 4. For example, an amber filter combined with a neutral density filter can enhance chrominance contrast. In addition, Table 8 lists Hewlett-Packard displays that are specifically designed for Sunlight Ambient Applications.

Table 7. A List of Neutral Density Filters For Use With Sunlight Viewable LED Displays
\begin{tabular}{|c|c|}
\hline Filter Product & Manufacturer \\
\hline H100-1266 Gray H100-1250 Gray H100-1230 Bronze (Plastic) & \begin{tabular}{l}
SGL HOMALITE \\
11 Brookside Drive Wilmington, DE 19804 (302) 652-3686
\end{tabular} \\
\hline Plexiglas \({ }^{\text {© }}\) 2074 Gray 2370 Bronze 2538 Gray (Plastic) & \begin{tabular}{l}
Rohm and Haas \\
Independence Mall West \\
Philadelphia, PA 19105 \\
(215) 392-3000
\end{tabular} \\
\hline Spectrafiltere \({ }^{\text {® }}\) Gray 105 (Plastic) & Chequers Engraving, Ltd. 1-4 Christina Street, London EC2A 4PA 01-739-6964/5 \\
\hline \begin{tabular}{l}
Panel Film \({ }^{(}\) \\
Light Control Film \({ }^{\text {® }}\) \\
(Louvered) \\
ND0210 50\% Gray ND0220 27\% Gray \\
(Plastic)
\end{tabular} & 3M-Company Industrial Optics Carbonless, Related Products 225-35 3M Center St. Paul, MN 55144 (612) 733-4403 \\
\hline \begin{tabular}{l}
Chromafilter® \\
Gray 15 \\
Gray 10 \\
(Plastic)
\end{tabular} & Panelgraphic Corporation 10 Henderson Drive West Caldwell, NJ 07006 (201) 277-1500 \\
\hline Optically Coated Glass HEA® Double Sided Antireflection Coating (Glass) & \begin{tabular}{l}
Optical Coating Laboratories, Inc. 2789 Northpoint Parkway \\
Santa Rosa, CA 95401-7397 \\
(707) 545-6440
\end{tabular} \\
\hline Optically Coated Glass With Circular Polarizer HNCP10 Gray (Glass) & \begin{tabular}{l}
Polaroid Corporation \\
Technical Polarizer Division \\
1 Upland Road \\
Norwood, MA 02062 \\
(617) 769-6800
\end{tabular} \\
\hline HACP10 Amber/Gray With Circular Polarizer (Plastic) & \\
\hline
\end{tabular}

Table 8. Hewlett-Packard Displays for Sunlight Ambient Applications
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Size } & \multicolumn{1}{c|}{ Part Number } \\
\hline Seven Segment Displays & 0.3 in. & HDSP-3530,4030 series \\
& 0.43 in. & HDSP-3730,4130 series \\
& 0.56 in. & HDSP-5530,5730 series \\
& 0.80 in. & HDSP-3900,4200 series \\
\hline Alphanumeric Displays & 0.15 in. & HDSP-2000 series \\
& 0.20 in. & HDSP-2300 series \\
& 0.27 in. & HDSP-2490 series \\
\hline Ultra-Brite Lamps & T13/4 & HLMP-3750,3850,3950 \\
& T13/4 & HLMP-3390,3490,3590 \\
& Lo-Dome & \\
& T-1 & HLMP-1340,1440,1540 \\
\hline
\end{tabular}

\section*{Footnotes and References}
1. Galves, Jean-Pierre, Brun, Jean. Color and Brightness Requirements for Cockpit Displays: Proposal to Evaluate their Characteristics. Twenty-ninth Agard Avionics Panel Technical Meeting.
2. IES Lighting Handbook, 5th ed., IES, New York, 1972.
3. Wysecki, Gunter, Stiles, W.S. Color Science Concepts and Methods, Quantitative Data and Formulas, 1967. Chpt. 1, pp. 1-43.
4. Galves, op. cit.
5. Evans, Dave. Sunlight Viewable Displays, Optoelectronics Applications Manual, Section II. 1977 Hewlett-Packard Company.
6. Galves, op. cit., p. 4.
7. Galves, op. cit., p. 5.
8. Judd, D.B. Estimation of Chromaticity Differences and Nearest Color Temperature on the Standard 1931 (ICI) Colorimetric Coordinate System, J. Opt. Soc. Am., pp. 421-426 (1936).
9. Hurvich, Leo. Color Vision, 1981, p. 292.
10. Merik, Boris. Light and Color Measurements of Small Light Sources General Electric, 1968. p. 97.
11. For Color Television Cameras with Three Receptors, Journal of the SMPTE, Volume 77, February 1968. pp. 108-115.
12. Galves, op. cit., p. 5.
13. Kowalski, P. Equivalent Luminances of Colors, Journal of the Optical Society of America, Vol. 59, No. 2, February 1969. p. 129.

\section*{APPENDIX A}

To calculate contrast ratio of a display the following integrals were used:
\[
\operatorname{RGD}(\lambda) \mid T_{1}(\lambda)^{2} d \lambda
\]

For Seven Segment Displays Only:
LvOFF specular and LvFspecular are ignored
\(T_{G}(\lambda)=T_{2}(\lambda)=1\)
\(\operatorname{RS}(\lambda)=\operatorname{RGS}_{G}(\lambda)=\operatorname{RGD}(\lambda)=\operatorname{RFS}(\lambda)=0\)
For Alphanumeric Displays Only:
\(T_{G}(\lambda)=\) Transmission of glass window
\(T_{2}(\lambda)=\) Transmission of filter polarized light
Rs \((\lambda)=\) Specular reflectance of ambient light off element
\(R_{G S}(\lambda)=\) Specular reflectance of glass window
\(R_{G D}(\lambda)=\) Diffuse reflectance of glass window
\(\operatorname{RFS}(\lambda)=\) Specular reflectance of filter front surface
For Seven Segment Displays and Alphanumeric Displays:

\footnotetext{
A = Area of light emitting element
\(\ell(\lambda)=\) LED radiometric spectrum
\(\bar{Y}(\lambda)=1931\) CIE Photopic response curve
\(T_{1}(\lambda)=\) Transmission of filter-unpolarized light
\(\mathrm{S}_{\mathrm{B}}(\lambda)=\) Spectrum of CIE illuminant B - noon sunlight \(4870^{\circ} \mathrm{K}\)
\(R_{D}(\lambda)=\) Diffuse reflectance of ambient light off element
\(R_{F D}(\lambda)=\) Diffuse reflectance of filter front surface
}
\[
\begin{aligned}
& L_{v} S=1 / A \int \ell(\lambda) \bar{Y}(\lambda) T_{1}(\lambda) T_{G}(\lambda) d \lambda \\
& \text { LvOFF }=\text { LvOFF Specular }+ \text { L_OFF } \text { Diffuse } \\
& L_{v} O F F \text { Specular }=\int \mid S_{B}(\lambda) \bar{Y}(\lambda) R_{s}(\lambda) T_{G}(\lambda)^{2} \\
& T_{1}(\lambda) T_{2}(\lambda) d \lambda \\
& \text { LvOFF Diffuse }=1 / \pi \int\left[S_{B}(\lambda) \bar{Y}(\lambda) R_{D}(\lambda)\right. \\
& T_{G}(\lambda)^{2}+S_{B}(\lambda) \bar{Y}(\lambda) \\
& L_{v} B=L_{v} O F F \text { for purposes of the program } \\
& L_{v} F=L_{v} F s p e c u l a r+L_{v} F d i f f u s e \\
& \mathrm{~L}_{\mathrm{v}} \text { Fspecular }=\int \mathrm{S}_{\mathrm{B}}(\lambda) \overline{\mathrm{Y}}(\lambda) \mathrm{RFS}_{\mathrm{F}}(\lambda) \mathrm{d} \lambda \\
& L_{v} F \text { diffuse }=1 / \pi \int S_{B}(\lambda) \bar{Y}(\lambda) R_{F D}(\lambda) d \lambda
\end{aligned}
\]

\section*{APPENDIX B}

To calculate \(x, y\) chromaticity coordinates of an illuminated element and the background, the following integrals were used:
\(X_{\ell}=1 / A \int \frac{K(\lambda)}{\bar{Y}(\lambda)} \bar{X}(\lambda) d \lambda \quad Y_{\ell}=L_{v} S\)
\(X_{b}=X_{\text {off }}=\int \frac{m(\lambda)+n(\lambda)}{\bar{Y}(\lambda)} \bar{X}(\lambda) d \lambda \quad Y_{b}=Y_{\text {off }}=\begin{aligned} & L_{v} O F F \\ & +L_{v} F\end{aligned}\)
Where \(\bar{X}(\lambda)=1931\) CIE Tristimulus Weighting Function
\(\bar{Y}(\lambda)=1931\) CIE Photopic Response Curve
\(K(\lambda)=\ell(\lambda) \bar{Y}(\lambda) T_{1}(\lambda) T_{G}(\lambda)\)
\(m(\lambda)=\left\{S_{B}(\lambda) \bar{Y}(\lambda) R_{S}(\lambda) T_{G}(\lambda)^{2}+S_{B}(\lambda) \bar{Y}(\lambda) R_{G S}(\lambda) \mid\right.\) \(T_{1}(\lambda) T_{2}(\lambda)+1 / \pi \mid S_{B}(\lambda) \bar{Y}(\lambda) R_{D}(\lambda) T_{G}(\lambda)^{2}\) \(+S_{B}(\lambda) \bar{Y}(\lambda) R_{G D}(\lambda) T_{1}(\lambda)^{2}\)
\(\left.n(\lambda)=S_{B}(\lambda) \bar{Y}(\lambda) \mid R_{F S}(\lambda)+1 / \pi R_{F D}(\lambda)\right]\)

\section*{Chromaticity Coordinates}
\[
\begin{array}{cr}
x_{\ell}=\frac{x_{\ell}}{x_{\ell}+Y_{\ell}} & y_{\ell}=\frac{Y_{\ell}}{x_{\ell}+Y_{\ell}} \\
x_{b}=x_{\text {off }}=\frac{x_{b}}{x_{b}+Y_{b}} & y_{b}=y_{\text {off }}=\frac{Y_{b}}{X_{b}+Y_{b}}
\end{array}
\]

Finally, \(x, y\) chromaticity coordinates are translated to 1960 CIE (\(U, V\)) coordinate system
\[
u=\frac{4 x}{(12 y-2 x+3)} \quad v=\frac{6 y}{(12 y-2 x+3)}
\]

\title{
Using the HDSP-2000 Alphanumeric Display Family
}

\section*{INTRODUCTION}

First introduced in 1975, the HDSP-2000 alphanumeric display has been designed into a variety of applications. The HDSP-2000 display was originally designed for commercial, industrial, instrumentation, and business equipment applications. However, the introduction of high efficiency red, yellow, and high performance green devices as well as several display sizes has opened up a multitude of new applications for the HDSP-2000 alphanumeric display family. The high efficiency red, yellow, and high performance green devices use gallium phosphide (GaP) LEDs. The GaP displays are readable in direct sunlight with proper contrast enhancement techniques. For this reason, the HDSP-2000 family displays have been designed into a variety of avionic and process control applications. The HDSP-2000 family displays are available in three character sizes of \(3.8 \mathrm{~mm}\left(0.15^{\prime \prime}\right), 4.9 \mathrm{~mm}\left(0.19^{\prime \prime}\right)\), and \(6.9 \mathrm{~mm}\left(0.27^{\prime \prime}\right)\) to allow the designer to optimize display compactness versus long distance readability. Versions of the HDSP-2000 family alphanumeric displays are available with a true hermetic package and an operating temperature range of \(-55^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) to allow designers to utilize the proven reliability of LED display technology in military and aerospace applications.
This note is intended to serve as a design and application guide for users of the HDSP-2000 family of alphanumeric display devices. The information presented will cover: the theory of the device design and operation; considerations for specific circuit designs; thermal management, power derating and heat sinking; intensity modulation techniques.

The HDSP-2000 family has been designed to provide a high resolution information display subsystem. Each character of the 4 character package consists of a \(5 \times 7\) array of LEDs which can display a full range of alphabetic and numeric characters plus punctuation, mathematical and other special symbols. The HDSP-2000 family is available in four colors: red, high efficiency red, yellow, and high performance green.
The character height, character spacing, color and part number of each member of the HDSP-2000 family of displays is shown in Table 1. The overall package size is designed to allow end stacking of multiple clusters to form character strings of any desired length.

\section*{ELECTRICAL DESCRIPTION}

The on-board electronics of the HDSP-2000 display family eliminates some of the classical difficulties associated with the use of alphanumeric displays. Traditionally, single digit LED dot matrix displays have been organized in an \(x-y\) addressable array requiring 12 interconnect pins per digit plus extensive row and column drive support electronics. All members of the HDSP-2000 display family provide on-board storage of decoded row data plus constant current sinking row drivers for each of the 28 rows in the 4 character display. This approach allows the user to address each display package through just 11 active interconnections vs. the 176 interconnections and 36 components required to effect a similar function using conventional LED matrices.
Figure 1 is a block diagram of the internal circuitry of the HDSP-2000 display. The device consists of four LED matrices and two 14-bit serial-in-parallel-out shift registers. The LED matrix for each character is a \(5 \times 7\) diode array organized with the anodes of each column tied in common and the cathodes of each row tied in common. The 7 row cathode commons of each character are tied to the constant current sinking outputs of 7 successive stages of the shift register. The like columns of the 4 characters are tied together and brought to a single address pin (i.e., column 1 of all 4 characters is tied to pin 1, etc.). In this way, any diode in the four \(5 \times 7\) matrices may be addressed by shifting data to the appropriate shift register location and applying a voltage to the appropriate column.

The serial-in-parallel-out (SIPO) shift register has a constant current sinking output associated with each shift register stage. This constant current output drives each LED at a nominal peak current of 12 to 14 mA peak. The output stage is a current mirror design with a nominal current gain of 10. A logical 1 loaded into each shift register bit will turn "ON" the corresponding current source provided that a logical 1 is applied to the Blanking Input, \(\mathrm{V}_{\mathrm{B}}\). If \(\mathrm{V}_{\mathrm{COL}}\) is applied to the appropriate Column Input, the corresponding LED diode will be turned "ON". Since the row drivers have a constant current output, the LED current will remain constant as long as the Column Input voltage exceeds 2.4 V for red and 2.75 V for high efficiency red, yellow, and high performance green devices.

Table 1. The HDSP-2000 Alphanumeric Display Family
\(\left.\begin{array}{|l|c|c|c|c|}\hline \text { Device } & \text { Color } & \begin{array}{c}\text { Character } \\ \text { Height }\end{array} & \begin{array}{c}\text { Character } \\ \text { Spacing }\end{array} & \begin{array}{c}\text { Operating } \\ \text { Temperature }\end{array} \\ \hline \text { HDSP-2000 } & \begin{array}{c}\text { Red } \\ \text { HDSP-2001 }\end{array} & \begin{array}{c}\text { Yellow }\end{array} & 3.8 \mathrm{~mm}(0.15 \mathrm{in} .) & 4.5 \mathrm{~mm}(0.175 \mathrm{in} .)\end{array} \begin{array}{l}-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { HDSP-2002 } \\ \text { HDSP-2003 }\end{array} \quad \begin{array}{l}\text { High Efficiency Red } \\ \text { High Performance Green }\end{array}\right)\)

Figure 1. Block Diagram

Data is loaded serially into the shift register on the high to low transition of the Clock Input. During the time that data is being loaded into the display, the column current must be disabled to minimize the generation of "current spikes" between \(\mathrm{V}_{\mathrm{cc}}\), the columns, and ground. The resulting power supply noise could induce noise on the Clock and Data Inputs. The column current can be disabled either by switching off the column drivers or by applying a logical 0 to the Blanking Input.
The Data Output terminal is a TTL buffer interface to the 28th bit of the shift register (i.e., the 7 th row of character 4 in each package). The Data Output is arranged to directly interconnect to the Data Input on a succeeding 4 digit HDSP-2000 display package. The Data, Clock and \(V_{B}\) inputs are all buffered to allow direct interface to any TTL logic family.

\section*{THEORY OF OPERATION}

Dot matrix alphanumeric display systems generally have a logical organization which prescribes that any character be generated as a combination of several subsets of data. In a \(5 \times 7\) matrix, this could be either 5 subsets of 7 bits each or 7 subsets of 5 bits each. This technique is utilized to reduce from 35 to 5 or 7 the number of outputs required from the character generator. In order to display a complete character, these subsets of data are then presented sequentially to the appropriate locations of the display matrix. If this process is repeated at a rate which insures that each of the appropriate matrix locations is reenergized a minimum of 100 times per second, the eye will perceive a continuous image of the entire character. The apparent intensity of each of the display elements will be equal to the intensity of that element during the "ON" period multiplied by the ratio of "ON" time to refresh period. This ratio is referred to as the display duty factor, and the technique is referred to as "strobing". In the case of HDSP-2000, each character is made up of 5 subsets of 7 bits. For a four character display, 28 bits representing the first subset of each of the four characters are loaded serially into the on-board SIPO shift register and the first column is then energized for a period of time, \(T\). This process is then repeated for columns 2 through 5 . If the time required to load the 28 bits into the SIPO shift register is \(t\), then the duty factor is:
\[
\begin{equation*}
\text { D.F. }=\frac{T}{5(t+T)} \tag{1}
\end{equation*}
\]
the term \(5(t+T)\) is then the refresh period. For a satisfactory display, the refresh period should be:
\[
\begin{equation*}
1 /[5(\mathrm{t}+\mathrm{T})] \geqslant 100 \mathrm{~Hz} \tag{2}
\end{equation*}
\]
or conversely
\[
\begin{equation*}
5(t+T) \leqslant 10 \mathrm{msec}, \tag{3}
\end{equation*}
\]
which gives
\[
\begin{equation*}
(t+T) \leqslant 2 \mathrm{msec} . \tag{4}
\end{equation*}
\]

The time averaged luminous intensity of the display can be varied continuously over a range greater than 1000 to 1 by turning off or blanking the display before loading new data into the SIPO shift register. If the time that the display is blanked is \(\mathrm{T}_{\mathrm{B}}\), then the duty factor of the display becomes:
\[
\begin{equation*}
\text { D.F. }=\frac{T}{5\left(t+T+T_{B}\right)} \tag{5}
\end{equation*}
\]
where
\[
\left(t+T+T_{B}\right) \leq 2 \mathrm{msec} .
\]

\section*{DRIVE CIRCUIT CONCEPTS}

A practical display system utilizing the HDSP-2000 family of displays requires interfacing with a character generator, refresh memory and some timing circuitry. A block diagram of such a display system is depicted in Figure 2. This circuit provides for ASCII data storage and decoding and properly refreshes the display at a 100 Hz refresh rate. In this figure, the display length is shown as N characters with the leftmost display character labeled as character 1 and the right most character of the display labeled as character \(N\). The refreshing of the display is accomplished by a series of counters.
The \(\div \mathrm{N}\) counter sequentially accesses N coded information symbols from the \(\mathrm{N} \times 7\) RAM. Note that for the normal configuration of the HDSP-2000 displays, character 1 is the leftmost character, character 4 is the rightmost character and shift register cascades from left to right. Thus, the symbol corresponding to character N is decoded first, then the symbol corresponding to character (\(\mathrm{N}-1\)), and the symbol corresponding to character 1 is decoded last.
Each coded information symbol is read from the N×7 RAM and decoded by a \(5 \times 7\) decoder. The decoder can be selected to decode ASCII, EBDIC, or any customized character font. In this example, the ASCII decoder is organized as \(128 \times 7\) words of 5 bits each. The ASCII symbol and row select information is applied to the decoder and the decoder outputs information for all 5 columns for the selected row and symbol.
The \(\div 7\) counter sequentially accesses all seven rows of each ASCII symbol. Note that row 7 must be decoded first, then row 6 , and row 1 is decoded last. The \(\div \mathrm{M}\) counter is used to periodically load new serial data into the HDSP-2000 display. During one count, the display clock is enabled and 7 N bits of serial data are loaded into the display. During the remaining (\(\mathrm{M}-1\)) counts, this data is displayed. Thus the duty factor for the circuit in Figure 2 is:
\[
\begin{equation*}
\text { D.F. }=\frac{(M-1)}{5 M}=.20\left(1-M^{-1}\right) \tag{6}
\end{equation*}
\]

The \(\div 5\) counter sequentially refreshes all 5 columns of the display. The outputs of the \(\div 5\) counter are connected to a data multiplexer which selects one of the 5 outputs from the

Figure 2. CKT Block Diagram

ASCII decoder and loads it into the Data Input of the HDSP2000 display string. The \(\div 5\) counter also enables one of the 5 column driver transistors. Note that the display is blanked via the \(\mathrm{V}_{\mathrm{B}}\) input and also that the column driver transistors are turned off during the time that new data is being loaded into the HDSP-2000 display string. This will eliminate any high current transients between the column inputs and ground during the data shifting operation.
Since data is loaded for all of the like columns in the display string and these columns are then enabled simultaneously, only five column switch transistors are required regardless of the number of characters in the string. The column switch transistors should be selected to handle 105 to 130 mA per character in the display string. The collector emitter saturation voltage characteristics and column voltage supply should be chosen to provide \(2.4 \mathrm{~V} \leq \mathrm{V}\) col \(\leq \mathrm{V}\) CC for the standard red displays and \(2.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{COL}} \leq \mathrm{V}_{\mathrm{CC}}\) for the high efficiency red, yellow, and high performance green displays. To save on power supply costs and improve efficiency, this supply may be a fullwave rectified unregulated DC voltage as long as the PEAK value does not exceed the value of \(V_{C C}\) and the minimum value does not drop below 2.4 V or 2.75 V depending on display color.

Figures 13 and 16 show practical implementations of the block diagram shown in Figure 2. In those circuits, the display is mounted upside down, so that pin 1 is in the upper
right hand corner. With this technique, data is loaded into display character N and data shifts from right to left as new data is loaded. The first bit loaded into the display would be row 1, character 1, then row 2, etc., and the last bit loaded would be row 7 of character N . This allows the \(\div 7, \div \mathrm{N}\) and \(\div \mathrm{M}\) counters to be implemented as up counters instead of down counters. Since the display is upside down, column 5 of the display appears to be column 1 and column 4 of the display appears to be column 2. Thus, column 1 data for the display must be loaded into the display and column 5 must subsequently be enabled. This is accomplished by reversing the outputs of the \(5 \times 7\) decoder. The \(D_{0}, D_{1}, D_{2}, D_{3}\), and \(D_{4}\) outputs of the MCM6674 decoder output column 5, column 4 , column 3, column 2, and column 1 information.

\section*{INTERFACING THE HDSP-2000 DISPLAY TO MICROPROCESSORS}

Because of the complexity of dealing with alphanumeric information, a microprocessor based system is typically used in conjunction with the HDSP-2000 family displays. Depending upon overall systems configuration, microprocessor time available to dedicate to display support, and the type of information to be displayed, one may choose several different partitioning schemes to drive such a display.

Figure 3 shows four different techniques to interface the HDSP-200 family displays to microprocessor systems:
1. The REFRESH CONTROLLER interrupts the microprocessor at a 500 Hz rate to request refresh data for the display.
2. The DECODED DATA CONTROLLER accepts \(5 \times 7\) matrix data from the microprocessor and then automatically refreshes the display with the same information until new data is supplied by the microprocessor.
3. The CODED DATA CONTROLLER accepts ASCII data and interfaces like a RAM to the microprocessor.
4. The DISPLAY PROCESSOR CONTROLLER HDSP247X series) employs a dedicated single chip microprocessor as a data display/control/keyboard interface which has many of the features of a complete terminal.

The interface techniques depicted are specifically for the 8080A or 6800 microprocessor families. Extension of these techniques to other processors should be a relatively simple software chore with little or no hardware changes required.

**SCRATCHPAD WITH OR
WITHOUT DECODED ASCII
LOOKUP TABLE

Figure 3. Four Different Techniques to Interface the HDSP-2000 Alphanumeric Display to a Microprocessor System

Figure 4. \(\mathbf{6 8 0 0}\) or 8080A Microprocessor Interface to the HDSP-2000 REFRESH CONTROLLER

The choice of a particular interface is an important consideration because it affects the design of the entire microprocessor system. The REFRESH CONTROLLER provides the lowest cost interface because it uses the microprocessor to provide ASCII decoding and display strobing. Because the ASCII decoder is located within the microprocessor system, the designer has total control over the display font within the program. This feature is particularly important when the system will be used to display different languages and special graphic symbols. However, the REFRESH CONTROLLER requires a significant amount of microprocessor time. Furthermore, while the interrupt allows the refresh program to operate asynchronously from the main program, this technique limits some of the software techniques that can be used in the main program.

The DECODED DATA CONTROLLER requires microprocessor interaction only when the display message is changed. Like the REFRESH CONTROLLER, the ASCII decoder is located within the microprocessor program. However, the time required to decode the ASCII string and store the resulting \(5 \times 7\) display data into the interface requires several milliseconds of microprocessor time.

The CODED DATA CONTROLLER also requires interaction from the microprocessor system only when the display message is changed. Because the ASCII decoder is located within the display interface, the microprocessor requires much less time to load a new message into the display.

The DISPLAY PROCESSOR CONTROLLER, the HDSP247X series, is the most powerful interface. The software within the DISPLAY PROCESSOR CONTROLLER further reduces the host microprocessor interaction by providing more powerful left and right data entry modes compared to the RAM entry mode of the DECODED DATA and CODED DATA CONTROLLERS. The DISPLAY PROCESSOR CONTROLLER can also provide features such as a Blinking Cursor, Editing Commands, and a Data Out function. One version of the DISPLAY PROCESSOR CONTROLLER allows the user to provide a custom ASCII decoder for applications needing a special character font.

\section*{REFRESH CONTROLLER}

The REFRESH CONTROLLER circuit depicted in Figure 4 operates by interrupting the microprocessor every two milliseconds to request a new block of display data and column select data. Display data is loaded from the data bus into the serial input of the HDSP-2000 via a 74165 parallel in, serial out shift register. The 74LS293 counter and associated gates insure that only seven clock pulses are delivered to the shift register and the HDSP-2000 for each word loaded. Column Select data is loaded into a 74174 latch which, in turn, drives the column switch transistors. The circuit timing relative to the microprocessor clock and I/O is depicted in Figure 5.

