
Advanced RISC Machines

ARM

Document Number: ARM DDI 0050C

Issued: Oct 1995

Copyright Advanced RISC Machines Ltd (ARM) 1995

All rights reserved

ARM 7500

Data Sheet

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Proprietary Notice

ARM and the ARM Powered logo are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this
datasheet may be adapted or reproduced in any material form except with the prior written
permission of the copyright holder.

The product described in this datasheet is subject to continuous developments and
improvements. All particulars of the product and its use contained in this datasheet are given by
ARM in good faith. However, all warranties implied or expressed, including but not limited to
implied warranties or merchantability, or fitness for purpose, are excluded.

This datasheet is intended only to assist the reader in the use of the product. ARM Ltd shall not
be liable for any loss or damage arising from the use of any information in this datasheet, or any
error or omission in such information, or any incorrect use of the product.

Change Log

Issue Date By Change

A Oct 1994 PO/GB/EH/BJH Created.
B Dec 1994 PB Edited.
C Oct 1995 GB/KC/EH Edited. Preliminary timings added.

Preface

Preface-ii
ARM7500 Data Sheet

ARM DDI 0050C

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 ARM7500 is a highly integrated single chip computer based around the ARM RISC microprocessor

macrocell. ARM7500 contains all the functionality required to create a complete computing system with the

minimum of external components.The wide range of features incorporated into ARM7500 make it an

extremely flexible device, which can be programmed according to the required application to optimise for

high performance or low power, or a combination of both.

Features

■ Highly integrated RISC computer

■ 30 Dhrystone 2.1 MIPS ARM7 core @ 33MHz

■ 4 Kbyte combined instruction and data cache

■ Flexible Memory Management Unit

■ Supports 16 or 32 bit wide memory via internal ROM and DRAM controllers

■ 3 channel DMA

■ I/O controller

■ 2 serial ports, 4 A/D channels

■ 8 stereo sound channels

■ 32-bit CD quality serial sound channel

■ Video controller with up to 120MHz pixel clock

■ 16 million colours from 256-entry palette

■ 16-level grey scales for LCD displays

■ Suspend and stop power saving modes

Block diagram of the ARM 7500

Applications

ARM7500 is ideally suited to those applications requiring a compact, low-cost, power-efficient, high-

performance, RISC computing system on a single chip. These include:

Multimedia Interactive visual display terminals

Portable Computing Handheld test instrumentation

Games consoles Desktop computing

MMU

Write buffer

Data buffer

ARM processor

Address
Buffer

4Kbyte
cache

ARM7
CPU

I/O
Control

Video and Memory
ControlSound

ARM7500 Data Sheet
ARM DDI 0050C

Contents-1

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

1 Introduction 1-1

1.1 Introduction 1-2

1.2 Functional block diagram 1-2

1.3 ARM processor CPU 1-3

1.4 Video and sound macrocell 1-4

1.5 Clock control and power management 1-4

1.6 Memory system 1-4

1.7 Other features 1-6

1.8 Test modes 1-6

1.9 Structure of ARM7500 1-7

1.10 Resetting ARM7500 systems 1-7

1.11 Datasheet Notation 1-7

2 Signal Description 2-1

2.1 Signal description for ARM7500 2-3

3 The ARM Processor Macrocell 3-1

3.1 Introduction 3-2

3.2 Instruction set 3-2

3.3 Memory interface 3-3

3.4 Clocks and Synchronous/Asynchronous modes 3-3

3.5 ARM Processor Block diagram 3-4

4 ARM Processor Programmer’s Model 4-1

4.1 Introduction 4-2

4.2 Register configuration 4-2

4.3 Operating mode selection 4-4

4.4 Registers 4-5

4.5 Exceptions 4-8

4.6 Configuration control registers 4-13

ContentsTOC

ARM7500 Data Sheet
ARM DDI 0050C

Contents-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5 ARM Processor Instruction Set 5-1

5.1 Instruction set summary 5-2

5.2 The condition field 5-3

5.3 Branch and branch with link (B, BL) 5-4

5.4 Data processing 5-6

5.5 PSR transfer (MRS, MSR) 5-15

5.6 Multiply and multiply-accumulate (MUL, MLA) 5-20

5.7 Single data transfer (LDR, STR) 5-23

5.8 Block data transfer (LDM, STM) 5-29

5.9 Single data swap (SWP) 5-37

5.10 Software interrupt (SWI) 5-39

5.11 Coprocessor Instructions on the ARM Processor 5-41

5.12 Coprocessor data operations (CDP) 5-42

5.13 Coprocessor data transfers (LDC, STC) 5-44

5.14 Coprocessor register transfers (MRC, MCR) 5-48

5.15 Undefined instruction 5-51

5.16 Instruction set examples 5-52

6 Cache, Write Buffer and Coprocessors 6-1

6.1 Instruction and Data Cache (IDC) 6-2

6.2 Read-Lock-Write 6-3

6.3 IDC Enable/Disable and Reset 6-3

6.4 Write buffer (WB) 6-3

6.5 Coprocessors 6-5

7 ARM Processor MMU 7-1

7.1 Introduction 7-2

7.2 MMU program-accessible registers 7-2

7.3 Address translation 7-3

7.4 Translation process 7-4

7.5 Translating section references 7-8

7.6 Translating small page references 7-10

7.7 Translating large page references 7-11

7.8 MMU faults and CPU aborts 7-12

7.9 Fault Address & Fault Status Registers (FAR & FSR) 7-12

7.10 Domain access control 7-13

7.11 Fault checking sequence 7-14

7.12 External aborts 7-16

7.13 Effect of reset 7-17

8 The Video and Sound Macrocell 8-1

8.1 Introduction 8-2

8.2 Features 8-2

8.3 Block diagram 8-5

9 Video and Sound Programmer’s Model 9-1

9.1 The video and sound macrocell registers 9-2

9.2 Video palette: Address 0x0 9-4

9.3 Video palette address pointer: Address 0x1 9-5

9.4 LCD offset registers: Addresses 0x30 and 0x31 9-5

ARM7500 Data Sheet
ARM DDI 0050C

Contents-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.5 Border colour register: Address 0x4 9-6

9.6 Cursor palette: Addresses 0x5-0x7 9-7

9.7 Horizontal cycle register (HCR): Address 0x80 9-7

9.8 Horizontal sync width register (HSWR): Address 0x81 9-7

9.9 Horizontal border start register (HBSR): Address 0x82 9-8

9.10 Horizontal display start register (HDSR): Address 0x83 9-8

9.11 Horizontal display end register (HDER): Address 0x84 9-9

9.12 Horizontal border end register (HBER): Address 0x85 9-9

9.13 Horizontal cursor start register (HCSR): Address 0x86 9-9

9.14 Horizontal interlace register (HIR): Address 0x87 9-10

9.15 Horizontal test registers: Addresses 0x88 & 0x8H 9-10

9.16 Vertical cycle register (VCR): Address 0x90 9-10

9.17 Vertical sync width register (VSWR): Address 0x91 9-10

9.18 Vertical border start register (VBSR): Address 0x92 9-11

9.19 Vertical display start register (VDSR): Address 0x93 9-11

9.20 Vertical display end register (VDER): Address 0x94 9-12

9.21 Vertical border end register (VBER): Address 0x95 9-12

9.22 Vertical cursor start register (VCSR): Address 0x96 9-12

9.23 Vertical cursor end register (VCER): Address 0x97 9-13

9.24 Vertical test registers: Addresses 0x98, 0x9A & 0x9C 9-13

9.25 External register (ereg): Address 0xC 9-13

9.26 Frequency synthesizer register (fsynreg): Address 0xD 9-14

9.27 Control register (conreg): Address 0xE 9-15

9.28 Data control register (DCTL): Address 0xF 9-17

9.29 Stereo image register 0-7: Addresses 0xA0-0xA7 9-17

9.30 Sound frequency register: Address 0xB0 9-18

9.31 Sound control register: Address 0xB1 9-18

10 Video Macrocell Interface 10-1

10.1 Bus interface 10-2

10.2 Setting the FIFO preload value 10-2

11 Video Features 11-1

11.1 Pixel clock 11-2

11.2 The palette 11-4

11.3 Cursor 11-5

11.4 Hi-Res support 11-6

11.5 Liquid Crystal Displays 11-8

11.6 External support 11-9

11.7 Analog outputs 11-11

12 Sound Features 12-1

12.1 Sound 12-2

12.2 The sound FIFO 12-2

12.3 Analog stereo sound 12-2

12.4 The Digital Serial Sound Interface 12-4

12.5 Analog sound outputs 12-5

13 Memory and I/O Programmer’s Model 13-1

13.1 Introduction 13-2

ARM7500 Data Sheet
ARM DDI 0050C

Contents-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.2 Summary of registers 13-2

13.3 Register description 13-6

14 Memory Subsystems 14-1

14.1 ROM interface 14-2

14.2 DRAM interface 14-7

14.3 DMA channels 14-16

15 I/O Subsystems 15-1

15.1 Introduction 15-2

15.2 I/O address space usage 15-2

15.3 Additional I/O chip select decode logic 15-3

15.4 Simple 8MHz I/O 15-4

15.5 Module I/O 15-14

15.6 PC bus style I/O 15-17

15.7 DMA during I/O cycles 15-31

15.8 Clock synchronisation conditions 15-31

15.9 Keyboard/mouse interface 15-32

15.10 Analog to digital converter interface 15-35

15.11 Timers 15-38

15.12 General purpose, 8-bit wide, I/O port 15-40

15.13 ID and OD open drain I/O pins 15-40

15.14 Version and ID registers 15-40

15.15 Interrupt control 15-40

16 Clocks, Power Saving, and Reset 16-1

16.1 Clock control 16-2

16.2 Power management 16-3

16.3 Reset 16-6

17 Bus Interface 17-1

17.1 Bus arbitration 17-2

17.2 Bus cycle types 17-2

17.3 Video DMA bandwidth 17-3

17.4 Video DMA latency 17-3

18 Memory Map 18-1

18.1 ARM7500 memory map 18-2

19 DC and AC Parameters 19-1

19.1 Absolute maximum ratings 19-2

19.2 DC operating conditions 19-2

19.3 DC characteristics 19-3

19.4 AC parameters 19-3

19.5 Derating 19-3

20 Packaging 20-1

20.1 Pin diagrams for the ARM7500 20-2

21 Pinout 21-1

21.1 Pin details 21-2

ARM7500 Data Sheet
ARM DDI 0050C

Contents-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

A Initialisation and Boot Sequence

B Dual Panel Liquid Crystal Displays B-1

B.1 Programming the video subsystem B-2

B.2 Configuring DMA within ARM7500 B-3

C Using the ASTCR register at High MEMCLK Frequencies

D Expanding PC-Style I/O to 32 Bit

E ARM7500 Video Clock Sources E-1

E.1 Introduction E-2

E.2 Clock sources E-2

E.3 Using the phase comparator E-3

E.4 Phase Comparator Reset E-5

F ARM7500 Test Modes F-1

F.1 Introduction F-2

F.2 Test modes description F-2

ARM7500 Data Sheet
ARM DDI 0050C

Contents-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

1-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Introduction

This chapter introduces the ARM7500 single chip microprocessor.

1.1 Introduction 1-2

1.2 Functional block diagram 1-2

1.3 ARM processor CPU 1-3

1.4 Video and sound macrocell 1-4

1.5 Clock control and power management 1-4

1.6 Memory system 1-4

1.7 Other features 1-6

1.8 Test modes 1-6

1.9 Structure of ARM7500 1-7

1.10 Resetting ARM7500 systems 1-7

1.11 Datasheet Notation 1-7

1

Introduction

ARM7500 Data Sheet
ARM DDI 0050C

1-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

1.1 Introduction

ARM7500 is a high-performance, low-power RISC-based single-chip computer

centred around the ARM microprocessor core. To maximise the potential of the ARM

processor macrocell, ARM7500 contains memory and I/O control on-chip, enabling

the direct connection of external memory devices and peripherals with the minimum

of external components.

ARM7500 includes features which make it particularly suitable for low-power portable

applications. Both 32 and 16-bit wide memory systems are supported, allowing a lower

cost 16-bit based system to be designed. The ARM7500 will drive monochrome single

or dual panel LCDs with 16 levels of greyscaling, and will also drive colour LCD panels.

Power management circuitry is included with two power saving states. The high level

of integration achieved allows significant PCB area saving, and results in a very cost

competitive system.

ARM7500 is also particularly suited to any application requiring high-quality video,

sound and general I/O requirements, such as multimedia. The video controller

provides up to 16 million colours from a 256-entry palette, running at up to 120MHz

pixel clock rate. The sound subsystem includes an eight channel stereo analog sound

interface and a serial sound interface for CD quality 32-bit sound. Four on-chip A to D

converters allow the connection of analog joysticks or similar control devices. The

clocking scheme is very flexible, allowing a very cheap system to be built using a

single 32MHz oscillator while also permitting asynchronous clocks to be used for the

CPU, memory and I/O subsystems giving an extremely flexible system, able to take

advantage of the fastest available DRAM memory.

The wide range of features incorporated into ARM7500 make it an extremely flexible

device, which can be programmed according to the required application to optimise for

high performance or low power, or a combination of both.

1.2 Functional block diagram

The block diagram opposite gives a more detailed view of the functionality of the

ARM7500 single chip computer.

Introduction

ARM7500 Data Sheet
ARM DDI 0050C

1-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 1-1: Block diagram of ARM7500

1.3 ARM processor CPU

The ARM processor contains an ARM7 core with MMU, Write Buffer, 4K cache, and is

identical to the ARM710C macrocell except for the smaller cache.

Address latch

Latched Address

Internal data

D
a
t
a
p
a
t
h

ARM7

CPU

Address
buffer

Write buffer

Horizontal

& vertical

timing,

& clock control

Sound
FIFO

Analog
sound

Digital
sound

Video

FIFO, &

serializer

Cursor

FIFO, &

serializer

Video
palettes

Cursor
palettes

MUX

Address

decode

I/O

control

Interrupts
& timers

Bus control
&

arbitration

Clock control,
power

management,
and
reset

DMA
control

DRAM
control

ROM control

4 A to D
convertors

ARM processor

Internal
address

Data
buffer

Video & Sound

Data buffer
Serial
port 1

Serial
port 2

Analog

RGB

outputs

External

LCD

outputs

MMU

4Kbyte

cache

Data latch

Introduction

ARM7500 Data Sheet
ARM DDI 0050C

1-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

1.4 Video and sound macrocell

The video and sound macrocell gives the ARM7500 the flexibility to drive high

specification CRT or low power LCD displays, and features the following:

• Up to 120MHz pixel clock rate

• fully programmable display parameters

• 256-entry by 28 bit video palette

• Red Green and Blue 8-bit linear DACs to drive CRT

• 1,2,4,8,16,32 bits/pixel CRT modes

• Up to 16 million colours

• External bits in palette for supremacy, fading, Hi_Res

• Single or dual panel LCD driving

• 16-level grey scaler for LCD

• Power management features

• Hardware cursor for all display modes

• Sound system—8 bit analog stereo sound or serial CD digital output

1.5 Clock control and power management

The clocking strategy for ARM7500 has been designed for maximum flexibility, and

includes separate clock inputs for the:

• CPU core clock

• Memory system clock

• I/O system clock (in addition to the video clock inputs).

Each of the three clock inputs has a selectable divide-by-two prescaler to generate an

internal 50/50 mark-space ratio if required. Throughout this datasheet, all timing

diagrams assume that CPUCLK, MEMCLK, and I_OCLK are divided by one.

There are two levels of power management included.

SUSPEND mode The clock to the CPU is stopped, but the display continues to
work normally, ie DMA unaffected.

STOP mode All clocks are stopped. Two asynchronous wake-up event
pins are provided to terminate stop mode. Circuitry is
included on chip to stop external oscillators and restart them
cleanly when required.

1.6 Memory system

The memory system interface control logic is completely asynchronous in operation to

the I/O control logic. This means that the clock to the memory controller can be

increased in frequency to allow faster memory to be used. This implementation gives

maximum system flexibility.

Introduction

ARM7500 Data Sheet
ARM DDI 0050C

1-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 can control a 32 or 16-bit wide memory system. The width of each bank of

ROM or DRAM is selectable by programming appropriate register bits.

A DRAM controller is included which can directly drive up to 4 banks of DRAM. Four

nRAS strobes individually select one of the four banks, and four nCAS strobes provide

individual byte selection. The DRAM address multiplexing option provided allows a

wide variety of DRAM sizes from 256K to beyond 16MB to be used. Up to 256 page

mode transfers may occur in one sequential burst.

When configured for operation with a 16-bit DRAM system, the DRAM controller will

convert the access into two DRAM cycles to access the two halves of the 32-bit word.

Byte transfers will only take one DRAM access cycle, even in 16 bit mode.

A programmable register allows one of four DRAM refresh rates to be selected. In

addition, a register is provided to enable direct software control of the nCAS and

nRAS lines for setting DRAM into a self-refresh state.

A ROM controller supports two 16MB banks of ROM with individually programmable

read cycle timings. Support is provided for burst mode reads. Each ROM bank can be

programmed to operate in 16-bit wide mode, and like the DRAM controller will convert

accesses into two ROM cycles for the two halves of the 32 bit word.

1.6.1 DMA

Three fully programmable DMA channels are included, for video, cursor and sound

data. The DMA controller includes additional support for dual panel LCDs.

1.6.2 I/O control

The I/O bus of ARM7500 is 16-bits wide but for some types of access can be

expanded to 32 bits by the use of external transceivers. The input clock I_OCLK

provides a reference for the I/O subsystem which is nominally 32MHz.

The I/O features of this device can be separated into 3 distinct cycle types:

• Simple I/O with fixed 8MHz timings

• Module I/O with variable length 8MHz timings

• PC bus style I/O with fixed 16MHz timings and support for 32-bit data

Simple I/O

The Simple I/O type of access is 16-bit only and has a selection of 4 different cycle

speeds selectable by address. When writing, the upper half-word of the ARM data bus

is written out on the I/O bus. When reading, the I/O bus data is read back onto the

lower half-word of the ARM data bus.

During these accesses, a chip select is asserted with the appropriate nIOR/nIOW read

or write strobe, based on the 8MHz clock CLK8.

Introduction

ARM7500 Data Sheet
ARM DDI 0050C

1-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Module I/O

The Module I/O type of access is 16 bit only and its timing is controlled by a handshake

mechanism with the external hardware. The signals nIORQ (output) and nIOGT
(input) are used for this handshaking and are referenced to REF8M. When writing, the

upper half-word of the ARM data bus is written out on the I/O bus. When reading, the

I/O bus data is read back onto the lower half-word of the ARM data bus.

During these accesses, a chip select is asserted but the nIOR/nIOW read and write

strobes are not used, although the IORNW signal is active.

PC bus style I/O

The PC bus style I/O type of access routes the lower half-word of the ARM bus through

the device providing a direct 16-bit interface. Signals are generated to support the

addition of external latches/drivers to extend the I/O data by 16 bits. The upper

half-word of the ARM data bus is routed through these external devices if present.

There are 5 different address areas generating 5 different chip selects using the same

type of access. There are 4 fixed cycle types based on the 16MHz clock, although the

largest area only supports two of these cycle types. Any access may be held up by

external circuitry removing the READY signal before the end of the cycle.

During these accesses, the relevant chip select is asserted as well as read or write

strobes as appropriate.

Two special inputs are provided to allow external circuitry to route the full 32 bits

through the 16-bit I/O bus using multiplexing. This would allow, for example, the

execution of code from a 16-bit PCMCIA card with suitable external controller. On a

read I/O, if this latching signal is used, the data read back onto the ARM data bus

comes from the I/O bus instead of the external extension latches.

1.7 Other features

ARM7500 includes four analog comparators, which can be used to create four A to D

converter channels, and two serial keyboard/mouse ports. There are 8

general-purpose open-drain I/O lines which can be used as inputs or open drain

outputs and as interrupt sources if required. An interrupt handler processes a variety

of internal and external interrupt sources to generate the IRQ and FIQ interrupts for

the ARM processor.

1.8 Test modes

ARM7500 has an nTEST pin which is used to invoke various test modes. When

nTEST is set LOW, the functionality of many of the pins will change depending on the

values applied to the nINT3, nINT6 and nINT8 pins. The nTEST pin includes an on-

chip pull-up, but it is recommended that the pin be pulled up to VDD externally too.

See ➲ Appendix F: ARM7500 Test Modes.

Note: The nTEST pin should never be forced LOW during normal operation.

Introduction

ARM7500 Data Sheet
ARM DDI 0050C

1-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

1.9 Structure of ARM7500

ARM7500 is based around two modified ARM macrocells: the ARM processor, and

video and sound macrocells. These macrocells are self-contained and the relevant

control registers are contained within them. This has the effect that there are three sets

of programmable registers within the ARM7500, which are accessed in different ways

depending on their location.

The ARM processor register programming is described in ➲ Chapter 4: ARM
Processor Programmer’s Model . The video and sound macrocell's registers are

programmed using only the internal ARM7500 data bus (the address bus is not

passed to the macrocell). The address 0x03400000 is decoded to provide a write

strobe for the video macrocell registers, and the addressing of registers within the

macrocell is decoded from the upper four or eight bits of the data word. This system is

described more fully in ➲ Chapter 9: Video and Sound Programmer’s Model .

The remaining ARM7500 registers, associated with Memory, I/O and general

miscellaneous control, form a separate group and are programmed between

addresses 0x03200000 and 0x032001F8. The majority of the registers are only eight

bits wide, although all register addresses are word aligned. These registers are

described in➲ Chapter 13: Memory and I/O Programmer’s Model .

Interaction between the macrocells occurs mainly across the ARM7500's internal

32-bit data bus, which is routed to the two main macrocells, and most of the other

memory and I/O control logic. The ARM processor's address bus is routed to an

internal address decoder where memory space is decoded to determine required

cycle types and register addresses. The same address bus is latched and exported

from the chip as the LA[28:0] bus. Only these 29 bits of the address bus are available

externally.

1.10 Resetting ARM7500 systems

The ARM7500 is designed to operate with both 16 and 32-bit wide ROM, which means

that it must be capable of booting from either. To achieve this, the chip is always reset

into 16-bit mode, which might be expected to cause difficulty when the chip is being

booted up from 32-bit ROM. However, ➲ Appendix A.1: Initialisation and Boot
Sequence describes a simple code sequence which will allow the chip to be started

up without difficulty under these circumstances.

1.11 Datasheet Notation

0x marks a Hexadecimal quantity

BOLD external signals are shown in bold capital letters

binary where it is not clear that a quantity is binary it is followed by the word
binary

Introduction

ARM7500 Data Sheet
ARM DDI 0050C

1-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

2-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Signal Description

This chapter gives the name, type, and relevant details of each of the ARM7500 signals.

2.1 Signal description for ARM7500 2-3

2

Signal Description

ARM7500 Data Sheet
ARM DDI 0050C

2-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

D[31:0]

LA[28:0]

Data
Bus

ARM7500

nROMCS

RA[11:0]

nCAS[3:0]

nRAS[3:0]

CLK2

CLK8

REF8M

CLK16

BD[15:0]

SETCS
nCCS

nCDACK
TC

nPCCS2
nPCCS1
nSIOCS1
nMSCS
nEASCS

nSIOCS2

nBLO

nBLI

nRBE
nWBE

nIORQ

nIOGT

nIOR

nIOW

IORNW

LNBW

nXIPLATCH

nXIPMUX16

READY

ROM Interface

I/O Clocks

Main I/O Bus

I/O Chip

Extended

Module I/O

I/O R/W

PCMCIA XIP

SNA
CPUCLK
MEMCLK
I_OCLK

nPOR
nRESET
RESET
HCLK
VCLKI
VCLKO

PCOMP

SCLK

WS_LNR

SDO_MUTE

ANALOG
SOUND O/PS

SDCLK
SIREF
VIREF

HSYNC
VSYNC
ECLK

ED[7:0]

RGB OUTPUTS

nTEST
OD[1:0]
SYNC

ID

IOP[7:0]

nEVENT1
nEVENT2

OSCDELAY
OSCPOWER

nINT6

nINT3
nINT8
INT7
INT9

nINT4
INT5

nINT1
INT2

ATODREF

ATOD[3:0]

MSECLK
MSEDAT
KBCLK
KBDAT

Main
Clocks/Control

Reset

Video
Clocks and

Sound
System

Reference
Currents

Video
Outputs

8-bit I/O port

Power
Management

External
Interrupt
Sources

A to D
Convertors

KBD/Mouse
Interface

DRAM
Interface

Support

Selects

Control

32-bit I/O

Latched
Address
Bus and

control

byte/word

nWE

Signal Description

ARM7500 Data Sheet
ARM DDI 0050C

2-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

2.1 Signal description for ARM7500

Note: When output signals are placed in the high impedance state for long periods, care
must be taken to ensure that they do not float to an undefined logic level.

Key to signal types:

IC Input, CMOS threshold

OCZ Output, CMOS levels, tri-stateable

IT Input, TTL threshold

ICS Input, CMOS Schmitt

IA Input, analog

OA Output, analog

BTZ Bidirectional, CMOS output, TTL threshold input level

TOD Open drain, TTL input

CSOD Open drain, CMOS schmitt input

IAOD Input, analog with programmable internal pull-down transistor

For outputs and Bidirectionals, drive strength is classified 1,2 or 3. See ➲ Chapter 19,
DC and AC Parameters for DC and AC characteristics.

Pin allocation is described in ➲ Chapter 21, Pinout.

Name Type Description

LA[28:0] OCZ2 Latched address bus. This bus is the latched version of the ARM address for

memory accesses, changing on the falling edge of the internal MCLK signal.

LNBW OCZ2 Latched Not Byte word signal. This is a latched version of the internal NBW

signal from the ARM processor, changing on the falling edge of the internal

MCLK signal.

D[31:0] BTZ2 The main data bus for the ARM7500. All external data transfers happen via

this b us. When the ARM7500 is configured for operation in 16-bit mode, only

the lower 16 bits are used.

SnA IC Synchronous/not Asynchronous. This pin is set according to the relationship

required between the internal clock signals MCLK and FCLK for the ARM. If

this pin is set HIGH, both the memory system and the CPU are driven from

the MEMCLK pin, and the required synchronous timing relationship between

the ARM processor clocks is generated automatically on-chip. If different

clocks are to be used, for the MEMCLK and CPUCLK inputs, the SnA pin

must be set LOW.

BOUT AO Blue Analog Output. The video signal analog outputs are designed to drive

doubly-terminated 75½ lines.

 Table 2-1: ARM7500 signal description

Signal Description

ARM7500 Data Sheet
ARM DDI 0050C

2-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ECLK OCZ3 External Clock. When enabled, this clock validates the data on ED[7:0]. In

normal video mode, it runs at the pixel rate, but when LCD data is being pro-

duced, it runs at a quarter of the pixel rate.

ED[7:0] OCZ2 External Data. This is the digital video output port of the ARM7500. From this,

the digital equivalent of the analog output may be produced in any colour, or

data from the external palette may be produced. This may be used for a vari-

ety of purposes such as fading or supremacy. Also, data for driving LCD pan-

els is output from this port. Data produced is validated by ECLK.

GOUT AO Green Analog Output. The video signal analog outputs are designed to drive

doubly-terminated 75Ω lines.

HCLK IT High speed Clock for use with video subsystem.

HSYNC OCZ3 Horizontal Synchronisation. There are two synchronisation outputs on

ARM7500, HSYNC and VSYNC. Dependent on the state of bits 17 and 16 in

the video External register, either a horizontal or a composite (NOR) sync

may be output on this pin, in either polarity. The width of the HSYNC pulse is

definable in units of 2 pixels.

LM AO Left Minus Analog sound. Negative analog sound output for the left channel.

LP AO Left Plus Analog sound. Positive analog sound output for the left channel.

PCOMP OCZ1 Phase Comparator Output for use with VCLK pins.

ROUT AO Red Analog Output. The video signal analog outputs are designed to drive

doubly-terminated 75Ω lines.

RM AO Right Minus Analog Sound. Negative analog right hand stereo channel sound

output.

RP AO Right Plus Analog Sound. Positive analog right stereo channel sound output.

SCLK IT Sound Clock. This signal can be used to clock the sound system, when a

clock asynchronous to the internal video reference clock is required.

SDCLK OCZ2 Serial Data Clock. When the sound system is in serial sound mode, this clock

is output and validates serial data on its rising edge.

SDO_MUTE OCZ2 Serial Data Out / Mute. This pin has two functions depending on whether the

sound mode is either analog or digital serial sound. In digital mode, serial

sound data is output from this pin. In analog mode, this signal goes HIGH

between samples to allow for DAC settling.

SYNC IT External SYNC. This signal is used to synchronise ARM7500 with another

video system.

SIREF IA Sound Reference Current. A reference current must be fed into this pin in

order to calibrate the sound DAC outputs. For most applications, a resistor to

VDD is sufficient, although a constant current source is recommended.

VCLKI IC Phase Comparator Clock In (for video subsystem).

Name Type Description

 Table 2-1: ARM7500 signal description (Continued)

Signal Description

ARM7500 Data Sheet
ARM DDI 0050C

2-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

VCLKO OCZ2 Phase Comparator Clock Out (for video subsystem).

VDD_Analog Positive (+5V) supply for analog video system.

VDD_Sound Positive (+5V) supply for analog sound system.

VIREF IA Video Reference Current. The video DACs need a reference current in order

to calibrate them. A constant current source is recommended, although a

resistor up to VDD is sufficient for many applications. This current also gener-

ates the constant source for the A to D comparators.

VSS_Analog Supply ground for analog video system.

VSS_Sound Supply ground for analog sound system.

VSYNC OCZ3 Vertical Synchronisation. Dependent on the state of bits 19 and 18 in the

external register, either a vertical or a composite (XNOR) sync may be output

on this pin, in either polarity. The width of the VSYNC pulse may be defined in

units of a raster.

WS_LnR OCZ2 Word Select / Left NOT Right. This pin has two functions depending on

whether the sound mode is either analog or digital. In digital mode, this signal

denotes whether the output serial data is for the left hand stereo channel or

the right hand channel. In analog mode this signal gives the same stereo

direction information.

nTEST IT Test mode input. This pin should be held permanently HIGH. It is only

intended to be used during production test of the ARM7500. An on-chip pull-

up is included, but it is advisable to fit an external pull-up resistor to this pin.

nWE OCZ2 Write enable. Active low.

RA[11:0] OCZ2 DRAM row/column multiplexed address bus. Addresses for this bus are

decoded from the ARM processor address for normal memory accesses, and

are generated by the DMA controller for DMA.

nRAS[3:0] OCZ3 DRAM row address strobes. Each of these selects one of the four banks of

DRAM available.

nCAS[3:0] OCZ3 DRAM column address strobes. These select the byte within the word for

DRAM accesses.

VDD_ATOD power Positive 5V supply for the A to D converter comparators

VSS_ATOD power Analog ground for the A to D converter comparators

ATOD[3:0] IAOD Four A to D channel input voltages.

ATODREF IA Reference voltage for the A to D converter comparators..

OSCPOWER OCZ1 Enable signal for the system oscillator(s). When LOW, this signal can be used

to disable the external oscillator(s).

Name Type Description

 Table 2-1: ARM7500 signal description (Continued)

Signal Description

ARM7500 Data Sheet
ARM DDI 0050C

2-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

OSCDELAY CSOD1 Requires an RC network to generate a fixed delay when restarting the system

oscillator(s) on exit from STOP mode.

RESET OCZ2 Reset output, synchronised version of internal system reset signal.

nRESET CSOD2 Open drain output and ‘soft’ reset input. This pin is sampled every 1µs for

reset events, so to guarantee a successful reset, a reset pulse applied to this

pin must be longer than 1µs. (Note-1µs

nROMCS OCZ1 ROM Chip select. Goes LOW to indicate a ROM access.

I_OCLK IC I/O system clock. This clock input should always be 32MHz when in divide by

1 mode, and 64MHz in divide by 2 mode.

MEMCLK IC Memory system clock. In synchronous mode, ARM processor FCLK is also

driven from this clock.

CPUCLK IC Clock used to create FCLK for the ARM CPU in asynchronous mode. When

SnA is HIGH this should be tied HIGH or LOW permanently.

BD[15:0] BTZ2 The main external 16-bit I/O bus.

MSCLK TOD2 Mouse clock. An open drain pin for the mouse PS/2 interface.

MSDATA TOD2 Mouse data. An open drain pin for the mouse PS/2 interface.

KBCLK TOD2 Keyboard clock. An open drain pin for the keyboard PS/2 interface.

KBDATA TOD2 Keyboard data. An open drain pin for the keyboard PS/2 interface.

nPOR ICS Power on reset. Any LOW transitions on this pin are detected and stretched to

ensure full reset.

IOP[7:0] TOD1 8 bit wide I/O port. Each bit is directly controllable via an ARM7500 register,

and can be used as an interrupt source if required.

ID TOD1 The ID pin can be used to activate a system ID chip. It is forced LOW during

the power on reset sequence.

OD[1:0] TOD1 Two open drain pins which (unlike the IOP[7:0] bus) cannot be used to gener-

ate interrupts, but can be used as general purpose I/O pins, for example to

communicate with a real time clock chip.

SETCS IC SETCS selects between two address decoding options for the three main I/O

chip selects. It affects the outputs nEASCS, nMSCS and nSIOCS2.

nINT1 IT Falling edge triggered interrupt pin. This pin also has the feature that its value

can be read directly in the IOCR I/O control register.

INT2 IT Rising edge triggered interrupt pin. Can generate an IRQ interrupt.

nINT3 IT Active LOW interrupt pin. Can generate an IRQ interrupt.

nINT4 IT Active LOW interrupt pin. Can generate an IRQ interrupt.

Name Type Description

 Table 2-1: ARM7500 signal description (Continued)

Signal Description

ARM7500 Data Sheet
ARM DDI 0050C

2-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

INT5 IT Active HIGH interrupt pin. Can be used to generate either an IRQ or a FIQ

interrupt, depending on the status of the relevant mask register bits.

nINT6 IT Active LOW interrupt pin. Can generate either an IRQ or a FIQ depending on

the programming of the mask registers.

INT7 IT Active HIGH interrupt pin. Can generate an IRQ interrupt.

nINT8 IT Active LOW interrupt pin. Can be used to generate either a FIQ or an IRQ

interrupt.

INT9 IT Active HIGH interrupt pin, which can only be used to generate a FIQ (highest

priority) interrupt.

nEVENT1 IT Active LOW asynchronous event pin 1. A falling edge is used to terminate

STOP or SUSPEND power saving modes.

nEVENT2 IT Active LOW asynchronous event pin 2. A falling edge is used to terminate

STOP or SUSPEND power saving modes.

READY IT Can be used to stretch I/O accesses when set LOW during a 16MHz PC-style

I/O cycle.

nIORQ OCZ2 I/O request signal used for Module type I/O for handshaking, together with

nIOGT.

nIOGT IT I/O grant signal used for Module type I/O for handshaking, together with

nIORQ.

nBLI IT Input used during Module-style I/O reads to cause the latching of data from

the BD port.

nBLO OCZ1 Latching signal for use with external latches on the upper 16 bits of the exter-

nal datapath to create a 32-bit wide I/O bus.

nRBE OCZ1 Active LOW Read enable for an external transceiver attached to the upper 16

bits of the I/O bus, to create a 32-bit wide I/O bus.

nWBE OCZ1 Active LOW Write enable for an external transceiver attached to the upper 16

bits of the I/O bus, to create a 32-bit wide I/O bus.

nXIPMUX16 IT For Execute in place (XIP) support. This signal multiplexes 16 bits of data

from the upper or lower halfword of the ARM7500 internal data bus to the 16-

bit I/O bus, depending on its state during writes.

nXIPLATCH IT For XIP support. Latches the upper 16 bits of data from the I/O bus while the

lower 16 bits are being read. Used in conjunction with nXIPMUX16 to enable

XIP from, for example, a 16-bit PCMCIA card.

nSIOCS1 OCZ1 Active LOW chip select for simple I/O.

nSIOCS2 OCZ1 Active LOW chip select for simple I/O, with address decode modified accord-

ing to the state of SETCS.

Name Type Description

 Table 2-1: ARM7500 signal description (Continued)

Signal Description

ARM7500 Data Sheet
ARM DDI 0050C

2-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

nMSCS OCZ2 Active LOW chip select for module type I/O, with address decode modified

according to the state of SETCS.

nEASCS OCZ1 Active LOW chip select for extended 16Mhz PC-style I/O, with address

decode modified according to the state of SETCS.

nCCS OCZ1 Not Combo Chip Select. Chip select signal for a PC Combo chip.

nCDACK OCZ1 Not Combo Dack. Chip select and Dack signal for PC Combo chip.

TC OCZ1 Active HIGH terminal count. Used in conjunction with the nCDACK signal for

pseudo DMA to a Combo chip.

nPCCS1 OCZ1 Active LOW chip select for an area of 16Mhz PC-style I/O space.

nPCCS2 OCZ1 Active LOW chip select for an area of 16Mhz PC-style I/O space.

LNBW OCZ2 Latched Not Byte word signal. This is a latched version of the internal NBW

signal from the ARM processor, changing on the falling edge of the internal

MCLK signal.

IORNW OCZ2 I/O read/not write, HIGH during an I/O read, and LOW during an I/O write.

nIOR OCZ2 Not I/O read. Is LOW during simple and PC-style I/O reads. Not used for Mod-

ule type I/O.

nIOW OCZ2 Not I/O write. Is LOW during simple and PC-style I/O reads. Not used for Mod-

ule type I/O.

CLK2 OCZ2 2MHz I/O clock output.

CLK8 OCZ2 8MHz I/O clock output, the inverted version of REF8M.

REF8M OCZ2 8MHz I/O clock output.

CLK16 OCZ2 16MHz I/O clock output, for PC-style I/O.

Name Type Description

 Table 2-1: ARM7500 signal description (Continued)

ARM7500 Data Sheet
ARM DDI 0050C

3-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The ARM Processor Macrocell

This chapter introduces the ARM processor 32-bit microprocessor macrocell.

3.1 Introduction 3-2

3.2 Instruction set 3-2

3.3 Memory interface 3-3

3.4 Clocks and Synchronous/Asynchronous modes 3-3

3.5 ARM Processor Block diagram 3-4

3

The ARM Processor Macrocell

ARM7500 Data Sheet
ARM DDI 0050C

3-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

3.1 Introduction

The ARM7500 contains a 32-bit RISC ARM processor, similar to the ARM710C

macrocell. It has a 4Kbyte cache, write buffer, and a Memory Management Unit

(MMU). The ARM processor macrocell offers high-level RISC performance, yet its fully

static design ensures minimal power consumption. This makes it ideal for

incorporation into the ARM7500. The ARM7500 aims to make maximum use of the

performance and flexibility offered by the ARM processor.

This part of the datasheet describes the features of the ARM processor macrocell

which are available to the user in its embedded state within the ARM7500 single- chip

computer. It is not intended that this should be used as a standalone datasheet for a

separate ARM processor macrocell.

3.1.1 Architecture

The ARM processor architecture is based on 'Reduced Instruction Set Computer'

(RISC) principles, and the instruction set and related decode mechanism are greatly

simplified compared with microprogrammed 'Complex Instruction Set Computers'

(CISC).

The mixed data and instruction cache together with the write buffer substantially raise

the average execution speed and reduce the average amount of memory bandwidth

required by the processor. This allows the ARM7500 bus structure to support Direct

Memory Access (DMA) channels with minimal performance loss.

The MMU supports a conventional two-level page-table structure and a number of

extensions which make it ideal for embedded control, UNIX and Object Oriented

systems.

3.2 Instruction set

The instruction set comprises ten basic instruction types:

• two of these make use of the on-chip arithmetic logic unit, barrel shifter and

multiplier to perform high-speed operations on the data in a bank of 31

registers, each 32 bits wide

• three classes of instruction control data transfer between memory and the

registers, one optimized for flexibility of addressing, another for rapid context

switching and the third for swapping data

• two instructions control the flow and privilege level of execution

• three types are dedicated to the control of external coprocessors which allow

the functionality of the instruction set to be extended in an open and uniform

way. However, as for the ARM710, the facility to add external coprocessors to

the ARM7500 is not available, and software emulation of coprocessor activity

will be required if these instructions are to perform a defined function.

The ARM instruction set is a good target for compilers of many different high-level

languages. Where required for critical code segments, assembly code programming

is also straightforward, unlike some RISC processors which depend on sophisticated

compiler technology to manage complicated instruction interdependencies.

The ARM Processor Macrocell

ARM7500 Data Sheet
ARM DDI 0050C

3-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

3.3 Memory interface

The memory interface has been designed to allow the performance potential to be

realised without incurring high costs in the memory system. Speed-critical control

signals are pipelined to allow system control functions to be implemented in standard

low-power logic, and these control signals permit the ARM7500 to exploit the paged

mode access offered by industry-standard DRAMs.

3.4 Clocks and Synchronous/Asynchronous modes

The ARM processor uses two independent clock sources, MCLK and FCLK. Both are

generated internally to ARM7500 from MEMCLK and CPUCLK. The ARM7 core CPU

switches between MCLK and FCLK according to the operation being carried out. For

example, if the ARM7 core CPU is reading data from the cache it will be clocked by

FCLK, whereas if the core CPU is reading data from uncached memory then it will be

clocked by MCLK. The ARM processor’s control logic ensures that the correct clock is

used internally and switches between the two clocks automatically.

When SnA is tied high MEMCLK creates both FCLK and MCLK, with MCLK having

half the frequency of FCLK. This synchronous mode ensures that there are no

synchronisation penalties whenever the ARM 7 core is switched between FCLK and

MCLK.

When SnA is tied low, MEMCLK creates MCLK and CPUCLK must be driven to supply

FCLK. MEMCLK and CPUCLK can be of unrelated frequency. There is a

synchronisation penalty whenever the ARM7 core clock switches between MCLK and

FCLK. This penalty is symmetric, and varies between nothing and a whole period of

the clock to which the core is resynchronising. Thus when changing there is an

average resynchronisation penalty of half a clock period, MCLK or FCLK as

appropriate.

The ARM Processor Macrocell

ARM7500 Data Sheet
ARM DDI 0050C

3-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

3.5 ARM Processor Block diagram

 Figure 3-1: ARM processor block diagram

MMU
 4KByte
 Cache

ARM7
 CPU

Write
Buffer

Address Buffer
C
o
n
t
r
o
l

Clock

MCLK SNA FCLK NRESET

NMREQ

NIRQ

NFIQ

Internal Data Bus

D[31:0]DBE

Internal Address Bus

C
o
p
r
o
c

A[31:0] NR/W NB/W

ARM7500 Data Sheet
ARM DDI 0050C

4-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM Processor Programmer’s
Model

This chapter details the ARM processor programmable registers.

4.1 Introduction 4-2

4.2 Register configuration 4-2

4.3 Operating mode selection 4-4

4.4 Registers 4-5

4.5 Exceptions 4-8

4.6 Configuration control registers 4-13

4

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

4.1 Introduction

The ARM processor supports a variety of operating configurations. Some are

controlled by register bits and are known as the configurations. Others may be

controlled by software and these are known as operating modes.

4.2 Register configuration

The ARM processor provides 3 register configuration settings which may be changed

while the processor is running and which are discussed below.

4.2.1 Big and Little Endian (the bigend bit)

The bigend bit, in the Control Register, sets whether the ARM7500 treats words in

memory as being stored in Big Endian or Little Endian format.

Memory is viewed as a linear collection of bytes numbered upwards from zero. Bytes

0 to 3 hold the first stored word, bytes 4 to 7 the second and so on.

Little Endian

In the Little Endian scheme the lowest-numbered byte in a word is considered to be

the least significant byte of the word and the highest-numbered byte is the most

significant. Byte 0 of the memory system should be connected to data lines

7 through 0 (D[7:0]) in this scheme.

Little Endian

Higher

Address

31 24 23 16 15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address

 • Least significant byte is at lowest address

 • Word is addressed by byte address of least significant byte

 Figure 4-1: Little Endian addresses of bytes within words

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Big Endian

The most significant byte of a word is stored at the lowest numbered byte and the least

significant byte is stored at the highest numbered byte. Byte 0 of the memory system

should therefore be connected to data lines 31 through 24 (D[31:24]). Load and store

are the only instructions affected by the endianism.

4.2.2 Configuration bits for backward compatibility

Two register bits, PROG32 and DATA32, allow one of three processor configurations

to be selected:

1 26-bit program and data space

(PROG32 LOW, DATA32 LOW). This configuration forces ARM processor to
operate like the earlier ARM processors with 26-bit address space. The
programmer's model for these processors applies, but the new instructions to
access the CPSR and SPSR registers operate as detailed in ➲ 5.5 PSR
transfer (MRS, MSR) on page 5-15. In this configuration it is impossible to
select a 32-bit operating mode, and all exceptions (including address
exceptions) enter the exception handler in the appropriate 26-bit mode.

2 26-bit program space and 32-bit data space

(PROG32 LOW, DATA32 HIGH). This is the same as the 26-bit program and
data space configuration, but with address exceptions disabled to allow data
transfer operations to access the full 32-bit address space.

3 32-bit program and data space

(PROG32 HIGH, DATA32 HIGH). This configuration extends the address
space to 32 bits, introduces major changes in the programmer's model and
provides support for running existing 26-bit programs in the 32-bit
environment.

(The fourth processor configuration (26-bit data space and 32-bit program space)

should not be selected.)

Big Endian

Higher

Address

31 24 23 16 15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address

 • Most significant byte is at lowest address

 • Word is addressed by byte address of most significant byte

 Figure 4-2: Big Endian addresses of bytes within words

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

26-bit program space

When configured for 26-bit program space, ARM7500 is limited to operating in one of

four modes known as the 26-bit modes. These modes correspond to the modes of the

earlier ARM processors and are known as:

• User26

• FIQ26

• IRQ26 and

• Supervisor26

Note: The PROG32 and DATA32 bits are used only for backward compatibility with earlier

ARM processors and should normally be set to 1. The 32-bit mode is recommended

for compatibility with future ARM processors and all new code should be written to use

only the 32-bit operating modes.

Because the original ARM instruction set has been modified to accommodate 32-bit

operation there are certain additional restrictions which programmers must be aware

of. Reference should also be made to the ARM Application Notes “Rules for ARM
Code Writers” and “Notes for ARM Code Writers” available from your supplier.

4.3 Operating mode selection

ARM processor has a 32-bit data bus and a 32-bit address bus. However, only 29 of

the address bits are available at the ARM7500 pins. The data types the processor

supports are Bytes (8-bits) and Words (32-bits), where words must be aligned to four

byte boundaries. Instructions are exactly one word, and data operations (e.g. ADD)

are only performed on word quantities. Load and store operations can transfer either

bytes or words.

ARM processor supports six modes of operation:

User mode (usr) The normal program execution state.

FIQ mode (fiq) Designed to support a data transfer or
channel process.

IRQ mode (irq) Used for general purpose interrupt handling.

Supervisor mode (svc) A protected mode for the operating system.

Abort mode (abt) Entered after a data or instruction prefetch
abort.

Undefined mode (und) Entered when an undefined instruction is
executed.

Mode changes may be made under software control or may be brought about by

external interrupts or exception processing. Most application programs execute in

User mode. The other modes, known as privileged modes, are entered to service

interrupts or exceptions, or to access protected resources.

