FUĴITSU # **CMOS Channeled Gate Arrays** 1991 Data Book and Design Evaluation Guide 1991 FUĴITSU Design Information 2 UHB Series Unit Cell Library 3 CG10 Series Unit Cell Library 4 Sales Information | , | | | | |---|--|---|--| ۰ | | # **CMOS Channeled Gate Arrays** 1991 Data Book and Design Evaluation Guide Fujitsu Microelectronics, Inc. Integrated Circuits Division 3545 North First Street, San Jose, CA 95134–1804 Tel: (408) 922–9000 FAX: (408) 432–9044 Copyright© 1990 Fujitsu Microelectronics, Inc., San Jose, California #### All Rights Reserved. Circuit diagrams using Fujitsu products are included to illustrate typical semiconductor applications. Information sufficient for construction purposes may not be shown. The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies. The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc. Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice. No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc. This document is published by the Publications Department, Integrated Circuits Division, Fujitsu Microelectronics, Inc., 3545 North First Street, San Jose, California, U.S.A. 95134–1804; U.S.A. Printed in the U.S.A. Edition 1.0 Ethernet[™] is a registered trademark of Xerox Corporation. EtherStar[™] is a trademark of Fujitsu Microelectronics, Inc. StarLAN™ is a trademark of AT&T. UNIXTM is a trademark of Bell Telephone Laboratories, Inc. ViewCAD™ is a trademark of Fujitsu Limited X Window System™ is a trademark of Massachusetts Institute of Technology (MIT) VERILOG[™] is a trademark of Cadence Design Systems LASAR™ is a trademark of Teradyne, Inc. HILO® is a registered trademark of GenRad, Inc. IKOS™ is a trademark of IKOS Systems, Inc. Synopsys® Design Compiler™ is a trademark of Synopys Inc. ## Contents ## **CMOS Channeled Gate Arrays** | Fujitsu ASIC Products | xiii | |---|---| | Section 1 - Desig | n Information | | Chapter 1 | Fujitsu CMOS Channeled Gate Array Products | | | Data Sheet: UHB Series CMOS Gate Arrays1–13 | | | Data Sheet: CG10 Series CMOS Gate Arrays1–41 | | Chapter 2 | Steps Toward Design | | Chapter 3 | Design Procedures | | Chapter 4 | Design Considerations | | Chapter 5 | Delay Estimation Principles | | Chapter 6 | Quality and Reliability | | Chapter 7 | Application Notes | | | Developing Test Patterns that Work with the Physical Tester 1–121 | | | Selecting the Best Package for Your ASIC Design | | Section 4 – Sales | Information | | | mormation | | | ited (lanan) 10_3 | | | ited (Japan) | | Fujitsu Mic | roelectronics, Inc. (U.S.A.) | | Fujitsu Mic
Fujitsu Ele | roelectronics, Inc. (U.S.A.) | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic | roelectronics, Inc. (U.S.A.) 10–4 ctronic Devices Europe 10–6 roelectronics Asia PTE Ltd. (Singapore) 10–8 | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic
Integrated | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic
Integrated
FMI Sales | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic
Integrated
FMI Sales
FMI Repre | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 sentatives – USA 10-11 | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic
Integrated
FMI Sales
FMI Repre
FMI Repre | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 sentatives – USA 10-11 sentatives – Canada 10-13 | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic
Integrated
FMI Sales
FMI Repre
FMI Repre
FMI Repre | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 sentatives – USA 10-11 sentatives – Canada 10-13 sentatives – Mexico 10-13 | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic
Integrated
FMI Sales
FMI Repre
FMI Repre
FMI Repre | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 sentatives – USA 10-11 sentatives – Canada 10-13 sentatives – Mexico 10-13 sentatives – Puerto Rico 10-13 | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic
Integrated
FMI Sales
FMI Repre
FMI Repre
FMI Repre
FMI Distrib | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 sentatives – USA 10-11 sentatives – Canada 10-13 sentatives – Mexico 10-13 | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic
Integrated
FMI Sales
FMI Repre
FMI Repre
FMI Repre
FMI Distrit
FMI Distrit | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 sentatives – USA 10-11 sentatives – Canada 10-13 sentatives – Mexico 10-13 sentatives – Puerto Rico 10-13 utors – USA 10-14 | | Fujitsu Mic
Fujitsu Ele
Fujitsu Mic
Integrated
FMI Sales
FMI Repre
FMI Repre
FMI Repre
FMI Distrib
FMI Sales | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 sentatives – USA 10-11 sentatives – Canada 10-13 sentatives – Mexico 10-13 sentatives – Puerto Rico 10-13 utors – USA 10-14 utors – Canada 10-18 | | Fujitsu Mic Fujitsu Ele Fujitsu Mic Integrated FMI Sales FMI Repre FMI Repre FMI Repre FMI Distrib FMG Sales | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 sentatives – USA 10-11 sentatives – Canada 10-13 sentatives – Mexico 10-13 sentatives – Puerto Rico 10-13 utors – USA 10-14 utors – Canada 10-18 s Offices for Europe 10-19 | | Fujitsu Mic Fujitsu Ele Fujitsu Mic Integrated FMI Sales FMI Repre FMI Repre FMI Repre FMI Distrib FMG Sales FMG Distri | roelectronics, Inc. (U.S.A.) 10-4 ctronic Devices Europe 10-6 roelectronics Asia PTE Ltd. (Singapore) 10-8 Circuits Corporate Headquarters – Worldwide 10-9 Offices for North and South America 10-10 sentatives – USA 10-11 sentatives – Canada 10-13 sentatives – Mexico 10-13 sentatives – Puerto Rico 10-13 utors – USA 10-14 utors – Canada 10-18 s Offices for Europe 10-19 butors – Europe 10-20 | ## Illustrations | Figure | Page | |--------|---| | 1-1. | Physical Construction of the Unit Cell NAND Gate | | 1–2. | The Basic Cell | | 1–3. | The Basic Cell Configured as a 2-Input NAND Gate | | 1–4. | Input Buffer (I2B) | | 1–5. | Output Buffer (O2B) | | 1-6. | Channeled Gate Array Chip Structure | | 1–7. | Channelless Gate Array Chip Structure | | 1–8. | Equivalent Gate Count vs. Processing Speed, Fujitsu CMOS Gate Array Technologies 1–10 | | 1–9. | Equivalent Gate Count, Fujitsu CMOS ASIC Technology Families | | 3–1. | Workstation Design Flow | | 4–1. | Arrangement of Hierarchical Blocks | | 4–2. | Recommended Hierarchial Organization of UHB/CG10 Designs | | 4–3. | SSO-Generated Noise | | 4–4. | SSO Pin Assignments | | 4–5. | Scan Circuit Configuration | | 5–1. | Delay Time vs. Loading Factor | | 5–2. | Delay Path Sample Circuit 1–95 | | 5–3. | Factors Influencing Delay1–99 | | 6–1. | Quality Control Processes at Fujitsu | | 6–1. | Quality Control Processes at Fujitsu (Continued) | | 6–2. | Distribution of Component Failure 1–107 | | 6–3. | Example of Life Test Data on IC | | 6–4. | Acceleration Rate vs. Junction Temperature | | 6–5. | Digital IC Failures and Corrective Actions 1–111 | | Figure | s – Test Patterns Application Note | | 1. | Determining a Successful Test Cycle Length | | 2. | Determining Preferred Cycle Length | | 3. | Input-to-Input Skew | | 4 | Input-to-Output Skew 1–125 | ## Illustrations (Continued) | Figure | s – Packaging Information Application Note | Page | |--------
---|--------| | 1. | Package Size versus Pin Count | 1–129 | | 2. | Minimizing Interconnect Length | 1-130 | | 3. | Impact of Noise on Speed | 1-130 | | 4. | PLCC Package Construction (Front View) | 1-133 | | 5. | PLCC Lead Frame Construction (Top View) | 1-133 | | 6. | 321-Pin Ceramic Pin Grid Array | 1-136 | | 7. | Staggered Pin Grid Array Routing | 1–137 | | 8. | Flatpack Configurations | 1-138 | | 9. | Defect Caused by Difference in Thermal Coefficient of Expansion | 1–139 | | 10. | PLCC Package | 1-140 | | 11. | Cross-Section of a Plastic Small-Outline J-lead Package | 1-140 | | 12. | Surface Mount PGA | 1-141 | | 13. | Solder Pad Design for Surface Mount Pin Grid Arrays | 1-141 | | 14. | CMOS Output Buffer Model (Totem Pole) | 1-145 | | 15. | I/O Model, CMOS Input | 1-145 | | 16. | I/O Model, TTL Input | 1-146 | | 17. | CMOS Basic Gate Structure: The Pull-up/Pull-down Network | 1-146 | | 18. | CMOS Basic Gate Structure: The Transmission Gate | 1–147 | | 19. | Electrical Model of Simultaneously Switching Outputs | 1-148 | | 20. | Effect of SSO Noise on Thresholds | 1-149 | | 21. | Variation in Inductance, Resistance, and Capacitance as a Function of Pin Position | 1-151 | | 22. | Measured Pin Capacitance by Package Position | 1-152 | | 23. | Self-inductance in a Circuit | 1–153 | | 24. | Causes of Crosstalk | 1-154 | | 25. | Heat Flow through a Cavity-down Ceramic PGA with an Annular Fin Heat Sink | 1–157 | | Tables | | Page | | 5–1. | AC Parameters of Unit Cells | . 1–96 | | 5–2. | NDI vs. CL* | . 1–97 | | 5–3. | Pre-Layout Delay Multipliers | 1-100 | | 6–1a. | Sampling Plan for Engineering Testing: Endurance Test | 1-106 | | 6–1b. | Sampling Plan for Engineering Testing: Environmental and Mechanical Test | 1-107 | | 6–1c. | Sampling Plan for Engineering Testing: Environmental and Mechanical Test (Optional) | 1-108 | | 6–1d. | Sampling Plan for Engineering Testing: Continuity Test | 1-108 | | 6-2. | Determination of Coefficient | 1-112 | | 6–3. | Process Defects Analysis | 1-114 | | 6–4. | Relationship between Failure Causes and Analytical Test Methods | 1-115 | ## Illustrations (Continued) | Tables | (Continued) | Page | |--------|---|-------| | 6-5. | Sampling Plan for Reliability Testing | 1–116 | | 6-7. | Example of Electrical Testing | 1–117 | | 6-6. | Example of Reliability Testing | 1–117 | | 6-8. | Example of Electrical Criteria | 1–118 | | Tables | - Packaging Information Application Note | | | 1. | Considerations for Package Selection | 1–128 | | 2. | Package Material Characteristics | 1–132 | | 3. | Fujitsu Package Types | 1–134 | | 4. | PGAs Available from Fujitsu | 1–135 | | 5. | Comparison of Critical Features | 1–142 | | 6. | ASIC CMOS Package Types and their Characteristics | 1–144 | #### **Preface** Fujitsu Microelectronics introduced its first commercially available gate array, a bipolar chip called the B200, in 1974 (Fujitsu had been making them for internal use since 1972). Over the years it has been so popular that it is regarded as the world's most widely implemented gate array. Since that first array, Fujitsu has produced over 9000 successful bipolar and CMOS custom designs. Fujitsu designs are successful because they are implemented using the most advanced design verification CAD systems available, allowing the production of chips with 90% cell utilization (more functional logic per chip than the industry standard) and one of the highest performance records in the industry. This data book provides you with information necessary to choose an application specific IC (ASIC) design using one of Fujitsu's advanced CMOS channeled gate array technologies (UHB and CG10). The data book describes Fujitsu's CMOS channeled gate array technologies, explains the benefits and specifications applicable to each, and outlines the process by which logic and circuit designers create a chip. Except where noted, the material presented in this data book is common to all of Fujitsu's CMOS channeled technologies. The device (unit cell) libraries for these channeled gate array technologies are included at the end of this volume. Another volume in this series provides the same information for Fujitsu's channelless or sea-of-gates ASIC technologies. Fujitsu has pioneered and maintained a technological lead in the production of bipolar as well as CMOS ASIC devices; data books describing Fujitsu's other ASIC product families, as well as any other technical or sales-related information, may be obtained from any Fujitsu Technical Resource Center or Sales Office listed at the end of this book or by calling or writing Fujitsu Microelectronics Inc., 3545 North First Street, San Jose. CA 94135–1804, (408) 922–9000. ## **Fujitsu ASIC Products Listing** #### **CMOS Channeled Gate Arrays Data Book** #### UHB Series High Drive CMOS Gate Arrays — 1.5μ, 0.9 ns typical delay | Description | Name | Device Part Number | |-----------------------|-----------|--------------------| | 336 Gates, 58 I/O | СЗЗОИНВ | MB625xxx | | 530 Gates, 64 I/O | C530UHB | MB624xxx | | 830 Gates, 74 I/O | C830UHB | MB623xxx | | 1,233 Gates. 88 I/O | C1200UHB | MB622xxx | | 1,724 Gates, 102 I/O | C1700UHB | MB621xxx | | 2,220 Gates, 115 I/O | C2200UHB | MB620xxx | | 3,066 Gates, 140 I/O | C3000UHB | MB606xxx | | 4,174 Gates, 155 I/O | C4100UHB | MB605xxx | | 6,000 Gates, 155 I/O | C6000UHB | MB604xxx | | 8,768 Gates, 188 I/O | C8700UHB | MB603xxx | | 12,734 Gates, 220 I/O | C12000UHB | MB602xxx | | | | | #### CG10 Series High Drive CMOS Gate Arrays — 0.8µ, 0.5 ns typical delay | 3,256 Gates, 108 I/O | CG10272 | MBCG10272xxx | |-----------------------|---------|--------------| | 4,032 Gates, 123 I/O | CG10342 | MBCG10342xxx | | 5,072 Gates, 148 I/O | CG10492 | MBCG10492xxx | | 6,510 Gates, 163 I/O | CG10572 | MBCG10572xxx | | 7,684 Gates, 163 I/O | CG10692 | MBCG10692xxx | | 11,080 Gates, 188 I/O | CG10103 | MBCG10103xxx | | 14,720 Gates, 220 I/O | CG10133 | MBCG10133xxx | #### **CMOS Channelless Gate Arrays Data Book** ## AU Series CMOS Series Gate Arrays — 1.2μ , 0.6 ns typical delay | 10,224 Gates, 108 I/O | C10KAU | MB637xxx | |------------------------|---------|----------| | 15,486 Gates, 138 I/O | C15KAU | MB636xxx | | 20,876 Gates, 155 I/O | C20KAU | MB635xxx | | 31,500 Gates, 178 I/O | C30KAU | MB634xxx | | 41,184 Gates, 220 I/O | C40KAU | MB633xxx | | 52,164 Gates, 257 I/O | C50KAU | MB632xxx | | 75,140 Gates, 300 I/O | C75KAU | MB631xxx | | 102,144 Gates, 332 I/O | C100KAU | MB630xxx | | | | | #### CG21 Series CMOS Series Gate Arrays — 0.8µ, 370 ps typical delay | 10,224 Gates, 108 I/O | CG21103 | MBCG21103xxx | |------------------------|---------|--------------| | 15,486 Gates, 142 I/O | CG21153 | MBCG21153xxx | | 20,876 Gates, 155 I/O | CG21203 | MBCG21203xxx | | 31,500 Gates, 178 I/O | CG21303 | MBCG21303xxx | | 41,184 Gates, 220 I/O | CG21403 | MBCG21403xxx | | 52,164 Gates, 245 I/O | CG21503 | MBCG21503xxx | | 75,140 Gates, 284 I/O | CG21753 | MBCG21753xxx | | 102,144 Gates, 332 I/O | CG21104 | MBCG21104xxx | ## Fujitsu ASIC Products Listing (Continued) #### **BiCMOS Gate Arrays Data Book** #### BC Series BiCMOS Gate Arrays — 1.5μ/1.4μ, 0.65 ns typical delay | Description | Name | Device Part Number | |----------------------|--------|--------------------| | 645 Gates, 52 I/O | BC400 | MB211xxx | | 1,218 Gates, 72 I/O | BC800 | MB212xxx | | 1,872 Gates, 96 I/O | BC1200 | MB213xxx | | 3,240 Gates, 112 I/O | BC2000 | MB214xxx | #### BC-H Series BiCMOS Gate Arrays — 1.0µ/0.5µ, 0.45 ns typical delay | 4,312 Gates, 96 I/O | BC4000H | MB221xxx | |------------------------------------|----------|----------| | 8,160 Gates, 128 I/O | BC8000H | MB222xxx | | 11,968 Gates, 160 I/O | BC12000H | MB223xxx | | 16,720 Gates, 200 I/O | BC16000H | MB224xxx | | 7.920 Gates, 200 I/O with 40Kb RAM | BC8040HM | MB228xxx | #### **ECL Gate Arrays Data Book** ## ET Series ECL Gate Arrays — 1.0μ, 220 ps typical delay | 1,056 Gates, 64 I/O | | ET750 | MB121Kxxx | |---------------------------------------|---|---------|--------------| | 2,112 Gates, 88 I/O | - 1 × × × × × × × × × × × × × × × × × × | ET1500 | MB123Kxxx | | 4,224 Gates, 120 I/O | | ET3000 | MB125Kxxx | | 6,160 Gates, 120 I/O | | ET4500 | MB128Kxxx | | 2,640 Gates, 120 I/O with 4.6 Kb RAM | | ET2004M | MB181/191xxx | | 2,640 Gates, 136 I/O, with 9.2 Kb RAM | | ET2009M | MB182/192xxx | | 3,960 Gates, 136 I/O, with 4.6 Kb RAM | | ET3004M | MB183/193xxx | #### H Series ECL Gate Arrays — 0.5μ , 100 ps typical delay | 9,856 Gates, 200 I/O | ET10000H | MB147/157xxx | |------------------------------------|----------|--------------| | 9,856 Gates, 300 I/O | E10000H | MB148/158xxx | | 4 928 Gates 200 I/O with 5 1Kh RAM | F5005HM | MR185/195vvv | #### Ultra High Performance ECL Gate Arrays — 0.5μ , 75 ps typical delay | 128 Gates, 23 /I/O | E128H | MB1800 | |--------------------|-------|--------| | 32 Gates, 13 I/O | E32 | MB1700 | | 128 Gates 16 I/O | F128 | MB1600 | #### VH Series ECL Gate Arrays — 0.4μ, 80 ps typical delay | 38,948 Gates, 300 I/O | E30000VH | MB162/172xxx | |----------------------------------|-----------|--------------| | 13,440 Gates, 290 I/O, 40Kb RAM | E10040VHM | MB165/175xxx | | 13,440 Gates, 294 I/O, 160Kb ROM | E10160VHR | MB168/178xxx | | 2 5// Gates 10/ I/O | ET2600VH | MBBG31363vv | #### **CMOS Standard Cell Data Book** AU Series Standard Cells — 1.2μ , 0.6 ns typical delay AS Series Standard Cells — 0.8μ, 370 ps typical delay x # **Design Information** | Page | | | |-------|-----------|--| | 1–3 | Chapter 1 | Fujitsu CMOS Products | | 1–13 | | Data Sheet: UHB Series CMOS Gate Arrays | | 1-41 | | Data Sheet: CG10 Series CMOS Gate Arrays | | 1–69 | Chapter 2 | Steps Toward Design | | 1–73 | Chapter 3 | Design Procedures | | 1–81 | Chapter
4 | Design Considerations | | 1–93 | Chapter 5 | Delay Estimation Principles | | 1–103 | Chapter 6 | Quality and Reliability | | 1–119 | Chapter 7 | Application Notes | | 1–121 | | Developing Test Patterns
that Work with the Physical Tester | | 1–127 | | Selecting the Best Package for Your ASIC Design | ## 5 ## Chapter 1 - Fujitsu CMOS Products #### **Contents of This Chapter** - 1.1 Introduction - 1.2 CMOS Technology for ASICs - 1.3 CMOS Gate Array Structure - 1.4 Fujitsu's CMOS Channeled Gate Array Technologies: CG10 and UHB Data Sheets #### 1.1 Introduction This section of the data book gives an overview of CMOS technology and introduces the CMOS channeled gate array technology families developed by Fujitsu to implement ASIC designs. #### 1.2 CMOS Technology for ASICs ASICs (Application Specific Integrated Circuits) are large scale integrated circuits that provide customers with made-to-order functions. These ICs implement the unique value designed into customer products by producing custom semiconductor designs that allow customers to take advantage of perceived market opportunities in a timely manner. The customized solutions offered by ASICs combine the power of personalized electronics and the advantage of increased system efficiency. CMOS technology has long been chosen for ASIC applications because of its low power and high density characteristics. Advancing process technology and new production and fabrication techniques have now allowed device speed to increase to the point where it is competitive with bipolar devices. Fujitsu manufactures CMOS gate arrays with advanced silicon gate technology utilizing two-layer and three-layer metal. This fabrication process yields parts that: - a. require very low power dissipation (typically less than 500 mW per channeled array) - b. operate at speeds equaling existing bipolar technologies - c. feature higher gate densities than competing bipolar devices - d. use a single power supply of 5 volts or less - e. provide top-grade noise immunity and programmable logic levels compatible with TTL and CMOS logic families #### 1.3 CMOS Gate Array Structure Fujitsu CMOS gate arrays are configured in a matrix of basic cells in the center of the chip with input/output (I/O) cells on the device periphery. One basic cell is equivalent to a two-input NAND gate and is the physical building block used to construct the unit cells that perform specific logic functions. The custom logic function is realized by interconnecting basic cells with double- or triple-layer metallization. Fujitsu's CMOS gate array products are fabricated using a twin-tub polysilicon process to produce high-speed, high-density arrays consisting of 300 to 100,000 basic cells. #### 1.3.1 Process Technology The process by which the gate array is manufactured varies somewhat among Fujitsu's CMOS technologies; however, the following explanation provides a good model of how a basic cell is fabricated in any of the CMOS families. The basic cell is constructed from an N-type silicon substrate upon which a P-well is deposited. The surface of the substrate is then covered with a thin layer of silicon dioxide (glass) and two strips of polysilicon are deposited perpendicular to the P-well and geometrically parallel. (Polysilicon is a silicon-based compound chemically altered so that it has good electrical conduction properties.) The polysilicon strips serve as the gate control elements of the basic cell and also as the two electrical interconnections between the sources of the P and N transistor pairs. See Figure 1–1. Figure 1-1. Physical Construction of the Unit Cell NAND Gate The silicon dioxide layer is then stripped away from all areas of the substrate not protected by polysilicon. In two separate steps, the N-type and the P-type material of the twin tubs is diffused onto the substrate. For the next step, N-type material is diffused or implanted into the P-well that was previously laid down. It straddles the two strips of polysilicon close to their ends. The polysilicon resists the diffusion, which results in the formation of three pads of N-type material separated by the two strips of polysilicon (self-aligned processing). The center pad of N-type material serves as a common drain terminal for both N-channel transistors. The outer pads are the separate source elements. Then the P-type material is deposited on the N-type substrate straddling the two polysilicon strips. Similarly the center pad of P-type material forms the common source connection for both P-channel transistors. Figure 1–2 diagrams the structure of a basic cell before the custom metallization is applied. The basic cell is then converted to a unit cell by application of a custom metallization pattern that connects (or wires) various points of the basic cell, or a number of basic cells, together. Figure 1–3 diagrams the structure of a basic cell configured as a NAND gate after metallization (represented by the solid bold line connections) has been laid down. Some unit cells require two or even three layers of metal to be applied. Such layers are separated by an insulating layer of silicon dioxide. Interconnections between the metal layers are made by means of "vias" passing through the glass. #### 1.3.2 The Basic Cell The basic cell of Fujitsu's CMOS gate array is a common building block consisting of one pair of P-channel and one pair of N-channel MOS transistors interconnected as shown in Figure 1–2. Figure 1-2. The Basic Cell Since this is a "generic" basic cell, no connections are shown to the power supply (+5 volts), to ground, or to the two common control gate terminals of the circuit. These connections are made as required during the metallization phase of the manufacturing process. All CMOS gate arrays are built up of basic cells. Figure 1–3 shows a schematic representation of the basic cell with the addition of the custom metallization required to convert the generic basic cell into a 2-input NAND gate. Figure 1-3. The Basic Cell Configured as a 2-Input NAND Gate #### 1.3.3 Basic Cell Arrangement Basic cells can be arranged as: - a. Fundamental logic function units called unit cells (for example, NAND gates, flip-flops, etc.). - User macros, which are composed of unit cells to form higher level logic block functions (e.g., shift register or decoder). Such blocks are user-defined and may contain any unit cell configuration. - SuperMacros, which are very high level organizations performing complex functions such as ALUs and programmable timers, as well as CRT, SCSI, and Ethernet controllers. #### 1.3.4 I/O Cells I/O cells are a specially configured type of unit cells which serve as input/output buffer cells and are located on the periphery of the basic cell matrix. I/O cells are usually not included in the basic cell count. These buffer cells convert external voltage levels into internal CMOS levels. The output buffers provide a sufficient voltage level to drive TTL components but the input buffers must convert TTL levels to CMOS levels when appropriate. Figure 1–4 shows the structure of a typical input buffer (I2B) and Figure 1–5 shows the structure of a typical output buffer (O2B). Figure 1-4. Input Buffer (I2B) Figure 1-5. Output Buffer (O2B) #### 1.3.5 User Macros Different user macros are available for each technology group. For a list of available user macros for each technology, contact any of the Fuiltsu Technical Resource Centers listed in the back of this volume. #### 1.3.6 Supermacro Implementations for CMOS ASIC Fujitsu's next step upward in ASIC functionality is embodied in the concept of SuperMacros. SuperMacros are large functional organizations implemented as an integral part of a chip. SuperMacros can be large-scale compiled cells or core cells, as well as generic or proprietary LSI functions. Reduction of board space, reduction of cost, and reduction of design cycle time, as well as extended functionality, reliability, performance, and security of design are all advantages of SuperMacros. Since SuperMacros are not bound to a particular CMOS technology, they may be migrated from one CMOS technology to another. Fujitsu provides customers with gate and behavioral level models, macro symbols, and data sheets/specifications as well as kit parts in order to provide complete support from development to system integration. The SuperMacros listed in Table 1-1 below are the first to be developed for Fujitsu's CMOS supermacro library. Table 1-1. Fujitsu Supermacros | Function | Compatible Device | Technology | Gate Complexity | |--|-------------------|----------------|-------------------------| | Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) | 8251A | UHB/AU/CG10/21 | 2900 | | Universal Asynchronous Receiver/Transmitter (UART) | 8868 | UHB/AU/CG10/21 | 608 | | Programmable Interval Timer | 8253 | UHB/AU/CG10/21 | 5680 | | Programmable Peripheral Interface | 8255A | UHB/AU/CG10/21 | 785 – 1403 ¹ | | Programmable Interrupt Controller | 8259A | UHB/AU/CG10/21 | 2205 | | Programmable DMA Controller | 8237 | UHB/AU/CG10/21 | 5100 | | Clock Generator/Driver | 8284 | UHB/AU/CG10/21 | 99 | | Bus Controller | 8288 | UHB/AU/CG10/21 | 250 | | Programmable Interval Timer | 8254 | UHB/AU/CG10/21 | 3500 | | CRT Controller | 6845 | UHB/AU/CG10/21 | 2843 | | SCSI Protocol Controller ² | 87030 | UHB/AU/CG10/21 | 3630 | | EtherNet Controller ² | 87012 | UHB/AU/CG10/21 | 4233 | | First In First Out (FIFO) | N/A ³ | UHB/AU/CG10/21 | 360 | | 4-bit Arithmetic Logic Unit (ALU) Slice | 2901 | UHB/AU/CG10/21 | 917 | | Carry Lookahead | 2902 | UHB/AU/CG10/21 | 33 | | Status and Shift Control | 2904 | UHB/AU/CG10/21 | 449 | | 4-bit Microprogram Sequencer | 2909 | UHB/AU/CG10/21 | 428 | | 12-bit Microprogram Controller | 2910 | UHB/AU/CG10/21 | 1682 | Several options are available (Mode 0 is 785 gates) ³Not Applicable ²Full-featured Fujitsu proprietary supermacro #### 1.3.7
Structure of the Chip The arrangement of the basic cells on the chip differs according to the technology. The fundamental chip layout is a matrix of basic cells surrounded by a perimeter of I/O cells. Basic cells are arranged in double columns in the UHB and CG10 technologies (Figure 1–6). The channelless or sea-of-gates technologies are constructed with no wiring channels between the double columns, allowing the wiring to go over the cells, rather than between the cells (Figure 1–7). The channelless technologies are covered in a separate data book. Figure 1-6. Channeled Gate Array Chip Structure Figure 1-7. Channelless Gate Array Chip Structure #### 1.4 Fujitsu's CMOS Channeled Gate Array Technologies Fujitsu offers over 30 different CMOS gate array devices, fabricated with advanced silicon gate technology. Fujitsu's channeled CMOS gate arrays include the technology options described in detail in the data sheets that follow: - UHB Series CMOS Gate Arrays - CG10 Series CMOS Gate Arrays Complete information on Fujitsu's channelless (sea-of-gates) CMOS gate array families is provided in a separate data book. All offer the same fast turnaround on design, simplified customer interface, full support by Fujitsu ViewCAD system design software if requested, full design support on other major CAE workstations, and a wide variety of packaging options. The number of gates in relationship to the processing speed of each new CMOS technology is shown in Figure 1–8. Figure 1–9 shows in tabular form the equivalent gate count for each CMOS technology family. Figure 1–8. Equivalent Gate Count vs. Processing Speed, Fujitsu CMOS Gate Array Technologies Figure 1-9. Equivalent Gate Count, Fujitsu CMOS ASIC Technology Families 1 UHB Series 1.5-micron CMOS Gate Arrays # DESCRIPTION The UHB series of 1.5-micron CMOS gate arrays is a highly integrated low-power, ultra high-speed product family that derives its enhanced performance and increased user flexibility from the use of a system-proven, dual-column gate structure and 2-layer metal interconnect technology. The unique dual-column gate structure increases density and speed performance, as well as gate utilization. Internal high-drive clock buffers minimize clock skew across the chip while internal bus performance and integrity is assured by incorporating 3-state transmission gate logic underneath the routing channels. The high-drive output buffers provide highly symmetrical output waveforms. #### **FEATURES** - High-density silicon gate CMOS technology - 330 to 12,000 usable gates - 90% maximum utilization fully autorouted - Ultra high speed - typical 0.9 ns gate delay - narrow delay variation - High sink current capability - 3.2 mA, 8 mA, 12 mA, and 24 mA options available - selectable edge rate control - Low-skew clock signal distribution - High-performance clock drivers - Hierarchical clock distributionFrequency-dependent clock routing - Automatic test pattern generation for 6K gates and up - complete family of scan design macros available | • | 2-column gate structure that enhances macro | |---|---| | | performance | - High-performance internal 3-state bus - buried cells within the routing channels ensure high density and reliable performance - Proven 1.5-micron 2-layer metal technology - · Highest pin-to-gate count commercially available - 60 logic I/O for 336 gates - 222 logic I/O for 1200 gates - Input buffers with pull-up/pull-down resistance - · Built-in feedback resistors for oscillators - User-defined hierarchy-driven placement | Device Name | Utilizable Gates ¹ | Maximum
Signal Pins ² | |-------------|-------------------------------|-------------------------------------| | C-330UHB | 336 gates | 60 | | C-530UHB | 530 gates | 66 | | C-830UHB | 830 gates | 76 | | C-1200UHB | 1233 gates | 92 | | C-1700UHB | 1724 gates | 108 | | C-2200UHB | 2220 gates | 123 | | C-3000UHB | 3066 gates | 148 | | C-4100UHB | 4174 gates | 163 | | C-6000UHB | 6000 gates | 163 | | C-8700UHB | 8768 gates | 188 | | C-12000UHB | 12734 gates | 220 | Gates available for logic (exclusive of I/O usage). 'Maximum signal pin numbers depend on the output drive requirements and the package selected. #### PRODUCT FAMILY DESCRIPTIONS¹ | Device Name Part Number | | 2-Input Gate Equivalent Complexity Maximum Sig | | Total Number of Basic
Cells on Chip ^{3,4} | |-------------------------|----------|--|-----|---| | C-330UHB | MB625xxx | 336 gates | 60 | 610 gates | | C-530UHB | MB624xxx | 530 gates | 66 | 840 gates | | C-830UHB | MB623xxx | 830 gates | 76 | 1176 gates | | C-1200UHB | MB622xxx | 1233 gates | 92 | 1680 gates | | C-1700UHB | MB621xxx | 1724 gates | 108 | 2232 gates | | C-2200UHB | MB620xxx | 2220 gates | 123 | 2800 gates | | C-3000UHB | MB606xxx | 3066 gates | 148 | 3744 gates | | C-4100UHB | MB605xxx | 4174 gates | 163 | 4888 gates | | C-6000UHB | MB604xxx | 6000 gates | 163 | 6976 gates | | C-8700UHB | MB603xxx | 8768 gates | 188 | 9720 gates | | C-12000UHB | MB602xxx | 12734 gates | 220 | 13728 gates | Notes: ¹Typical device gate speed, with F/O = 2, for a 2-input NAND gate, is 0.9 ns. #### **AC CHARACTERISTICS** #### **BEST/WORST CASE MULTIPLIERS FOR PROPAGATION DELAYS** Propagation delays characteristic of a gate array are a function of several factors, including operating temperature, supply voltage, fanout loading, interconnection routing metal, process variation, input transition time, and input signal polarity. Temperature and supply voltage factors affecting propagation delays in the UHB CMOS family of gate arrays are given in the table below. | | | Pre-Layout | Simulation | | Post-Layout Simulation | | | | | |----------------------|-------------------|------------|---------------------|----------------------------|------------------------|---------------------------|-----------|----------------------------|--| | Temperature
Range | V _{DD} = | 5 V ±5% | V _{DD} = 5 | V _{DD} = 5 V ±10% | | V _{DD} = 5 V ±5% | | V _{DD} = 5 V ±10% | | | | Best Case | Worst Case | | | 0 - 70°C1 | 0.35 | 1.65 | 0.30 | 1.75 | 0.40 | 1.60 | 0.35 | 1.70 | | | –20 – 70°C | 0.35 | 1.65 | 0.25 | 1.75 | 0.35 | 1.60 | 0.30 | 1.70 | | | -40 - 70°C | 0.25 | 1.65 | 0.20 | 1.75 | 0.30 | 1.60 | 0.25 | 1.70 | | | -40 - 85°C2 | 0.25 | 1.75 | 0.20 | 1.85 | 0.30 | 1.70 | 0.25 | 1.80 | | Notes: ¹Commercial temperature range ²Industrial temperature range ²The maximum signal pin numbers depend on the output drive requirements and the package selection. ³A basic cell is equivalent to a 2-input gate. ⁴Basic cells on chip are also used for I/O buffer function. #### REPRESENTATIVE PROPAGATION DELAYS Constants for calculating the delays due to process variation, fanout loading, interconnection routing metal, transition time, and signal polarity are given for each unit cell in the UHB Unit Cell Library. Delays using these factors are calculated for a representative selection of unit cells and are shown in the Propagation Delays tables below. Calculations are representative of unit cells in the C12000UHB (UHB 12000-Gate CMOS gate array). Typical values are indicated. Worst case multipliers are applied to typical values. Smaller arrays can exhibit significantly greater speed. | | T | <u> </u> | | | Propa | gation De | elays (in r | ıs) | | |--|-----|--------------------------|--------------------------------------|--------------|-----------------------|--------------|--------------|--------------|---------------| | Unit Cell
Function | | Equivalent
Gate Count | | | N _{DI} (Fan- | | | | | | 1 4.104.0 | | | | 1 | 2 | 4 | 8 | 16 | 32 | | Inverter | V1N | 1 | t _{PLH}
t _{PHL} | 0.86
0.67 | 1.51
1.04 | 2.36
1.52 | 3.53
2.18 | 5.19
3.11 | 8.09
4.74 | | Power 2-Input NAND | N2K | 2 | t _{PLH} | 0.66
0.68 | .99
.97 | 1.41
1.34 | 1.99
1.85 | 2.83
2.58 | 4.27
3.85 | | Power 16-Input NAND | NGB | 11 | t _{PLH} | 1.82
3.69 | 2.15
3.93 | 2.57
4.25 | 3.15
4.69 | 3.99
5.31 | 5.43
6.40 | | Power 2-Input NOR | R2K | 2 | t _{PLH} | 0.95
0.67 | 1.53
0.91 | 2.27
1.23 | 3.29
1.67 | 4.75
2.29 | 7.28
3.38 | | Power Exclusive OR | X2B | 4 | t _{PLH} | 1.72
1.82 | 2.05
2.03 | 2.47
2.29 | 3.05
2.66 | 3.89
3.18 | 5.33
4.08 | | 3-wide 2-AND 6-Input
AND-OR Inverter (A \rightarrow Y) | D36 | 3 | t _{PLH}
t _{PHL} | 1.78
1.22 | 2.93
1.80 | 4.41
2.54 | 6.45
3.56 | 9.37
5.02 | 4.43
7.55 | | 2-wide 2-OR 4-input
OR-AND-Inverter (A → X) | G24 | 2 | t _{PLH}
t _{PHL} | 1.54
1.20 | 2.73
1.78 | 4.27
2.52 | 6.39
3.54 | 9.40
5.00 | 14.65
7.53 | | Power 2-AND 8-Wide
Multiplexer (A → X) | T28 | 11 | t _{PLH}
t _{PHL} | 2.41
1.66 | 2.74
1.83 | 3.16
2.04 | 3.74
2.33 | 4.58
2.75 | 6.02
3.47 | | Power Clock Buffer | K2B | 3 | t _{PLH} | 1.30
1.38 | 1.57
1.58 | 1.90
1.83 | 2.30
2.13 | 2.81
2.51 | 3.61
3.11 | | Scan 8-bit D Flip-flop with Clock Inhibit and 3:1 Data Multiplexer (CK,IH → Q) | SHK | 88 | t _{PLH}
t _{PHL} | 5.22
4.92 | 5.87
5.29 | 6.72
5.77 | 7.89
6.43 | 9.55
7.36 | 12.45
8.99 | | Non–Scan D Flip-flop
with Reset (CK → Q) | FDO | 7 | t _{PLH}
t _{PHL} | 2.51
2.14 | 3.16
2.55 | 4.01
3.08 | 5.18
3.81 | 6.84
4.85 | 9.74
6.66 | | Non-Scan Power D Flip-flop with Clear (CK → Q) | FD5 | 8 | t _{PLH}
t _{PHL} | 2.17
1.89 | 2.50
2.10 | 2.92
2.36 | 3.50
2.73 | 4.34
3.25 | 5.78
4.15 | | Non-Scan 4-bit Binary
Synchronous Up
Counter (CI → CO) | C43 | 48 | t _{PLH}
t _{PHL} | 2.18
1.10 | 2.83
1.43 | 3.68
1.85 | 4.85
2.43 | 6.51
3.27 | 9.41
4.71 | | Non-Scan 4-bit Binary
Synchronous Up
Counter (CI → CO) | C45 | 48 | t _{PLH}
t _{PHL} | 2.52
1.68 | 3.22
2.05 |
4.12
2.53 | 5.36
3.19 | 7.13
4.12 | 10.21
5.75 | Note: Delays for inter-block wiring are not included Continued on next page ## **UHB Series CMOS Gate Arrays** ## REPRESENTATIVE PROPAGATION DELAYS (Continued) | | T | I <u>.</u> | | | Propag | gation De | lays (in r | 18) | | |---|-------------------|--------------------------|--------------------------------------|--------------|--------------|-----------------------|--------------|---------------|---------------| | Unit Cell
Function | Unit Cell
Name | Equivalent
Gate Count | uivalent Input te Count Transition | | | N _{DI} (Fan- | out) | | | | | | | | 1 | 2 | 4 | 8 | 16 | 32 | | Non-Scan 4-bit Binary
Synchronous Up/Down
Counter (DU → CO) | C47 | 68 | t _{PLH}
t _{PHL} | 2.87
3.30 | 3.32
3.63 | 3.90
4.05 | 4.70
4.63 | 5.85
5.47 | 7.84
6.91 | | 4-bit Binary Full Adder with Fast Carry (CI → S1) | A4H | 48 | t _{PLH}
t _{PHL} | 1.97
2.13 | 2.87
2.71 | 4.04
3.45 | 5.65
4.47 | 7.93
5.93 | 11.92
8.46 | | 4:1 Selector (S5 → X) | T5A | 5 | t _{PLH}
t _{PHL} | 1.39
1.12 | 2.33
1.77 | 3.55
2.62 | 5.23
3.79 | 7.62
5.45 | 11.79
8.35 | | 4-bit Shift Register with
Synchronous Load | FS2 | 30 | t _{PLH}
t _{PHL} | 2.90
3.46 | 3.55
3.83 | 4.40
4.31 | 5.57
4.97 | 7.23
5.90 | 10.13
7.53 | | 9-bit Odd Parity
Generator/Checker | PO9 | 22 | t _{PLH}
t _{PHL} | 5.78
6.00 | 6.43
6.33 | 7.28
6.75 | 8.45
7.33 | 10.11
8.17 | 13.01
9.61 | | 4-wide 2:1 Data Selector (A \rightarrow X) | P24 | 12 | t _{PLH}
t _{PHL} | 1.24
0.97 | 1.57
1.14 | 1.99
1.35 | 2.57
1.64 | 3.41
2.06 | 4.85
2.78 | | 4-bit Magnitude
Comparator (IS → OG) | MC4 | 42 | t _{PLH}
t _{PHL} | 3.17
2.60 | 4.36
2.93 | 5.90
3.35 | 8.02
3.93 | 11.03
4.77 | 16.28
6.21 | | 4-bit Bus Driver (A → X) | B41 | 9 | t _{PLH}
t _{PHL} | 1.99
1.87 | 2.48
2.29 | 3.05
2.78 | 3.76
3.39 | 4.64
4.14 | 6.04
5.34 | | Input Buffer (Inverter) | I1B | 5 | t _{PLH}
t _{PHL} | 1.84
1.78 | 2.11
2.05 | 2.44
2.38 | 2.84
2.78 | 3.35
3.29 | 4.15
4.09 | | Clock Input Buffer (Inverter) | IKB | 4 | t _{PLH}
t _{PHL} | 2.49
1.94 | 2.63
2.08 | 2.79
2.24 | 2.99
2.44 | 3.24
2.69 | 3.64
3.09 | | I/O Cell | Unit Cell | Equivalent | Input | | Output Buffer Load in pF | | | | | |--|-----------|-----------------------|--------------------------------------|--------------|--------------------------|--------------|---------------|----------------|----------------| | Function | Name | Gate Count Transition | 12 | 25 | 50 | 100 | 200 | 400 | | | Output Buffer (True) | O2B | 2 | t _{PLH}
t _{PHL} | 2.37
3.24 | 3.10
4.85 | 4.50
7.95 | 7.30
14.15 | 12.90
26.55 | 24.10
51.35 | | Power Output Buffer
(True) | O2L | 2 | t _{PLH}
t _{PHL} | 2.53
2.47 | 3.02
3.01 | 3.94
4.03 | 5.79
6.08 | 9.49
10.18 | 16.89
18.38 | | 3-State Output Buffer (True) | O4T | 4 | t _{PLH}
t _{PHL} | 3.09
4.08 | 3.82
5.77 | 5.22
9.02 | 8.02
15.52 | 13.62
28.52 | 24.82
54.52 | | Power 3-State Output
Buffer (True) | O4W | 4 | t _{PLH}
t _{PHL} | 3.48
4.68 | 3/97
5.30 | 4.92
6.47 | 6.82
8.82 | 10.62
13.52 | 18.22
22.92 | | 3-State Output and
Input Buffer (True) | H6T | 8 | t _{PLH}
t _{PHL} | 3.09
4.08 | 3.82
5.77 | 5.22
9.02 | 8.02
15.57 | 13.62
28.52 | 24.82
54.52 | | Power 3-State Output and Input Buffer (True) | H6W | 8 | t _{PLH}
t _{PHL} | 3.48
4.68 | 3.97
5.30 | 4.92
6.47 | 6.82
8.82 | 10.62
13.52 | 18.22
22.92 | Note: Delays for inter-block wiring are not included ## **DC CHARACTERISTICS** #### **ABSOLUTE MAXIMUM RATINGS**¹ | Rating | | Symbol | Minimum | Maximum | Unit | |-----------------------------|---------------------------|-------------------|------------------------------------|----------------------|------| | Supply Voltage | | V _{DD} | V _{SS} - 0.5 ² | 6.0 | V | | Input Voltage | | V_{i} | V _{SS} - 0.5 ² | V _{DD} +0.5 | V | | Output Voltage | | Vo | V _{SS} - 0.5 ² | V _{DD} +0.5 | V | | | $I_{OL} = 3.2 \text{ mA}$ | | -40 | | | | Output Current ³ | $I_{OL} = 8 \text{ mA}$ | l _{os} | -40 | | | | Output Gurrent | I _{OL} = 12 mA | | -60 | 1 | mA | | | I _{OL} = 24 mA | | -90 | | | | Storage Temperature | Ceramic
Plastic | T _{stg} | 65
40 | +150
+125 | 5C | | Temperature Under Bias | Ceramic
Plastic | T _{bias} | -40
-25 | +125
+85 | 5C | Notes: ¹Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of the data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ²V_{SS} = 0 V. #### RECOMMENDED OPERATING CONDITIONS | Parameter | Symbol | Minimum | Typical | Maximum | Unit | |-----------------------------------|-----------------|-----------------------|---------|-----------------------|------| | Supply Voltage | V_{DD} | 4.75 | 5.0 | 5.25 | V | | Input High Voltage for TTL Input | V _{IH} | 2.2 | _ | - | V | | Input Low Voltage for TTL Input | V _{IL} | - | _ | 0.8 | V | | Input High Voltage for CMOS Input | VIH | V _{DD} x 0.7 | _ | _ | V | | Input Low Voltage for CMOS Input | ViL | _ | - | V _{DD} x 0.3 | ٧ | | Operating Temperature | T _A | 0 | _ | 70 | °C | ## **CAPACITANCE** ($T_A = 25^{\circ}C$, $V_{DD} = V_I = 0$ V, f = 1 MHz) | Parameter | Symbol | Minimum | Typical | Maximum | Unit | |--|------------------|---------|---------|---------|------| | Input Pin Capacitance | C _{IN} | | | 16 | pF | | Output Pin Capacitance
(I _{OL} – 3.2 mA, 8 mA, or 12 mA) | C _{OUT} | | _ | 16 | pF | | Output Pin Capacitance
(I _{OL} – 24 mA) | C _{OUT} | | _ | 18 | pF | | I/O Pin Capacitance
(I _{OL} – 3.2 mA, 8 mA, or 12 mA) | C _{I/O} | | _ | 16 | pF | | I/O Pin Capacitance
(I _{OL} – 24 mA) | C _{I/O} | | _ | 23 | pF | ³Only one output at a time may be shorted for more than one second. #### **DC CHARACTERISTICS** (Recommended Operating Conditions unless otherwise noted) | Parameter | Symbol | Condition | Minimum | Typical | Maximum | Unit | |--|--|---|-----------------------|-------------------|-----------------------|-------| | Power Supply Current | I _{DDS} | Steady State ¹ | 0 | | 100 | μΑ | | Output High Voltage
for Normal Output (I _{OL} = 3.2 mA) | V _{OH} | I _{OH} = -2 mA | 4.0 | _ | V _{DD} | ٧ | | Output High Voltage for Driver Output (I _{OL} = 8 mA) | V _{OH} | I _{OH} = -2 mA | 4.0 | - | V _{DD} | ٧ | | Output High Voltagefor Driver Output (I _{OL} =12 mA) | V _{OH} | l _{OH} = -4 mA | 4.0 | - | V _{DD} | ٧ | | Output High Voltage
for Driver Output (I _{OL} =24 mA) | V _{OH} | I _{OH} = -8 mA | 4.0 | _ | V _{DD} | ٧ | | Output Low Voltage ² for Normal Output (I _{OL} = 3.2 mA) | V _{OL} | I _{OL} = 3.2 mA | V _{SS} | | 0.4 | ٧ | | Output Low Voltage for Driver Output (I _{OL} = 8 mA) | V _{OL} | I _{OL} = 8 mA | V _{SS} | _ | 0.4 | ٧ | | Output Low Voltage ² for Driver Output (I _{OL} = 12 mA) | V _{OL} | I _{OL} = 12 mA | V _{SS} | _ | 0.4 | V | | Output Low Voltage ²
for Driver Output (I _{OL} = 24 mA) | V _{OL} | I _{OL} = 24 mA | V _{SS} | _ | 0.5 | V | | Input High Voltage
for TTL Input | VIH | | 2.2 | _ | _ | V | | Input Low Voltage
for TTL Input | V _{IL} | | _ | _ | 0.8 | V | | Input High Voltage
for CMOS Input | V _{IH} | _ | V _{DD} x 0.7 | _ | _ | V | | Input Low Voltage for CMOS Input | V _{IL} | | _ | _ | V _{DD} x 0.3 | V | | Schmitt Trigger CMOS Input ³ Positive-going Threshold Negative-going Threshold Hysteresis | V _{T+}
V _{T-}
V _{T+} -V _{T_} | V_{IL} to V_{IH} , V_{IH} , to V_{IL} | 2.5
0.7
1.1 | 3.3
1.4
1.9 | 4.0
2.0
2.7 | > > > | | Schmitt Trigger TTL Input ³ Positive-going Threshold Negative-going Threshold Hysteresis | V _{T+}
V _{T-}
V _{T+} -V _{T_} |

V _{IL} to V _{IH} , V _{IH} , to V _{IL} | 1.4
0.8
0.4 | 1.9
1.3
0.6 | 2.5
1.8
0.7 | >>> | | Input Pull-up/Pull-down Resistor | R₽ | V _{IH} to V _{DD}
V _{IL} to V _{SS} | 25 | 50 | 100 | kΩ | | Input Leakage Current | l _{Li} | $V_i = 0 - V_{DD}$ | -10 | | 10 | μА | | Input Leakage Current (3-state) | l _{LZ} | $V_i = 0 - V_{DD}$ | -10 | | 10 | μΑ | Notes: $^{1}V_{\text{IN}} = V_{\text{DD}}, V_{\text{IL}} = V_{\text{SS}}$ 2 With certain restrictions on pin assignment 3 These values for reference only #### **ARRAY ARCHITECTURE** The typical UHB chip is composed of double columns of CMOS gates (basic cells) separated by dedicated wiring channels. A basic cell consists of a pair of N-channel and a pair of P-channel transistors interconnected by polysilicon gate control terminals. Groups of basic cells are interconnected by custom metallization into unit cells. Fujitsu unit cells provide a wide range of standard logic functions such as exclusive OR gates, flip-flops, buffers, and counters. The UHB Series CMOS gate array family includes over 250 different unit cells. These unit cells are the building blocks from which complex designs are constructed. The spaces between the double columns of basic cells are occupied by channels for custom metallization. Nearly half of these wiring channels contain transmission gates that implement internal 3-state buses. Bus terminators located at the ends of the double columns of cells maintain the last value to be sent through the bus to ensure proper operation
under all conditions. The I/O cells around the perimeter of the matrix of cells are composed of internal cells with input protection networks and the potential to be configured as input buffers, clock input buffers, output buffers, power output buffers, or bidirectional buffers. Typical Chip Layout, Double Column Structure - 1. Dedicated Clock Network for high frequency clocks - 2. 3-state Bus Logic located in wiring channels - 3. Bus Terminators prevent floating state on buses - 4. Driver Transistors and I/O Protection Networks provide high I/O count - 5. Double Columns for optional macro utilization and speed - 6. Wiring Channel Area for metallization between unit cells #### **DESIGN COMPONENTS** #### **DESIGNING WITH THE UHB PRODUCT FAMILY** To implement logic functions, you build up the elements of the circuit from unit cells. Simple unit cells are used hierarchically to build higher level functions until the logic is completely defined. Fujitsu offers a complete line of standard logic functions in the unit cell library. Super macros are used to implement large super-cell functions such as expandable ALUs and multipliers. #### I/O BUFFERS Each UHB I/O buffer around the perimeter of the array consists of an input protection network and large N-channel and P-channel transistors capable of supplying the standard 3.2-mA, 8-mA, and 12-mA output currents. Two of these large transistor pairs may be connected in parallel, using high-output-current macros, to obtain 24-mA drive. One of the I/O pads whose output transistors have been used for the 24-mA high-current option may still be used as an input. Input I/O buffers convert external TTL levels to internal CMOS levels or may receive CMOS level signals directly. Output I/O buffers are totem pole and may drive either CMOS and TTL levels, depending on their AC and DC loads. Any of the pins except the dedicated power and ground pads can be designed to be an input buffer, an input buffer with pull-up/pull-down resistance, a clock input buffer, an output buffer, a high-drive output buffer, an output buffer with noise limiting resistance, a 3-state output buffer, a bi-directional buffer, or a Schmitt trigger input buffer. There are some restrictions on the location of 24-mA buffers. #### INPUT CLOCK DRIVERS The large output I/O transistor pair is used in a high-drive input clock driver for high fanout applications within the array. This allows you to fully utilize the high speed capabilities of the UHB technology. #### **TESTING UHB DEVICES** Two options are available for testing UHB designs: (1) the standard designer-supplied test patterns and test vectors (in Fujitsu's FTDL format) and (2) the use of scan cells combined with Automatic Test Generation (ATG) performed by Fujitsu computers for additional diagnostic test patterns. If you have designed with scan cells and other scan logic elements, Fujitsu will complete the scan test program generation. Regardless of the selected test option, you need to furnish Fujitsu with enough test patterns to guarantee that the submitted design completely performs its intended logic functions. These patterns include the test function of each I/O pin. Diagramatic Representation of Design Structure for ScanTesting ## **VDD** and **VSS** REQUIREMENTS Each UHB Series gate array device has two options for each package type, both supporting a different number of power and ground pins. The number of power and ground pins required depends on the number of simultaneously switching outputs used in the design. Simultaneously switching outputs (SSOs) are output signals that change from H to L or L to H or from Z to H or Z to L within a 20-ns window (including possible skew). Multiple outputs that switch at the same time can cause noise on Vop and Vss lines and affect the performance of a device. Therefore, to achieve maximum reliability, Fujitsu limits the number of SSOs per Vop pin according to the table below. The maximum number of SSOs per pin is determined by a representative value specified for the driving capability of each type of output. The total representative value of all SSOs used in a design must not exceed 80 per Vss pin. For example, 11 normal 3.2-mA outputs with edge rate control, four 12-mA outputs, or three 24-mA outputs per Vss pin may be SSOs. | Output Drive Type | Representative Value per Output | |--|---------------------------------| | Normal (3.2 mA) | 10 | | High Drive (12 mA) | 20 | | Normal (3.2 mA) with
Edge Rate Control | 7 | | High Drive (12 mA)
with Edge Rate Control | 14 | | High Drive (24 mA)
with Edge Rate Control | 26 | ## **UHB Series CMOS Gate Arrays** ## **FUNCTIONAL INDEX OF UNIT CELL LIBRARY** Note: The load unit (lu) is a normalized loading unit of capacitance representing the input load of an inverter without metal interconnection. | nverter and Buffe | r Family | | | | |-------------------|----------------------------|-------------|------------|----------| | Unit Cell Name | Description | Basic Cells | Drive (lu) | Polarity | | V1N | Inverter | 1 | 18 | Neg | | V2B | Power Inverter | 1 | 36 | Neg | | B1N | True Buffer | . 1 | 18 | Pos | | BD3 | True Delay Buffer (> 5 ns) | 5 | 18 | Pos | | BD4 | Delay Cell (> 4 ns) | 4 | 6 | Pos | | BD5 | Delay Cell (>10 ns) | 9 | 18 | Pos | | BD6 | Delay Cell (>22 ns) | 17 | 18 | Pos | | Clock Buffer Fami | ly | | | | |-------------------|------------------------------|-------------|------------|----------| | Unit Cell Name | Description | Basic Cells | Drive (lu) | Polarity | | K1B | True Clock Buffer | 2 | 36 | Pos | | K2B | Power Clock Buffer | 3 | 55 | Pos | | КЗВ | Gated Clock (AND) Buffer | 2 | 36 | Pos | | K4B | Gated Clock (OR) Buffer | 2 | 36 | Pos | | K5B | Gated Clock (NAND) Buffer | 3 | 36 | Neg | | KAB | Block Clock (OR) Buffer | 3 | 55 | Pos | | KBB | Block Clock (OR x 10) Buffer | 30 | 55 | Pos | | V1L | Double Power Inverter | 2 | 55 | Neg | | AND Family | | | | |----------------|-------------------------|-------------|------------| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | N2N | 2-input NAND | 1 | 18 | | N2B | Power 2-input NAND | 3 | 36 | | N2K | Fast Power 2-input NAND | 2 | 36 | | N3N | 3-input NAND | 2 | 14 | | N3B | Power 3-input NAND | 3 | 36 | | N4N | 4-input NAND | 2 | 10 | | N4B | Power 4-input NAND | 4 | 36 | | N6B | Power 6-input NAND | 5 | 36 | | N8B | Power 8-input NAND | 6 | 36 | | N9B | Power 9-input NAND | 8 | 36 | | NCB | Power 12-input NAND | 10 | 36 | | NGB | Power 16-input NAND | 11 | 36 | | N3K | Fast Power 3-input NAND | 3 | 28 | | N4K | Fast Power 4-input NAND | 4 | 20 | Continued on next page ## FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) | R Family | | | | |----------------|--------------------|-------------|------------| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | R2N | 2-input NOR | 1 | 14 | | R2B | Power 2-input NOR | 3 | 36 | | R2K | Power 2-input NOR | 2 | 36 | | R3N | 3-input NOR | 2 | 10 | | R3B | Power 3-input NOR | 3 | 36 | | R3K | Power 3-input NOR | 3 | 20 | | R4N | 4-input NOR | 2 | 6 | | R4B | Power 4-input NOR | 4 | 36 | | R4K | Power 4-input NOR | 4 | 12 | | R6B | Power 6-input NOR | 5 | 36 | | R8B | Power 8-input NOR | 6 | 36 | | R9B | Power 9-input NOR | 8 | 36 | | RCB | Power 12-input NOR | 10 | 36 | | RGB | Power 16-input NOR | 11 | 36 | | AND Family | | | | | |----------------|-------------------|-------------|------------|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | | N2P | Power 2-input AND | 2 | 36 | | | N3P | Power 3-input AND | 3 | 36 | | | N4P | Power 4-input AND | 3 | 36 | | | N8P | Power 8-input AND | 6 | 36 | | | OR Family | | | | | |----------------|------------------|-------------|------------|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | | R2P | Power 2-input OR | 2 | 36 | | | R3P | Power 3-input OR | 3 | 36 | | | R4P | Power 4-input OR | 3 | 36 | | | R8P | Power 8input OR | 6 | 36 | | | xclusive NOR/OI | R Family (EXOR/EXNOR) | | | | |-----------------|-----------------------------|-------------|------------|----------| | Unit Cell Name | Description | Basic Cells | Drive (lu) | Polarity | | X1N | Exclusive NOR | 3 | 18 | Neg | | X1B | Power Exclusive NOR | 4 | 36 | Neg | | X2N | Exclusive OR | 3 | 14 | Pos | | X2B | Power Exclusive OR | 4 | 36 | Neg | | X3N | 3-input Exclusive NOR | 5 | 14 | Neg | | ХЗВ | Power 3-input Exclusive NOR | 6 | 36 | Neg | | X4N | 3-input Exclusive OR | 5 | 14 | Pos | | X4B | Power 3-input Exclusive OR6 | 6 | 36 | Pos | Continued on next page ## **UHB Series CMOS Gate Arrays** ## FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) | Unit Cell Name | Description | Basic Cells | Drive (lu) | | |----------------|-------------------------------|-------------|------------|--| | D23 | 2-wide 2-AND 3-input AOI | 2 | 14 | | | D14 | 2-wide 3-AND 4-input AOI | 2 | 14 | | | D24 | 2-wide 2-AND 4-input AOI | 2 | 14 | | | D34 | 3-wide 2-AND 4-input AOI | 2 | 10 | | | D36 | 3-wide 2-AND 6-input AOI | 3 | 10 | | | D44 | 2-wide 2-OR 2-AND 4-input AOI | 2 | 10 | | Note: AND-OR-Inverter unit cells are useful in implementing sum-of-products (SOP) expressions | OR-AND-Inverter Family (OAI) | | | | | | | | |------------------------------|-------------------------------|-------------|------------|--|--|--|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | | | | | G23 | 2-wide 2-OR 3-input OAI | 2 | 18 | | | | | | G14 | 2-wide 3-OR 4-input OAI | 2 | 10 | | | | | | G24 | 2-wide 2-OR 4-input OAI | 2 | 10 | | | | | | G34 | 3-wide 2-OR 4-input OAI | 2 | 10 | | | | | | G44 | 2-wide 2-AND 2-OR 4-input OAI | 2 | 14 | | | | | Note: OR-AND-Inverter unit cells are useful in implementing product-of-sums (POS) expressions. | Multiplexer Far | nily | | | | | |-----------------|------|--------------------------------------|-------------|------------|----------| | Unit Cell Name | Type | Description | Basic Cells | Drive (lu) | Function | | T24* | 4:1 |
Power 2-AND 4-wide Multiplexer | 6 | 36 | SOP | | T26* | 6:1 | Power 2-AND 6-wide Multiplexer | 10 | 36 | SOP | | T28* | 8:1 | Power 2-AND 8-wide Multiplexer | 11 | 36 | SOP | | T32 | 2:1 | Power 3-AND 2-wide Multiplexer | 5 | 36 | SOP | | T33* | 3:1 | Power 3-AND 3-wide Multiplexer | 8 | 36 | SOP | | T34* | 4:1 | Power 3-AND 4-wide Multiplexer | 9 | 36 | SOP | | T42 | 2:1 | Power 4-AND 2-wide Multiplexer | 6 | 36 | SOP | | T43 | 3:1 | Power 3-AND 3-wide Multiplexer | 10 | 36 | SOP | | T44 | 4:1 | Power 4-AND 4-wide Multiplexer | 11 | 36 | SOP | | T54 | 4:1 | Power 4-2-3-2 AND 4-wide Multiplexer | 10 | 36 | SOP | | U24* | 4:1 | Power 2-OR 4-wide Multiplexer | 6 | 36 | POS | | U26* | 6:1 | Power 2-OR 6-wide Multiplexer | 9 | 36 | POS | | U28* | 8:1 | Power 2-OR 8-wide Multiplexer | 11 | 36 | POS | | U32 | 2:1 | Power 3-OR 2-wide Multiplexer | 5 | 36 | POS | | U33* | 3:1 | Power 3-OR 3-wide Multiplexer | 7 | 36 | POS | | U34* | 4:1 | Power 3-OR 4-wide Multiplexer | 9 | 36 | POS | | U42 | 2:1 | Power 4-OR 2-wide Multiplexer | 6 | 36 | POS | | U43 | 3:1 | Power 4-OR 3-wide Multiplexer | 9 | 36 | POS | | U44 | 4:1 | Power 4-OR 4-wide Multiplexer | 11 | 36 | POS | * Convenient for typical multiplexer applications | Unit Cell
Name | Туре | Description | Basic Cells | Drive (lu) | Selects | Output | Bit
Width | |-------------------|------|---------------|-------------|------------|---------|--------|--------------| | P24* | 2:1 | Data Selector | 12 | 36 | S, XS | Q | 4 | | T2E | 2:1 | Selector | 5 | 18 | S | XQ | 2 | | T2F | 2:1 | Selector | 8 | 18 | S | XQ | 4 | | T2B* | 2:1 | Selector | 2 | 18 | S, XS | XQ | 1 | | T2C* | 2:1 | Selector | 4 | 18 | S, XS | XQ | 2 | | T2D* | 2:1 | Selector | 2 | 14 | S, XS | XQ | 1 | | T5A* | 4:1 | Selector | 5 | 9 | S, XS | XQ | 1 | | V3A* | 1:2 | Selector | 2 | 14 | S, XS | XQ | 1 | | V3B* | 1:2 | Selector | 4 | 14 | S, XS | XQ | 2 | ^{*} These are transmission gate devices whose outputs can be tied because they can be inhibited with true/inverted selects. | Decoders | | | | | | | |-------------------|------|-------------|-------------|------------|-------------------------|-----------------| | Unit Cell
Name | Туре | Description | Basic Cells | Drive (lu) | Active Level
Outputs | Output | | DE2 | 2:4 | Decoder | 5 | 18 | Low | _ | | DE3 | 3:8 | Decoder | 15 | 14 | Low | | | DE4 | 2:4 | Decoder | 8 | 14 | Low | Low | | DE6 | 3:8 | Decoder | 30 | 18 | Low | 1 High
2 Low | | Internal Bus Unit C | ells | | | | | |---------------------|------------------|-------------|------------|----------|--------| | Unit Cell Name | Description | Basic Cells | Drive (lu) | Bus Size | Enable | | B41 | 4-bit Bus Driver | 9 | 36 | 4 bits | Low | Notes: ¹The number of B41s used is limited by the chosen array series, as shown in the table below. ²On-chip buses (managing more than one bus source and/or a bi-directional bus) may be implemented with either multiplexer-type unit cells or bus drivers. While bus drivers impose certain design restrictions, the optimum choice is dictated by the specific design. | Device Name | Maximum B41s | |-------------|--------------| | C-330UHB | 4 | | C-530UHB | 5 | | C-830UHB | 6 | | C-1200UHB | 8 | | C-1700UHB | 12 | | C-2200UHB | 16 | | C-3000UHB | 21 | | C-4100UHB | 26 | | C-6000UHB | 50 | ## **UHB Series CMOS Gate Arrays** # FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) | Unit Cell
Name | Description | Basic
Cells | Drive
(lu) | Enable | Bits | Output | Clear | |-------------------|-----------------------|----------------|---------------|--------|------|--------|-------| | YL2 | Data Latch with TM | 5 | 36 | High | 1 | Q | | | YL4 | Data Latch with TM | 14 | 36 | High | 4 | Q | _ | | LTK | Data Latch | 4 | 18 | Low | 1 | Q, XQ | Async | | LTL | Data Latch with Clear | 5 | 18 | Low | 1 | Q, XQ | Async | | LTM | Data Latch with Clear | 16 | 18 | Low | 4 | Q, XQ | | | LT1 | S-R Latch with Clear | 4 | 18 | Low | 1 | Q, XQ | Async | | LT4 | Data Latch | 14 | 18 | Low | 4 | Q, XQ | | Note: Y-type latches incorporate inhibit inputs and transparent mode (TM) to facilitate scan implementation. Continued on next page | Scan Flip | p-flop Family (Positive-Edge Tri | ggered) | | | | | | | |-------------------|-------------------------------------|----------------|---------------|------|--------|-------|--------|------------------| | Unit Cell
Name | Description | Basic
Cells | Drive
(lu) | Bits | Output | Clear | Preset | Clock
Inhibit | | SDH* | Scan D Flip-flop with 2:1 Multiplex | 14 | 36 | 1 | Q, XQ | Async | _ | Yes | | SDJ* | Scan D Flip-flop with 4:1 Multiplex | 15 | 36 | 1 | Q, XQ | Async | _ | Yes | | SDK* | Scan D Flip-flop with 3:1 Multiplex | 16 | 36 | 1 | Q, XQ | Async | - | Yes | | SJH | Scan J-K Flip-flop | 16 | 36 | 1 | Q, XQ | Async | _ | Yes | | SDD* | Scan DFlip-flop with 2:1 Multiplex | 16 | 36 | 1 | Q, XQ | Async | Async | Yes | | SDA | Scan 1-input D Flip-flop | 12 | 36 | 1 | Q, XQ | | | Yes | | SDB | Scan 1-input D Flip-flop | 42 | 36 | 4 | Q, XQ | _ | _ | Yes | | SHA | Scan 1-input D Flip-flop | 68 | 18 | 8 | Q, XQ | _ | | Yes | | SHB | Scan 1-input D Flip-flop | 62 | 18 | 8 | Q | | | Yes | | SHC | Scan 1-input D Flip-flop | 62 | 18 | 8 | XQ | _ | | Yes | | SHJ* | Scan D Flip-flop with 2:1 Multiplex | 78 | 18 | 8 | Q, XQ | | | Yes | | SHK* | Scan D Flip-flop with 3:1 Multiplex | 88 | 18 | 8 | Q, XQ | | _ | Yes | Note: * Indicates D Flip-flop with multiplexed inputs. | Non-Sca | n Filp-flop Family | | | | | | | | |-------------------|---|----------------|---------------|------|--------|-------|--------|------------------| | Unit Cell
Name | Description | Basic
Cells | Drive
(lu) | Bits | Output | Clear | Preset | Clock
Inhibit | | FDM | D Flip-flop | 6 | 18 | 1 | Q, XQ | _ | _ | Pos | | FDN | D Flip-flop with Set | 7 | 18 | 1 | Q, XQ | _ | Async | Pos | | FDO | D Flip-flop with Reset | 7 | 18 | 1 | Q, XQ | Async | | Pos | | FDP | D Flip-flop with Set and Reset | 8 | 18 | 1 | Q, XQ | Async | Async | Pos | | FDQ | D Flip-flop | 21 | 18 | 4 | Q | _ | | Neg | | FDR | D Flip-flop with Clear | 26 | 18 | 4 | Q | Async | _ | Pos | | FDS | D Flip-flop | 20 | 18 | 4 | Q | | _ | Pos | | FD2 | Power D Flip-flop | 7 | 36 | 1 | Q, XQ | | _ | Neg | | FD3 | Power D Flip-flop with Preset | 8 | 36 | 1 | Q, XQ | _ | Async | Neg | | FD4 | Power D Flip-flop with Clear and Preset | 9 | 36 | 1 | Q, XQ | Async | Async | Neg | | FD5 | Power D Flip-flop with Clear | 8 | 36 | 1 | Q, XQ | Async | _ | Neg | | FJD | Positive Edge Clocked
Power J-K Flip-flop with Clear | 12 | 36 | 1 | Q, XQ | Async | | Pos | Note: Synchronous flip-flops my be constructed by adding a simple AND gate (such as N2P) to the input of a flip-flop to create a synchronous clear. | Binary | Counter Family | | *************************************** | ********** | | *************************************** | | | | | |----------------------|--|----------------|---|------------|----------------------|---|-------|--------|-------------|-------------| | Unit
Cell
Name | Description | Basic
Cells | Drive
(lu) | Bits | Outputs ¹ | Load | Clear | Enable | Carry
In | Up/
Down | | SC72 | Scan 4-bit Synchronous Binary
Up Counter with Parallel Load | 62 | 36 | 4 | Q, XQ,
CO (S) | Sync | _ | Low | High | Up | | SC8 ² | Scan 4-bit Synchronous Binary
Down Counter with Parallel Load | 66 | 36 | 4 | Q, XQ,
CO (S) | Sync | _ | High | Low | Down | | C11 ³ | Non-Scan Flip-Flop for Counter | 11 | 18 | _ | Q, XQ | _ | _ | _ | | | | C41 | Non-Scan 4-bit Binary
Asynchronous Counter | 24 | 18 | 4 | Q, (A) | _ | Async | _ | _ | Up | | C42 | Non-Scan 4-bit Binary
Synchronous Counter | 32 | 18 | 4 | Q | _ | Async | _ | | Up | | C43 | Non-Scan 4-bit Binary
Synchronous Up Counter | 48 | 18 | 4 | Q, CO (S) | Sync | Async | High | High | Up | | C45 | Non-Scan Binary Synchronous
Up Counter | 48 | 18 | 4 | Q, CO | Sync | Sync | High | High | Up | | C47 | Non-Scan Binary Synchronous
Up/Down Counter | 68 | 18 | 4 | Q, CO | Async | _ | Low | Low | Up/
Down | Notes: ¹(S), (A) indicate the counter is (S)ynchronous or (A)synchronous. 2Scan counters include clock inhibit and high drive (CDR = 36 lu). For non-Scan counters CDR = 18 lu. ³C11 may by used for purposes other than counters. # **UHB Series CMOS Gate Arrays** # FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) | Shift F | Shift Register Family | | | | | | | | | | | |----------------------|---|----------------|---------------|--------------|----------------|------------|-------------------|--|--|--|--| | Unit
Cell
Name | Description | Basic
Cells | Drive
(lu) | Bit
Width | Load | Outputs | Clock
Polarity | | | | | | FS1 | Serial-in Parallel-out Shift Register | 18 | 16 | 4 | Serial-In only | Q-Parallel | Neg | | | | | | FS2 | Shift Register with Synchronous Load | 30 | 16 | 4 | Sync-High | Q-Parallel | Neg | | | | | | FS3 | Shift Register with Asynchronous Load | 34 | 18 | 4 | Async-Low | Q-Parallel | Pos | | | | | | SR1 | Serial-in Parallel-out Shift Register with Scan | 36 | 36 | 4 | Serial-In only | Q-Parallel | Pos | | | | | | Datapat | h Operators (Adder, ALU, Parity) | | | | | | |----------------------|--------------------------------------|----------------|--------------------|-----------|--|-------------| | Unit
Cell
Name | Description | Basic
Cells | Drive
(lu) | Bit Width | Load | Outputs | | MC4 | Magnitude Comparator | 42 | 18 (=)
10 (<,>) | 4 | A>B, A=B, A <b< td=""><td>A>B,A=B,ALB</td></b<> | A>B,A=B,ALB | | A1A | 1-bit Half Adder | 5 | 36 | 1 | s, co | | | A1N | 1-bit Full Adder | 8 | 18 | 1 | s, co | CI | | A2N | 2-bit Full Adder | 16 | 14 | 2 | s, co | CI | |
A4H | 4-bit Binary Full Adder w/Fast Carry | 48 | 18 (CO)
14 (S) | 4 | s, co | CI | | PE5 | Even Parity Generator/Checker | 12 | 36 | 5 | EVEN, ODD | | | PO5 | Odd Parity Generator/Checker | 12 | 36 | 5 | ODD, EVEN | | | PE8 | Even Parity Generator/Checker | 18 | 18 | 8 | EVEN, ODD | | | PO8 | Odd Parity Generator/Checker | 18 | 18 | 8 | ODD, EVEN | _ | | PE9 | Even Parity Generator/Checker | 22 | 18 | 9 | EVEN, ODD | | | PO9 | Odd Parity Generator/Checker | 22 | 18 | 9 | ODD, EVEN | _ | | Miscellaneous Cells | Aiscellaneous Cells | | | | | | | | |---------------------|---------------------|-------------|------------------------|--|--|--|--|--| | Unit Cell Name | Description | Basic Cells | Function | | | | | | | Z00 | 0 Clip | 0 | Tie to V _{SS} | | | | | | | Z01 | 1 Clip | 0 | Tie to V _{DD} | | | | | | | nput Buffer Family | | | | | | | | | |---|---|--|----------------|--------------------|---|--|--|--| | Description | Basic
Cells | Drive (lu) | Logic
Level | Туре | Input/Output
Polarity | | | | | Input Buffer | 5 | 36 | TTL | Signal | Invert | | | | | I1B with Pull-down Resistance | 5 | 36 | TTL | Signal | Invert
Invert | | | | | Input Buffer | 4 | 36 | TTL | Signal | True | | | | | I2B with Pull-up Resistance I2B with Pull-down Resistance | 4 4 | 36
36 | TTL | Signal
Signal | True
True | | | | | Clock Input Buffer | 4 | 72 | TTL | Clock | Invert | | | | | IKB With Pull-up Resistance IKB with Pull-down Resistance | 4 4 | 72
72 | TTL | Clock
Clock | Invert
Invert | | | | | Clock Input Buffer | 6 | 72 | TTL | Clock | True | | | | | ILB with Pull-up Resistance ILB with Pull-down Resistance | 6 | 72
72 | TTL | Clock
Clock | True
True | | | | | CMOS Interface Input Buffer | 5 | 36 | CMOS | Signal | Invert | | | | | I1C with Pull-up Resistance I1C with Pull-down Resistance | 5 | 36
36 | CMOS | Signal
Signal | Invert
Invert | | | | | CMOS Interface Input Buffer | 4 | 36 | CMOS | Signal | True | | | | | I2C with Pull-up Resistance I2C with Pull-down Resistance | 4 | 36
36 | CMOS | Signal
Signal | True
True | | | | | Schmitt Trigger Input Buffer | 8 | 18 | CMOS | Schmitt | Invert | | | | | I1S with Pull-up Resistance I1S with Pull-down Resistance | 8 | 18
18 | CMOS | Schmitt
Schmitt | Invert
Invert | | | | | Schmitt Trigger Input Buffer | 8 | 18 | CMOS | Schmitt | True | | | | | I2S with Pull-up Resistance I2S with Pull-down Resistance | 8 8 | 18
18 | CMOS
CMOS | Schmitt
Schmitt | True
True | | | | | Schmitt Trigger Input Buffer | 6 | 18 | TTL | Schmitt | Invert | | | | | I1R with Pull-up Resistance I1R with Pull-down Resistance | 6 | 18
18 | TTL | Schmitt
Schmitt | Invert
Invert | | | | | Schmitt Trigger Input Buffer | 8 | 18 | TTL | Schmitt | True | | | | | I2R With Pull-up Resistance | 8 | 18
18 | TTL | Schmitt | True
True | | | | | | Input Buffer I1B with Pull-up Resistance I1B with Pull-down Resistance Input Buffer I2B with Pull-up Resistance I2B with Pull-up Resistance I2B with Pull-up Resistance I2B with Pull-down Resistance I2B with Pull-down Resistance I2B with Pull-up Resistance I2B with Pull-up Resistance I2B with Pull-up Resistance I2B with Pull-down Resistance I2B with Pull-up Resistance I2B with Pull-up Resistance I2C with Pull-down Resistance I3C with Pull-down Resistance I3C with Pull-up Resistance I3C with Pull-up Resistance I3C with Pull-up Resistance I3S with Pull-up Resistance I3S with Pull-down Resistance I3S with Pull-down Resistance I3S with Pull-up Resistance I3S with Pull-up Resistance I3S with Pull-up Resistance I3S with Pull-up Resistance I3S with Pull-down Resistance I4R with Pull-down Resistance I5R with Pull-down Resistance | Input Buffer 5 I1B with Pull-up Resistance 5 I1B with Pull-up Resistance 5 Input Buffer 4 I2B with Pull-down Resistance 4 I2B with Pull-down Resistance 4 I2B with Pull-down Resistance 4 I2B with Pull-up Resistance 4 IKB With Pull-up Resistance 4 IKB with Pull-up Resistance 4 IKB with Pull-up Resistance 6 ILB with Pull-up Resistance 6 ILB with Pull-down Resistance 6 ILB with Pull-down Resistance 5 IC Wos Interface Input Buffer 1 IC with Pull-up Resistance 5 IC with Pull-up Resistance 5 IC with Pull-up Resistance 5 IC with Pull-up Resistance 4 I2C with Pull-up Resistance 4 I2C with Pull-up Resistance 4 I2C with Pull-up Resistance 8 IS with Pull-down 6 IR with Pull-down Resistance 6 IR with Pull-down Resistance 6 IR with Pull-down Resistance 8 IR with Pull-down Resistance 8 IR with Pull-down Resistance 6 IR with Pull-down Resistance 8 R | Description | Description | Description Basic Cells Drive (Iu) Logic Level Type | | | | Note: A "U" suffixed to the name of an input buffer indicates pull-up resistance of $50K\Omega$ (typical) and a "D" indicates a pull-down resistance of the equivalent value. | Output Bu | ffer Family | | | | | | | |-------------------|-----------------------------|----------------|-----------------------------|-----------------|----------|-------------------------|--------------------------| | Unit Cell
Name | Description | Basic
Cells | Drive
(I _{OL}) | Logic²
Level | Type | Edge
Rate
Control | Input/Output
Polarity | | O1B | Output Buffer | 3 | 3.2 mA | TTL/CMOS | Standard | No | Invert | | O1L | Power Output Buffer | 3 | 12 mA | TTL/CMOS | Standard | No | Invert | | 018 | Power Output Buffer | 5 | 12 mA | TTL/CMOS | Standard | Yes | Invert | | O2B | Output Buffer | 2 | 3.2 mA | TTL/CMOS | Standard | No | True | | O2L | Power Output Buffer | 2 | 12 mA | TTL/CMOS | Standard | No | True | | O2S | Power Output Buffer | 4 | 12 mA | TTL/CMOS | Standard | Yes | True | | O4T ¹ | Output Buffer | 4 | 3.2 mA | TTL/CMOS | 3-state | No | True | | O4W ¹ | Power 3-state Output Buffer | 4 | 12 mA | TTL/CMOS | 3-state | No | True | | O4S! | Power 3-state Output Buffer | 5 | 12 mA | TTL/CMOS | 3-state | Yes | True | | O1R | Output Buffer | 5 | 3.2 mA | TTL/CMOS | Standard | Yes | Invert | | O2R | Output Buffer | 4 | 3.2 mA | TTL/CMOS | Standard | Yes | True | | O4R ¹ | Output Buffer | 5 | 3.2 mA | TTL/CMOS | 3-state | Yes | True | | O2S2 | High Power Output Buffer | 6 | 24 mA | TTL/CMOS | Standard | Yes | True | | O4S21 | High Power Output Buffer | 7 | 24 mA | TTL/CMOS | 3-state | Yes | True | | O1BF | Output Buffer | 3 | 8 mA | TTL/CMOS | Standard | No | Invert | | O1RF | Output Buffer | 5 | 8 mA | TTL/CMOS | Standard | Yes | Invert | | O2BF | Output Buffer | 2 | 8 mA | TTL/CMOS | Standard | No | True | | O2RF | Output Buffer | 4 | 8 mA | TTL/CMOS | Standard | Yes | True | | O4RF | 3-state Output Buffer | 5 | 8 mA | TTL/CMOS | 3-state | Yes | True | | O4TF | 3-state Output Buffer | 4 | 8 mA | TTL/CMOS | 3-state | No | True | Note: 1While all outputs are totem-pole type, Open Drain and Open Source types can easily be defined for all 3-state type outputs. Note:
²Totem pole outputs, such as these buffers have, can drive both TTL and CMOS levels. Voltage margins depend on actual source or sink current (see DC specifications). | Unit Cell
Name | Description | Basic
Cells | Drive (I _{OL}) | Logic
Level | Edge Rate
Control | Input/Output
Polarity | |-------------------|--|----------------|--------------------------|----------------|----------------------|--------------------------| | H6T
H6TU | 3-state Output and Input Buffer
H6T with Pull-up Resistance | 8 | 3.2 mA
3.2 mA | TTL
TTL | No
No | True
True | | H6TD | H6T with Pull-down Resistance | 8 | 3.2 mA | ΠL | No | True | | H6W | Power 3-state Output and Input Buffer | 8 | 12 mA | TTL | No | True | | H6WU
H6WD | H6W with Pull-up Resistance
H6W with Pull-down Resistance | 8
8 | 12 mA
12 mA | TTL
TTL | No
No | True
True | | H6C | 3-state Output and CMOS | | | | | | | | Interface Input Buffer | 8 | 3.2 mA | CMOS | No | True
True | | H6CU
H6CD | H6C with Pull-up Resistance
H6C with Pull-down Resistance | 8
8 | 3.2 mA
3.2 mA | CMOS
CMOS | No
No | True | | | | | 3.2 IIIA | CIVIOS | NO | Tide | | H6E | Power 3-state Output and CMOS Interface Input Buffer | 8 | 12 mA | CMOS | No | True | | H6EU | H6E with Pull-up Resistance | 8 | 12 mA | CMOS | No
No | True | | H6ED | H6E with Pull-down Resistance | 8 | 12 mA | CMOS | No | True | | H6S | 3-state Output and Schmitt | | | | | | | | Trigger Input Buffer | 12 | 3.2 mA | CMOS | No | True | | H6SU | H6S with Pull-up Resistance | 12 | 3.2 mA | CMOS | No | True | | H6SD | H6S with Pull-down Resistance | 12 | 3.2 mA | CMOS | No | True | | H6R | 3-state Output and Schmitt | | | | | | | | Trigger Input Buffer | 12 | 3.2 mA | TTL | No | True | | H6RU | H6R with Pull-up Resistance | 12 | 3.2 mA | TTL | No | True | | H6RD | H6R with Pull-down Resistance | 12 | 3.2 mA | TTL | No | True | | H8T | 3-state Output and Input Buffer | 9 | 3.2 mA | TTL | Yes | True | | H8TU | H8T with Pull-up Resistance | 9 | 3.2 mA | TTL | Yes | True | | H8TD | H8T with Pull-down Resistance | 9 | 3.2 mA | TTL | Yes | True | | H8W | Power 3-state Output and Input Buffer | 9 | 12 mA | TTL | Yes | True | | H8WU | H8W with Pull-up Resistance | 9 | 12 mA | TTL | Yes | True | | H8WD | H8W with Pull-down Resistance | 9 | 12 mA | TTL | Yes | True | | H8W2 | High Power 3-state Output and Input Buffer | 11 | 24 mA | TTL | Yes | True | | H8W1 | H8W2 with Pull-up Resistance | 11 | 24 mA | TTL | Yes | True | | H8W0 | H8W2 with Pull-down Resistance | 11 | 24 mA | TTL | Yes | True | | H8C | 3-state Output Buffer and CMOS | | | | | | | | Interface Input Buffer | 9 | 3.2 mA | CMOS | Yes | True | | H8CU | H8C with Pull-up Resistance | 9 | 3.2 mA | CMOS | Yes | True | | H8CD | H8C with Pull-down Resistance | 9 | 3.2 mA | CMOS | Yes | True | | H8E | Power 3-state Output Buffer and Interface Input Buffer | 9 | 12 mA | CMOS | Yes | True | | H8EU | H8E with Pull-up Resistance | 9 | 12 mA | CMOS | Yes | True | | H8ED | H8E with Pull-down Resistance | 9 | 12 mA | CMOS | Yes | True | Note: A "U" suffixed to the name of a bidirectional buffer indicates a pull-up resistance of 50Ω (typical) and a "D" indicates a pull-down resistance of the equivalent value. | Bidirectio | nal I/O Buffers (Buses) (Continued) | | | | | | |------------------------|---|----------------|----------------------------|----------------------|-------------------|--------------------------| | Unit Cell
Name | Description | Basic
Cells | Drive (lu) | Logic
Level | Туре | Input/Output
Polarity | | H8E2 | High Power 3-state Output and Input
Buffer | 11 | 24 mA | CMOS | Yes | True | | H8E1
H8E0 | H8E2 with Pull-up Resistance | 11
11 | 24 mA
24 mA | CMOS
CMOS | Yes
Yes | True
True | | H8S | 3-state Output and Schmitt Trigger Input | | | | | | | H8SU
H8SD | Buffer True H8S with Pull-up Resistance H8S with Pull-down Resistance | 13
13
13 | 3.2 mA
3.2 mA
3.2 mA | CMOS
CMOS
CMOS | Yes
Yes
Yes | True
True
True | | H8R | 3-state Output and Schmitt Trigger Input BufferTrue | 13 | 3.2 mA | TTL | Yes | True | | H8RU
H8RD | H8R with Pull-up Resistance
H8R with Pull-down Resistance | 13
13 | 3.2 mA
3.2 mA | TTL
TTL | Yes
Yes | True
True | | H6TF | 3-state Output and SchmittTrigger Input
BufferTrue | 8 | 8 mA | TTL | No | True | | H6TFU
H6TFD | H6TF with Pull-up Resistance
H6TF with Pull-down Resistance | 8
8 | 8 mA
8 mA | TTL
TTL | No
No | True
True | | H6CF
H6CFU
H6CFD | 3-state Output and Input Buffer
H6CF with Pull-up Resistance
H6CF with Pull-down Resistance | 8
8
8 | 8 mA
8 mA
8 mA | CMOS
CMOS
CMOS | No
No
No | True
True
True | | H8TF
H8TFU
H8TFD | 3-state Output and Input Buffer
H8TF with Pull-up Resistance
H8TF with Pull-down Resistance | 9
9
9 | 8 mA
8 mA
8 mA | TTL
TTL
TTL | Yes
Yes
Yes | True
True
True | | H8CF
H8CFU
H8CFD | 3-state Output and Input Buffer
H8CF with Pull-up Resistance
H8CF with Pull-down Resistance | 9
9
9 | 8 mA
8 mA
8 mA | CMOS
CMOS
CMOS | Yes
Yes
Yes | True
True
True | Note: While all outputs are totem-pole type, Open Drain and Open Source types can easily be defined for all 3-state type outputs, which includes all bidirectional buffers. | Oscillator | Oscillator Circuits | | | | | | | | |-------------------|--|----------------|----------------------|--|--|--|--|--| | Unit Cell
Name | Description | Basic
Cells | Input Logic
Level | | | | | | | HOC | Output Buffer for Oscillator and Input
Buffer | 8 | CMOS | | | | | | | HOCS | Output Buffer for Oscillator and Schmitt
Trigger Input Buffer | 8 | TTL | | | | | | | HOCR | Output Buffer for Oscillator with feedback
Resistance | 8 | CMOS | | | | | | | IT1O | Input Buffer for Oscillator | 0 | | | | | | | ## **UHB GATE ARRAY PACKAGE CHARACTERISTICS** | | Package Code | | | | | | |-------------|--------------|-------------|---------------------------|---------------------------|--|--| | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number or
Signal Pins | | | DIP-16 | DIP-16P-MO2 | DIP-16C-C03 | 1 | 2 | 13 | | | | DIP-16P-MO4 | | | | | | | DIP-18 | DIP-18P-MO1 | DIP-18C-CO1 | | | | | | | DIP-18P-MO2 | | | | | | | DIP-20 | DIP-20P-MO2 | DIP-20C-CO2 | 1 | 2 | 17 | | | DIP-20U | | | 1 | 1 | 18 | | | DIP-22 | DIP-22P-MO2 | DIP-22C-C02 | 2 | 2 | 18 | | | | DIP-22P-MO3 | | | | | | | DIP-22U | | | 1 | 1 | 20 | | | DIP-24 | DIP24P-MO1 | DIP-24C-C01 | 2 | 2 | 20 | | | | DIP24P-MO2 | | | | | | | DIP-24U | | | 1 | 1 | 22 | | | DIP-28 | DIP-28P-M02 | DIP-28C-C02 | 2 | 2 | 24 | | | | DIP-28P-M03 | | | | | | | DIP-28U | | | 1 | 1 | 26 | | | DIP-40 | DIP-40P-M01 | DIP-40C-A01 | 2 | 4 | 34 | | | | | DIP-40C-A02 | | | | | | DIP-40U | | | 1 | 1 | 38 | | | DIP-42 | DIP-42P-MO1 | DIP-42C-A01 | 2 | 4 | 36 | | | | DIP-42P-MO2 | | | | | | | DIP-42U | | | 1 | 1 | 40 | | | DIP-48 | DIP-48P-MO1 | DIP-48C-A01 | 2 | 4 | 42 | | | | DIP-48P-MO2 | | | | The state of s | | | DIP-48U | | | 1 | 1 | 46 | | # **UHB GATE ARRAY PACKAGE CHARACTERISTICS** (Continued) | Dual In-line Packages (Shrink DIP, 70 mil Pin Pitch) | | | | | | | | | | |--|---------|---------|---------------------------|---------------------------|------------------------------------|--|--|--|--| | | Packaç | je Code | | | | | | | | | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | | | | | DIP-28SH | | | 2 | 2 | 24 | | | | | | DIP-28SHU | | | 1 | 1 | 26 | | | | | | DIP-42SH
 | | 2 | 4 | 36 | | | | | | DIP-42SHU | | | 1 | 1 | 40 | | | | | | DIP-48SH | | | 2 | 4 | 36 | | | | | | DIP-48SHU | | | 1 | 1 | 46 | | | | | | DIP-64SH | | | 2 | 4 | 58 | | | | | | DIP-64SHU | | | 2 | 2 | 60 | | | | | | | Package | Code | | | | |-------------|---------|---------|---------------------------|---------------------------|------------------------------------| | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | DIP-22SK | | | 2 | 2 | 18 | | DIP-22SKU | | | 1 | 1 | 20 | | DIP-24SK | | | 2 | 2 | 20 | | DIP-24SKU | | | 1 | 1 | 22 | | DIP-28SK | | | 2 | 2 | 24 | | DIP-28SKU | | | 1 | 1 | 26 | | Flatpack Packages (Dual-Leaded) | | | | | | | | | |---------------------------------|-------------|---------|---------------------------|---------------------------|------------------------------------|--|--|--| | | Package | Code | | | | | | | | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | | | | FPT-16 | FPT-16P-MO3 | | 1 | 2 | 13 | | | | | FPT-16U | | | 1 | 1 | 14 | | | | | FPT-20 | FPT-20P-MO2 | | 1 | 2 | 17 | | | | | FPT-20U | | | 1 | 1 | 18 | | | | | FPT-24 | FPT-24-MO2 | | 2 | 2 | 20 | | | | | FPT-24U | | | 1 | 1 | 22 | | | | | FPT-28 | FPT-28P-MO1 | | 2 | 2 | 24 | | | | | FPT-28U | | | 1 | 1 | 26 | | | | # **UHB GATE ARRAY PACKAGE CHARACTERISTICS** (Continued) | Flatpack Pack | ages (Quad-Leaded | t) | | | | |---------------|-------------------|---------|---------------------------|---------------------------|------------------------------------| | | Package Code | | | | | | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{ss} | Available Number of
Signal Pins | | FPT-44 | | | 2 | 4 | 36 | | FPT-44U | | | 2 | 2 | 40 | | FPT-48 | FPT-48P-MO2 | | 2 | 4 | 42 | | FPT-48U | | | 2 | 2 | 44 | | FPT-48 * | | | 2 | 4 | 42 | | FPT-48U * | | | 2 | 2 | 44 | | FPT-64* | FPT-64P-MO1 | | 2 | 4 | 58 | | FPT-64U | FPT-70P-MO1 | | 1 | 1 | 62 | | FPT-80 | FPT-80P-MO1 | | 2 | 6 | 72 | | FPT-80U | | | 2 | 4 | 74 | | FPT-100 | FPT-100P-MO1 | | 4 | 8 | 88 | | FPT-100U | | | 4 | 4 | 92 | | FPT-120 | | | 6 | 12 | 102 | | FPT-120U | | | 4 | 8 | 108 | | FPT-160 | | | 8 | 14 | 138 | | FPT-160U | | | 6 | 12 | 142 | ^{*} Small body size. Subject to Change | Pin Grid Arrays | (PGA, Thru-H | ole, 100 mil Pin Pi | tch) | | | |-----------------|--------------|---------------------|---------------------------|---------------------------|------------------------------------| | | Packa | age Code | | | | | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | PGA-64 | | PGA-64C-A02 | 2 | 4 | 58 | | PGA-64U | | | 2 | 2 | 60 | | PGA-88 | | PGA-88C-A01 | 4 | 6 | 78 | | PGA-88U | | | 4 | 4 | 80 | | PGA-135 | | | 8 | 12 | 115 | | PGA-135U | | | 4 | 8 | 127 | | PGA-179 | | | 8 | 16 | 155 | | PGA-179U | | | 8 | 8 | 163 | | PGA-208 | | | 12 | 18 | 178 | | PGA-256 | | | 16 | 20 | 220 | # **UHB GATE ARRAY PACKAGE CHARACTERISTICS (Continued)** | Flatpack Packa | ges (Dual-Lea | ded) | | | | |----------------|---------------|-------------|---------------------------|---------------------------|------------------------------------| | | Packa | age Code | | | | | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | LCC-28 | | LCC-28C-A02 | 2 | 2 | 24 | | LCC-28U | | | 1 | 1 | 26 | | LCC-48 | | LCC-48C-A01 | 2 | 4 | 42 | | LCC-48U | | | 1 | 2 | 45 | | LCC-64 | | LCC-64C-A01 | 2 | 4 | 58 | | LCC-64U | | | 2 | 2 | 60 | | LCC-68 | | | 2 | 4 | 62 | | LCC-68U | | | 2 | 2 | 64 | | LCC-84 | | | 4 | 6 | 74 | | LCC-84U | | | 3 | 4 | 77 | | | Package | Code | | | | |-------------|-------------|--|---------------------------|---------------------------|------------------------------------| | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | PLCC-28 | LCC-28P-M01 | | 2 | 2 | 24 | | PLCC-28U | | | 1 | 1 | 26 | | PLCC-44 | LCC-44P-MO1 | | 2 | 4 | 38 | | PLCC-44U | | | 1 | 2 | 41 | | PLCC-68 | LCC-68P-M01 | | 2 | 4 | 62 | | PLCC-68U | | | 2 | 2 | 64 | | PLCC-84 | LCC-84P-M01 | THE RESERVE THE PROPERTY OF THE PARTY | 4 | 6 | 74 | | PLCC-84U | | | 2 | 4 | 78 | Subject to Change ### **UHB GATE ARRAY PACKAGE AVAILABILITY** | | | C-S | 330
HB | C- | 530
HB | C- | 830
HB | C-1 | 200
HB | C-1
UI | 700
IB | C-2
Uł | 200
IB | C-3
Uł | 000
IB | C-4
Ui | 100
IB | C-6 | 000
HB | C-8
Ul | 700
IB | C-12
UI | 2000
HB | |---------------|-----|----------|-----------|----------|--|----|-----------|-----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|--|-----------|------------|------------| | | | C | P | C | P | c | Р | c c | P | C. | P | C | P | c | Р | C. | P | c | P | C | P | c. | Р | | DIP | 16 | \vdash | • | t | | | | | | | | | | | | l — | | | | | | | <u> </u> | | | 18 | | | | | | | | ļ | İ | | l | 1 | | | 1 | | | | | | | | | | 20 | • | • | l | • | | | | 1 | | | | 1 | | | ł | | | | i | 1 | | | | | 22 | • | • | • | • | • | • | | • | | • | | | | | ŀ | | | | | | | | | | 24 | • | • | • | ٠ ا | • | • | • | • | | • | • | • | | • | l | | | | | | | | | | 28 | • | • | • | • | • | • | • | • | • | • | • | • | | • | l | • | 1 | | 1 | | | | | | 40 | • | • | • | • | • | • | • | • | • | • | • | • | | • | | • | | • | | | | ĺ | | | 42 | l | ٠ ا | | • | | • | • | • | • | • | | • | • | • | Ì | • | | • | | | | | | | 48 | | · | <u> </u> | · | · | · | · | · | · | · | · | • | · | • | | Ŀ | | · | <u> </u> | | | | | SDIP | 28 | • | • | • | • | • | • | | • | | • | | | | | | İ | | l | | ĺ | | | | (SHRINK) | 42 | l | • | l | • | | • | • | • | • | • | • | • | | • | | • | | • | | | | | | | 48 | l | • | | • | | • | | • | l | • | l | • | | • | l | • | | • | | ļ | | | | | 64 | | | L | • | | • | | • | | • | | • | | ٠ | <u> </u> | • | | • | | | L | L | | SKDIP | 22 | | • | | • | (SKINNY) | 24 | İ | ŀ | l | l | | | | 1 | l | | | 1 | | | | | | 1 | | | l | | | | 28 | | · | <u> </u> | · | | L | | | <u> </u> | | | | | | <u> </u> | | | | <u> </u> | | | | | FPT | 16 | | • | | | | | l | | | | | | | | | | | | | | | | | with leads on | 20 | l | • | | | 1 | | l | | | | | | | | | | | l | 1 | 1 | 1 | | | two sides of | 24 | | • | | • | 1 | • | 1 | • | l | l | l | | | | 1 | | | ļ | | | ŀ | | | the package | 28 | ĺ | • | ı | • | | • | l | • | ì | 1 | İ | | | 1 | ł | ľ | l | i | | l | i | i | | FPT | 44 | | • | | • | | • | | • | | • | | | | | | | | | | | | | | with leads on | 48 | l | • | 1 | • | • | • | • | • | • | • | • | • | | • | 1 | | l | ļ | | ļ | | l | | four sides of | 48* | | • | | • | | • | | • | 1 | • | l | | | 1 | ĺ | | l | l | | | ļ | İ | | the package | 64 | | • | l | • | | • | 1 | • | | • | 1 | • | | • | | • | l | • | | | | l | | | 80 | | | | • | | • | İ | • | | • | | • | | • | | • | | • | 0 | } | • | | | | 100 | | | | | | • | | • | • | • | • | • | | • | l | • | | • | 0 | | | | | | 120 | l | İ | l | | 1 | | 1 | • | l | • | | • | | • | • | • | • | • | • | • | 0 | 0 | | | 160 | | | | l | | | | l | | | ŀ | | | • | | • | | • | • | • | 0 | 0 | | PLCC | 28 | | • | | • | | • | | • | | • | | • | | • | | | | | | | | | | | 44 | | | | • | | • | | | | | l | • | | | | f | | | | | l | | | | 68 | l | | | • | | • | 1 | | l | • | | • | | • | l | • | | | | 1 | | 1 | | | 84 | | l | | | | | | | l | • | | • | | • | l | • | | | | | | | | PGA | 64 | • | | | | 88 | | 1 | | • | | • | | | | | | | | • | • | • | | | | | | | | | 135 | I | l | | 1 | | | | 1 | | l | | | | | • | | | | | | • | l | | | 179 | l | l | 1 | | | | | l | | | l
 | | | | l | | l | | | | l | | | 208 | 1 | l | | 1 | | | l | l | l | | | | | | | l | | 1 | • | | | l | | | 256 | l | ı | 1 | l | | | | 1 | l | | | | | | l | | 1 | l | • | | | | | LCC | 28 | • | \vdash | • | t | • | \vdash | • | ╁ | \vdash | \vdash | \vdash | | | _ | \vdash | \vdash | \vdash | \vdash | _ | - | | | | | 48 | | l | | l | | | | | ١. | 1 | | | | | | | 1 | l | ļ | | | | | | 64 | | Ī | | | | | | l | | | | | | | | | | | | ĺ | 1 | | | | 68 | | l | | | | | | l | | 1 | | 1 | | | | l | | ł | | l | l | l | | | 84 | l | l | | l | | | l | | l | | | | | | İ | | | l | | | | | | C = Ce | | L | L | Ц | Ь | Ь | L | L | L | Ь | Ц | Ц | L | اطحانا | <u> </u> | L | Ь | L | L | <u> </u> | | Ь | L | C = Ceramic P = Plastic * = 48-pin FPT, smaller than the other 48 FPT ^{•:} available now a under development ### **PACKAGE DIMENSIONS** .130 + .020 (3.30 + 0.51) .250 (6.35) MAX .050 ± .010 (1.27 ± 0.51) ## PACKAGE DIMENSIONS (Continued) PRODUCT PROFILE # CG10 Series 0.8-micron CMOS Gate Arrays ### DESCRIPTION The CG10 series of 0.8-micron CMOS gate arrays is a highly integrated low-power, ultra high-speed product family that derives its enhanced performance and increased user flexibility from the use of a system-proven, dual-column gate structure and 2-layer metal interconnect technology. The unique dual-column gate structure increases density and speed performance, as well as gate utilization. CG10 architecture is fully compatible with Fujitsu's 1.5-micron UHB arrays. Internal high-drive clock buffers minimize clock skew across the chip while internal bus performance and integrity is assured by incorporating 3-state transmission gate logic underneath the routing channels. Input buffer options include pull-up and pull-down resistance, Schmitt trigger, CMOS input, and clock driver. Output buffer options include 3-state, bidirectional, edge rate control, and high-drive output. The high-drive output buffers provide highly symmetrical output waveforms. #### **FEATURES** - High-density silicon gate CMOS technology - 3200 to 14,000 usable gates - 90% maximum utilization fully autorouted - Ultra high speed - typical 0.5 ns/0.6 ns gate delay (power type/normal type) - narrow delay variation - High sink current capability - 3.2 mA, 8 mA, 12 mA, and 24 mA options available - selectable edge rate control - Low-skew clock signal distribution - High-performance clock drivers - Hierarchical clock distribution - Frequency-dependent clock routing - Automatic test pattern generation - complete family of scan design macros available ### **PRODUCT FAMILY** | Device Name | Available
Gates ¹ | Maximum
Signal Pins ² | Power
Dissipation
at 10 MHz | |-------------|---------------------------------|-------------------------------------|-----------------------------------| | CG10272 | 3,256 | 108 | 150 mW | | CG10342 | 4,032 | 123 | 200 mW | | CG10492 | 5,572 | 148 | 200 mW | | CG10572 | 6,510 | 163 | 200 mW | | CG10692 | 7,684 | 163 | 250 mW | | CG10103 | 11,080 | 188 | 250 mW | | CG10133 | 14,720 | 220 | 250 mW | Gate count based on 2-input NAND and includes basic cells to form I/O buffer functions ²Maximum signal pin numbers depend on the output drive requirements and the package selected. Copyright© 1990 FUJITSU LIMITED and Fujitsu Microelectronics, Inc. ### **AC CHARACTERISTICS** ### **BEST/WORST CASE MULTIPLIERS FOR PROPAGATION DELAYS** Propagation delays characteristic of a gate array are a function of several factors, including operating temperature, supply voltage, fanout loading, interconnection routing metal, process variation, input transition time, and input signal polarity. Temperature and supply voltage factors affecting propagation delays in the CG10 CMOS family of gate arrays are given in the table below. | | | Pre-Layout | Simulation | | Post-Layout Simulation | | | | | | | |----------------------|-------------------|------------|----------------------------------|------------|------------------------|------------|----------------------------|------------|--|--|--| | Temperature
Range | V _{DD} = | 5 V ±5% | V ±5% V _{DD} = 5 V ±10% | | V _{DD} = | 5 V ±5% | V _{DD} = 5 V ±10% | | | | | | | Best Case | Worst Case | Best Case | Worst Case | Best Case | Worst Case | Best Case | Worst Case | | | | | 0 - 70°C1 | 0.35 | 1.65 | 0.30 | 1.75 | 0.40 | 1.60 | 0.35 | 1.70 | | | | | -20 − 70°C | 0.35 | 1.65 | 0.25 | 1.75 | 0.35 | 1.60 | 0.30 | 1.70 | | | | | -40 − 70°C | 0.25 | 1.65 | 0.20 | 1.75 | 0.30 | 1.60 | 0.25 | 1.70 | | | | | -40 - 85°C2 | 0.25 | 1.75 | 0.20 | 1.85 | 0.30 | 1.70 | 0.25 | 1.80 | | | | Notes: 1Commercial temperature range ²Industrial temperature range ### REPRESENTATIVE PROPAGATION DELAYS Constants for calculating the delays due to process variation, fanout loading, interconnection routing metal, transition time, and signal polarity are given for each unit cell in the CG10 Unit Cell Library. Delays using these factors are calculated for a representative selection of unit cells and are shown in the Propagation Delay tables below. Calculations are representative of unit cells in the CG10672 (CG10 6700-gate CMOS gate array). Typical values are indicated. Worst case multipliers are applied to typical values. Smaller arrays can exhibit significantly greater speed. | | | I | | | Propa | gation De | lays (in r | ıs) | | |--|-------------------|--------------------------|--------------------------------------|--------------|--------------|----------------------|--------------|--------------|---------------| | Unit Cell
Function | Unit Cell
Name | Equivalent
Gate Count | Input
Transition | | | N _{DI} (Fan | -out) | | | | | | | | 1 | 2 | 4 | 8 | 16 | 32 | | Inverter | V1N | 1 | t _{PLH}
t _{PHL} | 0.38
0.38 | 0.60
0.57 | 0.91
0.79 | 1.34
1.13 | 2.33
1.88 | 5.00
0.12 | | Power 2-Input NAND | N2K | 2 | t _{PLH} | 0.33
0.38 | 0.45
0.56 | 0.60
0.74 | 0.82
0.99 | 1.16
1.38 | 1.91
2.25 | | Power 16-Input NAND | NGB | 11 | t _{PLH}
t _{PHL} | 1.06
1.11 | 1.17
1.28 | 1.33
1.46 | 1.55
1.68 | 1.89
2.02 | 2.64
2.78 | | Power 2-Input NOR | R2K | 2 | t _{PLH} | 0.46
0.38 | 0.60
0.50 | 0.92
0.65 | 1.31
0.87 | 1.90
1.21 | 3.20
1.96 | | Power Exclusive OR | X2B | 4 | t _{PLH}
t _{PHL} | 1.00
1.01 | 1.11
1.14 | 1.26
1.28 | 1.49
1.46 | 1.83
1.74 | 2.58
2.36 | | 3-wide 2-AND 6-Input
AND-OR Inverter (A → Y) | D36 | 3 | t _{PLH}
t _{PHL} | 0.84
0.72 | 1.24
0.99 | 1.82
1.38 | 2.97
2.15 | 6.05
4.21 | # # #
8.38 | | 2-wide 2-OR 4-input
OR-AND-Inverter (A → X) | G24 | 2 | t _{PLH}
t _{PHL} | 0.68
0.55 | 1.09
0.82 | 1.70
1.21 | 2.89
1.98 | 6.07
4.04 | # # #
8.21 | | Power 2-AND 8-Wide
Multiplexer (A → X) | T28 | 11 | t _{PLH}
t _{PHL} | 1.43
1.39 | 1.54
1.47 | 1.70
1.58 | 1.92
1.73 | 2.26
1.96 | 3.01
2.46 | | Power Clock Buffer | K2B | 3 | t _{PLH}
t _{PHL} | 0.71
0.81 | 0.77
0.86 | 0.85
0.94 | 0.96
1.05 | 1.13
1.26 | 1.43
1.52 | | Scan 8-bit D Flip-flop with
Clock Inhibit and 3:1
Data Multiplexer (CK,IH → Q) | SHK | 88 | t _{РLН}
t _{РНL} | 3.10
3.07 | 3.33
3.25 | 3.63
3.48 | 4.07
3.81 | 5.05
4.56 | 7.72
2.80 | | Non–Scan D Flip-flop
with Reset (CK → Q) | FDO | 7 | t _{PLH}
t _{PHL} | 1.41
1.37 | 1.63
1.56 | 1.94
1.81 | 2.37
2.18 | 3.36
3.00 | 6.03
5.24 | | Non-Scan Power D Flip-flop with Clear (CK \rightarrow Q) | FD5 | 8 | t _{PLH}
t _{PHL} | 1.28
1.34 | 1.39
1.53 | 1.55
1.68 | 1.77
1.86 | 2.11
2.14 | 2.86
2.76 | | Non-Scan 4-bit Binary
Synchronous Up
Counter (CI → CO) | C43 | 48 | t _{PLH}
t _{PHL} | 1.20
1.14 | 1.43
1.29 | 1.73
1.49 | 2.17
1.78 | 3.15
2.44 | 5.82
4.24 | | Non-Scan 4-bit Binary
Synchronous Up
Counter (CI → CO) | C45 | 48 | t _{РLН}
t _{РНL} | 1.41
1.35 | 1.65
1.52 | 1.98
1.75 | 2.45
2.08 | 3.51
2.83 | 6.38
4.87 | Note: Delays for inter-block wiring are not included ## **REPRESENTATIVE PROPAGATION DELAYS (Continued)** | | T., ., ., ., | I | | | Propa | gation De | elays (in i | ns) | | |---|-------------------|--------------------------|--------------------------------------|--------------|--------------|----------------------|--------------|---------------|---------------| | Unit Cell
Function | Unit Cell
Name | Equivalent
Gate Count | Input
Transition | | | N _{DI} (Fan | -out) | | | | | | | | 1 | 2 | 4 | 8 | 16 | 32 | | Non-Scan 4-bit Binary
Synchronous Up/Down
Counter (DU → CO) | C47 | 68 | t _{РLН}
t _{РНL} | 1.68
1.68 | 1.84
1.83 | 2.05
2.03 | 2.34
2.33 | 3.02
2.99 | 4.86
4.78 | | 4-bit Binary Full Adder with Fast Carry (CI → S1) | A4H | 48 | t _{PLH}
t _{PHL} | 1.02
0.98 | 1.33
1.24 | 1.75
1.60 | 2.51
2.25 | 3.91
3.43 | # # #
7.53 | | 4:1 Selector (S5 → X) | T5A | 5 | t _{PLH}
t _{PHL} | 0.64
0.62 | 0.97
0.93 | 1.50
1.42 | 2.45
2.29 | # # #
4.91 | # # #
9.67 | | 4-bit Shift Register with
Synchronous Load | FS2 | 30 | t _{PLH}
t _{PHL} | 1.65
1.65 | 1.88
1.84 | 2.18
2.07 | 2.66
2.44 | 3.67
3.20 | 6.74
1.75 | | 9-bit Odd Parity
Generator/Checker | PO9 | 22 | t _{PLH}
t _{PHL} | 3.45
3.39 | 3.68
3.54 | 3.98
3.74 | 4.42
4.03 | 5.40
4.69 | 8.07
6.49 | | 4-wide 2:1 Data
Selector (A → X) | P24 | 12 | t _{PLH}
t _{PHL} | 0.70
0.66 | 0.81
0.74 | 0.96
0.84 | 1.19
0.99 | 1.53
1.22 | 2.28
1.73 | | 4-bit Magnitude
Comparator (IS → OG) | MC4 | 42 | t _{PLH}
t _{PHL} | 1.70
1.52 | 2.11
1.69 | 2.72
1.91 | 3.91
2.35 | 7.09
0.30 | ###
2.08 | | 4-bit Bus Driver (A → X) | B41 | 9 | t _{PLH}
t _{PHL} | 1.08
1.09 | 1.18
1.21 | 1.32
1.36 |
1.51
1.58 | 1.81
1.92 | 2.47
2.67 | | Input Buffer (Inverter) | I1B | 5 | t _{PLH}
t _{PHL} | 1.05
1.07 | 1.11
1.15 | 1.19
1.25 | 1.30
1.40 | 1.47
1.63 | 1.84
2.14 | | Clock Input Buffer (Inverter) | IKB | 4 | t _{PLH}
t _{PHL} | 1.56
1.56 | 1.58
1.57 | 1.61
1.59 | 1.64
1.63 | 1.70
1.68 | 1.81
1.77 | | I/O Cell | Unit Cell | Equivalent | Input | | Ou | tput Buff | er Load i | n pF | | |---|-----------|------------|--------------------------------------|--------------|--------------|--------------|--------------|---------------|----------------| | Function | Name | Gate Count | Transition | 12 | 25 | 50 | 100 | 200 | 400 | | Output Buffer (True) | O2B | 2 | t _{PLH}
t _{PHL} | 0.93
1.75 | 1.40
2.78 | 2.30
4.75 | 4.10
8.70 | 7.70
16.60 | 14.90
32.40 | | Power Output Buffer
(True) | O2L | 2 | t _{PLH}
t _{PHL} | 0.90
1.21 | 1.21
1.54 | 1.81
2.19 | 3.01
3.49 | 5.41
6.09 | 10.21
11.29 | | 3-State Output Buffer (True) (OT → X) | O4T | 4 | t _{PLH}
t _{PHL} | 1.07
2.42 | 1.54
3.46 | 2.44
5.46 | 4.24
9.46 | 7.84
17.46 | 15.04
33.46 | | Power 3-State Output
Buffer (True) (OT → X) | O4W | 4 | t _{PLH}
t _{PHL} | 1.09
3.03 | 1.41
3.47 | 2.00
4.32 | 3.00
6.02 | 5.60
9.42 | 10.40
16.22 | | 3-State Output and Input Buffer (True) (X → IN) | Н6Т | 8 | t _{PLH}
t _{PHL} | 0.87
1.43 | 1.09
1.73 | 1.51
2.30 | 2.36
3.45 | 4.06
5.75 | 7.46
10.35 | | Power 3-State Output and Input Buffer (True) (OT \rightarrow X) | H6W | 8 | t _{PLH}
t _{PHL} | 1.09
3.03 | 1.40
3.47 | 2.00
4.32 | 3.20
6.02 | 5.60
9.42 | 10.40
16.22 | Note: Delays for inter-block wiring are not included ### **DC CHARACTERISTICS** ### **ABSOLUTE MAXIMUM RATINGS¹** | Rating | | Symbol | Minimum | Maximum | Unit | |-----------------------------|--------------------------|-------------------|------------------------------------|----------------------|------| | Supply Voltage | | V_{DD} | V _{SS} - 0.5 ² | 6.0 | V | | Input Voltage | | Vı | V _{SS} - 0.5 ² | V _{DD} +0.5 | v | | Output Voltage | | Vo | V _{SS} - 0.5 ² | V _{DD} +0.5 | v | | | I _{OL} = 3.2 mA | | -40 | | | | Output Current ³ | I _{OL} = 8 mA | los | -40 | | mA. | | Culput Current | I _{OL} = 12 mA | .03 | -60 | | | | | I _{OL} = 24 mA | | -90 | | | | Storage Temperature | Ceramic
Plastic | T _{stg} | -65
-40 | +150
+125 | 5C | | Temperature Under Bias | Ceramic
Plastic | T _{bias} | -40
-25 | +125
+85 | 5C | Notes: 1Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of the data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### RECOMMENDED OPERATING CONDITIONS | Parameter | Symbol | Minimum | Typical | Maximum | Unit | |-----------------------------------|-----------------|-----------------------|---------|-----------------------|------| | Supply Voltage | V _{DD} | 4.75 | 5.0 | 5.25 | V | | Input High Voltage for TTL Input | V _{IH} | 2.2 | _ | _ | V | | Input Low Voltage for TTL Input | V _{IL} | - | - | 0.8 | V | | Input High Voltage for CMOS Input | V _{IH} | V _{DD} x 0.7 | - | - | V | | Input Low Voltage for CMOS Input | V _{IL} | _ | _ | V _{DD} x 0.3 | V | | Operating Temperature | T _A | 0 | _ | 70 | °C | CAPACITANCE (TA = 25°C, VDD = VI = 0 V, f = 1 MHz) | Parameter | Symbol | Minimum | Typical | Maximum | Unit | |--|------------------|---------|---------|---------|------| | Input Pin Capacitance | C _{IN} | | | 16 | pF | | Output Pin Capacitance
(I _{OL} – 3.2 mA, 8 mA, or 12 mA) | C _{out} | | _ | 16 | pF | | Output Pin Capacitance
(I _{OL} – 24 mA) | C _{out} | | - | 18 | pF | | I/O Pin Capacitance
(I _{OL} – 3.2 mA, 8 mA, or 12 mA) | C _{vo} | | | 16 | pF | | I/O Pin Capacitance
(I _{OL} – 24 mA) | C _{I/O} | | _ | 23 | pF | $^{^{2}}V_{SS} = 0 V.$ ³Only one output at a time may be shorted for more than one second. ### **DC CHARACTERISTICS** (Recommended Operating Conditions unless otherwise noted) | Parameter | Symbol | Condition | Minimum | Typical | Maximum | Unit | |--|--|---|-----------------------|-------------------|-----------------------|--------| | Power Supply Current | I _{DDS} | Steady State ¹ | 0 | _ | 100 | μА | | Output High Voltage
for Normal Output (I _{OL} = 3.2 mA) | V _{OH} | l _{OH} = -2 mA | 4.0 | _ | V _{DD} | V | | Output High Voltage
for Driver Output (I _{OL} = 8 mA) | V _{OH} | I _{OH} = -2 mA | 4.0 | _ | V _{DD} | V | | Output High Voltagefor Driver Output (I _{OL} =12 mA) | V _{OH} | I _{OH} = -4 mA | 4.0 | | V _{DD} | V | | Output High Voltage
for Driver Output (I _{OL} =24 mA) | V _{OH} | I _{OH} = -8 mA | 4.0 | | V _{DD} | V | | Output Low Voltage ² for Normal Output (I _{OL} = 3.2 mA) | V _{OL} | I _{OL} = 3.2 mA | V _{SS} | _ | 0.4 | V | | Output Low Voltage for Driver Output (I _{OL} = 8 mA) | V _{OL} | I _{OL} = 8 mA | V _{ss} | _ | 0.4 | ٧ | | Output Low Voltage ² for Driver Output (I _{OL} = 12 mA) | V _{OL} | I _{OL} = 12 mA | V _{SS} | | 0.4 | \ \ | | Output Low Voltage ²
for Driver Output (I _{OL} = 24 mA) | V _{OL} | l _{OL} = 24 mA | V _{ss} | _ | 0.5 | ٧ | | Input High Voltage
for TTL Input | V _{IH} | | 2.2 | _ | _ | ٧ | | Input Low Voltage
for TTL Input | V _{IL} | - | | | 0.8 | ٧ | | Input High Voltage
for CMOS Input | V _{IH} | - | V _{DD} x 0.7 | _ | _ | ٧ | | Input Low Voltage for CMOS Input | V _{IL} | _ | _ | _ | V _{DD} x 0.3 | V | | Schmitt Trigger CMOS Input ³ Positive-going Threshold Negative-going Threshold Hysteresis | V _{T+}
V _{T-}
V _{T+} -V _{T_} | U _{IL} to V _{IH} , V _{IH} , to V _{IL} | 2.5
0.7
1.1 | 3.3
1.4
1.9 | 4.0
2.0
2.7 | V
V | | Schmitt Trigger TTL Input ³ Positive-going Threshold Negative-going Threshold Hysteresis | V _{T+}
V _{T-}
V _{T+} -V _{T_} |

V _{IL} to V _{IH} , V _{IH} , to V _{IL} | 1.4
0.8
0.4 | 1.9
1.3
0.6 | 2.5
1.8
0.7 | V
V | | Input Pull-up/Pull-down Resistor | R _P | V _{IH} to V _{DD}
V _{IL} to V _{SS} | 25 | 50 | 100 | kΩ | | Input Leakage Current | ILI | $V_{i} = 0 - V_{DD}$ | , – 10 | _ | 10 | μА | | Input Leakage Current (3-state) | l _{LZ} | $V_i = 0 - V_{DD}$ | -10 | _ | 10 | μΑ | Notes: $^{1}V_{IN} = V_{DD}$, $V_{IL} = V_{SS}$ 2 With certain restrictions on pin assignment ³These values for reference only ### **ARRAY ARCHITECTURE** The typical CG10 chip is composed of double columns of CMOS gates (basic cells) separated by dedicated wiring channels. A basic cell consists of a pair of N-channel and a pair of P-channel transistors interconnected by polysilicon gate control terminals. Groups of basic cells are interconnected by custom metallization into unit cells. Fujitsu unit cells provide a wide range of standard logic functions such as exclusive OR gates, flip-flops, buffers, and counters. The CG10 Series CMOS gate array family includes over 250 different unit cells. These unit cells are the building blocks from which complex designs are constructed. The spaces between the double columns of basic cells are occupied by channels for custom metallization. Nearly half of these wiring channels contain transmission gates that implement internal 3-state buses. Bus terminators located at the ends of the double columns of cells maintain the last value to be sent through the bus to ensure proper operation under all conditions. The I/O cells around the perimeter of the matrix of cells are composed of internal cells with input protection networks and the potential to be configured as input buffers, clock input buffers, output buffers, power output buffers, or bidirectional buffers. Typical Chip Layout, Double Column Structure - 1. Dedicated Clock Network for high frequency clocks - 2. 3-state Bus Logic located in wiring channels - 3. Bus Terminators prevent floating state on buses - 4. Driver Transistors and I/O Protection Networks provide high I/O count - 5. Double Columns for optional macro utilization and speed - 6. Wiring Channel Area for metallization between unit cells ### **DESIGN COMPONENTS** #### **DESIGNING WITH THE CG10 PRODUCT FAMILY** To implement logic functions, you build up the elements of the circuit from unit cells. Simple unit cells are used hierarchically to build higher level functions until the logic is completely defined. Fujitsu offers a complete line of standard logic functions in the unit cell library. Super macros are used to implement large super-cell functions such as expandable ALUs and multipliers. #### I/O BUFFERS Each CG10 I/O buffer around the perimeter of the array consists of an input protection network and large N-channel and P-channel transistors capable of supplying the standard 3.2-mA, 8-mA, and 12-mA output currents. Two of these large transistor pairs may be connected in parallel, using high-output-current macros, to obtain 24-mA drive. One of the I/O pads whose output transistors have been used for the 24-mA high-current option may still be used as an input. Input I/O buffers convert external TTL levels to internal CMOS levels or may receive CMOS level signals directly. Output I/O buffers are totem pole and may drive either CMOS and TTL levels, depending on their AC and DC loads. Any of the pins except the dedicated power and ground pads can be designed to be an input buffer, an input buffer with pull-up/pull-down resistance, a clock input buffer, an output buffer, a high-drive
output buffer, an output buffer with noise limiting resistance, a 3-state output buffer, a bi-directional buffer, or a Schmitt trigger input buffer. There are some restrictions on the location of 24-mA buffers. #### INPUT CLOCK DRIVERS The large output I/O transistor pair is used in a high-drive input clock driver for high fanout applications within the array. This allows you to fully utilize the high speed capabilities of the CG10 technology. ### **TESTING CG10 DEVICES** Two options are available for testing CG10 designs: (1) the standard designer-supplied test patterns and test vectors (in Fujitsu's FTDL format) and (2) the use of scan cells combined with Automatic Test Generation (ATG) performed by Fujitsu computers for additional diagnostic test patterns. If you have designed with scan cells and other scan logic elements, Fujitsu will complete the scan test program generation. Regardless of the selected test option, you need to furnish Fujitsu with enough test patterns to guarantee that the submitted design completely performs its intended logic functions. These patterns include your test function of each I/O pin. Diagramatic Representation of Design Structure for ScanTesting ## **VDD** and **VSS** REQUIREMENTS Each CG10 Series gate array device has two options for each package type, both supporting a different number of power and ground pins. The number of power and ground pins required depends on the number of simultaneously switching outputs used in the design. Simultaneously switching outputs (SSOs) are output signals that change from H to L or L to H or from Z to H or Z to L within a 20-ns window (including possible skew). Multiple outputs that switch at the same time can cause noise on Vpp and Vss lines and affect the performance of a device. Therefore, to achieve maximum reliability, Fujitsu limits the number of SSOs per Vpp pin according to the table below. The maximum number of SSOs per pin is determined by a representative value specified for the driving capability of each type of output. The total representative value of all SSOs used in a design must not exceed 80 per Vss pin. For example, 11 normal 3.2-mA outputs with edge rate control, four 12-mA outputs, or three 24-mA outputs per Vss pin may be SSOs. | Output Drive Type | Representative Value
per Output | |--|------------------------------------| | Normal (3.2 mA) | 10 | | High Drive (12 mA) | 20 | | Normal (3.2 mA) with
Edge Rate Control | 7 | | High Drive (12 mA)
with Edge Rate Control | 14 | | High Drive (24 mA)
with Edge Rate Control | 26 | # **CG10 Series CMOS Gate Arrays** ## **FUNCTIONAL INDEX OF UNIT CELL LIBRARY** Note: The load unit (lu) is a normalized loading unit of capacitance representing the input load of an inverter without metal interconnection. | nverter and Buffer Family | | | | | | |---------------------------|----------------------------|-------------|------------|----------|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | Polarity | | | V1N | Inverter | 1 | 18 | Neg | | | V2B | Power Inverter | 1 | 36 | Neg | | | B1N | True Buffer | 1 | 18 | Pos | | | BD3 | True Delay Buffer (> 5 ns) | 5 | 18 | Pos | | | BD4 | Delay Cell (> 4 ns) | 4 | 6 | Pos | | | BD5 | Delay Cell (>10 ns) | 9 | 18 | Pos . | | | BD6 | Delay Cell (>22 ns) | 17 | 18 | Pos | | | Clock Buffer Family | | | | | | |---------------------|------------------------------|-------------|------------|----------|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | Polarity | | | K1B | True Clock Buffer | 2 | 36 | Pos | | | K2B | Power Clock Buffer | 3 | 55 | Pos | | | КЗВ | Gated Clock (AND) Buffer | 2 | 36 | Pos | | | K4B | Gated Clock (OR) Buffer | 2 | 36 | Pos | | | K5B | Gated Clock (NAND) Buffer | 3 | 36 | Neg | | | KAB | Block Clock (OR) Buffer | 3 | 55 | Pos | | | KBB | Block Clock (OR x 10) Buffer | 30 | 55 | Pos | | | V1L | Double Power Inverter | 2 | 55 | Neg | | | NAND Family | | | | | | |----------------|-------------------------|-------------|------------|--|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | | | N2N | 2-input NAND | 1 | 18 | | | | N2B | Power 2-input NAND | 3 | 36 | | | | N2K | Fast Power 2-input NAND | 2 | 36 | | | | N3N | 3-input NAND | 2 | 14 | | | | N3B | Power 3-input NAND | 3 | 36 | | | | N4N | 4-input NAND | 2 | 10 | | | | N4B | Power 4-input NAND | 4 | 36 | | | | N6B | Power 6-input NAND | 5 | 36 | | | | N8B | Power 8-input NAND | 6 | 36 | | | | N9B | Power 9-input NAND | 8 | 36 | | | | NCB | Power 12-input NAND | 10 | 36 | | | | NGB | Power 16-input NAND | 11 | 36 | | | | N3K | Fast Power 3-input NAND | 3 | 28 | | | | N4K | Fast Power 4-input NAND | 4 | 20 | | | | NOR Family | | | | | | |----------------|--------------------|-------------|------------|--|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | | | R2N | 2-input NOR | 1 | 14 | | | | R2B | Power 2-input NOR | 3 | 36 | | | | R2K | Power 2-input NOR | 2 | 36 | | | | R3N | 3-input NOR | 2 | 10 | | | | R3B | Power 3-input NOR | 3 | 36 | | | | R3K | Power 3-input NOR | 3 | 20 | | | | R4N | 4-input NOR | 2 | 6 | | | | R4B | Power 4-input NOR | 4 | 36 | | | | R4K | Power 4-input NOR | 4 | 12 | | | | R6B | Power 6-input NOR | 5 | 36 | | | | R8B | Power 8-input NOR | 6 | 36 | | | | R9B | Power 9-input NOR | 8 | 36 | | | | RCB | Power 12-input NOR | 10 · | 36 | | | | RGB | Power 16-input NOR | 11 | 36 | | | | AND Family | | | | | |----------------|-------------------|-------------|------------|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | | N2P | Power 2-input AND | 2 | 36 | | | N3P | Power 3-input AND | 3 | 36 | | | N4P | Power 4-input AND | 3 | 36 | | | N8P | Power 8-input AND | 6 | 36 | | | OR Family | | | | | |----------------|------------------|-------------|------------|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | | R2P | Power 2-input OR | 2 | 36 | | | R3P | Power 3-input OR | 3 | 36 | | | R4P | Power 4-input OR | 3 | 36 | | | R8P | Power 8-input OR | 6 | 36 | | | Unit Cell Name | Description | Basic Cells | Drive (lu) | Polarity | |----------------|-----------------------------|-------------|------------|----------| | X1N | Exclusive NOR | 3 | 18 | Neg | | X1B | Power Exclusive NOR | 4 | 36 | Neg | | X2N | Exclusive OR | 3 | 14 | Pos | | X2B | Power Exclusive OR | 4 | 36 | Neg | | X3N | 3-input Exclusive NOR | 5 | 14 | Neg | | ХЗВ | Power 3-input Exclusive NOR | 6 | 36 | Neg | | X4N | 3-input Exclusive OR | 5 | 14 | Pos | | X4B | Power 3-input Exclusive OR6 | 6 | 36 | Pos | ## **CG10 Series CMOS Gate Arrays** ## FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) | ND-OR-Inverter Family (AOI) | | | | | | |-----------------------------|-------------------------------|-------------|------------|--|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | | | D23 | 2-wide 2-AND 3-input AOI | 2 | 14 | | | | D14 | 2-wide 3-AND 4-input AOI | 2 | 14 | | | | D24 | 2-wide 2-AND 4-input AOI | 2 | 14 | | | | D34 | 3-wide 2-AND 4-input AOI | 2 | 10 | | | | D36 | 3-wide 2-AND 6-input AOI | 3 | 10 | | | | D44 | 2-wide 2-OR 2-AND 4-input AOI | 2 | 10 | | | Note: AND-OR-Inverter unit cells are useful in implementing sum-of-products (SOP) expressions | OR-AND-Inverter Family (OAI) | | | | | | |------------------------------|-------------------------------|-------------|------------|--|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | | | | G23 | 2-wide 2-OR 3-input OAI | 2 | 18 | | | | G14 | 2-wide 3-OR 4-input OAI | 2 | 10 | | | | G24 | 2-wide 2-OR 4-input OAI | 2 | 10 | | | | G34 | 3-wide 2-OR 4-input OAI | 2 | 10 | | | | G44 | 2-wide 2-AND 2-OR 4-input OAI | 2 | 14 | | | Note: OR-AND-Inverter unit cells are useful in implementing product-of-sums (POS) expressions. | Multiplexer Far | nily | | | | | |-----------------|------|--------------------------------------|-------------|-------------|----------| | Unit Cell Name | Type | Description | Basic Cells | Drive (lu) | Function | | T24* | 4:1 | Power 2-AND 4-wide Multiplexer | 6 | 36 | SOP | | T26* | 6:1 | Power 2-AND 6-wide Multiplexer | 10 | 36 | SOP | | T28* | 8:1 | Power 2-AND 8-wide Multiplexer | 11 | 36 | SOP | | T32 | 2:1 | Power 3-AND 2-wide Multiplexer | 5 | 36 | SOP | | T33* | 3:1 | Power 3-AND 3-wide Multiplexer | 8 | 36 | SOP | | T34* | 4:1 | Power 3-AND 4-wide Multiplexer | 9 | 36 | SOP | | T42 | 2:1 | Power 4-AND 2-wide Multiplexer | 6 | 36 | SOP | | T43 | 3:1 | Power 3-AND 3-wide Multiplexer | 10 | 36 | SOP | | T44 | 4:1 | Power 4-AND 4-wide Multiplexer | 11 | 36 | SOP | | T54 | 4:1 | Power 4-2-3-2 AND 4-wide Multiplexer | 10 | 36 | SOP | | U24* | 4:1 | Power 2-OR 4-wide Multiplexer | 6 | 36 | POS | | U26* | 6:1 | Power 2-OR 6-wide Multiplexer | 9 | 36 | POS | | U28* | 8:1 | Power 2-OR 8-wide Multiplexer | 11 | 36 | POS | | U32 | 2:1 | Power 3-OR 2-wide Multiplexer | 5 | 36 | POS | | U33* | 3:1 | Power 3-OR 3-wide Multiplexer | 7 | 36 | POS | | U34* | 4:1 | Power 3-OR 4-wide Multiplexer | 9 | 36 | POS | | U42 | 2:1 | Power 4-OR 2-wide Multiplexer | 6 | 36 | POS | | U43 | 3:1 | Power 4-OR 3-wide Multiplexer | 9 | 36 | POS | | U44 | 4:1 | Power 4-OR 4-wide Multiplexer | 11 | 36 | POS | ^{*} Convenient for typical multiplexer applications | Data Select | ors/Multip | lexers | 7-11 | | | | | |-------------------|------------|---------------|-------------|------------|---------|---------|--------------| | Unit Cell
Name | Туре | Description | Basic Cells | Drive (lu) | Selects | Outputs | Bit
Width | | P24* | 2:1 | Data Selector | 12 | 36 | S, XS | Q | 4 | | T2E | 2:1 | Selector | 5 | 18 | S | XQ | 2 | | T2F | 2:1 | Selector | 8 | 18 | S | XQ | 4 | | T2B* | 2:1 | Selector | 2 | 18 | S, XS | XQ | 1 | | T2C* | 2:1 | Selector | 4 | 18 | S, XS | XQ | 2 | | T2D* | 2:1 | Selector | 2 | 14 | S, XS | XQ | 1 | | T5A* | 4:1 | Selector | 5 | 9 | S, XS | XQ | 1 | | V3A* | 1:2 | Selector | 2 | 14 | S, XS | XQ | 1 | | V3B* | 1:2 | Selector | 4 | 14
 S, XS | XQ | 2 | ^{*} These are transmission gate devices whose outputs can be tied because they can be inhibited with true/inverted selects. | Decoders | | | | | | | |-------------------|------|-------------|-------------|------------|-------------------------|-------------------| | Unit Cell
Name | Туре | Description | Basic Cells | Drive (lu) | Active Level
Outputs | Enable | | DE2 | 2:4 | Decoder | 5 | 18 | Low | _ | | DE3 | 3:8 | Decoder | 15 | 14 | Low | _ | | DE4 | 2:4 | Decoder | 8 | 14 | Low | Low | | DE6 | 3:8 | Decoder | 30 | 18 | Low | 1. High
2. Low | | Internal Bus Unit Cells | | | | | | | | | | | |-------------------------|------------------|-------------|------------|----------|--------|--|--|--|--|--| | Unit Cell Name | Description | Basic Cells | Drive (lu) | Bus Size | Enable | | | | | | | B41 | 4-bit Bus Driver | 9 | 36 | 4 bits | Low | | | | | | | B11 | 1-bit Bus Driver | 5 | 36 | 1 bit | Low | | | | | | | Data Latch | T | | т | T | | Υ | Г | |--------------------|-----------------------|----------------|---------------|--------|------|--------|-------| | Unit Cell-
Name | Description | Basic
Cells | Drive
(lu) | Enable | Bits | Output | Clear | | YL2 | Data Latch with TM | 5 | 36 | High | 1 | Q | _ | | YL4 | Data Latch with TM | 14 | 36 | High | 4 | Q | | | LTK | Data Latch | 4 | 18 | Low | 1 | Q, XQ | Async | | LTL | Data Latch with Clear | 5 | 18 | Low | 1 | Q, XQ | Async | | LTM | Data Latch with Clear | 16 | 18 | Low | 4 | Q, XQ | | | LT1 | S-R Latch with Clear | 4 | 18 | Low | 1 | Q, XQ | Async | | LT4 | Data Latch | 14 | 18 | Low | 4 | Q, XQ | | Note: Y-type latches incorporate inhibit inputs and transparent mode (TM) to facilitate scan implementation. | Scan Fli | p-flop Family (Positive-Edge Tri | ggered) | | | | | | | |-------------------|-------------------------------------|----------------|---------------|------|--------|-------|--------|------------------| | Unit Cell
Name | Description | Basic
Cells | Drive
(lu) | Bits | Output | Clear | Preset | Clock
Inhibit | | SDH* | Scan D Flip-flop with 2:1 Multiplex | 14 | 36 | 1 | Q, XQ | Async | _ | Yes | | SDJ* | Scan D Flip-flop with 4:1 Multiplex | 15 | 36 | 1 | Q, XQ | Async | _ | Yes | | SDK* | Scan D Flip-flop with 3:1 Multiplex | 16 | 36 | 1 | Q, XQ | Async | _ | Yes | | SJH | Scan J–K Flip-flop | 16 | 36 | 1 | Q, XQ | Async | | Yes | | SDD* | Scan DFlip-flop with 2:1 Multiplex | 16 | 36 | 1 | Q, XQ | Async | Async | Yes | | SDA | Scan 1-input D Flip-flop | 12 | 36 | 1 | Q, XQ | _ | _ | Yes | | SDB | Scan 1-input D Flip-flop | 42 | 36 | 4 | Q, XQ | _ | _ | Yes | | SHA | Scan 1-input D Flip-flop | 68 | 18 | 8 | Q, XQ | _ | _ | Yes | | SHB | Scan 1-input D Flip-flop | 62 | 18 | 8 | Q | _ | | Yes | | SHC | Scan 1-input D Flip-flop | 62 | 18 | 8 | XQ | | | Yes | | SHJ* | Scan D Flip-flop with 2:1 Multiplex | 78 | 18 | 8 | Q, XQ | _ | _ | Yes | | SHK* | Scan D Flip-flop with 3:1 Multiplex | 88 | 18 | 8 | Q, XQ | | | Yes | | SFDM | Scan 1-input D Flip-flop | 10 | 18 | 1 | Q, XQ | _ | | Yes | | SFDO | Scan 1-input D Flip-flop | 11 | 18 | 1 | Q, XQ | Async | _ | Yes | | SFDP | Scan 1-input D Flip-flop | 12 | 18 | 1 | Q, XQ | Async | Async | Yes | | SFDR | Scan 4-input D Flip-flop | 36 | 18 | 4 | QA-QD | Async | | Yes | | SFDS | Scan 4-input D Flip-flop | 31 | 18 | 4 | QA-QD | _ | _ | Yes | | SFJD | Scan J-K Flip-flop | 14 | 18 | 1 | Q, XQ | | _ | Yes | Note: * Indicates D Flip-flop with multiplexed inputs. | Non-Sca | n Flip-flop Family | | | | | | | | |-------------------|---|----------------|---------------|------|--------|-------|--------|------------------| | Unit Cell
Name | Description | Basic
Cells | Drive
(lu) | Bits | Output | Clear | Preset | Clock
Inhibit | | FDM | D Flip-flop | 6 | 18 | 1 | Q, XQ | | _ | Pos | | FDN | D Flip-flop with Set | 7 | 18 | 1 | Q, XQ | | Async | Pos | | FDO | D Flip-flop with Reset | 7 | 18 | 1 | Q, XQ | Async | | Pos | | FDP | D Flip-flop with Set and Reset | 8 | 18 | 1 | Q, XQ | Async | Async | Pos | | FDQ | D Flip-flop | 21 | 18 | 4 | Q | | | Neg | | FDR | D Flip-flop with Clear | 26 | 18 | 4 | Q | Async | | Pos | | FDS | D Flip-flop | 20 | 18 | 4 | Q | | | Pos | | FD2 | Power D Flip-flop | 7 | 36 | 1 | Q, XQ | _ | _ | Neg | | FD3 | Power D Flip-flop with Preset | 8 | 36 | 1 | Q, XQ | | Async | Neg | | FD4 | Power D Flip-flop with Clear and Preset | 9 | 36 | 1 | Q, XQ | Async | Async | Neg | | FD5 | Power D Flip-flop with Clear | 8 | 36 | 1 | Q, XQ | Async | _ | Neg | | FJD | Positive Edge Clocked
Power J-K Flip-flop with Clear | 12 | 36 | 1 | Q, XQ | Async | _ | Pos | Note: Synchronous flip-flops my be constructed by adding a simple AND gate (such as N2P) to the input of a flip-flop to create a synchronous clear | Scan C | Scan Counter Family | | | | | | | | | | | |----------------------|--|----------------|---------------|------|----------------------|------|-------|--------|-------------|-------------|--| | Unit
Cell
Name | Description | Basic
Cells | Drive
(lu) | Bits | Outputs ¹ | Load | Clear | Enable | Carry
In | Up/
Down | | | SC7 ² | Scan 4-bit Synchronous Binary
Up Counter with Parallel Load | 62 | 36 | 4 | Q, XQ,
CO (S) | Sync | | Low | High | Up | | | SC8 ² | Scan 4-bit Synchronous Binary
Down Counter with Parallel Load | 66 | 36 | 4 | Q, XQ,
CO (S) | Sync | _ | High | Low | Down | | | SC43 | Scan 4-bit Synchronous Binary
Up Counter with Asynchronous
Clear | 59 | 18 | 4 | QA, QD, | Sync | Async | High | Low | Up | | | SC47 | Scan 4-bit Synchronous Binary
Up/Down Counter | 78 | 18 | 4 | QA, QD, | Sync | | Low | | Up/
Down | | Notes: ¹(S), (A) indicate the counter is (S)ynchronous or (A)synchronous. ²Scan counters include clock inhibit and high drive (CDR = 36 lu). For non-Scan counters CDR = 18 lu. | Non-So | Non-Scan Counter Family | | | | | | | | | | | |----------------------|---|----------------|---------------|------|----------------------|-------|-------|--------|-------------|-------------|--| | Unit
Cell
Name | Description | Basic
Cells | Drive
(lu) | Bits | Outputs ¹ | Load | Clear | Enable | Carry
In | Up/
Down | | | C11 ³ | Non-Scan Flip-Flop for Counter | 11 | 18 | _ | Q, XQ | _ | | _ | _ | _ | | | C41 | Non-Scan 4-bit Binary
Asynchronous Counter | 24 | 18 | 4 | Q, (A) | _ | Async | _ | _ | Up | | | C42 | Non-Scan 4-bit Binary
Synchronous Counter | 32 | 18 | 4 | Q | _ | Async | _ | _ | Up | | | C43 | Non-Scan 4-bit Binary
Synchronous Up Counter | 48 | 18 | 4 | Q, CO(S) | Sync | Async | High | High | Up | | | C45 | Non-Scan Binary Synchronous
Up Counter | 48 | 18 | 4 | Q, CO | Sync | Sync | High | High | Up | | | C47 | Non-Scan Binary Synchronous
Up/Down Counter | 68 | 18 | 4 | Q, CO | Async | _ | Low | Low | Up/
Down | | Notes: 1(S), (A) indicate the counter is (S)ynchronous or (A)synchronous. ²Scan counters include clock inhibit and high drive (CDR = 36 lu). For non-Scan counters CDR = 18 lu. ³C11 may by used for purposes other than counters. | Shift R | legister Family | | | | | | | |----------------------|--|----------------|---------------|--------------|----------------|------------|-------------------| | Unit
Cell
Name | Description | Basic
Cells | Drive
(lu) | Bit
Width | Load | Outputs | Clock
Polarity | | | Serial-in Parallel-out ShiftRegister | 18 | 16 | 4 | Serial-In only | Q-Parallel | Neg | | FS2 | Shift Register with Synchronous Load | 30 | 16 | 4 | Sync-High | Q-Parallel | Neg | | FS3 | Shift Register with Asynchronous Load | 34 | 18 | 4 | Async-Low | Q-Parallel | Pos | | SR1 | Serial-in Parallel-out ShiftRegister with Scan | 36 | 36 | 4 | Serial-In only | Q-Parallel | Pos | # **CG10 Series CMOS Gate Arrays** | Datapat | h Operators (Adder, ALU, Parity) | | | | | | |-----------------------|--------------------------------------|----------------|----------------------|-----------|--|-------------| | Unit
Cell-
Name | Description | Basic
Cells | Drive
(lu) | Bit Width | Outputs | Carry In | | MC4 | Magnitude Comparator | 42 | 18 (=)
10 (<, >) | 4 | A>B, A=B, A <b< td=""><td>A>B,A=B,ALB</td></b<> | A>B,A=B,ALB | | A1A | 1-bit Half Adder | 5 | 36 | 1 | s, co | _ | | A1N | 1-bit Full Adder | 8 | 18 | 1 | s, co | CI | | A2N | 2-bit Full Adder | 16 | 14 | 2 | s, co | CI | | A4H | 4-bit Binary Full Adder w/Fast Carry | 48 | 18 (CO)
14 (S) | 4 | s, co | CI | | PE5 | Even Parity Generator/Checker | 12 | 36 | 5 | EVEN, ODD | _ | | PO5 | Odd Parity Generator/Checker | 12 | 36 | 5 | ODD, EVEN | _ | | PE8 | Even Parity Generator/Checker | 18 | 18 | 8 | EVEN, ODD | _ | | PO8 | Odd Parity Generator/Checker | 18 | 18 | 8 | ODD, EVEN | _ | | PE9 | Even Parity Generator/Checker | 22 | 18 | 9 | EVEN, ODD | _ | | PO9 | Odd Parity Generator/Checker | 22 | 18 | 9 | ODD, EVEN | _ | | Miscellaneous Cells | | | | |---------------------|-------------|-------------|------------------------| | Unit Cell Name | Description | Basic Cells | Function | | Z00 | 0 Clip | 0 | Tie to V _{SS} | | Z01 | 1 Clip | 0 | Tie to V _{DD} | | Input Buffe | er Family | | | | | | |---------------------|--|----------------|-------------------|----------------------|-------------------------|----------------------------| | Unit Cell
Name | Description | Basic
Cells | Drive (lu) | Logic
Level | Туре | Input/Output
Polarity | | I1B | Input Buffer | 5 | 36 | TL | Signal | Invert | | I1BU | I1B with Pull-up Resistance | 5 | 36 | TL | Signal | Invert | | I1BD | I1B with Pull-down Resistance | 5 | 36 | TL | Signal | Invert | | 12B | Input Buffer | 4 | 36 | 보보 | Signal | True | | 12BU |
I2B with Pull-up Resistance | 4 | 36 | | Signal | True | | 12BD | I2B with Pull-down Resistance | 4 | 36 | | Signal | True | | IKB
IKBU
IKBD | Clock Input Buffer
IKB With Pull-up Resistance
IKB with Pull-down Resistance | 4
4
4 | 72
72
72 | TTL
TTL | Clock
Clock
Clock | Invert
Invert
Invert | | IKC
IKCD | Clock Input Buffer
IKC With Pull-up Resistance
IKC with Pull-down Resistance | 4
4
4 | 200
200
200 | CMOS
CMOS
CMOS | Clock
Clock
Clock | Invert
Invert
Invert | | ILB | Clock Input Buffer | 6 | 72 | TTL | Clock | True | | ILBU | ILB with Pull-up Resistance | 6 | 72 | TTL | Clock | True | | ILBD | ILB with Pull-down Resistance | 6 | 72 | TTL | Clock | True | | ILCU
ILCD | Clock Input Buffer
ILC with Pull-up Resistance
ILC with Pull-down Resistance | 6
6
6 | 200
200
200 | CMOS
CMOS
CMOS | Clock
Clock
Clock | True
True
True | | 11C | CMOS Interface Input Buffer | 5 | 36 | CMOS | Signal | Invert | | 11CU | I1C with Pull-up Resistance | 5 | 36 | CMOS | Signal | Invert | | 11CD | I1C with Pull-down Resistance | 5 | 36 | CMOS | Signal | Invert | | 12C | CMOS Interface Input Buffer | 4 | 36 | CMOS | Signal | True | | 12CU | I2C with Pull-up Resistance | 4 | 36 | CMOS | Signal | True | | 12CD | I2C with Pull-down Resistance | 4 | 36 | CMOS | Signal | True | | 11S | Schmitt Trigger Input Buffer | 8 | 18 | CMOS | Schmitt | Invert | | 11SU | I1S with Pull-up Resistance | 8 | 18 | CMOS | Schmitt | Invert | | 11SD | I1S with Pull-down Resistance | 8 | 18 | CMOS | Schmitt | Invert | | 12S | Schmitt Trigger Input Buffer | 8 | 18 | CMOS | Schmitt | True | | 12SU | I2S with Pull-up Resistance | 8 | 18 | CMOS | Schmitt | True | | 12SD | I2S with Pull-down Resistance | 8 | 18 | CMOS | Schmitt | True | | I1R | Schmitt Trigger Input Buffer | 6 | 18 | TTL | Schmitt | Invert | | I1RU | I1R with Pull-up Resistance | 6 | 18 | TTL | Schmitt | Invert | | I1RD | I1R with Pull-down Resistance | 6 | 18 | TTL | Schmitt | Invert | | 12R | Schmitt Trigger Input Buffer | 8 | 18 | TTL | Schmitt | True | | 12RU | I2R With Pull-up Resistance | 8 | 18 | TTL | Schmitt | True | | 12RD | I2R with Pull-down Resistance | 8 | 18 | TTL | Schmitt | True | Note: A "U" suffixed to the name of an input buffer indicates pull-up resistance of 50KΩ (typical) and a "D" indicates a pull-down resistance of the equivalent value. | Output Buffer Family | | | | | | | | |----------------------|-----------------------------|----------------|-----------------------------|-----------------|----------|-------------------------|--------------------------| | Unit Cell
Name | Description | Basic
Cells | Drive
(I _{OL}) | Logic²
Level | Туре | Edge
Rate
Control | Input/Output
Polarity | | O1B | Output Buffer | 3 | 3.2 mA | TTL/CMOS | Standard | No | Invert | | O1L | Power Output Buffer | 3 | 12 mA | TTL/CMOS | Standard | No | Invert | | O1S | Power Output Buffer | 5 | 12 mA | TTL/CMOS | Standard | Yes | Invert | | O2B | Output Buffer | 2 | 3.2 mA | TTL/CMOS | Standard | No | True | | O2L | Power Output Buffer | 2 | 12 mA | TTL/CMOS | Standard | No | True | | O2S | Power Output Buffer | 4 | 12 mA | TTL/CMOS | Standard | Yes | True | | O4T ¹ | Output Buffer | 4 | 3.2 mA | TTL/CMOS | 3-state | No | True | | O4W ¹ | Power 3-state Output Buffer | 4 | 12 mA | TTL/CMOS | 3-state | No | True | | O4S! | Power 3-state Output Buffer | 5 | 12 mA | TTL/CMOS | 3-state | Yes | True | | O1R | Output Buffer | 5 | 3.2 mA | TTL/CMOS | Standard | Yes | Invert | | O2R | Output Buffer | 4 | 3.2 mA | TTL/CMOS | Standard | Yes | True | | O4R ¹ | Output Buffer | 5 | 3.2 mA | TTL/CMOS | 3-state | Yes | True | | O2S2 | High Power Output Buffer | 6 | 24 mA | TTL/CMOS | Standard | Yes | True | | O4S21 | High Power Output Buffer | 7 | 24 mA | TTL/CMOS | 3-state | Yes | True | | O1BF | Output Buffer | 3 | 8 mA | TTL/CMOS | Standard | No | Invert | | O1RF | Output Buffer | 5 | 8 mA | TTL/CMOS | Standard | Yes | Invert | | O2BF | Output Buffer | 2 | 8 mA | TTL/CMOS | Standard | No | True | | O2RF | Output Buffer | 4 | 8 mA | TTL/CMOS | Standard | Yes | True | | O4RF | 3-state Output Buffer | 5 | 8 mA | TTL/CMOS | 3-state | Yes | True | | O4TF | 3-state Output Buffer | 4 | 8 mA | TTL/CMOS | 3-state | No | True | Note: 1While all outputs are totem-pole type, Open Drain and Open Source types can easily be defined for all 3-state type outputs. Note: ²Totem pole outputs, such as these buffers have, can drive both TTL and CMOS levels. Voltage margins depend on actual source or sink current (see DC specifications). # FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) | Bidirectio | nal I/O Buffers (Buses) | | | | | | |-------------------|--|----------------|------------------|----------------|----------|--| | Unit Cell
Name | Description | Basic
Cells | Drive (lu) | Logic
Level | Туре | Input/Output
Polarity | | H6T | 3-state Output and Input Buffer | 8 | 3.2 mA | TTL | No | True | | H6TU | H6T with Pull-up Resistance | 8 | 3.2 mA | ΠL | No | True | | H6TD | H6T with Pull-down Resistance | 8 | 3.2 mA | TTL | No | True | | H6W | Power 3-state Output and Input Buffer | 8 | 12 mA | TTL | No | True | | H6WU | H6W with Pull-up Resistance | 8
8 | 12 mA | TTL
TTL | No | True | | H6WD | H6W with Pull-down Resistance | 8 | 12 mA | IIL | No | True | | H6C | 3-state Output and CMOS | | 00-4 | CMCC | NI- | T | | H6CU | Interface Input Buffer H6C with Pull-up Resistance | 8 | 3.2 mA
3.2 mA | CMOS
CMOS | No
No | True
True | | H6CD | H6C with Pull-down Resistance | 8 | 3.2 mA | CMOS | No
No | True | | | | • | 3.2 IIIA | CIVIOS | INU | 1108 | | H6E | Power 3-state Output and CMOS Interface Input Buffer | 8 | 12 mA | CMOS | No | True | | H6EU | H6E with Pull-up Resistance | 8 | 12 mA | CMOS | No | True | | H6ED | H6E with Pull-down Resistance | 8 | 12 mA | CMOS | No | True | | H6S | 3-state Output and Schmitt | | 1 | | | | | 1103 | Trigger Input Buffer | 12 | 3.2 mA | смоѕ | No | True | | H6SU | H6S with Pull-up Resistance | 12 | 3.2 mA | CMOS | No | True | | H6SD | H6S with Pull-down Resistance | 12 | 3.2 mA | CMOS | No | True | | H6R | 3-state Output and Schmitt | | <u> </u> | | | | | | Trigger Input Buffer | 12 | 3.2 mA | TTL | No | True | | H6RU | H6R with Pull-up Resistance | 12 | 3.2 mA | TTL | No | True | | H6RD | H6R with Pull-down Resistance | 12 | 3.2 mA | TTL | No | True | | H8T | 3-state Output and Input Buffer | 9 | 3.2 mA | TTL | Yes | True | | H8TU | H8T with Pull-up Resistance | 9 | 3.2 mA | TTL | Yes | True | | H8TD | H8T with Pull-down Resistance | 9 | 3.2 mA | TTL | Yes | True | | H8W | Power 3-state Output and Input Buffer | 9 | 12 mA | TTL | Yes | True | | H8WU | H8W with Pull-up Resistance | 9 | 12 mA | TTL | Yes | True | | H8WD | H8W with Pull-down Resistance | 9 | 12 mA | TTL | Yes | True | | H8W2 | High Power 3-state Output and Input Buffer | 11 | 24 mA | TTL | Yes | True | | H8W1 | H8W2 with Pull-up Resistance | 11 | 24 mA | TTL | Yes | True | | H8W0 | H8W2 with Pull-down Resistance | 11 | 24 mA | TTL | Yes | True | | H8C | 3-state Output Buffer and CMOS | | | | | | | | Interface Input Buffer | 9 | 3.2 mA | CMOS | Yes | True | | H8CU | H8C with Pull-up Resistance | 9 | 3.2 mA | CMOS | Yes | True | | H8CD | H8C with Pull-down Resistance | 9 | 3.2 mA | CMOS | Yes | True | | H8E | Power 3-state Output Buffer and Interface Input Buffer | 9 | 12 mA | смоѕ | Yes | True | | H8EU | H8E with Pull-up Resistance | 9 | 12 mA | смоѕ | Yes | True | | H8ED | H8E with Pull-down Resistance | 9 | 12 mA | CMOS | Yes | True | Note: A "U" suffixed to the name of a bidirectional buffer indicates a pull-up resistance of 50Ω (typical) and a "D" indicates a pull-down resistance of the equivalent value. # FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) | Bidirectio | Bidirectional I/O Buffers (Buses) (Continued) | | | | | | | |------------------------|---|----------------|----------------------|----------------------|----------------|--------------------------|--| | Unit Cell
Name | Description | Basic
Cells | Drive (lu) | Logic
Level | Туре | Input/Output
Polarity | | | H8E2 | High Power 3-state Output and Input Buffer | 11 | 24 mA | CMOS | Yes | True | | | H8E1 | H8E2 with Pull-up Resistance | 11 | 24 mA | CMOS | Yes | True | | | H8E0 | H8E2 with Pull-down Resistance | 11 | 24 mA | CMOS | Yes | True | | | H8S | 3-state Output and Schmitt Trigger Input
Buffer True | 13 | 3.2 mA | CMOS | Yes | True | | | H8SU | H8S with Pull-up Resistance | 13 | 3.2 mA | CMOS | Yes | True | | | H8SD | H8S with Pull-down Resistance | 13 | 3.2 mA | CMOS | Yes | True | | | H8R | 3-state Output and Schmitt Trigger Input
BufferTrue | 13 | 3.2 mA | ΠL | Yes | True | | | H8RU | H8R with Pull-up Resistance | 13 | 3.2 mA | ΠL | Yes | True | | | H8RD | H8R with Pull-down Resistance | 13 | 3.2 mA | TTL | Yes | True | | | H6TFU | 3-state Output and SchmittTrigger Input
BufferTrue
H6TF with Pull-up Resistance | 8
8 | 8 mA
8 mA | TTL
TTL | No
No | True
True | | | H6TFD | H6TF with Pull-down Resistance | 8 | 8 mA | TTL | No | True | | | H6CF
H6CFU
H6CFD | 3-state Output and Input Buffer
H6CF with Pull-up Resistance
H6CF with Pull-down Resistance | 8
8
8 | 8 mA
8 mA
8 mA | CMOS
CMOS
CMOS | No
No
No | True
True
True | | | H8TF
H8TFU | 3-state Output and Input Buffer
H8TF with Pull-up Resistance | 9
9 | 8 mA
8 mA | TTL
TTL | Yes
Yes | True
True | | | H8TFD | H8TF with Pull-down Resistance | 9 | 8 mA | TTL | Yes | True | | | H8CF
H8CFU | 3-state Output and Input Buffer
H8CF with Pull-up Resistance | 9 | 8 mA
8 mA | CMOS
CMOS | Yes
Yes | True
True | | | H8CFD | H8CF with
Pull-down Resistance | 9 | 8 mA | CMOS | Yes | True | | Note: While all outputs are totem-pole type, Open Drain and Open Source types can easily be defined for all 3-state type outputs, which includes all bidirectional buffers. # **CG10 GATE ARRAY PACKAGE CHARACTERISTICS** | Dual In-line Pa | ackages (Standar | d DIP) | | | | | |-----------------|------------------|-------------|---------------------------|---------------------------|------------------------------------|--| | | Packag | e Code | | | | | | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{ss} | Available Number or
Signal Pins | | | DIP-16 | DIP-16P-MO2 | DIP-16C-C03 | 1 | 2 | 13 | | | | DIP-16P-MO4 | | | | | | | DIP-18 | DIP-18P-MO1 | DIP-18C-CO1 | | | | | | | DIP-18P-MO2 | | | | | | | DIP-20 | DIP-20P-MO2 | DIP-20C-CO2 | 1 | 2 | 17 | | | DIP-20U | | | 1 | 1 | 18 | | | DIP-22 | DIP-22P-MO2 | DIP-22C-C02 | 2 | 2 | 18 | | | | DIP-22P-MO3 | | | | | | | DIP-22U | | | 1 | 1 | 20 | | | DIP-24 | DIP24P-MO1 | DIP-24C-C01 | 2 | 2 | 20 | | | | DIP24P-MO2 | | | | | | | DIP-24U | | | 1 | 1 | 22 | | | DIP-28 | DIP-28P-M02 | DIP-28C-C02 | 2 | 2 | 24 | | | | DIP-28P-M03 | | | | | | | DIP-28U | | | 1 | 1 | 26 | | | DIP-40 | DIP-40P-M01 | DIP-40C-A01 | 2 | 4 | 34 | | | | | DIP-40C-A02 | | | | | | DIP-40U | | | 1 | 1 | 38 | | | DIP-42 | DIP-42P-MO1 | DIP-42C-A01 | 2 | 4 | 36 | | | | DIP-42P-MO2 | | | | | | | DIP-42U | | | 1 | 1 | 40 | | | DIP-48 | DIP-48P-MO1 | DIP-48C-A01 | 2 | 4 | 42 | | | | DIP-48P-MO2 | | | | | | | DIP-48U | | | 1 | 1 | 46 | | # CG10 GATE ARRAY PACKAGE CHARACTERISTICS (Continued) | Dual In-line Packages (Shrink DIP, 70 mil Pin Pitch) | | | | | | | | | |--|---------|---------|---------------------------|---------------------------|------------------------------------|--|--|--| | | Packaç | je Code | · | | | | | | | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | | | | DIP-28SH | | | 2 | 2 | 24 | | | | | DIP-28SHU | | | 1 | 1 | 26 | | | | | DIP-42SH | | | 2 | 4 | 36 | | | | | DIP-42SHU | | | 1 | 1 | 40 | | | | | DIP-48SH | | | 2 | 4 | 36 | | | | | DIP-48SHU | | | 1 | 1 | 46 | | | | | DIP-64SH | | | 2 | 4 | 58 | | | | | DIP-64SHU | | | 2 | 2 | 60 | | | | | Dual In-line Packages (Skinny DIP, 300 mil Body Pitch) | | | | | | | | | |--|---------|---------|---------------------------|---------------------------|------------------------------------|--|--|--| | | Packaç | je Code | Number of V _{DD} | | | | | | | Pinout Code | Plastic | Ceramic | | Number of V _{SS} | Available Number of
Signal Pins | | | | | DIP-22SK | | | 2 | 2 | 18 | | | | | DIP-22SKU | | | 1 | 1 | 20 | | | | | DIP-24SK | | | 2 | 2 | 20 | | | | | DIP-24SKU | | | 1 | 1 | 22 | | | | | DIP-28SK | | | 2 | 2 | 24 | | | | | DIP-28SKU | | | 1 | 1 | 26 | | | | | Flatpack Packages (Dual-Leaded) | | | | | | | | | |---------------------------------|-------------|---------|---------------------------|---------------------------|------------------------------------|--|--|--| | Pinout Code | Package | Code | | | | | | | | | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | | | | FPT-16 | FPT-16P-MO3 | | 1 | 2 | 13 | | | | | FPT-16U | | | 1 | 1 | 14 | | | | | FPT-20 | FPT-20P-MO2 | | 1 | 2 | 17 | | | | | FPT-20U | | | 1 | 1 | 18 | | | | | FPT-24 | FPT-24-MO2 | | 2 | 2 | 20 | | | | | FPT-24U | | | 1 | 1 | 22 | | | | | FPT-28 | FPT-28P-MO1 | | 2 | 2 | 24 | | | | | FPT-28U | | | 1 | 1 | 26 | | | | # CG10 GATE ARRAY PACKAGE CHARACTERISTICS (Continued) | Flatpack Packages (Dual-Leaded) | | | | | | | | | |---------------------------------|--------------|---------|---------------------------|---------------------------|------------------------------------|--|--|--| | | Package (| Code | | | | | | | | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | | | | FPT-44 | | | 2 | 4 | 36 | | | | | FPT-44U | | | 2 | 2 | 40 | | | | | FPT-48 | FPT-48P-MO2 | | 2 | 4 | 42 | | | | | FPT-48U | | | 2 | 2 | 44 | | | | | FPT-48 * | | | 2 | 4 | 42 | | | | | FPT-48U * | | | 2 | 2 | 44 | | | | | FPT-64* | FPT-64P-MO1 | | 2 | 4 | 58 | | | | | FPT-64U | FPT-70P-MO1 | | 1 | 1 | 62 | | | | | FPT-80 | FPT-80P-MO1 | | 2 | 6 | 72 | | | | | FPT-80U | | | 2 | 4 | 74 | | | | | FPT-100 | FPT-100P-MO1 | | 4 | 8 | 88 | | | | | FPT-100U | | | 4 | 4 | 92 | | | | | FPT-120 | | | 6 | 12 | 102 | | | | | FPT-120U | | | 4 | 8 | 108 | | | | | FPT-160 | | | 8 | 14 | 138 | | | | | FPT-160U | | | 6 | 12 | 142 | | | | ^{*} Small body size. Subject to Change | | Pack | age Code | | | | | |-------------|---------|-------------|---------------------------|---------------------------|------------------------------------|--| | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | | PGA-64 | | PGA-64C-A02 | 2 | 4 | 58 | | | PGA-64U | | | 2 | 2 | 60 | | | PGA-88 | | PGA-88C-A01 | 4 | 6 | 78 | | | PGA-88U | | | 4 | 4 | 80 | | | PGA-135 | | | 8 | 12 | 115 | | | PGA-135U | | | 4 | 8 | 127 | | | PGA-179 | | | 8 | 16 | 155 | | | PGA-179U | | | 8 | 8 | 163 | | | PGA-208 | | | 12 | 18 | 178 | | | PGA-256 | | | 16 | 20 | 220 | | # CG10 GATE ARRAY PACKAGE CHARACTERISTICS (Continued) | Flatpack Packages (Dual-Leaded) | | | | | | | | |---------------------------------|---------|-------------|---------------------------|---------------------------|------------------------------------|--|--| | | Pack | age Code | | | | | | | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{SS} | Available Number of
Signal Pins | | | | LCC-28 | | LCC-28C-A02 | 2 | 2 | 24 | | | | LCC-28U | | | 1 | 1 | 26 | | | | LCC-48 | | LCC-48C-A01 | 2 | 4 | 42 | | | | LCC-48U | | | 1 | 2 | 45 | | | | LCC-64 | | LCC-64C-A01 | 2 | 4 | 58 | | | | LCC-64U | | | 2 | 2 | 60 | | | | LCC-68 | | | 2 | 4 | 62 | | | | LCC-68U | | | 2 | 2 | 64 | | | | LCC-84 | | | 4 | 6 | 74 | | | | LCC-84U | | | 3 | 4 | 77 | | | | | Package | Code | | 1 | | | |-------------|-------------|---------|---------------------------|---------------------------|------------------------------------|--| | Pinout Code | Plastic | Ceramic | Number of V _{DD} | Number of V _{ss} | Available Number of
Signal Pins | | | PLCC-28 | LCC-28P-M01 | | 2 | 2 | 24 | | | PLCC-28U | | | 1 | 1 | 26 | | | PLCC-44 | LCC-44P-MO1 | | 2 | 4 | 38 | | | PLCC-44U | | | 1 | 2 | 41 | | | PLCC-68 | LCC-68P-M01 | | 2 | 4 | 62 | | | PLCC-68U | | | 2 | 2 | 64 | | | PLCC-84 | LCC-84P-M01 | | 4 | 6 | 74 | | | PLCC-84U | | | 2 | 4 | 78 | | Subject to Change # **CG10 AVAILABLE PACKAGE TYPES** | | | | | | | | | Numb | per of | |----------------------------|---------------|-------------|------------|---------|---------|---------|---|-----------------|---| | | CG10272 | CG10342 | CG10492 | CG10572 | CG10692 | CG10103 | CG10133 | V _{DD} | V _{ss} | | DIP (Dual In-Line Package) | | | | | | | | | | | DIP28 | C, P | C, P | Р | Р | | | | 2 (1) | 2 (1) | | DIP40 | C, P | C, P | Р | Р | Р | | | 2 (1) | 4 (1) | | DIP42 | C, P | Р | C, P | Р | Р | | | 2 (1) | 4 (1) | | DIP48 | C, P | C, P | C, P | Р | Р | _ | _ | 2 (1) | 4 (1) | | SH-DIP (S | hrink Dual | In-Line Pac | kage) | | | | | | | | SH-DIP42 | C, P | C, P | Р | Р | Р | _ | _ | 2 (1) | 4 (1 ⁻) | | SH-DIP64 | Р | Р | Р | Р | Р | _ | _ | 2 (2) | 4 (2) | | QFP (Qua | d Flat Pack | age) | | | | | | | | | QFP48 | Р | Р | Р | _ | _ | _ | | 2 | 4 | | QFP64 | Р | Р | Р | Р | Р | Р | _ | 2 | 4 | | QFP80 | Р | Р | Р | Р | Р | Р | | 2 (2) | 6 (4) | | QFP100 | Р | Р | Р | Р | Р | Р | | 4 (4) | 8 (4) | | QFP120 | Р | Р | Р | Р | Р | Р | Р | 6 (4) | 12 (8) | | QFP160 | _ | _ | Р | Р | Р | Р | Р | 8 (6) | 14 (12) | | QFP196 | | _ | _ | _ | _ | _ | _ | 10 | 18 | | SQFP (Sh | rink Quad | Flat Packaç | je) | | | | | | | | SQFP64 | Р | Р | _ | _ | _ | _ | _ | 2 | 4 | | SQFP100 | P | Р | P | _ | _ | | _ | 4 (4) | 8 (4) | | SQFP176 | _ | _ | _ | _ | _ | P | Р | 8 | 16 | | SQFP208 | _ | _ | _ | _ | _ | _ | Р | 12 | 18 | | PGA (Pin | Grid Array | Package) | | | | | | | | | PGA64 | C, P 2 | 4 | | PGA88 | C, P 4 (4) | 6 (4) | | PGA135 | С | С | C, P | C, P | C, P | C, P | C, P | 8 (4) | 12 (8) | | PGA179 | | _ | C, P | C, P | C, P | C, P | C, P | 8 (8) | 16(8) | | PGA208 | | | _ | _ | С | С | С | 12 | 18 | | PGA256 | _ | _ | | _ | _ | С | С | 16 | 20 | | PGA-50 m | nil (Pin Gric | Array Pac | kage-50 mi | il) | | | | | | | PGA256 | T - | | _ | | | I - | С | 16 | 20 | | PLCC (Pla | astic Leade | d Chip Car | riers) | | - | | *************************************** | • | *************************************** | | PLCC68 | Р | Р | Р | Р | Р | Р | T - | 2 | 4 | | PLCC84 | Р | Р | Р | Р | Р | Р | _ | 4 (2) | 6 (4) | C = Ceramic, P = Plastic # PACKAGE DIMENSIONS # PACKAGE DIMENSIONS (Continued) # Chapter 2 - Steps Toward Design ## **Contents of This Chapter** - 2.1 Introduction - 2.2 Choosing Fujitsu as your ASIC Manufacturer - 2.3 Choosing a Device - 2.4 Choosing a Package - 2.5 Technical Review - 2.6 Design Interface Options # 2.1 Introduction This section of the data book takes a look at the issues that must be considered before a design is ready to be entered on a computer-aided engineering (CAE) workstation. # 2.2 Choosing Fujitsu as Your ASIC Manufacturer The first step in implementing a given ASIC design is to choose the manufacturer that offers semi-conductor processes capable of actualizing the performance requirements of the IC. The manufacturer should also offer consistent and easily accessible customer support, timely transfer of the design into silicon, and a highly reliable end product. The data sheet and supplementary information in Chapter 1 enable customers to determine whether their requirements fall within the broad range of Fujitsu's technical capability. The second step is
to discuss the design requirements with one of Fujitsu's Field Applications Engineers at either a Regional Sales Office or a Technical Resource Center. Regional Sales Office and Technical Resource Center addresses and telephone numbers are listed at the back of this volume. Fujitsu's Field Applications Engineers work with each customer to determine which technology would be most suitable for a given design, taking into account the factors outlined in more detail below. Fujitsu's highly developed software tools, high-capacity manufacturing facilities (the largest in the world) and long history of excellence in the field (Fujitsu has been producing custom gate arrays commercially since 1974) enable customers to turn designs into highly reliable products in a cost-effective time frame. # 2.3 Choosing A Device Speed is usually the deciding factor in choosing the technology for a design, but sometimes special requirements such as package availability or on-chip memory (available in the AU and CG21 technologies) influence the final decision. Usually the device type is a requirement of the design and is chosen before the package size is determined. The size of the package will depend on array size, partitioning, the number of power and ground pins required by the SSOs (simultaneously switching outputs) used in the design, and the high power drive buffers and clock inputs used in the design. To determine the most suitable device within a given technology, the designer must determine the gate count and pinout requirements from the schematic diagram of the design to be implemented. The functions in the schematic or logic block diagram may be described using standard logic functions, programmable logic, or Fujitsu's Unit Cell Library. Gate counts are calculated in terms of how many basic cells make up each component function (unit cell). This number is given for each unit cell in the unit cell library for each technology. By adding up the number of basic cells used in each logic element in a design, a designer can arrive at a good first estimate of the design complexity. ## 2.4 Choosing a Package Before the final choice of an array can be made, however, the choice of a package must be considered. The intended use of the IC generally determines the type of package used: packaging issues are discussed in detail in the application note "Choosing the Best Package for Your ASIC Design" included in Chapter 7 of Section 1 of this data book. The types of packages available for Fujitsu's CMOS channeled arrays are shown in the data sheets in Section 1 and in Appendix D of the UHB Unit Cell Library (Section 2) and Appendix D of the CG10 Unit Cell Library (Section 3). The size of the package chosen is regulated by the number of inputs and outputs required, the number of V_{SS} and V_{DD} pins required, and the number of simultaneously switching outputs (SSOs) included in the design. ## Package Size vs. SSOs The number of SSOs can influence the size of the package chosen because additional ground pins are sometimes required in a design that has more simultaneously switching outputs than is acceptable for a given package type. Simultaneously switching outputs are those that switch from a logic low or a high impedance (Z) to a logic high or from a logic high or Z state to a logic low within 20 nanoseconds of each other. A general rule is to use one ground pin for each group of 10 simultaneously switching low power outputs or for 20 non-simultaneous outputs. Chapter 4 of Section 1 of this book and the Package Pin Assignments section of the Design Manuals cover pin requirement issues in more detail. Although the Vss and VDD pins are preassigned in each package and cannot be changed, alternate packages are available offering varying numbers of power and ground pins. #### 2.5 Technical Review When the CMOS technology, the device, and the package have been decided upon, the customer and Fujitsu's Field Applications Engineer hold a technical review to ensure that all the information necessary to implement the design is available and to allow Fujitsu to derive a schedule and price. #### 2.6 Design Interface Options The next step is to determine which computer-aided engineering (CAE) workstation will be used to enter the design. The desired result of entering the design on a CAE workstation is the generation of a successful net list or Fujitsu Logic Description Language (FLDL) file and a list of test vectors or Fujitsu Test Description Language (FTDL) file. These two files (which may be generated on any of several different CAE workstation systems) enable Fujitsu's host mainframe to perform automated layout and rigorous test and simulation of the design. Four popular dedicated CAE workstation systems (Valid, Mentor, Dazix, and the HP 9000) as well as several hardware-independent CAE packages support Fujitsu's design software. In addition, Fujitsu now offers design support on ViewCAD™, a computer-aided engineering system originated by Fujitsu for ASIC designs. ViewCAD is written in the C programming language and runs on any UNIX™ platform that supports the X Window System™ (such as the Sun 3 or 4 series of workstations). It includes in one package all of the necessary functions for the design, simulation, and analysis of an ASIC design. ViewCAD makes use of a graphics-oriented interface that allows visual examination of all circuits, circuit test data, and simulation results. Its final product is the logic and test data description files (FLDL and FTDL) that are required by the host mainframe computer to process a design. Through long experience, Fujitsu has found that by far the most efficient way to achieve a trouble-free end product is for customers to implement the design on a workstation themselves. This can be done: 5 - a. on CAD equipment that the customer is already using (Fujitsu provides cell library information files and the expertise to help write a conversion program to produce the FLDL and FTDL files if necessary) - on one of the design systems that specifically support Fujitsu software (Daisy, Mentor, Valid, HP 9000) either at the customer's workplace or in one of the Technical Resource Centers - c. on ViewCAD either on the customer's own Sun equipment or at a Technical Resource Center. # Chapter 3 - Design Procedures #### **Contents of This Chapter** - 3.1 Introduction - 3.2 Workstation Options - 3.3 Workstation Design Procedures - 3.4 Post-Design Process - 3.5 Engineering Sample Testing #### 3.1 Introduction This section of the data book explains the steps necessary to implement an ASIC design in one of Fujitsu's channeled CMOS technologies using a computer-aided engineering (CAE) workstation. Designs can be implemented with Fujitsu's ViewCAD design software or with one of the CAE systems or software applications that support Fujitsu designs. ## 3.2 Workstation Options #### 3.2.1 ViewCAD Fujitsu developed the ViewCAD design software to generate the logic circuit (net list) and test data files necessary to design Fujitsu ASIC devices and to simulate the logic both before and after layout. ViewCAD complements a wide range of customer third party design tools and includes: - · A Schematic Capture Module utilizing the X Window System - A Logic Design Rule Check Module that screens for design violations in the areas of fanout and drive, gate count, I/O requirements, etc. - A Test Data or Waveform Entry Module for test vector entry - An Interactive Simulation Module that replicates the Fujitsu software for both functional and timing simulation - Conversion Modules to define the net list in the Fujitsu Logic Description Language (FLDL) and the test vectors in the Fujitsu Test Data Description Language (FTDL) formats required by Fujitsu's design implementation software. #### 3.2.2 Generic (CAE-dedicated) Workstations Fujitsu provides ASIC Design Software Kits for designers using some of the popular design tools on generic hardware-dedicated CAE workstations. The kits offer support for Dazix, Mentor, Valid, and HP9000 and include: - Fujitsu Symbol Model Libraries for the CAE system's schematic capture module - A Logic Design Rule Check module - Fujitsu Timing Model Libraries for the system's simulator - A Delay Calculator module - Conversion Modules to define the net list and test vectors in the FLDL and FTDL formats required by Fujitsu software. In addition, Fujitsu now offers FAME (Fujitsu's ASIC Management Environment), a menu-driven design management program. FAME enables the user to select the technology, the array size, and the package, to assign the pinout, and to create a design database that is referenced by the other modules to ensure correct-by-construction design. FAME includes a test vector module that allows designers to edit test vectors, assists in defining test groupings, cycle times, and strobe settings, and checks created test files against restrictions. Fuiltsu designs are also supported by several high-performance third party CAE tools. These include: - · Verilog-XL® (Cadence Design Systems, Inc.) mixed-mode system simulator - LASAR™ Version 6 (Teradyne) design simulator and test program generator with fault simulation - HILO-3® (GenRad) design verification, fault simulation, and test generation tools - IKOS™ 800 logic validation hardware accelerator - Synopsys® Design Compiler™ interactive behavioral/logic synthesizer ## 3.3 Workstation Design Procedures Figure 3–1 shows a flowchart of the design process. Because the function and file names used by each design system may differ, generalized names for each operation are used rather than system-specific names for each step in the process. Figure 3-1. Workstation Design Flow ## 3.3.1 Design Entry Design entry (schematic capture) is the first step in the design automation process. The designer can use the schematic editor program of ViewCAD or the applicable workstation software and Fujitsu's symbol model libraries for schematic capture. In most of the
Fujitsu-compatible CAE applications, as in ViewCAD, circuits can be defined as macros, for use as sub-parts of other circuits. Designs can also be entered using Boolean equations, truth tables, or behavioral descriptions. ## 3.3.2 Design Synthesis/Optimization The information entered in the design entry process can be subsequently subjected to design synthesis/optimization using a behavioral/logic synthesizer such as the one offered by Synopsis. ## 3.3.3 Logic Data Conversion (FLDL Generator) Fujitsu's FLDL Generator (FLDLGEN) is a program that uses the results of data input (and design synthesis, if used) to create the FLDL file or net list. The purpose of the FLDL file is to provide information to the Fujitsu software environment for automatic layout and logic simulation. The designer creates an FLDL control file containing the customer's name, the workstation type, the revision, the date, and the designer. The FLDLGEN program receives this information from the FLDL control file and combines it with the schematic data base file created at schematic capture. The FLDLGEN program can then create an FLDL file that describes the design for the Fujitsu design implementation software. ## 3.3.4 Logic Design Rule Check The Logic Design Rule Check (LDRC) examines the files produced by the schematic capture and Fujitsu formatting processes for conformity to the design rules of the technology in which the design is executed. This program is run before simulation because it catches errors that, undetected under normal workstation design rules, often cannot be tolerated in a Fujitsu gate array. LDRC checks that the design conforms to the logic design rules applicable to all Fujitsu designs, to those unique to a technology, and to those required by the chosen package type. When hierarchy is used, LDRC checks for hierarchy violations. Even in the general workstation environment, LDRC is Fujitsu software, written specifically for each trechnology. In order to tailor the LDRC to a particular technology, device, and package, the customer enters required information via an LDRC Control File, which supplies the device and package name and sets the LDRC to output information in the form of a report either on all nets or only on nets that contain errors. Errors detected during LDRC can then be corrected before the Logic Simulation Program is run. ## 3.3.5 Functional Simulation/Timing Analysis The steps that make up the functional simulation and analysis process vary between design environments. For some workstations, as for ViewCAD, functional simulation is all one step, while for others it is three separate steps: - Logic simulator data base file compilation - b. Delay calculation - c. Logic simulation and analysis ## Logic Simulator Data Base File The logic simulator data base file uses a Fujitsu-supplied library to apply behavioral characteristics such as component functions, delay parameters, loading factors, and minimum pulse width, set-up time, and hold time for flip-flops. These values are supplied by the Fujitsu libraries for the appropriate technology. Input stimulus to the circuit is supplied by the designer in the form of the Control File. #### **Delay Calculator** Fujitsu provides the program for performing the delay timing calculations. The execution of the program calculates the delay times unique to each net in accordance with the loading condition (fan-out and hierarchy) in the schematic data file. These calculated delays are representative of pre-layout loading conditions. The calculations for metal loading are based on the same look-up tables and load equations used in the Design Manual. These loads are subject to change after layout, reflecting the actual metal loads experienced. ## **Logic Simulator** The event-driven logic simulator evaluates the outputs of each gate as a function of its inputs and displays the results as either a waveform drawing or as a data file. Workstation simulations performed under the influence of the Delay Calculator are vitally important to verification of design functionality and to the creation of successful test vectors. Using in-circuit application stimulus from the Logic Simulator Data Base File, simulations are executed in typical, maximum, and minimum modes, with timing checks enabled, to ensure that the design is responding as expected and is stable under all conditions. The results are written to a print-on-change file, which is a list of the signals that changed state, their new state, and the time at which they changed. #### 3.3.6 Test Data Conversion (FTDL Generator) Fujitsu's FTDL Generator (FTDLGEN) is a conversion program that translates the Functional Simulator's output file into the FTDL file. In the process of doing this, it applies Fujitsu tester restrictions to the simulator results. If any signal or timing violations are detected, the designer is informed so that the necessary changes can be made to the data file. The final output file of the FTDL Generator becomes the FTDL File, that is, the test vectors for Fujitsu's simulator as well as for the LSI tester. #### 3.4 Post-Design Process At this point, the customer has gone as far as possible in designing a CMOS gate array on a CAE workstation. Now the design is transferred to the Fujitsu software environment at one of the Technical Resource Centers for Fujitsu's simulation. #### 3.4.1 LDRC and TDRC The designer provides the FLDL and FTDL files to a Technical Resource Center usually in the form of magnetic tape or floppy disk. Fujitsu then checks the FLDL using its own proprietary and more detailed logic design rule check to confirm the validity of the logic data and for formatting errors, unconnected inputs and outputs, loading conditions, etc. The FTDL file is checked by Fujitsu's proprietary test data rule check, which flags any violations of the published test data restrictions. #### 3.4.2 Pre-layout Simulation After the LDRC and TDRC have been run successfully on the FLDL and FTDL, the pre-layout simulation can be performed. This is a logic simulation run at typical, maximum, and minimum propagation delay times using estimated metallization capacitance values. If there is no discrepancy between simulation results and the expected outputs, the design is presumed to be correct. One of two simulators, LBS6 or ViewCAD, runs functional simulations and timing verification including the checking of set-up and hold time, pulse width, and removal times. ## 3.4.3 Automatic Layout After a successful pre-layout simulation has taken place and customer approval has been obtained, a proprietary Fujitsu application performs automatic placement and metal interconnection routing. # 3.4.4 Post-Layout Simulation Post-layout simulation, also known as final validation, is again performed at typical, maximum, and minimum propagation delay times, but using actual calculated capacitance based on the metal interconnection routing resulting from automatic layout. Customers who are using ViewCAD can perform the Fujitsu pre-layout and post-layout simulation themselves using the ViewCAD software to provide a sign-off quality design before the design files are even turned over to Fujitsu. #### 3.4.5 Fault Grading After post-layout simulation is completed, customers have the option of requesting that Fujitsu subject the test data to a process called fault grading. This CPU-intensive process analyzes the customer's circuit and test data to calculate the percentage of fault coverage. The input test data is analyzed to determine the adequacy of the stimulus patterns to detect any "stuck" (malfunctioning) nodes. The result, a report of all nodes not tested by the stimulus provided, is given to the customer. The customer then has the option of either changing the test vectors or acknowledging that the untested nodes are acceptable. # 3.4.6 Sample Fabrication After a successful post-layout simulation has been performed and customer approval has again been obtained, engineering samples of the array are fabricated for customer evaluation. ## 3.5 Engineering Sample Testing #### 3.5.1 LSI Tester Once sample chips have been fabricated, they are tested on the LSI Tester, a test instrument located at the manufacturing facility. Sample chips are tested with input test patterns and expected outputs obtained from the FTDL file. One of the most important tasks of post-layout simulation is to validate the test vectors for later use on the LSI Tester. For this reason, simulation is executed under conditions adhering as closely as possible to the conditions imposed by the tester. A device that passes all phases of simulation is likely to pass the LSI tester. The limitations of the LSI Tester place various restrictions upon test data. These restrictions must be respected when preparing the test data pattern and when creating the (stimulus) Control file for running workstation simulations. A summary of test data restrictions for each technology is included in the appropriate Design Manual. Test data restrictions involve such issues at the numbers of test patterns acceptable for each test type, the minimum test cycle length, input signal timing, output strobe timing, bidirectional buffer simulation, input and output cycle timing, tester skew, and the treatment of data signals. Tests performed on the LSI Tester include the function test, the delay test, the DC test, and the high impedance ("Z function") test. Specific data found in the UHB or CG10 Design Manual must be included in FTDL to perform each of these tests. ## 3.5.2 Function Test The function test guarantees the designed function of the gate array by exercising as many of the internal nodes as possible and detecting functional failures. Fujitsu requires the function test because it is the primary means of determining if an ASIC is functioning properly as it comes from manufacturing. In the course of the function test, input signals are applied in accordance with customer timing specifications, using
worst-case input voltage at a clock frequency not to exceed 16 MHz (a period of 63 ns). The dynamic performance of this test also partially verifies the AC characteristics of the device. The function test may be run in multiple units (blocks), allowing changes to be made in the test vectors to assure thorough testing of the device. The transition from one block to the next requires that the device be powered off, adjustments made to the tester, and pins regrouped as required. After all changes have been made, the test is restarted. For this reason, each test block must re-initialize the circuit. #### 3.5.3 Z-Function Test The Z-Function test is administered in the last block(s) of the function test. Its purpose is limited to the verification of the high-impedance function of 3-state and bidirectional output buffers. The Z-function test is necessary only when there are two or more logic combinations that can generate the high-impedance state for a given I/O cell. The test can verify all these logic combinations. If only one logic combination generates the high-impedance condition, then the DC test is adequate. #### 3.5.4 DC Test The DC test, as its name implies, verifies the DC characteristics of the array. It is not intended to check circuit functionality, but it can be used as a function test of 3-state circuits having only one signal path that generates the high-impedance condition. The designer supplies the sequence of input signals and expected outputs in the FTDL. These test patterns must generate every possible state for every type of output and input buffer being used (high, low, and high-impedance). The DC test applies the designer-specified input signals to measure the following DC parameters: - a. Steady state power supply current (IDDS) - b. Output high voltage (VOH) - c. Output low voltage (VOL) - d. Input leakage current (III) - e. High-impedance output leakage current (l_{1.7}) #### 3.5.5 Delay Test The delay test is optional. It is used to verify critical paths or as a means to characterize the device by testing a small number of paths. The purpose of the delay test is to check that signal paths from various inputs of the chip to their respective outputs meet the customer's standards for minimum and/or maximum delay times. The paths may be sequential and/or combinatorial but only the propagation delay, not the toggle frequency, is measured. # 3.6 ATG Testing and Scan Design ATG testing is a special technique that supplements the customer's submitted test patterns (FTDL) to assure both Fujitsu and the customer of a highly reliable gate array by achieving a high degree of fault coverage. ATG testing is implemented by using scan design techniques described at the end of Chapter 4, Design Considerations. Scan test patterns (both applied input stimulus and expected outputs) are automatically generated by Fujitsu's Automatic Test Generator (ATG) software. ATG is offered by Fujitsu for partitioned arrays of the UHB and CG10 technologies and for all arrays in the channelless gate array technologies (AU, CG21, and CG31). 1 # Chapter 4 - Design Considerations ## **Contents of This Chapter** - 4.1 Introduction - 4.2 Basic Cell Usage - 4.3 Designing for Reliability and Testability - 4.4 Designing for Speed - 4.5 Bus Circuit Design - 4.6 I/O Design - 4.7 Designing for Scan Test Technology #### 4.1 Introduction This section of the data book gives an overview of the logic and I/O design considerations that are important for a successful design in Fujitsu's CMOS channeled gate array technology. Specific design recommendations for each technology can be found in the Design Manual for that technology. ## 4.2 Basic Cell Usage In order to benefit from fully automated layout, a designer may use no more than 90% of the actual cell count of a UHB or CG10 gate array. The actual cell count is the number of basic cells used in the device. In Fujitsu's channeled CMOS technologies, the unit cells are grouped in double columns alternating with wiring channels. Within the columnar architectures, unit cells are always constructed on a double column, i.e., a unit cell cannot bridge the wiring channel between two basic cell columns. This limits the number and complexity of unit cells that can be placed on a column. The number of inputs and outputs and therefore input and output buffers required also limit the number of basic cells available for logic design since internal basic cells are also used for input/output buffer cell implementation. #### 4.3 Designing for Reliability and Testability Following the design guidelines below ensures maximum testability and therefore reliability of a design: - a. External signal paths must be interfaced to the array by an I/O buffer. - b. Only one I/O buffer cell can be connected to an external terminal. - c. Inputs to the same cell may not be tied together. - d. Inputs to two or more input buffers may not be tied together. - e. Unused inputs must be tied high or low using clip cells Z00 or Z01, never left floating. - f. The outputs of a unit cell other than 3-state bus macros may not be wire-ANDed. Generally, if output functions must be tied together, they must be combined through a logic function. - g. Outputs of unit cells should not be left open. In the case of flip-flops, latches, shift registers, or counters, however, outputs may be left open if at least one output is connected. - h. Functions such as one-shots and other monostable or astable circuits cannot be incorporated into a Fujitsu CMOS gate array. All logic state changes detected at the output of the array must be predictable for the purpose of test, and as such, be the direct result of changes of input stimulus. - Series inverters must not be used for the purpose of creating a delay. Fujitsu supplies delay unit cells to assist the designer in solving timing problems such as set-up and hold time requirements. The designer should not, however, use delay cells to construct asynchronous circuits (one-shots or glitch generators). - j. Circuits incorporating sequential devices (for instance, flip-flops, counters, shift registers, and so on) must have a traceable method of initialization designed into the circuit, independent of feedback loops. - k. No logic function should be incorporated within the array if it cannot be directly or indirectly set or initialized from a primary input. Designers have two choices for initialization: - 1. Supply an external signal (for CLEAR, LOAD, etc.). - Supply known inputs and allow time for them to propagate through the circuit. If the propagation method is used, UNKNOWN ("X" state) must be an acceptable output state until the initialization is completed. ## 4.4 Designing for Speed In general, signal delays are caused by the signal having to travel through more gates or over longer distances, especially to enter a different block in gate arrays having block architecture (partitioned arrays). Delay is proportional to length of interconnection metal along which the signal must travel. The following recommendations are therefore made to optimize overall design speed by minimizing the interconnect metal length. #### 4.4.1 Hierarchical Design Devices that are not physically partitioned do not allow the designer to control relative path lengths. It is highly recommended, therefore, to design hierarchically, dividing the cell into blocks and the blocks into sub-blocks so that functional groups of unit cells are laid out in close proximity and signals have less far to travel. When it becomes necessary to link blocks, the use of high-power "high-drive" unit cells is recommended to drive signals in the inter-block metal. It is especially helpful to use hierarchical design for the three largest arrays in the UHB and CG10 series. Not using hierarchy design for these larger arrays imposes a risk of considerable difference between estimated interconnection loading and actual layout loading values. The suggested hierarchical structure for the larger arrays is a division of the array into four quadrants as shown in Figure 4–1. Each of these quadrants is considered a level 1 listing under the CHIP level. See Figure 4–2. Figure 4-1. Arrangement of Hierarchical Blocks Figure 4-2. Recommended Hierarchial Organization of UHB/CG10 Designs The CHIP level is the highest level in the hierarchy and represents the entire chip. All I/O cells are defined immediately below the CHIP level, along with any clip cells they may require. Level 1 blocks must be defined immediately beneath the CHIP level and cannot exceed eight in number (when used for digital logic). Unit cells cannot be described immediately beneath the CHIP level. Level 2 is defined beneath the Level 1 blocks, Level 3 beneath Level 2, etc. Levels must always be defined in numerical order. There is no limit to the number of Level 2, Level 3, or Level 4 blocks that may be used (when defined below a higher block level). Unit cells may be defined beneath Levels 2, 3, or 4, but the lower in the hierarchy the unit cells are defined, the greater the designer's control of delay will be. Any level may be the first defined under the CHIP level and any of the levels may be omitted; however, the more the designer deviates from the standard structure, the greater the differences between estimated pre-layout delay and actual post-layout delay will be. The recommended number of basic cells per each quadrant of an array is shown in Figure 4–1. It is highly recommended that the designer adhere to the guidelines in this table since the tables of estimated metallization load for the cells are based on these block sizes. The basic cell level counts overlap from level to level. The designer may select either of the levels covered by the cell count, but must also use the appropriate table of estimated metallization load for delay calculations. Minimum BC/Block Maximum BC/Block Array/Series 6000UHB 1000 2500 8700UHB 1500 3000 12000UHB 2000 4000 CG10692 1200 2600 1700 CG10103 3400