Figure 5. REFRESH CONTROLLER Timing

The 6800 software necessary to support this interface is divided into two separate subroutines, "RFRSH" and "LOAD" (Figure 6). This approach is desirable to minimize microprocessor involvement during display refresh. The subroutine "RFRSH" loads a new set of decoded display data from the microprocessor scratchpad memory into the interface at each interrupt request. The subroutine "LOAD" is utilized to decode a string of 32 ASCII characters into \(5 \times 7\) formatted display data and store this data in the scratchpad memory used by "RFRSH".
Figures 7 and 8 depict two different software routines for interfacing the REFRESH CONTROLLER to an 8080A microprocessor. The two subroutines shown in Figure 7 are functional replacements for the 6800 program shown in Figure 6. The programs shown in Figures 6 and 7 require a 5 N byte scratchpad memory where \(N\) is the display length. The routine in Figure 8 eliminates this scratchpad memory by decoding and loading data each time a new interrupt request is received.

Because the microprocessor system is interrupted every 2 ms , proper software design is especially important for the REFRESH CONTROLLER. The use of the scratchpad memory significantly reduces the time required to refresh the display. The fastest program, shown in Figure 6, uses in-line code to access data from the buffer and output it to the display. This program requires \(3.7 \%+.50 \mathrm{~N} \%\) of the available microprocessor time for a 1 MHz clock. The program shown in Figure 7 is similar to the one shown in Figure 6 , except that it uses a program loop instead of the in-line code. This program uses \(5.4 \%+.93 \mathrm{~N} \%\) of the microprocessor time for a 2 MHz clock. These programs utilize a subroutine "LOAD" which is called whenever the display message is changed. This subroutine executes in 10.2 ms and 7.5 ms respectively for Figure 6 and Figure 7. The program in Figure 8 uses \(7.6 \%+1.35 \mathrm{~N} \%\) of the microprocessor time for a 2 MHz clock. A \(50 \%\) reduction in the previously described microprocessor times can be achieved by using faster versions of the 6800 and 8080A microprocessors.

Figure 6. \(\mathbf{6 8 0 0}\) Microprocessor Program Utilizing a 160 Byte RAM Buffer that Interfaces to the REFRESH CONTROLLER

Figure 6. 6800 Microprocessor Program Utilizing a 160 Byte RAM Buffer that Interfaces to the REFRESH CONTROLLER (cont.)

The ASCII to \(5 \times 7\) dot matrix decoder used by the programs in Figures 6, 7, and 8 is located within the microprocessor program. This decoder requires 640 bytes of storage to decode the 128 character ASCII set. The decoder used by these controllers is formatted so that the first 128 bytes contain column 1 information; the next 128 bytes contain column 2 information, etc. Each byte of this decoder is formatted such that \(\mathrm{D}_{6}\) through \(\mathrm{D}_{0}\) contain Row 7 through Row 1 display data respectively. The data is coded so that a HIGH bit will turn the corresponding \(5 \times 7\) display dot ON. This decoder table is shown in Figure 9. The resulting \(5 \times 7\) dot matrix display font is shown in the HDSP-2471 data sheet.

\section*{DECODED DATA CONTROLLER}

The DECODED DATA CONTROLLER circuit schematic for a 32 character display is depicted in Figure 10. The circuit is specifically designed for interface to an 8080A microprocessor. This circuit is designed to accept and store in local memory all of the display data for a 32 character HDSP-2000 display (1120 bits). The microprocessor loads 160 bytes of display data into the two 1 Kx 1 RAM's via the 74165 parallel in, serial out shift register. Each byte of data represents one column of display data. The counter string automatically generates the proper address location for each serial bit of data after initialization by \(\overline{\text { MEM W }}\), the character address, and the desired column. Once the loading is complete, the counter sequentially loads and displays each column (224 bits) of data at a 90 Hz rate (2 MHz input clock rate). The timing for this circuit is shown in Figure 11. The software required to decode a 32 character ASCII string is shown in Figure 12. This program decodes the 32 ASCII characters into 160 bytes of display data which are then stored in the controller. The program requires about 6.6 ms , for a 2 MHz clock, to decode and load the message into the DECODED DATA CONTROLLER. This program also uses the same decoder table as shown in Figure 9.
\begin{tabular}{|c|c|c|c|c|c|}
\hline LOC & \multicolumn{2}{|l|}{OBJECT
CODE} & \multicolumn{3}{|l|}{SOURCE STATEMENTS} \\
\hline 0004 & & & RDVR & EQU & 0004H \\
\hline 0005 & & & CDVR & EQU & 0005H \\
\hline E500 & & & DECDR & EQU & 0E500H \\
\hline & & & & ORG & OE000H \\
\hline E000 & 05 E0 & & POINT & DW & BUFFR \\
\hline E002 & FE & & COLMN & DB & OFEH \\
\hline E003 & FF FF & & COUNT & DW & OFFFFH \\
\hline E005 & 00 & & BUFFR & DS & 160 \\
\hline & & & & ORG & 0E0A5H \\
\hline E0A5 & A7 E0 & & ASCII & DW & DATA \\
\hline E0A7 & 00 & & DATA & DS & 32 \\
\hline & & & & ORG & 0E400H \\
\hline E400 & F5 & & RFRSH & PUSH & PSW \\
\hline E401 & C5 & & & PUSH & B \\
\hline E402 & E5 & & & PUSH & H \\
\hline E403 & 2A 00 & E0 & & LHLD & POINT \\
\hline E406 & 0620 & & & MVI & B, 32 \\
\hline E408 & 3E FF & & & MVI & A, 0FFH \\
\hline E40A & D3 05 & & & OUT & CDVR \\
\hline F40C & 7E & & LOOP & MOV & A, M \\
\hline E40D & D3 04 & & & OUT & RDVR \\
\hline E40F & 23 & & & INX & H \\
\hline E410 & 05 & & & DCR & B \\
\hline E411 & C2 OC & E4 & & JNZ & LOOP \\
\hline E414 & 3A 02 & E0 & & LDA & COLMN \\
\hline E417 & D3 05 & & & OUT & CDVR \\
\hline E419 & FE EF & & & CPI & OEFH \\
\hline E41B & CA 28 & E4 & & JZ & FIRST \\
\hline E41E & 2200 & E0 & & SHLD & POINT \\
\hline E421 & 07 & & & RLC & \\
\hline E422 & 3202 & E0 & & STA & COLMN \\
\hline E425 & C3 3A & E4 & & JMP & END \\
\hline E428 & 2105 & E0 & FIRST & LXI & H, BUFFR \\
\hline E42B & 2200 & E0 & & SHLD & POINT \\
\hline E42E & 3 E FE & & & MVI & A, OFEH \\
\hline E430 & 3202 & E0 & & STA & COLMN \\
\hline E433 & 2A 03 & E0 & & LHLD & COUNT \\
\hline E436 & 2B & & & DCX & H \\
\hline E437 & 2203 & E0 & & SHLD & COUNT \\
\hline E43A & E1 & & END & POP & H \\
\hline E43B & Cl & & & POP & B \\
\hline E43C & F1 & & & POP & PSW \\
\hline E43D & C9 & & & RET & \\
\hline E43E & 1124 & E0 & LOAD & LXI & D, BUFFR+31 \\
\hline E441 & 0E 20 & & & MVI & C, 32 \\
\hline E443 & 2A A5 & E0 & LOOP1 & LHLD & ASCII \\
\hline E446 & 7E & & & MOV & A, M \\
\hline E447 & 23 & & & INX & H \\
\hline E448 & 22 A5 & E0 & & SHLD & ASCII \\
\hline E44B & 26 E5 & & & MVI & H, DECDR/256 \\
\hline E44D & 6F & & & MOV & L, A \\
\hline E44E & 0605 & & & MVI & B, 5 \\
\hline E450 & 7E & & LOOP2 & MOV & A, M \\
\hline E451 & 12 & & & STAX & D \\
\hline E452 & 7D & & & MOV & A, L \\
\hline E453 & C6 80 & & & ADI & 80H \\
\hline E455 & 6F & & & MOV & L, A \\
\hline E456 & D2 5A & E4 & & JNC & LOOP3 \\
\hline E459 & 24 & & & INR & H \\
\hline E45A & 7B & & LOOP3 & MOV & A, E \\
\hline E45B & C6 20 & & & ADI & 32 \\
\hline E45D & 5F & & & MOV & E, A \\
\hline E45E & 05 & & & DCR & B \\
\hline E45F & C2 50 & E4 & & JNZ & LOOP2 \\
\hline E462 & 7B & & & MOV & A, E \\
\hline E463 & C6 5F & & & ADI & 5FH \\
\hline E465 & 5F & & & MOV & E, A \\
\hline E466 & 0D & & & DCR & C \\
\hline E467 & C2 43 & E4 & & JNZ & LOOP1 \\
\hline E46A & C9 & & & RET & \\
\hline
\end{tabular}

Figure 7. 8080A Microprocessor Program Utilizing a 160 Byte RAM Buffer that Interfaces to the REFRESH CONTROLLER

Figure 7. 8080A Microprocessor Program Utilizing a 160 Byte RAM Buffer that Interfaces to the REFRESH CONTROLLER (cont.)

Figure 9. 128 Character ASCII Decoder Table Used by the 6800 Refresh Program in Figure 6. 8080A Refresh Programs in Figures 7, 8, and 12, and the HDSP-2471 DISPLAY PROCESSOR CONTROLLER. Decoded 5x7 Display Font is shown in the HDSP-247X Data Sheet

Figure 10. 8080A Microprocessor Interface to the HDSP-2000 DECODED DATA CONTROLLER

Figure 11. Data Entry Timing for DECODED DATA CONTROLLER

\section*{CODED DATA CONTROLLER}

The CODED DATA CONTROLLER (Figure 13) is designed to accept ASCII coded data for storage in a local \(128 \times 8\) RAM. After the microprocessor has loaded the RAM, local scanning circuitry controls the decoding of the ASCII, the display data loading, and the column select function. With minor modification, the circuit can be utilized for up to 128 display characters. The RAM used in this circuit is an MCM6810P with the Address and Data inputs isolated via 74LS367 tristate buffers. This allows the RAM to be accessed either by the microprocessor or by the local electronics. The protocol is arranged such that the microprocessor always takes precedence over the local scanning electronics. The "Write" cycle timing for the CODED DATA CONTROLLER is depicted in Figure 14. This circuit, as with the DECODED DATA CONTROLLER, requires no microprocessor time once the local RAM has been loaded with the desired data.

The circuit shown in Figure 13 shows a CODED DATA CONTROLLER designed for a 32 character HDSP-2000 alphanumeric display. The key waveforms shown in Figure 15, labeled (1), (2), and (3), are shown to simplify the analysis of this circuit. Label (1) is the 1 MHz clock. Label (2) is the output of 7404 pin 2 which is the inverted QD output of the 74197. Label (3) is the output of the 7404 pin 6 which is the ANDed output of 2QB, 2QC, and 2QD of the 74393. The Motorola 6810 RAM stores 32 bytes of ASCII data which is continuously read, decoded, and displayed. The ASCII data from the RAM is decoded by the Motorola 6674128 character ASCII decoder. The 6674 decoder has five column outputs which are gated to the Data Input of the display via a 74151 multiplexer. Strobing of the display is accomplished via the 74197, 74393 , and 7490 counter string. The 74197 is connected as a divide by 8 counter that sequentially selects the seven
rows within the 6674. As shown by waveform (2), the 74197 also enables seven clock cycles to be gated to the clock input of the display. The 74393 is a divide by 256 counter connected so that the five lowest order outputs select each of the 32 ASCII characters within the RAM. The three highest order outputs determine the relationship between load time and column on time. When 2QB \(=\) \(2 Q_{C}=2 Q_{D}=1\) of the 74393 , waveform (3) goes to a logical 1. The circuit then scans 32 characters from the RAM and serializes the column data by counting through each of the seven rows of the 6674 and gating the appropriate column of the display. During the seven counts when 2QB, 2QC, and 2QD of the 74393 are not equal to a logical 1, the column data is displayed, as shown in waveform (4). The duty factor of the display shown in Figure 13 is \(17.5 \%\).
Changing the display length to 64 characters is a simple modification. This configuration can be easily realized by disconnecting 2QB of the 74393 from the 7410 and connecting it through the remaining tri-state buffer on the 74LS367 and using the 6810 RAM to store 64 ASCII characters. By leaving only 2QC and 2QD attached to the 7410, the column on time of the display is reduced from \(17.5 \%\) to \(15 \%\). This reduction is caused because the relationship between actual column on time and theoretical column on time is \(3 / 4\) as opposed to \(7 / 8\) for the 32 characters. Since the display length has been doubled, the drive transistors must be upgraded to handle the higher column currents.
To implement a 128 character display, several modifications are needed. These changes are incorporated into the circuit in Figure 16. First, the input clock frequency has been increased to 2 MHz . This has been done to maintain a refresh rate of approximately 100 Hz for each digit, thus providing a flicker-free display. This higher speed of operation causes propagation delay problems within the
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LOC & \multicolumn{3}{|l|}{OBJECT CODE} & \multicolumn{3}{|l|}{SOURCE STATEMENTS} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { B000 } \\
& \text { E500 }
\end{aligned}
\]}} & DISPL & EQU & 0B000H \\
\hline & & & & DECDR & EQU & 0E500H \\
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { E000 } \\
& \text { E002 }
\end{aligned}
\]} & & & & & ORG & 0E000H \\
\hline & 02 & E0 & & ASCII & DW & DATA \\
\hline & 00 & & & DATA & DS & 32 \\
\hline \multirow[b]{2}{*}{E400} & \multirow[b]{2}{*}{11} & \multirow[b]{2}{*}{F8} & \multirow[b]{2}{*}{B0} & \multirow{3}{*}{LOAD} & ORG & 0E400H \\
\hline & & & & & LXI & D, DISPL+00F8H \\
\hline E403 & OE & 20 & & & MVI & C, 32 \\
\hline E405 & 2A & 00 & E0 & LOOP1 & LHLD & ASCII \\
\hline E408 & 7E & & & & MOV & A, M \\
\hline E409 & 23 & & & & INX & H \\
\hline E40A & 22 & 00 & E0 & & SHLD & ASCII \\
\hline E40D & 26 & E5 & & & MVI & H, DECDR/256 \\
\hline E40F & 6F & & & & MOV & L, A \\
\hline E410 & 06 & 05 & & & MVI & B, 5 \\
\hline E412 & 7E & & & LOOP2 & MOV & A, M \\
\hline E413 & 12 & & & & STAX & D \\
\hline E414 & 13 & & & & INX & D \\
\hline E415 & 7D & & & & MOV & A, L \\
\hline E416 & C6 & 80 & & & ADI & 80H \\
\hline E418 & 6F & & & & MOV & L, A \\
\hline E419 & D2 & 1D & E4 & & JNC & LOOP3 \\
\hline E41C & 24 & & & & INR & H \\
\hline E41D & 05 & & & LOOP3 & DCR & B \\
\hline E41E & C2 & 12 & E4 & & JNZ & LOOP2 \\
\hline E421 & 7B & & & & MOV & A, E \\
\hline E422 & D6 & 0D & & & SUI & 13 \\
\hline E424 & 5F & & & & MOV & E, A \\
\hline E425 & 0D & & & & DCR & C \\
\hline E426 & C2 & 05 & E4 & & JNZ & LOOP1 \\
\hline E429 & C9 & & & & RET & \\
\hline
\end{tabular}

Figure 12. 8080A Microprocessor Program that Decodes a 32 Character ASCII String Prior to Loading into the DECODED DATA CONTROLLER

Figure 13. 8080A Microprocessor Interface to the 32 Character HDSP-2000 CODED DATA CONTROLLER

Figure 14. Memory Write Timing for the 32 Character HDSP-2000 CODED DATA CONTROLLER

Figure 15. Timing Information for the 32 Character HDSP-2000 CODED DATA CONTROLLER

MCM6674 (NMOS) whose maximum access time is 350 ns . For this reason, the MCM6674 must be replaced by a faster Bipolar PROM. If this PROM is programmed with the code listed in Figure 17, it will decode a character font identical to the MCM6674. This same propagation delay problem is present with the MCM6810 RAM. Following worst case design procedures, the MCM68A10 1.5 MHz RAM should be used. To accommodate the additional address line made necessary by the display length expansion, the two 74LS367 tri-state buffers have been replaced with the 74LS244 octal version. Strobing of the display is accomplished using the 74197, 74393, and 7490 counter string. The 74197 is connected as a divide by 8 counter that sequentially selects the seven rows within the 82S2708. The 74393 is a divide by 256 counter connected so that the seven lowest outputs select each of the 128 ASCII characters within the RAM. The previously unused input A/output \(Q_{A}\) of the 7490 has been used as an
additional divide by 2 counter. Thus, when the highest output of the 74393, 2QD, and the QA output of the 7490 are NANDed through 7437, the basic relationship between load time and column on time is established. However, the external gating that has been added does affect the duty factor slightly. Although these additional gates increase the total package count by one, they perform the necessary function of ensuring that the column drivers are turned off before the clock is gated to the display. This prevents noise from being generated on the clock of the display and eliminates erroneous display data. The resultant duty factor is \((23 / 32)(1 / 5)\) or \(14.4 \%\). Since the HDSP-2000 is rated at \(I_{c o l}(\max)=410 \mathrm{~mA}\) and there are 32 modules of four digits each, the transistors must source up to 32 times 410 mA or approximately 13A. Darlington PNP power transistors (2N6285) with the proper resistors have been used to accomplish this task.

Figure 16. 6800, 8080A, and Z-80 Interface to the 128 Character HDSP-2000 CODED DATA CONTROLLER
\begin{tabular}{|c|}
\hline PROM ADDRESS & \multicolumn{17}{|c|}{HEXIDECIMAL DATA} & \[
\begin{array}{|l|}
200 \\
210 \\
220 \\
230 \\
240 \\
250 \\
260 \\
270 \\
\hline
\end{array}
\] & F1
FF
E0
F5
ED
FE
E2
F9 & & \[
\begin{aligned}
& =0 \\
& 7 \\
& =4 \\
& 4 \\
& =1 \\
& =1 \\
& 1 \\
& 1 \\
& =3
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{E} 4 \\
& \mathrm{F7} \\
& \mathrm{EO} \\
& \mathrm{EE} \\
& \mathrm{EE} \\
& \mathrm{FE} \\
& \mathrm{F9} \\
& \mathrm{~F} 9 \\
& \hline
\end{aligned}
\] & & \begin{tabular}{l}
EF \\
FD \\
EE \\
F2 \\
E9 \\
E4 \\
F3 \\
E4
\end{tabular} & \begin{tabular}{l}
F5 \\
F5 \\
E4 \\
E1 \\
FC \\
F1 \\
F1 \\
F1
\end{tabular} & \begin{tabular}{l}
F4 \\
EA \\
E8 \\
FE \\
FC \\
EA \\
EE \\
F1
\end{tabular} & FF
FF
F0
E4
F3
F1
ED
F1 & \begin{tabular}{l}
E9 \\
E4 \\
E8 \\
EE \\
FF \\
E4 \\
F9 \\
EA
\end{tabular} & \[
\begin{aligned}
& \text { FF } \\
& \mathrm{EE} \\
& \mathrm{E} 2 \\
& \mathrm{EF} \\
& \mathrm{E4} \\
& \mathrm{E} 4 \\
& \mathrm{E} 4 \\
& \mathrm{EF} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
FF \\
E8 \\
FF \\
E0 \\
E1 \\
E4 \\
E1 \\
E2
\end{tabular} & F5 FF FF EC F8 E8 F4 E8 & E4
FD
EC
F0
F0
E4
E4 & \[
\begin{aligned}
& \text { FF } \\
& \text { FD } \\
& \text { FF } \\
& \text { E0 } \\
& \text { F5 } \\
& \text { E2 } \\
& \text { F5 } \\
& \text { E2 } \\
& \hline
\end{aligned}
\] & \begin{tabular}{ll}
F5 & F5 \\
F7 & F7 \\
E0 & E4 \\
E1 & E2 \\
F3 & F1 \\
E0 & E0 \\
F9 & F1 \\
E0 & F5
\end{tabular} & Row 4 \\
\hline 080 & FF & FF & E4 & E1 & E8 & FF & E0 & EE & E4 & E0 & FF & E0 & E4 & E0 & EE & EE & ROW 1 & 280 & F1 & F0 & 0 & E4 & E1 & E4 & FB & F8 & EA & E5 & E2 & E0 & EE & F5 & E8 & FB F1 & ROW 5 \\
\hline 090 & FF & EE & EE & EE & EE & E0 & EE & E1 & FF & E4 & EE & EE & FF & FF & FF & FF & & 290 & F1 & F & 1 & F5 & F5 & F1 & F8 & EA & E1 & EA & E4 & E4 & F1 & F1 & F5 & F5 F1 & \\
\hline OAO & E0 & E4 & EA & EA & E4 & F8 & E8 & EC & E2 & E8 & E4 & E0 & E0 & E0 & E0 & E0 & & 2A0 & E0 & E4 & 4 & E0 & FF & E5 & E8 & F5 & E0 & E8 & E2 & EE & E4 & EC & EO & EO E8 & \\
\hline OBO & EE & E4 & EE & EE & E2 & FF & E6 & FF & EE & EE & E0 & EC & E2 & E0 & E8 & EE & & 2B0 & F9 & E4 & 4 & F0 & E1 & FF & E1 & F1 & E8 & F1 & E1 & EC & EC & E8 & FF & E2 E4 & \\
\hline OCO & EE & E4 & FE & EE & FE & FF & FF & EF & F1 & EE & E1 & F1 & F0 & F1 & F1 & EE & & 2 CO & F5 & FF & F & E9 & F0 & E9 & F0 & F0 & F1 & F1 & E4 & E1 & F4 & F0 & F1 & F1 F1 & \\
\hline ODO & FE & EE & FE & EE & FF & F1 & F1 & F1 & F1 & F1 & FF & EE & EO & EE & E4 & E0 & & 2D0 & F0 & F5 & 5 & F4 & E1 & E4 & F1 & EA & F5 & EA & E4 & E8 & E8 & E2 & E2 & EO EO & \\
\hline OEO & E6 & E0 & F0 & E0 & E1 & E0 & E2 & ED & F0 & E4 & E1 & F0 & EC & E0 & E0 & E0 & & 2E0 & E0 & E & F & F1 & & F1 & FF & E4 & E1 & F1 & E4 & E1 & F8 & E4 & F5 & F1 F1 & \\
\hline OFO & F6 & ED & E0 & E0 & E4 & E0 & E0 & E0 & E0 & F1 & E0 & E2 & E4 & E8 & E8 & EA & & 2F0 & F6 & & D & F0 & EE & E4 & F1 & F1 & F5 & E4 & E1 & E4 & E4 & E4 & E4 & EO EA & \\
\hline 100 & F1 & F0 & E4 & E1 & E4 & F1 & E1 & F1 & E8 & E4 & E0 & E4 & F5 & E4 & F1 & F1 & ROW 2 & 300 & F1 & FO & 0 & E4 & E1 & E2 & F1 & F0 & EA & E1 & E4 & E0 & E4 & EE & E4 & F1 F1 & ROW 6 \\
\hline 110 & F1 & F5 & F1 & F1 & F5 & E5 & EA & E1 & F1 & E4 & F1 & F1 & F5 & F1 & F1 & F5 & & 310 & F1 & F & 1 & F5 & F5 & F1 & F0 & EA & E1 & F1 & E4 & E0 & F1 & F1 & F5 & F5 F1 & \\
\hline 120 & E0 & E4 & EA & EA & EF & F9 & F4 & EC & E4 & E4 & F5 & E4 & E0 & E0 & E0 & E1 & & 320 & E0 & EO & & E0 & EA & FE & F3 & F2 & E0 & E4 & E4 & F5 & E4 & E8 & E0 & EC FO & \\
\hline 130 & F1 & EC & F1 & F1 & E6 & F0 & E8 & E1 & F1 & F1 & EC & EC & E4 & E0 & E4 & F1 & & 330 & F1 & E4 & 4 & F0 & F1 & E2 & F1 & F1 & F0 & F1 & E2 & EC & E8 & E4 & E0 & E4 E0 & \\
\hline 140 & F1 & EA & E9 & F1 & E9 & F0 & F0 & F0 & F1 & E4 & E1 & F2 & F0 & FB & F9 & F1 & & 340 & F5 & F & 1 & E9 & F1 & E9 & F0 & F0 & F1 & F1 & E4 & F1 & F2 & F0 & F1 & F1 F1 & \\
\hline 150 & F1 & F1 & F1 & F1 & E4 & F1 & F1 & F1 & \(F:\) & F1 & E1 & E8 & F0 & E2 & EA & E0 & & 350 & F0 & F2 & 2 & F2 & & E4 & F1 & E4 & FB & F1 & E4 & F0 & E8 & E1 & E2 & EO EO & \\
\hline 160 & E6 & E0 & F0 & E0 & E1 & E0 & E5 & F3 & FO & EO & E0 & F0 & E4 & E0 & E0 & E0 & & 360 & EO & F & 1 & F9 & & F3 & F0 & E4 & F1 & F1 & E4 & F1 & F4 & E4 & F5 & F1 F1 & \\
\hline 170 & F9 & F3 & E0 & E0 & E4 & E0 & E0 & EO & E0 & F1 & E0 & E4 & E4 & E4 & F5 & F5 & & 370 & F0 & E & 1 & F0 & E1 & E5 & F3 & EA & F5 & EA & F1 & E8 & E4 & E4 & E4 & E0 F5 & \\
\hline 180 & F1 & F0 & E4 & E1 & E2 & FB & E2 & F1 & FE & E2 & E0 & E4 & EE & E8 & FB & F1 & ROW 3 & 380 & FF & & 0 & FF & FF & E1 & FF & EO & FB & E1 & E0 & FF & E0 & E4 & E0 & EE EE & ROW 7 \\
\hline 190 & F1 & F5 & F1 & F1 & F5 & E2 & EA & E1 & EA & EE & F0 & F1 & F5 & F1 & F1 & F5 & & 390 & FF & & & EE & EE & EE & EO & FB & E1 & FF & E4 & E4 & EE & FF & FF & FF FF & \\
\hline 1 A0 & E0 & E4 & EA & FF & F4 & E2 & F4 & E8 & E8 & E2 & EE & E4 & E0 & E0 & E0 & E2 & & 3A0 & E0 & & 4 & E0 & & E4 & E3 & ED & E0 & E2 & E8 & E4 & E0 & F0 & E0 & EC EO & \\
\hline 1 BO & F3 & E4 & E1 & E1 & EA & FE & F0 & E2 & F1 & F1 & EC & E0 & E8 & FF & E2 & E1 & & 3B0 & EE & & & FF & EE & E2 & EE & EE & F0 & EE & EC & E0 & F0 & E2 & E0 & E8 E4 & \\
\hline 1 CO & E1 & F1 & E9 & F0 & E9 & F0 & F0 & F0 & F1 & E4 & E1 & F4 & F0 & F5 & F5 & F1 & & 3C0 & EE & & 1 & FE & EE & FE & FF & F0 & EF & F1 & EE & EE & F1 & FF & F1 & F1 EE & \\
\hline 1 D 0 & F1 & F1 & \(F 1\) & F0 & E4 & F1 & F1 & F1 & EA & EA & E2 & E8 & E8 & & & E0 & & 3D0 & \% & & D & F1 & & E4 & EE & E4 & F1 & F1 & E4 & FF & EE & E0 & EE & EO FF & \\
\hline 1 EO & E4 & EE & F6 & EE & ED & EE & E4 & F3 & F6 & EC & E1 & F2 & E4 & FA & F6 & & & 3 E 0 & E0 & E & F & F6 & EE & ED & EE & E4 & EE & F1 & EE & EE & F2 & EE & F5 & F1 EE & \\
\hline 1F0 & F1 & F1 & F6 & EF & FF & F1 & F1 & F1 & F1 & F1 & FF & E4 & E4 & E4 & E2 & EA & & 3F0 & F0 & E & 1 & F0 & FE & E2 & ED & E4 & EA & F1 & EE & FF & E2 & E4 & E8 & EO EA & \\
\hline
\end{tabular}

Figure 17. \(\mathbf{8 2 S 2 7 0 8}\) PROM Listing

\section*{DISPLAY PROCESSOR CONTROLLER}

The previously mentioned interface techniques provide only for the display of ASCII coded data. Such important features as a blinking cursor, editing routines, and character addressing must be provided by other subroutines in the microprocessor software. The DISPLAY PROCESSOR CONTROLLER is a system which utilizes a dedicated 8048 single chip microprocessor to provide these important features. This controller, as depicted in Figure 18, is a series of printed circuit board subsystems available from Hewlett-Packard under the following part numbers:

HDSP-2470 - Controller with 64 character ASCII to \(5 \times 7\) decoder
HDSP-2471 - Controller with 128 character universal ASCII to \(5 \times 7\) decoder
HDSP-2472 - Controller with socket for user supplied custom coded ROM/PROM/EPROM.

