SFFT Documentation
Release 0.1

Jorn Schumacher

June 11, 2013

CONTENTS

Introduction 3
1.1~ When Should T'use the SFFT library?, 3
1.2 TargetPlatform e e 3
1.3 Limitations and Known Bugs e e 3
L[4 Disclaimer 3
L5 Credits 3
1.6 Contact Information e e e e e 4
Installation 5
2.1 PrerequiSites e e e e e e e e 5
2.2 Compiling From Source and Installation Lo 0oL, 5
2.3 Linking against the SFFT Library e 6
Usage 7
3.1 Computing Sparse DFTs 0 L e e 7
3.2 SEFT Versions o v it i it it e et e e e e e e e e 8
Development 11
4.1 Development and Benchmark Tools L o 11
4.2 AnOverview of the Sourcecode e 12
Indices and tables 13

SFFT Documentation, Release 0.1

Contents:

CONTENTS 1

SFFT Documentation, Release 0.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The Sparse Fast Fourier Transform is a DFT algorithm specifically designed for signals with a sparse frequency
domain. This library is a high-performance C++ implementation of versions 1, 2, and 3 of the different SFFT variants.

1.1 When Should | use the SFFT library?

You should use the SFFT library when you want to compute the Discrete Fourier Transform of a signal and only a few
frequency components occur in the signal. Your signal may be noisy or not, but currently there are some limitations
for noisy signals (see Limitations and Known Bugs).

1.2 Target Platform

The SFFT library was optimized to run on modern x86 desktop CPUs with SSE support. Optionally the implementa-
tion can use the Intel IPP library, which is only available on Intel platforms.

1.3 Limitations and Known Bugs

The SFFT library features implementations of SFFT v1, v2, and v3. SFFT vl and v2 currently only work with a few
specific input parameters. SFFT v3 cannot handle signals with noise.

There are no known bugs so far.

1.4 Disclaimer

The current SFFT implementation is in an experimental state. It is NOT intended to be used as a drop-in replacement
for the FFT library of your choice. Be prepared to find bugs. There is absolutely NO WARRANTY for the correct
functioning of this software.

1.5 Credits

The original SFFT sourcecode was developed by Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price at
the Computer Science and Artifical Intelligence Lab at MIT. The original sourcecode and contact information can be
found at their website Sparse Fast Fourier Transform Website.

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://groups.csail.mit.edu/netmit/sFFT/

SFFT Documentation, Release 0.1

Performance optimizations were developed by Jorn Schumacher as part of his Master Thesis Project at the Computer
Science Department of ETH Zurich in 2013, under the supervision of Prof. Markus Piischel.

1.6 Contact Information

If you are interested in the theory behind the Sparse Fast Fourier Transform, contact the inventors of the SFFT, Haitham
Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price, at their Sparse Fast Fourier Transform Website.

If you are interested in performance optimizations that were applied, contact Jorn Schumacher at jo-
erns @student.ethz.ch.

4 Chapter 1. Introduction

http://www.spiral.net/software/sfft.html
http://www.inf.ethz.ch/personal/markusp/
http://groups.csail.mit.edu/netmit/sFFT/
mailto:joerns@student.ethz.ch
mailto:joerns@student.ethz.ch

CHAPTER
TWO

INSTALLATION

2.1 Prerequisites

The SFFT library was only tested on Linux systems and is only guaranteed to work there. However, the library should
also be able to compile on other platforms and operating systems.

The following packages have to be installed to compile the library:
 Python (any version > 2.3, including Python 3), used by the waf build system
 FFTW 3
* (optionally) Intel Integrated Performance Primitives
If you want to build benchmark tools, also install
* Valgrind
The SFFT library is known to work the following compilers:
* GCC (tested with GCC 4.4 and 4.7)
¢ Intel C++ Compiler (only versions >= 13, does NOT work with ICC 12)

2.2 Compiling From Source and Installation

Unpack the tarball and change into the newly created directory (sfft-version). Then, the SFFT library can be built with
a simple:

$./configure
$ make

and installed with:

S make install

Some configuration options can be passed to the configuration script. The most important are:

$./configure --help

[...]

