MEMORANDUM

TO: Recipients of Version 5.00 INTERVIEW 7X00 Software
FROM: Lynn Taylor
DATE: Dec 23, 1988
SUBJECT: INTERVIEW 7X00 Series Software Release Information

There has been a lot of new features added and many product
improvements in this software release. Functionality has been improved in
Run Mode, the function keys have been organized so they behave more
consistently with the rest of the unit, and some new Run Mode display
functions have been added. The following is a list of features that have
been added since the last release:

1. Program Load/Save times have been improved.
2. The Run Mode Function keys have been organized for better
 operation. The DONE key returns the run time function keys
to the top level function key rack.
3. There has been several new Print features added for Freeze
 Mode. They are as follows:
 1. SNA Trace print
 2. Layer 3 print for Q.931 and SS7
 3. BERT, T1, and T1 BERT Statistics can be printed
 4. Display Window print
 5. User Trace print
 6. Raw Mode print
 7. Run Mode printf statements can be directed to a file
 instead of the printer
4. Automon: This function will make a determination on the data
 and setup the Interview 7X00 to monitor the data.
5. Display window: This feature directs all 'display' routines
to write to the 'Display Window' screen. When a 'display'
routine is used, the output will only write to the Display
Window screen. The last 16 lines that have been displayed
are retained when changing screens and during Freeze mode.
The display routines are as follows:

 displayc(c): Display the character 'c'.
 displays(s): Display the string 's'.
 displayf(const char *format, ...): Display a formatted
 string to the Display Window screen.
 display_prompt(s): Display the string 's' starting at 0,0.
 unsigned int pos_cursor(r, c): Position cursor at row 'r',
 column 'c'. Returns the previous cursor position in the
 form of unsigned int 'rc'.
 restore_cursor(unsigned int rc): Positions the cursor to
 the previous position.
A new feature has been added to the existing displayf routine. It is a modifier feature which allows the user to set the color, enhance, and display modifier. The function uses an unsigned long variable and is invoked by using '%m'. The following gives the modifier bit values:

31: B/W Strike Thru
30: B/W Blink
29: B/W Low Intensity
28: Color, B/W Hex
27: B/W Reverse video
26: Color, B/W Underline: Same color as Fore ground
25: Color Display, B/W No Display
24: Color, B/W Overline: Same color as Fore ground
23: Color Strike Thru: Same color as Fore ground
22: Color Blink
19-21: Fore ground
 000: Black
 001: Dark Blue
 010: Green
 011: Light Blue
 100: Red
 101: Purple
 110: Yellow
 111: White
16-18: Back ground
 000: Black
 001: Dark Blue
 010: Green
 011: Light Blue
 100: Red
 101: Purple
 110: Brown
 111: White
8-15: Not used for '%m', character to be displayed when used in table form.
7: Display Modifier Bit
 0: This display_character may be forced into the hex attribute format
 1: This display_character may not be forced into the hex attribute format
3-6: Reserved, always set to zero
0-2: Font
 000: ASCII_FONT Use ASCII character set
 001: SPECIAL_FONT Use special character set
 010: PRIMARY_FONT Use Primary System codes
 011: ALTERNATE_FONT Use Alternate System codes
 111: HEX_FONT Hexadecimal character set

6. User variables
 extern unsigned short current_line: Contains the current line number
 extern unsigned short current_col: Contains the current column number
extern unsigned short window_color: Contains the color & enhancements
extern unsigned char window_modifier: Contains the window modifier

7. DDCMP Layer 1 Monitor: This feature calculates the BCC and passes date to Layer 2 in an IL_MESSAGE buffer.
 Event variables
 extern fast_event evar_gd_bcc2_rd;
 extern fast_event evar_gd_bcc2_td;
 extern fast_event evar_bd_bcc2_rd;
 extern fast_event evar_bd_bcc2_td;

8. X.21 Monitor and emulation

9. X.21 "C" functions
 1. User routines
 1. enter_call_phase(): Sets the unit for ASCII, 7, ODD, SYNC.
 2. enter_data_phase(): Sets the unit up to the Line Setup Parameters.
 3. bool add_event_to_buff(unsigned short event): Returns TRUE if the event(s) were accepted, Returns FALSE if no event(s) were accepted.
 4. bool add_array_to_buff(&events[0], count):
 unsigned short events[n];
 unsigned short count; /*Set to n*/
 Returns TRUE if the event(s) were accepted. Returns FALSE if no event(s) were accepted.

 2. User variables
 1. extern unsigned char td_modifier
 2. extern unsigned char rd_modifier

10. User Trace: There are 8 new display modes available during run mode. They include a Program Trace and 7 Layer Traces. These trace modes use a set of routines callable by the user's program. The routines are:

 extern struct trace_buf 13_trbuf;
 extern int tracef
 (struct trace_buf *, const char *, ...
 extern void traces (struct trace_buf *, const char *);
 extern void tracec (struct trace_buf *, char);
 extern void stracef
 (unsigned long *, const char *, ...

The Display Setup portion of the Line Setup screen has some additional selections for these display modes. If Layer Trace is selected as the default display, the user enters the layer number (1-7 on Interview 7X00) of the trace he desires. If Program Trace is selected, three additional fields appear. Two fields allow the user to selectively enable program trace for only a particular layer and/or a particular test. If the fields are left blank, they indicate all layers and tests. The third field is an option field which allows the user to turn on a state trace for the selected test. If this is turned on, the program will put a message into the Program Trace buffer each time the selected test changes states. Note: The Program Trace layer & test fields on the display setup screen affect ONLY the
Protocol Spreadsheet trace functions. They do not prevent other layers and tests from accessing the trace buffer using AR"C" code.

An example of how to use the standard trace routines are shown below. Note that the examples use the layer 3 trace buffer. The program trace buffer is named 'prog_trbuf', and the other layers trace buffers have similar names to layer 3.

```c
#include <trace_buf.h>
extern struct trace_buf 13 trbuf;
extern int tracef (struct trace_buf *, const char *, ...);
extern void traces (struct trace_buf *, const char *);
extern void tracec (struct trace_buf *, char);
extern void stracef (unsigned long *, const char *, ..);
static long temporary_buffer [100];
tracef (&13 trbuf, "Tracef is very similar to %s.\n", "fprintf");
traces (&13_trbuf, "Traces is very similar to fputs.\n");
tracec (&13_trbuf, '\n');
stracef (temporary_buffer, "%This blinks.", 0x40500000L);
tracef (&13_trbuf, "%This is steady. %b This is steady.", 0x4000000L, temporary_buffer);
```

11. Interview 20 Plus Data transfer: Data can be transferred from an Interview 20 Plus to an Interview 7X00. Data cannot be transferred from an Interview 7X00 to an Interview 20 Plus unit.

12. TIM Packages: Routines that are only valid when a TIM is installed have been organized to allow future expansion.

13. User Codes: The method for displaying the available Code Sets has changed. The Codes available for the unit are now obtained from the '/sys/codes' directory. Each file in the directory is read and displayed in the Function Key part of the CODES line in the Line Setup screen. Due to the change in operation, programs that have been saved with XS-3 will not load correctly. All programs that were saved with XS 3 will have to be loaded, the CODES entry on the Line Setup screen will have to be changed to XS_3, and the program will have to be saved again. This will insure proper load operations when using this code set. Two new files have been added to display the Katakana Code Set. They are:
 1. JIS 7
 2. JIS 8

14. Program Chaining: This will allow the user to link programs together while the unit is in Run Mode.
 1. load_program(const char *filename): The filename must be an absolute pathname, prefixed with the device name. The valid device names are "FD1", "FD2", and "HRD". A typical example would be "HRD/usr/tempfile".