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

4.4 Registers

The processor macrocell has a total of 37 registers made up of 31 general 32-bit

registers and 6 status registers. At any one time 16 general registers (R0 to R15) and

one or two status registers are visible to the programmer. The visible registers depend

on the processor mode, and the other registers (the banked registers) are switched in

to support IRQ, FIQ, Supervisor, Abort and Undefined mode processing. The register

bank organisation is shown in ➲ Figure 4-3: Register organisation on page 4-5. The

banked registers are shaded in the diagram.

 Figure 4-3: Register organisation

General Registers and Program Counter Modes

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

User32 FIQ32 Supervisor32 Abort32 IRQ32 Undefined32

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Program Status Registers

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

In all modes, 16 registers (R0 to R15) are directly accessible. All registers except R15

are general purpose and may be used to hold data or address values. Register R15

holds the Program Counter (PC). When R15 is read, bits [1:0] are zero and bits [31:2]

contain the PC. A seventeenth register (the CPSR - Current Program Status Register)

is also accessible. It contains condition code flags and the current mode bits and may

be thought of as an extension to the PC.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch

and Link instruction is executed. It may be treated as a general purpose register at all

other times. R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are used similarly to

hold the return values of R15 when interrupts and exceptions arise, or when Branch

and Link instructions are executed within interrupt or exception routines.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ

programs will not need to save any registers.

User mode, IRQ mode, Supervisor mode, Abort mode and Undefined mode each have

two banked registers mapped to R13 and R14. The two banked registers allow these

modes to each have a private stack pointer and link register.

Supervisor, IRQ, Abort and Undefined mode programs which require more than these

two banked registers are expected to save some or all of the caller's registers (R0 to

R12) on their respective stacks. They are then free to use these registers which they

will restore before returning to the caller.

In addition there are also five SPSRs (Saved Program Status Registers) which are

loaded with the CPSR when an exception occurs. There is one SPSR for each

privileged mode.

4.4.1 Program status registers

The format of the Program Status Registers is shown in ➲ Figure 4-4: Format of the
Program Status Registers (PSRs).

 Figure 4-4: Format of the Program Status Registers (PSRs)

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow

Carry / Borrow / Extend

Zero

Negative / Less Than

Mode bits

FIQ disable

IRQ disable

. ..

flags control

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Condition code flags

The N, Z, C and V bits are the condition code flags. The condition code flags in the

CPSR may be changed as a result of arithmetic and logical operations in the

processor and may be tested by all instructions to determine if the instruction is to be

executed.

Interrupt disable bits

The I and F bits are the interrupt disable bits. The I bit disables IRQ interrupts when it

is set and the F bit disables FIQ interrupts when it is set.

Mode bits

The M0, M1, M2, M3 and M4 bits (M[4:0]) are the mode bits, and these determine the

mode in which the processor operates. The interpretation of the mode bits is shown in

the following table. Not all combinations of the mode bits define a valid processor

mode. Only those explicitly described shall be used.

Control bits

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as

the control bits. The control bits change when an exception arises and in addition can

be manipulated by software when the processor is in a privileged mode. Unused bits

in the PSRs are reserved and their state must be preserved when changing the flag

or control bits. Programs must not rely on specific values from the reserved bits when

checking the PSR status, since they may read as one or zero in future processors.

M[4:0] Mode Accessible register set

 10000 User PC, R14..R0 CPSR

 10001 FIQ PC, R14_fiq..R8_fiq, R7..R0 CPSR, SPSR_fiq

 10010 IRQ PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

 10011 Supervisor PC, R14_svc..R13_svc, R12..R0 CPSR, SPSR_svc

 10111 Abort PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt

 11011 Undefined PC, R14_und..R13_und, R12..R0 CPSR, SPSR_und

 Table 4-1: The mode bits

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

4.5 Exceptions

Exceptions arise whenever there is a need for the normal flow of program execution

to be broken. For example, the processor can be diverted to handle an interrupt from

a peripheral. The processor state just prior to handling the exception must be

preserved so that the original program can be resumed when the exception routine

has completed. Many exceptions may arise at the same time.

ARM processor handles exceptions by making use of the banked registers to save

state. The old PC and CPSR contents are copied into the appropriate R14 and SPSR

and the PC and mode bits in the CPSR bits are forced to a value which depends on

the exception. Interrupt disable flags are set where required to prevent otherwise

unmanageable nestings of exceptions. In the case of a re-entrant interrupt handler,

R14 and the SPSR should be saved onto a stack in main memory before re-enabling

the interrupt.

Note: When transferring the SPSR register to and from a stack, it is important to transfer the

whole 32-bit value, and not just the flag or control fields.

When multiple exceptions arise simultaneously, a fixed priority determines the order in

which they are handled. The priorities are listed in ➲ 4.5.7 Exception priorities on page

4-12.

4.5.1 FIQ

The FIQ (Fast Interrupt reQuest) exception is generated by the interrupt handler within

the ARM7500. This input is delayed by one clock cycle for synchronisation before it

can affect the processor execution flow. It is designed to support a data transfer or

channel process, and has sufficient private registers to remove the need for register

saving in such applications (thus minimising the overhead of context switching).

Note: The FIQ exception may be disabled by setting the F flag in the CPSR (but note that

this is not possible from User mode).

If the F flag is clear, ARM processor checks for a LOW level on the output of the FIQ

synchroniser at the end of each instruction. When a FIQ is detected, ARM processor

performs the following:

1 Saves the address of the next instruction to be executed plus 4 in R14_fiq;
saves CPSR in SPSR_fiq.

2 Forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR.

3 Forces the PC to fetch the next instruction from address 0x1C.

Returning from FIQ

To return normally from FIQ, use SUBS PC, R14_fiq,#4 which will restore both the PC

(from R14) and the CPSR (from SPSR_fiq) and resume execution of the interrupted

code.

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-9

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

4.5.2 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by the interrupt

handler within the ARM7500. It has a lower priority than FIQ, and is masked out when

a FIQ sequence is entered. Its effect may be masked out at any time by setting the I

bit in the CPSR (but note that this is not possible from User mode).

If the I flag is clear, ARM processor checks for a LOW level on the output of the IRQ

synchroniser at the end of each instruction. When an IRQ is detected, ARM processor

performs the following:

1 Saves the address of the next instruction to be executed plus 4 in R14_irq;
saves CPSR in SPSR_irq

2 Forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x18

Returning from IRQ

To return normally from IRQ, use SUBS PC,R14_irq,#4 which will restore both the PC

and the CPSR and resume execution of the interrupted code.

4.5.3 Abort

An ABORT is signalled by the internal Memory Management Unit, and indicates that

the current memory access cannot be completed. For instance, in a virtual memory

system the data corresponding to the current address may have been moved out of

memory onto a disc, and considerable processor activity may be required to recover

the data before the access can be performed successfully.

The abort mechanism allows a demand paged virtual memory system to be

implemented when suitable memory management software is available. The

processor is allowed to generate arbitrary addresses, and when the data at an address

is unavailable the MMU signals an abort. The processor traps into system software

which must work out the cause of the abort, make the requested data available, and

retry the aborted instruction. The application program needs no knowledge of the

amount of memory available to it, nor is its state in any way affected by the abort.

ARM processor checks for ABORT during memory access cycles. When successfully

aborted ARM processor responds in one of two ways:

• prefetch abort

• data abort

Prefetch abort

If the abort occurred during an instruction prefetch (a prefetch abort), the prefetched

instruction is marked as invalid but the abort exception does not occur immediately. If

the instruction is not executed, for example as a result of a branch being taken while

it is in the pipeline, no abort will occur. An abort will take place if the instruction reaches

the head of the pipeline and is about to be executed.

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-10

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Data abort

If the abort occurred during a data access (a data abort), the action depends on the

instruction type:

• single data transfer instructions (LDR, STR) write back modified base

registers and the Abort handler must be aware of this

• the swap instruction (SWP) is aborted as though it had not executed, though

externally the read access may take place

• block data transfer instructions (LDM, STM) complete, and if write-back is set,

the base is updated. If the instruction would normally have overwritten the

base with data (i.e. LDM with the base in the transfer list), this overwriting is

prevented. All register overwriting is prevented after the Abort is indicated,

which means in particular that R15 (which is always last to be transferred) is

preserved in an aborted LDM instruction.

Abort sequence

When either a prefetch or data abort occurs, ARM processor performs the following:

1 Saves the address of the aborted instruction plus 4 (for prefetch aborts) or 8
(for data aborts) in R14_abt; saves CPSR in SPSR_abt

2 Forces M[4:0]=10111 (Abort mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from either address 0x0C (prefetch
abort) or address 0x10 (data abort)

Returning from an abort

To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch

abort) or SUBS PC,R14_abt,#8 (for a data abort). This will restore both the PC and the

CPSR and retry the aborted instruction.

4.5.4 Software interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode,

usually to request a particular supervisor function. When a SWI is executed, ARM

processor performs the following:

1 Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in
SPSR_svc

2 Forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x08

Returning from a SWI

To return from a SWI, use MOVS PC,R14_svc. This will restore the PC and CPSR and

return to the instruction following the SWI.

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-11

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

4.5.5 Undefined instruction trap

When the ARM processor comes across an instruction which it cannot handle, it takes

the undefined instruction trap. This includes all coprocessor instructions, except MCR

and MRC operations which access the internal control coprocessor.

The trap may be used for software emulation of a coprocessor in a system which does

not have the coprocessor hardware, or for general purpose instruction set extension

by software emulation.

When ARM processor takes the undefined instruction trap it performs the following:

1 Saves the address of the Undefined or coprocessor instruction plus 4 in
R14_und; saves CPSR in SPSR_und

2 Forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x04

Returning from an undefined instruction trap

To return from this trap after emulating the failed instruction, use MOVS PC,R14_und.

This will restore the CPSR and return to the instruction following the undefined

instruction.

4.5.6 Vector summary

These are byte addresses, and will normally contain a branch instruction pointing to

the relevant routine.

The FIQ routine might reside at 0x1C onwards, and thereby avoid the need for (and

execution time of) a branch instruction.

Address Exception Mode on entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 -- reserved -- --

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

 Table 4-2: Vector summary

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-12

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

4.5.7 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines

the order in which they will be handled:

1 Reset (highest priority)

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

6 Undefined Instruction, software interrupt (lowest priority)

Note: Not all exceptions can occur at once. Undefined instruction and software interrupt are

mutually exclusive since they each correspond to particular (non-overlapping)

decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the F flag

in the CPSR is clear), ARM processor will enter the data abort handler and then

immediately proceed to the FIQ vector. A normal return from FIQ will cause the data

abort handler to resume execution. Placing data abort at a higher priority than FIQ is

necessary to ensure that the transfer error does not escape detection; the time for this

exception entry should be added to worst-case FIQ latency calculations.

4.5.8 Interrupt latencies

Calculating the worst-case interrupt latency for the ARM processor is quite complex

due to the cache, MMU and write buffer and is dependant on the configuration of the

whole system.

4.5.9 Reset

When the ARM7500 is reset, ARM processor abandons the executing instruction and

then performs idle cycles from incrementing word addresses.

When the ARM7500 comes out of reset, ARM processor does the following:

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC
and CPSR into them. The value of the saved PC and CPSR is not defined.

2 Forces M[4:0]=10011 (Supervisor mode); sets the I and F bits in the CPSR.

3 Forces the PC to fetch the next instruction from address 0x00.

End of reset sequence

At the end of the reset sequence:

• the MMU is disabled and the TLB is flushed, so forces “flat” translation (i.e. the

physical address is the virtual address, and there is no permission checking)

• alignment faults are also disabled

• the cache is disabled and flushed

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-13

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

• the write buffer is disabled and flushed

• the ARM7 CPU core is put into 26 bit data and address mode, with early abort

timing and Little Endian mode

4.6 Configuration control registers

The operation and configuration of ARM processor is controlled both directly via

coprocessor instructions and indirectly via the Memory Management Page tables. The

coprocessor instructions manipulate a number of on-chip registers which control the

configuration of the Cache, write buffer, MMU and a number of other configuration

options.

To ensure backwards compatibility of future CPUs, all reserved or unused bits in

registers and coprocessor instructions should be programmed to '0'. Invalid registers

must not be read/written. The following bits must be programmed to '0':

• Register 1 bits[31:11]

• Register 2 bits[13:0]

• Register 5 bits[31:0]

• Register 6 bits[11:0]

• Register 7 bits[31:0]

Note: The areas marked “Reserved” in the register and translation diagrams should be
programmed 0 for future compatibility.

4.6.1 Internal coprocessor instructions

The on-chip registers may be read using MRC instructions and written using MCR

instructions. These operations are only allowed in non-user modes and the undefined

instruction trap will be taken if accesses are attempted in user mode. ➲ 5.14
Coprocessor register transfers (MRC, MCR) on page 5-48

 Figure 4-5: Format of Internal Coprocessor Instructions MRC and MCR

0

034781112151619202122272831 125691013141718232425262930

11 1Cond n CRn Rd 11 1 1 1

ARM condition codes

ARM Register

ARM Register

1 MRC register read

0 MCR register write

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-14

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

4.6.2 Registers

The ARM processor contains registers which control the cache and MMU operation.

These registers are accessed using CPRT instructions to Coprocessor #15 with the

processor in a privileged mode. Only some of registers 0-7 are valid: an access to an

invalid register will cause neither the access nor an undefined instruction trap, and

therefore should never be carried out; an access to any of the registers 8-15 will cause

the undefined instruction trap to be taken.

Register Register reads Register writes

0 CPU ID Reserved

1 Reserved Control

2 Reserved Translation Table Base

3 Reserved Domain Access Control

4 Reserved Reserved

5 Fault Status Flush TLB

6 Fault Address Purge TLB

7 Reserved Flush IDC

8-15 Reserved Reserved

 Table 4-3: Cache and MMU control registers

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-15

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Register 1: Control

Register 1 is write only and contains control bits. All bits in this register are forced LOW

by reset.

M Bit 0 Enable/disable

0 on-chip Memory Management Unit turned off
1 on-chip Memory Management Unit turned on.

A Bit 1 Address Fault Enable/Disable

0 alignment fault disabled
1 alignment fault enabled

C Bit 2 Cache Enable/Disable

0 Instruction / data cache turned off
1 Instruction / data cache turned on

W Bit 3 Write buffer Enable/Disable

0 Write buffer turned off
1 Write buffer turned on

P Bit 4 ARM 32/26 Bit Program Space

0 26-bit Program Space selected
1 32-bit Program Space selected

D Bit 5 ARM 32/26 Bit Data Space

0 26 bit Data Space selected
1 32 bit Data Space selected

B Bit 7 Big/Little Endian

0 Little-endian operation
1 Big-endian operation

S Bit 8 System bit, which controls the ARM processor permission system.

R Bit 9 ROM bit, whicht controls the ARM processor permission system

0

034781112151619202122272831 125691013141718232425262930

0 0 0 0 0 0 0 0 00 0 00 0 0 00 0 00 0 R S B 1 D P W C A M

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-16

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Register 2: Translation Table Base

Register 2 is a write-only register which holds the base of the currently active Level

One page table.

Register 3: Domain Access Control

Register 3 is a write-only register which holds the current access control for domains

0 to 15. See ➲ 7.10 Domain access control on page 7-13 for the access permission

definitions and other details.

Register 4: Reserved

Register 4 is Reserved. Accessing this register has no effect, but should never be

attempted.

Register 5: Fault Status/Translation Lookaside Buffer Flush

Read: Fault Status

Reading register 5 returns the status of the last data fault. It is not
updated for a prefetch fault. See ➲ Chapter 7, ARM Processor MMU
for more details. Note that only the bottom 12 bits are returned. The
upper 20 bits will be the last value on the internal data bus, and
therefore will have no meaning. Bits 11:8 are always returned as zero.

Write: Translation Lookaside Buffer Flush

Writing Register 5 flushes the TLB. (The data written is discarded).

034781112151619202122272831 125691013141718232425262930

Translation Table Base

034781112151619202122272831 125691013141718232425262930

0123456789101112131415

0

034781112151619202122272831 125691013141718232425262930

0 0 0 Domain Status

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-17

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Register 6: Fault Address/ TLB Purge

Read: Fault Address

Reading register 6 returns the virtual address of the last data fault.

Write: TLB Purge

Writing Register 6 purges the TLB; the data is treated as an address
and the TLB is searched for a corresponding page table descriptor. If
a match is found, the corresponding entry is marked as invalid. This
allows the page table descriptors in main memory to be updated and
invalid entries in the on-chip TLB to be purged without requiring the
entire TLB to be flushed.

Register 7: IDC Flush

Register 7 is a write-only register. The data written to this register is discarded and the

IDC is flushed.

Registers 8 -15: Reserved

Accessing any of these registers will cause the undefined instruction trap to be taken.

034781112151619202122272831 125691013141718232425262930

Fault address

034781112151619202122272831 125691013141718232425262930

Purge address

ARM Processor Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

4-18

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

5-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM Processor Instruction Set

This chapter describes the ARM processor instruction set.

5.1 Instruction set summary 5-2

5.2 The condition field 5-3

5.3 Branch and branch with link (B, BL) 5-4

5.4 Data processing 5-6

5.5 PSR transfer (MRS, MSR) 5-15

5.6 Multiply and multiply-accumulate (MUL, MLA) 5-20

5.7 Single data transfer (LDR, STR) 5-23

5.8 Block data transfer (LDM, STM) 5-29

5.10 Software interrupt (SWI) 5-39

5.11 Coprocessor Instructions on the ARM Processor 5-41

5.13 Coprocessor data transfers (LDC, STC) 5-44

5.14 Coprocessor register transfers (MRC, MCR) 5-48

5.15 Undefined instruction 5-51

5.16 Instruction set examples 5-52

5.16 Instruction set examples 5-52

5

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.1 Instruction set summary

A summary of the ARM processor instruction set is shown in ➲ Figure 5-1: Instruction
set summary.

Note: Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken, for instance a Multiply instruction with bit 6 changed to a 1. These
instructions shall not be used, as their action may change in future ARM
implementations.

 Figure 5-1: Instruction set summary

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 0 0 Opcode

21

S Rn Rd Operand 2
Data Processing

PSR Transfer

Multiply

Single Data Swap

Single Data Transfer

Undefined

Block Data Transfer

Coproc Data Transfer

Branch

Coproc Data Operation

Coproc Register Transfer

Software Interrupt

26 25 22

I

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 0 0 SA Rd Rn Rs 1 0 0 1 Rm

1 0 0 1 Rm0 0 0 0RdRn0 0 0 1 0 B 0 0

offsetRdRnB W LI P U0 1

0 1 1 XXXXXXXXXXXXXXXXXXXX 1 XXXX

1 0 0 S W LP U Rn Register List

1 0 1 L

1 1 0

offset

1 1 1 0 0 CRm

1 1 1 0 LCP Opc

N W LP U Rn offset CRd CP#

1 1 1 1

CP Opc CRn CRd

 CRn Rd

 CP#

 CP#

 CP

 CP 1 CRm

ignored by processor

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.2 The condition field

 Figure 5-2: Condition codes

All ARM processor instructions are conditionally executed, which means that their

execution may or may not take place depending on the values of the N, Z, C and V

flags in the CPSR.

The condition codes have meanings as detailed in ➲ Figure 5-2: Condition codes, for

instance code 0000 (EQual) executes the instruction only if the Z flag is set. This would

correspond to the case where a compare (CMP) instruction had found the two

operands to be equal. If the two operands were different, the compare instruction

would have cleared the Z flag and the instruction is not executed.

Note: If the always (AL - 1110) condition is specified, the instruction will be executed
irrespective of the flags. The never (NV - 1111) class of condition codes must not be
used as they will be redefined in future variants of the ARM architecture. If a NOP is
required it is suggested that MOV R0,R0 be used. The assembler treats the absence
of a condition code as though always had been specified.

Cond

31 28 27 0

Condition field
0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)

0100 = MI - N set (negative)

0101 = PL - N clear (positive or zero)

0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)

1000 = HI - C set and Z clear (unsigned higher)

1001 = LS - C clear or Z set (unsigned lower or same)

1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)

1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)

1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)

1110 = AL - always
1111 = NV - never

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.3 Branch and branch with link (B, BL)

These instructions are only executed if the condition is true. The instruction encoding

is shown in ➲ Figure 5-3: Branch instructions.

Branch instructions contain a signed 2's complement 24-bit offset. This is shifted left

two bits, sign extended to 32 bits, and added to the PC. The instruction can therefore

specify a branch of +/- 32Mbytes. The branch offset must take account of the prefetch

operation, which causes the PC to be 2 words (8 bytes) ahead of the current

instruction.

 Figure 5-3: Branch instructions

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has

been previously loaded into a register. In this case the PC should be manually saved

in R14 if a branch with link type operation is required.

5.3.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.

The PC value written into R14 is adjusted to allow for the prefetch, and contains the

address of the instruction following the branch and link instruction. Note that the CPSR

is not saved with the PC.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register

is still valid or use LDM Rn!,{..PC} if the link register has been saved onto a stack

pointed to by Rn.

5.3.2 Instruction cycle times

Branch and Branch with Link instructions take 3 instruction fetches. For more

information see ➲ 5.16.7 Instruction speed summary on page 5-55.

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch

1 = Branch with Link

Condition field

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.3.3 Assembler syntax

B{L}{cond} <expression>

Items in {} are optional. Items in <> must be present.

{L} requests the Branch with Link form of the instruction. If
absent, R14 will not be affected by the instruction.

{cond} is a two-char mnemonic as shown in ➲ Figure 5-2: Condition
codes on page 5-3 (EQ, NE, VS etc). If absent then AL
(ALways) will be used.

<expression> is the destination. The assembler calculates the offset.

5.3.4 Examples

here BAL here ;assembles to 0xEAFFFFFE (note effect of PC

;offset)

B there ;ALways condition used as default

CMP R1,#0 ;compare R1 with zero and branch to fred if R1

BEQ fred ;was zero otherwise continue to next instruction

BL sub+ROM ;call subroutine at computed address

ADDS R1,#1 ;add 1 to register 1, setting CPSR flags on the

BLCC sub ;result then call subroutine if the C flag is

;clear, which will be the case unless R1 held

;0xFFFFFFFF

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.4 Data processing

The instruction is only executed if the condition is true, defined at the beginning of this

chapter. The instruction encoding is shown in ➲ Figure 5-4: Data processing
instructions on page 5-7.

The instruction produces a result by performing a specified arithmetic or logical

operation on one or two operands.

First operand is always a register (Rn).

Second operand may be a shifted register (Rm) or a rotated 8-bit immediate
value (Imm) according to the value of the I bit in the
instruction.

The condition codes in the CPSR may be preserved or updated as a result of this

instruction, according to the value of the S-bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used

only to perform tests and to set the condition codes on the result and always have the

S bit set.

The instructions and their effects are listed in ➲ Table 5-1: ARM data processing
instructions on page 5-8.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

.

 Figure 5-4: Data processing instructions

Cond 00 I OpCode Rn Rd Operand 2

011121516192021242526272831

Destination register

1st operand register

Set condition codes

Operation Code

0 = do not alter condition codes

1 = set condition codes

0000 = AND - Rd:= Op1 AND Op2

0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1

0100 = ADD - Rd:= Op1 + Op2

0101 = ADC - Rd:= Op1 + Op2 + C

0110 = SBC - Rd:= Op1 - Op2 + C

0111 = RSC - Rd:= Op2 - Op1 + C
1000 = TST - set condition codes on Op1 AND Op2

1001 = TEQ - set condition codes on Op1 EOR Op2

1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2

1100 = ORR - Rd:= Op1 OR Op2

1101 = MOV - Rd:= Op2

1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Immediate Operand
0 = operand 2 is a register

1 = operand 2 is an immediate value

Shift Rm

Rotate

S

Unsigned 8 bit immediate value

2nd operand register

shift applied to Rm

shift applied to Imm

Imm

Condition field

11 8 7 0

03411

0001 = EOR - Rd:= Op1 EOR Op2

- 1

- 1

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.4.1 CPSR flags

The data processing operations may be classified as logical or arithmetic. The logical

operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action

on all corresponding bits of the operand or operands to produce the result.

If the S bit is set (and Rd is not R15):

• the V flag in the CPSR will be unaffected

• the C flag will be set to the carry out from the barrel shifter (or preserved when

the shift operation is LSL #0)

• the Z flag will be set if and only if the result is all zeros

• the N flag will be set to the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each

operand as a 32-bit integer (either unsigned or 2’s complement signed, the two are

equivalent).

Assembler

mnemonic

OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

MOV 1101 operand2 (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

 Table 5-1: ARM data processing instructions

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-9

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

If the S bit is set (and Rd is not R15):

• the V flag in the CPSR will be set if an overflow occurs into bit 31 of the result;

this may be ignored if the operands were considered unsigned, but warns of

a possible error if the operands were 2's complement signed

• the C flag will be set to the carry out of bit 31 of the ALU

• the Z flag will be set if and only if the result was zero

• the N flag will be set to the value of bit 31 of the result (indicating a negative

result if the operands are considered to be 2's complement signed).

5.4.2 Shifts

When the second operand is specified to be a shifted register, the operation of the

barrel shifter is controlled by the Shift field in the instruction. This field indicates the

type of shift to be performed (logical left or right, arithmetic right or rotate right).

The amount by which the register should be shifted may be contained in an immediate

field in the instruction, or in the bottom byte of another register (other than R15). The

encoding for the different shift types is shown in ➲ Figure 5-5: ARM shift operations.

 Figure 5-5: ARM shift operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which

may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm and

moves each bit by the specified amount to a more significant position. The least

significant bits of the result are filled with zeros, and the high bits of Rm which do not

map into the result are discarded, except that the least significant discarded bit

becomes the shifter carry output which may be latched into the C bit of the CPSR when

the ALU operation is in the logical class (see above). For example, the effect of LSL #5

is shown in ➲ Figure 5-6: Logical shift left on page 5-10.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left

01 = logical right

10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left

01 = logical right

10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-10

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 5-6: Logical shift left

Note: LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C
flag. The contents of Rm are used directly as the second operand.

Logical shift right

A logical shift right (LSR) is similar, but the contents of Rm are moved to less

significant positions in the result. LSR #5 has the effect shown in ➲ Figure 5-7: Logical
shift right.

 Figure 5-7: Logical shift right

The form of the shift field which might be expected to correspond to LSR #0 is used to

encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical

shift right zero is redundant as it is the same as logical shift left zero, so the assembler

will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to be

specified.

Arithmetic shift

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits

are filled with bit 31 of Rm instead of zeros. This preserves the sign in 2's complement

notation. For example, ASR #5 is shown in ➲ Figure 5-8: Arithmetic shift right.

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-11

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 5-8: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode

ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is

also equal to bit 31 of Rm. The result is therefore all ones or all zeros, according to the

value of bit 31 of Rm.

Rotate right

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right

operation by reintroducing them at the high end of the result, in place of the zeros used

to fill the high end in logical right operations. For example, ROR #5 is shown in ➲ Figure
5-9: Rotate right on page 5-11.

 Figure 5-9: Rotate right

The form of the shift field which might be expected to give ROR #0 is used to encode

a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right

by one bit position of the 33 bit quantity formed by appending the CPSR C flag to the

most significant end of the contents of Rm as shown in ➲ Figure 5-10: Rotate right
extended.

contents of Rm

value of operand 2

31 0

carry out

5 430

contents of Rm

value of operand 2

31 0

carry out

5 4

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-12

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 5-10: Rotate right extended

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift

amount. Rs can be any general register other than R15.

Note: The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one

in this bit will cause the instruction to be a multiply or undefined instruction.

5.4.3 Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift

operation on the 8 bit immediate value. This value is zero extended to 32 bits, and then

subject to a rotate right by twice the value in the rotate field. This enables many

common constants to be generated, for example all powers of 2.

Byte Description

0 Unchanged contents of Rm will be used as the second operand, and the old value of the

CPSR C flag will be passed on as the shifter carry output

1 - 31 The shifted result will exactly match that of an instruction specified shift with the same

value and shift operation

32 or more The result will be a logical extension of the shift described above:

1 LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2 LSL by more than 32 has result zero, carry out zero.

3 LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4 LSR by more than 32 has result zero, carry out zero.

5 ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6 ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7 ROR by n where n is greater than 32 will give the same result and carry out as ROR
by n-32; therefore repeatedly subtract 32 from n until the amount is in the range
1 to 32 and see above.

 Table 5-2: Register specified shift amount

contents of Rm

value of operand 2

31 0

carry
out

1

C
in

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-13

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.4.4 Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be

updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation

is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and

the SPSR corresponding to the current mode is moved to the CPSR. This allows state

changes which atomically restore both PC and CPSR.

Note: This form of instruction must not be used in User mode.

5.4.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is

used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction

prefetching. If the shift amount is specified in the instruction, the PC will be 8 bytes

ahead. If a register is used to specify the shift amount the PC will be 12 bytes ahead.

5.4.6 TEQ, TST, CMP & CMN opcodes

These instructions do not write the result of their operation but do set flags in the

CPSR. An assembler shall always set the S flag for these instructions even if it is not

specified in the mnemonic.

The TEQP form of the instruction used in earlier processors shall not be used in the

32-bit modes, the PSR transfer operations should be used instead. If used in these

modes, its effect is to move SPSR_<mode> to CPSR if the processor is in a privileged

mode and to do nothing if in User mode.

5.4.7 Instruction cycle times

Data Processing instructions vary in the number of incremental cycles taken as

follows:

See ➲ 5.16.7 Instruction speed summary on page 5-55 for more information.

Instruction Cycles

Normal Data Processing 1instruction fetch

Data Processing with register specified shift 1 instruction fetch + 1 internal cycle

Data Processing with PC written 3 instruction fetches

Data Processing with register specified shift

and PC written

3 instruction fetches and 1 internal cycle

 Figure 5-11: Instruction cycle times

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-14

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.4.8 Assembler syntax

1 MOV,MVN - single operand instructions

<opcode>{cond}{S} Rd,<Op2>

2 CMP,CMN,TEQ,TST - instructions which do not produce a result.

<opcode>{cond} Rn,<Op2>

3 AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2> is Rm{,<shift>} or,<#expression>

{cond} two-character condition mnemonic, see ➲ Figure 5-2:
Condition codes on page 5-3

{S} set condition codes if S present (implied for CMP, CMN, TEQ,
TST).

Rd, Rn and Rm are expressions evaluating to a register number.

<#expression> if used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is
impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or
RRX (rotate right one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL;
they assemble to the same code.)

5.4.9 Example

ADDEQ R2,R4,R5 ;if the Z flag is set make R2:=R4+R

TEQS R4,#3 ;test R4 for equality with 3

;(the S is in fact redundant as the

;assembler inserts it automatically)

SUB R4,R5,R7,LSR R2;

;logical right shift R7 by the number in

;the bottom byte of R2, subtract result

;from R5, and put the answer into R4

MOV PC,R14 ;return from subroutine

MOVS PC,R14 ;return from exception and restore CPSR

;from SPSR_mode

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-15

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.5 PSR transfer (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are

defined in ➲ 5.2 The condition field on page 5-3.

The MRS and MSR instructions are formed from a subset of the Data Processing

operations and are implemented using the TEQ, TST, CMN and CMP instructions

without the S flag set. The encoding is shown in ➲ Figure 5-12: PSR transfer on page

5-16.

These instructions allow access to the CPSR and SPSR registers. The MRS

instruction allows the contents of the CPSR or SPSR_<mode> to be moved to a

general register.

The MSR instruction allows the contents of a general register to be moved to the

CPSR or SPSR_<mode> register. The MSR instruction also allows an immediate

value or register contents to be transferred to the condition code flags (N,Z,C and V)

of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four

bits of the specified register contents or 32-bit immediate value are written to the top

four bits of the relevant PSR.

5.5.1 Operand restrictions

In User mode, the control bits of the CPSR are protected from change, so only the

condition code flags of the CPSR can be changed. In other (privileged) modes the

entire CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution.

For example, only SPSR_fiq is accessible when the processor is in FIQ mode.

Note: R15 must not be specified as the source or destination register.

A further restriction is that you must not attempt to access an SPSR in User mode,

since no such register exists.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-16

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 5-12: PSR transfer

Cond

01112151621272831

Condition field

P

2223

0 = CPSR

1 = SPSR_<current mode>

00010 000000000000s 001111 Rd

Destination register

Source PSR

Condition field

MRS

021272831 2223

MSR

RmPdCond 00010

4 3

Condition field

272831 2223

MSR

PdCond

1010011111 00000000

12 11

Source register

21 12

101000111100 I 10

011

Source operand

Immediate Operand

Rm

Rotate

Unsigned 8 bit immediate value

shift applied to Imm

Imm

11 8 7 0

03411

Destination PSR
0 = CPSR

1 = SPSR_<current mode>

Destination PSR
0 = CPSR

1 = SPSR_<current mode>

0 = Source operand is a register

1 = Source operand is an immediate value

00000000

Source register

(transfer PSR contents to a register)

(transfer register contents to PSR)

(transfer register contents or immediate value to PSR flag bits only)

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-17

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.5.2 Reserved bits

Only eleven bits of the PSR are defined in the ARM processor (N,Z,C,V,I,F & M[4:0]);

the remaining bits (= PSR[27:8,5]) are reserved for use in future versions of the

processor.

Compatibility

To ensure the maximum compatibility between ARM processor programs and future

processors, the following rules should be observed:

1 The reserved bit smust be preserved when changing the value in a PSR.

2 Programs must not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future
processors.

A read-modify-write strategy should therefore be used when altering the control bits of

any PSR register; this involves transferring the appropriate PSR register to a general

register using the MRS instruction, changing only the relevant bits and then

transferring the modified value back to the PSR register using the MSR instruction.

For example, the following sequence performs a mode change:

MRS R0,CPSR ;take a copy of the CPSR

BIC R0,R0,#0x1F ;clear the mode bits

ORR R0,R0,#new_mode ;select new mode

MSR CPSR,R0 ;write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be

written directly to the flag bits without disturbing the control bits. e.g. The following

instruction sets the N,Z,C & V flags:

MSR CPSR_flg,#0xF0000000

;set all the flags regardless of

;their previous state (does not

;affect any control bits)

Note: Do not attempt to write an 8 bit immediate value into the whole PSR since such an

operation cannot preserve the reserved bits.

5.5.3 Instruction cycle times

PSR Transfers take 1 instruction fetch. For more information see ➲ 5.16.7 Instruction
speed summary on page 5-55.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-18

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.5.4 Assembler syntax

1 MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

2 MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

3 MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C
& V flags respectively.

4 MSR - transfer immediate value to PSR flag bits only

MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32-bit value of which the most significant
four bits are written to the N,Z,C & V flags respectively.

where:

{cond} two-character condition mnemonic, see ➲ Figure 5-2:
Condition codes on page 5-3

Rd and Rm are expressions evaluating to a register number other than
R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and
CPSR_all are synonyms as are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

<#expression> where used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is
impossible, it will give an error.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-19

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.5.5 Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ;CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,Rm ;CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000;

;CPSR[31:28] <- 0xA

;(i.e. set N,C; clear Z,V)

MRS Rd,CPSR ;Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ;CPSR[31:0] <- Rm[31:0]

MSR CPSR_flg,Rm ;CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0x50000000;

;CPSR[31:28] <- 0x5

;(i.e. set Z,V; clear N,C)

MRS Rd,CPSR ;Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ;SPSR_<mode>[31:0] <- Rm[31:0]

MSR SPSR_flg,Rm ;SPSR_<mode>[31:28] <- Rm[31:28]

MSR SPSR_flg,#0xC0000000;

;SPSR_<mode>[31:28] <- 0xC

;(i.e. set N,Z; clear C,V)

MRS Rd,SPSR ;Rd[31:0] <- SPSR_<mode>[31:0]

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-20

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.6 Multiply and multiply-accumulate (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in

➲ Figure 5-13: Multiply instructions.

The multiply and multiply-accumulate instructions use a 2-bit Booth’s algorithm to

perform integer multiplication. They give the least significant 32-bits of the product of

two 32-bit operands, and may be used to synthesize higher-precision multiplications.

 Figure 5-13: Multiply instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be

set to zero for compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD

instruction in some circumstances.

The results of a signed multiply and of an unsigned multiply of 32-bit operands differ

only in the upper 32 bits; the low 32 bits of the signed and unsigned results are

identical. As these instructions only produce the low 32 bits of a multiply, they can be

used for both signed and unsigned multiplies.

Example

For example consider the multiplication of the operands:

Operand A Operand B Result

0xFFFFFFF6 0x00000014 0xFFFFFF38

If the operands are interpreted as signed, operand A has the value -10, operand B has

the value 20, and the result is -200 which is correctly represented as 0xFFFFFF38

If the operands are interpreted as unsigned, operand A has the value 4294967286,

operand B has the value 20 and the result is 85899345720, which is represented as

0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

Operand registers

Destination register

Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-21

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.6.1 Operand restrictions

Due to the way multiplication was implemented in other ARM processors, certain

combinations of operand registers should be avoided. The ARM processor’s

advanced multiplier can handle all operand combinations but by observing these

restrictions code written for the ARM processor will be more compatible with other

ARM processors. (The assembler will issue a warning if these restrictions are

overlooked.)

Note: The destination register Rd must not be the same as the operand register Rm. R15

shall not be used as an operand or as the destination register. All other register

combinations will give correct results, and Rd, Rn and Rs may use the same register

when required.

5.6.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction.

The N (Negative) and Z (Zero) flags are set correctly on the result (N is made equal to

bit 31 of the result, and Z is set if and only if the result is zero). The C (Carry) flag is

set to a meaningless value and the V (oVerflow) flag is unaffected.

5.6.3 Instruction cycle times

The Multiply instructions take 1 instruction fetch and m internal cycles, as shown in

➲ Table 5-3: Instruction cycle times. For more information see ➲ 5.16.7 Instruction
speed summary on page 5-55..

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs

The maximum time for any multiply is thus 1S+16I cycles.

Multiplication by Takes

any number between 2^(2m-3) and 2^(2m-1)-1 1S+mI cycles for 1<m>16.

Multiplication by 0 or 1 1S+1I cycles

any number greater than or equal to 2^(29) 1S+16I cycles.

 Table 5-3: Instruction cycle times

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-22

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.6.4 Assembler syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

where:

{cond} two-character condition mnemonic, see ➲ Figure 5-2:
Condition codes on page 5-3

{S} set condition codes if S present

Rd, Rm, Rs, Rn are expressions evaluating to a register number other
than R15.

5.6.5 Examples

MUL R1,R2,R3 ;R1:=R2*R3

MLAEQS R1,R2,R3,R4 ;conditionally

;R1:=R2*R3+R4,

;setting condition codes

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-23

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.7 Single data transfer (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in ➲ Figure
5-14: Single data transfer instructions.

The single data transfer instructions are used to load or store single bytes or words of

data. The memory address used in the transfer is calculated by adding an offset to or

subtracting an offset from a base register.

The result of this calculation may be written back into the base register if

’auto-indexing' is required.

 Figure 5-14: Single data transfer instructions

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register

Base register

Load/Store bit
0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value

Immediate offset

Immediate offset

Unsigned 12 bit immediate offset

1 = offset is a register
11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-24

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.7.1 Offsets and auto-indexing

The offset from the base may be either a 12-bit unsigned binary immediate value in

the instruction, or a second register (possibly shifted in some way). The offset may be

added to (U=1) or subtracted from (U=0) the base register Rn. The offset modification

may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the

base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes.

The modified base value may be written back into the base (W=1), or the old base

value may be kept (W=0).

Post-indexed addressing

In the case of post-indexed addressing, the write back bit is redundant and is always

set to zero, since the old base value can be retained by setting the offset to zero.

Therefore post-indexed data transfers always write back the modified base. The only

use of the W bit in a post-indexed data transfer is in privileged mode code, where

setting the W bit forces non-privileged mode for the transfer, allowing the operating

system to generate a user address in a system where the memory management

hardware makes suitable use of this hardware.

5.7.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section.

However, the register specified shift amounts are not available in this instruction class.

See ➲ 5.4.2 Shifts on page 5-9.

5.7.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between

an ARM processor register and memory. The following text assumes that the

ARM7500 is operating with 32-bit wide memory. If it is operating with 16-bit wide

memory, the positions of bytes on the external data bus will be different, although, on

the ARM7500 internal data bus the positions will be as described here.

The action of LDR(B) and STR(B) instructions is influenced by the 3 instruction

fetches. For more information see ➲ 5.16.7 Instruction speed summary on page 5-55.

The two possible configurations are described below.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-25

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Little Endian Configuration

Byte load (LDRB) expects the data on data bus inputs 7 through 0 if the
supplied address is on a word boundary, on data bus inputs
15 through 8 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. See ➲ Figure 4-1: Little Endian addresses of
bytes within words on page 4-2.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0.

Word load (LDR) will normally use a word aligned address. However, an
address offset from a word boundary will cause the data to be
rotated into the register so that the addressed byte occupies
bits 0 to 7. This means that half-words accessed at offsets 0
and 2 from the word boundary will be correctly loaded into
bits 0 through 15 of the register. Two shift operations are then
required to clear or to sign extend the upper 16 bits. This is
illustrated in ➲ Figure 5-15: Little Endian offset addressing on
page 5-25.

A word store (STR) should generate a word aligned address.
The word presented to the data bus is not affected if the
address is not word aligned. That is, bit 31 of the register
being stored always appears on data bus output 31.

 Figure 5-15: Little Endian offset addressing

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0

LDR from word aligned address

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-26

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Big Endian Configuration

Byte load (LDRB) expects the data on data bus inputs 31 through 24 if the
supplied address is on a word boundary, on data bus inputs
23 through 16 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register and the remaining bits of the register are
filled with zeros. Please see ➲ Figure 4-2: Big Endian
addresses of bytes within words on page 4-3.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0.

Word load (LDR) should generate a word aligned address. An address offset of
0 or 2 from a word boundary will cause the data to be rotated
into the register so that the addressed byte occupies bits 31
through 24. This means that half-words accessed at these
offsets will be correctly loaded into bits 16 through 31 of the
register. A shift operation is then required to move (and
optionally sign extend) the data into the bottom 16 bits. An
address offset of 1 or 3 from a word boundary will cause the
data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address.
The word presented to the data bus is not affected if the
address is not word aligned. That is, bit 31 of the register
being stored always appears on data bus output 31.

5.7.4 Use of R15

Do not specify write-back if R15 is specified as the base register (Rn). When using R15

as the base register you must remember it contains an address 8 bytes on from the

address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored

value will be address of the instruction plus 12.

5.7.5 Restriction on the use of base register

When configured for late aborts, the following example code is difficult to unwind as

the base register, Rn, gets updated before the abort handler starts. Sometimes it may

be impossible to calculate the initial value.

For example:

LDR R0,[R1],R1

<LDR|STR> Rd, [Rn],{+/-}Rn{,<shift>}

Therefore a post-indexed LDR|STR where Rm is the same register as Rn shall not be

used.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-27

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.7.6 Data aborts

A transfer to or from a legal address may cause the MMU to generate an abort. It is

up to the system software to resolve the cause of the problem, then the instruction can

be restarted and the original program continued.

5.7.7 Instruction cycle times

For more information see ➲ 5.16.7 Instruction speed summary on page 5-55.

5.7.8 Assembler syntax

<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR load from memory into a register

STR store from a register into memory

{cond} two-character condition mnemonic, see ➲ Figure 5-2: Condition codes
on page 5-3

{B} if B is present then byte transfer, otherwise word transfer

{T} if T is present the W bit will be set in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when a
pre-indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating
the expression. This will be a PC relative, pre-indexed address. If the address
is out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of
index register, shifted by
<shift>

Instruction Cycles

Normal LDR instruction 1 instruction fetch, 1 data read and 1 internal cycle

LDR PC 3 instruction fetches, 1 data read and 1 internal cycle.

STR instruction 1 instruction fetch and 1 data write incremental cycles.

 Table 5-4: Instruction cycle times

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-28

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of

index register, shifted as

by <shift>.

Rn and Rm are expressions evaluating to a register number. If Rn is R15
then the assembler will subtract 8 from the offset value to
allow for ARM7500 pipelining. In this case base write-back
shall not be specified.

<shift> is a general shift operation (see section on data processing
instructions) but note that the shift amount may not be
specified by a register.

{!} writes back the base register (set the W bit) if ! is present.

5.7.9 Examples

STR R1,[R2,R4]! ;store R1 at R2+R4 (both of which are

;registers) and write back address to R2

STR R1,[R2],R4 ;store R1 at R2 and write back

;R2+R4 to R2

LDR R1,[R2,#16] ;load R1 from contents of R2+16

; Don't write back

LDR R1,[R2,R3,LSL#2]

;load R1 from contents of R2+R3*4

LDREQB

R1,[R6,#5] ;conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31

; with zeros

STR R1,PLACE ;generate PC relative offset to address

• ;PLACE

•

PLACE

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-29

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.8 Block data transfer (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in ➲ Figure
5-16: Block data transfer instructions.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of

the currently visible registers. They support all possible stacking modes, maintaining

full or empty stacks which can grow up or down memory, and are very efficient

instructions for saving or restoring context, or for moving large blocks of data around

main memory.

5.8.1 The register list

The instruction can cause the transfer of any registers in the current bank (and non-

user mode programs can also transfer to and from the user bank, see below). The

register list is a 16 bit field in the instruction, with each bit corresponding to a register.

A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to

be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction

is that the register list should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM

instruction plus 12.

 Figure 5-16: Block data transfer instructions

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register

Load/Store bit
0 = Store to memory

1 = Load from memory

Write-back bit
0 = no write-back

1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base

1 = up; add offset to base

0 = post; add offset after transfer

1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode

1 = load PSR or force user mode

Condition field

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-30

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.8.2 Addressing modes

The transfer addresses are determined by :

• the contents of the base register (Rn)

• the pre/post bit (P)

• the up/down bit (U)

The registers are transferred in the order lowest to highest, so R15 (if in the list) will

always be transferred last. The lowest register also gets transferred to/from the lowest

memory address.

By way of illustration, consider the transfer of R1, R5 and R7 in the case where

Rn=0x1000 and write back of the modified base is required (W=1).

➲ Figure 5-17: Post-increment addressing, ➲ Figure 5-18: Pre-increment addressing,

➲ Figure 5-19: Post-decrement addressing, and ➲ Figure 5-20: Pre-decrement
addressing on page 5-32, show the sequence of register transfers, the addresses

used, and the value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would

have retained its initial value of 0x1000 unless it was also in the transfer list of a load

multiple register instruction, when it would have been overwritten with the loaded

value.

5.8.3 Address alignment

The address should always be a word aligned quantity.

 Figure 5-17: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-31

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 5-18: Pre-increment addressing

 Figure 5-19: Post-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-32

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 5-20: Pre-decrement addressing

5.8.4 Use of the S bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not

R15 is in the transfer list and on the type of instruction. The S bit should only be set if

the instruction is to execute in a privileged mode.

LDM with R15 in transfer list and S bit set (Mode changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same

time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank

corresponding to the current mode. This is useful for saving the user state on process

switches. Base write-back shall not be used when this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather

than the register bank corresponding to the current mode. This is useful for saving the

user state on process switches. Base write-back shall not be used when this

mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register

during the following cycle (inserting a NOP after the LDM will ensure safety).

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-33

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.8.5 Use of R15 as the base register

R15 must not be used as the base register in any LDM or STM instruction.

