A/D-D/A CONVERTERS SAMPLE/HOLDS
MULTIPLIERS/DIVIDERS
NON-LINEAR FUNCTIONS
AMPLIFIERS
ACTIVE FILTERS
POWER SUPPLIES

Welcome to the product world of Burr-Brown.

Abstract

And, welcome inside our 1975 General Catalog. We have tried to organize the information to provide as complete a picture as possible, and still make it easy for you to find what you're looking for. This catalog is divided into six product lines which include Data Conversion Products, Operational Amplifiers, Instrumentation Amplifiers, Analog Circuit Functions, Active Filters, and Power Supplies. Within the space available, each product has been described in as much detail as possible. When you need more detailed information on a specific product, just ask for a Product Data Sheet. See page 84 for details.

Following the product information you will find package information and a Model Number Index for all devices listed in the catalog. If you know a model number and want to see all the specifications, you'll find the page number listed next to the model number in the Model Number Index on page 81. If you want to locate a particular type of product, refer to the Table of Contents below. Thank you for considering Burr-Brown. We hope we can be of service to you.

CONTENTS
DATA CONVERSION PRODUCTS 4
Conversion Products Classification 5
A/D Highlights 6
Analog-to-Digital Converters 8
D/A Highlights 10
Digital-to-Analog Converters 12
Sample/Holds 14
Multiplexers 16
Voltage-to-Frequency Converters 17
Digitally Programmed Voltage Source 18
Comparators 19
Peak Detector 20
OPERATIONAL AMPLIFIERS 21
Highlights 22
Comparison Guide 24
General Purpose 26
Low Drift 28
Low Bias Current 30
Wideband \& Fast Settling 32
High Voltage \& High Current 34
Iso-Op-Amp 36
INSTRUMENTATION \& DATA AMPLIFIERS 37
Instrumentation Amplifiers 38
Low Drift Instrumentation Amplifiers 40
High Input Impedance, Low Bias Current Instrumentation Amplifiers 42
Programmable Gain Amplifiers 44
Variable Gain Differential Amplifier 46
Enclosures For Rack Mounting Amplifiers 47
ANALOG CIRCUIT FUNCTIONS 48
Multiplier/Dividers 49
Analog Divider 52
Multifunction Converter 53
True RMS-to-DC Converter 54
Thermal True RMS-to-DC Converters 55
Oscillator 56
ACTIVE FILTERS 57
Universal Active Filters 58
Fixed Frequency Active Filters 60
POWER SUPPLIES 62
PACKAGE INFORMATION 63
GENERAL INFORMATION 81
MODEL INDEX 81
REFERENCE BOOKS 83
LITERATURE 84
BURR-BROWN REPRESENTATIVES. Insideback cover

BURR-BROWN

For almost twenty years, Burr-Brown has been manufacturing a broad line of high quality electronic products designed for optimum performance and ease of use. We are constantly developing new manufacturing methods to keep abreast and ahead of the state-of-the-art, and to build better products at less cost. We like the business we're in, and continually strive to provide products of outstanding value to circuit and system designers throughout the world.

International Airport Industrial Park • TUCSON, ARIZONA 85734 • Telephone (602) 294-1431 • TWX: 910-952-1111 • Cable:BBRCORP

PRODUCTS...

Whether your needs include Data Conversion Products, Amplifiers, Analog Circuit Functions, Active Filters, or Power Supplies, we have them in depth. Many are available in hybrid and monolithic integrated circuits, most are available for off-the-shelf delivery, and all are very attractively priced.

FACILITIES...

We're no longer just module makers. Our in-house manufacturing and processing capabilities include: Complete monolithic IC facilities, from circuit design through wafer processing and automated final test; a complete thin-film facility engaged in volume production of passivated silicon chip resistor arrays; complete thick-film processing and hybrid assembly capability; computerized laser trimming and circuit adjustment and; broad packaging capabilities including DIP's, TO cans, as well as transfer molded, epoxy cast, conformal coated, and other non-hermetic types.

ENGINEERING...

At Burr-Brown, the engineer is given the respect, design freedom, and technology he needs to achieve just the right balance of performance, quality, and cost, without compromising reliability. If he needs to use thin or thick film technology, it's available to him right here. If his designs involve monolithic processing, or he needs the latest test equipment, an automated laser, or a diffusion furnace, we have that, too.

PRODUCTION...

Each month, thousands of Burr-Brown units are produced, and undergo a rigorous series of quality checks and tests before being shipped across the country and around the world. We set our own high standards of quality. And, we set them to equal or exceed those expected by our customers.

MARKETS...

There are very few industries or geographic locations that have not benefited from the use of Burr-Brown products. Computerized Process Control Systems, Medical and Analytical Instrumentation, Communications Systems, Navigation and Guidance, Aircraft, and Business Machines, you name it. From the depths of the earth to the outer reaches of space, Burr-Brown products are there.

BURR-BROWN IS SERVICE...

Even before the sale of our first product in 1956, we were offering technical assistance to the electronics industry. Today, Burr-Brown markets hundreds of standard electronic products, and provides a vast number of individual custom designs in a year's time. In order to make it easy for the customers to use our products we maintain an in-depth customer service program.

APPLICATIONS ENGINEERING STAFF...

Our Tucson based applications engineering staff is as near to you as the telephone. Highly skilled and well tutored in the use of our products, they will discuss with you the selection of a suitable unit for your application, discuss the parameter tradeoffs, and even suggest a block-diagram design approach to your system. They may be able to provide lower cost alternative methods of performing the same functions. Whether the application is analog or digital, they are there to help. Detailed applications assistance is also available from our field sales offices in the Chicago, Los Angeles, and San Francisco areas, the United Kingdom, France, and Japan.

In addition to our field sales offices, we have 23 United States sales representative offices, and over 30 exclusive engineering representatives in as many countries around the globe serving over 5,000 customers.

BURR-BROWN IS THE FUTURE...

Every day there is a growing need to develop new machines, new devices, and new processes to explore, to search, and to conserve what we have. The role that electronics is playing in these efforts is becoming increasingly more important, and Burr-Brown is helping. We are pledged to expand our technical horizons through research and development at an ever accelerating rate. We will continue our efforts to develop new methods for manufacturing better products at lower costs. We will continue to grow and expand. And, we will maintain our flexibility and reputation for high quality products and service. Just as Burr-Brown has paced the development of modern electronics, we will be in the forefront of future developments.

DATA CONVERSION PRODUCTS

Analog-to-Dígítal Converters

Dígital-to-Analog Converters
Sample/Holds
Multiplexers
Voltage-to-Frequency Converters
Dígitally-Programmed Voltage Sources
Comparators
Peak Detectors

HOW CONVERSION PRODUCTS ARE CLASSIFIED

Abstract

In general, products in this category are electronic devices which manipulate or operate on information which is in either digital or analog form. The output of these devices contains time-correlated information which may be in either analog or digital form.

Each product type performs a specific basic function. They are classified by key performance categories as follows:

A/D CONVERTERS provide coded digital output signals

 that represent the amplitude of analog input signals. Two conversion techniques are utilized by the A / D converters included in this catalog: successive approximation A/D conversion is used where moderate to high speed conversion rates are required; delta sigma modulation integration technique is used for high resolution and high accuracy where fast conversion speed is not required.A/D converters are organized by the following categories:
(1) High performance, general purpose, covering the span of low drift ($\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) to fast conversion speed (800 nanoseconds per bit) for 8,10 , and 12 bit resolutions.
(2) High resolution, high accuracy A/D converters offer resolutions up to 16 bits with initial accuracies of 0.005%.
(3) High speed A/D converters in modular packages offer 8,10 , and 12 bit resolutions and conversion speeds up to 110 nanoseconds per bit.

D/A CONVERTERS accept weighted digital signals and convert them into an equivalent analog current or voltage as an output.
The switched current ladder network method of D / A conversion is used to provide the widest range of speed and accuracy requirements.
D/A converters are organized by the following categories:
(1) High performance, general purpose, 8, 10, and 12 bit resolutions.
(2) High speed (fast settling) generally for use in CRT displays and construction of high speed A / D converters.
(3) High resolution, covering the span of 14 or 16 bit resolutions.
(4) Economy, general purpose.
(5) High reliability, specifically designed for operation in rugged or exposed environments.
(6) Digitally programmable voltage source designed for computerized instrument tests and process control applications.

V/F CONVERTERS provide a digital pulse train as an output whose repetition rate (frequency) is directly proportional to the amplitude of the analog input signal.

These devices offer a low cost method of A/D conversion and/ or transmission of analog signals over long distances while preserving signal accuracy as well as many other applications.
The units in this catalog are designed for general purpose use in industrial, laboratory and similar applications.

SAMPLE/HOLD amplifiers provide a simple method of storing an analog signal for a finite time period.

All Burr-Brown sample/hold amplifiers are designed to operate from standard ± 15 volt power supplies, and are complete (except the Hybrid IC Model SHC23, which requires an external capacitor).
These devices offer a wide spectrum of performance ranging from 1 microsecond acquisition speed for 0.01% accuracy to very low droop rates of 250 microvolts per second. Accuracies ranging from $\pm 0.02 \%$ to $\pm 0.005 \%$ will satisfy a majority of data acquisition and control applications.

ANALOG MULTIPLEXERS

Single-ended 8 to 16 channel and 8 channel differential analog multiplexers with internal channel address decoders offer a compact and economical method of multiplexing data signal inputs or outputs for data acquisition or control applications.

The IC Models MPC8D (differential) and MPC16S (singleended) offer compact and low cost C-MOS analog FET multiplexing in 28 pin DIP packages for applications requiring 20 kHz to 200 kHz channel sampling rates. The modular MPM8S offers very low crosstalk and low channel ON resistance for applications where a large number of signals are multiplexed.

COMPARATORS

Designed for control applications, Burr-Brown's IC comparators are ideal for driving relays, lamps, and loads.
These devices are categorized as:
(1) General purpose with variable hysteresis.
(2) Variable window with presettable upper and lower limits.

PEAK DETECTORS

Peak detectors are very similar to sample/holds. These devices are capable of detecting and holding the peak amplitude of a varying analog signal. The operating mode (PEAK DETECT, HOLD, RESET) is externally controlled, and may be adapted to many test, measurement, and control applications that require low droop in HOLD and fast response to changes in input signals while in the PEAK DETECT mode.

EB
 Analog-to-Digítal CONVERTER HIGHLIGHTS

Burr-Brown's A / D converter line offers a wide spectrum of performance with resolutions up to 16 binary bits, 8 bit conversion speeds as fast as 880 nsec, and guaranteed gain drifts as low as $\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Designed to maximize cost/ performance parameters, these A / D converters can provide solutions to some of your toughest data conversion problems.

All A / D converters are complete with internal references and user connectable input buffer amplifier. All digital inputs and outputs are DTL/TTL compatible, and all units operate from $\pm 15 V D C$ and +5 VDC power.
Should you need further information of any of the A / D converters, or for that matter, any of the products presented in this catalog, please ask your local Burr-Brown Representative or contact us in Tucson. Most products are fully described in separate Product Data Sheets which contain detailed specifications, operating instructions, performance curves, and applications hints.

HIGH PERFORMANCE, GENERAL PURPOSE

NEW! FAST 10 AND 12-BIT HYBRID IC MODEL ADC85 -25° to $+85^{\circ} \mathrm{C}$ MODEL ADC85C 0^{0} to $+70^{\circ} \mathrm{C}$

Designed to save space, weight and money, these A/D converters offer premium performance in a 32 pin hermetically sealed DIP compatible metal package. Conversion speeds up to 6 microseconds for 10 bit resolution and 10 microseconds for 12 bit resolution make the ADC85 ideal for applications that require system throughput sampling rates up to 150 kHz .
The ADC85 is complete with internal reference and user connectable buffer amplifier and may be user programmed to accept bipolar analog input signals of $\pm 2.5, \pm 5$, or ± 10 volts or unipolar signals of 0 to +5 or 0 to +10 volts. In addition, these units can be "short cycled" to achieve faster conversion speeds for resolutions less than 10 bits. Data is available in parallel and serial form with corresponding clock and status signals.

MODEL ADC40-LOW DRIFT $\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ MODEL ADC50-GENERAL PURPOSE

The ADC40 and 50 family of 8,10 , and 12 bit A/D converters offer state-of-the-art design and the optimum in modular packaging. Requiring only input signal and power, these selfcontained units are designed for applications that require low drift and conversion speeds up to 2.5 microseconds per bit. Throughput rates of 50 kHz for 8 bit resolutions and 33 kHz for 10 and 12 bit resolutions are easily achieved with the ADC40/50 series A/D converters.

These converters are available with binary or BCD output codes and user programmable (unipolar and bipolar) input voltage ranges. These units are available in $2^{\prime \prime} \times 4^{\prime \prime} \times 0.4^{\prime \prime}$ modular packages.

MODEL ADC55-FAST 10 AND 12-BIT

The ADC55 10 and 12 bit A/D converters are designed for use in applications where conversion speeds of from 0.8 to $1 \mu \mathrm{sec} / \mathrm{bit}$ are required. Offered in $2^{\prime \prime} \times 4$ " $\times 0.4^{\prime \prime}$ modules, the ADC55 employs state-of-the-art IC components and hybrid circuit techniques to assure high reliability.
The successive approximation technique employed in the ADC55 is combined with a proprietary speed improvement circuit that provides settling to $\pm 0.01 \%$ accuracies at conversion speeds in excess of 1 microsecond per bit.
This self-contained A/D converter has internal reference and user selectable input buffer amplifier and input signal ranges of $\pm 2.5, \pm 5, \pm 10,0$ to +5 and 0 to +10 volts.

HIGH SPEED-NEW!
 MODEL ADC60 - UP TO 1 MHz SAMPLING RATE

The Model ADC60 is a very high speed successive approximation A / D converter that is designed for applications requiring systems throughput rates from 300 kHz to 1 MHz . The fast conversion speed is accomplished with proprietary fast settling circuits which preserve linearity and drift while permitting conversion speeds up to 110 nanoseconds per bit.
Available in 8,10 , and 12 bit resolutions the ADC60 contains internal components that are provided for pin programmable analog input signal ranges of $\pm 2.5, \pm 5, \pm 10,0$ to +5 and 0 to +10 volts.

Data is available in both serial and parallel binary digital form with corresponding timing signals. The ADC60 is housed in a $2^{\prime \prime} \times 4^{\prime \prime} \times 0.75^{\prime \prime}$ module.

HIGH RESOLUTION, INTEGRATING

MODEL ADC100-16-BIT RESOLUTION

The ADC100 is excellent for applications which require good accuracy and high resolution, but where speed is not too important. The ADC100 is an integrating A / D converter that utilizes the delta sigma modulation principle. The digital equivalent of analog signals is developed by counting a number of pulses whose average repetition rate is proportional to the amplitude of the input signal over a fixed integration period. The internal clock is externally adjustable to provide integration periods which are integral multiples of 50 or 60 Hz periods for maximum power line noise rejection. The closed conversion loop assures linear performance of $\pm 0.005 \% \pm 1$ count that is independent of clock frequency deviations over the specified temperature range of 0 to $+70^{\circ} \mathrm{C}$. Conversion speeds range from 12 milliseconds for 12 bit binary to 30 milliseconds for 4 digit plus sign BCD codes.
The ADC100 is housed in a $2^{\prime \prime} \times 4^{\prime \prime} \times 0.4^{\prime \prime}$ module and four basic models are offered: Unipolar 4 digit $\mathrm{BCD}, 4$ digit plus sign BCD , unipolar and bipolar 16 bit binary. The binary units are pin programmable for 12,14 , or 16 bit resolution.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

(1) DTL/TTL compatible, " $0 "=0.8 \mathrm{~V} \max , " 1 "=2.0 \mathrm{~V}$ min.
(2) 1 TTL Load $=40 \mu \mathrm{~A} @$ Logic " 1 " and $-1.6 \mathrm{~mA} @$ Logic " 0 ".

Prices and specifications are subject to change without notice.
(3) FSR means Full Scale Range.
(4) Total Accuracy Drift in ppm of FSR $/{ }^{\circ} \mathrm{C}$.
(5) DTL/TTL compatible Logic @ max $=0.4 \mathrm{~V}$, Logic $1 \mathrm{~min}=2.4 \mathrm{~V}$.
(6) Status indicates that a conversion is in progress and the output data is not valid.

ORDERING INFORMATION

ADC60

 (8, 10, 12^{*} Bits)

ADC85

(7) Unipolar or bipolar codes user selectable.

Unipolar and bipolar codes derived from BIN code are BTC, BOB and USB.
BTC = Binary Two's Complement
$\mathrm{BOB}=$ Bipolar Offset Binary
USB $=$ Unipolar Straight Binary
(8) BCD - Unipolar Binary Coded Decimal
(9) $\mathrm{CBI}=$ Complementary Binary. Unipolar and bipolar codes derived from this code are CSB, COB and CTC - user selectable.
COB = Complementary Offset Binary
CTC = Complementary Two's Complement
CSB $=$ Complementary Straight Binary
(10) 50 msec for 14 bits, 200 msec for 16 bits.
(11) SMD $=$ Sign Magnitude Decimal Code.

ADC40, ADC50, ADC55

Digital-to-Analog CONVERTER HIGHLIGHTS

Our D / A converters have established a reputation for high quality cost conscious approaches to digital-to-analog conversion. These units accept 8 to 16 bit binary or 4 digit BCD codes. These D/A converters offer a wide choice of accuracies $(\pm 0.2 \%$ to $\pm 0.003 \%)$ drift ($\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to $\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain drift), settling speeds (25 nanoseconds to 50 microseconds), and size ($2^{\prime \prime} \times 4^{\prime \prime} \times 0.4^{\prime \prime}$ to 24 pin DIP), allowing you to choose the right product for your specific application. All are $D T L / T T L$ compatible and operate from ± 15 volt and +5 volt DC power supplies. We have two of the smallest complete quality performance hybrid D / A converters on the market today in our DAC80 and DAC85.

GENERAL PURPOSE, HYBRID IC

NEW! MODEL DAC80-12-BIT LOW COST

Designed for many general purpose applications where low cost, small size and 8 to 12 bit accuracy are requirements, the DAC80 offers maximum nonlinearity error of $\pm 0.012 \%$ over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, and maximum initial nonlinearity error of $\pm 0.012 \%$ at $25^{\circ} \mathrm{C}$. It is guaranteed monotonic over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, and settles to $\pm 0.01 \%$ of full scale range in just 3 microseconds. The DAC80 is complete with internal reference and amplifier for bipolar voltage output ranges of ± 2.5 to ± 10 volts or 0 to +5 and 0 to +10 volts unipolar ranges-all selectable by you. Or, if you need a fast settling current output, the DAC80 is also available with 2 current ranges of $\pm 1 \mathrm{~mA}$ or 0 to -2 mA , and it settles to $\pm 0.01 \%$ in only 300 nanoseconds.
The DAC80 is packaged in a $1.35^{\prime \prime} \times 0.50^{\prime \prime} \times 0.20^{\prime \prime}$ 24 pin DIP compatible ceramic package.

MODEL DAC85-12-BIT LOW DRIFT

The DAC85 12 bit D/A converter offers quality performance usually found in larger, higher cost modular units. Housed in a 24 pin dual-in-line metal case, this D/A converter is complete with internal reference and output amplifier and is engineered to preserve the performance, while providing sealed protection from rugged environments.
Highly stable laser trimmed thin-film resistors and our 4550 quad current switches provide low nonlinearities of $\pm 0.012 \%$ over 0 to $70^{\circ} \mathrm{C}$ (DAC85C) or $\pm 0.012 \%$ over $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (DAC85 and DAC85LD) operating temperature ranges. Current output models settle to $\pm 0.01 \%$ in 300 nanoseconds while voltage output models settle to $\pm 0.01 \%$ in 3 microseconds, permitting throughput rates as high as 3 MHz for full scale range changes. All models are guaranteed monotonic over the specified temperature ranges.

A full MIL temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ Model DAC85ET is also available for wide temperature operation.

The small size of the DAC85 makes it an ideal choice as the heart of your A/D converter design or for applications where space or weight is at a premium, such as CRT displays, aircraft instrumentation, and portable instruments. The wide choice of performance models allows you to choose the right unit for your application and budget.

GENERAL PURPOSE, HIGH PERFORMANCE

MODEL DAC40-LOW DRIFT

The DAC40 series features 8,10 , and 12 bit resolution, binary or BCD codes and guaranteed monotonicity. In addition, these fully specified units feature settling times as low as $3 \mu \mathrm{sec}$ and a guaranteed maximum gain drift as low as $\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. An internal thin-film resistor voltage scaling network permits the user to select $+5,+10, \pm 2.5, \pm 5$, and $\pm 10 \mathrm{~V}$ output voltage ranges.
Models are available with or without a TTL compatible buffer storage register.

MODEL DAC45-16-BIT RESOLUTION

The DAC45 accepts up to 16 bit binary or 4 digit BCD DTL/TTL compatible input codes at transfer rates as high as 30 kHz , and translates these digital words into one of seven user selectable voltage ranges as an output. The low drift and ultra-linearity of the DAC45 provide equivalent voltage or current output signals that are accurate to $\pm 0.003 \%$ of full scale input range at ambient temperature.
The DAC45 is one of the most accurate self-contained $2^{\prime \prime} \mathrm{x}$ $4^{\prime \prime} \times 0.4^{\prime \prime}$ modular D/A converters available today. All units are burned-in for 48 hours assuring you of a high quality, highly reliable product for your high accuracy requirements. All models contain internal reference and output amplifier. The DAC45 voltage output settles to $\pm 0.003 \%$ in $50 \mu \mathrm{sec}$.

MODEL DAC20 - FAST SETTLING

This family of D / A converters packs a lot of performance into a relatively small $3^{\prime \prime} \times 2.1^{\prime \prime} \times 0.4^{\prime \prime}$ package. The series has units for 8,10 , and 12 bit conversion, binary or BCD codes, and all models provide accuracy of $\pm 1 / 2$ LSB. Guaranteed drifts are as low as $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and conversion speeds are as fast as 1.5 μ sec. And, all units are guaranteed monotonic over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. Each unit is self-contained and can be ordered with or without an input buffer storage register.

MODEL DAC6O - ULTRA HIGH SPEED

The DAC60 is a high speed D/A converter designed for high speed applications. It is available in 10 and 12 bit resolution, provides $1 / 2$ LSB maximum differential nonlinearity error, and is guaranteed monotonic. Typical settling time to 0.05% for a one LSB step is 25 nanoseconds. The maximum settling time for the major carry or for a full scale transition is only 40 nanoseconds to 0.05%.

The DAC60 is pin programmable to obtain unipolar or bipolar output signals. The current output may be fed directly into the summing junction of an external high speed operational amplifier, or an external summing resistor.

Be DIGITAL-to-ANALOG CONVERTERS

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

(1) All input codes are DTL/TTL compatible.

Prices and specifications are subject to change without notice
(2) Input codes are designated:

CBI - Complementary Binary
BIN - Straight Binary
BOB - Bipolar Offset Binary

BTC - Bipolar Two's Complement
CCD - Complementary BCD
BCD - Binary Coded Decimal
\dagger Maximum; monotonicity guaranteed over operating temperature range. *Also available for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range (CBI only).

ORDERING INFORMATION

DAC20, DAC40

DAC45

NEW! dAc85Ld LOW DRIFT	DAC20 FAST SETTLING			$\begin{gathered} \text { DAC40 } \\ \text { LOW DRIFT } \end{gathered}$			$\begin{gathered} \text { DAC45 } \\ \text { HIGH RESOLUTION } \end{gathered}$		DAC60ULTRA HIGH SPEED	
12	8	10 3	12	8	10 3	12	16	4	10	12
CBI -	$\begin{gathered} \text { BIN, } \mathrm{BOB}, \mathrm{BTC} \\ \text { BCD } \end{gathered}$			$\begin{gathered} \text { CBI, BIN, BOB,BTC } \\ \text { CCD, BCD } \end{gathered}$			$\left\|\begin{array}{c} \mathrm{CBI}, \mathrm{BIN} \\ { }^{(5)} \\ \mathrm{BOB}^{(5)}{ }^{(5)} \mathrm{BTC}^{(5)} \end{array}\right\|$	$\mathrm{CCD}, \mathrm{BCD}^{(5)}$		
NO	Optional (3)			Optional ${ }^{(4)}$			Optional ${ }^{(5)}$		NO	
$\begin{aligned} & \pm 0.012 \\ & \pm 0.1 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.1 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \\ & \pm \mathbf{0 . 0 5} \\ & \pm \mathbf{0 . 0 5} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.012 \\ & \\ & \pm 0.05 \\ & \pm 0.025 \\ & \hline \end{aligned}$	± 0.2 ± 0.05 ± 0.012 ± 0.024 ± 0.1 ± 0.05 			$\begin{aligned} & \pm 0.003 \\ & \pm 0.003 \\ & \pm 0.025 \\ & \pm 0.025 \end{aligned}$		$\begin{gathered} \pm 0.012 \mid \pm 0.012 \\ \pm 0.05 \\ \pm 0.001 \\ \hline \end{gathered}$	
$\begin{aligned} & \pm 10 \\ & \pm 1 \\ & \pm 0.012^{\dagger} \\ & -25 \text { to }+85 \end{aligned}$	$\begin{gathered} - \\ \pm \\ \pm 40 \\ \pm 0.2 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & \pm 20 \\ & \pm 0.05 \\ & \text { to }+70 \\ & \hline \end{aligned}$	- - ± 15 ± 0.012	$\begin{aligned} & \pm 10 \\ & \pm 1 \\ & - \\ & \pm 0.2 \dagger \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 1 \\ & - \\ & \pm 0.05^{\dagger} \\ & \text { to }+70 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 7 \\ & \pm 1 \\ & - \\ & \pm 0.012^{\dagger} \end{aligned}$	$\begin{array}{r} \pm 7 \\ \pm 1 \\ \pm 0.006 \\ 0 \text { to } \end{array}$	$\begin{aligned} & \pm 0.006 \\ & +70 \\ & \hline \end{aligned}$	$\begin{gathered} \overline{-} \\ \pm 30 \\ \pm 0.05 \\ \\ 0 \end{gathered}$	$\begin{gathered} \text { - } \\ \pm 30 \\ \pm 0.024 \\ 0 \quad+70 \end{gathered}$
$\underset{20}{3\left(\mathrm{~V}_{\text {out }}\right), 0.3\left(\mathrm{I}_{\text {out }}\right)}$	1	$\begin{gathered} 1 \\ 70 \end{gathered}$	1.5	3	$\begin{aligned} & 3 \\ & 20 \end{aligned}$	3	50	50	0.04	0.15
$\begin{aligned} & 0 \text { to }+5,0 \text { to }+10 \\ & \pm 2.5, \pm 5, \pm 10 \\ & \pm 5 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0 \text { to }-10 \\ & \pm 10.25 \\ & \pm 20 \\ & 0.1 \end{aligned}$			$\begin{aligned} & 0 \text { to }+5,0 \text { to }+10 \\ & \pm 2.5, \pm 5, \pm 10 \\ & \pm 5 \\ & 0.05 \end{aligned}$			$\begin{gathered} 0 \text { to }+5,0 \text { to }+10 \\ \pm 2.5, \pm 5, \pm 10 \\ \pm 8 \\ 0.05 \end{gathered}$		N/A	
$\begin{aligned} & 0 \text { to }-2 \\ & \pm 1 \\ & \pm 2.5 \\ & 15 \mathrm{k} / 4.4 \mathrm{k} \end{aligned}$	N/A			N/A			$\begin{aligned} & 0 \text { to }-2 \\ & \pm 1 \\ & \pm 0.5 \\ & 15 \mathrm{k} / 4.4 \mathrm{k} \end{aligned}$		$\begin{aligned} & 0 \text { to }-5 \\ & \pm 2.5 \\ & 3.2 / 0.0 \\ & 650 / 516 \\ & \hline \end{aligned}$	
$\begin{gathered} \pm 15,+5 \\ \pm 0.002(6), \pm 0.02(7) \end{gathered}$	$\begin{gathered} \pm 15,+5 \\ \pm 14 \text { to } \pm 16 \text { and }+4.75 \text { to }+5.25 \\ \pm 0.007 \end{gathered}$			$\begin{array}{l\|l} \pm 15,+5 & \pm 15,+5 \\ & \pm 14.5 \text { to } \pm 15.5 \text { and }+4.75 \text { to }+5.25 \\ \pm 0.002 & \pm 0.001 \end{array}$					$\begin{gathered} \quad \pm 15 \\ \pm 14.5 \text { to } \pm 15.5 \\ \pm 0.002 \end{gathered}$	
(26) $\begin{gathered}0.8^{\prime \prime} \mathrm{x} 1.4^{\prime \prime} \mathrm{x} \\ 0.20^{\prime \prime} \text { METAL }\end{gathered}$	(24) 2 " $\times 3$ " $\times 0.4 \prime$			(29) A \& (23) E $2^{\prime \prime} \times 22^{\prime \prime} \times 0.4{ }^{\prime \prime}$ (4)			(23) F $2^{\prime \prime} \times 4^{\prime \prime} \times 0.4 \prime$		(29) B $2^{\prime \prime} \times 2$ " $\times 0.4$ "	
\$150.00	\$120.00	\$160.00	\$195.00	\$135.00	\$145.00	\$165.00	\$340.00	\$330.00	\$110.00	\$150.00

(3) Extra cost option, same package as unbuffered models.
(4) Extra cost option. All unbuffered models have complementary codes. Buffered models have uninverted codes, and are in $2^{\prime \prime}$ x $4^{\prime \prime}$ x $0.4^{\prime \prime}$ package.
(5) Extra cost option. Basic module has complementary codes. Optional model is on P.C. Card - all codes are available.
(6) For -15 V and +5 V supplies.
(7) For +15 V Supply.
(8) Prices shown for basic models only.
(9) The +5 V supply can be eliminated by connecting the +5 V pin to the $\pm 15 \mathrm{~V}$ supply.

