
Contents
NAME 1

SYNOPSIS 2

DESCRIPTION 2

OPTIONS 2

ENVIRONMENT 5

SSH CONFIGURATION FILE PROCESSING 5

FEATURES AND USE CASES 5
Different Ways To Specify Targeted Hostnames . 5
Authentication Using Name And Password . 6
Authentication Using Key Exchange . 7
Executing A sudo Command . 7
Precedence Of Authentication Options . 8
File Transfers . 8
Commenting . 9
Includes . 10
Search Paths . 10
An Overview Of Variables . 10
Types Of Variables . 11
Where And When Do Variables Get Processed? . 11
User-Defined Variables . 12
Execution Variables . 13
Builtin Variables . 14
Using Builtin Variables . 14
Noise Levels . 15

OTHER 16

BUGS AND MISFEATURES 17

OTHER, SIMILAR PRODUCTS 17

COPYRIGHT AND LICENSING 17

AUTHOR 17

DOCUMENT REVISION INFORMATION 18

NAME

tsshbatch - Run Commands On Batches Of Machines

1

Warning
tsshbatch is a powerful tool for automating activities on many servers at a time. This also
gives you to power to make many mistakes at a time! This is especially true if you have sudo
privilege promotion capabilities on the systems in your care. So be careful out there!
We therefore STRONGLY recommend you do the following things to mitigate this risk:

∙ Read This Fine Manual from beginning to end.
∙ Practice using tsshbatch on test machines or VMs that can easily be recov-

ered or reimaged if you break someting.
∙ Make heavy use of test mode (which is the default) to see what the program

would do if it actually ran in execution mode.

SYNOPSIS

tsshbatch.py [-EKNSTaehkqstvxy -G ’file dest’ -P ’file dest’ -f cmdfile -l logfile -n name -p pw] -H ’host ..’ | hostlistfile [command arg ...]

DESCRIPTION

tsshbatch is a tool to enable you to issue a command to many hosts without having to log into each
one separately. When writing scripts, this overcomes the ssh limitation of not being able to specify the
password on the command line.

You can also use tsshbatch to GET and PUT files from- and to many hosts at once.

tsshbatch also understands basic sudo syntax and can be used to access a host, sudo a command, and
then exit.

tsshbatch thus allows you to write complex, hands-off scripts that issue commands to many hosts
without the tedium of manual login and sudo promotion. System administrators, especially, will find
this helpful when working in large server farms.

OPTIONS

tsshbatch supports a variety of options which can be specified on either the command line or in the
$TSSHBATCH environment variable:

-B Print start, stop, and elapsed execution time statistics.
This does not include any time spent for interactive prompt-
ing and response, but reflects actual program runtime. (De-
fault: Off)

-C configfile Specify the location of the ssh configuration file. (Default:
~/.ssh/config)

-E Normally, tsshbatch writes it’s own errors to stderr. It
also writes the stderr output from each host it contacts
to the local shell’s stderr (unless the -e option has been
selected).

The -E option redirects any such tsshbatch output in-
tended for stderr to stdout instead. This avoids the
need to do things like 2>&1 | ...‘ on the command line
when you want to pipe all ‘‘tsshbatch output to an-
other program.

2

-K Force prompting for passwords. This is used to override a
prior -k argument.

-G spec GET file on host and write local dest directory. spec is a
quoted pair of strings. The first specifies the path of the
source file (on the remote machine) to copy. The second,
specifies the destination directory (on the local machine):

tsshbatch.py -G "/foo/bar/baz /tmp" hostlist

This copies /foo/bar/baz from every machine in hostlistfile
to the local /tmp/ directory. Since all the files have the
same name, they would overwrite each other if copied into
the same directory. So, tsshbatch prepends the string
hostname- to the name of each file it saves locally.

-H hostlistfile List of hosts on which to run the command. This should
be enclosed in quotes so that the list of hosts is handed to
the -H option as a single argument:

-H ’host1 host2 host3’

-N Force interactive username dialog. This cancels any previ-
ous request for key exchange authentication.

-P spec PUT file from local machine to remote machine destination
directory. spec is a quoted pair of strings. The first spec-
ifies the path of the source file (on the local machine) to
copy. The second, specifies the destination directory (on
the remote machine):

tsshbatch.py -P "/foo/bar/baz /tmp" hostlist

This copies /foo/bar/baz on the local machine to /tmp/
on every host in hostlist.

-S Force prompting for sudo password.

-T seconds Set timeout for ssh connection attempts. (Default: 15 sec-
onds)

-a Don’t abort program after failed file transfers. Continue to
next transfer attempt. (Default: Abort)

-b Don’t abort program after failed sudo command. Normally,
any sudo failure causes immediate program termination.
This switch tells tsshbatch to continue processing on the
next host even if such a failure occurs. This allows pro-
cessing to continue for those hosts where sudo does work
correctly. This is helpful in large environments where sudo
is either improperly configured on some hosts or has a dif-
ferent password. This can also be used to discover where
sudo does- and does not work correctly.

