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1. Introduction

This document is the specification for IOMD, a memory and I/O controller chip developed primarily for the Medusa
platform. IOMD is designed to work with an ARM CPU with an on-chip memory management unit (MMU), such as
ARM610. It is not intended for use with processors without on-chip MMU, such as ARM2 and ARM3.

IOMD is intended for middle to high-end desktop machines in the Acorn range. It is designed to be used with the VIDC20
video controller. Although it is not planned to use the device in a portable product, there may be a future requirement to
use a derivative of the device in such a machine.

The outline specification of the Medusa platform is detailed in the document "Medusa Project Specification", Acorn
drawing number 0397,000/PS and this should be referred to for a detailed specification of the machine. This document
describes a machine with ARM610, VIDC20, IOMD, 0, 1 or 2MB of VRAM, and up to 64MB of DRAM on SIMM
modules. A dedicated network upgrade slot will be present, in addition to 0, 2 or 4 extended versions of the Acorn podule
slot. 

The machine has 4 I/O DMA channels, two of which are allocated to podule slots 0 and 1.  This is in addition to DMA
support for sound output, cursor and video RAM control.

History

20th October 1992 AMR 3364 Issue 1 Initial release
20th January 1993 ECO 3110 Issue 2 changed sound support from serial to parallel

19th March 1993 ECO 3150 Issue 3 Pin list added

addition of DRAM video DMA (to support video fromDRAM)

Project name changed

23rd June 1993 ECO 3196 Issue 4 clarify detail in Section 9, Device Packaging

Features

• Direct interface to ARM610 or ARM700

• DRAM control for 2 SIMMs (4 DRAM banks) 

• Control of VRAM, including generation of transfer cycles

• 16-bit byte-steered bus, for on-board peripherals such as super-IO, SCSI, and for podules

• Most of the functionality of IOC, including interrupt masking, counter timers etc

• PC keyboard interface

• Quadrature mouse interface

• Interface to CD-quality digital sound chip

• Four general purpose I/O DMA channels

• Packaged in a 208 pin SQFP package
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2. General architecture

The IOMD ASIC is a physical memory, DMA and I/O controller. It has a CPU interface for an ARM processor with
MMU which, with external arbitration and glue logic, can allow an additional processor to be connected. The CPU
interface consists of the processor address, data and control buses.

There is a DRAM and VRAM control bus which has RAS, CAS, multiplexed address and other control lines. There are a
number of DMA address generators, for sound, cursor, and general I/O DMA. There is also VRAM control logic,
including logic to generate transfer cycles.

Since the whole 32-bits of the main system bus connects to IOMD it is possible for IOMD to DMA data from DRAM into
itself. There is a 16 bit I/O bus on IOMD, and there is byte steering logic to allow DMA data at arbitrary byte locations to
be transferred to/from the I/O system using this bus. The DMA system does not support word packing and unpacking, due
to complications with arbitary start and end addresses, and early termination of data transfers. The 16-bit I/O bus forms
the lower 16 bits of the 32-bit podule interface. IOMD controls the latches for the upper 16 bits of the extended podule
bus, which allows 32 bit transfers.

IOMD contains a large subset of the functionality of IOC, including two general purpose counter/timers (timer 0 and
timer 1) and the interrupt control registers. The IOC baud rate and keyboard serial rate timers are not implemented in
IOMD nor are all of the general purpose C I/O lines. The allocation of interrupt lines is largely similar to previous
machines.

IOMD provides a PC keyboard interface instead of the Archimedes KART interface provided by IOC. This consists of an
8-bit synchronous serial interface, with interrupt generation capability.

The chip contains a quadrature mouse interface. This consists of X and Y counters that are incremented and decremented
by mouse movements. The counters wrap when they overflow or underflow, and are read regularly under interrupt. It is
suggested that the VSYNC interrupt is used, although the centi-second timer could be used. The VSYNC interrupt allows
updating every frame, as there is no point in updating the screen more often than this. The X and Y counters are each 16
bits wide.

IOMD provides support for a stereo sound CODEC chip with an 8 bit interface (eg Analog Devices AD1848). This allows
16 bit stereo input and output. IOMD also supports VIDC sound by implementing support for the VIDC20 sound
interface. There are two DMA channels for sound. One is used for linear sound sample output to the CODEC chip. The
other is used for input from the CODEC chip, or for the output of VIDC sound. The VIDC20 sound output is fed to the
ADC on the CODEC, and this input is converted to the digital domain, filtered, and converted back to analogue by the
CODEC's DACs. Since the analogue input path of the CODEC is used for VIDC sound output, it is not possible to output
VIDC sound and input sound at the same time, and this is the reason for the the sound DMA channel allocation.

A block diagram of the Victoria platform (as defined by Issue one of the Victoria Functional Specification 0397,000/FS
Issue 1) is shown in figure 2.1. A block diagram of the Medusa platform is shown in figure 2.2.
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3. Description of signals

Name Type Function

a[28:0] IT Address input from ARM microprocessor. (512MB :- 256MB DRAM, and 256MB others)

d[31:0] ITO6HZ Data bus (memory and CPU)

Nbw IT Byte/word input from ARM. If this signal is low, a byte access is being requested

dbe O6M Data buffer enable. Used to disable the ARM data bus during DMA memory accesses

clk64 I 64MHz clock input

Nfiq ITO6MZ Fiq output to ARM  (Test mode input during reset)

Nirq O6M Irq output to ARM

mclk O8L Memory clock output to ARM.

Nreset ITSO6HD Active low reset input/output

por ITS Power on reset input. Schmitt level input

Nrw IT ARM read/write signal

Nmreq IT Memory request input from ARM

Npreq IT 2nd processor request input. For 486 processor card. Higher priority than Nmreq

rclk O6L Reference clock output. Nominally 16MHz but can be stretched

pclk O4 Memory bus clock output to VIDC

Ndras[3:0] O8L DRAM RAS line outputs

Nvras O6M VRAM RAS output

Ncas[3:0] O8L CAS line outputs

ra[11:0] O12M VRAM/DRAM address outputs

Nwe[0] O12M VRAM/DRAM write enable

Nwe[1] O6M VRAM write enable

Ndt[1:0] O6M VRAM oe/dt signals

dsf O6M VRAM special function output (High for split read, otherwise low)

Nromcs O4H ROM chip select

Nprog O4H Video controller write strobe

clk16 O6M 16MHz I/O clock

ref8m O6M 8MHz I/O clock

clk2 O6M 2MHz I/O clock, for synchronous access peripherals

Niorq O6M I/O request for external module-type devices

Niogt IT I/O grant

Nwbe O6M Write data latch output enable

Nrbe O4H Read data latch output enable

Nblw O4 Write data latch control

Nblr O4H Read data latch control

Nbl ITS Bus latch input from podule bus

Nior O6M I/O read for PC-I/O and podules

Niow O6M I/O write for PC-I/O and podules

Npboe O4H Podule buffer output enable. Output enables lower 16-bits of podule buffer

Nccs O4H Chip select for combo chip

Ncdack O4H Combo dack signal (really another chip select signal)

Nsccs O4H Chip select for SCSI chip

bd[15:0] ITO6HZ Peripheral data bus, for internal I/O peripherals (SCSI, super-IO), and podule interface

lrnw O6M Latched read/not write output 

Npfiq ITS Podule fiq input. Active low, level triggered 
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Npirq ITS Podule irq input. Active low, level triggered 

Nsintr IT Serial interrupt input. Level triggered active low

Nscirq IT SCSI interrupt. Level triggered active low 

Nfintr IT Floppy interrupt request. Level triggered active low

Nindex ITS Floppy disc index input. Falling edge triggered

flyback IT Flyback from VIDC, rising edge triggered

fdrq IT Floppy drq, connects to fiq interrupt input, not really DMA. Active  high level triggered

pintr IT Printer interrupt request. Rising edge triggered

Niext IT Extended interrupt. Active low, level triggered

Nsio O4H General purpose I/O select output

Neasis O6M Extended address space interface select signal

ready ITS Extended address space ready signal (low to  extend cycle)

Nms O6M Module select output

id ITO4HD ID chip input/output. Open drain (cf. IOC C[3])

iicd ITSO4HD I2C data (cf. IOC C[0])

iicc ITSO4HD I2C clock. (cf. IOC C[1])

kclk ITSO4HD PC keyboard clock. Open drain

kdata ITSO4HD PC keyboard data. Open drain

dreq[3:0] IT DMA request inputs

Ndack[3:0] O6M DMA acknowledge outputs

tc O6M Terminal count output

Nsndrq IT Sound request input

Nsndak O4H Sound acknowledge output

Nvidrq IT Video DMA request

Nvidak O4H Video DMA grant

vNc             IT Video/not cursor

Nse O6M Serial port output enable for VRAM

Ncdoe O6M Cursor/sound/programming buffer output enable

sc O6M Serial port clock for VRAM

qsf IT Split port bank number output from VRAM

mousex[1:0]    ITS Mouse X quadrature inputs. 

mousey[1:0] ITS Mouse Y quadrature inputs

Nsndcs O4H Sound chip select

spdrq IT Sound playback DMA request

scdrq IT Sound capture DMA request

Nspdack O4H Sound playback DMA acknowledge

Nscdack O4H Sound capture DMA acknowledge

tdi ITP Test data in, for JTAG boundary scan

tdo O4HZ Test data out, for JTAG boundary scan

tms ITP Test mode select, for JTAG boundary scan

tck ITP Test clock, for JTAG boundary scan

IOMD has no equivalent pin to IOC's clk8. A correctly timed clk8 signal can be derived by inverting IOMD's ref8m
signal with, eg, an 'AC04 

Key :-

I - input, CMOS threshold           IT - input, TTL level threshold ITS - Schmitt TTL input             

O4 - output (4mA drive)           O6 -  output (6mA drive) O8 - output (8ma drive)     O12 - output (12mA drive)

H - Heavy slew rate limiting       M - Medium slew rate limiting     L - Light slew rate limiting

D - open drain output                   P - internal pullup resistor            Z - tri-state output

Functional Specification IOMD ASIC

Sheet 6 of 37 0297,030/FS Issue 4 



4. Architecture

Clock generation

The master clock source, clk64, is a 64MHz signal and this provides all the system timing. The DRAM timing
generators use both edges of a 32MHz clock, which is generated from the 64MHz by dividing by two. The peripheral bus
is clocked from the master clock divided by 4 (16MHz). The video RAM serial interface uses 64MHz divided by 3 to
generate sc which clocks the VRAM serial ports at 21.33MHz using a 2:1 mark space ratio. The VIDC20 pclk signal
must be the same as sc during video RAM data transfer, but must be the same as mclk during cursor DMA, VIDC20
programming (Nprog activity), and sound DMA (if the VIDC20 sound system is being used). 