DAC80, DAC85

DAC60

SAMPLE/HOLDS

Burr-Brown manufactures a sample/hold for almost any application. Whether your design requires high speed, high accuracy, or 8 to 13 bit system compatibility, we have it. The performances are excellent, the prices reasonable, and they all have that little extra called "Burr-Brown Quality".

The SHC85 acquires up to ± 10 volt signals in $5.5 \mu \mathrm{sec}$ and is accurate to $\pm 0.01 \%$ of full scale. The SHC85 is complete with holding capacitor and is packaged in a compact 14 pin DIP package, and has compensating circuitry to minimize charge offset and dielectric absorption. External capacitance may be added to extend the SHC85 performance for lower droop with correspondingly longer acquisition time.

Two models are available - the Model SHC85 is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range and the SHC85ET is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.

MODEL SHC23-
 HYBRID IC USER SELECTABLE ACQUISITION TIME AND DROOP

If you need a small package and a low cost method of storing an analog voltage, Burr-Brown's SHC23 sample/hold amplifier may be the solution to your problems. Upon command, this unit will acquire and hold an analog signal with very low droop errors. These TTL compatible units need only the addition of an external storage capacitor to provide a complete sample/hold unit. The selection of this capacitor allows you to tailor the specifications of the SHC23 to suit your requirements. For instance, a small storage capacitor will provide an acquisition time as low as 25μ seconds while a much larger storage capacitor will allow the output to be held longer than 15 minutes with less than 1% error.
It's hermetically sealed in a TO- 8 case, provides $\pm 0.01 \%$ accuracy, and for those extreme environmental conditions, the SHC23ET operates over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Burr-Brown guarantees the total unadjustable error (dynamic nonlinearity) of these sample/hold amplifiers to be less than $\pm 0.01 \%$. This makes the SHC23 the best price/performance bargain in its class.

MODEL SHM4I-
 I3 BIT-COMPATIBLE

The SHM41 acquires ± 10 volt signals, settles to 0.005% of final value in $4 \mu \mathrm{sec}$, and maintains that value for a minimum of 1 millisecond. Designed for use with 12 and 13 bit A/D converters, the SHM41 also accepts ± 10 volt data, a DTL/TTL or C/MOS compatible control signal, and requires ± 15 VDC power.
Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	UNITS	
INPUT		
ANALOG INPUT Voltage Range Impedance Bias Current, max	Volts Ω nA	
DIGITAL INPUT (Mode Control) ${ }^{(1)}$ Sample Mode (Logic 1) Current Hold Mode (Logic 0) Current	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	
INPUT POWER Voltages Current	Volts mA	
TRANSFER CHARACTERISTICS		
ACCURACY Dynamic Nonlinearity ${ }^{(2)}$, max for Sample Period Hold Period Gain Range Gain Error, max Voltage Offset, (Adj. to zero) Droop Rate, max	$\begin{aligned} & \% \text { of } 20 \mathrm{~V} \\ & \mu \mathrm{sec} \\ & \mu \mathrm{sec} \\ & \mathrm{~V} / \mathrm{V} \\ & \% \text { of } 20 \mathrm{~V} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} / \mathrm{ms} \\ & \hline \end{aligned}$	
ACCURACY DRIFT Gain Drift Droop over specification temp. Specification Temperature Range	$\begin{aligned} & \mathrm{ppm} \text { of } 20 \mathrm{~V} \\ & \mathrm{mV} / \mathrm{ms} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	
DYNAMIC CHARACTERISTICS Bandwidth (Full Power) Output Slew Rate Acquisition Time (to $\pm 0.01 \%$) 10 Volt Step, max 20 Volt Step, max Aperture Time Feedthrough in HOLD Mode	kHz $\mathrm{V} / \mu \mathrm{sec}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ ns \% of Step change on input	
OUTPUT Voltage Range Current Range Impedance	Volts mA Ω	
PACKAGE DRAWING (See pages 68-75)		
PRICE (1-9)		

(1) Mode Control Command is DTL/TTL Compatible.
(2) Includes all unadjustable errors for specified sample and hold period.

Prices and specifications are subject to change without notice.

MODEL SHM60-HIGH SPEED AND SELECTABLE I to 1000 GAINS

Designed for use with fast A/D and D/A converters and analog multiplexers, the SHM60 high speed sample/hold acquires analog signals of up to ± 10 volt amplitude and settles to 0.01% in less than 1.5 microsecond for 20 volt input step. Both analog input terminals are available for user selection of gains from unity to 1000 . Aperture time is a mere 12 nanoseconds, and feedthrough is just 0.005\%.

Internal compensation of charge storage effects and dielectric absorption are provided to assure accurate and fast operation. The SHM60 dynamic nonlinearity of 0.01% is specified for hold periods of up to 15 microseconds to simplify the user's task of computing system throughput error for specific operating conditions.

MODEL 4034/25-LOW DROOP

This sample/hold is designed for applications where accuracies of up to $\pm 0.01 \%$ must be maintained for long hold periods. The $4034 / 25$ will hold ± 10 volt signals for up to 5 milliseconds to an accuracy of $\pm 0.01 \%$ max. The low droop rate of only $0.25 \mu \mathrm{~V} / \mathrm{msec}$ maximum makes the 4034/25 excellent for simultaneous sample/hold and low speed applications.

No external components are required for this module, although an external balance potentiometer may be used for a fine balance adjustment of the unit. Just apply ± 15 VDC power, and the module is ready to operate.

NEW ${ }^{\text {N/ }}$ SHC85	$\begin{aligned} & \text { SHC23 }{ }^{(3)} \\ & \text { LOW COST } \end{aligned}$	SHC23ET (3) WIDE TEMPERATURE	$\begin{gathered} 4034 / 25 \\ \text { LOW DROOP } \end{gathered}$	SHM41 HIGH ACCURACY	$\begin{array}{r} \text { SHM60(4) } \\ \text { HIGH SPEED } \end{array}$
$\begin{aligned} & \pm 10 \\ & 10^{8} \\ & 50, \text { typ } \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 10^{8} \\ & 30 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 10^{8} \\ & 30 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 5 \times 10^{7} \\ & 600 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 108 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 10^{11} \\ & 0.04 \end{aligned}$
$\begin{array}{r} .05 \\ -50 \end{array}$	$\begin{aligned} & 5 \\ & -100 \end{aligned}$	$\begin{aligned} & 5 \\ & -100 \end{aligned}$	$\begin{array}{r} 200 \\ -60 \end{array}$	$\begin{aligned} & 1 \\ & -50 \end{aligned}$	$\begin{aligned} & 100 \\ & -0.05 \end{aligned}$
$\begin{aligned} & \pm 15 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 40 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & +25 /-15 \end{aligned}$
$\begin{aligned} & \pm 0.01 \\ & 5 \\ & 1000 \\ & +1.0 \\ & \pm 0.01 \\ & \pm 2 \\ & 500 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & 70 \\ & 1000 \\ & +1.0 \\ & \pm 0.01 \\ & \pm 2 \\ & 20 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & 70 \\ & 1000 \\ & +1.0 \\ & \pm 0.01 \\ & \pm 2 \\ & 20 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & 10 \\ & 5000 \\ & +1.0 \\ & \pm 0.01 \\ & \pm 1 \\ & 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.005 \\ & 5.5 \\ & 1000 \\ & +1.0 \\ & \pm 0.02 \\ & \pm 1 \\ & 20 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & 1 \\ & 15 \\ & \pm 1 \text { to } \pm 1000 \\ & \pm 0.01 \\ & \pm 3 \\ & 5000 \end{aligned}$
$\begin{gathered} \pm 2 \\ \text { doubles every } 10^{\circ} \mathrm{C} \\ 0 \text { to }+70^{(6)} \end{gathered}$	$\begin{aligned} & \pm 3 \\ & 0.1 \\ & 0 \text { to }+70 \end{aligned}$	$\begin{gathered} \pm 3 \\ 2 \\ -55 \text { to }+125 \end{gathered}$	$\begin{aligned} & \pm 2.5 \\ & 3 \\ & 0 \text { to }+60 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \text { doubles every } 10^{\circ} \mathrm{C} \\ & 0 \text { to }+70 \end{aligned}$	$\begin{gathered} \pm 2 \\ \text { doubles every } 10^{\circ} \mathrm{C} \\ 0 \text { to }+70 \end{gathered}$
$\begin{aligned} & 200 \\ & 20 \\ & \\ & 4.5 \\ & 5.5 \\ & 30 \\ & \pm 0.005 \end{aligned}$	20 1 60 70 50 note 5	20 1 60 70 50 note 5	$\begin{aligned} & 2 \\ & 0.1 \\ & \\ & 500 \\ & 1000 \\ & 100 \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & 100 \\ & 10 \\ & 4 \\ & 5 \\ & 40 \\ & \pm 0.002 \end{aligned}$	$\begin{aligned} & 400 \\ & 25 \\ & \\ & 1.0 \\ & 1.5 \\ & 12 \\ & \pm 0.005 \mathrm{max} \end{aligned}$
$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 5 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 20 \\ & 1.0 \end{aligned}$
(28) 14 Pin DIP	(31) $\mathrm{TO}-8$	(31) TO-8	(30) $1.8^{\prime \prime} \times 2.4^{\prime \prime} \times 0.6^{\prime \prime}$	(29) $\mathrm{C} 2^{\prime \prime} \times 2^{\prime \prime} \times 0.4{ }^{\prime \prime}$	(29) D $2^{\prime \prime} \times 2^{\prime \prime} \times 0.4{ }^{\prime \prime}$
\$65.00	\$49.00	\$80.00	\$119.00	\$135.00	\$99.00

(3) Specification shown for $0.01 \mu \mathrm{~F}$ holding capacitor.
(4) Specification shown for unity gain.
(5) Not specified. This parameter is a function of the holding capacitor and the circuit layout.
(6) Model SHC85ET $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ is also available.

MULTIPLEXERS

NEW! MODELS MPC-8D,MPC-I6S, 8-CHANNEL DUAL and I6-CHANNEL SINGLE-ENDED CMOS-FET

The MPC-16S is a single-ended monolithic 16 channel analog multiplexer and the MPC-8D is a monolithic dual 8 channel analog multiplexer constructed with voltage protected CMOS devices. Transfer accuracies of better than 0.01% can be achieved at sampling rates up to 200 kHz from signal sources of up to ± 10 volts amplitude.

These DTL/TTL/CMOS compatible devices feature selfcontained binary channel address decoding. An ENABLE line is also made available which allows the user to individually enable a 16 channel group (MPC-16S) or an 8 channel group (MPC-8D) facilitating channel expansion in either single-node or multi-tiered matrix configurations.

Digital and analog inputs are failure protected from either overvoltages that exceed the power supplies or from the loss of power. The break-before-make switches also serve to protect the signal sources from shorting during switching.

High quality processing is employed to produce CMOS-FET analog channel switches which have low leakage current, high OFF resistance, low feedthrough capacitance, and fast settling time.

These devices are housed in compact 28 pin dual-in-line packages that measure just $0.6^{\prime \prime}$ wide, and are specified for operation over a $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range. Power consumption is only 15 mW when operating at 100 kHz and just 7.5 mW on standby.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL MPM-8S 8-CHANNEL MOS-FET

The MPM-8S is a single-ended, 8 channel analog multiplexer. Transfer accuracies of 0.01% can be achieved at sampling rates well over 150 kHz from signal sources of ± 10 volts. This DTL/TTL compatible module features self-contained binary channel address decoding. An INHIBIT SIGNAL INPUT allows the user to turn OFF all channels and facilities expansion of the multiplexer to as many as 256 channels in a multi-tier matrix structure.

State-of-the-art zener protected MOS-FET switches with low ON resistance are used in the MPM8 S to achieve a low $200 \Omega \mathrm{ON}$ resistance, maximum leakage current of just 0.2 nA , an OFF resistance of $10^{11} \Omega$, a low feedthrough capacitance, and a $7 \mu \mathrm{sec}$ settling time. The unit is housed in a $2^{\prime \prime} \times 2^{\prime \prime} \times 0.4^{\prime \prime}$ module with 0.020 "diameter pins and DIP compatible spacing.

MODEL	```MPC-8D 8-CHANNEL DIFFERENTIAL```	MPC-16S 16-CHANNEL SINGLE-ENDED	MPM-8S 8-CHANNEL SINGLE-ENDED	UNITS
INPUT				
Analog Inputs Number of Input Channels Single-ended Differential Voltage Range Maximum Safe Overvoltage Reference Voltage Range	$\begin{aligned} & \text { N/A } \\ & 8 \\ & \pm 15 \\ & \pm V \text { Supply } \pm 20 \\ & +4 \text { to }+20 \end{aligned}$	$\begin{aligned} & 16 \\ & \text { N/A } \\ & \pm 15 \\ & \pm V \text { Supply } \pm 20 \\ & +4 \text { to }+20 \end{aligned}$	$\begin{aligned} & 8 \\ & \mathrm{~N} / \mathrm{A} \\ & \pm 10 \\ & \pm 15 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	Channels Channels Volts Volts Volts
ON Characteristics ON Resistance (R_{On}) Ron Drift vs. Temperature Ron Mismatch Channel-to-Channel Differential Input Leakage Current	$\begin{aligned} & 1.3 \\ & 0.25 \\ & \\ & 50 \\ & 50 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.25 \\ & \\ & 50 \\ & \mathrm{~N} / \mathrm{A} \\ & 1 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 1 \\ & 20 \\ & \mathrm{~N} / \mathrm{A} \\ & 0.2 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \% /^{\circ} \mathrm{C} \\ & \Omega \\ & \Omega \\ & \mathrm{nA} \end{aligned}$
OFF Characteristics Off Resistance-to-Ground Leakage Current	$\begin{aligned} & 10^{11} \\ & 0.2 \end{aligned}$	$\begin{aligned} & 10^{11} \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 10^{11} \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \mathrm{nA} \end{aligned}$
Digital Inputs Channel Select No. of bits Code Group Enable Bit	$3^{(1)}$ one of 8 Logic " 0 " d Logic " 1 " enab	$4^{(1)}$ one of 16 ables channels, s channel select	$3^{(2)}$ one of 8 Logic " 0 " enables Logic " 1 " disables	nnel select, channels
$\begin{aligned} & \text { Power Supply Requirements } \\ & \text { Supply Voltages (rated) } \\ & \text { Supply Range } \pm 15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$ Power Consumption	$\begin{aligned} & \pm 15 \\ & -5 \text { to }+20 \\ & -5 \text { to }-20 \\ & \text { N/A } \\ & 7.5 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & +5 \text { to }+20 \\ & -5 \text { to }-20 \\ & \text { N/A } \\ & 7.5 \end{aligned}$	$\begin{gathered} \pm 15,+5 \\ +14 \text { to }+18 \\ -14 \text { to }-25 \\ +4.75 \text { to }+5.25 \\ 800 \end{gathered}$	Volts Volts Volts Volts $\mathrm{m} \omega$
DYNAMIC CHARACTERISTICS				
Gain Error ($20 \mathrm{M} \Omega$ load), max Crosstalk Settling Time to 0.01% Common-Mode Rejection, min Switching Time Turn ON Turn OFF	$\begin{aligned} & 0.01 \\ & 0.005 \\ & 4 \\ & 120 \mathrm{~dB} \\ & \\ & 0.5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.005 \\ & 4 \\ & \text { N/A } \\ & \\ & 0.5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.005 \\ & 7 \\ & \mathrm{~N} / \mathrm{A} \\ & \\ & 0.2 \\ & 0.7 \end{aligned}$	\% of FSR $\%$ of OFF Channel Sig. $\mu \mathrm{sec}$ $\mu \mathrm{sec}$ $\mu \mathrm{sec}$
OUTPUT				
Voltage Range, min Capacitance-to-Ground Operating Temperature Range	$\begin{aligned} & \pm 15 \\ & 50 \\ & 0 \text { to }+75 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 15 \\ & 50 \\ & 0 \text { to }+75 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 40 \\ & 0 \text { to }+70 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Volts } \\ & \mathrm{pF} \\ & { }^{\mathrm{o}} \mathrm{C} \\ & \hline \end{aligned}$
PACKAGE DRAWING (See pages 75,76)	(32) B ($\begin{aligned} & 28 \mathrm{pin} \\ & \text { DIP }\end{aligned}$	(32) $\mathrm{A} \mathrm{l}^{28} \mathrm{DIP} \mathrm{pin}$	(29) E $\begin{gathered}2^{\prime \prime} \times 2 \prime \mathrm{x} \\ 0.4 \prime\end{gathered}$	
PRICE (1-9)	\$45.00	\$42.00	\$99.00	

(1) TTL/CMOS compatible: $-\mathrm{V}_{\text {supply }} \leqslant \mathrm{V}_{\mathrm{L}}<0.8 \mathrm{~V} @ 1 \mathrm{nA},+4.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{H}} \leqslant+\mathrm{V}_{\text {supply }} @ 1 \mathrm{nA}$.
(2) DTL/TTL compatible: $0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{L}} \leqslant 0.8 \mathrm{~V} @-1.3 \mathrm{~mA}, 2.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{H}} \leqslant+5.5 \mathrm{~V} @ 500 \mu \mathrm{~A}$.

VOLTAGE-to-FREQUENCY CONVERTERS

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

- LOW COST - \$35.00 in 100's
- ONE SIGNAL LINE TRANSMISSION
- COMPACT -
$1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.4^{\prime \prime}$
- ACCURATE -
0.01\% linearity gives you 12 bit accuracy
- STABLE -
$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain drift gives you better than 0.4 LSB stability over temperature for 12 bit applications.
- VERSATILE -

Many simple-to-implement scaling options Unipolar or bipolar operation-VFC15

- CONVENIENTLY SCALED - 1 kHz per volt

Voltage-to-frequency conversion is a simple and low cost method of converting analog signals into an equivalent digital form. The output is a DTL/TTL compatible digital pulse train whose repetition rate is proportional to the amplitude of the analog input signal; these pulses have constant width and constant amplitude.

The VFC12 accepts 0 to 10 volt analog signals while Model VFC15 accepts 0 to 20 volt analog signals. The VFC12 operates over DC to 10 kHz frequency range and the VFC15 operates over a DC to 20 kHz frequency range.

The low 0.01% maximum nonlinearity error of these V/F converters makes them excellent for use in applications where digital resolutions of 12 or 13 bits are desired. These units are completely selfcontained and require only ± 15 VDC power and input signal. The gain and offset are adjustable with external potentiometers. A number of optional configurations to scale the input or output for best compatibility with your system are easily realized with simple external circuitry. These VFC's can be used to increase noise immunity on long single-line signal transmission, for 12 bit accuracy A/D conversion, in digital panel meter front ends, and they are ideal for feed rate generator and control applications.

MODEL	VFC12	VFC15	UNITS
FREQUENCY RANGE	10	20	kHz
INPUT			
ANALOG INPUT			
Voltage Range	0 to +10	0 to +20	
Overrange, min	100	10	$\% \text { of } \mathrm{FSR}^{(1)}$
Impedance	33	33	k Ω
Maximum Safe Input Voltage	22	22	V
INPUT POWER			
Rated Voltages ${ }^{(2)}$	$\pm 15 \pm 10 \%$		VDC
Supply Drain			
Typical	± 16		mA
Maximum	± 20		mA
TRANSFER CHARACTERISTICS			
TRANSFER EQUATION	$\mathrm{f}_{\text {out }}=10^{4} \frac{\mathrm{~V}_{\text {in }}}{10}$		Hz
ACCURACY	Adjustable		
Full Scale Error ${ }^{(3)}$			
Offset Error ${ }^{(4)}$			
Typical	± 0.002	± 0.001	\% of FSR
Maximum	± 0.01	± 0.005	\% of FSR
Linearity Error , max			
$\mathrm{V}_{\text {in }}=+1 \mathrm{mV}$ to +10 V	± 0.01	-	\% of FSR
$\mathrm{V}_{\mathrm{in}}=+1 \mathrm{mV}$ to +20 V	-	± 0.01	\% of FSR
Power Supply Sensitivity	± 0.005		\% of FSR/ \%
STABILITY ($0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$			
Voltage Input			
Typical			ppm of FSR $/{ }^{\circ} \mathrm{C}$
Maximum			ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$
Current Input	N/A	± 35	ppm of FSR $\rho^{\circ} \mathrm{C}$
Stability vs. Time			
Full Scale Drift			
Per Day	± 100		ppm of FSR
Per Month	± 200		ppm of FSR
Input Offset Drift			
Per Day	± 10		ppm of FSR
Per Month	± 20		ppm of FSR
Offset Drift			
Typical	± 2		ppm of FSR $\rho^{\circ} \mathrm{C}$
Maximum	± 5		ppm of FSR $/{ }^{\circ} \mathrm{C}$
RESPONSE			
Settling Time for 10 V Input Step, max Overload Recovery Time	2 output pulses of new frequency plus $20 \mu \mathrm{sec}$ 1 to 2 pulses of new frequency		
TEMPERATURE RANGE			
Specification	0 to +70		${ }^{\circ} \mathrm{C}$
Operating			${ }^{\mathbf{o}}{ }_{\mathrm{C}}$
Storage	-55 to +125		${ }^{\mathrm{O}} \mathrm{C}$
OUTPUT			
Waveform Train of TTL/DTL compatible pulses			
Pulse Characteristics \|			
Logic 1 (High)	4.7 ± 0.5		V
Logic 0 (Low)	$0.2 \pm 0.1$30		V
Pulse Width			$\mu \mathrm{sec}$
Fan Out	${ }_{10}^{30}$ TTL Loads		
Impedance	3		k Ω
Capacitive Load , max	1000		pF
PACKAGE DRAWING (See page 77)	(33) $\mathrm{A}^{1.5}$	0.4 "	
PRICE (1-9)	\$57.00	\$59.00	

(1) FSR $=$ Full Scale Range and is 10 V for VFC12 and 20V for VFC15.
(2) A regulated supply with 1% or less ripple is recommended.
(3) Adjusted at factory for $9.900 \mathrm{~V}=10 \mathrm{kHz}$.
(4) May be externally adjusted to zero.

MODELS 4800 AND 4801

- 0.01\% ACCURACY
- $\pm 60 \mathrm{~V}, \mathbf{2 0 0} \mathrm{~mA}$ OUTPUT
- FULL DIGITAL PROGRAMMING OF

Voltage Magnitude
Voltage Range
Voltage Polarity
Current Limit

- INPUT StORAGE REGISTERS
- VOLTAGE OR CURRENT PROGRAMMING

The 4800 and 4801 are the first digitally programmed voltage sources (DPVS) developed specifically for designin applications in automated and computer-controlled test equipment. They are packaged in a compact module suitable for mounting on a printed circuit board, and are essentially self-contained digitally programmable power supplies (DPPS). By eliminating the size and weight of the $\mathrm{AC} / \mathrm{DC}$ power supply and the expensive hardware of an instrument-type DPPS, and through extensive use of our own low cost, high precision components, we have provided maximum performance and applications versatility at minimum cost. Because the required DC power is normally available in the user's system (or can be provided at small cost) and because instrument hardware is usually unnecessary, the tradeoffs are extremely favorable.

Both binary (4800) and BCD (4801) programming are provided, thus minimizing the need for expensive codeconversion circuitry. The 4800 and 4801 contain a high-

stability D/A converter, power output circuitry, sensing amplifier, and all the digital controls and interfaces necessary to allow easy computer control. Each unit has selectable $\pm 10 \mathrm{~V}$ and $\pm 60 \mathrm{~V}$ output ranges. Alternatively, they may be used as digitally programmed current sources.

When operated in the voltage programming mode, a current sense output is available. Also, the internal current limiting level is digitally programmable.

Settling time of the 4800 or 4801 , after a programmed change in the digital input word is $100 \mu \mathrm{sec}$ (worst case). The maximum trimmed output error is $\pm 0.012 \%$. Package size is $4.4^{\prime \prime} \times 3.4^{\prime \prime} \times 0.8^{\prime \prime}$. See (34)on page 77 .

PRICE in 1 - 9 quantities:

$$
\begin{array}{ll}
\text { Model } 4800 \text { (Binary Coding) } & \$ 650.00 \\
\text { Model } 4801 \text { (BCD Coding) } & \$ 650.00
\end{array}
$$

For additional details request data sheet PDS-306.

COMPARATORS

In their simplest form, comparators are used to provide a two-state logic output that indicates whether an analog voltage is greater than or less than another analog voltage. Parameters that vary considerably with circuit complexity are sensitivity, hysteresis, stability of trip point with variations in temperature and power supply voltages, input voltage range, and switching speed. Burr-Brown comparators are fully specified and can be used in your circuit with a minimum of design time.

MODEL 4082 FAST SETTLING

The 4082/03 combines a low cost differential input comparator with an open collector transistor output stage capable of sinking 100 mA . With transient protection of 400 mA , this unit is an excellent choice to drive lamps, relays, and other devices with high transient requirements. In addition, the open collector output will accept up to +40 VDC making this device compatible with MOS circuitry and high noise immunity logic as well as DTL and TTL devices.

MODEL 4II5-WINDOW-DUAL LIMIT

Model 4115/04 is a hybrid IC window comparator in a double width DIP. The unit has three inputs; one for a voltage that sets the upper limits, another for a voltage that sets the lower limits, and the third for a signal input. There are three mutually exclusive outputs; HIGH, GO, and LOW. When an output is ON it will sink up to 200 mA of current. This input diode protected device is designed to work with input voltages of up to $\pm 10 \mathrm{~V}$, and will not be harmed by voltages to $\pm 15 \mathrm{~V}$.

The unit's three open collector outputs indicate that the input signal voltage is above, below or in the window. They will drive a variety of loads including lamps, relays, MOS circuitry and high noise immunity logic as well as DTL and TTL devices.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	$\begin{gathered} 4082 / 03 \\ \text { FAST } \\ \text { SETTLING } \end{gathered}$	4115/04 WINDOW (DUAL LIMIT)	UNITS
INPUT			
Voltage Range (All Inputs) Maximum Safe Input Impedance, min	$\begin{aligned} & \pm 10 \\ & \pm 15 \\ & 300 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 15 \\ & 6 \end{aligned}$	Volts Volts k Ω
TRANSFER CHARACTERISTICS			
Accuracy Sensitivity, min Voltage Offset, max (Referred to input) vs Power Supply vs Temperature, $\max \left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \pm 0.1 \\ & \pm 10 \\ & \pm 50 \\ & \pm 150 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 2 \\ & \pm 50 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} / \mathrm{V} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
SWITCHING SPEED 20 mV Step Input For 30 mV Overdrive	$\begin{aligned} & 7 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & 300 \end{aligned}$	$\mu \mathrm{sec}$ $\mu \mathrm{sec}$
OUTPUT			
Load Voltage Supply Load Current Steady State Transient (1 second max) Impedance to common (All outputs) OFF State ON State	$\begin{aligned} & 0 \text { to }+30 \\ & 100 \\ & 400 \\ & \\ & 1 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { to }+30 \\ & \\ & 200 \\ & 400 \\ & \\ & 1 \\ & 3 \\ & \hline \end{aligned}$	Volts mA mA M Ω Ω
POWER SUPPLY REQUIREMENTS Rated Supply Voltages Supply Range Supply Drain, max	$\begin{aligned} & \pm 15 \\ & -14 \text { to }+16 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & -12 \text { to }+18 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \text { VDC } \\ & \text { VDC } \\ & \text { mA } \end{aligned}$
TEMPERATURE RANGE Rated Specifications Operating	$\begin{aligned} & -25 \text { to }+85 \\ & -40 \text { to }+85 \\ & \hline \end{aligned}$	$\begin{aligned} & -25 \text { to }+85 \\ & -40 \text { to }+85 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
PACKAGE DRAWING (See pages 77, 78)	(35) $\begin{aligned} & 0.76^{\prime \prime} \mathrm{x} \\ & 0.46^{\prime \prime} \mathrm{x} \\ & 0.25^{\prime \prime}\end{aligned}$	(36) $\begin{aligned} & 0.76^{\prime \prime} \mathrm{x} \\ & 0.76^{\prime \prime} \mathrm{x} \\ & \\ & 0.25 "\end{aligned}$	
$\begin{aligned} & \text { PRICE } \\ & (1-9) \end{aligned}$	\$36.00	\$49.00	

MODEL 4084/25

- HIGH GAIN ACCURACY - $\pm 0.01 \%$
- LOW DROOP RATE $- \pm 5 \mathrm{mV} / \mathrm{sec}$
- STATUS OUTPUT - DTL/TTL Compatible

The 4084/25 peak detector is a special type of sample/ hold. The input signal is acquired and tracked (PEAK DETECT mode) until it reaches a maximum value then the unit automatically holds this value while signaling that a peak has been reached (STATUS output). The $4084 / 25$ can then be placed in the HOLD mode to ignore further peaks or RESET to a reference level ready to detect the next peak. The extremely low output droop (voltage decay with time) of this unit allows it to be used with a variety of instruments to record or display its output (A/D converters, digital voltmeters, analog meters, etc.).
The $4084 / 25$ will detect peaks in the range of -10 volts to +10 volts. The RESET mode charges the internal holding capacitor to any reference level between +10 volts and -10 volts. The peak detector will then detect any peak more positive than the reference level. For instance, with a voltage reference input of 0 volts, the unit will detect peak voltages between 0 and +10 V and, with a -10 V voltage reference input, the $4084 / 25$ will detect peaks between -10 V and +10 V .