5.8.6 Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle

of the instruction. During an STM, the first register is written out at the start of the

second cycle. An STM which includes storing the base, with the base as the first

register to be stored, will therefore store the unchanged value, whereas with the base

second or later in the transfer order, will store the modified value. An LDM will always

overwrite the updated base if the base is in the list.

5.8.7 Data aborts

Some legal addresses may be unacceptable to the MMU. The MMU will then cause

an abort. This can happen on any transfer during a multiple register load or store, and

must be recoverable if ARM7500 is to be used in a virtual memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, the ARM processor takes little

action until the instruction completes, whereupon it enters the data abort trap. The

memory manager is responsible for preventing erroneous writes to the memory. The

only change to the internal state of the processor will be the modification of the base

register if write-back was specified, and this must be reversed by software (and the

cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When the ARM processor detects a data abort during a load multiple instruction, it

modifies the operation of the instruction to ensure that recovery is possible.

1 Overwriting of registers stops when the abort happens. The aborting load will
not take place but earlier ones may have overwritten registers. The PC is
always the last register to be written and so will always be preserved.

2 The base register is restored, to its modified value if write-back was
requested. This ensures recoverability in the case where the base register is
also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system

software must undo any base modification (and resolve the cause of the abort) before

restarting the instruction.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-34

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.8.8 Instruction cycle times

For more information see ➲ 5.16.7 Instruction speed summary on page 5-55.

5.8.9 Assembler syntax

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

{cond} - two character condition mnemonic, see ➲ Figure 5-2: Condition codes on page

5-3

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{!} if present requests write-back (W=1), otherwise W=0

{^} if present set S bit to load the CPSR along with the PC, or force transfer of user

bank when in privileged mode

Instruction Cycles

Normal LDM instructions 1 instruction fetch, n data reads and 1 internal cycle

LDM PC 3 instruction fetches, n data reads and 1 internal cycle.

STM instructions instruction fetch, n data reads and 1 internal cycle, where n is the

number of words transferred.

 Table 5-5: Instruction cycle times

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-35

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.8.10 Addressing mode names

There are different assembler mnemonics for each of the addressing modes,

depending on whether the instruction is being used to support stacks or for other

purposes. The equivalencies between the names and the values of the bits in the

instruction are shown in ➲ Table 5-6: Addressing mode names:

Key to table

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form

of stack required.

F Full stack (a pre-index has to be done before storing to the stack)

E Empty stack

A The stack is ascending (an STM will go up and LDM down)

D The stack is decending (an STM will go down and LDM up)

The following symbols allow control when LDM/STM are not being used for stacks:

IA Increment After

IB Increment Before

DA Decrement After

DB Decrement Before

Name Stack Other L-bit P-bit U-bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

 Table 5-6: Addressing mode names

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-36

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.8.11 Examples

LDMFD SP!,{R0,R1,R2} ;unstack 3 registers

STMIA R0,{R0-R15} ;save all registers

LDMFD SP!,{R15} ;R15 <- (SP),CPSR unchanged

LDMFD SP!,{R15}^ ;R15 <- (SP), CPSR <- SPSR_mode (allowed

;only in privileged modes)

STMFD R13,{R0-R14}^ ;save user mode regs on stack (allowed

;only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it

efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14};

;save R0 to R3 to use as workspace

;and R14 for returning

BL somewhere ;this nested call will overwrite R14

LDMED SP!,{R0-R3,R15}

;restore workspace and return

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-37

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.9 Single data swap (SWP)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in ➲ Figure
5-21: Swap instruction.

 Figure 5-21: Swap instruction

Data swap instruction

The data swap instruction is used to swap a byte or word quantity between a register

and external memory. This instruction is implemented as a memory read followed by

a memory write which are “locked” together (the processor cannot be interrupted until

both operations have completed, and the memory manager is warned to treat them as

inseparable). This class of instruction is particularly useful for implementing software

semaphores.

Swap address

The swap address is determined by the contents of the base register (Rn). The

processor first read the contents of the swap address. Then it writes the contents of

the source register (Rm) to the swap address, and stores the old memory contents in

the destination register (Rd). The same register can be specified as both the source

and the destination.

ARM710 lock feature

The ARM7500 does not use the lock feature available in the ARM710 macrocell. You

must take care to ensure that control of the memory is not removed from the ARM

processor while it is performing this instruction.

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register

Source register

Base register

Byte/Word bit
0 = swap word quantity
1 = swap byte quantity

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-38

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.9.1 Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an

ARM processor register and memory. The SWP instruction is implemented as a LDR

followed by a STR and the action of these is as described in the section on single data

transfers. In particular, the description of Big and Little Endian configuration applies to

the SWP instruction.

5.9.2 Use of R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

5.9.3 Data aborts

If the address used for the swap is unacceptable to the MMU, it will cause an abort.

This can happen on either the read or write cycle (or both), and, in either case, the

Data Abort trap will be taken. It is up to the system software to resolve the cause of

the problem. The instruction can then be restarted and the original program continued.

5.9.4 Instruction cycle times

Swap instructions take 1 instruction fetch, 1 data read, 1 data write and 1 internal

cycle. For more information see ➲ 5.16.7 Instruction speed summary on page 5-55.

5.9.5 Assembler syntax

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} two-character condition mnemonic, see ➲ Figure 5-2:
Condition codes on page 5-3

{B} if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

5.9.6 Examples

SWP R0,R1,[R2] ;load R0 with the word addressed by R2, and

;store R1 at R2

SWPB R2,R3,[R4] ;load R2 with the byte addressed by R4, and

;store bits 0 to 7 of R3 at R4

SWPEQ R0,R0,[R1] ;conditionally swap the contents of R1

;with R0

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-39

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.10 Software interrupt (SWI)

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in ➲ Figure
5-22: Software interrupt instruction. The software interrupt instruction is used to enter

Supervisor mode in a controlled manner. The instruction causes the software interrupt

trap to be taken, which effects the mode change. The PC is then forced to a fixed value

(0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably

protected (by external memory management hardware) from modification by the user,

a fully protected operating system may be constructed.

 Figure 5-22: Software interrupt instruction

5.10.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC

adjusted to point to the word after the SWI instruction. MOVS PC,R14_svc will return

to the calling program and restore the CPSR.

Note: The link mechanism is not re-entrant, so if the supervisor code wishes to use software

interrupts within itself it must first save a copy of the return address and SPSR.

5.10.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used

to communicate information to the supervisor code. For instance, the supervisor may

look at this field and use it to index into an array of entry points for routines which

perform the various supervisor functions.

5.10.3 Instruction cycle times

Software interrupt instructions take 3 instruction fetches. For more information see

➲ 5.16.7 Instruction speed summary on page 5-55.

5.10.4 Assembler syntax

SWI{cond} <expression>

{cond} two character condition mnemonic, see ➲ Figure 5-2:
Condition codes on page 5-3

<expression> is evaluated and placed in the comment field (ignored by the
ARM processor).

31 28 27 24 23 0

Condition field

1111Cond Comment field (ignored by Processor)

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-40

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.10.5 Examples

SWI ReadC ;get next character from read stream

SWI WriteI+”k” ;output a “k” to the write stream

SWINE 0 ;conditionally call supervisor

;with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ;SWI entry point

EntryTable ;addresses of supervisor routines

DCD ZeroRtn

DCD ReadCRtn

DCD WriteIRtn

...

Zero EQU 0

ReadC EQU 256

WriteI EQU 512

Supervisor

;SWI has routine required in bits 8-23 and data (if any) in bits

;0-7.

;Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14}; save work registers and return address

LDR R0,[R14,#-4] ;get SWI instruction

BIC R0,R0,#0xFF000000;

;clear top 8 bits

MOV R1,R0,LSR#8 ;get routine offset

ADR R2,EntryTable ;get start address of entry table

LDR R15,[R2,R1,LSL#2];

;branch to appropriate routine

WriteIRtn ;enter with character in R0 bits 0-7

.

LDMFD R13,{R0-R2,R15}^;

;restore workspace and return

; restoring processor mode and flags

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-41

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.11 Coprocessor Instructions on the ARM Processor

The core ARM processor in the ARM7500, unlike some other ARM processors, does

not have an external coprocessor interface. It only supports a single on-chip

coprocessor, #15, which is used to program the on-chip control registers. This only

supports the Coprocessor Register Transfer instructions (MRC and MCR).

All other coprocessor instructions will cause the undefined instruction trap to be taken

on the ARM processor. These coprocessor instructions can be emulated in software

by the undefined trap handler. Even though external coprocessors cannot be

connected to the ARM processor, the coprocessor instructions are still described here

in full for completeness. It must be kept in mind that any external coprocessor referred

to will be a software emulation.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-42

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.12 Coprocessor data operations (CDP)

Use of the CDP instruction on the ARM processor will cause an undefined instruction

trap to be taken, which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in ➲ Figure
5-23: Coprocessor data operation instruction.

This class of instruction is used to tell a coprocessor to perform some internal

operation. No result is communicated back to the processor, and it will not wait for the

operation to complete. The coprocessor could contain a queue of such instructions

awaiting execution, and their execution can overlap other activity allowing the

coprocessor and the processor to perform independent tasks in parallel.

 Figure 5-23: Coprocessor data operation instruction

5.12.1 The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to the processor; the remaining bits are used

by coprocessors. The above field names are used by convention, and particular

coprocessors may redefine the use of all fields except CP# as appropriate. The CP#

field is used to contain an identifying number (in the range 0 to 15) for each

coprocessor, and a coprocessor will ignore any instruction which does not contain its

number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should

perform an operation specified in the CP Opc field (and possibly in the CP field) on the

contents of CRn and CRm, and place the result in CRd.

5.12.2 Instruction cycle times

All CDP instructions are emulated in software: the number of cycles taken will depend

on the coprocessor support software.

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number

Condition field

Coprocessor information

Coprocessor operand register

Coprocessor destination register

Coprocessor operand register

Coprocessor operation code

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-43

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.12.3 Assembler syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} two character condition mnemonic, see ➲ Figure 5-2:
Condition codes on page 5-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd, CRn
and CRm respectively

<expression2> where present, is evaluated to a constant and placed in the
CP field

5.12.4 Examples

CDP p1,10,c1,c2,c3 ;request coproc 1 to do operation 10

;on CR2 and CR3, and put the result in CR1

CDPEQ p2,5,c1,c2,c3,2;

;if Z flag is set request coproc 2 to do

;operation 5 (type 2) on CR2 and CR3,

;and put the result in CR1

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-44

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.13 Coprocessor data transfers (LDC, STC)

Use of the LDC or STC instruction on the ARM processor will cause an undefined

instruction trap to be taken, which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in ➲ Figure
5-24: Coprocessor data transfer instructions.

This class of instruction is used to load (LDC) or store (STC) a subset of a

coprocessors’s registers directly to memory. The processor is responsible for

supplying the memory address, and the coprocessor supplies or accepts the data and

controls the number of words transferred.

 Figure 5-24: Coprocessor data transfer instructions

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number

Unsigned 8 bit immediate offset

Base register

Load/Store bit
0 = Store to memory

1 = Load from memory

Write-back bit
0 = no write-back

1 = write address into base

Coprocessor source/destination register

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base

1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field

1 = pre; add offset before transfer

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-45

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.13.1 The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept

the data, and a coprocessor will only respond if its number matches the contents of

this field.

The CRd field and the N bit contain information for the coprocessor which may be

interpreted in different ways by different coprocessors, but by convention CRd is the

register to be transferred (or the first register where more than one is to be

transferred), and the N bit is used to choose one of two transfer length options.

For example:

N=0 could select the transfer of a single register

N=1 could select the transfer of all the registers for context switching.

5.13.2 Addressing modes

The processor is responsible for providing the address used by the memory system

for the transfer, and the addressing modes available are a subset of those used in

single data transfer instructions. Note, however, that the immediate offsets are 8 bits

wide and specify word offsets for coprocessor data transfers, whereas they are 12 bits

wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or

subtracted from (U=0) the base register (Rn); this calculation may be performed either

before (P=1) or after (P=0) the base is used as the transfer address. The modified

base value may be overwritten back into the base register (if W=1), or the old value of

the base may be preserved (W=0).

Note: Post-indexed addressing modes require explicit setting of the W bit, unlike LDR and

STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is

used as the address for the transfer of the first word. The second word (if more than

one is transferred) will go to or come from an address one word (4 bytes) higher than

the first transfer, and the address will be incremented by one word for each

subsequent transfer.

5.13.3 Address alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of the

address will appear on A[1:0] and might be interpreted by the memory system.

5.13.4 Use of R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base

write-back to R15 must not be specified.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-46

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.13.5 Data aborts

If the address is legal but the memory manager generates an abort, the data trap will

be taken. The write-back of the modified base will take place, but all other processor

state will be preserved. The coprocessor is partly responsible for ensuring that the

data transfer can be restarted after the cause of the abort has been resolved, and must

ensure that any subsequent actions it undertakes can be repeated when the

instruction is retried.

5.13.6 Instruction cycle times

All LDC instructions are emulated in software: the number of cycles taken will depend

on the coprocessor support software.

5.13.7 Assembler syntax

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present perform long transfer (N=1), otherwise perform short
transfer (N=0)

{cond} two character condition mnemonic, see ➲ Figure 5-2: Condition codes
on page 5-3

p# the unique number of the required coprocessor

cd is an expression evaluating to a valid coprocessor register number
that is placed in the CRd field

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating
the expression. This will be a PC relative, pre-indexed address. If the address
is out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

Rn is an expression evaluating to a valid processor register number.
Note, if Rn is R15 then the assembler will subtract 8 from the offset
value to allow for processor pipelining.

{!} write back the base register (set the W bit) if ! is present

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-47

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.13.8 Examples

LDC p1,c2,table ;load c2 of coproc 1 from address table,

;using a PC relative address.

STCEQLp2,c3,[R5,#24]! ;conditionally store c3 of coproc 2

;into an address 24 bytes up from R5,

;write this address back to R5, and use

;long transfer

;option (probably to store multiple

;words)

Note: Though the address offset is expressed in bytes, the instruction offset field is in words.

The assembler will adjust the offset appropriately.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-48

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.14 Coprocessor register transfers (MRC, MCR)

Use of the MRC or MCR instruction on the ARM processor to a coprocessor other than

number 15 will cause an undefined instruction trap to be taken, which may be used to

emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction encoding is shown in ➲ Figure
5-25: Coprocessor register transfer instructions.

This class of instruction is used to communicate information directly between the ARM

processor and a coprocessor. An example of a coprocessor to processor register

transfer (MRC) instruction would be a FIX of a floating point value held in a

coprocessor, where the floating point number is converted into a 32-bit integer within

the coprocessor, and the result is then transferred to a processor register. A FLOAT of

a 32-bit value in a processor register into a floating point value within the coprocessor

illustrates the use of a processor register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from

the coprocessor into the processor CPSR flags. As an example, the result of a

comparison of two floating point values within a coprocessor can be moved to the

CPSR to control the subsequent flow of execution.

Note: The ARM processor has an internal coprocessor (#15) for control of on-chip functions.
Accesses to this coprocessor are performed during coprocessor register transfers.

 Figure 5-25: Coprocessor register transfer instructions

5.14.1 The coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor

is being called upon.

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number

Coprocessor information

Coprocessor operand register

Coprocessor operation mode

Condition field

Load/Store bit
0 = Store to Co-Processor

1 = Load from Co-Processor

ARM source/destination register

Coprocessor source/destination register

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-49

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the

interpretation presented here is derived from convention only. Other interpretations

are allowed where the coprocessor functionality is incompatible with this one. The

conventional interpretation is that the CP Opc and CP fields specify the operation the

coprocessor is required to perform, CRn is the coprocessor register which is the

source or destination of the transferred information, and CRm is a second coprocessor

register which may be involved in some way which depends on the particular operation

specified.

5.14.2 Transfers to R15

When a coprocessor register transfer to the ARM processor has R15 as the

destination, bits 31, 30, 29 and 28 of the transferred word are copied into the N, Z, C

and V flags respectively. The other bits of the transferred word are ignored, and the

PC and other CPSR bits are unaffected by the transfer.

5.14.3 Transfers from R15

A coprocessor register transfer from the ARM processor with R15 as the source

register will store the PC+12.

5.14.4 Instruction cycle times

Access to the internal configuration register takes 3 internal cycles. All other MRC

instructions default to software emulation, and the number of cycles taken will depend

on the coprocessor support software.

5.14.5 Assembler syntax

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC - move from coprocessor to ARM7500 register (L=1)

MCR - move from ARM7500 register to coprocessor (L=0)

{cond} - two character condition mnemonic, see ➲ Figure 5-2: Condition codes on page

5-3

p# - the unique number of the required coprocessor

<expression1> - evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM processor register number

cn and cm are expressions evaluating to the valid coprocessor register numbers CRn

and CRm respectively

<expression2> - where present is evaluated to a constant and placed in the CP field

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-50

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.14.6 Examples

MRC 2,5,R3,c5,c6 ;request coproc 2 to perform operation 5

;on c5 and c6, and transfer the (single

;32-bit word) result back to R3

MCR 6,0,R4,c6 ;request coproc 6 to perform operation 0

;on R4 and place the result in c6

MRCEQ 3,9,R3,c5,c6,2 ;conditionally request coproc 2 to

;perform

;operation 9 (type 2) on c5 and c6, and

;transfer the result back to R3

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-51

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.15 Undefined instruction

 Figure 5-26: Undefined instruction

The instruction is only executed if the condition is true. The various conditions are

defined at the beginning of this chapter. The instruction format is shown in ➲ Figure 5-
26: Undefined instruction on page 5-51.

If the condition is true, the undefined instruction trap will be taken.

5.15.1 Assembler syntax

At present the assembler has no mnemonics for generating this instruction. If it is

adopted in the future for some specified use, suitable mnemonics will be added to the

assembler. Until such time, this instruction shall not be used.

Cond

024272831 5 4 3

1011 xxxx

25

xxxxxxxxxxxxxxxxxxxx

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-52

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.16 Instruction set examples

The following examples show ways in which the basic ARM processor instructions can

combine to give efficient code. None of these methods saves a great deal of execution

time (although they may save some), mostly they just save code.

5.16.1 Using the conditional instructions

1 using conditionals for logical OR

CMP Rn,#p ;if Rn=p OR Rm=q THEN GOTO Label

BEQ Label

CMP Rm,#q

BEQ Label

can be replaced by
CMP Rn,#p

CMPNE Rm,#q ;if condition not satisfied try other

;test

BEQ Label

2 absolute value

TEQ Rn,#0 ;test sign

RSBMI Rn,Rn,#0 ;and 2's complement if necessary

3 multiplication by 4, 5 or 6 (run time)

MOV Rc,Ra,LSL#2;

;multiply by 4

CMP Rb,#5 ; test value

ADDCS Rc,Rc,Ra ; complete multiply by 5

ADDHI Rc,Rc,Ra ; complete multiply by 6

4 combining discrete and range tests

TEQ Rc,#127 ;discrete test

CMPNE Rc,#” “-1;

;range test

MOVLS Rc,#”.” ;IF Rc<=” “ OR Rc=ASCII(127)

;THEN Rc:=”.”

5 division and remainder

A number of divide routines for specific applications are provided in source form as

part of the ANSI C library provided with the ARM Cross Development Toolkit, available

from your supplier. A short general purpose divide routine follows.

;enter with numbers in Ra and Rb

;

MOV Rcnt,#1 ;bit to control the division

Div1 CMP Rb,#0x80000000;

;move Rb until greater than Ra

CMPCC Rb,Ra

MOVCC Rb,Rb,ASL#1

MOVCC Rcnt,Rcnt,ASL#1

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-53

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

BCC Div1

MOV Rc,#0

Div2 CMP Ra,Rb ;test for possible subtraction

SUBCS Ra,Ra,Rb ;subtract if ok

ADDCS Rc,Rc,Rcnt;

;put relevant bit into result

MOVS Rcnt,Rcnt,LSR#1;

;shift control bit

MOVNE Rb,Rb,LSR#1;

;halve unless finished

BNE Div2

;

;divide result in Rc

;remainder in Ra

5.16.2 Pseudo random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient

algorithms are based on shift generators with exclusive-OR feedback rather like a

cyclic redundancy check generator. Unfortunately the sequence of a 32-bit generator

needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles before

repetition), so this example uses a 33-bit register with taps at bits 33 and 20. The basic

algorithm is newbit:=bit 33 or bit 20, shift left the 33-bit number and put in newbit at the

bottom; this operation is performed for all the newbits needed (i.e. 32 bits). The entire

operation can be done in 5 S cycles:

;enter with seed in Ra (32 bits),

;Rb (1 bit in Rb lsb), uses Rc

;

TST Rb,Rb,LSR#1 ;top bit into carry

MOVS Rc,Ra,RRX ;33 bit rotate right

ADC Rb,Rb,Rb ;carry into lsb of Rb

EOR Rc,Rc,Ra,LSL#12;

;(involved!)

EOR Ra,Rc,Rc,LSR#20;

;(similarly involved!)

;

;new seed in Ra, Rb as before

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-54

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

5.16.3 Multiplication by constant using the barrel shifter

1 Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

2 Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

3 Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

4 Multiplication by 6

ADD Ra,Ra,Ra,LSL #1; ;multiply by 3

MOV Ra,Ra,LSL#1; ;and then by 2

5 Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2; ;multiply by 5

ADD Ra,Rc,Ra,LSL#1; ;multiply by 2

;and add in next digit

6 General recursive method for Rb := Ra*C, C a constant:

a) If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n

D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n

D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n

D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45

which is done by:

RSB Rb,Ra,Ra,LSL#2; ;multiply by 3

RSB Rb,Ra,Rb,LSL#2; ;multiply by 4*3-1 = 11

ADD Rb,Ra,Rb,LSL# 2; ;multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3; ;multiply by 9

ADD Rb,Rb,Rb,LSL#2; ;multiply by 5*9 = 45

5.16.4 Loading a word from an unknown alignment

;enter with address in Ra (32 bits)

;uses Rb, Rc; result in Rd.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-55

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

; Note d must be less than c e.g. 0,1

;

BIC Rb,Ra,#3 ;get word aligned address

LDMIA Rb,{Rd,Rc} ;get 64 bits containing answer

AND Rb,Ra,#3 ;correction factor in bytes

MOVS Rb,Rb,LSL#3 ;...now in bits and test if aligned

MOVNE Rd,Rd,LSR Rb ;produce bottom of result word

;(if not aligned)

RSBNE Rb,Rb,#32 ;get other shift amount

ORRNE Rd,Rd,Rc,LSL Rb; ;combine two halves to get result

5.16.5 Loading a halfword (Little Endian)

LDR Ra, [Rb,#2] ;get halfword to bits 15:0

MOV Ra,Ra,LSL #16 ;move to top

MOV Ra,Ra,LSR #16 ;and back to bottom

;use ASR to get sign extended version

5.16.6 Loading a halfword (Big Endian)

LDR Ra, [Rb,#2] ;get halfword to bits 31:16

MOV Ra,Ra,LSR #16 ;and back to bottom

;use ASR to get sign extended version

5.16.7 Instruction speed summary

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a

typical cycle one instruction may be using the data path while the next is being

decoded and the one after that is being fetched. For this reason the following table

presents the incremental number of cycles required by an instruction, rather than the

total number of cycles for which the instruction uses part of the processor. Elapsed

time (in cycles) for a routine may be calculated from these figures which are shown in

➲ Table 5-7: ARM instruction speed summary on page 5-56.

These figures assume that the instruction is actually executed.

Unexecuted instructions take one instruction fetch cycle.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-56

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Where:

n is the number of words transferred.

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs. Multiplication by any number
between 2^(2m-3) and 2^(2m-1)-1 takes 1S+mI cycles for 1<m>16.
Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any
number greater than or equal to 2^(29) takes 1S+16I cycles. The
maximum time for any multiply is thus 1S+16I cycles.

The time taken for:

• an internal cycle - will always be one FCLK cycle

• an instruction fetch and data read - will be FCLK if a cache hit occurs,

otherwise a full memory access is performed.

Instruction Cycle count

Data Processing - normal

 with register specified shift

 with PC written

 with register specified shift & PC written

1 instruction fetch

1 instruction fetch and 1 internal cycle

3 instruction fetches

3 instruction fetches and 1 internal cycle

MSR, MRS 1 instruction fetch

LDR - normal

 if the destination is the PC

1 instruction fetch, 1 data read and 1 internal cycle

3 instruction fetches, 1 data read and 1 internal cycle

STR 1 instruction fetch and 1 data write

LDM - normal

 if the destination is the PC

1 instruction fetch, n data reads and 1 internal cycle

3 instruction fetches, n data reads and 1 internal cycle

STM 1 instruction fetch and n data writes

SWP 1 instruction fetch, 1 data read, 1 data write and 1 internal

cycle

B,BL 3 instruction fetches

SWI, trap 3 instruction fetches

MUL,MLA 1 instruction fetch and m internal cycles

CDP the undefined instruction trap will be taken

LDC the undefined instruction trap will be taken

STC the undefined instruction trap will be taken

MCR 1 instruction fetch and 2 internal cycles for coproc 15

MRC 1 instruction fetch and 2 internal cycles for coproc 15

 Table 5-7: ARM instruction speed summary

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-57

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

• a data write - will be FCLK if the write buffer (if enabled) has available space,

otherwise the write will be delayed until the write buffer has free space. If the

write buffer is not enabled a full memory access is always performed.

• Co-processor cycles - will be one CPCLK cycle, but see the section on Co-

processors for more informational coprocessor operations except MCR or

MRC to registers 0 to 7 on coprocessor #15 (used for internal control) will

cause the undefined instruction trap to be taken.

• memory accesses - are dealt with elsewhere in the ARM7500 datasheet.

ARM Processor Instruction Set

ARM7500 Data Sheet
ARM DDI 0050C

5-58

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

6-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Cache, Write Buffer and
Coprocessors

The chapter describes the ARM processor instruction and data cache, and its write

buffer.

6.1 Instruction and Data Cache (IDC) 6-2

6.2 Read-Lock-Write 6-3

6.3 IDC Enable/Disable and Reset 6-3

6.4 Write buffer (WB) 6-3

6.5 Coprocessors 6-5

6

Cache, Write Buffer and Coprocessors

ARM7500 Data Sheet
ARM DDI 0050C

6-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

6.1 Instruction and Data Cache (IDC)

ARM processor contains a 4Kbyte mixed instruction and data cache. The IDC has 256

lines of 16 bytes (4 words), organised as a 4-way set associative cache, and uses the

virtual addresses generated by the processor core. The IDC is always reloaded a line

at a time (4 words). It may be enabled or disabled via the ARM processor Control

Register and is disabled on nRESET.

The operation of the cache is further controlled by the Cacheable or C bit stored in the

Memory Management Page Table (see the Memory Management Unit chapter). For

this reason, in order to use the IDC, the MMU must be enabled. The two functions may

however be enabled simultaneously, with a single write to the Control Register.

6.1.1 Cacheable bit

The Cacheable bit determines whether data being read may be placed in the IDC and

used for subsequent read operations. Typically main memory will be marked as

Cacheable to improve system performance, and I/O space as Non-cacheable to stop

the data being stored in ARM7500's cache. [For example if the processor is polling a

hardware flag in I/O space, it is important that the processor is forced to read data from

the external peripheral, and not a copy of initial data held in the cache]. The Cacheable

bit can be configured for both pages and sections.

6.1.2 IDC operation

In the ARM processor the cache will be searched regardless of the state of the C bit,

only reads that miss the cache will be affected.

Cacheable Reads C = 1

A linefetch of 4 words will be performed and it will be
randomly placed in a cache bank.

Uncacheable Reads C = 0

An external memory access will be performed and the
cache will not be written.

6.1.3 IDC validity

The IDC operates with virtual addresses, so care must be taken to ensure that its

contents remain consistent with the virtual to physical mappings performed by the

Memory Management Unit. If the Memory Mappings are changed, the IDC validity

must be ensured.

Software IDC Flush

The entire IDC may be marked as invalid by writing to the ARM processor IDC Flush

Register (Register 7). The cache will be flushed immediately the register is written, but

note that the next two instruction fetches may come from the cache before the register

is written.

Cache, Write Buffer and Coprocessors

ARM7500 Data Sheet
ARM DDI 0050C

6-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

6.1.4 Doubly mapped space

Since the cache works with virtual addresses, it is assumed that every virtual address

maps to a different physical address. If the same physical location is accessed by

more than one virtual address, the cache cannot maintain consistency, since each

virtual address will have a separate entry in the cache, and only one entry will be

updated on a processor write operation. To avoid any cache inconsistencies, both

doubly-mapped virtual addresses should be marked as uncacheable.

6.2 Read-Lock-Write

The IDC treats the Read-Locked-Write instruction as a special case. The read phase

always forces a read of external memory, regardless of whether the data is contained

in the cache. The write phase is treated as a normal write operation (and if the data is

already in the cache, the cache will be updated). Externally the two phases are flagged

as indivisible by asserting the LOCK signal.

6.3 IDC Enable/Disable and Reset

The IDC is automatically disabled and flushed on nRESET. Once enabled, cacheable

read accesses will cause lines to be placed in the cache.

6.3.1 To enable the IDC

To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in Control

Register, then enable the IDC by setting bit 2 in Control Register. The MMU and IDC

may be enabled simultaneously with a single control register write.

6.3.2 To disable the IDC

To disable the IDC, clear bit 2 in the Control Register and perform a flush by writing to

the flush register.

6.4 Write buffer (WB)

The ARM processor write buffer is provided to improve system performance. It can

buffer up to 8 words of data, and 4 independent addresses. It may be enabled or

disabled via the W bit (bit 3) in the ARM processor Control Register and the buffer is

disabled and flushed on reset.

The operation of the write buffer is further controlled by one bit, B, or Bufferable, which

is stored in the Memory Management Page Tables. For this reason, in order to use the

write buffer, the MMU must be enabled.

The two functions may however be enabled simultaneously, with a single write to the

Control Register. For a write to use the write buffer, both the W bit in the Control

Register, and the B bit in the corresponding page table must be set.

Cache, Write Buffer and Coprocessors

ARM7500 Data Sheet
ARM DDI 0050C

6-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

6.4.1 Bufferable bit

This bit controls whether a write operation may or may not use the write buffer.

Typically main memory will be bufferable and I/O space unbufferable. The Bufferable

bit can be configured for both pages and sections.

6.4.2 Write buffer operation

When the CPU performs a write operation, the translation entry for that address is

inspected and the state of the B bit determines the subsequent action. If the write

buffer is disabled via the ARM processor Control Register, bufferable writes are

treated in the same way as unbuffered writes.

Bufferable write

If the write buffer is enabled and the processor performs a write to a bufferable area,

the data is placed in the write buffer at FCLK speeds and the CPU continues

execution. The write buffer then performs the external write in parallel. If however the

write buffer is full (either because there are already 8 words of data in the buffer, or

because there is no slot for the new address) then the processor is stalled until there

is sufficient space in the buffer.

Unbufferable writes

If the write buffer is disabled or the CPU performs a write to an unbufferable area, the

processor is stalled until the write buffer empties and the write completes externally,

which may require synchronisation and several external clock cycles.

Read-lock-write

The write phase of a read-lock-write sequence is treated as an Unbuffered write, even

if it is marked as buffered.

Note: A single write requires one address slot and one data slot in the write buffer; a
sequential write of n words requires one address slot and n data slots. The total of 8
data slots in the buffer may be used as required. So for instance there could be 3
non-sequential writes and one sequential write of 5 words in the buffer, and the
processor could continue as normal: a 5th write or an 6th word in the 4th write would
stall the processor until the first write had completed.

To enable the write buffer

To enable the write buffer, ensure the MMU is enabled by setting bit 0 in the Control

Register, then enable the write buffer by setting bit 3 in the Control Register. The MMU

and write buffer may be enabled simultaneously with a single write to the Control

Register.

To disable the write buffer

To disable the write buffer, clear bit 3 in the Control Register.

Note: Any writes already in the write buffer will complete normally.

Cache, Write Buffer and Coprocessors

ARM7500 Data Sheet
ARM DDI 0050C

6-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

6.5 Coprocessors

ARM processor has no external coprocessor bus, so it is not possible to add external

coprocessors to this device.

The ARM processor still has an internal coprocessor designated #15 for internal

control of the device. All coprocessor operations except MCR or MRC to registers 0 to

7 on coprocessor #15 will cause the undefined instruction trap to be taken.

Cache, Write Buffer and Coprocessors

ARM7500 Data Sheet
ARM DDI 0050C

6-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

7-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM Processor MMU

This chapter describes the ARM processor Memory Management Unit.

7.1 Introduction 7-2

7.2 MMU program-accessible registers 7-2

7.3 Address translation 7-3

7.4 Translation process 7-4

7.5 Translating section references 7-8

7.6 Translating small page references 7-10

7.7 Translating large page references 7-11

7.8 MMU faults and CPU aborts 7-12

7.9 Fault Address & Fault Status Registers (FAR & FSR) 7-12

7.10 Domain access control 7-13

7.11 Fault checking sequence 7-14

7.12 External aborts 7-16

7.13 Effect of reset 7-17

7

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

7.1 Introduction

The MMU performs two primary functions: it translates virtual addresses into physical

addresses, and it controls memory access permissions. The MMU hardware required

to perform these functions consists of a Translation Look-aside Buffer (TLB), access

control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages. Sections are

comprised of 1MB blocks of memory. Two different page sizes are supported: Small

Pages consist of 4Kb blocks of memory and Large Pages consist of 64Kb blocks of

memory. (Large Pages are supported to allow mapping of a large region of memory

while using only a single entry in the TLB.) Additional access control mechanisms are

extended within Small Pages to 1Kb Sub-Pages and within Large Pages to 16Kb Sub-

Pages.

The MMU also supports the concept of domains - areas of memory that can be defined

to possess individual access rights. The Domain Access Control Register is used to

specify access rights for up to 16 separate domains.

The TLB caches 64 translated entries. During most memory accesses, the TLB

provides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic

determines whether access is permitted. If access is permitted, the MMU outputs the

appropriate physical address corresponding to the virtual address. If access is not

permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address), the

translation table walk hardware is invoked to retrieve the translation information from

a translation table in physical memory. Once retrieved, the translation information is

placed into the TLB, possibly overwriting an existing value. The entry to be overwritten

is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output

directly onto the physical address bus.

7.2 MMU program-accessible registers

The ARM processor provides several 32-bit registers which determine the operation

of the MMU. The format for these registers and a brief description is shown in ➲ Figure
7-1: MMU register summary on page 7-3. Each register will be discussed in more

detail within the section that describes its use.

Data is written to and read from the MMUs registers using the ARM CPU's MRC and

MCR coprocessor instructions.

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 7-1: MMU register summary

Translation Table Base Register

The Translation Table Base Register holds the physical address of the base of the

translation table maintained in main memory. Note that this base must reside on a

16KB boundary.

Domain Access Control Register

The Domain Access Control Register consists of sixteen 2-bit fields, each of which

defines the access permissions for one of the sixteen Domains (D15-D0).

Note: The registers not shown are reserved and should not be used.

Fault Status Register

The Fault Status Register indicates the domain and type of access being attempted

when an abort occurred. Bits 7:4 specify which of the sixteen domains (D15-D0) was

being accessed when a fault occurred. Bits 3:1 indicate the type of access being

attempted. The encoding of these bits is different for internal and external faults (as

indicated by bit 0 in the register) and is shown in ➲ Table 7-4: Priority encoding of fault
status on page 7-12. A write to this register flushes the TLB.

Fault Address Register

The Fault Address Register holds the virtual address of the access which was

attempted when a fault occurred. A write to this register causes the data written to be

treated as an address and, if it is found in the TLB, the entry is marked as invalid. (This

operation is known as a TLB purge). The Fault Status Register and Fault Address

Register are only updated for data faults, not for prefetch faults.

7.3 Address translation

The MMU translates virtual addresses generated by the CPU into physical addresses

to access external memory, and also derives and checks the access permission.

Translation information, which consists of both the address translation data and the

Domain Access Control

0 Control 1 D P W AC M

Translation Table Base

0123456789101112131415

0 0 0 0 Domain Status

012345678910111213141516171819202122232425262728293031

Flush TLB

TLB Purge Address

Fault Address

Register

1 write

2 write

3 write

5 read

5 write

6 read

6 write

Fault Status

S BR

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

access permission data, resides in a translation table located in physical memory. The

MMU provides the logic needed to traverse this translation table, obtain the translated

address, and check the access permission.

There are three routes by which the address translation (and hence permission check)

takes place. The route taken depends on whether the address in question has been

marked as a section-mapped access or a page-mapped access; and there are two

sizes of page-mapped access (large pages and small pages). However, the translation

process always starts out in the same way, as described below, with a Level One fetch.

A section-mapped access only requires a Level One fetch, but a page-mapped access

also requires a Level Two fetch.

7.4 Translation process

7.4.1 Translation table base

The translation process is initiated when the on-chip TLB does not contain an entry for

the requested virtual address. The Translation Table Base (TTB) Register points to the

base of a table in physical memory which contains Section and/or Page descriptors.

The 14 low-order bits of the TTB Register are set to zero as illustrated in ➲ Figure 7-2:
Translation table base register; the table must reside on a 16Kb boundary.

 Figure 7-2: Translation table base register

7.4.2 Level one fetch

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of

the virtual address to produce a 30-bit address as illustrated in ➲ Figure 7-3: Accessing
the translation table first level descriptors on page 7-5. This address selects a four-

byte translation table entry which is a First Level Descriptor for either a Section or a

Page (bit1 of the descriptor returned specifies whether it is for a Section or Page).

0131431

Translation Table Base

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 7-3: Accessing the translation table first level descriptors

7.4.3 Level one descriptor

The Level One Descriptor returned is either a Page Table Descriptor or a Section

Descriptor, and its format varies accordingly. The following figure illustrates the format

of Level One Descriptors.

 Figure 7-4: Level one descriptors

0192031

031

Table Index Section Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

18
12

First Level Descriptor
031

01234589101112192031

0 Fault

Page

Section

Reserved

0

0 1

1 0

1 1

C B

Domain

DomainAP

Page Table Base Address

Section Base Address 1

1

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The two least significant bits indicate the descriptor type and validity, and are

interpreted as shown below

7.4.4 Page table descriptor

Bits 3:2 are always written as 0.

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access

Control Register) that contain the primary access controls.

Bits 31:10 form the base for referencing the Page Table Entry. (The page table index

for the entry is derived from the virtual address as illustrated in ➲ Figure 7-7: Small
page translation on page 7-10).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is

initiated as described below.

7.4.5 Section descriptor

Bits 3:2 (C, & B) control the cache- and write-buffer-related functions as follows:

C - Cacheable: indicates that data at this address will be placed in the cache (if the

cache is enabled).

B - Bufferable: indicates that data at this address will be written through the write

buffer (if the write buffer is enabled).

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access

Control Register) that contain the primary access controls.

Bits 11:10 (AP) specify the access permissions for this section and are interpreted as

shown in ➲ Table 7-2: Interpreting access permission (AP) bits on page 7-7. Their

interpretation is dependent upon the setting of the S and R bits (control register bits 8

and 9). Note that the Domain Access Control specifies the primary access control; the

AP bits only have an effect in client mode. Refer to section on access permissions.

Value Meaning Notes

 0 0 Invalid Generates a Section Translation Fault

 0 1 Page Indicates that this is a Page Descriptor

 1 0 Section Indicates that this is a Section Descriptor

 1 1 Reserved Reserved for future use

 Table 7-1: Interpreting level one descriptor bits [1:0]

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Bits 19:12 are always written as 0.

Bits 31:20 form the corresponding bits of the physical address for the 1MByte section.

AP S R Supervisor

permissions

User

permissions

Notes

00 0 0 No Access No Access Any access generates a permission fault

00 1 0 Read Only No Access Supervisor read only permitted

00 0 1 Read Only Read Only Any write generates a permission fault

00 1 1 Reserved

01 x x Read/Write No Access Access allowed only in Supervisor mode

10 x x Read/Write Read Only Writes in User mode cause permission fault

11 x x Read/Write Read/Write All access types permitted in both modes.

xx 1 1 Reserved

 Table 7-2: Interpreting access permission (AP) bits

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

7.5 Translating section references

➲ Figure 7-5: Section translation illustrates the complete Section translation sequence.

Note that the access permissions contained in the Level One Descriptor must be

checked before the physical address is generated. The sequence for checking access

permissions is described below.

 Figure 7-5: Section translation

0192031

1 0C BDomainAPSection Base Address

031

Table Index Section Index

Virtual Address

Translation Base

01234589101112192031

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

0192031

Section Base Address Section Index

Physical Address
12

20

18
12

1

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-9

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

7.5.1 Level two descriptor

If the Level One fetch returns a Page Table Descriptor, this provides the base address

of the page table to be used. The page table is then accessed as described in ➲ Figure
7-7: Small page translation, and a Page Table Entry, or Level Two Descriptor, is

returned. This in turn may define either a Small Page or a Large Page access. ➲ Figure
7-6: Page table entry (level two descriptor) on page 7-9 shows the format of Level Two

Descriptors.

 Figure 7-6: Page table entry (level two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as

follows.

Bit 2 B - Bufferable: indicates that data at this address will be written through the write

buffer (if the write buffer is enabled).

Bit 3 C - Cacheable: indicates that data at this address will be placed in the IDC (if the

cache is enabled).

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and

interpretation of these bits is described earlier in ➲ Table 7-1: Interpreting level one
descriptor bits [1:0] on page 7-6.

For large pages, bits 15:12 are programmed as 0.

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the

corresponding bits of the physical address - the physical page number. (The page

index is derived from the virtual address as illustrated in ➲ Figure 7-7: Small page
translation on page 7-10 and ➲ Figure 7-8: Large page translation on page 7-11).

Value Meaning Notes

 0 0 Invalid Generates a Page Translation Fault

 0 1 Large Page Indicates that this is a 64 Kb Page

 1 0 Small Page Indicates that this is a 4 Kb Page

 1 1 Reserved Reserved for future use

 Table 7-3: Interpreting page table entry bits 1:0

01234589101112192031

0 Fault

Large Page

Small Page

Reserved

0

0 1

1 0

1 1

C Bap3

Large Page Base Address

Small Page Base Address

671516

ap3

ap2

ap2

ap1

ap1

ap0

ap0 C B

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-10

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

7.6 Translating small page references

➲ Figure 7-7: Small page translation illustrates the complete translation sequence for

a 4kB Small Page. Page translation involves one additional step beyond that of a

section translation: the Level One descriptor is the Page Table descriptor, and this is

used to point to the Level Two descriptor, or Page Table Entry. (Note that the access

permissions are now contained in the Level Two descriptor and must be checked

before the physical address is generated. The sequence for checking access

permissions is described later).

 Figure 7-7: Small page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

1 0C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

0111231

Page Index

Physical Address

12

8

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-11

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

7.7 Translating large page references

➲ Figure 7-8: Large page translation illustrates the complete translation sequence for

a 64Kb Large Page. Note that since the upper four bits of the Page Index and low-

order four bits of the Page Table index overlap, each Page Table Entry for a Large

Page must be duplicated 16 times (in consecutive memory locations) in the Page

Table.

 Figure 7-8: Large page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

0 1C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

031

Page Index

Physical Address

12

8

1516

1516

1516

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-12

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

7.8 MMU faults and CPU aborts

The MMU generates four types of faults:

Alignment Fault

Translation Fault

Domain Fault

Permission Fault

The access control mechanisms of the MMU detect the conditions that produce these

faults. If a fault is detected as the result of a memory access, the MMU will abort the

access and signal the fault condition to the CPU. The MMU is also capable of retaining

status and address information about the abort. The CPU recognises two types of

abort: data aborts and prefetch aborts, and these are treated differently by the MMU.

If the MMU detects an access violation, it will do so before the external memory access

takes place, and it will therefore inhibit the access.

7.9 Fault Address & Fault Status Registers (FAR & FSR)

Aborts resulting from data accesses (data aborts) are acted upon by the CPU

immediately, and the MMU places an encoded 4 bit value FS[3:0], along with the 4 bit

encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual

processor address which caused the data abort is latched into the Fault Address

Register (FAR). If an access violation simultaneously generates more than one source

of abort, they are encoded in the priority given in ➲ Table 7-4: Priority encoding of fault
status on page 7-12.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags

the instruction as it enters the instruction pipeline. Only when (and if) the instruction is

executed does it cause an abort; an abort is not acted upon if the instruction is not

used (i.e. it is branched around). Because instruction prefetch aborts may or may not

be acted upon, the MMU status information is not preserved for the resulting CPU

abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls

supported by the MMU and detail how these are interpreted to generate faults.

Priority Source FS[3210] Domain [3:0] FAR

Highest Alignment 00x1 x valid

Translation (Section) 0101 Note 2 valid

 Translation (Page) 0111 valid valid

Domain (Section) 1001 valid valid

Domain (Page) 1011 valid valid

 Table 7-4: Priority encoding of fault status

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-13

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

x is undefined, and may read as 0 or 1

Notes: Any abort masked by the priority encoding may be regenerated by fixing the primary
abort and restarting the instruction.
In fact this register will contain bits[8:5] of the Level 1 entry which are undefined, but
would encode the domain in a valid entry.

7.10 Domain access control

MMU accesses are primarily controlled via domains. There are 16 domains, and each

has a 2-bit field to define it. Two basic kinds of users are supported: Clients and

Managers. Clients use a domain; Managers control the behaviour of the domain. The

domains are defined in the Domain Access Control Register. ➲ Figure 7-9: Domain
access control register format illustrates how the 32 bits of the register are allocated

to define the sixteen 2-bit domains.

 Figure 7-9: Domain access control register format

➲ Table 7-5: Interpreting access bits in domain access control register defines how the

bits within each domain are interpreted to specify the access permissions.

Permission (Section) 1101 valid valid

Lowest Permission (Page) 1111 valid valid

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permis-

sion bits in the Section or Page descriptor.

10 Reserved Reserved. Currently behaves like the no access

mode.

11 Manager Accesses are NOT checked against the access

Permission bits so a Permission fault cannot be

generated.

 Table 7-5: Interpreting access bits in domain access control register

Priority Source FS[3210] Domain [3:0] FAR

 Table 7-4: Priority encoding of fault status (Continued)

012345678910111213141516171819202122232425262728293031

0123456789101112131415

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-14

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

7.11 Fault checking sequence

The sequence by which the MMU checks for access faults is slightly different for

Sections and Pages. The figure below illustrates the sequence for both types of

accesses. The sections and figures that follow describe the conditions that generate

each of the faults.

 Figure 7-10: Sequence for checking faults

violation

no access(00)
reserved(10)

Virtual Address

Check Address Alignment

get Level One Descriptor

Section Page

misaligned
Alignment

Fault

invalid
Section

Translation
Fault

get Page

Table Entry

check Domain Status

invalid
Page

Translation
Fault

no access(00) Page
Domain

Fault
reserved(10)

Section
Domain

Fault

Section Page

client(01)client(01)

manager(11)

Check Access

Permissions

Check Access

Permissions

Physical Address

Section
Permission

Fault
violation

sub-Page
Permission

Fault

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-15

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

7.11.1 Alignment fault

If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate an

alignment fault on any data word access the address of which is not word-aligned

irrespective of whether the MMU is enabled or not; in other words, if either of virtual

address bits [1:0] are not 0. Alignment fault will not be generated on any instruction

fetch, nor on any byte access. Note that if the access generates an alignment fault, the

access sequence will abort without reference to further permission checks.

