LCD CONTROLLER/DRIVER LSI DATA BOOK

LCD CONTROLLER/DRIVER LSI DATA BOOK

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.
2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from app!ications based on the examples described herein.
5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

INDEX

General Information

LCD Driver

Character Display LCD Controller/Driver

Graphic Display LCD Driver for Small System

Graphic Display LCD Driver 1 (Negative LCD Power Supply Type)

Graphic Display LCD Driver 2 (Positive LCD Power Supply Type)

Segment Display LCD Controller/Driver

LCD Controller

TFT Type LCD Driver

LCD Module Line Up

Contents

- GENERAL INFORMATION

- Quick Reference Guide 9
- Type Number Order 13
- Selection Guide 14
- Differences Between Products 17
- Package Information 24
- Notes on Mounting 31
- The Information of TCP 38
- Chip Shipment Products 100
- Reliability and Quality Assurance 123
- Reliability Test Data of LCD Drivers 130
- Flat Plastic Package (QFP) Mounting Methods 134
- Liquid Crystal Driving Methods 137
DATA SHEETS
- LCD Driver
HD44100R LCD Driver with 40-Channel Outputs 151
HD66100F LCD Driver with 80-Channel Outputs 161
HD61100A LCD Driver with 80-Channel Outputs 174
HD61200 LCD Driver with 80-Channel Outputs 186
- Character Display LCD Controller/Driver
HD43160AH Controller with Built-in Character Generator 199
HD44780U LCD. II Dot Matrix Liquid Crystal Display Controller/Driver 214
HD66702 LCD-II/E20 Dot Matrix Liquid Crystal Display Controller/Driver 273
HD66710 LCD-II/F8 Dot Matrix Liquid Crystal Display Controller/Driver 334
HD66712 LCD-II/F12 Dot Matrix Liquid Crystal Display Controller/Driver 411
- Graphic Display LCD Driver for Small System
HD44102 Dot Matrix Liquid Crystal Graphic Display Column Driver 489
HD44103 Dot Matrix Liquid Crystal Graphic Display Common Driver 511
HD44105 Dot Matrix Liquid Crystal Graphic Display Common Driver 519
HD61102 Dot Matrix Liquid Crystal Graphic Display Column Driver 528
HD61103A Dot Matrix Liquid Crystal Graphic Display Common Driver 556
HD61202 Dot Matrix Liquid Crystal Graphic Display Column Driver 580
HD61203 Dot Matrix Liquid Crystal Graphic Display Common Driver 612
HD66108 RAM-Provided 165-Channel LCD Driver for Liquid Crystal Dot Matrix Graphics 638
- Graphic Display LCD Driver 1 (Negative LCD Power Supply Type)
HD66204 Dot Matrix Liquid Crystal Graphic Display Column Driver with 80-Channel Outputs 691
HD66205 Dot Matrix Liquid Crystal Graphic Display Common Driver with 80-Channel Outputs 706
HD66214T 80-Channel Column Driver in Micro-TCP 722
HD66224T Dot Matrix Liquid Crystal Graphic Display Column Driver with 80-Channel Outputs 737
HD66215T Common Driver for a Dot Matrix Liquid Crystal Graphic Display with 100-Channel Outputs 751
- Graphic Display LCD Driver 2 (Positive LCD Power Supply Type)
HD66106F LCD Driver for High Voltage 772
HD66107T LCD Driver for High Voltage 787
HD66110RT Column Driver 807
HD66115T 160-Channel Common Driver Packaged in a Slim Tape Carrier Package 824
- Segment Display LCD Controller/Driver
HD61602/HD61603 Segment Type LCD Driver 841
HD61604/HD61605 Segment Type LCD Driver 871
- LCD Controller
HD61830/HD61830B LCD Timing Controller (LCDC) 898
HD63645/HD64645/HD64646 LCD Timing Controller (LCTC) 934
- Low Power LCD Chipset
HD66503 240 Channel Row Driver with Internal LCD Timing Circuit 979
HD66520 4-Level Grayscale Display Column Driver with Internal Bit-map RAM 996
- TFT Type LCD Driver
HD66300T Horizontal Driver for TFT-Type LCD Color TV 1027
HD66310T TFT-Type LCD Driver for VDT 1088
HD66330T 64-Level Gray Scale Driver for TFT Liquid Crystal Display 1108
LCD MODULE LINE UP
Graphic Display LCD Module 1129
Character Display LCD Module 1130
Graphic Display LCD Module (Reflection type) 1132
Graphic Display LCD Module (with EL backlight) 1132
Graphic Display LCD Module (with CFL backlight) 1132
Character Display LCD Module 1134
Character Display LCD Module (with LCD backlight) 1134
Segment-Type LDC Module 1134
HITACHI SALES OFFICE 1136

General
 Information

Quick Reference Guide

Extension Driver				
Type Number	HD44100R	HD66100F	HD61100A	HD61200
Power supply for internal circuits (V)	2.7 to 5.5	4.5 to 5.5	4.5 to 5.5	4.5 to 5.5
Power supply for LCD driver circuits (V)	13	6	17	17
Power dissipation (mW)	5	5	5	5
Operating temperature $\left({ }^{\circ} \mathrm{C}\right.$)	-20 to $+75^{* 1}$	-20 to $+75 * 1$	-20 to $+75 * 1$	-20 to +75
Memory ROM (bit)	-	-	-	-
RAM (bit)	-	-	-	-
LCD driver Common	20	-	-	-
Column	40 (20)	80	80	80
Instruction set	-	-	-	-
Operation frequency (MHz)	0.4	1	2.5	2.5
Duty	Static-1/33	Static-1/16	Static-1/100	1/32-1/128
Package	FP-60A Chip	FP-100	FP-100	FP-100

Type	Column Drive					
Type Number	HD66204	HD66214T	HD66224T	HD66106	HD66107T	HD66110RT
Power supply for internal circuits (V)	2.7 to 5.5	2.7 to 5.5	2.5 to 5.5	4.5 to 5.5	4.5 to 5.5	2.7 to 5.5
Power supply for LCD driver circuits (V)	28	28	28	37	37	40
Power dissipation (mW)	15	15	15	15	25	25
Operating temperature (${ }^{\circ} \mathrm{C}$)	-20 to $+75^{\circ} 1$	-20 to +75				
Memory	-	-	-	-	-	-
	-	-	-	-	-	-
LCD driver	-	-	-	-	-	-
	80	80	80	80	160	160
Instruction set	-	-	-	-	-	-
Operation frequency (MHz)	8	8	8 MHz at 5 V 6.5 MHz at 3 V	6	8	12 MHz at 5 V 10 MHz at 3 V
Duty	1/64-1/240	1/64-1/240	1/64-1/240	1/100-1/480	1/100-1/480	1/100-1/480
Package	$\begin{aligned} & \text { FP-100 } \\ & \text { TFP100 } \\ & \text { Chip } \\ & \hline \end{aligned}$	TCP	SLIM-TCP	$\begin{aligned} & \text { FP-100 } \\ & \text { TFP100 } \\ & \text { Chip } \\ & \hline \end{aligned}$	TCP	SLIM-TCP

[^0]
Quick Reference Guide

Type	Column Drive (within RAM)				TFT Column Driver		
Type Number	HD44102CH	HD61102	HD61202	HD66108T	HD66300T	HD66310T	HD66330T
Power supply for internal circuits (V)	4.5 to 5.5	4.5 to 5.5	4.5 to 5.5	2.7 to 5.5	4.5 to 5.5	4.5 to 5.5	4.5 to 5.5
Power supply for LCD driver circuits (V)	11	15.5	17	15	15	23	5
Power dissipation (mW)	5	5	5	5	160	100	100
Operating temperature $\left({ }^{\circ} \mathrm{C}\right)$	-20 to $+75^{* 1}$	-20 to +75	-20 to +75*1	-20 to +75	-20 to +75	$\begin{aligned} & -20 \text { to }+75^{\circ 3} \\ & (-20 \text { to }+60) \\ & \hline \end{aligned}$	-20 to +75
Memory	-	-	-	-	-	-	-
	200×8	512×8	512×8	165×65	-	-	-
LCD driver	-	-	-	0-65	-	-	-
	50	64	64	100-165	120	160	192
Instruction set	6	7	7	7	-	-	-
Operation frequency (MHz)	0.28	0.4	0.4	4	4.8	12/15	28
Duty	Static-1/32	Static-1/64	1/32-1/128	$\begin{aligned} & 1 / 32,1 / 34, \\ & 1 / 36,1 / 48, \\ & 1 / 50,1 / 64, \\ & 1 / 66 \\ & \hline \end{aligned}$	-	-	-
Package	$\begin{aligned} & \text { FP-80 } \\ & \text { Chip } \end{aligned}$	FP-100	$\begin{aligned} & \text { FP-100 } \\ & \text { TFP-100 } \\ & \text { Chip } \\ & \hline \end{aligned}$	TCP	TCP	TCP	SLIM-TCP

Type	Segment Display			
Type Number	HD61602	HD61603	HD61604	HD61605
Power supply for internal circuits (V)	2.7 to 5.5	2.7 to 5.5	2.7 to 5.5	2.7 to 5.5
Power supply for LCD driver circuits (V)	5	5	5	5
Power dissipation (mW)	0.5	0.5	0.5	0.5
Operating temperature (${ }^{\circ} \mathrm{C}$)	-20 to $+75^{*}$	-20 to $+75 *$	-20 to $+75 \times 1$	-20 to $+75 \times 1$
Memory ROM (bit)	-	-	-	-
RAM (bit)	204	64	204	64
LCD driver Common	4	1	4	1
Column	51	64	51	64
Instruction set	4	4	4	4
Operation frequency (MHz)	0.52	0.52	0.52	0.52
Duty	Static, 1/2, 1/3, 1/4	Static	Static, 1/2, 1/3, 1/4	Static
Package	$\begin{aligned} & \text { FP-80 } \\ & \text { FP80A } \end{aligned}$	FP-80	FP-80	FP-80

*1 -40 to $+80^{\circ} \mathrm{C}$ (special request). Please contact Hitachi agents.
*2 Under development
*3 -20 to $+75^{\circ} \mathrm{C}$ in 12 MHz version, -20 to $+65^{\circ} \mathrm{C}$ in 15 MHz version

Quick Reference Guide

Type	Common Dri						
Type Number	HD44103CH	HD44105H	HD61103A	HD61203	HD66205	HD66215T	HD66115T
Power supply for internal circuits (V)	4.5 to 5.5	4.5 to 5.5	4.5 to 5.5	'4.5 to 5.5	2.7 to 5.5	2.5 to 5.5	2.5 to 5.5
Power supply for LCD driver circuits (V)	11	11	17	17	28	28	40
Power dissipation (mW)	4.4	4.4	5	5	5	5	5
Operating temperature (${ }^{\circ} \mathrm{C}$)	-20 to +75*1	-20 to +75*1	-20 to $+75^{*}$	-20 to +75*1	-20 to $+75^{* 1}$	-20 to +75	-20 to +75
Memory	-	-	-	-	-	-	-
RAM (bit)	-	-	-	-	-	-	-
LCD driver	20	32	64	64	80	100/101	$160(80+80)$
	-	-	-	-	-	-	-
Instruction set	-	-	-	-	-	-	-
Operation frequency (MHz)	1	1	2.5	2.5	0.1	0.1	2.5
Duty	$\begin{aligned} & 1 / 8,1 / 12, \\ & 1 / 16,1 / 24, \\ & 1 / 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 / 8,1 / 12, \\ & 1 / 32,1 / 48 \end{aligned}$	$\begin{aligned} & \text { Static-1/10, } \\ & 1 / 64 \end{aligned}$	1/32-1/64	1/64-1/240	1/64-1/240	1/100-1/480
Package	FP-60	$\begin{aligned} & \text { FP-60 } \\ & \text { Chip } \end{aligned}$	FP-100	$\begin{aligned} & \text { FP-100 } \\ & \text { TFP100 } \\ & \text { Chip } \end{aligned}$	$\begin{aligned} & \hline \text { FP-100 } \\ & \text { TFP100 } \\ & \text { Chip } \\ & \hline \end{aligned}$	SLIM-TCP	SLIM-TCP

Character Display Controller					
Type Number	HD43160AH	$\begin{aligned} & \text { HD44780U } \\ & \text { (LCD-II) } \end{aligned}$	HD66702R (LCD-II/E20)	$\begin{aligned} & \text { HD66710 } \\ & \text { (LCD-II/F8) } \end{aligned}$	$\begin{aligned} & \text { HD66712*2 } \\ & \text { (LCD-II/F12) } \end{aligned}$
Power supply for internal circuits (V)	4.5 to 5.5	2.7 to 5.5	2.7 to 5.5	2.7 to 5.5	2.7 to 5.5
Power supply for LCD driver circuits (V)	-	11	7	13	13
Power dissipation (mW)	10	2	2	2	2
Operating temperature $\left({ }^{\circ} \mathrm{C}\right)$	-20 to +75	-20 to $+75^{*}$	-20 to $+75 *$	-20 to $+75 *$	-20 to +75
Memory ROM (bit)	6420	9920	7200	9600	9600
RAM (bit)	80×8	$80 \times 8,64 \times 8$	$80 \times 8,64 \times 8$	$\begin{aligned} & 80 \times 8,64 \times 8, \\ & 8 \times 8 \end{aligned}$	$\begin{aligned} & 80 \times 8,64 \times 8 \\ & 8 \times 8 \end{aligned}$
LCD driver Common	-	16	16	33	33
Column	-	40	100	40	60
Instruction set	6	11	11	11	11
Operation frequency (MHz)	0.25/0.375	0.25	0.25	0.25	0.25
Duty	1/8, 1/12, 1/16	1/8, 1/11, 1/16	1/8, 1/11, 1/16	1/17, 1/33	1/17, 1/33B
Package	FP-54	FP-80B TFP-80 Chip	FP-144A Chip	$\begin{aligned} & \text { FP-100A } \\ & \text { TFP-100 } \\ & \text { Chip } \\ & \hline \end{aligned}$	TCP

[^1]
Quick Reference Guide

Type	Graphic Display Controller		
Type Number	$\begin{aligned} & \text { HD61830 } \\ & \text { LCDC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HD61830B } \\ & \text { LCDC } \end{aligned}$	HD63645F HD64645F HD64646FS LCTC
Power supply for internal circuits (M)	4.5 to 5.5	4.5 to 5.5	4.5 to 5.5
Power supply for LCD driver circuits (V)	-	-	-
Power dissipation (mW)	30	50	50
Operating temperature (${ }^{\circ} \mathrm{C}$)	-20 to +75	-20 to $+75^{* 1}$	-20 to +75
Memory	7360	7360	-
	-	-	-
LCD driver	-	-	-
	-	-	-
Instruction set	12	12	15
Operation frequency (MHz)	1.1	2.4	10
Duty	Static-1/128	Static-1/128	Static-1/512
Package	FP-60	FP-60	$\begin{aligned} & \text { FP-80 } \\ & \text { FP-80B } \end{aligned}$

*1 -40 to $+80^{\circ} \mathrm{C}$ (special request). Please contact Hitachi agents.
*2 Under development

Type Low-Power LCD Chipset

Type Number	HD66503	HD66520
Power supply for internal circuits (M)	2.7-5.5	2.7-5.5
LCD driver circuits (M)	28	28
Power dissipation (mW)	0.5	0.5
Operating temperature (${ }^{\circ} \mathrm{C}$)	-20° to $+75^{\circ}$	-20° to $+75^{\circ}$
Memory \quad ROM (bit)		
RAM (bit)		76800
LCD driver Common	240	-
Column	-	160
Operation frequency (MHz)	65 KHz	65 KHz
Duty	1/120, 1/240	1/120, 1/240
Package	TCP	TCP

Type Number Order

Sorted by Type Name

Type	Function	Reference Page
HD43160AH	LCD controller	199
HD44100RFS	40-channel LCD driver	151
HD44102CH	50-channel column driver within RAM	489
HD44103CH	20-channel common driver	511
HD44105H	32-channel common driver	519
HD44780UA00FS/00TF/01FS/ 02FS/UB**FS/TF LCD-II	LCD controller/driver (8×2 character)	214
HD61100A	80-channel column driver	174
HD61102RH	64-channel column driver within RAM	528
HD61103A	64-channel common driver	556
HD61200	80-channel column driver	186
HD61202/TFIA	64-channel column driver within RAM	580
HD61203/TFIA	64-channel common driver	612
HD61602R/RH	Segment display type LCD driver	841
HD61603R	Segment display type LCD driver	841
HD61604R	Segment display type LCD driver	871
HD61605R	Segment display type LCD driver	871
HD61830A00H LCDC	LCD controller	898
HD61830B00H LCDC	LCD controller	898
HD63645F LCTC	LCD timing controller (68 family)	934
HD64645F LCTC	LCD timing controller (80 family)	934
HD64646FS LCTC	LCD timing controller (80 family)	934
HD66100F/FH	80-channel LCD driver	161
HD66106FS	80-channel column/common driver	772
HD66107T00/01/11/12/24/25	160-channel column/common driver	787
HD66108T00	165-channel graphic LCD controller/driver	638
HD66110RTA8/RTB0/RTB1/TA4	160-channel column driver	807
HD66115TA0/1	160-channel common driver	824
HD66204F/FLTF/TFL	80-channel column driver	691
HD66205F/FLTF/TFL/TA1/TA2/ TA3/TA6/TA7/TA9L	80-channel common driver	706
HD66214TA1/2/3/6/9L	80-channel column driver	722
HD66215TAO/1/2	100-channel common driver	751
HD66224TA1/TA2/TB0	80-channel column driver	737
HD66300T00	120-channel TFT analog column driver	1027
HD66310T00/T0015	160-channel TFT digital column driver (8 gray scale)	1088
HD66330TA0	192-channel TFT digital column driver (64 gray scale)	1108
HD66503	240-channel row driver with internal LCD timing circuit	979
HD66520	160-channel 4-level grayscale display column with internal bit-map RAM	996
$\begin{aligned} & \text { HD66702RA00F/00FL/01F/02F/ } \\ & \text { RB**F/FL LCD-II/E20 } \\ & \hline \end{aligned}$	LCD controller/driver (20×2 character)	273
HD66710***F8 LCD-II/F8	LCD controller/driver (8×4 character)	334
HD66712 LCD-II/F12	LCD controller/driver (12×4 character)	411

Selection Guide

Hitachi LCD Driver System

Selection Guide

Application

Character and Graphic Display

1 character $=7 \times 8$ dot (15×7 dot + cursor)

Character Line	8	16	20	24	32	40	Over 80
1							
2							
3							
4							
6 to 8							
12 to 15		HD61200 (Column) + HD61203 (Common)					
16 to 25	HD66204 (Column) + HD66205 (Common)HD66214T/HD66224T (Column) + HD66215T (Common)HD66106F, HD66107THD66110T (Column) + HD66115T (Common)		```HD66204 (Column) + HD66205 (Common) HD66214T/HD66224T (Column) + HD66215T (Common) HD66106F, HD66107T HD66110T (Column) + HD66115T (Common)```				
26 to 50							

Graphic Display

Horizontal Vertical	48	96	120	180	240	480	Over 640
16		HD61202 (Column) + HD61203 (Common)					
32							
48							
64							
128	```HD66204 (Column) + HD66205 (Common) HD66214T/HD66224T (Column) + HD66215T (Common) HD66106F, HD66107T HD66110T (Column) + HD66115T (Common)```						
400							
Over 400							

Note: Applications on this page are only examples, and this combination of devices is not the best.

Differences Between Products

1. HD66100F and HD44100R

	HD66100F	HD44100H
LCD drive circuits	80	20×2
Power supply for internal logic (V)	3 to 6	3 to 13
Display duty	Static to $1 / 16$	Static to $1 / 33$
Package	100 pin plastic QFP	60 pin plastic QFP

2. HD61100A and HD61200

		HD61100A	HD61200
LCD drive circuits	common	-	-
	column	80	80
Display duty	static to $1 / 128$	$1 / 32$ to $1 / 128$	
Power supply for LCD drive circuits (V)	0 to 17	8 to 17	
Power supply limits of LCD driver circuit voltage	VCC to $V_{\text {EE }}$ (no limit)	shown in figures below	

Resistance between terminal Y and terminal V (one of V1L, V1R, V2L, V2R, V3L, V3R, V4L, and V4R) when load current flows through one of the terminals Y_{1} to Y_{80} is specified
under the following conditions:
$V_{C C}-V_{E E}=17 \mathrm{~V}$
$\mathrm{V} 1 \mathrm{~L}=\mathrm{V} 1 \mathrm{R}, \mathrm{V} 3 \mathrm{~L}=\mathrm{V} 3 \mathrm{R}=\mathrm{V}_{\mathrm{CC}}-2 / 7\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$
$\mathrm{V} 2 \mathrm{~L}=\mathrm{V} 2 \mathrm{R}, \mathrm{V} 4 \mathrm{~L}=\mathrm{V} 4 \mathrm{R}=\mathrm{V}_{\mathrm{EE}}+2 / 7\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$

Figure 1 Resistance between Y ard V Terminals

The following is a description of the range of power supply voltage for liquid crystal display drives. Apply positive voltage to V1L= V1R and V3L $=V 3 R$ and negative voltage to
$V 2 L=V 2 R$ and $V 4 L=V 4 R$ within the ΔV range. This range allows stable impedance on driver output (Ron). Notice the ΔV depends on power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$.

Correlation between Driver Output Waveform and Power supply Voltages for Liquid Crystal Display Drive

Differences Between Products

3. HD66100F and HD61100A

	HD66100F	HD61100A
LCD driver circuits	common	-
column	80	-
Power supply for LCD drive circuits (V)	3 to 6	80
Display duty	static to $1 / 16$	5.5 to 17.0
Operating frequency (MHz)	$1.0 \mathrm{MHz}(\mathrm{max})$	static to $1 / 128$
Data fetch method	Shift	$2.5 \mathrm{MHz}(\mathrm{max})$
Package	100 pin Plastic	Latch

4. HD61830 and HD61830B

	HD61830	HD61830B
Oscillator	Internal	External
Operating frequency (MHz)	1.1 MHz	2.4 MHz
Display duty	static to $1 / 128$	static to $1 / 128$
Programmable screen size (Max)	64×240 dots	128×480 dots
	$(1 / 64$ duty)	$(1 / 64$ duty)
Other	pin 6:C	pin $6: \overline{\mathrm{CE}}$
	pin 7:R	pin $\overline{\mathrm{OE}}$
	pin 9:CPO	pin 9:NC
Package Marking	A	(B)

Figure 3 Package Marking

5. HD61102 and HD61202

	HD61102	HD61202
Display duty	static to $1 / 64$	$1 / 32$ to $1 / 64$
Recommended voltage between V_{CC} and $\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$	4.5 to 15.5	8 to 17
Power supply limits of LCD driver circuits voltage	V $_{\mathrm{CC}}$ to V_{EE} (no limit)	shown in following fig- ures
Pin 88	DY (output)	NC (no connection)
Absolute maximum rating of $\mathrm{V}_{\mathrm{EE}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{CC}}-17.0$ to	$\mathrm{V}_{\mathrm{CC}}-19.0$ to

Resistance between terminal Y and terminal V (one of V1L, V1R, V2L, V2R, V3L, V3R, V4L and V4R) when load current flows through one of the terminals Y_{1} to Y_{64} is specified under the following conditions:
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}$
$\mathrm{V} 1 \mathrm{~L}=\mathrm{V} 1 \mathrm{R}, \mathrm{V} 3 \mathrm{~L}=\mathrm{V} 3 \mathrm{R}=\mathrm{V}_{\mathrm{CC}}-2 / 7\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$
$\mathrm{V} 2 \mathrm{~L}=\mathrm{V} 2 \mathrm{R}, \mathrm{V} 4 \mathrm{~L}=\mathrm{V} 4 \mathrm{R}=\mathrm{V}_{\mathrm{EE}}+2 / 7\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$

Figure 4 Resistance between Y and V Terminals

The following is a description of the range of power supply voltage for liquid crystal display drives. Apply positive voltage to V1L = V1R and V3L $=$ V3R and negative voltage to
$\mathrm{V} 2 \mathrm{~L}=\mathrm{V} 2 \mathrm{R}$ and $\mathrm{V} 4 \mathrm{~L}=\mathrm{V} 4 \mathrm{R}$ within the $\Delta \mathrm{V}$ range. This range allows stable impedance on driver output (R_{ON}). Notice that $\Delta \mathrm{V}$ depends on power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$.

Figure 5 Power Supply Voltage Range

Differences Between Products

6. HD61103A and HD61203

	HD61103A	HD61203
Recommended voltage between $V_{C C}$ and $V_{E E}(V)$	4.5 to 17	8 to 17
Power supply limits of LCD drive circuits voltage	V $_{\text {CC }}$ to V_{EE} (no limit)	shown in figures below
Output terminal	shown in following figure 4	shown in following figure 5

Resistance between terminal Y and terminal V (one of V1L, V1R, V2L, V2R, V5L, V5R, V6L and V6R) when load current flows through one of the terminals X1 to X64. This value is specified under the following conditions:
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=17 \mathrm{~V}$
$\mathrm{V} 1 \mathrm{~L}=\mathrm{V} 1 \mathrm{R}, \mathrm{V} 6 \mathrm{~L}=\mathrm{V} 6 \mathrm{R}=\mathrm{V}_{\mathrm{CC}}-1 / 7\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$
$\mathrm{V} 2 \mathrm{~L}=\mathrm{V} 2 \mathrm{R}, \mathrm{V} 5 \mathrm{~L}=\mathrm{V} 5 \mathrm{R}=\mathrm{V}_{\mathrm{EE}}+1 / 7\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$

Figure 6 Resistance between Y and V Terminals

Here is a description of the range of power supply voltage for liquid crystal display drive. Apply postive voltage to $\mathrm{V} 1 \mathrm{~L}=\mathrm{V} 1 \mathrm{R}$ and $\mathrm{V} 6 \mathrm{~L}=$ $V 6 R$ and negative voltage to $V 2 L=V 2 R$ and

Figure 7 Correlation between Driver Output Waveform and Power Supply Voltages for Liquid Crystal Display Drive

V5L $=V 5 R$ within the ΔV range.
This range allows stable impedance on driver output ($R_{\text {ON }}$). Notice that ΔV depends on power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$.

Figure 8 Correlation between Power Supply Voltage $\mathbf{V C c}_{\text {ce }}-V_{\text {Ex }}$ and ΔV

Figure 10 HD61203 Output Termiral

Figure 9 HD61103A Output Termiral
7. HD61602, HD61603, HD61604, and HD61605

		HD61602	HD61603	HD61604	HD61605
Power supply (VDD)		2.2~5.5V	2.2~5.5V	4.5~5.5V	$4.5 \sim 5.5 \mathrm{~V}$
Instruction word		8 bits $\times 2$	4 bits $\times 4$	8 bits $\times 2$	4 bits $\times 4$
LCD power supply circuit		Yes	-	-	-
Segment terminals		51	64	51	64
Display size frame frequency (fosc $=100 \mathrm{kHz}$)	Static	$\begin{aligned} & 6 \text { digits }+3 \text { marks } \\ & 33 \mathrm{~Hz} \end{aligned}$	8 digits 33 Hz	$\begin{aligned} & 6 \text { digits }+3 \text { marks } \\ & 98 \mathrm{~Hz} \end{aligned}$	8 digits 98 Hz
	1/2 duty	$\begin{aligned} & 12 \text { digits }+6 \text { marks } \\ & 65 \mathrm{~Hz} \end{aligned}$	-	$\begin{aligned} & 12 \text { digits }+6 \text { marks } \\ & 195 \mathrm{~Hz} \end{aligned}$	-
	1/3 duty	$\begin{aligned} & 17 \text { digits } \\ & 208 \mathrm{~Hz} \end{aligned}$	-	$\begin{aligned} & 17 \text { digits } \\ & 521 \mathrm{~Hz} \end{aligned}$	-
	1/4 duty	$\begin{aligned} & 25 \text { digits }+4 \text { marks } \\ & 223 \mathrm{~Hz} \end{aligned}$	-	$\begin{aligned} & 25 \text { digits }+4 \text { marks } \\ & 781 \mathrm{~Hz} \end{aligned}$	-

Differences Between Products

8. LCD-II Family (HD44780U, HD66702R and HD66710)

Item	$\begin{aligned} & \text { LCD-II } \\ & \text { (HD44780U) } \end{aligned}$	$\begin{aligned} & \text { LCD-1I/20 } \\ & \text { (HD66702) } \end{aligned}$	LCD-II/F8 (HD66710)
Power supply voltage	2.7 V-5.5 V	$5 \mathrm{~V} \pm 10$ \% (standard)	2.7 V-5.5 V
		2.7 V-5.5 V (low volta	
Liquid crystal drive voltage VLCD	3.0 V to 11 V	3.0 V to 7.0 V	3.0 V to 13.0 V
Maximum display digits per chip	$\begin{aligned} & 8 \text { characters } \\ & \times 2 \text { lines } \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \text { characters } \\ & \times 2 \text { lines } \\ & \hline \end{aligned}$	16 characters $\times 2$ lines/ 8 characters $\times 4$ lines
Segment display	None	None	40 segments
Displaye duty cycle	1/8, 1/11, and 1/16	1/8, 1/11, and 1/16	1/17 and 1/33
CGROM	9,920 bits (208: 5×8 dot characters and 32: 5×10 dot characters)	7,200 bits (160: 5×7 dot characters and 32: 5×10 dot characters)	$\begin{aligned} & 9,600 \text { bits } \\ & \text { (240: } 5 \times 8 \text { dot } \\ & \text { characters) } \end{aligned}$
CGRAM	64 bytes	64 bytes	64 bytes
DDRAM	80 bytes	80 bytes	80 bytes
SEGRAM	None	None	8 bytes
Segment signals	40	100	40
Common signals	16	16	33
Liquid crystal drive waveform	A	B	B
Number of displayed lines	1 or 2	1 or 2	1,2, or 4
Low power mode	None	None	Available
Horizontal scroll	Character unit	Character unit	Dot unit
CPU bus timing	2 MHz (5-V operation) 1 MHz (3-V operation)	1 MHz	2 MHz (5-V operation) 1 MHz (3-V operation)
Package	QFP1420-80 80-pin bare chip	LQFP2020-144 144-pin bare chip	QFP1420-100 100-pin bare chip

Figure 11 Waveform A (1/3 Duty, 1/3 Bias)

Figure 12 Waveform B (1/3 Duty, 1/3 Bias)

Differences Between Products

9. HD66204, HD66214T and HD66224T

	HD66204	HD66214T	HD66224T
Datainput (bit)	4	4	$4 / 8$
Packge	100 -pin plaslic QFP	TCP	TCP (8mm)
	FP-100, TFP-100		

10. HD66205, HD66215T and HD66115T

	HD666205	HD66215T	HD66115T
LCD drive circuits	80	$100 / 101$	160
Power supply for LCD drive circuits (V)	-10 to $-28\left(V_{\text {CC }}-V_{E E}\right)$	-10 to $-28\left(V_{C C}-V_{E E}\right)$	+14 to $+40\left(V_{\text {LCD }}-G N D\right)$

11. HD66106F and HD66204

	HD66106F	HD66204
LCD drive circuits voltage	+14 to $+35\left(\mathrm{~V}_{\mathrm{LCD}}-\mathrm{GND}\right)$	-10 to $-28\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$
Display Duty	$1 / 100$ to $1 / 400$	$1 / 64$ to $1 / 200$
Operating frequency (MHz)	6.0 MHz	8 MHz
Function	column and common driver	column driver

12. HD66106F, HD66107T and HD66110RT

	HD66106F	HD66107T	HD66110RT
LCD drive circuits	80	160	160
Data transfer	4 -bits	$4 / 8$-bits	4-bits/8-bits
Operating frequency (MHz)	6	8	12
Power supply for LCD drive circuits	14 to 37	14 to 37	28 to 40
Packge	$100-$-pin plastic QFP (FP-100A)	TCP	TCP (9mm)

13. HD63645, HD64645 and HD64646

	HD63645F	HD64645F	HD64646FS
CPU interface	68 family	80 family	80 family
Package	80-pin plastic	80-pin plastic	80-pin plastic
	QFP (FP-80)	QFP (FP-80)	QFP (FP-80A)
Other	-	-	HD64646 has another LCD
			drive interface in HD64645

Package Information

Package Information

The Hitachi LCD driver devices use plastic flat packages to reduce the size of the equipment in which they are incorporated and provide higher
density mounting by utilizing the features of thin liquid crystal display elements.

Package Dimensions

Scale: 3/2

Package Information

Package Information

Package Information

Package Information

Package Information

Notes on Mounting

1. Damage from Static Electricity

Semiconductor devices are easily damaged by static discharges, so they should be handled and mounted with the utmost care. Precautions are discussed below.

1.1 Work Environment

Low relative humidity facilitates the accumulation of static charge. Although surface mounting package devices must be stored in a dry atmosphere to prevent moisture absorption, they should be handled and mounted in a work environment with a relative humidity of 50% or greater to prevent static buildup.

1.2 Preventing Static Buildup in Handling

1. Avoid the use of insulating materials that easily accumulate a static charge in workplaces where mounting operations are performed. In particular, charged objects can induce charges in semi-
conductors and finished PC boards even without direct contact. Recommended measures include the use of anti-static work garments, conductive carrier boxes, and ionized air blowers.
2. Ground all instruments, conveyors, work benches, floor mats, tools, and soldering irons to prevent the accumulation of static charges. Lay conductive mats (with a resistance on the order of $10^{9} \Omega$ to $10^{11} \Omega$) on workbenches and floors and ground them. (See figure 1.)
3. Personnel should wear grounding bracelets on their arms or legs. To prevent electric shocks, insert a resistor of $1 \mathrm{M} \Omega$ or greater in series as shown in figure 2.
4. If soldering irons are used, use low voltage (12 V to 24 V) soldering irons designed for use with semiconductors. Ground soldering iron tips as shown in figure 3.

Figure 1 Static Electricity Countermeasures for Semiconductor Handling

Notes on Mounting

1.3 Preventing Semiconductor Discharges

Semiconductors are not damaged by static charges on the package or chip itself. However, damage will occur if the lead frame contacts a metal object and the charge dissipates. Grounding the metal object does not help in this situation.

The following measures should be taken.

1. Avoid contact or friction between semiconductors and easily charged insulators.
2. Avoid handling or working with semiconductors on metal surfaces. Semiconductors should be handled on grounded high resistance mats.
3. If a semiconductor may be charged, do not allow that device to contact any metal objects.

1.4 Precautions during Mounting

1. Grounded high resistance mats must be used when mounting semiconductors on PC boards. Ground mats before handling semiconductors. Particular caution is required following conductivity testing, since capacitors on the PC board may retain a charge.
2. PC boards can also acquire a static charge by contact, friction, or induction. Take precautions to prevent discharge through contact with transport boxes or other metal objects during transportation. Such precautions include the use of anti-static bags or other techniques for isolating the PC boards.

Metal or conductive material

Figure 2 Personal Ground

Figure 3 Soldering Iron Grounding Example

2. Precautions Prior to Reflow Soldering

Surface mount packages that hold large chips are weaker than insertion mount packages. Since the whole package is heated during the reflow operation, the characteristics described below should be considered when determining the handling used prior to reflow soldering and the conditions used in the reflow operation.

2.1 Package Cracking Mechanism in Reflow Soldering

Packages that have absorbed moisture are thought to crack due to the mechanism shown in figure 4. Moisture absorbed during storage diffuses through the interior of the package. When a package in this state is passed through the reflow furnace, that moisture rediffuses. Some of it escapes along the boundary between the resin and the frame. This can lead to boundary separation. As the pressure in this space increases the resin warps, finally resulting in a crack.

The Fick diffusion model can be used to calculate the diffusion of moisture in resin:

$$
\frac{\partial C(x, t)}{\partial_{t}}=D(t) \frac{\partial^{2} C(x, t)}{\partial^{2} x^{2}}
$$

The volume of moisture absorbed by the package can be expressed as follows:

$$
Q(t)=\int C(x, t) d x
$$

The increase in internal pressure can be calculated from the moisture diffusion during reflow heating by using the $\mathrm{C}(\mathrm{x}, \mathrm{t})$ function.

Figure 5 shows the relationships between the maximum stresses when packages of various moisture absorption states are heated, the adhesion strength between the resin and frame at various temperatures, and the strength of the resin itself. While this model indicates that cracks will result in this example when the moisture absorption ratio exceeds $0.2 \mathrm{wt} \%$ in a VPS (vapor phase soldering at $215^{\circ} \mathrm{C}$) process, actual tests show that cracks result in packages with a moisture absorption ratio of $0.25 \mathrm{wt} \%$. This indicates that the model is valid.

Therefore moisture management should focus on the moisture content in the vicinity of the frame.

Notes on Mounting

Figure 4 Package Crack Generation Mechanism

Figure 5 Temperature Dependence of Resin Adhesive Strength, Mechanical Strength, and Generated Stress

3. Recommended Soldering Conditions

Soldering temperature stipulations must be followed and the moisture absorption states of plastic packages must be carefully monitored to prevent degradation of the reliability of surface mount packages due to thermal shock. This section pre-
sents Hitachi's recommended soldering conditions.

3.1 Recommended Soldering Temperatures

See table 1.

Table 1 Recommended IC Soldering Temperatures

Method Recommended Conditions Notes

Vapor-phase reflow

Infrared reflow
Hot-air reflow

Since TSOP, TQFP, and packages whose body thickness is less than 1.5 mm are especially vulnerable to thermal shock, we recommend limiting the soldering conditions to a maximum temperature of $230^{\circ} \mathrm{C}$ for a maximum time of 10 seconds for these packages.

Notes on Mounting

4. Moisture Absorption Prevention Conditions

Plastic packages absorb moisture when stored in a high humidity. If devices are mounted using solder reflow techniques when they have absorbed moisture they are susceptible to reflow cracking. Products that are particularly susceptible to the influence of absorbed moisture are packed in moisture-proof packing. These products should be handled under the following conditions after opening the moisture-proof packing.

4.1 Storage and Handling after Opening Moisture-Proof Packing

Storage temperature: $5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$
Storage humidity: Under 60\% relative humidity
Time between unpacking and reflow soldering:

1. If specified on the label attached to the moisture-proof packing, or in the delivery specifications: follow those specifications.
2. If not specified on the label attached to the moisture-proof packing or in the delivery specifications: perform reflow soldering within 168 hours (one week) with the product stored under the conditions specified above.

4.2 Baking

4.2.1 Baking is Required in the Following Situations

1. If the desiccant indicator has turned pink.
2. If the storage period following unpacking exceeds the specifications for that period.

4.2.2 Recommended Baking Conditions

1. TSOP and TQFP: $125^{\circ} \mathrm{C}$ for 4 hours
2. Packages other than TSOP and TQFP: $125^{\circ} \mathrm{C}$ for 16 hours to 24 hours
3. If specified in the delivery specifications or other documentation, follow those specifications.

4.2.3 Other Points

Use heat-proof trays in the baking operation.

Surface Mounting Package Handling Precautions

1. Package temperature distribution

The most common method used for mounting a surface mounting device is infrared reflow. Since the package is made of a black epoxy resin, the portion of the package directly exposed to the infrared heat source will absorb heat faster and thus rise in temperature more quickly than other parts of the package unless precautions are taken. As shown in the example in figure 6, the surface directly facing the infrared heat source is 20° to $30^{\circ} \mathrm{C}$ higher than the leads being soldered and 40° to $50^{\circ} \mathrm{C}$ higher than the bottom of the package. If soldering is performed under these conditions, package cracks may occur.

To avoid this type of problem, it is recommended that an aluminum infrared heat shield be placed over the resin surface of the package. By using a $2-\mathrm{mm}$ thick aluminum heat shield, the top and bottom surfaces of the resin can be held to $175^{\circ} \mathrm{C}$ when the peak temperature of the leads is $240^{\circ} \mathrm{C}$.

2. Package moisture absorption

The epoxy resin used in plastic packages will absorb moisture if stored in a high-humidity environment. If this moisture absorption becomes excessive, there will be sudden vaporization during soldering, causing the interface of the resin and lead frame to spread apart. In extreme cases, package cracks will occur. Therefore, especially for thin packages, it is important that moistureproof storage be used.
To remove any moisture absorbed during transportation, storage, or handling, it is recommended that the package be baked at $125^{\circ} \mathrm{C}$ for 16 to 24 hours before soldering.

3. Heating and cooling

One method of soldering electrical parts is the solder dip method, but compared to the reflow method, the rate of heat transmission is an order of magnitude higher. When this method is used with plastic items, there is thermal shock resulting in package cracks and a deterioration of moisture-resistant characteristics. Thus, it is recommended that the solder dip method not be used.
Even with the reflow method, an excessive rate of heating or cooling is undesirable. A rate in temperature change of less than $4^{\circ} \mathrm{C}$ / sec is recommended.

4. Package contaminants

It is recommended that a resin-based flux be used during soldering. Acid-based fluxes have a tendency of leaving an acid residue which adversely affects product reliability. Thus, acid-based fluxes should not be used.
With resin-based fluxes as well, if a residue is left behind, the leads and other package parts will begin to corrode. Thus, the flux must be thoroughly washed away. If cleansing solvents used to wash away the flux are left on the package for an extended period of time, package markings may fade, so care must be taken.

The precautions mentioned above are general points to be observed for reflow. However, specific reflow conditions will depend on such factors as the package shape, printed circuit board type, reflow method, and device type.

For details on surface mounting small thin packages, please consult the separate manual available on mounting. If there are any additional questions, please contact Hitachi, Ltd.

The Information of TCP

Features of TCP (TAB Technology)

The structure and materials used by Tape Carrier Package (TCP) give it the following features as compared with conventional packages:

Thin, Lightweight, and Fine Pitch
With thickness less than 1 mm and fine-pitch leads, a reduced pad pitch on the device enables more functionality in a package of equivalent size. Specifically, these features enable:

- Thin and high definition LCM (Liquid Crystal display Module)
- Lightweight and ultra-high pin count systems

Flexible Design

The following can be tailored to the design of the system (e.g. mother board design):

- Pattern layout
- TCP design

TCP Applications

Thinness, ultra-high pin count, and fine pitch open up new possibilities of TCP applications for compact and highly functional systems. Figure 1 shows some applications of TCP-packaged chips.

Figure 1 Examples of TCP-Packaged Chip Applications

Hitachi TCP Products

TCP for Hitachi LCD Driver

Hitachi offers tape-carrier-packaged LCD drivers for LCD modules ranging from miniature to large sizes. Table 1 shows some examples of standard tape carrier packages for LCD drivers. Hitachi LCD drivers combine a device that can withstand
high voltages and provide high definition with a tape carrier package that promises excellent reliability, making possible applications that would not be feasible with a conventional QFP. For material specifications of the products in table 1 , see table 3.

Table 1 TCPs for Hitachi LCD Drivers

Application	Function		Appearance			Remarks
	Drive	Signal Output	Product Code	Total Pin Count (Output)	Outer Lead Plich	
TFT	Column only	Analog				
			HD66300T00	156 (120)	0.3 mm	
Mediumsize liquid crystal	Column and common	Digital				Built-in controller (on-chip RAM)
			HD66108T00	208 (165)	0.4 mm	
Large liquid crystal	Column and common	Digital				Outer lead pitch: $0.08-\mathrm{mm}$ products are also available
			HD66110TA8	191 (160)	0.14 mm	
Large liquid crystal	Common only	Digital				Outer lead pitch: $0.15-\mathrm{mm}, 0.18-\mathrm{mm}$, $0.20-\mathrm{mm}$ or $0.25-\mathrm{mm}$ products are also available.
			HD66205TA9L	92 (80)	0.22 mm	
Large liquid crystal	Column only	Digital				Outer lead pitch: $0.18-\mathrm{mm}, 0.20-\mathrm{mm}$, products are also available.
			HD66214TA9L	98 (80)	0.22 mm	
Large liquid crystal	Column only	Digital				Outer lead pitch: $0.20-\mathrm{mm}$ products are also available.
			HD66224TA1	108 (80)	0.21 mm	

TCP

TCP External View and Cross-Sectional Structure

TCP Materials and Features

TCP Material Specifications: Table 2 lists Hitachi TCP material specifications. Ask us if you require other materials. In this case, use TCP
ordering manual [ADE-801-001 (O)].
Table 3 lists current material specifications for various Hitachi products.

Table 2 Hitachi TCP Material Specifications

No.	Item	Specifications
1	Base film	UPILEX ${ }^{\circledR}$ S-type: thickness $75 \mu \mathrm{~m} \pm 5 \mu \mathrm{~m}$ KAPTON ${ }^{\circledR}$ V-type: thickness 125 or $75 \mu \mathrm{~m} \pm 5 \mu \mathrm{~m}$
2	Adhesive	Toray \#5900
		TOMOEGAWA E-type
3	Copper foil	Rolled copper: thickness 35 or $25 \mu \mathrm{~m} \pm 5 \mu \mathrm{~m}$
		Electro-deposited copper: thickness 35 or $25 \mu \mathrm{~m} \pm 5 \mu \mathrm{~m}$
4	Resin	Epoxy resin
5	Outer lead plating	Tin
6	Solder resist	Epoxy solder resist
Cross-sectional view		

Table 3 Material Specifications for Hitachi Products

Product Code	Application	Base Film	Adhesive	Copper Foll	Outer Lead Plating
HD66300T00	TFT	KAPTON ${ }^{\text {® }}$ V	Toray \#5900	Rolled copper	Tin
HD66108T00	Large liquid crystal	KAPTON ${ }^{\text {® }} \mathrm{V}$	Toray \#5900	Rolled copper	Tin
HD66110TA8	Large liquid crystal	UPILEX ${ }^{\text {® }}$ S	TOMOEGAWA E-type	Electro-deposited copper	Tin
HD66205TA9L	Large liquid crystal	UPILEX ${ }^{\text {® }}$ S	Toray \#5900	Rolled copper	Tin
HD66214TA9L	Large liquid crystal	UPILEX ${ }^{\text {® }}$ S	Toray \#5900	Rolled copper	Tin
HD66224TA1	Large liquid crystal	UPILEX ${ }^{\text {® }}$ S	TOMOEGAWA E-type	Electro-deposited copper	Tin

Properties of Materials: Properties of Hitachi TCP materials are as follows.

1. Base film

The properties of base film are shown in table 4. Hitachi currently adopts UPILEX ${ }^{\circledR}$ S, which exhibits high rigidity and super dimensional stability with respect to temperature changes compared with conventional KAPTON ${ }^{\circledR} \mathrm{V}$.
2. Copper foil (copper wiring)

The properties of rolled foil and electro-deposited foil are shown in table 5. Hitachi plans to adopt electro-deposited foil due to its excellent elongation properties at room temperature (RT) compared with conventional rolled foil.

Table 4 Properties of Base Film (See references 1 and 2, page 28)

Property		UPILEX ${ }^{(8)}$ S (Ube Industries, Ltd.)		
Coefficient of linear expansion$\times 10^{-5 /{ }^{\circ}}$	To $100^{\circ} \mathrm{C}$	0.8		-
	To $200^{\circ} \mathrm{C}$	1.0	。	2.6
Tensile modules ($\mathrm{kg} / \mathrm{mm}^{2}$)		900		355

Table 5 Properties of Copper Foil (See reference 3, page 28)

Property	Samping Condition	Rolled Foil (Hitach Cable, Lid.) CF-W5-1S-LP	Electro-Deposited Foll (Mitsul Mining \& Smeiting Co., Ltd.) 3EC-VLP
Tensile strength at RT (kgf/mm²)	Raw foil	43.0	54.9
Elongation at RT $(\%)$	Raw foil	1.0	10.1
Tensile strength at $180^{\circ} \mathrm{C}$ (kgf/mm ${ }^{2}$)	Raw foil	23.4	25.4
Elongation at $180^{\circ} \mathrm{C}$ $(\%)$	Raw foil	7.7	7.0

Note: Data from film suppliers.
Number of measured samples: 2 pieces each
$1 \mathrm{kgi} / \mathrm{mm}^{2}=9.80665 \mathrm{MPa}$.
3. Adhesive

The relationship between peeling strength (adhesive/electro-deposited foil) and lead width is shown in figure 2. Hitachi adopts the following two combinations because of their higher
peeling strength.

- Adhesive TOMOEGAWA E-type/electrodeposited foil
- Adhesive Toray \#5900/rolled foil

*Peeling strength —How to measure -

Figure 2 Relationship between Peeling Strength and Lead Width

Fine-Pitch Bump Formation

Bumps are essential in TCP products; they are the foundation of TAB technology and have excellent corrosion resistance in their structure. When the current trend toward high-performance chips with ultra-large pin-out began driving pad counts
upward (and reducing pad pitch), Hitachi was quick to develop a volume production process for forming fine-pitch bumps.

Figure 3 shows the Hitachi TCP bump structure. Figure 4 shows a flowchart of the bump formation process.

Stralght-Wall Bumps (Fine-Pitch)

Notes: 1. UBM: Under Bump Metal
Unit: mm
2. Case of $80-\mu \mathrm{m}$ bump pitch

Figure 3 Hitachi TCP Bump Structure

Figure 4 Bump Formation Flowchart

TCP Fabrication Flow

TCP Tape: TCP tapes are purchased from tape manufacturers. In many cases, the quality of TCP products depends critically on the quality of the tape, so in addition to evaluating constituent materials, Hitachi strictly controls the stability of the tape fabrication process.

TCP Fabrication Process: The TCP fabrication process starts from wafers (or chips) with bumps, and a patterned tape. After being bonded by a highprecision inner lead bonder, the chips are sealed in resin. Figure 5 shows the standard fabrication process for TCPs used in Hitachi LCDs.

Figure 5 Standard Fabrication Process for TCPs Used in Hitachi LCDs

TCP

Packing

Packing Format: TCP products are packed in moisture-proof packages. A reel wound with TCP tape is sealed in an opaque antistatic sheet with N_{2} to protect the product from mechanical shock and then packed into a carton before delivery to ensure
the solderability of lead plating.
Labels which indicate the product name, quantity, and so on are placed on the reel, antistatic sheet, and carton. Figure 6 shows the TCP packing format.

Figure 6 Packing Format

Tape Specification:

1. TCP tape - 40 m
2. Lead tape $-2+1 /-0.5 \mathrm{~m}$ added to both ends of the TCP
3. Conductive tape - 40 m
4. Separator - 40 m
5. Width of tape - $\mathbf{3 5} \mathrm{mm}$

Note: The lengths of the TCP tape, conductive tape, and separator may vary slightly depending on the quantity of the product on the tape.

Reel Specification: Figure 7 shows reel dimensions.

For recycling purpose, we would appreciate it if you return the reel and separator to us after use.

Figure 7 Reel Dimensions

TCP Winding Direction: Figure 8 shows one way of winding TCPs. The combination of two product directions when pulling it out from the reel and placement of the patterned face on either the front or back of the tape makes for four types of TCP winding directions.

The winding direction is an essential specification which affects the chip punching machine and assembly equipment during the packaging process. As the wind direction differs according to the product, please check the delivery specification before using TCP.

Figure 8 Example of TCP Winding Direction

TCP Mounting Methods

TCP Mounting Structure
Typical example of an LCM structure using TCPs is illustrated in figure 9.

Basic Mounting Process

See figure 10.
\qquad

Figure 9 LCM Structure

Figure 10 TCP OLB (Outer Lead Bonding) Basic Flowchart

TCP

Process Outline

An outline of LCM assembly process using TCPs is given in figure 11.

Figure 11 Outline of LCM Assembly Process

TCP Mounting Conditions

Mounting TCPs on LCD Panels (See reference 4, page 28): ACF is an adhesive film that can connect electrodes on an LCD glass panel with output leads of TCPs. There are two types of ACFs:

- One whose thermosetting and thermoplastic properties make handling easier (such as in repair) and reduces the stresses caused by temperature changes.
- One whose thermosetting properties provide
low connection resistance and high thermostability.

Please select ACF depending on the type of application.

1. Selection of ACF thickness

An appropriate ACF thickness must be selected depending on the height, line width and space width of the circuit to be connected; a rough calculation formula for obtaining a proper ACF thickness is shown below.

ACF thickness before connection $t_{0}=\frac{\frac{S_{1}+S_{2}}{2}}{P} \times T+t_{1}+\alpha$
t_{1} : ACF thickness after connection ($2 \mu \mathrm{~m}$)
T: Circuit height
P: Pitch
S_{1} : Space width (top)
S_{2} : Space width (bottom)
α : Correction value
AC-6073, AC-6103-0.15T
AC-7104, AC-7144-0.25T

Incomplete filling can occur in the space if ACF thickness is too thin, while if too thick, connection reliability becomes poor since conductive particles are not flattened out. It is necessary to select an appropriate ACF thickness. Some adjustment of ACF thickness can be controlled by bonding conditions (especially pressure).
2. Laminating and bonding conditions

It is necessary to optimize bonding conditions according to ACF, TCP and glass panel specifications. The bonding conditions adopted by

ANISOLM ${ }^{\circledR}$ (Hitachi Chemical Co., Ltd.) are shown in table 6 for reference. Please determine your optimum bonding conditions based on the following.

Table 6 Bonding Conditions of ANISOLM ${ }^{\circledR}$

Item			Unit	Mixture of Thermosetting and Thermoplastic		Thermosetting		Remarks	
			AC-6073	AC-6103	AC-7104	AC-7144			
Standard specifications	Min. pitch	Resolution		$\mu \mathrm{m}$ Line/	707	50	50.10	35 14	
			$\mu \mathrm{m}{ }^{\mathrm{mm}}$	70	50	50	35		
	Thickness		$\mu \mathrm{m}$	22	22, 18	25	16		
	Width		mm	3, 2.5, 2		3, 2.5, 2			
	Length		m	50		50			
	Color			Transparent (gray)		Transparent (gray)			
	Core diameter		mm	18.5		18.5			
Bonding conditions	Laminating	Temperature	${ }^{\circ} \mathrm{C}$	80 to 100		70 to 90		Temperature on ANISOLM ${ }^{8}$	
		Pressure	MPa	1		1			
		Time	s	5		5			
	Bonding	Temperature	${ }^{\circ} \mathrm{C}$	170 to 190		160 to 180		Temperature on ANISOLM ${ }^{8}$	
		Pressure	MPa*	2		2	3		
		Time	s	20		20			

Note: * $1 \mathrm{MPa}=1.01972 \times 10^{-1} \mathrm{kgf} / \mathrm{mm}^{2}$

Measuring Method of ACF Temperature Profile (example)

Figure 12 Bonding Temperature Profile

TCP

Soldering Conditions: Solder TCPs on the PCB under the following conditions. If soldering temperature is low, solder may not melt. However, if soldering temperature is too high, solder may not adequately spread over the leads owing to their oxidized surfaces, and/or the leads plating may become attached to the heating collet. In the latter
case, copper foil of leads may become exposed. Please determine adequate soldering conditions for mass production carefully.

- Soldering temperature (at solder joint): 230 to $260^{\circ} \mathrm{C}$
- Soldering time: 10 seconds max.

Note 1: Temperature at solder joint is normally 30 to $50^{\circ} \mathrm{C}$ lower than the heating collet temperature. Soldering temperature has a great impact on the quality of the products. Operating conditions should therefore be specified after examining the temperature relationship between the tip of the heating collet and solder joint.

Note 2: In case of soldering quad type TCPs, please fix the TCPs using vacuum collets or equivalent to prevent base film warpage and circuit position misalignment.

TCP

Storage Restrictions

1. Packed TCP products should be used within six months.
2. TCP products removed from the antistatic sheet should be stored in N_{2} having a dew point of $-30^{\circ} \mathrm{C}$ or lower. However, they should be used as soon as possible after removal, because solderability of leads plated with Sn or solder decreases with time.

Handling Precautions

Electrical Handling

1. Anti-electrostatic discharge measures

TCP products require the following care beyond what is required for non-TCP products.

- Give special attention to ion-blow and grounding especially when removing TCP products from the reel, since they easily collect static electricity because of the base film. If TCP products become charged, discharge the electricity little by little using the ionblow; rapid discharge may damage the devices.
- Handle the product so that static electricity is not applied to outer leads. Depending on the equipment used, this may require taking proper anti-electrostatic discharge measures, such as not allowing the tapeguide to contact the outer leads.

2. Outer lead coating

Outer leads should be coated with resin or other
appropriate materials to prevent short-circuits and disconnections due to corrosion. Conductive foreign particles can easily cause shortcircuits since lead spacing for TCP products is much narrower than that for non-TCP products. Disconnections from corrosion can also easily occur due to solder flux or similar materials adhering to leads while mounting the products on a board. This is because TCP product leads are formed by bonding very thin copper foil to the base film in order to attain high-density mounting.
3. To prevent electric breakdown when mounting TCP products on a board, do not allow any electrical contact with the die's bottom surface. These types of failures easily occur since TCP products have a bare Si monocrystal on the die's bottom surface in order to make the product as thin as possible.

To prevent degradation of electrical characteristics, do not expose TCP products to sunlight.

Mechanical Handling

1. To prevent die cracks when mounting TCP products on a board, do not allow any physical contact with the die's bottom surface. These types of failures easily occur since TCP products have a bare Si monocrystal on the die's bottom surface in order to make the product as thin as possible.
2. Handle TCP products carefully to avoid bending the leads from base film transformation.
3. Do not bend TCP products since this may cause cracks in the solder resist.

4. Punching

Punching the continuous base film to extract single TCP products requires the following care.

- Align each product correctly according to tape perforations (sprocket holes).
- Use a metal punching die with pressing installation to prevent resin cracks and reduce cutting stresses in the outer leads. (Refer to figure 13.)
- Determine the punching position so that the cutting edge does not touch the molding area based on the relationship between maximum molding area (specified in the design drawing) and the punching die accuracy.

Punch TCP products in the section where outer leads are straight (not slanted) to prevent shortcircuits caused by conductive particles. (Refer to figure 14.)

Figure 13 Punching Die

Figure 14 Punching Position

TCP

5. Mounting structure

Copper foil can easily break even from a small physical stress because of its thinness needed to accommodate fine patterns. Large stresses should therefore not be applied to the copper foil when mounting TCP products on a board.

- Bending stresses

When the edges of a die and a PCB are aligned, resin cracks may occur due to bending stresses. To avoid this problem, locate the board closer to the LCD panel so that it can support the molded part of the package. (Refer to figure 15)

- Thermal stresses

LCM consists of glass, TCPs and a glassepoxy substrate having their respective coefficients of thermal expansion (CTE). This difference in expansion effects may cause "thermal stresses" that especially concentrate in TCPs. The joining structure of LCMs is roughly shown in figure 16. Before beginning mass production, investigate and determine a joining structure that reduces thermal stresses so as to prevent contact and other defects from occurring.
6. Do not stack more than ten cartons of products.
7. Do not subject cartons to high physical impact.

Figure 15 Positioning of Mounting TCPs on a PCB

Figure 16 Joining Structure of LCM

Correction of ITO (Indium Tin Oxide) Electrode Pitch: TCP products expand by absorbing moisture or heat during storage and assembly. Pitch correction for the ITO electrode should be performed based on the TCP dimensions after it is mounted on a conductive film. However, if ITO pitch correction is performed based on TCP dimensions before mounting, it must be based on data measured after removing TCP products from the package and storing at a temperature of 20 to $25^{\circ} \mathrm{C}$ and a humidity of 50 to 70% RH for 48 hours.

Correct the ITO electrode pitch depending on the bonding equipment and conditions used.

Miscellaneous

1. Do not heat the lead tape and separator; they have poor heat-resistivity and will expand.
2. Do not subject TCPs to high temperature for a long period of time while cleaning or other operations; copper foil may peel off due to the rapid deterioration of adhesion between the copper foil and base film.
3. Carrier tapes have some waviness that may cause problems in tape transport. Use a tapeguide or equivalent to secure the tape.

Figure 17 Dimensional Change of Output

TCP

TCP Standardization

The "Tape Carrier Package W/G" in the Semiconductor External Standards Committee of the EIAJ (Electronics Industries Association of Japan) has standardized TCPs having leads on four sides (EIAJ ED-7431('93.4)). The standardization W/G, which is composed of various semiconductor manufacturers including Hitachi, tape manufacturers, and socket manufacturers, is taking a comprehensive approach.

EIAJ has adopted metric control standard against JEDEC*'s inch control standards (UO-017) and has determined standards based on the following two items:

- Fixed test pad layout, variable package size
- Fixed package size, variable terminal pitch

Accordingly, users can share the socket by deciding the width of tape and the test pad pitch. As JEDEC has already agreed to the metric-control TCP (UO-018), Hitachi is now making efforts to produce metric-control TCPs.

The basic concept of TCP having leads on four sides by EIAJ is shown below. Standardization of TCP having leads on two sides is also under discussion.

Note: * JEDEC:
Joint Electronic Device Engineering Council.

Quad Tape Carrier Package (QTP) EIAJ ED-7431

1. Tape width: $35,48,70 \mathrm{~mm}$
2. Package size: $35 \mathrm{~mm} 14 \times 14,16 \times 16,18 \times 18,20 \times 20$
$48 \mathrm{~mm} 16 \times 16,20 \times 20,24 \times 24,26 \times 26,28 \times 28$
$70 \mathrm{~mm} 24 \times 24,28 \times 28,32 \times 32,36 \times 36,40 \times 40$
3. Test pad pitch: $0.5,0.4,0.3,0.25 \mathrm{~mm}$
4. Outer lead pitch: $0.5,0.4,0.3,0.25,0.2,0.15 \mathrm{~mm}$
5. Sprocket-hole type: 35 mm Super

48 mm wide, Super
70 mm wide, Super
6. Number of test pads: Fixed maximum number of test pads, regardless of the outer lead count.
For $35-\mathrm{mm}$ tape: 196 for 0.5 pitch; 244 for 0.4 pitch.

Reference Materials

TCP Mounting Equipment Manufacturer

Manufacturer: Hitachi Chemical Co., Ltd.

Area	Address	Tel No.	Fax No.
USA	Hitachi Chemical Co., America, Ltd. 4 International Drive, Rye Brook, NY 10573, U.S.A.	(914) 934-2424	(914) 934-8991
Europe	Hitachi Chemical Europe Gm bH. Immermmstr. 43, D-4000 Düsseldorf 1, F. R. Germany	(211) 35-0366 to 9	(211) 16-1634
S.E. Asia	Hitachi Chemical Asia-Pacific Pte, Ltd. 51 Bras Basah Road, \#08-04 Plaza By The Park, Singapore 0718	$337-2408$	337-7132
	Hitachi Chemical Taipei Office Room No. 1406, Chia Hsim Bldg., No. 96, Sec. 2, Chung Shang Road N, Taipei, Taiwan	(2) 581-3632,	(2) 561-3810

TCP

Manufacturer: Matsushita Electric Industrial Co., Ltd.

Area	Address	Tel No.	Fax No.
USA (Illinois)	Panasonic Factory Automation Company	(708) 452-2500	
Deutschland	Panasonic Factory Automation Deutchland	(040) 8549-2628	
Asia (Japan)	Matsushita Manufacturing Equipment D.	(0552) 75-6222	

Manufacturer: Shinkawa Co., Ltd.

Area	Address	Tel No.	Fax No.
U.S.A.	MARUBENI INTERNATIONAL ELECTRONICS CORP. U.S.A. 3285 Scott Blvd, Santa Clara, CA. 95054	408-727-8447	408-727-8370
Singapore, Malaysia, Thailand	MARUBENI INTERNATIONAL ELECTRONICS CORP. SINGAPORE 18 Tannery Lane \#06-01/02, Lian Teng Building, SGB 1334	741-2300	741-4870
Korea, Hong Kong, China, Taiwan, Philippine, Brazil	MARUBENI HYTECH CORP. Japan 20-22, Koishikawa 4-chome, Bunkyo-ku, Tokyo 112, Japan	(03)-3817-4952	(03)-3817-4959
Europe	MARUBENI INTERNATIONAL ELECTRONICS EUROPE GMBH Niederrhein STR, 424000 Düsseldorf 30 Federal Republic of Germany	0211-4376-00	0211-4332-85

Manufacturer: Kyushu Matsushita Electric Co., Ltd.

Area	Address	Tel No.	Fax No.
CHICAGO	1240 Landmeier Rd. Elk Grove Village, IL 60007	(708) 822-7262	(708) 952-8079
ATLANTA	1080 Holcomb Bridge Rd. Building 100, Suite 300 Roswell, Georgia 30076	$(404) 906-1515$	(404) 998-9830
San Jose	177 Bovet Road, Suite 600 San Mateo, CA 99402	(415) 608-0317	(415) 341-1395
LONDON	238/246 King Street, London W6 ORF United Kingdom	(081) 748-2447	(081) 846-9580
SINGAPORE	1 Scotts Road, \#21-10/13 Shaw Centre Singapore 0922	7387681	7325238
SEOUL	2ND Floor, Donghwa Bldg. 454-5, Dokok-1 Dong, Kangnam-Ku, Seoul, Korea	(02) 571-2911	(02) 571-2910
TAIWAN	6TH, FL., 360, FU HSING 1ST ROAD, KWEISHAN, TAOYUAN HSIEN, TAIWAN	(03) 328-7070	(03) 328-7080
MALAYSIA	KUALALUMPUR BRANCH 8TH FLOOR, WISMA LEE RUBBER,	(03) 291-0066	(03) 291-8002
	JAPAN MELAKA, 50100 KUALALUMPUR		
BANGKOK	20TH FL., Thaniya Plaza Bldg, 52 Silom Road, Bangrak, BANGKOK, 10500 THAILAND	(02) 231-2345	(02) 231-2342

Manufacturer: Japan Abionis Co., Ltd.

Area	Address	Tel No.	Fax No.
Worldwide	Overseas Department Contact: Mr. K. Asami, or Mr. K. Ito	$81-3-3501-7358$	81-3-3504-2829

TCP

TCP Tape Manufacturers

Manufacturer: Hitachi Cable Ltd.

| Area | Address | Tel No. | Fax No. |
| :--- | :--- | :--- | :--- | :--- |
| U.S.A. | HITACHI CABLE AMERICA INC. | $1-914-993-0991$ | $001-1-914-993-0997$ |
| Europe | HITACHI CABLE
 INTERNATIONAL, LTD. (LONDON) | $001-44-71-439-7223$ | $001-44-71-494-1956$ |
| Sigapore | HITACHI CABLE
 INTERNATIONAL, LTD (SINGAPORE) | $001-65-2681146$ | $001-65-2680461$ |
| Hong Kong | HITACHI CABLE
 INTERNATIONAL, LTD (HONG KONG) | $001-852-721-2077$ | 001-852-369-3472 . |

Manufacturer: Mitsui Mining and Smelting Co., Ltd.

Area	Address	Tel No.	Fax No.
U.S.A.	MITSUI MINING AND SMELTING CO. (USA) INC.	$212-679-9300$ to 2	212-679-9303
Europe	MITSUI MINING AND SMELTING CO., LTD. London Office	71-405-7717 to 8	71-405-0227
Asia	MITSUI MINING AND SMELTING CO., LTD. MICROCIRCUIT DIVISION	03-3246-8079	03-3246-8063

Manufacturer: Shindo Company Ltd.

Area	Address	Tel No.	Fax No.
U.S.A.	SHINDO COMPANY LTD.,	$408-435-0808$	$408-435-0809$
	U.S. BRANCH OFFICE		
	2635 NORTH FIRST ST., STE. 124		

Aeolotropy Conductive Film Manufacturers

Manufacturer: Hitachi Chemical Co., Ltd.

Area	Address	Tel No.	Fax No.
USA	Hitachi Chemical Co., America, Ltd. 4 International Drive, Rye Brook, NY 10573, U.S.A.	(914) 934-2424	(914) 934-8991
	Europe Hitachi Chemical Europe GmbH. Immermannstr, 43, D-4000 Düsseldort 1, F. R. Germany (211) 35-0366 to 9 (211) 16-1634 Hitachi Chemical Asia-Pacific Pte, Ltd. 51 Bras Basah Road, \#08-04 Plaza By The Park, Singapore 0718 337-2408 337-7132 S.E. Asia Hitachi Chemical Taipei Office Room No. 1406, Chia Hsin Bldg., No. 96, Sec. 2, Chung Shang Road N, Taipei, Taiwan (2) 581-3632, (2) 521-7509 Hitachi Chemical Beijing Office Room No. 1207, Beijing Fortune Building, 5 Dong, San Huan Bei-Lu, Chao Yang District, Beijing, China (1) 501-4331 to 2 (1) 501-4333 Beijijing Hitachi Chemical Co. (Hong Kong) Ltd. Room 912, Houston Centre, 63 Mady Road, Tsimshatsui East, Kowloon, Hong Kong (3) 66-9304 to 7 (3) 723-3549 Hong Kong		

Manufacturer: Sony Chemicals

Area	Address	Tel No.	Fax No.
U.S.A.	SONY CHEMICALS CORPORATION OF AMERICA	$1-(708) 616-0070$	$1-(708) 616-0073$
Europe	SONY CHEMICALS EUROPE B.V.	$31-20-658-1850$	$31-20-659-8481$
Southeast Asia	SONY CHEMICALS SINGAPORE PTE LTD.	$65-382-1500$	$65-382-1750$

References

1. KAPTON ${ }^{\otimes}$ V Catalog Du Pont-Toray Co., Ltd.
2. UPILEX ${ }^{(1)}$ S Catalog
3. Electro-deposited Foil Comparison List
4. Hitachi Anisotropic Discharge Film

Ube Industries, Ltd.
Mitsui Mining Smelting Co., Ltd.
Electronic Devices Group
Hitachi Chemical Co., Ltd. 1992.7.21

Table 7 Hitachi Standard TCP Product Specifications

No.	Product	Function	No. of Outputs	Output Lead Pitch ($\mu \mathrm{m}$)	Output Leed Length (mm)	Input Leed Pitch ($\mu \mathrm{m}$)	Input Loed Length (mm)	mput Leed Arrange ${ }^{\circ} 1$	User Patterm		Solder Aceiat Width (mm)	Product Length*2	Tape Mantorial³	Plating
									$\begin{aligned} & \mathbf{X} \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$				
1	HD66107T00	LCD driver	160	280	2.5	800	2.0	A	50.20	20.25	46.80	12	K	Sn
2	HD66107T01	LCD driver	80	280	2.5	800	2.0	A	32.00	20.25	28.00	12	K	Sn
3	HD66107T11	LCD driver	160	180	3.3	800	2.5	A	32.42	20.00	31.60	8	K	Sn
4	HD66107T12	LCD driver	160	250	3.3	800	25	A	43.50	20.00	42.40	10	K	Sn
5	HD66107T24	LCD driver	160	180	3.3	800	2.5	A	32.52	20.00	31.60	8	U	Sn
6	HD66107T25	LCD driver	80	280	2.5	800	2.0	A	32.00	20.25	28.00	8	K	Sn
7	HD66108T00	LCD driver	165	400	2.0	400	2.0	C	-	-	-	8	K	Sn
8	HD66300700	TFT analog diver	120	300	2.9	800	3.0	A	46.00	21.50	46.20	10	K	Sn
9	HD66310T00	TFT 8 level gray scale	160	180	3.0	650	25	A	33.40	21.00	31.95	8	K	Sn
10	HD66330TA0	TFT 64 level gray scale	192	160	3.5	650	1.5	A	35.30	11.70	33.60	4	U	Sn
11	HD66214TA1	Column LCD driver	80	150	3.0	800	2.2	A	15.75	10.50	13.60	3	U	Sn
12	HD66214TA2	Column LCD driver	80	180	3.0	800	2.2	A	18.30	10.50	18.40	3	U	Sn
13	HD66214TA3	Column LCD driver	80	200	2.5	800	2.2	A	20.00	9.80	19.80	3	U	Sn
14	HD66214TA6	Column LCD driver	80	200	2.3	450	2.0	B	22.70	8.00	22.50	3	U	Sn
15	HD66214TASL	Column LCD driver	80	220	2.3	450	1.8	B	22.70	8.00	22.50	2	U	Sn
16	HD66205TA1	Common LCD driver	80	150	3.0	800	2.0	A	15.75	14.70	13.40	4	U	Sn
17	HD66205TA2	Common LCD driver	80	180	2.9	800	2.0	A	18.30	14.70	16.40	4	U	Sn
18	HD66205TA3	Common LCD driver	80	200	3.0	800	20	A	20.00	14.70	17.80	4	U	Sn
19	HD66205TA6	Common LCD driver	80	220	2.8	700	1.8	B	22.70	12.50	18.20	4	U	Sn
20	HD66205TA7	Common LCD driver	80	250	2.8	700	1.8	B	24.25	12.50	18.20	4	U	Sn
21	HD66205TASL	Common LCD driver	80	220	2.8	700	1.8	B	22.70	12.50	18.20	3	U	Sn
22	HD66224TA1	Column LCD driver	80	210	3.2	800	1.2	A	20.30	8.20	18.00	2	U	Sn
23	HD66224TA2	Column LCD driver	80	200	3.3	780	1.3	A	18.40	9.00	17.80	3	U	Sn
24	HD66224TBO	Column LCD driver	80	200	2.5	650	1.5	A	18.20	7.80	17.40	2	U	Sn
25	HD66215TAO	Common LCD driver	100	230	20	1200	1.7	A	25.60	11.90	24.40	3	U	Sn
26	HD66215TA1	Common LCD driver	101	220	3.0	1000	1.8	A	25.00	10.80	24.40	3	U	Sn
27	HD66215TA2	Common LCD driver	100	180	4.0	850	1.5	A	20.40	11.40	19.80	3	U	Sn
28	HD66110TA4	Column LCD driver	160	80	28	500	1.5	A	15.60	9.66	15.00	4	U	Sn
29	HD66110RTA8	Column LCD driver	160	140	3.2	600	2.0	A	25.00	10.85	15.00	4	U	Sn
30	HD66110RTB0	Column LCD driver	160	92	3.8	500	2.0	A	15.60	11.90	15.10	4	U	Sn
31	HD66110RTB1	Column LCD driver	160	92	2.4	500	1.2	A	15.60	9.00	15.10	4	U	Sn
32	HD66115TAO	Common LCD driver	160	180	3.0	800	2.0	A	32.40	11.00	31	3	U	Sn
33	HD66115TA1	Common LCD driver	160	250	4.2	800	2.0	A	44.00	13.70	42.9	4	U	Sn

Figure 18 Hitachi Standard TCP 1 - HD61107T00 -

Figure 19 Hitachi Standard TCP 2 - HD66107T01 -

Figure 20 Hitachi Standard TCP 3 - HD66107T11 -

Figure 21 Hitachi Standard TCP 4 - HD66107T12 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 22 Hitachi Standard TCP 5 - HD66107T24 -

Notes: 1. Mark shall be stamped on potting resin.
2. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unloss otherwise noted.
3. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 24 Hitachi Standard TCP 7 - HD66108T00 -

Figure 25 Hitachi Standard TCP 8 - HD66300T00 -

Motes: 1. Tolerancess are ± 0.1 unless otherwias indicated.
2. The load cross section of outer lead contact sections is as shown below.

Figure 26 Hitachi Standard TCP 9 - HD66310T00 -

Figure 27 Hitachi Standard TCP 10 - HD66330TA0 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bending area

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 29 Hitachi Standard TCP 12 - HD66214TA2 -

Notes: 1 . Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 30 Hitachi Standard TCP 13 - HD66214TA3 -

Notes: 1 . Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 31 Hitachi Standard TCP 14 - HD66214TA6 -

Notes: 1 . Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted.

1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ uniess otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 32 Hitachi Standard TCP 15 - HD66214TA9L -

Notes: 1. Dimenebonal tolerancos are $\pm 0.1 \mathrm{~mm}$ unlese athember noted.
2. The figure below showe a croes sectionel vivw of the octor loed bonding ance.

Figure 33 Hitachi Standard TCP 16 - HD66205TA1 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area

Figure 34 Hitachi Standard TCP 17 - HD66205TA2 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 35 Hitachi Standard TCP 18 - HD66205TA3 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unloss otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 36 Hitachi Standard TCP 19 - HD66205TA6 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unloss otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 37 Hitachi Standard TCP 20 - HD66205TA7 -

Notes: 1 . Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless othorwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 38 Hitachi Standard TCP 21 - HD66205TA9L -

Figure 39 Hitachi Standard TCP 22 - HD66224TA1 -

Figure 40 Hitachi Standard TCP 23 - HD66224TA2 -

Figure 41 Hitachi Standard TCP 24 - HD66224TB0 -

Notes: 1. Dimensional tolerancess are $\pm 0.1 \mathrm{~mm}$ uniess otherwise noted.
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 42 Hitachi Standard TCP 25 - HD66215TA0 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 43 Hitachi Standard TCP 26 - HD66215TA1 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unless otherwise noted
2. The figure below shows a cross sectional view of the outer lead bonding area.

Figure 44 Hitachi Standard TCP 27 - HD66215TA2 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unioss otherwise noted.
2. The figure bolow showe a croses sectional view of the outer feed bonding ares.

Figure 45 Hitachi Standard TCP 28 - HD66110TA4 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ uniess othorwise noted.
2. The figure below shows a
2. The figure below shows a cross sectiond view of the outer lead bonding area.

3. 4.4 ± 0.01 is taken as the $S R$ managoiment target value.

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ unloss otherwise noted.
2. The ligure below shows a cross sectionai view of the outer lead bonding area.
3. Solder resist exposure of the output side outer lead outermost line (dummy lead) is allowed.

Figure 47 Hitachi Standard TCP 30 - HD66110RTB0 -

Notes: 1. Dimensional tolerances are $\pm 0.1 \mathrm{~mm}$ uniess otherwise noted.
2. The nigure below shows a cross sectional view of the outer lead bonding area.

Figure 49 Hitachi Standard TCP 32 - HD66115TA0 -

Figure 50 Hitachi Standard TCP 33 - HD66115TA1 -

Chip Shipment Products

COB (chip on board) and COG (chip on glass) products form only a small percentage of the thin form and miniature mounting products shipped. However, these products, which are referred to here as "chip shipment products", involve shipping unmounted chips from the factory.

Since chip shipment products are treated as semifinished products, there will be differences between their quality guarantee ranges and electrical characteristics items and those published for the packaged (i.e., complete) products. The differences in the quality guarantee ranges, electrical characteristics items, and visual inspection are described in the CAS (customer approval specifications). Product functionality and operation is completely identical to the complete (packaged) product.

This section describes the standard shipment specifications for chip shipment products. The actual shipment stipulations will be those mentioned or stipulated in the CAS for the individual products.

1. Electrical Characteristics and Quality Level

As mentioned above, the quality guarantee ranges and electrical characteristics for chip shipment products differ from those for standard products. Refer to the CAS for the individual products for specific details.

The basic differences are as follows.

1.1 Electrical Characteristics

The electrical characteristics for chip shipment products are guaranteed at the single point $\mathrm{T}_{\mathrm{a}}=75^{\circ} \mathrm{C}$.

1.2 Quality Level

Electrical characteristics: AQL 4.0\%
Visual inspection: AQL 4.0\%
(The specific details for visual inspection and other items are contained in the CAS.)

2. Chip Packing Specifications

2.1 Delivery Units

Delivery unit counts (lot size) range from a minimum of 100 units to 10,000 units.

2.2 Packing Specifications

Trays are vacuum packed and sealed with up to 24 trays in a single pack. All the chip products in a given pack will be from the same production lot. Figure 1 shows the chip shipment product packing. Chip products are stored in the trays protected by a sheet of protective paper.

2.3 Markings

The following items will be marked on each tray.

1. Product number
2. Lot number
3. Count
4. Inspection certification seal

The following items will be marked on each pack.

1. Product number
2. Disbursement lot number
3. Count
4. Inspection certification seal

The following items will be marked on the outer packing.

1. Product number
2. Disbursement lot number
3. Count
4. Inspection certification seal

If possible, please return empty trays to your Hitachi sales representative.

3. Storage Specifications

After delivery and after opening the transport packaging, chip shipment products must be stored in a manner that does not cause their electrical, physical, or mechanical properties to degrade due to humidity or reactive gas contamination.

We recommend the following storage conditions for these products.

Chip Shipment Products

3.1 When Stored in the Packed State

Storage conditions: In dry Nitrogen, at $-30^{\circ} \mathrm{C}$ (30 degrees below zero, Celsius)
Storage period: \quad Six months
The date of the inspection certification seal shall be used as the start of the storage period.

3.2 When Stored after Die Bonding or Wire Bonding

Storage condition 1: Temperature: under $30^{\circ} \mathrm{C}$, Humidity: under 70\%, Airborne particles: less than 5000 per cubic foot
Storage period 1: Seven days
Storage conditions 2: In dry Nitrogen, at $-30^{\circ} \mathrm{C}$
Storage period 2: 20 days

Figure 1 Chip Packing

Chip Shipment Products

4. Chip Shape Specifications

See figure 2.

5. Products Available as Chip Shipment
 Products

Hitachi, Ltd. currently provides the products listed in table 1 as chip shipment products. Figures 3 to

19 show their respective chip sizes and bonding pad layouts.

Table 1 Chip Shipment Product Table

Figure No.	Product No.	Base Product No.	Page
3	HCD44100R	HD44100RFS	104
4	HD44102D	HD44102CH	105
5	HD44105D	HD44105H	106
6	HCD44780UA00	HD44780UA00FS	107
7	HCD44780U***	HD44780U***FS	108
8	HCD66702RA00	HD66702RA00F	109
8	HCD66702RA00L	HD66702RA00FL	109
9	HCD66702R***	HD66702R***F	111
9	HCD66702R***L	HD66702R***FL	111
10	HCD66710A00	HD66710A00FS	113
11	HCD66710***	HD66710***FS	114
12	HD61202D	HD61202	115
13	HD61203D	HD61203	116
14	HD66100D	HD66100F	117
15	HD66106D	HD66106FS	118
16	HCD66204	HD66204F	119
17	HCD66205	HD66205F	120
18	HCD66204L	HD66204FL	121
19	HCD66205L	HD66205FL	122

Figure 2 Chip Cross-Section

Chip Shipment Products

- HCD44100R

Figure 3 HCD44100R

Chip Shipment Products

- HD44102D

						Chip Size (XxY) Coordinate Origin Pad Size (XxY)			$10 \times 6.16 \mathrm{~mm}$ d Center ip Center $0 \times 120 \mu \mathrm{~m}$	【Unit : $\mu \mathrm{m}$ 】	
$\begin{array}{\|l\|} \hline \text { Pad } \\ \text { No } \\ \hline \end{array}$	Function	Coordinate		$\begin{aligned} & \mathrm{Pad} \\ & \mathrm{No} \\ & \hline \end{aligned}$	Function	Coordinate		$\begin{gathered} \mathrm{Pad} \\ \mathrm{No} \end{gathered}$	Function	Coordinate	
		X	Y			X	Y			X	Y
1	Y39	-2130	2890	28	Y13	-1175	-2890	55	DB5	2515	500
2	Y38	-2465	2890	29	Y12	-945	-2890	56	DB6	2515	770
3	Y37	-2515	2465	30	Y11	-715	-2890	57	DB7	2515	1050
4	Y36	-2515	2215	31	Y10	-480	-2890	58	FRM	2515	1320
5	Y35	-2515	1965	32	Y9	-255	-2890	59	CL	2515	1560
6	Y34	-2515	1715	33	Y8	-25	-2890	60	P1 ($\phi 1$)	2515	1800
7	Y33	-2515	1465	34	Y7	205	-2890	61	P2 ($\phi 2$)	2515	2040
8	Y32	-2515	1215	35	Y6	435	-2890	62			
9	Y31	-2515	965	36	Y5	665	-2890	63	M	2515	2815
10	Y30	-2515	715	37	Y4	915	-2890	64	GND	2070	2890
11	Y29	-2515	465	38	Y3	1160	-2890	65	VEE	1835	2890
12	Y28	-2515	215	39	Y2	1410	-2890	66	V1	1600	2890
13	Y27	-2515	-35	40	Y1	1640	-2890	67	V2	1365	2890
14	Y26	-2515	-285	41	VCC	1930	-2890	68	V3	1135	2890
15	Y25	-2515	-535	42	BS	2245	-2890	69	V4	890	2890
16	Y24	-2515	-785	43	RST	2515	-2605	70	Y50	640	2890
17	Y23	-2515	-1035	44	CS1	2515	-2365	71	Y49	410	2890
18	Y22	-2515	-1285	45	CS2	2515	-2125	72	Y48	180	2890
19	Y21	-2515	-1535	46	CS3	2515	-1885	73	Y47	-50	2890
20	Y20	-2515	-1785	47	E	2515	-1645	74	Y46	-340	2890
21	Y19	-2515	-2035	48	RW	2515	-1405	75	Y45	-605	2890
22	Y18	-2515	-2285	49	D1	2515	-1165	76	Y44	-850	2890
23				50	DB0	2515	-880	77	Y43	-1100	2890
24	Y17	-2155	-2890	51	DB1	2515	-600	78	Y42	-1350	2890
25	Y16	-1865	-2890	52	DB2	2515	-330	79	Y41	-1600	2890
26	Y15	-1635	-2890	53	D83	2515	-50	80	Y40	-1845	2890
27	Y14	-1405	-2890	54	DB4	2515	220				

Figure 4 HD44102D

Chip Shipment Products

- HD44105D

Figure 5 HD44105D

Chip Shipment Products

- HCD44780UA00

Chip size $(X \times Y): 4.90 \mathrm{~mm} \times 4.90 \mathrm{~mm}$ Coordinate: Pad center
Origin: Chip center
Pad size ($\mathrm{X} \times \mathrm{Y}$): $\quad 114 \pm 10 \mu \mathrm{~m} \times 114 \pm 10 \mu \mathrm{~m}$ The aperture area of a bonding pad
(Unit: $\mu \mathrm{m}$)

Pad No.	Pad Name	Coordinate		Pad No.	Pad Name	Coordinate		Pad No.	Pad Name	Coordinate	
		X	Y			X	Y			X	Y
1	SEG22	-2100	2313	28	V3	-941	-2290	55	COM9	2313	539
2	SEG21	-2280	2313	29	V4	-623	-2290	56	COM10	2313	755
3	SEG20	-2313	2089	30	V5	-304	-2290	57	COM11	2313	970
4	SEG19	-2313	1833	31	CL1	-48	-2290	58	COM12	2313	1186
5	SEG18	-2313	1617	32	CL2	142	-2290	59	COM13	2313	1401
6	SEG17	-2313	1401	33	V_{cc}	309	-2290	60	COM14	2313	1617
7	SEG16	-2313	1186	34	M	475	-2290	61	COM15	2313	1833
8	SEG15	-2313	970	35	D	665	-2290	62	COM16	2313	2095
9	SEG14	-2313	755	36	RS	832	-2290	63	SEG40	2296	2313
10	SEG13	-2313	539	37	$\mathrm{R} \bar{W}$	1022	-2290	64	SEG39	2100	2313
11	SEG12	-2313	323	38	E	1204	-2290	65	SEG38	1617	2313
12	SEG11	-2313	108	39	DB0	1454	-2290	66	SEG37	1401	2313
13	SEG10	-2313	-108	40	DB1	1684	-2290	67	SEG36	1186	2313
14	SEG9	-2313	-323	41	DB2	2070	-2290	68	SEG35	970	2313
15	SEG8	-2313	-539	42	DB3	2260	-2290	69	SEG34	755	2313
16	SEG7	-2313	-755	43	DB4	2290	-2099	70	SEG33	539	2313
17	SEG6	-2313	-970	44	DB5	2290	-1883	71	SEG32	323	2313
18	SEG5	-2313	-1186	45	DB6	2290	-1667	72	SEG31	108	2313
19	SEG4	-2313	-1401	46	DB7	2290	-1452	73	SEG30	-108	2313
20	SEG3	-2313	-1617	47	COM1	2313	-1186	74	SEG29	-323	2313
21	SEG2	-2313	-1833	48	COM2	2313	-970	75	SEG28	-539	2313
22	SEG1	-2313	-2073	49	COM3	2313	-755	76	SEG27	-755	2313
23	GND	-2280	-2290	50	COM4	2313	-539	77	SEG26	-970	2313
24	OSC1	-2080	-2290	51	COM5	2313	-323	78	SEG25	-1186	2313
25	OSC2	-1749	-2290	52	COM6	2313	-108	79	SEG24	-1401	2313
26	V1	-1550	-2290	53	COM7	2313	108	80	SEG23	-1617	2313
27	V2	-1268	-2290	54	COM8	2313	323				

Figure 6 HCD44780UA00

Chip Shipment Products

- HCD44780U***

							size (X rdinate: in: size (X aperture	: 4.9 Pad Chi 114 a of a	$\begin{aligned} & \mathrm{mm} \times 4.90 \\ & \text { center } \\ & \text { center } \\ & \pm 10 \mu \mathrm{~m} \times 1 \\ & \text { bonding pas } \end{aligned}$	mm 14 ± 10	Unit: $\mu \mathrm{m}$) inate
No.	Pad Name	X	Y	No.	Pad Name	X	Y	Pad No.	Pad Name	X	Y
1	SEG22	-2100	2313	28	V3	-941	-2290	55	COM9	2313	539
2	SEG21	-2280	2313	29	V4	-623	-2290	56	COM10	2313	755
3	SEG20	-2313	2089	30	V5	-304	-2290	57	COM11	2313	970
4	SEG19	-2313	1833	31	CL1	-48	-2290	58	COM12	2313	1186
5	SEG18	-2313	1617	32	CL2	142	-2290	59	COM13	2313	1401
6	SEG17	-2313	1401	33	V_{CC}	309	-2290	60	COM14	2313	1617
7	SEG16	-2313	1186	34	M	475	-2290	61	COM15	2313	1833
8	SEG15	-2313	970	35	D	665	-2290	62	COM16	2313	2095
9	SEG14	-2313	755	36	RS	832	-2290	63	SEG40	2296	2313
10	SEG13	-2313	539	37	$\mathrm{R} \bar{W}$	1022	-2290	64	SEG39	2100	2313
11	SEG12	-2313	323	38	E	1204	-2290	65	SEG38	1617	2313
12	SEG11	-2313	108	39	DBO	1454	-2290	66	SEG37	1401	2313
13	SEG10	-2313	-108	40	DB1	1684	-2290	67	SEG36	1186	2313
14	SEG9	-2313	-323	41	DB2	2070	-2290	68	SEG35	970	2313
15	SEG8	-2313	-539	42	DB3	2260	-2290	69	SEG34	755	2313
16	SEG7	-2313	-755	43	DB4	2290	-2099	70	SEG33	539	2313
17	SEG6	-2313	-970	44	DB5	2290	-1883	71	SEG32	323	2313
18	SEG5	-2313	-1186	45	DB6	2290	-1667	72	SEG31	108	2313
19	SEG4	-2313	-1401	46	DB7	2290	-1452	73	SEG30	-108	2313
20	SEG3	-2313	-1617	47	COM1	2313	-1186	74	SEG29	-323	2313
21	SEG2	-2313	-1833	48	COM2	2313	-970	75	SEG28	-539	2313
22	SEG1	-2313	-2073	49	COM3	2313	-755	76	SEG27	-755	2313
23	GND	-2280	-2290	50	COM4	2313	-539	77	SEG26	-970	2313
24	OSC1	-2080	-2290	51	COM5	2313	-323	78	SEG25	-1186	2313
25	OSC2	-1749	-2290	52	COM6	2313	-108	79	SEG24	-1401	2313
26	V1	-1550	-2290	53	COM7	2313	108	80	SEG23	-1617	2313
27	V 2	-1268	-2290	54	COM8	2313	323				

Figure 7 HCD44780U***

Chip Shipment Products

- HCD66702RA00, HCD66702RA00L

						Chip Size (XXY) Coordinate Origin Pad Size (XxY)		$\begin{aligned} & : 5.20 \times 5.20 \mathrm{~mm} \\ & : \text { Pad Center } \\ & : \text { Chip Center } \\ & : 90 \times 90 \mu \mathrm{~m} \end{aligned}$		【Unit : $\mu \mathrm{m}$ 】	
Pad	Function	Coordin	inate	Pa	Function	Coordi	inate	Pad		Coordi	inate
No	Function	X	Y	No		X	Y	No		X	Y
1	SEG34	-2475	2350	35	GND	-2475	-2180	69	COM7	1990	-2475
2	SEG33	-2475	2205	36	OSC2	-2475	-2325	70	COM8	2125	-2475
3	SEG32	-2475	2065	37	OSC1	-2445	-2475	71	COM9	2265	-2475
4	SEG31	-2475	1925	38	VCC	-2305	-2475	72	COM10	2410	-2475
5	SEG30	-2475	1790	39	VCC	-2165	-2475	73	COM11	2475	-2290
6	SEG29	-2475	1655	40	V1	-2025	-2475	74	COM12	2475	-2145
7	SEG28	-2475	1525	41	V2	-1875	-2475	75	COM13	2475	-2005
8	SEG27	-2475	1395	42	V3	-1745	-2475	76	COM14	2475	-1865
9	SEG26	-2475	1265	43	V4	-1595	-2475	77	COM15	2475	-1730
10	SEG25	-2475	1135	44	V5	-1465	-2475	78	COM16	2475	-1595
11	SEG24	-2475	1005	45	CL1	-1335	-2475	79	SEG100	2475	-1465
12	SEG23	-2475	875	46	CL2	-1185	-2475	80	SEG99	2475	-1335
13	SEG22	-2475	745	47	M	-1055	-2475	81	SEG98	2475	-1205
14	SEG21	-2475	615	48	D	-905	-2475	82	SEG97	2475	-1075
15	SEG20	-2475	485	49	EXT	-775	-2475	83	SEG96	2475	-945
16	SEG19	-2475	355	50	TEST	-625	-2475	84	SEG95	2475	-815
17	SEG18	-2475	225	51	GND	-495	-2475	85	SEG94	2475	-685
18	SEG17	-2475	95	52	RS	-345	-2475	86	SEG93	2475	-555
19	SEG16	-2475	-35	53	RW	-195	-2475	87	SEG92	2475	-425
20	SEG15	-2475	-165	54	E	-45	-2475	88	SEG91	2475	-295
21	SEG14	-2475	-295	55	DB0	85	-2475	89	SEG90	2475	-165
22	SEG13	-2475	-425	56	DB1	235	-2475	90	SEG89	2475	-35
23	SEG12	-2475	-555	57	DB2	365	-2475	91	SEG88	2475	95
24	SEG11	-2475	-685	58	DB3	515	-2475	92	SEG87	2475	225
25	SEG10	-2475	-815	59	DB4	645	-2475	93	SEG86	2475	355
26	SEG9	-2475	-945	60	DB5	795	-2475	94	SEG85	2475	485
27	SEG8	-2475	-1075	61	DB6	925	-2475	95	SEG84	2475	615
28	SEG7	-2475	-1205	62	DB7	1075	-2475	96	SEG83	2475	745
29	SEG6	-2475	-1335	63	COM1	1205	-2475	97	SEG82	2475	875
30	SEG5	-2475	-1465	64	COM2	1335	-2475	98	SEG81	2475	1005
31	SEG4	-2475	-1600	65	COM3	1465	-2475	99	SEG80	2475	1135
32	SEG3	-2475	-1735	66	COM4	1595	-2475	100	SEG79	2475	1265
33	SEG2	-2475	-1870	67	COM5	1725	-2475	101	SEG78	2475	1395
34	SEG1	-2475	-2010	68	COM6	1855	-2475	102	SEG77	2475	1525

Chip Shipment Products

- HCD66702RA00, HCD66702RA00L

Pad Function Coordinate X Y				$\begin{array}{\|l\|} \hline \mathrm{Pad} \\ \mathrm{No} \\ \hline \end{array}$	Function					[Unit: $\mu \mathrm{m}$ 】		
				Coordinate		$\begin{array}{\|l\|} \mathrm{Pad} \\ \mathrm{No} \end{array}$	Function	Coordinate				
No		X	Y					X	Y	X	Y	
103	SEG76	2475	1655		117	SEG62	1235	2475	131	SEG48	-585	2475
104	SEG75	2475	1790	118	SEG61	1105	2475	132	SEG47	-715	2475	
105	SEG74	2475	1925	119	SEG60	975	2475	133	SEG46	-845	2475	
106	SEG73	2475	2065	120	SEG59	845	2475	134	SEG45	-975	2475	
107	SEG72	2475	2205	121	SEG58	715	2475	135	SEG44	-1105	2475	
108	SEG71	2475	2350	122	SEG57	585	2475	136	SEG43	-1235	2475	
109	SEG70	2320	2475	123	SEG56	455	2475	137	SEG42	-1365	2475	
110	SEG69	2175	2475	124	SEG55	325	2475	138	SEG41	-1495	2475	
111	SEG68	2035	2475	125	SEG54	195	2475	139	SEG40	-1625	2475	
112	SEG67	1895	2475	126	SEG53	65	2475	140	SEG39	-1760	2475	
113	SEG66	1760	2475	127	SEG52	-65	2475	141	SEG38	-1895	2475	
114	SEG65	1625	2475	128	SEG51	-195	2475	142	SEG37	-2035	2475	
115	SEG64	1495	2475	129	SEG50	-325	2475	143	SEG36	-2175	2475	
116	SEG63	1365	2475	130	SEG49	-455	2475	144	SEG35	-2320	2475	

Figure 8 HCD66702RA00, HCD66702RA00L (2)

Chip Shipment Products

- HCD66702R***, HCD66702R***L

						Chip Size (XxY) Coordinate Origin Pad Size (XxY)			$20 \times 5.20 \mathrm{~mm}$ d Center ip Center $\times 90 \mu \mathrm{~m}$	【Unit : $\mu \mathrm{m}$ 】	
Pad		Coordin	nate	Pad		Coordi	inate	Pad		Coordi	dinate
No		X	Y	No		X	Y	No		X	Y
1	SEG34	-2475	2350	35	GND	-2475	-2180	69	COM7	1990	-2475
2	SEG33	-2475	2205	36	OSC2	-2475	-2325	70	COM8	2125	-2475
3	SEG32	-2475	2065	37	OSC1	-2445	-2475	71	COM9	2265	-2475
4	SEG31	-2475	1925	38	VCC	-2305	-2475	72	COM10	2410	-2475
5	SEG30	-2475	1790	39	VCC	-2165	-2475	73	COM11	2475	-2290
6	SEG29	-2475	1655	40	V1	-2025	-2475	74	COM12	2475	-2145
7	SEG28	-2475	1525	41	V2	-1875	-2475	75	COM13	2475	-2005
8	SEG27	-2475	1395	42	V3	-1745	-2475	76	COM14	2475	-1865
9	SEG26	-2475	1265	43	V4	-1595	-2475	77	COM15	2475	-1730
10	SEG25	-2475	1135	44	V5	-1465	-2475	78	COM16	2475	-1595
11	SEG24	-2475	1005	45	CL1	-1335	-2475	79	SEG100	2475	-1465
12	SEG23	-2475	875	46	CL2	-1185	-2475	80	SEG99	2475	-1335
13	SEG22	-2475	745	47	M	-1055	-2475	81	SEG98	2475	-1205
14	SEG21	-2475	615	48	D	-905	-2475	82	SEG97	2475	-1075
15	SEG20	-2475	485	49	EXT	-775	-2475	83	SEG96	2475	-945
16	SEG19	-2475	355	50	TEST	-625	-2475	84	SEG95	2475	-815
17	SEG18	-2475	225	51	GND	-495	-2475	85	SEG94	2475	-685
18	SEG17	-2475	95	52	RS	-345	-2475	86	SEG93	2475	-555
19	SEG16	-2475	-35	53	R/W	-195	-2475	87	SEG92	2475	-425
20	SEG15	-2475	-165	54	E	-45	-2475	88	SEG91	2475	-295
21	SEG14	-2475	-295	55	DBO	85	-2475	89	SEG90	2475	-165
22	SEG13	-2475	-425	56	DB1	235	-2475	90	SEG89	2475	-35
23	SEG12	-2475	-555	57	DB2	365	-2475	91	SEG88	2475	95
24	SEG11	-2475	-685	58	DB3	515	-2475	92	SEG87	2475	225
25	SEG10	-2475	-815	59	DB4	645	-2475	93	SEG86	2475	355
26	SEG9	-2475	-945	60	DB5	795	-2475	94	SEG85	2475	485
27	SEG8	-2475	-1075	61	DB6	925	-2475	95	SEG84	2475	615
28	SEG7	-2475	-1205	62	DB7	1075	-2475	96	SEG83	2475	745
29	SEG6	-2475	-1335	63	COM1	1205	-2475	97	SEG82	2475	875
30	SEG5	-2475	-1465	64	COM2	1335	-2475	98	SEG81	2475	1005
31	SEG4	-2475	-1600	65	COM3	1465	-2475	99	SEG80	2475	1135
32	SEG3	-2475	-1735	66	COM4	1595	-2475	100	SEG79	2475	1265
33	SEG2	-2475	-1870	67	COM5	1725	-2475	101	SEG78	2475	1395
34	SEG1	-2475	-2010	68	COM6	1855	-2475	102	SEG77	2475	1525

Figure 9 HCD66702R***, HCD66702R***L (1)

Chip Shipment Products

- HCD66702R***, HCD66702R***

$\begin{array}{\|l\|} \hline \text { Pad } \\ \text { No } \\ \hline \end{array}$	Function								[Unit: $\mu \mathrm{m}$ 】		
		Coordinate		$\begin{gathered} \mathrm{Pad} \\ \mathrm{No} \end{gathered}$	Function	Coordinate		PadNo	Function	Coordinate	
		X	Y			X	Y			X	Y
103	SEG76	2475	1655	117	SEG62	1235	2475	131	SEG48	-585	2475
104	SEG75	2475	1790	118	SEG61	1105	2475	132	SEG47	-715	2475
105	SEG74	2475	1925	119	SEG60	975	2475	133	SEG46	-845	2475
106	SEG73	2475	2065	120	SEG59	845	2475	134	SEG45	-975	2475
107	SEG72	2475	2205	121	SEG58	715	2475	135	SEG44	-1105	2475
108	SEG71	2475	2350	122	SEG57	585	2475	136	SEG43	-1235	2475
109	SEG70	2320	2475	123	SEG56	455	2475	137	SEG42	-1365	2475
110	SEG69	2175	2475	124	SEG55	325	2475	138	SEG41	-1495	2475
111	SEG68	2035	2475	125	SEG54	195	2475	139	SEG40	-1625	2475
112	SEG67	1895	2475	126	SEG53	65	2475	140	SEG39	-1760	2475
113	SEG66	1760	2475	127	SEG52	-65	2475	141	SEG38	-1895	2475
114	SEG65	1625	2475	128	SEG51	-195	2475	142	SEG37	-2035	2475
115	SEG64	1495	2475	129	SEG50	-325	2475	143	SEG36	-2175	2475
116	SEG63	1365	2475	130	SEG49	-455	2475	144	SEG35	-2320	2475

Figure 9 HCD66702R***, HCD66702R***L (2)

- HCD66710A00

Figure 10 HCD66710A00

Chip Shipment Products

- HCD66710***

Pad	2 Y 29	Coo	 manar dinate	arom Type 0000 Pad		79 52 000	Chip size ($\mathrm{X} \times \mathrm{Y}$) Coordinate: Origin: Pad size ($X \times Y$):		$\begin{aligned} & 5.36 \mathrm{~mm} \times 6.06 \mathrm{~m} \\ & \text { Pad center } \\ & \text { Chip center } \\ & 100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m} \end{aligned}$		nit: $\mu \mathrm{m}$) inate
No.	Pad Name	X	Y	No.	Pad Name	X	Y	No.	Pad Name	X	Y
1	SEG27	-2495	2910	35	COM20	-1102	-2910	68	DB4	2675	501
2	SEG28	-2695	2730	36	COM19	-899	-2910	69	DB5	2675	700
3	SEG29	-2695	2499	37	COM18	-700	-2910	70	DB6	2675	900
4	SEG30	-2695	2300	38	COM17	-500	-2910	71	DB7	2675	1099
5	SEG31	-2695	2100	39	COM8	-301	-2910	72	EXT	2675	1299
6	SEG32	-2695	1901	40	COM7	-101	-2910	73	TEST	2675	1502
7	SEG33	-2695	1698	41	COM6	99	-2910	74	$\mathrm{V}_{\text {cc }}$	2695	1698
8	SEG34	-2695	1498	42	COM5	302	-2910	75	SEG1	2695	1901
9	SEG35	-2695	1295	43	COM4	502	-2910	76	SEG2	2695	2104
10	SEG36	-2695	1099	44	COM3	698	-2910	77	SEG3	2695	2300
11	SEG37	-2695	900	45	COM2	887	-2910	78	SEG4	2695	2503
12	SEG38	-2695	700	46	COM1	1077	-2910	79	SEG5	2695	2730
13	SEG39	-2695	501	47	COM33	1266	-2910	80	SEG6	2495	2910
14	SEG40	-2695	301	48	V1	1488	-2910	81	SEG7	2049	2910
15	COM9	-2695	98	49	V2	1710	-2910	82	SEG8	1699	2910
16	COM10	-2695	-113	50	V3	2063	-2910	83	SEG9	1499	2910
17	COM11	-2695	-302	51	V4	2458	-2910	84	SEG10	1300	2910
18	COM12	-2695	-501	52	V5	2660	-2731	85	SEG11	1100	2910
19	COM13	-2695	-701	53	V50UT3	2660	-2500	86	SEG12	901	2910
20	COM14	-2695	-900	54	V50UT2	2660	-2300	87	SEG13	701	2910
21	COM15	-2695	-1100	55	GND	2640	-2090	88	SEG14	502	2910
22	COM16	-2695	-1303	56	C1	2650	-1887	89	SEG15	299	2910
23	COM25	-2695	-1502	57	C2	2675	-1702	90	SEG16	99	2910
24	COM26	-2695	-1702	58	VCl	2675	-1502	91	SEG17	-101	2910
25	COM27	-2695	-1901	59	OSC1	2675	-1303	92	SEG18	-301	2910
26	COM28	-2695	-2101	60	OSC2	2675	-1103	93	SEG19	-500	2910
27	COM29	-2695	-2300	61	RS	2675	-900	94	SEG20	-700	2910
28	COM30	-2695	-2500	62	RW	2675	-701	95	SEG21	-899	2910
29	COM31	-2695	-2731	63	E	2675	-501	96	SEG22	-1099	2910
30	COM32	-2495	-2910	64	DB0	2675	-302	97	SEG23	-1302	2910
31	COM24	-2051	-2910	65	DB1	2675	-99	98	SEG24	-1501	2910
32	COM23	-1701	-2910	66	DB2	2675	98	99	SEG25	-1701	2910
33	COM22	-1498	-2910	67	DB3	2675	301	100	SEG26	-2051	2910
34	COM21	-1302	-2910								

Figure 11 HCD66710***

Chip Shipment Products

- HD61202D

						Chip Size (XXY) Coordinate Origin Pad Size (XXY)		$\begin{aligned} & : 6.08 \times 5.92 \mathrm{~mm} \\ & : \text { Pad Center } \\ & : \text { Chip Center } \\ & : 100 \times 100 \mu \mathrm{~m} \end{aligned}$		【 Unit : $\mu \mathrm{m}$ 】	
Pad	F	Coordi	dinate	Pa		Coordi	inate			Coord	ate
No	Function	X	Y	No	unction	X	Y	No	U	X	Y
1	ADC	-2674	2806	35	Y38	-1174	-2806	69	Y4	2882	610
2	M	-2882	2612	36	Y37	-962	-2806	70	Y3	2882	826
3	VCC	-2882	2400	37	Y36	-750	-2806	71	Y2	2882	1042
4	V4R	-2882	2213	38	Y35	-538	-2806	72	Y1	2882	1258
5	V3R	-2882	2030	39	Y34	-326	-2806	73	VEE1	2882	1490
6	V2R	-2882	1838	40	Y33	-114	-2806	74	V1L	2882	1670
7	V1R	-2882	1655	41	Y32	98	-2806	75	V2L	2882	1847
8	VEE2	-2882	1478	42	Y31	314	-2806	76	V3L	2882	2030
9	Y64	-2882	1258	43	Y30	530	-2806	77	V4L	2882	2213
10	Y63	-2882	1042	44	Y29	746	-2806	78	GND	2882	2400
11	Y62	-2882	826	45	Y28	962	-2806	79	DBO	2882	2618
12	Y61	-2882	610	46	Y27	1178	-2806	80	DB1	2514	2806
13	Y60	-2882	394	47	Y26	1394	-2806	81	DB2	2262	2806
14	Y59	-2882	178	48	Y25	1610	-2806	82	DB3	1922	2806
15	Y58	-2882	-38	49	Y24	1826	-2806	83	DB4	1670	2806
16	Y57	-2882	-254	50	Y23	2042	-2806	84	DB5	1330	2806
17	Y56	-2882	-470	51	Y22	2378	-2806	85	DB6	1078	2806
18	Y55	-2882	-686	52	Y21	2590	-2806	86	DB7	738	2806
19	Y54	-2882	-902	53	Y20	2802	-2806	87			
20	Y53	-2882	-1118	54	Y19	2882	-2630	88			
21	Y52	-2882	-1334	55	Y18	2882	-2414	89			
22	Y51	-2882	-1550	56	Y17	2882	-2198	90	CS3	426	2806
23	Y50	-2882	-1766	57	Y16	2882	-1982	91	CS2	126	2806
24	Y49	-2882	-1982	58	Y15	2882	-1766	92	CS1	-134	2806
25	Y48	-2882	-2198	59	Y14	2882	-1550	93	RST	-434	2806
26	Y47	-2882	-2414	60	Y13	2882	-1334	94	RW	-694	2806
27	Y46	-2882	-2630	61	Y12	2882	-1118	95	DI	-994	2806
28	Y45	-2802	-2806	62	Y11	2882	-902	96	CL	-1254	2806
29	Y44	-2586	-2806	63	Y10	2882	-686	97	C2	-1554	2806
30	Y43	-2370	-2806	64	Y9	2882	-470	98	C1	-1814	2806
31	Y42	-2034	-2806	65	Y8	2882	-254	99	E	-2114	2806
32	Y41	-1818	-2806	66	Y7	2882	-38	100	FRM	-2374	2806
33	Y40	-1602	-2806	67	Y6	2882	178				
34	Y39	-1386	-2806	68	Y5	2882	394				

Chip Shipment Products

- HD61203D

						Chip Size (XxY) Coordinate Origin Pad Size (XxY)		:	$18 \times 5.18 \mathrm{ml}$ d Center ip Center $0 \times 100 \mu \mathrm{~m}$	【Unit : $\mu \mathrm{m}$ 】	
Pad	Function	Coordi	inate	Pad	Function	Coordi	inate	Pad	Function	Coordinate	
No	Function	X	Y	No	n	X	Y	No		X	Y
1	X22	-1928	2440	35	R	-904	-2440	69	X54	2440	737
2	X21	-2103	2440	36				70	X53	2440	912
3	X20	-2278	2440	37	CR	-572	-2440	71	X52	2440	1087
4	$\times 19$	-2440	2224	38				72	X51	2440	1262
5	X18	-2440	2049	39	SHL	-372	-2440	73	$\times 50$	2440	1437
6	X17	-2440	1874	40	GND	-172	-2440	74	X49	2440	1612
7	X16	-2440	1699	41				75	X48	2440	1787
8	X15	-2440	1524	42	MS	16	-2440	76	X47	2440	1962
9	X14	-2440	1349	43	CK2	344	-2440	77	X46	2440	2137
10	X13	-2440	1174	44	CK1	644	-2440	78	X45	2440	2312
11	X12	-2440	999	45				79	X44	2265	2440
12	$\times 11$	-2440	824	46	FRM	908	-2440	80	X43	2090	2440
13	X10	-2440	649	47	M	1232	-2440	81	X42	1809	2440
14	X9	-2440	474	48				82	X41	1634	2440
15	X8	-2440	299	49	FCS	1568	-2440	83	X40	1459	2440
16	X7	-2440	124	50	DR	1868	-2440	84	X39	1284	2440
17	X6	-2440	-59	51				85	X38	1102	2440
18	X5	-2440	-234	52	CL2	2268	-2440	86	X37	922	2440
19	X4	-2440	-409	53				87	X36	742	2440
20	X3	-2440	-587	54	V1R	2440	-1980	88	X35	562	2440
21	X2	-2440	-762	55	V2R	2440	-1804	89	X34	387	2440
22	X1	-2440	-937	56	V5R	2440	- 1549	90	X33	212	2440
23	VEE1	-2440	-1112	57	V6R	2440	-1374	91	X32	-55	2440
24	V6L	-2440	-1287	58	VEE2	2440	-1199	92	X31	-230	2440
25	V5L	-2440	-1462	59	X64	2440	-1024	93	X30	-405	2440
26	V2L	-2440	-1701	60	X63	2440	-849	94	X29	-580	2440
27	V1L	-2440	-1876	61	X62	2440	-674	95	$\times 28$	-767	2440
28	VCC	-2440	-2052	62	X61	2440	-499	96	$\times 27$	-942	2440
29	DL	-2248	-2440	63	X60	2440	-324	97	X26	-1117	2440
30	FS	-1944	-2440	64	X59	2440	-149	98	$\times 25$	-1292	2440
31	DS1	-1736	-2440	65	X58	2440	26	99	X24	-1483	2440
32	DS2	-1520	-2440	66	X57	2440	212	100	$\times 23$	-1658	2440
33	C	-1192	-2440	67	X56	2440	387				
34				68	X55	2440	562				

Chip Shipment Products

- HD66100D

						Chip Size (XxY) Coordinate Origin Pad Size (XxY)		$\begin{aligned} & : 4.50 \times 4.50 \mathrm{~mm} \\ & : \text { Pad Center } \\ & : \text { Chip Center } \\ & : 100 \times 100 \mu \mathrm{~m} \end{aligned}$		[Unit : $\mu \mathrm{m}$ 】	
Pad		Coordi	inate	Pad		Coordi	inate	Pad		Coordi	ate
No	Function	X	Y	No	Function	X	Y	No		X	Y
1	Y30	-1725	2100	35	V4	-880	-2100	69	Y62	2100	560
2	Y29	-1925	2100	36	GND	-720	-2100	70	Y61	2100	720
3	Y28	-2100	2060	37	CL1	-470	-2100	71	Y60	2100	880
4	Y27	-2100	1865	38				72	Y59	2100	1040
5	Y26	-2100	1690	39	SHL	-270	-2100	73	Y58	2100	1200
6	Y25	-2100	1520	40	CL2	-70	-2100	74	Y57	2100	1360
7	Y24	-2100	1360	41	DI	130	-2100	75	Y56	2100	1520
8	Y23	-2100	1200	42	DO	350	-2100	76	Y55	2100	1690
9	Y22	-2100	1040	43				77	Y54	2100	1865
10	Y21	-2100	880	44	M	620	-2100	78	Y53	2100	2060
11	Y20	-2100	720	45				79	Y52	1925	2100
12	Y19	-2100	560	46	VCC	980	-2100	80	Y51	1725	2100
13	Y18	-2100	400	47				81	Y50	1520	2100
14	Y17	-2100	240	48				82	Y49	1360	2100
15	Y16	-2100	80	49				83	Y48	1200	2100
16	Y15	-2100	-80	50				84	Y47	1040	2100
17	Y14	-2100	-240	51	Y80	1725	-2100	85	Y46	880	2100
18	Y13	-2100	-400	52	Y79	1925	-2100	86	Y45	720	2100
19	Y12	-2100	-560	53	Y78	2100	-2060	87	Y44	560	2100
20	Y11	-2100	-720	54	Y77	2100	-1865	88	Y43	400	2100
21	Y10	-2100	-880	55	Y76	2100	-1690	89	Y42	240	2100
22	Y9	-2100	-1040	56	Y75	2100	-1520	90	Y41	80	2100
23	Y8	-2100	-1200	57	Y74	2100	-1360	91	Y40	-80	2100
24	Y7	-2100	-1360	58	Y73	2100	-1200	92	Y39	-240	2100
25	Y6	-2100	-1520	59	Y72	2100	-1040	93	Y38	-400	2100
26	Y5	-2100	-1690	60	Y71	2100	-880	94	Y37	-560	2100
27	Y4	-2100	-1865	61	Y70	2100	-720	95	Y36	-720	2100
28	Y3	-2100	-2060	62	Y69	2100	-560	96	Y35	-880	2100
29	Y2	-1925	-2100	63	Y68	2100	-400	97	Y34	-1040	2100
30	Y1	-1725	-2100	64	Y67	2100	-240	98	Y33	-1200	2100
31	VEE	-1520	-2100	65	Y66	2100	-80	99	Y32	-1360	2100
32	V1	-1360	-2100	66	Y65	2100	- 80	100	Y31	-1520	2100
33	V2	- 1200	-2100	67	Y64	2100	240				
34	V3	-1040	-2100	68	Y63	2100	- 400				

Chip Shipment Products

- HD66106D

						Chip Size (XXY) Coordinate Origin Pad Size (XxY)		: $4.84 \times 5.16 \mathrm{~mm}$: Pad Center : Chip Center : $100 \times 100 \mu \mathrm{~m}$		【Unit : $\mu \mathrm{m}$ 】	
Pad		Coordi	inate	Pa		Coordi	inate	Pad		Coord	
No	unction	X	Y	No		X	Y	No		X	Y
1	Y30	-2025	2430	35	V4	-963	-2430	69	Y62	2270	613
2	Y29	-2210	2430	36	VLCD2	-780	-2430	70	Y61	2270	788
3	Y28	-2270	2188	37	GND	-604	-2430	71	Y60	2270	963
4	Y27	-2270	2013	38	CL1	-428	-2430	72	Y59	2270	1138
5	Y26	-2270	1838	39	SHL	-235	-2430	73	Y58	2270	1313
6	Y25	-2270	1663	40	CL2	-44	-2430	74	Y57	2270	1488
7	Y24	-2270	1488	41	CH1	148	-2430	75	Y56	2270	1663
8	Y23	-2270	1313	42	M	341	-2430	76	Y55	2270	1838
9	Y22	-2270	1138	43	D3	532	-2430	77	Y54	2270	2013
10	Y21	-2270	963	44	D2	725	-2430	78	Y53	2270	2188
11	Y20	-2270	788	45	D1	916	-2430	79	Y52	2210	2430
12	Y19	-2270	613	46	D0	1109	-2430	80	Y51	2025	2430
13	Y18	-2270	438	47	E	1300	-2430	81	Y50	1663	2430
14	Y17	-2270	263	48	CAR	1484	-2430	82	Y49	1488	2430
15	Y16	-2270	88	49	VCC	1668	-2430	83	Y48	1313	2430
16	Y15	-2270	-88					84	Y47	1138	2430
17	Y14	-2270	-263	51	Y80	2025	-2430	85	Y46	963	2430
18	Y13	-2270	-438	52	Y79	2210	-2430	86	Y45	788	2430
19	Y12	-2270	-613	53	Y78	2270	-2188	87	Y44	613	2430
20	Y11	-2270	-788	54	Y77	2270	-2013	88	Y43	438	2430
21	Y10	-2270	-963	55	Y76	2270	-1838	89	Y42	263	2430
22	Y9	-2270	-1138	56	Y75	2270	-1663	90	Y41	88	2430
23	Y8	-2270	-1313	57	Y74	2270	-1488	91	Y40	-88	2430
24	Y7	-2270	-1488	58	Y73	2270	-1313	92	Y39	-263	2430
25	Y6	-2270	-1663	59	Y72	2270	-1138	93	Y38	-438	2430
26	Y5	-2270	-1838	60	Y71	2270	-963	94	Y37	-613	2430
27	Y4	-2270	-2013	61	Y70	2270	-788	95	Y36	-788	2430
28	Y3	-2270	-2188	62	Y69	2270	-613	96	Y35	-963	2430
29	Y2	-2210	-2430	63	Y68	2270	-438	97	Y34	-1138	2430
30	Y1	-2025	-2430	64	Y67	2270	-263	98	Y33	-1313	2430
31	VLCD1	-1663	-2430	65	Y66	2270	-88	99	Y32	-1488	2430
32	V1	-1488	-2430	66	Y65	2270	88	100	Y31	-1663	2430
33	V2	-1313	-2430	67	Y64	2270	263				
34	V3	-1138	-2430	68	Y63	2270	438				

Chip Shipment Products

- HCD66204

						Chip Size (XxY) Coordinate Origin Pad Size (XxY)		$\begin{aligned} & : 3.80 \times 4.60 \mathrm{~mm} \\ & : \text { Pad Center } \\ & : \text { Chip Center } \\ & : 100 \times 100 \mu \mathrm{~m} \end{aligned}$		[Unit: $\mu \mathrm{m}$ 】	
Pad	Function	Coordi	inate	Pad	Function	Coordi	inate	Pad	Function	Coordi	
No	Function	X	Y	No	Function	X	Y	No		X	Y
1	Y51	-1748	2150	34	V4	-952	-2150	67	Y20	1750	735
2	Y52	-1750	1940	35	VEE	-812	-2150	68	Y21	1750	880
3	Y53	-1750	1770	36	M	-652	-2150	69	Y22	1750	1025
4	Y54	-1750	1615	37	CL1	-438	-2150	70	Y23	1750	1170
5	Y55	-1750	1470	38	GND	-250	-2150	71	Y24	1750	1315
6	Y56	-1750	1325	39	DISPOFF	-82	-2150	72	Y25	1750	1460
7	Y57	-1750	1180	40	VCC	98	-2150	73	Y26	1750	1605
8	Y58	-1750	1035	41	SHL	278	-2150	74	Y27	1750	1750
9	Y59	-1750	890	42	D3	426	-2150	75	Y28	1750	1900
10	Y60	-1750	745	43	D2	640	-2150	76	Y29	1750	2120
11	Y61	-1750	600	44	D1	788	-2150	77	Y30	1610	2150
12	Y62	-1750	455	45	D0	1002	-2150	78	Y31	1432	2150
13	Y63	-1750	310	46	CL2	1150	-2150	79	Y32	1273	2150
14	Y64	-1750	165	47	CAR	1458	-2150	80	Y33	1114	2150
15	Y65	-1750	20	48	Y1	1750	-2150	81	Y34	955	2150
16	Y66	-1750	-125	49	Y2	1750	-1930	82	Y35	796	2150
17	Y67	-1750	-270	50	Y3	1750	-1760	83	Y36	637	2150
18	Y68	-1750	-415	51	Y4	1750	-1605	84	Y37	478	2150
19	Y69	-1750	-560	52	Y5	1750	-1460	85	Y38	319	2150
20	Y70	-1750	-705	53	Y6	1750	-1315	86	Y39	160	2150
21	Y71	-1750	-850	54	Y7	1750	-1170	87	Y40	1	2150
22	Y72	-1750	-995	55	Y8	1750	-1025	88	Y41	-158	2150
23	Y73	-1750	-1140	56	Y9	1750	-860	89	Y42	-317	2150
24	Y74	-1750	-1285	57	Y10	1750	-715	90	Y43	-476	2150
25	Y75	-1750	-1430	58	Y11	1750	-570	91	Y44	-635	2150
26	Y76	-1750	-1575	59	Y12	1750	-425	92	Y45	-794	2150
27	Y77	-1750	-1720	60	Y13	1750	-280	93	Y46	-953	2150
28	Y78	-1750	-1865	61	Y14	1750	-135	94	Y47	-1112	2150
29	Y79	-1750	-2110	62	Y15	1750	10	95	Y48	-1271	2150
30	Y80	-1610	-2150	63	Y16	1750	155	96	Y49	-1430	2150
31	E	-1434	-2150	64	Y17	1750	300	97	Y50	-1589	2150
32	V1	-1232	-2150	65	Y18	1750	445				
33	V3	-1092	-2150	66	Y19	1750	590				

Figure 16 HCD66204

Chip Shipment Products

- HCD66205

						Chip Size (XXY) Coordinate Origin Pad Size (XxY)		$\begin{aligned} & : 3.80 \times 4.60 \mathrm{~mm} \\ & : \text { Pad Center } \\ & : \text { Chip Center } \\ & : 100 \times 100 \mu \mathrm{~m} \end{aligned}$		【Unit : $\mu \mathrm{m}$ 】	
Pad	Fun	Coordi	inate	Pad	Function	Coordi	inate	Pad		Coord	ate
No		X	Y	No		X	Y	No		X	Y
1	X51	-1748	2150	32	VEE	-1042	-2150	63	X21	1750	880
2	$\times 52$	-1750	1940	33	V5	-842	-2150	64	X22	1750	1025
3	X53	-1750	1770	34	V6	-644	-2150	65	X23	1750	1170
4	X54	-1750	1615	35	V1	-444	-2150	66	$\times 24$	1750	1315
5	X55	-1750	1470	35	DISPOFF	-222	-2150	67	$\times 25$	1750	1460
6	X56	-1750	1325	37	VCC	-16	-2150	68	X26	1750	1605
7	X57	-1750	1180	38	SHL	206	-2150	69	X27	1750	1750
8	X58	-1750	1035	39	GND	474	-2150	70	X28	1750	1900
9	X59	-1750	890	40	M	746	-2150	71	$\times 29$	1750	2120
10	X60	-1750	745	41	CL	1010	-2150	72	X30	1610	2150
11	X61	-1750	600	42	D1	1274	-2150	73	X31	1432	2150
12	X62	-1750	455	43	X1	1750	-2150	74	X32	1273	2150
13	X63	-1750	310	44	X2	1750	-1930	75	X33	1114	2150
14	X64	-1750	165	45	X3	1750	-1760	76	X34	955	2150
15	X65	-1750	20	46	X4	1750	-1605	77	X35	796	2150
16	X66	-1750	-125	47	X5	1750	-1460	78	X36	637	2150
17	X67	-1750	-270	48	X6	1750	-1315	79	X37	478	2150
18	X68	-1750	-415	49	X7	1750	-1170	80	X38	319	2150
19	X69	-1750	-560	50	X8	1750	-1025	81	X39	160	2150
20	X70	-1750	-705	51	X9	1750	-860	82	X40	1	2150
21	X71	-1750	-850	52	X10	1750	-715	83	X41	-158	2150
22	X72	-1750	-995	53	X11	1750	-570	84	X42	-317	2150
23	X73	-1750	-1140	54	X12	1750	-425	85	X43	-476	2150
24	X74	-1750	-1285	55	X13	1750	-280	86	X44	-635	2150
25	X75	-1750	-1430	56	X14	1750	-135	87	X45	-794	2150
26	X76	-1750	-1575	57	X15	1750	10	88	X46	-953	2150
27	X77	-1750	-1720	58	$\times 16$	1750	155	89	X47	-1112	2150
28	X78	-1750	-1865	59	X17	1750	300	90	X48	-1271	2150
29	X79	-1750	-2110	60	$\times 18$	1750	445	91	X49	-1430	2150
30	X80	-1610	-2150	61	X19	1750	590	92	X50	-1589	2150
31	D0	-1294	-2150	62	X20	1750	735				

Figure 17 HCD66205

Chip Shipment Products

- HCD66204L

						Chip Size (XXY) Coordinate Origin Pad Size (XxY)		$\begin{aligned} & : 3.80 \times 4.60 \mathrm{~mm} \\ & : \text { Pad Center } \\ & : \text { Chip Center } \\ & : 100 \times 100 \mu \mathrm{~m} \end{aligned}$		【Unit : $\mu \mathrm{m}$ 】	
Pad	Fús	Coordi	dinate	Pa	Function	Coordi	inate	Pad	Function	Coord	ate
No	unction	X	Y	No	Function	X	Y	No	Function	X	Y
1	Y51	-1748	2150	34	V4	-952	-2150	67	Y20	1750	735
2	Y52	-1750	1940	35	VEE	-812	-2150	68	Y21	1750	880
3	Y53	- 1750	1770	36	M	-652	-2150	69	Y22	1750	1025
4	Y54	-1750	1615	37	CL1	-438	-2150	70	Y23	1750	1170
5	Y55	-1750	1470	38	GND	-250	-2150	71	Y24	1750	1315
6	Y56	-1750	1325	39	DISPOFF	-82	-2150	72	Y25	1750	1460
7	Y57	-1750	1180	40	VCC	98	-2150	73	Y26	1750	1605
8	Y58	-1750	1035	41	SHL	278	-2150	74	Y27	1750	1750
9	Y59	-1750	890	42	D3	426	-2150	75	Y28	1750	1900
10	Y60	-1750	745	43	D2	640	-2150	76	Y29	1750	2120
11	Y61	-1750	600	44	D1	788	-2150	77	Y30	1610	2150
12	Y62	-1750	455	45	D0	1002	-2150	78	Y31	1432	2150
13	Y63	-1750	310	46	CL2	1150	-2150	79	Y32	1273	2150
14	Y64	-1750	165	47	CAR	1458	-2150	80	Y33	1114	2150
15	Y65	-1750	20	48	Y1	1750	-2150	81	Y34	955	2150
16	Y66	-1750	-125	49	Y2	1750	-1930	82	Y35	796	2150
17	Y67	-1750	-270	50	Y3	1750	-1760	83	Y36	637	2150
18	Y68	-1750	-415	51	Y4	1750	-1605	84	Y37	478	2150
19	Y69	-1750	-560	52	Y5	1750	-1460	85	Y38	319	2150
20	Y70	-1750	-705	53	Y6	1750	-1315	86	Y39	160	2150
21	Y71	-1750	-850	54	Y7	1750	-1170	87	Y40	1	2150
22	Y72	-1750	-995	55	Y8	1750	- 1025	88	Y41	-158	2150
23	Y73	-1750	-1140	56	Y9	1750	-860	89	Y42	-317	2150
24	Y74	-1750	-1285	57	Y10	1750	-715	90	Y43	-476	2150
25	Y75	-1750	-1430	58	Y11	1750	-570	91	Y44	-635	2150
26	Y76	-1750	-1575	59	Y12	1750	-425	92	Y45	-794	2150
27.	Y77	-1750	-1720	60	Y13	1750	-280	93	Y46	-953	2150
28	Y78	-1750	-1865	61	Y14	1750	-135	94	Y47	-1112	2150
29	Y79	-1750	-2110	62	Y15	1750	10	95	Y48	-1271	2150
30	Y80	-1610	-2150	63	Y16	1750	155	96	Y49	-1430	2150
31	E	-1434	-2150	64	Y17	1750	300	97	Y50	-1589	2150
32	V1	-1232	-2150	65	Y18	1750	445				
33	V3	-1092	-2150	66	Y19	1750	590				

Figure 18 HCD66204L

Chip Shipment Products

- HCD66205L

						Chip Size Coordina Origin Pad Size	$e(X x Y)$ ate $(X x Y)$	$: 3.80 \times 4.60 \mathrm{~mm}$: Pad Center : Chip Center : $100 \times 100 \mu \mathrm{~m}$		【Unit : $\mu \mathrm{m}$ 】	
Pad	Fun	Coordi	inate	Pad	Fu	Coordi	inate	Pad		Coordi	ate
No	Function	X	Y	No	Unction	X	Y	No		X	Y
1	X51	-1748	2150	32	VEE	-1042	-2150	63	X21	1750	880
2	X52	-1750	1940	33	V5	-842	-2150	64	$\times 22$	1750	1025
3	X53	-1750	1770	34	V6	-644	-2150	65	$\times 23$	1750	1170
4	X54	-1750	1615	35	V1	-444	-2150	66	$\times 24$	1750	1315
5	X55	-1750	1470	35	DISPOFF	-222	-2150	67	X25	1750	1460
6	X56	-1750	1325	37	VCC	-16	-2150	68	X26	1750	1605
7	X57	-1750	1180	38	SHL	206	-2150	69	$\times 27$	1750	1750
8	X58	-1750	1035	39	GND	474	-2150	70	$\times 28$	1750	1900
9	X59	-1750	890	40	M	746	-2150	71	X29	1750	2120
10	X60	-1750	745	41	CL	1010	-2150	72	X30	1610	2150
11	X61	-1750	600	42	D1	1274	-2150	73	X31	1432	2150
12	X62	-1750	455	43	X1	1750	-2150	74	X32	1273	2150
13	X63	-1750	310	44	X2	1750	-1930	75	X33	1114	2150
14	X64	-1750	165	45	X3	1750	-1760	76	X34	955	2150
15	X65	-1750	20	46	X4	1750	-1605	77	X35	796	2150
16	X66	-1750	-125	47	X5	1750	-1460	78	X36	637	2150
17	X67	-1750	-270	48	X6	1750	-1315	79	$\times 37$	478	2150
18	X68	-1750	-415	49	X7	1750	-1170	80	X38	319	2150
19	X69	-1750	-560	50	X8	1750	-1025	81	X39	160	2150
20	X70	-1750	-705	51	X9	1750	-860	82	X40	1	2150
21	X71	-1750	-850	52	X10	1750	-715	83	X41	-158	2150
22	X72	-1750	-995	53	X11	1750	-570	84	X42	-317	2150
23	X73	-1750	-1140	54	X12	1750	-425	85	X43	-476	2150
24	X74	-1750	-1285	55	X13	1750	-280	86	X44	-635	2150
25	X75	-1750	-1430	56	X14	1750	-135	87	X45	-794	2150
26	X76	-1750	-1575	57	X15	1750	10	88	X46	-953	2150
27	X77	-1750	-1720	58	X16	1750	155	89	X47	-1112	2150
28	X78	-1750	-1865	59	X17	1750	300	90	X48	-1271	2150
29	X79	-1750	-2110	60	X18	1750	445	91	X49	-1430	2150
30	X80	-1610	-2150	61	X19	1750	590	92	X50	-1589	2150
31	D0	-1294	-2150	62	X20	1750	735				

Figure 19 HCD66205L

Reliability and Quality Assurance

1. Views on Quality and Reliability

Hitachi's basic quality aims are to meet individual user's purchase purpose and quality required, and to be at a satisfactory quality level considering general marketability. Quality required by users is specifically clear if the contract specification is provided. If not, quality required is not always definite. In both cases, Hitachi tries to assure reliability so that semiconductor devices delivered can perform their function in actual operating circumstances. To realize this quality in the manufacturing process, the key points should be to establish a quality control system in the process and to enhance the quality ethic. In addition, quality required by users of semiconductor devices is going toward higher levels as performance of electronic system in the market is increasing and expanding in size and application fields. To cover the situation, Hitachi is performing the following:

1. Building in reliability in design at the stage of new product development.
2. Buliding in quality at the sources of the manufacturing process.
3. Executing stricter inspection and reliability confirmation of final products.
4. Making quality levels higher with field data feedback.
5. Cooperating with research laboratories for higher quality and reliability.
With the views and methods mentioned above, utmost efforts are made to meet users' requirements.

2. Reliability Design of Semiconductor Devices

2.1 Reliability Targets

The reliability target is the important factor in manufacture and sales as well as performance and price. It is not practical to rate reliability targets with failure rates under certain common test conditions. The reliability target is determined corresponding to the character of equipment taking design, manufacture, inner process quality control, screening and test method, etc. into consideration, and considering the operating circumstances of equipment the semiconductor device is used in, reliability target of the system, derating applied in design, operating condition, maintenance, etc.

2.2 Reliability Design

To achieve the reliability required based on reliability targets, timely study and execution
of design standardization, device design (including process.design, structure design), design review, reliability test are essential.

2.2.1 Design Standardization

Establishment of design rules, and standardization of parts, material and process are necessary. To establish design rules, critical quality and reliability items are always studied at circuit design, device design, layout design, etc. Therefore, as long as standardized process, material, etc. are used, reliability risk is extremely small even in newly developed devices, except in cases where special functions are needed.

2.2-2 Device Design

It is important in device design to consider the total balance of process design, structure design, circuit and layout design. Especially when new processes and new materials are employed, careful technical study is executed prior to device development.

2.2.3 Reliability Evaluation by Test Site

Test site is sometimes called test pattern. It is a useful method for design and process reliability evaluation of ICs and LSIs which have complicated functions.

Purposes of test site are:

- Making fundamental failure mode clear
- Analysis of relation between failure mode and manufacturing process condition
- Search for failure mechanism analysis
- Establishment of QC point in manufacturing
Evaluation by test site is effective because:
- Common fundamental failure mode and failure machanism in devices can be evaluated.
- Factors dominating failure mode can be picked up, and comparison can be made with processes that have been experienced in field.
- Relation between failure causes and manufacturing factors can be analyzed.
- Easy to run tests.
- Etc.

2.3 Design Review

Design review is an organized method to confirm that a design satisfies the required performance (including users') and that design work follows the specified methods, and whether or not improved technical items accumulated in test data of individual major

Reliability and Quality Assurance

fields and field data are effectively built in. In addition, from the standpoint of enhancement of the competitive power of products, the major purpose of the design review is to ensure quality and reliability of the products. In Hitachi, design reviews are performed from the planning stage for new products and even for design changed products. Items discussed and determined at design review are as follows:

1. Description of the products based on specified design documents.
2. From the standpoint of the specialties of individual participants, design documents are studied, and if unclear matter is found, calculation, experiments, investigation, etc. will be carried out.
3. Determine contents of reliability and methods, etc. based on design documents and drawings.
4. Check process ability of manufacturing line to achieve design goal.
5. Discussion about preparation for production'.
6. Planning and execution of subprograms for design changes proposed by individual specialists, and for tests, experiments and calculation to confirm the design changes.
7. Reference of past failure experiences with similar devices, confirmation of methods to prevent them, and planning and execution of test programs for confirmation of them. These studies and decisions are made using check lists made individually depending on the objects.

3. Quality Assurance System of Semiconductor Devices

3.1 Activity of Quality Assurance

General views of overall quality assurance in Hitachi are:

1. Problems in an individual process should be solved in the process. Therefore, at final product stage, the potential failure factors have been already removed.
2. Feedback of information should be used to ensure satisfactory level of process capability.
3. To assure required reliability as a result of the items mentioned above is the purpose of quality assurance.
The following discusses device design, quality approval at mass production, inner process quality control, product inspection and reliability tests.

3.2 Quality Approval

To ensure required quality and reliability, quality approval is carried out at the trial
production stage of device design and the mass production stage based on reliability design as described in section 2.
Hitachi's views on quality approval are:

1. A third party must perform approval objectively from the standpoint of customers.
2. Fully consider past failure experiences and information from the field.
3. Approval is needed for design change or work change.
4. Intensive approval is executed on parts material and process.
5. Study process capability and variation factor, and set up control points at mass production stage.
Considering the views mentioned above, figure 1 shows how quality approval is performed.

3.3 Quality and Reliability Control at Mass Production

For quality assurance of products in mass production, quality control execution is divided organically by function between manufacturing department and quality assurance department, and other related departments. The total function flow is shown in figure 2. The main points are described below.

3.3.1 Quality Control of Parts and Material

As the performance and the reliability of semiconductor devices improve, the importance of quality control of material and parts (crystal, lead frame, fine wire for wire bonding, package) to build products, and materials needed in manufacturing process (mask pattern and chemicals) increases. Besides quality approval on parts and materials stated in section 3.2, the incoming inspection is also key in quality control of parts and materials. The incoming inspection is performed based on an incoming inspection specification, following purchase specification and drawings, and sampling inspection is executed based mainly on MIL-STD-105D.
The other activities of quality assurance are as follows:

1. Outside vendor technical information meeting
2. Approval on outside vendors, and guidance of outside vendors
3. Physical chemical analysis and test

The typical check points of parts and materials are shown in table 1.

Reliability and Quality Assurance

3.3.2 Inner Process Quality Control

Inner process quality control performs a very important function in quality assurance of a semiconductor devices. The following is a description of control of semifinal products, final products, manufacturing facilities, measuring equipments, circumstances and submaterials. The quality control in the manufacturing process is shown in figure 3 corresponding to the manufacturing process.

1. Quality Control of Semifinal Products and Final Production Products
Potential failure factors of semiconductor devices should be removed in manufacturing process. To achieve this, check points are setup in each process, and products that have potential failure factors are not transferred to the next process. For high reliability semiconductor devices, especially manufacturing line is carefully selected, and the quality control in the
manufacturing process is tightly executed: Strict check on each process and each lot, 100\% inspection to remove failure factor caused by manufacturing variation, and necessary screening, such as high temperature aging and temperature cycling. Contents of inner process quality control are:

- Condition control on individual equipment and workers, and sampling check of semifinal products.
- Proposal and carrying-out of work improvement
- Education of workers
- Maintenance and improvement of yield
- Detection of quality problems, and execution of countermeasures
- Transmission of information about quality

2. Quality Control of Manufacturing Facilities and Measuring Equipment
Equipment for manufacturing semicon-

Figure 1 Quality Approval Flowchart
HITACHI

Reliability and Quality Assurance

ductor devices have been developing extraordinarily, with required high performance devices and production inprovements. They are important factors to determine quality and reliability. In Hitachi, automation of manufacturing equipment is promoted to improve manufacturing variation, and controls maintain proper operation and function of high performance equipment. Maintenance inspection for quality control is performed daily based on related specifications, and also periodical inspections. At the inspection, inspection points listed in the specification are checked one by one to avoid any omissions. During adjustment and maintenance of measuring equipment, mainte-
nance number and specifications are checked one by one to maintain and improve quality.
3. Quality Control of Manufacturing Circumstances and Submaterials Quality and reliability of semiconductor devices is greatly affected by manufacturing process. Therefore, manufacturing circumstances (temperature, humidity, dust) and the control of submaterials (gas, pure water) used in manufacturing process are intensively controlled. Dust control is described in more detail below.
Dust control is essential to realize higher integration and higher reliability of devices. In Hitachi, maintenance and

Figure 2 Flowchart of Quality Control in Manufacturing Process
improvement of cleanness and manufacturing site cleanness are executed paying close attention to buildings, facilities, airconditioning systems, packaging materials, clothes, work, etc., and periodical inspection for floating dust in room, falling dust, and floor dust.

3.3.3 Final Product Inspection and Reliability Assurance

1. Final Product Inspection

Lot inspection is done by quality assurance department for products that were judged to be 100% good in tests, which is
the final process in the manufacturing department. Though 100\% good products is expected, sampling inspection is executed to prevent inclusion of failed products by mistake, etc. The inspection is executed not only to confirm that the products meet users' requirements, but to consider potential trouble factors. Lot inspection is executed based on MIL-STD105D.

1. Reliability Assurance Tests

To assure reliability of semiconductor devices, periodical reliability tests and reliability tests on individual manufacturing lots required by user are performed.