BLOCK DIAGRAM

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	4084/25	
ANALOG INPUTS		
Input Signal Level		
Operating (absolute max)	$\pm 10 \mathrm{~V}(\pm 15 \mathrm{~V})$	
Input Bias Current	600 nA	
Input Impedance	$50 \mathrm{M} \Omega$	
Reset Input Voltage (Current)	$\pm 10 \mathrm{~V}(3 \mathrm{~mA})$	
DIGITAL INPUTS		
Logic Level " 1 " Voltage	$+2.4 \mathrm{~V}<\mathrm{V}_{\mathrm{H}}<+15 \mathrm{~V}$	
Logic Level "0" Voltage	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{L}}<+0.8 \mathrm{~V}$	
Rise Time	$1 \mu \mathrm{sec}$	
Input Impedance, Each Logic Input	$10 \mathrm{k} \Omega \\| 50 \mathrm{pF}$	
	LOGIC LOGIC	
	INPUT A INPUT B	
PEAK DETECT Mode	"0" "0"	
RESET Mode	"1" " 1 "	
HOLD Mode	"1" "0"	
OFFSET Adjust Mode	"0" " 1 "	
ACCURACY		
Voltage Gain	$1.0 \mathrm{~V} / \mathrm{V}$	
Gain Accuracy at DC (Over Temp. Range)	$\pm 0.01 \%$ Full Scale	
Dynamic Accuracy DC to 100 Hz	$\pm 0.02 \%$ Full Scale	
Input Voltage Offset , max	$\pm 1 \mathrm{mV}$	
vs. Temperature , max	$\pm \mathbf{5 0} \mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input-to-Output Feedthrough	$\pm 0.5 \mathrm{mV}$	
STABILITY		
Droop (in the Hold Mode)		
From $0^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}, \max$	$\pm 5 \mathrm{mV} / \mathrm{sec}$	
At $+60^{\circ} \mathrm{C}$, max	$\pm 60 \mathrm{mV} / \mathrm{sec}$	
Power Supply Sensitivity	$\pm 1 \mathrm{mV} / \%$.	
SWITCHING PERFORMANCE		
Acquisition Time in PEAK DETECT MODE (for +10 V Input Step and Output		
Settling to within 1 mV of Input)	$200 \mu \mathrm{sec}$	
Output Slew Rate in PEAK DETECT	$1 \mathrm{~V} / \mu \mathrm{sec}$	
Reset Time in RESET to within $\pm 0.01 \%$	$100 \mu \mathrm{sec}$	
PEAK DETECT to HOLD mode offset	$-5 \mathrm{mV}$	
ANALOG OUTPUT		
Rated Output		
Voltage	$\pm 10 \mathrm{~V}$	
Current	$\pm 5 \mathrm{~mA}$	
Output Impedance	0.05Ω	
Capacitive Load	1000 pF	
Noise DC to 10 kHz	0.1 mV rms	
DIGITAL OUTPUT STATUS		
(DTL/TTL Compatible)		
$\mathrm{E}_{\text {in }}<\mathrm{E}_{\mathrm{o}}$	0 V	
$\mathrm{E}_{\text {in }} \geqslant \mathrm{E}_{\mathrm{o}}$	$+5 \mathrm{~V}$	
Delay Time Plus Rise Time	(1)	
TEMPERATURE RANGE		
Specification	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	
Operating	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
POWER REQUIREMENTS		
Rates Supply Voltage	$\pm 15 \mathrm{~V}$	
Voltage Range	± 14 to $\pm 16 \mathrm{VDC}$	
Supply Drain Quiescent (Rated Output)	$\pm 25 \mathrm{~mA}(\pm 40 \mathrm{~mA})$	
PACKAGE DRAWING (See page 78)	(37) $2.4 \prime \times 1.8{ }^{\prime \prime} \times 0.6 \prime \prime$	
PRICE (1-9)	\$ 145.00	

(1) Depending upon the rate-of-change of the input signal, the delay plus rise time of the STATUS output can vary from as small as $5 \mu \mathrm{sec}$ to over 100 msec .

TYPICAL OPERATION OF PEAK DETECTOR

OPERATIONAL AMPLIFIERS

General Purpose
Low Drift
Low Bías Current
Wideband and Fast Settling
High Voltage and High Current
Iso-Op-Amps

OP AMP HIGHLIGHTS

All Burr-Brown op amps are listed in six applications groups which correspond to the user's general design requirements. These groups include General Purpose, Low Drift, Low Bias Current, Wideband, High Voltage and High Current (including power boosters), and an unusual new productthe Iso-Op-Amp ${ }^{\mathrm{TM}}$. Features of some of the key products in each group are described on these two pages.

GENERAL PURPOSE

LOW DRIFT, LOW NOISE IC; 3500 SERIES (pg. 26)

The 3500 series is designed for low input currents while maintaining slew rates and bandwidths adequate for most applications. The low input bias current is achieved by a unique current canceling circuit which insures low bias currents over the full temperature and common-mode voltage ranges, and gives the amplifier both high differential and common-mode input impedance. The 3500 family also has exceptionally good noise characteristics. These internally compensated amplifiers have many guaranteed specifications and offer a wide range of offset voltage and bias current performance from which to choose.

LOW COST, 20 mA; 3268/3269 SERIES (pg. 27)

The 3268/3269 series is a modular, bipolar input device featuring low cost and moderately high output current. This series is particularly useful in applications requiring somewhat faster slew rate than is available in IC or low cost modular devices. The open loop gain is high, and the amplifier has very stable frequency response and transient response, even for large values of feedback resistance and capacitive loading.

LOW DRIFT

$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ DRIFT IC; 3500E (pg. 28)

The 3500 E , based on the proven Burr-Brown 3500 series design, is a low $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift unit with excellent open loop gain, bias current, and common-mode rejection specifications. The initial offset voltage is $500 \mu \mathrm{~V}$ max and it has the same excellent noise performance of the 3500 family.

MATCHED OFFSET VOLTAGE AND DRIFT IC; 3500MP (pg. 28)

Close process control and careful grading by Burr-Brown make possible a new dimension in IC op amps - drift matched pairs. Offset voltage and drift are matched to within $200 \mu \mathrm{~V}$ max and $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max respectively. This performance allows you to build multi-stage op amp circuits with excellent accuracy. They are especially suited for high input impedance instrumentation amplifier type circuits.

LOW DRIFT FET IC; 3521L (pg. 28)

Now, there is an amplifier with both $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max drift and low bias current (10 pA max). By using our own thin-film components and advanced laser trimming techniques, BurrBrown has broken the performance barrier on low drift IC FET's. Low offset voltage, low drift and low bias current all in the same family of amplifiers.

$0.1 \mu \mathrm{~V} /{ }^{0} \mathrm{C}$ CHOPPER; 3291/14 (pg. 29)

For most inverting applications where ultra low drift vs. temperature and time is a requirement, the $3291 / 14$ will be the best choice. The low voltage and bias current drifts of this op amp are combined with extremely high open loop gain to provide excellent overall closed loop accuracy. A low-profile package, a low price, and frequency response more than adequate for most applications make it a "best buy".

DIFFERENTIAL INPUT CHOPPER; 3354/25 (pg. 29)

Until the introduction of the model 3354, high performance chopper stabilized operational amplifiers were always singleended. Now, the same ultra low drift $\left(0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ and other truly premium performance specifications can be obtained for noninverting, differential input, and other applications in which the amplifier must function with both differential and common-mode signals.

WIDEBAND and FAST SETTLING

FAST SLEWING IC; 3505J and 3507J (pg. 32)

Burr-Brown models 3505J and 3507J differential input op amps are intended for use in circuits requiring fast transient response - pulse amplifiers, D/A converters, comparators, fast followers, etc. The 3505 J offers a settling time of 300 nanoseconds to 0.1% of final value, a typical slew rate of $30 \mathrm{~V} / \mu \mathrm{s}$, and a unity gain bandwidth of 6 MHz . It has a very stable 6 dB /octave gain rolloff at high frequencies which makes the amplifier stable at all gains without external compensation. The 3507 J has a typical slew rate of $120 \mathrm{~V} / \mu \mathrm{s}$, and a gain bandwidth product of 20 MHz at a gain of 10 . External compensation allows the designer to select the frequency response appropriate to his own circuit for optimum performance.

WIDEBAND IC; 3506J AND 3508J (pg. 32)

Designed specifically for circuits requiring extended bandwidths and high gains, the models 3506 J and 3508 J differential input IC op amps are ideally suited for RF signal amplifiers, fast recovery voltage references, high speed integrators, high frequency active filters and photo-diode applications. The 3506 J is internally compensated for stability at all gains, and presents a small signal unity gain bandwidth of 12 MHz , and a typical slew rate of $7 \mathrm{~V} / \mu \mathrm{s}$. The 3508 J has an exceptionally high gain bandwidth product of 100 MHz at a gain of 100 , and a typical slew rate of $35 \mathrm{~V} / \mu \mathrm{s}$. The 3508 J is also externally compensated to allow the designer to select frequency response parameters to fit his individual circuit requirements.

NEW!
 600 ns (0.01\%) SETTLING TIME IC; 3550 (pg. 33)

The 3550 provides 0.6μ s max (0.01%) settling time, 20 MHz unity gain frequency, and 1.5 MHz min full power frequency. Its 6 dB /octave rolloff without external components gives excellent frequency stability (even with heavy capacitative loads) and settling performance previously obtainable only with larger modules. The 3550 is specifically designed for requirements where fast settling, high accuracy, and high input impedance are important. It is ideal for such applications such as D/A and A/D conversion, sample/hold, and multiplexer buffering.

LOW BIAS CURRENT

1 pA BIAS CURRENT IC; 3522 (pg. 30)

The 3522 family offers excellent input characteristics at moderate cost through the use of monolithic chips, thinfilm technology, and laser trimming. Unlike other FET op amps of comparable cost, the 3522 series has low bias current (1 pA max, 3522 L), low input current noise (0.3 pA p-p), and moderate voltage drift. In addition, the 3522 family is internally compensated and provides excellent frequency stability at all gains.

NEW! 0.1 pA BIAS CURRENT IC; 3523 (pg. 30)

Guaranteed specifications of 0.1 pA max, bias current, $\pm 0.5 \mathrm{mV}$ max offset voltage, and $\pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max voltage drift makes the 3523L the best performing ultra low bias current IC FET you can find. It can solve your toughest current-to-voltage converter and high input impedance buffer circuit problems.

0.01 pA BIAS CURRENT VARACTOR; 3430 (pg. 30)

The 3430 inverting amplifier minimizes input bias current ($0.01 \mathrm{pA}, \max$) and input noise current through use of a varactor diode bridge technique. This model is designed for use with current signal sources where the signal is applied directly to the inverting input terminal and a single feedback resistor determines the input-current to output-voltage gain factor. Because of the extremely small input bias and noise currents of this amplifier, its effective resolution ex-
tends well below the picoamp range. Typical signal sources requiring such resolution include photomultiplier tubes, radiation detectors and flame detectors.

HIGH VOLTAGE \& HIGH CURRENT NEW! HIGH VOLTAGE \& CURRENT; 3580, 81, \& 82 (pg. 35)

The 3580 series is the first family of IC op amps to provide output voltage swings as high as 290 V p-p! Also, they have self-contained thermal sensing and shutoff which automatically prevents damage to the amplifier from overheating.
The FET input stage minimizes the offset voltages caused by bias currents flowing in the large feedback resistances normally used with high voltage circuits. The 3580 family is enclosed in a hermetic TO-3 package which can dissipate over three watts without a heat sink and up to 4.5 watts with a suitable heat sink.

POWER BOOSTER; 3329/03 (pg. 35)

The $3329 / 03$ provides a $\pm 100 \mathrm{~mA}$ output current in a compact, dual-in-line type package without the need for an external heat sink. The unit is short circuit protected over the full temperature range, and output current is limited to $\pm 150 \mathrm{~mA}$ by internal circuitry.

TM
(pg. 36)
The Iso-Op-Amp is a brand new product from Burr-Brown. As the name implies, it is a true uncommitted differential input operational amplifier that offers input/output isolation. The various models are rated at ± 500 to ± 2000 volts of continuous isolation voltage (factory tested at 2000 to 5000 volts) and have either bipolar transistor or FET input stages. Also, one model provides isolated $\pm 15 \mathrm{VDC}$ at the input for powering circuitry such as bridges and other op amps.

NEW! LOW DRIFT; 3450 (pg. 36)

The 3450 has a low drift (less than $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$) bipolar input stage which is optimized for use with low-level signals from low impedance signal sources such as strain gages and thermocouples. Input voltage drift is less than $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and gain linearity is $\pm 0.01 \%$. Isolation mode rejection is 160 dB at ± 500 VDC.

NEW! LOW BIAS CURRENT; 3451 (pg. 36)

The 3451 has a low bias current (-25 pA , max) FET input stage which is suitable for use with low-level current sources or high impedance voltage sources. Input impedance is 1011Ω and isolation mode rejection is 160 dB at $\pm 500 \mathrm{VDC}$.

NEW! 1200 VOLT ISOLATION; 3452 (pg. 36)

The 3452 provides input/output isolation for continuous service of ± 2000 VDC minimum (tested at ± 5000 volts). Isolation mode rejection is 160 dB at ± 2000 VDC. And the 3452 has the unique feature of having isolated $\pm 15 \mathrm{VDC}$ available at the input.

OPERATIONAL AMPLIFIER COMPARISON GUIDE

[^0]Prices and specifications are subject to change without notice.

OFFSET VOLTAGE		BIAS CURRENT		INPUT IMPEDANCE		COMMON-MODE	PACKAGE	PRICES (Small qty.)								
@ $25{ }^{\circ} \mathrm{C}$	TEMP DRIFT	@ $25^{\circ} \mathrm{C}$	TEMP DRIFT	DIFFERENTIAL	COMMON-MODE	REJECTION										
mV	$\mu \mathbf{V} /{ }^{\mathbf{0}} \mathbf{C}$	nA	${ }^{\text {nA/ }}{ }^{\mathbf{0}} \mathrm{C}$	Ω	Ω	dB										
$\begin{aligned} & \pm 3 \\ & \pm 4 \\ & \pm 6 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 10 \\ & \pm 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 0.6 \\ \pm 0.8 \\ \pm 1.0 \end{array}$	$\begin{gathered} 0.3 \mathrm{M} \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} 200 \mathrm{M} \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ * \\ 80 \end{gathered}$	$\begin{gathered} \text { TO-99 } \\ * \\ * \\ \hline \end{gathered}$	$\begin{array}{r} \$ 24.00 \\ 19.00 \\ 11.00 \\ \hline \end{array}$								
$\begin{aligned} & \pm 3 \\ & \pm 4 \\ & \pm 6 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 10 \\ & \pm 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.6 \\ & \pm 0.8 \\ & \pm 1.0 \end{aligned}$		*	90		19.00 13.00 7.50								
(1) $\pm 50 \mu \mathrm{~V}$	$\begin{aligned} & \pm 5 \\ & \pm 20 \\ & \pm 1 \end{aligned}$	$\begin{gathered} 50 \\ * \\ \pm 0.08 \\ \hline \end{gathered}$	$\begin{aligned} & \pm 0.6 \\ & * \\ & \pm 0.002 \end{aligned}$	1 M 500 k	$\begin{aligned} & 15 \mathrm{k} \\ & 500 \mathrm{M} \end{aligned}$	86 Inverting	$\begin{aligned} & 2^{\prime \prime} \times 2^{\prime \prime} \times 0.7^{\prime \prime} \\ & 1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.4^{\prime \prime} \\ & { }^{*} \\ & 1.8^{\prime \prime} \times 2.4^{\prime \prime} \times 0.6^{\prime \prime} \end{aligned}$	$\begin{array}{r} 83.00 \\ 39.00 \\ 28.00 \\ 175.00 \end{array}$								
$\begin{aligned} & \pm 20 \mu \mathrm{~V} \\ & \pm 50 \mu \mathrm{~V} \\ & \pm 100 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.3 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \\ & \pm 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.0005 \\ & \pm 0.001 \\ & \pm 0.002 \end{aligned}$	$\begin{gathered} 500 \mathrm{k} \\ * \\ * \\ \hline \end{gathered}$	-	$\begin{gathered} \text { Inverting } \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} 1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.4^{\prime \prime} \\ * \\ * \end{gathered}$	$\begin{aligned} & 77.00 \\ & 56.00 \\ & 49.00 \\ & \hline \end{aligned}$								
± 1 $*$	$\begin{aligned} & -25 \\ & \pm 25 \\ & \pm 50 \\ & \hline \end{aligned}$	$\begin{gathered} \overline{-0.1} \\ * \end{gathered}$	$\text { doubles } /+10^{\circ} \mathrm{C}$	$\begin{gathered} 10^{\overline{11}} \\| 3 \mathrm{pF} \\ * \end{gathered}$	$10 \mathrm{k}$	Inverting	DIL Type $1.2^{\prime \prime} \times 1.8^{\prime \prime} \times 0.6^{\prime \prime}$									
$\begin{aligned} & \pm 30 \mu \mathrm{~V} \\ & \pm 50 \mu \mathrm{~V} \\ & \pm \mathbf{1 0 0} \mu \mathrm{V} \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm \mathbf{1} \end{aligned}$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.05 \\ & \pm 0.05 \end{aligned}$	$\begin{gathered} \text { doubles/ }+10^{\circ} \mathrm{C} \\ * \\ * \\ \hline \end{gathered}$	1 M $*$ $*$	$\begin{gathered} 1013 \\ * \end{gathered}$	$\begin{gathered} 140 @ \mathrm{DC} \\ * \\ * \end{gathered}$	$\begin{gathered} 1.8^{\prime \prime} \times 2.4^{\prime \prime} \times 0.6^{\prime \prime} \\ * \\ * \end{gathered}$	$\begin{aligned} & 00.00 \\ & 145.00 \\ & 110.00 \\ & 100.00 \end{aligned}$								
$\begin{aligned} & \text { footnote (1) } \\ & \quad * \\ & \text { footnote (1) } \\ & * \end{aligned}$	$\begin{aligned} & \pm 100 \\ & \pm 50 \\ & \pm 50 \\ & \pm 20 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.1 \\ & * \\ & -0.02 \\ & * \\ & \hline \end{aligned}$	$\begin{gathered} \text { doubles/ }+10^{\circ} \mathrm{C} \\ * \\ \text { doubles/ }+10^{\circ} \mathrm{C} \\ * \end{gathered}$	$\begin{aligned} & 10^{11} \\| 6 \mathrm{pF} \\ & 10^{11} \\|_{\\|}^{*} \mathrm{pF} \end{aligned}$	$\begin{aligned} & 10^{11} \\| 12 \mathrm{pF} \\ & 10^{11^{*} \\| 2 \mathrm{pF}} \end{aligned}$	$\begin{gathered} 60(+8,-10 \mathrm{~V}) \\ * \\ 92(\pm 10 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 1.1^{\prime \prime} \times 1.1^{\prime \prime} \times 0.4^{\prime \prime} \\ \\ \text { * } \end{gathered}$	$\begin{aligned} & 65.00 \\ & 79.00 \\ & 46.00 \\ & 57.00 \end{aligned}$								
$\begin{aligned} & \text { footnote (1) } \\ & * \\ & \text { footnote (1) } \\ & * \end{aligned}$	$\begin{array}{r} \pm 30 \\ \pm 10 \\ \pm 30 \\ \pm 10 \end{array}$	$\begin{aligned} & \pm 0.01 \mathrm{pA} \\ & * \\ & \pm 0.01 \mathrm{pA} \end{aligned}$	$\begin{aligned} & \text { doubles/ }+10^{\circ} \mathrm{C} \\ & * \\ & \text { doubles } /+10^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 3 \times 10^{11} \\| 30 \mathrm{pF} \\ 3 \times 10^{*}{ }^{* 1} \\| 30 \mathrm{pF} \\ * \end{gathered}$	$\begin{gathered} 10^{1 / 4} \\| 2 \mathrm{pF} \\ * \end{gathered}$	$\begin{gathered} 100(\pm 25 \mathrm{~V}) \\ * \end{gathered}$	$\begin{gathered} 1.7^{\prime \prime} \times 3.1^{\prime \prime} \times 0.7^{\prime \prime} \\ \text { * } \\ 1.7^{\prime \prime} \times 3.1^{\prime \prime} \times 0.7^{\prime \prime} \end{gathered}$	$\begin{aligned} & 59.00 \\ & 85.00 \\ & 59.00 \\ & 85.00 \end{aligned}$								
$\begin{aligned} & \pm 250 \mu \mathrm{~V} \\ & \pm 100 \mu \mathrm{~V} \\ & \pm 100 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 1.5 \\ & \pm 0.5 \\ & \pm 0.25 \end{aligned}$	$\begin{array}{r} 25 \\ * \\ * \end{array}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.15 \\ & \pm 0.15 \end{aligned}$	0.4 M $*$ $*$	\% 500 M	100	$1.1^{\prime \prime} \times 1.1^{\prime \prime} \times 0.5 \text { " }$	$\begin{aligned} & 83.00 \\ & 43.00 \\ & 58.00 \\ & 74.00 \end{aligned}$								
$\begin{aligned} & \pm 0.55 \\ & \pm 20 \\ & \pm 0.3 \end{aligned}$	$\begin{aligned} & 1 \\ & 50 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 50 \\ & -25 \mathrm{pA} \\ & -20 \mathrm{pA} \end{aligned}$	$\begin{gathered} \pm 0.5 \\ \text { doubles } /+10^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 10^{7} \\| 6 \mathrm{pF} \\ & 10^{11} \\| 10 \mathrm{pF} \\ & 10^{11} \\| 10 \mathrm{pF} \end{aligned}$	$\begin{array}{r} 5 \times 10^{9} \\| 6 \mathrm{pF} \\ 10^{11} \\| 10 \mathrm{pF} \\ 10^{11} \\| 10 \mathrm{pF} \\ \hline \end{array}$	$\begin{aligned} & 100(\pm 10 \mathrm{~V}) \\ & 80(\pm 10 \mathrm{~V}) \\ & 90(\pm 10 \mathrm{~V}) \end{aligned}$	$\begin{gathered} 2.3^{\prime \prime} \times 3.5^{\prime \prime} \times 0.7^{\prime \prime} \\ \\ * \\ \\ \end{gathered}$	$\begin{aligned} & 180.00 \\ & 105.00 \\ & 135.00 \\ & \hline \end{aligned}$								
$\begin{aligned} & \pm 1 \\ & \pm 25 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 0.3 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & -0.025 \\ & \pm 0.3 \\ & * \\ & \hline \end{aligned}$	$\begin{gathered} \text { doubles } /+10^{\circ} \mathrm{C} \\ \pm 0.01 \end{gathered}$	$\begin{gathered} 10^{11} \\ 80 \mathrm{k} \\| 0.1 \mu \mathrm{~F} \\ * \end{gathered}$	$\begin{gathered} 10^{11} \\ 10^{9} \\| 0.2 \mu \mathrm{~F} \\ * \end{gathered}$	$\begin{aligned} & 90 \\ & 110 \end{aligned}$	$\begin{array}{lll} 1.8^{\prime \prime} \times & 2.4^{\prime \prime} \times & 0.6^{\prime \prime} \\ 1.5^{\prime \prime} \times & 1.5^{\prime \prime} \times & 0.4^{\prime \prime} \end{array}$	$\begin{aligned} & 89.00 \\ & 49.00 \\ & 64.00 \end{aligned}$								
$\begin{aligned} & \pm 5 \\ & \pm 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 5 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 20 \\ & \pm 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 0.5 \\ & \pm 0.3 \end{aligned}$	$\begin{gathered} 10 \mathrm{M} \\| 3 \mathrm{pF} \\ * \\ * \end{gathered}$	$\begin{gathered} 5 \times 10^{9} \\| 3 \mathrm{pF} \\ * \\ * \end{gathered}$	$\begin{gathered} 100 \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} \text { TO-99/Mini } \operatorname{Dip(2)} \\ * \\ * \end{gathered}$	$\begin{array}{r} 7.50 \\ 12.00 \\ 15.00 \end{array}$								
$\begin{aligned} & \pm 5 \\ & \pm 2 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 10 \\ & \pm 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 20 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 1.5 \\ & \pm 1 \\ & \pm 0.5 \end{aligned}$	* $\begin{aligned} & \text { * } \\ & \\ & *\end{aligned}$	*	*	TO-99 $*$ $*$	$\begin{aligned} & 15.00 \\ & 24.00 \\ & 36.00 \end{aligned}$								
$\begin{aligned} & \pm 0.5 \\ & \pm 0.2(4) \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1(4) \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{M} \\| 3 \mathrm{pF} \\ & 10 \mathrm{M} \\| 3 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{gathered} 5 \times 10^{9} \\| 3 \mathrm{pF} \\ 5 \times 10^{9} \\| 3 \mathrm{pF} \\ \hline \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { TO-99 } \\ & \text { TO-99 } \end{aligned}$	$\begin{aligned} & 25.00 \\ & 25.00 \end{aligned}$								
$\begin{aligned} & \pm 5 \\ & \pm 2 \\ & \pm 2 \\ & \pm 5 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 10 \\ & \pm 5 \\ & \pm 20 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 7 \\ & \pm 3 \\ & \pm 15 \\ & \pm 7 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.15 \\ & \pm 0.1 \\ & \pm 0.2 \\ & \pm 0.15 \\ & \hline \end{aligned}$	50M $\begin{gathered}\text { \% } 3 \mathrm{pF} \\ * \\ * \\ * \\ *\end{gathered}$	$10^{10} \\| 3 \mathrm{pF}$ $*$ $*$ $*$ $*$	$\begin{gathered} 100 \\ * \\ * \end{gathered}$	$\begin{gathered} \text { TO-99 } \\ * \\ * \\ * \\ * \\ \hline \end{gathered}$	$\begin{array}{r} 4.50 \\ 8.85 \\ 12.00 \\ 15.00 \\ 20.00 \end{array}$								
± 50	± 75	$-25 \mathrm{pA}$	doubles $/+10^{\circ} \mathrm{C}$	10^{10}	10^{11}	90	TO-99	6.45								
$\begin{aligned} & \pm 8 \\ & \pm 5 \\ & \pm 10 \\ & \pm 5 \end{aligned}$	$\begin{gathered} \pm 20 \\ * \\ \pm 30 \\ * \end{gathered}$	$\begin{aligned} & 250 \\ & \pm 25 \\ & 250 \\ & \pm 25 \end{aligned}$	± 0.5	$50 \mathrm{M} \\| 3 \mathrm{pF}$ $300 \mathrm{M} \\| 3 \mathrm{pF}$ $100 \mathrm{M} \\| \mathrm{I}^{\mathrm{pF}}$ $300 \mathrm{M} \\| 3 \mathrm{pF}$	$\begin{aligned} & 500 \mathrm{M} \\| 5 \mathrm{pF} \\ & 10^{9} \\| 3 \mathrm{pF} \\ & 10^{9} \\| 5 \mathrm{pF} \\ & 10^{9} \\| 3 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 100 \\ & 90 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TO-99 } \\ & \hline \end{aligned}$	$\begin{array}{r} 11.00 \\ 9.00 \\ 11.00 \\ 9.00 \\ \hline \end{array}$								
$\begin{aligned} & \pm 0.5 \\ & \pm 0.25 \\ & * \\ & * \\ & * \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 5 \\ & \pm 2 \\ & \pm 1 \\ & \pm 5 \\ & \hline \end{aligned}$	$\begin{aligned} & -20 \mathrm{pA} \\ & * \\ & -15 \mathrm{pA} \\ & -10 \mathrm{pA} \\ & -20 \mathrm{pA} \\ & \hline \end{aligned}$	$\text { doubles } /+10^{\circ} \mathrm{C}$		10^{12}	$\begin{aligned} & 90 \\ & * \\ & \text { * } \\ & \text { * } \end{aligned}$	TO-99	$\begin{aligned} & 17.80 \\ & 22.00 \\ & 34.00 \\ & 44.00 \\ & 50.00 \end{aligned}$								
$\begin{aligned} & \pm 1 \\ & \pm 0.5 \\ & * \end{aligned}$	$\begin{gathered} \pm 50 \\ \pm 25 \\ * \\ * \end{gathered}$	$\begin{aligned} & -10 \mathrm{pA} \\ & -5 \mathrm{pA} \\ & -1 \mathrm{pA} \\ & -5 \mathrm{pA} \\ & \hline \end{aligned}$	$\begin{gathered} \text { doubles/+10 } 0^{\circ} \mathrm{C} \\ * \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} 10^{11} \\ * \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} 10^{12} \\ * \end{gathered}$	$\begin{gathered} 90 \\ * \\ * \end{gathered}$	$\begin{gathered} \text { TO-99 } \\ * \\ * \\ * \\ \hline \end{gathered}$	$\begin{aligned} & 12.50 \\ & 15.00 \\ & 22.00 \\ & 26.00 \end{aligned}$								
$\begin{aligned} & \pm 1 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 25 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & -0.5 \mathrm{pA} \\ & -0.25 \mathrm{pA} \\ & -0.1 \mathrm{pA} \end{aligned}$	$\begin{gathered} \text { doubles } /+10^{\circ} \mathrm{C} \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} 10^{12} \\ * \\ * \end{gathered}$	$\begin{gathered} 10^{13} \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ * \end{gathered}$	$\begin{gathered} \text { TO-99 } \\ * \end{gathered}$	$\begin{aligned} & 25.00 \\ & 28.00 \\ & 32.00 \\ & \hline \end{aligned}$								
$\begin{gathered} \pm 20 \\ * \\ \pm 1 \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} \pm 50 \\ * \\ \pm 50 \\ * \\ * \end{gathered}$	$\begin{aligned} & -25 \mathrm{pA} \\ & * \\ & -100 \mathrm{pA} \\ & * \\ & * \\ & \hline \end{aligned}$	$\begin{gathered} \text { doubles/ }+10^{\circ} \mathrm{C} \\ * \\ \text { doubles/ }+10^{\circ} \mathrm{C} \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} 10^{11} \\ 10^{11} \\|_{\\|}^{*} 3 \mathrm{pF} \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} 10^{11} \\ 10^{11} 1_{\\|}^{*} \\ { }^{*} 3 \mathrm{pF} \\ { }^{*} \end{gathered}$	$\begin{gathered} 80 \\ * \\ 70 \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} \text { TO-99 } \\ * \\ \text { TO-99 } \\ * \end{gathered}$	$\begin{array}{r} 6.45 \\ 11.50 \\ 22.50 \\ 27.00 \\ 39.00 \\ \hline \end{array}$								
$\begin{gathered} \pm 1 \\ * \\ \hline \end{gathered}$	$\begin{gathered} \pm 50 \\ * \end{gathered}$	$\begin{aligned} & -100 \mathrm{pA} \\ & * \end{aligned}$	$\begin{gathered} \text { doubles/ }+10^{\circ} \mathrm{C} \\ * \\ \hline \end{gathered}$	$\begin{gathered} 10^{11} \\| 3 \mathrm{pF} \\ * \end{gathered}$	$\begin{gathered} 10^{11} \\| 3 \mathrm{pF} \\ * \end{gathered}$	$\begin{aligned} & 70 \\ & * \\ & \hline \end{aligned}$	TO-99	$\begin{aligned} & 22.50 \\ & 39.00 \\ & \hline \end{aligned}$								
$\begin{gathered} \pm 10 \\ \pm 3 \\ * \\ \hline \end{gathered}$	$\begin{gathered} \pm 30 \\ \pm 25 \\ * \\ \hline \end{gathered}$	$\begin{aligned} & -50 \mathrm{pA} \\ & -20 \mathrm{pA} \end{aligned}$	$\begin{gathered} \text { doubles/ }+10^{\circ} \mathrm{C} \\ * \\ * \end{gathered}$	$\begin{gathered} 10^{11} \\| 10 \mathrm{pF} \\ * \\ * \end{gathered}$	$\begin{gathered} 10^{11} \\ * \\ * \end{gathered}$	$\begin{gathered} 86 \\ 110 \\ * \end{gathered}$	$\begin{gathered} \text { TO-3 } \\ * \\ * \end{gathered}$									

(5) Gain-bandwidth product (6) Depends on power supply voltage $V_{o u t}= \pm\left(\left|V_{c c}\right|-5\right)$ VDC.