DRAM control

IOMD will directly control two standard 32-bit wide, 72-pin SIMMS. Each SIMM has one or two RAS lines, and 4 CAS
lines, one for each byte in the word. Thus, IOMD has 4 RAS lines and 4 CAS lines in total. In addition, IOMD directly
supports VRAM, and there is an additional RAS line to select the VRAM.

There are 12 RA address lines, and  3 control bits to control address multiplexing options, meaning there are 8 possible
options, of which 4 are considered useful, as shown below. The most significant bit of the DRAM size control is only
applicable for VRAM, and is therefore not present for DRAM, and is assumed by the hardware to be zero.

RA[11:0] 11 10 9 8 7 6 5 4 3 2 1 0

Size 000 (Size 00 for DRAM)

PA  row 25 23 21 20 19 18 17 16 15 14 13 12 1M, 4M, and 16M DRAM 

PA  col 24 22 11 10  9 8 7 6 5 4 3 2 & 1 bank 1M VRAM

Size 001 (Size 01 for DRAM)

PA  row 25 23 21 11 19 18 17 16 15 14 13 12 256K DRAM & 1 bank 256K VRAM

PA  col 24 22 11 10  9 8 7 6 5 4 3 2

Size 010

PA  row 25 23 21 20 19 18 17 16 15 14 13 12 2 bank VRAM (256K)

PA  col 24 22 12 11 10  9 8 7 6 5 4 3

Size 110

PA  row 25 23 21 20 19 18 17 16 15 14 13 22 2 bank VRAM (1M)

PA  col 24 22 12 11 10  9 8 7 6 5 4 3

A[27:26] are decoded to select the DRAM bank, and hence the appropriate RAS line. This means that the physical
memory map may be discontiguous if each bank does not contain the maximum 64MB. Normally, the VRAM used will
be 256Kx32, or 256Kx64, with the two banks interleaved on a word basis on the DRAM interface side (see video
interface section).

An 8-bit register (DRAMCR) is provided to control the DRAM row address options and is shown below. Four pairs of
two bits control the DRAM row address mapping for each RAM bank. Another control register (VREFCR) is used to
control the VRAM column  address options which will vary depending on whether one or two megabytes of VRAM are
fitted. The VRAM control register also contains the refresh timing information, and is shown in figure 4.3 in the section
on the refresh options. The format of the DRAM control register is shown below. The DRAMCR is reset to zero when
IOMD is reset.

Functional Specification IOMD ASIC

Sheet 7 of 37 0297,030/FS Issue 4 
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07

Figure 4.1 DRAM Control Register

DRAM (and VRAM) control and timing is controlled by a state machine running at 32MHz. The DRAM interface
supports page-mode DRAMs. S-cycles run at 16MHz, and N-cycles take 2.5 times the S-cycle time, ie they run at
6.4MHz. This means that S-cycles take 2 cycles of the 32MHz clock, and N-cycles take 5 cycles of the 32MHz clock. An
example DRAM timing waveform is shown in figure 4.2 below. Note that the CAS signal is delayed slightly for a write,
to allow more set up time for data into the RAM. It may also be necessary to delay the column address during writes, in
order to ensure that there is enough column address hold time.

Nmreq

mclk

Nras

Ncas
(Read)

32MHz

Row Col Col+1 Col+2 Col+3Ra[11:0]

Figure 4.2a Example DRAM control signals (read)

Nmreq

mclk

Nras

Ncas
(Write)

32MHz

Row Col Col+1 Col+2 Col+3Ra[11:0]

Figure 4.2b Example DRAM control signals (write)

DRAM refresh is performed using CAS-before-RAS refresh. A refresh control register (VREFCR) of which 2 bits are
currently defined for refresh operation, is provided to control the refresh rate. This register also contains the VRAM
control bits. The register is reset to zero when IOMD is reset. The refresh rate is derived from the reference clock
(64MHz), and can be set to 16 or 128µS, or disabled. Unused bits in this register should be written to 0, but their state is
undefined when read, including after reset. Thus bits 4, 2 and 1 are all undefined on a read. DRAM refreshes are
staggered by IOMD, to minimise the instantaneous power consumption required.
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Figure 4.3 VRAM and Refresh Control Register (VREFCR)

ROM control

IOMD will support two 16MB banks of ROM with individually controllable timing parameters. The access time can be
varied from around 220nS downwards in steps of 31.25nS. In addition, support is provided for burst mode ROMs which
allow rapid access to sequential addresses controlled by A0 and A1. Five control bits per bank are used to control these
parameters. Three bits control the basic access speed, and two bits control whether burst is used and the burst access
speed. In burst mode, subsequent accesses are shorter than the initial access time. There are two ROM control registers,
one for each ROM bank, with the bit allocation as shown in the diagram below. The ROM control registers (ROMCR0
and ROMCR1) are reset to zero when IOMD is reset. Unlike machines based on MEMC1A, IOMD allows writes to be
made to the ROM areas. The ARM MMU should be programmed to prevent writes to the ROM space if the ROM area
does not contain writeable memory such as SRAM.

During sequential accesses to ROM, Nromcs will stay low, and the ARM addresses change. Thus Nromcs is a
combinatorial signal, and a falling edge on it cannot be relied upon. The timing of Nromcs is the same for reads and
writes. Nromcs typically rises 0 to 5 nS before mclk falls at the end of the cycle.

Brst0

000 = 218.75nS
001 = 187.5nS
010 = 156.25nS
011 = 125nS
100 = 93.75nS
101 = 62.5nS

Brst1 Sp2 Sp1 Sp0

10 = 93.75nS
01 = 125nS
00 = Burst off

11 = 62.5nS

07

Burst speed Initial speed

000

Figure 4.4 ROM Control Register, one per ROM bank (ROMCR0 & ROMCR1)

Video interface
The video interface is designed to support VIDC20 used with either DRAM or VRAM. The VIDC20 VRAM interface
mode is never used. Instead, VIDC20 is used either in 32 bit DRAM interface mode for DRAM or one bank of VRAM, 

or in 64-bit DRAM interface mode with two banks of VRAM. Cursor, sound and programming information comes from
the main  data bus, as does the video data when the VRAM is not used. When used, the VRAM serial ports connect
directly to the VIDC20 data input ports, The main data bus is normally isolated from the data port by a '244 type buffer.
An active low output enable signal (Ncdoe) is generated by IOMD to control the buffer. The buffer should have a
propagation delay of less than 10nS. The serial port of the VRAM connected to d[31:0] of VIDC must be disabled during
cursor DMA (horizontal retrace time), programming and sound DMA. When both banks of VRAM are fitted, the Nwe
and Noe/dt lines are used to interleave the VRAM banks on the memory bus side on a word basis, using A[2] to select
the bank required.
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At the start of each frame, IOMD does a full transfer to the VRAM, to initialise the video pointer in the SAM. It then does
split transfers whenever needed, as indicated by the qsf pin of the VRAM. The full-transfer is done on the last but one line
of the flyback period. This is to ensure that the VRAM serial port is loaded with new data if the frame buffer has been
updated during flyback. To do this, IOMD must count the flyback lines, and when the last line but one is reached, do the
transfer. The 8 bit FSIZE register in IOMD must be programmed with the number of flyback lines minus 1.

VIDC20

VRAM

VRAM d[63:32]

d[31:0]

System data bus

OE

OE

From IOMD ASIC

Serial

port

clk

clk

Serial

port

Buffer

3232

32

3232

Figure 4.5 Connection of VIDC20 and VRAM to IOMD.

The VRAM serial ports are clocked at 21.33MHz using a 'bursty' clock. When VIDC20 asserts vidrq the response from
IOMD is to assert vidak and to clock the VRAM serial port clock sc four times. The VRAM serial clock is derived
from the 64MHz reference clock by dividing by 3, such that the clock is high for 2 64MHz periods, and low for one
64MHz period. Data is clocked out of the VRAM serial port on the rising edge of sc and is clocked into VIDC on the
falling edge of pclk, which is the same as sc during video data transfers (see Figure 4.6). pclk is the same as mclk
during cursor, programming and sound transfers. A change on the  qsf output from the VRAM indicates that a transfer
cycle is required. The current video pointer VCUR is then incremented by the split port SAM length, and a transfer cycle
is requested to the main bus arbiter. 

sc

31nS 15nS
Data clocked out
of SAM on
rising edge

Data clocked into
VIDC on falling edge

data

vidack

32MHz

pclk

pclk following sc pclk follwing mclk

Figure 4.6 VRAM clocking signals

Using a 21.33MHz interface to VIDC gives a maximum peak bandwidth from the frame buffer to the display of
85.33MB/sec for a 1MB VRAM machine using a 32-bit interface, and 170.66MB/sec for a 2MB VRAM machine, using
the 64 bit interface. As can be seen from figure 4.6, there is 31nS from clocking the SAM port to clocking the data into
VIDC.
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DMA channels

There are four general purpose I/O DMA channels, and two sound channels. In addition, there are two further channels
for video cursor data and VRAM transfer addresses. The DMA channels have fixed priorities as shown below.

Priority Channel

0  (highest) Cursor

1 Sound chan. 0 (VIDC sound out and linear sound in)

2 VRAM transfer cycle

3 Sound chan. 1 (linear sound out)

4 DRAM and VRAM refresh

5 I/O DMA channels ('round robin between channels 0 to 3)

6  (lowest) ARM

I/O and sound DMA

The I/O and sound DMA channels have two sets of pointers, so that data transfers may be 'double buffered' as is the case
with the MEMC1a sound DMA channel. The DMA pointers consist of two pairs (A and B) of 29 bit current address
registers, and 12 bit end pointers which also have 2 control bits in them. The current and end pointer addresses are
inclusive addresses, and the end address is the address of the last transfer, which will depend upon the transfer size. The
current address registers are divided into two fields. The lower 12 bits form an offset into a 4K page. The upper 17 bits
form a static page number. The end register consists of a 12 bit page offset in the lower 12 bits of the register, and two
control bits in the most significant bits of the register. Each channel also has an 8 bit control register, and a three bit status
register. The control register is readable and writable, and the status register is read only. Five of the control register bits
(Inc[4:0]) control the amount by which the current pointer is incremented after each transfer. Another bit (D) controls the
direction of transfer, and one bit (E) is used to enable and disable the channel. The status bits, and the C bit of the control
register are described later.

DMA transfers are constrained to a single physical page by the following mechanism. The bottom 12 bits (page offset) of
the current pointer is incremented on each DMA transfer by the programmed increment, and is compared to the bottom 12
bits of the end pointer. The page number is not incremented, and is not compared. This has the effect that it is possible to
program the end pointer to be less than the initial page offset, causing the DMA address to wrap around at the end of the
page. This is unlikely to be useful.

In order to implement the double buffering mechanism, each pair of registers is used alternately. An interrupt is raised
when one of the pair completes its transfer. If the other pair has been programmed by this time, DMA continues using this
pair.