—-—debug compile in debug mode
—--profile add source-level profiling to instruction counting programs
--without-ipp do not the Intel Performance Primitives library

[...]

https://code.google.com/p/waf/
http://www.fftw.org/
http://software.intel.com/intel-ipp
http://valgrind.org/
http://gcc.gnu.org/
http://software.intel.com/en-us/intel-compilers

SFFT Documentation, Release 0.1

Use ——debug and ——profile are only useful when developing (see Development). The option ——without-ipp
is to be used when you do not have Intel IPP installed.

When these steps succeded, you should be ready to use the SFFT library.

2.3 Linking against the SFFT Library

Two versions of the SFFT library are built when compiling the sourcecode: a static library (libsfft.a) and a shared
library (libsfft.so). You can link these libraries in your programs like any other library, but you have to make sure that
you link dependencies as well.

Do not forget to link:
* FFTW, for example via pkg-config: pkg-config --cflags —--libs fftw3
¢ Intel IPP (if not disabled via ——without-ipp), e.g. ~lippvm -lipps -pthread
* Your compilers OpenMP library, for example —1gomp for GCC

e [ibm and librt (-1m -1rt)

6 Chapter 2. Installation

CHAPTER
THREE

USAGE

All types and functions of the SFFT library are defined in the header sfft .h. Include it at the beginning of your
program.

3.1 Computing Sparse DFTs

3.1.1 Creating Plans

SFFT executions consist of two seperate steps: planning and execution. The planning phase is only executed once for
specific input parameters. After that, many Sparse DFTs with these input parameters can be computed (on different
input vectors). This concept is similar to FFTW’s concept of plans.

You can create a plan with acall to sfft_plan:
sfft_planx sfft_make_plan(int n, int k, sfft_version version,
int fftw_optimization);
The call returns a pointer to a struct of type s£ft_plan, which has to be manually freed with sfft_free_plan.
Parameters of sfft_make_plan are:
n The size of the input vector.
k The number of frequencies in the signal, i.e. the signal’s sparsity.

version The SFFT algorithm version to use. Either SFFT _VERSION_1, SFFT VERSION_2, or
SFFT_VERSION_ 3.

fftw_optimization FFTW optimization level. Usually one of FFTW_MEASURE and FFTW_ESTIMATE. Since
experiments showed that there is little benefit in using the more expensive FFTW_MEASURE, the best choice is
typically FETW_ESTIMATE.

3.1.2 Creating Input Vectors

The storage for SFFT input vectors has to allocated using sfft_malloc:

void* sfft_malloc(size_t s);

The reason for this is that the implementation requires a specific memory alignment on the input vectors. You can use
sfft_malloc as adrop-in replacement formalloc.
Input vectors should be of type complex_t, which is a typedef to the C standard library’s type double complex.

Storage allocated with sfft_malloc must be freed with this function:

SFFT Documentation, Release 0.1

void sfft_free (voidx);

3.1.3 Creating the Output Datastructure

The output of the SFFT is stored in an associative array that maps frequency coordinates to coefficients. The array
should be of type sfft_output, which is a typedef to an std: :unordered_map. Before executing the SFFT
plans, you need to create the output datastructure. A pointer to it is passed to the SFFT execution call and the
datastructure filled with the result.

3.1.4 Computing a Single Sparse DFT
Once a plan is created, input vectors are created filled with data, and an output object was allocated, the SFFT plans
can be executed. The function for this is:

void sfft_exec(sfft_planx plan, complex_t* in, sfft_outputx out);

Parameters should be self-explanatory. After execution of this function, the output of the DFT is stored in xout.

3.1.5 Computing Multiple Sparse DFTs

If you want to run multiple SFFT calls on different inputs (but with the same input sizes), you can use
sfft_exec_many to run the calls in parallel:

void sfft_exec_many(sfft_planx plan,
int num, complex_tx** in, sfft_output* out);

The function is very similar to sfft_exec, but you can pass it put num input-vectors and num output-
objects. The SFFT library used OpenMP for parallelization; thus, you can use either the environment variable
OMP_NUM_THREADS or OpenMP library functions to adjust the number of threads. Be careful: do not use different
thread number configuration for the call to sfft_make_plan and sfft_exec_many. Otherwise your program
will crash!

3.2 SFFT Versions

Currently, three different SFFT versions are implemented: SFFT v1, v2, and v3.

SFFT v3 is the algorithm of choice when your input signals are exactly-sparse; that is, there is no additional noise in
the signals. SFFT v3 will not work with noisy signals.