Misc items in Protocol Spreadsheet
 1. The sequence /*CTRL+L*/ will send a Form Feed to the printer when printing Protocol Spreadsheet.
2. extern fast_event keyboard_new_any_key: Reads all keys and stores the value in 'unsigned short keyboard_any_key'. ASCII keys still work with 'keyboard_new_key'.

3. There have been tick values added for each layer. The time is the value that is passed up by the il_message buffer.

 extern unsigned long 12_tick_count
 extern unsigned long 13_tick_count
 extern unsigned long 14_tick_count
 extern unsigned long 15_tick_count
 extern unsigned long 16_tick_count
 extern unsigned long 17_tick_count

4. The PAD character is saved and loaded in raw form.

5. The FEB stops receiving data when an overflow occurs and freezes the real time clock in the display.

6. extern fast_event display_screen_changed: This event comes true when a Run Mode screen changes. Two user variables, 'unsigned short crnt_display_screen' and 'unsigned short prev_display_screen', are updated when the screen changes. A screen change occurs when the display is changed or when the Freeze key is pressed. The following values are used to indicate the current screen:

 \begin{verbatim}
 NO_DISPLAY 0x0000
 SINGLE 0x0001
 DUAL 0x0002
 SINGLE+LEADS 0x0003
 DUAL+LEADS 0x0004
 STATS_TABULAR 0x0011
 STATS_GRAPHIC 0x0012
 DISP_WINDOW 0x0021
 PROG_TRACE 0x0031
 PROTOCOL_TRACE 0x0040
 L2_PROTOCOL_TRACE 0x0042
 L3_PROTOCOL_TRACE 0x0043
 USER_TRACE 0x0050
 L1 USER 0x0051
 L2 USER 0x0052
 L3 USER 0x0053
 L4 USER 0x0054
 L5 USER 0x0055
 L6 USER 0x0056
 L7 USER 0x0057
 TIM_PKG_STD_STATS 0x0061
 TIM_PKG_AUXI 0x0062
 TIM_PKG_STD_BERT 0x0068
 TIM_PKG_BROADBAND_BERT 0x0069
 FREEZE_MODE 0x0100
 \end{verbatim}
7. The users program can now access the Hardware and the Software configuration of the unit from the following structures:

```
struct mpm_info {
    char rev_num;
    char present;
    unsigned long lo_addr;
    unsigned long hi_addr;
};

struct unit_config {
    char floppy_exists_mask;
    char hard_disk;
    char test_board;
    char mux;
    char modem;
    char num_mpmns;
    struct mpm_info mpm[4];
    char cpm_rev;
    char gbm_rev;
    char pcm_rev;
    char modem_rev;
    char mux_rev;
    char tim_type;
    unsigned long last_ram_cpm;
    unsigned long self_test_errors;
    unsigned long version;
    unsigned long model_number;
    char feb_type;
    char spare1;
    unsigned short spare1_5;
    unsigned long spare2;
    unsigned long spare3;
    unsigned long spare4;
    unsigned long spare5;
    unsigned long spare6;
    unsigned long spare7;
    unsigned long spare8;
    unsigned long spare9;
    unsigned long sparea;
    unsigned long spareb;
    unsigned long sparec;
    unsigned long spared;
    unsigned long sw_version;
    unsigned long fw_version;
};

struct unit_setup {
    unsigned long speed_dce;
    unsigned long speed_dte;
    unsigned long usec_per_tick;
    char bit_order_polarity;
    char bits_per_byte;
};
```
char clocking_type;
char data_source;
char format;
char mode;
char parity;
char code_name[13];

The following values correspond to the fields in the structures:

UNIT_CNFG_FLOPPY1_MASK 0x01
UNIT_CNFG_FLOPPY2_MASK 0x02

ORIGINAL_FEB 0x00
NEWER_FASTER_FEB 0x01
FAST_RECORD_FIFO_FEB 0x02

TIM_TYPE_RS232 0xF0
TIM_TYPE_X21 0xF1
TIM_TYPE_V35 0xF2
TIM_TYPE_RS449 0xF3
TIM_TYPE_EXPAND_ADAPT 0xF4
TIM_TYPE_RC8245 0xF5
TIM_TYPE_UNDEF1 0xF6
TIM_TYPE_UNDEF2 0xF7
TIM_TYPE_UNDEF3 0xF8
TIM_TYPE_UNDEF4 0xF9
TIM_TYPE_UNDEF5 0xFA
TIM_TYPE_UNDEF6 0xFB
TIM_TYPE_ISDN 0xFC
TIM_TYPE_G703 0xFD
TIM_TYPE_T1 0xFE
TIM_TYPE_NONE 0xFF

DATA_SOURCE_DISK 0
DATA_SOURCE_LINE 1

MODE_AUTOMON 0
MODE_MON 1
MODE_EMDCE 2
MODE_EMDTE 3

PARITY_NONE 0
PARITY_EVEN 1
PARITY ODD 2
PARITY_MARK 3
PARITY_SPACE 4

CLOCKING_TYPE_INTERNAL 0
CLOCKING_TYPE_EXTERNAL 1
CLOCKING_TYPE_SPLIT 2

FORMAT_SYNC 0
FORMAT_BOP 1
FORMAT_ASYNC 2
FORMAT_ISOCC 3

BIT_ORDER_POLARITY_NORMAL 0
BIT_ORDER_POLARITY_NORMAL_INVERSE 1
BIT_ORDER_POLARITY_REVERSE_NORMAL 2
BIT_ORDER_POLARITY_REVERSE_INVERSE 3
As Issue 5 of the INTERVIEW® 7000 Series Technical Manual went to press, additional features were added to the software. Explanations for these changes follow.

- A new C routine has been added to significantly increase the speed of byte-by-byte copy:

`bcopy`

Synopsis

```c
extern void bcopy(source_ptr, destination_ptr, number);
unsigned char *source_ptr;
unsigned char *destination_ptr;
unsigned short number;
```

Description

This routine executes a very fast byte-byte-byte copy of a specified number of bytes from a source variable to a destination variable. You may want to use it to perform fast, real-time copying of received data.

NOTE: If you have your own version of `bcopy`, we still recommend that you use the faster AR version. Otherwise, your version may be interpreted as an attempt to redefine a reserved name.

Inputs

The first parameter is a pointer the source variable.

The second parameter is a pointer to the destination variable.

The third parameter specifies the number of bytes to be copied from the source to the destination.

