Remote Annex
5393/PRI

Hardware Installation Guide

Part No. 166-024-156 Rev. A
December 1996

Bay Networks
Electromagnetic Compatibility Statements

FCC Notice
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this
device may not cause harmful interference, and (2) this device must accept any interference received, including
interference that may cause undesired operation.

Warning: Changes or modifications to this unit not expressly approved by the party responsible for compliance
could void the user’s authority to operate the equipment.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant
to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate
radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful
interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful
interference in which case the user will be required to correct the interference at his own expense.

Declaration of Conformance
This is to certify that the Bay Networks products in this book are shielded against the generation of radio interference
in accordance with the application of Council Directive 89/336/EEC, Article 4a. Conformity is declared by the

Industry Canada Notice
Canadian Department of Communications Radio Interference Regulations
This digital apparatus does not exceed the Class A limits for radio-noise emissions from digital apparatus set out
in the Radio Interference Regulations of the Canadian Department of Communications.

Réglement sur le brouillage radioélectrique du ministère des Communications
Les present appareil numerique n’émet pas de bruits radioélectriques depassant les limites applicables aux appareils
numeriques de la classe A prescrites dans le Reglement sur le brouillage radioelectrique edicte par le ministere des
Communications du Canada.
Japan/Nippon Requirements Only

Voluntary Control Council for Interference (VCCI) Statement

この装置は、第一種情報装置（商工業地域において使用されるべき情報装置）で、商工業地域での電波障害防止を目的とした情報処理装置等電波障害自主規制協議会（VCCI）基準に適合しております。

従って、住宅地域、その隣接地域等で使用した場合、ラジオ、テレビ受信機等に障害を与えることがあります。

Voluntary Control Council for Interference (VCCI) Statement

This equipment is in the 1st category (information equipment to be used in commercial and/or industrial areas) and conforms to the standards set by the Voluntary Council for Interference by Data Processing Equipment and Electronic Office Machines that are aimed at preventing radio interference in commercial and/or industrial areas.

Consequently, when this equipment is used in a residential area or in an adjacent area thereto, radio interference may be caused to equipment such as radios and TV receivers.
Notice

The Industry Canada label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operational, and safety requirements. The Industry Canada does not guarantee the equipment will operate to the user’s satisfaction.

Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. In some cases, the company’s inside wiring associated with a single line individual service may be extended by means of a certified connector assembly (telephone extension cord). The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situations.

Repair to certified equipment should be made by an authorized Canadian maintenance facility designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment.

Users should ensure for their own protection that the electrical ground connections of the power utility, telephone lines, and internal metallic water pipe system, if present, are connected together. This precaution may be particularly important in rural areas.

Caution: Users should not attempt to make such connections themselves, but should contact the appropriate electric inspection authority, or electrician, as appropriate.
Notice to Users of ISDN Service

The following instructions are provided to ensure compliance with the Federal Communications Commission (FCC) Rules, Part 68.

1. All direct connections to ISDN lines must be made using standard plugs and jacks.

2. Before connecting your unit, you must inform the local telephone company of the following information:

<table>
<thead>
<tr>
<th>Port ID</th>
<th>REN/SOC</th>
<th>FIC</th>
<th>USOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRI ISDN</td>
<td>6.0Y</td>
<td>04DU9-1SN</td>
<td>RJ48C</td>
</tr>
</tbody>
</table>

3. If the unit appears to be malfunctioning, it should be disconnected from the telephone lines until you learn if your equipment or the telephone line is the source of the trouble. If your equipment needs repair, it should not be reconnected until it is repaired.

4. This device has been designed to prevent harm to the ISDN network. If the telephone company finds that the equipment is exceeding tolerable parameters, the telephone company can temporarily disconnect service, although they will attempt to give you advance notice if possible.

5. Under the FCC Rules, no customer is authorized to repair this equipment. This restriction applies regardless of whether the equipment is in or out of warranty.

6. If the telephone company alters their equipment in a manner that will affect use of this device, they must give you advance warning so as to give you the opportunity for uninterrupted service. You will be advised of your right to file a complaint with the FCC.

7. In the event of equipment malfunction, all repairs should be performed by our Company or an authorized agent. It is the responsibility of users requiring service to report the need for service to our Company or one of our authorized agents. For more details, see Technical Support and Online Services on page xxi.
Revision Level History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Contents

Preface
About this Guide ... xvii
Printing Conventions ... xviii
Related Documents ... xix

Technical Support and Online Services
Bay Networks Customer Service .. xxi
Bay Networks Information Services ... xxiii
World Wide Web .. xxiii
Customer Service FTP .. xxiv
Support Source CD .. xxiv
CompuServe .. xxiv
InfoFACTS ... xxv
How to Get Help ... xxvi

Chapter 1 Introduction
Remote Annex 5393/PRI Description ... 1-3
Main Logic Module .. 1-4
Modem Module ... 1-4
System 5000 Common Management Bus .. 1-5
System 5000 Backplane Ethernet Segment Banks 1-6
System 5000 Service Port Management .. 1-6
Firmware and Software ... 1-7
Front Panel .. 1-8
 Front Panel Components ... 1-10
Physical Characteristics ... 1-14

Chapter 2 Installing the Remote Annex 5393/PRI
Before you Begin ... 2-1
Installing the Remote Annex 5393/PRI .. 2-3
 Preparing for Hardware Installation ... 2-3
 Setting the Backplane Ethernet Segment 2-3
 Installing the Module into the Hub ... 2-6
Testing the Installation .. 2-10
 LED Indicators ... 2-11
Connecting a PRI ISDN Network Interface 2-12
Connecting a Service Port Terminal ... 2-14
 Connecting the Terminal ... 2-15
Initial Setup and Using the ROM Monitor 2-17
 Remote Annex Parameters ... 2-18
 Initializing the Remote Annex .. 2-18
Auto-initializing the Remote Annex ... 2-21
 BOOTP .. 2-22
 RARP .. 2-23
Initializing and Booting from a Host System 2-24
 Booting Using TFTP ... 2-26
 Booting from a Windows NT® Host .. 2-28
Contents

Booting from Another Remote Annex 5393/PRI .. 2-28
Installing the Operational Software and Loading the Image 2-28
Installing to and Loading from a UNIX Host .. 2-29
Self-booting the Remote Annex ... 2-30
Invoking the Console Monitor ... 2-33

Chapter 3 ROM Monitor Commands
Command Descriptions ... 3-2
addr ... 3-4
boot .. 3-7
cfg .. 3-12
erase .. 3-13
help ... 3-15
image ... 3-16
lat_key ... 3-17
net ... 3-18
option_key ... 3-19
ping .. 3-20
ports ... 3-21
sequence ... 3-22
stats ... 3-24

Chapter 4 Troubleshooting Procedures
Front Panel Alarms and LED Indicators ... 4-1
Power-up and Boot Procedures ... 4-5
BOOT Failures .. 4-8
 Boot Error Report .. 4-9
 Correcting Remote Annex Parameters .. 4-11
 Load Server Host Not Responding .. 4-12
Remote Annex Dumps .. 4-15
Conditions for Replacing a Module .. 4-17
 Module Configuration Management ... 4-17
 Preparing for a Hot Swap ... 4-19
 Removing a Module .. 4-20
 Completing the Hot Swap .. 4-21

Appendix A Port Pins and Signals
PRI ISDN Interface Port ... A-1

Appendix B Modem Module Installation Instructions
Contents of the Kit .. B-1
 Required Tools ... B-1
Main Logic Module Removal Instructions ... B-2
Modem Module Installation Instructions .. B-3

Appendix C Modem Upgrade Instructions
Contents of the Kit .. C-1
 Required Tools ... C-1
Main Logic Module Removal Instructions ... C-2
Quad Modem Card Installation Instructions .. C-3
Removing Quad Modem Cards ... C-5
Figures

Figure 1-1. Remote Annex 5393/PRI ... 1-1
Figure 1-2. The Remote Annex 5393/PRI as a Remote Access Server 1-2
Figure 1-3. Remote Annex 5393/PRI Front Panel ... 1-9
Figure 2-1. Main Logic Module Jumper and Connector Locations 2-4
Figure 2-2. Inserter/Extractor Lever ... 2-7
Figure 2-3. Inserting the Module .. 2-8
Figure 2-4. Seating Module Connectors ... 2-9
Figure 2-5. Module LED Display .. 2-10
Figure 2-6. Connecting a PRI ISDN Network Interface 2-13
Figure 2-7. Slot Selection Menu .. 2-16
Figure 4-1. Remote Annex 5393/PRI Front Panel Alarms and LEDs 4-1
Figure A-1. PRI ISDN Interface Port Connector ... A-1
Figure B-1. Removing the Main Logic Module from the System 5000 Hub B-2
Figure B-2. Installing the Modem Module ... B-4
Figure C-1. Removing the Main Logic Module from the System 5000 Hub C-2
Figure C-2. Adding Quad Modem Cards to the Modem Module C-4
Figure C-3. Removing Modem Cards from the Modem Module C-6
Figure C-4. Locating and Setting DIP Switch S1 .. C-7
Tables

Table 1-1. Annunciator Conditions ... 1-10
Table 1-2. Module Status LEDs ... 1-11
Table 1-3. Modem Port Status LEDs .. 1-12
Table 1-4. Network Status Alarms ... 1-13
Table 2-1. Remote Annex 5393/PRI Configuration Options 2-2
Table 2-2. Segment Selection DIP Switch Settings 2-6
Table 2-3. Service Port Pin Assignments ... 2-15
Table 2-4. Server Parameters ... 2-18
Table 3-1. ROM Monitor Commands ... 3-2
Table 3-2. Network Statistics ... 3-24
Table 4-1. Remote Annex 5393/PRI Front Panel LEDs 4-2
Table 4-2. Troubleshooting Guide ... 4-6
Table 4-3. Errors from Last ERPC Layer Invocation 4-10
Table 4-4. Errors from Last Read Request .. 4-10
Table 4-5. Errors from Last Open Request .. 4-11
Table 4-6. Remote Annex 5393/PRI Dump File Naming Conventions 4-16
Table A-1. PRI ISDN Interface Port/Pin Signal Allocations A-1
Table C-1. Modem Card/S1 DIP Switch Section Assignments C-5
This guide describes how to install a Remote Annex 5393/PRI in a Bay Networks Lattice System 5000 Hub.

About this Guide

This guide includes the following chapters and appendices:

Chapter 1 Introduction
Contains an overview of the Remote Annex 5393/PRI, and describes the hardware features and firmware functions.

Chapter 2 Installing the Remote Annex 5393/PRI
Describes how to install the Remote Annex 5393/PRI in a System 5000 Hub and how to confirm its operating status.

Chapter 3 ROM Monitor Commands
Describes the ROM Monitor commands that modify specific configuration parameters, perform diagnostic tests, and load the operational code.

Chapter 4 Troubleshooting Procedures
Provides troubleshooting and verification procedures.
Appendix A Port Pins and Signals
Details the port connectors located on the Remote Annex 5393/PRI.

Appendix B Modem Module Installation Instructions
Describes how to install a Modem Module onto the Main Logic Module.

Appendix C Modem Upgrade Instructions
Describes how to add quad modem cards to the Remote Annex 5393/PRI.

Printing Conventions

This manual uses the following printing conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Represents</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>special type</code></td>
<td>In examples, special type indicates system output.</td>
</tr>
<tr>
<td><code>special type</code></td>
<td>Bold special type indicates user input.</td>
</tr>
<tr>
<td><code>return</code></td>
<td>In command examples, this notation indicates that pressing <code>return</code> enters the default value.</td>
</tr>
<tr>
<td><code>bold</code></td>
<td>Bold indicates commands, pathnames, or filenames that must be entered as displayed.</td>
</tr>
<tr>
<td><code>italics</code></td>
<td>In the context of commands and command syntax, lowercase italics indicate variables for which the user supplies a value.</td>
</tr>
<tr>
<td><code>[]</code></td>
<td>In command dialog, square brackets indicate default values. Pressing <code>return</code> selects this value. Square brackets appearing in command syntax indicate optional arguments.</td>
</tr>
<tr>
<td><code>{ }</code></td>
<td>In command syntax, braces indicate that one, and only one, of the enclosed value must be entered.</td>
</tr>
</tbody>
</table>
Each Remote Annex hardware platform ships with the appropriate hardware guide. The remaining documentation is included with the software.
Preface
Technical Support and Online Services

To ensure comprehensive network support to our customers and partners worldwide, Bay Networks Customer Service has Technical Response Centers in key locations around the globe:

- Billerica, Massachusetts
- Santa Clara, California
- Sydney, Australia
- Tokyo, Japan
- Valbonne, France

The Technical Response Centers are connected via a redundant Frame Relay Network to a Common Problem Resolution system, enabling them to transmit and share information, and to provide live, around-the-clock support 365 days a year.

Bay Networks Information Services complement the Bay Networks Service program portfolio by giving customers and partners access to the most current technical and support information through a choice of access/retrieval means. These include the World Wide Web, CompuServe, Support Source CD, Customer Support FTP, and InfoFACTS document fax service.

Bay Networks Customer Service

If you purchased your Bay Networks product from a distributor or authorized reseller, contact that distributor’s or reseller’s technical support staff for assistance with installation, configuration, troubleshooting, or integration issues.
Customers can also purchase direct support from Bay Networks through a variety of service programs. As part of our PhonePlus™ program, Bay Networks Service sets the industry standard, with 24-hour, 7-days-a-week telephone support available worldwide at no extra cost. Our complete range of contract and noncontract services also includes equipment staging and integration, installation support, on-site services, and replacement parts delivery -- within approximately 4 hours.

To purchase any of the Bay Networks support programs, or if you have questions on program features, use the following numbers:

<table>
<thead>
<tr>
<th>Region</th>
<th>Telephone Number</th>
<th>Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States and Canada</td>
<td>1-800-2LANWAN; enter Express Routing Code (ERC) 290 when prompted</td>
<td>(508) 670-8766</td>
</tr>
<tr>
<td></td>
<td>(508) 436-8880 (direct)</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>(33) 92-968-300</td>
<td>(33) 92-968-301</td>
</tr>
<tr>
<td>Asia/Pacific Region</td>
<td>(612) 9927-8800</td>
<td>(612) 9927-8811</td>
</tr>
<tr>
<td>Latin America</td>
<td>(407) 997-1713</td>
<td>(407) 997-1714</td>
</tr>
</tbody>
</table>

In addition, you can receive information on support programs from your local Bay Networks field sales office, or purchase Bay Networks support directly from your authorized partner.
Bay Networks Information Services

Bay Networks Information Services provide up-to-date support information as a first-line resource for network administration, expansion, and maintenance. This information is available from a variety of sources.

World Wide Web

The Bay Networks Customer Support Web Server offers a diverse library of technical documents, software agents, and other important technical information to Bay Networks customers and partners.

A special benefit for contracted customers and resellers is the ability to access the Web Server to perform Case Management. This feature enables your support staff to interact directly with the network experts in our worldwide Technical Response Centers. A registered contact with a valid Site ID can:

- View a listing of support cases and determine the current status of any open case. Case history data includes severity designation, and telephone, e-mail, or other logs associated with the case.
- Customize the listing of cases according to a variety of criteria, including date, severity, status, and case ID.
- Log notes to existing open cases.
- Create new cases for rapid, efficient handling of noncritical network situations.
- Communicate directly via e-mail with the specific technical resources assigned to your case.