Table 1 Quality Control Check Points of Material and Parts (Example)

Material, Parts	Important Control Items	Points to Check
Wafer	Appearance Dimension Sheet resistance Defect density Crystal axis	Damage and contamination on surface Flatness Resistance Defect numbers
Mask	Appearance Dimension Registration Gradation	Defect numbers, scratch Dimension level Uniformity of gradation
Fine wire for wire bonding	Appearance Dimension Purity Elongation ratio	Contamination, scratch, bend, twist Purity level Mechanical strength
Frame	Appearance Dimension Processing accuracy Plating Mounting characteristics	Contamination, scratch Dimension level Bondability, solderability Heat resistance
Ceramic package	Appearance Dimension Leak resistance Plating Mounting characteristics Electrical characteristics Mechanical strength	Contamination, scratch Dimension level Airtightness Bondability, solderability Heat resistance Mechanical strength
Plastic	Composition Electrical characteristics Thermal characteristics Molding performance Mounting characteristics	Characteristics of plastic material Molding performance Mounting characteristics

Reliability and Quality Assurance

Figure 3 Example of Inner Process Quality Control

Figure 4 Process Flowchart of Field Failure

Reliability Test Data of LCD Drivers

1. Introduction

The use of liquid crystal displays with microcomputer application systems has been increasing, because of their low power consumption, freedom in display pattern design, and thin shape. Low power consumption and high density packaging have been achieved through the use of the CMOS process and the flat plastic packages, respectively.
This chapter describes reliability and quality assurance data for Hitachi LCD driver LSIs
based on test data and failure analysis results.

2. Chip and Package Structure

The Hitachi LCD driver LSI family uses low power CMOS technology and flat plastic package. The Si-gate process is used for high reliability and high density. Chip structure and basic circuit are shown in figure 1, and package structure is shown in figure 2.

Figure 1 Chip Structure and Basic Circuit

Figure 2 Package Structure

3. Reliability Test Results

The test results of LCD driver LSI family are shown in Tables 1, 2, and 3.

Table 1 Test Result 1, High Temperature Operation ($\mathrm{Ta}=125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$)

Device	Sample Size	Component Hour	Failure
HD44100H	40	40,000	0
HD44102H	40	40,000	0
HD44103H	40	40,000	0
HD44780	90	90,000	0
HD66100F	45	45,000	0
HD61100A	80	80,000	0
HD61102	50	50,000	0
HD61103A	50	50,000	0
HD61200	40	40,000	0
HD61202	50	50,000	0
HD61203	40	40,000	0
HD61830	40	40,000	0
HD61830B	40	40,000	0
HD63645	32	32,000	0
HD64645	32	32,000	0
HD61602	38	38,000	0
HD61603	32	32,000	0
HD61604	32	32,000	0
HD61605	32	32,000	0
HD66840	45	45,000	0

Table 2 Test Result 2

Test Item	Test Condition	Sample Size	Component Hour	Failure
High temp, storage	$\mathrm{Ta}=150^{\circ} \mathrm{C}, 1000 \mathrm{~h}$	180	180,000	0
Low temp, storage	$\mathrm{Ta}=-55^{\circ} \mathrm{C}, 1000 \mathrm{~h}$	140	140,000	0
Steady state humidity	$65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 1000 \mathrm{~h}$	860	860,000	1^{*}
Steady state humidity, biased	$85^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 1000 \mathrm{~h}$	165	170,000	2^{*}
Pressure cooker	$121^{\circ} \mathrm{C}, 2 \mathrm{~atm} .100 \mathrm{~h}$	200	20,000	0

Note: *Aluminum corrosion

Table 3 Test Results 3

Test Items	Test Condition	Sample Size	Failure
Thermal shock	0 to $100^{\circ} \mathrm{C}$ 10 cycles	108	0
Temperature cycling	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ 10 cycles	678	0
Soldering heat	$260^{\circ} \mathrm{C}, 10$ seconds	283	0
Resistance to VPS	$215^{\circ} \mathrm{C}, 30$ seconds	88	0
Solderability	$230^{\circ} \mathrm{C}, 5$ seconds	140	0

4. Quality Data from Field Use

Field failure rate is estimated in advance through production process evaluation and reliability tests. Past field data on similar devices provides the basis for this estimation. Quality information from the users is indispensable to the improvement of product
quality. Therefore, field data on products delivered to the users is followed up carefully. On the basis of information furnished by the user, failure analysis is conducted and the results are quickly fed back to the design and production divisions.
Failure analysis results on MOS LSIs returned to Hitachi is shown in figure 3.

Figure 3 Failure Analysis Result

5. Precautions

5.1 Storage

It is preferable to store semiconductor devices in the following ways to prevent deterioration in their electrical characteristics, solderability, and appearance, or breakage.

1. Store in an ambient temperature of 5 to 30° C, and in a relative humidity of 40 to 60%.
2. Store in a clean air environment, free from dust and reactive gas.
3. Store in a container that does not induce static electricity.
4. Store without any physical load.
5. If semiconductor devices are stored for a long time, store them in unfabricated form. If their lead wires wires are formed beforehand, bent parts may corrode during storage.
6. If the chips are unsealed, store them in a cool, dry, dark, and dustless place. Assemble them within 5 days after unpacking. Storage in nitrogen gas is desirable. They can be stored for 20 days or less in dry nitrogen gas with a dew point at $-30^{\circ} \mathrm{C}$ or lower. Unpackaged devices must not be stored for over 3 months.
7. Take care not to allow condensation during storage due to rapid temperature changes.

5.2 Transportation

As with storage methods, general precautions for other electronic component parts are applicable to the transportation of semiconductors, semiconductor-incorporating units and other similar systems. In addition, the following considerations must be taken, too:

1. Use containers or jigs wheh will not induce static electricity as the result of vibration during transportation. It is desirable to use an electrically conductive container or aluminium foil.
2. Prevent device breakage from clothes-in-
duced static electricity.
3. When transporting the printed circuit boards on which semiconductor devices are mounted, suitable preventive measures against static electricity induction must be taken; for example, voltage builtup is prevented by shorting terminal circuit. When a conveyor belt is used, prevent the conveyor belt from being electrically charged by applying some surface treatment.
4. When transporting semiconductor devices or printed circuit boards, minimize mechanical vibration and shock.

5.3 Handling for Measurement

Avoid static electricity, noise, and surge voltage when measuring semiconductor devices are measured. It is possible to prevent breakage by shorting their terminal circuits to equalize electrical potential during transportation. However, when the devices are to be measured or mounted, their terminals are left open providing the possibility that they may be accidentally touched by a worker, measuring instrument, work bench, soldering iron, conveyor belt, etc. The device will fail if it touches something that leaks current or has a static charge. Take care not to allow curve tracers, synchroscopes, pulse generators, D.C. stabilizing power supply units, etc. to leak current through their terminals or housings.
Especially, while testing the devices, take care not to apply surge voltage from the tester, to attach a clamping circuit to the tester, or not to apply any abnormal voltage through a bad contact from a current source. During measurement, avoid miswiring and short-circuiting. When inspecting a printed circuit board, make sure that there is no soldering bridge or foreign matter before turning on the power switch.
Since these precautions depend upon the types of semiconductor devices, contact Hitachi for further details.

Flat Plastic Package (OFP) Mounting Methods

Surface Mounting Package Handling Precautions

1. Package temperature distribution

The most common method used for mounting a surface mounting device is infrared reflow. Since the package is made of a black epoxy resin, the portion of the package directly exposed to the infrared heat source will absorb heat faster and thus rise in temperature more quickly than other parts of the package unless precautions are taken. As shown in the example in figure 1, the surface directly facing the infrared heat source is 20° to $30^{\circ} \mathrm{C}$ higher than the leads being soldered and 40°.to $50^{\circ} \mathrm{C}$ higher than the bottom of the package. If soldering is performed under these conditions, package cracks may occur.

To avoid this type of problem, it is recommended that an aluminum infrared heat shield be placed over the resin surface of the package. By using a $2-\mathrm{mm}$ thick aluminum heat shield, the top and bottom surfaces of the resin can be held to $175^{\circ} \mathrm{C}$ when the peak temperature of the leads is $240^{\circ} \mathrm{C}$.

2. Package moisture absorption

The epoxy resin used in plastic packages will absorb moisture if stored in a high-humidity environment. If this moisture absorption becomes excessive, there will be sudden vaporization during soldering, causing the interface of the resin and lead frame to spread apart. In extreme cases, package cracks will occur. Therefore, especially for thin packages, it is important that moistureproof storage be used.
To remove any moisture absorbed during transportation, storage, or handling, it is recommended that the package be baked at $125^{\circ} \mathrm{C}$ for 16 to 24 hours before soldering.

3. Heating and cooling

One method of soldering electrical parts is the solder dip method, but compared to the reflow method, the rate of heat transmission is an order of magnitude higher. When this
method is used with plastic items, there is thermal shock resulting in package cracks and a deterioration of moisture-resistant characteristics. Thus, it is recommended that the solder dip method not be used.
Even with the reflow method, an excessive rate of heating or cooling is undesirable. A rate in temperature change of less than $4^{\circ} \mathrm{C}$ / sec is recommended.

4. Package contaminants

It is recommended that a resin-based flux be used during soldering. Acid-based fluxes have a tendency of leaving an acid residue which adversely affects product reliability. Thus, acid-based fluxes should not be used.
With resin-based fluxes as well, if a residue is left behind, the leads and other package parts will begin to corrode. Thus, the flux must be thoroughly washed away. If cleansing solvents used to wash away the flux are left on the package for an extended period of time, package markings may fade, so care must be taken.

The precautions mentioned above are general points to be observed for reflow. However, specific reflow conditions will depend on such factors as the package shape, printed circuit board type, reflow method, and device type. For reference purposes, an example of reflow conditions for a OFP infrared reflow furnace is given in figure 2. The values given in the figure refer to the temperature of the package resin, but the leads must also be limited to a maximum of $260^{\circ} \mathrm{C}$ for 10 seconds or less.

Of the reflow methods, infrared reflow is the most common. In addition, there is also the paper phase reflow method. The recommended conditions for a paper phase reflow furnace are given in figure 3.
For details on surface mounting small thin packages, please consult the separate manual available on mounting. If there are any additional questions, please contact Hitachi, Ltd.

Figure 1 Temperature Profile During Infrared Heat Soldering (Example)

Figure 2 Recommended Reflow Conditions for QFP

Figure 3 Example Vapor-phase Reflow Conditions

Flat Plastic Package (OFP) Mounting Methods

Figure 4 Recommended Paper Phase Reflow Conditions

Liquid Crystal Driving Methods

Driving a liquid crystal at direct current triggers an electrode reaction inside the liquid cell, degrading display quality rapidly. The liquid crystal must be driven by alternating current. The AC driving method includes the static driving method and the multiplex driving method, each of which has features for different applications. Hitachi has developed different LCD driver devices corresponding to the static driving method and the multiplex driving method. The following sections describe the features of each driving method, the driving waveforms, and how to apply bias.

1. Static Driving Method

Figure 1 shows the driving waveforms of the static driving method and an example in which " 4 " is displayed by the segment method. The static driving method is the most basic method by which good display quality can be obtained. However, it is not suitable for liquid displays with many segments because one liquid crystal driver circuit is required per segment.
The static driving method uses the frame frequency ($1 / \mathrm{t}_{\mathrm{f}}$) of several tens to several hundreds Hz .

Figure 1 Example of Static Drive Waveforms (Example of HD61602/HD61603)

2. Multiplex Driving Method

The multiplex driving method is effective in reducing the number of driver circuits, the number of connections between the circuit and the display cell, and the cost when driving many display picture elements. Figure 2 shows a comparision of the static drive with the multiplex drive ($1 / 3$ duty cycle) in an 8dight numeric display. The number of liquid crystal driver circuits required is 65 for the former and 27 for the latter. The multiplex
drive reduces the number of driver circuits. However, greater multiplexing reduces the driving voltage tolerance. Thus, there are limits to the extent of multiplexing.

There are two types of multiplex drive waveforms: A type and B type. A type, shown in figure 3, is used for alternation in 1 frame. B type is used for alternation in between 2 frames (figure 4). B type has better display quality than A type in high multiplex drive.

Figure 2 Example of Comparision of Static Drive with Multiplex Drive

Figure 3 A Type Waveforms (1/3 duty cycle, $1 / 3$ bias)

Figure 4 B Type Waveforms
(1/3 duty cycle, $1 / 3$ bias)

2.1. 1/2 Bias, $1 / 2$ Duty Drive

In the $1 / 2$ duty drive method, 1 driver circuit drives 2 segments. Figure 5 shows an exam-
ple of the connection to display ' 4 ' on a liquid crystal display of 7 -segment type, and the output waveforms.

Figure 5 Example of Waveforms in 1/2 Duty Cycle Drive (B type) (Example of HD61602)

Liquid Crystal Driving Methods

2.2 1/3 Bias, 1/3 Duty Cycle Drive

In the $1 / 3$ duty cycle drive, 3 segments are driven by 1 segment output driver. Figure 6
shows an example of the connection to display ' 4 ' on a liquid crystal display of 7 -segment type, and the output waveforms.

Figure 6 Example of Waveforms in 1/3 Duty Cycle Drive (B type) (Example of HD61602)

Liquid Crystal Driving Methods

2.3 1/3 Bias, $1 / 4$ Duty Cycle Drive

In the $1 / 4$ duty cucle drive, 4 segments are driven by 1 segment output driver. Figure 7
shows an example of the connection to display ' 4 ' on a liquid crystal display of 7-segment type, and the output waveforms.

Figure 7 Example of Waveforms in 1/4 Duty Cycle Drive (B type) (Example of HD61602)

Liquid Crystal Driving Methods

2.4 1/4 Bias, 1/8 Duty Cycle Drive

Figure 8 Example of Waveforms in 1/8 Duty Cycle Drive (A type) (Example of LCDII)

2.5 1/5 Bias, 1/8 Duty Cycle Drive

Figure 9 Example of Waveforms in 1/8 Duty Cycle Drive (A type) (Example of HD44100R)

Liquid Crystal Driving Methods

2.6 1/5 Bias, 1/16 Duty Cycle Drive

Figure 10 Example of Waveforms in 1/16 Duty Cycle Drive (A type) (Example of LCDII)

Liquid Crystal Driving Methods

2.7 1/5 Bias, 1/32 Duty Cycle Drive

Figure 11 Example of Waveforms in 1/32 Duty Cycle Drive (Example of HD44102CH, HD44103CH)

Liquid Crystal Driving Methods

3. Power Supply Circuit for Liquid Crystal Drive

Table 1 shows the relationship between the number of driving biases and display duty cycle ratios.

3.1 Resistive Dividing

Driving bias is generally generated by a resistive divider (figure 12).

The resistance value settings are determined
by considering operating margin and power consumption. Since the liquid crystal display load is capacitive, the drive waveform itself is distorted due to charge/discharge current when the liquid crystal display drive waveform is applied. To reduce distortion, the resistance value should be decreased but this increases the power consumption because of the increase of the current through the dividing resistors. Since larger liquid crystal display panels have larger capacitance,the resistance value must be decreased proportionally.

Table 1 Relationship between the Number of Display Duty Cycle Ratio and the Number of Driving Biases

| Display
 duty ratio | Static | $1 / 2$ | $1 / 3$ | $1 / 4$ | $1 / 7$ | $1 / 8$ | $1 / 11$ | $1 / 12$ | $1 / 14$ | $1 / 16$ | $1 / 24$ | $1 / 32$ | $1 / 64$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number of | | | | | | | | | | | | | |
| driving biases | | | | | | | | | | | | | |

Figure 12 Example of Driving Voltage Supply

Liquid Crystal Driving Methods

It is efficient to connect a capacitor to the resistors in parallel as shown in figure 13 in order to improve charge/discharge distortion. However, the effect is limited. Even if it is attempted to reduce the power consumption with a large resistor and improve waveform distortion with a large capacitor, a level shift occurs and the operating margin is not improved.
Since the liquid crystal display load is in a matrix configuration, the path of the charge/ discharge current through the load is com-
plicated. Moreover, it varies depending on display condition. Thus, a value of resistance cannot be simply determined from the load capacitance of liquid crystal display. It must be experimentally determined according to the demand for the power consumption of the equipment in which the liquid crystal display is incorporated.
Generally, R is $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$, and VR is $5 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$. No capacitor is required. A capacitor of 0.1 uF is usually used if necessary.

Figure 13 Example of Capacitor Connection for Improvement of Liquid Crystal Display Drive Waveform Distortion (1/5 bias) (Example of LCD-II)

Liquid Crystal Driving Methods

3.2 Drive by Operational Amplifier

In graphic displays, the size of the liquid crystal becomes larger and the display duty ratio becomes smaller, so the stability of liquid crystal drive level is more important than in small display system.
Since the liquid crystal for graphic displays is large and has many picture elements, the load capacitance becomes large. The high impedance of the power supply for liquid crystal drive produces distortion in the drive waveforms, and degcades disiplay quality. For this reason, the liquid crystal drive level impedance should be reduced with operational amplifiers. Figure 14 shows an example of an operational amplifier configuration.

No load current flows through the dividing resistors because of the high input impedance of the operational amplifiers. A high resistance of $R=10 \mathrm{k} \Omega$ and $V R=50 \mathrm{k} \Omega$ can be used.

3.3 Generation of Liquid Crystal Drive Levels in LSI

The power supply circuit for liquid crystal
drive level may be incorporated in the LSI, such as one for a portable calculator with liquid crystal display.
HD61602, HD61603 for small display systems has a built-in power suply circuit for liquid crystal drive levels.

3.4 Precaution on Power Supply Circuits

The LCD driver LSI has two types of power supplies: the one for logical circuits and the other for the liquid crystal display drive circuit. The power supply system is complicated because of several liquid crystal drive levels. For this reason, in the power supply design, take care not to deviate from the voltage range assured in the maximum rating at the rise of power supply and from the potential sequence of each power supply. If the input terminal level is indefinite, through current flows and the power consumption increases because of the use of CMOS process in the LCD driver.
Simultaneously, the potential sequence of each power supply becomes wrong, which may cause latch-up.

Figure 14 Drive by Operational Amplifier (1/5 bias)

Data Sheets

HD44100R

(LCD Driver with 40-Channel Outputs)

- Preliminary -

Description

The HD44100R has two sets of 20-bit bidirectional shift registers, 20 data latch flipflops and 20 liquid crystal display driver circuits. It receives serial display data from a display control LSI, converts it into parallel data and supplies liquid crystal display waveforms to the liquid crystal.
The HD44100R is a highly general liquid crystal display driver which can drive a static drive liquid crystal and a dynamic drive liquid crystal, and can be applied as a common driver or segment driver.

Features

- Liquid crystal display driver with serial/ parallel conversion function
- Serial transfer facilitates board design
- Capable of interfacing to liquid crystal display controllers: HD43160AH, LCTC (HD61830/61830B), LCD- II (HD44780S, HD44780U), LCD-II A (HD66780), LCD-II/E (HD66702), LCD-III (HD44790), HD66710
- 40 internal liquid crystal display drivers
- Internal serial/parallel conversion circuits:
-20-bit shift register $\times 2$ -20-bit data latch $\times 2$
- Display bias: Static to $1 / 5$
- Power supply:
-Internal logic: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V
-Liquid crystal display driver circuit:

$$
V_{C C}-V_{E E}=3 \text { to } 13 V
$$

- Separation of internal logic from liquid crystal display driver circuit increases applicable controllers and liquid crystal types
- CMOS process

Pin Arrangement

Ordering Information

Type No.	Vcc (V)	Vcc- $\mathbf{V e E}$ (V)	Package
HD44100RFS	2.7 to 5.5	3 to 13	60-pin Plastic QFP (FP-60A)
HCD44100R	2.7 to 5.5	3 to 13	Chip

HD44100R

Block Diagram

Absolute Maximum Ratings

		Symbol	Value	Unit
Supply	Logic	$\mathrm{V}_{\mathrm{CC}}{ }^{* 1}$	-0.3 to +7.0	V
voltage	LCD drivers	$\mathrm{V}_{\mathrm{EE}}{ }^{* 2}$	$\mathrm{~V}_{\mathrm{CC}}-15.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Input voltage	$\mathrm{V}_{\mathrm{T} 1}{ }^{* 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Input voltage	$\mathrm{V}_{\mathrm{T} 2} * 3$	$\mathrm{~V}_{\mathrm{CC}}+0.3$ to $\mathrm{V}_{\mathrm{EE}}-0.3$	V	
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: $* 1$ All voltage values are referred to GND.

* 2 Connect a protection resistor of $220 \Omega \pm 5 \%$ to V_{EE} power supply in series.
* 3 Applies to V_{1} to V_{6}.

Electrical Characteristics

$$
\left(V_{\mathrm{cc}}=2.7 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{EE}}=3 \text { to } 13 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20 \text { to }+75^{\circ} \mathrm{C}\right)
$$

Item	Symbol	Applicable Terminals	Min	Typ	Max	Unit	Test Condition
Input voltage	V_{IH}	CL1, CL2, DL1, DL2,	0.7 Vcc	-	V cc	V	$\mathrm{V}_{\mathrm{cc}}=4.5$ to 5.5 V
		DR1, DR2, M, SHL1,	0.8 Vcc	-	V cc	V	$\mathrm{V}_{\mathrm{CC}}=2.7$ to 4.5 V
	VIL	SHL2, FCS	0	-	0.3 Vcc	V	$\mathrm{V}_{\mathrm{cc}}=4.5$ to 5.5 V
			0	-	0.2 Vcc	V	$\mathrm{V}_{\mathrm{cc}}=2.7$ to 4.5 V
Output voltage	Voh	DL1, DL2, DR1, DR2	$V_{c c}-0.4$	-	-	V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$
	VoL		-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=+0.4 \mathrm{~mA}$
On resistance	Ron	* 1	-	-	20	k Ω	$\pm \mathrm{l}_{\mathrm{d}}=0.05 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{E E}=4 \mathrm{~V}$
Input leakage current	IIL	CL1, CL2, DL1, DL2, DR1, DR2, M, SHL1, SHL2, FCS, NC	-5.0	-	5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{in}}=0$ to V_{cc}
Vi leakage current	IVL	*2	-10.0	-	10.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}
Power supply current	Icc	*3	-	-	1.0	mA	$\mathrm{f}_{\mathrm{CL2}}=400 \mathrm{kHz}$
	lee		-	-	10	$\mu \mathrm{A}$	$\mathrm{f}_{\mathrm{CL} 1}=1 \mathrm{kHz}$

Notes: * 1 Applies to the resistance between V_{i} and Y_{j} when a current $\pm I_{d}=0.05 \mathrm{~mA}$ flows through all of the Y pins.
*2 Output Y1 to Y40 open.
*3 Input/output current is excluded; when input is at the intermediate level with CMOS, excessive current flows through the input circuit to the power supply. To avoid this, input level must be fixed at high or low.

Timing Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{EE}}=3$ to $13 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Applicable Terminals	Min	Typ	Max	Unit	Test Condition
Data shift frequency	fCL	CL2	-	-	400	kHz	
Clock high level	tcwn	CL1, CL2	800	-	-	ns	
width Low level	tcw	CL2	800	-	-	ns	
Data set-up time	tsu	$\begin{aligned} & \text { DL1, DL2, DR1, DR2, } \\ & \text { FLM } \end{aligned}$	300	-	-	ns	
Clock set-up time	t_{SL}	CL1, CL2	500	-	-	ns	$(\mathrm{CL2} \rightarrow$ CL1)
Clock set-up time	tLs	CL1, CL2	500	-	-	ns	$(\mathrm{CL1} \rightarrow \mathrm{CL} 2)$
Data delay time	t_{pd}	DL1, DL2, DR1, DR2	-	-	500	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
Clock rise/fall time	t_{ct}	CL1, CL2	-	-	200	ns	
Data hold time	$t_{\text {DH }}$	DL1, DL2, DR1, DR2, FLM	300	-	-	ns	

Figure 1 Timing Waveform

Terminal Function

Table 1 Functional Description of Terminals

FCS Level	Channel 2		M Polarity	Function
	Latch signal	Shift signal		
Vcc	CL2 -	CL1	\bar{M}	For common drive
GND	CL1	CL2	M	For segment drive
	* 1	* 1		*2

NC	1	Don't connec
Notes: $* 1$	The and $* 2$	The output level relationship between channel level is as follows:

FCS	Data	M	Output Level	
			Channel 1 ($\mathbf{Y}_{1}-\mathbf{Y}_{\mathbf{2 0}}$)	Channel 2 ($\mathbf{Y}_{\mathbf{2 1}}-\mathbf{Y}_{40}$)
Vcc (1)	1	1	V_{1}	V_{2}
	(Select)	0	V_{2}	V_{1}
	0	1	V_{3}	V_{6}
	(Non-select)	0	V_{4}	V_{5}
GND (0)	1	1	V_{1}	V_{1}
	(Select)	0	V_{2}	V_{2}
	0	1	V_{3}	V_{5}
	(Non-select)	0	V_{4}	V_{6}

1 and 0 indicate high and low levels, respectively.

Applications

Segment Driver

When the HD44100R is used as a segment driver, FCS is set to GND to transfer display data with the timing shown in figure 2. In this
case, both channel 1 and channel 2 shift data at the fall of CL2 and latch it at the fall of CLI. V_{3} and V_{5}, V_{4} and V_{6} of the liquid crystal display driver power supply are short-circuited, respectively.

Figure 2 Segment Data Waveforms (A Type Waveforms, 1/8 Duty Cycle)

Common Driver

In this case, channel 1 is used as a segment driver and channel 2 as common driver. When channel 2 of HD44100R is used as common driver, FCS is set to V_{CC} to transfer
display data with the timing shown in figure 3.

In this case, channel 2 shifts data at the rise of CL1 and latches it at the rise of CL2. Channel 1 shifts and latches as shown in figure 2.

Figure 3 Common Data Waveforms (A Type Waveforms of Channel 2, 1/8 Duty Cycle)

Both Channel 1 and Channel 2 Used as Common Drivers (FCS = GND)

When both of channel 1 and channel 2 of HD44100R are used common drivers, FCS is set to GND and the signals (CL1, CL2, FLM) from the controller are connected as shown in figure 4.
In this case, connection of the liquid crystal display driver power supply is different from that of segment driver, so refer to figure 4.

- V_{1}, V_{2} : Select level of segment and common
- $\mathrm{V}_{3}, \mathrm{~V}_{4}$: Non-select level of segment
- $\mathrm{V}_{5}, \mathrm{~V}_{6}$: Non-select level of common

Static Drive

When the HD44100R is used in the static drive method (figure 5), data is transferred at
the fall of CL2 and latched at the fall of CL1. The frequency of CL1 becomes the frame frequency of the liquid crystal display driver. The signal applied terminal M must have twice the frequency of CL1 and be synchronized at the fall of CL1. The power supply for liquid crystal display driver is used by shortcircuiting V_{1}, V_{4} and V_{6}, and V_{2}, V_{3}, and V_{5} respectively.
One of the liquid crystal display driver output terminals can be used for a common output. In this case, FCS is set to GND and data is transferred so that 0 can be always latched in the latch corresponding to the liquid crystal display driver output terminal used as the common output. If the latch signal corresponding to the segment output is 1 , the segments of LCD light. They also light for common side $=1$, and segment side 0 .

Figure 4 Connection When Both Channels Are Common Drivers

HD44100R

Figure 5 Static Drive Connection

Timing Chart of Input Waveforms

Notes:

1. Input square waves of 50% duty cycle (about $30-500 \mathrm{~Hz}$) to M . The frequency depends on the specifications of LCD panels.
2. The drive waveforms corresponding to the new displayed data are output at the fall of CL1. Therefore, when the alternating signal M and CL1 do not fall synchronously, DC elements are produced on the LCD drive waveforms. These DC elements may shorten the life span of the LCD, if the displayed data frequently changes (e.g. display of hours, minutes, and seconds of a clock). To avoid
this, have CL1 fall synchronously with the one edge of M.
3. In this example, the CMOS inverter is used as a COM signal driver in consideration of the large display area. (The load capacitance on COM is large because it is common to all the displayed segments.)
Usually, one of the HD44100R outputs can be used as a COM signal. The displayed data corresponding to the terminal should be 0 in that case.

HD66100F (LCD Driver with 80-Channel Outputs)

The HD66100 description segment driver with 80 LCD drive circuits is the improved version of the no longer current HD44100H LCD driver with 40 circuits.
It is composed of a shift register, an 80-bit latch circuit, and 80 LCD drive circuits. Its interface is compatible with the HD44100H. It reduces the number of LSI's and lowers the cost of an LCD module.

Features

- LCD driver with serial/parallel converting function
- Interface compatible with the HD44100H; connectable with HD43160AH, HD61830, HD61830B, LCD-1l (HD44780), LCD-111 (HD44790)
- Internal output circuits for LCD drive: 80
- Internal serial/parallel converting circuits:
-80-bit bidirectional shift register
-80-bit latch circuit
- Power supply
-Internal logic circuit: +5 V $\pm 10 \%$
-LCD drive circuit: 3.0 V to 6.0 V
- CMOS process

Comparison with HD44100H

Table 1 shows the main differences between HD66100 and HD44100H.

Table 1 Deffences between Products HD66100 and HD44100H

	HD66100	HD44100H			
LCD Drive Outputs 80×1 Channel	20×2 channels				
Supply Voltage for LCD Drive	3 to 6 V	4.5 to 11 V			
Circuits			\quad	Static to $1 / 16$	static to $1 / 32$ duty
:---	:---				
Multiplexing	duty				
Duty Ratio	$100-$-pin plastic QFP				
Package	60-pin plastic QFP				

Ordering Information

Type No.	Package
HD66100F	100-pin plastic QFP (FP-100)
HD66100FH	100-pin plastic QFP (FP-100B)
HD66100D	Chip

HD66100F

Pin Arrangement

Pin Description

Vcc, GND, Ver: Vcc supplies power to the internal logic circuit. GND is the logic and drive ground. VEE supplies power to the LCD drive circuit.
$\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}, \mathbf{V}_{\mathbf{3}}$, and $\mathbf{V}_{\mathbf{4}}$: $\mathbf{V}_{\mathbf{1}}$ to $\mathbf{V}_{\mathbf{4}}$ supply power for driving an LCD (figure 2).

CL1: HD66100 latches data at the negative edge of CL1.

CL2: HD66100 receives shift data at the negative edge of CL2.

M: Changes LCD drive outputs to AC.

Table 2 Pin Function

Symbol Pin No.	Pin Name	$1 / 0$	
$V_{C C}$	46	$V_{C 6}$	-
$G N D$	36	Ground	-
$V_{E E}$	31	$V_{E E}$	-
V_{1}	32	V_{1}	-
V_{2}	33	V_{2}	-
V_{3}	34	V_{3}	-
V_{4}	35	V_{4}	-
$C L 1$	37	Clock 1	1
$C L 2$	40	Clock 2	1
M	44	M	1
$D I$	41	Date In	1
$D O$	42	Date Out	0
$S H L$	39	Shift Left	1
$Y_{1}-Y_{80}$	$1-30,51-100$	$Y_{1}-Y_{80}$	0
$N C$	$38,43,45,47-50$	No Connection	-

DI: Inputs data to the shift register.
DO: Output data from the shift register.
SHL: Selects a shift direction of serial data. When the serial data is input in order of D_{1}, D_{2}, \ldots, D_{79}, D_{80}, the relation between the data and the output Y is shown in table 3.
$\mathbf{Y}_{1}-Y_{\mathbf{8 0}}$: Each Y outputs one of the four voltage levels- V_{1}, V_{2}, V_{3}, or V_{4}-according to the combination of M and display data (figure 2).

NC: Do not connect any wire to these terminals.

Table 3 Relation Between SHL and Data Output

SHL	\mathbf{Y}_{1}	$\mathbf{Y}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{3}} \ldots \ldots$	$\mathbf{Y}_{\mathbf{7 9}}$	$\mathbf{Y}_{\mathbf{8 0}}$
High	D1	D2	D3.....	D79	D80
Low	D80	D79	D78....	D2	D1

Figure 1 Selection of LCD Drive Output

Figure 2 Power Supply for Driving an LCD

HD66100F

Block Functions

LCD Drive Circuits

Select one of four levels of voltage $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, and V_{4} for driving a LCD and transfer it to the output terminals according to the combination of M and the data in the latch circuit.

Latch Circuit

Latches the data input from the bidirectional shift register at the fall of CL1 and transfer its outputs to the LCD drive circuits.

Bidirectional Shift Reigster

Shifts the serial data at the fall of CL2 and transfers the output of each bit of the register to the latch circuit. When SHL = GND, the data input from DI shifts from bit 1 to bit 80 in order of entry. On the other hand, when SHL $=\mathrm{V}_{\mathrm{Cc}}$, the data shifts from bit 80 to bit-1. In both cases, the data of the last bit of the register is latched to be output from DO at the rise of CL2.

Figure 3 Relation between SHL and the Shift Direction

Figure 4 Block Diagram

Primary Operations

Shifting Data

The input data DI shifts at the fall of CL2 and the data delayed 80 bits by the shift register is output from the DO terminal. The output of DO changes synchronously with the rise of CL2. This operation is completely unaffected by the latch clock CL1.

Latching Data

The data of the shift register is latched at the
negative edge of the latch clock CL1. Thus, the outputs $Y_{1}-Y_{80}$ change synchronously with the fall of CL1.

Switching Data Shift Direction

When the shift direction switching signal SHL is connected with GND, the data D80, immediately before the negative edge of CL1, is output from the output terminal Y_{1}. When SHL is connected with V_{CC}, it is output from Y_{80}.

Figure 5 Timing of Receiving and Outputting Data

Figure 6 Timing of Latching Data

Figure 7 SHL and Waveforms of Data Shift

HD66100F

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Note	
Supply Voltage	Logic Circuits	V_{CC}	-0.3 to +7.0	V	$* 1$
	LCD Drive Circuits	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	-0.3 to +7.0	V	
Input Voltage (1)	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	${ }^{* 1}$	
Input Voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{CC}}+0.3$ to $\mathrm{V}_{\mathrm{EE}}-0.3$	V	${ }^{* 2}$	
Operation Temperature	$\mathrm{T}_{\mathrm{opr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$		
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$		

*1 A reference point is GND ($=0 \mathrm{~V}$)
*2 Applies to $\mathrm{V}_{1}-\mathrm{V}_{4}$.
Note: If used beyond the absolute maximum ratings, LSIs may be permanently destroyed. It is best to use them at the electrical characteristics for normal operations. If they are not used at these conditions, it may affect the reliability of the device.

Electrical Characteristics

DC Characteristics
($\mathrm{VCC}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.0$ to $6.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Terminals	Min.	Typ.	Max.	Unit	Test condition	Note
Input High Voltage	V_{IH}	$\begin{aligned} & \hline \mathrm{CL1}, \mathrm{CL2} \\ & \mathrm{M}, \mathrm{DI}, \mathrm{SHL} \end{aligned}$	$0.8 \times \mathrm{V}_{\mathrm{CC}}{ }^{-}$		Vcc	V		
Input Low Voltage	VIL		0	-	$0.2 \times$			
Output High Voltage	V_{OH}	DO	$\mathrm{V}_{\mathrm{cc}}-0.4-$		-	V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	
Output Low Voltage	V_{OL}		-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=+0.4 \mathrm{~mA}$	
On Resistance Vi-Vj	Ron1	$\begin{aligned} & Y_{1}-Y_{80} \\ & -V_{1}-V_{4} \end{aligned}$	-	-	11	k Ω	$\begin{aligned} & \text { lon }=0.1 \mathrm{~mA} \text { to } \\ & \text { one } Y \text { terminal } \end{aligned}$	
	RoN2		-	-	30	k Ω	$\mathrm{I}_{\mathrm{ON}}=0.05 \mathrm{~mA} \text { to }$ each Y terminal	
Input Leakage Current	IIL	$\begin{aligned} & \text { CL1, CL2, } \\ & \text { M, DI, SHL } \end{aligned}$	-5.0	-	5.0	$\mu \mathrm{A}$	$V_{\text {in }}=0 \mathrm{~V}$ to V_{cc}	
Vi Leakage Current	ML	$\mathrm{V}_{1}-\mathrm{V}_{4}$	-5.0	-	5.0	$\mu \mathrm{A}$	Output $\mathrm{Y}_{1}-\mathrm{Y}_{80}$ open $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}	
Current Dissipation	IGND		-	-	2.0	mA	$\mathrm{f}_{\mathrm{CL} 2}=1.0 \mathrm{MHz}$	*1
	lee		-	-	0.1	mA	$\mathrm{f}_{\mathrm{CL} 1}=2.5 \mathrm{kHz}$	

*1 Input/output currents are excluded; when an input is at the intermediate level in CMOS, excessive current flows from the power supply through the input circuit.
To avoid this, $V_{I H}$ and $V_{I L}$ must be fixed at $V_{C C}$ and $G N D$ level respectively.

AC Characteristics

$\left(V_{C C}=5 \mathrm{~V} \pm 10 \%, V_{C C}-V_{\mathrm{EE}}=3.0\right.$ to $6.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Terminals	Min.	Typ.	Max.	Unit	Note
Data Shift Frequency	f_{CL}	CL2	-	-	1	MHz	
Clock High level Width	tcwh	CL1, CL2	450	-	-	ns	
Clock Low level Width	tcw	CL2	450	-	-	ns	
Data Set-Up Time	f_{SU}	DI	100	-	-	ns	
Clock Set-Up Time (1)	$\mathrm{t}_{\text {SL }}$	CL2	200	-	-	ns	*1
Clock Set-Up Time (2)	tLs	CL1	200	-	-	ns	*2
Output Delay Time	t_{pd}	DO	-	-	250	ns	*3
Data Hold Time	t_{DH}	DI	100	-	-	ns	
Clock Rise/Fall Time	f_{CT}	CL1, CL2	-	-	50	ns	

*1 Set-up time from the fall of CL2 to that of CL1.
*2 Set-up time from the fall CL1 to that of CL2.
*3 Test terminal

Figure 8 Timing Chart of HD66100F

Typical Applications

Connection with the LCD Controller HD44780

Figure 9 Example of Connection (1/16 duty cycle, $1 / 5$ bias)

Figure 10 Example of Connection (1/8 duty cycle, $1 / 4$ bias)

Connection with LCD 111 (HD44790)

Figure 11 Example of Connection (1/3 duty cycle, $1 / 3$ bias)

Static Drive

Figure 12 Example of Connection (80-segment display)

- Timing Chart of Input Waveforms

Figure 13 Timing Chart of Input Waveforms

Notes:

1. Input square waves of 50% duty cycle (about $30-500 \mathrm{~Hz}$) to M . The frequency depends on the specifications of LCD panels.
2. The drive waveforms corresponding to the new displayed data are output at the fall of CL1. Therefore, when the alternating signal M and CL1 do not fall synchronously, DC elements are produced on the LCD drive waveforms. These DC elements may shorten the life span of the LCD, if the displayed data frequently changes (e.g. display of hours,
minutes, and seconds of a clock). To avoid this, make CL1 fall synchronously with the one edge of M.
3. In this example, the CMOS inverter is used as a COM signal driver in consideration of the large display area. (The load capacitance on COM is large because it is common to all the displayed segments.)
Usually, one of the HD66100F outputs can be used as a COM signal. The displayed data corresponding to the terminal should be 0 in that case.

Figure 14 Example of Connection

Figure 15 Timing Chart (when Y_{1} is used as a COM signal)

HD61100A (LCD Driver with 80-Channel Outputs)

Description

The HD61100A is a driver LSI for liquid crystal display systems. It receives serial display data from a display control LSI, HD61830, etc., and generates liquid crystal driving signals.

It has liquid crystal driving outputs which correspond to internal 80 -bit flip/flops. Both static drive and dynamic drive are possible according to the combination of transfer clock frequency and latch clock frequency.

Ordering Information
Type No. Package
HD61100A 100-pin plastic QFP(FP-100)

Features

- Liquid crystal display driver with serial/parallel conversion function
- Internal liquid crystal display driver: 80 drivers
- Display duty cycle

Any duty cycle is selectable according to combination of transfer clock and latch clock

- Data transfer rate: 2.5 MHz max.
- Power supply

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}} & +5 \mathrm{~V} \pm 10 \% \text { (Internal logic) } \\
\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}: & 5.5 \text { to } 1.7 \mathrm{~V} \text { (Liquid crystal } \\
& \text { display driver circuit) }
\end{array}
$$

- Liquid crystal driving level: 17.0 V max.
- CMOS process

Absolute Maximum Ratings

Item	Symbol	Value	Unit	Note
Supply voltage (1)	V_{CC}	-0.3 to +7.0	V	2
Supply voltage (2)	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-19.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Terminal voltage (1)	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{VCC}+0.3$	V	2,3
Terminal voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{VCC}_{\mathrm{CC}}+0.3$	V	4
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. LSIs may be permanently destroyed if used beyond the absolute maximum ratings. In ordinary operation, it is desirable to use them within the limits of electrical characteristics, because using it beyond these conditions may cause malfunction and poor reliability.
2. All voltage values are referred to $\mathrm{GND}=0 \mathrm{~V}$.
3. Applies to input terminals, FCS, SHL, CL1, CL2, DL, DR, E, and M.
4. Applies to $\mathrm{V}_{1 L}, \mathrm{~V}_{1 R}, \mathrm{~V}_{2 L}, \mathrm{~V}_{2 R}, \mathrm{~V}_{3 L}, \mathrm{~V}_{3 \mathrm{R}}, \mathrm{V}_{4 L}$ and $\mathrm{V}_{4 R}$. Must maintain:
$V_{\text {CC }} \geq V_{1 L}=V_{1 R} \geq V_{3 L}=V_{3 R} \geq V_{4 L}=V_{4 R} \geq V_{2 L}=V_{2 R} \geq V_{E E}$.
Connect a protection resistor of $15 \Omega \pm 10 \%$ to each terminals in series.

Pin Arrangement

Electrical Characteristics

DC Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=5.5$ to $17 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Note
Input high voltage	V_{H}	$0.7 \times V_{c c}$	-	V_{0}	V		1
Input low voltage	$\mathrm{V}_{\text {IL }}$	0	-	$0.3 \times V_{C C}$	V		1
Output high voltage	Vor	V cc -0.4	-	-	V	$\mathrm{l}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2
Output low voltage	Vol	-	-	0.4	V	$1 \mathrm{CL}=+400 \mu \mathrm{~A}$	2
Driver resistance	Row	-	-	7.5	k Ω	$\mathrm{V}_{\mathrm{EE}}=-10 \mathrm{~V}$, Load current = $100 \mu \mathrm{~A}$	3
Input leakage current	ILL 1	-1	-	+1	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=0$ to VCC	1
Input leakage current	ILL2	-2	-	+2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathrm{EE}}$ to V_{C}	4
Dissipation current (1)	IGND	-	-	1.0	mA		5
Dissipation current (2)	lee	-	-	0.1	mA		5

Notes: 1. Applies to CL1, CL2, FCS, SHL, E, M, DL, and DR.
2. Applies to DL, DR, and CAR.
3. Applies to $\mathrm{Y} 1-\mathrm{Y} 80$.
4. Applies to $\mathrm{V}_{1 L}, \mathrm{~V}_{1 \mathrm{R}}, \mathrm{V}_{2 \mathrm{~L}}, \mathrm{~V}_{2 \mathrm{R}}, \mathrm{V}_{3 L}, \mathrm{~V}_{3 \mathrm{R}}, \mathrm{V}_{4 \mathrm{~L}}$, and $\mathrm{V}_{4 \mathrm{R}}$.
5. Specified when display data is transferred under following conditions:

CL2 frequency fCP2 $=2.5 \mathrm{MHz}$ (data transfer rate)
CL1 frequency $\mathrm{fCP}_{1}=4.48 \mathrm{kHz}$ (data latch frequency)
M frequency $\mathrm{f}_{\mathrm{M}}=35 \mathrm{~Hz}$ (frame frequency/2)
Specified when $\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{V}_{\mathrm{IL}}=$ GND and no load on outputs. IGND: currents between Vcc and GND. $l_{E E}$: currents between V_{CC} and V_{EE}.

AC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% . \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=5.5\right.$ to $17 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Note
Clock cycle time	tcre	400	-	-	ns		
Clock high level width	tewn	150	-	-	ns		
Clock low level width	tcm.	150	-	-	ns		
Clock setup time	tscl	100	-	-	ns		
Clock hold time	thcl	100	-	-	ns		
Clock riseffall time	tct	-	-	30	ns		
Clock phase different time	tcl	100	-	-	ns		
Data setup time	tDSU	80	-	-	ns		
Data hold time	tDH	100	-	-	ns		
E setup time	tesu	200	-	-	ns		
Output delay time	tDCAR	-	-	300	ns		1
M phase difference time	tcm	-	-	300	ns		

Note: 1. The following load circuits are connected for specification:

Block Function

Liquid Crystal Display Driver Circuit

The combination of the data from the latch circuit 2 and M signal causes one of the 4 liquid crystal driver levels, V1, V2, V3 and V4 to be output.

80-bit Latch Circuit 2

The data from latch circuit 1 is latched at the fall of CL1 and output to liquid crystal display driver circuit.

S/P

Serial/Parallel conversion circuit which converts 1bit data into 4-bit data. When SHL is "L" level, data from DL is converted into 4-bit data and transferred to the latch circuit 1 . In this case, don't connect any lines to terminal DR which is in the output status.
When SHL is " H " level, input data from terminal DR without connecting any lines to terminal DL.

80-bit Latch Circuit 1

The 4-bit data is latched at $\phi 1$ to $\phi 20$ and output to latch circuit 2. When SHL is " L " level, the data from DL are latched one in order of $1 \rightarrow 2 \rightarrow 3 \ldots \rightarrow$ 80 of each latch. When SHL is " H " level, they are latched in a reverse order $(80 \rightarrow 79 \rightarrow 78 \ldots \rightarrow 1)$.

Selector

The selector decodes output signals from the counter and generates latch clock $\phi 1$ to $\phi 20$. When the LSI is not active, $\phi 1$ to $\phi 20$ are not generated, so the data at latch circuit 1 is stored even if input data (DL, DR) changes.

Control Circuit

Controls operation: When E-F/F (enable F/F) indicates " 1 ", S / P conversion is started by inputting "L" level to $\overline{\mathrm{E}}$. After 80-bit data has been all converted, $\overline{C A R}$ output turns into "L" level and $\mathrm{E}-\mathrm{F} / \mathrm{F}$ is reset to " 0 ", and consequently the conversion stops. E-F/F is RS flip-flop circuit which gives priority to SET over RESET and is set at " H " level of CL1.
Counter consists of 7 bits, and the output signals of upper 5 bits are transferred to the selector. CAR signal turns into "H" level at the rise of CL1 and the number of bit which can be S/P-converted increases by connecting $\overline{\mathrm{CAR}}$ terminal with $\overline{\mathrm{E}}$ terminal of the next HD61100A.

Terminal Functions Description

Terminal Name	Number of Terminals	1/0	Connected to	Functions
Vcc GND Vee	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		Power supply	Vcc - GND: Power supply for internal logic VCC - VEE: Power supply for LCD drive circuit
$V_{1 L}-V_{4 L}$ $V_{1 R}-V_{4 R}$	8		Power supply	Power supply for liquid crystal drive. $\mathrm{V}_{1 L}\left(\mathrm{~V}_{1 \mathrm{R}}\right), \mathrm{V}_{2 \mathrm{~L}}\left(\mathrm{~V}_{2 \mathrm{R}}\right)$: Selection level $V_{3 L}\left(V_{3 R}\right), V_{4 L}\left(V_{4 R}\right)$: Non-selection level Power supplies connected with $\mathrm{V}_{1 L}$ and $\mathrm{V}_{1 \mathrm{R}}\left(\mathrm{V}_{2 L}\right.$ \& $\mathrm{V}_{2 \mathrm{R}}$, $V_{3 L}$ \& $V_{3 R}, V_{4 L}$ \& $V_{4 R}$) should have the same voltages.
Y1-Y80	80	0	LCD	Liquid crystal driver outputs. Selects one of the 4 levels, V1, V2, V3, and V4. Relation among output level, M and display data (D) is as follows:
M	1	I	Controller	Switch signal to convert liquid crystal drive waveform into AC.
CL1	1	1	Controller	Latch clock of display data (fall edge trigger). Liquid crystal driver signals corresponding to the display data are output synchronized with the fall of CL1.
CL2	1	1	Controller	Shift clock of display data (D). Falling edge trigger.
DL, DR	2	I/O	Controller	Input of serial display data (D).
				1 (High) Selection level On
				O (Low) Non-selection level Off
				I/O status of DL and DR terminals depends on SHL input level.
				SHL DL DR
				High O
				Low 1

Terminal Functions Description (cont)

Terminal Name	Number of Terminals	I/O	Connected to	Functions					
SHL	1	I	$V_{C C}$ or GND	Selects a shift direction of serial data.					
				When the serial data (D) is input in order of $D 1 \rightarrow \ldots \rightarrow D 80$, the relations between the data (D) and output Y are as follows.					
				SHL	Y1	Y2	Y3		Y80
				Low	D1	D2	D3		D80
				High	D80	D79	D78		D1
				When SHL is low, data is input from the terminal DL. No lines should be connected to the terminal DR, as it is in the output state.					
				When SHL is high, the relation between DL and DR reverses.					
$\overline{\mathrm{E}}$	1	I	GND or the terminal CAR of the HD61100A	Controls the S/P conversion. The operation stops when \bar{E} is high, and the S / P conversion starts when \bar{E} is low.					
CAR	1	0	Input terminal \bar{E} of the HD61100A	Used for cascade connection with the HD61100A to increase the number of bits which can be S/P converted.					
FCS	1	1	GND	Input terminal for test. Connect to GND.					

Operation of the HD61100A

The following describes an LCD panel with $64 \times$ 240 dots on which characters are displayed with $1 / 64$ duty cycle dynamic drive. Figure 1 is an
example of liquid crystal display and connection to HD61100A's. Figure 2 is a time chart of HD61100A I/O signals.

Cascade three HD61100As. Input data to the terminal DL of No. 1, No 2, and No. 3. Connect E of No. 1 to GND. Don't connect any lines to CAR of No. 3. Connect common signal terminals (COM1-COM64) to X1-X64 of common driver HD61103A. (m, n) in LCD panel is the address corresponding to each dot.

Figure 1 LCD driver with 64×240 dots

HD61100A

Application Examples

An Example of 128×240 Dot Liquid Crystal Display (1/64 Duty Cycle)

Figure 3128×240 Dot Liquid Crystal Display

The liquid crystal panel (figure 3) is divided into upper and lower parts. These two parts are driven separately. HD61100As No. 1 to No. 3 drive the upper half. Serial data, which are input from the DATA(1) terminal, appear at $Y_{1} \rightarrow Y_{2} \rightarrow-Y_{80}$ terminal of No. 1, then at $Y_{1} \rightarrow Y_{2} \rightarrow--Y_{80}$ of No. 2 and then at $Y_{1} \rightarrow Y_{2} \rightarrow--Y_{80}$ of No. 3 in the order in which they were input (in the case of SHL = low). HD61100As No. 4 to No. 6 drive the
lower half. Serial data, which are input from the DATA(2) terminal, appear at $\mathrm{Y}_{80} \rightarrow \mathrm{Y}_{79} \rightarrow-\mathrm{Y}_{1}$ of No. 4, then at $Y_{80} \rightarrow Y_{79} \rightarrow--Y_{1}$ of No. 5 and then $\mathrm{Y}_{80} \rightarrow \mathrm{Y}_{79} \rightarrow-\mathrm{Y}_{1}$ of No. 6 in the order in which they were input (in the case of SHL = high). As shown in this example, PC board for display divided into upper and lower half can be easily designed by using SHL terminal effectively.

Example of 64×150 Dot Liquid Crystal Display (1/64 Duty Cycle, SHL $=$ Low)

Figure 464×150 Dot Liquid Crystal Display

4-bit parallel process is used in this LSI to lessen the power dissipation. Thus, the sum of the dots in horizontal direction should be multiple of 4. If not, as this example (figure 4), consideration is needed for input signals (figure 5).

Figure 5 Input Dots, 150 Horizontal Dots

As the sum of dots in lateral direction is 150,2 more dummy data bits are transferred ($152=4 \times 38$). Dummy data, which is output from Y71 and Y72 of No. 2, can be either 0 or 1 because these terminals do not connect with the liquid crystal display panel.

HD61200 (LCD Driver with 80-Channel Outputs)

Description

The HD61200 is a column driver LSI for a largearea dot matrix LCD. It employs $1 / 32$ or more duty cycle multiplexing method. It receives serial display data from a micro controller or a display control LSI, HD61830, etc., and generates liquid crystal driving signals.

Ordering Information

Type No.	Package
HD61200	100 -pin plastic QFP(FP-100)

Features

- Liquid crystal display driver with serial/parallel conversion function
- Internal liquid crystal display driver: 80 drivers
- Drives liquid crystal panels with $1 / 32-1 / 128$ duty cycle multiplexing
- Can interface to LCD controllers, HD61830 and HD61830B
- Data transfer rate: 2.5 MHz max
- Power supply: $\mathrm{V}_{\mathrm{CC}}: 5 \mathrm{~V} \pm 10 \%$ (Internal logic)
- Power supply voltage for liquid crystal display drive: 8 V to 17 V
- CMOS process

Absolute Maximum Ratings

Item	Symbol	Value	Unit	Note
Supply voltage (1)	V_{CC}	-0.3 to +7.0	V	2
Supply voltage (2)	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-19.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Terminal voltage (1)	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	2,3
Terminal voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	4
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. LSIs may be permanently destroyed if being used beyond the absolute maximum ratings. In ordinary operation, it is desirable to use them within the limits of electrical characteristics, because using them beyond these conditions may cause malfunction and poor reliability.
2. All voltage values are referenced to $\mathrm{GND}=0 \mathrm{~V}$.
3. Applies to input terminals, FCS, SHL, CL1, CL2, DL, DR, E, and M.
4. Applies to $\mathrm{V}_{1 L}, \mathrm{~V}_{1 \mathrm{R}}, \mathrm{V}_{2 L}, \mathrm{~V}_{2 R}, \mathrm{~V}_{3 L}, \mathrm{~V}_{3 \mathrm{R}}, \mathrm{V}_{4 L}$, and $\mathrm{V}_{4 \mathrm{R}}$. Must maintain $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{1 \mathrm{~L}}=\mathrm{V}_{1 \mathrm{R}} \geq \mathrm{V}_{3 \mathrm{~L}}=\mathrm{V}_{3 \mathrm{R}} \geq \mathrm{V}_{4 \mathrm{~L}}=\mathrm{V}_{4 \mathrm{R}} \geq \mathrm{V}_{2 \mathrm{~L}}=\mathrm{V}_{2 \mathrm{R}} \geq \mathrm{V}_{\mathrm{EE}}$.
Connect a protection resistor of $15 \Omega \pm 10 \%$ to each terminal in series.

Pin Arrangement

(Top View)

Electrical Characteristics

DC Characteristics
$\left(V_{C C}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}-\mathrm{VEE}=8 \mathrm{~V}\right.$ to $17 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $\left.\mathbf{7 5}{ }^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Note
Input high voltage	V_{IH}	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	V_{CC}	V		1
Input low voltage	V_{IL}	0	-	$0.3 \times$ V_{CC}	V		1
Output high voltage	V_{OH}	$\mathrm{V}_{\mathrm{CC}}-0.4$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}$	2
Output low voltage	V_{OL}	-	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$	2
Driver on resistance	R_{ON}	-	-	7.5	$\mathrm{k} \Omega$	$L_{\text {Load current }}=$ $100 \mu \mathrm{~A}$	5
Input leakage current	$\mathrm{I}_{\mathrm{LL} 1}$	-1	-	1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0$ to V_{CC}	1
Input leakage current	$\mathrm{I}_{\mathrm{IL2}}$	-2	-	2	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE}}$ to V_{CC}	3
Dissipation current (1)	$\mathrm{I}_{\mathrm{GND}}$	-	-	1.0	mA		4
Dissipation current (2)	I_{EE}	-	-	0.1	mA		4

Notes: 1. Applies to CL1, CL2, SHL, E, M, DL, and DR.
2. Applies to CAR.
3. Applies to $\mathrm{V}_{1 L}, \mathrm{~V}_{1 R}, \mathrm{~V}_{2 L}, \mathrm{~V}_{2 R}, \mathrm{~V}_{3 L}, \mathrm{~V}_{3 R}, \mathrm{~V}_{4 L}$, and $\mathrm{V}_{4 R}$.
4. Specified when display data is transferred under following conditions:

CL2 frequency $\mathrm{fCP}_{2}=2.5 \mathrm{MHz}$ (data transfer rate)
CL1 frequency ${ }^{\mathrm{C}} \mathrm{CP} 1=4.48 \mathrm{kHz}$ (data latch frequency)
M frequency $\mathrm{f}_{\mathrm{M}}=35 \mathrm{~Hz}$ (frame frequency/2)
Specified at $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}(\mathrm{V}), \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ and load on outputs.
$\mathrm{I}_{\mathrm{GND}}$: currents between V_{CC} and GND.
I_{EE} : currents between V_{CC} and V_{EE}.
5. Resistance between terminal Y and terminal V (one of $V_{1 L}, V_{1 R}, V_{2 L}, V_{2 R}, V_{3 L}, V_{3 R}, V_{4 L}$, and $\mathrm{V}_{4 \mathrm{R}}$ when load current flows through one of the terminals Y1 to Y80. This value is specified under the following condition:

$$
\begin{aligned}
V_{C C}-V_{E E} & =17 V \\
V_{1 L}=V_{1 R}, V_{3 L}=V_{3 R} & =V_{C C}-2 / 7\left(V_{C C}-V_{E E}\right) \\
V_{2 L}=V_{2 R}, V_{4 L}=V_{4 R} & =V_{E E}+2 \pi\left(V_{C C}-V_{E E}\right)
\end{aligned}
$$

The following here is a description of the range of power supply voltage for liquid crystal display drivers. Apply positive voltage to $\mathrm{V}_{1 \mathrm{~L}}=\mathrm{V}_{1 \mathrm{R}}$ and $\mathrm{V}_{3 \mathrm{~L}}=\mathrm{V}_{3 \mathrm{R}}$ and negative voltage to $\mathrm{V}_{2 \mathrm{~L}}=\mathrm{V}_{2 \mathrm{R}}$ and $\mathrm{V}_{4 \mathrm{~L}}=\mathrm{V}_{4 \mathrm{R}}$ within the $\Delta \mathrm{V}$ range. This range allows stable impedance on driver output (RON). Notice the $\Delta \mathrm{V}$ depends on power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$.

Correlation between Driver Output Waveform and Power Supply Voltages for Liquid Crystal Display Drive

Range of Power Supply Voltage for Liquid Crystal Display Drive

Correlation between Power
Supply Voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ and $\Delta \mathrm{V}$

Terminal Configuration

Input Terminal

Applicable terminals :
CL1, CL2, SHL, \bar{E}, M

Input Terminal (with Enable)
Applicable terminals: DL, DR

Output Terminal

Applicable terminal: $\overline{\mathrm{CAR}}$

Applicable terminals: Y1-Y80

AC Characteristics
$\left(\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}\right.$, GND $=0 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $\left.+\mathbf{7 5}{ }^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Test Condition Note	
Clock cycle time	$\mathrm{t}_{\mathrm{CYC}}$	400	-	-	ns		
Clock high level width	$\mathrm{t}_{\mathrm{CWH}}$	150	-	-	ns		
Clock low level width	$\mathrm{t}_{\mathrm{CWL}}$	150	-	-	ns		
Clock setup time	$\mathrm{t}_{\mathrm{SCL}}$	100	-	-	ns		
Clock hold time	$\mathrm{t}_{\mathrm{HCL}}$	100	-	-	ns		
Clock rise/fall time	t_{Ct}	-	-	30	ns		
Clock phase different time	t_{CL}	100	-	-	ns		
Data setup time	$\mathrm{t}_{\mathrm{DSU}}$	80	-	-	ns		
Data hold time	t_{DH}	100	-	-	ns		
E setup time	$\mathrm{t}_{\text {ESU }}$	200	-	-	ns		
Output delay time	$\mathrm{t}_{\mathrm{DCAR}}$	-	-	300	ns		
M phase difference time	t_{CM}	-	-	300	ns		

Note: 1. The following load circuit is connected for specification:

Block Function

Liquid Crystal Display Driver Circuit

The combination of the data from the latch circuit 2 and M signal causes one of the 4 liquid crystal driver levels, V1, V2, V3, and V4 to be output.

80-bit Latch Circuit 2

The data from latch circuit 1 is latched at the fall of CL1 and output to liquid crystal display driver circuit.

S/P

Serial/parallel conversion circuit which converts 1bit data into 4-bit data. When SHL is low level, data from DL is converted into 4-bit data and transferred to the latch circuit 1 . In this case, don't connect any lines to terminal DR.

When SHL is high level, input data from terminal DR without connecting any lines to terminal DL.

80-bit Latch Circuit 1

The 4-bit data is latched at $\$ 1-\phi 20$ and output to latch circuit 2 . When SHL is low level, the data from DL are latched in order of $1 \rightarrow 2 \rightarrow 3 \ldots \rightarrow 80$ of each latch. When SHL is high level, they are latched in a reverse order $(80 \rightarrow 79 \rightarrow 78 \ldots \rightarrow 1)$.

Selector

The selector decodes output signals from the counter and generates latch clock $\phi 1$ to $\phi 20$. When the LSI is not active, $\phi 1-\phi 20$ are not generated, so the data at latch circuit 1 is stored even if input data (DL, DR) changes.

Control Circuit

Controls operation: When E-F/F (enable F/F) indicates $1, \mathrm{~S} / \mathrm{P}$ conversion is started by inputting low level to $\overline{\mathrm{E}}$. After 80-bit data has been all converted, $\overline{\mathrm{CAR}}$ output turns into low level and EF / F is reset to 0 , and consequently the conversion stops. E-F/F is RS flip-flop circuit which gives priority to SET over RESET and is set at high level of CL1.

The counter consists of 7 bits, and the output signals upper 5 bits are transferred to the selector. CAR signal turns into high level at the rise of CL1. The number of bits that can be S / P-converted can be increased by connecting CAR terminal with $\overline{\mathrm{E}}$ terminal of the next HD61200.

HD61200

Terminal Functions Description

Terminal Functions Description (cont)

Terminal Name	Number of Terminals	$1 / 0$	Connected to	Functions
SHL (cont)	1	I	$\mathrm{V}_{\text {cc }}$ or GND	When SHL is low, data is input from the DL terminal. No lines should be connected to the DR terminal.
				When SHL is high, the relation between DL and DR reverses.
$\overline{\mathrm{E}}$	1	I	GND or the terminal CAR of the HD61200	Controls the S/P conversion.
				The operation stops on high level, and the S/P conversion starts on low level.
$\overline{\text { CAR }}$	1	0	Input terminal \bar{E} of the HD61200	Used for cascade connection with the HD61200 to increase the number of bits that can be S/P converted.
FCS	1	1	GND	Input terminal for test.
				Connect to GND.

Operation of the HD61200

The following describes an LCD panel with 64×240 dots on which characters are displayed with $1 / 64$ duty cycle dynamic drive. Figure 1 is an example of liquid crystal display and connection to HD61200s. Figure 2 is a time chart of HD61200 I/O signals.

Figure 1 LCD Driver with 64×240 Dots
Cascade three HD61200s. Input data to the DL terminal of No. 1, No. 2, and No. 3. Connect \bar{E} of No. 1 to GND. Don't connect any lines to CAR of No. 3. Connect common signal terminals (COM1-COM64) to X1-X64 of common driver HD61203. (m, n) of LCD panel is the address corresponding to each dot.

Application Example

Figure 3 Example of 128×240 Dot Liquid Crystal Display (1/64 duty cycle)
The liquid crystal panel is divided into upper and lower parts. These two parts are driven separately. HD61200s No. 1 to No. 3 drive the upper half. Serial data, which are input from the DATA (1) terminal, appear at $Y_{1} \rightarrow Y_{2} \rightarrow-Y_{80}$ terminal of No. 1, then at $Y_{1} \rightarrow Y_{2} \rightarrow-Y_{80}$ of No. 2 and then at $Y_{1} \rightarrow Y_{2} \rightarrow$ $-\mathrm{Y}_{80}$ of No. 3 in the order in which they were input (in the case of SHL = low). HD61200s No. 4 to No. 6 drive the lower half. Serial data, which are input from DATA (2) terminal, appear at $Y_{80} \rightarrow Y_{79} \rightarrow--Y_{1}$ of No. 4, then at $Y_{80} \rightarrow Y_{79} \rightarrow-Y_{1}$ of No. 5 and then $Y_{80} \rightarrow Y_{79} \rightarrow--Y_{1}$ of No. 6 in the order in which they were input (in the case of SHL = high).

As shown in this example, a PC board for a display divided into upper and lower half can be easily designed by using the SHL terminal effectively.

HD43160AH (Controller with Built-in Character Generator)

Display Controller and Character Generator for Dot Matrix Liquid Crystal Display System

The HD43160AH receives character data written in ASCII code or JIS code from a microcomputer and stores them in its RAM which has 80 words capacity.

The HD43160AH converts these data into a serial character pattern, then transfers them to LCD drivers.

It also generates other control signals for the LCD. The HD44100H LCD driver can be combined with this controller.

Display Characters Types

- Alphanumeric characters: A-Z, a-z, @, \#, \%, \&, etc.
- Japanese characters (katakana)

Ordering Information

Type No. Package
HD43160AH 54-pin plastic QFP (FP-54)

- 160 characters in internal character generator (ROM)
(Max 256 characters in external ROM)

Number Of Characters

- 4, 8, 16, 24, 32, 40, 64, or 80 characters in 1 or 2 lines

Font

- $5 \times 7+$ Cursor or $5 \times 11+$ Cursor

Other Function Controlled By Microcomputer

- Display clear
- Cursor on/off
- Cursor position preset (character position)
- Cursor return

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Value	Unit
Supply voltage	V_{cc}	-0.3 to +7.0	V
Input voltage	V_{T}	-0.3 to $\mathrm{V}_{\mathrm{cc}}+0.3$	V
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\mathrm{C}}$
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\mathrm{C}}$

HD43160AH

Electrical Characteristics (Vcc $=5 \mathrm{~V} \pm 5 \%$, GND $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Terminal No.	min	typ	max	Unit	Test condition
Input voltage (TTL compatible)	V_{IH}	$\begin{aligned} & \text { CSO-CS3, E, R/W } \\ & \text { DBO-DB7, RSO } \end{aligned}$	2.0	-	Vcc	V	
	$\mathrm{V}_{\text {IL }}$		0	-	0.8	V	
Input voltage	$\mathrm{V}_{\mathrm{IHC}}$	OSC1, TEST, RST, FNTS, CURS, DLN, ROMS, $\mathrm{CNO}-\mathrm{CN} 2, \mathrm{O}_{1}-\mathrm{O}_{5}$	0.7 V Cc	-	V_{cc}	V	
	VILC		0	-	0.3 Vcc	V	
Output voltage (TTL compatible)	V_{OH}	DB7	2.4	-	-	V	$\mathrm{IOH}=-0.205 \mathrm{~mA}$
	VOL		-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
Output voltage	V ${ }_{\text {OHC }}$	$\begin{aligned} & \text { FLM, M, D, CL1, CL2, } \\ & \text { XO-X7, YO-Y3 } \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}-1.0$	-	-	V	$\mathrm{l}_{\text {load }}= \pm 0.4 \mathrm{~mA}$
	Volc		-	-	1.0	V	
Input leak current	lıI	All inputs	-5	-	5	$\mu \mathrm{A}$	
Output leak current	ILO	DB7	-10	-	10	$\mu \mathrm{A}$	
Oscillation	f.P1		130	192	250	kHz	$\begin{aligned} & R_{f}=200 k \Omega \pm \pm 2 \%, 5 \\ & \times 7+\text { Cursor } \end{aligned}$
freq	$\mathrm{f}_{\text {CP2 }}$		200	288	375	kHz	$\begin{aligned} & R_{f}=130 \mathrm{k} \Omega \pm 2 \%, 5 \\ & \times 11+\text { Cursor } \end{aligned}$
Input pull up current	IPL	$\begin{aligned} & \text { CSO-CS3,RSO, R/W, } \\ & \text { DBO-DB7 } \end{aligned}$	2	10	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$
Power dissipation	P_{T}	*	-	-	10	mW	$\begin{array}{r} \mathrm{Ta}=\underset{25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CP}}=}{ } \begin{array}{c} \text { (external clock) } \end{array} \end{array}$

* Input/output current is excluded. When an input is at the intermediate level in CMOS, excessive current flows through the input circuit to the power supply. To avoid this, input level must be fixed at high or low, CSO-CS3, RSO, R/W, DBO-DB7.

Pin Arrangement

Pin No.	Power sup. OSC	Input	Output	Pin No.	$\begin{aligned} & \text { Power sup. } \\ & \text { OSC } \end{aligned}$	Input	Output	Pin No.	Power sup. OSC	Input	Output
1	GND (-)			19			D	37		DB3	
2			X4	20			FIM	38		DB4	
3			X3	21			$\phi \mathrm{A}$	39		DB5	
4			X2	22	OSC1			40		DB6	
5			X1	23	OSC2			41		DB7	DB7
6			X0	24		RST		42		ROMS	
7			. C .	25		TEST		43		05	
8			. C .	26		E		44		04	
9			. C .	27	$\mathrm{Vcc}(+)$			45		03	
10		CURS		28		R/W		46		02	
11		FNTS		29		RSO		47		01	
12		DLN		30		CSO		48			Y3
13		CNO		31		CS1		49			Y2
14		CN1		32		CS2		50			Y1
15		CN2		33		CS3		51			YO
16			CL2	34		DBO		52			X7
17			CL1	35		DB1		53			X6
18			M	36		DB2		54			X5

Pin Function

Pin name	Number of terminals	Connected to	1/0	Function							
Vcc GND	2	Power supply		$+5 \mathrm{~V} \pm 10 \%$ Power supply 0 V							
CNO	3	GND or Vcc	I	Total displayed character number select							
				No. 4	8	16	24	32	40	64	80
				CNO GND	Vcc	GND	Vcc	GND	Vcc	GND	V_{cc}
				CN1 GND	GND	Vcc	VCc	GND	GND	$V_{c c}$	$\mathrm{V}_{\text {cc }}$
				CN2 GND	GND	GND	GND	Vcc	Vcc	Vcc	V cc
CURS	1	GND or Vcc	I	Cursor select V_{CC} : 5 dots $\bullet \bullet \bullet \bullet \bullet$ GND: 1 dot							
$\overline{\text { DLN }}$	1	GND or V_{cc}	I	Display line number select $V_{C c}$: 2 lines GND: 1 line							
FNTS	1	GND or V_{cc}	I	```Font select Vcc: 5 < 11 + Cursor GND: 5 > 7 + Cursor```							
RST	1	Vcc	I	Only for test. Normally Vcc.							
TEST	1	GND	1	Only for test. Normally GND.							
E	1	MPU	I	Strobe signal Write mode: The HD43160AH latches the data on DBODB7 at the falling edge of this signal Read mode: Busy/Ready signal is active on DB7 while this signal is high (Low: Ready, High: Busy)							
$\overline{R / W}$	1	MPU	1	Read/Write signal L: HD43160AH gets the data from MPU H: MPU gets the Busy/Ready signal from HD43160AH							
$\begin{aligned} & \text { CSO } \\ & \text { CS1 } \\ & \text { CS2 } \\ & \text { CS3 } \end{aligned}$	4	MPU	I	Chip select When all of CSO-CS3 are ' H ', HD43160AH is selected.							
RSO	1	MPU	I	Register select HD43160AH has 2 registers. One is for character code and another is for instruction code. Each register latches the data on DBO-DB7 at the falling edge of E, when CSO-CS3 are high and R/W is low. High: Character code register is selected Low: Instruction code register is selected							
$\begin{aligned} & \hline \text { DBO } \\ & \text { to } \\ & \text { DB7 } \\ & \hline \end{aligned}$	8	MPU	$\begin{aligned} & \hline 1 \\ & 1 / 0 \\ & \text { (DB7) } \end{aligned}$	Data bus Inputs for character code and instruction code from MPU Output for Busy/Ready flag (DB7)							
D	1	HD44100H	0	Serial dot data of characters for LCD drivers							
CL2	1	HD44100H	0	Dot data shift signal for LCD drivers							
CL1	1	HD44100H	0	Dot data latch signal for LCD drivers							

Character Dot Patterns

5×7
The bottom lines of the English small characters "g, i, p, q, y," are on the cursor line (Figure 1).
5×11

Only the English small character "g, j, p, q, y," are displayed as below. The others are the same as for 5×7 (Figure 2).

Cursor 5 dots: eeee॰
The cursor is displayed on the 8th or 12th line.

Figure 15×7 Characters

Figure 2 Special 5×11 Characters

Application

Setting Up

1. Total character number: CNO-CN2
2. Cursor pattern: CURS
3. Display line number: DLN
4. Font: FNTS

Interface to the Controller

1. Example 1 Interface to HD6800

In this example (Figure 3), the addresses of HD43160AH in the address area of the HD6800 microcomputer are: Instruction code register Character code register Busy flag
$(R / W=0)$
\#'F***' $\quad(\mathrm{R} / \mathrm{W}=0)$
\#'E***' or \#'F***' (R/W=1)
*: don't care \#": hexadecimal

Figure 3 HD6800 Interface

HD43160AH

2. Example of display program

Figure 4 Display Program Example
3. Time length of Busy

Figure 5 Busy timing

HD43160AH begins the operation from the rising edge of E (Figure 5).
Instruction code register and character code
register latch the data on DBO-DB7 at the falling edge of E.
4. Timing chart

Figure 6 HD6800 Interface Timing
5. Timing characteristics

Item		Symbol	Min	Typ	Max	Unit
Cycle time of C		$\mathrm{t}_{\text {cyc }}$	1.0	-	-	$\mu \mathrm{s}$
Pulse width of E	High level	PWEH	0.45	-	25	$\mu \mathrm{~s}$
	Low level	PWEL	0.45	-	-	$\mu \mathrm{s}$
Set up time of CS	Write	$\mathrm{t}_{\text {AS }}$	140	-	-	ns
Data delay time	Write	tDDW	-	-	225	ns
	Read	tDDR	-	-	300	ns
Hold time		t_{H}	10	-	-	ns

6. Example 2 Interface to 8085A (Intel)

Figure 7 8085A Interface
7. Timing chart

Figure 8 8085A Timing

Pulse widths of $\overline{R D}$ and $\overline{W R}$ signals of the 8085A are 400 ns min , while the pulse width of the E signal of the HD43160AH is 450 ns
\min (Figure 8).
Therefore, in this example, $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signal pulse widths are widened by the Twarr cycle.

Display Commands

Display Control Instructions

These instructions should be written into the instruction register of HD43160AH by the microcomputer. (RSO = Low, R/W = Low)

1. Display clear

MSB

LSB
Code:

Operation: The screen is cleared and the cursor returns to the 1st digit.
2. Cursor return
MSB

LSB
Code:

Operation: The cursor returns to the 1st digit and the characters being displayed do not change.
3. Cursor on/off

Code:	MSB						LSB		
	0	0	0	0	0	1	0	0	(On)
	0	0	0	0	0	1	0	1	(Off)

Operation: The cursor appears (on) or disappears (off).
4. Set cursor position

Code:	MSB				LSB
	1 line		1		($\mathrm{N}-1$) binary
	2 lines	upper	1	0	($n-1$) binary
		lower	1	1	(m-1) binary

Operation: The cursor moves to the Nth (nth, mth) digit.
$\mathrm{N} \leqq$ the total character number $\mathrm{n}, \mathrm{m} \leqq 1 / 2$ total character number ex 1: 1 line

Set the cursor at digit 55. The code is 10110110.
ex 2: 2 lines Set the cursor at digit 35 of upper or lower line.
The code is 10100010 (upper).
11100010 (lower).

Display Character Command

When the character code is written into the character register of HD43160AH, the character with thiscode appears where the cursor wasdisplayed and the cursor moves to the next digit. (RSO $=$ High, R/W = Low)

ex. 1
before ABCD
after ABCDE

Read Busy Flag

When CSO-CS3 $=$ High, R/W $=$ High and E $=$ High (RSO = 'don't care'), the Busy/Ready signal appears on DB7.

DB 7 High: Busy Low: Ready
$\begin{array}{ll}\text { Table } 1 & \text { Time Length of Busy (oscilla- } \\ & \text { tion frequency }=200 \mathrm{kHz} \text {) }\end{array}$

	Min	Max	Unit
Display clear	2.0	2.05	ms
Other operations	50	100	$\mu \mathrm{~s}$

(depends on the operating frequency)

HD43160AH

Interface to External ROM

1. Example

Figure 9 Interface to External ROM

2. Row code

Figure 10 Row Code
3. Timing chart

Figure 11 Display Timing

Interface to LCD Drivers

1. Example

Figure 12 Interface to HD44100H

HD43160AH

2. Waveforms ($5 \times 7+$ Cursor 1 line)

Figure 13 Timing

Dot Matrix Liquid Crystal Display
System

Figure 14 Typical Application $5 \times 7+$ Cursor, 2 Lines, 40 Characters

HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller/Driver)

Description

The HD44780U dot-matrix liquid crystal display controller and driver LSI displays alphanumerics, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4 - or 8 -bit microprocessor. Since all the functions such as display RAM, character generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver.
A single HD44780U can display up to one 8 -character line or two 8 -character lines.

The HD44780U has pin function compatibility with the HD44780S which allows the user to easily replace an LCD-II with an HD44780U. The HD44780U character generator ROM is extended to generate 2085×8 dot character fonts and 32 5×10 dot character fonts for a total of 240 different character fonts.
The low power supply (2.7 V to 5.5 V) of the HD44780U is suitable for any portable batterydriven product requiring low power dissipation.

Features

- 5×8 and 5×10 dot matrix possible
- Low power operation support: - 2.7 to 5.5 V
- Wide range of liquid crystal display driver power
- 3.0 to 11 V
- Liquid crystal drive waveform
- A (One line frequency AC waveform)
- Correspond to high speed MPU bus interface
-2 MHz (when $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$)
- 4-bit or 8-bit MPU interface enabled
- 80×8-bit display RAM (80 characters max.)
- 9,920-bit character generator ROM for a total of 240 character fonts
- 208 character fonts ($5 \times 8 \mathrm{dot}$)
- 32 character fonts (5×10 dot)
- 64×8-bit character generator RAM
-8 character fonts (5×8 dot)
-4 character fonts ($5 \times 10 \mathrm{dot}$)
- 16 -common $\times 40$-segment liquid crystal display driver
- Programmable duty cycles
- $1 / 8$ for one line of 5×8 dots with cursor
- $1 / 11$ for one line of 5×10 dots with cursor
$-1 / 16$ for two lines of 5×8 dots with cursor
- Wide range of instruction functions:
- Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift
- Pin function compatibility with HD44780S
- Automatic reset circuit that initializes the controller/driver after power on
- Internal oscillator with external resistors
- Low power consumption

Ordering Information

Type No.	Package	CG ROM
HD44780UA00FS	FP-80B	Japanese standard font
HCD44780UA00 Chip		
HD44780UA00TF*	TFP-80	
HD44780UA01FS*	FP-80B	Standard font
HD44780UA02FS*	FP-80B	for communica- tion, European standard font
HD44780UBxxFS	FP-80B	Custom font
HCD44780UBxx	Chip	
HD44780UBxxTF	TFP-80	
Note: * Under development	xx: ROM code No.	

HD44780U Block Diagram

LCD-II Family Comparison

Item			HD44780S	$\begin{aligned} & \text { HD66780 } \\ & \text { (LCD-II/A) } \end{aligned}$	HD44780U
Power supply voltage			$5 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 10 \%$	2.7 to 5.5 V
Liquid crystal drive voltage $\mathrm{V}_{\mathrm{LCD}}$		$1 / 4$ bias	3.0 to 11.0 V	3.0 V to V_{Cc}	3.0 to 11.0 V
		$1 / 5$ bias	4.6 to 11.0 V	3.0 V to V_{Cc}	3.0 to 11.0 V
Maximum display digits per chip			16 digits (8 digits $\times 2$ lines)	16 digits (8 digits $\times 2$ lines)	16 digits (8 digits $\times 2$ lines)
Display duty cycle			1/8, 1/11, and 1/16	$1 / 8,1 / 11$, and $1 / 16$	$1 / 8,1 / 11$, and $1 / 16$
CGROM			7,200 bits (160 character fonts for 5×7 dot and 32 character fonts for 5×10 dot)	12,000 bits (240 character fonts for $5 \times 10 \mathrm{dot}$)	9,920 bits (208 character fonts for 5×8 dot and 32 character fonts for $5 \times 10 \mathrm{dot}$)
CGRAM			64 bytes	64 bytes	64 bytes
DDRAM			80 bytes	80 bytes	80 bytes
Segment signals			40	40	40
Common signals			16	16	16
Liquid crystal drive waveform			A	B	A
Oscillator	Clock source		External resistor, external ceramic filter, or external clock	External resistor, external ceramic filter, or external clock	External resistor or external clock
	R_{f} oscillation frequency (frame frequency)		$270 \mathrm{kHz} \pm 30 \%$ (59 to 110 Hz for $1 / 8$ and $1 / 16$ duty cycles; 43 to 80 Hz for $1 / 11$ duty cycle)	$270 \mathrm{kHz} \pm 30 \%$ (59 to 110 . Hz for $1 / 8$ and $1 / 16$ duty cycles; 43 to 80 Hz for $1 / 11$ duty cycle)	$270 \mathrm{kHz} \pm 30 \%$ (59 to 110 Hz for $1 / 8$ and $1 / 16$ duty cycles; 43 to 80 Hz for $1 / 11$ duty cycle)
	R_{f} resistance		$91 \mathrm{k} \Omega \pm 2 \%$	$82 \mathrm{k} \Omega \pm 2 \%$	$\begin{aligned} & 91 \mathrm{k} \Omega \pm 2 \% \\ & \left(\text { when } V_{C C}=5 \mathrm{~V}\right) \\ & 75 \mathrm{k} \Omega \pm 2 \% \\ & \left(\text { when } V_{C C}=3 \mathrm{~V}\right) \end{aligned}$
Instructions			Fully compatible within the HD44780S		
CPU bus timing			1 MHz	2 MHz	$\begin{aligned} & 1 \mathrm{MHz}\left(\text { when } \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\right) \\ & 2 \mathrm{MHz}\left(\text { when } \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right) \end{aligned}$
Package			FP-80	FP-80B	FP-80B

HD44780U Pin Arrangement

HD44780U Pad Arrangement

HCD44780U Pad Location Coordinates

Coordinate

Pad No.	Function		
		X (um)	\boldsymbol{Y} (um)
1	SEG_{22}	-2100	2313
2	SEG_{21}	-2280	2313
3	SEG_{20}	-2313	2089
4	SEG_{19}	-2313	1833
5	SEG_{18}	-2313	1617
6	SEG_{17}	-2313	1401
7	SEG_{16}	-2313	1186
8	SEG_{15}	-2313	970
9	SEG_{14}	-2313	755
10	SEG_{13}	-2313	539
11	SEG_{12}	-2313	323
12	SEG_{11}	-2313	108
13	SEG_{10}	-2313	-108
14	SEG ${ }_{9}$	-2313	-323
15	SEG_{8}	-2313	-539
16	SEG $_{7}$	-2313	-755
17	SEG_{6}	-2313	-970
18	SEG_{5}	-2313	-1186
19	SEG_{4}	-2313	-1401
20	SEG_{3}	-2313	-1617
21	SEG_{2}	-2313	-1833
22	SEG ${ }_{1}$	-2313	-2073
23	GND	-2280	-2290
24	OSC_{1}	-2080	-2290
25	OSC_{2}	-1749	-2290
26	V_{1}	-1550	-2290
27	V_{2}	-1268	-2290
28	V_{3}	-941	-2290
29	V_{4}	-623	-2290
30	V_{5}	-304	-2290
31	CL_{1}	-48	-2290
32	CL_{2}	142	-2290
33	V_{cc}	309	-2290
34	M	475	-2290
35	D	665	-2290
36	RS	832	-2290
37	R / W	1022	-2290
38	E	1204	-2290
39	DB_{0}	1454	-2290
40	DB_{1}	1684	-2290

Pin Functions

Signal	No. of Lines	I/O	Device Interfaced with	Function
RS	1	1	MPU	Selects registers. 0 : Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for write and read)
$\bar{R} \bar{W}$	1	1	MPU	Selects read or write. 0: Write 1: Read
E	1	1	MPU	Starts data read/write
DB_{4} to DB_{7}	4	I/O	MPU	Four high order bidirectional tristate data bus pins. Used for data transfer and receive between the MPU and the HD44780U. DB_{7} can be used as a busy flag.
DB_{0} to DB_{3}	4	I/O	MPU	Four low order bidirectional tristate data bus pins. Used for data transfer and receive between the MPU and the HD44780U. These pins are not used during 4-bit operation.
CL_{1}	1	0	HD44100	Clock to latch serial data D sent to the HD44100 driver
CL_{2}	1	0	HD44100	Clock to shift serial data D
M	1	0	HD44100	Switch signal for converting the liquid crystal drive waveform to AC
D	1	0	HD44100	Character pattern data corresponding to each segment signal
COM_{1} to COM_{16}	16	0	LCD	Common signals that are not used are changed to non-selection waveforms. COM_{9} to COM_{16} are non-selection waveforms at $1 / 8$ duty factor and COM_{12} to COM_{16} are nonselection waveforms at $1 / 11$ duty factor.
SEG_{1} to SEG_{40}	40	0	LCD	Segment signals
V_{1} to V_{5}	5	-	Power supply	Power supply for LCD drive $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{5}=11 \mathrm{~V}$ (max)
$\mathrm{V}_{\mathrm{cc},}$ GND	2	-	Power supply	V_{cc} : 2.7 V to 5.5 V, GND: 0 V
OSC $_{1}$, OSC $_{2}$	2	-	Oscillation resistor clock	When crystal oscillation is performed, a resistor must be connected externally. When the pin input is an external clock, it must be input to OSC $_{1}$.

Function Description

Registers

The HD44780U has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DD RAM) and character generator RAM (CG RAM). The IR can only be written from the MPU.

The DR temporarily stores data to be written into DD RAM or CG RAM and temporarily stores data to be read from DD RAM or CG RAM. Data written into the DR from the MPU is automatically written into DD RAM or CG RAM by an internal operation. The DR is also used for data storage when reading data from DD RAM or CG RAM. When address information is written into the IR, data is read and then stored into the DR from DD RAM or CG RAM by an internal operation. Data transfer between the MPU is then completed when the MPU reads the DR. After the read, data in DD RAM or CG RAM at the next address is sent to the DR for the next read from the MPU. By the register selector (RS) signal, these two registers can be selected (table 1).

Busy Flag (BF)

When the busy flag is 1 , the HD44780U is in the internal operation mode, and the next instruction will not be accepted. When RS $=0$ and $R / \overline{\mathrm{W}}=1$ (table 1), the busy flag is output to DB_{7}. The next instruction must be written after ensuring that the busy flag is 0 .

Address Counter (AC)

The address counter (AC) assigns addresses to both DD RAM and CG RAM. When an address of an instruction is written into the IR, the address information is sent from the IR to the AC. Selection of either DD RAM or CG RAM is also determined concurrently by the instruction.

After writing into (reading from) DD RAM or CG RAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are then output to DB_{0} to DB_{6} when $\mathrm{RS}=0$ and $\mathrm{R} / \overline{\mathrm{W}}=1$ (table 1).

Table 1 Register Selection

RS	\mathbf{R} / \bar{W}	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB ${ }_{7}$) and address counter (DB ${ }_{0}$ to DB_{6})
1	0	DR write as an internal operation (DR to DD RAM or CG RAM)
1	1	DR read as an internal operation (DD RAM or CG RAM to DR)

Display Data RAM (DD RAM)

Display data RAM (DD RAM) stores display data represented in 8-bit character codes. Its extended capacity is 80×8 bits, or 80 characters. The area in display data RAM (DD RAM) that is not used for display can be used as general data RAM. See figure 1 for the relationships between DD RAM addresses and positions on the liquid crystal display.

The DD RAM address (A_{DD}) is set in the address counter (AC) as hexadecimal.

- 1-line display ($\mathrm{N}=0$) (figure 2)
- Case 1: When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the HD44780, 8 characters are displayed. See figure 3.

When the display shift operation is performed, the DD RAM address shifts. See figure 3.

- Case 2: For a 16 -character display, the HD44780 can be extended using one HD44100 and displayed. See figure 4.

When the display shift operation is performed, the DD RAM address shifts. See figure 4.

- Case 3: The relationship between the display position and DD RAM address when the number of display digits is increased through the use of two or more HD44100s can be considered as an extension of case \#2.

Since the increase can be eight digits per additional HD44100, up to 80 digits can be displayed by externally connecting nine HD44100s. See figure 5.

Figure 1 DD RAM Address

Display position
(digit)
DD RAM
address

(hexadecimal)

Figure 2 1-Line Display

Display

| $\begin{array}{l}\text { For } \\ \text { shift left }\end{array}$ | $\begin{array}{ll}01 & 02\end{array} 03$ | 04 | 05 | 06 | 07 | 08 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| For |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| shift right | 4 F

Figure 3 1-Line by 8-Character Display Example

Figure 4 1-Line by 16-Character Display Example

Figure 5 1-Line by 80-Character Display Example

- 2-line display $(\mathrm{N}=1)$ (figure 6)

Case 1: When the number of display characters is less than 40×2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not
consecutive. For example, when just the HD44780 is used, 8 characters $\times 2$ lines are displayed. See figure 7.

When display shift operation is performed, the DD RAM address shifts. See figure 7.

Display position

DD RAM
address
(hexadecimal)

1	2	3	4					39
00	01	02	03	04	$\ldots \ldots \ldots \ldots \ldots$	26	27	
40	41	42	43	44	$\ldots \ldots \ldots \ldots \ldots \ldots$	66	67	

Figure 6 2-Line Display

Figure 7 2-Line by 8-Character Display Example

- Case 2: For a 16 -character $\times 2$-line display, the HD44780 can be extended using one HD44100. See figure 8.

When display shift operation is performed, the DD RAM address shifts. See figure 8.

- Case 3: The relationship between the display position and DD RAM address
when the number of display digits is increased by using one HD44780U and two or more HD44100s, can be considered as an extension of case \#2. See figure 9.

Since the increase can be 8 digits $\times 2$ lines for each additional HD44100, up to 40 digits $\times 2$ lines can be displayed by externally connecting four HD44100s.

Figure 8 2-Line by 16-Character Display Example

Figure 9 2-Line by 40-Character Display Example

HD44780U

Character Generator ROM (CG ROM)

The character generator ROM generates 5×8 dot or 5×10 dot character patterns from 8 -bit character codes (table 4). It can generate 2085×8 dot character patterns and 325×10 dot character patterns. User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CG RAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DD RAM the character codes at the addresses shown as the left column of table 4 to show the character patterns stored in CG RAM.

See table 5 for the relationship between CG RAM addresses and data and display patterns.

Areas that are not used for display can be used as general data RAM.

Modifying Character Patterns

- Character pattern development procedure

The following operations correspond to the numbers listed in figure 10 :

1. Determine the correspondence between character codes and character patterns.
2. Create a listing indicating the correspondence between EPROM addresses and data.
3. Program the character patterns into the EPROM.
4. Send the EPROM to Hitachi.
5. Computer processing on the EPROM is performed at Hitachi to create a character pattern listing, which is sent to the user.
6. If there are no problems within the character pattern listing, a trial LSI is created at Hitachi and samples are sent to the user for evaluation. When it is confirmed by the user that the character patterns are correctly written, mass production of the LSI proceeds at Hitachi.

Note: For a description of the numbers used in this figure, refer to the preceding page.

Figure 10 Character Pattern Development Procedure

HD44780U

- Programming character patterns

This section explains the correspondence between addresses and data used to program character patterns in EPROM. The HD44780U character generator ROM can generate 2085×8 dot character patterns and 325×10 dot character patterns for a total of 240 different character patterns.

- Character patterns

EPROM address data and character pattern data correspond with each other to form a 5×8 or 5×10 dot character pattern (tables 2 and 3).

Table 2 Example of Correspondence between EPROM Address Data and Character Pattern (5×8 dots)

Notes: 1. EPROM addresses A_{11} to A_{3} correspond to a character code.
2. EPROM addresses A_{3} to A_{0} specify a line position of the character pattern.
3. EPROM data O_{4} to O_{0} correspond to character pattern data.
4. EPROM data O_{5} to O_{7} must be specified as 0 .
5. A lit display position (black) corresponds to a 1 .
6. Line 9 and the following lines must be blanked with 0 for a 5×8 dot character fonts.

- Handling unused character patterns

1. EPROM data outside the character pattern area: Always input 0s.
2. EPROM data in CG RAM area: Always input 0s. (Input 0s to EPROM addresses 00 H to FFH.)
3. EPROM data used when the user does not use any HD44780U character pattern: According to the user application, handled in one of the two ways listed as follows.
i. When unused character patterns are not programmed: If an unused character code is written into DD RAM, all its dots are lit. By not programing a character pattern, all of its bits become lit. (This is due to the EPROM being filled with 1 s after it is erased.)
ii. When unused character patterns are programmed as 0s: Nothing is displayed even if unused character codes are written into DD RAM. (This is equivalent to a space.)

Table 3 Example of Correspondence between EPROM Address Data and Character Pattern (5×10 dots)

Notes: 1. EPROM addresses A_{11} to A_{3} correspond to a character code.
2. EPROM addresses A_{3} to A_{0} specify a line position of the character pattern.
3. EPROM data O_{4} to O_{0} correspond to character pattern data.
4. EPROM data O_{5} to O_{7} must be specified as 0 .
5. A lit display position (black) corresponds to a 1 .
6. Line 11 and the following lines must be blanked with 0 s for a 5×10 dot character fonts.

Table 4 Correspondence between Character Codes and Character Patterns（ROM code：A00）

	先｜	［1］ $\mathrm{F}^{\text {P }}$＂ F	－	
	（2）		－ 7 P 7	
	（3）	＂ $2 \mathrm{E}\|\mathrm{R}\| \mathrm{E}$｜－		
	（4）	\＃3ILSE	－$\square^{\text {¢ }}$	
	（5）	\＃ 4 DTTJIt		
	（6）	F｜S［D｜ㅂ	－才）	
	（1）	$8.6\|0\| f \cup$		
	（8）		F	
	（1）	CBH｜	$49+9$	
x100	（2）	$99 \mid Y$ 1 3		
	（3）		I］	
	（4）	$+:\|\mathbb{L}\| \mathbb{K}$［	才 ${ }_{\text {\＃}}$	
	（6）		かワフワ	
	（6）	$-\\|\|f\|]\|m\|$	ユマジアも	
	（1）	$\left.{ }_{.}\right\rangle\left\|\\|^{*}\right\| m_{1} \rightarrow$		
	（8）	人70－01	－\square^{\square}	

Note：The user can specify any pattern for character－generator RAM．

Table 4 Correspondence between Character Codes and Character Patterns（ROM code：A01）

		\pm			可	F		F：	Cié	ÉL	－	－	三		
	（2）	1			A	0		$=1$	号	立口	F	7			
	（3）	$\underline{6}$	－	2	E	E	Er	r－	\dot{E} E	E 5	「．1	M			
		－						5			，	T			
						T		t．			I	＋			
	（6）		\％	5		1	E1	L	$\dot{9}$	－	－	＋			
			C．			U	f	v	菉	4	7 カ	－			
	（8）	$\underline{\square}$				W		9	Fid		F	？			
				8		8					17	＋			
						，	1	－ 1			\cdots	T			
					I	2	．	2			ェコ1	－			
	（4）		＋	：	K	［	k		$\ddot{1}$	土	＋+	＋			
	（5）					羊	1		1	全や	\rightarrow こ	\bigcirc			
	（6）					1	m	？	i	1	12	\cdots			
	\％										を	市			
											\cdots	17			

HD44780U

Table 4 Correspondence between Character Codes and Character Patterns（ROM code：A02）

	\％	＊		0	11 F	F			Q	1	A	E	E	
	（2）	4	！	1 －	AQ	$2 \cdot$			，	\pm	\pm	－	＋	
		\because	1	2 B	BR	E					天	亩		
				3 C	C	－								
		\pm		40	OT	T－			2	a				
			，	5 E	EU	1 －				龺大	H－			
		C		GF	FU	1 f								
	$\lfloor(0)$	\div		76	G	W			7	\％	－ 9			F
		\dagger		8 B	H8	Q			首	＋0	0			
				9 I	IV	1				回	－			－
		\rightarrow	：$: 1$	： T	I2	Z．i			－	39	É			－
				： K	＜	［E：			8	，	＊			
		ε		＜L	－	1				Hi	\％			1
				\cdots	1	1 m				9				
		－		H										
											．			

Table 5 Relationship between CG RAM Addresses, Character Codes (DD RAM) and Character Patterns (CG RAM data)

For 5×8 dot character patterns

Notes: 1. Character code bits 0 to 2 correspond to CG RAM address bits 3 to 5 (3 bits: 8 types).
2. CG RAM address bits 0 to 2 designate the character pattern line position. The 8 th line is the cursor position and its display is formed by a logical OR with the cursor.
Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1,1 bits will light up the 8 th line regardless of the cursor presence.
3. Character pattern row positions correspond to CG RAM data bits 0 to 4 (bit 4 being at the left).
4. As shown table 5, CG RAM character patterns are selected when character code bits 4 to 7 are all 0 . However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00 H or 08 H .
5. 1 for CG RAM data corresponds to display selection and 0 to non-selection.

* Indicates no effect.

HD44780U

Table 5 Relationship between CG RAM Addresses, Character Codes (DD RAM) and Character Patterns (CG RAM data) (cont)

For 5×10 dot character patterns

Notes: 1. Character code bits 1 and 2 correspond to CG RAM address bits 4 and 5 (2 bits: 4 types).
2. CG RAM address bits 0 to 3 designate the character pattern line position. The 11 th line is the cursor position and its display is formed by a logical OR with the cursor.
Maintain the 11th line data corresponding to the cursor display positon at 0 as the cursor display. If the 11 th line data is " 1 ", " 1 " bits will light up the 11 th line regardless of the cursor presence. Since lines 12 to 16 are not used for display, they can be used for general data RAM.
3. Character pattern row positions are the same as 5×8 dot character pattern positions.
4. CG RAM character patterns are selected when character code bits 4 to 7 are all 0 . However, since character code bits 0 and 3 have no effect, the P display example above can be selected by character codes $00 \mathrm{H}, 01 \mathrm{H}, 08 \mathrm{H}$, and 09 H .
5. 1 for CG RAM data corresponds to display selection and 0 to non-selection.

* Indicates no effect.

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DD RAM, CG ROM and CG RAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DD RAM, for example, there will be no undesirable interferences, such as flickering, in areas other than the display area. This circuit also generates timing signals for the operation of the externally connected HD44100 driver.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 16 common signal drivers and 40 segment signal drivers. When the character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output non-selection waveforms.

The segment signal driver has essentially the same configuration as the HD44100 driver. Character pattern data is sent serially through a 40 -bit shift register and latched when all needed data has
arrived. The latched data then enables the driver to generate drive waveform outputs. The serial data can be sent to externally cascaded HD44100s used for displaying extended digit numbers.

Sending serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DD RAM).

Since serial data is latched when the display data character pattern corresponding to the starting address enters the internal shift register, the HD44780U drives from the head display. The rest of the display, corresponding to latter addresses, are added with each additional HD44100.

Cursor/Blink Control Circuit

The cursor/blink control circuit generates the cursor or character blinking. The cursor or the blinking will appear with the digit located at the display data RAM (DD RAM) address set in the address counter (AC).

For example (figure 11), when the address counter is 08 H , the cursor position is displayed at DD RAM address 08 H .

Figure 11 Cursor/Blink Display Example

Interfacing to the MPU

The HD44780U can send data in either two 4-bit operations or one 8 -bit operation, thus allowing interfacing with 4 - or 8 -bit MPUs.

- For 4-bit interface data, only four bus lines $\left(\mathrm{DB}_{4}\right.$ to $\left.\mathrm{DB}_{7}\right)$ are used for transfer. Bus lines DB_{0} to DB_{3} are disabled. The data transfer between the HD44780U and the MPU is completed after the 4 -bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB_{4} to DB_{7}) are transferred before the four low order bits (for 8 -bit operation, DB_{0} to DB_{3}).

The busy flag must be checked (one instruction) after the 4 -bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.

- For 8 -bit interface data, all eight bus lines $\left(\mathrm{DB}_{0}\right.$ to DB_{7}) are used.

Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the HD44780U when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends $(B F=1)$. The busy state lasts for 10 ms after V_{CC} rises to 4.5 V .

1. Display clear
2. Function set:
$\mathrm{DL}=1 ; 8$-bit interface data
$\mathrm{N}=0$; 1-line display
$\mathrm{F}=0 ; 5 \times 8$ dot character font
3. Display on/off control:

D $=0$; Display off
C = 0; Cursor off
$\mathrm{B}=0$; Blinking off
4. Entry mode set:

I/D = 1 ; Increment by 1
S = 0; No shift
Note: If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the HD44780U. For such a case, initialization must be performed by the MPU as explained in the section, Initializing by Instruction.

Figure 12 4-Bit Transfer Example

Instructions

Outline

Only the instruction register (IR) and the data register (DR) of the HD44780U can be controlled by the MPU. Before starting the internal operation of the HD44780U, control information is temporarily stored into these registers to allow interfacing with various MPUs, which operate at different speeds, or various peripheral control devices. The internal operation of the HD44780U is determined by signals sent from the MPU. These signals, which include register selection signal (RS), read/write signal ($\mathrm{R} / \overline{\mathrm{W}}$), and the data bus (DB_{0} to DB_{7}), make up the HD44780U instructions (table 6). There are four categories of instructions that:

- Designate HD44780U functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Perform miscellaneous functions

Normally, instructions that perform data transfer with internal RAM are used the most. However,
auto-incrementation by 1 (or auto-decrementation by 1) of internal HD44780U RAM addresses after each data write can lighten the program load of the MPU. Since the display shift instruction (table 11) can perform concurrently with display data write, the user can minimize system development time with maximum programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy flag/address read instruction can be executed.

Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0 before sending another instruction from the MPU.

Note: Be sure the HD44780U is not in the busy state ($\mathrm{BF}=0$) before sending an instruction from the MPU to the HD44780U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to table 6 for the list of each instruction execution time.

HD44780U

Table 6 Instructions

Instruction	Code										Description	Execution Time (max) (when $f_{c p}$ or fosc ls 270 kHz)
	RS	R/W	DB_{7}	DB_{6}	DB	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}		
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DD RAM address 0 in address counter.	15.2 ms
Return home	0	0	0	0	0	0	0	0	1	-	Sets DD RAM address 0 in address counter. Also returns display from being shifted to original position. DD RAM contents remain unchanged.	15.2 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	$37 \mu \mathrm{~s}$
Display on/off control	0	0	0	0	0	0	1	D	C	B	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	$37 \mu \mathrm{~s}$
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	-	-	Moves cursor and shifts display without changing DD RAM contents.	$37 \mu \mathrm{~s}$
Function set	0	0	0	0	1	DL	N	F	-	-	Sets interface data length (DL), number of display lines (N), and character font (F).	$37 \mu \mathrm{~s}$
Set CG RAM address	0	0	0	1			$A_{C G}$			$A_{c G}$	Sets CG RAM address. CG RAM data is sent and received after this setting.	$37 \mu \mathrm{~s}$
Set DD RAM address	0	0	1	$A_{D D}$		$A_{D D}$	Sets DD RAM address. DD RAM data is sent and received after this setting.	$37 \mu \mathrm{~s}$				
Read busy flag \& address	0	1	BF	AC	Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	$0 \mu \mathrm{~s}$						

Table 6 Instructions (cont)

Note: - indicates no effect.

* After execution of the CG RAM/DD RAM data write or read instruction, the RAM address counter is incremented or decremented by 1. The RAM address counter is updated after the busy flag turns off. In figure 13, $t_{A D D}$ is the time elapsed after the busy flag turns off until the address counter is updated.

Note: $t_{\text {ADD }}$ depends on the operation frequency
$t_{A D D}=1.5 /\left(f_{c p}\right.$ or $f_{O S C}$) seconds

Figure 13 Address Counter Update

HD44780U

Instruction Description

Clear Display

Clear display writes space code 20 H (character pattern for character code 20 H must be a blank pattern) into all DD RAM addresses. It then sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. In other words, the display disappears and the cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1 (increment mode) in entry mode. S of entry mode does not change.

Return Home

Return home sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. The DD RAM contents do not change.

The cursor or blinking go to the left edge of the display (in the first line if 2 lines are displayed).

Entry Mode Set

I/D: Increments ($\mathrm{I} / \mathrm{D}=1$) or decrements ($\mathrm{I} / \mathrm{D}=0$) the DD RAM address by 1 when a character code is written into or read from DD RAM.

The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1 . The same applies to writing and reading of CG RAM.

S: Shifts the entire display either to the right $(I / D=0)$ or to the left $(I / D=1)$ when S is 1 . The display does not shift if S is 0 .

If S is 1 , it will seem as if the cursor does not move but the display does. The display does not shift when reading from DD RAM. Also, writing into or reading out from CG RAM does not shift the display.

Display On/Off Control

D: The display is on when D is 1 and off when D is 0 . When off, the display data remains in DD RAM, but can be displayed instantly by setting D to 1 .

C: The cursor is displayed when C is 1 and not displayed when C is 0 . Even if the cursor disappears, the function of I/D or other specifications will not change during display data write. The cursor is displayed using 5 dots in the 8th line for 5×8 dot character font selection and in the 11th line for the 5×10 dot character font selection (figure 16).

B: The character indicated by the cursor blinks when B is 1 (figure 16). The blinking is displayed as switching between all blank dots and displayed characters at a speed of $409.6-\mathrm{ms}$ intervals when f_{cp} or $\mathrm{f}_{\mathrm{OSC}}$ is 250 kHz . The cursor and blinking can be set to display simultaneously. (The blinking frequency changes according to $\mathrm{f}_{\mathrm{OSC}}$ or the reciprocal of $f_{c p}$. For example, when $f_{c p}$ is $270 \mathrm{kHz}, 409.6 \times 250 / 270=379.2 \mathrm{~ms}$.)

Cursor or Display Shift

Cursor or display shift shifts the cursor position or display to the right or left without writing or reading display data (table 7). This function is used to correct or search the display. In a 2 -line display, the cursor moves to the second line when it passes the 40th digit of the first line. Note that the first and second line displays will shift at the same time.

When the displayed data is shifted repeatedly each line moves only horizontally. The second line display does not shift into the first line position.

The address counter (AC) contents will not change if the only action performed is a display shift.

Function Set

DL: Sets the interface data length. Data is sent or received in 8 -bit lengths (DB_{7} to DB_{0}) when DL is 1 , and in 4-bit lengths $\left(\mathrm{DB}_{7}\right.$ to $\left.\mathrm{DB}_{4}\right)$ when DL is 0 .

When 4-bit length is selected, data must be sent or received twice.
\mathbf{N} : Sets the number of display lines.

F: Sets the character font.
Note: Perform the function at the head of the program before executing any instructions (except for the read busy flag and address instruction). From this point, the function set instruction cannot be executed unless the interface data length is changed.

Set CG RAM Address

Set CG RAM address sets the CG RAM address binary AAAAAA into the address counter.

Data is then written to or read from the MPU for CG RAM.

Clear display	Code	RS	R / \bar{W}	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB1	DB_{0}	Note: * Don't care
		0	0	0	0	0	0	0	0	0	1	
		RS	R/W	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}	
Return home	Code	0	0	0	0	0	0	0	0	1	*	
		RS	R / \bar{W}	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}	
Entry mode set	Code	0	0	0	0	0	0	0	1	I/D	S	
		RS	R / \bar{W}	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}	
Display on/off control	Code	0	0	0	0	0	0	1	D	C	B	

Figure 14

Figure 15

Set DD RAM Address

Set DD RAM address sets the DD RAM address binary AAAAAAA into the address counter.

Data is then written to or read from the MPU for DD RAM.

However, when N is 0 (1-line display), AAAAAAA can be 00 H to 4 FH . When N is 1 (2-line display), AAAAAAA can be 00 H to 27 H for the first line, and 40 H to 67 H for the second line.

Read Busy Flag and Address

Read busy flag and address reads the busy flag (BF) indicating that the system is now internally operating on a previously received instruction. If BF is 1 , the internal operation is in progress. The next instruction will not be accepted until BF is reset to 0 . Check the BF status before the next write operation. At the same time, the value of the address counter in binary AAAAAAA is read out. This address counter is used by both CG and DD RAM addresses, and its value is determined by the previous instruction. The address contents are the same as for instructions set CG RAM address and set DD RAM address.

Table 7 Shift Function

S/C	R/L	
0	0	Shifts the cursor position to the left. (AC is decremented by one.)
0	1	Shifts the cursor position to the right. (AC is incremented by one.)
$\mathbf{1}$	0	Shifts the entire display to the left. The cursor follows the display shift.
$\mathbf{1}$	$\mathbf{1}$	Shifts the entire display to the right. The cursor follows the display shift.

Table 8 Function Set

N	F	No. of Display Lines	Character Font	Duty Factor	Remarks
0	0	1	5×8 dots	$1 / 8$	
0	1	1	5×10 dots	$1 / 11$	
1	$*$	2	5×8 dots	$1 / 16$	Cannot display two lines for 5×10 dot character font
Note: $*$ Indicates don't care.					

Note: * Indicates don't care.

Figure 16 Cursor and Blinking

Figure 17

HD44780U

Write Data to CG or DD RAM

Write data to CG or DD RAM writes 8-bit binary data DDDDDDDD to CG or DD RAM.

To write into CG or DD RAM is determined by the previous specification of the CG RAM or DD RAM address setting. After a write, the address is automatically incremented or decremented by 1 according to the entry mode. The entry mode also determines the display shift.

Read Data from CG or DD RAM

Read data from CG or DD RAM reads 8-bit binary data DDDDDDDD from CG or DD RAM.

The previous designation determines whether CG or DD RAM is to be read. Before entering this read instruction, either CG RAM or DD RAM address set instruction must be executed. If not executed, the first read data will be invalid. When serially executing read instructions, the next address data is normally read from the second read. The address set instructions need not be
executed just before this read instruction when shifting the cursor by the cursor shift instruction (when reading out DD RAM). The operation of the cursor shift instruction is the same as the set DD RAM address instruction.

After a read, the entry mode automatically increases or decreases the address by 1. However, display shift is not executed regardless of the entry mode.

Note: The address counter (AC) is automatically incremented or decremented by 1 after the write instructions to CG RAM or DD RAM are executed. The RAM data selected by the AC cannot be read out at this time even if read instructions are executed. Therefore, to correctly read data, execute either the address set instruction or cursor shift instruction (only with DD RAM), then just before reading the desired data, execute the read instruction from the second time the read instruction is sent.

Figure 18

Interfacing the HD44780U

Interface to MPUs

- Interfacing to an 8 -bit MPU through a PIA

See figure 20 for an example of using a PIA or I/O port (for a single-chip microcomputer) as an interface device. The input and output of the device is TTL compatible.

In this example, PB_{0} to PB_{7} are connected to the data bus DB_{0} to DB_{7}, and PA_{0} to PA_{2} are connected to $E, R / \bar{W}$, and $R S$, respectively.

Pay careful attention to the timing relationship between E and the other signals when reading or writing data using a PIA for the interface.

Figure 19 Example of Busy Flag Check Timing Sequence

Figure 20 Example of Interface to HD68B00 Using PIA (HD68B21/HD63B21)

Figure 21 8-Bit MPU Interface

Figure 22 H8/325 Interface (Single-Chip Mode)

Figure 23 HD6301 Interface

- Interfacing to a 4 -bit MPU

The HD44780U can be connected to the I/O port of a 4 -bit MPU. If the I/O port has enough bits, 8 -bit data can be transferred. Otherwise, one data transfer must be made in two operations for 4-bit data. In this case, the timing sequence becomes somewhat complex. (See figure 24.)

See figure 25 for an interface example to the HMCS4019R.

Note that two cycles are needed for the busy flag check as well as for the data transfer. The 4-bit operation is selected by the program.

Figure 24 Example of 4-Bit Data Transfer Timing Sequence

Figure 25 Example of Interface to HMCS4019R

HD44780U

Interface to Liquid Crystal Display

Character Font and Number of Lines: The HD44780U can perform two types of displays, $5 \times$ 8 dot and 5×10 dot character fonts, each with a cursor.

Up to two lines are displayed for 5×8 dots and one line for 5×10 dots. Therefore, a total of three
types of common signals are available (table 9).
The number of lines and font types can be selected by the program. (See table 6, Instructions.)

Connection to HD44780 and Liquid Crystal Display: See figure 26 for the connection examples.

Table 9 Common Signals

Number of Lines	Character Font	Number of Common Signals	Duty Factor
1	5×8 dots + cursor	8	$1 / 8$
1	5×10 dots + cursor	11	$1 / 11$
2	5×8 dots + cursor	16	$1 / 16$

HD44780

Example of a 5×8 dot, 8 -character $\times 1$-line display ($1 / 4$ bias, $1 / 8$ duty cycle)
HD44780

Example of a 5×10 dot, 8 -character $\times 1$-line display ($1 / 4$ bias, $1 / 11$ duty cycle)

Figure 26 Liquid Crystal Display and HD44780 Connections

Since five segment signal lines can display one digit, one HD44780U can display up to 8 digits for a 1 -line display and 16 digits for a 2 -line display.

The examples in figure 26 have unused common signal pins, which always output non-
selection waveforms. When the liquid crystal display panel has unused extra scanning lines, connect the extra scanning lines to these common signal pins to avoid any undesirable effects due to crosstalk during the floating state (figure 27).

Figure 26 Liquid Crystal Display and HD44780 Connections (cont)

Figure 27 Using COM9 to Avoid Crosstalk on Unneeded Scanning Line

HD44780U

Connection of Changed Matrix Layout: In the preceding examples, the number of lines correspond to the scanning lines. However, the following display examples (figure 28) are made possible by altering the matrix layout of the liquid crystal display panel. In either case, the only change is the layout. The display characteristics
and the number of liquid crystal display characters depend on the number of common signals or on duty factor. Note that the display data RAM (DD RAM) addresses for 4 characters $\times 2$ lines and for 16 characters $\times 1$ line are the same as in figure 26.

Figure 28 Changed Matrix Layout Displays

Power Supply for Liquid Crystal Display Drive

Various voltage levels must be applied to pins V_{1} to V_{5} of the HD44780U to obtain the liquid crystal display drive waveforms. The voltages must be changed according to the duty factor (table 10).
$\mathrm{V}_{\mathrm{LCD}}$ is the peak value for the liquid crystal display drive waveforms, and resistance dividing provides voltages V_{1} to V_{5} (figure 29).

Table 10 Duty Factor and Power Supply for Liquid Crystal Display Drive

	Duty Factor	
	$\mathbf{1 / 8 , 1 / 1 1}$	$\mathbf{1 / 1 6}$
Power Supply	$\mathbf{1 / 4}$	Bias
V_{1}	$V_{C C}-1 / 4 \mathrm{~V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-1 / 5 \mathrm{~V}_{\mathrm{LCD}}$
V_{2}	$\mathrm{~V}_{\mathrm{CC}}-1 / 2 \mathrm{~V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-2 / 5 \mathrm{~V}_{\mathrm{LCD}}$
V_{3}	$\mathrm{~V}_{\mathrm{CC}}-1 / 2 \mathrm{~V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-3 / 5 \mathrm{~V}_{\mathrm{LCD}}$
V_{4}	$\mathrm{~V}_{\mathrm{CC}}-3 / 4 \mathrm{~V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-4 / 5 \mathrm{~V}_{\mathrm{LCD}}$
V_{5}	$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{LCD}}$

Figure 29 Drive Voltage Supply Example

HD44780U

Relationship between Oscillation

Frequency and Liquid Crystal Display

Frame Frequency

The liquid crystal display frame frequencies of figure 30 apply only when the oscillation
frequency is 270 kHz (one clock pulse of $3.7 \mu \mathrm{~s}$).

Figure 30 Frame Frequency

Connection with HD44100 Driver

By externally connecting an HD44100 liquid crystal display driver to the HD44780U, the number of display digits can be increased. The HD44100 is used as a segment signal driver when connected to the HD44780U. The HD44100 can be directly connected to the HD44780U since it supplies $\mathrm{CL}_{1}, \mathrm{CL}_{2}, \mathrm{M}$, and D signals and power for the liquid crystal display drive (figure 31).

Caution: The connection of voltage supply pins V_{1} through V_{6} for the liquid crystal display drive is somewhat complicated.

Up to nine HD44100 units can be connected for a 1 -line display (duty factor $1 / 8$ or $1 / 11$) and up to four units for a 2 -line display (duty factor $1 / 16$). The RAM size limits the HD44780U to a maximum of 80 character display digits. The connection method for both 1 -line and 2 -line displays or for 5×8 and 5×10 dot character fonts can remain the same (figure 26).

Figure 31 Example of Connecting HD44100s to HD44780

HD44780U

Instruction and Display Correspondence

- 8 -bit operation, 8 -digit $\times 1$-line display with internal reset

Refer to table 11 for an example of an 8 -digit $\times 1$-line display in 8 -bit operation. The HD44780 functions must be set by the function set instruction prior to the display. Since the display data RAM can store data for 80 characters, as explained before, the RAM can be used for displays such as for advertising when combined with the display shift operation.

Since the display shift operation changes only the display position with DD RAM contents unchanged, the first display data entered into DD RAM can be output when the retum home operation is performed.

- 4-bit operation, 8 -digit $\times 1$-line display with internal reset

The program must set all functions prior to the 4-bit operation (table 12). When the power is turned on, 8 -bit operation is automatically selected and the first write is performed as an 8 -bit operation. Since DB_{0} to DB_{3} are not connected, a rewrite is then required. However, since one operation is completed in two accesses for 4-bit operation, a rewrite is needed to set the functions (see table 12). Thus, DB_{4} to DB_{7} of the function set instruction is written twice.

- 8 -bit operation, 8 -digit $\times 2$-line display

For a 2 -line display, the cursor automatically moves from the first to the second line after the 40th digit of the first line has been written. Thus, if there are only 8 characters in the first line, the DD RAM address must be again set after the 8th character is completed. (See table 13.) Note that the display shift operation is performed for the first and second lines. In the example of table 13, the display shift is performed when the cursor is on the second line. However, if the shift operation is performed when the cursor is on the first line, both the first and second lines move together. If the shift is repeated, the display of the second line will not move to the first line. The same display will only shift within its own line for the number of times the shift is repeated.

Note: When using the internal reset, the electrical characteristics in the Power Supply Conditions Using Internal Reset Circuit table must be satisfied. If not, the HD44780 must be initialized by instructions. See the section, Initializing by Instruction.

Table 11 8-Bit Operation, 8-Digit \times 1-Line Display Example with Internal Reset

	Instruction											Operation
No.	RS R/W్WB7 $\mathrm{DB}_{6} \mathrm{DB}_{5} \mathrm{DB}_{4} \mathrm{DB}_{3} \mathrm{DB}_{2} \mathrm{DB}_{1} \mathrm{DB}_{0}$										Display	
1	Power supply on (the HD44780U is initialized by the internal reset circuit)											Initialized. No display.
2		ctio		0		1	0	0	*	*		Sets to 8-bit operation and selects 1 -line display and 5×8 dot character font. (Number of display lines and character fonts cannot be changed after step \#2.)
3	$\begin{aligned} & \text { Display on/off contr } \\ & 0 \end{aligned} \quad 0 \quad 0 \quad 0$					0	1	1	1	0		Turns on display and cursor. Entire display is in space mode because of initialization.
4	$\begin{aligned} & \text { Entn } \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{rym} \\ 0 \end{gathered}$	$\begin{gathered} \text { ode } \\ 0 \end{gathered}$			0		1	1	0		Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CG RAM. Display is not shifted.
5	Write 1	$\begin{aligned} & \text { te da } \\ & 0 \end{aligned}$	$\begin{gathered} \text { ata to } \\ 0 \end{gathered}$	$\begin{gathered} \text { CGI } \\ 1 \end{gathered}$	$\begin{gathered} \text { 2AM/I } \\ 0 \end{gathered}$	$\begin{gathered} 0 \mathrm{DD} \\ 0 \end{gathered}$	$\begin{gathered} \text { RAM } \\ 1 \end{gathered}$		0	0	H_{-}	Writes H. DD RAM has already been selected by initialization when the power was turned on. The cursor is incremented by one and shifted to the right.
6	Write data to CG RAM/DD RAM								0	1	HI	Writes I.
7											\vdots	
8	Write data to CG RAM/DD RAM								0	1	HITACHI	Writes I.
9	Entry mode set			0	0	0	0	1	1	1	HITACHI	Sets mode to shift display at the time of write.
10	Write data to CG RAM/DD RAM								0	0	ITACHI	Writes a space.

Table 11 8-Bit Operation, 8-Digit \times 1-Line Display Example with Internal Reset (cont)

Table 12 4-Bit Operation, 8-Digit \times 1-Line Display Example with Internal Reset

Note: The control is the same as for 8 -bit operation beyond step \#6.

HD44780U

Table 13 8-Bit Operation, 8-Digit \times 2-Line Display Example with Internal Reset

Table 13 8-Bit Operation, 8-Digit \times 2-Line Display Example with Internal Reset (cont)

Initializing by Instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, initialization by instructions becomes necessary.

Refer to figures 32 and 33 for the procedures on 8 -bit and 4 -bit initializations, respectively.

Figure 32 8-Bit Interface

Figure 33 4-Bit Interface

HD44780U

Absolute Maximum Ratings*

Item	Symbol	Value	Unit	Notes
Power supply voltage (1)	$\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$	-0.3 to +7.0	V	1
Power supply voltage (2)	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{5}$	-0.3 to +13.0	V	1,2
Input voltage	V_{t}	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$	3
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	4

Note: If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

DC Characteristics ($\mathbf{V}_{\mathbf{C C}}=2.7 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+75^{\circ}{ }^{\circ}{ }^{* 3}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC $_{1}$)	$\mathrm{V}_{\mathrm{H} 1}$	$0.7 \mathrm{~V}_{\text {cc }}$	-	V_{cc}	V		6
Input low voltage (1) (except OSC $_{1}$)	$\mathrm{V}_{\text {LL } 1}$	-0.3	-	0.55	V		6
Input high voltage (2) (OSC_{1})	$\mathrm{V}_{\mathrm{H} 2}$	$0.7 \mathrm{~V}_{\text {cc }}$	-	V_{cc}	V		15
Input low voltage (2) (OSC_{1})	$\mathrm{V}_{\text {IL2 }}$	-	-	$0.2 V_{c c}$	V		15
Output high voltage (1) $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}\right)$	$\mathrm{V}_{\mathrm{OH} 1}$	$0.75 \mathrm{~V}_{\text {cc }}$	-	-	V	$-\mathrm{l}_{\mathrm{OH}}=0.1 \mathrm{~mA}$	7
Output low voltage (1) $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}\right)$	$\mathrm{V}_{\mathrm{OL} 1}$	-	-	$0.2 V_{\text {cc }}$	V	$\mathrm{l}_{\mathrm{OL}}=0.1 \mathrm{~mA}$	7
Output high voltage (2) (except $\mathrm{DB}_{0}-\mathrm{DB}_{7}$)	$\mathrm{V}_{\mathrm{OH} 2}$	${ }_{0} .8 \mathrm{~V}_{\mathrm{cc}}$	-	-	V	$-\mathrm{I}_{\mathrm{OH}}=0.04 \mathrm{~mA}$	8
Output low voltage (2) (except $\mathrm{DB}_{0}-\mathrm{DB}_{7}$)	$\mathrm{V}_{\mathrm{OL} 2}$	-	-	$0.2 V_{c c}$	V	$\mathrm{I}_{\mathrm{OL}}=0.04 \mathrm{~mA}$	8
Driver on resistance (COM)	R ${ }_{\text {com }}$	-	-	20	k Ω	$\begin{aligned} & \pm \mathrm{ld}=0.05 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{LCD}}=4 \mathrm{~V} \end{aligned}$	13
Driver on resistance (SEG)	$\mathrm{R}_{\text {SEG }}$	-	-	30	k Ω	$\begin{aligned} & \pm \mathrm{ld}=0.05 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{LCD}}=4 \mathrm{~V} \end{aligned}$	13
Input leakage current	ILI	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$	9
Pull-up MOS current ($\left.\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{RS}, \mathrm{R} / \overline{\mathrm{W}}\right)$	-lp	10	50	120	$\mu \mathrm{A}$	$V_{C C}=3 \mathrm{~V}$	
Power supply current	lcc	-	0.15	0.30	mA	R_{f} oscillation, external clock $V_{C C}=3 V$, $f_{\text {OSC }}=$	$10,14$
LCD voltage	$\mathrm{V}_{\text {LCD1 }}$	3.0	-	11.0	V	$\mathrm{V}_{C C}-\mathrm{V}_{5}, 1 / 5$ bias	16
	$\mathrm{V}_{\mathrm{LCD} 2}$	3.0	-	11.0	V	$V_{C C}-V_{5}, 1 / 4$ bias	16

[^2]
AC Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $\mathbf{4 . 5} \mathrm{V}, \mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+75^{\circ}{ }^{\circ}{ }^{* 3}$)

Clock Characteristics

Item		Symbo	Min	Typ	Max	Unit	Test Condition	Note*
External clock operation	External clock frequency	$\mathrm{f}_{\text {cp }}$	125	250	350	kHz		11
	External clock duty	Duty	45	50	55	\%		
	External clock rise time	$\mathrm{t}_{\text {cpp }}$	-	-	0.2	$\mu \mathrm{s}$		
	External clock fall time	$\mathrm{t}_{\text {cpp }}$	-	-	0.2	$\mu \mathrm{s}$		
R_{f} oscillation	Clock oscillation frequency	fosc	190	270	350	kHz	$\begin{aligned} & R_{\mathrm{f}}=75 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V} \end{aligned}$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

Bus Timing Characteristics

Write Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\mathrm{cycE}}$	1000	-	-	ns	Figure 34
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable riseffall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25		
Address set-up time (RS, R$\overline{\mathrm{W}}$ to E$)$	t_{AS}	60	-	-		
Address hold time	t_{AH}	20	-	-		
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	195	-	-		
Data hold time	t_{H}	10	-	-		

Read Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cycE }}$	1000	-	-	ns	Figure 35
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable risefall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25		
Address set-up time (RS, R/W to E)	t_{AS}	60	-	-		
Address hold time	t_{AH}	20	-	-		
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	360		
Data hold time	$\mathrm{t}_{\mathrm{DHR}}$	5	-	-		

HD44780U

Interface Timing Characteristics with External Driver

Item	Symbol	Min	Typ	Max	Unit	Test Condition	
Clock pulse width	High level	$\mathrm{t}_{\mathrm{CWH}}$	800	-	-	ns	Figure 36
	Low level	$\mathrm{t}_{\mathrm{CWL}}$	800	-	-		
Clock set-up time		$\mathrm{t}_{\mathrm{CSU}}$	500	-	-		
Data set-up time		t_{SU}	300	-	-		
Data hold time	t_{DH}	300	-	-			
M delay time	t_{DM}	-1000	-	1000			
Clock rise/fall time		t_{ct}	-	-	200		

Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Power supply rise time	$\mathrm{t}_{\text {rCC }}$	0.1	-	10	ms	Figure 37
Power supply off time	$\mathrm{t}_{\text {OFF }}$	1	-	-		

DC Characteristics ($\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ}{ }^{*}{ }^{*}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC_{1})	$\mathrm{V}_{\mathrm{H} 1}$	2.2	-	V_{cc}	V		6
Input low voltage (1) (except OSC_{1})	$\mathrm{V}_{\text {LL1 }}$	-0.3	-	0.6	V		6
Input high voltage (2) (OSC ${ }_{1}$)	$\mathrm{V}_{\mathbf{1 H 2}}$	$\mathrm{V}_{\mathrm{cc}}-1.0$	-	V_{cc}	V		15
Input low voltage (2) (OSC ${ }_{1}$)	$\mathrm{V}_{\text {IL2 }}$	-	-	1.0	V		15
Output high voltage (1) $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}\right)$	$\mathrm{V}_{\mathrm{OH} 1}$	2.4	-	-	V	$-\mathrm{l}_{\mathrm{OH}}=0.205 \mathrm{~mA}$	7
Output low voltage (1) $\left(\mathrm{DB}_{0}-\mathrm{DB}_{7}\right)$	$\mathrm{V}_{\mathrm{OL} 1}$	-	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.2 \mathrm{~mA}$	7
Output high voltage (2) (except $\mathrm{DB}_{0}-\mathrm{DB}_{7}$)	$\mathrm{V}_{\mathrm{OH} 2}$	$0.9 \mathrm{~V}_{\text {CC }}$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=0.04 \mathrm{~mA}$	8
Output low voltage (2) (except $\mathrm{DB}_{0}-\mathrm{DB}_{7}$)	$\mathrm{V}_{\mathrm{OL} 2}$	-	-	$0.1 \mathrm{~V}_{\mathrm{Cc}}$	V	$\mathrm{I}_{\mathrm{OL}}=0.04 \mathrm{~mA}$	8
Driver on resistance (COM)	$\mathrm{R}_{\text {COM }}$	-	-	20	k Ω	$\begin{aligned} & \pm \mathrm{Id}=0.05 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{LCD}}=4 \mathrm{~V} \end{aligned}$	13
Driver on resistance (SEG).	$\mathrm{R}_{\text {SEG }}$	-	-	30	k Ω	$\begin{aligned} & \pm \mathrm{Id}=0.05 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{LCD}}=4 \mathrm{~V} \end{aligned}$	13
Input leakage current	ILI^{\prime}	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I N}}=0$ to V_{CC}	9
Pull-up MOS current ($\mathrm{DB}_{0}-\mathrm{DB}_{7}, \mathrm{RS}, \mathrm{R} \overline{\mathrm{W}}$)	$-l_{p}$	50	125	250	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5 \mathrm{~V}$	
Power supply current	lcc	-	0.35	0.60	mA	R_{f} oscillation, external clock $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{f}_{\mathrm{OSC}}=$	$10,14$
LCD voltage	$\mathrm{V}_{\text {LCD1 }}$	3.0	-	11.0	V	$V_{C C}-V_{5}, 1 / 5$ bias	16
	$\mathrm{V}_{\mathrm{LCD} 2}$	3.0	-	11.0	V	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{5}, 1 / 4$ bias	16

Note: *Refer to the Electrical Characteristics Notes section following these tables.

AC Characteristics ($\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}^{* 3}$)

Clock Characteristics

Item		Symbol	Min	Typ	Max	Unit	Test Condition	Note*
External clock operation	External clock frequency	f_{cp}	125	250	350	kHz		11
	External clock duty	Duty	45	50	55	$\%$	11	
	External clock rise time	$\mathrm{t}_{\mathrm{fcp}}$	-	-	0.2	$\mu \mathrm{~s}$	11	
	External clock fall time	$\mathrm{t}_{\mathrm{ccp}}$	-	-	0.2	$\mu \mathrm{~s}$		11
R_{f} oscillation	Clock oscillation frequency	$\mathrm{f}_{\mathrm{OSc}}$	190	270	350	kHz	$\mathrm{R}_{\mathrm{f}}=91 \mathrm{k} \Omega$ $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

HD44780U

Bus Timing Characteristics

Write Operation

	Symbol	Min	Typ	Max	Unit	Test Condlition
Enable cycle time	$\mathrm{t}_{\text {cycE }}$	500	-	-	ns	Figure 34
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	230	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	20		
Address set-up time (RS, $\mathrm{R} \bar{W}$ to E$)$	t_{AS}	40	-	-		
Address hold time	t_{AH}	10	-	-		
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	80	-	-		
Data hold time	t_{H}	10	-	-		

Read Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cycE }}$	500	-	-	ns	Figure 35
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	230	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	20		
Address set-up time (RS, $\mathrm{R} \bar{W}$ to E$)$	t_{AS}	40	-	-		
Address hold time	t_{AH}	10	-	-		
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	160		
Data hold time	$\mathrm{t}_{\mathrm{DHR}}$	5	-	-		

Interface Timing Characteristics with External Driver

Item	Symbol	Min	Typ	Max	Unit	Test Condition	
Clock pulse width	High level	$\mathrm{t}_{\mathrm{CWH}}$	800	-	-	ns	Figure 36
	Low level	$\mathrm{t}_{\mathrm{CWL}}$	800	-	-		
Clock set-up time		$\mathrm{t}_{\mathrm{CSU}}$	500	-	-		
Data set-up time		t_{SU}	300	-	-		
Data hold time		t_{DH}	300	-	-		
M delay time	t_{DM}	-1000	-	1000			
Clock rise/fall time		t_{Ct}	-	-	100		

Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Power supply rise time	$\mathrm{t}_{\text {rCC }}$	0.1	-	10	ms	Figure 37
Power supply off time	$\mathrm{t}_{\text {OFF }}$	1	-	-		

Electrical Characteristics Notes

1. All voltage values are referred to $\mathrm{GND}=0 \mathrm{~V}$.

$A=V_{C c}-V_{5}$
$B=V_{c c}-V_{1}$
$\mathrm{A} \geq 1.5 \mathrm{~V}$
B $\leq 0.25 \times \mathrm{A}$
The conditions of V_{1} and V_{5} voltages are for proper operation of the LSI and not for the LCD output level. The LCD drive voltage condition for the LCD output level is specified as LCD voltage $\mathrm{V}_{\mathrm{LCD}}$.
2. $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{1} \geq \mathrm{V}_{2} \geq \mathrm{V}_{3} \geq \mathrm{V}_{4} \geq \mathrm{V}_{5}$ must be maintained.
3. For die products, specified up to $75^{\circ} \mathrm{C}$.
4. For die products, specified by the die shipment specification.
5. The following four circuits are I / O pin configurations except for liquid crystal display output.

Input pin
Pin: E (MOS without pull-up)

Pins: RS, R \bar{W} (MOS with pull-up)

Output pin
Pins: $C L_{1}, C L_{2}, M, D$

I/O Pin
Pins: $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (MOS with pull-up)

HD44780U

6. Applies to input pins and I / O pins, excluding the OSC_{1} pin.
7. Applies to I / O pins.
8. Applies to output pins.
9. Current flowing through pull-up MOSs, excluding output drive MOSs.
10. Input/output current is excluded. When input is at an intermediate level with CMOS, the excessive current flows through the input circuit to the power supply. To avoid this from happening, the input level must be fixed high or low.
11. Applies only to external clock operation.

Duty $=\frac{T h}{T h+T l} \times 100 \%$
12. Applies only to the internal oscillator operation using oscillation resistor R_{f}.

$R_{f}: 75 \mathrm{k} \Omega \pm 2 \%\left(\right.$ when $V_{C C}=3 \mathrm{~V}$)
$R_{f}: 91 \mathrm{k} \Omega \pm 2 \%$ (when $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$)
Since the oscillation frequency varies depending on the OSC_{1} and OSC_{2} pin capacitance, the wiring length to these pins should be minimized.

13. $\mathrm{R}_{\mathrm{COM}}$ is the resistance between the power supply pins $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right)$ and each common signal pin $\left(\mathrm{COM}_{1}\right.$ to $\left.\mathrm{COM}_{16}\right)$.
$\mathrm{R}_{\text {SEG }}$ is the resistance between the power supply pins $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{5}\right)$ and each segment signal pin (SEG_{1} to SEG_{40}).
14. The following graphs show the relationship between operation frequency and current consumption.

15. Applies to the OSC_{1} pin.
16. Each COM and SEG output voltage is within $\pm 0.15 \mathrm{~V}$ of the LCD voltage $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right)$ when there is no load.

HD44780U

Load Circuits

Data Bus $\mathbf{D B}_{0}$ to $\mathbf{D B}_{7}$

External driver control signals: CL1, CL2, D, M

Timing Characteristics

Figure 34 Write Operation

Figure 35 Read Operation

Figure 36 Interface Timing with External Driver

Notes: 1. t off compensates for the power oscillation period caused by momentary power supply oscillations.
2. Specified at 4.5 V for $5-\mathrm{V}$ operation, and at 2.7 V for $3-\mathrm{V}$ operation.
3. For if 4.5 V is not reached during $5-\mathrm{V}$ operation, the internal reset circuit will not operate normally.
In this case, the LSI must be initialized by software. (Refer to the Initializing by Instruction section.)

Figure 37 Internal Power Supply Reset

HD66702 (LCD-II/E20) (Dot Matrix Liquid Crystai Display Controller/Driver)

Description

The HD66702 LCD-II/E20 dot-matrix liquid crystal display controller and driver LSI displays alphanumerics, Japanese kana characters, and symbols. It can be configured to drive a dotmatrix liquid crystal display under the control of a 4 - or 8 -bit microprocessor. Since all the functions required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver.
A single LCD-II/E20 can display up to two 20 -character lines. However, with the addition of HD44100 drivers, a maximum of up to two 40-character lines can be displayed.
The low 3-V power supply of the LCD-II/E20 under development is suitable for any portable batterydriven product requiring low power dissipation.