All of the controllers have the following features:
- Choice of character string length:

4 to 48 characters in increments of four characters
- Four modes of data entry

Left Entry
Right Entry
RAM Entry (\(\leq 32\) characters only)
Block Entry
- Flashing Cursor - Left Entry Only
- Data Out (\(\leq 32\) characters only)

\section*{- Edit Functions}

These controllers have been designed to eliminate the burden of data handling between keyboard, display, and microprocessor. The product data sheet describes the technical function of the controllers in detail.
Interfacing the controller to microprocessor systems depends on the needs of the particular application. Figure 19 depicts a latched interface from a master microprocessor to the HDSP-247X series of controllers. These interfaces are utilized to avoid having the master processor wait for the controller to accept data.
In sophisticated systems, it may be desirable to have the HDSP-247X controller handle all of the keyboard/display interface while the microprocessor reads edited messages from the controller DATA OUT port. This function can be achieved through the use of peripheral interface adapters (PIA) available from the microprocessor manufacturers. Figure 20 depicts a 6800 based system in which data may enter the display from either a keyboard or a microprocessor. This interface uses a 6821 PIA configured so that \(\mathrm{PB}_{7}\) controls whether the microprocessor or keyboard enters data into the controller. The 6800 program is shown in Figure 21. Subroutine "LOAD" uses \(C A_{1}\) and \(C A_{2}\) to provide a data entry handshake that

Figure 18. HDSP-2470/-2471/-2472 DISPLAY PROCESSOR CONTROLLER

Figure 19. Latched Interface to the HDSP-2470/-2471/-2472 DISPLAY PROCESSOR CONTROLLER

* PORT CONFIGURATION:
* 1. PORT A:
\(\begin{array}{ll}\text { * } & \text { PA0-PA7 OUTPUTS TO DATA IN OF HDSP-247X } \\ * & \text { CA1 (INPUT) MODE 00 SET FLAG NEG EDGE OF READY } \\ * & \text { CA2 (OUTPUT) MODE 100 CLEARED MPU READ PRA, SET }\end{array}\)
* 1. PORT B:

PB0-PB6 INPUTS DATA TO 6800 FROM DATA OUT OF HDSP-247X CB1 (INPUT) MODE 00 SETS FLAG NEG EDGE OF DATA VALID CB2 (INPUT) MODE 000 SETS FLAG NEG EDGE OF ER KEY CB2 (INPUT) MODE 001 SETS FLAG NEG EDGE OF ER KEY CAUSING IRQ
PB7 (OUTPUT) LOW ENABLES PA0-PA7 TO MUX
high enables Keyboard to mux
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LOC & \multicolumn{2}{|l|}{OBJECT} & CODE & \multicolumn{3}{|l|}{SOURCE STATEMENT} \\
\hline & \multicolumn{2}{|l|}{8008} & PRA & EQU & \$8008 & \\
\hline & 8008 & & DRA & EQU & \$8008 & \\
\hline & 8009 & & CRA & EQU & \$8009 & \\
\hline & 800 & & PRB & EQU & \$800A & \\
\hline & 800 & & DRB & EQU & \$800A & \\
\hline & 800 & & CRB & EQU & \$800B & \\
\hline & & & & ORG & \$0000 & \\
\hline \multirow[t]{2}{*}{0000} & & & MESSAGE & RMB & 2 & \\
\hline & & & & ORG & \$0100 & \\
\hline 0100 & & & STATUS & RMB & 1 & \\
\hline 0101 & & & CURSOR & RMB & 1 & \\
\hline \multirow[t]{2}{*}{0102} & & & DATA & RMB & 32 & \\
\hline & & & & ORG & \$0400 & \\
\hline 0400 & CE & 0100 & READ & LDX & I, STATUS & \\
\hline 0403 & B6 & 800A & LOOP1 & LDA A & E, PRB & CLEAR CB1 AND CB2 \\
\hline 0406 & 5 F & & & CLR B & & \\
\hline 0407 & 5 C & & LOOP2 & INC B & & \\
\hline 0408 & B6 & 800B & & LDA A & E, CRB & \\
\hline 040B & 2 A & FA & & BPL & LOOP2 & WAIT FOR DATA VALID \\
\hline 040D & C1 & 0A & & CMP B & I, 10 & \\
\hline 040F & & F2 & & BLS & LOOP1 & \\
\hline 0411 & C6 & & & LDA B & I, 33 & \\
\hline 0413 & B6 & 800A & LOOP3 & LDA A & E, PRB & READ AND CLEAR CB1 \\
\hline 0416 & & 7 F & & AND A & I, \$7F & \\
\hline 0418 & A7 & 00 & & STA A & \(\mathrm{X}, 0\) & STORE IN RAM \\
\hline 041A & B6 & 800B & LOOP4 & LDA A & E, CRB & \\
\hline 041D & 2 A & FB & & BPL & LOOP4 & WAIT FOR DATA VALID \\
\hline 041 F & 08 & & & INX & & \\
\hline 0420 & 5A & & & DEC B & & \\
\hline 0421 & 26 & F0 & & BNE & LOOP3 & READ DATA \\
\hline 0423 & B6 & 800A & & LDA A & E, PRB & \\
\hline 0426 & & 7 F & & AND A & I, \$7F & \\
\hline 0428 & A7 & 00 & & STA A & \(\mathrm{X}, 0\) & \\
\hline 042A & 39 & & & RTS & & \\
\hline 042B & & 00 & LOAD & LDX & D, MESSGE & \\
\hline 042D & A6 & 00 & LOOP10 & LDA A & X, 0 & \\
\hline 042F & 08 & & & INX & & \\
\hline 0430 & 81 & FF & & CMP A & I, \$FF & LAST WORD IN STRING \\
\hline 0432 & 27 & 0D & & BEQ & ENDL & JUMP WHEN DONE \\
\hline 0434 & B7 & 8008 & & STA A & E, PRA & \\
\hline 0437 & 7D & 8008 & & TST & E, PRA & CLEAR CA1 AND CA2 \\
\hline 043A & B6 & 8009 & LOOP11 & LDA A & E, CRA & \\
\hline 043D & 2A & FB & & BPL & LOOP11 & WAIT \\
\hline 043F & 20 & EC & & BRA & LOOP10 & \\
\hline 0441 & DF & 00 & ENDL & STX & D, MESSGE & \\
\hline \multirow[t]{2}{*}{0443} & 39 & & & RTS & & \\
\hline & & & & ORG & \$0500 & \\
\hline 0500 & 7F & 8009 & START & CLR & E, CRA & \\
\hline 0503 & 7F & 800B & & CLR & E, CRB & \\
\hline 0506 & 86 & FF & & LDA A & 1, \$FF & \\
\hline 0508 & B7 & 8008 & & STA A & E, DRA & \\
\hline 050B & 86 & 24 & & LDA A & I, \$24 & \\
\hline 050D & B7 & 8009 & & STA A & E, CRA & \\
\hline 0510 & 86 & 80 & & LDA A & I, \$80 & \\
\hline 0512 & B7 & 800A & & STA A & E, DRB & \\
\hline 0515 & 86 & 04 & & LDA A & I, \$04 & \\
\hline 0517 & B7 & 800B & & STA A & E, CRB & \\
\hline
\end{tabular}
* PROCEDURE TO LOAD HDSP-247X SYSTEM
\begin{tabular}{|c|c|c|c|c|c|}
\hline 051A & OE & & \multicolumn{3}{|l|}{CLI} \\
\hline 051B & 7F & 800A & CLR & E, PRB & DISABLE KEYBD FROM MU \\
\hline 051 E & BD & 042B & JSR & E, LOAD & \\
\hline & & & \multicolumn{3}{|l|}{* PROCEDURE TO READ DATA OUT OF HDSP-247X SYSTEM} \\
\hline 0521 & 7D & 800A & TST & E, PRB & CLEAR CB1, CB2 \\
\hline 0524 & 86 & 80 & LDA A & I, \$80 & \\
\hline 0526 & B7 & 800A & STA A & E, PRB & ENABLE KEYbD TO MUX \\
\hline 0529 & 86 & 0 C & LDA A & I, \$0C & \\
\hline 042B & B7 & 800B & STA A & E, CRB & ENABLE IRQ, \\
\hline 052E & 0F & & SEI & & IRQ CAUSE JSR TO READ \\
\hline
\end{tabular}

Figure 21. 6800 Microprocessor program that Interfaces to the Circuit shown in Figure 14.

Figure 22. 8080A Microprocessor Interface Utilizing an \(\mathbf{8 2 5 5}\) PIA for an HDSP-2470/-2471/-2472 Alphanumeric Terminal
allows the 6800 to load data into the controller as fast as the controller can accept it. After the prompting message has been loaded, the microprocessor turns the control of data entry over to the keyboard. A signal from the keyboard ("ER" in the example) sets a flag within the 6821. Depending on how the 6821 is configured, the microprocessor can either test the flag or allow the flag to automatically interrupt the microprocessor. Subroutine "READ" would then be used to read the DATA OUT outputs from the controller into the microprocessor system. The microprocessor uses the \(\mathrm{CB}_{1}\) input of the 6821 PIA to determine when to read each of the 34 data output words into the system.

A similar PIA interface for the 8080A microprocessor is depicted in Figures 22 and 23.
The HDSP-247X series of controllers are programmed to default to "Left Entry" mode for a 32 character string of displays. If some other entry mode or string length is desired, it is necessary to either load the appropriate control word from the microprocessor or to provide a control word during POWER ON RESET. The controller will read the DATA IN lines during RESET and interpret the contents as the control word. The circuit depicted in Figure 24 can be utilized to load any desired preprogrammed word into the HDSP-247X controller, during power on.
- 1. PORT A (MODE 1 OUTPUT):
PA0-PA7 OUTPUTS TO DATA IN OF HDSP-247X
PC7 (OBF) OUTPUT; TO CHIP SELECT
PC6 (ACK) INPUT; TO READY
FLAG PC7 (OBF) CLEARED BY OUTPUT; SET BY READY
2. PORT B (MODE 1 INPUT):
PB0-PB6 INPUTS DATA FROM DATA OUT OF HDSP-247X
PC2 (STB) INPUT; LOADS DATA ON NEG EDGE OF DATA VALID
FLAG PCO (INTR) CLEARED BY INPUT; SET BY DATA VALID
3. PORT C:
PC4 OUTPUT; LOW ENABLES PA0-PA7 TO HDSP-247X
HIGH ENABLES KEYBOARD TO HDSP-247X
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LOC & \multicolumn{2}{|l|}{OBJECT} & CODE & \multicolumn{3}{|l|}{SOURCE STATEMENTS} \\
\hline 000C & & & PA & EQU & 0 CH & \\
\hline 000D & & & PB & EQU & ODH & \\
\hline 000E & & & PC & EQU & OEH & \\
\hline 000F & & & CNTRL & EQU & OFH & \\
\hline & & & & ORG & 0E000H & \\
\hline E000 & 02 & E0 & ASCII & DW & TEXT & \\
\hline E002 & 00 & & TEXT & DS & 32 & \\
\hline & & & & ORG & 0 E 100 H & \\
\hline E100 & 00 & & STAT & DB & 0 & \\
\hline E101 & 00 & & ADDR & DB & 0 & \\
\hline E102 & 00 & & DATA & DS & 32 & \\
\hline & & & & ORG & 0E400H & \\
\hline E400 & F3 & & READ & DI & & \\
\hline E401 & F5 & & & PUSH & PSW & \\
\hline E402 & E5 & & & PUSH & H & \\
\hline E403 & C5 & & & PUSH & B & \\
\hline E404 & OE & 20 & & MVI & C, 32 & \\
\hline E406 & 21 & 00 El & & LXI & H, STAT & FIRST WORD \\
\hline E409 & DB & OD & & IN & PB & CLEAR INTR \\
\hline E40B & 06 & 00 & LOOP 1 & MVI & B, 0 & \\
\hline E40D & DB & OE & LOOP2 & IN & PC & \\
\hline E40F & 04 & & & INR & B & \\
\hline E410 & 1 F & & & RAR & & \\
\hline E411 & D2 & OD E4 & & JNC & LOOP2 & WAIT UNTIL INTR IS SET \\
\hline E414 & 3E & 0A & & MVI & A, 10 & \\
\hline E416 & B8 & & & CMP & B & \\
\hline E417 & DB & OD & & IN & PB & \\
\hline E419 & D2 & OB E4 & & JNC & LOOP1 & WAIT UNTIL STATUS WORD \\
\hline E41C & 77 & & LOOP3 & MOV & M, A & STORE IN RAM \\
\hline E41D & 23 & & & INX & H & \\
\hline E41E & DB & OE & LOOP4 & IN & PC & \\
\hline E420 & 1F & & & RAR & & \\
\hline E421 & D2 & 1E E4 & & JNC & LOOP4 & WAIT UNTIL INTR IS SET \\
\hline E424 & DB & OD & & IN & PB & \\
\hline E426 & OD & & & DCR & C & \\
\hline E427 & C2 & 1C E4 & & JNZ & LOOP3 & \\
\hline E42A & 77 & & & MOV & M, A & STORE LAST WORD \\
\hline E42B & Cl & & & POP & B & \\
\hline E42C & El & & & POP & H & \\
\hline E42D & F1 & & & POP & PSW & \\
\hline E42E & FB & & & EI & & \\
\hline E42F & C9 & & & RET & & \\
\hline E430 & 2A & 00 E 0 & LOAD & LHLD & ASCII & FIRST WORD OF MESSAGE \\
\hline E433 & 7E & & LOOP5 & MOV & A, M & \\
\hline F434 & FE & FF & & CPI & OFFH & CHECK TO SEE IF DONE \\
\hline E436 & CA & 45 E4 & & JZ & ENDL & \\
\hline E439 & D3 & 0C & & OUT & PA & OUTPUT TO DISPLAY \\
\hline E43B & 23 & & & INX & H & \\
\hline E43C & DB & 0E & LOOP6 & IN & PC & \\
\hline E43E & 17 & & & RAL & & \\
\hline E43F & D2 & 3C E4 & & JNC & LOOP6 & WAIT \\
\hline E442 & C3 & 33 E4 & & JMP & LOOP5 & NEXT WORD \\
\hline E445 & 23 & & ENDL & INX & H & \\
\hline E446 & 22 & 00 E 0 & & SHLD & ASCII & \\
\hline E449 & C9 & & & RET & & \\
\hline E44A & 3E & A7 & START & MVI & A, 0A7H & PA OUTPUT, PB INPUT \\
\hline E44C & D3 & 0F & & OUT & CNTRL & \\
\hline E44E & 3E & 0C & & MVI & A, 0CH & CLEAR INTE A \\
\hline E450 & D3 & 0F & & OUT & CNTRL & \\
\hline E452 & 3E & 05 & & MVI & A, 05H & \\
\hline E454 & D3 & OF & & OUT & CNTRL & SET INTE B \\
\hline
\end{tabular}
* PROCEDURE TO LOAD HDSP-247X SYSTEM
\begin{tabular}{|c|c|c|c|c|c|}
\hline E456 & 3E & 08 & MVI & A, 08H & \\
\hline E458 & D3 & 0F & OUT & CNTRL & ENABLE A SIDE OF MUX \\
\hline E45A & CD & 30 E4 & CALL & LOAD & \\
\hline & & \multicolumn{4}{|r|}{* PROCEDURE TO READ DATA OUT OF HDSP-247X SYSTEM} \\
\hline E45D & 3E & 09 & MVI & A, 09H & \\
\hline E45F & D3 & OF & OUT & CNTRL & ENABLE B SIDE OF MUX \\
\hline E461 & FB & & EI & & INT MUST CALL READ \\
\hline
\end{tabular}

Figure 23. 8080A Microprocessor Program that Interfaces to the Circuit shown in Figure 17.

Figure 24. External Circuitry to Load a Control Word into the HDSP-2470/-2471/-2472 Alphanumeric System upon Reset

\section*{DISPLAY POWER DISSIPATION}

The HDSP-2000 combines a significant amount of logic and display capability in a very small package. As such, on-board power dissipation is relatively high and thermal design of the display mounting becomes an important consideration. The HDSP-2000 is designed to permit operation over a wide range of temperature and supply voltages. The design of a heatsink to maintain a junction temperature of less than \(125^{\circ} \mathrm{C}\) for a multiple package system where every electrical input operates at maximum voltage and current would be difficult at best. However, in virtually all applications, the actual power dissipation is only a small fraction of the maximum power dissipation, since \(\mathrm{V}_{\text {col }}\) is less than 5.25 V , only a fraction of the 35 LEDs are on at any time, and the duty factor is never \(20 \%\). The calculation of power dissipation is important since the result is largely a function of external circuit parameters. The minimization of power dissipation will reduce the amount of heatsinking required for the displays. Furthermore, by the Arrhenius model, the display reliability is increased by \(40 \%\) for a \(10^{\circ} \mathrm{C}\) reduction in junction temperature. Thus, reduced power dissipation or better heatsinking can also increase the reliability of the display system.

Calculation of power dissipation in the HDSP-2000 display family can be made using the following formulas:
\[
\begin{equation*}
P D=P(\text { ICC })+P(\text { IREF })+P(\text { ICOL }) \tag{7}
\end{equation*}
\]
where
\[
\begin{equation*}
P(\operatorname{ICC})=I_{c c 1} V_{C C} \tag{8}
\end{equation*}
\]
when \(V_{C C}\) is applied continuously to the display
\(P(\operatorname{ICC})=I_{C C 1} V_{C C}(t+T) /\left(t+T+T_{B}\right)\)
when \(V_{C C}\) is turned off during the time \(T_{B}\)
where
\(P(\operatorname{IREF})=(\operatorname{ICC} 2-\operatorname{ICC1}) \operatorname{VCC}(n / 35)\)
when \(V_{B}\) is connected to \(V_{C C}\) and \(V_{C C}\) is applied continuously to display
\(P\left(I_{\text {REF }}\right)=5\left(I_{C C 2}-I_{C C 1}\right) V_{C C}(n / 35)\) D.F.
when \(V_{B}\) is logical 0 during times \(t\) and \(T_{B}\)
where
\[
\begin{equation*}
\mathrm{P}(\mathrm{ICOL})=5 \mathrm{ICOL} \mathrm{VCOL}^{(\mathrm{n} / 35)} \text { D.F. } \tag{12}
\end{equation*}
\]
where
\(\mathrm{n}=\) average number of diodes illuminated per character
D.F. = column on time from equation (1) or (5)
\(\operatorname{ICC}_{1}=\operatorname{ICc}\left(V_{B}=0.4 V\right)\)
\(\operatorname{ICC} 2=\operatorname{ICC}\left(V_{B}=2.4 V\right)\)
\(P(\operatorname{ICC})\) is the power which is dissipated in the logic within the shift register. \(P(I C C)\) is constant regardless of \(n\), or D.F. as long as voltage is applied to the Vcc pin. However, for low D.F., ICC can be switched off during the time the display is blanked. P (IREF) is the power dissipated in the logic to drive the current mirror output. Thus, if the output of the shift register and the \(\mathrm{V}_{\mathrm{B}}\) input are both logical 1, \(\mathrm{P}(\) IREF) will be dissipated. \(\mathrm{P}\left(\mathrm{I}_{\mathrm{COL}}\right)\) is the power dissipated within the LEDs and the constant current outputs during the time that \(\mathrm{V}_{\mathrm{COL}}\) is applied and the LEDs are on.

As can be seen from formulas (7) through (12) there are several techniques by which total power dissipation can be reduced:
- Reduce n
- Reduce VCOl
- Reduce D.F.
- Reduce Vcc
- Turn off VCC when display is blanked

For most applications, \(\mathrm{n} \leq 20\) dots. For example, the HDSP2470 character generator has 3 characters with 20 dots on (\#, @, B), 1 character with 19 dots on (zero), and 6 characters with 18 dots on (A,D,E,M,R,W). With custom PROM programming these 4 symbols (\#, @, B, zero) can be modified to reduce the total number of dots on to 18 or less. The average of all 36 alphabetic and numeric symbols is 14.7 dots on. The calculations assume that every character has the same number of illuminated dots. This assumption can overstate the maximum power dissipation if the application includes a fixed number of spaces in the display.

Above 2.4V VCOL for standard red devices and 2.75 V VCOL for GaP devices, Icol is nearly constant. While it is possible to operate the columns of the HDSP-2000 display using fullwave rectified unregulated DC, lower power dissipation can be achieved by using the regulated \(V_{c c}\) supply. Then, \(V_{C O L}\) is equal to \(V_{C C}\) minus the collector to emitter saturation voltage across the column switching transistors. Since the minimum recommended VCOL is 2.4 V or 2.75 V , PNP Darlington transistors with a silicon diode in series with the emitter can be used to lower the power dissipation within the display.

The time averaged luminous intensity for the display is equal to the peak luminous intensity on the data sheet times D.F. Thus, reduction in D.F. will also reduce the time averaged luminous intensity as well as power dissipation. For most indoor applications, a D.F. of 10\% for standard red and 5\% for GaP displays will provide satisfactory luminous intensity. For example, the 40 character HDSP-2470 system has a D.F. of \(11.6 \%\). However, a D.F. of \(17 \%\) or higher is recommended for sunlight viewable applications for the GaP displays.
The HDSP-2000 family of alphanumeric displays are specified for operation with a \(5 \%\) tolerance 5 volt supply. A tighter tolerance supply will also reduce the power dissipation in the display.
ICC can be switched off during the time the display is blanked. Thus, power would be applied to the display; the shift register would be loaded with information; the columns would be turned on; and then the column current, \(\mathrm{V}_{\mathrm{B}}\), and Vcc would be switched off until the next column refresh cycle. For low D.F., this can significantly reduce the power dissipation within the display. As D.F. increases, the display is blanked for a smaller portion of the refresh cycle and the power reduction is reduced. When the blanking time goes to zero, the power reduction also goes to zero.

