

P.O. Box 880 A Mountain View, California

Attn: Distribution Services

TTL/MONOSTABLE 9600 RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

DESCRIPT!ON – The TTL/Monostable 9600 Retriggerable, Resettable Monostable Multivibrator provides an output pulse whose duration and accuracy is a function of external timing components. The 9600 has excellent immunity to noise on the V_{CC} and ground lines. The 9600 uses TTL for high speed and high fanout capability and is compatible with all members of the Fairchild TTL family

- 74 ns TO ∞ OUTPUT PULSE WIDTH RANGE
- RETRIGGERABLE 0 TO 100% DUTY CYCLE
- RESETTABLE
- TTL INPUT GATING LEADING OR TRAILING EDGE TRIGGERING
- COMPLEMENTARY TTL OUTPUTS
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- IMPROVED PULSE WIDTH TEMPERATURE STABILITY

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Pin Potential to Ground (See Note 1) Input Voltage (dc) (See Note 2) Input Current (See Note 2) Voltage Applied to Output When Output is HIGH Current Into Output When Output is LOW

-65°C to +150°C -55°C to +125°C -0.5 V to +8.0 V -0.5 V to +5.5 V -30 mA to +5.0 mA -0.5 V to +V_{CC} value 50 mA

NOTES:

- (1) The maximum V_{CC} value of 8.0 volts is not the primary factor in determining the maximum V_{CC} which may be applied to a number of interconnected devices. The voltage at a HIGH output is approximately 1 V_{BE} below the V_{CC} voltage, so the primary limit on the V_{CC} is that the voltage at any input may not go above 5.5 V unless the current is limited. This effectively limits the system V_{CC} to approximately 7.0 volts.
- (2) Because of the input clamp diodes, excess current can be drawn out of the inputs if the dc input voltage is more negative than -0.5 V. The diode is designed to clamp off large negative ac swings associated with fast fall times and long lines. This maximum rating is intended only to limit the steady state input voltage and current.

FAIRCHILD TTL/MONOSTABLE • 9600

FUNCTIONAL DESCRIPTION - The 9600 monostable multivibrator has five inputs, three active HIGH and two active LOW. This allows leading edge or trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the 9600 and result in a continuous true output. (See Rule 8.) Retriggering may be inhibited by tying the negation (\overline{Q}) output to an active LOW input. The output pulse may be terminated at any time by connecting either or both reset pins to a LOW logic level pin. Active pullups are provided on the outputs for good drive capability into capacitive loads.

OPERATION RULES

- 1. An external resistor (R_X) and an external capacitor (C_X) are required as shown in the logic diagram. The value of R_X may vary from 5.0 to 50 k Ω for 0 to +75°C operation and from 5.0 to 25 k Ω for -55 to +125°C operation. C_X may vary from 0 to any necessary value available.
- 2. The following are recommended fixed values of R_X: R_X = 30 k Ω for 0 to +75°C operation, R_X = 10 k Ω for -55 to +125°C operation.
- 3. The output pulse width (t) is defined as follows:

t = 0.32 R_XC_X [1 + $\frac{0.7}{R_X}$] Where R_X is in k Ω , C_X is in pF, t is in ns; for C_X < 10³ pF, see Fig. 14. The value of C_X may vary from 0 to any value necessary and obtainable. If however, C_X has leakage currents approaching 3 μ A or if stray capacitance from either pin 11 or pin 13 to ground exceeds 50 pF, the timing equation may not represent the pulse width obtained.

10. Use of a 0.01 to 0.1 μ F bypass capacitor located close to the 9600 is recommended.

FAIRCHILD TTL/MONOSTABLE • 9600

					LIMITS					
SYMBOL	PARAMETER	-5	5°C		+25°C		+1	25°C	UNITS	CONDITIONS
		MIN	MAX	MIN	TYP	MAX	MIN	MAX		(Note 1)
VOH	Output HIGH Voltage	2.4		2.4	3.3		2.4		Volts	V _{CC} = 4.5 V, I _{OH} = -0.96 mA (Note 2)
VOL	Output LOW Voltage		0.4		0.2	0.4		0.4	Volts	V _{CC} = 4.5 V, I _{OL} = 9.92 mA (Note 2) V _{CC} = 5.5 V, I _{OL} = 12.8 mA
VIH	Input HIGH Voltage	2.0		1.7			1.5		Volts	Guaranteed Input HIGH Threshold Voltage
VIL	Input LOW Voltage		0.85	1		0.90	1	0.85	Volts	Guaranteed Input LOW Threshold Voltage
T ₁₁	Input LOW Current		-1.6		-1.1	-1.6		-1.6	mA	V _{CC} = 5.5 V, V _{IN} = 0.4 V
. 2			-1.24	1	-0.97	-1.24		-1.24	mA	V _{CC} = 4.5 V, V _{IN} = 0.4 V
Чн	Input HIGH Current				15	60		60	μA	V _{CC} = 5.5 V, V _{IN} = 4.5 V
ISC	Short Circuit Current					-25			mA	V _{CC} = 5.5 V, V _{OUT} = 1.0 V (Note 2)
IPD	Quiescent Power Supply Drain		24		19	24		24	mA	V _{CC} = 5.0 V, Gnd Pins 1 & 2
^t PLH	Negative Trigger Input to True Output				29	45			ns	$V_{CC} = 5.0 V$ R _X = 5.0 Ω C _X = 0, C _L = 15 pF
^t PHL	Negative Trigger Input to Complement Output				29	40			ns	V _{CC} = 5.0 V R _X = 5.0 Ω C _X = 0, C _L = 15 pF
t(min)	Minimum True Output Pulse Width				74	100			ns	V _{CC} = 5.0 V R _X = 5.0 Ω
	Minimum Complement Output Pulse Width					112			ns	C _X = 0, C _L = 15 pF
t	Pulse Width			3.20	3.42	3.76			μs	V _{CC} = 5.0 V, R _X = 10 kΩ, C _X = 1000 pF
CSTRAY	Maximum Allowable Wiring Cap. (Pin 13)		50			50		50	pF	Pin 13 to Ground
RX	Timing Resistor	5.0	25	5.0		25	5.0	25	kΩ	

TABLE II – ELECTRICAL CHARACTERISTICS (T_A = 0°C to 75°C, V_{CC} = 5 V \pm 5%) (Part No. 9600XC)*

					LIMITS					
SYMBOL	PARAMETER	C)°C		+25°C			75°C	UNITS	CONDITIONS
		MIN	MAX	MIN	TYP	MAX	MIN	MAX		(Note 1)
VOH	Output HIGH Voltage	2.4		2.4	3.4		2.4		Volts	V _{CC} = 4.75 V, I _{OH} = -0.96 mA (Note 2)
VOL	Output LOW Voltage		0.45		0.2	0.45		0.45	Volts	V _{CC} = 4.75 V, I _{OL} = 11.3 mA (Note 2) V _{CC} = 5.25 V, I _{OL} = 12.8 mA
VIH	Input HIGH Voltage	1.9		1.8			1.65		Volts	Guaranteed Input HIGH Threshold Voltage
VIL	Input LOW Voltage		0.85			0.85		0.85	Volts	Guaranteed Input LOW Threshold Voltage
μL	Input LOW Current		-1.6		-1.0	-1.6	1	-1.6	mA	V _{CC} = 5.25 V, V _{IN} = 0.45 V
			-1.41			-1.41		-1.41	mA	V _{CC} = 4.75 V, V _{IN} = 0.45 V
Чн	Input HIGH Current			1	15	60		60	μA	V _{CC} = 5.25 V, V _{IN} = 4.5 V
Isc	Short Circuit Current			1		-35			mA	V _{CC} = 5.25 V, V _{OUT} = 1.0 V (Note 2)
1 _{PD}	Quiescent Power Supply		26		19	26		26	mA	V _{CC} = 5.0 V Ground Pins 1 and 2
^t PLH	Negative Trigger Input to True Output				29	56			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ C _X = 0, C _L = 15 pF
^t PHL	Negative Trigger Input to Complement Output				29	47			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ C _X = 0, C _L = 15 pF
t (min)	Minimum True Output Pulse Width				74	120			ns	$V_{CC} = 5.0 V$ R _X = 5.0 kΩ
	Minimum Complement Output Pulse Width					130			ns	C _X = 0, C _L = 15 pF
t	Pulse Width			3.08	3.42	3.76			μs	$V_{CC} = 5.0 \text{ V}, \text{ R}_{X} = 10 \text{ k}\Omega, \text{ C}_{X} = 1000 \text{ pF}$
CSTRAY	Maximum Allowable Wiring Cap. (Pin 13)		50			50		50	pF	Pin 13 to Ground
RX	Timing Resistor	5.0	50	5.0		50	5.0	50	kΩ	

* X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

NOTES:

(1) Unless otherwise noted, 10 k Ω resistor placed between Pin 13 and V_{CC}, for all tests. (R_X)

(2) Ground Pin 11 for V_{OL} Pin 6 or V_{OH} Pin 8 or I_{SC} Pin 8. Open Pin 11 for V_{OL} Pin 8 or V_{OH} Pin 6 or I_{SC} Pin 6.