-e Don’t report remote host stderr output.

-f cmdfile Read commands from a file. This file can be commented
freely with the # character. Leading- and trailing whites-
pace on a line are ignored.

-h Print help information.

-k Use ssh keys instead of name/password credentials.

-l logfile Log diagnostic output to logfile. (Default: /dev/null)

3

-n name Login name to use.

-p pw Password to use when logging in and/or doing sudo.

-q Quiet mode - produce less noisy output. Turns off -y.

-s Silence all program noise - only return command output.
Applies only to command operations. File transfer and
error reporting, generally, are unaffected.

-t Test mode: Only show what would be done but don’t ac-
tually do it. This also prints diagnostic information about
any variable definitions, the list of hosts, any GET and PUT
requests, and final command strings after all variable sub-
stitutions have been applied. This is the default program
behavior.

-v Print detailed program version information and exit.

-x Override any previous -t specifications and actually exe-
cute the commands. This is useful if you want to put -t in
the $TSSHBATCH environment variable so that the default is
always run the program in test mode. Then, when you’re
ready to actually run commands, you can override it with
-x on the command line.

-y Turn on ’noisy’ reporting for additional detail on every line,
instead of just at the top of the stdout and stderr re-
porting. This is helpful when you are filtering the output
through something like grep that only returns matching
lines and thus no context information. Turns off -q.

If the -H option is not selected, the item immediately following the options is understood to be the name
of the hostlistfile. This is a file that contains the name of each host - one per line - on which to run
the commands. This file can be commented freely with the # character. Leading- and trailing whitespace
on a line are ignored.

The last entry on the command line is optional and defines a command to run. tsshbatch will attempt
to execute it on every host you’ve specified either via -H or a hostlistfile:

tsshbatch.py -Hmyhost ls -al /etc

This will do a ls -al /etc on myhost.

Be careful when using metacharacters like &&, <<, >>, <, > and so on in your commands. You have
to escape and quote them properly or your local shell will interfere with them being properly conveyed
to the remote machine.

If you’ve specified a cmdfile containing the commands you want run via the -f option, these commands
will run before the command you’ve defined on the command line. It is always the last command run on
each host.

You can put as many -f arguments as you wish on the command line and the contents of these files will
be run in the order they appeared from left-to-right on the command line.

tsshbatch does all the GETs, then all the PUTs before attempting to do any command processing. If no
GETs, PUTs, or commands have been specified, tsshbatch will exit silently, since "nothing to do" really
isn’t an error.

4

ENVIRONMENT

tsshbatch respects the $TSSHBATCH environment variable. You may set this variable with any options
above you commonly use to avoid having to key them in each time you run the program. For example:

export TSSHBATCH="-n jluser -p l00n3y"

This would cause all subsequent invocations of tsshbatch to attempt to use the login name/password
credentials of jluser and l00n3y respectively.

tsshbatch also supports searching for files over specified paths with the $TSSHBATCHCMDS and $TSSHBATCHHOSTS
environment variables. Their use is described later in this document.

SSH CONFIGURATION FILE PROCESSING

tsshbatch has limited support for ssh configuration files. Only the HostName and IdentityFile direc-
tives are currently supported.

By default, tsshbatch will look in ~/.ssh/config for this configuration file. However, the location of
the file can be overriden with the -C option.

FEATURES AND USE CASES

The sections below describe the various features of tsshbatch in more detail as well as common use
scenarios.

Different Ways To Specify Targeted Hostnames

There are two ways to specify the list of hosts on which you want to run the specified command:

∙ On the command line via the -H option:

tsshbatch.py -H ’hostA hostB’ uname -a

This would run the command uname -a on the hosts hostA and hostB respectively.

Notice that the list of hosts must be separated by spaces but passed as a single argument.
Hence we enclose them in single quotes.

∙ Via a host list file:

tsshbatch.py myhosts df -Ph

Here, tsshbatch expects the file myhosts to contain a list of hosts, one per line, on
which to run the command df -Ph. As an example, if you want to target the hosts
larry, curly and moe in foo.com, myhosts would look like this:

larry.foo.com
curly.foo.com
moe.foo.com

This method is handy when there are standard "sets" of hosts on which you regularly
work. For instance, you may wish to keep a host file list for each of your production
hosts, each of your test hosts, each of your AIX hosts, and so on.

You may use the # comment character freely throughout a host list file to add comments
or temporarily comment out a particular host line.

5

You can even use the comment character to temporarily comment out one or most hosts
in the list given to the -H command line argument. For example:

tsshbatch.py -H "foo #bar baz" ls

This would run the ls command on hosts foo and baz but not bar. This is handy if
you want to use your shell’s command line recall to save typing but only want to repeat
the command for some of the hosts your originally Specified.

