
Nimrod Compiler User Guide 0.9.2
Andreas Rumpf

May 21, 2013

Contents
1 Introduction 2

2 Compiler Usage 2
2.1 Command line switches . 2
2.2 List of warnings . 4
2.3 Verbosity levels . 4
2.4 Configuration files . 4
2.5 Generated C code directory . 6

3 Compilation cache 6

4 Cross compilation 6

5 DLL generation 7

6 Additional compilation switches 7

7 Additional Features 7
7.1 NoDecl pragma . 7
7.2 Header pragma . 8
7.3 IncompleteStruct pragma . 8
7.4 Compile pragma . 8
7.5 Link pragma . 8
7.6 Emit pragma . 8
7.7 ImportCpp pragma . 8
7.8 ImportObjC pragma . 9
7.9 LineDir option . 9
7.10 StackTrace option . 9
7.11 LineTrace option . 9
7.12 Debugger option . 10
7.13 Breakpoint pragma . 10
7.14 Volatile pragma . 10

8 Nimrod interactive mode 10

9 Nimrod for embedded systems 10

10 Nimrod for realtime systems 10

11 Debugging with Nimrod 10

12 Optimizing for Nimrod 11
12.1 Optimizing string handling . 11

13 The JavaScript target 12

1

"Look at you, hacker. A pathetic creature of meat and bone, panting and sweating as you
run through my corridors. How can you challenge a perfect, immortal machine?"

1 Introduction
This document describes the usage of the Nimrod compiler on the different supported platforms. It is
not a definition of the Nimrod programming language (therefore is the manual).

Nimrod is free software; it is licensed under the GNU General Public License.

2 Compiler Usage
2.1 Command line switches
Basic command line switches are:

Usage:

nimrod command [options] [projectfile] [arguments]

Command: compile, c compile project with default code generator (C)
doc generate the documentation for inputfile
doc2 generate the documentation for the whole project
i start Nimrod in interactive mode (limited)

Arguments: arguments are passed to the program being run (if –run option is selected)

Options: -p, –path:PATH add path to search paths
-d, –define:SYMBOL define a conditional symbol
-u, –undef:SYMBOL undefine a conditional symbol
-f, –forceBuild force rebuilding of all modules
–stackTrace:on|off turn stack tracing on|off
–lineTrace:on|off turn line tracing on|off
–threads:on|off turn support for multi-threading on|off
-x, –checks:on|off turn all runtime checks on|off
–objChecks:on|off turn obj conversion checks on|off
–fieldChecks:on|off turn case variant field checks on|off
–rangeChecks:on|off turn range checks on|off
–boundChecks:on|off turn bound checks on|off
–overflowChecks:on|off turn int over-/underflow checks on|off
-a, –assertions:on|off turn assertions on|off
–floatChecks:on|off turn all floating point (NaN/Inf) checks on|off
–nanChecks:on|off turn NaN checks on|off
–infChecks:on|off turn Inf checks on|off
–deadCodeElim:on|off whole program dead code elimination on|off
–opt:none|speed|size optimize not at all or for speed|size
–app:console|gui|lib|staticlib generate a console app|GUI app|DLL|static library
-r, –run run the compiled program with given arguments
–advanced show advanced command line switches
-h, –help show this help

2

manual.html
gpl.html

Advanced command line switches are:

Advanced commands: compileToC, cc compile project with C code generator
compileToCpp, cpp compile project to C++ code
compileToOC, objc compile project to Objective C code
rst2html convert a reStructuredText file to HTML
rst2tex convert a reStructuredText file to TeX
buildIndex build an index for the whole documentation
run run the project (with Tiny C backend; buggy!)
genDepend generate a DOT file containing the module dependency graph
dump dump all defined conditionals and search paths
check checks the project for syntax and semantic
idetools compiler support for IDEs: possible options:

–track:FILE,LINE,COL track a file/cursor position
–suggest suggest all possible symbols at position
–def list all possible definitions at position
–context list possible invokation context
–usages list all usages of the symbol at position
–eval evaluates an expression

Advanced options:

-m, –mainmodule:FILE set the project main module
-o, –out:FILE set the output filename
–stdout output to stdout
–listFullPaths list full paths in messages
-w, –warnings:on|off turn all warnings on|off
–warning[X]:on|off turn specific warning X on|off
–hints:on|off turn all hints on|off
–hint[X]:on|off turn specific hint X on|off
–lib:PATH set the system library path
–import:PATH add an automatically imported module
–include:PATH add an automatically included module
–nimcache:PATH set the path used for generated files
–header:FILE the compiler should produce a .h file (FILE is optional)
-c, –compileOnly compile only; do not assemble or link
–noLinking compile but do not link
–noMain do not generate a main procedure
–genScript generate a compile script (in the ’nimcache’ subdirectory named ’com-

pile_$project$scriptext’)
–os:SYMBOL set the target operating system (cross-compilation)
–cpu:SYMBOL set the target processor (cross-compilation)
–debuginfo enables debug information
–debugger:on|off turn Embedded Nimrod Debugger on|off
-t, –passc:OPTION pass an option to the C compiler
-l, –passl:OPTION pass an option to the linker