GENERAL PURPOSE AMPLIFIERS

General Purpose op amps give moderately good performance over a wide range of parameters at moderate cost. If more performance in a particular area is required, consult the appropriate special application group listing on the following pages.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

(1) The Mini-Dip Package is available for Model $3500 \mathrm{~A} / \mathrm{B} / \mathrm{C}$.

If this option is desired, suffix the letter N to the model number (e.g., 3500 CN).

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

(2) All 3050 Series Models available with these noise specifications as guaranteed max. Contact factory for details.

Low Drift designs are optimized to reduce variations of input offset voltage as a function

LOW DRIFT AMPLIFIERS

 of temperature and to minimize the initial input offset voltage at room temperature. This group is subdivided into Integrated Circuits, Chopper Stabilized Amplifiers, and other modular units. The IC's now contain FET and bipolar inputs both with maximum voltage drifts as low as $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The chopper stabilized amplifiers provide drift as low as $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and are now available in inverting, noninverting, and fully differential designs. They represent the best in long term stability but the overload recovery time may be excessive in some applications.Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

[^1]CHOPPER STABILIZED

(2) Chopper amplifier without high frequency channel.
(3) Determined by external capacitor.

LOW BIAS CURRENT AMPLIFIERS

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

(1) Input to common.
(2) Between input and feedback point.
(3) 0.01 Hz to 1 Hz .
(4) 1 Hz to 100 Hz .

These amplifiers are designed to have high input impedance (approximately $10^{11} \Omega$) and very low bias currents (0.01 to 25 pA). They are especially useful for impedance buffering of high impedance current sources. This group includes varactor, IC, and modular devices. The varactors feature ultra low bias currents and low input noise, but are limited in frequency response. The IC devices have good all-around performance and are low cost.

(5) 10 Hz to 1 kHz .

WIDEBAND AND FAST SETTLING AMPLIFIERS

The op amps in this group have their designs optimized for wideband, fast slewing, and fast settling applications. Wideband and fast slewing op amps are ideally suited for video and pulse applications where high frequency response is necessary to follow the input waveform exactly. The fast settling op amps meet the requirements of A / D and D / A converters, and multiplexers; all of which require that the amplifier output settle rapidly and precisely to a final value in response to a step input.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	$\begin{gathered} \pm 100 \mathrm{~mA} \text { OUTPUT } \\ 1000 \mathrm{~V} / \mu \mathrm{sec} \end{gathered}$		$0.6 \mu \mathrm{sec}$ max SETTLING					100 MHz BW DIFFERENTIAL		$1 \mu \mathrm{sec}$ SETTLING BUFFER								
	3341/15C 3342/15C		NEW!			NEW! 3551		3400		3401								
OPEN LOOP GAIN DC, no load min RATED OUTPUT, min OUTPUT IMPEDANCE FREQUENCY RESPONSE Small Signal Bandwidth (unity gain) Full Power Bandwidth,min Slew Rate, min Settling Time (0.1\%) (0.01%)	$\begin{gathered} 100 \mathrm{~dB} \\ \pm 10 \mathrm{~V} @ 100 \mathrm{~mA} \\ 25 \Omega @ 10 \mathrm{MHz} \end{gathered}$		J	S	K	J	S	A	B	A	B							
			100 dB typ			100 dB typ		90 dB		100 dB								
			$\pm 10 \mathrm{~V} @ \pm 10 \mathrm{~mA}$			$\pm 10 \mathrm{~V} @ 10 \mathrm{~mA}$		$\pm 10 \mathrm{~V} @ 20 \mathrm{~mA}$		$\begin{aligned} & \pm 10 \mathrm{~V} @ 20 \mathrm{~mA} \\ & 25 \Omega @ 1 \mathrm{MHz} \end{aligned}$								
			100Ω @ 1 MHz			100Ω @ 1 MHz		25Ω @ 10 MHz										
								$25 \Omega @ 1 \mathrm{MHz}$										
	50 MHz , min		$10 \mathrm{MHz} \quad 20 \mathrm{MHz}$			$50 \mathrm{MHz}{ }^{(1)}$				100 MHz		8 MHz						
	10 MHz		1 MHz			3.8 MHz typ., $\mathrm{C}_{\mathrm{f}}=0$$250 \mathrm{~V} / \mu \mathrm{styp}, \mathrm{C}_{\mathrm{f}}=0$		10 MHz		0.5 MHz								
			$65 \mathrm{~V} / \mu \mathrm{s} \quad 100 \mathrm{~V} / \mathrm{\mu s}$					$1000 \mathrm{~V} / \mu \mathrm{s}$		$65 \mathrm{~V} / \mu \mathrm{s}$								
	$1000 \mathrm{~V} / \mu \mathrm{s}$400 ns		$1.0 \mu \mathrm{~s}, \max$		$\underset{\text { max }}{0.6 \mu \mathrm{~s},}$			400 ns$2 \mu \mathrm{~s}$		600 ns$1 \mu \mathrm{~s}$, max								
INPUT OFFSET VOLTAGE Initial @ $25^{\circ} \mathrm{C}$, max Drift vs. Temp., max Drift vs. Supply Voltage	550 nsec					$600 \mathrm{~ns}, \mathrm{C}_{\mathrm{f}}^{1}=10$												
	$\begin{gathered} \pm 1 \mathrm{mV} \\ \pm 25 \mu \mathrm{~V} / /^{\circ} \mathrm{C} \mid \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \pm 500 \mathrm{eV} / \mathrm{V} \end{gathered}$		$\begin{aligned} & \pm 1 \mathrm{mV} \\ & \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$			$\pm 1 \mathrm{mV}$		$\begin{gathered} \text { Adjusts to Zero } \\ \pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \quad \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{O} \\ \pm 300 \mu \mathrm{~V} / \mathrm{V} \end{gathered}$		$\begin{aligned} & \text { Adjusts to Zero } \\ & \pm 50 \mu \mathrm{~V} / /\left.^{\circ} \mathrm{C}\right\|_{ \pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}} ^{ \pm 30 \mu \mathrm{~V} / \mathrm{V}} \end{aligned}$								
			$\begin{aligned} & \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 500 \mu \mathrm{~V} / \mathrm{V} \end{aligned}$															
			$\begin{aligned} & \pm 50 \mu \mathrm{~V} / \mathrm{C} \\ & \pm 500 \mu \mathrm{~V} / \mathrm{V} \end{aligned}$															
INPUT BIAS CURRENT																		
Initial@ $25^{\circ} \mathrm{C}$, max Drift vs. Temp.	$\begin{gathered} -100 \mathrm{pA} \\ \text { doubles/ }+10^{\circ} \mathrm{C} \end{gathered}$				$\begin{gathered} -100 \mathrm{pA} \\ \text { doubles } /+10^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} -100 \mathrm{pA} \\ \text { doubles } /+10^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -100 \mathrm{pA} \\ \text { doubles/ }+10^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -20 \mathrm{pA} \\ \text { doubles } /+10^{\circ} \mathrm{C} \end{gathered}$						
INPUT IMPEDANCE																		
Differential	$10^{11} \Omega \\| 3 \mathrm{pF}$		$\begin{aligned} & 10^{11} \Omega \\| 3 \mathrm{pF} \\ & 10^{11} \Omega \\| 3 \mathrm{pF} \end{aligned}$			$\begin{aligned} & 10^{11} \Omega \\| 3 \mathrm{pF} \\ & 10!^{1} \Omega \\| 3 \mathrm{pF} \end{aligned}$				$\begin{aligned} & 10^{11} \Omega \\| 2 \mathrm{pF} \\ & 10^{11} \Omega \\| 2 \mathrm{pF} \end{aligned}$								
Common-Mode																		
INPUT NOISE 10 Hz to $10 \mathrm{kHz}, \mathrm{rms}$ $10 \mu \mathrm{~V}$ $4 \mu \mathrm{~V}$						$10!^{11} \Omega \\| 3 \mathrm{pF}$		$10^{11} \Omega \\| 12 \mathrm{pF}$		$5 \mu \mathrm{~V}$								
						$4 \mu \mathrm{~V}$		$5 \mu \mathrm{~V}$										
INPUT SIGNAL RANGE																		
Common-Mode Voltage Range	Inverting only		$\pm(\mid$ Supply $\mid-5) \mathrm{V}$			$\pm(\mid$ Supply \| -5) V		\pm (\mid Supply \|-5) V		\pm (\mid Supply ${ }^{\text {-5 }}$) V								
Common-Mode Rejection																		
Max Safe Input Voltage			$\begin{gathered} 70 \mathrm{~dB} @+5,-10 \mathrm{~V} \\ \pm \text { Supply } \end{gathered}$			$\begin{aligned} & 70 \mathrm{~dB}(+5,-10 \mathrm{~V}) \\ & \pm \text { Supply } \end{aligned}$				$\begin{array}{r} 92 \mathrm{~dB}(\pm 10 \mathrm{~V}) \\ \\ \pm \text { Supply } \end{array}$								
POWER SUPPLY																		
Rated Voltage, Quiescent Current	$\pm 15 \mathrm{~V} @ \pm 30 \mathrm{~mA}$		$\pm 15 \mathrm{~V} @ \pm 11 \mathrm{~mA}$			$\pm 15 \mathrm{~V} @ \pm 11 \mathrm{~mA}$		$\pm 15 \mathrm{~V} @ \pm 25 \mathrm{~mA}$		$\pm 15 \mathrm{~V} @ \pm 15 \mathrm{~mA}$								
Voltage Range, Derated Performance	$\pm 12 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		$\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$			$\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$		$\pm 12 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		+12 V to	18 V							
TEMPERATURE RANGE						-		+12		$\pm 12 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$								
Industrial	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$\left.\left\|\begin{array}{c} 0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \end{array}\right\| \quad \right\rvert\, \begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{l\|l} 0^{\circ} \mathrm{C} \text { to } & -55^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} & +125^{\circ} \mathrm{C} \end{array}$		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$								
Military																		
PACKAGE DRAWING	(8)$1.8^{\prime \prime} \times 1.2^{\prime \prime} \times 0.6^{\prime \prime}$		(1) B T0-99			(1) B TO-99		$\stackrel{\text { (4) } \mathrm{A}}{1.1^{\prime \prime} \times 1.1^{\prime \prime} \times 0.4^{\prime \prime}}$		(4) A$1.1^{\prime \prime} \times 1.1^{\prime \prime} \times 0.4^{\prime \prime}$								
(See pages 63, 65)																		
PRICE (1-9)	$\$ 79.00$	\$68.00		$\begin{aligned} & - \\ & \$ 39.00 \end{aligned}$		$\stackrel{-}{\text { - } 2.50}$	\| ${ }^{-}$	\$65.00	\$79.00	\$46.00	\$57.00							
(1-24)		-			\$27.00			-	-									

(1) Gain-Bandwidth product for Gain $=10 \mathrm{~V} / \mathrm{V}$ to $1000 \mathrm{~V} / \mathrm{V}$.
$\longrightarrow=$

HIGH VOLTAGE AND HIGH CURRENT AMPLIFIERS

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted

	WIDE SUPPLY RANGE	CHOPPER STABILIZED	WIDEBAND			
MODEL	3460	3271/25	3341/15C	3342/15C		
OPEN LOOP GAIN DC, no load min	106 dB	140 dB	100 dB			
RATED OUTPUT, min			$\pm 10 \mathrm{~V} @ 100 \mathrm{~mA}$			
Minimum Supply Voltage	$\pm 1 \mathrm{~V} @ 10 \mathrm{~mA}$	$\pm 50 \mathrm{~V} @ 20 \mathrm{~mA}$	-			
Maximum Supply Voltage	$\pm 140 \mathrm{~V} @ 10 \mathrm{~mA}$	$\pm 110 \mathrm{~V} @ 20 \mathrm{~mA}$	-15V			
Typical Supply Voltage	-	-	$\pm 15 \mathrm{~V}$			
OUTPUT IMPEDANCE	$10 \mathrm{k} \Omega$ @ DC	$25 \mathrm{k} \Omega$ @ DC	25Ω @ 10 MHz			
FREQUENCY RESPONSE						
Small Signal Bandwidth (unity gain)	1 MHz	1 MHz	$50 \mathrm{MHz}, \min$			
Full Power Bandwidth, min	-	30 kHz	10 MHz			
Slew Rate, min	$10 \mathrm{~V} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}$	$1000 \mathrm{~V} / \mu \mathrm{s}$			
Settling Time (0.1\%)	-	-	400 ns			
INPUT OFFSET VOLTAGE			$\pm 1 \mathrm{mV}$			
Initial @ $25^{\circ} \mathrm{C}$, max	$\pm 1 \mathrm{mV}$	$\pm 50 \mu \mathrm{~V}$				
Drift vs. Temp., max	$\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 1 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C}$	$\pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		
INPUT BIAS CURRENT						
Initial @ $25^{\circ} \mathrm{C}$, max	$-25 \mathrm{pA}$	$\pm 80 \mathrm{pA}$				
Drift vs. Temp.	doubles/ $/ 10^{\circ} \mathrm{C}$	$\pm 2 \mathrm{pA} /{ }^{\circ} \mathrm{C}, \max$	doubles $/+10^{\circ} \mathrm{C}$			
INPUT IMPEDANCE						
Differential	$10^{11} \Omega$	$500 \mathrm{k} \Omega$	$10^{11} \Omega \\| 3 \mathrm{pF}$			
Common-Mode	$10^{11} \Omega$	N/A				
INPUT NOISE						
Voltage, 0.01 Hz to 10 Hz , p-p	$5 \mu \mathrm{~V}$	$20 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$			
10 Hz , to 10 kHz , rms	$8 \mu \mathrm{~V}$	$5 \mu \mathrm{~V}$				
Current, 0.01 Hz to 10 Hz, p-p	1 pA	200 pA	-			
10 Hz to 10 kHz , rms	2 pA	50 pA	-			
Common-Mode Voltage Range	$\pm(\mid$ Supply $\mid-10) \mathrm{V}$	Inverting Only	Inverting only			
Common-Mode Rejection	$90 \mathrm{~dB}$		\pm Supply			
Maximum Safe Input Voltage	\pm Supply	\pm Supply				
POWER SUPPLY						
Rated Voltage, Quiescent Current, max	$\pm 120 \mathrm{~V} @ \pm 10 \mathrm{~mA}$	$\pm 120 \mathrm{~V} @ \pm 20 \mathrm{~mA}$	$\pm 15 \mathrm{~V} @ \pm 30 \mathrm{~mA}$			
Voltage Range, Derated Performance	$\pm 11 \mathrm{~V}$ to $\pm 150 \mathrm{~V}$	$\pm 60 \mathrm{~V}$ to $\pm 120 \mathrm{~V}$	$\pm 12 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$			
TEMPERATURE RANGE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
PACKAGE DRAWING (See page 64-65)	(7) A $2.4 " \times 1.8^{\prime \prime} \times 0.6 "$	(7) C $2.4^{\prime \prime} \times 1.8 " \times 0.6^{\prime \prime}$	$1.8{ }^{\prime \prime} \times 1.2^{\prime \prime} \times 0.6^{\prime \prime}$			
PRICE (1-9)	\$89.00	\$175.00	\$79.00	\$68.00		
$(1-24)$	-	-	-	-		

coming soon!

HIGH CURRENT IC, MODELS 3571 and 3572

- 2 Amp and 5 Amp Peak Output Current @ ± 30 VDC Output
- ± 15 VDC to ± 40 VDC Power Supplies
- Internal Thermal Protection
- Adjustable Current Limits
- Low Distortion
- TO-3 Package

High voltage and high current amplifiers were developed by Burr-Brown to meet the special needs of the designer that are not met by the usual op amp design. The high voltage devices operate on wide ranges of supply voltage, either balanced or unbalanced, while providing good performance in the other parameters. The wideband amplifiers provide up to 100 mA into 50Ω loads and also give all-around good performance; notably in frequency response. The 3580 family has self-contained thermal sensing and shutoff which automatically prevents damage to the amplifier from overheating. The TO-3 package can dissapate over 3 watts without a heatsink.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

POWER BOOSTERS		
	500 mA	
MODEL	3069/49	3329/03
OPEN LOOP GAIN DC, no load	0 dB approx.	0 dB approx.
RATED OUTPUT	$\pm 10 \mathrm{~V} @ 500 \mathrm{~mA}$	$\pm 10 \mathrm{~V} @ 100 \mathrm{~mA}$
OUTPUT IMPEDANCE	$2 \Omega @$ DC	$10 \Omega @$ DC
FREQUENCY RESPONSE		
Full Power Bandwidth, min	50 kHz	1 MHz
INPUT IMPEDANCE	$15 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$
INPUT SIGNAL RANGE Maximum Safe Input Voltage	$\pm \text { Supply }$	\pm Supply
POWER SUPPLY		
Rated Voltage, Quiescent Current,max	$\pm 15 \mathrm{~V} @ \pm 50 \mathrm{~mA}$	$\pm 15 \mathrm{~V} @ \pm 15 \mathrm{~mA}$
Voltage Range,Derated Performance	$\pm 12 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	$\pm 12 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
TEMPERATURE RANGE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
PACKAGE DRAWING(See pages 63,65)	(10) $2^{\prime \prime} \times 2^{\prime \prime} \times 0.7 \prime$	(2) B DIL Type
PRICE (1-9)	\$83.00	\$25.00

Power boosters are designed to provide increased output current when used as power output stages with a wide variety of low power op amps. The booster operates at approximately unity gain and is used inside the feedback loop as illustrated below. The open loop gain of the op amp/booster is equal to that of the op amp alone, except that the very low output impedance of the power booster (open loop) is typically less than that of the op amp by a factor of 10 to 100 . Because the booster has a wideband response, it will normally not affect stability of the op amp circuit.

The Iso-Op-Amp is a unique new product from Burr-Brown. As the name implies, it is a true differential input operational amplifier that offers input/output isolation of up to 2000 volts continuously (factory tested up to 5000 volts). This superior isolation is accomplished by transformer coupled techniques which utilize a proprietary feedback technique. This provides outstanding gain linearity and stability. The Iso-Op-Amp is an uncommitted op amp which can be operated in the noninverting, inverting or difference amplifier configurations, and may be connected in the current-to-voltage configuration. The model 3452 provides isolated ± 15 VDC power at the input.