Page[16:0] Offset[11:0]

End[11:0]

Page[16:0] Offset[11:0]

End[11:0]

Inc[4:0]

LS

LS

Current A

End A

Current B

End B

ControlD E

31 30 11 0

31 30 11 0

28 12 11 0

28 12 11 0

A/B

Int

Overrun

O I A/B

C

7 6 5 4 0

012

Status

7

Enable

Dir

Clear

Figure 4.7 DMA Address registers (one set per channel)
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The increment field in the control register determines the channel increment as follows:-

00001 Byte

00010 Half-word

00100 Word

10000 Quad-word

The I/O DMA channels support byte, half-word and word transfers only. The VIDC sound channel can support quad-
word DMA, but only when DMA is to VIDC, not when it is from the CODEC. The CODEC DMA channel should always
be programmed for word transfers. The increment has a different meaning for the video channel (see later).

The direction bit in the control register defines the direction of the DMA transfer. When set, the transfer is from
peripheral to memory.  This does not apply to sound channel 1, which is read only. Sound channel 0 uses this bit to
control whether VIDC sound output mode, or CODEC sound input mode is in use.

Each DMA channel is controlled by a simple state machine. The state machine is able to run when the enable bit is set.
The current state is visible in the status register and these bits are read only.  The A/B bit indicates which pair of current/
end pointers is in use. The Int bit indicates when the channel is requesting an interrupt. The Overrun bit indicates when a
channel has stopped because it finished a transfer, and the other pointer pair had not been programmed. Writing a 1 to the
C bit of the control register resets the state machine to state 110. The C bit of the control register is self clearing and
always reads zero.

The S (Stop) and L (Last) bits in each end register control the behaviour of the channel when transfer of a buffer
completes. The S bit must be set if the TC pin is to be asserted at the end of the buffer. The L bit is an indication that the
next transfer on that buffer will be the last. It is normally set by IOMD, but must be set by the ARM in the case where the
channel is being initialised for a single transfer. For buffers that require more than one transfer, the L bit should be cleared
when the end register is written.

OR
Int
Buff A

Int

Int Int
OR

Buff A Buff A

Buff BBuff B Buff B

Busy (Buff A active) Busy (Buff A active)

Busy (Buff B active)Busy (Buff B active)

Idle or Write Buff B

Idle or Write Buff A

Write Buff B

Write Buff A

Write Buff B

Write Buff A

Finished

Finished

FinishedFinished

(110)
(010) (000)

(011)(001) (111)

(not StopA)

Finished
(StopA)

Finished
(StopB)

(not StopB)

Figure 4.8a Hardware DMA state machine diagram

In the diagram above (figure 4.8a) the three bits shown beside each state correspond to the three bits of the status register,
and directly reflect the state of the DMA state machine. At reset, the state machine enters state 110. This state and state
111 are the idle states in which no DMA transfers occur. The transition between states occurs either by a buffer finishing,
or by the ARM programming the next pointer pair. The current and end pointers must be programmed in that order, as it
is the write to the end pointer which actually causes the state transition.

In practice, a complete DMA transaction is performed by a software state machine, as shown in diagram 4.8b, where N is
the buffer number being transferred and LastN is the buffer number of the last buffer to be transferred, which should have
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the Stop bit set when programmed. When the last buffer has been programmed in, and the next interrupt happens, a
dummy value is programmed into the next buffer pair in order to clear the interrupt. The following interrupt happens after
the last buffer has been transferred, at which point DMA can be disabled and the channel reallocated. When the ‘Wait for
I’ box is encountered, the software checks the I (Int) bit: if set it continues to the next step; if clear the software exits and
waits for the next DMA interrupt. After a buffer with the S bit set has been transferred, the hardware always enters one of
the idle states, it never continues to the other buffer. The scheme is designed to cope with all possible cases of overrun. 

Start
N = 0
Force OIA
Enable DMA

N > LastN

?

Disable DMA

Stop

Yes

Program BuffA
with buffer N

No

Wait for I,
check status

OIA IA

Program BuffB with
buffer N, or with
garbage if N>LastN

Wait for I,
check status

IB

N=N+1N=N+1 N=N+1 N=N+1

OIB

buffer N, or with
garbage if N>LastN

Program BuffA with
N > LastN

?

with buffer N
Program BuffB

No

Yes

OIA

OIB

Figure 4.8b Software DMA state machine diagram

Additionally there is a set of interrupt registers for the DMA channels. For each channel there is a mask bit, a status bit,
and a request bit, the status bit being a replication of the I bit in the DMA state machine. There are 6 interrupting DMA
channels in total, and the interrupt registers are arranged such that there is a DMA channel per bit of each register, with 2
bits per register spare, as shown below.

DMA request channel 0

DMA request channel 1

DMA request channel 2

DMA request channel 3

DMA request sound chan. 0

DMA request sound chan. 1

DMA Interrupt request register (DMARQ)

0 0 IO0IO1IO2IO3S0S1 0 0 IO0IO1IO2IO3S0S1

DMA Interrupt mask register (DMAMSK)

0 0 IO0IO1IO2IO3S0S1

DMA Interrupt status register (DMAST)

0 0 IO0IO1IO2IO3

DMA External register (DMAEXT)

0 0

Figure 4.9a DMA Interrupt registers

In figure 4.9a, the DMA interrupt status register indicates which channels have interrupts outstanding. A channel
generates an interrupt when it reaches the end of the current buffer. An interrupt will be generated if the relevant DMA
interrupt mask is enabled. The DMA request register holds the logical AND of the DMA interrupt status and DMA
interrupt mask registers, indicating which channels are requesting an interrupt.

The four I/O DMA channels can be used to access peripherals on either side of the podule buffer. So for DMA reads to
internal peripherals such as SCSI, the podule buffer must not be output enabled. However for DMA reads to peripherals
on the podule bus, the podule buffer must be output enabled. Since the DMA generators may be arbitarily allocated to
physical peripherals, it is necessary to indicate which channel is accessing an external peripheral, and which is accessing
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an on board peripheral. To do this, the DMAEXT register is used. Bits 3:0 of the DMAEXT register map to I/O DMA
channels 3 to 0, and setting the relevant bit to a 1 indicates that the peripheral is on the podule side of the buffer. There are
no DMAEXT bits for the sound DMA channel, as the sound CODEC is always an on-board peripheral.

Cursor DMA

The cursor DMA channel consists of an init register and a current register both of 29 bits. Data is transferred from the
current register address in quad words under control of the vidrq, vidak and vnc signals. The init register is copied
to the current register during flyback. There is no control register for this channel and hence no interrupts may be
generated. It is enabled and disabled with the video transfer channel. Cursor data can be held in either VRAM or DRAM.
The format of the cursor registers is shown in figure 4.9b below.

Video DMA

The video transfer channel is similar in structure to the MEMC1a video channel and has start, end, init and current
registers which are all 32 bits wide. 

Video last bit

31 0

VIDCur (Read)

VIDEnd[23:0]

31 24 23 0

VIDEnd (Read)

VIDEnd (Write) †

VIDStart (Read)

VIDStart (Write)

30 29 28 27 26 25

0

VIDCur (Write)

VIDInit (Read)

VIDInit (Write)

31 30 29 28

X X X

30 29

VIDStart[28:0]

0 0 0

28

VIDStart[28:0]

X X X X X X X X

VIDEnd[28:0]

31 24 23 030 29 28 27 26 25

0 0 0

31 0

031 30 29 28

X X X

30 29

VIDCur[28:0]

0 0 0

28

VIDCur[28:0]

31 0

031 30 29 28

X L X

30 29

VIDInit[28:0]

0 L 0

28

VIDInit[28:0]

CursCur (Read)

CursCur (Write)

CursInit (Read)

CursInit (Write)

X = Undefined

Enable

Control (Write)

Inc[4:0] Control (Read)EX D

31 0

031 30 29 28

X X X

30 29

CursCur[28:0]

0 0 0

28

CursCur[28:0]

31 0

031 30 29 28

X X X

30 29

CursInit[28:0]

0 0 0

28

CursInit[28:0]

Inc[4:0]E0 D

07 6 5

†  To allow for future expansion, all bits of VIDEnd should be programmed to the true physical address,
even though it is only a 24-bit register.

Notes:

DRAM mode enable

Figure 4.9b Video DMA registers

    The VIDStart register is programmed with the address of the start of memory used for the screen buffer. The VIDEnd
register is programmed with the address of the last transfer of the video buffer memory. Thus it equals the address of the
end of the video buffer, minus the transfer size (ie quad word in DRAM mode or the half-SAM length in VRAM mode).
A quad word is 16 bytes. One bank of 1Mbyte VRAM made up from 4 off 2Mbit (256K*8) VRAMs has a half-SAM
length of 1*4*512/2=1024 bytes. Two banks have a half-SAM length of 2*4*512/2 = 2048 bytes.

    The addresses for the start and end of the video buffer memory have certain restrictions on their values. In all cases
they must lie within the bounds of a single 16MByte-aligned block in the physical address space; for VRAM mode this is
not a problem since the maximum amount of VRAM is less than 16MByte.  In DRAM mode they must each be on a quad
word boundary, but are not further restricted.  In VRAM mode, they must each be on a half-SAM boundary, with the
additional restriction that the buffer size must be a multiple of 2 times the half-SAM length (i.e. N*4096 bytes for 2 banks
of VRAM and N*2048 for the 1 bank case).  Note that as described above the value programmed into VIDEnd in VRAM
mode is not the actual screen memory end address but that value less the half-SAM length.  As a result, the VIDStart and
VIDEnd values written to IOMD must always differ by an odd number of half-SAM lengths.

    The video init (VIDInit) register is programmed with the address of the start of the screen data to be displayed, i.e. the
address of the first pixel in the frame.  This address must be a multiple of N bytes where N is 16 (i.e. 4 words) in DRAM
mode, 8 (2 words) on 2 bank VRAM machines, and 4 (1 word) on 1 bank VRAM machines.  For generality, requiring
alignment to 16 bytes will ensure compatibility with all possible video DMA configurations.  This does remove a possible
benefit of the VRAM modes in which horizontal scrolling can be done to a finer resolution than in DRAM modes, but is
advisable in order to maximise software portability: older machines based on MEMC1/VIDC1 also have alignment
restrictions of 16 bytes on VIDInit.
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During flyback, the current register, VIDCur, is initialised to the value in the VIDInit register.  VIDCur then increments
(by a value defined via VIDCR) until either the end of the frame data, or the end of the video buffer area is reached.  In
the latter case VIDCur is reloaded with the value in VIDStart, and continues to increment from there, i.e.  the data for the
frame is wrapped around within the physical memory area defined by VIDStart and VIDEnd; this mechanism allows for
efficient vertical scrolling of the video display.