3

–cincludes:DIR modify the C compiler header search path
–clibdir:DIR modify the linker library search path
–clib:LIBNAME link an additional C library (you should omit platform-specific extensions)
–genMapping generate a mapping file containing (Nimrod, mangled) identifier pairs
–project document the whole project (doc2)
–lineDir:on|off generation of #line directive on|off
–embedsrc embeds the original source code as comments in the generated output
–threadanalysis:on|off turn thread analysis on|off
–tlsEmulation:on|off turn thread local storage emulation on|off
–taintMode:on|off turn taint mode on|off
–symbolFiles:on|off turn symbol files on|off (experimental)
–implicitStatic:on|off turn implicit compile time evaluation on|off
–patterns:on|off turn pattern matching on|off
–skipCfg do not read the general configuration file
–skipUserCfg do not read the user’s configuration file
–skipParentCfg do not read the parent dirs’ configuration files
–skipProjCfg do not read the project’s configuration file
–gc:refc|v2|markAndSweep|boehm|none select the GC to use; default is ’refc’
–index:on|off turn index file generation on|off
–putenv:key=value set an environment variable
–babelPath:PATH add a path for Babel support
–excludePath:PATH exclude a path from the list of search paths
–dynlibOverride:SYMBOL marks SYMBOL so that dynlib:SYMBOL has no effect and can be

statically linked instead; symbol matching is fuzzy so that –dynlibOverride:lua matches dynlib:
"liblua.so.3"

–listCmd list the commands used to execute external programs
–parallelBuild=0|1|... perform a parallel build value = number of processors (0 for auto-detect)
–verbosity:0|1|2|3 set Nimrod’s verbosity level (1 is default)
-v, –version show detailed version information

2.2 List of warnings
Each warning can be activated individually with -warning[NAME]:on|off or in a push pragma.

2.3 Verbosity levels
2.4 Configuration files
Note: The project file name is the name of the .nim file that is passed as a command line argument to
the compiler.

The nimrod executable processes configuration files in the following directories (in this order; later
files overwrite previous settings):

1. $nimrod/config/nimrod.cfg, /etc/nimrod.cfg (UNIX) or %NIMROD%/config/nimrod.cfg
(Windows). This file can be skipped with the -skipCfg command line option.

2. /home/$user/.config/nimrod.cfg (UNIX) or %APPDATA%/nimrod.cfg (Windows). This
file can be skipped with the -skipUserCfg command line option.

4

Name Description
CannotOpenFile Some file not essential for the compiler’s working

could not be opened.
OctalEscape The code contains an unsupported octal sequence.
Deprecated The code uses a deprecated symbol.
ConfigDeprecated The project makes use of a deprecated config file.
SmallLshouldNotBeUsed The letter ’l’ should not be used as an identifier.
AnalysisLoophole The thread analysis was incomplete due to an in-

direct call.
DifferentHeaps The code mixes different local heaps in a very dan-

gerous way.
WriteToForeignHeap The code contains a threading error.
EachIdentIsTuple The code contains a confusing var declaration.
ShadowIdent A local variable shadows another local variable of

an outer scope.
User Some user defined warning.

Level Description
0 Minimal output level for the compiler.
1 Displays compilation of all the compiled files,

including those imported by other modules or
through the compile pragma. This is the default
level.

2 Displays compilation statistics, enumerates the
dynamic libraries that will be loaded by the final
binary and dumps to standard output the result
of applying a filter to the source code if any filter
was used during compilation.

3 In addition to the previous levels dumps a debug
stack trace for compiler developers.

5

filters.html

3. $parentDir/nimrod.cfg where $parentDir stands for any parent directory of the project
file’s path. These files can be skipped with the -skipParentCfg command line option.

4. $projectDir/nimrod.cfg where $projectDir stands for the project file’s path. This file can
be skipped with the -skipProjCfg command line option.

5. A project can also have a project specific configuration file named $project.nimrod.cfg that
resides in the same directory as $project.nim. This file can be skipped with the -skipProjCfg
command line option.