MODEL	3450	3451	NEW!3452	
INPUT STAGE SPECIFICATIONS ${ }^{(1)}$				
Open Loop Gain, min	94 dB	88 dB	94 dB	
Input Offset Voltage @ $25^{\circ} \mathrm{C}^{(4)}$, max vs. Temp., max	$\begin{aligned} & \pm 0.55 \mathrm{mV} \\ & +\mathbf{1 . 0 \mu \mathrm { V } / { } ^ { \circ } \mathrm { C }} \end{aligned}$	$\begin{aligned} & \pm 20 \mathrm{mV} \\ & \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 0.30 \mathrm{mV} \\ & +5.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$	
vs. Supply	$\pm 50 \mu \mathrm{~V} / \mathrm{V}$	$\pm 50 \mu \mathrm{~V} / \mathrm{V}$	$\pm 25 \mu \mathrm{~V} / \mathrm{V}$	
vs. Time	$\pm 10 \mu \mathrm{~V} / \mathrm{mo}$	$\pm 100 \mu \mathrm{~V} / \mathrm{mo}$		
Input Bias Current @ $25^{\circ} \mathrm{C}$, max vs. Temp., max vs. Supply	$\begin{aligned} & \pm 50 \mathrm{nA} \\ & \pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \pm 0.2 \mathrm{nA} / \mathrm{V} \end{aligned}$	$\begin{aligned} & \text { doubles/ } 10^{\circ} \mathrm{C} \\ & \pm 1 \mathrm{pA} / \mathrm{V} \end{aligned}$		
Input Offset Current @ $25^{\circ} \mathrm{C}$ vs. Temp., max vs. Supply	$\begin{aligned} & \pm 30 \mathrm{nA}, \max \\ & \pm 0.3 \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \pm 0.1 \mathrm{nA} / \mathrm{V} \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{pA} \\ & \text { doubles } / 10^{\circ} \mathrm{C} \\ & \pm 0.5 \mathrm{pA} / \mathrm{V} \\ & \hline \end{aligned}$		
Input Impedance Differential Common-Mode ${ }^{(2)}$	$\begin{aligned} & 10^{7} \Omega \\ & 5 \times 10^{9} \Omega \end{aligned}$	$\begin{aligned} & 10^{11} \Omega \\ & 10^{11} \Omega \end{aligned}$		
Input Noise				
Voltage, $0.01 \mathrm{~Hz}-10 \mathrm{~Hz}$ $10 \mathrm{~Hz}-1 \mathrm{kHz}$	$0.8 \mu \mathrm{~V}, \mathrm{p}-\mathrm{p}$			
$10 \mathrm{~Hz}-1 \mathrm{kHz}$ Current $0.01 \mathrm{~Hz}-10 \mathrm{~Hz}$	$\begin{aligned} & 1.2 \mu \mathrm{~V}, \mathrm{rms} \\ & 30 \mathrm{pA}, \mathrm{p}-\mathrm{p} \end{aligned}$	$\begin{aligned} & 3 \mu \mathrm{~V}, \mathrm{rms} \\ & 0.3 \mathrm{pA}, \mathrm{p}-\mathrm{p} \end{aligned}$	$\begin{aligned} & 2 \mu \mathrm{~V}, \mathrm{rms} \\ & 0.3 \mathrm{pA}, \mathrm{p}-\mathrm{p} \end{aligned}$	
$10 \mathrm{~Hz}-1 \mathrm{kHz}$	$50 \mathrm{pA}, \mathrm{rms}$	$0.6 \mathrm{pA}, \mathrm{rms}$	$0.6 \mathrm{pA}, \mathrm{rms}$	
Input Voltage Range	$\begin{aligned} & \pm 10 \mathrm{~V}, \min \\ & \pm 15 \mathrm{~V}, \text { min } \end{aligned}$			
Common-Mode ${ }^{(2)}$ (operating), min				
Differential (w/o damage), min				
Common-Mode ${ }^{(2)}$ Rejection	100	80	90	
Isolated Power Available Voltage	-		$\pm 15 \mathrm{~V}^{+0}$	
Current, max	-	-	$\pm 10 \mathrm{~mA}$	
Ripple@ 100 kHz	1 -	-	100 mV , p-p	
ISOLATION STAGE SPECIFICATIONS				
Gain (without trimming)(4), $1 \mathrm{~V} / \mathrm{V}$ vs. Temp.	$\begin{aligned} & \pm 0.1 \% \\ & \pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 0.5 \% \\ & \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$		
Nonlinearity, max	$\pm 0.01 \%$	$\pm 0.05 \%$	$\pm 0.05 \%$	
Frequency Response, -3 dB	1 kHz			
$\begin{aligned} & \text { Settling Time } \\ & \text { to } 0.01 \% \\ & \text { to } 0.1 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \mathrm{~ms} \\ & 2 \mathrm{~ms} \\ & \hline \end{aligned}$			
Isolation Impedance(3)	$10^{12} \Omega \\| 16 \mathrm{pF}$			
Isolation Mode(3) Rejection	$\begin{aligned} & 160 \mathrm{~dB}, \min \\ & 120 \mathrm{~dB}, \mathrm{~min} \end{aligned}$			
DC				
60 Hz				
Isolation(2) Voltage	$\begin{aligned} & \pm 500 \mathrm{~V}, \text { peak } \\ & \pm 2000 \mathrm{~V} \end{aligned}$			
Operating, continuous, min Tested for $1 \mathrm{sec}, \mathrm{min}$			$\begin{aligned} & \pm 2000 \mathrm{~V}, \text { peak } \\ & \pm 5000 \mathrm{~V} \end{aligned}$	
Output Voltage				
Output Current				
Output Impedance, DC				
Output Noise	$7 \mu \mathrm{~V}, \mathrm{p}-\mathrm{p}$			
$\begin{aligned} & 0.01 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz} \text { to } 1 \mathrm{kHz} \end{aligned}$				
```Output Offset Voltage@ 25*'C(4) vs. Temp., max vs. Supply vs. Time```	$\pm 2 \mathrm{mV}$	$\begin{aligned} & \pm 10 \mathrm{mV} \\ & \pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}, \max \mathrm{mV} \\ & \pm 100 \mu \mathrm{~V} / \mathrm{mo} \end{aligned}$		
Input Power Requirements   Voltage   Current, quiescent	$\begin{aligned} & \pm 14 \text { to } \pm 16 \mathrm{~V} \text { DC } \\ & +30 /-5 \mathrm{~mA}, \max \end{aligned}$			
	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		
TEMPERATURE RANGE   Specification				
Specification				
Operating   Storage	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			
PACKAGE DRAWING (See page 65)	(11)	$3.5^{\prime \prime} \times 2.3^{\prime \prime} \times 0.7^{\prime \prime}$		
PRICE (1-9)	\$180.00	\$105.00	\$135.00	



ISO-OP-AMP IN DIFFERENTIAL CONFIGURATION.


## SIMPLIFIED BLOCK DIAGRAM.

Notes:
(1) Smallest allowable feedback resistor is $2 \mathrm{k} \Omega$ for 3450 and $3451 ; 10 \mathrm{k} \Omega$ for 3452 .
(2) Common-mode parameters are measured at the $+I N$ and $-I N$ pins with respect to the I/P COM pin.
(3) Isolation mode parameters are measured at the I/P COM pin with respect to the PWR COM pin and $\mathrm{O} / \mathrm{P}$ COM pin.
(4) Errors may be trimmed to zero.

## INSTRUMENTATION AND DATA AMPLIFIERS

Low Dríft Low Bías Current Programmable Gaín<br>Varíable Gaín<br>Rack Mounting

## WHAT ARE THEY?

An Instrumentation Amplifier is a closed loop differential input gain block. It is a committed circuit whose primary function is to accurately amplify the voltage applied to its inputs.
Ideally, the instrumentation amplifier responds only to the difference between the two input signals $\left(\mathrm{e}_{2}-\mathrm{e}_{1}\right)$ and exhibits extremely high impedance between the two input terminals (differential input impedance) and from each input to ground (common-mode input impedance). The transfer function of the gain block is $e_{0}=G\left(e_{2}-e_{1}\right)$ where $G$ is the amplifier gain which is normally set by the user with a single external resistor.

## NOT AN OP AMP

An instrumentation amplifier differs fundamentally from an op amp. An op amp is an open loop uncommitted device whose closed loop performance depends on the external networks used to close the loop. While an op amp can be used to get the same basic transfer function as an instrumentation amplifier, it is generally difficult (often impossible) to achieve the same level of performance. The use of an op amp usually leads to design tradeoffs when it is necessary to amplify low level signals in the presence of common-mode voltages while maintaining high input impedances.


$$
e_{0}=\left(e_{2}-e_{1}\right) \frac{R_{2}}{R_{1}}+\frac{e_{c m}}{C M R R_{T}} \frac{R_{2}}{R_{1}} \quad Z_{c m}=R_{1}+R_{2} \text { for } e_{2}
$$

$$
=e_{d} \frac{R_{2}}{R_{1}}+\frac{e_{c m}}{C M R R_{T}} \frac{R_{2}}{R_{1}}
$$

$$
Z_{d}=2 R_{1}
$$

$$
\begin{aligned}
= & R_{1} \text { for } e_{1} \\
C M R R_{T} & =\frac{C M R R_{R} \times C M R R_{O A}}{C M R R_{R}+C M R R_{O A}}
\end{aligned}
$$

FIGURE 1. Single Op Amp, Differential Input Configuration.

When a single op amp is used (see Figure 1), there are opposing constraints if there is a need for both high gain $\left(\mathrm{R}_{2} \div \mathrm{R}_{1} \gg 0\right.$, i.e. $\mathrm{R}_{1}$ small) and high input impedances ( $\mathrm{R}_{1}$ large). Also, the common-mode rejection ratio of the total circuit, $\mathrm{CMRR}_{\mathrm{T}}$, is a function of the op amp's rejection, $\mathrm{CMRR}_{\mathrm{OA}}$, and the effective rejection caused by resistor mismatches, CMRR $_{\mathrm{R}}$. [For example, $\pm 0.1 \%$ resistors in a gain of 10 circuit can have a CMR of only $69 \mathrm{~dB}\left(\mathrm{CMR}(\mathrm{dB})=20 \log _{10}\right.$ CMRR (V/V) ) ].

Figure 2 shows the simple model of an instrumentation amplifier which eliminates most of the problems of using op amps.


FIGURE 2. Model Of An Instrumentation Amplifier.

## WHAT ARE THE ALTERNATIVES?

There are three basic alternatives available when you have a need to accurately amplify signals in the presence of commonmode voltages and noise and maintain high input impedances.

1. Build a single op amp circuit in a differential input configuration.
2. Build a circuit of multiple op amps interconnected to form an instrumentation amplifier.
3. Buy a committed instrumentation amplifier.

Some of the shortcomings of the first alternative were just discussed. One additional problem is that gain changes are difficult. Two resistors need to be changed and match and tracking must be maintained.
The second and third alternatives are usually the most realistic. There are a number of multiple op amp circuits, each with its own set of advantages and disadvantages ${ }^{(1)}$, which might be suitable in a particular application. There are also available low drift op amps and matched pairs of amplifiers (see 3500E and 3500MP page 28) for use in such circuits.
The build or buy alternatives are swinging heavily towards buy. The appearance of relatively low cost monolithic instrumentation amplifiers (see the 3660 , page 41 ) is a step towards making the building of one's own instrumentation amplifiers as obsolete as building one's own op amps.

## PUT IT ALL TOGETHER

The instrumentation amplifiers in this section do put it all together to solve your instrumentation amplifier problems.

High Common-Mode Rejection - to preserve system accuracy in the presence of common-mode voltage.
High Input Impedance - to prevent errors due to source loading and source impedance unbalance.
Small, Hermetically Sealed Packages - to take up less board space and to improve reliability.
Low Cost - to make it easy on the budget.
(1) J. Graeme "Applications of Operational Amplifiers - Third Generation Techniques", McGraw-Hill, 1973.

## TYPICAL APPLICATION

A typical application of instrumentation amplifiers is amplification of a remote low level signal source (see Figure 3). This section will develop equations to quantify the effect of some of the error sources in such applications.


FIGURE 3. Typical Application of Instrumentation Amplifier.

## COMMON-MODE REJECTION

The common-mode voltage which appears at the amplifier's input terminals is defined as $\mathrm{E}_{\mathrm{cm}}=\left(\mathrm{e}_{2}+\mathrm{e}_{1}\right) / 2$. This may consist of some common-mode voltage in the source itself, $\mathrm{e}_{\mathrm{cm}}$, (such as bridge excitation) plus any noise voltage, $\mathrm{e}_{\mathrm{n}}$, between the source common and the amplifier common.
This will cause an error voltage of $\frac{E_{c m} \times G}{C M R R}$ to appear at the output. Referred to the input (RTI), the error voltage is $\mathrm{E}_{\mathrm{cm}} \div \mathrm{CMRR}$. If $\mathrm{E}_{\mathrm{cm}}=5 \mathrm{~V}$ and the $\mathrm{CMR}=100 \mathrm{~dB}$ the error voltage (RTI) is $5 \div 10^{5}=0.05 \mathrm{mV}$. If the full scale value of $e_{d}$ is 10 mV , this is a $0.5 \%$ error (as percent of full scale).

## INPUT IMPEDANCE

The instrumentation amplifier provides a load on the source of $\mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{\mathrm{d}} \|\left(\mathrm{Z}_{\mathrm{cm}} / 2\right)$ (see Figure 2, page 38). If the source impedance is $\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{S} 1}+\mathrm{R}_{\mathrm{S} 2}$ the gain error caused by this loading is:

$$
\text { Gain Error }=1-\frac{\mathrm{Z}_{i}}{Z_{i}+\mathrm{R}_{\mathrm{S}}}=\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{Z}_{\mathrm{i}}+\mathrm{R}_{\mathrm{S}}} \cong \frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{Z}_{\mathrm{i}}} \text { if } \mathrm{Z}_{\mathrm{i}}>\mathrm{R}_{\mathrm{s}}
$$

If $\mathrm{R}_{\mathrm{s}}$ is $10 \mathrm{k} \Omega$ and $\mathrm{Z}_{\mathrm{i}}$ is $10 \mathrm{M} \Omega$
Gain Error $\cong \frac{10 \times 10^{3}}{10 \times 10^{6}}=10^{-3}=0.1 \%$

## SOURCE IMPEDANCE UNBALANCE

If the source impedances are unbalanced then the source voltages $\left(e_{c m}+e_{n}\right)$ are divided unequally upon the commonmode impedances and a differential signal is developed at the amplifiers input. This error signal cannot be separated from the desired signal. In the circuit in Figure 3, if $\mathrm{R}_{\mathrm{s} 2}=0, \mathrm{R}_{\mathrm{s} 1}=$ $10 \mathrm{k}, \mathrm{e}_{\mathrm{cm}}+\mathrm{e}_{\mathrm{n}}=10 \mathrm{~V}$, and $\mathrm{Z}_{\mathrm{cm}}=100 \mathrm{M} \Omega$, then the effect of unbalance is to generate a voltage.
$e_{2}-e_{1}=10 \mathrm{~V}-10 \mathrm{~V} \frac{10^{8}}{10^{8}+10^{3}}=10 \mathrm{~V} \frac{10^{3}}{10^{8}+10^{3}} \cong \frac{10 \mathrm{~V}}{10^{5}}=0.1 \mathrm{mV}$
if $e_{d}$ full scale is 10 mV then this error is

$$
\text { Error }=\frac{0.1 \mathrm{mV}}{10 \mathrm{mV}}=1 \% \text { of full scale }
$$

## OFFSET VOLTAGE AND DRIFT

Most instrumentation amplifiers are two stage devices they have a variable gain input stage and a fixed gain output stage. Because of this, the amplifiers offset voltage and offset voltage drift vs. temperature are both composed of two components, one of which is a function of gain. If $\mathrm{V}_{\mathrm{i}}$ and $\mathrm{V}_{\mathrm{O}}$ are the offset voltages of the input and output stages respectively then the amplifiers total offset voltage referred to the input (RTI) is $\mathrm{E}_{\mathrm{OS}}(\mathrm{RTI})=\mathrm{V}_{\mathrm{i}}+\mathrm{V}_{\mathrm{O}} / \mathrm{G}$ where $G$ is the amplifier's gain. [Note that $E_{O S}(R T O)=$ $\mathrm{E}_{\mathrm{OS}}$ (RTI) $\left.\times \mathrm{G}\right]$.
The initial offset voltage is usually adjustable to zero and therefore, the voltage drift is the more significant term since it cannot be nulled. If $\Delta \mathrm{V}_{\mathrm{i}} / \Delta \mathrm{T}=2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}=$ $500 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and the amplifier in a gain of $1000 \mathrm{~V} / \mathrm{V}$ is nulled at $25^{\circ} \mathrm{C}$, then at $65^{\circ} \mathrm{C}$ the offset voltage will be

$$
\begin{aligned}
\mathrm{E}_{\mathrm{OS}}(\mathrm{RTI})_{65^{\circ}} & =40^{\circ} \mathrm{C}\left[2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}+\left(500 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} / 1000 \mathrm{~V} / \mathrm{V}\right)\right] \\
& =40^{\circ} \mathrm{C}\left(2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)=100 \mu \mathrm{~V}=0.1 \mathrm{mV}
\end{aligned}
$$

If the full scale input is 10 mV then the error due to voltage drift is

$$
\text { Error }=\frac{0.1 \mathrm{mV}}{10 \mathrm{mV}}=1 \% \text { of full scale }
$$

## INPUT BIAS AND OFFSET CURRENTS

The input bias currents are the currents that flow out of (or into) either of the two inputs of the amplifier. They are the base currents for bipolar input stages and the JFET leakage currents for FET input stage. Offset currents are the difference of the two bias currents.
The bias currents flowing into the source resistances will generate offset voltages of $\mathrm{E}_{\mathrm{Os} 2}=\mathrm{I}_{\mathrm{B} 2} \times \mathrm{R}_{\mathrm{s} 2}$ and $\mathrm{E}_{\mathrm{Os} 1}=$ $I_{B 1} \times R_{s 1}$. If $R_{s 1}=R_{s 2}=R_{s} / 2$ the offset voltage at the input is $E_{O S 2}-E_{O S 1}=I_{O S} \times R_{S} / 2$. This input referred offset error may be compared directly with the input voltage to compute per cent error. (Note that the source must be returned to power supply common or $\mathrm{R}_{\mathrm{S}}$ will be infinite and the amplifier will saturate.)


## NEW! MODEL 3660-LOW COST IC

The 3660 IC instrumentation amplifier offers one of the lowest cost solutions for data acquisition systems. It's easy to use, too. The gain may be varied from 1 to 1000 with a single resistor. Temperature errors are greatly reduced since voltage and bias current drifts are less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\mathrm{G}=1000)$ and $1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$, respectively. The high input impedance, the gain nonlinearity of better than $0.03 \%$ and the CMR of up to 110 dB go a long way to preserve signal integrity. Prices are especially attractive in 100 's (3660J - \$8.20). In applications where many channels of data must be multiplexed, but where a preamplifier per channel is desired, the 3660 is the obvious choice.

## MODEL 3620 - VERSATILE

The 3620 K represents the "top of the line" in our instrumentation amplifiers and is the best choice for signal source impedances up to $10 \mathrm{k} \Omega$. Key performance specifications are input voltage drift of $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max ( $\mathrm{G}=1000$ ), equivalent input noise of $1 \mu \mathrm{~V}$ p-p, and linearity of $0.01 \%$. Common-mode rejection is typically 100 dB at $\mathrm{G}=100$.
Special features include an active guard-driver output, output sensing, output offsetting, provision for bandwidth reduction, and a secondstage amplifier which makes possible gains of up to 10,000 . Wirewound resistors are used throughout for gain stability.

The 3620 is packaged in a low-profile ( 2 " $\times 2$ " $\times 0.4$ ') module suitable for PC board mounting. The rack mounting options, $3620 \mathrm{~J} / 16,3620 \mathrm{~K} / 16$ and $3620 \mathrm{~L} / 16$, offer excellent performance in a shielded, plug-in package.

## MODEL 3625-0.5 $\mathrm{HV} /{ }^{\circ} \mathrm{C}$

Burr-Brown's 3625 family is optimum for applications where cost is a paramount factor, but where input signal quality cannot be sacrificed.
This amplifier offers voltage drift and input noise approaching that of the 3620 series. However, by eliminating some of the applications flexibility of the 3620 , the 3625 achieves surprisingly low cost, while maintaining high performance standards.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MODEL} \& \multicolumn{3}{|c|}{LOWEST DRIFT
\(\mathbf{3 6 2 0}\)} \& \multicolumn{3}{|l|}{LOW DRIFT, LOW COST 3625} \& \multicolumn{3}{|l|}{\[
- \text { NEW! LOW COST IC }
\]} \\
\hline \& J \& K \& L \& A \& B \& C \& J \& K \& S \\
\hline \begin{tabular}{l}
GAIN \\
Gain Equation \\
Range of Gain \\
Gain Nonlinearity, \(G=100\), max \\
Gain Temp. Coeff., \(G=100\)
\end{tabular} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\mathrm{G}= \& 1+\frac{25 \mathrm{k} \Omega}{\mathrm{R}} \\
\& 1 \text { to } 10,000 \\
\& \pm 0.01 \% \\
\& \pm 0.001 \% /{ }^{\mathrm{O}} \mathrm{C}
\end{aligned}
\]} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\mathrm{G}= \& 10+\frac{20 \mathrm{k} \Omega}{\mathrm{R}} \\
\& 10 \text { to } 1000 \\
\& \pm 0.02 \%, \operatorname{typ} \\
\& \pm 0.001 \% /^{\circ} \mathrm{C}
\end{aligned}
\]} \& \(\pm 0.1 \%\) \& \[
\begin{aligned}
\& \mathrm{G}=\frac{100 \mathrm{k} \Omega}{\mathrm{R}} \\
\& 1 \text { to } 1000 \\
\& \pm 0.03 \% \\
\& \pm 0.004 \% /{ }^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\pm 0.03 \%
\] \\
\hline \begin{tabular}{l}
OUTPUT \\
Rated Output, Voltage \\
Current \\
Output Impedance, DC, G=100
\end{tabular} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\& \pm 10 \mathrm{~V} \\
\& \pm 10 \mathrm{~mA} \\
\& 0.1 \Omega
\end{aligned}
\]} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\& \pm 10 \mathrm{~V} \\
\& \pm 5 \mathrm{~mA} \\
\& 2 \Omega
\end{aligned}
\]} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\& \pm 10 \mathrm{~V} \\
\& \pm 10 \mathrm{~mA} \\
\& 0.15 \Omega
\end{aligned}
\]} \\
\hline ```
INPUT
Input Impedance, Differential
Common-Mode
Input Voltage Range
CMR, DC to 60 Hz
at G=10,min, 1 k\Omega Unbal.
at G = 1000, 1k\Omega Unbal.
``` \& \multicolumn{3}{|c|}{\[
\begin{gathered}
300 \mathrm{M} \Omega \| 3 \mathrm{pF} \\
1000 \mathrm{M} \Omega \| 3 \mathrm{pF} \\
\pm 10 \mathrm{~V} \\
74 \mathrm{~dB} \\
100 \mathrm{~dB} \text { (Balanced }
\end{gathered}
\]} \& \multicolumn{3}{|l|}{\(5 \times 10^{9} \Omega \| 3 \mathrm{pF}\)
\(5 \times 10^{9} \Omega \| 3 \mathrm{pF}\)
\(\pm 10 \mathrm{~V}\)
74 dB
80dB (Balanced Source)} \& \multicolumn{3}{|l|}{} \\
\hline \begin{tabular}{l}
OFFSETS AND NOISE \\
Offset Voltage (RTI) \({ }^{(1)}\) \\
@ \(25^{\circ} \mathrm{C}\), max \({ }^{(2)}\) \\
vs. Temperature \(\max \left(\mu \mathrm{V} /{ }^{\mathrm{O}} \mathrm{C}\right)\) \\
@ \(G=1, \max\) \\
@ \(\mathrm{G}=1000\), max \\
vs. Supply G \(=1000\) \\
vs. Time G \(=1000\) \\
Bias Current(each input) \\
© \(25^{\circ} \mathrm{C}\) max \\
vs. Temperature, max \\
Noise (RTI) \({ }^{(1)} \mathrm{G}=100\) \\
Voltage, p-p, 0.01 Hz to 10 Hz rms, 10 Hz to 10 kHz \\
Current, p-p, 0.01 Hz to 10 Hz \(\mathrm{rms}, 10 \mathrm{~Hz}\) to 10 kHz
\end{tabular} \& \[
\begin{aligned}
\& \pm\left(2+\frac{10}{\mathrm{G}}\right) \\
\& \pm 12 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \\
\& \pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\begin{aligned}
\& \left..2+\frac{0.5}{\mathrm{G}}\right) \mathrm{mV} \\
\& \pm\left(0.5+\frac{10}{\mathrm{G}}\right) \\
\& \pm 10.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
\& \pm 0.51 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
\& \pm 20 \mu \mathrm{~V} / \mathrm{V} \\
\& \pm 3 \mu \mathrm{~V} / \mathrm{mo} \\
\& \pm 25 \mathrm{nA} \\
\& \pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C} \\
\& 1 \mu \mathrm{~V} \\
\& \mathrm{~V} \mathrm{(10Hz} \text { to } 1 \\
\& 200 \mathrm{pA} \\
\& 35 \mathrm{pA} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm\left(0.25+\frac{10}{\mathrm{G}}\right) \\
\& \pm 10.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
\& \pm 0.26 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C}
\end{aligned}
\]
\[
1 \mathrm{kHz})
\] \& \[
\begin{aligned}
\& \pm(0 . \\
\& \pm\left(3+\frac{10}{\mathrm{G}}\right) \\
\& \pm 4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
\& (\mathrm{G}=10) \\
\& \pm 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\begin{aligned}
\& \left.5+\frac{1.2}{\mathrm{G}}\right) \mathrm{m} \\
\& \left. \pm\left(1+\frac{10}{\mathrm{G}}\right) \right\rvert\, \pm \\
\& \pm 2 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \mid \pm \\
\& (\mathrm{G}=10) \\
\& \pm 1 \mu \mathrm{~V} /{ }^{\mathrm{o}} \mathrm{C} \mid \pm \mathrm{C} \\
\& \pm 2 \mu \mathrm{~V} / \mathrm{V} \\
\& \pm 10 \mu \mathrm{~V} / \mathrm{mo} \\
\& \pm 60 \mathrm{nA} \\
\& .75 \mathrm{nA} /{ }^{\mathrm{o}} \mathrm{C} \\
\& 5 \mu \mathrm{~V} \\
\& 2 \mu \mathrm{~V} \\
\& 200 \mathrm{pA} \\
\& 30 \mathrm{pA} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{mV} \\
\& \pm\left(0.5+\frac{10}{\mathrm{G}}\right) \\
\& \pm 1.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
\& (\mathrm{G}=10) \\
\& \pm 0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\begin{gathered}
\pm\left(6+\frac{600}{\mathrm{G}}\right) \mathrm{mV} \\
\pm\left(10+\frac{1000}{\mathrm{G}}\right) \\
1010 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \\
11 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
-1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \& \[
\left.\begin{array}{|l}
\pm\left(1+\frac{300}{\mathrm{G}}\right) \mathrm{mV} \\
\pm\left(2+\frac{500}{\mathrm{G}}\right) \\
502 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \\
2.5 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \\
\pm 13 \mu \mathrm{~V} / \mathrm{V} \\
\pm 3.5 \mu \mathrm{~V} / \mathrm{mo}
\end{array} \right\rvert\,
\] \& \[
\begin{aligned}
\& \pm\left(1+\frac{300}{\mathrm{G}}\right) \mathrm{mV} \\
\& \pm\left(2+\frac{500}{\mathrm{G}}\right) \\
\& 502 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
\& 2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
\end{aligned}
\]
\[
-2 \mathrm{nA} /{ }^{\circ} \mathrm{C}
\] \\
\hline \begin{tabular}{l}
DYNAMIC RESPONSE at \(\mathrm{G}=100\) \\
Small Signal Frequency Response \\
For \(\pm 1 \%\) flatness, min \\
For \(\pm 3 \mathrm{~dB}\) flatness, min \\
Settling Time to within \(\pm 10 \mathrm{mV}\) of Output Final Value \\
Slew Rate \\
Full Power, G = 10
\end{tabular} \& \& 1.5 kHz
10 kHz

$200 \mu \mathrm{sec}$
$0.3 \mathrm{~V} / \mu \mathrm{sec}$

5 kHz \& \& \& $$
\begin{gathered}
500 \mathrm{~Hz} \\
5 \mathrm{kHz} \\
\\
00 \mu \mathrm{sec} \\
.8 \mathrm{~V} / \mu \mathrm{sec} \\
10 \mathrm{kHz}
\end{gathered}
$$ \& \& \& \[

$$
\begin{array}{r}
10 \mathrm{kHz}, \text { ty } \mathrm{p} \\
72 \mathrm{kHz}, \text { ty } \mathrm{p} \\
20 \mathrm{~s} \\
1.8 \mathrm{~V} / \mu \mathrm{sec} \\
28 \mathrm{kHz}
\end{array}
$$
\] \&

\hline | POWER SUPPLY |
| :--- |
| Rated Voltage |
| Voltage Range |
| Quiescent Supply Current, max | \& \multicolumn{3}{|l|}{\[

$$
\begin{gathered}
\pm 15 \mathrm{VDC} \\
\pm 12 \mathrm{VDC} \text { to } \pm 18 \mathrm{VDC} \\
\pm 14 \mathrm{~mA}
\end{gathered}
$$

\]} \& \multicolumn{3}{|r|}{\[

$$
\begin{gathered}
\pm 15 \mathrm{VDC} \\
\pm 12 \mathrm{VDC} \text { to } \pm 18 \mathrm{VDC} \\
\pm 8 \mathrm{~mA}
\end{gathered}
$$

\]} \& \multicolumn{3}{|r|}{\[

$$
\begin{aligned}
& \pm 15 \mathrm{VDC} \\
& \pm 7 \mathrm{VDC} \text { to } \pm 20 \mathrm{VDC} \\
& \pm 6 \mathrm{~mA}
\end{aligned}
$$
\]}

\hline | TEMPERATURE RANGE |
| :--- |
| Specification |
| Operating | \& \multicolumn{3}{|c|}{$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$-40^{\circ} \mathrm{C}$ to $+85^{\circ}$} \& \multicolumn{3}{|c|}{$-25^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$

$-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$} \& \multicolumn{2}{|l|}{\[
0^{\circ} \mathrm{C} to+70^{\circ} \mathrm{C}

\]} \& \[

$$
\begin{aligned}
& -55^{\circ} \mathrm{C} \text { to } \\
& +125^{\circ} \mathrm{C}
\end{aligned}
$$
\]

\hline | PACKAGE DRAWING |
| :--- |
| (See pgs.66-67) | \& \multicolumn{3}{|l|}{(12) $\mathrm{A} 2^{\prime \prime} \times 2^{\prime \prime} \times 0.4{ }^{\prime \prime}$} \& \multicolumn{3}{|l|}{(13) $1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.4 \prime$} \& \multicolumn{3}{|c|}{(16) TO-100}

\hline $$
\begin{aligned}
& \hline \text { PRICE }(1-9) \\
&(1-24)
\end{aligned}
$$ \& \$90.00 \& \$125.00 \& \$165.00 \& - ${ }^{-}$ \& \[

\$ 4 \overline{-}

\] \& \[

\$ \overline{-}

\] \& \[

\$ \overline{12.30}

\] \& \[

\$ 20.00

\] \& \[

\$ 32.00
\]

\hline
\end{tabular}

[^2]Prices and specifications are subject to change without notice.

HIGH INPUT IMPEDANCE, LOW BIAS CURRENT INSTRUMENTATION AMPLIFIERS

NEW! MODEL 3670-LOW COST FET IC

This FET IC instrumentation series provides maximum bias current of 10 pA and a gain nonlinearity of 0.05%. Exceptional performance, especially when you consider the very low cost. Input impedance is $10^{13} \Omega$ and CMR ranges from 60 dB to 100 dB depending on gain and model.
The excellent performance, small size, low cost, and integrated circuit reliability of the 3670 series make it a natural choice for applications such as thermocouples, strain gages, bridges, and other low-level, high-impedance transducers.

MODEL 3621- $10^{\prime \prime} \Omega Z_{\text {in }}$

The Model 3621 instrumentation amplifier gives the best performance where signals from high impedance sources must be amplified in the presence of common-mode voltages. It is ideal for use in industrial, biomedical, and geophysical applications with differential transducers such as strain gages and biological probes. And, it also performs well as a recorder preamplifier and in gain switching circuits.

This amplifier has an input stage which uses junction FET's and a "boostrapped" design to give extremely high input impedance and very low input current. Input current at either input is less than 10 pA and the differential input current is typically less than 1 pA . Thus, the 3621 operates quite satisfactorily with source impedances up to $100 \mathrm{M} \Omega$. Through the use of a monolithic FET input pair and heavy negative feedback, the 3621 has a CMR of 100 dB and a gain nonlinearity of just $\pm 0.02 \%$.

Two package options are available. The standard package is a 1.13 "x 1.13 " $x 0.5$ "epoxy module suitable for soldering directly
 on a Pe board or for mounting in a type 1200MC connector. For rack-mounting applications, a shielded, plug-in enclosure is available. The rack-mounting unit and powered rack adapter are described on page 47.

MODEL 3622-WIDEBAND FET

The Model 3622 is designed specifically for use with wideband and pulse signals and in data acquisition systems with very high throughput rates. Unique properties include wide bandwidth (2 MHz min. at gain of 100) and extremely fast slewing rate ($150 \mathrm{~V} / \mu \mathrm{sec}$) plus fast settling characteristics. The FET input stage eliminates the large input currents normally associated with very fast amplifiers. High frequency CMR of the 3622 is also very good, providing effective rejection of broadband common-mode noise.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

(1) At frequencies below 10 Hz linearity is a function of load current and gain. Linearity given is for $I_{O}=1 \mathrm{~mA}$. See Product Data Sheet for details.
(2) $\mathrm{RTI}=$ referred to input. May be referred to output
by multiplying by gain G.
(3) May be trimmed to zero.

Prices and specifications are subject to change without notice.

- SIMPLE TO INTERFACE
- LOW COST PER CHANNEL
- IMPROVED DYNAMIC RANGE

These programmable gain amplifiers are precision components designed for use in fully automated data acquisition systems. They may be operated under direct control of a digital computer or they may be controlled by auto-ranging techniques. In either case, the wide range of programmable gains extends the dynamic range of the system without increasing the resolution and accuracy required of A / D converters in the system. The result is lower total cost.
Models 3600, 3601, and 3602 are the first programmable gain amplifiers to be packaged in modular form suitable for PC board mounting. The small size of the modules, and their low profile, permit their integration into densely packaged systems.

Digital control signals required for gain selection are compatible with TTL logic levels.

DIFFERENTIAL INPUT-MODELS 3600 and 3601

- DIFFERENTIAL INPUT - $\mathbf{1 0 0}$ dB CMR
- BINARY OR BCD PROGRAMMING
- LOW DRIFT - $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- LOW NOISE - $1 \mu \mathrm{~V}$, p-p

These differential input amplifiers are the best choice for conditioning of low-level signals. Common-mode noise is effectively rejected by the differential input and an active guard-driving feature. A low-noise monolithic input stage with excellent DC stability provides the ability to amplify millivolt level signals without introducing significant drift and noise errors. Precision resistor networks and heavy negative feedback yield gain accuracy of 0.1% and gain linearity of 0.01% without external adjustment.

Models 3600 and 3601 have two stages - a differential first stage followed by a single-ended second stage. Gain switching takes place in both stages. However, because both stages have low drift, the output voltage drift is very low for all gains. The input stage is switched in gain multiples of 1-16-256 for Model 3600, and 1-10-100 for Model 3601. The second stage is switched in gain multiples of 0 through 15 steps of 1 (4-bit straight binary). Thus there are 46 possible gains for each model, ranging from 0 to 3840 for Model 3600 and from 0 to 1500 for Model 3601. A functional diagram is shown on page 67.

SINGLE-ENDED INPUT-MODEL 3602

Model 3602 is a high input impedance, buffer amplifier whose gain is programmable by digital signals in gain steps of 1,10 , 100 , and 1000. It utilizes precision resistor networks; solidstate switches; and low-drift, high-gain FET operational amplifiers to achieve excellent gain accuracy, linearity, and low drift characteristics. The FET input stage has extremely high input impedance ($10^{11} \Omega \| 3 \mathrm{pF}$) and very low input leakage current (10 pA). Input offset may be externally trimmed to zero as desired. A functional diagram is shown on page 66 .

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

Prices and specifications are subject to change without notice.

MODEL 3640 LOW DRIFT,LOW NOISE

The 3640 offers excellent performance at a surprisingly low cost. The direct-coupled, differential input stage provides resolution of microvolt signals through the use of a low noise, monolithic amplifier. Low DC input drift is assured by proprietary input stage balancing techniques. Linearity of 0.01% and gain accuracy of 0.1% are achieved through the use of heavy negative feedback and precision, high stability resistors.
Front panel gain controls allow selection of calibrated first stage gains of $1,3,10,30,100,300$, and 1000 , and second stage gains of 1 to 4 . Thus the overall gain can be varied from 1 to 4000 . Common-mode rejection may be trimmed to correct for source impedance unbalance. Output voltage may be adjusted for up to $\pm 1 \mathrm{~V}$ output offset.
An active guard driver output is available for driving the multiplexer shield in two wire, multi-channel systems.
Provisions are incorporated for both bandwidth reduction and addition of $\mathrm{a} \pm 100 \mathrm{~mA}$ power booster.

Specifications ty pical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

| MODEL | 3640 |
| :---: | :---: |
| GAIN Range of DC Gain Gain Steps Gain Vernier Gain Accuracy (switched steps) Nonlinearity, max Temp. Coefficient, Gain $=\mathbf{1 0 0}$ | $\begin{gathered} 1-4000 \\ 1,3,10,30,100,300,1000 \\ 1-4 \\ \pm \mathbf{0 . 1} \% \\ \pm \mathbf{0 . 0 1 \%} \% \\ \pm \mathbf{0 . 0 0 1} \% /^{\circ} \mathrm{C} \end{gathered}$ |
| OUTPUT
 Rated Output Voltage
 Output Current
 Output Impedance
 Output Current Limits
 Typical
 Maximum | $\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 10 \mathrm{~mA} \\ & \pm 0.1 \Omega \\ & \pm 25 \mathrm{~mA} \\ & \pm 40 \mathrm{~mA} \end{aligned}$ |
| INPUT RATINGS
 Input Impedance, Differential, min Common-Mode, min Input Voltage Range CMR, DC to 100 Hz , Gain $=100$, min | $300 \mathrm{M} \Omega$ $500 \mathrm{M} \Omega$ $\pm 10 \mathrm{~V}$ 100 dB |
| ```OFFSETS AND NOISE Input Bias Current @ \(25^{\circ} \mathrm{C}\), max vs. Temperature Output Offset Voltage, Gain \(=\mathbf{1 0 0 0}\) vs. Temperature, max vs. Supply vs. Time Output Offset Voltage, Gain \(=1.0\) vs. Temperature vs. Supply vs. Time Output Voltage Noise (1 Hz to 1 kHz) Gain \(=1000\) Gain \(=1.0\)``` | $\begin{aligned} & \quad \pm 25 \mathrm{nA} \\ & \pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \\ & \pm 1 \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ & \pm 100 \mathrm{mV} / \mathrm{V} \\ & \pm 3 \mathrm{mV} / \mathrm{mo} \\ & \\ & \pm 150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 300 \mu \mathrm{~V} / \mathrm{V} \\ & \pm 50 \mu \mathrm{~V} / \mathrm{mo} \\ & \\ & 1 \mathrm{mV}, \mathrm{rms} \\ & 10 \mu \mathrm{~V}, \mathrm{rms} \end{aligned}$ |
| DYNAMIC RESPONSE
 Small Signal Bandwidth, Gain $=100$
 1\% Absolute Accuracy
 $\pm 3 \mathrm{~dB}$ Accuracy
 Output Slew Rate | $\begin{gathered} 1.5 \mathrm{kHz} \\ 15 \mathrm{kHz} \\ 0.3 \mathrm{~V} / \mu \mathrm{sec} \end{gathered}$ |
| POWER SUPPLY REQUIREMENTS
 Rated Supply Voltage Supply Current Drain Quiescent, max at Rated Output, max | $\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 25 \mathrm{~mA} \\ & \pm 35 \mathrm{~mA} \end{aligned}$ |
| TEMPERATURE RANGE
 Rated Specifications Operating | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$ |
| PACKAGE DRAWING (See page 67) | (17) Rack Mounting Pkg. |
| PRICE (1-9) | \$325.00 |

Prices and specifications are subject to change without notice.