TTL/ MONOSTABLE 9601 RETRIGGERABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION – The TTL/Monostable 9601 Retriggerable Monostable Multivibrator provides an output pulse whose duration and accuracy is a function of external timing components. The 9601 has excellent immunity to noise on the V_{CC} and ground lines. The 9601 uses TTL for high speed and high fanout capability and is compatible with all members of the Fairchild TTL family.

- 50 ns TO ∞ OUTPUT PULSE WIDTH RANGE
- RETRIGGERABLE 0 TO 100% DUTY CYCLE
- TTL INPUT GATING LEADING OR TRAILING EDGE TRIGGERING
- COMPLEMENTARY TTL OUTPUTS
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- PULSE WIDTH COMPENSATED FOR V_{CC} AND TEMPERATURE VARIATIONS

V_{CC} Pin Potential to Ground (See Note 1) Input Voltage (dc) (See Note 2) Input Current (See Note 2) Voltage Applied to Output When Output is HIGH Current Into Output When Output is LOW

NOTES:

- (1) The maximum V_{CC} value of 8.0 volts is not the primary factor in determining the maximum V_{CC} which may be applied to a number of interconnected devices. The voltage at a HIGH output is approximately 1 V_{BE} below the V_{CC} voltage, so the primary limit on the V_{CC} is that the voltage at any input may not go above 5.5 V unless the current is limited. This effectively limits the system V_{CC} to approximately 7.0 volts.
- (2) Because of the input clamp diodes, excess current can be drawn out of the inputs if the dc input voltage is more negative than -0.5 V. The diode is designed to clamp off large negative ac swings associated with fast fall times and long lines. This maximum rating is intended only to limit the steady state input voltage and current.

NC - No Internal Connection

FUNCTIONAL DESCRIPTION

The 9601 monostable multivibrator has four inputs, two active HIGH and two active LOW. This allows a choice of leading edge or trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the 9601 and result in a continuous true output. (See Rule 9.) Retriggering may be inhibited by tying the negation (Q) output to an active LOW input. Active pullups are provided on the outputs for good drive capability into capacitive loads.

OPERATION RULES

- 1. An external resistor (R_X) and external capacitor (C_X) are required as shown in the Logic Diagram.
- The value of R χ may vary from 5.0 to 50 k Ω for 0 to 75°C operation and from 5.0 to 25 k Ω for -55 to +125°C operation. 2.
- Cx may vary from 0 to any necessary value available. If however, the capacitor has leakages approaching 3.0 µA or if stray capacitance 3. from either terminal to ground is more than 50 pF, the timing equations may not represent the pulse width obtained.
- 4. The output pulse with (t) is defined as follows:

$$= 0.32 \text{ R}_{\text{X}} \text{C}_{\text{X}} \left[1 + \frac{0.7}{\text{R}_{\text{X}}} \right]$$

Where R_X is in k Ω , C_X is in pF, t is in ns; for $C_X < 10^3$ pF, see Fig. 12.

- If electrolytic type capacitors are to be used, the following three configurations are recom-5. mended:
 - For use with low leakage electrolytic capacitors. Α. The normal RC configuration can be used predictably only if the forward capacitor leakage at 5.0 volts is less than 3 μ A, and the inverse capacitor leakage at 1.0 volt is less than 5 μ A over the operational temperature range, and Rule 3 above is satisfied.
 - Use with high inverse leakage current electrolytic capacitors. B The diode in this configuration prevents high inverse leakage currents through the capacitor by preventing an inverse voltage across the capacitor.

 $t \approx 0.3 RC_X$

Use to obtain extended pulse widths: С. This configuration obtains extended pulse widths, because of the larger timing resistor allowed by Beta multiplication. Electrolytics with high (>5 μ A) inverse leakage currents can

- be used.
 - $R < R_X$ (0.7) (h_FE Q_1) or $< 2.5~M\Omega$ whichever is lesser
 - R_X (min) < R_Y < R_X (max) (5 < R_Y < 10 k Ω is recommended)
 - Q1: NPN silicon transistor with hFE requirements of above equations, such as 2N5961 or 2N5962
 - $t \approx 0.3 \text{ RC}_X$

Configuration B and C are not recommended with retriggerable operation.

To obtain variable pulse width by remote trimming, the following circuit is recommended: 6.

- Under any operating condition, CX and RX (min) must be kept as close to the circuit as possible to minimize stray capacitance and 7. reduce noise pickup.
- 8. Input Trigger Pulse Rules. (See Triggering Truth Table on page 5.)

The retrigger pulse width is calculated as shown below:

Input to Pin 1 (2) Pins 2, (1), 3 & 4 = HIGH t_1 , t_4 = Setup time > 40 ns

ο ουτρυτ

9.

Input to Pin 3 (4) Pin 4 (3) = HIGHPins 1 or 2 = LOW

$$t_{W} = t + t_{PLH} = 0.32 R_{X}C_{X} (1 + \frac{0.7}{R_{X}}) + t_{PLH}$$

The retrigger pulse width is equal to the pulse width t plus a delay time. For pulse widths greater than 500 ns, tw can be approximated as t.

NOTE: Retriggering will not occur if the retrigger pulse comes within \approx 0.3 C_X ns after the initial trigger pulse. (i.e., during the discharge cycle time.

10. Use of a 0.01 to 0.1 μ F bypass capacitor between V_{CC} and Ground located close to the 9601 is recommended.

• PIN 13

Vcc o

RX

		LIMITS								
SYMBOL	PARAMETER	–55° C		+25° C			+1:	25° C	UNITS	CONDITIONS (Note 1)
		MIN. MAX		MIN.	TYP.	MAX.	MIN.	MAX.		
VOH	Output HIGH Voltage	2.4	41. produkt	2.4	3.3		2.4	nin ,	Volts	V _{CC} = 4.5 V, I _{OH} = -0.72 mA (Note 2)
VOL	Output LOW Voltage		0.4		0.2	0.4		0.4	Volts	V _{CC} = 4.5 V, I _{OL} = 10 mA (Note :
VIH	Input HIGH Voltage (Note 3)	2.0		1.7			1.5		Volts	Guaranteed Input HIGH Threshold
VIL	Input LOW Voltage (Note 3)		0.85			0.90		0.85	Volts	Guaranteed Input LOW Threshold
ЧL .	Input LOW Current		-1.6		-1.1	-1.6		-1.6	mA	V _{CC} = 5.5 V V _{IN} = 0.4 V
ін	Input HIGH Current				15	60		60	μA	V _{CC} = 5.5 V, V _{IN} = 4.5 V
ISC	Short Circuit Current			-10		-40			mA	V _{CC} = 5.0 V, V _{OUT} = 0 V (Note 2
IPD	Quiescent Power Supply Drain		25			25		25	ṁΑ	V_{CC} = 5.5 V, Ground Pins 1 and 2
^t PLH	Negative Trigger Input to True Output				25	40			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ C _X = 0, C _L = 15 pF
^t ₽HL	Negative Trigger Input to Complement Output		A18		25	40			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ C _X = 0, C _L = 15 pF
t (min)	Minimum True Output Pulse Width				45	65			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ C _X = 0, C _L = 15 pF
t	Pulse Width			3.08	3.42	3.76			μs	V _{CC} = 5.0 V, R _X = 10 kΩ, C _X = 1000 pF
C _{STRAY}	Maximum Allowable Wiring Cap. (Pin 13)		50			50		50	pF	Pin 13 to Ground
RX	Timing Resistor	5.0	25	5.0		25	5.0	25	kΩ	