For example, the maximum power dissipation for a four character HDSP-2000 display (\(\mathrm{n}=20, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=\) \(2.4 \mathrm{~V}, \mathrm{D} . \mathrm{F} .=17.5 \%, \mathrm{VCC}=5.25 \mathrm{~V}\)) can be calculated as shown below:
\[
\begin{align*}
\mathrm{P}(\text { ICC }) & =(60 \mathrm{~mA})(5.25 \mathrm{~V}) \\
& =315 \mathrm{~mW} \tag{13}\\
\mathrm{P}(\text { IREF }) & =5(95 \mathrm{~mA}-60 \mathrm{~mA})(5.25 \mathrm{~V})(20 / 35)(0.175) \\
& =92 \mathrm{~mW} \tag{14}\\
\mathrm{P}(\text { ICOL }) & =5(410 \mathrm{~mA})(3.5 \mathrm{~V})(20 / 35)(0.175) \\
& =718 \mathrm{~mW} \tag{15}\\
\mathrm{PD}) & =\mathrm{P}(\text { ICC })+\mathrm{P}(\text { IREF })+\mathrm{P}(\text { ICOL }) \\
& =1125 \mathrm{~mW} \tag{16}
\end{align*}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Assumptions Used in} & \begin{tabular}{l}
Maximum Power Dissipation \\
Operating Conditions \\
(Unless otherwise specified)
\end{tabular} & Power Dissipation & \begin{tabular}{l}
Typical Power Dissipation \\
Operating Conditions \\
(Unless otherwise specified)
\end{tabular} & Power Dissipation \\
\hline & \[
\begin{aligned}
& \hline V_{C C}=5.25 \mathrm{~V} \\
& V_{C O L}=3.5 \mathrm{~V} \\
& n=20 \\
& D . F .=.175 \\
& V_{B}=\text { logical } 0 \text { during } \\
& t\left(\text { and } T_{B}\right) \\
& T_{B}=0 \\
& \hline
\end{aligned}
\] & 1.12W & \[
\begin{aligned}
& \hline V_{C C}=5.00 \mathrm{~V} \\
& V_{C O L}=3.0 \mathrm{~V} \\
& n=15 \\
& D . F .=.175 \\
& V_{B}=\text { logical } 0 \text { during } \\
& \left.\quad t \text { (and } T_{B}\right) \\
& T_{B}=0
\end{aligned}
\] & . 65 W \\
\hline 1. Reduce \(n\) & \(\mathrm{n}=18\) & 1.04W & & \\
\hline 2. Reduce \(n\) and \(\mathrm{V}_{\mathrm{COL}}\) & \[
\begin{aligned}
& n=18 \\
& \mathrm{VCOL}=3.0 \mathrm{~V}
\end{aligned}
\] & .95W & & \\
\hline \multirow[t]{2}{*}{3. Reduce VCOL} & \multirow[t]{2}{*}{\(\mathrm{VCOL}=3.0 \mathrm{~V}\)} & \multirow[t]{2}{*}{1.02W} & \(\mathrm{VCOL}=2.4 \mathrm{~V}\) & .58W \\
\hline & & & \(\mathrm{VCOL}=2.75 \mathrm{~V}\) & . 62 W \\
\hline \multirow[t]{2}{*}{4. Reduce D.F.} & D.F. \(=.10\) & .78W & D.F. \(=.10\) & . 47 W \\
\hline & D.F. \(=.05\) & .55W & D.F. \(=.05\) & .35W \\
\hline \multirow[t]{2}{*}{5. Reduce Vcol and D.F.} & \[
\begin{aligned}
& \mathrm{VCOL}=3.0 \mathrm{~V} \\
& \mathrm{D} . \mathrm{F} .=.10
\end{aligned}
\] & .72W & \[
\begin{aligned}
& \mathrm{VCOL}=2.4 \mathrm{~V} \\
& \mathrm{D} . \mathrm{F} .=.10
\end{aligned}
\] & .43W \\
\hline & \[
\begin{aligned}
& \mathrm{VCOL}=3.0 \mathrm{~V} \\
& \mathrm{D} . \mathrm{F} .=.05
\end{aligned}
\] & .52W & \[
\begin{aligned}
& \mathrm{VCOL}=2.75 \mathrm{~V} \\
& \mathrm{D} . \mathrm{F} .=.05
\end{aligned}
\] & . 34 W \\
\hline \multirow[t]{2}{*}{6. Reduce D.F. Turn-off Vcc during \(\mathrm{T}_{\mathrm{B}}\)} & \[
\begin{aligned}
& \text { D.F. }=.10 \\
& X=.625
\end{aligned}
\] & .66W & \[
\begin{aligned}
& \text { D.F. }=.10 \\
& X=.625
\end{aligned}
\] & .39W \\
\hline & \[
\begin{aligned}
& \text { D.F. }=.05 \\
& \text { X }=.375
\end{aligned}
\] & . 45 W & \[
\begin{aligned}
& \text { D.F. }=.05 \\
& \text { X }=.375
\end{aligned}
\] & .21W \\
\hline \multirow[t]{2}{*}{7. Reduce VCOL, Reduce D.F., Turn-off \(\mathrm{V}_{\mathrm{CC}}\) during \(\mathrm{T}_{\mathrm{B}}\)} & \[
\begin{aligned}
& \mathrm{VCOL}=3.0 \mathrm{~V} \\
& \mathrm{D} . \mathrm{F}=.10 \\
& \mathrm{X}=.625
\end{aligned}
\] & .60W & \[
\begin{aligned}
& \mathrm{VCOL}=2.4 \mathrm{~V} \\
& \mathrm{D} . \mathrm{F}=.10 \\
& \mathrm{X}=.625 \\
& \hline
\end{aligned}
\] & .34W \\
\hline & \[
\begin{aligned}
& \mathrm{VCOL}=3.0 \mathrm{~V} \\
& \mathrm{D} . \mathrm{F} .=.05 \\
& \mathrm{X}=.375
\end{aligned}
\] & .32W & \[
\begin{aligned}
& \mathrm{VCOL}=2.75 \mathrm{~V} \\
& \mathrm{D} . \mathrm{F} .=.05 \\
& \mathrm{X}=.375
\end{aligned}
\] & .20W \\
\hline
\end{tabular}
where \(x=\left(\frac{t+T}{t+T+T_{B}}\right)\)
Figure 25. Maximum and Typical Power Dissipation for the HDSP-2000/1/2/3 and HDSP-2300 Alphanumeric Displays

Similarly, a typical power dissipation for a four character HDSP-2000 display (\(n=15, \mathrm{~V}_{\text {COL }}=3.0 \mathrm{~V}\), D.F. \(=17.5 \%, \mathrm{~V}_{\mathrm{CC}}=\) 5.00 V) can be calculated as:
\[
\begin{align*}
\mathrm{P}(\text { ICC }) & =(45 \mathrm{~mA})(5.00 \mathrm{~V}) \\
& =225 \mathrm{~mW} \tag{17}\\
\mathrm{P}(\text { IREF }) & =5(73 \mathrm{~mA}-45 \mathrm{~mA})(5.00 \mathrm{~V})(15 / 35)(0.175) \\
& =52 \mathrm{~mW} \tag{18}\\
\mathrm{P}(\text { ICOL }) & =5(335 \mathrm{~mA})(3.0 \mathrm{~V})(15 / 35)(0.175) \\
& =377 \mathrm{~mW} \tag{19}\\
\mathrm{PD}) & =\mathrm{P}(\mathrm{ICC})+\mathrm{P}(\text { IREF })+\mathrm{P}(\text { ICOL }) \\
& =654 \mathrm{~mW} \tag{20}
\end{align*}
\]

Some typical power dissipations for other values of \(\mathrm{n}, \mathrm{V}_{\mathrm{COL}}\), D.F., \(\mathrm{V}_{\mathrm{CC}}\), are shown in Figure 25. Note that at a D.F. of \(17.5 \%\), which would be appropriate for a sunlight viewable application, the maximum power dissipation can be reduced to under 1.0 W , while the typical power dissipation can be reduced to 0.60 W . In most indoor ambients, the D.F. can be reduced to \(10 \%\) for standard red and \(5 \%\) for GaP displays. Under these conditions the maximum power dissipation is 0.72 W or 0.52 W and the typical power dissipation is 0.43 W or 0.34 W . Thus, in power sensitive applications, GaP displays can be used to conserve power. Turning off \(\mathrm{V}_{\mathrm{Cc}}\) during the time the display is blanked can further reduce the power dissipation. In this manner the maximum power dissipation can be reduced .32W and the typical power dissipation can be reduced to 0.20 W for the GaP displays.

\section*{HEAT SINKING CONSIDERATIONS}

For operation at the maximum temperature of \(85^{\circ} \mathrm{C}\), it is important that the following criteria be met:
\[
\text { a. } \mathrm{T}_{\mathrm{PIN}} \leq 100^{\circ} \mathrm{C}
\]
where TPIN \(=\) temperature of hottest pin
\[
\text { b. } \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}
\]

The thermal resistance IC junction to case, ©Jc, or IC junction to pin, \(\Theta_{J-P I N}\), is shown in Table 2. Using these factors, it is possible to determine the required heat sink power dissipation capability and associated power derating through the following equations:
\[
\begin{align*}
& T_{\star}=\Theta_{\star A} P_{D}+T_{A} \tag{21}\\
& T_{J}=T_{\star}+\Theta_{J} P_{D} \tag{22}
\end{align*}
\]
where
\[
\text { * }=\text { Pin or Case }
\]

Table 2. Device Thermal Resistance
\begin{tabular}{|l|l|l|}
\hline Device & \(\Theta_{\text {JC }}\) & \(\Theta_{\text {J-PIN }}\) \\
\hline HDSP-2000 Series & \(20^{\circ} \mathrm{C} / \mathrm{W}\) & \(25^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline HDSP-2300 Series & \(7.5^{\circ} \mathrm{C} / \mathrm{W}\) & \(10^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline HDSP-2490 Series & \(7.5^{\circ} \mathrm{C} / \mathrm{W}\) & \(13^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

For example, given \(\Theta\) PIN-A of \(35^{\circ} \mathrm{C} / \mathrm{W}\) an ambient temperature of \(60^{\circ} \mathrm{C}\), and the operating conditions shown in equations (13), (14), and (16) the TPIN and TJ for the HDSP2000 family can be calculated as shown below:
\[
\begin{align*}
\mathrm{TPIN} & =\left(35^{\circ} \mathrm{C} / \mathrm{W}\right)(1.12 \mathrm{~W})+60^{\circ} \mathrm{C} \\
& =99^{\circ} \mathrm{C} \tag{23}\\
\mathrm{TJ} & =99^{\circ} \mathrm{C}+\left(25^{\circ} \mathrm{C} / \mathrm{W}\right)(1.12 \mathrm{~W}) \\
& =99^{\circ} \mathrm{C}+28^{\circ} \mathrm{C} \\
& =127^{\circ} \mathrm{C} \tag{24}
\end{align*}
\]

Heat sink design for the HDSP-2000 family of displays can be accomplished in a variety of ways. For single line applications, a maximum metalized printed circuit board such as shown in Figure 26 can be used. For example, the HDSP-2416/-2424/-2432/-2440 display boards consist of 16, 24, 32 or 40 characters of HDSP-2000 displays mounted on a maximum metalized printed circuit board. The HDSP-2432 printed circuit board is \(2.3^{\prime \prime} \times 6.4^{\prime \prime}\) and has a ӨPIN-A of about \(45^{\circ} \mathrm{C} / \mathrm{W}\) per package for a \(1 / 2\) ounce copper clad printed circuit. These display boards are designed for free air operation of \(55^{\circ} \mathrm{C}\) and operation to \(70^{\circ} \mathrm{C}\) with forced air cooling of 150 fpm normal to the rear side of the board, for displays operating at a PD of 1.00 watt or less.

Figure 26. Maximum Metalized Printed Circuit for the HP HDSP-2000

\section*{HEAT SINK DESIGN FOR OPERATION ABOVE \(70^{\circ} \mathrm{C}\)}

A free air operating temperature of \(85^{\circ} \mathrm{C}\) can be achieved by heat sinking the display. Figure 27 depicts a two part heat sink which can be assembled using two different extruded parts. In this design, the vertical fins promote heat transfer due to naturally induced convection. Care should be taken to insure a good thermal path between the two portions of the heat sink. To optimize power handling capability, the heat transfer contact area between the printed circuit board metallization and the heat sink should be maximized. A thermally conductive silicon rubber sheet can be used to insulate the printed circuit board. Heatsink assemblies similar to the one shown in Figure 27 typically exhibit a thermal resistance, \(\Theta\) PIN-A, of \(14^{\circ} \mathrm{C} / \mathrm{W}\) per package for a 32 character display.
Copper or aluminum bars mounted underneath the displays can also be used to heatsink the display assembly. Heat generated within the displays is conducted through the ceramic substrate into the bar. The ends of the bar are mounted to a heatsink or to a metal front panel. The bar can be insulated from the pins of the display and the printed circuit board with a thermally conductive silicon rubber sheet. Figure 28 shows a metal plate with slots milled in the plate for each row of displays such that each horizontal row of displays straddles a bar.

A thermal resistance model for this heatsinking technique is shown in Figure 29. This model assumes that all heat generated in the display is generated in the center of each display package and that the ends of the bar are connected to an ideal heatsink. Then the temperature rise of the centermost display in the bar can be calculated as shown below:
\[
\begin{align*}
\mathrm{T}_{\mathrm{C}} & =4(\Theta / 2) \mathrm{PD}_{\mathrm{D}}+3 \Theta \mathrm{PD}_{\mathrm{D}}+2 \Theta \mathrm{PD}_{\mathrm{D}}+\Theta \mathrm{PD}_{\mathrm{D}}+\mathrm{T}_{\mathrm{A}} \\
& =8 \Theta \mathrm{~T}_{\mathrm{A}}+ \tag{25}
\end{align*}
\]

Figure 27. Two-Part Heat Sink for the HDSP-2000

Figure 28. Multiline HDSP-2000 Heat Sink

Figure 29. Thermal Resistance Model for Multiline HDSP-2000 Heat Sink

For display strings of an even number of \(n\) displays, the case temperature of the center-most displays can be calculated as
\[
\begin{equation*}
T_{C}=(n 2 / 8) \Theta P_{D}+T_{A} \tag{26}
\end{equation*}
\]

The effectiveness of this type of heatsink can be determined by calculating the thermal resistance of each section of bar under each display
\[
\begin{equation*}
\Theta=\frac{\mathrm{L}}{\mathrm{Ka}} \tag{27}
\end{equation*}
\]
where
\(\mathrm{L}=\) length of bar under each display, mm
\(\mathrm{K}=\) thermal conductivity of bar, \(\mathrm{W} / \mathrm{mm}^{\circ} \mathrm{C}\left(0.3937 \mathrm{~W} / \mathrm{mm}^{\circ} \mathrm{C}\right.\) for copper)
\(\mathrm{a}=\) cross sectional area of bar, \(\mathrm{mm}^{2}\)
If the displays are mounted in a strip socket such as the Robinson Nugent SB-25-100-G socket, then the bar cross sectional area could be \(6.35 \mathrm{~mm}\left(0.25^{\prime \prime}\right)\) thick times the row-to-row pin spacing of the display minus 2.54 mm (.10"). Thus, \(\Theta\) can be calculated as shown below:

\section*{HDSP-2000 Family}
\[
\begin{align*}
\Theta & =\frac{17.8 \mathrm{~mm}}{\left(0.3937 \mathrm{~W} / \mathrm{mm}^{\circ} \mathrm{C}\right)(6.35 \mathrm{~mm})(5.08 \mathrm{~mm})} \\
& =1.40^{\circ} \mathrm{C} / \mathrm{W} \tag{28}
\end{align*}
\]

HDSP-2300 Family
\[
\begin{align*}
\Theta & =\frac{20.3 \mathrm{~mm}}{\left(0.3937 \mathrm{~W} / \mathrm{mm}^{\circ} \mathrm{C}\right)(6.35 \mathrm{~mm})(3.81 \mathrm{~mm})} \\
& =2.13^{\circ} \mathrm{C} / \mathrm{W} \tag{29}
\end{align*}
\]

HDSP-2490 Family
\[
\begin{align*}
\Theta & =\frac{35.6 \mathrm{~mm}}{\left(0.3937 \mathrm{~W} / \mathrm{mm}^{\circ} \mathrm{C}\right)(6.35 \mathrm{~mm})(12.7 \mathrm{~mm})} \\
& =1.12^{\circ} \mathrm{C} / \mathrm{W} \tag{30}
\end{align*}
\]

The Tc and TJ can be calculated for a 32 character HDSP2000 display with a copper bar mounted under the row of displays for an ambient temperature of \(85^{\circ} \mathrm{C}\) and the operating conditions shown in equations (13), (14), (15), and (16):
\[
\begin{align*}
\mathrm{TC} & =8\left(1.40^{\circ} \mathrm{C} / \mathrm{W}\right)(1.12 \mathrm{~W})+85^{\circ} \mathrm{C} \\
& =98^{\circ} \mathrm{C} \tag{31}
\end{align*}
\]

Adding in the junction-to-case temperature rise as shown in equation (22), the TJ can be calculated as:
\[
\begin{align*}
\mathrm{TJ} & =98^{\circ} \mathrm{C}+\left(20^{\circ} \mathrm{C} / \mathrm{W}\right)(1.12 \mathrm{~W}) \\
& =98^{\circ} \mathrm{C}+22^{\circ} \mathrm{C} \\
& =120^{\circ} \mathrm{C} \tag{32}
\end{align*}
\]

\section*{INTENSITY CONTROL}

An important consideration regarding display intensity is the control of the intensity with respect to the ambient lighting level. In dim ambients, a very bright display will produce very rapid viewer fatigue. Conversely, in bright ambient situations, a dim display will be difficult if not impossible to read and will also produce viewer fatigue and high error rates. For this reason, control of display intensity with respect to the environment ambient intensity is an important consideration. The HDSP-2000 family of displays is ideally suited for wide ranges of ambient lighting since the intensity of these displays can be varied over a very wide dynamic range. The propagation delay between the \(\mathrm{V}_{\mathrm{B}}\) input and the time that the LEDs turn on or off is under a microsecond, allowing
dynamic variations of over 2000 to 1 in display luminous intensity at a 100 Hz refresh rate.
Figure 30 depicts a scheme which will automatically control display intensity over a range of 10 to 1 as a function of ambient intensity. This circuit utilizes a resettable monostable multivibrator which is triggered by the column enable pulse. The duration of the multivibrator output is controlled by a photoconductor. At the end of a column enable pulse, the multivibrator is reset to insure that column current is off prior to the initiation of a new display shift register loading sequence. The output of this circuit is used to modulate either the \(\mathrm{V}_{B}\) inputs of the HDSP-2000 displays or the column enable input circuitry. For maximum reduction in display power, both inputs should be modulated.

In the circuit shown in Figure 30, the photocell may be replaced by a \(50 \mathrm{~K} \Omega\) potentiometer to allow manual control of display intensity.

Figure 31 shows a manually adjustable dimming circuit that provides a very wide range of display intensity. With a 100 Hz display refresh rate, a 4000 to 1 dynamic range of display intensity can be achieved. The Intersil ICM7555 timer is used as a retriggerable monostable multivibrator. The output of the timer is used to simultaneously pulse width modulate \(\mathrm{V}_{\mathrm{B}}\), the display column current, and the display supply current. Initially the 100 pF capacitor is held discharged by the timer. At the negative transition of the trigger input the timer would normally allow the capacitor to charge, however the 2N3906 transistor keeps the capacitor discharged until the trigger input goes high. As soon as the trigger input goes high, the capacitor is charged by a constant current source formed by the RCA CA3084 transistor array. As soon as the voltage across the capacitor reaches \(2 / 3 \mathrm{~V} C C\) the output of the timer goes low, and the timer discharges the capacitor. The 2N3906 transistor always discharges the capacitor when the trigger is low, therefore the output of the timer stays high if the voltage across the capacitor never reaches \(2 / 3 \mathrm{Vcc}\). For the values shown, \(t\) can be varied exponentially from \(.5 \mu\) s to about \(1900 \mu \mathrm{~s}\). Since Q1 and Q2 are monolithic transistors, t is relatively independent of temperature.

Figure 30. Intensity Modulation Control Using a One Shot Multivibrator

Figure 31. Wide Range Intensity Modulation Control and Power Switching of Display ICC to Conserve Power

Figure 31 also shows a circuit to switch \(V_{C C}\) of the displays off during the time that the display is blanked. When the 2N2219A transistor is off, the LM350 provides a regulated 3A 5V output. However, when the 2N2219A transistor is turned on, the output of the LM350 regulator is reduced to 1.2 V . This reduces Icc to under 10 mA per display. Capacitive loading of the regulator should be minimized as much as possible to maximize the switching speed.

\section*{THE INTENSITY AND COLOR MATCHING}

The luminous intensity and dominant wavelength of LED displays can vary over a wide range. If there is too great a difference between the luminous intensity or dominant wavelength of adjacent characters in the display string, the display will appear objectionable to the viewer. To solve the problem, all HDSP-2000 displays are categorized for luminous intensity. The category of each display package is indicated by a letter preceding the date code on the package. When assembling display strings, all packages in the string should have the same intensity category. This will insure satisfactory intensity matching of the characters. All HDSP2000 family displays are categorized in overlapping intensity categories. All characters of all packages designated to be within a given letter category will fall within an intensity ratio of less than \(2: 1\). For dot matrix displays, a character-tocharacter intensity ratio of 2:1 is not generally discernable to the human eye.

Since the human eye is very sensitive to variations in dominant wavelength in the yellow and green region, all yellow and green HDSP-2000 family displays are also categorized for dominant wavelength. The dominant wavelength bin for each display package is indicated by a number code following the category letter code on the back of the package. The dominant wavelength bins are 3.5 nm wide for yellow and 4.0 nm wide for green. These dominant wavelength variations are generally not discernable by the human eye.

\section*{CONTRAST ENHANCEMENT}

Another important consideration for optimum display appearance and readability is the contrast between the display "ON" elements and the background. High contrast can be achieved by placing a filter over the display. The filter, if properly chosen, will transmit the luminance of the light emitting elements while attenuating the luminance of the background.
Filter choice is dependent upon the LED display package, ambient lighting conditions and the desired front panel appearance. For alphanumeric displays in indoor lighting ambients a plastic or glass wavelength filter can be used. In sunlight ambients a neutral density circular polarizer sandwiched between two pieces of optically coated glass is recommended. Figure 32 lists the filter materials recommended for each particular display color. For further information please see Application Note 1015 on Contrast Enhancement for LED Displays.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Display Color} & \multicolumn{3}{|c|}{Ambient Lighting} \\
\hline & Dim & Moderate & Bright \\
\hline \begin{tabular}{l}
HDSP-2XX0 \\
Standard \\
Red
\end{tabular} & \begin{tabular}{l}
Homalite H100-1650 3M Panel Film R6510 Panelgraphic Dark Red 63 Ruby Red 60 Chequers Red 118 \\
Rohm \& Haas 2423
\end{tabular} & \begin{tabular}{l}
Homalite \\
H100-1266 \\
Gray \\
H100-1250 \\
Gray \\
H100-1230 \\
Bronze \\
Rohm \& Haas 2074 Gray \\
2370 Bronze
\end{tabular} & \\
\hline HDSP-2XX1 (Yellow) & \begin{tabular}{l}
Homalite H100-1726 H100-1720 3M Panel Film A5910 \\
Panelgraphic Yellow 27 Amber 23 Chequers Amber 107
\end{tabular} & \begin{tabular}{l}
Polaroid \\
HNCP37 \\
3M Light \\
Control Film \\
N00220 \\
Panelgraphic Gray 15 Gray 10 \\
Chequers \\
Gray 105
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { HDSP-2XX2 } \\
& \text { (HER) }
\end{aligned}
\] & \begin{tabular}{l}
Homalite
H100-1670 \\
3M Panel Film R6310 \\
Panelgraphic Scarlet Red 65 \\
Chequers Red 112
\end{tabular} & & \begin{tabular}{l}
Polaroid \\
HNCP10
\end{tabular} \\
\hline \begin{tabular}{l}
HDSP-2XX3 \\
(HP Green)
\end{tabular} & \begin{tabular}{l}
Homalite \\
H100-1440 \\
H100-1425 \\
Panelgraphic \\
Green 48 \\
Chequers \\
Green 107
\end{tabular} & & \\
\hline
\end{tabular}

Figure 32. Contrast Enhancement Filters

\title{
LED Solid State Reliability
}

\section*{INTRODUCTION}

The light emitting diode display technology offers many attractive features. Among them are ability to display information in red, yellow, green, or any combination of these colors; high performance devices readable in direct sunlight; and continuously variable intensity adjustment. One of the most common reasons that LED displays are designed into an application, however, is the high level of reliability of the LED display. Hewlett-Packard has taken a leadership role in setting reliability standards for LED displays and documenting reliability performance.
Reliability data is instrumental in choosing a device package and optimizing the performance of that device. This application note explains how to use the reliabilty data sheets published for Hewlett-Packard LED indicators and displays.

Figure 1. Construction Features of T-1 3/4 Plastic LED Lamp

The note begins with a description of LED indicator and display packages. Device failures are defined and explained. The parameters affecting useful life failure rate and mechanical test performance are discussed. As an example, the reliability of an LED display system is calculated.

\section*{HP Indicator and Display Packages}

Hewlett-Packard has a wide variety of indicator and display components. Indicator products include solid state lamps, light bar annunciators, and bar graph arrays. Display products include numeric and alphanumeric devices.
Many LED devices have similar packaging and construction. T-1 3/4, T-1, rectangular, and subminiature LED lamps are epoxy encapsulated packages. Construction features of the T-1 3/4 lamp are illustrated in Figure 1. Hermetic LED lamps are air-gap devices, assembled in a TO-46 package.

Large seven segment numeric displays, light bars, and bar graph arrays are called stretched-segment packages. These devices are manufactured using the concept of stretching the light from an LED by diffusion and reflection. The LED chips are mechanically supported and electrically connected by a lead frame. The plastic housing, called a "scrambler", contains reflective cavities which act as light pipes. These cavities are filled with a diffusant loaded epoxy to provide uniform illumination at the emitting surface. Figure 2 illustrates the construction of a bar graph array.

Figure 2. 10 Element Bar Graph (Cutaway)

Figure 3. Mechanical Construction of a Monolithic Display Constructed on a PC Board with a Non-Immersion Lens

Monolithic displays include bargraph, numeric, and alphanumeric devices. Individual light emitting segments are formed by diffusing separate LED junctions into a single chip. In most cases, the monolithic display is magnified by an external lens. Monolithic displays can be classified into two basic categories according to whether the lens is of the immersion or non-immersion type. Immersion lenses are formed by molding an epoxy lens directly over the LED chip. Non-immersion lenses have a layer of air between the LED chip and the separately cast epoxy lens. Construction features of a monolithic display with non-immersion lens is shown in Figure 3.

Figure 4. Construction Features of a Hermetic OBIC LED Display

Hewlett-Packard's dot matrix numeric displays have a modified \(4 \times 7\) dot matrix font. This font allows both decimal numeric and hexadecimal devices. These devices feature an on-board integrated circuit (OBIC) which functions as a latch/decoder/driver. Construction features of the hermetic dot matrix numeric device are shown in Figure 4. In addition to the hermetic package, epoxy sealed and epoxy encapsulated packages are available for the dot matrix numeric displays.
The dot matrix alphanumeric display was designed by Hewlett-Packard to provide a high resolution information display subsystem. Each character of the four character package consists of a \(5 \times 7\) array of LEDs which can display a full range of alphanumeric characters and other symbols (see Figure 5). Hewlett-Packard dot matrix alphanumeric displays provide on-board storage of decoded data plus constant current sinking drivers for each of the 28 rows in the four character display. These hermetic and epoxy sealed displays have construction features similar to the dot matrix numeric devices.