For VRAM modes

    The video transfer DMA channel in IOMD controls the generation of VRAM transfer addresses. IOMD uses VRAMs
with split SAM port capability. On each split transfer, one half of the SAM is loaded with new data. Thus the video
increment should be the half SAM length. The video start and end addresses must be on half SAM boundaries (an even
number of half-SAM lengths apart). However, they will usually be on 4K page boundaries, which will always coincide
with even half-SAM boundaries.

    If the VIDInit register is equal to or greater than the VIDEnd register, implying the frame start address is somewhere in
the last half-SAM of the video buffer, then the video last bit in the VIDInit register must be set.  This is because the
comparison as to whether a transfer is the last in the buffer is always done during a video transfer cycle, for the next video
transfer cycle. Thus if the first half-SAM after flyback is the last half-SAM in the frame buffer, the last bit must be set
manually.

    In VRAM mode, bits 7:0 of the video address are never compared in checking for VIDCur reaching VIDEnd.  The
number of bits which are compared depends upon the value programmed into the increment register. If the increment is
programmed to the value 1, meaning 256 bytes, then all of bits 23:8 are compared. If the increment is 2, meaning 512
bytes, then bits 23:9 are compared. If the increment is 4, only bits 23:10 are compared, and so on. This ensures that the
current pointer when compared with the end address, will always match the end address, even if it is not aligned on a half-
SAM boundary. Thus if the increment is 2^N bytes, then bits 23:N will be compared.

Thus:

I = Inc*256 = 2^N

N = log2(Inc*256) = 8+log2(Inc)

where Inc is the value in the increment register, I is the actual increment in bytes, and N is the least significant bit
compared. Inc must always be a power of 2. ie there must only ever be one bit set in the increment field.

    The current register is incremented after each transfer by the half-length of the VRAM serial port. A transfer cycle is
requested when the state of the qsf signal changes, indicating that the VRAM has swapped to the other half of the SAM
port. The transfer cycle consists of a single VRAM access, with a special combination of control signals applied to the
VRAM. The increment is controlled from the control register and is the value in the increment field multiplied by 256.
Since 4 bytes are transferred at a time in a 1MByte VRAM machine, and 8 bytes are transferred at a time in a 2MByte
VRAM machine, the value in the increment field is the half-SAM length multiplied by 4/256 for 1MByte VRAM, or
multiplied by 8/256 for the 2MByte VRAM machine. For example, a VRAM with a SAM length of 512 words has a half-
SAM length of 256 words. With 1MByte of VRAM, the video increment would be 256*4/256 = 4. With 2MByte of
VRAM, the video increment would be 256*8/256 = 8.

For DRAM mode

    The Inc register should be programmed with the transfer size. With IOMD in DRAM mode, this is a quad word (4*4)
=16 bytes. Therefore Inc should be 16.

I/O bus

The I/O bus on Medusa is 32 bits wide, of which the lower 16 bits pass through IOMD, and the upper 16 bits are latched
and buffered by an external latch. Logic in IOMD is used to position bytes and half words to the appropriate position
within the word, for transfer to and from memory. The lower 16 bits from IOMD connect directly to the on-board
peripherals, and via a bidirectional buffer to the lower 16 bits of the podule bus. IOMD latches the lower 16 bits of the
word, and provides control signals for the external latch and buffer.

The bus supports DMA, and the signals are similar to a cut-down PC-AT bus (ie Intel-style control signals, read strobe,
write strobe, DACK etc). The bus is clocked at 16MHz, but a number of clock ticks are required for each transfer. In
addition, the bus emulates the I/O bus of previous Acorn 32-bit machines. An 8MHz IORQ/IOGT style interface, and the
8MHz 'S-space' interface signals are provided.
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Figure 4.10a Type D I/O cycle
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Figure 4.10b Type C I/O cycle
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Figure 4.10c Type B I/O cycle
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Figure 4.10d Type A I/O cycle
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Cycle type D C B A

Total no ticks (I/O) 4 5 7 9

Total no ticks (DMA) 3 4 7 9

Ncs/Ndack to Niow/r 0.5 0.5 1.5 1.5

Niow/r pulse width 1.0 2.0 3.0 4.0

Niow/r to Ncs/Ndack 0.5 0.5 0.5 1.5

Ncs/Ndack pulse width 2 3 5 7

Ncs high (min) 2 2 2 2

Ndack high (min) 1 1 2 2

Table 4.1 I/O and DMA I/O bus timings

Dack1 Dack1 Dack0 Dack0
t1 t0

Dack2Dack2Dack3Dack3
t1 t0t1 t0t1 t0

10 - Type C
11 - Type D

Combo Combo SCSI SCSI
t1 t0 t1 t0

DMA timing control (DMATCR)

I/O timing control (IOTCR)

Expansion card timing control (ECTCR)EC0EC1EC2EC3EC4EC5EC6EC7

00 - Type A
01 - Type B

0 - Type A
1 - Type C

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

t1 t0
Snd Snd

1 0
SByte SByte

00 - Type A
01 - Type B
10 - Type C
11 - Type D

00 - Word
01 - Byte
10 - 2 bytes
11 - Undefined

Figure 4.11 I/O, DMA and expansion card timing control registers

There are three types of access timing to the I/O bus, the first two of which are present in MEMC1a/IOC system, and the
other one being new to IOMD. The first (8MHz fixed) is the IOC controlled type, in which one of four timings is selected
by bits 20:19 of the address. These cycles are based on an 8MHz clock (externally derived clk8). The second type of
access (8MHz variable) is also based on an 8MHz clock, and uses the Niorq and Niogt signals, which are referenced to
the ref8m pin. The third type of access (16MHz) is referenced to CLK16, the 16MHz I/O clock, and is used for on-board
peripherals (SCSI, combo and sound CODEC), for DACK timing to peripherals using DMA, and for the extended address
space expansion cards. The basic timings used for these devices are controlled by the I/O, DMA and expansion card
timing control registers (IOTCR, DMATCR, and ECTCR respectively). On-board I/O peripherals (Combo, SCSI &
CODEC) and DMA have four timings available (types A to D), and expansion cards have only two timings available,
these being types A and C.

Various different cycle timings may be selected for the 16MHz accesses. These are known as types A to D, where type D
is the fastest and is shown in diagram 4.10a above. Type D has half a 16MHz tick of setup and hold of CS/DACK relative
to IOR/IOW and a pulse-width of one 16MHz tick on IOR/IOW. Type C is similar, but has a pulse-width of two 16MHz
ticks for IOR/IOW.  Type B has one and a half clock ticks of setup and half a tick of hold of CS/DACK to IOR/IOW, and
a 3 tick wide IOR/IOW pulse, and type A has one and a half ticks of setup and hold of CS/DACK to IOR/IOW, and a four
tick wide IOR/IOW pulse. Their timings are shown in figures 4.10b to 4.10d. Expansion cards have only timings A and C
available to them. The fastest two types reduce the minimum CS/DACK width to one tick for DMA, whilst keeping it 2
ticks for programmed I/O. The slower two timings have a minimum of 2 ticks high for both CS and DACK. The table
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above shows the DMA and I/O timings. 

The point at which DMA request must go away to ensure that another DMA does not happen actually varies, depending
upon whether the DMA is a read or a write, and upon the relative phase of rclk and clk16 at the time. For safety however,
DREQ should go away by the time DACK rises again. This will ensure that a second unwanted DMA acknowledge does
not occur, in all possible cases.

The sound CODEC has 4 control bits allocated to it in the IOTCR register. Bits 5:4 control the timing of the sound chip
select, and for normal operation timing B should be selected. Bits 7:6 control the number of bytes per sample that are
transferred to the chip, and this must be programmed in addition to the DMA increment in the DAG registers.

The new I/O address space is divided into 8 areas of 16MB each, one for each of eight possible expansion cards allowed
in the architecture. Each area has a single bit in the ECTCR register associated with it, to control whether a type A or type
C access is used. In addition to the register controlled timing, all programmed I/O (but not DMA) accesses may be
stretched by the ready pin. This includes the combo and SCSI chip selects, and pseudo-DMA. The ready pin should be
valid a 16MHz clock tick before the rising edge of IOR/IOW. Ready is synchronised inside IOMD on the rising edge of
clk16, and then the synchronised signal is sampled on the next rising edge. Note that ready must be set up to the rising
clk16 internal to IOMD, which will be earlier than the external clk16, so in practice this means it is very difficult to use
ready with the fastest I/O timing. However, it may be possible, if ready is driven very quickly from falling CS.

Since the memory clock mclk can be stretched for multiples of clk32 periods during RAM and ROM accesses, the free-
running clk16 I/O clock and mclk may be in or out of phase with each other. In order to synchronise the I/O and memory
worlds, some programmed I/O accesses must be slipped by half a 16MHz clock tick. This means that programmed I/O
and I/O DMA will be slightly slower than would otherwise be the case. The clk16 is always free-running, and the
processor clock is slipped to match the I/O clock, to synchronise the memory and I/O systems during programmed I/O
and I/O DMA, when the two clocks are out of phase. I/O DMA cannot stretch the cycle timing with the ready pin.

The TC signal will be asserted simultaneously with DACK when using I/O DMA, to indicate the last transfer of a
sequence (see the section on DMA channels). It may also be asserted in programmed I/O by writing to the combo
DACK+TC address space. This is an area of address space that causes the combo DACK and TC signals to be asserted
together. The combo DACK space only asserts the combo DACK signal. Note that the combo DACK is not a real DACK,
and is not related to the DMA channels, it is effectively another chip select. TC has the same timing as DACK, and is
asserted high to indicate the last transfer, and thus looks like an inverted DACK when asserted in a cycle.

The latched address bus is used to provide addresses to the I/O bus during programmed I/O. The IOMD I/O data path
consists of a latch in each direction, as shown in figure 4.12. The multiplexers are used during DMA operations to select
the required byte or half-word to be output to the device. No ‘word packing’ occurs, except for sound DMA. I/O DMA
operations are byte, half-word or word only. No byte steering is required for word DMA.

Old I/O space (0300 0000 to 0300 FFFF, 0303 0000 to 0303 FFFF and 0321 0000 to 033F FFFF inclusive) simulates old
machines, in that the high 16 bits of the word must be written to when writing, and the low 16 bits must be read when
reading. This is performed by the byte steering logic. When writing to the new I/O space, no byte steering occurs. This is
because the new I/O space allows 32 bit transfers, and it is not possible to steer to an arbitrary byte in a 32 bit word, as
only the lower 16 data bits of the I/O bus go through IOMD. The IOMD registers are not byte steered. Hence the byte
steering logic is enabled for addresses in the range 0300 0000 to 0300 FFFF, 0303 0000 to 0303 FFFF and 0321 0000 to
033F FFFF inclusive only, and allows data through unmodified for all other programmed I/O locations.
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Figure 4.12 Byte steering data path logic

I/O data is latched in the I/O latches, which are internal to IOMD for the lower 16 bits, and are external latches for the
upper 16 bits. As with current machines, it is possible for DMA to occur during long I/O accesses, however because of
contention for the I/O bus, I/O and sound DMAs are not possible during processor I/O accesses. 