TABLE II – ELECTRICAL CHARACTERISTICS (T_A = 0° C to 75°C, V_{CC} = 5 V ±5%) (Part No. 9601XC)

					LIMITS	3				
SYMBOL	PARAMETER	C	°C		+25° C	;	+7	5°C	UNITS	CONDITIONS (Note 1)
		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
v _{он}	Output HIGH Voltage	2.4		2.4	3.4		2.4		Volts	V _{CC} = 4.75 V, I _{OH} = -0.96 mA (Note 2)
VOL	Output LOW Voltage		0.45		0.2	0.45		0.45	Volts	V _{CC} = 4.75 V, I _{OL} = 12.8 mA (Note 2)
VIH	Input HIGH Voltage (Note 3)	1.9		1.8			1.6		Volts	Guaranteed Input HIGH Threshold
VIL	Input LOW Voltage (Note 3)		.85			0.85		0,85	Volts	Guaranteed Input LOW Threshold
۱۲	Input LOW Current		-1.6		-1.0	-1.6		-1.6	mA	V _{CC} = 5.25 V V _{IN} = 0.45 V
ЧН	Input HIGH Current				15	60		60	μA	V _{CC} = 5.25 V, V _{IN} = 4.5 V
ISC	Short Circuit Current			-10		-40			mA	V _{CC} = 5.0 V, V _{OUT} = 0V (Note 2)
IPD	Quiescent Power Supply Drain		25			25		25	mA	V_{CC} = 5.25 V, Ground Pins 1 and 2
^t PLH	Negative Trigger Input to True Output				25	40			ns	$V_{CC} = 5.0 V$, $R_X = 5.0 k\Omega$, $C_X = 0$, $C_L = 15 pF$
^t PHL	Negative Trigger Input to Complement Output				25	40			ns	$V_{CC} = 5.0 V$, $R_X = 5.0 k\Omega$, $C_X = 0$, $C_L = 15 pF$
t (min)	Minimum True Output Pulse Width				45	65			ns	$V_{CC} = 5.0 V$, $R_X = 5.0 k\Omega$, $C_X = 0$, $C_L = 15 pF$
t	Pulse Width		:	3.08	3.42	3.76			μs	V _{CC} = 5.0 V, R _X = 10 kΩ, C _X = 1000 pF
CSTRAY	Maximum Allowable Wiring Cap. (Pin 13)		50			50		50	рF	Pin 13 to Ground
RX	Timing Resistor	5.0	50	5.0		50	5.0	50	kΩ	

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product. NOTES:

(1) Unless otherwise noted, 10 k Ω resistor placed between Pin 13 and V_{CC}, for all tests. (R_X) (2) Ground Pin 11 for V_{OL} Pin 6 or V_{OH} Pin 8 or I_{SC} Pin 8. Open Pin 11 for V_{OL} Pin 8 or V_{OH} Pin 6 or I_{SC} Pin 6. (3) Pulse Test to determine V_{IH} and V_{IL} (Min PW 40 ns).

TTL/ MONOSTABLE 9602 DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION – The TTL/Monostable 9602 Dual Retriggerable, Resettable.Monostable.Multivibrator provides an output pulse whose duration and accuracy is a function of external timing components. The 9602 has excellent immunity to noise on the V_{CC} and ground lines. The 9602 uses TTL inputs and outputs for high speed and high fanout capability and is compatible with all members of the Fairchild TTL family.

- 72 ns TO ∞ OUTPUT WIDTH RANGE
- RETRIGGERABLE 0 TO 100% DUTY CYCLE
- TTL INPUT GATING LEADING OR TRAILING EDGE TRIGGERING
- COMPLEMENTARY TTL OUTPUTS
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- PULSE WIDTH COMPENSATED FOR V_{CC} AND TEMPERATURE VARIATIONS
- RESETTABLE

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	—65° C to +150° C
Temperature (Ambient) Under Bias	–55°C to +125°C
V _{CC} Pin Potential to Ground (See Note 1)	–0.5 V to +8.0 V
Input Voltage (dc) (See Note 2)	–0.5 V to +5.5 V
Input Current (See Note 2)	—30 mA to +5.0 mA
Voltage Applied to Output When Output is HIGH	-0.5 V to +V _{CC} value
Current Into Output When Output is LOW	50 mA

NOTES:

- 1. The maximum V_{CC} value of 8.0 volts is not the primary factor in determining the maximum V_{CC} which may be applied to a number of interconnected devices. The voltage at a HIGH output is approximately 1 V_{BE} below the V_{CC} voltage, so the primary limit on the V_{CC} is that the voltage at any input may not go above 5.5 V unless the current is limited. This effectively limits the system V_{CC} to approximately 7.0 volts.
- 2. Because of the input clamp diodes, excess current can be drawn out of the inputs if the dc input voltage is more negative than -0.5 V. The diode is designed to clamp off large negative ac swings associated with fast fall times and long lines. This maximum rating is intended only to limit the steady state input voltage and current.

*Pins for external timing.

CONNECTION DIAGRAMS

DIP (TOP VIEW)

1 13

FAIRCHILD TTL/MONOSTABLE • 9602

					LIMITS					
SYMBOL	PARAMETER	5	5°C		+25°C		+1:	+125°C		(Note 1)
		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.]	
voн	Output HIGH Voltage	2.4		2.4	3.3		2.4		Volts	V _{CC} = 4.5 V, I _{OH} = -0.96 mA (Note 2)
Vol	Output LOW Voltage		0.4		0.2	0.4		0.4	Volts	V _{CC} = 4.5 V, I _{OL} = 9.92 mA (Note 2) V _{CC} = 5.5 V, I _{OL} = 12.8 mA
VIH	Input HIGH Voltage	2.0		1.7			1,5		Volts	Guaranteed Input HIGH Threshold Voltage
VIL	Input LOW Voltage		0.85			0.90		0.85	Volts	Guaranteed Input LOW Threshold Voltage
	Input LOW Current		-1.6		-1.1	-1.6		-1.6	mA	V _{CC} = 5.5 V, V _{IN} = 0.4 V
			-1.24		0.97	-1.24		-1.24	mA	V _{CC} = 4.5 V, V _{IN} = 0.4 V
ЦΗ	Input HIGH Current				10	60		60	μΑ	V _{CC} = 5.5 V, V _{IN} = 4.5 V
ISC	Short Circuit Current					-25			mA	V _{CC} = 5.5 V, V _{OUT} = 1.0 V (Note 2)
IPD	Quiescent Power Supply Drain		45		39	45		45	mA	V _{CC} = 5.0 V
^t PLH	Negative Trigger Input to True Output				25	35			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ C _X = 0, C _L = 15 pF
^t PHL	Negative Trigger Input to Complement Output				29	43			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ C _X = 0, C _L = 15 pF
t(min)	Minimum True Output Pulse Width				72	90			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ
	Minimum Complement Output Pulse Width				78	100			ns	C _X = 0, C _L = 15 pF
t	Pulse Width			3.08	3.42	3.76			μs	V_{CC} = 5.0 V, R _X = 10 k Ω , C _X = 1000 pF
CSTRAY	Maximum Allowable Wiring Cap. (Pins 2 and 14)		50			50		50	pF	Pins 2 and 14 to Ground
Rx	Timing Resistor	5.0	25	5.0		25	5.0	25	kΩ	