CG10133 2300 4300 Table 4-1. Basic Cells per Quadrant # 4.4.2 Clock Line Design A clock network is a circuit used for the efficient distribution of an external clock signal to the clock input of internal sequential and combinatorial unit cells. Clock skew is the differential delay of a clock signal as it proceeds through a system; it is determined by the types and relative positions of the gates and blocks within the array. Clock networks must be optimized to minimize skews for both internal and inter-chip clock distribution to ensure accurate high-speed operation. The designer can optimize clock networks by using dedicated input buffers called *clock input buffers* and dedicated unit cells called *clock distribution buffers*. Clocks must enter the array through the clock input buffers. They should be further distributed via the clock distribution buffers. Proper use of clock buffers to boost signal strength and balance loads reduces the problems of clock skew and clock pulse variation. The locations of clock input buffers for signals with frequencies greater than 5 MHz are limited to paths on two sides of the die. The number of such buffers is limited depending on the size of the array, as specified in the design manual for each technology. External clock signals must be wired in parallel with chips; once inside the chip, clock signals must be wired in parallel with logic blocks. #### 4.5 Bus Circuit Design The UHB and CG10 families have special provisions for implementing high-performance internal 3-state buses. The internal 3-state bus can be implemented on the chip using bus driver cells and bus terminators that maintain the last logic level on each bus line when all bus drivers switch to their high impedance state. The bus terminator maintains this logic level until any bus driver begins to drive the bus line. The bus terminator is invisible to a logic designer; it is connected to each of the bus lines automatically by Fujitsu's CAD software. It uses only one basic cell per bus line. The number of internal 3-state buses permitted depends on the technology and on the size of the gate array and the bus width (number of bits per bus) required. Table 4–2 shows the number of bus driver cells permitted per UHB chip; Table 4–3 shows the number of bus driver cells permitted per CG10 chip. Table 4-2. Maximum Number of Bus Driver Cells per Chip (UHB) | Device Name | Maximum B41
Bus Driver Cells | |-------------|---------------------------------| | C330UHB | 4 | | C530UHB | 5 | | C830UHB | 6 | | C1200UHB | 8 | | C1700UHB | 12 | | C2200UHB | 16 | | C3000UHB | 21 | | C4100UHB | 26 | | C6000UHB | 50 | | C8700UHB | 70 | | C12000UHB | 90 | Table 4-3. Maximum and Recommended Number of Bus Driver Cells per Chip (CG10) | | B41 Bus Driver Cells | | B11 Bus Driver Cells | | |-------------|----------------------|-------------|----------------------|-------------| | Device Name | Maximum | Recommended | Maximum | Recommended | | CG10272 | 22 | 19 | 88 | 76 | | CC10392 | 26 | 23 | 104 | 92 | | CG10492 | 30 | 27 | 120 | 108 | | CG10592 | 34 | 30 | 136 | 210 | | CG10692 | 72 | 64 | 288 | 256 | | CG10103 | 105 | 94 | 420 | 376 | | CG10133 | 144 | 128 | 576 | 512 | In the largest three arrays of both the UHB and CG10 technologies, there is also a limit on the number of bus driver cells per block (UL, UR, LL, LR, as shown in Figure 4–1) if the array is divided into the four recommended hierarchical blocks. The maximum number of B41 bus driver cells (or CG10 B11 bus driver cells) permitted in each block is calculated using the following formulas. ## **B41 Bus Driver Unit Cells** | CG10692 | (number of basic cells per block / 100) - 1 | |-----------|--| | CG10103 | (number of basic cells per block / 100) + 1 | | CG10303 | (number of basic cells per block / 100) -5 | | C6000UHB | (number of basic cells per block / 100) - 2 | | C8700UHB | (number of basic cells per block / 100) + 1 | | C12000UHB | (number of basic cells per block / 100) - 4 | #### **B11 Bus Driver Unit Cells** The maximum number of B11 bus driver cells permitted in each block is determined by multiplying the permitted number of B41 bus driver cells by 4. For example, if there are 3480 basic cells in a block of a CG10131 array: $$3480/100 - 1 = 33.8$$ Therefore, a maximum of 33 B41s can be used in that block. $$33 \times 4 = 132$$ A maximum of 132 B11s can be used in that block. #### 4.6 I/O Design ## 4.6.1 Pin Assignment Guidelines The following parameters apply to the assignment of I/O pins: - a. All V_{SS} pins must be tied to ground. - b. All V_{DD} pins must be tied to 5 volts. - c. Voltage and ground pins are predetermined by the package type and cannot be altered. - d. Pins designated "No Connection" cannot be used. - Additional V_{SS} and V_{DD} pins may not be assigned by the designer without first negotiating this deviation with Fujitsu. - f. Fujitsu recommends that the designer assign the pin numbers to the circuit in the *ASSIGN or *OPTION section of FLDL or submit the complete pin assignment table with the design. It is also possible to allow the Technical Resource Center to do the assignment automatically using Fujitsu's design software or manually from a customer-supplied form. - g. The maximum output low current (IOL) must not exceed 70 mA per VSS Pin. ## 4.6.2 Simultaneously Switching Outputs (SSOs) Outputs are defined as switching simultaneously when they switch from a logic low (or a high impedance state) to a logic high or switch from a logic high (or high impedance state) to a logic low within 20 nanoseconds of each other. Simultaneously switching outputs increase the momentary charge/discharge current flow at the gate array and cause noise in the form of momentary spikes or ringing in the power and ground lines. When the ground level is raised by the noise, the input threshold voltage of the gates is also raised, relatively, for the duration of the impulse (as illustrated in Figure 4–3). If V_{TH} rises, momentarily, above the V_{IHmin} level, a logic high with a level just above V_{IHmin} will be recognized as a low level for the duration of the spike. Similar problems are experienced when the ground level is depressed by the noise, affecting logic low levels close to V_{ILmax} . The greater the number of SSOs, the greater the noise produced. Therefore, this noise, which may appear as signals to the CMOS logic, must be avoided. Figure 4-3. SSO-Generated Noise The severity of the effect of SSOs is determined by: - · The number of SSOs - . The density and distribution of SSOs in the package - · The size of the load capacitance being driven The number of SSOs allowed in a package is restricted by the number of ground (VSS) pins available, the drive capability of the output buffers, and the location of ground pins on the package (See the Available Package and Pin Assignments section in the appropriate Design Manual). Representative values have been assigned to the effects of output buffers per single ground pin. Output buffers are capable of 3.2 mA, 8 mA, or 12 mA drive capability, and each may be selected with an optional noise-limiting resistance (NLR) value to minimize generated switching noise. The representative values are given in Table 4–4. | Output Buffer | Representative Values (per Output) | |--|------------------------------------| | Normal Drive with NLR (I _{OL} = 3.2 mA) | 7 | | High Drive with NLR (I _{OL} = 8 mA) | 12 | | High Drive with NLR (I _{OL} = 12 mA) | 14 | | High Drive with NLR (I _{OL} = 24 mA) | 26 | | Normal Drive (I _{OL} = 3.2 mA) | 10 | | High Drive (I _{OL} = 8 mA) | 16 | | High Drive (I _{OL} = 12 mA) | 20 | Table 4-4. Representative Value of Output Buffers The sum of the representative values for each of the SSOs used in a design must not exceed 80 per V_{SS} pin, regardless of the type of package used. ## 4.6.3 Maximum Load per Ground Pin The maximum total output load per ground pin is limited as a function of the output switching frequency. The product of the output switching frequency in MHz and the total output load in pF per ground pin cannot exceed 12,700 pF x (frequency in MHz), at the maximum junction temperature, T_{jmax} , of 70°C. As the junction temperature increases, the allowable maximum load per ground pin decreases per the following formula: $C \times f \le (12,700 \times K_t) pF \times (f_{[MHz]}/(number of ground pins))$ where C = the output load, in pF f = the output switching frequency, in MHz Kt = the junction temperature coefficient of load, a constant determined from Table 4–5. | Tj _{Max} °C | Kt | |----------------------|-----| | 70 | 1.0 | | 85 | 0.7 | | 100 | 0.5 | | 125 | 0.3 | | 150 | 0.2 | Table 4-5. Junction Temperature Coefficient of Load ## 4.6.4 Maximum Load per Output Pin The maximum total output load per output pin is limited as a function of the output switching frequency. The product of the output switching frequency in MHz and the total output load in pF of any pin cannot exceed 1200 pF x f_{MHz} , at a maximum junction temperature (T_{jmax}) of 70°C. As the junction temperature increases, the allowable maximum load per output pin decreases per the following formula: $C \times f \le (1200 \times K_t)pF \times (f_{IMHz})/(number of ground pins)$ where C = the output load, in pF f = the output switching frequency, in MHz Kt = the junction temperature coefficient of load, a constant determined from Table 4–2. ## 4.6.5 Pin Assignment Guidelines The locations of all V_{SS} and V_{DD} pins are predetermined and fixed. Since the placement of SSOs on any package is critical, SSOs must be assigned within certain pin groups. Within these pin groups, other restrictions apply regarding the separation of SSOs from each other or their proximity to the V_{SS} pins. As noted above, the total representative value of any SSO group shown in Table 4–4 must not exceed 80. The SSO pin
groups differ between packages. The package outlines and designated grouping of SSO pins for specific devices are shown in the Available Packages and Pin Assignment section of the appropriate Design Manual. As a general rule, however, the pins available for SSOs between two V_{SS} pins are assigned as shown in Figure 4–4. Figure 4-4. SSO Pin Assignments - Assume that N pins exist between adjacent V_{SS} pins - Find the center point on the package between the two V_{SS} pins - There are N/2 pins in the area between the center point and the first V_{SS} pin (part A), and N/2 pins in the area between the center point and the second V_{SS} pin (part B) - The SSOs must be equally distributed between parts A and B, within ±1 ## 4.6.6 SSO Pin Placement Summary The following is a general summary of recommendations for the placement of pins. - a. SSOs must be placed in close proximity to V_{SS} pins. - b. High-drive SSOs should be placed closer to V_{SS} pins than normal-drive SSOs. - c. Asynchronous inputs such as clocks, presets, and clears should be kept away from SSOs. It is preferable that these inputs be placed close to V_{SS} pins, if available, and away from SSOs. - d. Clock, preset, and clear inputs must not be placed on the corners of a package, especially when the array is packaged in a DIP. - Output signals to be used as clock, preset, or clear for other devices must be kept away from SSOs and close to a V_{SS} pin. - f. SSOs should not be placed in the outer row of pins of PGA packages. #### 4.6.7 Test Pins To facilitate testing, external pins should be provided whenever conditions warrant. The addition of supplementary test pins often allows the reduction of the overall test complexity for a circuit, thus reducing the number of test patterns required and the time necessary to determine functionality of the circuit. ## 4.7 Designing for Scan Test Technology Scan testing is a supplementary, optional test technique that, when used in conjunction with the function and DC test required of the designer, allows greatly increased fault coverage. This increased fault coverage assures both Fujitsu and the designer of a highly reliable gate array. # 4.7.1 Scan Test Design The designer implements scan testing by arbitrarily connecting all the sequential logic elements to form an enormous shift register. This shift register can contain up to 3000 stages and is formed by connecting the Q-output of one stage to the dedicated scan input (SI) of the next. If the Q-output cannot be used for this purpose, then the XQ-output may be used, but an inverter must be placed between the XQ-output and the SI input of the following stage in order that the data not be inverted. To implement scan testing, designers use special scan-compatible unit cells for all sequential logic functions. With the use of the serial scan method, the difficult problem of testing a logic circuit containing both combinatorial and sequential logic is simplified to testing combinatorial logic and a shift register, as shown in Figure 4–5 below. Figure 4-5. Scan Circuit Configuration Dedicated scan inputs are also used to isolate elements that are not part of the scan test path. Some of these elements can also be tested during the scan test cycle by the use of an alternate scan test mode. The scan chain design can be considered a data carrier with the ability to carry test input stimulus provided by the LSI tester deep into the design and to apply it to the unit cells under test. Once a unit cell has been tested, its output test result may be stored in the scan data chain and be carried out of the design for comparison to that which was expected. To the designer, scan unit cells perform exactly the same as non-scan unit cells, the only difference being the provision of additional basic cells to facilitate the scan test. Scan testing usually entails an extra 8 to 20 percent basic cell count, requires the use of seven extra I/O pins, and can cause some degree of propagation delay. Nevertheless, when absolute reliability is the issue, designers find that these considerations are within an acceptable range. # 4.7.2 Test Pattern Generation A circuit that is designed for scan testing in this way allows Fujitsu automatic test pattern generation (ATG) software to generate the scan test patterns automatically (both applied input stimulus and expected outputs). The ATG software uses the logic design data from the FLDL file as input from which it generates the test patterns for scan tests. The process requires that all sequential unit cells be of the scan type with the exception of data latches YL2 and YL4. Inclusion of non-scan sequential circuits constructed with combinatorial logic, (i.e., NAND-gate flip-flops, NOR-gate flip-flops, etc.), are discouraged in a scan design because they reduce the overall fault coverage attainable with scan testing. If their use is unavoidable, they must be disabled or isolated by one of the scan test signals discussed below during the ATG process and the scan test. Scan testing is optional and is applicable only to digital logic unit cells. #### 4.7.3 Scan Test Signals Scan test implementation requires the assignment of a dedicated output pin and up to six input pins, six of which are in predefined package locations. The package locations for these pins in each device type are shown in the Available Package and Pin Assignment section of the appropriate Design Manual. ## Pin Name Description - XACK is the scan input, scan output (SISO) A-clock signal. It is generated by the LSI tester and is applied, inverted, to all scan devices at their A-clock input. It writes data from the unit cell's scan input to the master latch. - 2. BCK is the SISO B-clock signal. It is generated by the LSI tester and is applied, inverted, to all scan devices at their B-clock input. It transfers data between the unit cell's master and slave latches (the output of the device). - 3. XSM is the SISO mode signal. It is used for set-up of bidirectional buffers, bus drivers, and RAM. If bidirectional buffers or bus drivers are not used, then XSM is not required and need not be included in the design. - 4. XTST is the scan test signal. It is used to reconfigure the array to make it suitable for scan test and to establish all conditions required for the use of Fujitsu's ATG software. This includes the isolation or removal of certain circuits unsuitable for scan testing, such as non-scan sequential functions and the asynchronous inputs of all sequential elements. (Since they are inaccessible to scan testing, these circuits and disabled functions must, therefore, be tested with user-prepared test patterns.) - If all sequential functions utilize scan type unit cells, if no asynchronous functions are employed (including direct sets and clears), and if circuit isolation is not required, then XTST is not required and is not provided for. - 5. XTCK is the TC mode clock signal. It is generated by the LSI tester. It is applied, inverted, to the IH-inputs of all sequential unit cells. - 6. SDI is the serial data input port to the first device of the scan path from outside the chip. It is connected to the SI port of the unit cell. Test data entering the SI input in subsequent devices in the scan path is derived either from the Q-Output of the immediately previous stage or via an inverter from the XQ-output. - SDI is the only one of the scan test ports that may be used for another function. The designer may use SDI as a principal input by paralleling the user input with the scan data input. - 7. SDO is the serial data output port from the last device of the scan-configured shift register to the environment outside the chip. Test data from SDO is taken from the Q-output of the last stage (or from the XQ-output via an inverter) of the giant scan shift register. SDO is the only one of the scan test ports whose location is not fixed; SDO may be placed by the designer at any convenient location. ## 4.7.4 Scan Test Modes Scan testing consists of two modes of operation: SISO (Scan input/scan output) mode and TC (test clock) mode. Sequential logic is primarily addressed by SISO and combinatorial logic is addressed by TC; the two modes are alternated during the scan test. #### The SISO Mode This mode causes all elements of the scan path to be written to and read from. In this mode of operation, the following occurs: a. The scan SISO path is activated by making XSM = 0 - b. The scan clocks XACK and BCK are supplied - c. The data to be written is supplied to SDI serial data input - d. The data is read out of SDO and compared with the expected values These writing and reading operations are performed in parallel. #### The TC Mode This mode tests the array as a normally configured device, but the data is clocked by special clocks provided to the gate array by the LSI tester. In this mode of operation, the following occurs: - a. The scan SISO path is disabled by making XSM = 1. - All normal system clocks are disabled, forcing the clock inputs (CK) of all scan unit cells to a logic low. - c. Input signals are applied to the normal input pins' principal inputs. - d. The TC system clock, XTCK, is applied to the unit cells' IH-inputs. - Output signals are read from the normal output pins' principal output and compared with the expected values. The alternation of these two modes allows the correct functioning of logic elements not directly accessible from a principal input to be verified. The data scanned in is especially useful in providing control inputs to otherwise difficult-to-control internal logic. Prior to the input of the data to the scan path, some detectable faults can be observed externally by application of data to some non-scan external inputs. After data has been clocked into the scan path, other detectable faults can be observed externally. The remaining detectable faults are observable externally after the data has been clocked into the scan path, the TC system clock (XTCK) has
been applied, and the resultant data shifted out of the scan path. # 1 # Chapter 5 - Delay Estimation Principles #### **Contents of This Chapter** - 5.1 Introduction - 5.2 Choosing Critical Paths - 5.3 Load Units and Loading Guidelines - 5.4 The Delay Equation - 5.5 Estimating Gate Delay - 5.6 Estimating Total Circuit Delay - 5.7 Delay Calculations when Load Exceeds CDR - 5.8 Delay Calculations and the Operating Environment - 5.9 Clock Loading #### 5.1 Introduction This section of the data book gives an overview of the engineering considerations important to the design of an ASIC using Fujitsu's CMOS technologies. Included are the loading rules for CMOS gate arrays and a demonstration of how to estimate the delay through a circuit. In addition to the basic delay equation, this chapter also considers the loading limitations for clock signals and the effects of the operating environment on typical delay figures. #### 5.2 Choosing Critical Paths A critical path is a logic path whose timing requirements must be satisfied to ensure proper system function. In an ordinary synchronous circuit, data propagates from one register through combinatorial logic into another register. For the circuit to function properly, the sum of the clock-to-Q delay of the source register, the propagation delay through the logic, and the set-up time on the target register must be less than the worst-case system clock period. Correct timing of the signal along the critical path guarantees that this condition is met. Usually, the critical path is the one with the greatest number of gate levels. However, if such a path is speeded up by redesign, another, less complex path may become the new critical path. For example, in a design in which a path has eight levels of gating, the designer may determine upon inspection that two groups of NAND-NAND structures can be changed to AND-OR inverters, an efficient CMOS implementation that noticeably increases the speed of the path. In this case, after applying DeMorgan's theorem and reducing the result, the designer finds that another path is now the critical path. Since each logic state sensitizes different branches, logic paths must be analyzed using the inputs (rising or falling) that will actually be applied to them (since rising and falling delays are not equal) to determine the longest path that will be sensitized and ensure that it meets critical path requirements. The path delay calculation worked through in this section shows how a designer can analyze each element of a Fujitsu CMOS circuit to make sure the design meets critical path requirements. In this case, the effect of a rising input on the sample circuit is calculated as it would be if this were a critical path and the rising input were forcing the transition of interest. ## 5.3 Load Units and Loading Guidelines The Fujitsu CMOS load unit (lu) is the input capacitance of an inverter used as the basic unit for measurement and calculation of capacitive loads presented to unit cells within the gate array. Both the output drive factor of a unit cell and its input load factor are defined in terms of load units. Both factors are listed for each unit cell in the unit cell library for the appropriate technology. #### 5.3.1 Output Drive Factor The output drive factor (C_{DR}) is a parameter expressing the load driving capability of a unit cell. Unit cells can drive loads greater than the output drive factor. The performance of CMOS circuits degrades exponentially with increased loading; if too great a load is driven, an exaggerated increase in delay through the unit cell may be experienced. It is permissible for the load to exceed C_{DR} if the associated additional delays are anticipated and tolerable. Additional calculation factors are required to estimate delays of loads greater than C_{DR} . Figure 5–1 indicates the delays that may be generated when the load exceeds these guidelines. Figure 5-1. Delay Time vs. Loading Factor ## 5.3.2 Input Load Factor The input load factor of a unit cell is used to estimate the propagation delay of a critical path in a design. The total propagation delay of a path is defined as the sum of the delay factor of each of the unit cells in the path. # 5.3.3 Delay Factor The delay factor of each unit cell is made up of two types of capacitive loading: - a. Load capacitance inherent in the input of each cell (the input loading factor) - b. Load capacitance due to the metal interconnection of unit cells (C_L) The total load (C) presented by a unit cell is estimated by adding the total cell input load or $N_{F/C}$ (the input loading factors of all other cells connected to the output network of the cell in question) to the total metal load (C_1), or $$C = N_{F/O} + C_I$$ # 5.4 The Delay Equation The basic delay equation combines the AC parameters of a cell and its associated capacitive loads to estimate the delay time through the cell. The rise and fall time of a unit cell may not be symmetrical due to differences in the transconductivity of the N and P transistors as well as to differences in the arrangement of the transistors to form unit cells. The same equation is used with different variables for positive-going and negative-going signals at the unit cell output. These signal polarity variables must be considered separately. $$t_{up} = t_{0up} + K_{CLup}(N_{F/O} + C_L)$$ $$t_{dn} = t_{Odn} + K_{Cl,dn}(N_{E/O} + C_l)$$ where: toxx is the circuit delay through the unit cell under no-load conditions (a value given in ns for each cell in the unit cell library). K_{CL}xx is the load derating constant or delay time per loading unit conversion factor (ns/pF) defined for each unit cell (and given in the unit cell library). N_{E/O} is the sum total of the input loads of all unit cells driven on the net (expressed in load units). C_L is the amount of loading, in load units, on the unit cell output due to interconnect metal (metal load). The term "net" refers to the network of metal wiring connecting all the unit cells driven by a specified unit cell. Interconnect metal refers to the metal wiring, also called routing metal, that makes up each net. # 5.5 Estimating Gate Delay Figure 5–2 shows a sample circuit for the purposes of demonstrating how the total accumulated delay (tpd) through a short path is estimated. Figure 5-2. Delay Path Sample Circuit Ordinarily a designer looks up the the specifications of each unit cell in the unit cell library of the applicable technology. For this example, however, all of the necessary specifications have been assembled in Table 5–1, using the values for UHB technology. | | | Basic | Input | Output | Propag | ation I | Delay Ti | me | |--------------|------|-------|--------|-----------|--------|-----------------|-----------------|-----------------| | Cell | Celi | Cells | Load | oad Drive | | | t _{dn} | | | Function | Name | Used | Factor | Factor | t0 | K _{CL} | t0 | K _{CL} | | 2-Input NOR | R2K* | 2 | 2 | 36 | 0.45 | 0.14 | 0.45 | 0.06 | | 2-Input NAND | N2N | 1 | 1 | 18 | 0.37 | 0.16 | 0.56 | 0.14 | | 3-Input NAND | N3B* | 3 | 1 | 36 | 1.28 | 0.08 | 1.70 | 0.04 | | Inverter | V2B | 1 | 2 | 36 | 0.25 | 0.08 | 0.25 | 0.05 | Table 5-1. AC Parameters of Unit Cells The delays for rising (t_{up}) and falling (t_{dn}) edges of a pulse can differ widely. Digital pulses are either lengthened or shortened while passing through a unit cell. It is therefore important to calculate the pulse width variations along the entire signal path to verify that pulse width is sufficient to pass through each gate. In the example that follows, based on Figure 5–2, calculations are based on a rising pulse entering the input of unit cell A and changing state several times as it proceeds through the sample circuit. To find the total delay for the circuit, it would be necessary to calculate the values resulting from the opposite case, in which a falling pulse enters the circuit at unit cell A. ### 5.5.1 Delay Parameter for Rising Edge (tup) The unit cell library shows that the delay time (t_0) for an upward transitioning signal at the unit cell output (t_{up}) for R2K, a 2-input NOR, is 0.45. It shows that the load/delay conversion factor for an upward transitioning signal (K_{CLup}) for R2K is 0.14. ### 5.5.2 Number of Fan-outs (N_{F/O}) The sample schematic in Figure 5–2 shows that the $N_{F/O}$, the number of cells that the R2K must drive, is one (an N2N). The unit cell library shows that the N2N has an input load factor of 1 lu. ### 5.5.3 Number of Driven Inputs (N_{Di}) and Metal Load (C_I) The value for C_L is based on the number of inputs the cell in question must drive and is derived from the Estimation Tables for Metal Loading at the beginning of the unit cell library. Table 5–2 is a sample metal load table; each technology and device has unique load/delay characteristics. Since the number of driven inputs (or N_{DI}) for R2K, N2N, and V2B in Figure 5–2 is one, the amount of loading due to metallization (L) is 1.0 lu. The N_{DI} for N3B in Figure 5–2 is three; therefore the C_L is 3.0. ^{*}These are high drive cells that operate faster than their low drive equivalents under these circumstances. | abie 5–2. NDI VS. CL | | | | | | | |----------------------|---------------------|---|--|--|--|--| | N _{DI} | C _L (lu) | l | | | | | | 1 | 1.0 | l | | | | | | 2 | 2.2 | l | | | | | | 3 | 3.0 | l | | | | | | 4 | 3.5 | l | | | | | | 5 | 3.9 | l | | | | | | 6 | 4.2 | l | | | | | | 7 | 4.6 | l | | | | | | 8 | 4.8 | ı | | | | | | 9 | 4.9 | ı | | | | | | 10 | 5.0 | ı | | | | | Table 5-2. N_{DI} vs. C_L* The value given for C_L in the Estimation Tables for Metal Loading is an estimate of the loading effect of the metallization capacitance on the output based on Fujitsu's careful statistical analysis of typical designs. Actual metal loading is based on the effect of the routing and therefore may vary from these estimates. To compensate for this uncertainty, Fujitsu incorporates
$a\pm 5$ percent variation into the prelayout delay multipliers. After routing, another set of simulations is run to verify the effect of the actual metal routing. Note: In an array partitioned into blocks, if the interconnected unit cells are located in different blocks, the loading is greatly increased. The designer can avoid this worst-case situation by using the hierarchical approach during the schematic capture process to confine circuits to one block whenever path delay is critical. ### 5.6 Estimating Total Circuit Delay Based on the values from Table 5-1 and Table 5-2, the propagation delay for R2K in the sample circuit is: ``` t_{dn} A = t_{Odn} + K_{CLdn} (N_{F/O} + C_L) t_{dn} = 0.45 + 0.06 (1 + 1.0) t_{dn} = 0.45 + 0.06 (2.0) t_{dn} = 0.45 + 0.12 t_{dn} = 0.57 t_{dn} A = 0.6 (rounded up to the next 0.1 ns) ``` The propagation delay for N2N, found by following the same procedure, is: ^{*} For a 330UHB gate array. The propagation delay for N3B, found by following the same procedure, is: ``` \begin{array}{llll} t_{oln} & C & = & t_{oln} & + & K_{CLdn} \left(N_{F/O} + C_L \right) \\ t_{dn} & = & 1.70 & + & 0.04 \left(3 + 3.0 \right) \\ t_{dn} & = & 1.70 & + & 0.04 \left(6.0 \right) \\ t_{dn} & = & 1.70 & + & 0.24 \\ t_{dn} & = & 1.94 \\ t_{dn} & C & = & 2.0 & (rounded up to the next 0.1 ns) \end{array} ``` The propagation delay for V2B, found by following the same procedure, is: ``` \begin{array}{lcll} t_{\rm up} \, D & = & t_{\rm Oup} & + & K_{\rm CLup} \, (N_{F/O} + C_{\rm L}) \\ t_{\rm up} & = & 0.25 & + & 0.08 \, (1 + 1.0) \\ t_{\rm up} & = & 0.25 & + & 0.08 \, (2.0) \\ t_{\rm up} & = & 0.25 & + & 0.16 \\ t_{\rm up} & = & 0.41 \\ t_{\rm up} \, D & = & 0.5 & (rounded up to the next 0.1 \, ns) \end{array} ``` Therefore, the delay for a rising pulse through the sample circuit shown in Figure 5-2 is: $$t_{pd} = t_{dn} A + t_{up} B + t_{dn} C + t_{up} D$$ $t_{pd} = 0.6 + 0.7 + 2.0 + 0.5$ $t_{pd} = 3.8 \text{ ns}$ ### 5.7 Delay Calculations when Loads Exceed CDR Fujitsu CMOS unit cells are capable of driving loads beyond their published Output Drive Factor (C_{DR}). It must be emphasized, however, that the delays that result from this practice are considerably increased. Unit cells may be loaded beyond their C_{DR} s provided that the increased delay is acceptable. Anticipation of the effects of loading beyond the published C_{DR} requires recalculation of delay. Different delay equations must be used depending on the technology being used and the amount that the loading exceeds C_{DR} . The different delay equations listed below for Fujitsu's channeled gate array technologies must be used depending on the degree that the loading exceeds C_{DR} . When C is CDR or less: ``` t_{pd} = t_0 + (K_{CL} \times C) where C = N_{F/O} + C_L ``` When C is between C_{DR} and $2C_{DR}$: $$t_{pd} = t_0 + (K_{CL2} \times C_{DR2}) + K_{CL} (C_{DR} - C_{DR2}) + 1.5 K_{CL} (C - C_{DR})$$ When C is between $2C_{DR}$ and $3C_{DR}$: $$t_{pd} = t_0 + (K_{CL2} \times C_{DR2}) + K_{CL} (C_{DR} - C_{DR2}) + (1.5 K_{CL} \times C_{DR}) + 3K_{CL} (C - 2C_{DR})$$ When C is greater than 3CDR: FORBIDDEN In these equations: K_{CL2} is an initial delay time per load unit defined for cells that have been assigned a C_{DR2} value. C_{DR2} is an initial output driving factor defined for certain cells. $C_{DR2} = 0$ when the value is not defined in the specification for the cell in the unit cell library. Some additional calculations are required to estimate the delay of a downward transitioning signal through certain cells for which the parameter C_{DR2} has been assigned. For these cells, when C is equal to or less than C_{DR2} , the following formula is used: $$t_{od} = t0 + (K_{Cl} \circ x C)$$ When C is between C_{DR2} and C_{DR} , the following formula is used: $$t_{pd} = t0 + (K_{CL2} \times C_{DR2}) + (K_{CL} \times (C - C_{DR2}))$$ **NOTE:** Clock networks are never loaded beyond C_{DR} because clock timing is critical to the proper functioning of the gate array. (See Section 5.9) ### 5.8 Delay Calculations and the Operating Environment The operating environment of the array can cause variations from the calculated typical delay figures. Influencing factors include ambient temperature, applied voltage, and variations in the manufacturing processes. Figure 5–3 shows how supply voltage and temperature affect the performance of a sample array. It is necessary, therefore, to simulate worst-case conditions during test. Revised estimates of delay under these harsher circumstances may be arrived at by multiplying the typical delay figures by delay multipliers. The actual multipliers used depend on the device technology and/or the device type. Figure 5-3. Factors Influencing Delay ### 5.8.1 Minimum/Maximum Pre-Layout Delay Multipliers The minimum delay multiplier and the maximum delay multiplier for Fujitsu's channeled CMOS technologies given in Table 5–3 below incorporate process, power supply, and temperature variation. Table 5-3. Pre-Layout Delay Multipliers | Technology | Minimum Delay Multiplier
(0°C, 2.5 V) | Maximum Delay Multiplier
(70°C, 4.75 V) | |-----------------|--|--| | UHB Technology | 0.35 | 1.65 | | CG10 Technology | 0.35 | 1.65 | These delay multipliers are applied in one of two different ways, depending upon whether they are to be used for the optional delay test calculations or for the other tests performed by Fujitsu using the information in the Fujitsu Test Description Language (FTDL) file, such as DC test, function test, or high impedance test. ### 5.8.2 Delay Calculations for Delay Test (AC Test) The min/max delays for the delay test are determined by taking the sum of the typical delays and multiplying it by the appropriate minimum or maximum delay factor. The maximum delay figure must be rounded up to the next highest 0.1 ns, while the minimum delay figure must be rounded down to the next lowest 0.1 ns. The result of the sample equation used in section 5.6 to show delay calculation is repeated here and also shown in its modified form. The delay factors used are those for UHB technology. Typical delay: $$t_{\text{nd}} = 0.6 + 0.7 + 2.0 + 0.5 = 3.8 \text{ ns}$$ Maximum delay (rounded up to 0.1 ns): $$t_{pd} = (0.6 + 0.7 + 2.0 + 0.5) \times 1.65 = 6.27 = 6.3 \text{ ns}$$ Minimum delay (rounded down to 0.1 ns): $$t_{\text{pd}} = (0.6 + 0.7 + 2.0 + 0.5) \times 0.35 = 1.33 = 1.3 \text{ ns}$$ ### 5.8.3 Delay Calculations for DC Test, Function Test, and High Impedance Test The minimum and maximum delays for these tests are determined by multiplying the typical delays for each cell individually by the delay factors. The resulting figures for both maximum and minimum delays are rounded up to the next 0.1 ns for each cell. The final figures for each unit cell of the path are totaled. The delay calculation used earlier is repeated here and is also shown calculated for the DC, function and high impedance tests. The delay factors used are those for UHB technology. Typical delay (rounded up to 0.1 ns): $$t_{od} = 0.6 + 0.7 + 2.0 + 0.5 = 3.8 \text{ ns}$$ Maximum delay (delay for each gate rounded up to the next 0.1 ns): $$t_{pd} = (0.6 \times 1.65) + (0.7 \times 1.65) + (2.0 \times 1.65) + (0.5 \times 1.65)$$ = 0.99 + 1.155 + 3.3 + 0.825 = 1.0 + 1.2 + 3.3 + 0.9 = 6.4 ns 5 Minimum delay (delay for each gate rounded up to the next 0.1 ns): $$t_{pd} = (0.6 \times 0.35) + (0.7 \times 0.35) + (2.0 \times 0.35) + (0.5 \times 0.35)$$ $$= 0.21 + 0.245 + 0.7 + 0.175$$ $$= 0.3 + 0.3 + 0.7 + 0.2$$ $$= 1.5 \text{ ns}$$ Minimum/maximum delays are also calculated this way for minimum clock pulse width, minimum data set-up time, minimum data hold time, preset timing, and clear timing. The values of the maximum and minimum delay multipliers shown above apply to pre-layout calculations only; different factors, specific to each technology, are used for post-layout analysis. ### 5.9 Clock Loading It is acceptable, though not a recommended design practice, to load the output of a unit cell that does not carry a clock signal beyond its Output Drive Factor (C_{DR}). To ensure maximum clock accuracy, however, unit cells that output clock signals must never be loaded beyond C_{DR} . These different loading limitations for clock and non-clock unit cells can lead to "race conditions," in which the clock signal arrives at a flip-flop before the data signal set-up time has elapsed. It is therefore most important, when loading a unit cell beyond C_{DR} , to modify the fundamental delay equation using the extra delay factors explained in Section 5.7. ## Chapter 6 - Quality and Reliability ### Contents of This Chapter - 6.1 Introduction - 6.2 Engineering Testing - 6.3 In-process Inspection and Quality Control - 6.4 Reliability Theory6.5 Reliability Testing - 6.6 Test Methods and Criteria ### 6.1 Introduction Fujitsu's integrated circuits work. The reason they work is Fujitsu's single-minded approach to built-in quality and reliability, and its dedication to providing components and systems that meet exacting requirements allowing no room for failure. Fujitsu's philosophy is to build quality and reliability into every step of the manufacturing process. Each design and process is scrutinized by individuals and teams of professionals dedicated to perfection. The quest for perfection does not end when the product leaves the Fujitsu factory. It extends to the customer's factory as well, where integrated circuits are subsystems of the customer's final product. Fujitsu emphasizes meticulous interaction between the individuals who design, manufacture, evaluate, sell, and use its products. Quality control for all Fujitsu products is an integrated process that crosses all lines of the manufacturing cycle. The quality control process begins with inspection of all incoming raw materials and ends with shipping and reliability tests following
final test of the finished product. Prior to warehousing, Fujitsu products have been subjected to the scrutiny of man, machine, and technology, and are ready to serve the customer in the designated application. Figure 6-1. Quality Control Processes at Fujitsu Figure 6-1. Quality Control Processes at Fujitsu (Continued) ### 6.2 Engineering Testing Engineering testing is the heart of reliability and quality control. The reliability engineering department plans and performs most engineering testing. Whenever a device is developed, it must undergo engineering approval tests. After the device passes these tests, production engineering approval tests are performed on a representative sample of the device. All factors that could influence production of the device are examined. Only if all conditions are favorable and the device passes thorough testing, can the new device go into production. Tables 6–1a through 6–1d show a sampling plan for engineering testing. These tests are in compliance with MIL-STD-883, Class B. When a change in production (e.g., a material change) is needed, engineering tests are performed on specific items for the change. Since the representative samples tested must accurately reflect the reliability of the device, the following conditions must also be satisfied: the functions performed by the same basic circuit; the same processing techniques, materials, parts and packages used; and the same processing followed at the same factory. Table 6-1a. Sampling Plan for Engineering Testing: Endurance Test | Test Items | MIL-STD-883 | LTPD*
(%) | Acceptance
number** | Note | |---|---------------|--------------|------------------------|----------------------| | High-temperature storage 150°C | 1008 C | 7 | 1 | | | High-temperature continuous operation | 1005 D | 7 | 1 | | | 150°C or 125°C | | | | | | High-temperature continuous operation 125°C | 1055 D | 5 | 2 | | | Low-temperature continuous operation -55°C | (1055 C or D) | 7 | 1 | As applicable | | High-temperature high-humidity storage | 1 - | 7 | 1 | Plastic package only | | 85°C, 85% RH | | | | | | High-temperature high-humidity continuous | (1005 C or D) | 7 | 1 | Plastic package only | | operation 85°C, 85% RH | 1 | | | | Lot test percent defects ^{**} Number of failures permitted per lot Table 6-1b. Sampling Plan for Engineering Testing: Environmental and Mechanical Test | Test items | MIL-STD-883 | LTPD
(%) | Acceptance
number | Note | |--|------------------|----------------|----------------------|---| | External visual inspection | 2009 | 15 | 1 | Same sample | | Physical dimensions | 2016 | 15 | 1 | · | | Radiophotography | 2012 | 3 devices | 0 | | | Internal visual inspection | 2013 | 15 | 0 | | | Lead integrity:
Tension
Bending stress
Lead fatigue | 2004 A
B
B | 15
15
15 | 0
0
0 | Devices which failed in electrical characteristics test are acceptable to this test. Each test is performed on one third of the leads of each sample. | | Resistance to soldering heat | | 7 | 1 | Same sample | | Temperature cycling | 1010 C | 7 | 1 | 1 ' | | Thermal shock | 1011 A | 7 | 1 | | | Vibration, variable-frequency | 2007 A | | • | | | Mechanical shock | 2007 A | 10 | 1 | 1 | | Constant acceleration | 2002 B | 1 " | ' | | | Seal: (Fine and gross leak checks) | 1014 A
C | 7
7 | 1 1 | Hermetic package only | | Resistance to solvents | 2015 | 40 devices | 1 | Devices which failed in electrical characteristics test are acceptable to this test. | | Solderability (260°C) | 2003 | 15 | 1 | Devices which failed in electrical characteristics test are acceptable to this test. | | Solderability (230°C) | _ | 15 | 1 | Devices which failed in electrical characteristics test are acceptable to this test. | | Internal water-vapor content | 1018 | 3 devices | 0 | Hermetic package only | | Electrostatic discharge sensitivity | 3015 A | 15 | 1 | | | Pressure-Temperature-Humidity Storage (PTHS) 121°C, 2 atm. | _ | 15 | 1 | Plastic package only | The following tests are performed only when required or when requested by the customer. Table 6–1c. Sampling Plan for Engineering Testing: Environmental and Mechanical Test (Optional) | Test items | MIL-STD-883 | LTPD
(%) | Acceptance
number | Note | |---|---------------|-------------|----------------------|---| | Bond strength | 2011 D (or C) | 15 | 2 wires | 34 wires/4 devices | | Die shear strength | 2019 | 3 devices | 0 | Hermetic package only | | Moisture resistance | 1004 | 15 | 0 | | | Salt atmosphere (corrosion) | 1009 A | 15 | 0 | | | Vibration fatigue | 2005 | 15 | 0 | | | Immersion | 1002 B | 15 | 0 | | | SEM inspection of metallization | 2018 | 3 devices | 0 | | | Particle impact noise detection (PIND) test | 2020 B | 15 | 1 | Hermetic package only | | Lid torque | 2024 | | | Frit sealed package only, as applicable | | Adhesion of lead finish | 2025 | | | As applicable | Table 6-1d. Sampling Plan for Engineering Testing: Continuity Test | Test item | MIL-STD-883 | LTPD
(%) | Acceptance
number | Note | |------------------|-------------|-------------|----------------------|----------------------| | Continuity check | _ | 5 | 2 | Plastic package only | ### 6.3 In-process Inspection and Quality Control Every department involved in the manufacturing process is responsible for the quality-control inspection in its sphere of operation. In-process checks, sampling tests, and other inspections are assigned so that each department has certain allotted tasks for which it takes full responsibility. This total control system has rationalized overall operations dramatically. ### 6.3.1 In-process Checks (Including screening) In-process checks are performed after each step critical to the next process in wafer processing and assembly. Defective or substandard products are weeded out at an early stage. Testing falls into the following three categories: - (a) Probe testing, chip selection, and final testing. These are defined for each process. - (b) Voluntary checks. These include inspection of the wafer surface after window opening (before the diffusion process) and inspection of the wafer surface after the metallization. - (c) 100 percent screening. This includes the aging and visual inspection performed during wafer processing and assembly. ### 6.3.2 In-process Sampling Test The in-process sampling test is performed as a part of process quality control. The Manufacturing and QC departments check randomly drawn samples at key points in the manufacturing process to check process and facility conditions. This helps in maintaining product quality at the customary high level. The following items are checked in these sampling inspections or monitoring: (a) Surface resistance after diffusion, film thickness, evaporated or sputtered electrode thickness, and device characteristics - (b) Product quality (checked by visual inspection of the chip surface) - (c) Bonding machine calibration, visual inspection and bond strength after wire bonding, product appearance, marking permanency ### 6.3.3 In-process Inspection The Manufacturing and QC departments perform stringent quality checks between major processes to ensure the highest quality. The following four types of inspections are performed: - (a) Incoming materials, parts, and chemicals Inspection - (b) Wafer shipping inspection - (c) Chip shipping inspection - (d) Shipping test ### 6.3.4 Lot Configuration A "lot" consists of the same devices produced over a stated period, having the same design and using the same processing techniques, materials, and production line. In addition to the Fujitsu logo, part number, and other markings, each device is marked with a lot code as shown below. ### 6.4 Reliability Theory ### 6.4.1 Estimating the Failure Rate The graph of a component failure distribution is usually a downward–bowed curve, often called the bathtub curve (Figure 6–2). Life tests show that the instantaneous failure rate decreases with time and graphs as a straight line on a Weibull probability chart (Figure 6–3). Shape parameter m, which shows the instantaneous failure rate, is between 0.3 and 0.7. (In an exponential distribution, the instantaneous failure rate does not change and m=1. As m becomes smaller than 1, the instantaneous failure rate decreases with time.) Figure 6-2. Distribution of Component Failure Usually, the failure rates during the initial and random failure periods are the most important for semiconductors. Figure 6–3 shows an example of life test data graphed on a Weibull probability chart. Figure 6-3. Example of Life Test Data on IC ### 6.4.2 Accelerated Life Test Modern applications require an extremely low failure rate for semiconductors. To guarantee such strict quality requirements, Fujitsu uses an accelerated life test. There is no fixed acceleration rate for semiconductors but, since semiconductor failure is usually caused by physical and chemical changes in materials, an acceleration rate can be calculated from the Arrhenius equation below for the progress speed of physical and chemical phenomena (assuming the R is proportional to the degradation speed): $$R = A \exp(-Ea/kT)$$ where: R: Reaction rate A: Proportionality constant Ea: Activation energy k: Boltzmann constant T: Absolute temperature The proportionality constant A corresponds to the component reliability. The activation energy, E_a , depends on the component's materials and their combination, but it ranges from 0.3 to 1.35 eV for semiconductors. This equation does not fit the data perfectly because it assumes that the failure rate is affected only by temperature when, in fact, there are many contributing
factors. However, the equation does give a good rough fit. Using the equation on data from the accelerated life test, engineers can estimate and guarantee the field failure rate with reasonable accuracy. The calculation method for the field failure rate is given below for Fujitsu semiconductor products. Although this method is not generally accepted yet, it has been found to be useful. - (1) Calculate the junction temperature (Tj(op)) for actual use from the temperature rise (Tj) and the ambient temperature (Ta) under an average load (do not use the worst–case load),Tj(op) = ΔTj + Ta. - (2) Calculate the junction temperature (Tjt) for a life test. For a high-temperature storage test, Tjt equals Ta (the storage temperature). For a continuous operation test, the temperature rise under load plus the ambient temperature (25°C except for high-temperature operation) for an operating temperature, $Tjt = \Delta Tj + Ta$. (3) Calculate the acceleration rate (α) from the difference of Tj(op) and Tjt using Figure 6–4. Figure 6-4. Acceleration Rate vs. Junction Temperature (4) If planning reliability testing or calculating reliability in the field from data obtained in steps (1) to (3), determine the coefficient γ for the 60% confidence level in Table 6–2 from the number of defective units allowed or from the total number of failures found in the test. Reliability = $$\frac{n}{\alpha NT}$$ x y x 10⁹ [FIT] where: N: Number of samples T: Total test time (hrs) n: Number of failed samples in test Confidence level No. of failures 60% 90% 0 (0.92)(2.30)2.02 3.89 1 2 1.55 2.66 3 1.39 2.23 4 1.31 2.00 5 1.26 1.85 1.22 1.76 6 7 1 20 1.68 8 1.18 1.62 9 1.16 1.58 Table 6-2. Determination of Coefficient The above equation applies only when n/N is equal to or less than 10% for the total test time, T. If n/N exceeds 10 percent, use the following method of calculation: divide the total test duration time, T, into subsections, Δti (i = 1,2,..., m), so that for each Δti the failure rate, $(n_{i+1} - n_i)/(N - n_i)$ (where n_i is the cumulative number of failed samples for Δti), does not exceed 10 percent. Calculate $(N - n_i) \Delta ti$ for each time section Δti . Calculate the summation $\Sigma (N - n_i) \Delta ti$ for all the time sections in T. The summation $\Sigma (N - n_i) \Delta ti$ must then be substituted for NT in the above equation. 1.15 1.54 ### 6.4.3 Failure and Causes Circuit format differences, package types, and operating environments can change the mechanisms of IC failures, so it is difficult to foresee which factor will be the most important in a failure mechanism. Figure 6–5 shows specific electrical failures for ICs, their most common causes, and general corrective actions. Causes of IC failures are largely the same as for planar transistor failures, but the following problems are more common or specific to ICs: - (a) Surface degradation - (b) Flaws in an evaporated or sputtered metal film - (c) Contact failures due to an increased number of wire bondings per package - (d) Package failures due to an increased number of external leads 10 Table 6–3 lists failures with their most common causes, and Table 6–4 shows the relationship between operating environments and failure causes. Test items can be listed only if the failure cause can be pinpointed by the test. Figure 6-5. Digital IC Failures and Corrective Actions Table 6-3. Process Defects Analysis | Defect
Area | Defect mechanism | Frequency | Source | | | | | |----------------|--|-----------|--------|-------------------------------|-----------------|-------------------|---------------------| | 71700 | | | Design | Factory
Process
Control | Manuf.
Tech. | Operator
Skill | User
Application | | Junction | Junction failure due to current crowding | High | • | | | | • | | (Internal) | Metal migration | Low | • | • | • | • | | | Junction | Oxide film imperfection (Pinhole, crack, void, etc.) | Medium | | • | | • | | | (Surface) | Impurity contamination | High | • | • | | • | | | | Metal peeling | Medium | | • | • | • | | | | Mask misalignment | Medium | | | | • | | | Inter- | Incomplete metallization | Medium | | • | • | • | | | connection | Improper metallization | Medium | | | | | | | | Metal over-stress | High | | | | | • | | | Aluminum corrosion | Medium | | • | • | • | | | | Aluminum migration | Medium | • | | | • | | | | Bonding peel | High | | | • | • | | | Wire | Purple plague | Medium | • | | • | • | | | | Wire over-stress | High | | | | • | • | | | Particle/wire short | Low | | | | • | | | | Leakage | Medium | | | • | • | | | Package | Die bond failure | Low | • | | • | • | | | | Lead breakage | Medium | | | • | | • | | Others | Package corrosion | Medium | • | • | • | | • | | - 11010 | Chip crack | Medium | | | • | • | • | | | Seal contamination | Low | | • | | • | | Table 6-4. Relationship between Failure Causes and Analytical Test Methods | | | Test | | | | | | | | | | | |--|--------------------------------|---|------------------------------|--------------------------------------|---------------------------------|---|-----------------------------|--|------------------------------------|-------------------------------------|----------------------------------|--------------------------------| | Failure Cause | Solder-
ability
(2003.2) | Temper-
ature
Cycling
(1010.2) | Thermal
shock
(1011.2) | Constant
Acceleration
(2001.2) | Mechanical
shock
(2002.2) | Vibration,
variable
frequency
(2007.1) | Lead
fatigue
(2004.2) | Baro-
metric
pressure
reduced
(1001) | Moisture
resistance
(1004.2) | Salt
atmos-
phere
(1009.2) | Vibration
fatigue
(2005.1) | Vibration
noise
(2006.1) | | Bond integrity
(Chip or wire) | | | • | • | • | • | | | | | | • | | Cracked chip | | • | • | | • | | | | | | | • | | Internal structural defect | | | | | • | • | | | | | | | | Contamination-/
contact-induced
short | | | | • | | • | | | | | | • | | Wire or chip
breakage | | | | | | • | | | | | | | | Glass crack | • | • | • | | • | | • | • | | | | | | Lead fatigue
contamination of
junction (Surface) | • | • | • | | | | • | | | | | • | | Thermal fatigue | | • | | | | | | | | | | | | Seal integrity | | • | | | | | | | | | | | | Seal contamination | | | | • | • | • | | | | | | • | | Leakage | | • | • | | | | • | • | • | • | | | | Package/material integrity | | | • | | • | | | | • | • | | | ### 6.5 Reliability Testing Reliability testing includes three types of tests—lot tests, periodic tests, and "occasional" tests. This section explains the details of each test in turn. ### 6.5.1 Lot Tests There are two types of lot tests, Group A and Group B. Group A and Group B tests are performed on items that are tested regularly, usually every week. Table 6–5 lists the specific lot tests. Details of individual tests vary with the product under test, but all samples are selected at random from every weekly lot. Tests are not performed in any particular order unless specified, but are performed for each device type. Note that the high-temperature storage and continuous-operation tests for Group B usually take 500 hours, although they may take only 168 hours in special cases. Good samples are returned to their lots after non-destructive testing. No-good samples and samples that have undergone destructive testing are destroyed. ### 6.5.2 Periodic Tests Particulars of the periodic tests are also listed in Table 6–5. There are two types of periodic tests: Group C tests and Group D tests. Group C tests are performed on items that are tested regularly, usually every 13 weeks. Group D tests include special reliability tests and very long life tests. The Group D tests are usually done once every 26 weeks. Details of individual tests vary with the product under test, but all samples are selected at random. Tests are not performed in any particular order unless specified, but are performed for each device type. Note that the high-temperature storage and continuous-operation tests for Group C take 1000 hours and those for Group D take 3000 hours. Table 6-5. Sampling Plan for Reliability Testing | | | Device cla | ssification | Dev | rice group 1 | De | Device group 2 | | | |-------|----------|--|---|---|-------------------|--------------------|-------------------|--|--| | Group | Subgroup | Test | tems | Sampling plan | | | | | | | | A1 | External visual in | nspection | 100% test of sampled devices (All sampled devic | | | pled devices) | | | | Α | A2 | | Function test | | LTPD 5% | $A_c = 0$ | | | | | ^ | A3 | Electrical | Static characteristics | | LTPD 5% | $A_c = 0$ | | | | | | A4 | Characteristics | Dynamic/Switching characteristics | | LTPD 5% | A _c = 0 | | | | | | | | | Sample
size | Acceptance number | Sample
size | Acceptance number | | | | | B1 | Physical dimens | ions | 9 | 1 | 6 | 1 | | | | | B2 | Environmental | Resistance to solvant
+temp-cycling | 9 | 18 | 9 | 18 | | | | | | tests | Thermal shock test | 9 | 18 | 9 | 18 | | | | | B3 | | Mechanical environmental test | 9 | 1 | 9 | 1 | | | | | B4-I | Solderability (230°C, 5s) ¹ | | 9 | 1 | 3 | 1 | | | | | B4-II | Solderability (26 | 0°C, 5s)1 | 9 | 1 | 3 | 1 | | | | | B5 | Lead integrity ¹ | | 9 | 1 | 3 | 1 | | | | В | | Pressure-temperature-humidity storage ² | | 9 | 13 | 3 | 13 | | | | | B6 | Pressure-temperature-humidity bias ² | | 9 | 1 ⁷ | 3 | 17 | | | | | B7 | | High-temperature storage | 14 | 14 | 7 | 14 | | | | | B8 | | Continuous operation | 24 | 14 | 11 | 14 | | | | | B9 | | High-humidity
storage
85° C, 85% RH ² | 24 | 14 | 11 | 14 | | | | | C1 | | High-temperature storage | 14 | 15 | 7 | 15 | | | | С | C2 | Endurance | Continuous operation | 24 | 15 | 11 | 15 | | | | D | СЗ | test | High-humidity storage
85° C. 85% RH ² | 24 | 1 ⁵ | 11 | 15 | | | | | D1 | | High-temperature storage ⁶ | 14 | _ | 7 | | | | | | D2 | | Continuous operation | 24 | | 11 | _ | | | | | D3 | 1 | High-humidity storage
85° C, 85% RH ^{2,6} | 24 | _ | 11 | | | | Test cycle: Group A and B for every weekly lot, Group C every 13 weeks, Group D every 26 weeks ^{**}These tests take 1000 hours. ⁶These tests take 3000 hours. ⁷This test takes 48 hours. ⁸These tests take 100 cycles. ### 6.5.3 Occasional Tests Occasional tests are performed on products whenever necessary. The tests are similar to periodic tests, but their details are specified by the QC/Reliability Engineering Division according to the purpose of the test. ### 6.6 Test Methods and Criteria The reliability of Fujitsu ICs is assured by severe environmental and endurance testing. Test methods are usually based on Japan Industrial Standards (JIS), the standards of the Electronic Industrial Association of Japan (EIAJ), and MIL standards. Reliability tests are performed for two reasons. Firstly, they check or guarantee the reliability of a type or a lot according to specified standards. Secondly, they are used to determine the failure rate or mode. The most appropriate test method is chosen for each test, and test results are processed in the most suitable manner. Fujitsu usually performs the tests listed in Tables 6–6, 6–7, and 6–8. Table 6-6. Example of Reliability Testing | Test items | MIL-STD-883 | Condition | |------------------------------------|-------------|--| | Resistance to soldering heat | | 260°C, 10s | | Temperature cycling | 1010 C | -65°C (30 min.) to 150°C (30 min.), 100 cycles | | Thermal shock | 1011 A | 0°C (5 min.) to 100°C (5 min.), 100 cycles | | Vibration, variable-frequency | 2007 A | 20 to 2,000Hz, 20G | | Mechanical shock | 2002 B | 1,500G, 0.5ms | | Constant acceleration | 2001 E | 30,000G, 1 min, Y1 only | | Fine leak ¹ | 1014 A1 | Using compressed helium 99.5 psig, 4 hrs. | | Gross leak ¹ | 1014 C | Using fluorocarbon 75 psig, 1 hr., 125°C | | Solderability | | 230°C, 5s | | Solderability | 2003 | 260°C, 5s | | Lead fatigue | 2004 B2 | 0.25kgf, 90°, twice | | PTHS/PTHB ² | _ | 121°C, 2 atm | | High-temperature storage | 1008 C | 150°C, 1,000 hrs. | | Continuous operation | 1005 A to D | 125°C, 1,000 hrs. | | High-humidity storage ² | _ | 85°C,85%RH, 1,000 hrs. | Notes: 1 Applies to hermetic packages. 2 Applies to plastic packages. Table 6-7. Example of Electrical Testing | Table 6 1. Example of Electrical Testing | | | | | | | | |--|-----------------|---|---|--|--|--|--| | Circuit classification | Characteristics | Bipolar | MOS | | | | | | Gates | DC | V _{OH} , V _{OL} , II _H , II _L , I _{CC} (I _{EE}) | V _{OH} , V _O L, I _{IH} , I _{IL} , I _{DD} (I _{sub}) | | | | | | | AC | Function | Function | | | | | | Flip-flops | DC | V _{OH} , V _{OL} , I _{IH} , I _{IL} , I _{OH} , I _{CC} (I _{EE}) | V _{OH} , V _{OL} , I _{IH} , I _{IL} , I _{DD} (I _{sub}) | | | | | | | AC | Function | Function | | | | | | Shift registers | DC | V _{OH} , V _{OL} , l _{IH} , I _{IL} , l _{OH} , l _{CC} (l _{EE}) | V _{OH} , V _{OL} , II _H , I _{IL} , I _{DD} (I _{sub}) | | | | | | | AC | Function | Function | | | | | | Memories | DC | V _{OH} , V _{OL} , II _H , I _{IL} , ICC (I _{EE}) | V _{OH} , V _{OL} , I _{IH} , II _L , (I _{OH}),(I _{OL}) | | | | | | | AC | Function | I _{DD} (I _{sub}) Function | | | | | | Random-logic devices | DC | V _{OH} , V _{OL} , I _{IH} , I _{IL} , I _{CC} (I _{EE}) | V _{OH} , V _{OL} , I _{IH} , I _{IL} , (I _{OH}),(I _{OL}) | | | | | | | AC | Function | I _{DD} (I _{sub}) Function | | | | | | Analog devices | DC
AC | V _{IO} , I _{IO} , I _I , V _{OM} , V _{OH} ,V _{OL} ,
Av. K _{E2} , N _E | - | | | | | Table 6-8. Example of Electrical Criteria | Parameter | Limit value (in multiples of the absolute value) | | |------------------------------|--|----------------| | | Upper | Lower | | V _{OH} | _ | L x 0.9 | | V _{OL} | U x 1.1 | _ | | I _{IH} | U x 2
(No leak: U x
1.1) | - . | | I _{IL} | U x 2
(Leak: U x 2 | _ | | юн
lcc(lee)
lcc (lsuв) | U x 2
(Leak: U x 2 | _ | [&]quot;U" and "L" stand for the upper and lower limits # Chapter 7 - Application Notes ### **Contents of This Chapter** Developing Test Patterns That Work with the Physical Tester Selecting the Best Package for Your ASIC Design E ## **CMOS ASIC** # Developing Test Patterns That Work with the Physical Tester by J. Scott Runner Fujitsu Microelectronics, Inc. Copyright© 1990 by Fujitsu Microelectronics, Inc. ### Introduction This application note briefly describes the process of developing test patterns for the simulation and test of Fujitsu CMOS ASIC designs. This information supplements testing information found in the Design Manual for the appropriate Fujitsu CMOS ASIC technology. ### Tests to be Created Fujitsu supports the following five types of test - a. DC test - b. Dynamic function test - c. High impedance test (Z-function test) - d. Delay test (AC test) - e. Scan test (optional for certain Fujitsu technologies) The DC test measures DC characteristics such as I_{DDS} , V_{OH} , I_{LI} , and I_{LZ} , while the function test screens for manufacturing faults (metal and transistor faults, principally). The Z-function test augments the DC test and is required for circuits in which one or more enable signals from a 3-state buffer can be generated by logic deeper than one gate of complexity within the ASIC device. The delay test may be used to verify critical timing paths that are necessary for proper system operation. Scan test methods are used to simplify the [process of testing for manufacturing defects traditionally uncovered by the function test. Automatic test generation is supported in conjunction with scan testing in the UHB/CG10 and AU/CG21 technologies as an option. E ### Overview of Test Vector Creation For each set of test patterns defined as a test block, the customer must specify input states and output states (in either vector or wave format), and the timing of inputs and outputs (with bidirectionals being considered both an input and an output). Many designers rely on one of the Fujitsu-supported CAE workstations when generating test vectors, easing the burden of test pattern development. In these cases, the customer creates input stimuli for the workstation simulator, which then generates a print-on-change file containing the resulting output response and the associated input stimulus previously defined by the designer. The print-on-change file is converted by Fujitsu's workstation software into FTDL (Fujitsu Test Description Language), which is the accepted test pattern description format regardless of the method by which patterns are created. ### **Developing the Tester Timing Information** Whether or not the patterns are generated on the CAE workstation, it is necessary for the customer to generate in the FTDL file a Common Block file, containing administrative information and the test type, and a Test Block file, containing the timing information for all chip inputs and outputs by group (discussed further in the Design Manual). The definition of this overall timing is critical to the success of the test program itself. For example, input timing defines when input signals will transition, while output timing defines when outputs will be compared with their expected values or measured at a transition point. The designer is responsible for specifying the following timing parameters for the Test Block, depending on the specific type of test: - a. Test cycle - b. Grouping of inputs and, if necessary, outputs and bidirectionals - c. Delay-to-transition (DT) time for each input group of non-return to zero (NRZ) signals - d. Propagation time (tp) and pulsewidth (Wp) times for the positive-going pulse (PP) and negative-going pulse (NP) for each input group of return to zero (RTZ) signals - e.* Delay-to-strobe time (STB) point for each output group - f.* DT and STB times for bidirectionals - g.** T time in the SPATH statement for AC tests This timing is established for the entire test block and is invariant until another test block is invoked. Therefore, test pattern timing is periodic, that is, a group of inputs may only transition at the time specified in the Test Block, which is relative to the beginning of the test cycle. This delay to transition time for inputs is programmed for each input group with the t_p parameter in the FTDL INTIM or BUSTIM statement. Similarly, common output groups are strobed, or sampled, periodically at a time determined by the test cycle and the delay-to-strobe time specified in the OUTTIM or BUSTIM statement, or the T_p parameter in the FTDL SPATH statement in the case of an AC test. ### **Determining Input and Output Timing Parameters** During the function test, outputs should stabilize before being strobed. Therefore, the minimum permissible test cycle programmed by the TIMING statement in the Test Block should be set with consideration of the maximum propagation delay from any input to any output, and the respective DT and STB times for those groups should be set far enough apart in time to assure that the outputs are stable under maximum ^{*}Specified in DC, function, and Z-function tests ^{**}Applicable only to AC tests. conditions. Similarly, if the
output is strobed before the transition, it must be stable under minimum delay conditions. Test patterns are required to be invariant over minimum and maximum delay conditions. This is verified in simulation by scaling the typical delays by multipliers representing process, temperature, and power supply variations. Similarly, the strobed or expected output states must be identical under typical, maximum, and minimum conditions. If a propagation delay from input to output is greater than the test cycle defined, output states may not fulfill this requirement (see Figure 1). Furthermore, designers should be careful that glitches or short pulses do not occur anywhere within this minimum/maximum window (see Figure 2). Figure 1. Determining a Successful Test Cycle Length Figure 2. Determining Preferred Cycle Length ### Generating Functional Input Stimulus Given Test Pattern Timing One issue that must be considered when determining test pattern timing is the relationship between input signals, such as clock/data pairs, which must satisfy set-up and hold times. Other considerations guiding the timing definition are dependent on the particular circuit being tested, and on restrictions imposed by the tester. These restrictions are published in the Summary of Test Data Restriction section of Fujitsu's Design Manuals. ### Tester Skew and its Compensation of Test Timing The designer must pay particular attention to the issue of tester skew when determining input and output timing for Test Blocks; otherwise, the timing will not correctly represent the behavior of the device under test. Tester skew, specified for each technology in the Summary of Test Data Restrictions, is a result of the variation in the time at which a given signal generator triggers a transition or a comparator measures an output state. Several timings are affected by this skew. ### Input-to-Input Skew For the purpose of estimating the skew between two signal generators, (one driving data and the other driving its clock, for example), the driver skew, linearity of clocks, clock-to-clock skew, and jitter are collectively called driver accuracy, denoted t_{DSKEW} . In the case of data/clock pairs, the clocked data may fail either a set-up or hold time, depending on the direction of the skew. Therefore, when determining DT and t_p for data/clock pairs, the designer should adjust times to satisfy the following relationships (see Figure 3): Set-up Time Criteria for Testing: $(t_p(CLOCK) - DT(DATA)) >= t_S(MIN) + 2 * t_{DSKEW}$ Hold Time Criteria for Testing: $(DT(DATA) - t_p(CLOCK)) >= t_H(MIN) + 2 * t_{DSKEW}$ Where $t_S(MIN)$ and $t_H(MIN)$ are the worst case set-up and hold times, respectively, sensitized from the internal circuit to the inputs, t_{DSKEW} is not directly specified in the Summary of Test Data Restriction; however, T_{ACC} , the overall system timing accuracy, is specified and can be substituted for t_{DSKEW} . Figure 3. Input-to-Input Skew ### Input-to-Output Skew In addition to the skew incurred by the signal driver, skew is also introduced by the output comparator of the tester. This skew is dependent on the linearity of the strobe, pin-to-pin skew, skew between dual com- ### Input-to-Output Skew In addition to the skew incurred by the signal driver, skew is also introduced by the output comparator of the tester. This skew is dependent on the linearity of the strobe, pin-to-pin skew, skew between dual comparators, and the driver-to-comparator timing error. All factors are considered in the overall system timing accuracy, *t_{ACC}*, which in turn affects output timing as shown in Figure 4. Figure 4. Input-to-Output Skew ### Skew Effect on Input/Output Pairs - Minimum Delay Case The *STB* (or *T* parameter in the SPATH statement) should expect an output transition at a time relative to the stimulated input transition dictated by $$(STB - DT) >= t_{PD(MIN}) - t_{ACC}$$ where STB is the strobe point of the output under consideration, DT is the DT time of the stimulating input of interest, and $t_{PD(MIN)}$ is the minimum propagation delay from this input to the strobed (or measured) output. In the case of the AC test, the quantity (STB - DT) should be replaced by the minimum T parameter in the SPATH statement. Note that if the path delay spans a test cycle boundary, STB should be set to STB plus the test cycle period. ### Skew Effect on Input/Output Pairs - Maximum Delay Case The complementary case occurs for maximum delay measurements, as described by $$(STB - DT) \le t_{pd(MAX)}) + t_{ACC}$$ Note that these guidelines regarding the specification of test data timing as affected by tester skew apply to DC and Z-function tests as well. In these cases, the same rules apply as for the function test. Again, for the specific values of t_{ACC} , and t_{DSKEW} , please refer to the Summary of Test Data Restrictions in the Fujitsu Design Manual for the appropriate technology. A designer interested in a methodical approach to the generation and verification of a good set of test vectors must consider the tester hardware on which it is running. Fujitsu has simplified designer responsibility by providing this information as part of the Test Block Information. However, a lack of implementation and careful analysis of the timing characteristics of the circuit may result in a poor or unfeasible test, resulting in schedule delays or reduced device yield. Therefore, plan a test approach early, design for testability, and consider the effect and operation of the physical tester. # **ASIC Packaging Information** # Selecting the Best Package for Your ASIC Design by J. Scott Runner Fujitsu Microelectronics, Inc. Copyright© 1990 by Fujitsu Microelectronics, Inc. ### 1.0 Introduction The widely varying degrees of complexity (gate count) of Fujitsu's CMOS and BiCMOS devices and the flexibility of their I/O configurations combine to produce devices that take advantage of the broad selection of packages available from Fujitsu. However, the requirements for package selection go far beyond pin count as the sole determinant of the best package. Selection issues include surface mount versus through-hole, plastic versus ceramic, and exotic versus conventional packaging. In fact, Fujitsu offers over 100 packages and 1000 package-die combinations from which to choose. Compounding the selection problem is the effect of increasingly faster outputs coupled with higher drive and wider bus structure, resulting in greater numbers of simultaneously switching outputs (and thereby greater amounts of noise). The result is that designers are finding ASIC packaging implementation to be an increasingly complex task. This application note provides information about ASIC packaging that is meant to simplify the designer's task. It provides designers with a review of the various Fujitsu packages and their electrical, thermal, and mechanical characteristics, as well as some problem-solving strategies for their use. Sections 2.0 and 3.0 address system requirements and package availability; Sections 4.0 and 5.0 discuss noise and thermal issues. F ### 2.0 How System Requirements Affect Package Choice Section 2.0 presents considerations involved in the selection of packages from a system designer's perspective. Table 1 lists issues a designer must consider when determining the optimal packaging for an ASIC design. Table 1. Considerations for Package Selection | Manufacturing and Cost | Speed Requirements | |---------------------------------|---------------------------------| | Board Integration | Package and Interconnect Delays | | Double-sided Component Mounting | The Effect of Package on Noise | | Number of Packages | Thermal Considerations | | Package Outline Area | | | Power Density Limitations | | | Producibility | Quality | | Board Layout | Package Quality and Reliability | | Package Construction | Number of Devices | | Packaging Complexity | Noise | | Manufacturing Flow | Thermal Considerations | ### 2.1 Manufacturing and Cost The manufacturing-related factors discussed below, although not directly related to the design of the device or the number of power and ground pins it requires, are nonetheless important in the choice of an ASIC package. ### 2.1.1 Board Area One of the most important issues is the board area consumed by a circuit. Some of the factors affecting overall board density are: Integration (gates per square inch of board) Double-sided mounting capability (integration) Number of packages Package outline area Additional board space required (for spacing, resistors, capacitors, probe areas, etc.) Power density area (discussed in Section 5.0) The critical issue in board area reduction, however, is overall integration. For example, surface mount devices (SMDs) can be densely mounted on both sides of the board, making them ideal for systems demanding high package integration. But a large design integrated into a few very large Sea-of-Gates arrays, even if packaged in large, through-hole packages, may well consume less board space than the same design using surface mount plastic J-leaded chip carriers (PLCCs). The PLCC version would require more space because the PLCCs, although small in outline, cannot house as large a die and therefore require the design to be partitioned into a greater number of devices. Figure 1 illustrates the board area taken up by the outline of each kind of package Fujitsu offers, excluding any area around the package necessary for spacing, decoupling capacitors, series damping resistors, or solder pads. Figure 1. Package Size versus Pin Count ### 2.1.2 Board Layout Restrictions in board layout or construction must be identified and resolved early in the design process. For example, a design containing large buses (16 bits or 32 bits or more) must be split up to avoid too high a concentration of simultaneously switching outputs per ground pin. Splitting up the buses, however, may result in variations in signal trace length and require extra
care in routing. Similarly, flatpacks, a form of SMDs, are a convenient way to support high pin counts in relatively inexpensive plastic packages. However, with pin pitches as narrow as 15 mils, they demand extremely accurate positioning of solder pads. Dense PGAs, on the other hand, provide a spacious 100-mil pin separation, but because of the number of rows of pins, normally require a large number of board layers. ### 2.2 Producibility Though some unusual packages may appear to promise ultra-high speed or dense integration or minimized component/board cost, the designer must always keep manufacturability in mind. The cost of a system is only partially dependent on materials and labor costs per unit; it is also highly dependent on the manufacturing yield of the end product. Therefore, design and production engineers must jointly consider the choice of package in order to guarantee that the chosen package conforms to existing (or purchasable) manufacturing equipment and that the manufacturing process can meet yield goals. ### 2.3 Speed Requirements The speed requirements of a system strongly affect package choice. If the interconnect lengths in the system (both inter- and intra-board) can be reduced, system speed may be increased. Reducing interconnect lengths may involve reducing the required number of packages, choosing packages with smaller outlines, changing to double-sided, modular, or piggy-backed mounting, using small form factors, reorganizing boards, and even changing the number of metal routing layers of the board. See Figure 2. Figure 2. Minimizing Interconnect Length ### 2.3.1 The Effect of Noise on Speed There are various sources of noise that can affect an integrated circuit (IC), each with its own effect; all forms of noise influence signal speed, quality, and consequently, system reliability. Certain types of noise arise between a chip I/O and ground or power, while other forms of noise are coupled to the power rails and influence system power and ground lines, propagating noise throughout the entire system. Noise appears to an input buffer (receiver) relative to the receiver's ground. Any noise on this referenced signal is superimposed onto the incoming signal itself, as shown in Figure 3. The $V_{\rm IH}$ or input threshold level of the receiver indicates when the input will switch, if the signal is stable at that level. Therefore, although the input voltage ordinarily would switch 4 ns after the driver switches, when the signal first crosses the threshold, the designer must assume it will not switch until it is stable; in this case at 8 ns, producing a loss of 4 ns due to noise. Figure 3. Impact of Noise on Speed ### 2.3.2 Controlling Noise through Package Selection Each form of noise is dependent not only on current or its first derivative with respect to time, but also on the real and imaginary components of impedance: resistance (R), inductance (L), and capacitance (C). One solution to noise can be to minimize the package L and R and to locate high drive pins where they will minimize L and R. ### 2.3.3 The Effect of Thermal Characteristics on Speed The speed performance of a CMOS or BiCMOS circuit degrades with temperature rise. Therefore, in very high speed systems, it is sometimes necessary to reduce the junction temperature (Tj) or die temperature as a way to improve speed. Certain packages offer better cooling properties than others, making them more suitable for high speed systems. Thermal issues are discussed in Section 5.0. ### 2.4 Quality Reliability refers to the defects or failures that appear during the lifetime of a device. Quality, on the other hand, refers to the frequency of occurrence of defects or faults in a device as a result of the manufacturing process. Quality defects are revealed by testing immediately after manufacturing, while reliability defects are revealed by special long-term or intensive test sequences or by time. ### 2.4.1 How Package Type Affects Quality Testing Conventional (through-hole) packages lend themselves to simplified testing because it is easy to access the leads in order to force a state (1 or 0) at a node and/or to observe the state of the node. These tests are performed with board-level in-circuit or functional testers. Such tests facilitate the manufacture of high-quality systems by ensuring proper connectivity and function. Surface mount devices, however, generally provide poor probe access, and are known to occasionally possess faulty joints that make temporary connections during probe. Through-hole packages also have occasional bad solder joints, although their node access is fairly good. ### 2.4.2 How Device Integration Affects Reliability Total system reliability is related to the reliability of the individual devices and to their configurations. Systems may be configured as a series in which all devices are interdependent, in which case any one failure will cause overall system failure, or they may be configured in parallel, in which case all devices must fail for the system to fail. Parallel configuration is used in redundant or fault-tolerant systems. The reliability of a system also depends on the reliability of the devices that comprise the system. The long-term reliability of a single device is defined as an inverse natural log function in a variable lambda, which is the failure rate of the device in the region of lifetime operation characterized by a constant failure rate. In the first hours of a device's life (the infant mortality period), the failure rate declines. The majority of a device's life is characterized by random failures (expressed as lambda), and the end of a device's life exhibits an increasing failure rate. Today's ICs, however, are designed so that we arout does not even begin to occur for at least several hundred years, and can be considered never to occur. To understand how the partitioning of a system into circuits can affect the reliability of a system, consider a system in which N components are configured in series. Although the density of ASIC devices has increased by two orders of magnitude in the last decade, the reliability of the devices has remained roughly constant. Therefore, it can be assumed that the failure rate of each of the components is constant. The reliability of systems and subsystems in which components are series-dependent is the product of the individual reliability terms for each component. The reliability function of the system just described is therefore: R(t)sys = R(t)1 * R(t)2 * ...R(t)N where $R(t)N = e - N\lambda t$, t is the independent variable time, and λ is lambda, the failure rate. Since all components have the same failure rate, the reliability function of the system is: $$R(t)sus = e - N\lambda t$$ Because the number of packages affects the reliability more than the integration factor does, a designer's goal in constructing a reliable system should be to maximize integration and thereby reduce part count. The disadvantage is that increased integration may in turn increase the package pin count, requiring a more complex package, which usually costs more than a simpler, smaller package. Additionally, the larger die sizes cost slightly more per gate than the smaller ones, although the total non-recurring engineering charges (NRE) would typically be lower. # 2.4.3 How Noise Affects Reliability Even when Schmitt trigger input buffers are used to receive clock signals, noise may go beyond the hysteresis value of the input buffer and cause a counter to be incorrectly clocked or other circuit malfunction. Noise is in this sense a threat to reliability as well as to speed and must be considered in the package choice as well. # 2.4.4 How Thermal Issues Affect Reliability While the junction temperature of a device affects its speed, it also affects reliability expressed as mean time between failures (MTBF) or the mean time a device will operate in a given environment before failure occurs. Figure 6–4 in the previous chapter, Quality and Reliability, illustrates this concept by plotting life test failures as a function of junction temperature. System reliability goals, then, restrict the desired maximum junction temperature in a manner that affects the choice of package according to its thermal characteristics, the chosen type of system thermal management (cooling), and the maximum allowable device power dissipation. # 2.4.5 How Package Material Affects Reliability The different materials used in package construction each have distinct thermal and mechanical properties. The most common materials and their characteristics are listed in Table 2 below. | Package Type | Body Material | Thermal Coefficient of Expansion (ppm/5C) | Thermal
Conductivity
(W/m * 5C) | Dielectric
Constant
(K) | | |--|--|---|---------------------------------------|-------------------------------|--| | Ceramic | Al ₂ O ₃ (Alumina) | 7.0 | 20 | 10 | | | Plastic PGAs | Epoxy Fiberglass | 14 – 18 | 0.16 | 4.5 – 5.0 | | | Other plastic packages (DIP, PLCC, Flatpack) | Polyimide Epoxy | 15 – 18 | 0.38 | 4.5 – 5.0 | | **Table 2. Package Material Characteristics** To better understand the different characteristics of plastic and ceramic packages, it is helpful to know something about the way they are constructed. Packages provide electrical connection from the IC to the system and isolate the device from destructive elements of the environment. The choice of materials and construction of a package affect its final dimensions, thermal characteristics, and electrical characteristics, as well as device reliability. Fujitsu carefully determines the most appropriate manufacturing methods for a given package and then performs extensive qualification tests to determine its success. The largest part of the package is the body, which houses the die. The die may be affixed to a lead
frame, which physically supports the die and provides the leads that electrically connect the die to the system by means of bonding wires or tab leads. Alternatively, the die may be supported by a cavity on the body of the package or attached to the bottom of the body by a chip carrier. The die is attached to the surface of the lead frame or to the metallized surface of the cavity or carrier with gold or silver paste, or eutectic. After the die is attached to the lead frame, cavity, or carrier and the bonding pads are bonded to the leads, the assembly is encapsulated. In plastic packages, an epoxy resin is molded around the assembly. In ceramic packages, a cap is sealed onto the lower part of the body or carrier using a frit glass or metal seal (the metal seal has a higher melting temperature than the glass). A solder seal can be used if the cap is metal. To ensure that the device is completely isolated from its environment, the surface of the die is then coated with glass (SiO₂) and then polyimide or other coating that prevents gas and moisture from coming in contact with the surface of the die. Figure 4 shows a frontal cross section of the structure of a PLCC package; Figure 5 provides a top view. Figure 4. PLCC Package Construction (Front View) Figure 5. PLCC Lead Frame Construction (Top View) Each of the various packaging methods has its advantages and disadvantages; for instance each body type and each type of seal has a different maximum case temperature. While plastic packages can tolerate tem- peratures up to 125°C and high humidity levels with outstanding reliability, ceramic packages are the most reliable for harsh extremes of cold. Each package type also responds differently to the thermal environment of the board to which the device is attached. Heat can cause thermal stress on the device when different materials expand at different rates, a particularly important factor when surface mount packages are involved. Different packages also exhibit different electrical characteristics. As the speed and gate densities of CMOS devices rise, the avoidance of electrical parasitics in the form of package delays and noise becomes an increasingly important factor in choosing a package type. Fujitsu's plastic PGA provides a good example of the tradeoffs involved in package construction. In 1986, Fujitsu introduced the plastic version of its ceramic PGA. The plastic configuration proved to have several advantages over the ceramic version. The body is formed from glass epoxy (VG-10) with an aluminum cap and an epoxy resin sealer. This combination of materials has the same rate of expansion as the PC boards onto which it is mounted; it is also less expensive than ceramic. Ceramic PGAs have a hermetic seal of solder between the metal lid and the cavity, but plastic PGAs are sealed by filling the cavity with epoxy resin to form an inner seal, then placing a resin sheet over the inner seal to form an outer seal, and then securing an aluminum cap over the outer seal. The aluminum cap provides the necessary rigidity to support the fragile glass epoxy, as well as improving the thermal conductivity of the package. Connections from the bonding wires to the pins are provided by copper traces designed to minimize mutual and self inductance. Because the plastic PGA is a large package, however, and generally houses a large die, the thermal coefficient of expansion (TCE) difference between the die and the cavity can exert stress on the bonding wires and the die attach. Table 3 lists the package types discussed in this section and the materials used to construct each type. Package Lead frame/ Body Seal Material Type Metallization Lead/Pad Lead Finish Cap Material Material Plastic DIP le-Ni or Cu Solder Dipped Resin Resin Same Alloy Lead frame Ceramic DIP Kovar or Fe-Au/Sn Plated Metal or Alu-Laminated Tungsten Solder. Metallization Alumina Glass Frit minum CERDIP Fe-Ni Allov Fe-Ni Sn Plated Alumina Alumina Glass Frit Lead frame Plastic Fe-Ni Alloy Same Sn Plated Resin Resin Flatpack Lead frame Ceramic Fe-Ni or Kovar Same Au Plated Metal or Alu-Laminated Solder or Flatoack I ead frame minum Alumina Glass Frit Fe-Ni Allov Sn Plated and Cerpack Same Alumina Alumina Glass Frit Lead frame Solder Dipped Plastic PGA Cu Conductor on Aluminum **Epoxy Glass** Resin Ni Plated and Kovar **Epoxy glass** Solder Dipped Ceramic PGA Tungsten Metal or Laminated Glass Frit Au Plated and Kovar Metallization Solder Dipped Alumina Alumina Plastic LCC Cu Allov Resin Resin Solder Plated Same Lead frame Ceramic LCC Tungsten Metal or Alu-Laminated Solder Tungsten Au Plated Metallization mina Alumina Glass Frit Metal Pad Table 3. Fujitsu Package Types Note: All above packages are hermetic. Alumina is a ceramic. Solder is PbSn. Fe-Ni is ferrous (iron) nickel. Kovar is an alloy of cobalt, iron, and nickel. Bonding wires are gold in the case of molded packages (epoxy resin PLCCs, DIPs, Flatpacks) and gold or aluminum for the other cases. Cerpack is the ceramic flatpack equivalent of CERDIP. # 2.4.6 Package Qualification to Ensure Reliability Fujitsu performs extensive six-month minimum qualification tests for every package-die combination. After such qualification is performed, the package die-combination is added to a package matrix in the Design Manual for the appropriate technology. The designer can be assured that Fujitsu has considered the issues presented here, as well as others, when releasing an approved package-die combination. # 3.0 Package Types Very large scale integration (VLSI) ASIC devices are supported by a wide variety of packages, of both surface mount and through-hole types. Through-hole devices, including DIPs and PGAs, are a proven technology and are supported by widely available production equipment. The pins of these devices are inserted though holes in the PC board to form electrical contact with traces (usually copper) which are embedded in the board or applied to the surface and are routed to drilled pin holes. Solder applied by reflow or wave technique then completes the connection. # 3.1 Through-hole Packages # 3.1.1 Dual In-line Packages (DIPs) DIPs have two rows of pins spaced 300 mils to 900 mils apart, with a pin spacing of 70 to 100 mils. Since the length of the package increases as each pair of pins is added, the size of a DIP tends to be unmanageable over 64 pins. The lead width and length of a DIP varies widely, causing variation in the input and output response of the device and thus, skew. Also, due to their high pin inductance, DIPs tend to be noisy, the degree of noise being a function of the location of outputs and sensitive inputs. The DIP is relatively simple for manufacturing to support, thanks to a large installed base of well-proven equipment and is one of the least expensive packages available. Furthermore, DIPs, being well established, come in many JEDEC-approved options (see JEDEC Standard 95), and are available in both ceramic and plastic cases. #### 3.1.2 Pin Grid Arrays (PGAs) Although PGAs are usually through-hole (Fujitsu also offers SMD versions), they differ from DIPs in that pins are arranged in rows on all four sides. While the pin spacing is usually the same as for DIPs (70 to 100 mils), nesting the pins in rows permits a larger number of pins to be contained within a smaller area allowing PGAs to support high pin counts of more than 300 pins. See Table 4 for a list of Fujitsu PGAs. Table 4. PGAs Available from Fuiitsu | Package | Туре | Construction | Number of Pins | |------------------|--------------|-----------------|----------------| | PGA – 64C, 64P | Through-hole | Ceramic/Plastic | 64 | | PGA - 88C, 88P | Through-hole | Ceramic/Plastic | 88 | | PGA - 135C, 135P | Through-hole | Ceramic/Plastic | 135 | | PGA – 179C, 179P | Through-hole | Ceramic/Plastic | 179 | | PGA – 208C | Through-hole | Ceramic | 208 | | PGA - 256C | Through-hole | Ceramic | 256 | | PGA – 256C | Surface | Ceramic | 256 | | PGA – 299C | Through-hole | Ceramic | 299 | | PGA - 321C | Staggered | Ceramic | 321 | | PGA - 361C | Staggered | Ceramic | 361 | | PGA - 401C | Staggered | Ceramic | 401 | Through-hole = 100 mil through-hole Surface = 50 mil surface mount PGA Staggered = 71 mil staggered PGA Application Notes Although PGAs are generally easy to support from a manufacturing standpoint, they may also raise problems. The PC board designer may find it difficult to route signals to and from the inner rows of the PGA, since it has only 100 mils spacing between pins. Additionally, the large cluster of pins confined to a small area tends to create trace congestion and may require boards of up to six layers to be used to support the PGAs. Manufacturing engineers find the solder joints for the pins of inner rows are difficult to inspect, forcing them to rely on the results of "bed-of-nails" in-circuit testers, or sophisticated inspection techniques such as x-ray or infrared. Although more expensive than DIPs, PGAs have come down in cost with the introduction of plastic PGAs (previous PGAs were usually ceramic). These plastic PGAs are generally constructed of G-10 glass-type epoxy with the traces routed through the epoxy the way they are routed on a typical PC board. (The electrical characteristics are, of course, tightly controlled). Although the reliability of plastic PGAs was initially in question, Fujitsu built them using special construction techniques employing metal lids and heat spreaders to provide rigidity and heat dissipation. Their excellent reliability history up to this point seems to indicate that plastic PGAs will continue to be popular. The widely-used epoxy thick-film substrate, once a quality and reliability concern, has the same TCE as the most common PC boards, and reduces the stress of expansion and contraction that is typically a concern with larger packages. (The distance of expansion per unit change in temperature increases with the size of the package.) # 3.1.3 Advances in Through-hole Packaging at
Fujitsu The demand for high pin-count plastic packages cannot be satisfied by merely increasing the number of pins a package supports. As size increases, so do the problems inherent in these lower-cost packages. These problems include greater lead inductance and thermal expansion mismatch between die and package. Ceramic flatpacks can support more pins than plastic packages, but they require special manufacturing capabilities, and are difficult to work with since they may have pin pitches down to 10 mils. Surface mount PGAs (discussed in Section 3.2) can support a large number of pins, but require difficult manufacturing processes. Fujitsu's answer to these problems, for the customer who wants high levels of integration without the need for exotic manufacturing methods, is the staggered PGA, shown in Figure 6. Figure 6. 321-Pin Ceramic Pin Grid Array Figure 7 illustrates the footprint of the staggered PGA and the method for routing traces through the leads. Note that the routing is oblique, with the traces offset 45 degrees compared to traditional routing. At this angle, the lead spacing is 71 mils, providing the trace density available with standard through-hole devices, while reducing the package outline by approximately 40 percent. Figure 7. Staggered Pin Grid Array Routing The lead configuration of a package affects the pin assignment of the ASIC device. For example, Figure 7 shows a situation in which a 32-bit address bus and a 32-bit data bus are routed through the device, with one offset 90 degrees from the other. If you assign consecutive bit significance to the bus, you will notice that the resulting pinout is quite different from an equivalent circuit packaged in a traditional orthogonal PGA. High drive buses can still be distributed around the ground pins, but the associated pads are not concentrated in one specific area of the die, reducing the concentration of SSOs, thereby reducing signal noise. #### 3.2 Surface Mount Devices (SMDs) The demands of military applications, space-constrained systems, and boards containing large numbers of memory devices were initially responsible for the development of surface mount technology (SMT). However, the accelerated push for physically reduced systems, the appearance of higher pin count ASICs, and the cost of pin grid arrays have encouraged many more designers to consider surface mount options. Easing the strain of the migration to SMT is the broader availability of pick and place, vapor phase soldering, and other necessary SMT equipment, as well as the availability of SMDs for an increasing percentage of devices on the boards. SMT for VLSI is gaining momentum due to the smaller board area consumption, smaller profile, and proven reliability. #### 3.2.1 Flatpacks Plastic flatpacks have been popular for years with manufacturers of peripherals in which the board area is constrained and height is restricted. And recently, the low cost of flatpacks (in plastic) has made them an attractive alternate to PGAs and even to DIPs in cases of higher pin count. As the following figures show, flatpacks come in several lead type and location configurations. Figure 8a illustrates a small outline integrated circuit (SOIC), with gullwing leads on two sides, Figure 8b illustrates a quad flatpack (QFPT) with gullwing leads on four sides. Flatpacks with axial leads require special assembly, and are generally used only for ECL circuits in which leads may have to be trimmed and formed to tune impedance. Figure 8. Flatpack Configurations Because flatpacks feature pin pitches (pin spacing from center to center) down to 10 mils, they can support high pin counts within a small board area. However, the narrow pin spacing means that accuracy in device placement, pad size and placement, and solder paste application tolerance are all more critical. PC board designers also need to determine whether the true package dimensions are in metric or English dimensions, and, when converting between the systems of measure, ensure that enough precision is maintained so that pins on the end of large packages won't roll off due to inaccuracies in pad location. Probing devices with fine pin pitches can be difficult because the pins do not pierce the bottom of the board, and if probes are attached to the leads, they can easily slip off and short adjacent leads. # 3.2.2 Leadless Chip Carriers (LCCs) Ceramic leadless chip carriers (CLCCs), such as the example shown in Figure 8c, have a long history in surface mount packaging. Ceramic packages perform well in high temperature environments, explaining their popularity in military applications. The term "chip carrier" comes from the process of mounting the die directly to a thick-film chip carrier, which also has pads for external connection on the opposite side of the substrate. This configuration differs from that of the PGA, in which the die is housed in the cavity of the package, or the flatpack, in which the die is held by the lead frame and molded with the package. CLCCs are available in pad counts ranging from 28 to 84 and beyond. Pads, not leads, are located on the bottom of the carrier and are generally spaced at a 40-mil pitch (standard). Solder paste is applied to the pads on the board to which the device will be mounted, usually by screen printing, and the board is then vapor phase or infrared reflow soldered. Because the pads are lo- cated beneath the package, they are typically very difficult to probe and are subject to manufacturing defects such as solder voiding (gas bubbles in solder formed during reflow). The most challenging problem inherent to LCC devices relates to TCE mismatch between the chip carrier and the board to which it is mounted. As the temperature of boards and packages rises, the materials expand at different rates. This difference translates to mechanical shear force at the solder joint. This force temporarily deforms the leads of PLCCs and flatpacks, but CLCCs have no leads. Consequently, the force is directed at the solder joint, tending to promote thermal fractures, (shown in Figure 9). Figure 9. Defect Caused by Difference in Thermal Coefficient of Expansion Even though CLCC SMDs cost more than equivalent plastic packages, their resistance to high temperatures, availability in hermetically sealed (moisture resistant) packages, and low profile of the CLCC SMDs make them very useful for applications in extreme environments. The TCE mismatch problem affecting LCCs is less severe when they are mounted to ceramic hybrids or PC boards, making their disadvantages acceptable in many circumstances. # 3.2.3 Plastic J-leaded Chip Carriers (PLCCs) If cost and TCE mismatch are a significant deterrent to the use of LCCs, leaded chip carriers may be more attractive. Though the chip is still mounted on a carrier (see Figure 10), the electrical connections of PLCCs are through pins that deform to absorb the TCE-induced thermal stress. Furthermore, while solvents used in the post-soldering cleaning process may be retained beneath the low profile of the CLCC and flatpack, the board offset of the PLCC permits it to remain free of these contaminants. In addition, the LCC in a plastic package costs less than the equivalent CLCC. When more pins are necessary (in the 44-, 68-, 84-pin packages necessary for ASICs), the LCC is called a PLCC. It is also available in a ceramic body version; both are available in pin counts of 28 to 84 and beyond. Figure 10. PLCC Package This package is termed a small outline J-lead (SOJ) when its bent leads are located on only two sides (Figure 11). The leads are bent into the form of a J in order to permit it to be placed on top of the solder pad. Figure 11. Cross-Section of a Plastic Small-Outline J-lead Package On the list of drawbacks of the PLCC is its limited ability to withstand high case temperatures, and its unavailability as a hermetic package. It is nevertheless very well suited for industrial and commercial environments. With a 50-mil pin pitch and only slightly greater height and width, the profile of the PLCC is nearly equivalent to the corresponding CLCC. # 3.2.4 Advances in Surface Mounted Packages While smaller process geometries themselves have few disadvantages, the associated increase in integration, speed, power, and particularly pin count place heavy burdens on packaging. The greatest challenges CMOS faces is supporting pin counts in excess of 300 in packages with low lead inductance, capacitance, and resistance. To respond to these demands, Fujitsu has developed a clever solution in packaging to obtain the highest average pin density per board area yet achieved. This is accomplished with surface mount PGAs, which rely on narrow pin pitch (50 and even 25 mils) in a dense grid of multiple rows of pins. Since through-hole packages cannot effectively support pin pitches narrower than 70 mils, these PGAs must be surface mounted, though they still possess pins (see Figure 12). Figure 12. Surface Mount PGA The surface mount technology also permits traces to run beneath the package leads, increasing available trace density. Figure 13 shows the solder pad design required by these high-pin-density packages. Figure 13. Solder Pad Design for Surface Mount Pin Grid Arrays Table 5 provides an item-by-item comparison between PGAs, surface mount PGAs, and flatpacks of similar pin counts. | PACKAGE | TYPE | PIN PITCH | OUTLINE (MAX) | PIN DENSITY
(Pins Per Sq Inch) | |-----------|-----------|-----------|------------------------------|-----------------------------------| | FPT – 160 | Surface | 25 mil | 1.276" x 1.276" (1.63 sq ln) | 98 | | PGA – 256 | Through | 100 mil | 2" x 2" (4 sq ln) | 64 | | PGA – 256 | Surface | 50 mil | 1" x 1" (1 sq ln) | 256 | | PGA - 321 | Staggered | 71 mil | 1.72" x 1.72" (2.96 sq ln) | 109 | | PGA – 401 | Staggered | 71 mil | 1.922" x 1.922" (3.69 sq ln) | 109 | **Table 5. Comparison of Critical Features** The numerous electrical and mechanical advantages of surface-mount
PGAs would seem to outweigh their disadvantages. However, the general state of high volume manufacturing has not kept pace with the rapid advances in semiconductor packaging. This is partly due to the requirement for state-of-the-art manufacturing equipment, which is quite expensive, and also to the need to maintain board yields with such complex devices. Therefore, in order to establish these packages as an attractive alternative, Fujitsu personnel are available to assist customers in the mounting and inspecting of these highly complex packages. #### 3.3 A Comparison of Through-hole and Surface Mount Devices SMDs provide improved electrical performance and reduced system size and costs. Furthermore, with plastic flatpacks of up to 160 pins and beyond available, SMDs show promise in supporting the rapidly advancing gate size complexities and high pin count of today's ASIC products at a substantially lower cost than the large ceramic PGAs. However, as the manufacturing complexities that have just been reviewed indicate, surface mounting large ASIC devices may be difficult and risky, and the designer should be cautious in their use. If board space constraints are not critical, if the economic impact of scaling down the end system is not great, if optimal electrical characteristics in packaging are not a critical concern, then through-hole packaging may be the best solution. On the other hand, if speed and integration requirements dictate the use of very dense gate arrays, PGAs or SMT PGAs provide both through-hole and surface mount alternatives. # 3.3.1 Socketing Surface Mount Devices Some benefits of SMDs are available to manufacturers employing through-hole packages through the use of sockets for SMDs. Sockets are available for QFPTs, small outline packages (SOPs), CLCCs and PLCCs; however, the use of QFPT and SOP sockets is normally restricted to prototyping and burn-in, while low-cost, reliable production sockets are more commonly available for PLCCs and CLCCs. These production sockets house the SMD (they are tightly tailored to the specific package) in one of two ways. Flatpacks and LCCs use low/zero insertion force with a lid that closes down on the package. PLCCs use pressured socket contacts that drive a pin into the underside of the socket. Socket pins are arranged like those of PGAs: they are through-hole, they have 100-mil spacing (generally), and they are most commonly oriented in a grid of two rows. One advantage of these sockets is that in applications where through-hole packaging is required and the choice of through-hole packages is limited to PGAs, a plastic SM package plus the production socket will cost less than the through-hole PGA. The scenario typically occurs when the required number of pins is between 40 and 84 for PLCCs and LCCs and up to 160 or more for the flatpacks. Another significant reason to socket SMDs results from the manufacturing difficulties of SMDs that were presented earlier. ASIC devices are usually among the largest in the system, and the most vital and expensive. For the purpose of field maintenance, many companies feel it is more economical and reliable not to risk running an ASIC device through wave or reflow solder and risking stress fractures or other damage. Furthermore, the test probing difficulties alluded to earlier are alleviated with sockets, which usually provide easy access to the contacts. Often, once reliability of the system is proven, the boards are re-laid out with surface mount devices. Therefore, simply because a manufacturing facility isn't geared up for SMT does not mean that SMT devices cannot be used there. #### 3.3.2 Noise Problems With Sockets Sockets for SMDs are convenient for manufacturers not yet ready to go to SMT, or for initial prototyping where the device may frequently be removed. Socketing permits the user to gain many of the benefits of SMDs, such as reduced profile and support of high pin counts in plastic, while avoiding the drawbacks, such as special manufacturing equipment and lead probing difficulties. Unfortunately a major electrical advantage of SMDs, low pin inductance, is compromised when sockets are used. The primary result is greatly increased noise, which adversely affects overall speed and signal quality. In fact, a socketed SMD generally has a higher lead inductance than an equivalent through-hole PGA. # 3.4 Summary of the Packaging Alternatives Having reviewed the package selection alternatives presented in Section 2.0 and the various tradeoffs between the packages discussed in this section and summarized in Table 6 below, the designer can weigh the benefits and limitations of the various packages and arrive at an optimal packaging scheme. Table 6. ASIC CMOS Package Types and their Characteristics | Package
Type | | f Physical
ensions | Electrical
Characteristics ¹ | Thermal
Characteristics
(°C/Watt) | Usable
Gates³ | Relative
Cost
(per Pin) | |--------------------------|--|--|--|---|---------------------|-------------------------------| | Through-
Hole
DIP | # Pins:
Pin Pitch:
Body Length:
Body Width: | 16 to 64
100 mils
.75" to 2.3"
.300" to .700" | R: Medium
L: High
C: Low | Ceramic/Plastic
θJA ² :
70 - 40/
120 - 80 | Up to
17K gates | 1 | | Surface
Mount
SOIC | # Pins:
Pin Pitch:
Body Length:
Body Width: | 16 to 28
10 mils
50 to 70 mils
.300" to .400" | R: Medium
L: Medium
C: Low | Ceramic/Plastic
θJA ² :
110 - 80/
130 - 105 | Up to 6500
gates | 1 | | Surface
Mount
QFPT | # Pins:
Pin Pitch:
Body Width: | 48 to 260
10 mils
.65" to 1.7" | R: Medium
L: Medium
C: Low | Plastic
6JA ² : 95 - 60 | Up to 17K
gates | 1 | | | | | | Ceramic | | | | Surface
Mount
CLCC | # Pins:
Pin Pitch:
Body Width: | 28 to 84
40 to 50 mils
.45" to .97" | R: Medium
L: Medium
C: Medium | θJA ² : 70 -45 | Up to 25K
gates | 5 | | | | | | Plastic | | | | Surface
Mount
PLCC | # Pins:
Pin Pitch:
Body Width: | 28 to 84
50 mils
.49" to 1.19" | R: Medium
L: Medium
C: Low | θJA²: 65 - 50 | Up to 17K
gates | 1.05 | | | | | Ceramic/Plastic | Ceramic/Plastic | | Ceramic/Plastic | | Through-
Hole
PGA | # Pins:
Pin Pitch:
Body Width: | 64 to 299
.100 mils, 70 mils
1.033" to 1.7" | R: Low/Low
L: Low/Low
C: High/Low | θJA ²
40 - 19/
46 - 38 | Up to 75K
gates | 11/ 3.5-5 | ¹R = Resistance, L = Inductance, C = Capacitance ²Assuming Static Airflow Notes: # 4.0 Electrical Considerations for the Assignment of Signal, Power, and Ground Pins Driven by the continual demand for high speed systems, CMOS ASICs that exhibit output drive levels, rise and fall times, and propagation delays comparable to yesterday's ECL circuits are now being developed. Consequently, the problems intrinsic to ECL design (even thermal management) are now appearing in CMOS designs. These problems, based on noise and its effect on the device, are introduced in this section and possible solutions are discussed. # 4.1 Sources and Magnitude of Noise CMOS circuits operate by charging and discharging node capacitances through pull-up or pull-down transistor networks constructed of P channel and N channel enhancement mode (normally off) MOSFET transistors. As a result, these circuits generate noise when switching. The following review of basic CMOS circuits and how they work explains this phenomenon in greater depth. ³Assuming 1.5µ CMOS Technology # 4.1.1 Basic CMOS Circuits Figure 14 shows a CMOS totem pole output buffer, the typical implementation for CMOS circuits, while Figure 15 illustrates a CMOS-compatible input buffer, and Figure 16 depicts a CMOS input buffer configured to be TTL compatible. Figure 14. CMOS Output Buffer Model (Totem Pole) Figure 15. I/O Model, CMOS Input Figure 16. I/O Model, TTL Input Internal CMOS circuits, such as the NAND gate shown in Figure 17 are typical of CMOS logic designs, which can be represented as a pull-up network and a pull-down network, each with its own logic and analog characteristics. Figure 17. CMOS Basic Gate Structure: The Pull-up/Pull-down Network The other type of element used in CMOS circuits is the transmission gate, or T-gate, which is useful for the efficient construction of multiplexers and sequential circuits (D-flops, latches, etc.) as shown in Figure 18. Figure 18. CMOS Basic Gate Structure: The Transmission Gate # 4.1.2 Output Switching Noise and Simultaneous Switching Outputs (SSOs) The greatest source of noise in a CMOS circuit is the result of an output switching either high to low or low to high, particularly into or out of a high capacitive load. CMOS outputs drive two types of loads, either CMOS loads, which are high in capacitance but low in leakage current, or TTL loads, which are lower in capacitance but higher in leakage current. Therefore, the AC and DC currents that the buffers see when they switch depend greatly on the type of driven load and its capacitance. When this load discharges through the N-type transistor of the totem pole output, as illustrated in Figure 14, the effect is that of a capacitor discharging through resistance. Consequently, the initial current is high and decreases over time as the output node capacitance becomes charged. Similar currents may be observed when charging the node capacitance, as in the case of a low-to-high transition. Figure 19 shows the characteristic resistance and capacitance of various parts of the output of an ASIC device. Figure 19. Electrical Model of Simultaneously Switching Outputs Although small, the total inductance becomes a critical factor when discharging or charging output capacitance, since the instantaneous current (*i*) is high. Recall
that the self-induced voltage in an inductance, (*L*) is expressed by $$\Delta_{VINDUCED} = \frac{L * di}{dt}$$ where t is time and d is rate of change. In a high-drive CMOS device driving high loads, such as 200 pF, through a voltage swing approaching 5 volts with a rise/fall time of < 2 ns, the instantaneous current may be $$i = C$$ * $\frac{dv}{dt} \approx C * \frac{\Delta v}{\Delta t}$ (average over rise and fall time) This induced voltage appears as noise on the receiving end of the signal as referenced to the ground. The current on a high-to-low transition is sunk into ground, causing the current to "bounce" or rise relative to other signals referenced to it. This ground bounce phenomenon may also apply to power on low-to-high transitions, yielding a similar noise problem. Noise on signals may cause false triggering on the input buffer(s) being driven, or at least create a window of ambiguity in the time at which the driven input should switch (see Figure 20). Therefore, noise may result in degradation in speed resulting from adding settling time to a delay and may even result in $$nV = N \cdot L \cdot \frac{di}{dt}$$ Figure 20. Effect of SSO Noise on Thresholds Not only inductance but also characteristic resistance can create noise problems. The following paragraphs summarize the types of noise that exist in CMOS systems and explain how packaging impacts this noise. # 4.1.3 Self-Induced Noise Self-induced noise results when high-speed, high-drive outputs switch and introduce a spike on the signal relative to ground. The SSO effect, discussed previously, is an example of the level of self-induced noise that can occur. It is predicted by $$\Delta V_{SI} = L \frac{\Delta i}{\Delta t}$$ where L is the inductance between the pin and ground as well as the trace inductance. Δi is the instantaneous current and Δt is the fall/rise time. # 4.1.4 Mutually Induced Noise Mutually induced noise (a form of crosstalk) occurs when a signal trace that has been running parallel to another for some distance switches, inducing a voltage into the adjacent wire. Since both inductive and capacitive coupling occur only during signal transition and propagation, the effect is additive, as the signal propagates down the trace. Resultant noise propagates in both the forward and backward directions down the line. The forward crosstalk has a pulse duration equal to the rise and fall of the signal, with an amplitude equal to the difference between the capacitive and inductive coupling. Backward crosstalk has a pulse duration equal to the transition time down the trace and an amplitude dependent on the sum of the inductive and capacitive coupling as well as the trace length. # 4.1.5 Capacitive Coupled Noise Another form of crosstalk resulting from mutual signal coupling, this noise occurs in proportion to the dielectric constant of the board, the distance of trace separation, and the trace length and width. Acting as two thin parallel plates, these traces couple switching current as integrated over time. # 4.1.6 Ringing on Signals From basic circuit theory, the designer will recall that if the signal line impedance does not match the output impedance of the buffer, then the signal is not naturally dampened. If the impedance of the load is less than that of the buffer, the signal is over-damped and will have a slow rise/fall time. However, if the buffer possesses lower impedance, then the signal is under-damped and may ring, as illustrated by Figure 3. Typically, signal line impedances are in the range of 50 to 250 Ω , while in the past buffers possessed "on" resistances of 500 Ω to 2 K Ω . However, due to the need for higher current sourcing/sinking and faster switching speeds, "on" resistances of output buffers have come down to the 10- to 50- Ω range, requiring the use of special termination techniques, discussed in the Fujitsu Application Note "Interfacing CMOS and BiCMOS VLSIs." # 4.1.7 iR Drop Up to this point, the sources of noise discussed have depended on inductance or capacitance. Since the DC current that a ground pin may sink, or that a power supply pin may source can be significant, the familiar voltage drop across a resistor, as current passes through it, is also a source of noise. This iR drop is the phenomenon that limits the sum of source and sink currents through power and ground pins respectively. Ohm's Law describes the effect of this noise source in the following equation defining voltage rise or drop due to iR effects: $$\Delta V = R \quad * \quad \sum_{n=0}^{N-1} i_n$$ where R is the output pin-to-ground (sink) resistance, or power pin return-loop (source) resistance (including the "on" resistance of the respective N or P channel device) and i_n is the current through the nth output pin connected to this common ground or power pin. # 4.1.8 Current Spiking or "Crowbar Noise" As Figure 14 illustrated, a CMOS output buffer is constructed as a totem pole in which the output is taken from the common source (P type) and drain (N type) with the drain of the P type connected to power and the source of the N type connected to ground. When the input to the totem pole (the P and N gates) switches, the Miller capacitance of the gate causes the gates to charge or discharge at some specified time constant. It is possible that both transistors can be on, one in saturation and the other passing through the linear region, creating a current path between power and ground that can damage the device. This is less a concern for internal transistors than it is for the "beefy" transistors at the I/O. This current spiking can not only introduce noise on the power and ground planes, but may damage the device as well. For this reason, Fujitsu has taken precautions in the design of the CMOS output buffers to prevent this problem from occurring. # 4.2 Recommended Strategy for Pin Assignment The assignment of Clock, Scan, and other signals, as well as power and ground, to specific pins on the package affects electrical behavior (speed, noise, reliability, etc.), board manufacturing requirements, and device reliability. Therefore, optimal pin assignment strategies should consider the variables over which the user has control (placement of non-scan inputs, outputs and bi-directionals) and the variables over which the vendor has control (power, ground and scan signal placement). Out of these relationships a method of placement can be developed, using the following approach: - (a) Prioritize the signals whose placement is most critical. - (b) Establish guidelines for the location of these signals, both in absolute position and relative to other signals. # 4.2.1 Prioritization of Signals for Placement Noise minimization is used to establish signal prioritization. All of the various forms of noise discussed in the last section are dependent on either i or di/dt, and L, M, R, or C. The signals affect i and di/dt, while the package pin location affects L, R and C. Figure 21 provides an illustration of how electrical characteristics vary by pin position. Figure 21. Variation in Inductance, Resistance, and Capacitance as a Function of Pin Position In general, the further a pin's external contact is from the die connection, the greater its resistance, impedance, and capacitance. Therefore, signal prioritization is established according to current or its time derivative, while location is guided by package pin characteristics. Input signals are classified by their noise sensitivity. If a spike on an input could be disastrous (as with a clock), that signal should be carefully located. Table 7 classifies signal type by electrical characteristics. | Signal Type | Current Characteristics (General) | | | |--------------------|-----------------------------------|--|--| | Ground | Highest i, DC, and di/dt | | | | Power | High i, DC, and di/dt | | | | High drive outputs | High di/dt | | | | Clocks | Highest noise sensitivity | | | | Low drive outputs | | | | | Other Signals | | | | Table 7. Electrical Characteristics of Each Signal Type # 4.2.2 Characteristics of Package Pins by Location The inductance, capacitance, and resistance, all of which are critical to minimizing noise, are related not only to board construction, but also to the pin position on given packages, and the circuit to which the pins are bonded. The pin, lead frame, bonding wires, pads, and buffers (input, output or bi-directional) all influence the characteristic L, R, and C of the line. See Figure 22. Figure 22. Measured Pin Capacitance by Package Position # 4.2.3 Relating Signal Type to Pin Location Since power and ground pins demand a large DC current (i), iR drops are of great concern. Therefore, Fujitsu assigns power and ground to pins with minimum resistance (and inductance). High-drive outputs exhibit a large di/dt, resulting from high capacitive loading, so the best pins for these signals are those of minimum inductance. Furthermore, adjacent pins possess the greatest M, and thus couple the most M di/dt noise. This means that noise-sensitive inputs, such as clock inputs, should be isolated from pins that handle high di/dt, such as high-drive outputs. #### 4.2.4 Minimizing iR Drops on Power and Ground Pins Placement of ground pins is critical because noise on ground affects the voltage level of all signals referenced to it. For this reason, Fujitsu has preassigned power (V_{DD}) and ground (V_{SS}) signals for all packages in a given gate array family according to the electrically optimal locations. Preassigning power pins permits Fujitsu to develop load boards (which interface the packaged device to the tester) advanced enough to carry out high-speed functional testing of devices with high I/O count and to drive devices with relatively low noise. Fujitsu also took into consideration manufacturing issues such as adjacent pin shorting due to probes and package rotation. The predefined power and ground assignments for Fujitsu devices
are found in the Package Pin Assignment Guide in the Design Manual for the appropriate gate array family, and are used in conjunction with the Package Matrix to determine pin assignment. # 4.2.5 Minimizing the Self-Inductance of a Signal Fujitsu believes that an ASIC designer concerned about designing a mini-computer, PC, mainframe or other complex system should not have to be concerned with determining specific on-chip noise issues, particularly since board-level noise issues are demanding enough. Therefore, Fujitsu developed a straightforward grouping scheme for the placement of various types of signals relative to their distance from the nearest power and ground pins. As Figure 23 shows, the self-inductance associated with a given signal is a function of the length of wire between it and its nearest ground (for a falling transition) or power (for a rising transition). Figure 23. Self-inductance in a Circuit Since di/dt can vary greatly for outputs within a group, there are some general restrictions relating to SSOs and their total current to the number of grounds on the chip. This is done by summing representative values like those shown in Table 5–4 in Chapter 4, which are weighed depending on the IOL of the given output buffer. Notice that, if the output buffer employs noise limiting circuitry (edge rate grading) then di/dt is less and the representative value is also less, meaning more of these outputs can be supported per ground pin. In summary, to ensure that the iR drops and the ground bounce effect (L di/dt) are within reasonable limitations, Fujitsu has established guidelines for determining the number of necessary grounds and defining the pinout. # 4.2.6 Placement of Clock and Asynchronous Clear/Preset Signals In addition to causing the ground bounce and iR drops that can deteriorate an output signal's quality and alter the ground reference, output switching can also couple noise into adjacent sensitive inputs by mutual inductance, as shown in Figure 24. For that reason, the designer should ensure that clocks and asynchronous clear and preset signals are not placed near outputs, particularly high drive outputs. To further isolate inputs from noise, the designer should minimize the inductance (length) of the return loop from the input buffer to ground by placing this type of input near a ground pin. The mutual inductance of the input buffer itself can be minimized if it, and any outputs nearby, are not assigned to high inductance pins. As discussed in Section 4.2.1, the center pins of a DIP, flatpack, or PLCC possess the lowest L and R, as do the inner rows of PGAs, making them most suitable for $V_{\rm DD}$, $V_{\rm SS}$ and high drive outputs. But the edges of the package, while suitable for data signals, should be avoided when placing clock and other sensitive signals, as they exhibit a high mutual inductance and large iR drop. Noise is introduced on the adjacent lead S2 as S1 is driven in a manner described by Faraday as $$V_S = -M \frac{di}{dt} \frac{S1}{dt}$$ where M is the mutual inductance between the adjacent leads. If S2 is also being driven, then the mutually induced noise is superimposed on the self induced noise already present, as described by $$V_{S2} = -M \frac{di}{dt} + L_2 \frac{di}{dt} \frac{S2}{dt}$$ Figure 24. Causes of Crosstalk # 4.3 Summary: Choosing the Package and Assigning the Pins This discussion of noise as related to packaging and its effect on pinout should help the designer appreciate the care Fujitsu has taken to ensure that noise margins within the device are restricted to maximize system reliability. It should also provide the designer with a basis for establishing optimum pin assignments. A step-by-step procedure for choosing an optimal package and assigning pins to it follows. #### 4.4 Package Selection Checklist When selecting a package for an ASIC device, the designer should consider the following points: - a. Define a subset of the Fujitsu packages that can be supported by your company's manufacturing capabilities. - b. Estimate, as closely as possible, the gate and I/O counts of the circuit(s) to be packaged. - c. Determine the number of power and ground pins required by considering the following: - 1. Representative value limitations for SSOs - 2. Limitation of the sum of the sink current (I_{OL}) per ground pin - Limitation of instantaneous current per ground pin to satisfy metal migration restrictions - d. Using the package and pin assignment section of the Design Manual, determine the packages that satisfy the signal, power, and ground pin requirements of the circuit. - Make sure that the electrical, mechanical, and thermal properties of the chosen packages are suitable for the application. - f. Check the mechanical dimensions in Fujitsu's ASIC Package Catalog and the power and ground pin assignment tables and grouping charts in the appropriate package and pin assignment tables for the chosen technology. Please contact Fujitsu regarding pricing trade-offs when evaluating packages or partitioning the system. # 4.5 Pin Assignment Checklist - a. Follow Fujitsu's pin assignments in the Package and Pin Assignment section of the Design Manuals. Although multiple pinouts of the same package may be offered in some cases, all power and ground signals indicated on the chosen package must be connected on the board. - b. Assign input pins (in excess of 5 MHz) and high power output buffers (I_{OL} = 24 mA) according to the appropriate pin assignment table. - c. Place all high-drive (power and high power) outputs near ground pins; the higher the drive, the closer they should be placed. SSOs should be placed particularly close to ground pins. - d. Place SSOs in groups belonging to given ground pins. - e. Distance noise-sensitive signals such as clock and asynchronous clear and preset signals away from SSOs and high-drive outputs. Also, assign them to pins with low inductance and resistance, preferably near a ground, if one is available away from SSOs or high-drive outputs. - Place SSOs on low inductance pins, such as those located on the inner rows and middle position of the PGAs. These guidelines assist the designer in choosing the best package for the application, resulting in a device with reliable and predictable electrical performance and without harmful DC and AC effects on the system. There are other system interface issues such as device decoupling and termination that should be considered during design. These are discussed in Fujitsu's application note, "Interfacing CMOS and BiCMOS VI.SIs." # 5.0 Thermal Issues in CMOS ASIC Packaging CMOS has traditionally been associated with low power, one of the classic advantages it has over ECL. While ECL continually draws high current to supply its internal differential amplifiers and emitter-follower circuits, CMOS draws current primarily when it is switching. The total power dissipation of a CMOS device is dependent on the number of gates, the switching frequency, and the loading on the output of the gates. The revolution in CMOS technology that has resulted in densities of 100K gates has been accompanied by increases in all of the factors influencing power dissipation. Prior to 1985, when Fujitsu introduced the world's first 20,000 gate array, the C20000UH, CMOS gate arrays were not of sufficient integration density to warrant concerns about thermal control, but advancing CMOS technologies have forced this issue to the surface. Because power is the product of current and voltage, power dissipation is important when defining the necessary power supply currents. Propagation delays and reliability of a device are also dependent on the temperature at which the die operates, as discussed in Sections 2.3.3 and 2.4.4. To ensure that speed and reliability requirements are satisfied, the designer needs to estimate the power dissipation of the device and, from this information, choose appropriate packages and system cooling techniques. #### 5.1 Estimation of Power Dissipation in CMOS Circuits There are two constituent factors in the power dissipation of a semiconductor device: the DC power, which is dependent on the steady-state (quiescent) current, and the AC or dynamic power. # 5.1.1 Estimation of Dynamic (AC) Power Dissipation CMOS circuits are constructed of FETs, which possess very small leakage currents. Therefore, CMOS possesses a low quiescent or steady-state current. CMOS dissipates power primarily while it is charging or discharging node capacitance, or drawing switching current, which occurs as a gate changes state. This can be modeled as the familiar pull-up/pull-down circuit discussed in Section 4.1, charging and discharging a node capacitance, C_L (shown in Figure 14). This model holds true whether the node is internal or off-chip. 1 The switching current is a result of charging and discharging the node capacitance which, for periodic signals, occurs twice a cycle: once while charging the capacitance, and once while discharging it. The energy involved in charging or discharging a capacitance is $1/2(CLV^2)$. The power is the energy divided by the period of time between successive changes (the clock period, T), multiplied by the two transitions that occur per cycle. Therefore, the dynamic or switching current of a CMOS circuit is defined as $$Pd-dyn = 2 \qquad * \quad \frac{(C_L * V^2)}{2 * T} = (C_L * V^2) * f$$ where *V* is the supply voltage and *f* is the frequency of the given signal. This is the power calculation for a single gate. The power dissipation for entire chip, however is much more complicated, since not all gates are simultaneously active. The degree of switching activity varies greatly within a circuit and depends on the nature of the circuits (synchronous sequential gates tend to switch concurrently, while combinatorial gates switch more randomly), the input stimulus (whether the circuit is stimulated at a periodic interval or asynchronously), and other design-dependent issues. Based on
Fujitsu's experience, gate activity is on the average about 20 percent. This same figure is applied to the power estimation for output and input buffers. # 5.1.2 Estimation of Quiescent (DC) Power Dissipation There are two sources/sinks of DC current in a CMOS ASIC: the leakage current of the gates (gate leakage) and the DC current that flows through output and bidirectional buffers in output mode. The gate leakage in CMOS devices, even dense ones, is in the range of tens of microamperes, and is negligible. The DC current of the output buffers is the current that the buffer sources or sinks in steady state. This current level depends on the leakage currents of the driven loads, but for simplicity will be assumed to be equivalent to the I_{OL} and I_{OH} rating of the buffers. The DC power can be estimated for each output buffer by analyzing: - a. the product of source current times the voltage difference from the power rail $(V_{DD} V_{OH})$, and - b. the sink current times the low-level voltage (V_{OL}) . This calculation is valid provided the duty cycle, or the portion of the cycle in which the output is low versus the portion of the cycle in which the output is high, weighs the sum of the two components. The total DC power may be determined by extending this method to each output and bidirectional buffer. #### 5.1.3 Estimation of Total Power Dissipation The total power dissipation of a circuit is the sum of the DC and AC components. I/O buffers dissipate both DC and AC power when switching, while internal gates may be considered for the sake of simplicity, to dissipate only AC. The theory behind CMOS power dissipation is simple; however, the task of calculating the power dissipation can be tedious and prone to error. Therefore, Fujitsu has devised methods for estimating the power dissipation for each CMOS technology. These methods are presented in the Design Manual for the appropriate technology, available through the Field Applications Engineers at local Fujitsu Sales Offices or Technical Resource Centers. # 5.2 The Relationship Between Power Dissipation and Temperature A device draws current through the power supply pins and the I/O buffers. As it does so, it dissipates thermal energy proportional to the power dissipated in the device. Assuming that the power dissipation of a device has been estimated as P_d , using the method described in Section 5.1.1, how can one relate this power to the temperature of the die and the package, and also determine the warming effect on the surrounding environment? The answer lies with two principles of heat transfer: conduction and convection. When an object is in a state of thermal equilibrium it is isothermal, seeing a constant temperature across its body. As the tem- perature of one end of the object is raised by the introduction of energy, it is no longer in equilibrium; heat begins to flow from the warmer region to the cooler region through the process of conduction. When a lake in winter is filled with water at a constant temperature, just above 32°F, it may still freeze. It will freeze at the surface, however, not the bottom. This is because heat is drawn from the water into the air through convection, the act of cooling by a gas. These same mechanisms, conduction and convection, act upon a packaged semiconductor device and determine its junction temperature, the package or case temperature, and the warming effect on the surroundings. #### 5.2.1 Determining the Junction Temperature of a Device Figure 25 shows the paths through which heat flows in a packaged device. Each interface of materials with different properties of thermal conduction must be considered when determining the flow of heat from the die to the surroundings. The back side of the die is attached to a lead frame or slug, usually by means of a eutectic bond (material heat bonded with some conductive material, such as silver). Heat flows through this path from the die to the package, then from the package to the surrounding air. Figure 25. Heat Flow through a Cavity-down Ceramic PGA with an Annular Fin Heat Sink From the die junction to the package, there is some associated thermal impedance (or resistance to the flow of heat). This impedance can be calculated, but may also be estimated in the following way. Operate a device and determine its power dissipation. Then, using some mechanism such as a thermal diode, whose forward bias voltage tracks linearly with temperature, determine the junction temperature. Then, after measuring the case temperature, determine the thermal impedance along the path from the die junction to the case (package body) using the following equation: $$\theta jc = \frac{(Tc - Tj)}{P_d}$$ where T_c and T_i are the case and junction temperatures, respectively. A similar procedure is followed when determining the thermal impedance between the junction and the ambient environment, except that the case temperature is replaced by the measurement of the ambient temperature $$\theta ja = \frac{(Ta - Tj)}{P_d}$$ While θ_{jc} relies on conduction as its cooling mechanism, θ_{ja} reflects convective cooling. Therefore, θ_{ja} varies with airflow and is specified at a given airflow, or as static (= 0). Since thermal impedance depends on the heat conduction path between the die and some other interface, it can be modeled the same way as current flowing through real impedance or resistance. Therefore, as in circuit theory, when multiple interfaces are oriented in parallel, the thermal impedance is lowered. However, the situation is different from circuit theory in that when a very low impedance interface, such as a heat sink, is placed in the conduction path the flow capacity is increased, with the heat sink pulling heat out at a faster rate, lowering the thermal impedance. # 5.2.2 Using Thermal Impedance Data Thermal impedance information and power dissipation information are used to estimate junction temperature and ambient temperature rise. Which impedance figure to use is based on how the device is to be cooled. If the device is air cooled (convective), then θ_{ja} should be applied, while θ_{jc} should be used if conductive techniques such as heat pipes or cold plates are employed. For example, the junction temperature may be obtained by multiplying the power dissipation of the device by the appropriate Θ_{ja} and adding the ambient temperature. It is not surprising that this indicates that a small thermal impedance is desirable to achieve a low junction temperature. Junction temperature is used to determine worst case delay multipliers and the package options for Fujitsu's CMOS AU (Sea-of-Gates) family. The junction temperature also indicates whether reliability goals are being met. The designer can trade off packages (which exhibit varying thermal impedances) with cooling techniques (such as varying the amount of airflow in a system) to achieve the desired junction temperature and consequently, worst case delay multiplier and reliability targets. # 5.3 Summary of Thermal Issues Although thermal factors in CMOS design have not previously been an issue, the increased frequency and density of current generations of CMOS devices require such considerations to be made. This section has surveyed some of the issues involved in applying thermal analysis to CMOS devices and using the information gained from such analysis to determine the appropriate packaging and cooling techniques. # 6.0 Summary of the Note As VLSI circuits increase in complexity, pin count and die size increase as well, placing greater demands on packaging, board layout, and manufacturing. Fujitsu has addressed these problems with exotic forms of packaging such as the surface mount PGA and the staggered PGA, while also stressing the importance of other surface mount packages. But simply making these packages available is not enough; Fujitsu must also provide the technical support necessary to ensure that these packages can be used successfully by our customers. Field Applications support in the local sales offices, technical information such as this Application Note, and packaging consultants at Fujitsu's San Jose headquarters all provide this support. # 5 # References Applications Engineering Staff. Points and Problems on Reliability and Mounting of Surface Mount ICs. Fujitsu Limited, 1988. Hoshino, H. and K. Gotanda. Reliability of Surface Mount ICs. Fujitsu Limited, 1987. Kane, Jim. Surface Mount Technology. Santa Clara: Fujitsu Microelectronics Inc.; August 1986. Fujitsu Limited, Semiconductor Marketing. Integrated Circuits Quality and Reliability. Tokyo, Japan: Fujitsu Limited, 1984. Mather, John C. "A Status Report on Multilayer Circuit Boards." *Proceedings*, 30th Electronic Components Conference. 1980, pp 302–306. Vest, Roger. "How to Design a Fine Pitch Footprint." Nepcon East: 1988. # **UHB Series CMOS Gate Array Unit Cell Library** | Page | Contents | |-------|---| | 2–2 | Unit Cell Specification Information | | 2-5 | Inverter and Buffer Family | | 2-15 | NAND Family | | 2-31 | NOR Family | | 2-47 | AND Family | | 2-53 | OR Family | | 2-59 | EXNOR/EXOR Family | | 2-69 | AND-OR-Inverter Family | | 2-77 | OR-AND-Inverter Family | | 2-85 | Multiplexer Family | | 2-107 | Clock Buffer Family | | 2-117 | Scan Flip-flop (Positive Edge Type) Family | | 2-157 | Non-Scan Flip-flop Family | | 2-185 | Binary Counter Family | | 2-217 | Adder Family | | 2-225 | Data Latch Family | | 2-243 | Shift Register Family | | 2-255 | Parity Generator/Selector/Decoder Family | | 2-283 | Bus Driver | | 2-287 | Clip Cells | | 2–293 | I/O Buffer Family | | 2-403 | Appendix A: General AC Specifications | | 2-405 | Appendix B: Hierarchical Structure | | 2-407 | Appendix C: Estimation Tables for Metal Loading | | 2-413 | Appendix D: Available Package Types | | 2-415 | Appendix E: TTL 7400 Function Conversion Table | | 2-419 | Appendix F:
Alphanumeric Index of Unit Cells | # **Unit Cell Specification Information** This section contains specifications for all the unit cells available for the UHB Series CMOS Gate Arrays. The unit cell (gate array) is a functional group of one or more basic cells or gates. A basic cell contains one pair of P-channel and one pair of N-channel transistors. #### How to Read a Unit Cell Specification The following paragraphs numbered 1–10 explain how the information given in the UHB Unit Cell Library is organized. Each of the numbers corresponds to an area of the Unit Cell Library page illustrated on the right. - 1. The unit cell name appears in the upper left corner of the page. - 2. The unit cell function is given on the same line as the unit cell name. - The number of basic cells (BC) or equivalent that make up the unit cell is shown in the upper right corner of the page. - 4. Propagation delay parameters for the unit cell are given in a table on the upper right side of the page. The basic delay time of the unit cell (t0) is given in ns. K_{CL}, the delay constant for the cell (delay time per load unit) is given in ns/pF. K_{CL2} and C_{DR2} are a delay constant and an output driving factor used to calculate delay when a unit cell is loaded beyond its published output driving factor (C_{DR}). - 5. The cell (logic) symbol is shown in the top left box under the cell name. - Clock parameters (in ns) for unit cells such as flip-flops and counters that make use of clock signals are given in a table directly below the propagation delay parameters. - 7. Input loading factors are shown in a table directly under the cell symbol box on the left side of the page. The input loading factor is the value of the load placed on a net by the connection of the unit cell input. Unit cell loading factors are shown in load units (lu). The Fujitsu CMOS load unit is the input capacitance of an inverter used for the measurement and calculation of capacitive loads presented to unit cells within the gate array. - The output drive factor is shown directly under the input loading factor. The output drive factor is the maximum number of load units the unit cell can drive while performing at published specifications. - 9. The function (truth) table, if applicable, is shown in a box at the lower left side of the page. - 10. The unit cell schematic, or equivalent circuit, illustrates how discrete components would be connected to perform the unit cell function. It is shown in the lower right corner of the page or on the page following. # **Inverter and Buffer Family** | Page | Unit Cell
Name | Function | | Basic
Cells | |------|-------------------|-----------------------|----------|----------------| | 2–7 | V1N | Inverter | | 1 | | 2–8 | V2B | Power Inverter | | 1 | | 2–9 | V1L | Double Power Inverter | | 2 | | 2-10 | B1N | True Buffer | | 1 | | 2–11 | BD3 | True Delay Buffer | (> 5 ns) | 5 | | 2-12 | BD4 | Delay Cell | (> 4 ns) | 4 | | 2-13 | BD5 | Delay Cell | (>10 ns) | 9 | | 2-14 | BD6 | Delay Cell | (>22 ns) | 17 | | FULTITSII (| CMOS GATE ARRAY U | NIT CEL | I. SPECT | FICATIO | N | | "UHI | B" Version | |-------------|-------------------|---------|-------------------|--|-------------|---------|----------|------------------------------| | Cell Name | Function | MII ODD | n ornor. | LICATIO | N | | 1 | Number of BC | | | | | | | | | | | | V1N | Inverter | | | | | | | 1 | | Cell Symbol | | | up Prop | agation | Delay
td | Paramet | er | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.28 | 0.16 | 0.35 | 0.09 | 0.12 | 4 | Path
A → X | N | | | | | | | | | Α | > x | | | | | | | | | | V | Parame | ter | | | l s | ymbol | Typ(ns)* | | | | Turume | | | | -+- | <u>,</u> | 135(115) | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | A | 1 | } | | | | | | | | | | | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Х | 18 | | | | | | | | | | | | | _ | | | | 1141 | | | | Tho | mum val | ues for | the ty | pical o | perati: | ng condition.
g condition | | | | are | values
given h | v the m | aximum | delav m | ultipl | ier. | | | | | 821011 2 | <i>y</i> • • • • • • • • • • • • • • • • • • • | | | | ZZZ. | UHB-V1N-E1 | Sheet 1/1 | | | | | | | Page 1-1 | | 4 TI4 DT | -11CCC 1/1 | | | | | | | | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECT | FICATIO | N | | "UHP | " Version | |-------------|-------------------|---------|-------------------|-----------|---------|-----------|----------|---------------------------| | Cell Name | Function | | 01201 | 1011110 | ··· | | I N | lumber of BC | | | | | | | | | | | | V2B | Power Inverter | | | | | | | 1 | | Cell Symbol | | | | agation | | | er | , | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.25 | 0.08 | 0.25 | 0.05 | 0.08 | 7 | A → X | A | > х | | | | | | | | | Α | ^ | , | | | | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | • | ********* | 1 | } | | | | | Input Loading | | | | | l | | | | Pin Name | Factor (lu) | | | | | 1 | | | | A | 2 | | | | | | | | | | | | | | | İ |
 | <u> </u> | | | | | l | | | | D. 11 | Output Driving | | | | | Ì | | | | Pin Name | Factor (lu) | | | | | 1 | | | | Х | 36 | | | | | | | L | | | | * M:=: | | | +ha +** | mical a | | a condition | | | | The | mum vai | for the | worst | bicai o | perating | ng condition. g condition | | | | 270 | varues
given b | tor the m | WOISE | dolaw m | ultinli | or Condition | | | _1 | are | PTAGIT D | , cue m | ~v+mmm | acray III | CI CIPII | UHB-V2B-E1 | Sheet 1/1 | | | | | | | Page 1-2 | | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHE | " Version | |-------------|------------------|---------|-------------------|----------|--------------|--------------------|--------|---------------| | Cell Name | Function | | | 1 | Number of BC | | | | | V1L | Inverting Clock | Ruffer | | | | | - 1 | 2 | | Cell Symbol | Inverting Glock | Durier | Prop | agation | Delay | Paramet | er | | | | | | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.35 | 0.04 | 0.67 | 0.03 | | | A + X | A | > x | | | | | | | | | · | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | 1 | 1 | | 1 | | | | | | | | | | | | | Input Loading | | | | | | | 1 | | Pin Name | Factor (lu) | | | | | | | | | A | 4 | | | | | - 1 | - 1 | | 1 | | | 0.1 | | | | | 1 | | ļ i | | Pin Name | Output Driving | | | | | j | | 1 | | X | Factor (lu) | | | | | - 1 | | | | | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | are | values
given h | y the m | aximum | case op
delav m | mitini | g condition | | | I | | <u> </u> | <i>y</i> | UHB-V1L-F2 | Sheet 1/1 | | | | | | | Page 1-3 | | FULTITSU | CMOS GATE ARRAY U | NIT CEL | L SPECT | FICATIO | N | | 1111 | HB" Version | |-------------|-------------------|-----------|---------|-----------|--------|----------|----------------|----------------| | | Function | 000 | _ 0.001 | | • | | | Number of BC | | | | | | | | | | | | B1N | True Buffer | | | | | | | 11 | | Cell Symbol | | | | agation | Delay | Paramet | er | - | | | | | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.58 | 0.16 | 0.68 | 0.08 | | | A → X | 1 | | | | | | | | | | 1 | | | | | | | | | | | | A | У х | | | | | | | | | n n | ^ | | | | | | | · | Parame | ter | L | | S | ymbol | Typ(ns)* | 1 | } | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | (| | A | 1 | | | | | į | - | | | | | <u> </u> | | | | | | | | | | Output Driving | Ì | | | | | | | | Pin Name | Factor (lu) | l | | | | 1 | | | | Х | 18 | ļ | | | | | |
| | | | ٠ ـ يىر ب | | f | *hc * | minal - | | ina aandibic= | | | | " mini | mum vai | ues for | une ty | DICAL C | perat: | ing condition. | | | | ine | values | for the m | worst | dalaw - | erati
ml+:- | ng condition | | | | are | PTAGH D | y che m | GVTMAM | uciay II | ar orb | 1101. | 1 |] | Į. | UHB-B1N-E1 | Choot 1/1 | | | | | | | Page 1-4 | | OND-BIN-EI | i bheet 1/1 l | | | | | | | 1 4 4 5 4 4 4 | | FUJITSU CMOS GATE ARRAY 1 | NIT CEL | L SPECT | FICATIO | N | | "ÜH | B" Version | |----------------------------|---------|---------|---------|--------|---------|-----------|---------------| | Cell Name Function | 000 | | | | | 1 311 | Number of BC | | | | | | | | | | | BD3 Delay Cell Cell Symbol | T | Pron | agation | Delay | Paramet | <u> </u> | 5 | | Gell Bymbol | t | up | agation | td | n | <u>er</u> | T | | | t0 | KCL | t0 | KCL | KCL2 | | Path
A → X | | | 5.33 | 0.16 | 4.71 | 0.12 | 0.13 | 4 | $A \to X$ | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | İ | | | | | | | | İ | 1 | | | | | | | | 1 | | | A — > — X | | | | | | l | | | | 1 | | | | | | 1 | | İ | | | | | | | | | | 1 | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | - | Input Loading | 4 | | | | | | 1 | | Pin Name Factor (lu) | | | | | | | | | A 1 | 1 | Output Driving | 1 | | | | | | | | Pin Name Factor (Lu) | _ | | | | | | | | X 18 | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | The | values | for the | worst | case or | eratir | ng condition | | <u> </u> | are | given b | y the m | aximum | delay n | ultip | ier. | İ | <u> </u> | | UHB-BD3-E1 Sheet 1/1 | | | | | | | Page 1-5 | | F | UJITSU | CMOS GATE ARRA | Y UNIT CEI | L SPECI | FICATIO | N · | | | HB" Version | |------|---------|----------------|------------|-------------------|---------|--------|---------|-------|----------------| | Cell | Name | Function | | | | | | | Number of BC | | | | | | | | | | Ì | _ | | | D4 | Delay Cell | | n | | D-1-6 | Damanat | | 4 | | Cell | Symbol | | | Prop | agation | Delay | Paramet | er | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | - Park | | | | | 3.56 | 0.57 | 4.10 | 0.31 | 0.36 | 4 | Path
A → X | | | | | 1 3.30 | 0.57 | 4.10 | 0.51 | 0.50 | 7 | " " | | | | | į. | | | | | | | | | | | ı | | | | | | 1 | | | | | ı | | | | | | | | | | | l | | | | | | | | | | | 1 | | 1 | | | ł | | | | | <u> </u> | į | | | | | 1 | | | | A — | x | 1 | | | | | l | | | | | | I | | | | | 1 | | | | | | | | | | | | 1 | | | | | İ | | | | | l | 1 | | | | | Parame | eter | | · | l s | ymbol | Typ(ns)* | ł | | | | | | | l | | | | į | | | | | | | 1 | | | | I | | | | | | Input Loadir | | | | | | | | | Pin | Name | Factor (lu) | • | | | | | | - 1 | | | A | 4 | _ | - 1 | | | | | | Output Drivi | | | | | | | | | Pin | Name | Factor (lu) | | | | | | | | | | X | 6 | | | | | | | | | | | | | | _ | _ | | | | | | | | * Min: | imum val | ues for | the ty | pical c | perat | ing condition. | | | | | Ine | values
given b | for the | WOIST | dalaw w | erati | ng condition | | | | . l | are | given i | y the m | aximum | delay a | urcip | iiei. | l | | | | | | | | | | | 1 | 1 | | | | | | | | | | | UHB- | -BD4-E2 | Sheet 1/1 | | | | | | | Page 1-6 | | FILTTTCII C | MOS GATE ARRAY U | NIT CEL | CDECT | EICATIO | NT . | | l WITH | B" Version | |---------------|----------------------------|---------|------------|---------|-------------|---------|--------|---------------| | | Function | NII CEL | L SIECI | FICATIO | 14 | | 1 011 | Number of BC | | | | | | | | | | | | BD5 | Delay Cell | | | | | | | 9 | | Cell Symbol | | - | Prop
up | agation | Delay
td | | er | | | | | to | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 10.92 | 0.16 | 10.35 | 0.10 | 0.15 | 4 | A + X | 1 1 | | | | | | 1 | 1 | _ |] | | | | | | | | Α — | x | | | | | | | 1 | Parame | ter | | | S | ymbol | Typ(ns)* | 1 | | | | | | | | | · |] | | | | | | | | | Input Loading | | | | | ŀ | | | | Pin Name | Factor (lu) | ł | | | | 1 | | | | A | 1 | l | | | | l | | 1 | | | | | | | | - | | | | | | | | | | | | | | l | | 1 | | | | . | | | | Dia Nama | Output Driving Factor (lu) | | | | | | | | | Pin Name
X | 18 | 1 | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The | values | for the | worst | case op | eratin | g condition | | | <u> </u> | are | given b | y the m | aximum | delay m | ultipi | ler. | | ı | ı | ĺ | | | | | | | | | | ļ | ! | į | UHB-BD5-E1 | Sheet 1/1 | | | | | | | Page 1-7 | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | UH! | B" Version | |-------------|-------------------|---------|-----------|---------|-------------|-----------|--------|---------------| | Cell Name | Function | | | | | | | Number of BC | | BD6 | Delay Cell | | | | | | | 17 | | Cell Symbol | | | | agation | Delay
td | Paramet | EI | | | | | to | up
KCL | t0 | KCL | n
KCL2 | CDR2 | Path | | | | 22.00 | 0.17 | 21.82 | 0.09 | 0.14 | 4 | A + X | _ | | | | | | | | | Α | X | | | | | | | | | , | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | 1 | | | | - | | | | | | 1 | | | | İ | | | | | | | | | | l | | 1 | | | Input Loading | 1 | | | | l | | | | Pin Name | Factor (lu) | 1 | | | | | | | | A | 1 | | | | | - 1 | | | | | | | | | | - 1 | | | | | | | | | | - 1 | | | | | Output Driving | 1 | | | | | | | | Pin Name | Factor (lu) | | | | | - | | | | Х | 18 | | | | | | | | | | | * Mini | mum val | ues for | the tv | pical o | perati | ng condition. | | | | The | values | for the | worst | case op | eratin | g condition | | | 1 | are | given b | y the m | aximum | delay m | ultipl | ier. | UHB-BD6-E1 | Sheet 1/1 | | | | | | | Page 1-8 | ## **NAND Family** | Page | Unit Cell
Name | Function | Basic
Cells | |------|-------------------|-------------------------|----------------| | 2–17 | N2N | 2-input NAND | 1 | | 2-18 | N2B | Power 2-input NAND | 3 | | 2-19 | N2K | Fast Power 2-input NAND | 2 | | 2-20 | N3N | 3-input NAND | 2 | | 2-21 | N3B | Power 3-input NAND | 3 | | 2-22 | N4N | 4-input NAND | 2 | | 2-23 | N4B | Power 4-input NAND | 4 | | 2-24 | N6B | Power 6-input NAND | 5 | | 2-25 | N8B | Power 8-input NAND | 6 | | 2–26 | N9B | Power 9-input NAND | 8 | | 2-27 | NCB | Power 12-input NAND | 10 | | 2-28 | NGB | Power 16-input NAND | 11 | | 2-29 | N3K | Fast Power 3-input NAND | 3 | | 2-30 | N4K | Fast Power 4-input NAND | 4 | | | | | | | FULL TOOL C | WOO CAME ADDAY I | VITTE CET | CDECT | PTCATTO | | | 1 117.77 | ID! 17 | |--------------|------------------|-----------|-------------------|----------|----------|---------|----------|--------------------------| | Cell Name | MOS GATE ARRAY U | NII CEL | L SPECI. | FICATIO | N | | 1 UF | IB" Version Number of BC | | Sell Name | 1 0110 01011 | | | | | | | TARRET OF DO | | N2N | 2-input NAND | | | | | | | 1 | | Cell Symbol | | | Prop | agation | Delay : | Paramet | er | | | | | t | up | <u> </u> | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.37 | 0.16 | 0.56 | 0.14 | | | A + X | 1 | 1 | | A1 —— | <u></u> | | | | | | | | | A2 - | <i>р</i> — х | Parame | ter | <u> </u> | | 1 0 | ymbol | Typ(ns)* | | | | rarame | 201 | | | - - | , 01 | 1,5(113) | | | | | | | | | | | | | | | | | | ŀ | | | | | | | | | | 1 | j | | | | | Input Loading | | | | | - | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | i | | | | l | | 1 | | | | | | | | | | | | | | | | | | - 1 | | | | | | | |
 | | | 1 | | | | | | | | l | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | X | 18 | | | | | | | | | | | # Mini | mum 1701 | une for | the tw | nical o | norat. | ing condition. | | | | The | wum vai
valnas | for the | worst | rase on | perati | ng condition | | | | are | varues
given h | v the m | aximum | delav m | ultip | lier. | | | | arc | SIVEN D | y une a | UATHUM . | uciu, i | СТОТР | 1101. | İ | UHB-N2N-E2 | Sheet 1/1 | | | | | | | Page 2-1 | | OHD 11211 EZ | DIEEC 1/1 | | | | | | | | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UI | HB" Version | |-------------|-------------------|---------|----------|---------|--------|----------|--------------------|-------------------| | Cell Name | Function | | | | | | | Number of BC | | | | | | | | | | | | N2B | Power 2-input N | AND | | | | | | 3 | | Cell Symbol | | | | agation | Delay | Paramet | ter | | | | | | up | | td | | T === : | ⊣ | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
A → X | | | | 1.10 | 0.08 | 1.42 | 0.04 | | | $A \rightarrow X$ | | | | | | | | | | | | | | | | | | | 1 | İ | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | A1 | · | | | | | | 1 | | | A2 | _ х | | | | | | 1 | | | | _ | | | | | | | | | | | | | | | | 1 | | | | | ' | | | 1 | | 1 | | | | | Damassa | <u> </u> | L | L | <u> </u> | Crmbo ¹ | Type (ng)* | | l | | Parame | LEI | | | | Symbol | Typ(ns)* | 1 | 1 | | | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | | | | | | | | | 1 - | 1 | | | | | 1 | | | | 1 | | | | | | | | | | 1 | | | | | | İ | | | | | | | | | | | | | | | Output Driving | 1 | | | | 1 | | | | Pin Name | Factor (lu) | | | | | | | | | Х | 36 | * Mini | mum val | ues for | the ty | pical | operat: | ing condition. | | | | The | values | for the | worst | case o | perati | ng condition | | | | are | given b | y the m | aximum | delay | multip | lier. | } | ļ | 1 | İ | 1 | IJHR-N2R-F2 | Sheet 1/1 | | | | | | | Page 2-2 | | 1 112 | 1 -11000 1/1 | | | | | | | 1 0 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHI | B" Version | |---------------|------------------|------------|-------------|------------|-------------|--------------|--------|------------------------------| | Cell Name | Function | | | | | | 1 | Number of BC | | N2K | Power 2-input N | AND | | | | | | 2 | | Cell Symbol | TOWER 2 INDUC N | | Prop | agation | Delay | Paramet | er | | | | | | up | | td | n | | D.o. | | | | t0
0.37 | KCL
0.08 | t0
0.43 | KCL
0.07 | KCL2
0.09 | CDR2 | Path
A → X | | | | 0.07 | | | | | - | _ | | | | | | | | | | A1 |) x | | | | | | | 1 | | A2 — | | | | | | | | 1 | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | 1 | | İ | | | | | | l | | | | | | | | | | l | | | | | | | | | | i | | | | B/- N | Input Loading | | | | | ļ | | | | Pin Name
A | Factor (lu) | | | | | ł | | | | | | | | | | l | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | | | | | | | | | - | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical c | perati | ng condition.