Command line settings have priority over configuration file settings.
The default build of a project is a debug build. To compile a release build define the release symbol:

nimrod c -d:release myproject.nim

2.5 Generated C code directory
The generated files that Nimrod produces all go into a subdirectory called nimcache in your project
directory. This makes it easy to delete all generated files.

However, the generated C code is not platform independent. C code generated for Linux does not
compile on Windows, for instance. The comment on top of the C file lists the OS, CPU and CC the file
has been compiled for.

3 Compilation cache
Warning: The compilation cache is still highly experimental!

The nimcache directory may also contain so called rod or symbol files. These files are pre-compiled
modules that are used by the compiler to perform incremental compilation. This means that only modules
that have changed since the last compilation (or the modules depending on them etc.) are re-compiled.
However, per default no symbol files are generated; use the -symbolFiles:on command line switch to
activate them.

Unfortunately due to technical reasons the -symbolFiles:on needs to aggregate some generated C
code. This means that the resulting executable might contain some cruft even when dead code elimination
is turned on. So the final release build should be done with -symbolFiles:off.

Due to the aggregation of C code it is also recommended that each project resists in its own directory
so that the generated nimcache directory is not shared between different projects.

4 Cross compilation
To cross compile, use for example:

nimrod c --cpu:i386 --os:linux --compile_only --gen_script myproject.nim

Then move the C code and the compile script compile_myproject.sh to your Linux i386 machine
and run the script.

Another way is to make Nimrod invoke a cross compiler toolchain:

nimrod c --cpu:arm --os:linux myproject.nim

For cross compilation, the compiler invokes a C compiler named like $cpu.$os.$cc (for example
arm.linux.gcc) and the configuration system is used to provide meaningful defaults. For example for ARM
your configuration file should contain something like:

arm.linux.gcc.path = "/usr/bin"
arm.linux.gcc.exe = "arm-linux-gcc"
arm.linux.gcc.linkerexe = "arm-linux-gcc"

6

Define Effect
release Turns off runtime checks and turns on the opti-

mizer.
useWinAnsi Modules like os and osproc use the Ansi ver-

sions of the Windows API. The default build uses
the Unicode version.

useFork Makes osproc use fork instead of
posix_spawn.

useNimRtl Compile and link against nimrtl.dll.
useMalloc Makes Nimrod use C’s malloc instead of Nim-

rod’s own memory manager. This only works with
gc:none.

useRealtimeGC Enables support of Nimrod’s GC for soft realtime
systems. See the documentation of the gc for fur-
ther information.

nodejs The JS target is actually node.js.
ssl Enables OpenSSL support for the sockets module.
memProfiler Enables memory profiling for the native GC.

5 DLL generation
Nimrod supports the generation of DLLs. However, there must be only one instance of the GC per
process/address space. This instance is contained in nimrtl.dll. This means that every generated
Nimrod DLL depends on nimrtl.dll. To generate the "nimrtl.dll" file, use the command:

nimrod c -d:release lib/nimrtl.nim

To link against nimrtl.dll use the command:

nimrod c -d:useNimRtl myprog.nim

Note: Currently the creation of nimrtl.dll with thread support has never been tested and is
unlikely to work!

6 Additional compilation switches
The standard library supports a growing number of useX conditional defines affecting how some features
are implemented. This section tries to give a complete list.

7 Additional Features
This section describes Nimrod’s additional features that are not listed in the Nimrod manual. Some of
the features here only make sense for the C code generator and are subject to change.

7.1 NoDecl pragma
The noDecl pragma can be applied to almost any symbol (variable, proc, type, etc.) and is sometimes
useful for interoperability with C: It tells Nimrod that it should not generate a declaration for the symbol
in the C code. For example:

var
EACCES {.importc, noDecl.}: cint # pretend EACCES was a variable, as

Nimrod does not know its value

However, the header pragma is often the better alternative.
Note: This will not work for the LLVM backend.

7

gc.html

7.2 Header pragma
The header pragma is very similar to the noDecl pragma: It can be applied to almost any symbol and
specifies that it should not be declared and instead the generated code should contain an #include:

type
PFile {.importc: "FILE*", header: "<stdio.h>".} = distinct pointer
import C’s FILE* type; Nimrod will treat it as a new pointer type

The header pragma always expects a string constant. The string contant contains the header file:
As usual for C, a system header file is enclosed in angle brackets: <>. If no angle brackets are given,
Nimrod encloses the header file in "" in the generated C code.

Note: This will not work for the LLVM backend.