TABLE II – ELECTRICAL CHARACTERISTICS (T_A = 0°C to 75°C, V_{CC} = 5 V \pm 5%) (Part No. 9602XC)*

					LIMITS					
SYMBOL	PARAMETER	C	°с		+25°C		+7	5°C	UNITS	CONDITIONS (Note 1)
		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	1	
√он	Output HIGH Voltage	2.4		2.4	3.4		2.4		Volts	V _{CC} = 4.75 V, I _{OH} = -0.96 mA (Note 2)
VOL	Output LOW Voltage		0.45		0.2	0.45		0.45	Volts	V _{CC} = 4.75 V, I _{OL} = 11.3 mA (Note 2) V _{CC} = 5.25 V, I _{OL} = 12.8 mA
VIH	Input HIGH Voltage	1.9		1.8			1.65		Volts	Guaranteed Input HIGH Threshold Voltage
VIL	Input LOW Voltage		0.85			0.85		0.85	Volts	Guaranteed Input LOW Threshold Voltage
μL	Input LOW Current		-1.6		-1.0	-1.6		-1.6	mA	V _{CC} = 5.25 V, V _{IN} = 0.45 V
			-1.41			-1.41		-1.41	mA	V _{CC} = 4.75 V, V _{IN} = 0.45 V
Чн	Input HIGH Current				10	60		60	μΑ	V _{CC} = 5.25 V, V _{IN} = 4.5 V
ISC	Short Circuit Current					-35			mA	V _{CC} = 5.25 V, V _{OUT} = 1.0 V (Note 2)
IPD	Quiescent Power Supply Drain		52		39	50		52	mA	V _{CC} = 5.0 V, Ground Pins 1 and 2
^t PLH	Negative Trigger Input to True Output				25	40			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ C _X = 0, C _L = 15 pF
^t PHL	Negative Trigger Input to Complement Output				29	48			ns	$V_{CC} = 5.0 V$ R _X = 5.0 k Ω C _X = 0, C _L = 15 pF
t(min)	Minimum True Output Pulse Width				72	100			ns	V _{CC} = 5.0 V R _X = 5.0 kΩ
	Minimum Complement Output Pulse Width				78	110			ns	C _X = 0, C _L = 15 pF
t	Pulse Width			3.08	3.42	3.76			μs	V_{CC} = 5.0 V, R _X = 10 k Ω , C _X = 1000 pF
CSTRAY	Maximum Allowable Wiring Cap. (Pins 2 and 14)	1	50			50		50	pF	Pins 2 and 14 to Ground
RX	Timing Resistor	5.0	50	5.0		50	5.0	50	kΩ	

*X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

NOTES:

1. Unless otherwise noted, 10 k Ω resistor placed between Pin 2 (14) and V $_{CC}$, for all tests. (R $_X)$

 Ground Pin 1 (15) for V_{OL} on Pin 7 (9), or for V_{OH} on Pin 6 (10), or for I_{SC} on Pin 6 (10); also, apply momentary ground to Pin 4 (12). Open Pin 1 (15) for V_{OL} on Pin 6 (10), or for V_{OH} on Pin 7 (9), or for I_{SC} on Pin 7 (9).

TTL INPUT LOAD AND DRIVE FACTORS

INDUTO	LOAD				
INPUTS	HIGH	LOW			
3, 4, 5, 11, 12, 13	1 U.L.	1 U.L.			

	DRIVE FACTOR				
OUTPUTS	HIGH	LOW			
6, 7, 9, 10	16 U.L.	8 U.L.			

1 Unit Load (U.L.) = 60μ A HIGH/1.6mA LOW

TRIGGERING TRUTH TABLE

5(11)	PIN NO'S. 4(12)	3(13)	Operation
H→L	L	н	Trigger
н	L→H	н	Trigger
Х	х	L	Reset

 $H = HIGH Voltage Level \ge V_{IH}$

L = LOW Voltage Level $\leq V_{IL}$

X = Don't Care

 $H \rightarrow L$ = HIGH to LOW Voltage Level transition $L \rightarrow H$ = LOW to HIGH Voltage Level transition

LPTTL/MONOSTABLE 96L02 LOW POWER DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The TTL/Monostable 96L02 is a low power Dual Retriggerable, Resettable Monostable Multivibrator which provides an output pulse whose duration and accuracy is a function of external timing components. The 96L02 has excellent immunity to noise on the V_{CC} and ground lines. The 96L02 uses TTL inputs and outputs for high speed and high fan out capability and is compatible with all members of the Fairchild TTL family.

- **TYPICAL POWER DISSIPATION OF 25 mW/ONE SHOT**
- 50 ns TYPICAL PROPAGATION DELAY
- **RETRIGGERABLE 0 TO 100% DUTY CYCLE**
- TTL INPUT GATING LEADING OR TRAILING EDGE TRIGGERING
- COMPLEMENTARY TTL OUTPUTS •
- OPTIONAL RETRIGGER LOCK-OUT CAPABILITY
- PULSE WIDTH COMPENSATED FOR V_{CC} AND TEMPERATURE VARIATIONS
- RESETTABLE

DIP (TOP VIEW) *Pins for external timing. FLATPAK (TOP VIEW) *Pins for external timing.

LOADING

CONNECTION DIAGRAMS

PIN NAMES

		HIGH	LOW
Ē	Trigger (Active LOW) Input	0.5	0.25
A	Trigger (Active HIGH) Input	0.5	0.25
Ē _D	Clear (Active LOW) Input	0.5	0.25
Q	Output (Active HIGH)	9.0	3.0
ā	Output (Active LOW)	9.0	3.0

1 Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW

FUNCTIONAL DESCRIPTION — The 96L02 dual resettable, retriggerable monostable multivibrator has two inputs per function, one active LOW and one active HIGH. This allows leading edge of trailing edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the 96L02 and result in a continuous true output. (See Rule 9) The output pulse may be terminated at any time by connecting the reset pin to a logic level LOW. Active pullups are provided on the outputs for good drive capability into capacitive loads. Retriggering may be inhibited by tying the $\overline{\Omega}$ output to the active level LOW input or the Q output to the active level HIGH input.

OPERATION RULES

- 1. An external resistor (R_X) and external capacitor (C_X) are required as shown in the Logic Diagram.
- 2. The value of R_X may vary from 16 k Ω to 220 k Ω for 0 to 75°C operation. The value of R_X may vary from 20 k Ω to 100 k Ω for -55 to +125°C operation.
- 3. The value of C_X may vary from 0 to any necessary value available. If, however, the capacitor has leakages approaching 1.0 μA or if stray capacitance from either terminal to ground is more than 50 pF, the timing equations may not represent the pulse width obtained.
- 4. The output pulse with (t) is defined as follows:

t = 0.33 R_XC_X
$$\left[1 + \frac{3.0}{R_X}\right]$$
 (for C_X > 10³ pF) Where

5. If electrolytic type capacitors are to be used, the following three configurations are recommended:

- A. Use with low leakage capacitors: The normal RC configuration can be used predictably only if the forward capacitor leakage at 5.0 V is less than 1.0 μ A, and the inverse capacitor leakage at 1.0 V is less than 1.6 μ A over the operational temperature range and Rule 3 above is satisfied.
- B. Use with high inverse leakage current electrolytic capacitors:
- The diode in this configuration prevents high inverse leakage currents through the capacitor by preventing an inverse voltage across the capacitor. The use of this configuration is not recommended with retriggerable operation.
 - t≈0.3 RC_X

C. Use to obtain extended pulse widths:

This configuration can be used to obtain extended pulse widths, because of the larger timing resistor allowed by beta multiplication. Electrolytics with high inverse leakage currents can be used.

 $R < R_X$ (0.7) (h_{FE} Q₁) or <2.5 M Ω whichever is the lesser R_X (min) < $R_Y < R_X$ (max)

Q1: NPN silicon transistor with hFE requirements of above equations, such as 2N5961 or 2N5962

This configuration is not recommended with retriggerable operation.

6. To obtain variable pulse width by remote trimming, the following circuit is recommended:

- 7. Under any operating condition, C_X and R_X (min) must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
- 8. Input Trigger Pulse Rules. See Triggering Truth Table, following pages.

9. The retriggerable pulse width is calculated as shown below:

$$tw = t + t_{PLH} = 0.33 R_X C_X (1 + \frac{3.0^2}{R_X}) + t_{PLH}$$

The retrigger pulse width is equal to the pulse width (t) plus a delay time. For pulse widths greater than 500 ns, tw can be approximated as t.

Retriggering will not occur if the retrigger pulse comes within ≈ 0.9 C_X ns after the initial trigger pulse. (i.e., during the discharge cycle)
 10. Reset Operation -- An overriding active LOW level is provided on each oneshot. By applying a LOW to the reset, any timing cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW.

 V_{CC} and Ground wiring should conform to good high frequency standards so that switching transients on V_{CC} and Ground leads do not cause interaction between one-shots. Use of a 0.01 to 0.1 μF bypass capacitor between V_{CC} and Ground located near the 96L02 is recommended.