g condition | | | | are | given b | y the m | aximum | delay m | ultipl | ier. | | | | | | | | | | | | 1 | l | Page 2-3 | | UHB-N2K-E2 | Sheet 1/1 | | | | | | | Page 2-3 | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "บ | HB" Version | |-------------|-------------------|---------|---------|----------|--------|---------|-------|---------------------------------| | Cell Name | Function | | | | | | | Number of BC | | N3N | 3-input NAMD | | | | | | | , | | Cell Symbol | 3-input NAND | | Prop | agation | Delav | Paramet | et. | 2 | | 2022 0,0001 | | t | up | -6001011 | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.52 | 0.16 | 0.69 | 0.19 | | | Path
A → X | _ | | | | | | | | | A1 | | | | | | | | ļ | | A2 | р— х | | | | | | | | | А3 — | Parame | ter | | | l s | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | l | * | Input Loading | 1 | | | | - | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | | | | | - 1 | | | | | | | | | | - 1 | - 1 | | | | | Output Driving | 1 | | | | - 1 | | } | | Pin Name | Factor (lu) | | | | | 1 | | | | X | 14 | | | | | | | | | | | | | _ | | | | | | | | * Mini | mum vai | ues for | tne ty | picai c | perat | ting condition
ing condition | | | | are | given b | v the m | aximum | delav n | ultit | olier. | | | | | · | , | | | | | | | | | | | | | | | | 1 | | | | | | | | | | 1 | 1 | UHB-N3N-E2 | Sheet 1/1 | | | | | | | Page 2-4 | | FILTER | CMOS GATE ARRAY U | NITT CEL | CDECT | ETCATTO | NT | | i minu | B" Version | |---|-------------------|------------|-------------|------------|-----------|----------|-------------|---------------| | Cell Name | Function | HALL CEL | L SPECI | r ICALIO | IN | | J UH | Number of BC | | | | | | | | | | | | N3B | Power 3-input N | AND | | | | | | 3 | | Cell Symbol | | | | agation | Delay | Paramet | er | | | | | | up | +0 | td
KCL | | CDDO | ا ۲۰۰۲ | | | | t0
1.28 | KCL
0.08 | t0
1.70 | 0.04 | KCL2 | CDR2 | Path
A → X | | | | 1.20 | 0.00 | 1.70 | 0.04 | | | A - A | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | |] | | | | | | | | | | | | | \sim | | | | | | | | | A1 ———————————————————————————————————— | р— х | | | | | | ŀ | 1 | | A3 | ↑ | 1 | | [| | | | | | | l | | L | <u></u> | <u> </u> | | 1 | | Parame | ter | | | <u>s</u> | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | |] | | | | 1 | | | | | | 1 | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | | | | | - 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | 1 | | | | | | | | - 1 | | | | | Output Driving | | | | | 1 | | | | Pin Name | Factor (lu) | | | | | | | | | Х | 36 | | | | | | | 1 | | l | | * Mini | mum val | ues for | the tv | mical c | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | | are | given b | y the m | aximum | delay n | ultipl | ier. | İ | 1 | - | | | | | | | | | UHB-N3B-E2 | Sheet 1/1 | | | | | | | Page 2-5 | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | יט" | HB" Versio | n | |-------------|-------------------|---------|---------|---------|--------|--|--------|-------------------|-------| | Cell Name | Function | | | | | | | Number of | BC | | | | | | | | | | | | | N4N | 4-input NAND | | | | | | 1 | 2 | | | Cell Symbol | | | | agation | Delay | | er | | | | | | | up | | td | | 0222 | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
A → X | | | | | 0.62 | 0.16 | 0.74 | 0.24 | | | $A \rightarrow X$ | | | | | | | | | | 1 | I | | | | | | | | | | İ | į. | | | | | | | | | | 1 | 1 | | | | | | | | | | l | 1 | | | | | | | | | | 1 | ı | | | A1 | \cup | | | | | | 1 | İ | | | A2 | - I | | | | | | 1 | į | | | A3 | р—— х | | | | | | 1 | | | | A4 | 1) | | | | | | | l | | | | | | | | | | 1 | | | | | | | | | | | 1 | 1 | | | | | Dage | | | L | ــــــــــــــــــــــــــــــــــــــ | 1
2 | T (- | . 1 % | | | | Parame | Ler | | | - ` | Symbol | Typ(ns | ·) " | | | | | | | | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | | 1 | | | | | | | | | 1 | | - | | | | | | | | | | | 1 | | | | Input Loading | | | | | | | | | | Pin Name | Factor (0.) | | | | | l | | | | | A A | Factor (lu) | | | | | [| | 1 | | | А | 1 | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | | | | Output Driving | | | | | | | | |
 Pin Name | Factor ((u) | | | | | | | | | | X | Factor (lu) | * Mini | mum val | ues for | the tv | pical o | perat | ing condit | ion. | | | | The | values | for the | worst | case or | perati | ng conditi | ion | | | | are | given b | y the m | aximum | delav | nultip | lier. | · | | | | | | | | | | UHB-N4N-E2 | Sheet 1/1 | | | | | | | Page | 2-6 | | FUJITSU C | MOS GATE ARRAY U | VIT CELI | SPECI | FTCATTO | V | | "UHB | " Version | |---|---------------------------------------|----------|---------|---------|--------|---------|---------|---------------| | | Function | 000 | 011101 | 1011110 | | | N | umber of BC | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | N4B | Power 4-input N | AND | | | | | | 4 | | Cell Symbol | | | | agation | | | er | , | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.38 | 0.08 | 1.90 | 0.04 | | | A → X | | | | | | | | | | | | | | | 1 | ı | | | | | | ' | | | | A1 | | | | | | | | | | A2 | р—— x | | | | | | | | | A3 ———————————————————————————————————— |) | | | | | | | | | A4 [| L | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | A | 1 | - 1 | | | | | | | | | | | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | X | 36 | * Mini | mum val | ues for | the ty | mical c | perati | ng condition. | | | | The | values | for the | worst | case or | erating | condition | | | | are | given b | y the m | aximum | delay n | ultipl: | ler. | 1 | UHB-N4B-E2 | Sheet 1/1 | | | | | | | Page 2-7 | | | | | | | | | | | | FULLTELL C | MOC CATTE ADDAY II | NITT CET | CDECT | CICATIO | NT | | 11777 | HB" Version | |---------------|--------------------|----------|-----------|---------|-------------|---------|--------|----------------| | | MOS GATE ARRAY U | NII CEL | L SPECI | FICALLO | N | | 1 01 | Number of BC | | | | | | | | | | | | N6B | Power 6-input N | AND | | | | | | 5 | | Cell Symbol | | | | agation | Delay
td | | er | | | | | t0 | up
KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.37 | 0.08 | 2.02 | 0.04 | 0.07 | 7 | A + X | | 1 | İ | | | | | | | | | | l ,, | \ | | | | | | | İ | | A1 A2 | | | | | | | | 1 | | A3 | р—— х | | | | | | | | | A4 | ^ | | | | | | | | | A5 — |) | | | | | | | | | AO L | | | | | | | } | | | | | Parame | | | | | ymbol | Typ(ns)* | | | | rarame | rei | | | | ушьот | 1yp(ns)" | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | l | | | | D. 17 | Output Driving | 1 | | | | i | | | | Pin Name
X | Factor (lu) | 1 | | | | Ì | | | | | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perat | ing condition. | | ľ | | The | values | for the | worst | case of | erati | ng condition | | | <u> </u> | are | given b | y the m | aximum | delay i | nultip | lier. | | Equivalent | Circuit | | | | | | | | | _ | | | | | | | | | | A1 | | | | | | | | | | A2 — b | | | | | | | | | | | | x | | | | | | | | A4 | | | | | | | | | | A5 b | | | | | | | | | | A6 — | UHB-N6B-E2 | Sheet 1/1 | | | | | | | Page 2-8 | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N . | | "UH | IB" Vers | ion | |---------------|-------------------|------------|-------------------|--------------------|--------|--------------------|------------------|-------------|--------| | Cell Name | Function | ction | | | | | | | | | N3K | Power 3-input 1 | NAND | | 1 | 3 | | | | | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | | t t | up | +0 | td | | CDD2 | - Part | _ | | | | t0
0.48 | KCL
0.07 | t0
0.65 | 0.08 | KCL2 | CDR2 | Pati
A → | n
X | | | | 0.40 | 0.07 | 0.05 | 0.00 | | | " | * | | | | | | | | | | 1 | A1 | | | | | | | | 1 | ĺ | | A2 | р х | | | | | | | 1 | | | A3 | | | | | | | | 1 | Parame | ter | | | S | ymbol | Typ(: | ns)* | | | | | | | | | | | | | | | | | | | 1 | | 1 | | | | | 1 | | | | | | | | | | | | | | | 1 | | ļ | | | | | 1 | | | | l | | 1 | | | Din Nama | Input Loading | | | | | l | | | | | Pin Name
A | Factor (lu) | 1 | | | | | | | | | •• | _ | 1 | | | | - 1 | | | | | | | 1 | | | | | | | | | | | 1 | | | | - | | | | | | Output Driving | - | | | | - 1 | | | | | Pin Name | Factor (lu) | İ | | | | - 1 | | | | | Х | 28 | 1 | | | | | | | | | | | W Mama | 1 | 6 | 44. 4 | _4_1_ | | | | | | | " Mini | mum vai
values | ues ior
for the | worst | picai o
case on | perati
eratir | ng cond | tion. | | | | are | given b | y the m | aximum | delay m | ultipl | ier. | | | | | | | | j | HUD_NOV E4 T | Cheet 1/1 | | | | | | | Desa | 2_12 | | UHB-N3K-E1 | Sheet 1/1 | | | | | | | Page | 2-13 | | FILTTCIL | CMOC CATE ADDAY I | NITT CEL | CDECT | ETCATTO | \T | | 11111 | HB" Version | |-------------|-------------------------------|----------|-----------|--------------|-------------|----------|--------|---------------| | Cell Name | CMOS GATE ARRAY U
Function | NII CEL | L SPECI | FICATIO | IN . | | 1 01 | Number of BC | | | | | | | | | | | | N4K | Power 4-input N | AND | | | | | i | 4 | | Cell Symbol | | ļ | Prop | agation | Delay
td | Paramet | er | | | | | t0 | up
KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.56 | 0.07 | 0.76 | 0.10 | NODE | ODINE | A + X | ľ | | | | | | | | | | | l | | | A1 | Γ | | | | | | | | | A2 | | | | | | İ | | 1 | | A3 | р х | | | | | | | | | A4 | D | | | | | ļ | | | | | | | | | | 1 | | | | | | | | | | | | | | | | Parame | ter | | | <u>s</u> | ymbol | Typ(ns)* | Input Loading | - | | | | İ | | | | Pin Name | Factor (lu) | | | | | | | | | A | 2 | 1 | | | | | | | | | | | | | | 1 | | | | | | 1 | | | | 1 | | | | | | | | | | | | | | | Output Driving | 1 | | | | ì | | 1 | | Pin Name | Factor (lu) | _ | | | | - 1 | | | | Х | 20 | | | ············ | | | | | | | | * Mini | m11m 17a1 | ues for | the to | mical o | norat | ing condition | | | | The | values | for the | worst | case of | perati | ng condition | | | | are | given b | y the n | naximum | delay n | nultip | lier. | UHB-N4K-E1 | Sheet 1/1 | | | | | | | Page 2-14 | ## **NOR Family** | ı | Page | Unit Cell
Name | Function | Basic
Cells | |---|------|-------------------|--------------------|----------------| | : | 2-33 | R2N | 2-input NOR | 1 | | 2 | 2–34 | R2B | Power 2-input NOR | 3 | | 2 | 2–35 | R2K | Power 2-input NOR | 2 | | 2 | 2–36 | R3N | 3-input NOR | 2 | | 2 | 2–37 | R3B | Power 3-input NOR | 3 | | : | 2–38 | R4N | 4-input NOR | 2 | | : | 2–39 | R4B | Power 4-input NOR | 4 | | : | 2-40 | R6B | Power 6-input NOR | 5 | | 2 | 2-41 | R8B | Power 8-input NOR | 6 | | 2 | 2-42 | R9B | Power 9-input NOR | 8 | | : | 2-43 | RCB | Power 12-input NOR | 10 | | : | 2-44 | RGB | Power 16-input NOR | 11 | | 2 | 2–45 | R3K | Power 3-input NOR | 3 | | : | 2-46 | R4K | Power 4-input NOR | 4 | | | | | | | | FULLTSU (| CMOS GATE ARRAY U | NIT CELI | . SPECT | FICATIO | N | | ווויי ו | B" Version | |--------------------|------------------------------|----------|-----------|---------|---------|---------|---------|----------------| | Cell Name | Function | WII OBD | D DI LOI. | TOATIO | | | 1 | Number of BC | | | 0 1 1700 | | | | | | | | | R2N
Cell Symbol | 2-input NOR | | Prop | agation | Delay | Parame+ | er | 1 | | OCII DYMBOI | | tı | up | agacion | td | n | <u></u> | T | | | | t0 | KCL | t0 | KCL | KCL2 | | Path | | | | 0.40 | 0.29 | 0.44 | 0.08 | 0.11 | 4 | A -> X |
| _ | | | | | | | | | A1 | x | | | | | | 1 | | | A2 | | | | | | |] | | | | | | | | | |] | | | | | | | | | | | | | | | Parame | ter | | L | S | ymbol | Typ(ns)* | | | | | | | | | | Pin Name | Input Loading
Factor (lu) | | | | | | | | | A | 1 | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Х | 14 | | | | | | | | | | | * Mini | mum wal | ues for | the to | mical o | perati | ing condition. | | | | The | values | for the | worst | case op | erati | ng condition | | | <u> </u> | are | given b | y the m | naximum | delay m | ultip | lier. | 1 | 1 | 1 | _ | | UHB-R2N-E2 | Sheet 1/1 | | | | | | | Page 3-1 | | | | | | | | | | | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | ויי" וו | B" Version | |---------------|------------------|----------|-----------|--------------|-----------|---------|----------|---------------| | Cell Name | Function | | | Number of BC | | | | | | R2B | Power 2-input N | OR | | | | | | 3 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | t0 | up
KCL | t0 | td
KCL | KCL2 | CDR2 | Path | | | | 1.36 | 0.08 | 1.25 | 0.04 | | | A -> X | _ | | | | | | | | | A1
A2 | x | | | | | | | | | AZ [| : | | | | | | <u> </u> | | | | , | Parame | ter | | | S | ymbol | Typ(ns)* | Input Loading | | | | | l | | | | Pin Name
A | Factor (lu) | | | | | | | | | | 1 | | | | | 1 | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | X | 36 | <u> </u> | | | | | | | | | | * Mini | mum val | ues for | the ty | pical c | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | ng condition | | | | are | given t | y the m | aximum | delay n | mitibi | .ier. | UHB-R2B-E2 | Chart 1/1 | | | | | | | Page 3-2 | | UND-KZB-EZ | Sheet 1/1 | | | | | | | 1 2 2 2 | | FUJITSU CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHF | " Version | |---------------------------|--|---------|----------|-----------------|----------|-----------|----------------| | Cell Name Function | JIVII ODD | D DIBOI | 11011110 | | | | Number of BC | | | ion | | | | | | | | R2K Power 2-input N | NOR | Pron | agation | Delay | Paramet | | 2 | | Cell Symbol | | up | agation | td | | <u>e1</u> | , - | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
A → X | | | 0.45 | 0.14 | 0.45 | 0.06 | | | A → X | 1 | | | I | 1 | | | | | | | | | | | | | | | | A1 X | | | | | | | 1 | | A2 | | | | | | | | | | | | | | | | } | | | | | | | | | | | | Parame | ter | | | 1 5 | ymbol | Typ(ns)* | | | 101000 | | | | | , | 1 2) (1.2) | | | | | | | Ì | | | | | | | | | ĺ | | | | | | | | | 1 | | | | | | | | | 1 | | | | Input Loading | 1 | | | | 1 | | | | Pin Name Factor (lu) | 4 | | | | | | | | A 2 | | | | | - 1 | | | | | | | | | | | | | | | | | | 1 | | | | | 4 | | | | l | | | | Output Driving | | | | | 1 | | | | Pin Name Factor (Lu) X 36 | - | | | | 1 | | | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical c | perati | ng condition. | | | The | values | for the | worst
aximum | delaw m | erating | condition | | | are | given b | y the u | aximum | deray ii | urcipi. | .er. | UHB-R2K-E2 Sheet 1/1 | | | | | | | Page 3-3 | | FILITTCII | CMOS GATE ARRAY U | NIT CET | I. SPECT | FICATIO | N | | TITTE I | HB" Version | |---------------|-------------------|---------|-------------|------------|--------|---------|---------|--| | | Function | 055 | 01101 | _ 10A110 | ., | | 1 1 | Number of BC | | Hamo | | | | | | | | | | R3N | 3-input NOR | | | | | | | 2 | | Cell Symbol | | | | agation | Delay | Paramet | er | | | | | | up | | td | | | ┥ | | | | t0 | KCL
0.41 | t0 | KCL | KCL2 | CDR2 | $\begin{array}{c c} & \text{Path} \\ \hline & A \rightarrow X \end{array}$ | | | | 0.84 | 0.41 | 0.46 | 0.09 | 0.12 | 4 | $A \rightarrow X$ | | | | | | | | | ł | 1 | | | | | | | | | 1 | | | | _ | | | | | | l | | | A1 | A | | | | | | | | | A2 | р х | | | | | | 1 | | | A3 | \forall | | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | | Parame | ter | L | L | ٠ | ymbol | Typ(ns)* | | | | rarame | 267 | | | -+- | , m.o.i | 1,5(113) | | | | | | | | 1 | | 1 | | | | | | | | 1 | 1 | | | | | | | | | | 1 | | Dia Nama | Input Loading | | | | | 1 | | | | Pin Name
A | Factor (lu) | | | | | 1 | | | | A . | 1 | | | | | 1 | | | | | | | | | | l | | | | | | | | | | - 1 | | | | | | | | | | 1 | | | | | Output Driving | | | | | 1 | | | | Pin Name | Factor (lu) | | | | | 1 | | | | Х | 10 | | | | | | | | | 1 | | | | | | | | | | | | " Mini | mum val | ues IOI. | the ty | bicai o | perat | ing condition ng condition | | | | are | values | y the m | aximum | delay r | multin | lier. | | l | | 416 | 02.011 | ., UILC II | | | | | |] | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | l | | | | | | | | | | l | | | | | | | | | | 1 | | | | | | | | | | 1 | 1 | 1 | UHB-R3N-E2 | Sheet 1/1 | | | | | | | Page 3-4 | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version R3B | f BC | |--|-------------| | Propagation Delay Parameter tup tdn | | | Propagation Delay Parameter tup tdn | | | tup tdn t0 KCL t0 KCL KCL2 CDR2 Path 1.99 0.08 1.37 0.04 A → | | | t0 KCL t0 KCL KCL2 CDR2 Path 1.99 0.08 1.37 0.04 A → A1 A2 X | | | A1 X | | | A2 — + > — X | x j | | A2 — + > — X | | | A2 — + > — X | | | A2 — + > — X | | | A2 — + > — X | | | A2 — + > — X | 1 | | | 1 | | A3 - | | | | | | | | | Parameter Symbol Typ(n | s)* | | 1 Julio 1 1) P(1 | | | | - | | | | | | | | | | | Input Loading | | | Pin Name Factor (lu) | | | A 1 | | | | | | | | | | | | Output Driving Pin Name Factor (lu) | | | X 36 | | | | | | * Minimum values for the typical operating condi | tion. | | are given by the maximum delay multiplier. | 1011 | | dio giron by one manage costs, manage | | | UHB-R3B-E2 Sheet 1/1 Page | 3-5 | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Versi | | | | | | | B" Version | | |---|----------------|---|-------------|------------|------|--------------|------------|---------------| | Cell Name Function | | | | | | Number of BC | | | | R4N | 4-input NOR | | | | | | 1 | 2 | | Cell Symbol | 22,500 | Propagation Delay Parameter | | | | | | | | | | | up | | td | n | | J | | | | t0
1.24 | KCL
0.54 | t0
0.46 | 0.09 | KCL2
0.13 | CDR2 | Path
A → X | | | | 1.24 | 0.34 | 0.46 | 0.09 | 0.13 | 4 | A 7 X | _ | | | | | | | | | A1 - | \Box | | | | | | | | | A2 ———————————————————————————————————— | >— х | | | | | | | | | A4 | \vdash | Parame | ter | | | S | ymbol | Typ(ns)* | D/- M | Input Loading | Ì | | | | | | | | Pin Name
A | Factor (lu) | | | | | | | | | •• | 1 | | | | | | | | | | 1 | 1 | | | | | | | | | | } | | | | | | | | | Output Driving | } | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | X | 6 | | | | | | | | | | | J. 14 | | | | | | | | | | * Minimum values for the typical operating condition The values for the worst case operating condition | | | | | | | | | | are given by the maximum delay multiplier. | | | | | | | | and Server of one mentales done, server | l | | | | | | | | | | 1 | IND-DAN ES | Chart 1/1 | | | | | | | Page 3-6 | | UHB-R4N-E2 | Sheet 1/1 | | | | | | | rage 3-0 | | THE TYPICAL OF | 100 0 100 100 11 11 11 11 11 11 11
11 11 | VITE OFF | appar | | | | 1 117.77 | · · · · · · · · · · · · · · · · · · · | | |---|--|-----------|-----------|------|---------|------|----------|---------------------------------------|--------| | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "U Cell Name Function | | | | | | | 1 01 | HB" Version
Number of H | 3C | | | | | | | | | | | - | | R4B | Power 4-input N | | | | | | | 4 | | | Cell Symbol Propagation Delay Parameter | | | | | | | | | _ | | | | t0 | up
KCL | t0 | KCL KCL | KCL2 | CDR2 | Path | | | | | 2.50 | 0.08 | 1.34 | 0.04 | | | A + X | \neg | | | | | | | | | | | - 1 | | | | | | | | | | ĺ | l | | | | | | | | | | | l | | | | | | | | | | l | l | | A1 —— | 7 | | | | | | | | | | A2 - | х | | | ' | | | | | 1 | | A3 | → ^ | | | | | | | | | | A4 — | プ | i i | Parame | tor | L | اـــــا | 1 8 | ymbol | Typ(ns) | * | | | | 1 at aute | | | | | , | 1,50(113) | \neg | ļ | | | - 1 | | | | 1 | | | | İ | | | | | | Input Loading | 1 | | | | ļ | | | | | Pin Name | Factor (lu) | 1 | | | | 1 | | | 1 | | A | 1 | | | | | | | | 1 | | | - | | | | | | | | l | | | | | | | | 1 | | } | | | | | 1 | | | | | | | | | Pin Name | Output Driving
Factor (lu) | | | | | | | - | | | X | 36 | 1 | | | | İ | | 1 | ł | | | | | _ | _ | _ | | | | | | | * Minimum values for the typical operating condition | | | | | | | on. | | | | The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | " | | | are given by the maximum delay multiplier. | l | Page 3- | .7 | | UHB-R4B-E2 | Sheet 1/1 | | | | | | | rage 5 | | | FULTTELL | MOC CATT ADDAY II | NITT CEL | T CDECT | ETCATTO | NT | | 1111 | HB" Version | |--|---|----------|---------|---------|--------|---------|--------------|----------------| | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "U Cell Name Function | | | | | | | Number of BC | | | | | | | | | | | | | R6B
Cell Symbol | R6B Power 6-input NOR 5 Cell Symbol Propagation Delay Parameter | | | | | | | | | tup tdn | | | | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 2.25 | 0.08 | 1.48 | 0.04 | | | A → X | ļ | | A1 | 7 | | | | | | | | | A2 - | | | | | | | | | | A3 ———————————————————————————————————— | x | | | | | | | | | A5 - | _ | | | | | | | | | A6 — | eg | Parame | ter | | | | ymbo1 | Typ(ns)* | ļ | Input Loading | ł | | | | | | : | | Pin Name | Factor (lu) | ļ | | | | | | | | A | 1 | 1 | | | | | | | | | | | | | | l | 1 | | | | | Output Driving | 1 | | | | ĺ | | | | Pin Name | Factor (lu) | 1 | | | | Ì | | | | Х | 36 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perat | ing condition. | | * Minimum values for the typical operating condition The values for the worst case operating condition | | | | | | | | ng condition | | are given by the maximum delay multiplier. | | | | | | | | lier. | | Equivalent Circuit | A1 — | | | | | | | | | | A2 ———————————————————————————————————— | | | | | | | | | | A3 — | <u></u> | х | | | | | | | | A4 — | | | | | | | | | | A5 | | | | | | | | | | A6 — | UHB-R6B-E2 | Sheet 1/1 | | | | | | | Page 3-8 | | FULLTSU | CMOS GATE APPAY II | NIT CEL | I SPECT | FICATIO | N | | 77177 | HB" Version | |--|-------------------------------|---------|---------|---------|------------------|---------|---------|----------------| | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " Cell Name Function | | | | | | | | Number of BC | | | | | | | | | | | | R3K
Cell Symbol | Power 3-input N | OR | D | + | Delay | Damamat | | 3 | | Cell Symbol | | t | up | agation | td | | .er | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.66 | 0.17 | 0.32 | 0.04 | 0.07 | 7 | A → X | 1 | 1 | | | | | | | | | | 1 | | | <u> </u> | | | | | ł | l | | | A1 ———————————————————————————————————— | x | | | | | l | | 1 1 | | A3 | · • | | | | | | | 1 | | | _ | | | | | | | 1 | | ļ | | | | | | | l | 1 1 | | | | Parame | ter | L | <u> </u> | L | ymbol | Typ(ns)* | | | | Turume | | | | | ушьст | 1,1,0(115) | | | | | | | | } | 1 | | | Input Loading | 1 | | | | ļ | | 1 1 | | Pin Name | Factor (lu) | | | | | l | | 1 | | A | 2 | | | | | ŀ | | | | | | | | | | i | | | | | Ì | | | | | 1 | | | | | | | | | | | | | | Din Nama | Output Driving
Factor (lu) | 1 | | | | | | | | Pin Name
X | 20 | 1 | | | | l | | | | | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perat | ing condition. | | | | The | values | for the | worst
maximum | case or | perati: | ng condition | | | 1 | are | given c | y the m | iaximum | delay i | nuitip | lier. | 1 | 1 | UHB-R3K-E1 | Sheet 1/1 | | | | | | | Page 3-13 | | | | | | | | | | | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |-------------|-------------------|---------|---|---------|-------------|---------|--------|----------------| | Cell Name | Function | | | | | | | Number of BC | | | | | | | | | | , | | R4K | Power 4-input N | UR | P | | Do 1 | Dama | | 4 | | Cell Symbol | | +- | up Prop | agation | Delay
td | | eI | 1 | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.08 | 0.23 | 0.35 | 0.03 | 0.05 | 7 | Path
A → X | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | _ | | | | | | | | | A1 | A I | | | | | | | | | A2 | х | | | | | | | | | A3 | ├ | | | | | | | | | A4 | \forall | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | · · | | | 1 | | | | | | 1 | 1 | | | | | | | | | | - 1 | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Α . | 2 | Ì | | | | | | | | | | | | | | | Output Driving | 1 | | | | l | | | | Pin Name | Factor (lu) | | | | | | | | | X | 12 | ĺ | | | | l | | | | | | | *************************************** | | | | | | | | | * Mini | mum val | ues for | the ty | pical c | perati | ing condition. | | | | The | values | for the | worst | case or | eratir | ng condition | | | | are | given b | y the m | aximum | delay n | ultip | lier. | 1 | | | | | | | | | | 1 | UHB-R4K-E1 | Sheet 1/1 | | | | | | | Page 3-14 | # **AND Family** | | Unit Cell | | Basic | |------|-----------|-------------------|-------| | Page | Name | Function | Cells | | 2-49 | N2P | Power 2-input AND | 2 | | 2-50 | N3P | Power 3-input AND | 3 | | 2-51 | N4P | Power 4-input AND | 3 | | 2-52 | N8P | Power 8-input AND | 6 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |---------------|------------------|---------|---------|---------|--------|---------|--------|---------------| | | Function | | | | | | 1 | Number of BC | | N2P | Davier 2-innut A | MTN | | | | | - 1 | , | | Cell Symbol | Power 2-input A | ND | Prop | agation | Delay | Paramet | er | 2 | | | | t | up | -8 | td | | | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.01 | 0.08 | 0.86 | 0.04 | 0.06 | 7 | A + X | | | | | | | | | | 1 | 1 | | 1 | | A1 —— | | | | | | , | | | | A2 |)— x | | | | | | | j | | _ | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | - | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name
A | Factor (lu) | | | | | 1 | | | | A | 1 | 1 | | | | | | | | | | | | | | | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | | | | | | | | | Α, | 50 | | | ···· | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The | values | for the | worst | case op | eratin | g condition | | | | are | given b | y the m | aximum
| delay m | ultipl | ier. | 1 | UHB-N2P-E2 | Sheet 1/1 | | | | | | | Page 4-1 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | ט" וו | HB" Version | |--------------------|------------------|---------|-------------|---------------------|------------|---------|-----------------|----------------| | Cell Name | Function | | | | | | | Number of BC | | N3P
Cell Symbol | Power 3-input A | ND | Dron | agation | Dolor | Daramat | | 3 | | Cell Symbol | | t | up | agation | td | | er | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 1.32 | 0.08 | 1.07 | 0.04 | 0.06 | 7 | A - X | A1 |) | | | | | | | | | A2 | x | | | | | | | | | A3 —— | Parame | ter | | | S | ymbol | Typ(ns)* | 1 | | | | | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | İ | | | | A | 1 | | | | | | | | | | | | | | | - 1 | | 1 | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | | | | | | | 1 | | | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical c | perat | ing condition. | | | | The | values | for the
by the m | worst | case or | erati
111111 | ng condition | | | L | are | given L | y the n | IAXIIIUIII | deray u | urcip | TIEL, | | | | | | | | | | | | ļ | | | | | | | | | | ļ | | | | | | | | | | 1 |] | 1 | UHB-N3P-E2 | Sheet 1/1 | | | | | | | Page 4-2 | | דווודפוו כ | MOS GATE ARRAY U | NIT CEL | I. SPECT | FICATIO | N | | "ITHE | " Version | |---|------------------------------|----------|-------------------|---|----------|---------|--------------------|---------------| | Cell Name | Function | WII CED. | D BLECT | FICALLO | IN . | | I N | umber of BC | | | | | | | | | | | | N4P | Power 4-input A | ND | | | | | | 3 | | Cell Symbol | | | up Prop | agation | Delay td | Paramet | er | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.58 | 0.08 | 1.19 | 0.04 | 0.06 | 8 | Path
A → X | 1 | | | | | | | | | | | | ٨, | | | | | | | | | | A1 ———————————————————————————————————— | | | | | | | | | | A3 | х | | | | | | | | | A4 |) | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | 1 | | | | | | 1 | | | | | | | | | | ļ | |]] | | | | | | | | | | 1 | | | | | | | | 1 | | 1 | | Pin Name | Input Loading
Factor (lu) | | | | | Į | | | | A A | 1 | | | | | 1 | | 1 1 | | - | - | | | | | 1 | 1 | | 1 | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | 1 | | X | 36 | | | | | | | 1 | | | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | are | values
given h | ror the m | aximum | delay m | erating
ultipli | er. | | | | | 821011 | <u>, , , , , , , , , , , , , , , , , , , </u> | , | | 1 | l | | | | | | | | | | | | UHB-N4P-E2 | Sheet 1/1 | | | | | | | Page 4-3 | | | | | | | | | | | ### **OR Family** | Page | Unit Cell
Name | Function | Basic
Cells | |------|-------------------|------------------|----------------| | 2–55 | R2P | Power 2-input OR | 2 | | 2–56 | R3P | Power 3-input OR | 3 | | 2–57 | R4P | Power 4-input OR | 3 | | 2-58 | R8P | Power 8-input OR | 6 | | FUJITSU C | MOS GATE ARRAY U | VIT CEL | L SPECI | FICATIO | N | | "UH | B" Versio | on | |-------------|------------------|---------|---------|---------|--------|---------|--------|-----------|-------| | Cell Name | Function | | | | | | | Number o | f BC | | | | | | | | | | | | | R2P | Power 2-input 0 | R | | | | | | 2 | | | Cell Symbol | | | | agation | Delay | Paramet | er | | | | | | | up | | td | | | ┙ | I | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | 0.78 | 0.08 | 1.14 | 0.05 | 0.07 | 8 | A → 3 | X | | | | ļ | | | | | | | 1 | | | | | | | | | | 1 | - 1 | | | | | | | | | | | | | | | ĺ | | | | | | 1 | 1 | } | | | A1 —— | \rightarrow | | | | | | | | - 1 | | A2 - | _) x | | | | | | | 1 | | | AZ L | | | | | | | | 1 | - 1 | 1 | | | | | | | | | | | |] | | | | Parame | ter | | | S | ymbol | Typ(n | s)* | | | | | | | | T | ļ | | | | | | Input Loading | | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | | A | 1 | | | | | 1 | | 1 | | | | | | | | | 1 | | 1 | 1 | | | | | | Output Driving | | | | | - [| | 1 | | | Pin Name | Factor (lu) | | | | | - 1 | | i | | | X | 36 | * Mini | mum val | ues for | the ty | pical c | perati | ing condi | tion. | | | | The | values | for the | worst | case op | erati | ng condit | ion | | | | are | given b | y the m | aximum | delay m | ultip | lier. | ITIN DOD DO | Cl. + 1/1 | | | | | | | De | 5-1 | | UHB-R2P-E2 | Sheet 1/1 | | | | | | | Page | 5-1 | | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | " UI | HB" Version
Number of BC | | |----------------|-------------------|---------|------------|-------------|-------------|---------|-------------|-----------------------------|--| | Cell Name | Function | rion N | | | | | | | | | R3P | Power 3-input 0 | R | | | | | | 3 | | | Cell Symbol | | +- | Prop
up | agation | Delay
td | | er | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | 0.90 | 0.08 | 1.84 | 0.06 | 0.08 | 8 | A → X | A1 | A | | | | | | | | | | A2 ——
A3 —— | x | | | | | | | | | | AS | Parame | ter | L | | l s | ymbol | Typ(ns)* | Input Loading | | | | | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | | A | 1 | Output Driving | | | | | İ | | | | | Pin Name | Factor (lu) | | | | | | | | | | Х | 36 | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical c | perat | ing condition. | | | | | The | values | for the | worst | case or | erati | ng condition | | | | | ı are | given b | y the m | naximum | deray I | urcip | 1161. | 1 | UHB-R3P-E2 | Sheet 1/1 | | | | | | | Page 5-2 | | | Ellitzell c | WOO CATE ADDAY II | NITT CET | CDECT | PTCATTO | NT. | | 117777 | n" v | |-------------|-------------------------------|------------|-------------|------------|---------|-----------|--------|--| | Cell Name | MOS GATE ARRAY U | MII CEL | L STEUL | L TCALLO | LN . | | I UH | B" Version
Number of BC | | | | | | | | | | | | R4P | Power 4-input 0 | R | | | | | | 3 | | Cell Symbol | | | | agation | Delay | | er | | | | | | up VCT | +0 1 | KCL KCL | n
KCL2 | CDR2 | I | | 1 | | t0
0.90 | KCL
0.08 | t0
2.52 | 0.07 | 0.10 | 8
8 | $\begin{array}{c c} Path \\ A \rightarrow X \end{array}$ | | | | 0.50 | 0.00 | 2.32 | 0.07 | 0.10 | 0 | A T A | | | | | | | | | | | | Ì | | | | | | | | | | | | | | ĺ | | | | 1 | | | | | | | | | | | | A1 - | \rightarrow | | | | | | | | | A2 - | x | | | | | | | 1 | | A3 | | | | | | | | | | A4 —— | 7 | | | | | | | 1 | | | | | | | | | | | | | | Don | <u></u> | | | | ymbol | Type(no)* | | | | Parame | rer | | | | ушрот | Typ(ns)* | | | | | | | | - 1 | } | | | | | | | | | | | | | | | | | | | | 1 | | | | Pin Name | Input Loading
Factor (lu) | | | | | 1 | | | | A A | ractor (xu) | | | | | | | | | | • | | | | | l | | | | | | | | | | i | j | | | | Pin Name | Output Driving
Factor (lu) | | | | | 1 | | | | X | 36 | | | | | 1 | | | | | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ing condition. | | } | | The | values |
for the | worst | case op | erati | ng condition | | | <u></u> | are | given b | y the m | aximum | delay m | ultip. | ier. | 1 | UHB-R4P-E2 | Sheet 1/1 | | | | | | | Page 5-3 | | 011D K-1 E2 | Direct 1/1 | | | | | | | | ### **EXNOR/EXOR Family** | Page | Unit Celi
Name | Function | Basic
Cells | |------|-------------------|-----------------------------|----------------| | 2–61 | X1N | Exclusive NOR | 3 | | 2-62 | X1B | Power Exclusive NOR | 4 | | 2-63 | X2N | Exclusive OR | 3 | | 2-64 | X2B | Power Exclusive OR | 4 | | 2–65 | X3N | 3-input Exclusive NOR | 5 | | 2–66 | ХЗВ | Power 3-input Exclusive NOR | 6 | | 2–67 | X4N | 3-input Exclusive OR | 5 | | 2-68 | X4B | Power 3-input Exclusive OR | 6 | | | CMOS GATE ARRAY U
Function | NIT CEL | L SPECI | FICATIO | N | | <u> "U</u> | HB" Version
Number of BC | |-------------|-------------------------------|------------|-------------|------------|-------------|--------------|-------------|--| | CEII Name | ranceron | | | | | | | TITILDET OF BC | | X1N | Exclusive NOR | | | | | | | 3 | | Cell Symbol | | | Prop | agation | | | er | | | | | | up | | td | | anna | → , , | | İ | | t0
1.16 | KCL
0.29 | t0
0.96 | KCL
0.13 | KCL2
0.16 | CDR2 | $\begin{array}{ c c } \hline Path \\ \hline A \rightarrow X \\ \hline \end{array}$ | | | | 1.16 | 0.29 | 0.36 | 0.13 | 0.16 | • | A - A | | | | | | | | | | 1 | 49 (| | | | | | | | | | A1 — | о— х | | | | | | | | | A2 | 1 | | Parame | ter | | L | l s | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | - [| | | | | | | | | | - | | | | 1 | | | | | | 1 | | | | | | | | | | | | | | | Input Loading | | | | | 1 | | | | Pin Name | Factor (lu) | | | | | 1 | | | | A | 2 | | | | | l | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Х | 18 | | | | | | | | | | | * Mini | mum val | nes for | the tv | mical o | nerat | ing condition. | | | | The | values | for the | worst | case or | erati | ng condition | | | | are | given b | y the m | aximum | delay m | ultip | lier. | | | | | | | | | | | | P 1 | • Cimenic | | | | | | | | | Equivalen | t Circuit | | | | | | | | | A1 | \. | | | | | | | | | A2 - | ρ | _ | | | | | | | | 1 11 | | D | — х | | | | | | | | | ノ | Λ. | ! | UHB-X1N-E2 | Sheet 1/1 | | | | | | | Page 6-1 | | | <u> </u> | | | | | | | | | | | | | | | | | - w | | |----------------------|-------------------|----------|---------|---------|--------|---------|--------|----------------------|-------------| | FUJITSU
Cell Name | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHI | B" Versi
Number o | on
of RC | | COLL NAME | | | | | | | | ··· | 2 20 | | X1B | Power Exclusive | NOR | | | | | 1_ | 4 | | | Cell Symbol | | | | agation | | | er | | | | | | | up | | td | | CDDO | ٠ | _ | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
A → | 1 | | | | 1.49 | 0.08 | 1.77 | 0.05 | 0.09 | 7 | A → | Х | 1 | 1 | | | | (| | | | | | | | | | A1 | x | | | | | | | 1 | | | A2 - | ' | | | 1 | | | | 1 | | | | | | | | | | | 1 | Parame | ter | | | T S | ymbol | Typ(I | ns)* | | | | | | | | | | | | | | | | | | | l | | | | | | | | | | | ŀ | | 1 | | | | | | | | | 1 | | 1 | | | | | | | | | | | 1 | | | | | | | | | | | | | | | Input Loading | | | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | | A | 2 | | | | | 1 | | 1 | Ì | | | | | | | | | | | - 1 | | | | | | - | | | | | - 1 | | l | | | Din Mana | Output Driving | | | | | | | } | | | Pin Name
X | Factor (lu) | } | | | | l | | İ | | | ^ | 30 | | | | | | | _1 | | | | | * Mini | mum v21 | nes for | the tu | mical c | perati | ng cond | ition. | | | 1 | The | values | for the | worst | case or | eratin | g condi | tion | | | } | are | given b | v the m | aximum | delav n | ultipl | ier. | | | | | | | | | | | | | | 1 | | | | | | | | | | | Equivaler | nt Circuit | | | | | | | | | | _ | | | | | | | | | | | A1 | ¬`p | | | | | | | | | | A2 - | ブ <u> </u> | <u> </u> | | | | | | | | | | | p(` | > | X | ĺ | } | 1 | 1 | UHB-X1B-E2 | Sheet 1/1 | | | | | | | Page | 6-2 | | FILTTSII | CMOS GATE ARRAY U | NIT CEL | L SPECT | FICATIO | Ŋ | | 11111 | IB" Version | |-------------|---------------------------------------|------------|-------------|---------|--------|---|-------|-------------------| | | Function | TAL OBL | | LUNITU | | | 1 1 | Number of BC | | | | | | | | | | | | X2N | Exclusive OR | | | | | | | 3 | | Cell Symbol | | | | agation | | | er | | | | | | up | | td | | anna. | ⊣ , | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
A → X | | | | 1.11 | 0.29 | 1.17 | 0.13 | 0.16 | 4 | $A \rightarrow X$ | į į | | | | | | | | | | | | A1 — | A | | | | | | | | | A2 | x | | | | | | l | j | | ' | | | | | | | | | | | | | | | | | } | | | | | | | | | | | | | | | Parame | ter | | L | 1 8 | ymbol | Typ(ns)* | | | | | | | | - | | 1 | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | ľ | | | | | I Tanna Tandina | | | | | | | 1 | | Pin Name | Input Loading | | | | | | | | | A A | Factor (lu) | | | | | | | | | •• | _ | i | | | | | | | | | | | | | | 1 | | | | | | } | | | | | | | | | | | | | | | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | 1 | | | | | | | | X | 14 | | | | | | | | | | | * Mini | mum 1721 | ues for | the to | nical c | nerat | ing condition. | | | | The | values | for the | worst | case or | erati | ng condition | | | | are | given b | y the m | aximum | delay m | ultip | lier. | | | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | | | | | | | | | | | Equivalen | t Circuit | | | | | | | | | A1 — | _ | | | | | | | | | A1 A2 | <u>}</u> >──── | | | | | | | | | 1 17- | ´ L | A . | | | | | | | | | | | — x | | | | | | | | J | _ | | | | | | | | 1 | _ | | | | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | | | | | | | | | | UHB-X2N-E2 | Sheet 1/1 | | | | | | | Page 6-3 | | DE | 1 | | | | | | | | | TUTTENT! | THE PART AND | NITT CEL | T CDECT | TTCATTO | NT | | 11777 | 011 17 | | |-------------|--|--------------------|-----------|----------|---------|-----------|--------|----------------------|------------| | Cell Name | CMOS GATE ARRAY U
Function | NII CEL | L SPECI | FICATIO. | N | | I UH. | B" Versi
Number c | on
F BC | | JOIL Hame | 1 011001011 | | | | | | | , amber C | - 110 | | X2B | Power Exclusive | OR | | | | | | 4 | | | Cell Symbol | | | | agation | | | er | | | | | | t0 | up
KCL | t0 | KCL KCL | n
KCL2 | CDR2 | Path | , | | | | 1.43 | 0.08 | 1.64 | 0.05 | 0.07 | 7 | A → | | | | | | | | | | | | | | | | | | | ' | | | | | | | | | | | | | | } | A1 | | | | | | | | | | | A1 — | х | | | | | | | | | | AZ I | | | | | | | | | | | | | | | | | | | 1 | | | | | · | | | | | | | | | | | Parame | ter | | | l s | ymbol | Typ(r | ıs)* | | l | | | | | | | | | | | | | l | } | Input Loading | İ | | | | - | | | | | Pin Name | Factor (lu) | | | | | ł | | ĺ | | | A | 2 | | | | | ļ | | | | | İ | | } | | | | 1 | | | | | | | | | | | l | | | | | | | | | | | ĺ | | | | | | Output Driving | 1 | | | | 1 | | | | | Pin Name | Factor (lu) |] | | | | 1 | | | | | Х | 36 | | | | | | | | | | | | * Mini | mum val | ues for | the to | mical o | nerati | ng cond: | ition | | | | The | values | for the | worst | case or | eratin | g condi | tion | | | | are | given b | y the m | naximum | delay n | ultipl | ier. | | | | | | | | | | | | | | Equivalen | + Circuit | | | | | | | | | | Equivalen | C CITCUIT | | | | | | | | | | A1 - | b | | | | | | | | | | A2 - | | | | | | | | | | | 1 L | <u> </u> |)) -(| > | X | | | | | | | L | | | | | | | | | | | | J | UHB-X2B-E2 | Sheet 1/1 | | | | | | | Page | 6-4 | | FULTEU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | T "TIH | B" Version | |--------------------|------------------|---------|---------|----------|----------|---------|----------|---------------| | | Function | WII ODD | | 1011110 | <u> </u> | | 1 | Number of BC | | Vari | 3 F 1:
: | NOD | | | | - | | - | | X3N
Cell Symbol | 3-input Exclusi | ve NUK | Prop | agation | Delay | Paramet | er l | 5 | | GOII DYMEOI | | t | up | 28001011 | td | n | <u> </u> | T | | | | t0 | KCL | t0 | KCL | KCL2 | | Path | | | | 2.72 | 0.29 | 2.32 | 0.13 | 0.16 | 4 | A - X | A1 ——— | 7 | | | | | | | | | A1 A2 | -b x | | | | | i | | | | A3 | - | Parame | ter | | | | ymbol | Typ(ns)* | | <u> </u> | | 1 arame | | | | | , m. O 1 | 1,50(113) | | Ì | | | | | | 1 | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | |] | | | | A | 2 | | | | | | | | | | | 1 | | | | - 1 | Dia Nama | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | { | | | | | | | | | 10 | | | | | | | _1 | | | | * Mini | mum val | ues for | the ty | pical c | perati | ng condition. | | | | The | values | for the | worst | case op | eratin | g condition | | ļ | l | are | given b | y the m | aximum | delay m | ultipl | ier. | | | | | | | | | | | | Equivalent | Circuit | | | | | | | | | | | | | | | | | | | A2 1 | | | | | | | | | | A3 | ٦ | х | | | | | | | | | A1 | IU | } | | | | | | | | | | UHB-X3N-E2 | Sheet 1/1 | | | | | | | Page 6-5 | | | | | | | | | | | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHB | " Versi | on | |---|------------------|-----------|---------|----------|---------------------------------------|---------|---------------|----------|-------| | | Function | | | | | | N | umber c | f BC | | хзв | Power 3-input E | vo luodes | ם אוחים | | | | | 6 | | | Cell Symbol | rower 3-input L | ACTUSIVO | Prop | agation | Delav | Paramet | er | 6 | | | | | tı | up | 3 | td | | - | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | 2.64 | 0.08 | 3.39 | 0.05 | 0.09 | 7 | A → | X | A1 | 7 | | | | | | | 1 | | | A2 | x | | | | | | | | | | A3 — | 7 | | | | | | | | | | | | | | | | | l | | | | | | | | | | | | | | | | | Parame | ter | | L | S | ymbol | Typ(r | ıs)* | 1 | Input Loading | | | | | | | | | | Pin Name | Factor (lu) | | | | | ļ | | | | | A | 2 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | Output Driving | | | | | 1 | | 1 | | | Pin Name | Factor (lu) | | | | | | | | | | Х | 36 | | | | | | | | | | | | | _ | _ | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng cond: | ition | | | | ine | values | for the | e WOIST | delay n | miltinl | ier. | LION | | | | are | PTACH F | , one ii | · · · · · · · · · · · · · · · · · · · | coray i | | | | | Equivalent | t Circuit | A2 | _ | | | | | | | | | | A3 ———————————————————————————————————— | J LIA NA | х | | | | | | | | | A1 | + | х | | | | | | | | | | , <u> </u> | 1 | | | | | | | | | | | 1 | UHB-X3B-E2 | Sheet 1/1 | | | | | | | Page | 6-6 | | DUITE CO | MOG GARTE ADDAM II | NITE OF L | CDECT | DIGATIO | .7 | | 11777 | WD 11 W | |-------------|--------------------|-----------|---------|---------|--------|---------|-------|--------------------------| | | MOS GATE ARRAY U | NII CEL | SPECI. | FICATIO | N | | 1 01 | HB" Version Number of BC | | | | | | | | | | | | X4N | 3-input Exclusi | ve OR | | | | | 1 | 5 | | Cell Symbol | | +: | up Prop | agation | Delay | | er | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.82 | 0.29 | 2.53 | 0.13 | 0.16 | 4 | A → X | | | | | | | | | | 1 | A1 | \rightarrow | | | | | | | | | A2 | x | | | | | | | | | A3 | 7 | L | | | | | Parame | ter | | | s | ymbol | Typ(ns)* | 1 | | | | | Input Loading | | | | | 1 | | | | Pin Name | Factor (lu) | | | | | | | | | A | 2 | <u> </u> | | | | - 1 | | | | | | Ì | | | | | | | | | | | | | | | | | | ļ | Output Driving | } | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Х | 14 | | | | | | | | | | | * Mini | mum val | ues for | the ty | mical c | perat | ing condition. | | | | The | values | for the | worst | case or | erati | ng condition | | | <u> </u> | are | given b | y the m | aximum | delay m | ultip | lier. | | Equivalent | Circuit | | | | | | | | | Pderagent | . 0110010 | | | | | | | | | A2 - | | | | | | | | | | A3 - | ٦ | | | | | | | | | | Щ | | | | | | | | | A1 | x | | | | | | | | | , n | 1 | } | UHB-X4N-E2 | Sheet 1/1 | | | | | | | Page 6-7 | | 3 | 2 | · | | | | | | | | Robert Symbol S | FUJITSU C | CMOS GATE ARRAY U | NIT CEL | "Uī | HB" Version
Number of BC | | | | | |--|--|-------------------|----------|---------|-----------------------------|--------|---------|----------|-------------------| | Propagation Delay Parameter tup tdn to KCL to KCL CDR2 Path 2.47 0.08 3.13 0.05 0.07 7 A + X Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Pin Name Input Loading Factor (£u) A 2 Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | | | xclusive | e OR | | | | | | | To KCL to KCL CDR2 Path 2.47 0.08 3.13 0.05 0.07 7 A + X Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | | | | Prop | agation | Delay | Paramet | er | | | Pin Name Input Loading Factor (£u) Pin Name Factor (£u) A 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | 0220 | _ | | Parameter Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Pin Name Factor (£u) A 2 Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | | | | | | | | | Path | | Parameter Parameter Symbol Typ(ns)* Pin Name Factor (£u) A Output Driving Pin Name Factor (£u) X Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | 2.4/ | 0.08 | 3.13 | 0.05 | 0.07 | ' | $A \rightarrow X$ | | Parameter Parameter Symbol Typ(ns)* Pin Name Factor (£u) A Output Driving Pin Name Factor (£u) X Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | | | 1 | | Parameter Parameter Symbol Typ(ns)* Pin Name Factor (£u) A
Output Driving Pin Name Factor (£u) X Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | | | | | Parameter Parameter Symbol Typ(ns)* Pin Name Factor (£u) A Output Driving Pin Name Factor (£u) X Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | | | | | Parameter Parameter Symbol Typ(ns)* Pin Name Factor (£u) A Output Driving Pin Name Factor (£u) X Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | | | | | Parameter Parameter Symbol Typ(ns)* Pin Name Factor (£u) A Output Driving Pin Name Factor (£u) X Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | _ | | | | | | | | | Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | | \rightarrow | | | | | | | | | Pin Name Input Loading Factor (£u) | | x | | | | | | 1 | | | Pin Name Factor (£u) A 2 Pin Name Factor (£u) Y 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | A3 — | 7 | | | | | | | | | Pin Name Factor (£u) A 2 Pin Name Factor (£u) Y 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | | | | | | | | | | | Pin Name Factor (£u) A 2 Pin Name Factor (£u) Y 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | | | | | | | | | | | Pin Name Factor (£u) A 2 Pin Name Factor (£u) Y 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | | | Parame | ter | أحصنبا | | l s | vmbol | Typ(ns)* | | Pin Name Factor (fu) A 2 Pin Name Output Driving Factor (fu) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | · | | | | | | | Pin Name Factor (fu) A 2 Pin Name Output Driving Factor (fu) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | | | | | Pin Name Factor (fu) A 2 Pin Name Output Driving Factor (fu) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | | | 1 | | Pin Name Factor (fu) A 2 Pin Name Output Driving Factor (fu) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | , | | | | | | | | | Pin Name Factor (fu) A 2 Pin Name Output Driving Factor (fu) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | 1 | | 1 | | Pin Name Factor (fu) A 2 Pin Name Output Driving Factor (fu) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | Tanua Tandini | | | | | l | | 1 | | Pin Name Output Driving Factor (Lu) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | Pin Name | Factor (0) | | | | | | | | | Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | 1 | | | | Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | 1 | | 1 | | Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | | | | | Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | | | | | | | | | | Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | | 0 | | | | | l | | | | * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | Pin Name | Factor (811) | | | | | | | | | * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 X | X | | 1 | | | | 1 | | | | The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 | | | | | ····· | | | | | | Equivalent Circuit A2 A3 X | | | * Mini | mum val | ues for | the ty | pical c | perat | ing condition. | | Equivalent Circuit A2 A3 X | | | The | values | for the | worst | case or | erati | ng condition | | A2
A3 | | | are | given b | y the m | aximum | delay n | ultip | lier. | | A2
A3 X | | | | | | | | | | | A2
A3 | Equivalen | t Circuit | | | | | | | | | A3 — X | | | | | | | | | | | 1 x | | 7_ | | | | | | | | | A1 X | A3 ——————————————————————————————————— | | | | | | | | | | | A1 | ~\ \ | х | 1 | | | | | | | | | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | | 1 | 1 | | | | | | | | | | 1 | UHB-X4B-E2 Sheet 1/1 Page 6-8 | UHR-YAR-F2 | Sheet 1/1 | | | | | | | Page 6-8 | # AND-OR-Inverter Family (AOI) | | Unit Cell | | Basic | |------|-----------|---------------------------------|-------| | Page | Name | Function | Cells | | 2-71 | D23 | 2 AND into 2 NOR AOI | 2 | | 2-72 | D14 | 3 AND into 2 NOR AOI | 2 | | 2-73 | D24 | 2, 2 ANDS into 2 NOR AOI | 2 | | 2-74 | D34 | 2 AND into 3 NOR AOI | 2 | | 2-75 | D36 | 3, 2 ANDS into 3 NOR AOI | 3 | | 2-76 | D44 | 2 OR into 2 AND inot 2 NOR AQI2 | | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |---------------|------------------|---------|-------------------|-----------|-----------------|--------------------|--------|---------------| | Cell Name | Function | | | | | | | Number of BC | | D23 | 2-wide 2-AND 3- | input A | OI | | | | | 2 | | Cell Symbol | | | Prop | agation | Delay | | er | | | | | t0 t | KCL KCL | t0 | KCL KCL | n
KCL2 | CDR2 | Path | | | | 0.73 | 0.29 | 0.68 | 0.14 | KOHZ | ODICE | A + X | | | | 0.37 | 0.22 | 0.37 | 0.09 | 0.12 | 4 | B → X | A1 - | 7 | | | | | | | | | A2 | х | | | | | | | | | В — | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | ļ | - · · · | Input Loading | | | | | | | 1 | | Pin Name
A | Factor (lu) | | | | | j | | | | В | ī | | | | | 1 | | | | 1 | | | | | | 1 | | | | | | | | | |] | | | | | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | | | | | | | | | ^ | 17 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | are | values
given b | ror the m | worst
aximum | case op
delav m | ultipl | ng condition | | | <u> </u> | · | 9 | } | UHB-D23-E1 | Sheet 1/1 | | | | | | | Page 7-1 | | | | | | | | | | | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB | | | | | | | | | |--|-----------------|--------------|---------|---------|--------|--------|--------|--| | | Function | | | | | | | Number of BC | | | | | | | | | | | | D14 | 2-wide 3-AND 4- | input A | OI | | | | | 2 | | Cell Symbol | | | | agation | Delay | | ter | | | | | | up | | td | | 1 0=== | - . | | | ' | t0 | KCL | t0 | KCL | KCL2 | | $\begin{array}{c c} & \text{Path} \\ \hline & A \rightarrow X \end{array}$ | | | | 0.90 | 0.29 | 0.70 | 0.19 | 0.21 | | | | | | 0.32 | 0.20 | 0.36 | 0.09 | 0.12 | 4 | B → X | | | | | | | | | I | | | _ | | | | | | | | | | A1 | , | | | | | | | | | A2 | | | | | | | | | | A3 — | | | | | | | | | | | х | | | | | | | | | В —— | ^ ^ | | | | | | | | | | ı |
Parame | tor | | | | Symbol | Typ(ns)* | | | | rarame | ret | | | | оушоот | TAP(II2) | | | | | | | | - | - | | 1 | | | | | | | | | | | | | | | | | | İ | | | | | Input Loading | | | | | j | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | | | | | 1 | | | | В | i | | | | | - 1 | | j | | _ | _ | | | | | | | | | | | | | | | - 1 | | 1 | | | | | | | | 1 | | 1 | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | X | 14 | | | | | 1 | | Ì | | | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical | operat | ing condition. | | | | The | values | for the | worst | case c | perati | ng condition | | | | are | given b | y the m | aximum | delay | multip | lier. | | | | ············ | <u></u> | | UHB-D14-E1 | Sheet 1/1 | | | | | | | Page 7-2 | | FILITZII C | MOS GATE ARRAY U | NTT CELL | CDECT | ETCATTO | NT | | n inne | B" Version | |--------------------|------------------|----------|-------------------|---|--------|---------|---------|---------------| | | Function | NII CELI | L BrECI. | FICALIO | IN | | | Number of BC | | | | | | *************************************** | | | | | | D24
Cell Symbol | 2-wide 2-AND 4- | input A | OI
Prop | castion | Dolarr | Paramet | | 2 | | Cell Symbol | | tı | up Prop | agation | td | | 91 | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.54 | 0.22 | 0.62 | 0.14 | | | A → X | | | | 0.67 | 0.22 | 0.83 | 0.14 | | | B → X | | | | | | | | | | 1 | | | | | | | | | | 1 | | _ | | | | | | | | 1 | | A1 | _ | | | | | | | 1 | | A2 — | х | | | | | | | | | В1 — | ^ * | | | | | | |] | | В2 — | | | | | | | |] | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | ! | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | l | | | | A
B | 1
1 | | | | | - | | | | В | 1 | | | | | | | | | | | | | | | ļ | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | X | 14 | | | | | | | | | | | * Wini | m.,m | nos for | the tw | mical a | norati | ng condition. | | | | The | mum vai
values | for the | worst | case op | erating | g condition | | | | are | given b | y the m | aximum | delay m | ultipl | ier. | • | UHB-D24-E2 | Sheet 1/1 | | | | | | | Page 7-3 | | OUD-074-F7 | Sheer 1/1 | | | | | | | 11450 / 7 | | FILITSILC | MOS GATE ARRAY U | NIT CEL | . SPECT | FICATIO | N | | 111111 | HB" Version | |-------------|------------------|---------|----------|---------|-------------|---------|--------|----------------| | | Function | NII CEE | o bildi. | LICATIO | | | 1 01 | Number of BC | | | | | | | | | | | | D34 | 3-wide 2-AND 4- | input A | OI P | | D-1 | D | | 2 | | Cell Symbol | | +, | up Prop | agation | Delay
td | Paramet | er | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.15 | 0.41 | 0.73 | 0.15 | | | A + X | | | | 0.62 | 0.35 | 0.43 | 0.09 | 0.12 | 4 | B → X | A1 - | | | | | | | | | | A2 | ٦_ | | | | | | | | | | 4 | | | | | | | | | B1 | - х | | | | | | | | | В2 ——— | | | | | | | | | | | | | | | i i | | | | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | - | | | | 1 | | | | | | - 1 | | | | 1 | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | 1 | | A | 1 | | | | | | | 1 | | В | 1 | | | | | | | | | | | ļ | | | | | | | | | | | | | | | | | | | Output Driving | 1 | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Х | 10 | | | | | | | | | | | * Mini | mum val | nes for | the ty | mical o | perat | ing condition. | | | | The | values | for the | worst | case or | erati | ng condition | | | | are | given b | y the m | aximum | delay m | ultip | lier. | UHB-D34-E2 | Shoot 1/1 | | | | | | | Page 7-4 | | UIID-D34-E2 | Sheet 1/1 | | | | | | | 11450 / 4 | | FUITTSU C | MOS CATE ADDAY II | NIT CELL | SPECT | ETCATIO | N | | amın. | " Version | |---|------------------------------|----------|------------|---------|---------|---------|----------|---| | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "U Cell Name Function | | | | | | | N | umber of BC | | | | | | | | | | | | D36
Cell Symbol | D36 3-wide 2-AND 6-input AOI | | | | | | | 3 | | Cell Symbol Propagation Delay Parameter tup tdn | | | | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | ł | | 0.77 | 0.28 | 0.72 | 0.14 | | | $A \rightarrow X$ | | | | 0.98 | 0.28 | 0.87 | | | | $\begin{array}{c} B \to X \\ C \to X \end{array}$ | | | | 1.17 | 0.28 | 1.02 | 0.14 | | | C → X | | | | | | | | | | | | A_{A2} | | | | | | | | l l | | | | | | | | | | | | В1 — | x | | | | | | | | | B2 ——————————————————————————————————— | A | | | | | | | | | | | i | | | | | | | | | | | | | | | | | | " | | لــــــا | | | | L | | — | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | l | | | | | | | | | | | | | | 1 | | | | | |] | | | | | | | | | Input Loading | 1 | | | | | | 1 | | Pin Name | Factor (lu) | } | | | | ļ | | | | A | 1 | 1 | | | | | | | | В | 1 | | | | | | | | | С | 1 | | | | | - 1 | | | | 1 | | | | | | - 1 | | | | | Output Driving | l | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | Х | 10 | | | | | | | l | | | | + Mini | mum .r.a.1 | nes for | the to | mical c | maratin | g condition. | | | | The | walues | for the | worst | case or | perating | condition | | | | are | given b | y the m | naximum | delay n | ultipli | er. | | | | | | | | | | | | ł | 1 | İ | UHB-D36-E1 | Sheet 1/1 | | | | | | | Page 7-5 | | | | | | | | | | | | | | | | | | | 1 11 | | |---|---|---------|----------|---------|--------|------------------|--------------|---| | | MOS GATE ARRAY U | NIT CEL | L SPECI. | FICATIO | N · | | <u> "U</u> | HB" Version | | Cell Name | Function | | | | | | Number of BC | | | D44 | 2-wide 2-OP 2-AND 4-input ACT | | | | | | | , | | | 2-wide 2-OR 2-AND 4-input AOI Propagation Delay Parameter | | | | | | | 2 | | Cell Symbol Propagation Delay Parameter tup tdn | | | | | | | | | | | | to I | KCL | t0 | KCL | KCL2 | CDR2 | Path | | Ì | | 1.04 | 0.41 | 0.78 | 0.14 | RODZ | CDRZ | A + X | | | | 1.03 | 0.41 | 0.64 | 0.14 | | | $B \rightarrow X$ | | 1 | | 0.99 | 0.29 | 0.48 | 0.09 | 0.11 | 4 | $C \rightarrow X$ | | l | | 0.33 | 0.23 | 0.40 | 0.03 | 0.11 | _ | 0 - A | A1 — | | | | | | | | | | A2 | 7 | | | | | | | | | B — | 77 | | | | | | | | | C | <u> </u> | | | | | | | | | " | . 0 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | 1 | 1 | | 1 | | Parame | ter | | | 1 8 | ymbol | Typ(ns)* | | | | | | | | - - | , | -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | j | | | | | | - 1 | | | | | | 1 | | | | 1 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | ł | | | | | Input Loading | 1 | | | | 1 | | | | Pin Name | Factor (lu) | i | | | | | | | | A | 1 | 1 | | | | | | | | В | 1 | l | | | | - 1 | | | | C | 1 | | | | | | | | | | | | | | | - 1 | | | | | | l | | | | | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | X | 10 | | | | | | | | | | | | _ | _ | _ | | | | | | | * Mini | mum val | ues for | the ty | pical c | perat | ing condition. | | | | The | values | for the | worst | case op | erati | ng condition | | | are given by the maximum delay multiplier. | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | ! | | | | | | | | | | : | 1 | 1 | - | | | | | | | | | | UHB-D44-E1 | Sheet 1/1 | | | | | | | Page 7-6 | | UND-D44-E1 | DHEEF I/I | | | | | | | 1 2 | # **OR-AND-Inverter Family (OAI)** | Page | Unit Cell
Name | Function | Basic
Cells | |------|-------------------|---------------------------------|----------------| | 2–79 | G23 | 2 OR into 2 NAND OAI | 2 | | 2-80 | G14 | 3 OR into 2 NAND OAI | 2 | | 2-81 | G24 | 2, 2 OR into 2 NAND OAI | 2 | | 2-82 | G34 |
2 OR into 3 NAND OAI | 2 | | 2-83 | G44 | 2 AND into 2 OR into 2 NAND OAI | 2 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | T"UH | IB" Version | |---------------|--|------------|-------------|------------|-----------------|----------|-----------|--| | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "U | | | | | | | Number of BC | | G23 | 2-wide 2-OR 3-input OAI | | | | | | | 2 | | Cell Symbol | Propagation Delay Parameter | | | | | | | | | | | | up | | td | n | | | | | | t0
0.72 | KCL
0.29 | t0
0.55 | KCL
0.14 | KCL2 | CDR2 | $\begin{array}{ c c } \hline Path \\ \hline A \rightarrow X \\ \hline \end{array}$ | | | | 0.72 | 0.16 | 0.55 | 0.14 | | | $B \rightarrow X$ | ۸, | | | | | | | | | | A1 A2 | ٠٠- | | | | | | | | | В — | x | | | | | | 1 | | | | | | | | | | | | | | | | | | 1 | | | | | | | Parame | ter | L | l | 1 9 | ymbol | Typ(ns)* | | | | Idiame | | | | | , m.o.c.i | 1,50,113, | Pin Name | Input Loading
Factor (lu) | | | | | | | | | A | 1 | | | | | | | | | В | 1 | İ | | | | į | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | | | | | | | | | " | 10 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical c | perati | ing condition. | | | | The | values | for the | worst
aximum | delaw m | eratin | ng condition | | | <u> </u> | are | given b | y the n | IAXIMUM | deray ii | urcip. | iter. | ļ | ļ | | | | | | | | | | | | UHB-G23-E1 | Sheet 1/1 | | | | | | | Page 8-1 | | | | | | | | | | | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION | THE TERMS OF | MOG GAME ADDAY II | NITE CELL | CDECT | CTCATTO | | | 1177777 | U 17 | |--|--------------|-------------------|-----------|-------------------|----------|--------|---------|---------|---------------| | Coll Symbol | | | NIT CELI | SPECI. | FICATIO. | N | | | | | The values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | JOIL Hame | 1 0110 0 1 011 | | | | | | 1, | Camper or bo | | Tup to KCL to KCL KOL2 CDR2 Path 1.20 0.42 0.65 0.14 RCL2 CDR2 A + X 0.25 0.16 0.65 0.14 B + X Parameter Symbol Typ(ns)* Pin Name Factor (Au) A 1 B 1 Pin Name Factor (Au) * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | G14 | 2-wide 3-OR 4-i | nput OAl | | | | | | 2 | | CO Color CCL CCR2 Path | Cell Symbol | | | | agation | | | er | | | A1 A2 A3 B Parameter Input Loading Factor (£u) X Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | A1 A2 A3 B Input Loading Factor (£u) A | | | | | | | KCL2 | CDR2 | Path
A → Y | | Parameter Symbol Typ(ns)* Typ(ns)* Parameter Parameter Parameter Parameter Parameter Parameter Symbol Typ(ns)* Whinimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | Pin Name Input Loading Factor (£u) A | | | 1 1 | 0.20 | | | | | | | Pin Name Input Loading Factor (£u) A | | | | | | | | | | | Pin Name Input Loading Factor (£u) A | A1 —— | | | 1 | | | | | | | Pin Name Input Loading Factor (£u) A 1 1 | | 7 | | | | | | | | | Pin Name Input Loading Factor (£u) A | A3 — | 1 | | | | | | | | | Parameter Symbol Typ(ns)* Pin Name Factor (£u) A 1 B 1 Pin Name Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | x —— (| | 1 | | | | | | | Pin Name Input Loading Factor (&u) A | В | | | | | | | | | | Pin Name Input Loading Factor (&u) A | | | | | | | | | | | Pin Name Input Loading Factor (&u) A | | | | | | | | | | | Pin Name Input Loading Factor (&u) A | | | Paramet | ter | | | | vmbo1 | Typ(ns)* | | Pin Name Factor (£u) A 1 B 1 Pin Name Output Driving Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | 1 ul ame | | | | | , | -5,5(115) | | Pin Name Factor (£u) A 1 B 1 Pin Name Output Driving Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | [| | Pin Name Factor (£u) A 1 B 1 Pin Name Output Driving Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | 1 | | | | | | | | | | Pin Name Factor (£u) A 1 B 1 Pin Name Output Driving Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | Pin Name Factor (£u) A 1 B 1 Pin Name Output Driving Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | Pin Name Factor (£u) A 1 B 1 Pin Name Output Driving Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | Input Loading | | | | | ĺ | | | | A 1 1 1 1 | Pin Name | Factor (lu) | | | | | | | | | Pin Name Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | A | 1 | | | | | | | | | Pin Name Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | В | 1 | | | | | | | | | Pin Name Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | Pin Name Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | Pin Name Factor (£u) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | Output Driving | | | | | - 1 | | | | * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | Pin Name | Factor (lu) | | | | | | | | | The values for the worst case operating condition are given by the maximum delay multiplier. | | 10 | L | | | | | | | | The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | are given by the maximum delay multiplier. | İ | | W Mini | mum val | ues for | tne ty | picai o | peratii | ng condition. | | | | | are | varues
given h | v the m | aximum | delay m | ultipl: | ier. | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | 1 | | 521011 2 | , | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | 1 | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | UHB-G14-E1 Sheet 1/1 Page 8-2 | | | | | | | | | | | | UHB-G14-E1 | Sheet 1/1 | | | | | | | Page 8-2 | | FUITSU C | MOS GATE ARRAY U | NIT CELI | . SPECI | FICATIO | N | | "UHE | B" Version | |--------------------|------------------|----------|----------|---------|--------|---------|-----------|---------------| | | Function | IVII ODD | D DI LOI | TORITO | ., | | I N | Number of BC | | | | | _ | | | | | | | G24
Cell Symbol | 2-wide 2-OR 4-i | nput OA | Prop | agation | Dolar | Paramet | | 2 | | Cell Symbol | | tı | up | agacion | td | | <u>e1</u> | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.50 | 0.29 | 0.70 | 0.14 | | | A → X | | | | 0.90 | 0.29 | 0.60 | 0.14 | | | B → X | 1 | | | | | | | | | | | | A1 A2 | ٦؍ | | | | | | | | | A2 | 」)>— x | | | | | | | | | B1 — | | | | | | | | | | B2 — | Parame | ter | | L | s | ymbol | Typ(ns)* | 1 | | | | | | | | | | 1
 | | | | | 1 | | 1 | | | | | | | | ļ | | | | Din Nama | Input Loading | | | | | | | | | Pin Name
A | Factor (lu) | | | | | | | | | В | ī | ŀ | | | | - | | | | ļ | Output Driving | 1 | | | | ļ | | | | Pin Name | Factor (lu) | | | | | ĺ | | | | Х | 10 | | | | | | | | | | | * Mini | mum val | nes for | the tw | mical c | nerati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | | are | given b | y the m | aximum | delay n | ultipl | ier. | } | Į | UHB-G24-E2 | Sheet 1/1 | | | | | | | Page 8-3 | | | | | | | | | | | | | | | CODE | | | | 17 | | |-------------|-------------------|----------|----------|---------|--------|---------|-----------|-------------------| | FUJITSU (| CMOS GATE ARRAY U | NIT CEL. | L SPECI. | FICATIO | N | | 101 | B" Version | | Cell Name | Function | | | | | | | Number of BC | | G34 | 3-wide 2-OR 4-i | nnu+ 04 | τ | | | | 1 | 2 | | Cell Symbol | J-wide Z-UK 4-1 | nput OA | Pron | agation | Delass | Parama+ | <u></u> 1 | | | Cell Symbol | | +- | up | agacion | td | raramet | er | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | · | 0.95 | 0.29 | 0.70 | 0.19 | RCLLZ | CDRZ | A + X | | | | 0.70 | 0.19 | 0.45 | 0.16 | | | $B \rightarrow X$ | | | | 0.70 | 0.19 | 0.45 | 0.10 | | | D 7 A | A1 | | | | | | | | | | A1 — | | | | | | | l | | | 1 12 | 4 | | | | | | | | | B1 | — b— x | | | | | | | | | В2 —— | | | | | | | | | | 7- | | | | | | | l | 1 | 1 | | Parame | ter | | | | ymbol | Typ(ns)* | | | | rarame | | | | —— | , m 1 | 1,50,115) | 1 | | l | Input Loading | 1 | | | | | | | | Pin Name | Factor (lu) | | | | | - | | | | A | 1 | 1 | | | | - 1 | | | | В | 1 1 | | | | | 1 | | | | - | - | l | | | | - 1 | | | | | | | | | | ļ | | | | | | i | | | | ł | | | | | Output Driving | t | | | | - 1 | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | X | 10 | 1 | | | | - 1 | | | | | | | | | | | | | | Ì | | * Mini | mum val | ues for | the ty | pical o | perat | ing condition. | | | | The | values | for the | worst | case or | erati | ng condition | | | | are | given b | y the m | aximum | delay n | ultip | lier. | | | | | | | | | | | | j | 1 | 1 | UHB-G34-E2 | Sheet 1/1 | | | | | | | Page 8-4 | | | | | | | | | | | | l Prittmen c | THOS CATE ADDAY I | NITT CELL | CDECTI | CTCATTO | N7 | | TITTE! | 011 11 | |--------------|-------------------|-----------|---------|---------|--------|---------|--------|----------------------------| | Cell Name | MOS GATE ARRAY U | NII CEL | SPECI | FICATIO | N | |) UH. | B" Version
Number of BC | | CELT HAME | 1 4110 0 1 0 11 | | | | | | | TOTTOET OF DO | | G44 | 2-wide 2-AND 2- | OR 4-in | out OAI | | | | - 1 | 2 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | ti | αp | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.73 | 0.29 | 0.86 | 0.19 | | | A → X | | | | 0.43 | 0.29 | 0.62 | 0.19 | | | B → X | | | | 0.50 | 0.16 | 0.52 | 0.14 | | | C → X | 1 47 — | | | | | | | | 1 | | A1 A2 | 4 | | | | | | | | | В — | | | | | | | | | | č | <u>р</u> х | 1 | | Parame | ter | | | S | ymbol | Typ(ns)* | 1 | | | | | | | | | | | | 1 | | 1 | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Input Loading | | | | | - 1 | | 1 | | A A | Factor (Lu) | | | | | i | | | | B | 1 | | | | | l | | | | Č | i | | | | | l | | | | " | 1. | | | | | | | | | | | ŀ | | | | 1 | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | I | | | | Х | 14 | | | | | | | | | | • | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The | values | for the | worst | case op | eratin | g condition | | | <u> </u> | are | given b | y the m | aximum | delay m | ultipl | ier. | 1 | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | ! | | | | | | | | | | ! | | | | | | | | | | ! | | | | | | | | | | ! | | UHB-G44-E1 | Sheet 1/1 | | | | | | | Page 8-5 | ## **Multiplexer Family** | Page | Unit Cell
Name | Function | Basic
Cells | |-------|-------------------|--|----------------| | 2–87 | T24 | 4:1 Power 4, 2 ANDs into 4 NOR Multiplexer | 6 | | 2–88 | T26 | 6:1 Power 6, 2 ANDs into 6 NOR Multiplexer | 10 | | 2–89 | T28 | 8:1 Power 8, 2 ANDs into 8 NOR Multiplexer | 11 | | 2–91 | T32 | 2:1 Power 2, 3 ANDs into 2 NOR Multiplexer | 5 | | 2–92 | T33 | 3:1 Power 3, 3 ANDs into 3 NOR Multiplexer | 7 | | 2-93 | T34 | 4:1 Power 4, 3 AND into 4 NOR Multiplexer | 9 | | 2-94 | T42 | 2:1 Power 2, 4 ANDs into 2 NOR Multiplexer | 6 | | 2–95 | T43 | 3:1 Power 3, 4 ANDs into 3 NOR Multiplexer | 10 | | 2–96 | T44 | 4:1 Power 4, 4 ANDs into 4 NOR Multiplexer | 11 | | 2–97 | T54 | 4:1 Power 2, 2-3-4 ANDs into 4 NOR Multiplexer | 10 | | 2–98 | U24 | 4:1 Power 4, 2 OR into 4 NAND Multiplexer | 6 | | 2–99 | U26 | 6:1 Power 6, 2 OR into 6 NAND Multiplexer | 9 | | 2-100 | U28 | 8:1 Power 8, 2 OR into 8 NAND Multiplexer | 11 | | 2-101 | U32 | 2:1 Power 2, 3 OR into 2 NAND Multiplexer | 5 | | 2-102 | U33 | 3:1 Power 3, 3 OR into 3 NAND Multiplexer | 7 | | 2-103 | U34 | 4:1 Power 4, 3 OR into 4 NAND Multiplexer | 9 | | 2-104 | U42 | 2:1 Power 2, 4 OR into 4 NAND Multiplexer | 6 | | 2–105 | U43 | 3:1 Power 3, 4 OR into 3 NAND Multiplexer | 9 | | 2-106 | U44 | 4:1 Power 4, 4 OR into 4 NAND Multiplexer | 11 | | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | | B" Version
Number of BC | |---|------------------------------|---------|-------------------|--------------------|--------|-----------------|--------------------|---| | | ranceron | | | | | ····· | | Mannet Of BC | | T24
Cell Symbol | Power 2-AND 4-w | ide Mul | | | Delay | Dame | | 6 | | Cell Symbol | | tı | ip Prop | agation | td | | ter | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.62 | 0.08 | 1.52
1.76 | 0.04 | | | $\begin{array}{c} A \rightarrow X \\ B \rightarrow X \end{array}$ | | | | 1.58 | 0.08 | 1.64 | 0.04 | | | $C \to X$ | | A1 | | 1.72 | 0.08 | 1.88 | 0.04 | | | $D \rightarrow X$ | | A2 - | | | | | | | | | | B1 | 44 | | | | | | | | | B2 — | x | | | | | | | | | C1 - | ν <u>π</u> | | | | | | i | | | C2 — | | | | | | | | | | D1 - | | | | | | | | | | D2 — | 1 | Parame | ter | | | | Symbol | Typ(ns)* | Pin Name | Input Loading
Factor (lu) | | | | | | | | | A
B | 1 1 | | | | | | | | | С | 1 | | | | | | | | | D | 1 | | | | | | | | | | Output Driving | | | | | - | | | | Pin Name
X | Factor (lu) | | | | | | | | | ^ | 36 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical | operati | ng condition. | | | | Ine are | values
given b | for the
v the m | worst | case o
delav | peratir
multipl | ng condition | | | | | 9 | | | | | | | Equivalent | Circuit | | | | | | | | | A1 — | | | | | | | | | | A2 | A | | | | | | | | | D1 ~ | þ— | | | | | | | | | B1 ———————————————————————————————————— | P ~ . | | | | | | | | | | | > | X | | | | | 1 | | C1 — | B W | | | | | | | | | | b | | | | | | | | | D1 | otag | | | | | | | | | D2 — | • | | | | | | | | | 1 | UHB-T24-E1 | Chast 1/1 | | | | | | | Page 9-1 | | ORD-124-E1 | Sheet 1/1 | | | | | | | 11050 7 1 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | U"UH | B" Version | |--------------------|------------------|---------|---------|--------------|--------|------------------|--------|---------------| | | Function | | | | | | | Number of BC | | T32 | Doving 2-AND 2 | ido M1 | +inl | | | | | 5 | | T32
Cell Symbol | Power 3-AND 2-w | rae mul | Prop | r
agation | Delav | Paramet | er | 3 | | | | t | up | -5 | td | | | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.52 | 0.08 | 1.68 | 0.04 | | 1 | A + X | | | | 1.52 | 0.08 | 1.80 | 0.04 | | | B → X | | | | | | | | | | | | _ | | | | | | | 1 | | | A1 |) | | | | | | 1 | | | A2 | \square_{-} | | | | | | 1 | | | A3 — | х | | | | | | | | | В1 — | ` | | | į | | | 1 | | | B2 | \vdash | | | | | | | | | В3 — |) | | | | | | 1 | | | | | Parame | ter | | | L . | ymbol | Typ(ns)* | | | | rarame | LET | | | - ° | ,, | Typ(IIS) | | | | | | | | | | | | | | | | | | 1 | | | | | | 1 | | | | 1 | | | | | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | A
B | 1 | | | | | | | | | ь | 1 | Din
Nama | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | | | | | | | | | - | 33 | | | | | | | J | | | | * Mini | mum val | ues for | the ty | pical c | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | | are | given b | y the m | aximum | delay n | urcipi | ier. | | Equivalent | Circuit | | | | | | | | | | | | | | | | | | | A1 - | | | | | | | | | | A2 — Þ | | | | | | | | | | | <u></u> | > | X | | | | | | | B1 — | | , - | | | | | | | | B2 — 6 | | | | | | | | | | B3 — | 1 | UHB-T32-E1 | Sheet 1/1 | | | | | | | Page 9-5 | | | | | | | | | | | | FILTITELL C | MOS GATE ARRAY U | NIT CELL | CDECT | FICATIO | N | | "IIIII | B" Version | |---------------|----------------------------|------------|---|---------|-------------|-----------|---------|---------------| | Cell Name | Function | NII CELI | L SPECI. | FICATIO | IN . | | I DAI | Number of BC | | | | | | | | | — · | | | T33 | Power 3-AND 3-w | ide Muli | tiplexe | r | | | | 7 | | Cell Symbol | | | | agation | | Paramet | er | | | | | | up
VCT | t0 | td | n
KCL2 | CDDO | - B1 | | | | t0
1.75 | KCL
0.08 | 1.66 | KCL
0.04 | KCL2 | CDR2 | Path
A → X | | | | 1.75 | 0.08 | 1.78 | 0.04 | | | B + X | | | | 1.75 | 0.08 | 1.95 | 0.04 | | | C → X | | A1 - | | | | | | | | | | A2 | 7 | 1 | | | | | | | | A3 — | | 1 | 1 | | | | | | | | | | | | | | | | | B1 - | $\mathcal{T}_{\mathbf{a}}$ | 1 | | Ì | | | | | | B2 | х | | 1 | | | | | | | B3 — | | | | | | | | | | C1 — | | | | | | | | | | C2 | | | | | | | | | | C3 — | | Paramet | ter | | | S | ymbol | Typ(ns)* | | 1 | 1 | | | | | | | | | | 1 | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | | | | | | | | | В | 1 | | | | | - 1 | | 1 | | C | 1 | | | | | 1 | | | | | | | | | | - | | 1 | | | | | | | | | | | | D/- N | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | | | | | | | | | * |] 50 | | *************************************** | | | | | | | | | * Minir | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The ' | values | for the | worst | case op | erating | condition | | | <u> </u> | are | given b | y the m | aximum | delay m | ultipl: | er. | 1 | | | | | | | | | | į | İ | UHB-T33-E1 | Sheet 1/1 | | | | | | | Page 9-6 | | | | | | | | | | | | FILTERIA | MOS CATE ADDAY IT | NITT CET | T SPECT | ETCATTO | <u> </u> | | 111111 | B" Version | |-----------------|------------------------------|-------------|-------------|----------|-------------|---------|--------|-------------------| | | MOS GATE ARRAY U
Function | MII CEP | L SPECI. | FICALIO | .Y | | | Number of BC | | | | | | | | | | | | T42 | Power 4-AND 2-w | ide Mul | tiplexe: | <u>r</u> | D-1 | Deser | | 6 | | Cell Symbol | | + | Prop.
up | agation | Delay
td | | er | Т | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.60 | 0.08 | 1.88 | 0.04 | | | A + X | | | | 1.60 | 0.08 | 2.00 | 0.04 | | | $B \rightarrow X$ | | | | | | | | | | | | A1 | ١ | | | | | | | | | A2 | | | | | | | | | | A3 | | | | | | | | | | A4 — | ' | | | | | | | | | В1 — | x | | | | | | | | | B2 | | | | | | | | | | В3 — | | | | | | | | | | B4 — | / | | | | | L | | T- () (' | | | | Parame | ter | | | S | ymbol | Typ(ns)* | 1 | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | | | | | | | | | В | 1 | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | X | 36 | | | | | | | | | | | * Mini | mum val | ues for | the tv | pical c | perati | ng condition | | | | The | values | for the | worst | case op | eratin | g condition | | | | are | given b | y the m | aximum | delay m | ultipl | ier. | | Equipment : : : | Cimanit | | | | | | | | | Equivalent | CITCUIT | | | | | | | | | A1 — | | | | | | | | | | A2 | | | | | | | | | | A3 — | | | | | | | | | | A4 — | 1 P | | v | | | | | | | B1 — | | | X | | | | | | | B2 - | | | | | | | | | | В3 — | • | | | | | | | | | B4 — | UHB-T42-E1 | Sheet 1/1 | | | | | | | Page 9-8 | | JIID 142 DI | 0 | | | | | | | 1:-9- | | בווודיפוו כי | MOS GATE ARRAY U | NIT CEL | SPECT | FICATIO | N | | "IIII" | B" Version | |--------------------|------------------|----------|----------|--------------|----------|---------|--------|---| | | Function | NII CELL | L BILCI. | FICATIO | <u> </u> | | 1 | Number of BC | | 1107 | D 0 OD / | 1. W-1+ | | | | | | | | U24
Cell Symbol | Power 2-OR 4-wi | de Mult | Prop | agation | Delay | Paramet | er | 6 | | our cymrer | | tı | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.00 | 0.08 | 1.80
1.75 | 0.05 | 0.08 | 7 | $\begin{array}{c} A \rightarrow X \\ B \rightarrow X \end{array}$ | | | | 1.90 | 0.08 | 1.78 | 0.05 | 0.08 | 7 | $C \to X$ | | A1 - | | 1.38 | 0.08 | 1.70 | 0.05 | 0.08 | 7 | D → X | | A2 — | | | | | | | | | | В1 — | | | | | | | | | | B2 | 1) | | | | | | | | | a: | ☐ Þ— x | | | | | | | | | C1 C2 | | | | | | | ĺ | | | | | | | | | | | | | D1 | | | | | | L | | T ()* | | D2 — | | Parame | ter | | | - S | ymbol | Typ(ns)* | Input Loading | 1 | | | | | | | | Pin Name
A | Factor (lu) | - | | | | | | | | В | 1 | | | | | | | | | С | 1 | 1 | | | | | | | | D | 1 | | | | | | | | | | Output Driving | 1 | | | | | | | | Pin Name | Factor (lu) |] | | | | | | | | X | 36 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | <u> </u> | are | given b | y the m | aximum | delay n | ultipl | ier. | 1 | | | | | | | | | | UHB-U24-E1 | Sheet 1/1 | | | | | | | Page 9-12 | | | | | | | | | | | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECT | FICATIO | N | | l "U | HB" Version | |---------------|------------------|--------------|-------------------|--------------|--------------|---------|-------|-------------------------------------| | | Function | | | | | | | Number of BC | | U28 | Power 2-OR 8-wi | de Mul+ | iplexer | | | | | 11 | | Cell Symbol | TOUCH 2 OR O WI | | Prop | agation | Delay | | er | | | | | | up | | td | | GDDO | | | A1 —— | | t0
2.11 | KCL
0.08 | t0
3.18 | KCL
0.06 | 0.10 | CDR2 | Path
A → X | | A2 | | 1.55 | 0.08 | 3.14 | 0.06 | 0.10 | 7 | B → X | | == | | 1.51 | 0.08 | 2.81 | 0.06 | 0.10 | 7 | C + X | | B1 B2 | | 2.07
2.11 | 0.08 | 2.86
3.14 | 0.06
0.06 | 0.10 | 7 7 | $D \to X$ $E \to X$ | | | | 1.55 | 0.08 | 3.09 | 0.06 | 0.10 | 7 | $\mathbf{F} \rightarrow \mathbf{X}$ | | C1 C2 | ¬II_ I | 1.46
2.03 | 0.08 | 2.54
2.63 | 0.06 | 0.10 | 7 7 | $G \rightarrow X$ $H \rightarrow X$ | | 02 | | 2.03 | 0.08 | 2.03 | 0.00 | 0.10 |) | n - k | | D1 | ¬ | | | | | | | | | D2 | <u></u> | | | | | | | | | E1 — | | | | | | | | | | E2 - | | Parame | ter | | | S | ymbol | Typ(ns)* | | F1 — | | | | | | | | | | F2 | -1 | | | | | | | | | G1 —— | | | | | | | | | | G2 | | | | | | l | | | | | | | | | | | | | | H1 H2 | | | | | | | | | | 112 | | | | | | 1 | | - | | n | Input Loading | | | | | | | | | Pin Name
A | Factor (lu) | | | | | | | | | В | 1 | | | | | | | İ | | C
D | 1 | | | | | } | | | | E | 1 | | | | | | | | | F | 1 | | | | | | | | | G
H | 1 1 | | | | | | | | | п | 1 | | | | | | | | | | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | * Mini | mum val | ues for | the ty | pical c | perat | ing condition. | | | | | values
given b | | | | | ng condition
lier. | | | | · | UHB-U28-E1 | Sheet 1/1 | | | | | | | Page 9-14 | | | | | | | | | | | | Number of BC Symbol S S | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |---|-------------|------------------|----------|---------|---------|--------|---------|--------|---------------| | Propagation Delay Parameter Symbol Typ(ns)* | | | | | | | | | | | Propagation Delay Parameter Symbol Typ(ns)* | U32 | Power 3-OR 2-wi | de Mult | iplexer | | | | | 5 | | To KCL t0 KCL KCL2 CDR2 Path | Cell Symbol | 10.01 J UN 1 W | | Prop | agation | Delay | Paramet | eī | | | A1 | | | | up | +0 | | | anna | |
 A1 A2 A3 B1 B2 B3 Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Pin Name Factor (lu) A B 1 B 1 Comparison of the typical operating condition. The values for the typical operating condition. The values for the worst case operating condition. | | | | | | | | | Path
A + X | | A1 A2 A3 B1 B2 B3 Parameter Symbol Typ(ns)* Pin Name Factor (lu) A 1 B 1 Pin Name Factor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition. | | | | | | | | | | | Parameter Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Parameter Output Driving Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition. | | | | | | | | | | | Parameter Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Parameter Output Driving Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition. | <u></u> | | | | | | | | | | Parameter Parameter Symbol Typ(ns)* Parameter Parameter Symbol Typ(ns)* Parameter Output Driving Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition. | | - -1 | | | | | | | 1 | | Parameter Parameter Symbol Typ(ns)* Parameter Pin Name Factor (lu) A 1 1 Pin Name Factor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition. | | 7 | | | | | | | | | Parameter Parameter Symbol Typ(ns)* Parameter Parameter Output Driving Factor (£u) A 1 B 1 Output Driving Factor (£u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition. | | √ y — x | | | | | | | | | Parameter Symbol Typ(ns)* Parameter Symbol Typ(ns)* Pin Name Factor (£u) A 1 1 B 0 1 Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition. | | | | | | | | | | | Pin Name Input Loading Factor (£u) A | | | | Ì | | | | | | | Pin Name Input Loading Factor (£u) A | | | | ĺ | | | | | | | Pin Name Input Loading Factor (£u) A | } | | Parame | ter | | L | L | vmbol | Typ(ns)* | | Pin Name Factor (2u) A 1 B 1 Output Driving Factor (2u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | | | . G. ame | | | | | , 201 | 1 275 (115) | | Pin Name Factor (2u) A 1 B 1 Output Driving Factor (2u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | 1 | | | | | | 1 | | | | Pin Name Factor (2u) A 1 B 1 Output Driving Factor (2u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | | | | | | | 1 | | 1 | | Pin Name Factor (2u) A 1 B 1 Output Driving Factor (2u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | 1 | | | | | | 1 | | 1 | | Pin Name Factor (2u) A 1 B 1 Output Driving Factor (2u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | ļ | | | | | | - 1 | | | | A 1 1 B Output Driving Fin Name Factor (£u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | Pin Name | Input Loading | | | | | | | 1 | | Pin Name Factor (£u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | | | | | | | 1 | | 1 | | Pin Name Factor (2u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | В | 1 | | | | | | | 1 | | Pin Name Factor (2u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | | | | | | | | | 1 | | Pin Name Factor (2u) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | | | | | | | 1 | | | | X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition | | Output Driving | | | | | - | | 1 | | * Minimum values for the typical operating condition. The values for the worst case operating condition | | | | | | | 1 | | 1 | | The values for the worst case operating condition | ^ | 36 | | | | | | | | | The values for the worst case operating condition are given by the maximum delay multiplier. |] | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | are given by the maximum delay multiplier. | | | The | values | for the | worst | case op | eratin | g condition | | | | L | are | given b | у спе ш | aximum | deray m | ultipi | ier. | | | Ì | 1 | İ | | | | | | | | | | |] | | | • | UHB-U32-E1 Sheet 1/1 Page 9-15 | UHB-U32-E1 | Sheet 1/1 | | | | | | | Page 9-15 | | FILITSII (| CMOS GATE ARRAY U | NIT CEL | . SPECT | FICATIO | N | | "IIHII | B" Version | |--------------------|-------------------|--------------|--------------|--------------|----------|---------|-------------|---| | | Function | WII ODD | DI BOL | TICATIO | | | 1 | Number of BC | | | D 0 0 1 1 | 4. 34 4: | 1 | | | | | | | U34
Cell Symbol | Power 3-OR 4-wi | de Mult | Prop | agation | Delay | Paramet | | 9 | | Gell Bymbol | | t | up | agation | td | | <u>e1</u> | 1 | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | I | 2.11 | 0.08 | 2.98 | 0.06 | 0.10 | 7 | A - X | | هـ | | 2.13 | 0.08
0.08 | 3.00
2.44 | 0.06 | 0.10 | 7 | $\begin{array}{c} B \to X \\ C \to X \end{array}$ | | A1 A2 | | 1.92
2.11 | 0.08 | 2.44 | 0.06 | 0.10 | 7 | $D \to X$ | | A3 — | | 2.11 | 0.00 | 2.05 | 0.00 | 0.10 | • | | | | | | | | | | | | | B1 | | | | | | | | | | B2
B3 | 747 | 1 | | | | | | | | 25 | ☐ þ— x | | | | | | | | | C1 — | | | | | | | | | | C2 - | | | | | | | | | | C3 — | | Parame | tor | | <u> </u> | l | ymbol | Typ(ns)* | | D1 — | | rarame | reī | | | - 1 3 | ушрот | 1 yp(IIS)" | | D2 | | 1 | | | | | | | | D3 — | | | | | | | | | | | | } | | | | | | 1 | | | | | | | | | | | | | Input Loading | 1 | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | A | 1 | 1 | | | | | | | | В | 1 | [| | | | | | | | C
D | 1 1 | | | | | | | | | В | 1 | 1 | | | | | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | 1 | | | | | | 1 | | X | 36 | | | | | | | l | | | | * Mini | mum val | ues for | the tv | mical o | perati: | ng condition. | | | | The | values | for the | worst | case op | eratin | g condition | | | <u> </u> | are | given b | y the m | aximum | delay m | ultipl | ier. | UHB-U34-E1 | Sheet 1/1 | | | | | | | Page 9-17 | | | | | | | | | | | | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | " UI | HB" Version | |---------------|------------------|---------|-------------------|--------------------|--------|--------------------|-------------|---| | Cell Name | Function | | | | | | | Number of BC | | U42 | Power 4-OR 2-wi | de Mult | iplexer | | | | Ì | 6 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | | ир | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.60 | 0.08 | 1.71
1.64 | 0.05 | 0.08 | 7 | $\begin{array}{c} A \rightarrow X \\ B \rightarrow X \end{array}$ | | | | 2.55 | 0.00 | 1.04 | 0.03 | 0.08 | , | B 7 A | | Į. | A1 - |) | | | | | | | ĺ | | A2 | - - | <u></u> | | | | <u> </u> | | T ()* | | A3 A4 | | Parame | ter | | | 3 | ymbol | Typ(ns)* | | _ | 」 > x | | | | | ŀ | | | | B1 — | | | | | | Ì | | | | B2 | ┧ | İ | | | | 1 | | | | B3 |] | 1 | | | | | | | | B4 | , | | | | | | | | | | | l | | | | | | | | 1 | 1 | . | Input Loading | | | | | l | | | | Pin Name | Factor (lu) | 1 | | | | | | | | A
B | 1 | | | | | | | | | " | • | 1 | | | | | | | | | | 1 | | | | | | | | | |] | | | | l | | | | 1 | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | | 1 | f | +hc + | nicci - | | ina condition | | ^ | 30 | The | mum vai
values | ues for
for the | worst | case or
hical c | erati | ing condition. ng condition | | | | are | given b | y the m | aximum | delay m | ultip | lier. | | | | | | <u> </u> | 1 | 1 | UHB-U42-E1 | Sheet 1/1 | | | | | | | Page 9-18 | | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHI | B" Version | |-------------|------------------|---------|-------------------|--------------------|-------------|---------|----------------------|---| | Cell Name | Function | | | | | | 1 | Number of BC | | U43 | Power 4-OR 3-wi | de Mult | iplexer | | | | | 9 | | Cell Symbol | | | Prop. | agation | Delay
td | | er | | | | | t0
| KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.57 | 0.08 | 2.13 | 0.06 | 0.08 | 7 | A + X | | A1 | \ | 2.62 | 0.08 | 2.26
2.39 | 0.06 | 0.08 | 7 7 | $\begin{array}{c c} B \to X \\ C \to X \end{array}$ | | A2 | | | | | | | | | | A3 A4 | j | | | | | | | | | A4 0 | | | ļ | | | | | 1 | | B1 | 1 4 | Parame | ter | | | | Symbol | Typ(ns)* | | B2
B3 | ├─ | | | | | | | | | В4 | , Lo | | | | | | | | | cı — | | | | | | | | | | C2 | | | | | | | | | | C3 |] | | | | | | | | | C4 — | • | j | | | | | Input Loading | | | | | - | | | | Pin Name | Factor (lu) | | | | | | | | | A
B | 1
1 | | | | | - 1 | | | | Č | 1 | | | | | - 1 | | 1 | | | | | | | | | | 1 | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | 1 | | Х | 36 | * Minii | mum val
values | ues for
for the | the ty | pical o | operatii
Deratini | ng condition.
g condition | | | | are | given b | y the m | aximum | delay r | nultipl | ier. | | | | | | | | | | | | UHB-U43-E1 | Sheet 1/1 | | | | | | | Page 9-19 | ## **Clock Buffer Family** | Page | Unit Cell
Name | Function | Basic
Cells | |-------|-------------------|------------------------------|----------------| | 2–109 | K1B | True Clock Buffer | 2 | | 2-110 | K2B | Power Clock Buffer | 3 | | 2-111 | КЗВ | Gated Clock (AND) Buffer | 36 | | 2-112 | K4B | Gated Clock (OR) Buffer | 36 | | 2-113 | K5B | Gated Clock (NAND) Buffer | 3 | | 2-114 | KAB | Block Clock (OR) Buffer | 55 | | 2-115 | KBB | Block Clock (OR x 10) Buffer | 30 | | TILITANI I | | NITT OFF | CDCCT | TTO A MT C | | | 117 | ID II 17 | |-------------|----------------------------|----------|-----------|------------|-------------|---------|--------|-----------------------------| | | CMOS GATE ARRAY U Function | NII CEL | L SPECI | r ICATIO | N | | 1 "U | IB" Version
Number of BC | | Cell Name | Function | | | | | | | Mumber of BC | | K1B | True Clock Buff | er | | | | | | 2 | | Cell Symbol | | | | agation | | | er | | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.72 | 0.08 | 0.86 | 0.04 | | | A → X | · • | | | | | | | | | Α | У х | İ | | | | | | | | | | | | | | Parame | ter | | | l s | ymbol | Typ(ns)* | | | | Tarane | | | | | yu.bor | 239(22) | 1 | | | | | | | | | | į | | | | | , | | | | | | | ŧ | | | Input Loading | | | | | [| | | | Pin Name | Factor (lu) | | | | | 1 | | İ | | A | 1 | | | | | | | 1 | | | | | | | | - 1 | | Ì | | | | | | | | ļ | | | | | | | | | | l | | 1 | | | | | | | | 1 | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | Х | 36 | | | | | | | 1 | | | | * Mini | mum 17a 1 | ne for | the to | mical o | nerst | ing condition. | | | | The | walnes | for the | worst | case on | erati | ng condition | | | | are | given b | y the m | aximum | delav m | ultip | lier. | | | <u> </u> | | × | | | | | | | Equivale | nt Circuit | | | | | | | | | | | | | | | | | | | A> | x | | | | | | | | | | V | D 10 1 | | UHB-K1B-E1 | Sheet 1/1 | | | | | | | Page 10-1 | | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | UHI | " Version | |---------------|-------------------|----------|----------|-----------|-----------|----------|--------------|---------------| | Cell Name | Function | | | | | | 1 | lumber of BC | | | | | | | | | | | | K2B | Power Clock Buf | fer | | | | | | 3 | | Cell Symbol | | | | agation | | | er | · | | | | | up | | td | | , | 1 | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
A → X | | | | 1.06 | 0.04 | 1.20 | 0.03 | | | A + X | 1 | | | | | | | | | | l | N | | | | | | | 1 | | Α | x | | | | | | | | | | | | | | | | | 1 | 1 | | | | <u> </u> | L | | L | <u> </u> | <u> </u> | T (\sk | | | | Parame | ter | | | <u></u> | ymbol | Typ(ns)* | T T3/ | | | | | | | | | Din Nama | Input Loading | | | | | İ | | 1 | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | - 1 | | | | | Output Driving | | | | | l | | | | Din Nama | Factor ((1)) | | | | | ĺ | | | | Pin Name
X | Factor (lu) | | | | | | | | | ^ | - | | | | | | | <u> </u> | | | · | sk Mini | mum 1701 | une for | the to | mical c | marati | ng condition. | | | | The | walue | for the | worst | prear c | perating | g condition. | | | | 270 | given b | tor the m | avimum | delaw n | miltinl | ier | | | | are | STAGII D | y cite II | ev Tinnii | deray I | интетрт. | rer . | | Equivalan | t Circuit | | | | | | | | | Ligarvaren | | | | | | | | | | _ N | N . | | | | | | | • | | A — > | → ¬ × | | | | | | | | | | V | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | UHB-K2B-E1 | Sheet 1/1 | | | | | | | Page 10-2 | | FUJITSU CI | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |--------------------|------------------|----------|-------------------|------------------------|------------|---------|----------|---------------| | Cell Name | Function | | | | | | | Number of BC | | Wan. | C-+ 1 C11- (AN | D) DE.E. | | | | | | 2 | | K3B
Cell Symbol | Gated Clock (AN | D) Buil | Prop | agation | Delay | Paramet | er | 2 | | JOIL DYMESI | | tı | up | -8 | td | | | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
A → X | | | | 1.00 | 0.08 | 1.00 | 0.04 | | | A + X | A1 | ` | | | | | | | | | A2 - |)— x | | | | | | | | | R2 (| Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | · | 1 | | | | | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | A | ī | 1 | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Х | 36 | | | | | | | | | | | | _ | _ | | | | , | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | are | values
given h | or the m | aximum | delay m | ultipl | g condition | | | | <u> </u> | given b | <i>y</i> c nc n | - CALLEDON | doray | - CLULPI | | | Equivalent | Circuit | | | | | | | | | | | | | | | | | | | A1 | | | | | | • | | | | A2 — | — q x | | | | | | | | | _ | D 10 2 | | UHB-K3B-E2 | Sheet 1/1 | | | | | | | Page 10-3 | | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | 1 "UH | B" Version | |-------------|------------------|------------|----------|-------------|--------|---------|--------|-----------------| | Cell Name | Function | | | | | | | Number of BC | | K4B | Gated Clock (OR |) Buffer | <u>r</u> | | | | | 2 | | Cell Symbol | | | Prop | agation | | | er | | | | | | up | +0 | td | | GDDG | | | | | t0
0.78 | 0.08 | t0
1.14 | 0.05 | 0.07 | CDR2 | Path
 A → X | | | | 0.78 | 0.08 | 1.14 | 0.05 | 0.07 | ٥ | AAA | | | | | | | | | | 1 | A1 —— | → ,, | | | | | | | | | A2 | x | l | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | l | 1 | | | | | | | | | | İ | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | | | | | | | 1 | | | | | | | | ` | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Х | 36 | | | | | | | 1 | | | | * Mini | mum val | ues for | the tv | nical c | nerati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | | are | given b | y the m | aximum | delay m | ultipl | ier. | | | | | | | | | - | | | P | | | | | | | | | | Equivalent | CITCUIT | A1 — | N | | | | | | | | | A1 A2 | > | | | | | | | | | | ν | UHB-K4B-E1 | Sheet 1/1 | | | | | | | Page 10-4 | | THITTE!! C | MOC CATE ADDAY II | NITT CET | CDECT | EICATIO | NI. | | 17,777 | B" Version | |-------------|-------------------|----------|----------|---------|--------|---------|---------|-------------------| | | MOS GATE ARRAY U | HII UEL. | u ofect. | FICHITU | 14 | | I UH | Number of BC | | | | | - | | **** | | | | | K5B | Gated Clock (NA | ND) Buf | fer | | | | | 3 | | Cell Symbol | | |
Prop | agation | | | er | | | | | | up | | td | | anna | ٠ | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
A → X | | | | 1.14 | 0.08 | 1.48 | 0.04 | | | $A \rightarrow X$ | | | | | | | | | | | | | | | | | | | 1 | A1 —— | $\overline{}$ | | | | | | | | | A2 — | р <u>—</u> х | | | | | | | | | AZ [| | | | | | | ļ | 1 | Dors | + | | | L | vmb = 1 | Tym(na)* | | | | Parame | rer | | | | ymbol | Typ(ns)* | | | | | | | | | | 1 | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | A | 1 | Output Driving | | | | | ľ | | | | Pin Name | Factor (lu) | | | | | | | | | X | 36 | * Mini | mum val | ues for | the ty | pical c | perati | ng condition. | | | | The | values | for the | worst | case or | eratir | ng condition | | | | are | given b | y the m | aximum | delay m | ultipl | ier. | | Faurinalas | t Circuit | | | | | | | | | Equivalent | CITCUIC | | | | | | | | | ~ | , , | | | | | | | | | A1 | \sim | — х | | | | | | | | A2 | V | Λ | | | | | | | | [| [D 10 5 | | UHB-K5B-E2 | Sheet 1/1 | | | | | | | Page 10-5 | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | UHU" | B" Version | |---------------|------------------------------|-----------|-------------------|----------|--------|---------|--------------------|------------------| | Cell Name | Function | | | | | | 1 | Number of BC | | KAB | Riock Cleak (OP |) R., ff. | - | | | | ĺ | ا | | Cell Symbol | Block Clock (OR | , burre | Prop | agation | Delay | Paramet | er | 3 | | | | t | up | <u></u> | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
A → X | | | | 1.08 | 0.04 | 1.85 | 0.03 | | | A → X | A1 | A , | | | | | | | | | A2 | x | | | | | | 1 | | | | | | | | | | | | | | | | İ | | | | İ | | | | | | | | | | <u></u> | <u> </u> | | | | Parame | ter | | | - - | Symbol | Typ(ns)* | 1 | | | | | | | | | | | | | · | | | | | | | | | Din Nama | Input Loading
Factor (lu) | | | | | | | | | Pin Name
A | 1 | | | | | | | | | | _ | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | X | 55 | | | | | | | | | 1 | | | | _ | | | | | | 1 | | * Mini | imum val | ues for | the ty | pical o | operati | ng condition. | | | | are | values
given h | ov the m | aximum | delav | peratin
multipl | g condition ier. | | | | are | PTACH F | ., one i | | 20145 | | | | Equivaler | t Circuit | A1 — | h | | | | | | | | | A2 | x — ¬ | | | | | | | | | | | | | | | | | | | 1 | HILD KAD DO | Chara 1/2 | | | | | | | Page 10-6 | | UHB-KAB-E2 | Sheet 1/1 | | | | | | | rage 10-0 | | FUJITSU C | MOS GATE ARRAY U | NIT CELI | SPECI | FICATIO | N | | "UH | B" Version | |---------------|------------------------------|------------|-------------|------------|--|--------------------|----------|----------------| | | Function | | | 1011110 | | | | Number of BC | | КВВ | Block Clock Buf | fer (OR | x 10) | | | | | 30 | | Cell Symbol | BIOCK CIOCK BUI | Tel (OK | Prop | agation | Delay | Paramet | er | 30 | | | | | up | | td | n | | | | | | t0
1.34 | KCL
0.04 | t0
2.08 | KCL
0.03 | KCL2 | CDR2 | Path
CK → X | | | | 1.08 | 0.04 | 1.85 | 0.03 | | | IH → X | | GT/ | | | | | | | | | | CK | | | | | | | | | | ІНО — | xo | | | | | | ļ | | | IH1
IH2 | X1 X2 | | | | | |] | | | ІНЗ | хз | | | | | | ĺ | | | IH4
IH5 | X4
X5 | | | | | | | | | IH6 | X6 | | | | | | | | | IH7 | X7 | | | | i
 | L | <u> </u> | | | IH8
IH9 | X8 X9 | Parame | ter | | | | ymbol | Typ(ns)* | T T 3'- | | | | | | | | | Pin Name | Input Loading
Factor (lu) | | | | | | | | | CK | 10 | | | | | | | | | IH | 1 | | | | | 1 | | | | | | | | | | | | | | | Output Driving | | | | | l | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | Х | 55 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical c | perati | ng condition | | | | The | values | for the | worst | case op
delay m | eratin | g condition | | | 1 | are | given b | y the m | axIIIUIII . | deray n | urcipi | iei. | • | ו ים מקע_קעון | Shoot 1/2 | | | | | | | Page 10-7 | | UHB-KBB-E1 | Sheet 1/2 | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | Tage 10 / | ## Scan Flip-flop (Positive Edge Type) Family | Page | Unit Cell
Name | Function | Basic
Cells | |-------|-------------------|--|----------------| | 2–119 | SDH | Scan D Flip-flop with 2:1 Multiplex with Clear and Clock Inhibit | 14 | | 2–122 | SDJ | Scan D Flip-flop with 4:1 Multiplex with
Clear and Clock Inhibit | 15 | | 2–125 | SDK | Scan D Flip-flop with 3:1 Multiplex with
Clear and Clock Inhibit | 16 | | 2-128 | SJH | Scan J-K F with Clear and Clock Inhibit | 36 | | 2–131 | SDD | Scan D Flip-flop with 2:1 Multiplex, Preset Clear, and Clock Inhibit | 16 | | 2-135 | SDA | Scan 1-input D Flip-flop with Clock Inhibit | 12 | | 2-138 | SDB | Scan 1-input D Flip-flop with Clock Inhibit | 42 | | 2-142 | SHA | Scan 1-input D Flip-flop with Clock Inhibit | 68 | | 2–145 | SHB | Scan 1-input D Flip-flop with Clock Inhibit and Q Output | 62 | | 2–148 | SHC | Scan 1-input D Flip-flop with Clock Inhibit and XQ Output | 62 | | 2–151 | SHJ | Scan D Flip-flop with 2:1 Multiplex and Clock Inhibit | 78 | | 2–154 | SHK | Scan D Flip-flop with 3:1 Multiplex and Clock Inhibit | 88 | | FUJITSU | | | RRAY U | NIT CEI | L SPECI | FICATIO | N | | | "UH | IB" Version | |---|-------|----------|--------|-----------------|----------|--------------|----------------|-----------------|-------------|--------|-------------------| | Cell Name | Func | tion | | | | | | | | 4 | Number of BC | | SDH | SCA | N 2-in | put DF | T with | Clear 8 | Clock- | Inhibit | t | | | 14 | | Cell Symbo | 1 | | | | | agation | | | eter | | | | | | | | | up | | | dn Tror | 0 00 | 77.0 | J | | | | | | t0
3.72 | 0.08 | t0
2.98 | KCL
0.04 | KCI
0.0 | | 7
7 | Path
CK,IH → Q | | | | | | 2.35 | 0.08 | 2.15 | 0.04 | 1 | | 7 | CK,IH → XQ | | | | | | 3.79 | 0.08 | 1.07 | 0.04 | 1 | | 7 | CL + Q, | | і г | | 7 | | 1 | | | | | | | XQ | | A1 ———————————————————————————————————— | | | | | | | | 1 | | | | | CK | | | Q | İ | ļ | | | | | | | | IH — | | 1 | | | | Ì | | | İ | | | | | | | | | <u> </u> | | | | | | | | sı — | | | | | | | | | | | | | A | | p | XQ | | | | | | L_ | | | | в — с | | | | Parame | | 1: d+b | | | Symb
tCW | | Typ(ns)* | | | Ŷ | | | | Pulse V | | | | tCh | | 5.4 | | | - 1 | | | GIOCK | rause . | TIME | | | | 111 | 7.3 | | | CL | | | | Setup Ti | | | | tSI | | 3.7 | | | | | | Data I | Hold Tim | ne | | | tΗ |) | 1.0 | | | | | | <u> </u> | D. 1 | 11.1+1- | | | +T1 | ., | / - | | | | | | | Pulse V | | | | tLV | | 3.0 | | | Inp | ut Loa | ding | | Hold T | | | | tIN | | 1.5 | | Pin Name | | tor (l | | | | | | | | | | | A1,A2 | | 1 | | 1 | | | | | | | | | CK | | 1 | | | | | | l | | | | | CL | | 1
3 | | 1 | | | | 1 | | | | | SI | 1 | 1 | | | | | | | | | | | A,B | | 2 | | | | | | 1 | | | | | 1 | | | | | | | | 1 | | | | | | | | | | | | | } | | | | | | 011 | put Dr | izzina | 1 | | | | | | | | | Pin Name | | tor (l | | | | | | | | | | | Q | 1 | 36 | | * Min | imum vai | lues for | the t | ypica: | l oper | at: | ing condition. | | XQ | | 36 | | The | values | for the | worst | case | opera | atiı | ng condition | | | | | | are | given l | by the n | naximum | dela | y mult | tip. | lier. | | Function | Table | | | | | | | | | | | | runction | Table | | | | | | | | | | | | | | | | | • | | | | 7 | | | | MODE | | | INI | PUT | | | OUT | PUT | 4 | | | | | CLK | CL | D | A | В | sı | Q | XQ | 1 | | | | | CLIK | <u> </u> | | | | 31 | <u> </u> | <u> </u> | ┪ | | | | CLEAR | X | L | Х | X | X | х | L | н | | | | | | | | | _ | _ | | | | 7 | | | | CLOCK | L→H | H | Di | L | L | X | Di | Di | - | | | | | Н | Н | Х | L | L | x | Q _o | XQ _o | | | | | | | | | | | - | ٠.٠ | 40 | 4 | | | | SCAN | Н | H | X | $L{\to}H{\to}L$ | Н | Si | Q_{o} | XQ_0 | | | | | | 17 | | | - | | v . | C : | | 1 | | | | | H | H | X | L | H→L→H | X | Si | Si | ١ | | | | | | | | | | Note | : CLK | = CK | + IH | | | | | | | | | | | | = A1 | | | | | UHB-SDH-E2 | Shee | t 1/3 | L | | | | | | | | Page 11-1 | | FUJITSU | CMOS | GATE A | RRAY | UNIT CE | LL SPECI | FICATIO | N | | | T "U | HB" Version | |------------|----------------|------------------|--|-------------------------------|----------|----------|---------|--------|-------------|------------|-------------------------| | Cell Name | Func | | | | | | | | | | Number of BC
 | SDJ | SCA | N 4-in | nut Di | FF with | Clear 8 | 2 Clock- | ·Inhihi | + | | | 15 | | Cell Symbo | | 17 111 | pac D | T WICH | | pagation | | | nete | r | 13 | | | | | | | tup | | | dn | | | | | | | | | t0 | KCL | t0 | KCL | | _ | CDR2 | | | | | | | 2.75 | 1 | 3.02 | 0.04 | | | 7
7 | CK,IH → Q
CK,IH → XQ | | _ | · | _ | | 3.74 | | 1.06 | 0.04 | | | 7 | $CL \rightarrow Q$ | | A1 | | | | 3.,, | 1 0.00 | 1.00 | 0.04 | 1 | | • | XQ | | A2 | | | | | | | 1 | | | | | | B1 | | | Q | | | İ | | | | | | | CK — | | | | | | | l | | | | | | IH — | | į. | | | 1 | | | | | | | | *** | | | | ŀ | | | | 1 | ŀ | | | | sı — | | р— xq | | | | | | | | | | | Α | | | | Param | | | | | | mbol | Typ(ns)* | | в — 9 | | | | | Pulse V | | | | | CW | 5.4 | | _ | 9 | | | Clock | Pause ? | ıme | | | t | CWH | 4.5 | | | | | | Data | Setup T: | ime | | | t. | SD | 4.4 | | | CĽ | | | | Hold Tir | | | | | HD | 0.8 | Pulse V | | | | | LW | 4.5 | | | T T | T | 33 | | Release | | | | | REM
INH | 3.0 | | Pin Name | | ut Loa
tor (l | | Clear | Hold T | гше | | | | INI | 1.3 | | A1,A2 | 1 | 1 | <u>-, </u> | | | | | | | | | | B1,B2 | 1 | 1 | | 1 | | | | | | | | | CK | l | 1 | | | | | | 1 | | | | | IH
CL | | 1
3 | | | | | | İ | | | | | SI | | 1 | | 1 | | | | | | | | | A,B | | 2 | | | | | | i | | | | | | 1 | | | 1 | | | | 1 | | | | | | | | , , | 4 | | | | İ | | | | | Pin Name | | put Dr
tor (l | | | | | | 1 | | | | | Q | Tac | 36 | <u>u)</u> | * Min | imum vai | lues for | the t | vpica | 1 op | erat | ing condition. | | XQ | Ì | 36 | | The | values | for the | worst | case | ope | rati | ng condition | | | | | | are | given | by the m | naximun | dela | y mu | ltip | lier. | | Function | Table | | | | | | | | | | | | runction | labie | 7 | | | | MODE | | | IN | PUT | | | ou | TPUT | 4 | | | | | CLK | CL | D | A | В | sı | Q | XQ | | | | | | ODK | - OH | | | | | | | 1 | | | | CLEAR | X | L | Х | X | X | Х | L | H | | | | | 0.5.5.5 | | | | | _ | | | =- | | | | | CLOCK | L→H | H | Di | L | L | X | Di | Di | 4 | | | | | н | Н | х | L | L | x | Q. | ΧQο | 1 | | | | | | ** | | | | | ٧0 | | 4 | | | | SCAN | Н | H | Х | $L\rightarrow H\rightarrow L$ | Н | Si | Q_{o} | XQ_0 | | | | | | Н | Н | Х | L | H→L→H | Х | Si | Si | 7 | | | | | | | | | | | | | _ | | | | | | | | | Note | : CLK = | | | ,- - | | | | UHB-SDJ-E | 1 Cha- | + 1/2 | 1 | | | D = | (A1 x | A2) + | (B) | L X B | Page 11-4 | | CHD-SDJ-E. | r piree | t 1/3 | | | | | | | | | | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | | | |---|--------------------|------------------|-----------|------------|--------------------|------------|----------------|-----------------|---------|------------|-------------------| | Cell Name | Func | | | | | | | | | | Number of BC | | SDK | SCA | N 6-in | out DE | T with | Clear & | Clock- | Inhibi | t | | İ | 16 | | Cell Symbo | | | 7 | | Prop | agation | Delay | Para | neter | : | | | | | | | | up | | | dn | F 0 1 6 | 7000 | Dh | | | | | | 10
3.70 | KCL
0.08 | t0
3.00 | KCL
0.04 | KC: | | DR2
7 | Path
CK,IH → Q | | 1 - | | 7 | | 2.32 | 0.08 | | 0.06 | | | 7 | CK, IH → XQ | | A1 - | | | | 3.74 | 0.08 | 1.02 | 0.04 | 0. | 08 | 7 | CL → Q, | | A2
B1 | | | | 1 | | | | | | | XQ | | B2 | | | Q | 1 | | | | | | | | | C1 - | | | | l | | | | | | | | | C2 CK | | 1 | | j | | | i | | | | | | IH — | | | | | | | | | | | | | | | þ— | ΧQ | | <u> </u> | | | <u> </u> | | | | | SI | | | | Parame | ter
Pulse W | idth | | | | nbol
CW | Typ(ns)* 5.4 | | B — d | | | | | Pause T | | | | | WH CWH | 4.5 | | | Ŷ | | | | | | | | | | | | | | | | | Setup Ti | | | | | SD
m | 0.5 | | 1 | Data Hold Time tHD | | | | | | | | ш | 1 0.3 | | | | | | | | Pulse W | | | | | _W_ | 4.5 | | | Tan | ut Loa | diaa | | Release
Hold Ti | | | | | REM
INH | 3.0 | | Pin Name | | tor (l | | Clear | noid ii | ше | | | L. | LINII | + | | A1,A2 | | 1 | | 1 | | | | | | | | | B1,B2 | | | | | | | | | | | | | C1,C2
CK | | | | | | | | | | | | | IH | 1 | | | | | | | | | | | | CL | | 3 | | | | | | | | | | | SI
A,B | | 1
2 | | İ | | | | | | | | | ,- | | | |] | | | | | | | | | Pin Name | | put Dr
tor (l | | | | | | | | | | | Q | Fac | 36 | <u>u)</u> | * Mini | .mum val | ues for | the t | vpica | 1 000 | erati | ing condition. | | XQ | | 36 | | The | values | for the | worst | case | oper | atir | ng condition | | | | | | are | given b | y the m | aximum | dela | y mul | ltip | lier. | | Function | Table | 7 | | | | MODE | | | INF | TU | | | OUT | PUT | - | | ! | | | CLK | CL | D | A | В | sı | Q | хq | | | | | CLEAR | х | L | х | Х | X | x | L | Н | | | | | CLOCK | L→H | н | Di | L | L | x | Di | Di | | | | | | Н | н | х | L | L | х | Q ₀ | XQ _o | | | | | SCAN | Н | Н | x | L→H→L | Н | Si | Q ₀ | XQ _o | 1 | | | | | Н | Н | Х | L F | I→L→H | х | Si | Si | 1 | Note | | = CK + $= (A1 x)$ | | (B1 x | B2) + | (C1 | x C2 | 2) | | UHB-SDK-E1 | Shee | t 1/3 | <u></u> | | | | | | | | Page 11-7 | | FUJITS | CMOS | GATE A | RRAY U | NIT CE | ELL SPE | CIFICA | TIO | N | | | "U | HB" Version | |---|----------|---|--------|--------------------------|----------|--------|--------------|----------|-----------------|------|------|----------------| | Cell Name | | | | | | | | | | | | Number of BC | | SJH | SCA | N T-K | FF wit | h Clas | ar & Clo | ock-Tr | hih | i+ | | | | 16 | | Cell Symbo | | uv J·K | IF WIC | li Ciea | | | | Delay | Para | nete | | 10 | | | | | | | tup | | | td | | | | | | | | | | t0 | KCL | tO | | KCL | KCI | | CDR2 | Path | | | | | | 4.24 | 1 | 1 | 37 | 0.04 | 0.0 | | 7 | CK,IH → Q | | | | | | 2.36 | t | 1 | 16 | 0.06 | 0.: | | 7 | CK,IH → XQ | | | | | | 3.76 | 5 0.0 | 3 1. | 39 | 0.04 | 0.0 | 08 | 7 | CL → Q, | | J — | | | | | | | | | Ì | | | XQ | | <u>к</u> — ф | | | Q | | | İ | | | | l | | • | | ck — | | 1 | • | Parar | neter | | | | \vdash | Sv | mbol | Typ(ns)* | | IH — | | | | | Pulse | | 1 | | | | CW | 5.4 | | | | | | Clock | c Pause | Time | | | | t | CWH | 4.5 | | SI — | | | | | | | | | | | | | | A | | ρ— | XQ | Data | Setup ? | Time (| J) | | | | SD | 4.4 | | в — 9 | | | | | Setup : | | | , | | | SD | 4.8 | | | Y | | | Data Hold Time (J,K) tHD | | | | | | | ш | 0.5 | | | | | | Clear | Pulse | Width | ı | | | t | LW | 4.5 | | | CL | | | | Releas | | | | | | REM | 3.0 | | | | | | Clean | Hold ' | Γime | | | | | INH | 1.5 | | *************************************** | | | | | | | | | | | | | | D: 17 | | ut Loa | | 1 | | | | | | | | | | Pin Name
J,K | Fac | tor (l | .u) | l | | | | | | | | | | CK | 1 | 1 | | | | | | | | | | | | IH | | ī | | 1 | | | | | | | | | | CL | | 3 | | | | | İ | | | | | | | SI | 1 | 1 | | Ì | | | | | 1 | | | | | A,B | | 2 | | | | | | | | | | | | | | D | | 1 | | | | | 1 | | | | | Pin Name | | put Dr | | | | | | | l | | | | | Q | 120 | * Minimum values for the typical operat | | | | | | | | | | ing condition. | | χQ | l | 36 | | | | | ng condition | | | | | | | ~~~ | | | | | e given | | | | | | | | | T | _ Tr.1 | | | | | | | | | | | | | Function | n Table | | | | | | | | | | | | | | ···· | | | INPUT | | | | | OU. | TPUT | | | | MODE | | | | | | | | | | | | | | | CLK | CL | J | K | A | В | S | <u> </u> | Q | Х | Q | | | CLEAR | Х | L | Х | х | Х | X | Х | | L | Н | | | | | L→H | н | L | L | L | L | Х | | L | Н | | | | | L→H | н | н | н | L | L | Х | | Н | L | | | | CLOCK | L→H | н | L | н | L | L | х | | | χQ | | | | CLOCK | | | | | | | | | Q ₀ | | | | | | L→H | Н | Н | L | L | L | X | | XQ ₀ | Q | !o | | | | Н | Н | X | X | L | L | Х | | Q ₀ | XQ | 0 | | | SCAN | Н | Н | X | Х | L→H→L | Н | S | i | Q ₀ | XQ | 0 | | | | Н | Н | Х | Х | L : | H→L→H | Х | | Si | S | i | | | HID CHI P | 1 61 | + 1/0 | ٦ | | Not | e : CI | LK = | CK + 1 | Н | | | Page 11-10 | | UHB-SJH-E | I Shee | t 1/3 | L | | | | | | | | | Page 11-10 | | FUJITSU | CMOS G | ATE AP | RAY II | NIT CEL | I. SPECT | FICATIO | N | | | 1 717 | HB" Version | |---|--------|--------------|--------|-----------|--------------------|---------|--------|---------|--------|-----------|----------------| | Cell Name | Funct | | IAI O | MII OLL | D DILLOI | TIONITO | | | | 1 - | Number of BC | | SDD | | | ut DF | F with | Clear. | Preset | & Cloc | k-Inh | ibit | | 16 | | Cell Symbol | | | | | | agation | | | | | | | | | | | t | up | | | dn | | | | | | PR | | | t0 | KCL | t0 | KCL | KC | L2 (| CDR2 | Path | | | 1 | | | 3.70 | 0.08 | 3.22 | 0.04 | 0. | 08 | 7 | CK, IH → Q | | | | | | 2.65 | 0.08 | 2.14 | 0.06 | 0. | 12 | 7 | CK, IH → XQ | | | _ | _ | | 4.50 | 0.08 | 1.02 | 0.04 | 0. | 08 | 7 | CL → Q, | | A1 ———————————————————————————————————— | | | Q | 3.84 | 0.08 | 2.35 | 0.06 | 0. | 12 | 7 | PR → Q, | | IH — | | | | | | | | <u></u> | | | | | sı — | | | | Parame | | 2.241- | | | | mbol | Typ(ns)* | | A | | р x | Q | | Pulse W
Pause T | | | | | CW
CWH | 5.4 | | В — | | | | CIOCK | rause 1 | Tue | | | E | CMU | 4.3 | | | Q | J | | Data C | etup Ti | mo | | | + (| SD | 5.4 | | 1 | | | | | old Tim | | | | | HD HD | 1.0 | | - | 1 | | | Data II | Old III | | | | | | + | | | CL | | | Clear | Pulse W | idth | | | t1 | LW | 5.0 | | | | | | | Release | | | | | REM | 3.0 | | | Inpu | t Load | ing | Clear | Hold Ti | me | | | t: | INH | 1.5 | | Pin Name | Fact | or (lu |) | | | | | | | | | | A1,A2 | | 1 | | | Pulse | | | | | PW | 6.8 | | CK | | 1 | | | Releas | | | | | REM | 3.7 | | IH | 1 | 1 | | Preset | Hold T | ime | | | t. | INH | 1.0 | | CL | 1 | 3 | | | | | | | | | | | PR
SI | - | 3
1 | | | | | | | | | | | A,B | | 2 | | | | | | | | | | | н, в | | 2 | | | | | | | | | | | Din Nama | | ut Dri | | | | | | | | | | | Pin Name
Q | Fact | or
(lu
36 | , | * Mini | m11m 17a1 | ues for | the t | unica | 1 000 | erst. | ing condition. | | xQ | į. | 36 | | | | | | | | | ng condition | | | | - | | | | | | | | | | | Function | Table | | | | | | | | | | | | MODE | | | | INPUT OUT | | | | | UTPU | т | | | | CLK | CL | PR | D | A | В | sı | Q | | χQ | | | CLEAR | х | L | Н | X | Х | х | x | L | 1 | н | | | PRESET | Х | н | L | Х | Х | Х | х | Н | 1 | L_ | | | CLOCK | L→H | Н | Н | Di | L | L | х | Di | j | Di | | X X X Prohibited Note : CLK = CK + IH D = A1 x A2 X Si Х $Q_{\boldsymbol{o}}$ $Q_{\boldsymbol{0}}$ Si $XQ_{\,\boldsymbol{0}}$ $\text{XQ}_{\,\textbf{0}}$ \overline{Si} UHB-SDD-E3 Sheet 1/4 SCAN CL/PR Н Н Н H H H H Н Н X X Х Х L L→H→L H L H→L→H L Page 11-13 | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version Cell Name Function Number of BC | | | | | | | | | | | | |---|-------------|----------|------------|---------|----------------|-----------------|--|--------|------|---------------------------|--| | JII Name | 1 dilection | | | | | | | | + | dimber of bo | | | SDA | SCAN 1- | input DF | F with | | | - <u></u> - | | | | 12 | | | ell Symbol | | | ļ <u>.</u> | | agation | | | eter | | T | | | | | | to | KCL | t0 | td
KCL | KCL | 2 CD | R2 | Path | | | | | | 3.18 | 0.08 | 3.00 | 0.04 | 0.0 | | 7 | CK, IH → Q | | | | | | 2.33 | 0.08 | 2.17 | 0.06 | 0.1 | 1 | 7 | CK, IH → XQ | Г | | | | | | | | | | j | | | D | | · Q | | | | i i | | l | | | | | ск — | γ— | . XQ | | | | | | | | | | | IH — | | | | | | | | ł | | ł | | | SI — | | | | j | | | | - 1 | | | | | A B | | | Parame | | <u> </u> | l | ــــــــــــــــــــــــــــــــــــــ | Symb | -1 | Tron (mg) if | | | • 1 | | | | Pulse W | lidth | | | tCW | | Typ(ns)* 5.4 | | | | | | | Pause T | | | | tCW | | 4.5 | etup Ti | | | | tSD | | 3.5 | | | | | | Data F | old Tim | ie | | | tHD | | 1.4 | ĺ | | | | | | | Input L | | | | | | | | | | | | Pin Name
D | Factor 1 | | 1 | | | | | | | | | | CK | 1 | | | | | | | | | | | | IH | 1 | | ļ | | | | 1 | | | | | | SI | 1 | | | | | | | | | | | | A,B | 2 | | | | | | 1 | 1 | | | 1 | | | | | | | | | | | | | | | | | Output | | | | | | | | | <u> </u> | | | Pin Name | Factor | | | 1 | | | 1 | | | | | | Q
XQ | 3 | 6
6 | | | | | | | | ng condition
condition | | | | | • | are | given b | y the m | aximum | delay | mult | ipli | er. | | | | | | | | | | | | | | | | Function 7 | Table | | | | | | | | | | | | | | | | | 1 | | | | | | | | MODE | | INPUT | | | OUT | PUT | | | | | | | | יי עזי | | ъ | C.T | | vo | | | | | | | | CLK D | A | В | SI | Q | xQ | | | | | | | CLOCK | L→H Di | L | L | X | Di | Di | H X | L | L | X | Q ₀ | XQ _o | | | | | | | SCAN | н х | L→H→L | Н | Si | Q. | XQ. | | | | | | | | ** | | | | - 40 | | | | | | | | | H X | L | H→L→H | X | Si | Si | | | | | | | | | | | | N-+- | : CLK = | - CV - | L TII | | | | | | | | | | моте | . CLK = | - UK 1 | TH | <u> </u> | | | HB-SDA-E1 | Sheet 1/ | 3 | | | | | | | | Page 11-17 | | | FUJITSU | CMOS | GATE A | ARRAY U | NIT CE | LL SPECI | FICATIO | N | | "U | MB" Version | |------------|--|----------|-----------|--------|--------------|---------|-------------------------|-----------|---|---------------------------------| | Cell Name | Func | | | | | | | | | Number of BC | | SDB | SCA | N 1-i | nput 4- | bit DF | F with C | lock-In | hibit | | | 42 | | Cell Symbo | 01 | | | | Prop | agation | Delay | | eter | | | | | | | t0 | tup
 KCL | t0 | KCL KCL | n
KCL: | 2 CDR2 | Path | | | | | | 4.24 | | 3.94 | 0.04 | 0.0 | | CK,IH → Q | | | | | 1 | 3.25 | 0.08 | 3.32 | 0.06 | 0.1 | 2 7 | CK, IH → XQ | | | | | | | | | | | | | | | <u> </u> | 1 | | | | | | | - | | | D1 ——— | 1 | _ | Q1
XQ1 | | | | | | | | | D3 | 4 | <u> </u> | Q2 | | | | | | 1 | | | D4 | 1 | þ— | XQ2 | | | | | | 1 | | | ск — | 1 | b— | Q3
XQ3 | | | | | | ļ | | | IH — |] | | Q4 | Param | | | | | Symbol | Typ(ns)* | | A | - | p | XQ4 | | Pulse W | | | | tCW
tCWH | 6.8 | | В —— | 9 |] | | CIOCK | rause 1 | TINE | | | COWII | 3.0 | | | | | | | Setup Ti | | | | tSD | 2.2 | | | | | | Data | Hold Tim | e | | _ | tHD | 3.3 | | | | | | | | | | | | | | | Inn | ut Lo | ading | | | | | | | | | Pin Name | | tor (| | | | | | | | , | | D | | 1 | | | | | | } | | | | CK
IH | į | 1
1 | | | | | | | | | | SI | | 1 | | | | | | | | | | A,B | 1 | 2 | | | | | | | | | | | ı | | | | | | | | | | | | į. | | | | | | | - 1 | | | | | Out | put D | riving | 1 | | | | | | | | Pin Name | | tor (| lu) | | | _ | | | *************************************** | | | Q
XQ | | 36
36 | | | | | | | | ing condition.