7.11.2 Translation fault

There are two types of translation fault: section and page.

1 A Section Translation Fault is generated if the Level One descriptor is marked
as invalid. This happens if bits[1:0] of the descriptor are both 0 or both 1.

2 A Page Translation Fault is generated if the Page Table Entry is marked as
invalid. This happens if bits[1:0] of the entry are both 0 or both 1.

7.11.3 Domain fault

There are two types of domain fault: section and page. In both cases the Level One

descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains

in the Domain Access Control Register. The two bits of the specified domain are then

checked for access permissions as detailed in ➲ Table 7-2: Interpreting access
permission (AP) bits on page 7-7. In the case of a section, the domain is checked once

the Level One descriptor is returned, and in the case of a page, the domain is checked

once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section

Domain Fault or Page Domain Fault occurs.

7.11.4 Permission fault

There are two types of permission fault: section and sub-page. Permission fault is

checked at the same time as Domain fault. If the 2-bit domain field returns client (01),

then the permission access check is invoked as follows:

Section

If the Level One descriptor defines a section-mapped access, then the AP bits of the

descriptor define whether or not the access is allowed according to ➲ Table 7-2:
Interpreting access permission (AP) bits on page 7-7. Their interpretation is dependent

upon the setting of the S bit (Control Register bit 8). If the access is not allowed, then

a Section Permission fault is generated.

Sub-page

If the Level One descriptor defines a page-mapped access, then the Level Two

descriptor specifies four access permission fields (ap3..ap0) each corresponding to

one quarter of the page. Hence for small pages, ap3 is selected by the top 1Kb of the

page, and ap0 is selected by the bottom 1kB of the page; for large pages, ap3 is

selected by the top 16Kb of the page, and ap0 is selected by the bottom 16Kb of the

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-16

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

page. The selected AP bits are then interpreted in exactly the same way as for a

section (see ➲ Table 7-2: Interpreting access permission (AP) bits on page 7-7), the

only difference being that the fault generated is a sub-page permission fault.

7.12 External aborts

The ARM7500 does not support external aborts.

7.12.1 Interaction of the MMU, IDC and write buffer

The MMU, IDC and WB may be enabled/disabled independently. However there are

only five valid combinations. There are no hardware interlocks on these restrictions,

so invalid combinations will cause undefined results.

The following procedures must be observed.

 To enable the MMU:

1 Program the Translation Table Base and Domain Access Control Registers

2 Program Level 1 and Level 2 page tables as required

3 Enable the MMU by setting bit 0 in the Control Register.

Note: Care must be taken if the translated address differs from the untranslated address as
the two instructions following the enabling of the MMU will have been fetched using
“flat translation” and enabling the MMU may be considered as a branch with delayed
execution. A similar situation occurs when the MMU is disabled. Consider the following
code sequence:

MOV R1, #0x1

MCR 15,0,R1,0,0 ; Enable MMU

Fetch Flat

Fetch Flat

Fetch Translated

MMU IDC WB

off off off

on off off

on on off

on off on

on on on

 Table 7-6: Valid MMU, IDC, and WB combinations

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-17

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

To disable the MMU

1 Disable the WB by clearing bit 3 in the Control Register.

2 Disable the IDC by clearing bit 2 in the Control Register.

3 Disable the MMU by clearing bit 0 in the Control Register.

Note: If the MMU is enabled, then disabled and subsequently re-enabled the contents of the
TLB will have been preserved. If these are now invalid, the TLB should be flushed
before re-enabling the MMU.

Disabling of all three functions may be done simultaneously.

7.13 Effect of reset

See ➲ Chapter 4: ARM Processor Programmer’s Model .

ARM Processor MMU

ARM7500 Data Sheet
ARM DDI 0050C

7-18

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

8-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The Video and Sound Macrocell

This chapter introduces the ARM7500 video and sound system.

8.1 Introduction 8-2

8.2 Features 8-2

8.3 Block diagram 8-5

8

The Video and Sound Macrocell

ARM7500 Data Sheet
ARM DDI 0050C

8-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

8.1 Introduction

The ARM7500 single chip computer contains a high performance video and sound

controller, capable of meeting the requirements of a wide range of configurations.

The video and sound macrocell handles all the video processing aspects of the

ARM7500 functionality, making the ARM7500 suitable for incorporation into a wide

range of end products ranging from portable hand-held LCD systems through to higher

performance SuperVGA desktop products.

The flexible bus interface provides hardware support for interfacing to DRAM memory

systems in conjunction with the ARM7500 memory controller. The video and sound

macrocell obtains data from external DRAM under DMA control. The macrocell also

incorporates two stereo sound systems - an 8-bit (logarithmic) system, featuring up to

eight channels, each with its own stereo position, and an serial sound output port

suitable for connection to an external CD DAC.

Features include:

• VGA, SuperVGA, XGA resolution

• three 8-bit DACs giving 16M colours

• direct driving of LCD or CRT screens

• 1, 2, 4, 8, 16, 32 bits per pixel modes

• up to 120MHz pixel rate

• very low power consumption

8.2 Features

8.2.1 Flexible video system

The video and sound macrocell contains 296 write-only registers which offer a high

degree of flexibility to the system programmer. 256 of these are used as the 28-bit

video palette entries. These are programmed via an auto-incrementing address

pointer. The remaining registers are specific control registers and allow the user to

program the display parameters.

8.2.2 Hardware cursor

The video and sound macrocell has a hardware cursor for all its display modes -

Normal, Hi-Res, and LCD. By offering cursor support on chip the designer benefits in

terms of speed and lower software overhead. The cursor is 32 pixels wide and any

number of pixels high and can be displayed in 4 colours including transparent from its

own 28-bit wide palette. In this way a cursor of any shape and size can be defined

within the 32-pixel wide limit.

The Video and Sound Macrocell

ARM7500 Data Sheet
ARM DDI 0050C

8-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

8.2.3 Palette

The video subsystem has a 28-bit wide 256-entry palette where each entry uses 8 bits

for Red, 8 for Green and 8 for Blue, and 4 bits for external data. These external bits

may be used outside the chip for a variety of purposes such as supremacy, fading, Hi-

Res and LCD driving.

Look Up Tables (LUT) allow for logical to physical translation and gamma

correction.The Red Green and Blue LUTs each drive their respective DACs, and the

Ext LUT is normally configured to drive the 4-bit output port.

There are three 8-bit linear monotonic DACs (Red, Green and Blue) which give a total

of 16M possible colours. The DACs are designed to operate up to 120 MHz and drive

doubly-terminated 75Ω lines directly.

8.2.4 Pixel clock

The ARM7500 is capable of generating a display at any pixel rate up to 120MHz. The

pixel clock may be selected from one of 3 sources, and then the selected frequency of

this clock may be further divided down by a factor of between 1 and 8.

The video and sound macrocell contains an on-chip phase comparator which, when

used in conjunction with an external Voltage Controlled Oscillator (VCO), forms a

Phase Locked Loop. This configuration allows a single reference clock to generate all

the required frequencies for any display mode thus obviating the need for multiple

external crystals.

8.2.5 Display modes

Irrespective of the memory configuration used, the video subsystem is capable of

many different display formats. In addition to the normal linear CRT display, the video

subsystem can generate a display suitable for either very high resolution displays,

single or dual-panel LCDs.

For CRT displays, the video and sound macrocell is capable of operating in a variety

of pixel modes - 1,2,4,8,16,32 bits/pixel, and can also directly drive LCD displays in

1,2 or 4 bits per pixel via an internal 16-level grey scaler. The grey scaler algorithm

adopted is patented.

8.2.6 Power management

The macrocell is designed for power sensitive applications and incorporates design

features to minimise power consumption. A power down mode allows power savings

to be made when the device is not in use, for example, in conjunction with a battery

powered LCD system. Additional power sensitive features include the powering down

of functions of the device currently not in use, such as the video DACs, sound DACs

and the LCD grey scaler. In addition the palette design has been segmented such that

only one eighth of the palette is enabled and clocked at any one time. The power-down

mode can be used in conjunction with the ARM7500’s STOP mode to ensure minimum

power consumption when clocks are stopped.

The Video and Sound Macrocell

ARM7500 Data Sheet
ARM DDI 0050C

8-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

8.2.7 On-chip sound system

The ARM7500 supports two systems - an 8-bit (logarithmic) system using an internal

dedicated DAC, featuring up to eight channels each with its own stereo position, and

a 32-bit serial sound output suitable for driving external CD DACs.

In the 8-bit mode the device can work with 1,2,4 or 8 stereo channels, using time

division multiplexing to synthesise left and right outputs. The sample rate is

programmable through the Sound Frequency Register.

Enhanced 32-bit stereo sound is offered by the serial sound output which consists of

a three pin serial interface. Each 32-bit sample consists of 16 bits for the left channel

and 16 bits for the right channel.

The Video and Sound Macrocell

ARM7500 Data Sheet
ARM DDI 0050C

8-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

8.3 Block diagram

 Figure 8-1: Video and sound macrocell block diagram

The Video and Sound Macrocell

ARM7500 Data Sheet
ARM DDI 0050C

8-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

9-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Video and Sound
Programmer’s Model

This chapter details the video and sound macrocell programmable registers.

9.1 The video and sound macrocell registers 9-2

9

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.1 The video and sound macrocell registers

The video and sound macrocell contains 296 write-only registers. These are split into

2 categories; the 256 28-bit video palette entries, and the remaining control registers.

The video palette entries are written via an auto-incrementing address pointer. All the

other registers (including the 28-bit cursor palette) are written directly with the address

encoded in the top 4 or 8 bits of the data word. To program the registers, the ARM7500

address bus should be set to between 0x03400000 and 0x034FFFFF, and the data

word written should include the individual register address in the upper 4 or 8 bits, as

appropriate.

In order to define the display format correctly, eleven registers need to be programmed

as shown in the diagram below:

 Figure 9-1: The video and sound macrocell display format definitions

 —

HCR

HSWR
HBSR

HBER

HDSR

HCSR

HDER

VSWR

Border Display Cursor

V
C
R

V
B
E
R

V
D
E
R

V
C
E
R

V
C
S
R

V
D
S
R R

V
B
S

HSYNC

Horizontal back porch Horizontal front porch

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The register allocation is shown in the following table. An x denotes the actual data

field, and any unused bit should be programmed with a logic zero. Do not access any

register at any location other than that shown as the actual register map is multiple-

mapped.

The External Register, Control Register, Sound Control Register and Data Control

Register all contain bits that are not initialised at power up, and so must be

programmed before the video and sound macrocell will operate correctly.

Address(hex) Register

0xxxxxxx Video Palette

100000xx Video Palette Address Register

20000000 RESERVED

300000xx LCD Offset register 0

310000xx LCD offset register 1

4xxxxxxx Border Colour Register

5xxxxxxx Cursor Palette logical colour 1

6xxxxxxx Cursor Palette logical colour 2

7xxxxxxx Cursor Palette logical colour 3

8000xxxx Horizontal Cycle Register

8100xxxx Horizontal Sync Width Register

8200xxxx Horizontal Border Start Register

8300xxxx Horizontal Display Start Register

8400xxxx Horizontal Display End Register

8500xxxx Horizontal Border End Register

8600xxxx Horizontal Cursor Start Register

8700xxxx Reserved

8800xxxx Test Register

8C00xxxx Test Register

9000xxxx Vertical Cycle Register

9100xxxx Vertical Sync Width Register

9200xxxx Vertical Border Start Register

9300xxxx Vertical Display Start Register

9400xxxx Vertical Display End Register

 Table 9-1: The video and sound macrocell register allocation

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.2 Video palette: Address 0x0

All entries of the video palette are written at address 0. In order to write any or all of

the palette locations, the address pointer must first be written, as described below. The

palette is programmed with a 28-bit word representing the physical data field.

9500xxxx Vertical Border End Register

9600xxxx Vertical Cursor Start Register

9700xxxx Vertical Cursor End Register

9800xxxx Test Register

9A00xxxx Test Register

9C00xxxx Test Register

A000000x

:

A700000x

Stereo Image Registers

B00000x Sound Frequency Generator

B10000x Sound Control Register

C00xxxxx External Register

D000xxxx Frequency Synthesis Register

E00xxxxx Control Register

F000xxxx Data Control Register

Address(hex) Register

 Table 9-1: The video and sound macrocell register allocation (Continued)

0 0 0 0

034781112151619202122272831

Red physical colour

Green physical colour

Blue physical colour

Ext physical colour

125691013141718232425262930

E E E E B B B B B B B B G G G G G G G G R R R R R R R R

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.3 Video palette address pointer: Address 0x1

The address pointer is programmed at address 1, and it may be programmed to any

value from 0 to 255. The first write to the palette will then occur at this location, and

the address pointer will post-increment so that the next palette write will occur to the

following location. The counter will wrap around from 255 to 0. Once the address

pointer has been written, any number of palette locations can be programmed, and the

pointer can be reprogrammed at any time if only part of the whole palette is to be

updated.

9.4 LCD offset registers: Addresses 0x30 and 0x31

These two, 8-bit registers define the offsets required for driving a dual panel LCD

screen. Register 0 defines the offsets for the five and two frame duty cycle grey scales,

as well as reset and test mode bits. Register 1 defines the offsets for the nine and

fifteen frame duty cycle grey scales.

0 0 0 1

034781112151619202122272831 125691013141718232425262930

X X X X X X X X

Palette location

0 0 0 0

034781112151619202122272831

test bit (must be zero)

test bits (must be zero)

Off_5

Off_2

125691013141718232425262930

0 0 1 1 0 0 0 0 X X X X

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The registers values are dependent upon the size of the LCD screen to be driven, and

are calculated in the following way:

Off_15 = (3xL + 8) mod 15

Off_9 = (7xL + 4) mod 9

Off_5 = (1xL + 3) mod 5

Off_2 = 0

Where L is the number of lines in the upper panel of the dual panel LCD screen.

Bits 7-4 of register 0 are only used in test mode, and must all be set to zero in normal

operation.

msel[2:0] are test bits and should be programmed LOW.

9.5 Border colour register: Address 0x4

This register defines the physical border colour, and is programmed with a 28-bit word.

Note that this register is programmed directly, independent of the value of the video

palette address pointer.

0 0 0 1

034781112151619202122272831

Off_15

Off_9

125691013141718232425262930

0 0 1 1 X X X X X X X X

0 0 0

034781112151619202122272831

Red physical colour

Green physical colour

Blue physical colour

Ext physical colour

125691013141718232425262930

E E E E B B B B B B B B G G G G G G G G R R R R R R R R1

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.6 Cursor palette: Addresses 0x5-0x7

These three registers are programmed with the physical colour of the three logical

cursor colours. Note that cursor logical colour 00 is defined as being transparent (i.e.

no cursor display), and its location is used for the Border Colour Register above.

9.7 Horizontal cycle register (HCR): Address 0x80

This register defines the period, in pixels, of the horizontal scan, i.e. display time +

retrace time.

This is a 14-bit register of which the bottom 2 bits must be programmed to 0. If N pixels

are required in the horizontal scan period, then value (N-8) should be programmed into

the HCR. (N must be a multiple of 4).

9.8 Horizontal sync width register (HSWR): Address 0x81

This register defines the period, in pixels, of the HSYNC pulse.

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in the HSYNC pulse, then value (N-8) should be programmed into the

HSWR. (N must be a multiple of 2).

0

034781112151619202122272831

Red physical colour

Green physical colour

Blue physical colour

Ext physical colour

125691013141718232425262930

E E E E B B B B B B B B G G G G G G G G R R R R R R R R1 X X

Logical colour

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X

HCR value

0 0 0 01 X X X X X 0 0

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.9 Horizontal border start register (HBSR): Address 0x82

This register defines the time, in pixels, from the start of the HSYNC pulse to the start

of the border display.

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in this time, then value (N-12) should be programmed into the HBSR. (N

must be a multiple of 2).

Note that this register must always be programmed, even when a border is not

required. If a border is not required, then the value in the HBSR must be such as to

start the border in the same place as the display start. i.e. NHBSR= NHDSR.

9.10 Horizontal display start register (HDSR): Address 0x83

This register defines the time, in pixels, from the start of the HSYNC pulse to the start

of the video display.

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in this time, then value (N-18) should be programmed into the HBSR. (N

must be a multiple of 2).

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HSWR value

0 0 01 X X X X X1 0

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HBSR value

0 0 01 X X X X X1 0

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HDSR value

0 01 X X X X X1 01

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-9

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.11 Horizontal display end register (HDER): Address 0x84

This register defines the time, in pixels, from the start of the HSYNC pulse to the end

of the video display. (i.e. the first pixel which is not display).

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in this time, then value (N-18) should be programmed into the HBER. (N

must be a multiple of 2)

9.12 Horizontal border end register (HBER): Address 0x85

This register defines the time, in pixels, from the start of the HSYNC pulse to the end

of the border display. (i.e. the first pixel which is not border).

This is a 14-bit register of which the bottom bit must be programmed to 0. If N pixels

are required in this time, then value (N-12) should be programmed into the HBER. (N

must be a multiple of 2).

Again, if no border is required, this register must still be programmed such that N HBER
= NHDER.

9.13 Horizontal cursor start register (HCSR): Address 0x86

This register defines the time, in pixels, from the start of the HSYNC pulse to the start

of the cursor display.

This is a 14-bit register of which all bits may be programmed. If N pixels are required

in this time, then value (N-17) should be programmed into the HCSR. The cursor can

thus be programmed to start on any pixel. In HiRes mode, the cursor can still only be

programmed to start on a normal pixel boundary. However, because the resolution of

the cursor can be defined to a micro-pixel, by using different cursor images it is

possible to position the cursor to any micro-pixel.

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HDER value

0 0 01 X X X X X1 0

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HBER value

0 01 X X X X X1 01

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-10

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Note that only the cursor start position needs to be defined, as the cursor is

automatically disabled after 32 pixels in normal mode, or 16 pixels in HiRes mode. If

a cursor smaller than this is required, then the remaining bits in the cursor pattern

should be programmed to logical colour 00 (transparent).

9.14 Horizontal interlace register (HIR): Address 0x87

Address 87H is reserved. Do not attempt to program this register.

9.15 Horizontal test registers: Addresses 0x88 & 0x8H

Two registers are provided for testing the chip in production. Neither of these registers

are intended to be used during normal operation of the device.

9.16 Vertical cycle register (VCR): Address 0x90

This 13-bit register defines the period, in units of a raster, of the vertical scan. i.e.

display time + flyback time.

If N rasters are required in a complete frame, then value (N-2) should be programmed

into the VCR.

If an interlaced display is selected, (N-3)/2 must be programmed into the VCR. [N must

be odd]. Here N is still the number of rasters in a complete frame, not a field.

9.17 Vertical sync width register (VSWR): Address 0x91

This 13-bit register defines the width, in units of a raster, of the VSYNC pulse.

If N rasters are required in the VSYNC pulse, then value (N - 2) should be programmed

into the VSWR. The minimum value allowed for N is 2.

0 0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

HCSR value

0 01 X X X X X1 1 X

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VCR value

0 01 X X X X X X0 01

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-11

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.18 Vertical border start register (VBSR): Address 0x92

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the start of the border display.

If N rasters are required in this time, then value (N-1) should be programmed into the

VBSR.

If no border is required, this register must still be programmed, in this case to the same

value as the VDSR.

9.19 Vertical display start register (VDSR): Address 0x93

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the start of the video display.

 If N rasters are required in this time, then value (N-1) should be programmed into the

VDSR.

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VSWR value

01 X X X X X X0 01 1

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VBSR value

01 X X X X X X0 01 1

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VDSR value

01 X X X X X X01 1 1

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-12

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.20 Vertical display end register (VDER): Address 0x94

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the end of the video display. (i.e. the first raster on which the display is not
present).

If N rasters are required in this time, then value (N-1) should be programmed into the

VDER.

9.21 Vertical border end register (VBER): Address 0x95

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the end of the border display. (i.e. the first raster on which the border is not

present).

If N rasters are required in this time, then value (N-1) should be programmed into the

VBER.

If no border is required, then this register must be programmed to the same value as

the VDER.

9.22 Vertical cursor start register (VCSR): Address 0x96

This is a 15-bit register. The lower 13 bits define the time, in units of a raster, from the

start of the VSYNC pulse to the start of the cursor display. If N rasters are required in

this time, then value (N-1) should be programmed into the VCSR. The upper 2 bits are

used to control the display of the cursor in duplex LCD mode. They should be

programmed to zero in all other modes.

When the upper 2 bits are programmed to be 11 (split screen) the meaning of VCSR

and VCER are altered as follows. The cursor is displayed in the lower half-screen

only from the value of VDSR to the value of VCSR, and again in the upper half screen

only from the value of VCER to the value of VDER. This allows a cursor to be

positioned across the boundary of the upper and lower half screens of an LCD.

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VDER value

01 X X X X X X0 01 1

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VBER value

01 X X X X X X01 1 1

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-13

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.23 Vertical cursor end register (VCER): Address 0x97

This 13-bit register defines the time, in units of a raster, from the start of the VSYNC
pulse to the end of the cursor display. (i.e. the first raster on which the cursor is not

present).

 If N rasters are required in this time, then value (N-1) should be programmed into the

VCER.

9.24 Vertical test registers: Addresses 0x98, 0x9A & 0x9C

Three registers are provided for testing the chip in production. None of these registers

are intended to be used during normal operation of the device.

9.25 External register (ereg): Address 0xC

This register contains the control bits for the external functions of video and sound

macrocell. In particular it controls the DACs, the configuration of the External Port

ED[7:0], and the configuration of the sync lines.

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VCSR value

01 X X X X X X01 1 1 X X

00 normal operation
01 upper half-screen only
10 lower half-screen only
11 split screen

0 0

034781112151619202122272831 125691013141718232425262930

X X X X X X X

VCER value

01 X X X X X X1 1 11

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-14

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

EREG[1:0] are internally mapped to drive esel[1:0] by ARM7500.

EREG[7:4] are exported from the chip on ED[7:4] if EREG[1:0]=3. Refer to ➲ 11.6
External support on page 11-9.

The use of pedon[2:0] and DAC is defined in ➲ 11.7 Analog outputs on page 11-11.

The uses of lcd and hrm are defined in ➲ 11.6 External support on page 11-9.

ARM7500 can export a variety of sync configurations on the pins HSYNC and VSYNC,

as specified by the bits 16-17 and 18-19 respectively. For further explanation see

➲ 11.6.3 Vertical and horizontal synchronisation on page 11-11.

9.26 Frequency synthesizer register (fsynreg): Address 0xD

ARM7500 is able to drive a VCO to provide a suitable input frequency for the pixel

clock derived from a reference clock. This is achieved by dividing the reference clock

by modulus r, and the VCO clock by modulus v, and comparing the resulting

frequencies. Refer to ➲ 11.1 Pixel clock on page 11-2 for a more detailed explanation.

The two moduli, r and v are each 6-bit values, and are programmed in this register.

00

034781112151619202122272831 125691013141718232425262930

X X X X X X1 X X X X X1 X XX XX X

EREG[1:0]

0 ECLK off
1 ECLK on

EREG[7:4]

Red pedestal on
Green pedestal on
Blue pedestal on

0 DACs power-down
1 DACs on

0 lcd grey-scale off
1 lcd grey-scale on

0 HiRes mode off
1 HiRes mode on

00 HSYNC
01 nHSYNC
10 CSYNCnor
11 nCSYNCnor

00 VSYNC
01 nVSYNC
10 CSYNCxnor
11 nCSYNCxnor

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-15

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Associated with each counter are 2 test bits which should normally be programmed to

0.

Setting bit[6] forces the phase comparator HIGH, which drives PCOMP HIGH.

Setting bit[7] clears the r-modulus counter.

Setting bit[14] forces the phase comparator LOW, which drives PCOMP LOW.

Setting bit[15] clears the v-modulus counter.

To reduce power consumption, this register should be programmed with large values

when the frequency synthesizer is not in use. In particular, bits [6] and [14] should not

be set at the same time.

To get a modulus of r, then value (r-1) should be programmed into the fsynreg.

Likewise for the v-modulus.

9.27 Control register (conreg): Address 0xE

The main control register determines the basic operation of the chip. In particular the

pixel clock source, the pixel rate, the number of bits/pixel, the control of the video

FIFO, and the data format are programmed here. In addition there is a 4-bit test

register which must be programmed to zero for normal operation.

0

034781112151619202122272831 125691013141718232425262930

XX X X X X1 X X X X X1 X X X X X1

modulus r
(ref clock)

r test bits

modulus v

(VCO clock)

v test bits

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-16

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Note The INT bit should always be set to zero.

The pixel clock (pixclk) is selected from one of 3 sources, corresponding to the

respective input pins, and the selected clock is then fed through a prescaler as defined

by the 3 bits conreg[4:2]. The output of this prescaler is the actual pixel clock.

See➲ Chapter 11: Video Features for more detail.

The Video FIFO can be programmed to have any number of quad words loaded into

it at the start of display. The value chosen should take into account the bandwidth of

the display as well as the latency of the DMA subsystem. Refer to ➲ Chapter 10: Video
Macrocell Interface before programming these values.

Setting the dup bit configures the display for dual-panel LCDs. This is described

further in ➲ Chapter 11: Video Features .

0

034781112151619202122272831 125691013141718232425262930

X X X X X X1 X X X X X1 X X0 00 01 X

Pixel source
01 HCLK
10 RCLK

Pixel rate

00VCLK

000 CK
001 CK/2
010 CK/3
011 CK/4
100 CK/5
101 CK/6
110 CK/7
111 CK/8

BITS/pixel 000 1
001 2
010 4
011 8
100 16
101 N/S
110 32
111 N/S

INT (must be set to zero)

DUP

Power down

Test Always set to 0000

FIFO loads 000 N/S
001 4
010 8
011 12
100 16
101 20
110 24
111 28

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-17

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Note that after a reset the Control Register should be the first register programmed.

The Powerdown bit (14) must immediately be programmed LOW. The test registers

bits (16 to 19) also should be programmed LOW, as any other setting will inhibit normal

operation.

The video macrocell uses dynamic logic structures for maximum performance. When

the powerdown bit is set HIGH, the main video data path will be set into a state where

it will not consume static current. This must be done before the ARM7500 is set into

STOP mode.

9.28 Data control register (DCTL): Address 0xF

The horizontal display width is also defined in this register, and should be programmed

to be the number of words of data in a displayed raster. It must be programmed in most

configurations of the device, as it inhibits a DMA request near the end of a raster, when

there are enough words in the video FIFO for that raster. The request is uninhibited

after the HSYNC at the start of the next raster. When driving a dual panel LCD screen,

this register must be programmed with twice the number of words in a displayed raster.

Hdis should normally be programmed to zero. If Hdis is programmed to one, the

inhibition of DMA requests is disabled.

Note Bits 19:16 MUST be set to 0001 (binary).

9.29 Stereo image register 0-7: Addresses 0xA0-0xA7

These are eight, 3-bit registers which define the stereo position for the eight possible

channels, as defined in ➲ Chapter 12: Sound Features .

034781112151619202122272831 125691013141718232425262930

X X X X X X1 X X X X1 X0 10 01 X1

HDWR value

SnA - Must be synchronous (1)

Hdis

1 Disable

0 Enable

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-18

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

9.30 Sound frequency register: Address 0xB0

This 8-bit register specifies the byte sample rate of the sound data. It is defined in units

of 1µS. See ➲ Chapter 12: Sound Features for more detail.

If a sample rate of N µs is required, then N-2 should be programmed into the SFR. N

may take any value between 3 and 256.

9.31 Sound control register: Address 0xB1

This is a 4-bit register which defines various control bits for the sound system.

Bit 3: SCLR This bit should always be programmed LOW.

Bit 2: SDAC When HIGH, the sound DACs are enabled. Two digital
signals are also output from the chip in this mode. The
first, WS_LnR, denotes whether the sound is for the left
or right stereo channel. The other, SD0_MUTE, goes
HIGH between samples, when the sound DACs are
being muted to allow for settling. These two signals are

0 0

034781112151619202122272831 125691013141718232425262930

X X01 X1 X X X

SIR value

SIR address

0

034781112151619202122272831 125691013141718232425262930

X X X X X X X0 01 X0 011

SFR value

0 0

034781112151619202122272831 125691013141718232425262930

X X01 X1 01 1 X

sclr
sdac
dss

clksel

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-19

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

intended to ease the connection of external audio
processing systems, but for basic operation can be
ignored. Note that these two signals have different
functions when the serial sound interface is in use.

Bit 1: serial sound This bit is used to select serial sound mode.

Bit 0: CLKSEL This bit is used to select which clock is used in the sound
system. When HIGH, the ARM7500’s internal 32MHz I/O
reference clock is used, when LOW the optional sound
clock is used.

Video and Sound Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

9-20

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

10-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Video Macrocell Interface

This chapter describes the video macrocell interface within the ARM7500.

10.1 Bus interface 10-2

10.2 Setting the FIFO preload value 10-2

10

Video Macrocell Interface

ARM7500 Data Sheet
ARM DDI 0050C

10-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

10.1 Bus interface

The video macrocell does not use the ARM address bus. The address for

programming video and sound registers (0x03400000 to 0x034FFFFF) is decoded

elsewhere in ARM7500 and the internal nPROG signal is generated as a general

register write strobe. The specific register to be programmed is selected according to

the state of the upper bits of the 32-bit input data bus.

All video and sound data is then obtained by DMA under the control of the nVIDRQ

internal request signal. This signals to the main ARM7500 bus arbitration logic that a

DMA request is pending, and the request will be serviced at the first available

opportunity. All DMA is quad word, so four complete data words will be read from

memory and stored in the appropriate video, cursor or sound FIFO for each DMA

burst. Note that video DMA may be read from memory in bursts of more than 4 words

allowing almost continuous DRAM page mode access to occur.

The system software should create a video frame buffer in DRAM memory, and

program the DMA address pointers to the start, end and desired initial location within

the buffer. All DMA pointer addresses should be quad word aligned. Once the display

has been enabled, video registers should only be programmed during the flyback

period to ensure flicker free updating of the screen. See ➲ Chapter 13: Memory and
I/O Programmer’s Model for details of how to program the DMA controller.

10.2 Setting the FIFO preload value

The Video FIFO is a 32-entry, 32-bit wide FIFO. Words of video data are clocked into

the top of the FIFO under control of the internal ARM7500 signals, BUSCLK and

nVIDAK. Words are clocked out of the bottom of the FIFO as the video system displays

the data, which is controlled by the pixel clock.

The FIFO is flushed during vertical flyback time, so before the start of the frame the

FIFO is empty. At the start of the frame a video request is made to the memory

subsystem by asserting the internal ARM7500 signal, nVIDRQ. When a

predetermined number of words have been loaded into the FIFO the request is

removed. As the data in the FIFO is displayed, further video requests are made to refill

the FIFO to the desired level.

The Control Register includes a 3-bit field (bits 10:8) to set the preload value of the

Video FIFO. In this way the FIFO can be programmed to load 4,8,12,16,20,24 or 28

words of data into the FIFO at the start of frame. After the start of frame, the FIFO will

request more data when the number of words in it falls below the preloaded value.

The point at which the FIFO should request more data to be loaded is dependent upon

system considerations: if the FIFO is reloaded too late, there is a danger that it will run

out of data (underflow); if it is reloaded too early, then there is a danger that the data

will not fit into the FIFO (overflow). In general, the higher the bandwidth of the screen,

then the more words need to be preloaded into the FIFO. In a low bandwidth screen

mode, it is not always desirable to have a large preload value, as the bus traffic will

have long bursts of data transfer at the start of the frame.

Video Macrocell Interface

ARM7500 Data Sheet
ARM DDI 0050C

10-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The optimum value to be preloaded depends upon the screen mode in use (i.e. the

rate at which data is read from the FIFO), and both the latency of the memory

controller and the rate at which data is provided to ARM7500. It is generally prudent

to program the minimum value possible to keep the bus traffic even.

Let:

n be the value programmed into the control register.

v (words/µs) be the rate at which video data is displayed

Lmax (µs) be the maximum latency in the memory system. (This is the
maximum time between ARM7500 requesting more video data and
the memory system delivering the first word of that data.)

If the FIFO is almost empty then it takes 0.025µs for a word of data to reach the bottom

of the FIFO before it can be used.

The minimum value for n is deduced from the following condition to avoid the FIFO

underflowing:

There are 4n words in the FIFO when the FIFO requests more data, and if not refilled,

then the FIFO would be empty in 4n/v µs.

So n must be chosen such that 4n/v > (Lmax+ 0.025).

The maximum value for n is deduced from the following condition to avoid the FIFO

overflowing:

n may take the maximum value of 7, and the FIFO can never overflow, as there will

always be 4 words available in the top of the FIFO, even if the video request is serviced

immediately.

10.2.1 Example

For ARM7500, the value of v (words/µs) will change depending on the video mode

selected and the pixel clock rate chosen, and the worst case DMA latency Lmax will

alter depending on whether ROM accesses, DRAM accesses or internal programming

bursts are slowest, and the MEMCLK frequency used.

The memory subsystems chapter demonstrates how to calculate the worst case DMA

latency for a particular system using the ARM7500, and the value calculated there

should be imported as lmax into the formula in the previous section.

Assume that an 8 bit per pixel mode is being used with a pixel clock rate of 60MHz

(period = 16.7ns). In each pixel clock tick, 1/4 of a word will be used, so in a whole µs,

0.25 x 1/0.0167 = 14.9 words will be required.

Hence the value of n must be such that:

 4n/v > (Lmax + 0.025)

 So, assuming an Lmax value of 1.0µs

n > 3.74(1.0 + 0.025) => n > 3.83

So in this case the minimum value for n to prevent FIFO underflow is 4.

Video Macrocell Interface

ARM7500 Data Sheet
ARM DDI 0050C

10-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

11-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Video Features

This chapter details the video capabilities available with the ARM7500.

11.1 Pixel clock 11-2

11.2 The palette 11-4

11.3 Cursor 11-5

11.4 Hi-Res support 11-6

11.5 Liquid Crystal Displays 11-8

11.6 External support 11-9

11.7 Analog outputs 11-11

11

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

11.1 Pixel clock

The video and sound macrocell is capable of generating a display at any pixel rate up

to 120MHz. The pixel clock may be selected from one of three sources, and the

frequency of this clock may be further divided down by a factor of between 1 and 8.

These attributes are programmed by the lower 5 bits of the control register, CONREG.

If a maximum of three master frequencies are sufficient, then the clock inputs can be

used directly. However, it is often a requirement to have many different master clock

frequencies. In order to obviate the need for many crystals on the PCB, the video and

sound macrocell is designed to drive a Voltage Controlled Oscillator (VCO) to provide

the master frequency. The VCO and filter are external to ARM7500, but everything

else is built into the chip. Operation is described below:

An internal reference frequency of 32 MHz is supplied via the I_OCLK input of

ARM7500. The signal from the VCO is input into ARM7500 on the pin VCLKI. VCLKO
is simply the inverse of VCLKI, and this may be used to bias the input signal about the

threshold if the VCO output is not a full amplitude signal. The mark-space ratio of the

VCO output should be as close as possible to 50-50 if operation at 120MHz is to be

achieved.

The reference clock is divided by a programmable number set by the r-modulus in the

fsynreg. The VCO clock is divided by a programmable number set by the v-modulus

in the fsynreg. Each of the moduli may be a 6 bit number. The output of each of these

dividers is fed into a phase comparator, and the result is output from ARM7500 as

PCOMP. This pin should then be filtered and used to control the VCO output

frequency. In this way, the VCO can be set to have a frequency of v/r * Fref.

The phase comparator is of the phase-frequency type. The output PCOMP is normally

tristate, but when the VCO frequency needs to be decreased the output is LOW, and

when the VCO frequency needs to be increased the output is HIGH. When the 2

frequencies are in lock, PCOMP will normally be tristate, but will be driven to the mid

point for a very short time (a few ns) every r/Fref+ period. The output impedance of this

pin when it is driven is about 50Ω. ➲ Figure 11-1: ARM 7500 internal subsystems for
pixel clock generation on page 11-3.

The choice of filter and VCO is left to the user. It is important to avoid any low-

frequency modulation of the VCO frequency. It has been found that a suitable VCO is

a 74AC04 inverter element with feedback, with the supply voltage controlled by the

PCOMP output. (See ➲ Appendix E: ARM7500 Video Clock Sources.)

With this approach, an enormous number of frequencies are possible. The 32MHz

reference frequency generated within ARM7500 can be used to yield the following

common VCO frequencies in the table on the next page. For some frequencies, there

are many possible values of r and v. In this case it is sensible to choose a set of values

which favours the filter response. (Remember large moduli yield a lower comparison

frequency).

It may be best to limit the VCO range, and use the prescaler within video and sound

macrocell to get a lower pixel rate than the VCO frequency. It is expected that the VCO

range may have to be constrained so that it cannot provide the highest frequencies at

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

which the video and sound macrocell can operate. In this case, a single high-

frequency clock can be fed into ARM7500 on the HCLK pin, and this can be selected

for the pixel clock.

 Figure 11-1: ARM 7500 internal subsystems for pixel clock generation

r-modulus v-modulus VCO frequency/

MHz

8 2 8.0

16 6 12.0

4 2 16.0

8 6 24.0

2 2 32.0

8 9 36.0

16 35 70.0

4 15 120.0

 Table 11-1: Synthesised VCO frequency settings

ck

PCOMP

RCLK

HCLK

VCLKIN

VCLKOUT / v

/ r

conreg[1:0]

conreg[4:2]

/ n

PIXCK

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

11.2 The palette

ARM7500 has a 28-bit wide 256-entry palette which is constructed out of three 8-bit

wide look-up-tables (LUTs), each with 256 entries, named Red, Green, and Blue, and

one 4-bit wide LUT with 16 entries, named Ext. The Red, Green and Blue LUTs each

drive their respective DACs, and the Ext LUT is normally configured to drive the

ED[3:0] output port, except when Hires mode or LCD mode is selected. These bits

may be used outside the chip for a variety of purposes such as supremacy, fading, Hi-

Res and LCD driving. The ED[7:4] output port is normally driven from the Ext register,

ereg[7:4], which may be written at any time, so these bits can be used as a DC control

port.

The mapping of the logical colours through the LUTs is dependent on the mode in use,

as follows:

• In 1,2,4 bits/pixel modes, the logical data is fed simultaneously to all 4 LUTs.

This gives a fully flexible palette with any logical colour being mapped to any

physical colour, and any ED[3:0] value. The palette will give 16 colours from

a selection of 224.

• In 8-bits/pixel modes, the logical data is fed simultaneously to all 4 LUTs. This

gives a fully flexible palette with any logical colour being mapped to any

physical colour. Logical colours 0-15 access the Ext LUT, and logical colours

16-255 access location 0 of the Ext LUT. The Ext LUT again drives ED[3:0].
The palette will give 256 colours from a selection of 224.

• In the 16-bits/pixel mode, a patented technique has been developed. This

approach is highly flexible and allows many different addressing modes e.g.

5-5-5, 5-6-5 etc. In this mode 216 colours are available from a selection of 224.

• In the 32-bits/pixel mode, 24 bits from the logical field will drive the 256 entries

in each of the colour LUTs (8 bits to each LUT) and 4 bits will drive the Ext

LUT. The upper 4 bits are discarded.The palette will give the full range of 224

colours.

Note that where a logical field does not drive all the palette entries (such as in 4 bits/

pixel mode) only the lower part of the palette is used. Unused sections need not be

programmed.

When HiRes mode or LCD mode is selected, the palette must be set up in a

predetermined configuration. This is explained in the chapters on hi-res support and

LCDs.

11.2.1 Palette updating

A signal FLYBK exists within ARM7500 as an output from the video and sound

macrocell. FLYBK goes HIGH at the start of the first raster which is not displayed, and

goes LOW at the start of the first raster which is displayed. The rising edge of this

signal can cause an interrupt via the ARM7500 IRQA interrupt registers, and the

palette should be updated at this time for flicker-free updating.

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

11.3 Cursor

ARM7500 has a hardware cursor 32 pixels wide and any number of pixels high. Its 2

bits per pixel allow 4 colours, which include “transparent” plus three other colours from

a selection of 224. It is possible to display the cursor in the horizontal border, but not

in the vertical border.

The cursor has a 3 entry palette which is 28 bits wide, allowing each cursor logical

colour to be any physical colour. In addition, there is a 28 bit wide border colour

register.

At the start of every frame, 16 bytes of cursor data are transferred to the video

subsystem during the horizontal retrace period. This is enough data for two raster's

worth of cursor. After they have been displayed, a request is made for another 16

bytes. Thus, in normal mode, requests are made on every other raster on which there

is cursor, and enough data is transferred for two rasters each. In Hi-Res mode, a

request is made every raster. Note that the cursor data is always transferred in bursts

of four words.

11.3.1 Cursor in Hi-Res mode

In order to allow micro-pixel resolution of the cursor in Hi-Res mode when operating

at 4 micro-pixels per normal pixel, it is necessary to define 2 bits per micro-pixel, or 8

bits per normal pixel. The 16 bytes of cursor data available for each raster can thus

generate 64µ-pixels of cursor. In Hi-Res mode the cursor palette is not used (though

the border may be programmed). Refer to the chapter on Hi-Res support.

The cursor is always positioned to align with a normal pixel. In order to position the

cursor to a µ-pixel horizontally, four different copies of the cursor are required: each

copy defines the cursor offset by a single µ-pixel. It is possible to define transparency

to a resolution of a µ-pixel, so by selecting the correct cursor image, the required

position can be achieved.

11.3.2 Cursor in LCD mode

The video subsystem is capable of displaying the hardware cursor in LCD mode.

However, because of the split-screen nature of duplex LCDs, the cursor needs special

attention. If the cursor is entirely in the upper or lower half-screen, then the cursor

should be programmed as normal, but VCSR[14:13] should be programmed

accordingly (0x10 = upper half-screen; 0x01 = lower half-screen). If the cursor

“straddles” the split screen, then the cursor image in memory must start at the top of

the lower half-screen, and end with the bottom of the upper half screen. Hence two

contiguous images of the cursor image are required, and the start pointer moved

accordingly. In practice, four images of the cursor are required, to ensure that a

resolution of one raster is maintained across the boundary. As the cursor moves from

one panel to the other, the pointer to the cursor image in memory must be moved. For

more details, refer to ➲ Appendix B: Dual Panel Liquid Crystal Displays.

In the case where the cursor straddles the split screen, the meaning of the VCSR and

VCER registers are changed. The VCER register now defines the start of cursor in the

upper half-screen, and the VCSR defines the end of the cursor in the lower half-

screen. Thus the cursor is actually displayed in the lower half-screen from the start of

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

display until VCSR, and then again in the upper half-screen from VCER until the end

of display. This mode is selected by programming VCSR[14:13] = 0x11. Further details

of how to use ARM7500 with dual panel LCD screens are given in ➲ Appendix B: Dual
Panel Liquid Crystal Displays.

11.4 Hi-Res support

ARM7500 is able to support colour screens with resolutions above 1024 by 768 pixels.

For higher resolutions, externally serialising the data is required to produce

monochrome (or grey-level) pictures. In this scheme one 16ns-pixel could theoretically

be serialised to make eight 2ns-pixels, ie about 500MHz. However, this is dependent

on the availability of external hardware capable of generating a serial bitstream at this

frequency.

11.4.1 ARM7500 support for Hi-Res mode

When the hrm bit in the Ext register is set, and EREG[1:0] is set to value 0x10,

ARM7500 outputs 8 bits of data for every normal pixel on the ED[7:0] port. These bits

can then be serialised to form a high frequency monochrome pixel stream;

alternatively they can be serialised to 2 or 4 bits, which could then drive a high-speed

monochrome DAC for grey level displays. With the pixel clock running at a

fundamental frequency of about 100MHz, the external serial clock could be running at

up to several hundred MHz. In order for the external circuit to be able to synchronise

to the ARM7500 output data, ARM7500 also outputs a pixel clock synchronous to the

data stream when the hrm bit is set.

In this mode, with EREG[1:0] set to value 0x10, the video data is driven from the Blue

LUT, which outputs data BPD[7:0]. Depending on how the external serializer circuit is

arranged, the LUT must be set up to give a one-one correlation between the logical

address and the physical data value. So, for example, if 4 bits are externally serialised

into a single bit stream, then 4 bits/pixel mode should be selected, and ED[6,4,2,0]
should be used. The lower 16 words of the Blue LUT should be programmed to give

all 16 combinations of BPD[6,4,2,0]. If 8 bits are externally serialised to give a single

bit-stream, then 8 bits/ pixel mode should be selected, and all 256 values of the Blue

LUT should be programmed as a one-one mapping.

Hardware cursor support is provided as follows. The cursor palette is not used, though

the Blue border may be programmed. Eight bits of cursor data (CD[7:0]) are defined

for each normal pixel. The 8 bits are divided into 4 pairs, with the lsb (least significant

bit) of each pair defining whether the video data (BPD) or the msb (most significant bit)

of the cursor pair is displayed. Each cursor bit-pair operates on 2 bits of the video data

(BPD) according to the following tables:

CD[7] CD[6] ED[7] ED[6]

 0 0 BPD[7] BPD[6]

 0 1 0 0

 Table 11-2: Deriving high-speed 2-bit cursor data from the normal 8-bit output—CD[6&7]

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

So if the external circuit serialises ED[6,4,2,0] into a single bit stream, or ED[7:0] into

a 2-bit data stream then the cursor can be positioned and defined to any micro-pixel:

in each case the cursor can be transparent, black or white. If all 8 bits are serialised

into a single very high frequency bit stream, then the cursor can only be positioned and

defined to units of 2 micro-pixels.

 1 0 BPD[7] BPD[6]

 1 1 1 1

CD[5] CD[4] ED[5] ED[4]

 0 0 BPD[5] BPD[4]

 0 1 0 0

 1 0 BPD[5] BPD[4]

 1 1 1 1

 Table 11-3: Deriving high speed 2-bit cursor data from the normal 8-bit output - CD[4&5]

CD[3] CD[2] ED[3] ED[2]

 0 0 BPD[3] BPD[2]

 0 1 0 0

 1 0 BPD[3] BPD[2]

 1 1 1 1

 Table 11-4: Deriving high-speed 2-bit cursor data from the normal 8-bit output—CD[2&3]

CD[1] CD[0] ED[1] ED[0]

 0 0 BPD[1] BPD[0]

 0 1 0 0

 1 0 BPD[1] BPD[0]

 1 1 1 1

 Table 11-5: Deriving high speed 2 bit cursor data from the normal 8 bit output - CD[0&1]

CD[7] CD[6] ED[7] ED[6]

 Table 11-2: Deriving high-speed 2-bit cursor data from the normal 8-bit output—CD[6&7]

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

11.5 Liquid Crystal Displays

ARM7500 is capable of driving single panel Liquid Crystal Displays at 1, 2, 4, 8, 16 or

32 bits per pixel, and dual panel LCDs at 1, 2 or 4 bits per pixel. Grey-scaling is

provided at up to 16 shades. ARM7500 is also capable of driving single panel colour

LCDs with no grey scaling in its normal (video) mode. Two control bits are provided for

LCD operation:

lcd (bit 13 in the Ext register) configures the external data port ED[7:0]
for LCD operation, and enables the grey-scaling logic (EREG[1:0]
must be set to 0x01);

dup (bit 13 in the control register) enables duplex mode, and should be set
for dual-panel LCDs.