Figure 5. HDSP-2450 Series of Hermetic, Extended Temperature Range 5x7 Alphanumeric Displays

\section*{LED FAILURE RATE CHARACTERISTICS}

Failure is defined as termination of the capability to perform intended functions. An understanding of how LED displays fail is essential to improving the reliability of the displays as well as that of the systems in which they are used.
LED devices can experience either parametric or catastrophic failure modes. A parametric failure occurs when the device fails to meet data sheet electrical or optical specifications. A parametric failure will not generally cause display system failure with typical drive circuits. Intensity degradation is an example of a parametric failure mode and is discussed later in this application note.
Catastrophic failures are defined as parameters exceeding data sheet limits to a degree which would cause display system failure. Catastrophic failures in lamps, stretched segment, and monolithic displays result in dim or unlit LEDs. The cause or failure mechanism for dim or unlit LEDs can be defective wire bonds, lifted LED die, cracked, or chipped LEDs. Failure mechanisms in dot matrix displays also include IC failures which result in incorrect font or input/ output lines which do not meet electrical specifications.

Failure rate can be defined as the percent device failures per unit time of operation. Mean time between failure, MTBF, is simply the reciprocal of failure rate and is expressed in hours. Operating life of an LED display can be divided into three time periods each with a characteristic failure rate. Figure 6 shows the burn-in period, useful life period, and wearout period of operating life. During the burn-in or infant mortality period, failure rate decreases as weak components fall out.

Figure 6. Typical Failure Rate Curve

During the useful life period which follows, failures occur at a low, constant rate. The failures that do occur are truly random and cannot be prevented by additional testing or burn-in of the components. Figure 7 presents useful life failure rates representative of LED lamps, stretched segment, monolithic, dot matrix numeric, and dot matrix alphanumeric displays. The format of Figure 7 is identical to the "Life Test" section of Hewlett-Packard's Reliability Data Sheets. The test conditions represent maximum allowable stress in order to generate worst-case failure rates. Total hours tested is the product of units tested times test hours/ unit. The point failure rate is simply the number of failures divided by the total device hours. Units for failure rate are percent failures per 1000 hours of operation. If no failures occur during testing, the point failure rate is calculated assuming one failure.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Device & Description & Test Conditions \({ }^{[1]}\) & Units Tested & Total Hours & Failed & \begin{tabular}{l}
Point \\
Failure Rate \% per 1K Hrs. \({ }^{[2]}\)
\end{tabular} & 90\% Confidence
Failure
Rate
\% per 1K Hrs. \({ }^{[2]}\) \\
\hline HLMP-3750 & Lamp & \[
\begin{aligned}
& \mathrm{T}_{A}=55^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{F}}=\text { Max. }
\end{aligned}
\] & 16,270 & 17,275,630 & 1 & 0.006 & 0.023 \\
\hline HDSP-4830 & \begin{tabular}{l}
10 Element \\
Bar graph
\end{tabular} & \[
\begin{aligned}
& \mathrm{T}_{A}=55^{\circ} \mathrm{C} \\
& \mathrm{IF}_{\mathrm{F}}=\text { Max. } \\
& \text { All Seg. On }
\end{aligned}
\] & 410 & 2,080,856 & 0 & 0.048 & 0.111 \\
\hline HDSP-6508 & Monolithic Alphanumeric 8 Character Display & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{F}}=\text { Max. } \\
& \mathrm{P}_{\mathrm{avg}}=\frac{123 \mathrm{~mW}}{\text { Char }}
\end{aligned}
\] & 223 & 884,000 & 0 & 0.113 & 0.260 \\
\hline 4N51 & \begin{tabular}{l}
Dot- \\
Matrix \\
Numeric
\end{tabular} & \begin{tabular}{l}
\[
T_{A}=100^{\circ} \mathrm{C}
\] \\
Numeric Cycle \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\)
\end{tabular} & 576 & 806,000 & 0 & 0.124 & 0.285 \\
\hline HDSP-2000 & \begin{tabular}{l}
Dot- \\
Matrix \\
Alphanumeric \\
Four Character \\
Display
\end{tabular} & \[
\begin{array}{|l|}
\hline \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{Cc}}=\mathrm{V}_{\mathrm{b}}=5.25 \mathrm{~V} \\
\mathrm{~V}_{\text {col }}=3.5 \mathrm{~V} \\
\mathrm{Pavg}=\frac{210 \mathrm{~mW}}{\mathrm{Char}}
\end{array}
\] & 360 & 870,000 & 3 & 0.345 & 0.768 \\
\hline
\end{tabular}

\section*{NOTES:}
1. \(T_{A}\) is ambient temperature during testing. \(I_{F}\) is the average forward current per LED. \(\mathrm{V}_{C C}\) is the supply voltage. 5.25 V is maximum recommended blanking input voltage, \(\mathrm{V}_{\mathrm{b}} .3 .5 \mathrm{~V}\) is maximum recommended column voltage, \(\mathrm{V}_{\text {col }}\).
2. Failure rate per package.

Figure 7. LED Useful Life Failure Rates

Reliability data sheets specify \(90 \%\) confidence level failure rate in addition to point failure rate. LED displays like other semiconductor devices have extremely low failure rates during useful life. As a result, very few device failures are experienced during reliability testing. Statistics tell us that the more device failures that can be generated during reliability testing, the closer the experimental failure rate is to the true device population average failure rate. For instance, if no device failures are generated during reliability testing, the true device failure rate may be very different than the point failure rate. The \(90 \%\) confidence level failure rate means there is a \(90 \%\) probability that the actual failure rate of a device will be better than the stated value. Hence, the \(90 \%\) confidence level failure rate gives more confidence in reliability calculations than the point failure rate. The \(90 \%\) confidence level failure rate is based on the statistics of the distribution of failures. The assumed distribution of failures is exponential versus time. This particular distribution is commonly used in describing useful life failures in LED devices and other semiconductor components.
Figure 7 illustrates that failure rate is related to package design and package complexity. Of the epoxy encapsulated devices, the 10 element bargraphs have a point failure rate that is about an order of magnitude larger than LED lamps. However, the HDSP-4830 10 element bar graph array has 10 times as many LED die as the HLMP-3750 lamp. The 8 character HDSP-6508 air-gap package has a comparable failure rate to the epoxy encapsulated HDSP-4830 though the HDSP-6508 has 144 wire bonds and the HDSP-4830 has 10 wire bonds. The construction of the 4N51 and HDSP2000 displays yields an impressive useful life failure rate with a comparatively large number of LED die per character. Note that the 4 N51 is a single character device while the HDSP2000 is a four character package.

\section*{FAILURE RATE PREDICTION}

To obtain useful life failure rates in a reasonable amount of time, a higher-than-normal stress is applied to a sample quantity of devices known to represent the device population. This is known as accelerated life testing. The most common stress factor used is temperature. Failure rate prediction is the estimation of normal operating temperature failure rates based on maximum operating temperature failure rate.
The Arrhenius Model is an experimentally proven mathematical expression for failure rate prediction. The model includes the effect of temperature and the activation energy of a failure mechanism, permitting it to be used to predict
failure rates at normal operating temperatures based on tests performed at above-normal device junction temperatures:
\[
\lambda_{1}=\lambda_{2} e^{-\frac{E}{K}}\left(\frac{\mathrm{I}}{\mathrm{~T}_{1}}-\frac{\mathrm{I}}{\mathrm{~T}_{2}}\right)
\]
where \(\lambda_{1}=\) failure rate at junction temperature \(T_{1}\)
\(\lambda_{2}=\) failure rate at junction temperature \(T_{2}\)
\(\mathrm{T}=\) junction temperature in \({ }^{\circ} \mathrm{K}\)
\(E=\) thermal activation energy in electron volts \((\mathrm{eV})\)
\(\mathrm{K}=\) Boltzman's constant (\(8.617 \times 10^{-5} \mathrm{eV} /{ }^{\circ} \mathrm{K}\))
Recall that \({ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273\)
Application of the Arrhenius Model requires calculation of device junction temperature both for the reliability test and for the actual field operating conditions. LED junction temperature is a function of ambient temperature, power dissipated in the junction, and thermal resistance:
\[
T=T_{A}+P_{D}(R \theta J-A)
\]
where \(\mathrm{T}=\) LED junction temperature in \({ }^{\circ} \mathrm{C}\)
\(\mathrm{T}_{\mathrm{A}}=\) ambient temperature in \({ }^{\circ} \mathrm{C}\)
\(P_{D}=\) power dissipated in LED junction in watts
R \(\theta_{J-A}=\) thermal resistance junction-to-ambient in \({ }^{\circ} \mathrm{C} / \mathrm{W}\).

Activation energy is a constant which defines the dependence of failure rate on junction temperature for a failure mechanism. Several failure mechanisms exist for LED indicators and displays. Failure rate predictions on Hewlett-Packard's reliability data sheets are conservatively based on a failure mechanism with small activation energy. Using the smallest activation energy for failure rate prediction brings about the largest failure rates at any junction temperature below the tested condition. Interconnection failure mechanisms, such as defective wire bonds, have the smallest activation energy of typical LED device failure mechanisms. MIL-HDBK-217C specifies an activation energy of 0.43 eV for interconnection failure mechanisms in hybrid microelectronics. A 0.43 eV activation energy is used for failure rate prediction in HewlettPackard's reliability data sheets for indicators and displays.

Figure 8 shows the predicted improvement in failure rate and MTBF that can be realized by reducing the junction temperature of the 4N51 series of displays. The failure rate and the MTBF improve by over an order of magnitude as ambient temperature is reduced from \(100^{\circ} \mathrm{C}\) to \(30^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|}
\hline & & \multicolumn{2}{|c|}{ Point } \\
\cline { 3 - 4 } \(\begin{array}{c}\text { Ambient } \\
\text { Temperature }-{ }^{\circ} \mathbf{C}\end{array}\) & \(\begin{array}{c}\text { Junction } \\
\text { Temperature }-{ }^{\circ} \mathbf{C}\end{array}\) & MTBF - Hours & Failure Rate/ \\
1K Hours Operation
\end{tabular}\(]\)\begin{tabular}{ccc:c}
\hline 100 & 130 & 806,000 & \(0.124 \%\) \\
90 & 120 & \(1,108,000\) & \(0.090 \%\) \\
80 & 110 & \(1,549,000\) & \(0.065 \%\) \\
70 & 100 & \(3,205,000\) & \(0.045 \%\) \\
60 & 90 & \(4,745,000\) & \(0.031 \%\) \\
50 & 80 & \(7,199,000\) & \(0.021 \%\) \\
40 & 70 & \(11,201,000\) & \(0.014 \%\) \\
30 & 60 & \(0.009 \%\) \\
\hline
\end{tabular}

Figure 8. Failure Rate Prediction for LED Dot Matrix Numeric Displays

Reducing the product of power dissipated and thermal resistance can have effects on reliability similar to reducing ambient temperature. Blanking the display wherever possible can reduce junction temperature significantly. Junction-to-ambient thermal resistance is the sum of junction-to-case plus case-to-ambient thermal resistance. Junction-to-case thermal resistance is defined by the display package design and is specified on the device data sheet. The display system designer, however, has control over case-to-ambient thermal resistance. For devices such as lamps, stretched-segment, and monolithic devices, the primary thermal path from the LED junction is through the device cathode leads. Providing a maximum printed circuit board trace width to the cathode lead is one way to reduce thermal resistance in these devices. Heat-sinking the substrate of dot matrix devices is a technique that will improve their reliability.

\section*{DISPLAY SYSTEM RELIABILITY}

Reliability is defined as the probability that a device will perform its intended function for a specified period of time under stated conditions. When failure rate remains constant, as in the useful life period, display system reliability may be predicted by the exponential distribution:
\[
R=e^{-t\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\ldots\right)}
\]
where \(R=\) reliability or probability of survival
\(t=\) mission time or actual utilization time \({ }^{[1]}\)
\(\lambda_{i}=\) component (i) useful life failure rate
As an example, the useful life reliability of the LED display system in Figure 9 will be calculated. This eight digit numeric display uses Hewlett-Packard's 4N51 series of dot matrix displays. The on-board-integrated-circuitry on these devices minimizes display system component count. On-board circuitry includes a latch, a BCD to dot matrix decoder, and LED drivers.

For this example let us assume that the display system in Figure 9 will be operational 8 hours/day and 5 days/week for 5 years. Mission time can then be calculated:
\[
\begin{aligned}
& t=\left(\frac{8 \mathrm{hrs}}{\text { day }}\right)\left(\frac{5 \text { days }}{\text { week }}\right)\left(\frac{52 \text { weeks }}{\text { year }}\right)(5 \text { years }) \\
& t=10.40 \mathrm{~K} \text { hrs. }
\end{aligned}
\]

Let us also assume that the display system will be used in ambient temperature of \(55^{\circ} \mathrm{C}\). The next step is to calculate the sum of the individual component failure rates. From Figure 8 the point failure rate for each of the 4 N 51 series displays is \(0.026 \%\) per 1000 hours of operation at \(55^{\circ} \mathrm{C}\) ambient. Point failure rate for each of the LSTTL components is \(.007 \%\) per 1000 hours of operation. \({ }^{[2]}\) Point failure rate for the microcomputer is \(.043 \%\) per 1000 hours of operation. \({ }^{[3]}\) The sum of individual component failure rates, \(\lambda_{\text {total }}\) is then:
\[
\begin{aligned}
& \lambda_{\text {total }}=(.043 \% / 1 \mathrm{~K} \mathrm{hrs} .)+2(.007 \% / 1 \mathrm{~K} \text { hrs. })+8(.026 \% / 1 \mathrm{~K} \mathrm{hrs}) \\
& \lambda_{\text {total }}=.265 \% / 1 \mathrm{~K} \text { hrs } .
\end{aligned}
\]

The probability of survival of the 8 digit LED display system is then:
\[
\mathrm{R}=\mathrm{e}^{-\mathrm{t}}\left(\lambda_{\text {total }}\right)=97 \%
\]
\({ }^{\text {[1] Mission time cannot exceed the useful life of any component }}\) when calculating system reliabilty.
\({ }^{[2]} 1981\) cumulative data for LSTTL components from Texas Instruments. A. 43 eV activation energy is assumed.
\({ }^{[3]}\) Data taken from Intel reliability report RR-25, December, 1979. A. 3 eV activation energy is assumed.

Figure 9. 4N51 Display System

\section*{INTENSITY DEGRADATION}

Intensity degradation is a long term wearout mechanism in LED displays. Hewlett-Packard defines a 50\% reduction in intensity as a parametric failure mode. A \(50 \%\) change in intensity is one that the human eye can easily recognize. Figure 10 presents normalized luminous intensity vs. stress time for red LED displays. Figure 10 represents averaged data because the rate of intensity degradation is not identical for all LEDs. The logarithmic stress time axis implies that the rate of intensity degradation decreases as time increases. Even curve D, which represents operation at 200\% of maximum ratings, does not bring about noticeable degradation after 10,000 hours stress time. Curves A and B indicate that increased current density results in more rapid degradation. Curves B and C indicate that junction temperature has little effect on rate of degradation. Curve \(C\) represents degradation at absolute maximum drive levels. Curves A through D are for direct drive of LEDs. Strobed operation brings about approximately equal rates of degradation for equal average currents. When Hewlett-Packard displays are driven at maximum rated current, the rate of high efficiency red and green degradation is about the same as the rate of red. Yellow degradation is about two times the rate of red.

\section*{MECHANICAL AND ENVIRONMENTAL TESTS}

Reliability data sheets for Hewlett-Packard's standard products include life test data, failure rate prediction, mechanical, and environmental test performance. Tests are performed in accordance with the latest revisions of MIL-STD-750 and MIL-STD-883. Mechanical and environmental test data for the Hewlett-Packard 5082-7350 dot matrix numeric display is given in Figure 11. The 5082-7350 is an epoxy sealed, air-gap package.

Figure 10. Intensity Degradation vs. Stress Time

Mechanical tests are performed to insure package integrity. Solderability determines the ability of the device to be soldered via conventional techniques. With no preparatory cleaning the device leads are immersed in flux for 5 to 10 seconds, then into molten solder which has been stabilized to \(260^{\circ} \mathrm{C}\). After immersion in a solder bath for the specified time and cooling for 5 minutes, devices are examined using 10X magnification. Pinholes and voids must not be concentrated in one area and must not exceed \(10 \%\) of the total area.
\begin{tabular}{|c|c|c|c|c|}
\hline Test & MIL-STD-883 Reference & Test Conditions & Units Tested & Total Failed \\
\hline Solderability & 2003 & \(\mathrm{Sn} 60, \mathrm{~Pb} 40\) Solder at \(260^{\circ} \mathrm{C}\) for 5 sec . & 25 & 0 \\
\hline Temperature Cycling & 1010 & \[
500 \text { cyc., }-55 \text { to } 100^{\circ} \mathrm{C}
\] electrical \& leak failures & 45 & 0 \\
\hline Thermal Shock & 1011 & 50 cycles, 0 to \(100^{\circ} \mathrm{C}, 3 \mathrm{sec}\) transfer & 25 & 0 \\
\hline Moisture Resistance & 1004 & 10 days, \(90-98 \% \mathrm{RH}\), -10 to \(65^{\circ} \mathrm{C}\), non-op & 25 & 0 \\
\hline Shock & 2002 & 5 blows each X1, Y1, Z1 axis 1500 g .5 msec . & 25 & 0 \\
\hline Vibration, Variable Frequency & 2007 & 3, 4 min cycles each \(X, Y, Z\) axis at 20 g min 20 to 2000 Hz & 25 & 0 \\
\hline Constant Acceleration & 2001 & 20,000 g's, Y1 axis, 1 minute & 25 & 0 \\
\hline Terminal Strength & 2004 & Condition B2, 3 bends \(>15^{\circ}\) & 25 & 0 \\
\hline Salt Atmosphere & 1009 & \(35^{\circ} \mathrm{C}\) fog for 24 hours & 25 & 0 \\
\hline Electrostatic Discharge & 3015 & 5 discharges each pin \(1000 \mathrm{~V}, 500 \Omega, 300 \mathrm{pF}\) & 5 & 0 \\
\hline
\end{tabular}

Figure 11. Mechanical Tests 5082-7350 Series Displays

Temperature cycling tests are performed to define a thermomechanical life. Various parts of the optoelectronic device are in contact such as the substrate, LED die, and bond wires. If coefficients of thermal expansion are not well matched, temperature changes are accompanied by physical strain. The magnitude of the physical strain increases as the magnitude of the temperature excursion increases. Probability of failure increases with the number of temperature cycles. Seven segment displays have less than \(1 \%\) failure after 500 cycles from -40 to \(+85^{\circ} \mathrm{C}\). Air-gap packages such as the 5082-7350 offer improved temperature cycling performance over epoxy encapsulated displays. With no encapsulant epoxy, there is less physical strain on wire bonds and die attachments.
The thermal shock test exposes devices to alternate extremes in temperature. Parts are transfered from liquid at \(0^{\circ} \mathrm{C}\) to liquid at \(100^{\circ} \mathrm{C}\). Airgap packages can withstand a larger number of thermal shocks than epoxy encapsulated devices.
If the device package material is not impervious to the diffusion of water vapor, long term exposure to high humidity will eventually subject the active elements to high humidity. Humidity can lead to failure from corrosion of the active elements or from increased surface leakage currents. The moisture resistance test achieves accelerated effectiveness through temperature cycling. Temperature cycling provides alternate periods of condensation and drying which accelerate the development of corrosive processes.
Hermetic LED displays are packaged using a glass to metal or glass to ceramic seal. These products are impervious to moisture and meet hermeticity testing to prescribed levels. In addition, Hewlett-Packard makes displays which have an epoxy seal such as the 5082-7350 and the dot matrix alphanumeric displays. These displays are also capable of passing fine and gross leak hermeticity tests.

The shock test determines the ability of LED components to withstand shock of the same severity as that produced by collision impacts, near-miss gunfire, or underwater explosions. A 1500 G shock would be approximately equal to the shock that a device would experience if it were mounted to a rigid, 40 pound enclosure and dropped from three feet onto a concrete floor.

Vibration and acceleration tests expose parts to the predominant frequency ranges and magnitudes that may be encountered during field service.

In addition to standard LED display products, HewlettPackard offers a high-reliability product line. Special electrical and mechanical testing is performed on standard Hewlett-Packard displays to comply with the requirements of the U.S. Military qualified parts list, Hewlett-Packard defined specifications, or customer defined specifications. The special testing can be performed on a lot qualification basis, \(100 \%\) screen, or a combination of lot qualification and \(100 \%\) screen. Based on estimates in MIL-HBDK-217C, lot qualification testing can improve useful life failure rates by as much as five-fold. One hundred percent screening is designed to eliminate infant failures.

Display components can have significant impact on the reliability of an electronic system. System reliability is a function of the sum of individual component failure rates. It takes a combination of good design, quality pieceparts, and tightly controlled production processes to yield reliable display components. Components which appear to have the same design may have very different mechanical and operating life performance characteristics. Hewlett-Packard has reliability data sheets available for indicator and display products from your local field sales office.

\title{
HP Components \\ Authorized Distributor \\ And Representative Directory
}

\section*{United States}

Alabama
Hall-Mark Electronics
4900 Bradford Drive
Huntsville 35805
(205) 837-8700

Hamilton/Avnet
4812 Commercial Drive
Huntsville 35805
(205) 837-7210

Schweber Electronics 2227 Drake Avenue, S.W.
Suite 14
Huntsville 35805
(205) 882-2200

\section*{Arizona}

Hamilton/Avnet
505 South Madison
Tempe 85281
(602) 231-5100

Wyle Distribution Group
8155 North 24th Avenue
Phoenix 85021
(602) 249-2232
in Tucson (602) 884-7082

\section*{California}

Hamilton/Avnet
4103 Northgate Blvd.
Sacramento 95834
(916) 925-2216

Hamilton/Avnet
4545 Viewridge Avenue
San Diego 92123
(714) 571-7510

Hamilton/Avnet
1175 Bordeaux Drive
Sunnyvale 94086
(408) 743-3355

Hamilton Electro Sales
3170 Pullman Street
Costa Mesa 92626
(714) 641-4100

Hamilton Electro Sales 10950 W. Washington Blvd.
Culver City 90230
(213) 558-2121

Schweber Electronics 21139 Victory Boulevard
Canoga Park 91303
(213) 999-4702

Schweber Electronics
17811 Gillette Avenue
Irvine 92714
(714) 556-3880

Schweber Electronics
1771 Tribute Road
Suite B
Sacramento 95815
(916) 929-9732

\section*{California (cont.)}

Schweber Electronics
3110 Patrick Henry Drive
Santa Clara 95050
(408) 748-4700

Wyle Distribution Group 124 Maryland Street
El Segundo 90245
(213) 322-8100

Wyle Distribution Group
17872 Cowan Avenue
Irvine 92714
(714) 641-1611

Wyle Distribution Group
9525 Chesapeake Drive
San Diego 92123
(714) 565-9171

Wyle Distribution Group
3000 Bowers Avenue
Santa Clara 95052
(408) 727-2500

\section*{Colorado}

Hamilton/Avnet
8765 East Orchard
Suite 708
Englewood 80111
(303) 740-1000

Wyle Distribution Group
451 E. 12th Avenue
Thornton 80241
(303) 457-9953

\section*{Connecticut}

Hamilton/Avnet
Commerce Drive
Commerce Industrial Park
Danbury 06810
(203) 797-2800

Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury 06810
(203) 792-3500

\section*{Florida}

Hall-Mark Electronics
1671 W. McNab Road
Ft. Lauderdale 33309
(305) 971-9280

Hall-Mark Electronics
7233 Lake Ellenor Drive
Orlando 32809
(305) 855-4020

Hall-Mark Electronics
9455 Koger Boulevard, N.
Suite 107
St. Petersburg 33702
(813) 576-8691

Florida (cont.)
Hamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale 33309
(305) 971-2900

Hamilton/Avnet
3197 Tech Drive No.
St. Petersburg 33702
(813) 576-3930

Schweber Electronics
181 Whooping Loop
AltaMonte Springs 32701
(305) 331-7555

Schweber Electronics
2830 N. 28th Terrace
Hollywood 33020
(305) 927-0511

\section*{Georgia}

Hall-Mark Electronics 6410 Atlantic Boulevard
Suite 115
Norcross 30071
(404) 447-8000

Hamilton/Avnet
5825 D. Peachtree Corners East
Norcross 30092
(404) 447-7507

Schweber Electronics
303 Research Drive
Suite 210
Norcross 30092
(404) 449-9170

\section*{Illinois}

Hall-Mark Electronics 1177 Industrial Drive Bensenville 60106 (312) 860-3800

Hamilton/Avnet
1130 Thorndale Avenue Bensenville 60106
(312) 860-7700

Schweber Electronics
1275 Brummel Avenue
Elk Grove Village 60007
(312) 364-3750

\section*{Indiana}

Hamilton/Avnet
485 Gradle Drive
Carmel 46032
(317) 844-9333

Pioneer-Standard
6408 Castleplace Drive
Indianapol is 46250
(317) 849-7300

\section*{lowa}

Schweber Electronics
5270 North Park Place N.E
Cedar Rapids 52402
(319) 373-1417

\section*{Kansas}

Hall-Mark Electronics
10815 Lakeview Drive
Lenexa 66219
(913) 888-4747

Hamilton/Avnet
9219 Quivira Road
Overland Park 66215
(913) 888-8900

Maryland
Hall-Mark Electronics
6655 Amberton Drive
Baltimore 21227
(301) 796-9300

Hamilton/Avnet
6822 Oak Hall Lane
Columbia 21045
(301) 995-3500

Schweber Electronics 9218 Gaither Road Gaithersburg 20760 (301) 840-5900

\section*{Massachusetts}

Hamilton/Avnet
50 Tower Office Park
Woburn 01801
(617) 273-7500

Schweber Electronics
25 Wiggins Avenue
Bedford 01730
(617) 275-5100

\section*{Michigan}

Hamilton/Avnet 2215 29th Street S.E.
Grand Rapids 49508
(616) 243-8805

Hamilton/Avnet
32487 Schoolcraft Road
Livonia 48150
(313) 522-4700

Pioneer-Standard
13485 Stamford
Livonia 48150
(313) 525-1800

Schweber Electronics
33540 Schoolcraft Road
Livonia 48150
(313) 525-8100

\section*{Minnesota}

Hall-Mark Electronics 7838 12th Avenue, So. Bloomington 55420 (612) 854-3223

Hamilton/Avnet
10300 Bren Road E.
Minneapolis 55343
(612) 932-0600

Schweber Electronics
7402 Washington Avenue, So. Eden Prairie 55344 (612) 941-5280