Features

- 5×7 and 5×10 dot matrix possible
- 80×8-bit display RAM (80 characters max.)
- 7,200-bit character generator ROM
- 160 character fonts (5×7 dot)
- 32 character fonts (5×10 dot)
- 64×8-bit character generator RAM
-8 character fonts (5×7 dot)
- 4 character fonts (5×10 dot)
- 16 -common $\times 100$-segment liquid crystal display driver
- Programmable duty cycles
- $1 / 8$ for one line of 5×7 dots with cursor
- $1 / 11$ for one line of 5×10 dots with cursor
- $1 / 16$ for two lines of 5×7 dots with cursor
- Maximum display characters
- One line:

1/8 duty cycle, 20-char. $\times 1$-line (no extension), 28 -char. $\times 1$-line (extended with one HD44100), 80-char. $\times 1$-line (max. extension with eight HD44100s). $1 / 11$ duty cycle, 20 -char. $\times 1$-line (no extension), 28-char. $\times 1$-line (extended with one HD44100), 80 -char. $\times 1$-line (max. extension with eight HD44100s)

- Two lines:
$1 / 16$ duty cycle, 20 -char. $\times 2$-line (no extension), 28-char. $\times 2$-line (extended with one HD44100), 40-char. $\times 2$-line (max. extension with eight HD44100s)
- Wide range of instruction functions:
- Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift
- Choice of power supply (V_{CC}): 4.5 to 5.5 V (standard), 2.7 to 5.5 V (low voltage)
- Automatic reset circuit that initializes the controller/driver after power on (standard version only)
- Independent LCD drive voltage driven off of the logic power supply $\left(\mathrm{V}_{\mathrm{CC}}\right): 3.0$ to 7.0 V

Ordering Information

Type No.	Package	Operating Voltage	ROM Font
HCD66702RA00	Chip	4.5 to 5.5 V	Standard Japanese font
HCD66702RA00L	Chip	2.7 to 5.5 V	
HD66702RA00F	144-pin plastic QFP (FP-144A)	4.5 to 5.5 V	
HD66702RA00FL	144-pin plastic QFP (FP-144A)	2.7 to 5.5 V	
HD66702RA01F	144-pin plastic QFP (FP-144A)	4.5 to 5.5 V	Japanese font for comunication system
HD66702RA02F	144-pin plastic QFP (FP-144A)	4.5 to 5.5 V	European font
HCD66702RBxx	Chip	4.5 to 5.5 V	Custom font
HCD66702RBxxL	Chip	2.7 to 5.5 V	
HD66702RBxxF	144-pin plastic QFP (FP-144A)	4.5 to 5.5 V	
HD66702RBxxFL	144-pin plastic QFP (FP-144A)	2.7 to 5.5 V	

[^3]
HD66702

LCD-II Family Comparison

Item	$\begin{aligned} & \text { LCD-II } \\ & \text { (HD44780) } \end{aligned}$	LCD-II/A (HD66780)	$\begin{aligned} & \text { LCD-II/E20 } \\ & \text { (HD66702) } \\ & \hline \end{aligned}$
Power supply voltage	$5 \mathrm{~V} \pm 10 \%$	$5 \mathrm{~V} \pm 10 \%$	$\begin{aligned} & 5 \mathrm{~V} \pm 10 \% \text { (standard) } \\ & 3 \mathrm{~V} \pm 10 \% \text { (low voltage) } \end{aligned}$
Liquid crystal drive voltage $\mathrm{V}_{\mathrm{LCD}}$	3.0 to 11 V	3.0 V to V_{cc}	3.0 to 6.0 V
	4.6 to 11 V	3.0 V to V_{Cc}	3.0 to 6.0 V
Maximum display digits per chip	16 digits (8 digits $\times 2$ lines)	16 digits (8 digits $\times 2$ lines)	40 digits (20 digits $\times 2$ lines)
Display duty cycle	1/8, 1/11, and 1/16	1/8, 1/11, and 1/16	1/8, $1 / 11$, and 1/16
CGROM	7,200 bits (160 character fonts for 5×7 dot and 32 character fonts for 5×10 dot)	12,000 bits (240 character fonts for 5×10 dot)	7,200 bits (160 character fonts for 5×7 dot and 32 character fonts for 5×10 dot)
CGRAM	64 bytes	64 bytes	64 bytes
DDRAM	80 bytes	80 bytes	80 bytes
Segment signals	40	40	100
Common signals	16	16	16
Liquid crystal drive waveform	A	B	B
Ladder resistor for LCD power supply	External	External	External
Clock source	External resistor, external ceramic filter, or external clock	External resistor, external ceramic filter, or external clock	External resistor or external clock
R_{f} oscillation frequency (frame frequency)	$270 \mathrm{kHz} \pm 30 \%$ (59 to 110 Hz for $1 / 8$ and $1 / 16$ duty cycles; 43 to 80 Hz for $1 / 11$ duty cycle)	$270 \mathrm{kHz} \pm 30 \%$ (59 to 110 Hz for $1 / 8$ and $1 / 16$ duty cycles; 43 to 80 Hz for $1 / 11$ duty cycle)	$320 \mathrm{kHz} \pm 30 \%$ (69 to 128 Hz for $1 / 8$ and $1 / 16$ duty cycles; 50 to 93 Hz for $1 / 11$ duty cycle)
R_{f} resistance	$91 \mathrm{k} \Omega \pm 2 \%$	$83 \mathrm{k} \Omega \pm 2 \%$	$\begin{aligned} & 68 \mathrm{k} \Omega \pm 2 \% \text { (standard) } \\ & 56 \mathrm{k} \Omega \pm 2 \% \text { (low voltage) } \\ & \hline \end{aligned}$
Instructions	Fully compatible within	the LCD-II family	
CPU bus timing	1 MHz	2 MHz	1 MHz
Package	FP-80, FP-80A, and 80-pin bare chip (no package)	FP-80B and FP-80A	144-pin bare chip (no package) and FP-144A

LCD-II/E20 Block Diagram

LCD-II/E20 Pad Arrangement

HCD66702 Pad Location Coordinates

Pad No.	Pad Name	$\mathbf{X}(\mu \mathrm{m})$	$\mathrm{Y}(\mu \mathrm{m})$	Pad No.	Pad Name	X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$
1	SEG_{34}	-2475	2350	31	SEG_{4}	-2475	-1600
2	SEG_{33}	-2475	2205	32	SEG_{3}	-2475	-1735
3	SEG_{32}	-2475	2065	33	SEG_{2}	-2475	-1870
4	SEG_{31}	-2475	1925	34	SEG_{1}	-2475	-2010
5	SEG_{30}	-2475	1790	35	GND	-2475	-2180
6	SEG_{29}	-2475	1655	36	OSC_{2}	-2475	-2325
7	SEG_{28}	-2475	1525	37	OSC_{1}	-2445	-2475
8	SEG_{27}	-2475	1395	38	$\mathrm{V}_{\text {cc }}$	-2305	-2475
9	SEG_{26}	-2475	1265	39	$\mathrm{V}_{\text {cc }}$	-2165	-2475
10	SEG_{25}	-2475	1135	40	V_{1}	-2025	-2475
11	SEG_{24}	-2475	1005	41	V_{2}	-1875	-2475
12	SEG_{23}	-2475	875	42	V_{3}	-1745	-2475
13	SEG_{22}	-2475	745	43	V_{4}	-1595	-2475
14	SEG_{21}	-2475	615	44	V_{5}	-1465	-2475
15	SEG_{20}	-2475	485	45	CL_{1}	-1335	-2475
16	SEG_{19}	-2475	355	46	CL_{2}	-1185	-2475
17	SEG_{18}	-2475	225	47	M	-1055	-2475
18	SEG_{17}	-2475	95	48	D	-905	-2475
19	SEG_{16}	-2475	-35	49	EXT	-775	-2475
20	SEG_{15}	-2475	-165	50	TEST	-625	-2475
21	SEG_{14}	-2475	-295	51	GND	-495	-2475
22	SEG_{13}	-2475	-425	52	RS	-345	-2475
23	SEG_{12}	-2475	-555	53	$\mathrm{R} \overline{\mathrm{W}}$	-195	-2475
24	SEG_{11}	-2475	-685	54	E	-45	-2475
25	SEG_{10}	-2475	-815	55	DB_{0}	85	-2475
26	SEG_{9}	-2475	-945	56	DB_{1}	235	-2475
27	SEG_{8}	-2475	-1075	57	DB_{2}	365	-2475
28	SEG_{7}	-2475	-1205	58	DB_{3}	515	-2475
29	SEG ${ }_{6}$	-2475	-1335	59	DB_{4}	645	-2475
30	SEG_{5}	-2475	-1465	60	DB_{5}	795	-2475

HD66702

HCD66702 Pad Location Coordinates (cont)

Pad No.	Pad Name	X ($\mu \mathrm{m}$)	$\mathbf{Y}(\mu \mathrm{m})$
61	DB_{6}	925	-2475
62	DB_{7}	1075	-2475
63	COM_{1}	1205	-2475
64	COM_{2}	1335	-2475
65	COM_{3}	1465	-2475
66	COM_{4}	1595	-2475
67	COM_{5}	1725	-2475
68	COM_{6}	1855	-2475
69	COM_{7}	1990	-2475
70	COM_{8}	2125	-2475
71	COM_{9}	2265	-2475
72	COM_{10}	2410	-2475
73	COM_{11}	2475	-2290
74	COM_{12}	2475	-2145
75	COM_{13}	2475	-2005
76	COM_{14}	2475	-1865
77	COM_{15}	2475	-1730
78	COM_{16}	2475	-1595
79	SEG_{100}	2475	-1465
80	SEG99	2475	-1335
81	SEG98	2475	-1205
82	SEG97	2475	-1075
83	SEG96	2475	-945
84	SEG_{95}	2475	-815
85	SEG94	2475	-685
86	SEG ${ }_{93}$	2475	-555
87	SEG92	2475	-425
88	SEG ${ }_{91}$	2475	-295
89	SEG_{90}	2475	-165
90	SEG_{89}	2475	-35

Pad No.	Pad Name	$\mathbf{X (\mu \mathrm { m })}$	$\mathbf{Y}(\mu \mathrm{m})$
91	SEG $_{88}$	2475	95
92	SEG $_{87}$	2475	225
93	SEG $_{86}$	2475	355
94	SEG $_{85}$	2475	485
95	SEG $_{84}$	2475	615
96	SEG $_{83}$	2475	745
97	SEG $_{82}$	2475	875
98	SEG $_{81}$	2475	1005
99	SEG $_{80}$	2475	1135
100	SEG $_{79}$	2475	1265
101	SEG $_{78}$	2475	1395
102	SEG $_{77}$	2475	1525
103	SEG $_{76}$	2475	1655
104	SEG $_{75}$	2475	1790
105	SEG $_{74}$	2475	1925
106	SEG $_{73}$	2475	2065
107	SEG $_{72}$	2475	2205
108	SEG $_{71}$	2475	2350
109	SEG $_{70}$	2320	2475
110	SEG $_{69}$	2175	2475
111	SEG $_{68}$	2035	2475
112	SEG $_{67}$	1895	2475
113	SEG $_{66}$	1760	2475
114	SEG $_{65}$	1625	2475
115	SEG $_{64}$	1495	2475
116	SEG $_{63}$	1365	2475
117	SEG $_{62}$	1235	2475
118	SEG $_{61}$	1105	2475
119	SEG $_{60}$	975	2475
120	SEG $_{59}$	845	2475

HCD66702 Pad Location Coordinates (cont)

Pad No.	Pad Name	$\mathrm{X}(\mu \mathrm{m})$	$\mathrm{Y}(\mu \mathrm{m})$
121	SEG $_{58}$	715	2475
122	SEG $_{57}$	585	2475
123	SEG $_{56}$	455	2475
124	SEG $_{55}$	325	2475
125	SEG $_{54}$	195	2475
126	SEG $_{53}$	65	2475
127	SEG $_{52}$	-65	2475
128	SEG $_{51}$	-195	2475
129	SEG $_{50}$	-325	2475
130	SEG $_{49}$	-455	2475
131	SEG $_{48}$	-585	2475
132	SEG $_{47}$	-715	2475

Pad No.	Pad Name	$\mathrm{X}(\mu \mathrm{m})$	$\mathrm{Y}(\mu \mathrm{m})$
133	SEG_{46}	-845	2475
134	SEG $_{45}$	-975	2475
135	SEG $_{44}$	-1105	2475
136	SEG $_{43}$	-1235	2475
137	SEG $_{42}$	-1365	2475
138	SEG $_{41}$	-1495	2475
139	SEG $_{40}$	-1625	2475
140	SEG $_{39}$	-1760	2475
141	SEG $_{38}$	-1895	2475
142	SEG $_{37}$	-2035	2475
143	SEG $_{36}$	-2175	2475
144	SEG $_{35}$	-2320	2475

Notes: 1. Coordinates originate from the chip center.
2. The above are preliminary specifications, and may be subject to change.

HD66702 Pin Arrangement

Pin Functions

Table 1 Pin Functional Description

Signal	//0	Device Interfaced with	Function
RS	1	MPU	Selects registers. 0 : Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for write and read)
$\overline{\mathrm{R}} \bar{W}$	1	MPU	Selects read or write. 0 : Write 1: Read
E	1	MPU	Starts data read/write
DB_{4} to DB_{7}	I/O	MPU	Four high order bidirectional tristate data bus pins. Used for data transfer between the MPU and the LCD-II/E20. DB_{7} can be used as a busy flag.
DB_{0} to DB_{3}	I/O	MPU	Four low order bidirectional tristate data bus pins. Used for data transfer between the MPU and the LCD-IIE20. These pins are not used during 4-bit operation.
CL_{1}	0	HD44100	Clock to latch serial data D sent to the HD44100H driver
CL_{2}	0	HD44100	Clock to shift serial data D
M	0	HD44100	Switch signal for converting the liquid crystal drive waveform to AC
D	0	HD44100	Character pattern data corresponding to each segment signal
COM_{1} to COM_{16}	0	LCD	Common signals that are not used are changed to nonselection waveforms. COM_{9} to COM_{16} are nonselection waveforms at $1 / 8$ duty factor and COM_{12} to COM_{16} are non-selection waveforms at $1 / 11$ duty factor.
SEG_{1} to SEG_{100}	0	LCD	Segment signals
V_{1} to V_{5}	-	Power supply	Power supply for LCD drive
V_{cc}, GND	-	Power supply	V_{cc} : +5 V or +3 V , GND: 0 V
TEST	1	-	Test pin, which must be grounded
EXT	1	-	0 : Enables extension driver control signals $\mathrm{CL}_{1}, \mathrm{CL}_{2}, \mathrm{M}$, and D to be output from its corresponding pins. 1: Drives $C L_{1}, C L_{2}, M$, and D as tristate, lowering power dissipation.
$\mathrm{OSC}_{1}, \mathrm{OSC}_{2}$	-	-	Pins for connecting the registers of the internal clock oscillation. When the pin input is an external clock, it must be input to OSC_{1}.

Function Description

Registers

The HD66702 has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DD RAM) and character generator RAM (CG RAM). The IR can only be written from the MPU.

The DR temporarily stores data to be written into DD RAM or CG RAM. Data written into the DR from the MPU is automatically written into DD RAM or CG RAM by an internal operation. The DR is also used for data storage when reading data from DD RAM or CG RAM. When address information is written into the IR, data is read and then stored into the DR from DD RAM or CG RAM by an internal operation. Data transfer between the MPU is then completed when the MPU reads the DR. After the read, data in DD RAM or CG RAM at the next address is sent to the DR for the next read from the MPU. By the register selector (RS) signal, these two registers can be selected (table 2).

Busy Flag (BF)

When the busy flag is 1 , the HD66702 is in the internal operation mode, and the next instruction will not be accepted. When RS $=0$ and $R / \bar{W}=1$ (table 2), the busy flag is output to DB_{7}. The next instruction must be written after ensuring that the busy flag is 0 .

Address Counter (AC)

The address counter (AC) assigns addresses to both DD RAM and CG RAM. When an address of an instruction is written into the IR, the address information is sent from the IR to the AC. Selection of either DD RAM or CG RAM is also determined concurrently by the instruction.

After writing into (reading from) DD RAM or CG RAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are then output to DB_{0} to DB_{6} when $\mathrm{RS}=0$ and $\mathrm{R} / \overline{\mathrm{W}}=1$ (table 2).

Table 2 Register Selection

RS	\mathbf{R} / \bar{W}	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB_{7}) and address counter (DB_{0} to DB_{6})
1	0	DR write as an internal operation (DR to DD RAM or CG RAM)
1	1	DR read as an internal operation (DD RAM or CG RAM to DR)

Display Data RAM (DD RAM)

Display data RAM (DD RAM) stores display data represented in 8 -bit character codes. Its extended capacity is 80×8 bits, or 80 characters. The area in display data RAM (DD RAM) that is not used for display can be used as general data RAM. See figure 1 for the relationships between DD RAM addresses and positions on the liquid crystal display.

The DD RAM address (A_{DD}) is set in the address counter (AC) as hexadecimal.

- 1-line display $(\mathrm{N}=0)$ (figure 2)
- Case 1: When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the HD66702, 20 characters are displayed. See figure 3.

When the display shift operation is performed, the DD RAM address shifts. See figure 3.

- Case 2: For a 28 -character display, the HD66702 can be extended using one HD44100 and displayed. See figure 4.

When the display shift operation is performed, the DD RAM address shifts. See figure 4.

- Case 3: The relationship between the display position and DD RAM address when the number of display digits is increased through the use of two or more HD44100s can be considered as an extension of case \#2.

Since the increase can be eight digits per additional HD44100, up to 80 digits can be displayed by externally connecting eight HD44100s. See figure 5.

Figure 1 DD RAM Address

Figure 2 1-Line Display

Display position DD RAM address

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
00	01	02	03	04	05	06	07	08	09	$O A$	$O B$	$O C$	$O D$	$O E$	$O F$	10	11	12	13

For shift left

01	02	03	04	05	06	07	08	09	$O A$	$O B$	$O C$	$O D$	$O E$	$O F$	10	11	12	13	14

For shift right

$4 F$	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	$0 E$	$O F$	10	11	12

Figure 3 1-Line by 20-Character Display Example

Display
 DD RAM address

For shift right $4 F$	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	00	$0 E$	$0 F$	10	11	12	13	14	15	16	17	18	19

Figure 4 1-Line by 28-Character Display Example

Display position DD RAM

Figure 5 1-Line by 80-Character Display Example

- 2-line display $(\mathrm{N}=1)$ (figure 6)
- Case 1: When the number of display characters is less than 40×2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not
consecutive. For example, when just the HD66702 is used, 20 characters $\times 2$ lines are displayed. See figure 7.

When display shift operation is performed, the DD RAM address shifts. See figure 7.

Display position

DD RAM address (hexadecimal)

$\mathbf{2}$	$\mathbf{3}$	4	5		39			40
00	01	02	03	04	$\ldots \ldots \ldots \ldots$	26	27	
40	41	42	43	44	$\ldots \ldots \ldots \ldots \ldots \ldots$	66	67	

Figure 6 2-Line Display

Display
position
DD RAM address

For shift left

For
shift right

Figure 7 2-Line by 20-Character Display Example

- Case 2: For a 28 -character $\times 2$-line display, the HD66702 can be extended using one HD44100. See figure 8.

When display shift operation is performed, the DD RAM address shifts. See figure 8.

- Case 3: The relationship between the display position and DD RAM address
when the number of display digits is increased by using two or more HD44100s, can be considered as an extension of case \#2. See figure 9.

Since the increase can be 8 digits $\times 2$ lines for each additional HD44100, up to 40 digits $\times 2$ lines can be displayed by externally connecting three HD44100s.

Display
position

For shift left

For shift right

Figure 8 2-Line by 28-Character Display Example

Figure 9 2-Line by 40-Character Display Example

Character Generator ROM (CG ROM)

The character generator ROM generates 5×7 dot or 5×10 dot character patterns from 8 -bit character codes (table 5). It can generate 1605×7 dot character patterns and 325×10 dot character patterns. User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CG RAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5×7 dots, eight character pattems can be written, and for 5×10 dots, four character patterns can be written.

Write the character codes at the addresses shown as the left column of table 5 to show the character patterns stored in CG RAM.

See table 6 for the relationship between CG RAM addresses and data and display patterns.

Areas that are not used for display can be used as general data RAM.

Modifying Character Patterns

- Character pattern development procedure

The following operations correspond to the numbers listed in figure 10 :

1. Determine the correspondence between character codes and character patterns.
2. Create a listing indicating the correspondence between EPROM addresses and data.
3. Program the character patterns into the EPROM.
4. Send the EPROM to Hitachi.
5. Computer processing on the EPROM is performed at Hitachi to create a character pattern listing, which is sent to the user.
6. If there are no problems within the character pattern listing, a trial LSI is created at Hitachi and samples are sent to the user for evaluation. When it is confirmed by the user that the character patterns are correctly written, mass production of the LSI proceeds at Hitachi.

Figure 10 Character Pattern Development Procedure

HD66702

- Programming character patterns

This section explains the correspondence between addresses and data used to program character patterns in EPROM. The LCD-II/E20 character generator ROM can generate 1605×7 dot character patterns and 325×10 dot character patterns for a total of 192 different character patterns.

- 5×7 dot character pattern

EPROM address data and character pattern data correspond with each other to form a 5×7 dot character pattern (table 3).

Table 3 Example of Correspondence between EPROM Address Data and Character Pattern (5×7 dots)

Notes: 1. EPROM addresses A_{10} to A_{3} correspond to a character code.
2. EPROM addresses A_{2} to A_{0} specify a line position of the character pattern.
3. EPROM data O_{4} to O_{0} correspond to character pattern data.
4. A lit display position (black) corresponds to a 1.
5. Line 8 (cursor position) of the character pattern must be blanked with 0 s .
6. EPROM data O_{5} to O_{7} are not used.
-5×10 dot character pattern
EPROM address data and character pattern data correspond with each other to form a 5×10 dot character pattern (table 4).

- Handling unused character patterns

1. EPROM data outside the character pattern area: Ignored by the character generator ROM for display operation so 0 or 1 is arbitrary.
2. EPROM data in CG RAM area: Ignored by the character generator ROM for display operation so 0 or 1 is arbitrary.
3. EPROM data used when the user does not use any HD66702 character pattern: According to the user application, handled in one of the two ways listed as follows.
i. When unused character patterns are not programmed: If an unused character code is written into DD RAM, all its dots are lit. By not programing a character pattern, all of its bits become lit. (This is due to the EPROM being filled with 1 s after it is erased.)
ii. When unused character patterns are programmed as 0s: Nothing is displayed even if unused character codes are written into DD RAM. (This is equivalent to a space.)

Table 4 Example of Correspondence between EPROM Address Data and Character Pattern (5×10 dots)

Notes: 1. EPROM addresses A_{10} to A_{3} correspond to a character code. Set A_{8} and A_{9} of character pattern lines 9,10 , and 11 to 0 s .
2. EPROM addresses A_{2} to A_{0} specify a line position of the character pattern.
3. EPROM data O_{4} to O_{0} correspond to character pattern data.
4. A lit display position (black) corresponds to a 1.
5. Blank out line 11 (cursor position) of the character pattern with $0 s$.
6. EPROM data O_{5} to O_{7} are not used.

Table 5 Correspondence between Character Codes and Character Patterns (ROM code: A00)

	\pm	
	(5)	
	(8)	

Note: The user can specify any pattern for character-generator RAM.

Table 5 Correspondence between Character Codes and Character Patterns (ROM code: A01)

	(4) \#
	(i) CBHP
	(2) $)^{\prime} 9 \mathrm{I}$

Table 5 Correspondence between Character Codes and Character Patterns (ROM code: A02)

	(5) 䒠4[DT近
	(6) Fl [5]
	(1) C S H X M
	(2) 391
	(6) $:$ < \backslash L

Table 6 Relationship between CG RAM Addresses, Character Codes (DD RAM) and Character Patterns (CG RAM data)

For 5×7 dot character patterns

Character Codes (DD RAM data)	CG RAM Address	Character Patterns (CG RAM data)
$\begin{array}{lllllllll} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \text { High } & & & & & & \text { Low } \end{array}$	$\begin{array}{llllll} 5 & 4 & 3 & 2 & 1 & 0 \\ \text { High } & & & & \text { Low } \end{array}$	$\begin{array}{lllllllll} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \text { High } & & & & & & \text { Low } \end{array}$
$00000 * 000$		
$00000 * 0001$		
	$\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right.$	
0	$\begin{array}{lll:lll} 1 & 1 & 1 & 1 & 0 & 0 \\ & & & 1 & 0 & 1 \\ & & & & 1 & 1 \\ & & & 1 & 1 & 1 \\ \hline \end{array}$	

Notes: 1. Character code bits 0 to 2 correspond to CG RAM address bits 3 to 5 (3 bits: 8 types).
2. CG RAM address bits 0 to 2 designate the character pattern line position. The 8 th line is the cursor position and its display is formed by a logical OR with the cursor.
Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1,1 bits will light up the 8th line regardless of the cursor presence.
3. Character pattern row positions correspond to CG RAM data bits 0 to 4 (bit 4 being at the left). Since CG RAM data bits 5 to 7 are not used for display, they can be used for general data RAM.
4. As shown tables 5 and 6, CG RAM character patterns are selected when character code bits 4 to 7 are all 0 . However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00 H or 08 H .
5. 1 for CG RAM data corresponds to display selection and 0 to non-selection.

* Indicates no effect.

Table 6 Relationship between CG RAM Addresses, Character Codes (DD RAM) and Character Patterns (CG RAM data) (cont)

For 5×10 dot character patterns

Notes: 1. Character code bits 1 and 2 correspond to CG RAM address bits 4 and 5 (2 bits: 4 types).
2. CG RAM address bits 0 to 3 designate the character pattern line position. The 11 th line is the cursor position and its display is formed by a logical OR with the cursor.
Maintain the 11 th line data corresponding to the cursor display positon at 0 as the cursor display. If the 11 th line data is 1,1 bits will light up the 11 th line regardless of the cursor presence. Since lines 12 to 16 are not used for display, they can be used for general data RAM.
3. Character pattern row positions are the same as 5×7 dot character pattern positions.
4. CG RAM character patterns are selected when character code bits 4 to 7 are all 0 . However, since character code bits 0 and 3 have no effect, the P display example above can be selected by character codes $00 \mathrm{H}, 01 \mathrm{H}, 08 \mathrm{H}$, and 09 H .
5. 1 for CG RAM data corresponds to display selection and 0 to non-selection.

* Indicates no effect.

HD66702

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DD RAM, CG ROM and CG RAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DD RAM, for example, there will be no undesirable interferences, such as flickering, in areas other than the display area. This circuit also generates timing signals for the operation of the externally connected HD44100 driver.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 16 common signal drivers and 100 segment signal drivers. When the character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output non-selection waveforms.

The segment signal driver has essentially the same configuration as the HD44100 driver. Character pattern data is sent serially through a 100 -bit shift register and latched when all needed data has
arrived. The latched data then enables the driver to generate drive waveform outputs. The serial data can be sent to externally cascaded HD44100s used for displaying extended digit numbers.

Sending serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DD RAM).

Since serial data is latched when the display data character pattern corresponding to the starting address enters the internal shift register, the HD66702 drives from the head display. The rest of the display, corresponding to latter addresses, are added with each additional HD44100.

Cursor/Blink Control Circuit

The cursor/blink control circuit generates the cursor or character blinking. The cursor or the blinking will appear with the digit located at the display data RAM (DD RAM) address set in the address counter (AC).

For example (figure 11), when the address counter is 08 H , the cursor position is displayed at DD RAM address 08 H .

Figure 11 Cursor/Blink Display Example

Interfacing to the MPU

The HD66702 can send data in either two 4-bit operations or one 8 -bit operation, thus allowing interfacing with 4 - or 8 -bit MPUs.

- For 4-bit interface data, only four bus lines $\left(\mathrm{DB}_{4}\right.$ to $\left.\mathrm{DB}_{7}\right)$ are used for transfer. Bus lines DB_{0} to DB_{3} are disabled. The data transfer between the HD66702 and the MPU is completed after the 4 -bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB_{4} to DB_{7}) are transferred before the four low order bits (for 8-bit operation, DB_{0} to DB_{3}).

The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.

- For 8-bit interface data, all eight bus lines $\left(\mathrm{DB}_{0}\right.$ to $\left.\mathrm{DB}_{7}\right)$ are used.

Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the HD66702 when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends $(\mathrm{BF}=1)$. The busy state lasts for 10 ms after V_{CC} rises to 4.5 V .

1. Display clear
2. Function set:
$\mathrm{DL}=1 ; 8$-bit interface data
$\mathrm{N}=0$; 1-line display
$\mathrm{F}=0 ; 5 \times 7$ dot character font
3. Display on/off control:

D $=0$; Display off
C $=0$; Cursor off
$\mathrm{B}=0$; Blinking off
4. Entry mode set:
$\mathrm{I} / \mathrm{D}=1$; Increment by 1
S = 0; No shift
Note: If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the HD66702. For such a case, initialization must be performed by the MPU as explained in the section, Initializing by Instruction.

Figure 12 4-Bit Transfer Example

HD66702

Instructions

Outline

Only the instruction register (IR) and the data register (DR) of the HD66702 can be controlled by the MPU. Before starting the internal operation of the HD66702, control information is temporarily stored into these registers to allow interfacing with various MPUs, which operate at different speeds, or various peripheral control devices. The internal operation of the HD66702 is determined by signals sent from the MPU. These signals, which include register selection (RS), read/write $(\mathrm{R} / \overline{\mathrm{W}})$, and the data bus $\left(\mathrm{DB}_{0}\right.$ to $\left.\mathrm{DB}_{7}\right)$, make up the HD66702 instructions (table 7). There are four categories of instructions that:

- Designate HD66702 functions, such as display format, data length, etc.
- Set internal RAM addresses
- Pertorm data transfer with internal RAM
- Perform miscellaneous functions

Normally, instructions that perform data transfer with internal RAM are used the most. However,
auto-incrementation by 1 (or auto-decrementation by 1) of internal HD66702 RAM addresses after each data write can lighten the program load of the MPU. Since the display shift instruction (table 12) can perform concurrently with display data write, the user can minimize system development time with maximum programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy flag/address read instruction can be executed.

Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0 before sending another instruction from the MPU.

Note: Be sure the HD66702 is not in the busy state ($\mathrm{BF}=0$) before sending an instruction from the MPU to the HD66702. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to table 7 for the list of each instruction execution time.

Table 7 Instructions

Instruction	Code										Description	Execution Time (max) (when f_{cp} or fosc is 320 kHz)
	RS	R/W	DB_{7}	DB_{6}	DB5	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB ${ }_{0}$		
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DD RAM address 0 in address counter.	1.28 ms
Return home	0	0	0	0	0	0	0	0	1	-	Sets DD RAM address 0 in address counter. Also returns display from being shifted to original position. DD RAM contents remain unchanged.	1.28 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	$31 \mu \mathrm{~s}$
Display on/off control	0	0	0	0	0	0	1	D	C	B	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	$31 \mu \mathrm{~s}$
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	-	-	Moves cursor and shifts display without changing DD RAM contents.	$31 \mu \mathrm{~s}$
Function set	0	0	0	0	1	DL	N	F	-	-	Sets interface data length (DL), number of display lines (L), and character font (F).	$31 \mu \mathrm{~s}$
Set CG RAM address	0	0	0	1	$A_{C G}$		$A_{c G}$			$A_{C G}$	Sets CG RAM address. CG RAM data is sent and received after this setting.	$31 \mu \mathrm{~s}$
Set DD RAM address	0	0	1	$A_{\text {DD }}$	$A_{D D}$	Sets DD RAM address. DD RAM data is sent and received after this setting.	$31 \mu \mathrm{~s}$					
Read busy flag \& address	0	1	BF	AC	Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	$0 \mu \mathrm{~s}$						

Table 7 Instructions (cont)

Note: - indicates no effect.

* After execution of the CG RAMDD RAM data write or read instruction, the RAM address counter is incremented or decremented by 1. The RAM address counter is updated after the busy flag turns off. In figure $13, \mathrm{t}_{\mathrm{ADD}}$ is the time elapsed after the busy flag turns off until the address counter is updated.

Figure 13 Address Counter Update

Instruction Description

Clear Display

Clear display writes space code 20 H (character pattern for character code 20 H must be a blank pattern) into all DD RAM addresses. It then sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. In other words, the display disappears and the cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1 (increment mode) in entry mode. S of entry mode does not change.

Return Home

Return home sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. The DD RAM contents do not change.

The cursor or blinking go to the left edge of the display (in the first line if 2 lines are displayed).

Entry Mode Set

I/D: Increments ($\mathrm{I} / \mathrm{D}=1$) or decrements ($\mathrm{I} / \mathrm{D}=0$) the DD RAM address by 1 when a character code is written into or read from DD RAM.

The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1 . The same applies to writing and reading of CG RAM.

S: Shifts the entire display either to the right $(I / D=0)$ or to the left $(I / D=1)$ when S is 1 . The display does not shift if S is 0 .

If S is 1 , it will seem as if the cursor does not move but the display does. The display does not shift when reading from DD RAM. Also, writing into or reading out from CG RAM does not shift the display.

Display On/Off Control

D: The display is on when D is 1 and off when D is 0 . When off, the display data remains in DD RAM, but can be displayed instantly by setting D to 1 .

C: The cursor is displayed when C is 1 and not displayed when C is 0 . Even if the cursor disappears, the function of I/D or other specifications will not change during display data write. The cursor is displayed using 5 dots in the 8th line for 5×7 dot character font selection and in the 11th line for the 5×10 dot character font selection (figure 16).

B: The character indicated by the cursor blinks when B is 1 (figure 16). The blinking is displayed as switching between all blank dots and displayed characters at a speed of $320-\mathrm{ms}$ intervals when f_{cp} or $\mathrm{f}_{\text {OSC }}$ is 320 kHz . The cursor and blinking can be set to display simultaneously. (The blinking frequency changes according to $\mathrm{f}_{\mathrm{OSC}}$ or the reciprocal of $f_{c p}$. For example, when $f_{c p}$ is $270 \mathrm{kHz}, 320 \times 320 / 270=379.2 \mathrm{~ms}$.)

Cursor or Display Shift

Cursor or display shift shifts the cursor position or display to the right or left without writing or reading display data (table 8). This function is used to correct or search the display. In a 2 -line display, the cursor moves to the second line when it passes the 40th digit of the first line. Note that the first and second line displays will shift at the same time.

When the displayed data is shifted repeatedly each line moves only horizontally. The second line display does not shift into the first line position.

The address counter (AC) contents will not change if the only action performed is a display shift.

Function Set

DL: Sets the interface data length. Data is sent or received in 8-bit lengths (DB_{7} to DB_{0}) when DL is 1 , and in 4-bit lengths $\left(\mathrm{DB}_{7}\right.$ to $\left.\mathrm{DB}_{4}\right)$ when DL is 0 .

When 4-bit length is selected, data must be sent or received twice.

N : Sets the number of display lines.

F: Sets the character font.
Note: Perform the function at the head of the program before executing any instructions (except for the read busy flag and address instruction). From this point, the function set instruction cannot be executed unless the interface data length is changed.

Set CG RAM Address

Set CG RAM address sets the CG RAM address binary AAAAAA into the address counter.

Data is then written to or read from the MPU for CG RAM.

		RS	/W				D	B_{3}	B_{2}	B	B_{0}
Clear display	Code	0	0	0	0	0	0	0	0	0	1

Return

		RS $\mathrm{R} / \mathrm{W} \mathrm{WB}_{7} \mathrm{DB}_{6} \mathrm{DB}_{5} \mathrm{DB}_{4} \mathrm{DB}_{3} \mathrm{DB}_{2} \mathrm{DB}_{1} \mathrm{DB}_{0}$									
Entry mode set	Code	0	0	0	0	0	0	0	1	I/D	S

$$
\begin{array}{llllllllll}
\mathrm{RS} & \mathrm{R} / \overline{\mathrm{W}} & \mathrm{DB}_{7} & \mathrm{DB}_{6} & \mathrm{DB}_{5} & \mathrm{DB}_{4} & \mathrm{DB}_{3} & \mathrm{DB}_{2} & \mathrm{DB}_{1} & \mathrm{DB}_{0}
\end{array}
$$

Display on/off control

Code | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | C | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 14

Figure 15

Set DD RAM Address

Set DD RAM address sets the DD RAM address binary AAAAAAA into the address counter.

Data is then written to or read from the MPU for DD RAM.

However, when N is 0 (1-line display), AAAAAAA can be 00 H to 4 FH . When N is 1 (2-line display), AAAAAAA can be 00 H to 27 H for the first line, and 40 H to 67 H for the second line.

Read Busy Flag and Address

Read busy flag and address reads the busy flag (BF) indicating that the system is now internally operating on a previously received instruction. If BF is 1 , the internal operation is in progress. The next instruction will not be accepted until BF is reset to 0 . Check the BF status before the next write operation. At the same time, the value of the address counter in binary AAAAAAA is read out. This address counter is used by both CG and DD RAM addresses, and its value is determined by the previous instruction. The address contents are the same as for instructions set CG RAM address and set DD RAM address.

Table 8 Shift Function

S/C	R/L	
0	0	Shifts the cursor position to the left. (AC is decremented by one.)
$\mathbf{0}$	$\mathbf{1}$	Shifts the cursor position to the right. (AC is incremented by one.)
$\mathbf{1}$	0	Shifts the entire display to the left. The cursor follows the display shift.
$\mathbf{1}$	$\mathbf{1}$	Shifts the entire display to the right. The cursor follows the display shitt.

Table 9 Function Set

		No. of Display Lines	Character Font	Duty Factor	Remarks
0	0	1	5×7 dots	$1 / 8$	
0	1	1	5×10 dots	$1 / 11$	
1	$*$	2	5×7 dots	$1 / 16$	Cannot display two lines for 5×10 dot character font

Note: * Indicates don't care.

Figure 16 Cursor and Blinking

Figure 17

Write Data to CG or DD RAM

Write data to CG or DD RAM writes 8-bit binary
data DDDDDDDD to CG or DD RAM.
To write into CG or DD RAM is determined by the previous specification of the CG RAM or DD RAM address setting. After a write, the address is automatically incremented or decremented by 1 according to the entry mode. The entry mode also determines the display shift.

Read Data from CG or DD RAM

Read data from CG or DD RAM reads 8-bit binary data DDDDDDDD from CG or DD RAM.

The previous designation determines whether CG or DD RAM is to be read. Before entering this read instruction, either CG RAM or DD RAM address set instruction must be executed. If not executed, the first read data will be invalid. When serially executing read instructions, the next address data is normally read from the second read. The address set instructions need not be
executed just before this read instruction when shifting the cursor by the cursor shift instruction (when reading out DD RAM). The operation of the cursor shift instruction is the same as the set DD RAM address instruction.

After a read, the entry mode automatically increases or decreases the address by 1. However, display shift is not executed regardless of the entry mode.

Note: The address counter (AC) is automatically incremented or decremented by 1 after the write instructions to CG RAM or DD RAM are executed. The RAM data selected by the $A C$ cannot be read out at this time even if read instructions are executed. Therefore, to correctly read data, execute either the address set instruction or cursor shift instruction (only with DD RAM), then just before reading the desired data, execute the read instruction from the second time the read instruction is sent.

Figure 18

Figure 19 8-Bit MPU Interface

Figure 20 HD6805 Interface

Figure 21 HD6301 Interface

Interfacing the HD66702

Interface to MPUs

- Interfacing to an 8 -bit MPU through a PIA

See figure 23 for an example of using a PIA or I/O port (for a single-chip microcomputer) as an interface device. The input and output of the device is TTL compatible.

In this example, PB_{0} to PB_{7} are connected to the data bus DB_{0} to DB_{7}, and PA_{0} to PA_{2} are connected to $\mathrm{E}, \mathrm{R} / \mathrm{W}$, and RS, respectively.

Pay careful attention to the timing relationship between E and the other signals when reading or writing data using a PIA for the interface.

Figure 22 Example of Busy Flag Check Timing Sequence

Figure 23 Example of Interface to HD68B00 Using PIA (HD68B21)

- Interfacing to a 4-bit MPU

The HD66702 can be connected to the I/O port of a 4-bit MPU. If the I/O port has enough bits, 8 -bit data can be transferred. Otherwise, one data transfer must be made in two operations for 4-bit data. In this case, the timing sequence becomes somewhat complex. (See figure 24.)

See figure 25 for an interface example to the HMCS43C.

Note that two cycles are needed for the busy flag check as well as for the data transfer. The 4 -bit operation is selected by the program.

Figure 24 Example of 4-Bit Data Transfer Timing Sequence

Figure 25 Example of Interface to HMCS43C

Interface to Liquid Crystal Display

Character Font and Number of Lines: The HD66702 can perform two types of displays, 5×7 dot and 5×10 dot character fonts, each with a cursor.

Up to two lines are displayed for 5×7 dots and one line for 5×10 dots. Therefore, a total of three
types of common signals are available (table 10).
The number of lines and font types can be selected by the program. (See table 7, Instructions.)

Connection to HD66702 and Liquid Crystal Display: See figure 26 for the connection examples.

Table 10 Common Signals

Number of Lines	Character Font	Number of Common Signals	Duty Factor
1	5×7 dots + cursor	8	$1 / 8$
1	5×10 dots + cursor	11	$1 / 11$
2	5×7 dots + cursor	16	$1 / 16$

HD66702

Example of a 5×7 dot, 20 -character $\times 1$-line display ($1 / 4$ bias, $1 / 8$ duty cycle)
HD66702

Example of a 5×10 dot, 20 -character $\times 1$-line display ($1 / 4$ bias, $1 / 8$ duty cycle)

Figure 26 Liquid Crystal Display and HD66702 Connections

HD66702

Since five segment signal lines can display one digit, one HD66702 can display up to 20 digits for a 1 -line display and 40 digits for a 2 -line display.

The examples in figure 26 have unused common signal pins, which always output non-
selection waveforms. When the liquid crystal display panel has unused extra scanning lines, connect the extra scanning lines to these common signal pins to avoid any undesirable effects due to crosstalk during the floating state (figure 28).

Figure 27 Liquid Crystal Display and HD66702 Connections (cont)

Figure 28 Using COM9 to Avoid Crosstalk on Unneeded Scanning Line

Connection of Changed Matrix Layout: In the preceding examples, the number of lines correspond to the scanning lines. However, the following display examples (figure 29) are made possible by altering the matrix layout of the liquid crystal display panel. In either case, the only change is the layout. The display characteristics
and the number of liquid crystal display characters depend on the number of common signals or on duty factor. Note that the display data RAM (DD RAM) addresses for 10 characters $\times 2$ lines and for 40 characters $\times 1$ line are the same as in figure 27.

5×7 dot, 40 -character $\times 1$-line display
($1 / 5$ bias, $1 / 16$ duty cycle)

5×7 dot, 10 -character $\times 2$-line display
(1/4 bias, $1 / 8$ duty cycle)

Figure 29 Changed Matrix Layout Displays

HD66702

Power Supply for Liquid Crystal Display Drive

Various voltage levels must be applied to pins V_{1} to V_{5} of the HD66702 to obtain the liquid crystal display drive waveforms. The voltages must be changed according to the duty factor (table 11).
$\mathrm{V}_{\mathrm{LCD}}$ is the peak value for the liquid crystal display drive waveforms, and resistance dividing provides voltages V_{1} to V_{5} (figure 30).

Table 11 Duty Factor and Power Supply for Liquid Crystal Display Drive

	Duty Factor	
	$1 / 8,1 / 11$	$1 / 16$
Power Supply	$\mathbf{1 / 4}$	Blas
V_{1}	$\mathrm{~V}_{\mathrm{CC}}-1 / 4 \mathrm{~V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-1 / 5 \mathrm{~V}_{\mathrm{LCD}}$
V_{2}	$\mathrm{~V}_{\mathrm{CC}}-1 / 2 \mathrm{~V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-2 / 5 \mathrm{~V}_{\mathrm{LCD}}$
V_{3}	$\mathrm{~V}_{\mathrm{CC}}-1 / 2 \mathrm{~V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-3 / 5 \mathrm{~V}_{\mathrm{LCD}}$
V_{4}	$\mathrm{~V}_{\mathrm{CC}}-3 / 4 \mathrm{~V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-4 / 5 \mathrm{~V}_{\mathrm{LCD}}$
V_{5}	$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{LCD}}$

1/4 bias
($1 / 8,1 / 11$ duty cycle)

Figure 30 Drive Voltage Supply Example

Relationship between Oscillation

Frequency and Liquid Crystal Display
Frame Frequency

The liquid crystal display frame frequencies of figure 31 apply only when the oscillation
frequency is 320 kHz (one clock pulse of $3.125 \mu \mathrm{~s}$).

Figure 31 Frame Frequency

HD66702

Connection with HD44100 Driver

By externally connecting an HD44100 liquid crystal display driver to the HD66702, the number of display digits can be increased. The HD44100 is used as a segment signal driver when connected to the HD66702. The HD44100 can be directly connected to the HD66702 since it supplies CL_{1}, $\mathrm{CL}_{2}, \mathrm{M}$, and D signals and power for the liquid crystal display drive (figure 32).

Caution: The connection of voltage supply pins V_{1} through V_{6} for the liquid crystal display drive is somewhat complicated. The EXT pin must be fixed low if the HD44100 is to be connected to the HD66702.

Up to eight HD44100 units can be connected for a 1 -line display (duty factor $1 / 8$ or $1 / 11$) and up to three units for a 2 -line display (duty factor $1 / 16$). The RAM size limits the HD66702 to a maximum of 80 character display digits. The connection method for both 1 -line and 2 -line displays or for 5×7 and 5×10 dot character fonts can remain the same (figure 32).

Figure 32 Example of Connecting HD44100Hs to HD66702

Instruction and Display Correspondence

- 8 -bit operation, 20 -digit $\times 1$-line display with internal reset

Refer to table 12 for an example of an 8 -bit $\times 1$-line display in 8 -bit operation. The HD66702 functions must be set by the function set instruction prior to the display. Since the display data RAM can store data for 80 characters, as explained before, the RAM can be used for displays such as for advertising when combined with the display shift operation.

Since the display shift operation changes only the display position with DD RAM contents unchanged, the first display data entered into DD RAM can be output when the return home operation is performed.

- 4-bit operation, 20 -digit $\times 1$-line display with internal reset

The program must set all functions prior to the 4-bit operation (table 13). When the power is turned on, 8 -bit operation is automatically selected and the first write is performed as an 8 -bit operation. Since DB_{0} to DB_{3} are not connected, a rewrite is then required. However, since one operation is completed in two accesses for 4-bit operation, a rewrite is needed to set the functions (see table 13). Thus, DB_{4} to DB_{7} of the function set instruction is written twice.

- 8 -bit operation, 20 -digit $\times 2$-line display

For a 2 -line display, the cursor automatically moves from the first to the second line after the 40th digit of the first line has been written. Thus, if there are only 20 characters in the first line, the DD RAM address must be again set after the 20th character is completed. (See table 14.) Note that the display shift operation is performed for the first and second lines. In the example of table 14 , the display shift is performed when the cursor is on the second line. However, if the shift operation is performed when the cursor is on the first line, both the first and second lines move together. If the shift is repeated, the display of the second line will not move to the first line. The same display will only shift within its own line for the number of times the shift is repeated.

Note: When using the internal reset, the electrical characteristics in the Power Supply Conditions Using Internal Reset Circuit table must be satisfied. If not, the LCD-II/E20 must be initialized by instructions. (Because the internal reset does not function correctly when V_{CC} is 3 V , it must always be initialized by software.) See the section, Initializing by Instruction.

Table 12 8-Bit Operation, 20-Digit \times 1-Line Display Example with Internal Reset

HD66702

Table 12 8-Bit Operation, 20-Digit \times 1-Line Display Example with Internal Reset (cont)

Table 13 4-Bit Operation, 20-Digit \times 1-Line Display Example with Internal Reset

Step	Instruction							Operation
No.	RS R/W $\mathrm{WB}_{7} \mathrm{DB}_{6} \mathrm{DB}_{5} \mathrm{DB}_{4}$						Display	
1	Power supply on (the HD66702 is initialized by the internal reset circuit)							Initialized. No display.
2	$\begin{aligned} & \text { Fun } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { action } \\ & 0 \end{aligned}$	$\begin{gathered} \text { set } \\ 0 \end{gathered}$	0	1	0		Sets to 4-bit operation. In this case, operation is handled as 8 bits by initialization, and only this instruction completes with one write.
3		$\begin{aligned} & \text { actior } \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & * \end{aligned}$		Sets 4-bit operation and selects 1 -line display and 5×7 dot character font. 4-bit operation starts from this step and resetting is necessary. (Number of display lines and character fonts cannot be changed after step \#3.)
4	$\begin{aligned} & \hline \text { Dis } \\ & 0 \\ & 0 \end{aligned}$	play 0 0	on/off 0 1	con 0 1	$\begin{array}{r} \text { rol } \\ 0 \\ 1 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		Turns on dispiay and cursor. Entire display is in space mode because of initialization.
5	$\begin{aligned} & \text { Ent } \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { ry ma } \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \text { de s } \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} 9 t \\ 0 \\ 1 \end{array}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CG RAM. Display is not shifted.
6	$\begin{aligned} & W_{r} \\ & 1 \\ & 1 \end{aligned}$	e da 0 0	$\begin{gathered} \text { ta to } \\ 0 \\ 1 \end{gathered}$	G 1 0	AM/ 0 0	$\begin{aligned} & \hline \text { DD RA } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	H	Writes H . The cursor is incremented by one and shifts to the right.

Note: The control is the same as for 8 -bit operation beyond step \#6.

HD66702

Table 14 8-Bit Operation, 20-Digit \times 2-Line Display Example with Internal Reset

Table 14 8-Bit Operation, 20-Digit $\times \mathbf{2}$-Line Display Example with Internal Reset (cont)

Initializing by Instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, initialization by instructions becomes necessary.

Refer to figures 33 and 34 for the procedures on 8 -bit and 4 -bit initializations, respectively.

Figure 33 8-Bit Interface

Note: * Since the internal reset does not function correctly at 3 V, the HD66702 must be initialized by instructions.

Figure 34 4-Bit Interface

[Low voltage version]

Absolute Maximum Ratings*

Item	Symbol	Unit	Value	Notes
Power supply voltage (1)	V_{CC}	V	-0.3 to +7.0	1
Power supply voltage (2)	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{5}$	V	-0.3 to +7.0	2
Input voltage	V_{t}	V	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	1
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	${ }^{\circ} \mathrm{C}$	-20 to +75	3
Storage temperature	$\mathrm{T}_{\text {stg }}$	${ }^{\circ} \mathrm{C}$	-55 to +125	4

Note: If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

DC Characteristics ($\mathbf{V}_{\mathbf{C C}}=2.7$ to $5.5 \mathrm{~V}, \mathbf{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathbf{C}^{\boldsymbol{* 3}}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC $_{1}$)	$\mathrm{V}_{\mathrm{IH} 1}$	$0.7 \mathrm{~V}_{\mathrm{cc}}$	-	$V_{c c}$	V		6, 17
Input low voltage (1) (except OSC ${ }_{1}$)	$\mathrm{V}_{\text {ILI }}$	-0.3	-	0.55	V		6, 17
Input high voltage (2) (OSC_{1})	$\mathrm{V}_{\mathrm{H} 2}$	$0.7 \mathrm{~V}_{\text {cc }}$	-	V_{cc}	V		15
Input low voltage (2) (OSC ${ }_{1}$)	$\mathrm{V}_{\text {IL2 }}$	-	-	$0.2 \mathrm{~V}_{\mathrm{cc}}$	V		15
Output high voltage (1) $\left(D_{0}-D_{7}\right)$	$\mathrm{V}_{\mathrm{OH} 1}$	$0^{0.75 V_{c c}}$	-	-	V	$-\mathrm{I}_{\mathrm{OH}}=0.1 \mathrm{~mA}$	7
Output low voltage (1) $\left(D_{0}-D_{7}\right)$	$\mathrm{V}_{\mathrm{OL} 1}$	-	-	$0.2 \mathrm{~V}_{\mathrm{cc}}$	V	$\mathrm{I}_{\mathrm{OL}}=0.1 \mathrm{~mA}$	7
Output high voltage (2) (except $D_{0}-D_{7}$)	$\mathrm{V}_{\mathrm{OH} 2}$	$0.8 \mathrm{~V}_{\text {cc }}$	-	-	V	$-\mathrm{I}_{\mathrm{OH}}=0.04 \mathrm{~mA}$	8
Output low voltage (2) (except $D_{0}-D_{7}$)	$\mathrm{V}_{\mathrm{OL} 2}$	-	-	$0.2 \mathrm{~V}_{\mathrm{cc}}$	V	$\mathrm{l}_{\mathrm{OL}}=0.04 \mathrm{~mA}$	8
Driver on resistance (COM)	$\mathrm{R}_{\text {COM }}$	-	-	20	k Ω	$\pm 1 \mathrm{~d}=0.05 \mathrm{~mA}$ (COM)	13
Driver on resistance (SEG)	R SEG	-	-	30	k Ω	$\pm 1 \mathrm{ld}=0.05 \mathrm{~mA}$ (SEG)	13
Input leakage current	$\mathrm{ILI}^{\text {l }}$	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I N}}=0$ to V_{CC}	9
Pull-up MOS current (RS, R/W)	-lp	10	50	120	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	
Power supply current	Icc	-	0.15	0.30	mA	R_{f} oscillation, external clock $V_{C C}=3 V, f_{O S C}=270$	$10,14$
LCD voltage	$\mathrm{V}_{\text {LCD1 }}$	3.0	-	7.0	V	$\mathrm{V}_{\text {cc }}-\mathrm{V}_{5}, 1 / 5$ bias	16
	$\mathrm{V}_{\text {LCD2 }}$	3.0	-	7.0	V	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{5}, 1 / 4$ bias	16

[^4]
HD66702

AC Characteristics ($\mathbf{V}_{\mathbf{C C}}=\mathbf{3} \mathrm{V} \pm \mathbf{1 0 \%}, \mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathbf{C}^{\boldsymbol{*}}$)

Clock Characteristics

Item		Symbo	Min	Typ	Max	Unit	Test Condition	Notes*
External clock operation	External clock frequency	$\mathrm{f}_{\text {cp }}$	125	270	410	kHz		11
	External clock duty	Duty	45	50	55	\%		
	External clock rise time	$\mathrm{t}_{\text {cpp }}$	-	-	0.2	$\mu \mathrm{s}$		
	External clock fall time	$\mathrm{t}_{\text {cp }}$	-	-	0.2	$\mu \mathrm{s}$		
R_{f} oscillation	Clock oscillation frequency	fosc	220	320	420	kHz	$\mathrm{R}_{\mathrm{f}}=56 \mathrm{k} \boldsymbol{\Omega}$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

Bus Timing Characteristics

Write Operation

	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cycE }}$	1000	-	-	ns	Figure 35
Enable pulse width (high level $)$	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable riseffall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25		
Address set-up time (RS, $\mathrm{R} \bar{W}$ to E$)$	t_{AS}	40	-	-		
Address hold time	t_{AH}	20	-	-		
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	195	-	-		
Data hold time	t_{H}	10	-	-		

Read Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cyce }}$	1000	-	-	ns	Figure 36
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25		
Address set-up time $(\mathrm{RS}, \mathrm{R} \bar{W}$ to E$)$	t_{AS}	40	-	-		
Address hold time	t_{AH}	20	-	-		
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	350		
Data hold time	$\mathrm{t}_{\mathrm{DHR}}$	20	-	-		

Interface Timing Characteristics with External Driver

Item	Symbol	Min	Typ	Max	Unit	Test Condition	
Clock pulse width	High level	$\mathrm{t}_{\mathrm{CWH}}$	800	-	-	ns	Figure 37
	Low level	$\mathrm{t}_{\mathrm{CWL}}$	800	-	-		
Clock set-up time		$\mathrm{t}_{\mathrm{CSU}}$	500	-	-		
Data set-up time		t_{SU}	300	-	-		
Data hold time	t_{DH}	300	-	-			
M delay time	t_{DM}	-1000	-	1000			
Clock rise/fall time		t_{Ct}	-	-	200		

Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Power supply rise time	$\mathrm{t}_{\text {rcc }}$	0.1	-	10	ms	Figure 38
Power supply off time	t tofF	1	-	-		

[Standard voltage version]

Absolute Maximum Ratings*

Item	Symbol	Unit	Value	Note
Power supply voltage (1)	V_{CC}	V	-0.3 to +7.0	1
Power supply voltage (2)	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{5}$	V	-0.3 to +7.0	2
Input voltage	V_{t}	V	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	1
Operating temperature	$\mathrm{T}_{\text {opr }}$	${ }^{\circ} \mathrm{C}$	-20 to +75	3
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	${ }^{\circ} \mathrm{C}$	-55 to +125	4

Note: If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability. Refer to the Electrical Characteristics Notes section following these tables.

HD66702

DC Characteristics ($\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}^{* 3}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC_{1})	$\mathrm{V}_{\mathrm{IH} 1}$	2.2	-	$V_{c c}$	V		6, 17
Input low voltage (1) (except OSC_{1})	$\mathrm{V}_{\text {IL1 }}$	-0.3	-	0.6	V		6, 17
Input high voltage (2) (OSC_{1})	$\mathrm{V}_{\mathrm{IH} 2}$	$V_{c c}-1.0$	-	V_{cc}	V		15
Input low voltage (2) (OSC ${ }_{1}$)	$\mathrm{V}_{\text {IL2 }}$	-	-	1.0	V		15
Output high voltage (1) $\left(D_{0}-D_{7}\right)$	$\mathrm{V}_{\mathrm{OH} 1}$	2.4	-	-	V	$-\mathrm{l}_{\mathrm{OH}}=0.205 \mathrm{~mA}$	7
Output low voltage (1) $\left(D_{0}-D_{7}\right)$	$\mathrm{V}_{\mathrm{OL} 1}$	-	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	7
Output high voltage (2) (except $D_{0}-D_{7}$)	$\mathrm{V}_{\mathrm{OH} 2}$	0.9 V cc	-	-	V	$-\mathrm{I}_{\mathrm{OH}}=0.04 \mathrm{~mA}$	8
Output low voltage (2) (except $D_{0}-D_{7}$)	$\mathrm{V}_{\mathrm{OL} 2}$	-	-	0.1 Vcc	V	$\mathrm{I}_{\mathrm{OL}}=0.04 \mathrm{~mA}$	8
Driver on resistance (COM)	$\mathrm{R}_{\text {com }}$	-	-	20	k Ω	$\pm \mathrm{ld}=0.05 \mathrm{~mA}$ (COM)	13
Driver on resistance (SEG)	$\mathrm{R}_{\text {SEG }}$	-	-	30	k Ω	$\pm \mathrm{ld}=0.05 \mathrm{~mA}$ (SEG)	13
Input leakage current	ILI^{\prime}	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$	9
Pull-up MOS current (RS, R \bar{W})	$-l_{p}$	50	125	250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	
Power supply current	lcc	-	0.35	0.60	mA	R_{f} oscillation, external clock $V_{C C}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=270$	$10,14$
LCD voltage	$\mathrm{V}_{\text {LCD1 }}$	3.0	-	7.0	V	$\mathrm{V}_{\text {cC }}-\mathrm{V}_{5}, 1 / 5$ bias	16
	$\mathrm{V}_{\mathrm{LCD} 2}$	3.0	-	7.0	V	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{5}, 1 / 4$ bias	16

Note: * Refer to the Electrical Characteristics Notes section following these tables.
AC Characteristics ($\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}^{* 3}$)

Clock Characteristics

Item		Symbol	Min	Typ	Max	Unit	Test Condition	Notes *
External clock operation	External clock frequency	f_{cp}	125	270	410	kHz		11
	External clock duty	Duty	45	50	55	$\%$	11	
	External clock rise time	$\mathrm{t}_{\text {rcp }}$	-	-	0.2	$\mu \mathrm{~s}$	11	
	External clock fall time	$\mathrm{t}_{\text {cpp }}$	-	-	0.2	$\mu \mathrm{~s}$	11	
R_{f} oscillation	Clock oscillation frequency	$\mathrm{f}_{\mathrm{osc}}$	220	320	420	kHz	$\mathrm{R}_{\mathrm{f}}=68 \mathrm{k} \Omega$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

Bus Timing Characteristics

Write Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cycE }}$	1000	-	-	ns	Figure 35
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25		
Address set-up time (RS, $\mathrm{R} \bar{W}$ to E$)$	t_{AS}	40	-	-		
Address hold time	t_{AH}	10	-	-		
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	195	-	-		
Data hold time	t_{H}	10	-	-		

Read Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cycE }}$	1000	-	-	ns	Figure 36
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25		
Address set-up time (RS, R \bar{W} to E$)$	t_{AS}	40	-	-		
Address hold time	t_{AH}	10	-	-		
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	320		
Data hold time	$\mathrm{t}_{\mathrm{DHR}}$	20	-	-		

Interface Timing Characteristics with External Driver

Item	Symbol	Min	Typ	Max	Unit	Test Condition	
Clock pulse width	High level	$\mathrm{t}_{\mathrm{CWH}}$	800	-	-	ns	Figure 37
	Low level	$\mathrm{t}_{\mathrm{CWL}}$	800	-	-		
Clock set-up time		$\mathrm{t}_{\mathrm{CSU}}$	500	-	-		
Data set-up time		t_{SU}	300	-	-		
Data hold time		t_{DH}	300	-	-		
M delay time	t_{DM}	-1000	-	1000			
Clock rise/fall time		t_{Ct}	-	-	100		

Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Power supply rise time	$\mathrm{t}_{\text {rCC }}$	0.1	-	10	ms	Figure 38
Power supply off time	$\mathrm{t}_{\text {OFF }}$	1	-	-		

HD66702

Electrical Characteristics Notes

1. All voltage values are referred to $\mathrm{GND}=0 \mathrm{~V}$.
2. $V_{C C} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5}$ must be maintained.
3. For die products, specified up to $75^{\circ} \mathrm{C}$.
4. For die products, specified by the die shipment specification.
5. The following four circuits are I/O pin configurations except for liquid crystal display output.

//O Pin

6. Applies to input pins and I/O pins, excluding the OSC_{1} pin.
7. Applies to I / O pins.
8. Applies to output pins.
9. Current flowing through pull-up MOSs, excluding output drive MOSs.
10. Input/output current is excluded. When input is at an intermediate level with CMOS, the excessive current flows through the input circuit to the power supply. To avoid this from happening, the input level must be fixed high or low.
11. Applies only to external clock operation.

12. Applies only to the internal oscillator operation using oscillation resistor R_{f}.

HD66702

13. $\mathrm{R}_{\mathrm{COM}}$ is the resistance between the power supply pins $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right)$ and each common signal pin (COM_{1} to COM_{16}).
$\mathrm{R}_{\text {SEG }}$ is the resistance between the power supply pins $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{5}\right)$ and each segment signal pin (SEG $_{1}$ to SEG_{100}).
14. The following graphs show the relationship between operation frequency and current consumption.

$f_{o s c}$ or $f_{\rho}(k H z)$

$\mathrm{f}_{\mathrm{osc}}$ or $\mathrm{f}_{\mathrm{cp}}(\mathrm{kHz})$
15. Applies to the OSC_{1} pin.
16. Each COM and SEG output voltage is within $\pm 0.15 \mathrm{~V}$ of the LCD voltage $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right)$ when there is no load.
17. The TEST pin should be fixed to GND and the EXT pin should be fixed to V_{CC} or GND.

Load Circuits

Data Bus $\mathbf{D B}_{\mathbf{0}}$ to $\mathbf{D B}_{7}$

Segment Extension Signals

HD66702

Timing Characteristics

Figure 35 Write Operation

Figure 36 Read Operation

Figure 37 Interface Timing with External Driver

Notes: 1. toff compensates for the power oscillation period caused by momentary power supply oscillations.
2. Specified at 4.5 V for $5-\mathrm{V}$ operation, and at 2.7 V for $3-\mathrm{V}$ operation.
3. When the above condition cannot be satisfied, the internal reset circuit will not operate normally.
In this case, the LSI must be initialized by software. (Refer to the Initializing by Instruction section.)

Figure 38 Internal Power Supply Reset

HD66710 (LCD-II/F8) (Dot Matrix Liquid Crystal Display Controller/Driver)

Description

The LCD-II/F8 (HD66710) dot-matrix liquid crystal display controller and driver LSI displays alphanumerics, numbers, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4- or 8 -bit microprocessor. Since all the functions such as display RAM, character generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimum system can be interfaced with this controller/driver.

A single LCD-II/F8 is capable of displaying a single 16 -character line, two 16 -character lines, or up to four 8 -character lines.

The LCD-II/F8 software is upwardly compatible with the LCDII (HD44780) which allows the user to easily replace an LCD-II with an HD66710. In addition, the HD66710 is equipped with functions such as segment displays for icon marks, a 4-line display mode, and a horizontal smooth scroll, and thus supports various display forms. This achieves various display forms. The HD66710 character generator ROM is extended to generate 2405×8 dot characters.

The low voltage version (2.7 V) of the HD66710, combined with a low power mode, is suitable for any portable battery-driven product requiring low power dissipation.

Features

- 5×8 dot matrix possible
- Low power operation support:
- 2.7 V to 5.5 V (low voltage)
- Booster for liquid crystal voltage - Two/three times (13 V max.)
- Wide range of liquid crystal display driver voltage
-3.0 V to 13 V
- Extension driver interface
- High-speed MPU bus interface (2 MHz at $5-\mathrm{V}$ operation)
- 4-bit or 8-bit MPU interface capability
- 80×8-bit display RAM (80 characters max.)
- 9,600-bit character generator ROM
-240 characters (5×8 dot)
- 64×8-bit character generator RAM
-8 characters ($5 \times 8 \mathrm{dot}$)
- 8×8-bit segment RAM - 40-segment icon mark
- 33-common $\times 40$-segment liquid crystal display driver
- Programmable duty cycle (See list 1)
- Wide range of instruction functions:
- Functions compatible with LCD-II: Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift
- Additional functions: Icon mark control, 4line display, horizontal smooth scroll, 6-dot character width control, white-black inverting blinking cursor.
- Software upwardly compatible with HD44780.
- Automatic reset circuit that initializes the controller/driver after power on
- Internal oscillator with an external resistor
- Low power consumption

List 1 Programmable Duty Cycles

Number of Lines	Duty Ratio	Displayed Character	Maximum Number of Displayed Characters	
			Single-chip Operation	With Extention Driver
1	1/17	5×8-dot	One 16-character line + 40 segments	One 50-character line +40 segments
2	1/33	5×8-dot	Two 16-character lines + 40 segments	Two 30-character lines + 40 segments
4	1/33	5×8-dot	Four 8-character lines + 40 segments	Four 20-character lines +40 segments

Ordering Information

Type No.	Package
HD66710***FS	100-pin plastic QFP (FP-100A)
HCD66710***	Chip

Note: *** = ROM code No.

HD66710

LCD-II Family Comparison

Item	LCD-II (HD44780U)	$\begin{aligned} & \text { LCD-II/E20 } \\ & \text { (HD66702) } \end{aligned}$	LCD-II/F8 (HD66710)
Power supply voltage	2.7 V to 5.5 V	$\begin{aligned} & 5 \mathrm{~V} \pm 10 \% \\ & \text { (standard) } \end{aligned}$	2.7V to 5.5 V
		2.7 V to 5.5 V (low voltage)	
Liquid crystal drive voltage $\mathrm{V}_{\mathrm{LCD}}$	3.0 V to 11 V	3.0 V to 7.0 V	3.0 V to 13.0 V
Maximum display digits per chip	8 characters $\times 2$ lines	20 characters $\times 2$ lines	16 characters $\times 2$ lines/ 8 characters $\times 4$ lines
Segment display	None	None	40 segments
Display duty cycle	1/8, 1/11, and 1/16	1/8, 1/11, and 1/16	1/17 and 1/33
CGROM	9,920 bits (208: 5×8 dot characters and 32: 5×10 dot characters)	7,200 bits (160: 5×7 dot characters and 32: 5×10 dot characters)	$\begin{aligned} & 9,600 \text { bits } \\ & \text { (} 240: 5 \times 8 \text { dot } \\ & \text { characters) } \end{aligned}$
CGRAM	64 bytes	64 bytes	64 bytes
DDRAM	80 bytes	80 bytes	80 bytes
SEGRAM	None	None	8 bytes
Segment signals	40	100	40
Common signals	16	16	33
Liquid crystal drive waveform	A	B	B
Bleeder resistor for LCD power supply	External (adjustable)	External (adjustable)	External (adjustable)
Clock source	External resistor, or external clock	External resistor or external clock	External resistor or external clock
R_{f} oscillation frequency (frame frequency)	$270 \mathrm{kHz} \pm 30 \%$ (59 to 110 Hz for $1 / 8$ and $1 / 16$ duty cycles; 43 to 80 Hz for $1 / 11$ duty cycle)	$320 \mathrm{kHz} \pm 30 \%$ (70 to 130 Hz for $1 / 8$ and $1 / 16$ duty cycles; 51 to 95 Hz for $1 / 11$ duty cycle)	$\begin{aligned} & 270 \mathrm{kHz} \pm 30 \% \\ & \text { (} 56 \text { to } 103 \mathrm{~Hz} \text { for } 1 / 17 \\ & \text { duty cycle; } \\ & 57 \text { to } 106 \mathrm{~Hz} \text { for } 1 / 33 \\ & \text { duty cycle) } \\ & \hline \end{aligned}$
R_{f} resistance	$91 \mathrm{k} \Omega$ (5-V operation) $75 \mathrm{k} \Omega$ (3-V operation)	$68 \mathrm{k} \Omega$ (5-V operation) $56 \mathrm{k} \Omega$ (3-V operation)	$91 \mathrm{k} \Omega$ (5-V operation) $75 \mathrm{k} \Omega$ (3-V operation)
Liquid crystal voltage booster circuit	None	None	2-3 times step-up circuit

LCD-II Family Comparison (cont)

Item	LCD-II (HD44780U)	LCD-II/E20 (HD66702)	LCD-II/F8 (HD66710)
Extention driver control signal	Independent control signal	Independent control signal	Used in common with a driver output pin
Instructions	LCD-II (HD44780)	Fully compatible with the LCD-II	Upper compatible with the LCD-II
Number of displayed lines	1 or 2	1 or 2	1, 2, or 4
Low power mode	None	None	Available
Horizontal scroll	Character unit	Character unit	Dot unit
CPU bus timing	$2 \mathrm{MHz} \mathrm{(5-V} \mathrm{operation)}$ 1 MHz (3-V operation)	1 MHz	2 MHz (5-V operation) 1 MHz (3-V operation)
Package	QFP1420-80 $80-$ pin bare chip	LQFP2020-144 144-pin bare chip	QFP1420-100 100-pin bare chip

HD66710

HD66710 Block Diagram

HD66710 Pin Arrangement

HD66710 Pad Arrangement

HD66710 Pad Location Coordinates

Pin No.	Pad Name	X	Y
1	SEG27	-2495	2910
2	SEG28	-2695	2730
3	SEG29	-2695	2499
4	SEG30	-2695	2300
5	SEG31	-2695	2100
6	SEG32	-2695	1901
7	SEG33	-2695	1698
8	SEG34	-2695	1498
9	SEG35	-2695	1295
10	SEG36	-2695	1099
11	SEG37	-2695	900
12	SEG38	-2695	700
13	SEG39	-2695	501
14	SEG40	-2695	301
15	COM9	-2695	98
16	COM10	-2695	-113
17	COM11	-2695	-302
18	COM12	-2695	-501
19	COM13	-2695	-701
20	COM14	-2695	-900
21	COM15	-2695	-1100
22	COM16	-2695	-1303
23	COM25	-2695	-1502
24	COM26	-2695	-1702
25	COM27	-2695	-1901
26	COM28	-2695	-2101
27	COM29	-2695	-2300
28	COM30	-2695	-2500
29	COM31	-2695	-2731
30	COM32	-2495	-2910
31	COM24	-2051	-2910
32	COM23	-1701	-2910
33	COM22	-1498	-2910
34	COM21	-1302	-2910
35	COM20	-1102	-2910
36	COM19	-899	-2910
37	COM18	-700	-2910
38	COM17	-500	-2910
39	COM8	-301	-2910
40	COM7	-101	-2910
41	COM6	99	-2910
42	COM5	302	-2910
43	COM4	502	-2910
44	COM3	698	-2910
45	COM2	887	-2910
46	COM1	1077	-2910
47	COM33	1266	-2910
48	V1	1488	-2910
49	V2	1710	-2910
50	V3	2063	-2910

Pin No.	Pad Name	X	Y
51	V4	2458	-2910
52	V5	2660	-2731
53	V50UT3	2660	-2500
54	V50UT2	2660	-2300
55	GND	2640	-2090
56	C1	2650	-1887
57	C2	2675	-1702
58	Vci	2675	-1502
59	OSC1	2675	-1303
60	OSC2	2675	-1103
61	RS	2675	-900
62	$\mathrm{R} / \overline{\mathrm{W}}$	2675	-701
63	E	2675	-501
64	DB0	2675	-302
65	DB1	2675	-99
66	DB2	2675	98
67	DB3	2675	301
68	DB4	2675	501
69	DB5	2675	700
70	DB6	2675	900
71	DB7	2675	1099
72	EXT	2675	1299
73	TEST	2675	1502
74	$V_{C C}$	2695	1698
75	SEG1	2695	1901
76	SEG2	2695	2104
77	SEG3	2695	2300
78	SEG4	2695	2503
79	SEG5	2695	2730
80	SEG6	2495	2910
81	SEG7	2049	2910
82	SEG8	1699	2910
83	SEG9	1499	2910
84	SEG10	1300	2910
85	SEG11	1100	2910
86	SEG12	901	2910
87	SEG13.	701	2910
88	SEG14	502	2910
89	SEG15	299	2910
90	SEG16	99	2910
91	SEG17	-101	2910
92	SEG18	-301	2910
93	SEG19	-500	2910
94	SEG20	-700	2910
95	SEG21	-899	2910
96	SEG22	-1099	2910
97	SEG23	-1302	2910
98	SEG24	-1501	2910
99	SEG25	-1701	2910
100	SEG26	-2051	2910

HD66710

Pin Functions

Table 1 Pin Functional Description

Signal	I/O	Device Interfaced with	Function
RS	1	MPU	Selects registers. 0 : Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for write and read)
R/W	1	MPU	Selects read or write. 0 : Write 1: Read
E	1	MPU	Starts data read/write
DB4 to DB7	I/O	MPU	Four high order bidirectional tristate data bus pins. Used for data transfer between the MPU and the HD66710. DB7 can be used as a busy flag.
DB0 to DB3	1/0	MPU	Four low order bidirectional tristate data bus pins. Used for data transfer between the MPU and the HD66710. These pins are not used during 4-bit operation.
COM1 to COM33	0	LCD	Common signals; those are not used become nonselected waveforms. At $1 / 17$ duty rate, COM1 to COM16 are used for character display, COM17 for icon display, and COM18 to COM33 become non-selected waveforms. At $1 / 33$ duty rate, COM1 to COM32 are used for character display, and COM33 for icon display.
SEG1 to SEG35	0	LCD	Segment signals
SEG36	0	LCD	Segment signal. When EXT = high, the same data as that of the first dot of the extension driver is output.
SEG37/CL1	0	LCD/ Extension driver	Segment signal when EXT = low. When EXT = high, outputs the extension driver latch pulse.
SEG38/CL2	0	LCD/ Extension driver	Segment signal when EXT = low. When EXT = high, outputs the extension driver shift clock.
SEG39/D	0	LCD/ Extension driver	Segment signal at EXT $=$ low. At EXT $=$ high, the extension driver data. Data on and after the 36th dot is output.
SEG40/M	0	LCD/ Extension driver	Segment signal when EXT = low. When EXT = high, outputs the extension driver AC signal.
EXT	1	-	Extension driver enable signal. When EXT = high, SEG37 to SEG40 become extension driver interface signals. At this time, make sure that V5 level is lower than GND level (0 V). V5 (low) \leq GND (high).
V1 to V5	-	Power supply	Power supply for LCD drive $\mathrm{V}_{\mathrm{CC}}-\mathrm{V} 5=13 \mathrm{~V}$ (max)

Table 1 Pin Functional Description (cont)

Signal	I/O	Device Interfaced with	Function
V_{cc}, GND	-	Power supply	V_{CC} : 2.7 V to 5.5 V, GND: 0 V
OSC1, OSC2	-	Oscillation resistor clock	When CR oscillation is performed, a resistor must be connected externally. When the pin input is an external clock, it must be input to OSC1.
$\overline{\mathrm{Vci}}$	1	-	Input voltage to the booster, from which the liquid crystal display drive voltage is generated. Vci: 2.5 V to 4.5 V
V5OUT2	0	V5 pin/ Booster capacitance	Voltage input to the Vci pin is boosted twice and output When the voltage is boosted three times, the same capacity as that of C1-C2 should be connected.
V50UT3	0	V5 pin	Voltage input to the Vci pin is boosted three times and output.
C1/C2	-	Booster capacitance	External capacitance should be connected when using the booster.
TEST	I	-	Test pin. Should be wired to ground.

Function Description

Registers

The HD66710 has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for the display data RAM (DD RAM), the character generator RAM (CG RAM), and the segment RAM (SEG RAM). The MPU can only write to IR, and cannot be read from.

The DR temporarily stores data to be written into DD RAM, CG RAM, or SEG RAM. Data written into the DR from the MPU is automatically written into DD RAM, CG RAM, or SEG RAM by an internal operation. The DR is also used for data storage when reading data from DD RAM, CG RAM, or SEG RAM. When address information is written into the IR, data is read and then stored into the DR from DD RAM, CG RAM, or SEG RAM by an internal operation. Data transfer between the MPU is then completed when the MPU reads the DR. After the read, data in DD RAM, CG RAM, or SEGRAM at the next address is sent to the DR for the next read from the MPU.

By the register selector (RS) signal, these two registers can be selected (table 2).

Busy Flag (BF)

When the busy flag is 1 , the HD66710 is in the internal operation mode, and the next instruction will not be accepted. When RS $=0$ and $R / W=1$ (table 2), the busy flag is output from DB_{7}. The next instruction must be written after ensuring that the busy flag is 0 .

Address Counter (AC)

The address counter (AC) assigns addresses to DD RAM, CG RAM, or SEG RAM. When an address of an instruction is written into the IR, the address information is sent from the IR to the AC. Selection of DD RAM, CG RAM, and SEG RAM is also determined concurrently by the instruction.

After writing into (reading from) DD RAM, CG RAM, or SEG RAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are then output to DB_{0} to DB_{6} when RS $=0$ and $R / \bar{W}=1$ (table 2).

Table 2 Register Selection

RS	$\mathbf{R} / \overline{\mathbf{W}}$	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB_{7}) and address counter (DB_{0} to DB_{6})
1	0	DR write as an internal operation (DR to DD RAM, CG RAM, or SEGRAM)
1	1	DR read as an internal operation (DD RAM, CG RAM, or SEGRAM to DR)

Display Data RAM (DD RAM)

Display data RAM (DD RAM) stores display data represented in 8 -bit character codes. Its capacity is 80×8 bits, or 80 characters. The area in display data RAM (DD RAM) that is not used for display can be used as general data RAM. See figure 1 for the relationships between DD RAM addresses and positions on the liquid crystal display.

The DD RAM address (A_{DD}) is set in the address counter (AC) as hexadecimal.

- 1-line display ($\mathrm{N}=0$) (figure 2)
- Case 1: When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the HD66710, 16 characters are displayed. See figure 3.

When the display shift operation is performed, the DD RAM address shifts. See figure 3.

- Case 2: Figure 4 shows the case where the EXT pin is fixed high, and the HD66710 and the 40 -output extension driver are used to extend the number of display characters. In this case, the start address from COM9 to COM16 of the LCD-II/F8 is 0AH. To display 24 characters, addresses starting at SEG11 should be used.

When a display shift operation is performed, the DD RAM address shifts. See figure 4.

Figure 1 DD RAM Address

Figure 2 1-Line Display

HD66710

Figure 3 1-line by 16-Character Display Example

Figure 4 1-line by 24-Character Display Example

- 2-line display ($\mathrm{N}=1$, and $\mathrm{NW}=0$)
- Case 1: The first line is displayed from COM1 to COM16, and the second line is displayed from COM17 to COM32. Care is required because the end address of the first line and the start address of the second
line are not consecutive. For example, the case is shown in figure 6 where 16×2-line display is performed using the HD66710. When a display shift operation is performed, the DD RAM address shifts. See figure 5.

Figure 5 2-line by 16-Character Display Example

- Case 2: Figure 6 shows the case where the EXT pin is fixed to high, the HD66710 and the 40 -output extension driver are used to extend the number of display characters.

In this case, the start address from COM9 to COM16 of the HD66710 is 0AH, and that from COM25 to COM32 of the

HD66710 is 4AH. To display 24 characters, the addresses starting at SEG11 should be used.

When a display shift operation is performed, the DD RAM address shifts. See figure 6.

Figure 6 2-Line by 24 Character Display Example

- 4-line display ($\mathrm{NW}=1$)
- Case 1: The first line is displayed from COM1 to COM8, the second line is displayed from COM9 to COM16, the third line is displayed from COM17 to COM24, and the fourth line is displayed from COM25 to COM32. Care is required
because the DD RAM addresses of each line are not consecutive. For example, the case is shown in figure 7 where 8×4-line display is performed using the HD66710.

When a display shift operation is performed, the DD RAM address shifts. See figure 7.

Figure 7 4-Line Display

- Case 2: The case is shown in figure where the EXT pin is fixed high, and the HD66710 and the 40-output extension driver are used to extend the number of display characters.

When a display shift operation is performed, the DD RAM address shifts. See figure 8.

(Display shift left)

(Display shift right)

Figure 8 4-Line by 20-Character Display Example

Character Generator ROM (CG ROM)

The character generator ROM generates 5×8 dot character patterns from 8 -bit character codes (table 3). It can generate 2405×8 dot character patterns. User-defined character patterns are also available using a mask-programmed ROM.

Character Generator RAM (CG RAM)

The character generator RAM allows the user to redefine the character patterns. In the case of 5×8 characters, up to eight may be redefined.

Write the character codes at the addresses shown as the left column of table 3 to show the character patterns stored in CG RAM.

See table 5 for the relationship between CG RAM addresses and data and display patterns.

Segment RAM (SEG RAM)

The segment RAM (SEG RAM) is used to enable control of segments such as an icon and a mark by the user program.

For a 1 -line display, SEG RAM is read from the COM17 output, and as for 2- or 4-line displays, it is from the COM33 output, to performs 40-segment display.

As shown in table 6, bits in SEG RAM corresponding to segments to be displayed are directly set by the MPU, regardless of the contents of DD RAM and CG RAM.

SEG RAM data is stored in eight bits. The lower six bits control the display of each segment, and the upper two bits control segment blinking.

Modifying Character Patterns

- Character pattern development procedure

The following operations correspond to the numbers listed in figure 9:

1. Determine the correspondence between character codes and character patterns.
2. Create a listing indicating the correspondence between EPROM addresses and data.
3. Program the character patterns into an EPROM.
4. Send the EPROM to Hitachi.
5. Computer processing of the EPROM is performed at Hitachi to create a character pattern listing, which is sent to the user.
6. If there are no problems within the character pattern listing, a trial LSI is created at Hitachi and samples are sent to the user for evaluation. When it is confirmed by the user that the character patterns are correctly written, mass production of the LSI will proceed at Hitachi.

Note: For a description of the numbers used in this figure, refer to the preceding page.

Figure 9 Character Pattern Development Procedure

Table 3 Correspondence between Character Codes and Character Patterns（Hitachi standard HD66710）

		U1F F	－9 三d
	（2）	？ 1 AQ ${ }^{\text {a }}$－	－F74．
	（3）	＂2EREF｜	
	（4）	\＃3TGES	
	（6）	韦4DTIt．	：I｜roun
	（6）		
	（）	BGIVflu	
	（8）	＂76iw｜w	
	（1）		
	（2）	3 T IVi］	
	（3）		エコ｜ivif
	（4）	＋：$\|\mathbb{K}\| \mathbb{L} \mid$［	
	（9）		
	（ө）		
		／ $70\|-0\|$	以》？${ }^{\text {a }}$

Note：The user can specify any pattern in the character－generator RAM．

- Programming character patterns

This section explains the correspondence between addresses and data used to program character patterns in EPROM. The HD66710 character generator ROM can generate 240 5×8 dot character patterns.

- Character patterns

EPROM address data and character pattern data correspond with each other to form a 5×8 dot character pattern (table 4).

Table 4 Example of Correspondence between EPROM Address Data and Character Pattern (5×8 dots)

Notes: 1. EPROM addresses A_{11} to A_{4} correspond to a character code.
2. EPROM addresses A_{2} to A_{0} specify a line position of the character pattern. EPROM address A3 should be set to 0 .
3. EPROM data O_{4} to O_{0} correspond to character pattern data.
4. Area which are lit (indicated by shading) are stored as 1 , and unlit are as 0 .
5. The eighth line is also stored in the CGROM, and should also be programmed. If the eighth line is used for a cursor, this data should all be set to zero.
6. EPROM data bits O_{7} to O_{5} are invalid. 0 should be written in all bits.

- Handling unused character patterns

1. EPROM data outside the character pattern area: This is ignored by the character generator ROM for display operation so any data is acceptable.
2. EPROM data in CG RAM area: Always fill with zeros. (EPROM addresses 00 H to FFH.)
3. Treatment of unused user patterns in the HD66710 EPROM: According to the user application, these are handled in either of two ways:
i. When unused character patterns are not programmed: If an unused character code is written into DD RAM, all its dots are lit, because the EPROM is filled with 1s after it is erased.
ii. When unused character patterns are programmed as 0s: Nothing is displayed even if unused character codes are written into DD RAM. (This is equivalent to a space.)

Table 5 Example of Correspondence between Character Code and Character Pattern ($\mathbf{5} \times \mathbf{8}$ dots) in CGRAM
a) When character pattern in 5×8 dots

Table 5 Example of Correspondence between Character Code and Character Pattern (5×8 dots) in CGRAM (cont)
b) When character pattern is $\mathbf{6 \times 8} \mathbf{d o t s}$

Notes: 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).
2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor.
3. The character data is stored with the rightmost character element in bit 0 , as shown in table 5 . Characters with 5 dots in width ($\mathrm{FW}=0$) are stored in bits 0 to 4, and characters with 6 dots in width ($\mathrm{FW}=1$) are stored in bits 0 to 5 .
4. When the upper four bits (bits 7 to 4) of the character code are 0, CGRAM is selected. Bit 3 of the character code is invalid (*). Therefore, for example, the character codes 00 (hexadecimal) and 08 (hexadecimal) correspond to the same CGRAM address.
5. A set bit in the CGRAM data corresponds to display selection, and 0 to non-selection.
6. When the BE bit of the function set register is 1 , pattern blinking control of the lower six bits is controlled using the upper two bits (bits 7 and 6) in CGRAM.
When bit 7 is 1 , of the lower six bits, only those which are set are blinked on the display.
When bit 6 is 1 , a bit 4 pattern can be blinked as for a 5 -dot font width, and a bit 5 pattern can be blinked as for a 6-dot font width.

* Indicates no effect.

Table 6 Relationships between SEGRAM Addresses and Display Patterns

SEGRAM address	SEGRAM data	
	a) 5-dot font width	b) 6-dot font width
$A_{2} A_{1} A_{0}$	$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$	$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}$
000	B1 B0 * S1 S2 S3 S4 S5	B1 B0 S1 S2 S3 S4 S5 S6
0	B1 B0 * S6 S7 S8 S9 S10	B1 B0 S7 S8 S9 S10S11S12
0	B1 B0 * S11S12S13S14S15	B1 B0 S13S14S15S16S17S18
0	B1 B0 * S16S17S18S19S20	B1 BO S19S20S21 S22S23S24
100	B1 B0 * S21S22S23S24S25	B1 BO S25S26S27S28S29S30
10	B1 B0 * S26S27S28S29S30	B1 B0 S31 S32 S33S34S35S36
$1 \quad 1$	B1 B0 * S31 S32 S33S34S35	B1 B0 S37 S38 S39 S40 41 S42
$1 \quad 1$	B1 B0 * S36S37S38S39S40	B1 B0 S43S44S45S46S47S48
	king control Pattern on/off	control Pattern on/off

Notes: 1. Data set to SEGRAM is output when COM17 is selected, as for a 1 -line display, and output when COM33 is selected, as for a 2 -line or a 4 -line display.
2. S 1 to S 48 are pin numbers of the segment output driver. S1 is positioned to the left of the monitor. S37 to S48 are extension driver outputs for a 6-dot character width.
3. After S40 output at 5 -dot font and S48 output at 6 -dot font, S 1 output is repeated again.
4. As for a 5 -dot font width, lower five bits (D4 to D0) are display on.off information of each segment. For a 6 -dot character width, the lower six bits (D 5 to D 0) are the display information for each segment.
5. When the BE bit of the function set register is 1, pattern blinking of the lower six bits is controlled using the upper two bits (bits 7 and 6) in SEGRAM.
When bit 7 is 1 , only a bit set to " 1 " of the lower six bits is blinked on the display.
When bit 6 is 1 , only a bit 4 pattern can be blinked as for a 5 -dot font width, and only a bit 5 pattern can be blinked as for 6 -dot font width.
6. Bit 5 (D5) is invalid for a 5 -dot font width.
7. Set bits in the CGRAM data correspond to display selection, and zeros to non-selection.

Figure 10 Relationships between SEGRAM Data and Display

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DD RAM, CG ROM, CG RAM, and SEGRAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DD RAM, for example, there will be no undesirable interferences, such as flickering, in areas other than the display area.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 33 common signal drivers and 40 segment signal drivers. When the character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output non-selection waveforms.

Character pattern data is sent serially through a

40-bit shift register and latched when all needed data has arrived. The latched data then enables the driver to generate drive waveform outputs.
Sending serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DD RAM).

Since serial data is latched when the display data character pattern corresponding to the starting address enters the internal shift register, the HD66710 drives from the head display.

Cursor/Blink Control Circuit

The cursor/blink (or white-black inversion) control is used to produce a cursor or a flashing area on the display at a position corresponding to the location in stored in the address counter (AC).

For example (figure 11), when the address counter is 08 H , a cursor is displayed at a position corresponding to DDRAM address 08 H .

HD66710

AC6 AC5 AC4 AC3 AC2 AC1 AC0

AC | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

For a 1 -line display

For a 2 -line display
Display position

DD RAM address (hexadecimal)

Note: Even if the address counter (AC) points to an address in the character generator RAM (CGRAM) or segment RAM (SEGRAM), cursor/blink black-white inversion will still occur, although it will produce meaningless results.

Figure 11 Cursor/Blink Display Example

Interfacing to the MPU

The HD66710 can send data in either two 4-bit operations or one 8 -bit operation, thus allowing interfacing with 4 - or 8 -bit MPUs.

- For 4-bit interface data, only four bus lines $\left(\mathrm{DB}_{4}\right.$ to DB_{7}) are used for transfer. Bus lines DB_{0} to DB_{3} are disabled. The data transfer between the HD66710 and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8 -bit operation, DB_{4} to DB_{7}) are transfered before the four low order bits (for 8-bit operation, DB_{0} to DB_{3}).

The busy flag must be checked (one instruction) after the 4 -bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.

- For 8 -bit interface data, all eight bus lines $\left(\mathrm{DB}_{0}\right.$ to DB_{7}) are used.

Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the HD66710 when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends $(\mathrm{BF}=1)$. The busy state lasts for 15 ms after V_{CC} rises to 4.5 V or 40 ms after the Vcc rises to 2.7 V .

1. Display clear
2. Function set:
$\mathrm{DL}=1 ; 8$-bit interface data
$\mathrm{N}=0$; 1-line display
RE $=0$: Extension register write disable
3. Display on/off control:
$D=0$; Display off
C $=0$; Cursor off
$\mathrm{B}=0$; Blinking off
$\mathrm{BE}=0$: CGRAM/SEGRAM blinking off
LP = 0: Not in low power mode
4. Entry mode set:

I/D = 1 ; Increment by 1
$S=0$; No shift
5. Extension function set

FW $=0 ; 5$-dot character width
B/W $=0$; Normal cursor (eighth line)
NW $=0$; 1- or 2 -line display (depending on N)
6. SEGRAM address set

HDS = 000; No scroll
Note: If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the HD66710. For such a case, initialization must be performed by the MPU as explained in the section, Initializing by Instruction.

Figure 12 4-Bit Transfer Example

HD66710

Instructions

Outline

Only the instruction register (IR) and the data register (DR) of the HD66710 can be controlled by the MPU. Before starting internal operation of the HD66710, control information is temporarily stored in these registers to allow interfacing with various MPUs, which operate at different speeds, or various peripheral control devices. The internal operation of the HD66710 is determined by signals sent from the MPU. These signals, which include register selection (RS), read/write ($\mathrm{R} / \overline{\mathrm{W}}$), and the data bus (DB0 to DB7), make up the HD66710 instructions (table 7). There are four categories of instructions that:

- Designate HD66710 functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Perform miscellaneous functions

Normally, instructions that perform data transfer with internal RAM are used the most. However,
auto-incrementation by 1 (or auto-decrementation by 1) of internal HD66710 RAM addresses after each data write can lighten the program load of the MPU. Since the display shift instruction (table 7) can perform concurrently with display data write, the user can minimize system development time with maximum programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy flag/address read instruction can be executed.

Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0 before sending another instruction from the MPU.

Note: Be sure the HD66710 is not in the busy state ($\mathrm{BF}=1$) before sending an instruction from the MPU to the HD66710. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to table 7 for the list of each instruction execution time.

Table 7 Instructions

	Code										Description	Execution Time (max) (when $f_{\text {cp }}$ or $f_{\text {osc }}$ is 270 kHz)
Instruction	RS	R/W	DB_{7}	DB_{6}	DB_{5}	DB_{4}	DB_{3}	DB_{2}	DB_{1}	DB_{0}		
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DD RAM address 0 in address counter.	1.52 ms
Return home	0	0	0	0	0	0	0	0	1	-	Sets DD RAM address 0 in address counter. Also returns display from being shifted to original position. DD RAM contents remain unchanged.	1.52 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	$37 \mu \mathrm{~s}$
Display on/off control ($\mathrm{RE}=0$)	0	0	0	0	0	0	1	D	C	B	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	$37 \mu s$
Extension function set ($R E=1$)	0	0	0	0	0	0	1	FW	B/W		Sets a font width, a blackwhite inverting cursor (B / W), a 6-dot font width (FW), and a 4-line display (NW).	$37 \mu \mathrm{~s}$
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	-	-	Moves cursor and shifts display without changing DD RAM contents.	$37 \mu \mathrm{~s}$
Function set ($\mathrm{RE}=0$)	0	0	0	0	1	DL	N	RE	-	-	Sets interface data length (DL), number of display lines (N), and extension register write enable (RE)).	$37 \mu s$
(RE = 1)	0	0	0	0	1		N	RE		LP	Sets CGRANSEGRAM blinking enable (BE), and low power mode (LP). LP is available when the EXT pin is low.	$37 \mu \mathrm{~s}$
Set CGRAM address (RE = 0)	0	0	0		Acg	Acg	$A_{\text {cG }}$	$A_{C G}$	$A_{C G}$	$A_{\text {cg }}$	Sets CG RAM address. CG RAM data is sent and received after this setting.	$37 \mu s$
Set DDRAM address (RE = 0)	0	0	1								Sets DD RAM address. DD RAM data is sent and received after this setting.	$37 \mu s$
Set SEGRAM address ($R E=1$)	0	0	1	HDS	HDS	HDS	*-	ASG	ASG	ASG	Sets SEGRAM address. DDRAM data is sent and received after this setting. Also sets a horizontal dot scroll quantity (HDS).	$37 \mu s$

Table 7 Instructions (cont)

Notes: 1. - indicates no effect.

* After execution of the CG RAMDD RAM/SEGRAM data write or read instruction, the RAM address counter is incremented or decremented by 1 . The RAM address counter is updated after the busy flag turns off. In figure $13, \mathrm{t}_{\mathrm{ADD}}$ is the time elapsed after the busy flag turns off until the address counter is updated.

2. Extension time changes as frequency changes. For example, when f is 300 kHz , the execution time is: $37 \mu \mathrm{~s}$ $x 270 / 300=33 \mu \mathrm{~s}$.
3. Execution time in a low power mode ($L P=1 \& E X T=$ low) becomes four times as long as for a 1-line mode, and twice as long as for a 2 - or 4 -line mode.

Figure 13 Address Counter Update

Instruction Description

Clear Display

Clear display writes space code (20)H (character pattern for character code (20)H must be a blank pattern) into all DD RAM addresses. It then sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. In other words, the display disappears and the cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1 (increment mode) in entry mode. S of entry mode does not change. It resets the extended register enable bit (RE) to 0 in function set.

Return Home

Return home sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. The DD RAM contents do not change.

The cursor or blinking go to the left edge of the display (in the first line if 2 lines are displayed). It resets the extended register enable bit (RE) to 0 in function set.

Entry Mode Set

I/D: Increments ($\mathrm{I} / \mathrm{D}=1$) or decrements ($\mathrm{I} / \mathrm{D}=0$) the DD RAM address by 1 when a character code is written into or read from DD RAM.

The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1 . The same applies to writing and reading of CG RAM and SEG RAM.

S: Shifts the entire display either to the right ($\mathrm{I} / \mathrm{D}=0$) or to the left $(\mathrm{I} / \mathrm{D}=1)$ when S is 1 during DD RAM write. The display does not shift if S is 0.

If S is 1 , it will seem as if the cursor does not move but the display does. The display does not shift when reading from DD RAM. Also, writing into or reading out from CG RAM and SEG RAM does not shift the display. In a low power mode ($L P=1$), do not set $S=1$ because the whole display does not normally shift.

Display On/Off Control

When extension register enable bit (RE) is 0 , bits D, C, and B are accessed.

D: The display is on when D is 1 and off when D is 0 . When off, the display data remains in DD RAM, but can be displayed instantly by setting D to 1 .

C: The cursor is displayed when C is 1 and not displayed when C is 0 . Even if the cursor disappears, the function of I/D or other specifications will not change during display data write. The cursor is displayed using 5 dots in the 8 th line for 5×8 dot character font.

B: The character indicated by the cursor blinks when B is 1 (figure 14). The blinking is displayed as switching between all blank dots and displayed characters at a speed of $370-\mathrm{ms}$ intervals when f_{cp} or $\mathrm{f}_{\text {OSC }}$ is 270 kHz . The cursor and blinking can be set to display simultaneously. (The blinking frequency changes according to $\mathrm{f}_{\mathrm{OSC}}$ or the reciprocal of $f_{c p}$. For example, when $f_{c p}$ is $300 \mathrm{kHz}, 370 \times 270 / 300=333 \mathrm{~ms}$.)

Extended Function Set

When the extended register enable bit (RE) is 1 , FW, B/W, and NW bit shown below are accessed. Once these registers are accessed, the set values are held even if the RE bit is set to zero.

FW: When FW is 1 , each displayed character is controlled with a 6 -dot width. The user font in CG RAM is displayed with a 6-bit character width from bits 5 to 0 . As for fonts stored in CG ROM, no display area is assigned to the leftmost bit, and the font is displayed with a 5-bit character width. If the FW bit is changed, data in DD RAM and CG RAM SEG RAM is destroyed. Therefore, set FW before data is written to RAM. When font width is set to 6 dots, the frame frequency decreases to $5 / 6$ compared to 5 -dot time. See "Oscillator Circuit" for details.
B / W : When B / W is 1 , the character at the cursor position is cyclically displayed with black-white invertion. At this time, bits C and B in display on/off control register are "Don't care". When f_{CP} or $f_{\text {OSC }}$ is 270 kHz , display is changed by switching every 370 ms .

NW: When NW is 1,4 -line display is performed. At this time, bit N in the function set register is "Don't care".

Figure 14 Cursor Blink Width Control

Figure 15 Character Width Control

HD66710

Cursor or Display Shift

Cursor or display shift shifts the cursor position or display to the right or left without writing or reading display data (table 8). This function is used to correct or search the display. In a 2-line display, the cursor moves to the second line when it passes the 40th digit of the first line. In a 4-line display, the cursor moves to the second line when it passes the 20th character of the line. Note that, all line displays will shift at the same time. When the displayed data is shifted repeatedly each line moves only horizontally. The second line display does not shift into the first line position.

These instruction reset the extended register enable bit (RE) to 0 in function set.

The address counter (AC) contents will not change if the only action performed is a display shift.

In low power mode ($\mathrm{LP}=1$), whole-display shift cannot be normally performed.

Function Set

Only when the extended register enable bit (RE) is 1, the BE bit shown below can be accessed. Bits DL and N can be accessed regardless of RE.

DL: Sets the interface data length. Data is sent or received in 8-bit lengths (DB_{7} to DB_{0}) when DL is 1 , and in 4-bit lengths $\left(\mathrm{DB}_{7}\right.$ to $\left.\mathrm{DB}_{4}\right)$ when DL is 0 .

When 4-bit length is selected, data must be sent or received twice.

Table 8 Shift Function

S/C	R/L	
0	0	Shifts the cursor position to the left. (AC is decremented by one.)
0	1	Shifts the cursor position to the right. (AC is incremented by one.)
1	0	Shifts the entire display to the left. The cursor follows the display shift.
1	1	Shifts the entire display to the right. The cursor follows the display shift.

N : When bit NW in the extended function set is 0 , a 1 - or a 2 -line display is set. When N is 0,1 -line display is selected; when N is 1 , 2-line display is selected. When NW is 1 , a 4 -line display is set. At this time, N is "Don't care".

RE: When the RE bit is 1 , bit BE and LP in the extended function set registe, the SEGRAM address set register, and the extended function set register can be accessed. When bit RE is 0 , the registers described above cannot be accessed, and the data in these registers is held.

To maintain compatibility with the HD44780, the RE bit should be fixed to 0 .

Clear display, return home and cursor or display shift instruction a reset the RE bit to 0 .

BE: When the RE bit is 1 , this bit can be rewritten. When this bit is 1 , the user font in CGRAM and the segment in SEGRAM can be blinked according to the upper two bits of CGRAM and SEGRAM.

LP: When the RE bit is 1 , this bit can be rewritten. When LP is set to 1 and the EXT pin is low
(without an extended driver), the HD66710 operates in low power mode. In 1 -line display mode, the HD66710 operates on a 4-division clock, and in a 2 -line or a 4-line display mode, the HD66710 operates on a 2 -division clock. According to these operations, instruction execution takes four times or twice as long. Notice that in a low power mode, display shift cannot be performed.

Note: Perform the DL, N, NW, FW functions at the head of the program before executing any instructions (except for the read busy flag and address instruction). From this point, if bit N, NW, or FW is changed after other instructions are executed, RAM contents may be lost.

Set CG RAM Address

A CG RAM address can be set while the RE bit is cleared to 0. Set CG RAM address sets the CG RAM address binary AAAAAA into the address counter.

Data is then written to or read from the MPU for CG RAM.

Table 9 Display Line Set

		No. of Display Lines	Character Font	Duty Factor	Maximum Number of Characters/ 1 Line with Extended Drivers
0	0	1	5×8 dots	$1 / 17$	50 characters
1	0	2	5×8 dots	$1 / 33$	30 characters
$*$	1	4	5×8 dots	$1 / 33$	20 characters

Note: * Indicates don't care.

Set DD RAM Address

Set DD RAM address sets the DD RAM address binary AAAAAAA into the address counter while the RE bit is cleared to 0 .

Data is then written to or read from the MPU for DD RAM.

However, when N and NW is 0 (1-line display), AAAAAAA can be 00 H to 4 FH . When N is 1 and NW is 0 (2-line display), AAAAAAA is (00)H to (27)H for the first line, and (40)H to (67)H for the second line. When NW is 1 (4-line display), AAAAAAA is (00)H to (13)H for the first line, (20) H to (33) H for the second line, (40) H to (53) H for the third line, and (60)H to (73)H for the fourth line.

Set SEGRAM Address

Only when the extended register enable bit (RE) is 1, HS2 to HSO and the SEGRAM address can be set.

The SEGRAM address in the binary form AAA is set to the address counter. SEGRAM can then be written to or read from by the MPU.

Note: When performing a horizontal scroll is described above by connecting an extended driver, the maximum number of characters per line decreases by one. In other words, 49 characters, 29 characters, and 19 characters are displayed in 1-line, 2-line, and 4-line modes, respectively. Notice that in low power mode ($\mathrm{LP}=1$), the display shift and scroll cannot be performed.

Read Busy Flag and Address

Read busy flag and address reads the busy flag (BF) indicating that the system is now internally operating on a previously received instruction. If BF is 1 , the internal operation is in progress. The next instruction will not be accepted until BF is reset to 0 . Check the BF status before the next write operation. At the same time, the value of the address counter in binary AAAAAAA is read out. This address counter is used by all CG, DD, and SEGRAM addresses, and its value is determined by the previous instruction. The address contents are the same as for CG RAM, DD RAM, and SEGRAM address set instructions.

Table 10 HS2 to HS0 Settings

HS2	HS1	HS0	Description
0	0	0	No shift
0	0	1	Shift the display position to the left by one dot.
0	1	0	Shift the display position to the left by two dots.
0	1	1	Shift the display position to the left by three dots.
1	0	0	Shift the display position to the left by four dots.
1	0	1	Shift the display position to the left by five dots.
1	1	0 or 1	No shift.

Figure 16 Character Width Control

Figure 16 Character Width Control (cont)

Write Data to CG, DD, or SEG RAM

This instruction writes 8 -bit binary data DDDDDDDD to CG, DD or SEGRAM. If the RE bit is cleared, CG or DD RAM is selected, as determined by the previous specification of the address set instruction; if the RE bit is set, SEG RAM is selected. After a write, the address is automatically incremented or decremented by 1 according to the entry mode. The entry mode also determines the display shift direction.

Read Data from CG, DD, or SEG RAM

This instruction reads 8 -bit binary data DDDDDDDD from CG, DD, or SEG RAM. If the RE bit is cleared, CG or DD RAM is selected, as determined by the previous specification of the address set instruction; if the RE bit is set, SEG RAM is selected. If no address is specified, the first data read will be invalid. When executing serial read instructions, the next address is normally read from the next address. An address
set instruction need not be executed just before this read instruction when shifting the cursor by a cursor shift instruction (when reading from DD RAM). A cursor shift instruction is the same as a set DD RAM address instruction.

After a read, the entry mode automatically increases or decreases the address by 1 . However, a display shift is not executed regardless of the entry mode.

Note: The address counter (AC) is automatically incremented or decremented after write instructions to CG, DD or SEG RAM. The RAM data selected by the AC cannot be read out at this time even if read instructions are executed. Therefore, to read data correctly, execute either an address set instruction or a cursor shift instruction (only with DD RAM), or alternatively, execute a preliminary read instruction to ensure the address is correctly set up before accessing the data.

Figure 16 Character Width Control (cont)

HD66710

Interfacing the HD66710

1) Interface to 8 -Bit MPUs

HD66710 can interface to 8-bit MPU directly with E clock, or to 8-bit MCU through I/O port. When
number of I/O port in MCU, or interfacing bus width, 4-bit interface function is useful.

Figure 17 Example of 8-Bit Data Transfer Timing Sequence
i) Connection to 8-bit MPU bus line

ii) Connection to $\mathrm{H} 8 / 325$ with port (when single chip mode)

i) Connection to HD6301 with port

Figure 18 8-Bit MPU Interface

2) Interface to 4-Bit MPUs

HD66710 can interface to 4-bit MCU through I/O port. 4-bit data for high and low order must be
transferred twice continuously. The DL bit in function set selects the interface data length.

Figure 19 Example of 4-Bit Data Transfer Timing Sequence

Figure 20 Interface to HMCS4019R

Oscillator Circuit

- Relationship Between Oscillation frequency and Liquid Crystal Display Frame Frequency

The liquid crystal display frame frequencies of
figure 22 apply only when the oscillation frequency is 270 kHz (one clock period: $3.7 \mu \mathrm{~s}$).

1) When an external clock is used
2) When an internal oscillator is used

The oscillator frequency can be adjusted by oscillator resistance
 (RI). If Rf is increased or power supply voltage is decreased, the oscillator frequency decreases. The recommended oscillator resistor is as follows.

- $R f=91 \mathrm{k} \Omega \pm 2 \%(\mathrm{Vcc}=5 \mathrm{~V})$
- $R f=75 \mathrm{k} \Omega \pm 2 \%(V c c=3 \mathrm{~V})$

Figure 21 Oscillator Circuit
(1) $1 / 17$ duty cycle

	Normal Display Mode ($L P=0$)		Low Power Mode ($L P=1$)	
Hem	5-Dot Font Width	6-Dot Font Width	5-Dot Font Width	6-Dot Font Width
Line selection period	200 clocks	240 clocks	50 clocks	60 clocks
Frame frequency	79.4 Hz	66.2 Hz	79.4 Hz	66.2 Hz

(2) $1 / 33$ duty cycle

Normal Display Mode (LP = 0) Low Power Mode ($L P=1$)

Hem	Normal Display Mode ($L P=0$)		Low Power Mode ($L P=1$)	
	5-Dot Font Width	6-Dot Font Width	5-Dot Font Width	6-Dot Font Width
Line selection period	100 clocks	120 clocks	50 clocks	60 clocks
Frame frequency	81.8 Hz	68.2 Hz	81.8 Hz	68.2 Hz

Figure 22 Frame Frequency

HD66710

Power Supply for Liquid Crystal Display Drive

1) When an external power supply is used

2) When an internal booster is used

Notes: 1. Boosted output voltage should not exceed the maximum value (13 V) of the liquid crystal power supply voltage. Especially, a voltage of over 4.3 V should not be input to the reference voltage (Vci) when boosting three times.
2. A voltage of over 5.5 V should not be input to the reference voltage (Vci) when boosting twice.

Table 11 Duty Factor and Power Supply for Liquid Crystal Display Drive

Item	Data	
Number of Lines	1	$2 / 4$
Duty factor	$1 / 17$	$1 / 33$
Bias	$1 / 5$	$1 / 6.7$
Divided resistance	R	R
	Ro	R

Note: R changes depending on the size of liquid crystal penel. Normally, R must be $2 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$.

Extension Driver LSI Interface

By bringing the EXT pin high, segment driver pins (SEG37 to SEG40) functions as the extended driver interface outputs. From these pins, a latch pulse (CL1), a shift clock (CL2), data (D), and an AC signal (M) are output. The same data is output from the SEG36 pin of the HD66710 and the start segment pin (Seg1) of the extension driver. Due to
the character baundary, the Seg1 output is used for the 5 -dot font width. For the 6 -dot font width, the SEG36 output is used, and the Seg1 output of the extension driver must not be used. When the extension driver LSI interface is used, ground level (GND) must be higher than the V5 level.

Table 12 Required Number of 40-Output Extension Driver

Controller	HD66710*		HD44780	HD66702
Display Line	5-Dot Width	6-Dot Width	5-Dot Width	5-Dot Width
16×2 lines	Not required	1	1	Not required
20×2 lines	1	1	2	Not required
24×2 lines	1	2	2	1
40×2 lines	Disabled	Disabled	4	3
12×4 lines	1	1	Disabled	Disabled
16×4 lines	2	2	Disabled	Disabled
20×4 lines	2	3	Disabled	Disabled

Note: * The number of display lines can be extended to 30×2 lines or 20×4 lines.

Figure 23 HD66710 and the Extension Driver Connection

When using one HD66710, the start address of COM9-COM16/COM25-COM33 is calculated by adding 8 to the start address of COM9-COM16 COM25-COM32. When extending the address,
the start address is calculated by adding $\mathrm{A}(10)$ to COM9-COM16/COM25 to COM32. The relationship betweenmodes and display start addresses is shown below.

Table 13 Display Start Address in Each Mode

	Number of Lines				
Output	1-Line Mode			2-Line Mode	
	EXT Low	EXT High	EXT Low	EXT High	EXT Low/High
COM1-COM8	D00 ± 1				
COM9-COM16	D08 ± 1	D0A ± 1	D08 ± 1	D0A ± 1	D20 ± 1
COM17-COM24	-	-	D40 ± 1	D40 ± 1	D40 ± 1
COM25-COM32	-	-	D48 ± 1	D4A ± 1	D60 ± 1
COM17	S00	S00	-	-	-
COM33	-	-	S00	S00	S00

Notes: 1. When an EXT pin is low, the extension driver is not used; otherwise, the extension driver is used.
2. $D^{* *}$ is the start address of display data RAM (DDRAM) for each display line.
3. $\mathrm{S}^{* *}$ is the start address of segment RAM (SEGRAM).
4. ± 1 following $D^{* *}$ indicates increment or decrement at display shift.
a) 5 -dot font width: 20×2-line display

b) 6-dot font width: 20×2-line display

c) 5 -dot font width: 24×2-line display

d) 6-dot font width: 24×2-line display

Figure 24 Correspondence between the Display Position at Extension Display and the DDRAM Address

HD66710

e) 5-dot font width: 20×4-line display

f) 6 -dot font width: 20×4-line display

Figure 24 Correspondence between the Display Position at Extension Display and the DDRAM Address (cont)

Interface to Liquid Crystal Display

Set the extended driver interface, the number of display lines, and the font width with the EXT
pin, an extended register NW, and the FW bit, respectively. The relationship between the EXT pin, register set value, and the display lines are given below.

Table 14 Relationship between EXT, Register Setting, and Display Lines

No of Lines	No. of Charactrers	$\begin{aligned} & \text { EXT } \\ & \text { PIn } \\ & \hline \end{aligned}$	Extended Driver	5-Dot Font				$\begin{aligned} & \text { EXT } \\ & \text { PIn } \\ & \hline \end{aligned}$	Extended Driver	6-Dot Font				Duty
				N	RE	NW	FW			N	RE	NW	FW	
1	16	L	-	0	0	0	0	H	1	0	1	0	1	1/17
	20	H	1	0	0	0	0	H	1	0	1	0	1	1/17
	24	H	1	0	0	0	0	H	2	0	1	0	1	1/17
2	16	L	-	1	0	0	0	H	1	1	1	0	1	1/33
	20	H	1	1	0	0	0	H	1	1	1	0	1	1/33
	24	H	1	1	0	0	0	H	2	1	1	0	1	1/33
4	16	H	1	*	1	1	0	H	1	*	1	1	1	1/33
	20	H	2	*	1	1	0	H	2	*	1	1	1	1/33
	24	H	2	*	1	1	0	H	3	*	1	1	1	1/33

Note: - means not required.

HD66710

- Example of 5-dot font width connection

Figure 25 Liquid Crystal Display and HD66710 Connections (Single-Chip Operation)

Figure 26 Liquid Crystal Display and HD66710 Connections (with the Extended Driver)

Figure 26 Liquid Crystal Display and HD66710 Connections (with the Extended Driver) (cont)

- Example of 6-dot font width connection

Figure 27 Liquid Crystal Display and HD66710 Connections (6-Dot Font Width)

Instruction and Display Correspondence

- 8 -bit operation, 16 -digit $\times 1$-line display with internal reset

Refer to table 16 for an example of an 16 -digit $\times 1$-line display in 8 -bit operation. The HD66710 functions must be set by the function set instruction prior to the display. Since the display data RAM can store data for 80 characters, a character unit scroll can be performed by a display shift instruction. A dot unit smooth scroll can also be performed by a horizontal scroll instruction. Since data of display RAM (DDRAM) is not changed by a display shift instruction, the display can be returned to the first set display when the return home operation. is performed.

- 4-bit operation, 16 -digit $\times 1$-line display with internal reset

The program must set all functions prior to the 4-bit operation (table 16). When the power is turned on, 8 -bit operation is automatically selected and the first write is performed as an 8 -bit operation. Since DB_{0} to DB_{3} are not connected, a rewrite is then required. However, since one operation is completed in two accesses for 4-bit operation, a rewrite is needed to set the functions (see table 16). Thus, DB_{4} to DB_{7} of the function set instruction is written twice.

- 8 -bit operation, 16 -digit $\times 2$-line display with internal reset

For a 2 -line display, the cursor automatically moves from the first to the second line after the 40th digit of the first line has been written.

Thus, if there are only 16 characters in the first line, the DD RAM address must be again set after the 16th character is completed. (See table 17.)

The display shift is performed for the first and second lines. If the shift is repeated, the display of the second line will not move to the first line. The same display will only shift within its own line for the number of times the shift is repeated.

- 8 -bit operation, 8 -digit $\times 4$-line display with internal reset

The RE bit must be set by the function set instruction and then the NW bit must be set by an extension function set instruction. In this case, 4-line display is always performed regardless of the N bit setting. (Table 18.)

In a 4-line display, the cursor automatically moves from the first to the second line after the 20th digit of the first line has been written. Thus, if there are only 8 characters in the first line, the DD RAM address must be set again after the 8th character is completed. Display shifts are performed on all lines simultaneously.

Note: When using the internal reset, the electrical characteristics in the Power Supply Conditions Using Internal Reset Circuit table must be satisfied. If not, the HD66710 must be initialized by instructions. See the section, Initializing by Instruction.

Table 15 8-Bit Operation, 16-Digit \times 1-Line Display Example with Internal Reset

HD66710

Table 15 8-Bit Operation, 16-Digit \times 1-Line Display Example with Internal Reset (cont)

Table 16 4-Bit Operation, 16-Digit \times 1-Line Display Example with Internal Reset

Note: The control is the same as for 8-bit operation beyond step \#6.

HD66710

Table 17 8-Bit Operation, 16-Digit \times 2-Line Display Example with Internal Reset
Step \quad Instruction

| No. | RS | R / \bar{W} | D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Display

Operation
Initialized. No display.

Sets to 8-bit operation and selects 1 -line display. Clear bit 2.

3	$\begin{aligned} & \text { Display on/off control } \\ & 0 \end{aligned}$	0	1	1	1	0		Turns on display and cursor. All display is in space mode because of initialization.
4	$$	0	0	1	1	0		Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the RAM. Display is not shifted.
5	Write data to CG RAM/D			0	0	0	H_{-}	Writes H. DD RAM has already been selected by initialization when the power was turned on.
6							\vdots	
7	Write data to CG RAM/D			0	0	1	HITACHI	Writes I.
8		0	0	0	0	0	HITACH	Sets RAM address so that the cursor is positioned at the head of the second line.

Table 17 8-Bit Operation, 16-Digit \times 2-Line Display Example with Internal Reset (cont)

HD66710

Table 18 8-Bit Operation, 8-Digit \times 4-Line Display Example with Internal Reset

Table 18 8-Bit Operation, 8-Digit \times 4-Line Display Example with Internal Reset (cont)

HD66710

Initializing by Instruction

If the power supply conditions for correctly initialization by instructions becomes necessary. operating the internal reset circuit are not met,

Figure 28 8-Bit Interface

Figure 29 4-Bit Interface

Horizontal Dot Scroll

Dot unit shifts are performed by setting the horizontal dot scroll bit (HDS) when the extension register is enabled ($\mathrm{RE}=1$). By combining this
with character unit display shift instructions, smooth horizontal scrolling can be performed on a 6-dot font width display as shown below.

Figure 30 Shift in 5- and 6-Dot Font Width
(1) Method of smooth scroll to the left

Notes: 1. When the font width is five ($\mathrm{FW}=0$), this step is skipped.
2. The extended register enable bit (RE) is cleared.

Figure 31 Smooth Scroll to the Left
(2) Method of smooth scroll to the right

Notes: 1. When the font width is five (FW = 0), this step is skipped.
2. The extended register enable bit (RE) is cleared.

Figure 31 Smooth Scroll to the Left (cont)

HD66710

Low Power Mode

When LP bit is 1 and the EXT pin is low (without an extended driver), the HD66710 operates in low power mode. In 1-line display mode, the HD66710 operates on a 4-division clock, and in 2-line or 4-line display mode, it operates on 2-division clock.

So, instruction execution takes four times or twice as long. Notice that in this mode, display shift and scroll cannot be performed. Clear display shift with the return home instruction, and the horizontal scroll quantity.

Figure 32 Low Power Mode Operation

Absolute Maximum Ratings

Item	Symbol	Value	Unit	Notes*
Power supply voltage (1)	V_{CC}	-0.3 to +7.0	V	1
Power supply voltage (2)	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{5}$	-0.3 to +15.0	V	1,2
Input voltage	V_{t}	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$	3
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	4

Notes: If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

* Refer to the Electrical Characteristics Notes section following these tables.

DC Characteristics ($\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}^{* 3}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC ${ }_{1}$)	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{cc}}$	-	$V_{c c}$	V		6
Input low voltage (1) (except OSC_{1})	$\mathrm{V}_{\mathrm{LL} 1}$	-0.3	-	$0.2 \mathrm{~V}_{\mathrm{Cc}}$	V		6
		-0.3	-	0.6			
Input high voltage (2) $\left(\mathrm{OSC}_{1}\right)$	$\mathrm{V}_{\mathrm{H} 2}$	$0.7 \mathrm{~V}_{\mathrm{cc}}$	-	V_{cc}	V		15
Input low voltage (2) (OSC_{1})	$\mathrm{V}_{\text {IL2 }}$	-	-	$0.2 \mathrm{~V}_{\mathrm{cc}}$	V		15
Output high voltage (1) $\left(D_{0}-D_{7}\right)$	$\mathrm{V}_{\mathrm{OH} 1}$	$0.75 \mathrm{~V}_{\text {cc }}$	-	-	V	$-\mathrm{l}_{\mathrm{OH}}=0.1 \mathrm{~mA}$	7
Output low voltage (1) $\left(D_{0}-D_{7}\right)$	$\mathrm{V}_{\mathrm{OL} 1}$	-	-	$0.2 \mathrm{~V}_{\text {cc }}$	V	$\mathrm{I}_{\mathrm{L}}=0.1 \mathrm{~mA}$	7
Output high voltage (2) (except $D_{0}-D_{7}$)	$\mathrm{V}_{\mathrm{OH} 2}$	$0^{0.8 V} \mathrm{Cc}$	-	-	V	$-\mathrm{IOH}=0.04 \mathrm{~mA}$	8
Output low voltage (2) $\left(D_{0}-D_{7}\right)$	$\mathrm{V}_{\text {OL2 }}$	-	-	$0.2 \mathrm{~V}_{\text {cc }}$	V	$\mathrm{I}_{\mathrm{OL}}=0.04 \mathrm{~mA}$	8
Driver on resistance (COM)	R COM	-	-	20	k Ω	$\pm 1 \mathrm{~d}=0.05 \mathrm{~mA}$ (COM)	13
\qquad (SEG)	$\mathrm{R}_{\text {SEG }}$	-	-	30	k Ω	$\pm 1 \mathrm{~d}=0.05 \mathrm{~mA}$ (SEG)	13
l/O leakage current	l_{1}	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$	9
Pull-up MOS current ($\left.\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{RS}, \mathrm{R} \overline{\mathrm{W}}\right)$	-lp	10	50	120	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V}$	
Power supply current	IST	-	TBD	TBD	mA	R_{f} oscillation, external clock $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, fosc $=270$	10, 14
LCD voltage	$\mathrm{V}_{\mathrm{LCO}}$	3.0	-	13.0	V	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{5}, 1 / 5$ bias	16
	$\mathrm{V}_{\mathrm{LCD} 2}$	3.0	-	13.0	V	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{5}, 1 / 4$ bias	16

[^5]
Booster Characteristics

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Output voltage (V5OUT2 pin)	$\mathrm{V}_{\mathrm{UP2}}$	-	TBD	-	V	$\mathrm{V}_{\mathrm{ci}}=4.5 \mathrm{~V}, \mathrm{I}_{0}=0.5 \mathrm{~mA}$, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	18
Output voltage (V5OUT3 pin)	$\mathrm{V}_{\mathrm{UP3}}$	-	TBD	-	V	$\mathrm{V}_{\mathrm{ci}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0.3 \mathrm{~mA}$, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	18
Input voltage	V_{Ci}	2.5	-	4.5	V		18

Note: * Refer to the Electrical Characteristics Notes section following these tables.

AC Characteristics ($\mathbf{V}_{\mathbf{C C}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}{ }^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}^{* 3}$)

Clock Characteristics

Item		Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
External clock operation	External clock frequency	$\mathrm{f}_{\text {cp }}$	125	270	410	kHz		
	External clock duty	Duty	45	50	55	\%		
	External clock rise time	$\mathrm{t}_{\text {ccp }}$	-	-	0.2	$\mu \mathrm{s}$		
	External clock fall time	$t_{\text {fcp }}$	-	-	0.2	$\mu \mathrm{s}$		
R_{f} oscillation	Clock oscillation frequency	fosc	190	270	350	kHz	$\begin{aligned} & R_{f}=75 \mathrm{k} \Omega, \\ & \mathrm{Vcc}=3 \mathrm{~V} \end{aligned}$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

Write Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cyce }}$	1000	-	-	ns	Figure 33
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er},} \mathrm{t}_{\mathrm{Ef}}$	-	-	25		
Address set-up time (RS, R \bar{W} to E$)$	t_{AS}	60	-	-		
Address hold time	t_{AH}	20	-	-		
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	195	-	-		
Data hold time	t_{H}	10	-	-		

Read Operation

	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cycE }}$	1000	-	-	ns	Figure 34
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	450	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25		
Address set-up time (RS, R \bar{W} to E$)$	t_{AS}	60	-	-		
Address hold time	t_{AH}	20	-	-		
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	360		
Data hold time	$\mathrm{t}_{\mathrm{DHR}}$	5	-	-		

HD66710

Bus Timing Characteristics (2) $\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $\left.+\mathbf{7 5}^{\circ} \mathrm{C}^{* 3}\right)$
Write Operation

	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\mathrm{cycE}}$	500	-	-	ns	Figure 33
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	230	-	-		
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	20		
Address set-up time (RS, $\mathrm{R} \overline{\bar{W}}$ to E$)$	t_{AS}	40	-	-		
Address hold time	t_{AH}	10	-	-		
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	60	-	-		
Data hold time	t_{H}	10	-	-		

Read Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cyce }}$	500	-	-	ns	Figure 34
Enable pulse width (high level)	PWEH	230	-	-		
Enable riseffall time	$t_{\text {Er }}, t_{\text {Ef }}$	-	-	20		
Address set-up time (RS, R/ \bar{W} to E)	$t_{\text {AS }}$	40	-	-		
Address hold time	$t_{\text {AH }}$	10	-	-		
Data delay time	$\mathrm{t}_{\text {DDR }}$	-	-	160		
Data hold time	$\mathrm{t}_{\text {DHR }}$	5	-	-		

Segment Extension Signal Timing ($\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 7} \mathrm{V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-\mathbf{2 0}{ }^{\circ} \mathrm{C}$ to $+\mathbf{7 5}^{\circ} \mathrm{C}{ }^{* 3}$)

Item		Symbol	Min	Typ	Max	Unit	Test Condition
Clock pulse width	High level	$\mathrm{t}_{\mathrm{CWH}}$	800	-	-	ns	Figure 35
	Low level	$\mathrm{t}_{\mathrm{CWL}}$	800	-	-		
Clock set-up time		$\mathrm{t}_{\mathrm{CSU}}$	500	-	-		
Data set-up time		t_{SU}	300	-	-		
Data hold time		t_{DH}	300	-	-		
M delay time	t_{DM}	-1000	-	1000			
Clock rise/fall time		t_{Ct}	-	-	TBD		

Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Power supply rise time	$\mathrm{t}_{\text {rCC }}$	0.1	-	10	ms	Figure 36
Power supply off time	$\mathrm{t}_{\text {OFF }}$	1	-	-		

Electrical Characteristics Notes

1. All voltage values are referred to $\mathrm{GND}=0 \mathrm{~V}$. If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.
2. $V_{\mathrm{CC}} \geq \mathrm{V} 1 \geq \mathrm{V} 2 \geq \mathrm{V} 3 \geq \mathrm{V} 4 \geq \mathrm{V} 5$ must be maintained. In addition, if the SEG37/CL1, SEG38/CL2, SEG39/D, and SEG40/M are used as extension driver interface signals (EXT = high), GND \geq V5 must be maintained.
3. For die products, specified up to $75^{\circ} \mathrm{C}$.
4. For die products, specified by the die shipment specification.
5. The following four circuits are I/O pin configurations except for liquid crystal display output.

Input pin
Pin: E (MOS without pull-up)
Pins: RS, R \bar{W} (MOS with pull-up)

I/O pin

6. Applies to input pins and I/O pins, excluding the OSC_{1} pin.
7. Applies to I / O pins.

HD66710

8. Applies to output pins.
9. Current flowing through pull-up MOSs, excluding output drive MOSs.
10. Input/output current is excluded. When input is at an intermediate level with CMOS, the excessive current flows through the input circuit to the power supply. To avoid this from happening, the input level must be fixed high or low.
11. Applies only to external clock operation.

12. Applies only to the internal oscillator operation using oscillation resistor R_{f}.

13. $\mathrm{R}_{\mathrm{COM}}$ is the resistance between the power supply pins ($\mathrm{V}_{\mathrm{CC}}, \mathrm{V} 1, \mathrm{~V} 4, \mathrm{~V} 5$) and each common signal pin (COM1 to COM33).
$\mathrm{R}_{\text {SEG }}$ is the resistance between the power supply pins ($\mathrm{V}_{\mathrm{CC}}, \mathrm{V} 2, \mathrm{~V} 3, \mathrm{~V} 5$) and each segment signal pin (SEG1 to SEG40).
14. The following graphs show the relationship between operation frequency and current consumption.

15. Applies to the OSC1 pin.
16. Each COM and SEG output voltage is within $\pm 0.15 \mathrm{~V}$ of the LCD voltage $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{~V} 5\right)$ when there is no load.
17. The TEST pin must be fixed to the ground, and the EXT or Vcc pin must also be connected to the ground.
18. Booster characteristics test circuits are shown below.

Boosting twice

Boosting three times

Load Circuits

AC Characteristics Test Load Circuits

Data bus: DB0-DB7

Timing Characteristics

Figure 33 Write Operation

Figure 34 Read Operation

Figure 35 Interface Timing with External Driver

Figure 36 Power Supply Sequemce

HD66712(LCD-II/F12) (Dot Matrix Liquid Crystal Display Controller/Driver)

Description

The HD66712 dot-matrix liquid crystal display controller and driver LSI displays adphanumerics, numbers, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a serial or a 4- or 8 -bit microprocessor. Since all the functions such as display RAM, character generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimum system can be interfaced with this controller/driver.

A single HD66712 is capable of displaying a single 24-character line, two 24 -character lines, or four 12 -character lines.

The HD66712 software is upwardly compatible with the LCDII (HD44780) which allows the user to easily replace an LCD-II with an HD66712. In addition, the HD66712 is equipped with functions such as segment displays for icon marks, a 4-line display mode, and a horizontal smooth scroll, and thus supports various display forms. This achieves various display forms. The HD66712 character generator ROM is extended to generate 2405×8 dot characters.

The low-voltage operation (2.7 V) of the HD66712, combined with a low-power mode, is suitable for any portable battery-driven product requiring low power consumption.

Features

- 5×8 dot matrix possible
- Clock-synchronized serial interface capability; can interface with 4- or 8-bit MPU
- Low-power operation support:
- 2.7 to 5.5 V (low voltage)
- Wide liquid-crystal voltage range: 3.0 to 13.0 V max.
- Booster for liquid crystal voltage
- Two/three times (13 V max.)
- High-speed MPU bus interface
(2 MHz at $5-\mathrm{V}$ operation)
- Extension driver interface
- Character display and independent 60 -icon mark display possible
- Horizontal smooth scroll by 6-dot font width display possible
- 80×8-bit display RAM (80 characters max.)
- 9,600-bit character generator ROM
-240 characters ($5 \times 8 \mathrm{dot}$)
- 64×8-bit character generator RAM
-8 characters ($5 \times 8 \mathrm{dot}$)
- 16×8-bit segment icon mark
- 96 -segment icon mark
- 34 -common $\times 60$-segment liquid crystal display driver
- Programmable duty cycle (See list 1)
- Software upwardly compatible with HD44780.
- Wide range of instruction functions:
- Functions compatible with LCD-II: Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift
- Additional functions: Icon mark control, 4line display, horizontal smooth scroll, 6-dot character width control, white-black inverting blinking cursor.
- Automatic reset circuit that initializes the controller/driver after power on (standard version only)
- Internal oscillator with an external resistor
- Low power consumption
- QFP 1420-128 pin, TCP-128 pin, bare-chip.

List 1 Programmable duty cycles

	5-dot font width				
		Single-chip Operation	With Extension Driver		
Number of Lines	Duty Ratio	Displayed Characters	Icons	Displayed Characters	Icons

	6-dot font width			
		Single-chip Operation	With Extension Driver	
Number of Lines	Duty Ratio	Displayed Characters	Icons	Displayed Characters
1	$1 / 17$	One 20- character line	60	One 50- character line
2	$1 / 33$	Two 20- character lines	60	Two 30- character lines
4	$1 / 33$	Four 10- character lines	60	Four 20- character lines

LCD-II Family Comparison

Item	$\begin{aligned} & \text { LCD-II } \\ & \text { (HD44780U) } \end{aligned}$	$\begin{aligned} & \text { LCD-II/E20 } \\ & \text { (HD66702) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LCD-11/F8 } \\ & \text { (HD66710) } \end{aligned}$	$\begin{aligned} & \text { LCD-II/F12 } \\ & \text { HD66712 } \end{aligned}$
Power supply voltage	2.7 V to 5.5 V	$5 \mathrm{~V} \pm 10 \%$ (standard) 2.7 V to 5.5 V (low voltage)	2.7 V to 5.5 V	2.7 V to 5.5 V
Liquid crystal drive voltage	3.0 to 11 V	3.0 V to 7.0 V	3.0 to 13.0 V	3.0 to 13.0 V
Maximum display digits per chip	$\begin{aligned} & 8 \text { characters } \\ & \times 2 \text { lines } \end{aligned}$	$\begin{aligned} & 20 \text { characters } \\ & \times 2 \text { lines } \end{aligned}$	16 characters \times 2 lines/ 8 characters $\times 4$ lines	24 characters x 2 lines/ 12 characters $\times 4$ lines
Segment display	None	None	40 segments	60 segments
Display duty cycle	$\begin{aligned} & 1 / 8,1 / 11, \text { and } \\ & 1 / 16 \end{aligned}$	$\begin{aligned} & 1 / 8,1 / 11 \text {, and } \\ & 1 / 16 \end{aligned}$	1/17 and 1/33	1/17 and 1/33
CGROM	9,920 bits (2085×8 dot characters and 325×10 dot characters)	7,200 bits (1605×7 dot characters and 325×10 dot characters)	$\begin{aligned} & 9,600 \text { bits } \\ & (2405 \times 8 \text { dot } \\ & \text { characters }) \end{aligned}$	$\begin{aligned} & 9,600 \text { bits } \\ & (2405 \times 8 \mathrm{dot} \end{aligned}$ characters)
CGRAM	64 bytes	64 bytes	64 bytes	64 bytes
DDRAM	80 bytes	80 bytes	80 bytes	80 bytes
SEGRAM	None	None	8 bytes	16 bytes
Segment signals	40	100	40	60
Common signals	16	16	33	34
Liquid crystal drive waveform	A	B	B	B
Bleeder resistor for LCD power supply	External (adjustable)	External (adjustable)	External (adjustable)	External (adjustable)
Clock source	External resistor or external clock			
Rf oscillation frequency (frame frequency)	270 kHz $\pm 30 \%$ (59 to 110 Hz for 1/8 and 1/16 duty cycle; 43 to 80 Hz for $1 / 11$ duty cycle)	$320 \mathrm{kHz} \pm 30 \%$ (70 to 130 Hz for 1/8 and $1 / 16$ duty cycle; 51 to 95 Hz for $1 / 11$ duty cycle)	$270 \mathrm{kHz} \pm 30 \%$ (56 to 103 Hz for 1/17 duty cycle; 57 to 106 Hz for 1/33 duty cycle)	$270 \mathrm{kHz} \pm 30 \%$ (56 to 103 Hz for 1/17 duty cycle; 57 to 106 Hz for $1 / 33$ duty cycle)
Rf resistance	$91 \mathrm{k} \Omega$: 5-V operation; 75 k : 3-V operation	68 k Ω : 5-V operation $56 \mathrm{k} \Omega$: (3-V operation)	$91 \mathrm{k} \Omega$: 5-V operation; $75 \mathrm{k} \Omega$: 3-V operation	$91 \mathrm{k} \Omega$: 5-V operation; $75 \mathrm{k} \Omega$: 3-V operation

LCD-II Family Comparison (cont)

Item	LCD-II (HD44780U)	LCD-II/E20 (HD66702)	$\begin{aligned} & \text { LCD-II/F8 } \\ & \text { (HD66710) } \end{aligned}$	$\begin{aligned} & \text { LCD-II/F12 } \\ & \text { HD66712 } \end{aligned}$
Liquid crystal voltage booster circuit	None	None	2-3 times stepup circuit	2-3 times stepup circuit
Extension driver control signal	Independent control signal	Independent control signal	Used in common with a driver output pin	Independent control signal
Reset function	Power on automatic reset or Reset input			
Instructions	$\begin{aligned} & \text { LCD-II } \\ & \text { (HD44780) } \end{aligned}$	Fully compatible with the LCD-II	Upper compatible with the LCD-II	Upper compatible with the LCD-II
Number of displayed lines	1 or 2	1 or 2	1,2 or 4	1,2 or 4
Low power mode	None	None	Available	Available
Horizontal scroll	Character unit	Character unit	Dot unit	Dot unit
Bus interface	4 bits/8 bits	4 bits/8 bits	4 bits/8 bits	Serial; 4 bits/8 bits
CPU bus timing	2 MHz : 5-V operation; 1 MHz : 3-V operation	1 MHz	$\begin{aligned} & 2 \mathrm{MHz}: 5-\mathrm{V} \\ & \text { operation; } \\ & 1 \mathrm{MHz} \text { 3-V } \\ & \text { operation } \end{aligned}$	$2 \mathrm{MHz}: 5-\mathrm{V}$ operation; 1 MHz : 3-V operation
Package	QFP-1420-80 80-pin bare chip	LQFP-2020-144 144-pin bare chip	QFP-1420-100 100-pin bare chip	QFP-1420-128 TCP-128 128-pin bare chip

HD66712 Block Diagram

HD66712

HD66712 Pin Arrangement

HD66712 Pad Arrangement

Pin Functions

Table 1 Pin Functional Description

Signal	Number of pins	1/0	Device Interfaced with	Function
IM	1	1	-	Selects interface mode with the MPU; Low: Serial mode High: 4-bit/8-bit bus mode (Bus width is specified by instruction.)
RS/CS*	1	1	MPU	Selects registers during bus mode: Low: Instruction register (write); Busy flag, address counter (read) High: Data register (write/read) Acts as chip-select during serial mode: Low: Select (access enable) High: Not selected (access disable)
RW/SID	1	1	MPU	Selects read/write during bus mode; Low: Write High: Read Inputs serial data during serial mode.
E/SCLK	1	1	MPU	Starts data read/write during bus mode; Inputs (Receives) serial clock during serial mode.
$\mathrm{DB}_{4} \text { to }$ DB_{7}	4	$1 / 0$	MPU	Four high-order bidirectional tristate data bus pins. Used for data transfer between the MPU and the HD66712. DB_{7} can be used as a busy flag. Open these pins during serial mode since these signals are not used.
$\begin{aligned} & \mathrm{DB}_{1} \text { to } \\ & \mathrm{DB}_{3} \end{aligned}$	3	1/0	MPU	Three low order bidirectional tristate data bus pins. Used for data transfer between the MPU and the HD66712. Open these pins during 4-bit operation or serial mode since they are not used.
$\begin{aligned} & \overline{\mathrm{DBO}} \\ & \text { SOD } \end{aligned}$	1	$\begin{aligned} & 1 / 0 \\ & 10 \end{aligned}$	MPU	The lowest bidirectional data bit (DBO) during 8-bit bus mode. Open these pins during 4-bit mode since they are not used. Outputs (transfers) serial data during serial mode. Open this pin if reading (transier) is not performed.
COMo to COM 33	34	0	LCD	Common signals; those that are not used become nonselected waveforms. At $1 / 17$ duty rate, COM_{1} to COM_{16} are used for character display, COM_{0} and COM_{17} for icon display, and COM_{18} to COM_{33} become nonselected waveforms. At $1 / 33$ duty rate, COM 1 to COM32 are used for character display, and COM_{0} and COM_{33} for icon display. Because two COM signals output the same level simultaneously, apply them according to the wiring pattern of the display device.
SEG ${ }_{1}$ to SEG60	60	0	LCD	Segment output signals

HD66712

Table 1 Pin Functional Description (cont)

Signal	Number of pins	I/O	Device Interfaced with	Function
CL1	1	0	Extension driver	When EXT = high, outputs the extension driver latch pulse.
CL2	1	0	Extension driver	When EXT = high, outputs the extension driver shift clock.
D	1	0	Extension driver	When EXT = high, outputs extension driver data; data from the 61st dot on is output.
M	1	0	Extension driver	When EXT = high, outputs the extension driver AC signal.
$\overline{\text { EXT }}$	1	1	-	When EXT = high, outputs the extension driver control signal. When EXT = low, the signal becomes tristate and can suppress consumption current.
V_{1} to V_{5}	5	-	Power supply	Power supply for LCD drive $\mathrm{Vcc}-\mathrm{V}_{5}=13 \mathrm{~V}$ (max)
Vcc/GND	2	-	Power supply	Vcc: +5 V or +3 V , GND: 0 V
$\overline{O S C}_{1} / \mathrm{OSC}_{2}$	2	-	Oscillation resistor clock	When crystal oscillation is performed, an external resistor must be connected. When the pin input is an external clock, it must be input to OSC_{1}.
Vci	1	1	-	Inputs voltage to the booster to generate the liquid crystal display drive voltage. Vci: 2.5 V to 4.5 V
$\mathrm{V}_{5} \mathrm{OUT}_{2}$	1	0	V_{5} pin/ Booster capacitance	Voltage input to the Vci pin is boosted twice and output. When the voltage is boosted three times, the same capacitance as that of C1-C2 should be connected here.
$\overline{\mathrm{V}} 5 \mathrm{OUT}$	1	0	V_{5} pin	Voltage input to the Vci pin is boosted three times and output.
C1/C2	2	-	Booster capacitance	External capacitance should be connected here when using the booster.
RESET*	1	1	-	Reset pin. Initialized to "low".
TEST	1	1	-	Test pin. Should be wired to ground.

Function Description

System Interface

The HD66712 has three types of system interfaces: synchronized serial, 4 -bit bus, and 8 -bit bus. The serial interface is selected by the IM-pin, and the $4 / 8$-bit bus interface is selected by the DL bit in the instruction register.

The HD66712 has two 8-bit registers: an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for the display data RAM (DD RAM), the character generator RAM (CG RAM), and the segment RAM (SEG RAM). The MPU can only write to IR, and cannot be read from.

The DR temporarily stores data to be written into DD RAM, CG RAM, or SEG RAM. Data written into the DR from the MPU is automatically written into DD RAM, CG RAM, or SEG RAM by an internal operation. The DR is also used for data storage when reading data from DD RAM, CG RAM, or SEG RAM. When address information is written into the IR, data is read and then stored into the DR from DD RAM, CG RAM or SEG RAM by an internal operation. Data transfer between the MPU is then completed when the MPU reads the DR. After the read, data in DD RAM, CG RAM, or SEG RAM at the next address is sent to the DR for the next read from the MPU.

These two registers can be selected by the registor selector (RS) signal in the $4 / 8$ bit bus interface, and by the RS bit in start byte data in synchronized serial interface (table 2).

Busy Flag (BF)

When the busy flag is 1 , the HD66712 is in the internal operation mode, and the next instruction will not be accepted. When RS $=0$ and $\mathrm{R} / \mathrm{W}=1$ (table 2), the busy flag is output from DB7. The next instruction must be written after ensuring that the busy flag is 0 .

Address Counter (AC)

The address counter (AC) assigns addresses to DD RAM, CG RAM, or SEG RAM. When an address of an instruction is written into the IR, the address information is sent from the IR to the AC. Selection of DD RAM, CG RAM, and SEG RAM is also determined concurrently by the instruction.

After writing into (reading from) DD RAM, CG RAM, or SEG RAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are then output to DB_{0} to DB_{6} when $\mathrm{RS}=$ 0 and $R / \overline{\mathrm{W}}=1$ (table 2).

Table 2 Resistor Selection
RS R/ \bar{W} Operation

0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DBo to DB_{6})
1	0	DR write as an internal operation (DR to DD RAM, CG RAM, or SEGRAM)
1	1	DR read as an internal operation (DD RAM, CG RAM, or SEGRAM to DR)

HD66712

Display Data RAM (DD RAM)

Display data RAM (DD RAM) stores display data represented in 8 -bit character codes. Its capacity is 80×8 bits, or 80 characters. The area in display data RAM (DD RAM) that is not used for display can be used as general data RAM.

The DD RAM address (ADD) is set in the address counter (AC) as a hexadecimal number, as shown in figure 1.

The relationship between DD RAM addresses and positions on the liquid crystal display is described and shown on the following pages for a variety of cases.

Figure 1 DD RAM Address

- 1-line display ($\mathrm{N}=0$, and $\mathrm{NW}=0$)
- Case 1: When there are fewer than 80 display characters, the display begins at the beginning of DD RAM. For example, when 245 -dot font-width characters are displayed using one HD66712, the display is generated as shown in figure 2.

When a display shift is performed, the DD RAM addresses shift as well as shown in the figure.

When 20 6-dot font-width characters are displayed using one HD66712, the display is generated as shown in figure 3. Note that COM9 to COM16 begins at address (0A)H in this case. 20 characters are displayed.

When a display shift is performed, the DD RAM addresses shift as well as shown in the figure.

- Case 2: Figure 4 shows the case where the EXT pin is fixed high and the HD66712 and the 40 -output extension driver are used to display 246 -dot font-width characters. In this case, COM9 to COM16 begins at (0A)H.

When a display shift is performed, the DD RAM addresses shift as wellas shown in the figure.

Figure 2 1-line by 24-Character Display (5-dot font width)

Figure 3 1-line by 20-Character Display (6-dot font width)

Figure 4 1-line by 24-Character Display (6-dot font width)

- 2 -line display ($\mathrm{N}=1$, and $\mathrm{NW}=0$)
- Case 1: The first line is displayed from COM1 to COM16, and the second line is displayed from COM17 to COM32. Note that the last address of the first line and the first address of the second line are not consecutive. Figure 5 shows an example where a 5 -dot font-width 24×2-line display is performed using one HD66712.