11.5.1 LCD grey-scaling

To obtain a grey-scaled output from ARM7500, the lcd bit (bit 13 in the Ext register)

must be set. This configures the External port for LCD operation. The DACS should

be disabled to save power since ARM7500 can not drive both CRT and LCD displays

simultaneously. In order to get this data out of the ED[7:0] port, EREG[1:0] must be

set to value 0x01.

ARM7500 provides a grey-scaling algorithm which modulates the data output. Grey-

scaling is possible at 1, 2 or 4 bits per pixel. The data is output from the chip as one

or two 4-bit quantities, depending on whether single or dual panel LCDs are used, at

one quarter of the pixel rate. The lower 4 bits of the Green LUT control the upper panel

(ED[7:4]), and the 4 bits of the Ext LUT control the lower panel (ED[3:0]). Thus, the

palette can still be used to provide a mapping of logical to physical colour. The cursor

palette is used similarly, though the programming of the cursor position needs special

treatment - refer to Appendix B. If a single panel LCD is used, then ED[7:4] should be

used, and the Green LUT programmed accordingly (ED[3:0] are held low in this

mode). The grey-scaling logic lies between the output of the video multiplexer and the

external port and works as described below.

There are effectively 16 physical grey levels available, and in 1,2, or 4 bits per pixel

mode the palettes are programmed to give a mapping of the logical colour to physical

shade. The resultant 4 bit pixel value out of the video multiplexer is modulated

according to its value and the raster number and the point on the raster at which it is

generated. The result is a single bit which on average is HIGH for a time equal to the

actual 4 bit value. For a single panel screen, 4 of these bits are then collected together

and output as a nibble at one quarter of the pixel rate on ED[7:4]. ED[4] represents

the 4th pixel, and ED[7] represents the 1st pixel.

If duplex mode is selected, then the pixel stream for the upper half screen is obtained

from the Green LUT and that for the lower half screen is obtained from the Ext LUT.

Both these pixel streams are passed through the grey-scale logic simultaneously and

output as two nibbles on ED[7:4] (upper half screen) and ED[3:0] (lower half screen).

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-9

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

11.5.2 Dual panel LCDs (duplex mode)

Duplex mode is configured by setting the dup control bit as well as the lcd control bit.

The screen parameters are set up according to the requirements of the LCD panel.

Note: Since the upper and lower panels are driven simultaneously, ARM7500 only produces
data for half the total number of lines on the dual panel. Thus the vertical registers
must be programmed as if there were only one panel.

ARM7500 requests data in units of two quad-words. The first quad word the memory

controller delivers is for the upper half-screen, and the second quad-word is for the

lower half-screen. ARM processor then serialises the data into two simultaneous bit-

streams as described above. 1, 2 or 4 bits/pixel may be selected. For details of the

ARM7500 register programming requirements for duplex DMA, see ➲ Chapter 13:
Memory and I/O Programmer’s Model .

11.5.3 Single panel colour LCDs

If neither dup nor lcd control bits are set, then the ED[7:0] port may be used to gain

access to all of the physical bits out of the video multiplexer. This would allow many

other types of display to be driven.

11.6 External support

ARM7500 has an 8-bit output port, ED[7:0] and a synchronous clock, ECLK, which

have different functions in different modes. The port is controlled by the 2 bits,

EREG[1:0], in the control register that essentially select which of the bytes from the

video multiplexer are chosen. Additionally, an ARM7500 register bit (bit 1 of the

VIDMUX register) can be used to cause the data selection for the ED port to be

modified according to the state of the ECLK output. This feature is intended to be used

to increase the bandwidth for driving colour LCD screens. When this control bit is set

LOW, the behaviour of the ED port is as shown below. The bit is intended to be used

with ’LCD’ set LOW. When the VIDMUX bit is HIGH, and EREG[1:0] is set LOW, if

ECLK is LOW, the Red LUT is output on ED[7:0]. If ECLK is high, the Green LUT is

output on ED[7:0].

When EREG[1:0] = 0:

the Red LUT is output on ED[7:0].

When EREG[1:0] = 1:

if lcd = 0 the Green LUT is output on ED[7:0].

If lcd = 1, then the grey-scaled LCD signals are output. ED[7:4]
carries the data for the upper half screen from the Green LUT, and
ED[3:0] carries the data for the lower half screen from the Ext LUT.
Note that if lcd = 1, data is output at one-quarter of the ARM processor
pixel rate, since the data output actually represents 4 pixels for each
half-screen.

When EREG[1:0] = 2:

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-10

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

if hrm = 0, the Blue LUT is output on ED[7:0].

If hrm = 1, the multiplexed Blue LUT and HiRes cursor data is output
on ED[7:0]. See ➲ 11.4 Hi-Res support on page 11-6.

Also, ED[7:0] is retimed, and delayed by one extra pixel.

When EREG[1:0] = 3:

if dac = 0, ED[3:0] are driven by the Ext LUT, and ED[7:4] are driven
by the value of the Ext Register,EREG[7:4], which is intended as a DC
control port in this mode.

If dac= 1, ED[3:0] are delayed by one pixel, so that they are exported
from the chip in the same pixel as the analog data to which they
correspond. In this configuration ED[3:0] bits may be used for
supremacy, for overlaying pictures on a pixel-by-pixel basis. Because
several bits are output, analog fading and mixing on a pixel basis is
possible.

11.6.1 ECLK

ECLK is output along with the data ED[7:0], so that the data can be externally latched

and multiplexed. ECLK is controlled by lcd and EREG[2]. If EREG[2] = 0, then ECLK
is output as logic 0. This should be configured whenever ECLK is not required, in order

to save power. If EREG[2] = 1, then if lcd = 0, ECLK is the pixclk, output synchronously

with the data stream. If lcd = 1, then ECLK is the LCD clock, which runs at a quarter

of the pixel rate. The lcd clock is only enabled whilst horizontal display data is being

output and is synchronous to the data stream. The timing diagrams below show the

relationship between ED and ECLK.

 Figure 11-2: Timing relationship between ECLK and ED in LCD greyscale mode

 Figure 11-3: Timing relationship between ECLK and ED in all other modes

ECLK

ED[7:0]

Teclk
Tlcded

ECLK

ED[7:0]

Ted

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-11

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Note 1: ECLK mark space ratio is not always 1:1, depends on pixel clock divide.

11.6.2 Power saving considerations

The External Port can consume a lot of power, but steps may be taken to minimise

power usage. In particular, it is very important not to load the signals heavily, especially

ECLK which can clock at the pixel rate. When it is not in use, it should not be putting

out the raw pixel data, but should be outputting static signals. This is done by selecting

EREG[1:0] = 3, and setting all entries of the Ext LUT to be all one value. ECLK should

be turned off by setting EREG[2] = 0.

If an LCD is fitted, but not operated, it may be necessary to power down the input

signals to it. This can be achieved by setting bit 13 low, which disables the grey scaler,

and by disabling the external port as described above.

11.6.3 Vertical and horizontal synchronisation

Software control over the polarities of the synchronisation pulses is provided. Two

types of Composite Sync may be output, each of either polarity. The logical OR of

Hsync and Vsync may be output on the Horizontal Sync (HSYNC) pin, and the XOR

of Hsync and Vsync may be output on the Vertical Sync (VSYNC) pin. Equalisation

pulses in the composite synchronisation signal are supported for interlace mode.

When LCD mode has been selected, the external HSYNC and VSYNC pulses are

modified in accordance to the requirements of an LCD screen.

The HSYNC and VSYNC pins are programmed with the Ext Register, EREG[19:16].

11.6.4 Genlocking

Genlocking is supported by ARM7500. A pin is provided to reset the vertical counter

to the first raster (SYNC).

11.7 Analog outputs

ARM7500 outputs analog R, G, and B signals. It is designed to drive doubly-

terminated 75Ω lines directly.

11.7.1 DAC control

There are 4 control bits in the Ext Register associated with the DACs. These are dac

and ped[2:0].

Symbol Parameters Min Max Units Notes

Ted ECLK to ED delay 5 7 ns 1

Tlcded ECLK to ED delay—LCD mode Teclk/4 + 5 Teclk/4 + 7 ns

 Table 11-6: ARM7500 ECLK and ED timing

Video Features

ARM7500 Data Sheet
ARM DDI 0050C

11-12

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Power-save mode

When dac is HIGH, the DACs are all enabled and will generate a current proportional

to the digital values from the video multiplexer. When dac is LOW, the reference

current into all three DACs is turned off, so the DACs generate no output current, and

hence consume much less power. This is useful when operating in LCD mode, or at

any time when the screen should be blanked.

Pedestal current

The DACs may be programmed to generate a pedestal offset of 20 lsb equivalent

currents. These are controlled individually by pedon[2:0], though they will typically all

be programmed on or off together, depending on the monitor characteristics. pedon[0]

controls the red pedestal, pedon[1] the green pedestal, and pedon[2] the blue

pedestal. If pedon[n] is HIGH, the pedestal current is switched on as the border starts,

and is turned off as the border ends.

11.7.2 Video DAC currents

The DACs are each 8 bit resolution, so they source 256 units of current according to

the digital value from the video multiplexer. The current step is set by a common

reference current, VIREF. The recommended reference current is 0.56mA which gives

a DAC step of 69µA. Hence digital value 0 gives 0 current and digital value 0xFF gives

an output current of (255 * 69)=17.6mA. If pedon is set, then during display time, digital

value 0 will generate (20 * 69)=1.38mA, and digital value 0xFF will generate

(275* 69)=18.98mA. A 4.3kΩ resistor connected between VIREF and VDD will provide

the desired 0.56mA at 2.6V.

DAC accuracy

At 120MHz the DACs are accurate to 8 bits absolute resolution. They will always be

monotonic.

11.7.3 Monochrome output

ARM7500 does not generate a separate composite monochrome signal. This can be

generated by resistively mixing the R,G and B externally, if required.

ARM7500 Data Sheet
ARM DDI 0050C

12-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Sound Features

This chapter details the sound capabilities available with the ARM7500.

12.1 Sound 12-2

12.2 The sound FIFO 12-2

12.3 Analog stereo sound 12-2

12.4 The Digital Serial Sound Interface 12-4

12.5 Analog sound outputs 12-5

12

Sound Features

ARM7500 Data Sheet
ARM DDI 0050C

12-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

12.1 Sound

The video and sound macrocell has two sound systems built into it. These are an 8-

bit analog stereo system, and a 32-bit serial sound interface suitable for driving

external CD DACs. Only one of these systems should be used at once, as they share

common circuitry.

12.2 The sound FIFO

At the core of the sound system is a 4-word FIFO and a byte wide latch. When empty,

the FIFO fills completely by a DMA request. Data is then clocked out of the FIFO, one

byte at a time through the latch.

12.3 Analog stereo sound

This mode can work with 1, 2, 4 or 8 stereo channels. The 8-bit sound data is fed

through a DAC to produce the sound signal. The first quarter of each sample is muted

to allow for DAC settling. During this time, the external, digital SDO_MUTE signal goes

HIGH. The stereo image is synthesised by time division multiplexing the sound signal

between the four analog output pins LM, LP, RM, and RP. The sound DAC

characteristic is shown in ➲ Figure 12-1: The sound DAC characteristic on page 12-3.

The sign bit, D0, selects which of the plus or minus pins of the appropriate channel are

driven by the DAC. When D0 = 1, LP or RP will be driven, and when D0 = 0, LM or RM

will be driven. A digital output, WS_LnR, is provided which denotes when the output

data is for the left (WS_LnR = 1) or right stereo channel. The stereo position for each

channel is held in the stereo image registers, and can be in one of eight positions as

described below.

In 8 channel mode, the channels are sampled sequentially starting with channel 0. In

4 channel mode, the fifth byte sampled is channel 0 again, and so stereo image

register 4 must be programmed to the same value as that of register 0, and so on. In

SIR value Stereo Position

0 Undefined

1 100% Left

2 83% Left

3 67% Left

4 Centre

5 67% Right

6 83% Right

7 100% Right

 Table 12-1: Stereo position values

Sound Features

ARM7500 Data Sheet
ARM DDI 0050C

12-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

2 channel mode, registers 0, 2, 4 and 6 correspond to channel 0, and registers 1, 3, 5

and 7 correspond to channel 1. In single channel mode, all eight registers must be

programmed to the same value.

The sample rate is programmable via the Sound Frequency Register (SFR). The SFR

is programmable in units of 1µS, and the minimum value is 3µS. In eight channel

mode, each channel is sampled at a rate of one eighth the value of the SFR.

The DAC transfer characteristic consists of 8 linear segments (chords). Each chord

has 16 steps, and the step size in one chord is twice that of the preceding chord. This

gives an approximation to the “µ255 law”. The characteristic is shown in the figure

below, for the positive and negative halves. Note that bit 0 of the sound data is used

as the sign bit.

 Figure 12-1: The sound DAC characteristic

The outputs are current sinks. The magnitude of the output is a function of the sound

reference current. The reference current is equal to the step size of the highest chord.

It is recommended that the reference current SIREF is 32µA, which may be provided

by a 88.5kΩ resistor to VDD. The digital outputs, SDO_MUTE and WS_LnR are

provided for advanced external audio systems but for basic operation they can be

ignored.

When connected to VDD by a 1kΩ pullup resistor the analog stereo outputs LM, LP,

RM and RP will have a voltage range of 4.5±0.5V with a 2mA maximum current.

247i

127i

63i

31i

15i
7i3ii0

0 1 2 3 4 5 6 7

Chord Number

POSITIVE

D7 D6 D5 D4 D3 D2 D1 D0

Sign Chord select Point on chord

Note: i = Iref

8

Sound Features

ARM7500 Data Sheet
ARM DDI 0050C

12-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

12.4 The Digital Serial Sound Interface

The serial sound interface offers far superior 32-bit stereo sound, at the expense of

some additional external circuitry. The serial sound system consists of a three pin

serial interface. SDCLK is the Serial Data Clock output, SDO_MUTE is the Serial Data

output, and WS_LnR is the Word Select output. When no sound is required,

(sctl[2:1]=0), these outputs are stable (SDCLK=0, SDO_MUTE=0, WS_LnR=1).

When in this mode, bytes from the sound FIFO are output in most-significant first

order. This is because the serial sound output must go msb first to be compatible with

other serial sound devices. Each byte of data is loaded into a parallel-in, serial-out

register, and clocked out under control of the bit clock.

There are two timing formats available for the interface: normal and Japanese formats.

The selection of these is controlled by bit 0 of the VIDMUX register in the main part of

ARM7500.

When configured for normal mode (VIDMUX bit 0=LOW), each 32-bits sample

consists of 16 bits for the left hand channel, and 16 bits for the right hand channel. To

distinguish between them, a 'word select' (WS_LnR) signal is produced. This signal

changes when the lsb of the previous word is output. When WS_LnR is HIGH, the right

hand channel is being output.

 Figure 12-2: Serial sound output format

In Japanese format, the WS_LnR signal changes when the msb of the new word is

output. In addition, the polarity of WS_LnR is reversed. This is shown in the diagram

below.

SDCLK

SDO

WS

bit1 lsb msb bit1 lsb msb

left channel right channel

Sound Features

ARM7500 Data Sheet
ARM DDI 0050C

12-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 12-3: Serial sound interface—Japanese format

The serial sound output can be used with any DAC with a serial sound input. Many

DACs require a 11.2896MHz input clock, and to reduce the number of on board

crystals required, the video and sound macrocell can cope with this frequency on the

SCLK input. When using this, the following parameters need to be programmed in the

registers.

serial sound (SCTL Register bit 2) = 1

clksel (SCTL Register bit 0) = 1

Sound Frequency Register = 2

The sound system is not limited to operating with this frequency alone, however the

Sound Frequency Register must be set to produce the necessary bit rate accordingly.

12.5 Analog sound outputs

When the sound system is in analog mode, analog sound data is output from the

sound DACs. There are four outputs, a positive and negative for both the left and the

right channels. Also, two digital outputs are produced. On the SDO_MUTE pin, the

mute signal is output. This goes HIGH for a period between samples to allow for DAC

settling. On the WS_LnR pin, the Left-not-Right signal is output. This goes HIGH when

the analog output is to the left hand channel, and goes LOW when it is for the right

hand channel. These two digital outputs are intended to ease the connection of an

external audio processing system, and can be ignored for normal use.

SDCLK

SDO

WS

lsb msb lsb msb

left channel right channel

Sound Features

ARM7500 Data Sheet
ARM DDI 0050C

12-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

13-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Memory and I/O
Programmer’s Model

This chapter details the programmable registers for the memory and I/O subsytem.

13.1 Introduction 13-2

13.2 Summary of registers 13-2

13.3 Register description 13-6

13

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.1 Introduction

ARM7500 contains over 100 programmable registers (in addition to those in the ARM

processor and the 256 video palette entries), which are grouped into three sets. Those

inside the ARM processor are described fully in Chapters 3 to 7. Those inside the

video and sound macrocell are all programmed by writing to memory locations

0x03400000 to 0x034FFFFF, with the upper bits of the programmed data determining

which video/sound register is to be programmed. All these registers are write only, and

are described in the video and sound chapters. The remaining ARM7500 registers are

programmed by writing a full 32-bit data word to an address between 0x03200000 and

0x032001F8. Although most of these registers are only 8 or 16 bits wide, all the

register addresses are word aligned. All the ARM7500 registers which do not form part

of the ARM processor or the video and sound macrocell are described in the following

section.

13.2 Summary of registers

All addresses are in hex and are relative to the base address 0x03200000.

Key

✓ can write or read

✗ do not write or read

Name Address Size Read Write Function

IOCR 00 8 ✓ ✓ I/O control

KBDDAT 04 8 ✓ ✓ Keyboard data

KBDCR 08 8 ✓ ✓ Keyboard control

IOLINES 0C 8 ✓ ✓ general purpose I/O lines

IRQSTA 10 8 ✓ ✗ IRQA status

IRQRQA 14 8 ✓ ✓ IRQA request/clear

IRQMSKA 18 8 ✓ ✓ IRQA mask

SUSMODE 1C 8 ✓ SUSPEND Enter SUSPEND mode

IRQSTB 20 8 ✓ ✗ IRQB status

IRQRQB 24 8 ✓ ✗ IRQB request

IRQNSKB 28 8 ✓ ✓ IRQB mask

STOPMODE 2C 8 ✗ STOP Enter STOP mode

FIQST 30 8 ✓ ✗ FIQ status

 Table 13-1: ARM7500 registers

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

FIQRQ 34 8 ✓ ✗ FIQ request

FIQMSK 38 8 ✓ ✓ FIQ mask

CLKCTL 3C 8 ✓ ✓ Clock divider control

T0LOW 40 8 ✓ ✓ Timer 0 LOW bits

T0HIGH 44 8 ✓ ✓ Timer 0 HIGH bits

T0GO 48 8 ✗ GO Timer 0 go

command

T0LAT 4C 8 ✗ LATCH Timer 0 latch

command

T1LOW 50 8 ✓ ✓ Timer 1 LOW bits

T1HIGH 54 8 ✓ ✓ Timer 1 HIGH bits

T1GO 58 8 ✗ GO Timer 1 go

command

T1LAT 5C 8 ✗ LATCH Timer 1 latch

command

IRQSTC 60 8 ✓ ✗ IRQC status

IRQRQC 64 8 ✓ ✗ IRQC request

IRQMSKC 68 8 ✓ ✓ IRQC mask

VIDMUX 6C 8 ✓ ✓ LCD and IIS

control bits

IRQSTD 70 8 ✓ ✗ IRQD status

IRQRQD 74 8 ✓ ✗ IRQD request

IRQMSKD 78 8 ✓ ✓ IRQD mask

ROMCR0 80 8 ✓ ✓ ROM control bank 0

ROMCR1 84 8 ✓ ✓ ROM control bank 1

REFCR 8C 8 ✓ ✓ Refresh period

ID0 94 8 ✓ ✗ Chip ID number LOW byte

ID1 98 8 ✓ ✗ Chip ID number HIGH byte

VERSION 9C 8 ✓ ✗ Chip version number

MSEDAT A8 8 ✓ ✓ Mouse data

MSECR AC 8 ✓ ✓ Mouse control

Name Address Size Read Write Function

 Table 13-1: ARM7500 registers (Continued)

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

IOTCR C4 8 ✓ ✓ I/O timing control register

ECTCR C8 8 ✓ ✓ Expansion card timing control

register

ASTCR CC 8 ✓ ✓ Asynchronous I/O

timing control

DRAMWID D0 8 ✓ ✓ DRAM width

control 16/32 bit

SELFREF D4 8 ✓ ✓ Force CAS/RAS lines LOW

individually for self refresh

ATODICR E0 8 ✓ ✓ A to D interrupt control register

ATODSR E4 8 ✓ ✗ A to D status register

ATODCC E8 8 ✓ ✓ A to D convertor control register

ATODCNT1 EC 16 ✓ ✗ A to D counter 1

ATODCNT2 F0 16 ✓ ✗ A to D counter 2

ATODCNT3 F4 16 ✓ ✗ A to D counter 3

ATODCNT4 F8 16 ✓ ✗ A to D counter 4

SD0CURA 180 32 ✓ ✓ Sound DMA 0 CurA

SD0ENDA 184 32 ✓ ✓ Sound DMA 0 EndA

SD0CURB 188 32 ✓ ✓ Sound DMA 0 CurB

SD0ENDB 18C 32 ✓ ✓ Sound DMA 0 EndB

SD0CR 190 8 ✓ ✓ Sound DMA

Control

SD0ST 194 8 ✓ ✗ Sound DMA

Status

CURSCUR 1C0 32 ✓ ✓ Cursor DMA current

CURSINIT 1C4 32 ✓ ✓ Cursor DMA Init

VIDCURB 1C8 32 ✓ ✓ Duplex LCD

current register B

VIDCURA 1D0 32 ✓ ✓ Video DMA current A

VIDEND 1D4 32 ✓ ✓ Video DMA End

VIDSTART 1D8 32 ✓ ✓ Video DMA start

VIDINITA 1DC 32 ✓ ✓ Video DMA Init

Name Address Size Read Write Function

 Table 13-1: ARM7500 registers (Continued)

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

VIDCR 1E0 8 ✓ ✓ Video cursor DMA control

VIDINITB 1E8 32 ✓ ✓ Duplex LCD init register B

DMAST 1F0 8 ✓ ✗ DMA interrupt status

DMARQ 1F4 8 ✓ ✗ DMA interrupt request

DMASK 1F8 8 ✓ ✓ DMA interrupt mask

Name Address Size Read Write Function

 Table 13-1: ARM7500 registers (Continued)

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3 Register description

13.3.1 IOCR (0x00) - I/O control

This register is used to control various I/O functions. The value of the FLYBACK signal

from the video subsystem can be examined by reading bit 7 of this register, this would

be important for genlocking as FLYBACK will provide information about the vertical

timing of the display. The FLYBACK bit also gives information about when the video

palette registers can safely be reprogrammed without causing any visual effects. This

should only be done during the FLYBACK period, when this bit has been set HIGH.

Control of the open drain OD[1:0] and ID pins is provided from this register. It is also

possible to read the status of the nINT1 pin.

F = FLYBACK value

N = nINT1 value

I = ID open drain pin control

C = OD[1] open drain pin control

D = OD[0] open drain pin control

Write bits[7:4,2] ignored

bit[3,1:0] open drain pin controls, 0: force pin LOW, 1: pin is input only

Read bit[7] reads current FLYBACK value from video and sound macrocell

bit[6] reads current nINT1 pin value

bits[5:4,2] read one

bit[3] reads current ID pin value

bit[1] reads current OD[1] pin value

bit[0] reads current OD[0] pin value

Reset bits[3,1:0] set as inputs (HIGH)

13.3.2 KBDDAT (0x04) - Keyboard data

D = keyboard data

Write next byte to be sent over serial interface to keyboard

Read last byte of data received from keyboard

1 1

0347 1256

I 1 C DF N

0347 1256

DDDDDDDD

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.3 KBDCR (0x08) - Keyboard control

T = transmit status

R = receive status

E = enable

P = received parity

D = data pin status

C = clock pin status

Write bits[7:4,2] ignored

bit[3] enable, 0: state machine cleared, 1: state machine enabled

bit[1] force KBDATA pin LOW, 0: don't force LOW, 1: force LOW

bit[0] force KBCLK pin LOW, 0: don't force LOW; 1: force LOW

Read bit[7] TXE, shift register empty, 0: not ready, 1: enabled and ready to
transmit

bit[6] TXB, transmitter busy, 0: not busy, 1: currently sending data

bit[5] RXF, receive shift register full, 0: not full, 1: ready to read

bit[4] RXB, receiver busy, 0: not busy, 1: currently receiving data

bit[3] ENA, state machine enable, 0: disabled, 1: enabled

bit[2] RXP, receive parity bit, odd parity bit for last received data

bit[1] SKD, KBDATA pin value after synchronisation

bit[0] SKC, KBCLK pin value after synchronisation

13.3.4 IOLINES (0x0C) - IOP[7:0] port control

This register is the control for the 8-bit I/O port included in the ARM7500. Each bit

independently controls the state of one of the open drain I/O pins IOP[7:0]. On reset

all the bits are configured to be inputs.

I = IOP open drain pin

Write zero force corresponding pin LOW

Write one corresponding pin becomes an input

Read read value on corresponding pin

0347 1256

D CT T R R E P

0347 1256

I I I I I I I I

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Reset set all as inputs

13.3.5 IRQSTA (0x10) - IRQ A interrupts status

There are four sets of IRQ interrupt control, masking and status registers in ARM7500,

of which this is the first. Not all the bits in each register are used. Note that this status

register contains a bit (7) which is always active, and this can be used to force an

interrupt from software by programming the corresponding bit in the IRQA mask

register HIGH.

1 = always active bit

T = 2MHz timer 1, rising edge triggered

U = 2MHz timer 0, rising edge triggered

R = power on reset

F = FLYBACK, rising edge triggered

N = nINT1, falling edge triggered

P = INT2, rising edge triggered

Write ignored

Read status

bit[7] is always 1

bits[6:2,0] 0: not triggered since last cleared, 1: triggered since last
cleared

bit[1] is always 0

Reset clear bits[6:5,3:2,0] to zero

power on reset sets bit[4] to 1, push button reset maintains the current
bit[4] value

13.3.6 IRQRQA (0x14) - IRQ A interrupts request/clear

1 = always active bit

T = 2MHz timer 1, rising edge triggered

U = 2MHz timer 0, rising edge triggered

R = power on reset

0347 1256

T R1 U F N 0 P

0347 1256

T R1 U F N PX

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-9

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

F = FLYBACK, rising edge triggered

N = nINT1, falling edge triggered

P = INT2, rising edge triggered

Write clear triggered interrupts

0: don't clear interrupt

1: clear interrupt

Read requests, as status, but bitwise ANDed with mask

13.3.7 IRQMSKA (0x18) - IRQ A interrupts mask

1 = always active bit

T = 2MHz timer 1, rising edge triggered

U = 2MHz timer 0, rising edge triggered

R = power on reset

F = FLYBACK, rising edge triggered

N = nINT1, falling edge triggered

P = INT2, rising edge triggered

Write set mask for each interrupt source

0: don't form part of nIRQ

1: form part of nIRQ

Read value set by write

Reset set all zeros (none affect nIRQ)

13.3.8 SUSMODE (0x1C) - SUSPEND mode

This register allows the CPU to set the ARM7500 into SUSPEND mode. Only one bit

(0) is used, and writing to this bit will cause SUSPEND mode to be entered. The value

written to bit 0 determines whether the external I/O clocks, normally output from the

chip, are also disabled during SUSPEND mode. The value programmed will depend

on the nature of the peripherals being driven by those clocks.

S = SUSPEND mode control of external I/O clocks

0347 1256

T R1 U F N 0 P

0347 1256

X X X X X X X S

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-10

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Write turn off external I/O clocks when in this mode

0: turn off, 1: don't turn off

Enter SUSPEND mode with MCLK,FCLK,I/O clocks and some
internal clocks stopped. DMA continues and the write to this location
completes on either wakeup event, nIRQ or nFIQ or reset.

Read return above value

Reset set to zero

13.3.9 IRQSTB (0x20) - IRQ B interrupts status

K = keyboard receive interrupt

J = keyboard transmit interrupt

P = nINT3, active LOW

T = nINT4, active LOW

I = INT5, active HIGH

S = nINT6, active LOW

C = INT7, active HIGH

F = nINT8, active LOW

Write ignored

Read status

0: inactive, 1: active

13.3.10 IRQRQB (0x24) - IRQ B interrupts request

K = keyboard receive interrupt

J = keyboard transmit interrupt

P = nINT3, active LOW

T = nINT4, active LOW

I = INT5, active HIGH

S = nINT6, active LOW

0347 1256

T FPK J I S C

0347 1256

T FPK J I S C

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-11

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

C = INT7, active HIGH

F = nINT8, active LOW

Write ignored

Read request, status bitwise ANDed with mask

13.3.11 IRQMSKB (0x28) - IRQ B interrupts mask

K = keyboard receive interrupt

J = keyboard transmit interrupt

P = nINT3, active LOW

T = nINT4, active LOW

I = INT5, active HIGH

S = nINT6, active LOW

C = INT7, active HIGH

F = nINT8, active LOW

Write set mask for each interrupt source

0: don't form part of nIRQ

1: form part of nIRQ

Read value set by write

Reset set all zeros (none affect nIRQ)

13.3.12 STOPMODE (0x2C) - STOP mode

This register exists only as an address decode and is used to enter STOP mode. It is

very important that DMA activity is stopped before this register is written to. The value

written to the register will be permanently forced out on the main data bus during

STOP mode, and for most systems it will be desirable to ensure that this value is

0xFFFFFFFF. The address bus will automatically be forced HIGH during STOP mode.

Write (any value), enter STOP mode with OSCPOWER set low. The write
to this register completes on either wakeup event, nEVENT,
nEVENT2, or reset

0347 1256

T FPK J I S C

0347 1256

X X X X X X X X

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-12

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Read ignored

13.3.13 FIQST (0x30) - FIQ interrupts status

The FIQ control registers take a similar form to the IRQ registers previously described.

Again, bit 7 is always active so that a FIQ interrupt can be forced via software

1 = always active

F = nINT8, active LOW

S = nINT6, active LOW

I = INT5, active HIGH

D = INT9, active HIGH

Write ignored

Read status

0: inactive, 1: active

13.3.14 FIQRQ (0x34) - FIQ interrupts request

1 = always active

F = nINT8, active LOW

S = nINT6, active LOW

I = INT5, active HIGH

D = INT9, active HIGH

Write ignored

Read request, status bitwise ANDed with mask

13.3.15 FIQMSK (0x38) - FIQ interrupts mask

1 = always active

F = nINT8, active LOW

0347 1256

1 F 0 S 00 I D

0347 1256

1 F 0 S 00 I D

0347 1256

1 F 0 S 00 I D

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-13

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

S = nINT6, active LOW

I = INT5, active HIGH

D = INT9, active HIGH

Write set mask for each interrupt source

0: don't form part of nFIQ, 1: form part of nFIQ

Read value set by write

Reset set all zeros (none affect nFIQ)

13.3.16 CLKCTL (0x3C) - Clock control

On system power up, the clock control register will be reset such that all three main

clocks have a divide by 2 prescale at the inputs to the chip. This register will

sometimes need to be reprogrammed as part of the initial tasks of the operating

system, to set the prescalers into divide by 1 mode. Divide-by-2 mode allows faster

oscillators to be used with less rigorous mark-space requirements.

F = FCLK divide control

M = MEMRFCK divide control

I = I/O clock divide control

Write bit[2] 0: FCLK x 2 = CPUCLK, 1: FCLK = CPUCLK

bit[1] 0: MEMRFCK x 2 = MEMCLK, 1: MEMRFCK = MEMCLK

bit[0] 0: IOCK32 x 2 = I_OCLK, 1: IOCK32 = I_OCLK

Read return above value

Power On Reset only

set all to zero, i.e. divide by 2 clocks

Push button reset does not affect this register

13.3.17 T0LOW (0x40) - Timer 0 LOW bits

There are eight registers associated with the two 16-bit timers in ARM7500.

L = LOW byte of timer

Write set LOW byte latch value which is loaded into timer when it reaches
end count

Read read value of LOW count latched by the ’Latch’ command T0LAT

0347 1256

X X X X X F M I

0347 1256

L L L L L L L L

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-14

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.18 T0HIGH (0x44) - Timer 0 HIGH bits

H = High byte of timer

Write set HIGH byte latch value which is loaded into timer when it reaches
end count

Read read value of HIGH count latched by the ’Latch’ command T0LAT

13.3.19 T0GO (0x48) - Timer 0 Go command

Write (value ignored) load counter with HIGH and LOW latch values and
start decrementing

Read ignored

13.3.20 T0LAT (0x4C) - Timer 0 Latch command

Write (value ignored) latch timer value in HIGH and LOW count latches

Read ignored

13.3.21 T1LOW (0x50) - Timer 1 LOW bits

L = LOW byte of timer

Write set LOW byte latch value which is loaded into timer when it reaches
end count

Read read value of LOW count latched by the ’Latch’ command T1LAT

13.3.22 T1HIGH (0x54) - Timer 1 HIGH bits

H = HIGH byte of timer

Write set HIGH byte latch value which is loaded into timer when it reaches
end count

Read read value of HIGH count latched by the ’Latch’ command T1LAT

0347 1256

H H H H H H H H

0347 1256

L L L L L L L L

0347 1256

H H H H H H H H

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-15

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.23 T1GO (0x58) - Timer 1 Go command

Write (value ignored) load counter with HIGH and LOW latch values and
start decrementing

Read ignored

13.3.24 T1LAT (0x5C) - Timer 1 Latch command

Write (value ignored) latch timer value in HIGH and LOW count latches

Read ignored

13.3.25 IRQSTC (0x60) - IRQ C interrupts status

The IRQC set of control registers control the effect of the IOP[7:0] I/O port bits on the

main interrupts. Their functionality is identical to that described for the previous IRQB

set

I = IOP[7:0] pins, active LOW

Write ignored

Read status

0: inactive, 1: active

13.3.26 IRQRQC (0x64) - IRQ C interrupts request

I = IOP[7:0] pins, active LOW

Write ignored

Read request, status bitwise ANDed with mask

13.3.27 IRQMSKC (0x68) - IRQ C interrupts mask

I = IOP[7:0] pins, active LOW

0347 1256

I I I I I I I I

0347 1256

I I I I I I I I

0347 1256

I I I I I I I I

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-16

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Write set mask for each interrupt source

0: don't form part of nIRQ, 1: form part of nIRQ

Read value set by write

Reset set all zeros (none affect nIRQ)

13.3.28 VIDMUX (0x6C) - Video LCD and Serial Sound Mux control

This register has two functions. Bit 1 allows selection of the type of serial sound

interface to be supported. The timing of the two possibilities is shown in the Sound

Features chapter. Bit 0is used to control the colour LCD multiplexer which is used in

conjunction with the video pixel clock to double the available bandwidth of colour LCD

data provided by the ARM7500. Further details of how to use this feature can be found

in the video and sound macrocell chapters.

L = colour LCD support Mux control

I = Serial Sound Format selection

Write bit[0] 0: ESEL[0] = EREG[0], 1: ESEL[0] = ECLK

bit[1] 0: normal format, 1: Japanese format

Read return above value

Reset set to zero (normal)

13.3.29 IRQSTD (0x70) - IRQ D interrupts status

The IRQD control registers are used in an identical way to the IRQB and C registers

which have already been described.

2 = nEVENT2, reads back HIGH during an active LOW wakeup event 2

1 = nEVENT1, reads back HIGH during an active LOW wakeup event 1

A= A to D, active HIGH

T = mouse transmit active HIGH

R = mouse receive active HIGH

Write ignored

Read status

bits[7:5] unused

0347 1256

X X X X X IX L

0347 1256

X X X 2 1 A T R

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-17

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

bits[4:0] 0: inactive, 1: active

13.3.30 IRQRQD (0x74) - IRQ D interrupts request

2 = nEVENT2, active LOW wakeup event 2

1 = nEVENT1, active LOW wakeup event 1

A = A to D, active HIGH

T = mouse transmit active HIGH

R = mouse receive active HIGH

Write ignored

Read request, status bitwise ANDed with mask

13.3.31 IRQMSKD (0x78) - IRQ D interrupts mask

2 = nEVENT2, active LOW wakeup event 2

1 = nEVENT1, active LOW wakeup event 1

A = A to D, active HIGH

T = mouse transmit active HIGH

R = mouse receive active HIGH

Write set mask for each interrupt source

0: don't form part of nIRQ, 1: form part of nIRQ

Read value set by write

Reset set all zeros (none affect nIRQ)

13.3.32 ROMCR0,1 (0x80,0x84) - ROM control

The ROM interface is very flexible, allowing the length of non sequential and burst

cycles to be programmed. These two registers allow this programming to take place.

The half speed select bit is included to enable the interface to be used with slow ROMs

when fast DRAM is being used and the memory system clock is running at a higher

frequency. When the half speed bit is set LOW, ARM7500 will double the length of all

the timings and will allow the ROM interface to function correctly with slower ROMs.

In normal operation with sufficiently fast ROM devices this bit should be programmed

0347 1256

X X X 2 1 A T R

0347 1256

X X X 2 1 A T R

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-18

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

to 1. Each register also contains a bit (6) which when set will allow a 16-bit wide ROM

device to be used for that bank, by performing two 16-bit fetches to form the 32-bit

word required by the ARM7500.

N = non-sequential access time:

000 = 7 MEMCLK cycles

001 = 6 MEMCLK cycles

010 = 5 MEMCLK cycles

011 = 4 MEMCLK cycles

100 = 3 MEMCLK cycles

101 = 2 MEMCLK cycles

B = burst mode access time

00 = Burst Off

01 = 4 MEMCLK cycles

10 = 3 MEMCLK cycles

11 = 2 MEMCLK cycles

H = half speed select, i.e. double above delays when H=0

Normally the H bit should be programmed to 1 (normal speed)

S = 16/32-bit mode

Write bit[6] 0: 32-bit, 1: 16-bit

bit[5] 0: half speed mode, 1: normal speed

Read return above values

Reset set to 0x40, i.e. 16-bit, slowest access time to ensure all systems can
be booted from reset.

13.3.33 REFCR (0x8C) - Refresh period

This register programs the DRAM refresh period. It is set to the fastest available rate

during reset, as refresh continues during reset to ensure that the requirements of

DRAM specification can be fully met.

R = refresh period

Write bit[3:0]

0347 1256

X S H B B N N N

0347 1256

X X X RX RRR

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-19

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

0000: refresh off

0001: 16us

0010: 32us

0100: 64us

1000: 128us

all others undefined

Read return above values

Reset set to 0001 (fastest available refresh rate)

13.3.34 ID0 (0x94) - Chip ID number LOW byte

The ID registers and the version register read back the ARM7500 ID and version

numbers. These registers are read only and must NOT be written to, as they are used

to set the ARM7500 into special modes during production test.

Write do not write to this location

Read LOW byte of chip ID: 0x98

13.3.35 ID1 (0x98) - Chip ID number HIGH byte

Write do not write to this location

Read HIGH byte of chip ID: 0x5B

13.3.36 VERSION (0x9C) - Chip version number

Write ignored

Read chip version number byte

13.3.37 MSEDAT (0xA8) - Mouse data

The Mouse data and control registers are identical to the keyboard data and control

registers, and are written to and read from in exactly the same way.

13.3.38 MSECR (0xAC) - Mouse control

 As KBDCR register

0347 1256

1 0 0 1 1 0 0 0

0347 1256

0 1 1 1 0 1 10

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-20

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.39 IOTCR (0xC4) - I/O timing control

This register sets up the cycle types for two areas of I/O space.

C = combo area access speed

S = NPCCS1/2 area access speed

Write bits[7:4] reserved

bits[3:2] 00: Type A (slowest), 01: Type B, 10: Type C, 11: Type D
(fastest)

bits[1:0] 00: Type A (slowest), 01: Type B, 10: Type C, 11: Type D
(fastest).

Read read back above values

13.3.40 ECTCR (0xC8) - I/O Expansion card timing control

This register sets up the access speed for eight portions of extended address space

within the area of I/O space from 08FFFFFF to 0FFFFFFF. Only types A and C are

available.

E = expansion card area access speed

Write bit[7] (0F00 0000 -> 0FFF FFFF), 0: Type A, 1: Type C

bit[0] (0800 0000 -> 08FF FFFF), 0: Type A, 1: Type C

Read read back above values

13.3.41 ASTCR (0xCC) - I/O Asynchronous timing control

This register is used for the situation where I/O is being used with a very fast memory

system clock. Normally it will always be programmed to zero to give the minimum

delay for these cycles, however in some configurations it may be necessary to

program the register bit to one to slow down the internal synchronisation between I/O

clocks and memory clocks and thus ensure sufficient address hold time for the I/O

address.See ➲ Appendix C: Using the ASTCR register at High MEMCLK Frequencies.

A = asynchronous timing control

0: minimal delay to I/O cycles

1: wait states to ensure address hold time

0347 1256

X X X X C SC S

0347 1256

E E E E E E E E

0347 1256

A X X X X X X X

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-21

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.42 DRAMWID (0xD0) - DRAM width control

This register selects between 16 and 32-bit modes of operation for each of the four

available banks of DRAM. Each bank can be individually selected for 16 or 32-bit

operation. This would allow a mixed 16/32-bit wide system to be built.

S = 16/32-bit mode select, one for each bank

Write bit[3] bank 3 DRAM width, 0: 32-bit, 1: 16-bit

bit[2] bank 2 DRAM width, 0: 32-bit, 1: 16-bit

bit[1] bank 1 DRAM width, 0: 32-bit, 1: 16-bit

bit[0] bank 0 DRAM width, 0: 32-bit, 1: 16-bit

Read reads above values

Reset set bits to zero (32-bit)

13.3.43 SELFREF (0xD4) - DRAM self-refresh control

Direct software control of the external NRAS[3:0] and NCAS[3:0] lines is provided by

this register. This is intended for use with self refresh DRAM, so that before the

ARM7500 is forced into STOP mode, the banks of DRAM can be set into a self refresh

state from software by forcing the NRAS and NCAS lines as specified in the DRAM

data sheet.

C = force NCAS's LOW

R = force NRAS's LOW

Write bits[7:4] 0: normal, 1: force to zero

bits[3:0] 0: normal, 1: force to zero

Read reads above values

Reset set bits to zero (normal)

13.3.44 ATODICR (0xE0) - A to D interrupt control

The A to D convertor interface is designed such that various combination of interrupts

from the channels can be used to generate an interrupt request in the IRQD interrupt

request register. It should be noted that the logical OR of all four basic enables is used

0347 1256

X X X X S S S S

0347 1256

R RC C R RC C

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-22

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

to power up the comparators. As the comparators consume static current, they must

be powered down by disabling all the A to D channels using this register before STOP

mode is entered.

1 = channel 1 interrupt enable

2 = channel 2 interrupt enable

3 = channel 3 interrupt enable

4 = channel 4 interrupt enable

C = any combination of channels generates nIRQ

A = only all channels enabled generates nIRQ

F = first pair enabled generates nIRQ

S = second pair enabled generates nIRQ

Write bit[7:0] 0: disabled, 1: enabled

Read return above values

Reset reset to 0x0F

Note: The OR of bit[3:0] is used to power up all the comparators. Thus they reset to the
powered up state.

13.3.45 ATODSR (0xE4) - A TO D status

This register shows which of the A TO D channels have been triggered and can have

their counters read to ascertain the analog value at the input to the channel. The

interrupt request status bits are generated from the stop flags logically ANDed with the

interrupt enables from the interrupt control register.

R[3:0] = interrupt request state for channels 4 to 1

S[3:0] = stop flag for channels 4 to 1

Write ignored

Read bit[7:4] 0: not requesting, 1: requesting

bit [3:0] 0: not stopped, 1: stopped

Reset set all zero (not requesting or stopped)

0347 1256

S F A C 4 3 2 1

0347 1256

R R R R S S S S

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-23

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.46 ATODCC (0xE8) - A to D convertor control

The lower 4 bits of this register directly reset each of the four counters, so that they

can be set back to zero before a new analog to digital conversion cycle takes place.

The counter will start counting as soon as the relevant clear bit is set back to zero. The

discharge transistor controls causes the channel comparator input to be pulled firmly

down to Vss, thus discharging an external capacitor and ensuring zero volts across

the capacitor until the discharge bit is programmed LOW again. With the system

connected as it is expected to be used, the external capacitor will begin charging as

soon as the discharge bit is reset, so it is expected that the discharge bit would be

reset at the same time as the counter clear bit for that channel is re-enabled.

D[3:0] = discharge transistor control for channels 4 to 1

C[3:0] = clear counter for channels 4 to 1

Write bit[7:4] 0: transistor off, 1: transistor on (discharge)

bit[3:0] 0: clear counter, 1: enable counter

Read return above values

Reset set all zero (clear counters and don't discharge)

13.3.47 ATODCNT1 (0xEC) - A to D counter 1

Write ignored

Read returns 16-bit counter value

13.3.48 ATODCNT2 (0xF0) - A to D counter 2

Write ignored

Read returns 16-bit counter value

13.3.49 ATODCNT3 (0xF4) - A to D counter 3

Write ignored

Read returns 16-bit counter value

13.3.50 ATODCNT4 (0xF8) - A to D counter 4

Write ignored

Read returns 16-bit counter value

0347 1256

C CC CD D D D

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-24

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.51 SDCURA (0x180) - Sound DMA Current A

The operation of the sound DMA channel is described in the Memory Subsystems

chapter. The sound current registers are programmed with a page address and the

offset within that page to describe the precise location of the first DMA fetch. The value

in the register is then increased by 16 following each DMA access.

P = page[16:0]

F = offset[11:0]

Write bits[31:29] unused

bits[28:12] page of next DMA fetch

bits[11:4] offset within page of next DMA fetch

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] current DMA fetch location

bits[3:0] always zero

13.3.52 SDENDA (0x184) - Sound DMA End A

This register should be programmed with the offset within the page of the final quad

word. Bit 30 should always be programmed to zero unless the channel is being

initialised for a single transfer in which case it must be programmed HIGH.

S = stop bit

L = last bit

E = end[11:0]

Write bit[31] stop bit, 0: don't stop after reaching End, 1: do stop

bit[30] last bit, 0: not last transfer, 1: last quad word transfer

bits[11:4] last DMA location within page selected

bits[3:0] ignored

Read bits[31:30,11:4] value written

bits[3:0] always zero

0 0 0 0

03411122831

X X X P P PP PP PP PP PP PP P P P F F F F F F F F

29

0 0 0 0

034111231 2930

S L X X E EE E E E E EXX X X X X X XX X XX X XX X

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-25

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.53 SDCURB (0x188) - Sound DMA Current B

The 'B' pair of registers for the sound DMA channel are used in exactly the same way

as the 'A' pair, to enable DMA to continue from the page addressed by one set of

registers while the other set are being reprogrammed.

P = page[16:0]

F = offset[11:0]

Write bits[31:29] unused

bits[28:12] page of next DMA fetch

bits[11:4] offset within page of next DMA fetch

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] current DMA fetch location

bits[3:0] always zero

13.3.54 SDENDB (0x18C) - Sound DMA End B

This register is used in the same way as the SDENDA register.