\section*{Missouri}

Hall-Mark Electronics
13789 Rider Trail
Earth City 63045
(314) 291-5350

Hamilton/Avnet
13743 Shoreline Court
Earth City 63045
(314) 344-1200

\section*{New Hampshire}

Schweber Electronics
Bedford Farms, Bldg. 2
Kilton \& South River Road
Manchester 03150
(603) 625-2250

\section*{New Jersey}

Hall-Mark Electronics
Springdale Business Center
2091 Springdale Road
Cherry Hill 08003
(609) 424-7300

Hall-Mark Electronics
116 Fairfield Road
Fairfield 07006
(201) 575-4415

Hamilton/Avnet
1 Keystone Avenue
Cherry Hill 08003
(609) 424-0100

Hamilton/Avnet
10 Industrial Road
Fairfield 07006
(201) 575-3390

Schweber Electronics
18 Madison Road
Fairfield 07006
(201) 227-7880

\section*{New Mexico}

Hamilton/Avnet
2524 Baylor S.E.
Albuquerque 87106
(505) 765-1500

\section*{New York}

Hamilton/Avnet
16 Corporate Circle
East Syracuse 13057
(315) 437-2641

Hamilton/Avnet
5 Hub Drive
Melville 11746
(516) 454-6060

Hamilton/Avnet
333 Metro Park Drive
Rochester 14623
(716) 475-9130

Schweber Electronics
2 Townline Circle
Rochester 14623
(716) 424-2222

Schweber Electronics
Jericho Turnpike
Westbury 11590
(516) 334-7474

\section*{North Carolina}

Hall-Mark Electronics
1208 Front Street, Bldg. K
Raleigh 27609
(919) 832-4465

Hamilton/Avnet
2803 Industrial Drive
Raleigh 27609
(919) 829-8030

Schweber Electronics
5285 North Boulevard
Raleigh 27604
(919) 876-0000

\author{
Ohio \\ Hall-Mark Electronics \\ 175 Alpha Park \\ Highland Heights 44143 \\ (216) 473-2907 \\ Hall-Mark Electronics \\ 6130 Sunbury Road \\ Westerville 43081 \\ (614) 891-4555 \\ Hamilton/Avnet \\ 4588 Emery Industrial Parkway \\ Cleveland 44128 \\ (216) 831-3500 \\ Hamil ton/Avnet \\ 945 Senate Drive \\ Dayton, Ohio 45459 \\ (513) 433-0610 \\ Pioneer-Standard \\ 4800 East 131 st Street \\ Cleveland 44105 \\ (216) 587-3600 \\ Pioneer-Standard \\ 4433 Interpoint Boulevard \\ Dayton 45404 \\ (513) 236-9900 \\ Schweber Electronics \\ 23880 Commerce Park Road \\ Beachwood 44122 \\ (216) 464-2970 \\ Schweber Electronics \\ 7865 Paragon Road \\ Suite 210 \\ Dayton, 45459 \\ (513) 439-1800
}

\section*{Oklahoma}

Hall-Mark Electronics
5460 South 103rd E. Avenue
Tulsa 74145
(918) 665-3200

Schweber Electronics
4815 S. Sheridan
Suite 109
Tulsa 74145
(918) 622-8000

\section*{Oregon}

Hamilton/Avnet
6024 S.W. Jean Road
Bldg. C, Suite 10
Lake Oswego 97034
(503) 635-8831

Wyle Distribution Group
5289 N. E. Elam Young Parkway
Suite E-100
Hillsboro 97123
(503) 640-6000

Pioneer-Standard
259 Kappa Drive
Pittsburgh 15238
(412) 782-2300

Schweber Electronics
101 Rock Road
Horsham 19044
(215) 441-0600

Schweber Electronics
1000 RIDC Plaze
Suite 203
Pittsburg 15238
(412) 782-1600

\section*{Texas}

Hall-Mark Electronics
12211 Technology
Austin 78759
(512) 258-8848

Hall-Mark Electronics
11333 Pagemill Drive
Dallas 75231
(214) 341-1147

Hall-Mark Electronics
8000 Westglen
P.O. Box 42190

Houston 77042
(713) 781-6100

Hamilton/Avnet
2401 Rutland
Austin 78758
(512) 837-8911

Texas (cont.)
Utah (cont.)
Hamilton/Avnet
Wyle Distribution Group
3939 Ann Arbor
Houston 77063
(713) 780-1771

Hamilton/Avnet
2111 W. Walnut Hill Lane
Irving 75062
(214) 659-4111

Schweber Electronics
111 W. Anderson Lane
Suite 209
Austin 78752
(512) 458-8253

Schweber Electronics
4202 Beltway Drive
Dallas 75234
(214) 661-5010

Schweber Electronics
10625 Richmond Avenue
Suite 100
Houston 77042
(713) 784-3600

\section*{Utah}

Hamilton/Avnet
1585 West 21st S.
Salt Lake City 84119
(801) 972-2800

\section*{International}

\section*{Australia}

STC-Cannon Components Pty. Ltd. CnR Montague Road \& Victoria St.

\section*{West End}

Brisbane. Queensland 4101
(61) 07446667

STC-Cannon Components Pty. Ltd.
Unit 2
66 Humphries Terrace
Kilkenny
South Australia 5009
(61) 082687088

STC-Cannon Components Pty. Ltd. 605 Gardeners Road
Mascot, New South Wales 2020
(61) 026931666

STC-Cannon Components Pty. Ltd. 248 Wickham Road
Moorabbin
Victoria 3189
(61) 035559566

STC-Cannon Components Pty. Ltd.
396 Scarborough Beach Road
Osborne Park
Western Australia 6017
(61) 094440211

VSI Electronics Pty. Ltd.
Office 8
116 Melbourne Street
North Adelaide
South Australia 5006
(61) 082674848

VSI Electronics Pty. Ltd.
11th Floor
United Dominion Building
127 Creek Street
Brisbane, Queensland 4000
(61) 072298827

VSI Electronics Pty. Ltd.
Suite 3
118 Church Street
Hawthorn, Victoria 3122
(61) 038195044

Australia (cont.)
VSI Electronics Pty. Ltd.
Unit 1
25 Brisbane Street
East Perth, W.A. 6000
(61) 093288499

VSI Electronics Pty. Ltd.
28 Chandos Street
St. Leonards, Sydney 2065
(61) 024398622

\section*{Austria}

Transistor V.m.b.H
Auhofstr. 41a
A-1130 Wien
(43) 222829451
(43) 222829404

\section*{Belgium}

Diode Belgium
Rue Picard 202
1020 Bruxelles
(32) 24285105

\section*{Brazil}

Datatronix Electronica LTDA
Av. Pacaembu, 746-C11
Sao Paulo
(55) 118260111

\section*{Canada}

Hamilton/Avnet
Electronics Ltd.
6845 Rexwood Drive
Units 3,4 \& 5
Mississauga, Ontario L4V 1R2
(416) 677-7432

Canada (cont.)
Hamilton/Avnet
Electronics Ltd.
2670 Sabourin Street
St. Laurent
Montreal, Quebec H4S 1M2
(514) 331-6443

Hamilton/Avnet
Electronics Ltd.
210 Colonnade Road So.
Nepean, Ontario K7E 7L5
(613) 226-1700

Zentronics, Ltd.
8 Tilbury Ct.
Brampton, Ontario L6T 3T4
(416) 451-9600

Zentronics, Ltd.
Bay \#1
330014 th Avenue, N.E.
Calgary, Alberta T2A 6 J 4
(403) 272-1021

Zentronics, Ltd.
141 Catherine Street
Ottawa, Ontario K2P 1C3
'613) 238-6411
Zentronics, Ltd.
505 Locke Street
St. Laurent
Montreal, Quebec H4T 1X7
(514) 735-5361

Zentronics, Ltd.
108-11400 Bridgeport Road
Richmond, B.C. V6X 1 T 2
(604) 273-5575

Zentronics, Ltd.
546 Weber Street, \(N\).
Unit 10
Waterloo, Ontario N2L 5C6
(519) 884-5700

Zentronics, Ltd.
590 Berry Street
Winnipeg, Manitoba R3H OS1
(204) 775-8661

\section*{Denmark \\ Interelko A.P.S.
SILOVEJ
2690 Karlslunde
(45) 3140700}

\section*{Finland}

Field-OY
Veñeentekijantie 18
00210 Helsinki 21
00210 Helsinki 21
(35) 806922577

\section*{France}

Almex
Zone Industrielle d'Antony
48, rue de l'Aubepine
92160 Antony
(33) 16662112
F. Feutrier

8, Benoit Malon
92150 Surensnes
(33) 17724646
F. Feutrier

Rue de Trois Glorievses
42270 St. Priest En Jarez
(33) 777746733
S.C.A.I.B.

80 rue d'Arcueil
Zone Silic
94150 Rungis
(33) 16872313

\section*{Germany}

Distron
Behaimstr. 3
D-1000 Berlin 10
(49) 303421041

EBV Elektronik
Oberweg 6
D-8025 Unterhaching
(49) 89611051

Ingenieurbuero Dreyer
Flensburger Strasse 3
D-2380 Schleswig
(49) 462123121

Jermyn GmbH
Postfach 1180
D-6277 Camberg
(49) 6434231

SASCO
8011 Putzbrunn
Hermann-Oberth-StraBe 16
Munich
(49) 08946111

\section*{Hong Kong}

CET LTD.
1402 Tung Wah Mansion 199-203 Hennessy Road Wanchai
(852) 5729376

\section*{India}

Blue Star Ltd. (REP)
Sabri Complex II Floor
24 Residency Road
Bangalore 560025
Tel: 55660
Blue Star Ltd. (REP)
Sahas
414/2 Vir Savarkar Marg
Prabhadevi
Bombay 400025
Tel: 422-6155

India (cont.)
Blue Star Ltd. (REP)
Bhandari House,
7 th/8th Floors
91 Nehru Place
New Delhi 110024
Tel: 682547

\section*{Israel}

Motorola Israel Ltd.
Electronics and Engineering
16 Kremenetski Street
P.O. Box 25016

Tel Aviv 67899
(972) 3338973

\section*{Italy}

Celdis Italiana S.p.A.
Via F. LL Gracchi, 36
20092 Cinisello Balsamo
Milano
(39) 26120041

Eledra S.p.A.
Viale Elvezia 18
20154 Milano
(39) 2349751

\section*{Japan}

Ryoyo Electric Corporation
Meishin Building
1-20-19 Nishiki
Naka-Ku, Nagoya, 460
(81) 522030277

Ryoyo Electric Corporation
Taiyo Shoji Building
4-6 Nakanoshima
Kita-Ku, Osaka, 530
(81) 64481631

Ryoyo Electric Corporation
Konwa Building
12-22 Tsukiji, 1-Chome
Chuo-Ku, Tokyo
(81) 3543771

Tokyo Electron Company, Ltd.
Sinjuku-Nomura Building
Tokyo 160
(81) 33434411

\section*{Korea}

Samsung Electronics Co., Ltd.
Industrial Products Division
76-561 Yeoksam-Dong Kangnam-Ku
Seoul
(82) 25557555

\section*{Netherlands}

Koning En Hartman
Elektrotechniek BV
Koperwerf 30
2544 En Den Haag
(31) 70210101

\section*{New Zealand}

VSI Electronics Pty. Ltd.
7-9 Kirk Street
Grey Lynn, Auckland
(64) 9761169

VSI Electronics Pty. Ltd.
P.O. Box 11145

Wellington
(64) 4848922

New Zealand (cont.)
VSI Electronics Pty. Ltd.
295 Cashel Street
Christchurch
(TBA)

\section*{Norway}

HEFRO Teknisk A/S
P.O. Box 6596, Rodeloekka

Oslo 5
(47) 02380286

\section*{Singapore}

Dynamar International Ltd
Unit 05-11 Block 6
Kolam Ayer Industrial Estate
Singapore 1334
(65) 747-6188

\section*{So. Africa}

Fairmont Electronics Pty. Ltd
P.O. Box 41102

Craighall 2024
Transvaal
(27) \(117891230 / 4\)

\section*{Spain}

Diode Espana
Avda. Brasil 5, 1st Planta
Madrid 20
(34) 914553686

\section*{Sweden}

TRACO AB
Box 103
12322 Farsta
(46) 8132160

\section*{Switzerland}

Baerlocher AG
Foerllibuckstrasse 110
CH-8037 Zuerich
(41) 1429900

Fabrimex
Kirchenweg 5
CH-8032 Zuerich
(41) 1470670

\section*{United Kingdom}

Celdis Ltd.
37-39 Loverock Road
Reading, Berkshire
RG3 1ED
(44) 734585171

Jermyn-Mogul Distribution
Vestry Estate
Otford Road
Sevenoaks, Kent
TN 14 5EU
(44) 73250144

Macro Marketing Ltd.
Burnham Lane
Slough, Berkshire
SL1 6LN
(44) 62864422

\section*{Yugoslavia}

Elektrotehna
Tozd Elzas N. Sol. 0 .
Titova 81
61001 Ljubljana
(38) 61347749

\title{
SALES \& SUPPORT OFFICES \\ Arranged Alphabetically by Country
}
\begin{tabular}{|c|c|}
\hline & Line Sales / Support Key line \\
\hline A & Analytical \\
\hline CM & Components \\
\hline C & Computer Systems Sales only \\
\hline CH & Computer Systems Hardware Sales and Services \\
\hline CS & Computer Systems Software Sales and Services \\
\hline E & Electronic Instruments \& Measurement Systems \\
\hline M & Medical Products \\
\hline MP & Medical Products Primary SRO \\
\hline MS & Medical Products Secondary SRO \\
\hline P & Personal Computation Products \\
\hline - & Sales only for specific product line \\
\hline * & Support only for specific product line \\
\hline
\end{tabular}

IMPORTANT: These symbols designate general product line capa-
bility. They do not insure sales or support availability for all products within a line, at all locations. Contact your local sales office for information regarding locations where HP support is available for specific products.
HP distributors are printed in italics.

\section*{ANGOLA}

Telectra
Empresa Técnica de Equipamentos
Eléctricos, S.A.R.L.
R. Barbosa Rodrigues, 41-IDT.

Caixa Poslal 6487
LUANDA
Tel: 35515,35516
\(E, M, P\)

\section*{ARGENTINA}

Hewlett-Packard Argentina S.A.
Avenida Santa Fe 2035 Martinez 1640 BUENOS AIRES
Tel: 798-5735, 792-1293
Telex: 17595 BIONAR Cable: HEWPACKARG A,E,CH,CS,P
Biotron S.A.C.I.M. e I. Av Paseo Colon 221, Piso 9 1399 BUENOS AIRES, Tel: 30-4846, 30-1851 Telex: 17595 BIONAR M
Fate S.A. I.C.I.Electronica
Venezuela 1326 1095 BUENOS AIRES
Tel: 37-9020, 37-9026/9
Telex: 9234 FATEN AR \(P\)

\section*{AUSTRALIA}

Adelaide, South Australia

\section*{Office}

Hewlett-Packard Australia Lid.
153 Greenhill Road
PARKSIDE, S.A. 5063
Tel: 272-5911
Telex: 82536
Cable: HEWPARD Adelaide
A*,CH,CM,E,MS,P
Brisbane, Queensland
Office
Hewlett-Packard Australia Ltd
49 Park Road
MLLTON, Queensland 4064
Tel: 229-1544
Telex: 42133
Cable: HEWPARD Brisbane
А, СН, СМ, Е, М, Р
Effective November 1, 1982:
10 Payne Road
THE GAP, Queensland 4061
Tel: 30-4133
Telex: 42133

Canberra, Australia
Capital Territory

\section*{Office}

Hewlett-Packard Australia Ltd.
121 Wollongong Street
FYSHWICK, A.C.T. 2609
Tel: 804244
Telex: 62650
Cable: HEWPARD Canberra
CH,CM,E,P
Melbourne, Victoria Office
Hewlett-Packard Australia L.td.
31-41 Joseph Street
BLACKBURN, Victoria 3130
Tel: 8777777
Telex: 31-024
Cable: HEWPARD Melbourne
A,CH,CM,CS,E,MS,P
Perth, Western Australia

\section*{Office}

Hewlett-Packard Australia Ltd.
261 Stirling Highway
CLAREMONT, W.A. 6010
Tel: 383-2 188
Telex: 93859
Cable: HEWPARD Perth
A,CH,CM,E,MS,P
Sydney, New South Wales

\section*{Office}

Hewlett-Packard Australia Lid.
17.23 Talavera Road
P.O. Box 308

NORTH RYDE, N.S.W. 2113
Tel: 887-1611
Telex: 21561
Cable: HEWPARD Sydney
A,CH,CM,CS,E,MS,P

\section*{AUSTRIA}

Hewlett-Packard Ges.m.b.h.
Grottenhofstrasse 94
Verkaufsburo Graz
A-8052 GRAZ
Tel: 291-5-66
Telex: 32375
CH,E*
Hewlett-Packard Ges.m.b.h.
Stanglhofweg 5
A-4020 LINZ
Tel: 073251585
CH
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72

A- 1222 VIENNA
Tel: (0222) 23-65-11-0
Telex: 134425 HEPA A
A,CH,CM,CS,E,MS,P

BAHRAIN
Green Salon
P.O. Box 557

BAHRAIN
Tel: 255503-255950
Telex: 84419
P
Wael Pharmacy
P.O. Box 648

\section*{BAHRAIN}

Tel: 256123
Telex: 8550 WAEL BN
M, \(E\)

\section*{BELGIUM}

Hewlett-Packard Belgium S.A./N.V.
Blvd de la Woluwe, 100
Woluwedal
B- 1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,MP,P
BRAZIL
Hewlett-Packard do Brasil I.e.C.
Ltda.
Alameda Rio Negro, 750
Alphaville 06400 baRUERI SP
Tel: (11) 421-1311
Telex: 01133872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CS,E,M,P
Hewlett-Packard do Brasil l.e.C. Ltda.
Avenida Epitacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ
Tel: (21) 286-0237
Telex: 021-2 1905 HPBR-BR
Cable: HEWPACK Rio de Janeiro A,CH,CM,E,MS, P*

\section*{CANADA}

Alberta
Hewlett-Packard (Canada) Ltd.
210, 7220 Fisher Street S.E.
CALGARY, Alberta T2H 2H8
Tel: (403) 253-27 13
A,CH,CM, \({ }^{*}, M S, P^{*}\)
Hewlett-Packard (Canada) Ltd.
11620A-168th Street
EDMONTON, Alberta T5M 3T9
Tel: (403) 452-3670
A,CH,CM,CS,E,MS,P*
British Columbia
Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way
RICHMOND,
British Columbia V6X 2 W 7
Tel: (604) 270-2277
Telex: 610-922-5059
A,CH,CM,CS, E* \(, ~ M S, P^{*}\)

\section*{Manitoba}

Hewlett-Packard (Canada) Ltd
380-550 Century Street
WINNIPEG, Manitoba R3H OY1
Tel: (204) 786-6701
A,CH,CM,E,MS,P*

\section*{New Brunswick}

Hewlett-Packard (Canada) Ltd.
37 Sheadiac Road
MONCTON, New Brunswick E2B 2VQ
Tel: (506) 855-2841
\(\mathrm{CH}^{*}\) *

\section*{Nova Scotia}

Hewlett-Packard (Canada) LId
P.O. Box 931

900 Windmill Road
DARTMOUTH, Nova Scotia B2Y \(3 Z 6\)
Tel: (902) 469-7820
CH,CM,CS,E*, MS, \({ }^{*}\)

Ontario
Hewlett-Packard (Canada) Lid.
552 Newbold Streel
LONDON, Ontario N6E 2 S5
Tel: (519) 686-9181
A,CH,CM, \({ }^{*}, \mathrm{MS}, \mathrm{P}^{*}\)
Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
A,CH,CM,CS,E,MP,P
Hewlett-Packard (Canada) Lid.
2670 Queensview Dr.
OTTAWA, Ontario K2B 8 K 1
Tel: (613) 820-6483
A,CH,CM,CS,E*,MS,P*
Hewlett-Packard (Canada) Ltd.
220 Yorkland Blvd., Unit \#11
WILLOWDALE, Ontario M2J 1R5
Tel: (416) 499-9333
CH
Quebec
Hewlett-Packard (Canada) Ltd.
17500 South Service Road
Trans-Canada Highway
KIRKLAND, Quebec H9J 2M5
Tel: (514) 697-4232
A,CH,CM,CS,E,MP,P*
Hewlett-Packard (Canada) Ltd. Les Galeries du Vallon
2323 Du Versont Nord
STE. FOY, Quebec G1N 4C2
Tel: (418) 687-4570
CH

\section*{CHILE}

Jorge Calcagni y Cia. Lida.
Arturo Burhle 065
Casilla 16475
SANTIAGO 9
Tel: 222-0222
Telex: Public Booth 440001
A,CM,E,M
Olympia (Chile) Ltda.
Av. Rodrigo de Araya 1045
Casilla 256 -V
SANTIAGO 21
Tel: 2-25-50-44
Telex: 340-892 OL YMP CK
Cable: Olympiachile Santiagochile

\section*{CH,CS, P}

CHINA, People's Republic
China Hewlett-Packard Rep. Office
P.O. Box 418

1A Lane 2, Luchang St.
Beiwei Rd., Xuanwu District
BEIJING
Tel: 33-1947, 33-7426
Telex: 22601 CTSHP CN
Cable: 1920
A,CH,CM,CS,E,P

\section*{COLOMBIA}

Instrumentación
H. A. Langebaek \& Kier S.A.

Carrera 7 No. 48-75
Apartado Aereo 6287
BOGOTA 1, D.E.
Tel: 287-8877
Telex: 44400 INST CO
Cable: AARIS Bogota \(A, C M, E, M, P S, P\)
COSTA RICA
Cientifica Costarricense S.A.
Avenida 2, Calle 5
San Pedro de Montes de Oca
Apartado 10159
SAN JOSE
Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CM,E,MS,P

CYPRUS
Telerexa LId.
P.O. Box 4809

14C Stassinos Avenue
NICOSIA
Tel: 62698
Telex: 2894 LEVIDO CY
\(E, M, P\)
DENMARK
Hewlett-Packard A/S
Datavej 52
DK-3460 Birkerod
Tel: (02) 81-66-40 Telex: 37409 hpas dk
A,CH,CM,CS,E,MS,P
Hewlett-Packard A/S
Navervej 1
DK-8600 SILKEBORG
Tel: (06) 82-71-66
Telex: 37409 hpas dk
CH,E
ECUADOR
CYEDE Cia. Ltda.
Avenida Eloy Alfaro 1749
Casilla 6423 CCI
Quito
Tel: 450-975, 243-052
Telex: 2548 CYEDE ED
A,CM, E, P
Hospitalar S.A.
Robles 625
Casilla 3590
QUiTO
Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Quito M

EGYPT
International Engineering Associates
24 Hussein Hegazi Street
Kasr-el-Aini
CAIRO
Tel: 23829, 21641
Telex: IEA UN 93830
CH,CS,E,M
Informatic For Systems
22 Talaat Harb Street
CAIRO
Tel: 759006
Telex: 93938 FRANK UN
CH,CS, P
Egyptian International Office
for Foreign Trade
P.O.Box 2558

CAIRO
Tel: 650021
Telex: 93337 EGPOR
\(P\)
EL SALVADOR
IPESA de EI Salvador S.A.
29 Avenida Norte 1216
SAN SALVADOR
Tel: 26-6858, 26-6868
Telex: Public Booth 20107
A,CH,CM,CS,E,P

\section*{FINLAND}

Hewlett-Packard Oy
Revontulentie 7
SF-02100 ESPOO 10
Tel: (90) 455-0211
Telex: 121563 hewpa sf
A,CH,CM,CS,E,MS,P
Hewlett-Packard Oy
Aatoksenkatv 10-C

\section*{SALES \& SUPPORT OFFICES}

\section*{Arranged Alphabetically by Country}

SF-40720-72 JYVASKYLA
Tel: (941) 216318
CH
Hewlett-Packard Oy
Kainvuntie 1-C
SF-90140-14 OULU
Tel: (981) 338785 CH

FRANCE
Hewlett-Packard France
Z.I. Mercure B

Rue Berthelot
F- 13763 Les Milles Cedex
AIX-EN-PROVENCE
Tel: (42) 59-41-02
Telex: 410770 F
A,CH,E,MS,P*
Hewlett-Packard France
Boite Postale No. 503
F-25026 BESANCON
28 Rue de la Republique
F-25000 BESANCON
Tel: (81) 83-16-22
\(\mathrm{CH}, \mathrm{M}\)
Hewlett-Packard France
Bureau de Vente de Lyon
Chemin des Mouilles
Boite Postale 162
F-69130 ECULLY Cédex
Tel: (7) 833-81-25
Telex: 310617F
A,CH,CS,E,MP
Hewlett-Packard France
Immeuble France Evry
Tour Lorraine
Boulevard de France
F-91035 EVRY Cédex
Tel: (6) 077-96-60
Telex: 692315F
E
Hewlett-Packard France
5th Avenue Raymond Chanas F-38320 EYBENS
Tel: (76) 25-81-41
Telex: 980124 HP GRENOB EYBE CH
Hewlett-Packard France
Centre d'Affaire Paris-Nord
Bâtiment Ampère 5 étage
Rue de la Commune de Paris
Boite Postale 300
F-93153 LE BLANC MESNIL
Tel: (01) 865-44-52
Telex: 211032F
CH,CS,E,MS
Hewlett-Packard France
Parc d'Activites Cadera
Quartier Jean Mermoz
Avenue du President JF Kennedy
F-33700 MERIGNAC
Tel: (56) 34-00-84
Telex: 550105F
CH,E,MS
Hewlett-Packard France
32 Rue Lothaire
F-57000 METZ
Tel: (8) 765-53-50
CH
Hewlett-Packard France
Immueble Les 3 B
Nouveau Chemin de la Garde
Z.A.C. de Bois Briand