ENCLOSURES FOR RACK MOUNTING AMPLIFIERS

Abstract

Burr-Brown Rack Adapters provide efficient mounting space and well-regulated DC power for up to 12 amplifiers. The low cost of these enclosures, combined with the uniquely low-priced, high performance instrumentation amplifiers described in this section of the catalog, result in optimum per channel cost.

All of the enclosures will accept any of the rack-mounting amplifiers described, including the /16 and $/ 16 \mathrm{~A}$ options of the modular amplifiers. The connector mounting plate at the rear of these enclosures will accept either the 10 pin connector of $/ 16$ modules or the 30 pin connector of / 16 A modules. Thus, both /16 and /16A modules can be combined in a single enclosure. These enclosures provide extremely efficient use of rack space. Front panel dimensions are only 3.5 " $x 19.00$ " and only 9.0 " of rack depth is required.

MODEL 506/I6A

The 506/16A provides mounting space for 12 plug-in modules of the / 16 or /16A type. The internal DC power supply of the $506 / 16 \mathrm{~A}$ provides +15 VDC and -15 VDC rated at 1.0 ampere (each side). Regulation of this supply is $\pm 0.1 \%$, line and load. Input power for the 506/16A can be either 105 to 125 VAC or 210 to 250 VAC with a frequency range of $47-420 \mathrm{~Hz}$. PRICE $\$ 429.00$

MODEL 547/I6A

The $547 / 16 \mathrm{~A}$ is similar to the $506 / 16 \mathrm{~A}$, but has a +5 VDC, 2 ampere power supply, in addition to the $\pm 15 \mathrm{~V}$, ± 1.0 ampere analog supply. The +5 V supply is desirable for systems using programmable gain amplifiers, A/D converters, D/A converters, and other circuitry involving digital logic. The 547/16A provides mounting space for 10 plug-in modules. PRICE $\$ 525.00$

MODEL I600A/R

The $1600 \mathrm{~A} / \mathrm{R}$ is an unpowered Rack Adapter designed for use where DC power is already available, or where adequate power for additional modules is available from a $506 / 16$ A or $547 / 16$ A. Space is provided for 16 of the plug-in modules. PRICE $\$ 149.00$

CONNECTORS...

30 PIN CONNECTOR - 1601 MC

Mates with all $/ 16 \mathrm{~A}$ modules. This mating connector is furnished with each/16A module, and mounts in models $506 / 16 A, 547 / 16 A$, and $1600 A / R$. Price (additional connectors) $\$ 6.00$

10 PIN CONNECTOR - 1600 MC

Mates with all / 16 modules. This mating connector is furnished with each/ 16 module, and mounts in models $506 / 16 A, 547 / 16 A$, and $1600 A / R$. Price (additional connectors) $\$ 6.00$

BLANK PANEL - 1600 BP

Blank front panels (one module width) for rack adapters to provide uniform appearance of the rack. Price $\$ 4.00$

1600 MC

ANALOG CIRCUIT FUNCTIONS

Multíplier/Díviders
Analog Dívíders
Multifunction Converters
True RMS-to-DC Converters
Thermal True RMS-to-DC Converters Oscillators

MULTIPLIER/DIVIDERS

The Burr-Brown family of four-quadrant multipliers is one of the broadest available anywhere. Included is the first commercially available laser-trimmed IC multiplier. Each model can be used as a divider or square root converter simply by variation of the external pin connections. All models are self-contained except for external trimming and, in most cases, such trimming is unnecessary. All give you the reliability you expect from Burr-Brown.

DIFFERENTIAL INPUTMODEL 4205

Laser trimmed and completely selfcontained, the 4205 monolithic IC multiplier/divider needs no adjustments or external components to meet its guaranteed accuracies of 1% and 2%. And, this general purpose unit has differential inputs allowing flexibility in the choosing of algebraic sign for the operations of multiplying, dividing, and square rooting.

LOWEST COST, IC TYPE MODEL 420IJ

The 4201 J is a low cost version of the 4203 , and is intended for use in applications where accuracy is somewhat relaxed. Although the 4201 J is capable of 2% accuracy by externally trimming four potentiometers, it also can be operated to reduced accuracy with a single gain trim. Even this trim may be eliminated if a scaling adjustment is available elsewhere in the user's system.

NEW!
HIGH ACCURACY DUAL-IN-LINE MODEL 4204

The laser trimmed 4204 four-quadrant analog IC multiplier is the first IC to offer 0.25% accuracy without the use of external components. The device uses the \log /antilog technique to yield this high accuracy, plus low noise and moderate bandwidth. Accuracy specifications are guaranteed without external adjustments and are verified at BurrBrown using an automatic tester which scans the X-Y plane. Maximum error at any point in the plane is required to be less than the specified values.

LASER TRIMMED-MODEL 4203

The first IC multiplier to eliminate the need for all external com-ponents-the 4203 takes advantage of Burr-Brown's expertise in monolithic circuitry, thin-film technology, and advanced lasertrimming techniques. The 4203 meets its guaranteed performance specifications with no external components or trimming. The result is greater systems reliability, space savings, and lower installed cost-the three most significant factors in any design.
Hermetically sealed in a TO-100 package, this monolithic unit contains its own zener-regulated references, and as a result, is much less sensitive to supply voltage variations than were earlier IC multipliers. The $25 \mathrm{~V} / \mu \mathrm{sec}$ slew rate and the 1 MHz bandwidth are key performance factors for applications where delay phase shift must be minimized. Harmonic distortion remains low for frequencies well above 100 kHz , an important asset in modulation applications. In addition to four-quadrant multiplication, it also performs division and square-rooting of analog signals without the use of additional amplifiers.

IC MULTIPLIERIDIVIDERS

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

(1) Total Error includes offset, nonlinearity, and feedthrough.

Prices and specifications are subject to change without notice.

(2) With output loading of $10 \mathrm{k} \Omega$ or less.

MODEL 4290

- EASY TO USE -

Optimized for analog division

- IMPROVE SYSTEM ACCURACY - $\pm 0.5 \%$
- IMPROVE DYNAMIC RANGE Denominator range 10 mV to 10 V
- IMPROVE SYSTEM STABILITY -

Accuracy drift of $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$

The 4290 uses a unique Burr-Brown circuit which has been optimized for the demanding task of analog division. Although any of the analog multipliers from the preceeding pages can be used as dividers, the resulting output is accurate only over a limited range of denominator voltage. The same is true of competitive multipliers. For really accurate division over a wide dynamic range of the denominator, the 4290 provides far superior performance. For instance, the 4290 is accurate to $\pm 0.5 \%$, without external trimming, for a 100: 1 range of denominator voltage. If external trimming of offset voltage is employed, the denominator range can be extended to $1000: 1(10 \mathrm{mV}$ to 10 V$)$. Thermal drift is sufficiently low to maintain the accuracy over a wide temperature range.

By addition of one external IC op amp, the 4290 can be converted to a two-quadrant divider for use with bipolar numerator signals. Scale factor of the 4290 is easily changed over a 100: 1 range.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

| MODEL | 4290 |
| :---: | :---: |
| DC PERFORMANCE Output Function | $\mathrm{E}_{\mathrm{o}}=\frac{10 \mathrm{~N}}{\mathrm{D}}$ |
| ERRORS
 Total Error, $@+25^{\circ} \mathrm{C}$, max
 vs. Temp. $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, max
 vs. Supply Voltage
 Scale Factor (Gain); $\mathrm{N}=\mathrm{D}=+10 \mathrm{~V}$
 Initial Error, $+25^{\circ} \mathrm{C}$
 vs. Temp. $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
 vs. Supply Voltage
 Nonlinearity ($\mathrm{D}=10 \mathrm{~V}, 5 \mathrm{mV} \leqslant \mathrm{N} \leqslant 10 \mathrm{~V}$)
 Initial Nonlinearity, $+25^{\circ} \mathrm{C}$, typ
 max
 vs. Temp. $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
 vs. Supply Voltage | $\begin{aligned} & \pm 0.5 \%(50 \mathrm{mV}) \\ & \pm 0.02 \% /{ }^{\circ} \mathrm{C} \\ & \pm 0.1 \% / \mathrm{V} \\ & \\ & \pm 0.25 \% \\ & \pm 0.005 \% /{ }^{\circ} \mathrm{C} \\ & \pm 0.1 \% / \mathrm{V} \\ & \\ & \pm 0.1 \% \\ & \pm 0.3 \% \\ & \pm 0.005 \% /{ }^{\circ} \mathrm{C} \\ & \pm 0.005 \% / \mathrm{V} \end{aligned}$ |
| DYNAMIC PERFORMANCE
 $\mathrm{D}=10 \mathrm{VDC}, \mathrm{N}=5+5 \sin \omega \mathrm{t}$ Full Power Bandwidth (-3 dB) Slew Rate | $\begin{aligned} & 10 \mathrm{kHz} \\ & 0.3 \mathrm{~V} / \mu \mathrm{s} \end{aligned}$ |
| OUTPUT NOISE $5 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}: \begin{aligned} & \mathrm{D} \end{aligned}=10 \mathrm{~V}$ | $\begin{aligned} & 200 \mu \mathrm{~V} \mathrm{rms} \\ & 2 \mathrm{mV} \mathrm{rms} \end{aligned}$ |
| INPUT CHARACTERISTICS
 Input Voltage For rated specifications ($\mathrm{N} \leqslant \mathrm{D}$ at all times) $\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{~N} \end{array}\right.$
 For Operation (4290 output may saturate for $\mathrm{N}>\mathrm{D}$)
 Input Impedance
 N or D | $\begin{aligned} & \left\{\begin{array}{l} +0.1 \mathrm{~V}, \text { min } \\ +10.0 \mathrm{~V}, \text { max } \end{array}\right. \\ & \left\{\begin{array}{l} +5 \mathrm{mV}, \text { min } \\ +10.0 \mathrm{~V}, \max \end{array}\right. \\ & \left\{\begin{array}{l} +5 \mathrm{mV}, \min \\ +15 \mathrm{~V}, \max \end{array}\right. \\ & 25 \mathrm{k} \Omega \end{aligned}$ |
| OUTPUT CHARACTERISTICS
 Voltage, min Current, min | $\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 5 \mathrm{~mA} \end{aligned}$ |
| POWER REQUIREMENTS
 Rated Supply Operating Range Quiescent Current | $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 14 \text { to } \pm 16 \mathrm{VDC} \\ & 30 \mathrm{~mA} \end{aligned}$ |
| TEMPERATURE RANGE
 Operating Storage | $\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$ |
| PACKAGE DRAWING (See page 68) | (21) 2 " $\times 2$ " $\times 0.4 \prime$ |
| PRICE (1-9) | \$79.00 |

[^3]
MULTIFUNCTION CONVERTER

NEW! MODEL 430I

$$
E_{0}=V_{y}\left(\frac{V_{z}}{V_{x}}\right)^{m}
$$

- REDUCES YOUR INVENTORY Performs sine, cosine, $\tan ^{-1}$, as well as multiply, divide, exponentiation, etc.
- IMPROVES SYSTEM ACCURACY $\pm 0.03 \%$ to $\pm 0.25 \%$ Accuracy
- ECONOMICAL -

Only \$48 in 100's

Our hybrid 4301 Multifunction Converter can do just about any analog computation you might need. Add a few external resistors and this tiny 14 pin dual-in-line unit can multiply, divide, square, square root, or square a ratio. Add a few inexpensive active and passive devices, and this 3 -input hermetically sealed and shielded workhorse can perform true rms, vector sums, sine, cosine, or arctangent conversion functions. It's highly accurate in all configurations, low in cost, and is particularly useful for rapid real-time computations or for signal processing equipment. And, if you want to linearize a function by raising a voltage or voltage ratio to an arbitrary power, it will do that, too!

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

| MODEL | 4301 |
| :---: | :---: |
| TRANSFER FUNCTION | $\mathrm{E}_{\mathrm{O}}=\mathrm{v}_{\mathrm{Y}}\left(\frac{\mathrm{~V}_{\mathrm{Z}}}{\bar{v}_{\mathrm{X}}}\right)^{\mathrm{m}}$ |
| RATED OUTPUT Voltage
 Current | $\begin{aligned} & +10.0 \mathrm{~V} \\ & 5 \mathrm{~mA} \end{aligned}$ |
| INPUT
 Signal Range Absolute Maximum Impedance ($\mathrm{X} / \mathrm{Y} / \mathrm{Z}$) | $0 \leqslant\left(V_{X}, V_{Y}, V_{Z}\right) \leqslant+10 \mathrm{~V}$ $\left(\mathrm{V}_{\mathbf{X}}, \mathrm{V}_{\mathbf{Y}}, \mathrm{V}_{\mathrm{Z}}\right) \leqslant \pm$ Supply $100 \mathrm{k} \Omega / 90 \mathrm{k} \Omega / 100 \mathrm{k} \Omega$ |
| EXPONENT RANGE
 Roots $(0.2 \leqslant m<1)$
 Powers $(1<\mathrm{m} \leqslant 5)$ $(m=1)$ | $\begin{array}{ll} \mathrm{m}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} & \begin{array}{l} \text { Refer to } \\ \text { Function } \end{array} \\ \mathrm{m}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}} & \text { Diagram } \end{array}$ |
| POWER REQUIREMENTS Rated Supply Range
 Quiescent Current | $\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 12 \text { to } \pm 18 \mathrm{VDC} \\ & \pm 10 \mathrm{~mA} \end{aligned}$ |
| TEMPERATURE RANGE Operating Storage | $\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$ |
| PACKAGE DRAWING (See page 68) | (19) A $0.86^{\prime \prime} \times 0.50^{\prime \prime} \times 0.22^{\prime \prime}$ |
| PRICE (1-24) | \$69.00 |

FUNCTIONS

| MULTIPLY | $\pm 0.25 \%$ |
| :---: | :---: |
| DIVIDE | $\pm 0.25 \%$ |
| square | $\pm 0.03 \%$ |
| SQUARE ROOT | $\pm 0.07 \%$ |
| EXPONENTIATE | $\pm 0.15 \%$ (m = 5) |
| R00TS | $\pm 0.2 \%$ ($\mathrm{m}=0.2$) |
| SINE θ | $\pm 0.5 \%$ |
| COSINE θ | $\pm 0.8 \%$ |
| ARCTAN - 1 ($\frac{y}{x}$) | $\pm 0.6 \%$ |
| $\sqrt{X^{2}+Y^{2}}$ | $\pm 0.07 \%$ |

Typical accuracies expressed as a \% of output full scale (+10 VDC) at $25^{\circ} \mathrm{C}$.

MODEL 4340

- IMPROVES SYSTEM ACCURACY $\pm 2 \mathrm{mV} \pm 0.2 \%$ of Reading
- SIMPLIFIES ASSEMBLY No external components
- IMPROVES RELIABILITY -$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operation Rugged Hybrid Package

The Burr-Brown Model 4340 is a True RMS-toDC Converter featuring high performance, low cost, and a small hermetic package. The 4340 will compute the True RMS value of a variety of signals applied to the input. The input signal may consist of complex AC waveforms as well as a DC voltage level. The output of the 4340 is a DC voltage, the amplitude of which is equal to the RMS value of the input voltage.
The 4340 will accept input voltages from 0 to 20 volts peak-to-peak over a wide input frequency range. The conversion accuracy of the 4340 is specified in terms of error in millivolts (mV) plus a percent of reading, as a function of input signal level over an input frequency range.
The 4340 has an input impedance of $5 \mathrm{k} \Omega$ and an output impedance of 1Ω. This product will supply up to 5 mA of output current at a voltage of +10 VDC. The input is fully protected for conditions of overvoltage up to the supply voltage. The output will withstand short-circuit to power supply common for an indefinite period of time.
Provision for the external adjustment of gain, voltage offset, DC reversal error, and frequency response performance allow the user to improve upon the specified conversion accuracies to the degree required by the user's application.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

| MODEL | NEW! 4340 |
| :---: | :---: |
| TRANSFER FUNCTION | $\mathrm{E}_{\mathrm{o}}=\sqrt{\mathrm{E}_{\mathrm{i}}{ }^{2}}$ |
| INPUT
 Peak Voltage Absolute Maximum Voltage Impedance | $\begin{aligned} & \pm 10 \text { VDC } \\ & \pm \text { Supply } \\ & 5 \mathrm{k} \Omega \end{aligned}$ |
| OUTPUT
 Voltage Current, min Impedance | $\begin{aligned} & 0 \text { to }+10 \mathrm{VDC} \\ & +5 \mathrm{~mA} \\ & 1 \Omega \end{aligned}$ |
| ```CONVERSION ACCURACY Total Unadjusted Error, max Input: }10\textrm{mV rms}\mathrm{ to 7.0 V rms 100 Hz to 10 kHz sine wave (1) Total Adjusted Error (2) Input: }10\textrm{mV}\mathrm{ rms to 1 V rms 50 Hz to 20 kHz (1)``` | $\pm 2 \mathrm{mV} \pm 0.2 \%$ Reading
 $\pm 0.3 \mathrm{mV} \pm \mathbf{0 . 1} \%$ Reading |
| STABILITY
 Accuracy vs. Temperature
 Accuracy vs. Supply | $\begin{aligned} & \pm 0.001 \% \text { of FS plus } \\ & \pm 0.01 \% \text { of reading per }{ }^{\mathrm{O}} \mathrm{C} \\ & \pm 0.001 \% \text { of FS plus } \\ & \pm \mathbf{0 . 0 1} \% \text { of reading per } \% \Delta \mathrm{~V} \end{aligned}$ |
| TEMPERATURE RANGE
 Operating Storage | $\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ |
| POWER REQUIREMENTS
 Rated Voltage Voltage Range Quiescent Current | $\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 14 \mathrm{VDC} \text { to } \pm 16 \mathrm{VDC} \\ & \pm 12 \mathrm{~mA} \end{aligned}$ |
| PACKAGE DRAWING (See page 68) | (19) $\mathrm{B} 0.86^{\prime \prime} \times 0.50^{\prime \prime} \times 0.22^{\prime \prime}$ |
| PRICE (1-24) | \$75.00 |

(1) Model 4340 will convert DC inputs. Lower frequency AC input signals will require the addition of external capacitors to preserve the accuracy.
(2) Performance with external trims.

FUNCTIONAL DIAGRAM OF MODEL 4340.

THERMAL TRUE RMS-to-DC CONVERTERS

MODEL 4130

```
- INCREASE SYSTEM ACCURACY \(\pm 0.05 \%\) Accuracy to 100 kHz
- INCREASE SYSTEM BANDWIDTH \(\pm 2 \%\) Accuracy at 10 MHz
- MEASURE HIGH CREST FACTOR SIGNALS 100:1 max crest factor
```

The 4130 is a modular True RMS-to-DC Converter utilizing thermal techniques to produce high conversion accuracies over a wide range of frequencies and for a variety of waveforms. The heart of the 4130 is a unique thermal converter unit and circuit design, patented and manufactured by Burr-Brown, using hybrid and monolithic technologies.

Thermal conversion techniques are used to produce highly accurate, wideband RMS voltmeters by several instrument manufacturers. Burr-Brown is the first manufacturer, however, to produce such True RMS conversion capabilities in a compact module suitable for incorporation into universal and dedicated measurement applications.

The 4130 allows for the amplification and scaling of the input signal by the addition of an external operational amplifier chosen by the user based upon his particular conversion need. Also, the 4130 may be trimmed in order to optimize accuracy, output voltage offset, and low frequency response.
Competitive modular RMS-to-DC converters generally utilize a computing technique to produce the DC equivalent of an RMS input signal. This technique does not provide the accuracy and bandwidth capabilities of the thermal conversion method.
Additionally, the 4130 has important advantages over other thermal RMS converters utilized in instrumentation applications. One such advantage is the low DC reversal error of the thermal sensor which allows for accurate DC coupled measurements.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted. Specifications assume an ideal operational amplifier is used unless otherwise noted. User must supply operational amplifier.

| MODEL | 4130 J | 4130K | |
|---|---|---|---|
| OUTPUT FUNCTION | $\mathrm{E}_{\mathrm{O}}=\sqrt{\mathrm{E}_{\mathrm{i}}{ }^{2}}$ | * |
| TOTAL CONVERSION ACCURACY, max (1) | $0.05 \% \mathrm{E}_{\mathrm{i}}+0.05 \% \mathrm{FS}$ | $\begin{aligned} & \mathbf{0 . 0 2 5} \% \mathbf{E}_{\mathrm{i}}{ }^{+} \\ & \mathbf{0 . 0 2 5} \% \mathrm{FS} \end{aligned}$ |
| $\begin{aligned} & \text { MIDBAND AND DC } \\ & \text { CHARACTERISTICS } \end{aligned}$ | | . |
| Nonlinearity | 1.0 mV | 0.4 mV |
| DC Reversal Error | 0.2 mV | * |
| Output Noise, Peak (0.01 Hz to 100 Hz) | $\left(0.01 \mathrm{E}_{\mathrm{i}}+\frac{0.035}{\mathrm{E}_{\mathrm{i}}}\right) \mathrm{mV}$ | * |
| Output Stability vs. Temperature, max | $\left(0.2 \mathrm{E}_{\mathrm{i}}+\frac{0.06}{\mathrm{E}_{\mathrm{i}}}\right) \mathrm{mV} /{ }^{\circ} \mathrm{C}$ | $\left(0.1 \mathrm{E}_{\mathrm{i}}+\frac{0.03}{\mathrm{E}_{\mathrm{i}}}\right) \mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| vs. Supply | $\left(\frac{0.02}{E_{i}}\right) \mathrm{mV} / \%$ | * |
| vs. Time | $\left(0.2 \mathrm{E}_{\mathrm{i}}+\frac{0.15}{\mathrm{E}_{\mathrm{i}}}\right) \mathrm{mV} / \mathrm{mo}$ | * |
| Warm-up to Rated Accuracy | 15 minutes | 30 minutes |
| DYNAMIC PERFORMANCE | | |
| Bandwidth for Rated Accuracy, min | 40 Hz to 100 kHz | * |
| Bandwidth for 2\% | | |
| Accuracy, min | to 10 MHz | * |
| 3 dB Bandwidth | to 50 MHz | * |
| Settling Time to 0.1\% (2) to 50 MHz | | |
| +20 dB Step | 1 sec | * |
| -20 dB Step | 2 sec | * |
| Overload Recovery Time | 10 sec | * |
| INPUT CHARACTERISTIC (3) | | |
| Input Voltage Range (RMS) for Specified Accuracy | 0.1 V to 2.0 V | * |
| Crest Factor | 100:1 to 5:1 | * |
| Peak Input Voltage (Operating) | $\pm 11.2 \mathrm{~V}$ | * |
| Absolute Maximum Input | \pm Supply | * |
| Input Impedance | $10 \mathrm{k} \Omega \\| 30 \mathrm{pF}$ | * |
| Input Bias Current, max | $\pm 2 \mathrm{~mA}$ | * |
| OUTPUT CHARACTERISTICS ${ }^{(3)}$ | | |
| Output Voltage | 0.0 to +2.0 Vdc | * |
| Output Current | 5 mA | * |
| Output Impedance | 0.06Ω | * |
| POWER SUPPLY (3) | | |
| Rated Supply | $\pm 15 \mathrm{Vdc}$ | * |
| Operating Range | $\pm 12 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ | * |
| Quiescent Current | $+60 \mathrm{~mA}, \mathrm{DC}$ | * |
| Supply Current for 2.0 V rms | +65 mA, rms | * |
| Input and 400Ω Output Load | -50 mA, rms | * |
| TEMPERATURE RANGE | | |
| Specification | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | * |
| Operation | $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | * |
| Storage (power not applied) | $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ | * |
| PACKAGE DRAWING (See page 68) | (20) $2 \prime \mathrm{x}$ | $2^{\prime \prime} \times 0.6{ }^{\prime \prime}$ |
| PRICE (1-9) | \$139.00 | \$175.00 |

* Same as 4130 J
(1) With external adjustment over the specified input voltage range. Full Scale is 2.0 V rms.
(2) Settling time is the total time from the application of the input step until the output is continuously within the specified accuracy error band.
(3) Model 4130 less operational amplifier.

EB
 OSCILLATOR

MODEL 4023/25

> - SIMPLIFY SYSTEM ASSEMBLY Completely self-contained
> - INCREASE SYSTEM ACCURACY $\pm 1 \%$ Frequency accuracy $\pm 0.1 \%$ Sinewave distortion
> - INCREASE SYSTEM STABILITY $\pm 0.04 \% /{ }^{\circ} \mathrm{C}$ Frequency Stability; $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$ Amplitude Stability

The 4023/25 is an all solid-state ultra-stable sine-wave oscillator. Both output amplitude and frequency are constant, and the stability of both with time and temperature variations is excellent. High-performance Burr-Brown IC operational amplifiers are used in the 4023/25 to form a Wienbridge oscillator circuit and to regulate the output amplitude. The frequency of oscillation is within $\pm 1 \%$ of the customer-specified value.
If desired, external components may be added to trim the frequency to an exact value. Adding two external capacitors will lower the output frequency. The range of frequency adjustment is approximately 2 decades (within 10 Hz and 20 kHz).

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

| MODEL | 4023/25 |
| :---: | :---: |
| FREQUENCY RESPONSE
 Range
 Accuracy
 Stability vs. Temperature, max | $\begin{aligned} & \text { Customer specified }- \text { may be any } \\ & \text { value from } 10 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {. } \\ & \pm 1 \% \text { (Adjustable to zero) } \\ & 0.04 \% /{ }^{\circ} \mathrm{C} \end{aligned}$ |
| OUTPUT
 Amplitude - Output A
 - Output B
 Impedance - Output A
 - Output B
 Rated Load - Output A
 - Output B
 Distortion, max | $6 \mathrm{Vrms}(\pm 2 \%)$ 3 Vrms with 600Ω load $(\pm 2 \%)$ 1Ω 600Ω $1.2 \mathrm{k} \Omega$ 600Ω 0.1% |
| AMPLITUDE STABILITY
 vs. Temperature, max Noise and Jitter, max Long Term | $\begin{aligned} & 0.02 \% /^{\mathrm{o}} \mathrm{C} \\ & 0.02 \% \\ & 0.1 \% \end{aligned}$ |
| TEMPERATURE RANGE
 Operating Storage | $\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \end{aligned}$ |
| POWER REOUIREMENTS
 Rated Supply
 Supply Drain, max | $\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 40 \mathrm{~mA} \end{aligned}$ |
| PACKAGE DRAWING (See page 68) | (22) $2.4 \prime \times 1.8^{\prime \prime} \times 0.6^{\prime \prime}$ |
| PRICE (1-9) | \$154.00 |

Note: To order, specify Model 4023/25 and frequency.

ACTIVE FILTERS

Universal Actíve Filters

Fixed Frequency Actíve Filters
$\square=$
BURR-BROWN

UNIVERSAL ACTIVE FILTERS

MODELS UAF3I AND UAF2I/25

- LOW COST -

ONLY $\$ 13.00$ (100 quantity) for UAF31

- USER TUNABLE FREQUENCY, O-FACTOR, and GAIN
- O-FACTOR RANGE - 0.5 to 500

Burr-Brown's Universal Active Filters (UAF's) are low cost, versatile units that the user can easily tailor to any active filtering application. These UAF's are excellent choices for use in communications equipment, test equipment (engine analyzers, aircraft and automotive test, medical test, etc.), servo systems, process control equipment, sonar and many others.

These UAF's are complete 2-pole active filters with the addition of three of four external resistors that provide the user easy control of the Q-factor, resonant frequency, and gain. Any complex filter response can be obtained by cascading these units. Three separate outputs provide low pass, high pass, and band pass transfer functions. A band reject (notch) transfer function may be realized simply by summing the high pass and low pass outputs.

- WIDE FREQUENCY RANGES
 UAF31 - 0.001 Hz to 25 kHz
 UAF21/25-0.001 Hz to 200 kHz

- EPOXY or HERMETIC DUAL-IN-LINE PACKAGE

Since these UAF's are so versatile and flexible, they can be stocked by the user in quantity for use as building blocks whenever the requirement arises. This means instant availability and that UAF purchases may be made in volume to take advantage of quantity price discounts.
We have an individual data sheet available for these Universal Active Filters that explains the simple design procedures necessary to build active filters. It also includes all the necessary information for you to construct Bessel, Butterworth and Chebyschev low pass and high pass as well as band pass and band reject filters using these Universal Active Filters as building blocks. Computer programs are also included for the design of more complex Chebyschev low pass and multiple pole band pass filters. The data sheet is available from Burr-Brown or your local Representative.