7.3 IncompleteStruct pragma
The incompleteStruct pragma tells the compiler to not use the underlying C struct in a sizeof
expression:

type
TDIR* {.importc: "DIR", header: "<dirent.h>",

final, pure, incompleteStruct.} = object

7.4 Compile pragma
The compile pragma can be used to compile and link a C/C++ source file with the project:

{.compile: "myfile.cpp".}

Note: Nimrod computes a CRC checksum and only recompiles the file if it has changed. You can
use the -f command line option to force recompilation of the file.

7.5 Link pragma
The link pragma can be used to link an additional file with the project:

{.link: "myfile.o".}

7.6 Emit pragma
The emit pragma can be used to directly affect the output of the compiler’s code generator. So it makes
your code unportable to other code generators/backends. Its usage is highly discouraged! However, it
can be extremely useful for interfacing with C++ or Objective C code.

Example:

{.emit: """static int cvariable = 420;""".}

proc embedsC() {.noStackFrame.} =
var nimrodVar = 89
use backticks to access Nimrod symbols within an emit section:
{.emit: """fprintf(stdout, "%d\n", cvariable + (int)‘nimrodVar‘);""".}

embedsC()

7.7 ImportCpp pragma
The importcpp pragma can be used to import C++ methods. The generated code then uses the C++
method calling syntax: obj->method(arg). In addition with the header and emit pragmas this
allows sloppy interfacing with libraries written in C++:

8

Horrible example of how to interface with a C++ engine ... ;-)

{.link: "/usr/lib/libIrrlicht.so".}

{.emit: """using namespace irr;using namespace core;using namespace scene;using namespace video;using namespace io;using namespace gui;""".}

const
irr = "<irrlicht/irrlicht.h>"

type
TIrrlichtDevice {.final, header: irr, importc: "IrrlichtDevice".} = object
PIrrlichtDevice = ptr TIrrlichtDevice

proc createDevice(): PIrrlichtDevice {.
header: irr, importc: "createDevice".}

proc run(device: PIrrlichtDevice): bool {.
header: irr, importcpp: "run".}

The compiler needs to be told to generate C++ (command cpp) for this to work. The conditional
symbol cpp is defined when the compiler emits C++ code.

7.8 ImportObjC pragma
The importobjc pragma can be used to import Objective C methods. The generated code then uses the
Objective C method calling syntax: [obj method param1: arg]. In addition with the header
and emit pragmas this allows sloppy interfacing with libraries written in Objective C:

horrible example of how to interface with GNUStep ...

{.passL: "-lobjc".}
{.emit: """#include <objc/Object.h>@interface Greeter:Object{}- (void)greet:(long)x y:(long)dummy;@end#include <stdio.h>@implementation Greeter- (void)greet:(long)x y:(long)dummy{ printf("Hello, World!\n");}@end#include <stdlib.h>""".}

type
TId {.importc: "id", header: "<objc/Object.h>", final.} = distinct int

proc newGreeter: TId {.importobjc: "Greeter new", nodecl.}
proc greet(self: TId, x, y: int) {.importobjc: "greet", nodecl.}
proc free(self: TId) {.importobjc: "free", nodecl.}

var g = newGreeter()
g.greet(12, 34)
g.free()

The compiler needs to be told to generate Objective C (command objc) for this to work. The
conditional symbol objc is defined when the compiler emits Objective C code.

7.9 LineDir option
The lineDir option can be turned on or off. If turned on the generated C code contains #line directives.
This may be helpful for debugging with GDB.

7.10 StackTrace option
If the stackTrace option is turned on, the generated C contains code to ensure that proper stack traces
are given if the program crashes or an uncaught exception is raised.

7.11 LineTrace option
The lineTrace option implies the stackTrace option. If turned on, the generated C contains code to
ensure that proper stack traces with line number information are given if the program crashes or an
uncaught exception is raised.

9

7.12 Debugger option
The debugger option enables or disables the Embedded Nimrod Debugger. See the documentation of endb
for further information.

7.13 Breakpoint pragma
The breakpoint pragma was specially added for the sake of debugging with ENDB. See the documentation
of endb for further information.

7.14 Volatile pragma
The volatile pragma is for variables only. It declares the variable as volatile, whatever that means in
C/C++ (its semantics are not well defined in C/C++).

Note: This pragma will not exist for the LLVM backend.

8 Nimrod interactive mode
The Nimrod compiler supports an interactive mode. This is also known as a REPL (read eval print loop).
If Nimrod has been built with the -d:useGnuReadline switch, it uses the GNU readline library for
terminal input management. To start Nimrod in interactive mode use the command nimrod i. To
quit use the quit() command. To determine whether an input line is an incomplete statement to be
continued these rules are used:

1. The line ends with [-+*/\\<>!\?\|%&$@~,;:=#^]\s*$ (operator symbol followed by optional
whitespace).

2. The line starts with a space (indentation).

3. The line is within a triple quoted string literal. However, the detection does not work if the line
contains more than one """.