The Bay Networks URL is http://www.baynetworks.com. Customer Service is a menu item on that home page.
Customer Service FTP

Accessible via URL ftp://support.baynetworks.com (134.177.3.26), this site combines and organizes support files and documentation from across the Bay Networks product suite, including switching products from our Centillion™ and Xylogics® business units. Central management and sponsorship of this FTP site lets you quickly locate information on any of your Bay Networks products.

Support Source CD

This CD-ROM -- sent quarterly to all contracted customers -- is a complete Bay Networks Service troubleshooting knowledge database with an intelligent text search engine.

The Support Source CD contains extracts from our problem-tracking database; information from the Bay Networks Forum on CompuServe; comprehensive technical documentation, such as Customer Support Bulletins, Release Notes, software patches and fixes; and complete information on all Bay Networks Service programs.

You can run a single version on Macintosh, Windows 3.1, Windows 95, Windows NT, DOS, or UNIX computing platforms. A Web links feature enables you to go directly from the CD to various Bay Networks Web pages.

CompuServe

For assistance with noncritical network support issues, Bay Networks Information Services maintain an active forum on CompuServe, a global bulletin-board system. This forum provides file services, technology conferences, and a message section to get assistance from other users.
The message section is monitored by Bay Networks engineers, who provide assistance wherever possible. Customers and resellers holding Bay Networks service contracts also have access to special libraries for advanced levels of support documentation and software. To take advantage of CompuServe’s recently enhanced menu options, the Bay Networks Forum has been re-engineered to allow links to our Web sites and FTP sites.

We recommend the use of CompuServe Information Manager software to access these Bay Networks Information Services resources. To open an account and receive a local dial-up number in the United States, call CompuServe at 1-800-524-3388. Outside the United States, call 1-614-529-1349, or your nearest CompuServe office. Ask for Representative No. 591. When you are on line with your CompuServe account, you can reach us with the command GO BAYNET.

InfoFACTS

InfoFACTS is the Bay Networks free 24-hour fax-on-demand service. This automated system has libraries of technical and product documents designed to help you manage and troubleshoot your Bay Networks products. The system responds to a fax from the caller or to a third party within minutes of being accessed.

To use InfoFACTS in the United States or Canada, call toll-free 1-800-786-3228. Outside North America, toll calls can be made to 1-408-764-1002. In Europe, toll-free numbers are also available for contacting both InfoFACTS and CompuServe. Please check our Web page for the listing in your country.
How to Get Help

Use the following numbers to reach your Bay Networks Technical Response Center:

<table>
<thead>
<tr>
<th>Technical Response Center</th>
<th>Telephone Number</th>
<th>Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billerica, MA</td>
<td>1-800-2LANWAN</td>
<td>(508) 670-8765</td>
</tr>
<tr>
<td>Santa Clara, CA</td>
<td>1-800-2LANWAN</td>
<td>(408) 764-1188</td>
</tr>
<tr>
<td>Valbonne, France</td>
<td>(33) 92-968-968</td>
<td>(33) 92-966-998</td>
</tr>
<tr>
<td>Sydney, Australia</td>
<td>(612) 9927-8800</td>
<td>(612) 9927-8811</td>
</tr>
<tr>
<td>Tokyo, Japan</td>
<td>(81) 3-5402-0180</td>
<td>(81) 3-5402-0173</td>
</tr>
</tbody>
</table>
Chapter 1 Introduction

The Remote Annex 5393/PRI is a dial-in remote access server that supports mixed traffic, such as analog modems, V.120 ISDN Terminal Adapters, and devices supporting synchronous PPP. The Remote Annex 5393/PRI is designed to operate within the Bay Networks Lattice System 5000 Series Hub. Figure 1-1 illustrates a Remote Annex 5393/PRI.

Figure 1-1. Remote Annex 5393/PRI
The Remote Annex 5393/PRI provides remote network access to the following networks (see Figure 1-2):

- Novell Netware
- TCP/IP
- AppleTalk

![Diagram of Remote Annex 5393/PRI as a Remote Access Server]

Figure 1-2. The Remote Annex 5393/PRI as a Remote Access Server
The Remote Annex 5393/PRI also provides terminal to host connectivity to the following:

- UNIX hosts (using TCP/IP)
- VMS hosts (using LAT)
- IBM hosts (using TN3270)

Remote Annex 5393/PRI Description

The Remote Annex 5393/PRI is a Primary Rate ISDN server that houses up to 32 modems to provide the flexibility of terminating calls originated by analog modems, terminal adapters, and routers. The Remote Annex 5393/PRI occupies two slots in a System 5000 Hub, and consists of the following two modules:

- Main Logic Module
- Modem Module

Modem-less versions of the Remote Annex 5393/PRI consist of the Main Logic Module only, and occupy only one slot in a System 5000 Hub.

For the purpose of simplification, only the dual-slot version of the Remote Annex 5393/PRI is depicted in this document.
Main Logic Module

Processors

The Remote Annex Main Logic Module utilizes two 80486 DX2 clock-doubled processors, operating at 64 MHz.

ISDN PRI Interface

This interface resides on the Main Logic Module and is accessible via an RJ48C connector on the front panel. The ISDN PRI interface is controlled by one of the 80486 DX2 processors, which also controls the internal modems.

Memory

The Main Logic Module has 8 megabytes of main DRAM, 4 megabytes of which is shared by the system. An additional 4 megabytes of DRAM is used by the ISDN PRI interface controller.

Flash Memory

The Main Logic Module is equipped with 2 megabytes of Flash memory.

Modem Module

Modems

The Remote Annex 5393/PRI can be configured with 0 (modem-less), 24 (T1), or 32 (E1) internal V.34 modems. The modems, located on quad modem cards, are installed on the Modem Module. Modem-less versions of the Remote Annex 5393/PRI do not come with a Modem Module. The modems receive data from a TTL serial channel and convert the data to a modulated analog waveform. The analog signal is then presented to a pulse-code-modulated coder/decoder (PCM codec).
The Remote Annex uses PCM codecs to convert the analog signals coming from the modems into 8-bit serial data streams. The data streams are multiplexed and passed to the ISDN PRI interface along with data that is purely digital in nature, such as that used with V.120 and synchronous PPP protocols.

System 5000 Common Management Bus

The management section of the backplane is the common management bus (CMB), a high-speed, multimaster, shared-memory communication channel that connects all modules installed in the hub to one another and to the supervisory module. The modules installed in the hub use the CMB to acquire and distribute configuration and status information.

The supervisory module is an intelligent interface between the Model 5000 chassis and user-installed modules. The supervisory module provides the following services to other modules across the CMB:

- Maintains chassis component information and environmental status
- Stores the primary module configurations
- Restores the module configuration after the module power is cycled or the module is reset

The supervisory module also supports configuration terminal support through the service port on the front panel of the chassis.
System 5000 Backplane Ethernet Segment Banks

The chassis backplane Ethernet bus consists of 12 Ethernet segments, divided into two banks of six segments each: segments 1 through 6 and segments 7 through 12. Each Remote Annex 5393/PRI installed in the chassis can be configured to access one bank of six segments, either segments 1 through 6 or segments 7 through 12.

Within a segment bank, the specific segment to which a Remote Annex 5393/PRI is connected is initially determined by setting the segment selection jumper on the module (used for initial installation power-up). For more information, see Setting the Backplane Ethernet Segment on page 2-3.

System 5000 Service Port Management

The service port, located on the front panel of the chassis, provides a switched serial communication link between the service port and any module in the hub, including the supervisory module. By connecting a terminal to this port, you can change the configuration parameter values for the Remote Annex 5393/PRI installed in the hub.

For more information, see Connecting a Service Port Terminal on page 2-14 and Installing the Remote Annex 5393/PRI on page 2-3, and Remote Annex Parameters on page 2-18.
Firmware and Software

Firmware

The Remote Annex 5393/PRI’s ROM contains firmware for performing power-up self-tests and loading operational code. A non-volatile EEPROM stores the configuration parameters.

The Remote Annex 5393/PRI can boot from the boot image in its Flash memory or can boot from an image received from a boot server on the network.

ROM Monitor

The ROM monitor is an interactive command interpreter that is used to define basic configuration parameter values. All of the information that the Remote Annex needs to boot an operational image is defined using the ROM monitor and its command set. ROM Monitor commands are issued from a terminal connected to the service port on the hub chassis. When the Remote Annex completes its self tests, the service port terminal displays the ROM monitor prompt. Using the ROM Monitor commands (see Chapter 3), you can:

- Modify and display a set of configuration parameters stored in EEPROM.
- Execute interactive diagnostic tests.
- Receive information and statistics for the hardware configuration and the network.
- Boot the Remote Annex manually.

Once the Remote Annex has obtained a boot image and is booted, the service port terminal leaves the ROM monitor and displays the Console monitor (for more details, see Chapter 2).
Supported Configurations
You can self-boot the Remote Annex 5393/PRI from the image contained in its Flash ROM. The Remote Annex can also obtain full operational code over the network from one of the following devices:

- UNIX host
- A Remote Annex 5393/PRI configured as a load server
- NT host

Watchdog Timer
The Remote Annex 5393/PRI has a watchdog timer that its software resets at regular intervals. The watchdog timer reboots the Remote Annex in the unlikely event of an internal software error. This feature enables the Remote Annex to run for long periods of time without intervention.

Front Panel
The Remote Annex 5393/PRI's front panel consists of:

- Annunciator LED
- Segment Connection LEDs
- Module Status LEDs
- Channel Status LEDs
- Modem Configuration Status LEDs.
- Modem Port Status LEDs
- Network Status /Alarms
- PRI ISDN Interface Port
Figure 1-3 illustrates the Remote Annex 5393/PRI's front panel. The front panel components are described in the following paragraphs.

Figure 1-3. Remote Annex 5393/PRI Front Panel
Annunciator

The Annunciator backlights the model number of the module and indicates, by its color, the operational condition of the module. Table 1-1 describes the Annunciator conditions.

Table 1-1. Annunciator Conditions

<table>
<thead>
<tr>
<th>Color</th>
<th>Operational Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>The module is performing normally.</td>
</tr>
<tr>
<td>Amber</td>
<td>Some portion of the module has failed, or the module is being initialized.</td>
</tr>
<tr>
<td>Off</td>
<td>The module is not receiving +5 volt power, or the power level is below the reset limit (4.65 volts).</td>
</tr>
</tbody>
</table>

Segment Connection LEDs

The Segment Connection LEDs indicate which backplane Ethernet LAN segments are being used. There are 12 green LEDs, labeled S1 through S12, for the 12 Ethernet segments. When an LED is illuminated, it indicates that the Remote Annex is connected to the corresponding backplane Ethernet LAN segment; when off it indicates that the corresponding backplane Ethernet LAN segment is not connected.

Module Status LEDs

The Module Status LEDs are a group of five LEDs that display the status of the activity of the Remote Annex. Table 1-2 describes the Module Status LEDs.
Table 1-2. Module Status LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init</td>
<td>Turns green when the Remote Annex begins the initialization process after a power-up or reset. This is the first LED that lights after power-up or reset. The Init LED turns off after the diagnostics have successfully completed.</td>
</tr>
<tr>
<td>Unit</td>
<td>Turns green after the Remote Annex passes the power-up diagnostics. Turns amber if the power-up diagnostics fail.</td>
</tr>
<tr>
<td>Net</td>
<td>Turns green after the Remote Annex verifies that a valid Ethernet connection exists.</td>
</tr>
<tr>
<td>Attn</td>
<td>Turns green when the Remote Annex requires operator attention, that is, in monitor mode. Turns amber when the diagnostic tests fail.</td>
</tr>
<tr>
<td>Load</td>
<td>Turns green when the Remote Annex is loading the operational image or dumping a RAM image if there is a failure. The LED turns amber if a load error is detected.</td>
</tr>
</tbody>
</table>

PRI Channel Status LEDs
The PRI Channel Status LEDs indicate B channel allocation. There are 32 PRI Channel Status LEDs on the front of the Remote Annex. For T1, 23 are used to indicate B channel allocation. For E1, 30 are used for B channel allocation.

Modem Config Status LEDs
The Modem Config Status LEDs indicate the general status of the modems within a group. There are eight groups of four modems (labeled 1-4, 5-8, 9-12, 13-16, 17-20, 21-24, 25-28, and 29-32). An indicator is green if all the modems within a group are good. An indicator is amber if one or more modems within a group are bad.

Modem Port Status LEDs
The Remote Annex 5393/PRI has two status indicators for each modem port (1 through 32). The status indicators display modem port status during system operation. Table 1-3 describes the modem port status LEDs.
Network Status Alarms

The six Network Status Alarms display network activity during system operation. Table 1-4 describes the alarms.

Technical Support personnel can use this information to diagnose problems.

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>CD (Data Carrier Detect) indicator is green and ON when the carrier has been detected on the telephone line on the corresponding modem. There are 32 CD indicators, one LED per channel, on the front of the Modem Board.</td>
</tr>
<tr>
<td>TxD/RxD</td>
<td>These indicators are green and flash to indicate the corresponding modem is transmitting or receiving data. There are 32 TxD/RxD indicators, one LED per channel, on the front of the Modem Board.</td>
</tr>
</tbody>
</table>
The PRI ISDN Interface provides access to a digital PRI ISDN line. The PRI ISDN Interface port comes with an 8-pin, RJ48C port for attaching the PRI ISDN Interface cable connector.

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>The red network TEST indicator is ON when the PRI ISDN Network Interface is looped back. Loopback tests are activated either locally by the user or by the telephone company.</td>
</tr>
<tr>
<td>SYNC</td>
<td>The green SYNC indicator is ON when the PRI ISDN interface is properly synchronized with the received network signal and is receiving proper framing information.</td>
</tr>
<tr>
<td>LOS</td>
<td>The red LOS indicator is ON when the PRI ISDN interface is detecting no signal (pulses) on the network interface receiver. When a LOS condition exists, the Remote Annex transmits unframed all ones (AIS) to the network.</td>
</tr>
<tr>
<td>RED</td>
<td>The RED alarm indicator is ON during a locally detected carrier failure. During the RED alarm condition, a YELLOW alarm is transmitted across the telephone network.</td>
</tr>
<tr>
<td>YELLOW</td>
<td>The YELLOW alarm indicator is ON when receiving a YELLOW alarm condition from the telephone network.</td>
</tr>
<tr>
<td>BLUE</td>
<td>The BLUE alarm indicator is ON when receiving an unframed, all-ones Alarm Indication Signal (AIS) from the network. This condition exists upon a loss of originating signal, or when any action is taken that would cause a signal disruption.</td>
</tr>
</tbody>
</table>
Chapter 1 Introduction

Physical Characteristics

The Remote Annex 5393/PRI has the following characteristics:

- **Dimensions:**
 - Height: 19 in.
 - Width: 2.4 in.
 - Depth: 11 in.

- **Weight:**
 - 10 lbs (4.5 kg).

- **Electrical Specifications:**
 - Power Consumption: 125 W at 48 VDC
 - Thermal Rating: 427 BTU/hr maximum

- **Environment:**
 - Operating temperature: 5° to 40°C.
 - Non-operating temperature: -25° to 65°C.
 - Operating humidity: 85% maximum relative humidity, non-condensing.
❑ Non-operating humidity: 95% maximum relative humidity, non-condensing.

❑ Operating shock: 10G peak 1/2 sine wave, 11 ms duration.

❑ Operating vibration: random vibration 1.2×10^{-3} G^2/Hz, 12 to 198 Hz.

❑ Operating altitude: 0 to 4,000 meters.

❑ Storage altitude: 0 to 15,000 meters.

❑ Transportation vibration and shock: NSTA project 1A standard in shipping container.