Authentication Using Name And Password

The simplest way to use tsshbatch is to just name the hosts can command you want to run:

tsshbatch.py linux-prod-hosts uptime

By default, tsshbatch uses your login name found in the $USER environment variable when logging into
other systems. In this example, you’ll be prompted only for your password which tsshbatch will then
use to log into each of the machines named in linux-prod-hosts. (Notice that his assumes your name
and password are the same on each host!)

Typing in your login credentials all the time can get tedious after awhile so tsshbatch provides a means
of providing them on the command line:

tsshbatch.py -n joe.luser -p my_weak_pw linux-prod-hosts uptime

This allows you to use tsshbatch inside scripts for hands-free operation.

If your login name is the same on all hosts, you can simplify this further by defining it in the environment
variable:

export TSSHBATCH="-n joe.luser"

Any subsequent invocation of tsshbatch will only require a password to run.

HOWEVER, there is a huge downside to this - your plain text password is exposed in your scripts, on
the command line, and possibly your command history. This is a pretty big security hole, especially if
you’re an administrator with extensive privileges. (This is why the ssh program does not support such
an option.) For this reason, it is strongly recommended that you use the -p option sparingly, or not at
all. A better way is to push ssh keys to every machine and use key exchange authentication as described
below.

However, there are times when you do have use an explicit password, such as when doing sudo invocations.
It would be really nice to use -p and avoid having to constantly type in the password. There are two
strategies for doing this more securely than just entering it in plain text on the command line:

∙ Temporarily store it in the environment variable:

export TSSHBATCH="-n joe.luser -p my_weak_pw"

Do this interactively after you log in, not from a script (otherwise you’d just be storing
the plain text password in a different script). The environment variable will persist as
long as you’re logged in and disappear when you log out.

If you use this just make sure to observe three security precautions:

1) Clear your screen immediately after doing this so no one walking by can
see the password you just entered.

2) Configure your shell history system to ignore commands beginning with
export TSSHBATCH. That way your plain text password will never ap-
pear in the shell command history.

6

3) Make sure you don’t leave a logged in session unlocked so that other
users could walk up and see your password by displaying the environ-
ment.

This approach is best when you want your login credentials available for the duration
of an entire login session.

∙ Store your password in an encrypted file and decrypt it inline.

First, you have to store your password in an encrypted format. There are several ways
to do this, but gpg is commonly used:

echo "my_weak_pw" | gpg -c >mysecretpw

Provide a decrypt passphrase, and you’re done.

Now, you can use this by decrypting it inline as needed:

#!/bin/sh
A demo scripted use of tsshbatch with CLI password passing

MYPW=‘cat mysecretpw | gpg‘ # User will be prompted for unlock passphrase

tsshbatch.py -n joe.luser -p $MYPW hostlist1 command1 arg
tsshbatch.py -n joe.luser -p $MYPW hostlist2 command2 arg
tsshbatch.py -n joe.luser -p $MYPW hostlist3 command3 arg

This approach is best when you want your login credentials available for the duration
of the execution of a script. It does require the user to type in a passphrase to unlock
the encrypted password file, but your plain text password never appears in the wild.

Authentication Using Key Exchange

For most applications of tsshbatch, it is much simpler to use key-based authentication. For this to work,
you must first have pushed ssh keys to all your hosts. You then instruct tsshbatch to use key-based
authentication rather than name and password. Not only does this eliminate the need to constantly
provide name and password, it also eliminates passing a plain text password on the command line and
is thus far more secure. This also overcomes the problem of having different name/password credentials
on different hosts.

By default, tsshbatch will prompt for name and password if they are not provided on the command
line. To force key- authentication, use the -k option:

tsshbatch.py -k AIX-prod-hosts ls -al

This is so common that you may want to set it in your $TSSHBATCH environment variable so that keys
are used by default. If you do this, there may still be times when you want for force prompting for
passwords rather than using keys. You can do this with the -K option which effectively overrides any
prior -k selection.

Executing A sudo Command

tsshbatch is smart enough to handle commands that begin with the sudo command. It knows that
such commands require a password no matter how you initially authenticate to get into the system. If
you provide a password - either via interactive entry or the -p option - by default, tsshbatch will use
that same password for sudo promotion.

If you provide no password - you’re using -k and have not provided a password via -p - tsshbatch will
prompt you for the password sudo should use.

7

You can force tsshbatch to ask you for a sudo password with the -S option. This allows you to have
one password for initial login, and a different one for sudo promotion.

Any time you a prompted for a sudo password and a login password has been provided (interactive or
-p), you can accept this as the sudo password by just hitting Enter.