Example

As data is received from the line, it temporarily stored in IL buffers as it is passed up the layers. The IL buffers are then reused. In the following example, received data at Layer 2 is quickly copied from the IL buffer so that it is not lost when the buffer is reallocated.

```c
struct il_buffer
{
    unsigned short lock;
    unsigned short maintain_bits;
    unsigned short buffer_size;
};
```
Unsigned short transmit_tag;
unsigned short receive_tag;
unsigned long char_buff_frame_start;
unsigned long char_buff_frame_end;
unsigned short tick_count_high;
unsigned short tick_count_mid;
unsigned short tick_count_low;
unsigned short available_space_offset;
unsigned short bytes_remaining;
unsigned long bcc_indicator;
unsigned char data[4064];
}

struct il_buffer * il_buffer_ptr;
extern event m_lo_ph_prmtv;
extern volatile unsigned short m_lo_ph_il_buff;
extern volatile unsigned short m_lo_ph_sdu_size;
char data_string[256];

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Two new C event variables check for received flags. There is one variable for each side of the line.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Variable</td>
<td>Meaning</td>
</tr>
<tr>
<td>extern fast_event</td>
<td>fvar_flag_td</td>
<td>True when a BOP flag is detected on the TD side of the line. Line Setup configured for emulate or monitor mode.</td>
</tr>
<tr>
<td>extern fast_event</td>
<td>fvar_flag_rd</td>
<td>True when a BOP flag is detected on the RD side of the line. Line Setup configured for emulate or monitor mode.</td>
</tr>
</tbody>
</table>
A new array of C structures stores information relating to multiple transmit windows for up to sixteen addresses in SNA/SDLC multi-drop operation.

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable</th>
<th>Value (hex/decimal)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Name:</td>
<td>12_path_table[]</td>
<td></td>
<td>Array of structures for monitoring the transmit windows of multiple addresses in SDLC multi-drop operation. Declared as type extern volatile struct. Declared automatically for softkey-entered window conditions. Each array element (structure) is associated with a particular address. In point-to-point operation, only the first position in the array is used. Reference a structure variable as follows: 12_path_table[0].current_window_edge. Line Setup configured for emulate mode only.</td>
</tr>
<tr>
<td>unsigned char</td>
<td>flags</td>
<td>0-1/0-15</td>
<td>reserved for future use</td>
</tr>
<tr>
<td>unsigned char</td>
<td>number</td>
<td>0-110/15</td>
<td>Associated drop number for address listed in the ADDR table on the SDLC Frame Level Setup screen. In point-to-point operation, this drop number defaults to zero.</td>
</tr>
<tr>
<td>unsigned Int</td>
<td>c_addr</td>
<td>0-110/255</td>
<td>One of the (sixteen possible) controller addresses listed in the ADDR table on the SDLC Frame Level Setup screen.</td>
</tr>
<tr>
<td>unsigned Int</td>
<td>window_start</td>
<td>reserved</td>
<td>reserved</td>
</tr>
<tr>
<td>unsigned Int</td>
<td>window_end</td>
<td>reserved</td>
<td>reserved</td>
</tr>
<tr>
<td>unsigned Int</td>
<td>lower_window_edge</td>
<td>see current_window_edge</td>
<td>see current_window_edge</td>
</tr>
<tr>
<td>unsigned Int</td>
<td>upper_window_edge</td>
<td>see current_window_edge</td>
<td>see current_window_edge</td>
</tr>
<tr>
<td>unsigned Int</td>
<td>current_window_edge</td>
<td>When equal to upper edge, window is full; when equal to lower edge, window is empty; when not equal to upper edge, window is not full; and when not equal to lower edge, window is not empty. When resend edge is not equal to lower window edge, there is more to resend; when resend edge is equal to lower window edge, there is no more to resend.</td>
<td></td>
</tr>
<tr>
<td>unsigned Int</td>
<td>resend_edge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unsigned char</td>
<td>last_rovd_nr</td>
<td>0-7 (MOD 8)</td>
<td>N(R) of the last Info or supervisory frame received from the specified address (see c_addr above).</td>
</tr>
<tr>
<td>unsigned char</td>
<td>last_rovd_ns</td>
<td>0-7 (MOD 8)</td>
<td>N(S) of the last Info frame received from the specified address (see c_addr above).</td>
</tr>
<tr>
<td>unsigned char</td>
<td>last_sent_nr</td>
<td>0-7 (MOD 8)</td>
<td>N(R) of the last Info or supervisory frame sent to the specified address (see c_addr above).</td>
</tr>
<tr>
<td>unsigned char</td>
<td>last_sent_ns</td>
<td>0-7 (MOD 8)</td>
<td>N(S) of the last Info frame sent to the specified address (see c_addr above).</td>
</tr>
<tr>
<td>unsigned char</td>
<td>vr</td>
<td>reserved for future use</td>
<td>reserved for future use</td>
</tr>
<tr>
<td>unsigned char</td>
<td>vs</td>
<td>reserved for future use</td>
<td>reserved for future use</td>
</tr>
<tr>
<td>unsigned char</td>
<td>unack_frame_start</td>
<td>reserved for future use</td>
<td>reserved for future use</td>
</tr>
<tr>
<td>unsigned char</td>
<td>spare</td>
<td>reserved for future use</td>
<td>reserved for future use</td>
</tr>
</tbody>
</table>
A point about the File Maintenance Save command for Linkable Program (LPGM) files needs clarification. When you save a program as an LPGM file, your spreadsheet program excluding C #pragmas is saved as compiled linkable-object code. To retain #pragmas in your program, reference them as the hook text in a #pragma hook 0 before you save the program. Although the #pragma hook 0 is not saved, the hook text is.

There are two exceptions to this rule: #pragma object and #pragma hook 0. Enter these directives on the spreadsheet following the format explained in Section 59, C Basics. They will be saved intact in LPGM files.

To include other #pragmas, #pragma il_buffers 128 for example, in an LPGM file, enter them in a #pragma hook 0 as follows:

```
#pragma hook 0 "#pragma il_buffers 128"
```

Modifications to some Easy View menus necessitated the replacement of Sections 4 and 19 of the manual. Section 19 was also enhanced with additional examples.
Notice

This is Issue 5 of the INTERVIEW® 7000 Series Technical Manual, July 1990.

Issue 5 is written to specifications for the INTERVIEW 7000 Series—the 7000, 7200 TURBO, 7500, and 7700 TURBO—software revision 8.00. In most instances, further software revisions will be accompanied by an addendum to this issue. In cases where new software does not affect the accuracy of the manual, however, an addendum may not be produced.

Software revision 8.00 adds support for a new Easy View™ feature for the 7200 TURBO and the 7700 TURBO. Use the menus in Easy View to quickly load and execute programs or to access help information or tutorials about INTERVIEW screens, menu selections, and protocols. Section 4 provides an overview of the Easy View system. It describes the appearance of screens and the keys used to interact with those screens. Section 18 presents the Easy View Setup screen, used to configure the parameters that control Easy View operation. Section 19 describes the Easy View Maintenance program. Use this program to install application programs into the Easy View system or to create multiple versions of programs.

In addition to support for Easy View, software revision 8.00 adds the following features to the INTERVIEW:

- **TURBO** units can now fully utilize 2 Mbytes of RAM on each TURBO MPM. Previously, only 1 Mbyte was available.

- Access to Line Setup and Miscellaneous Utilities menus has been improved. Now you can enter these menus with fewer keystrokes, and once in the menu, you are ready to make a selection for the field highlighted by the blinking cursor.

- Cursor timing is a new feature of Freeze-mode data display that allows you to mark an event in the buffer and then view the elapsed time between that marked event and the cursor. The time is displayed at the top of the screen. (See Section 6.)