❑ Approvals:

❑ Meets safety requirements of Underwriters Laboratories for UL 1950 and CSA C22.2 No. 950.

❑ Meets EMI requirements of FCC Class A and EN55022 Class A with shielded and unshielded cables.

❑ Meets Canadian Telcom requirements per IC CS-03.

❑ MTBF:

 50,000 hrs. (estimated), calculated @ 25°C (Mil Std 217).

❑ Front clearance requirement (for connectors and cables):

 6 in. (15 cm).
Chapter 2 Installing the Remote Annex 5393/PRI

This chapter describes how to install your Remote Annex 5393/PRI hardware and software, and connect it to a System 5000 Hub. This chapter provides the following information:

- Before you Begin
- Installing the Remote Annex 5393/PRI
- Testing the Installation
- Connecting a PRI ISDN Network Interface
- Connecting a Service Port Terminal
- Initial Setup and Using the ROM Monitor
- Auto-initializing the ROMs
- Installing the Software and Loading the Operational Image
- Self-booting the Remote Annex 5393/PRI
- Invoking the Console Monitor

Before you Begin

To successfully install the Remote Annex, you need:

- A 3/16-inch flat-tip screwdriver
- An antistatic mat and wrist strap (attached to an antistatic leash)
- A service port terminal and cable
- A valid IP address
An appropriate subnet mask
A host with Remote Annex software installed

The Remote Annex 5393/PRI can receive its operational image from any one of these sources:

- A UNIX host
- FLASH memory (self boot)
- Another Remote Annex 5393/PRI configured as a boot host
- A Windows NT host

Table 2-1 outlines the different configurations the Remote Annex 5393/PRI supports.

Table 2-1. Remote Annex 5393/PRI Configuration Options

<table>
<thead>
<tr>
<th>Device on which the Operational Software and Image is installed</th>
<th>Remote Annex Must Be Connected to the Network</th>
<th>Input Device used to Enter Basic Configuration Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIX Load Host</td>
<td>Yes</td>
<td>Service Port Terminal</td>
</tr>
<tr>
<td>Another Remote Annex 5393/PRI configured as a load server</td>
<td>Yes</td>
<td>Service Port Terminal</td>
</tr>
<tr>
<td>Self-boot (from the image contained in Flash memory)</td>
<td>No</td>
<td>Service Port Terminal</td>
</tr>
<tr>
<td>Windows NT® host</td>
<td>Yes</td>
<td>Service Port Terminal</td>
</tr>
</tbody>
</table>
Installing the Remote Annex 5393/PRI

This section describes how to install the Remote Annex 5393/PRI in a System 5000 Hub. Installing the Remote Annex 5393/PRI involves seating the backplane connectors to the Model 5000 Hub backplane and verifying the installation.

Preparing for Hardware Installation

This section explains how to prepare the Remote Annex for installation in the chassis.

System 5000 equipment uses electronic components that are sensitive to static electricity. Static discharge from your clothing or other fixtures around you can damage these components. You should take all possible precautions to prevent static discharge damage when working with printed circuit boards. If possible, place all printed circuit boards on an antistatic mat until you are ready to install them. If you do not have an antistatic mat, wear a discharge leash to free yourself of static before touching any of the printed circuit boards, or free yourself of static by touching the metal of the chassis before handling a printed circuit card.

Setting the Backplane Ethernet Segment

Figure 2-1 shows the locations of the configuration jumper and DIP switch (on the Main Logic Module) that you must set to select an Ethernet segment. They are:

- Ethernet segment bank selector (J6)
- Ethernet segment selection DIP switch (S1)
Figure 2-1. Main Logic Module Jumper and Connector Locations

Ethernet Segment Bank Selector

The Ethernet segment bank selector on the Main Logic Module (see Figure 2-1), consisting of three rows of 20 pins (J6) and a jumper, determines whether the module connects to Ethernet segments 1 through 6 or segments 7 through 12 at power up. When the jumper is installed between the bottom and middle rows of pins, the module has access to segments 1 through 6 (the factory default setting); when the jumper is installed between the top and middle rows of pins, the module has access to segments 7 through 12.
When the jumper is installed between the bottom and middle rows of pins, the printed circuit card handle is nearest the Main Logic Module. To install the jumper between the top and middle rows of pins, remove the jumper, rotate it 180 degrees (so that the printed circuit card handle is nearest the Modem Module) and push it onto the pins (see Figure 2-1).

The specific segment connection for the module is determined by the segment selection DIP switch (described in the next section).

Network management software cannot override the bank selector setting. The setting (segments 1–6 or 7–12) can only be set while the module is outside the chassis.

Segment Selection DIP Switch

DIP switch S1 on the Main Logic Module (see Figure 2-1) is used to set the default segment selections. Segment selection DIP switch settings are listed in Table 2-2. Turning a DIP switch section ON selects a particular segment within the Ethernet segment bank. For example, turning on the 1,7 DIP switch section selects either segment 1 or 7, depending on the position of the Ethernet segment bank selector jumper.

If no sections are turned on by DIP Switch S1, the unit defaults to Segments 1,7.
Table 2-2. Segment Selection DIP Switch Settings

<table>
<thead>
<tr>
<th>Position</th>
<th>Segment Bank 1-6</th>
<th>Segment Bank 7-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 7 (default setting)</td>
<td>Segment 1</td>
<td>Segment 7</td>
</tr>
<tr>
<td>2, 8</td>
<td>Segment 2</td>
<td>Segment 8</td>
</tr>
<tr>
<td>3, 9</td>
<td>Segment 3</td>
<td>Segment 9</td>
</tr>
<tr>
<td>4, 10</td>
<td>Segment 4</td>
<td>Segment 10</td>
</tr>
<tr>
<td>5, 11</td>
<td>Segment 5</td>
<td>Segment 11</td>
</tr>
<tr>
<td>6, 12</td>
<td>Segment 6</td>
<td>Segment 12</td>
</tr>
</tbody>
</table>

Network management software can override this DIP switch setting, so an installed module may connect to a different segment (within the segment bank) than is indicated by the DIP switch setting.

Installing the Module into the Hub

To install and secure the module into the System 5000 Hub, follow these steps:

1. **Remove the blank filler panel(s) from the chassis slot(s) where you intend to install the module (two slots needed if equipped with a Modem Module).**

2. **Verify that the module jumpers are set correctly (see **Setting the Backplane Ethernet Segment** on page 2-3).**

3. **Extend the inserter/extractor levers to their fully extended positions (see **Figure 2-2**).**
4 Align the top and bottom edges of the module in the card guides of the target slot(s), and push the module into the chassis until the inserter/extractor levers just engage the front edges of the chassis (see Figure 2-3).
5 Seat the module backplane connectors by simultaneously pushing the inserter/extractor levers toward the center of the module front panel (see Figure 2-4).
When the front panel of the module is flush with the front of the chassis, the module backplane connectors are properly seated.

6. **Tighten the captive retaining screws at both ends of the module front panel.**
Testing the Installation

After installing and connecting the Remote Annex, verify that you have performed the installation correctly by observing the LED indicators and system operation displays on the front panel of the Remote Annex (see Figure 2-5).

Figure 2-5. Module LED Display
The Remote Annex performs a series of self-test diagnostics each time it is reset or powered up. These tests take about 3 minutes to complete and cannot be deactivated. While these tests are running, the annunciator remains amber. The annunciator changes to green upon successful test completion. For information about possible error conditions, see Chapter 4.

LED Indicators

When the Remote Annex is operating correctly, the front-panel LEDs (see Figure 2-5) should appear as follows:

- **Annunciator:** The annunciator should be green. If the annunciator remains amber after completing the self-tests, refer to Chapter 4.
- **Segment Connection LEDs:** A steady green indicates which Ethernet LAN segment the module is using.
- **Module Status LEDs:**
 - **Init:** Turns green when the Remote Annex begins the initialization process after a power-up or reset. Typically, this is the first LED that lights after power-up. The Init LED turns off after the initial diagnostics have successfully completed.
 - **Unit:** Turns green after the Remote Annex passes the power-up diagnostics. If the Unit LED turns amber, refer to Chapter 4.
 - **Net:** Turns green after the Remote Annex verifies that a valid Ethernet connection exists.
Attn: The Attn LED should be off. The Attn LED turns green if the Remote Annex is in Monitor Mode. If the Attn LED is amber or flashing, one of the following failures has occurred:

- Remote Annex hardware failure. Contact technical support.
- Network or network interface failure. Error message displays on the terminal. If a network or network interface failure occurs, typing `q` accesses the ROM Monitor prompt. Check the network connection and then see `net` on page 3-18.

Load: Turns green when the Remote Annex is loading the operational image or dumping a RAM image if there is a failure.

- Channel Status LEDs: All the channel status indicators turn green.
- Verify that the hub front-panel LEDs are properly illuminated.

If the LEDs do not light in the proper manner, or if the system operation displays indicate problems, see Chapter 4 for more details.

Connecting a PRI ISDN Network Interface

A PRI ISDN Network Interface is used to connect the Remote Annex to the digital ISDN line. Follow the instructions in this section to connect the ISDN line to the PRI ISDN Network Interface port.

1. **Plug the ISDN Network Interface Cable into the PRI ISDN Network Interface port located on the front panel of the Remote Annex** (Figure 2-6).
When the connector clicks into place, the connection is secure. Appendix A describes the PRI ISDN Network Interface port’s signal/pin allocation.

For T1 applications, the 5393 Remote Annex/PRI utilizes an internal Channel Service Unit (CSU). An internal CSU is not used in E1 applications.

Figure 2-6. Connecting a PRI ISDN Network Interface
Connecting a Service Port Terminal

If your network does not include a BootP server, you must connect a terminal to the service port on the System 5000 chassis front panel and manually configure the Remote Annex before booting.

To configure the Remote Annex through the chassis service port, you need:

- A TTY-compatible terminal or a portable computer with a serial port and the ability to emulate a TTY-compatible terminal. The terminal should be set up for:
 - 9600 b/s (default)
 - 8 data bits
 - No parity
 - 1 stop bit
 - No handshaking
 - ASCII
- An RS-232 modem cable with a female DB-9 connector to connect to the service port on the chassis front panel. The other end of the cable must have a connector appropriate to the serial port on your computer or terminal. (Most terminals or computers use a male DB-9 or DB-25 connector.) The cable should use the pin assignments in Table 2-3.
Table 2-3. Service Port Pin Assignments

<table>
<thead>
<tr>
<th>Terminal DB-9</th>
<th>DB-25</th>
<th>Function</th>
<th>To Service Port DB-9 Pins</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Receive data</td>
<td>2</td>
<td>Transmit data</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Transmit data</td>
<td>3</td>
<td>Receive data</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>Signal ground</td>
<td>5</td>
<td>Signal ground</td>
</tr>
</tbody>
</table>

RS-232 signals on other pins, such as DTR, CTS, and CD, are ignored.

Connecting the Terminal

To connect the terminal to the service port, follow these steps:

1. Connect the terminal (or a computer in terminal emulation mode) to the chassis service port with the RS-232 cable.
2. Set the terminal protocol. Configure according to the guidelines defined in Connecting a Service Port Terminal on page 2-14.
3. Press Enter then Control-T to display the Slot Selection menu.

The Slot Selection menu (Figure 2-7) shows the system date and time, lists the modules installed in the chassis by slot number, and lists the available commands.
Figure 2-7. Slot Selection Menu

Use this menu to reset the Remote Annex. For more information, see Auto-initializing the Remote Annex on page 2-21.

The Remote Annex 5393/PRI occupies two slots in the hub chassis. The slot number listed for the Remote Annex 5393/PRI on the Slot Selection menu corresponds to the right-most slot occupied by the module.
Initial Setup and Using the ROM Monitor

After installing the Remote Annex software on the file server host, collect the following information, which is required to determine the unit’s boot parameters:

- The location of the download files on the host (tftp only).
- Whether the Remote Annex and host are on the same subnet or separated by a gateway.
- Whether the host going to use tftp or erpcd (requires a UNIX or Windows NT® host) to serve the Remote Annex download code.

The Remote Annex needs these parameters to perform an initial boot when loading the software. Enter these parameters into the EEPROM using the ROM monitor commands, which are accessed through a service port terminal. See Chapter 3 for more information about these commands.

The Remote Annex supports the Bootstrap Protocol (BootP) and the Reverse Address Resolution Protocol (RARP) which can be used to obtain some of the information listed. If you have a host running BootP or RARP to serve the Remote Annex the information, the server will boot without user intervention. For more information about using these protocols, see Auto-initializing the Remote Annex starting on page 2-21. Initializing and Booting from a Host System, starting on page 2-24, describes the procedure for manually booting the server.

Remote Annex Parameters

The Remote Annex requires that you set certain parameters from the ROM monitor before booting the unit from a host. Once the Remote Annex is booted, you can change these parameters using the na utility. Any changes to these parameters will require the unit to be rebooted to take effect. Table 2-4 provides a brief description of these parameters.

Table 2-4. Server Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet address</td>
<td>A unique 32-bit universal identifier that is specified in dotted-decimal notation.</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>Defines which portion of the Internet address is the network (all ones), the subnet (all ones), and the host (all zeros) address.</td>
</tr>
<tr>
<td>Preferred load host address</td>
<td>The Internet address of the host from which you want to boot.</td>
</tr>
<tr>
<td>Load/dump gateway Internet address</td>
<td>The Internet address of the gateway, for which you will be prompted, if the preferred load host is on a different network.</td>
</tr>
<tr>
<td>Broadcast address</td>
<td>An Internet address with a host id of all ones or all zeros (for 4.2 BSD) to which all hosts on a particular network will respond.</td>
</tr>
<tr>
<td>Type of IP encapsulation</td>
<td>Specifies the method for accessing the physical and network layer of the transmission media. The default is: ethernet.</td>
</tr>
</tbody>
</table>

Initializing the Remote Annex

This section describes how to set up the Remote Annex, make the connection to the System 5000 Hub for the first time, and enter Monitor Mode to configure the module.
To initialize the Remote Annex and enter Monitor Mode:

1. **Use a terminal connected to the chassis service port to verify that the Remote Annex is operating properly.**

The Slot Selection menu is displayed. The Remote Annex should be listed next to the slot number in which it is installed. Since the module occupies two slot positions, the slot number listed will be that of the right-most slot being occupied.

2. **Reset the Remote Annex by typing r and then entering the slot number of the chassis that contains the server.**

The following prompt is displayed:

 Are you sure you want to RESET this module? (Y/N):

3. **Answer the question by entering y.**

4. **Within 10 seconds, connect to the Remote Annex by typing c and then entering the slot number of the chassis that contains the server.**

5. **Wait for the following prompt:**

 To enter "Monitor Mode" please depress the SPACE key within 10 seconds.

The prompt counts down from 10 seconds.

6. **Press the space bar within 10 seconds.**

 After a few seconds, the following messages are displayed:

 Monitor Mode selected, please wait for Confidence tests to complete.

 System Reset - Entering Monitor Mode

 Then the monitor prompt is displayed:

 monitor::

 To return to the Slot Selection menu from Monitor Mode, press the Break key.