Interrupt control logic and IOC timers

IOMD has a number of interrupt inputs which can be used to generate irq and fiq interrupts. In addition, there are internal
interrupts generated by the DMA channels, the keyboard interface and the IOC timers 0 and 1. A set of registers similar to
those in IOC allow the interrupt sources to be controlled by the processor. Some IOC register bits are unused, and some
pin polarities are different to IOC. Refer to figure 4.13 for the register bit allocations, and to the table below for the
interrupt active levels. 

Npfiq Podule fiq input.  Level triggered, active low

Npirq Podule irq input. Level triggered, active low

Nsintr Serial interrupt input. Level triggered active low

Nscirq SCSI interrupt. Level triggered active low 

Nfintr Floppy interrupt request. Level triggered, active low

Nindex Floppy disc index input. Falling edge triggered

flyback Flyback from VIDC, rising edge triggered

fdrq Floppy drq interrupt. Level triggered, active high

pintr Printer interrupt request. Rising edge triggered

Niext Extended interrupt. Level triggered, active low

Table 4.2 Interrupt active polarities

There is a control register which provides access to a small number of I/O pins. These are used for the I2C interface, and
for the ID chip interface. The ID pin is held low during reset, and then tri-stated. The I2C interface pins are tri-stated on
reset. The registers are also shown in Figure 4.13.  The functionality of these registers is similar to the corresponding
registers in IOC, except it is not possible to generate a FIQ from the ID I/O bit, and not all the bits in the register are
implemented. Refer to the IOC data sheet, and figure 4.13 for further detail.
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1 TM1 TM0 POR Flybk Nindex Pintr

IRQA Interrupt Register

1 1 ID 1 I2CDI2CC

I/O Control Register

TM1 TM0 POR Flybk Nindex0

IRQA Clear Register

KbRx KbTx Npirq Nfintr NscirqNsintr Npfiq

IRQB Interrupt Register

1 Npfiq Nsintr Fdrq

FIQ Interrupt Register

Request (R)
Mask (R/W)

Status (R)

Clear (W)

Status (R)
Request (R)
Mask (R/W)

Status (R)
Request (R)
Mask (R/W)

Control (R/W)NindexFlybk

Pintr

Niext

Niext

7 0

7 0

7 0

7 0

7 0

Figure 4.13  I/O Control and Interrupt Registers

Two timers, the same as those in IOC are provided, which are clocked at the same 2MHz rate. Note that the IOC
documentation is incorrect in stating that Tinterval = latch/2µS, it should say (latch+1)/2µS. Note also that if a latch
command is issued immediately after a go command, the value latched may be the new value, but may be the old value of
the counter. This also occurs in IOC, and should therefore not be a problem.

Mouse and keyboard interface

The mouse interface uses four pins to read quadrature information for X and Y mouse positions. Two 16-bit counters
(MOUSEX and MOUSEY) are used to record the mouse movement and can be read by the processor. Clocking
information is prevented from reaching the counters while the processor reads them, in such a way that no counts will be
lost. Refer to 0197,256/FS 'Medusa Mouse Interface Hardware' for more details of the mouse interface.

RxPar Ndata NclockTxE TxB RxF RxB

Keyboard control register (KBDCR)
7 0

Enable

Figure 4.14 Keyboard control register

The keyboard interface uses two pins to communicate with a standard PC keyboard. The software interface is similar to
the IOC keyboard interface and interrupts may be generated on character transmission and reception. Receive and
transmit registers, each of 8 bits, are provided mapped to the same address. An 8-bit control register (KBDCR) provides
access to the received parity bit (RxPar). Out-going parity is generated automatically. Direct access to the clock and data
pins is provided in this register, via the Ndata and Nclock bits. Writing a 1 to one of these bits takes the corresponding pin
low.  In addition, four status bits may be read from the control register, for applications which are not interrupt driven.
The TxE bit indicates that the transmit register is empty, and hence may be written. The RxF bit indicates that the receive
register is full, and hence may be read. The TxB and RxB bits indicate that transmission or reception is in progress,
though should not normally be needed when interrupts rather than polling is used with the keyboard interface, as will
normally be the case. The Enable bit must be high for the interface to be enabled. When low, the keyboard state machine
is held in its reset state. Refer to 0197,255/FS, 'Medusa Keyboard Interface Hardware' for more details of the keyboard
interface.
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ID and version registers

IOMD contains three byte-wide registers that allow the CPU to read the JTAG part number and version number. These
registers are read only registers. Writing to them invokes various test modes that may cause the device to malfunction. See
the register table for details of the addresses and data in each register.

Reset and power-on reset

IOMD has an active high power on reset input, with schmitt level input, and a bidirectional active low reset pin. The reset
pin is driven low during power on reset, and may be pulled low at any time to reset the chip. The ID I/O bit is driven low
during reset. The POR bit in the IRQA interrupt register is set on power on reset. The JTAG interface is reset by an
internal power on reset cell in IOMD.

During reset, Nfiq becomes an input and taking it low invokes test features. Nfiq should be pulled up by an external
pull-up resistor

Linear sound system

The linear sound system is based around a stereo sound CODEC (eg Analog Device's AD1848), and IOMD has a
dedicated interface to this device. The interface consists of 5 pins:- Nsndcs, spdrq, scdrq, Nspdack, and Nscdack. 

The sound CODEC is an 8-bit parallel interface peripheral connecting to the IOMD I/O bus. Data can be transferred to the
device via programmed I/O or DMA. IOMD has two sound DMA channels for this purpose. The CODEC has two DMA
channels, the capture channel and the playback channel. The sound capture channel can only be used for sound sampling.
The sound playback channel can be configured for either playback or capture. The CODEC sound capture channel shares
a DMA address generator with the VIDC sound playback channel, however since the CODEC can be configured to
provide sound capture over its playback DMA channel, there is only limited restriction caused by this. It is thus not
possible to have CODEC playback and capture at the same time as the VIDC sound system is used.

Nsndcs is the sound chip select signal, and is a general purpose chip select with programmable timing, the same as the
SCSI and combo chip selects. The sound chip select timing is controlled by bits 5:4 in the IOTCR register. It is
recommended that timing B is selected for normal operation with the CODEC. spdrq is the sound playback DMA request
signal, and Nspdack the corresponding DMA acknowledge signal. scdrq is the sound capture DMA request, and Nscdack
the DMA acknowledge for this.

The sound CODEC can be configured in a number of modes, and these in turn affect the number of bytes per sample that
must be transferred. Mono 8 bit is 1 byte/sample. Stereo 8-bit or mono 16 bit is 2 bytes/sample, and stereo 16-bit is 4
bytes/sample. It is not possible to have simultaneous playback and capture with differing numbers of bytes/sample. In
addition to the increment field in the DMA address generator, the IOTCR must be programmed with the number of bytes
to be transferred to the CODEC per sample. Bits 7:6 of the IOTCR control the number of bytes transferred, as shown in
figure 4.11. IOMD uses a burst DMA transfer to transfer all bytes of a sample. For each playback sample, the data to be
transferred is read from memory, and stored in a latch in the funnel. Then each byte of the sample is output to the
CODEC, least significant byte first in a single burst transfer. For each capture sample, each byte of the sample is read
from the CODEC, and stored in a latch in the funnel, and then the complete sample is transferred to memory in a single
access. The timing for reads and writes to the sound CODEC is the same. An example of a 4 byte/sample read is shown
below.

      clk16

    Nscdack

       Nior

Figure 4.15 Sound DMA timing (4 bytes/sample, read)

Functional Specification IOMD ASIC

Sheet 21 of 37 0297,030/FS Issue 4 



Second processor support

IOMD has limited support for a second processor. This essentially consists of the Npreq pin. This is a signal similar to
Nmreq, but with higher priority. In order to add a '486 second processor to a computer based on IOMD, it is necessary to
make the '486 card emulate an ARM bus interface, by the use of some interface logic, that would normally be
implemented in an interface ASIC. This ASIC must ensure that unaligned accesses are converted to ARM byte or word
accesses, and make sequential accesses truly sequential (thus a '486 cache line fill would have to be modified if it does not
start on a quad word boundary). The interface logic must also do all the arbitration between the second processor and the
ARM, and thereby decide when to assert its Npreq signal.

The second processor interface logic must wait for a safe time, stop the ARM bus clock using the Nwait pin, and then
perform an access, or burst of sequential accesses. The second processor interface bus controller arbitrates in MCLK high
periods, and drives registered outputs from the falling edge of MCLK.

An additional I-cycle (ie. non-memory request cycle) is inserted between the ARM and second processor bus bursts. The
second processor can only request the bus if it sees that the ARM is about to do an internal cycle. This first internal cycle
is stretched to the ARM (with NWAIT) and merged with the next sequential bus cycle by the second processor with no
cycle overhead, by removing ABE and driving second processor addesses onto the bus. ABE is the ARM bus enable
signal, which output-enables the address and data buses, and relevant control lines. The second processor interface must
also observe the ARM LOCK signal and must not request the bus in the internal cycle between the read and write cycles
of a SWAP instruction.

When the second processor interface completes a transfer, or burst of sequential transfers, it removes its pipelined request,
and on the following cycle removes the ABE signal. One cycle later still, it removes the  NWAIT signal to the ARM. An
internal cycle for bus turnaround is inserted whilst ABE is enabled, but the ARM clock is stopped by NWAIT, to ensure
correct merged internal - sequential operation, should the ARM require the bus immediately.

If the second processor interface removes its request for only one MCLK period and then reasserts it, IOMD does not
relinquish the bus to the ARM and thus 486-Locked cycles (for example) may be performed. If however more than one
cycle of nPREQ removal occurs then the interface must relinquish the bus and wait for an ARM entering Internal cycle
condition.

<ARM> < INT > < 486 >

mclk

Nmreq

<buscyc> < 486 > < 486 > < INT > <ARM> < INT >

Npreq

abe

Nwait

pgnt

Figure 4.16 Second processor interface timing (assuming '486 second processor)

In the diagram above (figure 4.16), <buscyc> indicates the bus cycle currently being executed. The diagram shows a '486
second processor performing a two-word burst access. The first internal cycle, shown as <INT> in the diagram is the extra
internal cycle added for the bus changeover. The first 486 cycle, shown by the <486> symbol would actually be the I-
cycle of a merged I-S cycle, as IOMD only uses I-cycles and S-cycles. Therefore N-cycles are made from merged I-S
cycles, as is done by the ARM3 for example. Hence there is an extra I-cycle inserted by IOMD during bus change-over.
The pgnt signal shown in the diagram above is the mclk qualifier for the second processor, and thus is effectively active
when the '486 second processor has the bus.
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5. Medusa Memory Map

The Medusa physical memory map is shown below. For the purposes of DMA, the VRAM appears in the whole of the
bottom half of the address space, as bit 28 of the DMA address selects between DRAM and VRAM in this
implementation. The total memory map is 512MBytes, as only 29 address bits from the ARM are connected to IOMD.
However, this does not prevent future machines having a larger physical memory map.