- A new file type, Linkable Program, has been added to the File Maintenance system. It contains all of the setup menus of a program (PRGM) file except for Triggers and source-code Spreadsheet. In addition to the menus, a linkable-program file contains the linkable-object code compilation of the Protocol Spreadsheet. (See Section 14.)

- Now you can save the configuration of the Printer Setup screen to a file that will be searched for and accessed during boot-up. The parameters saved in this file are automatically loaded in to the Printer Setup screen. (See Section 15.) A C routine has also been added for resetting the printer-output page to one. (See Section 67.)

- The data-plus-leads display can be printed from Freeze mode. (See Section 15.)

- The number and size of interlayer message buffers has been made flexible. Use either the IL_BUFFERS programming block on the Protocol Spreadsheet (see Section 27) or two new C #pragmas (see Section 66) to configure the size and number of IL buffers.
• A CALL_SETUP_SEND_IDLE action is new to the X.21 layer personality package. It guarantees that a specified change in the idle character actually occurs during a string transmission. (See Section 35.) The equivalent C routine has also been added. (See Section 73.)

• SNA/SDLC multi-drop capability has been added to the SDLC and SNA/SDLC layer personality packages. Choose from point-to-point or multi-drop operation on the Frame Level Setup screen. If you select multi-drop, specify up to sixteen controller addresses. A loopback address selection now appears for the RESEND, RESET_NR, and RESET_NS actions. (See Section 38 and 39.) Three new C routines that perform these same functions have also been provided. See Section 76.

• The signalling channel number is now selectable for CCS mode in G.703. (See Section 53.)

• Two C routines, disable_dce and disable_dte, may be used to completely disable the monitoring of the DCE or DTE side of the line. This reduction (by half) in the receive load enables the INTERVIEW to achieve better speeds for user-implemented BERT. (See Section 62.)

• Use new C routines for to assign labels to the function keys in the Display Window, User Trace, and Protocol Trace screens. (See Section 64.)

• The meaning of the value in the “wait” parameter of several remote port I/O routines has been updated to incorporate a timeout value. (See Section 70.)

• Another new C routine, surrender_cpu, allows one task to surrender the CPU so that another task can run. (See Section 72.)

• Software support has been added for a for future hardware enhancement—the TIM expansion shelf. At this time, the only change is that the Layer Setup screen looks slightly different. Its operation, however, remains the same.

• During boot-up, the system checks the hardware configuration of TURBO units for compatibility with Easy View. If a 2-Mbyte CPM is found, a warning message is displayed. Although the unit may need an upgrade to a 4-Mbyte CPM, its general operation is unaffected.

An addendum to Issue 4 of the manual, dated May 1990, has been incorporated into Issue 5. In addition to the sections already described above, Issue 5 also incorporates information in the following areas:

• The discussion in Section 2 about accessing menus has been updated. The [Esc] key now causes the system to behave as if the highlighted function key had been pressed. This is similar to the way selections are made from the Easy View menus.

• Section 3 incorporates the new Freeze-mode use of the [Esc] key for cursor timing. It also introduces the [Esc] key used to toggle between Easy View and Program mode.

• Section 15 explains how to save the Printer Setup and includes the translation of character representations from data-plus-leads displays to printed output (in Table 15-2).

• Appendix A2 provides status and error messages you may see during Easy View operation.
The AR Division of Telenex Corporation reserves the right to improve this manual or the equipment it describes without prior notice.

Any duplication of the material in this manual in any form without written permission from Telenex Corporation is strictly forbidden.

Address questions and comments about this manual and other AR Division technical publications to Technical Writing. Customers within the Washington D.C. Greater Metropolitan Area call 644-9078. Those outside of the local area call 1-800-368-3261, extension 9078 (in Virginia, call 1-703-644-9078).
Contents

Part I: Basic Operation

I Overview

1. Hardware .. 1-1
 1.1 Physical Dimensions .. 1-3
 1.2 Keyboard .. 1-3
 1.3 Front Panel .. 1-3
 1.4 Disk Drives ... 1-5
 1.5 Back Panel .. 1-7
 1.6 Storage Capacity ... 1-12
 1.7 Clock .. 1-13
 1.8 Operating Environment 1-14
 1.9 Operating Positions 1-14
 1.10 Power Up ... 1-14

2. General Operation ... 2-1
 2.1 Power Up .. 2-1
 2.2 Initializing System Software (Booting Up) 2-3
 2.3 Installing New System Software on Hard Disk 2-7
 2.4 Backing Up the Hard Disk 2-8
 2.5 The Menus ... 2-9
 2.6 Running a Test Program 2-15
 2.7 Data Flow .. 2-18
 2.8 How to Correct Common Problems 2-20
 2.9 Optimizing High-Speed Operation 2-23

3. Keyboard .. 3-1
 3.1 Hard Keys and Softkeys 3-3
 3.2 Programming Keys .. 3-3
 3.3 Real-Time Keys ... 3-10
 3.4 Freeze-Mode Keys .. 3-13

4. Easy View .. 4-1
 4.1 Booting Up .. 4-3
 4.2 Entering and Exiting Easy View 4-3
 4.3 Easy View Menus ... 4-4
 4.4 Using Easy View ... 4-7
II Setup and Display

5 Line Setup .. 5-1
5.1 Mode .. 5-3
5.2 Source .. 5-4
5.3 Code ... 5-5
5.4 Bits ... 5-6
5.5 Parity ... 5-6
5.6 Format .. 5-6
5.7 Clock Source ... 5-10
5.8 Bit-Order/Polarity .. 5-11
5.9 NRZI ... 5-12
5.10 MIL ... 5-12
5.11 Sample Line Setups ... 5-12

6 Run-Mode Display .. 6-1
6.1 Auto Configure .. 6-3
6.2 Entering Run Mode ... 6-5
6.3 Selecting Character-Data Display 6-7
6.4 Special Features of Data Display 6-13
6.5 Protocol Trace .. 6-17
6.6 Program Trace .. 6-19
6.7 Statistics Display .. 6-22
6.8 Display Window ... 6-23
6.9 User Trace .. 6-25
6.10 Display Correlation in Freeze Mode 6-27
6.11 No Display ... 6-28

7 Record Setup .. 7-1
7.1 Format of Recorded Data 7-3
7.2 Recording Medium ... 7-3
7.3 The Screen Buffer .. 7-4
7.4 The Record Setup Screen 7-5
7.5 Trigger Control of Capture 7-10
7.6 Spreadsheet Control of Recording 7-10
7.7 Manual Control of Recording 7-11

8 Layer Setup .. 8-1
8.1 Personality Packages .. 8-3
8.2 Selecting and Loading Protocols 8-3
8.3 The Protocol Configuration Screen 8-4
8.4 Saving the Layer Setup Screen 8-5
9 FEB Setup .. 9-1
 9.1 Buffering Idle, Control Leads, and Ticks 9-3

III BCC and BERT

10 Block Checking .. 10-1
 10.1 BCC Symbols .. 10-3
 10.2 BCC Conditions ... 10-5
 10.3 Transmitted BCC .. 10-5
 10.4 Standard BCC Parameters 10-6
 10.5 BCC Setup Menu Fields 10-10
 10.6 BISYNC vs. Selectable CRC Mode 10-13