7 Verify the Remote Annex hardware configuration by typing `config` and pressing (Return) at the monitor prompt.

The screen display looks similar to this:

<table>
<thead>
<tr>
<th>ROM Software Rev: 101x</th>
<th>Board ID: 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Type: 80486DX2</td>
<td>Board Type: 5393</td>
</tr>
<tr>
<td>Ethernet Address: xx-xx-xx-xx-xx</td>
<td></td>
</tr>
<tr>
<td>Memory size: 8 Meg</td>
<td>EEPROM size: 65504</td>
</tr>
<tr>
<td>Flash size: 2 Meg</td>
<td>Flash ID: 8989</td>
</tr>
<tr>
<td>TDM Interface: PRI T1 USA</td>
<td></td>
</tr>
<tr>
<td>SLC SRAM Size: 128 K</td>
<td>Modem Country Code: 63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modem ID</td>
<td>2883</td>
<td></td>
</tr>
<tr>
<td>Mod Status</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port #</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modem ID</td>
<td>2883</td>
<td></td>
</tr>
<tr>
<td>Mod Status</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

8 To verify and record the unit's Ethernet address for future reference, type `addr -d` and press (Return) at the monitor prompt.

The screen display looks similar to this:

```
monitor:: addr -d
Ethernet address (hex): 00-00-81-XX-XX-XX
Internet address: <uninitialized>
Subnet mask: 255.255.0.0
Broadcast address: 0.0.0.0
Preferred Load Host address: <any host>
Preferred Dump Host address: 0.0.0.0
Load/Dump Gateway address: 0.0.0.0
Type of IP packet encapsulation: <ethernet>
Load Broadcast: Y
```
Verify that the Remote Annex is on-line by entering the `net` command. The following prompt appears:

Enter Segment to be used [1]:

A “pass” or “fail” message is displayed. If fail is displayed, try verifying the network from another device.

Once the Remote Annex is on-line, you can download the image software to the server (see Installing the Operational Software and Loading the Image on page 2-28).

Auto-initializing the Remote Annex

The Remote Annex is distributed without an IP address or preferred load host defined in ROM. When the device is booted, the Remote Annex attempts to auto-initialize itself using BOOTP (bootstrap protocol) and RARP (Reverse Address Resolution Protocol).

The Remote Annex supports the BOOTP and RARP protocols. Use these protocols to obtain boot information from a UNIX host without requiring any manual set-up on the Remote Annex.

- BOOTP allows a diskless client to determine its IP address, the IP address of the server, and the name of the file to be loaded into memory.
- RARP maps a hardware address into an IP address.

The ROMs invoke this system of acquiring boot information when a boot is initiated and the Remote Annex is not initialized. Under this condition, the Remote Annex first tries to get boot information via BOOTP or RARP.
If BOOTP and RARP fail, the Remote Annex attempts to load an image by transmitting an IPX Advertisement Request for Service.

If all requests fail, the Remote Annex will return to the ROM monitor (if in Test mode) or continue the auto-initializing procedure indefinitely (if in normal mode).

BOOTP

For a successful BOOTP retrieval, a `bootpd` must be running on a host on the same network as the Remote Annex and must have the appropriate information in the `bootptab` file. The Remote Annex’s BOOTP implementation adheres to rfc951, rfc1048, and rfc1084. A sample `bootptab` file entry used to initialize the Remote Annex named `terminator` looks like this:

```
remoteannexdefault:\
   :sm=255.255.255.0:gw=132.245.22.66:\
   :hn:vm=auto:to=-18000:
terminator:\
   :ht=1:ha=00802d004879:ip=132.245.22.226:
   :tc=remoteannexdefault:
```

In the previous example:

- `sm` is the subnet mask.
- `gw` is the load/dump gateway address.
- `vm` is the Vendor Magic Cookie.
- `ht` is host type (1=Ethernet).
- `ha` is the Remote Annex’s hardware address (Ethernet Address).
- `ip` is the Remote Annex’s Internet Address.
When the Remote Annex receives a BOOTP response with the sm, gw, and ip set, it sets the respective parameters: $subnet_mask$, $load_dump_gateway$, and $inet_addr$. The Vendor Magic Cookie must be set to $auto$. This indicates that $bootpd$ should respond to the client (Remote Annex 5393/PRI in this case) with whatever format the client requests; the Remote Annex 5393/PRI (client) always makes requests in the decimal dot notation format (e.g., 99.130.83.99).

The $bootpd$ adds the address of the host on which it is running as the $Server\ Address$ in the $bootp$ response message. The ROMs use the $Server\ Address$ as the preferred load host and store it in the $pref_load_addr$ parameter.

The $bootpd$ must be running on the Remote Annex’s preferred load host.

RARP

If the Remote Annex does not receive a successful BOOTP response, it uses RARP to get the boot information. For a successful RARP retrieval, TCP/IP must be running on a host that is on the same network as the Remote Annex, and the host’s ARP table must be initialized with the Remote Annex’s Internet and Ethernet addresses (see the arp man page, arp –s).

The only boot information that RARP provides is the Remote Annex’s Internet address. The ROMs save this information in the $inet_addr$ parameter. The ROMs use default information for the subnet mask and preferred load host. This means the ROMs will broadcast their requests.
The host serving the Remote Annex its boot information must be running on the same network as the Remote Annex because the Remote Annex only broadcasts BOOTP and RARP queries.

If BOOTP and RARP fail, the Remote Annex transmits an IPX Advertisement Request for Service.

If all requests fail, the Remote Annex returns to the ROM monitor (if in Test Mode) or continues the auto-initializing procedure indefinitely (if in Normal Mode).

Initializing and Booting from a Host System

You can download the image software (operational software) from a host system or another Remote Annex 5393/PRI. The Remote Annex is configured with default parameters at the factory, so that the first time you boot the server, you load the Remote Annex software. To configure the Remote Annex for your specific needs, use the ROM monitor commands (see Chapter 3).

To load the image software on the Remote Annex, perform the following steps:

1. **To verify that the EEPROM is clear, enter the `erase` command at the monitor prompt on the service port terminal.**

 The system displays information similar to the following:

 1) EEPROM (i.e. configuration information)
 2) FLASH (i.e. self boot image)

 Enter 1 or 2::1

 Erase all non-volatile EEPROM memory? (y/n) [n]: y
 Erasing <16352 or 8160 bytes> of non-volatile memory. Please wait...

 16K->|Data 0x0
 ...
 ...
 ...
 ...
 Initialized checksum record installed
The `erase` command is used on the EEPROM to place the Remote Annex into a known configuration state (factory default). Always use caution when working with Flash memory. If you don’t have an alternate source for the boot image, and you erase the image in Flash memory, you will not be able to boot your Remote Annex.

2 **Enter the `addr` command at the monitor prompt.**

The following prompt is displayed:

 Enter module IP address: :

3 **Enter the IP address for the Remote Annex.**

 You are prompted to enter the server subnet mask, preferred load host, preferred dump host, IP packet encapsulation, and load broadcast. The defaults are listed after each prompt.

4 **Modify the parameter next to each prompt, or press (Enter) to select the default.**

5 **To boot the server, enter the `boot` command.**

 If you do not enter a file name with the command, you are prompted for one (the default file name is displayed at the prompt: `oper.63.enet`). Press (Enter) to boot using the default file name.

The screen displays information similar to the following:

 Enter boot file name[oper.63.enet] :

 Requesting boot file “oper.63.enet”.
 Unanswered requests shown as ‘?’, transmission errors as ‘*’.

(continued on next page)
Requesting boot from 192.9.200.88 via Ethernet...
Booting BFS file using open delay of 8
Booting BFS file from 192.9.200.88
Header received OK. Received data blocks shown as ‘.’.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

The download takes between 30 and 60 seconds for a Remote Annex 5393/PRI booting over the local network. After the download is complete, the Power, Unit, and Net LEDs remain on. If these LEDs do not remain on (indicating a problem), see Chapter 4.

Once the Remote Annex is booted, Monitor Mode is no longer operational. The Remote Annex is up and running, and the following message is displayed:

Console monitor ready; Press CR to start

Booting Using TFTP

To set up directories and files, and use TFTP to boot the Remote Annex, follow these steps:

1. **Enter the `image` command at the monitor prompt.**

 As prompted, enter the following information:

 - Appropriate boot image name
 - Boot directory
 - Dump filename
The default image file name is:
oper.63.enet

The following example shows how the image command is used to set up a Remote Annex boot from the /tftpboot/annex/ directory. When you enter the load directory name, make sure you end the pathname with a backslash character.

Image name: <invalid or uninitialized> Default:
“oper.63.enet”
Enter Image name::oper.63.enet
Image name: “oper.63.enet”
TFTP load directory:
Enter TFTP load directory::/tftpboot/annex
TFTP Dump path/filename: <uninitialized> Default:
“dump.134.117.6.34”
Enter TFTP Dump path/filename::/tftpboot/annex/dump.134.117.6.34
Using current TFTP Dump path/filename.

2 Enter the boot command.
The boot command display looks like this:
Enter boot file name[oper.63.enet]:

Requesting boot file “oper.63.enet”.
Unanswered requests shown as ‘?’ transmission errors as ‘*’.

Requesting boot from 192.9.200.88 via Ethernet...
Booting BFS file using open delay of 87
Booting TFTP file using open delay of 8
Booting TFTP file from 192.9.200.88
Header received OK. Received data blocks shown as ‘.’.

..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
.......................... EOF
Once the Remote Annex is booted, Monitor Mode is no longer operational. The Remote Annex is up and running, and the following message is displayed:

Console monitor ready; Press CR to start.

Booting from a Windows NT® Host

Booting from Another Remote Annex 5393/PRI

Booting from another Remote Annex 5393/PRI requires you to configure certain parameters both on the Remote Annex 5393/PRI you are trying to boot, and on the Remote Annex 5393/PRI you are trying to boot from. See the *Remote Annex Administrator’s Guide for Unix* for additional information.

Installing the Operational Software and Loading the Image

Use this section if you have successfully connected the Remote Annex to your LAN.
This section describes:

- How to install the Remote Annex’s operational software and image on a device that resides on a network accessible to the Remote Annex.
- How to download the operational image from the device to the Remote Annex.

Installing to and Loading from a UNIX Host

This section contains a description of what you need to do to install the Remote Annex’s operational software and image to a UNIX host. See the *Remote Annex Administrator’s Guide for UNIX* for additional information.

1. **Install the image on a UNIX host.** The software installation notes describe how to do this.

 If you have a BOOTP server, boot the Remote Annex. Otherwise, continue to the next step.

2. **Execute the ROM Monitor `addr` command:**
 - Enter the Remote Annex’s Internet address.
 - Modify any other parameters that the Remote Annex may require for the initial boot, i.e., the preferred load host’s Internet address and the subnet mask (see `addr` on page 3-4).

3. **Execute the `boot` command.**
 After successful execution of the `boot` command, the Remote Annex is up and running (see `boot` on page 3-7).
Self-booting the Remote Annex

The Remote Annex comes equipped with Flash memory that already contains an operational image. You can use this to self-boot the Remote Annex. You can check your Remote Annex’s configuration by entering the `config` command at the monitor prompt. The `config` command displays the current configuration information and revision levels.

Anytime you want to return to the monitor prompt, press `Control-C`.

To boot your Remote Annex from Flash memory:

1. **On the service port terminal, press Enter then `Control-T` to display the Slot Selection menu.**
2. **Press 3.**
 The Supervisory Module Main Menu is displayed.
3. **Press `m` to select the Module Information menu.**
 The following prompt is displayed:

 Enter slot # (1-14):

4. **Enter the slot number of the Remote Annex you want to boot.**
 The module information and status are displayed and you are prompted to reset the module, set the module configuration to default, or return to the previous menu.
5. **Press `d` to select the module configuration default.**
 The following message is displayed:
 Are you sure you want to set module DEFAULT configuration? (Y/N):

6. **Press `y`.**
 The Slot Selection menu is displayed.
7 Press \texttt{r} to reset the module.

 The following message is displayed:
 \[\text{Are you sure you want to RESET this module? (Y/N):} \]

8 Press \texttt{y}; then press (\texttt{Escape}) twice.

 The Slot Selection menu is displayed.

9 \textbf{Within 10 seconds, press \texttt{c} to connect to the Remote Annex.}

 The following prompt is displayed:
 \[\text{Enter slot # (1-14):} \]

 If you do not make the connection in time, reset the server by pressing (\texttt{Control})-T to return to the Slot Selection menu and following the prompts.

10 \textbf{Enter the slot number for the Remote Annex you are booting.}

11 \textbf{Wait for the following prompt:}

 \texttt{To enter "Monitor Mode" please depress the SPACE key within the next 10 seconds.}

12 \textbf{Press the space bar within 10 seconds.}

 If you do not press the space bar within the allotted time, press (\texttt{Control})-T and reset the server again.

 After a few seconds, the following text is displayed:
 \[\text{Monitor Mode selected, please wait for Confidence tests to complete.} \]

 System Reset - Entering Monitor Mode

 Then the monitor prompt is displayed:
 \[
 \text{monitor::}
 \]

13 \textbf{Enter the addr command at the monitor prompt.}

 The following prompt is displayed:
 \[\text{Enter module IP address::} \]
14 **Enter the IP address for the Remote Annex.**
You are prompted to enter the server subnet mask, preferred load host, preferred dump host, IP packet encapsulation, and load broadcast. The defaults are listed after each prompt.

15 **Enter the information next to each prompt or press (Enter) to select the default.**

16 **Enter the sequence command at the monitor prompt.**
The following prompt is displayed:
```
Enter interface sequence [net]::
```

17 **Enter the self command.**
The monitor prompt is displayed:
```
monitor::
```

18 **Boot the Remote Annex by entering the boot oper63.enet command at the monitor prompt.**
Once the Remote Annex has booted, Monitor Mode is no longer active.
Invoking the Console Monitor

After the image boots, you can invoke the Console Monitor by pressing return on the service port terminal. The following prompt appears:

Console monitor:

At the Console Monitor prompt, entering help or ? displays the available options:

- **dump** (from the Annex to the host and reboots).
- **help** or ? (displays the available options).
- **info** (displays configuration information for the Annex).
- **leds** (displays the current front panel LED status).
- **reboot filename** (reboots the Annex).
- **rom** (returns the Annex to the ROM Monitor).
- **syslog** (displays syslog messages).
Chapter 3 ROM Monitor Commands

This chapter describes the ROM Monitor commands that are available in Monitor Mode. Access these commands through a terminal connected to the service port (located on the front of the hub chassis).

The ROM Monitor commands allow you to set a subset of the configuration (EEPROM) parameters. Some of these parameters, like the unit’s IP address, are required for booting the Remote Annex; some parameters, like the broadcast address, are required if the network configuration differs from the supplied defaults. Table 3-1 lists the ROM Monitor commands.

Other parameters, although not required, are recommended for the Remote Annex’s initial boot. Setting these parameters, rather than using the assigned defaults, minimizes errors during the initial boot. For example, setting the parameter that defines the preferred load host enables the Remote Annex to load by requesting assistance from a specific host, rather than by broadcasting that request to all hosts on the subnet.

After the Remote Annex has booted, you can define the same parameters you defined using the ROM Monitor, by using the na utility, the local CLI admin command, or SNMP. The Remote Annex Administrator’s Guide for UNIX describes the na utility in detail. See Chapter 4 for information on power-up and boot procedures.

ROM Monitor commands generally provide data about a subset of current configuration (EEPROM) parameters. When appropriate, they also display a prompt that allows the operator to change those parameters.
Remote Annex 5393/PRI Hardware Installation Guide

Chapter 3 ROM Monitor Commands

Default or current values for parameters are displayed in brackets. For example:

Enter broadcast address [132.245.6.255]:

At the prompt, enter a different value, or press (Return) to leave the displayed value unchanged.

You can use unique abbreviations for all ROM Monitor commands except erase. For example, enter boot as bo, and enter net as n. If you enter an abbreviation that is not unique, an error message describing the command as ambiguous is displayed on the service port terminal.