Here, COM9 to COM16 begins at (0C)H, and COM25 to COM32 at (4C)H. When a display shift is performed, the DD RAM addresses shift as shown. Figure 6 shows an example where a 6-dot font-width 20 x 2 -line display is performed using one HD66712. COM9 to COM16 begins at (0A)H, and COM25 to COM32 at (4A)H.

Figure 5 2-line by 24-Character Display (5-dot font width)

Figure 6 2-line by 20-Character Display (6-dot font width)

- Case 2: Figure 7 shows the case where the EXT pin is fixed high and the HD66712 and the 40 -output extension driver are used to extend the number of display characters to 325 -dot font-width characters.

In this case, COM9 to COM16 begins at $(0 \mathrm{C}) \mathrm{H}$, and COM25 to COM32 at (4C)H.

When a display shift is performed, the DD RAM addresses shift as shown.

Figure 7 2-Line by 32 Character Display (5-dot font width)

- 4-line display (NW = 1)
- Case 1: The first line is displayed from COM1 to COM8, the second line is displayed from COM9 to COM16, the third line is displayed from COM17 to COM24, and the fourth line is displayed from COM25 to COM32.
Note that the DD RAM addresses of each line are not consecutive.
Figure 8 shows an example where a 12×4-line display is performed using one HD66712.

When a display shift is performed, the DD RAM addresses shift as shown.

Figure 8 4-Line Display

- Case 2: Figure 9 shows the case where the EXT pin is fixed high and the HD66712 and the 40 -output extension driver are used to extend the number of display characters.

When a display shift is performed, the DD RAM addresses shift as shown.

Figure 9 4-Line by 20-Character Display

Character Generator ROM (CG ROM)

The character generator ROM generates 5×8 dot character patterns from 8 -bit character codes (table 3). It can generate 2405×8 dot character patterns. User-defined character patterns are also available using a mask-programmed ROM (see "Modifying Character Patterns").

Character Generator RAM (CG RAM)

The character generator RAM allows the user to redefine the character patterns. In the case of $5 \times$ 8 dot character, up to eight character patterns may be redefined.

Write the character codes at the addresses shown as the left column of table 3 to show the character patterns stored in CG RAM.

See table 4 for the relationship between CG RAM addresses and data and display patterns.

Segment RAM (SEGRAM)

The segment RAM (SEGRAM) is used to enable control of segments such as an icon and a mark by the user program.
For a 1-line display, SEGRAM is read from the COM0 and the COM17 output, and for 2- or 4-line displays, it is read from the COM0 and the COM33 output, to perform 60-segment display (80 -segment display when using the extension driver).
As shown in table 7, bits in SEGRAM corresponding to segments to be displayed are directly set by the MPU, regardless of the contents of DDRAM and CGRAM.

SEGRAM data is stored in eight bits. The lower six bits control the display of each segment, and the upper two bits control segment blinking.

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DDRAM, CGROM, CGRAM, and SEGRAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DD RAM, for example, there will be no undesirable interferences, such as flickering, in areas other than the display area.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 34 common signal drivers and 60 segment signal drivers. When the character font and number of
lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output non-selection waveforms.

Character pattern data is sent serially through a 60 -bit shift register and latched when all needed data has arrived. The latched data then enables the driver to generate drive waveform outputs.

Sending serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DD RAM).

Since serial data is latched when the display data character pattern corresponding to the starting address enters the internal shift register, the HD66712 drives from the head display.

Cursor/Blink Control Circuit

The cursor/blink (or white-black inversion) control is used to produce a cursor or a flashing area on the display at a position corresponding to the location in stored in the address counter (AC).

For example (figure 11), when the address counter is $(08) \mathrm{H}$, a cursor is displayed at a position corresponding to DDRAM address (08)H.

Scroll Control Circuit

The scroll control circuit is used to perform a smooth-scroll in the unit of dot. When the number of characters to be displayed is greater than that possible at one time on the liquid crystal module, this horizontal smooth scroll can be used to display all characters.

Figure 10 Cursor/Blink Display Example

Table 3 Relationship between Character Codes and Character Patterns（ROM code：A00）

		F	
	\％		－ 7 F 7
	\％	＂2EREGIr	「．1
	\％	\＃3ICSES	」ウт无：
	\％	韦4DTI可，	I $1 \cdot \mid$｜｜
	\％		
	\％	CEEFOf CO	
	\％		F 7 － 7 －
	\％	（ $\mathrm{B}\|\mathrm{H} / \mathrm{X}\| \boldsymbol{T} \times$	19 T
	\％		
	\％		
	\％		
	\％id	：\ll L 1×11	かシフ7
	\％	$-=\|\mathrm{Fl}\|] \mathrm{m} \mid$	
	\％		
	${ }_{\text {\％}}^{6}$	770］－07	品》0

Table 4 Relationship between Character Codes and Character Pattern (ROM code: A01)

Lower ${ }^{\text {Unper }}$	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx 0000	CG RAM (1)						${ }^{\circ}$	\cdots						${ }_{\infty}^{\infty}$	${ }^{20}$	${ }^{808}$
xxxx 0001	$\begin{array}{\|l} \text { CG } \\ \text { RAM } \\ \text { (2) } \end{array}$	9												0°		\%
xxxx 0010	$\begin{aligned} & \text { CG } \\ & \text { RAM } \\ & (3) \end{aligned}$		88			${ }_{500}^{80}$		-							-	88
xxxx 0011	CG RAM (4) -		$\begin{aligned} & 8.8 \\ & \times 20 \end{aligned}$				8^{000}		\bullet							${ }_{-}^{\infty}$
xxxx 0100	CG RAM (5)					ω°			00							\cdots
xxxx 0101	CG RAM (6) -				enees						8		-		-	
xxxx 0110	CG RAM $(7$ $-=0$									${ }^{\circ}+$			\cdots		6	${ }^{\circ}{ }^{\circ}$
xxxx 0111	CG RAM (8)					$18{ }^{2}$			$\mid e_{0}^{\infty}{ }^{\infty}$							
xxxx 1000	CG RAM (1)	0°											aiy			
xxxx 1001	CG RAM (2)					8.8							1	8		[${ }^{8}$
xxxx 1010	CG RAM (3)	$)_{3}+3$	${ }^{-8}$									cosel		80°	-000\%	
xxxx 1011	CG RAM (4) -	$\left[\begin{array}{l} 8_{0}^{2} \\ 3_{0} \\ 0 \end{array}\right.$	∞	4	80°	\cdots							Sees		12.	(eow
xxxx 1100	CG RAM (5) -	$c_{0}^{\infty}{ }^{\infty}$		10°								\cdots				ceeng
xxxx 1101	CG (6) (6)		ceen		188^{2}					∞						
xxxx 1110	CG RAM (7) -	$\left[\begin{array}{l} 0 \\ -0 \\ -0 \\ \hline \end{array}\right.$	92.			\cdots			${ }^{\circ} 0$	${ }^{8}$						- 88
xxxx 1111	CG RAM (8)					20ese	$8_{0 \times 2} 8$				88			**	\% ${ }^{8}$	(\%:

Table 5 Relationship between Character Codes and Character Patterns (ROM code: A02)

Lowep	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx 0000	$\begin{aligned} & \hline \mathcal{O B}^{\text {RAM }} \\ & \text { (1) } \end{aligned}$						${ }^{\bullet} \bullet_{0}$							${ }^{3}{ }^{\circ} 8$	e_{0}	
xxxx 0001	$\begin{aligned} & \text { CG } \\ & \text { RAM } \\ & \text { (2) } \end{aligned}$														\cdots	${ }^{\circ}$
xxxx 0010	$\begin{aligned} & \text { OG } \\ & \text { RAM } \\ & \text { (3) } \end{aligned}$	8	88												\because ∞_{0}^{∞}	$\stackrel{\square}{0}$
xxxx 0011	$\begin{aligned} & \text { CG } \\ & \text { RAM } \\ & \text { (4) } \end{aligned}$				$\stackrel{+}{0}$				ω_{8}^{∞}							8
xxxx 0100	$\begin{aligned} & \infty \\ & \text { RAM } \\ & \text { (5) } \\ & \hline \end{aligned}$							e?						\because		${ }^{\circ}$
xxxx 0101	$\begin{aligned} & \text { GGM} \\ & \text { RAM } \\ & (6) \end{aligned}$															8
xxxx 0110	∞ RAM (7)				0		$5^{\infty} \cdot$								co	
xxxx 0111	$\begin{aligned} & \mathcal{G} \\ & \text { PAM } \\ & (8) \\ & \hline- \end{aligned}$				∞_{0}							8				\pm
xxxx 1000	CG RAM (1)		10°								\bullet					0
xxxx 1001					\% ${ }^{6}$	168	${ }_{c}{ }^{\circ}$									
xxxx 1010	$\begin{aligned} & G \\ & \text { RAM } \\ & \text { (3) } \end{aligned}$		- 30	8												
xxxx 1011	© RAM (4)			8			10°									
xxxx 1100	$\begin{aligned} & \mathcal{O A}_{\mathrm{RAM}} \\ & \mathbf{(5)} \end{aligned}$	0														
xxxx 1101	$\begin{aligned} & G \\ & \text { PAM } \\ & (6) \\ & - \end{aligned}$		0000	$\mid+\infty, 0$												
xxxx 1110	OG RAM (7)		8			$0^{\circ}{ }^{\circ} \cdot$			$\}_{8}$			${ }^{3}$	\bullet			0
xxxx 1111	GG RAM (8) $-\infty$		$0^{0} 0^{\circ}$	-000							$\stackrel{\circ}{6}$				c.	

Note: The character codes of the characters enclosed in the bold frame are the same as those of the first edition of the ISO8859 and the character code compatible.

HD66712

Table 6 Example of Relationships between Character Code (DDRAM) and Character Pattern (CGRAM data)
a) When character pattern is 5×8 dots

b) When character pattern is 6×8 dots

HD66712

Notes: 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).
2. CGRAM address bits 0 to 2 designate the character pattern line position (3 bits: 8 lines). The 8th line is the cursor position and its display is formed by a logical OR with the cursor.
3. The character data is stored with the rightmost character element in bit 0 , as shown in the figure above. Characters with 5 dots in width $(F W=0)$ are stored in bits 0 to 4 , and characters with 6 dots in width $(F W=1)$ are stored in bits 0 to 5.
4. When the upper four bits (bits 7 to 4) of the character code are 0 , CGRAM is selected. Bit 3 of the character code is invalid (*). Therefore, for example, the character codes (00)H and (08)H correspond to the same CGRAM address.
5. A set bit in the CGRAM data corresponds to display selection, and 0 to non-selection.
6. When the BE bit of the function set register is 1 , pattern blinking control of the lower six bits is controlled using the upper two bits (bits 7 and 6) in CGRAM.
When bit 7 is 1 , of the lower six bits, only those which are set are blinked on the display. When bit 6 is 1 , a bit 4 pattern can be blinked as for a 5 -dot font width, and a bit 5 pattern can be blinked as for a 6-dot font width.

* Indicates no effect.

Table 7 Relationship between SEGRAM addresses and display patterns

SEGRAM address	SEGRAM data	
	a) 5-dot font width	b) 6-dot font width
$A_{0} A_{2} A_{1} A_{0}$	D7 D6 D5 D4 D3 D2 D1 D0	D7 D6 D5 D4 D3 D2 D1 D0
0 0 0000	B1 B0 * S1 S2 S3 S4 S5	B1 B0 S1 S2 S3 S4 S5 S6
0	B1 B0* S6 S7 S8 S9 S10	B1 B0 S7 S8 S9 S10S11S12
0	B1 B0* S11S12S13S14S15	B1 B0 S13S14S15S16S17S18
0	B1 B0 * S16S17S18S19S20	B1 BO S19S20S21 S22S23S24
0	B1 B0 * S21 S22S23S24S25	B1 BO S25S26S27 S28S29S30
0	B1 BO * S26S27S28S29S30	B1 B0 S31 S32 S33 344 S35S36
0	B1 B0 * S31 S32 S33 334 S35	B1 B0 S37S38S39S40S41S42
$0 \quad 1$	B1 B0 * S36S37S38S39S40	B1 B0 S43S44S45S46S47S48
10000	B1 B0 * S41 S42S43S44S45	B1 B0 S49S50S51 S52S53S54
100	B1 B0* S46S47S48S49S50	B1 B0 S55S56S57S58S59 S60
$1 \begin{array}{lll}1 & 0 & 1\end{array}$	B1 B0* S51 S52 S53 54 S55	B1 B0 S61 S62 S63S64S65S66
$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	B1 B0 * S56S57S58S59S60	B1 B0 S67S68S69S70S71S72
1 1-000	B1 B0 * S61 S62S63S64S65	B1 B0 S73S74S75 S76S77S78
1 1-1.0.1	B1 B0* S66S67S68S69570	B1 B0 S79 80 S81 S82 583584
$1-100$	B1 B0* S71 572 S73S74S75	B1 B0 S85S86S87S88S89S90
$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	B1 B0 * S76S77S78S79S80	B1 B0 591 922 S 93 S 94 S 95 S 96
	Blinking control Patern onvoff	Blinking control Pattern on/off

Notes: 1. Data set to SEGRAM is output when COM0 and COM17 are selected, as for a 1 -line display, and output when COM0 and COM33 are selected, as for a 2 -line or a 4 -line display. COM0 and COM17 for a 1 -line display and COM0 and COM33 for a 2 -line or a 4 -line display are the same signals.
2. S1 to S 96 are pin numbers of the segment output driver. S 1 is positioned to the left of the display. When the LCD-II/F12 is used by one chip, segments from S1 to S60 are displayed.
An extension driver displays the segments after S 61 .
3. After $\mathbf{S 8 0}$ output at 5 -dot font and $\mathbf{S} 96$ output at 6 -dot font, S1 output is repeated again.
4. As for a 5-dot font width, lower five bits (D4 to D0) are display on.off information of each segment. For a 6-dot character width, the lower six bits (D5 to D0) are the display information for each segment.
5. When the BE bit of the function set register is 1, pattern blinking of the lower six bits is controlled using the upper two bits (bits 7 and 6) in SEGRAM.
When bit 7 is 1 , only a bit set to " 1 " of the lower six bits is blinked on the display.
When bit 6 is 1 , only a bit 4 pattern can be blinked as for a 5 -dot font width, and only a bit 5 pattern can be blinked as for 6 -dot font width.
6. Bit 5 (D5) is invalid for a 5 -dot font width.
7. Set bits in the SEGRAM data correspond to display selection, and zeros to non-selection.

Figure 11 Correspondence between SEGRAM and segment display

HD66712

Modifying Character Patterns

- Character pattern development procedure

The following operations correspond to the numbers listed in figure 12:

1. Determine the correspondence between character codes and character patterns.
2. Create a listing indicating the correspondence between EPROM addresses and data.
3. Program the character patterns into an EPROM.
4. Send the EPROM to Hitachi.
5. Computer processing of the EPROM is performed at Hitachi to create a character pattern listing, which is sent to the user.
6. If there are no problems within the character pattern listing, a trial LSI is created at Hitachi and samples are sent to the user for evaluation. When it is confirmed by the user that the character patterns are correctly written, mass production of the LSI will proceed at Hitachi.

Figure 12 Character Pattern Development Procedure

Programming character patterns
This section explains the correspondence between addresses and data used to program character patterns in EPROM.

- Programming to EPROM

The HD66712 character generator ROM can generate 2405×8 dot character patterns. Table 8 shows correspondence between the EPROM address data and the character pattern.

Table 8 Example of Correspondence between EPROM Address Data and Character Pattern (5×8 dots)

Notes: 1. EPROM addresses A_{11} to A_{4} correspond to a character code.
2. EPROM addresses A_{2} to A_{0} specify the line position of the character pattern. EPROM address A3 should be set to "0"
3. EPROM data O_{4} to O_{0} correspond to character pattern data.
4. Areas which are lit (indicated by shading) are stored as " 1 ", and unlit areas as " 0 ".
5. The eighth line is also stored in the CGROM, and should also be programmed. If the eighth line is used for a cursor, this data should all be set to zero.
6. EPROM data bits O_{7} to O_{5} are invalid. " 0 " should be written in all bits.

- Handling unused character patterns

1. EPROM data outside the character pattern area: This is ignored by the character generator ROM for display operation so any data is acceptable.
2. EPROM data in CG RAM area: Always fill with zeros.
3. Treatment of unused user patterns in the HD66712 EPROM: According to the user application, these are handled in either of two ways:
i. When unused character patterns are not programmed: If an unused character code is written into DD RAM, all its dots are lit, because the EPROM is filled with 1s after it is erased.
ii. When unused character patterns are programmed as 0s: Nothing is displayed even if unused character codes are written into DD RAM. (This is equivalent to a space.)

Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the HD66712 when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends $(\mathrm{BF}=1)$. The busy state lasts for 15 ms after VCC rises to 4.5 V or 40 ms after the Vcc rises to 2.7 V .

1. Display clear:
(20)H to all DDRAM
2. Set functions:
$\mathrm{DL}=1: 8$-bit interface data
$\mathrm{N}=1$: 2-line display
RE $=0$: Extension register write disable
$\mathrm{BE}=0$: CGRAM/SEGRAM blink off
LP $=0$: Not in low power mode
3. Control display on/off:
$\mathrm{D}=0$: Display off
C $=0$: Cursor off
$\mathrm{B}=0$: Blinking off
4. Eet entry mode:
$I / D=1$: Increment by 1
$S=0$: No shift
5. Set extension function

FW = 0: 5 -dot character width
$B / W=0$: Normal cursor (eighth line)
$\mathrm{NW}=0$: 1 - or 2-line display (depending on N)
6. Enable scroll

HSE = 0000: Scroll unable
7. Set scroll amount

HDS $=000000$: Not scroll

Note: If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the HD66712.

Initializing by Hardware Reset Input

The LCD-II/F12 also has a reset input pin: RESET*. If this pin is made low during operation, an internal reset and initialization is performed. This pin is ignored, however, during the internal reset period at power-on.

Interfacing to the MPU

The HD66712 can send data in either two 4-bit operations or one 8 -bit operation, thus allowing interfacing with 4 - or 8 -bit MPUs.

- For 4-bit interface data, only four bus lines (DB_{4} to DB_{7}) are used for transfer. Bus lines DB_{0} to DB_{3} are disabled. The data transfer between the HD66712 and the MPU is completed after the 4 -bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8 -bit operation, DB_{4} to DB_{7}) are transferred before the four low order bits (for 8-bit operation, DB_{0} to DB_{3}).

The busy flag must be checked (one instruction) after the 4 -bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.

- For 8 -bit interface data, all eight bus lines (DB_{0} to DB_{7}) are used.
- When the IM pin is low, the HD66712 uses a serial interface. See "Transferring Serial Data".

Figure 13 4-Bit Transfer Example

Transferring Serial Data

When the IM pin (interface mode) is low, the HD66712 enters serial interface mode. A threeline clock-synchronous transfer method is used. The HD66712 receives serial input data (SID) and transmits serial output data (SOD) by synchronizing with a transfer clock (SCLK) sent from the master side.
When the HD66712 interfaces with several chips, chip select pin (CS*) must be used. The transfer clock (SCLK) input is activated by making chip select (CS*) low. In addition, the transfer counter of the LCD-II/F12 can be reset and serial transfer synchronized by making chip select (CS*) high. Here, since the data which was being sent at reset is cleared, restart the transfer from the first bit of this data. In the case of a minimum 1 to 1 transfer system with the LCD-II/F12 used as a receiver only, an interface can be established by the transfer clock (SCLK) and serial input data (SID). In this case, chip select (CS*) should be fixed to low.
The transfer clock (SCLK) is independent from operational clock (CLK) of the LCD-II/F12. However, when several instructions are continuously transferred, the instruction execution time determined by the operational clock (CLK) (see continuous transfer) must be considered since the LCD-II/F12 does not have an internal transmit/receive buffer.

To begin with, transfer the start byte. By receiving five consecutive bits (synchronizing bit string) at the beginning of the start byte, the transfer counter of the LCD-II/F12 is reset and serial transfer is synchronized. The 2 bits following the synchronizing bit string (5 bits) specify transfer direction ($\mathrm{R} / \overline{\mathrm{W}} \mathrm{bit}$) and register select (RS bit). Be sure to transfer 0 in the 8 th bit.
After receiving the start byte, instructions are received and the data/busy flag is transmitted. When the transfer direction and register select remain the same, data can be continuously transmitted or received. The transfer protocol is described in detail below.

- Receiving (write)

After receiving the start synchronization bits, the $\mathrm{R} / \overline{\mathrm{W}}$ bit (=0), and the RS bit with the start byte, an 8 -bit instruction is received in 2 bytes: the lower 4 bits of the instruction are placed in the LSB of the first byte, and the higher 4 bits of the instruction are placed in the LSB of the second byte. Be sure to transfer 0 in the following 4 bits of each byte. When instructions are continuously received with $\mathrm{R} / \overline{\mathrm{W}}$ bit and RS bit unchanged, continuous transfer is possible (see "Continuous Transfer" below).

Figure 14 Basic Procedure for Transferring Serial Data

HD66712

- Transmitting (read)

After receiving the start synchronization bits, the $\mathrm{R} / \overline{\mathrm{W}}$ bit (=1), and the RS bit with the start byte, 8bit read data is transmitted in the same way as receiving. When read data is continuously transmitted with $\mathrm{R} / \overline{\mathrm{W}}$ bit and RS bit unchanged, continuous transfer is possible (see "Continuous Transfer" below).
Even at the time of the transmission (the data output), since the HD66712 monitors the start synchronization bit string ("11111") by the SID input, the HD66712 receives the R/W bit and RS bit after detecting the start synchronization. Therefore, in the case of a continuous transfer, fix the SID input " 0 ".

- Continuous transfer

When instructions are continuously received with the $\mathrm{R} / \overline{\mathrm{W}}$ bit and RS bit unchanged, continuous receive is possible without inserting a start byte between instructions.
After receiving the last bit (the 8th bit in the 2nd byte) of an instruction, the system begins to

execute it.

To execute the next instruction, the instruction execution time of the LCD-II/F12 must be considered. If the last bit (the 8th bit in the 2nd byte) of the next instruction is received during execution of the previous instruction, the instruction will be ignored.
In addition, if the next unit of data is read before read execution of previous data is completed for busy flag/address counter/RAM data, normal data is not sent. To transfer data normally, the busy flag must be checked. However, it is possible to transfer without reading the busy flag if wiring for transmission (SOD pin) needs to be reduced or if the burden of polling on the CPU needs to be removed. In this case, insert a transfer wait so that the current instruction first completes execution during instruction transfer.

Figure 15 Procedure for Continuous Data Transfer

Instructions

Outline

Only the instruction register (IR) and the data register (DR) of the HD66712 can be controlled by the MPU. Before starting internal operation of the HD66712, control information is temporarily stored in these registers to allow interfacing with various MPUs, which operate at different speeds, or various peripheral control devices. The internal operation of the HD66712 is determined by signals sent from the MPU. These signals, which include register selection (RS), read/write ($\mathrm{R} / \overline{\mathrm{W}}$), and the data bus (DB_{0} to DB_{7}), make up the HD66712 instructions (table 11). There are four categories of instructions that:

- Designate HD66712 functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Perform miscellaneous functions

Normally, instructions that perform data transfer with internal RAM are used the most. However,
auto-incrementation by 1 (or auto-decrementation by 1) of internal HD66712 RAM addresses after each data write can lighten the program load of the MPU. Since the display shift instruction (table 16) can perform concurrently with display data write, the user can minimize system development time with maximum programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy flag/address read instruction can be executed.

Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0 before sending another instruction from the MPU.

Note: Be sure the HD66712 is not in the busy state ($\mathrm{BF}=1$) before sending an instruction from the MPU to the HD66712. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to table 11 for the list of each instruction execution time.

Instruction Description

Clear Display

Clear display writes space code (20)H (character pattern for character code (20)H must be a blank pattern) into all DD RAM addresses. It then sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. In other words, the display disappears and the cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1 (increment mode) in entry mode. S of entry mode does not change.

Return Home

Return home sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. The DD RAM contents do not change.

The cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). In addition, flicker may occur in a moment at the time of this instruction issue.

Entry Mode Set

I/D: Increments $(\mathrm{I} / \mathrm{D}=1)$ or decrements $(\mathrm{I} / \mathrm{D}=0)$ the DD RAM address by 1 when a character code is written into or read from DD RAM.

The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1 . The same applies to writing and reading of CG RAM and SEG RAM.

S: Shifts the entire display either to the right ($/$ / $\mathrm{D}=0$) or to the left $(\mathrm{I} / \mathrm{D}=1$) when S is 1 during DD RAM write. The display does not shift if S is 0.

If S is 1 , it will seem as if the cursor does not move but the display does. The display does not shift when reading from DD RAM. Also, writing into or reading out from CG RAM and SEG RAM does not shift the display. In a low power mode ($\mathrm{LP}=1$), do not set $\mathrm{S}=1$ because the whole display does not normally shift.

Display On/Off Control

When extension register enable bit (RE) is 0 , bits D, C, and B are accessed.

D: The display is on when D is 1 and off when D is 0 . When off, the display data remains in DD RAM, but can be displayed instantly by setting D to 1 .

C: The cursor is displayed when C is 1 and not displayed when C is 0 . Even if the cursor disappears, the function of I/D or other specifications will not change during display data write. The cursor is displayed using 5 dots in the 8 th line for 5×8 dot character font.

B: The character indicated by the cursor blinks when B is 1 (figure 16). The blinking is displayed as switching between all blank dots and displayed characters at a speed of $370-\mathrm{ms}$ intervals when $\mathbf{f}_{\mathbf{c p}}$ or fosc is 270 kHz . The cursor and blinking can be set to display simultaneously. (The blinking frequency changes according to fosc or the reciprocal of $f_{c p}$. For example, when $f_{c p}$ is $300 \mathrm{kHz}, 370 \times 270 / 300=333 \mathrm{~ms}$.)

Extended Function Set

When the extended register enable bit (RE) is 1 , FW, B/W, and NW bit shown below are accessed. Once these registers are accessed, the set values are held even if the RE bit is set to zero.

FW: When FW is 1 , each displayed character is controlled with a 6 -dot width. The user font in CG RAM is displayed with a 6 -bit character width from bits 5 to 0 . As for fonts stored in CG ROM, no display area is assigned to the leftmost bit, and the font is displayed with a 5 -bit character width. If the FW bit is changed, data in DD RAM and CG RAM SEG RAM is destroyed. Therefore, set FW before data is written to RAM. When font width is set to 6 dots, the frame frequency decreases to 5/6 compared to 5-dot time. See "Oscillator Circuit" for details.
B / W : When B / W is 1 , the character at the cursor position is cyclically displayed with black-white invertion. At this time, bits C and B in display on/off control register are "Don't care". When fcp or fosc is 270 kHz , display is changed by switching every 370 ms .

NW: When NW is 1,4 -line display is performed.
At this time, bit N in the function set register is
"Don't care".

Figure 16 Example of Display Control

Cursor or Display Shift

Cursor or display shift shifts the cursor position or display to the right or left without writing or reading display data (table 9). This function is used to correct or search the display. In a 2 -line display, the cursor moves to the second line when it passes the 40th digit of the first line. In a 4-line display, the cursor moves to the second line when it passes the 20th character of the line. Note that, all line displays will shift at the same time. When the displayed data is shifted repeatedly each line moves only horizontally. The second line display does not shift into the first line position. When this instruction is executed, extended register enable bit (RE) is reset. The address counter (AC) contents will not change if the only action performed is a display shift. In low power mode ($L P=1$), whole-display shift cannot be normally performed.

Scroll Enable

When extended register enable bit (RE) is 1 , scroll enable bits can be set.

Function Set

Only when the extended register enable bit (RE) is 1, the BE and the LP bits shown below can be accessed. Bits DL and N can be accessed regardless of RE.

DL: Sets the interface data length. Data is sent or received in 8 -bit lengths (DB_{7} to DB_{0}) when DL is 1, and in 4-bit lengths (DB 7 to DB_{4}) when DL is 0 . When 4-bit length is selected, data must be sent or received twice.

N : When bit NW in the extended function set is 0 , a 1 - or a 2 -line display is set. When N is 0,1 -line display is selected; when N is 1 , 2-line display is selected. When NW is 1 , a 4 -line display is set. At this time, N is "Don't care".

RE: When bit RE is 1 , bit BE in the extended function set register, the SEGRAM address set register, and the function set register can be accessed. When bit RE is 0 , the registers described above cannot be accessed, and the data in these registers is held.

To maintain compatibility with the HD44780, the RE bit should be fixed to 0 .

BE: When the RE bit is 1, this bit can be rewritten. When this bit is 1 , the user font in CGRAM and the segment in SEGRAM can be blinked according to the upper two bits of CGRAM and SEGRAM.

Table 9 Shift Function

S/C	R/L	
0	0	Shifts the cursor position to the left. (AC is decremented by one.)
0	1	Shifts the cursor position to the right. (AC is incremented by one.)
1	0	Shifts the entire display to the left. The cursor follows the display shift.
1	1	Shifts the entire display to the right. The cursor follows the display shift.

LP: When bit RE is 1 , this bit can be rewritten. When LP is set to 1 and the EXT pin is low (without an extended driver), the HD66712 operates in low power mode. In 1 -line display mode, the HD66712 operates on a 4-division clock, and in a 2 -line or a 4 -line display mode, the HD66712 operates on a 2 -division clock. According to these operations, instruction execution takes four times or twice as long. Note that in low power mode, display shift cannot be performed. The frame frequency is reduced to $5 / 6$ that of normal operation. See "Oscillator Circuit" for details.
Note: Perform the DL, N, NW, and FW fucntions at the head of the program before executing any instructions (except for the read busy flag and address instruction). From this point, if bits N , NW, or FW are changed after other instructions are executed, RAM contents may be broken.

Set CG RAM Address

A CG RAM address can be set while the RE bit is cleared to 0 .

Set CG RAM address into the address counter displayed by binary AAAAAA. After this address set, data is written to or read from the MPU for CG RAM.

Set SEGRAM Address

Only when the extended register enable (RE) bit is 1, HS2 to HS0 and the SEGRAM address can be set.

The SEGRAM address in the binary form AAAA is set to the address counter. After this address set, SEGRAM can be written to or read from by the MPU.

Set DD RAM Address

A DD RAM address can be set while the RE bit is cleared to 0 . Set DD RAM address sets the DD RAM address binary AAAAAAA into the address counter.

After this address set, data is written to or read from the MPU for DD RAM.

However, when N and NW is 0 (1-line display), AAAAAAA can be (00) H to $(4 \mathrm{~F}) \mathrm{H}$. When N is 1 and NW is 0 (2-line display), AAAAAAAA is (00) H to (27)H for the first line, and (40)H to (67) H for the second line. When NW is 1 (4 -line display), AAAAAAA is $(00) \mathrm{H}$ to (13)H for the first line, (20)H to (33)H for the second line, (40) H to (53) H for the third line, and (60) H to (73) H for the fourth line.

Set Scroll Quantity

When extended registor enable bit (RE) is 1 , HDS5 to HDS0 can be set.

HDS5 to HDS0 specifies horizontal scroll quantity to the left of the display in dot units. The HD66712 uses the unused DDRAM area to execute a desired horizontal smooth scroll from 1 to 48 dots.

Note: When performing a horizontal scroll as described above by connecting an extended driver, the maximum number of characters per line decreases by the quantity set by the above horizontal scroll. For example, when the maximum 24 -dot scroll quantity (4 characters) is used with 6 -dot font width and 4 -line display, the maximum numbers of characters is $20-4=16$. Notice that in low power mode ($\mathrm{LP}=1$), display shift and scroll cannot be performed.

HD66712

Read Busy Flag and Address

Read busy flag and address reads the busy flag (BF) indicating that the system is now internally operating on a previously received instruction. If BF is 1 , the internal operation is in progress. The next instruction will not be accepted until BF is reset to 0 . Check the BF status before the next write operation. At the same time, the value of the address counter in binary AAAAAAA is read out. This address counter is used by both CG, DD, and SEG RAM addresses, and its value is determined by the previous instruction. The address contents are the same as for CG RAM, DD RAM, and SEG RAM address set instructions.

Write Data to CG, DD, or SEG RAM

This instruction writes 8 -bit binary data DDDDDDDD to CG, DD or SEG RAM. CG, DD or SEG RAM is selected by the previous specification of the address set instruction (CG RAM address set / DD RAM address set / SEG RAM address set). After a write, the address is automatically incremented or decremented by 1 according to the entry mode. The entry mode also determines the display shift direction.

Read Data from CG, DD, or SEG RAM

This instruction reads 8 -bit binary data DDDDDDDD from CG, DD, or SEG RAM. CG, DD or SEG RAM is selected by the previous specification of the address set instruction. If no address is specified, the first data read will be invalid. When executing serial read instructions,
the next address is normally read from the next address. An address set instruction need not be executed just before this read instruction when shifting the cursor by a cursor shift instruction (when reading from DD RAM). A cursor shift instruction is the same as a set DD RAM address instruction.

After a read, the entry mode automatically increases or decreases the address by 1 . However, a display shift is not executed regardless of the entry mode.

Note: The address counter (AC) is automatically incremented or decremented after write instructions to CG, DD or SEG RAM. The RAM data selected by the AC cannot be read out at this time even if read instructions are executed. Therefore, to read data correctly, execute either an address set instruction or a cursor shift instruction (only with DD RAM), or alternatively, execute a preliminary read instruction to ensure the address is correctly set up before accessing the data.

Table 10 HS5 to HSO Settings

| HDS5 | HDS4 HDS3 HDS2 HDS1 | HDS0 | Description | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | No shift |
| 0 | 0 | 0 | 0 | 0 | 1 | Shift the display position to the
 left by one dot. |
| 0 | 0 | 0 | 0 | 1 | 0 | Shift the display position to the
 left by two dots. |
| 0 | 0 | 0 | 0 | 1 | 1 | Shift the display position to the
 left by three dots. |
| 1 | 0 | 1 | 1 | 1 | 1 | Shift the display position to the
 left by forty-seven dots. |
| 1 | 1 | - | - | \bullet | 0 | Shift the display position to the
 left by forty-eight dots. |

Table 11 Instructions

Instruction	$\begin{aligned} & \text { RE } \\ & \text { blt } \end{aligned}$	RS	R/W	DB7		Code						Description ${ }^{\text {(}}$ (Execution Time (max) (when fip or fosc is 270 kHz)
						DB5	DB4	DB3	DB2	DB1			
Clear display	0/1	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DD RAM address 0 in address counter.	1.52 ms
Return home	0/1	0	0	0	0	0	0	0	0	1.	-	Sets DD RAM address 0 IN address counter. Also returns display from being shifted to original position. DDRAM contents remain unchanged.	1.52 ms
Entry mode set	0/1	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations areperformed during data write and read.	$37 \mu \mathrm{~s}$
Display on/off control	0	0	0	0	0	0	0	1	D			Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	$37 \mu \mathrm{~s}$
Extension function set	1	0	0	0	0	0	0		FW	B/W	NW	Sets a font width, a blackwhite inverting cursor (B/W), and a 4-line display (NW).	$37 \mu \mathrm{~s}$
Cursor or display shift	0	0	0	0	0	0	1	S/C	R/L	-	-	Moves cursor and shifts display without changing DD RAM contents.	$37 \mu \mathrm{~s}$
Scroll enable	1	0	0	0	0	0	1	HSE	HSE	HSE	HSE	Specifies which display lines to undergo horizontal smooth scroll.	$37 \mu \mathrm{~s}$
Function set	0	0	0	0	0	1	DL		RE		-	Sets interface data length (DL), number of display lines (L), and extension register write enable (RE)).	$37 \mu \mathrm{~s}$
	1	0	0	0	0	1	DL		RE		LP	Sets CGRAM/SEGRAM blinking enable (BE), and power-down mode (LP). LP is available when the EXT pin is low.	$37 \mu \mathrm{~s}$
Set CGRAM address	0	0	0	0	1	Acg				Acg	Acg	Sets CG RAM address. CG RAM data is sent and received after this setting.	$37 \mu \mathrm{~s}$
Set SEGRAM address set	1	0	0	0	1			Aseg	AsegA	Aseg		Sets SEGRAM address. DDRAM data is sent and received after this setting. Also sets a horizontal dot scroll quantity (HDS).	$37 \mu \mathrm{~s}$
Set DDRAM address	0	0	0	1	Add	AdD	Ado	ADD	ADD	Add	ADD	Sets DD RAM address. DD RAM data is sent and received after this setting.	$37 \mu \mathrm{~s}$
Set scroll quantity	1	0	0	1	*	HDS	HDS	SHDS	HDS		HDS	Sets horizontal dot scroll quantity.	$37 \mu \mathrm{~s}$

HD66712

Table 11 Instructions (cont)

Note: 1. - indicates no effect. *After execution of the CG RAM/DD RAM data write or read instruction, the RAM address counter is incremented or decremented by 1. The RAM address counter is updated after the busy flag turns off. In figure 18, tADD is the time elapsed after the busy flag turns off until the address counter is updated.
2. Extension time changes as frequency changes. For example, when f is 300 kHz , the execution time is: $37 \mu \mathrm{~s} \times 270 / 300=33 \mu \mathrm{~s}$.
3. Execution time in a low-power mode ($L P=1 \& E X T=$ low) becomes four times for a 1-line mode, and twice for a 2- or 4 -line mode.

Figure 18 Address Counter Update

HD66712

Interfacing the HD66712

— Interface with 8-Bit MPUs

The HD66712 can interface directly with an 8-bit MPU using the E clock, or with an 8 -bit MCU through an I/O port.

When the number of I/O ports in the MCU, or the interfacing bus width, if limited, a 4-bit interface function is used.

Figure 19 Example of 8-Bit Data Transfer Timing Sequence
i) Bus line interface

ii) I/O port interface

Figure 20 8-Bit MPU Interface

-Interface with 4-Bit MPUs

The HD66712 can interface with a 4-bit MCU through an I/O port. 4-bit data representing high and low order bits must be transferred sequentially.

The DL bit in function-set selects 4-bit or 8-bit interface data length.

Figure 21 Example of 4-Bit Data Transfer Timing Sequence

Figure 22 4-bit MPU Interface

Oscillator Circuit

$\begin{array}{ll}\text { 1) When an external clock is used } & \text { 2) When an internal oscillator is used }\end{array}$

The oscillator frequency can be adjusted by oscillator resistance (Rif). If $R f$ is increased or power supply voltage is decreased, the oscillator frequency decreases. The recommended oscillator resistor is as follows.

- $\mathrm{Rf}=91 \mathrm{k} \Omega \pm 2 \%(\mathrm{Vcc}=5 \mathrm{~V})$

$$
\text { - } \mathrm{Rf}=75 \mathrm{k} \Omega \pm 2 \%(\mathrm{Vcc}=3 \mathrm{~V})
$$

Figure 23 Oscillator Circuit

Note: At the calculation example above for displayed frame frequency, all oscillator frequencies are 270 kHz (1 clock $=3.7 \mu \mathrm{~s}$).
(2) $1 / 33$ duty cycle

	Normal Display Mode ($\mathbf{L P}=\mathbf{0}$)		Low Power Mode (LP = 1)	
Hem	5-Dot Font Width	6-Dot Font Width	5-Dot Font Width	6-Dot Font Width
Line selection period	100 clocks	120 clocks	60 clocks	72 clocks
Frame frequency	81.8 Hz	68.2 Hz	68.2 Hz	56.8 Hz

Note: At the calculation example above for displayed frame frequency, all oscillator frequencies are $270 \mathbf{~ k H z}$ (1 clock = $3.7 \mu \mathrm{~s}$).

Figure 24 Frame Frequency

HD66712

Power Supply for Liquid Crystal

Display Drive

1) When an external power supply is used

2) When an internal booster is used

Notes 1. Boosted output voltage should not exceed the maximum value (13 V) of the liquid crystal power supply voltage. Especially, a voltage of over 4.3 V should not be input to the reference voltage (VCi) when boosting three times.
2. A voltage of over 5.5 V should not be input to the reference voltage (Vci) when boosting twice.

Figure 25 Example of Power Supply for Liquid Crystal Display Drive
Table 12 Duty Factor and Power Supply for Liquid Crystal Display Drive

Item	Data	
Number of Lines	1	$2 / 4$
Duty factor		$1 / 17$
Bias	$1 / 5$	$1 / 33$
Divided resistance	R	R
		$1 / 6.7$
	RO	R

Note: R changes depending on the size of liquid crystal penel. Normally, R must be $2 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$.

Extension Driver LSI Interface

By bringing the EXT pin high, extended driver interface signals (CL1, CL2, D, and M) are output.

Figure 26 HD66712 and the Extension Driver Connection

Table 13 Relationships between the Number of Display Lines and 40-Output Extension Driver

	Controller					
	LCD-II/F12		LCD-II/F8	HD44780	HD66702	
Display Lines	5-Dot Width	6-Dot Width	5-Dot Width	6-Dot Width	5-Dot Width	5-Dot Width
$\mathbf{1 6 \times 2} \times 2$ lines	Not required	Not required	Not required	1	1	Not required
20×2 lines	Not required	Not required	1	1	2	Not required
24×2 lines	Not required	1	1	2	2	1
40×2 lines	Disabled	Disabled	Disabled	Disabled	4	3
12×4 lines	Not required	1	1	1	Disabled	Disabled
16×4 lines	1	1	1	2	Disabled	Disabled
20×4 lines	1	2	2	3	Disabled	Disabled

Note: The number of display lines can be extended to 32×2 lines or 20×4 lines in the LCD-II/F12. The number of display lines can be extended to 30×2 lines or 20×4 lines in the LCD-II/F8.

HD66712

Table 14 Display Start Address in Each Mode

Output	Number of Lines				
	1-Line Mode		2-Line Mode		4-Line Mode
	5 dot	6 dot	5 dot	6 dot	5 dot/6 dot
COM1-COM8	D00 1	D00 1	D00 1	D00 11	D00 1
COM9-COM16	DOC ± 1	D0A 1	DOC ± 1	DOA ± 1	D20 1
COM17-COM24	-	-	D40 1	D40 11	D40 1
COM25-COM32	-	-	D4C ± 1	D4A ± 1	D60 1
COM0/COM17	S00	S00	-	-	-
COM0/COM33	-	-	S00	S00	500

Notes: 1. The number of display lines is determined by setting the N/NW bit. The font width is determined by the FW bit.
2. $D^{* *}$ is the start address of display data RAM (DDRAM).
3. $\mathrm{S}^{* *}$ is the start address of segment RAM (SEGRAM).
4. ± 1 following $D^{* *}$ indicates increment or decrement at display shift.
a) 5 -dot font width: 32×2-line display

b) 6 -dot font width: 24×2-line display

c) $\mathbf{5 - d o t}$ font width: 20×4-line display

d) 6 -dot font width: 20×4-line display

Figure 27 Correspondence between the Display Position at Extension Display and the DDRAM Address

Interface to Liquid Crystal Display

Set the extended driver control signal output, the number of display lines, and the font width with the EXT pin, an extended register NW, and the FW bit, respectively. The relationship between the
the number of display lines, EXT pin, and register value is given below.

Table 15 Relationship between Display Lines, EXT Pin, and Register Setting

No of Lines	No. of Character	5 Dot Font						6 Dot Font							Duty
		$\begin{aligned} & \hline \text { EXT } \\ & \text { Pln } \end{aligned}$	Extended Driver	Registor Setting				EXT Extended Pin Driver		Registor Setting					
				N		NW					N	RE	NW	FW	
1	20	L	-	0	0	0	0	L	-		0	1	0	1	1/17
	24	L	-	0	0	0	0	H	1		0	1	0	1	1/17
	40	H	2	0	0	0	0	H	3		0	1	0	1	1/17
2	20	L	-	1	0	0	0	L	-		1	1	0	1	1/33
	24	L	-	1	0	0	0	H	1		1	1	0	1	1/33
	32	H	1	1	0	0	0	H	2		1	1	0	1	1/33
4	12	L	-	*	1	1	0	H	1		*	1	1	1	1/33
	16	H	1	*	1	1	0	H	1		*	1	1	1	1/33
	20	H	1	*	1	1	0	H	2		*	1	1	1	1/33

Note: - means not required.

- Example of 5-dot font width connection

Figure 2824×1 Line + 60-Segment Display (5-dot font, 1/17 Duty)

Figure 2924×1-Line + 60-Segment Display (5-dot font, 1/33 Duty)

Figure 3012×4-Line +60 Segment Display (5-Dot Font, 1/33 Duty)

Figure 3120×4-Line + 80 Segment Display (5-Dot Font, 1/33 Duty)

Figure $32 \mathbf{2 0} \times$ 2-Line +60 Segment Display (6-Dot Font, 1/33 Duty)

HD66712

Instruction and Display Correspondence

- 8 -bit operation, 24 -digit $\times 1$-line display with internal reset

Refer to table 16 for an example of an 24 -digit $\times 1$-line display in 8 -bit operation. The LCD-II/F12 functions must be set by the function set instruction prior to the display. Since the display data RAM can store data for 80 characters, a character unit scroll can be performed by a display shift instruction. A dot unit smooth scroll can also be performed by a horizontal scroll instruction. Since data of display RAM (DDRAM) is not changed by a display shift instruction, the display can be returned to the first set display when the return home operation is performed.

- 4-bit operation, 24 -digit $\times 1$-line display with internal reset

The program must set all functions prior to the 4 -bit operation (see table 17). When the power is turned on, 8 -bit operation is automatically selected and the first write is performed as an 8 -bit operation. Since DB_{0} to DB_{3} are not connected, a rewrite is then required. However, since one operation is completed in two accesses for 4-bit operation, a rewrite is needed to set the functions. Thus, DB_{4} to DB_{7} of the function set instruction is written twice.

- 8-bit operation, 24 -digit $\times 2$-line display with internal reset

For a 2 -line display, the cursor automatically moves from the first to the second line after the 40th digit of the first line has been written. Thus, if there are only 16 characters in the first line, the DD RAM address must be again set after the 16th character is completed. (See table 18.)

The display shift is performed for the first and second lines. If the shift is repeated, the display of the second line will not move to the first line. The same display will only shift within its own line for the number of times the shift is repeated.

- 8 -bit operation, 12 -digit $\times 4$-line display with internal reset

The RE bit must be set by the function set instruction and then the NW bit must be set by an extension function set instruction. In this case, 4-line display is always performed regardless of the N bit setting (see table 19).

In a 4 -line display, the cursor automatically moves from the first to the second line after the 20th digit of the first line has been written. Thus, if there are only 8 characters in the first line, the DD RAM address must be set again after the 8th character is completed. Display shifts are performed on all lines simultaneously.

Note: When using the internal reset, the electrical characteristics in the Power Supply Conditions Using Internal Reset Circuit table must be satisfied. If not, the LCD-II/F12 must be initialized by instructions. See the section, Initializing by Instruction.

Table 16 8-Bit Operation, 24-Digit \times 1-Line Display Example with Internal Reset
Step Instruction

No.	RS R/W D7	D6	D5	D4	D3	D2	D1	Do	Display	Operation
1	Power supply on (the HD66712 is initialized by the internal reset circuit)									Initialized. No display.
2	Function set RS RWW D_{7}	$\begin{aligned} & D_{6} \\ & 0 \end{aligned}$	D_{5}	D_{4}	$\begin{aligned} & \mathrm{D}_{3} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{D}_{2} \\ & 0 \end{aligned}$	D_{1}	D_{0}		Sets to 8-bit operation and selects 1 -line display. Bit 2 must always be cleared.
3	Display on/off cont $0 \quad 0 \quad 0$			0	1	1	1	0		Turns on display and cursor. Entire display is in space mode because of initialization.
4	$\begin{aligned} & \text { Entry mode se } \\ & 0 \quad 0 \quad 0 \end{aligned}$		0	0	0	1	1	0		Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the RAM. Display is not shifted.
5	Write data to 100	1	AM/	0		0	0	0	H-	Writes H. DD RAM has already been selected by initialization when the power was turned on.

7

8	Write data to CG RAM/DD RAM						0	0	1	HITACHI	Writes I.
9	$\begin{aligned} & \text { Entry } \\ & 0 \end{aligned}$	0	0	0	0	0	1	1	1	HITACHI_	Sets mode to shift display at the time of write.
10	Write 1	0	0	1	0	-	0	0	0	ITACH	Writes a space.

HD66712

Table 16 8-Bit Operation, 24-Digit \times 1-Line Display Example with Internal Reset (cont)
Step Instruction

No.	RS R/W D7	D6	D5	D4	D3	D2	D1	D0	Display	Operation
11	Write data to 100	CG R	AM/D		AM	1	0	1	TACHI M	Writes M.
12									:	
13	Write data to 100	CG R	0	0		1	1	1	MICROKO	Writes O .
14	$$			1	0	0	*	*	MICROKO	Shifts only the cursor position to the left.
15	$\begin{aligned} & \text { Cursor or disp } \\ & 0 \quad 0 \quad 0 \end{aligned}$			1	0	0	*	*	MICROKO	Shifts only the cursor position to the left.
16	Write data to 10					0	1	1	ICROCO	Writes C over K. The display moves to the left.
17	Cursor or disp 0 0 0	$\begin{gathered} \text { lay sh } \\ 0 \end{gathered}$	$\begin{gathered} \text { shift } \\ 0 \end{gathered}$	1	1	1	*	*	MICROCO	Shitts the display and cursor position to the right.
18	$\quad 0 \quad 0$	$\begin{aligned} & \text { lay sh } \\ & 0 \end{aligned}$		1	0	1	*	*	MICROCO	Shifts the display and cursor position to the right.
19	Write data to	$\begin{gathered} \text { CG R } \\ 1 \end{gathered}$				1	0	1	ICROCOM	Writes M.
20									\vdots	
21	$\begin{aligned} & \text { Return home } \\ & 0 \end{aligned} \quad 0 \quad 0$	0	0	0	0	0	1	0	HITACHI	Returns both display and cursor to the original position (address 0).

Table 17 4-Bit Operation, 24-Digit \times 1-Line Display Example with Internal Reset

Step Instruction

No.	RS R/W D7	D6	D5	D4	D3	D2	D1	Do	Display	Operation
1	Power supply on (the HD66712 is initialized by the internal reset circuit)									Initialized. No display.
2	Function set RS RNW D_{7} $0 \quad 0 \quad 0$ - - -	$\begin{aligned} & \mathrm{D}_{6} \\ & 0 \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{D}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D}_{4} \\ & 0 \end{aligned}$	D_{3}	$\begin{aligned} & \mathrm{D}_{2} \\ & - \\ & - \end{aligned}$		$\begin{aligned} & D_{0} \\ & - \\ & \hline \end{aligned}$		Sets to 4-bit operation. Clear bit 2. In this case, operation is handled as 8 bits by initialization.
3	Function set 0 0 0 0 0 0	0 0	1 $*$	-	-	-	-	-		Sets 4-bit operation and selects 1 -line display. Clear bit 2. 4-bit operation starts from this step.

4 Display on/off control $\quad \square$ Turns on display and cursor.
$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & - & - & - & - & - \\ 0 & 0 & 1 & 1 & 1 & 0 & - & - & - & -\end{array}$ Entire display is in space mode because of initialization.

5 Entry mode set

Sets mode to increment the address by one and to shiff the cursor to the right at the time of write to the DD/CG RAM. Display is not shifted.
$\left.\begin{array}{lllllllll}\hline 6 & \text { Write data to CG RAM/DD RAM } & & & \\ & 1 & 0 & 0 & 1 & 0 & 0 & - & - \\ \hline\end{array}\right)$

Note: The control is the same as for 8-bit operation beyond step \#6.

Table 18 8-Bit Operation, 24-Digit \times 2-Line Display Example with Internal Reset
Step Instruction

5 | Write data to CG RAM/DD RAM | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0

| | \vdots | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 18 8-Bit Operation, 24-Digit \times 2-Line Display Example with Internal Reset (cont)
Step Instruction

No.	RS R/W D7	D6	D5	D4	D3	D2	D1	Do	Display	Operation
9	Write data to CG RAM/DD RAM					1	0	1	HITACHI	Writes a space.
	100	1	0	0	1				HiTACHI	

HD66712

Table 19 8-Bit Operation, 12-Digit \times 4-Line Display Example with Internal Reset

Step Instruction

Operation

Initialized. No display.

4	Function set Inhibit write to extension register 0	0	0	0	1	1	0	0	

8

Table 19 8-Bit Operation, 12-Digit \times 4-Line Display Example with Internal Reset (cont)

Step No.	Instruction RS R/W D7		D5	D4	D3	D2	D1	D0	Display	Operation	
10	$\begin{array}{lcccc} \hline \text { Set DD } \\ 0 & 0 & 1 & 0 & 1 \end{array}$			0	0	0	0	0	HITACHI	Sets DD RAM address to (20)H so that the cursor is positioned at the beginning of the second line.	
11	Write data to CG RAM				1	0	0	0	0	HITACHI	Writes 0.
	100	0	1							0	

HD66712

Initializing by Instruction

If the power supply conditions for correctly operating the internal reset circuit are not met,
initialization by instructions becomes necessary.

- Initializing when a length of interface is 8 -bit system

Figure 33 Initializing Flow of 8-Bit Interface

- Initializing when a length of interface is 4-bit system.

Figure 34 Initializing Flow of 4-Bit Interface

HD66712

Low Power Mode

When the extension driver is not used (EXT = Low) with extension register enabled ($\mathrm{RE}=1$), the HD66712 enters low power mode by setting the low-power mode bit (LP) to 1 . During low-power mode, as the internal operation clock is divided by 2 (2-line/4-line display mode) or by 4 (1 -line display mode), the execution time of each instruction becomes two times or four times longer than normal. In addition, as the frame frequency decreases to $5 / 6$, display quality might be affected.

In addition, since the display is not shifted in low power mode, display shift must be cleared with the return home instruction before setting low power mode. The amount of horizontal scroll must also be cleared (HDS $=000000$). Moreover, because the display enters a shift state after clearing lowpower mode, the home return instruction must be used to clear display shift at that time.

Figure 38 Usage of Low Power Mode

Absolute Maximum Ratings*

Item	Symbol	Unit	Value	Notes
Power supply voltage (1)	V_{cc}	V	-0.3 to +7.0	1
Power supply voltage (2)	$\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{5}$	V	-0.3 to +15.0	1,2
Input voltage	V_{t}	V	-0.3 to $\mathrm{Vcc}+0.3$	1
Operating temperature	$\mathrm{T}_{\text {opr }}$	${ }^{\circ} \mathrm{C}$	-20 to +75	3
Storage temperature	$\mathrm{T}_{\text {stg }}$	${ }^{\circ} \mathrm{C}$	-55 to +125	4

Note: If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

DC Characteristics ($\mathbf{V}_{\mathbf{C C}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}^{* 3}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC 1)	$\mathrm{V}_{\mathrm{H} 1}$	0.7 Vcc	-	Vcc	V		6
Input low voltage (1) (except OSC_{1})	$\mathrm{V}_{\text {LL } 1}$	$\frac{-0.3}{-0.3}$		$\frac{0.2 V c c}{0.6}$	$\frac{\mathrm{V}}{\mathrm{~V}}$	$\begin{aligned} & \mathrm{Vcc}=2.7 \text { to } 3.0 \mathrm{~V} \\ & \mathrm{Vcc}=3.0 \text { to } 4.5 \mathrm{~V} \end{aligned}$	6
Input high voltage (2) (OSC ${ }_{1}$)	$\mathrm{V}_{\text {IH2 }}$	0.7 Vcc	-	Vcc	V		15
Input low voltage (2) (OSC ${ }_{1}$)	VIL2	-	-	0.2 Vcc	V		15
Output high voltage (1) ($\mathrm{D}_{0}-\mathrm{D}_{7}$)	VoH1	0.75 Vcc	-	-	V	$-\mathrm{OOH}=0.1 \mathrm{~mA}$	7
Output low voltage (1) $\left(\mathrm{D}_{0}-\mathrm{D}_{7}\right)$	Voli	-	-	0.2 Vcc	V	$\mathrm{loL}=0.1 \mathrm{~mA}$	7
Output high voltage (2) (except Do-D7)	VoH2	0.8Vcc	-	-	V	$-\mathrm{OOH}=0.04 \mathrm{~mA}$	8
Output low voltage (2) (except $\mathrm{D}_{0}-\mathrm{D}_{7}$)	Vol2	-	-	0.2 Vcc	V	$1 \mathrm{OL}=0.04 \mathrm{~mA}$	8
Driver ON resistance (COM)	Rсом	-	-	20	k Ω	$\pm 1 \mathrm{~d}=0.05 \mathrm{~mA}$ (COM)	13
Driver ON resistance (SEG)	Rseg	-	-	30	k Ω	$\pm 1 \mathrm{~d}=0.05 \mathrm{~mA}$ (SEG)	13
I/O leakage current	lil	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {cC }}$	9
Pull-up MOS current (RESET* pin)	-lp	10	50	120	$\mu \mathrm{A}$	$\mathrm{Vcc}=3 \mathrm{~V}$	
Power supply current	Icc	-	T.B.D.	T.B.D.	mA	Rf oscillation, external clock $\mathrm{VCC}=3 \mathrm{~V}$, fosc $=270$	$10,14$
LCD voltage	VLCD1	3.0	-	13.0	V	$V_{c c}-V_{5}, 1 / 5$ bias	16
	VLCD2	3.0	-	13.0	V	Vcc- V_{5}, 1/4 bias	16

Note: * Refer to Electrical Characteristics Notes following these tables.

HD66712

Booster Characteristics

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
Output voltage (V5OUT2 pin)	VUP2	-	TBD	-	V	$\mathrm{V}_{\mathrm{ci}}=4.5 \mathrm{~V}, 10=0.5 \mathrm{~mA}$, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	18
Output voltage (V5OUT3 pin)	VUP3	-	TBD	-	V	$\mathrm{V}_{\mathrm{ci}}=3 \mathrm{~V}, \mathrm{I}_{0}=0.3 \mathrm{~mA}$, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	18
Input voltage	VCi	2.5	-	4.5	V		18

AC Characteristics ($\mathrm{V}_{\mathbf{C C}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}^{* 3}$)
Clock Characteristics ($\mathbf{V}_{\mathbf{C C}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-\mathbf{2 0}$ to $+75^{\circ} \mathrm{C}^{* 3}$)

Item		Symbol	Min	Typ	Max	Unit	Test Condition	Notes*
External clock operation	External clock frequency	fcp	125	270	410	kHz		11
	External clock duty	Duty	45	50	55	\%		
	External clock rise time	trcp	-	-	0.2	$\mu \mathrm{s}$		
	External clock fall time	trcp	-	-	0.2	$\mu \mathrm{s}$		
Rf_{f} oscillation	Clock oscillation frequency	fosc	190	270	350	kHz	$\begin{aligned} & \mathrm{R}_{\mathrm{f}}=75 \mathrm{k} \Omega, \\ & \mathrm{Vcc}=3 \mathrm{~V} \end{aligned}$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

System Interface Timing Characteristics (1) ($\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 7} \mathrm{V}$ to $4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ}$ $C^{* 3}$)

Bus Write Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	tcyce	1000	-	-	ns	Figure 39
Enable pulse width (high level)	PWEH	450	-	-		
Enable rise/fall time	-	tEr, tEI	-	-	25	
Address set-up time (RS, RW to E)	tAS	T.B.D	-	-		
Address hold time	tAH	20	-	-		
Data set-up time	tDSW	195	-	-		
Data hold time	tH	10	-	-		

Bus Read Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	tcycE	1000	-	-	ns	Figure 40
Enable pulse width (high level)	PWEH	450	-	-		
Enable rise/fall time	-	tEr, tEf	-	-	25	
Address set-up time (RS, RNW to E)	tas	T.B.D	-	-		
Address hold time	taH	20	-	-		
Data delay time	tDDR	-	-	360		
Data hold time	tDHR	5	-	-		

Serial Interface Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Serial clock cycle time	tscyc	1	-	20	$\mu \mathrm{~s}$	Figure 41
Serial clock (high level width)	tsCH	400	-	-	ns	
Serial clock (low level width)	tsCL	400	-	-		
Serial clock rise/fall time	tsCr, tsCf	-	-	50		
Chip select set-up time	tCSU	T.B.D	-	-		
Chip select hold time	tCH	T.B.D	-	-		
Serial input data set-up time	tSISU	200	-	-		
Serial input data hold time	tSIH	200	-	-		
Serial output data delay time	tSOD	-	-	360		
Serial output data hold time	tSOH	5	-	-		

System Interface Timing Characteristics (2) ($\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+75^{\circ}$ $\mathrm{C}^{* 3}$)

Bus Write Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	tcyce	500	-	-	ns	Figure 39
Enable pulse width (high level)	PWEH	230	-	-		
Enable rise/fall time	ter, tet	-	-	20		
Address set-up time (RS, R/W to E)	tAS	T.B.D	-	-		
Address hold time	$t_{\text {AH }}$	10	-	-		
Data set-up time	tosw	60	-	-		
Data hold time	th	10	-	-		

Bus Read Operation

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Enable cycle time	$\mathrm{t}_{\text {cyce }}$	500	-	-	ns	Figure 40
Enable pulse width (high level)	PWEH	230	-	-		
Enable rise/fall time	ter, tef	-	-	20		
Address set-up time (RS, R/W to E)	tas	T.B.D	-	-		
Address hold time	tah	10	-	-		
Data delay time	tDDR	-	-	160		
Data hold time	tDHR	5	-	-		

Serial Interface Sequence

Item	Symbol	Min	Typ	Max	Unit	Test Condition	
Serial clock cycle time	tSCYC	0.5	-	20	$\mu \mathrm{~s}$	Figure 41	
Serial clock (high level width)	tsCH	200	-	-	ns		
Serial clock (low level width)	tsCL	200	-	-			
Serial clock risefall time	tsCr, tsCt	-	-	50			
Chip select set-up time	tCSU	T.B.D	-	-			
Chip select hold time	tCH	T.B.D	-	-			
Serial input data set-up time	tSISU	100	-	-			
Serial input data hold time	tSIH	100	-	-			
Serial output data delay time	tSOD	-	-	160			
Serial output data hold time	tSOH	5	-	-			

Segment Extension Signal Timing ($\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}^{\circ} \mathrm{C}^{* 3}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	
Clock pulse width	High level	tcw	800	-	-	ns	Figure 42
	Low level	tCWL	800	-	-		
Clock set-up time		tcsu	500	-	-		
Data set-up time		tSU	300	-	-		
Data hold time	tDH	300	-	-			
M delay time		tDM	-1000	-	1000		
Clock riseffall time		tct	-	-	100		

Reset Timing ($\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}^{* 3}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition
Reset low-level width	tres	10	-	-	ms	Figure 43

Power Supply Conditions Using Internal Reset Circuit

| Item | Symbol | Min | Typ | Max | Unit | Test Condition |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Power supply rise time | trCc | 0.1 | - | 10 | ms | Figure 44 |
| Power supply off time | toff | 1 | - | - | | |

HD66712

Electrical Characteristics Notes

1. All voltage values are referred to $\mathrm{GND}=0 \mathrm{~V}$. If the LSI is used above the absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic is strongly recommended to ensure normal operation. If these electrical characteristic are also exceeded, the LSI may malfunction or exhibit poor reliability.
2. $V c c \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5}$ must be maintained.
3. For die products, specified up to $75^{\circ} \mathrm{C}$.
4. For die products, specified by the die shipment specification.
5. The following four circuits are I/O pin configurations except for liquid crystal display output.

6. Applies to input pins and I / O pins, excluding the OSC_{1} pin.
7. Applies to I / O pins.
8. Applies to output pins.
9. Current flowing through pull-up MOSs, excluding output drive MOSs.
10. Input/output current is excluded. When input is at an intermediate level with CMOS, the excessive current flows through the input circuit to the power supply. To avoid this from happening, the input level must be fixed high or low.
11. Applies only to external clock operation.

12. Applies only to the internal oscillator operation using oscillation resistor R_{f}.

Rf: $75 \mathrm{k} \Omega \pm 2 \%$ (when Vcc $=3 \mathrm{~V}$ to 4 V)
Rf: $91 \mathrm{k} \Omega \pm 2 \%$ (when Vcc $=4 \mathrm{~V}$ to 5 V)
Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance, the wiring length to these pins should be minimized.

Referential data

13. $\cdot \mathrm{RcOM}_{\text {is }}$ is resistance between the power supply pins ($\mathrm{V}_{\mathrm{Cc}}, \mathrm{V}_{1}, \mathrm{~V}_{4}, \mathrm{~V}_{5}$) and each common signal pin (COM0 to COM33).

RSEG is the resistance between the power supply pins $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{5}\right)$ and each segment signal pin (SEG ${ }_{1}$ to SEG60).
14. The following graphs show the relationship between operation frequency and current consumption.

15. Applies to the OSC_{1} pin.
16. Each COM and SEG output voltage is within $\pm 0.15 \mathrm{~V}$ of the LCD voltage $\left(\mathrm{Vcc}, \mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right.$) when there is no load.
17. The TEST pin must be fixed to ground, and the IM or EXT pin must also be connected to Vcc or ground.
18. Booster characteristics test circuits are shown below.

Load Circuits

AC Characteristics Test Load Circuits

HD66712

Timing Characteristics

Figure 39 Bus Write Operation

Figure 40 Bus Read Operation

Figure 41 Serial Interface Timing

Figure 42 Interface Timing with Extension Driver

Note: When power is supplied, initializing by the internal reset circuit has priority. Accordingly, the above RESET* input is ignored during internal reset period.

Figure 43 Reset Timing

Notes: 1. toff compensates for the power oscillation period caused by momentary power supply oscillations.
2. Specified at 4.5 V for 5 -volt operation, and at 2.7 V for 3 -volt operation.
3. If the above electrical conditions are not satisfied, the internal reset circuit will not operate normally. In this case, initialize by instruction. (Refer to Initializing by Instruction.)

Figure 44 Power Supply Sequemce

HD44102

(Dot Matrix Liquid Crystal Graphic Display Column Driver)

Description

The HD44102CH is a column (segment) driver for dot matrix liquid crystal graphic display systems, storing the display data transferred from a 4-bit or 8bit microcomputer in the internal display RAM and generating dot matrix liquid crystal driving signals.

Each bit data of display RAM corresponds to on/off state of each dot of a liquid crystal display to provide more flexible than character display.

The HD44102CH is produced by the CMOS process. Therefore, the combination of HD44102CH with a CMOS microcontroller can complete portable batterydriven unit ntilizing the liquid crystal display's low power dissipation.

The combination of HD44102CH with the row (common) driver HD44103CH facilitates dot matrix liquid crystal graphic display system configuration.

Features

- Dot matrix liquid crystal graphic display column driver incorporating display RAM
- Interfaces with 4 -bit or 8 -bit MPU
- RAM data directly displayed by internal display RAM

RAM bit data 1: On
RAM bit data 0 : Off

- Display RAM capacity: $50 \times 8 \times 4$ (1600 bits)
- Internal liquid crystal display driver circuit (segment output): $\mathbf{5 0}$ segment signal drivers
- Duty factor (can be controlled by external input waveform)
- Selectable duty factors: $1 / 8,1 / 12,1 / 16$, $1 / 24,1 / 32$
- Wide range of instruction functions - Display Data Read/Write, Display On/Off, Set Address, Set Display
- Start Page, Set Up/Down, Read Status
- Low power dissipation
- Power supplies: $\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}} 0$ to -5 V
- CMOS process

Pin Arrangement

Ordering Information

Type No.	Package
HD44102CH	80 -pin plastic OFP(FP-80)
HD44102D	chip

Absolute Maximum Ratings

Item	Symbol	Value	Unit	Notes
Supply voltage (1)	V_{CC}	-0.3 to +7.0	V	1
Supply voltage (2)	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-13.5$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Input voltage (1)	V_{T1}	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Input voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	3
Operating temperature	T_{op}	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{sio}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. Referenced to GND $=0$.
2. Applied to input terminals (except V1, V2, V3, and V4), and I/O common terminals.
3. Applied to terminals $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$, and V 4 .

Electrical Characteristics

Item	Symbol	Min			Unit	Test condition	Notes
Input high voltage (CMOS)	$\mathrm{V}_{\text {IHC }}$	$0.7 \times V_{c c}$	-	V_{cc}	V		5
Input low voltage (CMOS)	$\mathrm{V}_{\text {LIC }}$	0	-	$0.3 \times V_{c c}$	V		5
Input high voltage (TTL)	$\mathrm{V}_{\text {IHT }}$	2.0	-	V_{cc}	V		6
Input low voltage (TTL)	$\mathrm{V}_{\text {ITT }}$	0	-	+0.8	V		6
Output high voltage	$\mathrm{V}_{\text {OH }}$	+3.5	-	-	V	$\mathrm{I}_{\text {OH }}=-250 \mu \mathrm{~A}$	7
Output low voltage	V_{ol}	-	-	+0.4	V	$\mathrm{lab}=+1.6 \mathrm{~mA}$	7
Vi-Xj ON resistance	$\mathrm{R}_{\text {ow }}$	-	-	7.5	k Ω	$V_{E E}=-5 V \pm 10 \%,$ Load current $100 \mu \mathrm{~A}$	
Input leakage current (1)	I_{11}	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {iN }}=\mathrm{V}_{\mathrm{cc}}$ to GND	8
Input leakage current (2)	I_{12}	-2	-	2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ to $\mathrm{V}_{\text {EE }}$	9
Operating frequency	$\mathrm{f}_{\mathrm{cuk}}$	25	-	280	kHz	¢1, $\phi 2$ frequency	10
Dissipation current (1)	lccl	-	-	100	$\mu \mathrm{A}$	$\mathrm{f}_{\mathrm{ck}}=200 \mathrm{kHz}$ frame $=$ 65 Hz during display	11
Dissipation current (2)	$\mathrm{ICC2}$	-	-	500	$\mu \mathrm{A}$	Access cycle 1 MHz at access	12

HD44102

Notes: 4. Specified within this range unless otherwise noted.
5. Applied to M, FRM, CL, BS, RST, $\phi 1, \phi 2$.
6. Applied to CS1 to CS3, E, D/I, R/W and DBO to DB7.
7. Applied to DB0 to DB7.
8. Applied to input terminals, M, FRM,CL, BS, RST, $\phi 1, \phi 2, C S 1$ to CS3, E, D/I and R/W, and I/O common terminals DB0 to DB7 at high impedance.
9. Applied to V1, V2, V3, and V4.
10. $\phi 1$ and $\phi 2 \mathrm{AC}$ characteristics.

	Symbol	Min	Typ	Max	Unit
Duty factor	Duty	20	25	30	$\%$
Fall time	t_{1}	-	-	100	ns
Rise time	t_{r}	-	-	100	ns
Phase difference time	t_{12}	0.8	-	-	$\mu \mathrm{s}$
Phase difference time	t_{21}	0.8	-	-	$\mu \mathrm{s}$
$\mathrm{T}_{1}+\mathrm{T}_{\mathrm{h}}$		-	-	40	$\mu \mathrm{~s}$

11. Measured by $V_{c c}$ terminal at no output load, at $1 / 32$ dury factor, and frame frequency of 65 Hz , in checker pattern display. Access from the CPU is stopped.
12. Measured by V_{cc} terminal at no output load, $1 / 32$ duty factor and frame frequency of 65 Hz .

Interface AC Characteristics

Item	Symbol	Min	Typ	Max	Unit	Notes
E cycle time	$\mathrm{t}_{\mathrm{crc}}$	1000	-	-	ns	13, 14
E high level width	$\mathrm{P}_{\text {WEH }}$	450	-	-	ns	13, 14
E low level width	$\mathrm{P}_{\text {WEL }}$	450	-	-	ns	13, 14
E rise time	t	-	-	25	ns	13, 14
E fall time	t_{4}	-	-	25	ns	13, 14
Address setup time	$\mathrm{t}_{\text {As }}$	140	-	-	ns	13, 14
Address hold time	${ }^{\text {AH }}$	10	-	-	ns	13, 14
Data setup time	$t_{\text {osw }}$	200	-	-	ns	13
Data delay time	$\mathrm{t}_{\text {DDR }}$	-	-	320	ns	14, 15
Data hold time at write	$\mathrm{t}_{\text {ohw }}$	10	-	-	ns	13
Data hold time at read	$\mathrm{t}_{\text {OHR }}$	20	-	-	ns	14

Notes:

15. DB0 to DB7 load circuits

$R_{L}=2.4 \mathrm{k} \Omega$
$R=11 \mathrm{k} \Omega$
$C=130 \mathrm{pF}$ (including jig capacitance)
Diodes D_{1} to D_{4} are all $1 S 2074 \oplus(H)$

Notes: 16. Display off at initial power up.
The HD44102CH can be placed in the display off state by setting terminal RST to low at initial power up.
No instruction other than the Read Status can be accepted while the RST is at the low level.

	Symbol	Min	Typ	Max	Unit
Reset time	$\mathrm{t}_{\text {RST }}$	1.0	-	-	$\mu \mathrm{s}$
Rise time	t_{r}	-	-	200	ns

Pin Description

Pin Name	Pln Number	I / O	Function
$\mathrm{Y} 1-\mathrm{Y} 50$	50	O	Liquid crystal display drive output. Relationship among output level, M and displ

CS1-CS3 3	1	Chip select			
		CS1	CS2	CS3	State
		L	L	L	Non-selected
		L	L	H	Non-selected
		L	H	L	Non-selected
		L	H	H	Selected read/write enable
		H	L	L	Selected write enable only
		H	L	H	Selected write enable only
		H	H	L	Selected write enable only
		H	H	H	Selected read/write enable

[^6]	Pin Name	Pin Number	I/O	Function

	Pin		
Pin Name	Number	I/O	Function
V_{CC}	3		Power supply
GND		$\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}: \quad$ Power supply for internal logic	
$\mathrm{V}_{\text {EE }}$		$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}: \quad$ Power supply for liquid crystal display drive circuit logic	

Function of Each Block

Interface Logic

The HD 44102 CH can use the data bus in 4-bit or 8-bit word length to enable interface to a 4 -bit or 8 -bit CPU

1. 4 bit mode $(B S=H i g h)$

8 -bit data is transferred twice for every 4 bits through the data bus when the $B S$ signal is high.

The data bus uses the high order 4 bits (DB4 to DB7). First, the high order 4 bits (DB4 to DB7 in 8-bit data length) are transferred and then the low order 4 bits (DB0 to DB3 in 8-bit data length).

Figure 1 4-Bit Mode Timing
Note: Execute instructions other than status read in 4-bit length each. The busy flag is set at the fall of the second Esignal. The status read is executed once. After the execution of the status read, the first 4 bits are considered the high order 4 bits. Therefore, if the busy flag is checked after the transfer of the high order 4 bits, retransfer data from the higher order bits. No busy check is required in the transfer between the high and low order bits.

2. 8 -bit mode $(\mathrm{BS}=$ Low $)$

If the BS signal is low, the 8 data bus lines (DB0 to DB7) are used for data transfer.

DB7: MSB (Most significant bit)
DBO: LSB (Least significant bit)
For ACtiming, refer to note 12 to note 15 of "Electrical Characteristics".

Input Register

8 -bit data is written into this register by the CPU. The instruction and display data are distinguished by the 8 -bit data and D / I signal and then a given operation is performed. Data is received at the fall of the E signal when the CS is in the select state and R / W is in write state.

Output Register

The output register holds the data read from the display data RAM. After display data is read, the display data at the address now indicated is set in this output register. After that, the address is increased or decreased by 1 . Therefore, when an address is set, the correct data doesn't appear at the read of the first display data. The data at a specified address appears at the second read of data (figure 2).

X, Y Address Counter

The X, Y address counter holds an address for reading/ writing display data RAM. An address is set in it by the instruction. The Y address register is composed of a 50 -bit up/down counter. The address is increased or decreased by 1 by the read/write operation of display data. The up/down mode can be determined by the instruction or RST signal. The Y address register counts by looping the values of 0 to 49 . The X address register has no count function.

Display On/Off Flip/Flop

This flip/flop is set to on/off state by the instruction or RST signal. In the off state, the latch of display data RAM output is held reset and the display data output is set to 0 . Therefore, display disappears. In the on state, the display data appears according to the data in the RAM and is displayed. The display data in the RAM is independent of the display on/off.

Up/Down Flip/Flop

This flip/flop determines the count mode of the Y address counter. In the up mode, the Y address register is increased by 1.0 follows 49. In the down mode, the register is decreased by 1.0 is followed by 49.

Figure 2 Data Output

Display Page Register

The display page register holds the 2-bit data that indicates a display start page. This value is preset to the high order 2 bits of the Z address counter by the FRM signal. This value indicates the value of the display RAM page displayed at the top of the screen.

Busy Flag

After an instruction other than status read is accepted, the busy flag is set during its effective period, and reset when the instruction is not effective (figure 3). The value can be read out on DB7 by the status read instruction.
TheHD44102CH cannot accept any other instructions than the status read in the busy state. Make sure the busy flag is reset before issuing an instruction.

Z Address Counter

The Z address counter is a 5-bit counter that counts up at the fall of CL signal and generates an address for outputting the display data synchronized with the common signal. 0 is preset to the low order 3 bits and a display start page to the high order 2 bits by the FRM signal.

Latch

The display data from the display data RAM is latched at the rise of CL signal.

Liquid Crystal Driver Circuit

Each of 50 driver circuits is a multiplex circuit composed of 4 CMOS switches. The combination of display data from latchs and the M signal causes one of the 4 liquid crystal driver levels, V1, V2, V3 and V4 to be output.

Figure 3 Busy Flag

Display RAM

Figure 4 Relationship between Data in RAM and Display
(Display start page $0,1 / 32$ duty)

HD44102

Display Control Instructions

Read/Write Display Data

	MSB		B DB	LSB
	D/I		65432	10
1	1		(Display data)	
0	1		Read (CPU $\leftarrow H$ (Display data)	D44102CH)
			Write (CPU \rightarrow H	D44102CH

Sends or receives data to or from the address of the display RAM specified in advance. However, a dummy read may be required for reading display data. Refer to the description of the output register in Function of Each Block.

Display On/Off									
	MSB			DB			LS		
R/W D/I	7	6	54	4	2	1	0		
00	0	0	1	11	0	0	1		isplay on
00	0	0	11	11	0	0	0		isplay off

Turns the display on/off. RAM data is not affected.

Set X/Y Address

Display Start Page

Specifies the RAM page displayed at the top of the screen. Display is as shown in figure 4. When the display duty factor is more than $1 / 32$ (For example, $1 /$
$24,1 / 16$), display begins at a page specified by the display start page only by the number of lines.
(a)

Displayed up to here when display duty is $1 / \mathrm{N}$. ($\mathrm{N}=8,12,16,24,32$)

Start page = page 1
(b)

A	Page 0
B	Page 1
C	Page 2
D	C
	C

Display Data RAM
Liquid Crystal Screen

Start page $=$ page 2
(c)

A	Page 0
\mathbf{B}	Page 1
\mathbf{D}	Page 2
Lisplay Data RAM	
Liquid Crystal Screen	
B	

(d)

Figure 5 Display Start Page

Up/Down Set

MSB DB LSB
RW D/I 766543210
$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & \text { Up mode }\end{array}$
$0 \quad 0 \quad 0 \quad 011110110$ Down mode

Sets Y address register in the up/down counter mode.

Status Read

Connection Between LCD Drivers (Example of 1/32 Duty Factor)

Figure 6 1/32 Duty Factor Connection Example

HD44102

Interface to CPU

1. Example of connection to HD6800

In the decoder given in this example, the addresses of HD44102CH in the address space of HD6800 are:
Read/write of display data: \$'FFFF'
Write of display instruction: \$'FFFE'
Read of status: $\quad \mathbf{\$ ' F F F}^{\prime}$

Thus, the HD44102CH can be controlled by reading/ writing data at these addresses.
\qquad

Figure 7 Example of Connection to HD6800 Series
2. Example of connection to HD6801

- The HD6801 is set to mode 5. P10-P14 are used as output ports, and P30-P37 are used as the data bus.
- The 74LS 154 is a 4-to-16 decoder that decodes 4 bits of P10-P13 to select the chips.
- Therefore, the HD44102CH can be controlled by selecting the chips through P10-P13 and specifying the D/I signal through P14 in advance, and later
conducting memory read or write for external memory space $\$ 0100$ to $\$ 01$ FF of HD6801. The IOS signal is output to SC 1 , and the R / W signal is output to SC2.
- For further details on HD6800 and HD6801, refer to their manuals.

Figure 8 Example of Connection to HD6801

Connection to Liquid Crystal Display

Figure 9 Example of Connection to 1/32 Duty Factor, 1-Screen Display

Figure 10 Example of Connection to 1/16 Duty Factor, 1-Screen Display

Figure 11 Example of Connection to 1/32 Duty Factor, 2-Screen Display

Limitations on Using 4-Bit Interface Function

The HD44102 usuallly transfers display control data and display data via 8-bit data bus. It also has the 4bit interface function in which the HD44102 transfers 8 -bit data by dividing it into the high-order 4 bits and the low-order 4-bits in order to reduce the number of wires to be connected. You should take an extra care in using the application with the 4 -bit interface function since it has the following limitations.

Limitations

The HD44102 is designed to transfer the highorder 4-bits and the low-order 4-bits of data in that order after busy check. The LSI does not work normally if the signals are in the following
state for the time period (indicated with (*) in fifure 11) from when the high-order 4 bits are written (or read) to when the low-order 4 bits are written (or read); $\mathrm{R} / \mathrm{W}=$ high and $\mathrm{D} / \mathrm{I}=$ low while the chip is being selected (CS1 $=$ high and CS2 $=\mathrm{CS} 3=$ don't care, or CS1 $=$ low and CS2 $=$ CS3 $=$ high).

If the signals are in the limited state mentioned before for the time period indicated with (*) the LSI does not work normally. Please do not make the signals indicated with dotted lines simultaneously. As far as the time period indicated with $\left({ }^{* *)}\right.$, there is no problem.

The following explains how the malfunction is caused and gives the measures in application.

Figure 12 Example of Writing Display Control Instructions

Cause

Busy check checks if the LSI is ready to accept the next instruction or display data by reading the status register to the HD44102. And at the same time, it resets the internal counter counting the order of highorder data and low-order data. This function makes the LSI ready to accept only the high-order data after busy check. Strictly speaking, if R/W = high and D/ $\mathrm{I}=$ low while the chip is being selected, the internal counter is reset and the LSI gets ready to accept highorder bits. Therefore, the LSI takes low-order data for high-order data if the state mentioned above exist in the interval between transferring high-order data and transferring low-order data.

Measures in Application

1. HD44102 Controlled Via Port

When you control the HD44102 with the port of a single-chip microcomputer, you should take care of the software and observe the limitations strictly.

2. HD44102 Controlled Via Bus

a. Malfunction Caused by Hazard

Hazard of input signals may also cause the phenomenon mentioned before. The phase shift at transition of the input signals may cause the malfunction and so the AC characteristics must be carefully studied.

Figure 13 Input Hazard
b. Using 2-Byte Instruction

Figure 14 2-Byte Instruction

In an application with the HD6303, you can prevent malfunction by using 2-byte instructions such as STD and STX. This is because the high-order and loworder data are accessed in that order without a break in the last machine cycle of the instruction and R/W and D / I do not change in the meantime. However, you cannot use the least significant bit of the address signals as the D / I signal since the address for the
second byte has an added 1. Design the CS decoder so that the addresses for the HD44102 should be 2 N and $2 \mathrm{~N}+1$, and that those addresses should be accessed when using 2-byte instructions. Forexample, in figure 14 the address signal $A_{\text {, }}$ is used as D / I signal and $\mathrm{A}_{2}-\mathrm{A}_{15}$ are used for the CS decoder. Addresses 4 N and $4 \mathrm{~N}+1$ are for instruction access and addresses $4 N+2$ and $4 N+3$ are for display data access.

Figure 15 HD6303 Interface

HD44103 (Dot Matrix Liquid Crystal Graphic Display Common Driver)

Description

The HD44103CH is a common signal driver for dot matrix liquid crystal graphic display systems. It generates the timing signals required for display with its internal oscillator and supplies them to the column driver (HD44102CH) to control display, also automatically scanning the common signals of the liquid crystal according to the display duty. It can select 5 types of display duty ratio: $1 / 8,1 / 12,1 / 16,1 /$ 24 , and $1 / 32$. 20 driver output lines are provided, and the impedance is low (500Ω max.) to enable a large screen to be driven.

Features

- Dot matrix liquid crystal graphic display common driver incorporating the timing generation circuit
- Internal oscillator (Oscillation frequency can be selected by attaching an oscillation resistor and an oscillation capacity)
- Generates display timing signals
- 20 -bit bidirectional shift register for generating common signals
- 20 liquid crystal driver circuits with low output impedance
- Selectable display duty ratio: $1 / 8,1 / 12,1 / 16,1 / 24$, 1/32
- Low power dissipation
- Power supplies: $\mathrm{V}_{\mathrm{cc}}: 5 \mathrm{~V} \pm 10 \%$,
$\mathrm{V}_{\mathrm{EB}}: 0$ to -5.5 V
- CMOS process

Ordering Information

Type No.	Package
HD44103CH	60 -pin plastic QFP(FP-60)

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Rated Value	Unit	Note
Supply voltage (1)	V_{CC}	-0.3 to +7.0	V	1
Supply voltage (2)	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-13.5$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	4
Terminal voltage (1)	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{cC}}+0.3$	V	1,2
Terminal voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{cC}}+0.3$	V	3
Operating temperature	T_{op}	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{sio}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. Referenced to GND $=0$.
2. Applied to input terminals (except $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 5$, and V 6) and I / O common terminals.
3. Applied to terminals $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 5$, and V 6 .
4. Connect a protection resistor of $220 \Omega \pm 5 \%$ to V_{EE} power supply in series.

Electrical Characteristics

Item	Symbol	Min	Typ M	Max	Unit	Test condition	Note
Input high voltage	$\mathrm{V}_{\text {IH }}$	$0.7 \times \mathrm{V}_{\mathrm{cc}}$	-	$\mathrm{V}_{\text {cc }}$	V		6
Input low voltage	V_{LL}	0	-	$0.3 \times V_{c c}$	V		6
Output high voltage	V_{OH}	$\mathrm{V}_{c c}-0.4$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	7
Output low voltage	V_{oL}	-	-	0.4	V	$\mathrm{l}_{\mathrm{oL}}=+400 \mu \mathrm{~A}$	7
$\mathrm{Vi}-\mathrm{Xj}$ on resistance	$\mathrm{R}_{\text {on }}$	-	-	500	Ω	$V_{E E}=-5 \pm 10 \%,$ Load current ± 150	
Input leakage current (1)	I_{11}	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ to GND	8
Input leakage current (2)	I_{12}	-2	-	2	$\mu \mathrm{A}$	$V_{\text {IN }}=\mathrm{V}_{C C}$ to $\mathrm{V}_{\text {EE }}$	9
Shift frequency	$\mathrm{f}_{\text {SFI }}$	-	-	50	kHz	In slave mode	10
Oscillation frequency	$\mathrm{f}_{\text {osc }}$	300	430	560	kHz	$\begin{aligned} & R_{t}=68 \mathrm{k} \Omega \pm 2 \% \\ & C_{1}=10 \mathrm{pF} \pm 5 \% \end{aligned}$	11
External clock operating frequency	$\mathrm{f}_{\text {¢ }}$	50	-	560	kHz		
External clock duty	Duty	45	50	55	\%		12
External clock rise time	$t_{\text {rep }}$	-	-	50	ns		12
External clock fall time	$t_{\text {tep }}$	-	-	50	ns		12
Dissipation power (master)	$\mathrm{P}_{\mathrm{w} 1}$	-	-	4.4	mW	CR oscillation $=430 \mathrm{kHz} 13$	
Dissipation power (slave)	$\mathrm{P}_{\mathrm{w} 2}$	-	-	1.1	mW	Frame frequency $=70 \mathrm{Hz14}$	

Notes: 5. Specified within this range unless otherwise noted.
6. Applied to CR, FS, DS1 to DS3, M, SHL, M/S, CL, DR, and DL.
7. Applied to DL, DR, M, FRM, CL, $\phi 1$ and $\phi 2$.
8. Applied to input terminals CR, FS, DS1 to DS3, SHL and M/S, and I/O common terminals DL, DR, M, and CL at high impedance.
9. Applied to V1, V2, V5, and V6.
10. Shift operation timing

	Min	Typ	Max	Unit
$t_{\text {su }}$	5	-	-	$\mu \mathrm{s}$
t_{H}	5	-	-	$\mu \mathrm{s}$
t_{t}	-	-	100	ns
t_{t}	-	-	100	ns

11. Relationship between oscillation frequency and R_{1} / C_{4}

The values of R_{1} and C_{t} are typical values. The oscillation frequency varies with the mounting condition. Adjust oscillation frequency to the required value.

12.

13. Measured by $V_{c c}$ terminal at output non-load of $R_{f}=68 \mathrm{k} \Omega \pm 2 \%$ and $C_{f}=10 p F \pm 5 \%, 1 /$ 32 duty factor in the master mode. Input terminals must be fixed at $V_{c c}$ or GND while measuring.
14. Measured by $V_{c c}$ terminal at output non-load, $1 / 32$ duty factor, frame frequency of 70 Hz in the slave mode. Input terminals must be fixed at V_{cc} or GND while measuring.

Pin Description

Pin Name	Pin Number	1/0	Function
X1-X20	20	0	Liquid crystal display driver output. Relationship among output level, M, and data (D) in shift register: $\begin{aligned} & M \sqrt{1} \frac{0}{1} \\ & D \sqrt{1} 0 \sqrt{1} 0 \sqrt{0} \end{aligned}$
CR, R, C	3		Oscillator
M	1	I/O	Signal for converting liquid crystal display driver signal into AC. Master: Output terminal Slave: Input terminal

Pin Name	Pin Number	1/0	Function
M/S	1	1	Master/slave select.
			M/S = High: Master mode The oscillator and timing generation circuit supply display timing signals to the display system. Each of $1 / O$ common terminals, DL, DR, M, and CL is placed in the output state.
			M/S = Low: Slave mode The timing generation circuit stops operating. The oscillator is not required. Connect terminal $C R$ to V_{cc}. Open terminals C and R. One (determined by SHL) of DL and DR, and terminals M and Cl are placed in the input state. Connect M, CL and one of DL and DR of the master to the respective terminals. Connect FD, DS1, DS2, and DS3 to V_{cc}.
			When display duty ratio is $1 / 8,1 / 12$, or $1 / 16$, one HD44103CH is required. Use it in the master mode.
			When display duty ratio is $1 / 24$ or $1 / 32$, two HD44103CHs are required. Use the one in the master mode to drive common signals 1 to 20 , and the other in the slave mode to drive common signals 21 to 24 (32).
\$1, ¢2	2	0	Operating clock output terminals for HD44102CH.
			The frequencies of $\phi 1$ and $\phi 2$ become half of oscillation frequency.
V1, V2,V5, V6	4		Liquid crystal display driver level power supply.
			V1 and V2: Selected level V5 and V6: Non-selected level
$\begin{aligned} & V_{\mathrm{CC}} \\ & G \mathrm{GND}^{2} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	3		Power supply.
			$\mathrm{V}_{\text {cc }}$-GND:Power supply for internal logic $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$: Power supply for driver circuit logic

Block Functions

Oscillator
The oscillator is a CR oscillator attached to an oscillation resistor Rf ans osckllation capacity Cf. The oscillation frequency varies with the values of Rf and Cf and the mounting conditions. Refer to Electrical Characteristics (Note 10) to make proper adjustment.

Timing Genaration Circuit

The timing generation circuit divides the signals from the oscillator and generates display timing signals $(M$, CL, and FRM) and operating clock ($\phi 1$ and $\phi 2$) for HD44102CH according to the display duty ratio set by DS1 to DS3. In the slave mode, this block stops operating. It is meaningless to set FS, DS1 to DS3. However, connect them to V_{cc} to prevent floating current.

Bidirectional Shift Register

20-bit bidirectional shift register. The shift direction is determined by SHL. The data input from DL or DR performs a shift operation at the rise of shift clock CL.

Liquid Crystal Display Driver Circuit

Each of 20 driver circuits is a multiplex circuit composed of four CMOS switches. The combination of the data from the shift register with M signal allows one of the four liquid crystal display driver levels V1, V2, V5, and V6 to be transferred to the outputterminals.

Applications

Refer to the applications of the HD44102CH.

Description

The HD44105H is a common signal driver for LCD dot matrix graphic display systems. It generates the timing signals required for display with its internal oscillator and supplies them to the column driver (HD44102H) to control display, also automatically scanning the common signals of the liquid crystal according to the display duty cycle. It can select 7 types of display duty cycle $1 / 8,1 / 12$, $1 / 16,1 / 24,1 / 32,1 / 48$, and $1 / 64$. It provides 32 driver output lines and the impedance is low ($1 \mathrm{k} \Omega$ \max) enough to drive a large screen.

Features

- Dot matrix graphic display common driver including the timing generation circuit
- Internal oscillator (Oscillation frequency is selectable by attaching an oscillation resistor and an oscillation capacitor)
- Generates display timing signals
- 32-bit bidirectional shift register for generating common signals
- 32 liquid crystal driver circuits with low impedance
- Selectable display duty ratio: $1 / 8,1 / 12,1 / 16$, $1 / 24,1 / 32,1 / 48,1 / 64$
- Low power dissipation
- Power supplies: $\quad \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\mathrm{EE}}=0$ to -5.5 V
- CMOS process

Ordering Information

Type No.	Package
HD44105H	60-pin plastic QFP(FP-60)
HD44105D	Chip

Absolute Maximum Rating ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item	Symbol	Ratings	Unit	Note
Supply voltage (1)	V_{CC}	-0.3 to +7.0	V	1
Supply voltage (2)	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-13.5$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Terminal voltage (1)	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Terminal voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	3
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. Referred to GND $=0 \mathrm{~V}$.
2. Applied to input terminals (except for $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 5$, and V 6) and I / O common terminals.
3. Applied to terminals V1, V2, V5, and V6. Connect a protection resistor of $47 \Omega \pm 10 \%$ to each terminal in series.

Pin Arrangement

(Top View)

Note: NCs show unused terminals.
Don't connect any lines to them in using this LSI.

Electrical Characteristics$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \text { to }-5.5 \mathrm{~V}, \mathrm{Ta}=-20 \text { to }+75^{\circ} \mathrm{C}\right)$							
Item	Symbol	Min	Typ	Max	Unit	Test Condition	Note
Input high voltage	V_{IH}	$0.7 \times V_{\text {cc }}$	-	$V_{c c}$	V		5
Input low voltage	$\mathrm{V}_{\text {IL }}$	0	-	$0.3 \times V_{C C}$	V		5
Output high voltage	V_{OH}	$\mathrm{V}_{\mathrm{cc}}-0.4$	-	-	V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	6
Output low voltage	V_{a}	-	-	0.4	V	$\mathrm{la}=400 \mu \mathrm{~A}$	6
Vi-Xj On resistance	Row	-	-	1000	Ω	$V_{E E}=-5 V \pm 10 \%$, Load current $\pm 15 \mu \mathrm{~A}$	
Input leakage current (1)	ILL1	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {CC }}$ to GND	7
Input leakage current (2)	ILL2	-5	-	5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$	8
Shift frequency	$\mathrm{F}_{\text {SFT }}$	-	-	50	kHz	In slave mode	9
Oscillation frequency	fosc	300	430	560	kHz	$\begin{aligned} & \mathrm{Rf}=68 \mathrm{k} \Omega \pm 2 \%, \\ & \mathrm{Cf}=10 \mathrm{pF} \pm 5 \% \end{aligned}$	10
External clock operating frequency	${ }_{\text {f }} \mathrm{P}$	50	-	560	kHz		11
External clock duty cycle	Duty	45	50	55	\%		11
External clock rise time	$t_{\text {rcp }}$	-	-	50	ns		11
External clock fall time	$\mathrm{t}_{\text {fip }}$	-	-	50	ns		11
Dissipation power (Master)	$\mathrm{P}_{\mathrm{W} 1}$	-	-	4.4	mW	CR oscillation, 430 kHz	12
Dissipation power (Slave)	$\mathrm{P}_{\mathrm{W} 2}$	-	-	1.1	mW	Frame 70 kHz	13

Notes: 4. Specified within this range unless otherwise noted.
5. Applied to CR, FS1, FS2, DS1 to DS3, M, SHL, M/S, CL, DR, DL, and STB.
6. Applied to DL, DR, M, FRM, CL, $\phi 1$, and $\phi 2$.
7. Applied to input terminals CR, FS1, FS2, DS1 to DS3, SHL, M/S, and STB and I/O common terminals DL, DR, M, and CL at high impedance.
8. Applied to V1, V2, V5, and V6.
9. Shift operation timing.

DL DR

CL

	Min	Typ	Max	Unit
tsu	5	-	-	$\mu \mathrm{s}$
t_{H}	5	-	-	$\mu \mathrm{s}$
tr	-	-	100	ns
tf	-	-	100	ns

Notes: 10. Relation between oscillation frequency and Rf, Cf.

The values of Rf and Cf are typical values. The oscillation frequency varies with the mounting condition. Adjust oscillation frequency to a required value.

11.

12. Measured by Vcc terminal at output non-load of $R f=68 \mathrm{k} \Omega \pm 2 \%$ and $\mathrm{Cf}=10 \mathrm{pF} \pm 5 \%$, and $1 / 32$ duty cycle in the master mode.
Input terminals are connected to Vcc or GND.
13. Measured by Vcc terminal at output non-load, $1 / 32$ duty cycle, and frame frequency of 70 Hz in the slave mode.
Input terminals are connected to Vcc or GND.

Pin Description

FS1-FS2 21 Selects frequency.

The relation between the frame frequency fFRM and the oscillation frequency fosc is as follows:

FS1	FS2	fosc(kHz)	frRm(Hz)	$\mathrm{fm}_{\mathrm{M}}(\mathrm{Hz})$	$\mathrm{fCP}(\mathrm{kHz})$
L	L	107.5	70	35	53.8
H	L	107.5	70	35	53.8
L	H	215.0	70	35	107.5
H	H	430.0	70	35	215.0
fosc: ffrm: fм: fcp:	Oscillation frequency Frame frequency M signal frequency Frequencies of $\phi 1$ and $\phi 2$				

Pin Description (cont)

Pin Name	Pin	Number $1 / 0$	Function	
$\overline{S T B}$	1	1	Input terminal for testing. Connect this terminal to Vcc.	
DL, DR	2	1/0	Data I/O termina	als of bidirectional shift register.
SHL	1	1	Selects shift direction of bidirectional shitt register.	
			SHL.	Shift Direction
			H	DL \rightarrow DR
			L	$\mathrm{DL} \leftarrow \mathrm{DR}$
M/S	1	1	Selects Master/Slave.	
			M/S = High: Master mode The oscillator and timing generation circuit operate to supply display timing signals to the display system. Each of I/O common terminals, DL, DR, M, and CL is in the output state.	
			M/S = Low: Slave mode The timing generation circuit stop operating. The oscillator is not required. Connect terminal CR to Vcc. Open terminals C and R. One (determined by SHL) of DL and DR, and terminals M and CL are in the input state. Connect M, CL and one of DL and DR of the master to the respective terminals. Connect FS1, FS2, DS1, DS2, DS3, STB to Vcc. When display duty ratio is $1 / 8,1 / 12,1 / 16,1 / 24$, $1 / 32$, one HD44105H is required. Use it in the master mode. When display duty ratio is $1 / 48,1 / 64$, two HD44105Hs are required. Use one in the master mode to drive common signals 1 to 32, and another in the slave mode to drive common signals 33 to 48(64).	
\$1, \$2	2	0	Operating clock output terminals for HD44102CH. The frequencies of $\phi 1$ and $\$ 2$ are half of oscillation frequency.	
$\begin{aligned} & \text { V1, V2, } \\ & \text { V5, V6 } \end{aligned}$	4		Liquid crystal display driver level power supply.	
			V1 and V2: V5 and V6:	Selected level Non-selected level
$V_{\text {cc, }}$ GND	3		Power supply.	
$V_{E E}$			$\begin{aligned} & \text { Vcc-GND: } \\ & \text { Vcc-VEE: } \end{aligned}$	Power supply for internal logic Power supply for driver circuit logic

Block Functions

Oscillator

A CR oscillator attached to an oscillation resistor Rf and an oscillation capacitor Cf. The oscillation frequency v aries with the values of Rf and Cf and the mounting conditions. Refer to electrical characteristics (note 10) to make proper adjustment.

Timing Generation Circuit

This circuit divides the signals from the oscillator and generates display timing signals (M, CL, and FRM) and operating clock ($\phi 1$ and $\phi 2$) for HD44102CH according to the display duty ratio set by DS1 to DS3. In the slave mode, this block stops operating. It is meaningless to set FS1, FS2 and DS1 to DS3. However, connect them to VCC to prevent floating current.

Bidirectional Shift Register

A 32-bit bidirectional shift register. The shift direction is determined by the SHL. The data input from DL or DR performs a shift operation at the rise of shift clock CL.

Liquid Crystal Display Driver Circuit

Each of 32 driver circuits is a multiplex circuit composed of four CMOS switches. The combination of the data from the shift register with the M signal allows one of the four liquid crystal display driver levels V1, V2, V5, and V6 to be transferred to the output terminals.
IHOVLIH

HD61 102

(Dot Matrix Liquid Crystal Graphic Display Column Driver)

Description

HD61102 is a column (segment) driver for dot matrix liquid crystal graphic display systems. It stores the display data transferred from a 8 -bit micro-controller in internal display RAM and generates dot matrix liquid crystal driving signals.

Each data bit of display RAM corresponds to the on/off state of a dot of the liquid crystal display.

As it is internally equipped with 64 output drivers for display, it is available for liquid crystal graphic displays with many dots.

The HD61102, which is produced by the CMOS process, can complete a portable battery drive equipment in combination with a CMOS microcontroller, utilizing the liquid crystal display's low power dissipation.

Moreover it can facilitate dot matrix liquid crystal graphic display system configuration in combination with the row (common) driver HD61103A.

Features

- Dot matrix liquid crystal graphic display column driver incorporating display RAM
- RAM data direct display by internal display RAM

RAM bit data 1: On
RAM bit data 0: Off

- Internal display RAM address counter:

Preset, increment

- Display RAM capacity: 512 bytes (4096 bits)
- 8-bit parallel interface
- Internal liquid crystal display driver circuit: 64
- Display duty:

Combination of frame control signal and data latch synchronization signal make it possible to select static or optional duty cycle

- Wide range of instruction function: Display Data Read/Write, Display On/Off, Set Address, Set Display Start Line, Read Status
- Lower power dissipation: during display 2 mW max
- Power supply: $\quad V_{C C}:+5 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\mathrm{EE}}: 0 \mathrm{~V}$ to -10 V
- Liquid crystal display driving level: 15.5 V max
- CMOS process

Ordering Information

Type No. Package
HD61102RH 100-pin plastic QFP(FP-100)

Pin Arrangement

(Top view)

HD61102

Absolute Maximum Ratings

	Symbol	Value	Unit	Note
Supply voltage	V_{CC}	-0.3 to +7.0	V	2
	$\mathrm{~V}_{\mathrm{EE}}$	$\mathrm{V}_{\mathrm{CC}}-16.5$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	3
Terminal voltage (1)	$\mathrm{V}_{\mathrm{T} 1}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	4
Terminal voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	2,5
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. LSis may be destroyed if they are used beyond the absolute maximum ratings.
In ordinary operation, it is desirable to use them within the recommended operating conditions. Use beyond these conditions may cause malfunction and poor reliability.
2. All voltage values are referenced to $\mathrm{GND}=0 \mathrm{~V}$.
3. Apply the same supply voltage to $\mathrm{V}_{\mathrm{EE} 1}$ and $\mathrm{V}_{\mathrm{EE} 2}$.
4. Applies to V1L, V2L, V3L, V4L, V1R, V2R, V3R, and V4R.

Maintain
$\mathrm{V}_{\mathrm{C}} \geq \mathrm{V} 1 \mathrm{~L}=\mathrm{V} 1 \mathrm{R} \geq \mathrm{V} 3 \mathrm{~L}=\mathrm{V} 3 \mathrm{R} \geq \mathrm{V} 4 \mathrm{~L}=\mathrm{V} 4 \mathrm{R} \geq \mathrm{V} 2 \mathrm{~L}=\mathrm{V} 2 \mathrm{R} \geq \mathrm{V}_{\text {EE }}$
5. Applies to M, FRM, CL, $\overline{\operatorname{RST}}, \mathrm{ADC}, \phi 1, \phi 2, \overline{C S 1}, \overline{C S 2}, C S 3, E, R N, D / I, A D C$, and DBO-DB7.

Electrical Characteristics

$\left(\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0$ to $-10 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	LImit			Unit	Condition	Note
		Min	Typ	Max			
Input high voltage	$\mathrm{V}_{\text {IHC }}$	$0.7 \times \mathrm{V}_{\text {cc }}$	-	$V_{c c}$	V		1
	$\mathrm{V}_{\text {IHT }}$	2.0	-	$V_{c c}$	V		2
Input low voltage	VILC	0	-	$0.3 \times V_{\text {cc }}$	V		1
	$\mathrm{V}_{\text {ILT }}$	0	-	0.8	V		2
Output high voltage	V_{OH}	2.4	-	-	V	$1 \mathrm{OH}=-205 \mu \mathrm{~A}$	3
Output low voltage	Va	-	-	0.4	V	$1 \mathrm{OL}=1.6 \mathrm{~mA}$	3
Input leakage current	IIL	-1.0	-	+1.0	$\mu \mathrm{A}$	$\mathrm{Vin}_{\text {in }}=\mathrm{GND}-\mathrm{V}_{\text {cc }}$	4
High impedance off input current	$\mathrm{I}_{\text {TSL }}$	-5.0	-	+5.0	$\mu \mathrm{A}$	Vin $=$ GND- $\mathrm{V}_{\text {cc }}$	5
Liquid crystal supply leakage current	LSL	-2.0	-	+2.0	$\mu \mathrm{A}$	$\mathrm{Vin}=\mathrm{V}_{\mathrm{EE}}-\mathrm{V}_{\mathrm{CC}}$	6
Driver on resistance	Ron	-	-	7.5	K Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V} \\ & \pm \mathrm{I}_{\mathrm{LOAD}}=0.1 \mathrm{~mA} \end{aligned}$	7
Dissipation current	$\underline{\mathrm{ICC}}$ (1)	-	-	100	$\mu \mathrm{A}$	During display	8
	$\mathrm{lcC(2)}$	-	-	500	$\mu \mathrm{A}$	During Access access cycle = 1 MHz	8

Notes: 1. Applies to M, FRM, CL, $\overline{\operatorname{RST}}, \mathrm{ADC}, \phi 1$, and $\phi 2$.
2. Applies to $\overline{\text { CS1 }}, \overline{\mathrm{CS}} 2, \mathrm{CS3}, \mathrm{E}, \mathrm{R} W, \mathrm{D} / \mathrm{I}$, and DB0-DB7.
3. Applies to DB0-DB7.
4. Applies to terminals except for DB0-DB7.
5. Applies to DBO-DB7 at high impedance.
6. Applies to V1L-V4L and V1R-V4R.
7. Applies to Y1-Y64.
8. Specified when liquid crystal display is in $1 / 64$ duty.

Operation frequency:
Frame frequency:
fCLK $=250 \mathrm{kHz}$ ($\phi 1$ and $\phi 2$ frequency)
Specified in the state of
Output terminal: Not loaded
Input level: $\quad V_{I H}=V_{C C}(V)$
$\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}(\mathrm{V})$
Measured at V_{CC} terminal

HD61102

Interface AC Characteristics
MPU Interface
$\left(G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0$ to $\mathbf{- 1 0} \mathrm{V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Note
E cycle time	$\mathrm{t}_{\text {CYC }}$	1000	-	-	ns	1,2
E high level width	PWEH	450	-	-	ns	1,2
E low level width	$\mathrm{P}_{\text {WEL }}$	450	-	-	ns	1,2
E rise time	tr	-	-	25	ns	1,2
E fall time	tf	-	-	25	ns	1,2
Address setup time	$\mathrm{t}_{\text {AS }}$	140	-	-	ns	1,2
Address hold time	$\mathrm{t}_{\text {AH }}$	10	-	-	ns	1,2
Data setup time	$\mathrm{t}_{\text {DSW }}$	200	-	-	ns	1
Data delay time	$\mathrm{t}_{\text {DDR }}$	-	-	320	ns	2,3
Data hold time	Write)	$\mathrm{t}_{\text {DHW }}$	10	-	-	ns
Data hold time (Read)	$\mathrm{t}_{\text {DHR }}$	20	-	-	ns	2

Notes: 1.

Figure 1 CPU Write Timing
2.

Figure 2 CPU Read Timing
3. DB0-DB7: load circuit

$R \mathrm{~L}=2.4 \mathrm{k} \Omega$
$R=11 \mathrm{k} \Omega$
$C=130 \mathrm{pF}$ (including jig capacitance) Diodes D1 to D4 are all IS2074 (H).

HD61102

Clock Timing

$\left(G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0$ to $-10 \mathrm{~V}, \mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	LImit			Unit	Test	Condition
		Min	Typ	Max			
\$1, ¢2 cycle time	tcyc	2.5	-	20	$\mu \mathrm{s}$	Fig. 3	
¢1 low level width		625	-	-	ns	Fig. 3	
\$2 low level width	${ }^{\text {W WL, }} 2$	625	-	-	ns	Fig. 3	
\$1 high level width	${ }_{\text {WHHP1 }}$	1875	-	-	ns	Fig. 3	
¢2 high level width	${ }^{\text {W WH/42 }}$	1875	-	-	ns	Fig. 3	
\$1- $\dagger 2$ phase difference	$\mathrm{t}_{\mathrm{D} 12}$	625	-	-	ns	Fig. 3	
\$2- $\phi 1$ phase difference	$\mathrm{t}_{\mathrm{D} 21}$	625	-	-	ns	Fig. 3	
\$1, $¢ 2$ rise time	tr	-	-	150	ns	Fig. 3	
\$1, $¢ 2$ fall time	tf	-	-	150	ns	Fig. 3	

Figure 3 External Clock Waveform

Display Control Timing

$$
\left(\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \text { to }-10 \mathrm{~V}, \mathrm{Ta}=-20 \text { to }+75^{\circ} \mathrm{C}\right)
$$

Item	Symbol	LImit			Unit	Test	Condition
		Min	Typ	Max			
FRM delay time	tDFRM	-2	-	+2	$\mu \mathrm{s}$	Fig. 4	
M delay time	$t_{\text {DM }}$	-2	-	+2	$\mu \mathrm{s}$	Fig. 4	
CL low level width	${ }^{\text {IWLCL }}$	35	-	-	$\mu \mathrm{s}$	Fig. 4	
CL high level width	${ }^{\text {WHHCL }}$	35	-	-	$\mu \mathrm{s}$	Fig. 4	

Figure 4 Display Control Signal Waveform

Terminal Functions

Terminal Name	Number of Terminals	$1 / 0$	Connecte to	Functions
$V_{c c}$ GND	2		Power supply	Power supply for internal logic. Recommended voltage is $\begin{aligned} & G N D=0 V \\ & V_{C C}=+5 V \pm 10 \% \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{EE} 1} \\ & \mathrm{~V}_{\mathrm{EE} 2} \end{aligned}$	2		Power supply	Power supply for liquid crystal display drive circuit. Recommended power supply voltage is $\mathrm{V}_{\mathrm{CC}} \mathbf{- 1 5}$ to GND . Connect the same power supply to $\mathrm{V}_{\mathrm{EE} 1}$ and $\mathrm{V}_{\mathrm{EE} 2}$. $\mathrm{V}_{\mathrm{EE} 1}$ and $\mathrm{V}_{\mathrm{EE} 2}$ are not connected to each other in the LSI.
V1L, V1R V2L, V2R V3L, V3R V4L, V4R	8		Power supply	Power supply for liquid crystal display drive. Apply the voltage specified for the liquid crystals within the limit of V_{EE} through V_{CC}. VIL (V1R), V2L (V2R): Selection level V3L (V3R), V4L (V4R): Non-selection level Power supplies connected with V1L and V1R (V2L \& V2R, V3L \& V3R, V4L \& V4R) should have the same voltages.
$\begin{aligned} & \overline{\mathrm{CS1}} \\ & \mathrm{CS2} \\ & \mathrm{CS3} \end{aligned}$	3	1	MPU	Chip selection. Data can be input or output when the terminals are in the following conditions:
E	1	I	MPU	Enable At write(RN = low): At read $(R W=$ high $):$ Data of DB0 to DB7 is latched at the fall of E. Data appars at DB0 to DB7 while E is high.
RW	1	1	MPU	Read/write. RW = High: Data appears at DBO to DB7 and can be read by the CPU when $\mathrm{E}=$ high, $\overline{\mathrm{CS} 1,} \overline{\mathrm{CS} 2}$ $=$ low and CS3 = high. RW = Low: DB0 to DB7 accepted at fall of E when CST, CS2 $=$ low and CS3 $=$ high.
D/I	1	1	MPU	Data/Instruction. $\mathrm{D} / \mathrm{I}=$ High: Indicates that the data of DB0 to DB7 is display data. $\mathrm{D} / \mathrm{I}=$ Low: Indicates that the data of DB0 to DB7 is display control data.
ADC	1	1	VCCAND	Address control signal determine the relation between Y address of display RAM and terminals from which the data is output. $\begin{aligned} & \text { ADC }=\text { High: } Y 1-\$ 0, Y 64-\$ 63 \\ & \text { ADC }=\text { Low: Y64-\$0, Y1-\$63 } \end{aligned}$

Terminal Functions (cont)

Terminal Name	Number of Terminals	$1 / 0$	Connected to	Functions
DB0-DB7	8	I/O	MPU	Data bus, three-state I/O common terminal.
M	1	I	HD61103A	Switch signal to convert liquid crystal drive waveform into AC.
FRM	1	I	HD61103A	Display synchronous signal (frame signal). Presets the 6-bit display line counter and synchronizes a common signal with the frame timing when the FRM signal becomes high.
CL	1	1	HD61103A	Synchronous signal to latch display data. The rising edge of the CL signal increments the display output address counter and latches the display data.
\$1, ¢2	1	1	HD61103A	2-phase clock signal for internal operation. The $\phi 1$ and $\phi 2$ clocks are used to perform operations (l/O of display data and execution of instructions) other than display.
$\overline{\mathrm{Y} 1-\mathrm{Y} 64}$	64	0	Liquid crystal display	Liquid crystal display column (segment) drive output. These pins output light on level when 1 is in the display RAM, and light off level when 0 is in it.
				Relation among output level, M, and display data (D) is as follows:
				$\begin{aligned} & \text { M } \left.\quad \begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right) \sqrt{1} 0 \sqrt{1} 0 \end{aligned}$
				$\begin{array}{l\|l\|l\|l\|l\|l} \text { Output } & \mathrm{V}_{1} & \mathrm{~V}_{3} & \mathrm{~V}_{2} & \mathrm{~V}_{4} \\ \text { level } & & & & & \end{array}$

$\overline{\mathrm{RST}}$	1	I	CPU or external CR	The following registers can be initialized by setting the $\overline{\text { RST }}$ signal to low level: 1. On/off register set to 0 (display off) 2. Display start line register set to line 0 (displays from line 0)
$\overline{\text { DY }}$	1	O	Open	After releasing reset, this condition can be changed only by instruction.
NC	$\mathbf{2}$	Output terminal for test. Normally, don't connect any lines		
to this terminal.				

Note: 1 corresponds to high level in positive logic.

Function of Each Block

Interface Control

1. I/O buffer

Data is transferred through 8 data buses (DB0-DB7). DB7: MSB (most significant bit) DB0: LSB (least significant bit) Data can neither be input nor output unless CS1 to CS3 are in the active mode. Therefore, when CS1 to CS3 are not in active mode it is useless to switch the signals of input terminals except RST and $A D C$, that is namely, the internal state is maintained and no instruction excutes. Besides, pay attention to $\overline{\mathrm{RST}}$ and ADC which operate irrespectively by CS1 to CS3.

2. Register

Both input register and output register are provided to interface to MPU whose the speed is different from that of internal operation. The selection of these registers depend on the combination of R/W and D / I signals.

a. Input Register

The input register is used to store data temporarily before writing it into display data RAM. The data from MPU is written into input register, then into display data RAM automatically by internal operation.

When CS1 to CS3 are in the active mode and D/I and R / W select the input register as shown in table 1, data is latched at the fall of E signal.

b. Output Register

The output register is used to store data temporarily that is read from display data RAM. To read out the data from the output register, CS1 to CS3 should be in the active mode and both D / I and R / W should be 1 . The read display data instruction outputs data stored in the output register while E is high. Then, at the fall of E , the display data at the indicated address is latched into the output register and the address is increased by 1. The contents in the output register is rewritten with READ instruction, while is held with address set instruction, etc.

Therefore, the data of the specified address cannot be output with the read display data instruction right after the address is set, but can be output at the second read of data. That is to say, one dummy read is necessary. Figure 5 shows the CPU read timing.

Table 1 Register Selection

D/I	R/W	Operation
1	1	Reads data out of output register as internal operation (display data RAM \rightarrow output register).
1	0	Writes data into input register as internal operation (input register \rightarrow display data RAM).
0	1	Busy check. Read of status data.
0	0	Instruction.

Figure 5 CPU Read Timing

Busy Flag

Busy flag $=1$ indicates that HD61 102 is operating and no instructions except status read can be accepted (figure 6). The value of the busy flag is
read out on DB7 by the Status Read instruction. Make sure that the busy flag is reset (0) before issuing an instruction.

Figure 6 Busy Flag

Display On/Off Flip/Flop

The display On/off flip/flop selects one of two states, on state and off state of segments Y1 to Y64. In on state, the display data corresponding to that in RAM is output to the segments. On the other hand, the display data at all segments disappear in off state independent of the data in RAM. It is controlled by the display on/off instruction. $\overline{\text { RST }}$ signal $=0$ sets the segments in off state. The status of the flip/flop is output to DB5 by the status read instruction. The display on/off instruction does not influence data in RAM. To control display data latch by this flip/flop, $\mathbf{C l}$ signal (display synchronous signal) should be input correctly.

Display Start Line Register

The register specifies a line in RAM that corresponds to the top line of the LCD panel, when displaying contents in display data RAM on the LCD panel. It is used for scrolling the screen.

6-bit display start line information is written into this register by the display start line set instruction, with high level of FRM signal signalling the start of the display, the information in this register is transferred to the Z address counter, which controls the display address, and the Z address counter is preset.

X, Y Address Counter

A 9-bit counter that designates addresses of internal display data RAM. X address counter (upper 3 bits) and Y address counter (lower 6 bits) should be set by the respective instructions.

1. X address counter

Ordinary register with no count functions. An address is set by instruction.

2. Y address counter

An address is set by instruction and it is increased by 1 automatically by display data R/W operations. The Y address counter loops the values of 0 to 63 to count.

Display Data RAM

Dot data for display is stored in this RAM. 1-bit data of this RAM corresponds to light on (data = 1) and light off (data $=0$) of 1 dot in the display panel. The correspondence between Y addresses of RAM and segment PINs can be reversed by ADC signal.

As the ADC signal controls the Y address counter, a reverse of the signal during the operation causes malfunction and destruction of the contents of register and data of RAM. Therefore, always connect ADC pin to V_{CC} or GND when using.

Figure 7 shows the relations between Y address of RAM and segment pins in the cases of $\mathrm{ADC}=1$ and $A D C=0$ (display start line $=0,1 / 64$ duty cycle).

$A D C=1 \quad$ (Connected to $\left.V_{C C}\right)$

Figure 7 Relation between RAM Data and Display

ADC $=1$ (Connected to GND)

Figure 7 Relation between RAM Data and Display (cont)

Z Address Counter

The Z address counter generates addresses for outputting the display data synchronized with the common signal. This counter consists of 6 bits and counts up at the fall of the CL signal. At FRM high, the contents of the display start line register are preset in the Z counter.

Display Data Latch

The display data latch stores the display data temporarily that is output from display data RAM to the liquid crystal driving circuit.

Data is latched at the rise of the CL signal. The display on/off instruction controls the data in this latch and does not influence data in display data RAM.

Liquid Crystal Display Driver Circuit

The combination of latched display data and M signal causes one of the 4 liquid crystal driver levels, V1, V2, V3, and V4 to be output.

Reset

The system can be initialized by setting $\overline{\mathrm{RST}}$ terminal to low when turning power on.

1. Display off
2. Set display start line register line 0

While $\overline{\mathrm{RST}}$ is low level, no instruction except status read can be accepted. Therefore, carry out other instructions after making sure that DB4 $=0$ (clear RESET) and DB7 $=0$ (ready) by status read instruction.
The conditions of the power supply at initial power up are as in table 2.

Table 2 Power Supply Initial Conditions

Item	Symbol	Min	Typ	Max	Unit
Reset time	$\mathrm{t}_{\text {RST }}$	1.0	-	-	$\mu \mathrm{s}$
Rise time	t_{r}	-	-	200	ns

Do not fail to set the system again because RESET during operation may destroy the data in all the registers except on/off register and in RAM.

Display Control Instructions

Outline

Table 3 shows the instructions. Read/write (R/W) signal, data/instruction (D/I) signal and data bus signals (DB0 to DB7) are also called instructions because the internal operation depends on the signals from MPU.
These explanations are detailed in the following pages. Generally, there are the following three kinds of instructions.

1. Instruction to set addresses in the internal RAM
2. Instruction to transfer data from/to the internal RAM
3. Other instructions

In general use, the second type of instruction are used most frequently. Since Y address of the internal RAM is increased by 1 automatically after writing (reading) data, the program can be shortened. During the execution of an instruction, the system cannot accept instructions other than the status read instruction. Send instructions from MPU after making sure that the busy flag is 0 , which is the proof that an instruction is not being excuted.

Detailed Explanation

1. Display on/off

\leftarrow high-order bit
low-order bit \rightarrow
The display data appears when D is 1 and disappears when D is 0 . Though the data is not on the screen when $\mathrm{D}=0$, it remains in the display data RAM. Therefore, you can make it appear by changing $\mathrm{D}=0$ into $\mathrm{D}=1$.
2. Display start line

Z address AAAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen.
Figure 7 shows examples of display ($1 / 64$ duty cycle) when the start line $=0-3$. When the display duty cycle is $1 / 64$ or more (ex. $1 / 32,1 / 24$ etc.), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed.

Figure 7 Relation Between Start Line and Display
3. Set page (X address)

\mathbf{X} address AAA (binary) of the display data RAM is set in the \mathbf{X} address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 8.

4. Set Y address

Y address AAAAAA (binary) of the display data RAM is set in the Y address counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

Figure 8 Address Configuration of Display Data RAM

5. Status Read

Busy: When Busy is 1, the LSI is executing internal operations. No instructions are accepted while Busy is 1 , so you should make sure that Busy is 0 before writing the next instruction.
ON/OFF: Shows the liquid crystal display conditions: on condition or off condition.
When ON/OFF is 1 , the display is in off condition.
When ON/OFF is 0 , the display is in on condition.
RESET: RESET = 1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.
RESET = 0 shows that initializing has finished and the system is in the usual operation condition.

6. Write Display Data

Writes 8-bit data DDDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

7. Read Display Data

Reads out 8-bit data DDDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.

One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "FUNCTION OF EACH BLOCK".

Use of HD61102

Interface with HD61103A (1/64 duty cycle)

The waveforms of Y1 to Y64 outputs vary with the display date. In this example, the top line of the panel lights up and other dots do not.

Figure 9 LCD Driver Timing Chart (1/64 duty cycle)

Interface with CPU

1. Example of connection with HD6800

Figure 10 Example of Connection with HD6800 Series
In this decoder (figure 10), addresses of HD61102 in the address area of HD6800 are:
Read/write of the display data \$FFFF
Write of display instruction \$FFFE
Read out of status
\$FFFE
Therefore, you can control HD61102 by reading/writing the data at these addresses.

2. Example of connection with HD6801

Figure 11 Example of Connection with HD6801

- Set HD6801 to mode 5. P10 to P14 are used as the output port and P30 to P37 as the data bus (table 11).
- 74LS154 4-to-16 decoder generates chip select signal to make specified HD61102 active after decoding 4 bits of P10 to P13.
- Therefore, after enabling the operation by P10 to P13 and specifying D/I signal by P14, read/write from/to the external memory area ($\$ 0100$ to $\$ 01 \mathrm{FE}$) to control HD61102. In this case, IOS signal is output from SC1 and R/W signal from SC2.
- For details of HD6800 and HD6801, refer to their manuals.

Example of Application

Figure 12 Application Example
Note: In this example (figure 12), two HD61103As output the equivalent waveforms. So, stand-alone operation is possible. In this case, connect COM1 and COM65 to X1, COM2 and COM66 to X2, ..., and COM64 and COM128 to X64. However, for the large screen display, it is better to drive in 2 rows as in this example to guarantee the display quality.

HD61103A

 (Dot Matrix Liquid Crystal Graphic Display Common Driver)
Description

The HD61103A is a common signal driver for dot matrix liquid crystal graphic display systems. It generates the timing signals (switch signal to convert LCD waveform to AC, frame synchronous signal) and supplies them to the column driver to control display. It provides 64 driver output lines and the impedance is low enough to drive a large screen.

As the HD61103A is produced by a CMOS process, it is fit for use in portable battery drive equipments utilizing the liquid crystal display's low power consumption. The user can easily construct a dot matrix liquid crystal graphic display system by combining the HD61103A and the column (segment) driver HD61 102.

Features

- Dot matrix liquid crystal graphic display common driver with low impedance
- Low impedance: $1.5 \mathrm{k} \Omega$ max
- Internal liquid crystal display driver circuit: 64 circuits
- Internal dynamic display timing generator circuit
- Selectable display duty ratio factor $1 / 48,1 / 64$, 1/96, 1/128
- Can be used as a column driver transferring data serially
- Low power dissipation: During display: 5 mW
- Power supplies: $\quad \mathrm{V}_{\mathrm{CC}}:+5 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\mathrm{EE}}: 0$ to -11.5 V
- LCD driver level: $\quad 17.0 \mathrm{~V}$ max
- CMOS process

Ordering Information

Type No.	Package
HD61103A	100-pin plastic QFP(FP-100)

Absolute Maximum Ratings

Item	Symbol	Limit	Unit	Note
Power supply voltage (1)	V_{CC}	-0.3 to +7.0	V	2
Power supply voltage (2)	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-19.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	5
Terminal voltage (1)	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	2,3
Terminal voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	4,5
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to 125	${ }^{\circ} \mathrm{C}$	

Notes: 1. If LSIs are used beyond absolute maximum ratings, they may be permanently destroyed. We strongly recommend you to use the LSI within electrical characteristic limits for normal operation, because use beyond these conditions will cause malfunction and poor reliability.
2. Based on GND $=0 \mathrm{~V}$.
3. Applies to input terminals (except V1L, V1R, V2L, V2R, V5L, V5R, V6L, and V6R) and I/O common terminals at high impedance.
4. Applies to V1L, V1R, V2L, V2R, V5L, V5R, V6L, and V6R.
5. Apply the same value of voltages to V1L and V1R, V2L and V2R, V5L and V5R, V6L and V6R, $V_{E E}$ (23 pin) and $V_{E E}$ (58 pin) respectively.
Maintain $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V} 1 \mathrm{~L}=\mathrm{V} 1 \mathrm{R} \geq \mathrm{V} 6 \mathrm{~L}=\mathrm{V} 6 \mathrm{R} \geq \mathrm{V} 5 \mathrm{~L}=\mathrm{V} 5 \mathrm{R} \geq \mathrm{V} 2 \mathrm{~L}=\mathrm{V} 2 R \geq \mathrm{V}_{\mathrm{EE}}$

(Top view)

Electrical Characteristics

DC Characteristics ($\mathrm{V}_{\mathrm{Cc}}=+\mathbf{5} \mathrm{V} \pm 10 \%$, $\mathbf{G N D}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{EE}}=0$ to $\mathbf{- 1 1 . 5} \mathrm{V}$, $\mathrm{Ta}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$)

Test Item	Symbol	Specifications			Unit	Test Conditions	Note
		Min	Typ	Max			
Input high voltage	V_{IH}	$0.7 \times$ VCC	-	Vcc	V		1
Input low voltage	$\mathrm{V}_{\text {IL }}$	GND	-	$0.3 \times \mathrm{V}_{\mathrm{Cc}}$	V		1
Output high voltage	V_{OH}	$V_{C C}-0.4$	-	-	V	$\mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2
Output low voltage	V_{a}	-	-	+0.4	V	$\mathrm{l}_{1}=+0.4 \mathrm{~mA}$	2
Vi-Xj on resistance	Row	-	-	1.5	k Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10 \mathrm{~V} \\ & \text { Load current } \\ & \pm 150 \mu \mathrm{~A} \\ & \hline \end{aligned}$	3
Input leakage current	ILL_{1}	-1.0	-	+1.0	$\mu \mathrm{A}$	$\mathrm{Vin}^{\prime}=0$ to $\mathrm{V}_{\text {cc }}$	4
Input leakage current	IIL2	-2.0	-	+2.0	$\mu \mathrm{A}$	$\mathrm{Vin}=\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\text {CC }}$	5
Operating frequency	fopr1	50	-	600	kHz	In master mode External clock operation	6
Operating frequency	fopr2	50	-	1500	kHz	In slave mode Shift register	7
Oscillation frequency	fosc	315	450	585	kHz	$\begin{aligned} & \mathrm{Cf}=20 \mathrm{pF} \pm 5 \% \\ & \mathrm{Rf}=47 \mathrm{k} \Omega \pm 2 \% \end{aligned}$	8, 13
Dissipation current (1)	$\mathrm{I}_{\mathrm{GG1}}$	-	-	1.0	mA	In master mode 1/128 duty cycle $\mathrm{Cf}=20 \mathrm{pF}$ $R f=47 \mathrm{k} \Omega$	9, 10
Dissipation current (2)	$\mathrm{I}_{\mathbf{G G 2}}$	-	-	200	$\mu \mathrm{A}$	In slave mode 1/128 duty cycle	9, 11
Dissipation current	$l_{\text {EE }}$	-	-	100	$\mu \mathrm{A}$	In master mode 1/128 duty cycle	9, 12

Notes: 1. Applies to input terminals FS, DS1, DS2, CR, STB, SHL, M/S, FCS, CL1, and TH and I/O common terminals DL, M, DR and CL2 in the input state.
2. Applies to output terminals, $\phi 1, \phi 2$, and FRM and I/O common terminals DL, M, DR, and CL2 in the output status.
3. Resistance value between terminal X (one of $X 1$ to X 64) and terminal V (one of V1L, V1R, V2L, V2R, V5L, V5R, V6L, and V6R) when load current is applied to each terminal X. Equivalent circuit between terminal X and terminal V.

4. Applies to input terminals FS, DS1, DS2, CR, $\overline{\text { STB }}$, SHL, MS, FCS, CL1, and TH, VO common terminals DL, M, DR and CL2 in the input status and NC terminals.
5. Applies to V1L, V1R, V2L, V2R, V5L, V5R, V6L, and V6R.

Don't connect any lines to X1 to X64.
6. External clock is as follows.

External clock waveform

7. Applies to the shift register in the slave mode. For details, refer to AC Characteristics.
8. Connect oscillation resistor (Rf) and oscillation capacitance (Cf) as shown in this figure. Oscillation frequency (fosc) is twice as much as the frequency ($\ddagger \phi$) at $\phi 1$ or $\phi 2$.

$$
\begin{aligned}
& \mathrm{Cf}=20 \mathrm{pF} \\
& \mathrm{Rf}=47 \mathrm{k} \Omega \quad \text { fosc }=2 \times \mathrm{ff}
\end{aligned}
$$

9. No lines are connected to output terminals and current flowing through the input circuit is excluded. This value is specified at $\mathrm{V}_{\mathbb{H}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$.
10. This value is specified for current flowing through GND in the following conditions: Internal oscillation circuit is used. Each terminal of DS1, DS2, FS, SHL, M/S, STB, and FCS is connected to V_{CC} and each of CL1 and TH to GND. Oscillator is set as described in note 8.
11. This value is specified for current flowing through GND under the following conditions: Each terminals of DS1, DS2, FS, SHL, STB, FCS and CR is connected to V_{cc}, CL1, TH, and M/S to GND and the terminals CL2, M, and DL are respectively connected to terminals CL2, M, and DL of the HD61103A under the conditions described in note 10.
12. This value is specified for current flowing through V_{EE} under the condition described in note 10. Don't connect any lines to terminal V.
13. This figure shows a typical relation among oscillation frequency, Rf and Cf. Oscillation frequency may vary with the mounting conditions.

AC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0\right.$ to $\mathbf{- 1 1 . 5 \mathrm { V } , \mathrm { Ta } = \mathbf { - 2 0 } \text { to } + 7 5 ^ { \circ } \mathrm { C }) ~}$

1. Slave Mode (M/S = GND)

Note: 1. The following load circuit is connected for specification.

HD61103A

2. Master Mode (M/S $=\mathbf{V}_{\mathbf{C C}}, \mathbf{F C S}=\mathbf{V}_{\mathbf{C C}}, \mathbf{C f}=\mathbf{2 0} \mathbf{p F}, \mathbf{R f}=\mathbf{4 7} \mathbf{k} \boldsymbol{\Omega}$)

Item	Symbol	Min	Typ	Max	Unit	Note
Data setup time	$t_{\text {DS }}$	20	-	-	μs	
Data hold time	$t_{\text {DH }}$	40	-	-	$\mu \mathrm{s}$	
Data delay time	$t_{\text {DD }}$	5	-	-	$\mu \mathrm{s}$	
FRM delay time	tDFRM	-2	-	+2	μs	
M delay time	tDM	-2	-	+2	$\mu \mathrm{s}$	
CL_{2} low level width	$t_{\text {WLCL2 }}$	35	-	-	$\mu \mathrm{s}$	
CL_{2} high level width	$t_{\text {WHCL2 }}$	35	-	-	μs	
$\phi 1$ low level width	tWL ${ }^{\text {¢ }}$	700	-	-	ns	
\$2 low level width	tWL ${ }^{2}$	700	-	-	ns	
$\phi 1$ high level width	tWH ${ }^{\text {P }}$	2100	-	-	ns	
\$2 high level width	tWH\$2	2100	-	-	ns	
\$1-¢2 phase difference	$t_{\text {D12 }}$	700	-	-	ns	
\$2- \$1 phase difference	$t_{\text {D21 }}$	700	-	-	ns	
$\phi 1, \phi 2$ rise time	tr	-	-	150	ns	
$\phi 1, \phi 2$ fall time	tif	-	-	150	ns	

Block Functions

Oscillator

The CR oscillator generates display timing signals and operating clocks for the HD61102. It is required when the HD61103A is used with the HD61102. An oscillation resistor Rf and an oscillation capacitor Cf are attached as shown in figure 1 and terminal STB is connected to the high level. When using an external clock, input the clock into terminal CR and don't connect any lines to terminal R and C.

Figure 1 Oscillator Connection with HD61102
The oscillator is not required when the HD61103A is used with the HD61830. Connect terminal CR to the high level and don't connect any lines to terminals R and C (figure 2).

Figure 2 Oscillator Connection with HD61830

Timing Generator Circuit

The timing generator circuit generates display timing and operating clock for the HD61102. This circuit is required when the HD61103A is used with the HD61102. Connect terminal M/S to high level (master mode). It is not necessary when the display timing signal is supplied from other circuits, for example, from HD61830. In this case connect the terminals FS, DS1, and DS2 to high level and M/S to low level (slave mode).

Bidirectional Shift Register

A 64-bit bidirectional shift register. The data is shifted from DL to DR when SHL is at high level and from DR to DL when SHL is at low level. In this case, CL2 is used as shift clock. The lowest order bit of the bidirectional shift register, which is on the DL side, corresponds to X1 and the highest order bit on the DR side corresponds to X64.

HD61103A

Liquid Crystal Display Driver Circuit

The combination of the data from the shift register with the M signal allows one of the four liquid crystal display driver levels V1, V2, V5 and V6 to be transferred to the output terminals (table 1).

Table 1 Output Levels

Data from the Shift Register	M	Output Level
1	1	V2
0	1	V6
1	0	V1
0	0	V5

HD61103A Terminal Functions

Terminal Name	Number of Terminals	$1 / 0$	Connected to	Function
V_{∞} GND VEE	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$		Power supply	$V_{C C}-$ GND: Power supply for internal logic. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$: Power supply for driver circuit logic.
V1L, V2L, V5L, V6L, V1R, V2R, V5R, V6R	8		Power supply	Liquid crystal display driver level power supply. V1L (V1R), V2L (V2R): Selected level V5L (V5R), V6L (V6R): Non-selected level Voltages of the level power supplies connected to V1L and V1R should be the same. (This applies to the combination of V2L \& V2R, V5L \& V5R and V6L \& V6R respectively)
M/S	1	1	$V_{C C}$ or GND	Selects master/slave. M/S = VCC: Master mode When the HD61103A is used with the HD61102, timing generation circuit operates to supply display timing signals and operation clock to the HD61102. Each of I/O common terminals DL, DR, CL2, and M is in the output state. M/S = GND: Slave mode The timing operation circuit stops operating. The HD61103A is used in this mode when combined with the HD61830. Even if combined with the HD61102, this mode is used when display timing signals (M , data, CL2, etc.) are supplied by another HD61103A in the master mode. Terminals M and CL2 are in the input state. When SHL is $V_{c c}$, DL is in the input state and DR is in the output state. When SHL is GND, DL is in the output state and DR is in the input state.
FCS	1	I	Vcc or GND	Selects shift clock phase. FCS $=\mathrm{V}_{\mathrm{CC}}$: Shift register operates at the rising edge of CL2. Select this condition when HD61103A is used with HD61102 or when MA of the HD61830 connects to CL2 in combination with the HD61830. FCS = GND: Shift register operates at the fall of CL2. Select this condition when CL1 of HD61830 connects to CL2 in combination with the HD61830.

HD61103A Terminal Functions (cont)

Terminal Name	Number of Terminals	110	Connected to	Func	Ion			
FPM	1	0	HD61102	Frame signa				
				Master mode:		Connect this terminal to terminal FRM of the HD61102.		
				Slave mode:		Don't connect any lines to this terminal.		
M	1	I/O	MB of	Signal to convert LCD driver signal into AC. Master mode: Output terminal Connect this terminal to terminal M of the HD61102.				
			HD61830 or M of HD61102					
				Slave mode:		Input terminal. Connect this terminal to terminal MB of the HD61830.		
CL2	1	1/0	CL1 or MA of HD61830 or CL of HD61102	Master mode:		Output terminal Connect this terminal to terminal CL of the HD61102.		
				Slave mode:		Input terminal Connect this terminal to terminal CL1 or MA of the HD61830.		
DL, DR	2	1/0	Open or FLM of HD61830	Data I/O terminals of bidirectional shift register. DL corresponds to X1's side and DR to X64's side. Master mode: Output common scanning signal. Don't connect any lines to these terminals normally.				
				Slave mode:		Connect terminal FLM of the HD61830 to DL (when SHL = V_{cc}) or DR (when SHL = GND)		
				M/S $\quad V_{\text {CC }}$			GND	
				SHL	$\mathrm{V}_{\text {cc }}$	GND	$V_{\text {cc }}$	GND
				DL	Output	Output	Input	Output
					Output	Output	Output	Input
NC	5		Open	Not used. Don't connect any lines to this terminal.				
SHL	1	1	$V_{\text {cc }}$ or GND	Selects shift direction of bidirectional shift register.				
				SHL	Shift Dire	ction Com	on Scan	Direction
				V_{∞}	DL \rightarrow DR	X1	X64	
				GND	$\mathrm{DL} \leftarrow \mathrm{DR}$	X1	X64	

HD61103A

HD61103A Terminal Functions (cont)

Terminal Name	Number of Terminals	I/O	Connected to	Function

Output level

Data 1: Selected level
0 : Non-selected level
When SHL is $\mathrm{V}_{\mathrm{CC}}, \mathrm{X} 1$ corresponds to COM1 and X64 corresponds to COM64.

When SHL is GND, X64 corresponds to COM1 and X1 corresponds to COM64.

Outline of HD61103A System Configuration

1. Use with HD61830
a. When display duty ratio of LCD is more than $1 / 64$

One HD61103A drives common signals.

Refer to Connection list A

One HD61103A drives common signals for upper and lower panels.

Two HD61103As drive upper and lower panel separately to ensure the quality of display. No. 1 and No. 2 operate in parallel.
b. When display duty ratio of LCD is from $1 / 65$ to $1 / 128$

Two HD61103As connected serially drive common signals.

Two HD61103As connected serially drive upper and lower panels in parallel.

Two sets of HD61103As connected serially drive upper and lower panels in parallel to ensure the quality of display.

Refer to
Connection list B for No. 1. Refer to Connection list C for No. 2.

Refer to Connection list B for No. 1. Refer to Connection list C for No. 2.

Refer to Connection list B for No. 1 and 3. Refer to Connection list \mathbf{C} for No. 2 and 4.
2. Use with HD61102 (1/64 duty ratio)

One HD61103A drives
common signals and supplies timing signals to the HD61102s.

Refer to Connection list D

One HD61103A drives upper and lower panels and supplies timing signals to the HD61102s.

Two HD61103As drive upper and lower panels in parallel to ensure the quality of display. No. 1 supplies timing signals to No. 2 and the HD61102s.