ing condition | | | | | | | given b | | | | | | | Function | Table | | | | | | | | | | | runction | labie | | | | | | | | | | | MODE | | | TAIDIFF | | | OTET | 'PUT | | | | | NODE | | | INPUT | | | 001 | FUI | \dashv | | | | | CLK | Dn | A | В | SI,Qn-1 | Qn | XQn | 4 | | | | CLOCK | L→H | Di | L | L | x | Di | $\overline{ exttt{Di}}$ | | | | | -25511 | ************************************** | | | | | | | 7 | | | | | H | X | L | L | X | Qn∘ | XQn∘ | _ | | | | SCAN | Н | Х | L→H→L | Н | Si | Qno | XQn0 | | | | | | Н | Х | L | H→L→H | х | Si | Si | Note | : CLK = | | · IH | | | | | | | | | | 11 - 1 | | | | | IIMB_CDB_E | 2 Ch | t 1/4 | | | | | | | | Page 11-20 | | UHB-SDB-E | 2 Snee | :L 1/4 | · L | | | | | | | rage 11-20 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | יט" | IB" Version
Number of BC | | | |---------------|------------------------------|---------|-----------|---------|-----------|---------|--------|-----------------------------|--|--| | Cell Name | Cell Name Function | | | | | | | | | | | SHA | SCAN 1-input 8- | bit DFF | | | | | | 68 | | | | Cell Symbol | | | | agation | Delay | | er | | | | | | | t0 | up
KCL | t0 | td
KCL | KCL2 | CDR2 | Path | | | | | | 4.72 | 0.16 | 4.72 | 0.09 | 0.10 | 4 | CK, IH → Q | | | | D1 | Q1 | 4.12 | 0.16 | 4.00 | 0.13 | 0.18 | 4 | CK, IH → XQ | | | | D2 | р—— хq1 | | | | | | 1 | | | | | D3 | Q2 | | | | | | | | | | | D4 | D— XQ2
— Q3 | | | | | | | | | | | D6 | р xqз | | | | | | | | | | | Д7 —— | Q4 | | | | | | l | | | | | D8 | р—— xq4 | | | | | | | | | | | | Q5 | | | | | | 1 | | | | | | D XQ5
Q6 | | | | | | | | | | | ск — | р—— XQ6 | Parame | ter | | | 1 8 | ymbol | Typ(ns)* | | | | IH — | Q7 | | Pulse W | | | | tCW | 7.2 | | | | SI | р— хо ₇ | Clock | Pause T | ime | | | tCWH | 5.5 | | | | А —— | —— Q8
>—— XQ8 | Data S | etup Ti | me | | | tSD | 1.8 | | | | <u>_</u> | | Data H | old Tim | е | | | tHD | 3.3 | | | | | γ | | | | | | | | | | | Pin Name | Input Loading
Factor (lu) | ĺ | | | | - 1 | | | | | | D D | 1 | | | | | | | | | | | CK | 1 | | | | | | | | | | | IH | 1 | l | | | | | | | | | | SI
A | 1 | } | | | | l | | | | | | В | 1 | D: 17 | Output Driving | | | | | | | | | | | Pin Name
Q | Factor (lu) | | | | | | | | | | | ΧQ | 18 | * Mini | mum val | ues for | the ty | pical c | perati | ing condition. | | | | - | | The | values | for the | worst | case or | eratir | ng condition | | | | | L | are | given b | y the m | aximum | delay m | ultipl | ier. | UHB-SHA-E1 | Sheet 1/3 | | | | | | | Page 11-24 | | | Page 11-26 Cell Name Definitions of Parameters FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION i) Clock Mode UHB-SHA-E1 | Sheet 3/3 | EUTTEU C | MOC CATE ADDAY II | NIT CET | T CDECT | ETCATTO | NT. | | 1 11777 | B" Version | |---|-------------------|------------|-------------|------------|-------------|--------------|------------|-------------------| | | MOS GATE ARRAY U | NII CEL | L SPECI. | FICATIO | iN . | | 1 01 | Number of BC | | | | ······ | | | | | | | | SHB | SCAN 1-input 8- | bit DFF | with C | lock-In | hibit & | Q Out | out | 62 | | Cell Symbol | | | | agation | Delay | | er | _, | | | | | up | | td | | | 1 | | | | t0
4.32 | KCL
0.16 | t0
4.42 | KCL
0.09 | KCL2
0.10 | CDR2 | Path
CK,IH → Q | | _ | | 4.32 | 0.16 | 4.42 | 0.09 | 0.10 | 4 | CK, IR + Q | | D1 | Q1 | | | | | | 1 | | | D2 | - Q2 | | | | | | 1 | 1 | | D3 | — | | | | | | 1 | 1 | | D4 | Q4 | | | | | | | | | D5 - | Q5 | | | | | | ł | | | D6 | Q6 | | | | | | l | | | D7 ———————————————————————————————————— | Q7 | | | | | | | | | į. | Q8 | | | | | |] | | | ck — | | | | | | | | | | IH | | Parame | ter | | | 1 5 | ymbol | Typ(ns)* | | SI — | | Clock | Pulse W | | | | tCW | 7.2 | | А —— с | | Clock | Pause T | ime | | | tCWH | 5.5 | | " "_ | | | | | | | | 1 | | | | Data S | etup Ti | me | | | tSD
tHD | 1.9 | | | | рата Н | old Tim | е | | | ממז | 3.3 | | | Input Loading | | | | | | | 1 | | Pin Name | Factor (lu) | | | | | 1 | | | | D | 1 | | | | | | | | | CK | 1 | | | | | - 1 | | | | IH | 1 | | | | | i | | | | SI | 1 | | | | | | | | | A | 1 | | | | | | | | | В | 1 | | | | | 1 | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | Q | 18 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ing condition. | | | | The | values | for the | worst | case of | peratir | g condition | |
<u> </u> | l | are | given b | y the m | aximum | delay r | nultipl | ier. | UHB-SHB-E1 | Sheet 1/3 | | | | | | | Page 11-27 | | DI JI | | | | | | | | | | FILITCII C | MOS GATE ARRAY U | NIT CET | T CDECT | FICATIO | N7 | | 1 1777 | B" Version | |----------------|-------------------|---------|--------------------|---------|---------|---------|---------|---------------| | | Function | NII CEL | L SPECI | FICATIO | 14 | | 1 01 | Number of BC | | | | | | | | | | | | SHC | SCAN 1-input 8- | bit DFF | with C | lock-In | hibit & | XQ Out | put | 62 | | Cell Symbol | | | | agation | | | er | | | | | | up | | td | | Larra | ٠, . | | | | t0 | KCL | t0 | KCL | KCL2 | | Path | | | | 4.18 | 0.16 | 4.10 | 0.13 | 0.18 | 4 | CK,IH → XQ | | D1 | b vo1 | | | | | |] | | | D2 | P XQ1
P XQ2 | | | | | | ł | | | D3 | р—— xQ3 | | | | | | 1 | | | D4 | р xQ4 | | | | | | | | | D5 | р xQ5 | | | | | | 1 | | | D6 | р xQ6 | | | | | | | | | D7 | р—— xq7 | | | | | | | | | D8 | р хов | | | | | | | | | ск — | | | | | | | 1 | 1 | | IH — | | - B | <u></u> | | | يبنا | | T (\) ** | | si — | | Parame | ter
Pulse W | idth | | | tCW | Typ(ns)* 7.2 | | A - | | Clock | Puise w
Pause T | ime | | | tCWH | 5.5 | | в — о | | | | | | | 20.711 | 1 | | | | Data S | etup Ti
old Tim | me | | | tSD | 1.9 | | | | Data H | old Tim | е | | | tHD | 3.3 | | | | | | | | | | | | . | Input Loading | | | | | ł | | | | Pin Name
D | Factor (lu) | | | | | İ | | | | CK | 1 1 | | | | | | | | | IH | i | | | | | ļ | | | | SI | i | | | | | ł | | 1 | | A | Ī | | | | | 1 | | | | В | 1 | | | | | | | | | | | | | | | - 1 | | | | Dia Nama | Output Driving | ĺ | | | | - 1 | | | | Pin Name
XQ | Factor (lu) | | | | | L | | | | AY | 10 | * Mini | mum val | ues for | the tv | mical o | perati | ng condition. | | | } | The | values | for the | worst | case of | peratir | ng condition | | | | are | given b | y the m | aximum | delay n | nultipl | ier. | į | IND OUR DE | 2) 1/2 | | | | | | | D 11. 20 | | UHB-SHC-E1 | Sheet 1/3 | | | | | | | Page 11-30 | Page 11-32 UHB-SHC-E1 | Sheet 3/3 | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | | B" Version | |---|----------------------------|--------------------|---------|----------|---------|---------|---------|---------------------------| | Cell Name | Function
SCAN 8-bit DFF | with Cl | ock-Inh | ibit | | | | Number of BC | | SHJ | & 2-to-1 Data M | | | TDIC | | | | 78 | | Cell Symbol | | | | agation | Delay | Paramet | er | | | | | | ир | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 4.82
4.12 | 0.16 | 4.84 | 0.08 | 0.12 | 4 | CK, IH → Q
CK, IH → XQ | | A1 | Q1 | 4.12 | 0.16 | 4.00 | 0.11 | 0.20 | * | CK, IN - AQ | | B1 — | ⊳ xQ1 | | | | | | | | | A2 | Q2 | | | | | | 1 | | | B2 | $\sim \tilde{\chi}_{Q2}$ | | | | | | | | | A3 | —— Q3 | | | | | | | | | В3 — | р—— xQз | | | | | | | | | A4 | Q4 | | | | | | | | | B4 — | 0 XQ4 | | | | | | 1 | | | A5 ———————————————————————————————————— | Q5
—— XQ5 | | | | | | 1 | | | A6 — | Q6 | | | | | | | | | В6 —— | > xQ6 | | | | | | | | | A7 | Q7 | | |] | | | | | | В7 —— | р—— xq7 | | | | | | | | | A8 | —— Q8 | | | | | | | | | В8 — | р хов | | | | 1 | | | | | AS — | | | | | 1 | | | | | BS — | | | | | | | | 1 | | CK - | | | | | | | | | | IH — | | | | | | | | 1 | | si — | | Parame | ter | <u> </u> | l | 1 5 | Symbol | Typ(ns)* | | A | | Clock | Pulse W | | | | tCW | 7.2 | | В — 9_ | | Clock | Pause T | ime | | | tCWH | 5.5 | | | | Data Setup Time tS | | | | | | | | | | Data S | etup Ti | .me | | | tSD | 3.0 | | | | Data H | old Tim | ie | | | tHD | 3.1 | | · | Input Loading | | | | | | | 1 | | Pin Name | Factor (lu) | | | | | | | | | An,Bn | 1 | | | | | | | | | (n=1~8) | _ | | | | | | | | | AS,BS | 1 | | | | | - | | | | CK | 1 | | | | | 1 | | | | IH | 1 | 1 | | | | | | | | SI | 1 | | | | | | | | | A,B | 1 | } | | | | | | | | | Output Driving | 1 | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Q | 18 | | | | | | | | | XQ | 18 | * Mini | mum val | lues for | the ty | pical (| operati | ing condition. | | | | The | values | for the | worst | case of | peratir | ng condition | | | L | are | given h | by the m | naximum | delay | nultipl | lier. | | 1 | UHB-SHJ-E2 | Sheet 1/3 | | | | | | | Page 11-33 | | OHD-SHJ-EZ | pueer 1/3 | | | | | | | 1 - 450 11 00 | | | | | | | | | | | UHB-SHJ-E2 | Sheet 3/3 Page 11-35 | Cell Name F | • | | | FICATION | . 1 | | 1 01 | HB" Version | |---------------|-----------------------|---------------------------------------|---------|----------|----------|---------|--------|----------------| | 1 | Function Number of BC | | | | | | | | | | SCAN 8-bit DFF | | | ibit | | | | | | SHK | & 3-to-1 Data M | ultiple | | | | | | 88 | | Cell Symbol | | | Prop | agation | Delay 1 | Paramet | er | | | | | | up | | tdi | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | A1 | | 4.64 | 0.16 | 4.60 | 0.09 | 0.10 | 4 | CK, IH → Q | | B1 | Q1 | 4.08 | 0.16 | 4.00 | 0.13 | 0.18 | 4 | CK, IH → XQ | | C1 | 1 | | | 1 1 | | | | 1 ' | | A2 | P xq1 | | | 1 1 | | | | | | B2 | Q2 | | | 1 | | | | | | C2 | 1 | | | | | | l | | | A3 | P XQ2 | | | 1 | | | l | | | B3 | Q3 | | | | | | İ | | | C3 | ا د | | | 1 | | | | | | A4 | р—— xqз | | | į į | | | 1 | Į. | | | 0, | | | | | | 1 | | | B4 | Q4 | | | | | | | | | C4 | Þ xQ4 | | | | | | ļ | | | A5 | 1 1 | | | | | | 1 | | | B5 | Q5 | | | | | | 1 | | | C5 | ⊳ xq5 | | | | | | | | | A6 | 1 | | | | | | | | | B6 | Q6 | | | | | | 1 | 1 | | C6 | р xq6 | | | | | | 1 | | | A7 | | | | | | | 1 | | | В7 | Q7 | | | | | | | | | C7 | □ xq7 | | | | | | | | | A8 | ΛQ/ | | | | | | 1 | ļ | | B8 | Q8 | | | | | | | | | C8 | voo | | | | | | 1 | į | | | Р хов | | | | | | | | | AS | | | [| | | | 1 | | | BS | | | 1 | | | | | | | csq | | | | | | | 1 | | | CK — | | | 1 | | | | | | | IH — | | Parame | ter | | | | Symbol | Typ(ns)* | | si — | | Clock | Pulse W | lidth | | | tCW | 7.2 | | A | | Clock | Pause T | ime | | | tCWH | 5.5 | | В — ф | | | | | | | | | | | | Data S | etup Ti | me | | | tSD | 3.8 | | | | Data H | old Tim | ne . | | | tHD | 2.9 | | | | · · · · · · · · · · · · · · · · · · · | | | | | | 1 | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | An, Bn, Cn | 1 | | | | | | | 1 | | (n=1~8) | - | | | | | 1 | | 1 | | AS,BS,CS | 1 | | | | | - | | 1 | | CK CK | 1 | | | | | l | | 1 | | IH | 1 | 1 | | | | | | | | SI | 1 | | | | | | | 1 | | A,B | 1 | | | | | - | | 1 | | 4,5 | • | | | | | - | | 1 | | | Output Driving | ł | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Q | 18 | | | | | | | | | xQ | 18 | 1 Min - | mum *** | lues for | the += | mical | 000==+ | ing condition. | | | 10 | The | walnee | for the | woret | Lace . | operat | ng condition | | 1 | | 1110 | varues | oy the m | avimum | delaw | mul+in | lier | | 1 | L | are | Riven I | Jy che n | Idatilli | deray | шитетр | 1161. | UHB-SHK-E2 | Sheet 1/3 | | | | | | | Page 11-36 | # Non Scan Flip-flop Family | Page | Unit Cell
Name | Function | Basic
Cells | |-------|-------------------|--|----------------| | 2-159 | FDM | Non-Scan D Flip-flop | 6 | | 2-161 | FDN | Non-Scan D Flip-flop with Set | 7 | | 2-163 | FDO | Non-Scan D Flip-flop with Reset | 7 | | 2-165 | FDP | Non-Scan D Flip-flop with Set and Reset | 8 | | 2-168 | FDQ | Non-Scan D Flip-flop | 21 | | 2-170 | FDR | Non-Scan D Flip-flop with Clear | 26 | | 2-173 | FDS | Non-Scan D Flip-flop | 20 | | 2-175 | FD2 | Non-Scan Power D Flip-flop | 7 | | 2-177 | FD3 | Non-Scan Power D Flip-flop with Preset | 8 | | 2-179 | FD4 | Non-Scan Power D Flip-flop with Clear and Preset | 9 | | 2-181 | FD5 | Non-Scan Power D Flip-flop with Clear | 8 | | 2–183 | FJD | Non-Scan Positive Edge Clocked
Power J-K Flip-flop with Clear | 12 | | | MOS GATE ARRAY (
Function | NIT CELL SPECIFICATION | "U | HB" Version
Number of B | |-------------|------------------------------|--------------------------------|---------------|----------------------------| | | | | | | | FDM | Non-SCAN DFF | Y | | 6 | | Cell Symbol | | Propagation Delay Par | ameter | | | | | | CL2 CDR2 | Path | | | | 1.75 0.16 1.80 0.09 | tobb obii | CK → Q | | | | 2.16 0.16 2.36 0.09 | | CK → XQ | | | | | | 1 | | | | | İ | | | | | | | 1 | | | | | | 1 | | D - | Q | | | | | ck | | | į | | | | | | | | | L | p—_ xq | | İ | | | | | | | | | | | | | | | | | Parameter | Symbol | Typ(ns) | | | | Clock Pulse Width | tCW | 4.0 | | | | Clock Pause Time | tCWH | 4.0 | | | | | | | | | | Data Setup Time | tSD | 2.1 | | | | Data Hold Time | tHD | 1.5 | | | Input Loading | 4 | | | | Pin Name | Factor (lu) | | į | | | D | 2 | 1 | l | | | CK | 1 | | 1 | | | | | | i | | | | | | - | | | | | | | | | n | Output Driving | | | | | Pin Name | Factor (lu) | 4 | | | | Q | 18
18 | | | | | XQ | 10 | * Minimum values for the typic | ing condition | | | | l | The values for the worst cas | se operati | ng condition | | | Ì | are
given by the maximum de | lay multip | lier. | | | | | | | | | | | | | | Function 7 | Table | | | | | | | | | | | Inputs | Outputs | | | | | Imputs | Outputs | | | | | D CK | Q XQ | | | | | | | | | | | Н ↑ | H L | | | | | L ↑ | LH | L | L | | | | | UHB-FDM-E2 | Sheet 1/2 Cell Name FDM FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Definition of Parameters UHB-FDM-E2 | Sheet 2/2 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | " U | HB" Version | | |-------------|-------------------|------------------|---------|---------|--------|--|------------|-----------------------|--| | Cell Name | Function | | | | | | | | | | FDN | Non-SCAN DFF wi | th SET | | | | | | 7 | | | Cell Symbol | | | | agation | | | er | | | | | | | up | | td | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | 1.80 | 0.16 | 1.75 | 0.09 | 0.12 | 4 | CK → Q | | | | | 2.46 | 0.16 | 2.42 | 0.08 | | | CK → XQ | | | | S | 2.24 | 0.16 | 1.07 | 0.08 | | | $S \rightarrow Q, XQ$ | | | | | 1 | | | | | 1 | | | | | \downarrow | | | | | | 1 | | | | _ [| | | | | | | | | | | D — | Q | | | | | Ì | i | | | | ск | | | | | | 1 | ŀ | | | | | h | ł | | | | ŀ | | | | | | р— хо | | | | | | l | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | Parame | • | | | ــــــــــــــــــــــــــــــــــــــ | ymbol | Typ(ns)* | | | | | | Pulse W | 1.d+h | | | tCW | 4.0 | | | | | | Pause T | | | tCWH | 4.0 | | | | | | Glock ladse lime | | | | | | | | | | | Data Setup Time | | | | | tSD | 2.1 | | | | | Data Hold Time | | | | | tHD | 1.5 | | | | | - Dava n | 010 110 | | | | UILD | 1 | | | | Input Loading | Set Pu | lse Wid | th | | | tSW | 4.0 | | | Pin Name | Factor (lu) | | lease T | | | | tREM | 0.3 | | | D | 2 | Set Ho | ld Time | | | | tINH | 3.8 | | | S | 2 | | | | |] | | | | | CK | 1 | 1 | | | | 1 | | | | | | | l | | | | ŀ | | | | | | <u> </u> | l | | | | | | | | | | Output Driving | l | | | | ı | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | | Q | 18 | | | | | | | | | | ΧQ | 18 | ١ | _ | _ | | | | | | | | | | | | | | | ing condition | | | | | | | | | | | ng condition | | | · | 1 | are | given b | y the m | aximum | delay n | ultip | lier. | | | Function 1 | [ablo | | | | | | | | | UHB-FDN-E3 | Sheet 1/2 | | put | | | | puts | |-------------|-------------|--------|---|---|-------------| | S | D | CK | 9 | } | XQ | | L
H
H | X
H
L | X
† | H | ł | L
L
H | Equivalent Circuit FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Definition of Parameters 1) t_{CW} , t_{CWH} , t_{SD} , t_{HD} and t_{pd} (CK \rightarrow Q,XQ) 2) t_{SW} , t_{REM} , t_{INH} and t_{pd} (S \rightarrow Q,XQ) | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | " U | HB" Version | | |-------------|-----------------------|-------------------------|---------|---------|--------|----------|------------|-----------------------|--| | Cell Name | Function Number of BC | | | | | | | | | | FDO | Non-SCAN DFF wi | Non-SCAN DFF with RESET | | | | | | | | | Cell Symbol | | | Prop | agation | Delay | Paramete | er | | | | | | t | up | | td | n | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | 1.93 | 0.16 | 1.78 | 0.10 | T T | | CK → Q | | | | | 2.16 | 0.16 | 2.58 | 0.09 | | | CK → XQ | | | | | 2.00 | 0.16 | 1.64 | 0.10 | | | $R \rightarrow Q, XQ$ | | | | | ' | D CK | Q | | | | | | | | | | | р—— х Q | | | | | | | | | | _ | | | | | | | | | | | | R | Parame | + | L | L | <u> </u> | ymbol | Typ(ns)* | | | | Л | Clock Pulse Width tCW | | | | | | 4.0 | | | | | Clock Pause Time | | | | | tCWH | 4.0 | | | | | CIOCK | rause 1 | Tille | | COMI | 4.0 | | | | | | Data S | etup Ti | me | | | tSD | 2.1 | | | | | | | | | | tHD | 1.5 | | | | | Data Hold Time | | | | | | | | | | Input Loading | Reset | Pulse W | idth | | | tRW | 4.0 | | | Pin Name | Factor (lu) | | Release | | R) | | tREM | 0.9 | | | D | 2 | | Hold Ti | | | | tINH | 3.3 | | | R | 2 | | | | | | | | | | CK | 1 | 1 | Output Driving | 1 | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | | Q | 18 | 1 | | | |] | | | | | χQ | 18 | | | | | | | | | | | | * Mini | mum val | ues for | the tv | pical of | perat | ing condition. | | | | | | | | | | | ng condition | | | | | | | | | delay m | | | | | | | | | | | | | | | | Ir | put | s | Out | puts | |-------------|-------------|--------|-------------|-------------| | R | D | CK | Q | XQ | | L
H
H | X
H
L | X
† | L
H
L | H
L
H | UHB-FD0-E3 | Sheet 1/2 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | T "U | HB" Version | | | |-------------|-----------------------|--|---------|---------|----------|---------|-------|-----------------------|--|--| | | Function Number of BC | FDP | Non-SCAN DFF wi | th Set | and Res | et | | | | 8 | | | | Cell Symbol | | | | | Delay | Paramet | er | · | | | | | | t | up | | td | n | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | | 1.96 | 0.16 | 1.76 | 0.10 | | | CK → Q | | | | | | 2.45 | 0.16 | | | | | CK → XQ | | | | | S | 2.24 | | | 0.10 | | | $R \rightarrow Q, XQ$ | | | | | | 2.54 | 0.16 | 1.01 | 0.09 | | | $S \rightarrow Q, XQ$ | | | | | <u> </u> | | | | | | | | | | | . г | | | | | | | | | | | | D | Q | | | | | | | | | | | CK | | 1 | | | | | | | | | | | h | | | | | | | | | | | | р—— х Q | | | | | | | | | | | - | Y | R | Parame | ter | L | نــــــا | l s | ymbol | Typ(ns)* | | | | | | Clock Pulse Width tCW | | | | | | 4.0 | | | | | | Clock Pause Time tCWH | | | | | | 4.0 | | | | | | | | | | | | | | | | | | Data S | etup Ti | me | | | tSD | 2.1 | | | | | | Data H | old Tim | e | | | tHD | 1.5 | | | | | | | | | | | | | | | | | Input Loading | | lse Wid | | | | tSW | 4.0 | | | | Pin Name | Factor (lu) | | lease T | | | | tREM | 0.3 | | | | D | 2 | Set Ho | ld Time | | | | tINH | 3.8 | | | | S | 2 | | | | | | | | | | | R | 2 | | Pulse W | | | | tRW | 4.0 | | | | CK | 1 | | Release | | R) | | tREM | 0.9 | | | | | | Reset | Hold Ti | me | | | tINH | 3.3 | | | | | Output Driving | | | | | 1 | | | | | | Pin Name | Factor (lu) | ł | | | | | | | | | | Q | 18 | | | | | | | L | | | | XQ | 18 | l | _ | _ | | | | | | | | | | | | | | | | ing condition. | | | | | | The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | 1 | are | given b | y the m | aximum | delay m | ultip | olier. | | | | | Inpi | ıts | Outputs | | |---|------|-----|----------|-----------| | s | R | D | CK | Q XQ | | н | L | X | х | L H | | L | H | X | Х | H L | | L | L | X | X | Inhibited | | н | H | H | † | H L | | н | H | L | • | L H | | L | | | | <u> </u> | UHB-FDP-E3 | Sheet 1/3 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | | IB" Version | |----------------------|-------------------|--|--------------------|---------|--------|---------|------------|--| | Cell Name | Function | | Number of BC | | | | | | | FDQ | Non-SCAN 4-bit | DEE | | | | | İ | 21 | | Cell Symbol | | DFF | Prop | agation | Delay | Paramet | er l | 21 | | | | t | T | | | | | | | 1 | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 3.37 | 0.16 | 2.74 | 0.08 | | | CK → Q | | DA. | DC | | | | | | 1 | | | 1 | B DD | | | | | | | | | 1 | QA | | | | | | | | | ск — | QB | 1 | | | | | | | | | QC QC | | l | | | | ļ | | | <u> </u> | QD QD | Parame | ter | L | L | 1 5 | Symbol | Typ(ns)* | | | | | Pulse W | idth | | | tCW | 4.0 | | l | | Clock | Pause T | ime | | | tCWL | 4.0 | | | | D + 6 | <u> </u> | | | | +CD | | | | | Data B | etup Ti
Old Tim | me | | | tSD
tHD | 1.1 | | | | Data I | OIG III | | | | | | | | Input Loading | 1 | | | | | | | | Pin Name | Factor (lu) | | | | | į | | | | D CK | 1 | ļ | | | | | | | | O.K | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | Die Vier | Output Driving | | | | | | | | | Pin Name
Q | Factor (lu) | ł | | | | | | 1 | | " | 10 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perat: | ing condition. | | | | The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | are | given c | y the m | aximum | delay i | multip. | lier. | | Function | Table | | | | | | | | | | | | | | | | | | | Tanut | 10::t=::t | | | | | | | | | Input
CK D | Output | | | | | | | | | 311 2 | + | | | | | | | | | ↓ H | н | | | | | | | | | | L | UHB-FDO-E3 | Sheet 1/2 | | | | | | | Page 12-10 | | FILITCII | CMOS CA | TE ADDAV II | NIT CEL | T SDECT | FICATIO | N | <u> </u> | 1 777 | HB" Version | | |---------------|----------|--------------|--|-----------------------------|---------|------|-------------|--------|---------------|--| | Cell Name | Function | | | | | | | | | | | | | - 11 | | | | | | | | | | FDR | Non-S | CAN 4-bit | DFF wit | OFF with CLEAR | | | | | | | | Cell Symbol | | | | Propagation Delay Parameter | | | | | | | | | | | | up [†] | | td | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | | 2.64 | 0.16 | 3.62 | 0.08 | | 1 | CK → Q | | | DA | D.C. | | - | - | 2.18 | 0.08
| | 1 | CT → Ø | | | | B DD | | | | | | i | 1 | 1 | | | ا | ו זיו ז | | | | | | | ł | | | | | | | | | | | 1 | 1 | | | | | | 04 | | | | | | 1 | | | | İ | | — QA
— QB | | | | | | 1 | | | | CK — | | — Qc | | | | | | | 1 | | | | | — QD | | | | i ' | 1 | | | | | L | | QD | | | | 1 | | | | | | | Ĭ | | | | | | l | | | | | | | | Parame | <u></u> | L | l | <u> </u> | Symbol | T ()* | | | | CL | | | Pulse W | idth | | | tCW | Typ(ns)* 4.0 | | | | | | | Pause T | | | -+ | tCWH | 4.0 | | | | | | 020011 | | | | -+ | | | | | | | | Data S | etup Ti | me | | | tSD | 1.1 | | | | | | Data Hold Time | | | | | tHD | 2.8 | | | | | | Clear Pulse Width tLV | | | | | | | | | D/ 11 | | Loading | | | | | | tLW | 4.0 | | | Pin Name
D | Facto | r (lu) | Clear Release Time tREM Clear Hold Time tINH | | | | | | 1.5 | | | CK | | 1 | Clear | noid ii | ше | | | LINA | 4.3 | | | CL | | 1 | | | | | | | | | | 02 | | • | | | | | | | | | | | | | | | | | - 1 | | 1 | | | | | t Driving | | | | | | | | | | Pin Name | | r (lu) | l | | | | | | | | | Q | | 18 | ļ | | | | | | | | | | İ | | | | | | | | | | | | 1 | | | | | | | | ing condition | | | | | | | given b | | | | | | | | | | | | 0-1011 | , | | | | | | | Function | Table | Inpu | | Output | _ | | | | | | | | | CK D | CL | Q | 4 | | | | | | | | | | . , | | | | | | | | | | | XXX | | L
L | 1 | | | | | | | | | | | | 1 | | | | | | | | | | Output | | |-------------|-------------|-------------| | D | CL | Q | | X
L
H | L
H
H | L
L
H | | | X
L | X L
L H | UHB-FDR-E4 | Sheet 1/3 | Number of BC | FILITEII C | MOC CATE ADDAY IT | NIT CEL | T CDECT | FICATIO | NI . | | וויוי (| B" Version | |--|-------------|-------------------|---------|----------|-----------|--------|---------------|--------------------|----------------| | Propagation Delay Parameter Tell | | | NII CEL | L SPECI. | FICATIO | IN . | | | | | Propagation Delay Parameter tun tun to KCL to KCL CDR2 Path 3.03 0.16 2.45 0.09 CK QB QC QC QC QC Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time ThD ThD ThD ThD ThD ThD ThD Th | | | | | | | | | | | Tup tdn KCL tO KCL KCL2 CDR2 Path 3.03 0.16 2.45 0.09 CK + Q OR O | | Non-SCAN 4-bit | DFF | | | | | l | 20 | | DA DB DC DD QA QB QC QC QD Parameter Clock Fulse Width Clock Pause Time Clock Pause Time Town Ame Tactor (Lu) Q CK QC CK QC CK QC CK QC CK QC CT | Cell Symbol | | | | agation | | | ter | | | DA DB DC DD CK QB QB QC QC QC QD Parameter Clock Pulse Width tCW 4.0 Clock Pause Time tCWH 4.0 Data Setup Time Data Hold Time THD CK 1 CK 1 Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q Outputs CK + Q | | | | | ±0 | | | CDR2 | - Path | | Parameter Symbol Typ(ns)* Clock Pulse Width tCW 4.0 Clock Pause Time tCWH 4.0 Data Setup Time tSD 1.1 Data Setup Time tHD 2.5 Pin Name Factor (Lu) Data Hold Time tHD 2.5 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | | | | | | | | 1 | | | Parameter Symbol Typ(ns)* Clock Pulse Width tCW 4.0 Clock Pause Time tCWH 4.0 Data Setup Time tSD 1.1 Data Setup Time tHD 2.5 Pin Name Factor (Lu) Data Hold Time tHD 2.5 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | ı | | | | | | | | | | Parameter Symbol Typ(ns)* Clock Pulse Width tCW 4.0 Clock Pause Time tSD 1.1 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (£u) Q 18 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | DA D | B DC DD | | | | | i | l | | | Parameter Symbol Typ(ns)* Clock Pulse Width tCW 4.0 Clock Pause Time tSD 1.1 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (£u) Q 18 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | 1 | 111 | | | | | | | | | Parameter Symbol Typ(ns)* Clock Pulse Width tCW 4.0 Clock Pause Time tSD 1.1 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (£u) Q 18 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | | | | | | | | | | | Parameter Symbol Typ(ns)* Clock Pulse Width tCW 4.0 Clock Pause Time tSD 1.1 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (2u) Q 18 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | | | | | | | | | | | Parameter Symbol Typ(ns)* Clock Pulse Width tCW 4.0 Clock Pause Time tCWH 4.0 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (Lu) Q 18 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | Cw | | | | | | | | | | Parameter Symbol Typ(ns)* Clock Pulse Width tCW 4.0 Clock Pause Time tCWH 4.0 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (fu) Data Hold Time thD 2.5 Pin Name Factor (fu) A minimum values for the typical operating condition the values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | CK | | | | | | 1 | | | | Clock Pulse Width tCW 4.0 Clock Pause Time tCWH 4.0 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (fu) D 2 CK 1 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | | | | | | | | | | | Clock Pulse Width tCW 4.0 Clock Pause Time tCWH 4.0 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (fu) D 2 CK 1 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | | | | | | | ļ | | | | Clock Pulse Width tCW 4.0 Clock Pause Time tCWH 4.0 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (fu) D 2 CK 1 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | | | Danie | | | | L . | Sumb al | Tum(na)# | | Clock Pause Time tCWH 4.0 Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 Pin Name Factor (£u) CK 1 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | | | | | idth | | - | | | | Data Setup Time tSD 1.1 Data Hold Time tHD 2.5 | | | | | | | | | | | Data Hold Time | | | | | | | | | | | Pin Name Input Loading Factor (£u) D | | | | | | | | | | | Pin Name Factor (lu) D 2 CK | | | Data H | old lim | е | | - | THU | 2.3 | | Pin Name Factor (lu) D 2 CK | | Input Loading | | | | | - 1 | | | | CK 1 Pin Name Output Driving Factor (Au) Q 18 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | | Factor (lu) | | | | | | | | | Pin Name Factor (£u) Q 18 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | _ | | | | | | | | | | Pin
Name Factor (Lu) | CK | 1 | ĺ | | | | | | | | Pin Name Factor (Lu) | | ļ | 1 | | | | | | | | Pin Name Factor (Lu) | | | | | | | | | | | Pin Name Factor (Lu) | | 0.1.1.2 | | | | | | | | | # Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | Pin Name | Factor ((1)) | 1 | | | | | | | | The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | | 18 | | | | | | | į , | | The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CK D Q | • | | | | | | | | | | Function Table Inputs Outputs CK D Q | | | * Mini | mum val | ues for | the ty | pical o | operati | ing condition. | | Function Table Inputs Outputs CK D Q | | | ine | values | or the m | WOIST | delaw | peratii
multini | ig condition | | Inputs Outputs CK D Q | | 1 | are | PTAGIT D | , c.i.e m | | -cray | | | | CK D Q | Function T | Cable | | | | | | | | | CK D Q | l | | | | | | | | | | CK D Q | Inpute | Outputs | | | | | | | | | | - inputs | | | | | | | | | | | CK D | Q | † L | L | | | | | | | | | | [| UHB-FDS-E3 Sheet 1/2 Page 12-13 | UHB-FDS-E3 | Sheet 1/2 | | | | | | | Page 12-15 | | FUJITSU | CMOS GATE | ARRAY | UNIT CEL | L SPECI | FICATIO | N | | ี "บ. | HB" Version | |-------------|-------------------|-----------------|----------|----------------|---------|---------------------------|---------|--------------|----------------------------------| | Cell Name | Function | | | | | | | | Number of BC | | FD2 | | N Power | DFF | | | | | | 7 | | Cell Symbol | | | | Prop | agation | Delay | | er | | | | | | | up | | td | | , | | | | | | t0 | KCL | t0 | KCL | KCL2 | | | | | | | 1.65 | 0.08 | 1.72 | 0.05
0.04 | 0.10 | 7 | CK → Q
CK → XQ | | D ——C |) | Q
XQ | | | | | | | | | | | | Parame | ter
Pulse W | idth | | S | ymbol
tCW | Typ(ns)* | | | | | | Pause T | | | | tCW | 4.0 | | | | | | | | | | | | | | | | | etup Ti | | | | tSD | 1.1 | | | | | Data H | old Tim | e | | | tHD | 2.4 | | Pin Name | Input I
Factor | (lu) | | | | | | | | | CK | 1 | | | | | | | | | | Pin Name | Output
Factor | Driving
(lu) | | | | | | | | | Q
XQ | 36
36 | , | Ī | | | | | | | | | | | The | values | for the | the ty
worst
aximum | case or | erati | ing conditioning condition lier. | | Function | Table | | | | | | | | | | Inputs | | puts | | | | | | | | | CK | D Q | XQ | | | | | | | | | | H H
L L | L
H | | | | | | | | UHB-FD2-E3 | Sheet 1/2 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N N | | "u | JHB" Version | | |-------------|-------------------|--|---------|---------|--------|-------|------------|--------------|--| | Cell Name | Function | | | | | | | Number of BC | | | | | | | | - | | | | | | FD3 | Non-SCAN Power | DFF wit | | | D. 1 | D | | 8 | | | Cell Symbol | | | up Prop | agation | Delay | | ter | 7 | | | | | to | KCL | t0 | KCL | KCL2 | T CDR2 | Path | | | | | 1.71 | 0.06 | 1.73 | 0.04 | 0.10 | | | | | ł : | PR | 2.80 | 0.06 | 2.50 | 0.04 | 0.07 | | CK → XQ | | | | 1 | 2.39 | 0.06 | 0.91 | 0.04 | 0.07 | | PR → Q,XQ | | | İ | | | | | | | Ì | | | | р —— | Q | Parame | | | | | Symbol | Typ(ns)* | | | | | | Pulse W | | | | tCW | 4.0 | | | | | Clock | Pause T | ime | | | tCWL | 4.0 | | | | | Data S | etup Ti | me | | | tSD | 2.1 | | | | | | old Tim | | | | tHD | 1.5 | | | | | | | | | | | | | | | Input Loading | | Pulse | | | | tPW | 4.0 | | | Pin Name | Factor (lu) | | Releas | | | | tREM | 0.3 | | | D | 2 | Preset | Hold T | ime | | | tINH | 3.8 | | | CK
PR | 1 2 | İ | | | | 1 | | j | | | I I'N | 2 | | | | | | | | | | | | | | | | 1 | | | | | | Output Driving | 1 | | | | | | | | | Pin Name | Factor (lu) |] | | | | - 1 | | | | | Q | 36 | | | | | | | | | | XQ | 36 | l | _ | _ | | | | | | | | 1 | * Minimum values for the typical operating condition. | | | | | | | | | | | The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | L | 1 are | given b | y the m | aximum | deray | multl | JIIEI. | | | | Inputs | Outputs | | | | | |-------------|--------|-------------|-------------|-------------|--|--| | PR | CK | D | Q | XQ | | | | L
H
H | X
+ | X
H
L | H
H
L | L
L
H | | | UHB-FD3-E2 | Sheet 1/2 | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "ບ | HB" Version | |-------------|-------------------|---------|----------|---------|--------|-------|--------|---------------| | Cell Name | Function | | | | | | | Number of BC | | | | | | | | | | | | FD4 | Non-SCAN Power | DFF wit | | | | | | 9 | | Cell Symbol | | | | agation | Delay | | eter | | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL | | | | | | 1.90 | 0.07 | 1.72 | 0.05 | 0.1 | | CK → Q | | | PR | 2.81 | | | 0.04 | 0.0 | | CK → XQ | | | 1 | 2.47 | | | 0.05 | 0.1 | | CL → Q,XQ | | | Į. | 2.49 | 0.07 | 0.92 | 0.04 | 0.0 | 7 7 | PR + Q,XQ | | | _ | | | | | | 1 | 1 | | D — | - Q | | | | | | i | | | ск | | | | | | | 1 | | | | L | | | | | | ı | | | | р—— х Q | | | | | | 1 | İ | | - | Ŷ | | | | | | 1 | | | | | | | | | | 1 | 1 | | | CĹ | | | | | | , | İ | | | | Parame | <u> </u> | | | | Symbol | Typ(ns)* | | | | | Pulse W | ideb | | | tCW | 4.0 | | | | | Pause T | | | | tCWL | 4.0 | | | | DIOCK | 1 ause 1 | THE | | | COND | | | | | Data S | etup Ti | me | | | tSD | 2.1 | | | | | old Tim | | | | tHD | 1.5 | | | | | | | | | | | | | Input Loading | Preset | Pulse | Width | | | tPW | 4.0 | | Pin Name | Factor (lu) | Preset | Releas | e Time | | | tREM | 0.3 | | D | 2 | Preset | Hold T | ime | | | tINH | 3.8 | | CK | 1 | | | | | | | | | CL | 2 | Clear | Palse W | idth | | | tLW | 4.0 | | PR | 2 | Clear | Release | Time | | | tREM | 0.9 | | | | Clear | Hold Ti | me | | | tINH | 3.3 | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | 1 | | | | - 1 | | 1 | | Q | 36 | 1 | | | | - 1 | | | | χQ | 36 | | | | | | | | | • | 1 | * Mini | mum val | ues for | the ty | pical | operat | ing condition | | | | | | | | | | ng condition | | | 1 | | | | aximum | | | | | | | Inp | Out | puts | | | |---|------------------|------------------|-------------|-------------|------------------|------------------| | I | PR | CL | CK | D | Q | XQ | | | L
H
H
H | H
L
H
H | X
X
+ | X
H
L | H
L
H
L | L
H
L
H | UHB-FD4-E2 | Sheet 1/2 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | | "U | HB" Version | |-------------|-------------------|----------|-------------------|---------|--------|-------|-------|------|----------------| | Cell Name | Function | | | | | | | | Number of BC | | | | | | | | | | | | | FD5 | Non-SCAN Power | DFF wit | | | | | | | 8 | | Cell Symbol | | | | agation | | | nete: | r | | | Į. | | | up | | td | | | | | | | | t0 | KCL | t0 | KCL | KCI | | CDR2 | | | | | 1.88 | 0.08 | 1.71 | 0.05 | 0.1 | | 7 | CK → Q | | | | 2.57 | 0.08 | 2.57 | 0.04 | 0.0 | | 7 | CK → XQ | | 1 | | 2.36 | 0.08 | 1.52 | 0.05 | 0.1 | 10 | 7 | CL → Q,XQ | | | | | İ | | | | - 1 | | | | | | 1 | | | | l | | | İ | | D | ├ Q | | | | | l | | | j | | c k | | | | | | | 1 | | | | 1 | р—— хо | | | | | i | | | Į. | | | ^^^ | | | | | l | ı | | | | | Y | | | | | l | - 1 | | 1 | | 1 | | | 1 | | | l | | | - 1 | | 1 . | CL | | 1 | | | ŀ | - 1 | | ļ | | , | 01 | Parame | ter | | | └── | Sv | mbol | Typ(ns)* | | 1 | | | Pulse W | idth | | | | CW | 4.0 | | l | | Clock | Pause T | ime | | | t | CWL | 4.0 | | | | | | | | | | | | | ĺ | | Data S | etup Ti | me | | | t | SD | 1.1 | | | | Data H | old Tim | е | | | t | HD | 2.4 | | | | | | | | | | | | | | Input Loading | | Pulse W | | | | | LW | 4.0 | | Pin Name | Factor (lu) | | Release | | | | | REM | 1.5 | | D | 2 | Clear | Hold Ti | me | | | t | INH | 4.5 | | CK | 1 | | | | | | | | | | CL | 2 | | | | | | | | 1 | | | | 1 | | | | - 1 | | | 1 | | | <u> </u> | i | | | | | | | | | l | Output Driving | | | | | | | | | | Pin Name | Factor (lu) | 1 | | | | - 1 | | | | | Q | 36 | <u> </u> | | | | 1 | | | | | XQ | 36 | | 1 | | 41. 4 | | | | | | 1 | 1 | | | | | | | | ing condition. | | | 1 | | values
given b | | | | | | ng condition | | | <u> </u> | are | given b | y the m | aximum | de 18 | у ши | ıtıp | IIef. | | | Input | s | Out | puts | |-------------|-------------|-------------|-------------|-------------| | CL | CK | D | 0 | XQ | | L
H
H | X
↓
↓ | X
H
L | L
H
L | H
L
H | UHB-FD5-E4 | Sheet 1/2 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | ט" ו | HB" Version | |-------------|-------------------|---------|----------|---------|--------|---------|--------|----------------| | Cell Name | Function | | | | | | | Number of BC | | | | | | | | | | | | FJD | Non-SCAN Positi | ve edge | clocke | d Power | JKFF w | ith Clo | ear | 12 | | Cell Symbol | | | Prop | agation | Delay | Parame | ter | | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 4.40 | 0.08 | 2.96 | 0.05 | 0.08 | 7 | CK → Q | | | | 4.43 | 0.08 | | | 0.08 | | CK → XQ | | | | 2.40 | 0.08 | 1.29 | 0.05 | 0.08 | 7 | CL → Q,XQ | | | | 1 | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | i | | | J — | Q | | | | | | 1 | | | CK — | | | | | | | | | | к — | x _Q | ļ | | | | | 1 | | | ^ L | | | 1 | | | | | | | | Y | | | | | | 1 | | | | | | | | | | l | | | | CL | Parame | ter | L | L | - | Symbol | Typ(ns)* | | | | Clock | Pulse W | idth | | | tCW | 5.6 | | | | Clock | Pause T |
ime | | | tCWH | 5.6 | | | | | | | | | | | | | | J,K Se | tup Tim | e | | | tSD | 2.5 | | | | J,K Ho | ld Time | | | | tHD | 1.2 | | | T | ļ | | | | | | | | . | Input Loading | | Pulse W | | | | tLW | 4.0 | | Pin Name | Factor (lu) | | Release | | | | tREM | 2.5 | | CL | 2 | Clear | Hold Ti | me | | | tINH | 4.5 | | J
K | 1 1 | | | | | - 1 | | 1 | | CK | 1 1 | | | | | - 1 | | | | CX | 1 | | | | | - 1 | | | | | Output Driving | 1 | | | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | Q | 36 | i | | | | | | | | χQ | 36 | | | | | | | | | | | * Mini | mum val | ues for | the tv | pical | operat | ing condition. | | | | | | | | | | ing condition | | | | | given b | | | | | | | | ··· | | <u> </u> | | | | | | | | Inpi | ıts | | Outputs | |------------------|-------------|------------------|------------------|---| | CL | СК | J | ĸ | q xq | | L
H
H
H | X
†
† | X
L
H
H | X
L
H
L | L H Q ₀ XQ ₀ L H H L XQ ₀ Q ₀ | UHB-FJD-E3 | Sheet 1/2 ## **Binary Counter Family** | Page | Unit Cell
Name | Function | Basic
Cells | |-------|-------------------|--|----------------| | 2–187 | SC7 | Scan 4-bit Synchronous Binary Up Counter with Parallel Load | 62 | | 2–192 | SC8 | Scan 4-bit Synchronous Binary
Down Counter with Parallel Load | 66 | | 2–197 | C11 | Non-Scan Flip-flop for Counter | 11 | | 2-199 | C41 | Non-Scan 4-bit Binary Asynchronous Counter | 24 | | 2-202 | C42 | Non-Scan 4-bit Binary Synchronous Counter | 32 | | 2-205 | C43 | Non-Scan 4-bit Binary Synchronous Up Counter | 48 | | 2-209 | C45 | Non-Scan Binary Synchronous Up Counter | 48 | | 2–213 | C47 | Non-Scan Binary Synchronous Up/Down Counter | 68 | | FUNTION | FULLTSU | MOS GATE ARRAY II | NIT CEL | L SPECT | FICATIO | N | | | ппн | IB" Version | |--|-------------|-------------------|----------|----------|-----------|--------|------|-------|-------|---------------| | SCA SCA Spite Symbol Spine Start Symbol S | | | 1111 000 | <u> </u> | 1 1011110 | *1 | | | | | | SC7 | | SCAN 4-bit Sync | hronous | Binary | | | | | | | | Tup | | Up Counter with | Parall: | el Load | | | | | | 62 | | DA | Cell Symbol | | | | agation | | | neter | | | | DA | | | | | | | | | | ⊣ | | S,78 | | | | | | | | | | | | DA | | | | | | | | | | | | DA | | | | | | | : | 1 | | CK TH - CO | | DB | DA | | | | | | _ | | _ | | | DC | 1 | | 2.00 | 0.00 | 1.00 | 0.04 | | | | 01 , 00 | | DD | 1 | | | | | | | | | | | CK | DD — | | | | | | | - 1 | | | | Name | CY | | | | | | | | | | | Parameter Symbol Typ(ns)** Clock Pulse Width tCW 7.2 | 1 1 | | | | | | | | | | | CI | 1 -1 | | | | | | Ĺ, | | | | | Clock Pause Time | 1 | | | | | | | | | | | Data Setup Time tSD 2.0 | EN — | 1 | | | | | | | | | | Data Setup Time | si — | CO | Clock | Pause 1 | ıme | | | t | -WH | 1.2 | | Data Hold Time | | | Data S | etup Ti | me | | | + 9 | SD | 2.0 | | Load Setup Time | в — 9 | | | | | | | | | | | Load Hold Time | | | | | | | | | | | | Input Loading | | | Load S | etup Ti | me | | | | | | | Pin Name | | | Load H | old Tim | е | | | tŀ | IL. | 3.6 | | Pin Name | | | | | | | | | | | | D | D4= N | | | | | | | | | | | CK 1 EN Setup Time tSE 7.2 IH 1 1 CI 2 EN 1 1 SI 1 A,B 1 1 Output Driving Factor (flu) Q 36 XQ 36 CO 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | CI HOL | u lime | | | | t) | 16 | 2.1 | | IH 1 1 EN Hold Time tHE 2.7 L 1 1 2 EN 1 1 SI 1 A,B 1 1 | | | EN Set | un Time | | | | +9 | SE | 7 2 | | L 1 CI 2 EN 1 SI 1 A,B 1 Output Driving Pin Name Factor (Au) Q 36 XQ 36 CO 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | EN Hol | d Time | | | | | | | | EN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | i i | | | | | | | | | | SI A,B 1 Output Driving Factor (2u) Q 36 XQ 36 CO 36 * Minimum values for the typical operating condition The values for the worst case operating condition are given by the maximum delay multiplier. | CI | 2 | | | | | | | | | | A,B 1 Output Driving Factor (fu) Q 36 XQ 36 CO 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | h . | 1 | | | | | | | | | | Pin Name Factor (lu) Q 36 XQ 36 CO 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | t . | | | | | | | | | | | Pin Name Factor (lu) Q 36 XQ 36 CO 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | A,B | 1 | | | | | | | | | | Pin Name Factor (lu) Q 36 XQ 36 CO 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | Outros Desirates | | | | | | | | | | Q 36 XQ 36 CO 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | Pin Name | Factor (011) | | | | | | | | | | XQ 36 CO 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | | CO 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | l | | | | | The values for the worst case operating condition are given by the maximum delay multiplier. | | | * Mini | mum val | ues for | the ty | pica | l ope | erati | ng condition. | | | | | The | values | for the | worst | case | oper | ratin | ng condition | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | <u> </u> | are | given b | y the m | aximum | dela | y mul | ltipl | ier. | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | UHB-SC7-E2 Sheet 1/5 Page 13-1 | | | | | | | | | | | | | UHB-SC7-E2 | Sheet 1/5 | | | | | | | | Page 13-1 | | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | ט"ן | JHB" Version | |-------------|------------------|--------------|-------------|--------------|--------|--------------|--------|--| | Cell Name | Function | | | | | | | Number of BC | | 000 | SCAN 4-bit Sync | | | | | | | | | SC8 | Down Counter wi | th Para | liel Lo | ad | | | | 66 | | Cell Symbol | | | | agation | | | ter | | | | | | up | +0 | td | | GDDO | — B | | | | t0
3.37 | KCL
0.07 | t0 | KCL | KCL2
0.13 | | $\begin{array}{c c} Path \\ \hline CK, IH \rightarrow Q \end{array}$ | | | | | | 3.18 | 0.06 | 0.13 | ' | | | | | 4.40
6.41 | 0.06 | 4.32
8.37 | 0.04 | | 1 | CK, IH → XQ | | DA - | | 1.49 | 0.08 | 2.27 | 0.04 | | ł | CK, IH → BO
BI → BO | | DB — | QA | 1.49 | 0.00 | 2.27 | 0.04 | | 1 | B1 7 B0 | | DC - | P XQA | | | | | | 1 | 1 | | DD | QB | | | | | | 1 | | | 1 | р—— xqв | | | | | | | |
 CK - | QC | | | 1 | | · · | 1 | • | | IH — | p xqc | | | | | | ì | | | r — 9 | QD | Parame | ter | | | | Symbol | Typ(ns)* | | BI — q | р хор | | Pulse W | idth | | -+ | tCW | 6.8 | | EN —— | L | | Pause T | | | | tCWH | 6.8 | | SI | р во | | | | | | | | | A — | | Data S | etup Ti | me | | | tSD | 2.0 | | В — С | | | old Tim | | | | tHD | 3.3 | | | ***** | | | | | | | | | | | | etup Ti | | | | tSL | 6.3 | | | | Load H | old Tim | е | | | tHL | 3.6 | | | | | | | | | | | | | Input Loading | EN Set | up Time | | | | tSE | 8.1 | | Pin Name | Factor (lu) | EN Hol | d Time | | | | tHE | 1.8 | | D | 1 | | | | | | | | | CK | 1 | BI Set | up Time | | | | tSB | 8.1 | | IH | 1 | BI Hol | d Time | | | | tHB | 1.8 | | L | 1 | | | | | | | | | BI | 2 | | | | | | | | | EN | 1 | | | | | - 1 | | | | SI | 1 | | | | | | | | | A,B | 1 | | | | | | | | | | Out to Division | | | | | | | | | D/- 11 | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | Q
XQ | 36
36 | ļ | | | | | | | | BO | 36 | * Mini | m11m 77.01 | nes for | the to | nice1 | onero+ | ing condition. | | |] | | | | | | | ing condition. | | | | | | y the m | | | | | | | 1 | | <u> </u> | | | | | | | 1 | | | | | | | | | | 1 | 1 | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | 1 | 1 | <u> </u> | | | | | | | D 12 (| | UHB-SC8-E2 | Sheet 1/5 | | | | | | | Page 13-6 | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | ט" ו | HB" Version | | | | |-------------|-------------------|--|-------------------|--------------|--------|---------|-------|---------------|--|--|--| | Cell Name | Function | | | | | | | Number of BC | | | | | | | | | | | | | | | | | | C11 | Non-SCAN Flip-F | lop for | Counte | r | | | | 11 | | | | | Cell Symbol | | | | | Delay | Paramet | er | | | | | | | | t | up | | td | n | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | | | 1.90 | 0.16 | 1.75 | 0.10 | | | CK → Q | | | | | | | 2.53 | 0.16 | | | | ĺ | CK → XQ | | | | | | | 2.62 | 0.16 | 1.73 | 0.10 | İ | 1 | CL + Q,XQ | | | | | | | | | | | | | | | | | | ١ ٢ | | 1 | | Ì | 1 | | | | | | | | D — | | | | | | | | | | | | | L — | ├─ - Q | ! | | | | | l | | | | | | | | l | | | 1 | | | | | | | | | | | | | | | l | | | | | | CK — | | | | l | i | | |] | | | | | | | ļ | | 1 | | | | | | | | | TG - | р—— х о | j | | 1 | _ | - | Parameter Sym | | | | | | Typ(ns)# | | | | | | | Clock Pulse Width to | | | | | | 4.0 | | | | | | CL | Clock Pause Time tCV | | | | | | 4.2 | | | | | | 02 | | | | | | | | | | | | | | Clear | Pulse W | idth | | | tLW | 4.0 | | | | | | | | Release | | | | tREM | 1.0 | | | | | | | Clear | Hold Ti | me | | | tINH | 0.5 | | | | | | Input Loading | <u> </u> | | | | | | | | | | | Pin Name | Factor (lu) | | etup Ti | | CK) | | tSL | 2.3 | | | | | L | 2 | Load H | old Tim | <u>ie (</u> | CK) | | tHL | 0.5 | | | | | TG | 2 | <u> </u> | | | 61// | | | | | | | | CL | 2 | | etup Ti | | CK) | | tSD | 2.5 | | | | | D,CK | 1 | Data H | old Tim | ie (| CK) | | tHD | 0.5 | | | | | | Output Driving | 77C C-4 | 77/ | , | CK) | | tST | 2.9 | | | | | Pin Name | | | up Time
d Time | tHT | 0.0 | | | | | | | | | Factor (lu) | 10 101 | + 0.0 | | | | | | | | | | Q
XQ | 18 | | | | | | | | | | | | ΛŲ | 10 | + M: | m.,m ,,_1 | fa- | +ha + | mical - | | ing condition | | | | | | | * Minimum values for the typical operating condition. The values for the worst case operating condition | .1 | are | Fineu p | y the m | aximum | GETAN E | ultip | ilel. | | | | | L | а | TG | CL | СК | Q(Q ₀) | |---|---|----|----|----|---| | х | Х | Х | L | х | L | | н | Н | х | н | + | н | | н | L | x | н | + | L | | L | x | L | н | + | Q(Q ₀) | | L | x | н | н | + | $\overline{\mathbb{Q}}(\overline{\mathbb{Q}_{\theta}})$ | UHB-C11-E3 | Sheet 1/2 | FULLTSU | CMOS GATE ARRAY U | NIT CEL | T. SPECT | FICATIO | NI . | | 1 11 | HB" Version | | | |--|---|-------------------|-------------|---------|------|------|-------|--------------|--|--| | Cell Name | Function | TIT OLL | D 01 101 | TICATIO | ., | | | Number of BC | | | | | | | | | | | | | | | | C41 | Non-SCAN 4-bit | Binary | | | | | | 24 | | | | Cell Symbol | | | | agation | | | er | | | | | | | | up | | td | | | | | | | ļ | | t0
2.00 | KCL
0.14 | t0 | KCL | KCL2 | CDR2 | | | | | | | | | 1.86 | 0.10 | - | - | CK → QA | | | | | | 3.67 | 0.14 | | 0.10 | - | - | CK → QB | | | | 1 | | 5.13 | 0.14 | | 0.10 | - | - | CK → QC | | | | 1 | | 6.60 | 0.14 | 6.20 | 0.10 | - | - | CK → QD | | | | l r | | - | - | 4.19 | 0.10 | - | - | CL → Q | | | | | QA | | | | | | | | | | | 1 | ├── QB | | | | | | | | | | | | — QC | | | | | | | | | | | 1 | — QD | | | | | | ļ | | | | | ck — | 1 | | | | | | | | | | | 011 | | | | | | | i | | | | | 1 | ļ | j | | | | | ì | | | | | | | | | | | | | | | | | | | Parame | ter | | | l s | vmbol | Typ(ns)* | | | | 1 | Ĭ | Clock Pulse Width | | | | | tCW | 4.3 | | | | | 1 | Clock Pause Time | | | | | tCWH | 4.6 | | | | | CL | | | | | | | | | | | | | | Pulse W | | | | tLW | 3.9 | | | | | | | Release | | | | tREM | 2.1 | | | | | Input Loading | Clear | Hold Ti | me | | | tINH | 6.7 | | | | Pin Name | Factor (lu) | 1 | | | | 1 | | | | | | CK | 1 | 1 | | | | - 1 | | | | | | CL | 1 | | | | | 1 | | | | | | 1 | 1 | l | | | | | | 1 | | | | 1 | ļ | 1 | | | | 1 | | | | | | | | | | | | | | 1 | | | | | Output Driving | 1 | | | | | | 1 | | | | Pin Name | Factor (lu) | 1 | | | | | | | | | | Q | 18 | 1 | | | | - | | 1 | | | | , | | | | | | | | | | | | * Minimum values for the typical operating condition | | | | | | | | | | | | | The values for the worst case operating condition | | | | | | | | | | | | are given by the maximum delay multiplier. | | | | | | | | | | | | are given by the maximum delay multiplier. | | | | | | | | | | | Inp | uts | Outputs | | | | | |--------|--------|---------------|--|--|--|--| | CL | CK | Q | | | | | | H
L | †
X | Count up
L | | | | | UHB-C41-E2 | Sheet 1/3 | FILITSILO | MOS GATE ARRAY U | NIT CEL | I SDECT | FICATIO | NI. | | T "ITH | B" Version | | | |-----------------|------------------|-----------|--|---------|-------------|---------|-------------|---------------|--|--| | Cell Name | Function | DIVIT CLL | L BILCI | FICATIO | | | 1 011 | Number of BC | | | | | | | | | | | | | | | | C42 | Non-SCAN 4-bit | Binary | Synchro | nous Co | unter | D | | 32 | | | | Cell Symbol | | ├ | up | agation | Delay
td | | er | | | | | | | to | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | | 3.18 | 0.14 | 2.34 | 0.09 | 0.12 | 4 | CK → Q | | | | | | - | - | 3.36 | 0.09 | 0.12 | 4 | CL → Q | | | | | | | | | | | | | | | | _ | | | | | | | } | | | | | | QA | | | | | | l | | | | | | QB | | | | | | 1 | | | | | | QC | | | | | | | | | | | CV | QD | 1 | | | | | 1 | | | | | ск — | L | | | | | | | | | | _ | | Parame | | | | | ymbol | Typ(ns)* | | | | | | Clock | Pulse W
Pause T | inc | | | tCW
tCWH | 4.3 | | | | | CL | CTOCK | iause I | 1111E | | -+ | LUWN | + *.0 | | | | | | Clear | Pulse W | idth | | | tLW | 4.0 | | | | | | | Release | | | | tREM | 2.1 | | | | Din Nama | Input Loading | Clear | Hold Ti | me | | | tINH | 6.7 | | | | Pin Name
CL | Factor (lu) | 1 | | | | | | | | | | CK | ī | 1 | | | | ı | | 1 | ļ | | | | | | | Output Driving | 4 | | | | | | | | | | Pin Name | Factor (lu) | | | | | | | 1 | | | | Q | 18 | 1 | | | | | | | | | | | | | | _ | - | | | | | | | | | * Mini | imum val | ues for | the ty | pical c | perati | ng condition. | | | | | | are | The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | 1 216 | 02.011 | ,c m | | | | | | | | Function T | Table | | | | | | | | | | | Tacuta | Outmut | | | | | | | | | | | Inputs
CL CK | Outputs
Q | | | | | | | | | | | | | | | | | | | | | | | Н 🛉 | Count up | | | | | | | | | | | LX | L | IND CO FO | Chast 1/2 | | | | | | | Page 12-16 | | | | UHB-C42-E3 | Sheet 1/3 | | | | | | | Page 13-16 | | | | | Inputs
CLO XTG CKO | | | | | | | | | |-----|---------------------------|----------|------|--|--|--|--|--|--| | CLO | XTG | Q(Q0) | | | | | | | | | L | x | х | L | | | | | | | | н | н | † | Qn-1 | | | | | | | | н | L | † | Qn−1 | | | | | | | UHB-C42-E3 | Sheet 2/3 Page 13-17 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | " U | HB" Version | | |--|-------------------|--|-------------------------------|-------------------|-------|------|----------------------|----------------------|--| | Cell Name | Function | | | | | | | Number of BC | | | C43 | Non-SCAN 4-bit | Binary | | | | | | 48 | | | Cell Symbol | | | | agation | Delay | | eī | | | | i | | | up | | td | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | ĺ | | 2.96 |
0.16 | 2.40 | 0.09 | | | CK → Q | | | | 5.60 | 0.16 | 3.56 | 0.08 | | | CK → CO | | | | | | 1.60 | 0.16 | 0.81 | 0.08 | | | CI → CO | | | | | | - | 3.88 | 0.09 | | | CL → Q | | | l г | | - | - | 2.64 | 0.08 | | | Cr → co | | | DA — QA — QB — QC — QC — QD — QD — CK — EN — CO — CO | | Clock
Data S | Pulse W
Pause T
etup Ti | idth
ime
me | | | ymbol
tCW
tCWH | Typ(ns)* 4.7 6.7 2.6 | | | | | | old Tim | | | | tHD | 2.9 | | | | | | etup Ti | | | | tSL | 4.4 | | | l | Input Loading | | old Tim | | | | tHL | 1.3 | | | Pin Name | Factor (lu) | | up Time | | | | tSC | 4.3 | | | D | 1 | CI Hol | | | | | tHC | 0.9 | | | L,EN | 1 | | up Time | | | | tSE | 4.3 | | | CK,CL | 1 | EN Hol | | | | | tHE | 0.9 | | | CI | 2 | | Pulse W | | | | tLW | 5.6 | | | | I | Clear Release Time tREM | | | | | | 1.9 | | | | Output Driving | Clear Hold Time tINH | | | | | | 8.3 | | | Pin Name | Factor (lu) | 1 | | | | | | | | | Q | 18 | | | | | | | | | | CO | 18 | * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | | Outputs | | | | | |-----------------------|------------------|-----------------------|----------------------------|----------------------------|-----------------------|---| | CL | L | D | Q | | | | | L
H
H
H
H | X
L
H
H | X
H
L
X
X | X
X
X
X
L
H | X
X
X
L
X
H | X
†
*
X
X | L
H
L
No Counting
No Counting
Count up | Note: The CO output produces a high level output data when the counter overflows. UHB-C43-E3 Sheet 1/4 UHB-C43-E3 | Sheet 3/4 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | I. SPECI | FICATIO | N | | 1111 | HB" Version | | |-------------|-------------------|--|----------|----------|--------|---------|-------|----------------|--| | Cell Name | Function | .,,,, | D DIDGI | 11011110 | | | | Number of BC | | | | | | | | | | | THE DOLL OF DO | | | C45 | Non-SCAN 4-bit | Binary | Synchro | nous Up | Counte | r | | 48 | | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | | t | up | | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | 2.67 | 0.14 | 1.87 | 0.09 | 0.13 | 4 | CK → Q | | | | | | | 2.82 | 0.09 | | 1 | CK → CO | | | | | 1.91 | 0.17 | 1.36 | 0.09 | | 1 | CI → CO | | | | | | | | | | ł | | | | 1 - | | | | | | | 1 | | | | DA - | QA | | 1 | | | | 1 | | | | DB - | QB | | | | | | | | | | DC - | —— QC | | ł | | | | 1 | 1 | | | | QD | | 1 | | | | - | | | | r —d | | | | | | | 1 | | | | CK - | | | | | | | 1 | 1 | | | EN - | | | 1 | | | | 1 | | | | CI — | со | | ! | | | | 1 | | | | - | | Parame | ter | | | 1 5 | ymbol | Typ(ns)* | | | | | Clock Pulse Width | | | | | tCW | 4.0 | | | | CL | Clock | Pause T | ime | | | tCWH | 4.6 | | | | CL | | etup Ti | | | | tSD | 3.8 | | | | | | old Tim | | | | tHD | 2.1 | | | | | | etup Ti | | | | tSL | 5.0 | | | | Input Loading | | old Tim | | | | tHL | 2.1 | | | Pin Name | Factor (lu) | | up Time | | | | tSC | 6.6 | | | D | 1 | | d Time | | | | tHC | 1.9 | | | L,EN | 1 | | up Time | | | | tSE | 6.6 | | | CK,CL | 1 | | d Time | | | | tHE | 1.9 | | | CI | 2 | | Setup T | | | | tSR | 3.8 | | | | | Clear | Hold Ti | me | | | tHR | 2.0 | | | 1 | Output Driving | | | | | 1 | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | | Q | 18 | | | | | | | | | | co | 18 | * Minimum values for the typical operating condition. | The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | 1 | are | given b | y the m | axımum | delay r | ultip | lier. | | | | | Outputs | | | | | |------------------|------------------|-----------------------|-----------------------|-----------------------|------------------|---| | C | L | D | Q | | | | | L
H
H
H | X
L
H
H | X
H
L
X
X | X
X
X
X
L | X
X
X
L
X | †
†
X
X | L
H
L
No Counting
No Counting
Count up | Note: The CO output produces a high level output data when the counter overflows. UHB-C45-E1 | Sheet 1/4 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | l "U | HB" Version | | |-------------|----------------------|-----------------------------|----------|------------|-------|---------|--------------|------------------------------------|--| | Cell Name | Function | | | | | | | Number of BC | | | C47 | Non-SCAN 4-bit | Binary | | | | | | 68 | | | Cell Symbol | | | | agation | | | er | | | | | | | up | | td | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | 3.99 | 0.16 | 3.59 | 0.16 | 0.25 | 4 | CK → Q | | | | i | 5.41 | 0.11 | | 0.08 | | ١. | CK → CO | | | | | 5.01 | 0.16 | 5.54 | 0.16 | 0.25 | 4 | L + Q | | | | | 2.47 | 0.11 | 3.01 | 0.08 | | | DU → CO | | | DA | — QA
— QB
— QD | D | | | | | | 5-4-14 | | | | | Parameter Clock Pulse Width | | | | | ymbol
tCW | | | | | | Clock Pulse Width | | | | | tCWH | 5.6 | | | | | Clock Pause lime | | | | | tcwn | 0.9 | | | | | Data S | etup Ti | m o | | | tSD | 0.7 | | | | | | old Tim | | | | tHD | 1.8 | | | | Input Loading | Data n | OIG IIII | | | | CILD | 1.0 | | | Pin Name | Factor (lu) | DU Set | up Time | | | | tSU | 5.3 | | | D | 1 | DU Hol | | | | | tHU | 0.8 | | | Ĺ | 2 | | | | | | | | | | DŪ | ī | EN Set | up Time | | | | tSE | 5.0 | | | CK | 1 | EN Hol | | | | | tHE | 1.2 | | | EN | 3 | | | | | | | | | | | 1 | Clear | Release | Time | | | tREM | 2.3 | | | | Output Driving | Clear Hold Time tIN | | | | | | 11.1 | | | Pin Name | Factor (lu) | | | | | | | | | | Q | 18 | Load P | ulse Wi | tLW | 4.6 | | | | | | co | 18 | The | values | | worst | case or | erati | ing condition. ng condition olier. | | | | | Outputs | | | | |------------------|------------------|-------------|-----------------------|------------------|---| | Q | L | EN | DU - | CK | Q | | H
L
X
X | L
L
H
H | X
H
L | X
X
X
L
H | X
X
†
† | H
L
No Counting
Count Up
Count Down | Note: The CO output produces a low level output pulse when the counter overflows or underflows. UHB-C47-E2 | Sheet 1/4 # **Adder Family** | Page | Unit Cell
Name | Function | Basic
Cells | |-------|-------------------|---|----------------| | 2–219 | A1A | 1-bit Half Adder | 5 | | 2-220 | A1N | 1-bit Full Adder | 8 | | 2-221 | A2N | 2-bit Full Adder | 16 | | 2-223 | A4H | 4-bit Binary Full Adder with Fast Carry | 48 | | Di Timari a | | | | | | 1 11 | 211 | | | |----------------|------------------------------|-----------------------------|---------|-------------|----------|-----------------|----------------------------|--|--| | Cell Name | MOS GATE ARRAY Function | INIT CELL SPECIF | TCATIO | N . | | "UH | B" Version
Number of BC | | | | | | | | | | | | | | | A1A | 1-bit Half Add | Propagation Delay Parameter | | | | | | | | | Cell Symbol | | tup | gation | Delay P | | <u> </u> | | | | | | | tO KCL | t0 | KCL | | CDR2 | Path | | | | | | 1.22 0.08 | 1.44 | 0.04 | | | A → S | | | | | | 1.09 0.08 | 1.46 | 0.04 | İ | | B → S
A → CO | | | | | | 1.27 0.08 | 1.15 | 0.04 | | | B + CO | | | | | | 1 1 1 | | 1 | | | | | | | В | со | 1 1 1 | i | l | | | | | | | "- | | | j | | | | | | | | A | s | | | | | | | | | | <u> </u> | | | | | 1 | | | | | | | | | | 1 | 1 | | | | | | 1 | | | | | | | | | | | | | Parameter | | | Sy | mbo1 | Typ(ns)* | Pin Name | Input Loading
Factor (lu) | 1 | | | į | | | | | | A A | 2 | 1 | | | ĺ | | | | | | В | 2 | Ì | | | | | | | Output Driving | | | | ĺ | | | | | | Pin Name
CO | Factor (lu) | - | | | | | | | | | s | 36 | | | | | | | | | | | | * Minimum valu | es for | the typ | oical op | erati | ng condition. | | | | | | The values if | tor the | worst o | case ope | ratin
Iltipl | g condition | | | | | 1 | | | | | P± | | | | | Function ' | Table | F | Equival | ent Circ | uit | | | | | | | | 7 A | | | - | | | | | | A : | B CO S | В — | | - | 1h | N | a | | | | | , , , | | | | | | > s | | | | i i | LLL | | | | | | | | | | 1 1 | LLH | | | 14 | \perp | N | ~ 22 | | | | н | H L | | | | | $\neg \lor$ | > co | | | | L | | J | LITID ALL DO | Sh 1 /1] | | | | | | Page 14-1 | | | | UHB-A1A-E2 | Sheet 1/1 | | | | | | rage 14-1 | | | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | | |---|-----------------|-----------|---------|---------|--------|---------|-------|----------------|--|--| | Cell Name | Function | | | | | | | Number of BC | | | | A2N | 2-bit Full Adde | r | | | | | | 16 | | | | Cell Symbol | | | | agation | Delay | | er | | | | | 1 | | | tup tdn | | | | | | | | | 1 | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 1 | | 2.85 | 0.29 | 2.81 | 0.14 | | ł | A1 → CO | | | | | | 2.74 | 0.29 | 2.87 | 0.14 | | | B1 → CO | | | | 1 | | 1.58 | 0.29 | 1.36 | 0.09 | 0.12 | 4 | A2 → CO | | | | | | 1.47 | 0.29 | 1.36 | 0.09 | 0.12 | 4 | B2 → CO | | | | | | 2.79 | 0.29 | 2.58 | 0.14 | | | CI → CO | | | | B2- | со | 2.97 | 0.22 | 2.75 | 0.14 | | i | A1 → S1 | | | | A2 | | 2.97 | 0.22 | 2.75 | 0.14 | | | B1 → S1 | | | | B1 | S2 | 1.18 | 0.22 | 1.19 | 0.14 | | l | CI → S1 | | | | A1 | S1 | 2.82 | 0.22 | 2.75 | 0.14 | | l | A1 → S2 | | | | | | 3.11 | 0.22 | 2.95 | 0.14 | | 1 | A2 → S2 | | | | ļ | | 2.71 | 0.22
| 2.81 | 0.14 | | l | B1 → S2 | | | | | | 3.11 | 0.22 | 2.95 | 0.14 | | 1 | B2 → S2 | | | | | CI | 2.76 | 0.22 | 2.52 | 0.14 | | | CI → S2 | | | | | | Parameter | | | | | vmbol | Typ(ns)* | | | | | | rarame | ter | | | | ушоот | Typ(IIS) | | | | | | | | | | | | | | | | | Input Loading | 1 | | | | | | } | | | | Pin Name | Factor (lu) | l | | | | | | | | | | A,B | 2 | 1 | | | | | | | | | | CI | 2 | | | | | | | | | | | | 1 | | | | | | | | | | | 1 | | | | | | 1 | | 1 | | | | | |] | | | | | | | | | | | Output Driving | 1 | | | | | | | | | | Pin Name | Factor (lu) | l | | | | 1 | | | | | | S | 14 | | | | | | | | | | | co | 14 | | | | | | | | | | | | | | | | | | | ing condition. | | | | | | | | | | | | ng condition | | | | | 1 | are | given b | y the m | aximum | delay m | ultip | lier. | | | | | Inpu | its | | Outputs | | | | | | | |----|------|-----|----|---------|--------|----|----|--------|----|--| | | | | | (| CI = L | | | CI = H | | | | A1 | B1 | A2 | B2 | S1 | S2 | CO | S1 | S2 | CO | | | | | | | | | | 1 | | | | | L | L | L | L | L | L | L | H | L | L | | | H | L | L | L | Н | L | L | L | H | L | | | L | H | L | L | H | L | L | L | H | L | | | H | H | L | L | L | H | L | Н | H | L | | | L | L | H | L | L | Н | L | н | H | L | | | H | L | H | L | н | Н | L | L | L | H | | | L | H | H | L | н | H | L | L | L | H | | | Н | H | H | L | L | L | H | н | L | H | | | L | L | L | Н | L | Н | L | н | H | L | | | Н | L | L | H | н | Н | L | L | L | H | | | L | H | L | H | н | Н | L | L | L | Н | | | H | Н | L | H | L | L | H | н | L | Н | | | L | L | Н | Н | L | L | Н | н | L | H | | | Н | L | Н | Н | н | L | Н | L | н | Н | | | L | H | Н | H | н | L | H | L | Н | Н | | | H | Н | Н | H | L | H | H | н | Н | Н | | | | •• | •• | •• | - | •• | •• | | | | | UHB-A2N-E2 | Sheet 1/2 Page 14-3 | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | | | |---|-----------------|---------|-------------------------------------|---------|------|---------|------|------------------------|--|--|--| | Cell Name | Function | | | | | | | Number of BC | | | | | А4Н | 4-bit Binary Fu | 11 Adde | r with | Fast Ca | rrv | | | 48 | | | | | Cell Symbol | - DIO DIMILY TO | i nauc | | | | Paramet | er | | | | | | | | t | Propagation Delay Parameter tup tdn | | | | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | } | | 1.18 | 0.22 | 1.63 | 0.14 | | | CI → S1 | | | | | Ì | | 2.65 | 0.29 | 3.07 | 0.14 | | | CI → S2 | | | | | | | 3.03 | 0.29 | 2.98 | 0.14 | | | CI → S3 | | | | | B4 | co | 3.14 | 0.29 | 3.54 | 0.14 | | | CI → S4 | | | | | A4 | S4 | 2.87 | 0.16 | 3.21 | 0.08 | | | CI → CO | | | | | В3 — | | | | | | | | | | | | | A3 | s3 | 3.81 | 0.22 | 3.39 | 0.14 | | | A1,B1 → S1 | | | | | B2 | | 3.17 | 0.29 | 3.08 | 0.14 | | | A1,B1 → S2 | | | | | A2 | S2 | 3.42 | 0.29 | 3.85 | 0.14 | | | A1,B1 → S3 | | | | | B1 | | 3.75 | 0.29 | 3.92 | 0.14 | | | A1,B1 → S4 | | | | | A1 | S1 | 3.30 | 0.16 | 3.78 | 0.08 | | | A1,B1 → CO | | | | | | | | | | | | | | | | | | 1 | | 3.09 | 0.29 | 3.37 | 0.14 | | | A2,B2 → S2 | | | | | | 07 | 3.66 | 0.29 | 3.60 | 0.14 | | | A2,B2 → S3 | | | | | 1 | CI | 3.74 | 0.29 | 4.05 | 0.14 | | | $A2,B2 \rightarrow S4$ | | | | | | | 3.87 | 0.16 | 3.83 | 0.08 | | | $A2,B2 \rightarrow CO$ | | | | | | | | | | | | | } | | | | | 1 | Input Loading | 2.81 | 0.29 | 2.85 | 0.14 | | 1 | A3,B3 → S3 | | | | | Pin Name | Factor (lu) | 3.84 | 0.29 | 4.04 | 0.14 | | l | A3,B3 → S4 | | | | | A | 2 | 3.80 | 0.16 | 3.82 | 0.08 | | | A3,B3 → CO | | | | | В | 2 | | | | | | ١. | 1 | | | | | CI | 2 | 2.90 | 0.22 | 3.01 | 0.09 | 0.12 | 4 | $A4,B4 \rightarrow S4$ | | | | | | <u> </u> | 3.66 | 0.16 | 3.51 | 0.08 | | | A4,B4 → CO | | | | | l | Output Driving | 1 | | | l | | | | | | | | Pin Name | Factor (lu) | | | | | | l | | | | | | CO | 18 | | | | | | L | | | | | | S1,S3,S4 | 14 | | | | | | | | | | | | S2 | 18 | 1 | | | | | | | | | | | | 1 | L | | | | | | | | | | UHB-A4H-E3 Sheet 1/2 | | | | | OUTPUT | | | | | | | | |---------------------------------|--|---|---|--|--|--|---|--|--|--|--| | | INP | UT | | <u>CI</u>
C2 | $=\frac{L}{L}$ | | CI
C2 | | | | | | - <u>A</u> 1 | $\frac{B1}{B3}$ | <u>A</u> 2
<u>A</u> 4 | $\frac{B2}{B4}$ | $\frac{S1}{S3}$ | <u>S2</u>
<u>S4</u> | C2_
C0 | _ <u>S</u> 1_
S3 | <u>\$2</u>
\$4 | C2_
C0_ | | | | L
H
L
H
L
H
L | L
L
H
L
H
H
L
H
H
L
H
H
L
H
H
L
H
H
L
H
H
L
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H | L
L
L
H
H
H
L
L
L
H
H | L
L
L
L
L
L
H
H
H
H
H | L
H
H
L
H
H
L
H
H
H
H
H | L
L
L
H
H
H
H
L
H
H
L
L
L
L | L
L
L
L
L
L
L
L
H
L
L
H
H
H
H
H
H
H
H
H | H L L H H L L L L L L L L L L L L L L L | L
H
H
H
L
L
L
H
L
L
H
H | L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H | | | #### Note: Input conditions at A1, A2, B1, B2 and CI are used to determine outputs S1 and S2 and the value of the internal carry C2. The values at C2, A3, B3, A4 and B4 are then used to determine outputs S3, S4 and CO. Page 14-5 # **Data Latch Family** | Unit Cell | | | | Basic | | | |-----------|-------|------|-----------------------|-------|--|--| | | Page | Name | Function | Cells | | | | | 2-227 | YL2 | Data Latch with TM | 5 | | | | | 2-229 | YL4 | Data Latch with TM | 14 | | | | | 2-231 | LTK | Data Latch | 4 | | | | | 2-233 | LTL | Data Latch with Clear | 5 | | | | | 2-235 | LTM | Data Latch with Clear | 16 | | | | | 2-238 | LT1 | S-R Latch with Clear | 4 | | | | | 2-240 | LT4 | Data Latch | 14 | | | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | " UI | dB" Version | |---------------|-------------------|---------|---------|-------------|--------|----------|-------------|-------------------| | Cell Name | Function | | | | | | | Number of BC | | | | | | | | | | | | YL2 | 1-bit Data Latc | h with | | | | | | 5 | | Cell Symbol | | | | agation | Delay | | ter | - - | | | | | up | | td | | T ==== | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.73 | 0.08 | 2.81 | 0.04 | | ł | CK, IH → Q | | | | 1.16 | 0.08 | 1.28 | 0.04 | | 1 | $D \rightarrow Q$ | | | | | | | | | 1 | 1 | | _ | | | | | | ł | 1 | 1 | | D — | ├- Q | | | | | l | | | | 1 1 | Ų | | | | | [| İ | | | ск — ⊲ | | | | | | ł | 1 | | | IH — | | | | | | İ | į | | | TM | | | | | | İ | 1 | | | - | | | | | | { | 1 | | | | | | | | | | İ | | | ļ | | İ | | | | | 1 | l l | | 1 | | Parame | ter | | | | Symbol | Typ(ns)* | | | | | | | | | | | | | | Clock | Pulse W | idth | | | tCW | 6.8 | | 1 | | | | | | | | | | | | | etup Ti | | | | tSD | 3.2 | | l | | Data H | old Tim | <u>e</u> | | | tHD | 2.5 | | <u></u> | T + | l | | | | | | | | Die Noon | Input Loading | | | | | | | | | Pin Name
D | Factor (lu) | | | | | | | 1 | | CK | 1 | 1 | | | | | | | | IH | 1 | | | | | | | | | TM | 1 1 | | | | | | | | | 1 "" | 1 | | | | | - 1 | | | | | | | | | | | | | | | | 1 | | | | | | | | <u> </u> | Output Driving | 1 | | | | | | 1 | | Pin Name | Factor (lu) | | | | | | | | | Q | 36 | 1 | | | | - 1 | | 1 | | 1 | | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical (| operat: | ing condition. | | 1 | | | | | | | | ng condition | | | | | | | aximum | | | | | | | | | | | | | | ### Note: The TM terminal must be kept LOW during the SCAN Mode. ### Function Table | | Inp | ut | | Output | Mode | | |----|----------|----|-----|--------------------|-------|--| | TM | TM IH CK | | D Q | | noue | | | L | LXX | | D | D | SCAN | | | Н | Н | X | X | Q ₀ | | | | Н | Х | Н | X | l Q _o l | LATCH | | | Н | L | L | D | D | | | UHB-YL2-E3 | Sheet 1/2 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | " UF | B" Version | |-------------|-------------------|--|-----------|------------|-----------|-----------|-------------|-------------------| | Cell Name | Function | | | | | | | Number of BC | | | | | | | | | | | | YL4 | 4-bit Data Late | h with | | | | | | 14 | | Cell Symbol | | <u> </u> | | agation | Delay | | ter | | | | | | up
KCL | 40 | td
KCL | n
KCL2 | CDDA | | | 1 | | t0
3.33 | 0.08 | t0
3.43 | 0.04 | KUL | CDR2 | Path
CK,IH + Q | | | | 1.10 | 0.08 | 1.29 | 0.04 | | ļ | $D \rightarrow Q$ | | 1 | | 1.10 | 0.00 | 1.23 | 0.04 | | 1 | Dad | | - | | | | | | | ļ | | | D1 - | ├─ Q1 | | | | | | | | | D2 - | - Q2 | | | | | | ł | | | D3 - | | 1 | | | | | ı | | | D4 - | ├─ Q4 | | | | | | i | 1 | | ck -d | | | | | | | ı | | | IH — | j | | | | | | 1 | İ | | TM -d | | | | | | | j | į. | | | | | | | | | j | } | | İ | | Parame | <u> </u> | | | | Symbol | Typ(ns)* | | | | rarame | tel | | | -+ | Symbol . | Typ(iis)" | | | | Clock | Pulse W | idth | (CK | 7 | tCW | 7.2 | | j . | | | | | | | | | | ł | | Data S | etup Ti | me | (D) | | tSD | 1.8 | | ļ | | Data H | old Tim | e |
(D) | | tHD | 4.0 | | <u> </u> | | | | | | | | | | | Input Loading | | | | | - 1 | | | | Pin Name | Factor (lu) | l | | | | - 1 | | 1 | | D | 2 | 1 | | | | - 1 | | 1 | | CK
IH | 1 | ł | | | | - 1 | | 1 | | TM | 1 | l | | | | - 1 | | } | | I In | 1 1 | ì | | | | - 1 | | Į. | | | | l | | | | - 1 | | 1 | | 1 | | | | | | - 1 | | l | | | Output Driving | 1 | | | | - 1 | | 1 | | Pin Name | Factor (lu) | 1 | | | | 1 | | l | | Q | 36 | | | | | | | _1 | | } | | | | _ | _ | | | | | } | | * Mini | mum val | ues for | the ty | pical | operati | ing condition. | | 1 | 1 | | | | | | | ng condition | | | <u> </u> | are given by the maximum delay multiplier. | | | | | | | ## Note : The TM terminal must be kept LOW during the SCAN Mode. #### Function Table | | Inp | ut | | Output | Mode | |-----|-----|----|----|--------|-------| | TM | IH | CK | Dn | Qn | node | | L | X | X | D | D | SCAN | | Н | Н | X | X | Qno | | | H | X | Н | X | Qno | LATCH | | Н | L | L | D | D | | | n = | 1 ~ | 4 | | -, | | $n = 1 \sim 4$ UHB-YL4-E3 Sheet 1/2 | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | , | "UHE | B" Version | |--|--|------------------------------|------------------------------|------------------------------|------------------------------|---------|------------|-------------------------------------| | Cell Name | Function | | | | | | | Number of BC | | LTK | Data Latch | | | | | | | 4 | | Cell Symbol | | | Prop | agation | Delay 1 | Paramet | er | | | | | t0 t | up
KCL | +0 | KCL KCL | KCL2 | CDR2 | Path | | | | 1.03
1.45
1.75
2.12 | 0.16
0.16
0.16
0.16 | 1.15
1.63
1.82
2.34 | 0.08
0.08
0.08
0.08 | KCLZ | CDR2 | D + Q D + XQ G + Q G + XQ | | D ———————————————————————————————————— | — q
>— хq | G Inpu | ter
t Pulse | Width | | | tGW | Typ(ns)* 4.0 | | | | | | | | | | | | | | | etup Ti
old Tim | | | -+- | tSD
tHD | 1.6 | | | | Data II | OIG III | | | | CILD | 2.3 | | Pin Name | Input Loading
Factor (lu) | | | | | ļ | | | | D | 2 | 1 | | | | | | | | G | 1 | | | | | | | | | Pin Name | Output Driving
Factor (lu) | | | | | | | | | Q
XQ | 18
18 | | | | | | | | | | | The | values | for the | the ty
worst | case of | perating | ng condition
g condition
ier. | | Function T | able | | | | | | | | | Inputs | Outputs | | | | | | | | | D G | Q XQ | | | | | | | | | X H
H L
L L | Q ₀ XQ ₀
H L
L H | UHB-LTK-E2 | Sheet 1/2 | | | | | | | Page 15-5 | Cell Name LTK Equivalent Circuit FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Definition of Parameters (Case1) UHB-LTK-E2 | Sheet 2/2 | | | UNIT CELL SPECIFICATION | "UHB" Version | |-----------------|--|--|---| | cell Name | Function | | Number of B | | LTL | 1-bit Data Lat | ch with Clear | 5 | | Cell Symbol | | Propagation Delay Para | | | | | tup tdn | | | | | | CL2 LD2 Path | | | | 1.39 0.16 0.85 0.09
1.18 0.16 1.22 0.09 | $\begin{array}{c} CL \rightarrow Q, X \\ D \rightarrow Q \end{array}$ | | | | 1.52 0.16 1.71 0.09 | $D \rightarrow Q$ | | | | 1.96 0.16 1.92 0.09 | $G \rightarrow Q$ | | | | 2.22 0.16 2.51 0.09 | $G \rightarrow XQ$ | | D | Q | | | | | " | | | | G — 9 | | | | | | þ xq | | | | <u> </u> | - | | | | | | | | | | CL | | | | | OD. | Parameter | Symbol Typ(ns)* | | | | G Input Pulse Width | tGW 4.0 | | | | Data Setup Time | tSD 1.3 | | | | Data Hold Time | tHD 0.5 | | | | Data Nota Time | 0.5 | | | | Clear Pulse Width | tLW 4.0 | | | Input Loading | | | | Pin Name | Factor (lu) | 4 | | | D
G | 2 1 | | 1 | | CL | i | | 1 | | 0.2 | 1 | | | | | | | | | | Output Driving | | 1 | | Pin Name | Factor (lu) | 4 | 1 | | Q
XQ | 18
18 | | <u> </u> | | AQ | 10 | * Minimum values for the typica | al operating condition | | | | The values for the worst case | operating condition | | | | are given by the maximum dela | | | _ | | | | | Funcion Ta | able | | | | Input | s Outputs | ٦ | | | CL D | G Q XQ | 1 | | | | 1 3 3 | 7 | | | LX | i i | | | | HX | | | | | H H L | L H L
L L H | | | | " " | r r r | | | | L | | _ | וווום_דידד _בים | Choo+ 1/2 | | Page 15-7 | | UHB-LTL-E2 | Sheet 1/2 | | rage 15-7 | | FILITCILC | MOS GATE ARRAY L | NIT CELL | CDECI | FICATIO | NI. | | TITE TO | B" Version | |----------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|----------|--------------|--| | | Function | NII CEL | L SPECI. | FICATIO | 14 | | | Number of BC | | | | | 01 | | | | | | | LTM
Cell Symbol | 4-bit Data Late | h with (| | agation | Delay | Paramete | | 16 | | cell Cymbel | | tı | up | agacion | td | | | T | | DA | PA | 1.54
1.22
1.60
2.61
2.73 | 0.16
0.16
0.16
0.16
0.16
0.16 | 0.97
1.29
1.79
2.45
3.15 | 0.08
0.08
0.08
0.08
0.08 | KCL2 | CDR2 | Path CL + P,N D + P D + N G + P G + N | | DB — DC — DD — G — C | O— NA — PB O— NB — PC O— NC — PD O— ND | | | | | | | | | | | Parame | | Widel | | | ymbol
tGW | Typ(ns)* 4.0 | | | CL | G Inpu | t Pulse | Width | | | EGW | 4.0 | | | | Clear | Pulse W | idth | | | tLW | 4.0 | | | | Data S | etup Ti | me | | | tSD | 1.6 | | | | Data H | old Tim | <u>e</u> | | | tHD | 2.3 | | Pin Name | Input Loading
Factor (lu) | 1 | | | | | | | | D | 2 | 1 | | | | | | 1 | | CL
CL | 1 4 | | | | | | | | | | • | | | | | | | | | | Output Driving | | | | | | | | | Pin Name
P | Factor (lu) | { | | | | | | | | N | 18 | | | | | | | | | | | The | values | for the | worst | | eratin | ing condition.
ng condition
lier. | | Function T | able | | | | | | | | | Inputs | Outputs | | | | | | | | | CL D G | PN | | | | | | | | | LXH | 1 1 | | | | | | | | | HHI | | | | | | | | | | HLI | UHB-LTM-E3 | Sheet 1/3 | | | | | | | Page 15-9 | | בייה היוו היי | J 2/3 | | | | | | | 1.765 15 7 | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version Cell Name LTM Definition of Parameters (Case1) -tGW -P,N (Case2) G tHD tSD (Case3) CL *G P,N Note *: G input must be high level at the time this latch is cleared. Page 15-11 UHB-LTM-E3 | Sheet 3/3 | FII | וופדוו מ | MOS GATE | APPAV | INIT CEL | T. SPECT | FICATIO | NI | | I III | HB" Version | |----------|-------------|--|--------------|-----------|--------------|--------------|--------|----------|--------------|--| | Cell I | | Function | | OIVII OLL | n biloi | TICATIO | ., | | 1 1 | Number of BC | | | , | , , , | | - 1 | | | | | | | | Coll | Symbol | 4-bit I | Data Lat | ch | Pron | agation | Dolor | Daramat | | 14 | | Cell . | зушьот | | | + t | up | agation | td | | ET | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | l | | | | 2.50 | 0.16 | 2.28 | 0.08 | | | G → P | | ļ | | | | 2.50 | 0.16 | 3.05 | 0.08 | | | G → N | | 1 | | | | 1.05 | 0 16
0.16 | 1.18 | 0.08 | | | $D \rightarrow P$
$D \rightarrow N$ | | DA | _ | <u> </u> | - PA | 1.40 | 0.10 | 1.00 | 0.08 | | | D T N | | DB | - | þ- | - NA | | | | | | | | | DC | \neg | | - PB | | | | | | | | | DD | | p- | - NB | | | | | | | | | G | - −d | 5- | - PC
- NC | 1 | | | | | | | | | 1 | F | - PD | | | | | | | | | 1 | | þ- | - ND | | | | | | | | | | L | | | <u> </u> | | | | | | | | | | | | Parame | | عاجاته إزارا | | <u>s</u> | ymbol
tGW | Typ(ns)* 4.0 | | | | | | G Inpu | t Pulse | Width | | | TGW | 4.0 | | | | | | Data S | etup Ti | me | | | tSD | 1.6 | | | | | | Data H | old Tim | е | | | tHD | 2.3 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | Input 1 | Loading | - | | | | | | | | Pin l | Name | Factor | (lu) | | | | | į | | | | D | | | 2 | | | | | | | | | G | | | l | 1 | | | | | | | | | | 1 | | İ | | | | | | | | İ | | 1 | | | | | | | | | | | | Output | Driving | 7 | | | | | | | | Pin | | Factor | | 4 | | | | | | | | N | | 1 12 | | | | | | | | | | 1 | | - | - | * Mini | mum val | ues for | the ty | pical o | perat | ing condition. | | | | | | The | values | for the | worst | case or | erati | ng condition | | <u> </u> | | ــــــــــــــــــــــــــــــــــــــ | | are | given b | y the m | aximum | delay n | ultip | lier. | | Fun | ction ? | Table | Input | | puts | | | | | | | | | | D C | G P | N | | | | | | | | | | н 1 | H Po | No. | | | | | | | | | | | H Po | | | | | | | | | | | | L H | L | | | | | | | | | | L 1 | LL | н | | | | | | | | | | L | UHB-T. | T4-E2 | Sheet 1 | /3 | | | | | | | Page 15-14 | | | | | 1 | | | | | | | | Definition of Parameters FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION P,N UHB-LT4-E2 | Sheet 3/3 # **Shift Register Family** | Page | Unit Cell
Name | Function | Basic
Cells | |-------|-------------------|---|----------------| | 2–245 | FS1 | Serial-in Parallel-out Shift Register | 18 | | 2-247 | FS2 | Shift Register with Synchronous Load | 30 | | 2-249 | FS3 | Shift Register with Asynchronous Load | 34 | | 2-252 | SR1 | Serial-in Parallel-out Shift Register with Scan | 36 | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "บ | HB" Version | |---------------|---|------------|---------------------------
-------------------------------|----------------|---------|--------|------------------------------------| | Cell Name | Function | | | | | | | Number of BC | | FS1 | 4-bit Serial-in | Parall | el-out | Shift R | egister | | | 18 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | tup tdn | | | | | | | | 1 | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | SD —C | — QA
— QB
— QC
— QD | 2.42 | 0.16 | 3.14 | 0.09 | 0.12 | 4 | CK → Q | | | | Parame | | l | L | | Symbol | | | | | Clock | Pulse W | idth | | _ | tCW | 4.0 | | | | SD Set | up Time | | | tSSD | 0.6 | | | 1 | | | d Time | | | tHSD | 0.2 | | | | | | | | | | | | | | | Clock | | C ≦ 1 | 6 lu | | tCWL* | * 5.8 | | | Input Loading | Pause | 16 | < C ≦ 3 | 2 lu | | tCWL* | * 8.4 | | Pin Name | Factor (lu) | Time | 32 | < C ≦ 3
< C ≦ 4 | 8 lu | | tCWL* | * 10.9 | | SD
CK | 1 | dit
con | imum va
ion.
dition | lues fo
The val
are giv | r the tues for | the w | orst c | ting con-
ase operating
elay | | Pin Name
Q | multiplier. Output Driving Pin Name Factor (lu) ** The value of tCWL depends on the load | | | | | | | | #### Function Table | - | Inp | uts | Outputs | | | | | | | | |---|-----|----------|---------|-----|-----|-----|--|--|--|--| | ļ | SD | CK | QA | QB | QC | QD | | | | | | | SD | + | SD | QAn | QBn | QCn | | | | | Note: \cdot SD = H or L ·QAn, QBn and QCn are levels of QA, QB and QC respectively, before the falling edge of CK, i.e. 1 bit shift by the falling edge of CK. UHB-FS1-E1 | Sheet 1/2 | | CMOS GATE ARRAY U | NIT CELI | SPECI | FICATIO | N | | | B" Version | |---------------------|--------------------------|--|-------------|---------|------------------|--------------|---------------|-------------------------| | Cell Name | Function | | | | | | | Number of BO | | FS2 | 4-bit Shift Regi | ster wit | | | | | | 30 | | Cell Symbol | | <u> </u> | | agation | Delay | | ter | T | | | | tı | | | td | | I GDD0 | | | | | t0
2.32 | KCL
0.16 | 3.14 | KCL
0.09 | KCL2
0.12 | | Path
CK → O | | PA PB PC PD CK CK L | QA
QB
QC
QD | Paramet Clock | cer | | 0.09 | | Symbol
tCW | Typ(ns)* | | | | | | | | | | | | | | SD Seti | | | | | tSSD | 2.8 | | | | SD Hold | 1 Time | | | | tHSD | 1.2 | | | | Load Se | tup Ti | me | | | tSL | 4.3 | | | | Load Ho | | | | | tHL | 0.5 | | | | | | | | | | | | | | P Setu | Time | | | | tSP | 3.6 | | | | P Hold | Time | | | | tHP | 1.5 | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | Clock | | C ≦ 1 | | | tCWL** | | | CK | 1 | Pause | | < C ≦ 3 | | | tCWL** | | | SD | 1 | Time | 32 | < C ≦ 4 | 8 lu | | tCWL** | 11.0 | | L
P | 1
1
Output Driving | dit | ion. | The val | ues for | the w | orst ca | ing con-
se operatin | | Pin Name | Factor (lu) | condition are given by the maximum delay multiplier. | | | | | | ıay | | Q | 16 | | | | depend
output | | | (C)
, QB, QC an | #### Function Table | | Inp | uts | | Outputs | | | | | | |----|-----|-----|----------|---------|-----|-----|-----|--|--| | SD | L | P | CK | QA | QB | QC | QD | | | | SD | L | Х | + | SD | QAn | QBn | QCn | | | | х | н | P | + | PA | PB | PC | PD | | | Note: \cdot SD = H or L ·QAn, QBn and QCn are levels of QA, QB and QC respectively, before the falling edge of CK, i.e. 1 bit shift by the falling edge of CK. $\cdot P$ represents PA, PB, PC and PD. UHB-FS2-E1 | Sheet 1/2 | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | ש"ט | HB" Version | |---|---|--------------------------------------|---------|---------|----------|--------|--------------|--| | Cell Name | Function | | | | | | Number of BC | | | FS3
Cell Symbol | 4-bit Shift Register with Asynchronous Load Propagation Delay Parameter | | | | | | 34 | | | Cell Symbol | | + | up Prop | agation | Delay td | | cer | | | | | to l | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.28 | 0.17 | 2.12 | 0.11 | KCL2 | CDRZ | CK → Q | | | | 4.64 | | | 0.11 | | 1 | $L \rightarrow Q$ | | | | 2.03 | 0.17 | 3.02 | 0.11 | | 1 | $P \rightarrow Q$ | | | | 2.03 | 0.17 | 3.02 | 0.11 | | | P → Q | | PA ———————————————————————————————————— | —— QA
—— QB
—— QC
—— QD | | | | | | | | | r —d | | Parame | | | | | Symbol | Typ(ns)* | | | | | Pulse W | | | | tCW | 4.0 | | | | Clock | Pause T | ime | | | tCWH | 4.0 | | | | Load P | ulse Wi | dth | | | tLW | 6.2 | | | | CD Cat | Ti | | | | tSSD. | 1.0 | | | | SD Setup Time tSSD SD Hold Time tHSD | | | | | | 1.7 | | | | 2D UOI | d lime | | | | споп | 1./ | | | Input Loading | P Setu | n Time | | | -+ | tSP | 0.3 | | Pin Name | Factor (lu) | P Hold | | | | -+ | tHP | 2.3 | | CK
SD | 2 2 | 1 nord | TIME | | | | - CIII | | | L | ī | | | | | - 1 | | - | | P | 2 | | | | | | | 1 | | - | 1 | | | | | | | | | | Output Driving | 1 | | | | | | 1 | | Pin Name | Factor (lu) | | | | | 1 | | | | Q | 18 | | | | | | | | | | | The | values | for the | | case o | perati | ing condition
ng condition
lier. | ### Function Table | | Inp | Output | | | |------------------|------------------|-------------|-------------|------------------| | L | P | SD | CK | Q | | L
L
H
H | L
H
X
X | X
L
H | X
X
† | L
H
L
H | UHB-FS3-E1 | Sheet 1/3 | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | l "UH | B" Version | |---------------|------------------|--|-----------|---------|-------------|---------|------------|-------------------| | | Function | IVII OLL | D DI DOI | IIONIIO | ., | | | Number of BC | | | | | | | | | | | | | 4-bit Serial-in | Parallel-out Shift Register with SCAN 36 Propagation Delay Parameter | | | | | | 36 | | Cell Symbol | | | | agation | Delay
td | | er | | | | | t0 | up
KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 3.27 | 0.09 | 3.37 | 0.07 | 0.11 | 7 | CK → Q | | | | 2.58 | 0.09 | 2.90 | 0.07 | 0.11 | 7 | $B \rightarrow Q$ | | | | | | | | | | | | | | | | | | | İ | | | | | | | | | | | | | D | — QA | | | | | | | | | | ├— QB | | | | | | | | | CK _ | — QC | | | | | | | | | IH — | — QD | | | | | | | | | A - | | l | l | | | | ļ | | | В | | | | | | | 1 | | | L | | | | | | | | | | 1 | | Parame | ter | | | S | ymbol | Typ(ns)* | | 1 | | Clock | Pulse W | idth | | | tCW | 5.5 | | 1 | | Clock | Pause T | Ime | | | tCWH | 5.6 | | | | Data S | etup Ti | me | | | tSD
tHD | 3.3 | | | | Data H | old Tim | e | | | עתט | 1.3 | | | | 1 | | | | } | | | | | Input Loading | i | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | D | 1 | 1 | | | | 1 | | | | CK | 1 | | | | | | | 1 | | IH | 1 | | | | | | | | | SI | 1 | | | | | ĺ | | | | A,B | 1 | 1 | | | | | | | | D/- N | Output Driving | | | | | İ | | | | Pin Name
Q | Factor (lu) | - | | | | - 1 | | | | " | . 30 | | | | | | | <u></u> | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The | values | for the | worst | case of | peratin | g condition | | | | are | given b | y the m | aximum | delay n | multipl | ier. | 1. | 1 | IND_CD1_E1 | Shoot 1/2 | | | | | | | Page 16-8 | | UHB-SR1-E1 | Sheet 1/3 | | | | | | | Tage 10-0 | "UHB" Version SR1 Definitions of Parameters 1 UHB-SR1-E1 | Sheet 3/3 # Parity Generator/Selector/Decoder Family | Page | Unit Cell
Name | Function | Basic
Cells | | | | | | |----------------------------|-------------------|-------------------------------|----------------|--|--|--|--|--| | Parity Generators/Checkers | | | | | | | | | | 2-257 | PE5 | Even Parity Generator/Checker | 12 | | | | | | | 2-258 | PO5 | Odd Parity Generator/Checker | 12 | | | | | | | 2-259 | PE8 | Even Parity Generator/Checker | 18 | | | | | | | 2-260 | PO8 | Odd Parity Generator/Checker | 18 | | | | | | | 2-261 | PE9 | Even Parity Generator/Checker | 22 | | | | | | | 2–262 | PO9 | Odd Parity Generator/Checker | 22 | | | | | | | Data Sele | ector | | | | | | | | | 2–263 | P24 | 2:1 Data Selector | 12 | | | | | | | Decoders | S | | | | | | | | | 2-264 | DE2 | 2:4 Decoder | 5 | | | | | | | 2-265 | DE3 | 3:8 Decoder | 15 | | | | | | | 2-267 | DE4 | 2:4 Decoder | 8 | | | | | | | 2–268 | DE6 | 3:8 Decoder | 30 | | | | | | | Selectors | • | | | | | | | | | 2-270 | T2B | 2:1 Selector | 2 | | | | | | | 2-272 | T2C | 2:1 Selector | 4 | | | | | | | 2–273 | T2D | 2:1 Selector | 2 | | | | | | | 2-274 | T2E | 2:1 Selector | 5 | | | | | | | 2–275 | T2F | 2:1 Selector | 8 | | | | | | | 2–277 | T5A | 4:1 Selector | 5 | | | | | | | 2–279 | V3A | 1:2 Selector | 2 | | | | | | | 2–280 | V3B | 1:2 Selector | 4 | | | | | | | Magnitud | le Compara | tor | | | | | | | | 2-281 | MC4 | Magnitude Comparator | 42 | | | | | | | Cell Name | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "U | HB" Version | |-------------|--|-----------|---------|---------|-------|------|---------|----------------| | Cell Name | Function | | | | | | | Number of BC | | DE3 | 3:8 Decoder | | | | | | | 15 | | Cell Symbol | | | Prop | agation | Delay | | er | | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | 1 | | 1.44 | 0.16 | 1.67 | 0.19 | | ļ | A → X0~X3 | | | | 2.44 | 0.16 | 2.44 | 0.19 | | ! | A → X4~X7 | | | | 1.33 | 0.16 | 1.72 | 0.19 | | Ì | B → X0~X3 | | | | 2.33 | 0.16 | 2.49 | | | | B → X4~X7 | | 1 | xo | 1.23 | 0.16 | 1.78 | 0.19 | | | C → X0~X3 | | Α — | X1 | 2.23 | 0.16 | 2.55 | 0.19 | | j | C → X4~X7 | | | X2 | | | | | | | | | В
— | хз | i | | | | | | | | | X4 | | | | | | ļ | | | | X5 | | | | | | l | 1 | | С | X6 | | | | | | | | | | λ/ | | | | | | | | | | | Parame | ter | | İ | L . | vmbo1 | Typ(ns)* | | | | 1 di dinc | 001 | | | | · ymbol | | | | | 1 | | | | - 1 | | | | | | | | | | - 1 | | } | | | | | | | | į | | Ì | | 1 | | İ | | | | - 1 | | } | | | | | | | | l | | 1 | | | Input Loading | 1 | | | | 1 | | | | Pin Name | Factor (lu) | İ | | | | ļ | | ļ | | A | 1 | 1 | | | | 1 | | | | В | 1 | 1 | | | | Ì | | | | C | 1 | Ì | | | | ł | | | | 1 | 1 | l | | | | 1 | | Ì | | | | ! | | | | | | | | | Output Driving | 1 | | | | ĺ | | | | Pin Name | Factor (lu) | 1 | | | | - 1 | | 1 | | Х | 14 | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | ing condition. | | | | | | | | | | ng condition | | | are given by the maximum delay multiplier. | | | | | | | | ### Function Table | Ir | put | S | | | | Outp | ıts | | | | |----|-----|---|----|----|----|------|-----|----|----|----| | A | В | С | X0 | X1 | X2 | Х3 | X4 | X5 | X6 | X7 | | L | L | L | L | Н | н | н | н | н | н | н | | L | L | H | Н | L | H | H | H | H | H | H | | L | H | L | Н | H | L | H | Н | H | H | H | | L | H | H | H | H | H | L | H | H | H | H | | Н | L | L | н | H | H | Н | L | H | H | H | | н | L | H | н | H | H | H | H | L | H | H | | н | H | L | н | Н | H | H | H | H | L | Н | | Н | H | H | Н | H | H | H | H | H | H | L | | | •• | | " | •• | •• | •• | •• | •• | | _ | UHB-DE3-E2 | Sheet 1/2 | FU. | JIT | SU C | MOS G | ATE AF | RAY I | NIT (| ELL S | PECI | FICATIO |)N | | תזיי | HB" Version | |--------------------|------|-----------------------|------------------|---------------------------------|----------------------|-------------------------|------------------|-------------------|----------------------------|-----------------------------|-----------|-------|---| | Cell | | | Funct | | | | | | | | | Ť | Number of BC | | DE | 4 | | 2.4 1 | Decode | r wit | h Fra | hle | | | | | ļ | 8 | | Cell | | bol | | | - WIL | | | Prop | agation | Delay | Paramet | er | | | | | | | | | t0
1.1
0.8
1.0 | .9 0
36 0 | .16
.16
.16 | t0
1.46
1.11
1.14 | KCL
0.19
0.19
0.19 | n
KCL2 | CDR2 | Path G → X A → X B → X | | A
B
G | | -
-
-
-
- | 0000 | <u> </u> | (0
(1
(2
(3 | | | | | | | | | | | | | | | | Para | meter | | | | S | ymbol | Typ(ns)* | | Pin
A
B
G | 1 | e | | t Load
or (li
3
3
1 | | | | | | | | | | | Din | Ma- | _ | | ut Dr: | | | | | | | | | | | Pin
X | | - | ract | or (li
14 | <u>. ,</u> | | | | | | | | | | | | | | | | T | ne val | ues | for the | the ty
worst | case or | erati | ing condition.
ng condition
lier. | | Fun | cti | on I | able | | | | | | I | Equivale | ent Circ | uit | | | G | ; | A | В | хз | X2 | X1 | X0 | | G | <u> </u> | | 7 | | | н | 1 | x | х | н | Н | Н | Н | | Α | | | | р хо | | | | L
L
H | L
H
L
H | H
H
H
L | H
H
L
H | H
L
H
H | L
H
H
H | | | | | |) X1 | | | | | | | | | | 1 | В — | | | |) X2 | | | | | | | | | | | | | | | у хз | | UHB-D |)E4- | E2 | Sheet | 1/1 | | | | | | | | | Page 17-11 | | Ce | FUJI: | | MOS (| | ARRAY | UNI | T CEL | L SP | CIF | ICATI | ON | | | | ן"[| | Version | |----|----------------|-------|-------|----------|--------------|-----------|-------|----------|--------|--------------|--------|--------------|--------|--------|-------|----------|--| | | | - | | | | | P 1-1 | | | | | | | | | <u> </u> | | | Ce | DE6 | nbol | 3:8 | Deco | der wi | th | Enabl | e
Pr | opa | gatio | n D | elav | Para | met | er | <u> </u> | 30 | | | | | | | | t | t | up | | 8 | | to | ln | | | | | | | | | | | | | t0 | KCI | | t0 | | KCL | KC | L2 | CDR2 | - | Path | | | | | | | | | 3.05 | 0.: | | 5.95
3.28 | | 0.08
0.08 | l | | | - 1 | $G \rightarrow X$
$S \rightarrow X$ | | | | | | | | | 2.09 | ٠., | 10 | 3.20 | ' l | 0.00 | | - 1 | | | 3 7 A | | | | | | ٦ | | | | | | | | | 1 | | | ١ | | | | 31 — | _ | | — | - X0 | | | | | | | | 1 | | | - 1 | | | | 32 — | | | | - X1
- X2 | | | | | | 1 | | 1 | | | l | | | | 33 | 1 | | | - X3 | | | | | | 1 | | | 1 | | 1 | | | | S1 — | | | | - X4 | | | | | | | | | | | İ | | | | s2 —
s3 — | _ | | - | - X5 | | | | | | ı | | l | | | - [| | | | | | | | - X6 | | | | | | | | | | | - 1 | | | | | L | | _ | - X7 | | | | | | | | | | | ļ | | | | | | | | | F | arame | ter | | | | | | S | ymbol | | Typ(ns)* | | | | | | | | Г | - | _ | | | Inp | ut Lo | ading | 7 | | | | | | | | 1 | | | | | P: | in Na | me | Fac | tor (| lu) | 4 | | | | | | | | l | | l | | | | S | | | 1 | | | | | | | | | 1 | | | | | | | - | | | _ | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | 011+ | + D | rivin | \exists | | | | | | | | | | | | | P | in Na | me | | tor (| | ٠ | | | | | | | | l | | | | | | X | | | 18 | Γ. | | | | | _ | | | | | | | | | | | | | | " | Mini | mum | valu | es for | or t | he ty | ypica | al o | perat | ina | g condition condition | | | | | | | | | | | | the | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | Funct | ion T | able | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | ٦. | | | | | G1 | G2+ | G3 | S3 | S2 : | 31 | X7 | X6 | X5 | X4 | хз | X2 | X1 | χo | | | | | | | | | | | | i | | | | | | | | 7 | | | | | X | Н | | X | | ` | Н | H | H | Н | H | H | H | H | | | | | | L | Х | | Х | X : | ζ. | H | Н | H | Н | Н | H | H | Н | | | | | | н | L | , | L | L : | | н | н | Н | н | Н | Н | Н | L | | | | | | H | L | | L | L | ł | H | Н | H | H | H | н | L | H | | | | | | H | L | | L | | ٠ | Н | Н | H | H | H | L | H | H | | | | | | H | L | | L | | Ŧ | H | H | H | H | L
H | H
H | H
H | H
H | | | | | | H
H | L | | H | | L
H | H | H
H | H
L | L
H | л
Н | n
H | н | H | | | | | | н | Ī | | H | | Ĺ | н | L | H | Н | Н | H | H | H | | | | | | н | L | | н | | H | L | H | H | H | H | H | H | H | | | | | | L | L | | L | UH | B-DE6 | -E3 | Shee | t 1/2 | 2 | | | | | | | | | | | | Page 17-1: | | FUJITSU | | | AY UN | NIT CEL | L SPEC | IFICATIO | N | | "បា | HB" Version | |----------------|-------------|-------|--------|---------|--------|----------|----------|----------|-------|---------------------| | Cell Name | Functio | n | | | | | | | | Number of BO | | T2C | Dual 2: | 1 0-1 | + | - | | | | | - 1 | 4 | | Cell Symbol | Dual 2: | 1 Sel | ec 101 | • | Pro | pagation | Delay | Paramet | er | | | Jell Dymbol | | | + | t. | gp | Jagation | td | | | T T | | | | | F | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | r | 0.51 | 0.16 | | 0.09 | | | $A,B \rightarrow X$ | | | | | 1 | 0.67 | 0.16 | | 0.09 | | | $s \rightarrow x$ | | S1 | S2 | | - 1 | | | | | | | | | 1 | 1 | | - | L _C | | | - 1 | | | | | | | | | A1 | p- | xo | 1 | | | | | | | | | A2 | | | l | | | | | | | | | B1 | | | l | | | | 1 | | | | | B2 | 0 | X1 | į | | | į | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | Parame | ± 0 = | _l | .l | L | ymbol | Typ(ns)* | | | | | ŀ | rarame | rei | | | | ушрот | Typ(IIS)" | | | | | | | | | | ŀ | | } | | | | | | | | | | l | | | | | | | | | | | | } | - 1 | | | | | Input | | ng | | | | | | | | | Pin Name | Factor | | | | | | | | | | | A,B | | 2 | | | | | | | | | | S | | 2 | Output | . D | | | | | | | | | | Din Namo | Factor | | | | | | | | | | | Pin Name
X | | .8 | | | | | | l | | | | 1 | 1 1 | . • | ŀ | | | | | | | | | | | | | * Mini | mum va | lues for | r the tv | rpical o | perat | ing condition | | | | | | | | | | | | ng condition | | | | | | | | by the | | | | | | | | | | | | | | - | | | | Function | Table | , | | | | | | | | | | Inpu
A1,B1 | ts
A2,B2 | S1 | S2 | Output | | X1 | | | | | | Inp | uts | | | Outputs | | |-------|-------|----|----|---------|---------| | A1,B1 | A2,B2 | S1 | S2 | X0 | X1 | | L | x | L | н | н | н | | H | X | L | H | L | L | | X | L | H | L | H | Н | | X | н | Н | L | L | L | | L | н | L | L | Inhibit | Inhibit | | Н | L | L | L | Inhibit | Inhibit | | L | н | н | н | Inhibit | Inhibit | | н | L | н | н | Inhibit | Inhibit | | | | | | | | UHB-T2C-E2 | Sheet 1/2 | FILITTSH C | MOS GATE ARRAY U | NIT CEL | CDECT | FICATIO | N | | 1171 | HB" Version | |--------------------|------------------|---------|----------|----------|-----------------|-------------------|--------------------|--| | | Function | NII CLL | L SILCI. | FICATIO | 14 | ***************** | 1 01 | Number of BC | | | | | | | | | | | | T2F
Cell Symbol | 2:1 Selector | r | Pron | acation | Delay | Donomo | +0= | 8 | | Cell Symbol | | t | up | agacion | td | | tel | T | | | | t0 | KCL | t0 | KCL | KCL2 | | Path | | | | 0.54 | 0.16 | 0.54 | 0.10 | 0.14 | + 4 | A,B, | | | | 1.64 | 0.16 | 1.62 | 0.10 | 0.14 | 4 | $C,D \rightarrow X$
$S \rightarrow X$ | | | | 1.04 | 0.10 | 1.02 | 0.10 | 0.1- | | | | | | | | | | | 1 | | | A1 | ⊳— xο | | | | | | İ | | | A2
B1 | | | | | | | | | | B2 | P X1 | | | | | | | | | C1 | → X2 | | | | | | | | | C2 | | | | | | | | | | D2 | р хз | | | | | | | | | s | | | | | | | | | | L | | Parame | ter | | | | Symbol | Typ(ns)* | | | | | | | | - | | | | | | | | | | 1 | ł | | | | <u> </u> | Input Loading | 1 | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | A,B,C,D | 2 | | | | | |
 | | S | 1 | j | | | | | | | | | Output Driving | | | | | | | | | Pin Name
X | Factor (lu) | 1 | | | | | | | | | 1 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical | operat | ing condition. | | | | The | values | for the | worst
aximum | delaw | operati:
multin | ng condition | | | <u> </u> | are | given b | y che ii | IAXIIIUIII | delay | шатетр | 1161. | UHB-T2F-E1 | | | | | | | | Page 17-19 | | FULLESIL | ITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | |---------------|--|-------------|-----------|---------|-------------|---------|-------|---------------|--|--| | | Function | 1111 000 | <u> </u> | LIONITO | ., | | | Number of BC | | | | | | | | | | | | | | | | | 4:1 Selector | | | | | | | 5 | | | | Cell Symbol | | | | agation | Delay
td | | er | | | | | | | to | up
KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | | 1.00 | 0.23 | 1.00 | 0.16 | ROHZ | CDRZ | A,B + X | | | | | | 1.00 | 0.23 | 0.84 | 0.16 | | | S1~4 + X | | | | S1 S | S1 S2 S3 S4 | | | 0.54 | 0.16 | | l | S5~6 → X | | | | | | | | | | | [| | | | | لم ا | | | | | | | 1 | | | | | A1 | | | | | | | 1 | • | | | | A2 | <u>_</u> | | | | | | 1 | | | | | B1 | р—— х | | | | | | l | | | | | B2 | İ | | | | | | l | | | | | 4 ا | T | | | | | | | 1 | | | | | | | | | | | l | 1 | | | | 85 | S6 | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | 1 | | | | | | | | } | | | | | | | | | | | | | | | | 1 | | | | | | | Input Loading | 1 | | | | | | | | | | Pin Name | Factor (lu) | | | | | | | 1 | | | | A,B | 1 | 1 | | | | 1 | | | | | | Ś | 1 | | | | | İ | | İ | | | | | } |] | | | | | | | | | | | | l | | | | | | | | | | | |] | | | | | |] | | | | D: | Output Driving | 1 | | | | | | | | | | Pin Name
X | Factor (lu) | 1 | | | | | | | | | | ^ | , | | | | | | | | | | | | | * Mini | mum val | ues for | the tv | mical c | perat | ing condition | | | | | | The | values | for the | worst | case or | erati | ng condition | | | | | | | given b | | | | | | | | | T | N - 1 - 1 - | | | | | | | | | | ### Function Table | | | | | Inp | uts | | | | | Output | |--------|--------|--------|--------|------------------|-------------|------------------|-------------|-----------------------|-----------------------|----------------------------| | A1 | A2 | B1 | B2 | S1 | S2 | S3 | S4 | S5 | S6 | X | | L
H | L
H | L
H | L
H | L
L
H
H | H
H
L | L
L
H
H | H
H
L | L
L
H
H
H | H
H
H
L
L | H
L
H
L
H
L | A1=A2 \rightarrow S1=S2 or S5=S6 Inhibit B1=B2 \rightarrow S3=S4 or S5=S6 Inhibit A1,A2=B1,B2 or S5=S6 Inhibit UHB-T5A-E2 | Sheet 1/2 | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | |---|------------------------------|--------|-----------|---------|---------|-----------|-------|--------------------|--| | Cell Name | Function | | | | | | | Number of BC | | | MC4 | 4-bit Magnitude | Compar | ator | | | _ | | 42 | | | Cell Symbol | | | | agation | Delay | | er | | | | | | t0 | up
KCL | t0 | KCL KCL | n
KCL2 | CDR2 | — ", ", ", " | | | | | 5.29 | 0.29 | 6.32 | 0.08 | 0.11 | CDR2 | Path
A → OS | | | | | 5.38 | 0.29 | 6.21 | 0.08 | 0.11 | 4 | $B \rightarrow OS$ | | | | | 2.36 | 0.29 | 2.78 | 0.08 | 0.11 | 4 | IE → OS | | | A3 B3 | | 1.93 | 0.29 | 2.41 | 0.08 | 0.11 | 4 | IG → OS | | | | | 5.18 | 0.29 | 6.53 | 0.08 | 0.11 | 4 | A → OG | | | A2 B2 ================================== | | 5.27 | 0.29 | 6.42 | 0.08 | 0.11 | 4 | B → OG | | | AO BO | | 2.25 | 0.29 | 2.99 | 0.08 | 0.11 | 4 | IE → OG | | | AU DU | | 2.13 | 0.29 | 2.31 | 0.08 | 0.11 | 4 | IS → OG | | | | | 5.69 | 0.16 | 4.36 | 0.09 | 0.12 | 4 | A → OE | | | IG- | OG | 5.58 | 0.16 | 4.45 | 0.09 | 0.12 | 4 | B → OE | | | IE- | OE | 2.14 | 0.16 | 1.43 | 0.09 | 0.12 | 4 | IE → OE | | | IS | os | | 0.10 | 1.75 | 0.05 | 0.122 | · . | | | | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | 1 | | } | | | | | | | | | 1 | | | | | | T * * | | | | | | | | | | Pin Name | Input Loading
Factor (lu) | | | | | } | | | | | A A | 3 | | | | | | | | | | В | 3 | | | | | | | | | | IE | 1 | | | | | | | | | | IG | 1 | | | | | | | 1 | | | IS | ī | | | | | | | | | | | _ | | | | | l | | | | | | Output Driving | 1 | | | | | | 1 | | | Pin Name | Factor (lu) | | | | | | | | | | OE | 18 | | | | | | | 1 | | | OG | 10 | | | | | | | | | | os | 10 | * Mini | mum val | ues for | the ty | pical c | perat | ing condition | | | | | The | values | for the | worst | case or | erati | ng condition | | | | | are | given b | y the m | aximum | delay m | ultip | lier. | | ### Function Table | | Comparin | g Inputs | | Casca | ding In | puts | Outputs | | | | |--|--|--|--|-------|---|-------|---------|------------------------------------|-------|--| | | | | | IG | IS | IE | OG | OS | OE | | | A3,B3 | A2,B2 | A1,B1 | AO,BO | (A>B) | (A <b)< td=""><td>(A=B)</td><td>(A>B)</td><td>(A<b)< td=""><td>(A=B)</td></b)<></td></b)<> | (A=B) | (A>B) | (A <b)< td=""><td>(A=B)</td></b)<> | (A=B) | | | | | | | | | | | | | | | A3>B3 | X | X | X | X | X | X | H | L | L | | | A3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>H</td><td>L</td></b3<> | X | X | X | X | X | X | L | H | L | | | A3=B3 | A2>B2 | X | X | X | X | X | H | L | L | | | A3=B3 | A2 <b2< td=""><td>Х</td><td>X</td><td>X</td><td>Х</td><td>X</td><td>L</td><td>Н</td><td>L</td></b2<> | Х | X | X | Х | X | L | Н | L | | | A3=B3 | A2=B2 | A1>B1 | Х | Х | Х | X | н | L | L | | | A3=B3 | A2=B2 | A1 <b1< td=""><td>X</td><td>Х</td><td>X</td><td>X</td><td>L</td><td>H</td><td>L</td></b1<> | X | Х | X | X | L | H | L | | | A3=B3 | A2=B2 | A1=B1 | A0>B0 | X | X | X | Н | L | L | | | A3=B3 | A2=B2 | A1=B1 | A0 <b0< td=""><td>x</td><td>X</td><td>X</td><td>L</td><td>н</td><td>L</td></b0<> | x | X | X | L | н | L | | | A3=B3 | A2=B2 | A1=B1 | AO=BO | X | X | н | L | L | Н | | | A3=B3 | A2=B2 | A1=B1 | AO=BO | н | L | L | H | L | L | | | A3=B3 | A2=B2 | A1=B1 | AO=BO | L | н | L | L | Н | L | | | A3=B3 | A2=B2 | A1=B1 | AO=BO | н | н | L | L | L | L | | | A3=B3 | A2=B2 | A1=B1 | AO=BO | L | L | L | н | Н | L | | | | | | | | | | ŀ | | | | UHB-MC4-E1 | Sheet 1/2 ## **Bus Driver** | Page | Unit Cell
Name | Function | Basic
Cells | |-------|-------------------|------------------|----------------| | 2-285 | B41 | 4-bit Bus Driver | 9 | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | TUI"UI | HB" Version | |---|---|---|----------------------------|-----------------------------|---
--|---| | Function | | | | | | | Number of BC | | / 1 /- D - D / | | | | | | | | | | | | | | | | 9 | | | t | | agacion | | | | 7 | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | | | | | $A \rightarrow X$ | | | 2.50 | 0.07 | 1.90 | 0.06 | l | | C → X | | | | | | | | | | | ├── xo | | | | | 1 | | | | X1 | | | | 1 | | | | | | | | | | İ | | | | Λ3 | | | | | 1 | | | | | 1 | | | | 1 | | | | | 1 | | | | l | | | | | | | | | - 1 | | [| | | Parame | ter | | LI | 1 8 | vmho1 | Typ(ns)* | | | Tarame | 261 | | | | ymbol | 1 1 1 JP(IIIS) | | | | | | | | | | | | ł | | | | | | 1 | | | | | | | - 1 | | | | | j | | | | 1 | | | | Input Loading | | | | | - 1 | | | | | l | | | | į | | | | | | | | | ł | | | | 1 | 1 | | | | ĺ | | | | Output Loading | 1 | | | | - 1 | | | | | | | | | | | | | Factor (lu) | 1 | | | | - 1 | | 1 | | Factor (lu) | | | | | | | | | | | | | | | | | | Output Driving Factor (lu) | | | | | | | | | 1 Output Driving | | | | | | | | | Output Driving Factor (lu) | * Mini | mum v.21 | ues for | the tw | nical o | nerat | ing condition | | Output Driving Factor (lu) | * Mini
The | mum val | ues for | the type | pical opcase op | perat
erati: | ing condition. | | Output Driving Factor (lu) | The | values | for the | the type worst of aximum of | case op- | erati: | ng condition | | Output Driving Factor (lu) | The | values | for the | worst o | case op- | erati: | ng condition | | Output Driving
Factor (Lu) | The
are | values
given b | for the | worst o | case op- | erati: | | | Output Driving Factor (lu) | The
are | values
given b | for the | worst o | case op- | erati: | ng condition | | Output Driving Factor (lu) 36 | The are | values
given b
h UHB d | for the m | worst (| case opdelay m | erati:
ultip | ng condition | | Output Driving Factor (lu) 36 | The
are | values
given b
h UHB d | for the | worst (| case opdelay m | erati: | ng condition | | Output Driving Factor (lu) 36 umber of B41 used | The are | values
given b | for the medice | worst (| case opdelay m | erati:
ultip | ng condition | | Output Driving Factor (lu) 36 | The are | values
given b | for the m | worst (| case opdelay m | erati:
ultip | ng condition | | | Function 4-bit Bus Drive X0 X1 X2 X3 Input Loading Factor (lu) 1 Output Loading | Function 4-bit Bus Driver to 1.58 2.50 X0 X1 X2 X2 X3 Parame Input Loading Factor (lu) 1 1 Output Loading | Function 4-bit Bus Driver | Function 4-bit Bus Driver | Propagation Delay I tup tdr t0 KCL t0 KCL 1.58 0.07 1.52 0.06 2.50 0.07 1.90 0.06 | Propagation Delay Parameter Tup tdn t0 KCL t0 KCL t0 KCL t0 tdn tdn t0 tdn t0 tdn t0 tdn t0 tdn t0 tdn tdn t0 tdn | Propagation Delay Parameter Tup Tdn To KCL t0 KCL KCL2 CDR2 | C-830UHB C-1200UHB C-1700UHB C-2200UHB UHB-B41-E3 | Sheet 1/2 6 8 12 16 C-6000UHB C-8700UHB C-12000UHB Page 18-1 50 70 90 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version Cell Name B41 Equivalent Circuit #### Note: - \cdot TG is configured using the special transmission gates buried in the channel area of the UHB devices. - \cdot BD and DC use the regular internal baisc cells in the UHB devices. - \cdot A Bus Terminator is invisible to logic designers and is automatically connected to each Bus line, when B41 is used. UHB-B41-E3 | Sheet 2/2 Page 18-2 ## 2 # Clip Cells | Page | Unit Cell
Name | Function | Basic
Cells | |-------|-------------------|------------------------|----------------| | 2-289 | Z00 | 0 Clip | 0 | | 2-290 | Z01 | 1 Clip | 0 | | 2-291 | KD2 | Load Gate (Fan-in = 2) | 1 | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB | | | | | | | HB" Version | | |--|----------------|--------|---|---------|--------|---------|-------------|----------------| | Cell Name | Function | | | | | | | Number of BC | | 700 | 0.01:5 | | | | | | l | _ | | Z00
Cell Symbol | 0 Clip | | Prop | agation | Delay | Paramet | er 1 | 0 | | JOIL BYMBOI | | t | up | agaston | td | n | <u> </u> | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | 1 | | | | | | | | | | | | | x | | | | | | | 1 1 | | | 1 | \wedge | | | | | | | | | | | | | | İ | | | | | | | | | | | | } | | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | *************************************** | - | | | | | | | | | | | | | | | Input Loading | | | | | 1 | | | | Pin Name | Factor (lu) | 1 | | | | | | | | | | l | | | | | | | | | | | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | · · | | Х | 200 | | | | | | | | | | | * Mini | mum 1101 | une for | +ha +v | nical c | nerat | ing condition. | | | | The | values | for the | worst | case or | erati | ng condition | | | | are | given b | y the m | aximum | delay m | ultip | lier. | | | | · | 1 | 1 | · | | | | | | | - 10 1 | | UHB-Z00-E1 | Sheet 1/1 | | | | | | | Page 19-1 | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |--------------------|-------------------|----------|------------|-----------|-------------|----------|------------|------------------------------| | Cell Name | Function | | | | | | | Number of BC | | 701 | 1 61 | | | | | | | | | Z01
Cell Symbol | 1 Clip | | Pron | agatio- | Dolar | Daramat | <u> </u> | 0 | | CEIT SAMPOI | | t | up
rrop | agation | Delay
td | n aramet | <u>e</u> т | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | | | | | | | \/ | | | | | | | | | | Y | x | | | | | | | | | | Δ | | | | | | | | | | | Parame | ter | L | I | l s | ymbol | Typ(ns)* | | | | | | | | | - | l | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | Output Driving | 1 | | | | ĺ | | | | Pin Name | Factor (lu) | | | | | | | | | X | 200 | <u> </u> | | | | | | | | | | | | _ | .1 | | | | | | | " Mini | mum val | ues for | the ty | pical c | perati | ng condition.
g condition | | | | are | values | ror the m | aximum | delay n | multipl | ier. | | | | , 416 | 0 | , | 1 | UHB-Z01-E1 | Sheet 1/1 | | | | | | | Page 19-2 | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |---------------|-------------------|---------|---------------------------------------|---------|----------------------------|---------|---------|---------------| | Cell Name | Function | | | | B" Version
Number of BC | | | | | | | | | | | | | | | KD2 | Load Gate Fan-i | n = 2 | | | | | | 1 | | Cell Symbol | | | | agation | Delay | Paramet | er | | | | | | up | | td | | | _ | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | | | | | | | | | | | | | | | 1 | | | | | | |
| | | 1 | 1 | | | | | 1 | | | | 1 | İ | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | N | | | | | | ł | | | Α | | | | | | | | | | | | | [| | | | | | | | | | | | | | 1 | | | | | | | | | | l | | | | | | Ļ | | L | L | <u></u> | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | ļ | | | | | | | | | | | | 1 | | | | | | | | | | | | | Input Loading | | | | | | | | | Din Nama | Factor ((u) | | | | | | | | | Pin Name
A | Factor (lu) | | | | | | | | | h | 1 | | | | | Output Driving | 1 | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | 1211 1141110 | 140001 (24) | 1 | | | | - 1 | | | | | | | | | | | | | | | | * Mini | mum val | ues for | the tv | pical c | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | ng condition | | | | are | given b | y the m | aximum | delay | ultipl | ier. | | | | | · · · · · · · · · · · · · · · · · · · | 1 21 | | | | | | | <u> </u> | | UHB-KD2-E1 | Sheet 1/1 | | | | | | | Page 19-3 | ## I/O Buffer Family | Page | Unit Cell
Name | Function | Basic
Cells | |---|--|---|-----------------------------------| | Input But | ifers | | | | 2-295 2-296 2-297 2-298 2-299 2-300 2-301 2-302 2-303 2-304 2-305 2-306 2-307 2-308 2-310 2-311 2-312 2-313 2-314 2-315 2-316 2-317 2-318 2-319 2-319 2-320 2-321 2-322 2-323 | 11B
11BU
12BU
12BU
12BB
12BB
12BB
11CD
11CD
11CD
12CUD
11SU
11SU
11SD
11RD
12SU
12SU
11RD
12RD
12RD
12RD | Input Buffer 11B with Pull-up Resistance 11B with Pull-down Resistance Input Buffer 12B with Pull-up Resistance 12B with Pull-up Resistance 12B with Pull-down Resistance 12B with Pull-up Resistance 12B with Pull-up Resistance 12B with Pull-up Resistance 12B with Pull-up Resistance 12B with Pull-up Resistance 12B with Pull-up Resistance 11C with Pull-up Resistance 11C with Pull-up Resistance 11C with Pull-up Resistance 12C with Pull-up Resistance 12C with Pull-up Resistance 12C with Pull-up Resistance 12S with Pull-up Resistance 11S with Pull-down Resistance 11S with Pull-down Resistance 12S with Pull-down Resistance 12S with Pull-down Resistance 12S with Pull-down Resistance 12S with Pull-down Resistance 12S with Pull-down Resistance 12S with Pull-up Resistance 11R with Pull-up Resistance 12R with Pull-up Resistance 12R with Pull-up Resistance | 555444444666555544448888886668888 | | Output B | uffers | | | | 2-325
2-326
2-327
2-328
2-329
2-330
2-331
2-332
2-333
2-334
2-335
2-336
2-337
2-338
2-340
2-341
2-342
2-343
2-344 | 01B
01L
01R
01S
02B
02L
02R
02S
02S2
04R
04S
04S
04T
04W
01BF
01BF
02BF
02RF
04RF
04TF | Output Buffer Power Output Buffer Output Buffer Power Output Buffer Output Buffer Output Buffer Power Output Buffer Output Buffer Power Output Buffer High Power Output Buffer Output Buffer Power 3-state Output Buffer Output Buffer Power 3-state Output Buffer 3-state Output Buffer | 33552244655744352454 | | | | iers (Buses) | | | 2-345
2-346
2-347 | H6TU
H6TU
H6TD | 3-state Output and Input Buffer
H6T with Pull-up Resistance
H6T with Pull-down Resistance | 8
8
8 | ## I/O Buffer Family (Continued) | 2-348
2-349
2-350
2-351
2-352
2-353 | H6WU
H6WD
H6C
H7CU
H6CD | Power 3-state Output and Input Buffer
H6W with Pull-up Resistance
H6W with Pull-down Resistance
3-state Output and CMOS Interface Input Buffer
H6C with Pull-up Resistance
H6C with Pull-down Resistance | 8
8
8
8
8 | |---|--
--|---| | Output Bu | ıffers | | | | 2-354 2-355 2-356 2-357 2-358 2-359 2-360 2-361 2-362 2-363 2-365 2-366 2-367 2-370 2-377 2-377 2-377 2-377 2-377 2-377 2-377 2-377 2-378 2-377 2-380 2-381 2-384 2-388 2-389 2-390 2-391 2-391 2-392 2-393 2-394 2-395 2-397 | H6EEUD
H6ESSUD H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD
H6ESRUD | Power 3-state Output and CMOS Interface Input Buffer H6E with Pull-up Resistance H6E with Pull-down Resistance 3-state Output and Schmitt trigger Input Buffer H6S with Pull-up Resistance 3-state Output and Schmitt trigger Input Buffer H6R with Pull-up Resistance 3-state Output and Input Buffer H6R with Pull-up Resistance H6R with Pull-up Resistance H6R with Pull-up Resistance H8T with Pull-up Resistance H8T with Pull-up Resistance H8T with Pull-up Resistance H8W with Pull-up Resistance H8W with Pull-up Resistance H8W with Pull-up Resistance H8W2 with Pull-up Resistance H8W2 with Pull-up Resistance H8W2 with Pull-up Resistance H8C with Pull-up Resistance H8C with Pull-up Resistance H8C with Pull-up Resistance H8E with Pull-up Resistance H8E with Pull-up Resistance H8E with Pull-up Resistance H8E2 with Pull-up Resistance H8E2 with Pull-up Resistance H8E2 with Pull-up Resistance H8E3 with Pull-up Resistance H8E4 with Pull-up Resistance H8E5 with Pull-up Resistance H8E6 With Pull-up Resistance H8E7 with Pull-up Resistance H8E8 with Pull-up Resistance H8E9 | 888112121129999991111 9999999111111333338888889999999 | | 2–398
Oscillator | H8CFD
Circuits | H8CF with Pull-down Resistance | 9 | | 2–399 | IT10 | Input Buffer for Oscillator | 0 | | 2-400
2-401 | HOC
HOS | Output Buffer for Oscillator and Input Buffer | 8 | | 2-401 | HOCR | Output Buffer for Oscillator and Schmitt trigger Input Buffer Output Buffer for Oscillator | 8
8 | | | | | | | FILITTSII C | MOS GATE ARRAY U | NIT CEL | CDECT | FICATIO | N | | עוויי | B" Version | |----------------|------------------|---------|-------------|-----------|---------|---------|---------|----------------| | Cell Name | Function | VII OLL | D BILCI. | r ICATIO. | 14 | | 1 011 | Number of BC | | | | | | | | | | | | IlB | Input Buffer (I | nverter |) | | | | | 5 | | Cell Symbol | | | | agation | Delay | | er | | | | | | up | +0 | td | | CDDO | ا ہے۔ | | | | t0 | KCL
0.04 | t0 | KCL | KCL2 | CDR2 | Path
X → IN | | | | 1.60 | 0.04 | 1.54 | 0.04 | | | X → IN | | | | | | | | | 1 | 1 | | | | | | | | | į | 1 | | | | | | | | | İ | 1 1 | | 1, | _ | | | | | | i | 1 | | x — | >>- IN | İ | 1 | | | | | | | | | | | | | | | | | | | <u></u> | + | | | | Parame | ter . | | | - 8 | ymbol | Typ(ns)* | ĺ | | | | | | ļ | | | | | | | | | | - 1 | | | | | | | | | | ļ | | | | | Input Loading | | | | | l | | | | Pin Name | Factor (lu) | | | | | Ì | | | | | | | | | | ĺ | 1 | | | | | | | | , | | | | | | ŀ | | | | 1 | | 1 | | Dia Mana | Output Driving | | | | | - 1 | | | | Pin Name
IN | Factor (lu) | | | | | 1 | | | | IN | 36 | | | | | | | | | 1 | | * Mini | mum val | ues for | the tv | mical o | perati | ing condition. | | | | The | values | for the | worst | case of | eratin | ng condition | | | | are | given b | y the m | naximum | delay r | multipl | lier. | 1 | | | | | | | | | | UHB-I1B-E1 | Sheet 1/1 | | | | | | | Page 20-1 | | | ···· | | | | | | | | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |-------------|------------------|------------|-------------|------------|-------------|---------|--------|----------------| | Cell Name | Function | | | | | | 1 | Number of BC | | | Input Buffer (I: | nverter |) | | | | | | | I1BU | with Pull-up Res | istance | | | | | | 5 | | Cell Symbol | | | | agation | Delay | | er | | | | | | up | +0 | td | | CDR2 | - Path | | | | t0
1.60 | KCL
0.04 | t0
1.54 | KCL
0.04 | KCL2 | CDK2 | Path
X → IN | | | | 1.60 | 0.04 | 1.54 | 0.04 | | | A → IN | ۲ | _ | | | | | | | | | х — | >>- IN | | | | | | | | | L | 1 | | | | Parame | † A T | L | | 1 6 | ymbol | Typ(ns)* | | | | гагаше | CCT | | | | 2 mpOT | Typ(IIS)" | 1 | | | | | | | | | | 1 | | | | | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | 1 | | | | | | | | | | | | | | | | | | l | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | IN | 36 | * Mini | mum val | ues for | the ty | pical c | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | <u> </u> | are | given b | y the m | aximum | delay m
 ultipl | ier. | • | | | | | | | | | | | | | | | | | | UHB-I1BU-E1 | Sheet 1/1 | | | | | | | Page 20-2 | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHI | B" Version | |----------------|------------------------------|---------|---------|---------|--------|---------|-----------|---------------| | Cell Name | Function | | | | | | 1 | Number of BC | | | Input Buffer (I | nverter |) | | | | | | | I1BD | with Pull-down R | esistan | D=0= | agatio- | Dolar | Daramat | <u>_</u> | 5 | | Cell Symbol | | +- | up | agation | td | | <u>e1</u> | 1 | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.60 | 0.04 | 1.54 | 0.04 | | | X + IN | İ | | | | | | | | | _ | | | | | | | 1 1 | | х | >>- IN | T(nc)* | | | | | | | Parame | rei | | | - S | ymbol | Typ(ns)* | | | | | | | | } | | 1 | | | | | | | | | | | | | | | | | | l | Dim Nama | Input Loading
Factor (lu) | | | | | 1 | | | | Pin Name | ractor (ku) | | | | | | | | | | Ì | 1 | | | Output Driving | | | | | | | | | Pin Name
IN | Factor (lu) | | | | | | | | | IN | 30 | | | | | | | _L | | | | * Mini | mum val | ues for | the ty | pical c | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | | are | given b | y the m | aximum | delay m | ultipl | ier. | 1 | UHB-I1BD-E1 | Sheet 1/1 | | | | | | | Page 20-3 | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | | IB" Version | |-----------------|--|---------|-------------------|-----------|--------|----------|------------------|----------------| | Cell Name | Function | | | | | | | Number of BC | | I2B | Input Buffor (T | rue) | | | | | | 4 | | Cell Symbol | Input Buffer (T | 106) | Prop | agation | Delay | Paramet | er | <u>-</u> | | | | | up | | td | n . | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.06 | 0.04 | 1.84 | 0.04 | | | X → IN | х | IN | Parame | ter | | I | <u> </u> | Symbol | Typ(ns)* | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | 1 | 1 | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | ł | | | | | | | | | |] | 10 · · · · · · · · · · · · · · · · · · · | 1 | | | | | | | | Pin Name | Output Driving
Factor (lu) | | | | | | | | | IN | 36 | 1 | * Mini | mum val | ues for | the ty | pical | operat | ing condition. | | | | The | values
given b | for the n | worst | delay | perati
multip | ng condition | | | | l are | 0 | , | | | | | | TTL Equiva | lent Circuit | | | | | | | | | | | | | | | | | | | [| 7 | | | | | | | | | 1 | 7/00/ | | | | | | | | | | 74S04
74LS04 | 74S04
74LS04 | | | | | | | | | 772504 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | UHB-I2B-E1 | Sheet 1/1 | | | | | | | Page 20-4 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |-------------|------------------------------|---------|---------|-----------|-------------|----------|-----------|---------------| | Cell Name | Function | | | | | | | Number of BC | | | Input Buffer (T | rue) | | | | | Γ | , 7 | | I2BU | with Pull-up Res | istance | D | | D - 1 | | | 4 | | Cell Symbol | | +- | up Prop | agation | Delay
td | | er | - | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.06 | 0.04 | 1.84 | 0.04 | ROBL | ODICE | X + IN | | | | 1.00 | | 110 | | | | | | | | | | | | | | 1 | 1 | | | | | | | | | | х — | IN | | | | ' | | | | | • | | | | | | | | | | | | | | | | | l | | | | | | | | | | 1 | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | 1 | 1 | | | | | | | | | Pin Name | Input Loading
Factor (lu) | | | | | | | | | FIII Name | ractor (Eu) | | | | | | | | | | | | | | | ľ | | | | | | | | | | ł | | | | | | | | | | ļ | | | | | | | | | | | | | | | Output Driving | | | | | - | | | | Pin Name | Factor (lu) | | | | | | | | | IN | 36 | | | | | | | | | | | Jan 10 | | | | | | | | | | * Mini | mum vai | ues ror | the ty | picai c | perati | ng condition. | | | | ine | varues | ror the m | aximum | delaw n | miltini | ng condition | | · | | are | given r | y the n | aximum | delay ii | 101 01 01 | .161. | 1 | UHB-I2BU-E1 | Sheet 1/1 | | | | | | | Page 20-5 | | | 1 -11-00 1/1 | | | | | | | | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "បា | HB" Version | |-------------|-------------------|-------------|-----------|---------|-----------|--|-------|----------------| | Cell Name | Function | | | | | | | Number of BC | | | Input Buffer (T | rue) | | | | | | | | I2BD | with Pull-down R | esistan | ce | | | | | 4 | | Cell Symbol | | | Prop | agation | Delay | raramet | er | 7 | | | | t0 | up
KCL | t0 | td
KCL | n
KCL2 | CDR2 | - Park | | | | 1.06 | 0.04 | 1.84 | 0.04 | KCL2 | CDR2 | Path
X → IN | | | | 1.00 | 0.04 | 1.04 | 0.04 | | | ATIN | İ | | | _ | | | | | | 1 | | | х — | - IN | | | | | | | | | | | | | | | | | } | | | | | | | | | İ | | | | | | | | | | | | | | | Parame | | L | | ل | ymbol | Tarm (ma)* | | | | rarame | rer | | | - - | yabot | Typ(ns)* | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | Ì | | | | | | | | | | ŀ | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | Ì | | | | | | | | | | 1 | - 1 | | | | | | | | | | 1 | | | | | Output Driving | 1 | | | | | | | | Pin Name | Factor (lu) | 1 | | | | 1 | | | | IN | 36 | * Mini | mum val | ues for | the ty | pical o | perat | ing condition | | | | The | values | for the | worst | case of | erati | ng condition | | | | are | given b | y the m | aximum | delay n | ultip | lier. | | | | | | | | | | | | ! | | | | | | | | | | 1 | i | | | | | | | | | | 1 | <u> </u> | | UHB-I2BD-E | 1 Sheet 1/1 | | | | | | | Page 20-6 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | Ŋ | | т"ОН | B" Version | |--|------------------------------|----------------|-------------|------------|-------------|---------|----------|----------------| | | Function | | | | | | | Number of BC | | IKB | Clock Input Buff | er (In | verter) | | | | | 4 | | Cell Symbol | CIOCK INPUE BUIL | <u>er (111</u> | Prop | agation | Delay | Paramet | er | | | | | | up | | td | n | | | | | | t0
2.37 | KCL
0.02 | t0
1.82 | KCL
0.02 | KCL2 | CDR2 | Path
X → CI | | | | 2.37 | 0.02 | 1.02 | 0.02 | | | A 7 01 | , 1 | \ | | | | | | | 1 | | x — | >>- cī | Parame | ter | | | l s | ymbol | Typ(ns)* | | | | 14244 | | | | | <u> </u> | - JF() | | | | | | | | | | | | | | | | | | - 1 | | | | | | | | | | - 1 | | | | | | | | | | - | | | | Pin Name | Input Loading
Factor (lu) | | | | | į | | | | TIM Name | Tactor (24) | | | | | | | 1 | | | | | | | | - 1 | Output Driving | | | | | | | | | Pin Name
CI | Factor (lu) | | | | | - 1 | | | | 61 | 130 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The | values | for the | worst | case op | eratin | g condition | | | <u> </u> | are | given b | y the m | aximum | deray m | ultipi | ler. | | TTL Equival | ent Circuit | | | | | | | | | , | •••• | | | | | | | | | l ———————————————————————————————————— | `
 | | | | | | | | | b- | | | | | | | | | |) : | | | | | | | | | | | | | | | | | | | 74 | \$40 | | | | | | | | | "1" | 1 | | | | | | | | | | UHB-IKB-E2 | Sheet 1/1 | | | | | | | Page 20-7 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | ש"ט | HB" Version | |-------------|------------------|---------|---------|---------|--------|------------------|--------|----------------| | | Function | | | | | | | Number of BC | | | Clock Input Buff | er (In | verter) | | | | | | | IKBU | with Pull-up Res | istance | | | | | | 4 | | Cell Symbol | | | | agation | Delay | Paramet | er | | | | | | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.37 | 0.02 | 1.82 | 0.02 | | | X → CI | 1 | х — | >> cı | | | | | | | | | • | 1 | | | | Parame | tor | L | L | ٠ ٦ - | ymbol | Typ(ns)* | | | | гаташе | ret | | | - ° | y moot | Typ(IIS). | | | | | | | | i | Input Loading | | | | | 1 | | | | Pin Name | Factor (lu) | | | | | | | | | 1111 Mame | ractor (xu) | - 1 | | | | | Output Driving | | | | | - 1 | | | | Pin Name | Factor (lu) | | | | | | | | | CI | 150 | | | | | 1 | | | | 01 | 150 | | | | | | | | | | | * Mini | mum val | ues for | the tv | pical c | perat | ing condition. | | | | The | values | for the | worst | case or | erati | ng condition | | | | are | given b | y the m | aximum | delav m | ultip | lier. | | | <u></u> | | <u></u> | | | | | | | TTL Equiva: | lent Circuit |) ; | | | | | | | | | | b- ; | | | | | | | | | | 1 1 | | | | | | | | | | U : | | | | | | | | | | | | | | | | | | | 1 74 | 4S40 | | | | | | | | | "1" | 1 | | | | | | | | | | | | | | | | | | <u> </u> | | UHB-IKBU-E2 | Sheet 1/1 | | | | | | | Page 20-8 | | TUTTOU O | | | | TTO 1 MTO | | | 1 11/17/19 | ., | |-------------|------------------------------|---------|----------|-----------|--------|---------|------------|---------------| | | MOS GATE ARRAY U | NIT CEL | L SPECI. | FICATIO | N | | | Version | | Cell Name | Function
Clock Input Buff | er (In | verter | | | | | Number of BC | | IKBD | with Pull-down R | esistan | CE | | | | | 4 | | Cell Symbol | | 001000 | Prop | agation | Delay | Paramet | er | | | | | t | up | | td | n | | | | 1 | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | ĺ | | 2.37 | 0.02 | 1.82 | 0.02 | | | X → CI | | i | x — | >> cī | | | | | | | | | ^ | \\\ 1. | 1 | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | T | | | | | | | | | | | | | | 1 | Toons Tooding | | | | | | | | | Pin Name | Input Loading
Factor (lu) | | | | | | | | | FIII Name | ractor (xu) | | | | | | | | | | | ļ | | | | į | | | | | | ĺ | | | | | | ļ | Output Driving | 1 | | | | | | | | Pin Name | Factor (lu) |] | | | | ł | | | | CI | 150 | * Mini | mum val | ues for | the ty | pical c | perati | ng condition. | | | | The | values | for the | worst | case or | erating | condition | | | <u> </u> | are | given b | y the m | aximum | delay n | ultipl: | ier. | | | | | | | | | | | | IIL Equival | lent Circuit | | | | | | | | | :-: | | | | | | | | | | |) : | | | | | | | | | | b | <i>)</i> : | 4540 | | | | | | | | | "1" | 1 | UHB-IKBD-E2 | Sheet 1/1 | | | | | | | Page 20-9 | | | 1 1 | | | | | | | | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | T"UI | HB" Version | |-----------------|-------------------|---------|-------------|---------|--------|---------|----------|----------------| | Cell Name | Function | | | | | | | Number of BC | | | | /m | > | | | | | | | ILB Cell Symbol | Clock Input Buff | er (Tr | ue)
Prop | agation | Delav | Paramet | er l | 6 | | | | tı | up | -3 | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
X → CI | | | | 2.03 | 0.02 | 2.56 | 0.02 | | | X → CI | } | | | | | | 1 | _ | | | | | | | | | х — | > cı | | | | | | | | | l | ter | | | l s | ymbol | Typ(ns)* | | | | | 101000 | | | | | , | | | | | | | | | 1 | Input Loading | | | | | | | | | Pin Name | Factor (lu) | İ | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | ļ | | CI | 150 | * Mini | mum val | ues for | the ty | pical c | perat: | ing condition. | | | | The | values | for the | worst | case op | erati | ng condition | | | J | are | given b | y the m | axımum | сетау п | uitip. | lier. | UHB-ILB-E2 | Sheet 1/1 | | | | | | | Page 20-10 | | FULL POLICE | WOO CAME ADDAY I | NITT OF | T CDECT | CTCATTO | | | 1 11777 | 711 11 | |---------------|------------------|---------|-------------------|----------|--------|---------|---------|----------------------------| | | MOS GATE ARRAY U | NII CEL | L SPECI. | L TCALLO | in | | I UH | B" Version
Number of BC | | JCII .iame | Clock Input Buff | er (Tr | ue) | | | | | amber of bo | | ILBU | with Pull-up Res | istance | -, | | | | 1 | 6 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
X → CI | | | | 2.03 | 0.02 | 2.56 | 0.02 | | | X → CI | 1 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | ĺ | | | , | | | | | | | | | | x — | CI | | | | | | 1 | } | 1 | | | | | | | | |] | | | | | Parame | ter | | | l . | vmbol | Typ(ns)* | | | | | | | | | | 1 1 | <u>.</u> | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | 1 | Output Driving | | | | | | | 1 | | Pin Name | Factor (lu) | | | | | | | | | CI | 150 | | | | | | | | | | | | _ | _ | | | | | | | | " Mini | mum val | ues for | the ty | pical c | perati | ng condition. g condition | | | | are | values
given b | A the w | aximum | delav m | ultin | ier. | | | L | | <u> </u> | , | | " | | = - | | TTL Equival | ent Circuit | | | | | | | | | | | | | | | | | 1 | | [| | | | | | | | | | 1 . N. | | | | | | | | | | 1 | | | | | | | | | | | | CI | | | | | | | | 74504 | | | | | | | | | | 74LS04 | | | | | | | | l | | | 7/0/0 | | | | | | | | | | 74540 | | | | | | | | | | | | | | | | | | | 1 | İ | UHB-ILBU-E2 | Sheet 1/1 | | | | | | | Page 20-11 | | | | | | | | | | | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "บห | B" Version | |------------------|------------------|---------|---------------|---------|---------|---------|--------|--------------------------------| | Cell Name | Function | | | | | | | Number of BC | | | Clock Input Buff | er (Tr | ue) | | | | | | | ILBD | with Pull-down R | esistan | се | | | | | 6 | | Cell Symbol | | | | agation | | | er | | | | | | up | | td | | | | | | , | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.03 | 0.02 | 2.56 | 0.02 | | | X → CI | ļ | | | | | | | | | | l | | | | | | | | | | İ | | | | 7.7 | | | | | | | | | х — | CI CI | 1 | | | | | | | | | | | | | Parameter Symbol | | | | | | | | Typ(ns)* | | | | | - | | | | · | Input Loading | | | | | - 1 | | | | Pin Name | Factor (lu) | | | | | | | | | | | | | | | 1 | 1 | | | | | | | | | | 1 | | | | | | | | | | ł | | | | | Output Driving | | | | | 1 | | | | Pin Name | Factor (lu) | | | | | 1 | | | | CI | 150 | | | | | | | <u> </u> | | | | J. 14 | | | | | | | | | | " Mini | mum vai | ues for | the ty | pical c | perati | ing condition.
ng condition | | | | 270 | values | y the m | avimum | delaw n | nultin | ier | | | <u> </u> | are | given b | y the n | IAXIMUM | delay i |
шитетр | iter. | l | 1 | UHB-ILBD-E2 | Sheet 1/1 | | | | | | | Page 20-12 | | FILITTEIL (| CMOS GATE ARRAY U | NIT CEL | T SDECT | FICATIO | NI. | | THIT | " Version | |----------------|-------------------|---------|----------|---------|--------|---------|----------|----------------| | | Function | NII CLL | D SILCI. | FICATIO | 14 | | I N | Number of BC | | | | | | | | | | | | I1C | CMOS Interface I | nput Bu | ffer (| Inverte | r) | | | 5 | | Cell Symbol | | | | agation | Delay | | er | | | | | | up | | td | | GDDG | 1 1 | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path
X → IN | | | | 1.32 | 0.04 | 1.44 | 0.04 | | | $X \to IN$ | | | | | | | | | | | | ļ | | | | | | | | 1 | 1 | | | | | | | | | | 1 | | | _ | | | | | | | | | x | >> IN | | | | | | | | | ' | | | | | | | ļ | Parame | ter | | | l s | ymbol | Typ(ns)* | | | | | | | | | | 1 | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | TIII Name | Tactor (xa) | ł | | | | | | | | | | l | | | | | | | | | | ł | | | | | Output Driving | | | | | 1 | | | | Pin Name
IN | Factor (lu) | | | | | 1 | | 1 | | 1 IN | 36 | | | | | | | | | | | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The | values | for the | worst | case of | perating | g condition | | | | are | given b | y the m | aximum | delay n | ultipl: | ier. | ļ | 1 | UHB-I1C-E1 | Sheet 1/1 | | | | | | | Page 20-13 | | OHD 110 51 | 0.1000 1/1 | | | | | | | | | FULLTSU (| CMOS GATE ARRAY U | NIT CEL | L SPECT | FICATIO | N | | n _{t1} | HB" Version | |-------------|-------------------|---------|---------|-----------|----------------|---------|-----------------|----------------| | | Function | 000 | - 0.101 | - 1011110 | · | | | Number of BC | | | CMOS Interface I | nput Bu | ffer (| Inverte | r) | | | | | I1CU | with Pull-up Res | istance | (| | - / | | l | 5 | | Cell Symbol | "LUI LUII UP NES | -2 | Prop | agation | Delay | Ратата | PT | | | | <u>-</u> | + | up | -5001011 | td | | <u></u> | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.32 | 0.04 | 1.44 | 0.04 | NOTIZ | UDITZ | X + IN | | | | 1.54 | 0.04 | 1.44 | 0.04 | | | V - 11 | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | 1 | 1 | | | | | | | | | | | | | | | | | | | l | | | | | | | | | | 1 | | | | \ | | | | | | | | | х — | >>─ и | | | | | | 1 | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | 1 | 1 | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | l | | | | | | | | | | İ | | | | | | | | | | 1 | Input Loading | | | | | 1 | | | | Pin Name | Factor (lu) | | | | |] | | 1 | | TITI MAME | Lactor (Lu) | 1 | | | | | | 1 | | | 1 | 1 | | | | l | | 1 | | | | 1 | | | | | | 1 | + | 1 | | | | 1 | | | | | Output Driving | 1 | | | | | | | | Pin Name | Factor (lu) | 1 | | | | 1 | | | | IN | 36 | | | | | | | 1 | | | | 1 | | _ | | | | | | | | * Mini | mum val | ues for | the ty | pical c | perat | ing condition. | | | | The | values | for the | worst | case of | erati | ng condition | | | | are | given b | y the m | aximum | delay n | ultip | olier. | UHB-I1CU-E1 | Sheet 1/1 | | | | | | | Page 20-14 | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHE | B" Version | |-------------|---|---------|---------|---------|--------|------------------|--------|---------------| | Cell Name | Function | | | | | | N | Number of BC | | | CMOS Interface I | nput Bu | ffer (| Inverte | r) | | | | | I1CD | with Pull-down R | esistan | ce | | | | | 5 | | Cell Symbol | | | Prop | agation | Delay: | Paramet | er | | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.35 | 0.04 | 1.44 | 0.04 | | | X → IN | .,, | | | | | | | | | | х — | O— IN | ĺ | | | | | Daras | tor | | | ٦ , | ymbol | Typ(ns)* | | | | Parame | LEI | | | - ° | ушоот | TAD(II2), | İ | Input Loading | | | | | | | 1 | | Pin Name | Factor (lu) | | | | | | | 1 | | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | 1 | 1 | | | | | | | | | | - | | 1 | | | | | | | | 1 | | | | | Output Driving | | | | | i | | | | Pin Name | Factor (lu) | | | | | 1 | | | | IN | 36 | * Mini | mum val | ues for | the ty | pical c | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | | are | given b | y the m | aximum | delay m | ultipl | ier. |] | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | 1 | 1 | | | | | | | | | | UHB-I1CD-E1 | Sheet 1/1 | | | | | | | Page 20-15 | | OUB-TICH-FI | Sileet 1/1 | | | | | | | 1 - 450 20 15 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECT | FICATIO | N | | " UI | HB" Version | |----------------|------------------|------------|-------------|------------|-------------|---------|-------------|--------------------| | Cell Name | Function | | | | | | 1 | Number of BC | | i | | | | | | | | | | I2C | CMOS Interface I | nput Bu | ffer (T | rue) | | | | 4 | | Cell Symbol | | | | agation | | | er | | | | | | up | +0 | td | | 0000 | - ₅ , | | | | t0
0.92 | KCL
0.04 | t0
1.33 | KCL
0.04 | KCL2 | CDR2 | Path
X → IN | | | | 0.92 | 0.04 | 1.33 | 0.04 | | | $X \rightarrow IN$ | ŀ | | | | | | | | | | | | | х — | IN | | | | | | l | | | L | | | | | | | | | | | | | | | | | ŀ | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | l | 1 | | | | | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | ļ | | İ | | D/- N | Output Driving | | | | | | | | | Pin Name
IN | Factor (lu) | | | | | ı | | | | 114 | 1 30 | | | | | | | | | | | * Mini | mum val | ues for | the tv | pical c | perat | ing condition. | | | | The | values | for the | worst | case or | erati | ng condition | | | | are | given b | y the m | aximum | delay n | ultip | lier. | UHB-I2C-E2 | Sheet 1/1 | | _ | | | | | Page 20-16 | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECT | FICATIO | N | | "UHB | " Version | |-------------|-------------------|----------|-----------|---------|--------|---------|----------------|----------------| | Cell Name | Function | IVII ODD | D DI DOI. | TOMITO | ., | | IN | umber of BC | | | CMOS Interface I | nput Bu | ffer | | | | `` | | | 12CU | with Pull-up Res | istance | (True) | | | | | 4 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | t | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.92 | 0.04 | 1.33 | 0.04 | | | Path
X → IN | İ | | | | | | ì | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | _ | | | | | | 1 | | | x | IN | | | | | | | | | , ,, | | | | | | | | | | | | | | | | | İ | | | | | ľ | | | | | 1 | | | | | 1 | | | | | | 1 | | | | Parame | ter | | L | T 6 | ymbol | Typ(ns)* | | 1 | | rarame | 201 | | | | , | - , , , , , , | | | | | | | | | | 1 | | | | | | | | 1 | | | | | | { | | | | | | | | 1 | | | | | | | | | | | | | | | | 1 | | 1 | | | Input Loading | | | | | | | 1 | | Dia Nama | Input
Loading | l | | | | | | 1 | | Pin Name | Factor (lu) | | | | | } | | | | | | | | | | - 1 | | 1 | | | | | | | | 1 | | 1 | | | | | | | | ı | | | | | 1 | 1 | | | | - | | | | | | | | | | | | | | l | Output Driving | ļ | | | | | | 1 | | Pin Name | Factor (lu) | ļ | | | | | | 1 | | IN | 36 | | | | | | | l | | | | | | | | | | a condition | | | | " mini | mum vai | ues for | the ty | picar | peratin | ng condition. | | | | ine | values | ror the | worst | dalar r | erating | g condition | | | | are | given b | y the m | aximum | delay i | durcipii | Ler. | } | 1 | İ | 1 | | | | | | | | | | 1 | 1 | UHB-I2CU-E | 2 Sheet 1/1 | | | | | | | Page 20-17 | | J.12 1200 L | - 1 511005 1/11 | | | | | | | | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | ט" [| JHB" Version | |---------------|-------------------|-----------|-----------|---------|---------|---------|-----------|---------------------------------| | Cell Name | Function | | | | | | | Number of BC | | | CMOS Interface I: | nput Bu | ffer | | | | | | | I2CD | with Pull-down R | esistan | ce (Tru | e) | | | | 4 | | Cell Symbol | | | | agation | Delay | | er | | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 0.92 | 0.04 | 1.33 | 0.04 | | | X → IN | | | | | | | | | | | | | | | | | | | 1 | ł | 1 | | | | | | | | | İ | | | v | 737 | | | | | | | | | х — | IN | | | | | | | | | | • | | | | | | 1 | | | | | | | | | | { | | | | | | | | | | | | | | | Parame | ter | L | L | ء ا | ymbol | l Typ(ns)* | | | | 1 41 4116 | | | | | <u>, </u> | - 1,5() | | | | | | | | ŀ | | | | | | | | | | ł | 1 | | | | | Input Loading | | | | | 1 | | | | Pin Name | Factor (lu) | | | | | | | | | | | | | | | į | 1 | | | | | | | | | | | | | | | 1, | | | | |] | | | | n | Output Driving | | | | | 1 | | | | Pin Name | Factor (lu) | 1 | | | | | | | | IN | 36 | | | | | | | | | | | de Mini | mum *** 1 | nes for | +ho +- | mical a | nna= | ting condition | | | | The | walues | for the | worst | Lace Of | operat: | ting condition
ing condition | | | | are | given h | v the m | naximum | delay r | nulti | plier. | | | | 1 310 | <u> </u> | | | | | · | | | | | | | | | | | | ł | 1 | 1 | | | | | | | | | | 1 | 1 | 1 | INID TOCK TO | Chast 1/1 | | | | | | | Page 20-18 | | I ORB-12CD-E2 | Sheet 1/1 | | | | | | | 11456 20 10 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |-------------|------------------|---------|----------|-------------------|--------|-------------|--------|---------------| | Cell Name | Function | | | | | | | Number of BC | | | Schmitt Trigger | Input B | uffer | | | | | | | I1S | (CMOS Type, Inve | | | | | | | 8 | | Cell Symbol | | | | agation | Delay | | er | | | | | | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 3.90 | 0.16 | 2.68 | 0.08 | | ĺ | X → IN | } | | | 1 | | | | | | | | 1 | | х — | <i>⊥</i> 5>>─ IN | | | | | | l | | | , | | | | | | | | | | | | | | | | | 1 | 1 | | | | | | | | | İ | | | | | D. | | | L | | J - 1 | T () | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | 1 | - 1 | | | | | | | | | | | | | | | Tour Touling | | | | | 1 | | | | Din Nome | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | - | | | | | | | | | | 1 | | | | | | | | | | } | | | | | Output Driving | | | | | ł | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | IN | 18 | | | | | | | | | 111 | 10 | | | | | | | | | | | * Mini | mim val | ues for | the tv | nical c | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | | are | given b | v the m | aximum | delav n | ultipl | ier. | | | | | 02.01. 2 | <i>y</i> c | • | UHB-I1S-E1 | Sheet 1/1 | | | | | | | Page 20-19 | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | ייָּטיִוי | B" Version | |-------------|-----------------------------|---------|---------|----------|------------------|---------|-----------|----------------| | Cell Name | Function
Schmitt Trigger | Innut P | uffe= | | | | | Number of BC | | IISU | (CMOS Type, Inve | rter) w | ith Pul | l-up Re | sistanc | e | - | 8 | | Ceil Symbol | | | Prop | agation | Delay | Paramet | er | | | | | | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 3.90 | 0.16 | 2.68 | 0.08 | | | X → IN | <u></u> | | | | | | | | | х — | IN | | | | | | [| l | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | 1 | 1 | | | | | | | | | | l | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | 1 | Output Driving | 1 | | | | | | 1 | | Pin Name | Factor (lu) | 1 | | | | ł | | | | IN | 18 | | | | | | | | | | | | _ | _ | _ | | | | | | | * Mini | mum val | ues for | the ty | pical o | perat | ing condition. | | | | Ine | values | ior the | worst
maximum | delaw m | peratl: | ng condition | | | | 1 are | Prven r | ,, che u | 10011111111 | cciay i | | | | | | | | | | | | | | 1 | | | | | | | | | | 1 | 1 | UHB-I1SU-E | 1 Sheet 1/1 | | | | | | | Page 20-20 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |-------------|------------------|---------|---------|---------|---------|---------|----------|----------------| | | Function | | | | | | | Number of BC | | | Schmitt Trigger | Input B | uffer | | | | | | | I1SD | (CMOS Type, Inve | rter) w | ith Pul | l-down | Resista | nce | | 8 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | t | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 3.90 | 0.16 | 2.68 | 0.08 | | | Path
X → IN | | | | 0.50 | "" | | | | | | | | | | | | | | | 1 | | | | | | | | | | 1 | 1 | | | | | | | | | | 1 | | 1 | <u></u> | | | | | | | | | х — | <i>I</i> >>>─ IN | | | | | | | 1 | | ٢ | 1 | | | | | | | | | | <u> </u> | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | } | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | - 1 | | | | | Input Loading | | | | | | | | | Din Nama | Factor (lu) | } | | | | - [| | | | Pin Name | ractor (xu) | | | | | l | | | | | | ł | | | | i | | | | | | | | | | ı | | | | | | į | | | | | | | | | | | | | | | | 1 | | | | | | | | 1 | | 1 | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | i | | | | IN | 18 | | | | | | | | | | | 1 | | | | | | | | | 1 | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The | values | for the | worst | case or | eratin | g condition | | | | are | given b | y the m | aximum | delay n | ultipl | ier. | UHB-I1SD-E1 | Sheet 1/1 | | | | | | | Page 20-21 | | FULTITOU C | MOS GATE ARRAY U | NIT CEL | L SPECT | FICATIO | N | | utin | B" Version | |----------------|------------------|-----------|-----------|---------|--------|---------|----------|----------------| | | Function | .111 (11) | L OFFOI. | TOULTO | ., | | 1 01 | Number of BC | | | Schmitt Trigger | Input R | uffer | | | | | | | I2S | (CMOS Type, True |) | | | | | 1 | 8 | | Cell Symbol | ,, -100 | | Prop | agation | Delay | Paramet | er | - | | | | t | up | 3 | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.48 | 0.16 | 3.08 | 0.10 | | | X + IN | | | | 20.00 |
| | | | | | 1 | | | | | | | | | |] | x — | IN IN | | | | | | | į | | Λ | ווי | ! | | | | | | | | | | ! | | | | | Parame | tor | | | 1 0 | ymbol | Typ(ns)* | | | • | rarame | CET | | | | , mb01 | 155(115) | | | | | | | | | | ļ | | | | | | | | 1 | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | TIL MAINE | I actor (xu) | ł | | | | | | | | | | } | | | | 1 | | | | | | ļ | | | | | | | | | | | | | | 1 | | | | | | | | | | l | | | | | Output Driving | | | | | | | | | Din Nome | Factor (lu) | | | | | | | | | Pin Name
IN | 18 | İ | | | | 1 | | | | IN | 10 | | | | | | | _1 | | | | * Mini | miim 120] | nes for | the to | mical c | norst. | ing condition. | | | İ | The | | for the | worst | CASE OF | perati | ng condition | | | | are | given h | v the m | aximum | delay n | ultip | lier. | | | J | , are | 01.011 | , one n | | | <u></u> | UHB-I2S-E1 | Sheet 1/1 | | | | | | | Page 20-22 | | | | | | | | | | | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "[] | HB" Version | |-------------|-------------------|----------|---------|---------|--------|---------|-------|----------------| | | Function | | | | | | | Number of BC | | | Schmitt Trigger | Input B | uffer | | | | | | | I2SU | (CMOS Type, True |) with ! | Pull-up | Resist | ance | | | 8 | | Cell Symbol | | | | agation | | | er | | | | | | up | | td | | anna | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 2.48 | 0.16 | 3.08 | 0.10 | | | X → IN | 1 | | | | _ | | | | | | l | | | х — | √ IN | | | | | | l | | | •• | 1 | | | | | | | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | - 1 | | | | | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | IIII Name | ractor (ku) | | | | | | | | | | | | | | | ļ | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | IN | 18 | | | | | | | | | | | * M:-: | 1 | f | + | -:1 - | + | ing condition. | | | | The | mom var | for the | worst | bicai c | perat | ng condition. | | | | are | given h | y the m | aximum | delav m | ultip | lier. | | | | | 82.011 | , | 1 | UHB-I2SU-E1 | Sheet 1/1 | | | | | | | Page 20-23 | | | | | | | | | | | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHE | " Version | |-------------|------------------|---------|---------|-------------|--------|-------------|----------|---------------| | Cell Name | Function | | | | | | l N | Number of BC | | | Schmitt Trigger | Input B | uffer | | | | | | | I2SD | (CMOS Type, True |) with | Pull-do | wn Resi | stance | | - | 8 | | Cell Symbol | | · | Prop | agation | Delay | Paramet | er | | | | | t | up | | td | | | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.48 | 0.16 | 3.08 | 0.10 | | | X → IN | 1 | х — | √ IN | | | | | | | | | A I | <u> </u> | | | | | | | | | | | | | | | | 1 | Parame | ter | L | L | ٠ ٦ ٥ | ymbol | Typ(ns)* | | | | таташе | 267 | | | | , moo1 | 1,5(115) | İ | | | | | | | | | | 1 | | | | | | | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | I III Name | Tactor (xu) | | | | | | | | | | | | | | | | | ĺ | | | | | | | | | | | | | | İ | | | | i | | | | | | | | | | | | | | | Output Driving | | | | | 1 | | | | Pin Name | Factor (lu) | | | | | | | | | IN | 18 | | | | | | | | | | 1 | | | | | | | 1 | | | İ | * Mini | mum val | ues for | the ty | mical o | perati | ng condition. | | | | The | values | for the | worst | case or | perating | g condition | | | | are | given h | v the n | aximum | delav | nultipl | ier. | | | | | 0-10 | , , , , , , | UHB-12SD-F1 | Sheet 1/1 | | | | | | | Page 20-24 | | FUJITSU C | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |---------------|------------------|---------|---------|---------|--------|---|--------|---------------| | | Function | | | | | | | Number of BC | | | Schmitt Trigger | Input B | uffer | | | | | | | I1R | (TTL Type, Inver | ter) | | | | | | 8 | | Cell Symbol | | | | agation | Delay | Paramet | er | | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 4.48 | 0.16 | 2.36 | 0.08 | | | X → IN | 1 | | | | | | | | | | 1 | 1 | | , | | | | | | | | | | x — | Д>>>— IN | Parama | tor | لـــــا | L | 1 6 | ymbol_ | Typ(ns)* | | | | Parame | rei | | | - | Ampot | Typ(IIS)" | [| | | | | | | | | | | | | | | | | | - | | 1 | | | | | | | | ı | | 1 | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | 1 211 1101110 | 1 | | | | | 1 | | | | | | | | | | 1 | | 1 | | | | | | | | Ì | | | | | | | | | | | | 1 | | | | | | | | | | l | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | IN | 18 | | | | | - 1 | | | | | | | | | | | | | | | | * Mini | mum val | ues for | the tv | pical o | perati | ng condition. | | | | The | values | for the | worst | case op | eratin | g condition | | | | are | given b | y the m | aximum | delay m | ultipl | ier. | | | <u> </u> | 1010 TAN NO 1 | 63 | | | | | | | D 00 05 | | UHB-I1R-E2 | Sneet 1/1 | | | | | | | Page 20-25 | | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |-------------|-------------------|--------------|------------|---------|---------|---------|---------|----------------| | Cell Name | Function | | | | | | | Number of BC | | | Schmitt Trigger | Input B | uffer | | | | | | | I1RU | (TTL Type, Inver | ter) wi | th Pull | -up Res | istance | | | 8 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 4.48 | 0.16 | 2.36 | 0.08 | | ł | X → IN | | | | | | | | | Į. | | | · | | | | | | | | | | | | | | | | | ł | ., | 7.1 | | | | | | | | | х — | <u>1</u> 5>>─ IN | | | | | | 1 | | | | | | | | | | | İ | 1 | | | | Parame | ter | L , | L | ء ا | ymbol | Typ(ns)* | | | | . a. ame | | | | | ., | 1 - 75 (5) | | | | | | | | | | 1 | | | | | | | | | | i | | | | | | | | - 1 | | 1 | | | | | | | | 1 | | 1 | | | | | | | | - 1 | | 1 | | | Input Loading | | | | | - 1 | | | | Pin Name | Factor (lu) | | | | | | | | | | | | | | | - 1 | 1 | | | | | Output Driving | | | | | 1 | | | | Pin Name | Factor (lu) | l | | | | 1 | | | | IN | 18 | ļ | | | | | | | | | 1 | * Mimi | m11m *** 1 | ne for | the += | mical - | mara+4 | ing condition. | | | | The | walues | for the | worst | Case Of | peratit | ng condition | | | | are | given b | v the m | aximum | delay n | nultipl | ier. | | | _1 | <u>, are</u> | D | ,c u | | | | | | 1 | 1 | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | ļ | 1 | | | | | | | | | | UHB-I1RU-E2 | Sheet 1/1 | | | | | | | Page 20-26 | | | | | | | | | | | | FUJITSU C | MOS GATE ARRAY U | "UH | B" Version | | | | | | |-------------|-------------------|---------|------------|---------|-----------------|---------|--------
---------------| | Cell Name | Function | | | | | | | Number of BC | | | Schmitt Trigger | Input B | uffer | | | | | | | I1RD | (TTL Type, Inver | ter) wi | th Pull | -down R | <u>esista</u> n | ce | | . 8 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | t t | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 4.48 | 0.16 | 2.36 | 0.08 | | | X → IN | | | | | | | | | | i | | | | | | | | | | 1 | | | | | | | | | ì | 1 | _ | | | | | | İ | | | х — | √> → IN | | | | | | ł | | | L | | | | | | | 1 | | | | | | | | | | l | | | | | | | | | | 1 | | | | | | | | | | L | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | ĺ | | | | | | | | | | - 1 | | 1 | Input Loading | | | | | | | 1 | | Pin Name | Factor (lu) | | | | | | | 1 | | | | | | | | l | | | | | | | | | | i | | ľ | | | | | | | | ļ | | | | | | | | | | | | ł | | | | | | | | į | | ł | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | ı | | ! | | IN | 18 | * Mini | mum val | ues for | the ty | pical o | perati | ng condition. | | | | The | values | for the | worst | case op | eratin | g condition | | | | are | given b | y the m | aximum | delay m | ultipl | ier. | 1000 1100 0 | 1.01 | | | | | | | <u> </u> | | UHB-I1RD-E2 | Sheet 1/1 | | | | | | | Page 20-27 | | | JJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB | | | | | | | | | |-------------|---|---------|-----------|---------|-------------|--|--------|----------------|--| | Cell Name | Function | | | | | | | Number of BC | | | | Schmitt Trigger | Input B | uffer | | | | | _ | | | I2R | (TTL Type, True) | | | | D 1 | | | 8 | | | Cell Symbol | | | | agation | Delay
td | raramet
- | er | | | | | | t0 | up
KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | 2.24 | 0.16 | 3.72 | 0.13 | RODZ | ODRZ | Path
X → IN | | | | | | 0.10 | 01.72 | 0.110 | | l | ļ | | | | | | | | | | | х — | IN IN | | | | | | | 1 | İ | | | | | | Parame | ter | | | 8 | ymbol | Typ(ns)* | l | | | | | | | | | | | İ | | | | | | | | | | | 1 | | | | | | Input Loading | | | | | İ | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | | 1111 Name | Tactor (xu) | Output Driving | | | | | | | | | | Pin Name | Factor (lu) | | * | i | | | | | | | IN | 18 | | | | | | | | | | | | * Mini | mum val | nes for | the ty | mical o | perat | ing condition. | | | | | The | values | for the | worst | case of | perati | ng condition | | | | | are | given b | y the m | aximum | delay | nultip | lier. | | | | | • | | | | ······································ | UHB-I2R-E1 | Sheet 1/1 | | | | | | | Page 20-28 | | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHI | B" Version | |----------------|-------------------|---------|-----------|---------|--------|---------|------------|----------------| | Cell Name | Function | | | | | | 1 | Number of BC | | | Schmitt Trigger | Input B | uffer | | | | | | | I2RU | (TTL Type, True) | with P | ull-up | Resista | nce | | - | 8 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | t | up | | td | | | | | | | t0 | KCL | t0 | KCL | | CDR2 | Path
X → IN | | | | 2.24 | 0.16 | 3.72 | 0.13 | | | X → IN | | | | | | ļ | ļ | | | | | | | | | | } | | | | | | | | | | ł | | | | | | | | | | | 1 | | | _ | | | | | | 1 | | | х — | √ IN | | | | | | | 1 | | * | <u> </u> | | | | | | 1 | | | | | | | | | | 1 | 1 | | | | | | | | | | 1 | | | | | | | | | | | | | | Parame | ter | | L | 7 5 | Symbol | Typ(ns)* | | | | , arame | | | | | . , m. O 1 | 1,5(1.5) | 1 | Input Loading | | | | | 1 | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | I III Hame | Tactor (24) | | | | | ŀ | | | | | | | | | | ļ | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | İ | | 1 | | | Output Driving | | | | | 1 | | | | Din Nama | Factor ((v) | | | | | | | | | Pin Name
IN | Factor (lu) | | | | | | | | | 114 | 10 | | | | | | | <u> </u> | | | | de Mini | mum 17.01 | was for | the tw | nical d | norati | ng condition. | | | | The | walues | for the | worst | Case Of | neratin | g condition | | | | 270 | given b | w the m | avimum | delav r | multipl | ier | | | | are | given b | y the m | aximum | deray i | uur crpr | 161. | THE TORK TO | 101 | | | | | | | Page 20-29 | | UHB-I2RU-E1 | Sheet 1/1 | | | | | | | Fage 20-29 | | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UH | B" Version | |-------------|------------------------------|------------|-------------|------------|-------------------|---------|--------|--------------------------------------| | Cell Name | Function | | | | | , | | Number of BC | | | Schmitt Trigger | Input B | uffer | | | | | | | I2RD | (TTL Type, True) | with P | ull-dow | n Resis | tance | | | 8 | | Cell Symbol | | | | agation | Delay | | er | | | | | t0
2.24 | WCL
0.16 | t0
3.72 | td
KCL
0.13 | KCL2 | CDR2 | Path
X → IN | | х — | IN | Parame | tar | | | l s | ymbol | Typ(ns)* | | | | rarame | CEI | | | | ушыот | Typ(ns) | | Pin Name | Input Loading
Factor (lu) | | | | | | | | | | Output Driving | | | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | 1 | | IN | 18 | The | values | for the | the ty
worst | case or | eratin | ng condition.