Note
tsshbatch makes a reasonable effort to scan your command line and/or command file contents
to spot explicit invocations of the form sudo It will ignore these if they are inside single-
or double quoted strings, on the assumption that you’re quoting the literal string sudo ...
for some other purpose.
However, this is not perfect because it is not a full reimplementation of the shell quoting and
aliasing features. For example, if you invoke an alias on the remote machine that resolves to
a sudo command, or you run a script with a sudo command in it, tsshbatch has no way to
determine what you’re trying to do. For complex applications, it’s best to write a true shell
script, push it all the machines in question via -P, and then have tsshbatch remotely invoke
it with sudo myscript or something similar.
As always, the best way to figure out what the program thinks you’re asking for is to run it
in test mode and look at the diagnostic output.

Precedence Of Authentication Options

tsshbatch supports these various authentication options in a particular heirarchy using a "first match
wins" scheme. From highest to lowest, the precedence is:

1. Key exchange

2. Forced prompting for name via -N. Notice this cancels any previously requested
key exchange authentication.

3. Command Line/$TSSHBATCH environment variable sets name

4. Name picked up from $USER (Default behavior)

If you try to use Key Exchange and tsshbatch detects a command beginning with sudo, it will prompt
you for a password anyway. This is because sudo requires a password to promote privilege.

File Transfers

The -G and -P options specify file GET and PUT respectively. Both are followed by a quoted file transfer
specification in the form:

"path-to-source-file path-to-destination-directory"

Note that this means the file will always be stored under its original name in the destination directory.
Renaming isn’t possible during file transfer.

However, tsshbatch always does GETs then PUTs then any outstanding command (if any) at the end of
the command line. This permits things like renaming on the remote machine after a PUT:

tsshbatch.py -P "foo ./" hostlist mv -v foo foo.has.a.new.name

GETs are a bit of a different story because you are retrieving a file of the same name on every host. To
avoid having all but the last one clobber the previous one, tsshbatch makes forces the files you GET to
be uniquely named by prepending the hostname and a "-" to the actual file name:

tsshbatch.py -H myhost -G "foo ./"

This saves the file myhost-foo in the ./ on your a local machine.

8

These commands do not recognize any special directory shortcut symbols like ~/ like the shell interpreter
might. You must name file and directory locations using ordinary pathing conventions. You can put as
many of these requests on the command line as you like to enable GETs and PUTs of multiple files. You
cannot, however, use filename wildcards to specify multi-file operations.

You can put multiple GETs or PUTs on the command line for the same file. They do not override each
other but are cummulative. So this:

tsshbatch.py -P"foo ./" -P"foo /tmp" ...

Would put local file foo in both ./ and /tmp on each host specified. Similarly, you can specify multiple
files to GET from remote hosts and place them in the same local directory:

tsshbatch.py -G"/etc/fstab ./tmp" -G"/etc/rc.conf ./tmp" ...

You may also put file transfer specifications into a cmdfile via the .getfile and .putfile directives.
This is handy when you have many to do and don’t want to clutter up the command line. Each must
be on its own line in the cmdfile and in the same form as if it were provided on the command line:

.getfile /path/to/srcfile destdir # This will get a file

.putfile /path/to/srcfile destdir # This will put a file

File transfers are done in the order they appear. For instance, if you have a file transfer specification on
the command line and then make reference to a cmdfile with a file transfer specification in it, the one
on the command line gets done first.

Note
Keep in mind that tsshbatch always processes file transfers before executing any commands,
no matter what order they appear in the cmdfile. If you have this in a cmdfile:

echo "Test"
.putfile "./myfile /foo/bar/baz/"

The file will be transferred before the echo command gets run. This can be counterintuitive.
It’s therefore recommended that you put your file transfers into a single file, and .include it
as the first thing in your cmdfile to make it obvious that these will be run first.

By default, tsshbatch aborts if any file transfer fails. This is unlike the case of failed commands which
are reported but do not abort the program. The rationale’ for this is that you may be doing both file
transfer and command execution with a single tsshbatch invocation, and the commands may depend
on a file being transfered first.

If you are sure no such problem exists, you can use the -a option to disable abort-after-failure semantics
on file transfer. In this case, file transfer errors will be reported, but tsshbatch will continue on to the
next transfer request.

tsshbatch does preserve permissions when transferring files. Obviously, for this to work, the destination
has to be writable by the ID you’re logging in with.

Note
The file transfer logic cannot cope with filenames that contain spaces. The workaround is
to either temporarily rename them, or put them in a container like a tarball or zip file and
transfer that instead.

Commenting

Both the cmdfile and hostlistfile can be freely commented using the # character. Everything from
that character to the end of that line is ignored. Similarly, you can use whitespace freely, except in cases
where it would change the syntax of a command or host name.

