

CHAPTER 6

Software
In this section, we present some software application
hints forthe Am95C60. Section 6.1 is a BASIC program
that completely initializes the QPDM (from power on) and
draws a very simple message on the screen. This
program initializes the registers in the recommended
order. It then issues the minimum instructions to get the
QPDM started and draws a few wide lines.

In Section 6.2, we discuss the logical and arithmetic
operations that can be performed on the source and
destination fields during Copy Block operations.

6.1 INITIALIZATION

The following program will completely initialize the add
in board and draw the word "HI!" using stroke characters
with a logical PEL (Pixel Element). This program was
written in IBM PC BASICA and compiled using the BASIC
compiler. Both source code and the compiled binary are
shipped with the demonstration board.

The program contains adequate comments; we shall
amplify as necessary. The board is described in
Chapter 5.

When we execute lines 60-190, we are loading the look
up table of the Am8159. It is programmed as indicated in
the table below; the 'Entry' column lists the values used
by Set Color Bits.

When we execute lines 210-290, we define the 1/0
addresses and set the HILITE oscillator to 2 Hz with a
25% duty factor.

When we execute lines 31 0-420, we call on subroutines
that initialize the registers. This is the recommended
order. Note that entering 8-bit mode may not be neces
sary for some applications.

When we execute lines 440-520, we tum on Video
Refresh Enable. This is synchronized to top-of-frame by
waiting for Vertical Blanking Interrupt. When this pro
gram is executed from the interpreter (at least on a PC),
the timing is not synchronized properly because it takes
several milliseconds to execute lines 500 and 510. The
compiled version does not have this problem.

When we execute lines 540-590 we send instructions to
the QPDM to initialize it and draw a simple message.
These are the minimum instructions required to program
the QPDM. Line 560 removes one word from the list of
data statements. If it is not the termination word (-1), it is
sentto the instruction FIFO. Afterthe last word has been
sent, the program stops at line 600. The instructions are
in the form of DATA statements occupying lines 630-840.

The subroutine at 1600 ensures there is room in the FI FO
by waiting for FREQ (x4000 in Status Register) to be a
"1". It then sends the word to the FIFO.

Table 6.1 Programming the Am8159

Entry HI LITE Off HI LITE On

0 Black Black
1 Black Grey
2 Dim Blue Dim Blue
3 Bright Blue Bright Blue
4 Dim Green Dim Green
5 Bright Green Bright Green
6 Dim Cyan Dim Cyan
7 Bright Cyan Bright Cyan
8 Dim Red Dim Red
9 Bright Red Bright Red
10 Dim Magenta Dim Magenta
11 Bright Magenta Bright Magenta
12 Dim Yellow Dim Yellow
13 Bright Yellow Bright Yellow
14 Dim White Dim White
15 Bright White Bright White

6-1

CHAPTER 6
Software

10 'This programs the 95C60 on Tom Crawford's demo board

20 ' for the NEC Multi-sync (or equivalent) monitor. The

30 ' monitor is color, 640 x 480. The Am8159 Color Palette

40 ' is programmed strictly as one to one (RGBI
50 DEFINT A-Z

60 DEF SEG=&HBFF8

70 FOR J = 0 TO 126 STEP 2

80 R=O: G=O: B=O :1=0

90 IF «J AND 6)=4) THEN B=8

100 IF «J AND 6)=6) THEN B=15

110 IF «J AND 10)=8) THEN G=8

120 IF «J AND 10)=10) THEN G=15

130 IF «J AND 18)=16) THEN R=8
140 IF «J AND 18)=18) THEN R=15

150 IF «J AND 62)=34) THEN R=4:

160 POKE J, (G*16+R)

170 POKE J+1,B

180 NEXT J

190 DEF SEG

200 ,
210 BSE=&H3AO

220 INST=BSE

230 STATUS=BSE

240 BIF=BSE+2
250 BOF=BSE+2
260 QADRS=BSE+4

270 QEG=BSE+6

280 AUX=BSE+8

290 OUT AUX,9

300 ,

G=4: B=4:

310 'Write the Registers to Initialize the QPDM

320 GOSUB 870

330 GOSUB 920

340 GOSUB 970

350 GOSUB 1010

360 GOSUB 1080

370 GOSUB 1170

380 GOSUB 1240

390 GOSUB 1320

400 GOSUB 1360

410 GOSUB 1400

420 GOSUB 1440

430 '

in, RGBI out).