S = stop bit

L = last bit

E = end[11:0]

Write bit[31] stop bit, 0: don't stop after reaching end, 1: do stop

bit[30] last bit, 0: not last transfer, 1: last quad word transfer

bits[11:4] last DMA location within page selected

bits[3:0] ignored

Read bits[31:30,11:4] value written

bits[3:0] always zero

0 0 0 0

03411122831

X X X P P PP PP PP PP PP PP P P P F F F F F F F F

29

0 0 0 0

034111231 2930

S L X X E EE E E E E EXX X X X X X XX X XX X XX X

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-26

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.55 SDCR (0x190) - Sound DMA control

This register controls the sound DMA channel and its state machine. Only two bits can

be written to: bit 7 clears the state machine into a state where it has overrun and is

requesting an interrupt. Bit 6 enables the sound DMA channel.

C = clear

E = enable

Write bit[7] clear, 0: don't clear state machine, 1: clear state machine. Self
clearing.

bit[6] not used

bit[5] enable, 0: disabled, 1: enabled

bits[4:0] not used

Read bit[7] always reads zero

bit[6] always reads zero

bit[5] enable, 0: disabled, 1: enabled

bits[4:0] read as 10000 (binary), historically signifying a quad word
transfer

Reset enable set to zero

13.3.56 SDST (0x194) - Sound DMA status

The sound DMA status register shows the status of the state machine used to control

sound DMA accesses. It cannot be written to.

O = overrun

I = interrupt request

W = A or B buffer indication

Write ignored

Read bits[7:3] unused

bits[2:0] direct state machine state

Reset set to 110 (binary)

0347 1256

C 0 E 1 0 0 00

0347 1256

X X X X X O I W

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-27

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.57 CURSCUR (0x1C0) - Cursor DMA current

The cursor current register need not normally be written to as the value in the init

register is transferred into it during the FLYBACK period. It is then updated

automatically in quad word increments during DMA.

C = Current fetch location

Write bits[31:29] unused

bits[28:4] cursor current DMA fetch location

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] cursor current DMA fetch location

bits[3:0] always zero

13.3.58 CURSINIT (0x1C4) - Cursor DMA init

This register is written with the initial location of the cursor data buffer.

I = initial fetch location

Write bits[31:29] unused

bits[28:4] cursor initial DMA fetch location

bits[3:0] ignored

Read bit[31:29] undefined

bits[28:4] cursor initial DMA fetch location

bits[3:0] always zero

13.3.59 VIDCURB (0x1C8) - Duplex LCD video DMA current B

The 'B' video DMA address registers are for use with dual panel LCDs. The current

registers do not normally need to be programmed as the value in the relevant INIT

register is loaded into the current register during the FLYBACK period. This register

gives the current location of the DMA data for the lower panel.

0 0 0 0

0342831

X X X

29

C CC

0 0 0 0

0342831

X X X

29

I I

0 0 0 0

0342831

X X X

29

C CC

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-28

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

C = current fetch location B

Write bits[31:29] unused

bits[28:4] video current B DMA fetch location

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] video current B DMA fetch location

bits[3:0] always zero

13.3.60 VIDCURA (0x1D0) - Video DMA current A

C = current fetch location A

Write bits[31:29] unused

bits[28:4] video current A DMA fetch location

bits[3:0] ignored

Read bits[31:29] undefined

bits[28:4] video current A DMA fetch location

bits[3:0] always zero

13.3.61 VIDEND (0x1D4) - Video DMA End

The video END register should be loaded with the address of the final quad word of

the video frame buffer within memory

E = end location

Write bits[31:24] unused

bits[23:4] video end location

bits[3:0] ignored

Read bits[31:24] undefined

bits[23:4] video end location

bits[3:0] always zero

0 0 0 0

0342831

X X X

29

C CC

0 0 0 0

03431

E E E E E E E E E E E E E E E E E E E EEX X X X X X XX

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-29

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.62 VIDSTART (0x1D8) - Video DMA Start

The video start register should be loaded with the location of the first quad word at the

start of the video frame buffer. All the DMA control registers can only be loaded with

quad word aligned values.

S = start location

Write bits[31:29] unused

bits[28:4] video DMA start fetch location

bits[3:0] ignored

Read bit[31:29] undefined

bits[28:4] video DMA start fetch location

bits[3:0] always zero

13.3.63 VIDINITA (0x1DC) - Video DMA init A

For normal CRT displays and single panel LCD data only the 'A' registers are used.

The init register should be loaded with the address within the frame buffer of the first

quad word to be displayed in the first raster at the top of the screen. In the case of dual

panel displays, this register should be loaded with the address of the first quad word

in the frame buffer to be displayed at the top left of the upper panel. The last bit (30)

should only be set if the init A register has been programmed to the same value as the

VIDEND register. The use of an init register allows hardware scrolling to be

implemented by moving the position of the init register within the frame buffer.

I = initial fetch location A

Write bits[31,29] unused

bit[30] last bit, 0: not last fetch location, 1: last fetch location

bits[28:4] video initial A DMA fetch location

bits[3:0] ignored

Read bit[31] zero

bit[30] last bit, 0: not last fetch location, 1: last fetch location

bit[29] 'equal' - output of comparator

bits[28:4] video initial A DMA fetch location

bits[3:0] always zero

0 0 0 0

0342831

X X X

29

S S

0 0 0 0

0342831

X E

29

I IL

30

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-30

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.64 VIDCR (0x1E0) - Video DMA control

This register gives overall control for video DMA. Bit 7 selects between dual and single

panel modes for LCD driving, and bit 5 enables video DMA. Note that for driving

normal CRT displays, bit 7 should be set to zero.

D = dual panel mode

E = enable video/cursor DMA

Write bit[7] 0: normal, 1: dual panel mode

bit[6] ignored

bit[5] 0: disable, 1: enable DMA

bits[4:0] ignored

Read bits[7,5] return above values

bit[6] always read back one, DRAM mode

bits[4:0] read as 10000 (binary), historically meaning quad word
transfer

Reset set to zero (disabled, normal mode)

13.3.65 VIDINITB (0x1E8) - Duplex LCD Video DMA init B

For normal CRT displays and single panel LCD data only the 'A' registers are used,

and this register should be programmed with all zeros. In the case of dual panel

displays, this register should be loaded with the address of the first quad word in the

frame buffer to be displayed at the top left of the lower panel. The last bit (30) should

only be set if the init B register has been programmed to the same value as the

VIDEND register.

I = initial fetch location B

Write bits[31,29] unused

bit[30] last bit, 0: not last fetch location, 1: last fetch location

bits[28:4] video initial B DMA fetch location

bits[3:0] ignored

Read bit[31] zero

bit[30] last bit, 0: not last fetch location, 1: last fetch location

bit[29] 'equal' - output of comparator

bits[28:4] video initial B DMA fetch location

bits[3:0] always zero

0347 1256

E 1 0 0 001D

0 0 0 0

0342831

X E

29

I IL

30

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-31

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

13.3.66 DMAST/DMARQ/DMAMSK (0x1F0,0x1F4,0x1F8) - DMA interrupt control

These three registers each contain only one bit relating to the status of the interrupt

generated from the sound DMA state machine.

DMAST (0x1F0) - Sound DMA interrupt status.

S = sound interrupt status

Write ignored

Read status

bits[7:5,3:0] unused

bit[4] 0: inactive, 1: active

 DMARQ (0x1F4) - Sound interrupt request.

S = sound interrupt request

Write ignored

Read request, status ANDed with mask

bits[7:5,3:0] unused

bit[4] 0: inactive, 1: active

 DMAMSK (0x1F8) - Sound interrupt mask.

S = sound interrupt mask

Write bits[7:5,3:0] unused

bit[4] 0: don't affect nIRQ, 1: affect nIRQ

Read mask

bits[7:5,3:0] unused

bit[4] read value written above

0347 1256

X X X XS X X X

0347 1256

X X X XS X X X

0347 1256

X X X XS X X X

Memory and I/O Programmer’s Model

ARM7500 Data Sheet
ARM DDI 0050C

13-32

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

14-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Memory Subsystems

This chapter describes the ROM and DRAM interfaces, and the DMA channels.

14.1 ROM interface 14-2

14.2 DRAM interface 14-7

14.3 DMA channels 14-16

14

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

14.1 ROM interface

The ARM7500 ROM interface supports both non sequential and burst mode read

cycles, with a range of programmable timings for each type. A single chip select signal

nROMCS is generated for addresses between 0x00000000 and 0x01FFFFFF, which

can be externally split to give separate chip selects for two 16MB banks of ROM. Each

bank of ROM can be 16 or 32-bits wide. The ROM access time depends on the

MEMCLK frequency, and to enable slow ROMs to be used with a high frequency

MEMCLK, there is a half speed bit available which causes all ROM timings to take

twice as many MEMCLK cycles, when the bit is set to zero. The ROM interface is read

only - ARM7500 will not generate a chip select if a write is attempted to a ROM

address.

Assuming a MEMCLK frequency of 32MHz, the access time for a non-sequential cycle

can be varied from 220ns to 62.5ns in steps of 31.25ns. For burst mode cycles, the

two LSBs of the latched address from ARM7500 are incremented to allow up to four

sequential reads. The access time for burst mode cycles can be programmed from

125ns down to 62.5ns, again in steps of 31.25ns. If a frequency other than 32MHz is

used for MEMCLK, these timings will scale accordingly.

Support for 16-bit wide ROMs is provided via a programmable bit in each of the ROM

control registers. If a 16-bit wide device is selected, then two memory system cycles

will be required to fetch the full 32-bit word required by the ARM. If burst mode is

disabled for that bank, then ARM7500 will perform two non-sequential fetches using

the programmed non-sequential timing, latch the intermediate 16-bit value, and

present the full 32-bit word to the ARM processor macrocell.

If the burst mode timing bits are programmed into an enabled state, then the first 16-

bit read will be a standard non-sequential cycle, but the second will be a burst mode

cycle to minimise the total access time.

When a 16 bit wide ROM bank is being addressed, the ROM address is shifted up by

one bit such that the LSB appears on LA[2], thus allowing the same PCB layout to be

used for 16 bit or 32 bit ROM banks.

When using a 16-bit wide ROM device, data must be stored such that the least

significant bytes of a 32-bit word are stored at the lower memory address:

0 0 0

03478111215 12569101314

0 0 0 0 00 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Contents Address

0 0x00000000

0x00000001

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

When this is read, the ARM will see:

There are two identical registers which control the configuration and timing of the two

ROM banks. Both registers default to 16-bit mode and the slowest possible non-

sequential timings on reset, which means that one of the first actions when using 32-

bit wide ROM must be to reprogram these registers for 32-bit wide operation. A

detailed description of how to boot up an ARM7500 system using 32-bit wide ROM is

contained in ➲ Appendix A: Initialisation and Boot Sequence.

To program these registers, write a byte to 0x03200080 for the ROMCR0 register

(address range 0x00000000 to 0x00FFFFFF) or to 0x03200084 for the ROMCR1

register (address range 0x01000000 to 0x0FFFFFFF). The details of these registers

are shown below.

N = non-sequential access time (H = 1):

000 = 7 MEMCLK cycles

001 = 6 MEMCLK cycles

010 = 5 MEMCLK cycles

011 = 4 MEMCLK cycles

100 = 3 MEMCLK cycles

101 = 2 MEMCLK cycles

B = burst mode access time (H = 1):

00 = Burst Off

01 = 4 MEMCLK cycles

10 = 3 MEMCLK cycles

11 = 2 MEMCLK cycles

H = half speed select, i.e. double above cycle time when H=0

S = 16/32-bit mode

 Write bit[6] 0: 32-bit, 1: 16-bit

bit[5] 0: half speed mode, 1: normal speed

Read return above values

Reset set to 0x40, ie 16-bit, slowest access time

0 0 0

034781112151619202122272831 125691013141718232425262930

0 0 0 01 0 00 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MSB LSB

0347 1256

X S H B B N N N

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

➲ Figure 14-1: ROM access timing without burst mode (32-bit mode) on page 14-4

shows the timing of non-sequential and sequential 32-bit ROM accesses without burst

mode. ➲ Figure 14-2: ROM access timing—burst mode (32-bit) on page 14-5 shows

the timing of non-sequential and sequential 32-bit ROM accesses with burst mode.

➲ Figure 14-3: ROM access timing with burst mode—16-bit mode on page 14-5 shows

the timing of non-sequential and sequential 16-bit ROM accesses with burst mode.

Note that all diagrams assume divide by 1 mode for MEMCLK.

 Figure 14-1: ROM access timing without burst mode (32-bit mode)

LA[28:0]

MEMCLK

D[31:0]

nROMCS

TlaTla

Tds Tdh

Trcsl
Trcsh

Address Address + 4

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 14-2: ROM access timing—burst mode (32-bit)

 Figure 14-3: ROM access timing with burst mode—16-bit mode

LA[28:0]

MEMCLK

D[31:0]

nROMCS

Cycle type

Tla Tla

Tds
Tdh

Trcsl
Trcsh

Address Address + 4 Address + 8

Non sequential Burst Burst

LA[28:0]

MEMCLK

D[15:0]

nROMCS

Cycle type

Tla Tla

Tds1
Tdh1

Tds
Tdh
Tds1

Tdh1
Tds

Tdh

Trcsl
Trcsh

Address Address + 2 Address + 4 Address + 6

Non sequential Burst Burst Burst

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Symbol Parameters Min Max Units Notes

Tla MEMCLK rising to LA[28:0] changing 24 ns

Tds DATA setup to MEMCLK rising edge 0 ns

Tds1 Half word DATA setup to MEMCLK rising

edge

0 ns

Trcsl MEMCLK rising to nROMCS falling 14 ns

Trcsh MEMCLK rising to nROMCS rising 14 ns

Tdh DATA hold from MEMCLK rising edge 15 ns

Tdh1 Half word DATA hold from MEMCLK rising

edge

26 ns

 Table 14-1: ARM7500 ROM timing

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

14.2 DRAM interface

The DRAM interface can directly drive four banks of DRAM, using four nRAS strobes

to select the bank, four nCAS strobes to select the byte within the word, and twelve

multiplexed row/column address lines RA[11:0], giving a maximum of 64MB in each

DRAM bank. The nRAS strobes are decoded directly from bits 27 and 26 of the

address, which means that the DRAM address space will be non-contiguous if the full

64MB is not used for each bank.

The DRAM controller supports page mode burst cycles with up to 255 sequential

accesses in a burst. Each of the four banks can be a 16 or 32-bit wide device. Support

is provided for CAS before RAS refresh, and direct programmability of the nRAS and

nCAS outputs via a special register allows software to directly control self refresh

DRAM.

DRAM cycle speed is controlled by the frequency of MEMCLK. Non-sequential DRAM

cycles require five MEMCLK cycles, and page mode sequential ones require two.

14.2.1 DRAM control registers

There are three registers associated with DRAM control. The DRAMWID register has

four bits, one for each bank, and allows selection between 16 and 32-bit modes of

operation for each bank. The SELFREF register allows direct forcing of the nRAS and

nCAS outputs. The default state of each of these bits is zero, which allows normal

operation of the nRAS and nCAS outputs. When a bit is set HIGH, however, the

relevant nCAS or nRAS output is immediately forced active (LOW). The REFCR

register controls the refresh rate for CAS before RAS refresh. There are four possible

refresh periods from 128µs to 16µs.

14.2.2 DRAM address multiplexing

The multiplexing of the DRAM address onto the RA[11:0] outputs is slightly different

for 32 and 16-bit modes. The DRAM address requested by the ARM or DMA controller

must be shifted up by one bit in 16-bit mode, to enable two locations to be accessed

to read or write one 32-bit word. The row/column address multiplexing arrangements

are shown below, where the numbers in the table refer to the address bits provided by

the ARM or DMA controller:

For a 32-bit wide DRAM bank:

01234567891011

101112131415161718192224

2345678920212325

RA[11:0]

Row address

Column address

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

For a 16-bit wide DRAM bank:

* This bit generated separately by DRAM controller to access each 16-bit half word in

turn.

14.2.3 Selection between 16 and 32-bit DRAM

The DRAMWID register at address 0x032000D0 allows the width of each of the four

DRAM banks to be defined for ARM7500. On reset, all banks are defined as 32 bits

wide, so if a 16-bit system is being used it is necessary to program this register before

any writes to DRAM occur. It is not possible to write to DRAM in 16-bit mode and read

back from the same bank in 32-bit mode, or vice versa.

S = 16/32-bit mode select, one for each bank

Write bit[3] bank 3 DRAM width, 0: 32-bit, 1: 16-bit

bit[2] bank 2 DRAM width, 0: 32-bit, 1: 16-bit

bit[1] bank 1 DRAM width, 0: 32-bit, 1: 16-bit

bit[0] bank 0 DRAM width, 0: 32-bit, 1: 16-bit

Read reads above values

Reset set bits to zero (32-bit)

01234567891011

101112131415161718

2224 234567820

RA[11:0]

Row address

Column address

92123

19 *

0347 1256

X X X X S S S S

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-9

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

14.2.4 DRAM interface timing specification

32-bit mode

➲ Figure 14-4: DRAM read timing (32-bit mode) , below, shows the timing of non

sequential and sequential 32-bit DRAM read cycles. ➲ Figure 14-5: DRAM write timing
(32-bit mode) on page 14-10 shows the timing of both types of 32-bit DRAM write

cycles. Note that all timing diagrams assume divide by 1 is selected for MEMCLK.

In 32-bit mode, byte reads and writes have the same timing as word accesses, but only

one nCAS output is selected according to the decode of bits 1 and 0 of the address.

 Figure 14-4: DRAM read timing (32-bit mode)

LA[28:0]

MEMCLK

D[31:0]

nRAS[x]

nCAS[3:0]

RA[11:0]

Tla Tla

Tds
Tdh

Trasl Trash

Tcash Tcasl

Tra Tca1 Tcah

Tcac

DRAM Address Address + 4 Address + 8

Row address Column address Column address+1 Column address+2

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-10

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 14-5: DRAM write timing (32-bit mode)

16-bit mode

In 16-bit mode ARM7500 must perform two reads or writes for each 32-bit word DRAM

access requested by the ARM processor or the DMA controller. Only nCAS[1] and

nCAS[0] are used, to access the two bytes of each word. nCAS[3:2] are held at logic

ONE. In 16-bit mode, the same number of physical addresses are available as for 32-

bit mode, which means that only 32MB of DRAM is supported per bank. Words are

stored in DRAM with the upper half-word at the lower address

LA[28:0]

MEMCLK

D[31:0]

nRAS[x]

nCAS[3:0]

RA[11:0]

nWE

Tda1 Tda2 Tda2 Twdh

Trasl Trash

Tcasl Tcash
Tcas2l

Tcas2h

Tra Tca1 Tcah

Tnwel Tnweh

DRAM Address Address + 4 Address + 8

Row address Column address Column address+1 Column address+2

0 0 0

03478111215 12569101314

0 0 0 0 00 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Contents Address

0 0x10000000

0x10000001

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-11

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

When this is read, the ARM will see:

In 16-bit mode, byte reads and writes only require a single DRAM access, and the LSB

of the column address is decoded in conjunction with the nCAS[1:0] outputs to select

a single byte from four. Byte reads and writes for 16-bit wide DRAM thus have the

same timing as for the non-sequential 32-bit case as shown in Figures 14-4 and 14-5.

16-bit mode word accesses involve a non-sequential access for the upper half word,

followed by a sequential access for the lower half word at the next memory location.

A non sequential 16-bit mode word access thus requires 7 MEMCLK cycles, after

which sequential accesses can continue until a page boundary is reached, taking 2

cycles for each half word.

The timing diagram (➲ Figure 14-6: DRAM read timing (16-bit mode)) below shows a

16-bit mode read cycle, and ➲ Figure 14-7: DRAM write timing (16-bit mode) on page

14-12 shows a 16-bit mode write cycle.

 Figure 14-6: DRAM read timing (16-bit mode)

0 0 0

034781112151619202122272831 125691013141718232425262930

0 0 0 0 10 00 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MSB LSB

LA[28:0]

MEMCLK

Data bus contents

D[15:0]

nRAS[x]

nCAS[1:0]

RA[11:0]

Tds2
Tdh2

Tds
Tdh

Trasl Trash

Tcasl
Tcash

Tra Tca1 Tcah

Tcac

DRAM Address Address + 4

Word 1 upper h/w Word 1 lower h/w Word 2 upper h/w Word 2 lower h/w

Row address Column address Column address+1 Column address+2 Column address+3

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-12

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 14-7: DRAM write timing (16-bit mode)

Symbol Parameters Min Max Units Notes

Tcasl MEMCLK rising to Ncas[] falling 12 ns

Tcash MEMCLK rising to Ncas[] rising 12 ns

Tds DATA setup to MEMCLK rising -3 ns 1

Tdh DATA hold from MEMCLK rising 15 ns 1

Tcac nCAS falling to data latched 26 ns 2

Tda1 MEMCLK rising to write DATA

valid

19 ns

Tda2 MEMCLK rising to write DATA

valid

29 ns

 Table 14-2: ARM7500 DRAM timing

LA[28:0]

MEMCLK

Data bus contents

D[15:0]

nRAS[x]

nCAS[1:0]

RA[11:0]

nWE

Twdh
Tda3

Tda2

Trasl Trash

Tcas2l Tcas2h

Tra Tca Tca2

Tnwel Tnweh

DRAM Address Address + 4Address + 4

Word 1 upper h/w Word 1 lower h/w Word 2 upper h/wWord 2 lower h/w

Row address Column address Column address+1Column address+2 Column address+3

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-13

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Note 1: Applies only to CPU reads.

Note 2: Minimum nCAS access time across all conditions with nCAS loading of 100pF

or less.

Note 3: nWE rising will not change while external nCAS signals are still LOW

14.2.5 DRAM refresh

DRAM refresh is controlled by a small state machine and counter within ARM7500.

The refresh interval timer is clocked by a clock derived from the fixed frequency

I_OCLK, and thus the refresh intervals will remain the same even if the frequency of

MEMCLK is increased for use with faster DRAM. There are four timings available for

refresh, controlled by the REFCR refresh control register at address 0x0320008C.

During reset, the refresh timer is reset to the fastest value (16µs), and the counter and

state machine are clocked such that refresh continues even during reset.

Tda3 MEMCLK falling to DATA valid 11 ns

Tds2 DATA setup to MEMCLK rising -6 ns

Tdh2 DATA hold from MEMCLK rising 20 ns

Twdh DATA hold from MEMCLK rising 22 ns

Trash MEMCLK rising to NRAS[] ris-

ing

16 ns

Trasl MEMCLK rising to NRAS[] fall-

ing

16 ns

Tra MEMCLK rising to RA[] valid

(row address)

42 ns

Tca1 MEMCLK rising to RA[] valid

(column address)

21 ns

Tca2 as Tca1 but MEMCLK falling 17 ns

Tcah column address, RA[], hold from

MEMCLK rising

9 ns

Tnwel MEMCLK rising to NWE falling 15 ns

Tnweh MEMCLK rising to NWE rising 8 ns 3

Tcas2l as Tcasl but MEMCLK falling 11 ns

Tcas2h as Tcash but MEMCLK falling 11 ns

Symbol Parameters Min Max Units Notes

 Table 14-2: ARM7500 DRAM timing (Continued)

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-14

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

R = refresh period

Write bit[3:0]

0000: refresh off

0001: 16µs

0010: 32µs

0100: 64µs

1000: 128µs

all

others undefined

Read return above values

Reset set to 0001 (fastest available refresh rate)

The output states for DRAM refresh cycles are shown in ➲ Figure 14-8: Refresh cycle
timing on page 14-14. Note that this assumes divide by 1 mode for MEMCLK.

 Figure 14-8: Refresh cycle timing

0347 1256

X X X RX RRR

LA[28:0]

MEMCLK

nRAS[3:0]

nCAS[3:0]

RA[11:0]

Trasr1
Trasf1

Trasf2
Trasr2

Tcref1 Tcref2

Trarf Trarf Trarf

Address for next instruction

0xE 0xC 0x8 0x0 0x1 0x3 0x7 0xF

0xF 0x0 0xF

XXX XXX XXX

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-15

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Symbol Parameters Min Max Units Notes

Trasr1 MEMCLK rising to nRAS falling 15 ns

Trasf1 MEMCLK falling to nRAS falling 11 ns

Trasr2 MEMCLK rising to nRAS rising 15 ns

Trasf2 MEMCLK falling to nRAS rising 12 ns

Tcref1 MEMCLK rising to nCAS[3:0]

falling

17 ns

Tcref2 MEMCLK rising to nCAS[3:0]

rising

18 ns

Trarf MEMCLK rising to RA[11:0]

changing

21 ns

 Table 14-3: ARM7500 refresh cycle timing

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-16

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

14.2.6 DRAM self-refresh

The nCAS and nRAS lines can be forced active by programming bits in the SELFREF

register at address 0x032000D4. This is intended for use with self refresh DRAM, and

particularly in conjunction with STOP mode so that DRAM can retain state when all the

ARM7500 clocks have been stopped. All DMA must be stopped and the code which

writes to this register must be executing from ROM.

C = force nCAS’s LOW

R = force nRAS’s LOW

Write bits[7:4] 0: normal, 1: force to zero

bits[3:0] 0: normal, 1: force to zero

Read reads above values

Reset set bits to zero (normal)

14.3 DMA channels

The ARM7500 supports video, cursor and sound DMA to enable direct transfer of

quad words of data from DRAM to the video and sound processing interfaces. All DMA

is in units of four words (quad words) and data can be read from any of the four banks

of DRAM in either 16 or 32-bit mode. ARM7500 contains a DMA Address Generator,

which has a number of programmable control registers associated with each channel.

Most of these registers contain 28-bit physical addresses. The DMA controller also

includes support for DMA to dual panel LCD screens.

All three of the DMA channels have at least one CURRENT register which contains

the address in memory of the next data to be fetched from DRAM on that channel.

Each channel uses START, INIT and END registers to define the size and location of

the buffer in memory from which the DMA will take place. However, all three channels

have slightly different methods of using these registers. Exact details of the contents

of all these registers can be found in the programmer’s model section of the datasheet.

14.3.1 Video DMA

The video DMA channel can be used in two modes. Duplex mode is used for fetching

DMA data for use with a dual panel LCD display, and involves fetching a quad word of

data for the top half of the display, followed by a quad word of data for the bottom half

of the display, then the next quad word for the top half and so on. This is implemented

using two parallel sets of registers which must be programmed accordingly. A

description of how to use the ARM7500 with a dual panel LCD display can be found

in ➲ Appendix B: Dual Panel Liquid Crystal Displays.

0347 1256

R RC C R RC C

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-17

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Normal mode is used for standard CRT and LCD displays and data is fetched

sequentially from the frame buffer. Selection between normal and duplex mode of

operation is achieved via bit 7 of the VIDCR register at location 0x032001E0. Bit 5 of

the same register enables the video DMA channel. It should not be enabled until the

other address registers have been programmed to sensible values.

The registers associated with video DMA should only be programmed during the

FLYBACK period, to avoid corrupting data while DMA is in progress or while the

display is half way through a raster. The state of the internal FLYBACK signal is

available for polling in the IOCR register, and can create an interrupt by programming

the IRQA mask register appropriately.

There is a single VIDSTART register, which should be programmed with the location

in memory of the first quad word of video data at the start of the frame buffer. The

VIDEND register is programmed with the location in memory of the start of the last

quad word in the frame buffer image.

For normal mode operation, the VIDINITA register should be programmed with the

address in memory of the data which will be used to create the pixels at the top left

corner of the display. This need not necessarily be at the same address as that

programmed into the VIDSTART register, thus allowing hardware scrolling by moving

the address in the VIDINITA register through the frame buffer. The value in the

VIDINITA register is automatically transferred into the VIDCURA register during the

FLYBACK period, so there is no need to program the current register separately. For

normal operation, the VIDINITB register should be programmed to 0x00000000, so

that the value in the VIDCURB register is defined. All video channel registers should

be programmed with addresses which are quad word aligned (ie bits 0 to 3 are zero).

There is an extra bit (30) in the VIDINITA register, which must be programmed HIGH

if the address in the VIDINITA register is the same as the address in the VIDEND

register. At all other times it should be programmed LOW.

Once all bits have been programmed, the enable bit in the VIDCR register can be

written to, and the video DMA channel will become operational. The channel is then

controlled by a video request signal from the video controller part of ARM7500. When

a request for more video data arrives and the current bus cycle finishes, the bus

controller will arbitrate in favour of the DMA (which has the highest priority on the bus)

to fetch a quad word of data for the video sub system. Immediately after each DMA

access, the address in the current register is incremented by 16 (one quad word) and

the address is compared with the address in the VIDEND register. If they are the same,

the DMA controller knows that the next DMA will be the last one in the buffer, and after

the next DMA, the current register will be reloaded from the VIDSTART register. During

the FLYBACK period, the current register will be automatically reloaded with the value

in the VIDINITA register.

Programming of the DMA and video subsystem for use with dual panel LCDs is

described in full in ➲ Appendix B: Dual Panel Liquid Crystal Displays, and uses

identical principles, except there are two current registers and two init registers, one

for each panel. On each successive DMA access, the ARM7500 will toggle between

the two sets of registers providing data first for the upper panel and then from the lower

panel. This means that the two init registers should always be programmed with

addresses with are equidistantly spaced through the wrapped-around frame buffer.

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-18

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

14.3.2 Cursor DMA

There are only two registers associated with the cursor channel, the CURSCUR

current register and the CURSINIT register. The channel is enabled under the control

of the video enable bit in the VIDCR video DMA control register. The operation of the

channel is the same for normal or duplex modes, but it is necessary to program the

cursor differently depending on which mode is being used. Details of the programming

required can be found in ➲ Appendix B: Dual Panel Liquid Crystal Displays.

The CURSINIT register should be programmed with the address of the first word of

cursor data in memory. There is no END register as the width of the cursor is

predetermined (32 pixels) and the height of the cursor is defined by programming the

VCSR and VCER registers in the video sub system. Each quad word fetch will result

in two rasters’ worth of cursor data being transferred, except in Hi-Res Mode (see

➲ 11.4 Hi-Res support on page 11-6). At the end of each fetch, the value in the

CURSCUR register is increased by 16, to address the start of the next quad word. The

value programmed into the CURSINIT register must be quad word aligned.

14.3.3 Sound DMA

The Sound DMA channel provides data for the ARM7500 sound interface. There are

two sets of pointer registers so that data transfers can be double buffered to ensure

that DMA data is always available even when the data in one buffer is exhausted. One

set of registers can be reprogrammed while the others are being used.

Sound DMA transfers are constrained to a single 4KByte page, as only the lowest 12

bits of the DMA address are incremented and compared to check for the end of the

buffer. All sound DMA is quad word and must be from quad word aligned addresses,

so the lowest four bits of the registers are not used and should be programmed to zero.

Bit 30 of each of the END registers is the “last” bit, which must be programmed HIGH

if the initial value in the current register is the same as the end register for that buffer,

ie for a single transfer.

There is also an interrupt mask and status bit for the sound channel which allows the

status of the sound DMA state machine to be monitored. The state machine will

generate an interrupt when the end of the current buffer is reached, and it is up to the

system software to take appropriate action to reprogram that channel as required

while DMA continues from the location pointed to by the other set of buffers.

Sound data is requested by the ARM7500 sound subsystem which asserts a request

signal, and the bus controller will arbitrate in favour of the sound DMA when the current

bus cycle has completed as long as there is not an outstanding video or cursor DMA

request.

14.3.4 The Sound DMA state machine

The sound DMA channel is controlled by a simple state machine. The state machine

remains in an idle state when the enable bit in the sound DMA control register has not

been set. The state bits of the state machine are directly mapped to the Sound DMA

status register, where they are named Overrun, Int and A/B. On reset, the state

machine is set to state 110, such that the Overrun and Int bits are set. The Overrun bit

indicates when a channel has stopped because it has finished a transfer and the other

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-19

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

pointer pair has not been programmed. The Int bit indicates when the channel is

requesting an interrupt. The A/B bit indicates which pair of current/end pointers is in

use.

The state machine diagram in the figure below shows how the state machine transfers

between buffers A and B to allow DMA to continue uninterrupted when both sets of

DMA address registers have been programmed. The transitions between states occur

either when the ARM processor programs an pointer register pair, or when a buffer is

completed. To ensure correct operation, the current pointer must be programmed

before the end pointer as it is the action of programming the end pointer which causes

the state transition. The “stop” bit in the end register is used to terminate a sequence

of DMA, by forcing the state machine back into one of the idle states at the end of the

last buffer.

During operation of the state machine, when the end of one buffer is reached, an

interrupt will be generated which can be used to signal to the ARM processor that it is

time to reprogram that pair of pointers. If one buffer’s address pointers have not been

reprogrammed before the other buffer is exhausted, then both the Int and Overrun bits

will be set, and DMA cannot continue until the pointers are reprogrammed.

 Figure 14-9: Hardware DMA state machine diagram

Idle or Write Buff B Busy (Buff A active) Busy (Buff A active)

OR

Int

Buff A

Int
Buff A Buff A

Write Buff A

Finished

Write Buff B

(110) (010) (000)

(001) (011) (111)

Finished

(StopB)

Finished

(not StopB)

Finished

(not StopA)

Finished

(StopA)

Write Buff A

Finished

Write Buff B

Busy (Buff B active) Busy (Buff B active) Idle or Write Buff A

Buff B
Int

Buff B

OR

Int

Buff B

Memory Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

14-20

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

15-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

I/O Subsystems

This chapter describes the ARM7500 I/O subsystems.

15.1 Introduction 15-2

15.2 I/O address space usage 15-2

15.3 Additional I/O chip select decode logic 15-3

15.4 Simple 8MHz I/O 15-4

15.5 Module I/O 15-14

15.6 PC bus style I/O 15-17

15.7 DMA during I/O cycles 15-31

15.8 Clock synchronisation conditions 15-31

15.9 Keyboard/mouse interface 15-32

15.10 Analog to digital converter interface 15-35

15.11 Timers 15-38

15.12 General purpose, 8-bit wide, I/O port 15-40

15.13 ID and OD open drain I/O pins 15-40

15.14 Version and ID registers 15-40

15.15 Interrupt control 15-40

15

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

15.1 Introduction

ARM7500 has a 16-bit wide general I/O port, BD[15:0]. This allows slow I/O access to

continue independently of DMA activity on the ARM7500 data bus. There are three

types of I/O access supported over the I/O bus, which are 16MHz PC style I/O, 8MHz

request/grant based I/O and simple 8MHz based fixed timing I/O. ARM7500 also has

a separate 8-bit wide general purpose open drain I/O port, each bit of which can be

configured as an interrupt source. There are four analog comparators, each with a 16

bit 2MHz timer which can be used as a four channel analog joystick interface. Two

identical PS/2 serial mouse/keyboard ports are included. There are two general

purpose 2MHz 16-bit counter timers, which can be programmed to produce interrupts

at timed intervals. ARM7500 includes an interrupt handler, with enable and mask bits

for each interrupt source, which can process potential interrupts from a number of

internal and external sources.

The 16MHz PC style I/O provides all the signals required to interface with a standard

PC Combo chip, enabling an industry standard part to be used to complete the I/O

interfaces to devices such as a floppy disc.

The facility is available to expand the width of the I/O bus externally by adding latches

and buffers to the upper 16 bits of the main external data bus and control signals for

these devices are provided from ARM7500. Support is provided for Execute-in-place

(XIP) from a 16-bit wide PCMCIA card attached to the I/O bus, using an external

PCMCIA controller.

Because the I/O clocks can be completely asynchronous to the memory system clock

(which is controlling the main bus arbitration state machine), there will be additional

synchronisation penalties at the start and end of the I/O cycle. Clearly the exact

additional delay will depend on the actual phase of the clocks at the point in question,

and the timing diagrams do not attempt to show this in detail. However the worst case

synchronisation delays are indicated.

15.2 I/O address space usage

The main I/O address space is defined as being from address 0x03000000 to

0x03FFFFFF:

I/O address Contents

0x03000000 Module space - asserts nMSCS

0x03010000 16MHz I/O - asserts nCCS (Combo chip select)

0x03012000 16MHz I/O - asserts nCDACK (Combo DACK)

0x0302A000 16MHz I/O - asserts nCDACK and TC (Combo DACK

and TC)

0x0302B000 16MHz I/O - asserts nPCCS2

0x0302B800 16MHz I/O - asserts nPCCS1

 Table 15-1: I/O address space usage

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

In addition, there is an extended I/O address space for 16MHz PC style I/O from

address 0x08000000 up to 0x0FFFFFFF, divided into eight 16MB areas. The chip

select generated throughout this area is nEASCS.

15.3 Additional I/O chip select decode logic

The SETCS input is used to select additional decode logic for some of the chip select

outputs.

When SETCS is LOW:

nMSCS is asserted over the whole of Module space

nEASCS is asserted over the whole of Extended I/O address space

nSIOCS2 is asserted only in the following ranges of simple I/O space:

0x03240000 -> 0x0324FFFF

0x032C0000 -> 0x032CFFFF

0x03340000 -> 0x0334FFFF

0x033C0000 -> 0x033CFFFF

When SETCS is HIGH:

nMSCS is asserted only in the following ranges of Module I/O space:

0x03000000 -> 0x03003FFF

0x03030000 -> 0x03033FFF

nEASCS is asserted only in the following range of Extended I/O space:

0x08000000 -> 0x08FFFFFF

nSIOCS2 is asserted only in the following ranges of Simple I/O space:

0x03240000 -> 0x03243FFF

0x032C0000 -> 0x032C3FFF

0x03340000 -> 0x03343FFF

0x033C0000 -> 0x033C3FFF

0x0302C000 Reserved

0x03030000 Module space - asserts nMSCS

0x03040000 Reserved

0x03200000 ARM7500 internal I/O and memory control registers

0x03210000 Simple I/O space - asserts nSIOCS1/2

0x03400000 ARM7500 internal video and sound control registers

0x03500000 Reserved

I/O address Contents

 Table 15-1: I/O address space usage (Continued)

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

15.4 Simple 8MHz I/O

The Simple I/O type of access is 16-bit only and has a selection of 4 different cycle

speeds selectable by bits 20 and 19 of the address. This type of I/O will be selected

for addresses in the range 0x3210000 to 0x32FFFFFF. When writing, the upper half-

word of the ARM7500 data bus is written out on the I/O bus. When reading, the I/O

bus data is read back onto the lower half-word of the ARM7500 data bus. This type of

I/O cycle is not affected by the READY signal.

During these accesses, the signal nSIOCS1 is always asserted with a read or write

strobe as appropriate based on the CLK8 8MHz clock. nSIOCS2 is asserted according

to the decoding in the section above. The read and write strobes are the nIOR and

nIOW output pins respectively. The four timings of the Simple 8MHz I/O accesses are

shown below:

The “sync” timing is referenced to the 2MHz CLK2 output, and there will thus be an

additional possible synchronisation penalty of up to 3 CLK8 cycles depending on the

phase of CLK2 and CLK8 at the commencement of the I/O cycle. This is in addition to

synchronisation between the I/O and memory subsystem signals.

The diagrams below show the timing of the four different types of simple I/O cycles.

Note that all diagrams assume I_OCLK is running at 32MHz using divide by 1 mode.

Address [20:19] Name Minimum CLK8 cycles

0 0 slow 7

0 1 medium 6

1 0 fast 5

1 1 sync 5

 Table 15-2: Timings of the Simple 8MHz I/O accesses

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

.

 Figure 15-1: ‘Fast’ 8MHz Simple I/O read cycle timing

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOR

Tadd1
Tadd2

Tclk8l Tclk8h

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl Tcsh

Tniorl
Tniorh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-2: ‘Medium’ 8MHz Simple I/O read cycle timing

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOR

Tadd1

Tadd2

Tbds
Tbdh

Tiornwh
Tiornwl

Tcsl
Tcsh

Tniorl
Tniorh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-3: ‘Slow’ 8MHz Simple I/O read cycle timing

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOR

Tadd1
Tadd2

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl Tcsh

Tniorl Tniorh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-4: ‘Sync’ 8MHz I/O read cycle timing

LA[28:0]

I_OCLK

CLK8

CLK2

BD[15:0]

IORNW

nSIOCS1

nIOR

Tadd1s
Tadd2

Tclk2l Tclk2h

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl Tcsh

Tniorl Tniorh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-9

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-5: ‘Fast’ 8MHz Simple I/O write cycle timing

LA[28:0]

I_OCLK

CLK8

CLK2

BD[15:0]

IORNW

nSIOCS1

nIOW

Tadd1s Tadd2

Tclk8l

Tclk2h

Tclk8h

Tclk2l

Tbd1s Tbd2

Tcsl Tcsh

Tniowl Tniowh

Write data

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-10

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-6: ‘Medium’ 8MHz Simple I/O write cycle timing

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOW

Tadd1 Tadd2

Tbd1 Tbd2

Tcsl Tcsh

Tniowl Tniowh

Write data

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-11

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-7: ‘Slow’ 8MHz Simple I/O write cycle timing

LA[28:0]

I_OCLK

CLK8

BD[15:0]

IORNW

nSIOCS1

nIOW

Tadd1 Tadd2

Tbd1 Tbd2

Tcsl Tcsh

Tniowl Tniowh

Write data

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-12

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-8: ‘Sync’ 8MHz Simple I/O write cycle timing

LA[28:0]

I_OCLK

CLK8

CLK2

BD[15:0]

IORNW

nSIOCS1

nIOW

Tadd1s Tadd2

Tclk8l

Tclk2h

Tclk8h

Tclk2l

Tbd1s Tbd2

Tcsl Tcsh

Tniowl Tniowh

Write data

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-13

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d
Note 1: Synchronisation penalty is between 0 and 3 I_OCLK cycles

Note 2: Synchronisation penalty is between 0 and 15 I_OCLK cycles

Note 3: Delay includes 4 MEMCLK cycles

Note 4: Synchronisation penalty is between 1 and 4 I_OCLK cycles

Note 5:Synchronisation penalty is between 1 and 16 I_OCLK cycles

Note 6: Delay includes 2 MEMCLK cycles

Note 7: Timings refer to case where ASTCR bit=0. See ➲ Appendix C: Using the
ASTCR register at High MEMCLK Frequencies

Symbol Parameters Min Max Units Notes

Tclk8l I_OCLK rising to CLK8 falling 13 ns

Tclk8h I_OCLK rising to CLK8 rising 14 ns

Tclk2l I_OCLK rising to CLK2 falling 15 ns

Tclk2h I_OCLK rising to CLK2 rising 16 ns

Tcsl I_OCLK rising to nSIOCS1/nSIOCS2 falling 15 ns

Tcsh I_OCLK rising to nSIOCS1/nSIOCS2 rising 16 ns

Tbd1 I_OCLK rising to BD write data valid 0 104 ns 1

Tbd1s I_OCLK rising to BD write data valid (SYNC cycles) 0 479 ns 2

Tbd2 I_OCLK rising to BD write data valid 135 154 ns 3,7

Tbdh DATA hold from I_OCLK rising 15 ns

Tbds DATA setup to I_OCLK rising 0 ns

Tiornwh I_OCLK falling to IORNW rising 18 ns

Tiornwl I_OCLK rising to IORNW falling 12 ns

Tniorl I_OCLK rising to nIOR falling 15 ns

Tniorh I_OCLK rising to nIOR rising 15 ns

Tniowl I_OCLK rising to nIOR falling 15 ns

Tniowh I_OCLK rising to nIOR rising 16 ns

Tadd1 LA[] changing after I_OCLK rising before start 0 147 ns 4

Tadd1s LA[] changing after I_OCLK rising before start (SYNC cycles) 0 522 ns

Tadd2 LA[] changing after I_OCLK rising after end 76 91 ns 6,7

 Table 15-3: Timing diagrams

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-14

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

15.5 Module I/O

The Module I/O type of access is 16-bit only and its speed is controlled by a

handshake mechanism with the external hardware. The signals nIORQ (output) and

nIOGT (input) are used for this handshaking. When writing, the upper half-word of the

ARM7500 data bus is written out on the I/O bus. When reading, the I/O bus data is

read back onto the lower half-word of the ARM7500 data bus. The module type of I/O

will be initiated for addresses in the ranges 0x03000000 to 0x0300FFFF and

0x03030000 to 0x0303FFFF.

During these accesses, the signal nMSCS is asserted but read and write strobes are

not used, although the IORNW signal is active. READY does not affect this type of

access.

The nBLI is driven by the external hardware to indicate when the read or write data

should be latched from the BD I/O bus.

The I/O cycle will terminate when both nIORQ and nIOGT are LOW at the rising edge

of REF8M. The timing diagrams below show the signal relationship for the nIORQ/

nIOGT module I/O type of access.

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-15

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-9: 8 MHz Module read I/O cycle

LA[28:0]

I_OCLK

REF8M

BD[15:0]

IORNW

nMSCS

nIORQ

nIOGT

nBLI

Tadd1 Tadd2

Tr8h Tr8l

Tiornwh Tiornwl

Tcsl Tcsh

Tniorql Tniorqh

Tgts
Tgth

Tbds1
Tbdh1

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-16

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-10: 8 MHz Module write I/O cycle

Symbol Parameters Min Max Units Notes

Tbds1 Data setup up to nBLI falling 1 ns

Tbdh1 Data hold from nBLI falling 2 ns

Tcsl I_OCLK falling to nMSCS falling 12 ns

Tcsh I_OCLK falling to nMSCS rising 16 ns

Tiornwh I_OCLK falling to IORNW rising 18 ns

Tiornwl I_OCLK falling to IORNW falling 12 ns

Tbd1 I_OCLK rising to BD write data

valid

0 104 ns 1

 Table 15-4: 8 MHz Module read and write I/O cycles

LA[28:0]

I_OCLK

REF8M

BD[15:0]

IORNW

nMSCS

nIORQ

nIOGT

Tadd1 Tadd2

Tbd1 Tbd2

Tcsl Tcsh

Tniorql Tniorqh

Tgts
Tgth

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-17

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Note 1: Synchronisation penalty is between 0 and 3 I_OCLK cycles

Note 2: Delay includes 4 MEMCLK cycles

Note 3: Synchronisation penalty is between 1 and 4 I_OCLK cycles

Note 4: Delay includes 2 MEMCLK cycles

Note 5: Timings refer to case where ASTCR bit=0. See ➲ Appendix C: Using the
ASTCR register at High MEMCLK Frequencies

15.6 PC bus style I/O

This type of I/O is designed to function in conjunction with a standard PC Combo chip,

and cycles are generated from a 16MHz clock.

The PC bus style I/O type of access routes the lower halfword of the ARM7500 bus

through the device providing a direct 16 bit interface. Additionally, signals are

generated to support the addition of external latches/drivers to extend the I/O data by

16 bits. The upper half-word of the ARM7500 data bus is routed through these external

devices if present. This type of I/O access is used for the address space from

03010000 to 0302CFFF (five sections), and in the larger extended address space from

0x08000000 to 0x0FFFFFFF (eight sections). There are 4 fixed cycle types based on

the 16MHz clock, although the larger extended address area only supports two of

these cycle types. Any access may be held up by external circuitry removing the

READY signal before the end of the cycle.

