Twitter client for R

Jeft Gentry
February 9, 2013

1 Introduction

Twitter is a popular service that allows users to broadcast short messages
("tweets’) for others to read. These can be used to communicate wtih friends, to
display headlines, for restaurants to list daily specials, and more. The twitteR
package is intended to provide access to the Twitter API within R. Users can
make access large amounts of Twitter data for data mining and other tasks.

This package is intended to be combined with the ROAuth package as as of
March 2013 the Twitter API requires the use of OAuth authentication.

2 Initial Notes

2.1 Support mailing list

While this package doesn’t generate a huge volume of emails to me, I have found
that the same questions tends to come up repeatedly (often when something has
been broken!). I also field requests for advice on practical application of this
package which is an area that I'm far from expert at. I've set up a mailing list
to better manage emails from users as this way, with the idea being that there’ll
now be a searchable archive and perhaps other users might be able to chime in.
The URL for this mailing list is http://1lists.hexdump.org/listinfo.cgi/
twitter-users-hexdump.org

2.2 Notes on API coverage

The ultimate goal is to provide full coverage of the Twitter API, although this
is not currently the case. Aspects of the API will be added over time, although
if there are particular places that you find missing, please contact me.

I've long neglected Twitter’s streaming API and someone else has picked up
my slack with the streamR package.

2.3 Notes on the classes

There are five classes in this package: user, status, trend, rateLImitInfo,
and directMessage. As of this version they have all been implemented as

reference classes (see setRefClass). The first two were previously implemented
as S4 classes. To help maintain backwards compatibility, the S4 methods (all
accessors) have been left in for those two classes although new code should be
using the new style accessors.

3 Authentication with OAuth

As of March 2013 OAuth authentication is required for all Twitter transactions.
You will need to follow these instructions to continue.

OAuth is an authentication mechanism gaining popularity which allows ap-
plications to provide client functionality to a web service without granting an
end user’s credentials to the client itself. This causes a few wrinkles for cases
like ours, where we’re accessing Twitter programatically. The ROAuth package
can be used to get around this issue.

The first step is to create a Twitter application for yourself. Go to https:
//twitter.com/apps/new and log in. After filling in the basic info, go to the
“Settings” tab and select "Read, Write and Access direct messages”. Make sure
to click on the save button after doing this. In the “Details” tab, take note of
your consumer key and consumer secret as well as the following:

o requestURL: https: //apti. twitter. com/ oauth/request_ token
e accessURL: http://api.twitter.com/oauth/access_token

o authURL: http: //api. twitter. com/ oauth/authorize

In your R session, you'll want to do the following:

cred <- OAuthFactory$new(consumerKey=YOURKEY,
consumerSecret=YOURSECRET,
requestURL=requestURL,
accessURL=accessURL,
authURL=authURL)

V o+ + + + Vv

cred$handshake ()

At this point, you’ll be prompted with another URL, go to that URL with
your browser and you’ll be asked to approve the connection for this application.
Once you do this, you’ll be presented with a PIN, enter that into your R session.
Your object is now verified.

Lastly, to use that credential object within an R session, use the register-
TwitterOAuth function. Passing your OAuth object to that function will cause
all of the API calls to go through Twitter’s OAuth mechanism instead of the
standard URLs:

> registerTwitterOAuth (cred)

The 0Auth object, once the handshake is complete, can be saved to a file
and reused. You should not ever have to redo the handshake unless you remove
authorization within the Twitter website.

4 Getting Started

This document is intended to demonstrate basic techniques rather than an ex-
haustive tour of the functionality. For more in depth examples I recommend
exploring the mailing list, StackOverflow or look at the links I post at the end.

> library(twitteR)

[1] TRUE

5 Exploring Twitter

A Twitter timeline is simply a stream of tweets. We support two timelines,
the user timeline and the home timeline. The former provides the most recent
tweets of a specified user whiel the latter is used to display your own most recent
tweets. These both return a list of status objects.

To look at a particular user’s timeline that user must either have a public
account or you must have access to their account. You can either pass in the
user’s name or an object of class user (more on this later). For this example,
let’s use the user cranatic.

> cranTweets <- userTimeline('cranatic')
> cranTweets[1:5]
[[1]1]

[1] "cranatic: Update: Bchron, BoolNet, caribou, CePa, fmri, HTSCluster, isa2, lessR, lgcp,

[[21]
[1] "cranatic: New: extrafont, extrafontdb, Rttf2ptl, x12GUI. http://t.co/skyrajMA #rstats"

[[311
[1] "cranatic: Update: drc, RcmdrPlugin.survival, rrcov, spls. http://t.co/eEoXNifB #rstats'

[[4]]
[1] "cranatic: New: hzar. http://t.co/eEoXNifB #rstats"

[[5]1]
[1] "cranatic: Update: directlabels, forensim, gdata, gWidgetstcltk, gWidgetsWWW, harvestr,

By default this command returns the 20 most recent tweet. As with most
(but not all) of the functions, it also provides a mechanism to retrieve an arbi-
trarily large number of tweets up to limits set by the Twitter API, which vary
based on the specific type of request. (warning: At least as of now there is
no protection from overloading the API rate limit so be reasonable with your
requests).

> cranTweetsLarge <- userTimeline('cranatic', n=100)
> length(cranTweetsLarge)

[1] 100

The homeTimeline function works nearly identically except you do not pass
in a user, it uses your own timeline.

5.1 Searching Twitter

The searchTwitter function can be used to search for tweets that match a
desired term. Example searches are such things as hashtags, basic boolean logic
such as AND and OR. The n argument can be used to specify the number of
tweets to return, defaulting to 25.