Refer to
Connection list E for No. 1

Refer to
Connection list F for No. 2

Connection Example 1

Use with HD61102 (RAM type segment driver).
a. $1 / 64$ duty ratio (See Connection List D)

Figure 1 Example 1
Note: 1. The values of R1 and R2 vary with the LCD panel used.
When bias factor is $1 / 9$, the values of $\mathbf{R 1}$ and R2 should satisfy

$$
\frac{R 1}{4 R 1+R 2}=\frac{1}{9}
$$

For example,

$$
R 1=3 \mathrm{k} \Omega, R 2=15 \mathrm{k} \Omega
$$

Connection Example 2

Use with HD61830 (Display controller).
a. $1 / 64$ duty ratio (See Connection list A)

Figure 3 Example 2 (1/64 duty ratio)

Figure 4 Example 2 Waveform (1/64 duty ratio)
b. $1 / 100$ duty ratio (See Connection list B, C)

Figure 5 Example 2 (1/100 duty ratio)
IHO甘LIH

Description

HD61202 is a column (segment) driver for dot matrix liquid crystal graphic display systems. It stores the display data transferred from a 8 -bit micro controller in the internal display RAM and generates dot matrix liquid crystal driving signals.

Each bit data of display RAM corresponds to the on/off state of a dot of a liquid crystal display to provide more flexible than character display.

As it is internally equipped with 64 output drivers for display, it is available for liquid crystal graphic display with many dots.

The HD61202, which is produced in the CMOS process, can complete portable battery drive equipment in combination with a CMOS microcontroller, utilizing the liquid crystal display's low power dissipation.

Moreover it can facilitate dot matrix liquid crystal graphic display system configuration in combination with the row (common) driver HD61203.

Features

- Dot matrix liquid crystal graphic display column driver incorporating display RAM
- RAM data direct display by internal display RAM
- RAM bit data 1: On

RAM bit data 1: Off

- Internal display RAM address counter preset, increment
- Display RAM capacity: 512 bytes (4096 bits)
- 8-bit parallel interface
- Internal liquid crystal display driver circuit: 64
- Display duty cycle: Drives liquid crystal panels with $1 / 32-1 / 64$ duty cycle multiplexing
- Wide range of instruction function: Display Data Read/Write, Display On/Off, Set Address, Set Display Start Line, Read Status
- Lower power dissipation: during display 2 mW max
- Power supply: $\mathrm{V}_{\mathrm{CC}}: 5 \mathrm{~V} \pm 10 \%$
- Liquid crystal display driving voltage: 8 V to 17.0 V
- CMOS process

Ordering Information

Type No.	Package
HD61202	100-pin plastic QFP(FP-100)
HD61202TFIA	100-pin thin plastic QFP(TFP-60)
HD61202D	Chip

Absolute Maximum Ratings

Item	Symbol	Value	Unit	Note
Supply voltage	V_{CC}	-0.3 to +7.0	V	2
	$\mathrm{~V}_{\mathrm{EE} 1}$	$\mathrm{~V}_{\mathrm{CC}}-19.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	3
	$\mathrm{~V}_{\mathrm{EE} 2}$			
Terminal voltage (1)	$\mathrm{V}_{\mathrm{T} 1}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	4
Terminla voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	2,5
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. LSIs may be destroyed if they are used beyond the absolute maximum ratings. In ordinary operation, it is desirable to use them within the recommended operation conditions.
Using them beyond these conditions may cause malfunction and poor reliability.
2. All voltage values are referenced to $\mathrm{GND}=0 \mathrm{~V}$.
3. Apply the same supply voltage to $\mathrm{V}_{\mathrm{EE} 1}$ and $\mathrm{V}_{\text {EE2 }}$.
4. Applies to V1L, V2L, V3L, V4L, V1R, V2R, V3R, and V4R.

Maintain
$\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V} 1 \mathrm{~L}=\mathrm{V} 1 \mathrm{R} \geq \mathrm{V}_{3} \mathrm{~L}=\mathrm{V} 3 \mathrm{R} \geq \mathrm{V} 4 \mathrm{~L}=\mathrm{V} 4 \mathrm{R} \geq \mathrm{V}_{2} \mathrm{~L}=\mathrm{V} 2 \mathrm{R} \geq \mathrm{V}_{\text {EI }}$
5. Applies to $M, F R M, C L, \overline{R S T}, A D C, \phi 1, ~ ф 2, \overline{C S 1}, \overline{C S 2}, C S 3, E, R W, D / 1$, and DBO-DB7.

HD61202

Pin Arrangement

(Top View)

(Top View)

Electrical Characteristics

(GND $=0 \mathrm{~V}, \mathrm{~V}_{\mathbf{C C}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathbf{C C}}-\mathrm{V}_{\mathrm{EE}}=8$ to $17.0 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Limit			Unit	Test Condition	Note
		Min	Typ	Max			
Input high voltage	$\mathrm{V}_{\text {HHC }}$	$0.7 \times \mathrm{V}_{\text {cc }}$	-	$V_{c c}$	V		1
	$\mathrm{V}_{\mathrm{IHT}}$	2.0	-	$V_{\text {cc }}$	V		2
Input low voltage	VILC	0	-	$0.3 \times V_{\text {cc }}$	V		1
	$\mathrm{V}_{\text {ILT }}$	0	-	0.8	V		2
Output high voltage	V_{OH}	2.4	-	-	V	$\mathrm{l}_{\mathrm{OH}}=-205 \mu \mathrm{~A}$	3
Output low voltage	V_{ol}	-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	3
Input leakage current	$\mathrm{I}_{\text {IL }}$	-1.0	-	+1.0	$\mu \mathrm{A}$	$\mathrm{Vin}^{\prime}=\mathrm{GND}-\mathrm{V}_{\text {cc }}$	4
Three-state (off) input current	$\mathrm{I}_{\text {TSL }}$	-5.0	-	+5.0	$\mu \mathrm{A}$	Vin $=$ GND-V $\mathrm{V}_{\text {c }}$	5
Liquid crystal supply leakage current	LSL	-2.0	-	+2.0	$\mu \mathrm{A}$	$\mathrm{Vin}=\mathrm{V}_{\text {EE }}-\mathrm{V}_{\text {CC }}$	6
Driver on resistance	Row	-	-	7.5	k $\boldsymbol{\Omega}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V} \\ & \pm \mathrm{L}_{\mathrm{LOAD}}=0.1 \mathrm{~mA} \\ & \hline \end{aligned}$	8
Dissipation current	$\underline{\operatorname{lcc}}$ (1)	-	-	100	$\mu \mathrm{A}$	During display	7
	$l_{\text {cc }}(2)$	-	-	500	$\mu \mathrm{A}$	During access access cycle $=1 \mathrm{MHz}$	7

Notes: 1. Applies to M, FRM, CL, $\overline{\operatorname{RST}}, \phi 1$, and $\phi 2$.
2. Applies to $\overline{\mathrm{CS} 1}, \overline{\mathrm{CS} 2}, \mathrm{CS3}, \mathrm{E}, \mathrm{RNW}, \mathrm{D} / 1$, and DB0-DB7.
3. Applies to DBO-DB7.
4. Applies to terminals except for DBO-DB7.
5. Applies to DBO-DB7 at high impedance.
6. Applies to V1L-V4L and V1R-V4R.
7. Specified when liquid crystal display is in $1 / 64$ duty cycle mode.

Operation frequency $\quad f_{C L K}=250 \mathrm{kHz}$ ($\phi 1$ and $\phi 2$ frequency)
Frame frequency $\quad \mathrm{f}_{\mathrm{M}}=70 \mathrm{~Hz}$ (FRM frequency)
Specified in the state of
Output terminal: not loaded
Input level:
$V_{\mathrm{H}}=\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$
$\mathrm{VI}_{\mathrm{L}}=\mathrm{GND}(\mathrm{V})$
Measured at $\mathrm{V}_{\text {cc }}$ terminal
8. Resistance between terminal Y and terminal V (one of V1L, V1R, V2L, V2R, V3L, V3R, V4L, and V4R) when load current flows through one of the terminals Y1 to Y64. This value is specified under the following condition:

$$
\begin{gathered}
V_{C C}-V_{E E}=15.5 V \\
V_{1 L}=V_{1 R}, V_{3 L}=V_{3 R}=V_{C C}-27\left(V_{C C}-V_{E E}\right) \\
V_{2 L}=V_{2 R}, V_{4 L}=V_{4 R}=V_{C C}+2 / 7\left(V_{C C}-V_{E E}\right)
\end{gathered}
$$

The following is a description of the range of power supply voltage for liquid crystal display drive. Apply positive voltage to V1L $=$ V1R and V3L $=$ V3R and negative voltage to $\mathrm{V} 2 \mathrm{~L}=\mathrm{V} 2 \mathrm{R}$ and $\mathrm{V} 4 \mathrm{~L}=\mathrm{V} 4 \mathrm{R}$ within the $\Delta \mathrm{V}$ range. This range allows stable impedance on driver output (RON). Notice that $\Delta \mathrm{V}$ depends on power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$.

Terminal Configuration

Input Terminal

Applicable terminals:
M, FRM, CL, $\overline{R S T}, \phi 1, \phi 2, \overline{C S 1}, \overline{C S 2}$, CS3, E, RW, D/I, ADC

Input/Output Terminal

Applicable terminals: DB0-DB7

Output Terminal

Interface AC Characteristics

MPU Interface
$\left(G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Note
E cycle time	$\mathbf{t}_{\text {CYC }}$	1000	-	-	ns	1,2
E high level width	$P_{\text {WEH }}$	450	-	-	$n s$	1,2
E low level width	$P_{\text {WEL }}$	450	-	-	ns	1,2
E rise time	tr	-	-	25	ns	1,2
E fall time	tf	-	-	25	ns	1,2
Address setup time	$\mathrm{t}_{\text {AS }}$	140	-	-	ns	1,2
Address hold time	$\mathrm{t}_{\text {AH }}$	10	-	-	ns	1,2
Data setup time	$\mathrm{t}_{\text {DSW }}$	200	-	-	ns	1
Data delay time	$\mathrm{t}_{\text {DDR }}$	-	-	320	ns	2,3
Data hold time (Write)	$\mathrm{t}_{\text {DHW }}$	10	-	-	ns	1
Data hold time (Read)	$\mathrm{t}_{\text {DHR }}$	20	-	-	ns	2

Notes: 1.

Figure 1 CPU Write Timing

HD61202

Notes: 2.

Figure 2 CPU Read Timing
3. DB0-DB7: load circuit

$\mathrm{RL}=2.4 \mathrm{k} \Omega$
$R=11 \mathrm{k} \Omega$
$C=130 \mathrm{pF}$ (including jig capacitance)
Diodes D1-D4 are all 1S2074 (H).

Clock Timing

$\left(\mathbf{G N D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Limit			UnIt	Test	Condition
		Min	Typ	Max			
\$1, 2 cycle time	teyc	2.5	-	20	$\mu \mathrm{s}$	Fig. 3	
\$1 low level width	${ }_{\text {IWLP } 1}$	625	-	-	ns	Fig. 3	
\$2 low level width	${ }^{\text {WhLe }} \mathbf{2}$	625	-	-	ns	Fig. 3	
\$1 high level width	$\mathbf{t w h}_{\text {W/ }} 1$	1875	-	-	ns	Fig. 3	
\$2 high level width	TWH42	1875	-	-	ns	Fig. 3	
\$1-2 phase difference	$t_{\text {D12 }}$	625	-	-	ns	Fig. 3	
\$2-1 phase difference	$\mathrm{t}_{\mathrm{D} 21}$	625	-	-	ns	Fig. 3	
\$1, $\downarrow 2$ rise time	tr	-	-	150	ns	Fig. 3	
\$1, $\$ 2$ fall time	tif	-	-	150	ns	Fig. 3	

Figure 3 External Clock Waveform

HD61202

Display Control Timing
(GND $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $+75{ }^{\circ} \mathrm{C}$)

Item	Symbol	Limit			Unit	Test	Condition
		Min	Typ	Max			
FRM delay time	tbFRM	-2	-	+2	$\mu \mathrm{s}$	Fig. 4	
M delay time	$t_{\text {DM }}$	-2	-	+2	$\mu \mathrm{s}$	Fig. 4	
CL low level width	twlel	35	-	-	$\mu \mathrm{s}$	Fig. 4	
CL high level width	IWHCL	35	-	-	$\mu \mathrm{s}$	Fig. 4	

Figure 4 Display Control Signal Waveform

Block Diagram

Terminal Functions

Terminal Name	Number of Terminals $1 / 0$	Connected to	Functions
$V_{c c}$ GND	2	Power supply	Power supply for internal logic. Recommended voltage is: $\begin{aligned} & G N D=0 V \\ & V_{C C}=5 \mathrm{~V} \pm 10 \% \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{EE} 1} \\ & \mathrm{~V}_{\mathrm{EE} 2} \end{aligned}$	2	Power supply	Power supply for liquid crystal display drive circuit. Recommended power supply voltage is $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=8$ to 17.0 V. Connect the same power supply to $\mathrm{V}_{\mathrm{EE} 1}$ and $\mathrm{V}_{\mathrm{EE} 2} . \mathrm{V}_{\mathrm{EE} 1}$ and $\mathrm{V}_{\mathrm{EE} 2}$ are not connected each other in the LSI.
V1L, V1R V2L, V2R V3L, V3R V4L, V4R	8	Power supply	Power supply for liquid crystal display drive. Apply the voltage specified depending on liquid crystals within the limit of V_{EE} through V_{CC}. V1L (V1R), V2L (V2R): Selection level V3L (V3R), V4L (V4R): Non-selection level Power supplies connected with V1L and V1R (V2L \& V2R, V3L \& V3R, V4L \& V4R) should have the same voltages.
$\begin{aligned} & \overline{\mathrm{CS1}} \\ & \overline{\mathrm{CS2}} \\ & \mathrm{CS3} \end{aligned}$	3 I	MPU	Chip selection. Data can be input or output when the terminals are in the following conditions:
E	1	MPU	Enable. At write(RN = Low): Data of DBO to DB7 is latched at the fall of E. At read(RW = High): Data appears at DB0 to DB7 while E is at high level.
RW	1	MPU	Read/write. RW = High: Data appears at DB0 to DB7 and can be read by the CPU. When E = high, CS1, CS2 $=$ low and CS3 $=$ high. $R W=$ Low: DBO to DB7 can accept at fall of E when CS1, CS2 = low and CS3 = high.
D/I	1	MPU	Data/instruction. D/I = High: Indicates that the data of DB0 to DB7 is display data. D/I = Low: Indicates that the data of DB0 to DB7 is display control data.

Terminal Functions (cont)

Terminal Name	Number of Terminals	$1 / 0$	Connected to	Functions
ADC	1	I	$V_{C C}$ GND	Address control signal to determine the relation between Y address of display RAM and terminals from which the data is output.
				$\begin{array}{ll} A D C=\text { High: } & Y 1: \$ 0, Y 64: \$ 63 \\ A D C=\text { LW: } & Y 64: \$ 0, Y 1: \$ 63 \end{array}$
DB1-DB7	8	1/0	MPU	Data bus, three-state VO common terminal.
M	1	1	HD61203	Switch signal to convert liquid crystal drive waveform into AC.
FPM	1	1	HD61203	Display synchronous signal (frame signal).
				Presets the 6 -bit display line counter and synchronizes the common signal with the frame timing when the FRM signal becomes high.
CL	1	I	HD61203	Synchronous signal to latch display data. The rising CL signal increments the display output address counter and latches the display data.
\$1, ${ }^{2}$	2	I	HD61203	2-phase clock signal for internal operation.
				The $\phi 1$ and $\phi 2$ clocks are used to preform operations (I/O of display data and execution of instructions) other than display.
Y1-Y64	64	0	Liquid crystal display	Liquid crystal display column (segment) drive output.
				These pins outputs light on level when 1 is in the display RAM, and light off level when 0 is it.
				Relation among output level, M, and display data (D) is as follows:

Note: 1 corresponds to high level in positive logic.

Function of Each Block

Interface Control

1. I/O buffer

Data is transferred through 8 data bus lines (DBODB7).
DB7: MSB (Most significant bit)
DB0: LSB (Least significant bit)
Data can neither be input nor output unless CS1 to CS3 are in the active mode. Therefore, when CS1 to CS3 are not in active mode it is useless to switch the signals of input terminals except $\overline{\text { RST }}$ and ADC; that is namely, the internal state is maintained and no instruction excutes. Besides, pay attention to $\overline{\operatorname{RST}}$ and ADC which operate irrespectively of CS1 to CS3.

2. Register

Both input register and output register are provided to interface to an MPU whose speed is different from that of internal operation. The selection of these registers depend on the combination of R/W and D / I signals (table 1).
a. Input register

The input register is used to store data temporarily before writing it into display data RAM.
The data from MPU is written into the input register, then into display data RAM automatically by internal operation. When $\overline{\mathrm{CS}}$ to CS3 are in the active mode and D / I and R / W select the input register as shown in table 1 , data is latched at the fall of the E signal.
b. Output register

The output register is used to store data temporarily that is read from display data RAM. To read out the data from output register, CS1 to CS3 should be in the active mode and both D / I and R / W should be 1 . With the read display data instruction, data stored in the output register is output while E is high level. Then, at the fall of E, the display data at the indicated address is latched into the output register and the address is increased by 1.

The contents in the output register are rewritten by the read display data instruction, but are held by address set instruction, etc.

Therefore, the data of the specified address cannot be output with the read display data instruction right after the address is set, but can be output at the second read of data. That is to say, one dummy read is necessary. Figure 5 shows the CPU read timing.

Table 1 Register Selection

D/I	R/W	Operation
$\mathbf{1}$	1	Reads data out of output register as internal operation (display data RAM \rightarrow output register)
$\mathbf{1}$	0	Writes data into input register as internal operation (input register \rightarrow display data RAM)
0	1	Busy check. Read of status data.
0	0	Instruction

Busy Flag

Busy flag $=1$ indicates that HD61202 is operating and no instructions except status read instruction can be accepted. The value of the busy flag is read
out on DB7 by the status read instruction. Make sure that the busy flag is reset (0) before issuing instructions.

Figure 6 Busy Flag

Display On/Off Flip/Flop

The display on/off flip/flop selects one of two states, on state and off state of segments Y1 to Y64. In on state, the display data corresponding to that in RAM is output to the segments. On the other hand, the display data at all segments disappear in off state independent of the data in RAM. It is controlled by display on/off instruction. $\overline{\text { RST }}$ signal $=0$ sets the segments in off state. The status of the flip/flop is output to DB5 by status read instruction. Display on/off instruction does not influence data in RAM. To control display data latch by this flip/flop, CL signal (display synchronous signal) should be input correctly.

Display Start Line Register

The display start line register specifies the line in RAM which corresponds to the top line of LCD panel, when displaying contents in display data RAM on the LCD panel. It is used for scrolling of the screen.

6-bit display start line information is written into this register by the display start line set instruction. When high level of the FRM signal starts the display, the information in this register is
transferred to the Z address counter, which controls the display address, presetting the Z address counter.

X, Y Address Counter

A 9-bit counter which designates addresses of the internal display data RAM. X address counter (upper 3 bits) and Y address counter (lower 6 bits) should be set to each address by the respective instructions.

1. X address counter

Ordinary register with no count functions. An address is set by instruction.
2. Y address counter

An address is set by instruction and is increased by 1 automatically by R/W operations of display data. The Y address counter loops the values of 0 to 63 to count.

Display Data RAM

Stores dot data for display. 1-bit data of this RAM corresponds to light on (data $=1$) and light off (data $=0$) of 1 dot in the display panel. The correspondence between Y addresses of RAM and segment pins can be reversed by ADC signal.

As the ADC signal controls the Y address counter, reversing of the signal during the operation causes malfunction and destruction of the contents of register and data of RAM. Therefore, never fail to connect $A D C$ pin to $V_{C C}$ or GND when using.

Figure 7 shows the relations between Y address of RAM and segment pins in the cases of $\mathrm{ADC}=1$ and $A D C=0$ (display start line $=0,1 / 64$ duty cycle).

ADC $=1$ (Connected to V_{CC})

| | COM1 | (HD61203 X1) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LCD | | |
| display pattern | | |

ADC $=0$ (Connected to GND)

Figure 7 Relation between RAM Data and Display (cont)

Z Address Counter

The Z address counter generates addresses for outputting the display data synchronized with the common signal. This counter consists of 6 bits and counts up at the fall of the CL signal. At the high level of FRM, the contents of the display start line register is preset at the Z counter.

Display Data Latch

The display data latch stores the display data temporarily that is output from display data RAM to the liquid crystal driving circuit. Data is latched at the rise of the CL signal. The display on/off instruction controls the data in this latch and does not influence data in display data RAM.

Liquid Crystal Display Driver Circuit

The combination of latched display data and M signal causes one of the 4 liquid crystal driver levels, V1, V2, V3, and V4 to be output.

Reset

The system can be initialized by setting $\overline{\operatorname{RST}}$ terminal at low level when turning power on.

1. Display off
2. Set display start line register line 0 .

While $\overline{R S T}$ is low level, no instruction except status read can be accepted. Therefore, execute other instructions after making sure that DB4 $=0$ (clear RESET) and DB7 $=0$ (Ready) by status read instruction. The conditions of power supply at initial power up are shown in table 1.

Table 1 Power Supply Initial Conditions

Item	Symbol	Min	Typ	Max	Unit
Reset time	$\mathrm{t}_{\text {RST }}$	1.0	-	-	$\mu \mathrm{s}$
Rise time	t_{r}	-	-	200	ns

Do not fail to set the system again because RESET during operation may destroy the data in all the registers except on/off register and in RAM.

Display Control Instructions

Outline

Table 2 shows the instructions. Read/write (R / W) signal, data/instruction (D / I) signal, and data bus signals (DB0 to DB7) are also called instructions because the internal operation depends on the signals from the MPU.
These explanations are detailed in the following pages. Generally, there are following three kinds of instructions:

1. Instruction to set addresses in the internal RAM
2. Instruction to transfer data from/to the internal RAM
3. Other instructions

In general use, the second type of instruction is used most frequently. Since Y address of the internal RAM is increased by 1 automatically after writing (reading) data, the program can be shortened. During the execution of an instruction, the system cannot accept instructions other than status read instruction. Send instructions from MPU after making sure that the busy flag is 0 , which is proof that an instruction is not being excuted.

Table 2 Instructions

Code											Functions	
Instructions	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Display on/off	0	0	0	0	1	1	1	1	1	1/0	Controls display on/off. RAM data and internal status are not affected. 1: on, 0: off.	
Display start line	0	0	1	1	Display start line (0-63)						Specifies the RAM line displayed at the top of the screen.	
Set page (X address)	0	0	1	0	1	1	1	Page (0-7)			Sets the page (X address) of RAM at the page (X address) register.	
Set address	0	0	0	1	Y address (0-63)						Sets the Y address in the Y address counter.	
Status read	1	0	Busy	0	ON/ OFF	Reset		0	0	0		y off y on al operation
Write display data	0	1	Write data								Writes data DBO (LSB) to DB7 (MSB) on the data bus into display RAM.	Has access to the address of the display RAM specified in advance. After the access, Y address is increased by 1.
Read display data	1	1	Read data								Reads data DB0 (LSB) to DB7 (MSB) from the display RAM to the data bus.	

Note: 1. Busy time varies with the frequency (fCLK) of $\phi 1$, and $\phi 2$. ($1 /{ }^{\prime} \mathrm{CLK} \leq \mathrm{T}_{\mathrm{BUSY}} \leq 3 / \mathrm{f}_{\mathrm{CLK}}$)

Detailed Explanation

Display on/off

The display data appears when D is 1 and disappears when D is 0 . Though the data is not on the screen with $\mathrm{D}=0$, it remains in the display data RAM. Therefore, you can make it appear by changing $\mathrm{D}=0$ into $\mathrm{D}=1$.

Display start line

Z address AAAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 8 shows examples of display ($1 / 64$ duty cycle) when the start line $=0-3$. When the display duty cycle is $1 / 64$ or more (ex. $1 / 32,1 / 24$ etc.), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed.

Figure 8 Relation Between Start Line and Display

Set page (X address)

\mathbf{X} address AAA (binary) of the display data RAM is set in the \mathbf{X} address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 9.

Set Y address

\mathbf{Y} address AAAAAA (binary) of the display data RAM is set in the Y address counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

Figure 9 Address Configuration of Display Data RAM

Status Read

Busy: When Busy is 1 , the LSI is executing internal operations. No instructions are accepted while Busy is $\mathbf{1}$, so you should make sure that Busy is $\mathbf{0}$ before writing the next instruction.

ON/OFF: Shows the liquid crystal display conditions: on condition or off condition. When ON/OFF is 1 , the display is in off condition. When ON/OFF is 0 , the display is in on condition.

RESET: RESET = 1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.
RESET $=0$ shows that initializing has finished and the system is in the usual operation condition.

Write Display Data

Writes 8-bit data DDDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

Read Display Data

Reads out 8 -bit data DDDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.
One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "FUNCTION OF EACH BLOCK".

Use of HD61202

Interface with HD61203 (1/64 duty cycle)

HD61202

The waveforms of Y1 to Y64 outputs vary with the display date. In this example, the top line of the panel lights up and other dots do not.

Figure 10 LCD Driver Timing Chart (1/64 duty cycle)

Interface with CPU

1. Example of connection with HD6800

Figure 11 Example of Connection with HD6800 Series

In this decoder, addresses of HD61202 in the address area of HD6800 are:
Read/write of the display data
\$FFFF
write of display instruction \$FFFE
Read out of status \$FFFE
Therefore, you can control HD61202 by reading/writing the data at these addresses.
2. Example of connection with HD6801

- Set HD6801 to mode 5. P10 to P14 are used as the output port and P30 to P37 as the data bus.
- 74LS154 4-to-16 decoder generates chip select signal to make specified HD61202 active after decoding 4 bits of P10 to P13.
- Therefore, after enabling the operation by P10 to P13 and specifying D/I signal by P14, read/write from/to the external memory area ($\$ 0100$ to $\$ 01 \mathrm{FE}$) to control HD61202. In this case, IOS signal is output from SC1 and R/W signal from SC2.
- For details of HD6800 and HD6801, refer to their manuals.

Example of Application

Note: In this example, two HD61203s output the equivalent waveforms. So, stand-alone operation is possible. In this case, connect COM1 and COM65 to X1, COM2 and COM66 to X2, ..., and COM64 and COM128 to X64. However, for the large screen display, it is better to drive in 2 rows as in this example to guarantee the display quality.

HD61203
 (Dot Matrix Liquid Crystal Graphic Display Common Driver)

Description

The HD61203 is a common signal driver for dot matrix liquid crystal graphic display systems. It generates the timing signals (switch signal to convert LCD waveform to AC, frame synchronous signal) and supplies them to the column driver to control display. It provides 64 driver output lines and the impedance is low enough to drive a large screen.

As the HD61203 is produced by a CMOS process, it is fit for use in portable battery-driven equipment utilizing the liquid crystal display's low power consumption. The user can easily construct a dot matrix liquid crystal graphic display system by combining the HD61203 and the column (segment) driver HD61202.

Features

- Dot matrix liquid crystal graphic display common driver with low impedance
- Low impedance: $1.5 \mathrm{k} \Omega \max$
- Internal liquid crystal display driver circuit: 64 circuits
- Internal dynamic display timing generator circuit
- Display duty cycle

When used with the column driver HD61202: 1/48, 1/64, 1/96, 1/128
When used with the column driver HD61200:
Selectable out of $1 / 32$ to $1 / 128$

- Low power dissipation: During display: 5 mW
- Power supplies: $\mathrm{V}_{\mathrm{CC}}: 5 \mathrm{~V} \pm 10 \%$
- Power supply voltage for liquid crystal display drive: 8 V to 17 V
- CMOS process

Ordering Information

Type No.	Package
HD61203	100-pin plastic QFP(FP-100)
HD61203TFIA	100-pin thin plastic QFP(TFP-60)
HD61203D	Chip

Absolute Maximum Ratings

Item	Symbol	Limit	UnIt	Note
Power supply voltage (1)	V_{CC}	-0.3 to +7.0	V	2
Power supply voltage (2)	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-19.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	5
Terminal voltage (1)	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	2,3
Terminal voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	4,5
Operating temperature	$\mathrm{T}_{\mathrm{Cpr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. If LSIs are used beyond absolute maximum ratings, they may be permanently destroyed. We strongly recommend you to use the LSI within electrical characteristic limits for normal operation, because use beyond these conditions will cause malfunction and poor reliability.
2. Based on GND $=0 \mathrm{~V}$.
3. Applies to input terminals (except V1L, V1R, V2L, V2R, V5L, V5R, V6L, and V6R) and I/O terminals at high impedance.
4. Applies to V1L, V1R, V2L, V2R, V5L, V5R, V6L, and V6R.
5. Apply the same value of voltages to V1L and V1R, V2L and V2R, V5L and V5R, V6L and V6R, $\mathrm{V}_{\mathrm{EE}}(23 \mathrm{pin})$ and $\mathrm{V}_{\mathrm{EE}}(58 \mathrm{pin})$ respectively.

Maintain $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V} 1 \mathrm{~L}=\mathrm{V} 1 \mathrm{R} \geq \mathrm{V} 6 \mathrm{~L}=\mathrm{V} 6 \mathrm{R} \geq \mathrm{V} 5 \mathrm{~L}=\mathrm{V} 5 \mathrm{R} \geq \mathrm{V} 2 \mathrm{~L}=\mathrm{V} 2 \mathrm{R} \geq \mathrm{V}_{\mathrm{EE}}$

HD61203

Pin Arrangement

(Top View)

```
(Top View)
```


HD61203

Electrical Characteristics

DC Characteristics
$\left(V_{C C}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathbf{G N D}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathbf{C C}}-\mathrm{V}_{\mathrm{EE}}=8.0\right.$ to $\mathbf{1 7 . 0} \mathrm{V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $\left.+\mathbf{7 5} 5^{\circ} \mathrm{C}\right)$

Test Item	Symbol Min		Speclifications		Unit	Test Conditions	Note
			Typ	Max			
Input high voltage	V_{IH}	$0.7 \times V_{\text {cc }}$	-	$V_{c c}$	V		1
Input low voltage	$\mathrm{V}_{\text {IL }}$	GND	-	$0.3 \times V_{\text {cc }}$	V		1
Output high voltage	$V_{\text {OH }}$	$V_{C C}-0.4$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2
Output low voltage	V_{OL}	-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	2
Vi-Xj on resistance	Row	-	-	1.5	k Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=17 \mathrm{~V} \\ & \text { Load current } \\ & \pm 150 \mu \mathrm{~A} \\ & \hline \end{aligned}$	13
Input leakage current	ILL1	-1.0	-	1.0	$\mu \mathrm{A}$	$\mathrm{Vin}=0$ to $\mathrm{V}_{\text {cc }}$	3
Input leakage current	$\mathrm{ILL2}$	-2.0	-	2.0	$\mu \mathrm{A}$	$\mathrm{Vin}^{\text {a }} \mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\text {CC }}$	4
Operating frequency	$\mathrm{f}_{\text {opr1 }}$	50	-	600	kHz	In master mode external clock operation	5
Operating frequency	$\mathrm{f}_{\text {opr2 }}$	0.5	-	1500	kHz	In slave mode shift register	6
Oscillation frequency	fosc	315	450	585	kHz	$\begin{aligned} & \mathrm{Cf}=20 \mathrm{pF} \pm 5 \% \\ & \mathrm{Rf}=47 \mathrm{k} \Omega \pm 2 \% \end{aligned}$	7, 12
Dissipation current (1)	$\mathrm{I}_{\mathbf{G G 1}}$	-	-	1.0	mA	In master mode 1/128 duty cycle $\begin{aligned} & \mathrm{Cf}=20 \mathrm{pF} \\ & \mathrm{Rf}=47 \mathrm{k} \Omega \end{aligned}$	8, 9
Dissipation current (2)	$\mathrm{I}_{\mathbf{G G 2}}$	-	-	200	$\mu \mathrm{A}$	In slave mode 1/128 duty cycle	8, 10
Dissipation current	I_{EE}	-	-	100	$\mu \mathrm{A}$	In master mode 1/128 duty cycle	8, 11

Notes: 1. Applies to input terminals FS, DS1, DS2, CR, SHL, M/S, and FCS and I/O terminals DL, M, DR, and CL2 in the input state.
2. Applies to output terminals, $\varnothing 1, \boldsymbol{\varnothing 2}$, and FRM and I/O common terminals DL, M, DR, and CL2 in the output state.
3. Applies to input terminals FS, DS1, DS2, CR, $\overline{S T B}$, SHL, M/S, FCS, CL1, and TH, I/O terminals $D L, M, D R$, and CL2 in the input state and NC terminals.
4. Applies to V1L, V1R, V2L, V2R, V5L, V5R, V6L, and V6R. Don't connect any lines to X1 to X64.
5. External clock is as follows.

External clock waveform

6. Applies to the shift register in the slave mode. For details, refer to AC Characteristics.
7. Connect oscillation resister (Rf) and oscillation capacitance (Cf) as shown in this figure. Oscillation frequency (fosc) is twice as much as the frequency (fø) at $\varnothing 1$ or ø2.

$$
\begin{aligned}
& C f=20 \mathrm{pF} \\
& R f=47 \mathrm{k} \Omega \quad f_{o s c}=2 \times f ø
\end{aligned}
$$

8. No lines are connected to output terminals and current flowing through the input circuit is excluded. This value is specified at $\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$.
9. This value is specified for current flowing through GND in the following conditions: Internal oscillation circuit is used. Each terminal of DS1, DS2, FS, SHL, M/S, STB, and FCS is connected to V_{CC} and each of CL1 and TH to GND. Oscillator is set as described in note 7.
10. This value is specified for current flowing through GND under the following conditions: Each terminals of DS1, DS2, FS, SHL, STB, FCS, and CR is connected to VCc, CL1, TH, and MS to GND and the terminals CL2, M, and DL are respectively connected to terminals CL2, M, and DL of the HD61203 under the condition described in note 9.
11. This value is specified for current flowing through V_{EE} under the condition described in note 9. Don't connect any lines to terminal V.
12. This figure shows a typical relation among oscillation frequency, Rf and Cf. Oscillation frequency may vary with the mounting conditions.

13. Resistance between terminal X and terminal V (one of V1L, V1R, V2L, V2R, V5L, V5R, V6L, and V6R) when load current flows through one of the terminals X1 to X64. This value is specified under the following conditions:

$$
\begin{gathered}
V_{C C}-V_{E E}=17 \mathrm{~V} \\
V_{1 L}=V_{1 R}, V_{6 L}=V_{6 R}=V_{C C}-1 /\left(V_{C C}-V_{E E}\right) \\
V_{2 L}=V_{2 R}, V_{5 L}=V_{5 R}=V_{E E}+1 / 7\left(V_{C C}-V_{E E}\right)
\end{gathered}
$$

The following is a description of the range of power supply voltage for liquid crystal display drive. Apply positive voltage to V1L $=$ V1R and V6L $=$ V6R and negative voltage to V2L $=$ V2R and V5L $=$ V5R within the ΔV range. This range allows stable impedance on driver output ($R O N$). Notice that ΔV depends on power supply voltage $\mathbf{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$.

Terminal Configuration

Applicable Terminals :
CR, M/S, SHL, FCS, DS1, DS2, FS

Applicable Terminals: DL, DR, CL2, M I/O Terminal

Output Terminal

Applicable Terminals: ø1, ø2, FRM

Output Terminal

Applicable Terminals: X1 to X64

HD61203

AC Characteristics $\left(\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%}, \mathbf{G N D}=\mathbf{0} \mathrm{V}, \mathbf{T a}=\mathbf{- 2 0}\right.$ to $+\mathbf{7 5}^{\circ} \mathrm{C}$)
In the slave mode (M/S = GND)

Item	Symbol	Min	Typ	Max	Unit	Note
CL2 low level width (FCS=GND)	$t_{\text {WLCL2L }}$	450	-	-	ns	
CL2 high level width (FCS=GND)	${ }_{\text {IWLCL2H }}$	150	-	-	ns	
CL2 low level width ($\mathrm{FCS}=\mathrm{V}_{\mathrm{Cc}}$)	$\mathbf{t}_{\text {WHCL2L }}$	150	-	-	ns	
CL2 high level width ($\mathrm{FCS}=\mathrm{V}_{\mathrm{CC}}$)	$\mathrm{t}_{\text {WHCL2 }}$ H	450	-	-	ns	
Data setup time	$t_{\text {DS }}$	100	-	-	ns	
Data hold time	${ }^{\text {t }}$ D	100	\cdot	-	ns	
Data delay time	$t_{\text {DD }}$	-	-	200	ns	1
Output data hold time	tDHW	10	-	-	ns	
CL2 rise time	t_{r}	-	-	30	ns	
CL2 fall time	t_{f}	-	-	30	ns	

Notes: 1. The following load circuit is connected for specification:

2. In the master mode ($\mathrm{M} / \mathrm{S}=\mathrm{V}_{\mathrm{CC}}, \mathrm{FCS}=\mathrm{V}_{\mathrm{CC}}, \mathrm{Cf}=20 \mathrm{pF}, \mathrm{Rf}=47 \mathrm{k} \Omega$)

Item	Symbol	Min	Typ	Max	Unit
Data setup time	$t_{\text {DS }}$	20	-	-	$\mu \mathrm{s}$
Data hold time	$t_{\text {DH }}$	40	-	-	$\mu \mathrm{s}$
Data delay time	${ }_{\text {t }}$ D	5	-	-	$\mu \mathrm{s}$
FRM delay time	t ${ }_{\text {dFRM }}$	-2	-	2	$\mu \mathrm{s}$
M delay time	$t_{\text {DM }}$	-2	-	2	$\mu \mathrm{s}$
C_{2} low level width	${ }^{\text {WCLL2L }}$	35	-	-	$\mu \mathrm{s}$
CL_{2} high level width	${ }^{\text {W WCL2H }}$	35	-	-	$\mu \mathrm{s}$
¢1 low level width	${ }^{\text {Weall }}$	700	-	-	ns
¢2 low level width	${ }^{\text {W }}$ We2L	700	-	-	ns
01 high level width	${ }^{\text {Wexth }}$	2100	-	-	ns
$\boldsymbol{\sigma}$ ¢ high level width	${ }^{\text {Weat }}$	2100	-	-	ns
¢1-ø2 phase difference	${ }_{\text {D12 }}$	700	-	-	ns
¢2-ه1 phase difference	${ }_{\text {t } 21}$	700	-	-	ns
01, ø2 rise time	t_{r}	-	-	150	ns
ฮ1, $\varnothing 2$ fall time	$\mathrm{t}_{\text {f }}$	-	-	150	ns

Block Functions

Oscillator

The CR oscillator generates display timing signals and operating clocks for the HD61202. It is required when the HD61203 is used with the HD61202. An oscillation resister Rf and an oscillation capacitor Cf are attached as shown in figure 1 and terminal $\overline{\text { STB }}$ is connected to the high level. When using an external clock, input the clock into terminal CR and don't connect any lines to terminals R and C .

Figure 1 Oscillator Connection with HD61202
The oscillator is not required when the HD61203 is used with the HD61830. Then, connect terminal CR to the high level and don't connect any lines to terminals R and C (figure 2).

Figure 2 Oscillator Connection with HD61830

Timing Generator Circuit

The timing generator circuit generates display timing and operating clock for the HD61202. This circuit is required when the HD61203 is used with the HD61202. Connect terminal M/S to high level (master mode). It is not necessary when the display timing signal is supplied from other circuits, for example, from HD61830. In this case connect the terminals Fs, DS1, and DS2 to high level and M/S to low level (slave mode).

Bidirectional Shift Register

A 64-bit bidirectional shift register. The data is shifted from DL to DR when SHL is at high level and from DR to DL when SHL is at low level. In this case, CL2 is used as shift clock. The lowest order bit of the bidirectional shift register, which is on the DL side, corresponds to $\mathrm{X1}$ and the highest order bit on the DR side corresponds to X64.

Liquid Crystal Display Driver Circuit

The combination of the data from the shift register with the M signal allows one of the four liquid crystal display driver levels V1, V2, V5 and V6 to be transferred to the output terminals (table 1).

Table 1 Output Levels

Data from the Shift Register	M	Output Level
1	1	V2
0	1	V6
1	0	V1
0	0	V5

HD61203 Terminal Functions

Terminal Name	Number of $1 / 0$ Terminals	Connected to	Function
$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{GND}^{\prime} \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$	1 1 2	Power supply	$\mathrm{V}_{\text {CC }}$-GND: Power supply for internal logic. $V_{C C}-V_{E E}$: Power supply for driver circuit logic.
V1L, V2L V5L, V6L V1R, V2R V5R, V6R	8	Power supply	Liquid crystal display driver level power supply. V1L (V1R), V2L (V2R): Selected level V5L (V5R), V6L (V6R): Non-selected level Voltages of the level power supplies connected to V1L and V1R should be the same. (This applies to the combination of V2L \& V2R, V5L \& V5R and V6L \& V6R respectively)
M/S	1 I	$V_{C C}$ or GND	Selects master/slave. $M / S=V_{C C}: \text { Master mode }$ When the HD61203 is used with the HD61202, timing generation circuit operates to supply display timing signals and operation clock to the HD61202. Each of IO common terminals DL, DR, CL2, and M is in the output state. M/S = GND: Slave mode The timing operation circuit stops operating. The HD61203 is used in this mode when combined with the HD61830. Even if combined with the HD61202, this mode is used when display timing signals (M, data, CL2, etc.) are supplied by another HD61203 in the master mode. Terminals M and CL2 are in the input state. When SHL is $V_{C C}$, DL is in the input state and DR is in the output state. When SHL is GND, DL is in the output state and DR is in the input state.
FCS	1 I	$V_{\text {cc }}$ or GND	Selects shift clock phase. FCS $=V_{C C}$: Shift register operates at the rising edge of CL2. Select this condition when HD61203 is used with HD61202 or when MA of the HD61830 connects to CL2 in combination with the HD61830. FCS = GND: Shift register operates at the fall of CL2. Select this condition when CL1 of HD61830 connects to CL2 in combination with the HD61830.

FS	1	1	$V_{C C}$ or GND

Selects frequency.
When the frame frequency is 70 Hz , the oscillation frequency should be:

$$
\begin{aligned}
& f_{\text {osc }}=430 \mathrm{kHz} \text { at } \mathrm{FCS}=\mathrm{V}_{\mathrm{cC}} \\
& \mathrm{f}_{\mathrm{osc}}=215 \mathrm{kHz} \text { at } \mathrm{FCS}=\mathrm{GND}
\end{aligned}
$$

This terminal is active only in the master mode. Connect it to V_{CC} in the slave mode.

HD61203 Terminal Functions (cont)

Terminal Name	Number of $1 / 0$ Terminals	Connected to	Function				
DS1, DS2	2	$V_{\text {cc }}$ or GND	Selects display duty factor				
			Display Duty Factor	1/48	1/64	1/96	1/128
			DS1	GND	GND	$\mathrm{V}_{\text {cc }}$	V_{CC}
			DS2	GND	V_{CC}	GND	V_{CC}
			These terminals are valid only in the master mode. Connect them to V_{CC} in the slave mode.				
$\overline{\text { STB }}$	1 I	$V_{C c}$ or GND	Input terminal for testing. Connect to $\overline{S T B} V_{C C}$. Connect TH and CL1 to GND.				
TH	1						
	1						
CR, R, C	3		Oscillator.				
			In the master mode, use these terminals as shown below:				
			Internal oscillation		External clock		
				7	Open	ternal lock \qquad	Open
			R CR	C	R		C

In the slave mode, stop the oscillator as shown below:

HD61203 Terminal Functions (cont)

Torminal Name	Number of I/O Terminals	Connected to CL1 or MA of HD61830 or CL of HD61202	Function				
CL2	1 I/O		Master mode:			minal to	nal CL of
			Slave mode:		terminal nect this of the HD	minal to to 830.	nal CL1 or
$\overline{\mathrm{DL}, \mathrm{DR}}$	2 I/O	Open or FLM of HD61830	Data I/O terminals of bidirectional shift register. DL corresponds to X1's side and DR to X64's side. Master mode: Output common scanning signal. Don't connect any lines to these terminals normally.				
			Slave mode:		Connect terminal FLM of the HD61830 to DL (when $\mathrm{SHL}=\mathrm{V}_{\mathrm{CC}}$) or DR (when SHL = GND)		
			M/S	V_{C}		GND	
			SHL	V_{cc}	GND	V_{cc}	GND
			DL	Output	Output	Input	Output
			DR	Output	Output	Output	Input
NC	5	Open	Not used. Don't connect any lines to this terminal.				
SHL	11	$V_{C C}$ or GND	Selects shift direction of bidirectional shift register.				
			SHL	Shift Dire		on Scann	Direction
			V_{CC}	DL \rightarrow DR	X1	X64	
			GND	$\mathrm{DL} \leftarrow \mathrm{DR}$		X64	
X1-X64	640	Liquid crystal display	Liquid Output V1, V the sh	ystal display ne of the fo V5, and V6 register and	driver out liquid cry h the com signal.	display nation of	er levels data from

When SHL is $\mathrm{V}_{\mathrm{cc}}, \mathrm{X} 1$ corresponds to COM1 and X64 corresponds to COM64.
When SHL is GND, X64 corresponds to COM1 and X1 corresponds to COM64.

	M/S TH CL1 FCS FS DS1DS2 $\overline{\text { STBCR }}$ R C	\$1	¢2	FRM	M	CL2	SHL	DL	DR	X1-X64
A	L L L H H H H H--	-	-	-	$\begin{aligned} & \text { from MB } \\ & \text { of } \\ & \text { HD61830 } \end{aligned}$	$\begin{aligned} & \text { from CL1 } \\ & \text { of } \\ & \text { HD61830 } \end{aligned}$	H	$\begin{aligned} & \text { from FLM } \\ & \text { of } \\ & \text { HD61830 } \\ & \hline \end{aligned}$	-	COM1-COM64
							L	-	$\begin{aligned} & \text { from FLM } \\ & \text { of } \\ & \text { HD61830 } \end{aligned}$	COM64-COM1
B	LLLHHHHHH--	-	-	-	$\begin{aligned} & \text { from MB } \\ & \text { of } \\ & \text { HD61830 } \end{aligned}$	$\begin{gathered} \text { from MA } \\ \text { of } \\ \text { HD61830 } \end{gathered}$	H	$\begin{aligned} & \text { from FLM } \\ & \text { of } \\ & \text { HD61830 } \end{aligned}$	to DLDR of HD61203 No. 2	COM1-COM64
							L	to DLDR of HD61203 No. 2	$\begin{gathered} \text { from FLM } \\ \text { of } \\ \text { HD61830 } \end{gathered}$	COM64-COM1
C	L L L H H H H H - -	-	-	-	$\begin{aligned} & \text { from MB } \\ & \text { of } \\ & \text { HD61830 } \end{aligned}$	$\begin{aligned} & \text { from MA } \\ & \text { of } \\ & \text { HD61830 } \end{aligned}$	H	from DUDR of HD61203 No. 1	-	COM65-COM128
							L	-	from DLDR of HD61203 No. 1	COM128-COM65

Outline of HD61203 System Configuration

1. Use with HD61830
a. When display duty ratio of LCD is $1 / 64$

b. When display duty ratio of LCD is from $1 / 65$ to $1 / 128$

Two HD61203s connected serially drive common signals.

Two HD61203s connected serially drive upper and lower panels in parallel.

Two sets of HD61203s connected serially drive upper and lower panels in parallel to ensure the quality of display.

Refer to Connection list B for No. 1. Refer to Connection list C for No. 2.

Refer to Connection list B for No. 1. Refer to Connection list C for No. 2.

Refer to Connection list B for No. 1 and 3. Refer to Connection list C for No. 2 and 4.

2. Use with HD61202 (1/64 duty ratio)

One HD61203 drives common signals and supplies timing signals to the HD61202s.

One HD61203 drives upper and lower panels and supplies timing signals to the HD61202s.

Two HD61203s drive upper and lower panels in parallel to ensure the quality of display. No. 1 supplies timing signals to No. 2 and the HD61202s.

Refer to Connection list D.

Refer to Connection list D.

Refer to Connection list E for No. 1.

Refer to
Connection list F for No. 2.

Connection Example 1

Use with HD61202 (RAM type segment driver)
a. $1 / 64$ duty ratio (See Connection List D)

Figure 1 Example 1
Note: The values of R1 and R2 vary with the LCD panel used.
When bias factor is $1 / 9$, the values of R1 and R2 should satisfy

$$
\frac{R 1}{4 R 1+R 2}=\frac{1}{9}
$$

For example,

$$
R 1=3 \mathrm{k} \Omega, R 2=15 \mathrm{k} \Omega
$$

Figure 2 Example 1 Waveform (RAM Type, 1/64 Duty Cycle)

HD61203

Connection Example 2
Use with HD61830 (Display controller)
a. 1/64 duty ratio (See Connection List A)

Figure 3 Example 2 (1/64 Duty Ratio)

Figure 4 Example 2 Waveform (1/64 Duty Ratio)
b. 1/100 duty ratio (See Connection List B, C)

Figure 5 Example 2 (1/100 Duty Ratio)

Figure 6 Example 2 Waveform (1/100 Duty Ratio)

Description

The HD66108T under control of an 8 -bit MPU can drive a dot matrix graphic LCD (liquid-crystal display) employing bit-mapped display with support of an 8-bit MPU.
Use of the HD66108T enables a simple LCD system to be configured with only a small number of chips, since it has all the functions required for driving the display.
The HD66108T also enables highly-flexible display selection due to the bit-mapped method, in which one bit of data in a display RAM turns one dot of an LCD panel on or off. A single HD66108T can display a maximum of 100×65 dots by using its on-chip 165 $\times 65$-bit RAM. Also, by using several HD66108T's, a display can be further expanded.
The HD66108T employs the CMOS process and TAB package. Thus, if used together with an MPU, it can provide the means for a battery-driven pocketsize graphic display device utilizing the low current consumption of LCDs.

Features

- Four types of LCD driving circuit configurations can be selected:

	No. of Column Outputs	No. of Row Outputs
Configuration Type		
Rown outputs only loft and rights from the ses	165	0
Row outputs from the right side 1	100	65 (from left: 32, from right: 33)
Row outputs from the right side 2	132	65

- Seven types of multiplexing duty ratios can be selected: $1 / 32,1 / 34,1 / 36,1 / 48,1 / 50,1 / 64,1 / 66$ Notes: The maximum number of row outputs is 65 .
- Built-in bit-mapped display RAM: 10 kbits ($165 \times$ 65 bits)
- The word length of display data can be selected according to the character font: 8-bit or 6-bit
- A standby operation is available
- The display can be extended through a multi-chip operation
- A built-in CR oscillator
- An 80 -system CPU interface: $\Phi=4 \mathrm{MHz}$
- Power supply voltage for operation: 2.7 V to 6.0 V
- LCD driving voltage: 6.0 V to 15.0 V
- Low current consumption: $400 \mu \mathrm{~A}$ max (at $\mathrm{f}_{\text {osc }}=$ $500 \mathrm{kHz}, \mathrm{f}_{\text {osc }}$ is external clock frequency)

Ordering Information

Type No.	Package
HD66108T00	208 pin TCP

Note: The details of TCP pattern are shown in "The Information of TCP"

Pin Description

Classification	No. of Pins	Symbol	1/0	No. of Pin	s Function
Power	8, 9, 35, 36	$\mathrm{V}_{\mathrm{cc}} 1-\mathrm{V}_{\mathrm{cc}} 4$	-	4	Connect these pins to V_{cc}.
Supply	12~14	GND1-GND3	-	3	Ground these pins.
	1,43	$\mathrm{V}_{\mathrm{EE}} 1, \mathrm{~V}_{\mathrm{EE}}{ }^{2}$	-	2	These pins supply power to the LCD driving circuits and should usually be set to the V6 level.
	$\begin{aligned} & \hline 2,7 \\ & 37,42 \\ & 4,5 \\ & 6,39,38 \\ & 3,40,41 \\ & \hline \end{aligned}$	V6L, V1L, V1R, V6R, V4, V3, VMH1-VMH3, VML1-VML3	-	12	Apply an LCD driving voltage V1 to V6 to these pins.
CPU Interface	23	$\overline{\text { CS }}$	1	1	Input a chip select signal via this pin. A CPU can access the HD66108T's internal registers only while the $\overline{\mathrm{CS}}$ signal is low.
	25	\bar{W}	1	1	Input a write enable signal via this pin.
	26	$\overline{\mathrm{RD}}$	1	1	Input a read enable signal via this pin.
	24	RS	1	1	Input a register select signal via this pin.
	27~34	DB0-DB7	I/O	8	Data is transferred between the HD66108T and a CPU via these pins.
LCD Driving Output	44~208	X0-X164	0	165	These pins output LCD driving signals. The X0-X31 and X100-X164 pins are column /row common pins and output row driving signals when so programmed. X32X99 pins are column pins.
LCD Interface	21	FLM	1/0	1	This pin outputs a first line marker when the HD66108T is a master chip and inputs the signal when the chip is a slave chip.
	20	CL1	1/0	1	This pin outputs latch clock pulses of display data when the chip is a master chip and inputs clock CL1 pulses when the chip is a slave chip.
	22	M	1/0	1	This pin outputs or inputs an M signal, which converts LCD driving outputs to $A C$; it outputs the signal when the HD66108T is a master chip and inputs the signal when the chip is a slave chip.
Control	10	OSC1	1	1	Input system clock pulses via this pin.
Signals	11	OSC2	0	1	This pin outputs clock pulses generated by the internal CR oscillator.
	19	CO	0	1	This pin outputs the same clock pulses as the system clock pulses, the OSC1 pin of a slave chip. Connect with the OSC1 pin of a slave chip.
	18	\bar{M} / S	1	1	This pin specifies master/slave. Set this pin low when the HD66108T is a master chip and set high when the chip is a slave chip; must not be changed after power-on.
	17	RESET	1	1	Input a reset signal via this pin. Setting this pin low initializes the HD66108T.
	15, 16	$\begin{aligned} & \text { TEST1, } \\ & \text { TEST2 } \end{aligned}$	1	2	These pins input a test signal and should usually be set low.

Internal Block Diagram

HD66108

Register List

Notes: 1. Shaded bits are invalid. Writing 1 or 0 to invalid bits does not affect LSI operation. Readins these bits returns 0 .
2. DRAM is not actually a register but can be handled as one.
3. Setting the WLS bit of control register to 1 invalidates D7 and D6 bits of the display memor register.
4. DRAM must not be written to or read from until a time period of $\mathrm{t}_{\mathrm{CL} 1}$, has elapsed rewritin! the DUTY bit of FCR or the FFS bit of MDR. $\mathrm{t}_{\mathrm{CL} 1}$ can be obtained from the followin! equation; in general, a time period of 1 ms or greater is sufficient if the frame frequency i $60-90 \mathrm{~Hz}$.

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{CL1}}=\frac{\mathrm{D} 2}{\mathrm{Niof}_{\mathrm{CLK}}(\mathrm{kHz})}(\mathrm{ms}) \cdots-\text { Equation } 1 \\
& \mathrm{D} 2 \text { (duty correction value 2) }: \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Ni (frequency-division ratio specified by the mode register's FFS bits)
: $2,1,1 / 2,1 / 3,1 / 4,1 / 6$, or $1 / 8$
Refer to "6. Clock and Frame Frequency."
$\mathrm{f}_{\mathrm{cLK}}$: Input clock frequency (kHz)

System Description

The HD66108T can assign a maximum of 65 out of 165 channels to row outputs for LCD driving . It also incorporates a timing generator and display memory, which are necessary to drive an LCD.

If connected to an MPU and supplied with LCD driving voltage, one HD66108T chip can be used to configure an LCD system with a 100×65 dot panel (figure 1). In this case, clock pulses should be supplied by the internal CR oscillator or the MPU.

Using LCD expansion signals CL1, FLM, and M enables the display size to be expanded. In this case, LCD expansion signal pins output corresponding signals when pin \bar{M} / S is set low for master mode and conversely input corresponding signals when pin \bar{M} / S is set high for slave mode; LCD expansion signal pins of both master chip and slave chips must be mutually connected. Figure 2 shows a basic system configuration using two HD66108T chips.

Figure 1 Basic System Configuration (1)

Figure 2 Basic System Configuration (2)

Functional Description

1. Display Size Programming

A variety of display sizes can be programmed by changing the system configuration and internal register settings.

(1) System Configuration Using 1 HD66108T Chip

When the 65 -row-output mode is selected by internal register settings, a maximum of 100 dots in the \mathbf{X} direction can be displayed (figure 3 (a)). Display size in the Y direction can be selected from 32 , $34,36,48,50,64$, and 65 dots according to display duty setting. Note that Y direction settings does not affect those in the X direction (100 dots).

When the 33-row-output mode is selected by internal register settings, a maximum of 132 dots in the \mathbf{X} direction can be displayed (figure 3 (b)).
sizes and the control register's (FCR) ROS and DUTY bits. ROS and DUTY bit settings determine the function of \mathbf{X} pins. For more details, refer to " 4.1 Row Output Pin Selection."

(2) System Configuration Using 1 HD66108T

Chip and 1 HD61203 Chip as Row Driver A maximum of 64 dots in the Y direction and 165 dots in the X direction can be displayed. 48 or 64 dots in the Y direction can be selected by HD61203 pin settings (figure 3 (c)).

(3) System Configuration Using 2 or more

 HD66108T ChipsX direction size can be expanded by 165 dots per chip. Figure 3 (d) shows a 265×65-dot display. Y direction size can be expanded up to 130 dots with 2 chips; a 100×130-dot display provided by 2 chips is shown in figure 3 (e).

Table 1 shows the relationship between display

ROS Bit Setting (XO-X164 Pin Function)	Duty Bit Setting (Multiplexing Duty Ratio)						
	1/32	1/34	1/36	1/48	1/50	$1 / 64$	1/66
165-column-output	Specified by a row driver						
65-row-output from the right side	$\begin{aligned} & \mathrm{X}: 100 \\ & \mathrm{Y}: 32 \end{aligned}$	$\begin{aligned} & \text { X: } 100 \\ & \mathrm{Y}: 34 \end{aligned}$	$\begin{aligned} & X: 100 \\ & Y: 36 \end{aligned}$	$\begin{aligned} & \mathrm{X}: 100 \\ & \mathrm{Y}: 48 \end{aligned}$	$\begin{aligned} & X: 100 \\ & Y: 50 \end{aligned}$	$\begin{aligned} & \text { X: } 100 \\ & \text { Y: } 64 \end{aligned}$	$\begin{aligned} & \text { X: } 100 \\ & \text { Y: } 65 \end{aligned}$
65-row-output from the left and right sides	$\begin{aligned} & \text { X: } 100 \\ & \text { Y: } 32 \end{aligned}$	$\begin{aligned} & \text { X: } 100 \\ & \mathrm{Y}: 34 \end{aligned}$	$\begin{aligned} & \text { X: } 100 \\ & \text { Y: } 36 \end{aligned}$	$\begin{aligned} & \text { X: } 100 \\ & \mathrm{Y}: 48 \end{aligned}$	$\begin{aligned} & X: 100 \\ & Y: 50 \end{aligned}$	$\begin{aligned} & \text { X: } 100 \\ & \text { Y: } 64 \end{aligned}$	$\begin{aligned} & X: 100 \\ & Y: 65 \end{aligned}$
33-row-output from the right side	$\begin{aligned} & \text { X: } 132 \\ & \text { Y: } 32 \end{aligned}$	$\begin{aligned} & \text { X: } 132 \\ & \mathrm{Y}: 33 \end{aligned}$	$\begin{aligned} & \mathrm{X}: 132 \\ & \mathrm{Y}: 33 \end{aligned}$	$\begin{aligned} & \text { X: } 132 \\ & \mathrm{Y}: 33 \end{aligned}$	$\begin{aligned} & \mathrm{X}: 132 \\ & \mathrm{Y}: 33 \end{aligned}$	$\begin{aligned} & \text { X: } 132 \\ & Y: 33 \end{aligned}$	$\begin{aligned} & \text { X: } 132 \\ & \text { Y: } 33 \end{aligned}$

(a) Configuration Using 1 HD66108T Chip (1) (65-Row Output from the Right Side)

(c) Configuration Using 1 HD66108T Chip and 1 HD61203 as Row Driver (165-Column Output)

(d) Configuration Using 2 HD66108T Chips (1)

(e) Configuration Using 2 HD66108T Chips (2)

Figure 3 Relationship between System Configurations and Display Sizes

2. Display Memory Construction and Word Length Setting

The HD66108T has a bit-mapped display memory of 165×65 bits. As shown in figure 4, data from the MPU is stored in the display memory, with the MSB (most significant bit) on the left and the LSB (least significant bit) on the right.

The sections on the LCD panel corresponding to the display memory bits in which 1's are written will be displayed as on (black).

Display area size of the internal RAM is determined by control register (FCR) settings (refer to table 1).

The start address in the Y direction for the display area is always Y 0 , independent of the registersetting. In contrast, the start address in the \mathbf{X} direction is X 0 in the modes for 165 -column-output, 65 -rowoutput from the right side, and 33-row-output from
the right side, and is X32 in the 65 -row-output mode from the left and right sides.

Each display area contains the number of dots shown in table 1, beginning from each start address.

For more detail, refer to " 4.2 Row Output Data Setting, " figures 15 to 19.

In the display memory, one \mathbf{X} address is assigned to each word of 8 or 6 bits long in X direction. (Either 8 or 6 bits can be selected as word length of display data.) Similarly, one Y address is assigned to each row in Y direction.

Accordingly, X address 20 in the case of 8 -bit word and X address 27 in the case of 6 -bit word have 5 and 3 bits of display data, respectively. Nevertheless, data is also stored here with the MSB on the left (figure 5).

Figure 4 Relationship between Memory Construction and Display

Figure 5 Display Memory Addresses

3. Display Data Write

3.1 Display Memory and Data Register Accesses

(1) Access

Figure 6 shows the relationship between the address register (AR) and internal registers and display memory in the HD66108T. Display memory shall be referred to as a data register since it can be handled as other registers.

To access a data register, the register address assigned to the desired register must be written into the address register's Register No.bits. The MPU will access only that register until the register address is updated.
(2) Busy Check

A busy time period appears after display memory read/write or X or Y address register write, since post-access processing is performed synchronously with internal clock pulses. Updating data in registers other than the address register is disabled during this time. Subsequent data must be input after confirming ready mode by reading the address register. The busy time period is a maximum of 8 clock pulses after display memory read/ write and a maximum of 1.5 clock pulses after X or Y address register write (figure 7).
(3) Dummy Read

When reading out display data, the data which is read out immediately after setting the X and Y addresses is invalid. Valid data can be read out after one dummy read, which is performed after setting the X and Y addresses desired (figure 8).
(4) Limitations on Access

As shown in figure 9, the display memory must not be rewritten until a time period of $t_{c L 1}$ or longer has elapsed after rewriting the control register's DUTY bits or the mode register's FFS bits. However, display memory and registers other than the control register and mode register can be accessed even during this time period. $\mathrm{t}_{\mathrm{cL} 1}$ can be obtained from the following equation. If using an LSI with a frame frequency of 60 Hz or greater, a time period of 1 ms should be sufficient.
$\mathrm{t}_{\mathrm{CL} 1}=\frac{\mathrm{D} 2}{{\mathrm{Ni} \cdot \mathrm{f}_{\mathrm{CLK}}}(\mathrm{kHz})} \quad(\mathrm{ms}) \quad .$. Equation 1

D2 (duty correction value 2) :
192 (duty $=1 / 32,1 / 34$, or $1 / 36$)
128 (duty $=1 / 48$ or $1 / 50$)
96 (duty $=1 / 64$ or $1 / 66$)
Ni (frequency-division ratio specified by the mode register's FFS bits)
$: 2,1,1 / 2,1 / 3,1 / 4,1 / 6$, or $1 / 8$
$\mathrm{f}_{\mathrm{cLK}} \quad$: Input clock frequency (kHz)

Registers accessible with pin RS $=0$
Address register

Registers accessible with pin RS = 1

Figure 6 Relationship between Address Register and Register No.

Figure 7 Relationship between Clock Pulses and Busy Time (Updating Display Data)

Figure 9 Rewriting Display Memory after Rewriting Registers

3.2 X and Y Address Counter Auto-Incrementing Function

As described in "2. Display Memory Construction and Word Length Setting, " the HD66108T display memory has \mathbf{X} and Y addresses. Internal X address counter and Y address counter both employ an autoincrementing function. After display data is read or written, the X or Y address is incremented according to the address increment direction selected by internal register.

Although X addresses up to 20 are valid when 8 bits make up one word (up to 27 when 6 bits make up one word), the X address counter can count up to 31 since it is a 5-bit freecounter. Similarly, although Y addresses up to 64 are valid, the Y address counter can count up to 127. Consequently, X or Y address must be re-set at an appropriate point as shown in figure 10.
X address counted

Figure 10 X/Y Address Counter Increment

4. Selection for LCD Driving Circuit Configuration

4.1 Row Output Pin Selection

The HD 66108 T can assign a maximum of 65 pins for row outputs among the 165 pins named X0-X164. The X0-X164 pins can be classified into four blocks labeled A, B, C, and D (figure 11 (a)). Blocks A, C, and D consist of row/column common pins and block B consists of column pins only. The output function of the LCD driving pins and the combination of blocks can be selected by internal registers.

Figure 11 shows an example of 165 -column-output mode. This configuration is useful when using more than 1 HD66108T chip or using the HD66108T as a slave chip of the HD61203.

Figure 12 shows an example of 65 -row-output mode from the right side. Blocks A and B are used for column output and blocks C and D (X100-X164 pins) for row output. This configuration offers an easy way
of connecting row output lines in the case of using one or more HD66108T chips.

Figure 13 shows an example of 65-row-output mode from the left and right sides. 32 pins of X0-X31 and 33 pins of X132-X164 are used for row output here. This configuration offers an easy way of connecting row output lines in the case of using only one HD66108T chip.

Figure 14 shows an example of 33 -row-output mode from the right side. Block D, i.e., X132-X164 pins, is used for row outputs. This configuration provides a means for assigning many pins to column outputs when $1 / 32$ or $1 / 34$ multiplexing duty ratio is desired.

In all modes, it is row data and multiplexing duty ratio that determine which pins are actually used among the pins assigned to row output. Y values shown in table 1 indicate the numbers of pins that are actually used. Pins not used must be left disconnected.

Figure 11 165-Column-Output Mode

Figure 12 65-Row-Output Mode from the Right Side

Figure 13 65-Row-Output Mode from the Left and Right Sides

Figure 14 33-Row-Output-Mode from the Right Side

4.2 Row Output Data Setting

If certain LCD driving output pins are assigned to row output, data must be written to display memory for row output. The specific area to which this data must be written depends on the row-output mode and the procedure of writing row data to the display memory (0 or 1 to which bits?) depends on which X pin drives which line of the LCD. Row data area is determined by the control register's (FCR) ROS and DUTY bits and is identical to the protected area, which will be described below. (165 -column-output mode has no protected area, thus requiring no row data to be written (figure 15).)

Procedure of writing row data to the display memory is as follows. First, 1 must be written to the bit at the intersection between line Yj and line (column) Xi (column). Line Yj is filled with data to be displayed on the first line of the LCD and line Xi is connected to pin Xn , which drives the first line of the LCD. Following this, 0 s must be written to the remaining bits on line Yj in the row data area. This rule applies to subsequent lines on the LCD.
and protected areas.
Figure 16 shows the relationship between row data and display. Here the mode is 65 -row output from the right side. Display data on YO is displayed on the first line of the LCD and data on Y64 is displayed on the 65th line of the LCD. If X164 is connected to the first line of the LCD and X100 is connected to the 65th line of the LCD, 1 s must be written to the bits on the diagonal line between coordinates (X164, Y0) and (X100, Y64) and 0s to the remaining bits. Row data protect function must be turned off before writing row data and be turned on after writing row data. Turning on the row data protect function disables read/write of display memory area corresponding to the row output pins, i.e., prevents row data from being destroyed. In figure 16, display memory area corresponding to pins X 100 to X 164 is protected.

Figures 17 to 19 show examples of row data settings. Some multiplexing duty ratios result in invalid display areas. Although an invalid display area can be read from or written to, it will not be displayed.

Table 2 shows the relationship between FCR settings

Table 2 Relationship between FCR Settings and Protected Areas
Control Register (FCR)

ROS				LCD Driving Signal Output Pins Connected to	
PON	4	3	Mode	Protected Area of Display Memory	Figures
1	0	0	165-column	No area protected	15
1	0	1	65-row (R)	X100-X164	16, 19
1	1	0	65-row (L/R)	X0-X31 and X132-X164	17
1	1	1	33-row (R)	X132-X164	18

65-row (R) : 65-row-output mode from the right side
65-row (L/R) : 65-row-output mode from the left and right sides
33-row (R) : 33-row-output mode from the right side

Control registerROS bit $=00$
DUTY bit = 101
LCD driving voltages:
$\mathrm{VMH} 1=\mathrm{V} 3, \mathrm{VML} 1=\mathrm{V} 4$, $\mathrm{VMH2}=\mathrm{V} 3, \mathrm{VML} 2=\mathrm{V} 4$, $\mathrm{VMH3}=\mathrm{V} 3, \mathrm{VML} 3=\mathrm{V} 4$

Figure 15 Relationship between Row Data and Display (165-Column Output, 1/64 Multiplexing Duty Ratio)

Control register ROS bit $=01$ DUTY bit $=110$
LCD driving voltages:

$$
\begin{aligned}
& \mathrm{VMH} 1=\mathrm{V} 3, \mathrm{VML1}=\mathrm{V} 4, \\
& \mathrm{VMH} 2=\mathrm{V} 2, \mathrm{VML2}=\mathrm{V}, \\
& \mathrm{VMH} 3=\mathrm{V} 2, \mathrm{VML} 3=\mathrm{V} 5
\end{aligned}
$$

Figure 16 Relationship between Row Data and Display (65-Row Output from the Right Side, 1/66 Multiplexing Duty Ratio)

HD66108

Control register ROS bit $=10$
DUTY bit $=110$
LCD driving voltages:
VMH1 = V2, VML1 = V5, $\mathrm{VMH2}=\mathrm{V} 3, \mathrm{VML2}=\mathrm{V} 4$, VMH3 $=\mathrm{V} 2, \mathrm{VML} 3=\mathrm{V} 5$

Figure 17 Relationship between Row Data and Display (65-Row Output from the Left and Right Sides, 1/66 Multiplexing Duty Ratio)

Figure 18 Relationship between Row Data and Display

Note: Pins X100-X116 are left disconnected here.
Figure 19 Relationship between Row Data and Display
(65-Row Output from the Right Side, $1 / 48$ Multiplexing Duty Ratio)

4.3 LCD Driving Voltage Setting

There are 6 levels of LCD driving voltages ranging from V1 to V6; V1 is the highest and V6 is the lowest. As shown in figure 20, column output waveform is made up of a combination of V1, V3, V4, and V6 while row output waveform is made up of V1,V2, V5, and V6. This means that V1 and V6 are common to both waveforms while mid-voltages are different.

To accommodate this situation, each block of the HD66108T is provided with power supply pins for
mid-voltages as shown in figure 21. Each pair of V1R and V1L and V6R and V6L are internally connected and must be applied the same level of voltage. Block B is fixed for column output and must be applied V3 and V4 as mid-voltages. The other blocks must be applied different levels of voltages according to the function of their LCD driving output pins; if the LCD driving output pins are set for row output, VMHn and VMLn must be applied V2 and V5, respectively, while they must be applied V3 and V4, respectively, if the pins are set for column output ($\mathrm{n}=1$ to 3).

Table 3 Relationship between FCR settings and LCD Driving Voltages

65 -row (R) : 65-row-output mode from the right side
65 -row (L/R) : 65 -row-output mode from the left and right sides
33-row (R) : 33-row-output mode from the right side

Figure 21 Relationship between Blocks and LCD Driving Voltages

5. Multiplexing Duty Ratio and LCD Driving Waveform Settings

A multiplexing duty ratio and LCD driving waveform can be selected via internal registers.

A multiplexing duty ratio of $1 / 32,1 / 34,1 / 36,1 / 48,1 /$ $50,1 / 64$, or $1 / 66$ can be selected according to the LCD panel used. However, since there are only 65 rowoutput pins, only 65 lines will be displayed even if $1 /$ 66 multiplexing duty ratio is selected.

There are three types of LCD driving waveforms, as shown in figure 22: A-type waveform, B-type waveform, and C-type waveform.

The A-type waveform is called per-half-line inversion. Here, the waveforms of M signal and CL1 signal are the same and alternate every LCD line.

The B-type waveform is called per-frame inversion; in this case, the M signal inverts its polarity every
frame so as to alternate every two LCD frames. This is the most common type.

The C-type waveform is called per-n-line inversion and inverts its polarity every n lines (n can be set as needed within 1 to 31 via the internal registers). The C-type waveform combines the advantages of the Aand B-types of waveforms. However, some lines will not be alternated depending on the multiplexing duty ratio and n . To avoid this, another C-type waveform is available which is generated from the EOR of the Ctype waveform M signal mentioned above and the B type waveform M signal. Since the relationship between n and display quality usually depends on the LCD panel, n must be determined by observing actual display results.

The B-type waveform should be used if the LCD panel specifies no particular type of waveform. However, in some cases, the C-type waveform may create a better display.

Figure 22 LCD Driving Waveforms
(Row Output with a 1/32 Multiplexing Duty Ratio)

6. Clock and Frame Frequency

An input clock with a $200-\mathrm{kHz}$ to $4-\mathrm{MHz}$ frequency can be used for the HD66108T. Note that raising clock frequency increases current consumption although it reduces busy time and enables high-speed operations. An optimum system clock frequency should thus be selected within 200 kHz to 4 MHz .

The clock frequency driving the LCD panel (= frame frequency) is usually 70 Hz to 90 Hz . Accordingly, the HD66108T is so designed that the frequencydivision ratio of the input clock can be selected. The HD66108T generates around $80-\mathrm{Hz}$ LCD frame frequency if the frequency-division ratio is 1 . The frequency-division ratio can be obtained from the following equation.

$$
\mathrm{Ni}=\frac{\mathrm{f}_{\mathrm{F}}}{\mathrm{f}_{\mathrm{CLK}}} \times \frac{500}{80} \times \mathrm{D} 1
$$

Ni : Frequency-division ratio
f_{F} : Frame frequency required for the LCD panel (Hz)
$\mathrm{f}_{\mathrm{cLK}}$: Input clock frequency (kHz)
D1 : Duty correction value 1
D1 $=1$ when multiplexing duty ratio is $1 / 32$, $1 / 48$ or $1 / 64$
D1 $=32 / 34$ when multiplexing duty ratio is 1/34
D1 $=32 / 36$ when multiplexing duty ratio is 1/36
D1 $=48 / 50$ when multiplexing duty ratio is 1/50
D1 $=64 / 66$ when multiplexing duty ratio is 1/66

The frequency-division rationearest the value obtained from the above equation must be selected; selectable frequency-division ratios by internal registers are 2 , $1,1 / 2,1 / 3,1 / 4,1 / 6$, and $1 / 8$.

7. Display Off function

The HD66108T has a display off function which turns off display by rewriting the contents of the internal register. This prevents random display at power-on until display memory is initialized.

8. Standby Function

The HD66108T has a standby function provinding low-power dissipation. Writing a 1 to bit 6 of the address register starts up the standby function.

The LCD driving voltages, ranking from V1 to V6, must be set to V_{cc} to prevent DC voltage from beging applied to an LCD panel during standby state.

The HD66108T operates as follows in standby mode.
(1) Stops oscillation and external clock input
(2) Resets all registers to 0's except the STBY bit

Here, note that the display memory will not preserve data if the standby function is turned on; the display memory as well as registers must be set again after the standby function is terminated.

Table 4 shows the standby status of pins and table 5 shows the status of registers after standby function termination.

Writing a 0 to bit 6 of the address register terminates the standby function. Writing values into the DISP and Register No. bits at this time is ignored; these bits need to be set after the standby function has been completely terminated.

Figure 23 shows the flow for start-up and termination of the standby function and related operations.

Table 4 Standby Status of Pins

Pin	Status
OSC2	High
CO	Low
CL1	Low (master chip) or high-impedance (slave chip)
FLM	Low (master chip) or high-impedance (slave chip)
M	Low (master chip) or high-impedance (slave chip)
Xn (column output pins)	V 4
Xn ' (row output pins)	V 5

Table 5 Register Status after Standby Function Termination

Register Name	Status after Standby Function Termination
Address register	Reset to 0's except for the STBY bit
X address register	Reset to 0's
Y address register	Reset to 0's
Control register	Reset to 0's
Mode register	Reset to 0's
C select register	Reset to 0's
Display memory	Data not preserved

Notes: 1. Not necessary in the case of using internal oscillation
2. Refer to equation 1 (section 3.1).

Figure 23 Start-Up and Termination of Standby Function and Related Operations

9. Multi-Chip Operation

Using multiple HD66108T chips (= multi-chip operation) provides the means for extending the number of disply dots. Note the following items when using the multi-chip operation.
(1) The master chip and the slave chips must be determined; the $\overline{\mathrm{M}} / \mathrm{S}$ pin of the master chip must be set low and the $\overline{\mathrm{M}} / \mathrm{S}$ pin of the slave chips must be set high.
(2) All the HD66108T chips will be slave chips if HD61203 or its equivalent is used as a row driver.
(3) The master chip supplies the FLM, CL1, and M signals to the slave chips via the corresponding pins, which synchronizes the slave chips with the master chip.
(4) Since a master chip outputs synchronization signals, all data registers must be set.
(5) The following bits for slave chips must always be set:
INC, WLS, PON, and ROS (control register)
FFS (mode register)
It is not necessary to set the control register's DUTY bits, the mode register's DWS bits, or the C select register. Forother registers' settings, refer to table 6.
(6) All chips must be set to LCD off in order to turn off the display.
(7) The standby function of slave chips must be started up first while that of the master chip must be terminated first.

Figure 24 to 26 show the connections of the synchronization signals for different system configurations and table 6 lists the differences between master mode and slave mode.

Note: Clock pulses for the slave chip can be supplied from the master chip CO pin.
Figure 24 Configuration Using 2 HD66108T Chips (1)

Note: Clock pulses for the slave chip can be supplied from the master chip CO pin.
Figure 25 Configuration Using 2 HD66108T Chips (2)

HD66108

Table 6 Comparison between Master and Slave Mode

Item		Master Mode	Slave Mode
Pin:		Must be set low	Must be set high
	, OSC2	Oscillation is possible	Oscillation is possible
		= OSC1	= OCS 1
	CL1, M	Output signals	Input signals
Register:	AR	Valid	Valid
	XAR	Valid	Valid
	YAR	Valid	Valid
	FCR	Valid	Valid except for the DUTY bits
	MDR	Valid	Valid except for the DWS bits
	CSR	Valid (only if the DWS bits are set for the C-tye waveform)	Invalid

Notes

- Valid : Needs to be set
- Invaid: Need not be set

Note: 1. The slave chip can oscillate CR clock pulses. In this case, the clock pulses must be supplied to the HD61203 from the HD66108T's CO pin.
2. The HD61203's control pins must be set in accordance with the type of RAMs.

Figure 26 Configuration Using 1 HD66108T Chip with Another Row Driver (HD61203)

Internal Registers

All HD66108T's registers can be read from and written into. However, the BUSY FLAG and invalid bits cannot be written to and reading invalid bits or registers returns 0's.

1. Address Register (AR) (Accessed with $R S=0$)

This register (figure 27) contains Register No. bits,

BUSY FLAG bit, STBY bit, and DISP bit. Register No. bits select one of the data registers according to the register number written. The BUSY FLAG bit indicates the internal operation state if read. The STBY bit activates the standby function. The DISP bit turns the display on or off. This register is selected when RS pin is 0 .

Bits D4 and D3 are invalid.

Figure 27 Address Register

HD66108

2. Display Memory (DRAM) (Accessed with RS $=1$, register number $\left.=(000)_{2}\right)$

Although display memory (figure 28) is not a register, it can be handled as one. 8- or 6-bit data can be selected by the control register WLS bit according to the character font in use. If 6-bit data is selected, D7 and D6 bits are invalid.
3. X Address Register (XAR) (Accessed with RS $=1$, register number $\left.=(001)_{2}\right)$

This register (figure 29) contains 3 invalid bits (D7 to D5) and 5 valid bits (D4 to D0). It sets X addresses and confirms \mathbf{X} addresses after writing or reading to or from the display memory.

4. Y Address Register (YAR) (Accessed with RS = 1 , register number $=(010)_{2}$)

This register (figure 30) contains 1 invalid bit (D7) and 7 valid bits (D6 to D0). It sets Y addresses and confirms Y addresses after writing or reading to or from the display memory.

Figure 28 Display Memory

XAD: 0 to 20 ($\$ 00$ to $\$ 14$) when display data is 8 bits long and 0 to 27 ($\$ 00$ to $\$ 1 B$) when display data is 6 bits long. A maximum of $\$ 1 \mathrm{~F}$ is programmable.

Figure 29 X Address Register

YAD: 0 to 128 ($\$ 00$ to $\$ 7$ F)
Figure 30 Y Address Register
5. Control Register (FCR) (Accessed with RS = 1, register number $\left.=(011)_{2}\right)$

This register (figure 31), containing eight bits, has a variety of functions such as specifying the method for accessing RAM, determining RAM valid area, and selecting the function of the LCD driving signal output pins. It must be initialized as soon as possible
after power-on since it determines the overall operation of the HD66108T. The PON bit may have to be re-set afterwards. If the DUTY bits are rewritten after initialization at power-on (if values other than the initial values are desired), the display memory will not preserve data; the display memory must be set again after a time period of $t_{c, 1}$ or longer. For determining t_{cl}, refer to equation 1 (section 3.1).

(1) INC (Address increment direction select)
-1: X address is incremented
$-0: Y$ address is incremented
(2) WLS (Word length (of display data) select)
-1: 6-bit word

- 0: 8-bit word
(3) PON (Row data protect on)
-1: Protect function on
- 0: Pretect function off
(4) ROS (Row output (function of LCD driving output pins) select)

Bit
No. 43 Contents
$000 \quad 165$ column outputs
10165 row outputs from the right side
$2 \quad 10 \quad 65$ row outputs from the left and right sides
$3 \quad 11 \quad 33$ row outputs from the right side
(5) DUTY (Multiplexing duty ratio)

	Bit			Multiplexing
No.	2	1	0	Duty Ratio
0	0	0	0	$1 / 32$
1	0	0	1	$1 / 34$
2	0	1	0	$1 / 36$
3	0	1	1	$1 / 48$
4	1	0	0	$1 / 50$
5	1	0	1	$1 / 64$
6	1	1	0	$1 / 66$
7	1	1	1	Testing mode

HD66108

6. Mode Register (MDR) (Accessed with RS = 1, register number $\left.=(\mathbf{1 0 0})_{\mathbf{2}}\right)$

This register (figure 32), containing 3 invalid bits (D7 to D5) and 5 valid bits (D4 to D0), selects a system clock and type of LCD driving waveform. It must also be initialized after power-on since it determines overall HD66108T operation like the FCR register. If
the FFS bits are rewritten after initialization at poweron (if values other than the initial values are desired), the display memory will not preserve data; the display memory must be set again after a time period of $\mathrm{t}_{\mathrm{c}_{1}}$ or longer. For determining $\mathrm{t}_{\mathrm{Cl} 1}$, refer to equation 1 (section 3.1).

Figure 32 Mode Register
7. \mathbf{C} Select Register (CSR) (Accessed with RS $=$ 1, register number $\left.=(101)_{2}\right)$

This register (figure 33) contains 2 invalid bits (D7
and D6) and 5 valid bits (D5 to D0). It controls C-type waveforms and is activated only when MDR register's DWS bits are set for this type of waveform.

D7		D5	D4	D3	D2	D1	DO
	-	EOR			CLN		
(1)	EOR (B-type waveform M signal \oplus no. of counting lines on/off) - 1: EOR function on - 0 : EOR function off						
(2)	CLN (No. of counting lines in C-type waveform) 1 to 31 should be set in these bits; 0 must not be set.						

Figure 33 C Select Register

Reset Function

The RESET pin starts the HD66108T after poweron. A RESET signal must be input via this pin for at least $20 \mu \mathrm{~s}$ to prevent system failure due to excessive current created after power-on. Figure 34 shows the reset definition.
(1) Reset Status of Pins

Table 7 shows the reset status of output pins. The pins return to normal operation after reset.
(2) Reset Status of Registers

The RESET signal has no effect on registers
or register bits except for the address register's STBY bit and the X and Y address registers, which are reset to 0 's by the signal. Table 8 shows the reset status of registers.

(3) Status after Reset

The display memory does not preserve data which has been written to it before reset; it must be set again after reset.
$\mathrm{A} \overline{\text { RESET }}$ signal terminates the standby mode.

Table 7 Reset Status of Pins

Pin	Status
OSC2	Outputs clock pulses or oscillates
CO	Outputs clock pulses
CL1	Low (master chip) or high-impedance (slave chip)
FLM	Low (master chip) or high-impedance (slave chip)
M	Low (master chip) or high-impedance (slave chip)
Xn (column output pins)	V4
Xn (Row output pins)	V5

Table 8 Reset Status of Registers

Register	Status
Address register	Pre-reset status with the STBY bit reset to 0
X address register	Reset to O's
Y address register	Reset to O's
Control register	Pre-reset status
Mode register	Pre-reset status
C select register	Pre-reset status
Display memory	Preserves no pre-reset data

Figure 34 Reset Definition

Precautionary Notes When Using the HD66108T

(1) Install a $0.1-\mu \mathrm{F}$ bypass capacitor as close to the LSI as possible to reduce power supply impedance (V_{Cc}-GND and $\mathrm{V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{EE}}$).
(2) Do not leave input pins open since the HD66108T is a CMOS LSI; refer to "Pin Functions" on how to deal with each pin.
(3) When using the internal oscillation clock, attach an oscillation resistor as close to the LSI as possible to reduce coupling capacitance.
(4) Make sure to input the reset signal at poweron so that internal units operate as specified.
(5) Maintain the LCD driving power at V_{cc} during standby state so that DC is not applied to an LCD, in which Xn pins are fixed at V4 or V5 level.

Programming Restrictions

(1) After busy time is terminated, an X or Y
address is not incremented until 0.5 -clock time has passed. If an \mathbf{X} or Y address is read during this time period, non-updated data will be read. (The addresses are incremented even in this case.) In addition, the address increment direction should not be changed during this time since it will cause malfunctions.
(2) Although the maximum output rows is 33 when 33 -row-output mode from the right side is specified, any multiplexing duty ratio can be specified. Therefore, row output data sufficient to fill the specified duty must be input in the Y direction. Figure 35 shows how to set row data in the case of $1 / 34$ multiplexing duty ratio. In this case, 0s must be set in Y33 since data for the 34th row (Y33) are not output.
(3) Do not set the C select register's CLN bits to $\mathbf{0}$ for the M signal of C -type waveform.

Figure 35 How to Set Row Data for 33-Row Output from the Right Side

HD66108

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Power Supply Voltage (1)	$\mathrm{V}_{\mathrm{CC}} 1$ to $\mathrm{V}_{\mathrm{CC}}{ }^{3}$	-0.3 to +7.0	V
Power Supply Voltage (2)	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	-0.3 to +16.5	V
Input Voltage	V_{in}	-0.3 to $\mathrm{VCC}+0.3$	V
Operating Temperature	T_{op}	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-20 to +85	${ }^{\circ} \mathrm{C}$

Notes: 1. Permanent LSI damage may occur if the maximum ratings are exceeded.
Normal operation should be under recommended operating conditions $\left(\mathrm{V}_{\mathrm{cc}}=2.7\right.$ to $6.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}$). If these conditions are exceeded, LSI malfunctions could occur.
2. Power supply voltages are referenced to $\mathrm{GND}=0 \mathrm{~V}$. Power supply voltage (2) indicates the difference between V_{CC} and V_{EE}.

Electrical Characteristics

DC Characteristics (1) ($\mathrm{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V} \pm \mathbf{2 0 \%}, \mathrm{GND}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0$ to $15 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item		Symbol Min		Typ	Max	Unit	Test Conditions	Notes
Input High Voltage	OSC1	$\mathrm{V}_{\mathrm{H}} 1$	$0.8 \times \mathrm{V}_{\mathrm{cc}}$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V		
	$\overline{\text { M/S, CL1, FLM, }}$ M, TEST1, TEST2	$\mathrm{V}_{\mathrm{H}}{ }^{2}$	$0.7 \times \mathrm{V}_{\mathrm{cc}}$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V		
	RESET	$\mathrm{V}_{\mathrm{H}}{ }^{3}$	$0.85 \times \mathrm{V}_{\mathrm{cc}}$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V		
	The other inputs	$\mathrm{V}_{\mathrm{tH}}{ }^{4}$	2.0	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$	5
Input Low Voltage	OSC1	$\mathrm{V}_{1} 1$	-0.3	-	$0.2 \times \mathrm{V}_{\mathrm{cc}}$	V		
	$\overline{\bar{M}} / \mathrm{S}, \mathrm{CL1}, \mathrm{FLM}$, M, TEST1, TEST2	$\mathrm{V}_{12}{ }^{2}$	-0.3	-	$0.3 \times \mathrm{V}_{\mathrm{cc}}$	V		
	RESET	$\mathrm{V}_{\mathrm{k}}{ }^{3}$	-0.3	-	$0.15 \times \mathrm{V}_{\mathrm{cc}}$	V		
	The other inputs	$V_{n} 4$	-0.3	-	0.8	V	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$	6
Output High Voltage	CO, CL1, FLM, M	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	$0.9 \times \mathrm{V}_{\text {cc }}$	-	-	V	$-\mathrm{I}_{\mathrm{OH}}=0.1 \mathrm{~mA}$	
	DB7-DB0	VOH^{2}	2.4	-	-	V	$\begin{aligned} & \mathrm{C}_{\mathrm{ch}}=0.2 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \% \end{aligned}$	7
Output Low Voltage	CO, CL1, FLM, M	$\mathrm{V}_{\mathrm{a}}{ }^{1}$	-	-	$0.1 \times \mathrm{V}_{\mathrm{cc}}$	V	$\mathrm{I}_{\mathrm{a}}=0.1 \mathrm{~mA}$	
	$\overline{\text { DB7-DB0 }}$	$\mathrm{V}_{\mathrm{ol}}{ }^{2}$	-	-	0.4	V	$\begin{aligned} & I_{\mathrm{a}}=1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \% \end{aligned}$	8
Input Leakage Current	All except DB7-DB0, CL1, FLM, M	${ }_{111}$	-2.5	-	2.5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{in}}=0$ to V_{cc}	
Tri-State Leakage Current	DB7-DB0, CL1, FLM, M	$\mathrm{I}_{\text {st }}$	-10	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0$ to V_{cc}	
V Pins Leakage Current	V1, V3, V4, V6, VMHn, VMLn	Ivi	-10	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\text {cc }}$	
Current Consumption	During display	$\mathrm{Icc}{ }^{\text {1 }}$	-	-	400	$\mu \mathrm{A}$	External clock $f_{\text {osc }}=500 \mathrm{kHz}$	1
		lcc^{2}	-	-	1.0	mA	Internal oscillation $\mathbf{R f}=91 \mathrm{k} \Omega$	1
	During standby data	$\mathrm{I}_{\text {sb }}$	-	-	10	$\mu \mathrm{A}$		1,2
ON Resistance between Vi and Xj	X0-X164	$\mathrm{R}_{\text {on }}$	-	-	10	k Ω	$\begin{aligned} & \pm 1_{10}=50 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10 \mathrm{~V} \end{aligned}$	3
\checkmark Pins Voltage Range		ΔV	-	-	35	\%		4
Oscillating Frequen		$\mathrm{f}_{\text {osc }}$	315	450	585	kHz	$\mathrm{Rf}=91 \mathrm{k} \Omega$	

Notes: 1. When voltage applied to input pins is fixed to V_{cc} or to GND and output pins have no load capacity.
2. When the LSI is not exposed to light and $\mathrm{Ta}=0$ to $40^{\circ} \mathrm{C}$ with the STBY bit $=1$. If using external clock pulses, input pins must be fixed high or low. Exposing the LSI to light increases current consumption.
3. IL I_{0} indicates the current supplied to one measured pin.
4. $\Delta \mathrm{V}=0.35 \times\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$. For levels $\mathrm{V} 1, \mathrm{~V} 2$, and V 3 , the voltage employed should fall between the V_{CC} and the ΔV and for levels $\mathrm{V} 4, \mathrm{~V} 5$, and V 6 , the voltage employed should fall between the V_{EE} and the $\Delta \mathrm{V}$ (figure 36).
5. $\mathrm{V}_{\mathrm{HH}} 3(\mathrm{~min})=0.7 \times \mathrm{V}_{\mathrm{cc}}$ when used under conditions other than $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{v} \pm 10 \%$.
6. $\mathrm{V}_{\mathrm{I}} 3$ (max) $=0.15 \times \mathrm{V}_{\mathrm{cc}}$ when used under conditions other than $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$.
7. $\mathrm{V}_{\mathrm{ot}} 2(\mathrm{~min})=0.9 \times \mathrm{V}_{\mathrm{cc}}\left(-\mathrm{I}_{\mathrm{OH}}=0.1 \mathrm{~mA}\right)$ when used under conditions other than $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$.
8. $\mathrm{V}_{\mathrm{o}}{ }^{2}(\mathrm{max})=0.1 \times \mathrm{V}_{\mathrm{cc}}\left(\mathrm{l}_{\mathrm{c}}=0.1 \mathrm{~mA}\right)$ when used under conditions other than $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$.

DC Characteristics (2) ($\mathrm{V}_{\mathrm{cC}}=2.7$ to $4.0 \mathrm{~V}, \mathbf{G N D}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=\mathbf{6 . 0}$ to $\mathbf{1 5} \mathrm{V}, \mathbf{T a}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted)

Item		Symbol Min		Typ			Test Conditions	Notes
Input High	RESET	$\mathrm{V}_{\mathrm{HH}} 1$	$0.85 \times V_{c c}$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V		
Voltage	The other inputs	$\mathrm{V}_{\mathrm{w}}{ }^{2}$	$0.7 \times \mathrm{V}_{\mathrm{cc}}$	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V		
Input Low Voltage	$\overline{\mathrm{M}} / \mathrm{S}, \mathrm{OSC1}, \mathrm{CL} 1$, FLM, TEST1, TEST2, M	$\mathrm{V}_{\mathrm{L}} 1$	-0.3	-	$0.3 \times \mathrm{V}_{\text {cc }}$	V		
	The other inputs	$\mathrm{v}_{\mathrm{ll}}{ }^{2}$	-0.3	-	$0.15 \times \mathrm{V}_{\text {c }}$	V		
Output High Voltage		VoL^{1}	$0.9 \times \mathrm{V}_{\mathrm{cc}}$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=50 \mu \mathrm{~A}$	
Output Low Voltage		$\mathrm{V}_{\mathrm{oL}}{ }^{1}$	-	-	$0.1 \times \mathrm{V}_{\mathrm{cc}}$	V	$\mathrm{I}_{\mathrm{a}}=50 \mu \mathrm{~A}$	
Input Leakage Current	All except DB7-DBO, CL1, FLM, M	I_{11}	-2.5	-	2.5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{n}}=0$ to V_{cc}	
Tri-State Leakage Current	DB7-DB0, CL1, FLM, M	$\mathrm{I}_{\text {Tst }}$	-10	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{n}}=0$ to V_{cc}	
V Pins Leakage Current	V1, V3, V4, V6, VMHn, VMLn	I_{vL}	-10	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{h}}=\mathrm{V}_{\text {EE }}$ to V_{CC}	
Current Consumption	During display	Icc 1	-	-	260	$\mu \mathrm{A}$	External clock $\mathrm{f}_{\mathrm{osc}}=500 \mathrm{kHz}$	1
		lcc^{2}	-	-	700	$\mu \mathrm{A}$	Internal oscillation $R f=75 \mathbf{k} \Omega$	1
	During standby state	$\mathrm{I}_{\text {sB }}$	-	-	10	$\mu \mathrm{A}$		1,2
ON Resistance between Vi and Xj	$\mathrm{x} 0-\mathrm{x} 164$	$\mathrm{R}_{\text {on }}$	-	-	10	k Ω	$\begin{aligned} & \pm 1_{\mathrm{L}}=50 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10 \mathrm{~V} \end{aligned}$	3
\checkmark Pins Voltage Range		$\Delta \mathrm{V}$	-	-	35	\%		4
Oscillating Frequency		$\mathrm{f}_{\text {osc }}$	315	450	585	kHz	$\mathrm{Rf}=75 \mathrm{k} \Omega$	

Notes: 1. When voltage applied to input pins is fixed to V_{cc} or to GND and output pins have no load capacity. Exposing the LSI to light increases current consumption.
2. When the LSI is not exposed to light and $\mathrm{Ta}=0$ to $40^{\circ} \mathrm{C}$ with the STBY bit $=1$. If using external clock pulses, input pins must be fixed high or low.
3. It indicates the current supplied to one measured pin.
4. $\Delta \mathrm{V}=0.35 \times\left(\mathrm{V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{EE}}\right)$. For levels $\mathrm{V} 1, \mathrm{~V} 2$, and V 3 , the voltage employed should fall between the V_{cc} and the ΔV and for levels $V 4, \mathrm{~V}$, and V , the voltage employed should fall between the V_{EE} and the $\Delta \mathrm{V}$ (figure 36).

Figure 36 Driver Output Waveform and Voltage Levels

AC Characteristics (1) ($\mathrm{V}_{\mathrm{cC}}=4.5$ to $6.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{Ta}=-\mathbf{2 0}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

1. CPU Bus Timing (figure 37)

Item	Symbol	Min	Max	Unit	
$\overline{\mathrm{RD}}$ High-Level Pulse Width	$\mathrm{t}_{\text {WRH }}$	190	-	ns	
$\overline{\overline{\text { RD}} \text { Low-Level Pulse Width }}$	$t_{\text {wRL }}$	190	-	ns	
WR High-Level Pulse Width	$\mathrm{t}_{\text {wwh }}$	190	-	ns	
$\overline{\overline{W R}}$ Low-Level Pulse Width	$\mathrm{t}_{\text {wwL }}$	190	-	ns	
WR-RD High-Level Pulse Width	$t_{\text {wWRH }}$	190	-	ns	
$\overline{\text { CS, RS Setup Time }}$	$t_{\text {As }}$	0	-	ns	
$\overline{\text { CS, RS Hold Time }}$	$t_{\text {AH }}$	0	-	ns	
Write Data Setup Time	$\mathrm{t}_{\text {osw }}$	100	-	ns	
Write Data Hold Time	$\mathrm{t}_{\text {OHW }}$	0	-	ns	
Read Data Output Delay Time	$t_{\text {DDR }}$	-	150	ns	Note
Read Data Hold Time	$\mathrm{t}_{\text {DHR }}$	20	-	ns	Note
External Clock Cycle Time	$\mathrm{t}_{\mathrm{crc}}$	0.25	5.0	$\mu \mathrm{s}$	
External Clock High-Level Pulse Width	$\mathrm{t}_{\text {WCH }}$	0.1	-	$\mu \mathrm{s}$	
External Clock Low-Level Pulse Width	$t_{\text {wcl }}$	0.1	-	$\mu \mathrm{s}$	
External Clock Rise and Fall time	tr, tf	-	20	ns	

Note: Measured by test circuit 1 (figure 39).

2. LCD Interface Timing (figure 38)

$\frac{\text { item }}{\bar{M} / S=0}$		Symbol	Min	Max	Notes
	CL1 High-Level Pulse Width	$\mathrm{t}_{\text {WCH }} 1$	35	-	1, 4, 5
	CL1 Low-Level Pulse Width	$t_{\text {waL }} 1$	35	-	1, 4, 5
	FLM Delay Time	$\mathrm{t}_{\text {OFL }} 1$	-2.0	+2.0	4,5
	FLM Hold Time	$\mathrm{t}_{\text {HFL }} 1$	-2.0	+2.0	4,5
	M Output Delay Time	$\mathrm{t}_{\text {Dмо }}{ }^{1}$	-2.0	+2.0	4,5
$\overline{\bar{M} / S}=1$	CL1 High-Level Pulse Width	twCH^{2}	35	-	4,5
	CL1 Low-Level Pulse Width	$\mathrm{t}_{\mathrm{wcL}}{ }^{2}$	$11 \times \mathrm{t}_{\text {crc }}$	-	2, 4,5
	FLM Delay Time	$\mathrm{t}_{\mathrm{DFL}}{ }^{2}$	-2.0	$1.5 \times \mathrm{t}_{\text {cre }}$	3, 4, 5
	FLM Hold Time	$\mathrm{t}_{\mathrm{HFL}}{ }^{2}$	-2.0	+2.0	4,5
	M Delay Time	$\mathrm{t}_{\text {DMI }}$	-2.0	+2.0	4,5

Notes: 1. When $R_{\text {osc }}$ is $91 \mathrm{k} \Omega\left(\mathrm{V}_{\mathrm{cc}}=4.0\right.$ to 6 V$)$ or $75 \mathrm{k} \Omega\left(\mathrm{V}_{\mathrm{cc}}=2.0\right.$ to 4.0 V$)$ and bits FFS are set for 1.
2. When bits FFS are set for 1 or 2 . The value is $19 \times \mathrm{t}_{\mathrm{crc}}$ in other cases.
3. When bitgs FFS are set for 1 or 2 . The value is $8.5 \times \mathrm{t}_{\mathrm{crc}}$ in other cases.
4. Measured by test circuit 2 (figure 39).
5. Units are $\mu \mathrm{s}$.

AC Characteristics (2) ($\mathrm{V}_{\mathrm{cc}}=\mathbf{2 . 7}$ to $\mathbf{4 . 5} \mathrm{V}, \mathrm{GND}=\mathbf{0 V}, \mathbf{T a}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted)

1. CPU Bus Timing (figure 37)

Item	Symbol	Min	Max	Unit	
$\overline{\mathrm{RD}}$ High-Level Pulse Width	$\mathrm{t}_{\text {wRH }}$	1.0	-	$\mu \mathrm{s}$	
$\overline{\mathrm{RD}}$ Low-Level Pulse Width	$t_{\text {wRL }}$	1.0	-	$\mu \mathrm{s}$	
WR High-Level Pulse Width	$\mathrm{t}_{\text {wWH }}$	1.0	-	$\mu \mathrm{s}$	
$\overline{\text { WR Low-Level Pulse Width }}$	$\mathrm{t}_{\text {wwL }}$	1.0	-	$\mu \mathrm{s}$	
$\overline{\overline{W R}-\overline{R D}}$ High-Level Pulse Width	$t_{\text {WWRH }}$	1.0	-	$\mu \mathrm{s}$	
$\overline{\overline{C S}}$, RS Setup Time	$\mathrm{t}_{\text {AS }}$	0.5	-	$\mu \mathrm{s}$	
$\overline{\overline{C S}, \text { RS Hold Time }}$	$t_{\text {AH }}$	0.1	-	$\mu \mathrm{s}$	
Write Data Setup Time	$\mathrm{t}_{\text {dsw }}$	1.0	-	$\mu \mathrm{s}$	
Write Data Hold Time	$\mathrm{t}_{\text {DHW }}$	0	-	$\mu \mathrm{s}$	
Read Data Output Delay Time	$t_{\text {DDR }}$	-	0.5	$\mu \mathrm{s}$	Note
Read Data Hold Time	$\mathrm{t}_{\text {DHR }}$	20	-	ns	Note
External Clock Cycle Time	$\mathrm{t}_{\mathrm{crc}}$	1.6	5.0	$\mu \mathrm{s}$	
External Clock High-Level Pulse Width	$\mathrm{t}_{\text {wCH }}$	0.7	-	$\mu \mathrm{s}$	
External Clock Low-Level Pulse Width	${ }_{\text {twCL }}$	0.7	-	$\mu \mathrm{s}$	
External Clock Rise and Fall time	tr, tf	-	0.1	$\mu \mathrm{s}$	

Note: Measured by test circuit 2 (figure 39).

2. LCD Interface Timing (figure 38)

$\frac{\text { item }}{\overline{\bar{M}} / \mathrm{S}=0}$		Symbol	Min	Max	Notes
	CL1 High-Level Pulse Width	$t_{\text {WCH }} 1$	35	-	1,4,5
	CL1 Low-Level Pulse Width	$t_{\text {wcL }} 1$	35	-	1,4,5
	FLM Delay Time	$\mathrm{t}_{\text {DFL }} 1$	-2.0	+2.0	4,5
	FLM Hold Time	$\mathrm{t}_{\text {HFL }} 1$	-2.0	+2.0	4,5
	M Output Delay Time	$\mathrm{t}_{\text {DMO }} 1$	-2.0	+2.0	4,5
$\overline{\bar{M}} / \mathbf{S}=1$	CL1 High-Level Pulse Width	${ }_{\text {WCH }}{ }^{2}$	35	-	4,5
	CL1 Low-Level Pulse Width	$t_{\text {wcL }}{ }^{2}$	$11 \times \mathrm{t}_{\mathrm{crc}}$	-	2, 4, 5
	FLM Delay Time	$\mathrm{t}_{\mathrm{DFL}}{ }^{2}$	-2.0	$1.5 \times \mathrm{t}_{\text {crc }}$	3, 4, 5
	FLM Hold TTime	$\mathrm{t}_{\mathrm{HFL}}{ }^{2}$	-2.0	+2.0	4,5
	M Delay Time	$\mathrm{t}_{\text {DMI }}$	-2.0	+2.0	4,5

Notes: 1. When $R_{\text {osc }}$ is $91 \mathrm{k} \Omega\left(\mathrm{V}_{\mathrm{cc}}=4.0\right.$ to 6 V$)$ or $75 \mathrm{k} \Omega\left(\mathrm{V}_{\mathrm{cc}}=2.7\right.$ to 4.0 V$)$ and bits FFS are set for 1.
2. When bits FFS are set for 1 or 2 . The value is $19 \times \mathrm{t}_{\mathrm{crc}}$ in other cases.
3. When bits FFS are set for 1 or 2 . The value is $8.5 \times \mathrm{t}_{\mathrm{crc}}$ in other cases.
4. Measured by test circuit 2 (figure 39).
5. Units are $\mu \mathrm{s}$.

Figure 37 CPU Bus Timing

Figure 38 LCD Interface Timing

Figure 39 Load Circuits

TCP Sketches and Mounting

The following shows TCP sketches and TCP mounting on a printed circuit board. These drawings do not restrict TCP shape.

HD66204

(Dot Matrix Liquid Crystal Graphic Display Column Driver with 80-Channel Outputs)

Description

The HD66204F/HD66204FL/HD66204TF/HD 66204 TFL , the column driver for a large liquid crystal graphic display, features as many as 80 LCD outputs powered by 80 internal LCD drive circuits. This device latches 4-bit parallel data sent from an LCD controller, and generates LCD drive signals. In standby mode provided by its internal standby function, only one drive circuit operates, lowering power dissipation. The HD66204 has a complete line-up: the HD66204F, a standard device powered by $5 \mathrm{~V} \pm 10 \%$; the HD66204FL, a 2.7-5.5 V, low power dissipation device suitable for battery-driven portable equipment such as "notebook" personal computers and palm-top personal computers; and the HD66204TF and HD66204TFL, thin package devices powered by $5 \mathrm{~V} \pm 10 \%$ and $2.7-5.5 \mathrm{~V}$, respectively.

Ordering Information

Type No.	Voltage Range	Package
HD66204F	$5 \mathrm{~V} \pm 10 \%$	100-pin plastic QFP (FP-100)
HD66204TF	$5 \mathrm{~V} \pm 10 \%$	100 -pin thin plastic QFP (TFP-100)
HCD66204	$5 \mathrm{~V} \pm 10 \%$	Chip
HD66204FL	$2.7-5.5 \mathrm{~V}$	100 -pin plastic QFP (FP-100)
HD66204TFL	$2.7-5.5 \mathrm{~V}$	100 -pin thin plastic QFP (TFP-100)
HCD66204L	$2.7-5.5 \mathrm{~V}$	Chip

Pin Arrangement

(Top View)

(Top View)

Pin Description

Symbol	Pin No. (FP-100/TFP-100)	Pin Name	Input/Output	Classification
$V_{\text {CC }}$	$40 / 38$	$V_{\text {CC }}$	-	Power supply
GND	$38 / 36$	GND	-	Power supply
VEE	$35 / 33$	V $_{\text {EE }}$	-	Power supply
V1	$32 / 30$	V1	Input	Power supply
V3	$33 / 31$	V3	Input	Power supply
V4	$34 / 32$	V4	Input	Power supply
CL1	$37 / 35$	Clock 1	Input	Control signal
CL2	$49 / 44$	Clock 2	Input	Control signal
M	$36 / 34$	M	Input	Control signal
$D_{0}-D_{3}$	$48-45 / 43-40$	Data 0-data 3	Input	Control signal
SHL	$41 / 39$	Shift left	Input	Control signal
\bar{E}	$31 / 29$	Enable	Input	Control signal
$\overline{\text { CAR }}$	$50 / 48$	Carry	Output	Control signal
$\overline{\text { DISPOFF }}$	$39 / 37$	Display off	Input	Control signal
$Y_{1}-Y_{80}$	$51-100,1-30 / 49-100,1-28$	Y1-Y80	Output	LCD drive output
NC	$42,43,44 / 45,46,47$	No connection	-	-

Pin Functions

Power Supply

$\mathbf{V}_{\mathbf{C C}}, \mathbf{V}_{\text {EE }}, \mathbf{G N D}: \mathrm{V}_{\mathbf{C C}}-\mathbf{G N D}$ supplies power to the internal logic circuits. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ supplies power to the LCD drive circuits.

V1, V3, V4: Supply different levels of power to drive the LCD. V1 and V_{EE} are selected levels, and V3 and V4 are non-selected levels. See figure 1.

Control Signal

CL1: Inputs display data latch pulses for the line data latch circuit. The line data latch circuit latches display data input from the 4 -bit latch circuit, and outputs LCD drive signals corresponding to the latched data, both at the falling edge of each CL1 pulse.

CL2: Inputs display data latch pulses for the 4-bit latch circuit. The 4-bit latch circuit latches display data input via $D_{0}-D_{3}$ at the falling edge of each CL2 pulse.
$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{3}}$: Input display data. High-voltage level of data corresponds to a selected level and turns an LCD pixel on, and low-voltage level data corresponds to a non-selected level and turns an LCD pixel off.

SHL: Shifts the destinations of display data output. See figure 2.
$\overline{\mathbf{E}}$: A low $\overline{\mathrm{E}}$ enables the chip, and a high $\overline{\mathrm{E}}$ disables the chip.

CAR: Outputs the $\overline{\mathrm{E}}$ signal to the next HD66204 if HD66204s are connected in cascade.

DISPOFF: A low $\overline{\text { DISP }}$ sets LCD drive outputs $\mathrm{Y}_{1}-\mathrm{Y}_{80}$ to V 1 level.

LCD Drive Output

$\mathbf{Y}_{1}-\mathbf{Y}_{\mathbf{8 0}}$: Each Y outputs one of the four voltage levels V1, V3, V4, or V_{EE}, depending on a combination of the M signal and display data levels. See figure 3.

NC: Must be open.

M: Changes LCD drive outputs to AC.

Figure 1 Different Power Supply Voltage Levels for LCD Drive Circuits

Figure 2 Selection of Destinations of Display Data Output

Figure 3 Selection of LCD Drive Output Level

Block Functions

LCD Drive Circuit

Controller: The controller generates the latch signal at the falling edge of each CL2 pulse for the 4-bit latch circuit.

4-Bit Latch Circuit

The 4-bit latch circuit latches 4-bit parallel data input via the D_{0} to D_{3} pins at the timing generated by the control circuit.

Line Data Latch Circuit

The 80-bit line data latch circuit latches data input from the 4-bit latch circuit, and outputs the latched data to the level shifter, both at the falling edge of each clock 1 (CL1) pulse.

Level Shifter

The level shifter changes $5-\mathrm{V}$ signals into highvoltage signals for the LCD drive circuit.

LCD Drive Circuit

The 80 -bit LCD drive circuit generates four voltage levels V1, V3, V4, and VEE, for driving an LCD panel. One of the four levels is output to the corresponding Y pin, depending on a combination of the M signal and the data in the line data latch circuit.

Block Diagram

HD66204

Comparison of the HD66204 with the HD61104

Item	HD66204	HD61104
Clock speed	8.0 MHz max.	3.5 MHz max.
Display off function	Provided	Not provided
LCD drive voltage range	$10-28 \mathrm{~V}$	$10-26 \mathrm{~V}$
Relation between SHL and LCD output destinations	See figure 4	See figure 4
Relation between LCD output levels, M, and data	See figure 5	See figure 5
LCD drive V pins	V1, V3, V4	
	(V2 level is the same as VEE level)	V1, V2, V3, V4

Note the exact reverse relation for the two devices.
Figure 4 Relation between SHL and LCD Output Destinations for the HD66204 and HD61104

Figure 5 Relation between LCD Output Levels, M, and Data for the HD66204 and HD61104

Operation Timing

Application Example

Notes: 1. The resistances of R1 and R2 depend on the type of the LCD panel used. For example, for an LCD panel with a $1 / 15$ bias, R1 and R2 must be $3 \mathrm{k} \Omega$ and $33 \mathrm{k} \Omega$, respectively. That is, $R 1 /(4 \cdot R 1+R 2)$ should be $1 / 15$.
2. To stabilize the power supply, place two $0.1-\mu \mathrm{F}$ capacitors near each LCD driver: one between the V_{CC} and GND pins, and the other between the V_{CC} and $\mathrm{V}_{E E}$ pins.

HD66204

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Notes
Power supply voltage for logic circuits	V_{CC}	-0.3 to +7.0	V	1
Power supply voltage for LCD drive circuits	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-30.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Input voltage 1	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Input voltage 2	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,3
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. The reference point is GND (0 V).
2. Applies to pins CL1, CL2, M, SHL, $\bar{E}, D_{0}-D_{3}, \overline{\text { DISPOFF. }}$
3. Applies to pins V1, V3, and V4.
4. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability.

Electrical Characteristics

DC Characteristics for the HD66204F/HD66204TF ($\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \pm \mathbf{1 0 \%}$, $\mathrm{GND}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10$ to $\mathbf{2 8} \mathrm{V}$, and $\mathbf{T a}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbo	Pins	Min.	Typ.	Max.	Unit	Condition	Notes
Input high voltage	V_{IH}	1	$0.7 \times V_{\text {cc }}$	-	V	V		
Input low voltage	V_{IL}	1	0	-	$0.3 \times$	V		
Output high voltage	V_{OH}	2	$\mathrm{V}_{\mathrm{CC}}-0.4$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}	2	-	-	0.4	V	$\mathrm{IOL}=0.4 \mathrm{~mA}$	
Vi-Yj on resistance	$\mathrm{R}_{\text {ON }}$	3	-	-	4.0	$\mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{ON}}=100 \mu \mathrm{~A}$	1
Input leakage current 1	$\mathrm{I}_{\text {L1 }}$	1	-1.0	-	1.0	$\mu \mathrm{A}$	$V_{1 N}=V_{C C}$ to GND	
Input leakage current 2	ILL^{2}	4	-25	-	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}	
Current consumption 1	$\mathrm{I}_{\text {GND }}$	-	-	-	3.0	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CL2}}=8.0 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CL1}}=20 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V} \end{aligned}$	2
Current consumption 2	I_{EE}	-	-	150	500	$\mu \mathrm{A}$	Same as above	2
Current consumption 3	$\mathrm{I}_{\text {ST }}$	-	-	-	200	$\mu \mathrm{A}$	Same as above	2, 3

Pins and notes on next page.

DC Characteristics for the HD66204FL/HD66204TFL ($\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 7}$ to $5.5 \mathrm{~V}, \mathbf{G N D}=\mathbf{0} \mathrm{V}, \mathbf{V}_{\mathbf{C C}}-\mathrm{V}_{\mathbf{E E}}=$ 10 to $\mathbf{2 8 ~ V}$, and $\mathbf{T a}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Condition	Notes
Input high voltage	$\mathrm{V}_{\text {IH }}$	1	$0.7 \times V_{C C}$	$V_{c c}$	V		
Input low voltage	$\mathrm{V}_{\text {IL }}$	1	0	$0.3 \times V_{C C}$	V		
Output high voltage	V_{OH}	2	$\mathrm{V}_{\mathrm{CC}}-0.4$	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}	2	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	
Vi-Yj on resistance	$\mathrm{R}_{\text {ON }}$	3	-	4.0	k Ω	$\mathrm{I}_{\mathrm{ON}}=100 \mu \mathrm{~A}$	1
Input leakage current 1	ILL_{1}	1	-1.0	1.0	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to GND	
Input leakage current 2	ILL 2	4	-25	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}	
Current consumption 1	$\mathrm{I}_{\text {GND }}$	-	-	1.0	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CL} 2}=4.0 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CL} 1}=16.8 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{M}}=35 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V} \\ & \text { Checker-board } \\ & \text { pattern } \end{aligned}$	2
Current consumption 2	I_{EE}	-	-	500	$\mu \mathrm{A}$	Same as above	2
Current consumption 3	$\mathrm{I}_{\text {ST }}$	-	-	50	$\mu \mathrm{A}$	Same as above	2,3
Pins:	1.	CL1,	2, M, SHL,	, $\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{DI}$	SPOFF		

2. $\overline{\mathrm{CAR}}$
3. $Y_{1}-Y_{80}, V 1, V 3, V 4$
4. V1, V3, V4

Notes: 1. Indicates the resistance between one pin from $Y_{1}-Y_{80}$ and another pin from V1, V3, V4, and V_{EE}, when load current is applied to the Y pin; defined under the following conditions.
$V_{C C}-G N D=28 \mathrm{~V}$
$\mathrm{V} 1, \mathrm{~V} 3=\mathrm{V}_{\mathrm{CC}}-\left\{2 / 10\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)\right\}$
$\mathrm{V} 4=\mathrm{V}_{\mathrm{EE}}+\left\{2 / 10\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)\right\}$
V1 and V3 should be near V_{CC} level, and V 4 should be near V_{EE} level (figure 6). All voltage must be within $\Delta \mathrm{V} . \Delta \mathrm{V}$ is the range within which R_{ON}, the LCD drive circuits' output impedance, is stable. Note that $\Delta \mathrm{V}$ depends on power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ (figure 7).
2. Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, $\mathrm{V}_{\mathbb{I}}$ and V_{IL} must be held to V_{CC} and GND levels, respectively.
3. Applies to standby mode.

Figure 6 Relation between Driver Output Waveform and Level Voltages

Figure 7 Relation between $V_{C C}-V_{E E}$ and ΔV

HD66204

AC Characteristics for the HD66204F/HD66204TF ($\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}$, GND $=\mathbf{0} \mathrm{V}$, and $\mathrm{Ta}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Notes
Clock cycle time	$\mathrm{t}_{\mathrm{CrC}}$	CL2	125	-	ns	
Clock high-level width 1	${ }_{\text {t }}$ WH	CL1, CL2	45	-	ns	
Clock low-level width	$\mathrm{t}_{\text {CWL }}$	CL2	45	-	ns	
Clock setup time	${ }_{\text {t }} \mathrm{CL}$	CL1, CL2	80	-	ns	
Clock hold time	$t_{\text {HCL }}$	CL1, CL2	80	-	ns	
Clock rise time	t_{r}	CL1, CL2	-	Note 1	ns	1
Clock fall time	t_{f}	CL1, CL2	-	Note 1	ns	1
Data setup time	${ }^{\text {t }}$ D	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{CL2}$	20	-	ns	
Data hold time	$t_{\text {DH }}$	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{CL} 2$	20	-	ns	
Enable ($\overline{\mathrm{E}})$ setup time	$\mathrm{t}_{\text {ESU }}$	$\overline{\mathrm{E}, ~ C L 2}$	30	-	ns	
Carry ($\overline{\text { CAR }}$) output delay time	${ }_{\text {t }}^{\text {car }}$	$\overline{\mathrm{CAR}}, \mathrm{CL2}$	-	80	ns	2
M phase difference time	${ }^{\text {t }}$ CM	M, CL2	-	300	ns	
CL1 cycle time	${ }_{\text {tel }}$	CL1	$\mathrm{t}_{\mathrm{CYC}} \times 50$	-	ns	

AC Characteristics for the HD66204FL/HD66204TFL ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{GND}=\mathbf{0} \mathrm{V}$, and $\mathrm{Ta}=\mathbf{- 2 0}$ to $+\mathbf{7 5}^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Notes
Clock cycle time	terc	CL2	250	-	ns	
Clock high-level width 1	$\mathrm{t}_{\text {cwh }}$	CL1, CL2	95	-	ns	
Clock low-level width	$\mathrm{t}_{\mathrm{CWL}}$	CL2	95	-	ns	
Clock setup time	${ }_{\text {t }}$ CL	CL1, CL2	80	-	ns	
Clock hold time	$t_{\text {HCL }}$	CL1, CL2	80	-	ns	
Clock rise time	t_{r}	CL1, CL2	-	Note 1	ns	1
Clock fall time	t_{f}	CL1, CL2	-	Note 1	ns	1
Data setup time	$t_{\text {DS }}$	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{CL2}$	50	-	ns	
Data hold time	${ }^{\text {d }}$ D	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{CL} 2$	50	-	ns	
Enable ($\overline{\mathbf{E}}$) setup time	$\mathrm{t}_{\text {ESU }}$	$\overline{\mathrm{E}}, \mathrm{CL} 2$	65	-	ns	
Carry ($\overline{\text { CAR }}$) output delay time	$\mathrm{t}_{\text {CAR }}$	$\overline{\mathrm{CAR}}, \mathrm{CL} 2$	-	155	ns	2
M phase difference time	t_{CM}	M, CL2	-	300	ns	
CL1 cycle time	$\mathrm{t}_{\mathrm{CL} 1}$	CL1	$\mathrm{t}_{\mathrm{CYC}} \times 50$	-	ns	

Notes: 1. $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}<\left(\mathrm{t}_{\mathrm{CYC}}-\mathrm{t}_{\mathrm{CWH}}-\mathrm{t}_{\mathrm{CWL}}\right) / 2$ and $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 50 \mathrm{~ns}$
2. The load circuit shown in figure 8 is connected.

Test point o

$$
\underline{I}^{\mathbf{I}} 30 \mathrm{pF}
$$

Figure 8 Load Circuit

Figure 9 LCD Controller Interface Timing

HD66205 (Dot Matrix Liquid Crystal Graphic Display Common Driver with 80-Channel Outputs)

Description

The HD66205F/HD66205FL/HD66205TF/HD 66205TFL/HD66205T/HD66205TL, the row LCD driver, features low output impedance and as many as 80 LCD outputs powered by 80 internal LCD drive circuits, and can drive a large liquid crystal graphic display. Because this device is fabricated by the CMOS process, it is suitable for batterydriven portable equipment, which fully utilizes the low power dissipation of liquid crystal elements. The HD66205 has a complete line-up: the HD66205F, a standard device powered by $5 \mathrm{~V} \pm$ 10%; the HD66205FL, a $2.7-5.5 \mathrm{~V}$, low power dissipation device; the HD66205TF and HD66205TFL, thin film package devices each powered by $5 \mathrm{~V} \pm 10 \%$ and $2.7-5.5 \mathrm{~V}$; and the

HD66205T, tape carrier package (TCP) devices powered by 2.7-5.5 V, respectively.

Features

- Duty cycle: $1 / 64$ to $1 / 240$
- High voltage
- LCD drive: $10-28 \mathrm{~V}$
- Display off function
- Internal 80-bit shift register
- Various LCD controller interfaces
— LCTC series: HD63645, HD64645, HD64646
— LVIC series: HD66840, HD66841
— CLINE: HD66850

Ordering Information 1 (Flat package and die shipment)

Type No.	Voltage Range	Package
HD66205F	$5 \mathrm{~V} \pm 10 \%$	100-pin plastic QFP (FP-100)
HD66205FL	$2.7-5.5 \mathrm{~V}$	100-pin plastic QFP (FP-100)
HD66205TF	$5 \mathrm{~V} \pm 10 \%$	100-pin thin plastic QFP (TFP-100)
HD66205TFL	$2.7-5.5 \mathrm{~V}$	100-pin thin plastic QFP (TFP-100)
HCD66205	$5 \mathrm{~V} \pm 10 \%$	Chip
HCD66205L	$2.7-5.5 \mathrm{~V}$	Chip

Ordering Information 2 (tape carrier package)

Type No.	Voltage Range	Outer Lead Pitch 1	Outer Lead Pltch 2	Device Length
HD66205TA1	$2.7-5.5 \mathrm{~V}$	0.15 mm	0.80 mm	4 sprocket holes
HD66205TA2	$2.7-5.5 \mathrm{~V}$	0.18 mm	0.80 mm	4 sprocket holes
HD66205TA3	$2.7-5.5 \mathrm{~V}$	0.20 mm	0.80 mm	4 sprocket holes
HD66205TA6	$2.7-5.5 \mathrm{~V}$	0.22 mm	0.70 mm	4 sprocket holes
HD66205TA7	$2.7-5.5 \mathrm{~V}$	0.25 mm	0.70 mm	4 sprocket holes
HD66205TA9L	$2.7-5.5 \mathrm{~V}$	0.22 mm	0.70 mm	3 sprocket holes

Notes: 1. Outer lead pitch 1 is for LCD drive output pins, and outer lead pitch 2 for the other pins.
2. Device length includes test pad areas.
3. Spacing between two sprocket holes is 4.75 mm .
4. Tape film is Upirex (a trademark of Ube industries, Ltd.).
5. $35-\mathrm{mm}$-wide tape is used.
6. Leads are plated with Sn.
7. The details of TCP pattern are shown in " The Information of TCP. "

Pin Arrangement

(Top View)

HD66205

Pin Description

Symbol	Pin No. (FP-100 / TFP-100)	Pin Name	Input/Output	Classification
$\mathrm{V}_{\text {c }}$	40/38	$\mathrm{V}_{\text {cc }}$	-	Power supply
GND	42/40	GND	-	Power supply
$V_{\text {EE }}$	34/32	$V_{\text {EE }}$	-	Power supply
V1	37/35	V1	Input	Power supply
V5	35/33	V5	Input	Power supply
V6	36/34	V6	Input	Power supply
CL	46/44	Clock	Input	Control signal
M	44/42	M	Input	Control signal
DI	48/46	Data in	Input	Control signal
DO	32/31	Data out	Output	Control signal
SHL	41/39	Shitt left	Input	Control signal
DISPOFF	39/37	Display off	Input	Control signal
$\mathrm{X}_{1}-\mathrm{X}_{80}$	$\begin{aligned} & 51-100,1-30 / \\ & 1-28,49-100 \\ & \hline \end{aligned}$	X1-X80	Output	LCD drive output
NC	$\begin{aligned} & 31,33,38,43, \\ & 45,47,49,50 / \\ & 29,30,36,41 \text {, } \\ & 43,45,47,48 \end{aligned}$	No connection	-	-

Pin Functions

Power Supply

$\mathbf{V}_{\mathbf{C C}}, \mathbf{V}_{\mathrm{EE}}, \mathbf{G N D}: \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ supplies power to the internal logic circuits. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ supplies power to the LCD drive circuits.

V1, V5, V6: Supply different levels of power to drive the LCD. V1 and V_{EE} are selected levels, and V5 and V6 are non-selected levels. See figure 1.

Control Signal

CL: Inputs data shift clock pulses for the shift register. At the falling edge of each CL pulse, the shift register shifts display data input via the DI pin.

M: Changes LCD drive outputs to AC.
DI: Inputs display data. DI of the first HD66205 must be connected to an LCD controller, and those of the other HD66205s must be connected to DI of the previous HD66205.

DO: Outputs display data. DO of the last HD66205 must be open, and those of the other HD66205s must be connected to DI of the next HD66205.

SHL: Selects the data shiftt direction for the shift register. See figure 2.

DISPOFF: A low DISP sets LCD drive outputs $\mathrm{X}_{1}-\mathrm{X}_{80}$ to V 1 level.

LCD Drive Output

$\mathrm{X}_{1}-\mathrm{X}_{80}$: Each X outputs one of the four voltage levels V1, V5, V6, or V_{EE}, depending on a combination of the M signal and display data levels. See figure 3.

Other

NC: Must be open.

Figure 1 Different Power Supply Voltage Levels for LCD Drive Circuits

Figure 2 Selection of Display Data Shift Direction

Figure 3 Selection of LCD Drive Output Level

Block Functions

LCD Drive Circuit

The 80-bit LCD drive circuit generates four voltage levels V1, V5, V6, and V_{EE}, for driving an LCD panel. One of the four levels is output to the corresponding Y pin, depending on a combination of the M signal and the data in the shift register

Level Shifter

The level shifter changes $5-\mathrm{V}$ signals into highvoltage signals for the LCD drive circuit.

Shift Register

The 80-bit shift register shifts data input via the DI pin by one bit, and the one bit of shifted-out data is output from the DO pin. Both actions occur simultaneously at the falling edge of each shift clock (CL) pulse

Block Diagram

HD66205

Comparison of the HD66205 with the HD61105

Item	HD66205	HD61105
Display off function	Provided	Not provided
LCD drive voltage range	$10-28$ V	10-26 V
Shitt clock phase selection function	Not provided	Provided (FCS pin)
Relation between SHL and LCD output destinations	See figure 4	See figure 4
Relation between LCD output levels, M, and data	See figure 5	See figure 5
LCD drive V pins	V1, V5, V6 (V2 level is the same as VE level)	V1, V2, V5, V6

SHL level	Data shift direction	Common signal scan direction
Low	$\mathrm{DI} \rightarrow \mathrm{SR} 1 \rightarrow \mathrm{SR} 2 \rightarrow \mathrm{SR} 80$	$\mathrm{X} 1 \rightarrow \mathrm{X80}$
High	$\mathrm{DI} \rightarrow \mathrm{SR} 80 \rightarrow \mathrm{SR} 79 \rightarrow \mathrm{SR} 1$	$\mathrm{X} 80 \rightarrow \mathrm{X} 1$

HD66205

SHL level	Data shift direction	Common signal scan direction
Low	$\mathrm{DI} \rightarrow \mathrm{SR} 80 \rightarrow \mathrm{SR} 79 \rightarrow \mathrm{SR} 1$	$\mathrm{X} 80 \rightarrow \mathrm{X} 1$
High	$\mathrm{DI} \rightarrow \mathrm{SR} 1 \rightarrow \mathrm{SR} 2 \rightarrow \mathrm{SR} 80$	$\mathrm{X} 1 \rightarrow \mathrm{X} 80$

HD61105
Note the exact reverse relation for the two devices.

Figure 4 Relation between SHL and LCD Output Destinations for the HD66205 and HD61105
(

Figure 5 Relation between LCD Output Levels, M, and Data for the HD66205 and HD61105

Application Example

Notes: 1. The resistances of R1 and R2 depend on the type of the LCD panel used. For example, for an LCD panel with a $1 / 15$ bias, R1 and R2 must be $3 \mathrm{k} \Omega$ and $33 \mathrm{k} \Omega$, respectively. That is, $R 1 /(4 \cdot R 1+R 2)$ should be $1 / 15$.
2. To stabilize the power supply, place two $0.1-\mu \mathrm{F}$ capacitors near each LCD driver: one between the V_{CC} and GND pins, and the other between the V_{CC} and V_{EE} pins.

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Notes
Power supply voltage for logic circuits	V_{CC}	-0.3 to +7.0	V	1
Power supply voltage for LCD drive circuits	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-30.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Input voltage 1	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Input voltage 2	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,3
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	4

Notes: 1. The reference point is GND (0 V).
2. Applies to pins CL, M, SHL, DI, DISPOFF.
3. Applies to pins V1, V5, and V6.
4. -40 to $+125^{\circ} \mathrm{C}$ for TCP devices.
5. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability.

Electrical Characteristics

DC Characteristics for the HD66205F/HD66205TF ($V_{C C}=5 \mathrm{~V} \pm 10 \%$, $G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10$ to $\mathbf{2 8} \mathrm{V}$, and $\mathbf{T a}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Typ.	Max.	Unit	Condition	Notes
Input high voltage	V_{IH}	1	$0.7 \times V_{C C}$	-	V_{CC}	V		
Input low voltage	$\mathrm{V}_{\text {IL }}$	1	0	-	$0.3 \times$	V		
Output high voltage	V_{OH}	2	$\mathrm{V}_{C C}-0.4$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}	2	-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	
Vi-Yj on resistance	R_{ON}	3	-	-	2.0	$k \Omega$	$\mathrm{I}_{\mathrm{ON}}=100 \mu \mathrm{~A}$	1
Input leakage current 1	ILL_{1}	1	-1.0	-	1.0	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to $G N D$	
Input leakage current 2	I_{122}	4	-25	-	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\text {EE }}$	
Current consumption 1	$\mathrm{I}_{\text {GND }}$	-	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{f}_{\mathrm{CL}}=20 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V} \end{aligned}$	2
Current consumption 2	$\mathrm{l}_{\text {EE }}$	-	-	150	500	$\mu \mathrm{A}$	Same as above	2

Pins and notes on next page.

HD66205

DC Characteristics for the HD66204FL/HD66204TFL/HD66204T ($\mathbf{V}_{\mathbf{C C}}=2.7$ to 5.5 V, GND = $\mathbf{0} \mathbf{V}$, $V_{C C}-V_{E E}=10$ to $\mathbf{2 8} \mathrm{V}$, and $\mathbf{T a}=\mathbf{- 2 0}$ to $+\mathbf{7 5}^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Condition	Notes
Input high voltage	$\mathrm{V}_{\text {IH }}$	1	$0.7 \times V_{C C}$	$V_{c c}$	V		
Input low voltage	$\mathrm{V}_{\text {IL }}$	1	0	$0.3 \times$	V		
Output high voltage	V_{OH}	2	$\mathrm{V}_{\mathrm{CC}}-0.4$	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}	2	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	
Vi-Yj on resistance	$\mathrm{R}_{\text {ON }}$	3	-	2.0	$\mathrm{k} \Omega$	$\mathrm{I}_{\text {ON }}=100 \mathrm{~mA}$	1
Input leakage current 1	$\mathrm{I}_{1 / 1}$	1	-1.0	1.0	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{C C}$ to $G N D$	
Input leakage current 2	$\mathrm{ILL2}$	4	-25	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCO}}$ to V_{EE}	
Current consumption 1	$\mathrm{I}_{\text {GND }}$	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & f_{\mathrm{CL}}=16.8 \mathrm{kHz} \\ & f_{\mathrm{M}}=35 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V} \end{aligned}$	2
Current consumption 2	I_{EE}	-	-	250	$\mu \mathrm{A}$	Same as above	2

Pins: 1. CL, M, SHL, DI, DISPOFF
2. DO
3. $\mathrm{X}_{1}-\mathrm{X}_{80}, \mathrm{~V} 1, \mathrm{~V} 5, \mathrm{~V} 6$
4. V1, V5, V6

Notes: 1. Indicates the resistance between one pin from $X_{1}-X_{80}$ and another pin from V1, V5, V6, and V_{EE}, when load current is applied to the X pin; defined under the following conditions.
$V_{C C}-V_{E E}=28 \mathrm{~V}$
$\mathrm{V} 1, \mathrm{~V} 6=\mathrm{V}_{\mathrm{CC}}-\left\{1 / 10\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)\right\}$
$\mathrm{V} 5=\mathrm{V}_{\mathrm{EE}}+\left\{1 / 10\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)\right\}$
V1 and V6 should be near V_{CC} level, and V5 should be near V_{EE} level (figure 7). All voltage must be within $\Delta \mathrm{V}$. $\Delta \mathrm{V}$ is the range within which R_{ON}, the LCD drive circuits' output impedance, is stable. Note that $\Delta \mathrm{V}$ depends on power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ (figure 8).
2. Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, $\mathrm{V}_{\mathbb{H}}$ and V_{IL} must be held to V_{CC} and GND levels, respectively.
3. Applies to standby mode.

Figure 7 Relation between Driver Output Waveform and Level Voltages

Figure 8 Relation between $\mathbf{V}_{\mathbf{C C}}-\mathbf{V}_{\mathrm{EE}}$ and $\Delta \mathrm{V}$

AC Characteristics for the HD66205F/HD66205TF ($\mathbf{V}_{\mathrm{CC}}=\mathbf{5 V} \pm \mathbf{1 0 \%}$, $\mathbf{G N D}=\mathbf{0} \mathrm{V}$, and $\mathbf{T a}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Note
Clock cycle time	$\mathrm{t}_{\mathrm{CYC}}$	CL	10	-	$\mu \mathrm{s}$	
Clock high-level width 1	$\mathrm{t}_{\mathrm{CWH}}$	CL	50	-	ns	
Clock low-level width	$\mathrm{t}_{\mathrm{CWL}}$	CL	1.0	-	$\mu \mathrm{s}$	
Clock rise time	t_{r}	CL	-	30	ns	
Clock fall time	t_{f}	CL	-	30	ns	
Data setup time	t_{DS}	DI, CL	100	-	ns	
Data hold time	t_{DH}	DI, CL	100	-	ns	
Data output delay time	t_{DD}	DO, CL	-	3.0	$\mu \mathrm{~s}$	1
Data output hold time	$\mathrm{t}_{\mathrm{DHW}}$	DO, CL	100	-	ns	

AC Characteristics for the HD66205FL/HD66205TFL/HD66205T ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, and $\mathbf{T a}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Note
Clock cycle time	$\mathrm{t}_{\mathrm{CYC}}$	CL	10	-	$\mu \mathrm{s}$	
Clock high-level width 1	$\mathrm{t}_{\mathrm{CWH}}$	CL	80	-	ns	
Clock low-level width	$\mathrm{t}_{\mathrm{CWL}}$	CL	1.0	-	$\mu \mathrm{s}$	
Clock rise time	t_{t}	CL	-	30	ns	
Clock fall time	t_{f}	CL	-	30	ns	
Data setup time	t_{DS}	DI, CL	100	-	ns	
Data hold time	t_{DH}	DI, CL	100	-	ns	
Data output delay time	t_{DD}	DO, CL	-	7.0	$\mu \mathrm{~s}$	1
Data output hold time	$\mathrm{t}_{\mathrm{DHW}}$	DO, CL	100	-	ns	

Notes: 1. The load circuit shown in figure 9 is connected.

Figure 9 Load Circuit

Figure 10 LCD Controller Interface Timing

HD66214T (Micro-TAB) (80-Channel Column Driver in Micro-TCP)

Description

The HD66214T, the column driver for a large liquid crystal graphic display, features as many as 80 LCD outputs powered by 80 internal LCD drive circuits. This device latches 4 -bit parallel data sent from an LCD controller, and generates LCD drive signals. In standby mode provided by its internal standby function, only one drive circuit operates, lowering power dissipation. The HD66214, packaged in an 8 -mm-wide micro-tape carrier package (micro-TCP), enables a compact LCD system with a narrower frame (peripheral areas for LCD drivers) -about half as large as that os an existing system. The HD66214T is a low power dissipation device powered by 2.7-5.5 V suitable for battery-driven portable equipment such as notebook personal computers and palmtop personal computers.

Features

- Duty cycle: $1 / 64$ to $1 / 240$
- High voltage
— LCD drive: $10-28 \mathrm{~V}$
- High clock speed
- 8 MHz max under 5 -V operation (HD66214T)
- 4 MHz max under 3-V operation (HD66214TL)
- Display off function
- Internal automatic chip enable signal generator
- Various LCD controller interfaces
— LCTC series: HD63645, HD64645, HD64646
— LVIC series: HD66840, HD66841
— CLINE: HD66850
- 98-pin TCP

Ordering Information

Type No.	Voltage Range	Outer Lead Pitch 1	Outer Lead Pitch 2	Device Length
HD66214TA1	$2.7-5.5 \mathrm{~V}$	0.15 mm	0.80 mm	3 sprocket holes
HD66214TA2	$2.7-5.5 \mathrm{~V}$	0.18 mm	0.80 mm	3 sprocket holes
HD66214TA3	$2.7-5.5 \mathrm{~V}$	0.20 mm	0.80 mm	3 sprocket holes
HD66214TA6	$2.7-5.5 \mathrm{~V}$	0.20 mm	0.45 mm	3 sprocket holes
HD66214TA9L	$2.7-5.5 \mathrm{~V}$	0.22 mm	0.45 mm	2 sprocket holes

Notes: 1. Outer lead pitch 1 is for LCD drive output pins, and outer lead pitch 2 for the other pins.
2. Device length includes test pad areas.
3. Spacing between two sprocket holes is 4.75 mm .
4. Tape film is Upirex (a trademark of Ube Industries, Ltd.).
5. 35 -mm-wide tape is used.
6. Leads are plated with Sn .
7. The details of TCP pattern are shown in " The Information of TCP. "

Pin Arrangement

Pin Description

Symbol	Pin No.	Pin Name	Input/Output	Classification
$V_{\text {CC }}$	1,12	$V_{C C}$	-	Power supply
GND	14	GND	-	Power supply
$V_{\text {EE }}$	15	$V_{\text {EE }}$	-	Power supply
V1	18	V1	Input	Power supply
V3	17	V3	Input	Power supply
V4	16	V4	Input	Power supply
CL1	8	Clock 1	Input	Control signal
CL2	7	M	Input	Control signal
M	9	Data 0-data 3	Input	Control signal
$D_{0}-D_{3}$	$3-6$	Shift left	Input	Control signal
SHL	13	Enable	Input	Control signal signal
$\overline{\text { E }}$	2	Carry	Output	Control signal
$\overline{\text { CAR }}$	11	Display off	Input	Control signal
$\overline{\text { DISPOFF }}$	10	Y1-Y80	Output	LCD drive output
$Y_{1}-Y_{80}$	$19-98$			

Pin Functions

Power Supply

$\mathbf{V}_{\mathbf{C C}}, \mathbf{V}_{\text {EE }}, \mathbf{G N D}: \mathbf{V}_{\text {CC }}-$ GND supplies power to the internal logic circuits. Vcc-VEE supplies power to the LCD drive circuits.

V1, V3, V4: Supply different levels of power to drive the LCD. V1 and V_{EE} are selected levels, and V3 and V4 are non-selected levels. See figure 1.

Control Signal

CL1: Inputs display data latch pulses for the line data latch circuit. The line data latch circuit latches display data input from the 4-bit latch circuit, and outputs LCD drive signals corresponding to the latched data, both at the falling edge of each CL1 pulse.