Physical address Address Contents

(MBytes) (Hex)

0 0000 0000 Main ROM

16 0100 0000 Extension ROM

32 0200 0000 VRAM

48 0300 0000 I/O (including old podules, and IOMD registers)

64 0400 0000 Reserved 

128 0800 0000 New 'extended address space' expansion cards

256 1000 0000 DRAM SIMM 0, bank 0

320 1400 0000 DRAM SIMM 0, bank 1

384 1800 0000 DRAM SIMM 1, bank 0

448 1C00 0000 DRAM SIMM 1, bank 1

512 2000 0000 End (reserved for more more DRAM in future implementations)

Since each SIMM may have one or two banks on it, and as each bank will usually be less than 64MB, the physical DRAM
address map may be discontiguous.

The podule address space is the same as current machines. The extended expansion card address space allocates 16MB
per card, and there may be up to 8 cards in total.

The I/O address space beginning at 0300 0000 is allocated as shown below. The area  between 0300 0000 and 0320 0000
repeats 8 times. The area from 0320 0000 to 0340 0000 contains IOMD internal registers plus podules as in the current
Archimedes memory map. 

There are two types of peripheral access supported by IOMD. PROG address space is accessed with fixed timing and the
access cycles are not divisible by DMA. True I/O address space accesses may be interrupted by DMA. The IOMD
internal PROG address space is from 0320 0000 to 0324 0000 and this includes all IOMD internal registers. There is also
an external PROG address space from 0340 0000 to 037F FFFF. Accesses to 0340 0000 to 035F FFFF activate the Nprog
pin. Accesses to addresses from 0360 0000 to 037F FFFF do not activate the Nprog pin. This area is intended for the 486
card. Accesses to addresses in the range 0350 000 to 035F FFFF and 0370 0000 to 037F FFFF arbitrate for the memory
bus on quad word boundaries, and do not arbitrate for the VIDC programming bus first. Accesses in the range 0340 0000
to 034F FFFF and 0360 0000 to 036F FFFF arbitrate for the memory bus on every accesses, and arbitrate for the VIDC
data bus first. Thus VIDC should be programmed at location 0340 0000, as this activates the Nprog pin, and arbitrates for
the VIDC programming bus at the start of the cycle.

True I/O address space is from 0300 0000 to 0400 0000 excluding those areas which are mapped to PROG space as
detailed above. There is also another area of I/O space from 0800 0000 to 1000 0000. The I/O address space is broken
down as shown below.

Accesses to SIO space in the S1 to S3 area are assumed to be internal peripherals by IOMD, and will not enable the
podule buffer on a read, and accesses to SIO space in the S4 to S7 area are assumed to be external peripherals, and will
thus enable the podule buffer on a read. The podule buffer is always output enabled when not reading from an on board
device.
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I/O Address (Hex) Contents

0300 0000 Internal MEMC podules (asserts module select [Nms])

0301 0000 Combo chip select signal

0301 2000 Combo dack address space

0302 A000 Combo dack+TC address space

0302 B000 SCSI programmed I/O address space

0302 C000 CODEC sound chip select signal

0303 0000 to 0303 FFFF External MEMC podules (asserts module select [Nms])

0320 0000 IOMD registers (internal prog area, does not assert Nprog pin)

0321 0000 Simple expansion cards and peripherals (asserts Nsio pin)

0340 0000 External prog space. Asserts Nprog pin. Arbitrates for video bus. Intended for VIDC register programming

0350 0000 External prog space. Asserts Nprog pin. Does not arbitrate for the video bus

0360 0000 External prog space. Does not assert Nprog pin. Arbitrates for video bus. Unlikely to be useful

0370 0000 External prog space. Does not assert Nprog pin. Does not arbitrate for video bus. Intended for '486 card.

0380 0000 to 0400 0000 Reserved (Action as for 0370 0000 - 037F FFFF)
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6. IOMD registers

The following table lists the registers in IOMD. The base address of these registers is &0320 0000, the same as the
address of the IOC internal registers in the current architecture. The size field indicates the width of the register, although
some bits may not be used in a register. 

Name Address Size Read Write Function Reset state

IOCR 0 (8) Status Control I/O control -1-

KBDDAT 4 (8) Rx Data Tx Data Keyboard data -x-

KBDCR 8 (8) Status Control Keyboard control -0-

IRQSTA 10 (8) Status --- IRQA status

IRQRQA 14 (8) Request Clear IRQA request/clear -x-

IRQMSKA 18 (8) Mask Mask IRQA mask -0-

IRQSTB 20 (8) Status --- IRQB status

IRQRQB 24 (8) Request --- IRQB request

IRQMSKB 28 (8) Mask Mask IRQB mask -0-

FIQST 30 (8) Status --- FIQ status

FIQRQ 34 (8) Request --- FIQ request

FIQMSK 38 (8) Mask Mask FIQ mask -0-

T0LOW 40 (8) Count Low Latch Low Timer 0 low bits -x-

T0HIGH 44 (8) Count High Latch High Timer 0 high bits -x-

T0GO 48 (8) --- Go command Timer 0 Go command -x-

T0LAT 4C (8) --- Latch command Timer 0 Latch cmd -x-

T1LOW 50 (8) Count Low Latch Low Timer 1 low bits -x-

T1HIGH 54 (8) Count High Latch High Timer 1 high bits -x-

T1GO 58 (8) --- Go command Timer 1 Go command -x-

T1LAT 5C (8) --- Latch command Timer 1 Latch cmd -x-

ROMCR0 80 (8) RomCr0 RomCr0 ROM control bank 0 -0-

ROMCR1 84 (8) RomCr1 RomCr1 ROM control bank 1 -0-

DRAMCR 88 (8) DramCr DramCr DRAM control -0-

VREFCR 8C (8) VrefCr VrefCr VRAM & refresh control -0-

FSIZE 90 (8) Size Size Flyback line size -x-

ID0 94 (8) ID0   --- Chip ID no. low byte

ID1 98 (8) ID1   --- Chip ID no. high byte

VERSION 9C (8) Version   --- Chip version number

MOUSEX A0 (16) MouseX MouseX Mouse X position -x-

MOUSEY A4 (16) MouseY MouseY Mouse Y position -x-

DMATCR C0 (8) DmaTcr DmaTcr DACK timing control -x-

IOTCR C4 (8) IoTcr IoTcr I/O timing control -x-

ECTCR C8 (8) EcTcr EcTcr Expansion card timing -x-

DMAEXT CC (8) DmaExt DmaExt DMA external control -x-
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Name Address Size Read Write Function Reset state

IO0CURA 100 (32) IO0CurA IO0CurA I/O DMA 0 CurA -x-

IO0ENDA 104 (32) IO0EndA IO0EndA I/O DMA 0 EndA -x-

IO0CURB 108 (32) IO0CurB IO0CurB I/O DMA 0 CurB -x-

IO0ENDB 10C (32) IO0EndB IO0EndB I/O DMA 0 EndB -x-

IO0CR 110 (8) IO0Control IO0Control I/O DMA 0 Control x0000000

IO0ST 114 (8) IO0Status   --- I/O DMA 0 Status xxxxx110

IO1CURA 120 (32) IO1CurA IO1CurA I/O DMA 1 CurA

IO1ENDA 124 (32) IO1EndA IO1EndA I/O DMA 1 EndA

IO1CURB 128 (32) IO1CurB IO1CurB I/O DMA 1 CurB as I/O 0

IO1ENDB 12C (32) IO1EndB IO1EndB I/O DMA 1 EndB

IO1CR 130 (8) IO1Control IO1Control I/O DMA 1 Control

IO1ST 134 (8) IO1Status   --- I/O DMA 1 Status

IO2CURA 140 (32) IO2CurA IO2CurA I/O DMA 2 CurA

IO2ENDA 144 (32) IO2EndA IO2EndA I/O DMA 2 EndA

IO2CURB 148 (32) IO2CurB IO2CurB I/O DMA 2 CurB as I/O 0

IO2ENDB 14C (32) IO2EndB IO2EndB I/O DMA 2 EndB

IO2CR 150 (8) IO2Control IO2Control I/O DMA 2 Control

IO2ST 154 (8) IO2Status   --- I/O DMA 2 Status

IO3CURA 160 (32) IO3CurA IO3CurA I/O DMA 3 CurA

IO3ENDA 164 (32) IO3EndA IO3EndA I/O DMA 3 EndA

IO3CURB 168 (32) IO3CurB IO3CurB I/O DMA 3 CurB as I/O 0

IO3ENDB 16C (32) IO3EndB IO3EndB I/O DMA 3 EndB

IO3CR 170 (8) IO3Control IO3Control I/O DMA 3 Control

IO3ST 174 (8) IO3Status   --- I/O DMA 3 Status

SD0CURA 180 (32) SD0CurA SD0CurA Sound DMA 0 CurA

SD0ENDA 184 (32) SD0EndA SD0EndA Sound DMA 0 EndA

SD0CURB 188 (32) SD0CurB SD0CurB Sound DMA 0 CurB as I/O 0

SD0ENDB 18C (32) SD0EndB SD0EndB Sound DMA 0 EndB

SD0CR 190 (8) SD0Control SD0Control Sound DMA 0 Control

SD0ST 194 (8) SD0Status   --- Sound DMA 0 Status

SD1CURA 1A0 (32) SD1CurA SD1CurA Sound DMA 1 CurA

SD1ENDA 1A4 (32) SD1EndA SD1EndA Sound DMA 1 EndA

SD1CURB 1A8 (32) SD1CurB SD1CurB Sound DMA 1 CurB as I/O 0

SD1ENDB 1AC (32) SD1EndB SD1EndB Sound DMA 1 EndB

SD1CR 1B0 (8) SD1Control SD1Control Sound DMA 1 Control

SD1ST 1B4 (8) SD1Status   --- Sound DMA 1 Status

CURSCUR 1C0 (32) CursCur CursCur Cursor DMA Current -x-

CURSINIT 1C4 (32) CursInit CursInit Cursor DMA Init -x-

VIDCUR 1D0 (32) VIDCur VIDCur Video DMA Current -x-

VIDEND 1D4 (32) VIDEnd VIDEnd Video DMA End -x-

VIDSTART 1D8 (32) VIDStart VIDStart Video DMA Start -x-

VIDINIT 1DC (32) VIDInit VIDInit Video DMA Init -x-

VIDCR 1E0 (8) VIDControl VIDControl Video DMA Control xx000000

DMAST 1F0 (8) Status --- DMA interrupt status

DMARQ 1F4 (8) Request --- DMA interrupt request

DMAMSK 1F8 (8) Mask Mask DMA interrupt mask -0-
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7. DMA Latency

The DMA priority scheme is as shown in the section on DMA channels. The four I/O channels operate on a round-robin
basis. All latencies are measured from the time a request is made to the time at which the transfer is complete. All
numbers are in nS unless stated otherwise.