11 Bit Error Rate Testing .. 11-1
 11.1 Pseudorandom Bit Patterns 11-3
 11.2 Test Configurations ... 11-4
 11.3 BERT Operation: Full Duplex 11-4
 11.4 BERT Operation: Half Duplex 11-6
 11.5 BERT Setup Screen .. 11-7
 11.6 Transmission Format: Line Setup Menu 11-15
 11.7 Run Mode: Keyboard Control 11-17
 11.8 Run Mode: Status Line 11-18
 11.9 Run Mode: Statistical Display 11-19
 11.10 Loopback at the Transmitting INTERVIEW 11-21
 11.11 T1 BERT ... 11-23
 11.12 G.703 BERT .. 11-35

IV Standard Interface

12 Standard Interface: RS-232 12-1
 12.1 Connectors ... 12-3
 12.2 Green-Red LEDs ... 12-4
 12.3 Breakout Box .. 12-5
 12.4 Screen Display of Lead Status 12-9
 12.5 Program Control of Lead Activity 12-9
 12.6 Interface Control Menu Screen 12-10

V File System and Miscellaneous Utilities

13 Disk Maintenance .. 13-1
 13.1 The Disks .. 13-3
 13.2 Allocating Disk Space .. 13-3
 13.3 Data Acquisition Tracks vs. the Filing System 13-3
 13.4 The Disk Maintenance Screen 13-4
14 File Management .. 14-1
 14.1 Loading and Saving Files 14-3
 14.2 Orienting Yourself in the Filing System 14-4
 14.3 The File Maintenance Screen 14-9

15 Printer Control .. 15-1
 15.1 The Connector ... 15-3
 15.2 Configuring the Printer Setup Screen 15-3
 15.3 Saving the Printer Setup 15-7
 15.4 How to Print Static Displays 15-8
 15.5 How to Print Data .. 15-10
 15.6 Spreadsheet Control of Printing 15-17
 15.7 Printing Disk Files .. 15-17

16 The Time-of-Day Clock 16-1

17 Color Display .. 17-1
 17.1 Connectors for External Monitors 17-3
 17.2 Color Control from the Miscellaneous Utilities Screen .. 17-3
 17.3 Black and White Data Enhancements 17-6

18 Easy View Setup ... 18-1
 18.1 Enable Easy View .. 18-3
 18.2 Enter Easy View After Power-Up 18-4
 18.3 Keep Easy View Menu Information in Memory 18-4
 18.4 Display Program Warning Messages 18-4

19 Easy View Maintenance 19-1
 19.1 The Easy View Menu File 19-1
 19.2 Accessing the Maintenance Program 19-2
 19.3 Automatic Installation 19-3
 19.4 Customizing Programs 19-3
 19.5 Script File Format 19-11
 19.6 Creating a Text (Help) File 19-18
 19.7 Easy View Directory Structure 19-19

VI Statistics .. 20-1

20 Tabular Statistics ... 20-1
 20.1 Counters and Timers 20-3
 20.2 Preparing the Tabular Statistics Screen 20-4
20.3 Sampling Current Values ... 20-6
20.4 Accumulators ... 20-7
20.5 Keeping a Statistical Log ... 20-9
20.6 The Sampling Action as Divisor .. 20-11

21 Graphic Statistics .. 21-1
21.1 Enabling the Graphic Display ... 21-3
21.2 Cursor Movement on Graphical Statistics Menu 21-4
21.3 Menu Fields ... 21-4

VII Programming Concepts: Tiers and Layers

22 Three-Tiered Programming ... 22-1
22.1 Trigger Setup Screens .. 22-2
22.2 The Protocol Spreadsheet ... 22-3
22.3 C Programming Language ... 22-4
22.4 Integrating Programming Methods .. 22-5

23 The Layered Program Model .. 23-1
23.1 States .. 23-3
23.2 Tests ... 23-3
23.3 Layers and the OSI Model ... 23-5
23.4 Personality Packages ... 23-7
23.5 Primitives ... 23-8
23.6 Constants ... 23-8

VIII Trigger Menus

24 Trigger Conditions .. 24-1
24.1 Active Triggers ... 24-4
24.2 Combining Conditions on the Same Trigger Setup Screen 24-4
24.3 Receiver ... 24-5
24.4 EIA ... 24-9
24.5 Timeout ... 24-10
24.6 Transmission Complete ... 24-10
24.7 Internal Flag Bits ... 24-10
24.8 Buffer Full ... 24-11
24.9 Counter ... 24-11
24.10 Keyboard ... 24-12

25 Trigger Actions ... 25-1
25.1 Displaying a Prompt .. 25-3
25.2 Transmitting .. 25-4
25.3 Internal Flags ... 25–6
25.4 Enhancing the Display 25–7
25.5 Controlling Timeouts .. 25–8
25.6 Counters ... 25–9
25.7 Timers .. 25–10
25.8 Alarm .. 25–11
25.9 Capture of Data in the Screen Buffer 25–11

26 The Trigger Summary Screen 26–1

IX Protocol Spreadsheet

27 Programming Blocks ... 27–1
27.1 Before You Begin a Spreadsheet Program 27–3
27.2 Creating a Spreadsheet Program
27.3 Program Structure ... 27–6
27.4 Compiled Spreadsheet .. 27–10
27.5 Configuring the Size/Number of IL Buffers 27–13
27.6 Comments in a Spreadsheet Program 27–14

28 Constants .. 28–1
28.1 Definition of Constants 28–3
28.2 Constant Names ... 28–4
28.3 Scope ... 28–4
28.4 Referencing Constants 28–5
28.5 Nested Constants ... 28–6
28.6 Precedence ... 28–6
28.7 Expansion ... 28–7

29 Editor ... 29–1
29.1 Basic Editing Functions 29–3
29.2 Editing Function Keys .. 29–5

30 Layer-Independent Conditions and Actions 30–1
30.1 Naming Requirements ... 30–1
30.2 Rules for Combining Conditions 30–2
30.3 Layer-Independent Conditions 30–3
30.4 Layer-Independent Actions 30–8