Command Descriptions

Table 3-1 lists the ROM Monitor commands; the following subsections describe them.

Table 3-1. ROM Monitor Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>addr [-d]</td>
<td>Displays and sets EEPROM values relevant to IP network addressing, including the unit’s IP address.</td>
<td>Changing IP configuration parameters.</td>
</tr>
<tr>
<td>boot [-v] [<file>]</td>
<td>Manually boots and loads the unit’s operating code.</td>
<td>Changing the address of the boot image.</td>
</tr>
<tr>
<td>boot [-l] [<file>]</td>
<td>Erases the existing Flash memory and copies a new image to Flash memory.</td>
<td>Upgrading or replacing the Flash image.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 3-1. ROM Monitor Commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td>Displays the current hardware configuration and revision levels.</td>
<td>Identifying your hardware, memory, and ROM versions.</td>
</tr>
<tr>
<td>erase</td>
<td>Erases non-volatile memory.</td>
<td>Loading a new image and need to erase the old image.</td>
</tr>
<tr>
<td>help</td>
<td>Displays the list of ROM Monitor commands.</td>
<td>Referencing the ROM monitor commands.</td>
</tr>
<tr>
<td>image [-d</td>
<td><file>]</td>
<td>Displays and/or sets the load image and tftp load dump names.</td>
</tr>
<tr>
<td>lat_key [-d]</td>
<td>Sets the LAT key.</td>
<td>Connecting to a DEC VMS host.</td>
</tr>
<tr>
<td>net</td>
<td>Executes an Ethernet transceiver loopback test.</td>
<td>Checking your Ethernet connection.</td>
</tr>
<tr>
<td>option_key [-d]</td>
<td>Sets or displays the option key.</td>
<td>Checking your option key or setting.</td>
</tr>
<tr>
<td>ping</td>
<td>Sends ICMP ECHO_REQUEST datagram to a host or gateway.</td>
<td>Checking to see if a host or gateway can be reached.</td>
</tr>
<tr>
<td>ports [-d]</td>
<td>Shows the current status of all ports.</td>
<td>Checking a port.</td>
</tr>
<tr>
<td>sequence [-d</td>
<td><list>]</td>
<td>Displays and edits the load/dump interface list.</td>
</tr>
<tr>
<td>stats</td>
<td>Displays current network statistics gathered by the ROM.</td>
<td>Checking the network resources.</td>
</tr>
</tbody>
</table>
addr

The `addr` command displays and sets several Remote Annex operating parameters (EEPROM values) relevant to IP network addressing:

- Internet address.
- Subnet mask.
- Broadcast address.
- Preferred Load Host address.
- Preferred Dump Host address.
- Load/Dump Gateway address.
- Type of IP Packet encapsulation.
- Load Broadcast

The `addr -d` command displays the unit’s ROM-resident Ethernet address in hexadecimal notation. (For a description of Internet addresses, see the Remote Annex Administrator’s Guide for UNIX.) The command syntax is:

```
addr [-d]
```

If you enter the `addr` command without the `-d` argument, you will be prompted for each Internet address. Enter Internet addresses using the standard decimal dot (.) notation.

The `addr -d` command displays the Remote Annex’s Ethernet address, IP address, subnet mask, broadcast address, preferred load host address, preferred dump host address, load/dump gateway address, IP encapsulation type, and Load Broadcast. The `addr -d` command cannot be used to make changes to any of the displayed parameters.
The \texttt{addr} command display looks similar to this:

\begin{verbatim}
monitor:: addr
Enter Internet address [<uninitialized>]: \textbf{192.9.200.214}
Internet address: 192.9.200.214
Enter Subnet mask [255.255.0.0]::
Enter Broadcast address [0.0.0.0]: \textbf{192.9.200.0}
Broadcast address: 192.9.200.0
Enter Preferred Load Host address [<any host>]: \textbf{192.9.200.88}
Preferred Load Host address: 192.9.200.88
Enter Preferred Dump Host address [0.0.0.0]: \textbf{192.9.200.88}
Preferred Dump Host address: 192.9.200.88
Enter Load/Dump Gateway address [<uninitialized>]: \textbf{192.9.200.10}
Load/Dump Gateway address: 192.9.200.88
Select type of IP packet encapsulation (ieee802/ethernet) [<ethernet]>::
Load Broadcast Y/N [Y]::
\end{verbatim}

The \texttt{addr -d} command display looks similar to this:

\begin{verbatim}
monitor:: addr -d
Ethernet address (hex): 00-00-81-00-18-B6
Internet address: 192.9.200.214
Subnet mask: 255.255.0.0
Broadcast address: 192.9.200.0
Preferred Load Host address: 192.9.200.88
Preferred Dump Host address: 192.9.200.88
Load/Dump Gateway address: 192.9.200.10
Type of IP packet encapsulation: <ethernet>
Load Broadcast: \textbf{Y}
\end{verbatim}
The Remote Annex must have an Internet (IP) address in its memory before it can load its operational image across the Ethernet via the IP protocol. Therefore, you must enter the IP address before booting the Remote Annex from a UNIX load host. If you do not define a subnet mask, the Remote Annex uses the generic mask for the specified IP address.

The Remote Annex tries to boot from a preferred UNIX load host. If you do not define a preferred load host, the Remote Annex broadcasts its load request and loads software from the first host that responds.

If the part of the IP address containing the network address differs from that of the preferred load or dump host, the host must be reached through a gateway. The addr command prompts you for this gateway’s IP address.

The Remote Annex uses the broadcast address parameter when loading a file. If this parameter contains a specific address (for example, 132.245.6.255), the Remote Annex uses only that address for broadcast. If the value is all zeroes (0.0.0.0), the ROM Monitor tries various combinations of broadcast addresses and subnet or network broadcasts. The Remote Annex broadcasts its request three times for each possible combination of broadcast addresses.

You can specify the IP encapsulation type as either ethernet for Ethernet, or ieee802 for IEEE 802.2/802.3. The default IP encapsulation is ethernet. Many systems have hardware Ethernet interfaces that are IEEE 802.3 compliant, but very few actually do 802.3 IP packet encapsulation.

Do not change this parameter unless you know absolutely that your Ethernet does 802.2/802.3 IP packet encapsulation. An incorrect IP encapsulation type prevents your Remote Annex from booting.
The `boot` command requests the loading of appropriate Remote Annex operating software from a cooperating host. The command syntax is:

```plaintext
boot [-lv] | filename
```

Typing the letter `q` or `Ctrl-C` interrupts the boot.

If you try to boot with a non-existent image file name, the Annex will hang as it searches for the image. You must issue the `reset` command from the service port terminal to recover.

A successful boot disables the ROM Monitor.

The `boot` command accepts a file name for the Remote Annex’s image. If the file name is not specified, `boot` displays the default file name and prompts for one. If you do not provide a file name, or have not defined one for the Remote Annex, `boot` requests the default `oper.63.enet` file. Optionally, you can enter a file name using the `image` command.

The Remote Annex boots from the defined preferred load host. If the preferred load host is not defined or does not respond, the Remote Annex broadcasts on the Ethernet and loads from the first host that responds.

To initiate loading, the Remote Annex sends a load request message to the selected host. After receiving a response, the Remote Annex loads its operational code to RAM. When loading is complete, it transfers control to the newly-loaded program. The Remote Annex displays a symbol on the service port terminal for each data block received during the boot.
When the Remote Annex begins to boot, it displays the load server host's Internet address. If the unit does not boot successfully after several attempts, it displays a *boot attempt failed* message; if the unit has opened the boot file and an error occurs during the boot process, it displays a boot error report on the service port terminal and returns to the ROM Monitor. The boot error report can help determine the cause of the boot failure (see *Boot Error Report* on page 4-9).

During a boot, the service port terminal may display four possible status symbols: "." indicates received data blocks, "?" indicates unanswered requests, "*" indicates transmission errors, and "! ~XXXX~" is a status word from the Ethernet chip on the Annex indicating a gross problem with the Ethernet connection (if this symbol appears in your *boot* command display, contact technical support).

The status word "! ~XXXX~", where XXXX are four hexadecimal digits, decodes as follows:

- 8000 = Command complete
- 4000 = Chip is busy
- 2000 = Command completed without error
- 1000 = Command aborted issuance of an ABORT command
- 800 = Late collision detected
- 400 = Carrier lost
- 200 = CTS lost
- 100 = DMA underrun
- 80 = Transmission deferred because link was busy
- 40 = Collision detected during interframe spacing (SQE/Heartbeat detected)
- 20 = Excessive collisions
- 10 = Reserved

The lowest nibble (bits 3 to 0) are a count of collisions during this transmission. For example:

- "~8802~" = Complete, Late collision, 2 collisions
- "~8841~" = Complete, Late Collision, SQE detected, 1 collision
The **boot** command display (using **bfs**) looks like this:

```
monitor:: boot
Enter boot file name[(ip) "oper.63.enet", 
(mop) "OPER_63_ENET.SYS"]::
Requesting default boot file "OPER_63_ENET.SYS" for MOP/VMS\loads and "oper.63.enet" for all other protocols.
Unanswered requests shown as '?', transmission errors as '*'.
Requesting boot from 192.9.200.88 via Ethernet...
Booting BFS file using open delay of 8
Booting BFS file from 192.9.200.88
Header received OK. Received data blocks shown as '...'
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ...
... ... ... ... ...
... ...

EOF
```

The next example shows a boot using **tftp**. The Remote Annex always tries to open a file using **bfs** first. If unsuccessful, the Remote Annex uses **tftp** to open the file.

```
monitor:: boot
Enter boot file name [(ip) "oper.63.enet", "OPER_63_ENET.SYS"]::
Requesting default boot file "OPER_63_ENET.SYS" for MOP/VMS\loads and "oper.63.enet" for all other protocols.
Unanswered requests shown as '?', transmission errors as '*'.
Requesting boot from 192.9.200.88 via Ethernet...
Booting TFTP file using open delay of 8
Booting TFTP file from 192.9.200.88
Header received OK. Received data blocks shown as '...'
... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ...
... ...

EOF
```
The `boot -l` command downloads and saves the operational image to non-volatile memory, erases the existing Flash memory, copies the new image from non-volatile memory to Flash memory, and then executes the image.

After executing a `boot -l`, the `ls` command may not show the newly-loaded image.

The `boot -l` command display looks similar to this:

```
monitor:: boot -l
Enter boot file name [(ip) "oper.63.enet", 
(mop) "OPER_63_ENET.SYS"]::
Requesting default boot file "OPER_63_ENET.SYS" for \MOP/VMS loads and "oper.63.enet" for all other protocols. Unanswered requests shown as ",", transmission errors as "."
Requesting boot from 192.9.200.88 via Ethernet...
  Booting BFS file using open delay of 8
Booting from 192.9.200.88
  Header received OK.  Received data blocks shown as ".",.
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Saving image into storage device ...
Erasing device
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>............................</td>
</tr>
</tbody>
</table>
Erase completed
Storing image ............
Storage completed
Beginning execution of image...
Annex Command Line Interpreter * Copyright 1991, 1995\Xylogics, Inc.
```
Use `boot -l` only when reloading your Flash memory. Typically, you reload your Flash memory when you are upgrading to a new version of software.

The `boot -v` command displays the boot in verbose mode. This output includes the turnaround time in milliseconds for each request. This value equals the time lapse between sending the request and receiving the proper reply from the host.

When the boot is complete, verbose output includes a display of network statistics:

```
monitor:: boot -v
Enter boot file name [(ip) "oper.63.enet", \(mop) "OPER_63_ENET.SYS"]:
Requesting default boot file "OPER_63_ENET.SYS" for MOP/VMS\loads and "oper.63.enet" for all other protocols. Unanswered requests shown as '?', transmission errors as '*'. Requesting boot from 192.9.200.88 via Ethernet... Booting from 192.9.200.88 (42 msec) Header received OK. Received data blocks shown as msec turnaround time.

Ethernet Statistics
Frames Received: 1031 Frames Sent: 1031
CRC Errors: 0 Carrier Sense Losses: 0
Alignment Errors: 0 Clear to Send Losses: 0
Resource Drops: 9 Collisions Detected: 9
Bus Wait Drops: 0 Excessive Collision Losses: 0
Bad Types/Lengths: 0
```
config

The `config` command displays the current configuration information and revision levels for the Remote Annex. The `config` command displays revision information, the amount of memory installed, T1 or E1 configuration information, and a description of the number and type of modems installed. The command syntax is:

```
config
```

The `config` command display for a Remote Annex with 24 modems (T1) looks similar to this:

```
REVISION/CONFIGURATION INFORMATION

ROM Software Rev: 101x  
Board ID: 63  
CPU Type: 80486DX2  
Memory size: 8 Meg  
Flash size: 2 Meg  
Ethernet Address: xx-xx-xx-xx-xx-xx  
EEPROM size: 65504  
Flash ID: 8989  
TDM Interface: PRI T1 USA  
Modem Country Code: 63

Port # 1 2 3 4 5 6 7 8 9 10 11 12
Modem ID 2883 2883 2883 2883 2883 2883 2883 2883 2883 2883 2883 2883
Mod Status OK OK

Port # 13 14 15 16 17 18 19 20 21 22 23 24
Modem ID 2883 2883 2883 2883 2883 2883 2883 2883 2883 2883 2883 2883
Mod Status OK OK

Hub Slot 9  
Hub CMB HW Rev 0.0  
Hub EE Rev 0.0  
Hub EE Seg Sel 1  
Hub Jmpr Seg Sel 1
```

This display is typical for T1 versions. For E1 versions, information on 32 ports will be shown. For modem-less versions, no port or modem information will be shown.
The `erase` command erases the contents of non-volatile memory (either EEPROM or Flash memory). Erasing EEPROM restores all parameters to factory default values. Erasing Flash memory erases the self boot image.

Caution should be used concerning the Flash memory. If you don’t have an alternate source for the boot image, and you erase the image in Flash memory with the `erase` command, you will not be able to boot your Remote Annex.

The syntax is:

```
erase
```

The `erase` command prompts for the non-volatile memory to erase: EEPROM or FLASH. Entering 1 at the prompt causes the Remote Annex to erase the EEPROM (configuration information); entering 2 at the prompt causes the Remote Annex to erase the FLASH memory (self-boot image).

The `erase` command does not erase the Ethernet address.

Since the `erase` command erases the IP address, you must use the `addr` command to re-enter the Remote Annex’s IP address before reloading any software.
The `erase` command display looks like this:

```
monitor:: erase
  1) EEPROM (i.e. Configuration information)
  2) FLASH (i.e. Self boot image)
Enter 1 or 2:: 1
Erase all non-volatile EEPROM memory? (y/n) [n]:: y
Erasing <65504 or 8160 bytes> of non-volatile memory.
Please wait...
           16K->|Data 0x0
.................................
.................................
.................................
.................................
Initialized checksum record installed
```

1.

2.
help

The `image` command sets and displays the name of the image file containing the Remote Annex’s software. The syntax is:

```
image [-d | filename]
```

The `filename` argument permits up to 100 characters. To return the image name to its default, enter a pair of double-quote characters ("""). The default image name is `oper.63.enet`. The `image` command display looks like this:

```
monitor:: image
Enter Image name: [(ip)"oper.63.enet", \ (mop) "OPER_63_ENET.SYS"]::
Enter TFTP Load Directory ["]:: Enter TFTP Dump path/filename ["dump.192.9.200.88"]::
```

The `image -d` command display looks like this:

```
monitor:: image -d
Image name:Default (ip): "oper.63.enet"
    Default (mop): "OPER_63_ENET.SYS"
TFTP Load Directory: ""
TFTP Dump path/filename: "dump.192.9.200.88"
SELF image name: "oper.63.enet"
```

The SELF image name appears only if the self-boot image is loaded.
lat_key

The **lat_key** command allows you to set the LAT key from the ROM monitor.