CL2: Inputs display data latch pulses for the 4-bit latch circuit. The 4 -bit latch circuit latches display data input via $D_{0}-D_{3}$ at the falling edge of each CL2 pulse.

M: Changes LCD drive outputs to AC.
$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{3}}$: Input display data. High-voltage level of data corresponds to a selected level and turns an LCD pixel on, and low-voltage level data corresponds to a non-selected level and turns an LCD pixel off.

SHL: Shifts the destinations of display data output. See figure 2.
$\overline{\mathrm{E}}$: A low $\overline{\mathrm{E}}$ enables the chip, and a high $\overline{\mathrm{E}}$ disables the chip.

CAR: Outputs the $\overline{\mathrm{E}}$ signal to the next HD66214 if HD66214s are connected in cascade.

DISPOFF: A low $\overline{\text { DISP }}$ sets LCD drive outputs $\mathrm{Y}_{1}-\mathrm{Y}_{80}$ to V 1 level.

LCD Drive Output

$Y_{1}-Y_{80}$: Each Y outputs one of the four voltage levels V1, V3, V4, or V_{EE}, depending on a combination of the M signal and display data levels. See figure 3.

Figure 1 Different Power Supply Voltage Levels for LCD Drive Circuits

Figure 2 Selection of Destinations of Display Data Output

Figure 3 Selection of LCD Drive Output Level

Block Functions

Controller: The controller generates the latch signal at the falling edge of each CL2 pulse for the 4-bit latch circuit.

4-Bit Latch Circuit

The 4-bit latch circuit latches 4-bit parallel data input via the D0 to D3 pins at the timing generated by the control circuit.

Line Data Latch Circuit

The 80-bit line data latch circuit latches data input from the 4-bit latch circuit, and outputs the latched data to the level shifter, both at the falling edge of each clock 1 (CL1) pulse.

Level Shifter

The level shifter changes $5-\mathrm{V}$ signals into highvoltage signals for the LCD drive circuit.

LCD Drive Circuit

The 80 -bit LCD drive circuit generates four voltage levels V1, V3, V4, and VEE, for driving an LCD panel. One of the four levels is output to the corresponding Y pin, depending on a combination of the M signal and the data in the line data latch circuit.

Block Diagram

HD66214T

Comparison of the HD66214 with the HD61104

Item	HD66214	HD61104
Clock speed	8.0 MHz max.	3.5 MHz max.
Display off function	Provided	Not provided
LCD drive voltage range	$10-28 \mathrm{~V}$	$10-26 \mathrm{~V}$
Relation between SHL and LCD output destinations	See figure 4	See figure 4
Relation between LCD output levels, M, and data	See figure 5	See figure 5
LCD drive V pins	V1, V3, V4 (V2 level is the same as VEE level)	V1, V2, V3, V4
Storage temperature	-40 to $125^{\circ} \mathrm{C}$	-55 to 125 ${ }^{\circ} \mathrm{C}$
Package	TCP (tape carrier package)	QFP (quad flat package)

Figure 4 Relation between SHL and LCD Output Destinations for the HD66214 and HD61104

Figure 5 Relation between LCD Output Levels, M, and Data for the HD66214 and HD61104

HD66214T

Operation Timing

Application Example

Notes: 1. The resistances of R1 and R2 depend on the type of the LCD panel used. For example, for an LCD panel with a $1 / 15$ bias, R1 and R2 must be $3 \mathrm{k} \Omega$ and $33 \mathrm{k} \Omega$, respectively. That is, $R 1 /(4 \cdot R 1+R 2)$ should be $1 / 15$.
2. To stabilize the power supply, place two $0.1-\mu \mathrm{F}$ capacitors near each LCD driver: one between the V_{CC} and GND pins, and the other between the V_{CC} and V_{EE} pins.

HD66214T

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Notes
Power supply voltage for logic circuits	V_{CC}	-0.3 to +7.0	V	1
Power supply voltage for LCD drive circuits	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-30.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	
Input voltage 1	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Input voltage 2	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,3
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-40 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. The reference point is GND (0 V).
2. Applies to pins CL1, CL2, M, SHL, $\bar{E}, D_{0}-D_{3}, \overline{\text { DISPOFF }}$.
3. Applies to pins V1, V3, and V4.
4. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability.

Electrical Characteristics

DC Characteristics for the HD66214T ($\mathrm{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V} \pm 10 \%$, $\mathrm{GND}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10$ to 28 V , and $\mathbf{T a}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Typ.	Max.	Unit	Condition	Notes
Input high voltage	$\mathrm{V}_{\text {IH }}$	1	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	$V_{C C}$	V		
Input low voltage	V_{IL}	1	0	-	$0.3 \times$	V		
Output high voltage	V_{OH}	2	$\mathrm{V}_{C C}-0.4$	-	-	V	$\mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}	2	-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	
Vi-Yj on resistance	R_{ON}	3	-	-	4.0	$\mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{ON}}=100 \mu \mathrm{~A}$	1
Input leakage current 1	ILT^{1}	1	-1.0	-	1.0	$\mu \mathrm{A}$	$V_{I N}=V_{C C}$ to GND	
Input leakage current 2	ILL^{2}	4	-25	-	25	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\text {EE }}$	
Current consumption 1	$\mathrm{I}_{\text {GND }}$	-	-	-	3.0	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CL} 2}=8.0 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CL1}}=20 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V} \end{aligned}$	2
Current consumption 2	I_{EE}	-	-	150	500	$\mu \mathrm{A}$	Same as above	2
Current consumption 3	$\mathrm{I}_{\text {ST }}$	-	-	-	200	$\mu \mathrm{A}$	Same as above	2,3

Pins and notes on next page.

DC Characteristics for the HD66214T ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{GND}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10$ to 28 V , and
$\mathbf{T a}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Condition	Notes
Input high voltage	$\mathrm{V}_{\text {IH }}$	1	$0.7 \times V_{c c}$	$V_{c c}$	V		
Input low voltage	V_{IL}	1	0	$0.3 \times V_{\text {cc }}$	V		
Output high voltage	V_{OH}	2	$\mathrm{V}_{\mathrm{CC}}-0.4$	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}	2	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	
Vi-Yj on resistance	$\mathrm{R}_{\text {ON }}$	3	-	4.0	$\mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{ON}}=100 \mu \mathrm{~A}$	1
Input leakage current 1	$\mathrm{I}_{\text {L1 }}$	1	-1.0	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to GND	
Input leakage current 2	$\mathrm{ILL2}$	4	-25	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}	
Current consumption 1	$\mathrm{I}_{\text {GND }}$	-	-	1.0	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CL} 2}=4.0 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{C} 1}=16.8 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{M}}=35 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V} \\ & \text { Checker-board } \\ & \text { pattern } \\ & \hline \end{aligned}$	2
Current consumption 2	$\mathrm{IEE}^{\text {e }}$	-	-	500	$\mu \mathrm{A}$	Same as above	2
Current consumption 3	$\mathrm{I}_{\text {ST }}$	-	-	50	$\mu \mathrm{A}$	Same as above	2, 3

Pins: 1. CL1, CL2, M, SHL, $\bar{E}, D_{0}-D_{3}, \overline{\text { DISPOFF }}$
2. $\overline{\mathrm{CAR}}$
3. $Y_{1}-Y_{80}, V 1, V 3, V 4$
4. V1, V3, V4

Notes: 1. Indicates the resistance between one pin from $Y_{1}-Y_{80}$ and another pin from V1, V3, V4, and V_{EE}, when load current is applied to the Y pin; defined under the following conditions.
$V_{C C}-G N D=28 \mathrm{~V}$
$\mathrm{V} 1, \mathrm{~V} 3=\mathrm{V}_{\mathrm{CC}}-\left\{2 / 10\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)\right\}$
$\mathrm{V} 4=\mathrm{V}_{\mathrm{EE}}+\left\{2 / 10\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)\right\}$
V1 and V3 should be near Vcc level, and V4 should be near V_{EE} level (figure 6). All voltage must be within $\Delta \mathrm{V} . \Delta \mathrm{V}$ is the range within which R_{ON}, the LCD drive circuits' output impedance, is stable. Note that $\Delta \mathrm{V}$ depends on power supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ (figure 7).
2. Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, $\mathrm{V}_{\mathbb{H}}$ and V_{IL} must be held to V_{CC} and GND levels, respectively.
3. Applies to standby mode.

Figure 6 Relation between Driver Output Waveform and Level Voltages

Figure 7 Relation between $V_{C C}-V_{E E}$ and ΔV

AC Characteristics for the HD66214T ($\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \pm \mathbf{1 0 \%}$, GND $=\mathbf{0} \mathrm{V}$, and $\mathbf{T a}=\mathbf{- 2 0}$ to $\boldsymbol{+ 7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Notes
Clock cycle time	$\mathrm{t}_{\mathrm{CrC}}$	CL2	125	-	ns	
Clock high-level width 1	$\mathrm{t}_{\text {CWH }}$	CL1, CL2	45	-	ns	
Clock low-level width	${ }^{\text {tewL }}$	CL2	45	-	ns	
Clock setup time	${ }^{\text {s }}$ SL	CL1, CL2	80	-	ns	
Clock hold time	${ }_{\text {H }}$	CL1, CL2	80	-	ns	
Clock rise time	t_{r}	CL1, CL2	-	*1	ns	1
Clock fall time	t_{f}	CL1, CL2	-	*1	ns	1
Data setup time	t_{DS}	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{CL2}$	20	-	ns	
Data hold time	${ }_{\text {t }}$	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{CL2}$	20	-	ns	
Enable ($\overline{\mathbf{E}})$ setup time	$\mathrm{t}_{\text {ESU }}$	$\overline{\mathrm{E}}, \mathrm{CL2}$	30	-	ns	
Carry ($\overline{\text { CAR }}$) output delay time	$\mathrm{t}_{\text {CAR }}$	$\overline{\mathrm{CAR}}, \mathrm{CL} 2$	-	80	ns	2
M phase difference time	t_{CM}	M, CL2	-	300	ns	
CL1 cycle time	${ }_{\text {tcl }}$	CL1	$\mathrm{t}_{\mathrm{CrC}} \times 50$	-	ns	

AC Characteristics for the HD66214T $\left(\mathrm{V}_{\mathbf{C C}}=\mathbf{2 . 7}\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=\mathbf{0} \mathrm{V}$, and $\mathbf{T a}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Notes
Clock cycle time	$\mathrm{t}_{\mathrm{CrC}}$	CL2	250	-	ns	
Clock high-level width 1	${ }^{\text {town }}$	CL1, CL2	95	-	ns	
Clock low-level width	$\mathrm{t}_{\text {cWL }}$	CL2	95	-	ns	
Clock setup time	${ }^{\text {tSCL }}$	CL1, CL2	80	-	ns	
Clock hold time	$\mathrm{t}_{\mathrm{HCL}}$	CL1, CL2	120	-	ns	
Clock rise time	t_{r}	CL1, CL2	-	*1	ns	1
Clock fall time	t_{f}	CL1, CL2	-	*1	ns	1
Data setup time	$t_{\text {DS }}$	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{CL} 2$	50	-	ns	
Data hold time	$t_{\text {DH }}$	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{CL2}$	50	-	ns	
Enable ($\overline{\mathrm{E}}$) setup time	$\mathrm{t}_{\text {ESU }}$	$\overline{\mathrm{E}}, \mathrm{CL2}$	65	-	ns	
Carry ($\overline{\mathrm{CAR}}$) output delay time	${ }_{\text {ctar }}$	$\overline{\mathrm{CAR}, \mathrm{CL} 2}$	-	155	ns	2
M phase difference time	${ }_{\text {t }}{ }_{\text {CM }}$	M, CL2	-	300	ns	
CL1 cycle time	${ }_{\text {chl }}$	CL1	$\mathrm{t}_{\mathrm{CrC}} \times 50$	-	ns	

Notes: 1. $t_{r}, t_{f}<\left(\mathrm{t}_{\mathrm{CYC}}-\mathrm{t}_{\mathrm{CWH}}-\mathrm{t}_{\mathrm{CWL}}\right) / 2$ and $\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}} \leq 50 \mathrm{~ns}$
2. The load circuit shown in figure 8 is connected.

Test point $0 \longrightarrow \frac{\perp}{工} 30 \mathrm{pF}$

Figure 8 Load Circuit

Figure 9 LCD Controller Interface Timing

HD66224T

(Dot Matrix Liquid Crystal Graphic Display Column Driver with 80-Channel Outputs)

Description

The HD66224T is a column driver for dot matrix liquid crystal graphic display ststem. It has 80 liquid crystal drive circuits and can drive large LCDs. The column driver latches parallel data for display ($4 / 8$ bit parallel) from the controller, then generates a drive signal and selects the proper LCD drive voltage. A built-in standby function that allows all internal drivers except one to be placed in standby mode (IST) lowers device power consumption. The column driver package is a $7.5-$ mm wide ultra-small tape carrier package (TCP), allowing designs using half the frame area of conventional displays.

The column driver can be used in a wide range of battery-powered designs because its logic power supply can operate with an input voltage ranging from 2.5 to 5.5 V .

Features

- Display duty cycle: $1 / 64$ to $1 / 240$
- Number of liquid crystal drive circuits: 80
- Parallel data transfer: $4 / 8$ bits
- High voltage: Drive voltage $10-28 \mathrm{~V}$ (absolute maximum rating 30 V)
- High-speed operation: Maximum clock speed 8 MHz (for 5 V) or 6.5 MHz (for 2.5 V)
- Logic power supply voltage: $2.5-5.5 \mathrm{~V}$
- Built-in display off function
- Built-in automatic generation function for chipenable signal
- Built-in standby function
- 107-pin TCP

Ordering Information

Type No.	Data Input	Input Format	Outer Lead Pltch $(\mu \mathrm{m})$
HD66224TA1	4-bit input	Straight	210
HD66224TA2	4-bit input	Straight	200
HD66224TBO	8-bit input	Straight	200

Note: The details of TCP pattern are shown in "The Information of TCP."

Internal Block Diagram

Figure 1 is a block diagram of the HD66224T.

Liquid-Crystal Drive Circuit

The LCD drive circuit selects from four available voltage levels $\left(\mathrm{V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}\right.$, and $\left.\mathrm{V}_{\mathrm{EE}}\right)$ based on the combination of the data of latch circuit 2 and input to pin M . The circuit outputs the selected voltage to the LCDs.

Level Shifter

The level shifter circuit raises the voltage of the logic power-supply voltage to the level used for driving the LCDs.

Latch Circuit 2

The 80-bit latch circuit 2 latches data from latch
circuit 1 on the falling edge of clock CL1 and outputs the data to the level shifter circuit.

Latch Circuit 1

Latch circuit 1 consists of 4/8-bit parallel data latches that store input data D_{0} to D_{7} when signaled by the shift register.

Control Circuit

The control circuit generates signals that fetch the data for input to latch circuit 1 .

Data Rearrange Circuit

The data rearrange circuit performs left to right (SHL) inversion on data D_{0} to D_{7}.

Figure 1 Block Diagram

Pin Arrangement

Note: This illustration does not correspond to the external shape of the TCP package.

Pin Description

Table 1 Pin Description

		Pin Type	Symbol	Number	Pin Name I/O
Punction					

HD66224T

Table 1 Pin Description (cont)

| Type | Symbol | Pin
 Number | Pin Name l/O |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Function

8 -bit input mode:

Table 1 Pin Description (cont)

Type	Symbol	Pin Number	Pin Name I/O	Function
Control Signal (cont)	DISPOF	90	Display off I	When the liquid crystal output nonselected level control input pin drives DSPOFFlow, the liquid crystal drive output (Y_{1} to Y_{80}) is set to the V 1 level.
	$\overline{\overline{\mathrm{EO}}}$	103	Enable 1/0 l/O 1	I/O pins for chip selection. Input/output is controlled by SHL input.
	$\overline{\text { E® }}$	85	Enable I/O 2	SHL Enable I/O 1 Enable I/O 2
				0 Output Input
				1 Input Output
				When the enable input signal goes low, data fetch begins. When all data has been fetched, the enable output changes from high to low and the next stage IC starts up.
	BS	87	Bus select I	Switches the number of input bits for the display data. When high, places the device in 8 -bit input mode; when low, changes the device to the 4 -bit input mode.
Liquid crystal drive output	Y_{1} to Y_{80}	1 to 80	Y_{1} to $\mathrm{Y}_{80} \mathrm{O}$	Outputs one of the four voltage levels $\mathrm{V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$, or V_{EE}, based on the combination of the M signal and the display data.

Note: 0 and low levels incicate ground level. High levels indicate V_{CC} level.

HD66224T

Sample Application

Figure 2 shows an example of an LCD panel comprised of 640×200 dots, using the HD66224T. The recommended common driver is HD66215. For 640×400 dots, extend the configuration shown to configure two screens.

R1 and R2 differ depending on the LCD panel used. For a $1 / 15$ bias, for example, $\mathrm{R} 1=3 \mathrm{k} \Omega$ and $R 2=33 \mathrm{k} \Omega$ are used so that $R 1(4 R 1+R 2)=1 / 15$.

When designing a board locate bypass capacitors as close to each device as possible, to stabilize the power supply. We recommend that two capacitors (of about 0.1 pF) be used with each HD66224T. One capacitor should be connected between V_{CC} and GND, and one between $V_{C C}$ and $V_{E E}$.

Figure 2 Application Example

HD66224T

Absolute Maximum Ratings

Parameters	Symbol	Rating	Unit	Notes	
Power supply voltage	Logic circuit	V_{CC}	-0.3 to +7.0	V	$* 1$
	Liquid crystal drive circuit	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-30.0$ to $\mathrm{V}_{\mathrm{CC}}+0.3$		
Input voltage (1)		$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	$* 1,{ }^{* 2}$
Input voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	$* 1,{ }^{* 3}$	
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$		
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-40 to +125	${ }^{\circ} \mathrm{C}$		

Notes: 1. Indicates the potential from GND.
2. Applies to the CL1, CL2, M, SHL, $\overline{E O 1}, \overline{E O}, D_{0}$ to D_{7}, and $\overline{D I S P O F F}$ pins.
3. Applies to the V_{1}, V_{3}, and V_{4} pins.
4. When a device is used outside of the absolute maximum ratings, it may suffer permanent damage. Exceeding the limits may cause malfunctions and have negative effects on device reliability. We recommend that device operating parameters be kept within these limits.

Electrical Characteristics

Table 2 DC Characteristics (1) (Unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10$ to $28 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Min	Typ	Max	Unit	Measurement Conditions	Notes
Input high level voltage	V_{IH}	$\begin{aligned} & \text { CL1, CL2, M, } \\ & \text { SHL, } D_{0} \text { to } D_{7} \end{aligned}$	$0.8 \times \mathrm{V}_{\mathrm{cc}}$	-	V_{cc}	V		
Input low level voltage	V_{IL}	$\begin{aligned} & \overline{\overline{1 O 1}, \overline{\mathrm{EOC}}} \\ & \overline{\mathrm{DSPOF}, \mathrm{BS}} \end{aligned}$	0	-	$0.2 \times V_{c c}$	V		
Output high level voltage	V_{OH}	E01, $\overline{\text { EOR }}$	$V_{c c}-0.4$	-	-	V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	
Output low level voltage	V OL	EO1, $\overline{\mathrm{EOR}}$	-	-	0.4	V	$\mathrm{lOL}=0.4 \mathrm{~mA}$	
Resistance between Vi and Yj	RON	$\begin{aligned} & Y_{1} \text { to } Y_{80}, V_{1}, \\ & V_{3}, V_{4} \end{aligned}$	-	0.6	1.5	k Ω	$\mathrm{I}_{\mathrm{ON}}=100 \mu \mathrm{~A}$	*1, *2
Input leakage current 1	ILL1	$\begin{aligned} & \text { CL1, CL2, M, } \\ & \text { SHL, D0 to D7, } \\ & \text { BO1, } \overline{\mathrm{BOQ}} \\ & \overline{\mathrm{DSPOF}, \mathrm{BS}} \end{aligned}$	-1.0	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to GND	
Input leakage current 2	ILL2	$\mathrm{V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	-25	-	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}	

Table 2 DC Characteristics (1) (cont)

Parameter	Symbol	Pin	Min	Typ	Max	Unit	Measurement Conditions	Notes
Current consumption 1	IGND	-	-	-	3.0	mA	$\begin{aligned} \mathrm{fCL2}^{2} & =8.0 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{CL} 1} & =20 \mathrm{kHz} \end{aligned}$	*3
Current consumption 2	$\mathrm{I}_{\text {EE }}$	-	-	150	500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V}$	
Current consumption 3	$\mathrm{IST}_{\text {S }}$	-	-	-	200	$\mu \mathrm{A}$		*3, *4

Notes: 1. This is the resistance value between the Y pin and V pin $\left(V_{1}, V_{3}, V_{4}\right.$, or $\left.V_{E E}\right)$ when a load current flows to one of the pins Y_{1} to Y_{80}. Set with the following conditions:
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V}$
$\mathrm{V}_{1}, \mathrm{~V}_{3}=\mathrm{V}_{\mathrm{CC}}-2 / 10\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$
$V_{4}=V_{E E}+2 / 10\left(V_{C C}-V_{E E}\right)$
2. Describes the voltage range for the liquid-crystal drive level power supply. A voltage near V_{Cc} is supplied to V_{1} and V_{3}. A voltage near $V_{E E}$ is supplied to $V 4$. Use within the range of ΔV for each. These ranges should be set so that the impedance ROM of the driver output obtained is stable. Note also that ΔV depends on the power supply voltage ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$). See figure 3.
3. Excluding the current flowing to the input area and output area. When the driver uses an intermediate level for input, a through current flows to the input circuit and the power supply current increases, so be sure that $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$.
4. Current during standby.

Figure 3 Relationship between Driver Output Waveform and Level Voltages

HD66224T

Table 3 DC Characteristics (2) (Unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=2.5$ to $4.5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10-28 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Min	Typ	Max	Unit	Measurement Conditions
Input high level voltage	V_{IH}	$\begin{aligned} & \text { CL1, CL2, M, } \\ & \text { SHL, } D_{0} \text { to } D_{7} \end{aligned}$	$0.8 \times V_{\text {cc }}$	-	$V_{c c}$	V	-
Input low level voltage $\mathrm{V}_{\text {IL }}$		$\begin{aligned} & \overline{\mathrm{BOT}, \overline{\mathrm{BCR}}} \\ & \overline{\mathrm{DSPOFF}, \mathrm{BS}} \end{aligned}$	0	-	$0.2 \times \mathrm{V}_{\mathrm{cc}}$	V	-
Output high level voltage	V_{OH}	$\overline{\mathrm{EOT}}, \overline{\mathrm{EOR}}$	$\mathrm{V}_{\text {cc }}-0.4$	-	-	V	$\mathrm{IOH}^{\text {a }}=-0.4 \mathrm{~mA}$
Output low level voltage	V_{OL}	$\overline{\mathrm{EOT}}, \overline{\mathrm{EOR}}$	-	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}$
Resistance between V_{i} and $Y_{j}{ }^{* 1},{ }^{*} 2$	RON	$\begin{aligned} & Y_{1} \text { to } Y_{80}, V_{1}, V_{3}, \\ & V_{4} \end{aligned}$		0.6	1.5	k Ω	$\mathrm{I}_{\mathrm{ON}}=100 \mu \mathrm{~A}$
Input leakage current 1	ILL		-1.0	-	1.0	$\mu \mathrm{A}$	$V_{I N}=V_{C C}$ to $G N D$
Input leakage current 2	ILL2	$\mathrm{V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	-25	-	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}
Current consumption 1^{13}	$\mathrm{I}_{\text {GND }}$	-	-	-	1.5	mA	$\begin{aligned} & f_{\mathrm{CL} 2}=6.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CL} 1}=16.8 \mathrm{kHz} \end{aligned}$
Current consumption 2	$l_{\text {EE }}$	-	-	-	500	$\mu \mathrm{A}$	$\begin{aligned} & f m=35 \mathrm{~Hz} \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \end{aligned}$
Current consumption $3 * 3$, *4	$\mathrm{I}_{\text {ST }}$	-	-	-	50	$\mu \mathrm{A}$	$\mathrm{Vcc}-\mathrm{VEE}=28 \mathrm{~V}$

Notes: 1. This is the resistance value between the Y pin and V pin (V_{1}, V_{3}, V_{4}, or $V_{E E}$) when a load current flows to one of the pins Y_{1} to Y_{80}. Set with the following conditions:
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V}$
$V_{1}, V_{3}=V_{C C}-2 / 10\left(V_{C C}-V_{E E}\right)$
$V_{4}=V_{E E}+2 / 10\left(V_{C C}-V_{E E}\right)$
2. Describes the voltage range for the liquid-crystal drive level power supply. A voltage near V_{cc} is supplied to V_{1} and V_{3}. A voltage near $\mathrm{V}_{E E}$ is supplied to V_{4}. Use within the range of $\Delta \mathrm{V}$ for each. These ranges should be set so that the impedance ROM of the driver output obtained is stable. Note also that $\Delta \mathrm{V}$ depends on the power supply voltage ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$). See figure 3.
3. Excluding the current flowing to the input area and output area. When the driver uses an intermediate level for input, a through current flows to the input circuit and the power supply current increases, so be sure that $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$.
4. Current during standby.

Table 4 AC Characteristics (1) (Unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Min	Max	Unit
Clock cycle time	$\mathrm{t}_{\mathrm{CYC}}$	CL2	125	-	ns
Clock high level width 2	$\mathrm{t}_{\text {cWH2 }}$		45		
Clock low level width 2	$\mathrm{t}_{\text {cWL2 }}$				
Data setup time	$\mathrm{t}_{\text {DS }}$	D_{0} to $\mathrm{D}_{7}, \mathrm{CL} 2$	30		
Data hold time	$t_{\text {DH }}$				
Clock high level width 1	$\mathrm{t}_{\mathrm{CWH}}$ (CL1	45		
CL2 rise to CL1 rise	tLD	CL1, CL2	30		
CL2 fall to CL1 fall	${ }_{\text {t }}^{\text {SLL }}$		45		
CL1 rise to CL2 rise	tLS				
CL1 fall to CL2 fall	$\mathrm{t}_{\mathrm{HCL}}$				
Input signal rise time ${ }^{*}{ }^{1}$	t_{r}		-	50	
Input signal fall time* ${ }^{*}$	t_{f}				

Table 5 AC Characteristics (2) (Unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Min	Max	Unit
Clock cycle time*2	$\mathrm{t}_{\mathrm{cre}}$	CL2	152	-	ns
Clock high level width 2	$\mathrm{t}_{\text {cWH2 }}$		65		
Clock low level width 2	$\mathrm{t}_{\mathrm{CWL}}$				
Data setup time	$t_{\text {DS }}$	D_{0} to $\mathrm{D}_{7}, \mathrm{CL} 2$	50		
Data hold time	t_{DH}		40		
Clock high level width 1	$\mathrm{t}_{\text {cWH }}$	CL1	65		
CL2 rise to CL1 rise	tid	CL1, CL2	20		
CL2 fall to CL1 fall	${ }_{\text {t }}^{\text {SCL }}$		65		
CL1 rise to CL2 rise	t_{LS}				
CL1 fall to CL2 fall	$t_{\text {HCL }}$				
Input signal rise time ${ }^{+1}$	t_{r}		-	50	
Input signal fall time* ${ }^{*}$	$t_{\text {f }}$		-	50	

Notes (tables 4 and 5): 1. This is the resistance value between the Y pin and V pin $\left(V_{1}, V_{3}, V_{4}\right.$, or $\left.V_{E E}\right)$ when a load current flows to one of the pins Y_{1} to Y_{80}. Set with the following conditions:
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V}$
$V_{1}, V_{3}=V_{C C}-2 / 10\left(V_{C C}-V_{E E}\right)$
$\mathrm{V}_{4}=\mathrm{V}_{\mathrm{EE}}+2 / 10\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$
2. $t_{r}, t_{f} \leq 11 \mathrm{~ns}$

HD66224T

AC Characteristic Test Waveforms

Figure 4 shows test point loading and test waveforms. Connect test points through a $15-\mathrm{pF}$ capacitor to ground, as shown at the top of figure 4.

BS = GND (4-Bit Fetch Mode)
When the data fetch operation enable signal goes low (with SHL = GND and EIO2 = GND), data standby is cleared. On the next rising edge of clock CL2, the standby is cleared. Figure 5 shows timing for 4 -bit fetch mode operation. When CL2 falls, the first 4-bit data fetch is performed. The 4-bit fetches continue on each subsequent falling edge of CL2 until 76 bits have been fetched. The enable signal (when SHL = GND, EIO1) then goes to GND level. When 80 bits have been fetched, fetch is
automatically halted (standby). If the EIO1 pin is connected to the EIO2 pin of the next stage, the next device will begin 4-bit fetch operation.

The data output changes when CL1 falls. The output destination for the fetched data when SHL = GND is output pin Y_{80} for d_{1}, and Y_{1} for d_{80}.

When $\mathrm{SHL}=\mathrm{V}_{\mathrm{Cc}}$, the destinations are reversed; d_{80} is output to Y_{80} and d_{1} is output to Y_{1}. The output level (V_{1} through V_{4}) is actually selected by the combination of the display data and AC signal M.

Figure 4 AC Characteristic Waveforms

Figure 5 Operation Timing (4-Bit Fetch Mode)

HD66224T

$\mathbf{B S}=\mathbf{V}_{\mathbf{C C}}$ (8-Bit Fetch Mode)

The 8-bit data fetch basic functions are the same as in the 4-bit fetch mode. Figure 6 shows timing for 8 -bit fetch mode operation.

Figure 6 Operation Timing (8-Bit Fetch Mode)

HD66215T

(Common Driver for a Dot Matrix Liquid Crystal Graphic Display with 100-Channel Outputs)

Description

The HD66215T is a common driver for a large dot matrix liquid crystal graphic display (LCD). The driver's 100 channels can be divided into two groups of 50 channels by selecting data input/ output pins. Outputs X_{1} to X_{10} and X_{91} to X_{100} can be disabled by mode selection. Unused output pins can be equally distributed above and below the pins used for the LCD panel so that the panel can be neatly centered on the LCD board. A 101channel output mode can also be selected for an application to various display panels. The driver is powered by about 3 V , making it suitable for battery-driven portable equipment featuring the low power dissipation of liquid crystal elements.

The HD66215T, packaged in a micro-tape carrier package (micro-TCP), allows design of a compact LCD system with a frame (an area peripheral to the LCD panel) about half the width of conventional systems.

Features

- Duty cycle: About $1 / 64$ to $1 / 240$
- 100 internal LCD drive circuits (101-channel mode can be selected for a 101-output version)
- High output voltage for driving the LCD: $10-28 \mathrm{~V}$
- Output division function (50×2-output)
- 10-output through modes
- 101-output mode
- Display off function
- Internal 100 -bit shift register
- Various LCD controller interfaces
— LCTC series: HD63645, HD64645, HD64646
— LVIC series: HD66840, HD66841
- CLINE: HD66850
- Micro-TCP with 3-sprocket-hole width
- Operating voltage: $2.5-5.5 \mathrm{~V}$

Ordering Information

Type No.	Outer Lead Pitch 1	Outer Lead Pitch 2	Device Length
HD66215TA0	0.23 mm	1.20 mm	3 sprocket holes
HD66215TA1	0.22 mm	1.00 mm	3 sprocket holes
HD66215TA2	0.18 mm	0.85 mm	3 sprocket holes

Notes: 1. Outer lead pitch 1 is for LCD drive output pins, and outer lead pitch 2 for the other pins.
2. Device length includes test pad areas.
3. Spacing between two sprocket holes is 4.75 mm .
4. Tape film is Upirex (a trademark of Ube Industries, Ltd.).
5. 35-mm-wide tape is used.
6. Leads are plated with Sn .
7. The details of TCP pattern are shown in "The Information of TCP."

Tape Carrier Package

Pin Arrangement

Pin Description

Symbol	Pin No.	Pin Name	Input/Output	Classification
$V_{C C}$	8	$V_{C C}$	-	Power supply
GND	12	GND		
$V_{1} L, V_{1} R$	1,20	$V_{1} L, V_{1} R$	Input	
$V_{6} L, V_{6} R$	2, 19	$V_{6} L, V_{6} R$		
$V_{5} L, V_{5} R$	3, 18	$V_{5} \mathrm{~L}, \mathrm{~V}_{5} \mathrm{R}$		
$\mathrm{V}_{\mathrm{EE}} \mathrm{L}, \mathrm{V}_{\mathrm{EE}} \mathrm{R}$	4, 17	$\mathrm{V}_{\mathrm{EE}} \mathrm{L}, \mathrm{V}_{\mathrm{EE}} \mathrm{R}$		
CL	14	Clock		Control signal
M	13	M		
SHL/R	9	Shift left/right		
DIO1	15	Data	Input/output	
DIO2	11			
DIO3	10			
DIO4	6			
DISPOFF	7	Display off	Input	
MODE1, MODE2	5,16	Mode1, Mode2		
$\mathrm{X}_{1}-\mathrm{X}_{100}$	21-120	$\mathrm{X}_{1}-\mathrm{X}_{100}$	Output	LCD drive output

Pin Functions

Power Supply

$\mathbf{V}_{\mathbf{C C}}$, GND: Supply power to the internal logic circuits.
$\mathbf{V}_{1} L, V_{1} R, V_{5} L, V_{5} R, V_{6} L, V_{6} R, V_{E E} L, V_{E E} R$: Supply different levels of power to drive the LCD. V_{1} and $\mathrm{V}_{\text {EE }}$ are selected levels, and V_{5} and V_{6} are non-selected levels. See figure 1.

Control Signals

CL: Inputs data shift clock pulses for the shift register. At the falling edge of each CL pulse, the shift register shifts data input via the DIO pins.

M: Changes LCD drive outputs to AC.

SHL/R: Selects the data shift direction for the shift register and the common signal scan direction (figure 2).

DIO1-DIO4: Input or output data. DIO1 and

DIO2 are data input/output pins for $\mathrm{X}_{1}-\mathrm{X}_{50}$, and DIO3 and DIO4 are input/output pins for $\mathrm{X}_{51}-\mathrm{X}_{100}$ (X_{101}) in 50×2-output modes. In a 100 -output mode, DIO2 and DIO3 must be short-circuited, and DIO1 and DIO4 are used as data input/output pins.

DISPOFF: Controls LCD output level. A low DISPOFF sets LCD drive outputs $\mathrm{X}_{1}-\mathrm{X}_{100}\left(\mathrm{X}_{101}\right)$ to V_{1} level.

MODE1, MODE2: Select an LCD output mode (table 1). In 10-output through modes, ten unused output pins are made invalid. These ten pins must be open in these modes since they output M signals.

LCD Drive Outputs

$\mathbf{X}_{1}-\mathbf{X}_{100}$: Each X outputs one of the four voltage levels, $\mathrm{V}_{1}, \mathrm{~V}_{5}, \mathrm{~V}_{6}$, or V_{EE}, depending on a combination of the M signal and data levels. See figure 3.

Table 1 Selection of LCD Output

MODE1	MODE2	Selected Mode
0	0	Normal (100-output)
0	1	10-output through $\frac{\left(\mathrm{X}_{1}-\mathrm{X}_{10}\right)}{\left(\mathrm{X}_{91}-\mathrm{X}_{100}\right)}$
1	0	
1	1	101-output

Figure 1 Different Power Supply Voltage Levels for LCD Drive Circuits

SHLR	DIO1	DIO2	DIO3	DIO4	Data shift direction and common signal scan direction
Low	In 100×1-output mode				
	Input	Short-c	ircuited	Output	$X_{1} \rightarrow X_{100}$
	In 50×2-output mode				
	Input	Output	Input	Output	$X_{1} \rightarrow x_{50}$
					$\mathrm{X}_{51} \rightarrow \mathrm{X}_{100}$
High	In 100×1-output mode				
	Output	Short-c	id	Input	$X_{100} \rightarrow X_{1}$
	In $50 \times$ 2-output mode				
	Output	Input	Output	Input	$\mathrm{X}_{50} \rightarrow \mathrm{X}_{1}$
					$\mathrm{X}_{100} \rightarrow \mathrm{X}_{51}$

For 10-output through modes and 101-output mode, see Selection of Data Shift Direction and Common Signal Scan Direction by SHL/R and DIO Pins in Each Mode.

Figure 2 Selection of Data Shift Direction and Common Signal Scan Direction by SHL/R and DIO Pins in Normal Mode (100-Output Mode)

Figure 3 Selection of LCD Drive Output Level

HD66215T

Block Diagram

Block Functions

LCD Drive Circuits

The 100 -bit LCD drive circuits generate four voltage levels, $\mathrm{V}_{1}, \mathrm{~V}_{5}, \mathrm{~V}_{6}$, and V_{EE}, which drive an LCD panel. One of the four levels is output to the corresponding X pin, depending on a combination of the M signal and the data in the shift register.

Level Shifters

The level shifters change logic control signals (2.5-5.5 V) into high-voltage signals for the LCD drive circuit.

Shift Registers

The 100 -bit shift registers shift data input via the DIO pin by one bit. The bit that is shifted out is output from the DIO pin to the next driver IC. Both shifting and output occur simultaneously at the falling edge of each shift clock (CL) pulse. The SHL/R pin selects the data shift direction.

Logic 3

Logic 3 selects which shift register operates depending on the settings of MODE1 and MODE2.

HD66215T

Data Shift and Common Signal Scan Direction

Figure 4-7 show the data shift direction and common signal scan direction selected by SHL/R
and DIO pins in each mode.

SHLR	DIO1	DIO2	DIO3	DIO4	Data shift direction and common signal scan direction
Low	In 100×1-output mode				
	Input	Short-c	rcuited	Output	$X_{1} \rightarrow X_{100}$
	In 50×2-output mode				
	Input	Output	Input	Output	$X_{1} \rightarrow X_{50}$
					$\mathrm{X}_{51} \rightarrow \mathrm{X}_{100}$
High	In 100×1-output mode				
	Output	Short-c	cuited	Input	$X_{100} \rightarrow X_{1}$
	In 50×2-output mode				
	Output	Input	Output	Input	$\mathrm{X}_{50} \rightarrow \mathrm{X}_{1}$
					$\mathrm{X}_{100} \rightarrow \mathrm{X}_{51}$

Figure 4 Selection of Data Shift Direction and Common Signal Scan Direction by SHL/R and DIO Pins in 100-Output Mode (MODE1 = 0 and MODE2 = 0)

SHLR	DIO1	DIO2	DIO3	DIO4	Data shift direction and common signal scan direction
Low	In 90-output mode				
	Input	Short-c	cuited	Output	$\mathrm{X}_{11} \rightarrow \mathrm{X}_{100}$
	In 40- and 50-output mode				
	Input	Output	Input	Output	$\mathrm{X}_{11} \rightarrow \mathrm{X}_{50}$
					$\mathrm{X}_{51} \rightarrow \mathrm{X}_{100}$
High	In 90-output mode				
	Output	Short-c	cuited	Input	$\mathrm{X}_{100} \rightarrow \mathrm{X}_{11}$
	In 40- and 50-output mode				
	Output	Input	Output	Input	$\mathrm{X}_{50} \rightarrow \mathrm{X}_{11}$
					$\mathrm{X}_{100} \rightarrow \mathrm{X}_{51}$

Figure 5 Selection of Data Shift Direction and Common Signal Scan Direction by SHL/R and DIO pins in 10-Output ($\mathbf{X}_{1}-\mathbf{X}_{10}$) Through Mode (MODE1 = 0 and MODE 2 = 1)

SHLR	DIO1	DIO2	DIO3	DIO4	Data shift direction and common signal scan direction
Low	In 90-output mode				
	Input	Short-c	rcuited	Output	$X_{1} \rightarrow X_{90}$
	In 50- and 40-output mode				
	Input	Output	Input	Output	$\mathrm{X}_{1} \rightarrow \mathrm{X}_{50}$
					$\mathrm{X}_{51} \rightarrow \mathrm{X}_{90}$
High	In 90-output mode				
	Output	Short-c	rcuited	Input	$X_{90} \rightarrow X_{1}$
	In 50- and 40-output mode				
	Output	Input	Output	Input	$\mathrm{X}_{50} \rightarrow \mathrm{X}_{1}$
					$\mathrm{X}_{90} \rightarrow \mathrm{X}_{51}$

Figure 6 Selection of Data Shift Direction and Common Signal Scan Direction by SHL/R and DIO Pins in 10-Output ($\mathrm{X}_{\mathbf{9 1}}-\mathrm{X}_{\mathbf{1 0 0}}$) Through Mode
(MODE1 = 1 and MODE2 $=0$)

SHLR	DIO1	DIO2	DIO3	DIO4	Data shift direction and common signal scan direction
Low	In 101-output mode				
	Input	Short-c	rcuited	Output	$X_{1} \rightarrow X_{101}$
	In 50- and 51-output mode				
	Input	Output	Input	Output	$X_{1} \rightarrow x_{50}$
					$\mathrm{X}_{51} \rightarrow \mathrm{X}_{101}$
High	In 101-output mode				
	Output	Short-c	rcuited	Input	$\mathrm{X}_{101} \rightarrow \mathrm{X}_{1}$
	In 50- and 51-output mode				
	Output	Input	Output	Input	$\mathrm{X}_{50} \rightarrow \mathrm{X}_{1}$
					$\mathrm{X}_{101} \rightarrow \mathrm{X}_{51}$

In 101-output mode, any 10-output through mode cannot be used.

Figure 7 Selection of Data Shift Direction and Common Signal Scan Direction by SHL/R and DIO Pins in 101-Output Mode (MODE1 = 1 and MODE2 = 1)

HD66215T

Application Examples

Notes: 1. The resistances of R1 and R2 depend on the type of LCD panel used. For example, for an LCD panel with a $1 / 15$ bias, R1 and R2 must be $3 \mathrm{k} \Omega$ and $33 \mathrm{k} \Omega$, respectively. That is, $R 1 /(4 \cdot R 1+R 2)$ should be $1 / 15$.
2. To stabilize the power supply, place two $0.1-\mu F$ capacitors near each LCD driver: one between the $V_{c c}$ and GND pins, and the other between the $V_{C C}$ and $V_{E E}$ pins.

Figure 8 LCD Panel of 640×400 Dots, $1 / 200$ Duty Cycle

Notes: 1. The resistances of R1 and R2 depend on the type of LCD panel used. For example, for an LCD panel with a $1 / 15$ bias, R1 and R2 must be $3 \mathrm{k} \Omega$ and $33 \mathrm{k} \Omega$, respectively. That is, $\mathrm{R} 1 /(4 \cdot \mathrm{R} 1+\mathrm{R} 2$) should be $1 / 15$.
2. To stabilize the power supply, place two $0.1-\mu \mathrm{F}$ capacitors near each LCD driver: one between the V_{CC} and GND pins, and the other between the V_{CC} and V_{EE} pins.

Figure 9 LCD Panel of 640×480 Dots, $1 / 240$ Duty Cycle

Figure 10 Operational Timing in Normal Mode (100-Output Mode, 1/200 Duty Cycle)

HD66215T Connection Examples

Figure 11 shows an example of an HD66215T driving a 480 -line LCD panel with a $1 / 240$ to $1 / 250$ duty cycle. Here, selecting MODE1 and MODE2 disables outputs $\mathrm{X}_{1}-\mathrm{X}_{10}$ of driver IC1 and outputs $\mathrm{X}_{91}-\mathrm{X}_{100}$ of driver IC5. As a result, unused driver output pins can be equally distributed above and below the pins used for the LCD panel so that the panel can be neatly centered on the LCD board. In
addition, since the 100 channels of the driver can be divided into two groups of 50 channels by selecting data input/output pins, data input is divided at the center of the panel (IC3).

Figure 12 shows an example of an HD66215T driving a 400 -line LCD panel with a $1 / 200$ to $1 / 210$ duty cycle.

Figure 11 Connection Example for 480-Line LCD Panel with a 1/240-1/250 Duty Cycle

Figure 12 Connection Example for 400-Line LCD Panel with a 1/200-1/210 Duty Cycle

HD66215T

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Note	
Power supply voltage for logic circuits	V cc	-0.3 to +7.0	V	2	
Power supply voltage for LCD drive circuits	V_{EE}	$V_{c c}-30.0$ to $V_{c c}+0.3$			
Input voltage 1	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $V_{\text {cc }}+0.3$		2, 3	
2	$\mathrm{V}_{\mathrm{T} 2}$	$\mathrm{V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$		2,4	
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$		
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125			

Notes: 1. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunction or unreliability.
2. The reference point is GND ($O \mathrm{~V}$).
3. Applies to pins CL, M, SHL/R, DIO1-DIO4 (input), DISPOFF.
4. Applies to pins V_{1}, V_{5}, and V_{6}.

Electrical Characteristics

DC Characteristics ($\mathbf{V}_{\mathbf{C C}}=2.5$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=-\mathbf{2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted)

Pins: 1. CL, M, SHL/R, DISPOFF, DIO1-DIO4 (input)
2. DIO1-DIO4 (input)
3. $X_{1}-X_{100}, V_{1}, V_{5}, V_{6}$
4. CL, M, SHL/R, MODE1, MODE2, DISPOFF
5. V_{1}, V_{5}, V_{6}

Notes: 1. Indicates the resistance between one pin from $X_{1}-X_{100}$ and another pin from V_{1}, V_{5}, V_{6}, and $V_{E E}$, when load current is applied to the X pin. Defined under the following conditions:
$V_{C C}-V_{E E}=28 \mathrm{~V}$
$V_{1}, V_{6}=V_{C C}-\left\{1 / 10\left(V_{C C}-V_{E E}\right)\right\}$
$V_{5}=V_{E E}+\left\{1 / 10\left(V_{C C}-V_{E E}\right)\right\}$
V_{1} and V_{6} should be near $V_{C C}$ level, and V_{5} should be near $V_{E E}$ level (figure 4). All voltage must be within $\Delta \mathrm{V} . \Delta \mathrm{V}$ is the range within which R_{ON}, the LCD drive circuits' output impedance, is stable. Note that $\Delta \mathrm{V}$ depends on power supply voltages $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ (figure 5).
2. Excludes input and output current. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, V_{IH} and V_{IL} must be held to V_{CC} and GND levels, respectively.

Figure 13 Relation between Driver Output Waveform and Level Voltages

Figure 14 Relation between $V_{C C}-V_{E E}$ and ΔV

HD66215T

AC Characteristics ($\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 5}$ to $5.5 \mathrm{~V}, \mathbf{G N D}=\mathbf{0} \mathrm{V}$, and $\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Pins	Min	Max	Unit
Clock cycle time	terc	CL	10	-	$\mu \mathrm{s}$
Clock high-level width	$\mathrm{t}_{\text {CWH }}$		65	-	ns
Clock low-level width	$\mathrm{t}_{\mathrm{CWL}}$		1.0	-	$\mu \mathrm{s}$
Clock rise time	t_{r}		-	50	ns
Clock fall time	${ }_{4}$				
Data setup time	$t_{\text {DS }}$	DIO1-DIO4, CL	100	-	
Data hold time	$t_{\text {DH }}$				
Data output delay time*	$t_{D D}$		-	7.0	$\mu \mathrm{s}$
Data output hold time	${ }_{\text {t }}$ DHW		100	-	ns

Note: *The load circuit is shown in figure 15 is connected.

Test point

Figure 15 Load Circuit

Figure 16 LCD Controller Interface Timing

HD66106F (LCD Driver for High Voltage)

Description

The HD66106F LCD driver has a high duty ratio and many outputs for driving a large capacity dot matrix LCD panel.

It includes 80 LCD drive circuits and can drive at up to $1 / 480$ duty cycle. For example, only 14 drivers are enough to drive an LCD panel of 640×480 dots. It also easily interfaces with various LCD controllers because of its internal automatic chip enable signal generator.

Using this LSI sharply lowers the cost of an LCD system.

Features

- Column and row driver
- 80 LCD drive circuits
- Multiplexing duty ratios: $1 / 100$ to $1 / 480$
- 4-bit parallel data transfer
- Internal automatic chip enable signal generator
- Internal standby function
- Recommended LCD controller LSIs:

HD63645F and HD64645F (LCTC)

- Power supply: $+5 \mathrm{~V} \pm 10 \%$ for the internal logic, and 14.0 V to 37.0 V for LCD drive circuits
- Operation frequency: 6.0 MHz (max.)
- CMOS process

Ordering Iuformation

Typ No.	Package
HD66106FS	100-Pin Plastic QFP (FP-100A)
HD66106D	Chip

Pin Arrangement

Pin Description

Power supply

$\mathbf{V}_{\mathbf{C C}}, \mathbf{G N D}: \mathrm{V}_{\mathrm{CC}}$ supplies power to the internal logic circuit. GND is the logic and drive ground.
$\mathbf{V}_{\mathbf{L C D}}: \mathrm{V}_{\mathrm{LCD}}$ supplies power to the LCD drive circuit.
$\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}, \mathbf{V}_{\mathbf{3}}$, and $\mathbf{V}_{\mathbf{4}}$: $\mathrm{V}_{\mathbf{1}}-\mathrm{V}_{4}$ supply power for driving LCD (figure 1).

Control signals

CL1: The LSI latches data at the negative edge of CL1 when the LSI is used as a column driver. Fix to GND when the LSI is used as a row driver.

CL2: The LSI latches display data at the negative edge of CL2 when the LSI is used as a column driver, and shifts line select data at the negative edge when it is used as a row driver.

M : M changes LCD drive outputs to AC .
$D_{0}-D_{3}: D_{0}-D_{3}$ input display data for the column driver (table 2).

Table 1 Pin Function

Symbol	Pin No.	Pin Name	1/0
$V_{C C}$	49	$\mathrm{V}_{\text {cc }}$	1
GND	37	Ground	1
$V_{\text {LCD }}$	31,36	$V_{\text {LCD }}$	1
V_{1}	32	LCD voltage 1	1
V_{2}	33	V_{2} LCD voltage 2	1
V_{3}	34	V_{3} LCD voltage 3	1
V_{4}	35	V_{4} LCD voltage 4	1
CL1	38	Clock 1	1
CL2	40	Clock 2	1
M	42	M	1
$\mathrm{D}_{0}-\mathrm{D}_{3}$	46-43	Data 0 to data 3	1
SHL	39	Shift left	1
$\overline{\mathrm{E}}$	47	Enable	1
$\overline{\text { CAR }}$	48	Carry	0
CH 1	41	Channel 1	1
$\mathrm{Y}_{1}-Y_{80}$	30-1, 100-51	Drive outputs 1-80	0
NC	50	No connection	-

Table 2 Relation between Display Data and LCD State

Display Data	LCD Outputs	LCD
1 (= high level)	Selected level	On
0 (= low level)	Nonselected level	Off

Figure 1 Power Supply for Driving LCD

HD66106F

SHL: SHL controls the shift direction of display data and line select data (figure 2, table 3).
$\overline{\mathrm{E}}: \overline{\mathrm{E}}$ inputs the enable signal when the LSI is used as a column driver $\left(\mathrm{CH} 1=\mathrm{V}_{\mathrm{CC}}\right)$. The LSI is disabled when $\overline{\mathrm{E}}$ is high and enabled when low. $\overline{\mathrm{E}}$ inputs scan data when the LSI is used as a row driver (CH1 = GND). When HD66106Fs are connected in cascade, E connects with $\overline{\mathrm{CAR}}$ of the preceding LSI.
$\overline{\text { CAR: }} \overline{\text { CAR }}$ outputs the enable signal when the

LSI is used as a column driver ($\mathrm{CH} 1=\mathrm{V}_{\mathrm{CC}}$). $\overline{\mathrm{CAR}}$ outputs scan data when the LSI is used as a row driver ($\mathrm{CH} 1=\mathrm{GND}$). When HD66106Fs are connected in cascade, $\overline{\mathrm{CAR}}$ connects with $\overline{\mathrm{E}}$ of the next LSI.

CH1: CH1 selects the driver function. The chip drives columns when $\mathrm{CH} 1=\mathrm{V}_{\mathrm{CC}}$, and rows when $\mathrm{CH} 1=\mathrm{GND}$.
$Y_{1}-Y_{80}$: Each Y outputs one of the four voltage levels- $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, or V_{4}-according to the combination of M and display data (figure 3).

NC: NC is not used. Do not connect any wire.

Table 3 Relation between SHL and Scan Direction of Selected Line (When LSI is Used as a Row Driver)

SHL	Shift Direction of Shift Register				Scan Direction of Selected Line			
V_{Cc}	\bar{E}	$\rightarrow 1$	$\rightarrow 2$	$\rightarrow 3 \times \ldots \ldots \ldots \ldots \ldots \rightarrow 80$	Y_{1}	$\rightarrow Y_{2}$	$\rightarrow Y_{3}$	$\cdots \cdots \cdots \cdots Y_{80}$
GND	\bar{E}	$\rightarrow 80$	$\rightarrow 79$	$\rightarrow 78$.............. 1	Y_{80}	$\rightarrow Y_{79}$	$\rightarrow Y_{78}$	$\ldots \rightarrow Y_{1}$

Figure 2 Relation between SHL and Data Output (When LSI is Used as a Column Driver)

Figure 3 Selection of LCD Drive Output Level

Internal Block Diagram

LCD Drive Circuits

The HD66106F (figure 4) begins latching data when $\overline{\mathrm{E}}$ goes low, which enables the data latching operation. It latches 4 bits of data simultaneously at the fall of CL2 and stops automatically (= standby state) when it has latched 80 bits.

Latch Circuit 2

When the LSI is used as a column driver, latch circuit 2 functions as an 80 -bit latch circuit. It latches the data sent from latch circuit 1 at the fall of CL1 and transfers its outputs to the LCD drive circuits.

When the LSI is used as a row driver, this circuit functions as an 80 -bit bidirectional shift register. The data sent from the $\overline{\mathrm{E}}$ pin shifts at the fall of CL2. When $\mathrm{SHL}=\mathrm{V}_{\mathrm{CC}}$, the data shifts from bit 1 to bit 80 in order of entry. When SHL = GND, the data shifts from bit 80 to bit 1 .

Latch Circuit 1

Latch circuit 1 is composed of twenty 4 -bit parallel data latches. It latches the display data $\mathrm{D}_{0}-\mathrm{D}_{3}$ at the fall of CL2 when the LSI is used as a column driver. The signals sent from the selector determine which 4 -bit latch should latch the data.

Selector

The selector is composed of a 5 -bit up and down counter and a decoder. When the LSI is used as a column driver, it generates the latch signal to be sent to latch circuit 1 , incrementing the counter at the negative edge of CL2.

Controller

The controller operates when the LSI is used as a column driver. It stops data latching when twenty pulses of CL2 have been input (= power-down function) and automatically generates the chip enable signal announcing the start of data latching into the next LSI.

Figure 4 Block Diagram

HD66106F

Functional Description

When Used as a Column Driver

The HD66106F begins latching data when $\overline{\mathrm{E}}$ goes low, which enables the data latching operation. It latches 4 bits of data simultaneously at the fall of CL2 and stops automatically ($=$ standby state) when it has latched 80 bits.

Data outputs change at the fall of CL1. Latched data d_{1} is transferred to the output pin Y_{1} and d_{80} to Y_{80} when SHL = GND. Conversely, d_{80} is transferred to Y_{1} and d_{1} to Y_{80} when $\mathrm{SHL}=\mathrm{V}_{\mathrm{CC}}$. The output level is selected out of $\mathrm{V}_{1}-\mathrm{V}_{4}$ according to the combination of display data and the alternating signal M (figure 5).

Figure 5 Column Driver Timing Chart

When Used as a Row Driver

The HD66106F shifts the line scan data sent from the pin $\overline{\mathrm{E}}$ in order at the fall of CL2. When SHL = $V_{c c}$, data is shifted from Y_{1} to Y_{80} and Y_{80} to Y_{1} when SHL = GND.

In both cases, the data delayed for 80 bits by the shift register is output from the CAR pin to become the line scan data for the next LSI (figure 6).

Figure 6 Row Driver Timing Chart

HD66106F

LCD Power Supply

This section explains the range of power supply voltage for driving LCD. V_{1} and V_{3} voltages should be near $\mathrm{V}_{\mathrm{LCD}}$, and V_{2} and V_{4} should be
near GND (figure 7). Each voltage must be within $\Delta \mathrm{V} . \Delta \mathrm{V}$ determines the range within which R_{ON}, impedance of driver's output, is stable. Note that ΔV depends on power supply voltage $\mathrm{V}_{\mathrm{LCD}}-\mathrm{GND}$ (figure 8).

Figure 7 Driver's Output Waveform and Each Level of Voltage

Figure 8 Power Supply Voltage $V_{\text {LCD }}$-GND and ΔV

Application Example

Application Diagram of 640×400 dots driven by HD66106Fs.
Figure 9 shows an example of an LCD panel

Notes: 1. R_{1} and R_{2} depend on the LCD panel in use. When using an LCD panel with $\mathbf{1 / 2 0}$ bias, $R_{1} /\left(4 R_{1}+\right.$ R_{2}) should be $1 / 20$. For example, $R_{1}=3 k \Omega$ and $R_{2}=48 \mathrm{k} \Omega$.
2. Use bypass capacitors to stabilize power supply when designing a board. It is desirable to use two capacitors with some $0.1 \mu \mathrm{~F}$ per LSI, putting one between VLCD and GND, and the other between $V_{c c}$ and GND.

Figure 9 Application Example

Timing waveform example
Figures 10 and 11 show the timing waveforms of
the application example shown in figure 9.

Figure 11 Timing Waveform for Row Drivers (LSI 1-LSI 5)

Absolute Maximum Ratings

	Item	Symbol	Rating	Unit	Notes
Supply Voltage	Logic circuits	V_{CC}	-0.3 to +7.0	V	1
	LCD drive circuits	$\mathrm{V}_{\mathrm{LCD}}$	-0.3 to +38	V	1
	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2	
Input voltage (LCD drive)	$\mathrm{V}_{\mathrm{T} 2}$	-0.3 to $\mathrm{V}_{\mathrm{LCD}}+0.3$	V	1,3	
Operation temperature	$\mathrm{T}_{\mathrm{opr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$		
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$		

Notes: 1. Reference point is GND ($=0 \mathrm{~V}$).
2. Applies to the input pins for logic circuits.
3. Applies to the input pins for LCD drive circuits.
4. Using an LSI beyond its maximum rating may result in its permanent destruction. LSIs should usually be used under electrical characteristics for normal operations. Exceeding any of these limits may adversely affect reliability.

HD66106F

Electrical Characteristics

DC Characteristics ($\mathrm{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V} \pm 10 \%, \mathrm{~V}_{\mathrm{LCD}}=14 \mathrm{~V}$ to $\mathbf{3 7} \mathrm{V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ unless otherwise noted)

Item	Symbol	Pin	Min	Typ	Max	Unit	Test Condition	Notes
Input high voltage	$\mathrm{V}_{\text {IH }}$	CL1, CL2, M, SHL, $0.8 \times \mathrm{Vcc}-$			Vcc	V		
Input low voltage	$V_{1 L}$	$\mathrm{D}_{0}-\mathrm{D}_{3}, \overline{\mathrm{E}}, \mathrm{CH} 1$	0	-	$0.2 \times$	V		
Output high voltage	V_{OH}	$\overline{\text { CAR }}$	$\mathrm{V}_{\mathrm{cc}}-0.4$		-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}		-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	
Vi-Yj on resistance	RON	$\mathrm{Y}_{1}-\mathrm{Y}_{80}, \mathrm{~V}_{1}-\mathrm{V}_{4}$	-	-	3.0	$k \Omega$	$\mathrm{I}_{\mathrm{ON}}=100 \mu \mathrm{~A}$	4
Input leakage current (1)	IIL1	CL1, CL2, M, SHL, $D_{0}-D_{3}, \bar{E}, C H 1$	$-,-5.0$	-	5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathbf{C C}}$ to GND	
Input leakage current (2)	IIL2	$\mathrm{V}_{1}-\mathrm{V}_{4}$	-50.0	-	50.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {LCD }}$ to GND	
Current consumption (1)	$I_{\text {ccl }}$		-	-	3.0	mA	${ }^{\text {f CL2 }}=6 \mathrm{MHz}$,	
(2)	ILCD1		-	-	0.5	mA	${ }^{\mathrm{CLL} 1}=28 \mathrm{kHz}$	1
	ISt		-	-	0.2	mA	At the standby state $\mathrm{f}_{\mathrm{CL} 2}=6 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{CL} 1}=28 \mathrm{kHz}$	2
(4)	ICC2		-	-	0.2	mA	$\mathrm{f}_{\mathrm{CLI}}=28 \mathrm{kHz}$,	1
	ILCD2		-	-	0.1	mA		3

Notes:1. Input and output current is excluded. When the input is at the intermediate level in CMOS, excessive current flows from the power supply through the input circuit. $V_{\text {IH }}$ and $V_{\text {IL }}$ must be fixed at $V_{C C}$ and GND respectively to avoid it.
2. Applies when the LSI is used as a column driver.
3. Applies when the LSI is used as a row driver.
4. Indicates the resistance between Y pin and V pin (one of V_{1}, V_{2}, V_{3}, and V_{4}) when it supplies load current to one of $Y_{1}-Y_{80}$ pins.
Conditions: $\mathrm{V}_{\mathrm{LCD}}-\mathrm{GND}=37 \mathrm{~V}$

$$
\begin{aligned}
& V_{1}, V_{3}=V_{L C D}-2 / 20\left(V_{L C D}-G N D\right) \\
& V_{2}, V_{4}=G N D+2 / 20\left(V_{L C D}-G N D\right)
\end{aligned}
$$

AC Characteristics ($\mathbf{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V} \pm \mathbf{1 0 \%}, \mathrm{V}_{\mathrm{LCD}}=14 \mathrm{~V}$ to $\mathbf{3 7} \mathrm{V}, \mathbf{T a}=-\mathbf{2 0} \dot{\mathrm{C}}$ to $+\mathbf{7 5 ^ { \circ }} \mathbf{C}$ unless otherwise noted)

Column Driver

Item	Symbol	Pin	Min	Typ	Max	Unit	Notes
Clock cycle time	$t_{\text {cyc }}$	CL2	166	-	-	ns	
Clock high level width	${ }^{\text {t }}$ CWH	CL2	50	-	-	ns	
Clock low level width	${ }^{\text {t }}$ WWL	CL2	50	-	-	ns	
Clock setup time	${ }_{\text {tSCL }}$	CL2	200	-	-	ns	
Clock hold time	$\mathrm{t}_{\mathrm{HCL}}$	CL2	200	-	-	ns	
Clock rise/fall time	$\mathrm{t}_{\text {ct }}$	CL1, CL2	-	-	30	ns	
Data setup time	${ }_{\text {t }}^{\text {DSU }}$	$\mathrm{D}_{0}-\mathrm{D}_{3}$	30	-	-	ns	
Data hold time	${ }^{\text {t }}$ D ${ }^{\text {ct }}$	$\mathrm{D}_{0}-\mathrm{D}_{3}$	30	-	-	ns	
$\overline{\text { E }}$ setup time	${ }_{\text {tesu }}$	\bar{E}	50	-	-	ns	
Output delay time	tDCAR	$\overline{\text { CAR }}$	-	-	80	ns	1
M phase difference	${ }^{\text {t CM }}$	M, CL1	-	-	300	ns	

Row Driver

Item	Symbol	Pin	Min	Typ	Max	Unit	Notes
Clock low level width	${ }^{\text {tw }}$ L 1	CL2	5	-	-	$\mu \mathrm{s}$	
Clock high level width	${ }^{\text {W WH1 }}$	CL2	125	-	-	ns	
Data setup time	${ }^{\text {t }}$ D	$\overline{\mathrm{E}}$	100	-	-	ns	,
Data hold time	${ }_{\text {t }}$ H	$\overline{\mathrm{E}}$	30	-	-	ns	
Data output delay time	${ }^{\text {t }}$ D	$\overline{\text { CAR }}$	-	-	3	$\mu \mathrm{s}$	1
Data output hold time	${ }^{\text {t DHW }}$	$\overline{\text { CAR }}$	30	-	-	ns	1
Clock rise/fall time	$\mathrm{t}_{\text {ct }}$	CL2	-	-	30	ns	

Note: 1. Values when the following load circuit is connected:

Column Driver

Figure 12 Controller Interface of Column Driver

HD66106F

Row Driver

Figure 13 Controller Interface of Row Driver

HD66107T (LCD Driver for High Voltage)

Description

The HD66107T is a multi-output, high duty ratio LCD driver used for large capacity dot matrix LCD panels. It consists of 160 LCD drive circuits with a display duty ratio up to 1/480: the seven HD66107Ts can drive a $640 \times$ 480 dots LCD panel. Moreover, the LCD driver enables interfaces with various LCD controllers due to a built-in automatic generator of chip enable signals. Use of the HD66107T can help reduce the cost of an LCD-panel configuration, since it reduces the number of LCD drivers, compared with use of the HD61104 and HD61105.

Features

- Column and row driver
- 160 LCD drive circuits
- Multiplexing duty ratios: $1 / 100$ to $1 / 480$
- 4-bit and 8-bit parallel data transfer
- Internal automatic chip enable signal generator
- Internal standby mode
- Recommended LCD controller LSIs: HD63645F, HD64645F, and HD64646FS (LCTC), HD66840/HD66841 (LVIC), HD66850 (CLINE)
- Power supply voltage
-internal logic: $+5 \mathrm{~V} \pm 10 \%$
-LCD drive circuit : 14.0 to 37.0 V
- Operation frequency: 8.0 MHz (max.)
- CMOS Process
- 192-pin TCP

Ordering Information

Type No.	Number of outputs	Outer lead pitch $(\mu \mathrm{m})$	Material of tape*2	Note
HD66107T11	160	180	Kapton	
HD66107T24	160	180	Upilex	
HD66107T12	160	250	Kapton	
HD66107T00	160	280	Kapton	
HD66107T01	80	280	Kapton	12 perforated holes
HD66107T25	80	280	Kapton	8 perforated holes

Note: *1"Kapton" is a trademark of Dupont, Ltd.
"Upilex" is a trademark of Ube Industries, Ltd.
*2The details of TCP pattern are shown in "The Information of TCP".

HD66107T

Pin Description

Power Supply

Vcc, GND: VCC supplies power to the internal logic circuits. GND is the logic and drive ground.
$V_{\text {LCD, }}$: $\mathrm{V}_{\text {LCD }}$ supplies power to the LCD drive circuit.
$\mathbf{V}_{\mathbf{I L}}, \mathbf{V}_{\mathbf{1 R}}, \mathbf{V}_{\mathbf{2 L}}, \mathbf{V}_{\text {2R }}, \mathbf{V}_{\mathbf{3 L}}, \mathbf{V}_{\mathbf{3 R}}, \mathbf{V}_{\mathbf{4 L}}, \mathbf{V}_{\mathbf{4 R}}: \mathrm{V}_{1}$ to V_{4} supply power for driving an LCD (figure 1).

Control Signal

CL1: The LSI latches data at the negative edge of CL1 when the LSI is used as a column driver. Fix to GND when the LSI is used as a row driver.

CL2: The LSI latches display data at the negative edge of CL2 when the LSI is used as a column driver, and shifts line select data at the negative edge when it is used as a row driver.

Table 1 Pin Function

Symbol	Pin No.	Pin name	Input/output
VCC	167	VCC	
GND	$161,186,187$	Ground	
VLCD	166,192	VLCD	
V1L, R	191,165	V1L, V1R	
V2L, R	188,162	V2L, V2R	
V3L, R	190,164	V3L, V3R	
V4L, R	189,163	V4L, V4R	Input
CL1	183	Clock 1	Input
CL2	184	Clock 2	Input
M	182	M	Input
$D_{0}-D_{7}$	$174-181$	DATAO-DATA7	Input
SHL	172	Shift left	Input
CH2	171	Channel 2	Input
BS	173	Bus Select	Input
TEST	185	TEST	Output
Y1-Y160	$1-160$	Y1-Y160	Input
\bar{E}	169	Enable	Output
$\overline{C A R}$	168	Carry	Input
CH1	170	Channel 1	

Figure 1 Power Supply for Driving an LCD

M: \mathbf{M} changes LCD drive outputs to AC.
$D_{0}-D_{7} D_{0}-D_{7}$ input display data for the column driver (table 2).

SHL: SHL controls the shift direction of display data and line select data (figure 2, table 3).
$\overline{\mathrm{E}}$: $\overline{\mathrm{E}}$ inputs the enable signal when the LSI is used as a column driver ($\mathrm{CH} 1=\mathrm{V}_{\mathrm{CC}}$).

The LSI is disabled when $\overline{\mathrm{E}}$ is high and enabled when low. \bar{E} inputs scan data when the LSI is used as a row driver ($\mathrm{CH} 1=$ GND). When HD66107Ts are connected in cascade, $\overline{\mathrm{E}}$ connects with CAR of the preceding LSI.
$\overline{\text { CAR: }} \overline{\text { CAR }}$ outputs the enable signal when the LSI is used as a column driver ($\mathrm{CH} 1=\mathrm{V}$ cc).
$\overline{\text { CAR }}$ outputs scan data when the LSI is used as a row driver ($\mathrm{CH} 1=\mathrm{GND}$). When HD66107Ts are connected in cascade, CAR connects with $\overline{\mathrm{E}}$ of the next LSI.

CH1: CH1 selects the driver function. The chip devices are columns when $\mathrm{CH} 1=\mathrm{V}_{\mathrm{Cc}}$, and rows when CH1 = GND.

CH2: CH2 selects the number of output data bits. The number of output data bits is 160 when CH2 $=$ GND, and 80 when CH2 $=V_{c c}$.

BS: BS selects the number of input data bits. When $B S=V_{C C}$, the chip latches 8 -bits data. When BS = GND, the chip latches 4 -bits data via D_{0} to D_{3}. Fix D_{4} through D_{7} to GND.

TEST: Used for testing. Fixed to GND, other wise.

Table 2 Relation between Display data and LCD state

Display Data	LCD Output	LCD
1(=high level)	V1L, R/V2L, R	On
0 (=low level)	Nonselected level	Off

Table 3 Relation between SHL and Scan Direction of Selected Line (When LSI is Used as Row Driver)

SHL Shift Direction of Shift Register Scan Direction of Selected Line

Vcc	$\mathrm{E} \rightarrow$	$1 \rightarrow$	$2 \rightarrow$	$3 \rightarrow$	4------ $\rightarrow 160$	Y1 \rightarrow	Y2 \rightarrow	Y3 \rightarrow	Y4------ Y160
GND	$\mathrm{E} \rightarrow$	160	159	158	$157-----\rightarrow 1$	Y160	Y159	Y158	Y157----- \rightarrow Y1

Figure 2 Relation between SHL and Data Output

HD66107T

LCD Drive Interface

Y1-Y160: Each Y outputs one of the four voltage levels- $V_{1}, V_{2}, V_{3}, V_{4}$-according to the combination of M and display data (figure 3).

Figure 3 Selection of LCD Driver Output Level

Function

LCD Drive Circuits

The LCD drive circuits generate four levels of voltages $-V_{1}, V_{2}, V_{3}$, and V_{4}-for driving an LCD. They select and transfer one of the four levels to the output circuit according to the combination of M and the data in the latch circuit 2.

Latch Circuit 2

Latch circuit 2 is used as a 160-bit latch circuit during column driving. Latch circuit 2 latches data input from latch circuit 1 at the falling edge of CL1 and outputs latched data to the drive circuits.

In the case of row driving, latch circuit 2 is used as a 160 -bit bidirectional shift register. Data input from \bar{E} is shifted at the falling edge of CL2. When SHL $=\mathrm{V}_{\mathrm{Cc}}$, data is shifted in input order from bit 1 to bit 160 of the shift register. When SHL = GND, data is shifted from bit 160 to bit 1 of the reister. Moreover, this latch circuit can be used as an 80-bit shift register. In this case, Y_{41} through Y_{120} are enabled, while the other bits remain unchanged.

Latch Circuit 1

Latch circuit 1 consists of twenty 8 -bit parallel data latch circuits. It latches data D_{0} through D_{7} at the falling edge of CL2 during
column driving. The selector signals specify which 8-bit circuit latches data. Moreover, this circuit can be used as forty 4-bit parallel data latch circuits by switching BS, in which case the circuit latches data D_{0} through D_{3}. Moreover, this latch circuit can be used as an 80-bit shift register. In this case Y_{41} through Y_{120} are enabled, while the other bits remain unchanged.

Selector

The selector consists of a 6-bit up and down counter and a decoder. During column driving it generates a latch signal for latch circuit 1 , incrementing the counter at the falling edge of CL2.

Controller

This controller is enabled during column driving. It provides a power-down function which detects completion of data latch and stops LSI operations.

Moreover, the controller automatically generates a chip enable signal (CAR) which starts next-stage data latching.

Test Circuit

The test circuit divides the external clock and generates test signals.

Fundamental Operations

Column Driving (1)

- CH2 = GND (160-bit data output mode)
- $\mathrm{BS}=\mathrm{V}_{\mathrm{CC}}$ (8-bit data latch mode)

The HD66107T starts data latch when \bar{E} is at low level. In this case, 8-bit parallel data is latched at the falling edge of CL2. When 160bit data latch is completed, the HD66107T automatically stops and enters standby mode and $\overline{\mathrm{CAR}}$ is goes to low level. If $\overline{\mathrm{CAR}}$ is con-
nected with \bar{E} of the next-stage LSI, this nextstage LSI is activated when CAR of the previous LSI goes low.

Data is output at the falling edge of CL1. When SHL = GND, data d_{1} is output to pin Y1 and d_{160} to Y_{160}. On the other hand, when SHL $=\mathrm{V}_{\mathrm{CC}}$, data d_{160} is output to pin Y 1 and d 1 to Y_{160}. The output level is selected from among $\mathrm{V}_{1}-\mathrm{V}_{4}$ according to the combination of display data and alternating signal M. See figure 4.

Figure 4 Column Driver Timing Chart (1)

Column Driving (2)

- CH2 = GND (160-bit data output mode)
- BS = GND (4-bit data latch mode)

4-bit display data ($\mathrm{D}_{0}-\mathrm{D}_{3}$) is latched at the falling edge of CL2. Other operations are performed in the same way as described in "Column Driving (1)". See figure 5.

Figure 5 Column Driver Timing Chart (2)

Column Driving (3)

- $\mathrm{CH} 2=\mathrm{V}_{\mathrm{CC}}$ (80-bit data output mode)
- $\mathrm{BS}=\mathrm{V}_{\mathrm{CC}}$ (8-bit data latch mode)

When CH2 is high (V_{Cc}), the HD66107T can be used as an 80-bit column driver. In this case, Y_{41} through Y_{120} are enabled, the states of
Y_{1} through Y_{40} and Y_{121} through Y_{160} remain unchanged.

When SHL = GND, data d1 is output to pin Y_{41} and d_{80} is output to Y_{120}. Conversely, when SHL $=V_{C C}$, data d_{80} is output to Y_{41} and d_{1} is output to Y_{120}. See figure 6.

Figure 6 Column Driver Timing Chart (3)

Column Driving (4)

- $\mathrm{CH}_{2}=\mathrm{V}_{\text {cc }}$ (80-bit data output mode)
- BS = GND (4-bit data latch mode)

When CH2 $=\mathrm{V}_{\mathrm{cc}}$ and BS $=$ GND, 4-bit parallel data is latched, while 80-bit data is output. The output of latched data is performed in described in "Column Driving (3)". See figure 7.

Figure 7 Column Driver Timing Chart (4)

HD66107T

Row Driving (1)

- CH2 $=$ GND (160-bit data output mode)

The HD66107T shifts line scan data input through $\overline{\mathrm{E}}$ at the falling edge of CL2.

When SHL $=V_{C c}$, 160-bit data is shifted from Y_{1} to Y_{160}, whereas when SHL = GND, data is shifted from Y_{160} to Y_{1}. In both cases the HD66107T outputs the data delayed for 160 bits by the shift register through $\overline{C A R}$, becoming line scan data for the next IC driver. See figure 8.

Figure 8 Row Driver Timing Chart (1)

Row Driving (2)

- $\mathrm{CH} 2=\mathrm{V}_{\text {CC }}$ (80-bit data output mode)

When CH2 is high, the HD66107T can be used as an 80-bit row driver. In this case, Y_{41} to Y_{120} are enabled, while the other bits remain unchanged.

Line scan data input through $\overline{\mathrm{E}}$ is shifted at the falling edge of CL2. When SHL $=\mathrm{V}_{\mathrm{cc}}$, data is shifted from Y_{41} to Y_{120}. Conversely, when SHL = GND, data is shifted from Y_{120} to Y_{41}. In both cases the HD66107T outputs the data delayed for 80 bits by the shift register through $\overline{\mathrm{CAR}}$, becoming line scan data for the next LSI. See figure 9.

IHOV1IH

Notes 1. R1 and R2 are specified depending on the type of LCD panel. When using an LCD panel with $\mathbf{1 / 2 0}$ bias, R1/(4R1 + R2) must be $1 / 20$, i.e., $R 1=3 \mathrm{k} \Omega$ and $R 2=48 \mathrm{k} \Omega$.
Notes 2. When designing a board, place capacitors close to each LSI in order to stabilize power supply. It is recommended to use two $0.1 \mu \mathrm{~F}$ capacitors per LSI; one is connected between V_{CC} and GND, and the other between $\mathrm{V}_{\mathrm{LCD}}$ and GND.
Figure 10 Application Example

HD66107T

Waveform Examples
Column Driving

Figure 11 Column Driver Timing Chart

Row Driving

Figure 12 Row Driver Timing Chart
HITACHI

Absolute Maximum Rating

Item	Symbol	Rating	Unit	Note	
Power supply voltage	Logic circuit	V_{CC}	$-0.3-+7.0$	V	1
	LCD drive circuit	$\mathrm{V}_{\mathrm{LCD}}$	$-0.3-+38$	V	1
Input voltage (1)		$\mathrm{V}_{\mathrm{T} 1}$	$-0.3-\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Input voltage (2)	$\mathrm{V}_{\mathrm{T} 2}$	$-0.3-\mathrm{V}_{\mathrm{LCD}}+0.3$	V	1,3	
Operation temperature	$\mathrm{T}_{\mathrm{opr}}$	$-20-+75$	${ }^{\circ} \mathrm{C}$		
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	$-40-+125$	${ }^{\circ} \mathrm{C}$		

Notes:1. Reference point is GND $(=0 \mathrm{~V})$.
2. Applies to input pins for logic circuit.
3. Applies to input pins for LCD drive circuits.
4. If the LSI is used beyond absolute maximum ratings, it may be permanently damaged. It should always be used within the above electrical characteristics to prevent malfunction or degradation of the LSI's reliability.

Electrical Characteristics

DC Characteristics ($\mathbf{V C c}_{\text {cc }}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{V}_{\mathrm{LCD}}=14$ to $\mathbf{3 7} \mathrm{V}, \mathbf{T a}=-20$ to $\mathbf{7 5}{ }^{\circ} \mathrm{C}$)

Item	Symbo	Pins	Min.	Max.	Unit	Condition	Note
Input high voltage	V_{IH}	$\begin{aligned} & \hline \mathrm{CL1}, \mathrm{CL2,M} \\ & \mathrm{SHL}, \mathrm{BS}, \mathrm{CH} 2, \end{aligned}$	$0.8 \times \mathrm{Vcc}$	V cc	V		
Input low voltage	V_{IL}	$\begin{aligned} & \text { TEST, } \mathrm{D}_{0}-\mathrm{D}_{7}, \\ & \overline{\mathrm{E}}, \mathrm{CH} 1 \end{aligned}$		$0.2 \times$	V		
Output high voltage	VoH	$\overline{\text { CAR }}$	$\mathrm{V}_{\mathrm{cc}}-0.4$	-	V	$\mathrm{IOH}^{\mathrm{O}}=-0.4 \mathrm{~mA}$	
Output low voltage	VoL		-	0.4	V	$\mathrm{loL}=0.4 \mathrm{~mA}$	
$\mathrm{Vi}-\mathrm{Y}_{\mathrm{j}}$ on resistance	Ron	$\begin{aligned} & Y 1-Y 160, \\ & V 1-V 4 \end{aligned}$	-	3.0	k Ω	$\mathrm{l}_{\mathrm{ON}}=150 \mu \mathrm{~A}$	4
Input leak current (1)	IL1	CL1, CL2, M SHL, BS, CH2, TEST, $\mathrm{D}_{0}-\mathrm{D}_{7}$, $\overline{\mathrm{E}}, \mathrm{CH} 1$	-5.0	5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$	
Input leak current (2)	ILL2	V1-V4	-100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {LCD }}-\mathrm{GND}$	
Power dissipation (1)	ICCl_{1}		-	5.0	mA	$\mathrm{f}_{\mathrm{CL} 2}=8 \mathrm{MHz}$	1
Power dissipation (2)	LCD1		-	2.0	mA	$\mathrm{fcL}^{1}=28 \mathrm{kHz}$	2
Power dissipation (3)	IST		-	0.5	mA	In standby mode: $\mathrm{fCL}_{\mathrm{C}}=8 \mathrm{MHz}$, $\mathrm{fCL}^{1}=28 \mathrm{kHz}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Power dissipation (4)	Icc2		-	1.0	mA	$\mathrm{ffcl}^{1}=28 \mathrm{kHz}$	1
Power dissipation (5)	ILCD2		-	0.5	mA	$\mathrm{fm}=35 \mathrm{~Hz}$	3

Notes:1. Input and output current is excluded. When an input is at the intermediate level is CMOS, excessive current flows from the power supply though the input circuit. To avoid it, $\mathrm{V}_{I H}$ and V_{IL} must be fixed to V_{cc} and GND respectively.
2. Applies to column driving.
3. Applies to row driving.
4. Indicates the resistance between one pin from Y 1-Y160 and another pin from V1-V4 when load current is applied to the Y Pin; defined under the following conditions.

$$
\begin{aligned}
\mathrm{V} \text { LCD }-G N D & =370 \\
\mathrm{~V} 1, \mathrm{~V} 3 & =\mathrm{V}_{\mathrm{LCD}}-\left\{2 / 20\left(\mathrm{~V}_{\mathrm{LCD}}-\mathrm{GND}\right)\right\} \\
\mathrm{V} 2, \mathrm{~V} 4 & =\mathrm{V}_{\mathrm{LCD}}+\left\{2 / 20\left(\mathrm{~V}_{\mathrm{LCD}}-\mathrm{GND}\right)\right\}
\end{aligned}
$$

This section explains the range of power supply voltage for driving LCD. V 1 and V3 voltage should be near VLCD, and V2 and V4 should be near GND (figure 13).
Each voltage must be within $\Delta \mathrm{V} . \Delta \mathrm{V}$ determines the range within which Ron, impedance of driver's output, is stable. Note that ΔV depends on power supply voltage VLCD-GND (figure 14).

Figure 13 Driver's Output Waveform and Each Level of Voltage

Figure 14 Power Supply Voltage $V_{\text {LCD }}-G N D$ and ΔV

HD66107T

AC Characteristics ($\mathbf{V C c}_{\text {cc }}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{LCD}}=14$ to $\mathbf{3 7} \mathrm{V}, \mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$)
Column Driving

Item	Symbol	Pin name	Min.	Max.	Unit	Note
Clock cycle time	$\mathrm{t}_{\text {cyc }}$	CL2	125	-	ns	
Clock high-level width (1)	tcWh1	CL2	30	-	ns	
Clock high-level width (2)	tcWH2	CL1	60	-	ns	
Clock low-level width	taWL	CL2	30	-	ns	
Clock setup time	$\mathrm{t}_{\text {SCL }}$	CL2	200	-	ns	
Clock hold time	$\mathrm{t}_{\mathrm{HCL}}$	CL2	200	-	ns	
Clock rising/falling time	tct	CL1, CL2	-	30	ns	
Data setup time	tosu	$\mathrm{D}_{0}-\mathrm{D}_{7}$	30	-	ns	
Data hold time	$t_{\text {DH }}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	30	-	ns	
$\overline{\text { E }}$ setup time	$\mathrm{t}_{\text {ESU }}$	$\overline{\mathrm{E}}$	25	-	ns	
Output delay time (1)	tocar1	$\overline{\text { CAR }}$	-	70	ns	1
Output delay time (2)	tocar2	$\overline{\text { CAR }}$	-	200	ns	1
M phase difference	t_{CM}	M, CL1	-	300	ns	

Notes:1. Specified when connecting the load circuit shown in figure 15.

Figure 15 Test Circuit

Figure 16 Controller Interface of Column Driver

HD66107T

Row Driving

Item	Symbol	Pin name	Min.	Max.	Unit	Note
Clock low-level width	tWL1	CL2	5	-	$\mu \mathrm{s}$	
Clock high-level width	twh1	CL2	60	-	ns	
Data setup time	tos2	$\overline{\mathrm{E}}$	100	-	ns	
Data hold time	$\mathrm{t}_{\text {DH2 }}$	$\overline{\mathrm{E}}$	30	-	ns	
Data output delay time	tod	$\overline{\text { CAR }}$	-	3	$\mu \mathrm{s}$	1
Data output hold time	tohw	$\overline{\text { CAR }}$	30	-	ns	1
Clock rising/falling time	$t_{C t}$	CL2	-	30	ns	

Figure 17 Controller Interface of Row Driver

HD66110RT (Column Driver)

Description

The HD66110RT, the column driver for a large liquid crystal display (LCD) panel, features as many as 160 LCD outputs powered by 160 internal LCD drive circuits, and a high duty cycle. This device can interface to various LCD controllers by using an internal automatic chip enable signal generator. Its strip shape enables a slim tape carrier package (TCP).

Features

- 191-pin TCP
- CMOS fabrication process
- High voltage
_ LCD drive: 28 to 40 V
- High speed
- Maximum clock speed :
$12 \mathrm{MHz}\left(\mathrm{V}_{\mathrm{CC}}=4.5\right.$ to 5.5 V$)$
$10 \mathrm{MHz}\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to 5.5 V$)$
- 4- and 8-bit data bus interface
- Display off function
- Standby function
- Various LCD controller interfaces
— LCTC series: HD63645, HD64645, HD64646
— LVIC series: HD66840, HD66841
— CLINE: HD66850

Ordering Information

Type No.	Outer lead pitch $(\mu \mathrm{m})$	User Area (mm)
HD66110RTA8	140	10.85
HD66110RTB0	92	11.9
HD66110RTB1	92	9.0
HD66110TA4	80	9.66

Note : The details of TCP pattern are shown in " The Information of TCP. "

HD66110RT

Pin Description

Symbol	Pin No.	Pin Name	Input/Output	Classification
$\mathrm{V}_{\text {cc }}$	175	$\mathrm{V}_{\text {cC }}$	-	Power supply
GND	186	GND	-	Power supply
$\mathrm{V}_{\text {LCD1 }}$	187	$\mathrm{V}_{\text {LCD1 }}$	Input	Power supply
$\mathrm{V}_{\text {LCD2 }}$	164	$\mathrm{V}_{\mathrm{LCD} 2}$	-	Power supply
V1R	166	V1R	Input	Power supply
V2R	162	V2R	Input	Power supply
V3R	165	V3R	Input	Power supply
V4R	163	V4R	Input	Power supply
V1L	188	V1L	Input	Power supply
V2L	191	V2L	Input	Power supply
V3L	189	V3L	Input	Power supply
V4L	190	V4L	Input	Power supply
CL1	179	Clock 1	Input	Control signal
CL2	178	Clock 2	Input	Control signal
M	180	M	Input	Control signal
$\mathrm{D}_{0}-\mathrm{D}_{7}$	167-174	Data 0-data 7	Input	Control signal
SHL	183	Shift left	Input	Control signal
El/O1, El/O2	177, 176	Enable 10 1, enable 102	Input/output	Control signal
DISP	181	Display off	Input	Control signal
BS	184	Bus select	Input	Control signal
$\overline{\text { TEST1 }}$, TEST2	182, 185	Test 1, test 2	Input	Control signal
$\underline{Y_{1}-Y_{160}}$	1-160	$Y_{1}-Y_{160}$	Output	LCD drive output

Pin Functions

Power Supply

$\mathbf{V}_{\mathbf{C C}}, \mathbf{V}_{\mathbf{L C D} 1}, \mathbf{V}_{\text {LCD2 }}, \mathbf{G N D}: \mathbf{V}_{\mathbf{C C}}$ - GND supplies power to the internal logic circuits. $V_{\text {LCD }}$-GND supplies power to the LCD drive circuits. See figure 1.

V1R, V1L, V2R, V2L, V3R, V3L, V4R, V4L: Supply different levels of power to drive the LCD. V1 and V2 are selected levels, and V3 and V4 are non-selected levels.

Control Signals

CL1: Inputs display data latch pulses for latch circuit 2 . Latch circuit 2 latches display data input from latch circuit 1, and outputs LCD drive signals corresponding to the latched data, both at the falling edge of each CL1 pulse.

CL2: Inputs display data latch pulses for latch circuit 1 . Latch circuit 1 latches display data input via $D_{0}-D_{7}$ at the falling edge of each CL2 pulse.

M: Changes LCD drive outputs to AC.
$\mathbf{D}_{0}-D_{7}$: Input display data. High-voltage level (V_{CC} level) of data corresponds to a selected level and turns an LCD pixel on, and low-voltage level (GND level) data corresponds to a non-selected level and turns an LCD pixel off.

SHL: Shifts the destinations of display data output, and determines which chip enable pin (EI/O1 or $\overline{\mathrm{EI} / \mathrm{O} 2)}$ is an input and which is an output. See figure 2.
 the chip enable signal, and EI/O2 outputs the signal. If SHL is Vcc level, $\overline{\mathrm{EI} / \mathrm{O} 1}$ outputs the chip enable signal, and $\overline{\mathrm{EI} / \mathrm{O} 2}$ inputs the signal. The chip enable input pin of the first HD66110RT must be grounded, and those of the other HD66110RTs must be connected to the chip enable output pin of the previous HD66110RT. The chip enable output pin of the last HD66110RT must be open.
 $\mathrm{Y}_{1}-\mathrm{Y}_{160}$ to V 2 level.

BS: Selects either the 4-bit or 8 -bit display data bus interface. If BS is V_{CC} level, the 8 -bit bus is selected, and if BS is GND level, the 4-bit bus is selected. In 4-bit bus mode, data is latched via $D_{0}-D_{3} ; D_{4}-D_{7}$ must be grounded.

TEST1, TEST2: Used to test the LSI, and must be connected to V_{CC} level.

LCD Drive Output

$\mathbf{Y}_{1}-\mathbf{Y}_{160}$: Each Y outputs one of the four voltage levels V1, V2, V3, or V4, depending on a combination of the M signal and display data levels. See figure 3.

Figure 1 Power Supply for Logic and LCD Drive Circuits

Figure 2 Selection of Destinations of Display Data Output

Figure 3 Selection of LCD Drive Output Level

Block Functions

LCD Drive Circuit

The 160 -bit LCD drive circuit generates four voltage levels V1, V2, V3, and V4, for driving an LCD panel. One of the four levels is output to the corresponding Y pin, depending on a combination of the M signal and the data in the latch circuit 2.

Level Shifter

The level shifter changes 5-V signals into highvoltage signals for the LCD drive circuit.

Latch Circuit 2

160-bit latch circuit 2 latches data input from latch circuit 1 , and outputs the latched data to the level shifter, both at the falling edge of each clock 1 (CL1) pulse.

Latch Circuit 1

160-bit latch circuit 1 latches 4-bit or 8-bit parallel data input via the D_{0} to D_{7} pins at the timing generated by the shift register.

Shift Register

The 40-bit shift register generates and outputs data latch signals for latch circuit 1 at the falling edge of each clock 2 (CL2) pulse.

Data Shifter

The data shifter shifts the destinations of display data output, when necessary.

Test Circuit

The test circuit divides the external clock pulses and generates test signals (TEST1 and TEST2).

Block Diagram

Comparison of the HD66110RT with the HD66107T

Item	HD66110RT	HD66107T
Common LCD drive circuits	Not provided	160
Column LCD drive circuits	160	160 or 80
LCD drive voltage range	28 to 40 V	14 to 37 V
Speed	$\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V	12 MHz
$\mathrm{V}_{\mathrm{CC}}=2.7$ to 4.5 V	10 MHz	8 MHz
Clock hold time (tHCL) definition	From the falling edge of CL1 to the rising edge of CL2 (figure 1)	From the falling edge of CL1 to the falling edge of CL2 (figure 1)
Test pin level at normal operation	VCC	GND
Display off function	Provided	Not provided
TCP shape	Can be thin	Cannot be thin

Figure $4 \mathbf{t}_{\text {HCL }}$ Definitions of the HD66110RT and HD66107T

Operation Timing

4-Bit Bus Mode (BS = GND)

Figure 5 shows 4-bit data latch timing when SHL $=$ GND, that is, the EI/O1 pin is a chip enable input and $\overline{\mathrm{EI} / \mathrm{O} 2}$ pin is a chip enable output. When $\mathrm{SHL}=\mathrm{V}_{\mathrm{CC}}$, the EI/O1 pin is a chip enable output and $\overline{E I / O 2}$ pin is a chip enable input.

When a low chip enable signal is input via the EI/O1 pin, the HD66110RT is first released from data standby state, and, at the falling edge of the following CL2 pulse, it is released entirely from standby state and starts latching data.

It simultaneously latches 4 bits of data at the falling edge of each CL2 pulse. When it has latched 156 bits of data, it sets the EI/O2 signal low. When it has latched 160 bits of data, it automatically stops and enters standby state, initiating the next HD66110RT, as long as its EI/O2 pin is connected to the EI/O1 pin of the next HD66110RT.

The HD66110RTs output one line of data from the $\mathrm{Y}_{1}-\mathrm{Y}_{160}$ pins at the falling edge of each CL1 pulse. Data d_{1} is output from Y_{1}, and d_{160} from Y_{160} when $\mathrm{SHL}=$ GND, and d_{1} is output from Y_{160}, and d_{160} from Y_{1} when $\mathrm{SHL}=\mathrm{V}_{\mathrm{CC}}$.

Figure 5 4-Bit Data Latch Timing (SHL = GND)

8-Bit Bus Mode ($\mathbf{B S}=\mathbf{V}_{\mathbf{C C}}$)

Figure 6 shows 8-bit data latch timing when SHL $=$ GND, that is, the EI/O1 pin is a chip enable input and $\overline{\mathrm{EI} / \mathrm{O} 2}$ pin is a chip enable output.

When $\mathrm{SHL}=\mathrm{V}_{\mathrm{cc}}$, the $\overline{\mathrm{EI} / \mathrm{Ol}}$ pin is a chip enable output and $\overline{\mathrm{EI} / \mathrm{O} 2}$ pin is a chip enable input.

The operation is the same as that in 4-bit bus mode except that 8 bits of data are latched simultaneously.

Figure 6 8-Bit Data Latch Timing (SHL = GND)

Application Example

Notes: 1. The resistances of R1 and R2 depend on the type of the LCD panel used. For example, for an LCD panel with a $1 / 20$ bias, R1 and R2 must be $3 \mathrm{k} \Omega$ and $48 \mathrm{k} \Omega$, respectively. That is, $R 1 /(4 \cdot R 1+R 2)$ should be $1 / 20$.
2. To stabilize the power supply, place two $0.1-\mu \mathrm{F}$ capacitors near each LCD driver: one between the Vcc and GND pins, and the other between the $\mathrm{V}_{\mathrm{LCD}}$ and GND pins.
3. The load must be less than 30 pF between the $\overline{\mathrm{El} / \mathrm{O} 2}$ and $\overline{\mathrm{El} / \mathrm{O1}}$ connections of HD66110RTs.

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Notes
Power supply voltage for logic circuits	V_{CC}	-0.3 to +7.0	V	1,5
Power supply voltage for LCD drive circuits	$\mathrm{V}_{\mathrm{LCD}}$	-0.3 to +42	V	$1,2,5$
Input voltage 1	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,3
Input voltage 2	$\mathrm{V}_{\mathrm{T} 2}$	-0.3 to $\mathrm{V}_{\mathrm{LCD}}+0.3$	V	1,4
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-40 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. The reference point is GND (0 V).
2. Indicates the voltage between GND and $\mathrm{V}_{\mathrm{LCD}}$.
3. Applies to input pins for logic circuits, that is, control signaı pins.
4. Applies to input pins for LCD drive level voltages, that is, $\mathrm{V} 1-\mathrm{V} 4$ pins.
5. Power should be applied to V_{CC}-GND first, and then $\mathrm{V}_{\mathrm{LCD}}-\mathrm{GND}$. It should be disconnected in the reverse order.
6. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability.

Electrical Characteristics

DC Characteristics1 ($\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 7}$ to $\mathbf{4 . 5 V}, \mathrm{V}_{\mathrm{LCD}}-\mathrm{GND}=\mathbf{2 8}$ to $\mathbf{4 0} \mathrm{V}$, and $\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $\boldsymbol{+ 7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Condition	Notes
Input high voltage	V_{IH}	1	$0.8 \times \mathrm{V}_{\mathrm{Cc}}$	$V_{\text {cc }}$	V		
Input low voltage	$\mathrm{V}_{\text {IL }}$	1	0	$0.2 \times \mathrm{V}_{\text {c }}$	V		
Output high voltage	V_{OH}	2	$V_{C C}-0.4$	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}	2	-	0.4	V	$\mathrm{IOL}=0.4 \mathrm{~mA}$	
Vi-Yj on resistance	$\mathrm{R}_{\text {ON }}$	3	-	3.0	k Ω	$\mathrm{I}_{\text {ON }}=150 \mu \mathrm{~A}$	1
Input leakage current 1	ILL_{1}	1	-5.0	5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to GND	
Input leakage current 2	ILL^{2}	4	-100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {LCD }}$ to GND	
Current consumption 1	lcc	-	-	2.2	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CL} 2}=10 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CL1}}=28 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{CO}}=3 . \mathrm{V} \end{aligned}$	2
Current consumption 2	1 con	-	-	3.0	mA	Same as above	2
Current consumption 3	l_{51}	-	-	0.3	mA	Same as above	2.3

Pins and notes on next page.

HD66110RT

DC Characteristics2 $\left(\mathbf{V}_{\mathbf{C C}}=\mathbf{5} \mathrm{V} \pm \mathbf{1 0 \%}, \mathrm{V}_{\mathrm{LCD}}-\mathrm{GND}=\mathbf{2 8}\right.$ to $\mathbf{4 0} \mathrm{V}$, and $\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to +75${ }^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Condition	Notes
Input high voltage	V_{IH}	1	$0.8 \times V_{\text {cc }}$	$V_{\text {cc }}$	V		
Input low voltage	$\mathrm{V}_{\text {IL }}$	1	0	$0.2 \times \mathrm{V}_{\text {c }}$	V		
Output high voltage	V_{OH}	2	$\mathrm{V}_{\mathrm{cc}}-0.4$	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}	2	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	
Vi -Yj on resistance	$\mathrm{R}_{\text {ON }}$	3	-	3.0	$\mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{ON}}=150 \mu \mathrm{~A}$	1
Input leakage current 1	ILL_{1}	1	-5.0	5.0	$\mu \mathrm{A}$	$V_{\text {IN }}=V_{\text {CC }}$ to GND	
Input leakage current 2	IL2	4	-100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {LCD }}$ to GND	
Current consumption 1	ICC	-	-	5.0	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CL2} 2}=12 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CL} 1}=28 \mathrm{kHz} \end{aligned}$	2
Current consumption 2	LCD	-	-	3.0	mA	Same as above	2
Current consumption 3	$\mathrm{I}_{\text {ST }}$	-	-	0.7	mA	Same as above	2, 3

Pins: 1. CL1, CL2, M, SHL, BS, EI/O1, EI/O2, DISP, TEST1, TEST2, $\mathrm{D}_{0}-\mathrm{D}_{7}$
2. EI/O1, EI/O2
3. $Y_{1}-Y_{160}, V 1-V 4$
4. V1-V4

Notes: 1. Indicates the resistance between one pin from $Y_{1}-Y_{160}$ and another pin from V1-V4 when load current is applied to the Y pin; defined under the following conditions.
$\mathrm{V}_{\mathrm{LCD}}-\mathrm{GND}=40 \mathrm{~V}$
$\mathrm{V} 1, \mathrm{~V} 3=\mathrm{V}_{\mathrm{LCD}}-\left\{1 / 20\left(\mathrm{~V}_{\mathrm{LCD}}-\mathrm{GND}\right)\right\}$
$\mathrm{V} 2, \mathrm{~V} 4=\mathrm{V}_{\mathrm{LCD}}+\left\{1 / 20\left(\mathrm{~V}_{\mathrm{LCD}}-\mathrm{GND}\right)\right\}$

V1 and V3 should be near VLCD level, and V2 and V4 should be near GND level (figure 7). All voltage must be within $\Delta V . \Delta V$ is the range within which RON, the LCD drive circuits' output impedance, is stable. Note that $\Delta \mathrm{V}$ depends on power supply voltage $\mathrm{V}_{\mathrm{LCD}}-\mathrm{GND}$ (figure 8).
2. Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, $\mathrm{V}_{\mathbb{I H}}$ and V_{IL} must be held to V_{CC} and GND levels, respectively.
3. Applies to standby mode.

Figure 7 Relation between Driver Output Waveform and Level Voltages

Figure 8 Relation between $\mathbf{V}_{\text {LCD }}$ - GND and ΔV

HD66110RT

AC Characteristics1 ($\mathbf{V}_{\mathbf{C C}}=\mathbf{2 . 7}$ to $\mathbf{4 . 5 V}, \mathbf{V}_{\mathbf{L C D}}-\mathbf{G N D}=\mathbf{2 8}$ to $\mathbf{4 0} \mathrm{V}$, and $\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $\mathbf{+ 7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Notes
Clock cycle time	$\mathrm{t}_{\mathrm{CrC}}$	CL2	100	-	ns	
Clock high-level width 1	$\mathrm{t}_{\mathbf{C W H} 2}$	CL2	37	-	ns	
Clock low-level width	$\mathrm{t}_{\mathrm{CWL} 2}$	CL2	37	-	ns	
Clock high-level width 2	$\mathrm{t}_{\text {CWH1 }}$	CL1	50	-	ns	
Clock setup time	${ }_{\text {t }}^{\text {SCL }}$	CL1, CL2	100	-	ns	
Clock hold time	thCL	CL1, CL2	100	-	ns	
Clock rise time	t_{r}	CL1, CL2	-	50	ns	2
Clock fall time	t_{f}	CL1, CL2	-	50	ns	2
Data setup time	$t_{\text {DS }}$	$\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{CL2}$	35	-	ns	
Data hold time	$t_{\text {DH }}$	$\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{CL2}$	35	-	ns	
M phase difference time	t_{CM}	M, CL1	-	300	ns	

Notes: 1. The load must be less than 30 pF between the $\overline{\mathrm{E} / \mathrm{O} 2}$ and $\overline{\mathrm{El} / \mathrm{O} 1}$ connections of HD66110RTs.
2. $t_{r}, t_{f}<\left(t_{c y c}-{ }^{-t} \mathrm{CWH} 2^{-t} \mathrm{CWLL}\right) / 2$ and $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 50 \mathrm{~ns}$

AC Characteristics2 ($\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%}, \mathrm{V}_{\mathrm{LCD}}-\mathrm{GND}=\mathbf{2 8}$ to $\mathbf{4 0} \mathrm{V}$, and $\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.)

Item	Symbol	Pins	Min.	Max.	Unit	Notes
Clock cycle time	$\mathrm{t}_{\mathrm{CrC}}$	CL2	83	-	ns	
Clock high-level width 1	$\mathrm{t}_{\mathrm{CWH} 2}$	CL2	20	-	ns	
Clock low-level width	$\mathrm{t}_{\mathrm{CWL} 2}$	CL2	20	-	ns	
Clock high-level width 2	${ }^{\text {t }}$ (WH1	CL1	50	-	ns	
Clock setup time	${ }^{\text {t }}$ CL	CL1, CL2	100	-	ns	
Clock hold time	thCL	CL1, CL2	100	-	ns	
Clock rise time	t_{r}	CL1, CL2	-	50	ns	2
Clock fall time	t_{f}	CL1, CL2	-	50	ns	2
Data setup time	$t_{\text {DS }}$	$\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{CL2}$	10	-	ns	
Data hold time	$t_{\text {DH }}$	$\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{CL2}$	10	-	ns	
M phase difference time	t_{CM}	M, CL1	-	300	ns	

Notes: 1. The load must be less than 30 pF between the E//O2 and EI/O1 connections of HD66110RTs.
2. $\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}<\left(\mathrm{t}_{\mathrm{cyc}}-\mathrm{t}_{\mathrm{CWH}}{ }^{-\mathrm{t}_{\mathrm{CW}}} \mathbf{2}\right) / 2$ and $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 50 \mathrm{~ns}$

Figure 9 LCD Controller Interface Timing

HD66115T

(160-Channel Common Driver Packaged in a Slim Tape Carrier Package) - Preliminary -

Description

The HD66115T is a common driver for large dot matrix liquid crystal graphics displays. It features 160 channels which can be divided into two groups of 80 channels by selecting data input/output pins. The driver is powered by about 3 V , making it suitable for the design of portable equipment which fully utilizes the low power dissipation of liquid crystal elements. The HD66115T, packaged in a slim tape carrier package (slim-TCP), makes it possible to reduce the size of the user area (wiring area).

Features

- Duty cycle: About $1 / 100$ to $1 / 480$
- 160 LCD drive circuits
- High LCD driving voltage: 14 V to 40 V
- Output division function (2×80-channel outputs)
- Display off function
- Operating voltage: 2.5 V to 5.5 V
- Slim-TCP
- Low output impedance: $0.5 \mathrm{k} \Omega$ (typ)

Ordering Information

Type No.
Outer Lead Pitch ($\mu \mathrm{m}$)

HD66115TAO	180
HD66115TA1	250

Note: The details of TCP pattern are shown in "The Information of TCP."

Pin Arrangement

Note: This figure does not specify the tape carrier package dimensions.

Pin Assignments

\begin{tabular}{|c|}
\hline \[
\begin{array}{|c}
\stackrel{N}{N} \\
>
\end{array}
\] \& \[
\begin{aligned}
\& 4 \\
\& i n \\
\& >
\end{aligned}
\] \& \begin{tabular}{l}
\(\xrightarrow{-7}\) \\
179
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{H} \\
\& \mathrm{~S}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { H } \\
\& 0 \\
\& 5
\end{aligned}
\] \& \begin{tabular}{l}
\(\stackrel{-1}{2}\) \\
176
\end{tabular} \& 出

175 \& | 思 |
| :--- |
| 174 | \& |r \& Σ

172 \& $\stackrel{7}{0}$ \& \begin{tabular}{l}
Nㅜㅇ

170

 \&

-

H

-

169
\end{tabular} \& H

168 \& $$
\begin{aligned}
& \mathrm{N} \\
& \mathrm{O} \\
& \mathrm{O}
\end{aligned}
$$ \& ن \& \[

$$
\begin{aligned}
& \text { a } \\
& \hline
\end{aligned}
$$

\] \& | $\begin{aligned} & \alpha \\ & 0 \\ & 0 \\ & p \end{aligned}$ |
| :--- |
| 164 | \& \& \[

\stackrel{\alpha}{\Omega}

\] \& | \sim |
| :---: |
| \sim |
| \sim |
| |
| 161 |

\hline
\end{tabular}

HD66115T

Pin Descriptions

Symbol	Pin No.	Pin Name	Input/Output	Classification
$\mathrm{V}_{\text {LCD }} 1,2$	177, 163	$\mathrm{V}_{\text {LCD }}$	-	Power supply
$\mathrm{V}_{\text {CC }}$	166	$V_{C C}$	-	Power supply
GND1, 2	176, 170	GND	-	Power supply
$V_{1} L, V_{1} R$	165, 178	$V_{1} L, V_{1} R$	Input	Power supply
$V_{2} L, V_{2} R$	161, 181	$V_{2} L, V_{2} R$	Input	Power supply
$\mathrm{V}_{5} \mathrm{~L}, \mathrm{~V}_{5} \mathrm{R}$	162, 180	$\mathrm{V}_{5} \mathrm{~L}, \mathrm{~V}_{5} \mathrm{R}$	Input	Power supply
$\mathrm{V}_{6} \mathrm{~L}, \mathrm{~V}_{6} \mathrm{R}$	164, 179	$V_{6} \mathrm{~L}, \mathrm{~V}_{6} \mathrm{R}$	Input	Power supply
CL	171	Clock	Input	Control signal
M	172	M	Input	Control signal
CH	175	CH	Input	Control signal
SHL	174	Shift left	Input	Control signal
DIO1	169	Data	Input/output	Control signal
DIO2	167	Data	Input/output	Control signal
DI	168	Data	Input	Control signal
$\overline{\text { Dispoff }}$	173	Display off	Input	Control signal
X1-X160	1-160	X1-X160	Output	LCD drive output

Pin Functions

Power Supply

$\mathbf{V}_{\mathbf{C C}}$, GND: Supply power to the internal logic circuits.
$\mathbf{V}_{\mathbf{L C D}}$, GND: Supply power to the LCD drive circuits (figure 1).
$\mathbf{V}_{1} \mathrm{~L}, \mathrm{~V}_{\mathbf{1}} \mathbf{R}, \mathbf{V}_{\mathbf{2}} \mathrm{L}, \mathbf{V}_{\mathbf{2}} \mathrm{R}, \mathbf{V}_{\mathbf{5}} \mathrm{L}, \mathbf{V}_{\mathbf{5}} \mathrm{R}, \mathbf{V}_{\mathbf{6}} \mathrm{L}, \mathbf{V}_{\mathbf{6}} \mathrm{R}$: Supply different power levels to drive the LCD. V_{1} and V_{2} are selected levels, and V_{5} and V_{6} are nonselected levels.

Control Signals

CL: Inputs data shift clock pulses for the shift register. At the falling edge of each CL pulse, the shift register shifts data input via the DIO pins.

M: Changes the LCD drive outputs to AC.
CH: Selects the data shift mode. ($\mathrm{CH}=$ high: $2 \times$ 80 -output mode, $\mathrm{CH}=$ low: 160 -output mode)

SHL: Selects the data shift direction for the shift register and the common signal scan direction (figure 2).

DIO1, DIO2: Input or output data. DIO1 is input and DIO2 is output when SHL is high. DIO1 is output and DIO2 is input when SHL is low.

DI: Input data. DI is input to X81-X160 when CH and SHL are high, and to $\mathrm{X} 81-\mathrm{X1}$ when SHL is low.

Dispoff: Controls LCD output level. A low $\overline{\text { Dispoff }}$ sets the LCD drive outputs X1-X160 to the V_{2} level. A high Dispoff is normally used.

LCD Drive Outputs

X1-X160: Each X outputs one of four voltage levels $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{5}$, or V_{6}, depending on the combination of the M signal and the data level (figure 3).

HD66115T

Figure 1 Power Supply for LCD Driver

SHL	Data shift direction
High	Shift to right $\mathrm{DIO} 1 \rightarrow \mathrm{SR} 1 \rightarrow \mathrm{SR} 2 \rightarrow \mathrm{SR} 3 \cdots \rightarrow \mathrm{SR} 160 \rightarrow \mathrm{DIO} 2$ LowShift to left $\mathrm{DIO} 2 \rightarrow \mathrm{SR} 160 \rightarrow \mathrm{SR} 159 \cdots \rightarrow \mathrm{SR1} \rightarrow \mathrm{DIO1}$

Note: SR1 to SR160 correspond to the outputs of X1 to X160, respectively.

Figure 2 Selection of Data Shift Direction and Common Signal Scan Direction by SHL

Figure 3 Selection of LCD Drive Output Level

Block Diagram

HD66115T

Block Functions

LCD Drive Circuit

The 160 -bit LCD drive circuit generates four voltage levels $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{5}$, and V_{6}, which drive the LCD panel. One of these four levels is output to the corresponding X pin, depending on the combination of the M signal and the data in the shift register.

Level Shifter

The level shifter changes logic control signals (2.5 V-5.5 V) into high-voltage signals for the LCD drive circuit.

Shift Register

The 160 -bit shift register shifts the data input via the DIO pin by one bit at a time. The one bit of shifted-out data is output from the DIO pin to the next driver IC. Both actions occur simultaneously at the falling edge of each shift clock (CL) pulse. The SHL pin selects the data shift direction.

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Notes
Power supply voltage for logic circuits	V_{CC}	-0.3 to +7.0	V	$\mathbf{1 , 5}$
Power supply voltage for LCD drive circuits	$\mathrm{V}_{\mathrm{LCD}}$	-0.3 to +42	V	$\mathbf{1 , 5}$
Input voltage 1	$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Input voltage 2	$\mathrm{V}_{\mathrm{T} 2}$	-0.3 to $\mathrm{V}_{\mathrm{LCD}}+0.3$	V	$1, \mathbf{1}$
Input voltage 3	$\mathrm{V}_{\mathrm{T} 3}$	-0.3 to +7.0	V	1,4
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-40 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. The reference point is GND (0 V).
2. Applies to pins CL, M, SHL, DI, Dispoff, and CH.
3. Applies to pins V_{1} and V_{6}.
4. Applies to pins V_{2} and V_{5}.
5. Power should be applied to $V_{C C}-G N D$ first, and then $V_{L C D}-G N D$. It should be disconnected in the reverse order.
6. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its specified operating range in order to prevent malfunctions or loss of reliability.

HD66115T

Electrical Characteristics

DC Characteristics ($\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise stated)

Item	Symbol	Pins	Min.	Typ.	Max.	Unit	Test Condition	Notes
Input high voltage	V_{IH}	1	$0.8 \times \mathrm{V}_{\text {c }}$	-	V cc	V		
Input low voltage	$\mathrm{V}_{\text {IL }}$	1	0	-	$0.2 \times$	V		
Output high voltage	V_{OH}	2	$\mathrm{V}_{\mathrm{CC}}-0.4$	-	-	V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	
Output low voltage	V_{OL}	2	-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	
Vi-Xj on resistance	$\mathrm{R}_{\text {ON }}$	3	-	0.5	1.0	$\mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{ON}}=150 \mu \mathrm{~A}$	1
Input leakage current 1	ILL	1	-5	-	5	$\mu \mathrm{A}$	$V_{I N}=V_{C C}$ to $G N D$	
Input leakage current 2	ILL2	4	-25	-	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {LCD }}$ to GND	
Current consumption 1	$\mathrm{I}_{\text {GND }}$	-	-	-	T.B.D	$\mu \mathrm{A}$		2
Current consumption 2	LLCD	-	-	-	T.B.D	$\mu \mathrm{A}$		
Current consumption 3	$\mathrm{I}_{\text {GND }}$	-	-	-	T.B.D	$\mu \mathrm{A}$		2
Current consumption 4	LLCD	-	-	-	T.B.D	$\mu \mathrm{A}$		

Note: Pins: 1. CL, M, SHL, CH, DI, DIO1, DIO2, Dispoff
2. DIO1, DIO2
3. $\mathrm{X} 1-\mathrm{X} 160, \mathrm{~V}$
4. $V_{1}, V_{2}, V_{5}, V_{6}$

Notes: 1. Indicates the resistance between one of the pins X1-X160 and one of the voltage supply pins V_{1}, V_{2}, V_{5}, or V_{6}, when load current is applied to the X pin; defined under the following conditions:

$$
\begin{aligned}
& V_{\mathrm{LCD}}-\mathrm{GND}=40 \mathrm{~V} \\
& \mathrm{~V}_{1}, \mathrm{~V}_{6}=\mathrm{V}_{\mathrm{CC}}-\left\{1 / 20\left(\mathrm{~V}_{\mathrm{LCD}}-\mathrm{GND}\right)\right\} \\
& \mathrm{V}_{5}, V_{2}=G N D+\left\{1 / 20\left(V_{\mathrm{LCD}}-\mathrm{GND}\right)\right\}
\end{aligned}
$$

All voltages must be within $\Delta V, V_{L C D} \geq V_{1} \geq V_{6} \geq V_{L C D}-7.0 \mathrm{~V}$, and $7.0 \mathrm{~V} \geq \mathrm{V}_{5} \geq \mathrm{V}_{2} \geq \mathrm{GND}$. Note that ΔV depends on the power supply voltage $V_{\mathrm{LCD}}-\mathrm{GND}$ (figure 5).
2. Input and output currents are excluded. When a CMOS input is left floating, excess current flows from the power supply through the input circuit. To avoid this, V_{IH} and V_{IL} must be held at V_{CC} and GND, respectively.

Figure 4 Relation between Driver Output Waveform and Voltage Levels

Figure 5 Relation between $V_{L C D}-G N D$ and ΔV

HD66115T

AC Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise stated)

Item	Symbol	Pins	Min	Max	Unit	Notes
Clock cycle time	$\mathrm{t}_{\mathrm{CYC}}$	CL	400	-	ns	
Clock high-level width	$\mathrm{t}_{\mathrm{CWH}}$	CL	30	-	ns	
Clock low-level width	$\mathrm{t}_{\mathrm{CWL}}$	CL	370	-	ns	
Clock rise time	t_{f}	CL	-	30	ns	
Clock fall time	t_{f}	CL	-	30	ns	
Data setup time	t_{DS}	$\mathrm{DI}, \mathrm{DIO1}, \mathrm{DIO2} CL$,	100	-	ns	
Data hold time	t_{DH}	$\mathrm{DI}, \mathrm{DIO1,DIO2,CL}$	30	-	ns	
Data output delay time	t_{DD}	$\mathrm{DIO1}, \mathrm{DIO2,CL}$	-	350	ns	1
M phase difference	t_{M}	M, CL	-300	300	ns	
Output delay time 1	$\mathrm{t}_{\mathrm{pd} 1}$	$\mathrm{X}(\mathrm{n}), \mathrm{CL}$	-	1.2	$\mu \mathrm{~s}$	2
Output delay time 2	$\mathrm{t}_{\mathrm{pd} 2}$	$\mathrm{X}(\mathrm{n}), \mathrm{M}$	-	1.2	$\mu \mathrm{~s}$	2

AC Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+\mathbf{7 5}^{\circ} \mathrm{C}$, unless otherwise stated)

Item	Symbol	Pins	Min	Max	Unit	Notes
Clock cycle time	$\mathrm{t}_{\mathrm{CYC}}$	CL	400	-	ns	
Clock high-level width	$\mathrm{t}_{\mathrm{CWH}}$	CL	30	-	ns	
Clock low-level width	$\mathrm{t}_{\mathrm{CWL}}$	CL	370	-	ns	
Clock rise time	t_{t}	CL	-	30	ns	
Clock fall time	t_{f}	CL	-	30	ns	
Data setup time	t_{DS}	$\mathrm{DI}, \mathrm{DIO1}, \mathrm{DIO2} CL$,	100	-	ns	
Data hold time	t_{DH}	$\mathrm{DI}, \mathrm{DIO1}, \mathrm{DIO2} CL$,	30	-	ns	
Data output delay time	t_{DD}	$\mathrm{DIO1,DIO2,CL}$	-	90	ns	1
M phase difference	t_{M}	M, CL	-300	300	ns	
Output delay time 1	$\mathrm{t}_{\mathrm{pd} 1}$	$\mathrm{X}(\mathrm{n}), \mathrm{CL}$	-	0.7	$\mu \mathrm{~s}$	2
Output delay time 2	$\mathrm{t}_{\mathrm{pd} 2}$	$\mathrm{X}(\mathrm{n}), \mathrm{M}$	-	0.7	$\mu \mathrm{~s}$	2

Note: 1,2 The load circuit shown in figure 6 is connected.

$$
\text { Test point } O \text { 元 } \begin{aligned}
& * 1: 30 \mathrm{pF} \\
& * 2: 100 \mathrm{pF}
\end{aligned}
$$

Figure 6 Load Circuit

Figure 7 LCD Controller Interface Timing

Connection Examples

Figures 8 and 9 show examples of how HD66115Ts can be configured to drive a 480 -line LCD panel with a $1 / 240$ duty cycle. Figures 10 and 11 show examples of how HD66115Ts can be configured to drive a 480 -line LCD panel with a $1 / 480$ duty
cycle. The HD66115T's 160 channels can be divided into two groups of 80 channels, and its data shift direction can be changed by selecting the data output mode pin (CH) and data shift pin (SHL), respectively.

Figure 8 Dual-Screen Configuration of a 480-Line LCD Panel with a 1/240 Duty Cycle (1)

HD66115T

Figure 9 Dual-Screen Configuration of a 480-Line LCD Panel with a 1/240 Duty Cycle (2)

Figure 10 Single-Screen Configuration of a 480-Line LCD Panel with a $\mathbf{1 / 4 8 0}$ Duty Cycle (1)

Figure 11 Single-Screen Configuration of a 480-Line LCD Panel with a 1/480 Duty Cycle (2)

HD61602/HD61603 (Segment Type LCD Driver)

Descripition

The HD61602 and the HD61603 are liquid crystal display driver LSIs with a TTL and CMOS compatible interface. Each of the LSIs can be connected to various microprocessors such as the HMCS6800 series.

The HD61602 incorporates the power supply circuit for the liquid crystal display driver. Using the software-controlled liquid crystal driving method, several types of liquid crystals can be connected according to the applications.

The HD61603 is a liquid crystal display driver LSI only for static drive and has 64 segment outputs that can display 8 digits per chip.

Features

- Wide-range operating voltage
-Operates in a wide range of supply voltage: 2.2 V to 5.5 V
-Compatible with TTL interface at 4.5 V to 5.5 V
- Low current consumption
-Can run from a battery power supply ($100 \mu \mathrm{~A}$ max. at 5 V)
-Standby input enables standby operation at lower current consumption (5 $\mu \mathrm{A}$ max. on 5 V)
- Internal power supply circuit for liquid crystal display driver (HD61602)
-Internal power supply circuit for liquid crystal display driver facilitates the connection to a microprocessor system

Versatile segment driving capacity

| Type No. | Driving Method | Display
 Segments | Frame Freq. (Hz)
 at $f_{\text {ose }}=\mathbf{1 0 0} \mathbf{k H z}$ | Package |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Ordering Information

Type No.	Package
HD61602R	80-pin plastic QFP(FP-80)
HD61602RH	80-pin plastic QFP(FP-80A)
HD61603R	80-pin plastic QFP(FP-80)

Pin Arrangement (Top View)

(Top View)

Block Diagram

HD61602

HD61603

Absolute Maximum Ratings

Item	Symbol	Limit	Unit
Power supply voltage $*$	$V_{D D}, V_{1}, V_{2}, V_{3}$	0.3 to +7.0	V
Terminal voltage $*$	V_{T}	0.3 to $V_{D D}-0.3$	V
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

* Value referenced to $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$.

Note: If LSis are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristics limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability.

Recommended Operating Conditions

		Limit			
	Symbol	Min	Typ	Max	Unit
Power supply voltage	$V_{D D}$	2.2	-	5.5	V
	V_{1}, V_{2}, V_{3}	0	-	$V_{D D}$	V
Terminal voltage $*$	V_{T}	0	-	$V_{D D}$	V
Operating temperature	Topr		-20	-	75

* Value referenced to $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$.

Electrical Characteristics

DC Characteristics (1)

$\left(V_{s s}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item		Symbol	Limit			Unit	Test Condition
			Min	Typ	Max		
Input high voltage	OSC_{1}	$\mathrm{V}_{\mathrm{IH} 1}$	$0.8 \mathrm{~V} D \mathrm{D}$	-	$V_{D D}$	V	
	Others	$\mathrm{V}_{\mathrm{IH} 2}$	2.0	-	$V_{D D}$	V	
Input low voltage	OSC_{1}	$\mathrm{V}_{\text {LL1 }}$	0	-	$0.2 V_{D D}$	V	
	Others	VIL2	0	-	0.8	V	
Output leakage current	READY	IOH	-	-	5	$\mu \mathrm{A}$	$V_{0}=V_{D D}$
Output Iow voltage	READY	VoL	-	-	0.4	V	$\mathrm{loL}^{\text {O }}=0.4 \mathrm{~mA}$
Input leakage current * 1	Input terminal	ILLI	-1.0	-	1.0	$\mu \mathrm{A}$	$V^{\prime} \mathrm{IN}=0-V_{D D}$
	V_{1}	ILL2	-20	-	20	$\mu \mathrm{A}$	$V_{\text {IN }}=0-V_{3}$
	$\mathrm{V}_{2}, \mathrm{~V}_{3}$	IIL3	-5.0	-	5.0	$\mu \mathrm{A}$	
LCD driver voltage drop	$\mathrm{COM}_{0}-\mathrm{COM}_{3}$	$\mathrm{V}_{\mathrm{d} 1}$	-	-	0.3	V	$\begin{aligned} & \pm \mathrm{Id}=3 \mu \mathrm{~A} \text { for each } \\ & \text { COM, } V_{3}=V_{D D}-3 \mathrm{~V} \end{aligned}$
	SEG $_{0}-$ SEG $_{50}$	$\mathrm{V}_{\mathrm{d} 2}$	-	-	0.6	V	$\pm 1 \mathrm{~d}=3 \mu \mathrm{~A}$ for each SEG, $V_{3}=V_{D D}-3 \mathrm{~V}$
Power supply current		IDD	-	-	100	$\mu \mathrm{A}$	During display* $\text { Rosc }=360 \mathrm{k} \Omega$
		IDD	-	-	5	$\mu \mathrm{A}$	At standby
Internal driving voltage drop	V_{1}, V_{2}, V_{3}	$V_{T R}$	-	-	0.4	V	$\begin{aligned} & V_{R E F 2}=V_{D D}-1 \mathrm{~V} \\ & \mathrm{C}_{1}-C_{4}=0.3 \mu \mathrm{~F}, \\ & R L=3 \mathrm{M} \Omega \end{aligned}$

* Except the transfer operation of display data and bit data.
*1 $\mathrm{V}_{1}, \mathrm{~V}_{2}$: apply only to HD61602.

DC Characteristics (2)

$\left(V_{s s}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathbf{2 . 2}\right.$ to $\mathbf{3 . 8} \mathrm{V}, \mathbf{T a}=-\mathbf{2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted)

Item		Symbol	Limit			Unit	Test Condition
			Min	Typ	Max		
Input high voltage		$\mathrm{V}_{\text {IH }}$	0.8 V VD	-	$V_{D D}$	V	
Input low voltage		V_{IL}	0	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	V	
Output leakage current	READY	Іон	-	-	5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$
Output low voltage	READY	VoL	-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	V	$1 \mathrm{loL}=0.04 \mathrm{~mA}$
Input leakage current$\text { * } 1$	Input terminal	ILL	-1.0	0	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0-\mathrm{V}_{\mathrm{DD}}$
	V_{1}	ILL2	-20	-	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{iN}}=0-\mathrm{V}_{3}$
	$\mathrm{V}_{2}, \mathrm{~V}_{3}$	IL3	-5.0	-	5.0	$\mu \mathrm{A}$	
LCD driver voltage drop	$\mathrm{COM}_{0}-\mathrm{COM}_{3}$	$\mathrm{V}_{\mathrm{d} 1}$	-	-	0.3	V	$\pm \mathrm{ld}=3 \mu \mathrm{~A}$ for each COM, $V_{3}=V_{D D}-3 V$
	$\mathrm{SEG}_{0}-\mathrm{SEG}_{50}$	$\mathrm{V}_{\mathrm{d} 2}$	-	-	0.6	V	$\begin{aligned} & \pm \mathrm{Id}=3 \mu \mathrm{~A} \text { for each } \\ & \text { SEG, } \mathrm{V}_{3}=\mathrm{V}_{\mathrm{DD}}-3 \mathrm{~V} \end{aligned}$
Power supply current		Iss	-	-	50	$\mu \mathrm{A}$	During display* $\text { Rosc }=330 \mathrm{k} \Omega$
		Iss	-	-	5	$\mu \mathrm{A}$	At standby
Internal driving voltage drop	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$	$\mathrm{V}_{\text {TR }}$	-	-	0.4	V	$V_{\text {REF2 }}=V_{D D}-1 \mathrm{~V}$, $\mathrm{C}_{1}-\mathrm{C}_{4}=0.3 \mu \mathrm{~F}$ $\mathrm{RL}=3 \mathrm{M} \Omega$, $\mathrm{V}_{\mathrm{DD}}=3-3.8 \mathrm{~V}$

* Except the transfer operation of display data and bit data.
* $1 \mathrm{~V}_{1}, \mathrm{~V}_{2}$: apply only to HD61602.

AC Characteristics (1)

($\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item		Symbol	Limit			Unit	Test Condition	
		Min	Typ	Max				
Oscillation frequency	OSC_{2}		$\mathrm{f}_{\text {osc }}$	70	100	130	kHz	$\mathrm{R}_{\text {osc }}=360 \mathrm{k} \Omega$
External clock frequency	OSC_{1}	$\mathrm{f}_{\text {osc }}$	70	100	130	kHz		
External clock duty	OSC_{1}	Duty	40	50	60	\%		
I/O signal timing		ts	400	-	-	ns		
		t_{H}	10	-	-	ns		
		twh	300	-	-	ns		
		twL	400	-	-	ns		
		twr	400	-	-	ns		
		tol	-	-	1.0	$\mu \mathrm{s}$	Figure 5	
		ten	400	-	-	ns		
		top1	9.5	-	10.5	Clock	For display data transfer	
		top2	2.5	-	3.5	Clock	For bit and mode data transfer	
Input signal rise time and fall time		t_{r}, t_{f}	-	-	25	ns		

AC Characteristics (2)

($\mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=2.2$ to $\mathbf{3 . 8} \mathrm{V}, \mathrm{Ta}=-\mathbf{2 0}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item		Symbol	Limit			Unit	Test Condition	
		Min	Typ	Max				
Oscillation frequency	OSC_{2}		$\mathrm{f}_{\text {osc }}$	70	100	130	kHz	$\mathrm{R}_{\text {osc }}=330 \mathrm{k} \Omega$
External clock frequency	OSC_{1}	$\mathrm{f}_{\text {osc }}$	70	100	130	kHz		
External clock duty	OSC 1	Duty	40	50	60	\%		
1/O signal timing		ts	1.5	-	-	$\mu \mathrm{s}$		
$\left(V_{D D}=3.0-3.8 \mathrm{~V}\right)$		${ }_{\text {th }}$	1.0	-	-	$\mu \mathrm{s}$		
		twh	1.5	-	-	$\mu \mathrm{s}$		
		twL	1.5	-	-	$\mu \mathrm{S}$		
		$t_{\text {bL }}$	-	-	2.0	$\mu \mathrm{S}$	Figure 6	
		twr	1.5	-	-	$\mu \mathrm{s}$		
		ten	2.0	-	-	$\mu \mathrm{s}$		
		top1	9.5	-	10.5	Clock	For display data transfer	
		top2	2.5	-	3.5	Clock	For bit and mode data transfer	
Input signal rise time and fall time		$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\text {f }}$	-	-	25	ns		

Figure 1 Write Timing
($\overline{R E}$ is fixed at high level, and SYNC at low level)

Figure 2 Reset/Read Timing
(CS and SYNC are fixed at low level)

Figure 3 READY Timing (When the READY output is always available)

Figure 4 SYNC Timing

Figure $5 \quad$ Bus Timing Load Circuit (LS-TTL Load)

Figure 6 Bus Timing Load Circuit (CMOS Load)

Terminal Functions

HD61602 Terminal Functions

Terminal Name	No. of Lines	Input/Output	Connected to	Function
VDD	1	Power supply		Positive power supply.
READY	1	NMOS open drain output	MCU	While data is being set in the display data RAM and mode setting latch in the LSI after data transfer, low is output from the READY terminal to inhibit the next data input. There are two modes: one in which low is output only when both of $\overline{C S}$ and $\overline{R E}$ are low, and the other in which low is output regardless of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$.
$\overline{\text { CS }}$	1	Input	MCU	Chip select input. Data can be written only when this terminal is low.
$\overline{\text { WE }}$	1	Input	MCU	Write enable input. Input data of DO to D7 is latched at the rising edge of $\bar{W} E$.
$\overline{\overline{R E}}$	1	Input	MCU	Resets the input data byte counter. After both $\overline{\mathbf{C S}}$ and $\overline{\mathrm{RE}}$ are low, the first data is recognized as the 1 st byte data.
SB	1	Input	MCU	High level input stops LSI operations. 1. Stops oscillation and clock input. 2. Stops LCD driver. 3. Stops writing data into display RAM.
$D_{0}-D_{7}$	8	Input	MCU	Data input terminal for 8-bit $\times 2$-byte data.
V ss	1	Power supply		Negative power supply.
VREF1	1	Output	External \mathbf{R}	Reference voltage output. Generates LCD driving voltage.
VREF2	1	Input	External R	Divides the reference voltage of $\mathrm{V}_{\mathrm{REF} 1}$ with external R to determine LCD driving voltage. $\mathrm{V}_{\mathrm{REF} 2} \leftrightharpoons \mathrm{~V}_{1}$.
$\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}$	2	Output	External C	Connection terminals for boosting C of LCD driving voltage generator. An external C is connected between $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$.
V_{1}, V_{2}, V_{3}	3	Output (Input)	External C	LCD driving voltage outputs. An external C is connected to each terminal.
$\mathrm{COM}_{0}-\mathrm{COM}_{3}$	4	Output	LCD	LCD common (backplate) driving output.
$\mathrm{SEG}_{0}-$ SEG $_{50}$	51	Output	LCD	LCD segment driving output.
SYNC	1	Input	MCU	Synchronous input for 2 or more chips applications. LCD driver timing circuit is reset by high input. LCD is off.
$\begin{aligned} & \mathrm{OSC}_{1} \\ & \mathrm{OSC}_{2} \end{aligned}$	2	Input Output	External R	Attach external R to these terminals for oscillation. An external clock (100 kHz) can be input to OSC1.

Note: Logic polarity is positive. $1=$ high $=$ active.

HD61603 Terminal Functions

Terminal Name	No. of Lines	Input/Output	Connected to	Punction
VDD	1	Power supply	Positive power supply.	

Note: Logic polarity is positive. $1=$ high $=$ active.

HD61602/HD61603

Display RAM

HD61602 Display RAM

The HD61602 has an internal display RAM shown in figure 7. Display data is stored in the RAM, or is read according to the LCD
driving timing to display on the LCD. One bit of the RAM corresponds to 1 segment of the LCD. Note that some bits of the RAM cannot be displayed depending on LCD driving mode.

Figure 7 Display RAM

Reading Data from Display RAM: A display RAM segment address corresponds to a segment output. The data at segment address SEGn is output to segment output SEGn terminal.

A common address corresponds to the output timing of a common output and a segment output. The same common address data is simultaneously read. The data of display RAM
is reproduced on the LCD panel.
When a 7 -segment type LCD driver is connected, for example, the correspondence between the display RAM and the display pattern in each mode is as follows:

1. Static drive

In the static drive, only the column of COM_{0} of display RAM is output. COM_{1} to COM_{3} are not displayed.

2. $1 / 2$ duty cycle drive

In the $1 / 2$ duty cycle drive, the columns of
COM_{0} and COM_{1} of display RAM are output in time sharing. The columns of COM_{2} and COM_{3} are not displayed.

3. $1 / 3$ duty cycle drive

In the $1 / 3$ duty cycle drive, the columns of COM_{0} to COM_{2} are output in time sharing. No column of COM_{3} is displayed.
"Y" cannot be rewritten by display data (input on an 8-segment basis). Please use bit manipulation to turn on/off the display of "Y".

4. $1 / 4$ duty cycle drive

In the $1 / 4$ duty cycle drive, all the columns of COM_{0} to COM_{3} are displayed.

LCD connection	Display RAM				
\cdots	COM_{3}	f	a		
COM_{2}	COM_{2}	9	b		
	COM_{1}	e	c		
d ${ }^{\text {de- }}$	COM_{0}	d	DP		
柋 岀		SEG ${ }_{2}$	SEG_{3}	SEG_{4}	

Writing Data into Display RAM: Data is written into the display RAM in the following five methods:

1. Bit manipulation

Data is written into any bit of RAM on a bit basis.
2. Static display mode

8-bit data is written on a digit basis according to the 7-segment type LCD pattern of static drive.
3. $1 / 2$ duty cycle display mode 8-bit data is written on a digit basis according to the 7 -segment type LCD pattern of $1 / 2$ duty cycle drive.
4. $1 / 3$ duty cycle display mode

8-bit data is written on a digit basis according to the 7-segment type LCD pattern of $1 / 3$ duty cycle drive.
5. $1 / 4$ duty cycle display mode

8-bit data is written on a digit basis according to the 7 -segment type LCD pattern of $1 / 4$ duty cycle drive.

The RAM area and the alocation of the segment data for 1-digit display depend on the driving methods as described in "Reading Data from Display RAM".

8-bit data is written on a digit basis corresponding to the above duty cycle driving methods. The digits are allocated as shown figure 8 (allocation of digits). As the data can be transferred on a digit basis from a microprocessor, transfer efficiency is improved by allocating the LCD pattern according to the allocation of each bit data of the digit in the data RAM.
Figure 8 shows the digit address (displayed

Figure 8 Allocation of Digit (HD61602)
as Adn) to specify the store address of the transferred 8-bit data on a digit basis.
Figure 9 shows the correspondence between each segment in an Adn and the 8-bit input data.
When data is transferred on a digit basis, 8bit display data and digit address should be specified as described above.

However, when the digit address is Ad6 for static, Ad12 for 1/2 duty cycle, or Ad25 for 1/ 4 duty cycle, display RAM does not have enough bits for the data.

Thus the extra bits of the input 8-bit data are ignored.

In bit manipulation, any one bit of display RAM can be written. When data is transferred on a bit basis, 1-bit display data, a segment address (6 bits) and a common address (2 bits) should be specified.

HD61603 Display RAM

The HD61603 has an internal display RAM an shown in figure 10. Display data is stored in the RAM and output to the segment output terminal.

(1) Static display		(2) $1 / 2$ duty display					(3) $1 / 3$ duty display				
COM_{0}		$S^{\prime} G_{4 n}$	$\mathrm{COM}_{0} \mathrm{COM}_{1}$				$S^{\text {EG }} 3$ n		$\mathrm{COM}_{0} \mathrm{COM}_{1} \mathrm{COM}_{2}$		
SEG_{8}	${ }_{7}{ }_{7}$		${ }_{7}{ }^{\text {Bit }}$	6					${ }_{7}$	6	
SEG $_{8 \mathrm{n}+1}$	6	$\mathrm{SEG}_{4 n+1}$	5	4			$\mathrm{SEG}_{3 \mathrm{n}+1}$		5	4	3
$\mathrm{SEG}_{8 \mathrm{n}+2}$	5	SEG $_{4 n+2}$	3	2			$\mathrm{SEG}_{3 \mathrm{n}+2}$		2	1	$\underset{0}{\text { Bit }}$
$\mathrm{SEG}_{8 \mathrm{n}+3}$	4	$\mathrm{SEG}_{4 n+3}$	1	${ }_{0}^{\text {Bit }}$							
$\mathrm{SEG}_{8 \mathrm{n}+4}$	3										
$\mathrm{SEG}_{8 \mathrm{~B}+5}$	2		(4) $1 / 4$ duty display								
$\mathrm{SEG}_{8 \mathrm{n}+6}$	1		$\mathrm{COM}_{0} \mathrm{COM}_{1} \mathrm{COM}_{2} \mathrm{COM}_{3}$								
	Bit			$\mathrm{G}_{2 \mathrm{n}}$	$\begin{gathered} \text { Bit } \\ 7 \end{gathered}$	6	5	4			
				$\mathrm{G}_{2 n+1}$	3	2	1	${ }_{0}^{\text {Bit }}$			

Figure 9 Bit Assignment in an Adn (HD61602)

Figure 10 Display RAM (HD61603)

Reading Data from Display RAM: Each bit of the display RAM corresponds to an LCD segment. The data at segment address SEGn is output to segment output SEGn terminal. Figure 11 shows an example of the correspondence between the display RAM bit and the display pattern when a 7 -segment type LCD is connected.

Writing Data into Display RAM: Data is written into the display RAM in the following two methods:

1. Bit manipulation

Data is written into any bit of RAM on a
bit basis.
2. Static display mode

8-bit data is written on a digit basis according to the 7 -segment type LCD pattern of static drive.

The 8-bit data is written on a digit basis into the digit address (displayed as Adn) shown in figure 12. When data is transferred from a microprocessor, four 4-bit data are needed to specify the digit address and an 8-bit display data. Figure 13 shows the correspondence between each segment in an Adn and the transferred 8-bit data.

Figure 11 Example of Correspondence between Display RAM Bit and Display Pattern (HD61603)

In bit manipulation, any one bit of display RAM can be written. When data is transfer-
red on a bit basis, 1-bit display data and a segment address (6 bits) should be specified.

Figure 12 Allocation of Digits (HD61603)

Figure 13 Bit Assignment in an Adn (HD61603)

OPERATING MODES

HD61602 Operating Modes

The HD61602 has the following operating modes:

1. LCD drive mode

Determines the LCD driving method.
a. Static drive mode LCD is driven statically.
b. 1/2 duty cycle drive mode LCD is driven at $1 / 2$ duty cycle and 1 / 2 bias.
c. $1 / 3$ duty cycle drive mode

LCD is driven at $1 / 3$ duty cycle and 1 / 3 bias.
d. 1/4 duty cycle drive mode

LCD is driven at $1 / 4$ duty cycle and $1 /$ 3 bias.
2. Data display mode

Determines how to write display data into the data RAM.
a. Static display mode

8-bit data is written into the display RAM according to the digit in static
drive.
b. $1 / 2$ duty cycle display mode 8 -bit data is written into the display RAM according to the digit in $1 / 2$ duty cycle drive.
c. $1 / 3$ duty cycle display mode

8-bit data is written into the display
RAM according to the digit in $1 / 3$ duty cycle drive.
d. 1/4 duty cycle display mode

8-bit data is written into the display RAM according to the digit in $1 / 4$ duty cycle drive.
3. READY output mode

Determines the READY output timing.
After a data set is transferred, the data is processed internally. The next data cannot be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when the READY is output can be selected from the following two modes:
a. READY is mode always available.

b. READY is mode available by $\overline{\mathrm{CS}}$ and
$\overline{R E}$.