'point to base of LUT

'128 locations in 1ut

'dim blue

'bight blue

'dim green

'bright green

'dim red

'bright red

'blink intense black

'bits 7-0

'bits 11-8

'put it back to basic

'instruction FIFO

'status register

'block input FIFO
'block output FIFO

'register address pointer

'io register

'BLINK CONTROL REGISTER

'SET BLINK TO 1 Hz, 25

'sw reset

'8-bit mode

'interrupts off

'screen

'windows

'horizontal

'vertical

'vmode

'mmode

'dmrr

'vte

440 'now wait for Vertical Blank to enable video timing

450 'First clear all the interrupts (especially VLKBI)

460 QA=30 :V=&H3FF :GOSUB 1480 'clear interrupts

470 'Now read Status Register until VBLKI goes Active

480 B=INP(STATUS) :BL=INP(STATUS) 'always do two byte reads

6-2

CHAPTER 6
Software

490 IF (B AND 1) = 0 THEN GOTO 480 'wait for interrupt to occur

500 OUT QADRS,O :OUT QADRS,29 'start video timing

510 OUT QEG,O :OUT QEG,l

520 PRINT "enable VRE"

530
540 'Now send some instructions to QPDM

550 'We will initialize it and then write HI! with strokes

560 READ V

570 IF V= -1 THEN GOTO 600

580 GOSUB 1600

590 GOTO 560

600 STOP

610 '
620 'Here are the instructions in the form of DATA statements
630 DATA &HOOB8 :'set QPDM position, enable
Masked Writes

640 DATA &H29,0,0

650 DATA &H39, &H03fO,0,&HOlfO

660 DATA &H34, &H35

670 DATA &h30,15

680 DATA &H31,0

690 DATA &H36,15

700 DATA &H22,10,10

710 DATA &H20,0

720 DATA &h0550,0,0,1023,1023
memory

730 DATA &H20,15

740 DATA &H54A,469,277,474,272

750 DATA &H21,15

760 DATA &H54,469,277

770 DATA &HB6, 7441

780 DATA &H54C,100,60,100,280

790 DATA &H54C,220,60,220,280

800 DATA &H54c,100,160,220,160
810 DATA &H54c,300,60,340,60

820 DATA &H54C,320,60,320,280

830 DATA &H54C,300,280,340,280

840 DATA &H54C,469,60,469,240

850 DATA -1

860 '
870 PRINT "sw reset"

880 OUT QADRS,O :OUT QADRS,27

890 OUT QEG,O :OUT QEG,O
900 RETURN

910 '
920 PRINT "8-Bit Mode"

930 OUT QADRS,31 :OUT QEG,O

940 OUT QADRS,59 :OUT QEG,O

:'turn off scaling

:'stack boundary

:' turn off clipping and picking

:' Turn on all activity bits

:'Set Listen Bits to All Planes

:'turn off logical pel

:'small block size

: ' black color
:'Filled Rectangle to clear

:'white drawing color

:'Circle with radius of five

:'Search Color of all ones

:'Fill the Circle with White

:'Logical PEL at 464,272

:'Left Stroke of 'H'

:'Right Stroke of 'H'

:'Crossbar of 'H'

:'Top of 'I'

:'Vertical Stroke of 'I'

:'Bottomof'I'

:' Stroke of ",

6-3

I'

CHAPTER 6
Software

950 RETURN

960 '
970 PRINT ftInterrupts Off"

980 QA=26 :V=O :GOSUB 1480

990 RETURN

1000 '
1010 PRINT ftScreen Parameters"

1020 QA=l :V=O : GOSUB 1480

1030 QA=2 :V=O : GOSUB 1480

1040 QA=3 :v=640 : GOSUB 1480

1050 QA=4 :V=480 : GOSUB 1480

1060 RETURN

1070 ,

1080 PRINT "windows"
1090 QA=14 :V=800 : GOSUB 1480

1100 QA=15 :V=500 : GOSUB 1480

1110 QA=16 :v=800 : GOSUB 1480

1120 QA=17 :V=500 : GOSUB 1480

1130 QA=18 :V=800 :GOSUB 1480

1140 QA=19 :v=800 : GOSUB 1480

1150 RETURN

1160 ,

1170 PRINT "horizontal"

1180 QA=10 :V=10 : GOSUB 1480

1190 QA=l1 :v=20 : GOSUB 1480

1200 QA=12 :V=80 : GOSUB 1480

1210 QA=13 :V=104 : GOSUB 1480

1220 RETURN

1230 ,
1240 PRINT "vertical"

1250 QA=5 :V=40 : GOSUB 1480

1260 QA=6 :V=50 : GOSUB 1480

1270 QA=7 :V=50 : GOSUB 1480

1280 QA=8 :V=480 : GOSUB 1480

1290 QA=9 :V=1024 : GOSUB 1480

1300 RETURN

1310 '

1320 PRINT ftvmode"

1330 QA=22 :V=ll :GOSUB 1480

1340 RETURN

1350 '
1360 PRINT ftmmode"