F-44085 Nantes Cedex
Tel: (40) 50-32-22
\(\mathrm{CH}^{*}\) *
Hewlett-Packard France
Zone Industrielle de Courtaboeut Avenue des Tropiques
F-91947 Les Ulis Cédex ORSAY
Tel: (6) 907-78-25
Telex: 600048F
A,CH,CM,CS,E,MP,P

Hewlett-Packard France
Paris Porte-Maillot
15, Avenue De L'Amiral Bruix F-75782 PARIS 16
Tel: (1) 502-12-20
Telex: 613663F
CH,MS, P
Hewlett-Packard France
2 Allee de la Bourgonette
F-35 100 RENNES
Tel: (99) 51-42-44
Telex: 740912F
CH,CM,E,MS,P*
Hewlett-Packard France
98 Avenue de Bretagne
F-76 100 ROUEN
Tel: (35) 63-57-66 CH**,CS
Hewlett-Packard France
4 Rue Thomas Mann Boite Postale 56
F-67200 STRASBOURG
Tel: (88) 28-56-46
Telex: 890141 F
CH,E,MS,P*
Hewlett-Packard France
Pericentre de la Cépière
F-31081 TOULOUSE Cedex
Tel: (61) 40-11-12
Telex: 531639F
A,CH,CS,E,P*
Hewlett-Packard France
Immeuble Péricentre
F-59658 VILLENEUVE D'ASCQ Cedex
Tel: (20) 91-41-25
Telex: 160124F
CH,E,MS,P*

\section*{GERMAN FEDERAL}

\section*{REPUBLIC}

Hewlett-Packard GmbH
Technisches Büro Berlin
Keithstrasse 2-4
D-1000 BERLIN 30
Tel: (030) 24-90-86
Telex: 0183405 hpbln d
A,CH,E,M,P
Hewlett-Packard GmbH
Technisches Büro Bøblingen
Herrenberger Strasse 110
D-7030 BOBLINGEN
Tel: (07031) 667-1
Telex: bbn or
A,CH,CM,CS,E,MP,P
Hewlett-Packard GmbH
Technisches Büro Dusseidori
Emanuel-Leutze-Strasse 1
D-4000 DUSSELDORF
Tel: (0211) 5971-1
Telex: 085/86 533 hpdd d
A,CH,CS,E,MS,P
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berner Strasse 117
Postfach 560140
D-6000 FRANKFURT 56
Tel: (0611) 50-04-1 Telex: 0413249 hpffm d
A,CH,CM,CS,E,MP,P
Hewlett-Packard GmbH
Technisches Büro Hamburg
Kapstadtring 5
D-2000 HAMBURG 60
Tel: (040) 63804-1
Telex: 02163032 hphh d
A,CH,CS,E,MS,P
Hewlett-Packard GmbH
Technisches Büro Hannover
Am Grossmarkt 6
D-3000 HANNOVER 91
Tel: (0511) 46-60-01
Telex: 0923259
A,CH,CM,E,MS,P

Hewlett-Packard GmbH
Technisches Buro Mannheim
Rosslauer Weg 2-4
D-6800 MANNHEIM
Tel: (0621) 70050
Telex: 0462105
A,C,E
Hewlett-Packard GmbH
Technisches Büro Neu Ulm Messerschmittstrasse 7
D-7910 NEU ULM
Tel: 0731-7024
Telex: 0712816 HP ULM-D A,C,E*

Hewlett-Packard GmbH
Technisches Büro Nurnberg
Neumeyerstrasse 90
D-8500 NÜRNBERG
Tel: (0911) 5220 83-87
Telex: 0623860
CH,CM,E,MS,P
Hewlett-Packard GmbH
Technisches Büro Munchen
Eschenstrasse 5
D-8028 TAUFKIRCHEN
Tel: (089) 6117-1
Telex: 0524985
A,CH,CM,E,MS,P

\section*{GREAT BRITAIN}

Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM
Chesire WA14 1 NU
Tel: (061) 928-6422
Telex: 668068
A,CH,CS,E,M
Hewlett-Packard Lid.
Oakfield House, Oakfield Grove
Clifton
BRISTOL BS8 2BN, Avon
Tel: (027) 38606
Telex: 444302
CH,M, P
Hewlett-Packard Ltd.
(Pinewood)
Nine Mile Ride
EASTHAMPSTEAD
Wokingham
Berkshire, 3RG11 3LL
Tel: 34463100
Telex: 84-88-05
CH,CS,E
Hewlett-Packard Lid.
Fourier House
257-263 High Street
LONDON COLNEY
Herts., AL2 1HA, St. Albans
Tel: (0727) 24400
Telex: 1-8952716
CH,CS,E
Hewlett-Packard Ltd
Tradax House, St. Mary's Walk

\section*{MAIDENHEAD}

Berkshire, SL6 1ST
Tel: (0628) 39151
CH,CS,E,P
Hewlett-Packard Ltd. Quadrangle
106-118 Station Road
REDHILL, Surrey
Tel: (0737) 68655
Telex: 947234 CH,CS,E
Hewlett-Packard Lid.
Avon House
435 Stratford Road
SHIRLEY, Solihull
West Midlands B90 4BL
Tel: (021) 7458800
Telex: 339105
CH

Hewlett-Packard Lid
West End House 41
High Street, West End
SOUTHAMPTON
Hampshire S03 300
Tel: (703) 886767
Telex: 477138
CH
Hewlett-Packard LId.
King Street Lane
WINNERSH, Wokingham
Berkshire RG11 5AR
Tel: (0734) 784774
Telex: 847178
A,CH,E,M

GREECE
Kostas Karaynnis S.A.
8 Omirou Street
ATHENS 133
Tel: 3230 303, 3237371
Telex: 215962 RKAR GR
A,CH,CM,CS,E,M,P
PLAISIO S.A.
G. Gerardos

24 Stournara Street
ATHENS
Tel: 36-11-160
Telex: 221871
\(P\)

GUATEMALA
IPESA
Avenida Reforma 3-48, Zona 9
GUATEMALA CITY
Tel: 316627, 314786
Telex: 4192 TELTRO GU
A,CH,CM,CS,E,M,P
HONG KONG
Hewlett-Packard Hong Kong, Ltd.
G.P.O. Box 795

5th Floor, Sun Hung Kai Centre
30 Harbour Road

\section*{HONG KONG}

Tel: 5-8323211
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E,CH,CS,P
CET Ltd.
1402 Tung Way Mansion
199-203 Hennessy Rd.
Wanchia, HONGKONG
Tel: 5-729376
Telex: 85148 CET HX
CM
Schmidt \& Co. (Hong Kong) Ltd.
Wing On Centre, 28th Floor
Connaught Road, \(C\).
HONG KONG
Tel: 5-455644
Telex: 74766 SCHMX HX
A,M
ICELAND
Elding Trading Company Inc.
Hafnarnvoli-Tryggvagotu
P.O. Box 895

IS-REYKJAVIK
Tel: 1-58-20, 1-63-03
M
INDIA
Blue Star Lid.
Sabri Complex II Floor
24 Residency Rd.
bANGALORE 560025
Tel: 55660
Telex: 0845-430
Cable: BLUESTAR
A,CH,CM,CS,E

Blue Star Ltd.
Band Box House
Prabhadevi
bombar 400025
Tel: 422-3101
Telex: 011-3751
Cable: BLUESTAR
\(A, M\)
Blue Star Ltd.
Sahas
414/2 Vir Savarkar Marg
Prabhadevi
BOMBAY 400025
Tel: 422-6155
Telex: 011-4093
Cable: FROSTBLUE
A,CH,CM,CS,E,M
Blue Star Ltd.
Kalyan, 19 Vishwas Colony
Alkapuri, BORODA, 390005
Tel: 65235
Cable: BLUE STAR
A
Blue Star LId.
7 Hare Stree!
CALCUTTA 700001
Tel: 12-01-31
Telex: 021-7655
Cable: BLUESTAR
A, M
Blue Star Ltd.
133 Kodambakkam High Road
MADRAS 600034
Tel: 82057
Telex: 041 1-379
Cable: BLUESTAR
A,M
Blue Star LId.
Bhandari House, 7th/8th Floors
91 Nehru Place
NEW DELHI 110024
Tel: 682547
Telex: 031-2463
Cable: BLUESTAR
A,CH,CM,CS,E,M
Blue Star Ltd.
15/16:C Wellesley Rd.
PUNE 411011
Tel: 22775
Cable: BLUE STAR
A
Blue Star Ltd.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500003
Tel: 72057
Telex: 0155-459
Cable: BLUEFROST
A, \(E\)
Blue Star Ltd.
T.C. 7/603 Poornima

IRAQ
Hewlett-Packard Trading S.A.
Service Operation
Al Mansoor City 9B/3/7
BAGHDAD
Tel: 551-49-73
Telex: 212-455 HEPAIRAQ IK
CH,CS
IRELAND
Hewlett-Packard Ireland Ltd.
82/83 Lower Leeson St.
DUBLIN 2
Tel: (1) 608800
Telex: 30439
A,CH,CM,CS,E,M,P
Cardiac Services Ltd.
Kilmore Road
Artane
DUBLIN 5
Tel: (01) 351820
Telex: 30439
M
ISRAEL
Eldan Electronic Instrument Ltd.
P.O. Box 1270

JERUSALEM 91000
16, Ohaliav St.
JERUSALEM 94467
Tel: 533 221, 553242
Telex: 25231 AB/PAKRD IL
A
Electronics Engineering Division
Motorola Israel Ltd.
16 Kremenetski Street
P.O. Box 25016

\section*{TEL-AVIV 67899}

Tel: 3-338973
Telex: 33569 Motil IL
Cable: BASTEL Tel-Aviv
\(C H, C M, C S, E, M, P\)

\section*{ITALY}

Hewlett-Packard Italiana S.p.A.
Traversa 99C
Via Giulio Petroni, 19
1-70124 BARI
Tel: (080) 41-07-44

\section*{M}

Hewlett-Packard Italiana S.p.A.
Via Martin Luther King, 38/111
I-40132 BOLOGNA
Tel: (051) 402394
Telex: 511630
CH,E,MS
Hewlett-Packard Italiana S.p.A.
Via Principe Nicola 43G/C
1-95126 CATANIA
Tel: (095) 37-10-87
Telex: 970291
C, P
Hewlett-Packard Italiana S.p.A.
Via G. Di Vittorio 9
I-20063 CERNUSCO SUL NAVIGLIO
Tel: (2) 903691
Telex: 334632
A,CH,CM,CS,E,MP,P
Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco a
Capodimonte, 62/A
I-80 131 NAPLES
Tel: (081) 7413544
Telex: 710698
A,CH,E
Hewlett-Packard Italiana S.p.A.
Viale G. Modugno 33
-16156 GENOVA PEGLI
Tel: (010) 68-37-07
Telex: 215238
E,C

Hewlett-Packard Italiana S.p.A. Via Turazza 14 1-35 100 PADOVA
Tel: (049) 664888
Telex: 430315
A,CH,E,MS
Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340
I-00144 ROMA
Tel: (06) 54831
Telex: 610514
A,CH,CM,CS,E,MS,P*
Hewlett-Packard Italiana S.p.A.
Corso Svizzera, 184
l-10149 TORINO
Tel: (011) 744044
Telex: 221079
CH,E

\section*{JAPAN}

Yokogawa-Hewlett-Packard LId.
Inoue Building
1-21-8, Asahi-cho
ATSUGI, Kanagawa 243
Tel: (0462) 28-0451
CM,C*, E
Yokogawa-Hewlett-Packard Ltd.
Towa Building
2-2-3, Kaigandori, Chuo-ku
KOBE, 650, Hyogo
Tel: (078) 392-4791
C,E
Yokogawa-Hewlett-Packard LId.
Kumagaya Asahi Yasoji Bldg 4F
3-4 Chome Tsukuba
KUMAGAYA, Saitama 360
Tel: (0485) 24-6563
CH,CM,E
Yokogawa-Hewlett-Packard Ltd.
Asahi Shinbun Dai-ichi Seimei Bldg.,
2F
4-7 Hanabata-cho
KUMAMOTO-SHI, 860
Tel: (0963) 54-7311
CH,E
Yokogawa-Hewlett-Packard Ltd.
Shin Kyoto Center Bldg. 5F
614 Siokoji-cho
Nishiiruhigashi, Karasuma
Siokoji-dori, Shimogyo-ku
кYOTO 600
Tel: 075-343-0921
CH,E
Yokogawa-Hewlett-Packard Litd.
Mito Mitsui Building
1-4-73, San-no-maru
MITO, Ibaragi 310
Tel: (0292) 25-7470
CH,CM,E
Yokogawa-Hewlett-Packard LId.
Sumitomo Seimei Nagoya Bldg.
2-14-19, Meieki-Minami,
Nakamura-ku
NAGOYA, 450 Aichi
Tel: (052) 571-5171
CH,CM,CS,E,MS
Yokogawa-Hewlett-Packard Ltd.
Chuo Bldg., 4th Floor
5-4-20 Nishinakajima,
Yodogawa-ku
OSAKA, 532
Tel: (06) 304-6021
Telex: YHPOSA 523-3624
A,CH,CM,CS,E,MP,P*
Yokogawa-Hewlett-Packard LId
1-27-15, Yabe,
SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311
Yokogawa-Hewlett-Packard LId.
Shinjuku Dai-ichi Seimei 6F
2-7-1, Nishi Shinjuku
Shinjuku-ku, TOKYO 160
Tel: 03-348-4611-5
CH,E

Yokogawa-Hewlett-Packard Ltd.
3-29-21 Takaido-Higashi
Suginami-ku TOKYO 168
Tel: (03) 331-6111
Telex: 232-2024 YHPTOK
A,CH,CM,CS,E,MP,P*
Yokogawa-Hewlett-Packard Ltd. Daiichi Asano Building 4F
5-2-8, Oodori,
UTSUNOMIYA, 320
Tochigi
Tel: (0286) 25-7155
CH, CS, E
Yokogawa-Hewlett-Packard LId.
Yasudaseimei Yokohama
Nishiguchi Bldg.
3-30-4 Tsuruya-cho
Kanagawa-ku
YOKOHAMA, Kanagawa, 221
Tel: (045) 312-1252
CH,CM,E

\section*{JORDAN}

Mouasher Cousins Company
P.O. Box 1387

\section*{AMMAN}

Tel: 24907, 39907
Telex: 21456 SABCO JO
\(C H, E, M, P\)

\section*{KENYA}

ADCOM LId., Inc., Kenya
P.O.Box 30070

NAIROBI
Tel: 331955
Telex: 22639
E,M
KOREA
Samsung Electronics Computer
Division
76 -561 Yeoksam-Dong
Kangnam-Ku
C.P.O. Box 2775

SEOUL
Tel: 555-7555, 555-5447
Telex: K27364 SAMSAN
\(A, C H, C M, C S, E, M, P\)

\section*{KUWAIT}

Al-Khaldiya Trading \& Contracting
P.O. Box 830 Safat

KUWAIT
Tel: 42-4910, 41-1726
Telex: 22481 Areeg kt
CH,E,M
Photo \& Cine Equipment
P.O. Box 270 Safat

KUWAIT
Tel: 42-2846, 42-3801
Telex: 22247 Matin-KT
P

\section*{LEBANON}
G.M. Dolmadjian

Achrafieh
P.O. Box 165.167

BEIRUT
Tel: 290293
MP**
LUXEMBOURG
Hewiett-Packard Belgium S.A./N.V.
Blvd de la Woluwe, 100
Woluwedal
B- 1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,MP,P

MALAYSIA
Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.
1st Floor, Bangunan British
American
Jalan Semantan, Damansara Heights
KUALA LUMPUR 23-03
Tel: 943022
Telex: MA31011
A,CH,E,M, P*
Protel Engineering
Lot 319, Satok Road
P.O.Box 1917

Kuching, SARAWAK
Tel: 53544
Telex: MA 70904 PROMAL
Cable: PROTELENG
\(A, E, M\)
MALTA
Philip Toledo Ltd.
Notabile Rd.
MRIEHEL
Tel: 447 47, 45566
Telex: 649 Media MW
\(P\)

\section*{MEXICO}

Hewlett-Packard Mexicana, S.A. de
C.V.

Av. Periferico Sur No. 6501
Tepepan, Xochimilco
MEXICO D.F. 16020
Tel: 676-4600
Telex: 17-74-507 HEWPACK MEX
A,CH,CS,E,MS,P
Effective November 1, 1982
Hewlett-Packard Mexicana, S.A. de
C.V.

Ejercito Nacional \#570 Tel: 486-928
Colonia Granada
11560 MEXICO, D.F.
\(\mathrm{CH}^{*}\) *
Hewlett-Packard Mexicana, S.A. de
C.V.

Rio Volga 600
Pte. Colonia del Valle
MONTERREY, N.L.
Tel: 78-42-93, 78-42-40, 78-42-41
Telex: 038-2410 HPMTY ME
CH
Effective Nov. 1, 1982
Ave. Colonia del Valle \#409
Col. del Valle
Municinio de garza garcia
MONTERREY, N.V.
ECISA
Taihe 229, Piso 10
Polanco MEXICO D.F. 11570
Tel: 250-5391
Telex: 17-72755 ECE ME
M

\section*{MOROCCO}

Dolbeau
81 rue Karatch
CASABLANCA
Tel: 3041-82, 3068-38
Telex: 23051, 22822
E
Gerep
2 rue d'Agadir
Boite Postale 156
CASABLANCA
Tel: 272093, 272095
Telex: 23739
\(P\)

\section*{NETHERLANDS}

Hewlett-Packard Nederland B.V.
Van Heuven Goedhartlaan 121
NL 1181KK AMSTELVEEN
P.O. Box 667

NL 1180 AR AMSTELVEEN
Tel: (20) 47-20-21
Telex: 13216
A,CH,CM,CS,E,MP,P
Bongerd 2
P.O. Box 41

Tel: (10) 51-64-44
Telex: 21261 HEPAC NL
A,CH,CS

\section*{NEW ZEALAND}

169 Manukau Road
P.0. Box 26-189

Epsom, AUCKLAND
Tel: 687-159
CH,CM,E,P*
4-12 Cruickshank Street
Kilbirnie, WELLINGTON 3
P.O. Box 9443

Tel: 877-199
CH,CM,E,P Ltd.
369 Khyber Pass Road
P.O. Box 8602

AUCKLAND
Tel: 794-091
Telex: 60605
A, M

Lid.
110 Mandeville St.
P.O. Box 8388

CHRISTCHURCH
Telex: 4203
A, M

Sturdee House
85-87 Ghuznee Street
P.O. Box 2406

WELLINGTON
Tel: 850-091
Telex: NZ 3380
\(A, M\)

BELFASTBT 10 OBY
Tel: (0232) 625-566
Telex: 747626
M

\section*{NORWAY}
P.O. Box 3558

Hewiett-Packard Nederland B.V

NL 2906VK CAPPELLE, A/D ljessel
NL2900 AA CAPELLE, lissel

Hewlett-Packard (N.Z.) Ltd.

Cable: HEWPACK Auckland
Hewlett-Packard (N.Z.) Ltd.

Courtenay Place, WELLINGTON 3
Cable: HEWPACK Wellington

Northrop Instruments \& Systems

Northrop Instruments \& Systems

Northrop Instruments \& Systems

NORTHERN IRELAND
Cardiac Services Company
95A Finaghy Road South

Hewlett-Packard Norge A/S
Folke Bernadottes vei 50

\section*{SALES \& SUPPORT OFFICES}

Arranged Alphabetically by Country

Suhail \& Saud Bahwan
P.O. Box 169

MUSCAT
Tel: \(734201-3\)
Telex: 3274 BAHWAN MB

\section*{PAKISTAN}

Mushko \& Company Ltd.
1-B, Street 43
Sector F-8/1

\section*{ISLAMABAD}

Tel: 26875
Cable: FEMUS Rawalpind
A,E,M
Mushko \& Company Ltd.
Oosman Chambers
Abdullah Haroon Road
KARACHI 0302
Tel: 511027, 512927
Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
\(A, E, M, P^{*}\)

\section*{PANAMA}

Electrónico Balboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929
panama 5
Tel: 64-2700
Telex: 3483 ELECTRON PG
A,CM, E, M, P
Foto Internacional, S.A.
Colon Free Zone
Apartado 2068
COLON 3
Tel: 45-2333
Telex: 8626 IMPORT PG
\(P\)

\section*{PERU}

Cía Electro Médica S.A.
Los Flamencos 145, San Isidro
Casilla 1030
LIMA 1
Tel: 41-4325, 41-3703
Telex: Pub. Booth 25306
\(A, C M, E, M, P\)

\section*{PHILIPPINES}

The Online Advanced Systems Corporation
Rico House, Amorsolo Cor. Herrera
Street
Legaspi Village, Makati
P.O. Box 1510

Metro MANILA
Tel: 85-35-81, 85-34-91, 85-32-21
Telex: 3274 ONLINE
A,CH,CS,E,M
Electronic Specialists and
Proponents inc.
690-B Epifanio de los Santos
Avenue
Cubao, QUEZON CITY
P.O. Box 2649 Manila

Tel: 98-96-81, 98-96-82, 98-96-8
Telex: 40018, 42000 ITT GLOBE
MACKAY ВООТН
\(P\)

\section*{PORTUGAL}

Mundinter
Intercambio Mundial de Comércio S.arl
P.O. Box 2761

Av. Antonio Augusto de Aguiar 138 P-LISBON
Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter \(p\)

Soquimica
Av. da Liberdade, 220-2
1298 LISBON Codex
Tel: 5621 81/2/3
Telex: 13316 SABASA P
Telectra-Empresa Técnica de Equipmentos Electricos S.a.r.I.
Rua Rodrigo da Fonseca 103
P.O. Box 2531

P-LISBON 1
Tel: (19) 68-60-72
Telex: 12598
CH,CS,E,P
PUERTO RICO
Hewlett-Packard Puerto Rico
P.O. Box 4407

CAROLINA, Puerto Rico 00628
Calle 272 Edificio 203
Urb. Country Club
RIO PIEDRAS, Puerto Rico 00924
Tel: (809) 762-7255
A,CH,CS
QATAR
Nasser Trading \& Contracting
P.O. Box 1563

DOHA
Tel: 22170, 23539
Telex: 4439 NASSER DH
M
Computearbia
P.O. Box 2750

DOHA
Tel: 883555
Telex: 4806 CHPARB
\(P\)
Eastern Technical Services
P.O. Box 4747

DOHA
Tel: 329993
Telex: 4156 EASTEC DH

\section*{SAUDI ARABIA}

Modern Electronic Establishment Hewlett-Packard Division
P.O. Box 281

Thuobah
AL-KHOBAR
Tel: 864-46 78
Telex: 671106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
\(C H, C S, E, M, P\)
Modern Electronic Establishment Hewlett-Packard Division
P.O. Box 1228

Redec Plaza, 6th Floor
JEDDAH
Tel: 6443848
Telex: 402712 FARNAS SJ
Cable: ELECTA JEDDAH
CH,CS, E, M, P
Modern Electronic Establishment
Hewlett Packard Division
P.O. Box 2728

RIYADH
Tel: 491-97 15, 491-63 87
Telex: 202049 MEERYD SJ
CH,CS,E,M,P
SCOTLAND
Hewlett-Packard Ltd
Royal Bank Buildings
Swan Street
BRECHIN, Angus, Scotland
Tel: (03562) 3101-2 CH
Hewlett-Packard Ltd. SOUTH QUEENSFERRY West Lothian, EH30 9GT GB-Scotland
Tel: (031) 3311188
Telex: 72682
A,CH,CM,CS,E,M

SINGAPORE
Hewlett-Packard Singapore (Pty.) Lid.
P.O. Box 58 Alexandra Post Office SINGAPORE, 9115
6 th Floor, Inchcape House
450-452 Alexandra Road SINGAPORE 0511
Tel: 631788
Telex: HPSGSO RS 34209
Cable: HEWPACK, Singapore
A,CH,CS,E,MS,P
Dynamar International LId.
Unit 05-11 Block 6
Kolam Ayer Industrial Estate
SINGAPORE 1334
Tel: 747-6188
Telex: RS 26283
CM
SOUTH AFRICA
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 120

Howard Place
Pine Park Center, Forest Drive, Pinelands
CAPE PROVINCE 7405
Tel: 53-7954
Telex: 57-20006
A,CH,CM,E,MS,P
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 37099

92 Overport Drive
DURBAN 4067
Tel: 28-4178, 28-4179, 28-4110
Telex: 6-22954
CH,CM
Hewlett-Packard So Africa (Pty.) Ltd.
6 Linton Arcade
511 Cape Road
Linton Grange
PORT ELIZABETH 600
Tel: 041-302148
CH
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 33345

Glenstantia 0010 TransvaAL
1st Floor East
Constantia Park Ridge Shopping
Centre
Constantia Park
PRETORIA
Tel: 982043
Telex: 32163
CH,E
Hewlett-Packard So Africa (Pty.) Ltd.
Private Bag Wendywood
SANDTON 2144
Tel: 802-5111, 802-5125
Telex: 4-20877
Cable: HEWPACK Johannesburg
A,CH,CM,CS,E,MS,P

\section*{SPAIN}

Hewlett-Packard Española S.A.
c/Entenza, 321
E-bARCELONA 29
Tel: (3) 322-24-51, 321-73-54
Telex: 52603 hpbee
A,CH,CS,E,MS,P
Hewlett-Packard Española S.A.
\(\mathrm{c} /\) San Vicente \(\mathrm{S} / \mathrm{N}\)
Edificio Albia 11,7 B
E-BILBAO 1
Tel: (4) 23-8306, (4) 23-8206
A,CH,E,MS
Hewlett-Packard Española S.A.
Calle Jerez 3
E-MADRID 16
Tel: (1) 458-2600
Telex: 23515 hpe
A,CM,E

Hewlett-Packard Española S.A
c/o Costa Brava 13
Colonia Mirasierra
E-MADRID 34
Tel: (1) 734-8061, (1) 734-1162 CH,CS,M