4. LCD OFF mode

In this mode, the HD61602 stops driving LCD and turns it off.
5. External driving voltage mode

A mode for using external driving voltage $\left(V_{1}, V_{2}\right.$, and $\left.V_{3}\right)$.

The above 5 modes are specified by mode setting data. The modes are independent of each other and can be used in any combina-
tion. Bit manipulation is independent of data display mode and can be used regardless of it.

HD61603 Operating Modes

The HD61603 has the following modes:

1. READY output mode

Determines the READY output timing.
After a data set is transferred, the data is processed internally. The next data can-
not be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when READY is output can be selected from the following two modes:
a. READY is always available.

b. READY is mode available by $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$.

2. LCD OFF mode In this mode, the HD61603 stops driving the LCD and turns it off.

INPUT DATA FORMATS

HD61602 Input Data Formats

Input data is composed of 8 bits $\times 2$. Input them as 2-byte data after READY output changes from low to high or low pulse is entered into $\overline{\mathrm{RE}}$ terminal.

1. Display data (Updates display on an 8segment basis)
1st byte

2nd byte

a. Display address: Digit address Adn in accordance with display mode
b. Display data: Pattern data that is written into the display RAM according to display mode and the address
2. Bit manipulation data (Updates display on a segment basis)

2nd byte

a. Display data: Data that is written into 1 bit of the specified display RAM
b. COM address: Common address of display RAM
c. SEG address: Segment address of display RAM
3. Mode setting data

2nd byte

a. Display mode bits: 00: Static display mode 01: $1 / 2$ duty cycle display mode 10: $1 / 3$ duty cycle display mode 11: $1 / 4$ duty cycle display mode
b. OFF/ON bit:

1: LCD off (set to 1 when SYNC is entered.)
0 : LCD on
c. Drive mode bits:

00: Static drive
01: $1 / 2$ duty cycle drive
10: $1 / 3$ duty cycle drive
11: $1 / 4$ duty cycle drive
d. READY bit:

0: READY bus mode; READY outputs 0 only while $\overline{C S}$ and $\overline{R E}$ are 0 . (reset to 0 when SYNC is entered.)
1: READY port mode; READY outputs 0 regardless of $\overline{C S}$ and RE.
e. External power supply bit:

0 : Driving voltage is generated internally.
1: Driving voltage is supplied externally. (set to 1 when SYNC is entered.)
4. 1-byte instruction
1.st byte

The first data (first byte) is ignored when bit 6 and bit 7 in the byte are 1.

HD61602/HD61603

HD61603 Input Data Formats

Input data is composed of 4 bits $\times 4$. Input them as four 4-bit data after READY output changes from low to high or low pulse is entered into $\overline{\mathrm{RE}}$ terminal.

1. Display data (Updates display on an 8segment basis.)

2. Bit manipulation data (Updates display on a segment basis.)

2nd byte

4th byte

Data that is written into 1 bit of the specified display RAM.
b. SEG address: Segment address of display RAM (segment output).
3. Mode setting data

a. OFF/ON bit:

1: LCD off (set to 1 when SYNC is entered.)
0: LCD on
b. READY bits:

0 : READY bus mode; READY outputs 0 only while $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ are 0 . (reset to 0 when SYNC is entered.)
1: READY port mode; READY outputs 0 regardless of $\overline{C S}$ and RE.
4. 1-byte instruction

The first data (4 bits) is ignored when bit 3 and 2 in the data are 1.

How To Input Data

How to Input HD61602 Data
Input data is composed of 8 bits $\times 2$. Take care that the data transfer is not interrupted, because the first 8-bit data is distinguished from the second one by the sequence only.

If data transfer is interrupted, or at power on, the following two methods can be used to reset the count of the number of bytes (count of the first and second bytes):

1. Set $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ inputs low (no display data
changes).
2. Input 2 or more "1-byte instruction" data in which bit 7 and 6 are 1 (display data may change).
The data input method via data input terminals ($\overline{\mathrm{CS}}, \overline{\mathrm{WE}}, \mathrm{D}_{0}$ to D_{7}) is similar to that of static RAM such as HM6116. An access of the LSI can be made through the same bus line as ROM and RAM. When output ports of a microprocessor are used for an access, refer to the timing specifications and figure 14.

Figure 14 Example of Data Transfer Sequence

How to Input HD61603 Data
Input data is composed of 4 bits $\times 4$. Take care that data transfer is not interrupted, because the first 4 -bit data to the fourth 4 -bit data are distinguished from each other by the sequence only.

If data transfer is interrupted, or at power on, the following two methods can be used to reset the count of the number of data (count of the first 4-bit data to the fourth 4-bit data):

1. Set $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ low.
2. Input 4 or more "1-byte instruction" data (4-bit data) in which bit 3 and 2 are 1 (display data may change).
The data input method via data input terminals ($\overline{\mathrm{CS}}, \overline{\mathrm{WE}}, \mathrm{DO}$ to D 3) is similar to that of static RAM such as HM6116. An access of the LSI can be made through the same bus line as ROM and RAM. When output ports of a microprocessor are used for an access, refer to the timing specifications and figure 15.

Notes on READY Output

Note that the READY output will be unsettled during 1.5 clocks (max) after inputting the first 2-byte data for setting the mode after turning the power on. This is because the READY bit data of mode setting latches and the mode of READY pin (READY bus or port mode) are unsettled until the completion of mode setting.

There are two kinds of the READY output waveforms depending of the modes:

1. READY bus mode (READY bit $=0$)
2. READY port mode (READY bit $=1$)

However, if you input SYNC before mode setting, waveform will be determined; when you choose READY bus mode, (1) a in figure 16 will be output, and when you choose READY port mode, (2) a will be output. The figures can be applied both to HD61602 and HD61603.

Standby Operation

Standby operation with low power consumption can be activated when pin SB is used. Normal operation of the LSI is activated when pin SB is low level, and the LSI goes into the standby state when pin SB is high level. The standby state of the LSI is as follows:

1. LCD driver is stopped (LCD is off).
2. Display data and operating mode are held.
3. The operation is suspended while display changes (while READY is outputting low.) In this case, READY outputs high within 10.5 clocks or 3.5 clocks after release from the standby mode.
4. Oscillation is stopped.

When this mode is not used, connect pin SB to VSs.

Multichip Operation

When an LCD is driven with two or more chips, the driving timing of the LCD must be synchronized. In this case, the chips are synchronized with each other by using SYNC input. If SYNC input is high, the LCD driver timing circuit is reset. Apply high pulse to the SYNC input after the operating mode is set.

A high pulse to the SYNC input changes the mode setting data. (The OFF/ON bit is set and the READY bit is reset. See 3. Mode Setting Data in "Input Data Formats".) Transfer the mode setting data into the LSI after
every SYNC operation.
If a power on reset signal is applied to the SYNC pin, the LCD can be off-state when the power is turned on.

When SYNC input is not used, connect pin SYNC to VSs.

When SB input is used, after standby mode is released, a high pulse must be applied to the SYNC input, and mode setting data must be set again.

Restriction on Usage

Minimize the noise by inserting a noise bypass capacitor ($\geqq 1 \mu \mathrm{~F}$) between $V_{D D}$ and Vss pins. (Insert one as near chip as possible.)

Liquid Crystal Display Drive Voltage Circuit (HD61602)

What is LCD Voltage?

HD61602 drives liquid crystal display using four levels of voltages (figure 17); $V_{D D}, V_{1}, V_{2}$, and V_{3} ($V_{D D}$ is the highest and V_{3} is the lowest). The voltage between $V_{D D}$ and V_{3} is called $V_{\text {LCD }}$ and it is necessary to apply the appropriate $V_{\text {LCD }}$ according to the liquid crystal display. V_{3} always needs to be supplied regardless of the display duty ratio since it supplies the voltage to the LCD drive circuit of HD61602.

Figure 17 LCD Output Waveform and Output Levels

When Internal Drive Power Supply is Used

When the internal drive power supply is used, attach $\mathrm{C}_{1}-\mathrm{C}_{4}$ for charge pump circuits and variable resistance R_{1} for deciding display drive voltage to HD61602 as shown in figure 18.

Internal voltage is available by setting external voltage switching bits of mode setting data 0.

Figure 19 shows voltage characteristics between $V_{D D}$ and $V_{\text {REF1 }}$. Voltage is divided at R_{1}, and then input into $V_{\text {REF2 }}$. Voltage between $V_{D D}$ and $V_{\text {REF2 }}$ is equivalent to ΔV in
figure 19 , and so $V_{\text {LCD }}$ can be changed by regulating the voltage.
$V_{\text {REF2 }}$ is usually regulated by variable resistance, but when replacing R_{1} with two nonvariable resistances take $\mathrm{V}_{\mathrm{REF}}$ between \max and min into consideration as shown in figure 19.

Internal drive power supply is generated by using capacitance, and so large current cannot flow. When large liquid crystal display panel is used, examine the external drive power supply.

$$
\begin{aligned}
& \mathrm{R}_{1}=1 \mathrm{M} \Omega \text { Variable } \\
& \mathrm{C}_{1}=0.3 \mu \mathrm{~F} \\
& \mathrm{C}_{2}-\mathrm{C}_{4}=0.3 \mu \mathrm{~F} \\
& \mathrm{C}_{5}=0.1 \text { to } 0.3 \mu \mathrm{~F} \\
& \mathrm{C}_{6} \geqq 1 \mu \mathrm{~F}
\end{aligned}
$$

Figure 18 Example

HD61602/HD61603

When External Drive Power Supply is Used

An external power supply can be used by setting external voltage switching bits of mode setting data to 1 . When a large liquid crystal display panel is used, in multichip designs, which need accurate liquid crystal drive voltage, use the external power supply. See figure 20.
$R_{2}-R_{5}$ is connected in series between $V_{D D}$
and $V_{S S}$, and by these resistance ratio each voltage of $\Delta \mathrm{V}$ and $\mathrm{V}_{\mathrm{LCD}}$ is generated and then supplied to V_{1}, V_{2}, and $V_{3} . C_{2}-C_{4}$ are smoothing capacitors.

When regulating brightness, change the resistance value by setting R_{5} variable resistance.

Figure 19 Voltage Characteristics between $V_{D D}$ and $V_{\text {refl }}$

(1) Static Drive

(2) 1/2 Duty Cycle Drive

(3) $1 / 3$ and $1 / 4$ Duty Cycle Drive

Note: 1. When standby mode is used, a transistor is required.
2. $R_{2}-R_{5}$ should be some $k \Omega$-some tens of $k \Omega$, and $C_{2}-C_{4}$ should be $0.1 \mu \mathrm{~F}-0.3 \mu \mathrm{~F}$.

Liquid Crystal Display Drive Voltage (HD61603)

As shown in figure 21, apply LCD drive voltage from the external power supply.

Oscillation Circuit

When Internal Oscillation Circuit is Used

When the internal oscillation circuit is used, attach an external resister Rosc as shown in figure 22. (Insert Rosc as near chip as possible, and make the OSC1 side shorter.)

When External Clock is Used

When an external clock of 100 kHz with CMOS level is provided, pin OSC_{1} can be used for the input pin. In this case, open pin OSC_{2}.

$C_{6} \geqq 1 \mu \mathrm{~F}$

Note: When standby mode is used, a transistor is required.

Figure 21 Example of Drive Voltage Generator

Figure 22 Example of Oscillation Circuit

Applications

Figure 23 Example (1)

Figure 24 Example (2)

HD61604/HD61605 (Segment Type LCD Driver)

Description

The HD61604 and the HD61605 are liquid crystal display driver LSIs with TTL and CMOS compatible interface. Each of the LSIs can be connected to various microprocessors such as the HMCS6800 series.

Several types of liquid crystal displays can be connected to the HD61604 according to the applications because of the softwarecontrolled liquid crystal dispay drive method.

The HD61605 is a liquid crystal display driver LSI only for static drive and has 64 segment outputs that can display 8 digits per chip.

Features

- Low current consumption
-Can drive from a battery power supply ($100 \mu \mathrm{~A}$ max on 5 V).
-Standby input enables a standby operation at lower current consumption (5 $\mu \mathrm{A}$ max on 5 V).

Ordering Information

Type No.	Package
HD61604R	80-pin plastic QFP(FP-80)

Versatile Segment Driving Capacity

Type No.	Drive Method	Display Segments	Example of Use	Frame Freq ($\mathbf{H z})$ at fose $=100 \mathrm{kHz}$
HD61604R	Static	51	8 segments $\times 6$ digits +3 marks	98
	$1 / 2$ bias $1 / 2$ duty cycle	102	8 segments $\times 12$ digits +6 marks	195
	$1 / 3$ bias $1 / 3$ duty cycle	153	9 segments $\times 17$ digits	521
	$1 / 4$ duty cycle	204	8 segments $\times 25$ digits +4 marks	781
HD61605R	Static	64	8 segments $\times 8$ digits	98

Pin Arrangement

Block Diagram

Figure 1 HD61604 Block Diagram

Figure 2 HD61605 Block Diagram

Pin Functions

Table 1 shows the HD61604 pin description. Table 2 shows the HD61605 pin description.

HD61604 Pin Function

READY (Ready): During data setting in the display data RAM and mode setting latch in the LSI after data transfer, low is output to the READY pin to inhibit the next data input.

There are two modes: one in which low is output only when both of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ are low, and the other in which low is output regardless of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$.
$\overline{\text { CS }}$ (Chip Select): Chip select input. Data can be written only when this pin is low.
$\overline{W E}$ (Write Enable): Write enable input. Input data of D_{0} to D_{7} is latched at the positive edge of WE.
$\overline{\mathrm{RE}}$ (Reset): Resets the input data byte counter. After both of $\overline{C S}$ and $\overline{\mathrm{RE}}$ are low, the first data is recognized as the 1st byte data.

SB (Standby): High level input stops the LSI operations.

1. Stops oscillation and clock input.
2. Stops LCD driver.
3. Stops writing data into display RAM.
$D_{0}-D_{7}$ (Data Bus): Data input pin from which 8 -bit $\times 2$-byte data is input.

SYNC (Synchronous): Synchronous input for 2 or more chip applications. LCD drive timing generator is reset by high input. LCD is off.
$\mathrm{COM}_{0}-\mathrm{COM}_{3}$ (Common): LCD common (backplate) drive output.

SEG $_{0}-$ SEG $_{50}$ (Segment): LCD segment drive output.
$\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}, \mathbf{V}_{\mathbf{3}}$ (LCD Voltage): Power supply for LCD drive.

OSC1, OSC2 (Oscillator): Attach external R to these pins for oscillation. An external clock ($100 . \mathrm{kHz}$) can be input from OSC1.
$\mathbf{V C l}_{\mathbf{c}}, \mathbf{V}_{\mathbf{c} \text { : }}$ Do not connect any wire.
$V_{\text {rem: }}$ Connect this pin to V1 pin.
$V_{\text {Refr }}$: Hold at $V_{D D}$ level.
$V_{D D}$ Positive power supply.
Vss: Negative power supply.

HD61605 Pin Function

READY (Ready): During data setting in the display data RAM and mode setting latch in the LSI after data transfer, low is output to the READY pin to inhibit the next data input.

There are two modes: one in which low is output only when both of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ are low, and the other in which low is output regardless of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$.
$\overline{\text { CS }}$ (Chip Select): Chip select input. Data can be written only when this pin is low.
$\overline{W E}$ (Write Enable): Write enable input. Input data of D_{0} to D_{3} is latched at the positive edge of WE.
$\overline{\mathbf{R E}}$ (Reset): Resets the input data byte counter. After both of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ are low, the first data is recognized as the first byte data.

SB (Standby): High level input stops the LSI operations.

1. Stops oscillation and clock input.
2. Stops LCD driver.
3. Stops writing data into display RAM.
$D_{0}-D_{3}$: Data input pin from which 4-bit $\times 4$ byte data is input.

SYNC (Synchronous): Synchronous input for 2 or more chips application. LCD drive timing generator is reset by high input. LCD is off.
COM_{0} (Common): LCD common (backplate) drive output.

SEG $_{0}$-SEG ${ }_{63}$ (Segment): LCD segment drive output.

OSC1, OSC2 (Oscillator): Attach external R to these pins for oscillation. An external clock (100 kHz) can be input from OSC1.
V_{3} (LCD Voltage): Power supply input for LCD drive.

Voltage between $V_{D D}$ and V_{3} is used as drive voltage.

Vss: Negative power supply.

VDD Positive power supply.

Table 1 HD61604 Pin Description

Pin Name	No.of Lines	Input/Output	Connected to
READY	1	NMOS open drain output	MCU
$\overline{\overline{C S}}$	1	Input	MCU
$\overline{\text { WE }}$	1	Input	MCU
$\overline{\overline{R E}}$	1	Input	MCU
SB	1	Input	MCU
$\mathrm{D}_{0}-\mathrm{D}_{7}$	8	Input	MCU
SYNC	1	Input	MCU
$\begin{aligned} & \hline \mathrm{COM}_{0}- \\ & \mathrm{COM}_{3} \end{aligned}$	4	Output	LCD
$\begin{aligned} & \text { SEGG }_{0-} \\ & \text { SEG }_{50} \end{aligned}$	51	Output	LCD
$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$	3	Power supply	External R
$\begin{aligned} & \overline{\text { OSC1, }} \\ & \text { osc? } \end{aligned}$	2	Input, output	External R
$\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}$	2	Output	
$\mathrm{V}_{\text {REF1 }}$	1	Input	V_{1}
$\mathrm{V}_{\text {REF2 }}$	1	Input	$V_{D D}$
$V_{D D}$	1	Power supply	
$\mathrm{V}_{\text {SS }}$	1	Power supply	

Note: Logic polarity is positive.
1 = high = active.

Table 2 HD61605 Pin Description

Pin Name	No.of Lines	Input/Output	Connected to
READY	1	NMOS open drain output	MCU
$\overline{\overline{C S}}$	1	Input	MCU
WE	1	Input	MCU
$\overline{\mathrm{RE}}$	1	Input	MCU
SB	1	Input	MCU
$D_{0}-D_{3}$	4	Input	MCU
SYNC	1	Input	MCU
COM_{0}	1	Output	LCD
$\mathrm{SEG}_{0}-\mathrm{SEG}_{63}$	64	Output	LCD
$\begin{aligned} & \hline \text { OSC1, } \\ & \text { OSC2 } \end{aligned}$	2	Input, output	External R
V_{3}	1	Input	Power supply
$\mathrm{V}_{\text {ss }}$	1	Power supply	
$V_{\text {DD }}$	1	Power supply	

Note: Logic polarity is positive.
$1=$ high = active.

HD61604/HD61605

Display RAM

HD61604 Display RAM

The HD61604 has an internal display RAM shown in figure 3. Display data is stored in the RAM, or is read according to the LCD drive timing to display on the LCD. One bit of the RAM corresponds to 1 segment of LCD. Note that some bits of the RAM cannot be displayed depending on LCD drive modes.

Reading Data from HD61604 Display RAM

A display RAM segment address corresponds to a segment output. The data at segment address SEGn is output to segment output SEGn pin.

A common address corresponds to the output
timings of a common output and a segment output. The same common address data is simultaneously read. The data of display RAM is reproduced on the LCD panel.

The following shows the correspondence between the 7-segment type LCD connection and the display RAM in each mode.

1. Static Drive: In static drive, only the column of COM_{0} of display RAM is output. COM_{1} to COM_{3} are not displayed (figure 4).
2. $1 / 2$ Duty Cycle Drive: In the $1 / 2$ duty cycle drive, the columns of COM_{0} and COM_{1} of display RAM are output in time sharing. The columns of COM_{2} and COM_{3} are not displayed (figure 5).

Figure 3 Display RAM (HD61604)

Figure 4 Example of Correspondence between LCD Connection and Display RAM (Static Drive, HD61604)
3. $1 / 3$ Duty Cycle Drive: In the $1 / 3$ duty cycle drive, the columns of COM_{0} to COM 2 are output in time sharing. No column of COM_{3} is displayed. " y " cannot be rewritten by display data (input on an 8-segment basis). Please use bit manipulation
in turning on/off the display of " y " cycle (figure 6).
4. 1/4 Duty Cycle Drive: In the $1 / 4$ duty cycle drive, all the columns of COM_{0} to COM_{3} are displayed (figure 7).

Figure 5 Example of Correspondence between LCD Connection and Display RAM (1/2 Duty Cycle, HD61604)
Figure 6 Example of Correspondence between LCD Connection and Display RAM (1/3 Duty Cycle, HD61604)

LCD connection	Display RAM		
	COM_{3}	f	a
	COM_{2}	g	b
	COM ${ }_{1}$	e	c
	COM_{0}	d	DP
		G_{2}	SEG_{3}

Figure 7 Example of Correspondence between LCD Connection and Display RAM (1/4 Duty Cycle, HD61604)

Writing Data into HD61604 Display RAM

Data is written into the display RAM in the following five methods:

1. Bit Manipulation: Data is written into any bit of RAM on a bit basis.
2. Static Display Mode: 8-bit data is written on a digit basis according to the 7segment type LCD pattern of static drive.
3. 1/2 Duty Cycle Display Mode: 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of $1 / 2$ duty cycle drive.
4. 1/3 Duty Cycle Display Mode: 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of $1 / 3$ duty cycle drive.
5. 1/4 Duty Cycle Display Mode: 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of $1 / 4$ duty cycle drive.

The RAM area and the allocation of the segment data for 1-digit display depend on the drive methods as described in the section of "Reading Data from Display RAM".

8-bit data is written on a digit basis corresponding to the above duty drive methods. The digits are allocated as shown in figure 8.
(1) Static
(2) 1/2 Duty Cycle Display
$\mathrm{COM}_{0} \mathrm{COM}_{1} \mathrm{COM}_{2}$

$\mathrm{COM}_{0} \mathrm{COM}_{1} \mathrm{COM}_{2}$

(3) $1 / 3$ Duty Cycle Display
$\mathrm{COM}_{0} \mathrm{COM}_{1} \mathrm{COM}_{2} \mathrm{COM}_{3}$

(4) 1/4 Duty Cycle Display
$\mathrm{COM}_{0} \mathrm{COM}_{1} \mathrm{COM}_{2} \mathrm{COM}_{3}$

Figure 8 Allocation of Digits (HD61604)

As the data can be transferred on a digit basis from a microprocessor, transfer efficiency is improved by allocating the LCD pattern according to the allocation of each bit data of the digit in the data RAM.

Figure 8 shows the digit address (displayed as Adn) to specify the store address of the transferred 8-bit data on a digit basis.

Figure 9 shows the correspondence between each segment in an Adn and the 8-bit input data.

When data is transferred on a digit basis, 8bit display data and digit address should be specified as described above.

However, when the digit address is Ad6 of static, Ad12 of $1 / 2$ duty cycle, or Ad25 of $1 / 4$ duty cycle, display RAM does not have enough bits for the data. Thus the extra bits of the input 8-bit data are ignored.

In bit manipulation, any one bit of display RAM can be written. When data is transferred on a bit basis, 1-bit display data, a segment address (6 bits)s and a common address (2 bits) should be specified.

HD61605 Display RAM

The HD61605 has an internal display RAM as shown in figure 10. Display data is stored in the RAM and output to the segment output pin.

Figure 9 Bit Assignment in an Adn (HD61604)

Figure 10 Display RAM (HD61605)

Reading Data from HD61605 Display RAM

Each bit of the display RAM corresponds to an LCD segment. The data at segment address SEGn is output to segment output SEGn pin. Figure 11 shows the correspondence between the 7-segment type LCD connection and the display RAM .

Writing Data into HD61605 Display RAM

Data is written into the display RAM in the following two methods:

1. Bit Manipulation: Data is written into any bit of RAM on a bit basis.
2. Static Display Mode: 8-bit data is written on a digit basis according to the 7segment type LCD pattern of static drive.

The 8-bit data is written on a digit basis into the digit address (displayed as Adn) shown in figure 12. When data is transferred from a microprocessor, four 4-bit data are needed to specify the digit address and an 8-bit display data. Figure 13 shows the correspondence between each segment in an Adn and the transferred 8-bit data.

In bit manipulation, any one bit of display RAM can be written. When data is transferred on a bit basis, 1-bit display data and a segment address (6 bits) should be specified.

Figure 11 Example of Correspondence between LCD Connection and Display RAM (HD61605)

Figure 12 Allocation of Digits (HD61605)

Figure 13 Bit Assignment in an Adn (HD 61605)

Operating Modes

HD61604 Operating Modes

The HD61604 has the following operating modes:

1. LCD Drive Mode: Determines the LCD drive method.

- Static drive mode: LCD is driven statically.
- $1 / 2$ duty cycle drive mode: LCD is driven with $1 / 2$ duty cycle and $1 / 2$ bias.
- $1 / 3$ duty cycle drive mode: LCD is driven with $1 / 3$ duty cycle and $1 / 3$ bias.
- $1 / 4$ duty cycle drive mode: LCD is driven with $1 / 4$ duty cycle and $1 / 3$ bias.

2. Data Display Mode: Determines how to write display data into the data RAM.

- Static display mode: 8-bit data is written into the display RAM according to the digit in static drive.
- 1/2 duty cycle display mode: 8-bit data is written into the display RAM according to the digit in $1 / 2$ duty cycle drive.
- 1/3 duty cycle display mode: 8-bit data is written into the display RAM according to the digit in $1 / 3$ duty cycle drive.
-1/4 duty cycle display mode: 8-bit data is written into the display RAM according to the digit in $1 / 4$ duty cycle display drive.

3. READY Output Mode: Determines the READY output timing.

After a data set is transferred, the data is processed internally. The next data cannot be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when READY is output can be selected from the following two modes:

- READY is always available (figure 14).
- READY is made available by $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ (figure 15).

Figure 14 READY Output Timing (When It is Always Available)

Figure 15 READY Output Timing (When It is Made Available by CS and $\overline{\mathbf{R E}}$)
4. LCD Off Mode: In this mode, the HD61604 stops driving the LCD and turns it off.

The above 4 modes are specified by mode setting data. The modes are independent of each other and can be used in any combination. The bit manipulation is independent of data display mode and can be used regardless of it.

HD61605 Operating Modes

The HD61605 has the following operating modes:

1. READY Output Mode: Determines the READY output timing.

After a data set is transferred, the data is processed internally. The next data cannot be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when READY is output can be selected from the following two modes:

- READY is always available (figure 16).
- READY is made available by $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ (figure 17).

2. LCD Off Mode: In this mode, the HD61605 stops driving the LCD and turns it off.

Figure 16 READY Output Timing (When It is Always Available)

Figure 17 READY Output Timing (When It is Made Available by $\overline{C S}$ and $\overline{\mathbf{R E} .)}$

Input Data Formats

HD61604 Input Data Formats

Input data is composed of 8 bits $\times 2$ bytes. Input them as 2-byte data after READY output changes from low to high or low pulse enters into $\overline{\mathrm{RE}}$ pin.

1. Display Data: Updates display on an 8segment basis.

1st byte

2nd byte

- Display address: Digit address Adn in accordance with display mode
- Display data: Pattern data written into the display RAM according to display mode and the address

2. Bit Manipulation Data: Updates display on a segment basis.

2nd byte

- Display data: Data written into 1 bit of the specified display RAM
- COM address: Common address of display RAM
- SEG address: Segment address of display RAM

3. Mode Setting Data:

1st byte

2nd byte

\times	\times	\times	\times	\times	OFF/ON bit	Display mode bits
7	6	5	4	3	2	1

- Display mode bits: 00: Static display mode
01: $1 / 2$ duty cycle display mode
10: $1 / 3$ duty cycle display mode
11: $1 / 4$ duty cycle display mode
- OFF/ON bit:

1: LCD off (set to 1 when SYNC is entered)
0: LCD on

- Drive mode bits:

00: Static drive
01: $1 / 2$ duty cycle drive
10: $1 / 3$ duty cycle drive
11: $1 / 4$ duty cycle drive

- READY bit:

0: READY bus mode: READY outputs 0 only while $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ are 0 (reset to 0 when SYNC is entered)
1: READY port mode: READY outputs 0 regardless of $\overline{C S}$ and $\overline{R E}$

Note: Input the same data to display mode bits and drive mode bits.
4. 1-Byte Instruction: The first data (first byte) is ignored when the bit 6 and bit 7 in the data are 1.
1.st byte

HD61604/HD61605

HD61605 Input Data Formats

Input data is composed of 4 bits $\times 4$ bytes. Input them as four 4-bit data after READY output changes from low to high or low pulse enters into $\overline{\mathrm{RE}}$ pin.

1. Display Data: Updates display on an 8segment basis.

3rd byte

- Display address: Digit address Adn shown in figure 12.
- Display data: Pattern data written into the display RAM as shown in figure 13.

2. Bit Manipulation Data: Updates display on a segment basis.

- Display data: Data written into the 1 bit of the specified display RAM.
- SEG address: Segment address of display RAM (segment output).

3. Mode Setting Data:

- OFF/ON bit:

1: LCD off (It is set to 1 when SYNC is entered)
0: LCD on

- READY bit:

0: READY bus mode: READY outputs 0 only while $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ are 0 (reset to 0 when SYNC is entered)
1: READY port mode: READY outputs 0 regardless of $\overline{C S}$ and $\overline{R E}$
4. 1-Byte Instruction: The first data (4 bits) is ignored when the bit 3 and bit 2 in the data are 1.

1st byte

How to Input Data

How to Input Data into HD61604

Input data is composed of 8 bits $\times 2$ bytes. Take care that the data transfer is not interrupted because the first 8 -bit data is distinguished from the second one by the sequence only.

When data transfer is interrupted, or at power on, the following two methods can be used to reset the count of the number of bytes (count of the first and second bytes):

1. Set $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ to low (no display data changes).
2. Input 2 or more 1-byte instruction data whose bit 7 and 6 are high (display data may change).

The data input method via data input pins ($\overline{\mathrm{CS}}, \overline{\mathrm{WE}}, \mathrm{D}_{0}$ to D_{7}) is similar to that of static RAM such as HM6116. Access to the LSI can be made through the same bus line as ROM and RAM. When output ports of a microprocessor are used for access, refer to the timing specifications and figure 18.

Figure 18 Example of Data Transfer Sequence

How to Input Data into HD61605

Input data is composed of 4 bits $\times 4$ bytes. Take care that the data transfer is not interrupted because the first 4-bit data to the fourth 4-bit data are distinguished from each other by the sequence only.

When data transfer is interrupted, or at power on, the following two methods can be used to reset the count of the number of data (count of the first 4-bit data to the fourth 4bit data):

1. Set $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RE}}$ to low (no display data changes.)
2. Input 4 or more 1-byte instruction data (4-bit data) whose bit 3 and 2 are high (display data may change).

The data input method via data input pins ($\overline{\mathrm{CS}}, \overline{\mathrm{WE}} \mathrm{D}_{0}$ to D_{3}) is similar to that of static RAM such as HM6116. Access to the LSI can be made through the same bus line as ROM and RAM. When output ports of a microprocessor are used for access, refer to the timing specifications and figure 19.

* 1 : READY output is indefinite during 12 clocks after the oscillation starts at power on (clock: OSC2 clock).
*2: High pulse should be applied to SYNC pin when using two or more chips simultaneously.
*3: In the mode in which READY is always available, READY output is indefinite while high is being applied to SYNC.
*4: Reset the 4-bit data counter after power on.
*5: READY output period is within 3.5 clocks in the mode setting operation and bit manipulation or within 10.5 clocks when the display data (8 bits) is updated.
*6: Connect a pull-up resistor if WE or $\overline{R E}$ is floating.
*7: It is not always necessary to follow this example.

Notes on READY Output

Note that the READY output will be unsettled during 1.5 clocks (max) after inputting the first 2-byte data for setting the mode after turning the power on. This is because the READY bit data of mode setting latches and the mode of READY pin (READY bus or port mode) are unsettled untill the completion of mode setting.

There are two kinds of the READY output waveforms depending on the modes.

1. READY bus mode (READY bit $=0$)
2. READY port mode (READY bit $=1$)

However, if you input SYNC before mode setting, waveform will be determined; when you choose READY bus mode, (1) a in figure 20 will be output, and when you choose READY port mode, (2) a will be output. The figures can be applied both to HD61604 and HD61605.

Figure 20 READY Output According to Modes

Standby Operation

Standby operation with low power consumption can be activated when pin SB is used. Normal operation of the LSI is activated when pin SB is low level, and the LSI goes into the standby state when pin SB is high level. The standby state of the LSI is as follows:

1. LCD driver is stopped (LCD is off).
2. Display data and operating mode are
held.
3. The operation is suspended while display changes (while READY is outputting low.) In this case, READY outputs high within 10.5 clocks or 3.5 clocks after release from the standby mode.
4. Oscillation is stopped.

When this mode is not used, connect pin SB to VSS.

Multi Chip Operation

When an LCD is driven with the two or more chips, the driving timing of LCD must be synchronized. In this case, the chips are synchronized with each other by using SYNC input. If SYNC input is high, the LCD driver timing circuit is reset. Apply high pulse to the SYNC input after the operating mode is set.

A high pulse to the SYNC input changes the mode setting data. (The OFF/ON bit is set and the READY bit is reset. See (3) Mode Setting Data in "Input Data Formats".) Transfer the mode setting data into the LSI after
every SYNC operation.
If a power on reset signal is applied to the SYNC pin, the LCD can be off-state when the power is turned on.

When SYNC input is not used, connect pin SYNC to VSs.

When SB input is used, after standby mode is released, high pulse must be applied to the SYNC input, and mode setting data must be set again.

Restriction on Usage

Minimize the noise by inserting a noise bypass capacitor ($\geqq 1 \mu \mathrm{~F}$) between $V_{D D}$ and $\mathrm{V}_{\text {ss }}$ pins. (Insert one as near chip as possible.)

Liquid Crystal Display Drive Voltage Circuit (HD61604)

What is LCD Voltage?

HD61604 drives liquid crystal display using four levels of voltages (figure 21); $V_{D D}, V_{1}, V_{2}$, and $V_{3}\left(V_{D D}\right.$ is the highest and V_{3} is the lowest). The voltage between $V_{D D}$ and V_{3} is called $V_{\text {LCD }}$ and it is necessary to apply the appropriate $V_{\text {LCD }}$ according to the liquid crystal display. V_{3} always needs to be supplied regardless of the display duty ratio sin-
ce it supplies the voltage to the LCD drive circuit of HD61604.

Connecting R2-R5 in series between $V_{D D}$ and $V_{\text {SS }}$ (figure 22) generates ΔV or $V_{\text {LCD }}$ by using the resistance ratio to supply these voltage to pins $V_{1}, V_{2}, V_{3} . C 2-C 4$ are the smoothing capacitors. Connect a trimmer potentiometer for R5 and change its resistance value to control the contrast.

Figure 21 LCD Output Waveform and Output Levels (1/3 Duty Cycle, 1/3 Bias)

(1) Static Drive

(2) 1/2 Duty Cycle Drive

(3) $1 / 3$ and $1 / 4$ Duty Cycle Drive

Note: 1 When standby mode is used, a transistor is required.
$2 \mathrm{R} 2-\mathrm{R} 5$ should be some $\mathrm{k} \Omega$-some tens of $\mathrm{k} \Omega$, and $\mathrm{C} 2-\mathrm{C} 4$ should be $0.1 \mu \mathrm{~F}-0.3 \mu \mathrm{~F}$.

Figure 22 Example when External Drive Voltage is Used

Liquid Crystal Display Drive Voltage (HD61605)

As shown in figure 23, apply LCD drive voltage from the external power supply.

Oscillation Circuit

When Internal Oscillation Circuit is Used

When the internal oscillation circuit is used, attach an external resistor Rosc as shown in figure 24. (Insert R ${ }_{\text {OSC }}$ as near chip as possible, and make the OSC1 side shorter.)

When External Clock is Used

When an external clock of 100 kHz with CMOS level is provided, pin OSC1 can be used for the input pin. In this case, open pin OSC2.

Note: When standby mode is used, a transistor is required.

Figure 23 Example of Drive Voltage Generator

Figure 24 Example of Oscillation Circuit

Applications

Figure 25 Example (1)

Figure 26 Example (2)

Absolute Maximum Ratings

Item	Symbol	Limit	Unit
Power supply voltage $*$	$V_{D D}, V_{1}, V_{2}, V_{3}$	-0.3 to +7.0	V
Pin voltage $*$	V_{T}	-0.3 to $V_{D D}+0.3$	V
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

$*$ Value referenced to $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$.
Note: If LSIs are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristics limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability.

Recommended Operating Conditions

		Limit			
	Symbol	Min	Typ	Max	Unit
Power supply voltage $*$	$V_{D D}$	4.5	-	5.5	V
	V_{1}, V_{2}, V_{3}	0	-	$V_{D D}$	V
Pin voltage $*$	V_{T}	0	-	$V_{D D}$	V
Operating temperature	Topr	-20	-	+75	${ }^{\circ} \mathrm{C}$

$*$ Value referenced to $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$.

HD61604/HD61605

Electrical Characteristics

DC Characteristics

$\left(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item		Symbol	Limit			Unit	Test Condition
			Min	Typ	Max		
Input high voltage	OSC1	$\mathrm{V}_{\mathrm{H} 1}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V	
	Others	$\mathrm{V}_{\mathrm{IH} 2}$	2.0	-	$V_{D D}$	V	
Input low voltage	OSC1	$\mathrm{V}_{\text {IL1 }}$	0	-	$0.2 V_{D D}$	V	
	Others	$\mathrm{V}_{\text {IL2 }}$	0	-	0.8	V	
Output leakage current	READY	IOH	-	-	5	$\mu \mathrm{A}$	Pull up the pin to $V_{D D}$
Output low voltage	READY	VoL	-	-	0.4	V	$\mathrm{loL}=0.4 \mathrm{~mA}$
Input leakage current * 1	Input pin	ILL1	-1.0		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{DD}
	V_{1}	ILL2	-20	-	20	$\mu \mathrm{A}$	$V_{I N}=V_{D D}$ to V_{3}
	$\mathrm{V}_{2}, \mathrm{~V}_{3}$	IL3	-5.0	-	5.0	$\mu \mathrm{A}$	
LCD driver voltage drop	$\mathrm{COM}_{0}-\mathrm{COM}_{3}$	$V_{\text {d1 }}$	-	-	0.3	V	$\pm \mathrm{Id}=3 \mu \mathrm{~A}$ for each COM, $V_{3}=V_{D D}$ to 3 V
	$\mathrm{SEG}_{0}-\mathrm{SEG}_{50}$	$\mathrm{V}_{\mathrm{d} 2}$	-	-	0.6	V	$\pm \mathrm{ld}=3 \mu \mathrm{~A}$ for each SEG, $V_{3}=V_{D D}$ to 3 V
Current consumptio		IDD	-	-	100	$\mu \mathrm{A}$	During display* $\mathrm{R}_{\mathrm{osc}}=360 \mathrm{k} \Omega$
		IDD	-	-	5	$\mu \mathrm{A}$	At standby

* Except the transfer operation of display data and bit data.
* $1 \mathrm{~V}_{1}, \mathrm{~V}_{2}$: applied only to HD61604.
*2 Do not connect any wire to the output pins and connect the input pins to VDD or $V_{\text {SS }}$.

AC Characteristics

($\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item		Limit				Unit	Test Condition
		Symbol	Min	Typ	Max		
Oscillation frequency	OSC2	fosc	70	100	130	kHz	R $\mathrm{OSC}=360 \mathrm{k} \Omega$
External clock frequency	OSC1	fosc	70	100	130	kHz	,
External clock duty	OSC1	Duty	40	50	60	\%	
1/O signal timing		ts	400	-	-	ns	
		t_{H}	10	-	-	ns	
		twh	300	-	-	ns	
		twL	400	-	-	ns	
		twr	400	-	-	ns	
		$t_{\text {DL }}$	-	-	1.0	$\mu \mathrm{s}$	Figure 31
		ten	400	-	-	ns	
		top1	9.5	-	10.5	Clock	For display data transfer
		top2	2.5	-	3.5	Clock	For bit and mode data transfer
Input signal rise time	and fall time	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	-	-	25	ns	

Figure 27 Write Timing ($\overline{\mathrm{RE}}$ is fixed high and SYNC low)

Figure 28 Reset/Read Timing ($\overline{\mathbf{C S}}$ and SYNC are fixed low)

Figure 29 READY Timing (When the READY Output is Always Available)

Figure 30 SYNC Timing

Figure 31 Bus Timing Load Circuit (LS-TTL Load)

HD61830/HD61830B LCDC(LCD Timing Controller)

Description

The HD61830/HD61830B is a dot matrix liquid crystal graphic display controller LSI that stores the display data sent from an 8-bit microcontroller in the external RAM to generate dot matrix liquid crystal driving signals.

It has a graphic mode in which 1-bit data in the external RAM corresponds to the on/off state of 1 dot on liquid crystal display and a character mode in which characters are displayed by storing character codes in the external RAM and developing them into the dot patterns with the internal character generator ROM. Both modes can be provided for various applications.

The HD61830/HD61830B is produced by the CMOS process. Thus, combined with a CMOS microcontroller it can complete a liquid crystal display device with lower power dissipation.

Features

- Dot matrix liquid crystal graphic display controller
- Display control capacity
-Graphic mode: 512 k dots (2^{16} bytes)
- Character mode: 4096 characters (2^{12} characters)
- Internal character generator ROM: 7360 bits
- 160 types of 5×7 dot characters
- 32 types of 5×11 dot characters Total 192 characters
- Can be extended to 256 characters (4 kbytes max.) by external ROM
- Interfaces to 8 -bit MPU
- Display duty cycle (can be selected by a program) Static to $1 / 128$ duty cycle
- Various instruction functions
-Scroll, cursor on/off/blink, character blink, bit manipulation
- Display method: Selectable A or B types
- Internal oscillator (with external resistor and capacitor) HD61830
- Operating frequency: 1.1 MHz HD61830
2.4 MHz HD61830B
- Low power dissipation
- Power supply: Single $+5 \mathrm{~V} \pm 10 \%$
- CMOS process

Differences between Products HD61830 and HD61830B

	HD61830	HD61830B
Oscillator	Internal or external	External only
Operating frequency	1.1 MHz	2.4 MHz
Pin arrangement	Pin 6: C	Pin 6: $\overline{\mathrm{CE}}$
and signal name Pin 7: R Pin 9: CPO Pin 7: $\overline{\mathrm{OE}}$ Package marking A BC to see figure		

Ordering Information

Type No.	Package
HD61830A00H	60-pin plastic QFP (FP-60)
HD61830B00H	

Pin Arrangement

() is for HD61830B

Terminal Functions

Symbol	Pin Number	I/O	Function $\mathrm{DB}_{0}-\mathrm{DB}_{7}$
$28-21$	I/O	Data bus: Three-state I/O common terminal Data is transferred to MPU through DB_{0} to DB_{7}.	
$\overline{\mathrm{CS}}$	15	I	Chip select: Selected state with $\overline{\mathrm{CS}}=0$

Block Functions

Registers

The HD61830/HD61830B has the five types of registers: instruction register (IR), data input register (DIR), data output register (DOR), dot registers (DR), and mode control register (MCR).

The IR is a 4-bit register that stores the instruction codes for specifying MCR, DR, a start address register, a cursor address register, and so on. The lower order 4 bits DB_{0} to DB_{3} of data buses are written in it.

The DIR is an 8 -bit register used to temporarily store the data written into the external RAM, DR, MCR, and so on.

The DOR is an 8-bit register used to temporarily store the data read from the external RAM. Cursor address information is written into the cursor address counter (CAC) through the DIR. When the memory read instruction is set in the IR (latched at the falling edge of E signal), the data of external RAM is read to DOR by an internal operation. The data is transferred to the MPU by reading the DOR with the next instruction (the contents of DOR are output to the data bus when E is at the high level).

The DR are registers used to store dot information such as character pitches and the number of vertical dots, and so on. The information sent from the MPU is written into the DR via the DIR.

The MCR is a 6-bit register used to store the data which specifies states of display such as display on/off and cursor on/off/blink. The information sent from the MPU is written in it via the DIR.

Busy Flag (BF)

The busy flag $=1$ indicates the HD61830 is performing an internal operation. Instructions cannot be accepted. As shown in Control Instruction, read busy flag, the busy flag is output on DB_{7} under the conditions of $\mathrm{RS}=1, \mathrm{R} / \mathrm{W}=1$, and $\mathrm{E}=1$. Make sure the busy flag is 0 before writing the next instruction.

Dot Counters (DC)

The dot counters are counters that generate liquid crystal display timing according to the contents of DR.

Refresh Address Counters (RAC1/RAC2)

The refresh address counters, RAC1 and RAC2, control the addresses of external RAM, character generator ROM (CGROM), and extended external ROM. The RAC1 is used for the upper half of the screen and the RAC2 for the lower half. In the graphic mode, 16 -bit data is output and used as the address signal of external RAM. In the character mode, the high order 4 bits ($\mathrm{MA}_{12}-\mathrm{MA}_{15}$) are ignored. The 4 bits of line address counter are output instead and used as the address of extended ROM.

Character Generator ROM

The character generator ROM has 7360 bits in total and stores 192 types of character data. A character code (8 bits) from the external RAM and a line code (4 bits) from the line address counter are applied to its address signals, and it outputs 5 -bit dot data.

The character font is 5×7 (160 characters) or $5 \times$ 11 (32 characters). The use of extended ROM allows 8×16 (256 characters max.) to be used.

Cursor Address Counter

The cursor address counter is a 16 -bit counter that can be preset by instruction. It holds an address when the data of external RAM is read or written (when display dot data or a character code is read or written). The value of the cursor address counter is automatically increased by 1 after the display data is read or written and after the set/clear bit instruction is executed.

Cursor Signal Generator

The cursor can be displayed by instruction in character mode. The cursor is automatically generated on the display specified by the cursor address and cursor position.

Parallel/Serial Conversion

The parallel data sent from the external RAM, character generator ROM, or extended ROM is converted into serial data by two parallel/serial conversion circuits and transferred to the liquid crystal driver circuits for upper screen and lower screen simultaneously.

Display Control Instructions

Display is controlled by writing data into the instruction register and 13 data registers. The RS signal distinguishes the instruction register from the data registers. 8 -bit data is written into the instruction register with RS $=1$, and the data register code is specified. After that, the 8 -bit data is written in the data register and the specified instruction is executed with $\mathrm{RS}=0$.

During the execution of the instruction, no new instruction can be accepted. Since the busy flag is set during this, read the busy flag and make sure it is 0 before writing the next instruction.

1. Mode Control: Code $\$$ " 00 " (hexadecimal) written into the instruction register specifies the mode control register.

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	0	0	0	0
Mode control reg.	0	0	0	0	Mode data					

DB5	DB4	DB3	DB2	DB1	DBO	Cursor/blink	CG	Graphic/character display
I/O	I/O	0	0	0	0	Cursor off		Character display (Character mode)
		0	1			Cursor on		
		1	0			Cursor off, character blink		
		1	1			Cursor blink		
		0	0		1	Cursor off		
		0	1			Cursor on		
		1	0			Cursor off, character blink		
		1	1			Cursor blink		
		0	0	1	0			Graphic mode
$\begin{aligned} & \text { u } \\ & \stackrel{4}{0} \\ & 2 \\ & 0 \\ & \frac{\lambda}{0} \\ & \frac{0}{0} \\ & \vdots \end{aligned}$		訔	$\begin{aligned} & \text { 흘 } \\ & \text { Oin } \end{aligned}$					
			$\rightarrow \begin{array}{r} 1: n \\ 0: S \end{array}$	aster m lave m				

2. Set Character Pitch: Vp indicates the number of vertical dots per character. The space between the vertically-displayed characters is included in the determination. This value is meaningful only during character display (in the character mode) and becomes invalid in the graphic mode.
H_{p} indicates the number of horizontal dots per character in display, including the space between horizontally-displayed characters. In the graphic mode, the H_{p} indicates the number of bits of 1-byte display data to be displayed.

There are three H_{p} values (table 1).

Register	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0				
Instruction reg.	0	1	0	0	0	0	0	0	0	1				
Character pitch reg.	0	0	$\left(V_{p}-1\right)$ binary					0	$\left(H_{p}-1\right)$ binary					

Table $1 \quad \mathbf{H}_{\mathrm{p}}$ Values

Hp	DB2	DB1	DBO	Horizontal Character Pitch
6	1	0	1	6
7	1	1	0	7
8	1	1	1	8

3. Set Number of Characters: H_{N} indicates the number of horizontal characters in the character mode or the number of horizontal bytes in the graphic mode. If the total sum of horizontal dots on the screen is taken as n ,

$$
\mathrm{n}=\mathrm{H}_{\mathrm{p}} \times \mathrm{H}_{\mathrm{N}}
$$

H_{N} can be set to an even number from 2 to 128 (decimal).

Register	RN	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	0	0	1	0
Number-of-characters reg.	0	0	0	$\left(\mathrm{H}_{N}-1\right)$ binary						

4. Set Number of Time Divisions (Inverse of Display Duty Ratio): N_{X} indicates the number of time divisions in multiplex display.
$1 / N_{X}$ is the display duty ratio.
A value of 1 to 128 (decimal) can be set to N_{X}.

Register	RN	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	0	0	1	1
Number-of-time-divisions reg.	0	0	0	$\left(N_{x}-1\right)$ binary						

5. Set Cursor Position: C_{p} indicates the position in a character where the cursor is displayed in the character mode. For example, in 5×7 dot font, the cursor is displayed under a character by specifying $\mathrm{C}_{\mathrm{p}}=8$ (decimal). The cursor horizontal length is equal to the horizontal character pitch H_{p}. A value
of 1 to 16 (decimal) can be set to C_{p}. If a smaller value than the vertical character pitch V_{p} is set (C_{p} $\leq \mathrm{V}_{\mathrm{p}}$), and a character overlaps with the cursor, the cursor has higher priority of display (at cursor display on). If C_{p} is greater than V_{p}, no cursor is displayed. The cursor horizontal length is equal to H_{p}.

Register	RN	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	0	1	0	0
Cursor position reg.	0	0	0	0	0	0	$\left(C_{p}-1\right)$ binary			

6. Set Display Start Low Order Address: Cause display start addresses to be written in the display start address registers. The display start address indicates a RAM address at which the data displayed at the top left end on the screen is stored. In
the graphic mode, the start address is composed of high/low order 16 bits. In the character display, it is composed of the lower 4 bits of high order address ($\mathrm{DB}_{3}-\mathrm{DB}_{0}$) and 8 bits of low order address. The upper 4 bits of high order address are ignored.

Register	RN	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	1	0	0	0
Display start address reg. (low order byte)	0	0	(Start low order address) binary							

Set Display Start High Order Address

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
Instruction reg.	0	1	0	0	0	0	1	0	0	1
Display start address reg. (high order byte)	0	0	(Start high order address) binary							

7. Set Cursor Address (Low Order) (RAM Write Low Order Address): Cause cursor addresses to be written in the cursor address counters. The cursor address indicates an address for sending or receiving display data and character codes to or from the RAM.

That is, data at the address specified by the cursor address are read/written. In the character mode, the cursor is displayed at the character specified by the cursor address.
(8 bits) and the high-order address (8 bits). Satisfy the following requirements setting the cursor address (table 2).

The cursor address counter is a 16-bit up-counter with set and reset functions. When bit \mathbf{N} changes from 1 to 0 , bit $\mathrm{N}+1$ is incremented by 1 . When setting the low order address, the LSB (bit 1) of the high order address is incremented by 1 if the MSB (bit 8) of the low order address changes from 1 to 0 . Therefore, set both the low order address and the high order address as shown in the table 2.

A cursor address consists of the low-order address

Register	RN	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	1	0	1	0
Cursor address counter (low order byte)	0	0	(Cursor low order address) binary							

Set Cursor Address (High Order) (RAM Write High Order Address)

Register	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	1	0	1	1
Cursor address counter (high order byte)	0	0	(Cursor high order address) binary							

Table 2 Cursor Address Setting

Condition	Requirement
When you want to rewrite (set) both the low order address and the high order address.	Set the low order address and then set the high order address.
When you want to rewrite only the low order address.	Don't fail to set the high order address again after setting the low order address.
When you want to rewrite only the high order Set the high order address. You don't have to set the low order address again.	

HD61830/HD61830B

8. Write Display Data: After the code \$"OC" is written into the instruction register with $\mathrm{RS}=1$, 8 -bit data with RS $=0$ should be written into the data register. This data is transferred to the RAM
specified by the cursor address as display data or character code. The cursor address is increased by 1 after this operation.

Register	RN	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	1	1	0	0
RAM	0	0	MSB (pattern data, character code) LSB							

9. Read Display Data: Data can be read from the RAM with RS = 0 after writing code \$"OD" into the instruction register. Figure 1 shows the read procedure.

This instruction outputs the contents of data output register on the data bus $\left(\mathrm{DB}_{0}\right.$ to $\left.\mathrm{DB}_{7}\right)$ and then
transfers RAM data specified by the cursor address to the data output register, also increasing the cursor address by 1 . After setting the cursor address, correct data is not output at the first read but at the second one. Thus, make one dummy read when reading data after setting the cursor address.

Register	RN	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	1	1	0	1
RAM	1	0	MSB (pattern data, character code) LSB							

Figure 1 Read Procedure
10. Clear Bit: The clear/set bit instruction sets 1 bit in a byte of display data RAM to 0 or 1 , respectively. The position of the bit in a byte is specified by N_{B} and RAM address is specified by cursor
address. After the execution of the instruction, the cursor address is automatically increased by $1 . \mathrm{N}_{\mathrm{B}}$ is a value from 1 to $8 . \mathrm{N}_{\mathrm{B}}=1$ and $\mathrm{N}_{\mathrm{B}}=8$ indicates LSB and MSB, respectively.

Register	RN	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	1	1	1	0
Bit clear reg.	0	0	0	0	0	0	0	$\left(N_{B}-1\right)$ binary		

Set Bit

Register	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction reg.	0	1	0	0	0	0	1	1	1	1
Bit set reg.	0	0	0	0	0	0	0	$\left(N_{B}-1\right)$ binary		

11. Read Busy Flag: When the read mode is set with $\mathrm{RS}=1$, the busy flag is output to DB_{7}. The busy flag is set to 1 during the execution of any of the other instructions. After the execution, it is set to 0 . The next instruction can be accepted. No instruction can be accepted when busy flag $=1$. Before executing an instruction or writing data, perform a busy flag check to make sure the busy
flag is 0 . When data is written in the register ($\mathrm{RS}=$ 1), no busy flag changes. Thus, no busy flag check is required just after the write operation into the instruction register with $\mathrm{RS}=1$.

The busy flag can be read without specifying any instruction register.

Register	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Busy flag	1	1	I/O	*						

Figure 2 Display Variables

Display Mode	Display Data from MPU	RAM	Liquid Crystal Display Panel
Character display	Character code (8 bits)		
Graphic	Display pattern (8 bits)		

Internal Character Generator Patterns and Character Codes

	\%10]
	QuF"F-5EeF
	HWEm: 5 \%
	CBH:Hx
	39]PimaTJu-
	+:JZjzx
	, ¢
	F0]

Example of Correspondence between External CG ROM Address Data and Character Pattern

8×8 Dot Font

	A10 A 9 A 8 A 7				0												0 0 1 0	1 1 1 1
A6 A5 A4 A3	A2 A1 A0	$\mathrm{O}_{0} \mathrm{O}$	$\mathrm{D}_{1} \mathrm{O}_{2}$	O_{3}	${ }^{0}$	${ }_{4}{ }^{0}$	${ }_{5} 0_{6}$	${ }_{6} 0_{7}$	$\mathrm{O}_{7} \mathrm{O}_{0}$	${ }_{0} 0_{0}$	O_{2}	O_{3}	0_{4}	0_{5}	O_{6}	O_{7}		
0000							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$		1 0 0 0 0 0 0 1 1 0			0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		
0000	lllll $\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}$			0 0 0 0 0 1 0 0 0 0				1 1 0 1 0 1	1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1			$\begin{array}{\|c} \hline 0 \\ 0 \\ 0 \\ 0 \\ \hline \\ \hline 0 \\ \hline 1 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \\ \hline 0 \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	O	0 0 0 4 0 0 0 0 0 0		
000	000																	

8×16 Dot Font

HD61830/HD61830B

Example of Configuration

Graphic Mode or Character Mode (1) (Internal Character Generator)

Character Mode (2) (External Character Generator)

Parallel Operation (HD61830)

Parallel Operation (HD61830B)

HD61830 Application (Character Mode, External CG, Character Font 8×8)

HD61830 Application (Graphic Mode)

HD61830B Application (Character Mode, External CG, Character Font 8×8)

HD61830B Application (Graphic Mode)

HD61830 Absolute Maximum Ratings

Item	Symbol	Value	Unit	Notes
Supply voltage	$V_{C C}$	-0.3 to +0.7	V	1,2
Terminal voltage	V_{T}	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. All voltages are referenced to $G N D=0 \mathrm{~V}$.
2. If LSIs are used beyond absolute maximum ratings, they may be permanently destroyed. We strongly recommend that you use the LSIs within electrical characteristic limits for normal operation, because use beyond these conditions will cause malfunction and poor reliability.

HD61830/HD61830B

HD61830 Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{GND}=\mathbf{0 V}, \mathrm{T}_{\mathrm{a}}=-\mathbf{2 0}$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Notes
Input high voltage (TTL)	V_{IH}	2.2	-	$V_{C C}$	V		1
Input low voltage (TTL)	$\mathrm{V}_{\text {IL }}$	0	-	0.8	V		2
Input high voltage	$\mathrm{V}_{\text {IHR }}$	3.0	-	V_{Cc}	V		3
Input high voltage (CMOS)	$\mathrm{V}_{\mathrm{H}} \mathrm{C}$	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	$V_{C C}$	V		4
Input low voltage (CMOS)	$V_{\text {ILC }}$	0	-	$0.3 \mathrm{~V}_{\mathrm{Cc}}$	V		4
Output high voltage (TTL)	V_{OH}	2.4	-	V_{cc}	V	$-\mathrm{l}_{\mathrm{OH}}=0.6 \mathrm{~mA}$	5
Output low voltage (TTL)	V_{OL}	0	-	0.4	V	$\mathrm{loL}=1.6 \mathrm{~mA}$	5
Output high voltage (CMOS)	$\mathrm{V}_{\mathrm{OHC}}$	$\mathrm{V}_{\mathrm{cc}}-0.4$	-	V cc	V	$-\mathrm{l}_{\mathrm{OH}}=0.6 \mathrm{~mA}$	6
Output low voltage (CMOS)	$\mathrm{V}_{\text {OLC }}$	0	-	0.4	V	$\mathrm{I}_{\mathrm{L}}=0.6 \mathrm{~mA}$	6
Input leakage current	IN	-5	-	5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0-\mathrm{V}_{\text {CC }}$	7
Three-state leakage current	$\mathrm{I}_{\text {TSL }}$	-10	-	10	$\mu \mathrm{A}$	$V_{\text {OUT }}=0-V_{\text {CC }}$	8
Power dissipation (1)	$\mathrm{P}_{\mathrm{w}} 1$	-	10	15	mW	CR oscillation $\mathrm{f}_{\mathrm{osc}}=500 \mathrm{kHz}$	9
Power dissipation (2)	$\mathrm{P}_{\mathrm{w}} 2$	-	20	30	mW	External clock $\mathrm{f}_{\mathrm{cp}}=1 \mathrm{MHz}$	9

Internal clock operation							
Clock oscillation frequency	$\mathrm{f}_{\text {osc }}$	400	500	600	kHz	$\begin{aligned} \mathrm{C}_{\mathrm{f}} & =15 \mathrm{pF} \pm 5 \% \\ \mathrm{R}_{\mathrm{f}} & =39 \mathrm{k} \Omega \pm 2 \% \end{aligned}$	10
External clock operation							
External clock operating frequency	f_{cp}	100	500	1100	kHz		11
External clock duty	Duty	47.5	50	52.5	\%		11
External clock rise time	$\mathrm{t}_{\text {rcp }}$	-	-	0.05	$\mu \mathrm{s}$		11
External clock fall time	$\mathrm{t}_{\text {cpp }}$	-	-	0.05	$\mu \mathrm{s}$		11
Pull-up current	$\mathrm{IPL}^{\text {L }}$	2	10	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=$ GND	12

Notes: The I/O terminals have the following configuration:

1. Applied to input terminals and I / O common terminals, except terminals $\overline{\text { SYNC, CR, and } \overline{R E S} \text {. }}$
2. Applied to input terminals and I/O common terminals, except terminals SYNC and CR.
3. Applied to terminal $\overline{\text { RES }}$.
4. Applied to terminals $\overline{\text { SYNC }}$ and CR.
5. Applied to terminals $\mathrm{DB}_{0}-\mathrm{DB}_{7}, \overline{\mathrm{WE}}, \mathrm{MA}_{0}-\mathrm{MA}_{15}$, and $\mathrm{MD}_{0}-\mathrm{MD}_{7}$.
6. Applied to terminals $\overline{S Y N C}, C P O, F L M, C_{1}, C L_{2}, D_{1}, D_{2}, M A$, and $M B$.
7. Applied to input terminals.
8. Applied to $/ / O$ common terminals. However, the current which flows into the output drive MOS is excluded.
9. The current which flows into the input and output circuits is excluded. When the input of CMOS is in the intermediate level, current flows through the input circuit, resulting in the increase of power supply current. To avoid this, input must be fixed at high or low.
The relationship between the operating frequency and the power dissipation is given below.

10. Applied to the operation of the internal oscillator when oscillation resistor R_{f} and oscillation capacity C_{f} are used.

$\mathrm{C}_{\mathrm{f}}=15 \mathrm{pF} \pm 5 \%$
$\mathrm{R}_{\mathrm{f}}=39 \mathrm{k} \Omega \pm 2 \%$
(when fosc $=$
500 kHz typ)

The relationship among oscillation frequency, R_{f} and C_{f} is given below.

HD61830/HD61830B

11. Applied to external clock operation.

12. Applied to $\overline{\mathrm{SYNC}}, \mathrm{DB}_{0}-\mathrm{DB}_{7}$, and $\mathrm{RD}_{0}-\mathrm{RD}_{7}$.

Input Terminal

Applicable terminal: CS, E, RS, R/W, $\overline{\text { RES, CR }}$ (without pull-up MOS)

Applicable terminal: $\mathrm{RD}_{0}-\mathrm{RD}_{7}$ (with pull-up MOS)

Output Terminal

Applicable terminal: $\mathrm{CL}_{1}, \mathrm{CL}_{2}, \mathrm{MA}, \mathrm{MB}, \mathrm{FLM}$, $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{WE}, \overline{\mathrm{OE}}, \mathrm{CE}, \mathrm{MA}_{0}-\mathrm{MA}_{15}$

I/O Common Terminal

Applicable terminal: $\mathrm{DB}_{0}-\mathrm{DB}_{7}, \overline{\mathrm{SYNC}}, \mathrm{MD}_{0}-$ $\mathrm{MD}_{7}\left(\mathrm{MD}_{0}-\mathrm{MD}_{7}\right.$ have no pull-up MOS)

HD61830/HD61830B

Timing Characteristics

HD61830 MPU Interface

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit
Enable cycle time		$\mathrm{t}_{\mathrm{CYC}}$	1.0	-	-
Enable pulse width	High level	$\mathrm{t}_{\text {WEH }}$	0.45	-	-
	Low level	$\mathrm{t}_{\text {WEL }}$	0.45	-	-
Enable rise time		t_{Er}	-	-	25
Enable fall time	t_{Ef}	-	-	25	ns
Setup time	t_{AS}	140	-	-	ns
Data setup time	$\mathrm{t}_{\mathrm{DSW}}$	225	-	-	ns
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	225	$\mathrm{~ns} *$
Data hold time	$\mathrm{t}_{\mathrm{DHW}}$	10	-	-	ns
Address hold time	t_{AH}	10	-	-	ns
Data hold time	t_{DH}	20	-	-	ns

Note: * The following load circuit is connected for specification:

HD61830 External RAM and ROM Interface
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}\right.$ to $\left.+\mathbf{7 5} 5^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit
SYNC delay time	$\mathrm{t}_{\text {DSY }}$	-	-	200	ns
SYNC pulse width High level	$\mathrm{t}_{\text {WSY }}$	900	-	-	ns
CPO cycle time	$\mathrm{t}_{\mathrm{CCPO}}$	900	-	-	ns
CPO pulse width	${ }^{\text {W }}$ WCPOH	450	-	-	ns
	$t_{\text {WCPOL }}$	450	-	-	ns
MA ${ }_{0}$ to $M A_{15}$ refresh delay time	$t_{\text {DMAR }}$	-	-	200	ns
$M A_{0}$ to $M A_{15}$ write address delay time	$\mathrm{t}_{\text {DMAW }}$	-	-	200	ns
MD_{0} to MD_{7} write data delay time	$t_{\text {DMDW }}$	-	-	200	ns
MD_{0} to $\mathrm{MD}_{7}, \mathrm{RD}_{0}$ to RD_{7} setup time	$\mathrm{t}_{\text {SMD }}$	900	-	-	ns
Memory address setup time	$\mathrm{t}_{\text {SMAW }}$	250	-	-	ns
Memory data setup time	${ }_{\text {t }}$ SMDW	250	-	-	ns
$\overline{\text { WE }}$ delay time	$\mathrm{t}_{\text {DWE }}$	-	-	200	ns
$\overline{\text { WE pulse width (low level) }}$	$t_{\text {WWE }}$	450	-	-	ns

Notes: 1. No load is applied to all the output terminals.
2. "*" indicates the delay time of RAM and ROM.

HD61830/HD61830B

HD61830 LCD Driver Interface
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

	Symbol	Min	Typ	Max	Unit
Clock pulse width (high level)	$\mathrm{t}_{\text {WCL1 }}$	450	-	-	ns
Clock delay time		$\mathrm{t}_{\mathrm{DCL}}$	-	-	200
Clock cycle time	$\mathrm{I}_{\text {WCL2 }}$	900	-	-	ns
Clock pulse width	High level	$\mathrm{t}_{\mathrm{WCH}}$	450	-	-
	Low level	$\mathrm{t}_{\text {WCL }}$	450	-	-
MA					
FLM delay time	I_{MD}	-	-	300	ns
Data delay time	t_{DF}	-	-	300	ns
Data setup time	t_{DD}	-	-	200	ns

Note: No load is applied to all the output terminals (MA, MB, FLM, D_{1}, and D_{2}).

HD61830B Absolute Maximum Ratings

Item	Symbol	Value	Unit	Notes
Supply voltage	$V_{C C}$	-0.3 to +0.7	V	1,2
Terminal voltage	V_{T}	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. All voltage is referred to $\mathrm{GND}=0 \mathrm{~V}$.
2. If LSIs are used beyond absolute maximum ratings, they may be permanently destroyed. We strongly recommend that you use the LSIs within electrical characteristic limits for normal operation, because use beyond these conditions will cause malfunction and poor reliability.

HD61830/HD61830B

HD61830B Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-\mathbf{2 0}$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Min	Typ	Max	Unit	Test Condition	Note
Input high voltage (TTL)	V_{IH}	2.2	-	V_{CC}	V		1
Input low voltage (TTL)	V_{IL}	0	-	0.8	V		2
Input high voltage	V_{HR}	3.0	-	V_{CC}	V		3
Input high voltage (CMOS)	$\mathrm{V}_{\mathrm{IHC}}$	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	V_{CC}	V		4
Input low voltage (CMOS)	$\mathrm{V}_{\mathrm{ILC}}$	0	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V		4
Output high voltage (TTL)	V_{OH}	2.4	-	V_{CC}	V	$-\mathrm{I}_{\mathrm{OH}}=0.6 \mathrm{~mA}$	5
Output low voltage (TTL)	V_{OL}	0	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	5
Output high voltage (CMOS)	$\mathrm{V}_{\mathrm{OHC}}$	$\mathrm{V}_{\mathrm{CC}}-0.4$	-	V_{CC}	V	$-\mathrm{I}_{\mathrm{OH}}=0.6 \mathrm{~mA}$	6
Output low voltage (CMOS)	$\mathrm{V}_{\mathrm{OLC}}$	0	-	0.4	V	$\mathrm{I}_{\mathrm{OI}}=0.6 \mathrm{~mA}$	6
Input leakage current	I_{IN}	-5	-	5	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0-\mathrm{V}_{\mathrm{CC}}$	7
Three-state leakage current	$\mathrm{I}_{\mathrm{TSL}}$	-10	-	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=0-\mathrm{V}_{\mathrm{CC}}$	8
Pull-up current	I_{PL}	2	10	20	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {in }}=\mathrm{GND}$	9
Power dissipation	P_{W}	-	-	50	mW	External clock	10

Notes: 1. Applied to input terminals and I/O common terminals, except terminals SYNC, CR, and $\overline{\text { RES }}$.
2. Applied to input terminals and I/O common terminals, except terminals SYNC and CR.
3. Applied to terminal $\overline{\text { RES }}$.
4. Applied to terminals $\overline{\text { SYNC }}$ and CR.
5. Applied to terminals $\mathrm{DB}_{0}-\mathrm{DB}_{7}, \overline{W E}, \mathrm{MA}_{0}-\mathrm{MA}_{15}, \overline{\mathrm{OE}}, \overline{\mathrm{CE}}$, and $\mathrm{MD}_{0}-\mathrm{MD}_{7}$.
6. Applied to terminals $\overline{\mathrm{SYNC}}, \mathrm{FLM}, \mathrm{CL}_{1}, \mathrm{CL}_{2}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{MA}$, and MB .
7. Applied to input terminals.
8. Applied to I / O common terminals. However, the current which flows into the output drive MOS is excluded.
9. Applied to $\overline{\mathrm{SYNC}}, \mathrm{DB}_{0}-\mathrm{DB}_{7}$, and $\mathrm{RD}_{0}-\mathrm{RD}_{7}$.
10. The current which flows into the input and output circuits is excluded. When the input of CMOS is in the intermediate level, current flows through the input circuit, resulting in the increase of power supply current. To avoid this, input must be fixed at high or low.

Input Terminal

Applicable terminal: CS, E, RS, R/W, $\overline{\mathrm{RES}}, \mathrm{CR}$ (without pull-up MOS)

Applicable terminal: $\mathrm{RD}_{0}-\mathrm{RD}_{7}$ (with pull-up MOS)

Output Terminal

Applicable terminal: $\mathrm{CL}_{1}, \mathrm{CL}_{2}, \mathrm{MA}, \mathrm{MB}, \mathrm{FLM}$, $\mathrm{D}_{1}, \mathrm{D}_{2}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}, \mathrm{CE}, \mathrm{MA}_{0}-\mathrm{MA}_{15}$

I/O Common Terminal
Applicable terminal: $\mathrm{DB}_{0}-\mathrm{DB}_{7}, \overline{\mathrm{SYNC}}, \mathrm{MD}_{0}-$ $\mathrm{MD}_{7}\left(\mathrm{MD}_{0}-\mathrm{MD}_{7}\right.$ have no pull-up MOS)

Timing Characteristics

HD61830B Clock Operation
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Notes
External clock operating frequency	f_{cp}	100	-	2400	kHz	1
External clock duty	Duty	47.5	50	52.5	$\%$	1
External clock rise time	$\mathrm{t}_{\mathrm{rcp}}$	-	-	25.0	ns	1
External clock fall time	$\mathrm{t}_{\text {fcp }}$	-	-	25.0	ns	1
$\overline{\text { SYNC output hold time }}$	$\mathrm{t}_{\mathrm{HSYO}}$	30	-	-	ns	2,3
$\overline{\text { SYNC output delay time }}$	$\mathrm{t}_{\mathrm{DSY}}$	-	-	210	ns	2,3
$\overline{\text { SYNC input hold time }}$	$\mathrm{t}_{\mathrm{HSYI}}$	10	-	-	ns	2
$\overline{\text { SYNC input set-up time }}$	$\mathrm{t}_{\mathrm{SSY}}$	-	-	180	ns	2

Notes: 1. Applied to external clock input terminal.

2. Applied to $\overline{\text { SYNC }}$ terminal.

3. Testing load circuit.

HD61830B MPU Interface

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}\right.$ to $+\mathbf{7 5 ^ { \circ }} \mathrm{C}$)

Hem	Symbol	Min	Typ	Max	Unit
Enable cycle time		$\mathrm{t}_{\mathrm{CYC}}$	1.0	-	-
Enable pulse width	High level	$\mathrm{t}_{\text {WEH }}$	0.45	-	-
	Low level	$\mathrm{t}_{\text {WEL }}$	0.45	-	-
Enable rise time		t_{Er}	-	-	25
Enable fall time		t_{Ef}	-	-	25
Setup time	t_{AS}	140	-	-	ns
Data setup time	$\mathrm{t}_{\mathrm{DSW}}$	225	-	-	ns
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	225	$\mathrm{~ns} *$
Data hold time	$\mathrm{t}_{\mathrm{DHW}}$	10	-	-	ns
Address hold time	t_{AH}	10	-	-	ns
Data hold time	t_{DH}	20	-	-	ns

Note: * The following load circuit is connected for specification:

$\mathrm{R}_{\mathrm{L}}=2.4 \mathrm{k} \Omega$
$R=11 \mathrm{k} \Omega$
$C=130 \mathrm{pF}$ (C includes jig capacitance) Diodes D_{1} to D_{4} : $1 \mathrm{~S} 2074 \oplus$

HD61830B External RAM and ROM Interface
$\left(V_{C C}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}\right.$ to $+\mathbf{7 5 ^ { \circ }} \mathrm{C}$)

Item	Symbol	Min	Typ	Max	Unit	Notes
MA $_{0}-$ MA $_{15}$ delay time	$\mathrm{t}_{\text {DMA }}$	-	-	300	ns	$1,2,3$
MA $_{0}-\mathrm{MA}_{15}$ hold time	$\mathrm{t}_{\text {HMA }}$	40	-	-	ns	$1,2,3$
$\overline{\mathrm{CE}}$ delay time	$\mathrm{t}_{\text {DCE }}$	-	-	300	ns	$1,2,3$
$\overline{\mathrm{CE}}$ hold time	$\mathrm{t}_{\text {HCE }}$	40	-	-	ns	$1,2,3$
$\overline{\mathrm{OE}}$ delay time	$\mathrm{t}_{\text {DOE }}$	-	-	300	ns	1,3
$\overline{\mathrm{OE}}$ hold time	$\mathrm{t}_{\text {HOE }}$	40	-	-	ns	1,3
MD output delay time	$\mathrm{t}_{\text {DMD }}$	-	-	150	ns	1,3
MD output hold time	$\mathrm{t}_{\text {HMDW }}$	10	-	-	ns	1,3
$\overline{\text { WE delay time }}$	$\mathrm{t}_{\text {DWE }}$	-	-	150	ns	1,3
$\overline{\text { WE clock pulse width }}$	$\mathrm{t}_{\text {WWE }}$	150	-	-	ns	1,3
MD output high impedance	$\mathrm{t}_{\text {ZMDF }}$	10	-	-	ns	1,3
time (1)						

Notes: 1. RAM write timing

T1: Memory data refresh timing for upper screen
T2: Memory data refresh timing for lower screen
T3: Memory read/write timing

2. ROM/RAM read timing

*1 This figures shows the timing for $H_{p}=8$.
For $H_{p}=7$, time shown by " b " becomes zero. For $H_{p}=6$, time shown by " a " and " b " become zero.
Therefore, the number of clock pulses during T1 become 4, 3, or 2 in the case of $H_{p}=8$, $H_{p}=7$, or $H_{p}=6$ respectively.
*2 The waveform for instructions with memory read is shown with a dash line. In other cases, the waveform shown with a solid line is generated.
*3 When an instruction with RAM read/write is executed, the value of cursor address is output. In other cases, invalid data is output.
*4 When an instruction with RAM read is executed, HD61830B latches the data at this timing. In other cases, this data is invalid.

3. Test load circuit

$\mathrm{R}_{\mathrm{L}}=2.4 \mathrm{k} \Omega$
$\mathrm{R}=11 \mathrm{k} \Omega$
$\mathrm{C}=50 \mathrm{pF}$ (C includes iig capacitance)
Diodes D_{1} to $D_{4}: 1 S 2074 \oplus$

HD61830/HD61830B

HD61830B LCD Driver Interface
$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=\mathbf{- 2 0}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Hem	Symbol	Min	Typ	Max	Unit	Notes
Clock cycle time	${ }^{\text {twCL2 }}$	416	-	-	ns	1,3
Clock pulse width (high level)	${ }^{\text {twCH }}$	150	-	-	ns	1,3
Clock pulse width (low level)	${ }^{\text {W WCL }}$	150	-	-	ns	1,3
Data delay time	$t_{\text {DD }}$	-	-	50	ns	1,3
Data hold time	$t_{\text {DH }}$	100	-	-	ns	1,3
Clock phase difference (1)	${ }^{\text {CLI }}$	100	-	-	ns	1,3
Clock phase difference (2)	${ }_{\text {ct2 }}$	100	-	-	ns	1,3
Clock phase difference (3)	$\mathrm{t}_{\text {CL3 }}$	100	-	-	ns	1,3
MA, MB delay time	$t_{\text {DM }}$	-200	-	200	ns	1,3
FLM set-up time	$\mathrm{t}_{\text {SF }}$	400	-	-	ns	2,3
FLM hold time	t_{HF}	1000	-	-	ns	2,3
MA set-up time	${ }_{\text {t }}$ SMA	400	-	-	ns	2,3
MA hold time	thMA	1000	-	-	ns	2,3

Notes: 1.

2.

3. Test load circuit

HD63645/HD64645/HD64646 LCTC (LCD Timing Controller)

Description

The HD63645/HD64645/HD64646 LCTC is a control LSI for large size dot matrix liquid crystal displays. The LCTC is software compatible with the HD6845 CRTC, since its programming method of internal registers and memory addresses is based on the CRTC. A display system can be easily converted from a CRT to an LCD.

The HD64646 LCTC is a modified version of the HD64645 LCTC with different LCD interface timing.

The LCTC offers a variety of functions and performance features such as vertical and horizontal scrolling, and various types of character attribute functions such as reverse video, blinking, nondisplay (white or black), and an OR function for simple superimposition of character and graphic displays. The LCTC also provides DRAM refresh address output.

A compact LCD system with a large screen can be configured by connecting the LCTC with the HD66204 (column driver) and the HD66205 (common driver) by utilizing 4-bit $\times 2$ data outputs. Power dissipation has been lowered by adopting the CMOS process.

Features

- Software compatible with the HD6845 CRTC
- Programmable screen size:
-Up to 1024 dots (height)
-Up to 4096 dots (width)
- High-speed data transfer:
-Up to $20 \mathrm{Mbits} / \mathrm{s}$ in character mode
-Up to $40 \mathrm{Mbits} / \mathrm{s}$ in graphic mode
- Selectable single or dual screen configuration
- Programmable multiplexing duty ratio: static to $1 / 512$ duty cycle
- Programmable character font:
-1-32 dots (height)
-8 dots (width)
- Versatile character attributes: reverse video, blinking, nondisplay (white), nondisplay (black)
- OR function: superimposing characters and graphics display
- Cursor with programmable height, blink rate, display position, and on/off switch
- Vertical Smooth Scrolling and horizontal scrolling by the character
- Versatile display modes programmable by mode register or external pins: display on/off, graphic or character, normal or wide, attributes, and blink enable
- Refresh address output for dynamic RAM
- 4- or 8-bit parallel data transfer between LCTC and LCD driver
- Recommended LCD driver: HD66204, HD66214T and HD66224T (column)
HD66205 and HD66215T (common)
HD66106F and HD66107T (column/ common)
HD66110RT (column)
- CPU interface:

68 family HD63645
Z80 family HD64645, HD64646

- CMOS process
- Single $+5 \mathrm{~V} \pm 10 \%$

Differences Between Products HD63645, HD64645 and HD64646

	HD63645	HD64645	HD64646
CPU Interface	68 family	Z80 family	Z80 family
Bus Timing	2 MHz	4 MHz	4 MHz
Pin	Pin 41: R/W	Pin 41: $\overline{\mathrm{RD}}$	Pin 41: $\overline{\mathrm{RD}}$
Arrengement and Signal name	Pin 42: E	Pin 42: $\overline{\mathrm{WR}}$	Pin 42: $\overline{\mathrm{WR}}$
Other	-		

Ordering Infomation

Type No.	CPU Interface	Package
HD63645F	68 family 2 MHz bus	80-pin plastic
HD64645F	Z80 family 4 MHz bus	QFP (FP-80B)
HD64646FS	Z80 family 4 MHz bus	80-pin plastic QFP (FP-80B)

Pin Arrangement

Pin Description

Symbol	Pin Number	1/0	Name
$\mathrm{V}_{\mathrm{cc}} 1, \mathrm{~V}_{\mathrm{cc}} 2$	17, 32	-	Vcc
GND1, GND2	37, 59	-	Ground
LUO-LU3	22-25	0	LCD Up Panel Data 0-3
LDO-LD3	18-21	0	LCD Down Panel Data 0-3
CL1	28	0	Clock One
CL2	29	0	Clock Two
FLM	27	0	First Line Marker
M	26	0	M
MAO-MA15	65-80	0	Memory Address 0-15
RAO-RA4	60-64	0	Raster Address 0-4
MDO-MD7	1-8	1	Memory Data 0-7
MD8-MD15	9-16	1	Memory Data 8-15
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	43-50	1/0	Data Bus 0-7
$\overline{\overline{\mathbf{C S}}}$	39	1	Chip Select
E	41	1	Enable (HD63645 Only)
R/ $\overline{\mathbf{W}}$	42	1	Read/Write (HD63645 Only)
$\overline{\text { WR }}$	41	1	Write (HD64645 and HD64646)
$\overline{\mathrm{RD}}$	42	1	Read (HD64645 and HD64646)
RS	40	1	Register Select
RES	38	1	Reset
DCLK	33	1	D Clock
MCLK	34	0	M Clock
DISPTMG	35	0	Display Timing
CUDISP	36	0	Cursor Display
SKO	30	1	Skew 0
SK1	31	1	Skew 1
ON/ $\overline{O F F}$	53	1	On/Off
BLE	51	1	Blink Enable
AT	57	I	Attribute
G/C	58	1	Graphic/Character
WIDE	54	1	Wide
LS	56	I	Large Screen
D/S	55	1	Dual/Single
MODE	52	1	Mode

Pin Functions

Power Supply (Vcc1, Vcc2, GND)

Power Supply Pin (+5 V): Connect $\mathrm{V}_{\mathrm{cc}} 1$ and $\mathrm{V}_{\mathrm{cc}} 2$ with +5 V power supply circuit.

Ground Pin (OV): Connect GND1 and GND2 with 0 V .

LCD Interface

LCD Up Panel Data (LUO-LU3), LCD Down Panel Data (LD0-LD3): LUO-LU3 and LDO-LD3 output LCD data as shown in table 1.

Clock One (CL1): CL1 supplies timing clocks for display data latch.

Clock Two (CL2): CL2 supplies timing clock for display data shift.

First Line Marker (FLM): FLM supplies first line marker.
\mathbf{M} (M): \mathbf{M} converts liquid crystal drive output to AC.

Memory Interface

Memory Address (MA0-MA15): MAOMA15 supply the display memory address.

Raster Address (RA0-RA4): RA0-RA4 supply the raster address.

Memory Data (MD0-MD7): MD0-MD7 receive the character dot data and bitmapped data.

Memory Data (MD8-MD15): MD8-MD15 receive attribute code data and bit-mapped data.

MPU Interface

Data Bus (DB0-DB7): DB0-DB7 send/ receive data as a three-state I/O common bus.

Chip Select ($\overline{C S}$): $\overline{C S}$ selects a chip. Low level enables MPU read/write of the LCTC internal registers.

Enable (E): E receives an enable clock. (HD63645 only).

Read/Write (R/攻): R/W enables MPU read of the LCTC internal registers when $R / \overline{\mathrm{W}}$ is high, and MPU write when low (HD63645 only).

Write ($\overline{\mathbf{W R}}$): $\overline{\mathrm{WR}}$ receives MPU write signal (HD64645 and HD64646).

Read ($\overline{\mathrm{RD}}$): $\overline{\mathrm{RD}}$ receives MPU read signal (HD64645 and HD64646).

Register Select (RS): RS selects registers. (Refer to table 5.)

Reset ($\overline{\mathrm{RES}}$): $\overline{\mathrm{RES}}$ performs external reset of the LCTC. Low level of RES stops and zeroclears the LCTC internal counter. No register contents are affected.

Timing Signal

D Clock (DCLK): DCLK inputs the system clock.

M Clock (MCLK): MCLK indicates memory cycle; DCLK is divided by four.

Display Timing (DISPTMG): DISPTMG high indicates that the LCTC is reading display data.

Cursor Display (CUDISP): CUDISP supplies cursor display timing; connect with MD12 in character mode.

Skew 0 (SK0)/Skew 1 (SK1): SK0 and SK1 control skew timing. Refer to table 2.

Mode Select

The mode select pins ON/OFF, BLE, AT, G/C,

Table 1 LCD Up Panel Data and LCD Down Panel Data

Single Screen

Pin name	4-Bit Data	8-Bit Data	
LUO-LU3	Data output	Data output	
LDO-LD3	Disconnected	Datput for upper screen	

and WIDE are ORed with the mode register (R22) to determine the mode.

On/Off (ON/ $\overline{O F F}$): ON/OFF switches display on and off (High = display on).

Blink Enable (BLE): BLE high level enables attribute code "blinking" (MD13) and provides normal/blank blinking of specified characters for 32 frames each.

Attribute (AT): AT controls character attribute functions.

Graphic/Character ($\mathbf{G} / \overline{\mathbf{C}}$): $\mathbf{G} / \overline{\mathrm{C}}$ switches between graphic and character display mode (graphic display when high).

Wide (WIDE): WIDE switches between normal and wide display mode (high $=$ wide display, low = normal display).

Large Screen (LS): LS controls a large screen. LS high provides a data transfer rate of $40 \mathrm{Mbits} / \mathrm{s}$ for a graphic display. Also used to specify 8 -bit LCD interface mode. For more details, refer to table 10.

Dual/Single (D/S): D/S switches between single and dual screen display (dual screen display when high).

Mode (MODE): MODE controls easy mode. MODE high sets duty ratio, maximum number of rasters, cursor start/end rasters, etc. (Refer to table 9.)

Table 2 Skew Signals

SKO	SK1	Skew Function
0	0	No skew
1	0	1-character time skew
0	1	2-character time skew
1	1	Prohibited combination

Function Overview

LCD and CRT Display Systems

Figure 1 shows a system using both LCD and CRT displays.

Main Features of HD63645/HD64645/ HD64646

Main features of the LCTC are:

- High-resolution liquid crystal display screen control (up to 720×512 dots)
- Software compatible with HD6845 (CRTC)
- Built-in character attribute control circuit

Table 3 shows how the LCTC can be used.

Table 3 Functions, Application, and Configuration

Classification	Item	Description
Functions	Screen Format	\bullet Programmable horizontal scanning cycle by the character clock period - Programmable multiplexing duty ratio from static up to $1 / 512$ - Programmable number of vertical displayed characters - Programmable number of rasters per character row (number of vertical dots within a character row + space between character rows)
	Cursor Control	- Programmable cursor display position, corresponding to RAM address - Programmable cursor height by setting display start/end rasters - Programmable blink rate, $1 / 32$ or $1 / 64$ frame rate
	Memory Rewriting	- Time for rewriting memory set either by specifying number of horizontal total characters or by cycle steal utilizing MCLK
	Memory Addressing	- 16-bit memory address output, up to 64 kbytes $\times 2$ memory acces sible - DRAM refresh address output
	Paging and Scrolling	- Paging by updating start address - Horizontal scrolling by the character, by setting horizontal virtual screen width - Vertical smooth scrolling by updating display start raster
	Character Attributes	\bullet Reverse video, blinking, nondisplay (white or black), display ON/ OFF
Application	CRTC Compatible	- Facilitates system replacement of CRT display with LCD
	OR Function	- Enables superimposing display of character screen and graphic screen
Configuration	LCTC Configuration	- Single 5 V power supply - I/O TTL compatible except RES, MODE, SKO, SK1 - Bus connectable with HMCS 6800 family (HD63645) - Bus connectable with 80 family (HD64645 and HD64646) - CMOS process - Internal logic fully static -80-pin flat plastic package

Figure 1 LCD and CRT Displays

Differences Between HD64645 and HD64646

Figure 2 and figure 3 show the relation between display data transfer period, when display data shift clock CL2 changes, and display data latch clock CL1. Figure 2 shows the case without skew function and figure 3 shows the case with skew function.

In figure 2, high period between CL2 and CL1 of HD64645 overlap. HD64646 has no overlap
like HD64645, and except for this overlap. HD64646 is the same as HD64645 functionally.

Also for the skew function, phase relation between CL1 and CL2 changes. As figure 3 shows, data transfer period and CL1 high period of HD64646 never overlap with the skew function.

Figure 2 Differences between HD64645 and HD64646 (no skew)

Figure 3 Differences between HD64645 and HD64646 (skew)

Internal Block Diagram

Figure 4 is a block diagram of the LCTC.

Figure 4 LCTC Block Diagram

System Block Configuration Examples

Figure 5 is a block diagram of a character/ graphic display system. Figure 5 shows two examples using LCD drivers.

Figure 5 Character/Graphic Display System Example

Interface to MPU

Note: HD6301 is set in mode 5. P10-P17 are used as output ports, and P30-P37 as data buses. SC2 outputs R/W here.

Interface between HD6301 and HD63645

Note: In 80 family MPUs, I/O space is separate from memory space in software. Thus the LCTC, a part of $1 / \mathrm{O}$, needs the ORed signals of the interface signals and IOE. So $\overline{\overline{O E}}$ and $\overline{\mathrm{RD}}$, and $\overline{\mathrm{IOE}}$ and $\overline{W R}$ should be ORed to satisfy t_{AS}, the timing of $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$, and $\overline{W R}$.

Figure 7 LCD Driver Examples

Registers

Table 4 shows the register mapping. Table 5 describes their function. Table 6 shows the
differences between CRTC and LCTC registers.

Table 4 Registers Mapping

CS		Address Register 43210		Register Name		Symbol R/W		Data Bit							
	RS				Program Unit			7	6	5	4	3	2	1	0
1	-	-----		Invalid	-	-	-						\%	20	
0	0		AR	Address Register	-	-	W			80					
0	1	00000	RO	Horizontal Total Characters	Character ${ }^{3}$	Nht	W								
0	1	00001	R1	Horizontal Displayed Char.s	Character	Nhd	W								
0	1	01001	R9	Maximum Raster Address	Raster	Nr	W								
0	1	01010	R10	Cursor Start Raster	Raster ${ }^{4}$	Ncs	W		B	P					
0	1	01011	R11	Cursor End Raster	Raster	Nce	W			\%					
0	1	01100	R12	Start Address (H)	Memory Address	-	R/W								
0	1	01101	R13	Start Address (L)	Memory Address	-	R/W								
0	1	01110	R14	Cursor Address (H)	Memory Address	-	R/W								
0	1	01111	R15	Cursor Address (L)	Memory Address	-	R/W								
0	1	10010	R18	Horizontal Virtual Screen Width	Character	Nir	W								
0	1	10011	R19	Multiplexing Duty Ratio (H)	Raster ${ }^{3}$	Ndh	W	8		8	8		2		
0	1	10100	R20	Multiplexing Duty Ratio (L)	Raster ${ }^{3}$	NdI	W								
0	1	10101	R21	Display Start Raster	Raster	Nsr	W	4	4	\%					
0	1	10110	R22	Mode Register	-Note ${ }^{5}$	-	W				$\begin{aligned} & \mathrm{ON} / \\ & \mathrm{OFF} \end{aligned}$	G/C	WIDE	BLE	AT

Notes: 1.
2. R/W indicates whether write access or read access is enabled to/from each register.

W: Only write accessible
R/W: Both read and write accessible
3. The "value to be specified minus 1 " should be programmed in these registers: RO, R1 and R20.
4. Data bits 5 and 6 of cursor start register control the cursor status as shown below.
(For more details, refer to page 27).

B	P	Cursor Blink Mode
0	0	Cursor on; without blinking
0	1	Cursor off
1	0	BBinking once every 32 frames
1	1	Blinking once every 64 frames

5. The OR of mode pin status and mode register data determines the mode.
6. Registers R2-R8, R16, and R17 are not assigned for the LCTC. Programming to these registers will be ignored.

Table 5 Internal Register Description

Reg.

No.	Register Name	Size(Bits)	Description
AR	Address Register	5	Specifies the internal control registers (RO, R1, R9-R15, R18-R22) address to be accessed
RO	Horizontal Total Characters	8	Specifies the horizontal scanning period
R1	Horizontal Displayed Characters	8	Specifies the number of displayed characters per character row
R9	Maximum Raster Address	5	Specifies the number of rasters per character row, including the space between character rows
R10	Cursor Start Raster	$5+2$	Specifies the cursor start raster address and its blink mode
R11	Cursor End Raster	5	Specifies the cursor end raster address
$\begin{aligned} & \mathrm{R} 12 \\ & \mathrm{R} 13 \end{aligned}$	Start Address (H) Start Address (L)	16	Specify the display start address
$\begin{aligned} & \text { R14 } \\ & \text { R15 } \end{aligned}$	Cursor Address (H) Cursor Address (L)	16	Specify the cursor display address
R18	Horizontal Virtual Screen Width	8	Specifies the length of one row in memory space for horizontal scrolling
$\begin{aligned} & \text { R19 } \\ & \text { R20 } \end{aligned}$	Multiplexing Duty Ratio (H) Multiplexing Duty Ratio (L)	9	Specify the number of rasters for one screen
R21	Display Start Raster	5	Specifies the display start raster within a character row for smooth scrolling
R22	Mode Register	5	Controls the display mode

Note: For more details of registers, refer to "Internal Registers".

Table 6 Internal Register Comparison between LCTC and CRTC

No.	LCTC HD63645/HD64645/HD64646	Comparison	CRTC HD6845
AR	Address Register	Equivalent to CRTC	Address Register
RO	Horizontal Total Characters		Horizontal Total Characters
R1	Horizontal Displayed Characters		Horizontal Displayed Characters
R2	-	Particular to CRTC ;	Horizontal Sync Position
R3		unnecessary for LCTC	Sync Width
R4			Vertical Total Characters
R5			Vertical Total Adjust
R6			Vertical Displayed Characters
R7			Vertical Sync Position
R8			Interlace and Skew
R9	Maximum Raster Address	Equivalent to CRTC	Maximum Raster Address
R10	Cursor Start Raster		Cursor Start Raster
R11	Cursor End Raster		Cursor End Raster
R12	Start Address (H)		Start Address (H)
R13	Start Address (L)		Start Address (L)
R14	Cursor Address (H)		Cursor (H)
R15	Cursor Address (L)		Cursor (L)
R16		Particular to CRTC ;	Light Pen (H)
R17		unnecessary for LCTC	Light Pen (L)
R18	Horizontal Virtual Screen Width	Additional registers for LCTC	
R19	Multiplexing Duty Ratio (H)		
R20	Multiplexing Duty Ratio (L)		
R21	Display Start Raster		
R22	Mode Register		

Functional Description

Programmable Screen Format

Figure 8 illustrates the relation between LCD
display screen and registers. Figure 9 shows a timing chart of signals output from the LCTC in mode 5 as an example.

Figure 8 Relation between Display Screen and Registers

Note* : Relation between CL1 and CL2 in the case of HD64646 is differene from one shown in this chart. Refer to "Difference between HD64645 and HD64646".

Figure 9 LCTC Timing Chart (In Mode 5: Single Screen, 4-Bit Transfer, Normal Character Display)

HD63645/HD64645/HD64646

Cursor Control

The following cursor functions (figure 10) can be controlled by programming specific registers.

- Cursor display position
- Cursor height
- Cursor blink mode

A cursor can be displayed only in character mode. Also, CUDISP pin must be connected to MD12 pin to display a cursor.

Figure 10 Cursor Display

Character Mode and Graphic Mode

The LCTC supports two types of display modes; character mode and graphic mode. Graphic mode 2 is provided to utilize software for a system using the CRTC (HD6845).

The display mode is controlled by an OR between the mode select pins ($D / \overline{\mathbf{S}}, G / \bar{C}, L S$, WIDE, AT) and mode register (R22).

Character Mode: Character mode displays characters by using CG-ROM. The display data supplied from memory is accessed in 8bit units. A variety of character attribute functions are provided, such as reverse video, blinking, nondisplay (white or black), by storing the attribute data in attribute RAM (ARAM).

Figure 11 illustrates the relation between character display screen and memory contents.

Graphic Mode 1: Graphic mode 1 directly displays data stored in a graphic memory buffer. The display data supplied from memory is accessed in 16-bit units. Character attribute functions or wide mode are not provided. Figure 12 illustrates the relation between graphic display screen and memory contents.

Graphic Mode 2: Graphic mode 2 utilizes software for a system using the CRTC (HD6845). The display data supplied from memory is accessed in $16-$ bit units. Character attribute functions or wide mode are not provided. The same memory addresses are output repeatedly the number of times specified by maximum raster register (R9). The raster address is output in the same way as in character mode.

Figure 11 Relation between Character Screen and Memory Contents

Horizontal Virtual Screen Width

Horizontal virtual screen width can be specified by the character in addition to the number of horizontal displayed characters (figure 13).

The display screen can be scrolled in any
direction by the character, by setting the horizontal virtual screen width and updating the start address. This function is enabled by programming the horizontal virtual screen width register (R18).

Figure 14 shows an example.

Figure 12 Relation between Graphic Screen and Memory Contents

Figure 13 Horizontal Virtual Screen Width

Figure 14 Example of Horizontal Scroll by Setting Horizontal Virtual Screen Width

Smooth Scroll

Vertical smooth scrolling (figure 15) is performed by updating the display start raster, as specified by the start raster register (R21). This function is offered only in character mode.

Wide Display

The character to be displayed can be doubled in width, by supplying the same data twice (figure 16). This function is offered only in character mode, and controlled either by bit 2 of the mode register (R22) or by the WIDE pin.

Figure 15 Example of Smooth Scroll by Setting Display Start Raster Address

Figure 16 Example of Wide Display

Attribute Functions

A variety of character attribute functions such as reverse video, blinking, nondisplay (white) or nondisplay (black) can be implemented by storing the attribute data in ARAM (attribute RAM). Figure 17 shows a display example using each attribute function.

The attribute functions are offered only in character mode, and controlled either by bit 0 of the mode register (R22) or the AT pin. As shown in figure 18, a character attribute can be specified by placing the character code on MD0-MD7, and the attribute code on MD11MD15. MD8-MD10 are invalid.

Figure 17 Display Example Using Attribute Functions

MD Input	15	14	13	12	11	$10-8$	$7-0$
Function	Non- display (black)	Non- display (white)	Blinking	Cursor	Reverse video	$* * *$	Character Code

*: Invalid

HD63645/HD64645/HD64646

OR Function-Superimposing Characters and Graphics

The OR function (figure 19) generates the OR of the data entered into MD0-MD7 (e.g. character data) and the data into MD8-MD15 (e.g. graphic data) in the LCTC and transfers
this data as 1 byte.
This function is offered only in character mode, and controlled by bit 0 of the mode register (R22) or by the AT pin. Any attribute functions are disabled when using the OR function.

Figure 19 OR Function

DRAM Refresh Address Output Function

The LCTC outputs the address for DRAM refresh while CL1 is high, as shown in figure 20. The 16 refresh addresses per scanned line are output 16 times, from $\$ 00-\$ F F$.

Skew Function

The LCTC can specify the skew (delay) for CUDISP, DISPTMG, CL2 outputs and MD inputs.

If buffer memory and character generator ROM cannot be accessed within one hori-
zontal character display period, the access is retarded to the next cycle by inserting a latch to memory address output and buffer memory output. The skew function retards the CUDISP, DISPTMG, CL2 outputs, and MD inputs in the LCTC to match phase with the display data signal.

By utilizing this function, a low-speed memory can be used as a buffer RAM or a character generator ROM.

This function is controlled by pins SKO and SK1 as shown in table 7.

Table 7 Skew Function

SKO	SK1	Skew Function
0	0	No skew
1	0	1 character time skew
0	1	2 character time skew
1	1	Inhibited combination

Figure 20 DRAM Refresh Address Output

Easy Mode

This mode utilizes software for systems using the CRTC (HD6845). By setting MODE pin to high, the display mode and screen format are fixed as shown in table 8. With this mode, software for a CRT screen can be utilized in a system using the LCTC, without changing the BIOS.

Automatic Correction of Down Panel Raster Address

When the LCTC mode is set for character display and dual screen, memory addresses (MA) and raster addresses (RA) are output in such a way as to keep continuity of a display spread over the two panels. Therefore users can use the LCTC without considering the multiplexing duty ratio (the number of vertical dots of a screen) or the character font. (See figure 21.)

Table 8 Fixed Values in Easy Mode

Reg. No.	Register Name	Fixed Value (decimal)
R9	Maximum raster address	7
R10	Cursor start raster	6
R11	Cursor end raster	7
R18	Horizontal virtual screen width	Same value as (R1)
R19	Multiplexing duty ratio (H)	99 (in dual screen mode)
R20	Multiplexing duty ratio (L)	199 (in single screen mode)
R21	Display start raster	0
R22	Mode register	0

Figure 21 Example of the Display in the Character Mode

System Configuration and Mode Setting

LCD System Configuration

The screen configuration, single or dual, must be specified when using the LCD system (figure 22).

Using the single screen configuration, you can construct an LCD system with lower cost than a dual screen system, since the required number of column drivers is smaller and the manufacturing process for mounting them is simpler. However, there are some limitations, such as duty ratio, breakdown voltage of a driver, and display quality of the liquid crystal, in single screen configuration. Thus, a dual screen configuration may be more suitable to an application.

The LCTC also offers an 8-bit LCD data transfer function to support an LCD screen with a smaller interval of signal input terminals. For a general size LCD screen, such as 640×200 single, or 640×400 dual, the usual 4 -bit LCD data transfer is satisfactory.

Hardware Configuration and Mode Setting

The LCTC supports the following hardware configurations:

- Single or dual screen configuration
- 4-or 8-bit LCD data transfer
and the following screen format:
- Character, graphic 1, or graphic 2 display
- Normal or wide display (only in character mode)
- OR or attribute display (only in character mode)

Also, the LCTC supports up to $40 \mathrm{Mbits} / \mathrm{s}$ of large screeen mode (mode13) for large screen display. This mode is provided only in graphic 1 mode.

Table 9 shows the mode selection method according to hardware configuration and screen format. Table 10 shows how they are specified.

Figure 22 Hardware Configuration According to Screen Format

Table 9 Mode Selection

Hardware Configuration			Screen Format				
LCD Data Transfer	Screen Configuration	Screen Size	Character/ Graphic	Normal/ Wide	Attribute/ OR	Maximum data transfor speed (Mbps)	Mode No.
4-bit	Single	Normal	Character	Normal	$\frac{A T}{O R}$	20	5
				Wide	$\frac{A T}{O R}$	10	6
			Graphic 1			20	7
			Graphic 2			20	8
	Dual	Normal	Character	Normal	$\frac{A T}{O R}$	20	1
				Wide	$\frac{A T}{O R}$	10	2
			Graphic 1			20	3
			Graphic 2			20	4
		Large	Graphic 1			40	13
8-bit	Single	Normal	Character	Normal	$\frac{A T}{O R}$	20	9
				Wide	$\frac{A T}{O R}$	10	10
			Graphic 1			20	11
			Graphic 2			20	12

Note: Maximum data transfer speed indicates amount of the data read out of a memory. Thus, the data transfer speed sent to the LCD driver in wide function is 20 Mbps .

Mode List

Table 10 Mode List

No.	Mode Name	$\frac{\text { Pin Name }}{\text { D/S G/C LS Wide AT }}$					Screen Confy.	Graphic/ Character	Data Transfer	$\begin{aligned} & \text { Wide } \\ & \text { Dieplay } \end{aligned}$	Attribute
1	Dual-screen	1	0	0	0	0	Dual screen	Character	$\begin{gathered} 4-\text { bit } \\ \times 2 \end{gathered}$	Normal	OR
	character	1	0	0	0	1					AT
2	Dual-screen wide character	1	0	0	1	0				Wide	OR
		1	0	0	1	1					AT
3	Dual-screen graphic 1	1	1	0	0	1		Graphic		-	-
4	Dual-screen graphic 2	1	1	0	0	0					
5	Single-screen character	0	0	0	0	0	Single screen	Character	4-bit	Normal	OR
		0	0	0	0	1					AT
6	Single-screen wide character	0	0	0	1	0				Wide	OR
		0	0	0	1	1					AT
7	Single-screen graphic 1	0	1	0	0	1		Graphic		-	-
8	Single-screen graphic 2	0	1	0	0	0					
9	8-bit character	0	0	1	0	0	Single screen	Character	8-bit	Normal	OR
		0	0	1	0	1					AT
10	8-bit wide character	0	0	1	1	0				Wide	OR
		0	0	1	1	1					AT
11	8-bit graphic 1	0	1	1	0	1		Graphic		-	-
12	8-bit graphic 2	0	1	1	0	0					
13	Large screen	1	1	1	0	1	Dual screen		$\begin{gathered} \text { 4-bit } \\ \times 2 \\ \hline \end{gathered}$		

The LCTC display mode is determined by pins D/S (pin 55), G/C (pin 58), LS (pin 56), WIDE (pin 54), and AT (pin 57). As for G/C, WIDE, and AT, the OR is taken between data bits 0,2 , and 3 of the mode register (R22). The display mode can be controlled by either one of the external pins or the data bits of R22.

Note: The above 5 pins have 32 status combinations (high and low). Any combinations other than the above are prohibited, because they may cause malfunctions. If you set an prohibited combination, set the right combination again.

Internal Registers

The HD63645/HD64645/HD64646 has one address register and fourteen data registers. In order to select one out of fourteen data registers, the address of the data register to be selected must be written into the address register. The MPU can transfer data to/from the data register corresponding to the written address.

To be software compatible with the CRTC (HD6845), registers R2-R8, R16, and R17, which are not necessary for an LCD are defined as invalid for the LCTC.

Address Register (AR)

AR register (figure 23) specifies one out of 14 data registers. Address data is written into the address register when RS is low. If no register corresponding to a specified address exists, the address data is invalid.

Horizontal Total Characters Register (RO)

R0 register (figure 24) specifies a horizontal scanning period. The total number of horizontal characters less 1 must be programmed into this 8-bit register in character units. Nht indicates the horizontal scanning period including the period when the CPU occupies memory (total number of horizontal characters minus the number of horizontal displayed characters). Its units are, then, converted from time into the number of characters. This value should be specified according to the specification of the LCD system to be used.

Note the following restrictions

$$
\text { Nhd }+\frac{16}{m} \leqq N h t+1
$$

Mode No.	m
5,9	1
$1,6,7,8,10,11,12,13$	2
$2,3,4$	4

Horizontal Displayed Characters Register (R1)

R1 register (figure 25) specifies the number of characters displayed per row. The horizontal character pitches are 8 bits for normal character display and 16 dots for wide character display and graphic display.

Nhd must be less than the total number of horizontal characters.

Maximum Raster Address Register (R9)

R9 register (figure 26) specifies the number of rasters per row in characters mode, consisting of 5 bits. The programmable range is 0 (1 raster/row) to 31 (32 rasters/row).

Cursor Start Raster Register (R10)

R10 register (figure 27) specifies the cursor start raster address and its blink mode. Refer to table 11.

Figure 23 Address Register

Figure 24 Horizontal Total Characters Register

Figure 25 Horizontal Displayed Characters Register

Figure 26 Maximum Raster Address Register

32- or 64-frame

Cursor End Raster Register (R11)

R11 register (figure 28) specifies the cursor end raster address.

Start Address Register (H/L)(R12/R13)

R12/R13 register (figure 29) specifies a buffer memory read start address. Updating this register facilitates paging and scrolling. R14/ R15 register can be read and written to/from the MPU.

Cursor Address Register (H/L)(R14/R15)

R14/R15 register (figure 30) specifies a cursor display address. Cusor display requires setting R10 and R11, and CUDISP should be connected with MD12 (in character mode). This register can be read from and written to the MPU.

Horizontal Virtual Screen Width Register (R18)

R18 register (figure 31) specifies the memory width to determine the start address of the next row. By using this register, memory width can be specified larger than the number of horizontal displayed characters. Updating the display start address facilitates scrolling in any direction within a memory space.

The start address of the next row is that of the previous row plus Nir. If a larger memory width than display width is unnecessary, Nir should be set equal to the number of horizontal displayed characters.

Multiplexing Duty Ratio Register (H/L) (R19/R20)

R19/R20 register (figure 32) specifies the number of vertical dots of the display screen. The programmed value differs according to the LCD screen configuration.

In single screen configuration :
(Programmed value) $=$ (Number of vertical dots)-1.

Table 11 Cursor Blink Mode

B	\mathbf{P}	Cursor blink mode
0	0	Cursor on; without blinking
0	1	Cursor off
1	0	Blinking once every 32 frames
1	1	Blinking once every 64 frames

Figure 27 Cursor Start Raster Register

Figure 28 Cursor End Raster Register

Figure 29 Start Address Register

Figure 30 Cursor Address Register

In dual screen configuration :
(Programmed value) $=$ (Number of vertical dots) -1 .

Display Start Raster Register (R21)

R21 register (figure 33) specifies the start raster of the character row displayed on the top of the screen. The programmed value
should be equal or less than the maximum raster address. Updating this register allows smooth scrolling in character mode.

Mode Register (R22)

The Or of the data bits of R22 (figure 34) register and the external terminals of the same name determines a particular mode. (figure 35)

Figure 31 Horizontal Virtual Screen Width Register

Figure 32 Multiplexing Duty Ratio Register

Figure 33 Display Start Raster Register

Figure 34 Mode Register

Notes: 1. AT (valid only when G / \bar{C} is low (character mode))
AT $=$ High: Attribute functions enabled, OR function disabled.
$A T=$ Low : OR function enabled, attribute functions disabled.
2. BLE (valid only when $\mathbf{G} / \overline{\mathrm{C}}$ is low (character mode))
$B L E=$ High: Blinking enable on the character specified by attribute RAM
BLE = Low : No blinking
3. WIDE (valid only when $\mathrm{G} / \overline{\mathrm{C}}$ is low (character mode)) WIDE $=$ High: Wide display enabled WIDE = Low : Normal display
4. G / \bar{C}
$\mathrm{G} / \mathrm{C}=$ High: Graphic 1 display (when AT = Low) or Graphic 2 display (when $A T=$ High) $G / C=$ Low : Character display
5. $\mathrm{ON} / \overline{\mathrm{OFF}}$

ON/ $\overline{O F F}=$ High: Display on state ON/ $\overline{O F F}=$ Low : Display off state

Figure 35 Correspondence between Mode Register and External Pins

Restrictions on Programming Internal Registers

Note when programming that the values you can write into the internal registers are restricted as shown in Table 12.

Table 12 Restrictions on Writing Values into the Internal Registers

Function	Restrictions	Register
Display Format	$1<$ Nhd $<$ Nht $+1 \leqq 256$	R0, R1
	$\text { Nhd }+\frac{16}{m} * 1 \leqq N h t+1$	
	(No. of vertical dots) x (no. of horizontal dots) x (frame frequency; $\mathrm{f}_{\text {FRM }}$) (data transfer speed; V)	R1, R19, R20
	$\left\{\begin{array}{l}1 \\ 2\end{array}\right\} * 2 \times(\mathrm{Nd}+1) \times \mathrm{Nhd} \times\left\{\begin{array}{c}8 \\ 16\end{array}\right\} * 3 \mathrm{frRM} \leq \mathrm{V}$	
	Nhd \leq Nir	R1, R18
	$0 \leqq \mathrm{Nd} 5511$	R19, R20
Cursor Control	$0 \leq$ Ncs \leq Nce	R10, R11
	Nce $\leqq \mathrm{Nr}$	R10, R9
Smooth Scroll	$\mathrm{Nsr} \leqq \mathrm{Nr}$	R21, R9
Memory Width Set	$0 \leqq \mathrm{Nir} \leqq 255$	R18

Notes ${ }^{\prime} * 1 \mathrm{~m}$ varies according to the modes. See the following table.

Mode No.	\mathbf{m}
5,9	1
$1,6,7,8,10,11,12,13$	2
$2,3,4$	4

*2 Set 1 when an LCD screen is a single screen, and set 2 when dual. Modes are classified as shown in the following table.

Mode No.	Value
$5,6,7,8,9,10,11,12$	1
$1,2,3,4,13$	2

* 3 Set 8 when a character is constructed with 8 dots, and set 16 when with 16 dots. Modes are classified as shown in the following table.

Mode No.	Value
$1,5,9$	8
$2,3,4,6,7,8,10,11,12,13$	16

Reset

$\overline{\text { RES }}$ pin determines the internal state of LSI counters and the like. This pin does not affect register contents nor does it basically control output terminals.

Reset is defined as follows (Figure 36):

- At reset: the time when RES goes low
- During reset: the period while $\overline{R E S}$ remains low
- After reset: the period on and after the RES transition from low to high
- Make sure to hold the reset signal low for at least $1 \mu \mathrm{~s}$
$\overline{\text { RES }}$ pin should be pulled high by users during operation.

Reset State of Pins

$\overline{\text { RES }}$ pin does not basically control output pins, and operates regardless of other input pins.

1. Preserve states before reset: LU0-LU3, LD0-LD3, FLM, CL1, RA0-RA4
2. Fixed at high level:

MLCK
3. Preserve states before reset or fixed at low level according to the timing when the reset signal is input:
DISPTMG, CUDISP, MA0-MA15
4. Fixed at high or low according to mode: CL2
5. Unaffected: $\mathrm{DB}_{0}-\mathrm{DB}_{7}$

Reset State of Registers

RES pin does not affect register contents. Therefore, registers can be read or written even during a reset state; their contents will be preserved regardless of reset until they are rewritten to.

Notes for HD63645/HD64645/HD64646

1. The HD63645/HD64645/HD64646 are CMOS LSIs, and it should be noted that input pins must not be left disconnected, etc.
2. At power-on, the state of internal registers becomes undefined. The LSI operation is undefined until all internal registers have been programmed.

Figure 36 Reset Definition

Absolute Maximum Ratings

Item	Symbol	Value	Note
Supply voltage	V_{cc}	-0.3 to +7.0 V	2
Terminal voltage	$\mathrm{V}_{\text {in }}$	-0.3 to $\mathrm{Vcc}+0.3 \mathrm{~V}$	2
Operating temperature	$\mathrm{T}_{\text {opr }}$	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

Notes: 1. Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions ($\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}, \mathrm{Ta}$ $=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$). If these conditions are exceeded, it could affect reliability of LSI.
2. With respect to ground (GND $=0 \mathrm{~V}$)

Electrical Characteristics

$D C$ Characteristics ($V_{c c}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item		Symbol	Min	Typ	Max	Unit	Test Condition
Input high voltage	$\overline{\mathrm{RES}}, \mathrm{MODE},$ SK1	$\text { SKO, } V_{I H}$	$\mathrm{V}_{\mathrm{cc}}-0.5$		$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
	DCLK, ON/ $\overline{\text { OFF }}$		2.2		$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
	All others		2.0		$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
Input low voltage	All others	VIL	-0.3		0.8	V	
Output high voltage	TTL interface ${ }^{1}$	VOH	2.4			V	$\mathrm{lOH}=-400 \mu \mathrm{~A}$
	CMOS interface ${ }^{1}$		$\mathrm{V}_{\mathrm{cc}}-0.8$			V	$\mathrm{bHH}=-400 \mu \mathrm{~A}$
Output low voltage	TTL interface	VoL			0.4	V	$\mathrm{loL}=1.6 \mathrm{~mA}$
	CMOS interface				0.8	V	$\mathrm{bL}=400 \mu \mathrm{~A}$
Input leakage current	All inputs except $\mathrm{DB}_{0}-\mathrm{DB}_{7}$	ILI	-2.5		+2.5	$\mu \mathrm{A}$	
Three state (off-state) leakage current	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	ITSL	-10		+10	$\mu \mathrm{A}$	
Current dissipation ${ }^{2}$		Icc			10	mA	

Notes: 1. TTL Interface; MAO-MA15, RAO-RA4, DISPTMG, CUDISP, DBO-DB7, MCLK C-MOS Interface; LUO-LU3, LDO-LD3, CL1, CL2, M, FLM
2. Input/output current is excluded. When input is at the intermediate level with CMOS, excessive current flows through the input circuit to power supply. Input level must be fixed at high or low to avoid this condition.
3. If the capacitive loads of LUO-LU3 and LDO-LD3 exceed the rating, noise over 0.8 V may be produced on CUDISP, DISPTMG, MCLK, FLM and M. In case the loads of LUO-LU3 and LDO-LD3 are larger than the ratings, supply signals to the LCD module through buffers.

AC Characteristics

CPU Interface (HD63645 - 68 family)
($\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Min	Typ	Max	Unit	Figure
Enable cycle time	tcyce	500			ns	37
Enable pulse width (high)	Pweh	220			ns	
Enable pulse width (low)	Pwel	220			ns	
Enable rise time	t_{Er}			25	ns	
Enable fall time	$\mathrm{t}_{\text {Ef }}$			25	ns	
$\overline{\overline{C S}}, \mathrm{RS}, \mathrm{R} / \overline{\mathrm{W}}$ setup time	$t_{\text {AS }}$	70			ns	
$\overline{\text { CS, RS, R/ } / \bar{W} \text { hold time }}$	$\mathrm{t}_{\text {AH }}$	10			ns	
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ setup time	tos	60			ns	
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ hold time	tohw	10			ns	
$\mathrm{DB}_{0}-D B_{7}$ output delay time	tDDR			150	ns	
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ output hold time	tDHR	20			ns	

Figure 37 CPU Interface (HD63645)

CPU Interface (HD64645 and HD64646-80 family)
($\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Min	Typ	Max	Unit	Figure
$\overline{\mathrm{RD}}$ high level width	twrde	190			ns	38
$\overline{\mathrm{RD}}$ low level width	twrdL	190			ns	
$\overline{\overline{W R}}$ high level width	twWre	190			ns	
$\overline{\text { WR }}$ low level width	twWRL	190			ns	
$\overline{\overline{C S}}, \mathrm{RS}$ setup time	$t_{\text {AS }}$	0			ns	
$\overline{\overline{C S}}$, RS hold time	$t_{\text {AH }}$	0			ns	
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ setup time	tosw	100			ns	
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ hold time	tDHW	0			ns	
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ output delay time	todr			150	ns	
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$ output hold time	$t_{\text {DHR }}$	20			ns	

Figure 38 CPU Interface (HD64645 and HD64646)

AC Characteristics (Cont)

Memory Interface
(Vcc $=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Min	Typ	Max	Unit	Figure
DCLK cycle time	tcycd	100	-	-	ns	39
DCLK high level width	twoh	30	-	-	ns	
DCLK low level width	twDL	30	-	-	ns	
DCLK rise time	tbr	-	-	20	ns	
DCLK fall time	t_{Df}	-	-	20	ns	
MCLK delay time	tDMD	-	-	60	ns	
MCLK rise time	t_{Mr}	-	-	30	ns	
MCLK fall time	$\mathrm{t}_{\text {Mf }}$	-	-	30	ns	
MAO-MA15 delay time	$\mathrm{t}_{\text {MAD }}$	-	-	150	ns	
MAO-MA15 hold time	$\mathrm{t}_{\text {MAH }}$	10	-	-	ns	
RAO-RA4 delay time	$\mathrm{t}_{\text {RAD }}$	-	-	150	ns	
RAO-RA4 hold time	$\mathrm{t}_{\text {RAH }}$	10	-	-	ns	
DISPTMG delay time	$t_{\text {DTD }}$	-	-	150	ns	
DISPTMG hold time	$t_{\text {DTH }}$	10	-	-	ns	
CUDISP delay time	$\mathrm{t}_{\text {CDD }}$	-	-	150	ns	
CUDISP hold time	tcDH	10	-	-	ns	
CL1 delay time	tCL1D	-	-	150	ns	
CL1 hold time	tCL1H	10	-	-	ns	
CL1 rise time	tclir	-	-	50	ns	
CL1 fall time	tCL1f	-	-	50	ns	
MD0-MD15 setup time	$\mathrm{t}_{\text {MDS }}$	30	-	-	ns	
MDO-MD15 hold time	$\mathrm{t}_{\text {MDH }}$	15	-	-	ns	

HD63645/HD64645/HD64646

Figure 39 Memory Interface

AC Characteristics (Cont)

Item	Symbol	Min	Typ	Max	Unit	Figure
Display data setup time	tLDS	50	-	-	ns	40
Display data hold time	tLDH	100	-	-	ns	
CL2 high level width	twCl2	100	-	-	ns	
CL2 low level width	twCL2L	100	-	-	ns	
FLM setup time	$\mathrm{t}_{\text {FS }}$	500	-	-	ns	
FLM hold time	$\mathrm{t}_{\text {FH }}$	300	-	-	ns	
CL1 rise time	tclir	-	-	50	ns	
CL1 fall time	$\mathrm{t}_{\text {CL1 }}$	-	-	50	ns	
CL2 rise time	$\mathrm{tcLar}^{\text {r }}$	-	-	50	ns	
CL2 fall time	$\mathrm{t}_{\mathrm{CL} 2 f}$	-	-	50	ns	

Note: At fCL2 $=3 \mathrm{MHz}$

Figure 40 LCD Interface

HD63645/HD64645/HD64646

AC Characteristics (Cont)

LCD Interface 2 (HD64646 at fcL2 $=3 \mathrm{MHz}$)
$\left(V_{c c}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}\right.$ to $+75{ }^{\circ} \mathrm{C}$)

Item	Symbol	Min	Typ	Max	Unit	Figure
FLM stetup time	t_{Fs}	500	-	-	ns	41
FLM hold time	$\mathrm{t}_{\text {FH }}$	300	-	-	ns	
M delay time	tDM	-	-	200	ns	
CL1 high level width	$\mathrm{tcL}^{\text {H }}$	300	-	-	ns	
Clock setup time	tscl	500	-	-	ns	
Clock hold time	$\mathrm{t}_{\mathrm{HCL}}$	100	-	-	ns	
Phase difference 1	tPD1	100	-	-	ns	
Phase difference 2	tPD2	500	-	-	ns	
CL2 high level width	tcler	100	-	-	ns	
CL2 low level width	$\mathbf{t c l e ~}^{\text {L }}$	100	-	-	ns	
CL2 rise time	tcler	-	-	50	ns	
CL2 fall time	tcler	-	-	50	ns	
Display data setup time	tLDS	80	-	-	ns	
Display data hold time	tLDH	100	-	-	ns	
Display data delay time	tLDD	-	-	30	ns	

LCD Interface 3 (HD64646 at $\mathrm{fcL}^{2}=5 \mathrm{MHz}$)
$\left(V_{c c}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$)

Figure 41 LCD Interface

AC Characteristics

TTL Load

| Terminal | $\mathbf{R}_{\mathbf{L}}$ | \mathbf{R} | \mathbf{C} | Remarks |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DB $_{0}-$ DB $_{7}$ | $2.4 \mathrm{k} \Omega$ | $11 \mathrm{k} \Omega$ | 130 pF | $\mathrm{tr}, \mathrm{tf}:$ Not specified |
| | $2.4 \mathrm{k} \Omega$ | $11 \mathrm{k} \Omega$ | 40 pF | |
| MCLK | $2.4 \mathrm{k} \Omega$ | $11 \mathrm{k} \Omega$ | 30 pF | $\mathrm{tr}, \mathrm{tf}:$ Specified |

Capacitive Load

Terminal	C	Remarks
CL2	150 pF	tr, tf: Specified
CL1	200 pF	
LUO-LU3, LDO-LD3, M	150 pF	tr, tf: Not specified
FLM	50 pF	

Refer to user's manual (No. 68-1-160) and application note (No. ADE-502-003) for detail of this product.

HD66503
 (240-Channel Row Driver with Internal LCD Timing Circuit)

Description

The HD66503 is a row driver for liquid crystal dot-matrix graphic display systems. This device incorporates 240 liquid crystal driver and an oscillator, and generates timing signals (AC switching signals and frame synchronizing signals) required for the liquid crystal display. Combined with the HD66520, a 160 -channel column driver with an internal RAM, the HD66503 is optimal for use in displays for portable information tools.

Features

- LCD timing generator: $1 / 120,1 / 240$ duty cycle internal generator/external input switching
- AC signal waveform generator: Pin programmable 1-63 line inversion
- Recommended display duty cycle: 1/120, 1/240
- Number of LCD driver: 240
- High voltage: $8-\mathrm{V}$ to $28-\mathrm{V}$ LCD drive voltage
- Low power consumption: $100 \mu \mathrm{~A}$ (during display)
- Internal display off function
- Oscillator circuit with standby function: 130 kHz (max)
- Display timing operation clock: 65 kHz (max) (operating at $1 / 2$ system clock)

Internal Block Diagram

1. LCD driver

Selects one of four LCD drive voltage levels (V1, V2, V5, and V6) depending on a combination of shift register data and the value of M, the AC switching signal, and transfers that voltage to the output circuit.

2. Level shifter

Boosts 5-V signals to high voltage signals for the LCD drive.

3. Bidirectional shift register (240 bits)

Shifts internally generated data or data input from the FLM pin at each falling edge of the data transfer clock CL1. Shift direction can be switched using SHL signals.

Pin Description

Classification	Symbol	Pin No.	Pin Name	1/0	Number of Pins	Functions
Power supply	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1} \\ & \mathrm{~V}_{\mathrm{CC} 2} \end{aligned}$	$\begin{aligned} & 246 \\ & 267 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1} \\ & \mathrm{v}_{\mathrm{CC} 2} \end{aligned}$	Power supply	2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}: \\ & \text { logic power supply } \end{aligned}$
	GND	250	GND	Power supply	1	
	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \mathrm{~L}, \\ & \mathrm{~V}_{\mathrm{EE}} \mathrm{R} \end{aligned}$	$\begin{aligned} & 245 \\ & 268 \end{aligned}$	LCD drive level power supply	Power supply	2	$\mathrm{V}_{\mathrm{CC}}{ }^{-\mathrm{V}_{\mathrm{EE}}}$: LCD drive circuits power supply
	V1L, V1R	$\begin{aligned} & 244 \\ & 269 \end{aligned}$	LCD select high-level voltage	Input	2	LCD drive level power supply See figure 1.
	V2L, V2R	$\begin{aligned} & 241 \\ & 272 \end{aligned}$	LCD select low-level voltage	Input	2	
	V5L, V5R	$\begin{aligned} & 242 \\ & 271 \end{aligned}$	LCD deselect low-level voltage	Input	2	
	V6L, V6R	$\begin{aligned} & 243 \\ & 270 \end{aligned}$	LCD deselect high-level voltage	Input	2	
Control signals	M/ $\overline{\mathbf{S}}$	266	Master/slave switching	Input	1	Control signal enabling/disabling LCD timing generator operation. Timing generator halts at low level. Timing generator operates at high level. (Refer to Pin Functions for details.)
	DUTY	259	Display duty ratio select	Input	1	Low level: 1/120 display duty ratio High level: 1/240 display duty ratio
	MWS_{0} to MWS_{5}	$\begin{aligned} & 257 \\ & 256 \\ & 255 \\ & 254 \\ & 253 \\ & 252 \end{aligned}$	AC switching signal cycle select	Input	6	Sets cycle for AC switching signal M in a line unit (1 to 63). The term 0 is for external input. (Refer to Pin Functions for details.)
	MEOR	258	AC switching signal EOR	Input	1	Selects EOR processing for frame inversion waveform and AC signal M .
	CR, C, R	$\begin{aligned} & 247 \\ & 248 \\ & 249 \end{aligned}$	Oscillator		3	These pins are used as shown in figure 2 in master mode, and as shown in figure 3 in slave mode.

HD66503

Pin Description (Cont'd.)

Classification	Symbol	Pin No.	Pin Name	1/0	Number of Pins	Functions
Control signals	RESET	261	Reset	Input	1	Stops oscillator circuits, initializes internal counter, and switches display off. (Refer to Pin Functions for details.)
LCD timing	CL1	263	Display data transfer	I/O	1	Display-data transfer clock I/O pin. (Refer to Pin Functions for details.)
	FLM	264	First line marker	I/O	1	First line marker I/O pin. (Refer to Pin Functions for details.)
	M	262	AC switching signal	1/0	1	AC control I/O pin for LCD drive output.
	SHL	251	Shift direction select	Input	1	FLM -> X1 -> X240 at low, and FLM \rightarrow X240-> X1 at high.
	$\overline{\text { DISPOFF }}$	260	Display off signal	Output	1	Fixes LCD drive output to select high level. When low level, LCD drive outputs X1 to X240 are set to V1, the LCD select high level. Display can be turned off by setting a segment driver to level V1.
	$\overline{\overline{\mathrm{DOC}}}$	265	Display off control signal	I/O	1	Inputs and outputs a display-off control signal in response to the DISPOFF signal and oscillator startup sequence. (Refer to Pin Functions for details.
LCD drive output	$\begin{aligned} & \hline \text { X1 to } \\ & \text { X240 } \end{aligned}$	$\begin{aligned} & 240 \\ & 1 \end{aligned}$	LCD drive output	Output	240	Selects one from among four levels (V1, V2, V5, and V6) depending on the combination of M signal and display data. See figure 4.

[^7]\square
Figure 1 LCD Drive Levels

Figure 2 Oscillator Connection in Master Mode

Figure 3 Oscillator Connection in Slave Mode

M signal	1	0
Display data	0	0

Figure 4 LCD Drive Output

Pin Functions

M/ $\overline{\mathbf{S}}$ (Input): Starts and stops the LCD timing generator. Also determines I/O of the following four signal pins: CL1 (display data transfer clock), FLM (first line marker), M (AC switching signal), and DOC (display off control), depending on whether the LCD timing generator is operating or not. See table 1.

MWSO to MWS5, MEOR (Input): AC switching signal M, in synchronization with CL1, is generated according to the value (an integer 1 to 63) selected by 6 -bit MWSO to MWS5, where MWSO takes the LSB and MWS5 takes the MSB.

When the AC switching signal EOR (MEOR) is high, M is exclusively ORed with the B-waveform AC signal synchronized with the first line marker (FLM) before being output from the M pin.

When the MWSO to MWS5 bits are all set to 0 (low), the AC switching signal (M) pin goes into the input state, and becomes the input pin for AC signals from an external controller.

RESET (Input): The following initialization operations are performed when RESET is low:

1. Stops internal oscillator or external oscillator clock input.
2. Initializes counters for the LCD timing generator and the AC switching signal (M) generator.
3. Switches off the display by driving display-off control output (DOC) low. After reset release, the display off control (DOC) is held low for four frame cycles (four FLM clock cycles) to prevent erroneous display during startup.

Table 1 M/S̄ Function

M/ $\overline{\mathbf{S}}$	Mode	LCD Timing Generator	CL1, FLM, M, and $\overline{\text { DOC I/O State }}$
Low	Slave	Stop	Input
High	Master	$1 / 120$ or $1 / 240$ duty cycle control	Output

DOC (Input/Output): Outputs the AND of the display-off control status after reset release and the display-off signal (DISPOFF) in master mode. The pin is connected to the DISPOFF pin of the HD66520, which is normally paired with the HD66503. The pin inputs an external display-off control signal from the outside in slave mode.

CL1 (Input/Output): In master mode, CL1 outputs a 50% duty-ratio data-transfer clock with double cycles of an internal oscillator or external clock input cycles.

In slave mode, CL1 operates as the input pin for the external data-transfer clock.

In bidirectional shift-register timing, data is shifted at the rising edge of CL1 in accordance with the specifications of the HD66520 with built-in RAM when used in a paired configuration. As this is the opposite of the standard common driver arrangement, the transfer clock must be in an inverse phase when paired with general-purpose column drivers such as HD66240 and HD66224T.

FLM (Input/Output): In master mode, FLM outputs the first line marker. In slave mode, FLM inputs the first line marker. The shift direction of the FLM can be selected according to the DUTY and SHL signals, as shown in table 2.

In slave mode, use the DUTY signal at high level in normal.

Table 2 Selection of FLM Shift Direction

DUTY	SHL	Shift Direction of FLM
High	High	$\times 240$ to $\times 1$
	Low	$\times 1$ to $\times 240$
Low	High	$\times 120$ to $\times 1$, and $\times 240$ to $\times 121$
	Low	$\times 1$ to $\times 120$, and $\times 121$ to $\times 240$

DUTY (Input): Selects display duty cycle. The pin selects a $1 / 120$ duty cycle at low level, and a $1 / 240$ duty cycle at high level.

Liquid Crystal Display Timing

Timing Generator

CL1 is a 50% duty-ratio clock that changes at the falling edge of oscillator clock OSC1. FLM is a clock signal output once every 240 CL1 clock cycles at the rising edge of CR when the DUTY signal is high, and every 120 CL1 clock cycles at the rising edge of CR when the DUTY signal is low.

Reset State

The reset state fixes all clocks at low and clears the internal counter to 0 . After reset release, the display-off function continues for four frame cycles even when the DISP pin is high.

Figure 5 LCD Timing Signals

Figure 6 Reset Timing

Example of System Configuration

Figure 7 shows a system configuration for a 240×320-dot LCD panel using segment driver HD66520 with internal bit-map RAM. All required functions can be prepared for liquid crystal display with just three chips except for liquid crystal display power supply circuit functions.

Figure 7 System Configuration

Absolute Maximum Ratings

Item		Symbol	Ratings	Unit	Notes
Power voltage	Logic circuit	$\mathrm{V}_{\text {CC }}$	-0.3 to +7.0	V	2
	LCD drive circuit	V_{EE}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-30.0 \text { to } \\ & \mathrm{V}_{\mathrm{CC}}+0.3 \end{aligned}$	V	5
Input voltage		$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $V_{C C}+0.3$	V	2, 3
Input voltage		$\mathrm{V}_{\mathrm{T} 2}$	$\begin{aligned} & V_{E E}-0.3 \text { to } \\ & V_{C C}+0.3 \end{aligned}$	V	4, 5
Operating temperature		$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature		$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. If the LSI is used beyond its absolute maximum rating, it may be permanently damaged. It should always be used within the limits of its electrical characteristics in order to prevent malfunction or unreliability.
2. Measured relative to GND (0 V).
3. Applies to all input pins except for $\mathrm{V}_{1 L^{\prime}}, \mathrm{V}_{1 R}, \mathrm{~V}_{2 \mathrm{~L}}, \mathrm{~V}_{2 \mathrm{R}}, \mathrm{V}_{5 \mathrm{~L}}, \mathrm{~V}_{5 R}, \mathrm{~V}_{6 L}$, and $\mathrm{V}_{6 R}$, and to input/output pins in high-impedance state.
4. Applies to pins $V_{1 L}, V_{1 R}, V_{2 L}, V_{2 R}, V_{5 L}, V_{5 R}, V_{6 L}$, and $V_{6 R}$.
5. Apply the same voltage to pairs $V_{1 L}$ and $V_{1 R}, V_{2 L}$ and $V_{2 R}, V_{5 L}$ and $V_{5 R}, V_{6 L}$ and $V_{6 R}$, and $V_{E E L}$ and $V_{E E R}$.
It is important to preserve the relationships $V_{C C} \geqslant V_{I L}=V_{1 R} \geqslant V_{6 L}=V_{6 R} \geqslant V_{5 L}=V_{5 R} \geqslant V_{2 L}=$ $\mathrm{V}_{2 \mathrm{R}} \geqslant \mathrm{V}_{\mathrm{EE}}$.

Electrical Characteristics

DC Characteristics $\left(\mathbf{V}_{\mathbf{C C}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=8 \mathrm{~V}$ to 28 V , $\mathbf{G N D}=0 \mathrm{~V}$,
$\mathbf{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Measurement Condition	Min	Typ	Max	Unit	Notes
Input high level voltage	V_{IH}		$\begin{aligned} & \hline 0.8 \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	$\mathrm{V}_{\text {CC }}$	V	1
Input low level voltage	$\mathrm{V}_{\text {IL }}$		0	-	$\begin{aligned} & \hline 0.2 \\ & \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	V	1
Output high level voltage	V_{OH}	$\mathrm{I}^{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -0.4 \end{aligned}$	-	-	V	
Output low level voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}^{\mathrm{OL}}=+0.4 \mathrm{~mA}$	-	-	0.4	v	2
Driver "on" resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=28 \mathrm{~V}, \\ & \text { load current: } \pm 150 \mu \mathrm{~A} \end{aligned}$	-	-	2.0	k Ω	7
Input leakage current (1)	IL1	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$	-1.0	-	1.0	$\mu \mathrm{A}$	1
Input leakage current (2)	IIL2	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE}}$ to V_{CC}	-25	-	25	$\mu \mathrm{A}$	3
Operating frequency (1)	$\mathrm{f}_{\text {opr1 }}$	Master mode (external clock operation)	10	-	200	kHz	4
Operating frequency (2)	$\mathrm{f}_{\text {opr2 }}$	Slave mode (shift register)	0.5	-	500	kHz	
Oscillation frequency (1)	${ }^{\text {fosc1 }}$	$\begin{aligned} & \mathrm{Cf}=100 \mathrm{pf} \pm 5 \%, \\ & \mathrm{Rf}=47 \mathrm{k} \Omega \pm 2 \% \end{aligned}$	70	100	130	kHz	5
Oscillation frequency (2)	fosc2	$\begin{aligned} & \text { Cf }=220 \mathrm{pf} \pm 5 \%, \\ & \mathrm{Rf}=51 \mathrm{k} \Omega \pm 2 \% \end{aligned}$	21	30	39	kHz	5
Power consumption (1)	IGND1	Master mode 1/240 duty cycle, $\mathrm{Cf}=\mathbf{2 2 0} \mathrm{pF}, \mathrm{Rf}=51 \mathrm{k} \Omega$	-	-	80	$\mu \mathrm{A}$	6
Power consumption (2)	$\mathrm{I}_{\text {GND2 }}$	Master mode $1 / 240$ duty cycle external clock $\mathrm{f}_{\mathrm{opr} 2}=30 \mathrm{kHz}$	-	-	10	$\mu \mathrm{A}$	6
Power consumption (3)	IGND3	Slave mode 1/240 duty cycle during operation	-	-	10	$\mu \mathrm{A}$	6
Power consumption	${ }^{\text {E E }}$	Master mode 1/240 duty cycle, $\mathrm{Cf}=\mathbf{2 2 0} \mathrm{pF}, \mathrm{Rf}=51 \mathrm{k} \Omega$	-	-	20	$\mu \mathrm{A}$	6

Notes: 1. Applies to input pins TEST, MEOR, MWSO to MWS5, DUTY, SHL, $\overline{\mathrm{DISP}}, \overline{\mathrm{MS}}, \overline{\mathrm{RESET}}$, and OSC1, and when inputting to input/output pins CL1, FLM, $\overline{D O C}$, and M.
2. Applies when outputting from input/output pins CL1, FLM $\overline{\mathrm{DOC}}$, and M .
3. Applies to V1LN1R, V2LN2R, V5LN5R, and V6LN6R. X1 to X240 are open.
4. Figure 5 shows the external clock specifications.

Figure 8 External Clock
5. Connect resistance Rf and capacitance Cf as follows:

Figure 9 Timing Components
6. Input and output currents are excluded. When a CMOS input is floating, excess current flows from the power supply through to the input circuit. To avoid this, $\mathrm{V}_{I H}$ and $\mathrm{V}_{I L}$ must be held to V_{CC} and GND levels, respectively.
7. Indicates the resistance between one pin from $X 1$ to $X 240$ and another pin from the V pins V1LN1R, V2LN2R, V5LN5R, and V6LN6R, when a load current is applied to the X pin; defined under the following conditions:

$$
\begin{aligned}
& V_{C C}-V_{E E}=28 V \\
& V 1 L N 1 R, V 6 L / N 6 R=V_{C C}-1 / 10\left(V_{C C}-V_{E E}\right) \\
& V 5 L N 5 R, V 2 L N 2 R=V_{E E}+1 / 10\left(V_{C C}-V_{E E}\right)
\end{aligned}
$$

V1LN1R and V6LN6R should be near the VCC level, and V5LN5R and V2LN2R should be near the V_{EE} level. All these voltage pairs should be separated by less than $\Delta \mathrm{V}$, which is the range within which R_{ON}, the LCD drive circuits' output impedance, is stable. Note that $\Delta \mathrm{V}$ depends on power supply voltages $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$. See figure 7 .

HD66503

Figure 10 Relationship between Driver Output Waveform and Level Voltages

AC Characteristics ($\mathbf{V}_{\mathbf{C C}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=8 \mathrm{~V}$ to 28 V , $\mathbf{G N D}=0 \mathrm{~V}, \mathrm{~T}_{\mathbf{a}}=$ $-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$)

Slave Mode (M/S = GND)

Item	Symbol	Min	Typ	Max	Unit	Notes
CL1 high-level width	$\mathrm{t}_{\mathrm{CWH}}$	500	-	-	$n s$	1
CL1 low-level width	$\mathrm{t}_{\mathrm{CWL}}$	500	-	-	$n s$	1
FLM setup time	t_{FS}	100	-	-	$n s$	1
FLM hold time	r_{FH}	100	-	-	$n s$	1
CL1 rise time	t_{r}	-	-	50	$n s$	1
CL1 fall line	t_{f}	-	-	50	ns	1

Note: 1. Based on the load circuit shown in figure 8.