 R_X is in $k\Omega$, C_X is in pF

for $C_X < 10^3 \text{ pF}$, see Fig. 1

t is in ns

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)	
Storage Temperature	–65°C to +150°C
Temperature (Ambient) Under Bias	–55°C to +125°C
V _{CC} Pin Potential to Ground Pin	–0.5 V to +7.0 V
*Input Voltage (dc)	–0.5 V to +5.5 V
*Input Current (dc)	–30 mA to +5.0 mA
Voltage Applied to Outputs (Output HIGH)	–0.5 V to +V _{CC} value
Output Current (dc) (Output LOW)	+30 mA
*Fither Input Voltage Limit or Input Current is sufficient to protect the inputs	

*Either Input Voltage Limit or Input Current is sufficient to protect the inputs.

GUARANTEED OPERATING RANGES

	SL			
PART NOWBER	MIN.	TYP.	MAX.	TEMPERATORE
96L02XM	4.5 V	5.0 V	5.5 V	–55°C to 125°C
96L02XC	4.75 V	5.0 V	5.25 V	0°C to 75°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless otherwise noted)

			LIMITS		1	CONDITIONS	
SYMBOL	CHARACTERISTIC	MIN.	TYP. (Note 4)	MAX.			
VIH	Input HIGH Voltage	2.0			Volts	Guaranteed Input HIGH Threshold Voltage For all Inputs	
VIL	Input LOW Voltage			0.7	Volts	Guaranteed Input LOW Threshold Voltage For all Inputs	
VOH	Output HIGH Voltage	2.4	3.4		Volts	V _{CC} = MIN., I _{OH} = -0.36 mA	
V _{OL}	Output LOW Voltage		0.14	0.3	Volts	V _{CC} = MIN., I _{OL} = 4.80 mA	
1				20	μΑ	V _{CC} = MAX., V _{IN} = 2.4 V	
וי				1.0	mA	V _{CC} = MAX., V _{IN} = 5.5 V	
١ _{١Ľ}	Input LOW Current		-0.25	-0.4	mA	V _{CC} = MAX., V _{IN} = 0.3 V	
ISC (I _{OS})	Output Short Circuit Current (Note 5)	-2.0		-13	mA	V _{CC} = MAX., V _{OUT} = 1.0 V	
lcc	Power Supply Current		10	16	mA	V _{CC} = MAX.	

NOTES:

1. The actual testing procedures used to guarantee the Electrical Characteristics are contained in a detailed Customer Sample Specification. A copy of this specification can be obtained from Fairchild Digital Product Marketing, Mountain View, California.

2. Conditions for testing, not shown in the table, are chosen to guarantee operation under "worst case" conditions.

3. The specified LIMITS represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltages extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

4. Typical limits are at V_{CC} = 5.0 V, 25°C, and maximum loading.

5. Not more than one output should be shorted at a time.

FAIRCHILD LPTTL/MONOSTABLE • 96L02

SWITCHIN	G CHARACTERISTICS ($T_A = 25^{\circ}C$)					
			LIMITS			
SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
96L02XM						
^t PLH	Negative Trigger Input to True Output		55	75	ns	V_{CC} = 5.0 V, R _X = 20 kΩ C _X = 0, C _L = 15 pF
^t PHL	Negative Trigger Input to Complement Output		45	62	ns	$V_{CC} = 5.0 \text{ V}, \text{ R}_{X} = 20 \text{ k}\Omega$ $C_{X} = 0, C_{L} = 15 \text{ pF}$
t(min)	Minimum True Output Pulse Width		110		ns	$V_{CC} = 5.0 \text{ V}, \text{ R}_{X} = 20 \text{ k}\Omega$ $C_{X} = 0, C_{L} = 15 \text{ pF}$
t	Pulse Width	12.4	13.8	15.2	μs	V_{CC} = 5.0 V, R _X = 39 k Ω , C _X = 1000 pF
RX	Timing Resistor Range	20		100	kΩ	
Δt	Maximum Change in True Output Pulse Width over Temperature Range		1.3		%	R _X = 39 kΩ, C _X = 1000 pF
96L02XC						
^t PLH	Negative Trigger Input to True Output		55	80	ns	V _{CC} = 5.0 V, R _X = 20 kΩ C _X = 0, C _L = 15 pF
^t PHL	Negative Trigger Input to Complement Output		45	65	ns	$V_{CC} = 5.0 V, R_X = 20 k\Omega$ $C_X = 0, C_L = 15 pF$
t(min)	Minimum True Output Pulse Width		110		ns	$V_{CC} = 5.0 V, R_X = 20 k\Omega$ $C_X = 0, C_L = 15 pF$
t	Pulse Width	12.4	13.8	15.2	μs	V _{CC} = 5.0 V, R _X = 39 kΩ, C _X = 1000 pF
RX	Timing Resistor Range	16		220	kΩ	
Δt	Maximum Change in True Output Pulse Width over Temperature Range		0.3	1.6	%	R _X = 39 kΩ, C _X = 1000 pF

OUTPUT PULSE WIDTH (t) USING LOW VALUES OF C_X (C_X \leq 1000 pF) (FOR C_X > 1000 pF SEE OPERATION RULES 4 AND 5.)

s.

TTL/MONOSTABLE 9603/54121, 74121 MONOSTABLE MULTIVIBRATOR

DESCRIPTION - The 9603/54121, 74121 is a TTL Monostable Multivibrator with dc triggering from positive or gated negative going inputs and with inhibit facility. Both positive and negative going output pulses are provided with full fan out to 10 normalized loads.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry for the B input allows jitter-free triggering from inputs with transition times as slow as 1.0 V/S, providing the circuit with an excellent noise immunity of typically 1.2 V. A high immunity to V_{CC} noise of typically 1.5 V is also provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions on the inputs and are a function only of the timing components. Input pulses may be of any duration relative to the output pulse. Output pulse lengths may be varied from 40 ns to 40 s by choosing appropriate timing components. With no external timing components (i.e., pin 9 connected to pin 14, pins 10, 11 open) an output pulse of typically 30 ns is achieved which may be used as a dc triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length.

Pulse width is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components.

Jitter-free operation is maintained over the full temperature and V_{CC} range for more than six decades of timing capacitance (10 pF to 10 μ F) and more than one decade of timing resistance (2 k Ω to 40 k Ω). Throughout these ranges, pulse width is defined by the relationship tp(out) = CT,RT loge 2.

Circuit performance is achieved with a nominal power dissipation of 90 mW at 5.0 V (50% duty cycle) and a quiescent dissipation of typically 65 mW.

Duty cycles as high as 90% are achieved when using $R_T = 40 k\Omega$. Higher duty cycles are achievable if a certain amount of pulse-width litter is allowed.

 $H = V_{1H} \ge 2 V$

٦

TRUTH TABLE (See Notes 1 thru 3)

tr	INPU	т	t _{n+}	1 INPI	UT		H = V _{1H} ≥ 2 V L = V _{1L} ≤ 0.8 V
341	A ₂	в	A1	A2	В	001701	
н	We H	L	н	н	н	Inhibit	NOTES:
L	× ~	, н ,	L X	X L	L	Inhibit	 t_n = time before input transition. t_{n+1} = time after input transition.
Ĺ	x	L	Ĺ	x	н	One Shot	 X indicates that either a HIGH or LOW, may be present. NC = No Internal Connection.
×	L u	Ч	X X	L	н н	One Shot One Shot	5. A ₁ and A ₂ are negative edge triggered-logic inputs, and will trigger the one shot when either
н	н	н	L	x	н	One Shot	 B is a positive Schmitt-trigger input for slow edges or level detection and will trigger the one
×	L	L	Х Ц	н х	Ľ	Inhibit Inhibit	shot when B goes to HIGH level with either A1 or A2 at LOW level. (See Truth Table.) 7. External timing capacitor may be connected between pin 10 (positive) and pin 11. With no
	L	н	н	н	- H	Inhibit	external capacitance, an output pulse width of typically 30 ns is obtained. 8. To use the internal timing resistor (2 k Ω nominal), connect pin 9 to pin 14.
L	х	н	н	н	н	Inhibit	9. To obtain variable pulse width connect external variable resistance between pin 9 and pin 14.
H H	н Н	L	х L	L X	L	Inhibit	 For accurate repeatable pulse widths connect an external resistor between pin 11 and pin 14 with pin 9 open-circuit.
Positi	ve logi	: Se	e trutł	n table	and r	notes 5 and 6	