⚠️ The **lat_key** is optional and may be purchased separately.

The command syntax is:

lat_key [–d]

The **lat_key** command display looks like this:

```
monitor:: lat_key
Enter LAT KEY [<uninitialized>]::
```

The **lat_key** –d command displays the current LAT key setting:

```
monitor:: lat_key –d
Enter LAT KEY [<uninitialized>]::
```
net

The net command executes an Ethernet transceiver loopback test on the local area network. The command syntax is:

net

When you enter the net command, the following prompt is displayed:

Enter Segment to be used [1]:

This transceiver loopback test sends out a short test packet from the Remote Annex through the transceiver to test the integrity of the network.

The Ethernet transceiver loopback test causes the Net LED to turn off. If the unit passes this test, the service port terminal displays PASSED. If the Remote Annex fails, the service port terminal displays an error message. Failing this test indicates that either the Remote Annex, its transceiver cable, its transceiver, or the Ethernet is bad.
option_key

The **option_key** command loads an option key from the ROM monitor. The command syntax is:

`option_key [-d]`

The **option_key** command display looks like this:

```
monitor:: option_key
Enter option_key [<uninitialized>]::
```

This command is case sensitive. When entering the option key, pay close attention to character case.

The **option_key -d** command displays the current settings:

```
monitor:: option_key -d
option_key: <uninitialized>
```
ping

The ping command sends an Internet Control Message Protocol (ICMP) mandatory ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams (pings) have an IP and ICMP header, followed by a structured time value and an arbitrary number of pad bytes that fill out the packet. The syntax for this command is:

```
ping host_ip_address [data_size] [npackets]
```

- The host_ip_address entry is the Internet address of the host or gateway from which you wish to elicit a response.
- The optional data_size entry is the number of bytes sent in a datagram packet. The default value is 64 and the maximum value is 1024.
- The optional npackets entry is the number of packets to transmit. If you specify npackets, then you must also specify a data_size.

The ping command display looks something like this:

```
monitor:: ping 132.245.33.69
PING 132.245.33.69: 64 data bytes
```

If you enter the ping command without specifying an IP address, the display looks like this:

```
monitor:: ping
IP address required, ie: ping 132.245.33.69\[data bytes] [npackets]
```

When you enter the ping command, the following prompt is displayed:

Enter Segment to be used [1]:

To exit out of ping either wait for npackets to be transmitted or, at any point, type q. The ping statistics display upon exit.
The **ports** command tests the PRI interface port. The syntax is:

```
ports
```

To test the PRI port, the interface must be connected to a loopback plug. No external clocking is required.

When invoked, the command displays a menu of options. The following is a sample screen display for a T1 (24 modems) or E1 (32 modems) version of the Remote Annex.

```
monitor:: ports
Some Important Notes:
- These tests require the PRI port to have a loopback plug installed.
- An even number of ports must be selected for the Modem Ports test because pairs of modems are connected together and data is looped back between them.
  1) Digital Ports
  2) Modem Ports
Selection (Return to exit)::
```

The following is a sample screen display for a modem-less version of the Remote Annex.

```
monitor:: ports
Some Important Notes:
- These tests require the PRI port to have a loopback plug installed.

Ports with faulty Data Lines:
Enter port number or range of ports to test
(Return to exit)::
```
sequence

The `sequence` command edits the load/dump interface list. This list determines the order of the network interfaces the Remote Annex will use for loading and dumping. The default, `net`, uses the LAN interface. If the Remote Annex fails to boot using the first interface, it will try the next interface. The command syntax is:

```
sequence [-d] | [interface[,interface] . . ]
```

Specify the LAN interface by selecting `net`. Separate each interface with a comma or a space. Enter the interface list as an argument to the command, otherwise the service port terminal displays a list of available interfaces and prompts for a new list.

In the following example, interfaces are assigned to the load/dump sequence list.

```
monitor:: sequence
Enter a list of 1 to 4 interfaces to attempt to use for downloading code or upline dumping. Enter them in the order they should be tried, separated by commas or spaces. Possible interfaces are:

   Ethernet:   net
   SELF:       self

Enter interface sequence [net]: self, net
Interface sequence: self, net
```

The SELF option appears only if the self-boot image is loaded.
The sequence `-d` command displays the current load/dump interface list. You cannot specify both the `-d` argument and the interface list with the same command. The command display looks like this:

```
monitor:: sequence -d

Interface sequence: self, net
```
The **stats** command displays current network statistics gathered by the ROM. Use **stats** along with the **boot** command to help isolate problems. **Table 3-2** describes the network statistics displayed by the **stats** command. The syntax is:

stats

The **stats** command display looks like this:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frames Received</td>
<td>The number of frames received.</td>
</tr>
<tr>
<td>CRC Errors</td>
<td>The number of CRC checksum errors detected.</td>
</tr>
<tr>
<td>Alignment Errors</td>
<td>The number of frames received misaligned with a CRC error.</td>
</tr>
<tr>
<td>Resource Drops</td>
<td>The number of packets dropped because the ROM code could not buffer them quickly enough. The ROM code cannot always handle back-to-back incoming packets. The Remote Annex accepts the first response it receives and drops all others. Dropped packets are normal.</td>
</tr>
<tr>
<td>Bus Wait Drops</td>
<td>Excessive Collision Losses:</td>
</tr>
<tr>
<td>Bad Types/Lengths</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table 3-2. Network Statistics (continued)

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Wait Drops</td>
<td>The number of packets dropped due to waiting too long for a bus to become available.</td>
</tr>
<tr>
<td>Bad Types/Lengths</td>
<td>The number of unknown packet types if Ethernet IP encapsulation is being used. The number of packets with illegal lengths if IEEE 802.2/802.3 IP encapsulation is being used.</td>
</tr>
<tr>
<td>Frames Sent</td>
<td>The number of frames sent.</td>
</tr>
<tr>
<td>Carrier Sense Losses</td>
<td>The number of times packets could not be transmitted because the Remote Annex lost the Carrier Sense signal – usually the result of excessive traffic on the Ethernet.</td>
</tr>
<tr>
<td>Clear to Send Losses</td>
<td>The number of times packets could not be transmitted because the Remote Annex lost the Clear to Send signal – usually the result of excessive traffic.</td>
</tr>
<tr>
<td>Collisions Detected</td>
<td>The number of times the Remote Annex had to retry transmissions automatically – usually the result of normal Ethernet traffic. These retries do not cause the <code>boot</code> command to display “*.”</td>
</tr>
<tr>
<td>Excessive Collision Losses</td>
<td>The number of times the Remote Annex could not transmit packets because there were too many collisions – usually the result of excessive traffic on the Ethernet. The <code>boot</code> command displays these retries as “*.”</td>
</tr>
</tbody>
</table>
Chapter 4 Troubleshooting Procedures

This chapter describes front panel alarms and LED indicators, power-up and booting, troubleshooting during booting, and the file created from a Remote Annex dump.

Front Panel Alarms and LED Indicators

The Remote Annex’s front panel contains a number of LEDs that provide information about normal operations and about problems that occur. Use these LEDs and the ROM Monitor commands to diagnose problems. Figure 4-1 illustrates the Remote Annex’s front panel LEDs.

Figure 4-1. Remote Annex 5393/PRI Front Panel Alarms and LEDs
Refer to Table 4-1 for a description of the LEDs located on the front of the Remote Annex.

Table 4-1. Remote Annex 5393/PRI Front Panel LEDs

<table>
<thead>
<tr>
<th>LED(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annunciator</td>
<td>The Annunciator backlights the model number of the module and indicates, by its color, the operational condition of the module. The conditions are:</td>
</tr>
<tr>
<td></td>
<td>Green - The module is performing normally.</td>
</tr>
<tr>
<td></td>
<td>Amber - Some portion of the module has failed, or the module is being initialized.</td>
</tr>
<tr>
<td></td>
<td>Off - The module is not receiving +5 volt power, or the power level is below the reset limit (4.65 volts).</td>
</tr>
<tr>
<td>Segment Connection</td>
<td>These LEDs indicate which backplane Ethernet LAN segments are being used. There are 12 green LEDs, labeled S1 through S12, for the 12 Ethernet segments. When an LED is illuminated, it indicates that the Remote Annex is connected to the corresponding backplane Ethernet LAN segment; when off it indicates that the corresponding backplane Ethernet LAN segment is not connected.</td>
</tr>
<tr>
<td>Module Status</td>
<td>Init - Turns green when the Remote Annex begins the initialization process after a power-up or reset. This is the first LED that lights after power-up or reset. The Init LED turns off after the diagnostics have successfully completed.</td>
</tr>
<tr>
<td></td>
<td>Unit - Turns green after the Remote Annex passes the power-up diagnostics. Turns amber if the power-up diagnostics fail.</td>
</tr>
<tr>
<td></td>
<td>Net - Turns green after the Remote Annex verifies that a valid Ethernet connection exists.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 4-1. Remote Annex 5393/PRI Front Panel LEDs (continued)

<table>
<thead>
<tr>
<th>LED(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Status (continued)</td>
<td>Attn - Turns amber when the Remote Annex requires operator attention, that is, in Monitor Mode or when the diagnostic tests fail.</td>
</tr>
<tr>
<td></td>
<td>Load - Turns green when the Remote Annex is loading the operational image or dumping a RAM image if there is a failure. The LED turns amber if a load error is detected.</td>
</tr>
<tr>
<td>PRI Channel Status</td>
<td>These green LEDs indicate B channel allocation. There are 32 PRI Channel Status LEDs. For T1, 23 are used to indicate B channel allocation. For E1, 30 are used to indicate B channel allocation.</td>
</tr>
<tr>
<td>Modem Config Status</td>
<td>These LEDs, located on the Modem Module, indicate the general status of the modems within a group. There are eight groups of four modems (labeled 1-4, 5-8, 9-12, 13-16, 17-20, 21-24, 25-28, 29-32). An indicator is green if all the modems within a group are good. An indicator is amber if one or more modems within a group are bad.</td>
</tr>
<tr>
<td>Modem Port Status</td>
<td>The Modem Port Status indicators are located on the Modem Module. There are two Modem Port Status indicators for each modem port (1 through 32):</td>
</tr>
<tr>
<td></td>
<td>CD - Data Carrier Detect is a green LED and is on when the carrier has been detected on the telephone line on the corresponding modem.</td>
</tr>
<tr>
<td></td>
<td>TxD/RxD - This green LED flashes to indicate the corresponding modem is transmitting or receiving data.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 4-1. Remote Annex 5393/PRI Front Panel LEDs (continued)

<table>
<thead>
<tr>
<th>LED(s)</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Network/Status Alarms** | **TEST** - The red network TEST indicator is ON when the ISDN Network Interface is looped back. Loopback tests are activated either locally by the user or by the telephone company.
SYNC - The green SYNC indicator is ON when the PRI interface is synchronized with the received network signal and is receiving proper framing information.
LOS - The red LOS indicator is ON when the PRI interface is detecting no signal (pulses) on the network interface receiver. When an LOS condition exists, the PRI interface transmits unframed all ones (AIS) to the network.
RED - The RED alarm indicator is ON during a locally detected carrier failure. During the RED alarm condition, a YELLOW alarm is transmitted across the telephone network.
YELLOW - The YELLOW alarm indicator is ON when receiving a YELLOW alarm condition from the telephone network.
BLUE - The BLUE alarm indicator is ON when receiving an unframed, all-ones Alarm Indication Signal (AIS) from the network. This condition exists upon a loss of originating signal, or when any action is taken that would cause a signal disruption. |
During power-up and booting, it is more difficult to diagnose problems because they can originate in the Remote Annex, the transceiver, the Ethernet, or the load server host. However, the LEDs provide both a progress report and an error display to assist you in troubleshooting.

If an error occurs, save the status of these LEDs. Technical support personnel can use this information to diagnose problems.

Power-up and Boot Procedures

The Remote Annex has two modes of operation: Normal Mode and Monitor Mode. Normal Mode is the standard operational mode. Monitor Mode is a diagnostic mode that provides access to the ROM Monitor commands.

During its power-up and boot sequence, the Remote Annex runs a set of diagnostics. The system LEDs display the diagnostics’ status. The pattern of the system LEDs identifies the error condition. **Table 4-2** lists abnormal operating conditions reported by the LED displays, points to possible causes, and recommends corrective actions.
Table 4-2. Troubleshooting Guide

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annunciator is amber.</td>
<td>You reset the module or cycled power by removing the module and reinserting it.</td>
<td>None required. The annunciator should turn green when the module successfully completes the power-up diagnostics.</td>
</tr>
<tr>
<td>Annunciator is amber.</td>
<td>Detectable module component failure.</td>
<td>Use a service port terminal to check the self-test diagnostic messages to determine whether you can resolve the problem; otherwise, replace the module.</td>
</tr>
<tr>
<td>Annunciator is off; other module annunciators are off; chassis LEDs off.</td>
<td>No power to chassis.</td>
<td>Turn on power to the chassis.</td>
</tr>
<tr>
<td>Annunciator is off; other module annunciators are off; chassis LEDs are on.</td>
<td>Chassis power is below required module threshold.</td>
<td>Check chassis power supply LEDs and power supplies.</td>
</tr>
<tr>
<td>Annunciator is off; other module annunciators are on; chassis LEDs are on.</td>
<td>Module is not seated properly.</td>
<td>Re-seat the module.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 4-2: Troubleshooting Guide (continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annunciator is off; other module annunciators are on; chassis LEDs are on.</td>
<td>No power to module (blown fuse; failed DC-to-DC converter).</td>
<td>Replace the module.</td>
</tr>
<tr>
<td>The Attn and Unit Module Status LEDs are amber.</td>
<td>The Remote Annex did not pass its diagnostics or is not working normally.</td>
<td>Reset the Remote Annex.</td>
</tr>
</tbody>
</table>

Power-Up Diagnostic Messages

Power-up diagnostics run when the Remote Annex is powered up or reset. During the power-up process the following text is displayed on the service port terminal:

To enter "Monitor Mode" please depress the SPACE key within 10 seconds.

If you press the space bar within 10 seconds, the following text is displayed:

Monitor Mode selected, please wait for Confidence tests to complete.

If you do not press the space bar within the time allotted, the following text is displayed:

Defaulting to Normal Boot Mode.

If an error occurs during confidence tests, the following message is displayed:

Fatal Error
The procedures for troubleshooting a power-up failure established that:

- The hardware is functional.
- The Ethernet interface is functional.
- The Remote Annex can communicate with the Ethernet.

If the Remote Annex still is not booted, you must pinpoint the problem. The boot error report can help in this process.

The Remote Annex generates a boot error report only if it opens the boot file and an error occurs during the boot process.

Generally, two problems cause boot failures:

- The Remote Annex is not configured properly.
- The load server host is not responding.

The Remote Annex requests a boot image from a pre-defined load host or by broadcasting a boot request. When a host responds, the Remote Annex loads its operational image.

The Remote Annex requires setting certain configuration parameters. Enter these parameters using the Monitor Mode commands for the initial boot sequence. See Chapter 3 for more information on these commands.