1370 QA=23 :V=&H70 :GOSUB 1480

1380 RETURN

1390 '
1400 PRINT ftDMRR"

1410 QA=24 :V=&H200+320 :GOSUB 1480

1420 RETURN

6-4

'real start x

'real start y

'real term x

'real tem y

'Apparent X Start

'Apparent Y Start

'Apparent X Terminate

'Apparent Y Terminate

'Real X Start

'Real Y Start

'HSYNC

'H Scan Delay

'H Active

'H Total

'VSYNC

'V Scan Delay Odd

'V Scan Delay Even

'V Active

'V Total

'Non-interlaced, Master, Master

'64K Devices, 1K Display Memory

'320 SYSCLK Cycles and Bit 9

1430 '
1440 PRINT "VTE"

1450 QA=28 :V=l :GOSUB 1480

1460 RETURN

1470 '
1480 'write 16 bit word to register

1490 'reg adrs in qa, value in v

1500 'most significant byte first

1510 B=INT (QA/256) :OUT QADRS,B

1520 B=QA MOD 256 :OUT QADRS,B

1530 'PRINT B,

1540 B=INT(V/256) :OUT QEG,B

1550 'PRINT B;" ";

1560 B=V MOD 256 :OUT QEG,B

1570 'PRINT B

1580 RETURN

1590 '

1600 'write 16 bit word to inst FIFO

1610 'word is in v

1620 'most sig byte first

1630 'first make sure there is room in the FIFO

1640 B=INP (STATUS) :Bl=INP(STATUS) 'always read two bytes

1650 IF (B AND 64) = 0 THEN GOTO 1640 'wait until FREQ is hi

1660 B=INT (V/256) :OUT INST,B

1670 'PRINT B;" ".

1680 B=V MOD 256 :OUT INST,B

1690 'PRINT B

1700 RETURN

CHAPTER 6
Software

6-5

CHAPTER 6
Software

6.2 COPY BLOCK OPERATORS IN THE
QPDM

6.2.1 Introduction .

This chapter documents how to perform various logical
and arithmetic operations with the Copy Block instruction
on the QPDM. This study was inspired by Dale Sim
monds who took the corresponding operations on the
TMS34010 seriously.

6.2.2 Logical Operations

When two bi-modal quantities are logically combined,
there are 16 possible results. In other words there are 16
functions of two variables, A and B. It is easy to prove
there are exactly 16 ways; simply write down the cases
exhaustively.

We can also describe the procedure for each of these.
Twelve ofthe 16 cases can be executed in one operation.
The other four require two operations each.

6.3.3 Arithmetic Operators

Overview

People have argued that arithmetic operations are useful
when doing graphics. The operations are:

Add dest = dest plus source
Add with Saturation Forces all ones rather than overflow
Subtract dest = dest minus source
Subtract w. Saturation Forces all zeroes rather than

underflow
Maximum Compare and use the numerically

larger
Minimum Compare and use the numerically

smaller

These operations can all be synthesized from the logical
operations we have (SOAXZ). The only part that is
expecially interesting (and time consuming) is the
propagation of carries. As you go over this code, bear in
mind that each operation is being done on more than
one quantity (pixel) in parallel. This means that optimiz
ing in real time based on the partial results cannot be
done. Rather, you have to just go blindly through all the
motions.

Add

We shall describe the add routine in great detail. All the
others are built to some greater or lesser degree on add.
The nomenclature for the four bit planes in a single
QPDM is shown below.

Plane Number 0 1 2 3
Weight 842 1

(for font instruction)
(for act instruction)

Carries propagate from right to left. Plane number 3
contains the LSB of each pixel; plane number 0 contains
the MSB of each pixel.

Four blocks in the display memory are defined. The two
original operands are "dest" and "source". The operation
is defined in a manner consistent with the normal QPDM
logical operations.

dest = dest plus source

The other two blocks are "temp1" and "emp2". These
are used to contain intermediate results as described
below.

Input Values of B,A: (where B Is the sourcs and A the destination)