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)	
Storage Temperature	–65°C to +150°C
Temperature (Ambient) Under Bias	-55° C to +125° C
Vcc Pin Potential to Ground Pin	-0.5 V to +7.0 V
*Input Voltage (dc)	−0.5 V to +5.5 V
*Input Current (dc)	-30 mA to +5.0 mA
Voltage Applied to Outputs (Output HIGH)	-0.5 V to +V _{CC} value
Output Current (dc) (Output LOW)	+30 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

RECOMMENDED OPERATING CONDITIONS

		96)3XM/54121	XM	96			
PARAME	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	
Supply Voltage V _{CC}	and a second	4.5	5.0	5.5	4.75	5.0	5.25	Volts
Operating Free-Air Tempera	ature Range	-55	25	125	0	25	70	°C
Normalized Fan Out from E	ach Output, N			10			10	U.L.
Input Pulse Rise/Fall Time:	Schmitt Input (B)			1.0			1.0	V/s
	Logic Inputs (A ₁ , A ₂)			1.0			1.0	V/µs
Input Pulse Width	A CONTRACTOR AND	50			50			ns
External Timing Resistance	Between Pins 11 and 14							
(Pin 9 open)		1.4			1.4			kΩ
External Timing Resistance				30			40	kΩ
Timing Capacitance		0		1000	0		1000	μF
Output Pulse Width				40			40	s
Duty Cycle: $R_T = 2 k\Omega$				67%			67%	
R _T = 30 kΩ				90%				
R _T = 40 kΩ							90%	

X= package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

					LIMITS			TEST CONDITIONS (Note 1)	TEST*	
SYMBOL	F	PARAMETER			TYP. (Note 2)	MAX.	UNITS		FIGURE	
V _{T+}	Positive-Going Th	resho	Id Voltage at A Input		1.4	2.0	Volts	V _{CC} ≈ MIN.	57	
V _T -	Negative-Going Th	nresh	old Voltage at A Input	0.8	1.4		Volts	V _{CC} = MIN.	57	
V _{T+}	Positive-Going Th	resho	Id Voltage at B Input		1.55	2.0	Volts	V _{CC} = MIN.	57	
V _T _	Negative-Going Th	nresh	old Voltage at B Input	0.8	1.35		Volts	V _{CC} = MIN.	57	
Vон	Output HIGH Voltage			2.4	3.3		Volts	$V_{CC} = MIN., I_{OH} = -0.4 mA$	57	
VOL	Output LOW Voltage				0.22	0.4	Volts	V _{CC} = MIN., I _{OL} = 16 mA	57	
					2.0	40	μA	V _{CC} = MAX., V _{IN} = 2.4 V	60	
1	Input HIGH Curren				0.05	1.0	mA	V _{CC} = MAX., V _{IN} = 5.5 V		
'IH		ent	at P		4.0	80	μA	V _{CC} = MAX., V _{IN} = 2.4 V	61	
			di D		0.05	1.0	mA	V _{CC} = MAX., V _{IN} = 5.5 V	01	
1		-	at A ₁ or A ₂		-1.0	-1.6	mA	V _{CC} = MAX., V _{IN} = 0.4 V	58	
'IL	Input LOW Current		at B		-2.0	-3.2	mA	V _{CC} = MAX., V _{IN} = 0.4 V	59	
	Output Short Circuit Current at Q or Q			20	-25	-55	mA	9603/54121 No MAX	C. C	
IOS	(Note 3)			-18	-25	-55	mA	9603/74121 VCC = MAX.	62 & 63	
^I CC		in (in Quiescent (Unfired) State in Fired State		13	25	mA	V _{CC} = MAX.	64	
	Supply Current	in I			23	40	mA	V _{CC} = MAX.	64	

NOTES:

(1) For conditions shown as MIN. or MAX., use the appropriate value specified under recommended operating conditions for the applicable device type.

(2) Typical limits are at $V_{CC} = 5.0 \text{ V}, 25^{\circ}\text{C}$. (3) Not more than one output should be shorted at a time.

*See parameter measurement information in series 9N/54, 74TTL section.

TTL/MONOSTABLE • 9603/54121, 74121

SWITCHING CHARACTERISTICS (T_A = 25° C)

SYMBOL	PAPAMETER		LIMITS			TERT CONDITIONS		TEST *
	FARAMETER	MIN.	TYP.	MAX.	01115	1231 CO	FIGURE	
^t PLH	Turn Off Delay B Input to Q Output	15	35	55				
^t PLH	Turn Off Delay A1/A2 Inputs to Q Output	25	45	70		$V_{CC} = 5.0 V$		
^t PHL	Turn On Delay B Input to Q Output	20	40	65	ns ns	CL = 15 pF		н
^t PHL	Turn On Delay A_1/A_2 Inputs to \overline{Q} Output	30	50	80	1	CT = 80 pF		
	Pulse Width Obtained Using Internal	70	110	150		0 00 5	V _{CC} = 5.0 V	
^t pw(out)	Timing Resistor	/0	110		ns	CT = 80 pF	C _L = 15 pF	
	Pulse Width Obtained with Zero Timing			50		~ ~ ~	R _T = Open	
^t pw(out)	Capacitance	20	30	50	ns	$C_T = 0 pF$	Pin 9 to V _{CC}	
	Pulse Width Obtained Using External Timing Resistor	600	700	800		C _T = 100 pF	V _{CC} = 5.0 V	
					ns		$C_{1} = 15 \text{pF}$	1
^t pw(out)		6.0				C _T = 1.0 μF	R _T = 10 kΩ	
			7.0	8.0	ms		Pin 9 to Open	
							V _{CC} = 5.0 V	
^t hold				50		o oo -	C _L = 15 pF	ļ
	Minimum Duration of Trigger Pulse		30	50	ns	CT = 80 pF	R _T = Open	
							Pin 9 to V _{CC}	

*See parameter measurement information in series 9N/54, 74 section.

TYPICAL CHARACTERISTICS

Fig. 2

Fig. 1 VARIATION IN INTERNAL TIMING RESISTOR VALUE VERSUS AMBIENT TEMPERATURE

Fig. 4 SCHMITT TRIGGER THRES-HOLD VOLTAGE VERSUS AMBIENT TEMPERATURE

Fig. 5 TURN OFF DELAY TIME B INPUT TO Q OUTPUT VERSUS AMBIENT TEMPERATURE

Fig. 6 TURN ON DELAY TIME B INPUT TO Q OUTPUT VERSUS AMBIENT TEMPERATURE

TYPICAL CHARACTERISTICS (Cont'd)

µA9614 DUAL DIFFERENTIAL LINE DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION – The μ A9614 is a TTL compatible Dual Differential Line Driver. It is designed to drive transmission lines either differentially or single-ended, back-matched or terminated. The outputs are similar to TTL, with the active pull-up and the pull-down split and brought out to adjacent pins. This allows multiplex operation (Wired-OR) at the driving site in either the single-ended mode via the uncommitted collector, or in the differential mode by use of the active pull-ups on one side and the uncommitted collectors on the other (See Fig. 5). The active pull-up is short circuit protected and offers a low output impedance to allow back-matching. The two pairs of outputs are complementary providing "NAND" and "AND" functions of the inputs, adding greater flexibility. The input and output levels are TTL compatible with clamp diodes provided at both input and output to handle line transients.

- SINGLE 5 VOLT SUPPLY
- TTL COMPATIBLE INPUTS
- OUTPUT SHORT CIRCUIT PROTECTION
- INPUT CLAMP DIODES
- OUTPUT CLAMP DIODES FOR TERMINATION OF LINE TRANSIENTS
- COMPLIMENTARY OUTPUTS FOR 'NAND', 'AND' OPERATION
- UNCOMMITTED COLLECTOR OUTPUTS FOR WIRED OR APPLICATION
- MILITARY TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	−65°C to +150°C
Temperature (Ambient) Under Bias	–55°C to +125°C
V _{CC} Pin Potential to Ground Pin	−0.7 V to +7.0 V
Input Voltage	0.5 V to +5.5 V
Voltage Supplied to Outputs (Open Collector)	-0.5 V to +12 V
Lead Temperature (Soldering, 60 seconds)	300° C
Internal Power Dissipation (Note 1)	
Ceramic DIP	730 mW
Flatpak	570 mW
NOTE	

 Rating applies to ambient temperatures up to 70°C. Above 70°C derate linearly at 8.3 mW/°C for the Ceramic DIP and 7.1 mW/°C for the Flatpak.