> sea <- searchTwitter('#twitter', n=50)
> seal1:5]

[[11]

[1] "az_snchez: RT @Milenio: Delitos ya se pueden denunciar a trav<U+00E9>s de #Twitter; la

[[2]1]
[1] "queen324: RT @MensHumor: #okay #people #who #use #a #million #hashtags #on #Twitter #yc

[[31]
[1] "Bookiemills: RT @MensHumor: #okay #people #who #use #a #million #hashtags #on #Twitter

[[4]1]
[1] "MaggieKathrynl2: RT @MensHumor: #okay #people #who #use #a #million #hashtags #on #Twit

NN
[1] "MichaelSuddard: RT @MensHumor: #okay #people #who #use #a #million #hashtags #on #Twitt

5.2 Looking at users

To take a closer look at a Twitter user (including yourself!), run the command
getUser. This will only work correctly with users who have their profiles public,
or if you're authenticated and granted access.

> crantastic <- getUser('crantastic')
> crantastic

[1] "Crantastic"

5.3 Trends

Twitter keeps track of topics that are popular at any given point of time, and
allows one to extract that data. The getTrends function is used to pull current
trend information from a given location, which is specified using a WOEID (see
http://developer.yahoo.com/geo/geoplanet/). Luckily there are two other

functions to help you identify WOEIDs that you might be interested in. The
availableTrendLocations function will return a data.frame with a location
in each row and the woeid giving that location’s WOEID. Similarly the clos-
estTrendLocations function is passed a latitude and longitude and will return
the same style data.frame.

> availTrends = availableTrendLocations ()
> head(availTrends)
name country woeid
1 Moscow Russia 2122265
2 Boston United States 2367105
3 Marseille France 610264
4 Nottingham United Kingdom 30720
5 Incheon Korea 1132496
6 Worldwide 1
> closeTrends = closestTrendLocations(-42.8, -71.1)
> head(closeTrends)

name country woeid
1 Concepcion Chile 349860

v

trends = getTrends(2367105)
head (trends)

\

name

#HonestHour

#ThingsYouShouldntDo
#MentionSomeoneYouRideForNoMatterWhat
#StrugglesOfBeingBlack

#nemo

Despicable Me

DO WN -

url
http://twitter.com/search?q=/23HonestHour
http://twitter.com/search?q=%23ThingsYouShouldntDo
http://twitter.com/search?q=%23MentionSomeoneYouRideForNoMatterWhat
http://twitter.com/search?q=%23StrugglesOfBeingBlack
http://twitter.com/search?q=/23nemo
http://twitter.com/search?q=Y,22Despicable,20Me’,22

query woeid

%23HonestHour 2367105

%23ThingsYouShouldntDo 2367105

%23MentionSomeoneYouRideForNoMatterWhat 2367105

%23Struggles0fBeingBlack 2367105

%23nemo 2367105

%22Despicable’20Me}22 2367105

DO WN -

DO WN -

5.4 A simple example

Just a quick example of how one can interact with actual data. Here we will
pull the most recent results from the public timeline and see the clients that
were used to post those statuses. We can look at a pie chart to get a sense for
the most common clients.

Note that sources which are not the standard web interface will be presented
as an anchored URL string (<A>...). There are more efficient means to
rip out the anchor string than how it is done below, but this is a bit more robust
for the purposes of this vignette due to issues with character encoding, locales,
etc.

> rTweets <- searchTwitter ("#rstats", n=300)
> sources <- sapply(rTweets, function(x) x$getStatusSource())
> sources <- gsub('"", "", sources)
> sources <- strsplit(sources, ">")
> sources <- sapply(sources, function(x) ifelse(length(x) > 1, x[2], x[1]))
> pie(table(sources))
TweetDeck Tweet Button
et rndteam
IR Mac
Tweetbot for Mac HootSuite
Tweetbot for iOS §+'Ie'vr\{
- riends Note
Tweetlogix Feeddler RSS R
Twitter for Android Echofon
Buffer

Twitter for Mac

Twitter for iPhone

bitly

5.5 Conversion to data.frames

There are times when it is convenient to display the object lists as an data.frame
structure. To do this, every class has a reference method toDataFrame as well as

a corresponding S4 method as.data.frame that works in the traditional sense.
Converting a single object will typically not be particularly useful by itself but
there is a convenience method to convert an entire list, twListToDF which takes
a list of objects from a single twitteR class:

> # df <- twListToDF(publicTweets)
> # df[1:3,1:3]

6 Examples Of twitteR In The Wild

I’ve found some examples around the web of people using this package for various
purposes, hopefully some of these can give you good ideas on how to do things.
Unfortunately I didn’t give the package the most easily searched name! If you
know of a good example please let me know.

o Jeffrey Breen’s sentiment analysis example: http://www.inside-r.org/
howto/mining-twitter-airline-consumer-sentiment

e Mapping your followers: http://simplystatistics.org/2011/12/21/
an-r-function-to-map-your-twitter-followers/

e Yangchao Zhao’s book on data mining w/ R http://www.amazon.com/
Data-Mining-Examples-Case-Studies/dp/0123969638

e Gary Miner et al’s book on data mining http://www.amazon.com/Practical-Statistical-Analysis-N
dp/012386979X

e Mining Twitter with R https://sites.google.com/site/miningtwitter/
home

¢ Organization or conversation in Twitter: A case study of chatterboxing
https://www.asis.org/asist2012/proceedings/Submissions/185.pdf
7 Session Information
The version number of R and packages loaded for generating the vignette were:

R version 2.15.2 (2012-10-26)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] ROAuth_0.9.2 digest_0.6.2 twitteR_0.99.27 rjson_0.2.12
[5] RCurl_1.95-3 bitops_1.0-5

loaded via a namespace (and not attached):
[1] tools_2.15.2