0,0 0,1 1,0 1,1 Name Equation Procsdure

0 0 0 0 Clear A=O Copy Destination to itself with AND and SI
0 0 0 1 And A.A ANDB Copy Block with Logical AND
0 0 1 0 And Reverse A-A ANDB a) Invert Destination, b) Copy with Logical AND
0 0 1 1 Copy A=B Copy Block with Logical SET
0 1 0 0 Andlnverted A-A ANDB Copy Block with Logical AND, SI
0 1 0 1 NoOp A.A (left as an exercise for the reader)
0 1 1 0 Xor A-A XORB Copy Block with Logical XOR
0 1 1 1 Or A-A OR B Copy Block with Logical OR
1 0 0 0 Nor A-A OR B a) Copy Block with Logical OR, b)lnvert Dest
1 0 0 1 Equivalent A=A XORB Copy Block with Logical XOR, SI
1 0 1 0 Invert A.A Invert Destination
1 0 1 1 OrReverse A.AORB a) Invert Destination, b)Copy Block with OR
1 1 0 0 Copylnverted A-B Copy Block with Logical SET, SI
1 1 0 1 Orlnverted A.AORB Copy Block with Logical OR, SI
1 1 1 0 NAnd A-A ANDB a) Copy Block with Logical AND, b)lnvert Dest
1 1 1 1 Set A-1 Copy Destination to itself with OR and SI

" Invert Destination" means: Copy Block Dest to Dest with SI

6-6

The program for add is shown in addtemp (which stands
for add TEMPlate). The block size of the arrays to be
added is set and all the activity bits are set.

The "propagates" are calculated and placed in temp1.
The propagate for each bit position of each pixel is the
logical OR of the two operands. If the result is set, then a
carry into this bit position will result in a carry out. Note
that this calculation is a two-step operation. This is
because the QPDM requires the destination block to be
the same as one of the sources. (2-address machine)

The "generates" are calculated and placed in temp2. The
generate for each bit position of each pixel is the logical
AND of the two operands. If the result is set, then there
will be a carry out from this bit position regardless of any
carry in. We will see later how the propagates and
generates are combined.

The initial sums (with no carries) are calculated into
"dest" by XORing with "source". Recall that XOR is a so
called "half-add". This is all there is to it except for the
carries.

For the case of add, there is no carry into the low-order
bit, so we can go directly to plane 2. We must add any
carry generated from plane 3 into plane 2. We want to
affect plane 2 only, so we set only its activity bit. We want
to use the generate from plane 3 so we set the single
plane source with the fnt 3: instruction. We XOR the
generate from plane 3 into the destination of plane 2. This
leaves the correct sum in plane 2. Note that the single
plane source bit is set so thatthe source operand (temp2)
comes from plane 3.

Now the generate from plane 3 is ANDed with the
propagate from plane 2 with the result left in the plane 2
propagate array. Finally, this is ORed with the plane 2
generate and the result is left in plane 2 generate. This
can be done without single plane source since both
operands are in plane 2. Observe all this has affected
only plane 2.

"Generate" from any plane is propagate and carry-in or
generate. In a similar manner, we calculate the sum for
plane 1 and the carry from plane 1. Finally, we calculate
the sum for plane O. This completes the add routine.
There is no need to calculate the carry-out of plane O.
This has all taken 12 Copy Block instructions, five of
which use the single plane source option.

Add with Saturation

Add with Saturation is exactly the same as add except
that,if the result if larger than the maximum value, the
result is forced to the maximum value (there is no
overflow). The code is shown in addstemp. It is exactly

CHAPTER 6
Software

the same as addtemp with an extra step at the end. We
calculate the carry out of plane 0 (this is the overflow).
This carry is ORed with all four planes, forcing the
maximum for all pixels that have generated an overflow.

Subtract

The classical method of subtracting is "complement and
add". The complement is a two's complement; we do a
one's complement and force a carry into plane 3. This is
shown in sUbtemp. The block temp3 is used as a source
of 1 s to force the carry into plane 3. The complement of
the subtrahend is the very first "cpy". The carry is forced
into plane 3. After that, it is identical to add (down to and
including the comments).

Subtract with Saturation

This is identical to subtract except we calculate the carry
from plane O. Everywhere there is no carry, we force the
result to O. The listing is substemp.

Maximum

The two values corresponding to the pixel are compared
and the one that is numerically larger is chosen. This is
listing maxtemp. Copies of the two operands are saved
and the source is subtracted from the destination. The
carry-out of plane zero is used to select either the source
or destination (from the saved copies). The result is left
in the destination.

Minimum

The two values corresponding to the pixel are compared
and the one that is numerically smaller is chosen. This is
shown in mintemp. This is identical to maxtemp except
for the ANDs which select the operands at the end.

Propagation of Carries Saturation between QPDMs

Clearly, in a multi-QPDM system, it is necessary to
propagate the carry from the low-order QPDM to the
high-order QPDM. It is also necessary to convey the final
carry in the operations with saturate as well as maximum
and minimum. This is done using the match logic. Ob
serve that while this works, it is not especially fast.

1. Zero the destination plane
2. Set the listen bits for the source plane only.
3. Set the search color to ones in the source plane
4. Copy the destination to itself using source invert and

match.

Everywhere else the source plane is a one, the destina
tion will be forced to a one.