LOGIC DIAGRAM

 $V_{CC} = Pin 16$ GND = Pin 8

µA9615 DUAL DIFFERENTIAL LINE RECEIVER FAIRCHILD LINEAR INTEGRATED CIRCUITS

LOGIC DIAGRAM

° ⊐ v_{cc} .sv

О ОТ В

ACTIVE PULL-UP

STROBE E

RESPONSE

130 0 8

OUT A D

ACTIVE PULL-UP A

STROBE /

RESPONSE CONTROL A

130 Ω A

IN J

CND (

GENERAL DESCRIPTION – The μ A9615 is a Dual Differential Line Receiver designed to receive differential digital data from transmission lines and operate over the military and industrial temperature ranges using a single 5 V supply. It can receive ±500 mV of differential data in the presence of high level (±15 V) common mode voltages and deliver undisturbed TTL logic to the output.

The response time can be controlled by use of an external capacitor. A strobe and a 130 Ω terminating resistor are provided at the inputs. The output has an uncommitted collector with an active pull-up available on an adjacent pin to allow either "wire-or" or active pull up TTL output configuration.

- TTL COMPATIBLE OUTPUT
- HIGH COMMON MODE VOLTAGE RANGE
- CHOICE OF AN UNCOMMITTED COLLECTOR OR ACTIVE PULL UP
- STROBE
- FULL MILITARY TEMPERATURE RANGE
- SINGLE 5 V SUPPLY VOLTAGES
- FREQUENCY RESPONSE CONTROL
- 130 Ω TERMINATING RESISTOR

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	-65° C to $+150^{\circ}$ C
Temperature (Ambient) Under Bias	-55° C to +125 $^{\circ}$ C
V _{CC1} Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage Referred to Ground (Pins 5, 6, 7, 9, 10, 11)	±20 V
Voltage Applied to Outputs for HIGH Output State without Active Pull Up	-0.5 V to +13.2 V
Voltage Applied to Strobe	-0.5 V to +5.5 V
Lead Temperature (Soldering, 60 seconds)	300° C
Internal Power Dissipation (Note 1)	
Ceramic DIP	730 mW
Flatpak	570 mW

NOTE

1. Rating applies to ambient temperatures up to 70°C. Above 70°C derate linearly at 8.3 mW/°C for the Ceramic DIP and 7.1 mW/°C for the Flatpak Package.

µA9616 TRIPLE EIA RS-232-C LINE DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The μ A9616 is a Triple Line Driver which meets the electrical interface specifications of EIA RS-232-C and CCITT V.24. Each driver in the μ A9616 converts TTL/DTL logic level to EIA/CCITT levels for transmission between data terminal equipment and data communication equipment. The μ A9617 performs the complementary functions. The output slew rate is internally limited and can be lowered by an external capacitor; all output currents are short circuit limited. The outputs are protected against RS-232-C fault conditions. A logic HIGH level on the inhibit terminal interrupts signal transfer and forces the output to a -VOUT or MARK state. The μ A9616 is constructed on a single silicon chip using the Fairchild Planar* process.

*Planar is a patented Fairchild process.

CONNECTION DIAGRAM

(TOP VIEW)

Vcc

INPUT B1

µA9617 TRIPLE EIA RS-232-C LINE RECEIVER FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The μ A9617 is a Triple Line Receiver designed to meet the terminator electrical requirements of EIA RS-232-C AND CCITT V.24. It receives line signals produced by the μ A9616, an EIA/CCITT driver, and converts them to TTL compatible logic levels. The inputs have a resistance between 3 k Ω and 7 k Ω and can withstand ±25 V. Each receiver can operate in either hysteresis or non-hysteresis (slicing) modes, and each receiver provides fail-safe operation as defined by Section 2.5 of RS-232-C. Noise immunity may be increased by connecting a capacitor between the response control pin and ground. The μ A9617 is constructed on a single silicon chip using the Fairchild Planar* process.

- MEETS ALL EIA RS-232-C AND CCITT V.24 SPECIFICATIONS
- FAIL-SAFE OPERATION
- HYSTERESIS OR NON-HYSTERESIS MODE
- INDIVIDUAL RESPONSE CONTROLS
- TTL COMPATIBLE OUTPUT
- SINGLE +5 V SUPPLY

ABSOLUTE MAXIMUM RATINGS

Note 1. Derate 8.3 mW/°C above 70°C

Supply Voltage Input Voltage Output Current Maximum Power Dissipation (Note 1) Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 60 seconds)

7 V

±25V

25 mA

630mW

 300° C

 -65° C to $+150^{\circ}$ C

 0° C to +75 $^{\circ}$ C

*Planar is a patented Fairchild process.

µA9620 DUAL DIFFERENTIAL LINE RECEIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION – The μ A9620 is a Dual Differential Line Receiver designed to receive differential digital data from transmission lines and operate over the military and industrial temperature ranges. It can receive ±500 mV of differential data in the presence of HIGH level (±15 V) common mode voltages and deliver undisturbed TTL logic to the output. In addition to line reception the μ A9620 can perform many functions, a few of which are presented in the applications section. It can interface with nearly all input logic levels including CML, CTL, HLLDTL, RTL and TTL. HLLDTL logic can be provided by tieing the output to V_{CC2} (+12 V) through a resistor. The outputs can also be wired-OR. The μ A9620 offers the advantages of logic compatible voltages (+5 V, +12 V), TTL output characteristics, and a flexible input array with a high common mode range. The direct inputs are provided in addition to the attenuated inputs (normally used) to allow the input attenuation and response time to be changed by use of external components.

NOTE

1. Rating applies to ambient temperatures up to 70°C. Above 70°C derate linearly at 8.3 mW/°C for the Ceramic DIP and 7.1 mW/°C for the Flatpak Package.

LOGIC DIAGRAM

+5V

B_D+

R+

BD

B-

+12

OUT B

µA9621 DUAL LINE DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUITS

the Ceramic DIP and 7.1 mW/°C for the Flatpak Package.

µA9622 DUAL LINE RECEIVER FAIRCHILD LINEAR INTEGRATED CIRCUIT

GENERAL DESCRIPTION - The µA9622 is a Dual Line Receiver designed to discriminate a worst case logic swing of 2.0 V from a ±10 V common mode noise signal or ground shift. A 1.5 V threshold is built into the differential amplifier to offer a TTL compatible threshold voltage and maximum noise immunity. The offset is obtained by use of current sources and matched resistors and varies only ±5% (75 mV) over the military and industrial temperature ranges.

The μ A9622 allows the choice of output states with the inputs open without affecting circuit performance by use of S₃*. A 130 Ω terminating resistor is provided at the input of each line receiver. An enable is also provided for each line receiver. The output is TTL compatible. The output HIGH level can be increased to +12 V by tieing it to a positive supply through a resistor. The output circuits allow wired-OR operation.

 S_3 connected to V_{CC}-open inputs causes output to be V_{OH}.

S3 connected to Ground-open inputs causes output to be VOL.

- TTL COMPATIBLE THRESHOLD VOLTAGE CHOICE OF OUTPUT STATE WITH INPUTS OPEN
- TTL COMPATIBLE OUTPUT
- **HIGH COMMON MODE** .
- WIRE-OR CAPABILITY
- **ENABLE INPUTS**
- FULL MILITARY TEMPERATURE RANGE

INPUT TERMINATING RESISTORS

LOGIC COMPATIBLE SUPPLY VOLTAGES

μΑ9624 • μΑ9625 DUAL TTL, MOS INTERFACE ELEMENTS FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The μ A9624 is a Dual 2-Input TTL Compatible Interface gate specifically designed to drive MOS. The output swing is adjustable and will allow it to be used as a data driver, clock driver or discrete MOS driver. It has an active output for driving medium capacitive loads.

The μ A9625 is a dual MOS to TTL level converter. It is designed to convert standard negative MOS logic levels to TTL levels. The μ A9625 features a high input impedance which allows preservation of the driving MOS logic level.

Both the μ A9624 and μ A9625 are available in the 14-lead Ceramic Dual In-Line Package and the 1/4 x 1/4 Flatpak.