9 Nimrod for embedded systems
The standard library can be avoided to a point where C code generation for 16bit micro controllers is
feasible. Use the standalone target (-os:standalone) for a bare bones standard library that lacks any
OS features.

To make the compiler output code for a 16bit target use the -cpu:avr target.
So to generate code for an AVR processor use this command:

nimrod c --cpu:avr --os:standalone --gc:none -d:useMalloc --genScript x.nim

10 Nimrod for realtime systems
See the documentation of Nimrod’s soft realtime GC for further information.

11 Debugging with Nimrod
Nimrod comes with its own Embedded Nimrod Debugger. See the documentation of endb for further
information.

10

endb.html
endb.html
gc.html
endb.html

12 Optimizing for Nimrod
Nimrod has no separate optimizer, but the C code that is produced is very efficient. Most C compilers
have excellent optimizers, so usually it is not needed to optimize one’s code. Nimrod has been designed
to encourage efficient code: The most readable code in Nimrod is often the most efficient too.

However, sometimes one has to optimize. Do it in the following order:

1. switch off the embedded debugger (it is slow!)

2. turn on the optimizer and turn off runtime checks

3. profile your code to find where the bottlenecks are

4. try to find a better algorithm

5. do low-level optimizations

This section can only help you with the last item.

12.1 Optimizing string handling
String assignments are sometimes expensive in Nimrod: They are required to copy the whole string.
However, the compiler is often smart enough to not copy strings. Due to the argument passing semantics,
strings are never copied when passed to subroutines. The compiler does not copy strings that are a result
from a procedure call, because the callee returns a new string anyway. Thus it is efficient to do:

var s = procA() # assignment will not copy the string; procA allocates a new
string already

However it is not efficient to do:

var s = varA # assignment has to copy the whole string into a new buffer!

For let symbols a copy is not always necessary:

let s = varA # may only copy a pointer if it safe to do so

If you know what you’re doing, you can also mark single string (or sequence) objects as shallow:

var s = "abc"
shallow(s) # mark ’s’ as shallow string
var x = s # now might not copy the string!

Usage of shallow is always safe once you know the string won’t be modified anymore, similar to
Ruby’s freeze.

The compiler optimizes string case statements: A hashing scheme is used for them if several different
string constants are used. So code like this is reasonably efficient:

case normalize(k.key)
of "name": c.name = v
of "displayname": c.displayName = v
of "version": c.version = v
of "os": c.oses = split(v, {’;’})
of "cpu": c.cpus = split(v, {’;’})
of "authors": c.authors = split(v, {’;’})
of "description": c.description = v
of "app":

case normalize(v)
of "console": c.app = appConsole
of "gui": c.app = appGUI
else: quit(errorStr(p, "expected: console or gui"))

of "license": c.license = UnixToNativePath(k.value)
else: quit(errorStr(p, "unknown variable: " & k.key))

11

13 The JavaScript target
Nimrod can also generate JavaScript code. However, the JavaScript code generator is experimental!

Nimrod targets JavaScript 1.5 which is supported by any widely used browser. Since JavaScript does
not have a portable means to include another module, Nimrod just generates a long .js file.

Features or modules that the JavaScript platform does not support are not available. This includes:

• manual memory management (alloc, etc.)

• casting and other unsafe operations (cast operator, zeroMem, etc.)

• file management

• most modules of the Standard library

• proper 64 bit integer arithmetic

• unsigned integer arithmetic

However, the modules strutils, math, and times are available! To access the DOM, use the dom module
that is only available for the JavaScript platform.

To compile a Nimrod module into a .js file use the js command; the default is a .js file that is
supposed to be referenced in an .html file. However, you can also run the code with nodejs:

nimrod js -d:nodejs -r examples/hallo.nim

12

	Introduction
	Compiler Usage
	Command line switches
	List of warnings
	Verbosity levels
	Configuration files
	Generated C code directory

	Compilation cache
	Cross compilation
	DLL generation
	Additional compilation switches
	Additional Features
	NoDecl pragma
	Header pragma
	IncompleteStruct pragma
	Compile pragma
	Link pragma
	Emit pragma
	ImportCpp pragma
	ImportObjC pragma
	LineDir option
	StackTrace option
	LineTrace option
	Debugger option
	Breakpoint pragma
	Volatile pragma

	Nimrod interactive mode
	Nimrod for embedded systems
	Nimrod for realtime systems
	Debugging with Nimrod
	Optimizing for Nimrod
	Optimizing string handling

	The JavaScript target