9

Includes

You may also include other files as you wish with the .include filename directive anywhere in the
cmdfile or hostlistfile. This is useful for breaking up long lists of things into smaller parts. For
example, suppose you have three host lists, one for each major production areas of your network:

hosts-development
hosts-stage
host-production

You might typically run different tsshbatch jobs on each of these sets of hosts. But suppose you now
want to run a job on all of them. Instead of copying them all into a master file (which would be instantly
obsolete if you changed anything in one of the above files), you could create hosts-all with this content:

.include hosts-development

.include hosts-stage

.include hosts-production

that way if you edited any of the underlying files, the hosts-all would reflect the change.

Similarly you can do the same thing with the cmdfile to group similar commands into separate files and
include them.

tsshbatch does not enforce a limit on how deeply nested .includes can be. An included file can include
another file and so on. However, if a circular include is detected, the program will notify you and abort.
This happens if, say, file1 includes file2, file2 includes file3, and file3 includes file1. This would create an
infinite loop of includes if permitted. You can, of course, include the same file multiple times, either in
a single file or throughout other included files, so long as no circular include is created.

Search Paths

tsshbatch supports the ablity to search paths to find files you’ve referenced. The search path for
cmdfiles is specified in the $TSSHBATCHCMDS environment variable. The hostlistfiles search path
is specified in the $TSSHBATCHHOSTS environment variable. These are both in standard path delimited
format for your operating system. For example, on Unix-like systems these look like this:

export TSSHBATCHCMDS="/usr/local/etc/.tsshbatch/commands:/home/me/.tsshbatch/commands"

And so forth.

These paths are honored both for any files you specify on the command line as well as for any files you
reference in a .include directive. This allows you to maintain libraries of standard commands and host
lists in well known locations and .include the ones you need.

tsshbatch will always first check to see if a file you’ve specified is in your local (invoking) directory
and/or whether it is a fully qualified file name before attempting to look down a search path. If a
file exist in several locations, the first instance found "wins". So, for instance, if you have a file called
myhosts somewhere in the path defined in $TSSHBATCHHOSTS, you can override it by creating a file of
same name in your current working directory.

tsshbatch also checks for so-called "circular includes" which would cause an infinite inclusion loop. It
will abort upon discovering this, prior to any file transfers or commands being executed.

An Overview Of Variables

As you become more sophisticated in your use of tsshbatch, you’ll begin to see the same patterns of
use over and over again. Variables are a way for you to use "shortcuts" to reference long strings without
having to type the whole string in every time. So, for example, instead of having to type in a command
like this:

10

myfinecommand -X -Y -x because this is a really long string

You can just define variable like this:

.define __MYCMD__ = myfinecommand -X -Y -x because this is a really long string

From then on, instead of typing in that long command on the command line or in a command file, you
can just use __MYCMD__ and tsshbatch will substitute the string as you defined it whenever it encounters
the variable.

Variables can be used pretty much everwhere:

∙ In hostlistfiles or in the hostnames listed with -H:

.define __MYDOMAIN__ = stage.mydomain.com
#.define __MYDOMAIN__ = prod.mydomain.com

host1.__MYDOMAIN__
host2.__MYDOMAIN__

Now you can switch tsshbatch operation from stage to prod simply by changing what
is commented out at the beginning.

∙ In file transfer specifications:

tsshbatch.py -xP"./fstab-__MYHOSTNAME__ ./" hostlist
tsshbatch.py -xG"/etc/__OSNAME__-release ./" hostlist

∙ In cmdfiles:

.define __SHELL__ = /usr/local/bin/bash

__SHELL__ -c myfinescript

Note
A variable can have pretty much any name you like excepting the use of metacharacters like
< or !. But if you are not careful, you can cause unintended errors:

.define foo = Slop

myfoodserver.foods.com
When you run tsshbatch it will then turn the server name into mySlopdserver.Slopds.com
- probably not what you want.
So, it’s a Really Good Idea (tm) to use some kind of naming scheme to make variables names
stand out and make them unlikely to conflict accidentally with command- and host strings.

Types Of Variables

tsshbatch has three different kinds of variables:

∙ User Defined Variables are the kind in the example above. You, the user, define them
as you wish in a cmdfile or hostlistfile.

∙ Execution Variables run any program or script of your choosing (on the same machine
you’re running tsshbatch) and assign the results to a variable.

∙ Builtin Variables are variables the tsshbatch itself defines. You can override their
default values by creating a User Defined Variable of the same name.

Where And When Do Variables Get Processed?

User Defined and Execution Variables are defined in either a hostlistfile or cmdfile.

11

Builtin Variables are defined within tsshbatch itself unless you override them.

User Defined Variables are all read in and then used. If you do something like this:

.define __FOO__ = firstfoo
echo __FOO__
.define __FOO__ = secondfoo

You’ll get an output of ... secondfoo! Why? Because before tsshbatch tries to run anything, it has to
process all the cmdfiles, hostlistfile, and the command line content. So, before we ever get around
to doing an echo __FOO__ on some host, the second definition of __FOO__ has been read in ... and
last definition wins.

Execution Variables are like User Defined Variables. They get processed a single time at the time they’re
read in from a cmdfile or hostlistfile.