6-7

CHAPTER 6
Software

6.2.4 Transparency

TI has defined a logical operation called transparency.
This involves executing copy block only for pixels where
the source is not zero. This buys two things:

I. You can build up your destination in layers with the most
recent information on top, providing a type of visual
priority. (Using a straight Copy Block obscures the old
layers).

II. No new colors are created which might distort the
readability or change the intended meaning of color
coded information. (Observe that using logical opera
tions to merge information does just that. So does con
trolling the activity bits to write only selected planes).

The String instruction can do exactly what is called for
here. If you use an SOAXZ field of 101 (Graphical Set)
and a single plane font, then the character will be written
into all planes wherever there is a one in the font. Any
place there is a zero in the font, the pixel will not be
written, allowing the data that is underneath to come
through.

The drawing instructions (Line, Point, etc) also do this
verywell. Using aSOAXZfieldof 1 01 (Graphical Set), the
drawing colorwill be written into all bit planes everywhere
the object exists. This also works properly for single
plane PELs.

6-8

For Copy Block, the Situation may be slightly more
complex. If the source is a single plane, the Graphical Set
does exactly the correct thing: everywhere the source is
a one, all the planes of the destination will be written with
the current drawing color.

It is more interesting if the source image contains several
colors and the application wants to copy all of them to the
destination without overlaying anything where the source
is all zeroes. In this case, we cannot use a single plane
source because of the multiple color situation. One
method is:

1. Make a copy of the source (if it needs to be pre
served).

2. Copy the destination to the source matching on a
field of all zeroes.

3. Copy the source to the destination.

A third example involves the case where all pixels of a
single color are to be copied from the source block, but no
others. The solution involves the self-canceling effect of
exclusive OR.

1. Copy the source to a temporary region.
2. Copy the source to temporary with logical XOR,

matching on the desired color.
3. Copy the source to temporary with logical XOR.

This leaves all pixels, except those of the desired
color, at zero.

4. Choose a plane whose color bit for the desired
color is a one and execute a single plane copy
from temporary to the destination. Use Graphical
Set with drawing color set to the desired color.

MAXTEMP

blk [blksiz]

act 0 (is}

cpy [dest] [temp4]

cpy [source] [tempS]

cpy - [source] [source]

cpy [dest] [tempi]

cpy 0 [source] [tempi]

cpy [dest] [temp2]

cpy a [source] [temp2]

cpy x [source] [dest]

;save copy of original dest

;and source

;invert the subtrahend

;propagates

;generates

; half-adders

CHAPTER 6
Software

;now we have to propagate carries from 3 to 0

act 0 (8} ;will set all carries into plane three

cpy - 0 [temp3] [temp3]

act 0 (1}

fnt 0: [nul] 0 [fntO] 1 [fntl] - -
cpy 11 x [temp3] [dest]

cpy 11 a [temp3] [tempi]

cpy 0 [tempi] [temp2]

act 0 (2}

fnt 3 : [nul] 0 [fntO] 1 [fntl] - -
cpy 11 x [temp2] [dest]

cpy 11 a [temp2] [tempi]

cpy 0 [tempi] [temp2]

act 0 (4}

fnt 2 : [nul] 0 [fntO] 1 - -
cpy 11 x [temp2] [dest]

cpy 11 a [temp2] [tempi]

cpy 0 [tempi] [temp2]

act 0 (8}

[fntl]

fnt 1: [nul] O_[fntO] l_[fntl]

cpy 11 x [temp2] [dest]

;now we do the saturation part

;look for a carry out of plane zero

;force carries into plane three

;carries come from plane zero

;final sum for plane three

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane two only

;plane 3 is Source

;final sum for plane two

;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one
;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane zero only

;plane 1 is Source

;final sum for plane zero

6-9

CHAPTER 6
Software

cpy 11 a [temp2] [tempI]

cpy 0 [tempI] [temp2]

act 0 (IS)

fnt 0: [nul] O_[fntO] l_[fntl]

cpy 11 a [temp2] [temp4]

cpy 11 - a [temp2] [tempS]

cpy [temp4] [dest]

cpy 0 [tempS] [dest]

6-10

;lower plane generate and this propagate

;final carry from plane zero

;all activity bits

;and will force all zeroes where it isn't

;keep the maximums

;from each of the two images

;and merge them together

;in the final destination

MINTEMP

blk [blksiz]

act 0 11S}

cpy [dest] [temp4]

cpy [source] [tempS]

cpy - [source] [source]

cpy [dest] [temp1]

cpy 0 [source] [temp1]

cpy [dest] [temp2]

cpy a [source] [temp2]

cpy x [source] [dest]