g condition
ier. | | | | | | | | | | | | UHB-I2RD-E1 | Sheet 1/1 | | | | | | | Page 20-30 | | FUJITSU (| U CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | |-------------|--|---------|-----------|---------|-------------|-----------|-------|----------------|--|--| | Cell Name | Function | | | | | | | Number of BC | | | | | | | _ | | | | | _ | | | | 01B | Output Buffer(IO | L=3.2mA | | | | D | 1 | 3 | | | | Cell Symbol | | | | agation | Delay
td | | er | | | | | | | t0 | up
KCL | t0 | KCL | n
KCL2 | CDR2 | Path | | | | | | 1.93 | 0.056 | 2.24 | 0.124 | KCD2 | CDR2 | OT → X | | | | | | (5.29) | 0.030 | (9.68) | | | 1 | 01 4 1 | | | | | | (3.2) | | (3.00) | | | 1 | | | | | | | | | | | | Į | j | | | | | | | | | · | | l | | | | | | | | | | | | l | | | | | | | i | | | | | ł | | | | | | | | | | | | l | | | | | от — | >>- x | | | | | | 1 | | | | | 1 | Parame | ter | | · | 2 | ymbol | Typ(ns)* | - 1 | | | | | | | | | | | | - 1 | | | | | | | | | | | |] | | į | | | | | | | | | | | | | | | | | Input Loading | | | | | | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | | | OT | 2 | 1 | | | | 1 | | | | | | | } | | | | | 1 | - 1 | | | | | | | 1 | 1 | | | | - 1 | | | | | | Pin Name | Output Driving | | | | | 1 | | | | | | rin Name | Factor (lu) | | | | | İ | | | | | | | - | | | | | | | | | | | | 1 | * Mini | mum val | ues for | the tv | mical o | perat | ing condition. | | | | | | | | | | | | | | | | | The values for the worst case operating condition are given by the maximum delay multiplier. | | | | | | | | | | Note: 1. The unit of $K_{\mbox{CL}}$ is ns/pF. - Output load capacitance of 60 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | | JHB" Versio | n | | |-------------|--|-------------|---------|----------|---------|--|-------|-------------|-------|--| | Cell Name | Function | | | | | | | Number of | | | | O1L | Output Buffer(IO | L=12mA, | Invert | er) | | | | 3 | | | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | | | | up | | td | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR 2 | | | | | | | 2.29 | 0.037 | 2.47 | 0.041 | | | OT → X | | | | | | (4.51) | | (4.93) | l | | | | | | | | 1 |
 | | | | · | | | | | | | | | | | | · | | ļ | | | | | N | | | i | | | | İ | | | | | | | | | | | | 1 | | | | OT - | √ x | | | | | 1 | | | | | | | | | | | l | · | | - 1 | | | | | | | | | İ | } | | | | | | | | | | | İ | l | İ | ı | | | | | | Parame | ter | L | L | ' | ymbo] | l Typ(ns | *(: | | | | | Tarame | | | | —— — | J | 1,7,5(| ,, | | | ł | - 1 | | 1 | | | | | | | | | | ļ | | | | | | | | l | | | | 1 | | ł | | | | | Input Loading | 1 | | | | 1 | | 1 | | | | Pin Name | Factor (lu) | 1 | | | | - 1 | | | | | | OT | 2 | 1 | | | | - 1 | | | | | | | | Ì | | | | 1 | | 1 | | | | | 1 | l | | | | - 1 | | | | | | | | j | | | | 1 | | | | | | | | j | | | | 1 | | į | | | | | Output Driving | | | | | Ì | | į | | | | Pin Name | Factor (lu) | | | | | 1 | | - 1 | | | | | | | | | | | | | | | | | | ١ | | | | | | | | | | 1 | | - Mini | mum val | ues for | tne ty | pical c | pera | ting condit | tion. | | | 1 | 1 | The | values | IOT The | worst | dalam - | 1+ /- | ing conditi | LOU | | | | | 1 are | given t | by the m | Jaximum | deray b | uıt1 | hiiei. | | | | Note: 1 | The unit of K _{CL} is | ns/nF | | | | | | | | | | 1 | the district of MCL 10 | . 110, pr . | | | | | | | | | | 2. (| Output load capaci | tance c | f 60 pI | is use | d for I | uiitsu' | 8 | | | | | | logic simulation. | 3. 7 | 3. The parameters in parentheses are the values applied to the simulation. | 1 | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | Page 20-32 UHB-01L-E3 | Sheet 1/1 | 771. 22 | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | |--------------|---|-------------|---------|----------|---------|----------|---------------|---------------|--| | | | NIT CEL | L SPECI | FICATION | | | "UHB" Version | | | | Cell Name | Function | | | | | | | Number of BC | | | | Output Buffer(IO | | | ter) | | | Γ | | | | O1R | with Noise Limit | Resist | | | | | | 5 | | | Cell Symbol | | | Prop | agation | Delay P | aramete | r | | | | | | t | up | | tdn | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | 3.30 | 0.056 | 5.18 | 0.13 | | | OT + X | | | | | (6.66) | | (12.98) | | | l | 1 | | | | | ` ′ | | ` 1 | | | İ | | | | | | | | | | | 1 | | | | | | | | | | | i | İ | | | | | | | | | | İ | 1 | ОТ — | >─ x | | | | | | | | | | 0.1 | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | ļ | 1 | | | | | Parameter S | | | | | | | | | | | rarame | ter | 3 | mbol | Typ(ns)* | | | | | | | | | | | 1 | | | | | | | | | | | 1 | 1 | | | | | | | | | | | | | | | T===A T==3! | | | | | j | | | | | D/- N | Input Loading | | | | | | | | | | Pin Name | Factor (lu) | | | | | | | 1 | | | OT | 1 | | | | | | | | | | | 1 | | | | | | | 1 | | | | | | | | | | | | | | | 1 | | | | | | | l . | | | | <u> </u> | | | | | 1 | | | | | | Output Driving | | | | | | | 1 | | | Pin Name | Factor (lu) | | | | | - 1 | | | | | | | | | | | | | <u> </u> | ng condition. | | | | | | | | | | | g condition | | | | | are | given b | y the ma | ximum d | elay mu | ltipl | ier. | | | | | | | | | | | | | | 1 1.7 . 4 TT | 1 | /- T | | | | | | | | Note: 1. The unit of K_{CL} is ns/pF. - Output load capacitance of 60 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. | FUJITSU | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | |--|---|----------|-----------|---|------------|--------|-------|-----------|---------|--| | Cell Name | Function | | | | | | | Number | of BC | | | | Output Buffer(IO | | | er) | | | | | | | | 01S | with Noise Limit | Resist | | | | | | <u> </u> | 5 | | | Cell Symbol | | | | agation | | | er | | | | | | | t0 | up
KCL | t0 | tdn
KCL | KCL2 | CDF | Pat | | | | | | 4.02 | 0.038 | 6.39 | 0.054 | KCLZ | + CDF | OT - | | | | | | (6.30) | | (9.63) | | | | " | Λ | | | | | () | | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 1 | | | | | | | | | | | | 1 | l | | | | | | <u> </u> | | | | | | l | - | | | | от — | >— x | | | | | | | | | | | , | | | | | | | i | 1 | 1 | | | | | Parame | ter | | L | | ymbo] | Typ | (ns)* | | | rarameter Symbol | | | | | | | | | (113) | - 1 | | | | | | | Input Loading | | | | | - 1 | | | | | | Pin Name | Factor (lu) | | | | | | | | | | | OT | 1 | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | - 1 | | - 1 | | | | | | | | | | | | l | | | | | Output Driving | | | | | | | | | | | Pin Name | Factor (lu) | _ | _ | | | | | | | | | | * Mini | mum val | ues for | the typ | ical c | perat | ing cond | dition. | | | | | | | for the ma | | | | | ition | | | | | | given b | y cire ma | XIII G | cray m | ui ti | 71161. | | | | Note: 1. The unit of K _{CL} is ns/pF. | utput load capaci | tance o | f 60 pF | 'is used | for Fu | jitsu' | s | | | | | 1 | ogic simulation. | | | | | | | | | | | 3. Т | he parameters in | parenth | eses ar | e the va | lues an | nlied | to ti | ne simula | ation. | | | | , | , | | | - F | F | | | | | | | | | | | | | | | | | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | | |---|------------------|----------------|-----------|-------------|----------|-------|-----------------|--|--|--| | Cell Name | Function | | | | | | Number of BC | | | | | | | | | | | | | | | | | O2B
Cell Symbol | Output Buffer (I | OL=3.2mA, True |)
tis= | Dolar- | Darama + | | 2 | | | | | Cell Symbol | | tup | agation | Delay
td | | er | | | | | | | | tO KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | | | 1.70 0.056 | 1.75 | 0.124 | | | OT → X | | | | | | | (5.09) | (9.19) | | | • | l | | | | | | | | | | | | | | | | | | | ^ | | | | | İ | | | | | | от | x | | | | | | | | | | | 01 | ^ | | | | | 1 | | | | | | | | | | | | ł | | | | | | | | | | | | | | | | | | ĺ | | Parameter | | l | | | T ()# | | | | | | ymbol | Typ(ns)* | 1 | | | | | | | | | | | | - 1 | | | | | | | | Input Loading | | | | | | | | | | | Pin Name | Factor (lu) |] | | | | | | | | | | OT | 4 | 1 | Output Driving | 1 | | | | | | | | | | Pin Name | Factor (lu) | | | | 1 | | | | | | | | | | | | | | | | | | | İ | | * Minimum val | ues for | the ty | pical c | perat | ting condition. | | | | | | | The values | for the | worst | case or | erati | ing condition | | | | | ļ | 1 | are given b | y the m | aximum | delay m | ultip | olier. | | | | | TTL Equivalent Circuit | | | | | | | | | | | | | 0110410 | | | | | | | | | | | , | , ,, | 74504 | 74504 | | | | | | | | | | Note: 1. The unit of $K_{\mbox{\scriptsize CL}}$ is ns/pF. - 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-02B-E4 | Sheet 1/1 | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "บ | HB" Version | | | |-------------|--|---------|-----------|----------|-------------|-----------|--------|----------------|--|--| | Cell Name | Function | | | | | | | Number of BC | | | | | | | | | | | | _ | | | | 02L | Output Buffer(IO | L=12mA, | | | D 1 | D | | 2 | | | | Cell Symbol | | | | agation | Delay
td | | er | | | | | | | t0 | up
KCL | t0 | KCL | n
KCL2 | .CDR2 | Path | | | | | | 2.09 | 0.037 | 1.98 | 0.041 | KCL2 | .CDR2 | OT → X | | | | | | (4.31) | | (4.44) | | | l | 01 7 % | | | | | | (4.31) | | (4.44) | | | l | | | | | | | | | | | | ļ | | | | | | | | | | | | | İ | l | | | | | | •• | | | | | | | | | | | | OT - | x | | | | | | 1 | | | | | | | | | | | l | | | | | | | | 1 | | | | | | | | | | | | | | | | | | 1 | | | | | l | ٠ | ymbol | Typ(ns)* | | | | | | | | | | Parame | ter | | | | yaiboi | . Typ(IIS)" | | | | | | | | | | 1 | | | | | | | | l | | | | ļ | | | | | | | | Ì | | | | ı | | | | | | | | | | | | | | | | | | | ······································ | 1 | | | | | | 1 | | | | | Input Loading | | | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | | | OT | 4 | | | | | i | | | | | | | | [| | | | - 1 | | | | | | | | l | | | | | | | | | | | | | | | | 1 | | | | | | | Output Driving | i | | | | | | | | | | Pin Name | Factor (lu) | l | | | | | | | | | | | | 1 | ing condition. | | | | 1 | | | | | | | | ing condition | | | | | | are | given b | y the m | aximum | delay r | nultip | olier. | | | | | | | | | | | | | | | Note: 1. The unit of $K_{\mbox{CL}}$ is ns/pF. - Output load capacitance of 60 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. | FULLITSH | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | |
---|---|---------|----------|------------|---------|-------|----------|---|--------------| | Cell Name | Function | MII ODD | D DI LOI | TIONTION | | | | IN | umber of BC | | | Output Buffer(IO | L=3.2mA | . True) | | | | | + - | amber or bo | | O2R | with Noise Limit | | | | | | | | 4 | | Cell Symbol | | | | agation | Delay P | arame | ter | | | | | | t | up | | tdn | | | | | | | | t0 | KCL | t0 | KCL | KCL | 2 CD | R2 | Path | | | | 2.99 | 0.056 | 4.69 | 0.13 | | - 1 | | OT → X | | | | (6.35) | | (12.49) | | | - 1 | | | | | | | | | | | - 1 | | | | | | | | | | | - 1 | | | | | | | | | | | i | | | | | | | | | | | j | | | | | | | | | | | | | | | $ $ or \longrightarrow $ $ $ $ | | | | | | | | | | | 01 | ^ 1 | - 1 | | | | | | | | | | | | | | | Parameter Syn | | | | | | Symbo | 1 | Typ(ns)* | - 1 | | | | | | | | | | | - 1 | | | | | | Input Loading | | | | | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | | OT | 2 | ı | | | | | | | | | | | - 1 | | | | | | | | | | | | | | | | | Output Driving | | | | | - 1 | | | | | Pin Name | Factor (lu) | | | | | | | | | | | | | | | | | | | l | | | | | | | | | | | 4141 | | | | | | | | | | | g condition. | | | | | | for the ma | | | | | condition | | | .1 | are | PTACH D | y che ma | ALMUM U | cray | <u> </u> | <u>, , , , , , , , , , , , , , , , , , , </u> | | | Note: 1. T | he unit of K _{CL} is | ns/pF. | | | | | | | | | | OL - | • | | | | | | | | | 2. Output load capacitance of 60 pF is used for Fujitsu's | | | | | | | | | | - 3. The parameters in parentheses are the values applied to the simulation. | FUJITSU (| MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | | "ИНВ | " Version | |----------------|-------------------------------|---------|----------|---------|---------|----------|-------|-------|--------------| | Cell Name | Function | | | | | | | | umber of BC | | | Output Buffer(IO | L=12mA, | True) | | | | | | | | 02S | with Noise Limit | Resist | ance | | | | | | 4 | | Cell Symbol | | | | agation | Delay | Paran | neter | | | | | | t | up | | td | | | | | | | | t0 | KCL | t0 | KCL | KCI | .2 C | DR2 | Path | | | | 3.71 | 0.038 | 5.87 | 0.054 |) | - 1 | | OT → X | | | | (5.99) | | (9.11) | | l | | | | | | | | | | | l | - 1 | | | | | | | | | | ł | | | | | ł | | | | | ł | l | - 1 | | | | ł | | | | | į | l | - 1 | | | | ١. | | | | | ł | } | - 1 | | | | | | | | | | l | - 1 | | | | OT — | x | | | | | l | - 1 | | | | ļ l | | | 1 | 1 | l | | - 1 | | | | | | | | | | 1 | - 1 | | | | 1 | | į | l | | 1 | | - 1 | | | | | | | | | | <u> </u> | | | | | | | Parame | ter | | | | Syn | bol | Typ(ns)* | | | | | | | | | | | | | | | } | | | | l | | | | | • | | | | | | 1 | | | | | 1 | | | | | | 1 | | | | | | | l | | | | | | | | | <u></u> | I Imput I andina | ĺ | | | | I | | | | | Din Nama | Input Loading | | | | | i | | | | | Pin Name
OT | Factor (lu) | l | | | | - 1 | | | | | 1 0, | | j | | | | 1 | | | | | 1 | | | | | | | | | | | | | l | | | | 1 | | | | | Į. | | | | | | ı | | | | | | Output Driving | ł | | | | - 1 | | | | | Pin Name | Factor (lu) | Į. | | | | - 1 | | | | | 1211 1141110 | 120001 (20) | l | | | | 1 | | | | |] | | | | | | | | | | | 1 | | * Mini | mum val | ues for | the ty | mical | one | ratin | g condition. | | | | | | | | | | | condition | | | | | | y the m | | | | | | | | | | | | | | | | i | | Note: 1. Th | ne unit of K _{CL} is | ns/pF. | 2. Ot | itput load capaci | tance c | of 60 pH | is use | d for F | ujit | su's | | | | | ogic simulation. | | - | | | | | | | | | | | | | | | | | | | 3. Th | ne parameters in | parenth | eses ar | e the v | alues a | pplie | ed to | the | simulation. | | 1 | 1 | | | | | | | | | | | 1 | 1 | 1 | | | | | | | | | | Page 20-38 UHB-02S-E3 | Sheet 1/1 | FILITON | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | | |---------------------|---|--|-----------|-------------|---------|--|----------|-------------------|--|--|--| | Cell Name | | MII CEPP | SPECIF | ICALIUN | | | | | | | | | Cell Name | Function | T = 2 / = A | T \ | | | | <u>N</u> | umber of BC | | | | | 0252 | Output Buffer(IO | | | | | | | , | | | | | O2S2
Cell Symbol | with Noise Limit | resista | | antian Da | 1 av D | t | i_ | 6 | | | | | Cell Symbol | | 4 | | gation De | tdn | ameter | | | | | | | | | tu
t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | | | 5.27 | 0.032 | 9.51 | 0.06 | KULZ | CDRZ | OT → X | | | | | | | (7.19) | | (13.11) | 0.00 | | | 01 - X | | | | | | | (7.13) | | (13.11) | ОТ — | >— x | Paramet | er | | | Sym | bol | Typ(ns)* | | | | | | | | | | | i | | | | | | | | | | | | | ļ | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | T + | | | | | 1 | | | | | | | D. 11. | Input Loading | | | | | 1 | | | | | | | Pin Name | Factor (lu) | | | | | | | | | | | | OT | 2 | | | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | Output Driving | | | | | 1 | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | | | | IIII Name | Factor (Eu) | | | | | 1 | | | | | | | | | | | | | | | L | | | | | | | * Minim | 11m va111 | es for th | e tonic | al one | retin | e condition | | | | | | | * Minimum values for the typical operating condition. The values for the worst case operating condition | | | | | | | | | | | | | | | the maxi | | | | | | | | | | I | | | - III WIGHT | | -, -, -, -, -, -, -, -, -, -, -, -, -, - | | <u> </u> | | | | Note: 1. The unit of $K_{\mbox{CL}}$ is ns/pF. - Output load capacitance of 60 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-02S2-E3 | Sheet 1/1 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version Cell Name Number of BC Function Tri-state Output Buffer(IOL=3.2mA, True) 04R with Noise Limit Resistance 5 Cell Symbol Propagation Delay Parameter tup tdn KCL t0 KCL KCL2 | CDR2 t0 Path 3.12 5.66 OT + X 0.056 0.13 (6.76)(14.11)X $L \rightarrow Z$ $Z \rightarrow L$ KCL t0 KCL t0 $C \rightarrow X$ 6.47 0.13 2.22 (13.44)(14.92)Input Loading Pin Name Factor (lu) OT C 2 H → Z Z → H t0 KCL t0 KCL 3.07 3.20 0.056 Output Driving (13.44)(14.92)Pin Name Factor (lu) * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-04R-E3 | Sheet 1/1 | FULLITSU | CMOS GATE ARRAY U | NIT CEL | T. SPECT | FICATION | V | | l "UH | B" Version | |-------------|-------------------|---------|-------------|-----------|----------|-------------------|----------|--------------| | Cell Name | Function | ODD | D DI DO | 1110/1110 | ` | | | Number of BC | | | Tri-state Output | Buffer | (IOL=12 | mA. True | е) | | | | | 048 | with Noise Limit | | | , | -, | | | 5 | | Cell Symbol | | | | pagation | Delay Pa | aramete | r | | | | | t | up | I | tdn | | | 1 | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 3.96 | 0.038 | 7.25 | 0.054 | | | OT → X | | | | (6.43) | | (10.76) | ol l | | | 1 | | | | | | | 1 | | | | | | | | | 1 | | | | | | | ^ | | | 1 | | | | 1 | | | | | | | | | | 1 | | ОТ | x | | | 1 | | | | | | | V | | | | 1 1 | | 1 | | | | | | | | ļ | | 1 | 1 | | | , | | | 1 | | | l | | | | С | | | 1 | 1 | | 1 | Ì | | | | | L + 2 | , | | $Z \rightarrow L$ | <u> </u> | | | | | t0 | | KCL | t0 | | CL | d c → x | | i | | 3.6 | 5 | VCF | 7.40 | | 054 | - | | | | (17.8 | | * | (10.91 | | 034 | | | | | (17.0 | , | | (10.31 | ′ | | | | | | | - 1 | | | | | | | | Input Loading | | İ | | | | | | | Pin Name | Factor (lu) | | 1 | | | - 1 | | | | OT | 2 | | | | | 1 | | 1 | | С | 2 | | H → 2 | Z | | $Z \rightarrow H$ | | 7 | | | | t0 | | KCL | t0 | K | CL | 7 | | | | 3.7 | 5 | | 3.69 | 0. | 038 | | | | Output Driving | (17.8 | 3) | * | (10.91 |) | | | | Pin Name | Factor (lu) | | | | | 1 | | | | | | | 1 | | | j | | | | | | | | | | 1 | | | | | | | [| | | - 1 | | | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-04S-E3 | Sheet 1/1 | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | 1 | | " UH | " Version | |-------------|----------------------------|-----------|----------------|----------|---------|-------------------|-------------|-------------| | Cell Name | Function | | | | | | | Number of B | | | Tri-state Output | Buffer | (IOL=24 | mA, True | e) | | | | | 0482 | with Noise Limit | Resist | | | | | | 7 | | Cell Symbol | | | Prop | agation | Delay P | aramete | r | | | | | tup tdn | | | | | | | | | | t0 |
KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 5.61 | 0.032 | 11.62 | 0.06 | | | OT + X | | | | (7.69) | | (15.52) | | | 1 | 1 | | | | | | | | | 1 | 1 | | | | | | | | | | | | | ^ | | | 1 | | | İ | | | | | | | | | | | | | от — | x | | | Į. | | | 1 | İ | | | M | | | 1 | | | 1 | 1 | | | | | | | | | 1 | 1 | | | , | | | 1 | | | ì | 1 | | | С | | | l | | | | 1 | | | | | | <u> </u> | | | <u> </u> | | | | | | L + 2 | | | $Z \rightarrow L$ | | . | | | | t0 | | KCL | t0 | | KCL | C → X | | | | 5.3 | | | 11.18 | | .06 | | | | | (19.2 | 3) | * | (15.08 |) | | | | | | | - 1 | | | 1 | | | | | 1 | 1 | - 1 | 1 | | | | | | D: 11 | Input Loading | | - 1 | 1 | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | OT | 2 | | | | | | | 4 | | С | 2 | | H → 2 | | | Z → H | 701 | 4 | | | 1 | t0
6.3 | , | KCL | t0 | | KCL | - | | | Out-ut Defeates | | | * | 5.25 | | .032 | | | Pin Name | Output Driving Factor (lu) | (19.2 | ا (د | _ | (15.08 | 7 | | | | rin Name | ractor (tu) | 1 | 1 | 1 | | l | | | | | | | | | | - 1 | | | | | 1 | 1 | 1 | 1 | | - 1 | | ı | | | l . |) | l l | 1 | | ı | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-04S2-E3 | Sheet 1/1 | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | | | |---|-------------------------------|----------------|-------------------|-----------------|----------------|-------------------|-----|-----|-------------------|---|--| | Cell Name | Function | | | | | | | | umber of BO | , | | | 04T | Tri-state Output | Buffer | | | | | | | 4 | | | | Cell Symbol | | | | agation | | aramete | r | | | | | | | | t0 | up
KCL | t0 | tdn
 KCL | KCL2 | CDR | 2 | Path | | | | | | 2.42
(6.06) | 0.056 | 2.52
(10.97) | 0.13 | | | | OT → X | | | | от —— | x c | | | | | | | | | | | | | | | $L \rightarrow Z$ | | | Z + L | L | 7 | | | | | | | t0 | | KCL | t0 | | CL | | $C \rightarrow X$ | | | | | | 2.0
(12.3 | | * | 2.55
(11.00 | 1 | 13 | İ | | | | | | Input Loading | | | | | | | | | | | | Pin Name | Factor (lu) | | | 1 | | | | - 1 | | | | | OT
C | 4 2 | | H → Z | , | | $Z \rightarrow H$ | | _ | | | | | \ | | t0 | -11 / 2 | KCL | t0 | | CL | - | | | | | | | 3.4 | 1 | | 2.31 | | 056 | _ | | | | | Pin Name | Output Driving
Factor (lu) | (12.3 | 5) | * | (11.00) | <u> </u> | | | | | | | 1 | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\mbox{\scriptsize CL}}$ is ns/pF. - 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the $\operatorname{simulation}$. UHB-04T-E5 | Sheet 1/1 | FUJITSU (| MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | | HB" Version | |----------------|-------------------------------|----------------|---------|----------------|---------------|-------------------|-------|--------------| | Cell Name | Function | | | | | | | Number of BC | | 04W | Tri-state Output | Buffer | (IOL=12 | mA, Tru | e) | | | 4 | | Cell Symbol | | | Prop | agation | | | er | | | | | | up | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 3.02
(5.49) | 0.038 | 4.12
(7.17) | 0.047 | | | OT → X | | от — | c x | | | | | | | | | | | | L + 2 | | | Z + I | | | | | | t0 | | KCL | t0 | | KCL | c → x | | | | 2.9
(16.3 | | * | 3.6
(6.7 | | 0.047 | | | Pin Name
OT | Input Loading Factor (lu) | | | | | | | | | С | 2 | | H → 2 | Z | | $Z \rightarrow I$ | ĭ | | | | | t0 | | KCL | t0 | | KCL | | | Pin Name | Output Driving
Factor (lu) | 4.0
(16.3 | 1 | * | 2.72
(6.75 | | 0.038 | | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-04W-E3 | Sheet 1/1 | FIIITSII (| CMOS GATE ARRAY U | NIT CEL | T SDECT | FICATIO | N1 | | 771 | HB" Version | |-------------------|-------------------------------|---------|---|-------------|--------------|----------|--------|----------------| | Cell Name | Function | NII CLL | D SEECI. | FIUMITO | 14 | | | Number of BC | | 0011 | T direction. | | *************************************** | | | | | Number of 25 | | O1BF | Output Buffer (I | OL=8mA, | | | | | | 3 | | Cell Symbol | | | | agation | Delay | | er | | | | | | up | 1 | td | | Tanna | | | | | 1.96 | KCL
0.056 | t0
2.01 | KCL
0.063 | KCL2 | CDR2 | Path
OT → X | | | | (5.32) | | (5.79) | | ĺ | 1 | 01 7 | | | | (3.32) | | (3) | | ĺ | 1 | | | | | | ! | | | İ | | | | | | | ! | | | ĺ | | | | | | | ! | | 1 | | 1 | | | ļ | \sim | ' | 1 ! | | | | | | | от — | >─ x | | ! | | | | | | | | | 1 | 1 1 | 1 | | | ļ | | | | | 1 1 | | | | į | İ | | | | | 1 1 | ' | | | | | | | | | Parame | ter | <u> </u> | L | L 5 | Symbol | Typ(ns)* | | | | 1010 | | | | | // | -35(5) | | | | l | | | | | | | | | | l | | | | | | | | | | 1 | | | | | | | | | | l | | | | | | | | | Input Loading | l | | | | - 1 | | | | Pin Name | Factor (lu) | l | | | | - | | | | OT | 2 | l | | | | l | | | | | | l | | | | | | | | | | 1 | | | | l | | | | | | l | | | | | | | | | Output Driving | 1 | | | | į | | | | Pin Name | Factor (lu) | l | | | | | | | | | | L | | | | | | | | | | | | | | | | _ | | | | | | | | | | ing condition. | | | | | values
given b | | | | | ing condition | | | J | are | given b | y the a | RYTHUM | deray . | DUILIP | niei. | | Note: 1. T | he unit of K _{CL} is | ns/pF. | | | | | | | | · · | | | | | | | | | | | utput load capaci | tance o | f 60 pF | 'is use | d for F | 'ujitsu' | 8 | | | logic simulation. | | | | | | | | | | 3. T | he parameters in | parenth | eses ar | e the v | alues a | pplied | to th | ne simulation. | UHB-01BF-E1 | Sheet 1/1 | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Vers Cell Name Function Number Output Buffer (IOL=8mA, Inverter) with Noise Limit Resistance 5 | ion
of BC | |--|--------------| | Output Buffer (IOL=8mA, Inverter) O1RF with Noise Limit Resistance 5 | of BC | | O1RF with Noise Limit Resistance 5 | | | UIKF with Noise Limit Resistance 5 | | | | | | Cell Symbol Propagation Delay Parameter | | | tup tdn t0 KCL t0 KCL KCL2 CDR2 Pat | | | $ \begin{array}{c ccccc} t0 & KCL & t0 & KCL & KCL2 & CDR2 & Pat \\ \hline 3.39 & 0.056 & 5.60 & 0.063 & & OT \rightarrow \end{array} $ | | | (6.75) (9.38) | ^ | | (6.73) | Parameter Symbol Typ(| ns)* | | | | | i i i i | | | | | | | | | | | | | | | Input Loading | | | Pin Name Factor (lu) OT 1 | | | OT 1 1 | | | | | | | | | | | | Output Driving | | | Pin Name Factor (lu) | | | TIN Name Factor (Au) | | | | | | * Minimum values for the typical operating cond | ition | | The values for the worst case operating condi | | | are given by the maximum delay multiplier. | | | | | Note: 1. The unit of K_{CL} is ns/pF. - Output load capacitance of 60 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. | FUJITSU C | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | | |-------------|---|---------|----------|---------|---------|---------|---------|----------------|--|--|--| | Cell Name | Function | | | | | | | Number of BC | | | | | O2BF | Output Buffer (I | OL=8mA. | True) | | | | | 2 | | | | | Cell Symbol | output puller (1 | | Prop | agation | Delay | Paramet | er | | | | | | | | | up | | td | n | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | | | 1.76 | 0.056 | 1.52 | 0.063 | | l | OT → X | | | | | | | (5.12) | | (5.30) | | | l | 1 1 | l | | | | | | | | | | | | | l | | | | | | ١. | | | | | | | Į | | | | | | | | | | | | | İ | | | | | | OT — | x | | | | | | 1 | | | | | | 1 | | | | | | | 1 | 1 | | | | | Ì | | | | | | | | | | | | | 1 | | | | | | | 1 | | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | | | | | | | | | | | | | | | | | | 1 | 1 | Input Loading | | | | | | | | | | | | Pin Name | Factor (lu) | | | | | į | | | | | | | TO | 4 | ĺ | | | | 1 | | | | | | | | | l | | | | - 1 | | 1 | Output Driving | | | | | | | | | | | | Pin Name | Factor (lu) | * Mini | mum wa1 | nes for | the to | mical c | nerat | ing condition. | | | | | İ | | The | values | for the | worst | case or | erati | ng condition | | | | | | | are | given b | y the m | aximum | delay n | ultip | lier. | | | | | | | | | | | | | | | | | | TTL Equival | ent Circuit | | | | | | | 1 | | | | | i | ļ | | | | | 1 -1/2- | 1 | : : | | | | | | | | | | | | 74504 | 74S04
74LS04 | | | | | | | | | | | | 74LS04 | 741504 | Note: 1. Th | ne unit of K _{CL} is | ns/pF. | tput load capaci | tance o | of 60 pF | is use | d for F | ujitsu' | S | | | | | | 10 | ogic simulation. | | | | | | | | | | | | 3. Th | ne parameters in | parenth | eses ar | e the v | alues a | pplied | to th | e simulation. | | | | | | * | • | | | | ., |
 | IND-OOR PS | Choo+ 1/1 | | | | | | | Page 20-89 | | | | | UHB-02BF-E1 | Sheet 1/1 | | | | | | | Fage 20-09 | | | | | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | | | | | B" Version | |-------------|------------------------------|--------------|-----------|----------|---------|------|------|--------|--------------| | Cell Name | Function | | | | | | | | Number of BC | | · | Output Buffer (I | | | | | | | 1 | | | O2RF | with Noise Limit | Resist | | | | | | | 4 | | Cell Symbol | | | Prop | agation | Delay P | arar | nete | r | | | | | | up | | tdn | | | | _ | | | * | t0 | KCL | t0 | KCL | K(| CL2 | CDR2 | | | | | 3.08 | 0.056 | 5.11 | 0.063 | | | | OT → X | | | | (6.44) | | (8.89) | | | | | | | | | | | | | 1 | | | | | | | | | | | l | | | | | | | | | | | l | | | | | | | | | | | ł | | | ļ | | | | | | | | | | | | | | | | | | į. | 1 | | | | | OT | x | | | |] | | | | ļ | 1 | | į | | | | | | <u> </u> | | L | Ц, | | ــِـــ | | | | | Parame | ter | | | | ьу | mbol | Typ(ns)* | | | | 1 | | | | - 1 | | | | | | | ĺ | | | | - 1 | | | 1 | | | | | | | | - 1 | | | | | | | i | | | | - 1 | | | i | | | | | | | | ı | | | | | | Tanua Tandi | | | | | - 1 | | | | | Pin Name | Input Loading
Factor (lu) | | | | | | | | | | OT OT | Pactor (ku) | | | | | l | | | | | 01 | 1 2 | 1 | | | | | | | į | | | | | | | | ı | | | | | | | | | | | | | | l | | | | | | | | l | | | | | | Output Driving | 1 | | | | | | | 1 | | Pin Name | | | | | | | | | | | FIII Name | Factor (lu) | 1 | | | | | | | 1 | | | | | | | | | | | | | | | * Mini | mum 37.01 | ues for | the twr | dea | 1 00 | areti | ng condition | | | İ | | | | | | | | g condition | | | | | | y the ma | | | | | | | | | I are | PTACH D | J the ma | VINOR C | CIA | , | | 101. | Note: 1. The unit of $K_{\rm CL}$ is ns/pF. - 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. Page 20-90 UHB-02RF-E1 | Sheet 1/1 | | CMOS GATE ARRAY U | NIT CELL S | PECI | FICATION | 4 | | | B" Version | |-------------|-------------------|------------|-------|----------|---------|-------------------|----------|--------------| | Cell Name | Function | | | | | | 1 | Number of BC | | | Tri-state Output | | | mA, True | e) | | | | | O4RF | with Noise Limit | Resistan | :e | | | | | 5 | | Cell Symbol | | | Prop | agation | Delay P | aramete | r | | | | | tup | | | tdn | | | | | | | t0 1 | CL | t0 | KCL | KCL2 | CDR2 | Path | | | | | 056 | 5.96 | 0.070 | | | OT + X | | | | (6.85) | | (10.51) | | | İ | | | | | | | | 1 | | | | | | | | | | 1 | 1 | | от — | x | 1 | | | 1 | | | | | | M | l 1 | | | | | | | | | | 1 | | ļ | | | 1 | 1 | | | • | 1 | | | 1 | | 1 | | | | С | | | | | | | i | | | | | | <u>L</u> | 1 | | <u> </u> | | | | | | . → Z | | | $Z \rightarrow L$ | | 4 | | | | t0 | | KCL | t0 | | CL |] c → x | | | | 2.62 | 1 | | 6.82 | | 070 | 1 | | | | (15.89) | - } | * | (11.37 |) | | | | | | | - | | | - 1 | | | | | | | - | | | - 1 | | 1 | | | Input Loading | | 1 | | | - | | 1 | | Pin Name | Factor (lu) | | 1 | | | - 1 | | | | OT | 2 | | | | | | | | | С | 2 | | 1 → Z | | | Z → H | | | | | | t0 | | KCL | t0 | | CL | 4 | | | 1 | 3.30 | | * | 3.21 | | 056 | | | D | Output Driving | (15.89) | | * | (11.37) | | | | | Pin Name | Factor (lu) | _l | | l | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\rm CL}$ is ns/pF. - Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-04RF-E1 | Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CELI | SPECI | FICATIO | N N | | "UH | IB" Version | |----------------|-------------------|----------|----------|-----------|----------|-------------------|------|--------------------| | Cell Name | Function | 0000 | J DI DOI | 1 10///10 | | | | Number of BC | | 04TF | Tri-state Output | Buffer | (IOL=8 | mA, Tru | e) | | | 4 | | Cell Symbol | | | | | Delay Pa | aramete | r | 7. - 7 | | | | tı | qı | | tdn | | | | | İ | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | ļ | | 2.51 | 0.056 | 3.27 | | | | OT → X | | | | (6.15) | | (7.37 | 기 | | | | | | | | | 1 | | | | | | | | | | l | | | | 1 | | | \setminus | | | 1 | 1 | | | 1 | | от — | >— x | | | 1 | 1 1 | | 1 | | | | | | | 1 | | | 1 | | | | | 1 | | | | | | | | | _ |] | | | | | | | | | С | 1 | | l | 1 1 | | | | | | | | L + 2 | <u> </u> | | Z + L | L | | | | | t0 | | KCL | t0 | | CL | $ c \rightarrow x$ | | | | 2.29 | | | 3.35 | | 063 | ٦ | | | | (14.80 | 0) | * | (7.45) |) | | | | | | | | | | | | | | | | | 1 | | | | | | | 1 | Input Loading | | | | | | | | | Pin Name
OT | Factor (lu) | | | | | 1 | | | | 1 °C | 2 | | H → 2 | , | | $Z \rightarrow H$ | | - | | 1 | 1 | t0 | | KCL | t0 | | CL | - | | | 1 | 3.12 | | | 2.37 | | 056 | | | | Output Driving | (14.80 | | * | (7.45 | | | 1 | | Pin Name | Factor (lu) | | | | | - 1 | | | | | | | - 1 | | | | | | | | 1 | | | | | | | | | | | | 1 | | | 1 | | | | 1 | 1 | l | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\rm CL}$ is ns/pF. - Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-04TF-E1 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | 1 | | וט" ד | B" Version | | |----------------|-------------------|-----------|----------------|----------|------------|-------------------|----------|--------------|--| | Cell Name | Function | | | | | | | Number of BC | | | Н6Т | Tri-state Output | (IOL=3. | | | | | | 8 | | | Cell Symbol | | | Prop | agation | | | r | | | | 1 | | | up | | tdn | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR | | | | | | 1.06 | 0.04 | 1.84 | 0.04 | | l | X → IN | | | | | (7.18) | | (13.57) | | | l | OT → X | | | | 1 | (7.10) | | (13.37) | Ί Ι | | | | | | IN — | ─ < h | | | | | | | | | | 1 | N 1 | | | | | | | | | | от — | X | | | | | | | 1 | | | | LP . | | | | | | | | | |] | | | | | | | | 1 | | | | 1 | | | 1 | | | | | | | | С | | | 1 | | | | | | | | | | L | <u></u> | <u> </u> | | <u> </u> | | | | | | <u> </u> | L → Z | | | $Z \rightarrow L$ | OT | | | | | | t0
2.0 | , | KCL | ±0
2.55 | | CL
13 | C → X | | | | | (15.3 | | * | (13.60 | | 13 | | | | İ | | (15.5 | 3) | . | (13.00 | ' | | | | | | | | | l | | ı | | | | | | Input Loading | 1 | | | | 1 | | 1 | | | Pin Name | Factor (lu) | | | | | | | 1 | | | OT | 4 | | | | | | | | | | С | 2 | | H → 2 | | | Z → H | | | | | | | t0 | | KCL | t0 | | CL | _ | | | | | 3.4 | _ | | 2.31 | | 056 | 1 | | | Die Name | Output Driving | (15.3 | 3) | * | (13.60 |) | | 1 | | | Pin Name
IN | Factor (lu) | ł | 1 | İ | | 1 | | | | | 114 | 30 | 1 | | | | | | | | | ļ | 1 | 1 | - | | | | | 1 | | | | | 1 | | | | - 1 | | | | | | _ | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\mbox{CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6T-E4 | Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPEC | IFICATION | N . | | T"UHI | B" Version | |-------------|-------------------|---------|--------|-----------|----------|-------------------|-------|--------------| | | Function | | | | · | | | Number of BC | | | Tri-state Output | (IOL=3. | 2mA) δ | Input B | uffer (T | rue) | | | | H6TU | with Pull-up Res | | | | | , | | 8 | | Cell Symbol | | | | pagation | Delay P | aramet | er L | | | | | t | up | 1 | tdn | | | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.06 | 0.04 | 1.84 | | | | X → IN | | | | 2.42 | 0.056 | 2.52 | 0.13 | | i | OT + X | | | | (7.18) | | (13.57) | | | 1 | 1 | | | | , , | | 1 | 1 | | 1 | 1 | | IN —— | | | İ | 1 | | | | 1 | | Í | | | | | | | 1 | 1 | | от — | > | | | | | | | | | | P | | 1 | 1 | 1 | | 1 | 1 | | • | | | 1 | ł | | | 1 | 1 | | | l | | | | | | | | | | C | | | | | 1 | 1 | | | | | | | 1 | | | İ | 1 | | | | | L → | | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | | KCL |] c → x | | | | 2.0 | | | 2.55 | _ | .13 | | | | | (15.3 | 5) | * | (13.60 |) | | i | | | | | - 1 | | | | | 1 | | | | | - 1 | | | ļ | | 1 | | | Input Loading | | - 1 | | | | | | | Pin Name | Factor (lu) | 1 | - 1 | | | | | | | OT | 4 | | | | | | | _ | | С | 2 | | Н → | | | $Z \rightarrow H$ | | _ | | | | t0 | | KCL | t0 | | KCL | 1 | | | ļ | 3.4 | - | _ | 2.31 | | .056 | 1 | | | Output Driving | (15.3 | 5) | * | (13.60 |) | | | | Pin Name | Factor (lu) | 1 | 1 | | | ł | | 1 | | IN | 36 | l | 1 | | | | | | | | 1 | | 1 | | | - 1 | | | | | | 1 | - 1 | | | - [| | 1 | | | 1 | 1 | | | | | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6TU-E4 | Sheet 1/1 | | CMOS GATE ARRAY U | "Ul | B" Version | | | | | | | | |----------------|-------------------|----------|------------|----------|----------|-------------------|------|---------------|--|--| | Cell Name | Function | | | | | | | Number of BC | | | | | Tri-state Output | | | Input Bu | ıffer (T | rue) | | | | | | H6TD | with Pull-down R | esistan | | | | | | 8 | | | | Cell Symbol | | | | agation | Delay P | | r | | | | | | | | up | | tdn | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | | 1.06 | 0.04 | 1.84 | 0.04 | | ĺ | X → IN | | | | | |
2.42 | 0.056 | 2.52 | 1 1 | | 1 | OT → X | | | | | 1 | (7.18) | | (13.57) |) | | 1 | Ì | | | | IN — | - < h | | | | 1 | | l | į | | | | | 7 | [] | | | | | İ | | | | | от — | x | 1 1 | | | | | İ | 1 | | | | 01 | ^ | | | | | | | | | | | | | | | | | | | 1 | | | | | | 1 | | | | | l | 1 | | | | | С | | | | | | | | | | | | • | | | | | | | 1 | | | | | | <u> </u> | L + 2 | : | | $Z \rightarrow L$ | L | - | | | | | | t0 | | KCL | t0 | K | CL | ¬ c → x | | | | | | 2.0 | 7 | | 2.55 | 0. | 13 | 7 | | | | | | (15.3 | 5) | * | (13.60 |) | | 1 | | | | | | | 1 | | | j | | 1 | | | | | | | | ļ | | - 1 | | | | | | | Input Loading | 1 | 1 | 1 | | - 1 | | | | | | Pin Name | Factor (lu) | 1 | | | | ı | | 1 | | | | OT | 4 | | | | | | | 4 | | | | С | 2 | | H → Z | | | Z + H | | 4 | | | | | | t0 | | KCL | t0 | | CL | | | | | | 1 Date of Date of | 3.4 | | * | 2.31 | | 056 | 1 | | | | Din Nama | Output Driving | (15.3 | ا (د | * | (13.60 | , l | | | | | | Pin Name
IN | Factor (lu) | 1 | | - | | | | | | | | 114 | 30 |] | | | | 1 | | 1 | | | | | | l | - 1 | 1 | | - 1 | | | | | | | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6TD-E4 | Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | HB" Version | | | | | | | |----------------|-------------------|-------------|-------|---------|---------|-------------------|----------|----------------| | | Function | | | | | | | Number of BC | | H6W | Tri-state Output | (IOL=12r | | | | | | 8 | | Cell Symbol | | | | agation | | | er | | | | | | KCL | t0 | KCL KCL | n
KCL2 | CDR2 | - -, | | | | t0
1.06 | 0.04 | 1.84 | 0.04 | KULZ | CDRZ | Path
X → IN | | | | 3.02 | 0.038 | 4.12 | 0.047 | | l | OT + X | | | | (6.25) | 0.030 | (8.12) | | | 1 | 0 | | IN | $\prec \uparrow$ | (0.23) | | (0.11) | | | ł | | | ** | \backslash | | | | | | ł | | | от — | x | | | | | | } | | | 01 | ^ ^ | | | | | | | ĺ | | | | | | | | | | | | | 1 | | | 1 | | | ł | - | | | С | İ | | | | | | | | | | I | L + 2 | | | $Z \rightarrow I$ | <u> </u> | | | | | t0 | | KCL | t0 | | KCL | ⊢ c → x | | | | 2.90 | 6 | | 3.6 | | 0.047 | | | | | (20.2 | 5) | * | (7.6 | 9) | | | | | | | l | | | l | | | | | Input Loading | | - 1 | | 1 | | | | | Pin Name | Factor (lu) | | - | | | | | 1 | | OT | 4 | | l | | l | ı | | | | С | 2 | | H → 2 | | | Z + 1 | | | | | | t0 | | KCL | t0 | | KCL | | | | | 4.0 | . , | | 2.7 | | 0.038 | | | Pin Name | Output Driving | (20.2 | 5) | * | (7.6 | 9) | | | | Pin Name
IN | Factor (lu) | | 1 | | | | | 1 | | 111 | 50 | [| | | 1 | | | 1 | | | | | | | | l | | | | 1 | | 1 | 1 | | | - 1 | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6W-E3 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | " U | HB" Version | | |-------------|-------------------|----------------|-------------------|---------|----------|-------------------|------------|--|--| | Cell Name | Function | | | | | | | Number of BC | | | | Tri-state Output | | | nput Bu | ffer (T | rue) | | | | | H6WU | with Pull-up Res | istance | | | | | | 8 | | | Cell Symbol | | | Prop | agation | | | er | | | | | | | up | | td | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | 1.06 | 0.04
0.038 | 1.84 | 0.04 | | 1 | $X \rightarrow IN$
OT $\rightarrow X$ | | | | | 3.02
(6.25) | | 4.12 | | | | 01 7 X | | | | 1 | (0.23) | | (8.12) | | | | | | | IN — | ─ < h | | | 1 | | | | | | | | N 3 | | | | | | Ì | 1 | | | от — | → x | | | | | | l | 1 | | | 1 | <u> </u> | l | | | | | | | | | | | С | } | $L \rightarrow Z$ | | | $Z \rightarrow I$ | | | | | i | | t0 | | KCL | t0 | | KCL | c → x | | | | | 2.9 | | * | 3.6 | | .047 | | | | | | (20.2 | 5) | * | (7.6 | 19) | | | | | | | | | | | | | | | | | Input Loading | 1 | j | | | | | | | | Pin Name | Factor (lu) | | l | | | | | | | | OT | 4 | 1 | 1 | | ĺ | | | | | | C | 2 | | H → Z | | | $Z \rightarrow 1$ | ı . | | | | _ | _ | t0 | | KCL | t0 | | KCL | | | | 1 | | 4.0 | | | 2.7 | 2 0 | 0.038 | | | | | Output Driving | (20.2 | 5) | * | (7.6 | 9) | | 1 | | | Pin Name | Factor (lu) |] | | | l | l | | 1 | | | IN | 36 | | | | 1 | I | | | | | | | 1 | | | | | | | | | | | | | | 1 | ŀ | | | | | | | L | | | L | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the ${\tt simulation.}$ UHB-H6WU-E3 | Sheet 1/1 | FULLTSU (| FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UH | | | | | | | | | | | | |-------------|---|--------------|----------|------------|-----------|-------------------|----------|-----------------------------|--|--|--|--| | | Function | IVII ODD | D DI DO. | 11 1011110 | •• | | | HB" Version
Number of BC | | | | | | | Tri-state Output | (IOL=12 | mA) & : | Input Bu | ffer (T | rue) | | | | | | | | H6WD | with Pull-down R | esistan | | | - | <u> </u> | | 8 | | | | | | Cell Symbol | | | Pro | pagation | Delay | Paramet | er | | | | | | | | | | up | | td | | | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | | | | 1.06 | 0.04 | 1.84 | 0.04 | ł | ł | X → IN | | | | | | | | 3.02 | 0.038 | 4.12 | 0.047 | | | OT → X | | | | | | | / | (6.25) | | (8.12) | | | ł | 1 | | | | | | IN - | ─ < h | | | | | | 1 | | | | | | | 1 | \ | | | | | | | | | | | | | ОТ — | > x | | | | | | Í | | | | | | | | √ | | | | | | l | 1 | | | | | | | | | | | | | į | | | | | | | | 1 | | | | | | | 1 | | | | | | 1 | C | | | | | | 1 | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | L + S | | | $Z \rightarrow I$ | | | | | | | | | | t0 | | KCL | 10
3.6 | | KCL | C → X | | | | | | | | 2.9
(20.2 | | * | (7.6 | | 0.047 | | | | | | | ļ | | (20.2 | " | • | (/.6 | اروا | | | | | | | | Ì | | | 1 | | | 1 | | | | | | | | | Input Loading | | l | | | - 1 | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | | | | | OT | 4 | | l | | | - 1 | | 1 | | | | | | С | 2 | | H → : | Z | | $Z \rightarrow 1$ | ł | | | | | | | | | t0 | | KCL | t0 | | KCL | | | | | | | <u> </u> | | 4.0 | - | | 2.7 | - 1 - | 0.038 | | | | | | | | Output Driving | (20.2 | 5) | * | (7.6 | 9) | | 1 | | | | | | Pin Name | Factor (lu) | | | | | | | | | | | | | IN | 36 | | | | 1 | 1 | | | | | | | | | | | | | l | | | | | | | | | | | | | | | 1 | | | | | | | | 1 | i · | 1 | 1 | | 1 | | | 1 | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6WD-E3 | Sheet 1/1 | FUJITSU (| MOS GATE ARRAY U | NIT CELL | SPECI | FICATIO | N . | | T "UI | HB" Version | | | | |-------------|--|-------------|----------|---------|---------|-------------------|-------|--------------|--|--|--| | | Function | | | | | | | Number of BC | | | | | | Tri-state Output | (IOL=3.2 | mA) | | | | | | | | | | H6C | & CMOS Interface | | | (True) | | | | 8 | | | | | Cell Symbol | | *********** | Prop | agation | Delay P | aramete | r | | | | | | | | tu | | | tdn | | | | | | | | Ì | | t0 | KCL | t0 | KCL | KCL2 | CDR | | | | | | | | 0.92 | 0.04 | 1.33 | | | | X → IN | | | | | | | 2.42 | 0.056 | 2.52 | 0.13 | | l | OT → X | | | | | | 1 | (7.18) | | (13.57 |) | | 1 | | | | | | IN — | -<- h | | | | | | | | | | | | | <u>, </u> | | | | | | l | | | | | | | \ \ \ | | | | | l | | | | | | | OT - | x | } | | | | | 1 | 1 | | | | | 1 | 1 | l i | | | | | | | | | | | | | | | | | | ł | | | | | | | C | | | | | | | | | | | | | U | l l | | l | | | l | | | | | | | | | L + Z | l | | $Z \rightarrow L$ | L | | | | | | <u>{</u> | | t0 | | KCL | t0 | | CL | ⊢ c → x | | | | | 1 | | 2.07 | | | 2.55 | | .13 | - " | | | | | | | (15.35 | | * | (13.60 | | | | | | | | | | (| ´ | | | 1 | | | | | | | 1 | | | | | | | | | | | | | | Input Loading | | | | | | | | | | | | Pin Name | Factor (lu) | | | | | | | | | | | | TO | 4 | | | | | | | | | | | | C | 2 | | H → Z | | | Z → H | | | | | | | | | | | | | | CL | | | | | | | | 3.41 | | | 2.31 | | 056 | | | | | | 1 | Output Driving | (15.35 | 5) | * | (13.60 |) | | | | | | | Pin Name | Factor (lu) | | | | | | | | | | | | IN | 36 | | 1 | | | 1 | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | l | 1 | | - 1 | | | ı | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6C-E4 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPEC | FICATIO | N | | T "UH | B" Version | |----------------|-------------------|----------|---------|----------|-------------------|-------------|-------|--------------| | Cell Name | Function | | | | · | | | Number of BC | | | Tri-state Output | (IOL=3. | 2mA) & | CMOS In | terface | | | | | H6CU | Input Buffer (Tr | ue) wit | h Pull- | up Resi | stance | | 1 | 8 | | Cell Symbol | \ | | Pro | pagation | Delay P | aramete | r | | | | | t | up | T | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 CDR2 | | Path
| | | | 0.92 | 0.04 | 1.33 | 0.04 | | · | X + IN | | | | 2.42 | 0.056 | 2.52 | 0.13 | | l | OT → X | | | _ | (7.18) | | (13.57 |) | | 1 | | | IN — | _/_ | ` ′ | | ` | 1 | | 1 | | | IN | | | | l | | | l | | | | | | | | | | l | | | от — | → x | | | 1 | | | | | | | M | | | | | | l | ŧ | | | | | | | | | l | ļ | | | 1 | | | | | | | | | | С | 1 | | ł | 1 | $Z \rightarrow L$ | | | | | | | t0 | | KCL | t0 | | CL | C → X | | | | 2.0 | | - | 2.55 | | .13 | į. | | | | (15.3 | 5) | * | (13.60 |) | | 1 | | | | 1 | | | | | | ì | | | , | l | 1 | | | | | | | . | Input Loading | | ł | | | 1 | | 1 | | Pin Name | Factor (lu) | | | | | | | | | OT | 4 | | | | | | | 4 | | С | 2 | | H → Z | | | Z → H | | 4 | | | 1 | t0 | | KCL | t0 | | CL | 4 | | | 1 | 3.4 | | * | 2.31 | | 056 | į | | D/- N | Output Driving | (15.3 | ارد | # | (13.60 |) | | | | Pin Name
IN | Factor (lu) | | ı | | | ı | | | | IN | 36 | | l | į | | 1 | | | | | 1 | | 1 | | | l | | | | | | | | | | | | | | | <u> </u> | <u> </u> | | | | | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\rm CL}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6CU-E4 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CELI | SPECI | FICATIO | N N | | " UH | B" Version | |-------------|-------------------|-----------|--------|----------|------------|-------------------|-------------|--------------| | Cell Name | Function | | | | ·· | | T | Number of BC | | | Tri-state Output | (IOL=3.2 | 2mA) & | CMOS In | terface | | | | | H6CD | Input Buffer (Tr | | | | | | - 1 | 8 | | Cell Symbol | | | | | Delay P | | r | | | | | tı | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 0.92 | 0.04 | 1.33 | | | | X → IN | | | | 2.42 | 0.056 | 2.52 | | | | OT → X | | | _ | (7.18) | | (13.57 |) | | | | | IN — | ─ | | | | | | İ | ļ | | 2.11 | _ 기 | İ | | l | | | | | | | | | | 1 | | | | j | | ОТ | x + | | | İ | | | l | | | | V | | | | | | | 1 | | | | | | İ | | | | 1 | | | _ | | | l | | | Ì | | | | С | | | i | | | İ | | | | | | | <u> </u> | | <u> </u> | l | | | | | | L + 2 | | | $Z \rightarrow L$ | OT. | | | | | 10
2.0 | | KCL | 10
2.55 | | CL
.13 | _ c → x | | | | | | * | (13.60 | | .13 | | | | | (15.3 | ۱ (۹ | * | (13.60 | ' | | | | | | | - 1 | | | | | 1 | | | Input Loading | | - 1 | | | | | | | Pin Name | Factor (lu) | | - 1 | | | | | | | OT OT | ractor (ku) | | - 1 | | | | | 1 | | C | 2 | | H → 2 | | | $Z \rightarrow H$ | | - | | | 1 | t0 | | KCL | t0 | | CL | ⊣ | | | | 3.4 | | VOT | 2.31 | | 056 | | | | Output Driving | (15.3 | - | * | (13.60 | | 050 | | | Pin Name | Factor (lu) | (15.5. | , | | (13.00 | ' | | 1 | | IN | 36 | 1 | - 1 | | | | | | | - ., | | | - 1 | | | | | 1 | | ĺ | | | - 1 | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6CD-E4 | Sheet 1/1 | | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "U | | | | | | | | | | | |-------------|--|----------|------------|----------|-----------|-------------------|--------------|--------------|--|--|--| | Cell Name | Function | | | | | | | Number of BC | | | | | | Tri-state Output | (IOL=12 | mA) & (| CMOS Int | erface | | | | | | | | H6E | Input Buffer (Tr | ue) | | | | | | 8 | | | | | Cell Symbol | | | Pro | pagation | Delay | Paramet | er | | | | | | | | t | up | | td | | | | | | | | ,** | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | | | 0.92 | 0.04 | 1.33 | 0.04 | | l | X → IN | | | | | | | 3.02 | 0.038 | | 0.047 | | ĺ | OT → X | | | | | | _ | | | (8.12) | | | 1 | Į | | | | | IN | | · | | | | | l | | | | | | 211 | \sqrt{N} | 1 | | | | | l | | | | | | | x | | | | | | 1 | | | | | | OT | · | | | | | 1 | İ | | | | | | | • | | | | | ł | į | | | | | | | l | | | | | 1 | Į | | | | | | | 1 | | | 1 | | | 1 | 1 | | | | | | С | } | l | | | | 1 | 1 | | | | | | | | L <u>.</u> | | | L | | | | | | | | | <u> </u> | L + | | | $Z \rightarrow I$ | | ٠. ي | | | | | | | t0 | _ | KCL | t0
3.6 | | KCL
0.047 | _ c → x | | | | | | | 2.9 | | * | | | 0.047 | | | | | | | | (20.2 | ا (د | * | (7.6 | 9) | | | | | | | | | l | 1 | | | - 1 | | ŀ | | | | | | Input Loading | l | - 1 | | 1 | 1 | | 1 | | | | | Pin Name | Factor (lu) | 1 | ı | | | | | 1 | | | | | OT OT | Factor (£u) | ł | 1 | | | l | | | | | | | C | 2 | | H → | 7 | <u> </u> | Z + 1 | | -1 | | | | | C | 1 | t0 | _ n = | KCL | to | | KCL | - | | | | | | | 4.0 | 3 | YOU | 2.7 | | 0.038 | - | | | | | | Output Driving | (20.2 | | * | (7.6 | | | | | | | | Pin Name | Factor (lu) | ` | - / | | l (,,, | 7 | | 1 | | | | | IN | 36 | i | | | 1 | | | 1 | | | | | | | | 1 | | 1 | | | 1 | | | | | | | 1 | | | l | 1 | | | | | | | | | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\mbox{CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6E-E3 | Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "U | HB" Version | |-------------|------------------------------|--------------|--|----------------|--------|-------------------|--------------|------------------| | Cell Name | Function | | | | · | | | Number of BC | | | Tri-state Output | (IOL=12 | mA) & C | MOS Int | erface | | | | | H6EU | Input Buffer (Tr | ue) wit | | | | | | 8 | | Cell Symbol | | | Prop | pagation | | | er | | | ŀ | | | up | | td | | | | | 1 | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 0.92
3.02 | 0.04 | 1.33 | 0.04 | | İ | X → IN
OT → X | | | | (6.25) | | 4.12
(8.12) | | | 1 | 01 + X | | | 1 | (6.23) | | (0.12) | | | | | | IN — | ─ < h | | | | | | 1 | | | | \ | | | 1 | | | | | | от — | > x | | | | | | l | | | | · · | | | | | | | ı | | | | | | | | 1 | l | | | | 1 | | | | 1 | | | | | | C | | | 1 | ' | 1 | l | 1 | | | | | | <u> </u> | | | <u> </u> | | | j | | | L → 2 | | | $Z \rightarrow I$ | | | | | | t0 | | KCL | t0 | | KCL | c → x | | l | | 2.9 | | | 3.6 | | .047 | | | | | (20.2 | 5) | * | (7.6 | 9) | | | | | | l | - 1 | | 1 | 1 | | | | | Tana Tandini | | - 1 | | l | l | | | | Pin Name | Input Loading
Factor (lu) | 1 | | | | l | | | | OT OT | ractor (£u) | 1 | ł | | İ | | | | | C | 2 | | H → 2 | 7. | | $Z \rightarrow 1$ | 1 | - | | | 1 | t0 | - | KCL | to | | KCL | _ | | 1 | | 4.0 | 3 | | 2.7 | | 0.038 | | | | Output Driving | (20.2 | | * | (7.6 | | | | | Pin Name | Factor (lu) | | 1 | | 1 | l | | | | IN | 36 | 1 | | | | | | Į | | | | | | | | 1 | | | | Ì | | | | | | | | | | | | L | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6EU-E3 | Sheet 1/1 | Cell Name | Function | | | | | | | Number of BC | |-------------|------------------|------------|--------|---------|-----------|-------------------|--------------|--------------| | | Tri-state Output | (IOL=12m | A) & C | MOS Int | erface | | | | | H6ED | Input Buffer (Tr | ue) with | Pull- | down Re | sistanc | е | | 8 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | tu | | | td | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | 0.04 | 1.33 | 0.04 | | | X + IN | | | | | 0.038 | 4.12 | 0.047 | | 1 | OT → X | | | 4 | (6.25) | | (8.12) | | | | | | IN — | - | 1 | | | | |] | | | 111 | $\sqrt{}$ | | | l | | | 1 | 1 | | | | | | 1 | | | l | 1 | | от — | x - | | | | | | 1 | 1 | | | M | 1 | | | | | 1 | | | | | 1 | | ł | | | 1 | | | | _ | | | | | | | | | | С | 1 | | 1 | ' | | Ì | 1 | | | | | | | | | | | | | | | L + Z | | | $Z \rightarrow I$ | | | | | i | t0
2.96 | | KCL | 10
3.6 | | KCL
0.047 | - $c + x$ | | | | 1 | | * | _ | | 7.047 | i i | | | | (20.25 | ' | • | (7.6 | 9) | | 1 | | | | | l | | | 1 | | 1 | | | Input Loading | | - 1 | | | - 1 | | 1 | | Pin Name | Factor (lu) | | l | | 1 | - 1 | | | | OT | ractor (£u) | | | | | | | 1 | | C | 2 | | H → Z | , | | $Z \rightarrow I$ | 1 | | | U | - | t0 | | KCL | tO | | KCL | - | | | | 4.03 | | | 2.7 | | 0.038 | - | | | Output Driving | (20.25 | | * | (7.6 | | | | | Pin Name | Factor (lu) | \- | 1 | | l ``` | ' | | | | IN | 36 | 1 | 1 | | 1 | l | | 1 | | | | 1 | l | | ĺ | | | | | | | 1 | 1 | | | l | | 1 | | | | 1 | | | | | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6ED-E3 | Sheet 1/1 | FUJITSU (| MOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "ин | B" Version | |-------------|------------------|-------------|--------------|---------|----------|-------------------|------|---------------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output | (IOL=3. | 2mA) & | | | | | | | H6S | Schmitt Trigger | Input B | uffer(C | MOS Typ | e, True) | | - 1 | 12 | | Cell Symbol | | T | | | Delay P | aramete | r | | | | | t | up | 1 | tdn | | | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2,48 | 0.16 | 3.08 | | | | X → IN | | | | 2.42 | 0.056 |
2.52 | 0.13 | | l | OT → X | | | | (7.18) | | (13.57 | | | | | | | \mathcal{F} | (, , , , , | | (| 1 1 | | 1 | | | IN — | | | | 1 | i i | | 1 | | | | 7 | | | | | | | | | от — | > x | | | | | | 1 | | | • • | √ ". | | | 1 | 1 | | l | | | • | С | | | l | | | | | | | C | | | 1 | 1 | | | ļ | | | | | L + 2 | , | | $Z \rightarrow L$ | Ь | | | | | t0 | | KCL | t0 | | CL | $d c \rightarrow x$ | | | | 2.0 | , | KCD | 2.55 | | 0.13 | - | | | | | | * | (13.60 | 1 | 7.13 | | | | | (15.3 | ا (د | * | (13.60 | ' | | | | | | 1 | - 1 | | | 1 | | | | | 1 | | - 1 | | | - 1 | | | | Dia Nama | Input Loading | l | į | | | - 1 | | | | Pin Name | Factor (lu) | | 1 | | | İ | | j | | OT | 4 | | | | | | | _ | | С | 2 | | H → 2 | | | Z → H | | | | | | t0 | _ | KCL | t0 | | CL | | | | ļ | 3.4 | - 1 | | 2.31 | | 056 | | | | Output Driving | (15.3 | 5) | * | (13.60 |) | | | | Pin Name | Factor (lu) | Į | | | | ļ | | | | IN | 18 | 1 | | | | | | | | | | l | l | | | | | | | | | | | | | | | | | | | l | - 1 | | | | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6S-E2 | Sheet 1/1 "UHB" Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function Number of BC Tri-state Output(IOL=3.2mA) & Schmitt Trigger H6SU Input Buffer (CMOS Type, True) with Resistance 12 Cell Symbol Propagation Delay Parameter tup tdn KCL t0 KCL KCL2 | CDR2 Path 2.48 0.16 3.08 0.10 X + IN OT → X 2.42 0.056 2.52 0.13 (7.18)(13.57)IN X $L \rightarrow Z$ t0 KCL t0 KCL $C \rightarrow X$ 2.07 2.55 0.13 (15.35)(13.60)Input Loading Factor (lu) Pin Name OT С 2 H → Z $Z \rightarrow H$ t0 KCL t0 KCL 3.41 2.31 0.056 Output Driving (15.35)(13.60)Pin Name Factor (lu) IN 18 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6SU-E2 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | SPECI | FICATION | ı . | | T"U | HB" Version | | | |----------------|-------------------|----------------|---|----------|---------|-------------------|------|--|--|--| | Cell Name | Function | | | | | | Ť | Number of BC | | | | | Tri-state Output | (IOL=3. | 2mA) & | Schmitt | Trigger | | | | | | | H6SD | Input Buffer(CMO | S Type, | | | | | | 12 | | | | Cell Symbol | | | Prop | agation | | | r | | | | | | | | up | | tdn | | | | | | | į | | t0 | KCL | t0 | KCL | KCL2 | CDR | | | | | | | 2.48 | 0.16 | 3.08 | 0.10 | | | $X \rightarrow IN$
OT $\rightarrow X$ | | | | | | 2.42
(7.18) | 0.056 | 2.52 | | | 1 | 01 7 X | | | | | <u></u> | (7.10) | | (13.37) | 1 | | İ | 1 | | | | IN — | ─ <~\/ h | | | | | | 1 | | | | | | N 1 | | | i | | | | | | | | от — | → x | | | | | | 1 | | | | | 1 | LP | | | | | | | | | | | İ | | | | | | | | | | | | } | i | | | | | | | | | | | i | С | | | | | | | | | | | 1 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | t0 | $L \rightarrow 2$ | KCL | t0 | | CL | $ c \rightarrow x$ | | | | | | 2.0 | , - | VCT | 2.55 | | 1.13 | ⊢ ' ' ^ | | | | i | | (15.3 | | * | (13.60 | | ,.13 | | | | | | | (13.3 | " | | (13.00 | ' | | | | | | | | | - 1 | | | | | | | | | | Input Loading | 1 | - 1 | | | | | | | | | Pin Name | Factor (lu) | } | | | | | | 1 | | | | OT | 4 | <u> </u> | | | | | | | | | | С | 2 | | Η → 2 | | | $Z \rightarrow H$ | | | | | | 1 | | t0 | | KCL | t0 | | CL | _ | | | | ļ | 1 | 3.4 | | * | 2.31 | | 056 | 1 | | | | Din Name | Output Driving | (15.3 | ارد | * | (13.60 | ソ | | 1 | | | | Pin Name
IN | Factor (lu) | 1 | I | | | | | 1 | | | | 114 | 10 | l | | | | | | 1 | | | | | | | - 1 | | | 1 | | | | | | | | | 1 | | | 1 | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\mbox{CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6SD-E2 | Sheet 1/1 | Tri-state Output(IOL=3.2mA) & Schmitt Trigger | e of BC | |--|-------------| | Tri-state Output(IOL=3.2mA) & Schmitt Trigger 1 | ath
→ IN | | H6R | ath
→ IN | | Propagation Delay Parameter tup tdn t0 KCL t0 KCL KCL2 CDR2 Parameter | ath
→ IN | | Tup tdn tdn t0 KCL t0 KCL CDR2 Pa 2.24 0.16 3.72 0.13 X 2.42 0.056 2.52 0.13 OT (7.18) | → IN | | TO KCL tO KCL KCL2 CDR2 Pa 2.24 0.16 3.72 0.13 X 2.42 0.056 2.52 0.13 OT (7.18) (13.57) | → IN | | 1N | → IN | | IN | | | IN (7.18) (13.57) | , Y | | IN T | | | | | | от — х | | | от х | $L \rightarrow Z \qquad Z \rightarrow L$ | | | | → X | | 2.07 2.55 0.13 | | | (15.35) * (13.60) | | | (13.55) | | | | | | Input Loading | | | Pin Name Factor (lu) | | | OT 4 | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | to KCL to KCL | | | 3.41 2.31 0.056 | | | Output Driving (15.35) * (13.60) | | | Pin Name Factor (lu) | | | IN 18 | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6R-E2 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CELL | SPECI | FICATIO | N | | ט" ו | HB" Version | | |---------------------------------------|-------------------|------------|-------------------|---------|----------------|-------------------|------|--------------|--| | Cell Name | Function | | | | | | | Number of BC | | | | Tri-state Output | (IOL=3.2m | A) & | Schmitt | Trigger | | | | | | H6RU | Input Buffer (TI | L Type, T | rue) | with Pu | 11-up Re | sistano | ce | 12 | | | Cell Symbol | | | Prop | agation | Delay P | aramete | er | | | | | | tup | | | tdn | | | | | | | | | KCL | t0 | KCL | KCL2 | CDR | | | | | | | .16 | 3.72 | | | 1 | X → IN | | | | | 1 1 | .056 | 2.52 | | | 1 | OT → X | | | | 1 | (7.18) | | (13.57 |) | | l | | | | IN | <i><</i> ⊅h | | | 1 | | | | | | | | 7 | | | | | | ŀ | | | | от — | x | | | | | | 1 | | | | 01 | ^ | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | С | i i | | | | | į | İ | | | | Ū | | | | 1 | | Į. | | | | | | | $L \rightarrow 2$ | | , | $Z \rightarrow L$ | | | | | | | t0 | | KCL | t0 | 7 1 | KCL | c → x | | | | | 2.07 | | | 2.55 | | 0.13 | | | | | | (15.35) | | * | (13.60 |) | | | | | | | | | | | 1 | | | | | | | | | | | - | | | | | | Input Loading | | | | | - 1 | | | | | Pin Name | Factor (lu) | | ı | | | ŀ | | | | | OT | 4 | | | | | | | | | | С | 2 | | H → Z | | | Z → H | | | | | | | t0
3.41 | | KCL | t0 | | KCL | \dashv | | | · · · · · · · · · · · · · · · · · · · | Output Driving | (15.35) | - 1 | * | 2.31
(13.60 | _ | .056 | | | | Pin Name | Factor (Lu) | (13.33) | - 1 | ~ | (13.60 | , I | | | | | IN IN | 18 | | - 1 | | | 1 | | | | | 117 | 1 | | - 1 | | | - 1 | | | | | | | | - 1 | | 1 | - 1 | | | | | | | | - 1 | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6RU-E2 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPEC | IFICATIO | N | | T "UHE | " Version | |-------------|-------------------|------------------------|--------|----------|------------|-------------------|-----------|--------------| | Cell Name | Function | | | | | | | lumber of BC | | | Tri-state Output | (IOL=3. | 2mA) δ | Schmitt | Trigger | | | | | H6RD | Input Buffer (TT | | | | | | nce | 12 | | Cell Symbol | | | | pagation | | | | | | | | t | up | 1 | tdn | | | T T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.24 | 0.16 | 3.72 | 0.13 | | | X + IN | | | | 2.42 | 0.056 | 2.52 | 0.13 | | 1 | OT + X | | | | (7.18) | | (13.57 |) | | | l | | TN | | | | | | | | | | 170 | . 🔰 | | | | | | | | | | | | | 1 | | | | | | ОТ | >→ x | l | | | 1 | | | 1 | | | 1 | | | | C | | | i | | | | | | | | | | | | | | | | | | | L → | | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | | CL |] c → x | | | | 2.0 | | | 2.55 | | 1.13 | | | | | (15.3 | 5) | * | (13.60 |) | | | | | | | - 1 | | | | | 1 | | | | | | | | 1 | | 1 | | 5 | Input Loading | | - 1 | | | | | | | Pin Name | Factor (lu) | | - 1 | | | 1 | | | | OT | 4 | | | - | ļ | | | 1 | | С | 2 | $H \to Z \qquad Z \to$ | | | | | CT | 4 | | | | t0 | -+ | KCL | t0
2.31 | | CL
056 | 4 | | | Output Driving | (15.3 | - 1 | * | (13.60 | | סכט | | | Pin Name | Factor (lu) | (13.3 | ا (د | - | (13.60 | ' | | | | IN IN | 18 | | | | | | | | | 114 | 10 | | - [| | | | | | | | | | 1 | | | - 1 | | | | | | 1 | | | | | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6RD-E2 | Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | T"UI | HB" Version | |-------------
----------------------------|-----------|-------------------|----------|------------|-------------------|------|--------------------| | | Function | | | | | | | Number of BC | | | Tri-state Output | (IOL=3. | 2mA) wi | th Nois | e Limit | Resista | | | | H8T | & Input Buffer (| True) | | | | | | 9 | | Cell Symbol | | | Prop | pagation | Delay Pa | aramete | r | | | | | | up | | tdn | | | | | İ | | t0 | KCL | t0 | KCL | KCL2 | CDR | | | | | 1.06 | 0.04 | 1.84 | | | İ | X → IN | | | | 3.12 | 0.056 | 5.66 | | | l | OT → X | | | | (7.88) | | (16.71 | 'l I | | 1 | | | IN — | ─ < h | | | I | 1 | | l | | |] | 7 | | | 1 | | | l | | | от — | >→ x | | | | | | | | | | 9 | | | | | | l | | | | | | | į | | | ł | | | } | 1 | | | | | | l | | | | С | | | | | | Ì | | | | | | | <u> </u> | لـــــــلم | | L | | | l | | +0 | $L \rightarrow 2$ | KCL | | $Z \rightarrow L$ | CL | $ +$ $+$ \times | | | | t0
2.2 | , | KCL | 6.47 | | 13 | ⊣ ^{ს 7} ^ | | l | | (16.4 | - 1 | * | (17.52 | 1 - | 13 | | | | | (10.4 | " | | (17.32 | ′ | | ŀ | | 1 | | | - 1 | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (Lu) | | | | | | | | | OT | 2 | | | | | | | | | С | 2 | | H → 2 | | | Z → H | | _ | | 1 | | t0 | _ | KCL | t0 | | CL | 4 | | | Outrus Dadari | 3.0 | | * | 3.20 | | 056 | 1 | | Pin Name | Output Driving Factor (£u) | (16.4 | 47 | • | (17.52 | ' | | | | IN | 36 | | 1 | | | - 1 | | | | | | | | | | - 1 | | | | 1 | | | | | | - 1 | | | | 1 | | | | | | 1 | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the ${\tt simulation}.$ UHB-H8T-E3 | Sheet 1/1 | FULLTSU | CMOS GATE ARRAY U | NIT CELL | SPECI | FICATIO | N . | | "UHP | " Version | |-------------|------------------------------|----------|-------------------|---------|----------|-------------------|------|--------------| | Cell Name | Function | MII OBBB | OI DOI | IIONIIO | <u>'</u> | | | lumber of BC | | | Tri-state Output | (IOL=3.2 | mA) wi | th Nois | e Limit | Resista | | | | H8TU | & Input Buffer (| | | | | | | 9 | | Cell Symbol | | | | | Delay P | | r | | | | | tu | | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | ļ | | | 0.04 | 1.84 | | | | X → IN | | | | | 0.056 | 5.66 | | | İ | OT → X | | | 1 | (7.88) | | (16.71 | 기 | | | ļ | | IN — | - < h ∣ | | | | | | | 1 | | | 7 | | | | | | | | | от — | x - | | | | | | | | | 01 | ^ | | | | | | 1 | | | | | | | | | | | | | 1 | i | ' | | | | | | | | | C | | | | | | 1 | | | l | | | | | | | ļ | | | | | | $L \rightarrow Z$ | | | $Z \rightarrow L$ | • | | | | | t0 | | KCL | t0 | | CL |] c → x | | | | 2.22 | | | 6.47 | | 13 | | | | | (16.44 | •) | * | (17.52 |) | | | | | | | | | | - 1 | | | | | I Tamus Tandina | | l | | | - 1 | | | | Pin Name | Input Loading
Factor (lu) | | | | | 1 | | | | OT OT | Pactor (Lu) | | ļ | | | 1 | | | | C C | 2 | | H → Z | | | Z + H | | 1 | | | _ | t0 | | KCL | t0 | | CL | | | | | 3.07 | | | 3.20 | | 056 | | | | Output Driving | (16.44 |) | * | (17.52 | | | | | Pin Name | Factor (lu) | | 1 | | | - 1 | | | | IN | 36 | | i | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | <u> </u> | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8TU-E3 | Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | N | | T"UI | HB" Version | |-------------|-------------------|---------|-------------------|----------|---------|-------------------|------|--------------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output | (IOL=3. | 2mA) wi | th Noise | e Limit | Resista | nce | | | H8TD | & Input Buffer (| True) w | | | | | | 9 | | Cell Symbol | | | Prop | agation | Delay P | | r | | | ļ | | | up | | tdn | | | _ | | | | t0 | KCL | t0 | KCL | KCL2 | CDR: | | | | | 1.06 | 0.04 | 1.84 | | | | X → IN | | | | 3.12 | 0.056 | 5.66 | | | | OT → X | | | 1 | (7.88) | | (16.71) | 기 | | | | | IN | - < h | | | | | | | | | 1 | 7 | | | l | | | | | | от — | x | | | 1 | | | | | | 01 | ^ | ' | | | | | | } | | 1 | İ | С | | | 1 | | | | | | | · · | | | 1 | | | ł | | | | | | $L \rightarrow 2$ | ! | | $Z \rightarrow L$ | · | | | | | t0 | =- | KCL | t0 | | CL | $ c \rightarrow x$ | | | | 2.2 | 2 | | 6.47 | | 13 | _ | | | | (16.4 | 4) | * | (17.52 |) | | - | | 1 | | | | | | | | | | | | | | İ | | | | | | | Input Loading | 1 | | | | } | | | | Pin Name | Factor (lu) | | - 1 | | | - 1 | | | | OT | 2 | | | | | | | | | C | 2 | | H → Z | | | Z → H | | _ | | | | t0 | | KCL | t0 | | CL | _ | | | ļ | 3.0 | | | 3.20 | 1 | 056 | | | h | Output Driving | (16.4 | 4) | * | (17.52 |) | | | | Pin Name | Factor (lu) | { | ł | | | | | | | IN | 36 | İ | Ì | | | 1 | | | | | | | i | | | | | | | | 1 | | | | | | | | | | .1 | L | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\mbox{CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the ${\tt simulation}.$ UHB-H8TD-E3 | Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CELI | SPECI | FICATION | 1 | | "טא | B" Version | |-------------|-------------------|----------|----------|----------|----------|-------------------|---------|---------------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output | (IOL=12r | nA) wit | h Noise | Limit R | esistan | ce | | | H8W | & Input Buffer (| True) | | | | | | 9 | | Cell Symbol | | | Prop | agation | Delay P | aramete | r | | | | | | ıρ | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 1.06 | 0.04 | 1.84 | | | | X → IN | | | | 3.96 | 0.038 | 7.25 | | | | OT → X | | | 1 | (7.19) | | (11.84) |) | | | | | IN — | - <- h | 1 | | l | | | İ | | | 1 | | i i | | İ | 1 1 | | | | | | | | | | | | | 1 | | от — | x | | | | | | l | | | į | ľ | | | | | | ļ | | | | | 1 | | | | | 1 | 1 | | | _ | | | - | 1 | | | 1 | | | С | | | | | | | | | | | | L → 2 | <u> </u> | <u> </u> | $Z \rightarrow L$ | <u></u> | | | | | t0 | <u> </u> | KCL | t0 | | CL | $d c \rightarrow x$ | | | | 3.6 | 5 | KCD | 7.40 | | 054 | ⊣ | | | | (21.7 | | * | (11.99 | | 054 | 1 | | | | | , | | (11177 | ′ | | 1 | | | | [| | 1 | | | | 1 | | | Input Loading | | - 1 | | | | | | | Pin Name | Factor (lu) | 1 | | | | | | | | OT | 2 | 1 | 1 | | | ļ | | | | C | 2 | | H + 2 | | | $Z \rightarrow H$ | | | | | | to | 1 | KCL | t0 | K | CL | 7 | | | ļ | 3.7 | | | 3.69 | 0. | 038 | | | | Output Driving | (21.7 | 3) | * | (11.99 |) | | | | Pin Name | Factor (lu) | ļ ` | | | • | | | | | IN | 36 | 1 | 1 | | | 1 | | | | | | 1 | | | | | | | | | İ | l | | | | | | | | | 1 | (| ı | | | 1 | | İ | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\rm CL}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the ${\tt simulation.}$ UHB-H8W-E2 | Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CELL | SPECT | FICATION | V . | | " UH | B" Version | |----------------|-------------------|-----------|-------|----------|---------|-------------------|-------------|--------------| | | Function | | 01201 | | | | | Number of BC | | | Tri-state Output | (IOL=12mA |) wit | h Noise | Limit R | esistan | | | | нswu | & Input Buffer (| | | | | | | 9 | | Cell Symbol | C Input Duller (| 1140/ 410 | | | Delay P | | r | | | OCII DJIIIDOI | | tup | | Legacion | tdn | ar ame ee | - | T | | | | | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | .04 | 1.84 | | 1.022 | - ODINA | X → IN | | | | | .038 | 7.25 | | |] | OT + X | | | | (7.19) | .050 | (11.84) | | | 1 | 0 | | | \nearrow | (7.13) | | (11.04) | ΊΙΙ | | l | 1 | | IN — | ─ < h | | | | 1 1 | | l | į | | | 7 | | | 1 | | | 1 | | | от | X | | | 1 | | | 1 | | | 01 | √ • | | | | | | l | 1 | | | | | | | | | 1 | } | | | | | | l | | | 1 | ļ | | | С | | | | 1 | | ł | 1 | | | | | | | 1 | | į . | ì | | | | | L + Z | ! | | $Z \rightarrow L$ | l | | | | | t0 | | KCL | t0 | | CL | ⊢ c → x | | | | 3.65 | -+- | KCD | 7.40 | | 054 | - | | | | (21.73) | | * | (11.99 | | . 054 | | | | | (21.73) | | | (11.)) | ' | | | | | | | - 1 | | | | | 1 | | | Input Loading | 1 | | | | | | 1 | | Pin Name | Factor (lu) | | | | | | | 1 | | OT | 2 | | - 1 | | | | | | | C | 2 | | H → Z | , | | Z → H | | - | | ١ | 1 4 | t0 | | KCL | t0 | | CL | - | | | | 3.75 | | VOD | 3.69 | | 038 | ┥ | | | Output Driving | (21.73) | | * | (11.99 | • | . 0.50 | 1 | | Din Nama | Factor (lu) | (21.73) | ' | | (11.33 | ' | | 1 | | Pin Name
IN | 36 | 1 | - 1 | Ì | | | | 1 | | 114 | 30 | Į. | - { | İ | | - 1 | | 1 | | | | | - 1 | | | | | 1 | | 1 | | 1 | 1 | | | | | Ì | | L | 1 | l | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8WU-E2 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPEC | IFICATION | N . | | T"UH | B" Version | |-------------|-------------------|---------|--------|-----------|---------|-------------------|------|--------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output | (IOL=12 | mA) wi | th Noise | Limit R | esistan | | | | H8WD | & Input Buffer (| | | | | | | 9 | |
Cell Symbol | | | | pagation | | | r | | | | | t | up | T | tdn | | | T | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.06 | 0.04 | 1.84 | 0.04 | | | X → IN | | | | 3.96 | 0.038 | 7.25 | 0.054 | | | OT → X | | | | (7.19) | | (11.84) |) | | l | | | IN | | | | | | | l | | | IN | . 🔰 | | | | | | | | | | | | | 1 | | | l | 1 | | ОТ — | → x | | | | | | | | | | LΥ | | | | | | | | | | | | | | | | 1 | 1 | | | I | | | | | | | | | | С | | | ĺ | 1 | | | | | | | | | 1 | | | ĺ | | | | | | L + | Z | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | K | CL | c → x | | | | 3.6 | 5 | | 7.40 | 0. | 054 | 7 | | | | (21.7 | 3) | * | (11.99 |) | | | | | | | | | | · | | 1 | | | | 1 | - 1 | | | | | | | | Input Loading | 1 | | | | | | | | Pin Name | Factor (lu) | | - 1 | | | | | 1 | | OT | 2 | 1 | - 1 | | | | | 1 | | С | 2 | | Η → | Z | | $Z \rightarrow H$ | | | | | | t0 | | KCL | t0 | k | CL | | | | | 3.7 | 5 | | 3.69 | 0. | 038 | | | | Output Driving | (21.7 | 3) | * | (11.99 |) | | | | Pin Name | Factor (lu) |] | - | | | | | | | IN | 36 | 1 | 1 | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | | | 1 | l | - 1 | | | | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\rm CL}$ for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8WD-E2 | Sheet 1/1 | | CMOS GATE ARRAY U | NIT CELI | SPECI | FICATION | N | | "บ | HB" Version | |-------------|-------------------|----------|---------|----------|---------|---------|------|--------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output | (IOL=24r | nA) wit | h Noise | Limit R | esistan | ce | | | H8W2 | & Input Buffer (| TTL, Tri | | | | | | 11 | | Cell Symbol | | | Prop | agation | Delay P | aramete | r | | | | | tı | qu | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR: | 2 Path | | | | 1.06 | 0.04 | 1.84 | 0.04 | | | X → IN | | | | 5.61 | 0.032 | 11.62 | 0.06 | | İ | OT → X | | | _ | (8.33) | | (16.72) | | | 1 | | | IN — | | } | | İ | 1 | | İ | | | III | . \ | [| | Į. | | | 1 | | | | | } | | |] | | l | | | от —— | - x | | | 1 | | | | | | | V9 | 1 | | | | | 1 | | | | | 1 | | | | | ĺ | | | | l . | 1 | | } | | | | | | | С | | | | | | ! | | | | | i | | | | | | | | | | | L → Z | | | Z → L | | | | | | t0 | | KCL | t0 | | CL | c → x | | | | 5.30 | 5 | | 11.18 | 0. | 06 | | | | | (23.2 | 3) | * | (16.28 |) | | | | | | | - 1 | 1 | | | | | | | | } | 1 | j | | | | | | | Input Loading | | - 1 | ŀ | | 1 | | | | Pin Name | Factor (lu) | | 1 | | | 1 | | | | OT | 2 | | | | | | | | | С | 2 | | H → Z | | | Z → H | | | | | | t0 | | KCL | t0 | | CL | | | | | 6.3 | 7 | | 5.25 | 0. | 032 | | | | Output Driving | (23.2 | 3) | * | (16.28 |) | | 1 | | Pin Name | Factor (lu) | | l | i | | | | | | IN | 36 | | İ | | | 1 | | | | | | ĺ | ł | 1 | | 1 | | | | | | | - 1 | İ | | 1 | | | | | | l | 1 | | | - 1 | | l | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8W2-E2 | Sheet 1/1 | FUJITSU (| MOS GATE ARRAY U | NIT CELL | SPECI | FICATION | N | | " U} | B" Version | | |-------------|------------------|-----------|-------|----------|----------|-------------------|-------------|--------------|--| | Cell Name | Function | - | | | | | | Number of BC | | | | Tri-state Output | (IOL=24mA |) wit | h Noise | Limit R | esistar | nce | | | | H8W1 | & Input Buffer (| TTL, True |) wit | h Pull- | up Resis | tance | 1 | 11 | | | Cell Symbol | | | Prop | agation | Delay P | aramete | er | | | | | | tup | | T : | tdn | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | | 1.06 0 | .04 | 1.84 | 0.04 | | | X → IN | | | | | 5.61 0 | .032 | 11.62 | 0.06 | | 1 | OT → X | | | | | (8.33) | | (16.72 |) | | | | | | IN - | | | | | | | | 1 | | | IN | \sim | | | | | | | | | | | | | | 1 | | | | | | | ОТ — | > → x | | | 1 | | | 1 | | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | I | | | 1 | | | | | | | | C | | | | | | 1 | Į. | | | | | | | | | | l | | | | l | | L → Z | | | | $Z \rightarrow L$ | | | | | | | t0 | | KCL | t0 | | KCL | c → x | | | | | 5.36 | | | 11.18 | 0. | .06 | | | | | | (23.23) | | * | (16.28 |) | | | | | | | | 1 | | | | | | | | | | | 1 | | | l | | 1 | | | | Input Loading | | | | | | | | | | Pin Name | Factor (lu) | | - 1 | | | | | | | | OT | 2 | | | | | | | | | | C | 2 | | H → 2 | | | Z → H | | | | | 1 | | t0 | | KCL | t0 | | KCL | | | | | | 6.37 | | | 5.25 | | .032 | | | | | Output Driving | (23.23) | | * | (16.28 |) | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | | IN | 36 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8W1-E2 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | ٧ | | "UH | B" Version | |-------------|-------------------|---------|---------|----------|---------|-------------------|------|--------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output | (IOL=24 | mA) wit | h Noise | Limit R | esistar | | | | наwo | & Input Buffer (| | | | | | | 11 | | Cell Symbol | | | Prop | agation | Delay P | aramete | er | | | | | t | up | 1 | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | 1 | | 1.06 | 0.04 | 1.84 | 0.04 | | | X + IN | | | | 5.61 | 0.032 | 11.62 | 0.06 | | 1 | OT + X | | | | (8.33) | | (16.72) | | | | " | | | | ``` | ļ | , | 1 | | i | į. | | IN — | | | | | | | 1 | | | 1 | \setminus 1 | | | | | | 1 | | | ОТ | √ x | | | | 1 | | 1 | - | | | | | | ļ | | | 1 | | | | | | | 1 | | | 1 | | | | 1 | | | | | | 1 | - | | Ì | С | | | 1 | | Ì | Í | 1 | | | · | | | | | | 1 | 1 | | | | | L → 2 | | | $Z \rightarrow L$ | 1 | | | | | t0 | | KCL | t0 | | KCL | d c → x | | | | 5.3 | 6 | 1102 | 11.18 | | .06 | ┥゛¨ | | | | (23.2 | - | * | (16.28 | | | | | | | (33.5 | · | 1 | (20.20 | 1 | | | | 1 | | | | į | | - 1 | | | | | Input Loading | 1 |] | 1 | | - 1 | | 1 | | Pin Name | Factor (lu) | l | | 1 | | - 1 | | J | | OT | 2 | 1 | | | | i | | 1 | | C | 2 | | H → Z | : | | $Z \rightarrow H$ | | _ | | | _ | t0 | | KCL | t0 | | KCL | _ | | 1 | | 6.3 | 7 | | 5.25 | | .032 | 7 | | | Output Driving | (23.2 | , | * | (16.28 | | | 1 | | Pin Name | Factor (lu) | \ | -/ | ĺ | (20.20 | ´ | | | | IN | 36 | 1 | 1 | j | | 1 | | 1 | | | | [| - 1 | 1 | | l | | | | 1 | | l | | i | | - 1 | | | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H8W0-E2 | Sheet 1/1 | FULLTSU | CMOS GATE ARRAY U | NIT CEL | T CDF | CIEICATIO | N | | , ultri | B" Version | |-------------|-------------------|---------|-------|------------|---------|-------------------|---------|--------------------| | Cell Name | Function | NII CEL | D BIL | CIFICATIO | | | | Number of BC | | Cell Name | Tri-state Output | (IDI=3 | 2mA) | with Nois | o Timit | Pacieta | | Number of Bo | | нвс | & CMOS Interface | | | | e Dimit | Nesista | ince | 9 | | Cell Symbol | | . Input | | opagation | Dolar D | aramata | | | | Dell Bymbol | | - | up | opaga cion | tdn | | 1 | Т | | | | t0 | KCL | to | KCL | KCL2 | CDR2 | Path | | | | 0.92 | 0.04 | | | KCDZ | CDRZ | X → IN | | | | 3.12 | 0.05 | | | | l | $OT \rightarrow X$ | | | | (7.88) | | (16.71 | | | l | 01 7 7 | | | 1 | (7.00) | | (10.71 | 4 | | l | | | IN - | ─ < h | | | ļ | | | l | | | 1 | / 1 | | | 1 | | | | 1 | | от | x | | | - 1 | | | 1 | | | 01 | ^ | | | ı | | | 1 | | | | | | | | 1 | | 1 | | | ŀ | | | | 1 | 1 | | į. | | | | С | | | 1 | | | 1 | 1 | | 1 | C | | | 1 | į | | 1 | | | 1 | | | L → | | | $Z \rightarrow L$ | i | | | ľ | | t0 | | KCL | t0 | | CL | d c → x | | | | 2.2 | 2 | | 6.47 | | 0.13 | 1 " | | | | (16.4 | 4) | * | (17.52 | | | 1 | | 1 | | , | 1 | | (| ´ | | İ | | 1 | | 1 | | | | | | | | | Input Loading | 1 | | | | | | | | Pin Name | Factor (lu) | | 1 | | | 1 | | | | OT | 2 | 1 | 1 | | | | | 1 | | С | 2 | l | H → | Z | | $Z \rightarrow H$ | | 1 | | 1 | | t0 | | KCL | t0 | K | CL | 7 | | 1 | | 3.0 | 7 | | 3.20 | 0. | .056 | 7 | | | Output Driving | (16.4 | 4) | * | (17.52 |) | | | | Pin Name | Factor (lu) | ' | | | | | | | | IN | 36 | | ı | | | | | 1 | | 1 | | | | | | | | | | 1 | | l | l | | | | | | | | | 1 | | | | - 1 | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\hbox{\scriptsize CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-HSC-E3 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | T"UH | B" Version | |----------------|-------------------|----------|---------|----------|----------|-------------------|------|--------------| | | Function | | | | | | | Number of BC | | | Tri-state Output(| IOL=3.2 | mA) w/ | Noise L | imit Res | istance | | | | нвси | CMOS Interface In | | | | | | | 9 | | Cell Symbo | | <u> </u> | | | Delay P | | | | | | | t | up | T | tdn | | | 7 | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.92 | 0.04 | 1.33 | 0.04 | | | X → IN | | | | 3.12 | 0.056 | 5.66 | 0.13 | | | OT → X | | | | (7.88) | | (16.71 | | | | | | IN
| | | | l | | | | | | 114 | \mathcal{N} | | | ! | | | 1 | 1 | | | | | | | | | | | | OT - | - | | | l | | | | | | | M | | | 1 | | | | | | | | | | ļ | | | | | | | • | 1 | | 1 | | | 1 | | | | C | i 1 | | | | | ĺ | 1 | | | | | | <u> </u> | | | | | | | | L → Z | | | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | | CL | _ c → x | | | | 2.2 | 4 | | 6.47 | | 13 | 1 | | | | (16.4 | 4) | * | (17.52 |) | | 1 | | | | | | | | - 1 | | | | | | l | 1 | | | | | 1 | | | Input Loading | 1 | 1 | | | | | 1 | | Pin Name | Factor (lu) | l | | | | ł | | | | OT | 2 | | | | ļ | | | 4 | | С | 2 | | H → Z | | | Z → H | | 4 | | | | t0 | | KCL | t0 | | CL | - | | | | 3.0 | | * | 3.20 | | 056 | 1 | | Dia Nasa | Output Driving | (16.4 | 4) | * | (17.52 | , | | | | Pin Name
IN | Factor (lu) | 1 | | | | | | | | IN | 30 | 1 | | | | ļ | | 1 | | | | 1 | | | | | | 1 | | | | 1 | | | | | | 1 | | | 1 | ı | 1 | | i | 1 | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\mbox{\scriptsize CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8CU-E3 | Sheet 1/1 | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHI | B" Version | |-------------|-------------------|---------|---------|----------|--|-------------------|----------|--------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output(| IOL=3.2 | mA) w/ | Noise L | imit Res | istance | & | | | H8CD | CMOS Interface In | | | | | | | 9 | | Cell Symbol | | ĺ | Prop | agation | Delay P. | aramete | r | | | | | t | up | 1 | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.92 | 0.04 | 1.33 | | | | X + IN | | | | 3.12 | 0.056 | 5.66 | , , | | | OT + X | | | | (7.88) | | (16.71 | | | | | | | | (,,,,,, | | (| 1 1 | | 1 |] | | IN - | ─ < ħ | | | | 1 | | l | ì | | | N 1 | | | | | | | | | от — | - | | | | | | 1 | | | 01 | 1 × " | | | | 1 | | l | | | | | 1 1 | | l | 1 1 | | l | Ì | | | 1 | | | | 1 1 | | | | | | С | 1 1 | | 1 | 1 1 | | | į | | | C | 1 1 | | | 1 1 | | ļ | | | | | | L + Z | <u> </u> | لـــــــــــــــــــــــــــــــــــــ | $Z \rightarrow L$ | <u> </u> | ļ | | | | to | | KCL | t0 | | CL | d c → x | | | | 2.2 | | KCL | 6.47 | | 0.13 | - | | | | | | * | | | 1.13 | İ | | | | (16.4 | 4) | • | (17.52 | , | | | | | | | | | | 1 | | 1 | | | | 1 | 1 | | | - 1 | | l | | | Input Loading | l | | | | ł | | l | | Pin Name | Factor (lu) | 1 | | | | į | | | | TO | 2 | | | | | | | 4 | | С | 2 | | H → Z | | | Z → H | | 1 | | | | t0 | | KCL | t0 | | CL | 1 | | | | 3.0 | | | 3.20 | | 056 | | | | Output Driving | (16.4 | 4) | * | (17.52 |) | | | | Pin Name | Factor (lu) | | | | | 1 | | | | IN | 36 |) | | | | - 1 | | 1 | | | | | | | | - [| | 1 | | | | l | - 1 | | | - 1 | | 1 | | | 1 | 1 | | | | 1 | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H8CD-E3 | Sheet 1/1 | Tri-state Output(IOL=12mA) with Noise Limit Resistance & CMOS Interface Input Buffer (True) | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPE | CIFICATIO | N | | | " Version | |---|---|-------------------|---------|--------|-----------|----------|----------|------|--------------| | H8E | Cell Name | Function | | | | | | | lumber of BC | | Cell Symbol | | Tri-state Output | (IOL=12 | mA) w | ith Noise | Limit Re | sistance | | | | To KCL t0 KCL CDR2 Path | | & CMOS Interface | Input | Buffe: | r (True) | | | | 9 | | TN OT C C C C C C C C C C | Cell Symbol | | | Pro | opagation | Delay Pa | rameter | | | | O.92 0.04 1.33 0.04 VX + OT + C L + Z Z + L t0 KCL t0 KCL 3.65 (21.73) * (11.99) C + Din Name Factor (lu) OT 2 C 2 H + Z Z + H t0 KCL t0 KCL 3.65 (21.73) * (11.99) | | | t | up | | tdn | | | | | IN OT C L + Z T + D | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | IN OT C L + Z T + D | | | 0.92 | 0.04 | 1.33 | 0.04 | | | X → IN | | IN OT C L + Z D + L TO KCL 3.65 (21.73) TO C TO | | | 3.96 | 0.03 | 8 7.25 | 0.054 | | | OT → X | | IN OT C L + Z D + L t0 | | | (7.19) | | (11.84 |) | | | | | OT C L + Z Z + L t0 KCL t0 KCL 3.65 (21.73) *
(11.99) Pin Name Factor (lu) OT 2 C 2 H + Z Z + H t0 KCL t0 KCL 3.65 (21.73) * (11.99) | T.N | | | | | 1 | 1 | | | | C L + Z Z + L t0 KCL t0 KCL 3.65 (21.73) * (11.99) Pin Name Factor (lu) OT 2 C 2 H + Z Z + H t0 KCL t0 KCL 3.65 (21.73) * (11.99) OT 0 | 111 | \sim | | | ŀ | 1 | | | | | C L + Z Z + L t0 KCL t0 KCL 3.65 (21.73) * (11.99) Pin Name Factor (lu) OT 2 C 2 H + Z Z + H t0 KCL t0 KCL 3.65 (21.73) * (11.99) OT 0 | | | | | Į. | 1 | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ОТ — | + → x | | 1 | | 1 | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | M | | l | | 1 | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1 | | | 1 | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 1 | | | | 1 | l i | | | | t0 KCL t0 KCL C → 3.65 (21.73) * (11.99) Pin Name Factor (lu) OT C 2 H → Z Z → H t0 KCL t0 KCL C → H → Z Z → H t0 KCL t0 KCL 3.75 3.69 0.038 Output Driving (21.73) * (11.99) | | С | | | | | | | | | t0 KCL t0 KCL C → 3.65 (21.73) * (11.99) Pin Name Factor (lu) OT C 2 H → Z Z → H t0 KCL t0 KCL C → H → Z Z → H t0 KCL t0 KCL 3.75 3.69 0.038 Output Driving (21.73) * (11.99) | | | | | | | | | | | 3.65 (21.73) * (11.99) 0.054 Pin Name Input Loading Factor (lu) OT 2 | | | | L → | | | | | | | C C C C C C C C C C | | | | | KCL | | KCL | | C → X | | Pin Name Input Loading Factor (lu) | | | 3.6 | 5 | | 7.40 | 0.05 | 4 | 1 | | Pin Name Factor (lu) Image: Control of the property | | | (21.7 | 3) | * | (11.99) | J | | | | Pin Name Factor (lu) Image: Control of the property | | | | - 1 | | | l l | | | | Pin Name Factor (lu) OT 2 C 2 H → Z Z → H t0 KCL t0 KCL 3.75 3.69 0.038 Output Driving (21.73) * (11.99) | | | | | | | | | | | OT 2 2 | , | Input Loading | 1 | 1 | | | | | 1 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Pin Name | Factor (lu) | İ | - 1 | | | | | l | | t0 KCL t0 KCL
3.75 3.69 0.038
Output Driving (21.73) * (11.99) | OT | 2 | 1 | - 1 | | | | | | | t0 KCL t0 KCL
3.75 3.69 0.038
Output Driving (21.73) * (11.99) | С | 2 | | H → | Z | | Z → H | | 1 | | 3.75 3.69 0.038 Output Driving (21.73) * (11.99) | | | t0 | | | | | , | 1 | | Output Driving (21.73) * (11.99) | | | | 5 | | 3.69 | 0.03 | 8 | 1 | | | | Output Driving | (21.7 | 3) | * | (11.99) | | | | | | Pin Name | Factor (lu) | l | · | | ` ′ | | | 1 | | IN 36 | | | 1 | | | | I | | 1 | | | | | 1 | | | | | | 1 | | | | 1 | | 1 | | } | İ | | | | | | | | 1 | | į | | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\mbox{CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8E-E2 | Sheet 1/1 | FULLTELL | CMOS GATE ARRAY U | NIT CEL | CDEC | ITICATIO | ., | — т | TILLD | " Version | |-------------|-------------------|---------|--------|-----------|------------|-------------------|-------|-------------| | Cell Name | Function | NII CEL | L SPEC | IFICALIU. | IN | | | umber of BC | | DELL Name | Tri-state Output(| TOT=12m | A) wi+ | h Noise | Timit Rosi | stance & | | duper of pc | | нвец | CMOS Interface In | | | | | | | 9 | | Cell Symbo | | put bul | | | Delay Par | | | | | GCII Bymbo. | | + | up | I | tdn | <u>umerer</u> | | | | | | t0 | KCL | t0 | KCL | KCL2 C | DR2 | Path | | İ | ! | 0.92 | 0.04 | 1.33 | | | | X → IN | | | | 3.96 | 0.038 | | | l | | OT → X | | } | | (7.19) | | (11.84 |) | 1 | | | | 711 | | ` ′ | | 1 | | 1 | | | | IN - | \sim | | | | |] | | | | | | | | | i | | | | | OT - | → x | | | | | | | | | | V | | | | | | | | | | | | | 1 | | | | | | | ľ | | | 1 | | | | | | | С | | | | | | | | | | | | | <u> </u> | | | | | | | | | L + | | | Z → L | | | | | | t0 | | KCL | t0 | KCL | | C → X | | | | 3.6 | | * | 7.40 | 0.054 | | | | | | (21.7 | ا (د | | (11.99) | | | | | | | | | | | | | | | | Input Loading | 1 | - 1 | | | | | | | Pin Name | Factor (lu) | | | | | 1 | | | | OT | 2 | 1 | | | | | | | | c | 2 | | H → | Z | | $Z \rightarrow H$ | | | | | _ | t0 | T | KCL | t0 | KCL | | 1 | | | | 3.7 | 5 | | 3.69 | 0.038 | | 1 | | | Output Driving | (21.7 | 3) | * | (11.99) | | | | | Pin Name | Factor (lu) | | 1 | | | 1 | | | | IN | 36 | 1 | ł | | | | | | | | | | - 1 | | | 1 | | | | | | | ı | | | | | | | 1 | 1 | 1 | - 1 | | I | 1 | | I | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8EU-E2 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "ИНВ | " Versi | on | |------------|------------------------|---------|---------|---------|-----------|-------------------|----------|----------|----| | Cell Name | Function | | | | | | | | | | | Tri-state Output(| IOL=12m | A) with | Noise | Limit Res | istance | | | | | H8ED | CMOS Interface In | | | | | | | 9 | | | Cell Symbo | 1 | | Prop | agation | Delay Pa | rameter | | | | | | | | up | | tdn | | , | | | | 1 | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | 1 | | 0.92 | 0.04 | 1.33 | | | l | X → | | | 1 | | 3.96 | 0.038 | 7.25 | 1 | | | OT → : | X | | l | / | (7.19) | | (11.84 | ' | | ł | | | | IN - | —< h | | | ŀ | | | | | | |] | | | | ŀ | | | į | | | | от — | \rightarrow \times | | | | | | | | | | | | | | ł | | | | | | | | | | | į |] | | | | | | | 1 | | | 1 | | | | | | | | С | | | 1 | 1 | | | | | | | | | | | | | <u> </u> | | | | | | | L + 2 | | | Z → L | | _ | | | | | t0 | | KCL | t0 | KC | | C→ | X | | | | 3.6 | | * | 7.40 | 0.0 | 154 | | | | | | (21.7 | ا (د | • | (11.99) | - 1 | | | | | 1 | | | ł | | | | | | | | | Input Loading | | i | | | l | | l | | | Pin Name | Factor (lu) | | | | | | | | | | OT | 2 | | - 1 | | | | | | | | C | 2 | | H → 2 | Z | | $Z \rightarrow H$ | | 1 | | | | | t0 | | KCL | t0 | KC | CL | 1 | | | 1 | | 3.7 | 5 | | 3.69 | 0.0 | 38 | 1 | | | | Output Driving | (21.7 | 3) | * | (11.99) | | | 1 | | | Pin Name | Factor (lu) | | ļ | | | | | | | | IN | 36 | | | | l | İ | | 1 | | | | | | | | | | | | | | | | | | | Ì | | | İ | | | | | l | | | <u> </u> | | | <u> </u> | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\hbox{\scriptsize CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8ED-E2 | Sheet 1/1 | FULLTSUIC | MOS GATE ARRAY U | NIT CEI | T SDECT | FICATIO | N | | מעוויי ו | " Version | |----------------|------------------|---------|-------------------|---------|------------|-------------------|-------------|-------------------| | | unction | MII CEL | L SPECI | FICATIO | N | | I ONB | Number of BC | | | Tri-state Output | (IOL=24 | mA) w/ | Noise L | imit Resis | stance | | Number of Bu | | | & Input Buffer (| | | | | | - 1 | 11 | | Cell Symbol | | | | agation | Delay Par | rameter | | | | | | t | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.92 | 0.04 | 1.33 | | | | X → IN | | | | 5.61 | 0.032 | 11.62 | 1 | | | OT → X | | | | (8.33) | | (16.72 |) | | | | | IN — | - < h ∣ | | | | 1 1 | | | | | 1 | \ 7 | | | | | | | | | то Т | x | | | | | | | | | 01 | ^ ^ | | | 1 | 1 | | | | | | | | | | 1 | | | | | | | | | Ì | 1 1 | | | | | ł | С | | | İ | | | | | | | _ | | | İ | | | | | | 1 | | | L + 2 | ż | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | KC | L | $C \rightarrow X$ | | | | 5.3 | | | 11.18 | 0.0 |)6 | | | | | (23.2 | 3) | * | (16.28) | | | | | ł | | | 1 | | | 1 | | | |] | T = | | | | | 1 | | | | B45 None | Input Loading | | | | | 1 | | • | | Pin Name
OT | Factor (lu) | | 1 | | | 1 | | | | C | 2 2 | | H → 2 | 7. | | $Z \rightarrow H$ | | | | " | - | t0 | - "' ' | KCL | t0 | I KC | :T. | | | | | 6.3 | 7 | | 5.25 | 0.0 | | | | | Output Driving | (23.2 | | * | (16.28) | | _ | | | Pin Name | Factor (lu) | , | | | , , , , , | 1 | | | | IN | 36 | 1 | 1 | | | 1 | | | | 1 | | l | - 1 | | | - [| | | | 1 | | 1 | | | l | - 1 | | | | | 1 | l | - 1 | | l | 1 | | l | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H8E2-E2 | Sheet 1/1 | FULLTSU | CMOS GATE ARRAY U | NIT CEL | I. SPEC | IFICATIO | N | T | UHB | " Version | |------------|-------------------|-----------|----------------|----------|---|-----------|------|-------------| | Cell Name | Function | 000 | <u> </u> | | • | | | umber of BC | | | Tri-state Output(| IOL=24m | A) w/ 1 | Noise Li | mit Resis | tance | 1 | | | H8E1 | & Input Buffer(CM | OS, Tru | e) w/ 1 | Pull-up | Resistance | е | | 11 | | Cell Symbo | 1 | | Pro | pagation | Delay Pa: | rameter | | | | | | t | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 0.92 | 0.04 | 1.33 | 1 | i | | X → IN | | | | 5.61 | 0.032 | | | 1 | | OT → X | | | _ | (8.33) | | (16.72 |) | į | | | | IN — | < h | | | | 1 1 | ł | | | | | 7 | | | | 1 1 | j | | | | 0.7 | - x | | | 1 | 1 1 | | | | | OT - | X X | | | | 1 1 | | | | | | | | | | | l | | | | 1 | | | | 1 | 1 | | | | | l | С | | | | | | | | | | • | | | | 1 1 | | | | | | | | L + | Z | | $Z \to L$ | | | | | | t0 | | KCL | t0 | KCL | | C → X | | | | 5.3 | 6 | | 11.18 | 0.06 | | | | | | (23.2 | 3) | * | (16.28) | 1 | i | | | 1 | | | | | | | | | | <u></u> | | | | | | | | | | | Input Loading | | 1 | | | 1 | | | | Pin Name | Factor (lu) | | - 1 | | | 1 | | | | OT | 2 | | | | ļ | | | | | C | 2 | | H → : | | | Z → H | |
| | l | | t0
6.3 | , | KCL | t0
5.25 | 0.03 | | | | <u> </u> | Output Driving | (23.2 | | * | (16.28) | 1 0.03 | 4 | | | Pin Name | Factor (lu) | (23.2 | ا (` | • | (10.20) | - 1 | | | | IN | 36 | | 1 | | Ì | 1 | | | | 1 *" | 1 -0 | | - 1 | | | 1 | | | | | 1 | | - 1 | | l | | | | | 1 | 1 | | | | 1 | 1 | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\mbox{CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8E1-E2 | Sheet 1/1 | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | "UHB | " Version | |------------|-------------------|----------|---------|----------|------------|-----------|------|--------------------| | Cell Name | | | | | | | | umber of BC | | | Tri-state Output(| IOL=24m | A) w/ N | Noise Li | mit Resis | tance | | | | H8E0 | & Input Buffer(CM | OS, True | e) w/ I | Pull-dow | n Resista: | nce | | 11 | | Cell Symbo | 1 | | Prop | pagation | Delay Pa | rameter | | | | | | | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 0.92 | 0.04 | 1.33 | | i |] | $X \rightarrow IN$ | | | | 5.61 | 0.032 | 1 | | l | | $OT \rightarrow X$ | | | 1 | (8.33) | | (16.72 |) | - 1 | | | | IN | ─ < h | | | | 1 | 1 | | | | | 7 | | | | | l | | | | | \ | | | 1 | | | | | | от — | → x | 1 1 | | l | l l | | - 1 | | | | V | 1 1 | | İ | i i | | - 1 | | | | | 1 | | 1 | | i | | | | | Ċ | | | | | | | | | | C | 1 1 | | ĺ | | | | | | | | | L + 2 | 7 | | $Z \to L$ | | | | | | to | | KCL | t0 | KC | L L | c → x | | | | 5.3 | 6 | | 11.18 | 0.0 | | - | | | | (23.2 | 3) | * | (16.28) | | | | | | | , | | | ` ' | - 1 | | | | | |] | | | | | | | | | Input Loading |] | - 1 | | | | | | | Pin Name | Factor (lu) | | 1 | | | | | | | TO | 2 | | | | | | | | | С | 2 | | H + 2 | | | Z → H | | | | | ŀ | t0 | | KCL | t0 | KC | | | | | | 6.3 | | | 5.25 | 0.0 | 32 | | | 5. | Output Driving | (23.2 | 3) | * | (16.28) | | | | | Pin Name | Factor (lu) | ļ | - 1 | | | 1 | | | | IN | 36 | | - 1 | | | 1 | | | | | | | | | l | 1 | | | | | | | | | | | | | | | 1 | l . | - 1 | | | 1 | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8E0-E2 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | Т"ИНВ | " Version | |----------------|-------------------|---------|-------------------|---------|----------|-------------------|-------|-------------| | Cell Name | Function | | | | | | | umber of BC | | | Tri-state Output | (IOL=3. | 2mA) & | Schmitt | Trigger | | | | | H8S | Input Buffer (CM | | | | | Resist | ance | 13 | | Cell Symbol | | | | | Delay Pa | | | | | | | t | up | T | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 2.48 | 0.16 | 3.08 | 0.10 | | | X → IN | | | | 3.12 | 0.056 | 5.66 | 0.13 | | l | OT → X | | | | (7.88) | | (16.71) |) | | 1 | | | IN | $-\pi$ | | | 1 | 1 1 | | | | | 114 | | | | | 1 | | 1 | | | | | | | | | | | | | OT | x | | | 1 | | | | | | | Y | | | | | | l | | | | | | | İ | 1 1 | | 1 | | | | , | | | 1 | 1 1 | | | | | | C | | | 1 | 1 1 | | | | | | | | | l | | | | | | | | | $L \rightarrow 2$ | | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | | CL | C → X | | | | 2.2 | | | 6.47 | | 13 | | | | | (16.4 | 4) | * | (17.52 |) | | | | | | | | | | | | | | | | 1 | | | | | | | | | Input Loading | | - 1 | | | 1 | | | | Pin Name | Factor (lu) | 1 | 1 | | | | | | | OT | 2 | ļ | | | | | | | | С | 2 | | H → 2 | | | Z + H | | | | | | t0 | | KCL | t0 | | CL | 1 | | | Donate De de d | 3.0 | | * | 3.20 | | 056 | | | Die Nees | Output Driving | (16.4 | 4) | * | (17.52 | , | | | | Pin Name
IN | Factor (lu) | | 1 | | | | | | | IN | 10 | l | | | | - 1 | | | | | 1 | | - 1 | 1 | | - 1 | | | | | | | ļ | | | 1 | | ŀ | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\hbox{\scriptsize CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H8S-E2 | Sheet 1/1 | בויוודכון כ | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | | | |----------------|---|----------------|-------------------|----------|----------|-------------------|-----------------|--------------|--|--|--| | | Function | OLD | D DI LUI | 1 10/110 | 17 | | 1 7 | Number of BC | | | | | 17 | ri-state Output(| IOL=3.2 | mA) & S | chmitt | Trigger | | $\neg \uparrow$ | | | | | | | nput Buffer(CMOS | | | | | sistano | e | | | | | | | / Pull-up Resist | ance | | | | | | 13 | | | | | Cell Symbol | | | Prop | agation | Delay P | | r | | | | | | | | | up | | tdn | | | | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | | | | 2.48 | 0.16 | 3.08 | | | l | X + IN | | | | | | | 3.12
(7.88) | 0.056 | 5.66 | | | | OT → X | | | | | | <i>√</i> | (7.00) | | (10.71 | 1 | | l | | | | | | IN — | ~~\rangle \frac{1}{2} \rangle \frac{1}{2} | | | | | | 1 | | | | | | | \ 1 | | | | | | 1 | | | | | | от — | > x | | | 1 | | | l | | | | | | l l | | | | | | | | | | | | | | | | | į | | | 1 | | | | | | | Ċ | | | | | | l | | | | | | | С | | | | | ľ | 1 | | | | | | | | | $L \rightarrow 2$ | | 1 | $Z \rightarrow L$ | L | | | | | | | | t0 | | KCL | t0 | | CL | d c → x | | | | | | | 2.2 | | | 6.47 | | 13 | 7 " | | | | | | | (16.4 | 4) | * | (17.52 |) | - 1 | | | | | | | | | | Dia Nama | Input Loading | | | | | | | | | | | | Pin Name
OT | Factor (lu) | | - 1 | | | | | 1 | | | | | C | 2 | | H → 2 | · | | Z + H | | ┥ ゚ | | | | | | _ | t0 | | KCL | t0 | | CL | ┪ . | | | | | | | 3.0 | 7 | | 3.20 | | 056 | 7 | | | | | | Output Driving | (16.4 | 4) | * | (17.52 |) [| | | | | | | Pin Name | Factor (lu) | | - 1 | | | 1 | | | | | | | IN | 18 | | | | | 1 | | | | | | | ļ | | | j | | | | | | | | | | | | | - 1 | | | | | | | | | | | <u> </u> | | | | <u> </u> | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\mbox{\scriptsize CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H8SU-E2 Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | 1 | | "Uł | B" Version | |------------|-------------------|----------------|-------------------|-----------------|----------|-------------------|------|--------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output(| | | | | | | | | ı | Input Buffer(CMOS | | True) w | / Noise | Limit Ro | esistan | ce | | | H8SD | w/ Pull-down Resi | stance | | | | | | 13 | | Cell Symbo | 1 | | | agation | Delay P | aramete | r | | | | | | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 2.48 | 0.16 | 3.08 | | | l | X → IN | | | | 3.12
(7.88) | 0.056 | 5.66
(16.71) | | | İ | OT → X | | | ∕ €1 | (7.00) | | (10.71 | ή Ι | | | | | IN — | —<√\h | | | 1 | 1 1 | | ļ | 1 | | | N 71 | | | i | | | | } | | от — | - >- - x | | | 1 | 1 1 | | l | | | | | | | ì | 1 1 | | İ | | | | | | | 1 | 1 1 | | İ | 1 | | | ı | | | | | | į | 1 | | | C | | | | 1 | | | ì | | | | | | <u> </u> | | | | | | | | | $L \rightarrow Z$ | | | $Z \rightarrow L$ | | ┩╻ | | | | t0
2.2 | | KCL | 6.47 | | CL | C → X | | | | (16.4 | | | (17.52 | | 13 | | | | | (10.4 | "' | • | (17.52 | ' | | 1 | | | | ŀ | | | | | | | | · | Input Loading | | | | | | | 1 | | Pin Name | Factor (lu) | | | | | | | | | OT | 2 | | | | | 1 | | | | С | 2 | | H → Z | ; | | Z + H | | 7 | | | | tO KCL tO | | | | | | 7 | | | | 3.0 | | | 3.20 | 0. | 056 | | | | Output Driving | (16.4 | 4) | * | (17.52 |) | | | | Pin Name | Factor (lu) | | | | | | | | | IN | 18 | | | | | 1 | L | | 1 | | | | l | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H8SD-E2 Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CELL S | PECT | FICATIO | N | | "U | HB" Version | |-------------|-----------------------|------------|------|-----------|---------|--------------------|--------------------|--------------------| | Cell Name | Function | 0000 | | 1 1011110 | `` | | | Number of BO | | - | Tri-state Output | (IOL=3.2mA | ۸ (| Schmitt | Trigger | | | | | H8R | Input Buffer (TT | | | | | | stance | 13 | | Cell Symbol | | | Prop | agation | Delay P | arame | eter | | | | | tup | | | tdn | | | | | 1 | | t0 K | CL | t0 | KCL | KCL | L2 CDR | 2 Path | | | | 2.24 0. | 16 | 3.72 | 0.13 | | | X + IN | | | | | 056 | 5.66 | | l | 1 | OT → X | | İ | _ | (7.88) | | (16.71) |)[| [| l | 1 | | IN — | - < ⊅ h | | | 1 | 1 | ł | | | | 1 | , 7 | | | | 1 | l | | 1 | | | \ | | | | 1 | 1 | ı | | | ОТ — | x | | | | 1 | l | | | | | ľ | | | | 1 | | | | | | | | | | 1 | l | | | | | <u>'</u> | | | 1 | 1 | | | | | | С | | | 1 | İ | l | | | | | | ļ <u>-</u> | → Z | L | | $\frac{1}{Z}$ | - ـــــ | | | | | t0 | | KCL | t0 | - 2 - 7 | KCL | $ c \rightarrow x$ | | | | 2.22 | + | VCT | 6.47 | | 0.13 | ° → ^ | | 1 | | (16.44) | l | * | (17.52 | | 0.13 | | | l | | (10.44) | | • | (17.52 | " | | | | } | | | 1 | | | | | | | | Input Loading | | 1 | ļ | | ĺ | | | | Pin Name | Factor (lu) | | 1 | | | | | | | OT | 2 | | 1 | | | | | | | C | 2 |
н | → Z | | | $\frac{1}{Z}$ | н | | | | _ | t0 | | KCL | t0 | | KCL | _ | | | | 3.07 | T | | 3.20 | , | 0.056 | | | | Output Driving | (16.44) | 1 | * | (17.52 | | | | | Pin Name | Factor (Lu) | ` ′ | | | , | | | | | IN | 18 | | | | | - 1 | | | | | | | | | | | | | | | 1 | | 1 | | | - 1 | | | | | 1 | l | 1 | | | - 1 | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8R-E2 | Sheet 1/1 | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATIO | N | | וט" | HB" Version | |------------|---|-----------|-------------------|---------|------------|-------------------|---------|-----------------------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output(| | | | | | | | | HBRU | <pre>Input Buffer(TTL w/ Pull-up Resist</pre> | | rue) w/ | Noise . | Limit ke | Sistand | ·e | 13 | | Cell Symbo | | ance | Prop | agation | Delay P | aramata | | 13 | | Cell Bymbo | 1 | + | up | agation | tdn | | -1 | 1 | | | | t0 | KCL | t0 | KCL | KCL2 | CDR | 2 Path | | | | 2.24 | 0.16 | 3.72 | | | 1 | X + IN | | | | 3.12 | 0.056 | 5.66 | | | 1 | OT → X | | | _ | (7.88) | | (16.71 | | | 1 | | | IN - | $-\sqrt{\pi}$ | | | | | | 1 | 1 | | 114 | | | | | | | | 1 | | | | | | İ | | | | ı | | OT | → x | | | 1 | | | | | | | VY | | | | | | | | | | | | | j | | | | | | | Ċ | j | | | | | 1 | | | | С | | | 1 | | | | | | | | | $L \rightarrow Z$ | | لــــــا | $Z \rightarrow L$ | <u></u> | | | | | t0 | | KCL | t0 | | CL | $\neg \mid c \rightarrow x$ | | | | 2.2 | | | 6.47 | 0. | 13 | 7 | | | | (16.4 | 4) | * | (17.52 |) | | | | | |] | | | | | | | | | |] | | | | | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | 1 | 1 | | | | | | | OT | 2 | | | | | | | _ | | С | 2 | <u> </u> | H → Z | | | Z → H | , C.T. | _ | | | | t0
3.0 | | KCL | t0
3.20 | | CL | _ | | | Output Driving | | | * | | | 056 | | | Pin Name | Factor (lu) | (16.4 | 47 | • | (17.52 | ' | | | | IN IN | 18 | 1 | | | | | | | | 211 | 1 | | - 1 | | | | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8RU-E2 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | | | | HB" Version | |------------|-------------------|---------|-------------------|----------|---------|-------------------|----------|--------------------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output(| | | | | | | | | | Input Buffer(TTL | Type, T | rue) w/ | Noise I | imit Re | sistanc | e | | | H8RD | w/ Pull-down Resi | | | | | | | 13 | | Cell Symbo | | | Prop | agation | Delay P | aramete | r | | | | | t | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR | 2 Path | | | | 2.24 | 0.16 | 3.72 | 0.13 | | | X → IN | | | | 3.12 | 0.056 | 5.66 | 0.13 | | 1 | OT → X | | | | (7.88) | | (16.71) | i i | | 1 | | | | \mathcal{A} | ` ′ | | ' ' | 1 1 | | | | | IN | | | | 1 | | | ł | | | | N 1 | | | | | | 1 | | | ОТ | - | | | | 1 1 | | 1 | | | | | | | | | | l | | | | | | |] | 1 | | l | | | | | | | 1 | | | l | | | | С | | | 1 | | | ĺ | | | | · · | | | | | | | | | | | | $L \rightarrow 2$ | ! | | $Z \rightarrow L$ | <u> </u> | | | | | t0 | | KCL | t0 | | CL | $\dashv c \rightarrow x$ | | | | 2.2 | 2 | | 6.47 | | 13 | ┥ ゛ ¨ | | | | (16.4 | | * | (17.52 | | | | | | | (20.4 | 7 | 1 | (17.52 | ′ | | | | | | l | | 1 | | l | | | | | Input Loading | 1 | - 1 | l | | | | | | Pin Name | Factor (lu) | ĺ | - 1 | į | | | | | | OT | 2 | 1 | - | I | | | | | | C | 2 | | H → 2 | , | | $Z \rightarrow H$ | | | | C | | t0 | 11 - 2 | KCL | t0 | | KCL | | | | | 3.0 | 7 | VOT | 3.20 | | 056 | _ | | | Output Driving | (16.4 | | * | (17.52 | | 0.00 | | | Pin Name | Factor (lu) | (10.4 | ·*/ | " [| (17.32 | ' | | | | IN IN | 18 | - | - | 1 | | 1 | | | | IN | 10 | | | | | 1 | | | | | | (| | | | 1 | | | | | | ł | | | | | | | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. simulation. UHB-H8RD-E2 | Sheet 1/1 | | | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | <u> </u> | | | B" Version | |-------------|-------------------|----------------|---------------|----------------|----------|-------|------|--------------| | Cell Name | Function | | | | | | | Number of BC | | H6TF | Tri-state Output | (IOL=8m | | | | | | 8 | | Cell Symbol | | | | agation | | | r | | | | | | up | | tdn | | | J | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 1.06 | 0.04
0.056 | 1.84 | 0.04 | | | X + IN | | | | 2.51
(7.27) | 0.056 | 3.27
(8.63) | 0.063 | | ŀ | OT → X | | | / | (1.2/) | | (0.03) | | | ł | | | IN — | ─ < h | | | | | | | | | | N 7 | | | | | | l | | | от | → x | | | | | | l | | | | [] | | | | | | | | | | | | | | 1 | | | | | | 1 | | | | | | ł | | | | С | , | | | | | 1 | | | | | | | | | | L | _ | | | | <u> </u> | L + Z | | | Z + L | | | | | | t0 | | KCL | t0 | | CL | C → X | | | | 2.2 | | * | 3.35 | | 063 | | | | | (18.6 | ²⁾ | | (8.71 | ' | | | | | | 1 | - 1 | - 1 | | | | 1 | | | Input Loading | 1 | Į. | | | l | | | | Pin Name | Factor (lu) | | - 1 | | | 1 | | | | OT | 4 | 1 | - 1 | | | 1 | | | | С | 2 | | H → Z | | | Z + H | | 7 | | | | t0 | T | KCL | t0 | K | CL | | | | | 3.1 | 2 | | 2.37 | | 056 | | | | Output Driving | (18.6 | 2) | * | (8.71 |) | | | | Pin Name | Factor (lu) | 1 | ŀ | | | - 1 | | | | IN | 36 | 1 | 1 | 1 | | 1 | | | | | | l | ı | | | l | | 1 | | | | | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\hbox{\scriptsize CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6TF-E1 | Sheet 1/1 | Page 20-93 | FUJITSU (| CMOS GATE ARRAY U | NIT CELL SE | ECIFICATIO | N | | 'UHB | " Version | |-------------|-------------------|-------------|------------|------------|---------|------|-------------| | Cell Name | Function | | | <u> </u> | | | umber of BC | | | Tri-state Output | (IOL=8mA) & | Input Buf | fer (True) | | 1 | | | H6TFU | with Pull-up Res | | | , | | | 8 | | Cell Symbol | | | ropagation | Delay Par | ameter | | | | | | tup | | tdn | | | | | | | to KO | L to | KCL | KCL2 CI | DR2 | Path | | | | 1.06 0.0 | 1.84 | 0.04 | | | X + IN | | | | 2.51 0.0 | 56 3.27 | 0.063 | | | OT → X | | | _ | (7.27) | (8.63 | | 1 | | | | IN — | | | 1 | | | | | | IN | | | 1 | 1 1 | ĺ | | | | | | | 1 | | - 1 | | | | OT - | > x | | 1 | | j | | ì | | | | | 1 | | - | | | | | | | Į | | | | l | | | 1 | | 1 | 1 1 | 1 | | | | | C | → Z | | → L | | | | | | t0 | KCL | t0 | KCL | | C → X | | | | 2.29 | | 3.35 | 0.06 | 3 | | | | | (18.62) | * | (8.71) | 1 | | ! | | | | | | | 1 | | Ì | | | | | | | 1 | | | | | Input Loading | | 1 | | | | | | Pin Name | Factor (lu) | | 1 | | l | | 1 | | OT | 4 | | | | | | _ | | С | 2 | | → Z | | → H | |] | | | • | t0 | KCL | t0 | KCL | | 1 | | | ļ | 3.12 | 1 . | 2.37 | 0.05 | 6 | | | | Output Driving | (18.62) | * | (8.71) | | | 1 | | Pin Name | Factor (lu) | | | | | | ļ | | IN | 36 | | 1 | | 1 | | I | | | Į. | | 1 | | 1 | | l | | | 1 | | | | 1 | | | | | 1 | l | 1 | l | 1 | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6TFU-E1 | Sheet 1/1 | TUITTCU (| DMOC CATE ADDAY D | NITE OF | r coro | TTCATTO | | | 1 111111 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |-------------|-------------------------------|----------|-----------|----------|----------|-------------------|----------|---| | Cell Name | CMOS GATE ARRAY U
Function | NII CEL | L SPECI | FICATIO | N | | | " Version
Tumber of BC | | Cell Name | Tri-state Output | (TOT -0- | A) C 7- | D | fam (Tm) | -7 | | dumber of BC | | H6TFD | with Pull-down R | (10D-0m | A) & 11 | iput Bur | rer (1ru | e) | | | | Cell Symbol | with Pull-down R | esistan | | | D-1 D | | | 8 | | Cell Symbol | | | | pagation | tdn | | <u> </u> | Υ | | | | t0 | up
KCL | to | KCL | KCL2 | CDR2 | Path | | ı | | | | | | KULZ | CDR2 | | | 1 | | 1.06 | 0.04 | 1.84 | | | | X → IN | | İ | | 2.51 | 0.056 | 3.27 | | | | OT → X | | | 1 | (7.27) | | (8.63 | 4 | | | | | IN — | - < h | | Ì | | 1 | | | | | | \ \ | | | | 1 | | | | | | \ | | | 1 | | | | 1 | | OT - | x | | | İ | 1 | | | | | | ľ | | | 1 | 1 | | | | | | | | | 1 | 1 | | | | | | _ | | 1 | 1 | | | | 1 | | | С | | Ì | | | | | | | | | | L | <u></u> | <u> </u> | | L | | | | | | L + 2 | | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | | CL | C → X | | ı | | 2.2 | | | 3.35 | | 063 | ļ | | | | (18.6 | 2) | * | (8.71 |) | | | | | | | 1 | | | - 1 | | | | | | | 1 | | | | | | | | Input Loading | | 1 | | | į | | | | Pin Name | Factor (lu) | | | | | 1 | | | | OT | 4 | | | | | | | _ | | С | 2 | | H → 2 | | | Z → H | |] | | | 1 | t0 | | KCL | t0 | | CL |] | | | | 3.1 | | | 2.37 | | 056 | | | | Output Driving | (18.6 | 2) | * | (8.71 |) | | | | Pin Name | Factor (lu) | | | | | | | | | IN | 36 | | ł | | | | | | | ı | | | i | | | - 1 | | | | ı | | | l | | | - 1 | | | | | 1 | | - 1
| | | 1 | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of $K_{\mbox{CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6TFD-E1 | Sheet 1/1 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB" Version Cell Name Function Number of BC Tri-state Output(IOL=8mA) **H6CF** & CMOS Interface Input Buffer (True) Cell Symbol Propagation Delay Parameter tup tdn ±0 KCL t0 KCL KCL2 | CDR2 Path 0.92 0.04 1.33 0.04 X + IN OT → X 2.51 0.056 3.27 0.063 (7.27)(8.63)IN OT $L \rightarrow Z$ $Z \rightarrow L$ t0 KCL t0 KCL C → X 2.29 3.35 0.063 (18.62)(8.71)Input Loading Pin Name Factor (lu) OT 2 H → Z Z → H C t0 KCL t0 KCL 2.37 3.12 0.056 Output Driving (8.71)(18.62)Factor (lu) Pin Name IN * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6CF-E1 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | 1 | | " U | нв' | Version | |-------------|-------------------|--------------|----------------|-------------|------------|-------------------|------------|----------|--| | Cell Name | Function | | | | | | | | umber of BC | | | Tri-state Output | (IOL=8m | A) & Ch | 10S Inter | face In | put Buf | fer | | | | H6CFU | (True) with Pull | -up Res | | | | | | | 8 | | Cell Symbol | | | | pagation | | | r | | | | | | | up | <u> </u> | tdn | | CDD | ᅴ | . | | | | t0 | KCL | t0 | KCL | KCL2 | CDR | 2 | Path | | | | 0.92
2.51 | 0.04 | 1.33 | 0.04 | | | - 1 | $X \rightarrow IN$
OT $\rightarrow X$ | | [| | (7.27) | | (8.63) | | | | - | 01 7 X | | | / | (1.2/) | | (8.65) | 1 | | | | | | IN — | ─ < h | | | 1 | | | | - 1 | | | | N 1 | | | j | | | l | | | | от | - → x | | | | | | 1 | - 1 | | | ļ | L9 | | | 1 | | | 1 | - 1 | | | | | | | 1 | | | 1 | | | | | ı | | | 1 | 1 | | | - 1 | | | | С | | | ì | | | l | ı | | | | | | | <u> </u> | <u> </u> | | <u> </u> | _ | | | | | <u> </u> | L → i | | | $Z \rightarrow L$ | CL | \dashv | 6 . v | | l | | t0
2.2 | . | KCL | ±0
3.35 | | 0.063 | \dashv | C → X | | | | (18.6 | | * | (8.71 | | .003 | ' | | | 1 | | (10.0 | 2) | . | (6.71 | ' | | ı | | | 1 | | | 1 | | | 1 | | ١ | | | | Input Loading | 1 | | ŀ | | | | ļ | | | Pin Name | Factor (lu) | 1 | | İ | | | | | | | OT | 4 | 1 | | i | | | | | | | С | 2 | | H → : | Z | | $Z \rightarrow H$ | | | | | | 1 | t0 | | KCL | t0 | , k | CL | | | | | | 3.1 | 2 | | 2.37 | 0. | 056 | | | | | Output Driving | (18.6 | 2) | * | (8.71 |) | | | | | Pin Name | Factor (lu) | Į. | | ł | | 1 | | 1 | | | IN | 36 | 1 | i | j | | 1 | | İ | | | 1 | | | - 1 | | | | | | | | | | | 1 | | | | | | | | | | L | | | | | | | <u> </u> | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H6CFU-E1 | Sheet 1/1 | FUJITSU (| MOS GATE ARRAY U | NIT CEL | L SPE | CIFICATIO | N | | ่ "บา | dB" Version | |-------------|------------------|-----------|----------------|-----------|------------|-------------------|------------|--------------| | Cell Name | Function | | | | | | 1 | Number of BC | | | Tri-state Output | (IOL=8m | A) & | CMOS Inte | rface In | put Buf | fer | | | H6CFD | (True) with Pull | -down R | | | | | 1 | 8 | | Cell Symbol | | | Pr | opagation | Delay P | aramete | r | | | | | | up | | tdn | | | | | | | t0 | KCL | | KCL | KCL2 | CDR: | | | | | 0.92 | 0.04 | | | | 1 | X + IN | | | | 2.51 | 0.05 | | | | l | OT → X | | 1 | / | (7.27) | | (8.63 | 기 : | | 1 | İ | | IN — | - < h ∣ | | | 1 | | | l | | | | 7 | | | | | | | | | от — | X | | | | | | l | | | 01 | ^ | | | | | | l | 1 | | | | | | 1 | | | l | | | | | | | | | | 1 | | | | С | | | l | | | l | | | | ŭ | | | l | 1 | | | | | | | | L → | Z | | $Z \rightarrow L$ | | | | | | t0 | T | KCL | t0 | ŀ | CL | c → x | | İ | | 2.2 | 9 | | 3.35 | C | 0.063 | 7 | | | | (18.6 | 2) | * | (8.71 |) | | 1 | | | | | - 1 | | | | | | | | | | | | | | | | | | Input Loading | | 1 | | | | | | | Pin Name | Factor (lu) | | | | | | | | | OT | 4 | | | | | | | _ | | C | 2 | | Н → | | 4.0 | Z → H | 7.CT | - | | l | | t0
3.1 | , | KCL | ±0
2.37 | | CL
.056 | _ | | | Output Driving | (18.6 | | * | (8.71 | | סכט | | | Pin Name | Factor (lu) | (10.0 | ا ر- | - 1 | (0.71 | ' | | 1 | | IN | 36 | | į | | | - 1 | | | | 1 | ļ | | | | | - 1 | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\hbox{\scriptsize CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H6CFD-E1 Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | ٧ | | " ຫ | HB" Version | |----------------|---------------------------------------|-------------------------------------|---------|----------|----------|-------------------|------------|--------------| | Cell Name | Function | | | | · | | Ť | Number of BC | | | Tri-state Output | (IOL=8m | A) with | Noise I | Limit Re | sistance | 3 | | | H8TF | & Input Buffer (| True) | | | | | | 9 | | Cell Symbol | | | | agation | | | | | | | | t | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR: | | | | | 1.06 | 0.04 | 1.84 | | i | | X + IN | | 1 | | 3.21 | 0.056 | 5.96 | • | ļ | | OT → X | | ł | 1 | (7.97) | | (11.91) | ן | } | | | | IN — | - < h ∣ | | | | | 1 | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | 1 | | | | | | от — | X | | | 1 | | | | | | 01 | ^ * | | | ł | | | | | | | | | | | | | | | | 1 | | l l | | l | | | | | | | С | 1 | | ł | | | | | | | J | | | | | | | | | i | | | L + 2 | 2 | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | K | CL | c → x | | l | | 2.6 | 2 | | 6.82 | 0.0 | 070 | | | | | (19.7 | 1) | * | (12.77 |) | | ļ | | | | | | ļ | | ı | | | | | | l | - 1 | | | | | | | | Input Loading | | | | | 1 | | İ | | Pin Name | Factor (lu) | | | | | | | | | OT | 2 | | | | | | | _ | | С | 2 | $H \rightarrow Z$ $Z \rightarrow H$ | | | | | | | | i | | t0 | | KCL | t0 | | CL | _ | | | 10 | 3.3 | | * | 3.21 | | 056 | 1 | | Dia Name | Output Driving | (19.7 | 1) | ~ | (12.77 | , | | | | Pin Name
IN | Factor (lu) | 1 | ŀ | | | | | | | 111 | 30 | l | ı | 1 | | | | 1 | | | | 1 | | | | | | | | | | | | | | | | | | | _l | <u> </u> | | | | | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H8TF-E1 | Sheet 1/1 | FUJITSU (| CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | 1 | | "UH | B" Version | |-------------|-------------------|---------|-------------------|----------|----------|-------------------|------|--------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output | (IOL=8m | A) with | Noise 1 | imit Re | sistanc | e | | | H8TFU | & Input Buffer (| | | | | | - 1 | 9 | | Cell Symbol | | | Prop | agation | Delay Pa | aramete | r | | | | | t | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 1.06 | 0.04 | 1.84 | 0.04 | | | X → IN | | | | 3.21 | 0.056 | 5.96 | 0.070 | | | OT → X | | | 4 | (7.97) | | (11.91) |) | | 1 | 1 | | IN | - ∕ | | | | 1 1 | | 1 | | | IN | \sim | | | | 1 1 | | l | | | | | | | 1 | 1 1 | | 1 | 1 | | ОТ | → x | | | l | | | l | | | | ΓY | | | l | | | | 1 | | | | | | | 1 1 | | | ŀ | | | ı | | | İ | 1 1 | | l | 1 | | | C | | | ł | | | | l | | | | | | | | | | | | | | | $L \rightarrow Z$ | | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | | CL | _ c → x | | | | 2.6 | | | 6.82 | | 070 | | | | | (19.7 | 1) | * | (12.77 |) | | 1 | | | | 1 | | | | 1 | | 1 | | | | | 1 | į | | - 1 | | 1 | | | Input Loading | | | 1 | | | | | | Pin Name | Factor (Lu) | | | | | 1 | | 1 | | OT | 2 | | | | | | | _ | | С | 2 | | H → Z | | | $Z \rightarrow H$ | | _ | | | | t0 | | KCL | t0 | | CL | 4 | | | <u> </u> | 3.3 | | . 1 | 3.21 | | 056 | 1 | | | Output Driving | (19.7 | 1) | * | (12.77 |) | | | | Pin Name | Factor (Lu) | 1 | - 1 | | | ı | | 1 | | IN | 36 | 1 | | | | - 1 | | | | | | 1 | | | | - 1 | | | | | 1 | l | ı | 1 | | 1 | | | | | I | I | - 1 | - 1 | | 1 | | 1 | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8TFU-E1 | Sheet 1/1 | FULLITSU (| CMOS GATE ARRAY U | NIT CEL | I. SPE | CIFICATIO | <u>, </u> | | "UH | B" Version | |-------------|-------------------|---------|--|-----------|--|-------------------|--------------------|--------------| | Cell Name | Function | NII ODD | 011 | CITIONITO | ` | | - 1 011 | Number of BC | | | Tri-state Output | (IOL=8m | A) wi | th Noise | Limit Re | sistanc | | | | H8TFD | & Input Buffer (| | | | | | - 1 | 9 | | Cell Symbol | | | | opagation | | | r | | | | | t | up | | tdn | | | | | İ | | t0 | KCL | | KCL | KCL2 |
CDR2 | | | | | 1.06 | 0.04 | | | | l | X → IN | | | | 3.21 | 0.05 | | | | 1 | OT → X | | 1 | | (7.97) | | (11.91) |) | | | 1 | | IN | - < h ∣ | | | | | | 1 | - | | | 7 | | | | | | l | | | от — | x | | | | j | | l | | | 01 | ^ ^ | | | | | | l | | | | | | | | | | i | 1 | | 1 | | | | | | | ł | | | | c | | | | 1 | 1 | ŀ | | | 1 | _ | | | | 1 | | İ | | | | | | L - | Z | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | K | CL | _ c → x | | | | 2.6 | | | 6.82 | 1 | 070 | 7 | | | | (19.7 | 1) | * | (12.77 |) | | 1 | | l | | | | | | | | 1 | | | | | | | | | | | | 1 | Input Loading | | 1 | | | | | | | Pin Name | Factor (lu) | | | | | | | | | OT | 2 2 | | H - | | | $Z \rightarrow H$ | | 4 | | С | 2 | t0 | _ _ | KCL | t0 | | CL | - | | | | 3.3 | , | VCT | 3.21 | | 056 | - | | | Output Driving | (19.7 | - | * | (12.77 | | . 0.50 | | | Pin Name | Factor (lu) | (1)., | -, | | (12.// | ' | | | | IN | 36 | | - 1 | | | 1 | | | | | 1 | | | | | ļ | | | | | | | - 1 | | | - 1 | | | | | | | - { | | | - 1 | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\hbox{\scriptsize CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H8TFD-E1 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | 1 | | "UH | B" Version | |---------------|----------------------------|---|---------|----------|---------|-------------------|-----------|-----------------| | Cell Name | Function | *************************************** | | | | | | Number of BC | | | Tri-state Output | (IOL=8m | A) with | Noise 1 | imit Re | sistanc | e | | | H8CF | & CMOS Interface | Input | | | | | | 9 | | Cell Symbol | | | Prop | agation | Delay P | aramete | r | | | | | t | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | | | | | 0.92 | 0.04 | 1.33 | 0.04 | | l | X → IN | | | | 3.21 | 0.056 | 5.96 | 0.070 | | 1 | OT → X | | | 1 | (7.97) | | (11.91) | | | l | | | IN — | - < h | | İ | | 1 | | l | | | | <u> </u> | | ĺ | | | | l | | | | | | ļ | | 1 | | | | | OT | x × | | İ | | | | l | | | | νĭ | | İ | | | | Į | Ì | | | | | İ | | | | İ | 1 | | | C | | İ | 1 | | | | | | | C | | ĺ | | | | | Ì | | | | | L + 2 | ! | | $Z \rightarrow L$ | 1 | + | | | | t0 | | KCL | t0 | | CL | $\exists c + x$ | | | | 2.6 | 2 | | 6.82 | 0 | .070 | 7 | | | | (19.7 | 1) | * | (12.77 |) | | | | | | ` | · | 1 | | | | | | | | j | 1 | | | | | 1 | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | 1 | | 1 | | | | | | OT | | ł | | | | | | _ | | | 2 | | | | | | | | | C | 2 2 | | H → Z | | | $Z \rightarrow H$ | | 4 | | | | t0 | | KCL | t0 | K | CL | | | | 2 | 3.3 | 10 | KCL | 3.21 | 0. | CL
056 | 1 | | С | 2
Output Driving | | 10 | | | 0. | | | | C
Pin Name | Output Driving Factor (£u) | 3.3 | 10 | KCL | 3.21 | 0. | | | | С | 2
Output Driving | 3.3 | 10 | KCL | 3.21 | 0. | | | | C
Pin Name | Output Driving Factor (£u) | 3.3 | 10 | KCL | 3.21 | 0. | | | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of $K_{\hbox{\scriptsize CL}}$ for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - The parameters in parentheses are the values applied to the simulation. UHB-H8CF-E1 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CELI | L SPECI | FICATIO | N | | "UH | B" Version | |------------|-------------------|-----------|-------------------|----------|------------|-------------------|----------|--------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output(| IOL=8mA |) w/ No | ise Lim | it Resis | tance & | | | | H8CFU | CMOS Interface In | put Buf | fer (Tr | ue) w/ 1 | Pull-up | Resista | nce | 9 | | Cell Symbo | l | | | | Delay P | | | | | | | tı | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.92 | 0.04 | 1.33 | | | | X → IN | | | | 3.21 | 0.056 | 5.96 | | | 1 | OT → X | | | 4 | (7.97) | | (11.91 |) | | | | | IN — | ─ | 1 | | | 1 | | | | | 214 | , \ | | | 1 | | | | | | | | | | } | | | | | | ОТ — | - x | | | 1 | | | | | | | M | | | | | | l | | | | | | | | 1 | | l | | | | 1 | | | l | | | 1 | | | | С | | | l | 1 | | l | | | | | | | <u> </u> | <u> </u> | | <u> </u> | | | | | | $L \rightarrow Z$ | | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | | CL | c → x | | | | 2.6 | | | 6.82 | | .070 | ł | | | | (19.7 | 1) | * | (12.77 |) | | | | | | 1 | | | | | | | | | | į | | j | | | | | | . | Input Loading | ĺ | | | | | | | | Pin Name | Factor (lu) | ł | 1 | | | | | | | OT | 2 | | <u> </u> | , | | $Z \rightarrow H$ | | - | | С | 2 | | | KCL | 10 | | CL | - | | | | 10
3.3 | | VCT | t0
3.21 | | 056 | 4 | | | Output Driving | (19.7 | | * | (12.77 | | 020 | | | Pin Name | Factor (lu) | (19.7 | 1 | | (12.// | , | | | | IN IN | 36 | 1 | | | | | | | | 117 |] 30 | ł | | | | - 1 | | | | | | 1 | | | | | | 1 | | İ | | 1 | | | | | | 1 | | | | <u> </u> | | | L | | | <u></u> | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of K_{CL} for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the ${\tt simulation.}$ UHB-H8CFU-E1 | Sheet 1/1 | FUJITSU | CMOS GATE ARRAY U | NIT CEL | L SPEC | IFICATION | ĭ | | "UHI | B" Version | |------------|-------------------|---------|----------|-----------|-----------|-------------------|------|--------------| | Cell Name | Function | | | | | | | Number of BC | | | Tri-state Output(| IOL=8mA |) w/ No | oise Limi | it Resist | ance & | | | | H8CFD | CMOS Interface In | put Buf | fer (Tru | ue) w/Pu | 111-down | Resist | ance | 9 | | Cell Symbo | 1 | | Pro | pagation | Delay Pa | ramete | r | | | | | t | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.92 | 0.04 | 1.33 | 0.04 | | | X → IN | | | | 3.21 | 0.056 | 5.96 | 0.070 | | | OT → X | | | | (7.97) | | (11.91) | ol l | | | | | IN - | | | | | 1 1 | | | 1 | | IN | \sim | | | | | | | | | | | | | | | | | 1 | | от — | - > x | | | 1 | 1 1 | | | 1 | | | L P | | | į. | 1 1 | | | 1 | | | | | | | 1 | | | 1 | | | 1 | | | 1 | 1 1 | | | 1 | | | C | | | ł | 1 1 | | | 1 | | | | | | 1 | l | | | | | | | | L + : | Z | | $Z \rightarrow L$ | | | | | | t0 | | KCL | t0 | K | CL |] c → x | | | | 2.6 | 2 | | 6.82 | 0 | .070 | | | | | (19.7 | 1) | ** | (12.77) | 1 | | 1 | | | | | | 1 | | ļ | | | | | |] | 1 | | | | | | | | Input Loading | | 1 | | | 1 | | 1 | | Pin Name | Factor (lu) | | | | | | | | | OT | 2 | l | | | | | | | | С | 2 | | Η → | Z | | $Z \rightarrow H$ | | | | | | t0 | | KCL | t0 | | CL | | | | | 3.3 | | | 3.21 | | 056 | | | | Output Driving | (19.7 | 1) | * | (12.77) | | | | | Pin Name | Factor (lu) |] | 1 | | | 1 | | | | IN | 36 | } | 1 | | | - 1 | | | | | | 1 | - 1 | | | 1 | | | | | | 1 | - | | | | | | | | 1 | 1 | | | | - 1 | | l | - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. UHB-H8CFD-E1 | Sheet 1/1 | FILITSII C | MOS GATE ARRAY U | NIT CEL | I. SPECT | FICATIO | N | | w _{III} | HB" Version | |-------------|------------------|----------|----------|---------|---------|---------|-------------------|----------------| | | Function | ···· ODD | D DILUI | 10/1110 | | | - ' '' | Number of BC | | | | | | | | | + | | | IT10 | Input Buffer for | Oscill | ator Ci | rcuit | | | ! | 0 | | Cell Symbol | | | Prop | agation | Delay | Paramet | er | | | | | | up | | td | n | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0 | 0 | 0 | 0 | | | X + IN | | | | | | | | | | 1 | | | | | | | | | l | 1 | | | | | | | | | İ | | | | | | | | | | { | | | | | | | | | | 1 |] | | r | _ | | | | | | Ì | | | х — | IN | | | | | | 1 | | | ı | | | | | | | ļ | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | L | ٠., | | | | | Parame | ter | | | - - ' | Symbol | Typ(ns)* | | | | | | | | ı | | | | | | | | | | İ | | | | | | | | | | į | - 1 | | | | | Input Loading | | | | | | | | | Pin Name | Factor (lu) | | | | | - 1 | | | | | | | | | | | | | | | 1 | | | | | | | 1 | | | | | | | | - 1 | | | | | | | | | | | | | | | Output Driving | | | | | - 1 | | | | Pin Name | Factor (lu) | | | | | 1 | | | | | 1 | ing condition. | | | | | | | | | | ng condition | | · · | <u></u> | are | given b | y the n | naximum | delay | multip | lier. | This cell if for the oscillator circuit only. Please refer to the document Fujitsu CMOS Gate Array 'UHB' Version User's Manual for I/O Cell for Oscillator Circuit GATI0281 Δ for the details. UHB-IT10-E1 | Sheet 1/1 | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | | | "UHB | " Version | |-------------|--|----------|-----------|-----------|----------|----------|---------|---------------| | | Function | | | | | | N | umber of BC | | | Output Buffer fo | r Oscil | lator | | | | | | | | with CMOS Interf | | | er | | | | 8 | | Cell Symbol | | | Prop | agation | Delay P | aramete | | | | Jerr Bymbor | | + | up | Legacion | tdn | | | I | | 1 | | | | | | | CDDO | D-Ab | | 1 | | t0 | KCL | t0 | KCL | KCL2 | CDR2 | Path | | | | 0.92 | 0.04 | 1.33 | 0.04 | | İ | X → IN | | 1 | | | | l | | | l | l | | ł | | | | l | | | | | | | | | | | | | 1 | | | | | | | 1 | ĺ | | İ | İ | | ł | $\overline{}$ | | | i | | | | | | IN | - < h | | } | |] | | | | | ١ ، | \ 7 | | | 1 | | ŀ | | | | | | | ļ | | | 1 | | | | OT | >> → x | | l | | | 1 | | | | | | |] |
| | | 1 | | | | | | | | | 1 | | 1 | | 1 | | l | | 1 | | 1 | 1 | 1 | | 1 | | Parame | ter | | | Sv | mbol | Typ(ns)* | | 1 | | | | | | | | 1 | | | | | | | | 1 | | 1 | | | | | | | | - 1 | | | | 1 | | } | | | | | | 1 | | 1 | | | | | | 1 | | | | | | | | | | | | | | | | ! | | | | ļ | | | | | Input Loading | | | | | 1 | | ļ | | Pin Name | Factor (lu) | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | l | | | | | İ | | | | | i | İ | | | | ı | | | | | | | | | | - 1 | | | | | | | | | | | | | | | Output Driving | | | | | | | İ | | Pin Name | Factor (lu) | İ | | | | | | | | IN | 36 | 1 | | | | 1 | | | | | 1 | | | | | | | | | | | * Mini | miim 1701 | lues for | the tyr | sical or | oratir | ng condition. | | | | The | | for the | une typ | rear of | octabli | is condition. | | | | Ine | values | for the | worst C | ase ope | rating | condition | | | <u> </u> | are | given l | by the ma | ximum c | ielay mu | utipli | Ler. | | | | | | | | | | | | This cell: | is for the oscill | ator ci | ircuit o | only. Pl | lease re | efer to | the do | ocument | | "Fujitsu Cl | MOS Gate Array 'U
ATI0281Δ)" for th | JHB' Ver | sion Us | ser's Mar | nual for | : I/O Ce | ell for | c Oscillator | | Circuit (G | ATI0281A)" for th | e detai | ils. | | | • | | | | | , | | | | | | | | | 1 | i | | | | | | | | | | ł | ì | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | 1 | ļ | | | | | | | | | | | | | | | | | | | Page 20-106 UHB-HOC-E1 | Sheet 1/1 | | MOS GATE ARRAY U | NIT CEL | L SPECI | FICATION | | | "UI | HB" Version | |-------------|--|---|---------|----------|---------|---------|------|----------------| | Cell Name | Function | | | | | | | Number of BC | | | Output Buffer fo | r Oscil | lator | | | | | | | HOS | with Schmitt Tri | gger In | | | | | l | 8 | | Cell Symbol | | | | agation | Delay P | aramete | r | | | | | t | up | | tdn | | | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR | 2 Path | | | | 2.48 | 0.16 | 3.08 | 0.10 | | | X → IN | } | | | | | | | | | | | | | IN | <i></i> ⟨ <i>I</i> ₁ | | | | | | | | | | $\backslash \mathcal{A}$ | | | | | | | | | | | |] | | | | ŀ | | | OT TO | >>→ x | | | | | | | | | l | Parame | ter | | | Sy | mbol | Typ(ns)* | 1 | Input Loading | | | | | | | | | Pin Name | Factor (lu) | 1 | | 1 | ł | | | Output Driving | | | | | | | 1 | | Pin Name | Factor (lu) | ļ | | | | | | | | IN | 18 | ing condition. | | | | The values for the worst case operating condition | | | | | | | | | are given by the maximum delay multiplier. | | | | | | | | This cell is for the oscillator circuit only. Please refer to the document "Fujitsu CMOS Gate Array 'UHB' Version User's Manual for I/O Cell for Oscillator Circuit (GATI0281 Δ)" for the details. UHB-HOS-E1 | Sheet 1/1 | FUJITSU | FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB" Version | | | | | | | | | |-------------------|---|--------------|---------|-----------|----------|---------|--------|----------------|--| | Cell Name | Function | Number of BC | | | | | | | | | | Output Buffer fo | r Oscil | lator | | | | | | | | HOCR | w/ CMOS Interfac | e Input | Buffer | w/ Feed | back Re | sistan | ce | 8 | | | Cell Symbol | | | Prop | agation | Delay P | aramet | er | | | | | ······································ | t | up | | tdn | | | T | | | | | t0 | KCL | t0 | KCL | KCL2 | CDR | 2 Path | | | | | 0.92 | 0.04 | 1.33 | 0.04 | | | X → IN | | | | | | | | | | İ | | | | | | | | | | | 1 | 1 | IN | | | | | | | | | | | IN | \sim | от | → × | | | • | l | | | | | | | | | | i | | | | l i | | | | | | | | | 1 | | | | | | | | L | | <u> </u> | L | | | | | | | Parame | ter | | | S | ymbol | Typ(ns)* | 1 | | | | | | | | | i | | | | | | T + . + | | | | | | | | | | . | Input Loading | | | | | 1 | | | | | Pin Name | Factor (lu) | | | | | 1 | - 1 | | | | | | } | | | | | | |) | | | | 1 | | | | | - 1 | | | | | | | | | | | | | | | | | Output Driving | | | | | - 1 | | | | | Pin Name | Factor (lu) | | | | | | | | | | IN | 36 | | | | | | | | | | • | 1 | | _ | _ | _ | | | | | | | | " Mini | mum val | ues for | the typ | oical c | perat | ing condition. | | | | | | | | | | | ng condition | | | ļ | | are | given b | y the ma | ximum c | ielay n | nultip | lier. | | | The second second | 4 - F | | | 1 7.1 | | | | 4 | | | Inis cell | is for the oscill | ator ci | rcuit | oniy. Pi | lease re | erer to | tne | document | | | rujitsu (| CMOS Gate Array 'U
GATI0281A)" for th | ns ver | sion Us | ser s mar | lual for | : 1/0 (| ell i | or Uscillator | | | Circuit (| $5AT10281\Delta$)" for the | e detai | ıls. | 1 | 1 | | | | | | | | | | Page 20-108 UHB-HOCR-E1 | Sheet 1/1 ## 2 ## **Appendix A: General AC Specifications** Simulation Delay Specifications (Recommended Operating Conditions, Ta = 0 to 70°C, V_{DD} = 5 $V_{\pm}5\%$ | Delay Multipliers | Min. | Max. | |------------------------|------|------| | Pre-layout Simulation | 0.35 | 1.65 | | Post-layout Simulation | 0.40 | 1.60 | # **Appendix B: Hierarchical Structure** Hierarchical blocks (or Functional Logic Blocks) within other hierarchical blocks are user-defined groups of cells laid out in close proximity to each other in both X and Y dimensions of the array. The hierarchical method of design allows circuit sections to be placed within the array at positions relative to each other. This is made possible by the designer's defining and placing functional logic blocks within the hierarchy and thus controlling path lengths. There are five levels of hierarchy, also referred to as Functional Logic Blocks (FLBs). Certain design rules regarding what may and what must appear at certain levels are condensed in the diagram below. Use of the hierarchical design method is mandatory for partitioned arrays and optional for non-partitioned arrays. Section A of the figure above addresses partitioned arrays C-6000UHB through C-12000UHB. Section B of the figure above addresses non-partitioned arrays C330UHB through C4100UHB. Immediately below the chip level, four Level 1 (FLB1) blocks must be defined, giving identity to each of the four partitioned quadrants of the array. # Appendix B: Hierarchical Structure (Continued) All I/O buffers and their associated circuitry must be defined immediately beneath the chip level with the FLB1 blocks. Nothing but I/O buffers may be so defined. If pull-up or pull-down cells (A01s or X00s) are required for unused inputs of the I/O buffers, they must also be defined at this level. Unit cells (UC) may be defined at each level. For optimum delay characteristics, Level 2 blocks should be defined under each of the Level 1 blocks, Level 3 Blocks under Level 2 blocks, and so on. Unit cells should be defined under Level 4. # **Appendix C: Estimation Tables for Metal Loading** ## C-330UHB | NDI | CL(lu) | NDI | CL(lu) | |-----------------------|---------------------------------|----------------------------|--------------------------| | 1
2
3
4 | 1.0
2.2
3.0
3.5 | 10
11
12
13 | 5.0
5.0
5.1
5.2 | | 5
6
7
8
9 | 3.9
4.2
4.6
4.8
4.9 | 14
15
16–30
31–50 | 5.3
5.7
6.6 | | 9 | 4.9 | 51–75
76–100 | 6.7
7.4 | ## C-530UHB | NDI | CL(lu) | NDI | CL(lu) | |-------------|--------|--------|--------| | 1 | 1.1 | 10 | 5.6 | | 2 | 2.5 | 11 | 5.6 | | 2 | 3.4 | 12 | 5.7 | | 4
5
6 | 3.9 | 13 | 5.8 | | 5 | 4.4 | 14 | 5.9 | | | 4.7 | 15 | 5.9 | | 7 | 5.1 | 16–30 | 6.4 | | 8 | 5.4 | 31-50 | 7.4 | | 9 | 5.5 | 51-75 | 7.5 | | | l | 76-100 | 8.3 | ## C-830UHB | NDI | CL(lu) | NDI | CL(lu) | |------------------|-------------------|--------------------------|-------------------| | 1 2 | 1.3
3.0
4.0 | 10
11
12 | 6.7
6.7
6.8 | | 2
3
4
5 | 4.7
5.2 | 13
14 | 6.9
7.1 | | 6
7 | 5.6
6.1 | 15
16–30 | 7.1
7.7 | | 8
9 | 6.4
6.6 | 31–50
51–75
76–100 | 8.8
9.0
9.9 | ## C-1200UHB | NDI | CL(lu) | NDI | CL(lu) | |-----|--------|--------|--------| | 1 | 1.7 | 10 | 8.2 | | 2 | 3.6 | 11 | 8.2 | | 3 | 4.9 | 12 | 8.3 | | 4 | 5.7 | 13 | 8.4 | | 5 | 6.3 | 14 | 8.6 | | 6 | 6.8 | 15 | 8.6 | | 7 | 7.4 | 16–30 | 9.3 | | 8 | 7.8 | 31–50 | 10.6 | | 9 | 8.0 | 51-75 | 10.9 | | | | 76-100 | 12.0 | # C-1700UHB | NDI | CL(lu) | NDI | CL(lu) | |-----|--------|--------|--------| | 1 | 1.8 | 10 | 8.8 | | 2 | 3.9 | 11 | 8.8 | | 3 | 5.3 | 12 | 9.0 | | 4 | 6.2 | 13 | 9.1 | | 5 | 6.8 | 14 | 9.3 | | 6 | 7.4 | 15 | 9.3 | | 7 | 8.1 | 16–30 | 10.1 | | 8 | 8.4 | 31–50 | 11.5 | | 9 | 8.6 | 51-75 | 11.8 | | | | 76–100 | 13.0 | # Appendix C: Estimation Tables for Metal Loading 4 (Continued) ## C-2200UHB | NDI | CL (lu) | NDI | CL (lu) | |--------|---------|--------|---------| | 1 | 2.2 | 10 | 10.7 | | 2 | 4.7 | 11 | 10.7 | | 3 | 6.4 | 12 | 10.8 | |
4
5 | 7.4 | 13 | 10.9 | | | 8.2 | 14 | 11.2 | | 6 | 8.9 | 15 | 11.2 | | 7 | 9.7 | 16–30 | 12.1 | | 8 | 10.1 | 31–50 | 13.9 | | 9 | 10.4 | 51-75 | 14.3 | | | | 76–100 | 15.7 | ## C-3000UHB | NDI | CL (lu) | NDI | CL (lu) | |--------|---------|--------|---------| | 1 | 2.6 | 10 | 12.9 | | 2 | 5.7 | 11 | 12.9 | | 2 | 7.7 | 12 | 13.1 | | 4 | 9.0 | 13 | 13.2 | | 4
5 | 10.0 | 14 | 13.6 | | 6 | 10.8 | 15 | 13.6 | | 7 | 11.8 | 16–30 | 14.7 | | 8 | 12.3 | 31-50 | 16.8 | | 9 | 12.6 | 51-75 | 17.3 | | | | 76–100 | 19.0 | ## C-4100UHB | NDI | CL (lu) | NDI | CL (lu) | |-----|---------|--------|---------| | 1 | 3.0 | 10 | 14.8 | | 2 | 6.6 | 11 | 14.8 | | 2 | 8.8 | 12 | 15.0 | | 4 | 10.3 | 13 | 15.2 | | 5 | 11.4 | 14 | 15.5 | | 6 | 12.4 | 15 | 15.5 | | 7 | 13.5 | 16–30 | 16.8 | | 8 | 14.0 | 31–50 | 19.3 | | 9 | 14.4 | 51-75 | 19.8 | | | | 76–100 | 21.8 | # C-6000UHB (Within Block) | NDI | CL (lu) | NDI | CL (lu) | |--------------------------------------|---|---|---| | 1
2
3
4
5
6
7
8 | 1.6
3.5
4.7
5.5
6.1
6.6
7.2
7.5
7.7 | 10
11
12
13
14
15
16–30
31–50
51–75 | 7.9
7.9
8.0
8.2
8.4
8.4
9.1
10.4
10.6 | | | | 76–100 | 11.7 | ## C-6000UHB (Inter-Block) | NDI | CL (lu) | NDI | CL (lu) | |-----|---------|--------|---------| | 1 | 3.5 | 10 | 17.2 | | 2 | 7.6 | 11 | 17.2 | | 3 | 10.2 | 12 | 17.4 | | 4 | 12.0 | 13 | 17.6 | | 5 | 13.3 | 14 | 18.1 | | 6 | 14.4 | 15 | 18.1 | | 7 | 15.7 | 16–30 | 19.6 | | 8 | 16.3 | 31–50 | 22.4 | | 9 | 16.8 | 51–75 | 23.0 | | | | 76–100 | 25.3 | Inter-Block tables must be applied to a net which has an inter-block connection. If a net, for example, has 3 NDI in a block and 1 NDI in a different block, NDI = 4 of the Inter-Block table must be applied. # **Appendix C: Estimation Tables for Metal Loading (Continued)** # C-8700UHB (Within Block) | NDI | CL(lu) | NDI | CL(lu) | |----------------------------|---|---|--| | 1
2
3
4
5
6 | 2.2
4.7
6.4
7.4
8.2
8.9
9.7 | 10
11
12
13
14
15
16–30 | 10.7
10.7
10.8
10.9
11.2
11.2 | | 8
9 | 10.1
10.4 | 31–50
51–75
76–100 | 13.9
14.3
15.7 | #### C-8700UHB (Inter-Block) | | | | , | |-----|--------|--------|--------| | NDI | CL(lu) | NDI | CL(lu) | | 1 | 4.2 | 10 | 20.8 | | 2 | 9.2 | 11 | 20.8 | | 3 | 12.4 | 12 | 21.0 | | 4 | 14.5 | 13 | 21.3 | | 5 | 16.0 | 14 | 21.8 | | 6 | 17.3 | 15 | 21.8 | | 7 | 18.9 | 16–30 | 23.6 | | 8 | 19.7 | 31–50 | 27.1 | | 9 | 20.2 | 51-75 | 27.8 | | | | 76–100 | 30.5 | ## C-12000UHB (Within Block) | NDI | CL(lu) | NDI | CL(lu) | |-----|--------|--------|--------| | 1 | 2.6 | 10 | 12.9 | | 2 | 5.7 | 11 | 12.9 | | 3 | 7.7 | 12 | 13.1 | | 4 | 9.0 | 13 | 13.2 | | 5 | 10.0 | 14 | 13.6 | | 6 | 10.8 | 15 | 13.6 | | 7 | 11.8 | 16–30 | 14.7 | | 8 | 12.3 | 31–50 | 16.8 | | 9 | 12.6 | 51–75 | 17.3 | | | | 76–100 | 19.0 | # C-12000UHB (Inter-Block) | NDI | CL(lu) | NDI | CL(lu) | |-----|--------|--------|--------| | 1 | 4.9 | 10 | 24.3 | | 2 | 10.8 | 11 | 24.3 | | 3 | 14.5 | 12 | 24.6 | | 4 | 17.0 | 13 | 25.0 | | 5 | 18.8 | 14 | 25.6 | | 6 | 20.3 | 15 | 25.6 | | 7 | 22.2 | 16–30 | 27.7 | | 8 | 23.1 | 31–50 | 31.7 | | 9 | 23.7 | 51–75 | 32.6 | | | | 76–100 | 35.8 | Inter-Block tables must be applied to a net which has an inter-block connection. If a net, for example, has 3 NDI in a block and 1 NDI in a different block, NDI = 4 of the Inter-Block table must be applied. # 2 # **Appendix C: Estimation Tables for Metal Loading for Clock Nets** ## C-330UHB (for CK20, CK40) | NDI | CL (lu) | NDI | CL (lu) | |--------|---------|---------|---------| | 1-2 | 5.1 | 11 – 12 | 12.7 | | 3 – 4 | 9.5 | 13 – 15 | 13.0 | | 5-6 | 11.9 | 16 – 30 | 13.3 | | 7-8 | 12.2 | 31 – 50 | 15.4 | | 9 – 10 | 12.4 | 51 - 80 | 18.1 | # C-330UHB (for CK60, CK80) | NDI | CL (lu) | | NDI | CL (lu) | |--------|---------|---|---------|---------| | 1-2 | 7.0 | | 11 – 12 | 17.6 | | 3 – 4 | 13.4 | | 13 – 15 | 17.9 | | 5-6 | 16.7 | | 16 – 30 | 18.1 | | 7-8 | 17.0 | | 31 – 50 | 20.2 | | 9 – 10 | 17.3 | П | 51 – 80 | 23.0 | ## C-530UHB (for CK20, CK40) | NDI | CL (lu) | NDI | CL (lu) | |-----------------|--------------|------------------|---------| | 1-2 | 5.1 | 11 - 1 | | | 5-6 | 9.6
14.1 | 13 – 1
16 – 3 | | | 7 – 8
9 – 10 | 14.4
14.6 | 31 – 5
51 – 8 | | ## C-530UHB (for CK60, CK80) | NDI | CL (lu) | NDI | CL (lu) | |-----------------|--------------|--------------------|--------------| | 1 – 2
3 – 4 | 7.3
14.0 | 11 – 12
13 – 15 | 21.4
21.7 | | 5 – 6 | 20.7 | 16 – 30 | 21.9 | | 7 – 8
9 – 10 | 20.9
21.2 | 31 – 50
51 – 80 | 23.8
26.4 | # C-830UHB (for CK20, CK40) | NDI | CL (lu) | | NDI | CL (lu) | |--------|---------|---|---------|---------| | 1-2 | 5.6 | | 11 – 12 | 18.5 | | 3-4 | 10.5 | | 13 – 15 | 18.8 | | 5-6 | 15.4 | | 16 – 30 | 19.1 | | 7-8 | 18.0 | | 31 – 50 | 21.2 | | 9 – 10 | 18.2 | l | 51 – 80 | 24.1 | # C-830UHB (for CK60, CK80) | NDI CL((Iu)) NDI CL (IL | 1) | |---|----| | 1 - 2 8.1 11 - 12 27.3
3 - 4 15.5 13 - 15 27.6
5 - 6 22.9 16 - 30 27.8
7 - 8 26.7 31 - 50 30.0
9 - 10 27.0 51 - 80 32.8 | | # C-1200UHB (for CK20, CK40) | NDI | CL (lu) | NDI | CL (lu) | |--------|---------|---------|---------| | 1-2 | 6.2 | 11 - 12 | 2 23.3 | | 3-4 | 11.7 | 13 – 1 | 5 23.7 | | 5-6 | 17.2 | 16 - 3 | 0 24.0 | | 7-8 | 22.7 | 31 - 5 | 0 26.3 | | 9 – 10 | 23.0 | 51 - 8 | 0 29.3 | # C-1200UHB (for CK60, CK80) | NDI | CL (lu) | NDI | CL (lu) | |----------------------------------|-------------------------------------|---|--------------------------------------| | 1-2
3-4
5-6
7-8
9-10 | 9.3
18.0
26.7
35.4
35.7 | 11 - 12
13 - 15
16 - 30
31 - 50
51 - 80 | 36.0
36.3
36.6
38.9
41.9 | | 9 – 10 | 35.7 | 51 - 80 | 41.9 | # **Estimation Tables for Metal Loading for Clock Nets** (Continued) # C-1700UHB (for CK20, CK40) | NDI | CL(lu) | NDI | CL(lu) | |--------|--------|---------|--------| | 1-2 | 6.6 | 11 – 12 | 28.0 | | 3-4 | 12.6 | 13 – 15 | 28.3 | | 5-6 | 18.6 | 16 – 30 | 28.6 | | 7-8 | 24.5 | 31 – 50 | 31.0 | | 9 – 10 | 27.7 | 51 - 80 | 34.2 | # C-1700UHB (for CK60, CK80) | NDI | CL(lu) | NDI | CL(lu) | |-------------------|----------------------|-------------------------------|----------------------| | 1-2
3-4
5-6 | 10.3
19.9
29.5 | 11 - 12
13 - 15
16 - 30 | 44.4
44.7
45.0 | | 7-8 | 39.1
44.1 | 31 – 50 | 47.4
50.6 | # C-2200UHB (for CK20, CK40) | NDI | CL(lu) | | NDI | CL(lu) | |--------|--------|----|---------|--------| | 1-2 | 7.1 | | 11 – 12 | 33.1 | | 3-4 | 13.5 | | 13 – 15 | 33.4 | | 5-6 | 19.9 | li | 16 – 30 | 33.8 | | 7-8 | 26.3 | | 31 – 50 | 36.3 | | 9 – 10 | 32.8 | H | 51 – 80 | 39.6 | # C-2200UHB (for CK60, CK80) | NDI | CL(lu) | | NDI | CL(lu) | |-------------------|----------------------|---|-------------------------------|----------------------| | 1-2
3-4
5-6 | 11.2
21.8
32.3 | | 11 - 12
13 - 15
16 - 30 | 53.7
54.1
54.4 | | 7-8 | 42.8 | ı | 31 – 50 | 56.9 | | 9 – 10 | 53.4 | ı | l 51 – 80 l | 60.2 | ## C-3000UHB (for CK20, CK40) | NDI | CL(lu) | NDI | CL(lu) | |------------|--------------|--------------------|--------------| | 1-2 | 7.7
14.8 | 11 – 12
13 – 15 | 43.0
43.3 | | 5-6
7-8 | 21.8
28.9 | 16 – 30
31 – 50 | 43.7
46.3 | | 9 – 10 | 35.9 | 51 – 80 | 49.8 | ## C-3000UHB (for CK60, CK80) | NDI | CL(lu) | NDI | CL(lu) | |--------|--------|---------|--------| | 1-2 | 12.6 | 11 - 12 | 72.1 | | 3-4 | 24.5 | 13 – 15 | 72.4 | | 5-6 | 36.4 | 16 – 30 | 72.8 | | 7 – 8 | 48.3 | 31 – 50 | 75.4 | | 9 – 10 | 60.2 | 51 – 80 | 78.9 | # C-4100UHB (for CK20, CK40) | NDI | CL(lu) | NDI | CL(lu) | |------|--------|---------|--------| | 1-2 | 8.4 | 11 - 12 | 47.3 | | 3-4 | 16.2 | 13 - 15 | 51.4 | | 5-6 | 24.0 | 16 - 30 | 51.7 | | 7-8 | 31.7 | 31 - 50 | 54.6 | | 9-10 | 39.5 | 51 - 80 | 58.4 | # C-4100UHB (for CK60, CK80) | NDI | CL(lu) | NDI | CL(lu) | |--------------------------|------------------------------|--|------------------------------| | 1-2
3-4
5-6
7-8 | 14.0
27.4
40.7
54.1 |
11 - 12
13 - 15
16 - 30
31 - 50 | 80.8
87.6
88.0
90.9 | | 9 – 10 | 67.4 | 51 - 80 | 94.6 | # 2 # Estimation Tables for Metal Loading for Clock Nets (Continued) # C-6000UHB (for CK20, CK40) | NDI | CL(lu) | |-----|--------| | 1 | 9.9 | | 2 | 14.9 | | 3 | 24.1 | | 4 | 29.2 | # C-6000UHB (for CK60, CK80) | NDI | CL(lu) | |-----|--------| | 1 | 13.2 | | 2 | 24.8 | | 3 | 37.3 | | 4 | 48.9 | # C-8700UHB (for CK20, CK40) | NDI | CL(lu) | |-----|--------| | 1 | 11.8 | | 2 | 17.8 | | 3 | 28.9 | | 4 | 34.9 | # C-8700UHB (for CK60, CK80) | NDI | CL(lu) | |-----|--------| | 1 | 15.7 | | 2 | 29.7 | | 3 | 44.8 | | 4 | 58.7 | # C-12000UHB (for CK20, CK40) | NDI | CL(lu) | |-----|--------| | 1 | 13.7 | | 2 | 20.7 | | 3 | 33.7 | | 4 | 40.8 | # C-12000UHB (for CK60, CK80) | NDI | CL(lu) | |------------------|------------------------------| | 1
2
3
4 | 18.3
34.7
52.3
68.7 | | | | # **Appendix D: Available Package Types** # UHB CMOS Available Package Types Plastic | | C-330
UHB | C-530
UHB | C-830
UHB | C-1200
UHB | C-1700
UHB | C-2200
UHB | C-3000
UHB | C-4100
UHB | C-6000
UHB | C-8700
UHB | C-12000
UHB | |----------------------|--------------|--------------|--------------|---------------|---------------|---------------|---|---------------
---|---------------|----------------| | DIP | | | | | | | | | | | | | Standard | (100 mil p | in pitch) | | | | | | | *************************************** | | | | 16 DIP | • | | | | | _ | - | _ | _ | _ | _ | | 18 DIP | СН | | _ | | | | _ | | | | | | 20 DIP | • | • | • | _ | | | *************************************** | | | _ | _ | | 22 DIP
24 DIP | • | : | | • | : | - | • | | | | - | | 28 DIP | | • | | | | | | • | _ | _ | | | 40 DIP | • | | | | | • | | | • | СН | _ | | 40 DIP
42 DIP | | | | | | • | | • | | CH | _ | | 48 DIP | | | | • | • | • | • | • | • | CH | | | l | (70 11 1 | • | • | | • | • | • | • | • | On | | | Shrink | (70 mil pi | n pitch) | _ | _ | _ | | | | | | | | 28 SHDIP | • | • | • | • | • | _ | _ | • | - | | | | 42 SHDIP
48 SHDIP | • | • | • | • | • | | | • | | _ | | | 64 SHDIP | • | • | | | | | • | • | | CH | | | ŀ | | | . • | • | • | • | • | • | • | CH | | | Skinny | (300 mil w | - |) | | | | | | | | | | 22 SKDIP
24 SKDIP | сн | СH | _ | _ | _ | _ | _ | | _ | | _ | | 28 SKDIP | ŇŴ | ŇŴ | _ | | | _ | - | _ | _ | | | | FPT | | | | | | | | | | | | | | (leads on | two sides) | | | | | | | | | | | 16 FPT | • | CH | CH | CH | | | | | | | | | 20 FPT | • | CH | CH | CH | | _ | _ | | | | | | 24 FPT | • | • | • | • | | | | - | | | | | 28 FPT | • | • | • | • | | _ | | | | | _ | | | (leads on a | all four sid | es) | | | | | | | | | | 44 FPT | • | • | • | • | • | | _ | | | | | | 48 FPT | • | • | • | • | • | • | • | | | _ | _ | | 48 FPT-S* | • | • | • | • | • | | | | - | - | | | 64 FPT | • | • | • | • | • | • | • | • | • | CH | _ | | 80 FPT | | • | • | • | • | • | • | • | • | | | | 100 FPT | | _ | • | • | • | • | • | • | • | | | | 120 FPT | | | _ | • | • | • | • | • | • | • | _ | | 160 FPT | | | | | | | • | • | • | • | - | | | *smaller th | nan the oth | ner 48p | in FPT | | | | | | | | | PLCC | | | | | | | | | | | | | 28 PLCC | • | • | • | • | • | • | • | | | | _ | | 44 PLCC | • | • | • | • | • | • | • | СН | CH | | _ | | 68 PLCC | • | • | • | • | • | • | • | • | • | CH | CH | | 84 PLCC | | | | | • | • | • | • | • | СН | СН | | PPGA | | | | | | | | | | | | | | 100 mil pi | in pitch) | | | | | | | *************************************** | | | | 64 PGA | • | • | • | • | • | • | • | • | • | • | _ | | 88 PGA | | • | • | • | • | • | • | • | • | • | | | 135 PGA | _ | | - | | | _ | • | • | • | • | _ | # NOTES: : Available : Not Available UD : Under Development NW : Newly Available Newly Available The availability of the package has changed, i.e., become unavailable # Appendix D: Available Package Types (Continued) # UHB CMOS Available Package Types Ceramic | | C-330
UHB | C-530
UHB | C-830
UHB | C-1200
UHB | C-1700
UHB | C-2200
UHB | C-3000
UHB | C-4100
UHB | C-6000
UHB | C-8700
UHB | C-1200
UHB | |----------|---------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------| | DIP | | | | | | | | | | | | | Standard | (100 mil p | in pitch) | | | | | | | | | | | 20 DIP | • | | | | | _ | | | | | _ | | 22 DIP | • | • | • | | _ | _ | _ | | | - | _ | | 24 DIP | • | • | • | • | | • | | | | | _ | | 28 DIP | • | • | • | • | • | • | | _ | | | _ | | 40 DIP | • | • | • | • | • | • | | | | _ | _ | | 42 DIP | _ | - | _ | • | • | | • | _ | | _ | _ | | 48 DIP | | | • | • | • | • | • | | | | | | Shrink | (70 mil pir | pitch) | | | | | | | | | | | 28 SHDIP | • | • | • | | | - | | | | | | | 42 SHDIP | | _ | - | • | • | • | _ | _ | | | _ | | FPT | | | | | | | | | | | | | | (leads on a | all four sid | es) | | | | | | | | | | 48 FPT | _ | | • | • | • | • | _ | | | | _ | | 80 FPT | _ | _ | | | | | | _ | - | UD | _ | | 100 FPT | | _ | | _ | • | • | | _ | _ | UD | _ | | 120 FPT | _ | _ | _ | | _ | | _ | • | • | • | UD | | 160 FPT | _ | | | _ | | | | | _ | _ | CH | | LCC | | | | | | | | | | | | | 28 LCC | • | • | • | • | _ | _ | | | | _ | | | 48 LCC | • | • | • | • | • | • | • | • | | | | | 64 LCC | • | • | • | • | • | • | • | • | • | • | CH | | 68 LCC | | • | • | • | • | • | • | • | • | • | CH | | 84 LCC | | | | | | | | | | | CH | | PGA | | | | | | | | | | | | | | 100 mil pi | | | | | | | | | | | | 64 PGA | • | • | • | • | • | • | • | • | • | • | • | | 88 PGA | | СН | • | • | • | • | • | • | • | • | UD | | 135 PGA | | | _ | • | • | • | • | • | • | • | • | | 179 PGA | | _ | _ | | | | NW | NW | NW | • | • | | 208 PGA | | | | | - | _ | • | NW | NW | NW | NW | | 256 PGA | | _ | | | - | | | | | • | • | | NOTES: | | | | | | | | | | | | | | /ailable | | | | | | | | | | | | | ot Available | | | | | | | | | | | | | nder Developi | | | | | | | | | | | | | wly Available | | | been char | | | | | | | | # **Appendix E: TTL 7400 Function Conversion Table** | TTL 7400
Series
Name | Function | Fujitsu
Basic Cells | Number
of Unit
Cells | |----------------------------|---|---|----------------------------| | | | | | | 7400 | Quad 2-input NAND | 4 x N2N | 4 | | 7401 | Quad 2-input NAND, Open Collector Outputs | T24 multiplexer | 6 | | 7402 | Quad 2-input NOR | 4 x R2N | 4 | | 7403 | Quad 2-input NAND, Open Collector Outputs | T24 multiplexer | 6 | | 7404 | Hex Inverter | 6 x VIN | 6 | | 7405 | Hex Inverter, Open Collector Outputs | R6B | 5 | | 7406 | Hex Inverter/Buffer, Open Collector Outputs | R6B | 5 | | 7407 | Hex Buffer, Open Collector Outputs | 2 x N3N into R2N | 5 | | 7408 | Quad 2-input AND | 4 x N2P | 8 | | 7409 | Quad 2-input AND, Open Collector Outputs | N8P | 6 | | 7410 | Triple 3-input NAND | 3 x N3N | 6 | | 7411 | Triple 3-input AND | 3 x N3P | 9 | | 7412 | Triple 3-NAND, Open Collector Outputs | T33 | 7 | | 7413 | Dual 4-input NAND, Schmitt Trigger | 2 x (4 x I2R to N4N) | 68 | | 7414 | Hex Schmitt Trigger Inverter | 6 x I1R | 48 | | 7415 | Triple 3-input AND, Open Collector Outputs | N8P to N2P | 8 | | 7418 | Dual 4-input NAND, Schmitt Trigger | 2 x (4 x I2R to N4N) | 68 | | ' 419 | Hex Schmitt Trigger Inverter | 6 x l1R | 48 | | 7420 | Dual 4-input NAND | 2 x N4N | 4 | | 421 | Dual 4-input AND | 2 x N4P | 6 | | 7422 | Dual 4-input NAND, Open Collector Outputs | 2 x N4N + N2P | 6 | | 7423 | Expanded Dual 4-input NOR with Strobe | R4P to D23 + R4P to R2N | 9 | | 424 | Quad Schmitt Trigger 2-input NAND | 8 x I2R + 4 x N2N | 68 | | 425 | Dual 4-input NOR with Strobe | 2 x (R4P + R2N) | 8 | | 426 | Quad 2-input NAND, High Voltage Output | 4 x N2N | 4 | | 427 | Triple 3-input NOR | 3 x R3N | 6 | | 7428 | Quad 2-input NOR Buffer | 4 x R2N | 4 | | 7430 | 8-input NAND | N8B | 6 | | 7432 | Quad 2-input OR | 4 x R2P | 8 | | 7433 | Quad 2-input NOR Buffer, Open Collector | | • | | 100 | Outputs | 4 x R2N + N4P | 7 | | 434 | Hex Noninverter | 6 x B1N | 6 | | 7435 | Hex Noninverter with Open Collector Outputs | 2 x N3N into R2N | 5 | | 7437 | Quad 2-input NAND Buffer | 4 x N2B | 12 | | 438/9 | Quad 2-input NAND Buffer, Open Collector | 4 X 142D | 12 | | 430/3 | Outputs | 4 x N2N + N4P | 7 | | 7440 | Dual 4-input NAND Buffer | 2 x N4B (N4N if not power) | 8(4 | | 440 | BCD to Decimal Decoder | | | | 442 | EX3 to Decimal Decoder | 4 x V2B + 10 x N4N | 24 | | 443