31 Layer 1 Conditions and Actions 31–1
31.1 Layer 1 Conditions .. 31–1
31.2 Layer 1 Actions .. 31–6
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>SS#7 Layer 2</td>
<td>45-1</td>
</tr>
<tr>
<td>45.1</td>
<td>Set Up for SS#7</td>
<td>45-3</td>
</tr>
<tr>
<td>45.2</td>
<td>Protocol Trace</td>
<td>45-3</td>
</tr>
<tr>
<td>45.3</td>
<td>Monitor Conditions</td>
<td>45-6</td>
</tr>
<tr>
<td>45.4</td>
<td>Display Actions</td>
<td>45-10</td>
</tr>
<tr>
<td>45.5</td>
<td>SS#7 Emulation</td>
<td>45-11</td>
</tr>
<tr>
<td>45.6</td>
<td>SS#7 Frame Structures and Values</td>
<td>45-11</td>
</tr>
<tr>
<td>46</td>
<td>SS#7 Layer 3</td>
<td>46-1</td>
</tr>
<tr>
<td>46.1</td>
<td>Packet-Level Setup</td>
<td>46-3</td>
</tr>
<tr>
<td>46.2</td>
<td>Protocol Trace</td>
<td>46-4</td>
</tr>
<tr>
<td>46.3</td>
<td>Monitor Conditions</td>
<td>46-7</td>
</tr>
<tr>
<td>46.4</td>
<td>Display Actions</td>
<td>46-10</td>
</tr>
<tr>
<td>46.5</td>
<td>Structure of SS#7 Message Signal Units</td>
<td>46-12</td>
</tr>
<tr>
<td></td>
<td>XII Optional Interfaces</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>V.35</td>
<td>47-1</td>
</tr>
<tr>
<td>47.1</td>
<td>Connectors</td>
<td>47-3</td>
</tr>
<tr>
<td>47.2</td>
<td>Green-Red LEDs</td>
<td>47-4</td>
</tr>
<tr>
<td>47.3</td>
<td>Breakout Box</td>
<td>47-4</td>
</tr>
<tr>
<td>47.4</td>
<td>Special Input and Output Pins</td>
<td>47-5</td>
</tr>
<tr>
<td>47.5</td>
<td>Screen Display of Lead Status</td>
<td>47-7</td>
</tr>
<tr>
<td>47.6</td>
<td>Monitoring V.35 Control Leads</td>
<td>47-7</td>
</tr>
<tr>
<td>47.7</td>
<td>Control of Lead Activity in Emulate Modes</td>
<td>47-7</td>
</tr>
<tr>
<td>48</td>
<td>RS-449</td>
<td>48-1</td>
</tr>
<tr>
<td>48.1</td>
<td>Connectors</td>
<td>48-3</td>
</tr>
<tr>
<td>48.2</td>
<td>Green-Red LEDs</td>
<td>48-4</td>
</tr>
<tr>
<td>48.3</td>
<td>Breakout Box</td>
<td>48-4</td>
</tr>
<tr>
<td>48.4</td>
<td>Special Input and Output Pins</td>
<td>48-5</td>
</tr>
<tr>
<td>48.5</td>
<td>Screen Display of Lead Status</td>
<td>48-7</td>
</tr>
<tr>
<td>48.6</td>
<td>Monitoring RS-449 Control Leads</td>
<td>48-8</td>
</tr>
<tr>
<td>48.7</td>
<td>Control of Lead Activity in Emulate Modes</td>
<td>48-8</td>
</tr>
<tr>
<td>49</td>
<td>X.21</td>
<td>49-1</td>
</tr>
<tr>
<td>49.1</td>
<td>Connectors</td>
<td>49-3</td>
</tr>
<tr>
<td>49.2</td>
<td>Green-Red LEDs</td>
<td>49-4</td>
</tr>
<tr>
<td>49.3</td>
<td>Breakout Box</td>
<td>49-4</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>49.4</td>
<td>Special Input and Output Pins</td>
<td>49-5</td>
</tr>
<tr>
<td>49.5</td>
<td>Screen Display of Lead Status</td>
<td>49-6</td>
</tr>
<tr>
<td>49.6</td>
<td>Monitoring X.21 Control Leads</td>
<td>49-8</td>
</tr>
<tr>
<td>49.7</td>
<td>Control of Lead Activity in Emulate Modes</td>
<td>49-8</td>
</tr>
<tr>
<td>49.8</td>
<td>Interface Control Menu Screen</td>
<td>49-8</td>
</tr>
<tr>
<td>50</td>
<td>RS-485</td>
<td>50-1</td>
</tr>
<tr>
<td>50.1</td>
<td>RS-485 Test Interface Module</td>
<td>50-3</td>
</tr>
<tr>
<td>50.2</td>
<td>Program Setup</td>
<td>50-6</td>
</tr>
<tr>
<td>51</td>
<td>ISDN</td>
<td>51-1</td>
</tr>
<tr>
<td>51.1</td>
<td>Overview of ISDN Testing Capabilities</td>
<td>51-3</td>
</tr>
<tr>
<td>51.2</td>
<td>Test Interface Module</td>
<td>51-6</td>
</tr>
<tr>
<td>51.3</td>
<td>Testing Configurations</td>
<td>51-6</td>
</tr>
<tr>
<td>51.4</td>
<td>Setting Up Menus for ISDN Testing</td>
<td>51-9</td>
</tr>
<tr>
<td>51.5</td>
<td>ISDN Interface Setup Menu</td>
<td>51-9</td>
</tr>
<tr>
<td>51.6</td>
<td>ISDN Runtime Statistics Screen</td>
<td>51-11</td>
</tr>
<tr>
<td>52</td>
<td>T1</td>
<td>52-1</td>
</tr>
<tr>
<td>52.1</td>
<td>Overview of T1 Testing Capabilities</td>
<td>52-3</td>
</tr>
<tr>
<td>52.2</td>
<td>The Test Interface Module</td>
<td>52-6</td>
</tr>
<tr>
<td>52.3</td>
<td>Testing Configurations</td>
<td>52-11</td>
</tr>
<tr>
<td>52.4</td>
<td>Setting Up Menus for T1 Testing</td>
<td>52-18</td>
</tr>
<tr>
<td>52.5</td>
<td>Interface Control Screen</td>
<td>52-19</td>
</tr>
<tr>
<td>52.6</td>
<td>Interpreting the T1 Statistics Display</td>
<td>52-27</td>
</tr>
<tr>
<td>52.7</td>
<td>D4 and Extended SuperFrame Structures</td>
<td>52-32</td>
</tr>
<tr>
<td>53</td>
<td>G.703</td>
<td>53-1</td>
</tr>
<tr>
<td>53.1</td>
<td>Overview of G.703 Testing Capabilities</td>
<td>53-3</td>
</tr>
<tr>
<td>53.2</td>
<td>The Test Interface Module</td>
<td>53-8</td>
</tr>
<tr>
<td>53.3</td>
<td>Testing Configurations</td>
<td>53-11</td>
</tr>
<tr>
<td>53.4</td>
<td>Setting Up Menus for G.703 Testing</td>
<td>53-16</td>
</tr>
<tr>
<td>53.5</td>
<td>Interface Control Screen</td>
<td>53-17</td>
</tr>
<tr>
<td>53.6</td>
<td>Interpreting the G.703 Statistics Display</td>
<td>53-26</td>
</tr>
<tr>
<td>53.7</td>
<td>Multiframe Structures</td>
<td>53-31</td>
</tr>
</tbody>
</table>
Part II: Advanced Programming

XIII Theory of Operation

54 Data Flow ... 54-1
 54.1 Two Types of CPU 54-3
 54.2 Front-End Buffer 54-5

55 Program Main ... 55-1
 55.1 Translating a Simple Test into C 55-1
 55.2 A Minimum of One Softkey State 55-2
 55.3 Writing the Test Entirely in C 55-3

56 Regions in Spreadsheet 56-1
 56.1 Layer and Test 56-1
 56.2 State, Enter State, and Next State 56-2
 56.3 Conditions and Actions 56-7
 56.4 Example of Complete C Program 56-13
 56.5 Summary of C Regions 56-14

57 Events ... 57-1
 57.1 Example of Event: fevar_time_of_day 57-1
 57.2 Various Origins of waitfor Events 57-2
 57.3 Programming Considerations 57-3