;save copy of original dest
;and source

;invert the subtrahend

;propagates

;generates

; half-adders

CHAPTER 6
Software

;now we have to propagate carries from 3 to 0
act 0 18} ;will set all carries into plane three

cpy - 0 [temp3] [temp3]

act 0 11}
fnt 0: [nul] 0 [fntO] 1_[fnt1]

cpy 11 x [temp3] [dest]
cpy 11 a [temp3] [temp1]

cpy 0 [temp1] [temp2]

act 0 12}
fnt 3: [nul] O_[fntO] 1_[fnt1]
cpy 11 x [temp2] [dest]

cpy 11 a [temp2] [temp1]
cpy 0 [temp1] [temp2]

act 0 14}
fnt 2: [nul] O_[fntO] l_[fntl]

cpy 11 x [temp2] [dest]
cpy 11 a [temp2] [temp1]
cpy 0 [temp1] [temp2]

act 0 18}
fnt 1: [nul] 0 [fntO] 1 [fnt1]
cpy 11 x [temp2] [dest]

;now we do the saturation part
;look for a carry out of plane zero

;force carries into plane three

;carries come from plane zero
;final sum for plane three

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane two only
;plane 3 is Source
;final sum for plane two

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one
;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane zero only

;plane 1 is Source
;final sum for plane zero

6-11

CHAPTER 6
Software

cpy 11 a [temp2] [temp1]

cpy 0 [temp1] [temp2]

act 0 {1S}

fnt 0: [nul] O_[fntO] 1_[fnt1]

cpy 11 - a [temp2] [temp4]

cpy 11 a [temp2] [tempS]

cpy [temp4] [dest]

cpy 0 [tempS] [dest]

6-12

;lower plane generate and this propagate

;final carry from plane zero

;all activity bits
;and will force all zeroes where it isn't

;keep the minimums

;from each of the two images

;and merge them together

;in the final destination

ADDSTEMP

blk [blksiz)

act 0 (15)

cpy [dest) [temp1)

cpy 0 [source) [temp1)

cpy [dest) [temp2)

cpy a [source) [temp2)

cpy x [source) [dest)

;propagates

; generates

; half-adders

CHAPTER 6
Software

;now we have to propagate carries from 3 to 0

act 0 (2)

fnt 3: [nul) O_[fntO) 1 [fnt1)

cpy 11 x [temp2) [dest)

cpy 11 a [temp2) [temp1)

cpy 0 [temp1) [temp2)

act 0 (4)

fnt 2: [nul) O_[fntO) 1_[fnt1)

cpy 11 x [temp2) [dest)

cpy 11 a [temp2) [temp1)

cpy 0 [temp1) [temp2)

act 0 (S)

fnt 1: [nul) O_[fntO) 1_[fnt1)

cpy 11 x [temp2) [dest)

;write plane two only

;plane 3 is Source

;final sum for plane two

;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one

;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane zero only

;plane 1 is Source

;final sum for plane zero

;now we look for a carry out of plane zero

cpy 11 a [temp2) [temp1)

cpy 0 [temp1) [temp2)

act 0 (15)

fnt 0: [nul) O_[fntO) 1 [fnt1)

cpy 11 0 [temp2) [dest)

;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;and will force all ones with it

; (forcing result to saturated)

6-13

CHAPTER 6
Software

ADDTEMP

blk [blksiz]

act 0 {IS}

cpy [dest] [tempI]

cpy 0 [source] [tempI]

cpy [dest] [temp2]

cpy a [source] [temp2]

cpy x [source] [dest]

; propagates

; generates

; half-adders

;now we have to propagate carries from 3 to 0

act 0 {2}

fnt 3: [nul] O_[fntO] l_[fntl]

cpy 11 x [temp2] [dest]

cpy 11 a [temp2] [tempI]

cpy 0 [tempI] [temp2]

act 0 {4}

fnt 2: [nul] 0 [fntO] 1 [fntl] - -
cpy 11 x [temp2] [dest]

cpy 11 a [temp2] [tempI]

cpy 0 [tempI] [temp2]

act 0 {S}

fnt 1: [nul] 0 [fntO] 1 [fntl] - -
cpy 11 x [temp2] [dest]

6-14

;write plane two only

;plane 3 is Source

;final sum for plane two

;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one

;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane zero only

;plane 1 is Source

;final sum for plane zero

SUBTEMP

blk [blksiz]

act 0 {lS}

cpy - [source] [source]

cpy [dest] [temp1]

cpy 0 [source] [temp1]

cpy [dest] [temp2]

cpy a [source] [temp2]

cpy x [source] [dest]