The state machine which controls bus activity has a number of points at which arbitration for the bus takes place.
Arbitration always takes place while the processor performs an idle cycle and before it starts a memory access. In
addition, arbitration occurs during sequential memory accesses as follows:-

DRAM/VRAM - sequential bursts of up to 8 words can occur uninterrupted by DMA. In the absence of DMA

requests these bursts can extend to 256 words.

ROM - uninterrupted burst accesses of up to 4 words can occur. If non-burst ROM is used, arbitration occurs on

every access.

PROG - uninterrupted bursts of up to 4 words can occur where the access is to an IOMD internal register. Where

the access is to the VIDC control register, arbitration occurs on every word.

I/O - an IORQ/IOGT mechanism is used for programmed I/O and (non-I/O) DMA can occur during I/O cycles.

Cursor

Requested by Nvidrq from VIDC20 while vNc (also from VIDC20) is low indicating that cursor data is required. Cursor
transfers occur at the end of line and during HSYNC. At this time, we know that no video SAM transfers can occur.

Criticality is that transfer must complete before vNc goes high again. This is a programmable quantity and can be
configured for the value obtained here. Repetition is once every other line and hence unlikely to be below 30uS.

Synchronise Nvidrq (2 * rclk in slow ROM)                  500

        Wait for longest memory access (3 * ROM burst)             375

        Time for DMA to complete (N+3S)                            350

                                                                ——

        Total to finish                                         1225ns

VIDC Sound

Requested by Nsndrq from VIDC20. Criticality is 3uS which is the time in which a single byte of sound data is consumed
by VIDC at the highest sample rate. Repetition is much slower than this as 16 bytes are fetched on each DMA. Fastest
repetition is therefore 48uS.

Sound requests can occur at the same time as cursor requests and so the latency is that of the cursor DMA plus the time to
do the transfer. VIDC sound can also occur at the same time as SAM video data is clocked from the VRAM. However,
cursor and SAM video data cannot occur at the same time. Therefore there are two cases - when video is active, and data
is being transferred from the SAM, and when video is inactive, but a cursor request could occur.

The longest SAM transfer adds 28 words to the VIDC FIFO, whilst VIDC is removing data at 160MB/sec. In addition
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there is synchronisation time to move the VIDC20 clock from rclk to vclk and back to rclk. Worst case is around 2uS. 

The other case, which is the worst case, is where video SAM data is not active, but cursor data is being requested.

        Perform Cursor DMA                                      1225

        Synchronise to vclk, SAM transfers, sync to rclk         687

        Time for DMA to complete (N+3S)                          350

                                                                ——

                                                                2262

Video Transfer

This DMA does not move data via the data bus, but initiates a SAM copy in the VRAM. The criticality is around 11uS
which is the time to empty a half SAM at the highest VIDC clocking rate. The repetition rate is the same.

        Synchronise qsf (2 * rclk in slow ROM)                   500

        Wait for longest memory access (3 * ROM burst)           375

        Perform VIDC sound DMA  (687+350)                       1037

        Perform VIDC cursor DMA (350)                            350

        Time for DMA to complete (N cycle)                       156

                                                                ——

                                                                2418

Codec Sound

Single word DMA initiated by the external codec. Criticality and repetition rate are 21uS, determined by the highest
sampling rate which is 48kHz. All of the above DMAs can stack up before this one is serviced. The CODEC must also
arbitrate for the I/O bus, however the memory bus latency is worse than the I/O bus latency, and I/O and memory bus
usage is decoupled.

        Perform video transfer DMA & all others                2418

        Time for DMA to complete (N cycle)                         156

                                                                ——

                                                                2574ns

DRAM Refresh

Not a DMA but treated like one. Criticality and repetition rate are programmable and the worst case is 16uS for both. All
of the above DMAs could stack up in front of a refresh.

        Perform codec sound DMA & all others                    2574

        Time for refresh to complete (6 * clk32)                   187

                                                                ——

                                                               2761ns
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I/O DMA

I/O DMA has latency aspects from both the memory bus and the I/O bus, however the I/O bus latency dominates.

 Perform 3 slow I/O DMAs 1688

Perform 2 sound DMAs 1875

Finish slow I/O access 2000

Perform slow I/O DMA 562.5   

6128nS

ARM Latency

The ARM latency depends upon the memory bus only, not on the I/O bus latency, unless the ARM is accessing the I/O
bus. Thus, assuming the ARM is not accessing the I/O bus :

Time for all other DMA's, excluding I/O DMA 2761

Time to perform 1 I/O memory DMA 156

Time to perform 2 CODEC memory DMA's 312

3229ns
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8. Boundary scan test interface

The boundary-scan interface conforms to the IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan
Architecture (please refer to this document for an explanation of the terms used in this section and for a description of the
TAP controller states.)

Overview

The  boundary-scan interface provides a means of testing the core of the device when it is fitted to a circuit board, and a
means of  driving and sampling all the external pins of the device irrespective of the core state.  This latter function
permits testing of both the device's electrical connections  to the circuit board, and (in conjunction with other devices on
the circuit board having a similar interface) testing the integrity of the circuit board connections between devices. The
interface intercepts all  external connections within the device, and each such "cell" is  then connected together to form a
serial register (the boundary scan register). The whole interface is controlled via 4 dedicated pins: TDI, TMS, TCK,  and
TDO.

Block diagram

Device ID Register

Bypass Register

Instruction Decoder

Instruction Register

TAP

CONTROLLER

TMS

TCK

TDI

TDO

Core Logic

NTDOEN

BSINCELL

BSOUTCELL

BSOUTCELL

I/O CELL
BSINCELL

BSOUTNENCELL

BSINENCELL

IOMD

NTRST

POR Cell

Figure 7.1 Boundary scan block diagram
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Reset

The boundary-scan interface includes a state-machine controller (the TAP controller). The state machine is automatically
reset on power-up by the power on reset cell.

The action of reset  is as follows:

• System mode is selected (ie the boundary scan chain does NOT intercept any of the signals passing between the
pads and the core).

• IDcode mode is selected. If TCK is pulsed, the contents of the ID register will be clocked out ofTDO.

Pullup resistors

The 1149.1 standard effectively requires that TDI, and TMS  should have internal pullup resistors. IOMD includes these
resistors.

Instruction register

The instruction register is 4 bits in length. There is no parity bit.

The fixed value loaded into the instruction register during the

CAPTURE-IR  controller state is:    0001

Public instructions

The following public instructions are supported:

INSTRUCTION              BINARY CODE 

BYPASS 1111

SAMPLE/PRELOAD    0011

EXTEST       0000

INTEST            1100

IDCODE            1110

HIGHZ             0111

CLAMP          0101

CLAMPZ       1001

In the descriptions that follow, TDI and TMS are sampled on the rising edge of TCK  and all output transitions on TDO
occur as a result of the falling edge of TCK.

BYPASS (1111)

The BYPASS instruction connects a 1 bit shift register (the BYPASS register) between TDI and  TDO.

When the BYPASS instruction is loaded into the instruction register, all the boundary-scan cells are placed in their normal
(system) mode of operation. This instruction has no effect on the system pins. 

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the  SHIFT-DR state, test data is shifted into the
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bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first bit shifted out will be a zero.
The bypass register is not affected in the UPDATE-DR state.

SAMPLE/PRELOAD (0011)

The BS (boundary-scan) register is placed in test mode by the SAMPLE/PRELOAD instruction.

The SAMPLE/PRELOAD instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the SAMPLE/PRELOAD instruction,

all the boundary-scan cells are placed in their normal system mode of operation.

In the CAPTURE-DR  state, a snapshot of the signals at the boundary-scan cells is taken on the rising edge of TCK.
Normal system operation is unaffected. In the SHIFT-DR state, the sampled test data is shifted out of the BS register via
the TDO pin, whilst new data is shifted in via the TDI pin to preload the BS register parallel input latch. In the UPDATE-
DR state, the preloaded data is transferred into the BS register parallel output latch. Note that this data is not applied to the
system logic or system pins while the SAMPLE/PRELOAD instruction is active. This instruction should be used to
preload the boundary-scan register with known data prior to selecting the INTEST or EXTEST instructions (see the table
below for appropriate guard values to be used for each boundary-scan cell).

EXTEST (0000)

The BS (boundary-scan) register is placed in test mode by the EXTEST instruction.

The EXTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the

boundary-scan cells are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system pins and outputs from the boundary-scan output cells to the system
pins are captured by the boundary-scan cells. In the SHIFT-DR state, the previously captured test data is shifted out of the
BS register via the TDO pin, whilst new test data is shifted in via the TDI pin to the BS register parallel input latch. In the
UPDATE-DR state, the new test data is transferred into the BS register parallel output latch. Note that this data is applied
immediately to the system logic and system pins.  The first EXTEST vector should be clocked into the boundary-scan
register, using the SAMPLE/PRELOAD instruction, prior to selecting INTEST to ensure that known data is applied to the
system logic.

INTEST (1100)

The BS (boundary-scan) register is placed in test mode by the INTEST instruction.

The INTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the boundary-scan cells are placed in their test
mode of operation.

In the CAPTURE-DR state, the inverse of the data supplied to the core logic from input boundary-scan cells is captured,
while the true value of the data that is output from the core logic to output boundary-scan cells is captured. In the SHIFT-
DR state, the previously captured test data is shifted out of the BS register via the TDO pin, whilst new test data is shifted
in via the TDI pin to the BS register parallel input latch. In the UPDATE-DR state, the new test data is transferred into the
BS register parallel output latch. Note that this data is applied immediately to the system logic and system pins. The first
INTEST vector should be clocked into the boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to
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selecting INTEST to ensure that known data is applied to the system logic.

Single-step operation is possible using the INTEST instruction.

IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register) between TDI and TDO. The ID
register is a 32-bit register that allows the manufacturer, part number and version of a component to be determined
through the TAP.

When the instruction register is loaded with the IDCODE instruction, all the boundary-scan cells are placed in their
normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code (specified at the end of this section) is captured by the ID
register. In the SHIFT-DR state, the previously captured device identification code is shifted out of the ID register via the
TDO pin,whilst data is shifted in via the TDI pin into the ID register. In the UPDATE-DR state, the ID register is
unaffected.