Builtin Variables get evaluated every time “tsshbatch“ prepares to connect to a new host (unless you’ve
overriden them). That way, the most current value for them is available for use on the next host.

Keep in mind that tsshbatch isn’t a programming language. It’s "variables" are simple string substi-
tutions with "last one wins" semantics. There is no notion of scope, for example. If you define the
same variable in, say, a cmdfile and also in the hostlistfile, the latter will "win". Why? Because
hostlistfiles are always read in after any cmdfiles.

Finally, variable references in a definition are ignored. Say you do this in a cmdfile:

.define __CLEVER __ = __REALLYCLEVER__

.define __REALLYCLEVER__ = Not That Smart
echo __CLEVER__

You will get this output, __REALLYCLEVER__! Why? Because, the variable references on the right side
of a definition statement are never replaced. This is a concious design choice to keep variable definition
and use as simple and obvious as possible. Allowing such "indirect" definitions opens up a treasure trove
of maintenance pain you really want to avoid. Trust us on this one.

User-Defined Variables

tsshbatch allows you to define variables which will then be used to replace matching strings in cmdfiles,
hostlistfiles, and file transfer specifications. For example, suppose you have this in a hostlistfile:

.define DOMAIN=.my.own.domain.com

host1DOMAIN
host2DOMAIN
host3DOMAIN

At runtime, the program will actually connect to host1.my.own.domain.com, host2.my.domain.com,
and so on. This allows for ease of modularization and maintenance of your files.

Similarly, you might want define MYCMD=some_long_string so you don’t have to type some_long_string
over and over again in a cmdfile.

There are some "gotchas" to this:

∙ The general form of a variable definition is:

.define name = value

You have to have a name but the value is optional. .define FOO= simply replaces any
subsequent FOO strings with nothing, effectively removing them.

Any = symbols to the right of the one right after name are just considered part of the
variable’s value.

12

Whitespace around the = symbol is optional but allowed.

∙ Variables are substituted in the order they appear:

.define LS = ls -alr
LS /etc # ls -alr /etc
.define LS = ls -1
LS /foo # ls -1 /foo

∙ Variable names and values are case sensitive.

∙ Variables may be defined in either cmdfiles or hostlistfiles but they are visible
to any subsequent file that gets read. For instance, cmdfiles are read before any
hostlistfiles. Any variables you’ve defined in a cmdfile that happen to match a
string in one of your hostnames will be substituted.

This is usually not what you want, so be careful. One way to manage this is to use
variables names that are highly unlikely to ever show up in a hostname or command.
That way your commands and hostnames will not accidentally get substrings replaced
with variable values. For example, you might use variable names like --MYLSCOMMAND--
or __DISPLAY_VGS__.

∙ Variable substitution is also performed on any host names or commands passed on the
command line.

Execution Variables

Execution Variables are actually a special case of User Defined Variables. That is, they are evaluated at
the same time and in the same manner as any other User Defined Variable. The difference is that a User
Defined Variable describes a literal string replacement. But an Execution Variable runs a command,
program, or script and assigns the results to the variable.

For example, suppose you want create a file on many machines, and you want that file to be named
based on who ran the tsshbatch job. You might do this in a cmdfile:

.define __WHOAMI__ = ! whoami
touch __WHOAMI__-Put_This_Here.txt

So, if ID luser is running tsshbatch, a file called luser-Put_This_Here.txt will be created (or have
its timestamp updated) on every machine in the hostlistfile or named with -H.

Notice it is the ! character that distinguishes an Execution Variable from a User Defined Variable. It is
this character that tells tsshbatch, "Go run the command to the right of me and return the results."
The trailing space is optional and the definition could be written as:

.define __WHOAMI__ = !whoami

If the command you specify returns multiple lines of output, it’s up to you to process it properly.
tsshbatch does no newline stripping or other postprocessing of the command results. This can make
the output really "noisy". tssbatch normally reports a summary of the command and its results. But
if you do something like this:

.define __LS__ = ! ls -al
echo __LS__

You will get a multiline summary of the command and then the actual output - which is also multiline.
This gets to be obnonxious pretty quickly. You can make a lot of this go away with the -q, or "quiet"
option.

13

Note
It’s important to remember that the program you are invoking runs on the same machine
as tsshbatch itself, NOT each host you are sending commands to. In other words, just like
Builtin Variables, Execution Variables are locally defined.

Builtin Variables

As noted previously, Builtin Variables are created by tsshbatch itself. They are created for each new
host connection so that things like time, host number, and hostname are up-to-date.