The UAF as shown in the Figure below can be connected in a variety of configurations:
One UAF is required for every two poles of low pass or high pass filters. One UAF is required for each pole-pair of band pass or band reject filters. The three basic second order transfer function forms are:
$T($ Low Pass $)=\frac{A_{L P} \omega_{0}^{2}}{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}} \quad T($ Band Pass $)=\frac{A B P\left(\omega_{0} / Q\right) s}{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}} \quad T($ High Pass $)=\frac{A_{H P} s^{2}}{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}{ }^{2}}$
where $\omega_{\mathrm{O}}=2 \pi \mathrm{f}_{\mathrm{O}}$.

UNIVERSAL ACTIVE FILTER SIMPLIFIED SCHEMATIC

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

| MODEL | NEW! UAF31 | UAF21/25 ${ }^{(1)}$ | UNITS |
| :---: | :---: | :---: | :---: |
| INPUT
 Input Bias Current Input Voltage Range Input Resistance | $\begin{aligned} & \pm 40 \\ & \pm 10 \\ & 100 \mathrm{k} \end{aligned}$ | $\begin{aligned} & \pm 15 \\ & \pm 10 \\ & 100 \mathrm{k} \end{aligned}$ | $\begin{aligned} & \mathrm{nA} \\ & \mathrm{~V} \\ & \Omega \end{aligned}$ |
| ```TRANSFER CHARACTERISTICS Frequency Range (\(\mathrm{f}_{\mathrm{o}}\)) \(\mathrm{f}_{\mathrm{O}}\) Accuracy (2) \(\mathrm{f}_{\mathrm{o}}\) Stability \({ }^{(3)}\) (over temp. range) Q Range Q Stability (5) @ \(f_{0} Q \leqslant 10^{4}\) @ \(\mathrm{f}_{\mathrm{o}} \mathrm{Q} \leqslant 10^{5}\) Gain Range``` | $\begin{aligned} & 0.001 \text { to } 25 \mathrm{k} \\ & \pm 1, \max \\ & \pm 0.002 ; \\ & 0.5-500 \\ & \pm 0.01 \\ & \pm 0.025 \\ & 0.1 \text { to } 50 \end{aligned}$ | $\begin{aligned} & 0.001 \text { to } 200 \mathrm{k} \\ & \pm 1 / \pm 5, \max \\ & \pm 0.005 \\ & 0.5-500 \text { (4) } \\ & \pm 0.01 \\ & \pm 0.025 \\ & 0.1 \text { to } 50 \\ & \hline \end{aligned}$ | Hz
 \%
 $\% /{ }^{\circ} \mathrm{C}$
 --
 $\% /{ }^{\circ} \mathrm{C}$
 $\%{ }^{\circ} \mathrm{C}$
 V/V |
| OUTPUT
 Peak to Peak Output Swing ${ }^{(6)}$ $\begin{aligned} & \mathrm{f}_{\mathrm{O}} \leqslant 10 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{O}} \leqslant 20 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{O}} \leqslant 100 \mathrm{kHz} \end{aligned}$
 Output Offset (at L.P. output with unity gain) Output Impedance Noise ${ }^{(7)}$
 Output Current | $\begin{aligned} & 20 \\ & 14 \\ & 2 \\ & \\ & \pm 20 \\ & 1 \\ & 200 \\ & 5 \end{aligned}$ | $\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \pm 10 \\ & 10 \\ & 200 \\ & 10 \end{aligned}$ | $\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{mV} \\ \Omega \\ \mu \mathrm{~V}(\mathrm{rms}) \\ \mathrm{mA} \end{gathered}$ |
| POWER SUPPLIES
 Rated Power Supplies
 Power Supply Range (8)
 Supply Current @ $\pm 15 \mathrm{~V}$ (Quiescent) | $\begin{aligned} & \pm 15 \\ & \pm 5 \text { to } \pm 18 \\ & \pm 12, \max \end{aligned}$ | $\begin{aligned} & \pm 15 \\ & \pm 5 \text { to } \pm 18 \\ & \pm 9, \text { max } \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \end{aligned}$ |
| TEMPERATURE RANGE
 Specification Temperature Range
 Epoxy
 Hermetic
 Storage Temperature Range | $\begin{aligned} & -25 \text { to }+85 \\ & \text { N/A } \\ & -25 \text { to }+85 \end{aligned}$ | $\begin{aligned} & -25 \text { to }+85 \\ & -55 \text { to }+125 \\ & -55 \text { to }+125 \end{aligned}$ | $\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \end{gathered}$ |
| PACKAGE DRAWING (See page 78) | (38) Epoxy | (38) Epoxy or | |
| PRICE (See Below) (1-9) | \$19.00 | \$54 to \$62 | |

NOTES:
(1) The UAF2 $1 / 25$ include two internal $0.002 \mu \mathrm{~F}$ power supply bypass capacitors.
(2) The accuracy of external frequency determining resistors must be added to this figure.
(3) T.C.R. of external frequency determining resistors must be added to this figure.
(4) Derated 50% from maximum.
(5) Q stability varies with both the value of Q and the resonant frequency f_{o}.
(6) Low pass output.
(7) Measured at the bandpass output with $\mathrm{Q}=\mathbf{5 0}$ over DC to 50 kHz .
(8) For supplies below $\pm 10 \mathrm{~V}, \mathrm{Q}$ max will decrease slightly; filters will operate below $\pm 5 \mathrm{~V}$.

[^4]
ORDERING INFORMATION

| | Frequency Range | f $_{0}$ Accuracy | Package | Price
 $(1-9)$ | Price
 $(100-499)$ |
| :--- | :--- | :---: | :--- | :---: | ---: |
| UAF31 | 0.001 to 25 kHz | $\pm 1 \%$ | Epoxy | $\$ 19.00$ | $\$ 13.00$ |
| UAF21 | 0.001 to 200 kHz | $\pm 1 \%$ | Epoxy | 57.00 | 40.00 |
| UAF25 | 0.001 to 200 kHz | $\pm 5 \%$ | Epoxy | 54.00 | 37.00 |
| UAF21H | 0.001 to 200 kHz | $\pm 1 \%$ | Hermetic | 62.00 | 45.00 |
| UAF25H | 0.001 to 200 kHz | $\pm 5 \%$ | Hermetic | 54.00 | 42.00 |

EB FIXED FREQUENCY ACTIVE FILTERS

Burr-Brown's standard catalog active filters, the ATF76 series, are available with low pass, band pass, and band reject characteristics. The filters in this series are packaged in spacesaving 0.4 "high modules ranging in size from 1.5 "x 1.5 "for 2 pole low pass and notch models to only $2.1^{\prime \prime}$ x 3.0 " for 8 pole low pass models. All filters are complete units that are factory tuned with no external components required. All standard active filters operate from ± 15 VDC power over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Specifications typical at $2^{25^{\circ} \mathrm{C} \text { and rated supply voltage unles othervise noted. }}$

| MODEL ${ }^{(1)}$ | BAND PASS SINGLE TUNED | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{gathered} \text { ATF76- } \\ \text { B1*M } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { B1*N } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { ATF76- } \\ & \text { B1*P } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { ATF76- } \\ \text { B1*Q } \\ \hline \end{gathered}$ | ATF76- $\mathrm{B} 1 * \mathrm{R}$ |
| FILTER ORDER No. of Poles | 2 | | | | |
| INPUT
 Voltage Range Impedance | $\begin{aligned} & \pm 10 \mathrm{~V}, \min \\ & 100 \mathrm{k} \Omega, \mathrm{~min} \end{aligned}$ | | | | |
| $\begin{aligned} & \text { FREQUENCY (f } \mathrm{f}_{\mathrm{c}} \text {) } \\ & \text { Range } \\ & \text { Accuracy } \\ & \text { Temp. Coeff. } \\ & \text { Adj. Range } \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \text { to } 20 \mathrm{kHz} \\ & \pm 1 \% \\ & \pm 0.03 \% /{ }^{\circ} \mathrm{C} \\ & \pm 3 \% \end{aligned}$ | | | | |
| $\begin{aligned} & \text { GAIN } \\ & \text { Pass Band } \end{aligned}$ | $0 \pm 0.5 \mathrm{~dB}$ | | | | |
| SELECTIVITY (Q)
 Value
 Tolerance | 2 | 5 | $\begin{gathered} 10 \\ \pm 10 \% \end{gathered}$ | 20 | 50 |
| $\begin{aligned} & \text { OUTPUT } \\ & \text { Noise (2) } \\ & \text { Impedance } \\ & \text { Current } \\ & \hline \end{aligned}$ | $\begin{aligned} & 100 \mu \mathrm{~V} \\ & 10 \Omega \\ & \pm 5 \mathrm{~mA} \\ & \hline \end{aligned}$ | | | | |
| POWER SUPPLY CURRENT
 ± 15 VDC @ Quiescent(6) | $\pm 10 \mathrm{~mA}$ | | | | |
| PACKAGE DWG.(See page 79) | (40) B $2^{\prime \prime} \times 2$ " $\times 0.4$ " | | | | |
| PRICE
 Model L (1-9)
 Model L (10-24)
 Model M (1-9)
 Model M (10-24) | $\$ 80.00$ 65.00 70.0055.00 | | | | |

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

| MODEL ${ }^{(1)}$ | LOW PASS BUTTERWORTH | | | | LOW PASS BESSEL (Linear Phase) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{gathered} \text { ATF76- } \\ \text { L2 } 2 \text { B } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L4*B } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L6*B } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L8*B } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L2*L } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L4* } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L6*L } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L8*L } \end{gathered}$ |
| FILTER ORDER No. of Poles | 2 | 4 | 6 | 8 | 2 | 4 | 6 | 8 |
| $\begin{aligned} & \text { INPUT } \\ & \text { Voltage Range } \\ & \text { Impedance(5) } \\ & \hline \end{aligned}$ | $\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega, \text { min } \end{aligned}$ | | | | $\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega, \min \end{aligned}$ | | | |
| FREQUENCY
 Range
 Accuracy
 Temp. Coeff.
 GAI. | $\begin{aligned} & 1 \text { to } 20 \mathrm{kHz} \\ & +2 \% \\ & +0.05 \% /{ }^{\circ} \mathrm{C} \end{aligned}$ | | | | $\begin{aligned} & 1 \text { to } 20 \mathrm{k} \mathrm{~Hz} \\ & \pm 2 \% \\ & \pm 0.05 \% /{ }^{\circ} \mathrm{C} \end{aligned}$ | | | |
| $\begin{aligned} & \text { GAIN }{ }^{(9)} \\ & \text { Pass Band } \\ & \text { DC Accuracy } \end{aligned}$ | $\begin{aligned} & 0 \mathrm{~dB}, \text { nom } \\ & \pm 0.05 \mathrm{~dB}, \text { max } \end{aligned}$ | | | | $\begin{aligned} & 0 \mathrm{~dB}, \text { nom } \\ & \pm 0.05 \mathrm{~dB}, \text { max } \end{aligned}$ | | | |
| O-FACTOR | N/A | | | | N/A | | | |
| OUTPUT
 Noise (2)
 Output Impedance Rated Current Offset at $25^{\circ} \mathrm{C}(8)$ Offset Drift $-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ | | | | | $\pm 25 \mu \mathrm{~V}$ | | V, rms | |
| POWER SUPPLY CURRENT | $\pm 6 \mathrm{~mA}$ | $\pm 10 \mathrm{~mA}$ | $\pm 14 \mathrm{~mA}$ | $\pm 18 \mathrm{~mA}$ | $\pm 6 \mathrm{~mA}$ | $\pm 10 \mathrm{~mA}$ | $\pm 14 \mathrm{~mA}$$\begin{aligned} & \text { (41) } \mathrm{A} \\ & 3 \prime \prime\end{aligned} \mathrm{l}^{\prime \prime} \times 11^{\prime \prime} \times 0.4 \mathrm{~m}^{\prime \prime}$ | |
| PACKAGE DWG.(See pg.79) | (39) $\mathrm{A} 1.5^{\prime \prime} \mathrm{x}$ $1.5^{\prime \prime} \mathrm{x} 0.4^{\prime \prime}$
 (40) $\mathrm{A}^{2^{\prime \prime} \times 2^{\prime \prime}} \begin{aligned} & \text { x } 0.4^{\prime \prime}\end{aligned}$ | | (41) $\mathrm{A} 3^{\prime \prime} \times 2.1^{\prime \prime} \times 0.4{ }^{\prime \prime}$ | | | | (41) A $3^{\prime \prime} \times 2.1{ }^{\prime \prime} \times 0.4 \prime$ | |
| PRICE | | | | | | | | |
| | $\$ 75.00$ 61.00 | \$89.00 | \$110.00 | \$135.00 | \$75.00 | \$89.00 | \$110.00 | \$135.00 |
| Model L(10-24) Model M $(1-9)$ | | | | 121.00 125.00 | 61.00 69.00 | 77.00 79.00 | 92.00 100.00 | 121.00 |
| Model M(10-24) ${ }^{(10-20 \mathrm{k} \mathrm{Hz}}$ | 57.00 | 67.00 | 10.00 | 125.00 111.00 | 69.00 57.00 | 79.00 67.00 | 100.00 84.00 | 125.00 111.00 |

Insert L or M, depending on frequency required. (2) 10 Hz to 50 kHz with input grounded.
ORDERING INFORMATION
-40 dB notch attenuation, minimum.
(4) $\pm 3 \% f_{c}$ adjustment and notch depth adjustment.

ATF76
(Designates
Series)

DEFINES
FILTER TYPE
L = Low Pass $B=$ Band Pass $\mathrm{N}=$ Notch

DESIGNATES NO. OF
POLE OR POLE PAIRS OR ZERO PAIRS

FREQUENCY RANGE
$\mathrm{L}<10 \mathrm{~Hz}$
$\mathrm{M} \geqslant 10 \mathrm{~Hz}$

| BAND PASS STAGGER TUNED | | | | |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { ATF76- } \\ \text { B2*K } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { B2*M } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { B2*N } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { B2*P } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { B2*Q } \end{gathered}$ |
| 4 | | | | |
| $\begin{aligned} & \pm 10 \mathrm{~V}, \text { min } \\ & 100 \mathrm{k} \Omega, \text { min } \end{aligned}$ | | | | |
| $\begin{aligned} & 1 \text { to } 20 \mathrm{kHz} \\ & \pm 1 \% \\ & \pm 0.03 \% /{ }^{\circ} \mathrm{C} \end{aligned}$ | | | | |
| $0 \pm 0.5 \mathrm{~dB}$ | | | | |
| 1 | 2 | $\begin{array}{r} 5 \\ \pm 10 \% \\ \hline \end{array}$ | 10 | 20 |
| $\begin{aligned} & 100 \mu \mathrm{~V} \\ & 10 \Omega \\ & \pm 5 \mathrm{~mA} \\ & \hline \end{aligned}$ | | | | |
| $\pm 20 \mathrm{~mA}$ | | | | |
| (41) B $3^{\prime \prime} \times 2.1^{\prime \prime} \times 0.4^{\prime \prime}$ | | | | |
| $\$ 89.00$
 77.00 79.00
 67.00 | | | | |

Prices and specifications are subject to change without notice.

| LOW PASS CHEBYSCHEV ($\pm 0.4 \mathrm{~dB}$ Ripple) | | | | LOW PASS CHEBYSCHEV ($\pm 1.6 \mathrm{~dB}$ Ripple) | | | | BAND-REJECT NOTCH | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { ATF76- } \\ \text { L2 } 2 \text { C. } . \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L4*C } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L6*C } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L8*C } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L2 } 2 \mathrm{D} \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L4*D } \\ \hline \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L6*D } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { L8*D } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { N1*M } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { N } 1 \text { *N } \end{gathered}$ | $\begin{gathered} \text { ATF76- } \\ \text { N1*P } \end{gathered}$ |
| 2 | 4 | 6 | 8 | 2 | 4 | 6 | 8 | 2 | 2 | 2 |
| $\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega, \text { min } \end{aligned}$ | | | | $\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega, \text { min } \end{aligned}$ | | | | $\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega \text {, min } \end{aligned}$ | | |
| $\begin{aligned} & 1 \text { to } 20 \mathrm{k} \mathrm{~Hz} \\ & \pm 2 \% \\ & \pm 0.05 \% /{ }^{\circ} \mathrm{C} \end{aligned}$ | | | | $\begin{aligned} & 1 \text { to } 20 \mathrm{k} \mathrm{~Hz} \\ & \pm 2 \% \\ & \pm 0.05 \% /{ }^{\circ} \mathrm{C} \end{aligned}$ | | | | $\begin{aligned} & 1 \text { to } 20 \mathrm{k} \mathrm{~Hz} \\ & \pm 2 \%(4) \\ & \pm 0.03 \% /{ }^{\circ} \mathrm{C} \end{aligned}$ | | |
| $\begin{aligned} & 0 \mathrm{~dB}, \text { nom } \\ & -0.4 \mathrm{~dB}, \max \end{aligned}$ | | | | $\begin{aligned} & 0 \mathrm{~dB} \text {, nom } \\ & -1.6 \mathrm{~dB}, \text { max } \end{aligned}$ | | | | $\begin{aligned} & 0 \mathrm{~dB}, \text { nom }^{(3)} \\ & \pm 0.05 \mathrm{~dB}, \max \end{aligned}$ | | |
| N/A | | | | N/A | | | | $2 \pm 10 \%$ | $5 \pm 10 \%$ | $10 \pm 10 \%$ |
| $\begin{aligned} & 50 \mu \mathrm{~V}, \mathrm{rms} \\ & 1 \Omega \\ & \pm 5 \mathrm{~mA} \\ & +2 \mathrm{mV} \end{aligned}$ | | | | $\begin{aligned} & 50 \mu \mathrm{~V}, \mathrm{rms} \\ & 1 \Omega \\ & \pm 5 \mathrm{~mA} \\ & \pm 2 \mathrm{mV} \end{aligned}$ | | | | $\begin{aligned} & 200 \mu \mathrm{~V}, \mathrm{rms} \\ & 1 \Omega \\ & \pm 5 \mathrm{~mA} \\ & \pm 2 \mathrm{mV} \end{aligned}$ | | |
| $\pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ | | $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ | | $\pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ | | $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ | | $\pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ | | |
| $\pm 6 \mathrm{~mA}$ | $\pm 10 \mathrm{~mA}$ | $\pm 14 \mathrm{~mA}$ | $\pm 18 \mathrm{~mA}$ | $\pm 6 \mathrm{~mA}$ | $\pm 10 \mathrm{~mA}$ | $\pm 14 \mathrm{~mA}$ | $\pm 18 \mathrm{~mA}$ | $\pm 10 \mathrm{~mA}$ | | |
| (39) A $1.5^{\prime \prime} \mathrm{x}$ $1.5^{\prime \prime} \times 0.4 "$ | (40) $\begin{array}{cc}A & 2^{\prime \prime} \mathrm{x} \\ 2^{\prime \prime} \mathrm{x} & 0.4^{\prime \prime}\end{array}$ | (41) A $3^{\prime \prime} \times 2.1^{\prime \prime} 0.4 \prime \prime$ | | $\text { (39) A } 1.5^{\prime \prime} \mathrm{x}$ | $\text { (40) } \begin{array}{cc} \mathrm{A} & 2^{\prime \prime} \mathrm{x} \\ 2^{\prime \prime} & \mathrm{x} \\ 0.4^{\prime \prime} \end{array}$ | (41) A $3^{\prime \prime} \times 2.1^{\prime \prime} \times 0.4 \prime$ | | (39) B $1.5^{\prime \prime} \times 1.5$ 'x $0.4{ }^{\prime \prime}$ | | |
| \$75.00 | \$89.00 | \$110.00 | \$135.00 | \$75.00 | \$89.00 | \$110.00 | \$135.00 | | | |
| 61.00 69.00 | 77.00 79.00 | 92.00 | 121.00 | 61.00 | $\begin{aligned} & 77.00 \\ & 79.00 \end{aligned}$ | 92.00 | 121.00 | $\$ 79.00$67.00 | | |
| 69.00 57.00 | 79.00 67.00 | 100.00 84.00 | 125.00 111.00 | 69.00 57.00 | | 100.00 84.00 | 125.00 111.00 | 69.00 | | |

(5) For models with higher input impedance contact Burr-Brown or your local representative.
(6) ± 9 to ± 18 VDC power may be used.
(7) ± 12 to ± 18 VDC power may be used
(8) The offset may be trimmed to zero, see pg. 79 .
(9) All filters have noninverting outputs except the single tuned band pass and band reject filter which have inverting outputs.
TYPE OF FILTER RESPONSE

Low Pass

$B=$ Butterworth
Chebyschev -
= Chebyschev . $L=$ Bessel
Low Pass
B = Butterworth
C = Chebyschev
0.4 dB nom ripple
$D=$ Chebyschev -
1.6 dB nom ripple
$L=$ Bessel
N for $Q=5$
P for $Q=10$
Q for $Q=20$
R for $Q=50$ (1 pole pair only)Band PassK for $Q=1$ (2 pole pairs only)M for $Q=2$
$\left|\begin{array}{l}S \text { - Special Order } * * \\ \text { indicate } Q \text { on order for } \\ 2 \text { pole pairs } \quad 1 \leqslant Q \leqslant 20 \\ 1 \text { pole pair } 2 \leqslant Q \leqslant 50 \\ * * \text { Add } \$ 25 \text { to order for } \\ \text { each special } Q \text { value. }\end{array}\right|$

Notch
M for $Q=2$
N for $Q=5$ P for $Q=10$ S for $Q=$ Special ** (indicate Q on order $2 \leqslant 0 \leqslant 10$)

CUTOFF OR CENTER FREQUENCY
For frequencies less than 100 Hz , use " R " to indicate decimal point. For frequencies greater than 100 Hz , the last digit indicates number of zeros following first 3 digits of frequency. For example: $58 \mathrm{~Hz}=$ $58 \mathrm{RO}, 580 \mathrm{~Hz}=5800,5800 \mathrm{~Hz}=5801$

POWER SUPPLIES

STANDARD SERIES

- LOW COST
- STANDARD PIN CONFIGURATION
- SMALL SIZE
- DUAL AND SINGLE OUTPUTS
- 5 V to $\pm 15 \mathrm{~V}$
- 25 mA TO 1.0 A CURRENT OUTPUT
- EXCELLENT STABILITY FOR LINE,

LOAD, \& TEMP. VARIATIONS

- 50 TO 400 Hz INPUT
- OUTPUTS CURRENT LIMITED

DC-DC CONVERTER

- REGULATED ± 15 VDC FROM UNREGULATED DC INPUT
- FAST TRANSIENT RESPONSE
- HIGH OUTPUT CURRENTS WITH current limit protection

Burr-Brown's standard series of power supplies offers a wide range of output voltage and current ratings all available in a standard package at very attractive prices. The
 standard supplies are current limited to protect the supply in an overload condition or output short to temporary common. In addition, two of the 5 V supplies have overvoltage protection which limits the maximum output voltage to 7.0 V in any power supply failure or fault condition.

Burr-Brown's DC-DC Converter provides maximum flexibility in systems design. The Model 546 is particularly useful for powering analog interface circuitry in digital systems. It responds to full load transients in less than $10 \mu \mathrm{sec}$
 which makes it excellent for driving A / D and D / A converters where rapid current switching is involved. The 546 also features excellent input-output isolation to keep digital system noise out of analog systems.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

| MODEL | STANDARD SERIES 115 VAC INPUT | | | | | | | | DC-DC Converter± 15 VDC Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | DUAL ± 15 VDC SUPPLIES | | | | 5 VDC LOGIC SUPPLIES | | | Dual
 Supplies
 570 | |
| | 550 | 551 | 552 | 553 | 560 | 561 | 562 | | |
| RATED OUTPUT
 Voltage, nom Current | $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 25 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 50 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 100 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 200 \mathrm{~mA} \mathrm{~A}^{(4)} \end{aligned}$ | $\begin{aligned} & 5 \mathrm{~V}^{(1)} \\ & 250 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 5 \mathrm{~V}^{(1)(3)} \\ & 500 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 5 \mathrm{~V}^{(1)(3)} \\ & 1.00 \mathrm{~A}^{(4)} \end{aligned}$ | $\begin{aligned} & \pm 12 \mathrm{~V} \\ & \pm 100 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 100 \mathrm{~mA} \end{aligned}$ |
| PERFORMANCE | | | | | | | | | |
| RATED INPUT, Voltage Frequency | $\begin{aligned} & 105-125 \mathrm{VAC} \\ & 50-400 \mathrm{~Hz} \end{aligned}$ | | | | | | | | $\begin{aligned} & 4.5 \text { to } 5.5 \mathrm{VDC} \\ & \text { DC } \\ & \hline \end{aligned}$ |
| OUTPUTERROR | $\pm 1 \%$ | | | | | | | | $\pm 1 \%$ |
| REGULATION
 No Load to Full Load, max Over Rated Line V, max | $\begin{aligned} & \pm 0.1 \% \\ & \pm 0.05 \% \end{aligned}$ | $\begin{aligned} & \pm 0.05 \% \\ & \pm 0.05 \% \end{aligned}$ | $\begin{aligned} & \pm 0.05 \% \\ & \pm 0.05 \% \end{aligned}$ | $\begin{aligned} & \pm 0.05 \% \\ & \pm 0.05 \% \end{aligned}$ | $\begin{aligned} & \pm 0.1 \% \\ & \pm 0.05 \% \end{aligned}$ | $\begin{aligned} & \pm 0.1 \% \\ & \pm 0.05 \% \end{aligned}$ | $\begin{aligned} & \pm 0.1 \% \\ & \pm 0.05 \% \end{aligned}$ | $\begin{aligned} & \pm 0.05 \% \\ & \pm 0.05 \% \end{aligned}$ | $\begin{aligned} & \pm 0.1 \% \\ & \pm 0.1 \% \end{aligned}$ |
| OUTPUT VOLTAGE TEMP. COEF. $\%{ }^{\circ}{ }^{\circ} \mathrm{C}$ | ± 0.02 | | | | | | | | ± 0.02 |
| OUTPUT RIPPLE and NOISE @ Full Load, max | $2.0 \mathrm{mV} \mathrm{rms} \quad 1.0 \mathrm{mV} \mathrm{rms}$ | | | | | | | | $\begin{aligned} & 1.0 \mathrm{mV} \mathrm{rms} \\ & 35 \mathrm{mV}, \mathrm{p}-\mathrm{p} \end{aligned}$ |
| TEMPERATURE RANGE
 Rated Operation Storage | $\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+71^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$ | | | | | | | | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+71^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$ |
| PACKAGE DRAWING
 (See page 80) | (42) $\begin{gathered}3.5 " \times 2.5 " \\ x 0.9 "\end{gathered}$ | | $\text { (42) } \begin{gathered} 3.5^{\prime \prime} \times 2.5^{\prime \prime} \\ \times 1.3^{\prime \prime} \end{gathered}$ | | $\begin{gathered} (42) \\ 3.5^{\prime \prime} \times 2.5^{\prime \prime} \\ \times 0.9^{\prime \prime} \end{gathered}$ | $\text { (42) } \begin{array}{r} 3.5 " \times 2.5^{\prime \prime} \\ \times 1.3^{\prime \prime} \\ \hline \end{array}$ | | $\begin{gathered} 42 \\ 3.5^{\prime \prime} \times 2.5^{\prime \prime} \\ \times 0.9^{\prime \prime} \\ \hline \end{gathered}$ | (43) $\begin{gathered}2.1^{\prime \prime} \times 2.1^{\prime \prime} \\ \mathrm{x} 0.4^{\prime \prime}\end{gathered}$ |
| PRICE (1-9) | \$28.00 | \$42.00 | \$54.00 | \$74.00 | \$44.00 | \$52.00 | \$72.00 | \$54.00 | \$79.00 |

(1) All single supplies may be connected for positive or negative output voltage.
(2) Output voltage settles to 0.1% of final output in $10 \mu \mathrm{sec}$. Output in $10 \mu \mathrm{sec}$ for no load or full load to no load transient.
(3) These 5 V supplies have overvoltage protection which limits the output voltage to 7.0 volts, max, in a fault condition.
(4) Current derating factors must be used for operation above $50^{\circ} \mathrm{C}$. These models only: Model 553, $5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$, Model $562,25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
Prices and specifications are subject to change without notice.

CONNECTORS

Although most customers prefer direct printed circuit board mounting for modular supplies, plug-in sockets are available for all power supplies. See page 80 for connector numbers.

Bre
 OPERATIONAL AMPLIFIERS

1

T0-99 PACKAGE
Connector: 0899 MC

2
DUAL-IN-LINE PACKAGE

(1) R_{z} required for operation May be fixed resistor at $R_{z} / 2$.