;invert the subtrahend

; propagates

; generates

; half-adders

CHAPTER 6
Software

;now we have to propagate carries from 3 to 0

act 0 {8} ;will set all carries into plane three

cpy - 0 [temp3] [temp3]

act 0 {1}

fnt 0: [nul] O_[fntO] 1_[fnt1]

cpy 11 x [temp3] [dest]

cpy 11 a [temp3] [temp1]

cpy 0 [temp1] [temp2]

act 0 {2}

fnt 3: [nul] 0 [fntO] 1 [fnt1] - -
cpy 11 x [temp2] [dest]

cpy 11 a [temp2] [temp1]

cpy 0 [temp1] [temp2]

act 0 {4}

fnt 2: [nul] O_[fntO] l_[fntl]

cpy 11 x [temp2] [dest]

cpy 11 a [temp2] [temp1]

cpy 0 [temp1] [temp2]

act 0 {8}

fnt 1: [nul] O_[fntO] 1_[fnt1]

cpy 11 x [temp2] [dest]

;force carries into plane three

;carries come from plane zero

;final sum for plane three
;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane two only

;plane 3 is Source

;final sum for plane two

;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane zero only

;plane 1 is Source

;final sum for plane zero

-~---

6-15

CHAPTER 6
SoftWare

SUBSTEMP

blk [blksiz]

act 0 {IS}

cpy - [source] [source]

cpy [dest] [tempI]

cpy 0 [source] [tempI]

cpy [dest] [temp2]

cpy a [source] [temp2]

cpy x [source] [dest]

;invert the subtrahend

; propagates

; generates

; half-adders

;now we have to propagate carries from 3 to 0

act 0 {S} ;will set all carries into plane three

cpy - 0 [temp3] [temp3]

act 0 {I}
fnt 0: [nul] O_[fntO] 1_[fnt1]

cpy 11 x [temp3] [dest]

cpy 11 a [temp3] [tempI]

cpy 0 [tempI] [temp2]

act 0 {2}

fnt 3: [nul] 0 [fntO] 1 [fntl] -
cpy 11 x [temp2] [dest]

cpy 11 a [temp2] [tempI]

cpy 0 [tempI] [temp2]

act 0 {4}

fnt 2 : [nul] 0 [fntO] 1 [fntl] - -
cpy 11 x [temp2] [dest]

cpy 11 a [temp2] [tempI]

cpy 0 [tempI] [temp2]

act 0 {S}

fnt 1: [nul] O_[fntO] 1_[fnt1]

cpy 11 x [temp2] [dest]

;now we do the saturation part

;look for a carry out of plane zero

cpy 11 a [temp2] [tempI]

cpy 0 [tempI] [temp2]

act 0 {IS}

fnt 0: [nul] O_[fntO] l_[fntl]

cpy 11 a [temp2] [dest]

6-16

;force carries into plane three
;carries come from plane zero

;final sum for plane three

;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane two only
;plane 3 is Source

;final sum for plane two

;lower plane generate and this propagate
;ORd with this plane generate (final carry)

;write plane one only

;plane 2 is Source

;final sum for plane one

;lower plane generate and this propagate

;ORd with this plane generate (final carry)

;write plane zero only

;plane 1 is Source

;final sum for plane zero

;lower plane generate and this propagate

;final carry from plane zero

;all activity bits

;and will force all zeroes where it isn't

--

NOTES

~--

NOTES

NOTES

I

r

NOTES

NOTES

NOTES

NOTES

ADVANCED MICRO DEVICES' NORTH AMERICAN SALES OFFICES

ALABAMA. .. (205) 882-9122
ARIZONA ... (602) 242-4400
CALIFORNIA,

Culver City (213) 645-1524
Newport Beach (714) 752-6262
San Diego (619) 560-7030
San Jose (408) 249-7766
Santa Clara (408) 727-3270
Woodland Hills. . (818) 992-4155

CANADA, Ontario,
Kanata (613) 592-0060
Willowdale (416) 224-5193

COLORADO.... (303) 741-2900
CONNECTICUT (203) 264-7800
FLORIDA,

Clearwater (813) 530-9971
Ft Lauderdale (305) 776-2001
Melbourne (305) 729-0496
Orlando. . (305) 859-0831

GEORGIA. (404) 449-7920
ILLINOIS,

Chicago. (312) 773-4422
Naperville (312) 505-9517

INDIANA. (317) 244-7207

KANSAS
MARYLAND.
MASSACHUSETTS
MINNESOTA
MISSOURI
NEW JERSEY.
NEW YORK,

Liverpool .
Poughkeepsie
Woodbury

NORTH CAROLINA .
OHIO.

Columbus.
Dayton.

OREGON
PENNSYLVANIA,

Allentown .. .
Willow Grove

TEXAS,
Austin
Dallas
Houston . .

