
c2nim User’s manual 0.9.2
Andreas Rumpf

May 21, 2013

Contents
1 Introduction 2

2 Preprocessor support 2
2.1 #skipinclude directive . 2
2.2 #stdcall and #cdecl directives . 3
2.3 #dynlib directive . 3
2.4 #header directive . 3
2.5 #prefix and #suffix directives . 4
2.6 #mangle directive . 4
2.7 #private directive . 4
2.8 #skipcomments directive . 4
2.9 #typeprefixes directive . 4
2.10 #def directive . 5

3 Limitations 5

1

1 Introduction
c2nim is a tool to translate Ansi C code to Nimrod. The output is human-readable Nimrod code that is
meant to be tweaked by hand after the translation process. c2nim is no real compiler!

c2nim is preliminary meant to translate C header files. Because of this, the preprocessor is part of
the parser. For example:
#define abc 123
#define xyz 789

Is translated into:
const

abc* = 123
xyz* = 789

c2nim is meant to translate fragments of C code and thus does not follow include files. c2nim cannot
parse all of Ansi C and many constructs cannot be represented in Nimrod: for example duff’s device
cannot be translated to Nimrod.

2 Preprocessor support
Even though the translation process is not perfect, it is often the case that the translated Nimrod code
does not need any tweaking by hand. In other cases it may be preferable to modify the input file instead
of the generated Nimrod code so that c2nim can parse it properly. c2nim’s preprocessor defines the
symbol C2NIM that can be used to mark code sections:
#ifndef C2NIM

// C2NIM should ignore this prototype:
int fprintf(FILE* f, const char* frmt, ...);

#endif

The C2NIM symbol is only recognized in #ifdef and #ifndef constructs! #if defined(C2NIM)
does not work.

c2nim processes #ifdef C2NIM and #ifndef C2NIM directives, but other #if[def] directives
are translated into Nimrod’s when construct:
#ifdef DEBUG
define OUT(x) printf("%s\n", x)
#else
define OUT(x)
#endif

Is translated into:
when defined(debug):

template OUT*(x: expr): expr =
printf("%s\x0A", x)

else:
template OUT*(x: expr): stmt =

nil

As can been seen from the example, C’s macros with parameters are mapped to Nimrod’s templates.
This mapping is the best one can do, but it is of course not accurate: Nimrod’s templates operate on
syntax trees whereas C’s macros work on the token level. c2nim cannot translate any macro that contains
the ## token concatenation operator.

c2nim’s preprocessor supports special directives that affect how the output is generated. They should
be put into a #ifdef C2NIM section so that ordinary C compilers ignore them.

2.1 #skipinclude directive
Note: There is also a -skipinclude command line option that can be used for the same purpose.

By default, c2nim translates an #include that is not followed by < (like in #include <stdlib>)
to a Nimrod import statement. This directive tells c2nim to just skip any #include.

2

2.2 #stdcall and #cdecl directives
Note: There are also -stdcall and -cdecl command line options that can be used for the same
purpose.

These directives tell c2nim that it should annotate every proc (or proc type) with the stdcall /
cdecl calling convention.

2.3 #dynlib directive
Note: There is also a -dynlib command line option that can be used for the same purpose.

This directive tells c2nim that it should annotate every proc that resulted from a C function prototype
with the dynlib pragma:

#ifdef C2NIM
dynlib iupdll
cdecl
if defined(windows)
define iupdll "iup.dll"
elif defined(macosx)
define iupdll "libiup.dylib"
else
define iupdll "libiup.so"
endif
#endif

int IupConvertXYToPos(PIhandle ih, int x, int y);

Is translated to:

when defined(windows):
const iupdll* = "iup.dll"

elif defined(macosx):
const iupdll* = "libiup.dylib"

else:
const iupdll* = "libiup.so"

proc IupConvertXYToPos*(ih: PIhandle, x: cint, y: cint): cint {.
importc: "IupConvertXYToPos", cdecl, dynlib: iupdll.}

Note how the example contains extra C code to declare the iupdll symbol in the generated Nimrod
code.