444 | | 4 x V2B + 10 x N4N | 24 | | 444 | 4 to 10 Line Decoder | 4 x V2B + 10 x N4N | 24 | | | BCD to Decimal Decoder/driver (30V) | 4 x V2B + 10 x N4N | 24 | | 446 | BCD to 7-segment Decoder/Driver (30V) | 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P | 53 | | 447 | BCD to 7-segment Decoder/Driver (15V) | 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P | 53 | | 448 | BCD to 7-segment Decoder/Driver | 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P | 53 | | 449 | BCD to 7-segment, Open Collector Outputs | 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P | 53 | | 450 | Dual 2-input, 2-wide AOI (One Expandable) | D36 + D24 | 5 | | 451 | AOI | 2 x D24 | 4 | | 452 | Expandable 4-wide AND-OR | N3N + D36 + V1N into N3N | 8 | | 453 | Expandable 4-wide AOI | D36 + D23 into N2P | 7 | | 7454 | 4-wide AOI | 2 x N3N + 2 x N2N + N4N + V1N | 9 | | 455 | 2-wide 4-input AOI | T42 | 6 | | 460 | Dual 4-input Expander | 2 x N4P | 6 | | 7461 | Triple 3-input Expander | 3 x N3P | 6 | | 462 | 4-wide AND-OR Expander | 2 x N3N + 2 x N2N + N4N | 8 | | 7464 | 4-2-3-2 AOI | T54 | 10 | | 101 | | | | # TTL 7400 Function Conversion Table (Continued) | TTL 7400
Series
Name | Function | Fujitsu
Basic Cells | Number
of Unit
Cells | |----------------------------|--|---|----------------------------| | 7470 | AND-gated positive-edge JK FF with Preset | | | | . 4. 0 | and Clear | 3 x V1N + 2 x N3N + N2N + R2N + FJD | 21 | | | or: | FD4 + 2 x N2N + R2N + V1N + R2P + D24 | 17 | | 7471 | AND-gated RS M/S FF with Preset | TOTAL ATTENDED | | | | and Clear | FD4 + 2 x N3N + 2 x D23 + 2 x V1N | 19 | | | or: | LT1+ 2 x N4N + N2P | 10 | | 7472 | AND-gated JK M/S FF with Preset | | | | | and Clear | V1N + 2 x N3N + N2N + R2N + FJD | 19 | | | or: | FD4 + N3P + N3N + V1N + D24 | 17 | | 7473 | Dual JK FF with Clear | 2 x FJD | 24 | | 7474 | Dual positive-edge D-FF with Preset and | | | | | Clear | 2 x FDP | 16 | | 7475 | 4-bit Bistable Latch | LTM | 16 | | 7476 | Dual JK FF with Preset and Clear | 2 x (FJD + N2N + R2N + V1N) | 30 | | 7477 | 4-bit Bistable Latch | LTM | 16 | | 7478 | Dual JK FF with Preset and Common | 2 x (FJD + N2N + R2N + V1N) | 30 | | | Clear and Clock | , | | | 7480 | Gated Full Adder | A1N | 8 | | 7482 | 2-bit Binary Full Adder | A2N | 16 | | 7483 | 4-bit Binary Full Adder with Fast Carry | A4H | 48 | | 7484 | 4-bit Magnitude Comparator | MC4 | 42 | | 7486 | Quad 2-input XOR | 4 x X2N | 12 | | 7487 | 4-bit True/Complement Zero/One Element | 4 x N2N + V1N + 4 x N2N | 17 | | 7489 | 64-bit (16 x 4) Memory | 2 x DE6 + V1N + 16 x LT4 | 298 | | | | + 5 x (V2B + T5A) + 10 x V2B | | | 7490 | Decade Counter | 2 x (FDP +
FDO + N2P + N2N + R2N) + V1N | 39 | | | (Different Implementation) | 4 x N2P + 2 x R2P + N2N + C41 + LT1 | 41 | | 7491 | 8-bit Shift Register | 2 x FDS + V1N | 41 | | 7492 | Divide-by-12 Counter | 4 x FDO + 2 x V1N + 2 x R2N + N2N | 33 | | 7493 | 4-bit Binary Counter | C41 + N2N (for the resets) | 25 | | 7494 | 4-bit Shift Register, 2 asynchronous Presets | FS3 | 34 | | | 4-bit Shift Register, 2 asynchronous | | | | | Presets, Full Implementation | 4 x FDP + 4 x D24 + 2 x V1N | 42 | | 7495 | 4-bit Parallel-access Shift Register | FS2 + D24 + 2 x V1N | 34 | | 7496 | 5-bit Shift Register | 5 x FDP + 5 x N2N + V1N(clock) | 46 | | 7497 | Synch 6-bit Binary Rate Multiplier | FDR + 2 x FDO + 3 x V1N + 2 x N2N | 122 | | | | + 2 x N3N + 2 x N4N + 5 x N6B + 3 x N8B | | | | | + R2B + X2N + 5 x X1B. | | | 7498 | 4-bit Data Selector/Storage Register | FDQ + T2F + 4 x V1N | 33 | | 7499 | 4-bit Universal Shift Register | FS2 + LTK + 2 x D24 + 4 x V1N | 42 | | 74100 | 8-bit Bistable Latch | 2 x YL4 + 2 x V1N | 30 | | 74101 | AO-gated JK Negative-Edge FF, | | | | | with Preset | FD3 + V1N + 3 x D24 | 15 | | 74102 | AND-gated JK Negative-Edge FF with | | | | | Preset and Clear | FD4 + D24 + N3P + N3N | 16 | | 74103 | Dual JK FF with Clear | 2 x FJD + 2 x V1N (for clock) | 26 | | | or: | 2 x (FD5 + D24 + V1N) | 22 | | 74106 | Dual JK Negative-Edge FF with Preset | | | | | and Clear | 2 x (FD4 + D24 + V1N) | 24 | | 74107 | Dual JK FF with Clear | 2 x (FJD + 2 x V1N) | 22 | | 74108 | Dual JK Negative-Edge FF with Preset | | _ | | | and Common Clear and Clock | 2 x (FD4 + D24 + V1N) | 24 | | 74109 | Dual JK Positive-Edge FF with Preset and | | | | | Clear | 2 x (FDP + V1N + D24) | 22 | | 74110 | AND-gated JK M/S FF with Data | | | | | Lockout | FDP + D24 + N3P + N3N | 15 | | 74111 | Dual JK M/S FF with Data Lockout | 2 x (FDP + D24 + V1N) | 22 | | 74112 | Dual JK Negative-Edge FF with Preset | | | | ı | and Clear | 2 x (FD4 + D24 + V1N) | 24 | # TTL 7400 Function Conversion Table (Continued) | TTL 7400
Series
Name | Function | Fujitsu
Basic Cells | Number
of Unit
Cells | |----------------------------|---|--|----------------------------| | 74113
74114 | Dual JK Negative-Edge FF with Preset Dual JK Negative-Edge FF with Preset and | 2 x (FD3 + D24 + V1N) | 22 | | , -111- | Common Clear and Clock | 2 x (FD4 + D24 + V1N) | 24 | | 74116 | Dual 4-bit Latch with Clear | 2 x LTM | 32 | | 74120 | Dual Pulse Synchronizer/Driver | 2 x (N2P + LT1 + 4 x N3N + 2 x N2N + 2 x V1N) | 36 | | 74125 | Quad Bus Buffer with 3-state Output | B41 | 9 | | 74126 | Quad Bus Buffer with 3-state Output | B41 + 4 x V1N | 13 | | 74132 | Quad 2-input NAND Schmitt Trigger | 4 x (2 x I2R + N2N) | 68 | | 74133 | 13-input NAND | 2 x N4N + N3N + N2N into R4P | 10 | | 74134 | 12-input NAND with 3-state Outputs | NCB + O4R | 15 | | 74135 | Quad 3-input EXOR/EXNOR | 4 x X4N | 20 | | 74136 | Quad 2-input EXOR with Open-Collector | 4 X A4IN | 20 | | 4100 | Outputs | 4 x X2N + R4N | 14 | | 74137 | 3-line to 8-line Decoder with Address | 7.75.7 | | | | Latch | 3 x LTK into DE6 | 42 | | 74138 | 3-line to 8-line Decoder with Enable | DE6 | 30 | | 74139 | Dual 2-line to 4-line Decoder | 2 x DE4 | 16 | | 74141 | BCD-to-Decimal Decoder | 4 x V2B + 10 x N4N | 24 | | 74145 | BCD-to-decimal Decoder | 4 x V1N + 10 x N4N | 24 | | 74147 | 10-line to 4-line BCD Priority Encoder | 3 x N4N + 3 x N3N + 2 x N2N + 2 x N2P | 36 | | , 4, 4, | 10 mile to 4 mile Bob i Horry Erroder | + 3 x R2N + R4N + 13 x V1N | 00 | | 74148 | 8-line to 3-line Octal Priority Encoder | N9B + 2 x N2N + R2P + R4N + 4 x N3N | 40 | | 74140 | 6-line to 5-line Octai Phonty Encoder | + 2 x N4N + G44 + 12 x V1N | 40 | | 74450 | 4 As 4C Mahislanan | | | | 74150 | 1-to-16 Multiplexer | DE3 + 2 x U28 + D24 + 2 x V1N | 41 | | 74151 | 1-to-8 Multiplexer with Strobe | DE3 + U28 + N2N + V1N | 28 | | 74152 | 1-to-8 Multiplexers | DE3 + U28 | 26 | | 74153 | Dual 4-line to 1-line Selector/Multiplexer | DE2 + 2 x U24 + 2 x R2N | 19 | | 74154 | 4-line to 16-line Decoder/Demultiplexer | 2 x DE6 + V1N | 61 | | | or: | 2 x DE4 + N2P + 16 x R2P | 50 | | 74155 | Dual 2-line to 4-line Decoder/Demultiplexer (Totem Pole) | 8 x N3N + 2 x R2N + 5 x V1N | 23 | | 74156 | Dual 2-line to 4-line Decoder/Demultiplexer | | | | | (Open Collector) | 8 x N3N + 2 x R2N + 5 x V1N | 23 | | 74157 | Quad 2-line to 1-line multiplexer | T2F + 4 x R2N + B1N | 13 | | 74158 | Quad 2-line to 1-line multiplexer | | | | | (Inverter Data Outputs) | 4 x D24 + V1N + 2 x R2N | 11 | | 74159 | 4-line to 16-line Demultiplexer | 2 x DE6 + V1N (without open collector) | 50 | | 74160 | Synchronous 4-bit Counter | 4 x C11 + K1B + 2 x V2B + V1N + B1N+ | 62 | | | (Decimal with Direct Clear) | N2K + 2 x R3N + R4N + 3 x R2N + N2N | | | 74161 | Synchronous 4-bit Counter (Binary | | | | | with Direct Clear) | C43 | 48 | | 74162 | Synchronous 4-bit Counter | | | | | (Decimal with Synchronous Clear) | C45 + D36 + N3P + 2 x R2N + B1N | 57 | | 74163 | Synchronous 4-bit Counter (Binary | and the state of t | 3, | | | with Synchronous Clear) | C45 | 48 | | 74164 | 8-bit Parallel Output Serial Shift | | +0 | | 110-1 | Register, Asynchronous Clear | 2 x FDR + N2P | 54 | | 74165 | 8-bit Shift Register | 2 x FDS + 8 x D24 + 11 x V1N + K4B + R2P | 71 | | 74165
74166 | 8-bit Shift Register | 2 x FDS + 8 x D24 + 11 x V IN + K4B + H2P
2 x FDR + 8 x D24 + 10 x V1N + K4B | / 1
80 | | | | 6 X FUR + 0 X U24 + 1U X V IN + N4B | 80 | | 74168 | 4-bit Up/Down Synchronous Counter | A Odd A Too T NION O NION DON | | | | (Decade) | 4 x C11 + 4 x T32 + 7 x N2N + 2 x N3N + R2N | 85 | | 74400 | 4 his Ha/Danna Ornacha C | + 7 x V2B + K1B | | | 74169 | 4-bit Up/Down Synchronous Counter | A.= | | | | (Binary) | C47 | 68 | | 74170 | 4-by-4 Register File | 4 x (YL4 + B1N + V1N + U24) + 2 x DE4 | 10 | | 74171 | Quad D-FF with Clear | FDR + 4 x V1N | 30 | | 74172 | 16-bit (8 x 2) Register File | 3 x DE6 + 4 x FDS + 16 x (N2N + G34 + | 34 | | | | + V1N + 2 x R2P + 4 x U28) + 2 x V1N + 2 x R2P | | # TTL 7400 Function Conversion Table (Continued) | 4-bit D-type Register | TTL 7400
Series
Name | Function | Fujitsu
Basic Cells | Number
of Unit
Cells |
--|----------------------------|--|---|----------------------------| | (3-state Output) (3-state Output) (4) Hex D-FF (Single Output) 74175 Quad D-FF (With Clear) 74176 Presettable Binary Counter 74177 74178 4-bit Universal Shift Register 74179 74181 ALU/Function Generator 74182 Look-ahead Carry Generator 74183 Dual Carry-save Full Adder 74184 BCD-to-binary Counter (Binary) 74190 Synch Up/Down Counter (Binary) 74191 Vp/Down Dual Clock Counter (Binary) 74192 Up/Down Dual Clock Counter (Binary) 74193 Up/Down Dual Clock Counter (Binary) 74194 4-bit Bidirectional Universal Shift Register 74195 74196 74197 74197 74198 BCD-to-Sperment Decoder/Driver (30V, Active Low Open Collector) 74248 BCD-to-Segment Decoder/Driver (15V, Active Low Open Collector) 74240 PCD-to-Jope FF with Clear Quad J-FF With Clear Quad J-FF With Clear Quad J-FF With Clear A x FDP + 2 x R2N + B41 + 6 x V1N + K1B + 4 x D24 FDR + 2 x FDO FD | 74173 | 4-hit D-type Register | | | | Hax D=FF (Single Output) | 74170 | | FDR + 2 x R2N + B41 + 6 x V1N + K1B + 4 x D24 | 53 | | 74176 | 74174 | | | 40 | | 74176 Presettable Discade/Binary Counter 74177 Presettable Binary Counter 74178 4-bit Universal Shift Register 74179 4-bit Universal Shift Register (Direct Clear) 74180 9-bit Cdd/Even Parity Checker 74181 ALU/Function Generator 74181 ALU/Function Generator 74182 Look-ahead Carry Generator 74183 Dual Carry-save Full Adder 74184 BCD-to-binary Code Converter 74185 Binary-to-BCD Code Converter 74185 Binary-to-BCD Code Converter 74190 Synch Up/Down Counter (BCD) 74191 Synch Up/Down Counter (BCD) 74192 Up/Down Dual Clock Counter (Binary) 74193 Up/Down Dual Clock Counter (Binary) 74194 4-bit Bidirectional Universal Shift Register 74195 A-bit Bidirectional Universal Shift Register 74196 Preset Binary Counter/Latch 74197 Preset Binary Counter/Latch 74198 8-bit Bidirectional Universal Shift Register 74199 8-bit Bidirectional Universal Shift Register 74276 Quad J-K FF 74197 Preset Binary Counter/Diver 74276 Quad J-K FF 74276 Quad J-K FF 74276 Quad J-K FF 74276 Quad J-K FF 74276 Quad J-K FF | | | | 30 | | 74177 | | | | 49 | | 74179 | | | | 47 | | 4-bit Universal Shift Register (Direct Clear) | | | | 30 | | (Direct Clear) 74180 9-bit Odd/Even Parity Checker 74181 ALU/Function Generator 74182 Look-ahead Carry Generator 74184 BCD-to-binary Code Converter 74185 Binary-to-BCD Code Converter 74195 Synch Up/Down Counter (BCD) 74191 Synch Up/Down Counter (BCD) 74192 Up/Down Dual Clock Counter (Binary) 74193 Up/Down Dual Clock Counter (Binary) 74194 4-bit Bidirectional Universal Shift Register 74195 74196 Preset Decade/Binary Counter/Latch 74197 74198 8-bit Bidirectonal Universal Shift Register 74199 8-bit Bidirectonal Universal Shift Register 74190 74191 74192 74194 74194 74195 Preset Decade/Binary Counter/Latch 74196 74197 74198 8-bit Bidirectonal Universal Shift Register 74199 8-bit Bidirectonal Universal Shift Register 74199 74190 74191 74194 8-bit Bidirectonal Universal Shift Register 74195 74196 74197 74198 8-bit Bidirectonal Universal Shift Register 74199 8-bit Bidirectonal Universal Shift Register 74199 74190 74190 74191 74191 74191 74194 74194 74195 74195 74196 74196 74197 74198 74198 74198 74199 74199 74199 74199 74199 74190 | | | | | | 74180 | | | FS2 + 9 x N2N + B1N | 40 | | ALU/Function Generator | 74180 | 9-hit Odd/Even Parity Checker | | 23 | | N6B + N4B + 2 x N2N + 2 x N4P | | | | 20 | | Table Look-ahead Carry Generator Dual Carry-save Full Adder 2 x A1N | , 4, 6, | ALON GIOLON GONOIGLO | | 113 | | 74183 Dual Carry-save Full Adder 2 x A1N 74184 BCD-to-binary Code Converter These devices are ROM based 74185 Binary-to-BCD Code Converter These devices are ROM based 74190 Synch Up/Down Counter (BCD) 4 x FDP + 4 x X2N + K1B + 3 x V1N + 3 x N3N + 9 x N2N + 2 x T32 + T43 74191 Synch Up/Down Counter (Binary) C47 74192 Up/Down Dual Clock Counter (BCD) 4 x C11 + 4 x V2B + N6B + 2 x N3N + R2N + T32 + T42 + T43 74193 Up/Down Dual Clock Counter (Binary) 4 x C11 + 2 x N6B + 4 x V2B + R2N + D24 + T32 + T42 + T43 74194 4-bit Bidirectional Universal Shift Register FDR + 6 x V1N + R2N + 4 x D36 + D23 + B1N 74195 4-bit Parallel Access Shift Register FDR + 6 x V1N + R2N + 4 x N3N + K1B 74196 Preset Decade/Binary Counter/Latch 4 x FDP + 2 x R2N + 5 x N2N + 4 x N3N + K1B 74197 Preset Binary Counter/Latch 4 x FDP + 2 x R2N + 5 x N2N + 4 x N3N + K1B 74198 8-bit Bidirectional Universal Shift Register 2 x FDR + D24 + 10 x V1N + B1N + R2N + 8 x N2P 74199 8-bit Bidirectional Universal Shift Register 4 x FDP + 5 x N2N + 4 x N3N + K1B 74246 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector | 74182 | Look-ahead Carry Generator | | 36 | | These devices are ROM based Thes | | | | 16 | | These devices are ROM based | | • | | 10 | | 74190 Synch Up/Down Counter (BCD) | 74184 | | These devices are ROM based | | | 74191 Synch Up/Down Counter (Binary) 74192 Up/Down Dual Clock Counter (BCD) 74193 Up/Down Dual Clock Counter (Binary) 74194 4-bit Bidirectional Universal Shift Register 74195 4-bit Parallel Access Shift Register 74196 Preset Binary Counter/Latch 74197 Preset Binary Counter/Latch 74198 8-bit Bidirectional Universal Shift Register 74199 8-bit Bidirectional Universal Shift Register 74199 8-bit Bidirectional Universal Shift Register 74190 8-bit Bidirectional Universal Shift Register 74191 8-bit Bidirectional Universal Shift Register 74192 8-bit Bidirectional Universal Shift Register 74193 8-bit Bidirectional Universal Shift Register 74196 8-bit Bidirectional Universal Shift Register 74197 8-bit Bidirectional Universal Shift Register 74198 8-bit Bidirectional Universal Shift Register 74199 8-bit Bidirectional Universal Shift Register 74199 8-bit Bidirectional Universal Shift Register 74199 8-bit Bidirectional Universal Shift Register 74246 BCD-to-7-Segment Decoder/Driver (30V, Active Low Open Collector) 74247 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 74249 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 74260 Dual 5-input NOR 74260 Quad 2-EXNOR, Open Collector 74273 Octal D-type FF with Clear 74276 Quad J-FF 74276 Quad J-FF | | | These devices are ROM based | | | 74191 Synch Up/Down Counter (Binary) 74192 Up/Down Dual Clock Counter (BCD) 74193 Up/Down Dual Clock Counter (Binary) 74194 4-bit Bidirectional Universal Shift Register 74195 4-bit Parallel Access Shift Register 74196 Preset Decade/Binary Counter/Latch 74197 Preset Binary Counter/Latch 74198 8-bit Bidirectional Universal Shift Register 74199 74190 8-bit Bidirectional Universal Shift Register 74191 4 x FDP + 5 x N2N + 4 x N3N + K1B 74276 20 Cpan Collector) 74244 8CD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 74249 74240 | 74190 | Synch Up/Down Counter (BCD) | 4 x FDP + 4 x X2N + K1B + 3 x V1N + 3 x N3N | | | Table | | | + 9 x N2N + 2 x T32 + T43 | | | 74193 Up/Down Dual Clock Counter (Binary) 74194 4—bit Bidirectional Universal Shift Register 74195 4—bit Parallel Access Shift
Register 74196 Preset Decade/Binary Counter/Latch 74197 Preset Binary Counter/Latch 74198 8—bit Bidirectional Universal Shift Register 74199 74246 BCD—to—7-Segment Decoder/Driver (30V, Active Low Open Collector) 74247 BCD—to—7-Segment Decoder/Driver (15V, Active Low Open Collector) 74248 BCD—to—7-Segment Decoder/Driver (15V, Active Low Open Collector) 74249 BCD—to—7-Segment Decoder/Driver (Open Collector) 74249 BCD—to—7-Segment Decoder/Driver (Open Collector) 74260 Dual 5—input NOR 74260 Quad 2—EXNOR, Open Collector 74273 Octal D—type FF with Clear 74276 Quad J—FF 74276 Quad J—FF 74276 Quad J—FF | 74191 | Synch Up/Down Counter (Binary) | C47 | 68 | | + T42 T4194 | 74192 | Up/Down Dual Clock Counter (BCD) | | 79 | | 74195 4-bit Parallel Access Shift Register 74196 Preset Decade/Binary Counter/Latch 74197 Preset Binary Counter/Latch 74198 8-bit Bidirectional Universal Shift Register 8-bit Bidirectional Universal Shift Register 8-bit Bidirectional Universal Shift Register (JK Serial Input) or: 74246 BCD-to-7-Segment Decoder/Driver (30V, Active Low Open Collector) 74247 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 74248 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 74249 BCD-to-7-Segment Decoder/Driver (Internal Pull-up) 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 74240 Dual 5-input NOR 74260 Quad 2-EXNOR, Open Collector 74260 Quad 2-EXNOR, Open Collector 74273 Octal D-type FF with Clear 74276 Quad J-K FF 74276 Quad J-K FF | 74193 | Up/Down Dual Clock Counter (Binary) | | 72 | | 74195 4-bit Parallel Access Shift Register 74196 Preset Binary Counter/Latch 74197 Preset Binary Counter/Latch 74198 8-bit Bidirectional Universal Shift Register 74199 74240 BCD-to-7-Segment Decoder/Driver 74241 8-bit Bidirectional Universal Shift Register 74242 BCD-to-7-Segment Decoder/Driver 74243 BCD-to-7-Segment Decoder/Driver 74244 BCD-to-7-Segment Decoder/Driver 74245 BCD-to-7-Segment Decoder/Driver 74249 BCD-to-7-Segment Decoder/Driver 74249 BCD-to-7-Segment Decoder/Driver 74249 BCD-to-7-Segment Decoder/Driver 74240 Dual 5-input NOR 74260 Quad 2-EXNOR, Open Collector 74260 Quad 2-EXNOR, Open Collector 74273 Octal D-type FF with Clear 74276 Quad J-FF | 74194 | 4-bit Bidirectional Universal Shift Register | FDR + 6 x V1N + R2N + 4 x D36 + D23 + B1N | 48 | | 74196 Preset Decade/Binary Counter/Latch 74197 Preset Binary Counter/Latch 74198 8-bit Bidirectional Universal Shift Register 74199 8-bit Bidirectional Universal Shift Register (JK Serial Input) 74246 BCD-to-7-Segment Decoder/Driver (30V, Active Low Open Collector) 74247 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 74248 BCD-to-7-Segment Decoder/Driver (16V, Active Low Open Collector) 74249 BCD-to-7-Segment Decoder/Driver (Internal Pull-up) 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 74250 Quad 2-EXNOR, Open Collector 74260 Quad 2-EXNOR, Open Collector 74273 Octal D-type FF with Clear 74276 Quad J-FF | 74195 | 4-bit Parallel Access Shift Register | FS2 + D24 + 2 x V1N | 34 | | 74197 Preset Binary Counter/Latch | 74196 | Preset Decade/Binary Counter/Latch | 4 x FDP + 2 x R2N + 5 x N2N + 4 x N3N + K1B | 49 | | 74199 8-bit Bidirectional Universal Shift Register (JK Serial Input) 2 x FS2 + D24 + 3 x V1N + B1N + R2N + 8 x N2P or: 2 x FDR + 7 x D24 + T33 + 11 x V1N + R2N 74246 BCD-to-7-Segment Decoder/Driver (30V, Active Low Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74247 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74248 BCD-to-7-Segment Decoder/Driver (Internal Pull-up) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74260 Quad 2-EXNOR, Open Collector 4 x V1N 74266 Quad Complementary Output Element 74276 Quad J-type FF with Clear 2 x FDR 74276 Quad J-KFF 4 x (FDP + V1N + D24) + 2 x B1N | 74197 | Preset Binary Counter/Latch | 4 x FDP + 5 x N2N + 4 x N3N + K1B | 47 | | or: 2 x FDR + 7 x D24 + T33 + 11 x V1N + R2N 74246 BCD-to-7-Segment Decoder/Driver (30V, Active Low Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74247 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74248 BCD-to-7-Segment Decoder/Driver (Internal Pull-up) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74260 Dual 5-input NOR 2 x R6B 74265 Quad Complementary Output Element 74266 Quad 2-EXNOR, Open Collector 4 x X1N 74273 Octal D-type FF with Clear 2 x FDR 74276 Quad J-K FF 4 x (FDP + V1N + D24) + 2 x B1N | | | 2 x FDR + D24 + 10 x V1N + R2N + 8 x D36 | 89 | | 74246 BCD-to-7-Segment Decoder/Driver (30V, Active Low Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74247 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74248 BCD-to-7-Segment Decoder/Driver (Internal Pull-up) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74260 Copen Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74260 Quad 2-EXNOR, Open Collector 4 x X1N 74266 Quad 2-EXNOR, Open Collector 4 x X1N 74276 Quad J-Hype FF with Clear 2 x FDR 74276 Quad J-K FF 4 x (FDP + V1N + D24) + 2 x B1N | | Register (JK Serial Input) | 2 x FS2 + D24 + 3 x V1N + B1N + R2N + 8 x N2P | 83 | | 74246 BCD-to-7-Segment Decoder/Driver (30V, Active Low Open Collector) | | | 2 x FDR + 7 x D24 + T33 + 11 x V1N + R2N | 85 | | (30V, Active Low Open Collector) 74247 BCD-to-7-Segment Decoder/Driver (15V, Active Low Open Collector) 74248 BCD-to-7-Segment Decoder/Driver (Internal Pull-up) 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 74260 Quad Complementary Output Element 74265 Quad Complementary Output Element 74266 Quad 2-EXNOR, Open Collector 74273 Octal D-type FF with Clear 74276 Quad J-FF 74276 Quad J-FF 74277 Quad J-FF 74278 Quad J-FF 74278 Quad J-FF 74278 Quad J-FF 74279 Quad J-FF 74279 Quad J-KFF 74279 Quad J-KFF 74270 Quad J-KFF 74271 Ax V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74278 Ax V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74278 Ax V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74278 Ax V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74279 Ax V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74270 Ax V1N + 11 x N2N + 10 x N3N + 4 x N3P | 74246 | | | | | (15V, Active Low Open Collector) 74248 BCD-to-7-Segment Decoder/Driver (Internal Pull-up) 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 74260 Dual 5-input NOR 74265 Quad Complementary Output Element 74266 Quad 2-EXNOR, Open Collector 74273 Octal D-type FF with Clear 74276 Quad J-KFF 74276 Quad J-KFF 74276 Quad J-KFF 74276 Quad J-KFF 74278 Quad J-KFF 74278 Quad J-KFF 74278 Quad J-KFF 74278 Active Low Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 2 x R6B 81N + V1N 2 x K1N 2 x FDR 4 x (FDP + V1N + D24) + 2 x B1N | 74247 | (30V, Active Low Open Collector) | 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P | 53 | | (Internal Pull–up) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74249 BCD-to-7-Segment Decoder/Driver (Open Collector) 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 74260 Dual 5-input NOR 2 x R6B 74265 Quad Complementary Output Element B1N + V1N 74266 Quad 2-EXNOR, Open Collector 4 x X1N 74273 Octal D-type FF with Clear 2 x FDR 74276 Quad J-K FF 4 x (FDP + V1N + D24) + 2 x B1N | 74248 | (15V, Active Low Open Collector) | 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P | 53 | | (Open Collector) | 74249 | (Internal Pull-up) | 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P | 53 | | 74260 Dual 5-input NÓR 2 x R6B 74265 Quad Complementary Output Element B1N + V1N 74266 Quad 2-EXNOR, Open Collector 4 x X1N 74273 Octal D-type FF with Clear 2 x FDR 74276 Quad J-K FF 4 x (FDP + V1N + D24) + 2 x B1N | | | 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P | 53 | | 74265 Quad Complementary Output Element B1N + V1N 74266 Quad 2-EXNOR, Open Collector 4 x X1N 74273 Octal D-type FF with Clear 2 x FDR 74276 Quad J-K FF 4 x (FDP + V1N + D24) + 2 x B1N | 74260 | | | 10 | | 74266 Quad 2-EXNOR, Open Collector 4 x X1N 74273 Octal D-type FF with Clear 2 x FDR 74276 Quad J-K FF 4 x (FDP + V1N + D24) + 2 x B1N | | | | 10 | | 74273 Octal D-type FF with Clear 2 x FDR
74276 Quad J-K FF 4 x (FDP + V1N + D24) + 2 x B1N | | Quad 2-EXNOR Open Collector | | 12 | | 74276 Quad J–K FF 4 x (FDP + V1N + D24) + 2 x B1N | | | | 52 | | | | | | 46 | | | 74347 | BCD-to-7-Segment Decoder/Driver | 4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P | 53 | #
Appendix F: UHB Unit Cell Library Alphanumeric Index | Name | Function | Page No. | |------|---|----------| | A1A | 1-bit Half Adder | 2–219 | | A1N | 1-bit Full Adder | 2–220 | | A2N | 2-bit Full Adder | 2–221 | | A4H | 4-bit Binary Full Adder with Fast Carry | 2–223 | | BD3 | Delay Cell | 2–11 | | BD4 | True Delay Buffer | 2–12 | | BD5 | Delay Cell | 2–13 | | BD6 | Delay Cell | 2–14 | | B1N | True Buffer | 2–10 | | B41 | 4-bit Bus Driver | 2–285 | | C11 | Non-Scan Flip-flop for Counter | 2–197 | | C41 | Non-Scan 4-bit Binary Asynchronous Counter | 2–199 | | C42 | Non-Scan 4-bit Binary Synchronous Counter | 2–202 | | C43 | Non-Scan 4-bit Binary Synchronous Up Counter | | | C45 | Non-Scan 4-bit Binary Synchronous Up Counter | 2–209 | | C47 | Non-Scan 4-bit Binary Synchronous Up/Down Counter | | | DE2 | 2:4 Decoder | 2–264 | | DE3 | 3:8 Decoder | 2–265 | | DE4 | 2:4 Decoder with Enable | 2–267 | | DE6 | 3:8 Decoder with Enable | 2–268 | | D14 | 2-wide 3-AND 4-Input AOI | 2–72 | | D23 | 2-wide 2-AND 3-Input AOI | | | D24 | 2-wide 2-AND 4-Input AOI | | | D34 | 3-wide 2-AND 4-Input AOI | | | D36 | 3-wide 2-AND 6-Input AOI | | | D44 | 2-wide 2-OR 2-AND 4-Input AOI | | | FDM | Non-Scan D Flip-flop | | | FDN | Non-Scan D Flip-flop with Set | | | FDO | Non-Scan D Flip-flop with Reset | | | FDP | Non-Scan D Flip-flop with Set and Reset | | | FDQ | Non-Scan 4-bit D Flip-flop | | | FDR | Non-Scan 4-bit D Flip-flop with Clear | | | FDS | Non-Scan 4-bit D Flip-flop | | | FD2 | Non-Scan Power D Flip-flop | | | FD3 | Non-Scan Power D Flip-flop with Preset | | | FD4 | Non-Scan Power D Flip-flop with Clear and Preset | | | FD5 | Non-Scan Power D Flip-flop with Clear | | | FJD | Non-Scan Positive Edge Clocked Power J-K Flip-flop with Clear | | | FS1 | 4-bit Serial-in Parallel-out Shift Register | | | FS2 | 4-bit Shift Register with Synchronous Load | | | Name | Function | Page No. | |-------|---|----------| | FS3 | 4-bit Shift Register with Asynchronous Load | 2–249 | | G14 | 2-wide 3-OR 4-Input OAI | 2–80 | | G23 | 2-wide 2-OR 3-Input OAI | 2–79 | | G24 | 2-wide 2-OR 4-Input OAI | 2–81 | | G34 | 3-wide 2-OR 4-Input OAI | 2–82 | | G44 | 3-wide 2-AND 2-OR 4-Input OAI | 2–83 | | HOC | Output Buffer for Oscillator and Input Buffer | 2–400 | | HOCR | Output Buffer for Oscillator | 2–402 | | HOS | Output Buffer for Oscillator and Schmitt trigger Input Buffer | 2–401 | | H6C | 3-state Output (I _{OL} = 3.2 mA) and CMOS Interface Input Buffer (True) | 2–351 | | H6CD | H6C with Pull-down Resistance | 2–353 | | H6CF | 3-state Output (I _{OL} = 8 mA) and CMOS Interface Input Buffer (True) | 2–390 | | H6CFD | 3-state Output (I _{OL} = 8 mA) and CMOS Interface Input Buffer (True) | | | | with Pull-down Resistance | 2–392 | | H6CFU | 3-state Output (I _{OL} = 8 mA) and CMOS Interface Input Buffer (True) with Pull-up Resistance | 2–391 | | H6CU | H6C with Pull-up Resistance | | | H6E | Power 3-state Output (I _{OI} = 12 mA) and CMOS Interface Input Buffer (True) | | | H6ED | H6E with Pull-down Resistance | 2–356 | | H6EU | H6E with Pull-up Resistance | 2–355 | | H6R | 3-state Output (I _{OL} = 3.2 mA) and Schmitt trigger Input Buffer (TTL type, True) | 2-360 | | H6RD | H6R with Pull-down Resistance | | | H6RU | H6R with Pull-up Resistance | 2-361 | | H6S | 3-state Output (I _{OL} = 3.2 mA) and Schmitt trigger Input Buffer (CMOS type, True) | 2-357 | | H6SD | H6S with Pull-down Resistance | 2-359 | | H6SU | H6S with Pull-up Resistance | 2-358 | | Н6Т | 3-state Output (I _{OL} = 3.2 mA) and Input Buffer (True) | 2-345 | | H6TD | H6T with Pull-down Resistance | | | H6TF | 3-state Output (I _{OL} = 3.2 mA) and Input Buffer (True) | 2–387 | | H6TFD | 3-state Output (I _{OL} = 3.2 mA) and Input Buffer (True) with Pull-down Resistance | 2-389 | | H6TFU | 3-state Output (I _{OL} = 3.2 mA) and Input Buffer (True) with Pull-up Resistance | | | H6TU | H6T with Pull-up Resistance | | | H6W | Power 3-state Output (I _{OL} = 12 mA) and Input Buffer (True) | 2–348 | | H6WD | H6W with Pull-down Resistance | 2–350 | | H6WU | H6W with Pull-up Resistance | 2-349 | | H8C | 3-state Output Buffer (I _{OL} = 3.2 mA) with Noise Limit Resistance and CMOS Interface Input Buffer (True) | 2–372 | | H8CD | H8C with Pull-down Resistance | | | H8CF | 3-state Output (I _{OI} = 8 mA) with Noise Limit Resistance and CMOS | | | | Interface Input Buffer (True) | 2-396 | | Name | Function | Page No. | |---------|--|----------| | H8CFD | 3-state Output (I _{OL} = 8 mA) with Noise Limit Resistance and CMOS | | | | Interface Input Buffer (True) with Pull-down Resistance | 2–398 | | H8CFU | 3-state Output (I _{OL} = 8 mA) with Noise Limit Resistance and CMOS Interface Input Buffer (True) with Pull-up Resistance | 2–397 | | H8CU | H8C with Pull-up Resistance | | | H8E | Power 3-state Output Buffer (I _{OL} = 12 mA) with Noise Limit Resistance and CMOS Interface Input Buffer (True) | | | H8ED | H8E with Pull-down Resistance | | | H8EU | H8E with Pull-up Resistance | | | | · | | | H8E0 | H8E2 with Pull-down Resistance | | | H8E1 | H8E2 with Pull-up Resistance | 2–3/9 | | H8E2 | High Power 3-state Ouput (I _{OL} = 12 mA) with Noise Limit Resistance and Input Buffer (CMOS type, True) | 2 270 | | H8R | 3-state Output Buffer (I _{OL} = 3.2 mA) with Noise Limit Resistance and Schmitt | 2–3/0 | | нон | Trigger Input Buffer (TTL type, True) | 2–384 | | H8RD | H8R with Pull-down Resistance | 2–386 | | H8RU | H8R with Pull-up Resistance | 2–385 | | H8S | 3-state Output Buffer (I _{OL} = 3.2 mA) with Noise Limit Resistance and Schmitt Trigger Input Buffer (CMOS type, True) | 2–381 | | H8SD | H8S with Pull-down Resistance | | | H8SU | H8S with Pull-up Resistance | | | H8T | 3-state Output Buffer (I _{OL} = 3.2 mA) with Noise Limit Resistance and Input | = 00= | | | Buffer (True) | 2–363 | | H8TD | H8T with Pull-down Resistance | | | H8TF | 3-state Output (I _{OI} = 8 mA) with Noise Limit Resistance and Input Buffer (True) | | | H8TFD | 3-state Output (I _{OL} = 8 mA) with Noise Limit Resistance and Input Buffer (True) with Pull-down Resistance | | | H8TFU | 3-state Output (I _{OI} = 8 mA) with Noise Limit Resistance and Input | 2-090 | | 110110 | Buffer (True) with Pull-up Resistance | 2-394 | | H8TU | H8T with Pull-up Resistance | | | H8W | Power 3-state Output Buffer (I _{OL} = 12 mA) with Noise Limit Resistance | and | | | Input Buffer (True) | | | H8WD | H8W with Pull-down Resistance | | | H8WU | H8W with Pull-up Resistance | | | H8W0 | H8W2 with Pull-down Resistance | | | H8W1 | H8W2 with Pull-up Resistance | | | H8W2 | High Power 3-state Output Buffer (I _{OL} = 12 mA) with Noise Limit | 2 0/0 | | . 10112 | Resistance and Input Buffer (TTL type, True) | 2–369 | | IKB | Clock Input Buffer (Inverter) | | | IKBD | IKB with Pull-down Resistance | | | IKBU | IKB with Pull-up Resistance | | | II B | Clock Input Buffer (True) | | | Name | Function | Page No. | |------|--|----------| | ILBD | ILB with Pull-down Resistance | 2–206 | | ILBU | ILB with Pull-up Resistance | 2–305 | | IT1O | Input Buffer for Oscillator | 2–399 | | I1B | Input Buffer Inverter | 2–295 | | I1BD | I1B with Pull-down Resistance | 2–297 | | I1BU | I1B with Pull-up Resistance | 2–296 | | I1C | CMOS Interface Input Buffer (Inverter) | 2–307 | | I1CD | I1C with Pull-down Resistance | 2–309 | | I1CU | I1C with Pull-up Resistance | 2–308 | | I1R | Schmitt Trigger Input Buffer (TTL Type, Inverter) | 2–319 | | I1RD | I1R with Pull-down Resistance | 2–321 | | 11RU | I1R with Pull-up Resistance | 2–320 | | I1S | Schmitt Trigger Input Buffer (CMOS Type, Inverter) | 2–313 | | I1SD | I1S with Pull-down Resistance | 2–315 | | I1SU | I1S with Pull-up Resistance | 2–314 | | I2B | Input Buffer (True) | 2–298 | | I2BD | I2B with Pull-down Resistance | 2–300 | | I2BU | I2B with Pull-up Resistance | 2–299 | | I2C | CMOS Interface Input Buffer (True) | 2–310 | | 12CD | 12C with Pull-down Resistance | 2–312 | | I2CU | I2C with Pull-up Resistance | 2–311 | | I2R | Schmitt Trigger Input Buffer (TTL Type, True) | 2–322 | | I2RD | I2R with Pull-down Resistance | 2–324 | | I2RU | I2R with Pull-up Resistance | 2–323 | | 128 | Schmitt Trigger Input Buffer (CMOS Type, True) | | | I2SD | I2S with Pull-down Resistance | 2-318 | | I2SU | I2S with Pull-up Resistance | 2–317 | | KAB | Block Clock (OR) Buffer | 2–114 | | KBB | Block Clock (OR x 10) Buffer | 2–115 | | KD2 | Load Gate Fan-in = 2 | 2–291 | | K1B | True Clock Buffer | 2–109 | | K2B | Power Clock Buffer | 2–110 | | КЗВ | Gated Clock (AND) Buffer | 2-111 | | K4B | Gated Clock (OR) Buffer | 2–112 | | K5B | Gated Clock (NAND) Buffer | 2–113 | | LTK | Data Latch | 2–231 | | LTL | 1-bit Data Latch with Clear | 2–233 | | LTM | 4-bit Data Latch with Clear | 2–235 | | LT1 | S-R Latch with Clear | 2–238 | | LT4 | 4-bit Data Latch | | | Name | Function | age No. | |------|---|---------| | MC4 | 4-bit Magnitude Comparator | . 2–281 | | NCB | Power 12-Input NAND | 2–27 | | NGB | Power 16-Input NAND | 2–28 | | N2B | Power 2-Input NAND | 2–18 | | N2K | Power 2-Input NAND | 2–19 | | N2N | 2-Input NAND | 2–17 | | N2P | Power 2-Input AND | 2–49 | | N3B | Power 3-Input NAND | 2–21 | | N3K | Power 3-input NAND | 2–29 | | N3N | 3-Input NAND | 2–20 | | N3P | Power 3-Input AND | 2–50 | | N4B | Power 4-Input NAND | 2–23 | | N4K | Power 4-input NAND | 2–30 | | N4N | 4-Input NAND | 2–22 | | N4P | Power 4-Input AND | 2–51 | | N6B | Power 6-Input NAND | 2–24 | | N8B | Power 8-Input NAND | 2–25 | | N8P | Power 8-Input AND | 2–52 | | N9B | Power 9-Input NAND | 2–26 | | O1B | Output Buffer (I
_{OL} = 8mA, Inverter) | 2–325 | | O1BF | Output Buffer (I _{OL} = 3.2 mA, Inverter) | 2–339 | | O1L | Power Output Buffer (IOL = 12 mA, Inverter) | 2–326 | | O1R | Output Buffer (I _{OL} = 3.2 mA, Inverter) with Noise Limit Resistance | 2–327 | | O1RF | Output Buffer (I _{OL} = 8 mA, Inverter) with Noise Limit Resistance | 2–340 | | O1S | Power Output Buffer (IOL = 12 mA, Inverter) with Noise Limit Resistance | 2–328 | | O2B | Output Buffer (I _{OL} = 3.2 mA, True) | | | O2BF | Output Buffer (I _{OL} = 8 mA, True) | | | O2L | Power Output Buffer (IOL = 12 mA, True) | | | O2R | Output Buffer (I _{OL} = 3.2 mA, True) with Noise Limit Resistance | 2–331 | | O2RF | Output Buffer (I _{OL} = 8 mA, Inverter) with Noise Limit Resistance | 2–342 | | O2S | Power Output Buffer (I _{OL} = 12 mA, True) with Noise Limit Resistance | | | O2S2 | High Power Output Buffer (I _{OL} = 24 mA, True) with Noise Limit Resistance | 2–333 | | O4R | 3-state Output Buffer (I _{OL} = 3.2 mA, True) with Noise Limit Resistance | 2–334 | | O4RF | 3-state Output Buffer (I _{OL} = 8 mA, True) with Noise Limit Resistance | 2–343 | | O4S | Power 3-state Output Buffer (I _{OL} = 12 mA, True) with Noise Limit Resistance | 2–335 | | O4S2 | High Power 3-state Output Buffer (I_{OL} = 24 mA, True) with Noise Limit Resistance | 2–336 | | O4T | 3-state Output Buffer (I _{OL} = 3.2 mA, True) | 2–337 | | O4TF | 3-state Output Buffer (I _{OL} = 3.2 mA, True) | 2–344 | | O4W | Power 3-state Output Buffer (I _{OL} = 12 mA, True) | | | PE5 | 5-bit Even Parity Generator/Checker | 2–257 | | PE8 | 8-bit Even Parity Generator/Checker | 2–259 | | Name | Function | Page No. | |-------|---|----------| | PE9 | 9-bit Even Parity Generator/Checker | 2–261 | | PO5 | 5-bit Odd Parity Generator/Checker | 2–258 | | PO8 | 8-bit Odd Parity Generator/Checker | 2–260 | | PO9 | 9-bit Odd Parity Generator/Checker | 2–262 | | P24 | 4-wide 2:1 Data Selector | | | RCB | Power 12-Input NOR | 2–43 | | RGB | Power 16-Input NOR | 2–44 | | R2B | Power 2-Input NOR | 2–34 | | R2K | Power 2-Input NO | 2–35 | | R2N | 2-Input NOR | 2–33 | | R2P | Power 2-Input OR | 2–55 | | R3B | Power 3-Input NOR | 2–37 | | R3K | Power 3-Input NOR | 2–45 | | R3N | 3-Input NOR | 2–36 | | R3P | Power 3-Input OR | 2–56 | | R4B | Power 4-Input NOR | 2–39 | | R4K | Power 4-Input NOR | 2–46 | | R4N | 4-Input NOR | 2–38 | | R4P | Power 4-Input OR | 2–57 | | R6B | Power 6-Input NOR | 2–40 | | R8B | Power 8-Input NOR | 2–41 | | R8P | Power 8-Input OR | 2–58 | | R9B | Power 9-Input NOR | 2–42 | | SC7 | Scan 4-bit Synchronous Binary Up Counter with Parallel Load | 2–187 | | SC8 | Scan 4-bit Synchronous Binary Down Counter with Parallel Load | 2–192 | | SDDA | Scan 1-Input D Flip-flop with Clock Inhibit | 2–135 | | SDB | Scan 1-Input 4-bit D Flip-flop with Clock Inhibit | 2–138 | | SDD | Scan 2-Input D Flip-flop with Clear, Preset, and Clock Inhibit | 2–131 | | SDH | Scan 2-Input D Flip-flop with Clear and Clock Inhibit | 2–119 | | SDJ | Scan 4-Input D Flip-flop with Clear and Clock Inhibit | 2–122 | | SDK | Scan 6-Input D Flip-flop with Clear and Clock Inhibit | 2–125 | | SHA | Scan 1-Input 8-bit D Flip-flop with Clock Inhibit | 2–142 | | SHB | Scan 1-Input 8-bit D Flip-flop with Clock Inhibit and Q Output | 2–145 | | SHC | Scan 1-Input 8-bit D Flip-flop with Clock Inhibit and XQ Output | 2–148 | | SHJ | Scan 8-bit D Flip-flop with Clock Inhibit and 2-to-1 Data Multiplexer | 2–151 | | SHK | Scan 8-bit D Flip-flop with Clock Inhibit and 3-to-1 Data Multiplexer | 2–154 | | SJH | Scan J-K Flip-flop with Clear and Clock Inhibit | 2–128 | | SR1 | Scan 4-bit Serial-in Parallel-out Shift Register | 2–252 | | T2B | 2:1 Selector | 2–270 | | T2C | Dual 2:1 Selector | 2–271 | | T2D | 2:1 Selector | 2–273 | | 2-424 | | | | Name | Function | Page No. | |------|--------------------------------------|----------| | 2E | Dual 2:1 Selector | 2–274 | | T2F | 2:1 Selector | 2–275 | | T24 | Power 2-AND 4-wide Multiplexer | 2–87 | | T26 | Power 2-AND 6-wide Multiplexer | 2–88 | | T28 | Power 2-AND 8-wide Multiplexer | 2–89 | | T32 | Power 3-AND 2-wide Multiplexer | 2–91 | | T33 | Power 3-AND 3-wide Multiplexer | 2–92 | | T34 | Power 3-AND 4-wide Multiplexer | 2–93 | | T42 | Power 4-AND 2-wide Multiplexer | 2–94 | | T43 | Power 4-AND 3-wide Multiplexer | 2–95 | | T44 | Power 4-AND 4-wide Multiplexer | 2–96 | | T54 | Power 4-2-3-2 AND 4-wide Multiplexer | 2–97 | | T5A | 4:1 Selector | 2–277 | | U24 | Power 2-OR 4-wide Multiplexer | 2–98 | | U26 | Power 2-OR 6-wide Multiplexer | 2–99 | | U28 | Power 2-OR 8-wide Multiplexer | 2–100 | | 32 | Power 3-OR 2-wide Multiplexer | 2–101 | | U33 | Power 3-OR 3-wide Multiplexer | 2–102 | | U34 | Power 3-OR 4-wide Multiplexer | 2–103 | | U42 | Power 4-OR 2-wide Multiplexer | 2–104 | | U43 | Power 4-OR 3-wide Multiplexer | 2–105 | | U44 | Power 4-OR 4-wide Multiplexer | 2–106 | | V1L | Double Power Inverter | 2–9 | | V1N | Inverter | 2–7 | | V2B | Power Inverter | 2–8 | | V3A | 1:2 Selector | 2–279 | | V3B | Dual 1:2 Selector | 2–280 | | X1B | Power Exclusive NOR | 2–62 | | X1N | Exclusive NOR | 2–61 | | X2B | Power Exclusive OR | 2–64 | | X2N | Exclusive OR | 2–63 | | ХЗВ | Power 3-Input Exclusive NOR | 2–66 | | X3N | 3-Input Exclusive NOR | | | X4B | Power 3-Input Exclusive OR | 2–68 | | X4N | 3-Input Exclusive OR | 2–67 | | YL2 | 1-bit Data Latch with TM | | | YL4 | 4-bit Data Latch with TM | | | Z00 | 0 Clip | 2–289 | | Z01 | 1 Clip | | # **CG10 Series CMOS Gate Array Unit Cell Library** | Page | Contents | |-------|---| | 3–2 | Unit Cell Specification Information | | 3–5 | Inverter and Buffer Family | | 3–15 | NAND Family | | 3–31 | NOR Family | | 3–47 | AND Family | | 3–53 | OR Family | | 3–59 | EXNOR/EXOR Family | | 3–69 | AND-OR-Inverter Family | | 3–77 | OR-AND-Inverter Family | | 3–85 | Multiplexer Family | | 3-107 | Clock Buffer Family | | 3–119 | Scan Flip-flop (Positive Edge Type) Family | | 3–181 | Non-scan Flip-flop Family | | 3-209 | Scan Counter Family | | 3-229 | Non-scan Counter Family | | 3-251 | Adder Family | | 3–259 | Data Latch Family | | 3–277 | Shift Register Family | | 3–289 | Parity Generator/Selector/Decoder Family | | 3–317 | Bus Driver Family | | 3-321 | Clip Cells | | 3–325 | I/O Buffer Family | | 3-439 | Appendix A: General AC Specifications | | 3-441 | Appendix B: Hierarchical Structure | | 3-443 | Appendix C: Estimation Tables for Metal Loading | | 3-447 | Appendix D: Available Package Types | | 3-449 | Appendix E: TTL 7400 Function Conversion Table | | 3–453 | Appendix F: Alphanumeric Index of Unit Cells | # **Unit Cell Specification Information** This section contains specifications for all the unit cells available for the CG10 Series CMOS Gate Arrays. The unit cell (gate array) is a functional group of one or more basic cells or gates. #### How to Read a Unit Cell Specification The following paragraphs numbered 1–10 explain how the information given in the CG10 Unit Cell Library is organized. Each of the numbers corresponds to an area of the Unit Cell Library page illustrated on the right. - 1. The unit *cell name* appears in the upper left corner of the page. - 2. The unit cell function is given on the same line as the unit cell name. - 3. The *number of basic cells (BC)* or equivalent that make up the unit cell is shown in the upper right corner of the page. - 4. Propagation delay parameters for each signal path offered by the unit cell are given in a table on the upper right side of the page. The basic delay time of the unit cell (t0) is given in ns. K_{CL}, the delay constant for the cell (delay time per load unit) is given in ns/pF. K_{CL2} and C_{DR2} are a delay constant and an output drive factor used to calculate delay when a unit cell is loaded beyond its published output drive factor (C_{DR}). - 5. The cell symbol (logic symbol) is shown in the top left box under the cell name. - Clock parameters (in ns) for unit cells such as flip-flops and counters that make use of clock signals are given in a table directly below the propagation delay parameters. - 7. Input loading factors are shown in a table directly under the cell symbol box on the left side of the page. The input loading factor is the value of the load placed on a net by the connection of the unit cell input. Unit cell loading factors are shown in load units (lu). The Fujitsu CMOS load unit is the input capacitance of an inverter used for the measurement and calculation of capacitive loads presented to unit cells within the gate array. - The output drive factor is shown directly under the input loading factor. The output drive factor is the maximum number of load units the unit cell can drive while performing at published specifications. - 9. The function table, (truth table) if applicable, is shown in a box at the lower left side of the page. - The unit cell schematic, or equivalent circuit, illustrates how discrete components would be connected to perform the unit cell function. It is shown in the lower right corner of the page or on the page following. 3 3 # **Inverter and Buffer Family** | Page | Unit Cell
Name | Function | Basic
Cells | |------|-------------------|----------------|----------------| | 3–7 | V1N | Inverter | 1 | | 3–8 | V2B | Power Inverter | 1 | | 3–9 | B1N | True Buffer | 1 | | 3–10 | BD3 | Delay Cell | 5 | | 3–11 | BD4 | Delay Cell | 4 | | 3–12 | BD5 | Delay Cell | 9 | | 3-13 | BD6 | Delay Cell | 17 | | FUJIT | SU CMOS GATE AF | RRAY UNIT | CELL S | PECIFICA | ATION | | " CG10 | * Version | |------------|------------------------------|-----------|---------------|-------------|-------------|------------|-------------|-----------------| | Cell Name | Function | | | | | | | Number of B | | V1N | Inverter | | | | | | | 1 | | | I Symbol | | | Pro | pagation D | olay Paran | | | | | i Symbol | t | Jp. | F10, | | in | neter | | | | | t 0 | KCL | ť O | KCL | KCL2
CDR2	Path				0.175	0.067	0.219	0.051	0.067	4	A to X									İ	i				1					ł										ł										j										1				N						ì	i		Α	├ ×						1										ļ										ĺ					Paramete	l			<u> </u>	l Symbol	Typ (ns) *				7 0.0	·				<u> </u>	1,7,2 ()								ı		i				1				1						1				l						_				ı				Pin Name	Input Loading Factor (lu)									Α	1	┥									·	<u> </u>				ı						į.																		Pin Name	Output Driving					ı				×	Factor (lu)	-								^	"	* Minimu	m values for	the typical	operating o	ondition.		·				The val	ues for the v				given by th	e maximum delay				multiplie	er.								I																																																																																																																																																															C10-V1N-E0	Sheet 1/1									FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		------------	-------------------------------	-----------	-------------	---------------	--------------	--------------	--------------	---------------		Cell Name	Function			·····				Number of BC		V2B	Power Inverter							1		Cel	Symbol			Proj	pagation D		eter					t O	KCL	t O	KCL	in KCL2	CDR2	Path				0.156	0.034	0.156	0.028	0.045	7	A to X				000	0.00	000	0.020	0.0.0	'																																												N									Α	> ×										•																									L						Paramete	r				Symbol	Typ (ns) *									İ																			1														Pin Name	Input Loading Factor (lu)									Α	2									••	_					į										1										İ				Pin Name	Output Driving Factor (lu)									×	36					ı						* Minimu	m values fo	r the typical	operating of	condition.								worst case	operating o	ondition are	given by the	maximum delay				multiplie	ər.																																																																																																																																																			C10 V2P E0	Sheet 1/1									C10-V2B-E0	Sheet 1/1							Page 1-2		Cell Symbol True Buffer 1 Cell Symbol Propagation Delay Parameter to the Color of the World	EILUT	SILOMOS GATE AD	DAV LINIT	CELLS	DECIEIC	ATION		" CG10	" Version		---	------------	-------------------	-----------	-------------	-----------------------------	-------------	---------------------------	--------------	-----------------		Cell Symbol Up UD	Cell Name	Function Function	DAT UNI	OELL S	r EUIFIU/	MITON		<u> </u>	Number of BC		Pin Name Input Loading Factor (lu) X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	B1N	True Buffer							1		Pin Name Input Loading Factor (tu) X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.											Pin Name Input Loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.					••			0000	Path		Plin Name Input Loading Factor (tu) X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.							KCL2	CDR2	A to X		Pin Name Input Loading Factor (lu) A 1 Pin Name Output Driving Factor (lu) X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	۸	· v									Pln Name Input Loading A 1 Pln Name Output Driving Factor (Iu) X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	^	`									Pln Name Input Loading A 1 Pln Name Output Driving Factor (Iu) X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.											Pin Name Output Driving Factor (tu) X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.			Paramete	er				symbol	ıyp (ns) "		Pin Name Output Driving Factor (tu) X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.											Pin Name Output Driving X 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.		Factor (lu)									* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	A	1									Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Minimum values for the typical operating condition are given by the maximum delay multiplier.		Factor (lu)									C10_R1N_F0 Sheet 1/1	X	18	The val	ues for the	r the typical worst case	operating o	ondition. ondition are	given by the	e maximum delay			C10_R1N_F0	Sheet 1/1									Page 1–3	C10-B1N-E0	Sheet 1/1							Page 1_2			011 01100 01TE 1DE		0511.0	DEOIEIO	171011		" CC10	7 \/ 0 == 2 ==		------------	-------------------------------	-------------------------------------	-----------	-----------------------------	-------------	------------	--------------	----------------		Cell Name	SU CMOS GATE ARP	RAY UNII	CELLS	PECIFICA	ATION		" CG10	Number of BC		BD3	Delay Cell							5		Cel	l Symbol			Pro		elay Param	eter					t O	IP KCL	t O	KCL to	in KCI 0	6000	Path		Α	×	3.331	0.067	2.944	0.067	0.073	4 4	A to X														Paramete				٠,	Symbol	Typ (ns) *												Pin Name	Input Loading Factor (lu)									A	1									Pin Name	Output Driving Factor (lu)									X	18	* Minimur The value multiplie		r the typical worst case	operating o	condition.	given by the	maximum delay												C10-BD3-E0	Sheet 1/1																	Page 1-4									I # 0010					-------------	--	--------------	--------------	-------------	-------------	---------------	-------------	-----------------	--	--		FUJIT	FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Version Cell Name Function Number of B																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
BD4	Delay Cell							4					l Symbol	1		Pro	pagation D	elay Paran	neter							t	φ			dn		Path						t O	KCL	t O	KCL	KCL2	CDR2							2.225	0.240	2.563	0.174	0.202	4	A to X										1												l								1				1								l			ŀ	1	1											l							_	l	1		İ	ł						Α	×		1			l						•						l												1												1	Į							Paramete			L		J Symbol	Typ (ns) *						- c.amete	·				_,01	. , , , (113)																														l				- 1												1						· · ·	Input Loading	1				- 1						Pin Name	Factor (lu)											A	4					- 1												ľ	,												,																	Pin Name	Output Driving	1											Factor (lu)	ļ										×	6	 						<u> </u>						* Minimu	m values for	the typical	operating o	condition.	aiven by th	e maximum delay						multiplie		MOISI Case	operating o	oridition are	given by a	o maximum oday																																																																																																																																																																																																																C10-BD4-E0	Sheet 1/1											310 004-00	<u> </u>							Page 1-5																FUJIT Cell Name	SU CMOS GATE ARE	RAY UNIT	CELLS	PECIFICA	ATION		" CG10	" Version Number of BC		--------------------	------------------------------	-------------	--------------	-------------	--------------	------------	--------------	---------------------------		BD5	Delay Cell							9		Cell	Symbol			Pro	pagation D	elay Param	neter					t 0	JP KOL	t'0		in	0000	Path				6.825	KCL 0.067	6.469	ксL 0.056	0.084	CDR2	A to X				0.023	0.007	0.403	0.050	0.004	"	AIUA																	1																																			Α	x									~																																Paramete			L	٠ .	Symbol	Typ (ns) *																																		1										ļ				- 1				Pin Name	Input Loading Factor (Iu)									Α	1	1																				l										j								Pin Name	Output Driving	1								х	Factor (lu) 18	ł								^		* Minimu	m values fo	the typical	operating o	ondition.						The val	ues for the				given by the	maximum delay				multiplie	er.								L																																																																																																																																																					C10-BD5-E0	Sheet 1/1																	Page 1-6		FILIIT	SU CMOS GATE AR	RAY LINIT	CELLS	PECIFIC	ATION		" CG10	" Version		------------	-------------------------------	-----------	-------------	---------------	-------------	------------	-------------	-----------------		Cell Name	Function	OIVII	O		,,,,,,,,,			Number of BC		BD6	Delay Cell							17		Cel	l Symbol			Pro		elay Paran	neter					10	KCL	to	KCL	tn KCL2	CDR2	Path				13.750	0.072	13.638	0.051	0.079	4	A to X				10.700	0.072	10.000	0.00	1 0.070	'							ĺ		l										l	1 1					1		1											i		1							1		1				Α	×																1 1					1										ļ				}						Paramete	эг				Symbol	Typ (ns) *				1																				Ì					l					l					ĺ				[-				ŀ				Pin Name	input Loading Factor (lu)	į				1				Α	1	1										ł				- 1						ł										j								Pin Name	Output Driving Factor (lu)					- 1				x	18	1								^		* Minimu	m values fo	r the typical	operating o	condition.						The val	ues for the				given by th	e maximum delay				multiplie	er.									J																																																																																																																																																				C10-BD6-E0	Sheet 1/1									C10-000-E0	Sheet 1/1							Page 1-7										1 age 1-7	## **NAND Family**	Page	Unit Cell Name	Function	Basic Cells		------	-------------------	-------------------------	----------------		3–17	N2N	2-input NAND	1		3–18	N2B	Power 2-input NAND	3		3–19	N2K	Fast Power 2-input NAND	2		3-20	N3N	3-input NAND	2		3–21	N3B	Power 3-input NAND	3		3–22	N3K	Fast Power 3-input NAND	3		3–23	N4N	4-input NAND	2		3-24	N4B	Power 4-input NAND	4		3–25	N4K	Fast Power 4-input NAND	4		3-26	N6B	Power 6-input NAND	5		3–27	N8B	Power 8-input NAND	6		3-28	N9B	Power 9-input NAND	8		3–29	NCB	Power 12-input NAND	10		3–30	NGB	Power 16-input NAND	11	3	Cell Name	SU CMOS GATE ARF	IAT UNIT	CELL 3	r EGIFICA	TION		0070	" Version Number of		-----------	-------------------------------	----------------------------------	--------------	---------------------------	--------------	-----------------------------	-------------	------------------------		N2N	2-input NAND							1		Cel	l Symbol			Pro	pagation D	elay Paran	neter	i					ıp		to	in		Path				0.231	KCL 0.067	0.350	KCL 0.079	KCL2	CDR2	A to X		A1 A2	∩ o— ×									A2	D^											Paramete				1	Symbol	Typ (ns) *						_				135 ()		Pin Name	Input Loading Factor (lu)									A	1									Pin Name	Output Driving Factor (lu)									x	18	* Minimu The val multiplie		the typical worst case	operating o	condition. condition are	given by th	e maximum delay																																ELLIT	SU CMOS GATE ARE	TIMIT VAC	CELL C	DECITIO	ATION		" CG10 "	Version		---	------------------------------	-------------------------------------	-------------	-----------------------------	-------------	------------	--------------	---------------		Cell Name	Function	AT UNII	CELLS	PECIFICA	ATION		CG10	Number of BC		N2B	Power 2-input N	IAND			-			3		Cel	Symbol			Pro	pagation D	elay Paran	neter					tu				in		Path		A1 ————————————————————————————————————	D•—×	0.688	0.034	0.888	0.023	KCL2	CDR2	A to X																								Paramete					Symbol	Typ (ns) *												Pin Name	Input Loading Factor (lu)									A	1									Pin Name	Output Driving									×	Factor (Iu)									^	36	* Minimur The value multiplie	ues for the	r the typical worst case	operating o	condition.	given by the	maximum delay												C10-N2B-E0	Sheet 1/1																	Page 2-2		FUJI	TSU CMOS GATE AR	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		------------	-------------------------------	-------------	--------------	-------------	-------------	------------	-------------	-----------------		Cell Name	Function							Number of B		N2K	Power 2-input	NAND						2			II Company			D	pagation D	alau Danas				Ce	li Symbol	+	ıb	Proj		in Paran	reter					10	KCL	t O	KCL	KCL2	CDR2	Path				0.231	0.034	0.269	0.039	0.051	7	A to X				1																				}																																						A1	√ "									A2	×										-												Ì																			Paramete	er				Symbol	Typ (ns) *								- 1										- 1																														ı				Pin Name	Input Loading										Factor (lu)	-				i				A	2																														ļ	4								Pin Name	Output Driving Factor (lu)	1				ļ				×	36	1										* Minimu	m values for	the typical	operating o	ondition.											given by th	e maximum delay			ļ	multiplie	er.									<u> </u>																																																																																																																																																							
																								C10-N2K-E0	Sheet 1/1									FUJIT Cell Name	SU CMOS GATE ARF	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version Number of BC		--------------------	------------------	-----------	--------------	-------------	-------------	-------------	-----------------	---------------------------		N3N	3-input NAND							2		Cell	l Symbol			Pro	pagation D	elay Para	meter					10	JP KCL		KCL	tn KCL2	CDR2	Path				0.325	0.067	0.431	0.107	NOL2	CURZ	A to X				0.525	0.007	0.451	0.107	ļ	1 1	7107									1 1									1									1	1	1 1								1	l	1 1			A1	_					l				A2	b ×				l		1 1			АЗ	V														l																	Paramete	r				Symbol	Typ (ns) *									į									1										1										- 1					Input Loading					İ				Pin Name	Factor (lu)									A	1]									ı										- 1					Output Driving									Pin Name	Factor (lu)									х	14											* Minimu	m values for	the typical	operating o	condition.		maximum delay				multiplie		worst case	operating o	ondition at	re given by the	maximum delay																																																																																																																																																								C10 NON EC	Choot 4/4									C10-N3N-E0	Sheet 1/1							Page 2-4												FUJIT	SU CMOS GATE AR	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		------------------	-------------------------------	----------	--------------	------------	-------------	--------------	-------------	-----------------		Cell Name	Function							Number of B		N3B	Power 3-input I	DNAN] 3			l I Symbol	1		Pro	pagation D	elav Paran	neter				-,	tı	qı			n		Path				10	KCL	t O	KCL	KCL2	CDR2					0.800	0.034	1.063	0.023			A to X					.									1										l					i i					l					}				~	1]]			A1 ——— A2 ———	Ъ×									A3 ——)	1															1					1										Paramete	!			<u> </u>	Symbol	Typ (ns) *														1														1						l				1					Input Loading	-					į			Pin Name	Factor (lu)	ļ								A	1	1										ľ										ł				- 1						1								Pin Name	Output Driving Factor (lu)	}								x	36	1											m values for									The val		worst case	operating o	ondition are	given by th	e maximum delay				mulupik	ar.																																																																																																																																																													C10-N3B-E0	Sheet 1/1																	Page 2-5		F11115	OU 01400 04TF 4DF	3 4 3 / 1 15 117		DEOLEIO	A T1011		L # 0040 P	Maraian		---	-------------------------------------	-----------------------------------	-------	-----------------------------	-------------	----------------------------	--------------	-------------------------		Cell Name	SU CMOS GATE ARF	AAY UNII	CELLS	PECIFICA	ATION		" CG10 "	Number of BC		N3K	Power 3-input N	IAND						3		Cel	l Symbol			Pro	pagation D	elay Param	neter						dr.			nt		Path		A1 ————————————————————————————————————	∑ —×	to 0.300	0.030	t0 0.406		dn KCL2	CDR2	Path A to X Typ (ns) *		Pin Name	input Loading Factor (lu)										2					ĺ				Pin Name	Output Driving Factor (lu) 28											* Minimui The val multiplie		r the typical worst case	operating o	condition. ondition are	given by the	maximum delay												C10-N3K-E0	Sheet 1/1							Page 2-6										. Faue 2-0		Cell Name Function A-input NAND 2 Cell Symbol Propagation Delay Parameter Input Loading Factor (Iu) A	FILIT	SUCMOS GATE ARE	RAY LINIT	CELLS	PECIFIC	ATION		" CG10	" Version			--	------------	------------------------------	-----------	--------------	-------------	-------------	---------------	--------------	-------------	----------		Cell Symbol Tup To KCL K	Cell Name	Function		<u> </u>						er of BC		Cell Symbol Tup To KCL K	N4N	4-input NAND							2	2		Pin Name Input Leading Factor (lu) A 1 Pin Name Pactor (lu) A 1 Pin Name Output Driving Factor (lu) X 10 * Minimum values for the typical operating condition are given by the maximum dela multiplier.			r		Pro	nagation D	elay Parar	neter				Pin Name Input Loading Factor (lu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.		i Oyiiiboi	tı	JD QL	7.10			iletoi	D. 11			Pin Name Input Leading Factor (Iu) A 1 Pin Name Soutput Driving Factor (Iu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.							KCL2	CDR2				Pin Name Input Leading Factor (lu) A 1 Pin Name Sector (lu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			0.388	0.067	0.463	0.135	1	1	A to X			Pin Name Input Leading Factor (lu) A 1 Pin Name Sector (lu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.						ł	l	Ì				Pin Name Input Leading Factor (lu) A 1 Pin Name Sector (lu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			1					!	ı			Pin Name Input Leading Factor (lu) A 1 Pin Name Sector (lu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.				ľ			ł	İ				Pin Name Input Leading Factor (lu) A 1 Pin Name Sector (lu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.				ł								Pin Name Input Loading Factor (lu) A 1 Pin Name Soutput Driving Factor (lu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.		U		l								Pin Name Input Loading Factor (lu) A 1 Pin Name Pactor (lu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.		b x										Pin Name Input Loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 10 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.		1)		ļ																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
Pin Name Input Loading Factor (lu) A			1	}			1	j l				Pin Name Input Loading Factor (lu) A								}				Pin Name Output DrIving Factor (Iu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			Paramete	er				Symbol	Typ (n	s) *		Pin Name Output DrIving Factor (Iu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.												Pin Name Output DrIving Factor (Iu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.												Pin Name Output DrIving Factor (Iu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.							}					Pin Name Output DrIving Factor (Iu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			l				1					Pin Name Output DrIving Factor (Iu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.	Pin Name	Input Loading Factor (Iu)					ł					Pin Name Sector (Iu) X 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.	A		İ				j					* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			1				j					* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.							1					* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.							l					* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.	Pin Name	Output Driving Factor (lu)										The values for the worst case operating condition are given by the maximum dela multiplier.	x											multiplier.			* Minimu	m values for	the typical	operating o	condition.	airea by th	a mavimum d	lolov							WOISE CASE	operating G	originori are	a given by a	o maximum o	ыау																																																																																																																																																																										C10 NAN EO I Shoot 1/1 I	C10 NAN EC	Choot 4/4										C10-N4N-E0 Sheet 1/1 Page 2-	C10-N4N-E0	Sheet 1/1							Page	2-7		FU.IIT	SU CMOS GATE ARE	RAY LINIT	CELLS	PECIFICA	ATION		" CG10	" Version	_		------------	------------------	--------------	------------------------------	---------------	--------------	------------	----------------	-----------------	----		Cell Name	Function	0.411	J VI					Number of	ВС		N4B	Power 4-input N	IAND	والتاليز وسيطار وسيادا الأوس					4			Cell	Symbol			Proj	pagation D		meter						tu		10		in KCIO	CDDC	Path					t 0 0.863	KCL 0.034	1.188	KCL 0.023	KCL2	CDR2	A to X					0.003	0.034	1.100	0.023	1		7.0 X									1																																						A1	D				l						A2	р—— х										A3]]																																		Paramete	r				Symbol	Typ (ns) *									1																											2	i										Pin Name	Input Loading											Factor (lu)								i		A	1																																Pin Name	Output Driving											Factor (lu)										X	36	* Minimu	m values fo	r the typical	operating								The val	ues for the	worst case	operating c	ondition a	re given by th	e maximum delay					multiplie	er.									L	L																																																																																																																																																																			C10-N4B-E0	Sheet 1/1							Page 2-											1 Page 2-3	×		FUJIT	SU CMOS GATE ARE	RAY UNIT	CELLS	PECIFICA	ATION		" CG10	"Version		----------------	-------------------------------	----------	----------	----------	------------	------------	-------------	-----------------		Cell Name	Function		<u> </u>					Number of BC		N4K	Power 4-input N	DNAN						4		Cel	Symbol			Pro	pagation D		neter					t O	KCL	t O	KCL	in KCL2	CDR2	Path		A1 A2 A3	∫ ₀— ×	0.350	0.030	0.475	0.056	ROLE	ODAZ	A to X		A4	D	Paramete	er				Symbol	Typ (ns) *			input Loading									Pin Name	Factor (lu)									A	2									Pin Name	Output Driving Factor (lu)									X	20						given by th	e maximum delay												C10-N4K-E0	Sheet 1/1																	Page 2-9		FUJIT Cell Name	SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version Number of BC		---	-------------------------------	-----------	--------------	------------	------------------	-----------------	-----------------	---------------------------		N6B	Power 6-input N	IAND						5		L							·			Cel	l Symbol	t t	JD D	Pro	pagation D to	elay Para In	meter					t O	KCL	t O	KCL	KCL2	CDR2	Path				0.856	0.034	1.263	0.023	0.039	7	A to X									1										1				_									A1 ————————————————————————————————————	1)									A3 ——	р—— х									A5							1 1			A6	V						1 1					Paramete	er			١	Symbol	Typ (ns) *																						İ							1				r						1			Pin Name	Input Loading Factor (lu)					İ				A	1					İ																								Pin Name	Output Driving Factor (lu)									×	36												m values for					maximum delay				multiplie		worst case	operating o	ondition a	re given by the	maximum delay			<u> </u>	L								Equivalent Circuit										A1 —										A2 D										A4 —		— x								A5																																																																																C10-N6B-E0	Sheet 1/1							Dog 0 40										Page 2-10		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" V												--	-------------------------------	-------------------------------------	---------------	---------------------------	-------------	-----------------------------	--------------	---------------	--	--		Cell Name	Function							Number of BC				N9B	Power 9-input N	IAND						8				Cel	Symbol			Pro	pagation D		neter							t O	KCL	10	KCL	in KCL2	CDR2	Path						0.888	0.034	1.663	0.028	0.051	7	A to X				A1 ————————————————————————————————————	> ×											A7												A9		Paramete				L	Symbol	Typ (ns) *																Pin Name	Input Loading Factor (lu)					ļ	l					A	1											Pin Name	Output Driving Factor (lu)											X	36	* Minimur The value multiplie	ues for the v	the typical worst case	operating o	condition. condition are	given by the	maximum delay				Equivalent Circuit A1 A2 A3 A4 A5 A6 A7 A8 A9		— х										C10-N9B-E0	Sheet 1/1							Page 2–12			## **NOR Family**	Page	Unit Celi Name	Function	Basic Cells		------	-------------------	--------------------	----------------		3–33	R2N	2-input NOR	1		3–34	R2B	Power 2-input NOR	3		3–35	R2K	Power 2-input NOR	2		3–36	R3N	3-input NOR	2		3–37	R3B	Power 3-input NOR	3		3–38	R3K	Power 3-input NOR	3		3–39	R4N	4-input NOR	2		3-40	R4B	Power 4-input NOR	4		3–41	R4K	Power 4-input NOR	4		3-42	R6B	Power 6-input NOR	5		3-43	R8B	Power 8-input NOR	6		3–44	R9B	Power 9-input NOR	8		3–45	RCB	Power 12-input NOR	10		3–46	RGB	Power 16-input NOR	11	3	EUNT	CILCMOS CATE ADI	DAY HAIT	CELL C	DECIFIC	ATION		" CG10	" Version		---------------	------------------	----------	-----------	--------------	--------------	---------------	-------------	------------------		Cell Name	SU CMOS GATE ARE	TAT UNII	CELLS	PECIFICA	ATION		CG10	Number of BC		R2N	2-input NOR							1		Cel																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
Symbol			Proj	pagation D		neter						IP KCL	40		in VOLO	0000	Path				0.250	0.122	t 0 0.275	KCL 0.045	KCL2 0.062	CDR2	A to X		A1 A2	₽ ⊶×	Paramete		0.273	0.043		Symbol	Typ (ns) *		Pin Name	Input Loading										Factor (lu)	1								A Pin Name	1 Output Driving										Factor (lu)									X	14						given by th	ie maximum delay		C10-R2N-E0	Sheet 1/1																	Page 3-1										1/		-------------	-------------------------------	-------------------------------------	--------------	-----------------------------	-------------------------	------------	--------------	---------------		Cell Name	SU CMOS GATE ARE	RAY UNII	CELL S	PECIFICA	ATION		" CG10 "	Number of BC		R2B	Power 2-input N	NOR	·					3		Cel	l Symbol	Γ		Proj	pagation D	elay Paran	neter						ıp		to			Path				0.850	ксL 0.034	0.781	KCL 0.023	KCL2	CDR2	A to X		A1 A2	> ×											Paramete	er				Symbol	Typ (ns) °		Pin Name	Input Loading Factor (lu)									A	1									Pin Name	Output Driving Factor (lu)									x	36	* Minimur The value multiplie		r the typical worst case	operating coperating co	condition.	given by the	maximum delay												C10-R2B-E0	Sheet 1/1									J.J.,.ED-EJ	<u> </u>							Page 3-2		FUJIT Cell Name	SU CMOS GATE ARE	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version Number of BC		--------------------	-------------------------------	----------------------------------	-------	-----------------------------	-------------	------------	-------------	---------------------------		R2K	Power 2-input N	NOR						2			l Symbol			Pro	pagation D		neter					t O	KCL	t O	KCL to	in KCL2	CDR2	Path		A1 A2	▷ —×	0.281	0.059	0.281	0.034			A to X														Paramete	r				Symbol	Typ (ns) *												Pin Name	Input Loading Factor (lu)									A	2									Pin Name	Output Driving Factor (lu)									×	36	* Minimu The val multiplie		r the typical worst case	operating o	condition.	given by th	e maximum delay												C10-R2K-E0	Sheet 1/1		····					Page 3–3		Cell Name	SU CMOS GATE ARI	RAY UNIT	CELLS	PECIFICA	ATION		" CG10 "	Version Number of BC		--------------	------------------------------	----------	--------------	---------------	--------------	--------------	--------------	-------------------------												R3N	3-input NOR							2		Cel	l Symbol			Pro	pagation D		neter					10	KCL	10	KCL	in KCL2	CDR2	Path				0.525	0.172	0.288	0.051	0.067	4	A to X									·																																											A1	A									A2	 - ×									A3	D																					Paramete				L	Symbol	Tun (ne) t				Paramete	.				Symbol	Typ (ns) *																																		ļ				ı				Pin Name	Input Loading Factor (lu)	İ								A	1	1														l																								Pin Name	Output Driving					į				x	Factor (lu)	ł				l						* Minimu	m values for	r the typical	operating of	ondition.						The val		worst case	operating o	ondition are	given by the	maximum delay				moluplie	۶۱. 																																																																			1																																																																																0.00 0011 00	01									C10-R3N-E0	Sheet 1/1							Page 3-4										aye 5-4		FUJIT	SU CMOS GATE ARF	RAY UNIT	CELL S	PECIFIC	ATION		* CG10	" Ve	ersion			------------	-------------------------------	-----------	-------------------------------------	-------------	-------------	--------------	-------------	------	--------------	--		Cell Name	Function								Number of BC			R3B	Power 3-input N	IOR							3				Symbol .			Dear	nagation D	elav Paren	neter					Con	i Oyiiiooi	ħ	Propagation Delay Parameter tup tdn											10	KCL	t O	KCL	KCL2	CDR2		Path					1.244	0.034	0.856	0.023				A to X					Į					1 1																			1										j							1						_	1					1		:			A1	x											A3 —	^											İ '																										Paramete				٠	Symbol		Typ (ns) *]																																					1											Pin Name	Input Loading Factor (lu)					ı						Α	1																													- 1												- 1						Pin Name	Output Driving Factor (lu)											×	36					1								* Minimu	m values for	the typical	operating o	ondition.										worst case	operating o	ondition are	given by th	e ma	ximum delay					multiplie	er.										<u> </u>																																į																																																																																																																																																			C10-R3B-E0	Sheet 1/1																			L	Page 3-5															FUJIT Cell Name	SU CMOS GATE ARE	RAY UNIT	CELLS	PECIFICA	ATION		" CG10 "			--------------------	-------------------------------	----------	--------------	------------	--------------	---------------	--------------	----------------------			Function							Number of BC		R3K	Power 3-input N	NOR						3		Cel	Symbol			Pro	pagation D	elay Paran	neter					t O	JP VOI	t O		in KOLO	0000	Path				0.413	KCL 0.072	0.200	KCL 0.023	KCL2 0.039	CDR2	A to X				0.413	0.072	0.200	0.023	0.039	'	Alox									1										1 1																							A4	_	į ·	}							A1 ——— A2 ———	₽ > —×									A3	Ð																															Paramete	er				Symbol	Typ (ns) *																		1										l															Input Loading	ĺ				ı				Pin Name	Factor (lu)]								A	2											İ																				1								Pin Name	Output Driving Factor (lu)									X	20							********************					m values fo									The val		worst case	operating o	ondition are	given by the	maximum delay																																																																																																																																												:																						C10-R3K-E0	Sheet 1/1							Page 3-6												Cell Symbol Cell Symbol Cell Symbol Tup Tropsgation Delay Parameter Tup To KCL 10 KCL CDR2 Path 10 KCL 10 KCL CDR2 Path 0.775 0.227 0.288 0.051 0.073 4 A to X Parameter Parameter Parameter Symbol Typ (ns)* Pin Name Input Leading Factor (lu) A 1 Pin Name Output Driving Factor (lu) X 6 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version				--	------------	-------------------------------	----------	-------------	-----------------------------	-------------	------------	-------------	-----------------	--	--		Cell Symbol No No No No No No No N	Cell Name	Function							Number of BC				Pin Name Input Loading Factor (tu) A 1 Pin Name Practor (tu) A 1 Pin Name Substitute of the worst case operating condition are given by the maximum delay multiplier.	R4N	4-input NOR							2				Pin Name Input Leading Factor (tu) A 1 Pin Name Output Driving Factor (tu) X 6 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	Cel	Symbol			Pro			neter					Pin Name Input Leading Factor (tu) A 1 Pin Name Factor (tu) X 6 Minimum values for the typical operating condition. The values for the worst case operating condition are given by																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
the maximum delay multiplier.					• • •			LCDDa	Path				Pin Name Input Loading Factor (tu) A 1 Pin Name Output Driving Factor (tu) X 6 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.									A to X				Pin Name Output Driving Factor (lu) X 6 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	A2 A3	- ×						Symbol	Typ (ns) *				Plin Name Output Driving Factor (lu) X 6 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-R4N-E0 Sheet 1/1	Pin Name	Input Loading											Pln Name Output Driving Factor (lu) X * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-R4N-E0 Sheet 1/1													* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-R4N-E0 Sheet 1/1	A												* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. **C10-R4N-E0** Sheet 1/1**	Pin Name	Output Driving Factor (lu)											210-R4N-E0 Sheet 1/1	^	•	The val	ues for the	r the typical worst case	operating o	condition.	given by th	e maximum delay				C10-H4N-E0 Sheet 1/1														C10-R4N-E0	Sheet 1/1		-					Page 3-7			Cell Name Function Number of BC R4B Power 4-input NOR 4 Cell Symbol Propagation Delay Parameter tdn tup Path KCL2	CDR2 t O KCL t O KCL 1.563 0.034 0.838 0.023 A to X Parameter Symbol Typ (ns) * Input Loading Factor (lu) Pin Name Α **Output Driving** Pin Name Factor (lu) x 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-R4B-E0 Sheet 1/1 Page 3-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Version		SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version				----------------	-------------------------------	-----------------------------------	--------	---------------------------	-------------	----------------------------	-------------	------------------	--	--		Cell Name	Function					····		Number of BC				R4K	Power 4-input N	NOR						4				Cell	Symbol			Pro	pagation D	elay Paran	neter							t O	IP KCL	t O	KCL	fn KCL2	CDR2	Path				A1	A	0.675	0.097	0.219	0.017	0.028	7	A to X				A2 A3 A4	A3 A4													Paramete					Symbol	Typ (ns) *				Pin Name	Input Loading Factor (lu)											Α	2											Pin Name	Output Driving Factor (lu)											x	12	* Minimus The val multiplie		the typical worst case	operating o	condition. ondition are	given by th	ne maximum delay				C10-R4K-E0]	Sheet 1/1											<u> </u>	Oncot I/1							Page 3-9				FULL	CU 01400 04TF 4DF	2 437 1 15 117	0511.0	DEOLEIO	171011		1 " 0010 "	Varsian		---	-------------------	----------------	--------	----------------	--------------	----------	--------------	---------------		Cell Name	SU CMOS GATE ARF	RAY UNII	CELLS	PECIFICA	ATION		" CG10 "	Number of BC		R6B	Power 6-input N	IOR				····		5			l Symbol	Ι	neter										ıp		to	'n		Path				1.406	0.034	t'0 0.925	KCL 0.023	KCL2	CDR2	A to X		Ì		1.400	0.004	0.525	0.020																						1 1										1			A1	A									A2 ———	H									A4	×									A5	H]			A6	D											Paramete	r			<u> </u>	Symbol	Typ (ns) *									· i					l																								İ					Input Loading	1					1			Pin Name	Factor (lu)	l								A	1															-															Output Driving					1				Pin Name	Factor (lu)									×	36	Minimus		- at - a - ! !											operating o		given by the	maximum delay				multiplie	er.								L .	I								Equivalent Circuit										A1 —										A2	7 ~ ,									A4 ——		x								A5										A6 ————————————————————————————————————																																																																																C10-R6B-E0	Sheet 1/1												_					Page 3-10		FI	OLLOWOO OATE ADD	2427112117	0511.0	DEOLEIO	ATION		# CC10 "	Varaian			---	---	------------	--------------	-------------	-------------	--	--------------	---	--		Cell Name	FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Version Cell Name Function Number of BC										R9B	Power 9-input N	IOR						8			Cel	l Symbol			Pro	pagation D	elay Paran	neter						tı	Path										10	KCL	t0	KCL	KCL2	CDR2	A to X					1.556	0.034	1.050	0.023			AIOX																					1				A1	A						1 1				A2											A3	H .										A4 ————————————————————————————————————	Б— х										A6	Π ^										A7	H										A8											A9	-	Paramete	er			' 	Symbol	Typ (ns) *											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									- 1											Į.																											Pin Name	Input Loading Factor (Iu)										A	1										^	•											i '																	l					Output Driving										Pin Name	Factor (lu)					ļ					×	36												* Minimu	n values for	the typical	operating o	xondition.	aiven by the	maximum delay			}		multiplie		MO131 0430	operating o	oridition are	given by aid	maximom ociay					L									Equivalent Circuit											1 _											A1											A3 —											A4 ————————————————————————————————————	L-&										A5	─ —ᠯ—ऻ≫	— x									A6 ————————————————————————————————————											A7 —	1										A8											A9 ————											1											1																																												C10-R9B-E0	Sheet 1/1																		Page 3-12		## **AND Family**	Page	Unit Cell Name	Function	Basic Cells		------	-------------------	-------------------	----------------		3-49	N2P	Power 2-input AND	2		3-50	N3P	Power 3-input AND	3		3–51	N4P	Power 4-input AND	3		3-52	N8P	Power 8-input AND	6		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION								" CG10 " Version				---	---	----------	-------	-------	-------	-------	--------	------------------	--------------	--		Cell Name Function N2P Power 2-input AND									Number of BC			Cell Symbol Propagation Delay Parameter												Con Cymbol		tup tdn					Path							t O	KCL	ťÒ	KCL	KCL2	CDR2	<u> </u>				A1 X		0.631	0.034	0.538	0.023	0.034	7	ŀ	A to X										İ																																																																																																							Paramete	r				Symbol		Typ (ns) *																																																			Pin Name	Input Loading Factor (lu)											Α	1					İ						,,	'					l												ľ												l						Pin Name	Output Driving Factor (lu)											x	36	1											* Minimum values for the typical operating condition.												The values for the worst case operating condition are given by the maximu								ximum delay				multiplier.																																																																																																																																																																																			C10-N2P-E0	Sheet 1/1																				Page 4-1				SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10 '			------------	------------------------------	-----------	--------------	--------------	--------------	--------------	---------------	---------------		Cell Name	Function							Number																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
of BC		N3P	Power 3-input A	ND						3		Cel	Symbol			Proj	pagation D	elay Paran	eter						ıp			in	0000	Path				t 0	KCL	10 0.000	KCL	KCL2	CDR2	A to X				0.825	0.034	0.669	0.023	0.034	7	A IO A																																																				A1	\cap									A2	x									А3 ——																																Paramete	r				Symbol	Typ (ns) *								- 1	İ									- 1											1					ĺ				1	Ì					}				i	1			Pin Name	Input Loading Factor (lu)					- 1	l			Α	1					- 1	ł				·						l									1	Ì										ı			Pin Name	Output Driving					1	1				Factor (lu)					l	l			x	36						L					* Minimu	m values for	the typical	operating o	xondition.	aiven hy the	maximum delay				multiplie		1013t Case 1	operating of	ondition are	givein by and	maximum delay				L																																																																																																																																																																								C10-N3P-E0	Sheet 1/1							Dans 4 C										Page 4-2		Cell Symbol Cell Symbol Propagation Delay Parameter 10 KCL 10 KCL CDR2 Path				CELLS		111011			" Version		--	-----------	----------------	-----------	-------------	---------------	-------------	------------	-------------	-----------------		Cell Symbol tup toth KCL 10 KCL COR2 Path 0.988 0.034 0.744 0.023 0.034 8 A to X Parameter Symbol Typ (na)* Pin Name Input Loading Factor (tu) A 1 Pin Name Output Driving Factor (tu) **Name Parameter Factor (tu) **Name Parameter Symbol Typ (na)** Ty	NIAD			·					Number of		Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Symbol Typ (na)* Typ (na)* Pin Name Parameter A 1 Pin Name Output Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.	114	Power 4-input	AND						3		Pin Name Input Loading Pactor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delar multiplier.	Cell	Symbol	T		Pro	pagation D	elay Paran	neter			Pin Name Input Loading Factor (lu) A 1 Pin Name Output Driving Factor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.									Path		Pin Name Input Loading Factor (lu) A 1 Pin Name Output Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.											Pin Name Input Loading Factor (tu) A 1 Pin Name Cutput Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			0.988	0.034	0.744	0.023	0.034	8	AIOX		Pin Name Input Loading Factor (tu) A 1 Pin Name Cutput Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			l	l	i	Ì		1			Pin Name Input Loading Factor (tu) A 1 Pin Name Cutput Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			i		1						Pin Name Input Loading Factor (tu) A 1 Pin Name Cutput Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.					1	1	{				Pin Name Input Loading Factor (tu) A 1 Pin Name Cutput Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.						1	[Pin Name Input Loading Pactor (lu) A 1 Pin Name Pactor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.		D	1		}		ļ				Pin Name Input Loading Pactor (lu) A 1 Pin Name Pector (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delements of the worst case operating condition are given by the maximum delements.		x				i					Pin Name Input Loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.)		l		ŀ					Pin Name Input Loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.						ł	1				Pin Name Input Loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			<u> </u>								Pin Name Coutput Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			Paramete	er				Symbol	Typ (ns) *		Pin Name Coutput Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.											Pin Name Coutput Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.]								Pin Name Coutput Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			1								Pin Name Coutput Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.											Pin Name Output Driving Factor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.	Pin Name	Input Loading	1								Pin Name Pactor (lu) X 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.			4								* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.	A	1					- 1				* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.											* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum dela multiplier.							- 1				Minimum values for the typical operating																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
condition. The values for the worst case operating condition are given by the maximum delamultiplier. * Minimum values for the typical operating condition are given by the maximum delamultiplier. * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delamultiplier.	Pin Name	Output Driving	1								Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delamultiplier. Minimum values for the typical operating condition are given by the maximum delamultiplier.			4				- 1				The values for the worst case operating condition are given by the maximum dela multiplier.	^	30	Minimus	m values fo	r the typical	operating (condition							The val	ues for the				given by th	e maximum delay		0-N4P-E0 Sheet 1/1			multiplie	er.							0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 Sheet 1/1											0-N4P-E0 I Sheet 1/1 I												10-N4P-E0	Sheet 1/1							Page 4-3	#### **OR Family**	Page	Unit Celi Name	Function	Basic Cells		------	-------------------	------------------	----------------		3–55	R2P	Power 2-input OR	2		3–56	R3P	Power 3-input OR	3		3–57	R4P	Power 4-input OR	3		3-58	R8P	Power 8-input OR	6	3	FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL SI	PECIFICA	ATION		" CG10	" Version		------------	-------------------------------	--	---------	----------	------------	------------	-------------	-----------------		Cell Name	Function							Number of B		R2P	Power 2-input 0	OR						2		Cell	Symbol	T		Pro	pagation D	elay Paran	neter						ıp .			dn		Path				t O	KCL	t O	KCL	KCL2	CDR2					0.488	0.034	0.713	0.028	0.039	8	A to X		A1 A2) —×	Paramete	er				Symbol	Typ (ns) *				1																		Pin Name	Input Loading Factor (lu)]								A	1					-	ĺ													Pin Name	Output Driving Factor (lu)									х	36					L_											given by th	e maximum delay												010-R2P-E0	Sheet 1/1	and the second s						Page 5-1		EIIIIT	SU CMOS GATE ARE	TIMIT VAS	CELLS	PECIFIC	ATION		" CG10 "	Version		----------------------------	------------------------------	-----------	-------------	---------	-------------	--	--------------	---------------		Cell Name	Function	ICT OINT	JLLL S	LOIFIU	TION		, 53,5	Number of BC		R3P	Power 3-input C	R						3		Cel	Symbol			Pro	pagation D		neter						IP KCI	• 6		tn KCI3	CDB2	Path		A1 ——— A2 ——— A3 ———) —×	0.563	0.034	1.150	0.034	0.045	8	A to X				Paramete	7			<u>' </u>	Symbol	Typ (ns) *												Pin Name	Input Loading Factor (lu)						1			A	1 Output Driving									Pin Name	Factor (lu)					- 1	1			x	36		ues for the		operating o		given by the	maximum delay												C10-R3P-E0	Sheet 1/1							1 5: 5 6										Page 5-2		Power 4-input OR	FILIT	SU CMOS GATE ARE	TIMI VAS	CELLS	PECIFICA	ATION		" CG10	" Version		---	----------------	------------------	----------	---------------	---------------------------	-------------	----------------------------	-------------	------------------		Cell Symbol To KCL to KCL2 CDR2 Path 10 KCL 10 KCL2 CDR2 Path 1.575 0.039 0.056 8 A to X Parameter Parameter Parameter Symbol Typ (na)* Typ (na)* Pin Name Input Loading Factor (tu) A 1 Pin Name Factor (tu) X 36 *Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	Cell Name	Function	IAT ONT	OLLE G	LOI 107	411014		00.0	Number of BC		Pin Name Input Loading Factor (lu) X 36 Minimum values for the typical operating condition are given by the maximum delay multiplier.	R4P	Power 4-input C	OR						3		Pln Name Input Leading Factor (lu) A 1 Pln Name Output Driving Factor (lu) X 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10_R4P_E0 Sheet 1/1	Cell	Symbol			Proj			neter			Pin Name Input Loading Pactor (tu) A 1 Pin Name Output Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.					10			CDDO	Path		Pin Name Input Leading Factor (tu) A 1 Pin Name Output Driving Pactor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-R4P-E0 Sheet 1/1									A to Y		Pin Name Output Driving Factor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-R4P-E0 Sheet 1/1	A2 —— A3 ——	×									Pin Name Output Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-R4P-E0 Sheet 1/1	Pin Name	Input Loading									Pin Name Output Driving X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-R4P-E0 Sheet 1/1			1								* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. **C10-R4P-E0** Sheet 1/1											Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—R4P—E0 Sheet 1/1	Pin Name	Factor (lu)					j				C10-R4P-E0 Sheet 1/1			The val	ues for the v	the typical worst case	operating o	condition. ondition are	given by th	ne maximum delay		010 1141 20 1 011000 111	C10_B4P_F0 \	Sheet 1/1									I Page 5–3	<u> </u>	Oneet I/1							Page 5-3		511117	SU CMOS GATE AR	DAV LINIT	CELLO	DECIEIC	ATION		" CG10	" Version		--	-------------------------------------	-----------------------	--------	---------------	-------------	--------------	--------------	---------------		Cell Name	Function Function	HAT UNI	CELL 3	FECIFIC/	ATION		Caro	Number of BC		R8P	Power 8-input (OR						6		Cel	l Symbol									1			KCL	t O	KCL	dn L KCIO	CDR2	Path				0.613	0.034																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
1.675	0.045	0.056	8	A to X		A1 ————————————————————————————————————	×	Paramete					Symbol	Typ (ns) *		Pin Name	Input Loading										Factor (lu)	┨				l	1			Pin Name	Output Driving Factor (Iu) 36			r the typical								The vali multiplie		worst case	operating o	ondition are	given by the	maximum delay		Equivalent Circuit A1 A2 A3 A4 A5 A6 A7 A8	×									C10-R8P-E0	Sheet 1/1																	Page 5-4	### 3 #### **EXNOR/EXOR Family**	Page	Unit Cell Name	Function	Basic Cells		------	-------------------	-----------------------------	----------------		3–61	X1N	Exclusive NOR	3		3–62	X1B	Power Exclusive NOR	4		3–63	X2N	Exclusive OR	3		3-64	X2B	Power Exclusive OR	4		365	X3N	3-input Exclusive NOR	5		3–66	ХЗВ	Power 3-input Exclusive NOR	6		3-67	X4N	3-input Exclusive OR	5		3-68	X4B	Power 3-input Exclusive OR	6		FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	* Version		---	------------------------------	--------------	--------------	----------	------------	------------	-------------	-----------------		Cell Name	Function							Number of BC		X1N	Exclusive NOR							3		Cel	Symbol			Pro	pagation D	elay Paran	neter						JP 1401			in		Path				t 0 0.725	KCL 0.122	0.600	0.073	0.090	CDR2	A to X		A1 ————————————————————————————————————	₽																					Paramete	er				Symbol	Typ (ns) *			I land to the									Pin Name	input Loading Factor (lu)					-				A	2										Output Driving									Pin Name	Factor (lu)									X	18						given by th	e maximum delay		Equivalent Circuit				Function	on Table					A1				Ir	puts (Output				~ TTV	<u></u>	×		A1	A2	х						^		н	н	Н								L	н	L								Н	L	L								L	L	Н									·																																													C10-X1N-E0	Sheet 1/1																	Page 6-1		Cell Name Function Propagation Delay Parameter	FILIIT	SU CMOS GATE ARE	RAY LINIT	CELLS	PECIFIC	ATION		" CG10	" Version		---	---------------------	-------------------------------	-------------	---------------	-------------	---	-------------	----------------	-----------------		Cell Symbol Tup Tup To KCL 10 KCL 10 KCL 0.931 0.034 1.106 0.028 0.051 7 A to X Parameter Propagation Delay Parameter ton To KCL 0.028 0.051 7 A to X Parameter Propagation Delay Parameter To KCL COR2 Path A to X Parameter Symbol Typ (ne) Pin Name Propagation Delay Parameter To KCL COR2 Path A to X Parameter Symbol Typ (ne) Propagation Delay Parameter To Color To Color Path A to X Parameter Symbol Typ (ne) Propagation Delay Parameter To Color Path A to X Parameter Symbol Typ (ne) Propagation Delay Parameter To Color Path A to X Parameter Symbol Typ (ne) Propagation Delay Parameter To Color Path A to X Parameter Symbol Typ (ne) Propagation Delay Parameter To Color Path A to X Parameter Symbol Typ (ne) Propagation Delay Parameter To Color Path A to X	Cell Name		OINI	OLLL O	2011 107				Number of BC		Pin Name Input Loading Factor (tu) X Pin Name Coutput Driving Factor (tu) X 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de multiplier. Equivalent Circuit Function Table Input Loading Factor (tu) X A1 A2 Path Input Loading Factor (tu) X A1 A2 Function Table Inputs Output A1 A2 A3 A4 A4 A4 A4 A4 A4 A4 A4 A4	X1B	Power Exclusive	NOR						4		Pin Name Input Loading Factor (tu) A 2 Pin Name Practor (tu) A 2 - Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de multiplier. Equivalent Circuit A1 A2 X H H H H L H L H L H L H L H L	Cell	Symbol			Pro			neter			Plin Name Input Loading Factor (tu) A 2 Plin Name Practor (tu) X 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de multiplier. Function Table Input Coding Factor (tu)					10			CDB2	Path		Pin Name Input Loading Factor (lu) A 2 Pin Name Output Driving Factor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de multiplier. Equivalent Circuit A1 A2 X H H H H L H L H L H L H L H L									A to X		Pin Name Factor (lu) A 2 Pin Name Output Driving Factor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de multiplier. Equivalent Circuit Function Table Inputs Output A1 A2 X H H H L H L H L H L H L	l i	> —×	Paramete	of .				Symbol	Typ (ns) °		Pin Name Pin Name Pin Name Output Driving Factor (iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de multiplier. Equivalent Circuit Function Table Inputs Output A1 A2 X H H H H L H L H L H L H L H L H L H L H	Din Name	Input Loading									Pin Name Output Driving Factor (Iu) * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de multiplier. Equivalent Circuit Function Table inputs Output A1											A1	Pin Name	Output Driving Factor (lu)	The val	ues for the v	the typical	operating o	condition.	e given by the	e maximum delay		A1	Familyada a Ciramia				Firmati	aa Tabla					A2 X H H H L H L H L L											X H H H L L H L L											L H L H L L			>	· x	<u> </u>	+					H L L	L	$$ \mathcal{V}	•			++										 	+										ļ											لــــٰـ	لــــــــــــــــــــــــــــــــــــــ	لــــــ																																																0.0 240 50 1 01 01 01	010 VID 50 1	01									C10–X1B–E0 Sheet 1/1 Page 6	C10-X1B-E0	Sneet 1/1							Page 6–2		FILLET	CH ONOC CATE ADD	AV LIAUT	OFIL O	סבסובוס	ATION		L * CC10	* Version		---	--	----------	---------------	----------	-------------	------------	--------------	-----------------		Cell Name	SU CMOS GATE ARF	TAY UNII	CELLS	PECIFICA	ATION		CGIO	Number of BC		X2N	Exclusive OR							3		Cel	Symbol			Pro	pagation D		neter					10	IP KCL	i O	KCL	In KCL2	CDR2	Path				0.694	0.122	0.731	0.073	0.090	4	A to X		A1 ————————————————————————————————————) —×	Paramete	er				Symbol	Typ (ns) °		Pin Name A	Input Loading Factor (lu) 2									Pin Name	Output Driving Factor (Iu) 14												ues for the v		operating o		given by the	e maximum delay		Equivalent Circuit				Function	on Table					A1 -10-				In	puts C	Output				A2 + 16°				A1	A2	×					——\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· X		Н	н	L				L	——D			L	Н	Н								Н	L	Н								1	1.1									<u> </u>																																																								C10-X2N-E0	Sheet 1/1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
				T Boss 6 C										Page 6-3		EII III	SU CMOS GATE ARF	DAV LINIT	CELLE	DECIFIC	ATION		" CG10	" Version		---	-------------------------------	-----------------------------------	--------	-----------------------------	--	---	--------------	---------------		Cell Name	Function	TAT UNI	CELL S	PECIFICA	TION		- CG10	Number of BC		X2B	Power Exclusive	OR						4		Cel	Symbol			Pro		elay Paran	eter					t O	KCL	t O	KCL	in KCL2	CDR2	Path				0.894	0.034	1.025	0.028	0.039	7	A to X		A1 ————————————————————————————————————) —×	Paramete	or .				Symbol	Typ (ns) °		Pin Name	Input Loading										Factor (lu)					1				A	2					-				Pin Name	Output Driving Factor (lu)									×	36						ŀ			^	55	Minimul The val multiplie		r the typical worst case	operating o	condition.	given by the	maximum delay		Equivalent Circuit				Function	on Table					A1 — C										A2 + D	7 .					Output				<u> </u>	─ ─ ─ ─	> —	· x	A1	A2	×					\\rightarrow\'	•		H	H	-								<u> </u>	 	 								Н.	L	<u> </u>								L	<u> </u>					1																				}																														C10-X2B-E0	Sheet 1/1																	Page 6-4		FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL SI	PECIFICA	TION		"	CG10	" Version		---	------------------------------	-----------	---------------	----------------------	-----------	-----------	--------	-----------	-----------------		Cell Name	Function								Number of BC		X3N	3-input Exclusiv	e NOR							5		Cel	l Symbol	l		Prop	agation		aramet	er					t O	JP KCL	tdn t0 KCL KCL2 CDR2		CDR2	Path						1.700	0.122	1.450	0.073	0.0		4	A to X								"		•										l						l				1																	_						l				A1 ————————————————————————————————————	₽										A3 —)										•	_																							Paramete	er				Syr	nbol	Typ (ns) *																																														Pin Name	Input Loading Factor (lu)							1			Α	2						l																											Output Driving										Pin Name	Factor (lu)										X	18	* Minimu	m values for	the typical	operating	condition	on.						The val	ues for the v					ven by th	e maximum delay				multiplie	er.								Equivalent Circuit				Function	n Table						A2 —					Inputs		Output	1			A3 —				A1	A2	A3	X	1			A1	Њ ⊶			Н	H	н	L	1			01				Н	н	L	н	1							Н	L	н	н	1							н		L	L	1							L	Н	Н	Н	1							L	Н	L	L								L	L	н	L	1							L	L	L	Н								L	<u> </u>		l	1														C10-X3N-E0	Sheet 1/1								Page 6 F											Page 6-5		FUJIT	SU CMOS GATE ARE	RAY UNIT	CELLS	PECIFICA	ATION		T	" CG10	" V	ersion		---	-------------------------------	-----------------------------	-------------	-----------------------------	----------	----------	-------	-------------	--------------	--------------		Cell Name	Function									Number of BC		X3B	Power 3-input E	Exclusive	NOR							6		Cel	Symbol	Propagation Delay Parameter												t O	KCL	t O	KCL	dn KC	12	CDR2	-	Path				1.650	0.034	2.119	0.028	0.0		7	<u> </u>	A to X		A1 ————————————————————————————————————																		<u> </u>			_					Paramete	r				S	mbol	 	Typ (ns) *														Pin Name	Input Loading Factor (lu)											A	2											Pin Name	Output Driving Factor (lu)											X	36		ues for the	r the typical worst case				given by th	l	aximum delay		Equivalent Circuit				Function	on Table							A ² ————————————————————————————————————					Inputs		Outpo	ıt .				~	10 1			A1	A2	АЗ	х					A1	#D > ×			н	Н	н	L						- ·			н	н	L	н									Н	L	н	Н									Н	L	L	L									L	Н	н	Н	7								ī	Н	L	L	7								L	L	Н	L	1								L	L	L	н	7								•																				C10-X3B-E0	Sheet 1/1								Т	Page 6-6		FUJIT	SU CMOS GATE ARF	RAY UNIT	CELL S	PECIFICA	ATION			" CG10	" Version		---	-------------------------------	------------------------------------	-----------	-----------------------------	------------------------	---------------------	-----------------	------------	-----------------		Cell Name	Function								Number of BC		X4N	3-input Exclusiv	e OR			pagation				5		Cel	l Symbol												t O	IP KCL	t O	KCL	tdn KC	L2	CDR2	Path				1.763	0.122	1.581	0.073	0.0		4	A to X		A1 ————————————————————————————————————) —×	Paramete	·r				Sy	mbol	Typ (ns) *		Pin Name	Input Loading Factor (lu)										Α	2										Pin Name	Output Driving Factor (lu)												* Minimur The valu multiplie		the typical worst case o	operating operating	condition condition	on. on are g	iven by th	e maximum delay		Equivalent Circuit				Function	on Table						A2 A3					Inputs		Outpu	t			~ -10	10			A1	A2	А3	х				A1	#D×			н	н	н	н								Н	Н	L	L	7							н	L	н	L	1							Н	L.	L	Н	1							-	Н	н	L	1							L	н	L	н	1							1		Н	Н	1								L	L	L	_			C10-X4N-E0	05-144										FIN VAN LA	Sheet 1/1										FILIT	SU CMOS GATE ARF	PAV LINIT	CELLS	PECIFIC	ATION			" CG10 "	Version		--------------------	-------------------------------	----------------------------------	-------------	-----------------------------	-------------	--	-----------------	--------------	---------------		Cell Name	Function	TAT OIVIT	OLLLO	LOII 107	THOIT			00.0	Number of BC		X4B	Power 3-input E	Exclusive	e OR						6		Cel	l Symbol		ter										t O	KCL	t O	KCL	dn KC	12 1	CDR2	Path				1.544	0.034	1.956	0.028	0.0		7	A to X		A1	A										A2 A3	×																							Paramete	er				S	mbol	Typ (ns) *			,										Pin Name	Input Loading Factor (lu)										A	2										Pin Name	Output Driving Factor (lu)										X	36	* Minimu The val multiplie	ues for the	r the typical worst case	operating o	condition condit	on. on are (given by the	maximum delay		Equivalent Circuit				Function	on Table																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
A2					Inputs		Outpu	ıt			A3 — 11	10 ,			A1	A2	АЗ	X				A1	# >	×		Н	Н	Н	Н								Н	Н	L	L								Н	L	Н	L								Н	L	L	Н]							L	Н	Н	L								L	н	L	н								L	L	н	н	4							L	L	L	L															C10-X4B-E0	Sheet 1/1																			Page 6–8	# AND-OR-Inverter Family (AOI)	Page	Unit Cell Name	Function	Basic Cells		------	-------------------	-------------------------------	----------------		3–71	D23	2-wide 2-AND 3-input AOI	2		3–72	D14	2-wide 3-AND 4-input AOI	2		3-73	D24	2-wide 2-AND 4-input AOI	2		3-74	D34	3-wide 2-AND 4-input AOI	2		3-75	D36	3-wide 2-AND 6-input AOI	3		3-76	D44	2-wide 2-OR 2-AND 4-input AOI	2		ELLIIT	SHICKOS CATE ADS	DAV LIAIT	CELL C	DECIFIC	ATION		" CG10	" Version		------------	-------------------------------	-----------------------	--------------	-------------	-------------	--------------	-------------	-----------------		Cell Name	SU CMOS GATE ARE	TAT UNII	CELL SI	PECIFICA	ATION		CG10	Number of BC		D23	2-wide 2-AND	3—input	AOI					2		Cell	Symbol			Pro		elay Param	eter						KCL	t O	KCL	MCL2	CDBs	Path				0.456	0.122	0.425	0.079	ROLZ	CDR2	A to X				0.231	0.093	0.231	0.051	0.067	4	B to X															!			[1														A1 —										Ã2	. Ar									В ———	×																							,		1					i	Paramete	er				Symbol	Typ (ns) *																												1															Input Loading					- 1				Pin Name	Factor (lu)					İ				A B	1									В	1																									İ				Pin Name	Output Driving Factor (lu)									х	14											* Minimu	n values for	the typical	operating o	condition.						The vale multiplie		worst case	operating o	ondition are	given by th	e maximum delay				Шапарие																																																																																																																																																														C10-D23-E0	Sheet 1/1							Dec. 7.4										Page 7-1		FILIT	SU CMOS GATE ARE	DAV HAH	CELLS	DECIEIC	ATION		" CG10 "	Version		------------	------------------------------	-----------------------------	-------------	---------------	-----------	-------------	--------------	---------------		Cell Name	Function	TAT UNI	CELLS	FECIFICA	ATION		Caro	Number of BC		D14	2-wide 3-AND	4–input	AOI					2		Cel	Symbol											tup tdn 10 KCL 10 KCL KCL2				CDR2	Path					0.563	0.122	0.438	0.107	0.118	4	A to X				0.200	0.084	0.225	0.051	0.067	4	B to X				1														ŀ									İ					A1 —		l		l]			A2	7									A3 ——					ĺ					В	×				}						D					1								<u> </u>	<u> </u>	<u> </u>						Paramete	er				Symbol	Typ (ns) *														İ										1																		Pin Name	Input Loading Factor (lu)																l			A B	1						ļ l															l					1			Pin Name	Output Driving	1					İ			×	Factor (lu)	-					1			^	14	• Minimu	m values fo	r the typical	operating	condition						The val	ues for the				given by the	maximum delay				multipli	er.								L	<u> </u>																																																																																																																																																				C10-D14-E0	Sheet 1/1							Page 7-2										1 aye 1-2		FILIIT	SU CMOS GATE AR	RAY LINIT	CELLS	PECIFICA	ATION		" CG10	" Version		------------	-------------------------------	-----------	--------------	----------------	----------------	--------------	-------------	------------------		Cell Name	Function	TATE OITH	OLLLO	2011 107	THOIT			Number of BC		D24	2-wide 2-AND	4-input	AOI					2			l I Symbol	T		Pro	pagation D	elay Paran	neter						ıb		to	In		Path				10	KCL	t 0	KCL	KCL2	CDR2					0.338	0.093	0.388 0.519	0.079 0.079			A to X B to X																																										A1)	7 ~										×									B1)	J 1																															Paramete	er				Symbol	Typ (ns) *				1										1										1									r	4								Pin Name	Input Loading Factor (lu)									A B	1	1								В	1					l																4								Pin Name	Output Driving Factor (lu)					l				X	14					L						* Minimur	m values for	the typical	operating o	ondition.	airea bu sh	a mavimum dalau				multiplie		worst case (operating o	oncition are	given by in	e maximum delay				<u> </u>																																																																																																																																																														C10-D24-E0	Sheet 1/1							Page 7–3		D34 3-wide 2-AND 4-input AOI	Path A to X B to X																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
--	--------------------		Cell Symbol Propagation Delay Parameter tup tdn	Path A to X		tup tdn 10 KCL 10 KCL KCL2 CDR2 0.719 0.172 0.456 0.084	A to X		0.719 0.172 0.456 0.084 0.084	A to X		0.719 0.172 0.456 0.084 7			0.388 0.147 0.269 0.051 0.067 4																		$\begin{vmatrix} A_1 \\ A_2 \end{vmatrix} \rightarrow \begin{vmatrix} A_1 \end{vmatrix} \rightarrow \begin{vmatrix} A_1 \\ A_2 \end{vmatrix} \rightarrow \begin{vmatrix} A_1 \\ A_1 $						B1			B2 ————————————————————————————————————						Parameter Symbol	Typ (ns) *														Pin Name Input Loading			Pactor (IU)			A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									Dia Name Output Driving			Factor (lu)			x 10			Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum.	imum delav		multiplier.																																																C10-D34-E0 Sheet 1/1				Page 7-4									I :: 0010			--------------	------------------------------	-----------	--------------	-------------	--------------	--------------	-------------	------------------------		Cell Name	SU CMOS GATE ARF	RAY UNII	CELLS	PECIFICA	ATION		" CG10	" Version Number of BC		D36	3-wide 2-AND	6-input	AOI					3		Cell	Symbol			neter								t O	KCL	t O	KCL	In KCL2	CDR2	Path				0.481	0.118	0.450	0.079	KOL	ODINE	A to X				0.613	0.118	0.544	0.079			B to X				0.731	0.118	0.638	0.079			C to X		A1	٦									B1 —	4									B2	×									C1 —]									C2 —		Paramete	er			L	Symbol	Typ (ns) *																																Pin Name	Input Loading Factor (lu)									A B	1					l				С	1									Pin Name	Output Driving									X	Factor (lu)										-	* Minimur	n values for	the typical	operating o	condition.	aiven by th	e maximum delay				multiplie		WO131 C030	operating of	orionion are	given by an	o maximum odiay																																																																																																						C10 D26 E0 1	Chaot 1/1									C10-D36-E0	Sheet 1/1							Page 7-5		FUJIT	SU CMOS GATE ARE	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version					--------------------	-------------------------------	------------------------------------	----------------------------------	--	-------------------------	-----------------------------	-------------	----------------------------	--	--	--		Cell Name	Function	Function											D44	2-wide 2-OR 2-	-AND 4	–input A	OI				2					Cel	Symbol			Pro	pagation D		eter								t O	KCL	t O	KCL	in KCL2	CDR2	Path							0.650 0.644 0.619																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
0.172 0.172 0.172 0.122	0.488 0.400 0.300	0.079 0.079 0.051	0.062	4	A to X B to X C to X					A1 A2 B C	<u>Dr</u> b—×														Paramete	er		L	٦ :	Symbol	Typ (ns) *																		Pin Name	Input Loading Factor (lu)												A B C	1 1												Pin Name	Output Driving Factor (lu)												×	10	* Minimui The vali multiplie		r the typical worst case	operating o	condition. condition are	given by th	e maximum delay																		C10-D44-E0	Sheet 1/1			······································				Page 7–6				# OR-AND-Inverter Family (OAI)		Unit Cell		Basic		------	-----------	-------------------------------	-------		Page	Name	Function	Cells		3–79	G23	2-wide 2-OR 3-input OAI	2		3-80	G14	2-wide 3-OR 4-input OAI	2		3–81	G24	2-wide 2-OR 4-input OAI	2		3-82	G34	3-wide 2-OR 4-input OAI	2		3-83	G44	2-wide 2-AND 2-OR 4-input OAI	2		FILUT	SU CMOS GATE ARF	TIMIT VAS	CELLS	PECIFIC	ATION		" CG10	* Version		------------	-------------------------------	------------------------------	----------------	----------------	----------------	---	--------	------------------		Cell Name	Function	TAT OIT	OLLLO	2011 107	111011		1	Number of BC		G23	2-wide 2-OR 3-	2								Cell	Symbol											tup tdn tdn t0 KCL KCL2 CDR2						Path		A1	Чъ— ×	0.450 0.175	0.122 0.067	0.344 0.344	0.079 0.079			A to X B to X		В		i	!									Paramete	<u></u>		L	L	Symbol	Typ (ns) *												Pin Name	input Loading Factor (lu)									A B	1									Pin Name	Output Driving Factor (Iu)									X										242 222 52	Observed									C10-G23-E0	Sheet 1/1							Page 8-1		Cell Name	SU CMOS GATE ARI	" CG10 " \	Version Number of BC								------------	------------------	-------------	----------------------------	---------------	--	--------------	----------------	---------------	--			Function										G14	2-wide 3-OR 4	2										l Symbol	neter											t	Path										t O	KCL	t O	KCL	KCL2	CDR2						0.750	0.177	0.406	0.079			A to X					0.156	0.067	0.406	0.079	l		B to X					ļ	1			}											l							Ì	1			l					A1 ——		ļ	l								A2	٦										A3 ————						1					В ———	Ыр— ×	1	l .								8	$\neg \nu$	1					<u> </u>															}		Paramete	∍ r				Symbol	Typ (ns) *					l											l									1											1		1										Input Loading	ł				- 1					Pin Name	Factor (lu)	l									A B	1	1				1					В	1	ł				- 1																		l				ı					Pin Name	Output Driving	1				1						Factor (lu)	4					ļ				×	10	Minimu		- the history										m values to ues for the	worst case	operating of operating of operating of the operat	ondition are	given by the r	naximum delay					multiplier.										L	l									1											1											1																																																																																																																																															C10-G14-E0	Sheet 1/1																		Page 8-2											L			ELLUT	SU CMOS GATE ADI	DAV HAH	CELLS	DECIEIC	ATION		" CG10	" V4	reion		------------	-------------------------------	---	-------	-----------------	-------------	--------------	-------------	------	--------------		Cell Name	Function	E ARRAY UNIT CELL SPECIFICATION "CG10"									G24	2-wide 2-OR 4	2-wide 2-OR 4-input OAI									Cell	Symbol	Propagation Delay Parameter										10	IP KCL	KCL	fn KCL2 CDR2			Path						0.313	0.122	t 0 0.438	0.079	11022	90.112		A to X				0.563	0.122	0.375	0.079				B to X																										i									A1 ——	_										A2 -	у—×						i				В1 ——	راب ^ السرام										B2 —	-																							Paramete	я				Symbol		Typ (ns) *																			1																											Pin Name	Input Loading Factor (lu)										Α											A B	1					- 1																		4									Pin Name	Output Driving Factor (lu)										×	10												Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay.											multiplie		WOIST CASE	operating o	JI MILION WE	given by un		Almoni Golay				<u> </u>																																																																																																																																																								C10-G24-E0	Sheet 1/1																			Page 8-3		FILIT	SH CMOS CATE AD	DAV LINIT	CELLS	DECIFIC	ATION		" CG10 "	Version			------------	------------------	-----------	---	---------------	--------------	--------------	----------------	---------------	--		Cell Name	SU CMOS GATE ARI	0010	Number of BC								G34	3-wide 2-OR 4		2								Cel	Symbol		Propagation Delay Parameter										t O	KCL	t O	KCL	in KCL2	CDR2	Path					0.594	0.122	0.438	0.107		00.12	A to X					0.438	0.080	0.281	0.090			B to X																											l									A1	7										A2 ————	4										B1	þ×	1									B2	- -D	İ																						Paramete	<u> </u>				Symbol	Typ (ns) *																											İ										Input Loading	1									Pin Name	Factor (lu)]				l	l				A B	1	İ										•	ļ																				Din Name	Output Driving	1									Pin Name	Factor (lu)	4									×	10	Minimu	m values fo	r the typical	operating of	condition.							The val	ues for the	worst case	operating o	ondition are	given by the r	naximum delay					multiplie	er.											***************************************																																																																																																																																												C10-G34-E0	Sheet 1/1																		Page 8-4			FILIIT	SU CMOS GATE ARF	RAY LINIT	CELLS	PECIFICA	ATION		" CG10	" Version																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
--	-------------------------------	-----------------------------	--------------	---------------	-------------	-----------	--------	--------------		Cell Name	Function	711 01111		2011 107			1	Number of BC		G44	2-wide 2-AND	2								Cell	Symbol											tup tdn tdn t0 KCL KCL2 CDR						Path				0.456	0.122	0.538	0.107	ROLZ	CDR2	A to X				0.269	0.122	0.388	0.107	ĺ		B to X				0.313	0.067	0.325	0.079			C to X																								}								A1	_						1			A2	D1 V						l i			В — —	<u> </u>									ū.							1										1					Paramete	er				Symbol	Typ (ns) *																								1										}				- 1					Input Loading									Pin Name	Factor (lu)									A B	1 1	1								B C	1	İ								J	•	l																		Pin Name	Output Driving Factor (lu)									x	14											* Minimu	m values for	r the typical	operating o	ondition.				The values for the worst case operating condition are given by the r										multiplier.																																																																																																																																																																C10-G44-E0	Sheet 1/1									210 277 20	J., J., 1, 1							Page 8-5											3 # **Multiplexer Family**	Page	Unit Cell Name	Function	Basic Cells		-------	-------------------	--	----------------		3–87	T24	4:1 Power 2-AND 4-wide Multiplexer	6		3-88	T26	6:1 Power 2-AND 6-wide Multiplexer	10		3–89	T28	8:1 Power 2-AND 8-wide Multiplexer	11		3-91	T32	2:1 Power 3-AND 2-wide Multiplexer	5		3-92	T33	3:1 Power 3-AND 3-wide Multiplexer	8		3–93	T34	4:1 Power 3-AND 4-wide Multiplexer	9		3-94	T42	2:1 Power 4-AND 2-wide Multiplexer	6		3-95	T43	3:1 Power 4-AND 3-wide Multiplexer	10		3-96	T44	4:1 Power 4-AND 4-wide Multiplexer	11		3-97	T54	4:1 Power 4-2-3-2-AND 4-wide Multiplexer	10		3–98	U24	4:1 Power 2-OR into 4-wide Multiplexer	6		3–99	U26	6:1 Power 2-OR 6-wide Multiplexer	9		3-100	U28	8:1 Power 2-OR 8-wide Multiplexer	11		3-101	U32	2:1 Power 3-OR 2-wide Multiplexer	5		3-102	U33	3:1 Power 3-OR 3-wide Multiplexer	7		3-103	U34	4:1 Power 3-OR 4-wide Multiplexer	9		3-104	U42	2:1 Power 4-OR 2-wide Multiplexer	6		3–105	U43	3:1 Power 4-OR 3-wide Multiplexer	9		3–106	U44	4:1 Power 4-OR 4-wide Multiplexer	11						3	FUJIT Cell Name	SU CMOS GATE ARE	RAY UNIT	CELLS	PECIFIC	ATION		" CG10 "	Version Number of BC		--	-------------------------------	--	--	--	--	------------	--------------	---		T26	Power 2-AND 6	-wide N	/lultiplex	er				10		Cell	l Symbol			Pro	pagation D	elay Paran	neter					t O	JP KCL	10	KCL	fn KCL2	CDR2	Path		A1		1.175 1.294 1.175 1.275 1.188 1.288	0.034 0.034 0.034 0.034 0.034 0.034	0.981 1.131 1.038 1.200 1.150 1.300	0.023 0.023 0.023 0.023 0.023 0.023			A to X B to X C to X D to X E to X F to X		C1 C2 D1 D2 D2	×	7.200	0.004		0.020												1			E1	-	Paramete	er				Symbol	Typ (ns) *		F1	F2 ——) ——									Pin Name	Input Loading Factor (lu)							·		A B C D E F	1 1 1 1									Pin Name	Output Driving Factor (lu)									x	36						given by the	maximum delay		Equivalent Circuit A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2		о— х								C10-T26-E0	Sheet 1/1				····			Page 9-2		F	**************************************	5 432 1 15 115		DERVEIR			L # 0010 "	Varria -		------------	--	----------------	--------------	-------------	-------------	--------------	--------------	---------------		Cell Name	SU CMOS GATE AR Function	HAY UNII	CELLS	PECIFICA	ATION		" CG10 "	Number of BC		T33	Power 3-AND 3	3-wide N	/lultiplex	er				8		Cel	i Symbol	Ι		Pro	pagation D	elay Paran	neter					t O	JP KCL	10	KCL	In KCL2	CDR2	Path				1.094	0.034	1.038	0.023	ROLL	ODRE	A to X				1.094	0.034	1.113	0.023			B to X				1.094	0.034	1.219	0.023			C to X		A1 —		1								A2	7	1				i					1	}								B1 B2	——×						1 1			В3 —— /	 	į					1 1			c1 —										C2	J						<u> </u>					Paramete	r				Symbol	Typ (ns) *				ļ				l						ł					- 1										1				Input Loading	-				ı	1			Pin Name	Factor (lu)	<u> </u>					1			A B	1	1								Č	i	l					1										1			Pin Name	Output Driving	1								X	Factor (lu)	į					l			^	36	Minimus	m values for	the typical	operating o	ondition.						The val	ues for the	worst case	operating o	ondition are	given by the	maximum delay				multiplie	er.																	: 																																																																																																																								C10-T33-E0	Sheet 1/1									J.U								Page 9-6		<u> </u>		242///	0511.0	DEGIEIO	ATION		" CG10 "	Varaian		--------------------	------------------------------	----------	--------------	------------	--------------	--------------	--------------	----------------------		Cell Name	SU CMOS GATE ARI	HAY UNI	CELLS	PECIFICA	ATION		CGIU	Version Number of BC		T42	Power 4-AND 2	2-wide N	/lultiplex	er				6		Cel	l Symbol			Pro	pagation D		neter					t O	KCL	t O	KCL	In KCL2	CDR2	Path				1.000	0.034	1.175	0.023	11000	331112	A to X				1.000	0.034	1.250	0.023			B to X												A1										A2 — _	_									A3		l									×									B1 B2										Вз —		1								B4		Paramete	er			<u> </u>	Symbol	Typ (ns) *																																						1	Ì			Pin Name	Input Loading Factor (lu)									A B	1									_						- 1						l				-	1			Pin Name	Output Driving	1				1				×	Factor (lu) 36												n values for									The val		worst case	operating of	ondition are	given by the	maximum delay				<u> </u>								Equivalent Circuit										A1 —										A2	_									A4	<u> </u>	v								B1 —		— x								B2 —— ——	J									B4 ——																																																												C10-T42-E0	Sheet 1/1									U10-142-EU	Ollege I/ I							Page 9-8		ELLUT	SHICMOS GATE ADD	רוואו ו	CELLS	DECIEIC	ATION	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	" CG10	" Version		------------	------------------------------	--	----------------	---	----------------	--	----------	------------------		Cell Name	SU CMOS GATE ARF	AT UNI	OELL S	COIFIU	TION		<u> </u>	Number of BC		U24	Power 2–OR 4–	wide M	ultiplexe	r				6		Cel	Symbol			Pro	pagation D		eter					t O	KCL	t O	KCL	in KCL2	CDR2	Path				1.250	0.034	1.125	0.028	0.045	7	A to X				0.900	0.034	1.094	0.028	0.045	7	B to X				1.188 0.863	0.034 0.034	1.113 1.063	0.028 0.028	0.045 0.045	7 7	C to X D to X		A1 —	—	0.000	0.00		0.020	0.0.0				A2										B1 —	4 L									B2	ЧЬх									C1 —	깁									C2 —										D1 -	┙									D2		Paramete	er				Symbol	Typ (ns) *								Ì																				İ					I					1				Pin Name	Input Loading Factor (lu)					- [A B	1									C	1 1									D	1										Output Driving						į			Pin Name	Factor (lu)									×	36	* Minimu	m values for	the typical	operating	ondition.						 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum deta 										multiplie																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
er.											***************************************]																																																																																																				0.001:										C10-U24-E0	Sheet 1/1							Page 9-12												EUUT	SU CMOS GATE ARI	DAV HAUT	CELL C	DECIFIC	ATION		" CG10	" Version		---	-------------------------------	----------------	----------------	----------------	----------------	----------------	-------------	------------------		Cell Name	Function	HAT UNII	CELLS	PECIFICA	ATION		CG10	Number of BC		U26	Power 2-OR 6-	-wide Mu	ultiplexe	r				9		Cel	l Symbol			Pro	pagation D		neter					t O	IP KCL	t O	KCL	In KCL2	CDR2	Path				1.250	0.034	1.463	0.028	0.045	7	A to X		A1 ————————————————————————————————————		0.969	0.034	1.413	0.028	0.045	7	B to X		A2 —		1.275	0.034	1.500	0.028	0.045	7	C to X		В1 ——		0.988 1.025	0.034 0.034	1.500 1.613	0.028 0.028	0.045 0.045	7 7	D to X E to X		B2 —	7	1.313	0.034	1.613	0.028	0.045	7	FtoX		C1 ——	14						1			C2	141						l				□						ľ			D1 D2	'႕ㅣ									02 - D	\frac{1}{\rm 1}						1			E1	_]									E2 -		Paramete	er				Symbol	Typ (ns) *		F1 —		Ì				į				F2		1										· ¦																		Pin Name	Input Loading Factor (lu)									A B	1	l				:				C D	1	ļ								D E		ł								Ē	1									Pin Name	Output Driving Factor (lu)									x	36	Minimul	m values for	r the typical	operating of	ondition.		<u> </u>				The val	ues for the v				given by th	e maximum delay				multiplie	er.										·																																																																																																																																																													C10-U26-E0	Sheet 1/1							Page 9–13		FILLE		5 A V . I II II II	0511.0	5501510			L# 0040	#\/i		---	-------------------------------	--------------------	---------------	---------------	-------------	---------------	-------------	------------------------		Cell Name	SU CMOS GATE ARI	HAY UNII	CELLS	PECIFIC	ATION		CG10	" Version Number of BC		U32	Power 3–OR 2–	-wide Mu	ultiplexe	r				5		Cel	Symbol			Pro		elay Paran	neter						ıp			dn L voi o	0000	Path				1.344	KCL 0.034	1.038	0.028	0.045	CDR2	A to X				1.319	0.034	1.038	0.028	0.045	7 7	B to X					0.00			0.0.0	ı i	2.07.				ł										1								A1 ——										A2	7	1								A3 ————————————————————————————————————	Ъ <u> </u>]			}					B1 —	₁									B2	J									В3 ———												Paramete	er			:	Symbol	Typ (ns) *																																												4								Pin Name	Input Loading Factor (lu)									A B	1 1	1				Ė				В	1	ŀ				- 1																ļ								Pin Name	Output Driving Factor (lu)									X	36	1								^		* Minimu	m values for	r the typical	operating o	condition.						The val	ues for the v				given by th	e maximum delay				multiplie	er.								<u> </u>																																																																																																																																																					C10-U32-E0	Sheet 1/1										1							Page 9-15												511.05					. =		" CG10 "	V		----------------	--	-------------------------	-------------------------	-------------------------	---------------------------------------	-------------------------	--------------	----------------------------		Cell Name	SU CMOS GATE ARI	RAY UNIT	CELL S	PECIFICA	ATION		" CG10 "	Version Number of BC		U33	Power 3–OR 3-	-wide Mu	ultiplexe	r				7		Cel	l Symbol			Pro	pagation D		neter					t O	KCL	t O	KCL	fn KCL2	CDR2	Path				1.425 1.406 1.444	0.034 0.034 0.034	1.425 1.488 1.575	0.028 0.028 0.028	0.062 0.062 0.056	7 7 7	A to X B to X C to X		A1 -		1.444	0.004	1.575	0.020	0.050	'	010 /		A2 A3]									B1 B2 B3										C1										C3 —		Paramete	er				Symbol	Typ (ns) *												Pin Name	Input Loading Factor (lu)									A B C	1 1 1									Pin Name	Output Driving Factor (lu)									×	36	ļ															given by the	maximum delay			**************************************				· · · · · · · · · · · · · · · · · · ·																																																																											C10-U33-E0	Sheet 1/1							Page 9–16										raye 9-16		FUJIT	SU CMOS GATE ARF	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	"Ve	rsion		---	------------------------------	-----------	--------------	----------------	----------------	------------	--------------	----------	------------------		Cell Name	Function						·····		Number of BC		U34	Power 3-OR 4-	wide Mı	ultiplexe	r					9			l Symbol	ı —		Pro	pagation D	elav Paran	neter							dτ		to	n			Path				10	KCL	tò	KCL	KCL2	CDR2						1.319	0.034	1.863 1.875	0.034 0.034	0.056	7 7		A to X B to X		A1 ——	١	1.200	0.034	1.525	0.034	0.056	7		C to X		A2 ————————————————————————————————————	h	1.319	0.034	1.681	0.034	0.056	7		D to X				<u> </u>									B1 B2	<u> </u>										B3	חאר						ļ					☐ Þ— ×					İ					C1 C2	71-J7										C3 —	<i>!</i>										5:		Donomote				L			Tun (na) \$		D1 —	\Box	Paramete	#F				Symbol	_	Typ (ns) *		D3 —	1																					1												l' i										Pin Name	Input Loading Factor (lu)										A B	1										C D	1 1										D	1											Output Driving										Pin Name	Factor (lu)										x	36							<u> </u>						m values for				aiven hv th	ne man	imum delay				multiplie			operating of		, giron by a		din delay																																																																		i																																																																																										C10-U34-E0	Shoot 1/1										U10-U34-E0]	Sheet 1/1							\top	Page 9–17										<u> </u>	. ago 5 ,,		FUJIT	SU CMOS GATE AR	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version		---	------------------------------	-----------	----------------	----------------	----------------	----------------	---------------	-----------------		Cell Name	Function							Number of B		U42	Power 4–OR 2-	-wide Mı	ultiplexe	r				6		Cel	l Symbol			Pro	pagation D		neter						ib			in	1	Path				t 0	KCL	t 0	KCL	KCL2	CDR2	A to X				1.625	0.034 0.034	1.069 1.025	0.028 0.028	0.045 0.045	7	B to X				1.501	0.054	1.025	0.020	0.043	′	Biox												A1 ——										A2										A3	7						1			A4	7										ן >—-×						İ			B1 B2	ا						i			B3										B4 ————————————————————————————————————												Paramete	er				Symbol	Typ (ns) *				1																																								4								Pin Name	Input Loading Factor (lu)					- 1				Α	 	1								A B	1					i																									Output Driving	1								Pin Name	Factor (lu)	j								X	36											* Minimu	m values fo	the typical	operating o	condition.						The val		worst case	operating o	ondition are	e given by th	e maximum delay) monupin	21.																																																																																																																																																																																																																																																																													
																								C10-U42-E0	Sheet 1/1									ELLIT	SU CMOS GATE ARF	DAV LINIT	CELLS	DECIEIC	ATION		* CG10	" Version		------------	-------------------------------	-----------	--------------	-------------	-------------	--------------	-------------	-----------------		Cell Name	Function Function	IOI UNII	VLLL 3	LOIFIO	TION			Number of BC		U43	Power 4–OR 3–	wide Mu	ultiplexe	r				9		Cell	Symbol											t O	KCL	t O	KCL	MCL2	CDR2	Path				1.606	0.034	1.331	0.034	0.045	7	A to X				1.638	0.034	1.413	0.034	0.045	7	B to X		A1 ——		1.688	0.034	1.494	0.034	0.045	7	C to X		A2	_									A3 A4										A D							1			B1 —	7				Ì					B2 B3	b×									B4	\mathcal{A}									_										C1 C2										C3		Paramete	er				Symbol	Typ (ns) *		C4																						1																			Input Loading	1								Pin Name	Factor (lu)	1								A B	1	l								C	1															İ					Contact Database	ł				1				Pin Name	Output Driving Factor (lu)	ŀ								x	36											• Minimu	m values for	the typical	operating o	condition.						The val		worst case	operating o	ondition are	given by th	e maximum delay																																																																																																																																																																		C10-U43-E0	Sheet 1/1							15										Page 9-19	## **Clock Buffer Family**	Page	Unit Cell Name	Function	Basic Celis		-------	-------------------	------------------------------	----------------		3-109	K1B	True Clock Buffer	2		3-110	K2B	Power Clock Buffer	3		3–111	КЗВ	Gated Clock (AND) Buffer	2		3-112	K4B	Gated Clock (OR) Buffer	2		3-113	K5B	Gated Clock (NAND) Buffer	3		3-114	KAB	Block Clock (OR) Buffer	3		3–115	KBB	Block Clock (OR x 10) Buffer	30		3-117	VIL	Inverting Clock Buffer	2		FILIT	SU CMOS GATE ARF	PAY LINIT	CELLS	PECIFIC	ATION		" CG10	" Version		--------------------	-------------------------------	-----------	--------------	-------------	-------------	--------------	---------------	-----------------		Cell Name	Function	IAT OIL	OLLLO	LOITIO	411014			Number of BC		K1B	True Clock Buffe	er					_	2			 Symbol	r		Pro	pagation D	elav Paran	neter	L				tı	up		to	in		Path				t O	KCL	t O	KCL	KCL2	CDR2					0.450	0.034	0.538	0.023			A to X				ŀ																				1																				l								Α	>×										V						ļ															<u></u>	l		l	<u> </u>	<u></u>					Paramete	er				Symbol	Typ (ns) *														1														ł														Pin Name	Input Loading Factor (lu)									Α	1	1																														Į								Pin Name	Output Driving Factor (lu)	1								x	36											* Minimu	m values for	the typical	operating o	condition.	a aiwaa by th	e maximum delay				multipli		WOISt Case	operating G	ondition are	y given by u	e maximum delay				<u> </u>								Equivalent Circuit										A1 — DO—	-d>×									~~~~~	^																																																																																																													C10-K1B-E0	Sheet 1/1									010-K10-E0	Officer I/I							Page 10-1												CILUT	OULDWOOD OATE ADD		-0511.0	DE OVEVO	4.T.O.L		# CC10 "	Varaina		--------------------	-------------------------------	----------	-------------	----------	-------------	------------	--------------	---------------		Cell Name	SU CMOS GATE ARF	RAY UNII	CELLS	PECIFICA	ATION		" CG10 "	Number of BC		K2B	Power Clock Bu	ffer						3		Cel	l Symbol			Pro	pagation D	elay Param	eter					t O	ip KCL	t O	to KCL		CDR2	Path		Α	> — ×	0.663	0.017	0.750	0.017		Symbol	A to X		Pin Name	Input Loading										Factor (lu)					1				A Pin Name	Output Driving Factor (lu) 55									^	33		ues for the		operating o		given by the	maximum delay		Equivalent Circuit	— ×									C10-K2B-E0	Sheet 1/1							1 Barris 12 5										Page 10-2		Cell Name Function Rated Clock (AND) Buffer 2 Call Symbol Propagation Delay Parameter 10 KCL 10 KCL KCL CDR2 Path 10 KCL 10 KCL KCL CDR2 Path 10 KCL KCL CDR2 Path 10 KCL KCL CDR2 Path 10 KCL KCL KCL CDR2 Path 10 KCL KCL KCL CDR2 Path 10 KCL KCL KCL CDR2 Path 10 KCL KCL KCL KCL CDR2 Path 10 KCL KCL KCL KCL CDR2 Path 10 KCL	FILIT	SU CMOS GATE ARE	DAY LIND	CELLS	PECIFIC	ATION		" CG10	" Version		--	-----------	-------------------------------	----------	---------------	-----------------------------	-------------	-----------------------------	---------------	-----------------		Call Symbol Tup	Cell Name		TAT OIL	OLLL O	LOII 107	411014		1 0070	Number of BC		Pin Name Input Leading Factor (lu) A 1 Pin Name Output Driving Factor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1 A2 * Minimum values for the worst case operating condition are given by the maximum delay multiplier.	КЗВ	Gated Clock (Al	ND) Buf	fer					2		Pin Name Input Loading Factor (tu) A 1 Pin Name Cutput Driving Factor (tu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1 A2 * Minimum values for the values for the typical operating condition are given by the maximum delay multiplier.	Cell	Symbol			Pro			neter			Parameter Symbol Typ (ns)* Parameter Symbol Typ (ns)* Pin Name Input Leading Factor (tu) A 1 Pin Name Output Driving Pactor (iii) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1					10				Path		Pin Name Input Loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1	A1 x						ROLE	ODAZ	A to X		Pin Name Input Loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1											Pin Name Input Loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1			Paramete	<u></u>		L		Symbol	Typ (ns) *																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
Pin Name Output Driving Factor (lu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1 A2 X									:		Pin Name Output Driving Factor (fu) X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1 A2 X	Pin Name	input Loading Factor (iu)									* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1	A										Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1	Pin Name	Output Driving Factor (lu)	ļ								A1 X	х	36	The val	ues for the v	r the typical worst case	operating o	condition. condition are	a given by th	e maximum delay		Page 10–3	A1										EIIIT	SU CMOS GATE ARF	AV LINIT	CELLS	PECIFIC	ATION		" CG10 "	Version		---	---------------------------------	--------------	-------------	-----------------------------	-------------------------------	----------	--------------	--------------------		Cell Name	Function	INI UNII	JLLL S	LOIFIU	TION		00,0	Number of BC		K4B	Gated Clock (OF	R) Buffe	r		magnessadas (p) PI Ali Paliku			2		Cel	Symbol			Proj	pagation D		eter						ib	10		ln KCI O	CDDO	Path		A1 ————————————————————————————————————	— ×	t 0 0.488	0.034	0.713	0.028	0.039	8 8	A to X Typ (ns) *		Di Nama	Input Loading									Pin Name	Factor (lu)					Ì				Pin Name	1 Output Driving Factor (lu) 36									×	36		ues for the	r the typical worst case			given by the	maximum delay		Equivalent Circuit A1 A2	-									C10-K4B-E0	Sheet 1/1							Page 10-4		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Version										--	-------------------------------------	----------	-------------	-------	-------------	------------	-------------	-----------------		Cell Name	Function							Number of BC		K5B	Gated Clock (N/	AND) Bu	uffer					3		Cell	Symbol			Pro	pagation D		neter					t O	KCL	i o	KCL	In KCL2	CDR2	Path				0.713	0.034	0.925	0.023	KOLZ	ODAZ	A to X		A1 A2	D•— ×	Paramete	न व				Symbol	Typ (ns) *		Pin Name	Input Loading Factor (lu)									A	1					- 1				Pin Name	Output Driving Factor (lu) 36												ues for the		operating o		given by th	e maximum delay		Equivalent Circuit A1 A2	→	x								C10-K5B-E0	Sheet 1/1																	Page 10-5		FUJIT	SU CMOS GATE ARF	RAY UNIT	CELLS	PECIFICA	ATION		" CG10	" Version		--------------------	-------------------------------	----------------------	-------------	------------	-------------	--------------	--------------	-----------------		Cell Name	Function							Number of BC		KAB	Block Clock (OF	R) Buffei	•					3			 Symbol	r		Pro	pagation D	elav Paran	neter			00.11	- Cymosi	tı	ρ	. 110		in	J. C. C.	Path				t O	KCL	t O	KCL	KCL2	CDR2					0.675	0.017	1.156	0.017		1 1	A to X																																											_									A1	D ×									A2	P												·			Ì														l		Paramete	er				Symbol	Typ (ns) *								ı																																		Pin Name	Input Loading Factor (lu)						Ì			A	1									ĺ .	•					ı	j										į										1			Pin Name	Output Driving Factor (lu)									×	55					1	1						m values fo									The val multiplie		worst case	operating o	ondition are	given by the	e maximum delay				malapile	JI.							Equivalent Circuit											N .									A1	d >×										•																																																																													•																																C10-KAB-E0	Sheet 1/1																	Page 10-6		ELLUT	SU CMOS GATE ARF	AV LINIT	CELLS	DECIEIC	ATION		" CG10 '	'Version		--	-------------------------------	----------------	----------------	----------------	-------------------------	------	--------------	--------------------		Cell Name	Function Function	IAT ONL	OLLL 3	- ECITIO	ATION			Number of BC		KBB	Block Clock Buff	ier (OR	x 10)					30		Cell	Symbol			Pro	pagation D		neter					t O	KCL	t O	KCL to	KCL2	CDR2	Path				0.838 0.675	0.017 0.017	1.300 1.156	0.017 0.017			CK to X IH to X		ск ——	xo									IH1 ————————————————————————————————————	X1 X2 X3									1H4	X4 X5 X6									1H7 1H8 1H9	X7 X8 X9	Paramete	er				Symbol	Typ (ns) °												Pin Name	Input Loading Factor (lu)									CK IH	10 1									Pin Name	Output Driving Factor (lu)									X	55		ues for the v		operating coperating co		given by the	maximum delay												C10-KBB-E0	Sheet 1/2							Page 40. 7										Page 10-7		FUJIT	SU CMOS GATE ARI	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	* Version		------------	-------------------------------	----------	-------	---------	------------	-----------	-------------	-----------------		Cell Name	Function							Number of BC		V1L	Inverting Clock	Buffer						2		Cell	Symbol	ļ		Pro	pagation D		neter					10	KCL	t O	KCL	n KCL2	CDR2	Path					0.017	0.419	0.017			A to X		Α	> — х	Paramete	er				Symbol	Typ (ns) °		Pin Name	Input Loading Factor (lu)									Α	4									Pin Name	Output Driving Factor (lu)									X	55						given by th	e maximum delay												C10-V1L-E0	Sheet 1/1							Page 10-9	## Scan Flip-flop (Positive Edge Type) Family	Page	Unit Cell Name	Function	Basi Cells		-------	-------------------	---	---------------		3–121	SDH	Scan D Flip-flop with 2:1 Multiplex with Clear and Clock Inhibit	14		3–124	SDJ	Scan D Flip-flop with 4:1 Multiplex with Clear and Clock Inhibit	15		3–127	SDK	Scan D Flip-flop with 3:1 Multiplex with Clear and Clock Inhibit	16		3-130	SJH	Scan J-K F with Clear and Clock Inhibit	16		3–133	SDD	Scan D Flip-flop with 2:1 Multiplex, Preset Clear, and Clock Inhibit	16		3–137	SDA	Scan 1-input D Flip-flop with Clock Inhibit	12		3-140	SDB	Scan 1-input D Flip-flop with Clock Inhibit	42		3-144	SHA	Scan 1-input D Flip-flop with Clock Inhibit	68		3–147	SHB	Scan 1-input D Flip-flop with Clock Inhibit and Q Output	62		3–150	SHC	Scan 1-input D Flip-flop with Clock Inhibit and XQ Output	62		3–153	SHJ	Scan D Flip-flop with 2:1 Multiplex and Clock Inhibit	78		3–156	SHK	Scan D Flip-flop with 3:1 Multiplex and Clock Inhibit	88		3–159	SFDM	Scan 1-input D Flip-flop with Clock Inhibit	10		3-162	SFDO	Scan 1-input D Flip-flop with Clear and Clock Inhibit	11		3–165	SFDP	Scan 1-input D Flip-flop with Clear, Preset, and Clock Inhibit	12		3-169	SFDR	Scan 4-input D Flip-flop with Clear and Clock Inhibit	36		3–173	SFDS	Scan 4-input D Flip-flop with Clock Inhibit	31		3-177	SFJD	Scan J–K Flip-flop with Clock Inhibit	14			<u>TSU CMOS GATE AR</u>	HAY UNI	CELLS	PECIFIC	ATION		CG10	" Version		---	-------------------------------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------------	-----------------	--		Cell Name	Function							Number of E		SDH	SCAN 2-input	DFF with	Clear 8	& Clock-	-Inhibit			14		Ce	II Symbol			Pro	pagation D	elay Paran	neter						ab dr			in		Path				t 0	KCL	t O	KCL	KCL2	CDR2			[2.325 1.469 2.369	0.034 0.034 0.034	1.863 1.344 0.669	0.023 0.034 0.023	0.045 0.067 0.045	7 7 7	CK, IH to Q CK, IH to XQ CL to Q, XQ		A1 ————————————————————————————————————	— °											Paramete					Symbol	Typ (ns) *			CL	Clock Pulse Width					t cw	3.4			01	Clock Pause Time					t cwH	2.9				Data Setup Time					t _{SD}	2.4					Data Hold Time					0.7												Pin Name	Input Loading		ulse Widt				tLW	2.9			Factor (lu)		elease Ti	me			t REM	1.9		A1, A2 CK IH CL SI A, B	1 1 3 1 2	Clear H	old Time				t inh	1.0		Pin Name	Output Driving Factor (lu)]								Q XQ	36 36						given by th	e																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
maximum delay	## Function Table	MODE				OUTPUT						-------	--------	----	----	-------------	--------	----	----------------	-----------------		MODE	CLK	CL	D	Α	В	SI	a	ΧQ		CLEAR	Х	L	х	х	x	X	L	Н		CLOCK	L to X	н	Di	L	L	х	Di	Di		CLOCK	Н	Н	х	L	L	х	Q ₀	XQ ₀		20411	Н	Н	х	L to H to L	н	Si	Qo	XQο		SCAN	Н	Н	Х	LHt	L to H	X	Si	Si	Note : CLK = CK + IH D = A1 x A2	C10-SDH-F0	Sheet 1/3		------------	-----------	Page 11-1	SCAN 4-input DFF with Clear & Clock-Inhibit 15	Cell Name			S G/	TE AR	RAY UNI	T CELL S	PECIFIC	ATION		- CG10	" Version Number of				---	-------------	----------------	----------	------	---------	-------------	--	-------------	-------------	------------	---------------	------------------------	--	--		Cell Symbol					input [OFF with	n Clear	& Clock-	-Inhibit							To KCL 10 KCL CDR2 Path			wmbol			т		Pro	nagation D	elav Paran	neter					1.719 0.034 1.888 0.022 0.045 7 CK, IH to X 1.475 0.034 1.338 0.034 0.067 7 CK, IH to X 2.338 0.034 0.063 0.023 0.045 7 CK, IH to X 2.338 0.034 0.663 0.023 0.045 7 CL to C, X			,,			1	up					Doth				1.475 0.034 1.338 0.034 0.067 7 CK, IH to XX							+	+			CDR2					2.338 0.034 0.663 0.023 0.045 7 CL to Q, XQ																A1																Parameter Symbol Typ (ns)			_			1	1	İ				·				Parameter Symbol Typ (ns)*			<u> </u>	— a		1	}									Parameter Symbol Typ (ns)*																Parameter Symbol Typ (ns)*		\dashv					1									Parameter Symbol Typ (ns)*	ск —	-					l									Parameter Symbol Typ (ns)*		_	- 1				l	-								Parameter Symbol Typ (ns)*		7	L				ļ		:							Clock Pulse Width 1cw 3.4	в —	-d	×0				<u> </u>									Clock Pause Time		کے						ith								Data Setup Time		ا														Data Hold Time		С	L			D-11- C	2.8									Pin Name																Pin Name																A1, A2	Pin Name	.														B1, B2	A1, A2	$\neg \dagger$		1	-,											IH CL 3 SI A, B 2 Pin Name Output Driving Factor (Iu) Q 36 XQ 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table NODE	B1, B2															Pin Name	IH			1												Pin Name	SI	- 1		1							İ					Function Table Function Table INPUT CLK CL D A B SI Q XQ CLEAR X L X X X X X L H CLOCK L to H H Di L L X Di Di CLOCK H H X L to H to L H Si Q ₀ XQ ₀ SCAN H H X L to H to L H X Si Si Note: CLK = CK + IH D = (A1 x A2) + (B1 x B2)	A, B]										**Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. **Function Table** MODE	Pin Name	.														Function Table MODE	Q				·						airea her she					MODE	XQ			36				worst case	operating o	onomon are	given by u	e maximum oeiay				MODE						İ										CLK CL D A B SI Q XQ	Function Ta	able														CLK CL D A B SI Q XQ				11	IPUT			OUTPUT	7							CLEAR X L X X X X L H CLOCK $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MODE	CLK	CL	D	A	В	SI	Q XQ	1							CLOCK L to H	CLEAR			×		x	x	L H	-							CLOCK H H X L L X Q ₀ XQ ₀ SCAN H H X L to H to L H Si Q ₀ XQ ₀ H H X L H to L to H X Si Si Note: CLK = CK + IH D = (A1 x A2) + (B1 x B2)									\dashv							SCAN	CLOCK								\dashv							Note : CLK = CK + IH D = (A1 x A2) + (B1 x B2)		 														Note : CLK = CK + IH D = (A1 x A2) + (B1 x B2)	SCAN								닉							D = (A1 x A2) + (B1 x B2)		Н_	Н	X	L F	1 10 L 10 H	<u>^ </u>	э Si														Note : C			. B2)							10_SD LE0 Sheet 1/3							U = (A1 X	MZ) + (B1)	DZ)							10_SD LEO Sheet 1/3																10_SD LEO Sheet 1/3																															**Definitions of Parameters** i) CLOCK MODE ii) CLEAR MODE C10-SDJ-E0 Sheet 3/3 Page 11-6 J	FUJIT	SU CMOS GATE AR	RAY UNIT	CELLS	PECIFICA	ATION		" CG10	" Ver	rsion		--	--	--	-------------------------	-------------------------	-------------------------	-------------------------	-----------------	-------	---		Cell Name	Function								Number of BO		SDK	SCAN 6-input I	DFF with	Clear 8	& Clock-	-Inhibit				16		Cell	Symbol			Pro	pagation D	elay Paran	neter							קר			in			Path				10	KCL	t O	KCL	KCL2	CDR2				A1 ————————————————————————————————————	a	2.313 1.450 2.338	0.034 0.034 0.034	1.875 1.350 0.638	0.023 0.034 0.023	0.045 0.067 0.045	7 7 7	CK	(, IH to Q (, IH to XQ . to Q, XQ		B —d	р— хо		L								7 7		Paramete					Symbol		Typ (ns) *		L.	لـــا		ulse Widt				tcw		3.4 2.9			Ĭ	Clock P	ause Tim	ie			t cwn		2.9			 CL	Data Se	tup Time				t _{SD}		3.2			02		old Time				t HD		0.4				Data in	na mne				• HU				Pin Name	Input Loading	Clear P	ulse Widt	h			tLW		2.9		Pin Name	Factor (lu)		elease Ti	me			t REM		1.9		A1, A2	1	Clear H	old Time				t inh		1.0		B1, B2 C1, C2 CK IH CL SI A, B	B1, B2 1 C1, C2 1 CK 1 IH 1 CL 3 SI 1 A, B 2										Pin Name	Output Driving Factor (lu)	Minimum values for the typical operating condition.									Q XQ	36 36	The values for the worst case operating condition are given by the maximum delay multiplier.							imum delay	## Function Table	MODE			11	NPUT			OUT	PUT		-------	--------	----	----	-------------	-----------	----	----------------	-----------------		MODE	CLK	CL	D	Α	В	SI	Q	XQ		CLEAR	Х	L	х	х	х	х	L	н		CLOCK	L to H	Н	Di	L	L	х	Di	Di		CLOCK	Н	Н	х	L	L	х	Q ₀	XQο		00411	Н	Н	х	L to H to L	н	Si	Q ₀	XQ ₀		SCAN	Н	н	Х	LH	to L to I	٠x	Si	Si	Note : CLK = CK + IH D = (A1 x A2) + (B1 x B2) + (C1 x C2) C10-SDK-E0 Sheet 1/3 Page 11-7					E AR	RAY UN	IT CEL	L SP	ECIFICA	ATION		" CG10	" V					----------------	------------	------	------------------	-------	-----------------	--------------------	---------------------	------------------	-----------------	------------	----------------	-------	-------------	--	--		Cell Name			ction										Number of				SJH		SCA	N J–K	(FF v	vith Cle	ar & C	Cloc	k–Inhib	it				16					Cell Sy	mbol			I			Prop	pagation D	elay Paran	neter		I										tup	\perp			in KOLO	0000		Path									2.650	0.03	_	t 0 2.106	KCL 0.023	0.045	CDR2	-	K, IH to Q									1.475			1.350	0.034	0.043	7		K, IH to XC																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
			2.350	0.03	34	0.869	0.023	0.045	7	0	L to Q, XQ											- 1										J	_	7	_									l					к —	- d		<u> </u>				1										ск —	-				1		- 1					Ì					IH —— SI ——					İ	İ											A	-	L	— хо		İ												В —	- q	٢	^u			İ	- [1						7				Parameter Symbo								Typ (ns) *					CL					Pulse V					tcw		3.4					J.				Clock	Pause	Time)			t cwn	2.9										Data S	t sp	2.8																Setup T					t sp		3.0						Inpu	t Loadin	a	Data	lold Tin	ne (J	i, N)			t HD	-	0.4				Pin Name			ctor (lu)			Pulse V					tLW	2.9					J,K CK			1		Clear	Release Hold Ti	e Tin	ne			t REM t INH	-	1.9				IH					Cicari	1010 111	1110				INH						SI			1 3 1 2		1												A, B			2		1												Pin Name			out Drivi		1							l						_	Fa	ctor (lu)		• Minim	um voluc	o for	the trainel	operating o			i					Q XQ			36 36								given by th	ne ma	ximum delay									multip	lier.												L				<u> </u>												Function Ta	ble																MODE				INPUT				OU	TPUT								MODE	CLK	CL	J	к	Α	В	SI	a	XQ								CLEAR	х	L	х	х	Х	х	x	L	Н									LtoH	Н	L	L	L	L	x	L	Н								l f	L to H	н	Н	Н	L	L	x	Н	L								CLOCK	L to H	Н	L	Н	L	L	x	Q ₀	XQο									L to H	Н	Н	L	L	L	x	XQ ₀									 	н	н	<u> </u>		L	L	$\frac{\hat{x}}{x}$	- Q ₀	XQ ₀													L to H to L		^ Si	+	XQ ₀								SCAN	Н	H	×					Q ₀									I SCAN L	н	н	Х	X	LHI	o L to H	^	Si	Si								SCAN																	SCAN	.,						ı	Note : CLK	= CK+I	4						## i) CLOCK MODE FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Version Page 11-12 ## ii) CLEAR MODE 3-132 C10-SJH-E0 Sheet 3/3	FUJIT	SU CMOS GATE AF	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version		---	-------------------------------	---	----------------------------------	----------------------------------	----------------------------------	----------------------------------	-----------------	---		Cell Name	Function							Number of E		SDD	SCAN 2-input	DFF with	Clear,	Preset	& Clock	–Inhibit		16		Cel	l Symbol	T		Pro	pagation D	elay Parar	neter					tı	ıρ		to	dn		Path				t 0	KCL	t O	KCL	KCL2	CDR2				PR 	2.313 1.656 2.813 2.400	0.034 0.034 0.034 0.034	2.013 1.338 0.638 1.469	0.023 0.034 0.023 0.034	0.045 0.067 0.045 0.067	7 7 7	CK, IH to Q CK, IH to XQ CL to Q, XQ PR to Q, XQ		A1 ————————————————————————————————————	- a - xa	Paramete	er -				Symbol	Typ (ns) *			1	Clock P	ulse Wid		tcw	3.4					CL		ause Tim				t cwn	2.9					etup Time old Time				t spt	3.4 0.7		Pin Name	Input Loading	Clear P	ulse Widt	h			t _{LW}	3.2		FIII Name	Factor (lu)		elease Ti	me			t REM	1.9		A1, A2	1	Clear H	old Time				t inn	1.0		CK IH		Droget !	Pulse Wid	de la			A	4.3		CL	1 3 3		Release				t pw t rem	2.4		PR SI	3		Hold Time				t INH	0.7		A, B	2	Preset Hold Time								Pin Name	Output Driving Factor (lu)									Q XQ	36 36	 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. 							## Function Table	MODE				INPUT	•			OUT	PUT		--------	--------	----	----	-------	---------	--------	----	-------	-------		MODE	CLK	CL	PR	D	Α	В	SI	a	XQ		CLEAR	Х	L	Н	х	x	X	X	L	н		PRESET	Х	Н	L	х	×	X	Х	Н	L			L to H	н	Н	Di	L	L	х	Di	Di		CLOCK	Н	н	Н	Х	L	L	X	Qo	XQο		SCAN	н	Н	н	х	LtoHtoL	н	Si	Q٥	XQο		SCAN	Н	Н	н	х	L H to	L to H	X	Si	Si		CL/PR	Х	L	L	х	x	Х	х	Prohi	bited	Note : CLK = CK + IH D = A1 x A2 C10-SDD-E0 Sheet 1/4 Page 11-13	FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Version Cell Name Function Number of BC SDA SCAN 1-input DFF with Clock-Inhibit 12															---	---------------	----------	-------------------------	-----------	------------------	------------------	-----------------	-------------	---------------	---------------	----------	----------------	--														Number of B			SDA	.	SCA	N 1–ir	put D	FF wit	h Clock-	-Inhibit					12				Cell :	Symbol					Pro	pagation D		neter									ļ	t O	tup KCL	1		dn L KOLO	1 0000	1	Path							ŀ	1.988	0.034	1.875	0.023	KCL2 0.045	CDR2	-	K, IH to Q							l	1.456	0.034	1.356	0.023	0.045	7		K, IH to XQ							1	1.400	0.004	1.000	0.004	0.007	1	١٦	nt, ii i to xq							i					l																									- 1											D —	_	<u> </u>	— a	- 1			ł	ł		l					ск —	\dashv	1		l											IH —	-	ı													SI				l			l								В	-d	þ-	— xq				l			İ					-																			[Parame		Symbol		Typ (ns) *												Pulse Wid				tcw	<u> </u>	3.4							}	CIOCK	Pause Tim	ie			t CWH	-	2.9							ŀ	Data S	etup Time	·			tsp	<u> </u>	2.2									old Time				t HD	0.9													- 1						Pin Name	.		it Loadin ictor (lu)						- 1						D			1						- 1						CK	1		1	- 1					-						IH Si	-		1	- 1											A, B	- 1		Ż						- 1								Out	put Drivir	na											Pin Name			ctor (lu)						- 1						Q	1		36	- 1											XQ	- 1		36			m values fo														ne va multipl		worst case	operating o	ondition are	e given by tr	ie ma	ximum delay																		Function Ta	hle														T T					— т	OUTOU									MODE	CLK		INP A	В	SI	Q)	(Q								 	L to F		 -	L	X		Di								CLOCK	CLOCK H X L L														SCAN	Н	х	L to H to	LH	Si	Q ₀ >	(Q ₀								SCAN	Н	х	LH	to L to I	нх	Si	Si													Mari	o · CI K = 4														NO	e:CLK = (>r + ı⊓																																																																																			10-SDA-I	E0	She	et 1/3	1																						- 1	Page 11-17							ATE A	RRAY	UNIT	CELL S	PECIFICA	ATION		" CG10	" Ve			-------------	------------	--------	----------	---------	---------------	----------------------	----------------------	---------------	-------------	--------------	---------------	----------	--------------		Cell Name	•	Fu	nction										Number of BC		SHA				-input	8–bi	t DFI	with C	Clock-In					68			Cell	Symbol						Pro	pagation D		neter				ŀ					<u> </u>	tu	KCL	10	KCL	in KCIO	CDDa		Path								950	0.067	2.950	0.051	0.056	CDR2	-	K, IH to Q			Г		_			575	0.067	2.500	0.031	0.036	4		K, IH to XQ		D1 —			— a		-		0.007	2.000	0.070	0		ľ	,,		D3	_	F	a		İ										D4	\dashv	þ-	— x		į										D5	_		a		l										D6 —		P	x		ł										D8 —		5		+ 24	1			1									F	Q		į										İ	- 1	þ	x					1									F	œ		i										СК —		2	x					<u> </u>							SI —	_	b-		, 27		ramete					Symbol		Typ (ns) *		A	-	F	a	3			ulse Wid ause Tin				t cw t cwh		4.5 3.5		В —	- q	Þ	— x	28	<u> U </u>	OCK F	ause IIII	16		-	CWH	_	0.0									tup Time)			tsD		1.2							Da	ta Ho	old Time			_	t HD		2.1					ut Load	lin a	\dashv							ŀ			Pin Name	'		actor (D			1		7										CK IH	I		1		- 1										SI	I		- 1		1										A B			1		1							1						tput Dri	lvina	\dashv					1					Pin Name	•		actor (