SFFT vl and v2 can also be applied to noisy signals, but they only work with certain input parameter combinations.
Valid input parameters combinations:

8 Chapter 3. Usage

SFFT Documentation, Release 0.1

Signal Size Sparsity
8192 50
16384 50
32768 50
65536 50
131072 50
262144 50
524288 50
1048576 50
2097152 50
4194304 50
8388608 50
16777216 50
4194304 50
4194304 100
4194304 200
4194304 500
4194304 1000
4194304 2000
4194304 2500
4194304 4000

3.2. SFFT Versions

SFFT Documentation, Release 0.1

10 Chapter 3. Usage

CHAPTER
FOUR

DEVELOPMENT

4.1 Development and Benchmark Tools

The SFFT library includes some useful tools for development and benchmarking. To enable them, you have to config-
ure with the ——develop flag. Then, the following programs will be built additionally:

sfft-cachemisses Runs an SFFT on random input. The tool is handy when used with Valgrind’s cachegrind
tool. The program includes some instructions to disable valgrind during the input-generation and planning
phases. Thus, when the program is analyzed with cachegrind, only the execution phase will be observed.

sfft-instruction_count Counts the floating point instructions of the specified SFFT call (configured with
program parameters, see below) and prints them. When the configuration option ——profile was defined, this
will also print a profile of the SFFT call.

sfft-profiling Another program that runs a configurable SFFT call. This program will be compiled with the
profiling flags —pg, so that it can be analyzed with the gprof profiling tool.

sfft-timing A program that accurately measures the runtime of the specified SFFT call. This can be used by
benchmark scripts.

sfft-timing_many Similar to sfft-timing, but measures the parallel execution of multiple SFFT calls.

sfft-verification This program runs the specified SFFT call and checks that the output is correct. This is
useful for testing.

All of the programs run one or many SFFT executions. Random input data is generated automatically. The programs
share the following common options:

-n SIZE The size of the input signal.

-k NUMBER Number of frequencies generated in the random input signal.

—r REPETITIONS NOT available for sfft-timing_many. Allows to compute multiple SFFTs. Default: 1. .
—i NUM Only available for sfft-timing_many. Generate NUM inputs.

—s Only available for sfft-timing_many. Do not share data between threads. This is slower.

—v VERSION Selects the algorithm version to use. VERSION is either 1, 2, or 3. “°

—o When —-o is used, FFTW_MEASURE is used for FFTW calls instead of FFTW_ESTIMATE.

—h Displays help.

11

SFFT Documentation, Release 0.1

4.2 An Overview of the Sourcecode

Here is an overview of the purpose of different sourcefiles:

cachemisses.cc, timing.cc, timing_many.cc, instruction_count.cc, verification.cc, simulation.[cc,h] The main rou-
tines and some support code for all development tools are located in these files.

computefourier-1.0-2.0.[cc,h] Algorithm sourcecode for SFFT v1 and v2.

computefourier-3.0.[cc,h] Algorithm sourcecode for SFFT v3.

[fft.h, common.[cc,h], utils.[cc,h] Some common code and datatypes.

Jftw.[cc,h] Interface code for FFTW calls.

filters.[cc,h] The routines to generate filter vectors are in here.

intrinsics.h Some compiler-specific abstractions to include the correct intrinsics header.
parameters.[cc,h] Parameter configuration for SFFT vl1, v2.

profiling_tools.h Some preprocessor tools to allow profiling, used when compiled with ——profile.
roofline.cc A program to use with the roofline tool perfplot. Can be built with tools/build-roofline. sh.
sfft.[cc,h] User interface code and basic datastructures. The headerfile is to be included by users.
timer.[cc,h] Functions for accurate timing, used by sfft-timing.

flopcount/ Files in this directory are used to count floating point operations, used by sfft-instruction_count.

12 Chapter 4. Development

CHAPTER
FIVE

* genindex
* modindex

INDICES AND TABLES

13

	Introduction
	When Should I use the SFFT library?
	Target Platform
	Limitations and Known Bugs
	Disclaimer
	Credits
	Contact Information

	Installation
	Prerequisites
	Compiling From Source and Installation
	Linking against the SFFT Library

	Usage
	Computing Sparse DFTs
	SFFT Versions

	Development
	Development and Benchmark Tools
	An Overview of the Sourcecode

	Indices and tables