If the problem is a non-responsive host, the boot error report displays that information under the Rsp T/O’s field. This field indicates that the Remote Annex timed out while waiting for a response to its boot request; if this field is empty, check the Remote Annex’s configuration parameters.
Boot Error Report

If an error occurs, a Remote Annex boot error report is generated only if the Remote Annex has opened the boot file. The report is displayed using the following format:

```
BOOT ERROR REPORT (for BFS files only)
Boot attempt from host nn.nn.nn.nn:
Errors from Last Open Request:
0 ARP errors 0 ERPC layer errors 0 Aborts rx’d
Errors from Last Read Request:
0 Msgs w/ wrong size 0 ERPC layer errors 0 Aborts rxd
Errors from Last ERPC Layer Invocation:
0 H/W errors 1 Msgs from wrong host 0 Rsp T/O’s 0 Msgs of wrong type
```

TFTP error reporting complies with the standard, predefined TFTP error codes.

The Remote Annex generates a boot error report for the Internet address from which it tried, and failed, to boot. Table 4-4 contains a description of the Errors from the Last Read Request; and Table 4-3 contains a description of the Errors from Last ERPC Layer Invocation.

The error count pinpoints the error that caused the boot failure. For example, if the boot failed during a Read Request due to excessive Expedited Remote Procedure Call (ERPC) layer errors, the Errors from Last ERPC Layer Invocation lists only errors that occurred during the failed Read Request (see Table 4-3). The report does not list errors that occurred during any other Read Request (see Table 4-4) or during the Open Request (see Table 4-5).

The Open Request and the Read Request layers communicate with the block file server (BFS) on the host. The ERPC layer resides below the Open Request and the Read Request layers. It is responsible for sending a given message to a specific host UDP port, and for receiving the correct response to that message from the port.
Table 4-3. Errors from Last ERPC Layer Invocation

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/W errors</td>
<td>The Remote Annex sensed a hardware error during message transmission or reception. This error indicates a fault with the Remote Annex LAN interface. Use the <code>net</code> command to isolate the problem (see <code>net</code> on page 3-18).</td>
</tr>
<tr>
<td>_msgs from wrong host</td>
<td>The Remote Annex received a message from an incorrect host. This indicates that the Remote Annex received, and ignored, an unsolicited packet.</td>
</tr>
<tr>
<td>Rsp T/O’s</td>
<td>The Remote Annex never received a correctly formatted response from the correct host, or any response from any load server hosts.</td>
</tr>
<tr>
<td>_msgs of wrong type</td>
<td>The correct host sent a message to the Remote Annex, but the message was not a correctly formatted response to the transmitted request.</td>
</tr>
</tbody>
</table>

Table 4-4. Errors from Last Read Request

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_msgs with wrong size</td>
<td>The correct host responded to the Read Request, but the data size is incorrect.</td>
</tr>
<tr>
<td>ERPC layer errors</td>
<td>See Table 4-3.</td>
</tr>
<tr>
<td>Aborts rx’d</td>
<td>The host’s BFS transmitted an abort in response to the Remote Annex’s Read Request. Run <code>erpcd -D</code> on the host to obtain more information.</td>
</tr>
</tbody>
</table>
Table 4-5. Errors from Last Open Request

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP errors</td>
<td>Address Resolution Protocol (ARP) errors indicate that the Remote Annex is configured to boot from a specified host, but the host would not transmit its Ethernet address to the Remote Annex. Possibly, the Remote Annex configuration includes the wrong IP encapsulation.</td>
</tr>
<tr>
<td>ERPC layer errors</td>
<td>See Table 4-3.</td>
</tr>
<tr>
<td>Aborts rx’d</td>
<td>The host’s BFS transmitted an abort in response to the Remote Annex’s Open Request. This often means that the requested file does not exist on that server. Run <code>erpcd -D</code> on the host to obtain more information.</td>
</tr>
</tbody>
</table>

Correcting Remote Annex Parameters

The following parameters must accurately reflect both the Remote Annex and the network environment in which it operates.

Verify the Remote Annex’s IP address using the `addr` command. If your network configuration does not support the factory defaults, verify the following parameters using the `addr` command:

- The broadcast address.
- The subnet mask.
- The load/dump gateway address (which must be specified if the preferred load server host is located on another network or subnet).
The IP encapsulation type. Many systems have hardware Ethernet interfaces that are IEEE 802.3 compliant, but very few actually do 802.3 IP packet encapsulation. Use the default, Ethernet, unless you know absolutely that your LAN does 802.2/802.3 IP packet encapsulation.

You can use the defaults for the name of the image file containing the Remote Annex’s software and the address of the preferred load server host. If the value for the image name is incorrect, the Remote Annex cannot boot. Correct the name using the `image` command. If the address for the preferred load server host is incorrect, the boot takes longer, since the Remote Annex has to broadcast for a host. Correct the load host’s address using the `addr` command.

Confirm that the Remote Annex’s boot parameters are correct by using the appropriate ROM Monitor commands. Modify any boot parameters that are incorrect or missing. Boot the Remote Annex either by entering the `boot` command at the service port terminal, or by resetting the module.

Load Server Host Not Responding

The Remote Annex can boot from one of the following hosts acting as a load server host:

- A UNIX host on the local area network.
- Another Remote Annex.
- Any host (UNIX or non-UNIX) using `tftp`.
- A Windows NT host.

The following subsections discuss troubleshooting for some of these load server hosts.
UNIX Host on the LAN

When troubleshooting a UNIX host on the LAN, make sure that:

- The host is booted and functioning properly.
- The host can communicate with other network nodes using standard UNIX networking features and utilities.
- All Remote Annex software is installed properly on the host. See the Software Installation Notes that come with the Remote Annex software release.
- The `erpcd` daemon or `tftp` server (which loads the operational image to the Remote Annex) is running.

In Test Mode, `erpcd` on the load server host displays boot progress reports. In Monitor Mode, the Remote Annex displays boot progress reports. The Remote Annex displays its reports on the service port terminal that invokes its Monitor Mode; `erpcd` displays its reports on the UNIX terminal that invokes its Test Mode.

1. To place `erpcd` on the load server host into Test Mode, kill the `erpcd` program (requires superuser privileges) and restart it using the `-D` option:
   ```bash
   # /etc/erpcd -D5
   ```

2. Place the Remote Annex into Monitor Mode. (This resets the Remote Annex, so warn users before you do it.) Then, at the monitor prompt, enter:
   ```bash
   # boot -v
   ```

When the Remote Annex boots in Monitor Mode, the service port terminal displays the load server host’s Internet address, and indicates whether it receives a response to its Open File Request and to any of its Read File Requests. The host’s progress report indicates receipt of any File Server Requests and its responses to such requests.
The host displays `erpc_return 0` if it successfully receives a request and is sending out an affirmative response. If any Remote Annex-related files are missing or cannot be installed, contact technical support.

A PC host running the UNIX operating system has the `erpcd` daemon (provided with the distribution and installed in `/etc`) running in the background on the PC. Put the Remote Annex into Monitor Mode, and the `erpcd` on the load host into Test Mode:

1. **For `erpcd` on the load server host, as Superuser, kill the `erpcd` program and restart it using the `-D` option:**
   ```
   # /usr/annex/erpcd -D5
   ```
2. **For the Remote Annex, at the monitor prompt, enter:**
   ```
   # boot -v
   ```

Another Remote Annex 5393/PRI

When troubleshooting a Remote Annex 5393/PRI configured as a load server host:

1. **Use the CLI `telnet` command to access the unit and verify that it is up and running.**
2. **Communicate with the unit on the Ethernet using the Superuser CLI `ping` command.**
3. **Verify the unit’s configuration using `na`.**

The Remote Annex Administrator’s Guide for UNIX provides more information on these commands.

A Remote Annex 5393/PRI that has been reconfigured as a load server host, but not rebooted, cannot boot another Remote Annex 5393/PRI on the network. Rebooting the Remote Annex 5393/PRI load server host ensures that the parameters are set.
Remote Annex Dumps

The Remote Annex dumps its memory image to a host running load server software when certain software or hardware events occur.

Dump files are generated for use by technical support personnel only.

Events that trigger Remote Annex dumps are:

- Non-recoverable hardware or software errors.
- Software fails to reset the Remote Annex’s watchdog timer.
- Software fails one or more internal consistency checks.
- Hardware detects an internal fault.

The Remote Annex sends a dump file to a preferred load dump host. If you do not define this host by specifying an address, the Remote Annex broadcasts a request and dumps to the first host that responds.

The Remote Annex sends a dump to the `/usr/spool/erpcd/bfs` directory on the dump host. The `/usr/spool/erpcd/bfs` directory is a default pathname and can be changed. The receiving Remote Annex assigns a unique file name for each device that it receives a dump from but not for each crash dump.

Rename any crash dumps that you want to save. The Remote Annex overwrites crash dumps.

The assigned name depends on the number of characters per file name that the dump host supports. For hosts supporting file names longer than 14 characters (e.g., BSD hosts), dump files are named `dump.addr`. The file extension `addr` is the Remote Annex’s IP address.
For hosts that limit file names to 14 characters (e.g., System V hosts), a dump creates two additional directories under
/usr/spool/erpcd/bfs. The name of the first directory is **dump**; the second directory uses the Remote Annex’s IP network address as its name. The dump file uses the Remote Annex’s IP host address as its name.

The **tftp** dump names are user-defined. If a name is not specified, the Remote Annex uses the **bfs** convention.

Each dump file contains a complete image of the Remote Annex RAM memory and hardware state. The amount of space required for a dump file varies according to the port configuration. The ROM Monitor **config** command displays the amount of memory for the Remote Annex.

Table 4-6 shows sample dump file names. All pathnames are relative to the file /usr/spool/erpcd/bfs.

Table 4-6. Remote Annex 5393/PRI Dump File Naming Conventions

<table>
<thead>
<tr>
<th>Remote Annex 5393/PRI Address</th>
<th>Network Address</th>
<th>BSD Filename</th>
<th>System V Pathname</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.0.0.75</td>
<td>63</td>
<td>dump.63.0.0.75</td>
<td>dump/63/0.0.75</td>
</tr>
<tr>
<td>131.140.23.1</td>
<td>131.140</td>
<td>dump.131.140.23.1</td>
<td>dump/131.140/23.1</td>
</tr>
<tr>
<td>195.46.2.15</td>
<td>195.46.2</td>
<td>dump.195.46.2.15</td>
<td>dump/195.46.2/15</td>
</tr>
</tbody>
</table>
Conditions for Replacing a Module

Replace a Remote Annex with another module of the same type under any of the following conditions:

- If the annunciator on the module front panel remains off, indicating that the module is not receiving +5 volt power or that the power level is below the reset limit (4.65 volts) when other modules in the hub are receiving normal operating power. For more information, see Table 4-2.

- If the annunciator remains amber, indicating that some portion of the module has failed and a check of the self-test messages indicates that the problem cannot be fixed. For more information, see Table 4-2.

Module Configuration Management

Each module installed in a Model 5000 chassis operates according to software parameter values and hardware option settings. You can use these to customize module operation for that particular hub. This combination of software and hardware values is the module configuration, of which there are actually two types:

- “Primary” configuration, which is the set of base values built into the module at the time it is manufactured. A user cannot change this configuration.

- “Default” configuration, which is the permanent configuration plus any changes to jumper or switch settings. The default configuration is valid for any hub slot at any time. Each module must have a default configuration. This configuration is stored in two places: on the module itself and on the supervisory module. You can change this configuration through a network management module (NMM) or through a terminal connected to the chassis service port.
The supervisory module, located in slot 0 of the 5000 hub, performs several functions for the hub and the modules installed in the hub. The supervisory module stores the primary configurations of all modules installed in the hub. Each user-installed module also stores a working copy of its configuration information. When a change is made to this working copy, the module stores the new user configuration in its onboard nonvolatile memory.

The supervisory module periodically polls user-installed modules in the hub across the common management bus (CMB). As part of the poll, the NMM collects module configuration information and stores the information in its local nonvolatile memory for use in comparing and/or restoring a module configuration after a power cycle or reset.

What happens to a module when it is inserted in the hub depends on a combination of conditions:

- If you remove a module, change jumper settings, and reinsert the module in its original slot, the new jumper settings take effect immediately. The supervisory module records the new configuration information in its nonvolatile memory.
- If you replace a module in a slot with a different type of module, the new module is directed to use its default configuration.
- If the supervisory module is not operational, a module whose configured slot number matches its installed location can use its own stored configuration; otherwise, the module reverts to its default configuration.

To preserve the configuration parameters of the Remote Annex module you are replacing, follow the procedures in Preparing for a Hot Swap on page 4-19 and Completing the Hot Swap on page 4-21.

Verify that the backplane segment bank selector is set for the correct segment bank before installing a replacement module. For more information on jumper and switch settings, see Chapter 2.
Preparing for a Hot Swap

The Remote Annex can be inserted into or removed from a chassis without interrupting service to other modules within the 5000 hub. This ability is referred to as “hot swapping.”

The Remote Annex holds 64KB of configuration information in EEPROM. This information is periodically sent to the host server to be saved in a file. During a hot swap, the new Remote Annex reads in this file at boot time and overwrites its EEPROM with the configuration information from the Remote Annex it is replacing. The new Remote Annex then functions as the previous Remote Annex, except for the option keys, which need to be reprogrammed.

If no EEPROM overwrite is desired when hot swapping, select default values for that slot from the supervisory module on the service port terminal.

There are two methods of writing the EEPROM information to the host file:

- Whenever a change is made to EEPROM, a 5 minute timer is started. When the timer expires, the contents of the EEPROM memory are copied to an internal buffer in the Remote Annex RAM and encrypted. The file is then transferred to the host specified in the configuration parameter `pref_dump_addr`. The filename used to store the EEPROM information on the host is `params.n.n.n.n` (where `n.n.n.n` is the IP address of the Remote Annex).

- In addition, writing the EEPROM information to the host can be forced by using the Remote Annex’s superuser `cp -e` command. This can be done at any time and typically is done if you have just completed making changes to one of the configuration files or some of the configuration parameters.
It will be necessary to configure the replacement Remote Annex to define any software options (LAT, Appletalk/ARAP, dynamic networking, tn3270).

The Remote Annex being replaced and the new module must be registered for the same software options for the hot swap to be successful.

Removing a Module

To remove a Remote Annex, follow these steps:

1. **Using the flat-tip screwdriver, loosen the four captive retaining screws on the module until they pop free of the chassis.**
2. **Push the top and bottom inserter/extractor levers away from the center of the Remote Annex front panel to release the module from the backplane connector.**
3. **Slide the module out of the chassis.**
 Grip the front panel with one hand while supporting the bottom of the module with the other hand.
4. **Place the module on an antistatic mat.**

 If a module is removed from the chassis permanently or for more than a few minutes, you should install a filler panel on the empty chassis slots to maintain the cooling air flow within the chassis.
Completing the Hot Swap

To complete the hot swap of the Remote Annex:

1. Verify that the jumper settings on the replacement module are the same as the settings on the original module.

2. Use the procedures outlined in Chapter 2 to insert the replacement module into the System 5000 chassis.

 The saved EEPROM information is read by the Remote Annex at boot time only in a hot swap situation. The Remote Annex compares the “board serial number” field (in the supervisory module nonvolatile memory) against its internal serial number. After loading the operational image, the initialization process sets up the network interface and then reads the params.n.n.n.n file from the host server, and places it in local memory. The EEPROM file contents are decrypted and written to the EEPROM. The buffer containing the files is then discarded. This process may take several minutes to complete.

4. Set the configuration parameters acp_key, vcli_password, password, and the port parameter port_password to the same values as the original Remote Annex.