As of this release, tsshbatch supports the following Builtins:

__DATE__ Date in YYYYMMDD format
__DATETIME__ Date and time in YYYYMMDDHHMMSS format
__HOSTNAME__ Full name of current host as passed to tsshbatch
__HOSTNUM__ Count of host being processed, starting at 1
__HOSTSHORT__ Leftmost component of hostname as passed to tsshbatch
__LOGINNAME__ User name used for remote login. For key auth, name of tsshbatch

user.
__TIME__ Time in HHMMSS format

Using Builtin Variables

There are times when it’s convenient to be able to embed the name of the current host in either a
command or in a file transfer specification. For example, suppose you want to use a single invocation of
tsshbatch to transfer files in a host-specific way. You might name your files like this:

myfile.host1
myfile.host2

Now, all you have to do is this:

tsshbatch.py -xH "host 1 host2" -P "myfile.__HOSTNAME__ ./"

When run, tsshbatch will substitute the name of the current host in place of the string __HOSTNAME__.
(Note that these are **double* underbars on each side of the string.*)

You can do this in commands (and commands within command files) as well:

tsshbatch.py -x hosts ’echo I am running on __HOSTNAME__’

Be careful to escape and quote things properly, especially from the the command line, since < and > are
recognized by the shell as metacharacters.

There are two forms of host name substitution possible. The first, __HOSTNAME__ will use the name as
you provided it, either as an argument to -H or from within a host file.

The second, __HOSTSHORT__, will only use the portion of the name string you provided up to the leftmost
period.

So, if you specify myhost1.frumious.edu, __HOSTNAME__ will be replaced with that entire string, and
__HOSTSHORT__ will be replaced by just myhost1.

Notice that, in no case does tsshbatch do any DNS lookups to figure this stuff out. It just manipulates
the strings you provide as hostnames.

14

The symbols __HOSTNAME__ and __HOSTSHORT__ are like any other symbol you might have specified
yourself with .define. This means you can override their meaning. For instance, say you’re doing this:

tsshbatch.py -x myhosts echo "It is: __HOSTNAME__"

As you would expect, the program will log into that host, echo the hostname and exit. But suppose you
don’t want it to echo something else for whatever reason. You’d create a command file with this entry:

.define __HOSTNAME__ = Really A Different Name

Now, when you run the command above, the output is:

It is: Really A Different Name

In other words, .define has a higher precedence than the preconfigured values of HOSTNAME and HOSTSHORT.

Noise Levels

tsshbatch defaults to a medium level of reporting as it runs. This includes connection reporting, headers
describing the command being run on every host,and the results written to stdin and stdout. Each line
of reporting output begins with ---> to help you parse through the output if you happen to be writing
a program that post-processes the results from tsshbatch.

This output "noise" is judged to be right for most applications of the program. There are times, however,
when you want more- or less "noise" in the output. There are several tsshbatch options that support
this.

These options only affect reporting of commands you’re running. They do not change the output of file
transfer operations. They also do not change error reporting, which is always the same irrespective of
current noise level setting.

-q or "quiet" mode, reduces the amount of output noise in two ways. First, it silences reporting each
time a successful connection is made to a host. Secondly, the command being run isn’t reported in the
header. For example, normally, running ls -l is reported like this:

---> myhost: SUCCESS: Connection Established
---> myhost (stdout) [ls -l]:
...
---> myhost (stderr) [ls -l]:

In quiet mode, reporting looks like this:

---> localhost (stdout):
...
---> localhost (stderr):

The main reason for this is that some commands can be very long. With execution variables, it’s possible
to create commands that span many lines. The quiet option gives you the ability to suppress echoing
these long commands for each and every host in your list.

-y or "noisy" mode, produces normal output noise but also replicates the hostname and command string
for every line of output produced. For instance, ls -1 might normally produce this:

---> myhost: SUCCESS: Connection Established
---> myhost (stdout) [ls -1]:

backups
bin

But in noisy mode, you see this:

---> myhost: SUCCESS: Connection Established ---> myhost (stdout) [ls -1]:

15

[myhost (stdout) [ls -1]] backups
[myhost (stdout) [ls -1]] bin

Again, the purpose here is to support post-processing where you might want to search through a large
amount of output looking only for results from particular hosts or commands.

-s or "silent" mode returns only the results from running the commands. No headers or descriptive
information are produced. It’s more-or-less what you’d see if you logged into the host and ran the
command interactively. For instance, ls -l might look like this:

total 44
drwxr-xr-x 2 splot splot 4096 Nov 5 14:54 Desktop
drwxrwxr-x 39 splot splot 4096 Sep 9 14:57 Dev
drwxr-xr-x 3 splot splot 4096 Jun 14 2012 Documents

The idea here is to use silent mode with the various variables described previously to customize your
own reporting output. Imagine you have this in a cmdfile and you run tsshbatch in silent mode:

.define __USER__ = ! echo $USER
echo "Run on __HOSTNAME__ on __DATE__ at __TIME__ by __USER__"
uname -a

You’d see output along these lines:

Run on myhost on 20991208 at 141659 by splot
Linux myhost 3.11.0-12-generic #19-Ubuntu SMP Wed Oct 9 16:20:46 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

OTHER

∙ Comments can go anywhere.