The signals used to control the external buffers and latches required to implement

32-bit wide I/O are nWBE, nRBE, and nBLO. The timing diagrams in this section

(➲ Figure 15-11: 16 MHz Type D read I/O cycle and ➲ Figure 15-12: 16 MHz Type D
write I/O cycle) show the timing of these signals relative to the external data bus. For

Tbd2 I_OCLK rising to BD write data

valid

135 154 ns 2,5

Tniorql I_OCLK rising to nIORQ falling 15 ns

Tniorqh I_OCLK rising to nIORQ rising 15 ns

Tr8ml I_OCLK rising to REF8M falling 12 ns

Tr8mh I_OCLK rising to REF8M rising 13 ns

Tgts setup of nIOGT to I_OCLK rising 0 ns

Tgth hold of nIOGT from I_OCLK ris-

ing

8 ns

Tadd1 LA[] changing after I_OCLK ris-

ing before start

0 147 ns 3

Tadd2 LA[] changing after I_OCLK ris-

ing at end

76 91 ns 4,5

Symbol Parameters Min Max Units Notes

 Table 15-4: 8 MHz Module read and write I/O cycles (Continued)

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-18

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

full details of the external circuitry and connections required to implement a 32-bit wide

I/O system using the ARM7500, refer to ➲ Appendix D: Expanding PC-Style I/O to 32
Bit .

Two additional inputs, nXIPLATCH and nXIPMUX16, are provided to allow external

circuitry to route a full 32 bit data word through the 16 bit I/O bus using multiplexing.

This would allow, for example, the execution of ARM code from a 16 bit wide PCMCIA

card with a suitable external controller. The nXIPMUX16 signal directly controls an

internal multiplexer which maps either the upper or lower 16 bits of the internal data

bus through to the 16 bit wide I/O bus, for writes to an I/O peripheral. When

nXIPMUX16 is LOW, the upper 16 bits of the data bus are passed to BD[15:0], and

when nXIPMUX16 is HIGH, the lower 16 bits of the data bus are passed to BD[15:0].
For reads from an I/O peripheral, the falling edge of the nXIPLATCH signal causes the

first 16 bits provided on the BD[15:0] bus to be latched as the upper half word for the

main internal data bus, after which the lower 16 bits can be output from the peripheral

and the I/O cycle can be allowed to complete normally. If nXIPLATCH has been driven

low, the upper half word of data is driven to the ARM processor internally and not from

the external transceivers if present. ➲ Figure 15-19: 16 MHz Type B read I/O cycle with
PCMCIA and ➲ Figure 15-20: 16 MHz Type B write I/O cycle with PCMCIA show the

relevant timing details. Depending on the cycle timing, it will usually be necessary for

the external controller to use the READY signal to stretch the I/O access to give

sufficient time for both half words to be read or written as appropriate.

If an I/O access is to be stretched, the READY signal must be set LOW before the end

of the cycle as shown in the timing diagrams. This will cause the nIOR or nIOW strobe

and the chip select to be held LOW until READY is set back to HIGH again, when the

I/O cycle will complete as normal. READY is sampled on the rising edge of the first

16MHz cycle before the I/O cycle is due to complete.

The four address areas for 16MHz I/O within the main I/O address space can support

any of the four available cycle types A to D. The IOTCR register can be programmed

(at address 0x032000C4) to determine which type of cycle will be used for each group

of addresses. The addresses are grouped such that the nCCS and pseudo DMA

address spaces form one group, and the nPCCS1 and nPCCS2 address area forms

another group.

C = nCCS + pseudo DMA access speed

N = nPCCS1 and nPCCS2 area access speed

Write bits[7:6] unused

bits[5:4] unused

bits[3:2] 00: Type A (slowest); 01: Type B; 10: Type C; 11: Type D
(fastest).

bits[1:0] 00: Type A (slowest); 01: Type B; 10: Type C; 11: Type D
(fastest).

Read read back above values

0347 1256

X X X X C NC N

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-19

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Reset set to zero (slowest)

The extended address space from address 0x08000000 onwards for 16MHz I/O

accesses supports only cycle types A and C, and the ECTCR register should be

programmed to specify which cycle type is required for each of the eight 16MB areas

within the extended address space. The details of this register, at address

0x032000C8, are shown below:

E = expansion card area access speed

Write bit[7] (0F00 0000 -> 0FFF FFFF), 0: Type A, 1: Type C

bit[0] (0800 0000 -> 08FF FFFF), 0: Type A, 1: Type C

Read read back above values

Reset set to zero (slowest)

This type of I/O asserts a single chip select according to the area, except in Combo

DACK + TC space, where both the nCDACK and TC outputs are asserted to signal to

the PC Combo chip that the end of a pseudo DMA sequence has been reached. In the

extended address space the nEASCS chip select is asserted.

The timing diagrams in the figures below show the four types of 16 MHz I/O cycle. Note

that all diagrams assume divide by 1 mode for both MEMCLK and I_OCLK.

0347 1256

E E E E E E E E

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-20

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-11: 16 MHz Type D read I/O cycle

LA[28:0]

MEMCLK

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOR

nBLO

nWBE

nRBE

READY

Tadd3 Tadd2

Tc16l
Tc16h

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl Tcsh

Tniorl Tniorh

Tnoh1 Tnol1

Tnwbeh Tnwbel

Tnrbel Tnrbeh

Trds
Trdh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-21

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-12: 16 MHz Type D write I/O cycle

LA[28:0]

MEMCLK

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOW

nBLO

READY

D[31:16]

Tadd3 Tadd2

Tbd3
Tbd2

Tcsl Tcsh

Tniowl Tniowh

Tnoh2 Tnol2

Trds
Trdh

Tdu
Tduh

Upper 16 bits of external data bus valid for 32 bit I/O

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-22

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-13: 16 MHz Type C read I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOR

READY

Tadd3 Tadd2

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl Tcsh

Tniorl Tniorh

Trds
Trdh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-23

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-14: 16 MHz Type C write I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOW

READY

Tadd3 Tadd2

Tbd3
Tbd2

Tcsl Tcsh

Tniowl Tniowh

Trds
Trdh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-24

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-15: 16 MHz Type B read I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOR

READY

Tadd3 Tadd2

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl Tcsh

Tniorl
Tniorh

Trds
Trdh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-25

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-16: 16 MHz Type B write I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOW

READY

Tadd3 Tadd2

Tbd3
Tbd2

Tcsl Tcsh

Tniowl Tniowh

Trds
Trdh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-26

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-17: 16 MHz Type A read I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOR

READY

Tadd3 Tadd2

Tbds
Tbdh

Tiornwh Tiornwl

Tcsl Tcsh

Tniorl Tniorh

Trds
Trdh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-27

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-18: 16 MHz Type A write I/O cycle

LA[28:0]

I_OCLK

CLK16

BD[15:0]

IORNW

nPCCS1

nIOW

READY

Tadd3 Tadd2

Tbd3
Tbd2

Tcsl Tcsh

Tniowl Tniowh

Trds
Trdh

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-28

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-19: 16 MHz Type B read I/O cycle with PCMCIA

LA[28:0]

I_OCLK

CLK16

IORNW

nPCCS1

nIOR

READY

BD[15:0]

nXIPLATCH

Tadd3 Tadd2

Tiornwh Tiornwl

Tcsl Tcsh

Tniorl Tniorh

Trds
Trdh

Tbds
Tbdh

Txls
Txlh

upper lower

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-29

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-20: 16 MHz Type B write I/O cycle with PCMCIA

LA[28:0]

I_OCLK

CLK16

IORNW

nPCCS1

nIOW

READY

BD[15:0]

nXIPMUX16

Tadd3 Tadd2

Tcsl Tcsh

Tniowl Tniowh

Trds
Trdh

Tbd

Tnmxl
Tnmxh

lower upper lower

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-30

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Symbol Parameters Min Max Units Notes

Tnmxl nXIPMUX16 falling to upper data output on

BD[15:0]

9 ns

Tnmxh nXIPMUX16 falling to lower data output on

BD[15:0]

10 ns

Txls DATA setup to nXIPLATCH falling 1 ns

Txlh DATA hold from nXIPLATCH falling 2 ns

Tc16l I_OCLK rising to CLK16 falling 11 ns

Tc16h I_OCLK rising to CLK16 rising 11 ns

Tbdh Data hold from I_OCLK rising 12 ns

Tbds Data setup to I_OCLK rising 0 ns

Tiornwh I_OCLK falling to IONRW rising 18 ns

Tiornwl I_OCLK rising to IONRW falling 12 ns

Tcsl I_OCLK rising to nPCCSI falling 16 ns 1

Tcsh I_OCLK rising to nPCCSI rising 16 ns 1

Trds READY setup to I_OCLK rising -3 ns

Trdh READY hold from I_OCLK rising 8 ns

Tbd2 I_OCLK rising to BD write data valid 135 154 ns 2

Tbd3 I_OCLK rising to BD write data valid 0 42 ns 3,6

Tniorl I_OCLK rising to nIOR falling 15 ns

Tniorh I_OCLK rising to nIOR rising 15 ns

Tnoh1 I_OCLK rising to nBLO rising, read 19 ns

Tnol1 I_OCLK rising to nBLO falling, read 18 ns

Tnoh2 MEMCLK rising to nBLO rising, write 18 ns

Tnol2 MEMCLK rising to nBLO falling, write 15 ns

Tnwbeh I_OCLK falling to nWBE rising 15 ns

Tnwbel I_OCLK rising to nWBE falling 12 ns

Trbel MEMCLK rising to nRBE falling 15 ns

Trbeh MEMCLK rising to nRBE rising 15 ns

Tniowl I_OCLK rising to nIOW falling 15 ns

 Table 15-5: 16 MHz I/O cycles

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-31

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Note 1: Timing is for all PC style I/O chip selects: nCCS, nCDACK, nPCCS1,
nPCCS2, nEASCS,TC

Note 2: Delay includes 4 MEMCLK cycles

Note 3: Synchronisation penalty is 0 or 1 I_OCLK cycles

Note 4: Synchronisation penalty is 1 or 2 I_OCLK cycles

Note 5: Delay includes 2 MEMCLK cycles

Note 6: Timings refer to case where ASTCR bit=0. See ➲ Appendix C: Using the
ASTCR register at High MEMCLK Frequencies

15.7 DMA during I/O cycles

DMA to the Video and Sound Macrocell can continue during I/O cycles. Write data

from the ARM Processor is latched early, so that the data bus can be used freely for

DMA data. Thus only the start of an I/O cycle needs to be added to any DMA latency

calculations.

15.8 Clock synchronisation conditions

In a system which uses a MEMCLK frequency greater than I_OCLK, it may be

necessary to insert an extra I/O clock cycle to allow sufficient address hold time before

the chip select is taken away. The problem arises because the chip select is generated

from the fixed frequency I/O world clock, whereas the address changes according to

the memory system clock. When a faster MEMCLK is used, it is possible for the

synchronisation to the memory clock to occur rapidly at the end of the cycle, and thus

for the I/O address to change before the chip select has been removed. This may be

a problem for some peripherals. To avoid this, there is a register bit in the ASTCR

register, at address 0x032000CC, which is normally set to zero, but can be

programmed to one to add an extra I/O clock period to ensure that the address will not

change before the chip select has been deasserted.

Tniowh I_OCLK rising to nIOW rising 16 ns

Tdu MEMCLK rising to D[31:16] valid 29 ns

Tadd3 LA[] changing after I_OCLK rising before

start

0 85 ns 4

Tduh MEMCLK rising to D[31:16] invalid 10 ns

Tadd2 LA[] changing after I_OCLK rising at end 76 91 ns 5,6

Symbol Parameters Min Max Units Notes

 Table 15-5: 16 MHz I/O cycles (Continued)

0347 1256

A X X X X X X X

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-32

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

A = asynchronous timing control

0: minimal delay

1: wait states to ensure address hold time

See ➲ Appendix C: Using the ASTCR register at High MEMCLK Frequencies .

15.9 Keyboard/mouse interface

The keyboard and mouse interfaces are identical, differing only in the names of the

external pins. The interfaces are designed to communicate with a standard PS/2

keyboard or mouse, via a 2 pin serial link. The keyboard interface uses the pins

KBDATA, KBCLK, and the mouse interface uses the pins MSDATA and MSCLK, all of

which are open drain.

There is an 8-bit control register for each interface, which provides direct access to the

CLK and DATA outputs, an enable bit to enable the interface, and five status flags. The

KBDCR is programmed at address 0x03200008, and the MSECR (mouse control

register) at address 0x032000AC.

T = transmit status

R = receive status

E = enable

P = received parity

D = data pin status

C = clock pin status

Write bits[7:4,2] ignored

bit[3] enable, 0: state machine cleared, 1: state machine enabled

bit[1] force KBDATA/MSDATA pin LOW, 0: don't force LOW, 1: force
LOW

bit[0] force KBCLK/MSCLK pin LOW, 0: don't force LOW; 1: force
LOW

Read bit[7] TXE, shift register empty, 0: not ready, 1: enabled and ready to
transmit

bit[6] TXB, transmitter busy, 0: not busy, 1: currently sending data

bit[5] RXF, receive shift register full, 0: not full, 1: ready to read

bit[4] RXB, receiver busy, 0: not busy, 1: currently receiving data

bit[3] ENA, state machine enable, 0: disabled, 1: enabled

bit[2] RXP, receive parity bit, odd parity bit for last received data

bit[1] KBDATA/MSDATA pin value after synchronisation

bit[0] KBCLK/MSCLK pin value after synchronisation

0347 1256

D CT T R R E P

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-33

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

There is also a data register (KBDAT) which is used both to write bytes to be

transmitted across the serial link and to read bytes received. The KBDAT register is

programmed at address 0x03200004, and the MSEDAT (Mouse data register) is

programmed at address 0x032000A8.

The interfaces generate two interrupts each, one to indicate that the transmit buffer is

empty and thus that another byte can be transmitted, and one to indicate that a byte

has been received by the interface. These interrupt bits are processed by the IRQB

register set (for Keyboard) and the IRQD register set (for Mouse).

The keyboard interface is held in reset until the enable bit in the control register is set.

The interface can be controlled on the basis of the interrupts generated, or by polling

the status flags in the control register. The Tx interrupt is generated when the transmit

buffer has been emptied and the interface is ready to be programmed with another

character for transmission. The Rx interrupt is set when a complete character has

been received in the receive buffer, and the byte is ready to be read from the register.

The received data parity bit, RXP, is available in the control register at bit 2. Odd parity

is used. The keyboard and mouse interface state machines are clocked by the 8MHz

I/O system clock.

The KCLK/MSCLK signal is always driven by the keyboard/mouse, unless ARM7500

wishes to prevent the peripheral from transmitting (because it is about to transmit

some data itself). When data is received from the peripheral, the KDATA/MSDATA line

is pulled low as a start bit. Each data bit is set up to the falling edge of the clock. Eight

data bits are transmitted from the keyboard/mouse, followed by a parity bit (odd parity)

and a HIGH stop bit. The diagram below shows the protocol of this transfer.

 Figure 15-21: ARM7500 Keyboard/mouse controller receive protocol

KCLK

KDATA

Tkclk

1 2 3 4 5 6 7 8 9 10 11

Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Parity Stop

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-34

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

When ARM7500 transmits a byte to the peripheral, the KCLK/MSCLK line is pulled

LOW, then allowed to float and the KDATA/MSDATA line is pulled LOW, as a request

to send. The keyboard/mouse then drives the clock, causing ARM7500 to put eight

bits of serial data out onto the KDATA/MSDATA line. A parity bit is driven out, followed

by a stop bit, and the stop bit may be acknowledged by the peripheral (the ARM7500

does not check on the acknowledge). The timing requirements of the interface are

shown in the diagram below

.

 Figure 15-22: Keyboard/mouse interface timing

KCLK

KDATA receive

KDATA transmit

KCLK rq to send

KDATA rq to send

Tkckl
Tkckh

Tdhi
Tdsi

Tdso
Tdho

Tki
Tkrg

Tksb

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-35

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

15.10 Analog to digital converter interface

ARM7500 contains four analog comparators with 16 bit timers, which are designed

primarily for the implementation of an analog joystick interface. Each converter is of

the slope integration type, using an external RC network attached to the appropriate

ATOD[3:0] pin to generate a variable ramp delay. The time taken for the voltage at the

input to the comparator to reach the comparator’s threshold is measured by a 16-bit

counter which is stopped when the threshold of the comparator is reached. At this

point an internal “stop” flag for that channel is set. The value is held in the counter until

it has been read and the channel is then reset. Discharge transistors on the analog

inputs are used to discharge the external capacitor and to initiate a new integration

cycle.

15.10.1 Counters

Each of the four counters can be reset by programming one of four bits in the ATODCR

register. The four counters cannot be written to but can be read at addresses as

follows:

CNT1 (0x032000EC) - counter 1

Symbol Parameters Min Typ Max Units Notes

Tkclk keyboard clock period 1 100 µs

Tkckl keyboard clock low time 0.5 50 µs

Tkckh keyboard clock high time 0.5 50 µs

Tdhi hold on DATA from CLK rising

for Receive

1 Tkckh - 1µs µs

Tdsi setup on DATA to CLK falling for

Receive

1 Tkckh - 1µs

Tdso setup on DATA to CLK rising for

Transmit

Tkckl - 1µs Tkckl

Tdho hold on DATA from CLK falling

for Transmit

0ns 1µs

Tki time for which CLK is held low to

request a send

63.5 64 64.5 µs

Tkrg clock low from ARM7500 to clock

low from keyboard for request to

send

1 µs

Tksb clock low to data low hold time

for request to send

1 µs

 Table 15-6: Keyboard/mouse cycles

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-36

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

CNT2 (0x032000F0) - counter 2

CNT3 (0x032000F4) - counter 3

CNT4 (0x032000F8) - counter 4

The four counters have been implemented as simple asynchronous ripple counters,

and it is therefore important that they should not be read until the ‘stop’ flag for that

particular channel has been set, as seen in the status register, to indicate that the

counter has been stopped and the read back value will be stable.

15.10.2 Interrupt control

There is a single bit in the main ARM7500 interrupt handling registers (bit 2 of the

IRQD set) which can accept an interrupt from the A to D converters. Thus some

interrupt pre-processing is done to determine how this main interrupt is to be

generated. An interrupt control register is provided so that various combinations of

channels can generate the final interrupt. There are four possible interrupt sources,

one for each channel, and each channel attempts to generate an interrupt when the

comparator threshold is reached and the ‘stop’ flag is set internally. Each of these

interrupt sources can be individually enabled using the lower four bits of the Interrupt

Control register, and the upper four bits determine which combination of bits will create

the main interrupt which is passed to the IRQD registers.

Address 0x032000E0 - Interrupt Control

1 = channel 1 interrupt enable

2 = channel 2 interrupt enable

3 = channel 3 interrupt enable

4 = channel 4 interrupt enable

C = any combination of channels generates nIRQ

A = only all channels enabled generates nIRQ

F = first pair enabled generates nIRQ

S = second pair enabled generates nIRQ

Write bit[7:0] 0: disabled, 1: enabled

Read return above values

Reset reset to 0x0F

Note: The OR of bit[3:0] is used to power up all the comparators. Thus they reset to the
powered up state.

0347 1256

S F A C 4 3 2 1

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-37

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

15.10.3 Status of interface

The status of the 'stop' flag for each channel can be read directly from bits 0 to 3 of the

status register, as can the interrupt status, which is simply the logical AND of the 'stop'

flag values and the corresponding channel enables from the interrupt control register.

This register should be read by the system software in a polled system to check

whether a channel has reached its final count value and is thus waiting to be read

before another conversion cycle can be initiated.

Address 0x032000E4 - Status

R[3:0] = interrupt request state for channels 4 to 1

S[3:0] = stop flag for channels 4 to 1

Write ignored

Read bit[7:4] 0: not requesting, 1: requesting

Reset set all zero (not requesting)

15.10.4 Control

The converter control register allows the discharge transistors and counters for each

channel to be enabled and disabled, to give full control over the resetting of the counter

and the timing of the start of a conversion cycle. Before a conversion can be started,

the discharge bit and the counter clear bit for the channel in question should be forced

one and zero respectively, and then the bits should be returned to zero and one

respectively to actually initiate a conversion cycle. This will cause the analog voltage

across the external capacitor to begin to ramp up, and simultaneously the 2MHz clock

to the counters will be enabled, thus starting the count. Synchronisation between the

memory system clock which is used to program the registers, and the 2MHz I/O world

clock results in a small extra delay before the counter is really enabled, but this is

negligible against the 0.5µs period of the 2MHz clock.

Address 0x032000E8 - Converter control

D[3:0] = discharge transistor control for channels 4 to 1

C[3:0] = clear counter for channels 4 to 1

Write bit[7:4] 0: transistor off, 1: transistor on (discharge)

bit[3:0] 0: clear counter, 1: enable counter

Read return above values

Reset set all zero (clear counters and don’t discharge)

0347 1256

R R R R S S S S

0347 1256

C CC CD D D D

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-38

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

15.10.5 Comparators

The comparators are accurate to 2.5mV resolution and require a stable reference

voltage of less than 2.5V to function correctly. The reference voltage is applied at the

ATODREF pin. The same reference voltage is routed to all four comparators. In order

for the comparators to function correctly, it is essential that the reference current to the

Video DACs on the VIREF pin is present, as this current is used to generate the

operating current used by the gain stages in the comparator. The comparator

reference currents are disabled to save power if all the interrupt enables (bits 0 to 3 of

the interrupt control register) are set to zero. Hence at least one channel must be

enabled for any of the channels to function correctly.

15.10.6 Converter operation

The values of the capacitance and variable resistance used in the external RC circuit

will determine the range of time delays which will be seen from the moment the

capacitor begins to charge to the moment that the comparator threshold is crossed.

The 16-bit counters are clocked by the 2MHz internal clock (derived from the 32MHz

I_OCLK), and thus the counter will count for 65536 values over 32.7ms before

returning to zero. In order to provide a meaningful reading from the converter, it is

important that the capacitor and variable resistor values are such that this time will not

be exceeded under the worst case conditions. The A to D converter is effectively

providing a digital count directly related to the value of the resistance in the RC circuit.

15.11 Timers

The ARM7500 includes two general purpose timers which can be used as interrupt

sources. Each timer is implemented as a 16-bit down counter, and has an input latch

and an output latch associated with it. The counter decrements continuously, clocked

at 2MHz. When it reaches zero, it is reloaded from the input latch and the down count

recommences.

There are four eight bit wide registers associated with the two timers. Each timer has

two eight bit registers corresponding to the 16-bits of the timer, and two further write-

only registers which cause the GO and LATCH commands to be issued to the

appropriate timer when written to. The diagram below shows the timer configuration.

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-39

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 15-23: Timer configuration

15.11.1 Programming the timers

The locations of the registers can be found in ➲ Chapter 13: Memory and I/O
Programmer’s Model . Writing to the T0LOW register causes the value in the lower half

of the timer 0 input latch to be updated. Writing to the T0HIGH register causes the

value in the upper half of the timer 0 input latch to be updated with the written value.

Writing to the T0GO register causes the counters to be loaded immediately with the

value programmed into the input latch. If the counter is loaded with zero it will

continuously reload.

Writing to the T0LATCH register causes the current count value to be placed in the

output latch. Reading the T0HIGH register will then return the upper 8 bits of the count

value, and reading the T0LOW register will return the lower 8 bits of the count value.

15.11.2 Timer interrupts

Each timer will generate an interrupt when it reaches zero and is reloaded. These

interrupts are handled by the IRQA set of interrupt processing registers (bits 5 and 6).

The timers can be used to generate timed interrupts at regular intervals T, where

T = (T0LOW + (256 * T0HIGH)) * 0.5 µs.

Control
Logic

2 MHz

GO

Latch

Count high Count low

16-bit counter

Latch high Latch low

Data[7:0]

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-40

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

15.12 General purpose, 8-bit wide, I/O port

A general purpose 8-bit wide I/O port is included in the ARM7500. The eight open drain

output pins IOP[7:0] can be driven LOW or monitored as inputs by using the IOLINES

register at address 0x0320000C. When read, this register will return the current value

seen at the IOP[7:0] pins. When written to, each bit will control the status of the

corresponding IOP pin. When a one is written to a bit, that pin's output enable is

switched off and it can be driven as an input. When a zero is written to a bit, the

corresponding output pin is forced LOW.

There is a complete set of three interrupt control and status registers (IRQD) for the

IOP pins, which allow any bit to generate a unique interrupt. The interrupt is generated

when the corresponding IOP bit is LOW.

15.13 ID and OD open drain I/O pins

There are three further open drain I/O pins, ID and OD[1:0]. These are written to via

the IOCR register, and are not capable of generating interrupts. Each pin is forced

LOW by programming a zero to the appropriate bit in the IOCR register. Programming

a one to any bit causes the corresponding pin to be tristated, and the value of the input

level applied to the pin can then be read back from the same bit of the IOCR register.

The OD[1:0] pins could be used to implement a simple serial link. The ID pin is

intended to be used with an ID chip, which outputs a unique system ID when the ID
pin is forced LOW. During Power On Reset the ID output is forced LOW, and it then

becomes tristate on leaving reset. It should be noted that these three pins do not have

pull ups on-chip, and so it is advisable to fit them externally if they are not connected

to another device.

15.14 Version and ID registers

The ID register is composed of two 8-bit hardwired registers which are read only. The

lower byte is accessed at location 0x03200094, and the upper byte at location

0x03200098. Together they should return the value 0x5B98. The Version register is

accessed at location 0x0320009C, and this will read back the version number of the

device. Under no condition should either of these registers be written to, as this may

cause the chip to enter a test mode.

15.15 Interrupt control

The ARM7500 interrupt handler takes interrupts from a variety of sources and

generates the IRQ or FIQ interrupt signals required by the ARM processor, depending

on the settings of the control and enable bits in the five sets of interrupt registers. The

five sets are FIQ, IRQA, IRQB, IRQC and IRQD. Each of these has a status, mask and

request register associated with it, giving a total of 15 registers.

The table below shows the interrupt sources featuring in each set of registers. The

polarity entry refers to the level required at the external pin to set the interrupt. ‘Internal’

means that the interrupt is generated as a result of an internal state change, as

opposed to change on an external pin.

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-41

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Register Bit Polarity/Type Name/Function

FIQ 7 Always active for software generated FIQ.

6 LOW nINT8 interrupt pin

5

4 LOW nINT6 interrupt pin

3

2

1 HIGH INT5 interrupt pin

0 HIGH INT9 interrupt pin

IRQA 7 Always active for software generated IRQ.

6 internal 2MHz timer 1

5 internal 2MHz timer 0

4 falling edge nPOR power on reset

3 internal Flyback from video subsystem

2 falling edge nINT1 interrupt pin

1

0 rising edge INT2 interrupt pin

IRQB 7 internal Keyboard Rx buffer full

6 internal Keyboard Tx buffer empty

5 LOW nINT3 interrupt pin

4 LOW nINT4 interrupt pin

3 HIGH INT5 interrupt pin

2 LOW nINT6 interrupt pin

1 HIGH INT7 interrupt pin

0 LOW nINT8 interrupt pin

IRQC 7 LOW IOP[7] interrupt pin

6 LOW IOP[6] interrupt pin

5 LOW IOP[5] interrupt pin

4 LOW IOP[4] interrupt pin

 Table 15-7: Interrupt table

I/O Subsystems

ARM7500 Data Sheet
ARM DDI 0050C

15-42

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

When an interrupt signal is received from one of the interrupt sources, it causes the

corresponding bit in the status register to go HIGH. This bit is then logically ANDed

with the appropriate bit in the mask register, to create a value in the appropriate bit of

the request register. If any of the bits in any of the IRQ request registers are HIGH,

then the ARM7500 will generate an internal IRQ interrupt to the ARM processor

macrocell, causing the IRQ exception to be taken. If any of the bits in the FIQ request

register are HIGH, the ARM7500 will generate an internal FIQ interrupt to the ARM

processor, causing the FIQ exception to be taken.

The system software can then read the request registers to determine which sources

were requesting an interrupt. Reading the status registers will show which sources

were requesting interrupts, even if they were masked.

The IRQA request register is slightly different in that some of the interrupt flags are

edge triggered and thus need to be cleared after they have been read. All other

request registers are read only, but the IRQRQA register can be written to clear

triggered interrupts. Writing a one to a bit clears that interrupt. Writing a zero causes

no action to be taken.

3 LOW IOP[3] interrupt pin

2 LOW IOP[2] interrupt pin

1 LOW IOP[1] interrupt pin

0 LOW IOP[0] interrupt pin

IRQD 7

6

5

4 LOW nEVENT2 wakeup event

3 LOW nEVENT1 wakeup event

2 internal A to D convertor interrupt

1 internal Mouse Tx buffer empty

0 internal Mouse Rx buffer full

Register Bit Polarity/Type Name/Function

 Table 15-7: Interrupt table (Continued)

ARM7500 Data Sheet
ARM DDI 0050C

16-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Clocks, Power Saving, and Reset

This chapter describes clock control, power management, and reset.

16.1 Clock control 16-2

16.2 Power management 16-3

16.3 Reset 16-6

16

Clocks, Power Saving, and Reset

ARM7500 Data Sheet
ARM DDI 0050C

16-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

16.1 Clock control

ARM7500 has a clocking scheme designed to allow maximum flexibility for the system

designer. There are three main clock inputs:

CPUCLK CPU clock, used to generate the ARM processor’s FCLK

MEMCLK Memory subsystem clock, used to generate the memory system
clock, and the ARM processor’s MCLK

I_OCLK I/O system clock, which should be fixed at 32MHz, and is used to
generate all the fixed frequency I/O clocks and refresh rates.

16.1.1 Video and sound subsystem clocks

The video sub-system has two separate external clock inputs and includes a phase

locked loop to enable the control of an external VCO. The pixel clock source can be

selected to be VCLKI (using an external VCO), HCLK, which is driven directly in from

the HCLK pin, or IOCK32, which is the internal I/O subsystem clock and is generated

directly from the main I_OCLK input pin as described below. The sound subsystem

can be clocked either from IOCK32 generated internally from I_OCLK, or by using an

externally generated clock connected to the SCLK pin. Selection between these

various clock sources is described in the video and sound sub-systems section of this

data sheet.

16.1.2 I/O clock outputs

Four fixed frequency I/O clocks are output by the ARM7500, all divided down from the

fixed frequency input I_OCLK which should be set to 32MHz in divide by 1 mode.

These are CLK16 (16MHz), REF8M, and CLK8 (8MHz and an inverted version), and

CLK2 (2MHz).

16.1.3 Synchronous/asynchronous mode for the ARM processor

The ARM processor macrocell can be configured to work in synchronous or

asynchronous mode, under the control of the SnA pin. Synchronous mode can only

be used within the ARM7500 if the internal ARM processor clocks, FCLK and MCLK,

are of exactly the same fundamental frequency and timing, and in fact when SnA is

set HIGH, MEMCLK will be routed straight through to drive both FCLK and MCLK, with

a suitable delay to ensure the required phase relationship between FCLK and MCLK

is held correctly, ie CPUCLK is ignored when SnA = 1. If the FCLK frequency is

required to be different from the MEMCLK frequency, the SnA pin must be held LOW,

and a suitable frequency applied to CPUCLK.

16.1.4 Clock prescalers

Each of the three main clock inputs CPUCLK, I_OCLK and MEMCLK has a selectable

divide by 2 prescaler available within ARM7500 to enable a guaranteed 50:50 mark-

space ratio internal clock to be produced using a higher frequency external oscillator.

The internal clocks, which will be referred to elsewhere in this data sheet, are called

FCLK, IOCK32 and MEMRFCK respectively. On Power On Reset, all the prescalers

Clocks, Power Saving, and Reset

ARM7500 Data Sheet
ARM DDI 0050C

16-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

will be set to divide by 2. The prescaling is controlled by the CLKCTL register at

address 0x0320003C, and there is one bit to enable or disable each divide by 2

prescaler as required:

C = CPUCLK divide control

M = MEMCLK divide control

I = I_OCLK divide control

Write bit[2] 0: FCLK x 2 = CPUCLK, 1: FCLK = CPUCLK

bit[1] 0: MEMRFCK x 2 = MEMCLK, 1: MEMRFCK = MEMCLK

bit[0] 0: IOCK32 x 2 = I_OCLK, 1: IOCK32 = I_OCLK

Read return above value

Power On Reset

set all to zero, ie divide by 2 clocks

16.1.5 Clocking schemes

The simplest mode of operation of the ARM7500 has all three of the main clocks driven

by a single 32MHz oscillator, with the prescalers set to divide by 1 mode. However, it

is possible to increase the speed of the memory and CPU clocks, noting that if this

causes CPUCLK and MEMCLK frequencies to be different, the SnA input must be set

LOW for asynchronous operation. The I_OCLK frequency must remain at 32MHz (or

64MHz if the divide by 2 prescalers are enabled).

All timings in this datasheet assume that both I_OCLK and MEMCLK are running at

32MHz (or 64MHz with the divide by 2 prescalers on).

Increasing the memory clock frequency allows the system designer to take advantage

of faster DRAM memory. The ARM7500 includes full synchronisation at the interface

between the memory and I/O sub-systems to ensure safe operation under

asynchronous conditions.

16.2 Power management

The ARM7500 includes power management circuitry which greatly enhances its

suitability for battery powered portable applications where power consumption is of

paramount importance. There are three power management modes:

NORMAL mode

This is the default operating condition in which all clocks are running
and the chip is functioning normally.

SUSPEND mode:

In this mode, the clocks to the CPU (FCLK and MCLK) are stopped,

0347 1256

X X X X X M IC

Clocks, Power Saving, and Reset

ARM7500 Data Sheet
ARM DDI 0050C

16-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

but all other parts of the chip remain active so DMA can continue and
the display can continue to be refreshed. It is also possible to stop
some of the external I/O clock outputs to save more power if this can
be done safely without causing problems for I/O peripherals
connected to these clocks.

STOP mode:

This mode allows all the clocks to the ARM7500 to be stopped, and
the whole chip will then draw only leakage currents provided all
required registers have been appropriately programmed. Outputs are
provided from the ARM7500 to enable the oscillator(s) to be powered
down, and circuitry to allow the oscillator(s) to cleanly restart using an
external RC delay before the clocks inside the ARM7500 are re-
enabled. Before STOP mode is entered, a number of registers need
to be programmed appropriately in the video sub-system, and further
details of the full sequence of events required to make most effective
use of the power management features can be found in ➲ 16.2.2
STOP mode.

16.2.1 SUSPEND mode

Entry into SUSPEND mode is achieved by writing to the register location 0x0320001C.

Any value can be used, but the value written to bit 0 will determine whether the

external I/O output clocks CLK16, CLK8, REF8M and CLK2 are stopped. DMA may

continue unaffected, allowing the display and DRAM data to remain refreshed.

Exit from SUSPEND mode is achieved by a falling edge on either of the asynchronous

input event pins, nEVENT1 and nEVENT2, or by any enabled interrupt source

generating a FIQ or IRQ interrupt for the ARM processor. The assertion of nRESET
will also cause exit from SUSPEND mode. It is important that the interrupt mask and

enable registers are programmed appropriately before SUSPEND mode is entered if

it is intended that an interrupt source be used to terminate the power saving mode.

The CPU will merely see SUSPEND mode as a write to a location in the memory and

I/O register area. It will be unaware of the duration of this write, as both MCLK and

FCLK are frozen, and it is a fully static device. The careful use of SUSPEND mode

when no CPU operations are required will have a significant effect on the device‘s

average power consumption. It could be used, for example, between key presses

while waiting for more user input. The keyboard controller is still clocked during

SUSPEND mode and so will be able to generate interrupts which will cause the

termination of the write cycle and then cause the CPU to take the interrupt exception.

Details of the SUSMODE register (address 0x0320001C) are shown below:

S = SUSPEND mode control of external I/O clocks

Write turn off external I/O clocks when in this mode

0: turn off, 1: don't turn off

0347 1256

X X X X X X X S

Clocks, Power Saving, and Reset

ARM7500 Data Sheet
ARM DDI 0050C

16-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Enter Suspend mode with MCLK,FCLK,I/O clocks and some internal
clocks stopped. DMA continues and instruction completes on either
wakeup event, nIRQ or nFIQ.

Read return above value

Reset set to zero

16.2.2 STOP mode

Entry into STOP mode is achieved by writing to the register location 0x0320002C. Any

value can be written to the register to enter STOP mode, but the value written will

appear on the external data bus of the ARM7500 while the chip is in STOP mode. It is

therefore recommended that the value 0xFFFFFFFF be written to this register as this

will mean that both D[31:0] and LA[28:0] are driven HIGH during STOP mode.

It is very important that all DMA activity is stopped, that all I/O activity is completed,

and that the video subsystem is powered down correctly before the STOP mode

register is written to. The OSCPOWER output is controlled by the power management

circuitry, and will be forced LOW a short time after the write cycle begins. This output

may be used to disable the external oscillator(s).

Exit from STOP mode can only be achieved by the use of the asynchronous wake up

event pins nEVENT1 and nEVENT2. When either of these is forced LOW, a sequence

of events will be triggered which will cause the oscillator(s) to be restarted cleanly.

During STOP mode, a zero is driven out from the OSCDELAY pin, which ensures that

an external capacitor forming part of an RC network attached to the OSCDELAY pin

remains discharged. As soon as a wake up event occurs the OSCPOWER pin is set

HIGH again, and the open drain OSCDELAY pin is allowed to float and becomes an

input. At this point the external capacitor starts to charge, until the schmitt threshold of

the OSCDELAY input is exceeded. From this point, a further two rising edges must be

seen on the input clock from the oscillator before the clock is allowed through to the

internal ARM7500 circuitry. The component values used in the RC circuit should be

chosen to ensure that the oscillator has sufficient time to stabilise before the

OSCDELAY input is triggered.

As the video subsystem is inherently dynamic for performance reasons, it is necessary

to set it into a special Powerdown mode before STOP mode is entered. To do this, the

video Ext register should be programmed with the data 0xC0000000, the Video

Control register should be programmed with the data 0xE00040xx (the last byte will

depend on the clock source and configuration), and the Sound Control register should

be programmed with the data 0xB1000000 (if the sound system is configured for use

with the SCLK pin as the clock source. If the sound system is being clocked from the

ARM7500’s internal 32MHz I/O clock, then the register should be programmed with

the value 0xB1000001). These actions will disable the video datapath and ensure the

entire macrocell is forced into a static state. To ensure that the comparators in the A

to D converters do not consume current, they should be shut down by programming

the value 0x00 to the ATODICR register at location 0x032000E0.

ARM7500 includes support for self refresh DRAM, and it is intended that this feature

should be used during STOP mode to ensure that DRAM contents are preserved. This

DRAM mode is activated by allowing direct software control of the nCAS and nRAS
output pins. The SELFREF register (0x032000D4) can be used to directly force the

Clocks, Power Saving, and Reset

ARM7500 Data Sheet
ARM DDI 0050C

16-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

nRAS and nCAS output pins according to the protocol required for a particular DRAM,

in order to enter self-refresh mode. This programming must be performed by code

executing from ROM.

In STOP mode ARM7500 will consume leakage currents only, and can be held

indefinitely without corruption of the internal registers, CPU cache, etc.

16.3 Reset

The ARM7500 has three pins associated with reset. The nPOR pin is intended for use

with an external RC delay to generate a power-on-reset pulse when the chip is

switched on. The nRESET pin is an open drain I/O pin, which is intended to be used

to generate a “soft” reset. Both nPOR and nRESET are active LOW schmitt inputs.

The active HIGH RESET pin is a clean reset output, which is created from the

synchronised version of the nRESET input, and is also forced HIGH during nPOR.

A LOW state on the nPOR input causes the POR bit in the IRQA status register to be

set. This bit can later be examined to show that the reset which occurred was an nPOR
type rather than nRESET. The POR bit in the IRQA status register is not reset until the

POR clear bit in the IRQA request register is written to. nPOR also causes the

prescalers on the clock inputs to be set to divide by 2. The nPOR input is passed

through a pulse stretcher which ensures that even a short pulse on the input will

guarantee a full reset of the whole of ARM7500. See ➲ Figure 16-1: nPOR timing
diagram. During nPOR reset, nCAS is forced low throughout and the nRAS outputs

are changed according to the sequence in ➲ Figure 14-8: Refresh cycle timing on page

14-14. While nPOR is LOW, nRESET and ID (which are both open drain pins) are held

LOW, and an incrementing address value will be output on the LA address bus.

A LOW state on the nRESET input is used to generate a 'soft' reset. This does not set

any interrupt flags, and the nRESET LOW state must exist for longer than 1us to

guarantee that it is seen, as it is passed through a synchroniser before being used by

the internal circuitry. ➲ Figure 16-2: nRESET timing diagram below shows the required

timing of nRESET to ensure correct operation. At the start of the nRESET active

period, the whole ARM7500 (including the DRAM refresh state machine and counter)

is reset for 1us, and for the remaining duration of the nRESET pulse, DRAM refresh

takes place at the highest selectable rate. During nRESET, the ARM processor

outputs an incrementing address on the LA bus.

 Figure 16-1: nPOR timing diagram

nPOR

nRESET

RESET

Tpr

Tpre

Clocks, Power Saving, and Reset

ARM7500 Data Sheet
ARM DDI 0050C

16-7

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 16-2: nRESET timing diagram

1 Assuming I_OCLK is 64MHz. Double this time if I_OCLK is 32 MHz as this
reset forces divide by 2 mode on the clock inputs.

2 DMA or writes from the ARM Processor prevent nRESET having any effect
for their duration. Thus the “soft” reset cannot break write cycles or cause
partial DRAM refresh.

3 Assuming IOCK32 is 32MHz.

When in STOP mode, nRESET will force the power management control circuitry to

revert to normal mode, without necessarily causing a reset sequence to occur.

Symbol Parameters Min Typ Max Units Notes

Tpr time for which nPOR must be held low to

guarantee a reset

20 ns

Tpre length of internal reset 2 µs 1

 Table 16-1: nPOR and nRESET timing

Symbol Parameters Min Typ Max Units Notes

Tnr time for which nRESET must be held low

to guarantee reset

2 µs 2, 3

Tre length of internal reset 2 µs 3

 Table 16-2: nPOR and nRESET timing

nRESET

RESET

Tnr

Tre

Clocks, Power Saving, and Reset

ARM7500 Data Sheet
ARM DDI 0050C

16-8

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

17-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Bus Interface

This chapter describes the ARM7500 bus interface.

17.1 Bus arbitration 17-2

17.2 Bus cycle types 17-2

17.3 Video DMA bandwidth 17-3

17.4 Video DMA latency 17-3

17

Bus Interface

ARM7500 Data Sheet
ARM DDI 0050C

17-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

17.1 Bus arbitration

Arbitration for the main ARM7500 data bus is carried out with the priorities shown

below:

1 Video/cursor DMA

2 Sound DMA

3 DRAM refresh

4 ARM processor memory cycles

As the ARM7500 contains a cached processor, ARM internal cycles can continue

while DMA is in progress, but the CPU will stall when it suffers a cache miss and

wishes to fill a cache line from memory.

Once an external memory cycle has started, DMA has to wait until it is completed. The

exception is for I/O reads or writes and SUSPEND mode, where the write data is

latched internally at the start of the cycle, after which DMA requests can be serviced

even though the I/O access or SUSPEND mode is under way. The end of an I/O

access is held up until the current DMA access is completed. I/O read data is latched

internally when available, and is not enabled onto the ARM7500 data bus until any

DMA transfers have completed.

17.2 Bus cycle types

There are a large number of different types of cycle which make use of the ARM7500

data bus. Except for DMA accesses, the cycle type is decoded according to the

address put out by the ARM processor macrocell, and the detailed timing is controlled

by the relevant section of the I/O or memory controller subsystem.

The ARM processor supports two basic types of external cycle: non-sequential and

sequential. A non-sequential cycle consists of an Idle cycle followed by a memory

cycle, and a sequential cycle consists simply of a memory cycle. The idle cycle allows

the memory and I/O controller subsystems time to prepare for a new cycle type. These

two cycles are used as the basic building block for the more complex I/O and memory

access cycle timings generated by the ARM7500. ARM processor external cycles are

clocked by the internal Mclk signal which is generated by the ARM7500’s memory

controller according to the type of cycle.

Only the latched version of the ARM processor’s address is exported from the ARM

processor, and this can only change immediately after the falling edge of the internal

Mclk signal which clocks the ARM for external accesses. The timing diagrams in this

datasheet include Mclk as a reference as it indicates the end of a particular cycle. The

ARM7500 internal data bus is not always exported during internal register

programming, to save power.

When the ARM processor requests an external memory access, it will do so for one of

a number of reasons. A cache linefetch will always consist of memory reads from four

sequential addresses. A level 1 translation fetch will consist of a read from memory

followed by the address translation such that the next address put out by the ARM will

be the translated physical address as generated from the read back section descriptor.

A level 2 translation fetch is always preceded by a level 1 fetch, and returns the page

Bus Interface

ARM7500 Data Sheet
ARM DDI 0050C

17-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

table entry which is then used to create the physical address for the next cycle.

External buffered and unbuffered write cycles take place with indistinguishable bus

timing. When the ARM wishes to read from a location and the data is not in the cache

or is uncacheable (eg for I/O), then an external read access is performed.

17.3 Video DMA bandwidth

The maximum video DMA bandwidth is dependent on the MEMCLK frequency and

the DRAM width (16 or 32-bit), but can be calculated as follows:

Each quad word DMA requires 5+2+2+2 = 11 MEMCLK cycles to complete, and it is

possible for DMA requests for the video to be serviced sequentially such that the

second and subsequent quad word DMA burst takes only 2+2+2+2=8 MEMCLK
cycles. However, all accesses will be broken up at page boundaries, that is every 256

words. So every 64 DMA bursts, there will be three extra MEMCLK periods required.

Therefore, at 32MHz MEMCLK, with 32-bit wide DRAM, 64 quad words would be

transferred approximately every 16us. The maximum theoretical DMA bandwidth is

thus 63.6MBytes/second. If a greater video DMA bandwidth than this is required, then

a higher MEMCLK frequency will need to be used. Clearly, in a real system, the

average bandwidth will not achieve this theoretical maximum.

17.4 Video DMA latency

DMA latency is defined to be the time from the generation of the internal request for

more data from the video FIFO in the video macrocell, to the time at which the first

word of DMA data is clocked into the video macrocell.

There are several possible limiting factors which may determine the worst case DMA

latency, depending on the type of memory system with which ARM7500 is configured

to be used. There are three possible limiting cases:

1 Internal register programming cycles

2 Burst mode ROM accesses, or very long non sequential ROM accesses

3 DRAM accesses in 16-bit mode

The following assumes that the internal MEMRFCK frequency is equal to the

MEMCLK frequency, ie the prescalers are set to divide by one. The above cases

determine the maximum period before arbitration for DMA occurs in different systems.

In addition to the latency resulting from these sequences, the worst case latency has

a possible 5.5 MEMCLK cycles factor for synchronisation, such that the synchronised

request arrives just too late to be arbitrated for, and ARM7500 commits to a memory

cycle. This 5.5 MEMCLK cycles also includes the ARM processor idle cycle on which

the arbitration (which was just missed) takes place.

From the clock edge at which arbitration finally takes place, to the time at which the

first word of DMA data is clocked into the video macrocell, is 3.5 MEMCLK cycles.

Internal register programming bursts can occur in blocks of up to four before

rearbitration takes place, and this will take 16 MEMCLK cycles. Burst mode ROM

cycles are rearbitrated after every four, as are sequential DRAM accesses.

Successive non sequential accesses will always allow DMA onto the bus, so it is

Bus Interface

ARM7500 Data Sheet
ARM DDI 0050C

17-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

unlikely that these will be the cause of the worst case latency. However, it would be

possible to use the ROM interface in half speed mode, with the slowest ROM timing

and a 16 bit wide ROM, in which case an access would take 28 MEMRFCK cycles.