WASHINGTON
WISCONSIN

(913) 451-3115
(301) 796-9310
(617) 273-3970
(612) 938-0001
(913) 451-3115
(201) 299-0002

(315) 457-5400
(914) 471-8180
(516) 364-8020
(919) 878-8111
(614) 891-6455
(614) 891-6455
(513) 439-0470
(503) 245-0080

(215) 398-8006
(215) 657-3101

(512) 346-7830
(214) 934-9099
(713) 785-9001
(206) 455-3600
(414) 792-0590

ADVANCED MICRO DEVICES' INTERNATIONAL SALES OFFICES

BELGIUM,
Bruxelles

FRANCE,
Paris . .

WEST GERMANY,
Hannover area .

MOnchen

Stuttgart

HONG KONG,
Kowloon.

ITALY, Milano

JAPAN,
Kariagawa.

Tokyo

Osaka

........ TEL
FAX
TLX

.... (02) 771 91 42

.... (02) 7623712
.... 61028

.. TEL (1) 49-75-10-10
FAX (1) 49-75-10-13
TLX ... 263282

........ TEL (05143) 50 55
FAX (05143) 55 53
TLX ... 925287

.. TEL (089) 41 14-0
FAX. (089) 406490
TLX ... 523883

.... TEL (0711) 62 33 77
FAX (0711) 625187
TLX 721882

· TEL . 852-3-695377
FAX 852-123-4276
TLX . 504260AMDAPHX

........ TEL. . (02) 3390541
(02) 3533241

FAX. (02) 3498000
TLX 315286

· TEL 462-47-2911
FAX 462-47-1729

· TEL (03) 345-8241
FAX (03) 342-5196
TLX. . J24064AMDTKOJ

· TEL 06-243-3250
FAX 06-243-3253

KOREA, Seoul

LATIN AMERICA,
Ft. Lauderdale .

NORWAY,
Hovik .

· TEL
FAX

. 82-2-784-7598

. 82-2-784-8014

.. TEL . (305) 484-8600
FAX . (305) 485-9736
TLX .. 5109554261 AMDFTL

· TEL (02) 537810
FAX ... (02) 591959
TLX 79079

SINGAPORE TEL 65-2257544
FAX 2246113
TLX RS55650 MMI RS

SWEDEN, Stockholm · TEL .. . (08) 733 03 50
FAX (08) 733 22 85
TLX . .. 11602

TAIWAN TLX .. . 886-2-7122066
. 886-2-7122017

UNITED KINGDOM,
Farnborough

Manchester area ..

FAX ..

· TEL .' .. ' (0252) 517431
FAX . (0252) 521041
TLX 858051

· TEL .. . (0925) 828008
FAX (0925) 827693

London area
TLX . 628524

.. TEL (04862) 22121
FAX . (0483) 756196
TLX . 859103

NORTH AMERICAN REPRESENTATIVES

CALIFORNIA KENTUCKY
I'INC OEM (408) 988-3400 ELECTRONIC MARKETING

DISTI (408) 498-6868 CONSULTANTS, INC. (317) 253-1668
CANADA MICHIGAN
Burnaby, B.C. SAl MARKETING CORP .. (313) 750-1922

DAVETEK MARKETING (604) 430-3680 MISSOURI
Calgary, Alberta LORENZ SALES . (314) 997-4558

VITEL ELECTRONICS (403) 278-5833 NEBRASKA
Kanata, Ontario LORENZ SALES . (402) 475-4660

VITEL ELECTRONICS (613) 592-0090 NEW MEXICO
Mississauga, Ontario THORSON DESERT STATES (505) 293-8555

VITAL ELECTRONICS. (416) 676-9720 NEW YORK
Quebec NYCOM, INC. (315) 437-8343

VITEL ELECTRONICS (514) 636-5951 OHIO
IDAHO Centerville

INTERMOUNTAIN TECH MKGT . (208) 888-6071 DOLFUSS ROOT & CO (513) 433-6776
INDIANA Columbus

ELECTRONIC MARKETING DOLFUSS ROOT & CO (614) 885-4844
CONSULTANTS, INC. (317) 253-1668 Strongsville

IOWA DOL FUSS ROOT & CO (216) 238-0300
LORENZ SALES (319) 377-4666 PENNSYLVANIA

KANSAS DOLFUSS ROOT & CO (412) 221-4420
LORENZ SALES (913) 384-6556 UTAH

R' MARKETING (801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance
characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and
other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company
assumes no responsibility for the use of any circuits described herein.

© 1988 Advanced Micro Devices, Inc. ~ ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA
,0IIII TEL: (4081 732-2400. TWX: 910-339-9280. TELEX: 34-6306. TOLL FREE: (8001 538-8450
... APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323 Printed in U.S.A. PEP-WCP-11 M-3/88-1