∙ Directives like .define and .include must be the first non-whitespace text on the left end of a
line. If you do this in a cmdfile:

foo .include bar

tsshbatch thinks you want to run the command foo with an argument of .include bar. If you
do it in a hostlistfile, the program thinks you’re trying to contact a host called foo .include
bar. In neither case is this likely to be quite what you had in mind. Similarly, everything to the
right of the directive is considered its argument (up to any comment character).

∙ Whitespace is not significant at the beginning or end of a line but it is preserved within .define
and .include directive arguments as well as within commmand definitions.

∙ Strictly speaking, you do not have to have whitespace after a directive. This is recognized:

.includesomefileofmine

.definemyvar=foo

But this is strongly discouraged because it’s really hard to read.

∙ tsshbatch writes the stdout of the remote host(s) to stdout on the local machine. It similarly
writes remote stderr output to the local machine’s stderr. If you wish to suppress stderr output,
either redirect it on your local command line or use the -e option to turn it off entirely. If you
want everything to go to your local stdout, use the -E option.

∙ You must have a reasonably current version of Python 2.x installed. It almost certainly will not
work on Python 3.x because it uses the deprecated commands module. This decision was made to
make the program as backward compatible with older versions of Python as possible (there is way
more 2.x around than there is 3.x).

∙ If your Python installation does not install paramiko you’ll have to install it manually, since
tsshbatch requires these libraries as well.

16

∙ tsshbatch has been run extensively from Unix-like systems (Linux, FreeBSD) and has had no
testing whatsoever on Microsoft Windows. If you have experience using it on Windows, do please
share with the class using the email address below. While we do not officially support this tool on
Windows, if the changes needed to make it work properly are small enough, we’d consider updating
the code accordingly.

BUGS AND MISFEATURES

∙ You will not be able to run remote sudo commands if the host in question enables the Defaults
requiretty in its sudoers configuration. Some overzealous InfoSec folks seem to think this is a
brilliant way to secure your system (they’re wrong) and there’s nothing tsshbatch can do about
it.

∙ When sudo is presented a bad password, it ordinarily prints a string indicating something is wrong.
tsshbatch looks for this to let you know that you’ve got a problem and then terminates further
operation. This is so that you do not attempt to log in with a bad password across all the hosts
you have targeted. (Many enterprises have policies to lock out a user ID after some small number
of failed login/access attempts.)

However, some older versions of sudo (noted on a RHEL 4 host running sudo 1.6.7p5) do not
return any feedback when presented with a bad password. This means that tsshbatch cannot tell
the difference between a successful sudo and a system waiting for you to reenter a proper password.
In this situation, if you enter a bad password, the the program will hang. Why? tsshbatch thinks
nothing is wrong and waits for the sudo command to complete. At the same time, sudo itself is
waiting for an updated password. In this case, you have to kill tsshbatch and start over. This
typically requires you to put the program in background (‘Ctrl-Z in most shells) and then killing
that job from the command line.

There is no known workaround for this problem.

OTHER, SIMILAR PRODUCTS

It’s always interesting to see how other people approach the same problem. If you’re interested in
this general area of IT automation, you may want to also look at Ansible, Capistrano, Cluster SSH,
Fabric, Func, and Rundeck.

COPYRIGHT AND LICENSING

tsshbatch is Copyright (c) 2011-2014 TundraWare Inc.

For terms of use, see the tsshbatch-license.txt file in the program distribution. If you install tssh-
batch on a FreeBSD system using the ’ports’ mechanism, you will also find this file in /usr/local/share/doc/tsshbatch.

AUTHOR

Tim Daneliuk
tsshbatch@tundraware.com

17

DOCUMENT REVISION INFORMATION

$Id: tsshbatch.rst,v 1.174 2016/01/19 00:10:22 tundra Exp $

This document was produced with emacs, RestructuredText, and TeX Live.

You can find the latest version of this program at:

http://www.tundraware.com/Software/tsshbatch

18

http://www.tundraware.com/Software/tsshbatch

	Contents
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	SSH CONFIGURATION FILE PROCESSING
	FEATURES AND USE CASES
	Different Ways To Specify Targeted Hostnames
	Authentication Using Name And Password
	Authentication Using Key Exchange
	Executing A sudo Command
	Precedence Of Authentication Options
	File Transfers
	Commenting
	Includes
	Search Paths
	An Overview Of Variables
	Types Of Variables
	Where And When Do Variables Get Processed?
	User-Defined Variables
	Execution Variables
	Builtin Variables
	Using Builtin Variables
	Noise Levels

	OTHER
	BUGS AND MISFEATURES
	OTHER, SIMILAR PRODUCTS
	COPYRIGHT AND LICENSING
	AUTHOR
	DOCUMENT REVISION INFORMATION

