Nimrod’s Garbage Collector 0.9.2"The road to hell is paved with
good intentions."

Andreas Rumpf
May 21, 2013

1 Introduction

This document describes how the GC works and how to tune it for (soft) realtime systems.

The basic algorithm is Deferrent Reference Counting with cycle detection. References on the stack
are not counted for better performance (and easier C code generation). The GC never scans the whole
heap but it may scan the delta-subgraph of the heap that changed since its last run.

The GC is only triggered in a memory allocation operation. It it not triggered by some timer and
does not run in a background thread.

To force a full collection call GC_fullCollect. Note that it is generally better to let the GC do its
work and not enforce a full collection.

2 Cycle collector

The cycle collector can be en-/disabled independently from the other parts of the GC with
GC_enableMarkAndSweep and GC_disableMarkAndSweep. The compiler analyses the types
for their possibility to build cycles, but often it is necessary to help this analysis with the acyclic
pragma (see acyclic| for further information).

You can also use the acyclic pragma for data that is cyclic in reality and then break up the cycles
explicitly with GC_addCycleRoot. This can be a very valuable optimization; the Nimrod compiler
itself relies on this optimization trick to improve performance. Note that GC_addCycleRoot is a quick
operation; the root is only registered for the next run of the cycle collector.

3 Realtime support

To enable realtime support, the symbol useRealtimeGC needs to be defined. With this switch the GC
supports the following operations:

proc GC_setMaxPausex (MaxPauseInUs: int)
proc GC_stepx (us: int, strongAdvice = false)

The unit of the parameters MaxPauseInUs and us is microseconds.
These two procs are the two modus operandi of the realtime GC:
(1) GC_SetMaxPause Mode

You can call GC_SetMaxPause at program startup and then each triggered GC run tries to
not take longer than MaxPause time. However, it is possible (and common) that the work
is nevertheless not evenly distributed as each call to new can trigger the GC and thus take
MaxPause time.

(2) GC_step Mode

This allows the GC to perform some work for up to us time. This is useful to call in a main
loop to ensure the GC can do its work. To bind all GC activity to a GC_step call, deactivate
the GC with GC_disable at program startup.


manual.html#acyclic-pragma

These procs provide a "best effort" realtime guarantee; in particular the cycle collector is not aware of
deadlines yet. Deactivate it to get more predictable realtime behaviour. Tests show that a 2ms max
pause time will be met in almost all cases on modern CPUs unless the cycle collector is triggered.

3.1 Time measurement

The GC’s way of measing time uses (see 1ib/system/timers.nim for the implementation):

1. QueryPerformanceCounter and QueryPerformanceFrequency on Windows.
2. mach_absolute_time on Mac OS X.

3. gettimeofday on Posix systems.

As such it supports a resolution of nano seconds internally; however the API uses microseconds for
convenience.

Define the symbol reportMissedDeadlines to make the GC output whenever it missed a deadline.
The reporting will be enhanced and supported by the API in later versions of the collector.

3.2 Tweaking the GC

The collector checks whether there is still time left for its work after every workPackage’th itera-
tion. This is currently set to 100 which means that up to 100 objects are traversed and freed before it
checks again. Thus workPackage affects the timing granularity and may need to be tweaked in highly
specialized environments or for older hardware.



	Introduction
	Cycle collector
	Realtime support
	Time measurement
	Tweaking the GC