						- 1					Q			18 18									<u> </u>			XQ			10					r the typical							\						he vali nultiplie		worst case	operating o	ondition are	given by th	e ma	aximum delay								p.110									F															Function Ta	aDIO														Mode	<u> </u>		Inputs			Ou	utputs								141000	CLK	Dn	А	В	Si	Qn	XQn									F	Di	L	L	х	Di	Di								CLOCK	Н	х	L	L	X Hold										SCAN	Н	х	Л	н	Si	l I	Hold								SCAN	Н	×	L	ъ	X	Si	Si													Note :	CLK	= CK + IH														n	= 1~8																																																																				C10-SHA-	-E0	Sh	eet 1/3	3]								_	B														L	Page 11-24	Definitions of Parameters i) CLOCK MODE 3 C10-SHA-E0	Sheet 3/3	Page 11-26	F	UJITS	SUCM	OS G	ATF AI	RRAY	UNIT	CELLS	PECIFIC	ATION		" CG10	- V	ersion			---	-------	--------	-------------	----------------------------	--	--	----------------------	------------	------------	------------	--------	------------	--------------	--		Cell Name			nction	· · · · · ·	11.17.1	<u> </u>	OLLE O	. 2011 107	111011		1		Number of BC			SHB	}	SC	AN 1-	-input	8–bi	t DFI	with C	lock-In	hibit & (Q Outpu	ıt		62				Cell	Symbol						Pro	pagation D		neter										\vdash	tu t O	KCL	to	KCL	In KCL2	CDR2	1	Path									700	0.067	2.763	0.051	0.056	4	7	CK, IH to Q			D1 — D2 — D3 — D4 — D5 — D6 — D7 — D8 — D8 — D6 — D7 — D8 — D8 — D7 — D8 — D8 — D8 — D8			a a a a a a	2 3 4 5 6 7				:								ск —	7				Parameter											SI — A —					Parameter Symbol Clock Pulse Width tow								Typ (ns) *			B	-d						ulse Wid ause Tim				tcw	4.5 3.5									۳	OUR P	t CWH	3.5													Da	ata Se	tup Time				t sp	1.2									Da	ata Ho	ld Time				t HD	<u> </u>	2.1			Pin Name	,]	Inp	out Load	ing u)	1											D CK IH SI A B			1 1 1 1													Pin Name	,	Ou	tput Dri	ving	\dashv											Q			18	<u> </u>	1	Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.										Function Ta	able																		Inputs			Outp	ut									Mode	CLK	Dn	Α	В	SI	Qn	7										f	Di	L	L	х	Di	7									CLOCK	Н	х	L	L	X	Holo										SCAN	н	х	Л	н	Si	Holo											Н	X	L	ਪ	X	Si														Note	CLK n	= CK + = 1 ~ 8										C10-SHB-	E0	Sh	eet 1/3																									I	Page 11-27					HIT	SILCM	08.6	ATE A	BRAV	LIMIT	CELLS	PECIFIC	ATION		" CG10	" V	ersion		-------	----------------------	-------------	----------	----------	----------------------	---------------	----------------	-----------------------	-----------------------------	------------	------------	-----------------	------	--------------		Cell	l Name			inction	11L A	nnai	OIVII	OLLL 3	FEOIFIC	ATION		0070		Number of BC		S	HC		sc	AN 1-	-input	8 – bi	t DFF	with C	lock-In	hibit &)	(Q Out	out		62				Cell	Symbol						Pro	pagation D		neter										-	to tu	KCL	10	KCL	In KCL2	CDR2		Path		1							613	0.067	2.563	0.073	0.101	4	-	K, IH to XQ		1						-	۱	0.007		0.07.0		<u> </u>		,		0	01 — 02 — 03 —		0000	— x	Q1 Q2 Q3 Q4											0	05 — 06 —	=	000	— x	25 26 27											D	ов — ж —		5		28												H —	\dashv														1	SI						ramete					Symbol		Typ (ns) *		1	В —	-d	j					ulse Widt ause Tim				tcw		4.5 3.5				<u> </u>				10,	JUN PE	JUSE IIII	<u> </u>		-	t cwH		0.0										tup Time				t so		1.2								Di	ita Ho	ld Time				t _{HD}		2.1		Pin	Name		Inp F	ut Load	ling u)											١.	D CK	i		1		-										1	łΗ	į		1										!			SI A	l		1		-											В	- 1		1												Pin	Name		Ou	tput Dri	iving lu)											,	XQ			18		٦		es for the	r the typical worst case			given by th	e ma	ximum delay									·									Funct	tion Ta	ble					,	_								M	ode			Inputs	;	,	Outpu	1								L		CLK	Dn	A	В	SI	XQn									016	оск	£	Dn	L	L	×	Di	╛										н	х	L	L	х	Hold]										Н	х	Л	Н	Si	Hold	٦								sc	CAN	Н	х	L	ъ	×	Si	7												L		: CLK	= CK+ = 1~8																									}																-	2012	F0 1	OI:	201 1 1												C10-S	SHU-	<u>=0 </u>	Sh	eet 1/3									Т	Page 11-30															L	. ugo 11-00	Definitions of Parameters i) CLOCK MODE 3 C10-SHC-E0 Sheet 3/3 Page 11-32	1	FUJITS	SU CM	IOS G	ATE AF	RAY	UNIT	CELL	SPECIFIC	ATION		" CG10	" V	ersion		-------------------	----------	----------	----------	------------	---------------	-----------------------	-----------------	----------------	-------------	--------------	-----------------	----------	--------------		Cell Nam	e	Fı	unction										Number of BC		SHJ				-bit DF	Fw	ith C	lock-Ir	nhibit & 2					78			Cell	Symbol	<u> </u>		_			Pro	pagation D		neter									<u> </u>	tu				dn			Path		A1					_	t 0	KCL	t 0	KCL	KCL2	CDR2	<u> </u>	NC 1111 0		A1 —			Q			013	0.067		0.045	0.067	4		CK, IH to Q		B1 —	7	۲		Q1	2.	575	0.067	2.500	0.062	0.112	4	C	K, IH to XQ		A2 —			Q		1			1		l		ŀ			B2 — A3 —		۲	_ ^	Q2 2				1		ĺ					B3 —				3 Q3				1		l		l			A4 —		Ľ						ļ				ŀ			B4		h		Q4				Ì		l		ł			A5	_	ᄃ	Q					ł							B5	_	Ь		Q5				1		1	i	ŀ			A6		-	<u> </u>	6				ł		l					B6 —	-	þ	x	Q6	1			1	1						A7 —	\dashv	⊢	<u> </u>	7					!	1					B7	\dashv	þ		Q 7	_				<u> </u>	<u> </u>	<u> </u>				A8 —			a		_	ramete					Symbol		Typ (ns) *		B8 —		Р	X	Q 8			ulse Wi				tcw	<u> </u>	4.5		AS -	-d	- 1			CI	ock P	ause Ti	me			t CMH		3.5		BS —	-d				<u> </u>		T:						1.9		ск —	-	- 1					tup Tim				t _{SD}		2.0		IH —	\dashv	1			100	ila no	ld Time				t HD		2.0		sı —	\dashv	- 1			1										Α —	-	- 1			1										В —	-q	- 1			1															1							ł							d)	4										Pin Name	•		ut Load		1							ŀ			An Po			1	-/	٦										An, Bn (n=1~8)	j		'		1										AS, BS			1		1										CK IH	- 1		1		1					i					SI			i		1										A, B	- 1		1		1					1						-+	011	tput Dr	ivina	1										Pin Name	•		Factor (Q			18					or the typical							a xa			18 18			'he valu nultiplie		worst case	operating o	ondition are	given by th	e ma	aximum delay			ļ				1 "	ioiupiie	••																							Function Ta	able														r	г					_									Mode	<u> </u>		Inputs	; 		0.	tputs									CLK	DO	Α	В	SI	Qn	XQn									F	Di	L	L	×	Di	Di								CLOCK	뉴	X	L		×		lold									<u> </u>	_^_				<u> </u>	1010								6044	н	Х	Л	н	Si	L +	lold								SCAN	Н	х	L	ਪ	×	Si	Si									<u> </u>	<u> </u>	L			L												Not	e : CLK	= CK	+ IH) \PO =													= AC = 1 ~		• BO + C BSO														-									C10-SHJ-	E0	Sh	eet 1/3																									Page 11-33														_			FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Ve	ersion		------------------	-------------------------------	-----------	-----------	---------------	------------	--------------	-----------------	-----------	--------------		Cell Name	Function		<u> </u>	<u> </u>	111011				Number of BC																																																																																																																																																																																																																																																																																					
SHK	SCAN 8-bit DFF	with C	lock–Ini						88		Cell	Symbol			Proj	pagation D		meter						tı.				in			Path				t 0	KCL	t O	KCL	KCL2	CDR2	_			A1 —	Q1	2.900	0.067	2.875	0.051	0.056			K, IH to Q		B1 —	D XQ1	2.550	0.067	2.500	0.073	0.101	4	С	K, IH to XQ		A2						1	1 1				B2	Q2					1					C2	D XQ2					1	1 1				A3							1 1				В3 ——	—— ОЗ						1 1				С3 ——	р xaз					1	1 1				A4	Q4					l	1 1				B4	l l					I					C4	р хо ₄										A5	Q5		:								B5	D XQ5	Paramete	<u> </u>	L	L	 	Symbol		Typ (ns) *		A6 —	ρ— λ ω		ulse Wid	h			tow		4.5		B6	Q6		ause Tim				tcwh		3.5		C6	b xae	Olocki	4050 1111				· cwa				A7		Data Se	tup Time	·			t _{SD}		2.4		В7 ——	Q7	Data Ho					t _{HD}		1.9		C7	р хат										A8	Q8										B8	ı					- 1					C8 —	p xos										AS —d						- 1	1				BSq						•					csq						- 1					ск —	l					- 1	1				H						- 1	Į.				SI						İ					A B						1					°-4_																	- 1					Din Name	Input Loading										Pin Name	Factor (lu)										An, Bn, Cn	1					- 1					(n=1 ~ 8)	4										AS, BS, CS CK						l					H H	1					l					SI	1					1					A, B	•					ļ					Pin Name	Output Driving Factor (lu)										a	18 18			r the typical			m airma bu 4	 -	vimum dalau		XQ	18	multiplie		worst case	operaung o	oridition a	re given by the	o 1118	Annum Geray		(l																																																																		C10 C11/ F0 1	Sheet 1/3										C10-SHK-E0	SHEEL 1/3							Т	Page 11-36										L	1 age 11-00			11117	SUCM	108 G	ATE A	DDAV	LIMIT	CELLS	PECIFIC	ATION		" CG10	" Ve	rsion				---	-------	-------	-----------------------	---------------	----------	--	----------------------	-----------------------------	----------------	----------------	---------------	------	---------------------	--	--		Cell Name			unction	<u> </u>	I I I	OIVII	OLLLO	1 2011 101	THON		1 00.0	Ì	Number of BC				SFDN	1	SC	AN 1-	-input	DFF	with	Clock-						10					Cell	Symbo	·					Pro	pagation D		neter											\vdash	tu t 0	KCL	10	KCL	fn KCL2	CDR2		Path									1.	444 831	0.067 0.067	1.481 1.806	0.056 0.045	0.095 0.056	4 4		CK to Q CK to XQ				D — CK — IH — SI — A — B —			 :	a xa so																			ramete		14			t cw		Typ (ns) *											ulse Wid ause Tim				t cwH		2.5 2.5										Data Setup Time t sp																	Data Setup Time t sp 1.0 Data Hold Time t нp 0.9																ے ل	110 110	id Time				· AD						Pin Name	.		out Load Factor (D CK IH SI A, B			2 1 1 2 2														Pin Name			tput Dr Factor (a so			18 18		1		es for the	r the typical worst case			e given by th	e ma	ximum delay				Function Ta	ıble																			inputs	;		O	utputs										Mode	CLK	D	A	В	SI	Q, SC) XQ											£	Di	L	L	х	Di	Di										CLOCK	Н	×	L	L	×		Hold											Н	×	л	н	Si												SCAN	Н	x	L	u	×	Si	Si										Note : CLK = CK + IH C10-SFDM-E0 Sheet 1/3																	U.U UI UIVI	1	0.1										T	Page 11-39																L_				#### Function Table	Mode			Input	s			Outp	outs		-------	----------	----	-------	---	---	----	-------	------		Mode	CLK	CL	D	A	В	SI	Q, SO	XQ			F	Н	Di	L	L	Х	Di	Di		CLOCK	Н	Н	Х	L	L	Х	Ho	old			х	L	Х	Х	Х	Х	L	н		SCAN	Н	Н	Х	ζ	н	Ö	Но	d		SCAN	Н	н	х	٦	V	Х	Si	Şi	Note : CLK = CK + IH C10-SFDO-E0	Sheet 1/3 Page 11-42 ### i) CLOCK MODE **SFDO** " CG10 " Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name ### ii) CLEAR MODE C10-SFDO-E0	Sheet 3/3	Page 11-44	F	UJITS	SU CN	IOS G	ATE A	RRAY	UNIT	CELL	SPECIFIC	ATION		" CG10	" V	ersion		--	------------	-------	-----------------------	--------	----------	--------------	----------	-----------------	----------------	-------------------------	---------------	--	--------------		Cell Nam	е	F	unction										Number of BC		SFDI				-inpu	DFF	with	Clea	r, Preset,					12			Cell	Symbo						Pro	pagation D		meter									<u> </u>	t O		10		dn KOLO	1 0000	1	Path									KCL		KCL	KCL2	CDR2	-	K to Q								.688 .231	0.072		0.062 0.045	0.101	4	1	K to XQ				PR				269	0.067		0.062	0.101	4		L to Q,XQ				-				844	0.072		0.045	0.056	4		R to Q,XQ		D -		٩													ск -				a											IH -			þ—	XQ		l		i							SI -				so											A -						ŀ									В -	- •															_	7	,			- 1						l					1			Pa	ramete	·		I		Symbol	 	Typ (ns) *				CL					ılse W	idth			tcw	\vdash	2.9									ause T				t cwн		2.7																								tup Tin				t sp	<u> </u>	1.7							10	ata Ho	ld Tim	<u>e</u>			t HD	-	1.1		Input Loading Clear Pulse Width t Lw 2.7															Pin Name	,		Factor (elease				t REM		1.2		D			2		CI	ear Ho	old Tim	ne		t inn		3.0			CK, IH SI			2 1 2 2 2		-		Vilaa V	/: JAL		$-\!\!\!\!+\!\!\!\!\!-$		_	3.9		A, B			2				Pulse V	Time			t PW	-	0.6		CL, PR	1		2				old Ti				t INH	_	3.9					utput Di												Pin Name	-		Factor	(lu)	_										Q XQ	- 1		18 18		-										so			18					for the typical			e civen by th	ne ma	ximum delay			- 1					nultiplie					- g , -																			Function Ta	able														Mode				Inputs			·	Outputs]							CLK	CL	PR	D	A	В	SI	Q,SO XQ	4							<u> </u>	Н	Н	Di	L	L	X	Di Di	4							Н	H	н	×	L	L	X	Hold	4						CLOCK	×	L	н	X	×	×	×	LH	4							X	Н	L	X	×	×	×	H L	4							X	L	L	X	X	×	X	Prohibited	4						SCAN	Н	Н	Н	X	Л	Н	Si	Hold	4						H H X L 🛈 X Si 🔻																						Note : 0	CLK = CK+	IH						10 0500	E0 1														10-SFDP	<u>-E0</u>	Sh	eet 1/4	4										Page 11-45 **Definitions of Parameters** 3 C10-SFDP-E0	Sheet 4/4	Page 11-48		FUJIT	SU CN	IOS G	ATE A	RRAY	/ UNIT	CELL S	PECIFIC	ATION			" CG10	" V	ersion		-------------	----------	-------	---------------------	-------------	-----------------------	------------------------------------	--------------	---------------	----------------	-------------	-------	-------------	----------------	-------------------		Cell Nam	е	F	unction											Number of		SFD	R	sc	AN 4	–inpu	t DFF	with	Clear	and Clo	ck Inhibi	it				36			Cell	Symbo	ı					Pro	pagation D	elay Pa	aram	eter									-	tı.				dn L KOL	_	0000		Path							<u> </u>	t 0	KCL	t 0	KCL	KCL	-	CDR2	 _	N/ 4= 0							2	.325	0.072	2.344	0.062 0.062	0.10		4		K to Q L to Q							- 1	_	_	2.400	0.002	0.1	12	-	١,	L 10 Q			_		1							l						DA -				QA						l						DB -				QB	- 1					i						DC -			ì	QC QD	- 1											DD -				QD	İ					ļ						CK -	\dashv				ı					ł						IH -																SI - A -				so	ł					l						В-					İ												L	-	j		Ļ	Parameter Symbol												Ĭ				Parameter Symbol Clock Pulse Width								Typ (ns) * 3.2				CL				Clock Pulse Width tow								3.5				OL			ľ	Clock Pause Time town															Data Setup Time t so									0.7							D	ata Ho	ld Time					t HD		1.5							Clear Pulse Width tuw								3.2			Pin Name	.		put Loa Factor (-		t REM	-	1.8			D				,																																																																																																																																																																																																																																																																																																
							t inh		3.6		ск, ін			2 1 2 1													SI A, B			2		- 1											ČL			i														-		utput Di	lving	\dashv											Pin Name	.		Factor													Q			18 18													so			18		•	Minimur	n values for	r the typical	operating of	onditio	n.						1							worst case	operating o	ondition	n are	given by th	e ma	ximum delay			ı				۱ '	multiplie	r.																									Function Ta	able																Γ		Input	s			Outputs									Mode	CLK	CL	D	Α	В	SI	On, SO										1	н	Di	L	L	х	Di									CLOCK	Н	н	х	L	L	х	Hold										×	L	×	×	×	×	L									SCAN	н	Н	X	л	H .	Si	Hold										Н	Н	×	L	ប	×	Si														Note	: CLK	= CK + IH																																																																																								Sheet 1/4 C10-SFDR-E0 Page 11-49		III II TS	LLCM	08 G	ATE AL	DDAV	LIMIT	CELLS	SPECIFICA	ATION		" CG10	* V	ersion		---------------------------------------	-----------	--------	--------------------------------------	----------------------	------------------------	--------------	----------------	------------------------------	----------------	----------------	-----------------	--	-----------------------		Cell Name			nction	AIE AI	nhAi	UNIT	CELL 3	SPECIFIC/	ATION		Caro		Number of BC		SFDS	S	SCA	AN 4-	-input	DFF	with	Clock	Inhibit					31			Cell	Symbol						Pro	pagation D		neter									<u> </u>	tu	p KCL	10		in KCI 2	CDR2	-	Path							1.	919 056	0.067 0.067	1.888	0.056 0.056	0.090 0.090	4 4		(to QA~QC (to QD		DA DB DC DD CK SI A B			······ (DA DB DC DD																	amete			·		Symbol		Typ (ns) *								ock P	ulse Wic	ith no			tcw	-	2.9							Clock Pause Time t cwh							 	2.0							Da	ta Se	tup Tim	е			t _{SD}		0.0							Da	ita Ho	ld Time				t HD	<u> </u>	1.4		Pin Name D CK, IH SI A, B	•		eut Load Factor (1 2 1 2												Di- No-			tput Dr		7										Pin Name Q SO	•		18 18 18	iu)	1		ues for the	or the typical worst case			e given by th	ne ma	aximum delay		Function Ta	able																	Inputs	;		Out	outs								Mode	CLK	Dn	Α	В	SI	Qn,	so									<u>f</u>	Di	L	L	×	٥	ni l								CLOCK	Н	×	_	L	×	Но										н	×	元	Н	^ Si	Ho									SCAN	Н	X	J.L	T U	X	 	Si									<u> </u>				te: CLI	L	 K + IH								C10-SFDS	-E0]	Sh	eet 1/4																								L	Page 11-53	**SFDS** **Definitions of Parameters** i) CLOCK MODE Page 11-56 C10-SFDS-E0 Sheet 4/4		UJIT	SU CM	10S G	ATE A	RRAY	UNIT	CELL	SPECIFIC	ATION		" CG10	" V			---	-------------	-------	----------------------	---------------	--	----------	-------------------	----------------	-------------	------------	-----------------	--------------	--------------		Cell Nam	•		unction										Number of		SFJL)	SC.	AN J-	-K FF	with	Cloc	k Inhi	bit					14			Cell	Symbo						Pro	pagation D	elay Paran	neter		·								tu				dn			Path							_	t O	KCL	t 0	KCL	KCL2	CDR2	_									.025	0.072		0.067	0.112	4		K to Q								163	0.067		0.045	0.056	4		K to XQ							[]	.750	0.067	1.544	0.051	0.095	4	١٠	L to Q,XQ		J - K - CK - IH - SI - A -			—	a xa so											В -	- ₫_	٦															1			Pa	ramete	r	Symbol	\vdash	Typ (ns) *							CL					ulse W	idth			tcw		2.7							Clock Pause Time town								3.1																						Data Setup Time (J) t sp Data Hold Time (J) t нр							-	2.4							10	ata Ho	ia I im	e (J)			t HD		0.4				Int	put Loa	dina	10:	ata Se	tup Tir	ne (K)			t _{SD}	-	2.0		Pin Name	,		Factor (ld Tim			t HD		0.1			J, K			1												CK, IH SI			1 2				ulse W				t Lw	├	2.7		A, B CL			222				elease old Tim				t REM	 	1.3 2.7		Pin Name Q XQ SO	•		18 18 18 18		'		es for th	for the typica			e given by th	ne ma	aximum delay		Function Ta	able														Mode	<u> </u>	T 61		Inputs	г.	r -	T 6:	Outputs	\dashv							CLK	CL	J	К	A .	В	SI	Q, SO X	<u>-</u>							1	Н	L H	L	L	L	X	Hold Toggle	-						0.00:	누			 	 	ļ	ļ		\dashv						CLOCK	1	Н	L	Н	L	<u> </u>	×	L H								5	Н	Н	L	L	L	X	H L								Н	Н .	X	X	L	L	X	Hold								×	L	×	×	<u>×</u>	×	×	L F	<u>'</u>						SCAN	н	Н	X	X	Ţ	H	Si	Hold							L	Н	Н	х	×	L	<u>Г</u>	X	Si Si														Note:	CLK = CK	⊦ IH						10-SFJD	-E0	Sh	eet 1/3	3								Т	Page 11-5														L	. ago 11-0	3 # 3 ## Non-scan Flip-flop Family	Page	Unit Cell Name	Function	Basic Cells		-------	-------------------	--	----------------		3–183	FDM	Non-scan D Flip-flop	6		3–185	FDN	Non-scan D Flip-flop with Set	7		3–187	FDO	Non-scan D Flip-flop with Reset	7		3–189	FDP	Non-scan D Flip-flop with Set and Reset	8		3-192	FDQ	Non-scan 4-bit D Flip-flop	21		3-194	FDR	Non-scan 4-bit D Flip-flop with Clear	26		3-197	FDS	Non-scan 4-bit D Flip-flop	20		3-199	FD2	Non-scan Power D Flip-flop	7		3-201	FD3	Non-scan Power D Flip-flop with Preset	8		3-203	FD4	Non-scan Power D Flip-flop with Clear and Preset	9		3-205	FD5	Non-scan Power D Flip-flop with Clear	8		3–207	FJD	Non-scan Positive Edge Clocked Power J-K Flip-flop with Clear	12	3	FILIIT	SU CMOS GATE AR	RAY LINIT	CELLS	PECIFIC	ATION		" CG10	" Version		----------------	-------------------------------	-------------------------------------	-----------------	-----------------------------	-------------	------------	---------------	-----------------		Cell Name	Function	HAT CIVI	<u> </u>	1 2011 107	111011		1 00.0	Number of BC		FDM	Non-SCAN DF	F						6		Cell	Symbol			Pro	pagation D		neter					t O	KCL	t O	KCL	in KCL2	CDR2	Path				1.094	0.067	1.125	0.051	KULZ	CDR2	CK to Q				1.350	0.067	1.475	0.051			CK to XQ		D ——	°										р— хо						1 1			L_]					1					1 1					Paramete					Symbol	Typ (ns) *					ulse Widt				t cw t cwH	2.5				Clock Pause Time						2.5				Data Se	tup Time				tsp	1.4				Data Ho	t _{HD}	1.0							Input Loading	-]			Pin Name	Factor (lu)									D	2 1	1					1			ск	1	}					1					1					l]								Pin Name	Output Driving Factor (lu)									Q		1				1				ΧQ	18 18	* Minimus The value multiplie	ues for the	r the typical worst case	operating o	ondition.	given by the	e maximum delay		Function Table										Inputs	Outputs									D CK	Q XQ									н↑	H L									∟ ↑	LH																																																																																																			C10-FDM-E0	Sheet 1/2																	Page 12-1		• /	Fu			RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version			--------	--------------------	-------------	---	--	---	---	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
--	---	---	--			Non	nction								Number of Bo			Cell	.,,	-SCA	N DF	with SI	ET					7				Symbol					Pro	pagation D		neter								t O	KCL	t O	KCL	in KCL2	CDR2	Path				s 			1.125 1.538 1.400	0.067 0.067 0.067	1.094 1.513 0.669	0.051 0.045 0.045	0.067	4	CK to Q CK to XQ S to Q, XQ					— a — ха																					Typ (ns) *												t _{CW}	2.5 2.5							CIOCK P	ause IIM	le			r CMH	2.5							Data Se	tup Time				t _{SD}	1.4							Data Ho	t HD	1.0								Inn	ut Loadir	na	Set Puls	se Width				tsw	2.5				F	actor (lu)	Set Rele	t REM	0.2									2 1		Set Hole	d Time				t _{INH}	2.4			,	Ou F	actor (lu	ing)	* Minimum values for the typical operating condition.											18				worst case	operating o	ondition are	given by th	e maximum delay			able		r		7									nputs		Ou	tputs	1									D	ск	Q	XQ	_									×	х	Н	L	1									н	1	н	L	1										1	L	н	1										able nputs D	o Our F	Input Loadin Factor (lu) 2 2 1 Output Drivi Factor (lu) 18 18 able nputs Output Drivi Factor (lu) 18 18	Input Loading Factor (lu) 2 2 1 Output Driving Factor (lu) 18 18 Able Apputs Outputs D CK Q XQ X X H L	Paramete Clock P Clock P Clock P Data Se Data Ho Input Loading Factor (lu) Set Rele 2 1 Output Driving Factor (lu) 18 18 18 Minimur The valumultiplie able Inputs D CK Q XQ X X H L	Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Input Loading Factor (lu) 2 1 Output Driving Factor (lu) 18 18 18 Ninimum values for the multiplier. Able Inputs D CK Q XQ X X H L	Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Input Loading Factor (lu) 2 1 Output Driving Factor (lu) 18 18 18 Ninimum values for the typical The values for the worst case multiplier. Able Inputs D CK Q XQ X X H L	Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Set Pulse Width Set Release Time (S) 2 1 Output Driving Factor (lu) 18 18 18 * Minimum values for the typical operating or multiplier. * Minimum values for the worst case operating or multiplier.	Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Input Loading Factor (lu) Set Release Time (S) Set Hold Time Output Driving Factor (lu) 18 18 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are multiplier. able Inputs Outputs D CK Q XQ X X H L	Parameter Symbol Clock Pulse Width tow Clock Pause Time town Data Setup Time tsp Data Hold Time thp Input Loading Factor (Iu) Set Release Time (S) trem 2 2 1 Output Driving Factor (Iu) * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the multiplier. * Minimum values for the typical operating condition are given by the multiplier.			FUJIT	SU CM	OS GA	TE ARF	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Versi	on		----------------	----------	-----------------	--------	-------------------------	-------------------------	--	-------------------------	-----------	-----------------	---------	--------------------------		Cell Name		nction									umber of BO		FDO	Non	-SCA	N DFF	with R	ESET						7		Cel	Symbol					Pro	pagation D		neter									KCL	 	KCL	n KCL2			Path						1.206 1.350 1.250	0.067 0.067 0.067	1.113 1.613 1.025	0.056 0.051 0.056	KOLZ	CDR2	CK	to Q to XQ o Q, XQ		р —	D R	— a — ха		Paramete Clock P	er ulse Widi	ih.			Symbol tcw		p (ns) * 2.5							ause Tim				t cwh		2.5						0.00	<u> </u>				20111								Data Se	tup Time				t _{SD}		1.4						Data Ho	old Time				t HD		1.0			ln-	ut Loadii	20	Recet D	ulse Wid	th		-	t RW		2.5		Pin Name		actor (lu		Reset B	Release T	t REM		0.6					D		2 2 1		Reset H	lold Time				t INH		2.1		R CK	Ou	1 tput Drivi	ing										Pin Name		actor (lu		* Minimus	n values for	the trained	anaratina a	ondition.					Q XQ		18 18			ues for the		operating o		given by the	e maxim	ım delay		Function Table													Inputs		Ou	tputs										R D	ск	a	ΧQ]									L X	Х	L	н	I									н н	↑	н	L										H L	1		Н														_									C10-FDO-E0	She	eet 1/2]_							Pa	ge 12–5		Cell Name			MOS GA	TE AR	RAY UNIT	CELLS	PECIFIC	ATION		* CG10 '	" Version Number of E		-------------	-------------	--------	------------------------	------------	--	----------------------------------	----------------------------------	----------------------------------	------------------	-----------------	---		FDP				N DFI	with S	et and F	Reset				8																Cei	Symbo	01		 	JD QI	Pro	pagation D	elay Parai In	meter								t O	KCL	i O	KCL	KCL2	CDR2	Path				s I			1.225 1.531 1.400 1.588	0.067 0.067 0.067 0.067	1.100 1.563 0.994 0.631	0.056 0.051 0.056 0.051			CK to Q CK to XQ R to Q, XQ S to Q, XQ		D —			a xa	ı											Ř			Paramete					Symbol	Typ (ns) *								ulse Wid				tow	2.5 2.5							CIOCK	t cwn	2.5												tup Time				t _{SD}	1.4							Data Ho	old Time				t HD	1.0				In	put Load	ina	Set Pul	2.5							Pin Name	•		Factor (I	1) 8		ease Tim	e (S)			t sw	0.2		D			2		Set Hol	2.4							S			2 2 2 1		Boast F	Vilaa VACid	4h				2.5		R CK			1			Pulse Wid Release T				t REM	0.6								lold Time				t inn	2.1		Pin Name	•	0	utput Dri Factor (I										Q			18	<u> </u>									XQ			18	~~~~~		ues for the		operating o		e given by the	maximum delay		Function Ta	able													Inp	uts		Out	puts										D	СК	a	ΧQ								S	R			L	Н								S	R L	×	Х	_									ļ		×	×	н	L								H	L H	x	x	н	- 1								H L L	L H L	x x	x x	H Inhil	oited								H	L H	x	x	н	- 1							C10-FDP-E0	Sheet 1/3 Page 12-7		SU CMOS GATE AF	RRAY UNIT	CELLS	PECIFIC	ATION		" CG10 "			----------------	-----------------	-----------	----------------------	---------------	--------------	------------	-----------------	---------------		Cell Name	Function							Number of BC		FDQ	Non-SCAN 4-	bit DFF						21		Cell	Symbol	T		Pro	pagation D	elav Paran	neter					tı	ıb			in		D-#				t 0	KCL	t O	KCL	KCL2	CDR2	Path				2.106	0.067	1.713	0.045]]	CK to Q		}		1										1								DAD	BDCDD	1								1										1 -	느ㅋ										QA QB									ск — ф	QC	1									QD	1																		•							<u> </u>					Paramete					Symbol	Typ (ns) *				Clock P	ulse Wid ause Tim	in			t cwL	2.5 2.5				CIOCKI	1 CWL										tup Time				t _{SD}	0.7				Data Ho	old Time				t HD	1.8			Input Loading	-					ŀ			Pin Name	Factor (lu)									D CK	1	7								ск	1	1				1	1			}						1]										l			Pin Name	Output Driving	7					ļ			Q	Factor (lu)	-								"	10	* Minimu	m values fo	r the typical	operating of	ondition.											given by the	maximum delay				multiplie																		Function Table										·	T Outsut									Input	Output									CK D	0									↓ н	н										L																													1																				}																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
																																	C10-FDQ-E0	Sheet 1/2									2,0,00	3,,001 1/2							Page 12-10													EI I IIT	'C11	CMOS G	ATE ADD	RAY UNIT	CELLS	DECIEIC	ATION		" CG10 "	Version		------------	------------------------------------	--------------	-----------------------	----------	-----------------------	-------------	----------------	----------------	--------------	-----------------	--------------------		Cell Nam	•	L	Function		IOI OIVII	OELL S	FEOIFIC	TION			Number of BC		FDF	?	١	lon-SC	AN 4-b	it DFF v	vith CLE	AR				26			Cel	Syn	nbol				Pro	pagation D	elay Paran	eter									ip qu			in		Path		1					10	KCL	10	KCL	KCL2	CDR2			-					1.650	0.067	2.263 1.363	0.045 0.045		l	CK to Q CL to Q							-	_	1.363	0.045		i i	CLIOQ								l		ł		l 1				DAD	BDC	DD		i	l									Ш	ı		İ	İ							I	۲,		ጎ		İ	[1			QA QB		1							ск —	-		1	QC QC		1											QD	l	1							1	L	Q			1	1							1		1			L					L			1		ĊL			Paramete					Symbol	Typ (ns) *		ł						ulse Wid				tcw	2.5		l					CIOCK P	ause Tim	ie			t cwH	2.5		İ					Data Se	tup Time				t sp	0.7		1						old Time				t HD	1.8															Pin Name	Pin Name Input Loading Factor (lu)			ding		ulse Widt				t _{LW}	2.5			Pactor (IU)				elease Ti old Time	me			t REM	1.0 2.9			D CK		١	1		Olear Flora Time					INH			CL			1						1	}					1			l				1				ļ		├-	Outros D	1.1						1			Pin Name	•	ļ	Output Dr Factor (l					j			a			18												l				m values fo									İ					worst case	operating o	ondition are	given by the	maximum delay							multiplie	∌ r.												·				~~~~				Function T	able				_									Inpu	ıts		Output									СК	D		CL	a									×	×		L	L										١ι		н	L									1	H		н	н	1											п	- 17	l								1													1																																																																	1													C10 EDD	EΛ		Sheet 1/3										C10-FDR-	-EU	Ь	SHEET 1/3	2							Page 12-12													1 ago 12-12		F	UJITS	U CMOS GA	ATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Versio	n		-------------	-------	-------------------------	----------	----------	------------------------------------	----------	-------------	------------	-----------------------	----------	----------------------		Cell Name		Function									mber of BC		FDS	-	Non-SC/	AN 4-b	it DFF							20			Cell	Symbol				Pro	pagation D		neter								t O	KCL	t O	KCL to	In KCL2	CDR2	F	ath		ск ——	DADE	(QA QB	1.894	0.067	1.531	0.051			СК	to Q					9D	Clock P	ulse Widt ause Tim etup Time	е			Symbol tcw tcw+	2	(ns) * 2.5 2.5						Data Ho	old Time				t HD		1.6		Pin Name		Input Load Factor (I											D CK		2 1											Pin Name		Output Dri Factor (a		18			ues for the		operating o		e given by th	e maximu	m delay		Function Ta	ble												inp	uts	Outputs											СК	D	a											1	L	L											↑	н	н																								C10-FDS-	E0	Sheet 1/2								- 1													Pag	e 12–15		Cell Name	SU CMOS G	ATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		----------------	-----------------------	--------------	-----------------	--------------	-------------	-------------	------------	-----------------	-----------------		ED0	Function								Number of BC		FD2	Non-SC	AN Pov	ver DFF						7		Cell	Symbol				Proj	pagation D	elay Parar	neter							ib			In		Path					10	KCL	t O	KCL	KCL2	CDR2						1.031	0.034	1.075	0.028	0.056	7	CK to Q					1.594	0.034	1.463	0.023	0.039	7	CK to XQ										1 1											1 1																						1 1														D —	°										ск — с												b x	2						1			L	^	~						1 1																	<u> </u>					1						Paramete		<u> </u>			Symbol	Typ (ns) *						ulse Widt			—-}	tcw	2.5 2.5					Clock P	ause Tim	е			t cwL	2.5					Data Setup Time					t _{SD}	1.4					Data Ho	old Time				t HD	1.0					Data inc	no mino				. 40			D1 . M	Input Load	ling	i								Pin Name	Factor (lu)					1				O	2 1										СК	1						1	1										-							}				1					0.44.0-						i				Pin Name	Output Dr Factor (iving lu)					1	ļ			0		/					- 1				Q XQ	36 36		* Minimur	n values for	the typical	operation o	ondition												given by the	e maximum delay					multiplie					•	•					L								For Mark Take											Function Table			_									Outp	outs]								Inputs			i								Inputs CK D	a	XQ	l								CK D													L H									F	UJIT	SU CMOS G	ATE ARE	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Ve	ersion		-------------	------------------------	---------------------	----------------	----------------------	-------------	------------	-------------	--------------	-----------------	----------	-------------------		Cell Name		Function									Number of BC		FD3		Non-SC	AN Pov	ver DFF	with Pr	eset					8			Cell	Symbol				Pro	pagation D		neter								t O	KCL	t O	KCL	In KCL2	CDR2		Path						1.069	0.025	1.081	0.023	0.056	7	-	CK to Q		i				1.750	0.025	1.563	0.023	0.039	7		CK to XQ						1.494	0.025	0.569	0.023	0.039	7		PR to Q, XQ												Ì					PR 			!										Y			ļ								D	\Box	¬。)	l	l								ск —	٦												CK	٦٩				1									1.	р— х	Q	l	İ												į	l												Paramete	<u> </u>	L	L		Symbol		Tim (no) 8							ulse Wid	h			t cw		Typ (ns) * 2.5							ause Tim				t cwL		2.5																				etup Time				t _{SD}	<u> </u>	1.4						Data Hold Time							1.0		Din Name	Pin Name Input Loading				Pulse Wid	ith			t pw		2.5			Factor (lu)				Release T				t REM		0.2		D CK		2 1 2		Preset Hold Time					t INH	<u> </u>	2.4		PR	- 1	ż																										0		l				ĺ					Pin Name	,	Output Di Factor	riving (lu)					1					Q XQ		36 36	·	[XQ	- 1	36			m values fo												The val multiplie		worst case	operating o	ondition are	given by th	e ma	ximum delay						Indiapile	J1.																					Function Ta	able													Inpu	ts	Out	puts									PR	СК	D	Q	ΧQ									L	×	×	н	L									н	↓	н	н	L]	1			l									Н	*	L	L	н	l																																																																																																			C10-FD3-	EO I	Sheet 1/2	2										0.0.00	<u> 1</u>	Q.7001 17								T	Page 12-19												L	<u> </u>		FUJIT	TSU CMOS GATE AF	RRAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Version		----------------	-------------------------------	----------------------------------	----------------------------------	----------------------------------	----------------------------------	----------------------------------	------------------	---		Cell Name	Function							Number of		FD4	Non-SCAN Po	wer DFF	with CI	ear and	Preset			9		Ce	II Symbol	T		Pro	pagation D	elay Paran	neter					tı	φ			dn		Path				t O	KCL	t O	KCL	KCL2	CDR2			₀ —	PR O	1.188 1.756 1.544 1.556	0.030 0.025 0.025 0.030	1.075 1.700 0.913 0.575	0.028 0.023 0.028 0.023	0.056 0.039 0.056 0.039	7 7 7 7	CK to Q CK to XQ CL to Q, XC PR to Q, XC		ск — сь			ulse Wid				Symbol tow	Typ (ns) * 2.5 2.5				Clock Pause Time tcw.										Data Se	tup Time				t sp	1.4				Data Ho	old Time				t HD	1.0			Input Loading	Preset I	Pulse Wid	ith																																																																																																																																																																																																																																																						
	t pw	2.5		Pin Name	Factor (lu)		Release				t REM	0.2		D	2		Hold Time				tinh	2.4		CK	2									CL PR	2 2		ulse Wid				tıw	2.5		FFI	1		elease Ti	me			t REM	0.6				Clear H	old Time				t inh	2.1		Pin Name	Output Driving Factor (lu)									a xa	Q 36				operating o		given by the	e maximum delay			Inp	uts		Out	puts		----	-----	-----	---	-----	------		PR	CL	СК	D	σ	ΧQ		L	н	x	×	н	L		н	L	×	x	L	н		Н	н	1	н	н	L		н	Н	↓	L	L	н	C10-FD4-E0 Sheet 1/2 Page 12-21	F	UJITS	U CMOS G	ATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		-------------	--------	-----------	---------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------------	---	------------------------------------		Cell Name	•	Function								Number of B		FD5	1	Non-SC	AN Pov	ver DFF	with CL	EAR				8			Cell S	Symbol				Pro	pagation D	elay Para	meter								ıρ			in		Path						1.175 1.606 1.475	0.034 0.034 0.034	1.069 1.606 0.950	0.028 0.023 0.028	0.056 0.039 0.056	7 7 7	CK to Q CK to XQ CL to Q, XQ		D — СК —	-[~ ×	a a				:						Ċ	L		Paramete					Symbol	Typ (ns) *							ulse Widt				t cw	2.5						Clock P	ause Tim	ie			t cwl	2.5						Data Sc	etup Time				t sp	1.4							old Time				t HD	1.0						Data in	JIG TITLE				• 110					Input Loa	dina	Clear P	ulse Wid	th			tıw	2.5		Pin Name	'	Factor (Clear R	elease Ti	me			t REM	1.0		D		2		Clear H	old Time				t inn	2.9		CK]	1						- 1				CL		2												Output Dr	ivina							i		Pin Name		Factor]								αŝ		36 36		ļ								ΧQ		30							e given by th	e maximum delay		Function Ta	uble			I					***************************************				inputs		Out	puts								CL	СК	D	α	ΧQ									Х	×	L	Н								L												H	† †	н	н	L								C10-FD5-F0	Sheet 1/2		------------	-----------	Page 12-23	FUJI	TSU CMOS GATE AF	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		--------------------	-------------------------------	-------------------------	-------------------------------	-------------------------	-------------------------	-------------------------	-----------------	------------------------------------		Cell Name	Function							Number of Bo		FJD	Non-SCAN Po	sitive ed	ge clock	ed Pow	er JKFf	with C	lear	12		Ce	Il Symbol	T		Pro	pagation D	elay Parar	neter					tı	ρ		to	in		Path				t O	KCL	t O	KCL	KCL2	CDR2			J — ск — к	~ ×a	2.750 2.769 1.500	0.034 0.034 0.034	1.850 1.550 0.806	0.028 0.028 0.028	0.045 0.045 0.045	7 7 7	CK to Q CK to XQ CL to Q, XQ			c'L	Paramete	er		·		Symbol	Typ (ns) *				Clock P	ulse Wid	h			t cw	3.5				Clock P	ause Tim	е			t cwn	3.5															up Time				t _{SD}	1.6				J, K Ho	ld Time				t HD	8.0			1	Class D	ulaa Mid	<u> </u>			•	2.5		Pin Name	Input Loading Factor (lu)		<u>ulse Wid</u> elease Ti				t LW	1.6					old Time	1116			t INH	2.9		CL J K CK	2 1 1 1 1	Olean II	Old Tillle				• 11477			Pin Name	Output Driving Factor (Iu)]								xa 	Q 36 XQ 36		m values for ues for the v				given by th	e maximum delay			Inp	uts		Out	outs		----	-----	-----	---	-----	------		CL	СК	J	к	Q	XQ		L	н	×	×	L	н		Н	1	L	L	∞	XQ0		н	1	L	н	L	н		н	1	н	L	н	L		н	1	н	н	XQ0	Q0	C10-FJD-E0 Sheet 1/2 Page 12-25 # 3 ## **Scan Counter Family**	Page	Unit Cell Name	Function	Basic Cells		-------	-------------------	---	----------------		3–211	SC7	Scan 4-bit Synchronous Binary Up Counter with Parallel Load	62		3–216	SC8	Scan 4-bit Synchronous Binary Down Counter with Parallel Load	66		3–221	SC43	Scan 4-bit Synchronous Binary Up Counter with Asynchronous Clear	59		3-225	SC47	Scan 4-bit Synchronous Binary Up/Down Counter	78			SU CMOS GATE AR	HAT UNII	CELL S	PECIFICA	ATION		CGIO	" Version		-----------	-----------------------------------	-----------------------	--	----------	------------	-----------	--------	-------------		Cell Name	Function							Number of		SC7	SCAN 4-bit Syl Up Counter with	nchronol n Paralle	us Binar I Load	У				62		Cell	Symbol	T		Pro	pagation D	elay Para	meter					tı	ıp		to	in		Path				t O	KCL	tÖ	KCL	KCL2	CDR2	Pan				2.063	0.034	1.906	0.034	0.084	7	CK,IH to Q				3.613	0.034	3.338	0.034	0.084	7	CK,IH to XC				4.875	0.034	3.269	0.023	_	-	CK,IH to CC		DA	l	1.250	0.034	0.625	0.023	_	-	CI to CO		DB —	QA						1			DC —	р хо _л									DD —	OB_	1									р— хов									ск——	oc									#	D	Paramete				<u> </u>	Symbol	Typ (ns) *		r — d	D XQD		ulse Widt	h			tcw	4.5			EN CO		ause Tim				tcw	4.5					ause int				· CWH			ă——		Data Se	tup Time				t sp	1.3		:;—d			ld Time				t HD	2.1		<u> </u>													etup Time				t st	4.0				Load Ho	old Time				t HL	2.3												Pin Name	Input Loading	CI Setu	o Time				t sc	4.5			Factor (lu)	CI Hold	Time				t HC	1.7		D	. 1									CK IH	1	EN Setu					t se	4.5 1.7		im L	i	EN Hold	ııme				t HE	1./		ČĪ	2 1	Ì								EN Si	1	1								A,B		1										1								Pin Name	Output Driving Factor (lu)									a	36	1								XQ CO	XQ 36		Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.							Mode	Inputs													-------	--------	----	---	-----	----	---	---	----	----------	--	--	--			CI	EN	L	CLK	Dn	Α	В	SI	On					сьоск	x	×	L	5	Di	L	L	×	Di						Н	Н	н	F	х	L	L	×	Count Up						L	×	Н	F	×	L	L	×							×	L	н	F	×	L	L	×	No Count					22411	×	×	×	н	×	Л	Н	Si]					SCAN	х	х	х	Н	х	L	V	х	Si				Note : CLK = CK + IH n = A ~ D C10-SC7-E0 Sheet 1/5 Page 13-1	FUJI	SU CM	1OS G	ATE A	RRAY	UNIT	CELL	SPEC	IFICA	TION			" CG10	" Ve	ersion			------------------	--	--	------------------	------------------	---	---------------------	--------------------	---------	----------------	----------	----------	---------------	------	--------------------------	--		Cell Name	F	unction												Number of B			SC8	SC.	AN 4 wn Co	-bit S ounter	ynch with	ronou Para	is Bina Illel Lo	aly ad							66			Ce	Symbo		Propagation De								aram	eter										tup tdn									Path								10	KCL		0	KCL	KCL		CDR2	_									2.106 0.030 1.988 0.034 0.073 7 2.750 0.025 2.700 0.023 - -							K,IH to Q											0.025			0.023 0.023	_		_		K,IH to XQ K,IH to BO			. r		- 4.006 0.034 5.231 0.023 - 0.931 0.034 1.419 0.023 -							_		BI to BO						DA —		-	- QA	"		0.00	"		0.020					D. 10 DO			DC —		P-	- XQA														DD —		_	- QB - XQB	1				Ì		İ							ск ——		F		1													IH —										<u> </u>							rd	QD				ramete		-141-				_	Symbol		Typ (ns) *			BI — Q		ρ-	- XOD			ulse Wi ause Ti						t cw t cwh		4.3			SI —		b	- во	۳	OCK I	1036 11	me			T CWH							A						tup Tin						1.3					в—		1		Di	ata Ho	ld Time	}					t HD		2.1					_		17	ad Se	tun Tin	ne				_	t sı.	-	4.0								Load Setup Time Load Hold Time							t HL		2.3																				Pin Name		out Loa Factor (EN Setup Time t se EN Hold Time t HE							5.1 1.2					D	 	1	,	 -													СK) i					BI Setup Time								5.1			IH L		1		BI	BI Hold Time							t HB		1.2			BI EN		2															SI		1		-													A,B		1		1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
							Pin Name		tput D															<u> </u>		Factor 36	(lu)	-													XQ		36 36		1.	Minimur	n values	for the	typical	operation	conditio							ВО		36		'	 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay 																'	nultiplie	r.												<u> </u>																Function Table																	Mode		γ		uts				Outputs									BI	EN	L.	CLK	Dn Di	A .	B	SI	ļ	On Di								, 1 .	X	L			L			├									X	+		F	Х	L	L	×	Count	Down								CLOCK L	L	H		y	1 1				i								CLOCK X	Н	Н	f	X	L		Y	No.	Sount								CLOCK X	H X	н	<u>f</u>	Х	L	L	X Si	No C	Count								CLOCK X	Н	Н	f			L			Count								CLOCK X H SCAN X	H X X	H H X	4	x	Υ	ь Г	Si X Note: C		Si CK + IH								CLOCK X H SCAN X	H X X	H H X	н н	x	Υ	ь Г	Si X Note: C	:LK =	Si CK + IH							FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Version Page 13-10 i) CLOCK MODE 3 C10-SC8-E0 Sheet 5/5	Cell Name		ITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Version															---------------------	-----------------------	---	---	-----------------------	----------------------------	---	------------------	--	----------------------------------	--	---------------------	-----------------	-------------	--	--			•		nction										Number of B				SC43	3			-bit Sy nchror			s Bina r	ry Up					59					Cell	Symbol							Prop	agation De		neter										<u> </u>	tup		 		td		T 0000	Path										0	KCL	t'		KCL	KCL2	CDR2	CICATIO							2.669 0.067 2.569 0.045 0.067 3.219 0.067 3.438 0.045 0.067							4	CK to Q CK to CO						DA -	_	- 1		2A	3.	_	0.067	1.6		0.045	0.067 0.067	4	CL to Q				DB -		-		ΣВ	1.	138	0.067	0.7		0.045	0.067	4	CI to CO				DC —		H		C		-	_	2.2		0.045	0.067	4	CL to CO				DD —		ŀ	 (D D		i		1									ск -					1	i		1		1							iH —	-				1	l											L	- q	ĺ			- 1	- 1											CI — EN —				0	-			1				į.					si —		- 1	5	80	-			1									A		1				l				ļ							в —	- •				Pa	ameter		ــــــــــــــــــــــــــــــــــــــ			1	Symbol	Typ (ns) *					<u> </u>	ᡨ					Ise Wi	dth				tcw	3.2									CI	ock Pa	use Ti	me				t cwн	4.6						CL					up Tim					t _{SD}	1.2											d Time			t HD	1.4 1.9													ld Time			t st t HL	1.5								Inp	ut Load	ling			Time					tsc	2.5				Pin Name	,	Factor (Iu) CI Hold Time										t HC	1,1				D	1		2 1				p Time			t se	2.5						CK, IH L, CL, SI			1			Hold	Ise Wid	lth.		t HE t LW	1.1 3.9						EN	- 1		1				lease 1			t REM	0.9						A, B, CI			2			Clear Hold Time							3.6				Di N			tput Dri														Pin Name Q	'		actor (u)	-												co			18		l	* Minimum values for the trained energing and distant											so			18			Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay.																	nultiplier		,	•									L																	able																Function Ta					1				_													Inputs					Outputs	·						Function Ta	CI	EN	CL	CLK	L	Dn	Α	В	SI	Outputs Qn, SO	4							CI	EN X	CL L	CLK		Dn X	A X	В	SI X	 	4										×	L	<u> </u>	1			Qn, SO	4						Mode	х	×	L	х	L X	х	х	х	X	Qn, SO								X X H X	x	H H	X 4 H	L X L H	X Di X X	X L	X L	X X X	Qn, SO L Di Count U	- - - -						Mode	X X H	X X H	H H	× <u>•</u>	X L H	X Di X	X L L	X L L	x x x x	Qn, SO L Di	- - - -						Mode	X X H X X	X X H X L	1 H H H	х н х	L X L H H	X Di X X X	X L L L	X L L L	x x x x x	Qn, SO L Di Count U _I	- - - -						Mode	X X H X X L X	X X H X L X	H H H H	х н х х	L X L H H H	X Di X X X X	х L L L	X L L L	X X X X X X Si	On, SO L Di Count Up No Count	- - - -						Mode	X X H X X	X X H X L	1 H H H	х н х	L X L H H	X Di X X X	X L L L	X L L L	x x x x x	Qn, SO L Di Count U _I	- - - -						Mode	X X H X X L X	X X H X L X	H H H H	х н х х	L X L H H H	X Di X X X X	х L L L	L L L L H	X X X X X X Si X	On, SO L Di Count Up No Count	P H						Mode	X H X X L X	X X H X L X X	H H H H	х Н Х Х Н	L X L H H H	X Di X X X X	х L L L	L L L L H	X X X X X X Si X	On, SO L Di Count Up No Count Hold Si = CK + I	P H		Page 13–11			Page 13-14 **Definition of Parameters** FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION C10-SC43-E0 Sheet 4/4		SU CMOS GATE AR	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Version			---	-------------------------------	---	------------------------------------	--	----------------------------------	--------------------------	--------------------	---	--		Cell Name	Function							Number of BO			SC47	SCAN 4-bit Sy	nchronou	us Binar	y Up/Do	own Co	unter		78			Cell	Symbol												tı	J p		dn		Path						t 0	KCL	t O	KCL	KCL2	CDR2	raui			DA DB DC DD CK TH CT TM EN DU		2.813 3.825 5.375 1.469	0.067 0.067 0.067 0.067	2.938 5.438 6.781 1.838	0.101 0.045 0.135 0.045	0.140 - 0.179 -	4 - 4 -	CK to Q CK to CO L to Q DU to CO			SI ————————————————————————————————————	SI — SO			Parameter Clock Pulse Width Clock Pause Time Data Setup Time										old Time			t HD	1.4						EN Setu				t se	4.9					Input Loading	EN Hold	ut Setup 7	Time			t HE	0.5 5.5			Pin Name	Factor (lu)		it Hold Ti				t HU	0.4			D CK, IH, TM, L EN	2 1 3 1	Load Pu Clear R	ulse Widt elease Ti old Time	n		t LW t REM	12.0 2.3 9.5				DU, A, B SI	1 2	J Clear H	old Tillie			t inn	9.0				Pin Name	Output Driving Factor (lu)										а 80 CO	18 18 18	 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delamultiplier. 									Mode		Outputs									-------	----------	---------	----	----	----	---	---	----	------------		Mode	CLK	ГO	EN	DU	Dn	Α	В	SI	Qn, SO			5	L	Н	Х	х	L	L	х	No Count		CLOCK	5	L	L	н	Х	L	L	Х	Count Down			F	L	L	L	Х	L	L	Х	Count Down			х	Н	Х	Х	Di	L	L	Х	Di			Н	L	Х	Х	х	L	L	х	No Count		SCAN	Η	×	×	×	х	Л	Н	Si	Hold			н	Х	Н	х	Х	L	U	Х	Si	Note : CLK = CK + IH $LO = TM \bullet L$ $n = A \sim D$ C10-SC47-E0 Sheet 1/4 Page 13-15 # **Non-scan Counter Family**	Page	Unit Cell Name	Function	Basic Cells		-------	-------------------	---	----------------		3–231	C11	Non-scan Flip-flop for Counter	11		3-233	C41	Non-scan 4-bit Binary Asynchronous Counter	24		3-236	C42	Non-scan 4-bit Binary Synchronous Counter	32		3-239	C43	Non-scan 4-bit Binary Synchronous Up Counter	48		3-243	C45	Non-scan 4-bit Binary Synchronous Up Counter	48		3-247	C47	Non-scan 4-bit Binary Synchronous Up/Down Counter	68	3		FII	IITSI	LCMOS	GAT	E ARE	RAV I IN	IT CELL 9	SPECIFIC	ATION		" CG10	" V	ersion		-------	------------------------------------	----------	----------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
----------------------	----------	---------------------------------	------------------------	---------------	--------------	-------------	-----------------	--	--------------		Cell	Name		Func			IAT OIL	II OLLE	DI LON 10	ATION		1 00.0		Number of BC		C	11		Non-S	SCAN	l Flip	-Flop	for Cour	iter					11				Cell S	ymbol					Pro	pagation D	elay Para	meter		I								t O	tup KCL	10	KCL	dn KCL2	CDR2	-	Path								1.188		1.094	0.056	KCL2	CDHZ	-	CK to Q								1.581	0.067	1.856	0.056	1		ı	CK to XQ			D	-				1.638	0.067	1.081	0.056		Ì	(CL to Q,XQ			L —	┨	-	- a						l							-]					(ск —	\dashv													_			L	VO												TG —		<u></u>	— xa													Ц,	, —					1		ĺ											Parame	105	<u> </u>	<u> </u>	L	Symbol	-	Typ (ns) *				(ĊL.				Pulse Wid	dth			t cw	\vdash	2.5									Pause Tir				t cwn		2.7								Cloar	Pulse Wid	ith			tıw	<u> </u>	2.5									Release 7				t REM	 	0.7								Clear	Hold Time				t inju		0.4		Pin I	Pin Name Input Loading Factor (lu)			'	Load	Setup Tim	Δ /	(CK)		t sı.	-	1.5							Load Hold Time (CK)					t HL		0.4					L G			2 2 1		D-t- C	\ Ti		(0)(1)				1.6		C	CK	- 1		2			Setup Tim Hold Time		(CK) (CK)		t _{SD}	-	0.4																	Pin t	Vame		Outpu	t Drivin tor (lu)	g		tup Time Id Time		(CK) (CK)		t st t HT		1.9 0.0				\top				10110	no rime		OIN	L	· HI	L	0.0		X	a :a			18 18				or the typica													multip		worst case	operating o	ondition ar	e given by th	ne ma	ximum delay																																	Functi	on T	able													L	D	TG	CL	СК		(Q ₀)									<u> </u>		+	CL	- CK	 "	(40)									х	х	X	L	×		-									н	н	×	Н	1	+	4									Н	L	X	Н	1	$\parallel \parallel \parallel$	1									L	×		Н.	 	11	Q ₀)										l	i -	i	1	$11 - \cdot$										L	X	Н	Н	'	^u (Q ₀)								1																																																																											C10-C	11-E0		Sheet	1/2	٦									Page 14-1			ELLIIT	SU CMOS GATE	ADD	TUALLVAC	CELLS	DECIEIC	ATION		" CG10	" \/	ersion		----------	-------------	----------	-------------------------------	-----	----------------------------------	---------------------------------------	---	---	------------------	----------------	------	---		Cel	ii Nam	e	Function	Anr	TAT UNIT	OELL 3	r Lon Io	ATION		0070		Number of BC		C	241	ļ	Non-SCAN	4-b	it Binary	Async	hronous	Counte	er			24				Cell	Symbol				Pro	pagation D		eter		· · · · · · · · · · · · · · · · · · ·							t 0	KCL	t'O	KCL	NCL2	CDR2		Path			ск—		QA QB QC QD		1.250 2.294 3.206 4.125	0.059 0.059 0.059 0.059 -	1.163 2.050 2.969 3.875 2.619	0.056 0.056 0.056 0.056 0.056	- - - -	1 1 1 1		CK to QA CK to QB CK to QC CK to QD CL to Q				L			Paramete	r			1 :	Symbol		Typ (ns) *					 CL		Clock P	ulse Widt	h			tcw		2.7				•	JL		Clock P	ause Tim	e			t cwн		2.9							Clear Pi	ulse Widt	h			tıw		2.5							Clear R	<u>elease Ti</u> old Time	me			t REM t INH		1.4 4.2		Din	Name	T	Input Loading		Clear	old fille				LINH		4.2				-	Factor (lu)												CK		1											Pin	Name		Output Driving Factor (lu)	3											Q		18			ues for the v	the typical worst case			given by th	e ma	aximum delay		F	uncti	on Tat	ole		L									Г	Inp	uts	Output											F	CL	СК	Q													<u> </u>													Н .	l	Count up											L	L	X	L											ı																																																																																																		C10-	C41_	F0	Sheet 1/3	٦										<u> </u>		<u>-</u>	JJ. 110								T	Page 14-3		FUJIT	SU CMOS GATE ARI	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Version	on		----------------------------------	-------------------------------	-----------------------------------	-----------------------------------	---	---	------------	-----------------	---------------	-----------------------------		Cell Name	Function							Nu	umber of BC		C43	Non-SCAN 4-t	oit Binar	y Synch	ronous	Up Cou	nter			48		Cel	Symbol			Pro	pagation D	elay Paran	neter						tı	qι		to	dn			Path				t O	KCL	t O	KCL	KCL2	CDR2				DA — DB — DC — DD — CK — CI — CI	OA OB OC OD	1.850 3.500 1.000 - -	0.067 0.067 0.067 - -	1.500 2.225 0.506 2.425 1.650	0.051 0.045 0.045 0.051 0.045			CI to CL t	o CO o CO o Q o CO			1	Parameter					Symbol		(ns) *			CL		ulse Widt				t cw		3.0					ause Tim				t cwn		4.2 1.7					etup Time				t _{SD}		1.9					etup Time	······			tsL		2.8					old Time				t HL		0.9			Input Loading	CI Setu					tsc		2.7		Pin Name	Factor (lu)	CI Hold					t HC		0.6					Jp Time				t se		2.7		D L.EN	1	EN Hold	d Time				t HE		0.6		CK,CL		Clear P	ulse Widt	h			tLW		3.5		CI	1 2		elease Ti	me			1 REM		1.2				Clear H	old Time				t inh		5.2		Pin Name	Output Driving Factor (Iu)										co					operating o		given by th	e maximu	ım delay				Inj	outs			Outputs		----	---	-----	------	----	----	-------------		CL	L	D	EN	CI	СК	Q		L	х	х	х	х	х	L		Н	L	н	х	х	1	н		н	L	L	х	Х	1	L		Н	н	Х	Х	L	Х	No Counting		н	Н	х	L	Х	х	No Counting		н	н	Х	н	Н	1	Count up	Note: The CO output produces a high level output data when the counter overflows. C10-C43-E0	Sheet 1/4 Page14-9		SU CMOS GATE AR	RAY UNIT	CELL S	PECIFIC/	ATION		" CG10	" Version			------------------------	---------------------------------------	-------------------------	----------------------------------	--	-------------------------	------------	---------------------------	---------------------------------	--		Cell Name	Function							Number of B			C45	Non-SCAN 4-	oit Binary	Synch:	ronous	Up Cou	nter		48			Cel	l Symbol	T		Pro	pagation D	elay Paran	arameter					· · · · · · · · · · · · · · · · · · ·	tı	JP qu			dn		D-#					t O	KCL	t Ö	KCL	KCL2	CDR2	Path			DA DB DC DD L CK EN CI	ОА — ОВ — ОС — ОD	1.669 3.169 1.194	0.059 0.072 0.072	1.169 1.763 0.850	0.051 0.051 0.051	0.073	4	CK to Q CK to CO CI to CO					Parameter					Symbol t _{CW}	Typ (ns) *				CL		Clock Pulse Width					2.5 2.9						Clock Pause Time Data Setup Time					2.4						old Time				t _{SD}	1.4						etup Time	······································			t st	3.2						old Time				t HL	1.4			Di- M	Input Loading	CI Setu					tsc	4.2			Pin Name	Factor (lu)	CI Hold	Time				t HC	1.2				4		up Time				t se	4.2			D L.EN	1	EN Hold					t HE	1.2			CK,CL	1 1		etup Time	}			tsa	2.4			CI	Ź	Clear H	old Time				t HR	1.3			Pin Name	Output Driving Factor (lu)	1									Q CO					operating o		given by th	e maximum delay					In	outs			Outputs		----	---	----	------	----	----	-------------		CL	L	D	EN	CI	СК	Q		L	х	х	х	х	1	L		Н	L	Н	х	х	1	н		Н	L	L	Х	х	1	L		Н	н	х	х	L	х	No Counting		Н	Н	х	L	х	х	No Counting		н	Н	Х	Н	Н	1	Count up	Note: The CO output produces a high level output data when the counter overflows.	C10-C45	5-E0	Sheet 1/4		---------	------	-----------	Page14-13		SU CMOS GATE AF	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		-------------------	-------------------------------	------------	--------------------------------	-------------	-------------	------------	-----------------	-----------------		Cell Name	Function							Number of B		C47	Non-SCAN 4-	bit Binary	/ Synch	ronous	Up/Dow	n Cou	nter	68		Cel	Symbol			Pro	pagation D	elay Paran	neter																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
				tı	קנ		to	dn		Path				t O	KCL	t 0	KCL	KCL2	CDR2	Faui				2.494	0.067	2.244	0.090	0.140	4	CK to Q				3.381	0.046	3.825	0.045	-	ļ	CK to CO		Г		3.131	0.067	3.463	0.090	0.140	4	L to Q		DA —	QA	1.544	0.046	1.881	0.045	-		DU to CO		DC DD CK EN CD DU	OB ab	Paramete	er				Symbol	Typ (ns) •					ulse Widt				tcw	3.5				Clock P	Clock Pause Time				t cwH	5.6									t _{SD}						Data Setup Time Data Hold Time					0.5 1.2				Dala Ho	na rime				t _{HD}	1.2			Input Loading	DU Setu	ın Time			-+	t su	3.4		Pin Name	Factor (lu)	DU Hold					t HU	0.5		D	4									Ĺ	1 2 1	EN Setu	p Time				t se	3.2		DU		EN Hold	d Time				t HE	0.8		CK EN	1 3												elease Tir	ne			t REM	1.5		Pin Name	Output Driving Factor (lu)	Load Ho	old Time				t INH	7.0				Load Pu	Ise Width	1		_	tıw	2.9		a co				the typical	operating o			e maximum delay				Inputs			Outputs		---	---	--------	----	----	-------------		Q	L	EN	DU	СК	Q		Н	L	х	х	х	Н		L	L	Х	х	х	L		X	н	Н	Х	1	No Counting		х	н	L	L	1	Count Up		x	н	L	Н	1	Count Down	Note: The CO output produces a low level output pulse when the counter overflows or underflows. C10-C47-E0 Sheet 1/4 Page14-17 # 3 # **Adder Family**	D	Unit Cell	Function	Basic		-------	-----------	---	-------		Page	Name	Function	Cells		3-253	A1A	1-bit Half Adder	5		3-254	A1N	1-bit Full Adder	8		3-255	A2N	2-bit Full Adder	16		3-257	A4H	4-bit Binary Full Adder with Fast Carry	48		FUJIT	SU CMOS GATE AR	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		----------------	-------------------------------	----------------------------------	----------------------------------	----------------------------------	----------------------------------	------------	--------------	--		Cell Name	Function							Number of BC		A1A	1-bit Half Adde	r						5		Cel	l Symbol			Pro	pagation D		eter					10	KCL	t O	KCL	in KCL2	CDR2	Path		_		0.763 0.681 0.700 0.794	0.034 0.034 0.034 0.034	0.900 0.913 0.781 0.719	0.023 0.023 0.023 0.023			A to S B to S A to CO B to CO		В —	co									A —	s									L												Paramete	er		l		Symbol	Typ (ns) *												Pin Name	Input Loading Factor (lu)									A B	2 2									Pin Name	Output Driving Factor (lu)									co s	36 36		ues for the		operating o		given by the	e maximum delay		Function Table				Equivalent	Circuit					A B	co s]				₽	N			L L	į.		-				\sim	5 s		L H	I L H									H L	. L н				14	<u> </u>	<u> </u>	co		н н	HL	J			$-\nu$					C10-A1A-E0	Sheet 1/1																	Page 15-1		FUJI	<u> ISU CMOS GATE AR</u>	RAY UNIT	CELLS	PECIFICA	ATION		" CG10	" Version		------------	-------------------------------	----------	-------------	----------	-------------	------------	--------------	---------------		Cell Name	Function							Number of B		A2N	2-bit Full Adde	r						16		Ce	li Symbol			Proj	pagation D	elay Paran	eter					tı)p			in		Path				t O	KCL	t'O	KCL	KCL2	CDR2	raui				1.781	0.122	1.756	0.079	-		A1 to CO				1.713	0.122	1.794	0.079	-	1	B1 to CO				0.988	0.122	0.850	0.051	0.067	4	A2 to CO				0.919	0.122	0.850	0.051	0.067	4	B2 to CO				1.744	0.122	1.613	0.079	-		CI to CO		B2	co	1.856	0.093	1.719	0.079	-		A1 to S1		A2		1.856	0.093	1.719	0.079	-	1	B1 to S1		B1 ——	S2	0.738	0.093	0.744	0.079	-]	CI to S1		A1	S1	1.763	0.093	1.719	0.079	-]	A1 to S2		L.,		1.944	0.093	1.844	0.079	-		A2 to S2				1.694	0.093	1.756	0.079	-		B1 to S2			I Cl	1.944	0.093	1.844	0.079	-		B2 to S2			CI	1.725	0.093	1.575	0.079	-		CI to S2				Paramete	er				Symbol	Typ (ns) *		Pin Name	Input Loading Factor (lu)	1										┪					ļ			A, B Cl	2 2						ļ			σ,	-	1				}						1														ļ				Pin Name	Output Driving Factor (lu)									S	14 14									co	14		ues for the		operating o		given by the	maximum delay				la a	uts				Out	puts				---	----	------	-----	----	----	--------	-----	------	--------	----				inp	uts			CI = L			CI = H				A1	B1	A2	B2	S1	S2	co	S1	S2	CO			Ĺ	L	L	L	L	L	L	Н	L	L			Н	L	L	L	н	L	L	L	н	L			L	Н	L	L	Н	L	L	L	н	L		1	Н	Н	L	L	L	Н	L	Н	Н	L		1	L	L	н	L	L	Н	L	н	н	L		i	Н	L	Н	L	Н	Н	L	L	L	н		1	L	н	Н	L	Н	Н	L	L	L	н		1	Н	н	Н	L.	L	L	н	н	L	н		1	L	L	L	н	L	н	L	Н	Н	L			Н	L	L	н	н	Н	L	L	L	н			L	н	L	н	н	Н	L	L	L	н		ĺ	н	н	L	н	L	L	н	н	L	н		1	L	L	н	н	L	L	н	н	L	н		1	Н	L	н	н	н	L	н	L	Н	н		1	L	н	Н	н	н	L	н	L	н	н			Н	Н	Н	Н	L	н	Н	Н	н	Н	C10-A2N-E0	Sheet 1/2 Page 15-3		<u>TSU CMOS GATE AR</u>	RAY UNIT	CELLS	PECIFIC.	ATION		" CG10	" Version		------------	-------------------------------	----------	----------	----------	----------------------	------------	--------	--------------		Cell Name	Function							Number of B		A4H	4-bit Binary Fu	ll Adder	with Fas	st Carry				48		Ce	II Symbol			Pro	pagation D	elay Paran	neter						αp			dn		Path				10		10	KCL	KCL2	CDR2	raui				0.738	0.093	1.019	0.079	-		CI to S1				1.656	0.122	1.919	0.079	-		CI to S2				1.894	0.122	1.863	0.079	-	i	CI to S3		В4 ——	co	1.963	0.122	2.213	0.079	-	l	CI to S4		A4	S4	1.794	0.067	2.006	0.045	-	ŀ	CI to CO		В3 —		2.381	0.093	2.119	0.079			A1, B1 to S1		A3	S3	1.981	0.093	1.925	0.079	_		A1, B1 to S2		B2		2.138	0.122	2.406	0.079	_		A1, B1 to S3		A2	S2	2.344	0.122	2.450	0.079	_	1	A1, B1 to S4		B1		2.063	0.067	2.363	0.045	_	ĺ	A1, B1 to CO		A1	S1	1 2.000	0.007	2.000	0.0,0			711,511000				1.931	0.122	2.106	0.079	_		A2, B2 to S2				2.288	0.122	2.250	0.079	_		A2, B2 to S3			CI	2.338	0.122	2.531	0.079	-		A2, B2 to S4				2.419	0.067	2.394	0.045	-		A2, B2 to CO			Input Loading	1.756	0.122	1.781	0.079			A3, B3 to S3		Pin Name	Factor (lu)	2.400	0.122	2.525	0.079			A3, B3 to S4		^		2.375	0.122	2.388	0.075	_	[A3, B3 to CO		A B	2 2 2	2.373	0.007	2.500	0.043	_		A3, B3 10 CC		CI	2	1.813	0.093	1.881	0.051	0.067	4	A4, B4 to S4				2.288	0.067	2.194	0.045	_		A4, B4 to CO					L	L	لــــــــــــــــــا	L	L	<u> </u>		Pin Name	Output Driving Factor (lu)									СО	18	1								S1, S3, S4	14									S2	18																				1	1								Function	Table		----------	-------		----------	-------									Out	puts				---	--------	-----	-----	---------	----	--------	-----	------	--------	----			1	inp	uts			CI = L			CI = H									C2 = L			C2 = H				A1	B1	A2	B2	S1	S2	C2	S1	52	C2			A3	В3	A4	B4	S3	S4	co	S3	S4	co			L	L	L	L	L	L	L	Н	L	L			Н	L	L	L	н	L	L	L	н	L			L	н	L	L	н	L	L	L	н	L			н	Н	L	L	L	Н	L	н	н	L			L	L	н	L	L	н	L	н	н	L			Н	L	Н	L	н	Н	L	L	L	н			L	Н	н	L	н	Н	L	L	L	Н			Н	Н	Н	L	L	L	н	н	L	н			L	L	L	н	L	н	L	н	н	L			н	L	L	н	н	н	L	L	L	н			L	н	L	н	н	н	L	L	L	н			н	н	L	н	L	L	н	н	L	н			L	L	н	н	L	L	н	н	L	н			н	L	н	н	н	L	н	L	н	н			L	н	Н	н	н	L	н	L	н	н			н	Н	Н	н	L	Н	н	Н	н	Н		c	10-A4H	-E0	St	eet 1/2							### Note: Input conditions at A1, A2, B1, B2 and CI are used to determine outputs S1 and S2 and the value of the internal carry C2. The values at C2, A3, B3, A4 and B4 are then used to determine outputs S3, S4 and CO. Page 15-5 ## **Data Latch Family**		Unit Cell		Basic		-------	-----------	-----------------------------	-------		Page	Name	Function	Cells		3–261	YL2	1-bit Data Latch with TM	5		3-263	YL4	4-bit Data Latch with TM	14		3-265	LTK	Data Latch	4		3–267	LTL	1-bit Data Latch with Clear	5		3-269	LTM	4-bit Data Latch with Clear	16		3–272	LT1	S-R Latch with Clear	4		3-274	LT4	4-bit Data Latch	14			Fl Name	JJITS			E ARR	AY UNI	CELL S	PECIFICA	ATION		" CG10	" V	ersion Number of B																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
-----------------------------	------------	---	-------	----------------------------	-------------	----------------	----------------	----------------	----------------	-----------	-----------------	-------	-----------------------	--			12			unction oit Data	Latch	with T	——— М						5					Cell	Symbo)1	—— <u> </u>			Pro	pagation D	elav Para	meter								,				up		to	In			Path			D · CK · IH · TM ·	<u> </u>)— a		1.706 0.725	0.034 0.034	1.756 0.800	0.023 0.023	KCL2	CDR2		CK, IH to Q								1		<u> </u>				<u> </u>										-	Paramete	er				Symbol	-	Typ (ns) *									Clock F	ulse widt	h			tcw		4.3								ŀ	Data Se	etup Time				tsp	2.0										Data H	old Time				t _{HD}		1.6					Т	In	put Loadin												Pin N	lame			Factor (lu)												C II TI	K H			2 1 1 1							!					Pin N	lame	_	0	utput Drivi Factor (lu)	ng											C	2			36							e given by th	ne ma	aximum delay			Note : The			must	be kept LO	W during	the SCAN	Mode.										Inp	out		Output	W- 3											ТМ	ΙH	СК	D	a	Mode											L	х	х	D	D	SCAN											Н	Н	х	Х	Q ₀												н	х	н	х	Q ₀	LATCH	1											L	L	D	D												н						-										Н С10-Y		. <u>. </u>		neet 1/2	_												FI	LUTS	SILCA	AOS GAT	F ARR	AY LINI	T CELL S	PECIFICA	ATION		" CG10	" V	ersion		----------------------------------	--------------------------	------	--------	---	----------	----------------	-----------	----------	------------	------------	-----------------	----------	----------------		Cell I	Name			unction		11 0111			*******		1		Number of B		Y	_4		4-1	oit Data	Latch	with T	M						14				Cell	Symbo	oi				Pro	pagation D	elay Parai	meter	CD								1		tup		to		1 0000		Path							F	2.081	0.034	2.144	0.023	KCL2	CDR2		K, IH to Q		D1 D2 D3 D4 CK IH				01 02 03 03 04		O.688 Paramet	0.034	0.806	0.023		Symbol	2 (Typ (ns) * 4.5							ŀ	Data S	etup Time	(D)			t _{SD}		1.2								Data H	old Time	(D)			t HD		2.5		C II	Name O K H M			put Loadin Factor (lu) 2 1 1 1											Pin N	lame		0	utput Drivi Factor (Iu)	ng										(3			36							e given by th	e ma	aximum delay		Note : The			l must	be kept LO	W during	the SCAN	Mode.									1	out		Output	I	٦											out	-		Mode										TM	IH	СК	Dn	Qn		4									L	X	×	D	D	SCAN	_									н	н	Х	×	Qn ₀		1									H X H X Qno LATO					LATCH										н	L	L	О	D											n = 1 ~	4					_																								C10-Y	L4-E	0	St	neet 1/2	<u> </u>							<u> </u>	Page 16–3			TSU CMOS GATE AR	RAY UNIT	CELL S	PECIFIC	ATION		" CG10				----------------	--------------------------------	----------------------------------	----------------------------------	----------------------------------	----------------------------------	------------------	----------------	-------------	----------------------------		Cell Name	Function							Nu	mber of BC		LTK	Data Latch								4		С	ell Symbol			Pro	pagation D	elay Parar dn	neter						t O	KCL	10	KCL	KCL2	CDR2		Path		D	o	0.644 0.906 1.094 1.325	0.067 0.067 0.067 0.067	0.719 1.019 1.138 1.463	0.045 0.045 0.045 0.045			D to G t	o Q o XQ o Q o XQ			р — хо																L	<u> </u>		/= -\ C				G Input	r Pulse Wi	dth			Symbol t Gw		(ns) * 2.5															Data Se Data Ho	tup Time	t so t HD	1.0 1.5								Data 110	na mne				· HO				Pin Name	Input Loading	+										Factor (lu)	4									D G	2										Pin Name	Output Driving Factor (lu)										a xa	18 18		ues for the v		operating o		e given by th	e maximu	m delay		Function Table											Inputs	Outputs										D G	Q XQ										х н	Q ₀ XQ ₀										H L	H L										LL	L H										C10-LTK-E0	Sheet 1/2										OIO LIN-LU	1 011000 1/2							Pag	ge 16–5			FUJIT	SU CM	OS GAT	E ARR	AY UNIT	CELLS	PECIFICA	ATION		" CG10	" V	ersion		------------	------------------------------------	----------	--------------------------	--------	--	---	---	---	------------	-----------------	--------------	---		Cell N	ame		nction									Number of BC		L7	L	1-b	it Data	Latch	with CI	ear						5			Cel	l Symbol					Pro	pagation D		neter									t O	KCL	ť0	KCL	in KCL2	CDR2		Path							0.869 0.738 0.950 1.225 1.388	0.067 0.067 0.067 0.067 0.067	0.531 0.763 1.069 1.200 1.569	0.051 0.051 0.051 0.051 0.051			0	EL to Q, XQ to Q to XQ i to Q i to XQ		D - G -																CL			Paramete		dth			Symbol		Typ (ns) *						}	G input	Pulse Wi	utn			t GW		2.5								tup Time				t sp		0.9								Data Hold Time						0.4								Clear Pulse Width						2.5		Pin N	Pin Name Input Loading Factor (lu)				Olear	JISC VVIGE				t _{LW}					D 2													G Cl			1											Pin N	ame		tput Drivi actor (lu)											X	2		18 18		Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.						iximum delay			Functio	n Table														Inputs		Out	puts]									CL	D	G	a	XQ	1									L	X	н	L	н	1									н	x	н	Q ₀	XQ										Н	н	L	Н Н	L L													ŀ		1									Н	L	L	L	Н	J																							C40 17	L-E0	She	et 1/2											CIU-LI												Page 16-7			F	UJIT	SU CM	OS GAT	E ARR	RAY UNIT	CELLS	PECIFICA	ATION		" CG10	" Version		----------------------	------------------------	-------	--------------------------------	-------------	---------------------	---	---	---	---	---------------------------	-------------------	--		Cell	Nam			nction								Number of B0		L7	TM	1	4-b	it Data	Latch	with CI	ear					16				Cell	Symbol					Proj	pagation D		neter									t O	KCL	t O	KCL	fn KCL2	CDR2	Path		DA DB DC DD			— PA O— NA — PB O— NB			0.963 0.763 1.000 1.631 1.706	0.067 0.067 0.067 0.067 0.067	0.606 0.806 1.119 1.531 1.969	0.045 0.045 0.045 0.045 0.045	NOCE	00112	CL to P, N D to P D to N G to P G to N			G PC PC PD NC PD ND				Paramete G Input	er Pulse Wi	dth			Symbol t _{GW}	Typ (ns) * 2.5				CL					Clear P	ulse Widt	h			t _{LW}	2.5																						Data Setup Time Data Hold Time					t so	1.0			Dia Name Input Loading					Data Hold Time					t HD	1.5			Factor (lu)			.											Ğ CL			2 1 4										Pin I	Name	,		tput Drivir	g										P N			18 18							given by th	e maximum delay		Functi	ion Ta	able													ı	nputs		Outp	outs	7								С	L	D	G	Р	N	1									-	×	н	L	Н	1								н	4	×	н	Po	No											н	L	Н	L									"		L	Ĺ	"	н									<u> </u>						_								C10-L	TM-	-F0	She	eet 1/3	7										FILLUT	SILCM	08 647	EARE	AV LINIT	CELL S	DECIEIC	ATION		" CG10	" Ve	rsion		--------------	------------------------------------	----------	--------------------------	--------	-----------	-----------	----------	-------------	---------------	-----------------	----------	----------------		Cell Nam			nction	EARF	AT UNIT	CELLS	PECIFICA	ATION		CG10	Ĭ	Number of BC		LT1	•	S-F	R Latch	with (CLEAR							4			Cel	i Symbol					Pro	pagation																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
D		neter									t O	KCL	t'O	KCL	ln KCL2	CDR2		Path							1.100	0.067	0.550	0.045	KOLZ	ODAZ	s	to Q, XQ							0.975	0.067	0.650	0.045			R	to Q, XQ		ŀ					0.900	0.067	0.575	0.045		1 1	C	L to Q, XQ]				s -			<u> —</u> а											3-	٩		u													L												R -	_ ₄ _	۳	— хо													Ĭ														CL			Paramete					Symbol		Typ (ns) *							Set Puls	se Width				tsw		2.5							Reset P	ulse Wid	th			t RW		2.5												t _{LW}		2.5							Olear I	dise Widt	<u></u>			LLW				Pin Nam	Pin Name Input Loading Factor (Iu)			g						1				s														S R CL			1											""			•						1														1					Pin Nam	e	F	tput Drivi actor (lu)	ng					l					Q XQ			18 18						l	l				^~			10					operating o		given by the	ma	ximum delav							multiplie			opolating o	orrondorr are	given by aic	, ,,,,,,	Amilioni delay				<u> </u>												Function T	able														Inputs		Out	puts	7									CL	s	R	a	XQ	1									L	н	Н	L	н	1									н	н	н	a _o	XQο										Н	н	L	L	н										Н	L	н	Н	L										Н	L	L	Inhil	oited															J																																																																	C10-LT1-	-E0	She	eet 1/2								_															Page 16-12		FLUIT	SU CMOS GATE ARF	RAY UNIT	CELLS	PECIFIC	ATION		" CG10 '	" Version		-------------------------------	--------------------------------	----------------------------------	----------------------------------	----------------------------------	----------------------------------	------------	--------------	--------------------------------------		Cell Name	Function			. 2011 10/				Number of BC		LT4	4-bit Data Latch)						14		Cel	Symbol			Pro	pagation D		neter					t O	KCL	t O	KCL	in KCL2	CDR2	Path				1.563 1.563 0.656 0.875	0.067 0.067 0.067 0.067	1.425 1.906 0.738 1.000	0.045 0.045 0.045 0.045	NOLE	OBNZ	G to P G to N D to P D to N		DA —— DB —— DC —— DD —— G ——C	DB — D— NA — PB — PB — NB — PC						Symbol	Typ (ns) •				G input	Pulse Wi	dth			t GW	2.5														Data Se	tup Time				tsp	1.0 1.5				Dala HC	na rime	t _{HD}	1.3												}			Pin Name	Input Loading Factor (Iu)					į				D G	2 1										Output Driving									Pin Name	Factor (lu)						l			P N	18 18		ues for the		operating co		given by the	maximum delay		Function Table										Inputs	Outputs									D G	P N									нн	Po No									LH	Po No									н	H L										LH																			C10-LT4-E0	Sheet 1/3																	Page 16-14	# **Shift Register Family**	Page	Unit Cell Name	Function	Basic Cells		-------	-------------------	---	----------------		3–279	FS1	4-bit Serial-in Parallel-out Shift Register	18		3-281	FS2	4-bit Shift Register with Synchronous Load	30		3-283	FS3	4-bit Shift Register with Asynchronous Load	34		3-286	SR1	4-bit Serial-in Parallel-out Shift Register with Scan	36		Cell Name	TSU CMOS GATE AF						<u> </u>	Number of		------------------	-------------------------------	---	-------------	-----------------------------	------------	-------	--------------	---------------		FS1	4-bit Serial-in	Parallel-	out Shif	t Regist	ter			18												Ce	II Symbol			Pro	pagation D		neter						IP KCL			dn		Path				10		10	KCL	KCL2	CDR2	CK to Q		sp — с ск — с		1.513	0.067	1.963	0.051	0.067	4	CK to Q				Paramete	r				Symbol	Typ (ns) *				Clock P	ulse Widt	h			t cw	2.5				0.0										SD Setu					tssp	0.4				SD Hold	Time				tHSD	0.2				Clock		C ≤16	hu		t cwt**	3.7			Input Loading	Pause	16	< C ≤32			t cwL**	5.3		Pin Name	Factor (lu)	Time	32	< C ≦48	lu		t CWL**	6.9		SD CK	1		ues for the	r the typical worst case			given by the	maximum delay		Pin Name	Output Driving Factor (lu)	**The value of towl. depends on the load(c) connected to the output terminals, QA, QB, QC and QD.								Q	16									Inp	outs		Outputs									-----	----------	----	---------	-----	-----	--	--	--	--	--		SD	СК	QA	QB	QC	QD							SD	↓	SD	QAn	QBn	QCn						NOTE: • SD = H or L QAn, QBn and QCn are levels of QA, QB, and QC respectively, before the falling edge of CK, i.e. 1 bit shift by the falling edge of CK. C10-FS1-E0	Sheet 1/2 Page17-1	Cell Name	SU CMOS GATE AF	111711 01111	OLLL O	LOITIO	111011		" CG10 "	Number of		---------------------	-------------------------------	--	-----------------	---------	------------	------------	------------------------	-------------------												FS2	4-bit Shift Re	egister wi	th Sync	hronous	Load			30		Cell	Symbol	T		Pro	pagation D	elay Parar	neter					tu	q		to	dn		Path				t O	KCL	t O	KCL	KCL2	CDR2					1.450	0.067	1.963	0.051	0.067	4	CK to Q		PA PB PC PD SD CK C	QA QB QC QD	Paramete Clock P	er ulse Widt	h			Symbol t _{CW}	Typ (ns) * 2.5				SD Setup Time					tssp	1.8				SD Hold					t HSD	0.8				Load Se	tup Time				t _{SL}	2.7				Load Ho					t HL	0.4				2000 110	710 (11110									P Setup	Time				t sp	2.3		Pin Name	Input Loading	P Hold	Гime				t HP	1.0		7 III IVUIIC	Factor (Iu)									ск	1	Clock		C ≤16			t cwL**	3.7		SD	1	Pause		< C ≦32			t cwL**	5.3		L P	1	Time] 32	< C ≦48	lu		t cwL**	6.9		Pin Name	Output Driving Factor (lu)	Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.								Q	16	"The value of towl depends on the load(c) connected to the output terminals, QA, QB, QC and QD.									Inp	outs		Outputs								----	-----	------	----------	---------	-----	-----	-----	--	--	--		SD	L	Р	СК	QA	QB	QC	QD					SD	L	×	→	SD	QAn	QBn	QCn					х	Н	Р	\	PA	РВ	PC	PD				NOTE: • SD = H or L - QAn, QBn and QCn are levels of QA, QB, and QC respectively, before the falling edge of CK, i.e. 1 bit shift by the falling edge of CK. - P represents PA, PB, PC and PD.	C10-	-FS2-E0	Sheet	1/2		------	---------	-------	-----						Page17-3	FUJIT	SU CMOS GATE ARI	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Version		--	---	--	-------------------------	-------------------------	-------------------------	------------	-----------------	-----------------------------		Cell Name	Function							Number of BO		FS3	4-bit Shift Regis	ster with	Asynch	ronous	Load			34		Cell	Symbol			Pro	pagation D	elay Paran	neter					t 0	JP KCL	t O	KCL to	dn KCL2	CDR2	Path		PA————————————————————————————————————	PB — QB — QC PD — QD — QD — QD		0.072 0.072 0.072	1.325 2.188 1.888	0.062 0.062 0.062			CK to Q L to Q P to Q				Paramete					Symbol	Typ (ns) * 2.5				Clock Pulse Width Clock Pause Time					t cwH	2.5				Clock Pause Time					CWH	2.5				Load Pulse Width					t _{LW}	3.9				SD Setu	ın Time				tssp	0.7		Pin Name	Input Loading Factor (lu)	SD Hold					t HSD	1.1				P Setup	Time				tsp	0.2		CK SD	2	P Hold					t HP	1.5		Pin Name	2 2 1 2 Output Driving Factor (lu)									a	18	Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.						e maximum delay			In	outs		Outputs		---	----	------	----	---------		L	Р	SD	СК	Q		L	L	Х	х	L		L	Н	Х	Х	н		н	х	L	1	L		Н	Х	Н	1	Н	C10-FS3-E0 Sheet 1/3 Page17-5	FILLIT	SH CMOS GATE AD	DAV LINIT	CELLS	DECIFIC	ATION		L " CG10	" Version			-----------------	---	-----------------------------	-----------------------	----------	--------------	-------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
--------------	-------------------	--		Cell Name	SU CMOS GATE AR	HAT UNII	CELL SI	CG10	Number of BC						SR1	4-bit Serial-in Parallel-out Shift Register with SCAN										Cell	Symbol	Propagation Delay Parameter											t		Path									t 0	KCL	t 0	KCL	KCL2	CDR2	CK to Q			D	—— QA —— QB —— QC —— QD	2.044	0.038	2.106	0.039	0.062	7	CK to Q			å—q													Paramete		<u> </u>			Symbol	Typ (ns) * 3.5						ulse Widt ause Tim				t cw	3.5					Data Se	tup Time				tsD	2.1					Data Ho	old Time				t HD	1.0				Input Loading	1									Pin Name	Factor (lu)										D C II Ø	1 1 1										A,B Pin Name	1 Output Driving Factor (Iu)										_											Q	36						given by the	e maximum delay														C10-SR1-E0	Sheet 1/3							Page17–8		Page17-10 SR1 Definition of Parameters D 3-288 C10-SR1-E0	Sheet 3/3 # Parity Generator/Selector/Decoder Family	Page	Unit Cell Name	Function	Basic Cells		------------	-------------------	-------------------------------------	----------------		Parity Gen	erators/Ch	eckers			3-291	PE5	5-bit Even Parity Generator/Checker	12		3–292	PO5	5-bit Odd Parity Generator/Checker	12		3–293	PE8	8-bit Even Parity Generator/Checker	18		3-294	PO8	8-bit Odd Parity Generator/Checker	18		3–295	PE9	9-bit Even Parity Generator/Checker	22		3–296	PO9	9-bit Odd Parity Generator/Checker	22		Data Selec	tor				3–297	P24	2:1 Data Selector	12		Decoders					3-298	DE2	2:4 Decoder	5		3-299	DE3	3:8 Decoder	15		3-301	DE4	2:4 Decoder	8		3–302	DE6	3:8 Decoder	30		Selectors					3-304	T2B	2:1 Selector	2		3-305	T2C	2:1 Selector	4		3-307	T2D	2:1 Selector	2		3-308	T2E	2:1 Selector	5		3-309	T2F	2:1 Selector	8		3-311	T5A	4:1 Selector	5		3-313	V3A	1:2 Selector	2		3-314	V3B	1:2 Selector	4		Magnitude	Comparate	or			3–315	MC4	Magnitude Comparator	42								SU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Ve											-----------	--	-----------	-----------------------------	----------------	--------------------	------------	----------------	--------------------------	--	--		Cell Name	Function							Number of E				DE3	3:8 Decoder							15				Ce	II Symbol		Propagation Delay Parameter												ap qu		Path									t 0	KCL	t O	KCL	KCL2	CDR2							0.900	0.067	1.044	0.107			A to X0~X3						1.525	0.067 0.067	1.525 1.075	0.107 0.107		1 1	A to X4~X7 B to X0~X3						1.456	0.067	1.556	0.107		1	B to X4~X7				A —	X0 X1	0.769	0.067	1.113	0.107			C to X0~X3				^	1.394	0.067	1.594	0.107		1 1	C to X4~X7					_	X2 X3						1 1					В ——	X4												X5						1 1					c —	X6											1	X7																													L	<u> </u>							Paramete	er				Symbol	Typ (ns) *						1				1																															Input Loading	1										Pin Name	Factor (lu)]										A	1					-						В	1					- 1						С	1													ļ				1							Output Driving	ł				ĺ						Pin Name	Factor (lu)												14	<u> </u>										X	14		m values for													worst case	operating α	ondition a	re given by th	e maximum delay					1	multiplie	er.										Inputs		Outputs										---------------	--------	---	---------	----	---------------	---------------	---------------	-------------	---------------	-----------------	--		Α	В	С	X0	X1	X2	Х3	X4	X5	X6	X7			L L L H H H H				H	H H H H H H H	H H H H H H H	H H H L H H H	H H H H H H	H H H H H L H	* # # # # # # .		C10-DE3-E0 Sheet 1/2 Page 20-9		ELLUT	6110	MOS	CATE	ADD	AV LINIT	CELLS	PECIFICA	ATION		" CG10	" Version		--------------------------	-------------	-------------	---------------------------	-------------	----------	---	-------------	-----------------------------	-------------	------------	--------------	----------------------------		Cell Na	me	300	Functio	n .	Ann	AT UNIT	CELL S	PECIFICA	ATION		CG10	Number of BC		DE	4	2	2 : 4 Decoder with Enable												Cel	Symb	ol					Pro	pagation D		eter								}	t O	KCL	tdn tdn KCL KCL		MCL2	CDR2	Path		A — X0 D— X1 D— X2 D— X3						0.744 0.067 0.913 0.107 0.538 0.067 0.694 0.107 0.669 0.067 0.713 0.107						G to X A to X B to X		i					-	Paramete	er				Symbol	Typ (ns) *		Pin Na	me		nput Lo Factor											A B G			3 3 1											Pin Na	me	۱-,	Output I		\dashv									×			14				ues for the	r the typical worst case			given by the	e maximum delay		Fund	ction Ta	ble							Equivale	nt Circuit	l										G.		>					G H	A X	B X	Х3 Н	X2 H	X1 H	н	Α.		>> 		D-	— хо		L L L	L H H	L H H	H H L	H L H	HLHH	H H H	— x1														В		×			— X2 — X3		C10-DE	4–E0	<u> </u>	heet 1	/1								Page 20-11		FUJIT	SU CMOS GATE AR	RAY UNIT	CELLS	PECIFI	CAT	ION		٦.	CG10 "	Version		----------------------------------	-------------------------------	-----------------------	----------------	-------------------	----------	----------------	-----------	----------------------------	------------	------------------		Cell Name	Function									Number of BC		DE6	3:8 Decoder w	ith Enab	le							30		Cel	l Symbol	ļ		P	ropaç	gation D		aramet	er					t O	KCL	f O	—	KCL	dn KCL	2	CDR2	Path				1.906 1.806	0.067 0.067	3.719 2.050		0.045 0.045				G to X S to X		G1 G2 G3 S1 S2 S3	G2 X1 G3 X2 S1 X3 S2 X4 Y5													Paramete	r	·				Sy	mbol	Typ (ns) *			Input Loading											Pin Name	Factor (Iu)	4					-		ŀ			G S												Pin Name	Output Driving Factor (Iu)											х	18								ven by the	maximum delay		Function Tab	ile											G1 G2+	-G3 S3 S2 S1	X7	X6 X	5 X4	ХЗ	X2	X1	X0				X H		Н	H F		H	H H	H H	H H				H L	. L L H	H	H F	н н	Н	H H	H L	L H				H		H H H H L	H	1 H 1 L 1 H	H	H H H	H	H H H H H H				C10-DE6-E0	Sheet 1/2]	Page 20–12		Cell Na			MOS G		RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version Number of BC		------------	------------------------------------	--------------	-----------	------------------	----------	--------------	-------------------	--	--------------	----------------	---------------------------		T21			1 Sel								2				l Symbo	ol				Pro	pagation D	elay Paran	neter									ıp		to	dn		Path							0.325	KCL 0.067	t 0 0.488	0.051	KCL2	CDR2	A,B to X							0.381	0.067	0.619	0.051			S to X															ļ														_		1										A — B —													S1 —	- d		þ	K									S2 —																															Paramete	l er	L	L	<u> </u>	Symbol	Typ (ns) *																																						l																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
		Pin Na	Input Loading Pin Name Factor (lu)												A,B																•																							Di- N-		0	utput Di										Pin Nar	me	 	Factor 18	iu)									^			10				r the typical											multipli		worst case	operating o	ondition are	e given by the	e maximum delay				<u> </u>																								Func	tion Ta	ble						Equivale	nt Circuit																		1	outs	-	Output	s		ſ		_					В	S1	S2	X	_	А		$oldsymbol{ol}}}}}}}}}}}}}}}}$					L	H	L	н	н	-	^							H X	H	L	H	L H				T			о—— о х		X	H	Н	L	L				Ţ	=		- • •			H	H	L	Inhibi Inhibi		R	-	↓					H	L	L	L	Inhibi	:]				Н	L	Н	Н	Inhibi		S1	\longrightarrow		_										S2																				C10-T2E	3-E0	SI	neet 1/	1																				Page 20-14		F	CHICAGO CATE ADI	2 A V 1 1 1 1 1 7	. 0511 0	DEOLEIO	TION		" CC10	" \/.	oroion 7		---	------------------	-------------------	--------------	--------------	--------------	--------------	-------------	-------	-----------------		Cell Name	SU CMOS GATE ARE	HAY UNII	CELLS	PECIFICA	ATION		" CG10	V (Number of BC		T2F	2:1 Selector								8		Cel	l Symbol			Pro	pagation D	elay Paran	neter							JP VCI			dn KCLO	CDD0		Path				0.338	KCL 0.067	t 0 0.338	KCL 0.056	0.079	CDR2	Δ	,B,C,D to X				1.025	0.067	1.013	0.056	0.079	4	^	S to X		A1 —		· ·				İ					A2	þ— ×∘	l									B1	b x1	1									B2 ————————————————————————————————————	Γ	1									C2	p x₂										D1	р—— х з										D2		1									s —													Paramete	r				l Symbol	-	Typ (ns) *									,		76 311-7																									Input Loading	-									Pin Name	Factor (Iu)										A,B,C,D S	2 1	ļ				- 1					3	'																						Output Driving	-									Pin Name	Factor (lu)	j									x	18					L_								m values for				aiven by th	e ms	aximum delay				multiplie		WOISt Case	operating a	orianion are	given by a		ixiiidiii Gelay																						1																																																							İ																																												1																						ļ																																														C10-T2F-E0	Sheet 1/2						-,		D 00 45										L	Page 20-19									•				---	-------------------------------	--	---	-------------------------	-------------------------	------------	----------	------	---		FUJIT Cell Name	SU CMOS GATE ARI	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" V	ersion Number of BC		T5A	4:1 Selector		***************************************						5		Cel	I Symbol	1		Pro	pagation D	elay Parar	neter						tup tdn							Path		,		t O	KCL	t O	KCL	KCL2	CDR2				S1 S2 S3 S4 A1		0.625 0.625 0.350	0.097 0.097 0.097	0.625 0.525 0.338	0.090 0.090 0.090				A,B to X S1~4 to X S5~6 to X		B1 ————————————————————————————————————			er				Symbol		Typ (ns) *				Paramete					<u> </u>		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Pin Name	Input Loading Factor (lu)										A.B S	1 1										Pin Name	Output Driving Factor (lu)										×	9	Minimum values for the typical operating condition. The values for the worst case operating condition are given by the multiplier.						e ma	ximum delay	#### Function Table	Inputs													--------	----	----	----	-----	------	------	---------	----	--------	--------	--		A1	A2	B1	B2	S1	S2	S3	S4	S5	S6	X			H	LΗ	L	LΗ	TIT	IIJJ	IIrr	T T L L		######	111111		A1 \neq A2 to S1=S2 or S5=S6 Inhibit B1 \neq B2 to S3=S4 or S5=S6 Inhibit A1,A2 \neq B1,B2 or S5=S6 Inhibit C10-T5A-E0	Sheet 1/2 Page 20-21					ATE AR	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Version		------------------------------	--------	--------	---------------------	----------------	----------------	----------------	------------------	--------------	------------------	----------------	-----------------		Cell Nam			nction								Number of		V3A	.	1:2	Sele	ctor							2			Cell	Symbol					Pro	pagation D		neter								t O	KCL	t O	KCL	MCL2	CDR2	Path		A — X0 S1 — X0 S2 — X1			0.388 0.344	0.076 0.076	0.438 0.281	0.067 0.067			A to X S to X				G ₂					Paramete	er				Symbol	Typ (ns) *		Pin Name	.		ut Load actor (i										A S			1 1										Pin Name		Outp	out Loa actor (I	ding u)	1								х		i	1	·									Pin Name								operating o					X			14		The val		worst case	operating o	ondition are	given by the	e maximum delay		Function	on Tab	le						Equivaler	nt Circuit					Input	s	Out	puts				-					Α	S1	S2	X0	X1					<u></u>				L	L	L	Int	ibit					↓ -		XO		L	Н	L	х	Н					닏				L	L	Н	Н	x		A O-	 >>-	 					L	Н	Н						Щ	$-\Box$	 -	X1		Н	L	L	Int	nibit					무				Н	Н	L	×	L			61 O 62 O						Н	L	Н	L	Х									Н	Н	Н	Inh	ibit												et 1/1										10-V3A-													FUJI	TSU CMOS	GATE ARE	RAY UNIT	CELL SF	PECIFICA	ATION		" CG10 "	Version	_		--	--	---	---	---	--	--	--	--	---	--		Cell Name	Funct									er of BC		MC4	4-bit !	Magnitude	Compai	rator					42	2		C	ell Symbol				Pro		elay Param	eter							t O	KCL	t O	KCL to	n KCL2	CDR2	Path			A3 B3 B2 A2 B1 A3 B0		og oe os	3.306 3.363 1.475 1.206 3.238 3.294 1.406 1.331 3.556 3.488 1.338	0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.067 0.067	3.950 3.881 1.738 1.506 4.081 4.013 1.869 1.444 2.725 2.781 0.894	0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.051 0.051																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.067 0.067	4 4 4 4 4 4 4 4 4 4 4 4	A to C B to C IE to A to C B to C IE to A to C IE to IS to C A to C IE to IS to C	OS OS OS OG OG OG OE OE					Parameter	1			S	ymbol	Typ (ns	·) •			·											Pin Name		oading or (lu)										A	1	3 3						j				B IE	[1						-				IG	ł	1										IS	1	1						- 1				Pin Name		t Driving or (lu)										OE		18										og os		10 10		es for the v		operating co		given by the	maximum d	elay		Function Ta	ıble												Compari	ng Inputs		Ca	ascading	Inputs		Outputs	3]		A3, B3	A2, B2	A1, B1	A0, B0	IG (A>B)	IS (A <b< td=""><td>IE (A=B)</td><td>OG (A>B)</td><td>OS (A<b)< td=""><td>OE (A=B)</td><td></td></b)<></td></b<>	IE (A=B)	OG (A>B)	OS (A <b)< td=""><td>OE (A=B)</td><td></td></b)<>	OE (A=B)			A3>B3 A3 <b3 A3=B3 A3=B3 A3=B3 A3=B3 A3=B3 A3=B3 A3=B3 A3=B3 A3=B3 A3=B3</b3 	X X A2>B2 A2=B2 A2=B2 A2=B2 A2=B2 A2=B2 A2=B2 A2=B2 A2=B2 A2=B2	X X X X A1>B1 A1=B1 A1=B1 A1=B1 A1=B1 A1=B1 A1=B1	X X X X X A0>B0 A0>B0 A0=B0 A0=B0 A0=B0 A0=B0	X X X X X X X H L	X X X X X X X L H H L	X X X X X X H L L	H L H L L H L L H					C10-MC4-E0	Sheet	1/2							·,												Page 2	0–25	# **Bus Driver Family**	Page	Unit Cel Name	l Function	Basic Cells		-------	------------------	------------------	----------------		3–319	B11	1-bit Bus Driver	5		3-320	B41	4-bit Bus Driver	9	3	EILIT	SU CMOS GATE ARF	TIVIT AV	CELLS	PECIFIC	ATION		" CG10	" Version		--	-------------------------------	-----------	--------------	------------	-------------	--------------	-------------	------------------		Cell Name	Function Function	INT UNIT	OELL 3	FEOIFIC	711011			Number of BC		B11	1-bit Bus Driver							5						Dee	ti D	elay Param				Cell	Symbol	tı	ıb	Pro		dn Param	leter					t O	KCL	t'O	KCL	KCL2	CDR2	Path				0.931	0.038	0.869	0.028			A to X C to X				0.738	0.038	0.606	0.028			Clox																																A0	xo									∘ —d																																Paramete	<u></u>				Symbol	Typ (ns) *				Faramete	-1				Jymbol .	7,45 (113)																		- 1										ł				Pin Name	Input Loading										Factor (lu)					İ				A C	1															ļ				Pin Name	Output Loading Factor (lu)					ł				x	1									Pin Name	Output Driving Factor (lu)									х	36		m values for				given by th	e maximum delay				multiplie		Worst Case	operating G	ondition are	given by a	e maximum celay												Equivalent Circuit				Fund	tion Table						c _o				Inputs	Output				ĸ.	,				40 C	XO]			A0	➣┦➣┦╻╻		- xo		х н	Z	7	į		,					L L	L									H L	Н				N				<u> </u>			J			c ————————————————————————————————————	<u>~</u> -~ <u>~</u>										$\frac{1}{c_0}$																																																	C10-B11-E0	Sheet 1/1							Page 18-1										Fage 10-1	# 3 # Clip Cells	Page	Unit Cell Name		Function	Basic Cells		-------	-------------------	--------	----------	----------------		3–323	Z00	0 Clip		0		3-324	Z01	1 Clip		0		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" V							" Version			--	--------------------------------------	---	-----	-----------------------------	------------------------	----------------------------	--------------	-----------------		Cell Name	Function							Number of BC		<i>Z00</i>	0 Clip							0		Cel	Symbol			Prop	pagation D		neter					t O	KCL	t O	KCL	MCL2	CDR2	Path		2	×				NO_	11002	05/12									L						Paramete	er				Symbol	Typ (ns) *			land Lordin									Pin Name	Input Loading Factor (lu)					- 1				Pin Name X	Output Driving Factor (Iu) 200											 Minimur The value multiplie 		the typical worst case o	operating operating of	condition. ondition are	given by the	e maximum delay		C10-700 E0	Sheet 1/4									C10-Z00-E0	Sheet 1/1							Page 19-1												FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10 '	' Version		------------	------------------------------	------------	---------------	-------------	--------------	-----------	--------------	---------------		Cell Name	Function							Number of BC		Z01	1 Clip							0		Cel	Symbol			Pro	pagation D		neter					t 0	KCL KCL	t O	KCL	KCL2	CDR2	Path				<u>`</u> -	, NOL		- NOL	NOLE	OBITE																			l	1 1																			1														7						1				\	\/										Ĭ										X					1										L	<u> </u>					Paramete	er				Symbol	Typ (ns) *																			1																				1			Pin Name	Input Loading Factor (Iu)										racioi (iu)						-										1										1													Pin Name	Output Driving						1			X	Factor (lu) 200									^	200	* Minimu	m values for	the typical	operating of	ondition.	L					The val	ues for the v				given by the	maximum delay				multiplie	er.								L																																																																																																																																																					C10-Z01-E0	Sheet 1/1																	Page 19–2		Page	Unit Cell Name	Function	Basic Cells		----------	-------------------	---	------------------------		Input Bu	ffers				3-329	I1B	Input Buffer (Inverter)	5		3-330	I1BU	I1B with Pull-up Resistance	5		3-331	I1BD	I1B with Pull-down Resistance	5		3-332	12B	Input Buffer (True)	4		3-333	I2BU	I2B with Pull-up Resistance	4		3-334	I2BD	I2B with Pull-down Resistance	4		3–335	IKB	Clock Input Buffer (Inverter)	4		3-336	IKBU	IKB with Pull-up Resistance	4		3–337	IKBD	IKB with Pull-down Resistance	4		3-338	IKC	CMOS Interface Clock Input Buffer (Inverter)	4		3–339	IKCU	IKC with Pull-up Resistance	4		3–340	IKCD	IKC with Pull-down Resistance	4		3–341	ILB	Clock Input Buffer (True)	6		3–342	ILBU	ILB with Pull-up Resistance	6		3–343	ILBD	ILB with Pull-down Resistance	6		3–344	ILC	CMOS Interface Clock Input Buffer (True)	6		3–345	ILCU	IKC with Pull-up Resistance	6		3–346	ILCD	IKC with Pull-down Resistance	6		3–347	I1C	CMOS Interface Input Buffer (Inverter)	5		3–348	I1CU	I1C with Pull-up Resistance	5		3–349	I1CD	I1C with Pull-down Resistance	5		3–350	I2C	CMOS Interface Input Buffer (True)	4		3–351	I2CU	I2C with Pull-up Resistance	4		3–352	I2CD	I2C with Pull-down Resistance	4		3–353	IIS	Schmitt Trigger Input Buffer (CMOS, Inverter)	8		3–354	IISU	I1S with Pull-up Resistance	8		3–355	IISD	I1S with Pull-down Resistance	8		3–356	12S	Schmitt Trigger Input Buffer (CMOS, True)	8		3–357	I2SU	I2S with Pull-up Resistance	8		3–358	I2SD	I2S with Pull-down Resistance	8		3–359	I1R	Schmitt Trigger Input Buffer (TTL, Inverter)	8		3–360	IIRU	I1R with Pull-up Resistance	8		3–361	I1RD	I1R with Pull-down Resistance	8		3–362	I2R	Schmitt Trigger Input Buffer (TTL, True)	8		3–363	I2RU	I2R with Pull-up Resistance	8		3–364	I2RD	I2R with Pull-down Resistance	8		Output B	luffers				3-365	O1B ¹	Output Buffer (Inverter)	3		3-366	O1BF ²	Output Buffer (Inverter)	3					Continued on next page	$^{{}^{1}}I_{OL} = 3.2 \text{ mA}$ ${}^{2}I_{OL} = 8 \text{ mA}$ ${}^{3}I_{OL} = 12 \text{ mA}$	Page	Unit Cell Name	Function	Basic Cells		------------	-------------------	--	----------------		Output B	uffers				3-367	O1L ³	Power Output Buffer (Inverter)	3		3-368	O1R1	Output Buffer (Inverter) with Noise Limit Resistance	5		3-369	O1RF ²	Output Buffer (Inverter)	5		3-370	O1S ³	Power Output Buffer (Inverter) with Noise Limit Resistar	nce 5		3-371	O2B ¹	Output Buffer (True)	2		3-372	O2BF ²	Output Buffer (True)	2		3-373	O2L ³	Power Output Buffer (True)	2		3-374	O2R ¹	Output																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
Buffer (True) with Noise Limit Resistance	4		3-375	O2RF ²	Output Buffer (True) with Noise Limit Resistance	4		3-376	O2S ³	Power Output Buffer (True) with Noise Limit Resistance	4		3-377	O4T ¹	3-state Output Buffer (True)	4		3-378	O4TF ²	3-state Output Buffer (True)	4		3-379	O4W ³	Power 3-state Output Buffer (True)	4		3-380	O4R ¹	Output Buffer (True) with Noise Limit Resistance	5		3–381	O4RF ²	3-state Output Buffer (True) with Noise Limit Resistance	5		3–382	O4S ³	Power 3-state Output Buffer (True) with Noise Limit Resistance	5		3–383	O2S2 ⁴	High Power Output Buffer (True) with Noise Limit Resistance	6		3–384	O4S2 ⁴	High Power Output Buffer (True) with Noise Limit Resistance	7		Bidirectio	nal I/O Buf	fers (Buses)			3-385	H6T ¹	3-state Output and Input Buffer (True)	8		3-386	H6TU	H6T with Pull-up Resistance	8		3-387	H6TD	H6T with Pull-down Resistance	8		3-388	H6TF ²	3-state Output and Input Buffer (True)	8		3-389	H6TFU	H6TF with Pull-up Resistance	8		3-390	H6TFD	H6TF with Pull-down Resistance	8		3-391	H6W ³	Power 3-state Output and Input Buffer (True)	8		3-392	H6WU	H6W with Pull-up Resistance	8		3-393	H6WD	H6W with Pull-down Resistance	8		3-394	H6C ¹	3-state Output and CMOS Interface Input Buffer (True)	8		3-395	H6CU	H6C with Pull-up Resistance	8		3–396	H6CD	H6C with Pull-down Resistance	8		3-397	H6CF ²	3-state Output and CMOS Interface Input Buffer (True)	8		3-398	H6CFU	H6CF with Pull-up Resistance	8		3-399	H6CFD	H6CF with Pull-down Resistance	8		3–400	H6E ³	Power 3-state Output and CMOS Interface Input Buffer (True)	8		3–401	H6EU	H6E with Pull-up Resistance	8	Continued on next page $^{^{1}}I_{OL} = 3.2 \text{ mA}$ $^{2}I_{OL} = 8 \text{ mA}$ $^{3}I_{OL} = 12 \text{ mA}$ $^{4}I_{OIL} = 24 \text{ mA}$	Page	Unit Cell Name	Function	Basic Cells		------------	-------------------	---	------------------------		Bidirectio	nal I/O Buff	fers (Buses)			3-402	H6ED	H6E with Pull-down Resistance	8		3–403	H6S ¹	3-state Output and Schmitt Trigger Input Buffer (CMOS, True)	12		3-404	H6SU	H6S with Pull-up Resistance	12		3-405	H6SD	H6S with Pull-down Resistance	12		3–406	H6R ¹	3-state Output and Schmitt Trigger Input Buffer (TTL, True)	12		3-407	H6RU	H6R with Pull-up Resistance	12		3-408	H6RD	H6R with Pull-down Resistance	12		3–409	H8T ¹	3-state Output with Noise Limit Resistance (True Input Buffer	e) and 9		3-410	H8TU	H8T with Pull-up Resistance	9		3-411	H8TD	H8T with Pull-down Resistance	9		3–412	H8TF ²	3-state Output with Noise Limit Resistance (True Input Buffer	e) and		3-413	H8TFU	H8TF with Pull-up Resistance			3-414	H8TFD	H8TF with Pull-down Resistance			3-415	H8W ³	Power 3-state Output and Input Buffer (True)	9		3-416	H8WU	H8W with Pull-up Resistance	9		3-417	H8WD	H8W with Pull-down Resistance	9		3–418	H8C ¹	3-state Output with Noise Limit Resistance and CMOS Interface Input Buffer (True)	9		3-419	H8CU	H8C with Pull-up Resistance	9		3-420	H8CD	H8C with Pull-down Resistance	9		3–421	H8CF ²	3-state Output with Noise Limit Resistance (True Input Buffer	e) and		3-422	H8CFU	H8CF with Pull-up Resistance			3-423	H8CFD	H8CF with Pull-down Resistance			3–424	H8E ³	Power 3-state Output with Noise Limit Resistance and CMOS Interface Input Buffer (True)	e 9		3-425	H8EU	H8E with Pull-up Resistance	9		3-426	H8ED	H8E with Pull-down Resistance	9		3–427	H8S ¹	3-state Output with Noise Limit Resistance and Schmitt Trigger Input Buffer (True)	13		3-428	H8SU	H8S with Pull-up Resistance	13		3-429	H8SD	H8S with Pull-down Resistance	13		3–430	H8R ¹	3-state Output with Noise Limit Resistance and Schmitt Trigger Input Buffer (True)	13		3-431	H8RU	H8R with Pull-up Resistance	13		3-432	H8RD	H8R with Pull-down Resistance	13		3-433	H8W2 ⁴	High Power 3-state Output and Input Buffer	11					Continued on next page		Page	Unit Cell Name	Function	Basic Cells		-----------	-------------------	---	----------------		Bidirecti	onal I/O Buf	iers (Buses)			3-434	H8W1	H8W2 with Pull-up Resistance	11		3-435	H8W0	H8W2 with Pull-down Resistance	11		3–436	H8E2 ⁴	High Power 3-state Output with Noise Limit Resistance and Input Buffer (True)	11		3-437	H8E1	H8E2 with Pull-up Resistance	11		3-438	H8E0	H8E2 with Pull-down Resistance	11	$^{{}^{1}}I_{OL} = 3.2 \text{ mA}$ ${}^{2}I_{OL} = 8 \text{ mA}$ ${}^{3}I_{OL} = 12 \text{ mA}$ ${}^{4}I_{OIL} = 24 \text{ mA}$	FUJIT	SU CMOS GATE ARI	RAY UNIT	CELL S	PECIFICA	ATION		" CG10 '	' Version		------------	------------------------------	----------	-------------	--------------	-------------	--------------	--------------	---------------		Cell Name	Function							Number of BC		I1B	Input Buffer (In	verter)						5		Cel	l Symbol	I		Pro	pagation D	elay Param	neter						קנ			in		Path				10	KCL	t 0	KCL	KCL2	CDR2	X to IN				1.000	0.017	0.963	0.023			X to IN				Į	İ		j .							1	İ									1	1	İ]							1								1	\		}							x —	NI N												İ		i							ļ			1							l										Paramete	er		L	٠	Symbol	Typ (ns) *																		- 1						1										ļ										1								Pin Name	Input Loading Factor (lu)	1										1										İ																													Output Driving	1				i				Pin Name	Factor (lu)	-								IN	36	• Minimu	m values fo	t the tunion	Lancratina		L					The val	ues for the	worst case	operating o	ondition are	given by the	maximum delay				multipli	er.								1	1																																																																																																																																																				C10-I1B-E0	Sheet 1/1																	Page 21-1		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Vei								ersion			--	-------------------	----------	-------------	--------------	------------	--	----------------	--------	--------------		Cell Name	Function								Number of BC			Input Buffer (Inv	verter)							5		I1BU	with Pull-up Res	sistance)						3		Cell Symbol Propagation Delay Parameter								·						ıρ		tx	nt			Path				t O	KCL	t O	KCL	KCL2	CDR2						1.000	0.017	0.963	0.023	l			X to IN					1		1	l								ł		l																					l	l									1		ł	ł					۱ ۲			ĺ		Ì		1				x —	>>— IN				l	İ					<u> </u>			l	l										l		ļ									1	i	ĺ	i										i e	l							Paramete	L er	L	<u> </u>	' 	Symbol		Typ (ns) *																														[1																	Input Loading	1									Pin Name	Factor (lu)																											1																		ŀ										Output Driving	l									Pin Name	Factor (lu)					1					IN	36											30	* Minimu	m values fo	r the typica	loperating	condition.							The val	ues for the				re given by th	e ma	aximum delay				multipli	er.									L	L																																																																																																																																																																																																				C10-I1BU-E0	Sheet 1/1																		- [Page 21-2		FILIT	SUCMOS GATE ARE	SU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Version									-------------	-------------------	---	--------------	-------------	------------	------------	--------------	---------------	--		Cell Name	Function	0										Input Buffer (Inv	verter)						Number of BC			I1BD	with Pull-down	Resistar	nce					5			Cell	Symbol	Γ		Proj	pagation D	elay Paran	neter						t.			t	dn		Path					t O	KCL	t O	KCL	KCL2	CDR2						1.000	0.017	0.963	0.023	ł		X to IN								1	1										ļ		1 1									Ì			1								1	l	1									l	1					1	<u></u>				l	1	1				×	N				1	l										}	}	1 1									l			İ								l	1										<u> </u>	L							Paramete	эт				Symbol																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Typ (ns) *									- 1		į					İ															-	1										1						Input Loading	l				- 1					Pin Name	Factor (lu)					- 1							1				1																		1				1	1										- 1						Output Driving					İ					Pin Name	Factor (iu)	l				1					IN	36	L									""	30	• Minimu	n values for	the typical	operating	condition.							The val	ues for the				given by the	maximum delay					multiplie	er.										L			**********																																															-																																																							İ																																												į																																				C10-I1BD-E0	Sheet 1/1																		Page 21-3			CG10 * Vec	ersion		--	---------------------------------------		Cell Symbol Propagation Delay Parameter tup tdn			Propagation Delay Parameter	Number of BC		tup tdn 10 KCL 10 KCL KCL2 CDR2 0.663 0.017 1.150 0.023	4		x ————————————————————————————————————			x — IN	Path		x —— IN	X to IN			, , , , , , , , , , , , , , , , , , ,																	Parameter Symbol			Parameter Symbol			Parameter Symbol			Parameter Symbol			Parameter Symbol			ļ	Typ (ns) *		i i												Input Loading			Pin Name Factor (Iu)															Output Driving			Pin Name Factor (Iu)			IN 36 * Minimum values for the typical operating condition.			The values for the worst case operating condition are given by the ma	aximum delay		multiplier.	•																																																		C10-I2B-E0 Sheet 1/1				Page 21-4		FUJIT	FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Ve								ion		-------------	---	----------------------	-------------	------------	-------------	------------	-----------------	-------------	--------------		Cell Name	Function								lumber of BC		I2BU	Input Buffer (Tru with Pull-pu Res	Je)						\top	4			Symbol	, statice		Pror	pagation D	elay Par	ameter						tu			tc	in			Path				t 0	KCL	't O	KCL	KCL2	CDR2						0.663	0.017	1.150	0.023			Х	to IN																	ļ Ì									ļ ļ																											1 1				x	> IN .										L		l l															1										i 1								<u> </u>	<u> </u>		L	Ц	<u> </u>		- 1 · ·				Paramete	31			\dashv	Symbol		yp (ns) *																			1																		1									.	Input Loading	ļ									Pin Name	Factor (lu)	ľ										l '	ļ									-																							Output Driving										Pin Name	Factor (lu)	į									IN	36	 												m values fo						sum dol				The val multiplie		worst case	operating c	ondition .	are given by th	maxin	ium oelay			L	L																																																																																																																																																																														C10-I2BU-E0	Sheet 1/1																		ΙP	age 21-5			SU CMOS GATE ARF	RAY UNIT	CELL S	PECIFICA	ATION		" CG10 "			-------------	-------------------	-----------	-------------	------------	-------------	--------------	--------------	---------------		Cell Name	Function							Number of BC		I2BD	Input Buffer (Tru	ue)						4			with Pull-down I	Resistar	nce							Cell	Symbol			Proj	pagation D		neter					t O	KCL	t O	KCL	fn KCL2	CDR2	Path								NOL2	CDN2	X to IN				0.663	0.017	1.150	0.023	ł	1 1	X 10 114																	j											1										i				_						1					IN						1			^ L						l	1 1																			l	1 1															Paramete	Ļ		L	L	Symbol	Typ (ns) *				raramete	,				37111001	170 (113)								ł										[İ	1				Input Loading					1	l			Pin Name	Factor (lu)					l	1									1										- 1										- 1	1									ļ	}				Output Driving					l	I			Pin Name	Factor (lu)					i	į.			IN	36									",			m values fo											worst case	operating c	ondition are	given by the	maximum delay				multiplie	er.																																																																																																																																																																																	C10-I2BD-E0	Sheet 1/1				-													Page 21-6		FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL SI	PECIFICA	ATION		" CG10	* Ver	sion		--------------------	------------------	----------	-------------	--------------	-------------	--------------	-------------	---------------	--------------		Cell Name Function									Number of BC		IKB	Clock Input Buff	er (Inve	erter)						4		Cel	l Symbol			Pro	pagation D	elay Paran	neter							KCL	10	KCL to	ln KCL2	0000		Path				1.540	0.006	t 0 1.010	0.005	KCL2	CDR2	 ,	X to CI				1.540	0.000	1.010	0.000			ĺ										i						l											ĺ																				x —	>										-		1											1																						Paramete	H			<u> </u>	Symbol	-	Typ (ns) *																			ĺ]				ŀ																	Input Loading	1									Pin Name	Factor (lu)	Į																						l											ł										Output Driving	1									Pin Name	Factor (lu)	l									CI	200	* Minimu	m values fo	the traine	apprating (ondition.		L					The val	ues for the	worst case	operating o	ondition are	given by th	e maxi	imum delay				multipli	er.									1	·																																																																																																																																																								C10-IKB-E0	Sheet 1/1																			Page 21-7		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10" Ver							Version			---	---------------------------------------	----------																																																																																																																																																																																																																																																																																																																																																																																												
--------------------------	---------------------------	-------------	----------------------------	----------------	-----------------		Cell Name	Function	MT UNII	UELL SI	FECIFICA	ATION		1 0010	Number of BC		IKBU	Clock Input Buffe with Pull-up Res	er (Inve	erter)				7	4		Cell	Symbol	Sistance	<u></u>	Pro	pagation D	elay Paran	neter						ıp		tc	nt		Path				t O	KCL	t O	KCL	KCL2	CDR2					1.540	0.006	1.010	0.005		1 1	X to CI																													1 1																							x	> cı						1			L													1													İ																Paramete	*				Symbol	Typ (ns) *																																							l				Input Loading					1	İ			Pin Name	Factor (lu)					1	ľ										1										-																								Output Driving									Pin Name	Factor (lu)	l					ŀ			CI	200											The val	m values follows for the	r me typica worst case	operating o	condition. condition ar	e given by the	e maximum delay				multipli					• •	•			l	I																																																																																																																																										1																				C10-IKBU-E0	Sheet 1/1																	Page 21_8		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION							" CG10 " Version			---	---	--	-------------------------	-------	-------	----------	------------------	---		Cell Name	Function	AT UNII	UNIT CELL SPECIFICATION					Number of BC				or (Inverter)								IKBD	Clock Input Buffe	er (mverter)						4			with Pull-down Resistance Propagation Delay Parameter									Cell Symbol		Propagation Delay Pa					ineres.					t O	KCL	t O	KCL	KCL2	CDR2	Path		_		1.540	0.006	1.010	0.005			X to CI				1.540	0.000	1.010	0.000	ŀ	1 1									l	1 1																1	1			1 1										ł						ļ				1 1			x — CI]			1	1 1			~ ~ ~ ~													ĺ			l										l										l	l i					Paramete	L	L		<u> </u>	Symbol	Typ (ns) *				raiametei					-,55.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									i											:									ł					ľ					Į								1	1				Pin Name	Input Loading Factor (Iu)						1]															1					1					ŀ					1					i				Output Driving	1					1			Pin Name	Factor (lu)						ł			CI	200									.		* Minimum values for the typical operating condition.										The values for the worst case operating condition are given by the maximum delay									multiplier.																																																																																																																																																																																			C10-IKBD-E0	Sheet 1/1																	Page 21-9		FILIIT	SU CMOS GATE ARE	GATE ARRAY UNIT CELL SPECIFICATION " CG10" \										------------	-------------------------------	--	----------------	---------------	------------	------------	---------------	--------------	--------------	--		Cell Name	Function	01111	JEEL O						Number of BC			IKC	CMOS Interface	Clock I	nput Bu	ffer (Inv	erter)				4			Cell	Symbol		·	Pro	pagation D		neter								ıp			dn KOLO	I 0000		Path					1 220	KCL	· t 0	KCL	KCL2	CDR2	-	X to CI					1.320	0.006	0.960	0.005				X 10 C1																		i			}	1												ļ .											1						_							1					×	> cı																										•			1		İ												l							L	<u> </u>		L	<u> </u>							Paramete	2 7				Symbol	 	Typ (ns) *											1												1												1												l					Input Loading					1		l				Pin Name	Factor (lu)					I		ĺ																								ŀ																												Pin Name	Output Driving Factor (lu)													1						l				CI	200	* Minimu	m values fo	r the typical	operating	condition.		·						The val	ues for the				e given by th	e ma	aximum delay					multipli	er.										L	l																																																																																																																																																																																														C10-IKC-E0	Sheet 1/1		······																	- 1	Page 21-10			FILIT	SU CMOS GATE ARE	RAY LINIT	CELLS	PECIFIC	ATION		" CG10	" Version		-------------	-------------------------------	-----------	------------------	----------------------------	-------------	----------------	----------------	-----------------		Cell Name	Function	IAT ONL	OLLE 3	ECIFICA	ATION		00.0	Number of BC			CMOS Interface	Clock I	nput Bu	ffer (Inv	erter)					IKCU	with Pull-up Re	sistance	. ₋ u					4			Symbol	1		Pro	pagation D	elay Paran	neter					tı	dr.			n	T					t O	KCL	t 0	KCL	KCL2	CDR2	Path				1.320	0.006	0.960	0.005			X to CI				l			1	l						i				l]]					ł			i	l	1 1					1				l				1		1	1			}	1 1						l			l				×	> cı												1			ŀ	1 1					İ			1										1									·		1	1					Paramet	er	L	L		Symbol	Typ (ns) *																		1	Ì					İ				1	ļ															1				1	l				Input Loading	1				1				Pin Name	Factor (lu)					l					` '	1				1				ĺ						ļ										1)										4					j			Pin Name	Output Driving Factor (lu)											1								CI	200			. 4								The va	m values fo	r the typica worst case	operating o	condition ar	e aiven by the	e maximum delay				multipli		WOID! 0000	opolating o	0110110111 411	s given ey an	o maximom colay				<u> </u>								i																												ĺ												1																														}																														}																														1																																								C10-IKCU-E0	Sheet 1/1										JIEELI/I							Dog 01 11										Page 21-11		FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL SI	PECIFICA	ATION		" CG10	" Version		--------------	------------------------------	-----------	-------------	---------------	-------------	--------------	--------------	---------------		Cell Name	Function	Ola alı I	A D.	H /1				Number of BC		IKCD	CMOS Interface	Clock	nput Bu	πer (inv	ener)			4			with Pull-down	Hesistai	nce							Cell	Symbol			Proj	pagation D		eter						IP			in		Path				t O	KCL	t O	KCL	KCL2	CDR2					1.320	0.006	0.960	0.005	}	l l	X to CI														1													•												1													_		[1			x —	>	İ			İ					^ L	—						1 1								l	ŀ	1					l			l		1					Ì			1		1															Paramete	×				Symbol	Typ (ns) *								į	1					İ				i	1					l				1	1					i					- 1										1					ł				- 1	- 1			Pin Name	Input Loading Factor (lu)	į				
																																																																																																																																																									C10-IKCD-E0	Sheet 1/1									210-100D-E0	I SHEELI/I									FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Version														--	------------------	----------	--------------	---------------	--------------	------------	----------------	----------	---	--	--	--		Cell Name	Function	MT UNII	OELL SI	-EUIFIU	ATION		1 2010		Number of BC							0. /Tm:	-\						6					ILB	Clock Input Buff	er (Iru	e)						'					Cell	Symbol			Proj	pagation D		neter										J KOL			in KOLO	1 0000		Path							0.530	KCL 0.006	1.300	KCL 0.005	KCL2	CDR2	-	X to CI							0.530	0.006	1.300	0.005				X 10 C1												}									İ			į		1																										ŀ		1							1							l .							×	<u></u> сı							l											İ			İ											<u> </u>																	ł								Paramete	<u> </u>		L	Ц	Symbol	-	Typ (ns) *							1 414					<u>.,</u>		· , , , , , , , , , , , , , , , , , , ,																																							ĺ														ł								Die Neese	Input Loading]												Pin Name	Factor (lu)	ł																				1																																			Output Driving	1				1								Pin Name	Factor (lu)													CI	200							<u> </u>								* Minimu	m values fo	r the typical	operating	condition.	: b s t									multipli		worst case	operating c	onomon are	e given by tr	e ma	aximum delay																																																													: 																																																																																																																																																																								C10-ILB-E0	Sheet 1/1																					T	Page 21-13													L							SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10					-------------	---------------------------------------	-----------	--------------	---------------	------------	-----------	-----------------	-----------------	--	--		Cell Name	Function Clock Input Buffe	or (Tru	9)					Number of BC				ILBU	with Pull-up Res	sistance	= <i>j</i>					6					Symbol	1.0.01.00		Pro	pagation D	elay Para	meter						· · · · · · · · · · · · · · · · · · ·		ıp qı		tc	in		Path						t 0	KCL	t O	KCL	KCL2	CDR2							0.530	0.006	1.300	0.005			X to CI																														ļ																	1 1					_		•										x	> cı													ł												ļ																								<u> </u>	l		<u> </u>	L	<u> </u>							Paramete	BY				Symbol	Typ (ns) *											į												l							1				Ì	ł												ļ						Input Loading	1					ĺ					Pin Name	Factor (lu)	[ŀ							l					1							1																								ļ					ļ					Pin Name	Output Driving Factor (lu)						ŀ							1					ļ					CI	200	• Minimu	m values fo	r the typical	operating	condition								The val	lues for the				re given by the	e maximum delay						multipli	er.										L	L																																																																																																																																																																																								*						C10-ILBU-E0	Sheet 1/1																			Page 21-14				FULITISU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function (Cell Name Function (Cell Name (Cell Symbol) Cell Symbol Cell Symbol Cell Symbol Cell Symbol Cell Symbol For the propagation Delay Parameter Do NCL 10 NCL CDR NcL CDR	FILUT	SU CMOS GATE ARE	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Ve	ersion		--	--------------	------------------	--	-------	----------	----------	----	----------------	------	-------------		Call Symbol Parameter Symbol Propagation Delay Parameter Path		Function			LOII 10/	711014		1	Ì			Cell Symbol Tup to	IIRD	Clock Input Buff	er (Tru	e)						6		Parameter CI To KCL 10 1			Resista	nce						U		Parameter CI Parameter Symbol Typ (na)* Pin Name Pin Name Cutput Driving Factor (lu) Pin Name A minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-ILBD-E0 Sheet 1/1	Cell	Symbol	 		Pro			neter				Parameter Symbol Typ (ns)* Pin Name Pactor (tu) CI 200 *Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-ILBD-E0 Sheet 1/1					't 0			CDR2		Path		Pin Name Input Loading Factor (lu) Pin Name Seator (lu) CI 200 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.										X to CI		Pin Name Input Loading Factor (lu) Pin Name Seator (lu) CI 200 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.						1	1	1 1				Pin Name Input Loading Factor (lu) Pin Name Seator (lu) CI 200 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.			j					1 1				Pin Name Input Loading Factor (lu) Pin Name Seator (lu) CI 200 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.			l				ĺ					Pin Name Input Loading Factor (lu) Pin Name Seator (lu) CI 200 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	1							1 1				Pin Name Input Loading Factor (lu) Pin Name Seator (lu) CI 200 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.			ł									Pin Name Input Loading Factor (lu) Pin Name Seator (lu) CI 200 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	x	cı																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Pin Name Input Loading Factor (lu) Pin Name Output Driving Factor (lu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-ILBD-E0 Sheet 1/1				i								Pin Name Input Loading Factor (lu) Pin Name Output Driving Factor (lu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-ILBD-E0 Sheet 1/1						!	1	1				Pin Name Input Loading Factor (lu) Pin Name Output Driving Factor (lu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-ILBD-E0 Sheet 1/1							İ					Pin Name Input Loading Factor (lu) Pin Name Output Driving Factor (lu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-ILBD-E0 Sheet 1/1			<u> </u>			<u> </u>	L			T		Pin Name Output Driving Factor (Iu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1			Paramete	er .				Symbol		Typ (ns) -		Pin Name Output Driving Factor (Iu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1								l				Pin Name Output Driving Factor (Iu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1							1	j				Pin Name Output Driving Factor (Iu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1			İ									Pin Name Output Driving Factor (Iu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1							į.	ŀ				Pin Name Pactor (tu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1	Dia Nama	input Loading	1									Pin Name Factor (Iu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1	Pin Name	ractor (IU)	1									Pin Name Factor (Iu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1			İ									Pin Name Factor (Iu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1							1					Pin Name Factor (Iu) CI 200 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1			l					į				* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. **C10—ILBD—E0 Sheet 1/1		Output Driving	1				1					Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1	Pin Name	Factor (lu)	l									The values for the worst case operating condition are given by the maximum delay multiplier. C10—ILBD—E0 Sheet 1/1	CI	200						i				C10–ILBD–E0 Sheet 1/1			1 171111110					e aiven by the	e ma	ximum delav										.		,				L	L					····																																																																																																																																																																													C10-II BD-F0	Sheet 1/1																			T	Page 21-15		ELLIT	CHICMOS CATE ADE	TIMIL VAC	CELL C	DECIFIC	ATION		" CG10	* Vc	reion		------------	------------------	-----------	-------------	--------------	-------------	------------	---------------	------	--------------		Cell Name									Number of BC		ILC	CMOS Interface	Clock I	nput Bu	ffer (Tru	ie)				6		Cell	Symbol	T		Proj	pagation D	elay Parar	neter						tı			to	in nt			Path				t 0	KCL	t 0	KCL	KCL2	CDR2						0.900	0.006	1.550	0.005				X to CI																																																				į					x	> — cı										-																																														Paramete	9 7				Symbol		Typ (ns) *				İ						l											İ					1						l											ł				Input Loading	1						l			Pin Name	Factor (iu)	j																	l					1																	ł					l									Din Nama	Output Driving					İ					Pin Name	Factor (lu)	1						l			CI	200	• Minimu	m values fo	r the typica	operating (condition		L					The val	ues for the				e given by th	e ma	ximum delay				multipli	er.									<u> </u>																																																																																																																																																																															C10-ILC-E0	Sheet 1/1																		- 1	Page 21_16		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10" Vei													---	-------------------------------	----------	-------------	--------------	------------	-------------	---------------	-----------------	--------------	--	--		Cell Name	Function	IAT ON	OLLL SI	ECIFICA	TION		00.0	- ĭï	Number of BC					CMOS Interface	Clock I	nput Bu	ffer (Tru	ie)				6				ILCU	with Pull-up Res	sistance	,	•	•			- 1	0				Cell	Symbol			Proj	pagation D	elay Paran	neter						l			ıp			dn		1	Path				·		0.900	KCL	t 0 1.550	KCL	KCL2	CDR2	├─,	X to CI						0.900	0.006	1.550	0.005	ĺ		· '	× 10 C1										1		ļ.													1										İ			l													l											ļ		1					×—	<u></u> CI							ŀ											1		l											ļ		1												l	1							Danamat	<u> </u>		L		Symbol	ļ	Tue (ea) 9						Paramete	3 4				Symbol	 	Typ (ns) *										1																																	1						-								Input Loading					1							Pin Name	Factor (lu)					1													1													l													-																				Pin Name	Output Driving Factor (lu)																									CI	200	* Minimu	m values fo	the typical	operating	condition									The val	ues for the				e given by th	ne max	imum delay						multipli	er.										<u> </u>	L												}																																																																														1																										1													1													1													ļ													1																																							C10-ILCU-E0	Sheet 1/1																				1	Page 21-17					SU CMOS GATE ARF	RAY UNIT	Version							-------------	------------------	-----------	-------------	------------	-------------	-------------	----------------	---------------		Cell Name	Function							Number of BC		ILCD	CMOS Interface	Clock I	nput Bu	ffer (Tr.	ıe)			6		ILUD	with Pull-down I	Resistar	nce							Cell	Symbol			Pro	pagation D	elay Parar	neter					tı	ιp			dn						t O	KCL	t O	KCL	KCL2	CDR2	Path				0.900	0.006	1.550	0.005			X to CI								1	1 1									1	1 1									l	1 1									1	1 1									l	1 1									ì	1 1			1	.					1	1 1			x	>— cı					1	1 1									1	1 1									l	1									Ì	1 1										1 1					Paramete	<u></u>	L	L		Symbol	Typ (ns) *				raramete					Symbol	175 (115)								- 1																				- 1	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
					1				Input Loading									Pin Name	Factor (lu)					1	i																			- 1	į																			- 1	i									- 1				Di- N	Output Driving						1			Pin Name	Factor (lu)	1								CI	200												m values fo											worst case	operating o	ondition ar	e given by the	maximum delay				multiplie	er.									L																																																																																																																																																																																												C10-ILCD-E0	Sheet 1/1																	Page 21-18												Call Symbol Call Symbol Call Symbol Dip Propagation Delay Parameter Path 10 KCL 10 KCL COR2 Path	FUJIT Cell Name	SU CMOS GATE ARF	RAY UNIT	CELL S	PECIFICA	ATION		" CG1	0 "\	/ersion Number of BC		--	--------------------	------------------	-----------------	-------------	---------------	-------------	-----------	--------------	-------	-------------------------		tup KCL 10 KCL KCL2 CDR2 Path 0.600 0.017 0.100 0.017 X to IN Parameter Symbol Typ (ns)* Pin Name Pactor (lu) IN 36 **Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I1C–E0 Sheet 1/1			Input B	uffer (I	nverter)				-			10 KCL 10 KCL KCL2 CDR2 Faul	Cell	Symbol			Proj			rameter				Parameter Symbol Typ (ns)* Pin Name Pactor (tu) Pin Name Output Driving Factor (tu) IN 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	1		t O	I KCI	10			2 CDB2	-	Path		Pin Name Input Loading Factor (tu) Pin Name Sector (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.									1	X to IN		Pin Name Input Loading Factor (tu) Pin Name Sector (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.												Pin Name Input Loading Factor (tu) Pin Name Sector (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.												Pin Name Input Loading Factor (tu) Pin Name Sector (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.												Pin Name Input Loading Factor (tu) Pin Name Sector (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.												Pin Name Input Loading Factor (tu) Pin Name Sector (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.		>> IN						1				Pin Name Coutput Driving Factor (Iu) Pin Name Pactor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.	۲											Pin Name Coutput Driving Factor (Iu) Pin Name Pactor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.												Pin Name Coutput Driving Factor (Iu) Pin Name Pactor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.												Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I1C–E0 Sheet 1/1			Paramete	er .				Symbol	1	Typ (ns) *		Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I1C–E0 Sheet 1/1												Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I1C–E0 Sheet 1/1												Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I1C–E0 Sheet 1/1												Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I1C–E0 Sheet 1/1		Innut Loading										Pin Name Sector (Iu)	Pin Name	Factor (lu)										Pin Name Sector (Iu)												Pin Name Sector (Iu)												Pin Name Sector (Iu)												Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I1C–E0 Sheet 1/1	Din Name	Output Driving										Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I1C–E0 Sheet 1/1												C10–I1C–E0 Sheet 1/1		30	141111111111111	m values fo	r the typical	operating o	condition	1.									worst case	operating o	ondition	are given by	tne m	aximum oeiay					L																																																																																																																																																									I Dago 24 40	C10-I1C-E0	Sheet 1/1								Page 21-19		P11117	CHICKOS CATE ADD	AVIDUT	CELLO	DECIFIC	ATION		1 " CG10	" Version		---------------------	---------------------------------	------------------	------------------------------	---------------------------	-------------	------------	-----------------	-----------------		FUJIT: Cell Name	SU CMOS GATE ARR	AT UNIT	OELL SI	ECIFICA	TION		1 5610	Number of BC		I1CU	CMOS Interface with Pull-up Res	Input Busistance	uffer (Ir	nverter)				5			Symbol			Prot	pagation D	elay Para	meter					tu			tc	in		Path				t 0	KCL	·t0	KCL	KCL2	CDR2					0.600	0.017	0.100	0.017			X to IN					ļ i			ļ																	ļ i										ļ İ							_	_					1				×—	> 0												l Ì				1 1																l 1		1	1						Paramete	<u> </u>		<u> </u>	Ц	Symbol	Typ (ns) *				. s.amett				_	_,	. / F / !!**/				1					Ì					ļ																												Pin Name	Input Loading Factor (lu)	ļ									5.5. (10)	1									ļ											ļ										ļ									Output Driving	ļ				-				Pin Name	Factor (Iu)	1								IN	36	• Minimu	m velues fo	r tha hinder!	l operation								m values for lues for the	uie typica: worst case	operating o	ondition a	re given by the	e maximum delay				multiplie			_		•	-		<u> </u>	L	L																																																																																																																																																				C10-I1CU-E0	Sheet 1/1																	Page 21-20			SU CMOS GATE ARF	RAY UNIT	CELL SI	PECIFICA	ATION		" CG10 "			-------------	-------------------------------	----------------------	--------------	------------	-------------	--------------	----------------	---		Cell Name	Function	Inni A D	h					Number of BC		I1CD	CMOS Interface with Pull-down	Input E	suπer (l	nverter)				5			Symbol	11031314			pagation De	slav Paran	neter						qu		td	in		Path				t O	KCL	t O	KCL	KCL2	CDR2					0.600	0.017	0.100	0.017			X to IN				ļ																														ľ					1 1			-		ļ									>> in						1 1				- "	 	ļ Ì		l		1 1																j i				1 1										<u> </u>					Paramete	er				Symbol	Typ (ns) *									T					1					i					ļ					- 1										1				le "						1			Pin Name	Input Loading Factor (lu)	Į					I					1					1					ļ					1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
								1										1				Output Driving	1					j			Pin Name	Factor (Iu)	ļ					-			IN	36	 					i						m values for				n aire - to -	. maybarran dele			!	The val multiplie		worst case	operating c	undition are	e given by the	maximum delay				L						HT-LL-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-																																																																																																																																																								C10-I1CD-E0	Sheet 1/1									CIU-IICD-EU	SHEEL 1/1							Page 21-21										rage 21-21		FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL SI	PECIFICA	ATION		" CG10 "			------------	------------------------------	----------	-------------	---------------	-------------	--------------	--------------	---------------		Cell Name	Function					····		Number of BC		I2C	CMOS Interface	Input B	uffer (T					4		Cell	Symbol			Pro	pagation D		eter						ıp			in		Path				t 0	KCL	t 0	KCL	KCL2	CDR2	V4- 111				0.575	0.017	0.831	0.023		1	X to IN				l					1					1]					ł										1										i					1					1								x	> IN			i	l					ا		1			ł	1																			Ì		l i					ŀ										Paramete	L	l	<u> </u>	L	Symbol	Typ (ns) *				ravaniet	P1			-	37.1100.	Typ (IIs)				ļ					ŀ					1					į					l										İ					1				r	Į								Pin Name	Input Loading Factor (lu)	ļ								riii Naine	ractor (tu)	1										l										ł					ŀ																								Output Driving	1								Pin Name	Factor (lu)	ļ					ł			IN	36											* Minimu	m values fo	r the typical	l operating	condition.	-to book					multipli		worst case	operating c	ondition are	given by the	maximum delay				mulapin	ы.																																																																																																																																																																																											C10-I2C-E0	Sheet 1/1									FILIT	FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Version											-------------	--	----------	-------------	---------------	-------------	------------------	--------------	-----------------	--	--		Cell Name	Function			LOFIC	ATION		1 00,0	Number of BC				I2CU	CMOS Interface	Input B	uffer					4					with Pull-up Res	sistance	(True)									Cell	Symbol		ıp.	Pro	pagation D	elay Paran In	neter							t O	KCL	t O	KCL	KCL2	CDR2	Path						0.575	0.017	0.831	0.023			X to IN																Ì					1	l												1												!																			>— IN																Į														İ					1																L	L	L								Paramete	er				Symbol	Typ (ns) *											l												İ											1												ŀ	ľ						Input Loading						l					Pin Name	Factor (lu)					}												- 1	- 1												I	İ																	Output Driving						ŀ					Pin Name	Factor (lu)						j					IN	36						1							* Minimu	m values fo	r the typical	l operating	condition.	airea brithe	e maximum delay						multipli		WOISI Case	operating c	Ondition are	given by the	e maximum delay					L	L			·····																																											1																																																1																								1																																																1																								C10-I2CU-E0	Sheet 1/1																			Page 21-23				FULITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION **CG10** *Version **Invalence of Bio	ELLUT	SU CMOS GATE ARE	AV LINIT	CELLS	PECIFIC	ATION		" CG10 "	Version		--	-------------	------------------	----------	-------------	--------------	------------	------------	----------------	---------------		Call Symbol	Cell Name	Function	AT ONT	CELL SI	- ECIFICA	ATION		0070			No			Input B	uffer	ıe)						No No No No No No No No	Cell	Symbol	100.010.	.00 (1	Proj	pagation D	elay Paran	neter			Parameter Parameter Parameter Symbol Typ (ns) Pin Name Cutput Driving Factor (lu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.						tc	dn		Path		Pin Name Input Leading Factor (Iu) Pin Name Pactor (Iu) Pin Name Pactor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.							KCL2	CDR2			Pin Name Input Loading Factor (tu) Pin Name Factor (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD—E0 Sheet 1/1			0.575	0.017	0.831	0.023		1 1	X to IN		Pin Name Input Loading Factor (tu) Pin Name Factor (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD—E0 Sheet 1/1						l					Pin Name Input Loading Factor (tu) Pin Name Factor (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD—E0 Sheet 1/1					'	1	1	1 1			Pin Name Input Loading Factor (tu) Pin Name Factor (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD—E0 Sheet 1/1						l	l	1 1			Pin Name Input Loading Factor (tu) Pin Name Factor (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD—E0 Sheet 1/1					'	1	l				Pin Name Input Loading Factor (tu) Pin Name Factor (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD—E0 Sheet 1/1						j		1 1			Pin Name Input Loading Factor (tu) Pin Name Factor (tu) IN 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD—E0 Sheet 1/1	_										Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
worst case operating condition are given by the maximum delay multiplier.	x	>— IN					l	1 1			Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.							1				Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.							Ì				Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.						l	l	1 1			Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.							l				Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.			Paramete	¥	L	A	1	Symbol	Typ (ns) *		Pin Name Cutput Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1											Pin Name Cutput Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1							i	1			Pin Name Cutput Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1							1				Pin Name Cutput Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1								1			Pin Name Cutput Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1											Pin Name Cutput Driving Factor (Iu) IN 36 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1		· Input Loading						1			Pin Name IN 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1	Pin Name	Factor (lu)									Pin Name IN 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1								ļ			Pin Name IN 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1											Pin Name IN 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1								1			Pin Name IN 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1								I			Pin Name IN 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2CD–E0 Sheet 1/1		Output Debilar						l			* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. **C10–I2CD–E0 Sheet 1/1	Pin Name	Factor (lu)									* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Which is a second sec			1					ļ			The values for the worst case operating condition are given by the maximum delay multiplier.	liN .	36	Minimu	m values fo	r the typica	loperating	condition.				C10–I2CD–E0 Sheet 1/1			The val	ues for the				e given by the	maximum delay					multipli	er.								ļ	l	L																																																																																																																							1																																																																		C10 12CD 50	Choot 1/1										C10-12CD-E0	Sneet 1/1					-		Page 24 04		FILIT	SH CMOS GATE ARE	RRAY UNIT CELL SPECIFICATION "CG10" V									------------	--	---------------------------------------	-------------	---------------	--------------------------	------------	----------------	-------------	----------		Cell Name	Function Function	., . i O(41)	JELE SI	LOII IC/	711014		1 00,0		er of BC		I1S	Schmitt Trigger I (CMOS Type, In	nput Bu	ıffer					8				Symbol	1011017		Pro	pagation D	elav Para	meter						tı	ıp			in .	1	D					t 0	KCL	· t 0	KCL	KCL2	CDR2	Path					2.438	0.067	1.675	0.045		1 1	X to II	N									1																																																											×—	<i>0</i> — IN																																																								Paramete	эт				Symbol	Typ (n	s) •																																																									Di- Norman	Input Loading					l					Pin Name	Factor (lu)					1											ŀ											ı											-																Din Nama	Output Driving										Pin Name	Factor (lu)										IN	18	* Minimu	m values fo	e tha trais-1	l aparatia a	nondition.			····							operating of operating c		re given by th	e maximum e	delav				multiplie					- 2		,				L																																																																																																	*																																																																																								C10-I1S-E0	Sheet 1/1											The state of s							Page	21–25		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Vers											---	-------------------	-----------	--------------	------------	-------------	-----------------------	--	---------------------------------------	------			SU CMOS GATE ARE	RAY UNIT	CELL SI	PECIFICA	ATION		" CG10	" Version			Cell Name	Function		.46-					Number of	. RC		I1SU	Schmitt Trigger I	nput Bu	iner	D	oloto			8				(CMOS Type, In	verter) V	with Pull	-nb we	SISIANCE	d ala:: *	ometer.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
Cell	Symbol	tu	,n 1	Prop	pagation D	elay Par dn	ameter T	·					10	KCL	t O	KCL	KCL2	CDR2	Path					2.438	0.067	1.675	0.045		 	X to IN						/												1		l											l							ț i	ļ		1	l							ļ		ļ							_		ļ			 	ļ						Ø>>→ IN	l l	ļ Ì											ļ l											ļ ļ											1 1			l																		Paramete			·	-	Symbol	Typ (ns) *									$\neg \uparrow$							1															1												j						1										Input Loading										Pin Name	Factor (lu)						Ì																												1				-							ļ										Output Driving	1									Pin Name	Factor (lu)										iN	18													m values for												worst case	operating c	ondition a	are given by th	e maximum delay	•				multiplie	ʊ ſ.																																																																																																																																																																																																			C10-I1SU-E0	Sheet 1/1				·			· · · · · · · · · · · · · · · · · · ·											Page 21-	26		EILIIT	• V6	ersion									---------------	-----------------------------------	--------------	-------------	------------	------------	--	----------------	----------	------------------		Cell Name	SU CMOS GATE ARE						1 00.0	ij	Number of BC		I1SD	Schmitt Trigger (CMOS Type, In	Input Bu	uffer		_				8				verter)	with Pul	l-down	Resista	nce			J		Cel	l Symbol	 		Proj	pagation D		meter						10	KCL	t O	KCL	n KCL2	CDR2	1	Path				2.438	0.067	1.675	0.045		1		X to IN								l										i			ĺ					1												l			ĺ																\1	~~ IN]					^;	IN																							1				1							1				1		1					Paramet	er		1	<u>' </u>	Symbol	<u> </u>	Typ (ns) *															Ì																										- 1							1				i					Pin Name	Input Loading Factor (lu)					- 1					7 111 1421110	Tactor (la)	1						İ																						1					1										Output Driving	1									Pin Name	Factor (lu)	}				İ		l			IN	18							L						m values fo						الماماء مدينساند				multipli		WOISI Case	operaung o	ondition at	re given by ii	re ma	ximum delay			<u> </u>	<u> </u>																																																																																																																																																																														C10-I1SD-E0	Sheet 1/1																		T	Page 21-27										L	. ugo = 1 = = /		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Vers								Version		---	-------------------------------------	----------	-------------	---------------	-------------	--------------	--------------	---------------		Cell Name	Function	MI UNII	OELL S	- EUIFIU	TION		0010	Number of BC		I2S	Schmitt Trigger I (CMOS Type, Tr	Input Bu	ıffer					8			Symbol	ue)		Proi	pagation D	elav Param	eter						ıρ		to	ln		Path				t O	KCL	t O	KCL	KCL2	CDR2					1.550	0.067	1.925	0.056			X to IN																	i								1																								1 1			x	<i>д</i> IN	ĺ					1			L																							}										<u> </u>		L	L	L					Paramete	er				Symbol	Typ (ns) *									1										1																				1				Input Loading						ı			Pin Name	Factor (lu)											ĺ																									1					1					l			Pin Name	Output Driving Factor (lu)																			IN	18	* Minimu	m values fo	r the typical	operating	condition.						The val	ues for the	worst case	operating c	ondition are	given by the	maximum delay				multipli	er.							····		•																,																																																																																																																																				C10-I2S-E0	Sheet 1/1									010-123-EU	JIICELI/I							Page 21–28		Cell Name Function Schmitt Trigger Input Buffer (CMOS Type, True) with Pull-up Resistance Schmitt Trigger Input Buffer (CMOS Type, True) with Pull-up Resistance Schmitt Trigger Input Buffer Tri	ELLIIT	SUCMOS GATE ARE	ZAV LINIT	CELLS	DECIEIC	MOLTA		" CG10	" Version		--	--	-----------------	-----------	--------------	--------------	------------	------------	--------------	------------------		Schmitt Trigger Input Buffer (CMOS Type, True) with Pull—up Resistance Schmitt Trigger True) with Pull—up Resistance Schmitt Trigger True) with Pull—up Resistance Schmitt Resistan	Cell Name	Function	TAT CITI	OLLL S	rECIFIC/	ATION		1 0070	Number of BC		Cell Symbol To KCL 10 KCL KCL2 CDR2 Path 1.550 0.067 1.925 0.056 Symbol Typ (ns)? Parameter Symbol Typ (ns)? Parameter Symbol Typ (ns)? Pin Name Pactor (tu) IN 18 **Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-12SU-E0 Sheet 1/1			Input Bu	ıffer							No NCL 10 NCL COR2 Path 1.550 0.067 1.925 0.056 No No No No No No No N		(CMOS Type, T	rue) with	n Pull–u	p Resis	tance			0		Plin Name Output Driving Factor (tu) Niminum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are given by the maximum delay multiplier. Niminum values for the worst case operating condition are																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
given by the maximum delay multiplier. Niminum values for the worst case operating condition. val	Cel	l Symbol	ļ		Pro			neter			Plin Name Input Loading Pactor (Iu) IN 18 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier.					••			CDB2	Path		Pin Name Input Loading Factor (Iu) Pin Name Factor (Iu) IN							KOLZ	OBNZ	X to IN		Pin Name Input Loading Pin Name Pactor (Iu) IN 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–12SU–E0 Sheet 1/1			1.550	0.007	1.323	0.050			X 10		Pin Name Input Loading Pin Name Pactor (Iu) IN 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–12SU–E0 Sheet 1/1							1				Pin Name Input Loading Pin Name Pactor (Iu) IN 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–12SU–E0 Sheet 1/1			1								Pin Name Input Loading Pin Name Pactor (Iu) IN 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–12SU–E0 Sheet 1/1			l			i	l				Pin Name Input Loading Pin Name Pactor (Iu) IN 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–12SU–E0 Sheet 1/1											Pin Name Input Loading Pin Name Pactor (Iu) IN 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–12SU–E0 Sheet 1/1	1	>	1								Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN	x—	IN	1	[l	l				Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN							1				Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN			ł	1		}					Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN			1	l		l	ļ	l			Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN			Paramet	L	L	L	L	Symbol	Tyn (ne) *		Pin Name			1 aramet	<u> </u>				- Cyllidol	77P (113)		Pin Name			ļ								Pin Name			l								Pin Name			1								Pin Name			İ				ĺ				Pin Name Pin Name Pin Name Pin Name Pactor (Iu) **Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. **C10–I2SU–E0 Sheet 1/1			1								Pin Name IN * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2SU–E0 Sheet 1/1	Pin Name	Factor (lu)	4								Pin Name IN * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2SU–E0 Sheet 1/1		1	1								Pin Name IN * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2SU–E0 Sheet 1/1			1								Pin Name IN * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2SU–E0 Sheet 1/1			ł								Pin Name IN * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10–I2SU–E0 Sheet 1/1			4				İ				IN * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. **C10–I2SU–E0 Sheet 1/1	Pin Name		1				ļ				* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. **C10-I2SU-E0 Sheet 1/1			1								C10–I2SU–E0 Sheet 1/1	II V	10	• Minimu	m values fo	r the typica	loperating	condition.				C10-I2SU-E0 Sheet 1/1			The val	lues for the				given by the	ne maximum delay					multipli	er.								······································																																																																																																																																																																															I D 04 6	C10-I2SU-E0	Sheet 1/1							T =		Page 21–2									Page 21-29		CUUT	CHICKOS GATE ADD	ARRAY UNIT CELL SPECIFICATION " CG10" V								-------------	-------------------	---	-------------	---------------	--------------	------------	--------------	---		Cell Name	Function Function	AT ONIT	CELL SI	ECIFICA	ATION		0070	Number of BC		I2SD	Schmitt Trigger I	nput Bu	iffer	own Do	oiotopo			8			(CMOS Type, Tr	ue) witi	i Full—di	OWII Ne	pagation D	elev Peren		L			i Syllibol	tu	10		to to		10101					t O	KCL	· t 0	KCL	KCL2	CDR2	Path				1.550	0.067	1.925	0.056			X to IN									Ì										l 1																				1 1																				1 1			x	<i>р</i> ім						1 1			۱							i i																			Ì	1 1										1 1					Paramete	<u> </u>		L	<u> </u>	Symbol	Typ (ns) *									7	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									1									- 1	ł										1					i									Input Loading						1			Pin Name	Factor (lu)						1									J	j																				l										ł			· ···	Output Driving									Pin Name	Factor (lu)						1			IN	18										,,,	* Minimu	m values fo	r the typical	operating of	condition.						The val	ues for the				given by the	maximum delay				multiplie	er.								l	L																																																																																																																																																																								C10-I2SD-E0	Sheet 1/1									<u> </u>								Page 21–30		FUUT	CHICAGO CATE ADD	DAY LINUT	CELL C	DECITIO	ATION		* CG10	" Version			------------	------------------	-----------	---------	------------	--------------	--------------	-------------	-----------------	--		Cell Name	SU CMOS GATE ARP	TAY UNIT	CELL SI	PECIFICA	ATION		<u> </u>	Number of BC				Schmitt Trigger	Input Bu	ıffer								I1R	(TTL Type, Inve	rter)						8			Cel	Symbol			Pro	pagation D		eter						1 0	KCL	t 0	KCL	ln KCL2	CDR2	Path					2.800	0.067	1.475	0.045	KOLZ	CORZ	X to IN					2.000	0.007	1.473	0.043		1	7.10											İ			Į.																	'																l1	in										^ [ļ					1						i																								Paramete	er				Symbol	Typ (ns) *					1											l				- 1																		1										Input Loading	1									Pin Name	Factor (lu)	}				- 1							l				l																												Output Driving										Pin Name	Factor (lu)	ł				1					IN	18															operating of								nultiplie		worst case	operating o	ondition are	given by th	e maximum delay					L																																																																																																																																																																			010 110 50	Charter 1										C10-I1R-E0	Sheet 1/1							Page 21 21											Page 21-31			FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Ver								" Version		--	---------------------------------------	------------------	-----------------------------	---------------------------	--------------------------	----------------------------	---------------	-----------------		Cell Name	Function							Number of BC		I1RU	Schmitt Trigger I (TTL Type, Inver	nput Buter) with	iffer n Pull–u	p Resis	tance			8		Cell	Symbol			Pro	pagation D		neter						ib			ln		Path				t 0	KCL	t 0	KCL	KCL2	CDR2					2.800	0.067	1.475	0.045			X to IN							Ì		i																																											× -	D IN												1									·	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