MINI DIP PACKAGE

3

EB

PACKAGE INFORMATION
5

Connector: 1400 MC
Grid: 2.54 mm (0.1")

BOTTOM VIEW
TOP VIEW

PIN CONNECTIONS

Connector: 1500 MC
Grid: $7.6 \mathrm{~mm}\left(0.3^{\prime \prime}\right)$
Grid: 7.6mm (0.3")

| Connector: 4400 MC | Length: $88.9 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ |
| :--- | :--- |
| Grid: $2.5 \mathrm{~mm}\left(0.1^{\prime \prime}\right)$ | Width: $58.4 \mathrm{~mm}\left(2.3^{\prime \prime}\right)$ |
| Pin Dia.: $1.02 \mathrm{~mm}\left(0.040^{\prime \prime}\right)$ | Height: $17.8 \mathrm{~mm}\left(0.7^{\prime \prime}\right)$ |

(1) This terminal labeled " $\mathrm{V} / \mathrm{Bal}^{\prime}$ " on Model 3452
(2) This terminal labeled " $+V$ " on Model 3452

PACKAGE INFORMATION

$\overline{13}$

(0.18")

BOTTOM VIEW

Connector: 1400 MC
Grid: 2.5 mm (0.1")

Pl
X
1
2
Y
$\mathrm{~V}+$
CO
$\mathrm{V}-$
OU
Z

PIN CONNECTIONS

BB PACKAGE INFORMATION ANALOG CIRCUIT FUNCTIONS

PIN CONNECTIONS

Pin 5 connected to case.

bOTTOM VIEW

TOP VIEW
Connector: 0899 MC

20

DATA CONVERSION PRODUCTS

CONNECTION DIAGRAMS

PIN CONNECTIONS

MODEL ADC40-ADC50-ADC55

| | |
| :---: | :---: |
| | |
| | |

| 1 | Gain Adj. |
| :--- | :--- |
| 2 | Analog In. |
| 3 | An. In. Com |
| 4 | Buffer Out |
| 5 | R_{2} |
| 6 | $R 1$ |
| 7 | No Connection |
| 8 | No Connection |
| 9 | No Connection |
| 0 | No Connection |
| 1 | No Connection |
| 2 | No Connection |
| 3 | No Connection |
| 4 | No Connection |
| 5 | No Connection |
| 6 | No Connection |
| 7 | No Connection |
| 8 | No Connection |
| 9 | Bipolar Offset |
| 0 | Comp. In. |
| 1 | No Connection |
| 2 | Ref. Out |
| 3 | Analog Com. |
| 4 | No Connection |

| 25 | $-15 V$ |
| :--- | :--- |
| 26 | No Connection |
| 27 | $+15 V$ |
| 28 | No Connection |
| 29 | $+5 V$ |
| 30 | Dig. Com. |
| 31 | No Connection |
| 32 | Serial Out |
| 33 | Status |
| 34 | Convert Command |
| 35 | Clock In |
| 36 | Clock Out |
| 37 | Clock Inhibit |
| 38 | No Connection |
| 39 | No Connection |
| 40 | No Connection |
| 41 | No Connection |
| 42 | No Connection |
| 43 | Status |
| 44 | No Connection |
| 45 | No Connection |
| 46 | No Connection |
| 47 | No Connection |
| 48 | Bit 12* |

48 Bit 12^{*}

MODEL ADC60

| 1 | Gain Adj. |
| :--- | :--- |
| 2 | No Connection |
| 3 | Signal Com. |
| 4 | No Connection |
| 5 | R2 |
| 6 | R1 |
| 7 | No Connection |
| 8 | No Connection |
| 9 | No Connection |
| 0 | No Connection |
| 1 | No Connection |
| 2 | No Connection |
| 3 | No Connection |
| 4 | No Connection |
| 5 | No Connection |
| 6 | No Connection |
| 7 | No Connection |
| 8 | No Connection |
| 9 | Bipolar Offset |
| 0 | Comp. In |
| 1 | No Connection |
| 2 | Ref. Out |
| 3 | Analog Com. |
| 4 | No Connection |

PACKAGE INFORMATION

TOP VIEWS

ADC100 (BCD \& SMD)

| 1. -Adjust | 37. No Connection |
| :---: | :---: |
| 2. Buffer In | 38. No Connection |
| 3. An Com. | 39. End of Convert |
| 4. Buffer Out | 40. Dig. Common |
| 5. - Adjust | 41. Dig. Common |
| 6. Unbuff. In | 42. Term. In |
| 7. No Connection | 43. No Connection |
| 8. No Connection | 44. Bit 16 |
| 9. Sign. Out | 45. Bit 15 |
| 10. Gain Adjust | 46. Bit 14 |
| 11. No Connection | 47. Bit 13 |
| 12. No Connection | 48. Bit 12 |
| 13. No Connection | 49. No Connection |
| 14. No Connection | 50. Bit 11 |
| 15. No Connection | 51. No Connection |
| 16. No Connection | 52. Bit 10 |
| 17. Offset Adjust | 53. No Connection |
| 18. TP | 54. Bit 9 |
| 19. No Connection | 55. No Connection |
| 20. Summing Junction | 56. Bit 8 |
| 21. Clock Trim | 57. No Connection |
| 22. Inv. In | 58. Bit 7 |
| 23. An Common | 59. No Connection |
| 24. Inv. Out | 60. No Connection |
| 25. -15 V | 61. Bit 6 |
| 26. Clock Out | 62. No Connection |
| 27. +15V | 63. Bit 5 |
| 28. Clock In | 64. No Connection |
| 29. +5 V | 65. Bit 4 |
| 30. Dig. Common | 66. No Connection |
| 31. No Connection | 67. Bit 3 |
| 32. Current | 68. No Connection |
| 33. No Connection | 69. Term. Out |
| 34. $\overline{\text { Clock }}$ | 70. No Connection |
| 35. Conv. Command | 71. Bit 2 |
| 36. Conv. Command | 72. Bit 1 (MSB) |

ADC100 (USB \& BOB)

| 1. No Connection |
| :--- |
| 2. Buffer In |
| 3. An. Common |
| 4. Buffer Out |
| 5. No Connection |
| 6. Unbuff. In |
| 7. No Connection |
| 8. No Connection |
| 9. No Connection |
| 10. Gain Adjust |
| 11. No Connection |
| 12. No Connection |
| 13. No Connection |
| 14. No Connection |
| 15. No Connection |
| 16. No Connection |
| 17. Offset Adjust |
| 18. TP |
| 19. Bipolar Offset |
| 20. Summing Junction |
| 21. Clock Trim |
| 22. Inv. In |
| 23. An. Common |
| 24. Inv. Out |
| 25. -15 V |
| 26. Clock Out |
| 27. +15 V |
| 28. Clock In |
| 29. +5 V |
| 30. Dig. Common |
| 31. No Connection |
| 32. Current |
| $33 . ~ N o ~ C o n n e c t i o n ~$ |
| $34 . ~ C l o c k ~$ |
| 35. Conv. Command |
| 36. Conv. Command |

37. No Connection 38. No Connection 39. End of Convert 40. Dig. Common 41. Dig. Common 42. Term. In 42. Term. In 44. No Connection 16 (LSB) 45. Bit 15
38. Bit 14
39. Bit 13
40. Bit 12
41. No Connection
42. Bit 11
43. No Connection
44. No Con
45. Bit 10
46. No Connection
47. No Co
48. Bit 9
49. No Connection
50. Bit 8
51. No Connection
52. Bit 7
53. No Connection
54. 12 Bit Term.
55. 12 Bit Term.
61 . Bit 6
56. Bit 6
57. No Connection
58. Bit 5
59. No Connection
60. Bit 4
61. No Connection
62. Bit 3
63. No Connection
64. 16 Bit Term.
65. 14 Bit Term.
66. Bit 2
67. Bit 1 (MSB)

PIN CONNECTIONS

DAC40 ("B" MODELS)

| 1. Bit 1 (MSB) | 37. R_{3} (not used) |
| :---: | :---: |
| 2. Bit 2 | 38. No Connection |
| 3. Bit 3 | 39. No Connection |
| 4. Bit 4 | 40. No Connection |
| 5. No Connection | 41. No Connection |
| 6. No Connection | 42. $R_{1}-10 \mathrm{~V}$ Range |
| 7. No Connection | 43. $R_{2}-20 \mathrm{~V}$ Range |
| 8. No Connection | 44. No Connection |
| 9. Bit 5 | 45. Sum Jct. |
| 10. Bit 6 | 46. Bipolar Offset |
| 11. Bit 7 | 47. Output |
| 12. Bit 8 | 48. Gain Adj. |
| 13. No Connection | 49. Gain Adj. |
| 14. No Connection | 50. No Connection |
| 15. No Connection | 51. No Connection |
| 16. Bit 9 | 52. No Connection |
| 17. Bit 10 | 53. Ref. Out |
| 18. Bit 11 | 54. No Connection |
| 19. Bit 12 | 55. No Connection |
| 20. No Connection | 56. No Connection |
| 21. No Connection | 57. No Connection |
| 22. Strobe | 58. No Connection |
| 23. No Connection | 59. No Connection |
| 24. No Connection | 60. No Connection |
| 25. No Connection | 61. No Connection |
| 26. No Connection | 62. No Connection |
| 27. No Connection | 63. No Connection |
| 28. +5 V | 64. No Connection |
| 29. No Connection | 65. No Connection |
| 30. +15 V | 66. No Connection |
| 31. No Connection | 67. No Connection |
| 32. -5 V | 68. No Connection |
| 33. No Connection | 69. No Connection |
| 34. Analog Common | 70. No Connection |
| 35. No Connection | 71. Zero Adjust |
| 36. Dig. Common | 72. No Connection |

DAC45

| 1. Bit 1 (MSB) | 37. No Connection |
| :---: | :---: |
| 2. Bit 2 | 38. No Connection |
| 3. Bit 3 | 39. No Connection |
| 4. Bit 4 | 40. No Connection |
| 5. No Connection | 41. No Connection |
| 6. No Connection | 42. No Connection |
| 7. No Connection | 43. No Connection |
| 8. No Connection | 44. Amp In |
| 9. Bit 5 | 45. No Connection |
| 10. Bit 6 | 46. BP Offset |
| 11. Bit 7 | 47. Amp Out |
| 12. Bit 8 | 48. Gain Adjust |
| 13. No Connection | 49. Gain Adjust |
| 14. No Connection | 50. No Connection |
| 15. No Connection | 51. No Connection |
| 16. Bit 9 | 52. Ref. Out |
| 17. Bit 10 | 53. Ref. In |
| 18. Bit 11 | 54. No Connection |
| 19. Bit 12 | 55. No Connection |
| 20. No Connection | 56. No Connection |
| 21. No Connection | 57. No Connection |
| 22. No Connection | 58. No Connection |
| 23. Bit 13 | 59. No Connection |
| 24. Bit 14 | 60. No Connection |
| 25. Bit 15 | 61. No Connection |
| 26. Bit 16 | 62. No Connection |
| 27. No Connection | 63. No Connection |
| 28. +5 V | 64. No Connection |
| 29. No Connection | 65. No Connection |
| 30. +15 V | 66. No Connection |
| 31. No Connection | 67. No Connection |
| 32. -5 V | 68. $\mathrm{R}_{2} 20 \mathrm{~V}$ Range |
| 33. No Connection | 69. Current Out |
| 34. Common | 70. R110V Range |
| 35. No Connection | 71. Zero Adjust |
| 36. No Connection | 72. No Connection |

BOTTOM VIEW

Connector: 2302 MC set of two 16 pin connector strips

[^5]connected to case.

26

MODEL DAC85

BOTTOM VIEW

Case: Kovar
Connector: 0245 MC

Note 1: Amplifier not included in current output models.
Note 2: $3 \mathrm{k} \Omega$ for CCD Models $5 \mathrm{k} \Omega$ for CBI Models

BOTTOM VIEW
Case: Ceramic
Connector: 0245 MC

PIN CONNECTIONS

| Bit 1 (MSB) | 13 | +5 VDC |
| :--- | :--- | :--- |
| Bit 2 | 14 | -15 VDC |
| Bit 3 | 15 | Voltage Output |
| Bit 4 | 16 | Ref. Input |
| Bit 5 | 17 | Bipolar Offset |
| Bit 6 | 18 | 10V Range |
| Bit 7 | 19 | 20V Range |
| Bit 8 | 20 | Summing Junction |
| Bit 9 | 21 | Common |
| Bit 10 | 22 | +15 VDC |
| Bit 11 | 23 | Gain Adjust |
| Bit 12 (LSB) | 24 | $6.3 V$ Ref. Out |

28
MODEL SHC85

Connector: 2300 MC

CONNECTION DIAGRAMS

| DAC60 | | | |
| :---: | :---: | :---: | :---: |
| k | Key | 15 | Output I |
| 1 | Bit 1 (MSB) | 16 | Sig. Com. |
| 2 | Bit 2 | 17 | Bipolar Offset |
| 3 | Bit 3 | 18 | Feedback |
| 4 | Bit 4 | 19 | No Connection |
| 5 | Bit 5 | 20 | No Connection |
| 6 | Bit 6 | 21 | Ref. Out |
| 7 | Bit 7 | 22 | Pwr. Com. |
| 8 | Bit 8 | 23 | +15V |
| 9 | Bit 9 | 24 | -15V |
| 10 | Bit 10 | 25 | No Connection |
| 11 | Bit 11 | 26 | No Connection |
| 12 | Bit 12 | 27 | Gain Adj. |
| 13 | No Connection | 28 | No Connection |
| | No Connection | | |

SHM41

| k | Key | 15 | Bit 9 |
| ---: | :--- | :--- | :--- |
| 1 | $-15 V$ | 16 | Bit 10 |
| 2 | $+15 V$ | 17 | Bit 11 |
| 3 | +5V | 18 | Bit 12 |
| 4 | No Connection | 19 | No Connection |
| 5 | Power Common | 20 | R_{3} |
| 6 | No Connection | 21 | Bipolar Offset |
| 7 | Bit 1 (MSB) | 22 | Gain Adj. |
| 8 | Bit 2 | 23 | R_{2} |
| 9 | Bit 3 | 24 | R_{1} |
| 10 | Bit 4 | 25 | Ref. Out |
| 11 | Bit 5 | 26 | Output |
| 12 | Bit 6 | 27 | Sum. Jct. |
| 13 | Bit 7 | 28 | Zero Adj. |
| 14 | Bit 8 | | |

DAC40 ("U") MODELS

SHM41

k Kev
1 Logic
2 No Connection
3 No Connection
4 Digital Com.
5 No Connection
6 No Connection 7 No Connection 8 No Connection 9 No Connection $0-15 \mathrm{~V}$
11 No Connection 1 Pwr. Com.
13 No Connection
$14+15 V$

[^6]
E MPM8S
PIN CONNECTIONS

| PIN CONNECTIONS | |
| :--- | :--- |
| 20 No Connection | |
| 21 Logic | |
| 22 No Connection | $1-15 \mathrm{~V}$ |
| 23 No Connection | $2+15 \mathrm{~V}$ |
| 24 Output | $3+5 \mathrm{~V}$ |
| 25 No Connection | 4 Common |
| 26 No Connection | 5 CH 7 In |
| 27 No Connection | 6 CH 6 In |
| $28+15 \mathrm{~V}$ | 7 CH 5 in |
| | 8 CH 4 In |
| | 9 Output |

MPM8S

31
Connector: Robinson-Nugent MP-12100S

32

PACKAGE INFORMATION

MPC8D PIN CONFIGURATION
B

(1) Inputs protected.

PACKAGE INFORMATION

36

$37 \begin{aligned} & \text { Connector: } 1500 \mathrm{MC} \\ & \text { Grid: } 7.6 \mathrm{~mm}\left(0.3^{\prime \prime}\right)\end{aligned}$

BOTTOM VIEW

CONNECTION DIAGRAM - 4084/25

ACTIVE FILTERS

EPOXY PACKAGE
UAF21,
UAF25,
UAF31,

PIN CONNECTIONS

Pin Spacing: 2.5 mm ($0.1^{\prime \prime}$), Row Spacing: 7.6 mm ($0.30^{\prime \prime}$)

UAF31

| 1 | Frequency Adjust | 8 | Frequency Adjust |
| :--- | :--- | ---: | :--- |
| 2 | Band Pass Output | 9 | Low Pass Output |
| 3 | Common | 10 | Negative Supply |
| 4 | Positive Supply | 11 | High Pass Output |
| 5 | Auxiliary Amp. Output | 12 | Filter Input 2 |
| 6 | Auxiliary Amp + Input | 13 | Filter Input 1 |
| 7 | Auxiliary Amp - Input | 14 | Filter Input 3 |

8 Frequency Adjust
 9 Low Pass Output
 11 High Pass Output
 12 Filter Input 2
 14 Filter Input 3

UAF21/25, UAF21H/25H

| 1 | High Pass Output | 8 | Frequency Adj. |
| :--- | :--- | ---: | :--- |
| 2 | No Connection | 9 | - Supply |
| 3 Band Pass Output | 10 | Frequency Adj. | |
| 4 Q Adj. Point | 11 | No Connection | |
| 5 Common | 12 | Input 1 | |
| 6 + Supply | 13 | Input 2 | |
| 7 Low Pass Output | 14 | Input 3 | |

Frequency Adj. -Supply No Connection nput 1 Input 2 Input 3

39

*For untrimmed operation leave adjustment pins open.

For untrimmed operation, leave pin 2 and pin Y open while tying pin X and pin Z to ground.

$$
\begin{aligned}
& \text { Connector: } 1400 \mathrm{MC} \\
& \text { Grid: } 2.5 \mathrm{~mm}\left(0.1^{\prime \prime}\right)
\end{aligned} \quad 2 \text { Pole Low Pass } \quad \text { CONNECTION DIAGRAMS } \quad \text { Band Reject }
$$

BOTTOM VIEW

POWER SUPPLIES commecos saoostionat.

42

Connector: 0548 MC

Pin Dia.: 1.02 mm (.04")
*No connection for Models 550, 561, 562.
\(\left.\left.$$
\begin{array}{|c|c|c|}\hline \begin{array}{l}\text { PKG. } \\
\text { NO. }\end{array} & \begin{array}{l}\text { MODEL } \\
\text { NUMBERS }\end{array} & \text { DIMENSION } \\
\hline \text { A "A" }\end{array}
$$\right] \begin{array}{l}22.9 \mathrm{~mm}

(0.9 ")\end{array}\right]\)| 33.0 mm |
| :--- |
| $\left(1.3^{\prime \prime}\right)$ |

43
MODEL 546

Connector: 1400 MC

BOTTOM VIEW

GENERAL INFORMATION

PLACING AN ORDER

Technical assistance in selecting the optimum product is available, without charge, from all sales offices.

When you place your order, please provide complete information on model number, option designations, product name, quantity desired, and ship-to and bill-to address. Orders may be placed with any authorized Burr-Brown field sales representative, or with our headquarters in Tucson via letter, telephone, TWX, or TELEX.

PRICES AND TERMS

Prices as listed in this catalog, unless otherwise noted, apply only to domestic USA customers; all other customers should contact their local Burr-Brown sales representative for price information.
All prices are FOB Tucson, Arizona, USA, in U.S. dollars. Applicable federal, state, and local taxes are extra. Terms are net 30 days. Prices and specifications are subject to change without notice.

OEM DISCOUNTS

OEM discounts are available on an order or contract basis. Corporate discount plans are available for catalog items. Consult your Burr-Brown Sales Office or headquarters for details.

QUOTATIONS

Price quotations made by Burr-Brown or its authorized field sales representatives are valid for 60 days. Delivery quotations are subject to reconfirmation at the time of order placement.

DATA SHEETS

Detailed specifications and application instructions are contained on product data sheets for each model. Simply contact your local Burr-Brown sales representative, or use the reply card from this catalog.

RETURNS AND WARRANTY SERVICE

When returning products for any reason, contact our Tucson headquarters first for authorization and shipping instructions. Returned units should be shipped prepaid and must be accompanied by the original purchase order number and date and an explanation of the malfunction. Upon receipt of the unit, Burr-Brown will verify the malfunction and will inform the customer of the warranty status, cost of repair, credits, and replacement units where applicable.

EVALUATION SAMPLES

When it is necessary to evaluate the performance of a product before purchasing, a 30 day no charge sample can be provided. Simply send in a regular purchase order stating "no charge 30 day evaluation unit". Units that have not been soldered, or otherwise altered, may be returned within the 30 day period for full credit. If the evaluation sample is retained for longer than 30 days, invoicing will be sent.

MODEL INDEX

MODEL INDEX

REFERENCE BOOKS
 from Burr-Brown and McGraw-Hill

Applications of Operational AmplifiersTHIRD GENERATION TECHNIQUES

Over 230 Pages and 170 Illustrations presenting new, Third Generation Applications of Operational Amplifiers.

This volume presents and explains those operational amplifier applications which have evolved since publication of its companion volume, Operational Amplifiers-Design and Applications.
More than just a collection of circuits or theoretical analysis, the book presents numerous applications of operational amplifiers in a variety of electronic equipment: specialized amplifiers, signal controls, processors, waveform generators, and special purpose circuits. It is a storehouse of detailed practical information, featuring numerous circuit diagrams, circuit values, pertinent design equations, error sources, and test-based comments on the efficiency of the arrangements and devices.

Here is a highly useful, up-to-date reference source for all engineers, scientists and technicians involved with operational amplifier applications in electronics, instrumentation, process control, chemical and physical simulation, and other specialties.

Operational Amplifiers-

DESIGN AND APPLICATIONS

Over 475 Pages and 300 Illustrations covering Basic Theory, Circuit Design, Test Methods, and Applications of Operational Amplifiers.

Covering basic theory, test methods, amplifier design techniques, and applications, this pioneer work provides practical information which can be directly applied to instrumentation design.
The book is divided into two principal parts and two appendices. Part I considers the design of operational amplifiers, offers insight into the factors determining performance characteristics, and outlines the techniques available for their control. Part II presents a wide range of practical operational amplifier applications, and provides sufficient descriptions of operation to permit design adaption from the specific circuits described. In Appendix A the basic theory of operational amplifiers is reviewed to provide an accompanying reference. Appendix B gives concise definitions of the performance parameters used to characterize operational amplifiers, and provides associated test circuits. An indispensable book for the novice user and the expert alike.

PRICES, U.S. AND CANADA, (POSTPAID).
Applications of Operational Amplifiers-Third
Generation Techniques . U.S. \$14.00
Operational Amplifiers-Design and Applications . . . U.S. \$15.00

WESTERN EUROPE: Applications of Operational

 Amplifiers-Third Generation Techniques. U.S. $\$ 15.25$ or equivalent. Operational Amplifiers-Design and Applications..U.S. $\$ 17.00$ or equivalent. Book prices postpaid from our European literature distribution center. Mail all Western European orders, with payment (Postal Money Orders NOT accepted) to: Burr-Brown Research Corporation, B.P. 7656, Schipol Centrum, Holland.
ELSEWHERE OUTSIDE THE U.S.A:

Price (Postpaid) is as follows:

South America
India
Israel
Africa
Australia
Japan

Applications of Operational Amplifiers-Third Generation
Techniques \$18.00
Operational Amplifiers-
Design and Applications . . \$22.80

New Zealand

Make payable to Burr-Brown Research Corporation in U.S. dollars (or equivalent in local currency). Postal Money Orders NOT accepted.

EBE LITERATURE

PRODUCT DATA SHEETS...

Within the confines of the space available, each product shown in this catalog has been described in as much detail as possible. If and when you need more detailed information on a specific product, just ask for a copy of its Product Data Sheet. All products have one and it contains detailed specifications, operating instructions, performance curves, and application hints. This literature is written to make your design task easier and is yours for the asking. If you need more information on any product, you can either use the reply card in the back of this catalog, write or call us in Tucson, or call any of our Burr-Brown Sales Offices or Representatives listed inside the back cover of this catalog.

APPLICATION NOTES...

Burr-Brown engineers have compiled a mini-library of Application
Notes to assist you in your designs. These notes are yours for the asking and are listed below:

```
AN-51 "A Primer on Analog Multiplier Specs"
AN-54 "Programmable Data Amplifiers"
AN-55 "Analog Modules Multiply User's Options"
AN-56 "Sample & Hold or High Speed A/D Converters?"
AN-58 "D/A Converter Differential Linearity Error - It Really Shows Up!"
AN-59 "Don't Forget D/A Converter Tempco!"
AN-60 "Protect Op Amps from Overloads"
AN-61 "Active Filter Design Examples Using UAF's"
AN-62 "Varying Comparator Hysteresis w/o Shifting Initial Trip Point"
AN-63 "Electronic Controller With An Equilibrium Sustaining Mode"
AN-64 "Combine Two Op Amps to Avoid the Speed Accuracy Compromise"
AN-65 "Check Five Op Amp Specs in One Test"
AN-66 "How to Select the Right D/A & A/D Converter"
AN-67 "A Noninverting Differentiator"
AN-68 "Don't Overlook the Noise of Op Amp Feedback Resistors"
AN-69 "A/D Converters"
AN-70 "Analog Shaping"
AN-73 "IC's are Multiplying"
AN-74 "Controlled Current Source is Versatile and Precise"
AN-75 "Instrumentation Amplifiers"
```


REFERENCE BOOKS...

Burr-Brown also has two operational amplifier reference books available. Written by Burr-Brown engineers, and published by McGraw-Hill, these books are fast becoming "the industry standard". See page 83 for details and ordering information.

EBEBURR-BROWN REPRESENTATIVES

UNITED STATES REPRESENTATIVES

ALABAMA - Huntsville, (205) 881-6220 ARIZONA - Tucson, (602) 294-1431 ARKANSAS - (See Dallas, Texas) CALIFORNIA - Santa Ana (714) 835-0712, (213) 941-7000 - San Jose (408) 984-7700 COLORADO - Denver, Enterprise 6730 (toll free) CONNECTICUT - Enfield, (203) 745-9050 FLORIDA - Orlando, (305) 896-4881 ILLINOIS - Addison (312) 832-6520 INDIANA - (See llinois) IOWA - (See lllinois) MARYLAND - Silver Spring, (301) 588-8134 MASSACHUSETTS - Wakefield, (617) 245-4870 MICHIGAN - Farmington, (313) 477-3800 MINNESOTA - Minneapolis, (612) 831-0229 MISSOURI - Florissant 314) 837-5200 NEW JERSEY - Camden, (215) 925-8711 NEW MEXICO - Albuquerque, Enterprise 6730 (toll free) NEW YORK - Syracuse, (315) 699-2671 Endicott, (607) 785-3191 - Scottsville, (716) 889-1429 - Clinton, (315) 853-6438 - Great Neck, (516) 466-2650 NORTH CAROLINA - Greensboro, (919) 273-1918 OHIO - Cincinnati, (513) 761-5432 - Cleveland, (216) 831 -0130 - Dayton, (513) 277-8911 OKLAHOMA - Tulsa, (918) 663-1247 OREGON - Portland, (503) 238-0001 PENNSYLVANIA Pittsburgh, (412) 244-1640 - Philadelphia (See Camden, N.J.) TEXAS - Dallas, (214) 350-6771 - Houston, (713) 774-2568 UTAH - Salt Lake City, Zenith 6730 (toll free) VIRGINIA - (See Maryland) WASHINGTON - Seattle, (206) 763-2210 WASHINGTON, D.C. - (See Maryland) WISCONSIN - (See lllinois)

BURR-BROWN SALES OFFICES

HOME OFFICE - Tucson, Arizona (602) 294-1431
CALIFORNIA, Santa Ana (714) 835-0712, (213) 941-7000
San Jose (408) 984-7700
FRANCE, Le Chesnay 954-3558
ILLINOIS, Addison (312) 832-6520
UNITED KINGDOM, Watford 33837
NEW YORK, Great Neck (516) 466-2650
ROCKY MOUNTAINS, Toll Free Numbers
Albuquerque - ENTERPRISE 6730
Denver-ENTERPRISE 6730
Salt Lake City - ZENITH 6730

INTERNATIONAL REPRESENTATIVES

AUSTRALIA - Burwood, Victoria Phone: (03) 2887100 - Adelaide, 232420 - Sydney, 318243 OESTERREICH - Wien, Phone: 578230 BELGIQUE - Bruxelles, Phone: (02) 499900 CANADA - Mississauga, Ontario, Phone: (416) 678-1500 - Longueuil, P.Q., (514) 670-1212 - Ottawa, Ontario, (613) 829-9651 - N. Vancouver, B.C., (604) 980-4831 - Calgary, Alberta, (403) 276 6-9658Halifax, N.S., (902) 469-7865 DANMARK - Kobenhavn, Glostrup, Phone: (01) 968844 UNITED KINGDOM - Watford, Phone: 33837 FINLAND - Helsinki, Phone: 13360 FRANCE - Le Chesnay. Phone: 954-3558 BUNDESREPUBLIK DEUTSCHLAND - Muenchen, Phone: 089184041 NEDERLAND - Breda, Phone: 01600-4 1152 INDIA - Bombay, Phone: 551973 ISRAEL - Tel Aviv, Phone: 443126 ITALIA - Milano, Phone: 546.26.41 JAPAN - Tokyo, Phone: 03-244-3784~8 NEW ZEALAND - Auckland, Phone: 586-000 - Wellington, 555-869 NORGE - Oslo, Phone: 232530 PORTUGAL - Lisboa 2, Phone: 636072 SOUTH AFRICA - Johannesburg, Phone: $724-8274$ ESPANA - Madrid, Phone: 4572800 SVERIGE - Stockholm, Phone: 380370 SCHWEIZ/SUISSE/ SVIZZERA - Zurich, Phone: 01/25 7872

[^0]: *Specification same as above model. (1) Adjusts to zero. (2) Available in either package (3) -3 dB Points (4) Specifications for match.

[^1]: (1) The 3500 MP is a matched pair of operational amplifiers. Specifications marked "(1)" apply to the match
 between the two units. Other specifications apply to individual units in the pair.

[^2]: (1) $\mathrm{RTI}=$ referred to input, may be referred to output by multiplying by gain, G. (2) May be trimmed to zero.

[^3]: Specifications apply for $0.1 \mathrm{~V} \leqslant \mathrm{D} \leqslant 10 \mathrm{~V}$ and $+5 \mathrm{mV} \leqslant \mathrm{N} \leqslant \mathrm{D}$ unless otherwise noted. All percentage specifications refer to $\%$ of full scale $=10 \mathrm{~V}$.

[^4]: Prices and specifications are subject to change without notice.

[^5]: * Digital Common is internally

[^6]: 15 Analog Com.
 16 No Connection
 17 Output
 18 No Connection 19 No Connection 20 No Connection
 21 No Connection 22 No Connection 23 No Connection 24 Offset
 25 No Connection 26 Analog Com. 27 No Connection 28 Input