58 Receiving and Transmitting Data 58-1
 58.1 Locating Data in an IL Buffer 58-1
 58.2 Monitor Path vs. Receive Path 58-3
 58.3 Passing a Buffer Upwards 58-3
 58.4 Layer 1 Transmit 58-4
 58.5 Passing a Buffer Between Tasks 58-7
 58.6 Sample Transmit Program: Sync or Async Echo 58-9
 58.7 Sample Transmit Program: BOP Echo 58-10

XIV C Language

59 C Basics ... 59-1
 59.1 Notable Variations in C 59-3
 59.2 Editing a C Program 59-4
59.3 Error Reporting in C 59-4
59.4 Preprocessor Directives 59-5
59.5 Data Types ... 59-13
59.6 Operator Precedence 59-17
59.7 Strings ... 59-19
59.8 Recommended Sources 59-22
60 Variables .. 60-1
60.1 Creating or Accessing C Variables 60-1
60.2 Declaring Variables ... 60-2
60.3 Comparing a Variable to a Value 60-3
60.4 Checking a Variable in a Waitfor Clause 60-4
60.5 Checking and Displaying Equivalent Values of a Variable 60-7
60.6 Isolating Bits from a Variable Value 60-8
60.7 Pointing to an Address 60-10
60.8 Creating a Character Pointer 60-11
60.9 Pointing with Subscripts 60-12
60.10 Creating a String ... 60-12
60.11 Comparing Strings ... 60-14
60.12 Accessing a Variable Inside of a Structure 60-15
60.13 Creating a Structure Pointer 60-16
61 Routines .. 61-1
61.1 Declarations .. 61-1
61.2 Arguments .. 61-1
61.3 Returns ... 61-2
61.4 User-Defined Routines 61-3
61.5 Example Routines ... 61-4

XV C Library

62 Monitor/Transmit Line Data 62-1
62.1 Structures .. 62-1
62.2 Variables .. 62-2
62.3 Routines ... 62-7
63 EIA ... 63-1
63.1 Variables .. 63-1
63.2 Routines ... 63-3
64 Display Window and Trace 64-1
64.1 Current Display Mode 64-1
64.2 Prompt Line .. 64-3
64.3 Display Window ... 64-4
64.4 Program and User Traces 64-28
64.5 Attributes .. 64-39
64.6 Protocol Trace Buffers 64-45

65 Counters, Timers, and Accumulators 65-1
 65.1 Counters .. 65-1
 65.2 Timers .. 65-8
 65.3 Accumulators ... 65-12
 65.4 Routines .. 65-14

66 OSI ... 66-1
 66.1 Structures .. 66-3
 66.2 Variables ... 66-13
 66.3 Routines .. 66-31

67 Print .. 67-1
 67.1 Structures .. 67-1
 67.2 Variables ... 67-3
 67.3 Routines .. 67-4

68 Disk I/O ... 68-1
 68.1 Streams ... 68-1
 68.2 Routines .. 68-3

69 Status .. 69-1
 69.1 Unit Configuration 69-1
 69.2 Current Display Mode 69-1

70 Remote Port I/O ... 70-1
 70.1 Structures .. 70-1
 70.2 Variables ... 70-2
 70.3 Routines .. 70-4

71 AUX Port I/O .. 71-1
 71.1 Variables ... 71-3
 71.2 Routines .. 71-5

72 Other Library Tools .. 72-1
 72.1 Structures .. 72-1
 72.2 Variables ... 72-3
 72.3 Routines .. 72-8
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Library</th>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>X.21 Library</td>
<td>73.1, 73.2, 73.3</td>
<td>73-1, 73-2, 73-4</td>
</tr>
<tr>
<td>74</td>
<td>X.25 Layer 2 Library</td>
<td>74.1, 74.2, 74.3</td>
<td>74-1, 74-1, 74-9</td>
</tr>
<tr>
<td>75</td>
<td>X.25 Layer 3 Library</td>
<td>75.1, 75.2, 75.3</td>
<td>75-1, 75-1, 75-10</td>
</tr>
<tr>
<td>76</td>
<td>SDLC Library</td>
<td>76.1, 76.2, 76.3</td>
<td>76-1, 76-1, 76-9</td>
</tr>
<tr>
<td>77</td>
<td>SNA Library</td>
<td>77.1, 77.2, 77.3</td>
<td>77-1, 77-1, 77-5</td>
</tr>
<tr>
<td>78</td>
<td>DDCMP Library</td>
<td>78.1, 78.2, 78.3</td>
<td>78-1, 78-1, 78-1</td>
</tr>
<tr>
<td>79</td>
<td>ISDN D Channel Library</td>
<td>79.1, 79.2, 79.3</td>
<td>79-1, 79-2, 79-2</td>
</tr>
<tr>
<td>80</td>
<td>LAPD Library</td>
<td>80.1, 80.2, 80.3</td>
<td>80-1, 80-1, 80-9</td>
</tr>
</tbody>
</table>
Appendix J: Field Service on the INTERVIEW 7000 Series J-1
Appendix J1: Eliminating Static Electricity J1-1
Appendix J2: Removing Logic Boards ... J2-1
Appendix J3: Installing Logic Boards ... J3-1
Appendix J4: Installing Multiplexor Board J4-1
Appendix J5: Replacing Firmware on the CPM Board J5-1
Appendix J6: Installing the Hard Disk Drive (OPT-951-01-1) J6-1
Appendix J7: Servicing Other Components J7-1