		1								l		<u> </u>	<u> </u>						Paramete	er .				Symbol	Typ (ns) *																												-										1				<u> </u>	Input Loading	1				ı				Pin Name	Factor (lu)					ļ]				l										İ						Ì				l										1					Output Driving	l				ŀ				Pin Name	Factor (Iu)	ł				ı				IN	18	• Minimu						L				The val	m values to lues for the	r me typica worst case	l operating operating of	condition. ondition are	e given by th	e maximum delay				multipli						•			<u> </u>	I																																																																																																																																																														C10-I1RU-E0	Sheet 1/1																	Page 21-32		FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL SI	PECIFICA		" CG10	" Version			-------------	-------------------	--------------	----------	---------------	-------------	--------------	------------------	-----------------		Cell Name	Function							Number of BC		I1RD	Schmitt Trigger I	Input Bu	ıffer					8			(TTL Type, Inve	rter) with	n Pull–d					٥		Cell	Symbol			Proj	pagation D		meter						KCL	10	KCL	in KCL2	CDR2	Path				t 0		1.475		KCL2	CDRZ	X to IN				2.800	0.067	1.4/5	0.045			A 10 IIV									1 1					i																									Ì			_										×	IN									· · ·																	1 1																									Paramete	l er				Symbol	Typ (ns) *																																						1						1						,			Input Loading	1				İ				Pin Name	Factor (lu)	1														- 1						ĺ				ļ	1					1]										l	- 1				Output Driving	}				- 1	İ	1		Pin Name	Factor (lu)	1				l				IN	18	 					i							r the typical			ro airean bu the	e maximum delay				multiplie		WOISI Case	operating o	orioruori ai	e given by tre	maximum delay																																																																																																																																																																												C10-I1RD-E0	Sheet 1/1																	Page 21-33		FUJIT	ITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" V											------------	---	---------------	----------------------------	-----------------------------	-------------	-------------	-----------------	-----------------	--	--		Cell Name	Function							Number of BC				I2R	Schmitt Trigger I (TTL Type, True	Input Bu)	ıffer					8				Cell	Symbol			Proj	pagation D		ameter								JP			in		Path						t 0	KCL	t 0	KCL	KCL2	CDR2	X to IN						1.400	0.067	2.325	0.073			A to IN										İ												İ												l																								ļ						x) IN					İ						L																		l													1 1																			Paramete	96				Symbol	Typ (ns) *										l																								į												- 1							Input Loading											Pin Name	Factor (lu)																																					ļ																							Output Driving					- 1						Pin Name	Factor (lu)	ļ										IN	18	Minimu												14111111111	m values to ues for the	r the typical worst case	operating o	condition :	are given by th	e maximum delay						multipli					3 3	,					L	L																																																																																																																																																																																														C10-I2R-E0	Sheet 1/1																			Page 21-34				FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Version														--	---------------------------------	----------	-------------	------------	-------------	-------------	---------------	------	--------------	--	--	--		Cell Name	Function	MY UNII	CELL SI	PECIFICA	ATION		LGIU	V	Number of BC						Schmitt Trigger	nput Bi	ıffer											I2RU	Schmitt Trigger (TTL Type, True) with P	ull–up F	Resistan	ce				8					Cel	Symbol			Proj	pagation D	elay Paran	neter										ι ρ			in			Path							t O	KCL	· t 0	KCL	KCL2	CDR2									1.400	0.067	2.325	0.073				X to IN								1				1																																																															x	<i>D</i> IN																																											l					[]																							Paramete	er	Symbol		Typ (ns) *										}				l																																																																Pin Name	Input Loading Factor (lu)					1																												- 1														İ										l				1									Output Driving	1				1								Pin Name	Factor (lu)					ı								IN	18																m values fo						i							multipli		worst case	operating o	ondition ar	e given by th	e ma	aximum delay																																																																																																																																																	1																																																																																				010 105:1 55	05-3477													C10-I2RU-E0	Sheet 1/1							Т	Deep 04 05													L	Page 21-35					FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Ver											--	--------------------------------------	-----------	-------------	------------	-------------	--------------	--------------	---------------	--		Cell Name	Function	AT UNIT	CELL SI	PECIFICA	ATION		<u> </u>	Number of BC					nnud Di						Number of BC			I2RD	Schmitt Trigger I (TTL Type, True	nput bu	mer da	- Dania				8				(TTL Type, True) Willi P	ull-uow	ii nesis	lance						Cell	Symbol			Proj	pagation D		neter						t O	KCL	t O	KCL	In KCL2	CDR2	Path									NOLE	OBNZ	X to IN					1.400	0.067	2.325	0.073		1	Y 10 IIA										1 1																																	1 1											1 1					_						1				x	<i>б</i> > IN						l l											1 1											1 1									j .		1 1											1						Paramete	×			<u> </u>	Symbol	Typ (ns) *																					1										ļ	l											1								
Buffer (IOL=3.2	mA, Inv	erter)				3		Ce	li Symbol			Pro	pagation De	elay Paran	neter						р		to			Path				0.760	KCL 0.036	1.010	KCL 0.079	KCL2	CDR2	OT to X		от ——	x	(2.92)		(5.75)	0.079		Symbol	Typ (ns) *		Pin Name	Input Loading Factor (lu)	-								ОТ	2									Pin Name	Output Driving Factor (lu)	-											ues for the		l operating o		e given by the	maximum delay	Note: 1. The unit of KCL is ns/pF. - 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-O1B-E0	Sheet 1/1		THUTCH ON COATE ADDRAWN TO THE ODERS OF TOOL													--------------	--	-----------	--------------	-------------	-------------	-----------	--------	------------	------	--------------	--	--			SU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Vers													Cell Name		OI 0	A le					-	-	Number of BC				O1BF	Output Buffer (I	UL=8m/	A, Inver							3				Cell	Symbol	ļ		Proj	pagation D		ramet	er								t O	KCL	t O	KCL	n KCL2	2	CDR2		Path						0.850	0.036	0.980	0.039					OT to X						(3.01)		(3.32)			į																																																	1					·									от	>×						-														ı										İ			1	ı										l			<u> </u>										Paramete	97			\dashv	Syı	mbol		Typ (ns) *										1																																					Input Loading													Pin Name	Factor (lu)													ОТ	2																																									Di- N	Output Driving													Pin Name	Factor (lu)					1											m values fo													The val		worst case	operating c	ondition	are gi	iven by th	e ma	ximum delay					L	morapii	 																									Note: 1. The	e unit of KcL is ns/pF.													2. Ou	tput load capacitance	of 60 pF	is used fo	r Fujitsu':	s logic sir	nulatio	n.							3. The	e parameters in paren	theses ar	e the valu	ies applie	ed to the s	simulat	tion.																																																																																																																																					C10_O1BE_E0	Sheet 1/1													FILIIT	FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Version													-----------	---	-----------------	--------------------	-----------------------------	------------	---------	-----	--------------	------	--------------	--	--		Cell Name	Function	IAT OIVIT	OLLL O	LONIO	111011					Number of BC				O1L	Power Output Bu	uffer (IC)L=12m	A, Inve	rter)					3				Cell	Symbol			Proj	pagation D	elay Pa	ram	eter								t.				in				Path						t O	KCL	10	KCL	KCL	2	CDR2						от —	> 0—×	0.870 (2.31)	0.024	1.100 (2.66)	0.026					OT to X																				Paramete	arameter Symbol Ty																									Pin Name	Input Loading Factor (lu)													ТО	2													Pin Name	Output Driving Factor (iu)					Ì											ues for the	r the typical worst case				given by the	e ma	ximum delay				2. Ou	e unit of KCL is ns/pF. put load capacitance of parameters in parent																										C10-O1L-E0 Sheet 1/1		011 01100 0175 155				. = . 0		" CG10	* > / '		-------------	-------------------------	-----------	-------------	---------------	------------	-----------	----------	-----------------		FUJII	SU CMOS GATE ARE	AY UNI	CELL S	PECIFICA	ATION] " CG10	" Version		Cell Name	Function	01 00	A I	\				Number of BC		01R	Output Buffer (Id	JL=3.21	mA, inv	ener)				5			with Noise Limit	Hesista	nce							Cell	Symbol			Pro	pagation D		ameter						ib			in		Path				t O	KÇL	t O	KCL	KCL2	CDR2	OT 1. V				1.770	0.036	4 310	0.080		1 1	OT to X				(3.93)		(9.11)		1]]										1						l				1 1									Į.							1			į	1 1			1		İ	l			j]]			от —	>>—×		1			1				l L						1	- -								1	l	1 1									1	1 1						1			1	1 1					Paramete	<u> </u>	L	L	┖──┬		Tun (no) t				Paramete	er				Symbol	Typ (ns) *									1										1																													- 1	į				Input Loading					- 1	1			Pin Name	Factor (lu)					- 1				OT	1	}																								1										- 1				<u> </u>	Output Driving	1				- 1				Pin Name	Factor (lu)	}				l						1										Minimu	m values fo	r the typical	loperating	condition	1.											e maximum delay				multipli	er.								İ	L								į										Note: 1. Th	e unit of KCL is ns/pF.									1	•				- !'-	mulati-	_				tput load capacitance									3. Th	e parameters in paren	theses ar	e the valu	ies applie	ed to the	simulat	ion.			1																																																		1																				ł																				1																														C10-O1R-E0	Sheet 1/1																	Page 21-40												FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Version										ersion		--	--------------------------------------	-------------------	------------	---------------	-------------	----------	------	-------------	-----	--------------		Cell Name	Function									Number of BC		O1RF	Output Buffer (I with Noise Limit	OL=8m/ Resista	A, Inver	ter)						5		Cell	Symbol			Proj	pagation D	elay Pa	rame	eter							ıр		tc	in				Path				t 0	KCL	t O	KCL	KCL	2	CDR2						1.824	0.036	5.013	0.044	1	- 1	1		OT to X				(3.99)		(7.66)		١	١											l		- 1									į	1												1	-											1	- {						\					}		- 1				от —	> ~ ×					ł	ı					L						i	ı											İ	ı		ŀ										ı		İ																	Paramete	er e				S	ymbol		Typ (ns) *								1		- 1										l								1				1		1										1								İ				- 1			1				Input Loading											Pin Name	Factor (lu)	l]			ĺ			OT	1					j			1					}				1			l									1			l					ŀ				1							Output Driving					- 1			1			Pin Name	Factor (lu)								1					<u> </u>							Ц							r the typical				aiuaa bu th		aximum delay				multiplie		WOISI Case	operating c	Official	are	given by in	e m	aximum delay																										Note: 1 Th	unit of Koulia no/-F												e unit of KCL is ns/pF.											2. Ou	tput load capacitance	of 60 pF i	s used fo	r Fujitsu's	s logic sir	nulatio	n.					3. The	e parameters in parent	heses are	e the valu	es applie	d to the	simula	tion						·			• •																																																																																																																																												C10-O1RF-E0	Sheet 1/1																				- 1	Page 21-41		FILIIT	FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10" Version												------------	--	-----------------	-------------	-----------------	-------------	------------	---	-----------------	--	--	--		Cell Name	Function	IAT UNIT	JLLL OI	LOII IO	111011			Number of BC					015	Power Output Br			A, Inve	rter)			5					Cell	Symbol			Prop	pagation D	elay Param	eter									ip			ln	2222	Path							t 0	KCL	t 0	KCL	KCL2	CDR2	OT to X							1.992 (3.44)	0.024	5.660 (7.70)	0.034			01.00							(5.77)		(7.70)																																																1													от —	>>—×												L							1]						1																																																																																																																																	
				<u> </u>	L	L								Paramete	97				Symbol	Typ (ns) *											l																										l																					Input Loading						1						Pin Name	Factor (lu)					İ	- 1						ОТ	1					İ													1														Ì																			Pin Name	Output Driving Factor (lu)					l							7 III Namo	1 80:01 (10)														Minimu	m values fo	r the typical	operating	condition.									The val	ues for the				given by the	e maximum delay							multipli	er.												<u> </u>					***************************************																				e unit of KCL is ns/pF.												2. Ou	tput load capacitance	of 60 pF i	is used fo	r Fujitsu's	s logic sir	nulation.							3. The	e parameters in parent	heses ar	e the valu	ies applie	d to the	simulation	٦.							•																																																																																																																																														C10-O1S-E0	Sheet 1/1																				Page 21_42					Cell Symbol	FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Version													--	---	-------------------------------	----------	-------------	-------	--	--------	----------------	-----------------	--	--	--		Parameter Note: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. 2. Call 2								·	Number of BC					Parameter Note: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation.	O2B	Output Buffer (I	OL=3.2	mA, Tru	e)				2					Plin Name Input Loading Factor (tu) Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation.	Cel	l Symbol			Pro			neter						Parameter Parameter Parameter Symbol Typ (ne)* Pin Name Factor (tu) OT 6 Input Loading Factor (tu) * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation.					10			CDB2	Path					Plin Name Input Loading Factor (tu) OT 6 Pin Name Parameter Symbol Typ (ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation.	1		0.500		0.803				OT to X					Pin Name OT 6 Pin Name Output Driving Factor (tu) * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation.	от —	×	Paramete				Symbol	Typ (ns) *						Pin Name Output Driving Factor (Iu) * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation.	Pin Name													* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation.	ОТ	6												Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation.	Pin Name	Output Driving Factor (lu)												Output load capacitance of 60 pF is used for Fujitsu's logic simulation. The parameters in parentheses are the values applied to the simulation.			The val	ues for the				e given by the	e maximum delay					C10O2BE0 Sheet 1/1	Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation.														C10-O2B-E0	Sheet 1/1							Page 21–43						SU CMOS GATE ARP	RAY UNIT	" CG10 " V							-----------	--	-----------------	-------------	-----------------	-------------	------	------------------	--------------		Cell Name	Function							Number of BC		O2BF	Output Buffer (IC	DL=8mA	A, True)					2		Cell	Symbol			Pro	pagation D		neter						ip			in		Path				t O	KCL	t 0	KCL	KCL2	CDR2					0.590 (2.75)	0.036	0.773 (3.12)	0.039			OT to X												от	> x																					Paramete	×				Symbol	Typ (ns) *												Pin Name	Input Loading Factor (Iu)									ОТ	6																			Pin Name	Output Driving Factor (iu)												ues for the		operating o		e given by the m	aximum delay		l	e unit of KCL is ns/pF.										tput load capacitance of e parameters in parent	•			-		n.																																										C10-O2BF-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARF	RAY UNIT	CELL SI	PECIFICA	NOITA		" CG10	"Ve	rsion		--------------	-------------------------	------------	------------	---------------	-------------	------------	-------------	----------	--------------		Cell Name	Function							\dashv	Number of BC		O2L	Power Output B	uffer (10	DL=12m						2		Cell	Symbol			Pro	pagation D		eter						t O	KCL	·t0	KCL	n KCL2	CDR2		Path				0.610	0.024	0.893	0.026	NOL	ODINE		OT to X				(2.05)	0.024	(2.46)	0.020				C. 10 A				, ,		` ']																										'		1	1				от	x			}													1	1								(1																		Paramete	97				Symbol		Typ (ns) *																																									ļ						Input Loading										Pin Name	Factor (lu)					- 1					ОТ	6					ļ											-											l																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
		Output Driving					- 1					Pin Name	Factor (lu)																		<u> </u>							r the typical			aiven hy th	e ma	ximum delay				multipli		Worst Gase	operating o	onarion ar	given by an		Aimoni dolay			L	L																				Note: 1. The	e unit of KcL is ns/pF.										2. Ou	tput load capacitance	of 60 pF i	is used fo	r Fujitsu':	s logic sir	nulation.					3. Th	e parameters in parent	heses ar	e the valu	es applie	d to the	simulation	٦.					•			• • •																													1											1																																																																		C10-O2L-E0	Sheet 1/1										CUUT	CHICHOC CATE ADD	AV LINIT	CELLS	DECIFIC	ATION		" CG10 "	Vorcion		------------	---	---------------------------------	-------------------	-----------------------------	-----------------------	--	--------------	---------------		Cell Name	SU CMOS GATE ARE	AT UNI	CELLS	reciric/	ATION		<u> </u>	Number of BC		O2R	Output Buffer (I	OL=3.2	mA, Tru	e)				4			with Noise Limit	Hesista	ince			-1 D				Cei	ТЭУПОО	<u> </u>	dr dr	Proj	pagation D	dn Paran	1eter					t O	KCL	t O	KCL	KCL2	CDR2	Path		от —	x	1.383 (3.55)	0.036	3.335 (8.14)	0.080			OT to X														Paramete	L	L	L	' 	Symbol	Typ (ns) *												Pin Name	Input Loading Factor (lu)						l			ОТ	2									Pin Name	Output Driving Factor (lu)		na anggala panaka									Minimu The val multipli	ues for the	r the typical worst case	operating operating o	condition. ondition are	given by the	maximum delay		2. Ou	e unit of KcL is ns/pF. tput load capacitance of e parameters in parent						n.			C10-O2R-E0	Sheet 1/1							Page 21-46						550.50			T# 0046			--------------------	-------------------------------	------------------	-------------	---------------	-------------	----------	---------	------------------		FUJIT Cell Name	SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFIC	ATION		* CG10	Number of BC			Output Buffer (I	$\Omega I = 8mA$	True							<i>02RF</i>	with Noise Limit	Resista	ince					4		Cell	Symbol	I		Pro	pagation D	elay Pa	rameter						ıb dı			n		Path				t O	KCL	10	KCL	KCL	2 CDR2					1.437	0.036	4.038	0.044	l		OT to X				(3.60)		(6.68)						1					1								1										1	l	Ì	Ì				/				1		ł				от —	>×													1									ļ	l		ļ										İ							<u> </u>	<u> </u>	<u> </u>	١		 				Paramete	er			-+	Symbol	Typ (ns) *								1																				- [Input Loading	1				1				Pin Name	Factor (lu)]				l		į		ОТ	2															1										ŀ						1				1				Pin Name	Output Driving Factor (lu)					1						İ				İ						Minimus	m values fo	r the typical	operating	conditio	n.					The val	ues for the					he maximum delay				multiplie	er.									L								Material Th											unit of KcL is ns/pF.									2. Ou	tput load capacitance	of 60 pF i	s used fo	r Fujitsu's	s logic sin	nulatio	on.			3. The	e parameters in paren	theses are	e the valu	ies applie	d to the s	simula	tion.																																										C10-O2RF-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARF	RAY UNIT	CELL S	PECIFICA	ATION		" CG10 "	Version		----------------------------	---	-----------------	--------------	-----------------------------	------------	------------	----------------	---------------		Cell Name	Function							Number of BC		025	Power Output Bowith Noise Limit	uffer (IC	DL=12m	A, True)			4		Call	Symbol Symbol	nesisia	lice	Droi	pagation D	elay Paran		<u></u>			- Cyllidor	tı	ıb	1 710,		dn	1	·				t O	KCL	t O	KCL	KCL2	CDR2	Path		от —	x	1.605 (3.05)	0.024	4.685 (6.73)	0.034			OT to X				Paramete	86				Symbol	Typ (ns) *		Pin Name OT Pin Name	Input Loading Factor (lu) 2 Output Driving Factor (lu)												lues for the	or the typica worst case			e given by the	maximum delay		2. Ou	e unit of KCL is ns/pF. tput load capacitance e parameters in paren	of 60 pF					n.		Page 21-48 C10-O2S-E0 Sheet 1/1	FUJI	TSU CMOS GATE AF	RAY UNIT	CELL	SPECIFIC.	ATION		" CG10	* Version		-----------	-------------------------------	-----------------	----------------	-----------------	---------------	---------------	---------	--------------		Cell Name	Function							Number of B0		O4T	Tri-state Outpu	ıt Buffer	(IOL=	3.2mA, T	rue)			4		Ce	ell Symbol	T		Pro	pagation D	elay Pa	rameter					t	ηþ			in		Path				t O	KCL	t O	KCL	KCL	2 CDR2			от	×	0.639 (2.98)	0.036	1.460 (6.66)	0.080			OT to X		·	c	10	L to	Z KCL	to	Z to	KCL KCL	C to X				1.78 (13.9		•	1.17 (6.57		0.083			Pin Name	Input Loading Factor (lu)									οτ	6 2									С	2	10	H to	KCL	10	Z to	KCL					2.12	, 	NOL	0.70	$\overline{}$	0.037			Pin Name	Output Driving Factor (lu)	(13.9		•	(6.57		0.037												- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-O4T-E0	Sheet 1/1	FUJIT	<u>ISU CMOS GATE AR</u>	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Version		-----------	-------------------------------	---------------	-------------	---------	----------------	----------------	--------	-------------		Cell Name	Function							Number of B		O4TF	Tri-state Outp	ut Buffer	(IOL=8	mA, Tru	ıe)			4		Ce	II Symbol			Pro	pagation D	elay Para	meter						dr.		to			Path				10	KCL	· t 0	KCL	KCL2	CDR2			от ——	×	0.693	0.036	(5.21)	0.044			OT to X			c	10	L to Z	KCL	tO	ZtoL	KCL	C to X				2.14 (15.6		•	1.57! (4.44		0.044			Pin Name	Input Loading Factor (lu)									от	6 2									С	2	10	H to Z	KCL	10	Z to H	KCL					<u> </u>		NOL	 	- +				Pin Name	Output Driving Factor (lu)	2.12 (15.6		•	0.70 (4.44		0.037												- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-O4TF-E0 Sheet 1/1	FUJIT	ISU CMOS GATE AR	RAY UNIT	CELL S	PECIFIC.	ATION		" CG10 '			-----------	-------------------------------	-----------------	--------	-----------------	----------------	-----------	----------	-------------		Cell Name	Function							Number of B		04W	Power Tri-state	Output	Buffer	(IOL=12	2mA, Tn	ne)		4		Ce	II Symbol			Pro	pagation D	elay Para	meter					tu				in		Path				t O	KCL	t O	KCL	KCL2	CDR2			от —	×	0.804 (2.37)	0.024	2.620 (4.83)	0.034			OT to X					L to Z	L		Z to L						t 0		KCL	t O		KCL	C to X				2.566 (16.44		•	1.219 (4.60		0.052			Pin Name	Input Loading Factor (Iu)									OT	6 2									С	2	10	H to Z	KCL	10	Z to H	KCL							NOL						Pin Name	Output Driving Factor (Iu)	2.544 (16.44		•	0.80 (4.60		0.025												- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-O4W-E0	Sheet 1/1	FUJIT	SU CMOS GATE AR	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Version		-----------	------------------------------------	-----------------	----------------	-----------------	---------------	---------------	--------	--------------		Cell Name	Function							Number of BC		O4R	Tri-state Outpu with Noise Limi			.2mA, T	rue)			5		Cel	I Symbol	T		Pro	pagation D	elay Par	ameter						ıp			in		Path				t O	KCL	10	KCL	KCL2	CDR2					1.177 (3.52)	0.036	3.190 (8.39)	0.080			OT to X		от	x												L to Z			Z to		a				10		KCL	t O		KCL	C to X				1.73		٠	3.57 (8.97		0.083			Pin Name	input Loading Factor (lu)									οT	2 2	<u> </u>			ļ					С	2	10	H to Z	KCL	to	Z to	H																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
KCL						. 	NOL	 	$\overline{}$	0.037			Pin Name	Output Driving Factor (lu)	1.86		•	1.30 (8.97		0.037												- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-O4R-E0	Sheet 1/1	FUJIT	SU CMOS GATE AR	RAY UNIT	CELL S	PECIFICA	ATION		" CG10 "	' Version		-----------	----------------------------------	-------------------------	----------------	-----------------	---------------	------------	----------	-------------		Cell Name	Function							Number of B		O4RF	Tri-state Outp with Noise Lim	ut Buffer it Resista	(IOL=8 ance	mA, Tru	ie)			5		Ce	II Symbol	T		Pro	pagation D	elay Paras	meter					tu	P		tdn			Path				t O	KCL	10	KCL	KCL2	CDR2	Pam		от ——	×	1.231 (3.57)	0.036	4.073 (6.94)	0.044			OT to X			С		L to Z			Z to L						10		KCL	10		KCL	C to X				2.24 (15.6		•	3.98 (6.84		0.044			Pin Name	Input Loading Factor (lu)									ОТ	2 2									С	2	10	H to Z	KCL	10	Z to H	KCL							NUL	 					Pin Name	Output Driving Factor (lu)	1.860		•	1.30 (6.84		0.037												- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-O4RF-E0 Sheet 1/1	FUJI	TSU CMOS GATE AR	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		------------	--	---------------------	----------------	-----------------	---------------	-----------	--------	---		Cell Name	Function							Number of BC		<i>04S</i>	Power Tri-state with Noise Limi	Output t Resista	Buffer ince	(IOL=12	2mA, Tn	ne)		5		Ce	eli Symbol	T		Pro	pagation D	elay Para	ameter				**************************************	tı	JP	T		in		D-45				t O	KCL	t O	KCL	KCL2	CDR2	Path		от	×	1.477 (3.04)	0.024	4.770 (6.98)	0.034			OT to X					L to Z	1		Z to l		***************************************				t 0		KCL	t 0		KCL	C to X				2.600 (16.3		•	3.75 (7.14		0.052			Pin Name	Input Loading Factor (Iu)]								OT	2 2	<u> </u>					i			С	2	10	H to Z	KCL	10	Z to F	KCL							NOL						Pin Name	Output Driving Factor (lu)	(16.3		•	1.40 (7.14		0.025												- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-O4S-E0	Sheet 1/1	6 Path to X		-------------------		ath								to X														(ns) *																				m delay																							C10-O2S2-E0	Sheet 1/1		SU CMOS GATE AR	MAY UNII	UELL S	FECIFICA	AHON		1 0010	" Version		-------------	----------------------------------	-----------------------	--------	----------------	----------------	----------	--------	-------------		Cell Name	Function		5 "	//OL 0.4				Number of B		<i>O4S2</i>	Power Tri-stat with Noise Lim	e Output it Resist	Buffer	(IOL=24	·mA, Iru	ne)		7		Cel	Symbol	T		Proj	pagation D	elay Par	emeter					tı	ıρ		to	In		Path				t O	KCL	t O	KCL	KCL2	CDR2			от ——	×	3.050 (4.16)	0.017	10.400 (12.81)	0.037			OT to X			C		L to Z			Z to						10		KCL	t O		KCL	C to X				4.80 (18.5		•	9.00: (11.6		0.041			Pin Name	Input Loading Factor (iu)									от	2 2				ļ					С	2	10	H to Z	KCL	t O	Z to	KCL						_ -	NOL						Pin Name	Output Driving Factor (lu)	3.62 (18.5		•	2.00 (11.6		0.020												- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. - 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-O4S2-E0	Sheet 1/1	FUJI	TSU CMOS GATE AR	RAY UNIT	CELLS	PECIFICA	ATION		" CG10	" Version		-----------	--	------------	--------	-----------------	------------	--------	--------	--------------		Cell Name	Function							Number of BO		H6T	Tri-state Outpu	it & Input	Buffer	(IOL=3	.2mA, T	rue)		8		Ce	Il Symbol			Pro	pagation D		meter						р		to			Path				t O	KCL	10	KCL	KCL2	CDR2					0.663	0.017	1.150	0.023		1	X to IN				(3.70)	0.036	1.460 (8.26)	0.080			OT to X				(3.70)		(0.20)			1				/	1								IN —	- <h< td=""><td></td><td></td><td>1</td><td> </td><td></td><td> </td><td></td></h<>			1							N 1									OT	-			į.	ļ I		1				M			1	1							1	l		ļ		1 1				C	<u> </u>	L to Z	1		Z to L						t O		KCL	t O		KCL	C to X				1.78			1.17	0	0.083					(17.7	2)		(8.23	()															Input Loading	1								Pin Name	Factor (lu)	4								OT C	6 2		H to Z		-	Z to H				·	_	10	1	KCL	10	T	KCL					2.12	0		0.70	0	0.037			Pin Name	Output Driving Factor (lu)	(17.7		-	(8.23					IN	36					1															1	1	1		1	1	ì		- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation.	C10-H6T-E0	Sheet 1/1		------------	-----------					FUJI	ISU CMOS GATE AR	RAY UNIT	CELL	SPECIFICA	ATION		" CG10	" Version				-----------	---	--------------------------	--	-----------	----------------	-----------	--------	--------------------	--	--		Cell Name	Function							Number of B				H6TU	Tri-state Outpu with Pull-up Re			r (IOL=3	.2mA, T	rue)		8				Ce	Cell Symbol Propagation Delay Parameter													tı	ip		to	n		Path						t O	KCL	t O	KCL	KCL2	CDR2	ram						0.663 0.639 (3.70)	0.017 0.036		0.023 0.080			X to IN OT to X				IN	×		L to			Z to L								10	- 10	KCL	10	_ <u></u>	KCL	C to X						1.78 (17.72		•	1.17 (8.23		0.083					Pin Name	Input Loading Factor (Iu)											οτ	6 2	ļ	H to			Z to H						С	2	10	H 10	KCL	10		KCL							2.12	<u>, </u>		0.70		0.037					Pin Name	Output Driving Factor (lu)	(17.72		•	(8.23		0.037					IN	36										- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6TU-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARI	TINU YAS	CELLS	PECIFICA	ATION		" CG10	" Version		-----------	---------------------------------	-----------------	----------------	--------------------------	-----------------	-----------	--------	--------------------		Cell Name	Function							Number of BC		H6TD	Tri-state Output with Pull-down			(IOL=3	.2mA, T	rue)		8		Ce	ll Symbol			Pro	pagation D	elay Para	meter						ıp			dn		Path				10	KCL	10	KCL	KCL2	CDR2			in			0.017 0.036	1.150 1.460 (8.26)	0.023 0.080			X to IN OT to X			C	10	L to Z	KCL	10	Z to L	KCL	C to X				1.78		*	1.170	,	0.083	0.10 X		Pin Name	Input Loading Factor (lu)									ОТ	6									С	2	H to Z Z to H										10		KCL	t 0		KCL			Pin Name	Output Driving Factor (lu)	2.120 (17.72		•	0.700 (8.23)		0.037			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6TD-E0 Sheet 1/1		TSU CMOS GATE AR	RAY UNIT	CELL	SPECIFIC.	ATION		" CG10	" Version		-----------	-------------------------------	---------------	----------------	-----------	----------------	---------	----------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
--		Cell Name	Function							Number of B		H6TF	Tri-state Outp	ut & Inpu	it Buffe	er (IOL=8	mA, Tr	ie)		8		Ce	II Symbol			Pro	pagation D	elay Pa	rameter						ıp qı			dn		Path				0.663	KCL	10	KCL	KCL	2 CDR2						0.017 0.036		0.023 0.044			X to IN OT to X		от	×										· ·		L to	z		Z to	L	The second of th				t O		KCL	t O		KCL	C to X				2.14 (19.8		*	1.57 (5.32		0.044			Pin Name	Input Loading Factor (lu)					j				OT C	6 2		H to	7	 	I	<u>.</u>			Ü	1	10		KCL	10		KCL					2.12	2		0.70	0	0.037			Pin Name	Output Driving Factor (lu)	(19.8		•	(5.32		5.507			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6TF-E0 Sheet 1/1	FUJIT	SU CMOS GATE AR	RAY UNIT	CELL	SPECIFIC	ATION		" CG10	" Version		-----------	-----------------------------------	--------------------------	----------------	-----------	----------------	----------	-------------	--------------------		Cell Name	Function							Number of B		H6TFU	Tri-state Outpo with Pull-up R			er (IOL=8	mA, Tr	ie)		8		Cell	Symbol			Pro	pagation D	elay Par	ameter					tup tdn						Path				t 0	KCL	10	KCL	KCL2	CDR2	raui		OT X		0.663 0.693 (3.76)	0.017 0.036		0.023 0.044			X to IN OT to X			Ü		L to			Z to						10		KCL	10		KCL	C to X				2.14 (19.8		•	1.57 (5.32		0.044			Pin Name	Input Loading Factor (lu)		}							OT C	6 2		H to	7	 	Z to				Ŭ	_	10		KCL	t O		KCL					2.12	n		0.70		0.037			Pin Name	Output Driving Factor (lu)	(19.8		•	(5.32		0.007			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6TFU-E0 Sheet 1/1		SU CMOS GATE AR	" Version								-----------	-------------------------------	--------------------------	------------------	--------------------------	----------------	-----------	--------	--------------------		Cell Name	Function							Number of B		H6TFD	Tri-state Outpour	ut & Inpu i Resista	it Buffe ince	r (IOL=8	mA, Tr	ie)		8		Ce	I Symbol	T		Pro	pagation D	elay Para	ameter					tı	ıp qı		to	in		Path				t O	KCL	· t 0	KCL	KCL2	CDR2	raui		IN X		0.663 0.693 (3.76)	0.017 0.036	1.150 2.343 (6.09)	0.023 0.044			X to IN OT to X			С		L to Z		 	Z to I						t O		KCL	t O		KCL	C to X				2.14 (19.8		•	1.57 (5.32		0.044			Pin Name	Input Loading Factor (Iu)]				İ				οŢ	6 2	<u></u>	H to 2		 	Z to H				С	2	10	H 10 4	KCL	10		KCL							NOL	 					Pin Name	Output Driving Factor (lu)	2.12 (19.8		•	0.70 (5.32		0.037			IN	36	1							- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KcL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6TFD-E0 Sheet 1/1		TSU CMOS GATE AR	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Version		-----------	-------------------------------	-----------------------	----------------	--------------------------	----------------	--	--------	--------------------		Cell Name	Function							Number of BC		H6W	Power Tri-state	Output	& Input	Buffer	(IOL=12	2mA, T	rue)	8		Ce	ell Symbol												р			in		Path				10 KCL 0.663 0.017		10	KCL	KCL2	CDR2	V. 91			OT X		0.017 0.024	1.150 2.620 (5.51)	0.023 0.034			X to IN OT to X													С		L to Z			Z to L						t O		KCL	t O		KCL	C to X				2.560 (20.7		•	1.219 (5.64		0.052			Pin Name	Input Loading Factor (lu)						i			οT	6 2	ļ	H to Z		ļ	Z to H				С	2	10	H 10 Z	KCL	10	210 H	KCL					2.540	$\overline{}$		0.80	<u>, </u>	0.025			Pin Name	Output Driving Factor (lu)	(20.7		•	(5.64		0.025			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6W-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARI	RAY UNIT	CELL	SPECIFIC.	ATION		" CG10	" Version		-----------	---------------------------------	--------------------------	----------------	-----------	---------------	---------	---------	--------------------		Cell Name	Function							Number of BC		H6WU	Power Tri-state with Pull-up Re	Output sistance	& Inp	ut Buffer	(IOL=12	2mA,	True)	8		Cell	Symbol			Pro	pagation D	elay Pa	rameter						ıp qı			tdn		Path				10	KCL	t O	KCL	KCL	2 CDR2			or x		0.663 0.804 (2.85)	0.017 0.024		0.023			X to IN OT to X			C	10	L to	Z KCL	10	Z to	KCL KCL	C to X				2.56 (20.7		•	1.21 (5.64		0.052			Pin Name	input Loading Factor (lu)									OT	6 2	 	H to	7	 	Z to	. U			С	4	10		KCL	10		KCL						, 	- NOL	0.80		0.025			Pin Name	Output Driving Factor (lu)	2.54 (20.7		•	(5.64		0.025			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6WU-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARI	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		-----------	--------------------------------	--------------------------	----------------	--------------------------	----------------	----------------	--------	--------------------		Cell Name	Function							Number of BC		H6WD	Power Tri-state with Pull-down	Output Resistar	& Input	Buffer	(IOL=12	2mA, T	rue)	8		Cell	Symbol			Pro	pagation D	olay Para	meter						JP .	ļ	to			Path				10	KCL	10	KCL	KCL2	CDR2					0.663 0.804 (2.85)	0.017 0.024	1.150 2.620 (5.51)	0.023 0.034			X to IN OT to X		ot											C		L to Z	KCL		Z to L	KCL	04- 7				2.566 (20.7		*	1.21 (5.64		0.052	C to X		Pin Name	Input Loading Factor (lu)	1								OT C	6 2	ļ	H to Z			Z to H				C	2	10	7 10 2	KCL	10	210 11	KCL					2.54			0.80	, 	0.025			Pin Name	Output Driving Factor (lu)	(20.7																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
•	(5.64		0.023			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6WD-E0	Sheet 1/1	FUJII	SU CMOS GATE AR	RAY UNIT	CELI	L SF	PECIFICA	ATION			" CG10 "			-----------	-------------------------------	--------------------------	--------------	------	--------------------------	-----------------	---------	------	----------	--------------------		Cell Name	Function									Number of B		H6C	Tri–state Outpi True)	ut & CMC	OS In	ter	face Inp	ut Buffe	er (IC	DL=	3.2mA,	8		Cel	Symbol				Prop	agation De	elay Pa	rame	ter					tup tdn							Path					t 0	KCI	L	t O	KCL	KCL	2	CDR2	Path		от х		0.575 0.639 (3.70)	0.01 0.03		0.831 1.460 (8.26)	0.023 0.080				X to IN OT to X			С		Lto	٥Z			Z to							t 0			KCL	10			KCL	C to X				1.780 (17.72			•	1.170 (8.23)		0	0.083			Pin Name	Input Loading Factor (lu)											OΤ	6 2											С	2	10	н 1	o Z	KCL	t O	Z to		KCL								KCL							Pin Name	Output Driving Factor (lu)	2.120 (17.72			•	0.700 (8.23)		U	0.037			IN	36										- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6C-E0	Sheet 1/1		<u>TSU CMOS GATE AR</u>	RAY UNIT	CELL	SPECIFIC	ATION		" CG10	" Version		-----------	---------------------------------------	--------------------------	--------------	-----------	----------------	---------	------------	--------------------		Cell Name	Function							Number of B		H6CU	Tri-state Output & with Pull-up Resis	CMOS I tance	nterfa	ice Input	Buffer (IOL=	3.2mA, Tru	e) 8		Ce	il Symbol			Pro	pagation D	elay Pa	rameter					tı	р			in		Path				t 0	KCL	10	KCL	KCL	2 CDR2	raui		ot x		0.575 0.639 (3.70)	0.01 0.03		0.023 0.080			X to IN OT to X			С		L to			Z to						t O		KCL	t O		KCL	C to X				1.780 (17.72		•	1.170 (8.23		0.083			Pin Name	Input Loading Factor (lu)]								οτ	6 2		H to		 	Z to				С	-	10	7 10	KCL									-+	KCL	10	\neg				Pin Name	Output Driving Factor (lu)	2.120 (17.72		•	0.700 (8.23		0.037			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6CU-E0	Sheet 1/1		FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10" Version Cell Name Function Number															----------	--	--------------------------	----------------	------------	----------------	---------------	-----------	--------------------	--	--	--	--	--	--										Number of BC									Tri-state Output & with Pull-down Res			ce Input E	Buffer (IOL=3	3.2mA, Tr	_{1e)} 8								Č	eli Symbol			Pro	pagation D	elay Par	rameter											tı.	ıp			fn nt		Path										t O	KCL	10	KCL	KCL2	CDR2									IN X		0.575 0.639 (3.70)	0.017 0.036		0.023 0.080			X to IN OT to X									С		L to			Z to		0 to Y										<u> </u>		KCL	t 0		KCL	C to X										1.780 (17.72		•	1.170 (8.23		0.083									Pin Name	Input Loading Factor (lu)															OT C	6 2		H to	7		Z to	ш										2	10	1 10	KCL																KCL	0.700	$\overline{}$	0.037									Pin Name	Output Driving Factor (lu)	2.120 (17.72		•	0.700 (8.23		0.037									IN	36														- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6CD-E0	Sheet 1/1	FUJIT	SU CMOS GATE AR	RAY UNIT	CEL	L SF	PECIFICA	ATION		" CG10	7 "Version		-----------	----------------------------------	--------------------------	-------	------	--------------------------	----------------	------	--------	--------------------		Cell Name	Function								Number of B		H6CF	Tri-state Outpo (IOL=8mA, Tru	ut & CM(e)	OS Ir	nter	face In	out Buffe	er		8		Cel	l Symbol	T											tup				to	In		Path				10	КС	L	t 0	KCL	KCL	2 CDR2	Faui		IN	×	0.575 0.693 (3.76)	0.03		0.831 2.343 (6.09)	0.023 0.044			X to IN OT to X			Ċ		L	οZ			Zto		 				10			KCL	t O		KCL	CtoX				2.140 (19.83			•	1.57! (5.32		0.044			Pin Name	Input Loading Factor (lu)										от	4 2						لا		4		С	2	10	н	to Z	KCL	to	Z to	KCL	4				2.120	`		NOL	0.70		0.037	1		Pin Name	Output Driving Factor (lu)	(19.83			•	(5.32		0.037			IN	36									- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6CF-E0 Sheet 1/1 " CG10 " Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Number of BC Cell Name Function Tri-state Output & CMOS Interface Input Buffer (IOL=8mA, True) H6CFU 8 with Pull-up Resistance Cell Symbol Propagation Delay Parameter Path KCL KCL2 CDR2 t 0 KCL t 0 0.575 0.017 0.831 0.023 X to IN OT to X 0.693 0.036 2.343 0.044 (3.76)(6.09)Z to L L to Z KCL t O KCL C to X t O 1.575 0.044 2.140 (19.83)(5.32)Input Loading Pin Name Factor (lu) OT C 42 H to Z Z to H t O KCL t O KCL 2.120 0.700 0.037 Output Driving (19.83)(5.32)Pin Name Factor (lu) IN 36 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: - (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6CFU-E0 Sheet 1/1		SU CMOS GATE AR	RAY UNIT	CEL	L SI	PECIFICA	ATION		" CG10) " V			-----------	---	-----------------	---------	------	--------------------------	----------------	---------	-----------	-------	--------------------		Cell Name	Function									Number of Bo		H6CFD	Tri-state Output with Pull-down			erfa	ace Inpu	ut Buffer	· (IOL	_=8mA, Tr	ue)	8		Cel	Symbol	T			Proj	pagation D	elay Pa	rameter						tı	tup tdn						J	Path				t 0	KC	7	t 0	KCL	KCL	2 CDR2	1	rain		OT —	7		0.03		0.831 2.343 (6.09)	0.023 0.044				X to IN OT to X			Ü		Lt	o Z			Z to							t 0			KCL	t O		KCL]	C to X				2.140 (19.83			•	1.575 (5.32		0.044				Pin Name	Input Loading Factor (lu)]										OT	4 2								4			С	2		- Н	to Z	1401	ļ	Z to		4					10			KCL	t0		KCL	-			Pin Name	Output Driving (19 Pin Name Factor (Iu)				•	0.700 (5.32		0.037				IN	36										- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6CFD-E0 Sheet 1/1	FUJIT	SU CMOS GATE ARI	RAY UNIT	CELL	SPECIFIC	ATION		" CG10	" Version		-----------	-------------------------------------	--------------------	------------------	-----------------	-----------------	---------	----------	--------------------		Cell Name	Function							Number of BC		H6E	Power Tri-state Input Buffer (IC	e Output DL=12m	. & CN A, Tru	IOS Inter e)	face			8		Ce	l Symbol			Pro	pagation D	elay Pa	rameter			20 000		tı	ıp			n		Path				t O	KCL	`t0	KCL	KCL	2 CDR2	raui		и ОТ	\ ⁷		0.017 0.024		0.023 0.034			X to IN OT to X			Ċ		L to	Z KCL	t O	Z to	L KCL	C to X				2.560 (20.71)		•	1.219 (5.64)		0.052	Clox		Pin Name	Input Loading Factor (lu)									от	6									С	2		H to	Z KCL		Z to	H KCL					t O	-+	KUL	10					Pin Name	Output Driving Factor (lu)	2.540 (20.71		•	0.800 (5.64																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
0.025			IN .	36			•					- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6E-E0	Sheet 1/1		TSU CMOS GATE AR	HAT UNIT	CELL	SPECIFIC	ATION		1 0010	" Version		----------------	-------------------------------	---------------------	---------------	-------------------------	--	---------	---------	--------------------		Cell Name	Function							Number of E		H6EU	Power Tri-stat	e Output DL=12m/	: & CI Tru	MOS Inter e) with Pr	face JII–up R	esista	ince	8		Ce	II Symbol			Pro	pagation D	elay Pa	rameter					tup tdn										t 0	KCL	. t0	KCL	KCL	2 CDR2	Path		ın —— от ——			0.01 0.02		0.023 0.034			X to IN OT to X			Ċ		L to	Z	 	Z to	L					t 0		KCL	t 0		KCL	C to X				2.560 (20.71		•	1.219 (5.64		0.052			Pin Name	Input Loading Factor (Iu)		į							ОТ	6 2				<u> </u>					С	2		H to		 	Z to					1	10		KCL	10		KCL			Pin Name	Output Driving Factor (lu)	2.540 (20.71		٠	0.800 (5.64		0.025			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6EU-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFIC	ATION		" CG10	" Version		-----------	-------------------------------------	------------------	----------------	--------------------------	------------------	--------	--------	--------------------		Cell Name	Function							Number of BC		H6ED	Power Tri-state Input Buffer (IO	Output L=12m/	& CM	OS Inter) with Pu	face III-down	Resis	tance	8		Ce	II Symbol				pagation D							tı	ıρ			in		Path				t O	KCL	t O	KCL	KCL2	CDR2			IN	~		0.017 0.024	0.831 2.620 (5.51)	0.023 0.034			X to IN OT to X			c	10	L to Z	KCL	to	Z to L	KCL	C to X				2.560 (20.71		•	1.219 (5.64		0.052			Pin Name	Input Loading Factor (lu)									ОТ	6 2					L				С	2		H to Z			Z to H						t O		KCL	t O		KCL			Pin Name	Output Driving Factor (lu)	2.540 (20.71		•	0.800 (5.64		0.025			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6ED-E0	Sheet 1/1	FUJI	SU CMOS GATE AR	RAY UNIT	CELL	SPECIFICA	ATION		" CG10	" Version			-----------	-----------------------------------	--------------------	-----------------------------	--------------------	----------------	--	--------	--------------------	--		Cell Name	Function							Number of Bo			H6S	Tri-state Output (IOL=3.2mA, C	ut & Sch MOS Ty	mitt Ti pe, Ti	rigger Inp rue)	ut Buffe	r		12			Ce	II Symbol	I	Propagation Delay Parameter										t.			to			Path					10	KCL	10	KCL	KCL2	CDR2					IN —		0.067 0.036		0.056 0.080			X to IN OT to X			от	×		L to	7		Z to L							10	- 10	KCL	t O	7101	KCL	C to X					1.78 (17.7		•	1.17 (8.2		0.083				Pin Name	Input Loading Factor (lu)										от	6 2		H to			Z to H					С	2	10	H 10	KCL	10	2 to H	KCL								NOL		<u>. </u>					Pin Name	Output Driving Factor (lu)	2.12 (17.7		•	0.70 (8.2		0.037				IN	18									- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6S-E0	Sheet 1/1	FUJI	SU CMOS GATE AR	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version		-----------	-----------------------------------	--------------------	----------------	--------------------------	---------------------	------------	----------	--------------------		Cell Name	Function							Number of BC		H6SU	Tri-state Output (IOL=3.2mA, C	ut & Sch MOS Ty	mitt Trig	gger Inp ie) with i	ut Buffe Pull–up	r Resis	tance	12		Ce	ll Symbol	I		Pro	pagation D	elay Par	ameter					tı	ıρ		to			Path				t O	KCL	10	KCL	KCL2	CDR2			in	×		0.067 0.036	1.925 1.460 (8.26)	0.056 0.080			X to IN OT to X			Ċ	10	L to Z	KCL	t0	Z to I	L KCL	C to X				1.78		•	1.170 (8.23)		0.083	0.07		Pin Name	input Loading Factor (lu)									OΤ	6 2									С] 2	10	H to Z	KCL	10	Z to I	H KCL							NOL	 					Pin Name	Output Driving Factor (Iu)	2.12 (17.7		•	0.70 (8.2		0.037			IN	18								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6SU-E0 Sheet 1/1		SU CMOS GATE AR	MAT UNIT	CELI	<u> </u>	ECIFICA	ATION			CG10	" Version		---	----------------------------------	--------------------	------------------	-------------	--------------------------	----------------------	-----------	------	--------	--------------------		Cell Name	Function									Number of E		H6SD	Tri-state Outpi (IOL=3.2mA, C	ut & Sch MOS Ty	mitt T pe, T	rigo rue	ger Inp) with f	ut Buffe Pull–dov	r vn R	esis	stance	12		Cel	Symbol	Τ			Proj	pagation D	elay Pa	ram	eter					tı	tup tdn							Path				t 0	KCI	- 1	t 0	KCL	KCL	2	CDR2	ram		IN ————————————————————————————————————			0.06 0.03		1.925 1.460 (8.26)	0.056 0.080				X to IN OT to X			C	10	L to		KCL	to	Zt	o L	KCL	C to X					1.780 (17.72)		•	1.17 (8.2		(0.083			Pin Name	Input Loading Factor (lu)	1										от	6 2							L				С	2	10	Нt		KCL	10	Z to	Н	KCL								NOL	<u> </u>						Pin Name	Output Driving Factor (lu)	2.12 (17.7			•	0.70 (8.2		,	0.037			IN	18]									- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6SD-E0 Sheet 1/1	FUJI	TSU CMOS GATE AR	RAY UNIT	CELL	SPECIFIC	ATION		" CG10	" Version		-----------	---------------------------------	--------------------------	----------------	----------------	----------------	--	---------	--------------------		Cell Name	Function							Number of BC		H6R	Tri-state Outp (IOL=3.2mA, T	ut & Sch TL Type	mitt Ti	igger Inp)	ut Buffe	r		12		Ce	II Symbol	T			pagation D	elay Pa	rameter					tı.	ıp	T	tc	in		Path				t O	KCL	t O	KCL	KCL	2 CDR2	Pan			_	1.400 0.639 (3.70)	0.067 0.036		0.073 0.080			X to IN OT to X		ot	×											10	L to	Z KCL	to	Z to	KCL	C to X				1.78		•	1.17 (8.2		0.083	C 10 X		Pin Name	input Loading Factor (lu)									QΤ	6 2				ļ	ــــــــــــــــــــــــــــــــــــــ				С	2	10	H to	Z KCL	10	Z to	KCL						_	NOL	 					Pin Name	Output Driving Factor (lu)	2.12 (17.7		•	0.70 (8.2		0.037			IN	18								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KcL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6R-E0	Sheet 1/1	FUJIT	ISU CMOS GATE AR	RAY UNIT	CELL	. SPECIFIC	ATION		" CG10	" Version		----------------	-------------------------------------	--------------------------	------------------	--------------------------	----------------------	------------	--------	--------------------		Cell Name	Function							Number of B		H6RU	Tri-state Outp (IOL=3.2mA, T	ut & Sch TL Type	mitt T , True	rigger Inp e) with Pu	ut Buffe II–up Re	r sista	ince	12		Ce	I Symbol	T			pagation D							tı.	ıp		t	dn		Path				t0 KCL		t 0	KCL	KCL	2 CDR2	rath		IN —— ОТ ——	×	1.400 0.639 (3.70)	0.06 0.03		0.073 0.080			X to IN OT to X			С																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
 	L to	Z	 	Z to) L					t O		KCL	10		KCL	C to X				1.78 (17.7		•	1.17 (8.2		0.083			Pin Name	Input Loading Factor (Iu)]								ΟT	6 2				ļ	لا				С	2		H to	KCL	10	Z to	KCL							NOL .						Pin Name	Output Driving Pin Name Factor (Iu)		0 2)	•	0.70 (8.2		0.037			IN	18								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6RU-E0 Sheet 1/1	FUJIT	<u>SU CMOS GATE AR</u>	RAY UNIT	CELL S	SPECIFICA	ATION		" CG10	" Version		-----------	----------------------------------	--------------------------	---------------------	--------------------------	--------------------	--	--------	--------------------		Cell Name	Function							Number of BC		H6RD	Tri-state Outpo (IOL=3.2mA, T	ut & Sch TL Type	mitt Tri , True)	gger Inp with Pul	ut Buffe I–down	r Resis	tance	12		Cell	Symbol	T	·		pagation D							tı.			to		Path					t 0	KCL	10	KCL	KCL2	CDR2				_	1.400 0.639 (3.70)	0.067 0.036	2.325 1.460 (8.26)	0.073 0.080			X to IN OT to X		ot —	×		L to Z			Z to						t O		KCL	t O		KCL	C to X				1.78 (17.7		*	1.17 (8.2		0.083			Pin Name	Input Loading Factor (lu)	1								οτ	6 2	ļ	H to Z		<u> </u>					С	2	10	H to 2	KCL	10	Z to I	KCL					2.12	_	.,,,,,	0.70	<u>. </u>	0.037			Pin Name	Output Driving Factor (Iu)	(17.7		•	(8.2		0.037			IN	18								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H6RD-E0	Sheet 1/1	FUJIT	SU CMOS GATE AR	RAY UNIT	CELLS	PECIFICA	ATION		" CG10	" Version		-----------	----------------------------------	--------------------------	--------------------	--------------------------	----------------	-----------	--------	--------------------		Cell Name	Function							Number of BC		H8T	Tri-state Outp & Input Buffer	ut with N (IOL=3.2	oise Lii mA, Tr	nit Resi: ue)	stance			9		Cei	I Symbol	T			pagation D	elay Para	meter					tı	ıp		to	Path						t O	KCL	t O	KCL	KCL2	CDR2				4	0.663 1.177 (4.24)	0.017 0.036	1.150 3.190 (9.99)	0.023 0.080			X to IN OT to X		от —	×		L to Z			Z to L						10		KCL	t O		KCL	C to X				1.73 (17.6		•	3.57 (10.6		0.083			Pin Name	Input Loading Factor (Iu)									οτ	2 2	ļ	H to Z		ļ	Z to H	,			С	2	10	H 10 Z	KCL	10	2 10 F	KCL								1.30	_				Pin Name	Output Driving Factor (lu)	1.86		•	(10.6		0.037			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation.	C10-	H8T-E0	Sheet 1/1		------	--------	-----------		FUJIT	SU CMOS GATE AR	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		-----------	-------------------------------	--------------------------	--------------------	--------------------------	-------------------	-----------	--------	--------------------		Cell Name	Function							Number of BO		H8TU	Tri-state Outp	ut with N (IOL=3.2	oise Lir mA, Tr	nit Residue) with	stance Pull-up	Resis	stance	9		Cell	Symbol			Pro	pagation De	elay Para	meter						ıρ		td	ln		Path				t O	KCL	· t 0	KCL	KCL2	CDR2				1	0.663 1.177 (4.24)	0.017 0.036	1.150 3.190 (9.99)	0.023 0.080			X to IN OT to X		ot	×											10	L to Z	KCL	10	Ztol	KCL	C to X				1.73		*	3.57! (10.63		0.083	CIOX		Pin Name	Input Loading Factor (lu)]								OT C	2 2	ļ	H to Z			Z to F				C	2	10	H 10 Z	KCL	to	2 10 1	KCL					-	_	NOL		_				Pin Name	Output Driving Factor (lu)	1.86 (17.6		•	1.30 (10.6		0.037			IN	36]							- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8TU-E0 Sheet 1/1	FUJIT	SU CMOS GATE AR	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version		-----------	-----------------------------------	----------------------	-------------------	--------------------------	-------------------	------------	----------	--------------------		Cell Name	Function							Number of BC		H8TD	Tri-state Outpo & Input Buffer	ut with N IOL=3.2	oise Li mA, Tr	mit Residue) with	stance Pull-do	wn Res	sistance	9		Cel	l Symbol			Pro	pagation D	elay Parar	neter						ıp			In		Path				0.663	KCL	t O	KCL	KCL2	CDR2				IN —		0.017 0.036	1.150 3.190 (9.99)	0.023 0.080			X to IN OT to X		ot —	× ×									•	Ç		L to Z			ZtoL						10		KCL	10		KCL	C to X				1.73 (17.6		•	3.57 (10.6		0.083			Pin Name	Input Loading Factor (Iu)									OT C	2 2		H to Z		ļ <u>.</u>	Z to H				C		10	102	KCL	10		KCL					1.86	<u> </u>		1.30		0.037			Pin Name	Output Driving Factor (lu)	(17.6		•	(10.6		0.007			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8TD-E0 Sheet 1/1	FUJI	TSU CMOS GATE AR	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version				----------------	----------------------------------	----------------------	--------------------------	----------	---------------	----------------	----------------	--------------	--	--------------------		Cell Name	Function							Number of BC				H8TF	Tri-state Outp & Input Buffer	ut with N (IOL=8m	oise Li	mit Resi	stance			9				Ce	II Symbol	T	.,		pagation D	elay Para	meter							tı	ıp.	1	to	DI								t O	t0 KCL		KCL	KCL2	CDR2	Path				ın 	IN X		0.663 1.231 (4.30)		1.231 0.036		0.023 0.044			X to IN OT to X		ОТ	×	10	L to Z	KCL	tO	Z to l	- KCL	C to X						2.24(19.7)		•	3.98 (7.72		0.044					Pin Name	Input Loading Factor (Iu)]										от	2 2				ļ							С	2	10	H to Z	KCL	10	Z to F	KCL								 -	NOL	 	. 						Pin Name	Output Driving Factor (lu)	1.860		*	1.30 (7.72		0.037					IN	36										- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8TF-E0	Sheet 1/1	Cell S				nit Resis	stanco			Number of BC							----------	-------------------------------	-----------------	----------------	--------------------------	--	------------	-------	--------------------	--	--	--	--	--			& Input Buffer (nit Resis	Tri-state Output with Noise Limit Resistance										Cell (Symbol																L		Pro	pagation D	elay Parai	meter										tu			to			Pa#:									10	KCL	t O	KCL	KCL2	CDR2	·							OT	~ 1		0.017 0.036	1.150 4.073 (7.82)	0.023 0.044			X to IN OT to X								·	L to Z			Z to L												t 0		KCL	10		KCL	C to X									2.240 (19.76		•	3.98 (7.72		0.044								Pin Name	Input Loading Factor (lu)														от	2 2				ļ										c	2	10	H to Z	KCL	10	Z to H	KCL												ROL											Pin Name	Output Driving Factor (lu)	1.860 (19.76		•	1.30 (7.72		0.037								IN	36													- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KcL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8TFU-E0 Sheet 1/1	FUJI	<u>TSU CMOS GATE AR</u>	RAY UNII	CELL S	SPECIFIC	ATION		" CG10	" Version		-----------	-------------------------------	-----------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
----------------	--------------------------	----------------	----------	----------	--------------------		Cell Name	Function							Number of BC		H8TFD	Tri-state Outp & Input Buffer					n Res	sistance	9		Ce	II Symbol			Pro	pagation D	elay Par	ameter						ip			in		Path				0.663	KCL	t 0	KCL	KCL2	CDR2						0.017 0.036	1.150 4.073 (7.82)	0.023 0.044			X to IN OT to X		ot ——	×										Ċ		L to Z	<u> </u>		Z to	1					10		KCL	t O	T	KCL	C to X				2.240 (19.70		•	3.98 (7.72		0.044			Pin Name	Input Loading Factor (lu)]								OT	2 2									С	2	10	H to Z	KCL	10	Z to	H KCL							NOL	 					Pin Name	Output Driving Factor (lu)	1.860		•	1.30 (7.72		0.037			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8TFD-E0 Sheet 1/1	FUJI	TSU CMOS GATE AR	RAY UNIT	CELI	<u> SP</u>	ECIFICA	ATION			" CG10	" Version		-----------	----------------------------------	--------------------------	--------------	------------	--------------------------	----------------	---------	----------	--------	--------------------		Cell Name	Function									Number of B		H8W	Power Tri-stat & Input Buffer	e Output (IOL=12r	with	No rue	ise Lim	it Resis	tanc	е		9		Ce	Il Symbol	Ì.				pagation D	elay Pa	arame	ter					t	ıρ		tdn			Path						10	KCI		· t 0	KCL	KCI	2	CDR2	Pain		IN	×	0.663 1.477 (3.52)	0.01 0.02		1.150 4.770 (7.66)	0.023 0.034				X to IN OT to X			°	10	L to		KCL	t O	Z to		KCL	C to X			Input Loading	2.600 (20.64			•	3.75 (8.18			0.052			Pin Name	Factor (lu)					}		İ	1			ОТ	2 2	1										Ċ	2		Ht				Z to							t O			KCL	t O		<u> </u>	KCL			Pin Name	Output Driving Factor (lu)	2.29 (20.6			•	1.40 (8.18		0	.025			IN	36										- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8W-E0	Sheet 1/1	Cell Name H8WU	U CMOS GATE ARR Function Power Tri-state & Input Buffer (I	Output	with NonA, Tru	oise Lim e) with I Proj	nit Resis Pull-up pagation D	Resis elay Par In	tance ameter	Number of BC		----------------	--	-----------------------	---------------------	-------------------------------	------------------------------------	-------------------------	-----------------	--------------------			& Input Buffer (I	to 0.663 1.477	nA, Tru RCL 0.017	e) with I	Pull—up pagation D	Resis elay Par In	tance ameter			Cell S	iymbol	t 0 0.663 1.477	KCL 0.017	t 0	tc	ln .					7	t 0 0.663 1.477	KCL 0.017									0.663 1.477	0.017		KCL			Path			1	1.477				KCL2	CDR2			IN ———	~		0.024	1.150 4.770 (7.66)	0.023 0.034			X to IN OT to X		от	×		L to Z			Z to						t O	L to Z	KCL	10	2 10	KCL	C to X				2.600 (20.64		•	3.75 (8.18		0.052			Pin Name	Input Loading Factor (lu)									०	2 2					Z to				c	۷	10	H to Z	KCL	10	Z 10 1	KCL					2.290	$\overline{}$	1102	1.40		0.025			Pin Name	Output Driving Factor (lu)	(20.64		•	(8.18		0.025			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8WU-E0 Sheet 1/1	FUJIT	SU CMOS GATE AR	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version		-----------	----------------------------------	----------------------	----------------	--------------------------	-----------------------	----------------	-----------	--------------------		Cell Name	Function							Number of BC		H8WD	Power Tri-stat & Input Buffer	e Output (IOL=12)	with N	oise Lim ue) with	nit Resis Pull-dov	tance vn Re	esistance	9		Cel	Symbol	T		Pro	pagation D	elay Par	ameter						ıp		tdn			Path				t O	KCL	t O	KCL	KCL2	CDR2				IN —		0.017 0.024	1.150 4.770 (7.66)	0.023 0.034			X to IN OT to X		ot —	×										С	-	L to Z	I		Z to						t O		KCL	t O		KCL	C to X				2.60 (20.6-		•	3.75 (8.18		0.052			Pin Name	Input Loading Factor (lu)									OT C	2 2		H to Z			Z to				C	2	10	H 10 Z	KCL	10	- Z 10	KCL					2.29	$\overline{}$		1.40	$\overline{}$	0.025			Pin Name	Output Driving Factor (lu)	(20.6		•	(8.18		0.025			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8WD-E0	Sheet 1/1	FUJIT	SU CMOS GATE AR	RAY UNIT	CELL	SPECIFIC	ATION		" CG10	" Version		-----------	-------------------------------	-----------------------	----------------	--------------------	---------------------	---------------	--------------	--------------------		Cell Name	Function							Number of BC		H8C	Tri-state Outpo	ut Buffer ace Inpu	with h	Noise Limer (IOL=3	it Resis .2mA, T	tance rue)	!	9		Ce	II Symbol	T		Pro	pagation D	elay Pa	rameter					, t				in		Path				0.575	KCL	10	KCL	KCL	2 CDR2				IN —		0.017 0.036		0.023 0.080			X to IN OT to X		ot ——	×											1.730 (17.65)			Z to L			.						*	3.57 (10.6		КСL 0.083	C to X		Pin Name	Input Loading Factor (Iu)	1								OT C	2 2		H to	7	 	Z to	ш			C	2	10	7 10	KCL	10		KCL					1.86	$\overline{}$		1.30		0.037			Pin Name	Output Driving Factor (lu)	(17.6		•	(10.6		0.007			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8C-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL S	PECIFICA	ATION		" CG10	" Version		-----------	------------------------------------	--------------------------	-------------------	--------------------------	----------------------	--	------------------	--------------------		Cell Name	Function	<u> </u>					·	Number of BC		H8CU	Tri-state Outpu Interface Input	it Buffer Buffer (I	w/ Nois OL=3.2	se Limit mA, Tru	Resista ie) w/ Pu	nce & C ull-up F	CMOS Resistan	ce 9		Ce	II Symbol	Propagation Delay Parame					neter					t		tdn			,	Path				0.575	KCL	10	KCL	KCL2	CDR2				IN OT X		0.017 0.036	0.831 3.190 (9.99)	0.023 0.080			X to IN OT to X		1			L to Z			ZtoL						t 0		KCL	10		KCL	C to X				1.730 (17.65		•	3.57! (10.63		0.083			Pin Name	Input Loading Factor (lu)									OT C	2 2		H to Z		ļ	Z to H				C	2	10	H 10 Z	KCL	10	210 11	KCL					1.860	$\neg +$		1.30	<u>, </u>	0.037			Pin Name	Output Driving Factor (lu)	(17.6		•	(10.6		0.007			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8CU-E0 Sheet 1/1		SU CMOS GATE ARE	RAY UNIT	CELL	SPECIFIC	ATION		" CG10	" Version		-----------	--	----------	--	----------	----------------	---------	---------	--------------------		Cell Name	Function							Number of BC		H8CD	Tri-state Output I Interface Input Bu							nce 9		Cell	Symbol			Pro	pagation D	elay Pa	rameter						ip			in		Path				t O	KCL	· t 0	KCL	KCL	2 CDR2						0.017 0.036	1	0.023 0.080			X to IN OT to X		ot—	*		L to			Z to						10	L 10	KCL	10	-	KCL	C to X				1.730		*	3.57 (10.6	5	0.083	0.10 X		Pin Name	Input Loading Factor (lu)									οτ	2 2		H to	7		Z to	н			Ŭ	_	10	1110	KCL	10		KCL					1.86	<u>, </u>		1.30		0.037			Pin Name	Output																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
Driving Factor (lu)	(17.6		•	(10.6		0.007			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8CD-E0 Sheet 1/1		TSU CMOS GATE AR	DAT UNIT	OLLL	SECTIO.	ATION		1 2010	" Version Number of Bo		-----------	-------------------------------	-----------	---------	--------------	------------	-----------	--------	------------------------		Cell Name		4 D. #			'A D ' '			Number of Bo		H8CF	Tri-state Outp	n Britter	with I	voise Lim	it Hesisi	ance		9		11001	& CMOS Interf	ace Inpu	t Buff							Ce	ll Symbol			Pro	pagation D	elay Para	meter					tı				in		Path				10	KCL	t O	KCL	KCL2	CDR2					0.575	0.017		0.023		i l	X to IN				1.231	0.036		0,044		1 1	OT to X				(4.30)		(7.82)			1 1				1						1 1			IN	- < h			1	1		1 1			ľ	\ 7									от—	x	1	1	i			1 1			٠. ا	6	1	l				1 [•		1	i	1			1 1				1	1	ł	ł			1				С	ļ	L to	_		Z to L						to	<u></u>	KCL	10	T	KCL	C to X				2.240	,		3.980	·	0.044	• .•				(19.76		•	(7.72		0.044					1	1		1		1]			1	i					Input Loading	l				- 1	1			Pin Name	Factor (lu)	4				İ	į			от	2 2									С	2		H to			Z to H						10		KCL	t O		KCL				0.4.101.1	1.860		_	1.30		0.037			Pin Name	Output Driving Factor (lu)	(19.76	7)	•	(7.72	,				IN	36	1	1			- 1				IN	36		l		l	- [I									- 1					1	I	- 1		1				- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8CF-E0	Sheet 1/1	FUJII	ISU CMOS GATE AR	RAY UNII	CELL	SPECIFIC	ATION		- 00	110	Version		------------------	---------------------------------------	--------------------------	----------------	----------	----------------	------	-------	----------	--------------------		Cell Name	Function								Number of B		H8CFU	Tri-state Output Interface Input B							:e	9		Ce	II Symbol	T			pagation D									T	D. 4									t O	KCL	t O	KCL	KCI	2 CDF	12	Path		ın ——— от ———	×	0.575 1.231 (4.30)	0.017 0.036		0.023 0.044				X to IN OT to X			С	 	L to	Z Z		Z to	, L	\dashv					t O		KCL	t O		KCL		C to X				2.240 (19.76		•	3.98 (7.72		0.044				Pin Name	input Loading Factor (lu)]									от	2 2	ļ			ļ						С	2	10	H to	KCL	10	Z to	KCL	\dashv						$\overline{}$	ROL	1.30		0.037				Pin Name	Output Driving Factor (lu)	1.860		•	(7.72		0.037				IN	36									- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8CFU-E0 Sheet 1/1	FUJI	TSU CMOS GATE AR	RAY UNIT	CELLS	PECIFIC	ATION		" CG10	" Version		-----------	------------------------------------	---------------------------	--	--------------------------	----------------------	------------------	------------------	--------------------		Cell Name	Function							Number of BC		H8CFD	Tri-state Output Interface Input B	Buffer w uffer (IO	/ Noise L=8mA	Limit R , True) v	esistano w/ Pull—	e & CN down F	MOS Resistanc	e 9		Ce	II Symbol	Propagation Delay Paramet										tı	ıp		to			Path				t O	KCL	t O	KCL	KCL2	CDR2	raui		IN	\prec	0.575 1.231 (4.30)	0.017 0.036	0.831 4.073 (7.82)	0.023 0.044			X to IN OT to X		от	x		L to Z			Z to L						t 0		KCL	t 0		KCL	C to X				2.240 (19.76		•	3.980 (7.72		0.044			Pin Name	Input Loading Factor (Iu)]					i			от	2 2		H to Z			Z to H				С	2	10	H 10 Z	KCL	10	2 10 H	KCL				1	1.860	, 	NOL	1.300	$\overline{}$	0.037			Pin Name	Output Driving Factor (Iu)	(19.76		•	(7.72		0.037			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation.	C10) - H	8CF	D-E0	Sheet	1/1		-----	------------------	-----	------	-------	-----									FUJI	<u>TSU CMOS GATE AR</u>	RAY UNIT	CELLS	SPECIFIC	ATION		" CG10	" Version		-----------	---------------------------------	--------------------------	----------------	--------------------------	----------------	---------	--------	--------------------		Cell Name	Function							Number of B		H8E	Power Tri-stat & CMOS Interf						tance	9		Ce	II Symbol	T										tı	ıp		<u>↓</u> to			Path				t O	KCL	t O	KCL	KCL	2 CDR2	raui			4	0.575 1.477 (3.52)	0.017 0.024	0.831 4.770 (7.66)	0.023 0.034			X to IN OT to X		от——	×											10	L to Z	KCL	10	Z to	KCL	0 to V						KCL				C to X				2.60 (20.6		•	3.75 (8.18		0.052			Pin Name	Input Loading Factor (Iu)									οŢ	2 2	ļ			 	لـــــا				С	2	10	H to Z	KCL	10	Z to	KCL							NOL	 					Pin Name	Output Driving Factor (lu)	2.29 (20.6		•	1.40 (8.18		0.025			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8E-E0 Sheet 1/1		ISU CMOS GATE AR	HAT UNII	CELL	SPECIFIC	ATION		CGIU	" Version		-----------	--------------------------------------	--------------------------	---------------	----------	----------------	--------	----------	--------------------		Cell Name	Function							Number of B		H8EU	Power Tri-state Interface Input B									Ce	II Symbol	pagation D		ameter								t.				dn		Path				t O	KCL	. t 0	KCL	KCL2	CDR2				1	0.575 1.477 (3.52)	0.01 0.02		0.023 0.034			X to IN OT to X		OT X													L to	KCL	10	Z to l	- KCL	C to X				10	-	KUL				C 10 X				2.600 (20.6-		•	3.75 (8.18		0.052			Pin Name	Input Loading Factor (lu)									OT C	2 2		H to	. 7	 	Z to h				C	_	10		KCL	to		KCL						$\overline{}$				0.025			Pin Name	Output Driving Factor (lu)	2.290		•	1.40		0.025			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8EU-E0 Sheet 1/1	FILIIT	SU CMOS GATE ARF	TIMIL VAS	CELL	SPECIFIC	ATION		1 " CG10	" Version		-----------	---	--------------------------	-----------------	-----------------------	----------------------	----------------	-------------------------	--------------------		Cell Name	Function	101111	JLLL	OI LOII IO	311014		1 0070	Number of BC		H8ED	Power Tri-state (Interface Input Bu	Output E offer (IO	Buffer L=12r	w/ Noise nA, True)	Limit Re w/ Pull-	sistar dowr	nce & CMo n Resistan	os o		Cel	i Symbol												Р			in		Path				t O	KCL	10	KCL	KCL2	CDR2					0.575 1.477 (3.52)	0.017 0.024		0.023 0.034			X to IN OT to X		от —	×												L to			Z to		21.14				2,600	\rightarrow	KCL	3.75	-	KCL 0.052	C to X				(20.6-		*	(8.18		0.032			Pin Name	Input Loading Factor (lu)									οŢ	2 2									C	2	to	H to	KCL	10	Z to	KCL						$\overline{}$							Pin Name	Output Driving Factor (lu)	2.29 (20.6		•	1.40 (8.18		0.025			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KcL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8ED-E0	Sheet 1/1	FUJI	TSU CMOS GATE AR	RAY UNIT	CELI	L SF	PECIFICA	ATION			" CG10	"																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
Version		-----------	-----------------------------------	--------------------------	-----------------	------------	--------------------------	----------------------	------------	-------	--------	--------------------		Cell Name	Function									Number of BC		H8S	Tri-state Output (IOL=3.2mA, C	ıt & Sch MOS Ty	mitt 1 pe, 1	rig rue	ger Inp	ut Buffe Noise Li	r mit F	Resi	stance	13		Ce	II Symbol	1			Proj	pagation D	elay Pa	erame	ter					tı		In			Path							t O	KCI	L	t 0	KCL	KCI	2	CDR2	raui			4	1.550 1.177 (4.24)	0.06 0.03		1.925 3.190 (9.99)	0.056 0.080				X to IN OT to X		ot —	×													10	L to		KCL	10	Z to		KCL	C to X							KUL					CIOX				1.73 (17.6			•	3.57 (10.6		0	0.083			Pin Name	Input Loading Factor (lu)											OT C	2 2	 	— <u> </u>	- 7			Zto					C	4	10	- 1		KCL	t O			KCL								NOL							Pin Name	Output Driving Factor (lu)	1.86 (17.6			•	1.30 (10.6).037			IN	18										- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8S-E0	Sheet 1/1	FUJI	TSU CMOS GATE ARE	RAY UNIT	CEL	_ SI	PECIFICA	ATION			" CG10	" Ve	ersion		-----------	--------------------------------------	--------------------------	--------------	-------------	--------------------------	----------------	---------	------	--------	------	--------------------		Cell Name	Function										Number of BC		H8SU	Tri-state Output & Type, True) w/ No	Schmitt se Limit	Trig Res	ger ista	ance w/	Pull-up	Res	ista	ance	os	13		C	ell Symbol				Proj	pagation D	elay Pa	ram	eter							ıp				ln				Path				t O	KC	_	10	KCL	KCL	2	CDR2				IN	√ h	1.550 1.177 (4.24)	0.06 0.03		1.925 3.190 (9.99)	0.056 0.080					X to IN OT to X		от															10	Lto	5 Z	KCL	t O	Z to	L	KCL	İ	C to X							NOL						CIOX				1.73 (17.6			•	3.57 (10.6			0.083				Pin Name	Input Loading Factor (lu)												οτ	2 2			o Z		ļ	Z to						С	2	10	- H I	0 2	KCL	t 0	210	Н	KCL									NOL								Pin Name	Output Driving Factor (lu)	1.86 (17.6			•	1.30 (10.6			0.037				IN	18				:										<u> </u>				<u> </u>				L		- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8SU-E0	Sheet 1/1		TSU CMOS GATE AR	HAT UNIT	CELL S	PECIFICA	ATION		LG10	" Version						-----------	--------------------------------------	--------------------------	-----------------------------	--------------------------	------------------------	--	---------------------	--------------------	--	--	--	--		Cell Name	Function							Number of B						H8SD	Tri-state Output & Type, True) w/ No	Schmitt ise Limit	Trigge Resista	r Input E ance w/	Buffer (IC Pull-dov	DL=3.2 wn Res	mA, CMC sistance	DS 13						C	ell Symbol		Propagation Delay Parameter													tı.			to			Path								t O	KCL	10	KCL	KCL2	CDR2							IN		1.550 1.177 (4.24)	0.067 0.036	1.925 3.190 (9.99)	0.056 0.080			X to IN OT to X						от	×		L to Z			Z to L										t 0		KCL	t 0		KCL	C to X								1.73 (17.6		•	3.57 (10.6		0.083							Pin Name	Input Loading Factor (lu)													οŢ	2 2		H to Z		 	Z to H								С	4	10	H to Z	KCL	10	∠ to H	KCL											ROL		<u>, </u>								Pin Name	Output Driving Factor (lu)	1.86		•	1.30 (10.6		0.037							IN	18					İ							- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8SD-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL	SF	PECIFICA	ATION		\neg	" CG10	" Version		-----------	----------------------------------	--------------------------	------------------	-------------	--------------------------	----------------------	----------------	--------	--------	--------------------		Cell Name	Function									Number of B		H8R	Tri-state Outpu (IOL=3.2mA, T	t & Sch	mitt T , True	rig e) v	ger Inpi vith Noi	ut Buffe se Limit	r Res	ista	nce	13		Cell	Symbol	elay Pa	rame	ter										tı.					in			Path				10	KCL	-	· t0	KCL	KCL	2	CDR2			IN	- €h	1.400 1.177 (4.24)	0.06 0.03		2.325 3.190 (9.99)	0.073 0.080				X to IN OT to X		от	×													10	L to		KCL	10	Z to		KCL	C to X				1.73 (17.6			•	3.57 (10.6			.083	C 10 X		Pin Name	Input Loading Factor (lu)											OT	2 2			_								С	2	10	H to		KCL	t O	Z to		KCL						,		or	1.30	, 		.037			Pin Name	Output Driving Factor (lu)	1.86 (17.6			•	(10.6		U	.03/			IN	18										- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8R-E0	Sheet 1/1		SU CMOS GATE AR	INAT CIVIT	OLL	- 01 1	LO11 107	TION			00.0		ersion		-----------	--------------------------------------	--------------------	-----------------------------	--------------	--------------------------	----------------	---	-------	------	----	--------------------		Cell Name	Function									_	Number of B		H8RU	Tri-state Output Type, True) w/ N	& Schm oise Lim	itt Tri it Re	gge sista	ance w	/ Pull–u	p Re	sista	ance	TL	13		Ce	il Symbol		Propagation Delay Parameter												tup				to					Path				t 0	t0 KCL			KCL	KCL	2	CDR2		raui		IN			0.06 0.03	6	2.325 3.190 (9.99)	0.073 0.080					X to IN OT to X			C		L to				Z to								10		<u> </u>	CL	t O			KCL		C to X				1.73 (17.6			•	3.57 (10.6		0.	.083				Pin Name	Input Loading Factor (lu)]											ΟT	2 2						ليـــــــــــــــــــــــــــــــــــــ						С	2		H to		(CL		Z to		KCL						10			VOL.	t O							Pin Name	Output Driving Factor (lu)	1.86			•	1.30 (10.6		0.	.037				IN	18											- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation.	C10-	-H8R	U-E0	Sheet 1/1			------	------	------	-----------	--		FUJIT	SU CMOS GATE ARF	RAY UNIT	CEL	L SI	PECIFICA	ATION			" CG10	" V	ersion		-----------	---------------------------------------	--------------------------	------------------	-----------	--------------------------	----------------	---------	----------	----------	--------	--------------------		Cell Name	Function										Number of BC		H8RD	Tri-state Output Type, True) w/ No	& Schm bise Lim	itt Tri it Re	gg sis	tance w	/ Pull-d	own	Re	sistance	L ∋	13		Cell	Symbol				Prop	pagation D	elay Pa	aram	eter						tı.	ıρ				In				Path				t O	KC	L	t O	KCL	KCL	2	CDR2		raui		IN	×	1.400 1.177 (4.24)	0.00		2.325 3.190 (9.99)	0.073 0.080					X to IN OT to X			•		Lt	o Z			Z to	o L							t O			KCL	10			KCL	ŀ	C to X				1.73 (17.6			•	3.57 (10.6			0.083				Pin Name	Input Loading Factor (lu)												OT	2 2	ļ		_			لبيب	Ļ					С	2	<u> </u>	Н:	o Z	KCL	10	Z to	Н	KCL						t O			NUL		_	<u> </u>		l			Pin Name	Output Driving Factor (lu)	1.86 (17.6			•	1.30 (10.6			0.037				IN	18											- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8RD-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARE	RAY UNIT	CELL	_ SI																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
PECIFICA	ATION		" CG10	" Version		-----------	--------------------------------------	--------------------------	--------------	-------------------	----------------------------	----------------	---------------	--------	--------------------		Cell Name	Function								Number of BC		H8W2	Power Tri-state & Input Buffer (I	Output OL=24r	with	No ru	oise Lim e)	it Resis	tanc	е	11		Cel	l Symbol											t O	tup			to	Path								KCL		· t 0	KCL	KCI	2 CDR2			и −−−− п	×	0.663 3.050 (4.50)	0.01 0.01		1.150 10.400 (13.55)	0.023 0.037			X to IN OT to X			С		L to	2 7	L		Z to						t O	1		KCL	t O		KCL	C to X				4.800 (22.74			•	12.49 (9.01		0.041			Pin Name	Input Loading Factor (Iu)										OT C	2 2		Hto	- 7			Z to	. 14			C	4	10	- H 10	<i>5</i> <u>∠</u>	KCL	t O	T	KCL						,		1101	2.00	$\overline{}$	0.020			Pin Name	Output Driving Factor (lu)	3.620 (22.74			•	(12.4		0.020			IN	36									- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8W2-E0	Sheet 1/1	FUJIT	SU CMOS GATE ARF	RAY UNIT	CELL	SPECIFICA	ATION		" CG10	" Version		-----------	--------------------------------------	--------------------------	----------------	---------------------	---------------------	---------------	-------------	--------------------		Cell Name	Function							Number of BC		H8W1	Power Tri-state & Input Buffer (I	Output OL=24r	with InA, Tr	Noise Limue) with I	it Resis Pull-up	tanc Resis	e stance	11		Cel	Symbol			Proj	pagation D	elay Pa	rameter					tup			to	Path						10	KCL	10	KCL	KCL	2 CDR2				1	0.663 3.050 (4.50)	0.017 0.017		0.023 0.037			X to IN OT to X		от —	×												L to 2			Z to						t O		KCL	t O		KCL	C to X				4.800 (22.74		•	12.49 (9.01		0.041			Pin Name	Input Loading Factor (Iu)									OT C	2 2	ļ	H to	7	 	Z to	L					t O	11 10	KCL	to		KCL					3.620	$\overline{}$		2.00		0.020			Pin Name	Output Driving Factor (lu)	(22.74		•	(12.4		0.020			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8W1-E0 Sheet 1/1	FUJI	ISU CMOS GATE ARI	TINU YAF	CELL	. SPECIFIC	ATION		" CG10	" Version		-----------	-------------------------------------	--------------------------	----------------	------------	----------------------	---------------	----------------	--------------------		Cell Name	Function							Number of B0		H8W0	Power Tri-state & Input Buffer (e Output IOL=24r	with nA, T	Noise Lir	nit Resis Pull–do	stanc wn R	e esistance	11		Ce	II Symbol			Pre	pagation D	elay Pa	arameter						tup			dn	Path					t O	KCL	. to	KCL	KCI	2 CDR2			IN	×	9.663 3.050 (4.50)	0.01 0.01					X to IN OT to X			c	t O	L to	Z KCL	to	Zt	o L KCL	C to X				4.80 (22.7		•	12.49 (9.0		0.041			Pin Name	Input Loading Factor (lu)									OT C	2 2		H to	. 7	 	Z to	L			C	2	10		KCL	1 10		KCL					3.62	, 	1,72	2.00		0.020			Pin Name	Output Driving Factor (lu)	(22.7		•	(12.4		0.020			IN	36						:		- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. - Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8W0-E0	Sheet 1/1	FUJIT	SU CMOS GATE AR	RAY UNIT	CELL S	PECIFICA	ATION	***************************************	" CG10	" Version				-----------	---------------------------------------	--------------------------	-----------------------------	----------------------------	--------------------	---	--------	--------------------	--	--		Cell Name	Function							Number of BC				H8E2	Power Tri-state & CMOS Interfa	e Output ace Inpu	w/ Noi t Buffer	se Limit (IOL=2	Resista 4mA, Tr	nce rue)		11				Cell	Symbol		Propagation Delay Parameter										· · · · · · · · · · · · · · · · · · ·		tup tdn					Path						t O	KCL	t O	KCL	KCL2	CDR2						_	0.575 3.050 (4.50)	0.017 0.017	0.831 10.400 (13.55)	0.023 0.037			X to IN OT to X				ot —	×		L to Z			Z to L								10	L to Z	KCL	10	2 to L	KCL	C to X						4.80		*	12.49 (9.01		0.041	C IO X				Pin Name	Input Loading Factor (lu)]										OT C	2 2		H to Z			Z to H						Ÿ	-	10	11.02	KCL	10		KCL							3.62	,		2.00	0	0.020					Pin Name	Output Driving Factor (lu)	(22.7		•	(12.4		0.020					IN	36										- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8E2-E0	Sheet 1/1	FUJI	TSU CMOS GATE AR	TINU YAF	CELL	SPECIFICA	ATION		" CG10	" Version		-----------	---------------------------------	--------------------------	----------------	------------------------	---------------------	------------------	-----------	--------------------		Cell Name	Function							Number of BC		H8E1	Power Tri-state & CMOS Input	e Output Buffer (I	w/ No OL=2	oise Limit 4mA, Tru	Resista e) w/ Pu	ance ull-up	Resistanc	e 11		Ce	II Symbol				pagation D								ıp			dn		Path				10	KCL	10	KCL	KCL	2 CDR2				_	0.575 3.050 (4.50)	0.017 0.017		0.023 0.037			X to IN OT to X		ot	×											10	L to	KCL KCL	10	Z to	KCL	C to X				4.800		*	12.49 (9.01	90	0.041	0.10 %		Pin Name	Input Loading Factor (lu)									OT	2 2	<u> </u>	H to	7		<u> </u> Z to				C	C 2		H 10	KCL	10		KCL					3.62	1		2.00		0.020			Pin Name	Output Driving Factor (Iu)	(22.7		•	(12.4		0.020			IN	36								- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation.	C10-H8E1-E0 Sheet 1/1		-------------------------		-------------------------		FUJI	<u> ISU CMOS GATE AR</u>	RAY UNIT	CELL	SPECIFICA	ATION		" CG10	" V ∈	ersion		-----------	-----------------------------------	--------------------------	--	------------------------	----------------------	--------------	------------	-------	--------------------		Cell Name	Function								Number of B		H8E0	Power Tri-state & CMOS Input B	Output Buffer (IC	w/ Noi:)L=24:	se Limit F nA, True	Resistar) w/ Pul	nce I-dow	n Resistar	nce	11		Ce	ii Symbol			Pro	pagation D	elay Pa	rameter							ıp			ın			Path				t 0	KCL	· t0	KCL	KCL	2 CDR2					1	0.575 3.050 (4.50)	0.017 0.017		0.023 0.037				X to IN OT to X		ot ——	×												10	L to 2	KCL	10	Z to	KCL		C to X				4.80		*	12.49 (9.01	90	0.041		0.10 %		Pin Name	Input Loading Factor (lu)]									OT C	2 2	-	H to :	7	 	Z to	Н				J		10	11.0	KCL	10		KCL						3.62	<u>, </u>		2.00	+	0.020	l			Pin Name	Output Driving Factor (lu)	(22.7		•	(12.4		0.020				IN	36									- (a) Measurement of tpd at LZ and ZL. - (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. - 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. - 3. The parameters in parentheses are the values applied to the simulation. C10-H8E0-E0	Sheet 1/1 ## 3 ## **Appendix A: General AC Specifications** Mimimum/maximum Delay Multipliers (Recommended Operating Conditions, Ta = 0 to 70°C, V_{DD} = 5 $V_{\pm}5\%$	Delay Multipliers	Min.	Max.			------------------------	------	------	--		Pre-layout Simulation	0.35	1.65			Post-layout Simulation	0.40	1.60		### **Appendix B: Hierarchical Structure** Hierarchical blocks (or Functional Logic Blocks) within other hierarchical blocks are user-defined groups of cells laid out in close proximity to each other in both X and Y dimensions of the array. The hierarchical method of design allows circuit sections to be placed within the array at positions relative to each other.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
This is made possible by the designer's defining and placing functional logic blocks within the hierarchy and thus controlling path lengths. There are five levels of hierarchy, also referred to as Functional Logic Blocks (FLBs). The design rules regarding what may and what must appear at certain levels are condensed in the diagram below. All I/O buffers and their associated circuitry must be defined immediately beneath the chip level with the FLB1 blocks. Nothing but I/O buffers may be so defined. If pull-up or pull-down cells (A01s or X00s) are required for unused inputs of the I/O buffers, they must also be defined at this level. Unit cells (UC) may be defined at each level. For optimum delay characteristics, Level 2 blocks should be defined under each of the Level 1 blocks, Level 3 Blocks under Level 2 blocks, and so on. Unit cells should be defined under Level 4. ## **Appendix C: Estimation Tables for Metal Loading** ### CG10272 (2700-gate device)				Cloc	Clock Net							-----------------	---------------------	-----------------	---------------------	---------------------	--	--	--	--	--		N _{DI}	C _L (lu)	N _{DI}	CK20, CK40	CK60, CK80										C _L (lu)	C _L (lu)							1	2.3	1	8.3	12.9							2	4.9	2	8.3	12.9							3	6.7	3	15.8	24.9							4	7.8	4	15.8	24.9							5	8.5	5	23.3	36.9							6	9.3	6	23.3	36.9							7	10.2	7	30.7	48.9							8	10.5	8	30.7	48.9							9	10.8	9	34.7	55.2							10	11.0	10	34.7	55.2							11	11.0	11	35.0	55.5							12	11.3	12	35.0	55.5							13	11.4	13	35.4	55.9							14	11.7	14	35.4	55.9							15	11.7	15	35.4	55.9							16 – 30	12.7	16 – 30	35.8	56.3							31 – 50	14.4	31 – 50	38.8	59.3							51 – 75	14.8	51 – 80	42.8	63.3							76 – 100	16.3									### CG10342 (3400-gate device)				Cloc	k Net		-----------------	---------------------	-----------------	---------------------	---------------------		N _{DI}	C _L (lu)	N _{DI}	CK20, CK40	CK60, CK80					C _L (lu)	C _L (lu)		1	2.8	1	8.9	14.0		2	5.9	2	8.9	14.0		3	8.0	3	16.9	27.3		4	9.3	4	16.9	27.3		5	10.3	5	24.9	40.4		6	11.2	6	24.9	40.4		7	12.2	7	32.9	53.5		8	12.7	8	32.9	53.5		9	13.0	9	41.0	66.8		10	13.4	10	41.0	66.8		11	13.4	11	41.4	67.2		12	13.5	12	41.4	67.2		13	13.7	13	41.8	67.7		14	14.0	14	41.8	67.7		15	14.0	15	41.8	67.7		16 – 30	15.2	16 – 30	42.3	68.0		31 – 50	17.4	31 – 50	45.4	71.2		51 – 75	17.9	51 – 80	49.5	75.3		76 – 100	19.7				Continued on next page # Appendix C: Estimation Tables for Metal Loading ### CG10492 (4900-gate device)				Cloc	k Net		-----------------	---------------------	-----------------	---------------------	---------------------		N _{DI}	C _L (lu)	N _{DI}	CK20, CK40	CK60, CK80					C _L (lu)	C _L (lu)		1	3.3	1	9.7	15.8		2	7.2	2	9.7	15.8		3	9.7	3	18.5	30.7		4	11.3	4	18.5	30.7		5	12.5	5	27.3	45.5		6	13.5	6	27.3	45.5		7	14.8	7	36.2	60.4		8	15.4	8	36.2	60.4		9	15.8	9	44.9	75.3		10	16.2	10	44.9	75.3		11	16.2	11	53.8	90.2		12	16.4	12	53.8	90.2		13	16.5	13	54.2	90.5		14	17.0	14	54.2	90.5		15	17.0	15	54.2	90.5		16 – 30	18.4	16 – 30	54.7	91.0		31 – 50	21.0	31 – 50	57.9	94.3		51 – 75	21.7	51 – 80	62.3	98.7		76 – 100	23.8				### CG10572 (5700-gate device)		C _L (lu)	N _{DI}	Clock Net				-----------------	---------------------	-----------------	---------------------	---------------------	--		N _{DI}			CK20, CK40	CK60, CK80						C _L (lu)	C _L (lu)			1	3.8	1	10.0	16.7			2	8.2	2	10.0	16.7			3	11.1	3	19.4	32.6			4	12.9	4	19.4	32.6			5	14.4	5	28.6	46.5			6	15.5	6	28.6	46.5			7	17.0	7	38.1	64.5			8	17.6	8	38.1	64.5			9	18.1	9	46.7	79.6			10	18.5	10	46.7	79.6			11	18.5	11	60.6	101.0			12	18.8	12	60.6	101.0			13	18.9	13	60.9	101.7			14	19.5	14	60.9	101.7			15	19.5	15	60.9	101.7			16 – 30	21.1	16 – 30	61.5	102.7			31 – 50	24.1	31 – 50	64.6	107.9			51 – 75	24.8	51 – 80	69.4	115.9			76 – 100	27.3					Continued on next page ## **Appendix C: Estimation Tables for Metal Loading** ### CG10672 (6700-gate device)					***************************************	Clock Net			-----------------	---------------------	-----------------	---------------------	---	---------------------	---------------------		N _{Dt}	Within Block	N _{DI}	Inter-Block	N _{DI}	CK20, CK40	CK60, CK80			C _L (lu)		C _L (lu)		C _L (lu)	C _L (lu)		1	2.0	1	4.4	1	12.4	16.5		2	4.4	2	9.5	2	18.7	31.0		3	5.9	3	12.8	3	30.2	46.7		4	6.9	4	15.0	4	36.5	61.2		5	7.7	5	16.7	5	_			6	8.3	6	18.0	6		_		7	9.0	7	19.7	7				8	9.4	8	20.4	8		_		9	9.7	9	21.0	9	_	_		10	9.9	10	21.5	10				11	9.9	11	21.5	11	_	_		12	10.0	12	21.8	12		_		13	10.3	13	22.0	13	_			14	10.5	14	22.7	14		_		15	10.5	15	22.7	15	 	_		16 – 30	11.4	16 – 30	24.5	16 – 30	_	_		31 – 50	13.0	31 – 50	28.0	31 – 50	_	_		51 – 75	13.3	51 – 80	28.8	51 – 80	_	_		76 – 100	14.7	76 – 100	31.7				#### CG10103 (10000-gate device)						Clock Net			-----------------	---------------------	-----------------	---------------------	-----------------	---------------------	---------------------		N _{DI}	Within Block	N _{DI}	Inter-Block	N _{DI}	CK20, CK40	CK60, CK80			C _L (lu)		C _L (lu)		C _L (lu)	C _L (lu)		1	2.8	1	5.3	1	14.8	19.7		2	5.9	2	11.5	2	22.3	37.2		3	8.0	3	15.5	3	36.2	56.0		4	9.3	4	18.2	4	43.7	73.4		5	10.3	5	20.0	5	_	_		6	11.2	6	21.7	6	-			7	12.2	7	23.7	7	_			8	12.7	8	24.7	8	-			9	13.0	9	25.3	9	_			10	13.4	10	26.0	10		_		11	13.4	11	26.0	11	_	_		12	13.5	12	26.3	12	-			13	13.7	13	26.7	13	_			14	14.0	14	27.3	14	_	_		15	14.0	15	27.3	15	-	_		16 – 30	15.2	16 – 30	29.5	16 – 30	-			31 - 50	17.4	31 – 50	33.9	31 – 50	-	_		51 75	17.9	51 – 80	34.8	51 – 80	_	_		76 – 100	19.7	76 – 100	38.2		_	-	Continued on next page ### **Appendix C: Estimation Tables for Metal Loading** ### CG10133 (13000-gate device)						Clock Net				-----------------	---------------------	-----------------	---------------------	-----------------	---------------------	---------------------	--		N _{DI}	Within Block	N _{DI}	Inter-Block	N _{DI}	CK20, CK40	CK60, CK80				C _L (lu)		C _L (lu)		C _L (lu)	C _L (lu)			1	3.3	1	6.2	1	17.2	22.9			2	7.2	2	13.5	2	25.9	43.4			3	9.7	3	18.2	3	42.2	65.4			4	11.3	4	21.3	4	51.0	85.9			5	12.5	5	23.5	5	_	_			6	13.5	6	25.4	6					7	14.8	7	27.8	7					8	15.4	8	28.9	8		_			9	15.8	9	29.7	9	_	_			10	16.2	10	30.4	10					11	16.2	11	30.4	11	_	_			12	16.4	12	30.8	12	_				13	16.5	13	31.3	13	_				14	17.0	14	32.0	14	_				15	17.0	15	32.0	15	-				16 – 30	18.4	16 – 30	34.7	16 – 30	_	_			31 – 50	21.0	31 – 50	39.7	31 – 50	_	_			51 <i>–</i> 75	21.7	51 – 80	40.8	51 – 80	_				76 – 100	23.8	76 – 100	44.8					[&]quot;Inter-Block" tables must be applied to a net which has an inter-block connection. If a net, for example, has three N_{Dl} in a block and one N_{Dl} in a different block, N_{Dl} = 4 of the "Inter-Block" table must be applied. ### Appendix D: Available Package Types **CG10 CMOS Available Package Types**		CG10272	CG10342	CG10492	CG10572	CG10692	CG10103	CG10133		---------------------	---------------	--------------	--	--	------------------	---------------------	------------------------		DIP (Dual In-line P	ackage)		anteres de la compar en la comparación de la comparación de la comparación de la comparación de la comparación de la comparación de	#[1]	trional rational	Najari, Kiri			DIP28	•	•	•	•					DIP40	•	•	•	•	•	_	_		DIP42	•	•	•	•	•		_		DIP48	•	•	•	•	•	_	_		SH-DIP (Shrink Du	ial In-line P	ackage)		1 1 1 1 1 1 1 1 1		Ngayanaka atomba sa	a dayle year		SH-DIP42	•	•	•	•	•				SH-DIP64	•	•	•	•	•	_	_		QFP (Quad Flat Pa	nckage)								QFP48	•	•	•			-	-		QFP64	•	•	•	•	•	•			QFP80	•	•	•	•	•	•	_		QFP100	•	•	•	•	•	•			QFP120	•	•	•	•	•	•	•		QFP160	_	_	•	•	•	•	•		QFP196	_	_		_	_		•		SQFP (Shrink Qua	d Flat Pack	age)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
	3 (6 (6 (6 (7 (7 (6 (SQFP64	•	•	_		_				SQFP100	•	•	•	_	_	_	_		SQFP176	_		_		_	•	•		SQFP208	_	_	_	_	_		•		PGA (Pin Grid Arr	ay Package)		Kay a salah da	Tar. Sentandah	vi Vi	on a profession of sol		PGA64	•	•	•	•	•	•	•		PGA88	•	•	•	•	•	•	•		PGA135	•	•	•	•	•	•	•		PGA179		_	•	•	•	•	•		PGA208	_	_	_	_		•	•		PGA256		_	_	_	_	•	•		PGA-50 mil (Pin C	irid Array P	ackage-50 mi	I)			National Control			PGA256	_	_	_	_	_		•		PLCC (Plastic Lea	ded Chip C	arriers)							PLCC68	•								1 20008			1		1			### **Appendix E: TTL 7400 Function Conversion Table**	TTL 7400 Series Name	Function	Fujitsu Basic Cells	Number of Unit Cells		----------------------------	---	--	----------------------------							7400	Quad 2-input NAND	4 x N2N	4		7401	Quad 2-input NAND, Open Collector Outputs	T24 multiplexer	6		7402	Quad 2-input NOR	4 x R2N	4		7403	Quad 2-input NAND, Open Collector Outputs	T24 multiplexer	6		7404	Hex Inverter	6 x VIN	6		7405	Hex Inverter, Open Collector Outputs	R6B	5		7406	Hex Inverter/Buffer, Open Collector Outputs	R6B	5		7407	Hex Buffer, Open Collector Outputs	2 x N3N into R2N	5		7408	Quad 2-input AND	4 x N2P	8		7409	Quad 2-input AND, Open Collector Outputs	N8P	6		7410	Triple 3-input NAND	3 x N3N	6		7411	Triple 3-input AND	3 x N3P	9		7412	Triple 3-NAND, Open Collector Outputs	T33	7		7413	Dual 4-input NAND, Schmitt Trigger	2 x (4 x I2R to N4N)	68		7414	Hex Schmitt Trigger Inverter	6 x l1R	48		7415	Triple 3-input AND, Open Collector Outputs	N8P to N2P	8		7418	Dual 4-input NAND, Schmitt Trigger	2 x (4 x I2R to N4N)	68		7419	Hex Schmitt Trigger Inverter	6 x l1R	48		7420	Dual 4-input NAND	2 x N4N	4		7421	Dual 4-input AND	2 x N4P	6		7422	Dual 4-input NAND, Open Collector Outputs	2 x N4N + N2P	6		7423	Expanded Dual 4-input NOR with Strobe	R4P to D23 + R4P to R2N	9		7424	Quad Schmitt Trigger 2-input NAND	8 x 12R + 4 x N2N	68		7425	Dual 4-input NOR with Strobe	2 x (R4P + R2N)	8		7426	Quad 2-input NAND, High Voltage Output	4 x N2N	4		7427	Triple 3-input NOR	3 x R3N	6		7428	Quad 2-input NOR Buffer	4 x R2N	4		7430	8-input NAND	N8B	6		7432	Quad 2-input OR	4 x R2P	8		7433	Quad 2-input NOR Buffer, Open Collector	A DON MAD	7		7434	Outputs Hex Noninverter	4 x R2N + N4P 6 x B1N	6		7434 7435			5		7435 7437	Hex Noninverter with Open Collector Outputs	2 x N3N into R2N 4 x N2B	5 12			Quad 2-input NAND Buffer	4 X N2B	12		7438/9	Quad 2-input NAND Buffer, Open Collector	A NON . NAD	-7		7440	Outputs	4 x N2N + N4P	7			Dual 4-input NAND Buffer BCD to Decimal Decoder	2 x N4B (N4N if not power)	8(4)		7442 7443	EX3 to Decimal Decoder	4 x V2B + 10 x N4N	24 24		7443 7444	4 to 10 Line Decoder	4 x V2B + 10 x N4N 4 x V2B + 10 x N4N	24		7444 7445	BCD to Decimal Decoder/driver (30V)	4 x V2B + 10 x N4N 4 x V2B + 10 x N4N	24		7445 7446	BCD to 7-segment Decoder/Driver (30V)	4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P	53		7440 7447	BCD to 7—segment Decoder/Driver (30V) BCD to 7—segment Decoder/Driver (15V)	4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P	53		7447 7448		4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P	53		7448 7449	BCD to 7–segment Decoder/Driver BCD to 7–segment, Open Collector Outputs	4 x V 1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 4 x V 1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P	53		7449 7450	Dual 2-input, 2-wide AOI (One Expandable)	D36 + D24	5 5		7450 7451	AOI	2 x D24	4		7451 7452	Expandable 4-wide AND-OR	N3N + D36 + V1N into N3N	8		7452 7453	Expandable 4-wide AND-ON Expandable 4-wide AOI	D36 + D23 into N2P	7		7453 7454	4-wide AOI	2 x N3N + 2 x N2N + N4N + V1N	9		7454 7455	2-wide 4-input AOI	742	6		7455 7460	Dual 4-input AOI Dual 4-input Expander	142 2 x N4P	6		7460 7461		2 x N4P 3 x N3P	6		7461 7462	Triple 3-input Expander		8		7462 7464	4-wide AND-OR Expander	2 x N3N + 2 x N2N + N4N	10			4-2-3-2 AOI	T54 T54	10		7465	4-2-3-2 AOI (Open Collector)	104	10	Continued on next page ### **TTL 7400 Function Conversion Table**	TTL 7400 Series Name	Function	Fujitsu Basic Cells	Number of Unit Cells		----------------------------	--	---	---		7470	AND-gated positive-edge JK FF with Preset				.4.0	and Clear	3 x V1N + 2 x N3N + N2N + R2N + FJD	21			or:	FD4 + 2 x N2N + R2N + V1N + R2P + D24	17		7471	AND-gated RS M/S FF with Preset		• • • • • • • • • • • • • • • • • • • •			and Clear	FD4 + 2 x N3N + 2 x D23 + 2 x V1N	19			or:	LT1+ 2 x N4N + N2P	10		7472	AND-gated JK M/S FF with Preset					and Clear	V1N + 2 x N3N + N2N + R2N + FJD	19			or:	FD4 + N3P + N3N + V1N + D24	17		7473	Dual JK FF with Clear	2 x FJD	24		7474	Dual positive-edge D-FF with Preset and					Clear	2 x FDP	16		7475	4-bit Bistable Latch	LTM	16		7476	Dual JK FF with Preset and Clear	2 x (FJD + N2N + R2N + V1N)	30		7477	4-bit Bistable Latch	LTM	16		7478	Dual JK FF with Preset and Common	2 x (FJD + N2N + R2N + V1N)	30		7480	Clear and Clock Gated Full Adder	A1N	8		7480 7482	2-bit Binary Full Adder	A2N	8 16		7482 7483	4-bit Binary Full Adder with Fast Carry	A2N A4H	48		7484	4-bit Magnitude Comparator	MC4	46 42		7486	Quad 2-input XOR	4 x X2N	12		7487	4-bit True/Complement Zero/One Element	4 x N2N + V1N + 4 x N2N	17		7489	64-bit (16 x 4) Memory	2 x DE6 + V1N + 16 x LT4	298		7400	o4-bit (10 x 4) Memory	+ 5 x (V2B + T5A) + 10 x V2B	230		7490	Decade Counter	2 x (FDP + FDO + N2P + N2N + R2N) + V1N	39		, 400	(Different Implementation)	4 x N2P + 2 x R2P + N2N + C41 + LT1	41		7491	8-bit Shift Register	2 x FDS + V1N	41		7492	Divide-by-12 Counter	4 x FDO + 2 x V1N + 2 x R2N + N2N	33		7493	4-bit Binary Counter	C41 + N2N (for the resets)	25		7494	4-bit Shift Register, 2 asynchronous Presets	FS3 ,	34			4-bit Shift Register, 2 asynchronous					Presets, Full Implementation	4 x FDP + 4 x D24 + 2 x V1N	42		7495	4-bit Parallel-access Shift Register	FS2 + D24 + 2 x V1N	34		7496	5-bit Shift Register	5 x FDP + 5 x N2N + V1N(clock)	46		7497	Synch 6-bit Binary Rate Multiplier	FDR + 2 x FDO + 3 x V1N + 2 x N2N	122				+ 2 x N3N + 2 x N4N + 5 x N6B + 3 x N8B					+ R2B + X2N + 5 x X1B.			7498	4-bit Data Selector/Storage Register	FDQ + T2F + 4 x V1N	33		7499	4-bit Universal Shift Register	FS2 + LTK + 2 x D24 + 4 x V1N	42		74100	8-bit Bistable Latch	2 x YL4 + 2 x V1N	30		74101	AO-gated JK Negative-Edge FF,	EDO WILL O DOG			74400	with Preset	FD3 + V1N + 3 x D24	15		74102	AND-gated JK Negative-Edge FF with	ED4 DO4 NOD NON			74103	Preset and Clear Dual JK FF with Clear	FD4 + D24 + N3P + N3N	16		74103	or:	2 x FJD + 2 x V1N (for clock)	26		74106	or. Dual JK Negative-Edge FF with Preset	2 x (FD5 + D24 + V1N)	22		74100	and Clear	2 x (FD4 + D24 + V1N)	24		74107	Dual JK FF with Clear	2 x (FJD + 2 x V1N)	22		74108	Dual JK Negative-Edge FF with Preset	EN (100 FEX VIII)	22			and Common Clear and Clock	2 x (FD4 + D24 + V1N)	24		74109	Dual JK Positive-Edge FF with Preset and					Clear	2 x (FDP + V1N + D24)	22		74110	AND-gated JK M/S FF with Data	=				Lockout	FDP + D24 + N3P + N3N	15		74111	Dual JK WS FF with Data Lockout	2 x (FDP + D24 + V1N)	22		74112	Dual JK Negative-Edge FF with Preset	,				and Clear	2 x (FD4 + D24 + V1N)	24	### **TTL 7400 Function Conversion Table**	TTL 7400 Series Name	Function	Fujitsu Basic Cells	Number of Unit Cells		----------------------------	--	---	----------------------------		74113	Dual JK Negative-Edge FF with Preset	2 x (FD3 + D24 + V1N)	22		74114	Dual JK Negative-Edge FF with Preset and					Common Clear and Clock	2 x (FD4 + D24 + V1N)	24		74116	Dual 4-bit Latch with Clear	2 x LTM	32		74120	Dual Pulse Synchronizer/Driver	2 x (N2P + LT1 + 4 x N3N + 2 x N2N + 2 x V1N)	36		74125	Quad Bus Buffer with 3-state Output	B41	9		74126	Quad Bus Buffer with 3-state Output	B41 + 4 x V1N	13		74132	Quad 2-input NAND Schmitt Trigger	4 x (2 x I2R + N2N)	68		74133	13-input NAND	2 x N4N + N3N + N2N into R4P	10		74134	12-input NAND with 3-state Outputs	NCB + O4R	15		74135	Quad 3-input EXOR/EXNOR	4 x X4N	20		74136	Quad 2-input EXOR with Open-Collector					Outputs	4 x X2N + R4N	14		74137	3-line to 8-line Decoder with Address					Latch	3 x LTK into DE6	42		74138	3-line to 8-line Decoder with Enable	DE6	30		74139	Dual 2-line to 4-line Decoder	2 x DE4	16																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
74141	BCD-to-Decimal Decoder	4 x V2B + 10 x N4N	24		74145	BCD-to-decimal Decoder	4 x V1N + 10 x N4N	24		74147	10-line to 4-line BCD Priority Encoder	3 x N4N + 3 x N3N + 2 x N2N + 2 x N2P	36		, 414,	10 mic to 4 mic Bob i Honty Encoder	+ 3 x R2N + R4N + 13 x V1N	00		74148	8-line to 3-line Octal Priority Encoder	N9B + 2 x N2N + R2P + R4N + 4 x N3N	40		74140	online to online Octar Phonty Encoder	+ 2 x N4N + G44 + 12 x V1N	40		74150	1-to-16 Multiplexer	DE3 + 2 x U28 + D24 + 2 x V1N	41		74150	1-to-8 Multiplexer with Strobe	DE3 + U28 + N2N + V1N	28		74151		DE3 + U28 + N2N + V1N	26 26		74152	1to-8 Multiplexers Dual 4-line to 1line Selector/Multiplexer	DE2 + 028 DE2 + 2 x U24 + 2 x R2N	19							74154	4-line to 16-line Decoder/Demultiplexer	2 x DE6 + V1N	61		74155	or: Dual 2-line to 4-line Decoder/Demultiplexer	2 x DE4 + N2P + 16 x R2P	50		74156	(Totem Pole) Dual 2-line to 4-line Decoder/Demultiplexer	8 x N3N + 2 x R2N + 5 x V1N	23		74150	(Open Collector)	8 x N3N + 2 x R2N + 5 x V1N	23		74157	Quad 2-line to 1-line multiplexer	T2F + 4 x R2N + B1N	13		74158	Quad 2-line to 1-line multiplexer	IZI TAXIIZIATOIN	10			(Inverter Data Outputs)	4 x D24 + V1N + 2 x R2N	11		74159	4-line to 16-line Demultiplexer	2 x DE6 + V1N (without open collector)	50		74160	Synchronous 4-bit Counter	4 x C11 + K1B + 2 x V2B + V1N + B1N+	62			(Decimal with Direct Clear)	N2K + 2 x R3N + R4N + 3 x R2N + N2N	,		74161	Synchronous 4-bit Counter (Binary	VALIET I THE				with Direct Clear)	C43	48		74162	Synchronous 4-bit Counter				• • •	(Decimal with Synchronous Clear)	C45 + D36 + N3P + 2 x R2N + B1N	57		74163	Synchronous 4-bit Counter (Binary	OTO I DOOT HOLT EXHERT DIR	37		. +100	with Synchronous Clear)	C45	48		74164	8-bit Parallel Output Serial Shift	V-10	40		, 4104	Register, Asynchronous Clear	2 x FDR + N2P	54		74165	Register, Asynchronous Clear 8-bit Shift Register	2 x FDR + N2P 2 x FDS + 8 x D24 + 11 x V1N + K4B + R2P	54 71		74165 74166	8-bit Shift Register	2 x FDS + 8 x D24 + 11 x V IN + K4B + H2P 2 x FDR + 8 x D24 + 10 x V1N + K4B	71 80		74166 74168		2 X FUR + 0 X U24 + 1U X V IN + N4D	80		74108	4-bit Up/Down Synchronous Counter	A w C44 · A w T00 · 7 · NON · O · NON · DON	0"			(Decade)	4 x C11 + 4 x T32 + 7 x N2N + 2 x N3N + R2N + 7 x V2B + K1B	85		74169	4-bit Up/Down Synchronous Counter					(Binary)	C47	68		74170	4-by-4 Register File	4 x (YL4 + B1N + V1N + U24) + 2 x DE4	104		74171	Quad D-FF with Clear	FDR + 4 x V1N	30		74172	16-bit (8 x 2) Register File	3 x DE6 + 4 x FDS + 16 x (N2N + G34 +	348			(E/ Hogistor i no	+ V1N + 2 x R2P + 4 x U28) + 2 x V1N + 2 x R2P	340						### **TTL 7400 Function Conversion Table**	TTL 7400 Series Name	Function	Fujitsu Basic Cells	Number of Unit Cells		----------------------------	--	--	----------------------------		74173	4-bit D-type Register					(3-state Output)	FDR + 2 x R2N + B41 + 6 x V1N + K1B + 4 x D24	53		74174	Hex D-FF (Single Output)	FDR + 2 x FDO	40		74175	Quad D-FF (with Clear)	FDR + 4 x V1N	30		74176	Presettable Decade/Binary Counter	4 x FDP + 2 x R2N + 5 x N2N + 4 x N3N + K1B	49		74177	Presettable Binary Counter	4 x FDP + 5 x N2N + 4 x N3N + K1B	47		74178	4-bit Universal Shift Register	FS2	30		74179	4-bit Universal Shift Register					(Direct Clear)	FS2 + 9 x N2N + B1N	40		74180	9-bit Odd/Even Parity Checker	PO8 + 2 x D24 + V1N	23		74181	ALU/Function Generator	5 x V1N + 5 x T32 + 4 x D36 + 8 x X2N + 3 x T54 +					N6B + N4B + 2 x N2N + 2 x N4P	11		74182	Look-ahead Carry Generator	R4P + 2 x V1N + 2 x T44 + T33 + D24	36		74183	Dual Carry-save Full Adder	2 x A1N	16			•	=			74184	BCD-to-binary Code Converter	These devices are ROM based			74185	Binary-to-BCD Code Converter	These devices are ROM based			74190	Synch Up/Down Counter (BCD)	4 x FDP + 4 x X2N + K1B + 3 x V1N + 3 x N3N					+ 9 x N2N + 2 x T32 + T43			74191	Synch Up/Down Counter (Binary)	C47	68		74192	Up/Down Dual Clock Counter (BCD)	4 x C11 + 4 x V2B + N6B + 2 x N3N + R2N + T32 + T42 + T43	79		74193	Up/Down Dual Clock Counter (Binary)	4 x C11 + 2 x N6B + 4 x V2B + R2N + D24 + T32 + T42	72		74194	4-bit Bidirectional Universal Shift Register	FDR + 6 x V1N + R2N + 4 x D36 + D23 + B1N	48		74195	4-bit Parallel Access Shift Register	FS2 + D24 + 2 x V1N	34		74196	Preset Decade/Binary Counter/Latch	4 x FDP + 2 x R2N + 5 x N2N + 4 x N3N + K1B	49		74197	Preset Binary Counter/Latch	4 x FDP + 5 x N2N + 4 x N3N + K1B	47		74198	8-bit Bidirectional Universal Shift Register	2 x FDR + D24 + 10 x V1N + R2N + 8 x D36	89		74199	8-bit Bidirectional Universal Shift					Register (JK Serial Input)	2 x FS2 + D24 + 3 x V1N + B1N + R2N + 8 x N2P	83			or:	2 x FDR + 7 x D24 + T33 + 11 x V1N + R2N	85		74246	BCD-to-7-Segment Decoder/Driver	EXTENT X DET TOO THE THEIR	•			(30V, Active Low Open Collector)	4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P	53		74247	BCD-to-7-Segment Decoder/Driver	IT ATTENT TO ATTOM TO ATTEN	•			(15V, Active Low Open Collector)	4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P	53		74248	BCD-to-7-Segment Decoder/Driver	TATEL HANGEN TO ANOTHER TO ANGLE	٥.		, -,2-40	(Internal Pull-up)	4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P	53		74249	BCD-to-7-Segment Decoder/Driver	TA 4 114 T 11 A 14214 T 10 A 14014 T 4 A 140F T 5 A 142F	3.		17240	(Open Collector)	4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P	53		74260	Open Collector) Dual 5-input NOR	2 x R6B	10		74265	Quad Complementary Output Element	2 x A6B B1N + V1N	,,,		74266	Quad 2–EXNOR, Open Collector	4 x X1N	12		74266 74273	Octal D-type FF with Clear	* ********	52			Quad J–K FF	2 x FDR			74276		4 x (FDP + V1N + D24) + 2 x B1N	46		74347	BCD-to-7-Segment Decoder/Driver	4 x V1N + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P	53		Name	Function Page No.		------	---		A1A	1-bit Half Adder 3–253		A1N	1-bit Full Adder		A2N	2-bit Full Adder 3–255		A4H	4-bit Binary Full Adder with Fast Carry		BD3	Delay Cell		BD4	True Delay Buffer		BD5	Delay Cell		BD6	Delay Cell		B11	1-bit Bus Driver 3–319		B41	4-bit Bus Driver		B1N	True Buffer		C11	Non-scan Flip-flop for Counter		C41	Non-scan 4-bit Binary Asynchronous Counter		C42	Non-scan 4-bit Binary Synchronous Counter		C43	Non-scan 4-bit Binary Synchronous Up Counter		C45	Non-scan 4-bit Binary Synchronous Up Counter		C47	Non-scan 4-bit Binary Synchronous Up/Down Counter		DE2	2:4 Decoder		DE3	3:8 Decoder		DE4	2:4 Decoder with Enable		DE6	3:8 Decoder with Enable		D14	2-wide 3-AND 4-Input AOI		D23	2-wide 2-AND 3-Input AOI 3–71		D24	2-wide 2-AND 4-Input AOI		D34	3-wide 2-AND 4-Input AOI		D36	3-wide 2-AND 6-Input AOI		D44	2-wide 2-OR 2-AND 4-Input AOI		FDM	Non-scan D Flip-flop		FDN	Non-scan D Flip-flop with Set		FDO	Non-scan D Flip-flop with Reset		FDP	Non-scan D Flip-flop with Set and Reset		FDQ	Non-scan 4-bit D Flip-flop		FDR	Non-scan 4-bit D Flip-flop with Clear		FDS	Non-scan 4-bit D Flip-flop		FD2	Non-scan Power D Flip-flop		FD3	Non-scan Power D Flip-flop with Preset		FD4	Non-scan Power D Flip-flop with Clear and Preset		FD5	Non-scan Power D Flip-flop with Clear		FJD	Non-scan Positive Edge Clocked Power J-K Flip-flop with Clear		FS1	4-bit Serial-in Parallel-out Shift Register			Continued on next page		Name	Function Page No.		-------	---		FS2	4-bit Shift Register with Synchronous Load		FS3	4-bit Shift Register with Asynchronous Load		G14	2-wide 3-OR 4-Input OAI		G23	2-wide 2-OR 3-Input OAI		G24	2-wide 2-OR 4-Input OAI		G34	3-wide 2-OR 4-Input OAI		G44	3-wide 2-AND 2-OR 4-Input OAI		H6C	3-state Output (I _{OL} = 3.2 mA) and CMOS Interface Input Buffer (True)		H6CD	H6C with Pull-down Resistance		H6CF	3-state Output (I _{OL} = 8 mA) and CMOS Interface Input Buffer (True)		H6CFD	3-state Output (I _{OL} = 8 mA) and CMOS Interface Input Buffer (True) with Pull-down Resistance		H6CFU	3-state Output (I _{OI} = 8 mA) and CMOS Interface Input Buffer (True)			with Pull-up Resistance		H6CU	H6C with Pull-up Resistance		H6E	Power 3-state Output (I _{OL} = 12 mA) and CMOS Interface Input Buffer (True)		H6ED	H6E with Pull-down Resistance		H6EU	H6E with Pull-up Resistance		H6R	3-state Output (I _{OL} = 3.2 mA) and Schmitt Trigger Input Buffer (TTL type, True) 3-40		H6RD	H6R with Pull-down Resistance		H6RU	H6R with Pull-up Resistance		H6S	3-state Output (I _{OL} = 3.2 mA) and Schmitt Trigger Input Buffer (CMOS type, True) 3-40		H6SD	H6S with Pull-down Resistance		H6SU	H6S with Pull-up Resistance		H6T	3-state Output (I _{OL} = 3.2 mA) and Input Buffer (True)		H6TD	H6T with Pull-down Resistance		H6TF	3-state Output (I _{OI} = 3.2 mA) and Input Buffer (True)		H6TFD	3-state Output (I _{OL} = 3.2 mA) and Input Buffer (True) with Pull-down Resistance 3–39		H6TFU	3-state Output (I _{OL} =																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
3.2 mA) and Input Buffer (True) with Pull-up Resistance 3–38		H6TU	H6T with Pull-up Resistance		H6W	Power 3-state Output (I _{OL} = 12 mA) and Input Buffer (True)		H6WD	H6W with Pull-down Resistance		H6WU	H6W with Pull-up Resistance		H8C	3-state Output Buffer (I _{OL} = 3.2 mA) with Noise Limit Resistance and CMOS Interface Input Buffer (True)		H8CD	H8C with Pulf-down Resistance		H8CF	3-state Output (I _{OL} = 8 mA) with Noise Limit Resistance and CMOS		11001	Interface Input Buffer (True)			Continued on next page		Name	Function	Page No.		-------	--	-----------		H8CFD	3-state Output (I _{OL} = 8 mA) with Noise Limit Resistance and CMOS Interface Input Buffer (True) with Pull-down Resistance	3–423		H8CFU	3-state Output (I _{OL} = 8 mA) with Noise Limit Resistance and CMOS Interface Input Buffer (True) with Pull-up Resistance	3–422		H8CU	H8C with Pull-up Resistance			H8E	Power 3-state Output Buffer (I _{OL} = 12 mA) with Noise Limit Resistance and CMOS Interface Input Buffer (True)	3–424		H8ED	H8E with Pull-down Resistance			H8EU	H8E with Pull-up Resistance			H8E0	H8E2 with Pull-down Resistance			H8E1	H8E2 with Pull-up Resistance			H8E2	High Power 3-state Ouput (I _{OL} = 12 mA) with Noise Limit Resistance and Input Buffer (CMOS type, True)			H8R	3-state Output Buffer (I _{OL} = 3.2 mA) with Noise Limit Resistance and				Schmitt Trigger Input Buffer (TTL type, True)	3–430		H8RD	H8R with Pull-down Resistance			H8RU	H8R with Pull-up Resistance	3–431		H8S	3-state Output Buffer (I _{OL} = 3.2 mA) with Noise Limit Resistance and Schmitt Trigger Input Buffer (CMOS type, True)	3–427		H8SD	H8S with Pull-down Resistance			H8SU	H8S with Pull-up Resistance			H8T	3-state Output Buffer (I _{OL} = 3.2 mA) with Noise Limit Resistance and Input	0 420			Buffer (True)	3–409		H8TD	H8T with Pull-down Resistance			H8TF	3-state Output (I _{OL} = 8 mA) with Noise Limit Resistance and Input Buffer (True)			H8TFD	3-state Output (I _{OL} = 8 mA) with Noise Limit Resistance and Input Buffer (True) with Pull-down Resistance	3–414		H8TFU	3-state Output (I _{OL} = 8 mA) with Noise Limit Resistance and Input				Buffer (True) with Pull-up Resistance	3–413		H8TU	H8T with Pull-up Resistance			W8H	Power 3-state Output Buffer (I _{OL} = 12 mA) with Noise Limit Resistance and Input Buffer (True)			H8WD	H8W with Pull-down Resistance			H8WU	H8W with Pull-up Resistance			H8W0	H8W2 with Pull-down Resistance			H8W1	H8W2 with Pull-up Resistance			H8W2	High Power 3-state Output Buffer (I _{OL} = 12 mA) with Noise Limit			•	Resistance and Input Buffer (TTL type, True)	3–433		IKB	Clock Input Buffer (Inverter)			IKBD	IKB with Pull-down Resistance	3–337		IKBU	IKB with Pull-up Resistance	3–336			Continued on	next page		Name	Function	Page No.		------	--	----------		IKC	CMOS Interface Clock Input Buffer (Inverter)	3–338		IKCD	IKC with Pull-down Resistance	3–340		IKCU	IKC with Pull-up Resistance	3–339		ILB	Clock Input Buffer (True)	3–341		ILBD	ILB with Pull-down Resistance	3–343		ILBU	ILB with Pull-up Resistance	3–342		ILC	CMOS Interface Clock Input Buffer (Inverter)	3–344		ILCD	IKC with Pull-down Resistance	3–346		ILCU	IKC with Pull-up Resistance	3–345		I1B	Input Buffer Inverter	3–329		I1BD	I1B with Pull-down Resistance	3–331		I1BU	I1B with Pull-up Resistance	3–330		I1C	CMOS Interface Input Buffer (Inverter)	3–347		I1CD	I1C with Pull-down Resistance	3–349		I1CU	I1C with Pull-up Resistance	3–348		I1R	Schmitt Trigger Input Buffer (TTL Type, Inverter)	3–359		I1RD	I1R with Pull-down Resistance	3–361		I1RU	I1R with Pull-up Resistance	3–360		I1S	Schmitt Trigger Input Buffer (CMOS Type, Inverter)	3–353		I1SD	I1S with Pull-down Resistance	3–355		I1SU	I1S with Pull-up Resistance	3–354		I2B	Input Buffer (True)	3–332		I2BD	I2B with Pull-down Resistance	3–334		I2BU	I2B with Pull-up Resistance	3–333		I2C	CMOS Interface Input Buffer (True)	3–350		I2CD	I2C with Pull-down Resistance	3–352		I2CU	I2C with Pull-up Resistance	3–351		I2R	Schmitt Trigger Input Buffer (TTL Type, True)	3–362		I2RD	I2R with Pull-down Resistance	3–364		I2RU	I2R with Pull-up Resistance	3–363		12\$	Schmitt Trigger Input Buffer (CMOS Type, True)	3–356		I2SD	I2S with Pull-down Resistance	3–358		I2SU	I2S with Pull-up Resistance			KAB	Block Clock (OR) Buffer	3–114		KBB	Block Clock (OR x 10) Buffer	3–115		K1B	True Clock Buffer	3–109		K2B	Power Clock Buffer	3–110		КЗВ	Gated Clock (AND) Buffer	3–111		K4B	Gated Clock (OR) Buffer	3–112			Continued			Name	Function	Page No.		------	--	---------------		K5B	Gated Clock (NAND) Buffer	3–1 13		LTK	Data Latch	3–265		LTL	1-bit Data Latch with Clear	3–267		LTM	4-bit Data Latch with Clear	3–269		LT1	S-R Latch with Clear	3–272		LT4	4-bit Data Latch	3–274		MC4	4-bit Magnitude Comparator	3–315		NCB	Power 12-Input NAND	3–29		NGB	Power 16-Input NAND	3–30		N2B	Power 2-Input NAND	3–18		N2K	Power 2-Input NAND	3–19		N2N	2-Input NAND	3–17		N2P	Power 2-Input AND	3–49		N3B	Power 3-Input NAND	3–21		N3K	Power 3-input NAND	3–29		N3N	3-Input NAND	3–20		N3P	Power 3-Input AND	3–50		N4B	Power 4-Input NAND	3–24		N4K	Power 4-input NAND	3–25		N4N	4-Input NAND	3–23		N4P	Power 4-Input AND	3–51		N6B	Power 6-Input NAND	3–26		N8B	Power 8-Input NAND	3–27		N8P	Power 8-Input AND	3–52		N9B	Power 9-Input NAND	3–28		O1B	Output Buffer (I _{OL} = 8mA, Inverter)	3–365		O1BF	Output Buffer (I _{OL} = 3.2 mA, Inverter)	3–366		O1L	Power Output Buffer (IOL = 12 mA, Inverter)	3–367		O1R	Output Buffer (I _{OL} = 3.2 mA, Inverter) with Noise Limit Resistance	3–368		O1RF	Output Buffer (I _{OL} = 8 mA, Inverter) with Noise Limit Resistance	3–369		O1S	Power Output Buffer (IOL = 12 mA, Inverter) with Noise Limit Resistance	3–370		O2B	Output Buffer (I _{OL} = 3.2 mA, True)	3–371		O2BF	Output Buffer (I _{OL} = 8 mA, True)	3–372		O2L	Power Output Buffer (IOL = 12 mA, True)			O2R	Output Buffer (I _{OL} = 3.2 mA, True) with Noise Limit Resistance			O2RF	Output Buffer (I _{OL} = 8 mA, Inverter) with Noise Limit Resistance			O2S	Power Output Buffer (I _{OL} = 12 mA, True) with Noise Limit Resistance			O2S2	High Power Output Buffer (I _{OL} = 24 mA, True) with Noise Limit Resistance	3–383		O4R	3-state Output Buffer (I _{OL} = 3.2 mA, True) with Noise Limit Resistance			O4RF	3-state Output Buffer (I _{OL} = 8 mA, True) with Noise Limit Resistance				Continued or			Name	Function Pa	ige No.		------	--	---------		O4S	Power 3-state Output Buffer (I _{OL} = 12 mA, True) with Noise Limit Resistance			O4S2	High Power 3-state Output Buffer (I _{OL} = 24 mA, True) with Noise Limit Resistance	3–324		O4T	3-state Output Buffer (I _{OL} = 3.2 mA, True)			O4TF	3-state Output Buffer (I _{OL} = 3.2 mA, True)			O4W	Power 3-state Output Buffer (I _{OL} = 12 mA, True)	3–379		PE5	5-bit Even Parity Generator/Checker	3–291		PE8	8-bit Even Parity Generator/Checker			PE9	9-bit Even Parity Generator/Checker			PO5	5-bit Odd Parity Generator/Checker			PO8	8-bit Odd Parity Generator/Checker			PO9	9-bit Odd Parity Generator/Checker			P24	4-wide 2:1 Data Selector	3–297		RCB	Power 12-Input NOR	. 3–45		RGB	Power 16-Input NOR	. 3–46		R2B	Power 2-Input NOR	. 3–34		R2K	Power 2-Input NO	. 3–35		R2N	2-Input NOR	. 3–33		R2P	Power 2-Input OR	. 3–55		R3B	Power 3-Input NOR	. 3–37		R3K	Power 3-Input NOR	. 3–38		R3N	3-Input NOR	. 3–36		R3P	Power 3-Input OR	. 3–56		R4B	Power 4-Input NOR	. 3–40		R4K	Power 4-Input NOR	. 3–41		R4N	4-Input NOR	. 3–39		R4P	Power 4-Input OR	. 3–57		R6B	Power 6-Input NOR	. 3–42		R8B	Power 8-Input NOR	. 3–43		R8P	Power 8-Input OR	. 3–58		R9B	Power 9-Input NOR	. 3–44		SC7	Scan 4-bit Synchronous Binary Up Counter with Parallel Load	3-211		SC8	Scan 4-bit Synchronous Binary Down Counter with Parallel Load	3-216		SC43	Scan 4-bit Synchronous Binary Up Counter with Parallel Load	3-221		SC47	Scan 4-bit Synchronous Binary Down Counter with Parallel Load	3-225		SDA	Scan 1-Input D Flip-flop with Clock Inhibit	3-137		SDB	Scan 1-Input 4-bit D Flip-flop with Clock Inhibit			SDD	Scan 2-Input D Flip-flop with Clear, Preset, and Clock Inhibit			SDH	Scan 2-Input D Flip-flop with Clear and Clock Inhibit			SDJ	Scan 4-Input D Flip-flop with Clear and Clock Inhibit			SDK	Scan 6-Input D Flip-flop with Clear and Clock Inhibit			· ·	Continued on a			Name	Function Page No.		------	---		SFDM	Scan 1-input D Flip-flop with Clock Inhibit		SFDO	Scan 1-input D Flip-flop with Clear and Clock Inhibit		SFDP	Scan 1-input D Flip-flop with Clear, Preset, and Clock Inhibit		SFDR	Scan 4-input D Flip-flop with Clear and Clock Inhibit																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
SFDS	Scan 4-input D Flip-flop with Clock Inhibit		SFJD	Scan J-K Flip-flop with Clock Inhibit		SHA	Scan 1-Input 8-bit D Flip-flop with Clock Inhibit		SHB	Scan 1-Input 8-bit D Flip-flop with Clock Inhibit and Q Output		SHC	Scan 1-Input 8-bit D Flip-flop with Clock Inhibit and XQ Output		SHJ	Scan 8-bit D Flip-flop with Clock Inhibit and 2-to-1 Data Multiplexer		SHK	Scan 8-bit D Flip-flop with Clock Inhibit and 3-to-1 Data Multiplexer		SJH	Scan J-K Flip-flop with Clear and Clock Inhibit		SR1	Scan 4-bit Serial-in Parallel-out Shift Register		T2B	2:1 Selector		T2C	Dual 2:1 Selector 3–305		T2D	2:1 Selector 3–307		T2E	Dual 2:1 Selector 3–308		T2F	2:1 Selector 3–309		T24	Power 2-AND 4-wide Multiplexer		T26	Power 2-AND 6-wide Multiplexer		T28	Power 2-AND 8-wide Multiplexer		T32	Power 3-AND 2-wide Multiplexer		T33	Power 3-AND 3-wide Multiplexer		T34	Power 3-AND 4-wide Multiplexer		T42	Power 4-AND 2-wide Multiplexer		T43	Power 4-AND 3-wide Multiplexer		T44	Power 4-AND 4-wide Multiplexer		T54	Power 4-2-3-2 AND 4-wide Multiplexer		T5A	4:1 Selector 3–311		U24	Power 2-OR 4-wide Multiplexer		U26	Power 2-OR 6-wide Multiplexer		U28	Power 2-OR 8-wide Multiplexer		U32	Power 3-OR 2-wide Multiplexer		U33	Power 3-OR 3-wide Multiplexer		U34	Power 3-OR 4-wide Multiplexer		U42	Power 4-OR 2-wide Multiplexer		U43	Power 4-OR 3-wide Multiplexer		U44	Power 4-OR 4-wide Multiplexer		V1L	Double Power Inverter		V1N	Inverter			Continued on next page		Name	Function	Page No.		------	-----------------------------	----------		V2B	Power Inverter	3–8		V3A	1:2 Selector	3–313		V3B	Dual 1:2 Selector	3–314		X1B	Power Exclusive NOR	3–62		X1N	Exclusive NOR	3–61		X2B	Power Exclusive OR	3–64		X2N	Exclusive OR	3–63		X3B	Power 3-Input Exclusive NOR	3–66		X3N	3-Input Exclusive NOR	3–65		X4B	Power 3-Input Exclusive OR	3–68		X4N	3-Input Exclusive OR	3–67		YL2	1-bit Data Latch with TM	3–261		YL4	4-bit Data Latch with TM	3–263		Z00	0 Clip	3–323		Z01	1 Clip	3–324	### Sales Information	Page	Contents		------	--		4–3	Fujitsu Limited (Japan)		4-4	Fujitsu Microelectronics, Inc. (U.S.A.)		4–6	Fujitsu Electronic Devices Europe		4–8	Fujitsu Microelectronics Asia PTE Ltd. (Singapore)		4-9	Integrated Circuits Corporate Headquarters – Worldwide		4-10	FMI Sales Offices for North and South America		4-11	FMI Representatives – USA		4-13	FMI Representatives - Canada, Mexico, and Puerto Rico		4–14	FMI Distributors – USA		4–18	FMI Distributors - Canada		4–19	FMG Sales Offices for Europe		4-20	FMG Distributors – Europe		4-22	FMAP Sales Offices for Asia, Australia, and Oceania		4-23	FMAP Representatives - Asia, and Australia		4-24	FMAP Distributors – Asia	### Fujitsu Limited (Japan) Fujitsu Limited was founded as a telecommunications equipment manufacturer in 1935, and today is not only one of Japan's leading telecommunications companies, but also one of the world's largest computer manufacturers. This leadership has resulted, at least in part, from the superb quality of the company's semiconductors and electronic components. Manufactured by the company's Electronics Devices Operations Group, these vital electronic devices also contribute to the high reliability and performance of products made by many other manufacturers around the world. Today, Fujitsu is one of the world's top manufacturers of semiconductors and electronic components. In Japan, Fujitsu's R&D laboratories for semiconductor and electronic components are situated in Kawasaki and Mie, and manufacturing works are located in Iwate, Aizu, Wakamatsu and Suzaka. Fujitsu also has six affiliated manufacturing works in the country. Overseas facilities in the U.S, Europe, and Asia also help to meet the growing global demand for Fujitsu semiconductors and electronic components. Fujitsu enforces strict quality control at all stages of production, from materials selection through manufacturing to final testing. As a result, Fujitsu's electronic devices are known for their extremely high reliability and excellent cost-to-performance ratio. Fujitsu manufactures a full line of semiconductors and electronic components to meet the diverse applications of a wide variety of customer. Backed by Fujitsu's extensive R&D commitment equal to over 10 percent of annual sales, Fujitsu's electronic devices stay on the cutting edge of electronics technology. 4 ### Fujitsu Microelectronics, Inc. (U.S.A.) Fujitsu Microelectronics, Inc. (FMI), with headquarters in San Jose, California, was established in 1979 as a wholly-owned Fujitsu Limited subsidiary for the marketing, sales, and distribution of Fujitsu integrated circuit and component products. Since 1979, FMI has grown to three marketing divisions, two manufacturing divisions and a subsidiary. FMI offers a complete array of semiconductor products for its customers throughout North and South America. The Advanced Products Division (APD) is responsible for the complete product development cycle, from design through operations support and worldwide marketing and sales. Products are the result of both internal development and external relationships, such as joint development agreements, technology licenses, and joint ventures. The SPARC™ RISC processor was developed by both APD and Sun Microsystems, Inc. In addition to designing and selling a full line of SPARC processors and peripheral chips, APD also designed and is selling the EtherStar™ LAN controller — the first VLSI device to integrate both StarLAN™ and Ethernet® protocols into one device. The core of APD's EtherStar chip was the result of APD's cooperative venture with Ungermann-Bass. The Microwave and Optoelectronics Division (MOD) markets GaAs FETs and FET power amplifiers, lightwave and microwave devices, optical devices, emitters, and SI transistors. The largest FMI marketing division is the Integrated Circuits Division (ICD) which markets the following standard devices, components, and ASICs. ### **Memory Products** DRAMS EPROMS EEPROMS NOVRAMS CMOS masked ROMs CMOS SRAMs BiCMOS SRAMs Bipolar PROMs ECL RAMs STRAMs (self-timed RAM) Hi-Rel PROMs and SRAMs Memory cards Memory modules Continued on next page Telecommunication Products PLLs Prescalers Piezo-electric devices CODECs VCOs Telephone ICs Modems Microprocessor Products 4-bit microcontrollers DSPs Logic Products Ultra high-speed ECL/ECL TTL Translator circuits Analog Products Linear ICs **Transistors** Hybrid Products Thick- and Thin-film Custom modules Stepper motor drivers **Special Purpose Controller** **Products** SCSI controllers Serial protocol controllers Video controllers (TV text, CRT, and picture-in-picture) ASIC Products CMOS gate arrays ECL gate arrays BiCMOS gate arrays GaAs gate arrays CMOS standard cells ASIC Gallery™ (SuperMacros™, Compiled Cells) ASICOpen™ CAD Software Framework (ViewCAD™, a design and verification tool that integrates with third-party CAD tools) Third-party EWS (engineering workstation) support Customer support and customer training for ASIC products are available through the following FMI design centers: San Jose Gresham Dallas Chicago Atlanta Boston Continued on next page FMI's manufacturing divisions are in San Diego, California and Gresham, Oregon. The San Diego Manufacturing Division assembles and tests memory devices. In 1988, the Gresham Manufacturing Division began manufacturing ASIC products and DRAM memories. This facility, when completed, will have one million square feet of manufacturing—the largest Fujitsu manufacturing plant outside Japan. FMI's subsidiary, **Fujitsu Components of America**, markets connectors, keyboards, thermal printers, plasma displays, and relays. ### Fujitsu Electronic Devices Europe: Fujitsu Mikroelektronik GmbH (West Germany) Fujitsu Microelectronics Limited (U.K.) Fujitsu Microelectronics Italia S.R.L (Italy) Fujitsu Microelectronics Ireland, Ltd. (Ireland) Fujitsu Mikroelektronik GmbH (FMG) was established in June 1980 in Frankfurt, West Germany, as Fujitsu's European headquarters and is a totally owned subsidiary of Fujitsu Limited, Tokyo. Fujitsu Microelectronics Limited (FML) is a sister company based in Maidenhead, England and dedicated to serving the U.K., Ireland, and Scandanavia. Fujitsu Microelectronics Italia (FMIL) is based in Milan, Italy and serves Italy, Spain, Portugal, and the rest of Southern Europe. Together, FMG, FML, and FMIL supply the European market with a full range of semiconductors and electronic components. Sales offices are located in Munich, Frankfurt, Stuttgart, Paris, Eindhoven, Milan, Maidenhead, and Stockholm. Fujitsu Microelectronics Ireland, Ltd. (FME) was established in 1980, in Dublin, Ireland, as Fujitsu's European Assembly Center for integrated circuits. FME produces DRAMs, EPROMs, and other LSI memory products. Fujitsu has two European VLSI design centers, both in the U.K. The Manchester Design Centre, in operation since 1983, is equipped with two mainframe computers and linked by satellite to production plants in Japan and the U.S. Staffed with a team of experienced engineers, the center is involved in the design of VLSI standard products, Super Macros, CAD tools and ASICs. In 1990, a second design center was set up in London to deal mainly with the design of telecommunication ICs and mixed analog/digital devices. ### **Fujitsu Worldwide Locations** Fujitsu also boasts a Euro-wide network of ASIC design centers that are located in Stockholm, Copenhagen, Maidenhead, Paris(2), Eindhoven(2), Frankfurt, Munich(2), Zurich, Milan, and Madrid. Fujitsu has further demonstrated its commitment to the European market by announcing the setting up of a full																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
wafer fabrication plant in Newton Aycliffe in the North of England. The new plant is due to start production of 4 megabyte DRAMs and ASICs in 1991. The range of semiconductor products offered by FMG, FML, and FMIL for the European market includes: Memory Products DRAMS SRAMS EPROMS EEPROMS Mask ROMS Bipolar PROMS Video RAMS ECL RAMS Memory modules Memory cards **ASIC Products** CMOS gate arrays BiCMOS gate arrays Bipolar (ECL) gate arrays Gallium Arsenide gate arrays CMOS standard cells ECL gate masterslice devices Wide range of ASIC design software **Microprocessor Products** 4-Bit Microcontrollers 4- 8- and 16-bit F²MC™ flexible Microcontrollers 32-Bit SPARC™ RISC microprocessors 32-Bit GMICRO™ TRON-based CISC microprocessors Hybrid ICs SCSI controllers **Telecommunication Products** Prescalers PLLs CODECs LAN devices ISDN products Piezo-electric devices The range of electronic components offered by FMG, FML, and FMIL is comprised of relays, connectors, keyboards, thermal printers, and plasma displays. ### **Fujitsu Worldwide Locations** ### Fujitsu Microelectronics Asia PTE Ltd. (Singapore) Fujitsu Microelectronics Asia PTE Ltd. (FMAP) opened in August 1986, in Hong Kong, as a wholly-owned Fujitsu subsidiary for sales of electronic devices to the Asian, Australian, and Southwest Pacific markets. In 1990, FMAP moved to a new location in Singapore. FMAP offers memory, ASIC, microprocessor, and telecommunication products along with Fujitsu's wide range of electronic components. SPAROTM is a trademark of Sun Microsystems, Inc. Etherneft* is a registered trademark of Xerox Corporation. EtherStarTM is a trademark of Puljitsu Microelectronics, Inc. Start.ANITM is a trademark of AT&T. Genoro ITM is a trademark of Hitlach SuperMacroTM is a trademark of Fujitsu Microelectronics, Inc. ASICOpen ITM is a trademark of Fujitsu Microelectronics, Inc. ViewCADTM is a trademark of Fujitsu Microelectronics, Inc. ### Integrated Circuits Corporate Headquarters — Worldwide ### International Corporate Headquarters **FUJITSU LIMITED** Marunouchi Headquarters 6–1, Marunouchi 1–chome Chiyoda–ku, Tokyo 100 Japan Tel: (03) 216-3211 Telex: 781-22833 FAX: (03) 213-7174 For integrated circuits marketing information please contact the following: ### **Headquarters for Japan** ### **FUJITSU LIMITED** Integrated Circuits and Semiconductor Marketing Furukawa Sogo Bldg. 6-1, Marunouchi 2-chome Chiyoda-ku, Tokyo 100 Japan Tel: (03) 216-3211 Telex: 781–2224361 FAX: (03) 211-3987 ### **Headquarters for North and South America** FUJITSU MICROELECTRONICS, INC. Integrated Circuits Division 3545 North First Street San Jose, CA 95134–1804 USA Tel: (408) 922–9000 Telex: 910-338-0190 FAX: (408) 432-9044 ### **Headquarters for Europe** FUJITSU MIKROELEKTRONIK GmbH Lyoner Strasse 44–48 Arabella Centre 9. OG 6000 Frankfurt 71 Federal Republic of Germany Tel: (69) 66320 Telex: 441963 FAX: (69) 6632122 ### Headquarters for Asia, Australia and Oceanian FUJITSU MICROELECTRONICS ASIA PTE LIMITED 06-04/06-07 Plaza by the Park No. 52 Bras Basah Road Singapore 0718 Tel: (65) 336-1600 Telex: 55573 FAX: (65) 336–1609 ## Fujitsu Microelectronics, Inc. (FMI) Sales Offices for North and South America #### NORTHERN CALIFORNIA Fujitsu Microelectronics, Inc. 10600 N. De Anza Blvd. Suite 225 Cupertino, CA 95014 Tel: (408) 996–1600 FAX: (408) 725–8746 ### **SOUTHERN CALIFORNIA** Fujitsu Microelectronics, Inc. Century Centre 2603 Main Street Suite 510 Irvine, CA 92714 Tel: (714) 724–8777 FAX: (714) 724–8778 ### COLORADO (Denver) Fujitsu Microelectronics, Inc. 5445 DTC Parkway Suite 300 Englewood, CO 80111 Tel: (303) 740–8880 FAX: (303) 740–8988 #### **GEORGIA** (Atlanta) Fujitsu Microelectronics, Inc. 3500 Parkway Lane Suite 210 Norcross, GA 30092 Tel: (404) 449–8539 FAX: (404) 441–2016 ### ILLINOIS (Chicago) Fujitsu Microelectronics, Inc. One Pierce Place Suite 910 Itasca, IL 60143–2681 Tel: (708) 250–8580 FAX: (708) 250–8591 ### MASSACHUSETTS (Boston) Fujitsu Microelectronics, Inc. 75 Wells Avenue Suite 5 Newton Center, MA 02159–3251 Tel: (617) 964–7080 FAX: (617) 964–3301 ## MINNESOTA (Minneapolis) Fujitsu Microelectronics, Inc. 3460 Washington Drive Suite 209 Eagan, MN 55122–1303 Tel: (612) 454–0323 FAX: (612) 454–0601 ## NEW JERSEY (Mt. Laurel) Fujitsu Microelectronics, Inc. Horizon Corporate Center 3000 Atrium Way Suite 100 Mt. Laurel, NJ 08054 Tel: (609) 727–9700 FAX: (609) 727–9797 ### **NEW YORK (Long Island)** Fujitsu Microelectronics, Inc. 601 Veterans Memorial Highway Suite P Hauppauge, NY 11788–1054 Tel: (516) 361–6565 FAX: (516) 361–6480 ### OREGON (Portland) Fujitsu Microelectronics, Inc. 15220 NW Greenbrier Pkwy. Suite 360 Beaverton, OR 97006 Tel: (503) 690–1909 FAX: (503) 690–8074 ### **TEXAS (Dallas)** Fujitsu Microelectronics, Inc. 14785 Preston Road Suite 670 Dallas, TX 75240 Tel: (214) 233–9394 FAX: (214) 386–7917 ### FMI Representatives — USA For product information, contact your nearest Representative. #### Alabama The Novus Group, Inc. 2905 Westcorp Blvd. Suite 120 Huntsville, AL 35805 Tel: (205) 534–0044 FAX: (205) 534–0186 #### Arizona Aztech Component Sales Inc. 15230 N 75th Street Suite 1031 Scottsdale, AZ 85260 Tel: (602) 991–6300 FAX: (602) 991–0563 #### California Harvey King, Inc. 6393 Nancy Ridge Drive San Diego, CA 92121 Tel: (619) 587–9300 FAX: (619) 587–0507 Infinity Sales, Inc. 4500 Campus Drive Suite 300 Newport Beach, CA 92660 Tel: (714) 833–0300 FAX: (714) 833–0303 Norcomp 3350 Scott Blvd., Suite 24 Santa Clara, CA 95054 Tel: (408) 727-7707 FAX: (408) 986-1947 Norcomp 2140 Professional Drive Suite 200 Roseville, CA 95661 Tel: (916) 782–8070 FAX: (916) 782–8073 Sonika Electronica of America 925 Hale Place Suite A-8 Chula Vista, CA 92013 Tel: (619) 482-8700 FAX: (619) 482-7598 #### Connecticut Conntech Sales, Inc. 605 Washington Avenue Suite 33 New Haven, CT 06473 Tel: (203) 234–0577 FAX: (203) 234–0576 ### Florida Semtronic Associates, Inc. 657 Maitland Avenue Altamonte Springs, FL 32701 Tel: (407) 831–8233 FAX: (407) 831–2844 Semtronic Associates, Inc. 1467 S. Missouri Avenue Clearwater, FL 33516 Tel: (813) 461–4675 FAX: (813) 442–2234 Semtronic Associates, Inc. 3471 NW 55th Street Ft. Lauderdale, FL 33309 Tel: (305) 731–2484 FAX: (305) 731–1019 #### Georgia The Novus Group, Inc. 6115-A Oakbrook Pkwy Norcross, GA 30093 Tel: (404) 263–0320 FAX: (404) 263–8946 ### Idaho Intermountain Technical Marketing 1406 E. First Street Suite 101 Meridan, ID 83642 Tel: (208) 888–6071 FAX: (208) 888 6074 ### Illinois Beta Technology 1009 Hawthorne Drive Itasca, IL 60143 Tel: (708) 256–9586 FAX: (708) 256–9592 #### Indiana Fred Dorsey & Associates 3518 Eden Place Carmel, IN 46032 Tel: (317) 844–4842 FAX: (317) 844–4843 #### lowa Electromec Sales Executive Plaza 4403 First Avenue, S.E. Suite 302 Cedar Rapids, IA 52402 Tel: (319) 393–1637 FAX: (319) 393–1752 #### Kansas Rothkopf & Associates, Inc. 1948 E. Santa Fe Suite H Olathe, KS 66062 Tel: (913) 829–8897 FAX: (913) 829–1664 ### Kentucky Spectro-Com 303 UHL Road Melbourne, KY 41059 Tel: (606) 781–3904 ### Maryland Arbotek Associates 1404 E. Joppa Road Towson, MD 21204 Tel: (301) 825–0775 FAX: (301) 337–2781 ### Massachusetts Mill-Bern Associates 2 Mack Road Woburn, MA 01801 Tel: (617) 932-3311 FAX: (617) 932-0511 ### FMI Representatives — USA (Continued) ### Michigan Greiner Associates, Inc. 15324 E. Jefferson Avenue Suite 12 Grosse Point Park, MI 48230 Tel: (313) 499–0188 FAX: (313) 499–0665 #### Minnesota Electromec Sales 1601 E. Highway 13 Suite 200 Burnsville, MN 55337 Tel: (612) 894–8200 FAX: (612) 894–9352 #### Missouri Rothkopf & Associates, Inc. 8721 Manchester Road St. Louis, MO 63144 Tel: (314) 961–4485 FAX: (314) 961–4736 ### **New Jersey** BGR Associates Evesham Commons 525 Route 73 Suite 100 Marlton, NJ 08053 Tel: (609) 983–1020 FAX: (609) 983–1879 Technical Applications & Marketing 91 Clinton Road Suite 1D Fairfield, NJ 07006 Tel: (201) 575–4130 FAX: (201) 575–4563 ### **New York** Quality Components 3343 Harlem Road Buffalo, NY 14225 Tel: (716) 837–5430 FAX: (716) 837–0662 Quality Components 116 Fayette Street Manlius, NY 13104 Tel: (315) 682–8885 FAX: (315) 682–2277 Quality Components 2318 Titus Ave. Rochester, NY 14622 Tel: (716) 342–7229 FAX: (716) 342–7227 ### **North Carolina** The Novus Group, Inc. 1026 Commonwealth Court Cary, NC 27511 Tel: (919) 460-7771 FAX: (919) 460-5703 #### Ohio Spectro-Com 3809 Wilmington Pike Suite 209 Kettering, OH 45429 Tel: (513) 299–0864 FAX: (513) 299–0865 Spectro-Com 8925 Galloway Trail Novelty, OH 44072 Tel: (216) 338–5226 FAX: (216) 338–3214 #### Oregon L-Squared Limited 15234 NW Greenbrier Pkwy Beaverton, OR 97006 Tel: (503) 629-8555 FAX: (503) 645-6196 ### Texas Technical Marketing, Inc. 3320 Wiley Post Road Carrollton, TX 75006 Tel: (214) 387–3601 FAX: (214) 387–3605 Technical Marketing, Inc. 2901 Wilcrest Drive Suite 139 Houston, TX 77042 Tel: (713) 783–4497 FAX: (713) 783–5307 Technical Marketing, Inc. 1315 Sam Bass Circle Suite B–3 Round Rock, TX 78681 Tel: (512) 244–2291 FAX: (512) 338–1596 #### Utah Wasatch Representatives 5282 S. 320 West Suite D-100 Salt Lake City, UT 84107 Tel: (801) 265-0286 FAX: (801) 268-6315 ### Washington L-Squared Limited 105 Central Way Suite 203 Kirkland, WA 98033 Tel: (206) 827–8555 FAX: (206) 828–6102 ### Wisconsin Beta Technology 9401 W Beloit Street Suite 304C Milwaukee, WI 53227 Tel: (414) 543–6609 FAX: (414) 543–9288 ## Δ ### FMI Representatives — Canada, Mexico and Puerto Rico ### Canada Pipe-Thompson Limited 5468 Dundas Street W. Suite 206 Islington, Ontario M9B 6E3 Tel: (416) 236–2355 FAX: (416) 236–3387 Pipe-Thompson Limited BP2 North Gover Pipe-Thompson Limited RR2 North Gower Ottawa, Ontario K0Z 2T0 Tel: (613) 258–4067 FAX: (613) 258–7649 ### Mexico Solano Electronica (Sonika) Ermita 1039-10 Colonia Chapalita Guadalajara, JAL. 45042 Tel: (52) 3647-4250 FAX: (52) 3647-3433 Solano Electronics, S.A. De C.V. Cienfuego #651-A 07300 Mexico City, D.F. FAX: (52) 5586-8443 ### **Puerto Rico** Semtronic
Associates Mercantil Plaza Building Suite 816 Hato Rey, Puerto Rico 00918 Tel: (809) 766–0700 ### FMI Distributors — USA ### Alabama Marshall Industries 3313 S. Memorial Highway Suite 150 Huntsville, AL 35801 (205) 881–9235 Repton Electronics 4950 Corporate Drive Suite 105C Huntsville, AL 35805 (205) 722–9565 ### Arizona Insight Electronics 1515 W. University Drive Suite 103 Tempe, AZ 85281 (602) 829–1800 Marshall Industries 9830 S. 51st Street Suite B121 Phoenix, AZ 85044 (602) 496–0290 ### California Bell Microproducts 18350 Mt. Langley Suite 207 Fountain Valley, CA 92708 (714) 963–0667 Bell Microproducts 550 Sycamore Drive Milpitas, CA 95035 (408) 434–1150 Insight Electronics 28035 Dorothy Drive Suite 2 Agoura, CA 91301 (818) 707–2100 Insight Electronics 15635 Alton Parkway Suite 120 Irvine, CA 92718 (714) 727-2111 Insight Electronics 6885 Flanders Drive Suite C San Diego, CA 92126 (619) 587–9757 Marshall Industries 9710 Desoto Ave. Chatsworth, CA 91311 (818) 407–4100 Marshall Industries 9320 Telstar Ave. El Monte, CA 91731 (818) 307-6094 Marshall Industries One Morgan Irvine, CA 92718 (714) 458–5308 Marshall Industries 336 Los Coches Street Milpitas, CA 95035 (408) 942–4600 Marshall Industries 3039 Kilgore Ave. Suite 140 Rancho Cordova, CA 95670 (916) 635–9700 Marshall Industries 10105 Carroll Canyon Road San Diego, CA 92131 (619) 578–9600 Merit Electronics 2070 Ringwood Avenue San Jose, CA 95131 (408) 434–0800 Micro Gensis, Inc. 2880 Lakeside Drive Suite 101 Santa Clara, CA 95054 (408) 727–5050 Milgray Electronics 912 Pancho Road Suite C Camarillo, CA 93010 (805) 484–4055 Milgray Electronics 16 Technology Drive Irvine, CA 92718 (714) 753–1282 Western Microtechnology 28720 Roadside Dr. Suite 175 Agoura Hills, CA 91301 (818) 356-0180 Western Microtechnology 1637 North Brian 1637 North Brian Orange, CA 92667 (714) 637–0200 Western Microtechnology 6837 Nancy Ridge Drive San Diego, CA 92121 (619) 453–8430 Western Microtechnology 12900 Saratoga Ave. Saratoga, CA 95070 (408) 725–1660 ### Colorado Marshall Industries 12351 N. Grant Road Suite A Thornton, CO 80241 (303) 451–8383 ### Connecticut Marshall Industries 20 Sterling Drive Wallingford, CT 06492 (203) 265–3822 Milgray Electronics 326 W. Main Street Milford, CT 06460 (203) 878–5538 ### Florida Marshall Industries 380 S. Northlake Blvd Suite 1024 Altamonte Springs, FL 32701 (407) 767–8585 Marshall Industries 2700 W. Cypress Creek Rd. Suite D 114 Ft. Lauderdale, FL 33309 (305) 977–4880 Marshall Industries 2840 Sherer Drive St. Petersburg, FL 33716 (813) 573–1399 Milgray Electronics 1850 Lee Road Suite 104 Winter Park, FL 32789 (407) 647–5747 Reptron Electronics 3320 N.W. 53rd Street Suite 206 Ft. Lauderdale, FL 33309 (305) 735–1112 Reptron Electronics 14501 McCormick Drive Tampa, FL 33626 (813) 855–4656 ### FMI Distributors — USA (Continued) ### Georgia Marshall Industries 5300 Oakbrook Pkwy Suite 140 Norcross, GA 30093 (404) 923–5750 Milgray Electronics 3000 Northwoods Parkway Suite 270 Norcross, GA 30071 (404) 446–9777 Reptron Electronics 3040 H Business Park Drive Norcross, GA 30071 (404) 446–1300 ### Illinois Classic Components 3336 Commercial Ave. Northbrook, IL 60062 (312) 272–9650 50 E. Commerce Dr. Suite I Schaumburg, IL 60173 (312) 490–0155 Marshall Industries Milgray Electronics 1530 E. Dundee Road Suite 310 Palatine, IL 60067 (708) 202–1900 Reptron Electronics 1000 E. State Hwy Suite K Schaumburg, IL 60173 (312) 882–1700 #### Indiana Marshall Industries 6990 Corporate Drive Indianapolis, IN 46278 (317) 297–0483 #### Kansas Marshall Industries 10413 W. 84th Terrace Lenexa, KS 66214 (913) 492–3121 Milgray Electronics 6400 Glenwood Suite 313 Overland Park, KS 66202 (913) 236–8800 ### Maryland Marshall Industries 2221 Broadbirch Suite G Silver Springs, MD 20910 (301) 622–1118 Milgray Electronics 9801 Broken Land Parkway Columbia, MD 21045 (301) 995–6169 Vantage Components, Inc. 6925-R Oakland Mills Road Columbia, MD 21045 (301) 720-5100 ### Massachusetts Bell Microproducts 16 Upton Drive Wilmington, MA 01887 (508) 658–0222 Interface Electronic Corp. 228 South Street Hopkinton, MA 01748 (508) 435–6858 Marshall Industries 33 Upton Drive Wilmington, MA 01887 (508) 658–0810 Milgray Electronics 187 Ballardvale Street Wilmington, MA 01887 (508) 657–5900 Vantage Components, Inc. 200 Bulfinch Drive Andover, MA 01810 (508) 687-3900 Western Microtechnology 20 Blanchard Road 9 Corporate Place Burlington, MA 01803 (617) 273–2800 ### Michigan Marshall Industries 31067 Schoolcraft Road Livonia, MI 48150 (313) 525–5850 Reptron Electronics 34403 Glendale Livonia, MI 48150 (313) 525–2700 Reptron Electronics 34403 Glendale Livonia, MI 48150 (313) 525–2700 ### Minnesota Marshall Industries 3955 Annapolis Lane Plymouth, MN 55447 (612) 559–2211 Reptron Electronics 5929 Baker Road Suite 360 Minnetonka, MN 55345 (612) 938–3995 ### Missouri Marshall Industries 3377 Hollenberg Drive Bridgeton, MO 63044 (314) 291–4650 ### **New Jersey** Marshall Industries 101 Fairfield Road Fairfield, NJ 07006 (201) 882-0320 Marshall Industries 158 Gaither Drive Mt. Laurel, NJ 08054 (609) 234–9100 Milgray Electronics 3001 Greentree Exec. Campus Suite C Marlton, NJ 08053 (609) 983–5010 Milgray Electronics 1055 Parsippany Blvd. Parsippany, NJ 07054 (201) 335–1766 Vantage Components, Inc. 23 Sebago Street P.O. Box 2939 Clifton, NJ 07013 (201) 777–4100 Western Microtechnology, Inc. 387 Passaic Avenue Fairfield, NJ 07006 (201) 882-4999 ### FMI Distributors — USA (Continued) ### New York Marshall Industries 275 Oser Avenue Hauppauge, NY 11788 (516) 273–2424 Marshall Industries 129 Brown Street Johnson City, NY 13790 (607) 798–1611 Marshall Industries 1250 Scottsville Road Rochester, NY 14624 (716) 235–7620 Mast Distributors 710-2 Union Parkway Ronkonkoma, NY 11779 (516) 471-4422 #### **New York** Micro Genesis 90--10 Colin Drive Holbrook, NY 11741 (516) 472-6000 Milgray Electronics 77 Schmitt Blvd. Farmingdale, NY 11735 (516) 420–9800 Milgray Electronics 1170 Pittsford Victor Road Pittsford, NY 14534 (716) 381-9700 Vantage Components, Inc. 1056 West Jericho Turnpike Smithtown, NY 11787 (516) 543–2000 ### North Carolina Marshall Industries 5224 Greens Dairy Road Raleigh, NC 27604 (919) 878–9882 Reptron Electronics 5954-A Six Fork Road Raleigh, NC 27609 (919) 870-5189 #### Ohio Marshall Industries 3520 Park Center Drive Dayton, OH 45414 (513) 898-4480 Marshall Industries 30700 Bain Bridge Road Unit A Solon, OH 44139 (216) 248-1788 Milgray Electronics 6155 Rockside Road Cleveland, OH 44131 (216) 447–1520 Reptron Electronics 404 E. Wilson Bridge Road Suite A Worthington, OH 43085 (614) 436–6675 ### Oklahoma Radio Inc. 1000 South Main Tulsa, OK 74119 (918) 587–9123 ### Oregon Marshall Industries 9705 S.W. Gemin Drive Beaverton, OR 97005 (503) 644–5050 Western Microtechnology 1800 N.W. 169th Place Suite B300 Beaverton, OR 97006 (503) 629–2082 ### Pennsylvania Interface Electronic Corp. 7 Great Valley Parkway Malvern, PA 19355 (215) 889-2060 Marshall Industries 701 Alpha Drive Pittsburg, PA 15237 (412) 788–0441 ### Texas Insight Electronics, Inc. 1778 Plano Road Suite 320 Richardson, TX 75081 (214) 783–0800 Marshall Industries 8504 Cross Park Drive Austin, TX 78754 (512) 837–1991 Marshall Industries 2045 Chenault Carrollton, TX 75006 (214) 233-5200 Marshall Industries 1200 Barranca Bldg. 5, Suite A El Paso, TX 79935 (915) 593–0706 Marshall Industries 2635 South Highway 77 Harlingen, TX 78550 (512) 421-4621 Milgray Electronics 16610 N. Dallas Pkwy Suite 1300 Dallas, TX 75248 (214) 248–1603 Western Microtechnology, Inc. 2545 Tarpley Road Suite 151 Dallas, TX 75006 (214) 416–0103 Western Microtechnology, Inc. 2500 Wilcrest, 3rd Floor Houston, TX 77042 (713) 954-4850 #### litah Marshall Industries 466 Lawndale Drive Suite C Salt Lake City, UT 84115 (801) 485–1551 Milgray Electronics 4190 S. Highland Drive Suite 102 Salt Lake City, UT 84124 (801) 272–4999 #### Washington Insight Electronics, Inc. 12002 115th Avenue, NE Kirkland, WA 98034 (206) 820-8100 Marshall Industries 11715 N. Creek Parkway Suite 112 Bothwell, WA 9801 (206) 486–5747 ### FMI Distributors — USA (Continued) Washington (Continued) Western Microtechnology 14636 N.E. 95th Street Redmond, WA 98052 Marsh Electronics 1563 S. 101st Street Milwaukee, WI 53214 (414) 475–6000 Marshall Industries 20900 Swenson Drive Suite 150 Waukesha, WI 53186 (414) 797–8400 ### (206) 881-6737 Wisconsin Classic Components 2925 S. 160th Street New Berlin, WI 53151 (414) 786–5300 ### FMI Distributors — Canada ### **British Columbia** ITT Industries 3455 Gardner Court Burnaby, B.C. V5G 4J7 (604) 291–8866 Active Components 1695 Boundry Road Vancouver, BC. V5K 4X7 (604) 294–1166 ### Ontario ITT Industries 300 North Rivermede Road Concord, ON L4K 2Z4 (416) 736–1114 Marshall Industries 4 Paget Road Units 10 & 11 Bramton, ON L6T 5G3 (416) 458–8046 Milgray Electronics 150 Consumers Road Suite 502 Willowdale, ON M2J 4R4 (416) 756–4481 ### Quebec Marshall Industries 148 Brunswick Blvd. Pointe Claire, QU H9R 5P9 (514) 683–9440 Active Components 237 Hymus Blvd. Point Claire, QU H9R 5CF (514) 694–7710 ### Fujitsu Electronic Devices Europe* Sales Offices for Europe ### FMG - Benelux Fujitsu Mikroelektronik, GmbH Europalaan 26A 5623 LJ Eindhoven The Netherlands Tel: (40) 447440 Telex: 59265 FAX: (40) 444158 ### FMG - France Fujitsu Mikroelektronic GmbH Immeuble le Trident 3-5, voie Félix Eboué 94024 Creteil Cedex Tel: (1) 42078200 Telex: 262861 FAX: (1) 42077933 ### FMG - West Germany (North) Fujitsu Mikroelektronik GmbH Lyoner Strasse 44–48 Arabella Center 9. OG 6000 Frankfurt 71 Tel: (69) 66320 Telex: 411963 FAX: (69) 6632122 ## FMG – West Germany (Southwest) Fuiltsu Mikroelektronik GmbH Fujitsu Mikroelektronik Gm Am Joachimsberg 10–12 7033 Herrenberg Tel: (7032) 4085 Telex: 7265485 FAX: (7032) 4088 ### FMG - West Germany (South) Fujitsu Mikroelektronik GmbH Carl-Zeiss-Ring 11 8045 Ismaning Tel: (89) 9609440 Telex: (17) 897446 FAX: (89) 96094422 ### FMIL - Italy Fujitsu
Microelectronics Italia S.R.L. Centro Direzionale Milanofiori Strada 4 – Palazzo A/2 20094 Assago (Milano) Tel: (2) 8246170/176 Telex: 318546 FAX: (2) 8246189 ### FML - Scandinavia Fujitsu Microelectronics Ltd. Torggatan 8 17154 Solna Sweden Tel: (8) 7646365 Telex: 13411 FAX: (8) 280345 ### FML - United Kingdom Fujitsu Microelectronics Ltd. Hargrave House Belmont Road Maidenhead Berkshire SL6 6NE England Tel: (628) 76100 Telex: 848955 FAX: (628) 781484 *Fujitsu Mikroelektronik, GmbH (FMG) Fujitsu Microelectronics, Ltd. (FML) Fujitsu Microelectronic Italia S.R.L. (FMIL) ### FMG, FML and FMIL Distributors — Europe #### Austria Eljapex Handelsges mbH Eitnergasse 6 1232 Wien Tel: (222) 861531 Telex: 112344 FAX: (222) 863211200 MHV/EBV Elektronik Diefenbachgasse 35/6 1150 Wien Tel: (222) 838519 Telex: 134946 FAX: (222) 838530 ### Belgium Eriat SA Parc Industrial des Hauts-Sarts Rue de l'Abbaye 4400 Herstal Tel: (41) 640605 FAX: (41) 640642 MHV/EBV Elektronik Excelsiorlaan 35/ Avenue Excelsior 35 1930 Zaventem Tel: (2) 7209936 Telex: 62590 FAX: (2) 7208152 #### Denmark Nordisk Elektronik AS Transformervej 17 2730 Herlev Tel: (42) 842000 Telex: 35200 FAX: (44) 921552 Aspecs OY Myyrmaentie 2 A 01600 Vantaa Tel: (90) 5668686 FAX: (0) 5666051 ### **Finland** Aspecs OY Myyrmaentie 2 A 01600 Vantaa Tel: (0)5668686 FAX: (0)5666051 #### France F2S Immeuble des Lys 3, rue Francois Geoffre 78190 Trappes Tel: (1) 30571854 Telex: 689423 FAX: (1) 30573230 Microram 6, rue le Corbusier Silic 424 94583 Rungis Cedex Tel: (1) 46868170 Telex: 204674 FAX: (1) 45605549 ### Germany Eljapex GmbH Felsenauerstr. 18 7890 Waldshut-Tiengen Tel: (7751) 2035 Telex: (7751) 6603 Micro Halbleiter GmbH Jägerweg 10 8012 Ottobrunn Tel: (89) 6096068 Telex: 5213807 FAX: (89) 6093758 ### Italy Unidis Group Bologna Malpassi S.R.L. Via Baravelli, 1 40012 Calderara di Reno (Bologna) Tel: (51) 727252 Telex: 583118 FAX: (51) 727515 ### The Netherlands MHV/EBV Elektronik Planetenbaan 2 3606 AK Maarssenbroek Tel: (3465) 60791 Telex: 76089 FAX: (3465) 64277 P & T Electronics b.v. P.O. Box 329 2908 AH Capelle a/d Lissel Tel: (10) 4501444 Telex: 26096 FAX: (10) 4507092 #### Norway Odin Electronics AS Postboks 72 Edv. Griegsvei 2 1472 Fjellhamar Tel: (2) 703730 Telex: 19732 FAX: (2) 700310 ### Portugal Niposom J. Nabais LDA Rua Humberto Cruz 4 1900 Lisboa Tel: (1) 894637 Telex: 14028 FAX: (1) 809517 ### Republic of Ireland FAX: (61) 363141 Allied Semiconductors International Ltd. Unit 1 Distribution Park Shannon Industrial Estate Shannon Co. Clare Tel: (61) 61777 Telex: 70358 ### FMG, FML and FMIL Distributors — Europe (Continued) ### Spain Comelta S.A. Pedro IV-84, 5° PI 08005 Barcelona Tel: (3) 3007712 Telex: 51934 FAX: (3) 3005156 Comelta S.A. Emilio Munoz 41 Nave 1–1–2 28037 Madrid Tel: (1) 7543001 Telex: 42007 FAX: (1) 7542151 ### Sweden Martinsson Elektronik AB Instrumentvägen 16 P.O. Box 9060 12609 Hagersten Tel: (8) 7440300 Telex: 13077 FAX: (8) 7443403 ### Switzerland Eljapex AG Hardstrasse 72 5430 Wettingen Tel: (56) 275777 Telex: 826300 FAX: (56) 261486 ### United Kingdom Hawke Component Distribution Amotex House 45 Hanworth Road Sunbury on Thames Middlesex TW16 5DA TW16 5DA Tel: (1) 9797799 Telex: 923592 FAX: (9327) 87333 Pronto Electronic Systems Ltd. City Gate House 399/425 Eastern Avenue Gants Hills Essex IG2 6LR Tel: (15) 546222 Telex: 8954213 FAX: (15) 183222 # Fujitsu Microelectronics Asia PTE Limited (FMAP) Sales Offices for Asia, Australia and Oceania ### Taiwan Fujitsu Microelectronics Pacific Asia TW Branch Ltd. 1906 No. 333 Keelung Road Sec. 1 Taipei 10548 Taiwan, Republic of China Tel: (02) 757–6548 Telex: 17312 FMPTPI FAX: (02) 757–6571 ### Singapore Fujitsu Electronics PTE Ltd. #06-04/07 Plaza by the Park 51 Bras Basah Road Singapore 0718 Tel: (65) 336-1600 Telex: 55573 FESPL FAX: 336-1609 ### Hong Kong Fujitsu Microelectronics Pacific Asia Ltd. 616–617, Tower B New Mandarin Plaza 14 Science Museum Road Tst East, Kowloon Hong Kong Tel: 7230393 FAX: 7216555 ### FMAP Representatives — Asia and Australia ### Australia Pacific Microelectronics PTY Ltd. Unit A20, Central Park 4 Central Avenue P.O. Box 189 Thornleigh NSW 2120 Australia Tel: (02) 481–0065 Telex: 24844460 FAX: (02) 484-4460 ### Korea KML Corporation 3/F Bangbae Station Bldg. 981–15 Bangbae 3–Dong Shucho-gu, Seoul, Korea Tel: 0(2) 588–2011 Telex: K25981 KMLCORP FAX: (02) 588–2017 ### FMAP Distributors — Asia ### Hong Kong Famint (HK) Ltd. Room 1502,15/F No. 111 Leighton Road Causeway Bay, Hong Kong Tel: 5760130 / 5760146 FAX: 5765619 Mobicon Electronic Supplies Company Basement B10–14, Sino Centre 582–592 Nathan Road Mongkok, Kowleen Hong Kong Tel: 7801150 / 7801139 FAX: 7702472 ### Singapore Cony Electronics (S) PTE Ltd. 10 Jalan Besar 03–25 Sim Lim Tower Singapore 0820 Tel: 296–2111 Telex: CONY RS34808 FAX: 296–0339 #### Taiwan Eplus Corporation Ltd. 2F-2, No. 2, Lane 253 Sec. 1, Fu Hsing S. Road Taipei Taiwan Tel. 027548038 FAX: 027063617 Faimint (Taiwan) Co., Ltd. Room 113, 10/F No. 246, Sec. 2 Chang An East Road Taipei Taiwan Tel. 025040822 FAX: 025051963 - Design Information - UHB Series Unit Cell Library - CG10 Series Unit Cell Library - Sales Information ### **FUJITSU LIMITED** Marunouchi Headquarters 6-1, Marunouchi 1-chome Chiyoda-ku, Tokyo 100, Japan Tel: (03) 216-3211 Telex: 781-22833 FAX: (03) 213-7174 For further information, please contact: ### Japan FUJITSU LIMITED Integrated Circuits and Semiconductor Marketing Furukawa Sogo Bldg. 6-1, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Tel: (03) 216-3211 Telex: 781-2224361 FAX: (03) 211-3987 ### Europe FUJITSU MIKROELEKTRONIK GmbH Lyoner Strasse 44-48 Arabella Centre 9. 0G D-6000 Frankfurt 71 Federal Republic of Germany Tel: (49) (069) 66320 Telex: 441-963 FAX: (069) 663-2122 ### Asia FUJITSU MICROELECTRONICS ASIA PTE. LTD. 06-04/06-07 Plaza By the Park No. 52 Bras Basah Road Singapore 0718 Tel: (65) 336-1600 Telex: 55573 FAX: (65) 336-1609 ### North and South America FUJITSU MICROELECTRONICS, INC. Integrated Circuits Division 3545 North First Street San Jose, CA 95134-1804 USA Tel: (408) 922-9000 Telex: 910-338-0190 FAX: (408) 432-9044