Figure 11 Slave Mode Timing

HD66503

Item	Symbol	Min	Typ	Max	Unit	Notes
FLM delay time	${ }_{\text {t }}$ FFLM	-	-	500	ns	
M delay time	${ }_{\text {t }}$ DM	-	-	500	ns	
CL1 high-level width	${ }^{\text {t }}$ CWH	5	-	-	$\mu \mathrm{s}$	
CL1 low-level width	${ }^{\text {t }}$ CWL	5	-	-	$\mu \mathrm{s}$	

Master Mode (M/S = $\mathbf{V C C}_{\mathbf{C}}, \mathbf{C f}=\mathbf{2 2 0} \mathbf{~ p F , ~ R f ~ = ~} \mathbf{5 1} \mathbf{k} \Omega$)

Item	Symbol	Min	Typ	Max	Unit	Notes
FLM delay time	${ }^{\text {D }}$ DFLM	-	-	500	ns	
M delay time	${ }^{\text {t }}$ DM	-	-	500	ns	
CL1 high-level width	${ }^{\text {t }}$ CWH	20	-	-	$\mu \mathrm{s}$	
CL1 low-level width	${ }^{\text {t }}$ WWL	20	-	-	$\mu \mathrm{s}$	

Figure 12 Master Mode Timing

Pin Arrangement

HD66520
 (160-Channel 4-Level Grayscale Display Column Driver with Internal Bit-Map RAM)

Description

The HD66520 is a column driver for liquid crystal dot-matrix graphic display systems. This LSI incorporates 160 liquid crystal drive circuits and a $160 \times 240 \times 2$-bit bit-map RAM, which is suitable for LCDs in portable information devices. It also includes a general-purpose SRAM interface so that draw access can be easily implemented from a general-purpose CPU. The on-chip display RAM greatly decreases power consumption compared to previous liquid crystal display systems. The chip also incorporates a four-level grayscale controller for enhanced graphics capabilities, such as icons on a screen.

Features

- Duty cycle: $1 / 64$ to $1 / 240$
- Liquid crystal drive circuits: 160
- High voltage: 8 to $28-\mathrm{V}$ liquid crystal drive voltage
- Grayscale display: FRC Four-level grayscale display
- Grayscale memory management: Packed pixel
- Internal bit-map display RAM: 76800 bits (160×240 lines \times two planes)
- Access time: 80 ns
- Low power consumption:
$-100 \mu \mathrm{~A}$ during display
-20 mA during RAM access (RAM access time 250 ns)
- On-chip memory management function
- Refresh unnecessary
- Internal display off function

Pin Description

Classification	Symbol	Pin No.	Pin Name	1/0	Number of Pins	Function
Power supply	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1} \\ & \mathrm{v}_{\mathrm{CC} 2} \end{aligned}$		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$V_{C C}-G N D:$ logic power supply
	GND		GND	Input	1	
	$\begin{aligned} & \mathrm{V}_{E E^{1}} \\ & \mathrm{~V}_{\mathrm{EE}}{ }^{2} \end{aligned}$		LCD drive circuit power supply	Input	1	$\mathrm{V}_{C C^{-}} \mathrm{V}_{E E}: L C D$ drive circuit power supply
	V1L, V1R		LCD select high-level voltage	Input	2	LCD drive level power supplies See figure 1.
	V2L, V2R		LCD select low-level voltage	Input	2	
	V3L, V3R		LCD deselect high-level voltage	Input	2	
	V4L, V4R		LCD deselect low-level voltage	Input	2	
Control signals	LS0, LS1		LSI ID select switch pin 0 and 1	Input	2	Pins for setting LSI ID no. (refer to Pin Functions for details).
	SHL		Shift direction control signal	Input	1	Reverses the relationship between LCD drive output pins Y and addresses.
	FLM		First line marker	Input	1	First line select signal
	CL1		Data transfer clock	Input	1	Clock signal to transfer the line data to an LCD display driver block.
	M		AC switching signal	Input	1	Switching signal to convert LCD drive output to AC
	$\overline{\text { DISPOFF }}$		Display off signal	Input	1	Control signal to fix LCD driver outputs to LCD select high level. When low, LCD drive outputs Y1 to Y160 set to V1, or LCD select high level. Display can be turned off by setting a common driver to V1.
	TEST		Test pin	Input	1	LSI test pin (refer to Pin Functions for details).

Pin Description (Cont'd.)

Classification	Symbol	Pin No.	Pin Name	1/0	Number of Pins	Functions
Bus interface	A0 to A15		Address Input	Input	16	Upper 9 bits (A15-A7) are used for the dutydirectional addresses, and lower 7 bits (A6-A0) for the output-pin directional addresses (refer to Pin Functions for details).
	DB0 to DB7		Data input/ output	I/O	8	Packed-pixel 2-bit/ pixel display data transfer (refer to Pin Functions for details.)
	$\overline{\text { CS }}$		Chip select signal	Input	1	LSI select signal during draw access (refer to Pin Functions for details.)
	$\overline{\text { WE }}$		Write signal	Input	1	Write-enable signal during draw access (refer to Pin Functions for details).
	$\overline{\overline{O E}}$		Output enable signal	Input	1	Output-enable signal during draw access (refer to Pin Functions for details).
LCD drive output	$\begin{aligned} & \hline \text { Y1 to } \\ & \text { Y160 } \end{aligned}$		LCD drive output	Output	160	Each Y outputs one of the four voltage levels V1, V2, V3, or V4, depending on the combination of the M signal and data levels.

Note: The number of input outer leads: 47

Figure 1 LCD Drive Levels

Pin Functions

- Control Signals

LSO and LSI (Input): The LS pins can assign four (0 to 3) ID numbers to four LSIs, thus making it possible to connect a maximum of four HD66520s sharing the same CS pin to the same bus.

Various memory maps can be configured by combining the LS pins with the SHL pin.

SHL (Input): This pin reverses the relationship between LCD drive output pins Y and addresses. When the pin is low, output pins Y1 to Y160 correspond to the direction from start data to end data in the display lines, and when the pin is high, from end data to start data.

FLM (Input): When the pin is high, it resets the display line counter, returns the display line to the start line, and synchronizes common signals with frame timing.

CL1 (Input): At each rising edge of data transfer clock pulses input to this pin, the latch circuits latch horizontal-line RAM data and transfers it to the liquid crystal display driver section.

M (Input): AC voltage needs to be applied to liquid crystals to prevent deterioration due to DC voltage application. The M pin is a switch signal for liquid crystal drive voltage and determines the AC cycle.

DISPOFF (Input): A control signal to fix liquid crystal driver output to liquid crystal select high level. When this pin is low, liquid crystal drive outputs Y1 to Y160 are set to liquid crystal select high level V1. If Y pins of the paired common driver are also set to V1 level, the display can be deleted. When DISP becomes high, display returns to normal state.

TEST (Input): An LSI test pin. Use GND level for normal operations.

- Bus Interface

CS (Input): A basic signal of the RAM area. When CS is low (active), the system can access the on-chip RAM of the LSI whose address space, set by LSO, LS1, and SHL pins, contains the input address. When CS is high, RAM is in standby.

A0 to A15 (Input): A bus to transfer addresses during RAM access. Upper nine bits (A15 to A7) are duty-direction addresses, and lower seven bits (A6 to A0) are output pin direction addresses.
$\overline{\text { WE }}$ (Input): $\overline{\mathrm{WE}}$, an active low signal, is used to write display data to the RAM. Only the LSI whose address space, set by pins LSO, LS1, and SHL, contains the input address can be written to when CS is low.
$\overline{\mathrm{OE}}$ (Input): $\overline{\mathrm{OE}}$, an active low signal, is used to read display data from the RAM. Only the LSI whose address space, set by pins LSO, LS1, and SHL, contains the input address can be read from when CS is low.

DB0 to DB7 (Input/Output): The pins function as data input/output pins. They can accommodate to a data format with 2 bits/pixel, which implement packed-pixel four-level grayscale display.

Block Diagram

Figure 2 Block Diagram

Address management circuit: Converts the addresses input via A15-A0 from the system to the addresses for a memory map of the on-chip RAM. When several LSIs (HD66520s) are used, only the LSI whose address space, set by pins LS0, LS1, and SHL, contains the input address accepts the access from the system and enables the inside. The address management circuit enables configuration of the LCD display system with memory addresses not affected by the connection direction, and reduces burdens of software and hardware in the system.

Timing control circuit: Inputs signals FLM and CL1 for refresh operation to transfer the line data to the LCD drive circuit and signals $\overline{\mathrm{CS}}, \overline{\mathrm{WE}}$, and $\overline{\mathrm{OE}}$ for display data access (draw operation) of the on-chip RAM by the system, while arbitrating refresh and draw operations. This circuit enables the system to access the display data of the on-chip RAM independent of refresh operation. Moveover, this circuit generates a timing signal for the FRC control circuit to implement four-level grayscale display.

HD66520

Scan counter: Operates refresh functions. When FLM is high, the counter clears the count value and generates an address to select the first line in the RAM section. The counter increments its value whenever CL1 is valid and generates an address to select subsequent lines in the RAM section.

Bidirectional buffer: Controls the transfer direction of the display data according to signals $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$ in draw operation from the system

Word line decoder: Decodes input addresses and selects a one of 240 lines in the RAM section, and activates one-line memory cells in the RAM section.

Data line decoder: Decodes input addresses and selects data line in the RAM section for the 8 -bit memory cells in oneline memory cells activated by the word line decoder.

1/O selector: Reads and writes 8 -bit display data for the memory cells in the RAM section.

RAM: $160 \times 240 \times 2$-bit memory cell array. Since the memory is static, display data can be held without refresh operation during power supply.

FRC circuit: Implements FRC (frame rate control) function for four-level grayscale display. For details, refer to Half Tone Display.

Data latch circuit (1): Latches 160-pixel grayscale display data processed by the FRC control circuit after being read from the RAM section by refresh operation.

Data latch circuit (2): Latches 160-pixel grayscale display data synchronously with CL1.

LCD drive circuit: Selects one of LCD select/deselect power levels V4R to V1R and V4L to V1L according to the grayscale display data, AC signal M, and display-off signal DISPOFF. The circuit is configured with 160 circuits each generating LCD voltage to turn on/off the display.

Driver Layout and Address Management

The Y lines on a liquid crystal panel and memory data in a driver are inverted horizontally depending on the connection direction of the liquid crystal panel and the driver. When several drivers are connected, address management is needed for each driver. Although reinverted bit-map plotting or address management by the CS pin in each driver are possible by using special write addressing, the load on the
software is significantly increased. To avoid this, the HD66520 provides memory addresses independent of connection direction, but responds to the setting of pins LSO, LS1, and SHL.
How to Use the SFIL Pin: It is possible to invert the relationship between the addresses and output pins Y1 to Y160 by setting the SHL pin. If the HD66520 is placed on any side of the LCD panel, the upper left section on the screen can be assigned to address H0000.

Figure 3 Address Assignment and SHI Pin Setting

How to Use the LS1 and LS0 pins

The memory map of the HD66520 can be most efficiently used in three display sizes: a 240 -dot-wide by 160 -dot-long display; a 320 -dot-wide by 240 -dot-long display; and
a 480 -dot-wide by 320 -dot-long display, all of them are standard sizes for portable information devices.

Therefore, up to four HD66520s can be connected to the same bus or with the $\overline{\mathrm{CS}}$ pin.

LSIs can be mapped as shown in figure 4 by assigning ID numbers 0 to 3 to each HD66520 by using pins LS0 and LS1.

Figure 4 LS0 and LS1 Pin Setting and Internal Memory Map (SHL = Low)

Figure 5 LSO and LS1 Pin Setting and Internal Memory Map (SHL = High)

Table 1 Pin Setting and Memory Map

SHL	LS1	LSo	ID No.	Memory Map
Low	Low	Low	0	LSls placed on the top of the LCD panel
Low	Low	High	1	LSls placed on the bottom of the LCD panel
Low	High	Low	2	LSis placed on the top of the LCD panel
Low	High	High	3	LSls placed on the bottom of the LCD panel
High	Low	Low	0	LSls placed on the left of the LCD panel
High	Low	High	1	LSls placed on the right of the LCD panel
High	High	Low	2	LSIs placed on the left of the LCD panel
High	High	High	3	LSIs placed on the right of the LCD panel

Application Example for System-Driver Arrangement

Display-Data Transfer

RAM data is transferred to a 160 -bit liquid crystal data register at each rising edge of the CL1 clock pulse. Since display data transfer and RAM access to draw data is completely synchronous-separated in the LSI, there is no draw data loss or display flickering from display data transfer timing.

The first line data transfer involves the first line marker (FLM), which initializes a line counter, and transfers the first line to a data register in the LCD driver. Subsequent line
data transfer involves transferring the second and the subsequent line data to a data register in the LCD driver while incrementing the line counter value.

First Line Data Transfer

The line counter is initialized synchronously with an FLM signal in the first line data transfer by the FLM signal and the CL1 signal. The first line is transferred to the data register in the LCD driver at the rising edge of the CL1 (figure 6).

Figure 6 First Line Data Transfer

Subsequent Line Data Transfer

In display access 2 , the second and the subsequent line data are transferred to the data register in the LCD driver at the rising edge of the CL1 to update the line counter value (figure 7).

Figure 7 Subsequent Line Data Transfer

Display-Data Transfer Method

The liquid crystal panel display needs to repeatedly execute first line data transfers and successive line data transfers based on a regular cycle to achieve continuous operation.

The FLM signal cycle is determined by a frame frequency value which is required by a liquid crystal panel. Generally, the value is 70 to 90 Hz .

Data-transfer clock CL1 frequency is determined by the number of lines that must be transferred during one frame period, in other words, a frequency should be the product of the FLM signal frequency multiplied by the number of lines. For example, to transfer 240 lines during one frame period ($1 / 240$ duty cycle) at a frame frequency of $80-\mathrm{Hz}$, an approximate 19.2kHz data transfer clock is needed.

The M signal, which converts a liquid crystal drive waveform to an AC signal,
should be either a frame-reverse waveform synchronized with the FLM signal or an nline reverse waveform synchronized with the n count of CL1. The latter should be initialized by FLM. Since the M cycle is closely related to optical characteristics and the display quality of the liquid crystal panel, it should be determined through actually verifying the display.
Although the above control signals should be repeatedly input to display the contents of the internal memory on the liquid crystal display panel, power consumption in the display control part can be reduced to $1 / 50$ to $1 / 100$ of that of the currently-used CRTbased control system mainly displaying still pictures with a long MPU idling state. This is because a considerably low-speed operating clock (about 20 kHz to 30 kHz) is used while in the range from 10 MHz to about 50 MHz are used for a liquid crystal controller based on existing CRT display control techniques.

Figure 8 LCD Display Data Timing

HD66520

Draw Access

Draw data access sequence is the same as for a general-purpose SRAM interface. It can easily be connected to a CPU address bus and data bus.

Figure 9 Read Cycle

Figure 10 Write Cycle

Configuration of Display Data Bit

Packed Pixel Method

For grayscale display, multiple bits are needed for one pixel. In the HD66520, two bits are assigned to one pixel, enabling a four-level grayscale display.

One address (eight bits) specifies four pixels, and pixel bits 0 and 1 are managed as consecutive bits. When grayscale display data is manipulated in bit units, one memory access is sufficient, which enables smooth high-speed data rewriting.

Figure 11 Packed Pixel System

Half Tone Display (FRC: Frame Rate Control Function)

The HD66520 incorporates an FRC function to display four-level grayscale half tone.

The FRC function utilizes liquid crystal characteristics whose brightness is changed by an effective value of applied voltage. Different voltages are applied to
each frame and half brightness is expressed in addition to display on/off.

Since the HD66520 has two-bit gray-scale data per one pixel, it can display four-level grayscale and improve user interface (figure 12). Figure 13 shows the relationships between voltage patterns applied to each frame, the effective voltage value, and brightness obtained.

a) Display with two values

b) Display with four values

Figure 12 Example of User Interface Improvement

Figure 13 Effective Voltage Values vs. Brightness

Example of System Configuration

Figure 14 shows a system configuration for a 240×320-dot LCD panel using HD66520s and common driver HD66503 with internal
liquid crystal display timing control circuits. All required functions can be prepared for liquid crystal display with just three chips except for liquid crystal display power supply circuit functions.

Figure 14 System Configuration

Item		Symbol	Ratings	Unit	Notes
Power voltage	Logic circuit	V_{CC}	-0.3 to +7.0	V	1
	LCD drive circuit	V_{EE}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-30.0 \text { to } \\ & \mathrm{V}_{\mathrm{CC}}+0.3 \end{aligned}$	V	
Input voltage (1)		$\mathrm{V}_{\mathrm{T} 1}$	-0.3 to $\mathrm{V}_{\text {CC }}+0.3$	V	1,2
Input voltage (2)		$\mathrm{V}_{\mathrm{T} 2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}-0.3 \text { to } \\ & \mathrm{V}_{\mathrm{CC}}+0.3 \end{aligned}$	V	1,3
Allowable output current		IIol	<TBD>	mA	
Allowable total output current		\| $210 \mid$	<TBD>	mA	
Operating temperature		$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature		$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. The reference point is GND (0 V).
2. Applies to pins $L S_{0}, L S_{1}, S H L, F L M, C L_{1}, M, A_{0}$ to A_{15}, D_{0} to $D B_{7}, \overline{D I S P}, \overline{C S}, \overline{W E}$, and $\overline{O E}$.
3. Applies to pins $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, and V_{4}.
4. If the LSI is used beyond its absolute maximum rating, it may be permanently damaged. It should always be used within the limits of its electrical characteristics in order to prevent malfunction or unreliability.

Recommended Operating Conditions ${ }^{1}$

Item	Symbol	Min	Typ	Max	Unit	Notes
Power voltage	Logic circuit	V_{CC}	2.7	3.3	3.6	V
	LCD drive circuit	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-10$	-	$\mathrm{V}_{\mathrm{CC}}-28$	V
Input high voltage for logic circuit	V_{IH}	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	V_{CC}	V	1
Input low voltage for logic circuit	V_{IL}	0	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	V	2
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-20	25	75	${ }^{\circ} \mathrm{C}$	

Notes: 1. Max value is $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ when the pulse width is 10 ns or less.
2. Min value is -1 V when the pulse width is 10 ns or less.

Recommended Operating Conditions ${ }^{2}$

Item	Symbol	Min	Typ	Max	Unit	Notes
Power voltage	Logic circuit	V_{CC}	4.5	5.0	5.5	V
	LCD drive circuit	V_{EE}	$\mathrm{V}_{\mathrm{CC}}-10$	-	$\mathrm{V}_{\mathrm{CC}}-28$	V
Input high voltage for logic circuit	V_{IH}	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	V_{CC}	V	1
Input low voltage for logic circuit	V_{IL}	0	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	V	2
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-20	25	75	${ }^{\circ} \mathrm{C}$	

Notes: 1. Max value is $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ when the pulse width is 10 ns or less.
2. Min value is -1 V when the pulse width is 10 ns or less.

Capacitance

Item	Symbol	Min	Typ	Max	Unit	Measuring Condition
Input capacitance	$\mathrm{C}_{\text {in }}$	-	-	$<\mathrm{TBD}>$	pF	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$
$/ \mathrm{O}$ capacitance	$\mathrm{C}_{1 / \mathrm{O}}$	-	-	$<\mathrm{TBD>}$	pF	$\mathrm{Ta}=25^{\circ} \mathrm{C}$ $\mathrm{f}=1 \mathrm{MHz}$

All these parameters are not measured but are sample values.

Electrical Characteristics

DC Characteristics ${ }^{\mathbf{1}} \mathbf{(V G C}_{\mathbf{C L}}=\mathbf{2 . 7} \mathbf{V}$ to 5.5 V , GND $=0 \mathrm{~V}, \mathbf{V}_{\mathbf{C C}}-\mathbf{V}_{\mathbf{E E}}=8 \mathbf{V}$ to $28 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Applicable Pins	Min	Typ	Max	Unit	Measurement Condition
Input high level voltage	V_{IH}		$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	V_{CC}	V	
Input low level voltage	V_{IL}		0	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	V	
Output high level voltage	V_{OH}		$\mathrm{V}_{\mathrm{CC}}-0.4$	-	-	V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$
Output low level voltage	V OL		-	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=-0.4 \mathrm{~mA}$
Vi-Yj on resistance	R_{ON}	Y1 to Y160 V1LN1R, V2LN2R, V3LN3R, and V4LN4R	-	1.0	2.0	$\mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{ON}}=100 \mu \mathrm{~A}$

Notes: 1. Indicates the resistance between one pin from Y1 to Y160 and another pin from V2LN2R, V3LN3R, V4LN4R, and $V_{E E}$, when load current is applied to the Y pin; defined under the following conditions:
$V_{C C}-V_{L C D}=28 \mathrm{~V}$
V1LN1R, V3LN3R $=V_{C C}-2 / 10\left(V_{C C}-V_{E E}\right)$
V4LN4R, V2LN2R $=\mathrm{V}_{\mathrm{EE}}+2 / 10\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$
V1LN1R and V3LN3R should be near the $V_{C C}$ level, and V2LN2R and V4LN4R should be near the $V_{E E}$ level. All voltage must be within $\Delta V . \Delta V$ is the range within which R ${ }_{O N}$, the LCD drive circuits' output impedance, is stable. Note that $\Delta \mathrm{V}$ depends on power supply voltages $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$. See figure 15.

Figure 15 Relationship between Driver Output Waveform and Level Voltages

DC Characteristics ${ }^{2}\left(\mathbf{V}_{\mathbf{C C}}=2.7 \mathrm{~V}\right.$ to 3.6 V , $\mathbf{G N D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=10 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$)
$\left.\begin{array}{lllllllll}\text { Item } & \text { Symbol } & \begin{array}{l}\text { Applicable } \\ \text { Pins }\end{array} & \text { Min } & \text { Typ } & \text { Max } & \text { Unit } & \begin{array}{l}\text { Measurement } \\ \text { Condition }\end{array} & \text { Notes } \\ \begin{array}{llllllll}\text { Input leakage } \\ \text { current (1) }\end{array} & \text { IIL1 } & & -1.0 & - & 1.0 & \mu \mathrm{~A} & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { to GND }\end{array}\right]$
consumption
during display
operation
Notes: 1. Input and output currents are excluded. When a CMOS input is floating, excess current flows from the power supply through to the input circuit. To avoid this, V_{IH} and V_{IL} must be held to V_{CC} and GND levels, respectively.
2. Indicates the current when the display-operation memory access is idling.

DC Characteristics ${ }^{3} \mathbf{V}_{\mathbf{C C}}=4.5 \mathrm{~V}$ to 5.5 V , $\mathbf{G N D}=0 \mathrm{~V}, \mathrm{~V}_{\mathbf{C C}}-\mathrm{V}_{\mathrm{EE}}=8 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Applicable Pins	Min	Typ	Max	Unit	Measurement	Notes
Input leakage current (1)	IL1		-1.0	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ to GND	
Input leakage current (2)	ILL2	V1LN1R, V2LN2R, V3LN3R, and V4LN4R	-25	-	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}	
Power consumption during RAM access	${ }^{1} \mathrm{Oc}$	-	-	TBD	TBD	mA	$\begin{aligned} & \mathrm{t}_{\mathrm{cyc}}=150 \mathrm{~ns} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & =28 \mathrm{~V} \end{aligned}$	1
Power consumption in LCD drive part	${ }^{\text {L LCD }}$	-	-	TBD	TBD	$\mu \mathrm{A}$		
Power consumption during display operation	IDIS	-	-	TBD	TBD	$\mu \mathrm{A}$	$\mathrm{T}_{\text {cyc }}=500 \mathrm{~ms}$	1,2

Notes: 1. Input and output currents are excluded. When a CMOS input is floating, excess current flows from the power supply through to the input circuit. To avoid this, V_{IH}, and V_{IL} must be held to V_{CC} and GND levels, respectively.
2. Indicates the current when the display-operation memory access is idling.

AC Characteristics ${ }^{1}\left(\mathbf{V}_{\mathbf{C C}}=2.7 \mathrm{~V}\right.$ to 5.5 V , $\mathbf{G N D}=\mathbf{0} \mathrm{V}, \mathbf{V}_{\mathbf{C C}}-\mathbf{V}_{\mathbf{E E}}=8 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$)

Display-Data Transfer Timing

No.	Item	Symbol	Applicable - Pins	Min	Max	Unit	Notes
1	Clock cycle time	${ }^{\text {t }}$ CYC	CL1	10	-	$\mu \mathrm{s}$	
2	CL1 high-level width	${ }^{\text {t }}$ WWH	CL1	<TBD>	-	ns	
3	CL1 low-level width	${ }^{\text {t }} \mathrm{CWL}$	CL1	1.0	-	$\mu \mathrm{s}$	
4	CL1 rise time	t_{r}	CL1	-	50	ns	
5	CL1 fall time	t_{f}	CL1	-	50	ns	
6	FLM setup time	t_{FS}	FLM, CL1	<TBD>	-	ns	
7	FLM hold time	${ }^{\text {r }}$ FH	FLM, CL1	<TBD>	-	ns	

Figure 16 Display Data Transfer Timing

AC Characteristics ${ }^{1}\left(V_{C C}=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=8 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$)

Draw Access Timing 1

Common Items

No.	Item	Symbol	Min	Max	Unit	Notes
1	Address setup time	t_{AS}	20	-	ns	
2	Address hold time	t_{AH}	0	-	ns	
3	Chip select time	t^{CW}		40	$\mathrm{t}_{\mathrm{CYC}}-50$	ns

Read Cycle

No.	Item	Symbol	Min	Max	Unit	Notes
1	Read cycle time	t_{RC}	60	-	ns	
2	Address access time	${ }^{t} A A$	-	20	ns	
3	Chip select access time	${ }^{\text {t ACS }}$	-	20	ns	
4	CS output set time	${ }^{\text {t }} \mathrm{CLZ}$	0	-	ns	
5	CS setup time	${ }^{\text {t }}$ CSS	0	-	ns	
6	CS hold time	${ }^{\text {t }}$ CSH	0	-	ns	
7	OE low level width	tolw	40	-	ns	
8	Delay time from outputenable to output	${ }^{\text {t }} \mathrm{OE}$	0	20	ns	
9	Delay time from outputenable to output (low impedance)	${ }^{\text {toLZ }}$	0	-	ns	
10	CS and output floating	${ }^{\text {t }} \mathrm{CHZ}$	0	10	ns	
11	Delay time from outputdisable to output	${ }^{\text {tohz }}$	0	10	ns	
12	Output hold time	${ }^{\text {OHH}}$	5	-	ns	
13	Output voltage rise/fall time	${ }^{\text {T }}$	-	50	ns	

Write Cycle

No.	Item	Symbol	Min	Max	Unit	Notes
1	Write cycle time	twC	60	-	ns	
2	Address valid time	${ }^{\text {taW }}$	60	-	ns	
3	Write pulse width	${ }^{\text {t }}$ WP	40	20	ns	
4	Delay time from outputdisable to output	${ }^{\text {t }} \mathrm{OHZ}$	0	10	ns	
5	Input data set time	${ }^{\text {t }}$ DW	30	-	ns	
6	Input data hold time	${ }^{\text {t }}$ DH	5	-	ns	

Figure 17 Read Cycle

Figure 18 Write Cycle

HD66300T
 (Horizontal Driver for TFT-Type LCD Color TV)

The HD66300T is a horizontal driver used for TFTtype (Thin Film Transistor) LCD color TVs. Specifically, it drives the drain bus signals of a TFT-type LCD panel.

TheHD66300T receives as input three video signals R, G, B, and their inverted signals \bar{R}, \bar{G} and \bar{B}. Internal sample and hold circuitry then samples and holds these signals before outputting them via voltage followers to drive a TFT-type LCD panel.

The HD66300T can drive LCD panels from 480×240 pixels middle-resolution up to 720×480 pixels highresolution. It has 120 LCD drive outputs and enables design of a compact LCDTV due to TCP (Tape Carrier Package) technology.

Ordering Information

Type	No.
HD66300T00	Package
Note:	The details of TCP TCP pattern are shown in
"The Information of TCP."	

Pin Arrangement

(Top View)
Note: This does not apply to TCP dimensions.

HD66300T

Pin Description

Pin List

Pin Name	Number of Pins	Input/Output	Connected to	Functions (Refer to)
D1-D120	120	0	LCD panel	1.
HCK1, HCK2, НСКз	3	1	Controller	2.
DL, DR	2	I/O	Controller or next HD66300T	3.
FD	1	1	Controller	4.
RS	1	1	GND	5.
OE	1	1	Controller	6.
SHL	1	1	$V_{C C}$ or GND	7.
D/S	1	1	$V_{c c}$ or GND	8.
L/F	1	I	$V_{c c}$ or GND	9.
MSF1, MSF2	2	1	$V_{\text {cc }}$ or GND	10.
TEST1, TEST2	2	1	GND	11.
V×1, V×2, V×3, Vy1, Vy2, Vy3	6	I	Inverter	12.
$V_{\text {bo }}$	1	1	Power source	13.
$\mathrm{V}_{\mathrm{bsB}}, \mathrm{V}_{\text {bsH }}$	2	1	Power source	14.
$\begin{aligned} & \mathrm{V}_{\mathrm{LC}}{ }^{1,} \mathrm{~V}_{\mathrm{LC}}{ }^{2} \\ & \mathrm{~V}_{\mathrm{LC}}{ }^{,} \mathrm{V}_{\mathrm{LC}}{ }^{4} \\ & \hline \end{aligned}$	4	-	Power source	15.
$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{1}, \mathrm{v}_{\mathrm{cc}}{ }^{2}} \\ & \mathrm{v}_{\mathrm{cc}}{ }^{3} \end{aligned}$	3	-	Power source	16.
GND	1	-	Power source	17.
$\begin{aligned} & \mathrm{V}_{\mathrm{BB}}^{1, V_{B B} 2,} \\ & \mathrm{~V}_{\mathrm{BB}} 3, \mathrm{~V}_{\mathrm{BB}}{ }^{4} \end{aligned}$	4	-	Power source	18.

Pin Functions

1. D1-D120: These pins output LCD drive signals.
2. HCK1, HCK2, HCK3: These pins input three-phase clock pulses, which determine the signal sampling timing for sample and hold circuits.
3. DL, DR: These pins input or output data into or from the internal bidirectional shift register. The state of pin SHL determines whether these pins input or output data.

SHL	DL	DR
$\mathrm{V}_{\text {cC }}$	Output	Input
GND	Input	Output

4. FD: This pin inputs the field determination signal, which allows the sample and hold circuitry and the shift matrix circuit to operate synchronously with TV signals, at its rising and falling edge.

$$
\begin{aligned}
& \text { FD }=\text { high: } \text { First field } \\
& \text { FD }=\text { low: Second field }
\end{aligned}
$$

When a non-interlace signal is applied, it must be inverted every field.

When an interlace signal is applied in double-rate sequential drive mode with per-line inversion (mode $1,2,3$), the signal must be set high in both fields. The signal must be set low, however, in each field's horizontal retrace period.
5. RS: This pin inputs a test signal and should be connected to pin GND.
6. OE: This pin inputs the signal which controls the controller of the shift matrix circuit; it changes the selection of a sample and hold circuit and the shift matrix (combination of color data), at its rising edge. It also switches the bias current of the output buffer, as shown in the following table.

OE	Blas Current of Output Buffer
High	Large current (determined by VbsB)
Low	Small current (determined by VbsH)

7. SHL: This pin selects the shift direction of the shift register.

SHL	Shift Direction
High	$\mathrm{DL} \leftarrow \mathrm{DR}$
Low	$\mathrm{DL} \rightarrow \mathrm{DR}$

8. D/S: This pin selects the LCD drive mode.

D/S	Mode
High	Double-rate sequential drive mode
Low	Single-rate sequential drive mode

9. L/F: This pin selects the inversion mode of LCD drive signals.

L/F	Mode
High	Per-line inversion mode
Low	Per-field inversion mode

HD66300T

10. MSF1, MSF2: These pins select the function of the shift matrix circuit; they should be set according to both the type of color filter arrangement on a TFT-type LCD panel and the drive mode.

Filter Arrangement	Drive Mode	MSF1	MSF2
	Single-rate	GND	V_{cc} /GND* *
pattern	Double-rate	GND	V_{CC} /GND*
Vertical stripe	Single-rate	$V_{\text {cc }}$	$V_{\text {cc }}$
pattern	Double-rate	$V_{\text {cc }}$	$V_{\text {cc }}$
Unicolor triangular	Single-rate	$V_{\text {cc }}$	$V_{\text {cc }}$
pattern	Double-rate	V_{CC}	GND
Bicolor triangular	Single-rate	$V_{\text {cc }}$	GND
pattern	Double-rate	V_{CC}	GND

Single-rate: Single-rate sequential drive mode
Double-rate: Double-rate sequential drive mode
Note * Refer to table2 and timing charts of each mode
11. TEST1, TEST2: These pins input test signals and should be connected to pin GND.
12. Vx1, Vx2, Vx3, Vy1, Vy2, Vy3: Video signals are applied to these pins; in general, positive video signals are connected to pins Vxi and negative video signals to pins Vyi.
13. V_{bo} : Bias voltage is applied to this pin for the differential amplifier in the sample and hold circuitry.
14. $\mathrm{V}_{\mathrm{bsB}}{ }^{\prime}, \mathrm{V}_{\mathrm{bsH}}$: Bias voltage is applied to this pin for the two power sources of the output buffer.

VbsB: The voltage for driving a capacitive load
VbsH : The voltage for holding the output voltage
15. $\mathrm{V}_{\mathrm{LC}}{ }^{1}, \mathrm{~V}_{\mathrm{LC}}{ }^{2}, \mathrm{~V}_{\mathrm{LC}}{ }^{3}, \mathrm{~V}_{\mathrm{LC}} 4:+5 \mathrm{~V}$ LCD drive voltage is applied to these pins.
16. $V_{C C}{ }^{1}, V_{C c}{ }^{2}, V_{C C}{ }^{3}, V_{C C} 4:+5 \mathrm{~V}$ is applied to these pins for the logic and the analog units.
17. GND: 0 V is applied to this pin for the logic unit.
18. $V_{B B} 1, V_{B B}$: -15 V is applied to these pins for the LCD drive unit.
19. $\mathrm{V}_{\mathrm{BB}} 3, \mathrm{~V}_{\mathrm{BB}}$ 4: -15 V is applied to these pins for the LCD drive unit.
IHO甘」IH
1031

HD66300T

Block Functions

Shift Register: The shift register generates the sampling timing for video signals. It is driven by threephase clocks HCK1, HCK2, and HCK3, whose phases are different from each other by 120°; each clock determines the sampling timing for one color signal so that three clocks support the three color signals R, G, and B. The shiftdirection of this register can bechanged.

Level Shifter: The level shifter changes 5-V signals into 20-V signals.

Sample and Hold Circuitry: In double-rate sequential drive mode, two sample and hold circuits are selected to sample video signals during one horizontal scanning period out of the four circuits attached to one LCD drive signal. One of the two selected circuits is read out in the first half of the following horizontal
scanning period, and the other selected circuit is read out in the second half. While the two circuits are being read out, the other two circuits sample signals and are alternately read out in the same procedure mentioned above.

In single-rate sequential drive mode, one sample and hold circuit samples a signal during one horizontal scanning period, and is read out in the following horizontal scanning period. While it is being read out, one circuit out of the other three samples a signal.

Shift Matrix Circuit: The shift matrix circuit, a color sequence controller, changes over the sampled video signal every horizontal scanning period.

Output Buffer: The output buffer consists of a source follower circuit and can change the through-rate of an output signal by changing the external bias voltage.

System Block Configuration Example

Example of HD66300T Connection to LCD Panel

Figure 1 Example of HD66300T Connection to LCD Panel

Figure 2 Timing chart

Functional Description

Screen Size

Number of horizontal pixels:

- $120,240,360,600$, and 720 in monodirectional connection mode
$-240,480$, and 720 in bidirectional connection mode

Number of vertical pixels:

- 240 in single-rate sequential drive mode
- 480 in double-rate sequential drive mode

Single-Rate Sequential Drive Mode and DoubleRate Sequential Drive Mode

Single-Rate Sequential Drive Mode: A typical TV signal (Note) has 525 scanning lines, 480 of which are part of the valid display period. In interlace scanning mode, 480 scanning lines are equally divided into a first field and a second field.

In single-rate sequential drive mode, a 240-pixel-high LCD panel is used. 240 scanning lines of the first and second fields of the TV signal are respectively assigned to the 240 lines of the LCD panel.

One line of an LCD panel is driven every horizontal scanning period in this mode.

Double-Rate Sequential Drive Mode: To obtain a high-resolution display, a 480-pixel-high LCD panel is used. If 480 scanning lines are respectively assigned to the 480 lines of the LCD panel, the LCD alternating frequency becomes 15 Hz , which causes flickering and degrades display quality. To avoid this problem, the following method is employed. In the first field, the first scanning line is assigned to the first and second lines of the LCD panel, the second scanning line is assigned to the third and fourth lines, and so on. In the second field, the first scanning line is assigned to the second and third lines, the second scanning line is assigned to the fourth and fifth lines, and so on.

Two lines of an LCD panel are driven every horizontal scanning period in this mode.

Note:
Refer to the index for the further information of NTSC TV system signals and LCD.

Supportable Types of Color Filter Arrangements

The order and timing for the HD66300T to output color signals depend on the color filter arrangement on a TFT-type LCD panel. TheHD66300T can support

TFT-type LCD panels having the following color filter arrangements by specifying the operation of the internal color sequence controller and by changing the external signals to be supplied.

(a) Diagonal from top-left to bottom-right mosaic pattern

(b) Diagonal from top-right to bottom-left mosaic pattern

(c) Vertical stripe pattern

(d) Unicolor triangular pattern

(e) Bicolor triangular pattern

Figure 3 Supportable Types of Color Filter Arrangements

HD66300T

Mode Setting Pins

Mode setting pins MSF1, MSF2, and D/S must be set according to both the type of color filter arrangement on theTFT-typeLCD panel and thedrive mode (singlerate sequential drive mode or double-rate sequential drive mode). These pins activate the internal color sequence controller, which changes the sequence of color video signals corresponding to each sample and hold circuit and allows the LSI to output color data in the right order for the LCD panel being used.

Per-Field Inversion and Per-Line Inversion

The inversion mode of LCD drive signals can be selected by pin L/F.

Per-Field Inversion (available with L/F = low)

In a certain field, all LCD drive signals have one polarity and in the following field, they all have the inverted polarity.

Per-Line Inversion (available with $\mathrm{L} / \mathrm{F}=$ high)

In a certain field, all LCD drive signals have positive polarity in odd number lines and negative polarity in even number lines, while in the following field, the situation is reversed, that is, negative polarity in odd number lines and positive polarity in even number lines.

Table 1 Mode Setting Pins

Filter Arrangement	Drive Mode	D/S	MSF1	MSF2	Referential Timing Charts
	Single-rate	GND	GND	$V_{C C}$, GND	MODES 15, 16, 18, and 19
pattern	Double-rate	V_{CC}	GND	V_{CC}, GND	MODES $1,2,5,6,8,9$, 12, and 13
Vertical stripe	Single-rate	GND	$v_{c c}$	$v_{\text {cc }}$	MODES 17 and 20
pattern	Double-rate	V_{CC}	$V_{\text {cc }}$	$V_{\text {cc }}$	MODES 3, 7, 10, and 14
Unicolor triangular	Single-rate	GND	V_{Cc}	V_{CC}	MODES 17 and 20
pattern	Double-rate	V_{Cc}	v_{cc}	GND	MODES 4 and 11
Bicolor triangular	Single-rate	GND	V_{Cc}	GND	MODE 17
pattern	Double-rate	V_{CC}	V_{cc}	GND	MODES 4 and 11

Single-rate: Single-rate sequential drive mode Double-rate: Double-rate sequential drive mode

Interface

Video Signals Connection

Video signals must be connected to pins Vx1, Vx2, $V x 3, V y 1, V y 2$, and $V y 3$; in principle, positive video signals R, G, and B signals must be input to pins $V x 1$, $V \times 2$, and $V \times 3$, and negative video signals \bar{R}, \bar{G}, and \bar{B} to pins Vy1, Vy2, and Vy3. For actual connection between an LCD panel and the LCD drive signal
output pins, refer to the following example.
In the case of Diagonal from top-left to bottom-right mosaic pattern.

This example describes the case in which an LCD panel having a diagonal from top-left to bottom-right mosaic pattern is driven in double-rate sequential drive mode and monodirectional connection mode.

The Color Sequence for Each Output Pin

Output Pin	Color Sequence
D1 (=D3k + 1)	$R \rightarrow B \rightarrow G \rightarrow R \rightarrow$
D2 (=D3k + 2)	$G \rightarrow R \rightarrow B \rightarrow G \rightarrow$
D3 (=D3k + 3)	$B \rightarrow G \rightarrow R \rightarrow B \rightarrow$

The Signal Sequence for Each Output Pin

Output Pin Color Sequence
$\mathrm{D} 1(=\mathrm{D} 3 \mathrm{k}+1) \quad \mathrm{Vx1} \rightarrow \mathrm{Vx3} \rightarrow \mathrm{Vx} 2 \rightarrow \mathrm{~V} 1 \rightarrow$
$\mathrm{D} 2(=\mathrm{D} 3 \mathrm{k}+2) \quad \mathrm{V} \times 2 \rightarrow \mathrm{~V} 1 \rightarrow \mathrm{~V} 1 \rightarrow 3 \rightarrow \mathrm{~V} 2 \rightarrow$
$\mathrm{D} 3(=\mathrm{D} 3 \mathrm{k}+3) \quad \mathrm{Vx3} \rightarrow \mathrm{Vx2} \rightarrow \mathrm{Vx1} \rightarrow \mathrm{Vx3} \rightarrow$
(Refer to MODE 5)

The Connection of Signals

Signal	Color
Vx1	R
Vx2	G
Vx3	B
Vy1	\bar{R}
Vy2	\bar{G}
Vy3	\bar{B}

In the case of Diagonal from top-right to bottom-left mosaic pattern, Vertical stripe pattern

The same procedure for video signal connection applies to the case in which a TFT-type LCD panel having a diagonal from top-right to bottom-left mosaic pattern or a vertical stripe pattern is used, as well as to the cases where a panel of any pattern is used through the bidirectional connection mode.

Triangular Pattern, Single-Rate Sequential Drive Mode

The following procedures are required when a panel of unicolor or bicolor triangular pattern is used:

1. UnicolorTriangular Pattern, Single-RateSequential Drive Mode

The clock phase must be changed every line because of the 1.5 -pixel phase shift between even number lines and odd number lines. (Refer to the explanation of sampling clocks.)
The connection of signals here is the same as that described above.

2. Bicolor Triangular Pattern, Single-Rate Sequential Drive Mode

The clock phase must be changed every line because of the 0.5 -pixel phase shift between even number lines and odd number lines. (Refer to the explanation of sampling clocks.)
The connection of video signals in the second field must be changed from that in the first field. See the following tables.

The Color Sequence for Each Output Pin

Output Pin	Color Sequence
D1 ($=D 3 k+1$)	$R \rightarrow B \rightarrow R \rightarrow B \rightarrow$
D2 ($=D 3 k+2$)	$G \rightarrow R \rightarrow G \rightarrow R \rightarrow$
D3 ($=D 3 k+3$)	$B \rightarrow G \rightarrow B \rightarrow G \rightarrow$

The Signal Sequence for Each Output Pin
Output Pin Signal Sequence
(Refer to Mode 17)
The Connection of Signal In Each Field

	Per-Field Inversion Mode (LF = low)		Per-Line Inversion Mode (LF =high)	
	1 1st Field	2nd Field	1 st Field	2nd Fleld
Vx1	R	B	R	B
$v \times 2$	G	$\overline{\mathrm{R}}$	G	R
Vx3	B	$\overline{\mathbf{G}}$	B	G
Vy1	B	$\overline{\mathrm{R}}$	\bar{B}	$\overline{\mathrm{R}}$
Vy2	R	$\overline{\mathbf{G}}$	$\overline{\mathrm{R}}$	$\overline{\underline{G}}$
Vy3	G	\bar{B}	$\overline{\mathrm{G}}$	\bar{B}

Triangular Pattern, Double-Rate Sequential Drive Mode

Changing the phase of the sampling clocks is sufficient when the panel is driven in single-rate sequential drive mode. However, when the panel is driven in double-rate sequential drive mode, the above counter-
measure does not work, since the display data for two lines is sampled at one time here. Consequently, delaying the input video signal for a time period corresponding to the shift between pixels is required.

Figure 4

Figure 5

1. Unicolor Triangular Pattern, Double-Rate Sequential Drive Mode

(Refer to MODE 4)

The Signal Sequence for Each Output Pin (In non-interlace mode)

	Output Pin	Signal Sequence
1st	D1 (=D3k + 1)	$\mathrm{Vx} 1 \rightarrow \mathrm{Vy} 1 \rightarrow \mathrm{Vx} 1 \rightarrow \mathrm{Vy} 1 \rightarrow$
field	D2 (=D3k + 2)	$\mathrm{V} 2 \mathrm{2} \rightarrow \mathrm{Vy2} \rightarrow \mathrm{Vx} 2 \rightarrow \mathrm{Vy2} \rightarrow$
	D3 ($=$ D3k + 3)	$\mathrm{Vx} 3 \rightarrow \mathrm{Vy3} \rightarrow \mathrm{Vx} 3 \rightarrow \mathrm{Vy3} \rightarrow$
2nd	D1 (=D3k + 1)	$\mathrm{Vx} 1 \rightarrow \mathrm{Vy} 1 \rightarrow \mathrm{Vx} 1 \rightarrow \mathrm{Vy} 1 \rightarrow$
field	D2 $(=D 3 k+2)$	$\mathrm{Vx} 2 \rightarrow \mathrm{Vy} 2 \rightarrow \mathrm{Vx} 2 \rightarrow \mathrm{Vy2} 2$
	D3 ($=$ D3k + 3)	$\mathrm{V} \times 3 \rightarrow \mathrm{Vy3} \rightarrow \mathrm{Vx} 3 \rightarrow \mathrm{Vy3} \rightarrow$

(Refer to MODE 11)

1. Unicolor Triangular Pattern, Double-Rate Sequential Drive Mode (Cont.)

The Connection of Signals in Each Field In Interlace Mode

	Per-Field Inversion Mode (LF = low)		Per-Line Inversion Mode (LF =high)	
	1st Fleld	2nd Field	1 st Field	2nd Field
Vx1	Delayed R	\bar{R}	Delayed R	R
Vx2	Delayed G	$\overline{\mathbf{G}}$	Delayed G	G
Vx3	Delayed B	\bar{B}	Delayed B	B
Vy1	R	Delayed \bar{R}	\bar{R}	Delayed \bar{R}
Vy2	G	Delayed $\overline{\mathbf{G}}$	$\overline{\mathbf{G}}$	Delayed $\overline{\mathbf{G}}$
Vy3	B	Delayed \bar{B}	\bar{B}	Delayed \bar{B}

The Connection of Signals In Each Field In Non-Interlace Mode

	Per-Field Inversion Mode (L/F = low)		Per-Line Inversion Mode (L/F =high)	
	1st Fleld	2nd Field	1st Fleld	2nd Field
Vx1	Delayed R	Delayed $\overline{\mathrm{R}}$	Delayed R	Delayed $\overline{\mathrm{R}}$
Vx2	Delayed G	Delayed $\overline{\mathbf{G}}$	Delayed G	Delayed $\overline{\mathbf{G}}$
Vx3	Delayed B	Delayed \bar{B}	Delayed B	Delayed $\overline{\mathbf{B}}$
Vy1	R	$\overline{\mathbf{R}}$	$\overline{\mathbf{R}}$	R
Vy2	G	$\overline{\mathbf{G}}$	$\overline{\mathbf{G}}$	G
Vy3	B	\bar{B}	\bar{B}	B

HD66300T

2. Bicolor Triangular Pattern, Double-Rate Sequential Drive Mode

The Color Sequence for Each Output Pin
Output Pin \quad Color Sequence
D1 $(=D 3 k+1)$
D2 $(=D 3 k+2)$
D3 $(=D 3 k+3)$

The Signal Sequence for Each Output Pin (In interiace mode)

	Output Pin	Signal Sequence
1st	$D 1(=D 3 k+1)$	$V x 1 \rightarrow V y 1 \rightarrow V x 1 \rightarrow V y 1 \rightarrow$
field	$D 2(=D 3 k+2)$	$V x 2 \rightarrow V y 2 \rightarrow V x 2 \rightarrow V y 2 \rightarrow$
	$D 3(=D 3 k+3)$	$V x 3 \rightarrow V y 3 \rightarrow V x 3 \rightarrow V y 3 \rightarrow$
2nd	$D 1(=D 3 k+1)$	$V y 1 \rightarrow V x 1 \rightarrow V y 1 \rightarrow V x 1 \rightarrow$
field	$D 2(=D 3 k+2)$	$V y 2 \rightarrow V x 2 \rightarrow V y 2 \rightarrow V x 2 \rightarrow$
	$D 3(=D 3 k+3)$	$V y 3 \rightarrow V x 3 \rightarrow V y 3 \rightarrow V x 3 \rightarrow$

(Refer to MODE 4)

The Signal Sequence for Each Output Pin (in non-interlace mode)

	Output Pin	Signal Sequence
1st	D1 (=D3k + 1)	$\mathrm{Vx1} \rightarrow \mathrm{Vy1} \rightarrow \mathrm{Vx1} \rightarrow \mathrm{Vy1} \rightarrow$
field	D2 (=D3k + 2)	$\mathrm{Vx2} \rightarrow \mathrm{Vy2} \rightarrow \mathrm{Vx} 2 \rightarrow \mathrm{Vy2} \rightarrow$
	D3 ($=\mathrm{D} 3 \mathrm{k}+3$)	$\mathrm{Vx3} \rightarrow \mathrm{Vy3} \rightarrow \mathrm{Vx3} \rightarrow \mathrm{Vy3} \rightarrow$
2nd	D1 (=D3k + 1)	$\mathrm{Vx} 1 \rightarrow \mathrm{Vy1} \rightarrow \mathrm{Vx} 1 \rightarrow \mathrm{Vy1} \rightarrow$
field	D2 (=D3k + 2)	$\mathrm{Vx} 2 \rightarrow \mathrm{Vy2} \boldsymbol{\rightarrow} \mathrm{Vx} 2 \rightarrow \mathrm{Vy2} \rightarrow$
	D3 ($=$ D3k + 3)	$\mathrm{Vx3} \rightarrow \mathrm{Vy3} \rightarrow \mathrm{Vx3} \rightarrow \mathrm{Vy3} \rightarrow$

(Refer to MODE 11)
2. Bicolor Triangular Pattern, Double-Rate Sequential Drive Mode (Cont.)

The Connection of Signals in Each Field In Interlace Mode				
	Per-Field Inversion Mode (LF = low)		Per-LIne Inversion Mode (LF =high)	
	1st Field	2nd Field	1st Field	2nd Field
Vx1	Delayed R	\bar{B}	Delayed R	B
vx2	Delayed G	$\overline{\mathbf{R}}$	Delayed G	R
Vx3	Delayed B	$\overline{\mathbf{G}}$	Delayed B	G
Vy1	B	Delayed $\overline{\mathrm{R}}$	\bar{B}	Delayed $\overline{\mathrm{R}}$
Vy2	R	Delayed $\overline{\mathbf{G}}$	$\overline{\mathbf{R}}$	Delayed $\overline{\mathbf{G}}$
Vy3	G	Delayed \bar{B}	$\overline{\mathbf{G}}$	Delayed \bar{B}
The Connection of Signals in Each Field In Non-Interlace Mode				
	Per-Field Inversion Mode (LF = low)		Per-Line Inversion Mode (LF =high)	
	1st Field	2nd Field	1st Field	2nd Field
Vx1	Delayed R	Delayed $\overline{\mathrm{R}}$	Delayed R	Delayed $\overline{\mathrm{R}}$
Vx2	Delayed G	Delayed $\overline{\mathbf{G}}$	Delayed G	Delayed $\overline{\mathbf{G}}$
Vx3	Delayed B	Delayed $\overline{\mathbf{B}}$	Delayed B	Delayed \bar{B}
Vy1	B	\bar{B}	\bar{B}	B
Vy2	R	$\overline{\mathbf{R}}$	\bar{R}	R
Vy3	G	$\overline{\mathbf{G}}$	$\overline{\mathbf{G}}$	G

HD66300T

Connection to LCD Panels

There are two modes of connecting HD66300T chips to an LCD panel:

1) monodirectional connection mode
2) interleaved connection mode

In the former mode, the HD66300Ts are set on either the upper side or lower side of the panel, while in the latter mode, the HD66300Ts are set on both sides and the upper drivers and the lower drivers are alternately connected to each pixel-column.

Figure 6 Monodirectional Connection Mode

Figure 7 Interleaved Connection Mode

Internal Operation

The HD66300T has four sample and hold circuits for each outputs as shown in the block diagram, and its internal bidirectional shift register controls which circuits to sample data.

It has three-phase shift clocks with mutual phase difference of 120° to drive the shift register, which enables driving an LCD panel with mosaic pattern and triangular pattern.

The operation of sample and hold circuits and sampling operation are described below followed by the description of the relationship between three-phase shift clock phases and frequencies.

After the above description, determination of bias voltage is described; bias voltage controls driving characteristics of a differential amplifier and output buffer of the sample and hold circuits.

Finally, the OE and FD signals are described; they determine the operation of the sample and hold shift matrix circuit. Timing charts for each mode follow the description.

Sample and Hold Circuitry

Operation of Sample and Hold Circuitry

The HD66300T has four sample and hold circuits A, B, C, and D per LCD drive signal output. Sample and hold circuit pair A and B is supplied with the same sampling clock pulses as circuit pair C and D. One of the signals output by these circuits is connected to an output driver.

These sample and hold circuits repeat sampling and outputting of signals alternately to drive an TFT-type LCD panel.

Figure 8 Sample and Hold Circuitry

In single-rate sequential drive mode, sample and hold circuits A and D are alternately used; circuits B and C perform sampling operation, but are not used since they are not connected to the output driver.

In single-rate sequential drive mode, one sample and hold circuit samples the signal during one horizontal scanning period, and outputs it as an LCD drive signal in the following horizontal scanning period.

In double-rate sequential drive mode, all sample and
hold circuits A, B, C, and D are alternately used.
In double-rate sequentialdrive mode, two sample and hold circuits sample two signals during one horizontal scanning period, and output one of them as an LCD drive signal in the first half of the following horizontal scanning period, and output the other signal in the second half.

The following shows the timing charts of sampling and outputting operation.

Figure 9 Sampling Timing charts of Single-Rate Sequential Drive Mode

Figure 10 Sampling Timing charts of Double-Rate Sequential Drive Mode

Sampling Operation

The HD66300T has a bidirectional shift register composed of 120 bits and each bit of the shift register generates the sampling pulses to control the sampling operation of the four sample and hold circuits connected to each LCD drive signal output pin. When a bit of the shift register is 1 , the corresponding sample and hold circuits are in the sampling state; when it is 0 , the corresponding sample and hold circuits are in the hold state. Consequently, shifting a 1 into the shift
register activates in turn the sample and hold circuits corresponding to each LCD drive signal output pin.

Figure 11 is a shift register sketch illustrating the relationship between the shift register and the shift clocks HCK1, HCK2, and HCK3. Note that the order of sampling pulse generation depends on the state of pin SHL. D1 corresponds to DL and D120 to DR.

Figure 12 is a timing chart of sampling pulses generated by the shift register.

Figure 11 Shift Register Sketch

(a) $\mathrm{SHL}=\mathrm{High}$

(b) $\mathrm{SHL}=$ Low

Figure 12 Sampling Pulse Timing Chart

Three-Phase Shift Clocks

Three-Phase Shift Clocks and Sample Start Signal

Shift clocks HCK1, HCK2, and HCK3, which are operation clocks for the shift register, must be threephase clocks with 50 -percent duty. The HCK2 clock must be generated 120° after the HCK1 clock, and the HCK3 clock 240° after the HCK1 clock. Sampling
operation starts when 1 is input from pin DL or DR at a rising edge of the HCK1 clock pulse.

In monodirectional connection mode, all the HD66300T chips must be supplied with the same three-phase shift clock pulses. In interleaved connection mode, the frequency of the three-phase shift clocks must be half of that in monodirectional connection mode, and the phase shift between the upper drivers clocks and the lower drivers clocks must be one pixel.

Figure 13 Three-Phase Shift Clocks and Sample Start Signal

Some position shift exists between the pixels of even number lines and those of odd number lines for LCD panels having triangular patterns. This requires generating a phase shift between the three-phase clocks
for even number lines and those for odd number lines. The required phase shift is 1.5 pixels for LCD panels having a unicolor triangular pattern, while it is 0.5 pixels for those having a bicolor triangular pattern.

Figure 14

How to Generate Three-Phase Shift Clocks

Three-phase shift clocks can be generated by dividing the base clock, which is generated from a horizontal synchronizing clock, through the use of a frequency multiplier such as a PLL circuit.

The number of horizontal pixels of the LCD panel and the valid display ratio determines the base clock frequency f.

If the number of horizontal pixels is 480 and the
valid display ratio is 95% in the NTSC system, the base clock frequency f is about 9.59 MHz according to the following equation.
$f=$ (1/valid display period) \times (no. of horizontal pixels/valid display ratio)
$=480 /(52.7 \mu \mathrm{sec} \times 0.95)$ $=9.59(\mathrm{MHz})$

The three-phase clocks can be generated by dividing f by 3 (in the monodirectional connection mode) or 6 (in the interleaved connection mode).

Figure 15 Base Clock

Figure 16 Three-Phase Shift Clocks

Bias Voltage

Voltages $\mathrm{V}_{\mathrm{bsB}}, \mathrm{V}_{\mathrm{bsH}}$, and V_{bo} control the drive capability of the output buffer and differential amplifier. Here the LSI must be used in the range of

$$
\mathrm{V}_{\mathrm{cc}}-4.0 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{bsB}}, \mathrm{~V}_{\mathrm{bsH}}, \mathrm{~V}_{\mathrm{bo}} \leqq \mathrm{~V}_{\mathrm{cc}}-2.0 \mathrm{~V}
$$

$\mathrm{V}_{\mathrm{bsB}}$ controls the drive current capability of the output buffer when OE is high $\left(\mathrm{IV}_{\mathrm{sB}}\right)$ and $\mathrm{V}_{\mathrm{bsH}}$ controls the leakage correction current of when OE is low $\left(\mathrm{IV}_{\mathrm{sH}}\right)$. Figure 17 and figure 18 show the relationship between $\mathrm{IV}_{\mathrm{sB}}$ and $\mathrm{V}_{\mathrm{bsB}}$ and the relationship between $\mathrm{IV}_{\mathrm{sH}}$ and $\mathrm{V}_{\mathrm{bsH}}$, respectively.
$\mathrm{V}_{\mathrm{bsB}}$ and $\mathrm{V}_{\mathrm{bsH}}$ should be to an appropriate level for the electrical characteristics of the LCD panel used.

The rise time ($t_{D D R}$) and the fall time ($t_{D D F}$) of the output buffer depend on the input level of $V_{b s B}$. Figure 19 shows the relationship between $\mathrm{t}_{\mathrm{DDR}}{ }^{\prime} \mathrm{t}_{\mathrm{DDF}}$ and $V_{b s B}$.
V_{bo} controls the bias current of the differential amplifier ($\mathrm{IV}_{\mathrm{bo}}$).
Figure 20 shows the relationship between the rise and fall times ($t_{D D R^{\prime}} t_{D D F}$) of the output buffer and $V_{b o}$. V_{bo} should be adjusted to an appropriate level for the electrical characteristics of the LCD panel used.
The increase of total current consumption is 120 times larger than that of $\mathrm{IV}_{\mathrm{bsB}} \mathrm{IV}_{\mathrm{bsH}}$ and $\mathrm{IV}_{\mathrm{bo}}$, because figure 17, 18 and 21 each shows the case of one output and HD66300T has 120 outputs.
Figure 17, 18, 19, 20 and 21 are just for referenceand do not guarantee the characteristics.

Figure $17 \mathbf{I V}_{\text {bsB }}$ vs $\mathbf{V}_{\mathrm{cc}}-\mathbf{V}_{\text {bsB }}$

Figure $18 \mathrm{IV}_{\text {bsH }}$ vs $\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\text {bsH }}$

Figure $19 t_{D D R^{\prime}} t_{\text {DDF }}$ vs $V_{\text {baB }}$

Figure $20 t_{D D R^{\prime}} t_{D D F}$ vs $V_{b o}$

Figure $21 \mathbf{I V}_{\mathrm{bo}}$ vs $\mathbf{V}_{\mathrm{cc}}-\mathbf{V}_{\mathrm{bo}}$

Figure 22 Definition of $t_{D D R}$ and $t_{D D F}$

HD66300T

OE Signal

The OE signal has the following functions:
Clock for internal circuits: Controls the sample and hold circuitry and the controller of the shift matrix circuit, and switches the output signal at the OE signal rising edge.

Switching of drive capability of the output buffer: Determines the current drive capability of the output buffer;
$\mathrm{OE}=$ high: Drives with large current $(300 \mu \mathrm{~A}$, typ $)$ $O E=$ low: Drives with small current ($20 \mu \mathrm{~A}$, typ)

This function allows the output buffer to operate with large current during the transition of an output signal, thus shortening its falling time. At the same time it allows the output buffer to operate with small current while an output signal is stable, lowering current consumption.

The drive current is controlled by bias voltages $\mathrm{V}_{\mathrm{bsB}}$ (large current) and $\mathrm{V}_{\mathrm{bsH}}$ (small current).

Figure 23 Switching of Drive Capability of the Output Buffer

FD Signal

The FD signal is the field determination signal; a field is determined by the state of this signal at the rising edge of the OE signal. This signal synchronizes the internal controllers with TV signals.

The order of outputting signals is determined at the fourth rising edge of the OE signal after the rising or falling edge of the FD signal in double-rate sequential drive mode, while it is determined at the third rising edge in single-rate sequential drive mode; hereinafter, as long as the FD signal is not changed, signals will be output in the determined order at most every 12
pulses of the OE signal in double-rate sequential drive mode, while at most every 6 pulses in single-rate sequential drive mode.

The FD signal should usually be high in the first field and low in the second field. In some modes, however, it should be high in both fields, but low for at least onepulse time period of the OE signal during the horizontal scanning period.

The order of outputting signals and the timing of inputting the FD signal vary depending on the mode. For more details, refer to the appropriate timing charts.

Timing Charts for Each Mode

Table 2 Reference timing charts for each mode

Filter Arrangement			Single (D/S = Low)		Double (D/S = High)				
			Per-Line	Per-Field	Interlace		Non-Interlace		
			Per-Line		Per-Field	Per-Line	Per-Field		
Mosaic	Topleft to bottom-	Inter- leaved		MODE 15	MODE 18	MODE 2	MODE 6	MODE 9	MODE 13
	right	Monodirectional	MODE 16	MODE 19	MODE 1	MODE 5	MODE 8	MODE 12	
	Topright to bottom-	Inter- leaved	MODE 16	MODE 19	MODE 1	MODE 5	MODE8	MODE 12	
	left	Monodirectional	MODE 15	MODE 18	MODE 2	MODE 6	MODE 9	MODE 13	

Vertical stripe	MODE 17	MODE 20	MODE 3	MODE 7	MODE 10	MODE 14
Unicolor triangular	MODE 17	MODE 20	MODE 4	MODE 4	MODE 11	MODE 11
Bicolor triangular	MODE 17	MODE 17	MODE 4	MODE 4	MODE 11	MODE 11

Single: Single-rate sequential drive mode
Double: Double-rate sequential drive mode
Per-Line: Per-line inversion mode
Per-Field: Per-field inversion mode
Interleaved: Interleaved connection mode
Monodirectional: Monodirectional connection mode

HD66300T

MODE 2	
D/S	$V_{\text {cc }}$
L/F	$V_{\text {cc }}$
MSF1	GND
MSF2	GND

MODE 4	
D / S	$V_{c c}$
L/F	$V_{c c} /$ GND
MSF1	$V_{c c}$
MSF2	GND

HD66300T

Video 282	
FD	
${ }^{23 k+1} \times \times \times \times \times \times \times \times 1$	
${ }^{03 k+2} \times$	
Ga-1 \longrightarrow	
G_{a-2}	
Ga-480	

MODE 8	
D/S	$V_{c c}$
L/F	$V_{c c}$
MSF1	GND
MSF2	$V_{c c}$

(Video $\mathrm{DL/OR}$	
fo \longrightarrow	
Sample a	
${ }_{03}+1 \geq \times X X-X=1$	
60-480	

HD66300T

MODE 9	
D/S	V $_{\text {cc }}$
L/F	V $_{\text {cc }}$
MSF1	GND
MSF2	GND

${ }^{23 k}+2 X X X X X=1$

MODE12	
D/S	V Cc
L/F	GND
MSF1	GND
MSF2	V Cc

MODE14	
D/S	V $_{\text {cc }}$
L/F	GND
MSF1	V $_{\text {cc }}$
MSF2	V $_{\text {cc }}$

MODE15	
D/S	GND
L/F	V CC
MSF1	GND
MSF2	V CC

D3k+3 X X X $\times v_{x 3} \times v_{y 1} \times v_{x 2} \times v_{y 3} \times v_{x 1} \times v_{y 2} \times v_{x 3} \times v_{y 1} \times v_{x 2} \times v_{y 3} \times \square \times v_{x 1} \times v_{y 2} \times X$

MODE16	
D/S	GND
L/F	V CC
MSF1	GND
MSF2	GND

MODE17	
D/S	GND
L/F	$V_{C C}$
MJF1	$V_{C C}$
MSF2	$V_{C C}$

MODE18	
D/S	GND
L/F	GND
MSF1	GND
MSF2	V Cc

MODE19	
D/S	GND
L/F	GND
MSF1	GND
MSF2	GND

MODE2O	
D/S	GND
L/F	GND
MSF1	V CC
MSF2	V $_{\text {cc }}$

NTSC System TV Signals and LCD

A TV screen display, which is updated 30 times per second, is called a "frame" and is composed of 525 scanning lines. One frame contains two fields; scanning lines 1 to 262.5 scan the display in the first field, and scanning lines 262.5 to 525 scan the display in the second field to fill the gaps which are left unscanned in the first field. This scanning mode is called an "interlace scan."

The time period in which one scanning line scans the display is called a "horizontal scanning period" and is about $63.5 \mu \mathrm{~s}$. Within the horizontal scanning period, the time period that display operation is actually performed is called the "valid display period". The other period is called the "horizontal retrace period".

Therearetwo modes for displaying a TV screen image on an LCD panel. In the first mode, each scanning line in the two fields is assigned to one line of the LCD panel; thus, each of the 240 lines of the panel aredriven by the positive signal in the first field and by the negative signal in the second field. Here, $30-\mathrm{Hz}$ alternating frequency is available, but the number of vertical pixels is limited to 240.
(Single-rate sequential drive mode)
In the second mode, every other line of the LCD panel can be driven by the first field and the remaining lines
can be driven likewise by the second field. In this case, if one pixel of the LCD panel is considered, it is recognized that the pixel is driven by signals with opposite polarity every frame. This lowers the alternating frequency to 15 MHz , which is only half of the frame frequency. Driving LCD elements with signals of such low alternating frequency causes flickering and degrades display quality. To raise the alternating frequency to 30 MHz , a method can be employed in which LCD elements are driven once every field instead of once every frame.

Specifically, in the first field, the first and second lines of the LCD panel are driven respectively during the first half and second half of the complete horizontal scanning period. The same rule is repeated for the following lines. In the second field, on the other hand, the combination of two lines is different. The first line is driven during the second half of the horizontal scanning period, and then the second and third lines are driven respectively during the first and second half of the following horizontal scanning period. The same rule is repeated for the following lines.

Employing this method enables the implementation of 480 vertical pixels.
(Double-rate sequential drive mode)

Figure 24 Example of NTSC System TV Signals Scanning

Figure 25 Middle-Resolution Display by Single-Rate Sequential Drive Mode

Figure 26 High-Resolution Display by Double-Rate Sequential Drive Mode

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Remarks	Note
Power supply for logic unit	$\mathrm{V}_{\text {cc }}$	-0.3 to +7.0	V		
Power supply for analog unit	$V_{B B}$	$\mathrm{V}_{\mathrm{cc}}-23$ to $\mathrm{V}_{\mathrm{cc}}+0.3$	V		
Input voltage for logic unit	$\mathrm{V}_{\text {TC }}$	-0.3 to $\mathrm{V}_{\mathrm{cc}}{ }^{+0.3}$	V		3
Input voltage for analog unit	$\mathrm{V}_{\text {TB }}$	$\mathrm{V}_{\mathrm{BB}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V		4
Operating	$\mathrm{T}_{\text {opr }}$	-20 to +75	- C	Applies to logic circuit	
temperature		-10 to +60	${ }^{\circ} \mathrm{C}$	Applies to analog circuit	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$		
LCD level voltage	$V_{\text {LCD }}$	$\mathrm{VBB}_{\mathrm{BB}}$ to $\mathrm{VCC}^{+0.3}$	V		

Notes: 1. Value referred to $\mathrm{GND}=0 \mathrm{~V}$.
2. If LSIs are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristics limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability.
3. Applies to pins HCK1, HCK2, HCK3, DL, DR, FD, RS, OE, SHL, D/S, L/F, MSF1, MSF2, TEST1, TEST2, Vbo, VbsH, and VbsB.
4. Applies to pins Vx1,Vx2, Vx3, Vy1, Vy2, and Vy3.

Electrical Characteristics

DC Characteristics ($\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BB}}=16$ to $20 \mathrm{~V}, \mathrm{Ta}=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$

$\vec{\AA}$ DC Characteristics ($\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BB}}=16$ to $20 \mathrm{~V}, \mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}$) (Cont.)

Item	Symbol	Min	Typ	Max	Unit	Test Conditions		Notes
Offset voltage	$V_{\text {off (L) }}$	-5-180	-	$-5+180$	mV	$\begin{aligned} & V_{C C}-V_{B B}=20 \mathrm{~V} \\ & T_{a}=-10 \text { to }+60^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {in }}=-11 \mathrm{~V}$	5, 8, 9
	$V_{\text {off (H) }}$	+55-180	-	+55 + 180	mV	$\begin{aligned} & f_{c k}=2.5 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{bo}}=\mathrm{V}_{\mathrm{bsH}}=\mathrm{V}_{\mathrm{bsB}} \\ & =\mathrm{V}_{\mathrm{cc}}-3 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {in }}=-1 \mathrm{~V}$	

Notes: 1. Applies to pins HCK1, HCK2, HCK3, DL, DR, FD, RS, OE, SHL, D/S, L/F, MSF1, MSF2, TEST1, TEST2, V $\mathrm{V}_{\mathrm{bo}}{ }^{\prime} \mathrm{V}_{\mathrm{bsH}} \mathrm{H}^{\prime}$, and V_{bs}.
2. Applies to pins Vx1,Vx2, Vx3, Vy1, Vy2, and Vy3.
3. Applies to pins HCK1, HCK2, HCK3, DL, DR, FD, RS, OE, SHL, D/S, L/F, MSF1, MSF2, TEST1, and TEST2.

HITACHI
4. Applies to pins DL and DR.
5. Applies to pins D1-D120.
6. The shift register is constantly shifting one 1 .

Mode setting: $\mathrm{L} / \mathrm{F}=\mathrm{V}_{\mathrm{CC}^{\prime}} \mathrm{D} / \mathrm{S}=\mathrm{V}_{\mathrm{CC}}, \mathrm{MSF1}=\mathrm{GND}, \mathrm{MSF} 2=\mathrm{V}_{\mathrm{CC}}$
(The other input pins must be V_{CC} or GND level.)
7. The operations are the same as those when offset voltage is measured.
8. Definition of "offset voltage" is shown figure 27.
9. These characteristics are defined within the temperature which is shown in the test condition.

AC Characteristics $\left(\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BB}}=16\right.$ to $20 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Max	Unit	Test Condition	Notes
Three-phase clock period	$\mathrm{t}_{\text {ckck }}$	210	1000	ns		
Three-phase clock pulse width	$\begin{aligned} & \mathrm{t}_{\mathrm{CWH}} \\ & { }^{\mathrm{t}_{\mathrm{cWL}}} \end{aligned}$	100	-	ns		
Interval between three-phase clock falling edge and rising edge	$\begin{aligned} & t_{f r 1} \\ & t_{f r 2} \\ & t_{t r 3} \end{aligned}$	30	-	ns		1
Interval between three-phase clock rising edge and falling edge	$t_{\text {rf }}$	20	-	ns		2

Clock rise and fall times	t_{ct}	-	30	ns	
DL, DR input setup time	t_{su}	50	-	ns	
DL, DR input hold time	$\mathrm{t}_{\mathrm{HLI}}$	20	-	ns	
DL, DR output delay time	t_{pd}	-	90	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
DL, DR output hold time	$\mathrm{t}_{\mathrm{HLO}}$	5	-	ns	
OE input period	$\mathrm{t}_{\mathrm{CYCO}}$	30	80	$\mu \mathrm{~s}$	
OE input high-level pulse width	$\mathrm{t}_{\mathrm{owH}}$	3	15	$\mu \mathrm{~s}$	
OE rise and fall times	t_{or}	-	30	ns	
	t_{of}				
FD input setup time	t_{FS}	100	-	ns	
FD input hold time	t_{FH}	100	-	ns	

Notes: 1. Necessary for preventing the three-phase shift register from racing.
2. t_{rf} must satisfy the DR and DL input hold time (tHLI) of the next horizontal driver.

$$
\left(t_{\mathrm{rf}}+\mathrm{t}_{\mathrm{HLO}}>\mathrm{t}_{\mathrm{HLI}}\right)
$$

Figure 27 Offset Voltage

Figure 28 Three-Phase Clock Timing

Figure 29 Input and Output Timing

Figure 30 OE, FD Input Timing, Driver Output Timing

HD66310T (TFT-Type LCD Driver for VDT)

Description

The HD66310T is a drain bus driver for TFT-type (thin film transistor) LCDs. It receives 3-bit digital data for one dot, selects a level from eight voltage levels, and outputs the level to an LCD.

The HD66310T can drive an LCD panel with an RGBW filter to display a maximum of 4096 colors.

Features

- Full color display: a maximum of 4096 colors RGB color filter: 512 colors, 8 gray scales
RGBW color filter: 4096 colors, 8 gray scales
- High-speed operation

Number of input data bits: 3 bits $\times 4$
Maximum operation clock frequency:

- 12 MHz (HD66310T00)
- 15 MHz (HD66310T0015)

Maximum pixels: 480×640 dots

- 160 internal driver circuits
- Bidirectional shift
- Internal chip enable signal generator
- Stand-by function
- LCD driving voltage: 15 V to 23 V
- CMOS process

Ordering Information

Type No.	Max. Operating Clock Frequency	Power Supply for Logic Unit	Operating Temperature	Package
HD66310T00	12 MHz	$5 \mathrm{~V} \pm 10 \%$	-20 to $+75^{\circ} \mathrm{C}$	203 203-pin TCP
HD66310T0015	15 MHz	$5 \mathrm{~V} \pm 5 \%$	-20 to $+65^{\circ} \mathrm{C}$	

Note: The details of TCP pattern are shown in "The Information of TCP."

Pin Arrangement

Pin Description

Pin List

Pin Name	Number of Pins	Input/Output	Functlons (Refer to)
$\mathrm{V}_{\mathrm{Cc}} 1, \mathrm{~V}_{\mathrm{C}} 2$	2	Power supply	1.
GND	1	Power supply	
V_{EE}	1	Power supply	
$\begin{aligned} & \text { VOL-V7L, } \\ & \text { V0R-V7R } \end{aligned}$	16	Power supply	2.
CL1	1	Input	3.
CL2	1	Input	4.
```D00, D10, D20, to D03, D13, D23```	12	Input	5.
RVS	1	Input	6.
SHL	1	Input	7.
EIO1, EIO2	2	Input/output	8.
TEST, BS	2	Input	9.
Y1-Y160	160	Output	10.
DMY0-DMY2	3	-	11.

## HD66310T

## Pin Functions

1. $\mathbf{V}_{\mathbf{C C}} 1, \mathbf{V}_{\mathbf{C C}} \mathbf{2}, \mathbf{G N D}, \mathrm{V}_{\mathrm{EE}}$ : These pins are used for the power supply.
$\mathrm{V}_{\mathrm{CC}}$-GND: Power supply of low voltage
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ : Power supply of high voltage
2. V0L-V7L, V0R-V7R: 8-level LCD driving voltage is applied to these pins. One of the eight levels is selected according to the value of the 3-bit input display data. The $L$ and $R$ pins of the same
voltage level are connected in the driver.
3. CL1: Inputs clock pulses, which determine the output timing of the LCD driving voltage. The output changes at the CL1 rising edge.
4. CL2: Inputs clock pulses, which determine the input timing of display data. The driver samples data at the CL2 falling edge.

Table 1 Voltage Level Selection According to Display Data Value

	Display Data		Voltage Level	
D2]	D1]	D0j	$\overline{\text { RVS }}=1$	$\overline{\text { RVS }}=0$
0	0	0	Vo	V7
0	0	1	V1	V6
0	1	0	V2	V5
0	1	1	V3	V4
1	0	0	V4	V3
1	0	1	V5	V2
1	1	0	V6	V1
1	1	1	V7	Vo



Figure 1 Power Supply for the Device
5. D00-D03, D10-D13, D20-D23: Input display data. See table 1 for the voltage level selection by the display data.
6. RVS: Determines if logical I/O display data is reversed. Display data is reversed when RVS is low.
7. SHL: Selects the shift direction of display data.
8. EIO1, EIO2: Inputs/outputs chip enable signals. The SHL signal selects which pin is for input
or output. When the chip enable input signal is low, data input starts. When display data corresponding to 160 outputs are input, the chip enable output signal changes from high to low.
9. TEST, BS: Used for test purposes only. Connect to a low level for normal operation.
10. Y1-Y160: Output LCD driving signals.
11. DMY0-DMY2: Reserved pins that should be left open.

Table 2 Input/Output Selection for EIO1 and EIO2

SHL	ElO1	ElO2
GND	Input	Output
$V_{\text {CC }}$	Output	Input


SHL	Output Direction			
GND	$i=0-2$   Di0   Di1   Di2   Di3   (12 bits)		$d 03, d 13, d 23$ $\frac{d 02, d 12, d 22}{d 01, d 11, d 21}$ $d 00, d 10, d 20$ $\int$ $d 03, d 13, d 23$ $d 02, d 12, d 22$ $d 01, d 11, d 21$ $d 00, d 10, d 20$	Y1   Y2   Y3   Y4   Y157   Y158   Y159   Y160
$V_{C C}$	\begin{tabular}{\|c	}		
\hline
\end{tabular}$=0-2$ <br> Dio <br> $\mathrm{Di1}$ <br> $\mathrm{Di2}$ <br> $\mathrm{Di3}$ |  | d00, d10, d20 d01, d11, d21 d02, d12, d22 $d 03, d 13, d 23$ $\int$ $d 00, d 10, d 20$ $d 01, d 11, d 21$ $d 02, d 12, d 22$ $d 03, d 13, d 23$ | Y1 <br> Y2 <br> Y3 <br> Y4 <br> Y157 <br> Y158 <br> Y159 <br> Y160 |

Figure 2 Display Data and Output Direction

## HD66310T

## Internal Block Diagram



## Block Functions

Latch Address Selector: Contains a 6-bit up/ down counter and a decoder, and sends the latch signals to latch circuit (1) at the CL2 falling edge.

Data Reverse Circuit: Reverses the input display data when RVS $=0$, and does not reverse data when $\mathrm{RVS}=1$.

Latch Circuit (1): Consists of three planes of 160 -bit latch circuit. Each bit of 3-bit data is separately latched in its corresponding plane depending on its significance. Each plane is divided into forty 4 -bit blocks, and all four bits are latched into the block at once, as specified by the latch signal from the address selector. In total, the 3-plane circuit latches 12 bits of data at one time.

Latch Circuit (2): Consists of three planes of 160-bit latch circuit, which latches the data from latch circuit (1) at the timing determined by CL1, and holds the data for one line scanning period.

Level Shifter: Raises the driving voltage of 5 V to the appropriate LCD driving voltage.

LCD Driving Circuit: Outputs an 8-level LCD driving voltage. This circuit receives 3-bit data for one dot from latch circuit (2) and selects one level from eight voltage levels.

Test Circuit: Generates test signals.

## System Configuration

A block configuration of the TFT-type color display system using the HD66310 is shown in figure 3.

The HD66310 receives 3-bit data for one pixel and selects one of the eight LCD driving voltage levels to send to the LCD. The LCD driving output
circuit, which is produced by the CMOS structure, can use any LCD driving voltage level from $V_{C C}$ to $\mathrm{V}_{\mathrm{EE}}$. When the LCD panel uses an RGB color filter (the Triad arrangement), $512\left(8^{3}\right)$ colors can be displayed. When using an RGBW color filter (the Quad arrangement), 4096 ( $8^{4}$ ) colors can be displayed.


Figure 3 TFT-Type Multiple Color Display System

## Internal Operation

## 8-Level Output

The HD66310 internal circuit unit for one data output is shown in figure 4. The circuit receives 3-bit data ( $\mathrm{D} 0 \mathrm{j}, \mathrm{D} 1 \mathrm{j}, \mathrm{D} 2 \mathrm{j}$ ) and selects one of eight voltage levels (VO-V7) to output to the LCD.

The transfer gates of the output circuit are produced by the CMOS structure. Therefore, any voltage level between $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$ can be applied to lines V0 to V7.

The HD66310 has 160 of the above circuits.

## Operation Timing

The HD66310 operation timing is shown in figure 5.

When the SHL signal is at the GND level, data input is started by a low EIO1 (data input enable)
signal. At the CL2 falling edge, 12 bits of data, which are for four outputs ( 3 bits for gray scales $\times$ 4 outputs), are input together. When the data input corresponding to 160 outputs are completed, the HD66310 automatically enters the stand-by mode, and the EIO2 signal changes to low.

The LCD driving output changes at the CL1 rising edge. The voltage level selected by data d 1 is output from pin Y1, and the level selected by d160 is output from Y160. See table 1 for the voltage level selection by the input data.

When the SHL signal is at the $\mathrm{V}_{\mathrm{CC}}$ level, data input is started by a low EIO2 signal. When the data input for 160 outputs are completed, the EIO1 signal changes to low. The voltage level selected by data d1 is output from pin Y160, and the level selected by d 160 is output from Y1.


Figure 4 LCD Driving Circuit


Figure 5 Basic Operation Timing Chart

## Cascade Connection

When the SHL signal is at the GND level, the HD66310 begins to input data when the EIO1 signal goes low. When the data input is completed, the EIO2 signal changes to low. By connecting the EIO2 pin of the first HD66310 to the EIO1 pin of the next HD66310, the low EIO2 signal activates
the next HD66310. Figure 6 shows a connection example.

When the SHL signal is at the $\mathrm{V}_{\mathrm{CC}}$ level, the EIO2 pin of the first HD66310 is connected to GND, and the EIO1 pin is connected to the next HD66310 EIO2 pin.


Figure 6 Chip Enable Operation (SHL = GND)

## LCD Driving Power Supply Circuitry

## Multiple-Level Driving Voltage Method

AC voltage must be applied to the LCD, since DC voltage deteriorates the LCD. To display eight gray scales, 16 voltage levels, shown in figure 7, must be applied.

Although the HD66310 has eight LCD driving voltage input levels, it can output 16 driving voltage levels using the level selector shown in figure 8 , since the transfer gates of the output circuit are produced by the CMOS structure.

## External Power Supply Circuitry

Figures 8 and 9 show the external power supply circuit when displaying 512 colors in the Triad
arrangement, and figure 10 shows the circuit for displaying 64 colors in the Triad arrangement. Table 3 shows the specifications of the LCD panel and the HD66310 pins for each power supply circuit.

The circuit shown in figure 8 is the basic one used when displaying 512 colors in the Triad arrangement. However, the HD66310 can dispense with the level selector, as shown in figure 9, using the internal $\overline{\text { RVS }}$ (output reverse) pin. See table 1 for detailed $\overline{\mathrm{RVS}}$ functions.

When displaying 64 colors in the Triad arrangement, the RVS pin functions as the alternating signal input pin, as shown in figure 10.


Figure 7 HD66310 Output Waveform

Table 3 Color Display and Pin Specifications

Output Level	Panel Spec.	Display Data			RVS pin	Power Supply (Refer to)
		Di2	Di1	Dio		
$\begin{aligned} & 8 \times 2 \\ & (A C) \\ & \hline \end{aligned}$	Quad: 4096 colors   Triad: 512 colors	$1 / 0$   (upper bit)	1/0	$1 / 0$   (lower bit)	1	Fig. 8
$\begin{aligned} & 8 \times 2 \\ & (A C) \\ & \hline \end{aligned}$	Quad: 4096 colors   Triad: 512 colors	$\begin{aligned} & 1 / 0 \\ & \text { (upper bit) } \end{aligned}$	1/0	$1 / 0$   (lower bit)	Alternating signal	Fig. 9
$\begin{aligned} & 4 \times 2 \\ & (\mathrm{AC}) \\ & \hline \end{aligned}$	Quad: 256 colors   Triad: 64 colors	1	$\begin{aligned} & 1 / 0 \\ & \text { (upper bit) } \end{aligned}$	$1 / 0$   (lower bit)	Alternating signal	Fig. 10

1: $V_{C C}$ level voltage
0: GND level voltage

Figure 8 External Power Supply Example 1


Figure 9 External Power Supply Example 2


Figure 10 External Power Supply Example 3

## Design for Timing

When using the RVS pins to simplify the power source, as shown in figures 9 and 10, it is recommended to add a vertical retrace period, (a scanning period in which no scan electrode is selected) at the end of a frame scanning period, as shown in figure 12 , for the following two reasons.

- As shown in figure 4, the data reverse circuit is before the latch circuit (1). The LCD driving output is reversed one CL1 period after a transition of the RVS signal, as shown in figure

11. However, the power supply lines immediately reverses polarity after a transition of the RVS signal, as shown in figures 9 and 10. Therefore, the HD66310 outputs invalid data during the last CL1 of a frame period.

- In the power supply circuits shown in figures 9 and 10 , voltage temporarily becomes unstable just after the RVS transition, causing the LCD display to become jumbled.


Figure 11 RVS and LCD Driving Signals Timing


Figure 12 Vertical Retrace Period



Figure 14 Timing Chart

## HD66310T

## Absolute Maximum Ratings

| Item | Symbol | Ratings | Unit | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Power supply for <br> logic unit | $\mathrm{V}_{\mathrm{CC}}$ | -0.3 to +7.0 | V | 2 |
| Power supply for <br> LCD driving unit | $\mathrm{V}_{\mathrm{EE}}$ | $\mathrm{V}_{\mathrm{CC}}-25$ to $\mathrm{V}_{\mathrm{CC}}+0.3$ | V |  |
| Input voltage (1) | $\mathrm{V}_{\mathrm{T} 1}$ | -0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$ | V | 2,3 |
| Input voltage (2) | $\mathrm{V}_{\mathrm{T} 2}$ | $\mathrm{~V}_{\mathrm{EE}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$ | V |  |
| Operating temperature | $\mathrm{T}_{\mathrm{opr}}$ | -20 to $+75(\mathrm{HD66310T00)}$ <br> -20 to +65 (HD66310T0015) | ${ }^{\circ} \mathrm{C}$ |  |
| Storage temperature | $\mathrm{T}_{\mathrm{stg}}$ | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |  |

Notes: 1. Exceeding the absolute maximum ratings could result in permanent damage to the LSI. The recommended operating conditions are within the electrical characteristic limits listed on the following pages. Exceeding these limits may cause malfunctions and affect reliability.
2. Values are in reference to $\mathrm{GND}=0 \mathrm{~V}$.
3. Applies to input pins SHL, CL1, CL2, BS, $\overline{\text { RVS }}$, TEST, and D00-D23. Also applies to input/ output pins EIO1 and EIO2 when these pins function as input pins.

## Electrical Characteristics

## DC Characteristics

( $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=15$ to $23 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+75^{\circ} \mathrm{C}$ in 12 MHz version)
$\left(V_{C C}=+5 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=15\right.$ to $23 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20$ to $+65^{\circ} \mathrm{C}$ in 15 MHz version)

| Item | Symbol | Min. | Typ. | Max. | Unit | Test Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Notes

Notes: 1. Voltage between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$.
2. Applies to CL1, CL2, SHL, Dij, $\overline{\operatorname{RVS}}, \mathrm{TEST}$, and BS.
3. Applies to EIO1 (input) and EIO2 (input).
4. Applies to EIO1 (output) and EIO2 (output).
5. Applies to CL1, CL2, SHL, $\overline{R V S}, \mathrm{Dij}, \mathrm{TEST}$, and BS.
6. Applies to EIO1 (input) and EIO2 (input).
7. Applies to VOL to V7L and VOR to V7R.
8. Applies to Y1 to Y160.
9. Current between $\mathrm{V}_{\mathrm{CC}}$ and $G N D$ under the conditions of $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$, and no load on the output pins.
10. Current between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ under the conditions of $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$, and no load on the output pins.
11. $\mathrm{f}_{\mathrm{CL} 2}$ and $\mathrm{f}_{\mathrm{CL} 1}$ are $15 \mathrm{MHz}, 37.5 \mathrm{kHz}$ respectively in 15 MHz version.

## AC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{GND}=\mathbf{0} \mathrm{V}, \mathrm{T}_{\mathrm{a}}=-\mathbf{2 0}\right.$ to $+\mathbf{7 5} 5^{\circ} \mathrm{C}$ in 12 MHz version)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm \mathbf{5 \%}, \mathrm{GND}=\mathbf{0} \mathrm{V}, \mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}\right.$ to $+65^{\circ} \mathrm{C}$ in 15 MHz version)

Item	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Notes
Clock period	${ }^{\text {t }}$ CYC	83 (66)			ns		1
Clock high-level pulse width	${ }^{\text {t }}$ CWH	30 (23)			ns		1
Clock low-level pulse width	$\mathrm{t}_{\text {cWL }}$	30 (23)			ns		1
Clock rise time	$\mathrm{t}_{\mathrm{R}}$			10 (10)	ns		2
Clock fall time	$\mathrm{t}_{\mathrm{F}}$			10 (10)	ns		2
Clock setup time	$\mathrm{t}_{\text {SU }}$	100 (100)			ns		2
Clock hold time	$t_{H}$	100 (100)			ns		2
Data setup time	$\mathrm{t}_{\text {DSU }}$	20 (10)			ns		3
Data hold time	$t_{\text {DH }}$	30 (25)			ns		3
Enable input setup time	$\mathrm{t}_{\text {ESU }}$	20 (10)			ns		4
Enable output delay time	$\mathrm{t}_{\mathrm{ED}}$			53 (46)	ns	See figure 16 for test load	4
CL1 high-level pulse width	${ }^{\text {twh }}$	100 (100)			ns		5
$\overline{\mathrm{RVS}}$ setup time	$t_{\text {RSU }}$	50 (50)			ns		6
RVS hold time	$\mathrm{t}_{\text {RH }}$	50 (50)			ns		6

Data in () is the characteristics in 15 MHz version.
Notes: 1. Applies to CL2.
2. Applies to CL1 and CL2.
3. Applies to Dij and CL2.
4. Applies to EIO1, EIO2, and CL2.
5. Applies to CL1.
6. Applies to $\overline{\mathrm{RVS}}$ and CL2.


Figure 15 Timing Chart

Chip enable
output

$$
30 \mathrm{pF} \frac{1}{\pi}
$$

Figure 16 Test Load

# HD66330T (TFT Driver) (64-Level Gray Scale Driver for TFT Liquid Crystal Display) 

# - Preliminary - 

## Description

The HD66330T, a signal driver LSI, drives an active matrix LCD panel having TFTs (thin film transistor) in the picture element (pixel) area. The LSI receives 6 -bit digital display data per dot and outputs corresponding gray scale voltage. This LSI easily achieves multicoloring of a VGA-sized color TFT LCD and is suitable for applications such as multimedia.

## Features

- Multicolor display

The HD66330T receives 6-bit digital display data per dot, and selects and outputs an LCD drive voltage among 64 -level gray scale voltages. When R, G, and B color filters are added to the LCD panel, a maximum of 260,000 colors can be displayed.

- High-speed operation

Operating clock: 28 MHz maximum
Amount of input data: 3 dots $\times 6$ bits (gray scale data)

- Applicable systems

$$
\text { PC }(640 \times 480 / 400 \text { dots }) \text { systems }
$$

- Internal 192-bit drive function
- Internal standby function
- Internal chip-enable signal generation circuit
- Supply voltage: 4.5 V to 5.5 V
- Bidirectional shift


## Ordering Information

Type No.	Outer lead pitch $(\mu \mathrm{m})$	Package
HD66330TAO	160	236-pin TCP

Note: The details of TCP pattern are shown in "The Information of TCP."

## Pin Arrangement



Note: This figure does not specify the tape carrier package dimensions.

1	V8L	11	D01	21	SHL	31	D21	41	V5R
$\mathbf{2}$	V7L	12	D02	22	GND	32	D22	42	V6R
3	V6L	13	D03	23	EIO2	33	D23	43	V7R
4	V5L	14	D04	24	D10	34	D24	44	V8R
5	V4L	15	D05	25	D11	35	D25		
6	V3L	16	EIO1	26	D12	36	VOR		
7	V2L	17	CL4	27	D13	37	V1R		
8	V1L	18	CL2	28	D14	38	V2R		
9	VOL	19	CL1	29	D15	39	V3R		
10	D00	20	VCC	30	D20	40	V4R		

## HD66330T

## Internal Block Diagram



## Block Functions

Clock Controller: Generates chip enable signals (EIO2 and EIO1) and controls the internal timing signals.

Latch Address Selector: Generates latch signals, which sequentially trigger latch operation of input display data.

Latch Circuit 1: Latches 3-pixel $\times 6$-bit sequentially input display data; composed of $192 \times 6$ bits.

Latch Circuit 2: Latches $192 \times 6$-bit data latched in latch circuit 1 synchronously with the CL1 signal.

Decoder: Generates a decode signal per pixel for the LCD drive voltage generation circuit using an upper 3-bit decoder and a lower 3-bit decoder.

LCD Drive Voltage Generation Circuit: Generates LCD drive voltages from LCD drive power supply voltages according to the decode signals generated by the decoder.

## Pin Functions

Signal Name	Numbers	I/O	Functions
$V_{\text {cc }}$	1	Power supply	$V_{C C}-G N D$ : Supplies power to the LSI.
GND	1	Power supply	
$\begin{aligned} & \text { V8L-VOL, } \\ & \text { V8R-VOR } \end{aligned}$	18	Power supply	Supplies power to the LCD drive voltage generation circuit. The same voltage must be applied to corresponding L- and R-power pins within a range of $V_{C C}$ to GND.
CL1	1	Input	Inputs display data latch pulses for latch circuit 2. At the rising edge of each CL1 pulse, latch circuit 2 latches display data input from latch circuit 1 and outputs LCD drive voltages corresponding to the latched data.
CL2	1	Input	Inputs display data latch pulses for latch circuit 1. At the falling edge of each CL2 pulse, latch circuit 1 latches display data input via D25-D00 and outputs the latched data to latch circuit 2.
$\begin{aligned} & \text { D25-D20, } \\ & \text { D15-D10, } \\ & \text { D05-D00 } \end{aligned}$	18	Input	Inputs 6-bit (gray scale data) $\times 3$-pixel display data.
SHL	1	Input	Selects the shift direction of the display data.
CL4	1	Input	Controls the 2-phase function. A high level period of this signal specifies the first phase period that performs high output current operation, and a low level specifies the second phase period that outputs the voltage corresponding to the display data.

## Pin Functions (cont)

Signal Name	Numbers	/o	Functions		
EIO1, EIO2	2	Input/output	Provides chip-enable signals. Input or output depends on the SHL signal, as shown below. At any one time, the signal being used for input must go low to enable the LSI to latch display data, and the signal being used for output will be driven low after 192 pixels of display data have been read.		
			SHL Level	EIO1	EIO2
			GND	Input	Output
			$\mathrm{V}_{\text {cc }}$	Output	Input
$\underline{\text { Y1-Y192 }}$	192	Output	Outputs LCD drive voltages.		

## HD66330T

## System Overview

The following shows a block diagram of a TFT color LCD system configured with multiple HD66330Ts. The HD66330Ts latch 6-bit data per dot, and selects and outputs one level among

64 internally generated LCD drive voltage levels. When the pixels are structured using R, G, and B color filters, a maximum of 260,000 colors can be displayed.


## Timing Chart for Display Data

The following figures show the display data timing and hardware configuration for the TFT color LCD system configured with HD66330Ts. Since color panels usually have a narrow connection pitch with driver LSIs, the HD66330Ts should be located above (upper drivers) and below (lower drivers)
the panel and alternately connected to the panel pins. In such a configuration, the RGB data and the system dot clock (DCLK) should be divided between the upper and lower drivers. Here, DCLK should be divided into two by the controller.


## Power Supply Circuit Example

The figures below show an example of a circuit used to generate LCD drive power supply voltages V0 to V8. In this example, 18 levels of voltage are generated by divided resistance to alternate the current for the LCD panel, and either positive or nega-
tive voltages are selected and supplied to the HD66330T. To stabilize voltage, an operational amplifier should be connected to each selector output.


## Power Supply Voltage Examples

Voltage levels to be input to LCD drive power supply pins V0 to V8 should be determined according to panel specifications such as voltage intensity
characteristics. The table below lists voltage level examples for reference:

	V0	V1	V2	V3	V4	V5	V6	V7	V8	Counter Electrode
Voltage (V)	0	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0	0
	5.0	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0	5.0

## Relationship between Display Data and Output Voltage

The HD66330T outputs 64 -level gray scale voltage generated by 9 levels of LCD drive power supply voltage and 6 -bit digital data. The figure below
shows the relationship among the input voltages from the LCD drive power supply circuit, digital codes, and output voltages.

Display Data						Output Voltage	
Di5	Di4	Di3	Di2	Di1	Dio	1st Phase	2nd Phase
0	0	0	0	0	0	V1	$\mathrm{V} 0+1 / 8 \times(\mathrm{V} 1-\mathrm{V} 0)$
0	0	0	0	0	1	$\mathrm{V}_{1}$	$\mathrm{V} 0+2 / 8 \times\left(\mathrm{VI}-\mathrm{V}^{2}\right)$
0	0	0	0	1	0	V1	$\mathrm{VO}+3 / 8 \times(\mathrm{V} 1-\mathrm{V} 0)$
0	0	0	0	1	1	V1	$\mathrm{V} 0+4 / 8 \times(\mathrm{V} 1-\mathrm{V} 0)$
0	0	0	1	0	0	$V_{1}$	$\mathrm{VO}+5 / 8 \times(\mathrm{V} 1-\mathrm{V} 0)$
0	0	0	1	0	1	V1	$\mathrm{V} 0+6 / 8 \times\left(\mathrm{V}_{1}-\mathrm{V} 0\right)$
0	0	0	1	1	0	$\mathrm{V}_{1}$	$\mathrm{V} 0+7 / 8 \times\left(\mathrm{V}_{1}-\mathrm{V}_{0}\right)$
0	0	0	1	1	1	V1	V 1
0	0	1	0	0	0	V2	$\mathrm{V}_{1}+1 / 8 \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
0	0	1	0	0	1	V2	$\mathrm{V}_{1}+2 / 8 \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
0	0	1	0	1	0	V2	$\mathrm{V} 1+3 / 8 \times(\mathrm{V} 2-\mathrm{V} 1)$
0	0	1	0	1	1	V2	$\mathrm{V} 1+4 / 8 \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
0	0	1	1	0	0	V2	$\mathrm{V} 1+5 / 8 \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
0	0	1	1	0	1	V2	$\mathrm{V} 1+6 / 8 \times\left(\mathrm{V} 2-\mathrm{V}_{1}\right)$
0	0	1	1	1	0	V2	$\mathrm{V} 1+7 / 8 \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
0	0	1	1	1	1	V2	V2
0	1	0	0	0	0	V3	$\mathrm{V} 2+1 / 8 \times(\mathrm{V} 3-\mathrm{V} 2)$
0	1	0	0	0	1	V3	$\mathrm{V} 2+28 \times(\mathrm{V} 3-\mathrm{V} 2)$
0	1	0	0	1	0	V3	$\mathrm{V} 2+3 / 8 \times(\mathrm{V} 3-\mathrm{V} 2)$
0	1	0	0	1	1	V3	$\mathrm{V} 2+4 / 8 \times(\mathrm{V} 3-\mathrm{V} 2)$
0	1	0	1	0	0	V3	$\mathrm{V} 2+5 / 8 \times(\mathrm{V} 3-\mathrm{V} 2)$
0	1	0	1	0	1	V3	$\mathrm{V} 2+6 / 8 \times(\mathrm{V} 3-\mathrm{V} 2)$
0	1	0	1	1	0	V3	$\mathrm{V} 2+7 / 8 \times(\mathrm{V} 3-\mathrm{V} 2)$
0	1	0	1	1	1	V3	V3
0	1	1	0	0	0	V4	$\mathrm{V} 3+1 / 8 \times(\mathrm{V} 4-\mathrm{V} 3)$
0	1	1	0	0	1	V4	$\mathrm{V} 3+2 / 8 \times(\mathrm{V} 4-\mathrm{V} 3)$
0	1	1	0	1	0	V4	$\mathrm{V} 3+3 / 8 \times(\mathrm{V} 4-\mathrm{V} 3)$
0	1	1	0	1	1	V4	$\mathrm{V} 3+4 / 8 \times(\mathrm{V} 4-\mathrm{V} 3)$
0	1	1	1	0	0	V4	$\mathrm{V} 3+5 / 8 \times(\mathrm{V} 4-\mathrm{V} 3)$
0	1	1	1	0	1	V 4	$\mathrm{V} 3+6 / 8 \times(\mathrm{V} 4-\mathrm{V} 3)$
0	1	1	1	1	0	V4	$\mathrm{V} 3+7 / 8 \times(\mathrm{V} 4-\mathrm{V} 3)$
0	1	1	1	1	1	V4	V4


Display Data						Output Voltage	
Di5	Di4	Di3	Di2	Di1	Dio	1st Phase	2nd Phase
1	0	0	0	0	0	V5	$\mathrm{V} 4+1 / 8 \times(\mathrm{V} 5-\mathrm{V} 4)$
1	0	0	0	0	1	V5	$\mathrm{V} 4+2 / 8 \times(\mathrm{V} 5-\mathrm{V} 4)$
1	0	0	0	1	0	V5	V4 + 3/8 $\times$ (V5-V4)
1	0	0	0	1	1	V5	$\mathrm{V} 4+4 / 8 \times(\mathrm{V} 5-\mathrm{V} 4)$
1	0	0	1	0	0	V5	$\mathrm{V} 4+5 / 8 \times(\mathrm{V} 5-\mathrm{V} 4)$
1	0	0	1	0	1	V5	$\mathrm{V} 4+6 / 8 \times(\mathrm{V} 5-\mathrm{V} 4)$
1	0	0	1	1	0	V5	$\mathrm{V}_{4}+7 / 8 \times$ (V5-V4)
1	0	0	1	1	1	V5	V5
1	0	1	0	0	0	V6	$\mathrm{V} 5+1 / 8 \times(\mathrm{V} 6-\mathrm{V} 5)$
1	0	1	0	0	1	V6	$\mathrm{V} 5+2 / 8 \times(\mathrm{V} 6-\mathrm{V} 5)$
1	0	1	0	1	0	V6	$\mathrm{V} 5+3 / 8 \times(\mathrm{V} 6-\mathrm{V} 5)$
1	0	1	0	1	1	V6	$\mathrm{V} 5+4 / 8 \times(\mathrm{V} 6-\mathrm{V} 5)$
1	0	1	1	0	0	V6	$\mathrm{V} 5+5 / 8 \times(\mathrm{V} 6-\mathrm{V} 5)$
1	0	1	1	0	1	V6	$\mathrm{V} 5+6 / 8 \times(\mathrm{V} 6-\mathrm{V} 5)$
1	0	1	1	1	0	V6	$\mathrm{V} 5+7 / 8 \times(\mathrm{V} 6-\mathrm{V} 5)$
1	0	1	1	1	1	V6	V6
1	1	0	0	0	0	V7	$\mathrm{V} 6+1 / 8 \times(\mathrm{V} 7-\mathrm{V} 6)$
1	1	0	0	0	1	V7	$\mathrm{V} 6+2 / 8 \times(\mathrm{V} 7-\mathrm{V} 6)$
1	1	0	0	1	0	V7	$\mathrm{V} 6+3 / 8 \times\left(\mathrm{V} 7-\mathrm{V}_{6}\right)$
1	1	0	0	1	1	V7	$\mathrm{V} 6+4 / 8 \times\left(\mathrm{V} 7-\mathrm{V}_{6}\right)$
1	1	0	1	0	0	V7	$\mathrm{V} 6+5 / 8 \times(\mathrm{V} 7-\mathrm{V} 6)$
1	1	0	1	0	1	V7	$\mathrm{V} 6+6 / 8 \times(\mathrm{V} 7-\mathrm{V} 6)$
1	1	0	1	1	0	V7	$\mathrm{V} 6+7 / 8 \times(\mathrm{V} 7-\mathrm{V} 6)$
1	1	0	1	1	1	V7	V7
1	1	1	0	0	0	V8	$\mathrm{V} 7+1 / 8 \times(\mathrm{V} 8-\mathrm{V} 7)$
1	1	1	0	0	1	V8	$\mathrm{V} 7+2 / 8 \times(\mathrm{V} 8-\mathrm{V} 7)$
1	1	1	0	1	0	V8	$\mathrm{V} 7+3 / 8 \times(\mathrm{V} 8-\mathrm{V} 7)$
1	1	1	0	1	1	V8	$\mathrm{V} 7+4 / 8 \times(\mathrm{V} 8-\mathrm{V} 7)$
1	1	1	1	0	0	V8	$\mathrm{V} 7+5 / 8 \times(\mathrm{V} 8-\mathrm{V} 7)$
1	1	1	1	0	1	V8	$\mathrm{V} 7+6 / 8 \times(\mathrm{V} 8-\mathrm{V} 7)$
1	1	1	1	1	0	V8	$\mathrm{V} 7+7 / 8 \times(\mathrm{V} 8-\mathrm{V} 7)$
1	1	1	1	1	1	V8	V8

Note: 1st phase: The period in which 2-phase control signal CL4 is high and high output current operation is performed.
2nd phase: The period in which 2-phase control signal CL4 is low and low output current operation is performed (see p. 1199 for details).


## Output Offset Voltage

The HD66330T has an internal DA converter per output. The upper three bits of 6 -bit display data select and apply the LCD drive power supply voltage level to the DA converter, and the lower three bits select and output one analog voltage level.

Output offset voltage $\mathrm{V}_{\text {off }}$ is defined as the difference between the actual output voltage and the ideal output voltage expected from the LCD drive power supply voltage and digital display data. The $\mathrm{V}_{\text {off }}$ can be considered as the total output voltage differences including the differences between LSIs, between different output pins of the same LSI, and
that caused by concentrated current in a LSI due to a particular display pattern.

The figure below shows the characteristics of output voltage with respect to LCD drive power supply voltages. Since output offset voltage $\mathbf{V}_{\text {off }}$ depends on the difference between adjoining LCD drive power supply voltages $|\mathrm{Vn}-\mathrm{Vn}+1|(\mathrm{n}=0$ to 7) output offset voltage will also decrease when the power supply voltage difference $1 \mathrm{Vn}-\mathrm{Vn}+11$ is decreased.

## LCD Drive Power Supply Voltage Examples

	V0	V1	V2	V3	V4	V5	V6	V7	V8
Voltage (V)	0	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0



## HD66330T

## LCD Drive Power Supply Voltage Examples

	V8	V7	V6	V5	V4	V3	V2	V1	V0
Voltage (V)	0	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0



## 2-Phase Operation

A high-speed low-power output switching function is provided by dividing the horizontal period into 1st-and 2nd-phase periods, where high output current operation and low output current operation are alternately performed.

During the 1st-phase period, the specified voltage is applied to the LCD panel quickly with a low output impedance of about $215 \mathrm{k} \Omega$ (high output current operation). Here, the applied voltage is selected by the upper three bits of display data (see p. 1196).

During the 2 nd-phase period, a voltage is applied
corresponding to the display data with an output impedance of about $17 \mathrm{k} \Omega$ (low output current operation).

In general, since it is not required to secure the 1st phase in a $640 \times 480$-dot color panel (see the figure below for assumed load condition), CL4 can be fixed low.

This function is effective when the panel load is large or when a horizontal period is short and gray scale voltage must be applied quickly. For settings in the 1st-phase period, see note 4 in Electrical Characteristics.


## HD66330T

## Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Notes
Power supply voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	V	1
Input voltage (1)	$\mathrm{V}_{\mathrm{t}}$	-0.3 to $+\mathrm{V}_{\mathrm{CC}}+0.3$	V	1,2
Input voltage (2)	$\mathrm{V}_{\mathrm{t} 2}$	-0.3 to $+\mathrm{V}_{\mathrm{CC}}+0.3$	V	$1,3,4$
LCD power supply input current	$\mathrm{I}_{\mathrm{t}}$	$\pm 20$	mA	5
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-40 to +125	${ }^{\circ} \mathrm{C}$	

If the LSI is used beyond the above maximum ratings, it may be permanently damaged. It should always be used within its specified operating range for normal operation to prevent malfunction or degraded reliability.
Notes: 1. Assuming GND $=0 \mathrm{~V}$.
2. Applies to input pins CL1, CL2, CL4, SHL, and Dij, and I/O pins EIO1 and EIO2 when used as input.
3. Specifies voltage to be input to the LCD drive power supply pins.

Either of the following relationships must hold:
$\mathrm{V}_{\mathrm{LCD}} \geq \mathrm{V} 8 \geq \mathrm{V} 7 \geq \mathrm{V} 6 \geq \mathrm{V} 5 \geq \mathrm{V} 4 \geq \mathrm{V} 3 \geq \mathrm{V} 2 \geq \mathrm{V} 1 \geq \mathrm{V} 0 \geq$ GND or
$\mathrm{V}_{\mathrm{LCD}} \geq \mathrm{V} 0 \geq \mathrm{V} 1 \geq \mathrm{V} 2 \geq \mathrm{V} 3 \geq \mathrm{V} 4 \geq \mathrm{V} 5 \geq \mathrm{V} 6 \geq \mathrm{V} 7 \geq \mathrm{V} 8 \geq$ GND
4. The following relationship must hold for Vo to V8 potentials:

$$
|V n-V n+1| \leq 2 V(n=0 \text { to } 7)
$$

5. Specifies the maximum ratings for current in the LCD drive power supply input pins Vo to V8 (total current for both $L$ and $R$ pins).

## Electrical Characteristics

DC Characteristics ( $\mathrm{V}_{\mathrm{CC}}-\mathbf{G N D}=4.5$ to 5.5 V , and $\mathrm{T}_{\mathrm{a}}=20$ to $75^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Applicable Pins	Min	Typ	Max	Unit	Test Conditions	Notes
Input high-level voltage	$\mathrm{V}_{\mathrm{IH}}$	```CL1, Cl2, SHL, Dij, CL4, EIO1(I). ElO2(I)```	$0.8 \times V_{c c}$		$V_{C C}$	V		
Input low-level voltage	VIL		0		$0.2 \times V_{c c}$	V		
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & \mathrm{ElO1(O)} \\ & \mathrm{ElO}(\mathrm{O}) \end{aligned}$	$V_{c c}-0.4$			V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	
Output low-level voltage	$\mathrm{V}_{\mathrm{O}}$				0.4	V	$\mathrm{l}_{\mathrm{a}}=0.4 \mathrm{~mA}$	
Input leakage current (1)	$\mathrm{L}_{\text {L1 }}$	$\begin{aligned} & \text { CL1, Cl2, } \\ & \text { SHL, Dij, CL4 } \end{aligned}$	-5		+5	$\mu \mathrm{A}$		
Input leakage current (2)	$\mathrm{l}_{\text {L2 }}$	$\begin{aligned} & \text { EIO1(I), } \\ & \text { EIO2(I) } \end{aligned}$	-10		+10	$\mu \mathrm{A}$		
LCD drive power supply input current	$I_{t}$	VOL-V8L, VoR-V8R	-10		+10	mA	Total of $L$ and R pins $\begin{aligned} & \|V n-V n+1\|=1 V \\ & (n=0 \text { to } 7) \end{aligned}$	
Output offset voltage	$V_{\text {off }}$	Y1-Y192	-		60	mV	$\begin{aligned} & V_{c c}-G N D=5 \mathrm{~V} \\ & \|V n-V n+1\|=1 \mathrm{~V} \\ & (\mathrm{n}=0 \text { to } 7) \end{aligned}$	$V$
			-		30	mV	$\begin{aligned} & V_{C C}-G N D=5 V \\ & \|V n-V n+1\|=0.5 V \\ & (n=0 \text { to } 7) \\ & \hline \end{aligned}$	
Difference between output pins	$V_{\text {ref }}$	Y1-Y192	-		$\pm 30$	mV	$\begin{aligned} & V_{c c}-G N D=5 \mathrm{~V} \\ & \|V n-V n+1\|=1 \mathrm{~V} \\ & (n=0 \text { to } 7) \\ & \hline \end{aligned}$	2
			-		$\pm 15$	mV	$\begin{aligned} & V_{C C}-G N D=5 V \\ & \|V n-V n+1\|=0.5 V \\ & (n=0 \text { to } 7) \end{aligned}$	
Driver output ON resistance	$\mathrm{R}_{\text {on1 }}$	Y1-Y192	-		2.5	k $\Omega$	1st phase $V_{C C}-G N D=5 V$	
	$\mathrm{R}_{\text {on2 }}$	Y1-Y192	-		17	k $\Omega$	2nd phase $V_{C C}-G N D=5 V$	
Current consumption (1)	$\mathrm{I}_{\mathrm{p}}$	Between $V_{C C}$ and GND	-		20	mA	Data latch ${ }_{\mathrm{CLL}}=15 \mathrm{MHz},$ $\mathrm{f}_{\mathrm{CL} 1}=33 \mathrm{kHz}$	3
Current consumption (2)	$\mathrm{l}_{\mathrm{p} 2}$	Between   $V_{C C}$ and GND	-		4	mA	Standby $\begin{aligned} & \mathrm{f}_{\mathrm{CL} 2}=15 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{CL} 1}=33 \mathrm{kHz} \end{aligned}$	

## HD66330T

Notes: 1. Output offset voltage $\mathrm{V}_{\text {off }}$ is defined as difference between the actual output voltage and output voltage expected from the LCD drive power supply voltage and digital display data.
$V_{\text {off }}$ shows the following characteristics with respect to voltage difference between adjoining LCD drive power supply pins $|V n-V n+1|$.

2. $\mathrm{V}_{\text {ref }}$ can be considered as the maximum total output voltage differences including the differences between LSIs, between output pins of the same LSI, and that caused by concentrated current in an LSI due to a particular display pattern.
3. Except for the current flowing in V0 to V8; outputs are unloaded.

AC Characteristics ( $\mathbf{V}_{\mathbf{C C}}-\mathbf{G N D}=4.5$ to 5.5 V , and $\mathrm{T}_{\mathrm{a}}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$, unless otherwise noted)

Hem	Symbol	Applicable Pin	Min	Typ	Max	Unit	Test Condition	Notes
Clock cycle time	$\mathrm{f}_{\text {max }}$	CL2			28	MHz		
Clock high-level width	$\mathrm{T}_{\text {cwh }}$	CL2	10			ns		
Clock high-level width	$\mathrm{T}_{\text {cwl }}$	CL2	10			ns		
Clock rise time	$\mathrm{T}_{\mathrm{r}}$	CL1, CL2			6	ns		
Clock fall time	$\mathrm{T}_{\mathrm{f}}$	CL1, CL2			6	ns		
Clock setup time	$\mathrm{T}_{\text {su }}$	CL1, CL2	50			ns		
Clock hold time	$\mathrm{T}_{\mathrm{h}}$	CL1, CL2	70			ns		
Data setup time	$\mathrm{T}_{\text {dsu }}$	Dij, CL2	10			ns		
Data hold time	$\mathrm{T}_{\text {dh }}$	Dij, CL2	10			ns		
Enable setup time	$\mathrm{T}_{\text {esu }}$	EIO1, EIO2, CL2	7			ns		
Enable output delay time	$\mathrm{T}_{\text {ed }}$	EIO1, EIO2, CL2			20	ns		1
CL1 high-level width	$\mathrm{T}_{\text {diwh }}$	CL1	56			ns		
Driver output delay time	$\mathrm{T}_{\text {dd }}$	CL1, Y1-Y192			22	$\mu \mathrm{s}$		2, 3, 4



## HD66330T

2. Specified by the following load condition and timing.

3. Driver output delay time $T_{\text {dd }}$ has the following characteristics with respect to the load condition.

4. Driver output delay time $T_{\text {dd }}$ has the following characteristics with respect to the CL4 high-level width.


## LCD Module Line Up

Graphic Display LCD Module


## LCD Module Line Up

Character Display LCD Module

## 1-line Series



## 2-line Series



WLM107XML
-LM052L


OLM016L, LM016XML

-LM032L, LM032XML

## 4-line Series



Segment-type LCD module


## LED with backlight



## LCD Module Line Up

## Graphic Display LCD Module (Reflection type)

Type			Screen Slze $\mathbf{w} \times \mathrm{h}$ (dots)	Color	Module size $\mathbf{w} \times \mathrm{h} \times \mathrm{t}$ (mm)	Effective Screen Size $\mathbf{w} \times \mathrm{h}$ (mm)	Dot Pluch $\mathbf{w} \times \mathrm{h}(\mathrm{mm})$	Duty Cycle
Controller (Noto)								
External type	On-thlp type							
LM258XB	-	* 1	240×64	Yellow-green	$149 \times 57 \times 13 \mathrm{max}$.	$117 \times 41$	$0.47 \times 0.47$	1/64
LM300XM	-	* 1	$240 \times 64$	New gray	$180 \times 75 \times 11$ max.	$132 \times 39$	$0.53 \times 0.53$	1/32
-	LM213XB	* 1	$256 \times 64$	Yellow-green	$184 \times 75 \times 10$ max.	$149.6 \times 43$	$0.56 \times 0.56$	1/64
LMG63900HGR	LMG63800HGR	* 1	$256 \times 64$	New gray	$160 \times 68 \times 9.5$ max. * 4	$126.3 \times 37$	$0.47 \times 0.47$	1/64
LMG6392QHFR	LMG6382QHFR	* 1	$256 \times 64$	Black \& White	$160 \times 68 \times 9.5$ max. * 4	$126.3 \times 37$	$0.47 \times 0.47$	1/64
LM221XB	LM238XB	* 1	$240 \times 128$	Yellow-green	$180 \times 120 \times 13.8$ max.	$148 \times 75$	$0.55 \times 0.55$	1/64
LMG6410PLGR	LMG6400PLGR	* 1	$240 \times 128$	New gray	$159.4 \times 101 \times 9.5$ max. $* 4$	$126 \times 71$	$0.50 \times 0.50$	1/128
LMG6412PLFR	LMG6402PLFR	* 1	$240 \times 128$	Black \& White	$159.4 \times 101 \times 9.5$ max. * 4	$126 \times 71$	$0.50 \times 0.50$	1/128
LM246X	-	*2	$320 \times 256$	Yellow-green	$168 \times 150 \times 13.5$ max.	$142 \times 115$	$0.43 \times 0.43$	1/128
LM211XB	-	* 1	$480 \times 64$	New gray	$270 \times 82 \times 13$ max .	$240 \times 38$	$0.49 \times 0.49$	1/64
LM211XMC	-	* 1	$480 \times 64$	New gray	$270 \times 82 \times 13$ max .	$240 \times 38$	$0.49 \times 0.49$	1/64
LM215XB	-	* 1	$480 \times 128$	Yellow-green	$270 \times 110 \times 11.5$ max.	$242 \times 69$	$0.48 \times 0.48$	1/64
LMG6250ULGR	-	*3	$480 \times 128$	New gray	$270 \times 110 \times 11.5$ max.	$242 \times 69$	$0.48 \times 0.48$	1/128
LMG6252ULFR	-	*3	$480 \times 128$	Black \& White	$270 \times 110 \times 11.5 \mathrm{max}$.	$242 \times 69$	$0.48 \times 0.48$	1/128
LM266×W	-	*2	$640 \times 100$	New gray	$287.5 \times 71.5 \times 11.5$ max.	$243 \times 42$	$0.36 \times 0.36$	1/100
LM280X	-	* 3	640×200	Yellow-green	$270 \times 104 \times 11$ max.	$236.4 \times 78$	$0.36 \times 0.36$	1/200
LMG6270XNGR	-	*3	$640 \times 200$	New gray	$265 \times 90 \times 8$ max .	$221.2 \times 73$	$0.33 \times 0.33$	1/200
LMG6272XNFR	-	*3	$640 \times 200$	Black \& White	$265 \times 90 \times 8$ max .	$221.2 \times 73$	$0.33 \times 0.33$	1/200
LMG6273XNFR	-	* 3	640×200	Black \& White anti-glare	$265 \times 90 \times 8$ max .	$221.2 \times 73$	$0.33 \times 0.33$	1/200
LMG6280XNGR	-	* 3	$640 \times 200$	New gray	$270 \times 116 \times 8$ max.	$217.2 \times 96$	$0.33 \times 0.45$	1/200
LMG6282XNFR	-	*3	$640 \times 200$	Black \& White	$270 \times 116 \times 8$ max.	$217.2 \times 96$	$0.33 \times 0.45$	1/200
LMG6283XNFR	-	*3	640×200	$\begin{array}{\|l} \hline \text { Black \& White } \\ \text { anti-glare } \\ \hline \end{array}$	$270 \times 116 \times 8$ max .	$217.2 \times 96$	$0.33 \times 0.45$	1/200
LMG6111XTFR	-	*3	$640 \times 400$	$\begin{array}{\|l\|} \hline \text { Black \& White } \\ \text { anti-glare } \\ \hline \end{array}$	$288 \times 173 \times 7.5$ max.	$223.17 \times 143.97$	$0.33 \times 0.33$	1/200
LMG6150XUFR	-	*3	$640 \times 480$	Black \& White anti-glare	$272 \times 178 \times 9$ max .	$202.37 \times 152.77$	$0.31 \times 0.31$	1/240

## Graphic Display LCD Module (with EL backlight)

LMG6391QHGE	LMG6381QHGE	$* 1$	$256 \times 64$	New gray	$160 \times 68 \times 9.5 \mathrm{max} . * 4$	$126.3 \times 37$	$0.47 \times 0.47$	$1 / 64$	
LMG6411PLGE	LMG6401PLGE	$* 1$	$240 \times 128$	New gray	$159.4 \times 101 \times 9.5 \mathrm{max} . * 4$	$126 \times 71$	$0.50 \times 0.50$	$1 / 128$	
LMG6251ULGE	-	$* 3$	$480 \times 128$	New gray	$270 \times 110 \times 11.5 \mathrm{max}$.	$242 \times 69$	$0.48 \times 0.48$	$1 / 128$	
LMG6271XNGE	-	$* 3$	$640 \times 200$	New gray	$265 \times 90 \times 9 \mathrm{max}$.	$221.2 \times 73$	$0.33 \times 0.33$	$1 / 200$	
LMG6281XNGE	-	$* 3$	$640 \times 200$	New gray	$270 \times 116 \times 9 \mathrm{max}$.	$217.2 \times 96$	$0.33 \times 0.45$	$1 / 200$	
LMG6171XTBE	-	$* 3$	$640 \times 400$	Blue   anti-glare	$256 \times 146 \times 9 \mathrm{max}$.	$197 \times 125$	$0.30 \times 0.30$	$1 / 200$	
LMG6173XTFE	-	$* 3$	$640 \times 400$	Black \& White   anti-glare	$256 \times 146 \times 9 \mathrm{max}$.	$197 \times 125$	$0.30 \times 0.30$	$1 / 200$	
LMG6151XUFE	-	$* 3$	$640 \times 480$	Black \& White   anti-glare	$272 \times 178 \times 9 \mathrm{max}$.	$202.37 \times 152$	$0.31 \times 0.31$	$1 / 240$	
LMG6221XUFE	-	$* 3$	$640 \times 480$	Black \& White   anti-glare	$260 \times 160 \times 9 \mathrm{max}$.	$183 \times 138.4$	$0.28 \times 0.28$	$1 / 240$	

## Graphic Display LCD Module (with CFL backlight)

| LM721XBNP | - | $* 3$ | $320 \times 200$ | Yellow | $142 \times 103 \times 30 \mathrm{max}$. | $113 \times 77$ | $0.33 \times 0.35$ | $1 / 200$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LMG6160XTFC | - | $* 3$ | $640 \times 400$ | Black \& White <br> anti-glare | $325 \times 191.6 \times 26 \mathrm{max}$. | $236 \times 152$ | $0.36 \times 0.36$ | $1 / 200$ |
| LMG6371XTBC | - | $* 3$ | $640 \times 400$ | Blue <br> anti-glare | $250 \times 145 \times 10.6 \mathrm{max}$. | $196 \times 124$ | $0.30 \times 0.30$ | $1 / 200$ |
| LMG6471XTFC | - | $* 3$ | $640 \times 400$ | Black \& White <br> anti-glare | $250 \times 145 \times 10.6$ max. | $196 \times 124$ | $0.30 \times 0.30$ | $1 / 200$ |
| LMG5040XUFC | - | $* 3$ | $640 \times 480$ | Black \& White <br> anti-glare | $256.5 \times 160 \times 10$ max. | $183 \times 137$ | $0.28 \times 0.28$ | $1 / 242$ |
| LMG5060XUFC | - | $* 3$ | $640 \times 480$ | Black \& White <br> anti-glare | $250 \times 172 \times 10.5$ max. | $196 \times 150$ | $0.30 \times 0.30$ | $1 / 240$ |
| LMG9050ZZFC | - | - | $1024 \times 768$ | Black \& White <br> anti-glare | $300 \times 234 \times 17$ max. | $231 \times 175$ | $0.22 \times 0.22$ | $1 / 387$ |
| LMG9040ZZFC | - | - | $1120 \times 780$ | Black \& White <br> anti-glare | $316 \times 230 \times 31$ max. | $236 \times 166$ | $0.205 \times 0.205$ | $1 / 390$ |


Recommended Voltage (Noto)		Power Coneumption	Operating Temperature	Storage Temperature	Woight	Power Supply	Driver (on-chip)	Type
$\begin{array}{\|l} \hline \text { VD-V } \\ \text { (V) } \\ \hline \end{array}$	$\mathbf{V E E}_{\mathrm{EE}}-\mathbf{V}_{\mathrm{SS}}$   (V)							
+5	-12	66	0~+40	$-20 \sim+60$	120	2 Double	LC7940 /7941/7942	LM258XB
+5	-9	33	0~+40	$-20 \sim+60$	150	2 Double	LC7940 /7941/7942	LM300XM
+5	-10.5	250	0~+40	$-20 \sim+60$	150	2 Double	MSM5839/5238	LM213XB
+5	-13	90	$0 \sim+40$	$-20 \sim+60$	160	2 Double	LC7940/7941/7942	LMe6390QHGR
+5	-13	90	$0 \sim+40$	$-20 \sim+60$	160	2 Double	LC7940/7941/7942	LMG63920HFR
+5	-13.5	210	$0 \sim+40$	$-20 \sim+60$	220	2 Double	HD61200/61203	LM238XB
+5	-15	90	0~+40	$-20 \sim+60$	160	2 Double	LC7940/7942	LMG6410PLGR
+5	-15	90	0~+40	$-20 \sim+60$	160	2 Double	LC7940/7942	LMG6412PLFR
+5	-20	76	$0 \sim+40$	$-20 \sim+60$	265	2 Double	HD61104/61105	LM246X
+5	-10.5	130	$0 \sim+40$	$-20 \sim+60$	180	2 Double	MSM5839/5238	LM211XB
+5	-13	90	$0 \sim+40$	$-20 \sim+60$	210	2 Double	LC7940/7942	LM211XMC
+5	-13.5	100	$0 \sim+40$	$-20 \sim+60$	320.	2 Double	HD61 100/61103	LM2115XB
+5	-13	100	0~+40	$-20 \sim+60$	320	2 Double	LC7940/7942	LMG6250ULGR
+5	-13	100	$0 \sim+40$	$-20 \sim+60$	320	2 Double	LC7940/7942	LMG6252ULFR
+5	-19	154	$0 \sim+50$	$-20 \sim+60$	200	2 Double	HD61 104/61105	LM266XW
+5	-20.5	180	$0 \sim+40$	$-20 \sim+60$	290	2 Double	MSM5298/5299	LM280X
+5	-22	115	$0 \sim+40$	$-20 \sim+60$	230	2 Double	MSM5298/5299	LMG6270XNGR
+5	-22	115	$0 \sim+40$	$-20 \sim+60$	230	2 Double	MSM5298/5299	LMG6272XNFR
+5	-22	115	0~+40	$-20 \sim+60$	230	2 Double	MSM5298/5299	LMG6273XNFR
+5	-22	115	$0 \sim+40$	$-20 \sim+60$	275	2 Double	MSM5298/5299	LMG6280XNGR
+5	-22	115	$0 \sim+40$	$-20 \sim+60$	275	2 Double	MSM5298/5299	LMG6282XNFR
+5	-22	115	0~+40	$-20 \sim+60$	275	2 Double	MSM5298/5299	LMG6283XNFR
+5	-20.5	200	$0 \sim+40$	$-20 \sim+60$	420	2 Double	MSM5298/5299	LMG6111XTFR
+5	-21.5	200	$0 \sim+40$	$-20 \sim+60$	420	2 Double	MSM5298/5299	LMG6150XUFR
+5	-13	$\begin{aligned} & \hline 90 \\ & 1000 * 5 \end{aligned}$	$0 \sim+40$	$-20 \sim+60$	190	2 Double	LC7940/7942	LMG63910HGE
+5	-15	$\begin{array}{\|l\|} \hline 90 \\ 1000 * 5 \end{array}$	$0 \sim+40$	$-20 \sim+60$	200	2 Double	LC7940/7942	LMG6411PLGE
+5	-13	$\begin{array}{\|l\|} \hline 100 \\ 1500 * 5 \\ \hline \end{array}$	$0 \sim+40$	$-20 \sim+60$	380	2 Double	LC7940/7942	LMG6251ULGE
+5	-22	$\begin{array}{\|l\|} \hline 115 \\ 1500 * 5 \\ \hline \end{array}$	0~+40	$-20 \sim+60$	280	2 Double	MSM5298/5299	LMG6271XNGE
+5	-22	$\begin{array}{\|l\|} \hline 115 \\ 1500 * 5 \\ \hline \end{array}$	$0 \sim+40$	$-20 \sim+60$	340	2 Double	MSM5298/5299	LMG6281XNGE
+5	-22	$\begin{aligned} & 200 \\ & 2000 * 5 \end{aligned}$	$0 \sim+40$	$-20 \sim+60$	360	2 Double	MSM5298/5299	LMG6171XTBE
+5	-22	$\begin{aligned} & 360 \\ & 2000 * 5 \end{aligned}$	0~+40	$-20 \sim+60$	350	2 Double	MSM5298/5299	LMG6173XTFE
+5	-22	$\begin{aligned} & 200 \\ & 2000 * 5 \end{aligned}$	$0 \sim+40$	$-20 \sim+60$	480	2 Double	MSM5298/5299	LMG6151XUFE
+5	-22	$\begin{array}{\|l\|} \hline 400 \\ 2000 * 5 \\ \hline \end{array}$	$0 \sim+40$	$\underline{-20 \sim+60}$	450	2 Double	MSM5298/5299	LMG6221XUFE
+5	-21.5	$\begin{array}{\|l\|} \hline 230 \\ 1000 * 6 \\ \hline \end{array}$	0~+40	$-20 \sim+60$	340	2 Double	MSM5298/5299	LM721XBNP
+5	-20.5	$\begin{aligned} & 360 \\ & 6000 * 6 \end{aligned}$	+10~+40	$-20 \sim+60$	950	2 Double	MSM5298/5299	LMG6160XTFC
+5	-22	$\begin{array}{\|l\|} \hline 360 \\ 2000 * 6 \end{array}$	+10~+40	$-20 \sim+60$	400	2 Double	MSM5298/5299	LMG6371XTBC
+5	-22	$\begin{aligned} & 360 \\ & 2000 * 6 \end{aligned}$	+10~+40	$-20 \sim+60$	400	2 Double	MSM5298/5299	LMG6471XTFC
+5	-22	$\begin{array}{\|l\|} \hline 400 \\ 1800 * 6 \\ \hline \end{array}$	+5~-40	$-10 \sim+60$	430	2 Double	MSM5298/5299	LMG5040XUFC
+5	-20.5	$\begin{array}{\|l\|} \hline 360 \\ 2500 * 6 \\ \hline \end{array}$	+10~+40	$-20 \sim+60$	460	2 Double	MSM5298/5299	LMG5060XUFC
+5	+34	$\begin{aligned} & 1700 \\ & 6000 * 6 \end{aligned}$	+5~+40	$-10 \sim+60$	1100	2 Double	HD66107T	LMG9050ZZFC
+5	$\begin{aligned} & +38 \\ & (+12) * 7 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 1700 \\ 6000 \\ \hline \end{array}$	+5~+40	$-10 \sim+60$	1400	3 Double	HD66107T	LMG9040ZZFC

Note: Contoller LSI *1: HD61830 *2: HD63645F/64645F *3: HD66841 *4: External-type contoller maximum thickness is 9.0 mm . *5: EL power consumption *6: CFL power consumption *7: $\mathrm{V}_{\mathrm{FC}}-\mathrm{V}_{\mathrm{SS}}$

## LCD Module Line Up

## Character Display LCD Module

| Type | Screen Size <br> (Char. $\times$ Line $)$ | Color |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Character Display LCD Module (with LCD backlight)

| LM087LN | $16 \times 1$ | Gray | $90 \times 36 \times 14$ max. | $64.5 \times 13.8$ | $3.07 \times 6.56$ | $1 / 16$ | $+5,(+5)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LM086ALN | $16 \times 2$ | Gray | $90 \times 36 \times 14$ max. | $64.5 \times 13.8$ | $2.95 \times 3.8$ | $1 / 16$ | $+5,(-1$ |
| LM093LN | $16 \times 2$ | Gray | $90 \times 44 \times 13.8 \max$. | $61.0 \times 15.3$ | $2.96 \times 4.86$ | $1 / 16$ | $+5,(+5)$ |
| LM091LN | $20 \times 2$ | Gray | $126 \times 39 \times 14$ max. | $83 \times 18.6$ | $3.2 \times 4.85$ | $1 / 16$ | $+5,(+5)$ |
| LM092LN | $40 \times 2$ | Gray | $192 \times 35.5 \times 14$ max. | $154 \times 15.3$ | $3.2 \times 4.85$ | $1 / 16$ | $+5,(+5)$ |

Note: Parentheses indicate $\mathrm{V}_{\text {LED }}$.

## Segment-Type LCD Module

LM039	$16 \times 1$	Gray	$87 \times 27.5 \times 11$ max.	$64.7 \times 13.3$	$2.2 \times 6.4$	$1 / 4$	+5


Power Consumption	Operating Temperature	Storage Temperature	Weight	Controller (on-chip)	Type
10	0~+50	$-20 \sim+70$	35	HD44780	LM054
10	0~+50	$-20 \sim+70$	25	HD44780	LM015
10	0~+50	$-20 \sim+70$	25	HD44780	H2570
10	0~+50	$-20 \sim+70$	25	HD44780	LMO20L
10	$0 \sim+50$	$-20 \sim+70$	25	HD44780	LMO20XMBL
10	0~+50	$-20 \sim+70$	40	HD44780	LM070L
25	0~+50	$-20 \sim+70$	65	HD44780	LM038
10	$0 \sim+50$	$-20 \sim+70$	40	HD44780	LM027
10	$0 \sim+50$	$-20 \sim+70$	60	HD44780	H2571
10	0~+50	$-20 \sim+70$	65	HD44780	H2572
15	$0 \sim+50$	$-20 \sim+70$	150	HD44780	LM058
15	$0 \sim+50$	$-20 \sim+70$	25	HD44780	LM052L
15	0~+50	$-20 \sim+70$	35	HD44780	LM016L
15	$0 \sim+40$	$-20 \sim+60$	35	HD44780	LM016XMBL
15	$0 \sim+50$	$-20 \sim+70$	50	HD44780	LM032L
15	$0 \sim+40$	$-20 \sim+60$	50	HD44780	LM032XMBL
15	$0 \sim+50$	$-20 \sim+70$	60	HD44780	LM060L
15	$0 \sim+50$	$-20 \sim+70$	60	HD44780	LM017L
15	$0 \sim+50$	$-20 \sim+70$	65	HD44780	LM018L
15	$0 \sim+50$	$-20 \sim+70$	65	HD44780	LM018XMBL
15	$0 \sim+50$	$-20 \sim+70$	60	HD44780	LM041L
17.5	$0 \sim+50$	$-20 \sim+70$	65	HD44780	LM044L


155	$0 \sim+50$	$-20 \sim+70$	40	HD444780	LMO87LN
150	$0 \sim+50$	$-20 \sim+70$	40	HD44780	LM0886ALN
405	$0 \sim+50$	$-20 \sim+70$	50	HD44780	LMO93LN
555	$0 \sim+50$	$-20 \sim+70$	70	HD44780	LMO91LN
855	$0 \sim+50$	$-20 \sim+70$	100	HD44780	LMO92LN


1.05	$0 \sim+50$	$-20 \sim+70$	20	$\mu$ PD7225G	LMO39

## HITACHI ${ }^{\circ}$

## 傍 Hitachi America, Ltd.

Semiconductor \& I.C. Division<br>San Francisco Center 2000 Sierra Point Parkway<br>Brisbane, CA 94005-1835<br>(415) 589-8300

Engineering Facility<br>Hitachi Micro Systems, Inc. 179 East Tasman Drive San Jose, CA 95134

## Manufacturing Facility

Hitachi Semiconductor (America) Inc. 6321 Longhorn Drive
Irving, TX 75063-2712

## Regional Offices

Northeast Region
Hitachi America, Ltd. 77 South Bedford Street Burlington, MA 01803 (617) 229-2150

Southeast Region
Hitachi America, Ltd. 5511 Capital Center Drive Suite 204
Raleigh, NC 27606
(919) 233-0800

North Central Region
Hitachi America, Ltd. 500 Park Boulevard Suite 415
Itasca, IL 60143
(708) 773-4864

South Central Region
Hitachi America, Ltd. Two Lincoln Centre 5420 LBJ Freeway
Dallas, TX 75240
(214) 991-4510

Southwest Region
Hitachi America, Ltd. 2030 Main Street Suite 450
Invine, CA 92714
(714) 553-8500

## Northwest Region

Hitachi America, Ltd. 1740 Technology Drive Suite 500
San Jose, CA 95110
(408) 451-9570

Mountain Pacific Region
Hitachi America, Ltd.
Metropoint
4600 S. Ulster Street Suite 690
Denver, CO 80237
(303) 779-5535

## IBM Region

Hitachi America, Ltd.
21 Old Main Street
Suite 104
Fishkill, NY 12524
(914) 897-3000

## Automotive Region

Hitachi America, Ltd.
290 Town Center Drive
Suite 311
Dearborn, MI 48126
(313) 271-4410

## Distributors

Cronin Electronics, Inc. - ITT Multicomponents-Canada
Marsh Electronics, Inc. - Marshall Industries
Milgray Electronics, Inc. - Reptron Electronics Sterling Electronics • Vantage Components Inc.
Western Micro Technology

## District Offices

Florida
Hitachi America, Ltd. 4901 N.W. 17th Way Suite 302
Fort Lauderdale, FL 33309
(305) 491-6154

## Mid-Atlantic

Hitachi America, Ltd. 325 Columbia Turnpike Suite 203
Florham Park, NJ 07932
(201) 514-2100

## Minnesota

Hitachi America, Ltd.
3800 W. 80th Street
Suite 1050
Bloomington, MN 55431
(612) 896-3444

## Texas

Hitachi America, Ltd. 10777 Westheimer Drive Suite 1040
Houston, TX 77042
(713) 974-0534

Hitachi America, Ltd. 9600 Great Hills Trail Suite 150W
Austin, TX 78759
(512) 502-3033

## Canada

Hitachi (Canadian) Ltd. 320 March Road Suite 602
Kanata, Ontario,
Canada K2K2E3
(613) 591-1990

## Representative Offices

Electri-Rep • Electronic Sales \& Engineering • EIR, Inc. M. Gottlieb Associates, Inc. - Jay Marketing Associates Longman Sales, Inc. - Mycros Electronica - The Novus Group, Inc. Parker-Webster Company • QuadRep Inc. • QuadRep/Crown, Inc. QuadRep Southern, Inc. - Robert Electronic Sales Strategic Sales, Inc. - Sumer Inc. - System Sales of Arizona System Sales of New Mexico - Technology Sales, Inc. TekRep, Inc. - Thompson \& Associates, Inc. - West Associates Wes Tech Associates

## Third-Party ASIC Design Centers

Locus - Indiana Microelectronics Center• Digital Equipment Corporation - Micral • Intronics

## HITACH®

(10) Hitachi America, Ltd. Semiconductor \& I.C. Division 2000 Sierra Point Parkway, Brisbane, CA 94005-1835 1-415-589-8300


[^0]:    *1 -40 to $+80^{\circ} \mathrm{C}$ (special request). Please contact Hitachi agents.
    *2 Under development

[^1]:    *1 -40 to $+80^{\circ} \mathrm{C}$ (special request). Please contact Hitachi agents.
    *2 Under development

[^2]:    Note: * Refer to the Electrical Characteristics Notes section following these tables.

[^3]:    Note: xx: ROM code No.

[^4]:    Note: * Refer to the Electrical Characteristics Notes section following these tables.

[^5]:    Note: * Refer to the Electrical Characteristics Notes section following these tables.

[^6]:    $\begin{array}{lll}\text { E } & 1 & 1\end{array}$
    At write (RW = Low): Data of DB0 to DB7 is latched at the fall of $E$. At read ( $\mathrm{R} W=$ High): Data appears at DB0 to DB7 while E is at high level.

[^7]:    Note: 30 input/outputs (excluding driver block)