Appendix K: C Language Summary .. K-1

Index

Index A: Technical Manual Part I and Part II

Index B: C Structures, Variables, and Routines
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table D3-1</td>
<td>Code-Set Characters</td>
<td>D3-4</td>
</tr>
<tr>
<td>Table I-1</td>
<td>Remote Connector</td>
<td>I-2</td>
</tr>
<tr>
<td>Table I-2</td>
<td>Printer Connector</td>
<td>I-3</td>
</tr>
<tr>
<td>Table I-3</td>
<td>Auxiliary Connector</td>
<td>I-4</td>
</tr>
<tr>
<td>Table I-4</td>
<td>RGB Monitor</td>
<td>I-5</td>
</tr>
<tr>
<td>Table I-5</td>
<td>RS-232 Test Interface Module</td>
<td>I-7</td>
</tr>
<tr>
<td>Table I-6</td>
<td>V.35 Test Interface Module</td>
<td>I-9</td>
</tr>
<tr>
<td>Table I-7</td>
<td>X.21 Test Interface Module</td>
<td>I-11</td>
</tr>
<tr>
<td>Table I-8</td>
<td>RS-485 Test Interface Module</td>
<td>I-13</td>
</tr>
<tr>
<td>Table I-9</td>
<td>RS-449/V.36/V.37 Test Interface Module</td>
<td>I-15</td>
</tr>
<tr>
<td>Table I-10</td>
<td>T-1 Test Interface Specifications</td>
<td>I-17</td>
</tr>
<tr>
<td>Table I-11</td>
<td>G.703 Test Interface Specifications</td>
<td>I-19</td>
</tr>
<tr>
<td>Table I-12</td>
<td>ISDN Test Interface Specifications</td>
<td>I-21</td>
</tr>
<tr>
<td>Table J3-1</td>
<td>S1-Switch Settings for MPM Boards in the INTERVIEW 7000 Series</td>
<td>J3-15</td>
</tr>
</tbody>
</table>
Table 66-8 Layer 7 OSI Variables ... 66-30
Table 67-1 Print Structures .. 67-2
Table 69-1 Status Structures .. 69-2
Table 70-1 Remote Port I/O Variables 70-3
Table 71-1 AUX Port I/O Variables .. 71-4
Table 72-1 Structure Fields—Other Library Tools 72-2
Table 72-2 Other Library Variables .. 72-4
Table 73-1 X.21 Structures ... 73-1
Table 73-2 X.21 Variables ... 73-3
Table 74-1 X.25 Layer 2 Structures ... 74-2
Table 74-2 X.25 Layer 2 Variables .. 74-3
Table 75-1 X.25 Layer 3 Structures ... 75-2
Table 75-2 X.25 Layer 3 Variables .. 75-3
Table 76-1 SDLC Structures ... 76-2
Table 76-2 SDLC Variables .. 76-3
Table 77-1 SNA Variables .. 77-2
Table 78-1 DDCMP Variables .. 78-2
Table 79-1 ISDN Structures .. 79-1
Table 79-2 ISDN Variables .. 79-2
Table 80-1 LAPD Structures .. 80-2
Table 80-2 LAPD Variables .. 80-3
Table 81-1 Q.931 Variables .. 81-2
Table 82-1 SS#7 Layer 2 Variables .. 82-2
Table 82-2 SS#7 Layer 1 Variables .. 82-5
Table 83-1 SS#7 Layer 3 Variables .. 83-2
Table A4-1 Numbered Error Messages Returned for C Coding A4-1
Table D1-1 Keyboard-to-BCDIC .. D1-2
Table D1-2 Keyboard-to-ASCII .. D1-3
Table D1-3 Keyboard-to-EBCD .. D1-4
Table D1-4 Keyboard-to-XS-3 (SYN=35; EOM=55) D1-5
Table D1-5 Keyboard-to-IPARS ... D1-6
Table D1-6 Keyboard-to-REVERSE EBCD D1-7
Table D1-7 Keyboard-to-SELECTRIC D1-8
Table D1-8 Keyboard-to-BAUDOT ... D1-9
Table D1-9 Keyboard-to-JIS7 .. D1-10
Table D1-10 Keyboard-to-JIS8 (space parity) D1-12
Table D1-11 Keyboard-to-JIS8 (mark parity) D1-13
Table D2-1 Hex-to-Display Translation D2-3
Table 46-3 SCCP Message Headers (Octet 9 for CCITT International or National Format; Octet 12 for US-ANSI Format) 46-19
Table 46-4 Telephone User Part (TUP) Message Headers 46-20
Table 46-5 ISDN Message Headers 46-22
Table 48-1 RS-449/RS-232 Conversion for Display and Triggering 48-7
Table 52-1 D4 Frame with In-Band Signalling 52-34
Table 52-2 ESF Frame with In-Band Signalling 52-35
Table 53-1 CAS Multiframe Structure — Signalling with Channel 16 53-32
Table 53-2 CCS/CAS Signalling with CRC-4 53-34
Table 59-1 Data Types: Ranges of Values Displayed and Printed 59-16
Table 59-2 Operator Precedence 59-18
Table 59-3 C String Non-Literals 59-21
Table 62-1 Transmit Structures 62-1
Table 62-2 Monitor/Transmit Variables 62-3
Table 62-3 Character Buffer 16-Bit Word 62-17
Table 63-1 EIA Variables ... 63-2
Table 64-1 Current Display Variables 64-2
Table 64-2 Display Window Variables 64-5
Table 64-3 Display Window Buffer Structures 64-8
Table 64-4 Display Window/Trace Buffer 32-Bit Data Word 64-14
Table 64-5 Special Graphic Character Set 64-17
Table 64-6 Trace Buffer Structures 64-30
Table 64-7 Conversion Specifiers 64-44
Table 64-8 Protocol Trace Buffer Variables 64-46
Table 64-9 Protocol Trace Buffer Structures 64-48
Table 65-1 Counter Structures 65-2
Table 65-2 Counter Variables 65-3
Table 65-3 Counter, Timer, and Accumulator Structures 65-5
Table 65-4 Timer Structures ... 65-9
Table 65-5 Timer Variables .. 65-10
Table 65-6 Accumulator Structures 65-14
Table 66-1 OSI Structures ... 66-9
Table 66-2 Layer 1 OSI Variables 66-14
Table 66-3 Layer 2 OSI Variables 66-15
Table 66-4 Layer 3 OSI Variables 66-18
Table 66-5 Layer 4 OSI Variables 66-21
Table 66-6 Layer 5 OSI Variables 66-24
Table 66-7 Layer 6 OSI Variables 66-27
List of Tables

Table 2-1 Fields That Can Be Changed Without Causing Recompile 2–16
Table 3-1 Frequently Used Programming Keys 3–4
Table 5-1 Synchronization Parameters for Standard Codes 5–8
Table 6-1 Special Display Symbols 6–14
Table 7-1 RAM Size (bytes) for Normal and High-Speed Recording in the INTERVIEW 7000 and the 7200 TURBO 7–8
Table 7-2 RAM Size (bytes) for Normal and High-Speed Recording in the INTERVIEW 7500 and the 7700 TURBO 7–8
Table 10-1 Standard Block-Check Parameters for Sync or Async/Isoc Formats 10–7
Table 10-2 Block Check Polynomials 10–7
Table 10-3 BCC Setup Menu Fields 10–11
Table 11-1 Full- or Half-Duplex BERT (RS–232/V.24 Interface Control screen) 11–7
Table 11-2 BERT Pattern (BERT Setup screen) 11–8
Table 11-3 Half-Duplex BERT: Default Synchronization Points 11–13
Table 11-4 Sync or Async BERT (Line Setup screen) 11–17
Table 12-1 Significance of On/Switch Selections on Interface Control Menu 12–13
Table 12-2 Standard Switched-Lead Configurations 12–15
Table 14-1 File Types 14–12
Table 15-1 Character Representations on Menu Screen Printouts 15–7
Table 15-2 Character Representations on Data Printouts 15–10
Table 16-1 Abbreviations, Trigger Summary Conditions 26–4
Table 16-2 Abbreviations, Trigger Summary Actions 26–5
Table 32-1 Valid Entries in Receive Strings 32–2
Table 32-2 Valid Entries in Transmit Strings 32–6
Table 33-1 Primitive Prefixes and Associated Layers 33–4
Table 33-2 OSI Service Primitives 33–11
Table 36-1 Default Parameters in SEND Actions 36–23
Table 36-2 Automatic Primitives Generated at X.25 Layer 2 36–34
Table 37-1 Automatic Primitives Generated at X.25 Layer 3 37–44
Table 38-1 Automatic Primitives Generated at Layer 2 SDLC 38–34
Table 39-1 Fields in SNA Trace Display 39–7
Table 42-1 Automatic Primitives Generated in LAPD 42–31
Table 45-1 LSU Status Field (Bits 2–0 of first Status Field Octet) 45–5
Table 46-1 MSU Service Indicators (Bits 3–0 of the SIO) 46–17
Table 46-2 Network Management Headers (Octet 9 for CCITT Format; Octet 12 for US–ANSI Format) 46–18