 Set these parameters manually through the admin or the na utility, or through some SNMP application, since they cannot be saved and restored by the na write and na read commands or by the SNMP get and set commands.

 You can set values by using the na utility on a UNIX host, using SNMP (if UNIX is configured for it) or enter Monitor Mode from the Remote Annex’s service port terminal, become a superuser, and use the admin command.

5. If applicable, obtain new option keys and enter them.
Appendix A Port Pins and Signals

This appendix identifies the signals and the associated pins used by the Remote Annex PRI ISDN Interface port:

PRI ISDN Interface Port

Figure A-1 illustrates a PRI ISDN Network Interface port connector. *Table A-1* lists the port’s pin/signal allocations.

![PRI ISDN Interface Port Connector](image)

Figure A-1. PRI ISDN Interface Port Connector

Table A-1. PRI ISDN Interface Port/Pin Signal Allocations

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Receive data from Network (RING)</td>
</tr>
<tr>
<td>2</td>
<td>Receive data from Network (TIP)</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
</tr>
<tr>
<td>4</td>
<td>Transmit data to Network (RING)</td>
</tr>
<tr>
<td>5</td>
<td>Transmit data to Network (TIP)</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
</tr>
</tbody>
</table>
Appendix A Port Pins and Signals
Appendix B Modem Module Installation Instructions

The Remote Annex 5393/PRI supports up to 32 internal modems. You can add modems to modem-less versions of the Remote Annex 5393/PRI by installing a Modem Module onto your existing Main Logic Module. These installation instructions contain a description of the following:

- Contents of the Kit
- Main Logic Module Removal Instructions
- Modem Module Installation Instructions
- Installing the Upgraded Module

Contents of the Kit

The Remote Annex 5393/PRI Modem Module upgrade kit contains:

- One Modem Module with quad modem card(s) pre-installed
- Two ribbon cables
- One power extension cable
- Four standoffs

Required Tools

- A flathead screwdriver
Main Logic Module Removal Instructions

The following instructions describe how to remove the Remote Annex 5393/PRI from the System 5000 Hub. These instructions assume that you have taken the necessary steps. Figure B-1 illustrates the instructions.

1. Disconnect the PRI ISDN cable.
2. Loosen the captive screws.
3. Disengage the module from the backplane by simultaneously pushing the inserter/extractor levers towards the outside of the module front panel (see Figure B-1).
4. Remove the module.

Figure B-1. Removing the Main Logic Module from the System 5000 Hub
Modem Module Installation Instructions

The following instructions describe how to install the Modem Module onto the Remote Annex 5393/PRI. Figure B-2 illustrates the instructions.

1. Screw the four standoffs into place on the Main Logic Module.
2. Connect one end of the 9-pin power extension cable into Main Logic Module Connector J13 (keyed cable can only be inserted one way). Make sure the cable is fully seated.
3. Connect one end of each ribbon cable into Main Logic Module connectors J18 and J16, respectively. These keyed cables can only be inserted one way. Make sure that the cables are fully seated.
4. Feed the power extension cable and two ribbon cables through the cutout in the Modem Module.
5. Connect the power extension cable into Modem Module Connector J19 (keyed cable can only be inserted one way). Make sure that the cable is fully seated.
6. Connect the ribbon cable from Main Logic Module Connector J18 to Modem Module Connector J18. Connect the ribbon cable from Main Logic Module Connector J16 to Modem Module Connector J17. These keyed cables can only be inserted one way. Make sure that the cables are fully seated.
7. Lower the Modem Module onto the Main Logic Module, inserting the two metal tabs on the Modem Module into the two slots provided on the Main Logic Module and lining up the four nylon standoffs on the Main Logic Module with their respective holes on the Modem Module.
8. Push down firmly on the Modem Module corners to lock the nylon standoffs into place.
9. Follow the installation instructions detailed in Chapter 2 to reinstall the upgraded Remote Annex 5393/PRI into the System 5000 Hub.
Figure B-2. Installing the Modem Module
Appendix C Modem Upgrade Instructions

The Remote Annex 5393/PRI supports up to 32 internal modems. The modems reside on quad modem cards on the Modem Module. This chapter describes how to install additional quad modem cards onto the Modem Module to upgrade the number of modems on the Remote Annex.

Installation of the Modem Module is a prerequisite for installing additional modem cards. If the Modem Module is not installed on your Remote Annex, see Appendix B for instructions on installing it.

These installation instructions contain a description of the following:

- Contents of the Kit
- Main Logic Module Removal Instructions
- Quad Modem Card Installation Instructions
- Installing the Upgraded Module
- Removing Quad Modem Cards

Contents of the Kit

The Remote Annex modem upgrade kit contains:

- One or more quad modem cards
- One hardware kit containing four nylon standoffs per quad modem card

Required Tools

- A flathead screwdriver
- A pair of needlenose pliers
Main Logic Module Removal Instructions

The following instructions describe how to remove the Remote Annex 5393/PRI from the System 5000 Hub. These instructions assume that you have taken the necessary steps. Table C-1 illustrates the instructions.

1. **Disconnect the PRI ISDN cable.**
2. **Loosen the captive screws.**
3. **Disengage the module from the backplane by simultaneously pushing the inserter/extractor levers towards the outside of the module front panel (see Figure C-1).**
4. **Remove the module.**

Figure C-1. Removing the Main Logic Module from the System 5000 Hub
Quad Modem Card Installation Instructions

Observe handling precautions: electrostatic-sensitive devices.

To install the additional quad modem card(s) onto the Modem Module (see Figure C-2):

1. **Find the next available location on the Modem Module into which a modem card can be installed.**

 There are eight locations on the Modem Module that can accommodate quad modem cards (up to 32 modems). These locations are numbered (1-4, 5-8, 9-12, and so on). If, for example, modem cards are already installed in locations 1-4 through 17-20, the next available location would be 21-24. It is important to use the next available location, and not leave any empty locations.

2. Insert the four nylon standoffs into their respective holes on the Modem Module.

3. Lower the quad modem card onto the Modem Module, keeping the quad modem card horizontal.

4. Carefully press the quad modem card into the card connector, making sure not to bend or damage any pins. Make sure that the connector is fully seated.

5. Push one corner of the modem card down onto the nylon standoff until the locking detent engages.

6. Repeat the previous procedure with the other three corners of the modem card.

7. Follow the installation instructions detailed in Chapter 2 to reinstall the upgraded Remote Annex 5393/PRI into the System 5000 Hub.
Figure C-2. Adding Quad Modem Cards to the Modem Module
Removing Quad Modem Cards

Occasionally it may be necessary to remove quad modem cards from the Remote Annex (for example, if a quad modem card fails and needs to be replaced). On the Modem Module, there are eight locations that can accommodate quad modem cards (up to 32 modems). These locations are numbered (1-4, 5-8, 9-12, and so on). When the Remote Annex encounters an empty location, it assumes that the modem card before the empty location is the last modem card in the series. Therefore, any empty location resulting from the removal of a quad modem card will be interpreted as an indicator that the last modem card has been reached. Any quad modem cards installed after the empty location will not be recognized, unless the DIP switch section corresponding to the removed modem card is toggled ON. Table C-1 provides a map of the quad modem card locations and their corresponding DIP Switch assignments.

Table C-1. Modem Card/S1 DIP Switch Section Assignments

<table>
<thead>
<tr>
<th>Modem Card Location</th>
<th>DIP Switch Section (S1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>1</td>
</tr>
<tr>
<td>5-8</td>
<td>2</td>
</tr>
<tr>
<td>9-12</td>
<td>3</td>
</tr>
<tr>
<td>13-16</td>
<td>4</td>
</tr>
<tr>
<td>17-20</td>
<td>5</td>
</tr>
<tr>
<td>21-24</td>
<td>6</td>
</tr>
<tr>
<td>25-28</td>
<td>7</td>
</tr>
<tr>
<td>29-32</td>
<td>8</td>
</tr>
</tbody>
</table>
The following instructions detail how to remove a quad modem card and toggle its appropriate DIP switch section (on DIP switch S1) to assure that all remaining modem cards will be recognized by the Remote Annex. Figure C-3 and Figure C-4 illustrate the instructions.

1. Locate the quad modem card that you want to remove.
2. Starting at one corner of the card, push in the locking detent on the nylon standoff, and gently work the corner of the card off the nylon standoff (see Figure C-3).
3. Repeat the procedure for the other three corners of the quad modem card.

Figure C-3. Removing Modem Cards from the Modem Module
4 Lift the modem card straight out of its connector, making sure not to damage any pins.

5 Referring to Table C-1, identify the S1 DIP switch section that corresponds to the location of the modem card you removed.

6 Locate the S1 DIP switch section and set it to the ON position (see Figure C-4).

Figure C-4. Locating and Setting DIP Switch S1
Index

A
- additional documentation xix
- addr command 3-4

B
- backplane Ethernet segment banks 1-6
- Bay Networks
 - CompuServe forum xxiv
 - Customer Service FTP xxiv
 - home page on World Wide Web xxiii
 - InfoFACTS service xxv
 - support programs xxii
 - Support Source CD xxiv
 - Technical Response Center xxi, xxvi
 - technical support xxi
- boot command 3-2, 3-7
 - examples 3-11
- boot failures 4-8
- boot -l command 3-10
- boot -v command 3-11
- booting
 - from a UNIX host 2-29
 - from a Windows NT server 2-28
 - from another Remote Annex 5393/PRI 2-28
 - from Flash ROM 2-30
 - using TFTP 2-26
- BOOTP protocol 2-21
- broadcast address
 - description 2-18
 - setting the 3-6

C
- CMB 1-5
 - hub management using the 1-5
- Common management bus 1-5
- CompuServe
 - Bay Networks forum on xxiv
- config command 3-3, 3-12
 - example 3-12
- configuration management 1-5
- configuration options 2-2
- configuration terminal
 - equipment requirements 2-14
 - protocol setup 2-15
- connecting
 - a PRI ISDN network interface 2-12
 - to the System 5000 hub 2-18
- console monitor
 - invoking 2-33
- Customer Service FTP xxiv
- customer support xxi

D
- default configuration
 - for a module 4-17
- default parameters 2-24
- downloading
 - image software 2-24
 - operational software 2-24

E
- EMI requirements 1-15
- environmental requirements 1-14
- erase command 3-3, 3-13
- Ethernet
 - transceiver loopback test 3-18
- Ethernet address
 - displaying 3-4
 - during power-up 2-20
 - verifying 2-20
- Ethernet segment bank selector
 - description of 2-4
 - setting 2-3
- Ethernet segment bank selector jumper
 - location of 2-3
- Ethernet transceiver loopback test 3-18

F
- front panel 1-8
Index

Remote Annex 5393/PRI Hardware Installation Guide

Index-2

description of 1-8
front panel LED indicators
during proper operation 2-11

G

getting help
from a Bay Networks Technical Response Center xxvi
from the Support Source CD xxiv
through CompuServe xxiv
through Customer Service FTP xxiv
through InfoFACTS service xxv
through World Wide Web xxiii

H

hardware configuration
displaying 3-12
during power-up 2-20
verifying module 2-20
help command 3-3, 3-15
hot swap
preparing for 4-19
procedure for completing a 4-21
hub backplane
management section 1-5
hub management 1-5

I

image command 3-3, 3-16
image -d command 3-16
image name
default 3-7, 3-16
image software
downloading 2-24
InfoFACTS service xxv
initial boot parameters
setting addresses 3-4
initialization procedures 2-19
initializing the Remote Annex 2-18
installation
testing the 2-10
installing
the communications server module 2-6
installing additional quad modem cards C-3
installing the Modem Module B-3
installing the module into the hub 2-6
Internet address
description 2-18
setting the 3-6
invoking the console monitor 2-33
IP encapsulation type
setting the 3-6

L

lat_key command 3-3, 3-17
element 3-17
load/dump gateway
setting the 3-6
load/dump gateway Internet address
description 2-18

M

manual booting
description 3-7
menu
Slot Selection 2-15
modem cards
installing C-3
removing C-5
Modem Module 1-4
module
conditions for replacing 4-17
configuration behavior 4-17
installation into a hub 2-6
removing 4-20
verifying hardware configuration 2-20
verifying operation 2-19
verifying proper operation of 2-10
module configuration management 4-17
monitor mode
entering 2-19
monitor prompt 2-19, 2-31
MTBF 1-15

N
net command 3-3, 3-18

O
operation
 verifying 2-19
operational software
 downloading 2-24
option_key command 3-3, 3-19
 examples 3-19

P
parameters
 default 2-24
pin assignments
 service port 2-14
ping command 3-3, 3-20
 examples 3-20
ports command 3-3, 3-21
power-up
 failures during 2-12
 instructions 2-17
 self-testing during 2-17
power-up and boot procedures 4-5
preferred load host
 setting the 3-6
preferred load host address
 description 2-18
PRI ISDN interface port A-1
primary configuration
 for a module 4-17
printer port test 3-21
printing conventions xviii

Q
quad modem cards
 installing C-3
 removing C-5

R
RARP protocol 2-21
related documentation xix
Remote Annex
 description of 1-3
 dimensions of 1-14
 electrical specifications of 1-14
 EMI requirements 1-15
 environmental conditions 1-14
 firmware 1-7
 flash memory 1-4
 physical characteristics of 1-14
 PRI Module processors 1-4
 ROM monitor 1-7
 safety requirements 1-15
 server parameters 2-18
remote network access
 review of 1-2
removing a module, procedures for 4-20
removing quad modem cards C-5
replacing a module, conditions for 4-17
resetting the Remote Annex 2-19
ROM Monitor
 command descriptions 3-2
 command syntax 3-1
 commands 3-1
 description of 1-7
 list of commands 3-2
ROM monitor
 commands 3-2
 using 2-17

S
safety requirements 1-15
segment banks 1-6
Segment selection DIP switch
 setting the 2-5
self-booting the Remote Annex 2-30
sequence command 3-3, 3-22
 examples 3-22
serial line ports test 3-21
server parameters
for Remote Annex 2-18
service port
 connecting a terminal to 2-14
 module management through 1-6
 pin assignments 2-14
 terminal attributes 2-14
 terminal settings 2-14
service port management 1-6
service port terminal
 location of 2-14
setting
 backplane Ethernet segment 2-3
 boot sequence 3-22
 broadcast address 3-6
 Internet address 3-6
 IP encapsulation 3-6
 load/dump gateway address 3-6
 module IP address to boot from flash 2-31
 monitor prompt 2-19, 2-31
 preferred load host address 3-6
 service port terminal 2-14
 subnet mask 3-6
Slot Selection menu
 displaying the 2-15, 2-30
software installation
 executing boot command 2-29
 setting initial boot parameters 2-29
 setting Internet address 2-29
stats command 3-24
 example 3-24
 fields 3-24
subnet mask
 description 2-18
 setting the 3-6
supervisory module
 functional role 1-5
Support Source CD xxiv
supported configurations 1-8
System 5000 Hub
 installing the module into 2-6
 Slot Selection menu 2-15
T
testing
 the installation 2-10
 the printer port 3-21
 the serial line ports 3-21
 the transceiver 3-18
TFTP 3-9
U
UNIX boot 2-29
upgrading the Remote Annex
 installing the Modem Module B-3
 modem upgrade instructions C-1
 modem upgrade kit C-1
 PRI Module removal instructions B-2, C-2
 required tools B-1
 using the ROM monitor 2-17
V
verifying
 Ethernet address 2-20
 module operation 2-19
 the Remote Annex server hardware configuration 2-20
W
watchdog timer 1-8
weight 1-14
World Wide Web
 Bay Networks home page on xxiii