NOTE: The TTL and MOS devices manufactured by Fairchild Semiconductor are considered as positive TRUE logic (the more positive voltage level is assigned the binary state of "1" or TRUE). Following MIL-STD-806B logic symbol specifications, the μ A9624 is represented as a NAND gate and the μ A9625 as a non-inverting buffer. This convention (of assuming MOS as a positive TRUE logic) has not been uniformly accepted by the industry; therefore, it is necessary to note that with negative TRUE MOS logic (the more negative voltage level is assigned the binary state "1" or TRUE), the μ A9624 acts as an AND gate and the μ A9625 as an inverter.

- TTL COMPATIBLE INPUTS/OUTPUT
- MOS COMPATIBLE OUTPUT/INPUTS
- LOW POWER

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)						
Storage Temperature	65°C to +150°C					
Temperature (Ambient) Under Bias	–55° C to +125° C					
V _{CC} Pin Potential to Ground Pin	V _{DD} to +10 V					
Voltage Applied to Outputs for HIGH Output State (µA9624)	VDD to +VCC value					
Voltage Applied to Outputs for HIGH Output State (µA9625)	–0.5 V to V _{CC} value					
Input Voltage (dc) (µA9624)	-0.5 V to +5.5 V					
Input Voltage (dc) (µA9625)	VCC to VDD					
VDD Pin Potential to Ground Pin	−30 V to +0.5 V					
V_{DD} Pin Potential to Tap Pin (μ A9624)	−30 V to +0.5 V					
VTAP	V _{CC} +0.5 V					
Internal Power Dissipation (Note 3)						
Ceramic DIP	670 mW					
Flatpak	570 mW					
Lead Temperature (Soldering, 60 seconds)	300° C					

µA9644 DUAL HIGH VOLTAGE, HIGH CURRENT DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The μ A9644 is a Dual 4-Input NAND Gate whose output can sink 500 mA in the LOW state, and maintain 30 V in the HIGH state. The outputs are uncommitted collectors in a Darlington configuration which have typical saturation voltages of 0.8 V at low currents and 1.2 V at 500 mA. The inputs are TTL Compatible and feature input clamp diodes. The input fan in requirement is typically 1/2 a normal DTL Unit Load. An input strobe common to both gates in provided, and an expander input node on each gate is available for input diode expansion. Separate ground pins are provided for each gate to minimize ground pin offset voltages at high current levels.

13 **500 mA CURRENT SINKING CAPABILITY** • 14 **OUTPUT VOLTAGES UP TO 30 V Ó** GND LOW AVERAGE POWER, TYPICALLY 30 mW PER GATE 15 HIGH SPEED, TYPICALLY 50 ns DELAY TIMES . 3 **TTL COMPATIBLE INPUTS** INPUT CLAMP DIODES LOW FAN IN LOADING REQUIREMENTS **COMMON STROBE INPUT** EXPANDER NODE FOR INPUT DIODE EXPANSION GND **ABSOLUTE MAXIMUM RATING** -65° C to $+175^{\circ}$ C Storage Temperature V_{CC} = Pin 7 Temperature (Ambient) Under Bias -55°C to +125°C V_{CC} Pin Potential to Ground Pin -0.5 V to +8.0 V -0.5 V to +5.5 V Input Voltages (dc) See Safe Area -0.5 V to +30 V Voltage Applied to Outputs (Output HIGH) Fig. 1 Curves on 640 mA Output Current (dc) (Output LOW) following pages Internal Power Dissipation (Note) 730 mW

7-33

Lead Temperature (Soldering, 60 seconds)

NOTE

Rating applies to ambient temperatures up to 70° C. Above 70° C derate linearly at 8.3 mW/ $^{\circ}$ C for the Ceramic DIP .

LOGIC DIAGRAM

10

12

300° C

SN55107 • SN75107 • SN55108 • SN75108 DUAL LINE RECEIVERS FAIRCHILD LINEAR INTEGRATED CIRCUITS

DESCRIPTION—The SN55107/75107 and SN55108/75108 are high speed, Two-Channel Line Receivers with common voltage supply and ground terminals. They are designed to detect input signals of 25mV (or greater) amplitude and convert the polarity of the signal into appropriate TTL compatible output logic levels. They feature high input impedance and low input currents which induce very little loading on the transmission line making these devices ideal for use in party line systems. The receiver input common mode voltage range is $\pm 3V$ but can be increased to $\pm 15V$ by the use of input attenuators. Separate or common strobes are available. The SN55107/75107 circuit features an active pull-up (totem pole output). The SN55108/75108 circuit features an open collector output configuration that permits wired-OR connections. The receivers are designed to be used with the SN55109/75109 and SN55110/75110 line drivers. The SN55107/75107 and SN55108/75108 line receivers are useful in high speed balanced, unbalanced and party line transmission systems and as data comparators.

- HIGH SPEED
- STANDARD SUPPLY VOLTAGES
- DUAL CHANNELS
- HIGH COMMON-MODE REJECTION RATIO
- HIGH INPUT IMPEDANCE
- HIGH INPUT SENSITIVITY
- INPUT COMMON-MODE VOLTAGE RANGE OF ±3V
- SEPARATE OR COMMON STROBES
- TTL OR DTL DRIVE CAPABILITY
- WIRED-OR OUTPUT CAPABILITY (SN55108/75108 ONLY)
- HIGH DC NOISE MARGINS

EQUIVALENT CIRCUIT

NOTE: Components shown with dashed lines are applicable to the SN55107 and SN75107 only.

CONNECTION DIAGRAM (TOP VIEW)

SN55109 • SN75109 • SN55110 • SN75110 **DUAL LINE DRIVERS**

FAIRCHILD LINEAR INTEGRATED CIRCUITS

DESCRIPTION - The SN55109/75109 and SN55110 are Dual Line Drivers featuring independent channels with common supply voltage and ground terminals. The major difference between the SN55109/75109 and the SN55110/75110 drivers is the output-current specification. The output current is nominally 6 mA for the SN55109/75109 and 12 mA for the SN55110/75110. The driver circuits have a constant output that is switched to either of two output terminals by the appropriate logic levels at the input terminals. The output current can be switched off by appropriate logic levels at the inhibit inputs. The circuit also features an inhibit input that is common to both drivers, providing more circuit versatility. The common-mode voltage range of the driver outputs is -3 V to +10 V, which allows a common-mode voltage on the line without affecting the driver performance. For application information see SN55107 • SN75107 • SN55108 • SN75108 Data Sheet.

- HIGH SPEED •
- STANDARD SUPPLY VOLTAGES .
- **DUAL CHANNELS**
- TTL INPUT COMPATIBILITY
- CURRENT-MODE OUTPUT (6mA or 12mA TYPICAL) .
- **HIGH OUTPUT IMPEDANCE**
- HIGH COMMON-MODE OUTPUT VOLTAGE RANGE (-3V to 10V)
- INHIBITOR AVAILABLE FOR DRIVER SELECTION .

CONNECTION DIAGRAM

(TOP VIEW)

OUTPUT

OUTPUT

INH D

UTPUT

27

OUTPUT

INPUT 1A

INPUT

INH

INPUT

28

GN

1C INH 2C INPUT 2A

SN75450 DUAL PERIPHERAL DRIVER FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The SN75450 is a versatile general purpose dual interface driver circuit that employs TTL or DTL logic. The SN75450 features two standard series 74 TTL gates and two uncommitted, high current, high voltage transistors offering the system designer the flexibility to tailor the circuit to his application. The SN75450 is useful in high speed logic buffers, power drivers, lamp drivers, relay drivers, line drivers, MOS drivers, clock drivers and memory drivers.

HIGH SPEED

- 300 mA CURRENT CAPABILITY
- HIGH VOLTAGE CAPABILITY
- UNCOMMITTED OUTPUT DEVICES
- TTL OR DTL INPUT COMPATIBILITY

ABSOLUTE MAXIMUM RATINGS	
Supply Voltage (Note 1)	+7 V
Internal Power Dissipation (Note 2)	800 mW
Input Voltage (Note 3)	5.5 V
V _{CC} to Substrate or Collector to Substrate Voltage	35 V
Collector to Base Voltage	35 V
Emitter To Base Voltage	5 V
Collector to Base Voltage (Note 4)	30 V
Continuous Collector Current	300 mA
Operating Temperature Range	0° C to + 70° C
Storage Temperature Range	-65° C to $+150^{\circ}$ C
Lead Temperature Range (Soldering, 60 seconds)	300° C