Under these circumstances the ROM interface could be the limiting factor.

To determine the limiting factor in a system, calculate the number of cycles required

for a worst case ROM access. The number of cycles for each programmed value in

the ROMCR register is shown below:

For a non sequential access, programming bits 0-2:

000 - 7 cycles

001 - 6 cycles For all:

010 - 5 cycles Multiply by 2 if 16-bit mode set

011 - 4 cycles Multiply by 2 if half speed bit set

100 - 3 cycles

101 - 2 cycles

If the burst bits (3-4) are programmed to a value other than 00, then the total worst

case number of cycles will be one times the non sequential number above, plus three

times the burst number from below:

01 - 4 cycles For all:

10 - 3 cycles Multiply by 2 if 16-bit mode set

11 - 2 cycles Multiply by 2 if half speed bit set

Then calculate the number of cycles required for a worst case DRAM access. This can

only be the limiting factor when 16-bit wide DRAM is used, and in this case the delay

will be 5 + (2x7) = 19 cycles

As described above, the worst case delay for four sequential internal register

programming cycles is 16 cycles. So the worst case delay is caused by internal

register access cycles, ROM or DRAM according to which of the above calculated

figures is worst.

DMA can continue over the top of I/O accesses, so these do not feature in the options

for worst case delay. So for a system which is limited by internal register access

cycles, the worst case latency will be 3.5 + 2 + 16 + 3.5 = 25 MEMCLK cycles. So if

MEMCLK is running at 32MHz, the total worst case DMA latency will be 0.78us.

As another example, suppose that the ROM interface non sequential access time is

programmed at 7 cycles, and the sequential programmed to 4, using 16-bit wide ROM.

Then the total latency would be 3.5 + 2 + 14 + 8 + 8 + 8 +3.5 = 47 MEMCLK cycles.

At 32MHz this corresponds to 1.4us.

ARM7500 Data Sheet
ARM DDI 0050C

18-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Memory Map

This chapter gives details of the ARM7500 memory map.

18.1 ARM7500 memory map 18-2

18

Memory Map

ARM7500 Data Sheet
ARM DDI 0050C

18-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

18.1 ARM7500 memory map

All addresses featured in the ARM7500 memory map table are physical addresses.

Only 29 bits of the address bus are available, which limits the total memory space to

512Mb.

Memory (Mbytes) Address (Hex) To (Hex) Device

0 00000000 00FFFFFF ROM bank 0

16 01000000 01FFFFFF ROM bank 1

32 02000000 02FFFFFF Reserved

48 03000000 0300FFFF Module I/O space

03010000 0302BFFF 16MHz PC style I/O

0302C000 0302FFFF Reserved

03030000 0303FFFF Further module I/O space

03040000 031FFFFF Reserved

03200000 0320FFFF ARM7500 registers

03210000 033FFFFF Simple I/O space

03400000 034FFFFF Video registers

03500000 03FFFFFF Reserved

64 04000000 07FFFFFF Reserved

128 08000000 0FFFFFFF Extended I/O space

256 10000000 DRAM bank 0

320 14000000 DRAM bank 1

384 18000000 DRAM bank 2

448 1C000000 DRAM bank 3

512 20000000 ROM bank 0
(repeated)

 Table 18-1: ARM7500 memory map table

ARM7500 Data Sheet
ARM DDI 0050C

19-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

DC and AC Parameters

This chapter gives the ARM7500 DC and AC parameters.

19.1 Absolute maximum ratings 19-2

19.2 DC operating conditions 19-2

19.3 DC characteristics 19-3

19.4 AC parameters 19-3

19.5 Derating 19-3

19

DC and AC Parameters

ARM7500 Data Sheet
ARM DDI 0050C

19-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

19.1 Absolute maximum ratings

Note: These are stress ratings only. Exceeding the absolute maximum ratings may
permanently damage the device. Operating the device at absolute maximum ratings
for extended periods may affect device reliability.

19.2 DC operating conditions

1 Note:Voltages measured with respect to VSS.

2 IC - CMOS inputs

3 IT - TTL inputs (includes BTZ, TOD, and IT pin types)

4 OCZ - Output, CMOS levels, tri-stateable (includes OCZ, BTZ, TOD, and
CSOD pin types)

5 IS - CMOS Schmitt inputs (includes ICS and CSOD pin types)

Symbol Parameters 5V Min 5V Max Units Notes

VDD Supply voltage VSS-0.3 VSS+7.0 V 1

Vip Voltage applied to any pin VSS-0.3 VDD+0.3 V 1

 Ts Storage temperature -40 125 deg C 1

 Table 19-1: ARM7500 DC maximum ratings

Symbol Parameters Min Typ Max Units Notes

VDD Supply voltage 4.75 5.0 5.25 V

Vihc IC input HIGH voltage 0.8xVDD VDD V 1, 2

Vilc IC input LOW voltage 0.0 0.2xVDD V 1, 2

Viht IT input HIGH voltage 2.3V VDD V 1, 3

Vilt IT input LOW voltage 0.0 0.6V V 1, 3

Vihs IS input HIGH voltage 3.7 VDD V 1, 5

Vils IS input LOW voltage 0.0 1.6 V 1, 5

Vohc OCZ output HIGH voltage 0.9xVDD VDD V 1, 4

Volc OCZ output LOW voltage 0.0 0.1xVDD V 1, 4

Ta Ambient operating temperature 0 70 ¡C

 Figure 19-1: ARM7500 DC operating conditions

DC and AC Parameters

ARM7500 Data Sheet
ARM DDI 0050C

19-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

19.3 DC characteristics

1 When the video subsystem is correctly powered down and ARM7500 is in
STOP mode

2 IS - Schmitt trigger input

3 This does not apply to video and sound analog pins: VIREF, ROUT, GOUT,
BOUT, SIREF, LM, LP, RM, RP

19.4 AC parameters

The ARM7500 timing diagrams have been included in the appropriate sections of the

datasheet. The timing values shown are for worst case conditions (slow silicon, 100

deg junction temperature, VDD=4.75V) or best case (fast silicon, 0 deg junction

temperature, VDD=5.25V) as appropriate.

19.5 Derating

The AC timings included with each timing diagram in this datasheet include only the

intrinsic delay through the output pads. In order to calculate actual delays when

designing the ARM7500 into a system, it is necessary to add the load dependent

element of the output pad delay.

Symbol Parameter Min Typ Units Note

IDD Static Supply current 100 µA 1

Isc Output short circuit current 100 mA

Ilu DC latch-up current >500 mA

Iin IC input leakage current 1 uA

Ioh1 x1 Output HIGH current (Vout = VDD-0.4V) 2 4 mA

Iol1 x1 Output LOW current (Vout = VSS+0.4V) 2 -7 mA

Ioh2 x2 Output HIGH current (Vout = VDD-0.4V) 6 12 mA

Iol2 x2 Output LOW current (Vout = VSS+0.4V) 6 -20 mA

Ioh3 x3 Output HIGH current (Vout = VDD-0.4V) 16 26 mA

Iol3 x3 Output LOW current (Vout = VSS+0.4V) 16 -40 mA

Vihst IS input rising voltage threshold 3.58 V 2

Vilst IS input falling voltage threshold 1.42 V 2

Cin Input capacitance 3.0 pF

ESD HMB model ESD 4 KV 3

 Figure 19-2: ARM7500 DC characteristics

DC and AC Parameters

ARM7500 Data Sheet
ARM DDI 0050C

19-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The output pads of ARM7500 are CMOS drivers which exhibit a propagation delay that

increases linearly with the increasing capacitance. An Output derating figure is given

for each of the three types of output pads, showing the increase in output delay with

increasing load capacitance. Details of which driver is used for which output can be

found in ➲ Chapter 2, Signal Description. Derating figures are quoted for rising and

falling edges.

Label Pad type Rising Falling Units

x1 Low drive capability pad 0.18 0.16 ns/pF

x2 Medium drive capability pad 0.061 0.046 ns/pF

x3 High drive capability pad 0.029 0.019 ns/pF

 Figure 19-3: ARM7500 Pad derating

ARM7500 Data Sheet
ARM DDI 0050C

20-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Packaging

This chapter describes the physical details of the ARM7500.

20.1 Pin diagrams for the ARM7500 20-2

20

Packaging

ARM7500 Data Sheet
ARM DDI 0050C

20-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

20.1 Pin diagrams for the ARM7500

The following two diagrams illustrate the top and side views of the ARM7500. All

dimensions are given in millimetres.

 Figure 20-1: Pin diagram for the ARM7500

34.6 ± 0.40

32.0 ± 0.20

P
in

 1

P
in

 1
8
0

Pin 181Pin 240

ARM7500

Top View

3
4
.6

±
 0

.4
0

3
2
.0

±
 0

.2
0

P
in

 1
2
1

Pin 120Pin 61

P
in

 6
0

Packaging

ARM7500 Data Sheet
ARM DDI 0050C

20-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure 20-2: Side view of ARM7500 chip

0.50 typ

0.23 ± 0.07

0
.2

5
 m

in

0.60 ± 0.15

3
.4

0
 ±

 0
.2

0
1.30 ref

Packaging

ARM7500 Data Sheet
ARM DDI 0050C

20-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

21-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Pinout

This chapter describes the ARM7500 pinout.

21.1 Pin details 21-2

21

Pinout

ARM7500 Data Sheet
ARM DDI 0050C

21-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

21.1 Pin details

The following table gives the signal name for each of the 240 pins of the ARM7500.

Pin number Signal name Pin number Signal name

1 LA[15] 27 D[23]

2 LA[16] 28 D[22]

3 LA[17] 29 D[21]

4 LA[18] 30 VSS_CORE

5 LA[19] 31 D[20]

6 LA[20] 32 VDD_CORE

7 LA[21] 33 D[19]

8 VDD 34 D[18]

9 LA[22] 35 VSS

10 VSS 36 D[17]

11 LA[23] 37 D[16]

12 LA[24] 38 D[15]

13 LA[25] 39 D[14]

14 LA[26] 40 D[13]

15 LA[27] 41 VDD

16 LA[28] 42 D[12]

17 D[31] 43 D[11]

18 D[30] 44 D[10]

19 D[29] 45 D[9]

20 D[28] 46 D[8]

21 VSS 47 VSS

22 D[27] 48 D[7]

23 D[26] 49 D[6]

24 VDD 50 D[5]

25 D[25] 51 D[4]

26 D[24] 52 D[3]

 Table 21-1: Pin numbers and signal names

Pinout

ARM7500 Data Sheet
ARM DDI 0050C

21-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

53 D[2] 82 ED[2]

54 D[1] 83 ED[1]

55 D[0] 84 ED[0]

56 VDD 85 VSS

57 PCOMP 86 VSYNC

58 VSS 87 VSS_CORE

59 VCLKI 88 HSYNC

60 VCLKO 89 VDD_CORE

61 VDD_SOUND 90 VIREF

62 LP 91 VDD_ANALOG

63 RP 92 ROUT

64 RM 93 BOUT

65 LM 94 GOUT

66 VSS_SOUND 95 VSS_ANALOG

67 SIREF 96 nTEST

68 SDO_MUTE 97 nINT8

69 SCLK 98 nINT3

70 SDCLK 99 nINT6

71 WS_LNR 100 INT7

72 SINK 101 RA[11]

73 ECLK 102 RA[10]

74 VSS 103 RA[9]

75 HCLK 104 VSS

76 ED[7] 105 RA[9]

77 ED[6] 106 VDD

78 ED[5] 107 RA[7]

79 VDD 108 RA[6]

80 ED[4] 109 RA[5]

81 ED[3] 110 RA[4]

Pin number Signal name Pin number Signal name

 Table 21-1: Pin numbers and signal names (Continued)

Pinout

ARM7500 Data Sheet
ARM DDI 0050C

21-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

111 RA[3] 140 nROMCS

112 RA[2] 141 BD[15]

113 RA[1] 142 BD[14]

114 RA[0] 143 I_OCLK

115 VSS 144 VSS

116 nRAS[3] 145 nEVENT2

117 VDD 146 BD[13]

118 nRAS[2] 147 BD[12]

119 nRAS[1] 148 BD[11]

120 nRAS[0] 149 VDD

121 VDD_ATOD 150 BD[10]

122 ATODREF 151 VSS_CORE

123 ATOD[3] 152 MEMCLK

124 ATOD[2] 153 VDD_CORE

125 ATOD[1] 154 BD[9]

126 ATOD[0] 155 BD[8]

127 VSS_ATOD 156 BD[7]

128 nCAS[3] 157 BD[6]

129 nCAS[2] 158 BD[5]

130 VSS 159 VSS

131 nCAS[1] 160 BD[4]

132 VDD 161 BD[3]

133 nCAS[0] 162 BD[2]

134 nWE 163 BD[1]

135 OSCPOWER 164 BD[0]

136 OSCDELAY 165 MSCLK

137 SnA 166 VDD

138 RESET 167 MSDATA

139 nRESET 168 KBCLK

Pin number Signal name Pin number Signal name

 Table 21-1: Pin numbers and signal names (Continued)

Pinout

ARM7500 Data Sheet
ARM DDI 0050C

21-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

169 KBDATA 198 VDD

170 VSS 199 nSIOCS1

171 nPOR 200 nEASCS

172 IOP[7] 201 nMSCS

173 IOP[6] 202 nBLO

174 IOP[5] 203 nRBE

175 IOP[4] 204 nWBE

176 IOP[3] 205 CLK2

177 IOP[2] 206 REF8M

178 IOP[1] 207 CLK8

179 IOP[0] 208 CLK16

180 ID 209 nIORQ

181 OD[1] 210 VSS

182 OD[0] 211 nIOR

183 SETCS 212 VSS_CORE

184 INT9 213 CPUCLK

185 nINT4 214 VDD_CORE

186 INT5 215 nIOW

187 READY 216 VDD

188 nIOGT 217 nCCS

189 nBLI 218 nCDACK

190 nXIPMUX16 219 IORNW

191 nINT1 220 nPCCS2

192 INT2 221 nPCCS1

193 VSS 222 LNBW

194 nEVENT1 223 LA[0]

195 nXIPLATCH 224 LA[1]

196 TC 225 LA[2]

197 nSIOCS2 226 VSS

Pin number Signal name Pin number Signal name

 Table 21-1: Pin numbers and signal names (Continued)

Pinout

ARM7500 Data Sheet
ARM DDI 0050C

21-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

227 LA[3] 234 LA[9]

228 LA[4] 235 LA[10]

229 LA[5] 236 LA[11]

230 LA[6] 237 LA[12]

231 LA[7] 238 VSS

232 LA[8] 239 LA[13]

233 VDD 240 LA[14]

Pin number Signal name Pin number Signal name

 Table 21-1: Pin numbers and signal names (Continued)

ARM7500 Data Sheet
ARM DDI 0050C

A-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Initialisation and Boot Sequence

This appendix describes the ARM7500 initialisation and boot sequence.

A.1 Introduction A-2

A.2 Example boot sequence A-2

A.3 Other methods A-3

A

Initialisation and Boot Sequence

ARM7500 Data Sheet
ARM DDI 0050C

A-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

A.1 Introduction

ARM7500 is designed to operate with 16 or 32 bit wide memory systems. In order to

avoid a hardware selection mechanism, the ARM7500 is designed to always power up

with bit 6 of the ROMCR0 register set to 1, such that the chip expects to receive the

first instructions from a 16 bit wide ROM bank. For a system which is actually using 16

bit wide ROM, no special action is required. For a system which uses 32 bit wide ROM,

a software solution is needed to enable the chip to boot successfully.

An example method of programming the first locations of ROM in order to boot the

device successfully is described in the following section. The example assumes that

the reset vector is to be located at physical memory address zero.

A.2 Example boot sequence

The processor will start executing code from physical address 0. As ARM7500 is

initially configured to operate with a 16 bit wide ROM, it will fetch the lower half-word

of the first instruction from the lower 16 bits of address 0, and the upper half-word of

the instruction from the lower 16 bits of address 4. If these first two locations have been

programmed with instructions to load the PC with the reset and undefined instruction

vectors, then the combination of the lower half-words from the first and second

location always creates an instruction with a never-true condition code, and so

execution will drop through to the next instruction. This will be true for all the LDR PC

instructions in the exception table. The exception table occupying the first eight

locations in ROM is shown below.

This vector table resides at physical address 0.

Immediately after the table, the ARM7500 should be set into 32 bit mode. The eight

locations from address 20 to 3C must be programmed with eight half words in the

lower sixteen bits of each location, which will form the four required 32 bit instructions

when read in pairs by the ARM7500. The upper 16 bits of each location will be ignored

by the ARM7500 while still in 16 bit mode. The four instructions program the ROMCR0

register into 32 bit mode, and cause program execution to jump back to the reset

Address Instruction

0 LDR PC, RESET_VEC

4 LDR PC, UNDEF_VEC

8 LDR PC, SWI_VEC

C LDR PC, PREF_VEC

10 LDR PC, DATA_VEC

14 LDR PC, RES_VEC

18 LDR PC, IRQ_VEC

1C LDR PC, FIQ_VEC

 Table A-1: Vector table

Initialisation and Boot Sequence

ARM7500 Data Sheet
ARM DDI 0050C

A-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

vector at physical address zero, which will now be executed correctly. The MOV PC,#0

instruction which actually causes execution to jump back to zero will have been

prefetched in 16 bit mode, even though it occurs after the ARM7500 ROMCR0 register

has been reprogrammed. The table below shows the data required at memory

locations 0x20 to 0x3C to implement this scheme. The boot code above is a general

example which will set the ROM interface to use the slowest access timing, to ensure

it will work with all systems. It is adviseable to program the ROM control registers early

on with the fastest parameters useable by the interface, as this will drastically speed

up execution. In addition, on power up the default state of the CLKCTL register is for

the CPUCLK, MEMCLK and I_OCLK external clock inputs to be divided by 2, and

these should be programmed to divide by 1 if appropriate. This will also speed up

execution.

A.3 Other methods

The above method is an example of how the ARM7500 can be booted from a system

using 32 bit wide ROM. There are other methods of doing this which may be more

appropriate for the required application. The main advantage of the method described

above is that it allows the exception vector table to reside at physical address 0. If this

is not a requirement then the the instructions which reprogram the ROMCR0 register

could reside from location 0 onwards, and the vector table can be mapped into DRAM

by the operating system software.

Data Address Instruction Notes

0x0000B632 20

0x0000E3A0 24 MOV R11, 0x03200000 point at register base

0x00000000 28

0x0000E3A0 2C MOV R0, #&0 32b,slow,218.75us,no burst

0x00000080 30

0x0000E5CB 34 STRB R0, [R11,0x80] Program ROMCR0 & switch mode

0x0000F000 38

0x0000E3A0 3C MOV PC, #0 Jump to 0

 Table A-2: Instructions for programming the ROM register

Initialisation and Boot Sequence

ARM7500 Data Sheet
ARM DDI 0050C

A-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

B-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Dual Panel Liquid Crystal
Displays

This appendix describes dual panel LCD driving within the video and sound macrocell.

B.1 Programming the video subsystem B-2

B.2 Configuring DMA within ARM7500 B-3

B

Dual Panel Liquid Crystal Displays

ARM7500 Data Sheet
ARM DDI 0050C

B-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

B.1 Programming the video subsystem

The external register (address 0xC00xxxxx) bit 13 (lcd) must be programmed to one,

as for normal LCD operation.

Bit 13 of the control register (address 0xE00xxxxx) must be programmed to one. This

is the 'dup' bit to set duplex mode operational.

Video data will be channelled simultaneously to the top and bottom halves of the

screen. The first quad word received from memory will be interpreted for the first part

of the first raster in the top half of the screen, and the second quad word will be

interpreted for the identical part of the lower half of the screen. ARM7500 will handle

the sequencing of DMA data so that the video buffer can still be programmed as

though there was only one panel.

When the cursor is moved, in addition to the programming of the Vertical Cursor start

(VCSR) and end (VCER) registers and the horizontal cursor start (HCSR) register as

described below, bits 13 and 14 of VCSR (address 0x9600xxxx) should be

programmed to:

14:13

0 0 Dual Panel mode not activated

0 1 Cursor in upper half screen

1 0 Cursor in lower half screen

1 1 Cursor straddles both halves

Normally VCSR defines the number of rasters from Vsync to the start of the cursor,

and VCER defines the number of rasters from Vsync to the end of the cursor display.

See ➲ Chapter 9: Video and Sound Programmer’s Model for details of exactly how

these are programmed.

For split screen operation, the programming of VCER and VCSR will be the same as

for a single panel LCD when the cursor is completely in the top or bottom half of the

screen, but when the cursor straddles the boundary, the values of these two registers

will have a different meaning. The value in the VCSR register will be the number of

rasters from the top of the lower panel to the end of the cursor image, and VCER will

be programmed with the number of rasters from the top of the display to the start of

the cursor image in the upper panel. The cursor is displayed in the lower half screen

from the value of VDSR to VCSR, and in the upper half screen from the value of VCER

to VDER. So effectively the start register is defining the "end" of the cursor in the

bottom half and the end register is defining the "start" of the cursor in the top half. This

is the case because the top of the lower half of the screen will be written to before the

bottom of the upper half.

Dual Panel Liquid Crystal Displays

ARM7500 Data Sheet
ARM DDI 0050C

B-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

B.2 Configuring DMA within ARM7500

The video and sound macrocell must first be programmed to drive dual panel LCDs as

above. Once this has been done the macrocell will always make quad word DMA

requests in pairs. ARM7500 is then set into dual panel mode by programming bit 7

("dup") of the Video Control register VIDCR (Address 0x1E0) to 1. The eight bits of the

Video Control register are now allocated as follows

VIDCR (address 0x 1E0)

X = Undefined

E = Enable

D = Duplex LCD

When duplex mode is enabled, ARM7500 will DMA two quad words from memory,

offset by half the size of the video buffer, to enable two parallel data streams to be

output by the video and sound macrocell to the two panels of the LCD. All DMA is quad

word only, so the auto increment of the DMA address is now always 0x10. The

VIDSTART and VIDEND registers will be programmed in the normal way, as for a

single panel, with the addresses of the first and last quad words in memory. The

VIDINITA register should be programmed with the address of the first quad word to be

displayed on the upper panel of the LCD, and the VIDINITB register with the address

of the first quad word to be displayed on the lower panel of the LCD. The difference

between the two addresses should be half the number of bytes in the video buffer. It

is perfectly possible for VIDINITA to be pointing to an address in the lower half of the

buffer, in which case VIDINITB should be set to point to an address in the top half of

the buffer, offset by half the buffer size again.

If either of the INIT register values are equal to the END register, then bit 30 of the

relevant INIT register must be set HIGH for correct operation (the “last” bit). Clearly

both “last” bits should never be programmed HIGH at the same time.

B.2.1 Cursor

In order to ensure smooth transition of the cursor across the dual panel boundary, it is

necessary to have four images of the cursor stored in memory. This is because the

ARM7500 DMA registers must only be programmed with quad word aligned

addresses, but as the cursor is always 32 pixels wide at 2 bits per pixel, the address

of data corresponding to a particular row of the cursor may be aligned with a two word

boundary.

The four images should be arranged as two pairs of contiguous images of the cursor.

Only alternate rows of each cursor image will start on quad word boundaries, for

reasons stated above, and so the two pairs of images are offset so that the first has all

0347 1256

X X X X X XED

Dual Panel Liquid Crystal Displays

ARM7500 Data Sheet
ARM DDI 0050C

B-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

its odd rows starting on quad word boundaries, and the second has all its even rows

starting on quad word boundaries. This means that ARM7500 can address any row of

the cursor using only quad word aligned DMA pointers.

Normally only the first image will be used. However, when the cursor happens to be

straddling the split screen boundary, a different strategy is adopted. The VCSR and

VCER registers in the video and sound macrocell are programmed differently as

described in the above, and the cursor init register must be set to point to the location

corresponding to the position of the row of the cursor which appears at the top of the

lower part of the screen. In conjunction with the different meaning of the vertical cursor

position registers in the video and sound macrocell, this will enable a smooth transition

across the boundary.

B.2.2 Video frame buffer restrictions

In order for the dual panel LCD to be driven correctly, it is necessary for the video

frame buffer to contain an even number of quad words, and to be aligned to a quad

word boundary. The cursor buffer must also be aligned to a quad word boundary.

ARM7500 Data Sheet
ARM DDI 0050C

C-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Using the ASTCR register at High

MEMCLK Frequencies

This appendix describes the use of the ASTCR register.

C

Using the ASTCR register at High MEMCLK

ARM7500 Data Sheet
ARM DDI 0050C

C-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Whenever the ARM processor performs a memory cycle it is clocked by MCLK which

is derived from MEMCLK. The I/O controller inside ARM7500 is clocked by derivatives

of I_OCLK. Thus, when the ARM processor performs a read from or a write to an area

of I/O space, some synchronisation must occur. The ARM7500 bus controller decodes

the address of the ARM processor access and if it recognises it as an I/O access must

send an I/O cycle request signal to the I/O controller. This is synchronised to the

internal I/O clock, IOCK32. The I/O controller then performs the necessary cycle

asserting one (or more) of the I/O chip select signals, eg. nCCS. When the I/O

controller knows the I/O cycle is about to finish it asserts an I/O grant signal which is

synchronised back to the internal memory clock, MEMRFCK. The Bus controller will

then terminate the cycle by creating a falling edge on MCLK which clocks the ARM

processor.

The address from the ARM processor is latched when MCLK is LOW so that it is held

stable throughout I/O cycles (as well as ROM). It is therefore important that MCLK

should not fall too quickly after the end of the I/O chip select, else the address may

change too quickly violating the required hold time. ARM7500 has been designed to

support MEMCLK running at a frequency much higher than I_OCLK. In this situation

the I/O grant generated by the I/O controller will be synchronised more quickly back to

MEMRFCK and so the address will change sooner after the end of the I/O chip select.

Thus the I/O controller must delay the point at which it generates the I/O grant to

ensure the address hold time is maintained.

A technique using the ASTCR register bit, 0x032000CC, has been employed to allow

the address hold time to be maintained when MEMCLK frequency is greater than

I_OCLK frequency whilst not imposing greater than necessary wait states when

MEMCLK has the same or lower frequency than I_OCLK.

For a given system the I_OCLK frequency should be fixed at 32MHz, while MEMCLK
frequency will be fixed according to the speed grade of DRAMs being used. The

amount of hold time required between the end of the I/O chip select and the latched

address changing should be determined and then ASTCR should be set dependent

on the following details.

When ASTCR is LOW (reset value):

 I/O cycle type Minimum Hold time

Simple I/O 2 MEMCLK periods minus 1 I_OCLK period

Module I/O 2 MEMCLK periods minus 1.5 I_OCLK periods

PC style I/O 2 MEMCLK periods minus 1.5 I_OCLK periods

When ASTCR is HIGH:

I/O cycle type Minimum Hold time

Simple I/O 2 MEMCLK periods minus 0.5 I_OCLK periods

Module I/O 2 MEMCLK periods minus 0.5 I_OCLK periods

PC style I/O 2 MEMCLK periods minus 0.5 I_OCLK periods

Using the ASTCR register at High MEMCLK

ARM7500 Data Sheet
ARM DDI 0050C

C-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Note: This assumes divide by 1 mode for the clocks, MEMCLK and I_OCLK.

For example, in a system with I_OCLK=32MHz and MEMCLK=40MHz, the minimum

hold time for a PC-style access will be 3.125ns if ASTCR=0 and 34.375ns if

ASTCR=1. In addition there will be a small amount of extra hold time due to the delay

from the internal memory clock to the latch enable signal for the address. It should be

further noted that these times refer to the signals changes at the pad on the inside of

ARM7500. The relative capacitive loading of the latched address and I/O chip select

will determine the overall timing.

Using the ASTCR register at High MEMCLK

ARM7500 Data Sheet
ARM DDI 0050C

C-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

D-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

Expanding PC-Style I/O to 32 Bit

This appendix describes the extension of PC-style I/O to 32 bit.

D

Expanding PC-Style I/O to 32 Bit

ARM7500 Data Sheet
ARM DDI 0050C

D-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 provides 16-bit I/O accesses as standard using the BD[15:0] port for all I/O

types. The PC style I/O accesses, however, can be extended to allow full 32-bit

accesses without any loss in access speed by the addition of external 16-bit

transceivers. ARM7500 provides all the control signals necessary to support these

external devices.

During PC style I/O write cycles the I/O controller routes the lower 16-bit halfword from

the ARM processor's data bus onto BD[15:0] and drives the upper 16-bit halfword onto

D[31:16]. During read cycles, the ARM processor's data bus is driven from two

sources; the lower halfword from the data latched from BD[15:0]; and the upper

halfword from D[31:16]. If the external devices to provide the upper halfword of data

are not present or the I/O peripheral does not support more than 16-bits then the

software must ignore the upper halfword read back into the ARM processor registers.

➲ Figure D-1: 32-bit I/O interface shows an example of the system connections

required to provide a full 32-bit I/O interface. The write and read path should each

contain a 16-bit latch with tri-state output enable control. The write latch should latch

data from D[31:16] when nBLO is HIGH and drive the latched data onto the expanded

I/O bus, BDHI[15:0], when nWBE is active LOW. The read latch should latch data from

BDHI[15:0] when nBLO is HIGH and drive the latched data onto D[31:16], when nRBE
is active LOW.

Note that, like the BD[15:0] bus, the write enable nWBE remains active LOW by

default. It is de-asserted only during the read cycles, thus the I/O device must not

attempt to drive BD[15:0] or BDHI[15:0] except when a read cycle is taking place.

Expanding PC-Style I/O to 32 Bit

ARM7500 Data Sheet
ARM DDI 0050C

D-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

 Figure D-1: 32-bit I/O interface

EN

G

EN

nWBE

nRBE

BD[15:0]

nBLO

D[31:16]
D Q

Q D
16

16

1616

16

nIOW

nIOR

eg. nCCS

ARM7500

I/O Device

BDHI[15:0]

G

CLK16

10

LA[9:0]

Expanding PC-Style I/O to 32 Bit

ARM7500 Data Sheet
ARM DDI 0050C

D-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Data Sheet
ARM DDI 0050C

E-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Video Clock Sources

This appendix describes the ARM7500 video clock sources.

E.1 Introduction E-2

E.2 Clock sources E-2

E.3 Using the phase comparator E-3

E.4 Phase Comparator Reset E-5

E

ARM7500 Video Clock Sources

ARM7500 Data Sheet
ARM DDI 0050C

E-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

E.1 Introduction

In order to facilitate the high resolution screen modes that ARM7500 is capable of

producing, a suitable high frequency clock must be applied. As screen mode is

changed, so the pixel rate must also change. This can be done via the various clock

inputs, by the on-chip pre-scaler, or by using an external voltage controlled oscillator
in conjunction with the on-chip phase comparator, to form a phase-locked-loop (PLL).

It is intended that most systems be built with a phase-locked-loop system. The

required circuitry is simple, and allows a high degree of flexibility. The advantages are

that all the necessary clock frequencies can be derived from the one circuit, and so the

requirement for multiple on board crystals and clock switching circuitry is eliminated.

E.2 Clock sources

ARM7500 has 3 primary inputs for its pixel clock. These are HCLK, VCLKI, and the

internal i_oclk32 signal, derived from I_OCLK. The intention is that VCLKI and the

internal i_oclk32 signal, derived from I_OCLK be used to drive the phase comparator,

and that HCLK would only be used to provide the highest frequency clock if this

frequency is above the maximum VCO frequency.

 Figure E-1: Video and sound macrocell internal clock system

In addition to the pixel clock inputs, there is one other clock input, SCLK.

divide by N
pixck

con_reg[1:0] con_reg[4:2]

HCLK

VCLK

VCLKO

PCOMP
Phase

Comparator

internal iock32

ARM7500 Video Clock Sources

ARM7500 Data Sheet
ARM DDI 0050C

E-3

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The sound system can be clocked from the internal 32MHz ioclk32 or a 16MHz SCLK
(there is a divide-by-2 in the sound system). The digital sound system may run at a

different frequency, (low MHz range), and this must be applied directly on SCLK. The

pixel clock source is selected by programming bits 0 and 1 of the control register. The

pixel clock selected can then be passed through a pre-scaler which can divide the

clock by between 1 and 8. This is done by programming bits 2 to 4 of the control

register. See ➲ 9.27 Control register (conreg): Address 0xE on page 9-15.

Note that any unused clock pin should be tied low.

E.3 Using the phase comparator

The Video and sound macrocell contains a phase comparator which, in conjunction

with an external voltage controlled oscillator (VCO), can be used to build a phase-

locked-loop. The phase comparator comprises two counters and a phase detector.

The counters are pre-loadable down counters, one clocked from the internal i_oclk32

signal, derived from I_OCLK, and the other clocked from VCLKI. The moduli of the

counters is programmed in the Frequency Synthesiser Register.

 Figure E-2: Frequency Synthesizer Register

In this register, the test bits have the following meaning:

 bit [6] force PCOMP high and driven

 bit [7] clear r-modulus counter

 bit [14] force PCOMP low and driven

 bit [15] clear v-modulus counter

These bits are only programmed during test and at reset (see section ➲ E.4 Phase
Comparator Reset). The internal i_oclk32 signal, derived from I_OCLK input provides

a reference clock which is recommended to be 24MHz. The VCLKI input is driven

from the output of the VCO, and it is this which is selected as the pixel clock.

The VCO is driven by ARM7500's PCOMP output, which for most of the time is at the

tri-state value.

31 30 29 28 27 26 25 24 23 022 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

01 x x x x x xx x x xx1 x x1 x

(VCO clock)

modulus r
(ref clock)

r test bits

modulus v

v test bits

xx

ARM7500 Video Clock Sources

ARM7500 Data Sheet
ARM DDI 0050C

E-4

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

When the VCO's frequency needs to be increased, PCOMP goes high, and vice-versa

for when the frequency needs to be decreased. The PCOMP output needs to be

filtered before applying to the VCO.

The choice of filter and VCO are left to the user. A very simple and effective system

can be built using an 74AC04 inverter pack, and a very simple LC filter. The filtered

VCO output controls the operating voltage of the 74AC04 device. This system is

shown in ➲ Figure E-3: Suggested VCO/PLL circuit, and gives an enormous range of

frequencies (LF to hundreds of MHz). Since the output of this VCO is AC coupled,

VCLKI needs to be biased at the mid voltage point. This is done by connecting a large

resistor between VCLKI and VCLKO (VCLKO is the inversion of VCLKI).

Note: Low-power systems may want to use more complex circuitry here to avoid DC paths
during SUSPEND or STOP modes.

 Figure E-3: Suggested VCO/PLL circuit

VCLKO

VCLKI

PCOMP

470R

470R

6M833nF

11pF

Vdd

33uH

100uF

ARM7500 Video Clock Sources

ARM7500 Data Sheet
ARM DDI 0050C

E-5

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

The actual frequency of the VCO is determined by the ratio of the v-modulus to the r-

modulus as follows.

(Note that for a modulus of r, r-1 is programmed, and likewise for the v modulus.)

➲ Table E-1: Synthesised VCO frequency settings gives a list of useful frequencies

with corresponding values of r and v moduli, assuming a reference frequency of

32MHz. Obviously there are many values of r and v which give the same ratio. The

lower the values, the more frequently the output of the VCO will be updated and so the

r and v values should be chosen to suit the response of the filter.

E.4 Phase Comparator Reset

The phase comparator and VCO form a closed loop feedback system which has

potential to become unstable. If the system powers up in the state where the PCOMP
output is trying to drive the VCO’s output higher and higher, then very quickly it will

reach a frequency which the phase comparator cannot resolve and thus recovery is

impossible.

To avoid this, the following reset procedure must be applied carefully. The test bits in

the Frequency Synthesiser Register can be used to force the phase comparator's

output either high or low. Thus, soon after power up, this register must be programmed

with bits 15, 14 and 7 high, and bit 6 low. The r and v moduli can have anything

programmed into them, but r must be greater than v. This operation forces the VCO’s

frequency to decrease.

r-modulus v-modulus VCO frequency/

MHz

8 2 8.0

16 6 12.0

4 2 16.0

8 6 24.0

2 2 32.0

8 9 36.0

16 35 70.0

4 15 120.0

 Table E-1: Synthesised VCO frequency settings

FVCO FREF

Vmodulus

Rmodulus
-----------------------------×=

ARM7500 Video Clock Sources

ARM7500 Data Sheet
ARM DDI 0050C

E-6

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

When the real pixel rate is to be programmed, it should be done in two steps:

1 The values of the r and v moduli should be programmed, but the test bits left
in the initialisation state.

2 All the test bits should be cleared.

The VCO will then ramp up to its operating frequency. Subsequently, a change of

frequency can be achieved simply by reprogramming the r and v moduli.

ARM7500 Data Sheet
ARM DDI 0050C

F-1

111

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

ARM7500 Test Modes

This appendix describes the ARM7500 test modes.

F.1 Introduction F-2

F.2 Test modes description F-2

F

ARM7500 Test Modes

ARM7500 Data Sheet
ARM DDI 0050C

F-2

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

F.1 Introduction

ARM7500 has a pin nTEST which is used in combination with the nINT8, nINT3 and

nINT6 pins to set the device into various test modes. Most of these are intended only

for use during production test to allow the individual macrocells within ARM7500 to be

tested directly from the external pins using a mux isolation scheme.

F.2 Test modes description

When the nTEST pin is HIGH, ARM7500 is in normal operating mode irrespective of

the states of nINT8, nINT3 and nINT6. However, when nTEST is set LOW, the chip is

set into one of five possible test modes dependent on the state of the three inputs

nINT8, nINT3 and nINT6. Four of these test modes are reserved for use on the tester.

However there is one test mode which, when selected, will cause all the ARM7500

outputs to be tristated. This test mode is accessed by setting nTEST=0, nINT8=0,

nINT3=1 and nINT6=1. No other combinations should be selected by the user.

ARM7500 Data Sheet
ARM DDI 0050C

Index-i

111

IndexIndex

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

dA
A to D convertors 1-6

Abort mode 4-6

aborts 4-9, 5-27, 5-33, 5-38, 5-46

external 7-16

AC parameters 19-3

test conditions 19-3

address alignment 5-30, 5-45

address translation 7-3

addressing modes 5-30, 5-45

alignment faults 7-15

analogue outputs 11-11

analogue stereo sound 12-2

analogue to digital convertors 15-35

ARM processor 1-3

assembler syntax 5-5, 5-14, 5-18, 5-22, 5-27, 5-34,

5-38, 5-39, 5-43, 5-46, 5-49, 5-51

asynchronous mode 16-2

auto-indexing 5-24

B
backward compatibility 4-4

banked registers 4-5

base registers

inclusion of 5-33

restrictions 5-26

Big Endian 4-2, 5-26, 5-55

block data transfer 5-29

block diagram

ARM704 3-4

branch 5-4

with link 5-4

branch instructions 5-4

bufferable bit 6-4

bufferable write 6-4

bus interface 10-2, 17-2

C
cache 6-2

cacheable bit 6-2

CD offset registers 9-5

clock control 1-4, 16-2

clock prescalers 16-2

clocking schemes 16-3

comment field 5-39

comparators 15-38

compilers 3-2

condition code flags 4-7

condition field 5-3

conditional instructions

using 5-52

configuration bits

for awkward compatibility 4-3

configuration control registers 4-13

ARM7500 Data Sheet - Index

ARM7500 Data Sheet
ARM DDI 0050C

Index-ii

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

configurations 4-2, 4-13

control 4-15

control bits 4-7

control register 9-15, 15-37

convertor operation 15-38

convertors

analogue to digital 15-35

coprocessors 4-13, 6-5

data operations 5-42

data transfers 5-44

fields 5-42, 5-45, 5-48

instructions 5-41

ARM704 5-41

register transfers 5-48

counters 15-35

CPSR flags 5-8, 5-21

CPU

aborts 7-12

clock 16-2

cursor 11-5

Hi-Res mode 11-5

LCD mode 11-5

cycle times 5-13, 5-17, 5-21, 5-27, 5-34, 5-38, 5-39,

5-42, 5-46, 5-49

D
DAC control 11-11

pedestal current 11-11

power-save mode 11-11

data aborts 4-10, 5-27

data control register 9-17

data processing 5-6

DC

characteristics 19-3

operating conditions 11-11, 14-6, 14-12, 14-15,

15-13, 15-16, 15-17, 15-30, 15-31,

15-35, 16-7, 19-2

operation 6-2

validity 6-2

descriptors 7-5, 7-6

digital

conversion to 15-35

display modes 8-3

DMA 1-5

DMA channels 14-16

video 14-16

domain access control 4-16, 7-13

domain access control register 7-3

domain faults 7-15

DRAM interface 14-7

address multiplexing 14-7

control registers 14-7

self-refresh 14-16

timing specification 14-9

dual panel LCDs 11-9, B-3

E
exceptions 4-6, 4-8

priorities 4-12

external aborts 7-16

external register 9-13

external support 11-9

F
Fast Interrupt reQuest 4-8

faults

address register 7-3

addresses 7-12

checking sequences 7-14

status register 7-3

status registers 7-12

FIFO

setting preload value 10-2

FIQ 4-8

FIQ mode 4-6

frequency synthesizer register 9-14

functional block diagram 1-2

G
genlocking 11-11

H
hardware cursor 8-2

Hi-Res mode 11-5, 11-6

horizontal

border start register 9-8

cycle register 9-7

sync width register 9-7

ARM7500 Data Sheet - Index

ARM7500 Data Sheet
ARM DDI 0050C

Index-iii

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

I
I/O

address space usage 15-2

chip select decode logic 15-3

clock outputs 16-2

control 1-5

general purpose port 15-40

ID and open drain pins 15-40

lines 1-6

Module 15-14

PC bus style 15-17

Simple 8MHz 15-4

system clock 16-2

ID register 15-40

IDC 6-2

IDC flush 6-2

immediate operand rotates 5-12

Instruction and Data Cache 6-2

instruction set 5-2

ARM704 3-2

summary of ARM704 5-2

instructions

cycle times 5-4, 5-13, 5-17, 5-21, 5-27, 5-34,

5-38, 5-39, 5-42, 5-46, 5-49

multiply 5-20

specified shift amounts 5-9

speed summary 5-55

undefined 5-51

using conditional 5-52

interface

serial sound 12-4

status of 15-37

video and sound macrocell 10-2

internal coprocessor instructions 4-13

interrupt latencies 4-12

Interrupt reQuest 4-9

interrupts 4-6, 4-10

control 15-36, 15-40

disable bits 4-7

handler 1-6

in timers 15-39

latencies 4-12

IRQ 4-9

K
keyboard interface 15-32

L
large page translation 7-11

LCD mode 11-5

LCDs 11-8

dual panel 1-2, 11-9

grey-scaling 11-8

monochrome 1-2

single panel 1-2, 11-9

LDC 5-44

LDM 5-29

LDR 5-23, 5-26

LDRB 5-25, 5-26

level one descriptor 7-5

level one fetch 7-4

link bit 5-4

Liquid Crystal Displays 11-8

Little Endian 4-2, 5-25, 5-55

Little Endian format 4-2

loading words

from unknown alignment 5-54

M
MCR 5-48

MEMCLK C-2

Memory Management Unit 7-2

memory map 18-2

memory subsystem clock 16-2

memory system 1-4

MMU 7-2

MMU faults 7-12

mode bits 4-7

modes

of operation 4-4

Module I/O 1-6, 15-14

monochrome output 11-12

mouse interface 15-32

MRC 5-48

multimedia 1-2

multiplication by constant

using the barrel shifter 5-54

multiply 5-20

instructions 5-20

multiply-accumulate 5-20

ARM7500 Data Sheet - Index

ARM7500 Data Sheet
ARM DDI 0050C

Index-iv

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

O
offsets 5-24

on-chip sound system 8-4

opcodes 5-13

operand restrictions 5-15, 5-21

operating mode selection 4-4

operating modes 4-2

P
Page Table Descriptor 7-6

Pages 7-2

palette 8-3, 11-4

updating 11-4

PC bus style I/O 1-6, 15-17

permission faults 7-15

permissions 7-2

physical addresses 7-2

physical details 20-2

pin details 21-2

pin diagrams 20-2

pixel clock 8-3, 11-2

power consumption 16-4

power management 1-4, 8-3, 16-3

power saving 11-11

prefetch abort 4-9

program-accessible registers

MMU 7-2

programmable registers 13-2

interface 15-32

pseudo random binary sequence generator 5-53

PSR transfer 5-15

R
R14 4-6

R15 4-6, 5-13, 5-26, 5-33, 5-38, 5-45, 5-49

using as an operator 5-13

writing to 5-13

read-lock-write 6-4

register configuration 4-2

registers 4-2, 4-5, 4-14, 7-2

configuration control 4-13

domain accesss control 7-3

fault 7-12

fault address 7-3

fault status 7-3

inclusion of the base 5-33

keyboard interface 15-32

list of 5-29

mouse interface 15-32

programmable 13-2

restrictions on the use of base registers 5-26

shifted offsets 5-24

specified shift amounts 5-12

version and ID 15-40

video and sound macrocell 9-2

reserved bits 5-17

reset 4-12, 7-17, 16-6

ROM interface 14-2

rotates 5-12

S
S bit 5-32

Sections 7-2

serial ports 1-6

serial sound interface 12-4

setting FIFO preload value 10-2

shifted register offsets 5-24

shifts 5-9

signals

descriptions of 2-3

Simple I/O 1-5, 15-4

single data swap 5-37

single data transfer 5-23

single panel LCDs 11-9

small page translation 7-10

software IDC flush 6-2

software interrupt 4-10

software interrupts 4-10, 5-39

sound 12-2

core 12-2

outputs 12-5

serial interface 12-4

sound control register 9-18

sound frequency register 9-18

sound subsystem

clock 16-2

sound system 8-4

specified shift amounts 5-9

by registers 5-12

speed of instructions

summary 5-55

status

of interface 15-37

ARM7500 Data Sheet - Index

ARM7500 Data Sheet
ARM DDI 0050C

Index-v

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

STC 5-44

stereo image register 9-17

STM 5-29

STOP mode 16-5

STR 5-23, 5-25, 5-26

STRB 5-25, 5-26

Supervisor mode 4-6, 4-10

SUSPEND mode 16-4

swap 5-37

SWI 4-10, 5-39

SWP 5-37

synchronisation

vertical and horizontal 11-11

synchronous mode 16-2

T
table base 7-4

test modes 1-6

timers 15-38

interrupts 15-39

programming 15-39

translation 7-4

translation faults 7-15

translation table base 4-16

register 7-3

U
unbufferable writes 6-4

undefined instruction 5-51

undefined instruction trap 4-11

Undefined mode 4-6

using R15 as an operator 5-13

V
vectors 4-11

Version register 15-40

vertical registers 9-10

video and sound macrocell 1-4, 8-2

interface 10-2

sound features 12-2

video DAC currents 11-12

video DMA 14-16

video frame buffer restrictions B-4

video palette register 9-4

video subsystem

clock 16-2

video system 8-2

virtual addresses 7-2

W
wb 6-3

write buffer 6-3

disabling 6-4

enabling 6-4

operation 6-4

writing to R15 5-13

ARM7500 Data Sheet - Index

ARM7500 Data Sheet
ARM DDI 0050C

Index-vi

P
re

li
m

in
a
ry

 -
 U

n
re

s
tr

ic
te

d