HIGHZ (0111)

The HI-Z instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the HI-Z instruction is loaded into the instruction register, all outputs are placed in an inactive drive state.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the  SHIFT-DR state, test data is shifted into the
bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first bit shifted out will be a zero.
The bypass register is not affected in the UPDATE-DR state.

CLAMP (0101)

The CLAMP instruction connects a 1 bit shift register  (the BYPASS register) between TDI and TDO.

When the CLAMP instruction is loaded into the instruction register, the state of all output signals is defined by the values
previously loaded into the boundary-scan register. A guarding pattern (specified for this device at the end of this section)
should be pre-loaded into the boundary-scan register using the SAMPLE/PRELOAD instruction prior to selecting the
CLAMP instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the  SHIFT-DR state, test data is shifted into the
bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first bit shifted out will be a zero.
The bypass register is not affected in the UPDATE-DR state.

CLAMPZ (1001)

The CLAMPZ instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the CLAMPZ instruction is loaded into the instruction register, all outputs are placed in an inactive drive state, but
the data supplied to the disabled output drivers is derived from the boundary-scan cells. The purpose of this instruction is
to ensure, during production testing, that each output driver can be disabled when its data input is either a  0 or a 1.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is shifted into the
bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first bit shifted out will be a zero.
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The bypass register is not affected in the UPDATE-DR state.

Test data registers

Bypass Register

Purpose: This is a single bit register which can be selected as the path between  TDI and TDO to allow the device to be
bypassed during boundary-scan testing.

Length: 1 bit

Operating Mode: When the BYPASS instruction is the current instruction in the instruction register, serial data is
transferred from TDI to TDO in the SHIFT-DR state with a delay of one TCK cycle.

There is no parallel output from the bypass register.

A logic '0’ is loaded from the parallel input of the bypass register in the  CAPTURE-DR state.

IOMD Device identification (ID) code register

Purpose: This register is used to read the 32-bit device identification code. No programmable supplementary identification
code is provided.

Length: 32 bits

The format of the ID register is as follows:

2827 2423 21 111215162019 10 931 012345678131425 18172629 2230

version part number manufacturer identity

1

In hexadecimal :  IOMD fabricated by GPS      :  1D4E706F

The ID is also reflected in the IOMD status registers, in locations 094 to 09C inclusive (see section 6). Location 094
contains the low byte of the part number. Location 098 contains the high byte of the part number. Location 09C contains
the version number. The manufacturer number is not reflected in the IOMD status registers. These registers must not be
written to,  as writing to these registers invokes various test modes and features, that may cause the device to behave in an
unpredictable manner.

Operating Mode: When the IDCODE instruction is current, the ID register is selected as the serial path between TDI and
TDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel inputs during the CAPTURE-DR state.
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IOMD Boundary scan (BS) register

Purpose: The BS register consists of a serially connected set of  cells around the periphery of the device, at the interface
between the core logic and the system input/output pads. This register can be used to isolate the core logic from the pins
and then apply tests to the core logic, or conversely to isolate the pins from the core logic and then drive or monitor the
system pins.

Operating modes: The BS register is selected as the register to be connected between TDI and TDO only during the
SAMPLE/PRELOAD, EXTEST and INTEST instructions. Values in the BS register are used, but are not changed, during
the CLAMP and CLAMPZ instructions.

In the normal (system) mode of operation,  straight-through connections between the core logic and pins are maintained
and normal system operation is unaffected. 

In TEST mode (i.e. when either EXTEST or INTEST is the currently selected instruction), values can be applied to the
core logic or output pins independently of the actual values on the input pins and core logic outputs respectively.
Additional boundary-scan cells are interposed in the scan chain in order to control the enabling of tristateable buses.

The correspondence between boundary-scan cells and system pins, system direction controls and system output enables is
(will be) as shown on the following page. The cells are listed in the order in which they are connected in the boundary-
scan register, starting with  the cell closest to nTDI. All boundary-scan register cells at input pins can apply tests to the
on-chip core logic. The EXTEST guard values specified in the table below should be clocked into the boundary-scan
register (using the SAMPLE/PRELOAD instruction) before the EXTEST instruction is selected, to ensure that known
data is applied to the core logic during the test. The INTEST guard values shown in the table below should be clocked
into the boundary-scan register (using the SAMPLE/PRELOAD instruction) before the INTEST instruction is selected to
ensure that all outputs are disabled. These guard values should also be used when new EXTEST or INTEST vectors are
clocked into the boundary-scan register. 

Output enable boundary-scan cells
To Be Determined

Single-step operation

IOMD is a static design and there is no minimum clock speed. It can therefore be single-stepped while the INTEST
instruction is selected. This can be achieved by serialising a parallel stimulus and clocking the resulting serial vectors into
the boundary-scan register. When the boundary-scan register is updated, new test stimuli are applied to the core logic
inputs; the effect of these stimuli can then be observed on the core logic outputs by capturing them in the boundary-scan
register.
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9. Package and pinout
IOMD is packaged in a 208 pin QFP package, with a 0.5mm pin pitch. Pin 1 is at the top left corner, and pin numbering
proceeds anti-clockwise, as shown in the diagram 9.1 below.

West

South

East

North

1

52
53 104

105

156

157208

0297,030

© Acorn 1993

IOMD

Rev. A

GPS ARM

Date Code Static Sensitive Symbol
Assembly Location

Diffusion Location

Figure 9.1 Pin location diagram for 208 SQFP package

The Packaging must have the following markings -

1. Part Number in the following format - 0297,030

2. A Revision Level - located under part number

3. Name of device - IOMD

4. Manufacturers name or Logo

5. Acorn name or logo with copyright symbol and year

6. Pin 1 identification such as a dot

7. Date Code

The Revision Level is the control on the device and reflects the build standard.

If any changes are made to the build standard of the device , then the Revision Level must be updated and Acorn must be
informed of, and agree to, any alterations.

The Revision level of the device is 'A'.

The Manufacturer can add any further information such as Assembly Location etc, as long as the markings remain of a
suitable size and are legible.
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West South East North
1 : XNfiq 53 : XNpboe 105 : XNvras 157 : XNsccs
2 : XNirq 54 : Xlrnw 106 : Xsc 158 : Xtc
3 : Xrclk 55 : Vss 107 : Xpclk 159 : XNcdack
4 : Vss 56 : Xbd[0] 108 : Vss 160 : Vss
5 : XNmreq 57 : Xbd[1] 109 : Xqsf 161 : Xkdata
6 : XNpreq 58 : Xbd[2] 110 : Xflybk 162 : Xkclk
7 : Xa[0] 59 : Xbd[3] 111 : Xvnc 163 : XNscirq
8 : Xa[1] 60 : Xbd[4] 112 : XNsndrq 164 : XNsintr
9 : Xa[2] 61 : Xbd[5] 113 : XNsndak 165 : XNfintr

10 : Xa[3] 62 : Xbd[6] 114 : XNvidrq 166 : Xpintr
11 : Xa[4] 63 : Xbd[7] 115 : XNvidak 167 : Xfdrq
12 : Xa[5] 64 : Xbd[8] 116 : XNcdoe 168 : XNiext
13 : Xa[6] 65 : Xbd[9] 117 : XNprog 169 : Xd[0]
14 : Xa[7] 66 : Xbd[10] 118 : Xra[0] 170 : Xd[1]
15 : Xa[8] 67 : Xbd[11] 119 : Xra[1] 171 : Xd[2]
16 : Xa[9] 68 : Xclk16 120 : Xra[2] 172 : Xd[3]
17 : Vss 69 : Vss 121 : Vss 173 : Vss
18 : Vdd 70 : Vdd 122 : Vdd 174 : Vdd
19 : Xa[10] 71 : Xref8m 123 : Xra[3] 175 : Xd[4]
20 : Xa[11] 72 : Xbd[12] 124 : Xra[4] 176 : Xd[5]
21 : Xa[12] 73 : Xbd[13] 125 : Xra[5] 177 : Xd[6]
22 : Xa[13] 74 : Xbd[14] 126 : Xra[6] 178 : Xd[7]
23 : Xa[14] 75 : Xbd[15] 127 : Xra[7] 179 : Xd[8]
24 : Xa[15] 76 : XNeasis 128 : Xra[8] 180 : Xd[9]
25 : Xa[16] 77 : XNiorq 129 : Xra[9] 181 : Xd[10]
26 : Xa[17] 78 : XNiogt 130 : Vss 182 : Xd[11]
27 : Xa[18] 79 : XNbl 131 : Xra[10] 183 : Xd[12]
28 : Xa[19] 80 : XNindex 132 : Xra[11] 184 : Xd[13]
29 : Xa[20] 81 : Xdreq[0] 133 : XNras[3] 185 : Xd[14]
30 : Xa[21] 82 : Xdreq[1] 134 : XNras[2] 186 : Xd[15]
31 : Xa[22] 83 : Xdreq[2] 135 : XNwe[1] 187 : Xd[16]
32 : Xa[23] 84 : Xdreq[3] 136 : XNras[1] 188 : Xd[17]
33 : Xa[24] 85 ; XNior 137 : XNras[0] 189 : Xd[18]
34 : Xa[25] 86 : XNiow 138 : XNwe[0] 190 : Xd[19]
35 : Vdd 87 : Vdd 139 : Vdd 191 : Vdd
36 : Vss 88 : Vss 140 : Vss 192 : Vss
37 : Xa[26] 89 : Xclk64 141 : XNcas[0] 193 : Xd[20]
38 : Xa[27] 90 : Xpor 142 : XNcas[1] 194 : Xd[21]
39 : Xa[28] 91 : XNreset 143 : XNcas[2] 195 : Xd[22]
40 : XNrw 92 : XNms 144 : XNcas[3] 196 : Xd[23]
41 : XNbw 93 : Xready 145 : Xspdrq 197 : Xd[24]
42 : Xiicd 94 : Xid 146 : Xscdrq 198 : Xd[25]
43 : Xiicc 95 : XNdack[0] 147 : Xmsy[1] 199 : Xd[26]
44 : Xtdi 96 : XNdack[1] 148 : Xmsy[0] 200 : Xd[27]
45 : Xtms 97 : XNdack[2] 149 : Xmsx[1] 201 : Xd[28]
46 : Xtck 98 : XNdack[3] 150 : Xmsx[0] 202 : Xd[29]
47 : Xtdo 99 : Vss 151 : XNpirq 203 : Xd[30]
48 : XNwbe 100 : XNsio 152 : XNpfiq 204 : Xd[31]
49 : XNrbe 101 : XNdt[0] 153 : XNspdack 205 : XNromcs
50 : XNblw 102 : XNdt[1] 154 : XNscdack 206 : Vss
51 : XNblr 103 : XNse 155 : XNsndcs 207 : Xmclk
52 : Xclk2 104 : Xdsf 156 : XNccs 208 : Xdbe
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