Hewlett-Packard Española S.A.
Av Ramón y Cajal 1-9
Edificio Sevilla 1,
E-SEVILLA 5
Tel: 64-44-54, 64-44-58
Telex: 72933
A,CS,MS,P
Hewlett-Packard Española S.A.
C/Ramon Gordillo, 1 (Entlo.3)
E-VALENCIA 10
Tel: 361-1354, 361-1358
CH,P
SWEDEN
Hewlett-Packard.Sverige AB
Sunnanvagen 14 K
S-22226 LUND
Tel: (046) 13-69-79
Telex: (854) 17886 (via SPÅNGA
office)
CH
Hewlett-Packard Sverige AB
Vastra Vintergatan 9
S-70344 OREBRO
Tel: (19) 10-48-80
Telex: (854) 17886 (via SPÅNGA
office)
CH
Hewlett-Packard Sverige AB
Skalholtsgatan 9, Kista
Box 19
S- 16393 SPANGA
Tel: (08) 750-2000
Telex: (854) 17886
A,CH,CM,CS,E,MS,P
Hewlett-Packard Sverige AB
Frötallisgatan 30
S-42132 VÄSTRA-FROLUNDA
Tel: (031) 49-09-50
Telex: (854) 17886 (via SPÅNGA
office)
CH,E,P
SWITZERLAND
Hewlett-Packard (Schweiz) AG
Clarastrasse 12
CH-4058 BASLE
Tel: (61) 33-59-20
A
Hewlett-Packard (Schweiz) AG
Bahnhoheweg 44
CH-3018 BERN
Tel: (031) 56-24-22
CH
Hewlett-Packard (Schweiz) AG
47 Avenue Blanc
CH-1202 GENEVA
Tel: (022) 32-48-00
CH,CM,CS
Hewlett-Packard (Schweiz) AG
19 Chemin Château Bloc
CH-1219 LE LIGNON-Geneva
Tel: (022) 96-03-22
Telex: 27333 hpag ch
Cable: HEWPACKAG Geneva
A,E,MS,P
Hewlett-Packard (Schweiz) AG
Allmend 2
CH-8967 WIDEN
Tel: (57) 312111
Telex: 53933 hpag ch
Cable: HPAG CH
A,CH,CM,CS,E,MS,P

\section*{SYRIA}

General Electronic Inc.
Nuri Basha
P.O. Box 5781

DAMASCUS
Tel: 33-24-87
Telex: 11216 ITIKAL SY
Cable: ELECTROBOR DAMASCUS

Middle East Electronics
Place Azmé
Boite Postale 2308

\section*{AMASUS}

Tel: 334592
Telex: 11304 SATACO SY

TAIWAN
Hewlett-Packard Far Easi LId.
Kaohsiung Office
2/F 68-2, Chung Cheng 3rd Road
KAOHSIUNG
Tel: 241-2318, 261-3253
CH,CS,E
Hewlett-Packard Far East LId.
Taiwan Branch
5th Floor
205 Tun Hwa North Road
TAIPEI
Tel:(02) 751-0404
Cable:HEWPACK Taipei
A,CH,CM,CS,E,M,P
Ing Lih Trading Co.
3rd Floor, 7 Jen-Ai Road, Sec. 2

\section*{TAIPEI 100}

Tel: (O2) 3948191
Cable: INGLIH TAIPEI
A
THAILAND
Unimesa
30 Patpong Ave., Suriwong
BANGKOK 5
Tel: 234 091, 234092
Telex: 84439 Simonco TH
Cable: UNIMESA Bangkok
A,CH,CS,E,M
Bangkok Business Equipment Ltd.
5/5-6 Dejo Road
BANGKOK
Tel: 234-8670, 234-8671
Telex: 87669-BEQUIPT TH
Cable: BUSIQUIPT Bangkok
\(P\)
TRINIDAD \& TOBAGO
Caribbean Telecoms Ltd.
50/A Jerningham Avenue P.O. Box 732

\section*{PORT-OF-SPAIN}

Tel: 62-442 13, 62-44214
Telex: 235,272 HUGCO WG
A,CM,E,M,P

\section*{TUNISIA}

Tunisie Electronique

UNITED KINGDOM
see: GREAT BRITAIN
NORTHERN IRELAND
SCOTLAND
UNITED STATES
Alabama
Hewlett-Packard Co.
700 Century Park South
Suite 128
BIRMINGHAM, AL 35226
Tel: (205) 822-6802 CH,MP
Hewlett-Packard Co.
P.O. Box 4207

8290 Whitesburg Drive, S.E.
HUNTSVILLE, AL 35802
Tel: (205) 881-4591
CH,CM,CS,E,M*

\section*{Alaska}

Hewlett-Packard Co.
1577 "C" Street, Suite 252
aNCHORAGE, AK 99501
Tel: (907) 276-5709
\(\mathrm{CH}^{*}\)

\section*{Arizona}

Hewlett-Packard Co 2336 East Magnolia Street PHOENIX, AZ 85034
Tel: (602) 273-8000 A,CH,CM,CS,E,MS
Hewlett-Packard Co. 2424 East Aragon Road TUCSON, AZ 85706 Tel: (602) 889-4631 CH,E,MS**

\section*{Arkansas}

Hewlett-Packard Co. P.O. Box 5646 Brady Station LITTLE ROCK, AR 72215
111 N. Filmore
LITTLE ROCK, AR 72205 Tel: (501) 664-8773, 376-1844 MS

\section*{California}

Hewlett-Packard Co.
99 South Hill Dr.
BRISBANE, CA 94005
Tel: (415) 330-2500
CH,CS
Hewlett-Packard Co.
7621 Canoga Avenue
CANOGA PARK, CA 91304
Tel: (213) 702-8300
A,CH,CS,E,P
Hewlett-Packard Co.
5060 Clinton Avenue
FRESNO, CA 93727
Tel: (209) 252-9652
MS
Hewlett-Packard Co.
P.0. Box 4230

1430 East Orangethorpe
FULLERTON, CA 92631
Tel: (714) 870-1000
CH,CM,CS,E,MP
Hewlett-Packard Co.
320 S. Kellogg, Suite B
GOLETA, CA 93117
Tel: (805) 967-3405 CH
Hewlett-Packard Co.
5400 W. Rosecrans Boulevard
LAWNDALE, CA 90260
P.O. Box 92105

LOS ANGELES, CA 90009
Tel: (213) 970-7500
Telex: 910-325-6608
\(\mathrm{CH}, \mathrm{CM}, \mathrm{CS}, \mathrm{MP}\)
Hewlett-Packard Co.
3200 Hillview Avenue
PALO ALTO, CA 94304
Tel: (415) 857-8000
CH,CS,E

Hewlett-Packard Co.
P.O. Box 15976 (95813)

4244 So. Market Court, Suite A
sacramento, CA 95834
Tel: (916) 929-7222
\(\mathrm{A}^{*}, \mathrm{CH}, \mathrm{CS}, \mathrm{E}, \mathrm{MS}\)
Hewlett-Packard Co.
9606 Aero Drive
P.O. Box 23333

SAN DIEGO, CA 92123
Tel: (714) 279-3200
CH,CM,CS,E,MP
Hewlett-Packard Co.
2305 Camino Ramon "C"
SAN RAMON, CA 94583
Tel: (415) 838-5900
CH,CS
Hewlett-Packard Co.
P.O. Box 4230

Fullerton, CA 92631
363 Brookhollow Drive
SANTA ANA, CA 92705
Tel: (714) 641-0977
A,CH,CM,CS,MP
Hewlett-Packard Co.
Suite A
5553 Hollister
SANTA BARBARA, CA 93111
Tel: (805) 964-3390
Hewlett-Packard Co.
3003 Scott Boulevard
SANTA CLARA, CA 95050
Tel: (408) 988-7000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
5703 Corsa Avenue
WESTLAKE VILLAGE, CA 91362
Tel: (213) 706-6800
\(\mathrm{E}^{*}, \mathrm{CH}^{*}, \mathrm{CS}{ }^{*}\)
Colorado
Hewlett-Packard Co.
24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 771-3455
Telex: 910-935-0785
A,CH,CM,CS,E,MS
Connecticut
Hewlett-Packard Co.
47 Barnes Industrial Road South
P.O. Box 5007

WALLINGFORD, CT 06492
Tel: (203) 265-7801
A,CH,CM,CS,E,MS
Florida
Hewlett-Packard Co.
P.O. Box 24210 (33307)

2901 N.W. 62nd Street
FORT LAUDERDALE, FL 33307
Tel: (305) 973-2600
CH,CS,E,MP
Hewlett-Packard Co.
4080 Woodcock Drive, \#132
Brownett Building
JACKSONVILLE, FL 32207
Tel: (904) 398-0663
C*,E*,MS**
Hewlett-Packard Co.
1101 W. Hibiscus Ave., Suite E210
MELBOURNE, FL 32901
Tel: (305) 729-0704
E*
Hewlett-Packard Co.
P.O. Box 13910 (32859)

6177 Lake Ellenor Drive
ORLANDO, FL 32809
Tel: (305) 859-2900
A,CH,CM,CS,E,MS

Hewlett-Packard Co.
6425 N. Pensacola Blvd.
Suite 4, Building 1
P.O. Box 12826

PENSACOLA, FL 32575
Tel: (904) 476-8422
A.MS

Hewlett-Packard Co.
5750B N. Hoover Blvd., Suite 123 TAMPA, FL 33614
Tel: (813) 884-3282
A \(^{*}, \mathrm{CH}, \mathrm{CM}, \mathrm{CS}, \mathrm{E}^{*}, \mathrm{M}^{*}\)
Georgia
Hewlett-Packard Co.
P.O. Box 105005

ATLANTA, GA 30348
2000 South Park Place
ATLANTA, GA 30339
Tel: (404) 955-1500
Telex: 810-766-4890
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
P.O. Box 816 (80903)

2531 Center West Parkway
Suite 110
AUGUSTA, GA 30904
Tel: (404) 736-0592
MS
Hewlett-Packard Co.
200-E Montgomery Cross Rds.
SAVANNAH, GA 31401
Tel:(912) 925-5358
\(\mathrm{CH}^{*}\) *
Hewlett-Packard Co.
P.O. Box 2103

WARNER ROBINS, GA 31099
1172 N. Davis Drive
WARNER ROBINS, GA 31093
Tel: (912) 923-8831
E
Hawall
Hewlett-Packard Co.
Kawaiahao Plaza, Suite 190
567 South King Street
HONOLULU, HI 96813
Tel: (808) 526-1555
A,CH,E,MS
Illinois
Hewlett-Packard Co
211 Prospect Road, Suite C
BLOOMINGTON, IL 61701
Tel: (309) 662-9411
CH, MS**
Hewlett-Packard Co.
1100 31st Street, Suite 100
DOWNERS GROVE, IL 60515
Tel: (312) 960-5760
CH,CS
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
A,CH,CM,CS,E,MP
Indiana
Hewlett-Packard Co.
P.O. Box 50807

7301 No. Shadeland Avenue
INDIANAPOLIS, IN 46250
Tel: (317) 842-1000
A,CH,CM,CS,E,MS
lowa
Hewlett-Packard Co.
1776 22nd Street, Suite 1
WEST DES MOINES, IA 50265
Tel: (515) 224-1435
CH,MS**
Hewlett-Packard Co.
2415 Heinz Road
IOWA CITY, IA 52240
Tel: (319) 351-1020
\(\mathrm{CH}, \mathrm{E}^{*}, \mathrm{MS}\)

Kansas
Hewlett-Packard Co.
1644 S. Rock Road
WICHITA, KA 67207
Tel: (316) 684-8491
CH
Kentucky
Hewlett-Packard Co.
10300 Linn Station Road
Suite 100
LOUISVILLE, KY 40223
Tel; (502) 426-0100
A,CH,CS,MS
Louisiana
Hewlett-Packard Co.
8126 Calais Bldg.
baton rouge, LA 70806
Tel: (504) 467-4 100
A**,CH**
Hewlett-Packard Co.
P.O. Box 1449

KENNER, LA 70062
160 James Drive East
DESTAHAN, LA 70047
Tel: (504) 467-4 100
A,CH,CS,E,MS
Maryland
Hewlett-Packard Co.
7121 Standard Drive HANOVER, MD 21076
Tel: (301) 796-7700
Telex: 710-862-1943
Eff. Dec. 1, 1982
3701 Koppers St.
BALTMORE, MD 21227
Tel: (301) 644-5800
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
2 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
A,CH,CM,CS,E,MP

\section*{Massachusetts}

Hewlett-Packard Co.
32 Hartwell Avenue
LEXINGTON, MA 02173
Tel: (617) 861-8960
A,CH,CM,CS,E,MP
Michigan
Hewlett-Packard Co.
23855 Research Drive
FARMINGTON HILLS, MI 48024
Tel: (313) 476-6400
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, MI 49506
Tel: (616) 957-1970
CH,CS,MS
Hewlett-Packard Co.
1771 W. Big Beaver Road
TROY, MI 48084
Tel: (313) 643-6474
CH,CS

\section*{Minnesota}

Hewlett-Packard Co.
2025 W. Larpenteur Ave.
ST. PAUL, MN 55113
Tel: (612) 644-1100
A,CH,CM,CS,E,MP
Mississippl
Hewlett-Packard Co.
P.O. Box 5028

1675 Lakeland Drive
JACKSON, MS 39216
Tel: (601) 982-9363 MS

\section*{Missouri}

Hewlett-Packard Co.
11131 Colorado Avenue
KANSAS CITY, MO 64137
Tel: (816) 763-8000
A,CH,CM,CS,E,MS

Hewlett-Packard Co.
P.O. Box 27307

1024 Executive Parkway
ST. LOUIS, MO 63141
Tel: (314) 878-0200
A,CH,CS,E,MP
Effective September 1982:
13001 Hollenberg Drive
BRIDGETON, MO 63044

\section*{Nebraska}

Hewlett-Packard
7101 Mercy Road
Suite 101, IBX Building
OMAHA, NE 68106
Tel: (402) 392-0948
CM,MS

\section*{Nevada}

Hewlett-Packard Co.
Suite D-130
5030 Paradise Blvd. LAS VEGAS, NV 89119
Tel: (702) 736-6610
MS* *
New Jersey
Hewlett-Packard Co.
W 120 Century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
60 New England Av. West
PISCATAWAY, NJ 08854
Tel: (201) 981-1199
A,CH,CM,CS,E
New Mexico
Hewlett-Packard Co.
P.O. Box 11634

ALBUQUERQUE, NM 87112
11300 Lomas Blvd.,N.E.
albuaueraue, NM 87123
Tel: (505) 292-1330
Telex: 910-989-1185
CH,CS,E,MS
New York
Hewlett-Packard Co.
5 Computer Drive South
ALBANY, NY 12205
Tel: (518) 458-1550
Telex: 710-444-4691
A,CH,E,MS
Hewlett-Packard Co.
P.O. Box 297

9600 Main Street
CLARENCE, NY 14031
Tel: (716) 759-8621

\section*{SALES \& SUPPORT OFFICES}

Arranged Alphabetically by Country

Hewlett-Packard Co.
250 Westchester Avenue WHITE PLAINS, NY 10604 CM,CH,CS,E
Hewlett-Packard Co. 3 Crossways Park West WOODBURY, NY 11797
Tel: (516) 921-0300
Telex: 510-221-2183
A,CH,CM,CS,E,MS
North Carolina
Hewlett-Packard Co.
4915 Water's Edge Drive
Suite 160
RALEIGH, NC 27606
Tel: (919) 851-3021 C.M

Hewlett-Packard Co.
P.O. Box 26500

5605 Roanne Way
GREENSBORO, NC 27450
Tel: (919) 852-1800
A,CH,CM,CS,E,MS
Ohio
Hewlett-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
CH,CS,MS
Hewlett-Packard Co.
16500 Sprague Road
CLEVELAND, OH 44130
Tel: (216) 243-7300
Telex: 810-423-9430
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
962 Crupper Ave.
COLUMBUS, OH 43229
Tel: (614) 436-1041 CH,CM,CS,E*
Hewlett-Packard Co.
P.O. Box 280

330 Progress Rd.
DAYTON, OH 45449
Tel: (513) 859-8202
A,CH,CM,E*,MS
Oklahoma
Hewlett-Packard Co.
P.O. Box 32008

Oklahoma City, OK 73123
1503 W. Gore Blvd., Suite \#2
LAWTON, OK 73505
Tel: (405) 248-4248
C
Hewlett-Packard Co.
P.O. Box 32008

OKLAHOMA CITY, OK 73123
304 N. Meridian Avenue, Suite A
OKLAHOMA CITY, OK 73107
Tel: (405) 946-9499 A*,CH,E*,MS
Hewlett-Packard Co.
Suite 121
9920 E. 42nd Street
TULSA, OK 74145
Tel: (918) 665-3300
\(\mathrm{A}^{* *}, \mathrm{CH}, \mathrm{CS}, \mathrm{M}^{*}\)

\section*{Oregon}

Hewlett-Packard Co.
1500 Valley River Drive
Suite 330
EUGENE, OR 97401
Tel: (503) 683-8075
C
Hewlett-Packard Co.
9255 S. W. Pioneer Court WILSONVILLE, OR 97070
Tel: (503) 682-8000
A,CH,CS,E* \({ }^{*}\) MS

Pennsylvania
Hewlett-Packard Co.
1021 8th Avenue
King of Prussia Industrial Park KING OF PRUSSIA, PA 19406
Tel: (215) 265-7000
Telex: 510-660-2670
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
111 Zeta Drive PITTSBURGH, PA 15238
Tel: (412) 782-0400 A,CH,CS,E,MP

South Carolina
Hewlett-Packard Co.
P.O. Box 21708

Brookside Park, Suite 122
1 Harbison Way
COLUMBIA, SC 29210
Tel: (803) 732-0400 CH,E,MS

Hewlett-Packard Co. Koger Executive Center Chesterfield Bldg., Suite 124 GREENVILLE, SC 29615 Tel: (803) 748-560

\section*{C}

Tennessee
Hewlett-Packard Co.
P.0. Box 22490

224 Peters Road Suite 102
KNOXVILLE, TN 37922
Tel: (615) 691-2371
\(\mathrm{A}^{*}, \mathrm{CH}, \mathrm{MS}\)
Hewlett-Packard Co. 3070 Directors Row
MEMPHIS, TN 38131
Tel: (901) 346-8370 A,CH,MS

Hewlett-Packard Co. 230 Great Circle Road Suite 216
NASHVILLE, TN 32228
Tel: (615) 255-1271 MS**

\section*{Texas}

Hewlett-Packard Co.
Suite 310W
7800 Shoalcreek Blvd
AUSTIN, TX 78757
Tel: (512) 459-3143
E
Hewlett-Packard Co.
Suite C-110
4171 North Mesa
EL PASO, TX 79902
Tel: (915) 533-3555, 533-4489
CH,E*,MS**
Hewlett-Packard Co. 5020 Mark IV Parkway FORT WORTH, TX 76106
Tel: (817) 625-6361 \(\mathrm{CH}, \mathrm{CS}{ }^{*}\)
Hewlett-Packard Co.
P.O. Box 42816

HOUSTON, TX 77042
10535 Harwin Street houston, TX 77036 Tel: (713) 776-6400
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
3309 67th Street
Suite 24
LUBBOCK, TX 79413
Tel: (806) 799-4472
M

Hewlett-Packard Co. 417 Nolana Gardens, Suite C P.O. Box 2256 McALLEN, TX 78501 Tel: (512) 781-3226 CH,CS
Hewlett-Packard Co.
P.O. Box 1270

RICHARDSON, TX 75080
930 E. Campbell Rd.
RICHARDSON, TX 75081
Tel: (214) 231-6101 A,CH,CM,CS,E,MP

Hewlett-Packard Co
P.O. Box 32993

SAN ANTONIO, TX 78216
1020 Central Parkway South
SAN ANTONIO, TX 78232
Tel: (512) 494-9336
CH,CS,E,MS

\section*{Utah}

Hewlett-Packard Co. P.O. Box 26626 3530 W. 2100 South SALT LAKE CITY, UT 84119
Tel: (801) 974-1700 A,CH,CS,E,MS

\section*{Virginia}

Hewlett-Packard Co.
P.O. Box 9669

2914 Hungary Spring Road
RICHMOND, VA 23228
Tel: (804) 285-3431
A,CH,CS,E,MS
Hewlett-Packard Co
3106 Peters Creek Road, N.W.
ROANOKE, VA 24019
Tel: (703) 563-2205
CH,E**
Hewlett-Packard Co. 5700 Thurston Avenue Suite 111
VIRGINIA BEACH, VA 23455
Tel: (804) 460-247 1
CH,MS
Washington
Hewlett-Packard Co.
15815 S.E. 37th Street
bellevue, wa 98006
Tel: (206) 643-4000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
Suite A
708 North Argonne Road
SPOKANE, WA 99206
Tel: (509) 922-7000
CH,CS

\section*{West Virginia}

Hewlett-Packard Co.
4604 MacCorkle Ave., S.E
CHARLESTON, WV 25304-4297
Tel: (304) 925-0492
A,MS

\section*{Wisconsin}

Hewlett-Packard Co
150 S. Sunny Slope Road
BROOKFIELD, WI 53005
Tel: (414) 784-8800
A,CH,CS,E*,MP
URUGUAY
Pablo Ferrando S.A.C. e L.
Avenida Italia 2877
Casilla de Correo 370
MONTEVIDEO
Tel: 80-2586
Telex: Public Booth 901
\(A, C M, E, M\)

Guillermo Kraft del Uruguay S.A.
Av. Lib. Brig. Gral. Lavalleja 2083 MONTEVIDEO
Tel: 234588, 234808, 208830
Telex: 22030 ACTOUR UY
\(P\)

\section*{VENEZUELA}

Hewlett-Packard de Venezuela C.A.
3A Transversal Los Ruices Norte
Edificio Segre
Apartado 50933
CARACAS 1071
Tel: 239-4133
Telex: 25146 HEWPACK
A,CH,CS,E,MS,P
Colimodio S.A.
Este 2 - Sur 21 No. 148
Apartado 1053
CARACAS 1010
Tel: 571-3511
Telex: 21529 COLMODIO
M

ZIMBABWE
Field Technical Sales 45 Kelvin Road, North
P.B. 3458

SALISBURY
Tel: 705231
Telex: 4-122 RH
C, E,M,P

\section*{Headquarters offices}

If there is no sales office listed for your area, contact one of these headquarters offices.

\section*{NORTH/CENTRAL}

\section*{AFRICA}

Hewlett-Packard S.A.
7 Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) \(98-96-51\)
Telex: 27835 hpse
Cable: HEWPACKSA Geneve

\section*{ASIA}

Hewlett-Packard Asia Ltd.
6th Floor, Sun Hung Kai Center
30 Harbor Rd.
G.P.O. Box 795

HONG KONG
Tel: 5-832 3211
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG

\section*{CANADA}

Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 610-492-4246

\section*{EASTERN EUROPE}

Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P. O.Box 72

A-1222 VIENNA, Austria
Tel: (222) 2365110
Telex: 134425 HEPA A
NORTHERN EUROPE
Hewlett-Packard S.A.
Uilenstede 475
NL-1183 AG AMSTELVEEN
The Netherlands
P.O.Box 999

NL-1180 AZ Amstelveen
The Netherlands
Tel: 20437771
OTHER EUROPE
Hewlett-Packard S.A.
7 Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 98-96-51
Telex: 27835 hpse
Cable: HEWPACKSA Geneve
(Offices in the World Trade Center)

MEDITERRANEAN AND
MIDDLE EAST
Hewlett-Packard S.A.
Mediterranean and Middle East
Operations
Atrina Centre
32 Kifissias Ave.
Maroussi, ATHENS, Greece
Tel: 6828811
Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Athens
EASTERN USA
Hewlett-Packard Co.
4 Choke Cherry Road
Rockville, MD 20850
Tel: (301) 258-2000
MIDWESTERN USA
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
SOUTHERN USA
Hewlett-Packard Co.
P.O. Box 105005

450 Interstate N. Parkway
ATLANTA, GA 30339
Tel: (404) 955-1500
WESTERN USA
Hewlett-Packard Co.
3939 Lankersim Blvd.
LOS ANGELES, CA 91604
Tel: (213) 877-1282
OTHER INTERNATIONAL

\section*{AREAS}

Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034-8300
Cable: HEWPACK

For more information call your local HP Sales Office or East (301) 948-6370, Midwest (312) 255-9800, South (404) 955-1500, West (213 970-7500. Or write: Hewlett-Packard Components, 640 Page Mill Road, Palo Alto, California 94304. In Europe, Hewlett-Packard GmbH, P.O. Box 250, Herrenberger Str. 110, D-7030 Boeblingen, West Germany. In Japan, YHP, 3-29-21, Takaido-Higashi, Suginami-Ku, Tokyo 168.```

[^0]: CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^1]: CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^2]: *1.6 mA condition includes a CTR degradation guardband.

[^3]: CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^4]: **Hewlett-Packard's new high reliability part type 4N55/883B meets class B testing requirements of MIL-STD-883. The 4N55 TXV and 4N55 TXVB parts remain available but the military compliant 4N55/883B is preferred for new designs and wherever possible in existing
 applications. Details of the $4 \mathrm{~N} 55 / 883 \mathrm{~B}$ test program may be seen in the high reliability section of this data sheet. Contact your field salesman for details of the TXV and TXVB programs.

[^5]: WARNING: When viewed under some conditions, the optical port of the Transmitter may expose the eye beyond the Maximum Permissible Exposure recommended in ANSI Z-136-1, 1981. Under most viewing conditions there is no eye hazard.

[^6]: NOTES: ALL DIMENSIONS ARE G MIELIMETRES ZINCHESK.
 2. AN EPOXY MENISCUS MAY EXTENO ABOUT 1 min

[^7]: 5082-7100/7101/7102

[^8]: *More than 10 segments may be illuminated in a given character, provided the maximum allowed character power dissipation, temperature derated, is not exceeded.

[^9]: 1. Dimensions in millimeters and (inches)
 2. All untoleranced dimensions are for reference only
 3. Redundant anodes.
 4. Unused dp position.
 5. For HDSP-4030/-4130/-5730/-4200 Series product only.
 6. Redundant Cathodes
[^10]: Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram C, G.

[^11]: Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram E.

[^12]: 1. Limits and conditions are per the electrical/optical characteristics.
[^13]: The Orchard Corporation
 1154 Reco Avenue
 St. Louis, Missouri 63126 (312) 822-3888