2.4 #header directive
Note: There is also a -header command line option that can be used for the same purpose.

The #header directive tells c2nim that it should annotate every proc that resulted from a C function
prototype and every exported variable and type with the header pragma:

#ifdef C2NIM
header "iup.h"
#endif

int IupConvertXYToPos(PIhandle ih, int x, int y);

Is translated to:

proc IupConvertXYToPos*(ih: PIhandle, x: cint, y: cint): cint {.
importc: "IupConvertXYToPos", header: "iup.h".}

The #header and the #dynlib directives are mutually exclusive. A binding that uses dynlib is
much more preferable over one that uses header! The Nimrod compiler might drop support for the
header pragma in the future as it cannot work for backends that do not generate C code.

3

2.5 #prefix and #suffix directives
Note: There are also -prefix and -suffix command line options that can be used for the same
purpose.

c2nim does not do any name mangling by default. However the #prefix and #suffix directives
can be used to strip prefixes and suffixes from the identifiers in the C code:

#ifdef C2NIM
prefix Iup
dynlib dllname
cdecl
#endif

int IupConvertXYToPos(PIhandle ih, int x, int y);

Is translated to:

proc ConvertXYToPos*(ih: PIhandle, x: cint, y: cint): cint {.
importc: "IupConvertXYToPos", cdecl, dynlib: dllname.}

2.6 #mangle directive
Even more sophisticated name mangling can be achieved by the #mangle directive: It takes a PEG
pattern and format string that specify how the identifier should be converted:

#mangle "’GTK_’{.*}" "TGtk$1"

For convenience the PEG pattern and the replacement can be single identifiers too, there is no need
to quote them:

#mangle ssize_t int
// is short for:
#mangle "’ssize_t’" "int"

2.7 #private directive
By default c2nim marks every top level identifier (proc name, variable, etc.) as exported (the export
marker is * in Nimrod). With the #private directive identifiers can be marked as private so that the
resulting Nimrod module does not export them. The #private directive takes a PEG pattern:

#private "@(’_’!.)" // all identifiers ending in ’_’ are private

Note: The pattern refers to the original C identifiers, not to the resulting identifiers after mangling!

2.8 #skipcomments directive
Note: There is also a -skipcomments command line option that can be used for the same purpose.

The #skipcomments directive can be put into the C code to make c2nim ignore comments and not
copy them into the generated Nimrod file.

2.9 #typeprefixes directive
Note: There is also a -typeprefixes command line option that can be used for the same purpose.

The #typeprefixes directive can be put into the C code to make c2nim generate the T or P prefix
for every defined type.

4

2.10 #def directive
Often C code contains special macros that affect the declaration of a function prototype but confuse
c2nim’s parser:

// does not parse!
EXTERN(int) f(void);
EXTERN(int) g(void);

Instead of removing EXTERN() from the input source file (which cannot be done reliably even with a
regular expression!), one can tell c2nim that EXPORT is a macro that should be expanded by c2nim too:

#ifdef C2NIM
def EXTERN(x) static x
#endif
// parses now!
EXTERN(int) f(void);
EXTERN(int) g(void);

#def is very similar to C’s #define, so in general the macro definition can be copied and pasted
into a #def directive.

3 Limitations
• C’s , operator (comma operator) is not supported.

• C’s union are translated to Nimrod’s objects and only the first field is included in the object type.
This way there is a high chance that it is binary compatible to the union.

• The condition in a do while(condition) statement must be 0.

• Lots of other small issues...

5

	Introduction
	Preprocessor support
	#skipinclude directive
	#stdcall and #cdecl directives
	#dynlib directive
	#header directive
	#prefix and #suffix directives
	#mangle directive
	#private directive
	#skipcomments directive
	#typeprefixes directive
	#def directive

	Limitations

